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Chapter 1

Introduction

Summary : This short chapter presents the context in which this
doctoral thesis was carried out. It presents the industrial framework of
the thesis, which is the certification of biometric systems, as well as the
problem addressed and its contributions. Finally, we conclude with the
prospects.

1.1 Context

We are living in a digital world where cybersecurity is an essential part. Technology
and cyber-solution are ubiquitous. Whether for leisure, home automation, or our
interactions with administrative services, etc., computer systems are an integral part
of our lives. Their security must be guaranteed to ensure their integrity as well as
the protection of personal data and the privacy of users. This is a key element for
the confidence one can have in a computer system.

Through the years, many solutions have been proposed to ensure the security and
integrity of cyber systems.

The first solutions to emerge were based on Something you know. Passwords and
passphrases are examples of solutions that still exist today. However, passwords
present many risks as people try to set them in a way they can remember them
easily. They are often shared or noted somewhere or hints are noted, hints which
may contain the password itself. Microsoft reported 1,287 password attacks every
second, which represents more than 111 million per day.

1



2 CHAPTER 1. INTRODUCTION

Another solution based on physical possession such as a smartcard or a physical key
has been proposed. These are based on Something you have. It ensures that the
person has something that only the right person should possess. The physical object
can be lost, forgotten, or replicated, etc.

A third type is Something you are. For the last one, biometrics is the best candidate
to guarantee security and ensure that people are who they claim they are with
the least risks. Biometrics is all the means to authenticate or identify a human
being thanks to his/her biometric characteristics, which can be morphological or
behavioral. In opposition to passwords, smartcards or tokens that can be reset, our
biometric characteristics are unique and cannot be changed. That is why the security
of biometric systems is essential and crucial.

1.2 Biometrics

Biometrics is more and more present and used, although at the beginning it was
a solution that was used for some specific tasks such as border control or identity
checks. Nowadays, biometrics is not only used for administrative or official tasks but
is present in our everyday lives. From computers to smartphones or banking cards,
biometrics is more and more used for logical access or for some more specific tasks
such as second-factor authentication, multifactor authentication, identity, banking,
retail and commerce, insurance, . . . . For example, in 2022, Cisco reported that
81% of smartphones have biometrics enabled 1 while smartphones with fingerprint
sensor went from 19% to 60% between 2014 and 2018 2. Indeed, as pointed out in
the previous section, the solutions based on knowledge or possession are subject
to be compromised and therefore the security of the associated application is not
guaranteed anymore. Biometric solutions offer the advantage of being set to be
user-friendly and not constraining most of the time. Biometrics is a solution that
covers up the weaknesses of the two others. It is used to assess the identity of people
and give them access to systems they are allowed to.

Therefore, biometric systems need to be secured and people or services using
biometrics need to have guarantees regarding the integrity and usability of the
biometric systems. Thus, biometric systems need to be evaluated in order to assess
their usability and associated security level.

1https://duo.com/resources/ebooks/the-2022-duo-trusted-access-report
2https://www.statista.com/statistics/804269/global-smartphone-fingerprint-

sensor-penetration-rate/

https://duo.com/resources/ebooks/the-2022-duo-trusted-access-report
https://www.statista.com/statistics/804269/global-smartphone-fingerprint-sensor-penetration-rate/
https://www.statista.com/statistics/804269/global-smartphone-fingerprint-sensor-penetration-rate/
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1.3 PhD Thesis

1.3.1 Context

This thesis is the result of a collaboration between the GREYC laboratory and
FIME EMEA. It is co-funded by the French National Association for Research and
Technology (ANRT: Association Nationale de la Recherche et de la Technologie)
whose objective is to create innovations in partnership with research laboratories
and tech companies.

1.3.2 Objectives

The thesis is set in the context of the certification of biometric systems in general and
fingerprint-based systems in particular. Indeed, for a certified system, it is important
to know the testing scenarios that have been used by the certification laboratory to
assess the conformance of a system to a specific test plan. The tests that have led to
the approbation of the product under test should be reproducible identically or with
a minimum deviation regarding the user experience and the security of the certified
product. Many factors have been identified to make difficult the reproducibility of
the testing. While some of them depend on the user interaction with the system,
the system as well as the environment where it is deployed can significantly impact
its recognition capabilities. The context of acquisition is the main factor regarding
the non-repeatability of the tests. This concerns both the environmental conditions
of acquisition and the capture system itself. As stated earlier, the certification of a
biometric (fingerprint) system is assessed on the basis of its ability to recognize the
right person and to resist to presentation attacks. The last part is time-consuming
and laboratories have no indication regarding the training methods of the tested
algorithms. Therefore, it is not fair to rely on the existing datasets, which are often
limited to research purposes, to test products. Moreover, the constraints associated
with the testing motivate us to go towards the generation of synthetic data to be
used for the evaluation of presentation attack detection.

During this thesis, we address the following questions:
• How the acquisition context of a biometric fingerprint system can impact its

performance?
• How synthetic fingerprint spoofs can help to evaluate fingerprint systems?
• How can we achieve the reproducibility of biometric testing?
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1.4 Contributions

We list hereafter the different contributions of this PhD thesis.

1. First contribution: A study to understand the impact of environmental
conditions’ effects on fingerprint systems is done. Environmental conditions
are one of the most overlooked biases for fingerprint systems. Indeed, due
to these factors, it is very difficult to predict the behavior of a product once
it is deployed. During this PhD thesis, we built a fingerprint dataset under
controlled temperature and humidity conditions. We observed the effect of
environmental conditions using an objective fingerprint quality metric and
different fingerprint-matching algorithms. We also underlined the importance
of the acquisition system quality and how it can affect the performance of the
final biometric solution.

2. Second contribution: We proposed a method to generate fingerprint presentation
attack instruments to be used for the evaluation of the presentation attack
detection module.
The generated data is validated from quality and matching points of view. We
compare our method with the state-of-the-art solutions.

3. Third contribution: We proposed a generic method to validate synthetic
biometric data. The proposed method takes into account the usability of the
data in a recognition process and their quality using an objective assessment
tool for the quality.

1.5 Thesis organization

The thesis is organized as follows:
• Chapter 2 describes the certification of a biometric system. We detail the

importance of the certification of biometric systems and how the evaluation is
done in the testing laboratories. We also present the main metrics that are
normalized for the evaluation of the biometric system and those that we use in
the thesis.

• Chapter 3 presents the main datasets that exist in the field of fingerprints. We
express the constraints linked to the certification of biometric systems as well
as the collection of biometric data and the need to have synthetic data. That
motivates us to go towards the generation of synthetic data. We finally propose
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a generic method to validate synthetic biometric data using some objective
metrics linked to the usability and security of biometric systems.

• Chapter 4 is dedicated to the analysis we did on the acquisition context and
the way it can impact the performance of a fingerprint biometric system.
This context can be either the environmental conditions of the capture or the
capturing device. The control of these contexts is a key to the reproducibility of
the testing. Indeed, we want to understand the parameters that the evaluation
of biometric systems may be correlated to.

• Chapter 5 presents the method to generate fingerprint biometric datasets for
presentation attack detection testing that we propose, and the comparison of
the generated datasets with existing datasets. Indeed, this follows the need to
have synthetic data expressed in Chapter 1. We present the methodology that
we propose in this Ph.D. thesis, as well as the results we obtained using the
validation methodology we introduced in Chapter 2.

• Chapter 6 is dedicated to the conclusion of this work, where we present some
perspectives.

• Chapter 7 and Chapter 8 give a global overview of the thesis and the conclusions
we came up with during this thesis, in French.





Chapter 2
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Summary : Biometrics is known to be one of the most secure solutions
used for the authentication and identification of people.
To face the changes across the payment market in particular and take
up the technological challenges of tomorrow, this thesis focuses on the
biometric evaluation, especially on innovation for future methodologies
involving synthesized generated spoof attacks, to evaluate the effectiveness
of the biometric system and the effects of biases such as environmental
conditions on biometric systems’ performance.

2.1 Introduction

Nowadays, biometrics has become a reference tool for security and user experience.
We can find it in smartphones, access to secured sites, etc. During the last decade,
biometrics became a famous tool thanks to its simplicity and non-intrusiveness.
Originally, biometrics was the study of liveness. A biometric data is a characteristic
that is unique and universal. Biometric characteristics are features that anyone
has but are different from one person to another. Most of them are physiological:
fingerprint, face, iris, retina, voice, etc. Recently, many studies have been done in the
field of behaviors: the way of walking (gait), signature, keystroke dynamics, etc. We
can encounter biometric usage in everyday applications such as banking, transport,
law enforcement [Jain and Kumar, 2012, Walker, 2012] and public security, border,
and migration control [Labati et al., 2016], civil identification, healthcare, physical
and logical access, commercial applications, identity verification & binding, and so
on.

However, due to the multiple sensitive operations relying on biometrics, biometrics
systems must be secured, easy to use, and trustworthy. Thus, before deploying a
biometric product, the latter has to be tested to assess its behavior and functioning.
This step is done in a third-party laboratory that has been accredited by a test
authority for the certification process.
An overview of a complete biometric system is given in Figure 2.1.

• The data capture module is composed of a sensor that captures a biometric
signal. It can be a fingerprint sensor, a camera, a microphone, or any capture
device that allows to capture properly the biometric signal,

• The signal processing unit is responsible for extracting any useful feature
vector,

• A database is used for the storage of biometric data to be used as a reference
for comparison,
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• A matching unit performs the similarity measurement between a submitted
biometric sample for identification or verification and the one(s) already stored
in the database and gives a verdict.

Figure 2.1: Main components of a biometric system from [ISO 19795-1:2021(E),
2021].

In biometrics and in this PhD thesis, we will encounter specific terms that we
will first define:

• enrolment: phase where a genuine user is registered and his/her biometric
data are stored prior to future comparison.

• Verification: one or more verification attempts resulting in the resolution of
a biometric claim.

• Authentication: act of proving or showing to be of undisputed origin or
veracity

• Identification: process of searching against a biometric enrolment database
to find and return the biometric reference identifier(s)

A complete list of biometric-related terms and their definitions can be found in [ISO
2382-37:2022, 2022].
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2.2 Biometric modalities

From the Greek ’bios’ meaning ’life’ and ’metron’ meaning ’measurement’, "Biometrics"
is originally the measure of life. This term represents in modern days science that
identifies people using their physiological or behavioral characteristics.

Biometrics is not just something that arose recently. Humans had always the
faculty to recognize people by personal traits. Face is one of the most natural ways
to identify people. Indeed, the human brain records the faces of people we know and
associates an identity with each of them so we can recognize them the next time we
meet. Facial recognition is in that way, one of the less invasive due to the history
behind that. But we do recognize known people in other different ways such as their
voice tone, their handwriting, the way they walk, etc. In modern times, technology
offers the computation of parameters that make easier the identification of people.
Fingerprint patterns start forming from the friction in the womb with the amniotic
fluid.

In antiquity, people were identified by interpersonal recognition. With the
evolution of technology, photography became a trusted way to identify people. To
improve the proof of the identity, Alphonse Bertillon developed “Bertillonnage”,
a method to reinforce the identity of criminals and suspects by adding specific
information like height, weight, head dimensions, etc. These anthropometric records
are the first known official biometric identification. Examples of measured characteristics
using that method are visible in Figure 2.2.

In modern days, with the growth of technologies, we are able to calculate and
identify millions or billions of users using different types of biometrics. Different
biometric modalities have been proposed. We mainly distinguish two types of
biometrics: physiological biometrics and behavioral biometrics. Figure 2.3 shows
some examples of biometrics by type of modality.

According to Jain [Jain, 2005], to be considered as a biometric characteristic, a
physiological or a behavioral signal must respect the following properties:

• Universality: each person should have the characteristic;
• Distinctiveness: any two persons should be sufficiently different in terms of
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Figure 2.2: Overview of anthropometric record process [Bertillon, 1893].

the characteristic;
• Permanence: the characteristic should be sufficiently invariant (with respect

to the matching criterion) over a period of time;
• Collectability: the characteristic can be measured quantitatively.

Table 2.1 shows the advantages and disadvantages of some of the most used biometrics.

Table 2.1: Comparison of few biometrics from [Jain et al., 1999].

Biometrics Uniqueness Collectability Performance Acceptability Permanence
Fingerprint High Medium High Medium High

Face Low High Low High Medium
Iris High Low High Low High

Voice Low Medium Low High Low
keystroke Low Medium Low Medium Low

Gait Low High Low High Low
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Figure 2.3: Examples of biometric modalities and their category.

2.3 Evaluation of biometric systems

The evaluation of a biometric system consists of a series of tests to establish its
recognition capabilities and resistance to fraud. The results of the evaluation provide
information on the usability and security level of the tested biometric system. It
allows to know its capacity to recognize (authenticate or identify) the right persons
and refuse impostors or non-legitimate users. Tested biometric systems can be full
systems where a software is associated with hardware parts, as we can see in Figure
2.1. However, it can also be a software-only solution that is aimed to be compatible
with a wide range of capture devices of that type of biometric or integrated into
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another solution. These types of solutions are more and more present and deployed
as the current matching algorithms are mostly based on deep learning solutions, their
training is independent of any capture device.
Depending on the nature of the system under test, different types of evaluation are
possible. A synthesis of different types of evaluations is given in Figure 2.4.

• Technology evaluation: offline evaluation of one or more algorithms for the
same biometric modality using an existing or especially-collected corpus of
samples. For these tests, the solution consists of an algorithm only. To test it,
laboratories have to use existing datasets or collect datasets for this purpose.

• Scenario evaluation: evaluation that measures end-to-end system performance
in a prototype or simulated application with a test crew. The evaluation is
done on a database collected by the acquisition module of the biometric system
or an existing dataset that has been processed to match the properties of the
system.

• Operational evaluation: evaluation that measures the performance of a
biometric system in a specific application environment using a specific target
population.

Figure 2.4: Different types of evaluations for a biometric system
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The technology and scenario evaluations are the most common ones. The operational
evaluation is very rare and is most of the time used to verify if a system is still
working as expected and checks if the algorithm’s performance has not decreased.

2.4 Databases

The sensitivity of biometric data and their private nature make their storage and
retention difficult and subject to numerous regulations. In Europe, the collection,
storage, and use of this data are governed by the General Data Protection Regulation
(GDPR) 1. However, there are few biometric datasets available on demand.

One can mention FVC datasets from a Fingerprint Verification Contest that exists
since 2000. Few editions have followed since, one in 2002, 2004, and 2006 [Cappelli
et al., 2007]. Besides FVC, the Liveness Detection (LivDet) [Ghiani et al., 2017]
competition is a contest where academics and industrials are given datasets of
fingerprint spoofs of different brands and technologies for training. They submit
their trained anti-spoofing algorithms for evaluation on a testing dataset not seen
during the training. Other datasets can be found in the literature [Ortega-Garcia
et al., 2003]. These are some of the most used fingerprint datasets. More datasets
for different modalities are available 2. Almost all these biometric data are restricted
to research use only and can not be used in an industrial context. Moreover, it is
impossible to say whether they were used for the training of the solution or not as
the tested solution is a black box. So, there is a risk of bias in the test verdict using
these data. The lack of publicly available biometric datasets for testing and the
biometric solutions being black boxes make the collection of biometric data for every
product test a systematic operation.

2.5 Certification of biometric systems

The certification of a biometric system is done by an independent laboratory following
instructions given by a certification body which can be specific to a domain, i.e.
Mastercard or Visa for payment or more generic like Fido Alliance or Android for
devices with Android Operating system. The certification of a biometric system gives
an overview of the system quality, security, and user experience [El-Abed et al., 2012].
Two generic tests are mainly done during the certification of a biometric system: The

1https://gdpr-info.eu/
2https://ieee-biometrics.org/index.php/resources/biometric-databases

 https://gdpr-info.eu/
https://ieee-biometrics.org/index.php/resources/biometric-databases
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assessment of the performance of a biometric system and the presentation attack
detection.

2.5.1 Performance of a biometric system

The performance testing of a biometric system gathers metrics that deal with the
usability of a biometric system. It measures the accuracy of a biometric system and
gives information on the user experience. The performance of a biometric system
is expressed as error rates. The rates achieved by the system are compared to the
requirements to assess whether the system is ready for deployment or not. The
scenarios of evaluation of a biometric system’s performance are mostly based on ISO
19795 [ISO 19795-1:2021(E), 2021]. However, tests can be done without certification
bodies, but following ISO testing and recommended methods for evaluation.

Error rates

Error rates are percentage figures which indicate how the biometric system wrongly
classifies a biometric sample. Some of them are more significant and are present in
most of the biometric certification programs and shall be clearly indicated in the
test reports.

• Failure-to-enrol rate (FTE): The FTE represents the proportion of users that
are unable to enrol in a biometric system.

• Failure to acquire rate (FTA): The FTA represents the proportion of transactions
for which a biometric system is not able to capture a sample to perform a
verification task.

• False Acceptance rate (FAR): The FAR represents the proportion of zero-effort
non-genuine transactions that will be incorrectly accepted.

• False Rejection Rate (FRR): The FRR represents the proportion of genuine
verification transactions that are wrongly rejected.

• False Match Rate (FMR): The FMR represents the proportion of zero-effort
transactions that wrongly match genuine users.

• False Non-Match Rate (FNMR): The FNMR represents the proportion of
genuine verification transactions that do not match their corresponding enrolment.

• False-Positive Identification Rate (FPIR): The FPIR is the proportion of
identification transactions by capture subjects not enrolled in the system for
which a reference identifier is returned.

• False-Negative Identification Rate (FNIR); The FNIR is the proportion of a
specified set of identification transactions by capture subjects enrolled in the
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system for which the subject’s correct reference identifier is not among those
returned.

The FAR and FRR are referred to when talking about a complete biometric system
whereas the FMR and FNMR refer to decisions due to the biometric matching
algorithm only.
For a given test set of N users, considering that each user has done 10 verification
transactions, the FAR or FMR testing consists of doing the comparison of each user
with the N-1 others, 10 times. For the FRR or FNMR, each user is compared with
himself/herself.

