
HAL Id: tel-04431518
https://theses.hal.science/tel-04431518

Submitted on 1 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A logical investigation of explainable AI
Xinghan Liu

To cite this version:
Xinghan Liu. A logical investigation of explainable AI. Artificial Intelligence [cs.AI]. Université Paul
Sabatier - Toulouse III, 2023. English. �NNT : 2023TOU30187�. �tel-04431518�

https://theses.hal.science/tel-04431518
https://hal.archives-ouvertes.fr

THÈSETHÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par : l’Université Toulouse 3 Paul Sabatier (UT3 Paul Sabatier)

Présentée et soutenue le 9 octobre 2023 par :
Xinghan LIU

Une investigation logique l’IA explicable
(A Logical Investigation of Explainable AI)

JURY
Leila AMGOUD IRIT Président du Jury
John HORTY University of Maryland Rapporteur
Nicola OLIVETTI Aix-Marseille Université Rapporteur
Agata CIABATTONI Technische Universität Wien Examinatrice
Hans VAN DITMARSCH IRIT Examinateur
Emiliano LORINI IRIT Directeur de thèse

École doctorale et spécialité :
MITT : Informatique

Unité de Recherche :
Institut de Recherche en Informatique de Toulouse (IRIT)

Directeur de Thèse :
Emiliano LORINI

Rapporteurs :
John HORTY et Nicola OLIVETTI

i

Résumé

Expliquer pourquoi un classificateur classe une instance d’entrée donnée comme
classification de sortie devient de plus en plus vital de nos jours, car l’intelligence
artificielle (IA) continue d’évoluer rapidement et d’imprégner divers aspects de la
vie quotidienne, tandis que les systèmes d’IA utilisés aujourd’hui manquent souvent
de transparence.

L’approche symbolique de l’IA explicable (XAI) montre donc son importance,
puisque les symboles et les règles qu’elle utilise sont intrinsèquement compréhen-
sibles pour les humains. Dans cette thèse j’étudie la XAI avec différents outils
logiques, y compris les logiques modales, les logiques épistémiques, les logiques con-
ditionnelles et les logiques modales de produit.

Deux cadres logiques sont présentés pour modéliser les systèmes de classifica-
tion. Le premier est appelé logique de classificateur à entrée binaire (BLC). Il mod-
élise un classificateur à entrée binaire comme une partition d’un modèle de Kripke
S5. En adoptant le point de vue de cette logique modale, de nombreuses notions
d’explications pour les classificateurs booléens sont exprimables plutôt que définies
dans un méta-langage, notamment l’explication abductive, l’explication contrastive,
l’explication contrefactuelle et le biais de décision.

La seconde est appelée logique modale de produit pour les classificateurs (PLC)
afin de représenter les classificateurs de boîte noire. L’idée clé est que la boîte noire
est liée à l’incertitude d’un agent quant à savoir lequel est le vrai parmi de nombreux
classificateurs possibles. Nous devons donc modéliser un classificateur de boîte noire
comme un ensemble de classificateurs qui sont tous compatibles avec la connaissance
de la boîte noire par l’agent. Il en résulte une logique modale avec deux dimensions
pour les instances et les classificateurs respectivement. Par conséquent, les notions
d’explication susmentionnées ont leurs correspondances subjectives naturelles.

Outre les cadres logiques eux-mêmes, d’autres questions connexes sont abordées
dans la thèse. BCL fournit une nouvelle représentation du raisonnement basé sur
les cas juridiques, de telle sorte qu’une base de cas est considérée comme un clas-
sificateur partiel. De cette manière, les notions d’explication dans XAI peuvent
être appliquées au raisonnement basé sur les cas. L’explication par classificateur a
une relation étroite avec le raisonnement contrefactuel. La distance de Hamming
est une mesure largement utilisée dans le raisonnement contrefactuel. Dans BCL,
un conditionnel contrefactuel est proposé pour l’explication du classificateur, et la
mesure qu’il utilise est la distance de Hamming, une mesure de distance largement
utilisée dans l’IA symbolique. La thèse démontre qu’avec un langage basique des
contrefactuels et des propositions atomiques infinies, toute mesure de distance pour
les classificateurs peut être réinterprétée comme une distance de Hamming via des
variables cachées, sans perte de validité. Des aspects techniques tels que la com-
plexité informatique, la complétude de l’axiomatique et l’extension de l’axiomatique
avec une règle d’inférence infinie sont également étudiés.

Mots-clés: logique modale, IA explicable, explication, classificateur
booléen, contrefactuel, logique épistémique

ii

Abstract

Explaining why a classifier classifies a given input instance as the output classifica-
tion becomes increasingly vital nowadays, as artificial intelligence (AI) continues to
evolve rapidly and permeate various aspects of everyday life, while the AI systems
in use today often lack transparency.

The symbolic approach to explainable AI (XAI) therefore shows its significance,
since the symbols and rules it uses are inherently understandable to humans. In the
thesis I investigate XAI with various logic tools including modal logics, epistemic
logics, conditional logics and product modal logics.

Two logical frameworks are presented to model classifier systems. The first one
is called binary-input classifier logic (BLC). It models a binary-input classifier as a
partition of an S5 Kripke model. By taking this modal logic viewpoint many notions
of explanations for Boolean classifiers are expressible rather than defined in meta-
language, including abductive explanation, contrastive explanation, counterfactual
explanation and decision bias.

The second one is called product modal logic for classifiers (PLC) in order to
represent black box classifiers. The key idea is that black box has to do with the
uncertainty of an agent about which classifier is the real one among many possible
classifiers. Therefore we need to model a black box classifier as a set of classifiers
which are all compatible with the agent’s knowledge of the black box. It results in a
produce modal logic with two dimensions for instances and classifiers respectively.
As a consequence, the notions of explanation aforementioned have their natural
subjective correspondences.

Besides the logical frameworks themselves, there are related issues discussed
in the thesis. BCL provides a new representation of legal case-based reasoning,
such that a case base is viewed as a partial classifier. In this way, the notions of
explanation in XAI can be applied to case-based reasoning. In BCL a counterfactual
conditional is proposed for classifier explanation, and the measurement it uses is the
Hamming distance, a widely used measure of distance in symbolic AI. A result of the
thesis implies that given the basic language of counterfactuals with infinite atomic
propositions, any distance measure for classifiers can be reinterpreted as Hamming
distance by introducing hidden variables without loss of validity. Technical aspects
such as computational complexity, completeness of axiomatics and extending the
axiomatics with infinitary inference rule are also studied.

Keywords: modal logic, explainable AI, explanation, Boolean classi-
fier, counterfactual, epistemic logic

iii

Acknowledgments

First of all, I would like to thank my advisor Emiliano Lorini with my deepest re-
spect. Through the past three years he has always made himself available whenever
I needed assistance and guidance. The fruitful collaboration demonstrates his out-
standing supervisory ability. His insistence on rigor as well as his encouragement
of work-life balance had a great impact on me. It is such a convincing example to
see someone so productive in the professional life taking care of the family in such
a responsive way at the same time. I can still recall the day of our online interview
during the pandemic when he was talking on the balcony with a small lake in the
background. I will always be grateful that he let me be his PhD student.

Besides Emiliano, many professors and senior researchers in and outside my lab
have provided substantial assistance throughout my study. I am vastly indebted to
Philippe Balbiani, Andreas Herzig, Giovanni Sartor and Antonino Rotolo.

I want to express my sincere thanks to the jury members of my defense. Besides
Emiliano, they are John Horty and Nicola Olivetti (“rapporteurs”), Leila Amgoud
(chair), Agata Ciabattoni and Hans van Ditmarsch (examiners). Their valuable
comments and inspiring questions in the reviews and during the defense are of
great significance in improving my thesis.

My heartfelt appreciation also goes to my PhD/post-doc colleagues in and out
of my lab. They are Carlos Aguilera-Ventura, Zhenyu Bai, Jorge Fernandez-Davila,
Cecilia Di Florio, Quentin Gougeon, Hao Hu, Xuanxiang Huang, Yacine Izza,
Alexey Lazarev, Arnaud Lequen, Yaxin Li, Xiaolong Liu, Munique Mittelmann,
Timothy Parker, Pengfei Song, Mohit Vaishnav and Jingling Zhang. . . . The list
cannot be completed without being extended to a new page. I have collaborated
with some of them, had academic discussion with some of them, had food, drinks
and sports with some of them, and enjoyed the time I spent with each of them.

The support from the project ANITI (Artificial and Natural Intelligence Toulouse
Institute) is gratefully acknowledged. Without its funding, my PhD position would
not have been possible. Toulouse, “la ville rose”, the center of Occitania, the head-
quarters of Airbus, is a livable and warmhearted place. It has left indelible marks
on me. It is the only city that seeing a Beluga flying across the sky is not a big deal.
The ritual of greeting the driver while getting on and off the bus even surprises the
non-local French people. Its free tennis courts are no doubt also a bless for me.

My special thanks go to Yujing, my special one. We have managed the three
years’ long distance relationship. With seventeen times of meeting and parting, we
have never been apart for more than three months. It amuses me every time when
hearing “LH2222 to Toulouse” at the Munich airport.

At last, I would like to thank my parents with my deepest gratitude. They have
little idea about my previous study in philosophy, and even less idea about the
reason of my transition to logic. But they support me unconditionally no matter
what. I was not able to visit them for almost four years due to the pandemic. As
the thesis was completed and submitted, I finally went back home before the end
of my PhD program. The thesis is dedicated to them.

Contents

List of Acronyms ix

Notions and Notations xi

1 Introduction 1
1.1 Why logic for XAI? . 1
1.2 Why modal logic for XAI? . 2
1.3 Black boxes in AI . 4
1.4 Structure and sources of chapters . 7

2 Background 9
2.1 Propositional Logic & Boolean Functions 9

2.1.1 Propositional logic: semantics and syntax 9
2.1.2 Boolean functions and Boolean expressions 11
2.1.3 Prime implicants and essential variables 13
2.1.4 Monotone variables and functions 14

2.2 Explanations for Classifier Systems 14
2.2.1 Subsymbolic approach . 15
2.2.2 Symbolic approach . 17

2.3 Modal Logics . 19
2.3.1 Kripke semantics . 19
2.3.2 Axiomatics and completeness 20
2.3.3 State semantics for S5 . 21

3 A Logic of Binary-input Classifiers and Their Explanation 23
3.1 Introduction . 24
3.2 A Language for Binary-input Classifiers 27

3.2.1 Basic Language and Classifier Model 28
3.2.2 Discussion . 30

3.3 Axiomatization and Complexity . 32
3.3.1 Alternative Kripke Semantics 32
3.3.2 Axiomatization: Finite-Variable Case 33
3.3.3 Axiomatization: Infinite-Variable Case 34
3.3.4 Complexity Results . 36

3.4 Counterfactual Conditional . 37
3.5 Explanations and Biases . 39

3.5.1 Prime Implicant and Abductive Explanation 40
3.5.2 Contrastive Explanation . 41
3.5.3 Decision Bias . 43

3.6 Extensions . 44

vi CONTENTS

3.6.1 Dynamic Extension . 44
3.6.2 Epistemic Extension . 46

3.7 Conclusion . 48

4 Application to Legal Case-based Reasoning 51
4.1 Introduction . 51
4.2 Horty’s Two Models of Case-Based Reasoning 53
4.3 A Representation Theorem . 55
4.4 Genuine Classifier of Horty Case Base 58
4.5 Explanations and Landmarks . 59

4.5.1 Prime implicant and abductive explanation 59
4.5.2 Prime implicant and landmark case 61
4.5.3 Contrastive explanation . 62

4.6 Horty Case Bases and Monotone pBFs 63
4.7 Conclusion . 65

5 Hamming Distance as Grounded Distance 67
5.1 Introduction . 68
5.2 Lewis’ V Models . 69
5.3 Hammingian Models for Counterfactuals 72

5.3.1 Hammingian Lewis Models 72
5.3.2 Model (Sub)classes: a Comparison 73
5.3.3 Hamming State Models . 74

5.4 Equivalence Results Given Infinite Atoms 75
5.4.1 A Failed Attempt . 76
5.4.2 Weighted Tree is Hammingian 77
5.4.3 VC ≡ HVC . 78
5.4.4 VCU ≡ HVCU . 81

5.5 Conclusion . 84

6 A Logic of “Black Box” Classifier Systems 87
6.1 Introduction . 87
6.2 Language and Semantics . 91
6.3 Axiomatics and Complexity . 93

6.3.1 Alternative Kripke Semantics 93
6.3.2 Finite-Variable Case . 94
6.3.3 Infinite-Variable Case . 95
6.3.4 Complexity Results . 96

6.4 Application . 97
6.4.1 An Example of Classification Task 97
6.4.2 Explanations . 98

6.5 Dynamic Extension . 100
6.6 Conclusion . 102

CONTENTS vii

7 Perspectives 103
7.1 How Hard is Black Box Explanation? A Complexity Study 103

7.1.1 Some hints . 103
7.1.2 Tiling problems . 104
7.1.3 Tiling for lower bound . 105

7.2 Finitely Definite Classifier Models 111
7.2.1 Motivation . 111
7.2.2 Semantics . 113
7.2.3 Axiomatics and strong completeness for single classifiers . . . 114
7.2.4 Axiomatics and strong completeness for multi-classifiers . . . 117

Conclusions and Future Works 119

Appendices 121

A Proofs for Chapter 3 123

B Proofs for Chapter 4 131

C Three ways of defining monotone variables in pBFs 135

D Proofs for Chapter 6 139

Bibliography 143

List of Acronyms

BCL Binary-input Classifier Logic
CBR Case-Based Reasoning
CM Classifier Model
DM Decision Model
MCM Multi-Classifier Model
MDM Multi-Decision Model
pBF partial(ly-defined) Boolean Function
PLC Product model modal Logic for binary-input Classifier

Notions and Notations

Atm the set of atomic propositions Definition 2.1, Definition 3.2.1
Atm0 the set of input variables Definition 3.2.1
AXp abductive explanation Definition 3.13
Bias decision bias Definition 3.15
C classifier model (CM) Definition 3.2.1
c classification / output value p. 28
c (legal) precedential case Definition 4.1
CB (legal) case base p. 54
Compl(X) X-completeness Definition 3.1
cnX,Y conjunction of literals ∧

p∈X p ∧
∧
p∈Y \X ¬p p. 11

CXp contrastive explanation Definition 3.14
Dec the set of decision atoms p. 28
Defin(X) X-definiteness Definition 3.2
FS set of classifiers with common domain S Definition 6.1
Γ multi-classifier model (MCM) Definition 6.1
λ conjunction of literals p. 39
PImp prime implicant Definition 3.12
S set of states Definition 2.30
s state Definition 10
t(c) decision atom p. 28
t(?) undecided / indeterminate p. 39, p. 53
Val the set of classifications / output values p. 28
X finite set of atomic propositions p. 11, Definition 3.2.1
⊆fin “being a finite subset of” p. 11

Chapter 1

Introduction

1.1 Why logic for XAI?

Given the increasing role that artificial intelligence (AI) plays in everyday life, there
is a rapidly escalating demand in the transparency and trustworthiness of AI sys-
tems. Explainability is arguably the key prerequisite towards fair and trustworthy
AI systems. Designers of AI systems are thus asked to provide controllability and
explainability within automated decision-making processes as required, e.g., in EU
by Art. 22 GDPR and by Art. 6 ECHR related to judicial decisions. Explainable
AI (XAI) has therefore become a booming field, especially after the paper Why
should I trust you: explaining the predictions of any classifier [Ribeiro et al. 2016].
For a systematic overview of the research in this area see, e.g., [Molnar 2023].