Depending on the target performance and/or level of certification, the size of the
dataset may be different. Depending on the destination of the biometric system,
the focus may be on the performance of the product or its resistance to attacks.
The number of test subjects to be gathered for the performance test is computed
according to the rule of 3 of ISO [ISO 19795-1:2021(E), 2021]. It states that the
upper bound of the 95% is 3/C with C being the number of combinations. C is
computed according to the following formula:

C = a2
n(n− 1)

2
(2.1)

where n is the number of unique test subjects and a is the number of unique samples
per test subject (i.e. number of fingers, number of eyes, . . . ). For example, the most
advanced level of certification of FIDO Alliance [Schuckers et al., 2023] requires 245
subjects for the performance tests with a minimum of 123 unique test subjects to
meet a FAR requirement of 1:10K. This number can be lower if the targeted FAR is
higher.

2.5.2 Presentation attack detection

The reputation of biometric systems as being secure leads researchers to work hard
on methods of fooling them and succeeding the imposture attempts. This is done
to detect vulnerabilities in Presentation Attack Detection (PAD) algorithms and
improve them, so imposters or intruders would not achieve their breach attempts.
In biometrics testing, different levels of attacks exist depending on the difficulty of
creating the spoofs. PAD can be a hardware-based or software-based solution or
hybrid. In the past years, many solutions have been proposed. [Marcel et al., 2023]
proposed a complete review of anti-spoofing methods for biometric systems.
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Evaluation of presentation attack detection

In the literature, multiple key points have been identified as potential access for
attackers that are shown in Figure 2.5 but most of the certification schemes focus on
the first attack point (i.e. Presentation attack). The presentation attack detection
test is done to confirm the resistance of a biometric system to attacks.
A presentation attack detection test is done using a presentation attack instrument
(PAI), a biometric characteristic or object used to fool a biometric system.

For most of the certification schemes, the testing of the PAD module is mainly based
on ISO 30107[ISO 30107-3:2023, 2017].

Figure 2.5: Different attack points from [ISO 30107-1:2023, 2023], inspired by [Ratha
et al., 2001].

We focus on 2 physiological modalities as illustrations of presentation attack solutions.
• Fingerprints: Fingerprint attacks represent a huge challenge for the anti-spoofing

system due to the complexity of fingerprint shape. For this reason, impostors
do not have another choice than falsify fingerprints. Indeed, by inadvertence,
we leave our fingerprints on almost all surfaces without knowing it. The most
basic fingerprint attack consists of trying to reactivate latent fingerprints on
the surface of the sensor. Due to high humidity, it is possible to reactivate
latent fingerprints, especially on capacitive fingerprint sensors.
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Biometric (fingerprint) spoofing involves the creation of fake fingerprint samples
in order to spoof the identity of a real user. There are several techniques for
making fake fingerprints in the literature. Anti-spoofing tests may require up
to 14 types of attacks and may involve up to 15 test subjects, according to
the latest FIDO Alliance biometric requirements [Schuckers et al., 2023]. In
practice, in a testing scenario, there are two groups of sources depending on
how the attacker obtains the biometric sources. Figure 2.6 synthesizes the two
main types of sources widely used for testing of PAD solutions.

Figure 2.6: Sources and types of attacks

[ISO 30107-3:2023, 2017] gives other types of sources which can be cooperative,
recording, regeneration from template, impersonation, and synthetic sample
generation.

In cooperative spoofing, a genuine user willingly gives his/her biometric
sources to the attacker/tester and challenges them to bypass the anti-spoofing
system. [Marasco and Ross, 2014] gives a more detailed review of the methods
used to make fake fingerprints and existing techniques to buffer against these
kinds of attacks. Usually, a fingerprint is cast on some material like dental
pasta or clay to make a negative of the fingerprint, a mold. A spoofing material
such as gelatin is cast in the obtained mold to create a fake biometric sample
that will be used to impersonate the genuine user. Figure 2.7 shows the main
steps of presentation attack instruments (spoofs) creation in a cooperative
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scenario.

Figure 2.7: Steps of spoof making in a cooperative mode from [Marasco and Ross,
2014], originally from Matsumoto http://web.mit.edu/6.857/OldStuff/Fall03/
ref/gummy-slides.pdf

In the non-cooperative methods, the basic method consists of reactivating
a latent fingerprint. The latent fingerprint can be used as a source to make a
mold using a 3D printing method in order to create a negative of a finger.

• Face: For face recognition, access to the source is easier. Indeed, with the
increasing presence of people on social networks, it is easier to get high-quality
photos and videos of a person. The most basic spoof for face recognition is a
picture of the targeted subject printed on paper or displayed on a screen. A
level above is a video of the subject with some movements or facial expressions
to fool the liveness detection. The anti-spoofing and spoofing growing mutually,
the basic spoofs may not fool the latest technologies. High-quality spoofs have
been created to be more realistic [Erdogmus and Marcel, 2013, Korshunov and
Marcel, 2018, Rathgeb et al., 2022]. Examples of high-level 3D face masks are
given in Figure 2.8.

Depending on the solution under test, there are 3 levels of PAD evaluation.
• Data capture subsystem: In that case, the reason for failure can be other

than the submitted biometric sample failing to pass the liveness checking. The
quality check can be the reason for instance.

http://web.mit.edu/6.857/OldStuff/Fall03/ref/gummy-slides.pdf
http://web.mit.edu/6.857/OldStuff/Fall03/ref/gummy-slides.pdf
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Figure 2.8: Examples of face masks obtained from ThatsMyFace.com, from [Erdogmus
and Marcel, 2013]

• PAD subsystem: this evaluation aims to measure the ability of the PAD
module to recognize attacks and bona fide presentations and classify them as
they should be. This test focuses only on the efficiency of the PAD module.

• Full system: This test measures the result of the whole system, integrating
the verdict of the PAD subsystem and the matching operation.
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The next section presents some of the most used metrics for the PAD evaluation.

PAD metrics

(a) Performance testing (b) PAD testing

Figure 2.9: Major steps to evaluate a biometric solution.

The main metrics used for the evaluation of presentation attack detection are the
following:

• IAPAR: The Impostor Attack Presentation Acceptance Rate represents the
proportion of impostor attack presentations using the same PAI species that
result in accept. It can be found under the former name of IAPMR (Impostor
Attack Presentation Match Rate) or SAR (Spoof Acceptance Rate).

• BPCER: The Bonafide Presentation Classification Error Rate is the proportion
of bonafide transactions that are wrongly classified as presentation attacks by
the anti-spoofing module.
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• APCER: The Attack Presentation Classification Error Rate represents the
proportion of attacks that successfully fool the anti-spoofing system and
managed to be classified as bonafide.

• IAPIR: (Impostor Attack Presentation Identification Rate). In a full-system
evaluation of an identification system, the IAPIR is the proportion of impostor
attack presentations using the same presentation attack instrument (PAI)
species in which the targeted reference identifier is among the identifiers
returned, or, depending on the intended use case, at least one identifier is
returned by the system.

The most advanced level of certification for FIDO Alliance biometric certification
program needs 15 people with 14 different PAI recipes (6 being basic attacks and 8
being advanced attacks).

A summary of the testing flows of a biometric system is given in Figure 2.9.

2.6 Conclusion

This chapter presents the need to certify a biometric system. It presents the two
main tests done in most of the certification programs, i.e. the performance testing
and the presentation attack detection testing. However, due to the lack of publicly
available data for tests and the non-transparency of the tested biometric solution,
data have to be collected for the performance and the anti-spoofing tests. This has
a cost. It requires time and skills to gather the data and make spoofs with a high
potential for success. On the other hand, the fact of doing a "scenario" test limits the
exploration of all possible configurations. Thus, it makes the tests barely repeatable.

During this PhD thesis, we address the problem of reproducibility of testing by
mastering the context of dataset acquisition and the use of artificial intelligence in
the testing of a biometric system by the simulation of large real/synthetic spoof
datasets.
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Summary :
In the previous chapter, we introduced the concept of certification of
biometric systems and the importance of this step prior to the production
of a biometric system. As one can conclude, the certification of a
biometric system is an important step in the life of a biometric device
and can be viewed as the evaluation of its behavior on a collected database.
Whether it is a scenario or operational testing, a biometric dataset is
used to assess the recognition capabilities of the system under test and
another one for the efficiency of its anti-spoofing algorithm. In this
chapter, we present the fingerprint dataset that we dealt with during this
thesis, the constraints they are associated with, and the protocol we use
all along this thesis to validate our results.

3.1 Introduction

As stated in the previous chapter, the certification of a biometric system is based
on scenario testing for a complete biometric system (hardware and software) or
operational testing for an algorithm-only system. For better trust, the evaluation is
done in accredited laboratories in certain conditions. A biometric dataset is used for
this purpose. However, depending on the dataset, the results may differ. A good
system should handle the variability of existing datasets, then the results should not
vary from one dataset to another.

This chapter is organized as follows: Section 2 presents the collection of biometric
data for tests as well as the associated constraints. Section 3 gives an overview of
the state-of-the-art of fingerprint datasets. In section 4 we propose a generic method
to validate synthetic biometric data.

3.2 Biometric data collection

The certification of a biometric system is done by means of a biometric database
adapted to the product. The database can be built for this purpose (scenario
testing) for a complete biometric system or an existing dataset for an algorithm
alone. Depending on the biometric modality and the targeted performance values,
the number of implicated users can be high. A FAR of 1:100,000 requires 775 test
subject users according to the rule of 3 of ISO [ISO 19795-1:2021(E), 2021]. The
collection of data is subject to the laws in force in the place of collection. Most of
the existing datasets that can be found in the scientific literature are restricted to
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research purposes only and cannot be used in the context of an industry certification
of a product that is meant to be commercialized. However, the collection of biometric
data comes with both legal and logistical constraints.

3.2.1 Legal constraints

Because of their personal and sensitive nature, biometric data must be protected
and not accessible to everyone because raw biometric data are irrevocable. Beyond
digital protection methods such as encryption, people need to be protected so that
access to their data is restricted and the integrity of their data is maintained. In
most countries, the collection of biometric data has a legal framework. In Europe,
the General Data Protection Regulation (GDPR)1 is the regulatory body for the
protection of biometric data and personal data in general. GDPR is about the
citizenship of the test subject and not the place of the collection. However, there
are national bodies that watch personal data usage locally like CNIL (Commission
Nationale de l’Informatique et des Libertés) the French data protection authority.
Due to these policies, a consent form has to be signed between the collector and the
volunteers.
The consent form has to be explicit about what the collected data are intended for,
what are the volunteers’ rights, how the data will be processed, how long it will be
stored, . . . . An example of a consent form respecting French and European laws is
given in Figure 3.1. The form is signed by both parties at the date of the collection.
Major rights for the test participant and duties for the collector are reminded as well
as different ways to get answers regarding their data. Figure 3.2 summarizes the
steps for the data collection before it can be used for the test of a biometric solution.

Plus, the sensitivity of the biometric datasets, and contrarily to passwords that can
be changed easily when compromised, biometrics need to be stored securely after
transformation and revoked or canceled if the stored template is compromised. Due
to legal constraints, labs must ensure everything is in conformity with the regulations
which consequently create some operational constraints.

3.2.2 Operational constraints

The collection of datasets for biometric usage is subject to logistical constraints.
Indeed, a meticulous organization is needed to carry out the biometric collection.

1https://gdpr-info.eu/

 https://gdpr-info.eu/
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Figure 3.1: Example of a consent form for Biometric data collection in French where
people have to give their name and surname, mention if they were paid.

Figure 3.2: Different steps for the collection of Biometric data

Participants have to be recruited and sometimes convinced by a reward. Thus, the
reward can very quickly reach a substantial amount which will be reflected in the
cost of the test. Volunteers need to be trained in the use of the product or given
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sufficient time to familiarise themselves with the product, which can lengthen the
collection time.

A typical collection of biometric samples can involve two test operators and last
one week or more. It starts with a call for volunteers. In that step, a test crew of the
needed number of volunteers for the requested test is hired. The test crew should
respect some constraints in terms of composition (age, gender, ethnicity distributions,
size, . . . ) depending on the targeted evaluation and performance figures. Once the
needed volunteers are found, the next steps are typically followed:

1. An explication of the volunteers’ rights regarding their biometric data is
given. This step is really important as it is the main step to explain the
duties of the collecting company regarding the personal biometric data of the
volunteers. People are given a typical test program explaining all the steps for
the exploitation and storage of the to-be-collected data. Data will be stored in
encrypted computers and hard drive disks, with access granted to a few people.
The data are stored for a reasonable time, typically 3 years to do all the needed
tests and expertises that can be required.

2. An explication of the concerned test is given. The test operator explains the
type of testing and the concerned type of biometric modality. Usually, the data
are collected in one visit but it can also be done in two or more visits. The
last case happens when the collection is time-consuming often due to the fact
that we want to do the test in real conditions (an in-car collection for example)
and recreate the conditions in the lab.

3. Training of the test subjects: Depending on the test methodology, very detailed
and full guidance can be provided or just a minimal one for certification schemes
like Fido Alliance which suggests leaving the test subject to interact naturally
with the product. Whether it is a fully guided collection or not, the test crew
is given enough time to be familiar with the product.

4. Anonymity: People get a random number, and only know of them. This number
can be written in the volunteers’ copy of the consent form. It is not known
from the laboratory and can be reminded for every question they may ask
to the Data Protection Officer (DPO) regarding their data for exploitation,
correction, or deletion.

5. Collection of data: Once people have agreed to give their biometric data, it
can be collected using the product under test. Data are stored under the
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given number. The format of the data depends on the biometric solution.
It can be readable (non-encrypted images) or encrypted (templates) of the
biometric samples. The data are stored in a format that can be exploited by
the customer’s solution for offline usage.

6. Once data are collected, the exploitation can start with the cleaning of the
datasets to fix mislabelling or isolate unusable data for example. Then, the
computation and the reporting of metrics associated with the test session starts.
When the test session is completed and the test report is issued, the data are
definitely wiped using a specific tool that makes the retrieval of the deleted
data nearly impossible. Volunteers who expressed their will to know when their
data are deleted are notified by email.

In addition, a collection of biometric datasets requires a well-defined schedule and
dedicated operators. Biometric data collection is therefore a time-consuming and
costly task. The next section presents the existing fingerprint datasets.

3.3 State-of-the-art of fingerprint datasets

Most of the existing datasets that can be found in the literature are restricted to
research purposes only and cannot be used in the scope of an industrial certification
of a product that is meant to be commercialized. Moreover, as mentioned in the
previous chapter, most biometric systems are black boxes. As a result, their training
method remains unknown from the point of view of a test laboratory, and it is
impossible to know whether the semi-public databases that exist were used during
this training. Figure 3.3 illustrates the different types of data that can be found in
the field of biometrics and how they can be used.

3.3.1 Real data

In this section, we focus on real datasets, acquired from humans. They have been
created for the performance and robustness evaluation of fingerprint systems.

Performance evaluation

Depending on the biometrics, some have more public data than others. Fingerprint-based
biometrics is represented by a few semi-public university databases available on
demand for research purposes only. The most widely used databases in biometric
testing of fingerprint systems for performance testing (i.e. FAR and FRR) are the
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Figure 3.3: Diagram of the types of data that we can find to evaluate a biometric
solution.

FVC databases2,3,4,5.

As previously mentioned, FVC is a fingerprint Verification Contest that has existed
since 2000 and organized by the Biometric System Laboratory (University of Bologna),
the U.S. National Biometric Test Center (San Jose State University), and the Pattern
Recognition and Image Processing Laboratory (Michigan State University). Few
editions have followed since (2002, 2004, and 2006). They provide fingerprint datasets
to test the performance of competitors’ algorithms. The datasets are usually made
of fingerprint images from capacitive sensors, optical sensors, and synthetic data
from SFinGe[Raffaele et al., 2004]. Table 3.1 gives an overview of the 2006 database
for illustration.

A continuation of this work is the availability of FVC Ongoing platform6. It
is a web platform where companies, researchers, and individuals can submit their
fingerprint-matching algorithms to be evaluated. The results are published privately

2http://bias.csr.unibo.it/fvc2000/
3http://bias.csr.unibo.it/fvc2002/
4http://bias.csr.unibo.it/fvc2004/
5http://bias.csr.unibo.it/fvc2006/
6https://biolab.csr.unibo.it/fvcongoing/UI/Form/Home.aspx

http://bias.csr.unibo.it/fvc2000/
http://bias.csr.unibo.it/fvc2002/
http://bias.csr.unibo.it/fvc2004/
http://bias.csr.unibo.it/fvc2006/
https://biolab.csr.unibo.it/fvcongoing/UI/Form/Home.aspx
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Table 3.1: Details of FVC 2006 dataset from the competition website

Dataset Sensor Type Image Size Set A size Set B size Resolution
DB1 Low-cost Optical Sensor 300x300 100 x 8 10 x 8 500 dpi
DB2 Low-cost Capacitive Sensor 256x364 100 x 8 10 x 8 500 dpi
DB3 Optical Sensor 448x478 100 x 8 10 x 8 500 dpi
DB4 Synthetic Generator 240x320 100 x 8 10 x 8 around 500 dpi

Figure 3.4: Public results of the FVC ongoing benchmark.

with the report of performance metrics. Submitters have the choice to make public
the results of the evaluation. The algorithm benchmark is open to other modalities
such as palm vein, face morphing detection, ICAO compliance, etc. An example of
the results of the benchmark for fingerprint algorithms is given in Figure 3.4 where
EER, FMR100, and FMR10000 are used as metrics of performance. FMR10000
represents the lowest FNMR for FMR0.01%. More details on the test results (ROC
and DET curves, distribution of scores) are visible with the "details" button.

CASIA fingerprint datasets [cas, a, cas, b, cas, c] is another widely used dataset.
CASIA is composed of 3 large datasets. The first one [cas, a] is the ATVS-FFp DB
which is made of genuine fingerprint images from 17 users with 4 fingers per user
obtained with cooperation on 3 fingerprint sensors. A subset of fake fingers acquired
with the same fingerprint sensors exists. The second CASIA dataset [cas, b] is CASIA
Fingerprint Subject Ageing which contains data from the same test subjects with
a capture interval of 4 years (2009 and 2013). The first sub-dataset was captured
using one fingerprint device and the second one using 3 sensors (including the 2009
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model). The third CASIA dataset [cas, c] is CASIA-FingerprintV5 which contains
20,000 fingerprint images from 500 unique subjects with 40 samples from 8 fingers
each. The dataset was acquired using one fingerprint sensor model during one session.