Although the most recent successes and concerns come from the field of sub-
symbolic AI, viz. deep neural networks, specifically transformers, symbolic AI still
shows its relevance and significance, and logic lies in the core of symbolic AI.

The main goal of XAI is to make decision-making process of AI systems un-
derstandable to humans, so that when the decision / prediction /classification 1 is
unfair or problematic, people know how to improve it. 2 That is to say, all XAI
issues, no matter whether they are embedded in computer vision, natural language
processing or other tasks, are eventually matters of classification.

Explanations provided by subsymbolic AI for classifications are often signifi-
cantly different from the explanations people typically cope with in everyday life.
For example in [Ribeiro et al. 2016] an explanation itself is a (simpler) classifier.3
Another popular approach, [Lundberg & Lee 2017] has been widely taken in espe-
cially biology and medicine in recent years. They claim to provide the Shapley
values of features, a notion from game theory, as explanations. However, it is also
not satisfactory just to know a number indicating the importance of a feature in
order to explain a patient’s diagnosis. Moreover, those explanations are all proba-
bilistic. These make the subsymbolic explanations hard to trust and understand.

1Throughout the thesis these three are interchangeable. After all, from a technical point of
view they all refer to the output of some function differing only in context. We will do the same
for atomic propositions / features / factors which all refer to input variables.

2For example the famous Google Gorilla issue. In 2015, the image recognition algorithm of
Google misidentified two persons as gorillas. Google apologized for the mistake and promised to
fix it. However, Google just removed the image-label gorilla at all and is still unable to find a
way to fully resolve the problem as of this year. See https://petapixel.com/2023/05/22/googles-
photos-app-is-still-unable-to-find-gorillas/.

3It makes more sense to say the explanation of the simpler classifier can serve as an approximate
explanation of the original one.

2 CHAPTER 1. INTRODUCTION

On the other hand, the nature of logic lends itself well to explainability because
it is both commensensical and rigorous. When people are seeking an explanation,
they request a reason for the occurrence of a phenomenon; and the symbolic ap-
proach to XAI views explanations as propositions to answer why or why not ques-
tions in terms of logical validity [Darwiche & Hirth 2020, Ignatiev et al. 2020b]. In
[Darwiche 2020] it is argued that logic plays three roles in contemporary AI re-
search: for computation, for learning from a combination of data and knowledge,
and for reasoning about the behavior of machine learning systems. Certainly in the
symbolic XAI approach to classifier systems, whether they are decision trees, binary
decision diagrams, Bayesian networks or neural networks, they are eventually rep-
resented as Boolean functions, so that explanations can be computed and reasoned.
Hence it is also called formal XAI [Marques-Silva 2023]. Some typical notions of
explanations, from both approaches, will be given in Chapter 2.2 as background.

1.2 Why modal logic for XAI?

Modal logics are extensions of propositional logic with modal operators expressing
necessity, knowledge, belief etc. The most used ones in AI are (translated into)
well-behaved fragments of first order logic which have relatively low computational
complexities.

Traditionally a Boolean classifier is represented by, or even identical with, propo-
sitional logic. We argue that using some simple modal logics provide more natural
representations of classifiers and their explanations.

Syntactic vs. semantic representations There are two ways to represent
Boolean classifiers: syntactically as formulas, or semantically as models. It is not
hard to view Boolean classifiers themselves as semantic models, where binary values
naturally correspond to truth values. In the approach of propositional logic Boolean
classifiers are represented as propositional formulas, e.g. canonical CNFs and DNFs
(formal definitions are given in Chapter 2.1.2). The key point is that there is an
isomorphism, as trivial as it may seem, between propositional formulas and Boolean
classifiers, which we state below and also mention as Corollary 2.1 in Chapter 2.1.2.

Fact 1.1. Every propositional formula expresses a unique Boolean function up to
isomorphism.

For more details how it works, given a binary sequence s, it can be represented
as ∧

the i-th digit in s is 1 pi∧
∧

the j-th digit in s is 0 ¬pj which we note tentatively as ŝ. So
the classifier f outputs 1 for the input s, if and only if ŝ → φ is a tautology, where
φ expresses f .

Nonetheless, we may have a model approach to Boolean classifiers. That means,
a binary sequence is transformed into a state s, i.e. a set of variables / atomic
propositions, s.t. the i-th digit in the sequence is 1 if and only if pi ∈ s.4 Thus, a

4It is intentional to use s for both state and sequence here and in the last paragraph, for it is
not hard to see that states, sequences and sets of literals are “the same thing” up to isomorphism.

1.2. WHY MODAL LOGIC FOR XAI? 3

Boolean classifier is represented as the set of all and only states denoting instances
that are output 1 by the classifier. In symbols, S = {s : f(s) = 1}.

Since we do not have any special relation or property to constrain such a set of
states, it is actually just an S5 model in modal logic (formal definitions are given
in Chapter 2.3). Notice that a Boolean functions is defined to have finite arity, but
by taking the model representation we can deal with any countable set of variables.
Moreover, by introducing finitely many classifications as semantic entities, we no
more restrict ourselves to the binary-output case by identifying, on one hand 1, ⊤
and presence, on the other hand 0, ⊥ and absence. By this step, we can represent
binary-input classifiers with possibly infinite arity, partially defined domain, and
finitely many output values. While the technical details will be given in Chapter 3,
we make the following statement as our slogan.

• The (simplest) model representation of a classifier is a partition of all the
states in its domain.

We argue that this understanding fits better with the “standard intuition” of a
classifier from the set-theoretic viewpoint, namely a classification function is nothing
but a set of pairs of the form of (s, c), with Boolean classifier as a special case.
Therefore classifier as a partition of an S5 model is the guiding principle of Chapter
3 and subsequent chapters.

Perturbation is modal Perturbation is a basic operation for classifier explana-
tion, whichever approach one takes. When perturbing some features (i.e. input
variables) of an instance, we change their values in the current instance. In the
binary-input case, it means just to “flip” their values.

Perturbation is required by all the notions of classifier explanation that we will
discuss in this thesis. More specifically, they all lie in a pattern of perturbation-
observation. For example, in counterfactual reasoning one perturbs some features
and observes whether the output changes accordingly.

It is not hard to see that propositional logic cannot express perturbation in its
language, but has to define it at the meta-language level. In contrast, we can come
up with a modal formula, informally as

It is possible to find a state that shares the same values of variables in X as the
current state, but whose classification is c′

which means that features in the complementary set can be perturbed and an
instance whose classification is c′ is observable. By this interpretation pertur-
bation is “reduced” to a modal statement. Based on this we can express the
notions of classifier explanation in [Darwiche & Hirth 2020, Ignatiev et al. 2019,
Ignatiev et al. 2020b], which is dealt in Chapter 3.

Along the way of developing modal logics for classifiers, many interesting appli-
cations and research questions have emerged. Two Chapters are therefore commit-
ted to exploring two topics respectively.

4 CHAPTER 1. INTRODUCTION

Legal case bases as classifiers The modal approach also helps bridge classifiers
and legal case-based reasoning (CBR). A legal case base is a set of precedential cases
(precedents). By viewing a precedent as a pair of a set of facts found by the court
and a decision of the court (possibly with more structure, details in Chapter 4), case
bases can be understood as partial classification functions, since cases bases usually
do not complete all the possibilities. As a result, notions of XAI for classifiers can
be used in the factor-based models of CBR. Chapter 4 is dedicated to this topic.

Counterfactuals and Hamming distance Perturbation has a close relation to
counterfactual reasoning. A counterfactual conditional is formed like

φ� ψ

which reads as “if it were the case that φ, then it would be the case that ψ.”
Let φ be a conjunction of literals and ψ stand for some classification c, it is the
counterfactual correspondence to say perturbing the variables in X the output is c.
Hamming distance measures the cardinality difference between two (equally long)
binary sequences and is widely used in AI. A natural question is that, is Hamming
distance too specific? The technical result in Chapter 5 implies that given infinite
variables, any measure of distance between input instances (e.g. whatever feature
weight is assigned) can be re-interpreted as Hamming distance. Hence we can
represent the distance of instances of a classifier in XAI as Hammingian without
loss of generality.

1.3 Black boxes in AI

The driven force of XAI is to explain black box classifier systems. It is worth
reflecting what does a black box mean when we use this seemingly self-evident
metaphor for machine learning AI systems.

A black box refers to a system where one can observe inputs and outputs without
seeing its inner mechanism / internal working, i.e. one cannot “open up” the box
and “look inside”.

Black box as a metaphor was first used in electronic circuit theory in engineering.
Later on, it has been also used as a metaphor for human brain, especially in the
behaviorist tradition. Before the rise of machine learning, black box was mostly
used to refer to human brain/mind.

To see why this seemingly self-evident metaphor deserves a closer look, let us
first point out that not all AI researchers accept the metaphor. In the paper The
“black box” metaphor in machine learning, Dallas Card [Card 2017] argues that the
metaphor is “actually quite misleading in general”. His main arguments are quoted
as follows.

Although deep learning models are certainly complex, they are not black
boxes. In fact, it would be more accurate to refer to them as glass

1.3. BLACK BOXES IN AI 5

boxes, because we can literally look inside and see what each component
is doing. . . .

Exactly why it (stochastic gradient descent, SDG) works as well as it
does is still not well understood, but the main thing to keep in mind is
that it, too, is transparent.

The actual computation performed by these models in making a pre-
diction is typically quite straightforward; where things get difficult is in
the actual learning of the model parameters from data.

. . .

The algorithm itself, however, is deterministic, and if we used the same
initialization and the same data, it would produce the same result.
In other words, neither the model nor the algorithm is a black box.
[Card 2017, emphasis and parentheses added]

Reasons that make Card concludes that “neither the model nor the algorithm
is a black box” are that 1) since we can check the code and know that its inner
mechanism uses stochastic gradient descent, the algorithm is transparent; 2) even
the (learned) model’s parameters is hard to get, the algorithm and the model are
deterministic.

I disagree with Card’s arguments for two reasons.

What black is the classifier model, not the meta-algorithm It is crucial
to highlight that there are two objects involved as Card rightly puts, namely in his
words the algorithm and the model. The whole point of black box stems from the
difficult accessibility to parameters of the latter, and has nothing to do with the
former.

The best expression on this issue, to my knowledge, comes from the book The
ethical algorithm: The science of socially aware algorithm design [Kearns & Roth 2019].
I will quote their words instead of making my own. Notice, however, that they call
meta-algorithm for what Card calls algorithm.5

In traditional algorithm design, while the output might be useful,. . . ,
that output is not itself another algorithm that can be directly applied
to further data. In contrast, in machine learning, that’s the entire point.
. . . Rather than trying to directly specify an algorithm for making these
predictions – which could be quite difficult and subtle – we write a
meta-algorithm that uses the historical data to derive our model or
prediction algorithm. Machine learning is sometimes considered a form
of “self-programming”, since it’s primarily the data that determines the
detailed form of the learned model. [Kearns & Roth 2019, p. 6]

5Their use of word meta-algorithm may be contentious, but we adopt it here since the algorithm
itself is not our focus, but its output, the black box.

6 CHAPTER 1. INTRODUCTION

Therefore the black box is not the algorithm itself – surely its inner mechanism
is fully transparent, even if not to us all, but to its designer(s). And any one who
accesses the algorithm can of course look inside it. The black box is, rather, the
output of the algorithm (and the training set feeding it).

So when people talk about the complexity and opaqueness of machine
learning, they really don’t (or at least shouldn’t) mean the actual opti-
mazation algorithms, such as backgropagation. These are the algorithms
designed by human beings. But the models they produce – the outputs
of such algorithms – can be complicated and inscrutable, . . . And this
is why the human being deploying the model won’t fully understand it.
[Kearns & Roth 2019, p. 10]

In a word to summarize what designer understands (and needs no explanation)
and what not (and needs).