The NIST (National Institute of Standards and Technology) has freely available
datasets. [Fiumara et al., 2019] contains Nail-to-nail fingerprint images that can be
used for training and testing tasks. However, it is impossible to predict how long
it will remain as the Special Database 4 [SD4, ]7 which was widely used has been
removed from the website.

Robustness to attacks

Another widely used dataset is LivDet [Ghiani et al., 2013, Ghiani et al., 2017], a
liveliness detection competition that has known several editions in the past years.
It provides a large dataset from different materials and sensing technologies for
anti-spoofing training and testing. The competition is open to academic researchers
and industrials. The table presented in Figure 3.5 summarizes the different materials
for all editions of the LivDet competition and Table 3.2 gives the accuracy of
competing algorithms during the 2017 LivDet contest. The first column shows the
submitted algorithms, the last column is the overall TDR (True Detection Rate,
number of attacks correctly classified by the presentation attack detection) and the
other columns are the sensors used to capture the dataset.

[Grosz et al., 2020b] used Livdet 2015 to train and validate the proposed solution.
[Grosz and Jain, 2022] used LivDet 2013 and LivDet 2015 to validate their solution.
MSU FPD (Michigan State University Fingerprint Presentation Attack Dataset)
[Chugh et al., 2018] is a dataset for spoof training and testing that utilizes two
sensors and 4 different spoof materials and the MSU-FPD V2 is made of 12 materials.

Summary

A list of existing and most used datasets for fingerprint recognition-related tasks
is given in Table 3.3. These datasets are useful for the evaluation and training of
biometric solutions. However, they cannot be used for specific scenario evaluations.
Moreover, they are often limited to research purposes only and cannot be used in an
industrial evaluation program.

7https://www.nist.gov/srd/nist-special-database-4

https://www.nist.gov/srd/nist-special-database-4
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Figure 3.5: From [Ghiani et al., 2017]: Materials characteristics and frequency over
the seven LivDet editions. The train and test materials were completely separated
from 2017 to examine the PADs’ resilience against “never-seen-before” materials.
"TR" means Training set and "TS" testing set

3.3.2 Synthetic data

Synthetic data refers to every type of data that has been produced artificially. In
opposition to real data collected from living test subjects, these data are digitally
created using a synthesis method. Synthetic data allows us to bypass the challenge of
building large datasets to test biometrics while resolving the problem of data privacy
as the generated data do not belong to living beings. Thus, much work has been
done by the community to move towards more and more realistic generation models.
There are mainly two methodologies to create synthetic fingerprints: statistical and
deep-learning methods. We detail each approach in the following sections.

Statistical methods

The first and oldest methods for synthetic fingerprint generation are based on
statistical modeling of fingerprint features. These models try to imitate the key
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Table 3.2: Accuracy of the algorithm that participated in the 2017 LivDet competition.
The TDR is used as an accuracy metric. The table is from [Mura et al., 2018]

Algorithm Green Bit Digital Persona Orcanthus Overall
SSLFD 93.58 94.33 93.14 93.68
JLWA 95.08 94.09 93.52 94.23
JLWB 96.44 95.59 93.71 95.25

OKIBrB20 84.97 83.31 84.00 84.09
OKIBrB30 92.49 89.33 90.64 90.82

ZYL1 95.91 95.13 91.66 94.23
ZYL2 96.26 94.73 93.17 94.72

SNOTA20171 95.03 91.26 91.58 92.62
SNOTA20172 94.04 86.72 86.74 89.17
ModuLAB 94.25 90.40 90.21 91.62

ganfp 95.67 93.66 94.16 94.50
PB_LivDet1 93.85 89.97 91.85 91.89
PB_LivDet2 92.86 90.43 92.60 91.96

hanulj 97.06 92.34 92.04 93.81
SpoofWit 93.66 88.82 89.97 90.82

LCPD 89.87 88.84 86.87 88.52
PDfV 92.86 93.31 N.A. N.A.

Table 3.3: Some of the widely used fingerprints datasets and possible usages

Dataset Unique fingers number of images Performance PAD
FCV2000_A 110 880 x
FVC2006_A 150 1800 x
NIST SD302 2,000 2,5093 x

LivDet x x
MSU FPAD x

MSU FPAD v2 x
CASIA ATVS-FFp 68 + 64 816 + 768 x x

CASIA Fingerprint Subject Ageing 196 15,680 x
CASIA-FingerprintV5 2,500 20,000 x

features of a real fingerprint image sample. Historically, SFinGe [Raffaele et al.,
2004] (Synthetic Fingerprint Generator) is one the first and most known fingerprint
generator models. It was proposed by researchers from the University of Bologna in
2002 and is based on the mathematical modeling of fingerprint characteristics. The
fingerprint generation using SFinGe can be summarized as follows:

• Directional map generation,
• Density map generation,
• Ridge pattern generation,
• Noising and Rendering.
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The main shape of the fingerprint is elliptical segments. SFinGe applies a mathematical
ridge-flow model from Sherlock and Monro [Sherlock and Monro, 1993] to the positions
of the singularities to generate a directional map. Filters similar to the Gabor filters
are applied to a white image with random points. The filter’s orientation and
frequency are locally adjusted according to the directional and density maps which
makes appear realistic minutiae. Other effects such as dilatation, erosion, and noise
are added to make the generated fingerprint look more realistic. Figure 3.6 gives a
visual representation of these steps and Figure 3.7 shows the interface of the software
and the different options offered by the software.

(a)
Singularities

(b) Directional
map

(c) Ridge
pattern

(d) Denoising (e) Final

Figure 3.6: Different steps of SFinGe generation in (a) and (b) a Directional map
is generated, a ridge pattern is created in (c) and Denoised in (d) to give the final
image in (e).

SFinGe is well-known in the field of fingerprints. A set of fingerprint images is always
given in the FVC competitions which testifies how realistic fingerprint samples from
SFinGe are. Indeed, the validation of the generation methodology was done on
the FVC2002 datasets where the results of the dataset generated using SFinGe are
similar to those from DB1, DB2, and DB3 made of real data collected from living
beings.

Another generator based on statistic modeling is Anguli [Ansari, 2011]. Anguli
defines itself as a project motivated and based on SFinGe. The software can be
downloaded freely 8. The authors validate the generation methodology by comparing

8https://dsl.cds.iisc.ac.in/projects/Anguli/

https://dsl.cds.iisc.ac.in/projects/Anguli/
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Figure 3.7: A view of the sFinge generator interface.

the performance (distribution of scores and DET curves) of the generated dataset
and comparing it to real datasets.

[Zhao et al., 2012] proposed a method of generating fingerprints with multiple
impressions which can be summarized in these steps: sampling fingerprint features
from statistical models, generating a master fingerprint, generating multiple impressions
from the master fingerprint, and rendering fingerprint images. These steps are
illustrated in Figure 3.8. The method is composed of four main modules: (a)
sampling features (singular points, orientation field, and minutiae) from appropriate
statistical feature models; (b) generating a master fingerprint; (c) generating multiple
fingerprint impressions from the master fingerprint via distortion (one such impression
is shown here); and (d) rendering fingerprint images by simulating finger dryness
and adding noise. The authors validate the proposed method by comparing the
performance of generated data to real data from the NIST - SD4[SD4, ] dataset.

Authors in [Johnson et al., 2013] proposed a method based on texture modeling. The
validation of the proposed method is done through a comparison of extracted features
from synthesized data and data from existing datasets which shows similarity with
features distribution using FVC2004.
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Figure 3.8: Fingerprint image synthesis method from [Zhao et al., 2012].

Deep Learning based methods

F. Chollet [Chollet, 2021] defines Artificial Intelligence (AI) as "the effort to automate
intellectual tasks normally performed by humans.". The first versions of AI were
designated as symbolic AI because programmers wrote rules and got answers for
given data. Indeed, the AI is given data and answers and has to learn the patterns
from entry and create its own rules. which can be applied to new data; unseen ones.

Among all possible AI, Generative Adversarial Networks (GANs) are the closest
to what we are looking for. GANs first have been introduced in 2014 by a group of
researchers from the University of Montréal [Goodfellow et al., 2014]. Many papers
and versions of the GANs have followed since with various applications9.

A global architecture of GANs is given in Figure 3.9. GANs are mostly used in
computer vision to generate or translate images, enhance images, etc. but many
applications have been found since and searchers are doing great work in this topic
making GANs nets more effective and more versatile. GANs are composed of two
modules: a generator and a discriminator. The generator G after training generates
images from noise while the discriminator D estimates the probability of a sample to
be from G. The challenge is to bring D to take generated samples as samples from

9https://github.com/hindupuravinash/the-gan-zoo

https://github.com/hindupuravinash/the-gan-zoo
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the training set, i.e..which implies generating realistic samples that perfectly look
like samples from the training data set. The whole goal is to win the Mimax game
which can be summarized by:

min
G

max
D

Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[1− logD(G(z))] (3.1)

G and D modules are built over with perceptron multilayers architecture and the
training is done with backpropagation. The work in the field of biometric generation
in general and fingerprint generation, in particular, is using GANs or their variants.

Figure 3.9: A global architecture of a GAN inspired by [Minaee and Abdolrashidi,
2018]

Existing works on fingerprint generation for performance and spoof generation
purposes are extensive, so we have chosen only those that seem to offer the best
results at the time this chapter is written. In opposition to statistical methods where
the models are only focusing on generating realistic "genuine" fingerprints (to be
used for performance evaluation only), deep-learning methods offer the possibility
not only to create fingerprints to be used to evaluate the matching task but also
realistic PAIs for liveness detection.

Model for "genuine" fingerprints generation:

As stated previously, these models aim to generate fingerprint datasets that can be
used to train, test, and evaluate fingerprint-matching solutions instead of (or with)
datasets from living test subjects.

One of the first studies to use generative Deep-Learning models to create fingerprint
datasets was [Minaee and Abdolrashidi, 2018]. The authors used a Deep Convolutional
GAN trained on FVC 2006 and PolyU [Zhao et al., 2010] to generate realistic
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Figure 3.10: Examples of images generated by Finger-GAN[Minaee and Abdolrashidi,
2018].

fingerprint datasets. Figure 3.10 shows examples of images generated by Finger-GAN
after training on PolyU datasets. The authors validate their methods by computing
the Frechet Inception Distance (FID) which compares statistics of the generated
samples to real samples.

[Mistry et al., 2020] proposes a generation method based on I-WGAN [Chen
et al., 2022] with identity loss function using fixed-length fingerprint representation.
They trained a convolutional auto-encoder (unsupervised CAE) to transform the
fingerprint image to latent vector z’ (encoder) and again into image (decoder). The
trained CAE decoder is used to initialize the Generator of the I-WGAN. The authors
used 8 metrics (including matching test and identification accuracy) to validate their
methodology of fingerprint generation. They conclude that 7/8 metrics show that
the proposed method gives more realistic fingerprints than state-of-the-art works by
the time their work was done.

[Wyzykowski et al., 2021] uses Anguli to create multiple instances of fingerprint
and cycleGan [Isola et al., 2017] to transform seed images to realistic fingerprints.
They validate the proposed method using Bozorth3 [Ko Kenneth, 2007], a pore-based
matcher, and human perception using EER as a metric of performance. [Seidlitz
et al., 2021] is using 3 GAN (ProgressiveGAN [Karras et al., 2017], StyleGAN [Karras
et al., 2019] and StyleGAN2 [Karras et al., 2020]).
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Models for Spoof generation:

As for datasets for performance evaluation of fingerprint systems, some works focus
on the generation of datasets to be used for the training, testing, or evaluation of
PAD or liveness detection. The classical ways of testing biometric systems request
the production of physical PAI. Depending on the certification body, the process
uses the cooperation of the subject or not. Some of the most used materials are
shown in Figure 3.11.

Figure 3.11: Example of physical spoofs or PAI. Images have been captured from
that material by a fingerprint sensor (source [Chugh et al., 2018])
.

As stated previously, the existence of legal and operational constraints is not for
performance evaluation only. Indeed, for the PAD, the lab is holding sources and
presentation attack instruments (PAIs) or spoofs from the volunteers which requests
high security for the storage and integrity of the data. Besides the generation of
digital biometric data, many researchers have proposed new solutions for generating
synthetic PAI samples for training and testing PAD systems (more intelligent data
augmentation solution than rotation/translation operations classically used in deep
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learning frameworks).

Authors in [Chugh and Jain, 2019] proposed a deep learning method for the generation
of synthetic fingerprint PAI samples to deal with unseen materials during the training
of a PAD system. This method gives a TDR (True Detection Rate) of 91.78%. The
authors of [Bouzaglo and Keller, 2022] proposed recently the SynFing method based
on StyleGan2 [Karras et al., 2020] to address the generation of fingerprints and more
specifically the reconstruction of latent and rolled fingerprints. The method proposed
by [Chugh and Jain, 2019] is a continuity of the universal material generator proposed
by authors in [Gajawada et al., 2019].

Authors in [Grosz et al., 2020b] proposed a cross-sensors and cross-materials generation
of anti-spoofing. This method achieved a TDR of 87.86%. Engelsma et al. proposed
the PrintsGAN method [Engelsma et al., 2022] as a generator of synthetic fingerprints
with different impressions. They concluded that their matching algorithm had a
true acceptance rate of 87.03% on a real dataset when trained with synthetic images
against 73.37% when trained without them. This shows the interest in having
synthetic images during the training phase of matching algorithms.

Authors in [Priesnitz et al., 2022] proposed a generation of contactless fingerprint
samples using SFinGe images. They applied on these images geometrical transformation,
skin characteristics, and environmental influences. They validated the proposed
method using quality metrics. A complete state-of-the-art of current work on the
generation of synthetic data in the field of biometrics can be found in [Joshi et al.,
2022]. More recently, Grosz et al. [Grosz and Jain, 2022] proposed SpoofGAN, a
model that synthesizes multi-attempt spoofs from spatial modifications (translation,
rotation, and non-linear transformations) of a master print.

Table 3.4 gives some of the state-of-the-art works for fingerprint spoof generation.
One of the main difficulties in generating synthetic PAI samples is the validation
process.

Study Method Dataset Results

Gajawada et al. [Gajawada et al., 2019] Universal Material Translator LivDet2015 TDR=78.05%
AdaIn module

Chugh et al. [Chugh and Jain, 2019] Universal material generator MSU-PAD TDR=91.78% @FDR=0.2%
Grotz et al. [Grosz et al., 2020b] Style transfer with a few samples of target sensor + LivDet 2015 TDR=87.86% @ FDR=0.5%

fingerprint images adversarial representation learning
Grotz et al. [Grosz and Jain, 2022] Master print + Deformations and Texture LivDet 2013,LivDet 2015, -

GCT 1-5, GCT 6

Table 3.4: some of the state-of-the-art works for fingerprints presentation attack
instruments generation
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3.3.3 Discussion

In the previous sections, we presented the use of real datasets as well as the two
major approaches to generating biometric data, particularly fingerprint datasets for
the evaluation of a biometric solution. The real data are the most representative
solution whether it is a larger dataset for the performance evaluation or a small one
for PAD testing. However, as we stated earlier, the collection of biometric samples
comes with constraints that do not facilitate the testing of the biometric solution.
Plus, it is quite impossible to say if the available dataset was not used for the training
of the biometric solution. Indeed, most of the tested biometric solutions are black
boxes and it is not fair to use such datasets for conformance testing.

Regarding the generation of biometric samples, statistical approaches which
historically are the first ones to bring a huge contribution to the field of biometrics.
It allows to train easily algorithms for recognition tasks and quick in-home tests.
However, few papers used a quality assessment process and most of them consider the
increase in performance of PAD systems when synthetic PAI have been used during
the training [Husseis et al., 2019, Boyd et al., 2020]. The statistical methods allow the
creation of realistic fingerprint datasets based on modeling of the statistical features
of real fingerprint databases whereas the deep learning methods learn to encode
the features of real fingerprints and generate new fingerprints. The Deep-Learning
methods offer more possibilities regarding the custom of the algorithms (loss function,
master of the latent space, etc.). The generation of fingerprint spoofs that we will
present in this thesis are based on Deep-Learning solutions.

The biometric data generated or created through a collection process on living
beings needs to have a qualification regarding its interest in testing usage. Indeed,
a validation protocol is needed to qualify biometric data and interpret the results
obtained using such data.

The next section presents the methods used in the literature for the validation of
synthetic data generation.

3.4 Evaluation of synthetic data

This section describes the protocol we use throughout this thesis to validate our
results on synthetic data generation considering works in the literature. In order to
position ourselves in relation to the existing work, we have decided that we must be
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able to qualify our results both in terms of the quality of our biometric data and their
recognition and results through an anti-spoofing test. We considered the different
validation approaches from existing works as detailed in the previous section.

3.4.1 Quality assessment

The metric we use in this work is the NFIQ2 (NIST Fingerprint Image Quality) tool
[Bausinger and Tabassi, 2011]. NFIQ2 gives an overall score based on the usability
and features of a fingerprint image. Scores go from 0 to 100 (0 bad and 100 good).
NFIQ2 score is based on the nature of the image, the fidelity to its source, and
the utility of the sample. Indeed, the output score reflects the contribution of the
given biometric sample to the overall performance of a biometric system. The tool
has been developed thanks to the contribution of multiple algorithm providers and
larger fingerprint datasets. This metric is used here to measure how the quality
of generated datasets is similar to the quality of real datasets with an objective
metric that measures the way that the generated samples would contribute to the
performance of a biometric system. Indeed, synthetic data can be considered as valid
data if quality of the synthetic data is similar to the quality of real data in the same
scenario.

3.4.2 Performance evaluation

The performance evaluation of biometric systems is generally measured using two
metrics: the AUC (Area Under the ROC Curve) and the EER (Equal Error Rate).
AUC value can be viewed as a ranking measure that is very useful and is based on
pairwise comparisons between classifications of two classes. In other words, the AUC
value is equal to the probability that a classifier will rank a randomly chosen positive
instance higher than a randomly chosen negative one. Given two randomly chosen
users, one being a legitimate user and the other an impostor, the AUC represents
the probability P (Sleg > Simp) (i.e... probability of a good assignment):

AUC =

∑ng

p=1

∑ni

q=1 I(S
leg
p , Simp

q )

ngni

(3.2)

where ng and ni are respectively number of legitimate users and impostors and Sleg
p ,

Simp
q the scores of legitimate users and impostors, and the function I is defined by:

I(Sleg
p , Simp

q ) =

{
1 if Sleg

p > Simp
q

0 otherwise
(3.3)
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That way, AUC can be considered as a global criterion of performance. The higher
the AUC is, the better the performance.