The designer may have had a good understanding of the algorithm that
was used to find the decision-making model, but not of the model itself.
[Kearns & Roth 2019, p. 11]

This leads us to my second reason.

Black box is epistemic Recall that one of Card’s argument is that the (learned
prediction) model is deterministic. This is true, but does not support his conclusion,
because black box is epistemic rather than ontological.

By ontological I mean, without much (philo)sophic consideration, what it really
is. Card is right to point out that the model is deterministic, given the machine
learning algorithm and a fixed training set. Nevertheless, black box is not only on
what it is, but what it is known.

Things are therefore different with the ontological case. In the latter, an expla-
nation is enough to be causal which states a fact of the world.6 We will formalize
and prove a valid formula in Chapter 3 which, informally speaking,

□(there is a sufficient reason for its classification)

where □ means for all instances, says that for every instance, the classifier has a
sufficient reason to explain its classification.

However, that reason may not be known when we introduce the epistemic di-
mension into account. We will use another box symbol ■ for that. That is to say a
satisfiable formula says that

¬■□(there is a sufficient reason for its classification)

where ■ is interpreted here as knowing. The formula will be formalized and dis-
cussed in Chapter 6. Therefore, in the black box case, explanation is not merely

6Or in other words, the epistemic dimension is hence “curled up”.

1.4. STRUCTURE AND SOURCES OF CHAPTERS 7

causal, but needs to be epistemic. To mark the difference between explanations in
white and black boxes, we will also use terms objective and subjective explanations.

Black box classifier as a set of classifiers After reflecting why and how the
black box metaphor makes sense for classifier systems, we are able to represent
black box classifiers. Since the epistemic dimension is introduced, it is natural to
think of not just mono-dimensional, but bi-dimensional modal logic. In a word, we
will represent a black box classifier as a set of (white box) classifiers which are all
compatible with the agent’s (current, partial) knowledge about the black box. Two
modal operators □,■ will range over instances and classifiers respectively.

The agent’s knowledge about the black box consists of specific information about
some instances classifications (which may come from knowledge of data set or obser-
vation of perturbation), and general information about the global constraints of the
model (for example, the non-bias constraints implemented in the meta-algorithm as
discussed in [Kearns & Roth 2019]). As a result, though in the black box there is
one and only one real classifier, the agent has uncertainty about which one among
many compatible classifiers is the one. This is the leading thought of Chapter 6.

1.4 Structure and sources of chapters

The rest of the thesis will investigate XAI for classifier systems according to the
themes aforementioned. Most chapters are based on published papers. Some of
them are enriched by the targeted addition of new content. The details are as
follows.

• Chapter 2 provides preliminaries of the study. Many fundamental definitions
of propositional logic, Boolean functions and modal logic will be presented.
In particular, I will use a state semantics to unify the three, so that through
the thesis we can talk about them without unnecessarily switching between
different semantics. Besides, the most popular notions and methods of XAI
in both symbolic and subsymbolic approaches will be introduced serving as
essential background information.

• Chapter 3 is based on a paper of conference CLAR 2021 [Liu & Lorini 2021]
and a journal paper [Liu & Lorini 2023] published in Journal of Logic and
Computation.

Xinghan Liu and Emiliano Lorini. A logic for binary classifiers and their
explanation. In Logic and Argumentation - 4th International Confer-
ence, CLAR 2021, Hangzhou, China, 2021, Proceedings, Lecture Notes
in Computer Science, pages 302-321. Springer, 2021.

Xinghan Liu and Emiliano Lorini. A unified logical framework for explana-
tions in classifier systems. Journal of Logic and Computation, 33(2):485-
515, 2023.

8 CHAPTER 1. INTRODUCTION

There we present the binary-classifier logic BCL, which is an extension of
S5, for (single) classifiers and their explanations. The only addition to the
published version is a completeness proof for the finite-variable case, which
we promised in the published paper to accomplish in future work.

• Chapter 4 is based on a paper of conference JURIX 2022 [Liu et al. 2022]:

Xinghan Liu, Emiliano Lorini, Antonino Rototlo and Giovanni Sartor. Mod-
elling and explaining legal case-based reasoners through classifiers. In Le-
gal Knowledge and Information Systems, pages 83-92. IOS Press, 2022.

There we apply BCL to legal case-based reasoning, show that the latter can
be studied in the context of classifier and therefore many notions of XAI can
be transitioned to use. Sections 4.4 and 4.6 are new, while Section 4.5 is
enriched.

• Chapter 5 is based on a paper forthcoming in conference KR 2023:

Carlos Aguilera-Ventura, Andreas Herzig, Xinghan Liu, Emiliano Lorini.
Counterfactual reasoning via grounded distance. Proceeding of 20th In-
ternational Conference on Principles of Knowledge Representation and
Reasoning, forthcoming.

We define a notion of counterfactual conditional by Hamming distance in
Chapter 3. It abbrevaites from a modal formula when the variables in the
language are finite. We show in this section that in the infinite-variable case
Hamming distance cannot be axiomatized in the logical systems that we inter-
est. It indicates that given countably infinite variables in the language, every
notion of distance in counterfactual reasoning, including ones people use in
XAI, can be reformulated in terms of Hamming distance.

• Chapter 6 is based on a paper of conference WOLLIC 2022 [Liu & Lorini 2022].

– Xinghan Liu and Emiliano Lorini. A logic of “black box” classifier sys-
tems. In Logic, Language, Information, and Computation: 28th Inter-
national Workshop, WOLLIC 2022, Iasi, Romania, 2022, Proceedings,
pages 158-174. Springer 2022.

There we present the product modal logic for multi-classifiers PLC and show
how to extend some explanations for white boxes to black box classifiers. Its
section of introduction is extended.

• Chapter 7 is new. Two topics are discussed. The first one involves a complex-
ity study motivated by a conceptual question of how hard black box expla-
nations generally are. The second one is driven by bridging the long-existing
axiomatic divide in the logical frameworks that we will present.

Chapter 2

Background

Contents
2.1 Propositional Logic & Boolean Functions 9

2.1.1 Propositional logic: semantics and syntax 9
2.1.2 Boolean functions and Boolean expressions 11
2.1.3 Prime implicants and essential variables 13
2.1.4 Monotone variables and functions 14

2.2 Explanations for Classifier Systems 14
2.2.1 Subsymbolic approach . 15
2.2.2 Symbolic approach . 17

2.3 Modal Logics . 19
2.3.1 Kripke semantics . 19
2.3.2 Axiomatics and completeness 20
2.3.3 State semantics for S5 . 21

2.1 Propositional Logic & Boolean Functions

On one hand, propositional logic and Boolean functions can be seen as “the same
thing”, especially considering that Boole, the father of symbolic logic, himself stud-
ied logic from the binary function viewpoint. On the other hand, the two studies
are now quite different in terms of different focuses, purposes and representations.
In particular, the “standard semantics” for the former is truth assignment, while
for the latter is Boolean algebra.

With this in mind, I will use a “state semantics” for propositional logic, where
a state is nothing but the set of variables assigned as true. Then, after introducing
its standard definition, I will represent Boolean function by states instead of binary
sequences. In such a way we can represent the two in the same framework.

2.1.1 Propositional logic: semantics and syntax

Definition 2.1 (Propositional language). Fix a countable set of atomic propositions
Atm = {p1, p2, . . . }, the propositional language is defined recursively by the following
BNF

10 CHAPTER 2. BACKGROUND

φ ::= p | ¬φ | φ ∧ φ

where p ranges over Atm. Let φ∨ψ abbreviate ¬(φ∧ψ), φ → ψ abbreviate ¬φ∨ψ,
φ ↔ ψ abbreviate (φ → ψ) ∧ (ψ → φ), ⊥ abbreviate p ∧ ¬p, ⊤ abbreviate ¬⊥.

2.1.1.1 State semantics

Definition 2.2 (State). Let s ∈ 2Atm. We call it a state (valuation, value assign-
ment). The class of all states is 2Atm.

Definition 2.3 (State semantics). Let s ∈ 2Atm. The semantic interpretation of
propositional formula φ relative to s is recursively defined as follows

s |= p ⇐⇒ p ∈ s

s |= ¬φ ⇐⇒ s ̸|= φ, i.e. it is not s |= φ

s |= φ ∧ ψ ⇐⇒ s |= φ and s |= ψ

We call a formula φ satisfiable, if ∃s ∈ 2Atm with s |= φ; call φ valid and write
|= φ, if ∀s ∈ 2Atm s |= φ.

Moreover, we write Φ |= ψ to mean that ∀s ∈ 2Atm , if s |= φ for all φ ∈ Φ then
s |= ψ.

2.1.1.2 Hilbert Axiomatics

Given a logic there are usually many proof-theoretic systems for it, e.g. natural
deduction and sequent calculus. For the sake of our purpose, we introduce the
Hilbert axiomatic system.

Definition 2.4. The Hilbert axiomatics of propositional logic contains the following
axioms and inference of rule in Table 2.1.

φ → (ψ → φ)(
φ → (ψ → χ)

)
→

(
(φ → ψ) → (φ → χ)

)
(¬ψ → ¬φ) → (φ → ψ)
φ φ → ψ

ψ
(Modus Ponens)

Table 2.1: Axioms and rule of inference of propositional logic

Definition 2.5 (Syntactic consequence). Let Φ be a set of formulas and ψ be a
formula. We write Φ ⊢ ψ, if ψ is derivable from Φ by the axiomatics of propositional
logic. In particular, if Φ is a singleton {φ} we write φ ⊢ ψ; and if Φ is empty we
write ⊢ ψ.

2.1. PROPOSITIONAL LOGIC & BOOLEAN FUNCTIONS 11

The following theorem is fundamental, which indicates that the connective →
and the meta-symbol ⊢ “coincide”.

Fact 2.1 (Deduction theorem). Φ ∪ {φ} ⊢ ψ if and only if Φ ⊢ φ → ψ.

Definition 2.6 (Consistency). Let Φ be a set of formulas. We call Φ inconsistent,
if Φ ⊢ ⊥; otherwise call it consistent.

Fact 2.2. Fix a countable set of atomic propositions Atm. Propositional logic is
sound and (strongly) complete with respect to 2Atm. That is, for any set of formulas
Φ and formula φ, Φ ⊢ φ implies Φ |= φ; and Φ |= φ implies that Φ ⊢ φ.

2.1.1.3 Literal and normal forms

Definition 2.7 (Literal, term and clause). A literal is an atomic proposition p or
its negation ¬p. A term (elementary conjunction) is a conjunction of literals; a
clause (elementary disjunction) is a disjunction of literals.

Definition 2.8 (Maximal consistent set of literals). Fix a countable set of atomic
propositions Atm. A maximal consistent set of literals is a set of literals ς s.t. ς is
consistent; and ∀pi ∈ Atm, either pi ∈ ς or ¬pi ∈ ς.

Here we introduce an important pair of abbreviations. Let X ⊆ Y ⊆fin Atm,
where A ⊆finB is defined as A ⊆ B and A is finite. We define

cnX,Y :=
∧
p∈X

p ∧
∧

q∈X\Y
¬q (2.1)

dsX,Y :=
∨
p∈X

p ∨
∨

q∈X\Y
¬q. (2.2)

We say that cnX,Y absorbs cnX′,Y ′ , or abusing terminology that the former is a
subset of the later, noted cnX,Y ⊆ cnX′,Y ′ , if X ⊆ X ′ and Y ⊆ Y ′. Similarly dsX,Y
is a subset of dsX′,Y ′ , if X ⊆ X ′ and Y ⊆ Y ′.

Definition 2.9 (DNF and CNF). A disjunction normal form (DNF) is a disjunc-
tion of some terms; a conjunction normal form (CNF) is a conjunction of some
clauses.

2.1.2 Boolean functions and Boolean expressions

Traditionally, Boolean functions are defined in an algebraic way based on binary se-
quences (strings, vectors), see, e.g., definitions in [Crama & Hammer 2011]. Nonethe-
less, there is a straightforward isomorphism between binary sequences on a set of
atomic propositions A and subsets of A by simply interpreting the binary value 1, 0
as membership and non-membership. Therefore I present definitions of Boolean
function and relevant notions based on propositional semantics instead of binary
sequences. We always fix a countable set of atomic propositions Atm.

12 CHAPTER 2. BACKGROUND

Definition 2.10 (Boolean function, redefined). A Boolean function is f : 2A −→
{0, 1}, with A ⊆fin Atm. A point X ⊆ A is a true point of f if f(X) = 1; X is a
false point of f if f(X) = 0. We denote ⊥ the constant function of value 0 and ⊤
the constant function of value 1.

Notice here that we use A a finite subset of Atm, because Boolean function is
by definition finitary, while Atm can be countably infinite. However, we can extend
this definition to the infinitary case naturally so that any state s is either a true
point or a false point of the f , as we will do from next chapter on.

The next basic notion is a Boolean expression, which is a syntactic representation
of a Boolean function.

Definition 2.11 (Boolean expression). Let A ⊆fin Atm. We say a propositional for-
mula φ expresses a Boolean function f : 2A → {0, 1}, or φ is a Boolean expression
of f , if ∀X ∈ f -ı(1), cnX,A |= φ and ∀X ∈ f -ı(0), cnX,A |= ¬φ.

We will use propositional formula, Boolean formula and Boolean expression
interchangeably. Also we omit A ⊆fin Atm for the rest of the section since the
context is clear.

Definition 2.12 (Canonical DNF and CNF[Crama & Hammer 2011, Definition
1.10]). Let f : 2A −→ {0, 1} be a Boolean function. Then the canonical DNF
(minterm expression) ∨

X⊆A,X∈f -ı(1)
cnX,A,

and the canonical CNF (maxterm expression) is∧
Y⊆A,Y ∈f -ı(0)

dsA\Y ,A.