The EER value is when the False Acceptance Rate (FAR) is equal to the False
Rejection Rate (FRR). It can be viewed as a compromise between usability and
security. The goal of a matcher is to minimize this value. A visual representation of
AUC and EER is given in Figure 3.12. Both AUC and EER are computed after a
bootstrap of 1000 replications and are given within a 95% confidence interval.

Figure 3.12: Examples of ROC curve which shows the AUC of a biometric system
(Left graph) and the link between EER and the FMR and FNMR curves (Right
graph)

To compute these metrics, we used two of the most widely used biometric matching
algorithms in the literature, Bozoth 3 [Ko Kenneth, 2007] and MCC. Bozorth 3 is
a fingerprint matching algorithm from the NIST with minutiae extractor mindct
[Ko Kenneth, 2007]. The MCC fingerprint matcher is proposed by Raffaele Cappelli
[Cappelli et al., 2010]. An illustration of the MCC comparison of 2 fingerprint
cylinder-codes is given in Figure 3.13. A commercial matching algorithm is used
besides these two to assess the performance of our data.

3.4.3 Presentation attack evaluation

When evaluating a PAD system, the PAIs are validated. The validation method is
set to be able to measure the potential of each PAI type. Many metrics do exist to
evaluate the resistance to attacks for a PAD system. The metric used in this thesis
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Figure 3.13: Illustration of the fingerprint MCC matcher: comparison of the circular
neighborhood of minutiae from two fingerprint samples a and b (source [Cappelli
et al., 2010]).

for PAD qualification is the TDR (True Detection Rate), defined as:

TDR = 100× number of detected attacks
Total number of attacks

We finally compute the TDR which represents the proportion of attacks detected
by the PAD algorithm. We use a commercial PAD system to classify whether given
images are seen as real fingerprints or spoofs. The TDR metric is used here to
measure if a given PAD module detects similarly synthetic and real PAIs.

3.5 Conclusion

In this chapter, we presented some of the most widely used fingerprint databases
that we use for this research. We also presented the methodology that we put in
place to validate our work. However, there are many parameters that are difficult
to control during the creation of a biometric dataset which can bias the results of a
test. That is why we study the impact of parameters that can be controlled in the
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next chapter.

We also introduced the concept and most widely used dataset for fingerprint
systems. We decided to build datasets under controlled conditions to master each
parameter and understand how they can impact the recognition accuracy of a
biometric system.
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PERFORMANCE OF FINGERPRINT SYSTEMS

Summary : This chapter presents the study we realized to understand
the effects of acquisition context for the evaluation of a fingerprint
system. In the previous chapter, we presented the process of the
certification of biometric systems and the need for the associated tests
to be reproducible. Among other factors, the acquisition context can
have a significant impact and introduce variability in the performance
of a biometric system. We study the acquisition environment effects on
fingerprint system performance as well as the data capture module.

4.1 Introduction

Biometrics is more and more employed for user authentication to secure access
to digital services or computers/smartphones. The fingerprint modality is a very
popular one as we can estimate that 80% of smartphones embed a fingerprint sensor.
This biometric solution is very easy to use and is largely used (70% of biometric
systems in the USA use digital fingerprints). As this kind of system is designed to
avoid attacks, it should meet security and privacy constraints. The certification of
systems is a process whose objective is to verify how these constraints are fulfilled.
The certification of a biometric system is an important step during the development
and use of a biometric system. During this test, a biometric system is subject to
many tests in order to establish its conformance to a certain test plan (performance,
robustness to attacks, time). Indeed, these tests are done by independent laboratories,
the testing scenarios are defined by the testing authority. The testing of biometric
systems is mainly based on the ISO 19795 series for the performance tests and ISO
30107 series for the PAD.

In [Wone et al., 2021], it has been demonstrated that environmental conditions (i.e.
temperature and humidity) can impact significantly the performance of a fingerprint
system. This work showed that enrollment and matching in the same conditions
improve performance and can reduce the vulnerabilities of a fingerprint system to
attacks. The test scenarios that are used by certification schemes and laboratories to
evaluate biometric systems recommend the tests to be conducted under monitored
but not necessarily controlled conditions. In addition, the used dataset for the testing
of biometric systems is mainly heterogeneous, as dataset distribution should target
the population that will use the product. So, it is difficult to isolate a particular
factor. Generally, particular behaviors of the product are smooth by the rest of
the test population. However, some certification bodies want to move towards bias
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isolation and bias crossing.
In this chapter, we address three questions that are crucial for the certification of
fingerprint systems:

1. How do acquisition conditions influence the performance, the security, the user
experience, and finally the trust of fingerprint systems?

2. Are all fingerprint matchers impacted in a similar way?

3. is the performance of a biometric system related to the acquisition system?

4.2 Related works

The operational testing of a fingerprint system is realized by using a dataset collected
for the purpose of the test or an existing one. The second case makes sense only if
the testing dataset is well known with good confidence it has not been used during
the training of the recognition algorithm. However, due to the fact that most of the
tested biometric systems are tested as black boxes, it is not easy to say how it is fair
and unbiased to use a public existing dataset. For this reason, most of the testing
methodologies use a dataset collected for a single product. Thus, taking into account
certain parameters would be an excellent way of averaging if not minimizing bias for
biometric systems. We list all capture parameters influencing the performance of
fingerprint systems:

• Demography. It has been demonstrated that demography is a key factor of
bias not only for face recognition but also for other biometric modalities. From
a study conducted on Malaysian groups, authors in [Heng et al., 2018] conclude
that fingerprint patterns could be inherited genetically. They also found that
some ethnicities are more likely to have a certain pattern. The same goes for
gender and occupation. In [Godbole et al., 2022], the authors conducted a study
on groups of Caucasian males, Caucasian women, Black males, and Black women
using two fingerprint matching algorithms and quality measurement. Their
study allows them to conclude that most observed demographic differentials
can be explained by the poor quality of some fingerprint images and the
high accuracy of the used matching algorithm makes them less sensitive to
demographic bias. Age is also an important factor especially for children and old
people as they are more subject to skin transformation [ISO 19795-1:2021(E),
2021]. Therefore, they are big contributors to the False Non-Match rate and
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the Failure-to-Acquire rate in performance assessment studies.

• User. User’s anatomy has always been known as a source of perturbation
in a recognition task for a biometric system. Indeed, beards, mustaches, and
baldness can lead to bad recognition scores, particularly if the state of that
factor was different during the enrollment [Pentland et al., 1994]. This is known
as template aging and is applicable to fingerprints. Harvey et al. [Harvey et al.,
2019] studied this phenomenon over seven years with the same group of people.
They propose a methodology that can be used to isolate the effect of biometric
template aging. Lanitis [Lanitis, 2010] gives a complete survey of the effects
of aging on biometric identity verification with different biometric modalities.
Other things such as the subject’s motivation, familiarity, behavior [Kukula
et al., 2009], appearance (fingernails can impact the positioning), fingerprint
condition[ISO 19795-1:2021(E), 2021](depth and spacing ridges, dry, cracked or
damp), etc. are known to be a source of quality variation during the capture
of fingerprint data.

• Environment. The environmental conditions are known to have impacts on
the recognition process. In the literature, to the best of our knowledge, very
few works have studied the performance of biometric systems through different
climatic environments. We can cite a recent work for finger veins [Kirchgasser
et al., 2020]. The authors present their work as a preliminary study to get the
first results to identify the most challenging factors for finger vein recognition.
Tan et al. [Tan et al., 2010] have shown that biometric matchers can have
different behaviors through different environments. Figure 4.1 from [Tan et al.,
2010] illustrates the effects of different conditions on the same subject. The
study is more focusing on the PAIs (Presentation Attack Instruments) and
the way they are detected with different PAD (Presentation Attack Detection)
algorithms. Grosz et al. [Grosz et al., 2020a] give a module-by-module
certification of a biometric process taking into consideration the moisture
of the skin. Krishnasamy et al. [Krishnasamy et al., 2011] made a very
interesting work for the recognition of fingerprints in wet conditions by building
a wet and wrinkled fingerprint database available on demand. The study
concludes that the error increases when matching a wet finger against a dry
one.

As clearly underlined by Fernandez-Saavedra et al. [Fernandez-Saavedra et al.,
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2008, Fernandez-Saavedra et al., 2010], the existing certification schemes such
as FIDO alliance or Common Criteria are more focusing on the methodology
and protocol of testing the performance of a biometric application under lab
conditions, and/or ask biometric technology developers to include information
on environmental influence and ways of reducing them.

The same observation can be made for ISO 19795-2[ISO 19795-2:2007, 2007]
or 19795-6[ISO 19795-6:2012, 2012]. Even if they point out the impact of
environmental factors, all these standards and test methods only recommend
defining and reporting the conditions of the tests, which are naturally the lab
conditions. Fernandez et al. [Fernandez-Saavedra et al., 2008, Fernandez-Saavedra
et al., 2010] propose a full test protocol, including the use of a climatic chamber
to control the test conditions.

• Capture system. The capture system is the object of this study. The sensor
quality is the main source of image quality variations. As pointed out by
Marasco [Marasco, 2019], the quality variation between different sensors is
a big challenge for the operability of biometric systems. There are works
that proposed solutions to overcome this issue [Alshehri et al., 2018][Jain and
Kumar, 2010]. [Alshehri et al., 2018] deals with the decrease in performance of
a fingerprint system when the sensor at the enrollment is not the same used for
the recognition operation. They proposed two fingerprint descriptors to encode
the fingerprint information and overcome the discriminative characteristics
among the fingerprints captured with different fingerprint sensors.

Figure 4.1: Illustration from [Tan et al., 2010] with a) High Temperature / High
Humidity, b) High Temperature / Normal Humidity, c) Low Temperature / Normal
Humidity
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4.3 Effects of environmental conditions

Based on our observations, the texture of fingerprints changes according to the
acquisition conditions. Those changes may badly influence the quality of images
and matching scores. Thus, we decided to analyze such bias and the effects that
environmental conditions could have on the performance of fingerprint systems. In this
chapter, we investigate if this assumption can align with experimental observations.
This study can help some certification schemes to reduce interoperability risk by
including an evaluation of the bias linked to the acquisition environment of biometric
products. Despite the good matching performance that we can have inside a testing
laboratory using target application conditions, the perception of the end-user and
the security can differ if the product is used under unusual environmental conditions.
In order to verify our assumption, a database has been created to simulate the
uncontrolled environment.

4.3.1 Experimental protocol

The unavailability of a controlled environmental fingerprint dataset enhanced our
desire to build our own for the purpose of these experiments by setting up a test
protocol to build the database. This database was built with a process respecting
data privacy and security: the purpose of the experiment was explicitly provided,
and subjects were told about their privacy rights, storage limitations, integrity, and
confidentiality of the data. Data are stored in an encrypted hard drive disk using
VeraCrypt and AES (Advanced Encryption Standard) method. The disk is stored in
a safe protected by a password known to only few people.

In a controlled climatic chamber, different environmental conditions with specific
values of temperature and humidity have been recreated. 990 fingerprint sample
images from 17 unique participants from 22 to 55 y.o. with 65% of males and 35%
of females were collected. For comparison, each set of the Fingerprint Verification
Competition (FVC) is around 880 images. In each environment, 3 fingerprint scans
of the thumb, index, and middle of both hands are performed using the Digital
Persona’s EikonTouch 700 sensor, which is a capacitive one. The details of the
built database are given in Table 4.1. Finally, six environmental conditions have
been simulated. Figure 4.2 shows the Weiss WK11-180/40 climatic chamber used
and the setup of the tests.
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Table 4.1: Environments considered in this study.

Environ- Temp
(◦C)

Humidity
(%)

Number of
fingers

Total
images

ment
#1 15 20 54 162
#2 15 50 42 126
#3 15 80 72 216
#4 25 20 42 126
#5 25 50 48 144
#6 25 80 72 216

(a) A picture of one of the participants during
the tests

(b) Inside the chamber

Figure 4.2: Overview of the collection setup

Figure 4.3 shows the steps followed for each sample collection. The climatic
chamber has a probe that gives feedback about the current values of the temperature
and humidity. People keep the current hand for two minutes for the adaptation, and
then we can collect. People were trained to interact with the sensor to avoid misuse
and bad data. So, all the data of the same conditions have been collected at the
same time before we set new conditions.

Validation protocol

First, the quality of the acquired biometric samples in each environment is computed
using the NFIQ2 fingerprint quality assessment metric [Olsen et al., 2016], in order
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Figure 4.3: Synopsis of the acquisition method

to be compliant with the ISO/IEC 29794-4:2017 recommendation [ISO 29794-4:2017,
2017].
Second, we need to consider the performance of a fingerprint system for each trial
environment. Three fingerprint-matching algorithms are used in order to generalize
conclusions. The NIST (National Institute of Standards and Technology) matcher
Bozorth 3, the Minutia Cylinder-Code (MCC) matching algorithm, and a commercial
matcher are used for the fingerprint recognition task. The commercial matcher uses
its own minutiae extractor whereas, for Bozorth 3, the mindtct extractor is used to
extract the biometric features needed for the matching operation.

In this work, we consider the authentication process for the performance evaluation
of each trial fingerprint-matching algorithm for the different simulated environments.
AUC values 3.2 are computed for each scenario and matcher. As reminder, AUC
represents the measure of separability. It indicates how much the model is able to
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distinguish between classes. The AUC value can be viewed as a measure ranking,
which is very useful and is based on pairwise comparisons between classifications
of two classes. We also estimate the confidence intervals (95% confidence) of AUC
results, since the used database is not large. It is computed after a bootstrapping
of 1000 replications to confine the AUC value in a confidence interval with 95% of
certitude. We also compute the EER and the FMR100.

4.3.2 Experimental results

In this section, the statistical analysis of the obtained results is provided in order to
evaluate the performance of the trial biometric systems under different environments.
First, we achieved a quality assessment of the collected data, then we observed the
performance of fingerprint-matching algorithms on the data.

Quality Assessment

The NFIQ2 score is used to assess the quality of the collected fingerprint samples
through the different environments we created. The NFIQ2 score for a given
fingerprint image expresses the contribution of that fingerprint to the performance
of a biometric system. In other words, the NFIQ2 score measures the usability of
a fingerprint image in a recognition task. NFIQ2 scores are within a close range
between 0 and 100 as referring to [ITU-R BT.500-15, ], the NFIQ2 scores can be
divided into five intervals:

• Bad quality: ranging from [0,20[, mostly samples with almost no readable
information. The capture from the source may cause many failures to acquire,

• Poor quality: ranging into the interval [20,40[, samples with very few
fingerprint ridges which can give bad matching results,

• Fair quality: ranging into the interval [40,60[, samples with an average quality,
• Good quality: ranging into the interval [60,80[, samples with many fingerprint

details that can lead to very good matching results,
• Excellent quality: ranging into the interval [80,100], samples of very high

quality which lead to extraction of enough features for the recognition task.

Table 4.2 shows the mean NFIQ2 score and its associated standard deviation values
of each subset in every environment computed on our acquired database.

We can observe that better average scores are obtained when the environment is dry
for the two trial temperatures (15°C and 25°C) (environments #1 and #4). Usually,
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Table 4.2: Overview of the NFIQ2 mean values for each environment of our database.

Environment NFIQ2 ±std
#1 56.2% ±15.72
#2 55.8% ±11.83
#3 53.5% ±15.65
#4 57.2% ±17.05
#5 54.9% ±14.91
#6 55.7% ±15.16

when the humidity rate increases (whatever the considered temperature), we observe
that the quality scores decrease. Two remarks can be formulated to explain the
obtained results :

1. When increasing the humidity, the sensor struggles to capture the samples
because of the high moisture of the finger skin.

2. People tend to press harder their fingers on the sensor, which favors the decrease
in the quality of the acquired sample.

These results show that a high degree of humidity deteriorates the quality of acquired
fingerprint samples.

The distribution of the mean NFIQ2 score for each environment is provided in Figure
4.4. We can observe that the quality scores vary from very low (values close to
0%) to very high quality (values close to 100%) and cover the whole quality range.
Moreover, the environments with average humidity (50%) have distribution with
less dispersion around the average value. This may be linked to the NFIQ2 metric
itself. Indeed, NFIQ2 is the result of contributions from industrials that provide
algorithms. The quality measure is the contribution to the performance of these
algorithms. Knowing that most of the existing databases are collected in nominal
conditions, average humidity can lead to less spread NFIQ quality distributions. In
opposition, the extremes lead to higher standard deviation, as these conditions are
less common.

Matching comparison

Since in many testing scenarios and in real-life situations, we perform the enrollment
only once, we compare the collected samples in the climatic chamber against the
reference samples (captured under nominal conditions: 22°C and 50% of humidity).
Two fingerprint samples have been used for the computation of the matching scores.
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Figure 4.4: Quality comparison of the whole database in different conditions: for the
first row, the temperature is set to 15°C and for the second row, the temperature is
20°C, Humidity from 20% to 80% on each row.

We particularly have been interested in the similarity of the AUC values (as a global
metric of the biometric system), EER, and FMR100. For each detected minutiae, we
have its coordinates, orientation, and quality.

Table 4.3 gives the AUC of the different matchers we used, as well as EER values
and FMR100 values.

Table 4.3: Performance of the three matchers when enrollment is done in a
"normal" environment (Temperature 22°C, Humidity 50%) and verification in different
conditions: AUC is given with a 95% confidence interval.

Env. AUC (%) EER (%) FMR100 (%)
Commercial Bozorth3 MCC Commercial Bozorth3 MCC Commercial Bozorth3 MCC

#1 97.83± 0.04 96.80± 0.06 74.54± 0.19 5.58 7.51 33.15 8.02 13.27 65.51
#2 97.39± 0.04 95.10± 0.08 65.10± 0.20 7.27 9.56 39.42 7.14 18.65 75.39
#3 99.08± 0.03 98.08± 0.05 68.78± 0.21 3.26 5.48 38.24 4.16 10.65 68.52
#4 99.45± 0.02 97.53± 0.05 80.33± 0.16 2.35 6.76 28.60 3.17 11.11 49.20
#5 94.75± 0.06 95.96± 0.08 77.14± 0.18 9.08 9.26 30.94 9.03 13.19 60.42
#6 97.83± 0.05 95.44± 0.08 69.07± 0.22 6.68 8.63 37.89 9.72 14.58 70.73

The behaviors of the different matchers are shown in Figure 4.5 when focusing
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on AUC values. When the matching is done against a template collected in the
reference enrolment condition (corresponding to the red lines in the figure 4.5), we
observe a variation between environments with different intensities. The two first
matchers (Commercial and Bozorth) have a variation <5% AUC, while MCC has a
variation >15% AUC. Matchers do not react in the same way while under different
environmental conditions.