The definition says that we can express f as the disjunction of all its true points,
or the conjunction of the negation of all its false points. Hence the following fact
becomes obvious.

Fact 2.3 ([Crama & Hammer 2011, Theorem 1.4]). Every Boolean function f :
2A −→ {0, 1} can be expressed by a DNF and a CNF.

This allows us to state the following fact as a corollary.

Corollary 2.1. Every propositional formula expresses a unique Boolean function
up to isomorphism.

Hence the statement below says nothing but φ is satisfiable if the function it
expresses has a true point, which is obvious enough to be rightly called a corollary.
Notice that the ⊥ denotes a function, i.e. the constant function of value 0.

Corollary 2.2 (Classifier semantics of propositional logic). A propositional formula
φ is satisfiable, if and only if ⊥ , φ.

2.1. PROPOSITIONAL LOGIC & BOOLEAN FUNCTIONS 13

2.1.3 Prime implicants and essential variables

The most important notion of Boolean function theory that we will use through the
thesis is prime implicant, which, and its dual prime implicate are defined formally
as follows.

Definition 2.13 (Prime implicant and implicate). Let f : 2A −→ {0, 1} be a
Boolean function, φ express f and X ⊆ Y ⊆ A. A term cnX,Y is a implicant
of f , if cnX,Y |= φ; it is a prime implicant of f , if for any X ′ ⊆ Y ′ ⊆ A, if
X ⊂ X ′, Y ⊂ Y ′ then cnX′,Y ′ is not an implicant of f . A clause dsX,Y is a
implicate of f , if dsX,Y |= φ; it is a prime implicate of f , if for any X ′ ⊆ Y ′ ⊆ A,
if X ⊂ X ′, Y ⊂ Y ′, then dsX′,Y ′ is not an implicate of f .

Fact 2.4. Every Boolean function can be represented by the disjunction of all its
prime implicants, and by the conjunction of all its prime implicates.

Definition 2.14 (Complete DNF and CNF). The complete DNF (Blake canonical
form) of a Boolean function is the disjunction of all its prime implicants. The
complete CNF of a Boolean function is the disjunction of all its prime implicates.

Fact 2.5 ([Crama & Hammer 2011, Theorem 1. 13]). Every Boolean function can
be expressed by the complete DNF. And two Boolean functions are equal if and only
if they have the same set of prime implicants.

Definition 2.15 (Prime and irredundant DNF). A DNF φ := ∨
i∈{1,...,m} cnXi,A

is said to be a prime DNF of a Boolean function f , if every term of it is a prime
implicant of f . We say that φ is an irredundant DNF of f , if there is no k ∈
{1, . . . ,m} s.t. ∨

i∈{1,...,m}\{k} cnXi,A expresses f ; otherwise f is redundant.

A notion closed related to prime implicant is essential variable. Plainly speaking,
a variable is inessential for a function, if it does not occur in any of its prime
implicant.

Definition 2.16 (Essential variable). Let f : 2A −→ {0, 1} be a Boolean function
and pk ∈ A. We say that the variable pk is inessential (dummy for f , or f is
independent on pk), if ∀X ⊆ A \ {pk}, f(X ∪ {pk}) = f(X). Otherwise we say pk
is essential.

Fact 2.6 ([Crama & Hammer 2011, Theorem 1.17]). Let f : 2A −→ {0, 1} be a
Boolean function and p ∈ A. The followings are equivalent:

1. p is inessential for f ;

2. p does not occur in any prime implicant of f ;

3. f has a DNF representation in which p does not occur.

14 CHAPTER 2. BACKGROUND

2.1.4 Monotone variables and functions

The last topic of Boolean function theory that we will use later is on monotonicity.
We give the key definitions here, and in Chapter 4 we will show how to generalize
them to partial Boolean functions and use them in legal case-based reasoning.

Definition 2.17 (Monotone variable). Let f : 2A −→ {0, 1} and p ∈ A. We say
that f is positive (resp. negative) in variable p if ∀X ⊆ A, f(X) ≤ f(X ∪ {p})
(resp. f(X) ≥ f(X ∪ {p})). We say that f is monotone in p if f is either positive
or negative in p.

Definition 2.18 (Monotone BF). A Boolean function is positive (resp. negative)
if it is positive (resp. negative) in each of its variables. The function is monotone if
it is either positive or negative. Moreover, we also say φ is positive (resp. negative,
monotone), if the Boolean function it expresses is so.

Fact 2.7 ([Crama & Hammer 2011, Theorem 1.21]). Let f : 2A −→ {0, 1} and
p ∈ A. The folllowings are equivalent:

1. f is positive in p;

2. ¬p does not occur in any prime implicant of f ;

3. f has a DNF expression in which ¬p does not occur.

2.2 Explanations for Classifier Systems

The question of what is an explanation is an issue that has been long discussed
in philosophy. Many types of explanation have been identified and developed, in-
cluding deductive-nomological explanations [Hempel & Oppenheim 1948], statisti-
cal relevant explanations and pragmatic theories of explanations [Van Fraassen 1980]
etc. While this is not the place for a detailed analysis of the different philosoph-
ical foundations within and between symbolic and subsymbolic XAI approaches,
this section will introduce some basic notions, characterizations, and examples as
background knowledge. (Conceptual discussions can be found at the beginning of
Chapters 3 and 6.) The following notions are used in both approaches.

Global and local explanations By global explanation we mean an explanation
applies to all input instances. Usually obtaining global explanation is possible when
we have knowledge about how the classifier globally behaves. Typical methods are,
e.g. partial dependence plot (PDP) and Global Surrogate.

In contrast, local explanation only works for the current/actual input instance.
A typical example is counterfactual explanation, which is always indexed by the
actual/factual state. Arguably XAI places more emphasis on local explanation, for
the main concern is whether the classification/decision/prediction for some partic-
ular instance is fair or trustworthy.

2.2. EXPLANATIONS FOR CLASSIFIER SYSTEMS 15

Explanandum and explanans The pair of notions of explanation is created
by Carl Hempel [Hempel & Oppenheim 1948]. Roughly speaking an explanandum
is a proposition describing a phenomenon to be explained, and an explanans is a
proposition that explains the former, i.e. is responsible for the occurrence of the
phenomenon.

The explanandum of the local explanation, for all approaches, is certainly noth-
ing but f(s), namely the classification of f for the current instance s. However,
different approaches have different explanans. For example, as we will see the ex-
planans can be a “part” of the input instance in the symbolic approach. In the
subsymbolic approach it could be others, e.g. a simpler classifier or the importance
of a feature.

Perturbation-based explanations As mentioned in the Introduction, plainly
speaking, perturbation is nothing but changes the values of some features of the
current input instance. In the binary context, perturbation is just to flip the value
from zero to one or the other way around. Perturbation-based explanations refer to
methods that to obtain knowledge of the target classifier system by perturbing some
inputs. When the inner mechanism of the classifier is unknown (some researchers
like [Ribeiro et al. 2016] call it model-agnostic), e.g. a black box classifier trained
by machine learning that is practically impossible to open, perturbation-based ex-
planations are the only ways to explain it.

2.2.1 Subsymbolic approach

The subsymbolic approach focuses on classifier systems trained by machine learning.
Those systems are notoriously hard to explain and hence are called black boxes,
i.e. unable to open. Since globally explain a classifier is almost impossible for these
black boxes, the recent focus is on explaining the classification of a given instance,
which was embarked by the LIME paper [Ribeiro et al. 2016]).

2.2.1.1 LIME

LIME is short for “local interpretable model-agnostic explanation”. Local means
focusing on a given instance; model-agnostic means no unknown of the inner mech-
anism of the model; and explanation here means a classifier that simpler than the
black box. The method LIME searches the object function which reaches the bal-
ance between precision and simplicity.

Definition 2.19 (LIME in [Ribeiro et al. 2016]). Fix a target, black box classifier
f and an input s, LIME is defined as

ξ(s) = arg min
g∈FS

L(f, g, πs′) + Ω(g) (2.3)

where FS is the space of functions; πs′, plainly speaking, is the neighborhood of the

16 CHAPTER 2. BACKGROUND

Figure 2.1: A toy example of LIME in [Ribeiro et al. 2016], where the black box
classifier f is represented by the blue-pink background. The red cross is the local
instance to be explained. The dashed line is a LIME-classifier for f . The LIME-
classifier makes no sense for the global explanation, but is both simple and relatively
precise for the red cross.

current input s;1 L(f, g, πs′) is the loss function measuring the difference between
f and g with respect to πs′; and Ω(g) is a measurement of the complexity of g.

Therefore, LIME gives the set of classifiers gs as explanations, which have the
best belance between precision (on the neighbors of the local input) and simplicity.

2.2.1.2 SHAP

LIME and some other local explanations belong to the so called additive feature
attribution method. The key part is that an explanation model is a linear function
of binary variables g(z′) = ϕ0 + ∑

1≤i≤m ϕiz
′
i, where z′ ∈ {0, 1}m, with m being the

number of simplified input features, and ϕi ∈ R.
The key notion is the Shapley value in cooperative game theory. Players coop-

erate as coalitions and receive a certain profit therefrom. The Shapley value is a
valuation of the contribution of a player with respect to all possible coalitions.

Features are viewed as players of the game, whose goal is to predict the output
of a given instance in order to minimize the difference between the prediction and
the average prediction of instances.

Suppose the set of all features are enumerated as p1, p2, . . . , pm, and let J ⊆
{1, . . .m} indicates a subset of all features. The Shapley value of pi, viewed as the
contribution of the i-th feature, is computed as following:

ϕi(f) =
∑

J⊆{1,2,...,m}\{i}

|J |!(m− |J | − 1)!
m! (f(J ∪ {i}) − f(J)). (2.4)

Though the thought of using Shapley value for local explanation has already
thoroughly studied in [Strumbelj & Kononenko 2010], it is [Lundberg & Lee 2017]

1There is a ′, because strictly speaking the input is not s itself but some simplified version as an
“interpretable input”. Technical details can be found in their paper and [Lundberg & Lee 2017].

2.2. EXPLANATIONS FOR CLASSIFIER SYSTEMS 17

Figure 2.2: A toy example of SHAP in [Lundberg & Lee 2017] on a black box f and
an instance x. E(f(z)) represents the base value, i.e. ϕ0, given we know nothing
about any feature’s Shapley value. And ϕi is the Shapley value of the i-th feature.
The ordering matters if the model is non-linear or features are dependent.

who gain much more attention with the explosive growth of explainable AI. The
kernel SHAP presented by the latter is defined as follows.

Definition 2.20 (Shapley kernel in [Lundberg & Lee 2017]). The Shapley kernel
for LIME is defined as

1. Ω(g) = 0

2. πs′(z′) = (m− 1)(m
|z′|

)
|z′|(m− |z′|)

3. L(f, g, πs′) = ∑
z′∈Z(f(hs(z′) − g(z′))2πs′(z′).

Kernel SHAP is thus a particular algorithm of LIME, which does not take
the complexity of the explanation model into account at all by letting Ω(g) = 0.
One can argue whether it is still in line with LIME since it overlooks the main
consideration of LIME. Nevertheless, SHAP has been widely applied especially in
medical diagnosis studies.

2.2.2 Symbolic approach

Many machine learning classifiers have been compiled as Boolean circuits, including
Bayesian networks and some neural networks. Theoretically by binarization one can
transform any features into zero-one vectors however large they may be. Figure 2.3
is a toy example of a Boolean classifier.

In the context of local explanation as [Ignatiev et al. 2020b] points out, we can
explain the current classification directly by answering a “why” question; and also
explain it indirectly by answering a “why not” question. They are stated as follows.

• Why does f classify s as c?

• Why not classify s as non-c?

And a main driven force of XAI is to make the system trustworthy, fair and unbiased.
Hence another question would be the follow.

• Is the classification c of f for s biased/fair?

18 CHAPTER 2. BACKGROUND

Figure 2.3: An admission classifier in [Darwiche & Hirth 2020] represented by an
OBDD (ordered binary decision diagram), where solid and dotted lines of a feature
denote that the feature value of the current instance is truth and falsity respectively.
It can be expressed by the propositional formula E ∧ (F ∧ (G ∨W) ∨ (¬F ∧R)) ∨
(G ∧R ∧W).

Prime implicant explanation To answer the “why” question, it is natural to
think of prime implicants as a cause of the classification. The prime implicant
explanation works as follows. Let f be a Boolean function and s an instance. A
prime implicant of f , cnX,Y is an explanation of s, if s ∩ Y = X. In other words,
the prime implicant cnX,Y is true at state s, namely s has the property cnX,Y .

A PI explanation is a subset-minimal part of the actual instance s.t. the classifi-
cation keeps invariant under perturbing all the other variables.

Other names are sufficient reason [Darwiche & Hirth 2020] and abductive ex-
planation [Ignatiev et al. 2019]. We adopt the latter due to its “duality” with con-
trastive explanation introduced below.

Contrastive explanation and counterfactual explanation To answer the
“why not” question, we need counterfactual reasoning for the hypothesis “what if
the actual input were perturbed in this way?”.

In [Ignatiev et al. 2020b] contrastive explanation is formed as a counterpart of
abductive explanation, which informally we can speak of as follows.

A contrastive explanation is a subset-minimal part of the actual instance s.t. the
classification changes under perturbing all the variables.

In both conceptual and formal senses, contrastive explanation can be seen as
a special case of counterfactual explanation. Namely, a counterfactual condition
whose antecedent consists only conjunction of literals.

2.3. MODAL LOGICS 19

Bias and fairness In order to address whether a classification is biased, we
need to have the prior knowledge of protected features in our formal language. A
protected feature is a feature that is deemed as causing discriminism such as race,
gender and age. The idea of biased classification aligns with common sense, e.g. in
[Darwiche & Hirth 2020] it is expressed as the following.

A classification for the actual instance is biased, if the classification changes by
only perturbing the protected features of the current instance.

2.3 Modal Logics

In this section we introduce the basic notions of modal logics. Most definitions can
be found in most textbooks on the subject, e.g. [Blackburn et al. 2001].

2.3.1 Kripke semantics

Definition 2.21 (Basic modal language). Fix a set of countable atomic propositions
Atm, the language of (uni-)modal language is defined in the following BNF:

φ ::= p | ¬φ | φ ∧ φ | □φ,

where p ranges over Atm.

We let ♢ abbreviate ¬□¬, and read □φ and ♢φ “it is necessarily that φ” and “it
is possibly that φ” respectively.

Definition 2.22 (Frame). A (Kripke) modal frame is a pair (W,R) where W is
a set of points so called possible worlds, and R ⊆ W × W is called accessibility
relation.

Definition 2.23 (Kripke model). A Kripke model M = (W,R, V) is a triple where
(W,R) is a frame and V : W −→ 2Atm is a valuation function. Let w ∈ W , and we
call (M,w) a pointed model.

Definition 2.24 (Satisfaction relation). Let M = (W,R, V) be a Kripke model and
w ∈ W . The satisfaction relation regarding the pointed model (M,w) is recursively
defined as follows:

(M,w) |= p ⇐⇒ p ∈ V (w)
(M,w) |= ¬φ ⇐⇒ (M,w) ̸|= φ

(M,w) |= φ ∧ ψ ⇐⇒ (M,w) |= φ and (M,w) |= ψ

(M,w) |= □φ ⇐⇒ ∀v ∈ R(w), (M,w) |= φ.

We say φ is satisfied (locally true) in (M,w) if (M,w) |= φ; φ is globally true in
M if ∀v ∈ W, (M, v) |= φ, and write M |= φ; φ is valid if for any of its model M ,
M |= φ, and write |= φ.

20 CHAPTER 2. BACKGROUND

Acronyms semantic constraints characteristic axioms
T w ∈ R(w) □φ → φ

D R(w) , ∅ □φ → ♢φ
B wRv implies vRw φ → □♢φ
4 wRv&vRu implies wRu □φ → □□φ
5 wRv&wRu implies vRu ♢φ → □♢φ

Table 2.2: Characteristic axioms

Definition 2.25 (Some relations). Let (W,R) be a modal frame, it is

• reflexive, if ∀w ∈ W,wRw;

• shift-reflexive, if ∀w, v ∈ W,wRv implies vRv

• symmetric, if ∀w, v ∈ W,wRv and vRw;

• serial, if ∀w ∈ W, ∃v ∈ W,wRv;

• transitive, if ∀w, v, u ∈ W , wRv and vRu implies wRu;

• euclidean, if ∀w, v, u ∈ W,wRv and wRu implies vRu;

• dense, if ∀w, v ∈ W , wRv implies ∃u ∈ W,wRu and uRv;

• convergent, if ∀w, v, u, wRv and wRu implies ∃x ∈ W, vRx and uRx.

The final definition of this subsection is bisimulation, which plays a fundamental
role in many semantic equivalence results.

Definition 2.26 (Bisimulation). Let M = (W,R, V) and M ′ = (W ′, R′, V ′) be two
models. We say that they are bisimilar, if there exists a relation Z ⊆ W × W ′ s.t.
∀w ∈ W,w′ ∈ W ′ with wZw′, the following conditions are satisfied:

1. (Atom) ∀p ∈ Atm, p ∈ V (w) ⇐⇒ p ∈ V ′(w′);

2. (Zig) ∀v ∈ W , if wRv then ∃v′ ∈ W ′, w′R′v′ and vZv′;

3. (Zag) ∀v′ ∈ W , if w′R′v′ then ∃v ∈ W,wRv and vZv′.

2.3.2 Axiomatics and completeness

Like propositional logic, we use Hilbert axiomatization for modal logics.

Definition 2.27 (K). The normal modal logic K results from extending proposi-
tional logic with the following axiom and rule of inference

□(φ → ψ) → (□φ → □ψ) (K)
φ

□φ
(Necessitation)

2.3. MODAL LOGICS 21

Notice that as a rule of inference, Necessitation differs Modus Ponens in a subtle
way: the former requires that f φ derives from K, then □φ derives from K. (Hence
it should be ⊢ φ and ⊢ □φ, but convention we omit them.) As a result, the latter
preserves both validity, global truth and local truth (i.e. satisfaction), while the
former only preserve the first two [Blackburn et al. 2001, p. 35]. To apply Modus
Ponens, φ and φ → ψ do not need be tautological but suffice if they are true at the
given state/world. In contrast, to apply Necessitation φ must be tautological.

To see that, consider a model M = (W,R, V) where W = {w, v}, R = {(w, v)},
V (w) = {p} and V (v) = ∅. We have p locally true at w, i.e. (M,w) |= p, but we
have no (M,w) |= □p.

Definition 2.28 (More logic and characteristic axioms). Some basic extensions of
K are listed below, where + means adding the latter (some characteristic axiom)
into the former (some logic system).

T = K + T

D = K +D

B = K +B

S4 = T + 4
KD45 = K +D + 4 + 5

S5 = S4 +B = T + 5

Definition 2.29 (Soundness, completeness and strong completeness in modal logic).
Fix a modal logic, its syntactic consequence ⊢ and semantic consequence |=. We
say that it is sound, if for any set of formulas Φ and formula φ (in its language),
Φ ⊢ φ implies Φ |= φ; it is (weakly) complete, if |= φ implies ⊢ φ; it is strongly
complete, if for any set of formulas Φ, Φ ⊢ φ implies that for all pointed model
(M,w) of the logic, if ∀ψ ∈ Φ, (M,w) |= ψ, then (M,w) |= φ.

Fact 2.8. All the modal logics listed above are both sound and strongly complete.

2.3.3 State semantics for S5

It is now time to give the answer for a possible question raised by the interested
reader: why we call s a state? It can be traced back to Carnap [Carnap 1967] who
defined the state description as, technically, nothing but a set of atomic propositions.
We can use states instead of worlds as elements in models of modal logic. In other
words, let w be identified with its valuation V (w) in the Kripke model. With this
move it is possible to provide a semantics for the modal logic S5, as a natural
extension of the state semantics we gave for propositional logic.

Definition 2.30. An S5 (state) model is nothing but a set of states S, where ∀s ∈
S, s ∈ 2Atm. A pointed S5 model is (S, s) with s ∈ S. Let φ be a formula, (S, s) a

22 CHAPTER 2. BACKGROUND

pointed model, the satisfaction relation is defined as follows

(S, s) |= p ⇐⇒ p ∈ s

(S, s) |= ¬φ ⇐⇒ (S, s) ̸|= φ

(S, s) |= φ ∧ ψ ⇐⇒ (S, s) |= φ and (S, s) |= ψ

(S, s) |= □φ ⇐⇒ ∀s′ ∈ S, (S, s′) |= φ.

The class of all S5 models is noted S, which equals 22Atm .

Notions of global truth and validity are defined in the same way.
It is not hard to see a straightforward relation between Boolean classifiers and

S5. We can simply say that an S5 model S represents a Boolean function f : 2A −→
{0, 1} with A ⊆fin Atm0, if and only if {s∩A : s ∈ S} = f -ı(1). Namely any X ⊆ A

is a true point of f , if and only if there is some s present in S s.t. s ∩ A = X.
Nevertheless, for more generality we do not use the presence vs. absence to represent
binary outputs. Instead, we will introduce a finite set of classifications to partition
the states in S. In such a way we are allowed to represent classifiers with a partial
domain and a finitary output, which is the topic of the next chapter.

Chapter 3

A Logic of Binary-input
Classifiers and Their

Explanation

Recent years have witnessed a renewed interest in the explanation of classifier sys-
tems in the field of explainable AI (XAI). The standard approach is based on propo-
sitional logic. We present a modal language which supports reasoning about binary
input classifiers and their properties. We study a family of classifier models, axiom-
atize it as two proof systems regarding the cardinality of the language and show
completeness of our axiomatics. Moreover, we show that the satisfiability checking
problem for our modal language is NEXPTIME-complete in the infinite-variable
case, while it becomes polynomial in the finite-variable case. We moreover identify
an interesting NP fragment of our language in the infinite-variable case. We leverage
the language to formalize counterfactual conditional as well as a variety of notions of
explanation including abductive, contrastive and counterfactual explanations, and
biases. Finally, we present two extensions of our language: a dynamic extension by
the notion of assignment enabling classifier change and an epistemic extension in
which the classifier’s uncertainty about the actual input can be represented.

Contents
3.1 Introduction . 24
3.2 A Language for Binary-input Classifiers 27

3.2.1 Basic Language and Classifier Model 28
3.2.2 Discussion . 30

3.3 Axiomatization and Complexity 32
3.3.1 Alternative Kripke Semantics 32
3.3.2 Axiomatization: Finite-Variable Case 33
3.3.3 Axiomatization: Infinite-Variable Case 34
3.3.4 Complexity Results . 36

3.4 Counterfactual Conditional 37
3.5 Explanations and Biases . 39

3.5.1 Prime Implicant and Abductive Explanation 40
3.5.2 Contrastive Explanation . 41
3.5.3 Decision Bias . 43

3.6 Extensions . 44

24CHAPTER 3. A LOGIC OF BINARY-INPUT CLASSIFIERS AND THEIR EXPLANATION

3.6.1 Dynamic Extension . 44
3.6.2 Epistemic Extension . 46

3.7 Conclusion . 48

3.1 Introduction

The notions of explanation and explainability have been extensively investigated
by philosophers [Hempel & Oppenheim 1948, Kment 2006, Woodward 2000] and
are key aspects of AI-based systems given the importance of explaining the behav-
ior and prediction of an artificial intelligent system. Classifier systems compute a
given function in the context of a classification or prediction task. Artificial feed-
forward neural networks are special kinds of classifier systems aimed at learning or,
at least approximating, the function mapping instances of the input data to their
corresponding outputs. Explaining why a system has classified a given instance
in a certain way is crucial for making the system intelligible and for finding bi-
ases in the classification process. This is the main target of explainable AI (XAI).
Thus, a variety of notions have been defined and used to explain classifiers includ-
ing abductive, contrastive and counterfactual explanations [Biran & Cotton 2017,
Wachter et al. 2017, Dhurandhar et al. 2018, Ignatiev et al. 2019, Mittelstadt et al. 2019,
Miller 2019, Mothilal et al. 2020, Verma et al. 2020, Miller 2021, Mertes et al. 2022].

Inputs of a classifier are called instances, i.e., valuations of all its variables/features/
factors, and outputs are called classifications/predictions/decisions.1 When both
input and output of the classifier are binary, it is just a Boolean function f :
{0, 1}n −→ {0, 1}, and furthermore can be expressed by a propositional formula.
This isomorphism between Boolean functions and logic has been known ever since
the seminal work of Boole. Recently there has been a renewed interest in Boolean
functions in the area of logic-based approaches to XAI [Shih et al. 2018, Ignatiev et al. 2019,
Darwiche & Hirth 2020, Ignatiev et al. 2020b, Shi et al. 2020, Audemard et al. 2021,
Amgoud & Ben-Naim 2022]. They concentrate on local explanations, i.e., on ex-
plaining why an actual instance is classified in a certain way.

We argue that it is natural and fruitful to represent binary-input classifiers
and their explanation with the help of a modal language. To that end let us first
explain the conceptual foundation of explanation in the context of classifiers, which
is largely ignored in the recent literature.

What is an explanation? Despite subtle philosophical debates,2 by explana-
tion people usually mean causal explanation, an answer to a “why” question in
terms of “because”. Then what is a causal explanation? Ever since the seminal
deductive-nomological (D-N) model [Hempel & Oppenheim 1948], one can view it

1Recall that we use them as synonyms through the thesis. Another set of synonyms is pertur-
bation/intervention/manipulation. The variety of terminology is unfortunate.

2E.g., whether all explanations are causal, whether metaphysical explanation/grounding should
be distinguished from causal explanation.

3.1. INTRODUCTION 25

as a logical relation between an explanandum (the proposition being explained) and
an explanans (the proposition explaining), which is itself expressible by a logical
formula. According to the D-N model, a causal explanation of a certain fact should
include a reference to the laws that are used for deducing it from a set of premises.

More recently Woodward & Hitchcock [Woodward & Hitchcock 2003, p. 2, p.
17] (see also [Woodward 2003, Ch. 5 and 6]) proposed that causal explanations
make reference to generalizations, or descriptions of dependency relations, which
specify relationships between the explanans and explanandum variables. No need
of being laws, such generalizations exhibit how the explanandum variable is coun-
terfactually dependent on the explanans variables by relating changes in the value
of the latter to changes in the value of the former.3 According to Woodward &
Hitchcock, a generalization used in a causal explanation is invariant under inter-
vention insofar as it remains stable after changing the actual value of the variables
cited in the explanation.4

We claim that existing notions of explanation leveraged in the XAI domain rest
upon the idea of invariance under intervention. However, while Woodward & Hitch-
cock apply it to the notion of generalization, in the XAI domain it usually concerns
the result of the classifier’s decision to be explained. Another minor difference with
Woodward & Hitchcock is terminological: when explaining the decision of a binary
classifier system, the term ‘perturbation’ is commonly used instead of ‘intervention’.
But they both mean switching some features’ values from the current ones to other
ones. Let us outline it by introducing informally our running example.