(a) with the commercial matcher

(b) Bozorth 3 (c) MCC

Figure 4.5: Behaviors of different matchers with enrollment and verification done
against reference samples VS when it is done in the same environment.

The MCC matcher seems to be more affected by the difference between the enrollment
and the verification conditions. Indeed, it gives the lowest accuracy among the three
matchers from the three accuracy metrics.

In order to deeply analyze the previously obtained results, we wanted to investigate
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what would happen if the enrollment and the verification are performed within the
same conditions. The goal is to evaluate how the performance is less impacted by
environmental conditions in this use case. We compute the performance of the trial
matchers when the test subject performs the enrollment and the verification in the
same environment (dot blue line in Figure 4.5). Even if for all matchers, AUC is
increased when the same conditions are used for enrollment and verification compared
to when enrollment and verification are not done in the same environments, we notice
that the impact of this increase depends on the matcher. The MCC matcher seems
to be the most affected. For this matcher, when performing authentication in the
same environment that we registered, the global performance increases by 24% in
average considering the AUC. The two other matchers are affected by around 1%.
Security and User Experience will be increased if enrollment can be redone in the
targeted environment when the conditions change.

Table 4.4: Performance of the three matchers when enrollment and tests are done in
the same environment: AUC is given with a 95% confidence interval.

Env. AUC(%) EER(%) FMR100(%)
Commercial Bozorth3 MCC Commercial Bozorth3 MCC Commercial Bozorth3 MCC

#1 97.57± 0.06 94.55± 0.10 94.12± 0.14 7.37 10.94 8.90 9.26 14.81 25.92
#2 99.17± 0.05 97.53± 0.09 98.99± 0.03 1.19 3.89 6.39 11.91 10.71 14.28
#3 99.95± 0.002 99.08± 0.02 96.49± 0.11 1.39 5.46 6.70 13.89 7.64 15.27
#4 99.05± 0.04 98.89± 0.03 97.35± 0.08 3.62 6.14 9.29 3.57 10.71 16.66
#5 96.66± 0.09 97.70± 0.05 95.51± 0.11 7.16 7.86 10.50 11.46 11.46 18.75
#6 98.55± 0.04 97.12± 0.06 97.04± 0.09 4.10 7.81 7.59 4.86 13.89 20.93

Table 4.4 gives the AUC value, EER, and FMR100 of the different matchers when the
enrollment is performed in the same conditions as the verification task. The detailed
performance of the three matchers is given in Figure 4.6. It shows the behavior of
the three matchers through different environments when the enrollment and the
verification attempts are done in the same conditions (Figure 4.6a, 4.6c and 4.6e)
and when we perform the verification attempt against the reference environment
samples (Figure 4.6b, 4.6d and 4.6f). The behaviors of the three matchers are similar
from the Figure 4.6a to Figure 4.6e, the Figure 4.6f is very different and witnesses
the effects of the testing environment on MCC matcher

The impact on the MCC matcher is even more visible. Indeed, for an ideal matcher,
the ROC curve would be a "step" of 100% (i.e. AUC=100%). As one can see from
Figure 4.6f, the difference between enrollment and verification conditions moves the
ROC curve away from the ideal system. However, changing enrollment conditions
makes the performance better, as in Figure the 4.6e.
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(a) Commercial matcher when enrollment
and verification are done in the same
conditions

(b) Commercial matcher when verification
is done against reference samples

(c) Bozorth3 when enrollment and
verification are done in the same
conditions

(d) Bozorth3 when verification is done
against reference samples

(e) MCC when enrollment and verification
are done in the same conditions

(f) MCC when verification is done against
reference samples

Figure 4.6: ROC curves of the three matchers through the different environments

To go further, and in order to analyze the influence each parameter can have on the
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global AUC value, a statistical hypothesis test is used to measure the dependency of
acquisition conditions on the performance of the fingerprint system. A P-value of
the AUC for each matcher using the Student’s test is computed by observing one
parameter (only temperature is varying and humidity is fixed or vice versa) at a
time.
For each parameter, we set a value and compute the p-value when the second value
varies. So, the two test hypotheses are verified:

• At a given temperature, humidity only does not impact significantly the
performance of the fingerprint system.

• At a given humidity, temperature only does not impact significantly the
performance of the fingerprint system.

Tables 4.5 and 4.6 give the different p-values through all the possibilities. As an
illustration, for the 4th row of Table 4.5, we consider the situation when the humidity
is fixed and equal to 50% and compute the p-value of the different AUC supposing
it does not depend on the temperature. For Commercial and Bozorth 3 matchers,
the p-value is <5% meaning that the temperature has no significant impact. For
MCC, the p-value is >5% meaning that temperature has a significant impact on the
AUC. This p-value method can highlight Security and User Experience risks for a
fingerprint matcher when used under specific environmental conditions. For example,
it means that it can represent a high risk of security for the MCC algorithm. The
test reveals also that both humidity and temperature greatly influence the AUC of
the commercial matcher.

Table 4.5: P-values considering separately the two parameters when enrollment and
verification are done in the different conditions where HT ∈ [20, 50, 80] with TE and
HE temperature and humidity at the enrollment and TT and HT temperature and
humidity during the test (verification)

Parameters Commercial Bozorth 3 MCC
TE = 22◦C, TT = 15◦C, HE=50 and HT ∈ {20, 50, 80} 2.66× 10−5 7.99× 10−5 1.6× 10−3

TE = 22◦C, TT = 25◦C,HE = 50 and HT ∈ {20, 50, 80} 2.01× 10−4 4.29× 10−5 2× 10−3

HE = 50%, HT = 20% and TT ∈ {15, 25}◦C 5.2× 10−3 2.4× 10−3 2.38× 10−2

HE = HT = 50% and TT ∈ {15, 25}◦C 6.7× 10−3 2.9× 10−3 5.38× 10−2

HE = 50%, HT = 80% and TT ∈ {15, 25}◦C 4× 10−3 8.7× 10−3 1.4× 10−3

4.3.3 Discussion

The work presented here deals with the problem of fingerprint recognition from a
matching point of view when environmental conditions change. It brings an eye to
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Table 4.6: P-values considering separately the two parameters when enrollment
and verification are done in the same condition with TE and HE temperature and
humidity at the enrollment and TT and HT temperature and humidity during the
test (verification)

Parameters commercial matcher Bozorth 3 MCC
TE = TT = 15◦C, and (HE, HT ) ∈ {20, 50, 80} × {20, 50, 80} 4.98× 10−5 1.88× 10−4 1.65× 10−4

TE = TT = 25◦C, and (HE, HT ) ∈ {20, 50, 80} × {20, 50, 80} 5.51× 10−5 2.84× 10−5 3.44× 10−5

HE = HT = 20% and (TE, TT ) ∈ {20, 50, 80} × {20, 50, 80} 4.8× 10−3 1.43× 10−2 8.7× 10−3

HE = HT = 50% and (TE, TT ) ∈ {20, 50, 80} × {20, 50, 80} 8.2× 10−3 4.49× 10−4 1.14× 10−2

HE = HT = 80% and (TE, TT ) ∈ {20, 50, 80} × {20, 50, 80} 6.4× 10−3 4.5× 10−3 1.8× 10−3

the problem of the sensitivity of biometric systems to environmental conditions that
is not well underlined in the existing literature related to fingerprints.

Environmental factors can make biometrics challenging. This study investigates
how environmental bias impacts performance results, namely by temperature and
humidity. We saw that some worldwide conditions can be reproduced on climatic
chambers to obtain an overview of security risk and user experience impact. We
have shown that the three trial matchers have their own vulnerability to specific
conditions. Knowing this can prevent further challenges when products are deployed
over the world and can help to provide more trust in fingerprint biometric systems.

The study is limited to capacitive sensing, as almost all the fingerprint sensors on
cards are of this type. The test population is mainly composed of Caucasians at
almost 90% which might make the results change if the test is repeated. The study
shows the variability of matching errors on genuine verification attempts through the
environments and how it changes when the enrollment and the verification are done
in the same conditions compared to doing the enrollment in a reference environment
once and for all.

4.4 Effects of acquisition quality

As stated earlier, there are plenty of factors that can have an impact on the recognition
capacities of a biometric system, thus on user experience and security. In addition,
for interoperability, a biometric algorithm should be performing well independently
of the hardware part capture device. The quality of a biometric sample, which
depends on the capture device, is one parameter that can impact the recognition
performance. For each biometric modality, there are some inherent indicators such as
resolution, speed, frequency range, etc. which give an indication of the functionality
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of an acquisition system. We focus here on the intrinsic quality of a fingerprint system.

In addition to ensure good performance, a good user experience, and a high level of
security, a biometric system should be interoperable. Considering the large number of
applications of biometric systems and the life of hardware solutions, it is more likely
right to assume that a biometric system will be integrated with different acquisition
systems. Therefore, the efficiency of a biometric system should not be conditioned
by the acquisition module it is associated with. The interoperability of biometric
systems is not taken into consideration by most of the certification schemes. The
main reason is that most of the tested solutions are end-to-end solutions where a
software solution is coupled with a hardware part. However, we observe that there
are more and more algorithm-only providers in the market and the need to perform
technology evaluation is growing.

4.4.1 Experimental protocol

In this section, we present the experimental protocol we followed to analyze the effect
of the quality of captured fingerprint samples.

Dataset

For this work, we use a fingerprint dataset generated SFinGe presented in Chapter
3. As a reminder, SFinGe is based on the mathematical modeling of fingerprint
characteristics.

Using SFinGe 4.1, we generated a dataset imitating a capacitive and an optical
sensor. For each sensing technology, we use the integrated quality indicator to control
the quality of the generated data. These different quality sets are simulating the
quality of the fingerprint sample. Thus, we generated five different groups of images
with different qualities:

• High quality: Fingerprints with almost no translation and rotation, most
ridge patterns of very high quality, with almost no skin distortion or other
perturbations.

• Medium quality: Fingerprints with almost no translation and rotation, ridge
patterns of medium/high quality, with limited skin distortion and perturbations.

• Low quality: Fingerprints with almost no translation and rotation, ridge
patterns of low quality, with limited skin distortion and perturbations.
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• Very low quality: Fingerprints with almost no translation and rotation, ridge
patterns of very low quality, with various perturbations.

• Varying quality: Fingerprints with varying quality and perturbations: most
ridge patterns of medium quality, but some of low or very low quality.

In the proposed methodology, we generated 200 unique fingers for each set, with
5 impressions per finger. The images have a resolution of 1000 dpi and a size of
832x1120 pixels. We chose the highest image resolution and size that SFinGe offers.
Scratches are added to the images using the dedicated function in SFinGe. Indeed,
the scratches introduce minor degradation to the images to simulate a real-life
scenario similar to what we observe when doing a dataset collection from random
people.

Examples of the generated data are given in Figure 4.7. Images in the first row are
from a capacitive sensor, and second-row images are from an optical one. For a
visual comparison, Figure 4.8 gives examples of real images from FVC 2000 contest
from the Db1a dataset. The images are from an optical sensor.

4.4.2 Experimental results

The evaluation methodology is similar to the one used previously in the previous
section to assess the impact of acquisition conditions on biometric systems. So, we
consider two types of tests for this study: 1) fingerprint quality assessment, and 2)
performance evaluation.

Quality assessment

The quality assessment is done using the NIST NFIQ2 metric and the performance
testing is done through AUC and EER using Bozorth3 and MCC for the fingerprint-matching
operations.

We observe the quality variation over the generation parameters. We compute
the average value and standard deviation of the NFIQ2 scores. Tables 4.7 and 4.8
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(a) Capacitive image of
high quality

(b) Capacitive image of
medium quality

(c) Capacitive image of
low quality

(d) Capacitive image of
very low quality

(e) Optical image of
high quality

(f) Optical image of
medium quality

(g) Optical image of low
quality

(h) Optical image of
very low quality

Figure 4.7: Examples of images from the data generated with SFinGe.

show the statistical indicators (mean and standard deviation) of the dataset. Figures
4.9 and 4.10 show the data profiles of the NFIQ2 scores for each set of quality. They
also give the range of data points between the 10th and 90th percentile (shaded
area), as well as the average value and the standard deviation.

Considering NFIQ2 values, we can understand that the intrinsic quality of the
generator may differ from a pure fingerprint quality metric. Indeed, one may expect
high-quality generated samples to have higher statistics than other generation settings.
This may be due to the fact that if we consider, for example, the set with “varying
quality”, it may cover a wider range of quality scores and contain higher scores than
the "high-quality" setting which has high-quality samples but is confined to a narrow
range.
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(a) Sample 1 (b) Sample 2

Figure 4.8: Examples of real images from the FVC 2001, Db1 subset.

Table 4.7: NFIQ2 statistical figures of the capacitive dataset

Capacitive with no option (%) Scratches (%)
High Quality 40.97 ±4.1 40.92 ±4.0

Medium Quality 43.50 ±3.6 43.47 ±3.7
Low Quality 40.52 ±5.0 40.94 ±4.8

Very Low Quality 34.36 ±6.1 35.23 ±6.0
Varying Quality 42.3 ±4.2 42.37 ±4.5

Table 4.8: NFIQ2 statistical figures of the Optical dataset

Optical with no option (%) Scratches (%)
High Quality 42.49 ±3.5 42.47 ±3.5

Medium Quality 43.84 ±3.8 43.87 ±3.8
Low Quality 40.11 ±3.6 40.65 ±4.1

Very Low Quality 32.03 ±6.5 33.24 ±6.7
Varying Quality 42.77 ±4.1 42.73 ±3.9
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(a) No option (b) Scratches

Figure 4.9: Visualization of data profiles of the NFIQ2 quality scores from the
capacitive images.

(a) No option (b) Scratches

Figure 4.10: Visualization of data profiles of the NFIQ2 quality scores from the
optical images.

Matching comparison

In this part, we evaluate the performance of the generated dataset considering the
AUC and the EER measures using two matching algorithms. Images from SFinGe
have been generated with fingerprint templates respecting ISO/IEC 19794:2 format
which can be directly used with MCC for comparison tasks. We also extract minutiae
from fingerprint samples with NIST Mindtct [Ko Kenneth, 2007] for Bozorth3. For
each matching algorithm, we compare the AUC and the EER values.

Tables 4.9 and 4.10 show the AUC and EER computed with the NIST Bozorth3
matcher for the capacitive sensor and optical sensor. We can observe that the
scratches do not introduce a high decrease in the AUC or EER values. The actual
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difference in performance on the generated datasets comes mainly from the acquisition
quality. Despite the scratches, the inherent generation quality is the only factor that
seems to be very important here when we consider a single capture technology and
the same matching algorithm. The same observation applies to the MCC matcher
for which the performance is shown in Tables 4.11 and 4.12.

Table 4.9: Performance of Bozorth3 on the capacitive dataset
Capacitive with no options Capacitive with Scratches

Generation quality AUC (No option) EER (No option) AUC (Scratches) EER (Scratches)
High 81.1314 ±1.4981e− 14 0.27258 ±4.1308e− 17 80.5505 ±2.3793e− 14 0.27908 ±4.8193e− 17

Medium 89.0779 ±3.525e− 15 0.1805 ±6.1962e− 17 89.0546 ±5.2874e− 15 0.17883 ±1.2048e− 17
Low 79.907 ±1.8506e− 14 0.30119 ±1.0327e− 17 79.9247 ±6.1687e− 15 0.27194 ±4.1308e− 17

VeryLow 67.1891 ±7.0499e− 15 0.3942 ±0 67.4475 ±3.525e− 15 0.38437 ±6.1962e− 17
Varying 86.5812 ±1.3219e− 14 0.21417 ±2.2375e− 17 86.1737 ±2.6437e− 14 0.21369 ±6.3683e− 17

Table 4.10: Performance of Bozorth3 on the optical dataset
Optical with no options Optical with Scratches

Generation quality AUC (No option) EER (No option) AUC (Scratches) EER (Scratches)
High 84.8549 ±2.115e− 14 0.16339 ±2.4096e− 17 84.6644 ±1.6744e− 14 0.16488 ±8.6058e− 18

Medium 81.9144 ±4.4062e− 15 0.19922 ±6.8847e− 17 82.323 ±2.6437e− 15 0.19497 ±6.8847e− 17
Low 73.6108 ±2.7318e− 14 0.33473 ±8.9501e− 17 73.7676 ±1.7625e− 15 0.31858 ±3.7866e− 17

VeryLow 65.0311 ±4.4062e− 15 0.40782 ±1.3425e− 16 65.7977 ±0 0.39931 ±7.5731e− 17
Varying 87.2199 ±2.6437e− 14 0.19555 ±4.6472e− 17 86.0072 ±1.0575e− 14 0.17967 ±3.0981e− 17

Table 4.11: Performance of MCC on the capacitive dataset

Capacitive with no options Capacitive with Scratches
Generation quality AUC (No option) EER (No option) AUC (Scratches) EER (Scratches)

High 100 ±0 0 ±0 100 ±0 0 ±0
Medium 100 ±1.078e− 07 2.5025e-06 ±2.6951e− 07 100 ±1.057e− 07 2.3618e-06 ±2.6425e− 07

Low 99.2677 ±0.016163 0.010583 ±0.00018142 99.2364 ±0.0168 0.0094371 ±0.00016929
VeryLow 99.206 ±0.016697 0.0088748 ±0.00019145 99.2459 ±0.016929 0.009172 ±0.000169
Varying 99.7168 ±0.010108 0.0046938 ±0.00012898 99.6998 ±0.010504 0.0054811 ±0.00012706

Table 4.12: Performance of MCC on the optical dataset
Optical with no options Optical with Scratches

Generation quality AUC (No option) EER (No option) AUC (Scratches) EER (Scratches)
High 100 ±0 0 ±0 100 ±0 0 ±0
Low 99.2654 ±0.016659 0.010627 ±0.00018694 99.2217 ±0.016867 0.0096432 ±0.0001709

Medium 100 ±1.0852e− 07 2.5528e-06 ±2.7129e− 07 100 ±1.0677e− 07 2.4322e-06 ±2.6693e− 07
Varying 99.7109 ±0.0099345 0.0047217 ±0.00012742 99.6982 ±0.010712 0.0054164 ±0.00012792
VeryLow 99.1992 ±0.016722 0.0089747 ±0.00019379 99.2344 ±0.017533 0.0092891 ±0.00017349

4.4.3 Discussion

This study focuses on the bias introduced during the acquisition of fingerprint data.
Though there are many uncontrolled impacting factors, we demonstrated in this
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chapter the need for an algorithm to be independent of the capture device.