Example 3.1 (Applicant Alice, informal). Alice applies for a loan. She is not
male, she is employed, and she rents an apartment in the city center, which we note
¬male∧ employed∧ ¬owner ∧ center. The classifier f only accepts the application
if the applicant is employed, and either is a male or owns a property. Hence, Alice’s
application is rejected.

In the XAI literature ¬male∧¬owner is called an abductive explanation (AXp)
[Ignatiev et al. 2019] or sufficient reason [Darwiche & Hirth 2020] of the actual de-
cision of rejecting Alice’s application, because perturbing the values of the other
features (‘employment’ and ‘address’ in this setting), while keeping the values of
‘gender’ or ‘ownership’ fixed, will not change the decision. More generally, for a
term (a conjunction of literals) to be an abductive explanation of the classifier’s
actual decision, the classifier’s decision should be invariant under perturbation on
the variables not appearing in the term.5

3Using the notion of counterfactual dependence for reasoning about natural laws and
causality traces back to [Goodman 1955, Lewis 1979, Lewis 1995]. The focus nowadays, e.g.
[Woodward 2000, Halpern 2016], is on the use of counterfactuals for modeling the notion of actual
cause in order to test (rather than define) causality.

4Woodward & Hitchcock also discuss invariance with respect to the background conditions not
figuring in the relationship between explanans and explanandum. Nonetheless, they consider this
type of invariance less central to causal explanation.

5AXp satisfies an additional restriction of minimality that will be elucidated at a later stage: an
AXp is a ‘minimal’ term for which the classifier’s actual decision is invariant under perturbation.

26CHAPTER 3. A LOGIC OF BINARY-INPUT CLASSIFIERS AND THEIR EXPLANATION

On the contrary, ¬male is called a contrastive explanation (CXp) [Ignatiev et al. 2020b],6
because perturbing nothing but ‘gender’ will change the decision from rejecting the
application to accepting it. Therefore, the “duality” between two notions rests on
the fact that AXp answers a why-question by indicating that the classification would
stay unchanged under intervention on variables other than ‘gender’ and ‘ownership’,
whereas CXp answers a why not-question by indicating that the classification would
change under intervention on ‘gender’. More generally, for a term (a conjunction
of literals) to be a contrastive explanation of the classifier’s actual decision, the
classifier’s decision should be variant under perturbation on all variables appearing
in the term, where ‘variant’ is assumed to be synonym of ‘non-invariant’.

As Woodward [Woodward 2000, p. 225, footnote 5] clarifies:

[I]nvariance is a modal notion – it has to do with whether a relationship
would remain stable under various hypothetical changes.

Therefore, following Woodward, the most natural way of modeling invariance is by
means of a modal language whereby the notions of necessity and possibility can be
represented. This is the approach we take in this work.

In particular, in order to model explanations in classifier systems, we use a
modal language with a ceteris paribus (other things being equal) flavor. Indeed, the
notion of invariance under intervention we consider presupposes that one intervenes
on specific input features of the classifier, while keeping the values of the other input
features unchanged (i.e., the values of the other input features being equal). So, for
Alice’s example we expect two modal formulas saying:

a) ‘gender’ and ‘ownership’ keeping their actual values, changing other features’
values necessarily does not affect the actual decision of rejecting Alice’s ap-
plication;

b) other features keeping their actual values, changing the value of ‘gender’ nec-
essarily modifies the classifier’s decision of rejecting Alice’s application.

Specifically, we will extend the ceteris paribus modal logic introduced in [Grossi et al. 2015]
by a finite set of atoms representing possible decisions/classifications of a classifier
and axioms regarding them. The resulting logic is called BCL which stands for
Binary input Classifier Logic, since the input variables of a classifier are assumed to
be binary. One may roughly thinks of its models as S5 models supplemented with
a classification function which allows us to fully represent a classifier system. Each
state in the model corresponds to a possible input instance of the classifier. More-
over, the classification function induces a partition of the set of instances, where
each part corresponds to a set of input instances which are classified equally by the
classifier. We call these models classifier models. BCL and its extensions open up
new vistas including (i) defining counterfactual conditionals and studying their re-
lationship with the notions of abductive and contrastive explanation, (ii) modeling

6We prefer the notation AXp used by Ignatiev et al.[Ignatiev et al. 2019, Ignatiev et al. 2020b]
for its connection with CXp.

3.2. A LANGUAGE FOR BINARY-INPUT CLASSIFIERS 27

classifier dynamics through the use of formal semantics for logics of communication
and change [Van Benthem et al. 2006, van Ditmarsch et al. 2007], and (iii) viewing
a classifier as an agent and representing its uncertainty about the actual instance
to be classified through the use of epistemic logic [Fagin et al. 1995].

Before concluding this introduction, it is worth noting that a classifier system is
a simple form of causal system whose only dependency relations are between the in-
put variables and the single output variable. Unlike Bayesian networks or artificial
neural networks, a classifier system does not include ‘intermediate’ endogenous vari-
ables that, at the same time, depend on the input variables and causally influence
the output variable(s). Therefore, many distinctions and disputations addressed
in the theory of causality and causal explanation do not emerge in our work. For
example, the vital distinction between correlation and causality [Pearl 2009], the
criticism of ceteris paribus as natural law [Woodward 2000], and whether a causal
explanation requires providing information about a causal history or causal chain
of events [Lewis 1986]. All these subtleties only show up when the causal structure
is complex, and hence collapse in a classifier system, which has only two layers
(input-output).

The chapter is structured as follows. In Section 2 we introduce our modal lan-
guage as well as its formal semantics using the notion of classifier model. In Section
3 two proof systems are given, BCL and ‘weak’ BCL (WBCL). We show they are
sound and complete relative to the classifier system semantics with, respectively,
finite-input and infinite-input variables. Section 4 presents a family of counter-
factual conditional operators and elucidates their relevance for understanding the
behavior of a classifier system. Section 5 is devoted to classifier explanation. We
extend the existing notions of explanation for Boolean classifiers to binary input
classifiers. The notions include AXp, CXp and bias in the field of XAI. We will
see that in the binary input classifier setting their behaviors are subtler. Besides,
their connection with counterfactual is studied. Finally, in Section 6 we present two
extensions of our language: (i) a dynamic extension by the notion of assignment
enabling classifier change and (ii) an epistemic extension in which the classifier’s
uncertainty about the actual input can be represented. Further possible researches
are discussed in the conclusion. Main results are either proven in the appendix or
pointed out as corollaries.

3.2 A Language for Binary-input Classifiers

In this section we introduce a language for modeling binary-input classifiers and
its semantics. The language has a ceteris paribus nature that comes from the
ceteris paribus operators of the form [X] it contains. They were first introduced in
[Grossi et al. 2015].7

7More recently, similar operators have been used in the context of the logic of functional de-
pendence by Baltag & van Benthem [Baltag & van Benthem 2021].

28CHAPTER 3. A LOGIC OF BINARY-INPUT CLASSIFIERS AND THEIR EXPLANATION

3.2.1 Basic Language and Classifier Model

Let Atm0 be a countable set of atomic propositions with elements noted p, q, . . .

which are used to represent the value taken by an input variable (or feature). When
referring to input variables/features we sometimes use the notation ‘p’ to distinguish
it from the symbol p for atomic proposition. In this sense, the atomic proposition
p should be read “the Boolean input variable ‘p’ takes value 1”, while its negation
¬p should be read “the Boolean input variable ‘p’ takes value 0”.

We introduce a finite set Val to denote the output values (classifications, de-
cisions) of the classifier. Elements of Val are also called classes in the jargon of
classifiers. For this reason, we note them c, c′, . . . For any c ∈ Val, we call t(c) a
decision atom, to be read as “the actual decision (or output) takes value c”, and
have Dec = {t(c) : c ∈ Val}. Finally, let Atm = Atm0 ∪ Dec be the set of atomic
formulas. Notice symbols c and p have different statuses: p is an atomic proposi-
tion representing an atomic fact, while c is not. This explains why c (an output
value) and t(c) (an atomic formula representing the fact that the actual output has
a certain value) are distinguished.

The modal language L(Atm) is hence defined by the following grammar:

φ ::= p | t(c) | ¬φ | φ ∧ φ | [X]φ,

where p ranges over Atm0, c ranges over Val, and X is a finite subset of Atm0 which
we note X ⊆fin Atm0. As we will justify below, we often write □ instead of [∅].

The set of atomic formulas occurring in a formula φ is noted Atm(φ).
The formula [X]φ has to be read “φ is necessary all features in X being equal”

or “φ is necessary regardless of the truth or falsity of the atoms in Atm0 \ X”.
Operator ⟨X⟩ is the dual of [X] and is defined as usual: ⟨X⟩φ =def ¬[X]¬φ.

The language L(Atm) is interpreted relative to classifier models whose class is
defined as follows.

Definition 3.1 (Classifier model). A classifier model (CM) is a tuple C = (S, f)
where:

• S ⊆ 2Atm0 is a set of states or input instances, and

• f : S −→ Val is a decision (or classification) function.

The class of classifier models is noted CM.

A pointed classifier model is a pair (C, s) with C = (S, f) a classifier model and
s ∈ S. Formulas in L(Atm) are interpreted relative to a pointed classifier model, as
follows.

Definition 3.2 (Satisfaction relation). Let (C, s) be a pointed classifier model with

3.2. A LANGUAGE FOR BINARY-INPUT CLASSIFIERS 29

C = (S, f) and s ∈ S. Then:

(C, s) |= p ⇐⇒ p ∈ s,

(C, s) |= t(c) ⇐⇒ f(s) = c,

(C, s) |= ¬φ ⇐⇒ (C, s) ̸|= φ,

(C, s) |= φ ∧ ψ ⇐⇒ (C, s) |= φ and (C, s) |= ψ,

(C, s) |= [X]φ ⇐⇒ ∀s′ ∈ S, if (s ∩X) = (s′ ∩X)then (C, s′) |= φ.

We can think of a pointed model (C, s) as a pair (s, c) of f with f(s) = c. Thus, c
is the output of the input instance s according to f . The condition (s∩X) = (s′∩X),
which induces an equivalence relation modulo X, indeed stipulates that s and s′

are indistinguishable regarding the atoms (the features) in X. The formula [X]φ is
true at a state s if φ is true at all states that are modulo-X equivalent to state s. It
has the selectis paribus (SP) (selected things being equal) interpretation “features
in X being equal, necessarily φ holds (under possible perturbation on the other
features)”. When Atm0 is finite, [Atm0 \ X]φ has the standard ceteris paribus
(CP) interpretation “features other than X being equal, necessarily φ holds (under
possible perturbation of the features in X)”.8 When X = ∅, [∅] coincides with the
S5 universal modality since every state is modulo-∅ equivalent to all states. Hence
instead of [∅] we often write □.

A formula φ of L(Atm) is said to be satisfiable relative to the class CM if there
exists a pointed classifier model (C, s) with C ∈ CM such that (C, s) |= φ. It is
said to be valid relative to CM, noted |=CM φ, if ¬φ is not satisfiable relative to
CM. Moreover, we say that that φ is valid in the classifier model C = (S, f), noted
C |= φ, if (C, s) |= φ for every s ∈ S.

It is worth noting that every modality [X] can be defined by means of the
universal modality □. To show this, let us introduce the following abbreviation for
every Y ⊆ X ⊆fin Atm0:

cnY ,X =def
∧
p∈Y

p ∧
∧

p∈X\Y
¬p.

cnY ,X can be seen as the syntactic expression of a valuation on X, and therefore
represents a set of states in a classifier model satisfying the valuation. We have the
following validity for the class CM:

|=CM [X]φ ↔
(∧
Y⊆X

(
cnY ,X → □(cnY ,X → φ)

))
.

It means that [X]φ is true at state s, if and only if, for whatever Y ⊆ X, if s∩X = Y

then for any state s′ such that s′ ∩X = Y , φ is true at s′.
Let us close this section by formally introducing our running example.

8We thank Giovanni Sartor for drawing the distinction between CP and SP.

30CHAPTER 3. A LOGIC OF BINARY-INPUT CLASSIFIERS AND THEIR EXPLANATION

Example 3.2 (Applicant Alice, formal). Let Atm = {male, center, employed, owner}
∪ {t(1), t(0)}, where 1 and 0 stand for accepted and rejected respectively. Suppose
C = (S, f) is a CM such that S = 2Atm0 and

C |=
(
t(1) ↔ ((male ∧ employed) ∨ (employed ∧ owner))

)
.

Consider the state s = {center, employed}. Then, s stands for the instance Alice
and f for the classifier in Example 3.1 such that f(s) = 0.

Now Alice is asking for explanations of the decision/classification, e.g., 1) which
of her features (necessarily) lead to the current decision, 2) changing which features
would make a difference, 3) perhaps most importantly, whether the decision for her
is biased. In Section 3.5 we will show how to use the language L(Atm) and its
semantics to answer these questions.

3.2.2 Discussion

In this subsection we discuss in more detail some subtleties of classifier models in
relation with the modal language L(Atm) which is interpreted over them.

X-Completeness In the definition of classifier model (Definition 3.1) given
above, we stipulated that the set of states S does not necessarily include all possible
input instances of a classifier. More generally, according to our definition, a classi-
fier model could be incomplete with respect to a set of atoms X from Atm0, that
is, there could be a truth assignment for the atoms in X which is not represented
in the model. Incompleteness of a classifier model is justified by the fact that in
certain domains of application hard constraints exist which prevent for some input
instance to occur. For example, a hard constraint may impose that a male cannot
be pregnant (i.e., all states in which atoms male and pregnant are true should be
excluded from the model).

However, it is interesting to see how completeness of a classifier with respect
to a finite set of features can be represented in our semantics. This is what the
following definition specifies.