Different sets of fingerprint images have been created, from very low-quality images
to high-quality images with a set of varying-quality images, with two capturing
technologies with or without scratches. The quality scores reveal no significant
variation introduced by the scratches within the same capturing quality group. The
"varying" quality generation parameter serves here as a reference as it is the most
likely capturing quality one can find in the market and the most representative of
what we may observe in a real-life fingerprint collection. So, we compute the relative
NFIQ2 score variation to the average value of the "varying" quality set. Results are
shown in Figure 4.11. We can see that with respect to our reference, the variation of
NFIQ2 scores can be clearly significant. This is an indication of the quality gap we
may observe between an average sensor in the market and very distinctive sensors.
The quality is an indicator of the usability of a fingerprint as a biometric sample.
So, a decrease in quality can lead to a poor recognition capacity and a bad user
experience, as a good biometric system should be able to recognize people equally.
This variation is more important considering the optical technology.

Figures 4.12 show the relative variation of the AUC of each set against the
reference set (i.e. "varying") respectively with Bozorth3 and MCC. We can observe
that the relative variation of Bozorth is similar to the NFIQ2 score (Figure 4.11)
for the capacitive datasets. From an operational perspective, this means that this
matching algorithm is highly sensitive to the quality of the fingerprints. Moreover,
considering the same type of sensor, we can see a change depending on its quality. For
the MCC algorithm, given a type of sensor, the AUC seems to be stable regardless of
the quality of the sensor. It is visible with its AUC variable close to 0% for 3 datasets
and stays stable for the last set. This can be explained by the good performance it
achieves, which makes the algorithm able to handle samples of various qualities.

4.5 Conclusion

In this chapter, we investigated the impact of acquisition conditions for the recognition
of fingerprints. Experimental results highlighted there was a dependence between
the performance of the matching algorithm and the environmental conditions. The
trends of impacts of environmental conditions are shared between matchers, but
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Figure 4.11: Relative change of the NFIQ2: the value of each group is computed
against the average score of the "varying" set of that category.

(a) B3 relative change (b) MCC relative change

Figure 4.12: Relative change of the AUC of the two matching algorithms

the strength of the bias is different. When the enrollment and the verification are
done in the same conditions, an increase in performance is observed for all the
considered fingerprint-matching algorithms. That means that if we go from location
A to location B, there is a major risk for usability and security if we do not redo the
enrollment. The biometric fingerprint system may have difficulties to recognize well
or be subject to attacks. The p-values are useful to characterize more precisely the
factors linked to high-bias impacts.

The MCC gives the worst performance when the test samples are not from the same
environment as the enrollment samples whereas it gives the best results on average
when we perform a verification in the same conditions that we enrolled the test subject.
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Moreover, regarding the quality of the acquisition system, the tested algorithms show
that the main challenge for the performance comes from the algorithm. Indeed, even
if for Bozorth3 the sensor technology and sensor quality are sources of variations in
the performance, the MCC allows us to conclude that recognition algorithms with
very high accuracy are less sensitive to sensing technology and more likely to be used
with sensors of different quality. Fingerprint algorithms with very high accuracy are
more likely to be interoperable.

The next chapter presents a methodology to generate fingerprint spoofs that can be
used to evaluate presentation attack detection solutions.
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Summary : Nowadays, biometrics is becoming more and more present
in our everyday lives. They are used in ID documents, border controls,
authentication, and e-payment. . . . Therefore, ensuring the security of
biometric systems has become a major concern. The certification process
aims at qualifying the behavior of a biometric system and verifying its
conformity to specifications. It involves the evaluation of the system’s
performance and its robustness to attacks. The anti-spoofing tests imply
the creation of physical presentation attack instruments (PAI) and
multiple attempts of testing on the device. In this chapter, we propose
a new solution based on deep learning to generate synthetic fingerprint
spoof images from genuine images. We transform genuine images into
what they would look like if they were created from known spoof materials
usually involved in fingerprint spoofing tests.

5.1 Introduction

Biometric systems are now used every day through our devices (face authentication on
a smartphone, fingerprint authentication for payment. . . ). Before their deployment,
formal evaluations in dedicated laboratories have to be done, in order to assess their
conformity to some standards. These tests involve performance and PAD testing.
The ISO 30107 series is the basis of PAD testing. The ISO 30107-1 [ISO 30107-1:2023,
2023] identifies 9 different vulnerable points for a given biometric system. The ISO
30107-3 covers only presentation attacks done in the sensor.

The evaluation of PAD requires the creation of physical fingerprint presentation
attack instruments (PAI) which can be based on casting some materials on the
negative of the fingerprint used as mold [Karampidis et al., 2021]. Testing labs have
to spend considerable time to create physically the PAI or spoofs and scan them
with the sensor of the device under test. So, testing laboratories need to have skills
to create spoofs of good quality to challenge the liveness detection of fingerprint
systems. A difficult constraint to achieve within this context is the reproducibility of
the evaluation results (that is a mandatory constraint).

We believe that it may be interesting to be able to digitally transform genuine images
into known material spoofs. Actually, the security evaluation would be more efficient
with a high diversity of PAI species. Digitally synthetic fingerprint spoofs can help
to cover a high number of attack attempts with limited time and human resources.
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Moreover, it can achieve a much better reproducibility of evaluation results. This
work can also help biometric solution providers to train their PAD subsystems in
order to improve their resistance to presentation attack instruments. Certification
schemes could have ways to diversify their testing by adding testing methods using
digitally synthesized images to increase the number of PAI during evaluations.

We investigate how the synthetic PAI look like real ones from the considered
material considering 1) their quality, 2) performance from a matching point of view,
and 3) detection by an anti-spoofing algorithm.

The contributions of the chapter concern first the definition of a new method for the
generation of digitized PAI for fingerprints. Second, we show that we are able to
imitate any material of the PAI. Third, we consider the quality of the generated PAI
and also their performance compared to real ones. The proposed method could be a
useful way for certification bodies to cover a larger scope of attack detection at a low
cost with better reproducibility.

5.2 Related works

The classical ways of testing biometric systems request the production of physical PAI.
Depending on the certification body, the process uses the cooperation of the subject or
not. For instance, Fido Alliance1 requires that for the creation of attack instruments
or spoofs during testing, test subjects have to provide biometric characteristics on
which the PAI is based through pressing their finger on a surface creating a latent
print, taking a low-resolution photograph, capturing their fingerprint on a fingerprint
scanner, or taking a high-resolution photograph (non-cooperative testing). Other
certification bodies request that fingerprint molds have to be obtained from an
individual by pressing a finger into silicon or other molding material (cooperative
testing). Once molds are created, some materials are cast on them to have a
presentation attack instrument.

The classical approach is quite tedious for the testing labs as it requests them to
hire a large number of people willing to give their personal biometric data for the
purpose of a test and commits the lab to ensure data privacy-related regulations
such as GDPR are respected. Hence, the use of synthetic biometric data is more

1https://fidoalliance.org/specs/biometric/requirements/

https://fidoalliance.org/specs/biometric/requirements/
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and more discussed in certification instances. Many papers deal with the creation of
synthetic datasets for biometric data generation.

In this chapter, we propose a method for the generation of PAI samples considering
it as a style transfer problem, and we validate the process with metrics associated
with the evaluation of a biometric solution. The generation of fingerprints or data,
in general, using Deep Learning methods can be done in multiple ways. Deep Neural
networks have found many applications in computer vision since they have been
theorized.

The GANs offer numerous possibilities for the creation of content. As said earlier,
many variations of the original GAN have been proposed in the state-of-the-art of
generative models for different tasks. Some are specialized in audio [Vasquez and
Lewis, 2019], others in image generation. StyleGan and its evolutions [Karras et al.,
2019, Karras et al., 2020, Karras et al., 2021] are well known for the generation of
realistic face images. These models have been used in the biometric application for
fingerprint [Seidlitz et al., 2021, Bouzaglo and Keller, 2022] or face [Colbois et al.,
2021] data generation.

However, there is another application of deep neural networks that we are interested
in which is the rendering of a content image in different styles from a source domain
to another domain is known under the name of style transfer . The image-to-image
translation task can be divided into two groups: 1) the two-domain image-to-image
translation and 2) multi-domain image-to-image translation.

5.2.1 Two-domain Image-to-Image translation

The two-domain image-to-image translation problem refers to the task of rendering
images from domain A to domain B. One of the first to be introduced using conditional
adversarial networks is the Pix2Pix [Isola et al., 2017]. Figure 5.1 gives examples
of applications and results of Pix2Pix. One of the major criticisms of Pix2Pix is
its loss term composed of a combination of an adversarial term with L1 norm loss,
which requires pairs of images from both domains. Pix2Pix gives an answer for
two-domain image translation problems, where another study [Zhu et al., 2017] solves
the problem of transferring style from A to B and from B to A.

Other solutions have been proposed to improve the results of these architectures:
[Liu et al., 2017], [Kim et al., 2017], and the previously mentioned CycleGAN.
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Figure 5.1: Illustration of Pix2Pix results, extracted from [Isola et al., 2017]

Various models have been proposed for the tasks of image-to-image translation across
two domains with and without paired data [Zhu et al., 2020, Yin et al., 2020, Lin
et al., 2020]. The two-domain image-to-image translation models are restricted to
two-domain tasks and if we want to explore more than two domains, we have to
train multiple models which can have high training costs without a guarantee that
the features from different domains are learned similarly.

For this study, we chose to explore the multi-domain image translation. Indeed, as
mentioned in Chapter 3, the testing of PAD involves multiple materials. Some of
these networks are limited by the number of domains we can learn simultaneously.
So, if we consider multi-domains, we have to train as many networks as styles we
want to learn.

5.2.2 Multi-domain Image-to-Image translation

The need for style transfer goes beyond two domain tasks. The basic idea of
multi-domain image-to-image translation is to train one generator that learns to map
features from a domain to multiple domains.

StarGAN [Choi et al., 2020a] is one of the first to propose the multi-domain translation
without having to train cross-domain generators. The method is based on the
training of one single generator. AttGAN [He et al., 2019] also uses a single generator
training to perform the multi-domain translation. The authors show the efficiency
of the method on facial attributes translation. UFDN [Liu et al., 2018] learns
domain-invariant representation from data across multiple domains. MWGAN [Cao
et al., 2019] is a multi-domain image-to-image translation that proposes to solve the
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challenges previous models faced by minimizing the Wasserstein distance across the
domains. Other methodologies and methods have been proposed in the research
literature [Lee et al., 2020, Choi et al., 2020b, Liu et al., 2020]. A complete list of
proposed methodologies for image-to-image translation up to 2021 is proposed by
[Pang et al., 2021].

5.3 Proposed method

The proposed method is based on the Wasserstein GAN and particularly MWGAN
[Cao et al., 2019] (Multi-marginal Wasserstein GAN). Figure 5.2 shows an illustration
of MWGAN on the face for style transfer. Since the introduction of Generative
Adversarial Networks (GANs) [Goodfellow et al., 2014] in 2014, many variations of
this architecture have been proposed in the literature to generate fake data or to
translate content from one domain to another.

We chose MWGAN for its cross-domain performance. In addition, the model is
more stable and, as the cross-domain distance is minimized in the loss function, it
allows different materials to be learned in the same way without imbalance.

Figure 5.2: Illustrations of the MWGAN method for style transfer on Facial biometric
(source [Cao et al., 2019]).

In this work, we use the architecture proposed by Cao et al. [Cao et al., 2019].
They proposed a model of multi-domain image-to-image translation that minimizes
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the Wasserstein distance between the learned domains. The model is trained on 30,000
iterations with a learning rate of 0.0001 for the generators and the discriminator,
and an Adam Optimizer.

The model as given in the article gives quite good results but we struggle to see visible
differences in the generation PAI samples that one may observe for real fingerprint
spoofs (PAIs). We decided to add a data-linked term to better differentiate the
generated materials from genuine images. Figure 5.3 describes the whole process we
proposed.

Figure 5.3: Overview of the proposed method (images in the illustration do not
necessarily correspond to the same finger).

From [Cao et al., 2019], the domain classification loss of the Multi-Wasserstein GAN
is defined as follows. Given an input x := x(0) and generator gi, the objective is to
translate the input x to an output x̂(i) which can be classified to the target domain
Di correctly. To achieve this goal, an auxiliary classifier is introduced ϕ : X → Y to
optimize the generators. Specifically, real data x ∼ P̂ti are labeled as 1, where P̂ti is
an empirical distribution in the i-th target domain, and generated data x̂(i) ∼ P̂θi
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are labeled as 0. Then, the domain classification loss w.r.t. ϕ can be defined as:

Cα(ϕ) = α · Ex′∼P̂ti∪P̂θi
[l(Φ(X ′), y)] (5.1)

where α is a hyperparameter, y is corresponding to x
′ , and l(·, ·) is a binary

classification loss. To add a texture-based term, we define a matching term to the
loss to more link the generated data to the real one, defined as:

Material_loss = 1−match(x̂(i), Y ) (5.2)

where Y = {yi} is a batch of real images from the i-th domain.

Then, the classification loss becomes:

Cα(ϕ) = Cα(ϕ) +Material_loss (5.3)

At each epoch, we perform the matching between a generated batch of spoofs and
respective real spoofs, for a given material. As the matching score will be higher
when comparing an image with itself, maximizing this score will favor the similarity
between the synthetically generated spoofs and the real ones. In this study, we use
the MCC to compute matching score, as it demonstrates a high efficiency when the
two samples are acquired in the same environmental conditions, that is the case here.
During the training, we generate a batch of images of each material and compare
them to the reference images of the same material. We add the deviation from
the maximum reachable value. A detailed implementation of that part is given in
Algorithm 1.

Algorithm 1 Attach to material
1: for i < n_epochs do
2: for domain in domains do
3: translate to domain
4: material_loss← 1−match(generated images, ref images) ▷

deviation from the max value
5: loss← loss+material_loss
6: end for
7: end for

Figure 5.4 illustrates the application of the proposed method in the context of the
certification of biometric systems. The style transfer is applied in order to generate
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the PAI samples given a spoofing material. As a reminder, the goal is to generate
realistic synthetic fingerprint presentation attack instruments usable to evaluate a
fingerprint solution. We propose the use of the synthetic data alone or in combination
with an existing dataset to evaluate biometric fingerprint solutions.

Figure 5.4: Application of the proposed method for the evaluation of biometric
fingerprint systems

5.4 Validation of the proposed method

In this section, we present the experimental protocol we set and the experiments we
conducted for the validation of the proposed method.

5.4.1 Experimental protocol

Biometric datasets

In this work, we use the PAI datasets LivDet [Ghiani et al., 2013]. They have been
created during multiple editions of the international competition of liveness detection
on fingerprints. We use data from the 2013 competition from Biometrika sensor,
as they were of good quality and from various spoofing materials. This database
includes genuine images and spoofs from Ecoflex, Gelatin, Latex, Modasil and Wood
Glue. The set is composed of a training set and a testing one of 2,000 images each
set (1,000 genuine images and 200 of each spoof material for each set) per used
sensor. Usually, train sets are given to the participants to train their algorithms
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on that dataset. And the (unseed) test sets are used to validate the trained algorithms.

We train the proposed method on Livdet 2013 fingerprint datasets [Ghiani et al.,
2013]. Training is done on the training set of LivDet and validation is done on the
Validation set of Livdet 2013. In order to face the few number of available samples
in the training set, we applied an augmentation data strategy extracting patches of
224×224. We performed random cropping around the center and extracted 5 patches
from each spoof sample to increase the dataset size and facilitate the training of the
model. The augmented set is composed of 1,000 images from live fingers and 1,000
images for each material.

To validate the digitally synthesized fingerprint spoofs, different metrics and methods
are used to assess the spoofness of generated data. We consider three types: 1)
fingerprint quality assessment, 2) performance and 3) presentation attack evaluation.

Presentation attack evaluation

Considering PAD systems is often realized when evaluating the quality of PAI samples.
In this work, we use a commercial presentation attack detection solution to analyze
how a PAD algorithm could detect such synthetic PAI samples compared to physical
ones. The metric used for PAD qualification is the TDR (True Detection Rate),
defined in Chapter 3.

5.4.2 Experimental results

We show in this section the obtained experimental results that illustrate the benefit
of the proposed method through different evaluation scenarios.

Quality assessment

As a first step, we consider the quality/fidelity of generated PAI samples. Figure 5.5
shows some examples of generated PAI samples from a real fingerprint one (unseen
by the model). The first row presents real samples (genuine real samples on the first
column) and real PAI with different materials (other columns). Other rows present
fingerprint samples for different users (genuine real samples on the 1st column) and
other columns correspond to generated PAI samples for each material. The different
materials are from left to right: EcoFlex, Gelatin, Latex, Modasil and Wood Glue.
We can see visually that generated PAI samples are consistent considering real PAI
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samples.

Real Ecoflex Gelatin Latex Modasil Wood Glue

Figure 5.5: Illustration of generated fingerprint PAI samples.

To go beyond the visual aspect of generated PAI images, we consider the fingerprint
quality assessment metric using NFIQ2. Figure 5.6 shows the distribution of the
NFIQ2 quality scores for synthetic and real PAI samples for each of the 5 materials.
We can clearly see there is a high similarity between the two distributions (synthetic
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versus real) for each material, and the range of covered quality scores is the same.

(a) Ecoflex

(b) Gelatin (c) Latex

(d) Modasil (e) Wood Glue

Figure 5.6: Distribution of NFIQ2 scores for real and our synthetic PAI samples.