Definition 3.3 (X-completeness). Let C = (S, f) be a classifier model and X ⊆fin

Atm0. Then, C is said to be X-complete, if ∀X ′ ⊆ X,∃s ∈ S such that s∩X = X ′.

In plain words, the definition means that any truth assignment for the atoms
in X is represented by some state of the model. As the following proposition
indicates, the class of X-complete CMs can be syntactically represented. The proof
is straightforward and omitted.

Proposition 3.1. Let C = (S, f) be a CM and X ⊆fin Atm0. C is X-complete if
and only if ∀s ∈ S, we have (C, s) |= Comp(X), with

Comp(X) =def
∧

X′⊆X
♢cnX′,X .

3.2. A LANGUAGE FOR BINARY-INPUT CLASSIFIERS 31

X-Definiteness In certain situations, there might be a portion of the feature
space which is irrelevant for the classifier’s decision. For example, in the Alice’s
example the fact of renting an apartment in the city center (the feature center)
plays no role in the classification. In this case, we say that the classifier is definite
with respect to the subset of features {male, employed, owner}.

More generally, a classifier is said to be definite with respect to a set of features
X if its decision is only determined by the variables in X, that is to say, the variables
in the complementary set Atm0 \X play no role in the classifier’s decision. In other
words, the classifier is said to be X-definite if its decision is independent of the
variables in Atm0 \X.9

The following definition introduces the concept of X-definiteness formally.

Definition 3.4 (X-definiteness). Let C = (S, f) be a classifier model and X ⊆fin

Atm0. Then, C is said to be X-definite, if ∀s, s′ ∈ S, if s ∩ X = s′ ∩ X then
f(s) = f(s′).

X-definiteness is tightly related to the notion of dependence studied in (propo-
sitional) dependence logic [Yang & Väänänen 2016]. The latter focuses on so-called
dependence atoms of the form =(X, q) where q is a propositional variable and X is
a finite set of propositional variables. The latter expresses the fact that the truth
value of the propositional variable q only depends on the truth values of the propo-
sitional variables in X. It turns out that dependence atoms can be expressed in our
ceteris paribus modal language L(Atm) as abbreviations:

=(X, q) =def □
(
(q → [X]q) ∧ (¬q → [X]¬q)

)
.

Interestingly, the notion of X-definiteness is expressible in our modal language
by means of the dependence atoms. This is what the following proposition indicates.

Proposition 3.2. Let C = (S, f) be a CM and X ⊆fin Atm0. C is X-definite if
and only if ∀s ∈ S, (C, s) |= Defin(X) with

Defin(X) =def
∧
c∈Val

=
(
X, t(c)

)
.

We conclude this section by mentioning some remarkable properties of X-
definiteness. The first fact to be noticed is that X-definiteness is upward closed.

Fact 3.1. For every C ∈ CM and X ⊆ Y ⊆fin Atm0, if C is X-definite then C is
Y -definite too.

Secondly, X-definiteness for some X ⊆fin Atm0 is guaranteed in the finite-
variable case.

Fact 3.2. For every C ∈ CM, if Atm0 is finite then C is Atm0-definite.
9Thus the relation between X-definiteness and essential variables in partial Boolean functions

(as defined in 2.16, which drops the assumption that the function is total) is not hard to see: if
p ∈ Atm0 \ X then p is inessential.

32CHAPTER 3. A LOGIC OF BINARY-INPUT CLASSIFIERS AND THEIR EXPLANATION

This does not hold in the infinite case.

Fact 3.3. If Atm0 is countably infinite and |Val| > 1 then there exists C ∈ CM
such that, for all X ⊆fin Atm0, C is not X-definite.

The previous fact is witnessed by any CM C = (S, f) such that

• S = 2Atm0 ,

• f(Atm0) = 1,

• ∀s ∈ S, if |Atm0△s| = 1 then f(s) = 0,

where Dec = {0, 1} and △ denotes symmetric difference, viz., s△s′ = (s\s′)∪(s′\s).
It is easy to show that a CM so defined is not X-definite for any X ⊆fin Atm0.

3.3 Axiomatization and Complexity

In this section, we provide axiomatics for our logical setting. We distinguish the
finite-variable from the infinite-variable case. We moreover prove complexity results
for satisfiability checking for both cases. But before, we will first introduce an
alternative Kripke semantics for the interpretation of the language L(Atm). It will
allow us to use the standard canonical model technique for proving completeness.
Indeed, this technique cannot be directly applied to CMs in the infinite-variable case
since our modal language is not expressive enough to capture the “functionality”
property of CMs when Atm0 is infinite. An alternative proof applying the canonical
model method directly to CMs in the finite-variable case is given in Section A.

3.3.1 Alternative Kripke Semantics

In our alternative semantics the concept of classifier model is replaced by the fol-
lowing concept of decision model. It is a multi-relational Kripke structure with one
accessibility relation per finite set of atoms plus a number of constraints over the
accessibility relations and the valuation function for the atomic propositions.

Definition 3.5 (Decision model). A decision model (DM) is a tuple M =
(
W, (≡X

)X⊆finAtm0 , V
)

such that W is a set of possible worlds, V : W −→ 2Atm is a valuation
function for atomic formulas, and ∀w, v ∈ W, c, c′ ∈ Val the following constraints
are satisfied:

(C1) w ≡X v iff VX(w) = VX(v),

(C2) VDec(w) , ∅,

(C3) if t(c), t(c′) ∈ V (w) then c = c′,

(C4) if VAtm0(w) = VAtm0(v) then VDec(w) = VDec(v);

where VX(w) abbreviates V (w) ∩X. The class of DMs is noted DM.

3.3. AXIOMATIZATION AND COMPLEXITY 33

A DM
(
W, (≡X)X⊆finAtm0 , V

)
is called finite if W is finite. The class of finite-DM

is noted finite-DM.

The interpretation of formulas in L(Atm) relative to a pointed DM goes as
follows.

Definition 3.6 (Satisfaction relation). Let
(
W, (≡X)X⊆finAtm0 , V

)
be a DM and let

w ∈ W . Then,

(M,w) |= p ⇐⇒ p ∈ V (w),
(M,w) |= t(c) ⇐⇒ t(c) ∈ V (w),
(M,w) |= ¬φ ⇐⇒ (M,w) ̸|= φ,

(M,w) |= φ ∧ ψ ⇐⇒ (M,w) |= φ and (M,w) |= ψ,

(M,w) |= [X]φ ⇐⇒ ∀v ∈ W, if w ≡X v then v |= φ.

Validity and satisfiability of formulas in L(Atm) relative to class DM (resp.
finite-DM) is defined in the usual way.

The following theorem appears obvious, since it only has to do with the matter
whether the decision function (classifier) f is given as a constituent of the model
or induced from the model. Notice that it holds regardless of Atm0 being finite or
countably infinite.

Theorem 3.1. Let φ ∈ L(Atm). Then, φ is satisfiable relative to the class CM if
and only if it is satisfiable relative to the class DM.

3.3.2 Axiomatization: Finite-Variable Case

In this section we provide a sound and complete axiomatics for the language L(Atm)
relative to the formal semantics defined above under the assumption that the set of
atomic propositions Atm0 is finite.

Definition 3.7 (Logic BCL). We define BCL (Binary-input Classifier Logic) to be
the extension of classical propositional logic given by the following axioms and rule
of inference:

34CHAPTER 3. A LOGIC OF BINARY-INPUT CLASSIFIERS AND THEIR EXPLANATION

(
□φ ∧ □(φ → ψ)

)
→ □ψ (K□)

□φ → φ (T□)
□φ → □□φ (4□)
φ → □□φ (B□)
[X]φ ↔

∧
Y⊆X

(
cnY ,X → □(cnY ,X → φ)

)
(Red[X])∨

c∈Val
t(c) (AtLeast)

t(c) → ¬t(c′) if c , c′ (AtMost)∧
Y⊆Atm0

((
cnY ,Atm0 ∧ t(c)

)
→ □

(
cnY ,Atm0 → t(c)

))
(Funct)

φ

□φ
(Nec□)

As the semantics indicates, □ is an S5 style modal operator; Red[X] reduces any
[X] to □. AtLeast,AtMost,Funct represent the classification function syntacti-
cally such that every expression cnY ,Atm0 maps to some unique t(c).

A decision model can contain two copies of the same input instance, while a
classifier model cannot. Thus, Theorem 3.1 above shows that our modal language
is not powerful enough to capture this difference between CMs and DMs. Axiom
Funct intervenes in the finite-variable case to guarantee that two copies of the same
input instance (that may exist in a DM) have the same output value. The expression
cnY ,Atm0 used in the axiom is an instance of the abbreviation we defined in Section
3.2.1. It represents a specific input instance. Notice that this abbreviation is only
legal when Atm0 is finite. Otherwise it would be the abbreviation of an infinite
conjunction which is not a well-formed formula in our language.

The proof of the following theorem is entirely standard and based on a canonical
model argument.

Theorem 3.2. Let Atm0 be finite. Then, the logic BCL is sound and complete
relative to the class DM.

The main result of this subsection is now a corollary of Theorems 3.1 and 3.2.

Corollary 3.1. Let Atm0 be finite. Then, the logic BCL is sound and complete
relative to the class CM.

3.3.3 Axiomatization: Infinite-Variable Case

In Section 3.3.2, we have assumed that the set of atomic propositions Atm0 rep-
resenting input variables is finite. In this section, we assume (countably) infinite
variables and prove completeness of the resulting logic.

3.3. AXIOMATIZATION AND COMPLEXITY 35

An essential feature of the logic BCL is the “functionality” Axiom Funct. Such
an axiom cannot be represented in a finitary way when assuming that the set Atm0
is countably infinite. For this reason, it has to be dismissed and the axiomatics
becomes weaker.

Definition 3.8 (Logic WBCL). The logic WBCL (Weak BCL) is defined by all
principles of logic BCL given in Definition 3.7 except Axiom Funct.

In order to obtain the completeness of WBCL relative to the class CM, besides
decision models (DMs), we need additionally quasi-decision models (QDMs).

Definition 3.9 (Quasi-DM). A quasi-DM is a tuple M =
(
W, (≡X)X⊆finAtm0 , V

)
where W , (≡X)X⊆finAtm0 and V are defined as in Definition 3.5 and which satisfies
all constraints of Definition 3.5 except C4. The class of quasi-DMs is noted QDM.

A quasi-DM
(
W, (≡X)X⊆finAtm0 , V

)
is said to be finite if W is finite. The class

of finite quasi-DMs is noted finite-QDM.
Semantic interpretation of formulas in L(Atm) relative to quasi-DMs is anal-

ogous to semantic interpretation relative to DMs given in Definition 3.6. More-
over, validity and satisfiability of formulas in L(Atm) relative to class QDM (resp.
finite-QDM) is again defined in the usual way.

We are going to show the equivalence between QDM and CM step by step.
The following theorem is proven by filtration.

Theorem 3.3. Let Atm0 be countably infinite and φ ∈ L(Atm). Then, φ is satis-
fiable relative to the class QDM if and only if φ is satisfiable relative to the class
finite-QDM.

Then, let us establish the crucial fact that, in the infinite-variable case, the
language L(Atm) cannot distinguish finite-DMs from finite-QDMs. We are going
to prove that any formula φ satisfiable in a finite-QDM M is also satisfiable in some
finite-DM M ′. Since the only condition to worry is C4, we just need to transform
the valuation function of M to guarantee that C4 holds while still satisfying φ.

Theorem 3.4. Let Atm0 be countably infinite and φ ∈ L(Atm). Then, φ is satis-
fiable relative to the class finite-QDM if and only if φ is satisfiable relative to the
class finite-DM.

Recall Theorem 3.1 shows that L(Atm) can not distinguish between CMs and
DMs regardless of Atm0 being finite or infinite. Thus, we obtain the desired equiv-
alence between model classes QDM and CM in the infinite-variable case, as a
corollary of Theorems 3.1, 3.3 and 3.4. This fact is highlighted by Figure 3.1. More
generally, Figure 3.1 shows that when Atm0 is countably infinite the five semantics
for the modal language L(Atm) are all equivalent, since from every node in the
graph we can reach all other nodes.

Theorem 3.5. Let Atm0 be countably infinite and φ ∈ L(Atm). Then, φ is satis-
fiable relative to the class QDM if and only if φ is satisfiable relative to the class
CM.

36CHAPTER 3. A LOGIC OF BINARY-INPUT CLASSIFIERS AND THEIR EXPLANATION

As a consequence, we are in position of proving that the logic WBCL is also
sound and complete for the corresponding classifier model semantics, under the
infinite-variable assumption. The only missing block is the following completeness
theorem. The proof is similar to the proof of Theorem 3.2 (with the only difference
that the canonical QDM does not need to satisfy C4), and omitted.

Theorem 3.6. Let Atm0 be countably infinite. Then, the logic WBCL is sound and
complete relative to the class QDM.

The main result of this subsection turns out to be a direct corollary of Theorems
3.5 and 3.6.

Corollary 3.2. Let Atm0 be countably infinite. Then, the logic WBCL is sound
and complete relative to the class CM.

DM finite-DM

finite-QDMQDM

CM

Atm0 countably infinite

Atm
0 countably infinite

(Theorem 3)

(Theorem
 4)

1	 2	 3	

4	5	

(Theorem 1)

Figure 3.1: Relations between semantics for the modal language L(Atm). An
arrow means that satisfiability relative to the first class of structures implies sat-
isfiability relative to the second class of structures. Full arrows correspond to the
results stated in Theorems 3.1, 3.3 and 3.4. Dotted arrows denote relations that
follow straightforwardly given the inclusion between classes of structures. The bidi-
rectional arrows connecting node 3 with node 4 and node 4 with node 5 only apply
to the infinite-variable case.