We compute for each material the Pearson Linear Correlation Coefficient (PLCC)
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between the two distributions of NFIQ2 quality scores to quantify their similarity.
The obtained results are presented in Table 5.1. One can observe a decrease of
quality scores considering synthetic fingerprint images with respect to real ones. Yet,
the computed PLCC is high, since it reaches 97.63% for the lower and 98.78% for
the higher. Thus, we can consider synthetic data are of same quality that real ones.

Table 5.1: Statistics of the NFIQ2 scores for real and generated PAI samples for the
5 materials

Material Real PAI avg Real PAI std Synthetic PAI avg Synthetic PAI std Pearson correlation (%)
EcoFlex 37.879 8.4408 33.842 9.0396 97.63
Gelatin 33.33 8.875 28.549 9.9905 98.6
Latex 34.445 9.0549 33.454 9.1149 98.06

Modasil 36.874 8.8957 32.862 9.4801 98.48
WoodGlue 35.681 8.8119 32.328 10.0967 98.78

Performance evaluation

In this part, we evaluate the performance of the proposed approach considering
metrics detailed in the previous section. Generated PAI samples should have a
similar performance to real PAI ones. First, we extract minutiae from fingerprint
samples with NIST mindtct. Then we use two fingerprint-matching algorithms from
minutiae templates: NIST Bozorth3 and the MCC matching algorithm. For each
matching algorithm, we compare the real fingerprint PAIs and the PAIs generated
from the genuine fingerprint samples. Figure 5.7 shows the obtained ROC curves.
One can remark that with the MCC matching algorithm (which is much more efficient
than Borzorth3 when samples are acquired in the same environmental conditions),
obtained ROC curves for real and synthetic data are very similar whatever the
considered material.

As illustration, Table 5.2 and Table 5.3 give the detailed performance of the MCC
matching algorithm. Figure 5.7 shows the detailed performance of the two considered
matchers. Even if the work is about the generation of fingerprint presentation attack
instruments, it is important for synthetic spoofs to have fingerprint features and be
able to be recognized when there is no anti-spoofing. We can see that considering
only the “fingerprintness” of generated data, synthetic PAIs sometimes perform better
than real spoofs from matching only considering AUC, EER, and even ROC curves.

Indeed, depending on the number of epochs on the network, some artifacts due to
the physical characteristics of the material (conductivity, elasticity, etc.) present on
the real PAI sample may not be visible on the generated one. Different levels of real
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(a) Bozorth3

(b) MCC

Figure 5.7: ROC curves obtained for B3 and MCC considering real spoofs and
synthetic spoofs.

PAI quality can be simulated by tuning the epoch number on the network. It is
possible to generate PAI samples corresponding to very high spoof quality, which
requires a long time and high expertise in physical creation.
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Table 5.2: Performance of Bozorth3 on real and synthetic data

Material real material AUC (%) synth material AUC(%) real material EER(%) Synth material EER(%)
Ecoflex 81.49 ±0.039 92.40±0.029 26.133 ±0.03 13.25 ±0.06
Gelatin 80.81 ±0.04 91.72±0.03 26.18 ±0.03 13.79 ±0.048
Latex 81.89±0.040 91.74±0.03 25.68 ±0.03 14.13 ±0.06

Modasil 82.07 ±0.04 90.23±0.03 25.24 ±0.03 15.18 ±0.03
WoodGlue 82.39 ±0.03 91.25±0.03 24.79 ±0.03 15.28 ±0.03

Table 5.3: Performance of the MCC matcher on real and synthetic PAI samples.

Material Real PAI AUC (%) Synthetic PAI AUC(%) Real PAI EER(%) Synthetic PAI EER(%)
Ecoflex 77.63 ±0.04 86.04±0.02 29.86 ±0.046 20.83 ±0.037
Gelatin 76.39 ±0.04 85.84±0.02 31.087 ±0.03 21.61 ±0.02
Latex 78.49 ±0.04 85.83±0.02 28.98 ±0.05 21.50 ±0.09

Modasil 79.31 ±0.039 83.63±0.02 28.13 ±0.05 24.32 ±0.03
WoodGlue 79.54 ±0.04 84.57±0.023 27.53 ±0.04 23.98 ±0.05

Figure 5.8: Visualization of features of 25 same users for each material.

As a complement, we observe the behavior of deep features for real and synthetic
PAIs. We used in this work a pre-trained CNN architecture based on AlexNet
[Krizhevsky et al., 2012]. AlexNet outperforms other classification methods in the
fingerprint recognition task. In addition, the model has relatively few parameters.
We applied transfer learning using synthetic fingerprint samples with the SFinGe
software [Raffaele et al., 2004] (60,000 images from 1,200 random users and 50
samples per user) in order to generate reliable deep features describing a fingerprint
image. As an example, the obtained EER value with these deep features (cosine
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distance for matching) is less than 1.3% on 2006 FVC datasets 2. We consider this
CNN matcher as a generic one and associated deep features are used to better analyze
the efficiency of the proposed method.

For each material, we observe the same 25 users from LiveDet. We put an interest in
the way this algorithm recognizes these 25 users, considering their real and synthetic
PAIs. We extracted the 1,200 features of the AlexNet fully connected layer, then used
t-SNE [Van der Maaten and Hinton, 2008] to observe the separation between the
classes (here the 25 considered users), features from real images are on the first row
and features from synthetic images on the second row. Figure 5.8, we can see that
for the synthetic data, most of the time, the CNN matcher succeeds in classifying the
user. For the Modasil material, clusters are less visible. These differences may come
from the geometrical difference between data. Indeed, during the acquisition of the
original data (living fingers and real spoofs), the fingers are not scanned at the same
position. The possible translation/rotation may lead to a geometric transformation
between the synthetic data and the corresponding real one. This results often in the
presence of different parts on the synthetic image and the real one which increases
the recognition task. This favors lower scores when the two images are compared
which can be observed in Figure 5.9. This figure shows the distribution of the Cosine
similarity scores when comparing the 1,200 features vector of real and synthetic PAI
of the 25 users for each material.

Presentation attack evaluation

Table 5.4 shows the behavior of a PAD algorithm on synthetic PAI samples. We
can see that the PAD algorithm struggles around 50% of the time to distinguish
the digital PAI from genuine images, except for the Modasil. This informs us that
even if a material does not succeed in fooling a fingerprint system by presentation
to the sensor, it might succeed if the counterfeiter manages to intercept the flow
of data coming from the sensor in the biometric processing chain. The last case
is not covered by presentation attack detection, but is a type of test to evaluate
the liveness detection independently of the matching unit or the acquisition system.
These "Cyber" attacks are more and more considered. They warn us to increase the
efficiency of software anti-spoofing methods.

2https://biolab.csr.unibo.it/FVCOnGoing/UI/Form/Home.aspx

https://biolab.csr.unibo.it/FVCOnGoing/UI/Form/Home.aspx
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Figure 5.9: Distribution of Cosine distances between real and synthesized data with
average Cosine score in red

Table 5.4: TDR of the commercial algorithm PAD module

Material TDR on real PAI TDR on synthetic PAI
EcoFlex 99.47% 53.72 %
Gelatin 95.04% 52.56 %
Latex 99.82% 43.02 %

Modasil 97.87% 94.19 %
WoodGlue 99.65% 61.74 %

5.4.3 Discussion

The proposed method for generating synthetic PAI gives very good results that can
fool PAD algorithms. A performance comparison with some of the state-of-the-art
works is presented in Table 5.5 considering the TDR metric as the metric of
performance. The observed differences with the real spoofs from targeted materials
can come from different factors. Indeed, the data-linked term is a matching score
based on the extraction of minutiae. During the first epochs of the training, the
network tries to make the template as similar as possible to the destination material
dataset. Indeed, some imperfections coming from the material itself can lead to the
occurrence of some features in the images that can be interpreted as minutiae. These
imperfections can be unique to some materials but not only, as demonstrated in
[Wone et al., 2021].
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Table 5.5: Comparative table of performance with some of the state of the art works

Study Validation set Performance

Gajawada et al. [Gajawada et al., 2019] LivDet2015 TDR=78.05%
Chugh et al. [Chugh and Jain, 2019] MSU-PAD TDR=91.78% @FDR=0.2%

Grotz et al. [Grosz et al., 2020b] LivDet 2015 TDR=87.86% @ 0.5%
Grotz et al. [Grosz and Jain, 2022] LivDet 2013,LivDet 2015, -

GCT 1-5, GCT 6
Our study LivDet 2013 Briometrika Test TDR=98.37% for real (average)

TDR=60.85% for synthetic (average)
98.3% average correlation for NFIQ2

5.5 Conclusion

In this chapter, we present an original work for the generation of fingerprint PAI from
different materials given genuine images and a multi-domain style transfer model.
Obtained results with generated PAI show that the performance is similar to real
PAI from the targeted materials. Moreover, the tested PAD system has its TDR
highly dropping when facing these images. This informs us that even if the quality
level of some materials did not succeed in fooling a fingerprint system by presentation
to the sensor, the generated PAR might succeed if the quality level generated is very
high. Our method can be useful in evaluating the robustness of biometric systems to
high-level fingerprint PAI. However, the difference between genuine and fake data
becomes less important as long as the training goes on. This leads to a decrease
in learning performance and visual difference from what we might observe at the
beginning of the training, which informs us that matching only is not sufficient to
link the loss of the material itself.
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Summary : This short chapter presents the conclusion of our work.
We highlight the contributions of the achieved research.
We also list different perspectives.

6.1 Context

This PhD thesis has been realized in the context of certification of fingerprint
biometric systems. Biometrics is more and more used by large public and are not
restricted to only administrative tasks anymore. Biometric systems and fingerprint
systems in particular are getting more and more popular and deployed as solutions for
frictionless and secured solutions for user authentication and identification. Therefore,
they need to be certified in order to assess their conformity to some defined test
plan. In addition, due to multiple reasons, biometric solutions should not only be
compatible or rely on a specific capturing system. So, interoperability is a key to
having a fingerprint biometric that works across different sensors. Plus, the tests
done in testing laboratories need to be repeatable.

During this Ph.D. study, we have brought three contributions summarized
hereafter.

6.2 Contributions

1. Evaluation of acquisition context impact on the performance of
fingerprint systems
The first contribution of this thesis is the evaluation of the acquisition conditions’
effects on the performance of fingerprint systems. First, we built a fingerprint
dataset in a controlled environment and studied the effects of each environment
on the quality of the acquired dataset and also on the performance of 3 matching
algorithms. This study highlighted an overlooked problem in fingerprint systems
which contributes to the non-reproducibility of biometric evaluations. Moreover,
we emphasize the major risks of security for a biometric system if it is not able
to handle these environmental changes.

Moreover, we highlighted the necessity to have interoperable biometric systems
that are not dependent on the hardware system they are associated with. This
study shows how the acquisition quality can impact the performance of a
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matching fingerprint. It also highlights that if a fingerprint-matching algorithm
is not strong enough, it can be a critical security issue for the final solution.

2. Generation of presentation attacks instruments for the evaluation of
PAD
The second contribution is a method to generate fingerprint spoofs that can
be used for the evaluation of presentation attack detection. The proposed
method is based on an existing deep-learning model (MWGAN) which is a
multi-domain image-to-image translation model that has been introduced to
overcome learning problems other models had when it comes to more than
two domains. We add a matching term to the loss function to give it physical
meaning. The results show good similarity when it comes to the quality and
the fingerprint features for the recognition, and the PAD test gives good results.

3. A generic method to validate synthetic biometric data
We propose a generic method to validate generated biometric data based
on objective metrics to measure. For this work, an objective quality metric
(NFIQ2.0) is used to assess the usability of the generated data as biometric
samples in a recognition process. We also used the performance contribution
of the dataset as well as the presentation attack detection for the synthetic
fingerprint spoofs. We applied this methodology to the generation of synthetic
spoofs to validate our approach.

6.3 Perspectives

During this PhD, we spotted many ideas to go further.

1. For the acquisition conditions, we highlighted the effects of the environmental
conditions on fingerprint and the importance of interoperability for a biometric
system for user experience, security, and reproducibility of the fingerprint
evaluation. However, for a real evaluation, such tests are very constraining
as controlling environmental conditions are quite complicated and requests
specific calibrated equipment. A solution could be to use deep-learning solutions
to map images acquired in nominal conditions and simulate them in some
specific conditions. In that way, it is possible to predict the behavior of the
biometric system in a specific targeted condition. Another solution is to go for
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a generic methodology to have adaptative processing for data according to the
environment where they are acquired.

2. The generation of fingerprint presentation attack instruments has been done
using a deep learning model trained on a fingerprint spoof dataset. However, we
believe that the results will be better with a larger dataset, and a pattern-linked
loss term will be more attached to the texture of the images. Moreover, to be
totally free from legal constraints, a generation from scratch or a first step with
generation from scratch followed by texture mapping to imitate presentation
attack instruments will help to facilitate training and evaluation of biometric
fingerprint systems and make them available without restrictions due to privacy.

3. We expressed the need to have interoperable biometric systems. This observation
is not only restricted to fingerprint systems but is also meaningful for systems
based on other modalities. A perspective of this work is to be able to generate
synthetic data that reproduce the physical characteristics of a targeted sensor
using a few data captured with this sensor. We want to extend that approach
to other biometric modalities.

4. As stated earlier, it is difficult to evaluate the effects of a particular parameter
on a biometric system. We wonder if it is possible to use an optimized process
(using genetic algorithms, for instance) to find the combination of parameters
that would affect the most a biometric system.
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Introduction (Français)

Nous vivons dans un monde où l’informatique occupe une place centrale. Au regard
des applications de l’informatique, la sécurité des systèmes informatiques ainsi que
les données des utilisateurs doivent être garanties. Elle protège et constitue un
élément essentiel ainsi qu’un gage de confiance pour les utilisateurs. Les premières
solutions à être proposées reposaient essentiellement sur la connaissance. C’est
le cas par exemple des mots de passe. Le mot de passe permet de s’assurer que
seulement la personne ayant la connaissance d’un secret puisse avoir accès un service
ou un système donné. Cependant, les mots de passe restent vulnérables et sujets
aux attaques. Selon Microsoft, il y a 1287 attaques de mots de passe toutes les
secondes1. En plus des attaques, les mots de passe sont souvent partagés, ou notés
sur un bout de papier pour mieux les retenir, ce qui participent largement à leur
compromission. Une autre solution basée sur la possession a été proposée. Il s’agit
pour un utilisateur de prouver qu’il est détenteur d’un objet (unique) que lui seul
possède. C’est le cas des badges, ou des clés uniques d’accès. Ces objets peuvent
être dérobés ou perdus, ou encore attaqués par copie de signature numérique par
exemple.
Une autre solution basée sur qui on est est également possible. Cela permet de
garantir l’accès uniquement à la personne légitime. La biométrie offre ce genre de
possibilité.

Selon la CNIL (Commission Nationale de l’Informatique et des Libertés), la
biométrie regroupe l’ensemble des techniques informatiques permettant de reconnaître
automatiquement un individu à partir de ses caractéristiques physiques, biologiques,
voire comportementales. Les données biométriques sont des données à caractère

1https://www.microsoft.com/en-us/security/blog/2023/01/09/microsoft-entra-5-
identity-priorities-for-2023/
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personnel car elles permettent d’identifier une personne. Elles ont, pour la plupart,
la particularité d’être uniques et permanentes (ADN, empreintes digitales, etc.). La
biométrie permet de s’assurer qu’une personne est qui elle prétend être en analysant
sa donnée biométrique. Elle contribue ainsi, de façon fluide, à garantir la sécurité et
l’intégrité d’un système informatique afin de protéger les utilisateurs et leurs données
personnelles. Il existe principalement deux familles de biométries: les modalités
biométriques physiologiques et comportementales. La première catégorie concerne les
biométries les plus "traditionnelles" comme l’empreinte digitale, le visage tandis que
la seconde regroupent les façons d’identifier un individu à sa façon de se comporter
ou d’interagir avec un appareil (façon de marcher, façon de taper au clavier entre
autres). Selon [Jain, 2005], pour être considérée comme donnée biométrique, une
caractéristique physiologique ou comportementale doit avoir les propriétés suivantes:

• Universalité: Tout individu doit posséder cette caractéristique;
• Unicité: La caractéristique doit être suffisamment différente d’une personne à

une autre;
• Permanence: la caractéristique doit être suffisamment invariante (par rapport

au critère de comparaison) sur une certaine période;
• Collectabilité : la caractéristique peut être mesurée quantitativement.
La Table 7.1 présente pour quelques modalités biométriques les forces et faiblesses

de chacune d’elles.

Table 7.1: Comparaison de quelques modalités biométriques, source [Jain et al.,
1999].

Biométrie Unicité Collectabilité Performance Acceptabilité Permanence
Empreinte Haute Moyenne Haute Moyenne Haute
digitale
Visage Faible Haute Faible Haute Moyenne

Iris Haute Faible Haute Faible Haute
Voix Faible Moyenne Faible Haute Faible

Dynamique Faible Moyenne Faible Moyenne Faible
de frappe
au clavier
Démarche Faible Haute Faible Haute Faible

Un système biométrique complet est principalement composé d’un module de
capture, d’une partie traitement du signal, d’une base de données, d’un module de
comparaison et d’un système de décision. Le module de capture sert à acquérir
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une donnée biométrique. Il peut être composé d’un capteur (lecteur d’empreintes
digitales, caméra,...). Il capture la donnée biométrique qui est traitée par le module
de traitement du signal. Celui-ci contrôle la qualité de la donnée, la segmente et
extrait les paramètres utiles dans le cadre d’une comparaison biométrique. Lors
de la phase d’enregistrement, les paramètres biométriques de la personne sont
stockés dans une base de données et serviront de référence pour cette personne. Lors
d’une opération d’identification ou d’authentification, les paramètres biométriques
extraits de la donnée biométrique soumise sont comparés aux paramètres de
références, et en fonction du score de similarité et du degré de confiance fixé, un
verdict d’authentification ou d’identification est retourné. Un schéma montrant les
principaux composants d’un système biométrique est visible à la Figure 7.1.

Figure 7.1: Principaux composants d’un système biométrique (schéma inspiré de
[ISO 19795-1:2021(E), 2021])

La biométrie est de plus en plus utilisée aujourd’hui dans notre vie quotidienne.
D’une action la plus répétitive comme déverrouiller son téléphone à des actions plus
délicates comme valider une transaction bancaire, la biométrie est utilisée pour
prouver son identité.
L’empreinte digitale est la plus ancienne des données biométriques utilisées. Des
traces d’utilisations de l’empreinte digitale comme signature chez les babyloniens
dès -5000 et chez les chinois dès -1900 ont été retrouvées. Les empreintes ou
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dermatoglyphes se forment dès les premières semaines de vie du fœtus et résultent
des frottements des doigts encore en formation avec le liquide amniotique et les
structures utérines 2.De ce fait, les empreintes digitales ne sont ni héréditaires, ni
partagés entre jumeaux et les chances d’avoir exactement la empreinte digitales sont
de 1 sur 64 milliards. L’identification par empreinte digitale se fait principalement
par comparaison de motif d’image ou comparaison de gabarits qui contiennent
souvent les coordonnées des minuties. Les minuties correspondent principalement
aux points de terminaison de ligne ou de bifurcation.
De nos jours, les empreintes sont largement utilisés que ce soit dans un cadre légal
ou embarqué dans des appareils portables. Selon un rapport fourni par CISCO, en
2022, 81% des téléphones "intelligents" embarquent une fonctionnalité biométrique,
et d’autres études montrent que lecteurs d’empreintes digitales embarqués sur
ces téléphones ont bondi de 19% à 60% entre 2014 et 2018. La biométrie et les
empreintes digitales en particulier sont déployées pour simplifier certaines tâches tout
en garantissant un degré de confiance et une sécurité élevés. Elles sont employées
dans les documents d’identité, les transactions bancaires, les accès physiques et
logiques, la santé, dans le domaine militaire, etc.
Au regard des services concernés et des enjeux que cela implique, la sécurité des
systèmes biométriques doit elle aussi être certaine. Ainsi, les systèmes biométriques
doivent être certifiés conformes à un plan de test proposé par une autorité de test qui
témoigne de l’utilisabilité et de la sécurité des systèmes biométriques. La certification
des systèmes biométriques est une étape cruciale de la production qui précède le
déploiement du produit. Elle est réalisée par un laboratoire, sous l’autorité d’un
organisme de test, afin de vérifier la conformité d’un système biométrique. Un bon
système biométrique doit pouvoir reconnaître une personne légitime, rejeter un
imposteur et résister aux attaques notamment par présentation.

Objectifs de la thèse

Cette thèse est le résultat d’une collaboration entre le laboratoire GREYC et la
société FIME SAS. Elle est co-financée par l’Association Nationale de la Recherche
et de la Technologie (ANRT) dont l’objectif est de promouvoir des innovations via
des partenariats entre les laboratoires de recherches et les entreprises du numérique.
La thèse s’inscrit dans le contexte de la certification des systèmes biométriques en
général et des systèmes à base d’empreintes digitales en particulier. En effet, pour
un système certifié, il est important de connaître les scénarios d’essai qui ont été

2https://www.police-scientifique.com/vrais-jumeaux-mÃłmes-empreintes/

https://www.police-scientifique.com/vrais-jumeaux-mêmes-empreintes/
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utilisés par le laboratoire de certification pour évaluer la conformité d’un système à
un plan de test spécifique. Les tests qui ont conduit à l’approbation du produit testé
doivent pouvoir être reproduits à l’identique ou avec un écart minimal en ce qui
concerne l’expérience de l’utilisateur et la sécurité du produit certifié. De nombreux
facteurs ont été identifiés comme rendant difficile la reproductibilité des tests. Si
certains d’entre eux dépendent de l’interaction entre l’utilisateur et le système,
le système et l’environnement dans lequel il est déployé peuvent avoir un impact
significatif sur ses capacités de reconnaissance du système biométrique. Le contexte
d’acquisition est le principal facteur de non-reproductibilité des tests. Cela concerne
à la fois les conditions environnementales de l’acquisition et le système de capture
lui-même. Comme indiqué précédemment, la certification d’un système biométrique
(empreintes digitales) est évaluée sur la base de sa capacité à reconnaître la bonne
personne et à résister aux attaques par présentation. Cette dernière partie prend du
temps et les laboratoires n’ont aucune indication sur les méthodes d’apprentissage
des algorithmes testés car la plupart des produits testés sont des boîtes noires. Il
serait donc incertain d’utiliser des bases de données existantes, qui sont souvent
limitées à des fins de recherche, pour ce genre de test. En outre, les contraintes
associées aux tests nous incitent à nous orienter vers la génération de données
synthétiques réalistes, pouvant être utilisées pour l’évaluation de la détection des
attaques par présentation d’un système biométrique à empreintes digitales.

Tout au long de cette thèse, nous adressons les questions suivantes:
• Comment le contexte d’acquisition d’un système biométrique à empreintes

digitales peut avoir un impact sur ses performances ?
• Les données synthétiques peuvent-elles aider dans l’évaluation de solutions

biométriques à base d’empreintes digitales ?
• Comment peut-on assurer la reproductibilité des évaluations de solutions

biométriques ?

Contributions

Dans cette section, nous présentons les principales contributions de cette thèse:

1. Première contribution: Nous avons mené une étude pour comprendre
l’impact des conditions environnementales sur les systèmes d’empreintes
digitales. Les conditions environnementales sont l’un des biais les plus négligés
pour les systèmes d’empreintes digitales. En effet, à cause de ces facteurs, il est
très difficile de prédire le comportement d’un produit une fois qu’il est déployé
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dans une région d’une monde. Au cours de cette thèse, nous avons construit
une base de données d’empreintes digitales acquises dans des conditions de
température et d’humidité contrôlées. Nous avons observé l’effet des conditions
environnementales en utilisant une mesure objective de la qualité des empreintes
digitales et différents algorithmes de comparaison d’empreintes digitales. Nous
avons également souligné l’importance de la qualité du système d’acquisition
et la manière dont elle peut affecter la performance de la solution biométrique
finale.

2. Seconde contribution: Nous avons proposé une méthode de génération
d’instruments d’attaque par présentation utilisable dans le cadre de l’évaluation
du module de détection d’attaques par présentation pour un système
biométrique à base d’empreintes digitales. Nous avons proposé une méthode
générique pour valider les données biométriques synthétiques. Les données
générées sont validées du point de vue de la qualité et de la reconnaissance.
Nous comparons notre méthode avec les solutions qui existent dans l’état de
l’art.

Organisation du manuscrit

Le manuscrit est organisé comme suit:
• Le chapitre 2 présente la certification des systèmes biométriques. On y présente

les contraintes auxquelles les laboratoires de certification font face lors de cette
étape. On exprime les motivations qui nous poussent à partir vers des données
synthétiques. On y détaille le processus de certification, sa logistique, ses
métriques et méthodes ainsi que la nécessité d’avoir des données synthétiques.
On propose une méthode générique pour valider les données biométriques
synthétiques avec des méthodes objectives liées à l’utilisabilité d’un système
biométrique ainsi que sa sécurité.

• Le chapitre 3 est dédié à l’analyse du contexte d’acquisition et à la manière
dont il peut influer sur les performances d’un système biométrique à
base d’empreintes digitales. Ce contexte peut être soit les conditions
environnementales dans lesquelles la donnée biométrique est acquise, soit
le dispositif de capture. Le contrôle de ces contextes est la clé de la
reproductibilité des tests biométriques et la minimisation de ses effets
permettrait d’aller vers des systèmes biométriques interopérables et des
évaluations répétables. En effet, on souhaite comprendre les paramètres
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auxquels l’évaluation des systèmes biométriques peut être corrélée.

• Le chapitre 4 présente la méthode que nous proposons pour générer des bases
de données d’empreintes digitales synthétiques afin de tester la détection des
attaques par présentation, ainsi que la comparaison des données générées avec
des données existantes. En effet, cela répond au besoin de disposer de données
synthétiques exprimé au chapitre 1. Nous présentons la méthodologie que nous
proposons dans cette thèse ainsi que les résultats que nous avons obtenus
en utilisant la méthodologie de validation que nous avons introduite dans le
chapitre 2.

• Le chapitre 5 est dédié à la conclusion de ce travail. Nous y présentons
également des perspectives à ce travail.
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Conclusion (Français)

Contexte

Cette thèse doctorale a été réalisée dans le cadre de la certification des systèmes
biométriques à base d’empreintes digitales. La biométrie est de plus en plus utilisée
par le grand public et ne se limite plus à des tâches administratives. Les systèmes
biométriques, et en particulier les systèmes d’empreintes digitales, sont de plus en
plus populaires et déployés en tant que solutions d’authentification et d’identification
sans contraintes et sécurisées pour les utilisateurs. Ils doivent donc être certifiés
afin d’évaluer leur conformité à un plan de test défini par une autorité. En outre,
pour de multiples raisons, les solutions biométriques ne doivent pas seulement être
compatibles ou dépendre d’un système de capture spécifique. Les matériaux (partie
physique d’un système biométrique) ayant une durée de vie, ou une disponibilité
limitée, l’interopérabilité est donc essentielle pour disposer d’une solution biométrique
à base d’empreintes digitales qui fonctionne avec différents capteurs et ce quelque soit
l’endroit dans lequel il opère. Les tests effectués dans les laboratoires d’évaluation
doivent pouvoir être répétés afin de garantir le bon fonctionnement d’un produit.

Contributions

1. Evaluation de l’impact des conditions d’acquisition sur les systèmes
à base d’empreintes digitales
La première contribution de cette thèse est l’évaluation des effets des conditions
d’acquisition sur les performances des systèmes d’empreintes digitales. Dans
un premier temps, nous avons construit une base de données d’empreintes
digitales dans des environnements contrôlés et étudié les effets de chaque
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environnement sur la qualité de l’ensemble de données acquises ainsi que sur la
performance de 3 algorithmes de reconnaissance d’empreintes digitales. Cette
étude a mis en évidence un problème négligé dans les systèmes d’empreintes
digitales qui contribue à la non-reproductibilité des évaluations biométriques.
De plus, nous soulignons les risques majeurs de sécurité pour un système
biométrique s’il n’est pas capable de gérer ces changements environnementaux.
En effet, nous avons démontré qu’un système sensible à ce genre de paramètre
était susceptible d’être attaqué car vulnérable. De plus, il est susceptible de
posséder des taux de faux positifs à l’identification élevés.

D’un autre côté, nous avons mis l’accent la nécessité d’avoir des systèmes
biométriques interopérables qui ne dépendent pas du système matériel
auquel ils sont associés. Cette étude montre comment la qualité du module
d’acquisition peut influer sur les capacités de reconnaissance des empreintes
digitales. Elle souligne également que si un algorithme de reconnaissances
d’empreintes digitales n’est pas suffisamment efficace, cela peut constituer un
problème de sécurité critique pour la solution biométrique qui l’intègre.

2. Génération d’instruments d’attaque synthétiques
Nous avons présenté une méthode pour générer des instruments d’attaque
qui peuvent être utilisés pour l’évaluation de la détection des attaques par
présentation dans le cadre des empreintes digitales. La méthode proposée
est basée sur un modèle d’apprentissage profond existant (MWGAN) qui
est un modèle de transfert de style multi-domaine qui a été introduit pour
surmonter les problèmes d’apprentissage que d’autres modèles avaient lorsqu’il
s’agissait de plus de deux domaines. Nous ajoutons un terme d’attache aux
données à la fonction de coût pour lui donner une signification physique.
Les résultats montrent une bonne similarité en ce qui concerne la qualité
et les caractéristiques des empreintes digitales synthétiques et des données
réelles pour leur capacité à être reconnues; de même, le test d’attaques par
présentation donne de bons résultats.
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Figure 8.1: Possible utilisation d’instruments d’attaques synthétiques dans le cadre
d’une évaluation.

3. Une méthode générique pour valider les données biométriques
synthétiques

Nous avons proposé une méthode générique pour valider les données
biométriques synthétiques, basée sur des mesures objectives. Pour ce travail, une
métrique de qualité objective (NFIQ2.0) est utilisée pour évaluer l’utilisabilité
des données générées en tant qu’échantillons biométriques dans un processus de
reconnaissance d’empreintes digitales. Nous avons également utilisé la capacité
de ces données à être reconnues comme des empreintes digitales ainsi que leur
capacité à tromper un algorithme de détection d’attaques par présentation.
Nous avons appliqué cette méthodologie à la génération de fausses empreintes
digitales pour valider notre approche.

Perspectives

Durant cette thèse, nous avons identifié plusieurs idées à explorer.

1. Pour les conditions d’acquisition, nous avons mis en évidence les effets des
conditions environnementales sur les empreintes digitales et l’importance de
l’interopérabilité d’un système biométrique pour l’expérience de l’utilisateur,
la sécurité et la reproductibilité de l’évaluation de celui-ci. Cependant,
pour une évaluation réelle, de tels tests sont très contraignants car le
contrôle des conditions environnementales est assez compliqué et nécessite
un équipement calibré spécifique. Une solution pourrait consister à utiliser des
solutions d’apprentissage profond pour transformer les images acquises dans
des conditions nominales et les simuler dans certaines conditions spécifiques.
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De cette manière, il serait possible de prédire le comportement du système
biométrique dans une condition spécifique considérée. Une autre solution
consiste à opter pour une méthodologie générique afin d’adapter le traitement
des données biométriques en fonction de l’environnement dans lequel elles sont
acquises.

2. La génération d’instruments d’attaque par présentation d’empreintes digitales
a été réalisée à l’aide d’un modèle d’apprentissage profond entraîné sur un jeu
de données. Cependant, nous pensons que les résultats peuvent être encore
meilleurs avec une base de données plus conséquente, et un terme d’attache
aux données lié à la texture des images. De plus, pour s’affranchir totalement
des contraintes juridiques, une génération à partir rien ou une première étape
de génération à partir de rien suivie d’un transfert de style des textures pour
imiter les instruments d’attaque par présentation facilitera l’entraînement
et l’évaluation des systèmes d’empreintes digitales biométriques et rendra
disponibles ces données, sans les restrictions liées à la protection de la vie
privée.

3. On a exprimé la nécessité de disposer de systèmes biométriques interopérables.
Cette observation n’est pas seulement limitée aux systèmes à empreintes
digitales, mais est également applicable aux systèmes basés sur d’autres
modalités. Une perspective de ce travail est de pouvoir générer des données
synthétiques qui reproduisent les caractéristiques physiques d’un capteur ciblé
en utilisant quelques données capturées issues de ce capteur. Nous souhaitons
étendre cette approche à d’autres modalités biométriques.

4. Comme indiqué précédemment, il est difficile d’évaluer les effets d’un paramètre
particulier sur un système biométrique. On s’interroge sur la possibilité
d’utiliser d’une méthode optimisée (à l’aide d’algorithmes génétiques par
exemple) pour trouver la combinaison de conditions qui affecterait le plus
un système biométrique donné.
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Contribution to the certification of fingerprint systems: towards the reproducibility
of the evaluation

Computer science is more and more present in our daily lives for multiple tasks.
Considering its multiple services and applications, its security is an essential guarantee
of the trust that a final user can have. Biometrics is a solution that is more and
more used not only to secure some solutions but also to simplify our lives.
We contribute to the understanding of the interoperability and reproducibility
problems. We explore the factors impacting the behavior of a fingerprint system in
its recognition capacities. Moreover, the testing of resistance to attack has legal and
operational constraints that make the testing difficult. We explored the generation
of synthetic attack instruments using a deep-leaning solution for the evaluation of
biometric fingerprint solutions. We validated our studies with an objective method
that we propose in this dissertation.

Keywords : Biometrics, Fingerprint Systems, Certification, Evaluation, Biases,
Synthetic Biometric Data, Deep learning.

Contribution à la reproductibilité de l’évaluation des systèmes à empreinte digitale

Les systèmes informatiques sont de plus en plus utilisés au quotidien pour diverses
tâches. Au regard des services et des applications concernés, leur sécurité est une
garantie essentielle pour leur fonctionnement, ainsi qu’un gage de confiance pour
l’utilisateur final. La biométrie est une solution pour cela. Cependant, la sécurité des
systèmes biométriques doit être assurée. Un bon système biométrique doit à la fois
pouvoir reconnaître la bonne personne et résister aux attaques. Cette thèse s’inscrit
dans le cadre de la certification des systèmes biométriques qui est une étape qui qualifie
la conformité d’un système biométrique à un plan de test proposé par une autorité.
Nous avons contribué sur la compréhension de l’interopérabilité et le problème de la
répétabilité de ces tests. Pour cela, nous explorons les impacts qu’ont les conditions
environnementales d’acquisition tout comme la technologie d’acquisition pour les
systèmes basés sur les empreintes digitales. D’un autre coté, nous avons exploré
la création, basée sur les réseaux de neurones profonds d’instruments d’attaques
utilisables dans le cadre d’une évaluation. Nous avons validé ces études par une
méthodologie objective qui a un sens physique.

Mots-clés : Biométrie, empreintes digitales, systèmes biométriques, certification,
évaluation de systèmes biométriques, apprentissage profond, biais biométriques.

Normandie Univ, UNICAEN, ENSICAEN, CNRS, GREYC, 14000 Caen, France


	Introduction
	Context
	Biometrics
	PhD Thesis
	Context
	Objectives

	Contributions
	Thesis organization

	Certification of biometric systems
	Introduction
	Biometric modalities
	Evaluation of biometric systems
	Databases
	Certification of biometric systems
	Performance of a biometric system
	Presentation attack detection

	Conclusion

	Biometric data
	Introduction
	Biometric data collection
	Legal constraints
	Operational constraints

	State-of-the-art of fingerprint datasets
	Real data
	Synthetic data
	Discussion

	Evaluation of synthetic data
	Quality assessment
	Performance evaluation
	Presentation attack evaluation

	Conclusion

	Analysis of acquisition context impact on the performance of fingerprint systems
	Introduction
	Related works
	Effects of environmental conditions
	Experimental protocol
	Experimental results
	Discussion

	Effects of acquisition quality
	Experimental protocol
	Experimental results
	Discussion

	Conclusion

	Generation of synthetic spoofs for the evaluation of fingerprint systems
	Introduction
	Related works
	Two-domain Image-to-Image translation
	Multi-domain Image-to-Image translation

	Proposed method
	Validation of the proposed method
	Experimental protocol
	Experimental results
	Discussion

	Conclusion

	Conclusion
	Context
	Contributions
	Perspectives

	Introduction (Français)
	Conclusion (Français)
	Bibliography
	List of Figures
	List of Tables