3.3.4 Complexity Results

Let us now move from axiomatics to complexity issues. Our first result is about the
complexity of checking satisfiability for formulas in L(Atm) relative to the class CM
when Atm0 is finite and fixed. It is in line with the satisfiability checking problem
of the modal logic S5 which is known to be polynomial in the finite-variable case
[Halpern 1995].

Theorem 3.7. Let Atm0 be finite and fixed. Then, checking satisfiability of for-
mulas in L(Atm) relative to CM can be done in polynomial time.

3.4. COUNTERFACTUAL CONDITIONAL 37

As the following theorem indicates, the satisfiability checking problem becomes
intractable when dropping the finite-variable assumption.

Theorem 3.8. Let Atm0 be countably infinite. Then, checking satisfiability of
formulas in L(Atm) relative to CM is NEXPTIME-complete.

Let us consider the following fragment L{□}(Atm) of the language L(Atm) where
only the universal modality □ is allowed:

φ ::= p | t(c) | ¬φ | φ ∧ φ | □φ.

Clearly, satisfiability checking for formulas in L{□}(Atm) remains polynomial
when there are only finitely many primitive propositions. As the following theorem
indicates, complexity decreases from NEXPTIME to NP when restricting to the
fragment L{□}(Atm) under the infinite-variable assumption.

Theorem 3.9. Let Atm0 be countably infinite. Checking satisfiability of formulas
in L{□}(Atm) relative to CM is NP-complete.

The complexity results of this section are summarized in Table 3.1.

Fixed finite variables Infinite variables
Fragment L{□}(Atm) Polynomial NP-complete

Full language L(Atm) Polynomial NEXPTIME-complete

Table 3.1: Summary of complexity results

3.4 Counterfactual Conditional

In this section we investigate a simple notion of counterfactual conditional for binary
classifiers, inspired from Lewis’ notion [Lewis 1973]. In Section 3.5, we will elucidate
its connection with the notion of explanation.

We start our analysis by defining the following notion of similarity between
states in a classifier model relative to a finite set of features X.

Definition 3.10 (Similarity between states). Let C = (S, f) be a classifier model,
s, s′ ∈ S and X ⊆fin Atm0. The similarity between s and s′ in S relative to the set
of features X, noted simC(s,s′,X), is defined as follows:

simC(s,s′,X) = |{p ∈ X : (C, s) |= p iff (C, s′) |= p}|.

A dual notion of distance between worlds can defined from the previous notion
of similarity:

distC(s,s′,X) = |X| − simC(s,s′,X).

38CHAPTER 3. A LOGIC OF BINARY-INPUT CLASSIFIERS AND THEIR EXPLANATION

This notion of distance is in accordance with [Dalal 1988] in knowledge revision.10

The following definition introduces the notion of counterfactual conditional as
an abbreviation. It is a form of relativized conditional, i.e., a conditional with
respect to a finite set of features.11

Definition 3.11 (Counterfactual conditional). We write φ ⇒X ψ to mean that “if
φ were true then ψ would be true, relative to the set of features X” and define it as
follows:

φ ⇒X ψ =def
∧

0≤k≤|X|

(
maxSim(φ,X,k) →

∧
Y⊆X:|Y |=k

[Y](φ → ψ)
)
,

with

maxSim(φ,X,k) =def
∨

Y⊆X:|Y |=k
⟨Y ⟩φ ∧

∧
Y⊆X:k<|Y |

[Y]¬φ.

As the following proposition highlights, the previous definition of counterfactual
conditional is in line with Lewis’ view: the conditional holds if all closest worlds
to the actual world in which the antecedent is true satisfy the consequent of the
conditional.

Proposition 3.3. Let C = (S, f) be a classifier model, s ∈ S and X ⊆fin Atm0.
Then, (C, s) |= φ ⇒X ψ if and only if closestC(s,φ,X) ⊆ ||ψ||C , where

closestC(s,φ,X) = arg max s′ ∈ ||φ||C simC(s,s′,X),

and for every φ ∈ L(Atm):

||φ||C = {s ∈ S : (C, s) |= φ}.

For notational convenience, we simply write φ ⇒ ψ instead of φ ⇒Atm0 ψ,
when Atm0 is finite. Formula φ ⇒ ψ captures the standard notion of conditional of
conditional logic. One can show that ⇒ satisfies all semantic conditions of Lewis’
logic VC.12 However, when Atm0 is infinite, φ ⇒ ψ is not a well-formed formula
since it ranges over an infinite set of atoms. In that case φ ⇒X ψ has to be always
indexed by some finite X.

10There are other options besides measuring distance by cardinality, e.g., distance in sense of
subset relation as [Borgida 1985]. We will consider them in further research.

11A similar approach to conditional is presented in [Girard & Triplett 2016]. They also refine
Lewis’ semantics for counterfactuals by selecting the closest worlds according to not only the actual
world and antecedent, but also a set of formulas noted Γ. The main technical difference is that
they allow any counterfactual-free formula as a member of Γ, while in our setting X only contains
atomic formulas.

12A remarkable fact is that not all ⇒X satisfy the strong centering condition, which says that the
actual world is the only closest world when the antecedent is already true there. To see it, consider
a toy classifier model (C, s) such that S = {s, s′, s′′, s′′′} with s = {p, q}, s′ = {p}, s′′ = {q},
s′′′ = ∅. We have closestC(s,p,{p}) = {s, s′}, rather than closestC(s,p,{p}) = {s}.

3.5. EXPLANATIONS AND BIASES 39

The interesting aspect of the previous notion of counterfactual conditional is
that it can be used to represent a binary classifier’s approximate decision for a
given instance. Let us suppose the set of decision values Val includes a special
symbol ? meaning that the classifier has no sufficient information enabling it to
classify an instance in a precise way. More compactly, ? is interpreted as that the
classifier abstains from making a precise decision. In this situation, the classifier
can try to make an approximate decision: it considers the closest instances to the
actual instance for which it has sufficient information to make a decision and checks
whether the decision is uniform among all such instances. In other words, c is the
classifier’s approximate classification of (or decision for) the actual instance relative
to the set of features X, noted apprDec(X,c), if and only if “if a precise decision were
made relative to the set of features X, then this decision would be c”. Formally:

apprDec(X,c) =def
(∨
c′∈Val:c′,?

t(c′)
)

⇒X t(c).

The following proposition provides two interesting validities.

Proposition 3.4. Let Atm0 be finite, c, c′ ∈ Val \ {?}. Then,

|=CM apprDec(X, c) → ¬apprDec(X, c′) if c , c′,

|=CM t(c) → apprDec(Atm0, c).

According to the first validity, a classifier cannot make two different approximate
decisions relative to a fixed set of features X.

According to the second validity, if the classifier is able to make a precise decision
for a given instance, then its approximate decision coincides with it. This second
validity works since the actual state/instance is the only closest state/instance to
itself. Therefore, it the actual state/instance has a precise classification c, all its
closest states/instances also have it.

It is worth noting that the following formula is not valid relative to the class
CM: ∨

c∈Val\{?}
apprDec(X, c).

This means that a classifier may be unable to approximately classify the actual
instance. The reason is that there could be different closest states to the actual one
with different classifications.

3.5 Explanations and Biases

In this section, we are going to formalize some existing notions of explanation of
classifiers in our logic, and deepen the current study from a (finitely) Boolean setting
to a multi-valued output, partial domain and possibly infinite-variable setting. For
this purpose it is necessary to introduce the following notations.

40CHAPTER 3. A LOGIC OF BINARY-INPUT CLASSIFIERS AND THEIR EXPLANATION

Let λ denote a conjunction of finitely many literals, where a literal is an atom
p or its negation ¬p. We write λ ⊆ λ′, call λ a part (subset) of λ′, if all literals in λ
also occur in λ′; and λ ⊂ λ′ if λ ⊆ λ′ but not λ′ ⊆ λ. By convention ⊤ is a term of
zero conjuncts. In particular, suppose λ is cnX,Y for some X ⊆ Y ⊆fin Atm0, then
λ will denote the conjunction resulting from “flipping" (or “perturbing") all literals
of λ, i.e., cnY \X,Y .

In the glossary of Boolean classifiers, λ is called a term or property (of an
instance). The set of terms is noted Term. We use Term(X) to denote all terms
whose atoms are in X. Additionally, to define the notion of bias we distinguish
the set of protected features PF ⊆ Atm0, like ‘gender’ and ‘race’, and the set of
non-protected features NF = Atm0 \ PF.

Notice that in this section the cardinality of Atm0 matters. Notions and results
in Section 3.5.1 (without special instruction) apply to both Atm0 finite and Atm0
countably infinite. On the contrary, in Sections 3.5.2 and 3.5.3, we restrict to the
case Atm0 finite, which is due to the use of formulas [Atm0 \X]φ, [NF]φ and [PF]φ
there. We clarify it here instead of clarifying it below repeatedly.

3.5.1 Prime Implicant and Abductive Explanation

We are in position to formalize the notion of prime implicant, which plays a funda-
mental role in the theory of Boolean functions since [Quine 1955].

Definition 3.12 (Prime implicant (PImp)). We write PImp(λ, c) to mean that λ is
a prime implicant for c and define it as follows:

PImp(λ, c) =def □
(
λ →

(
t(c) ∧

∧
p∈Atm(λ)

⟨Atm(λ) \ {p}⟩¬t(c)
))
.

It is a proper extension of the definition of prime implicant in the Boolean setting
since it is a term λ such that 1) it necessarily implies the actual classification (why
it is called an implicant); 2) any of its proper subsets fails to necessarily imply the
actual classification (why it is called prime). Notice that being a prime implicant
is a global property of the classifier, though we formalize it by means of a pointed
model. The syntactic abbreviation for prime implicant can be better understood
by observing that for a given CM C = (S, f) and s ∈ S, we have:

(C, s) |= PImp(λ, c) iff (i) ∀s′ ∈ S, if (C, s′) |= λ then (C, s′) |= t(c); and
(ii) ∀λ′ ⊂ λ,∃s′ ∈ S such that (C, s′) |= λ′ ∧ ¬t(c).

To explain the actual classification of a given input, some XAI researchers
consider a prime implicant which is actually true. We use the terminology by
[Ignatiev et al. 2019] and call it an abductive explanation (AXp).13

13There is a weaker version of the notion, called the weak AXp [Huang et al. 2022], which requires
only an implicant rather than a prime implicant. We will not formally define it until Chapter 4
where it will be needed.

3.5. EXPLANATIONS AND BIASES 41

Definition 3.13 (Abductive explanation (AXp)). We write AXp(λ, c) to mean that
λ abductively explains the decision c and define it as follows:

AXp(λ, c) =def λ ∧ PImp(λ, c).

AXp is a local explanation, because λ is not only a prime implicant for the
classification, but also a property of the actual instance to be classified. AXp can
be expanded to highlight its connection with the notion of variance/invariance.

Proposition 3.5. Let λ ∈ Term and c ∈ Val. Then, we have the following validity:

|=CM AXp(λ, c) ↔
(
λ ∧ [Atm(λ)]t(c) ∧

∧
p∈Atm(λ)

⟨Atm(λ) \ {p}⟩¬t(c)
)
.

The formula [Atm(λ)]t(c) expresses the idea of invariance under intervention
(perturbation): as long as the explanans variables are kept fixed, namely the vari-
ables in λ, any perturbation on the other variables does not change the explanan-
dum, namely classification c.

Many names besides AXp are found in literature, e.g., PI-explanation [Shih et al. 2018]
and sufficient reason [Darwiche & Hirth 2020]. In [Darwiche & Hirth 2020] it was
proved that any decision has a sufficient reason in the Boolean setting. The re-
sult is not a surprise, for a Boolean function always has a prime implicant, since
by definition the arity of a Boolean function is always finite. However, since we
allow functions with infinitely many variables, AXps are not guaranteed to exist in
general.

Fact 3.4. Let Atm0 be countably infinite and |Val| > 1. Then, there exists some
C = (S, f), s ∈ S, such that ∃c ∈ Val,∀λ ∈ Term, (C, s) |= ¬AXp(λ, c).

The statement can be proved by exhibiting the same infinite countermodel as
in Fact 3.3 in Section 3.2.2. However, if a CM is X-definite for some X ⊆fin Atm0,
then every state has an AXp, even when the CM is infinite.

Proposition 3.6. Let C = (S, f) ∈ CM and X ⊆fin Atm0. If C is X-definite then
∀s ∈ S, ∃λ ∈ Term such that (C, s) |= AXp

(
λ, f(s)

)
.

Lastly, let us continue with the Alice example.

Example 3.3. Recall the state of Alice s = {center, employed}. We have (C, s) |=
AXp(¬male∧ ¬owner, 0), namely that Alice’s being female and not owning a prop-
erty abductively explains the rejection of her application.

3.5.2 Contrastive Explanation

AXp is a minimal part of the actual instance guaranteeing the current decision. A
natural counterpart of AXp is contrastive explanation (CXp, named in [Ignatiev et al. 2020b]).

42CHAPTER 3. A LOGIC OF BINARY-INPUT CLASSIFIERS AND THEIR EXPLANATION

Definition 3.14 (Contrastive explanation (CXp)). We write CXp(λ, c) to mean
that λ contrastively explains the decision c and define it as follows:

CXp(λ, c) =defλ ∧ ⟨Atm0 \ Atm(λ)⟩¬t(c)∧∧
p∈Atm(λ)

[(Atm0 \Atm(λ)) ∪ {p}]t(c).

The definition says nothing but 1) λ is part of the actual input instance; 2) if
the values of all variables in λ are changed while the values of the other variables
are kept fixed, then the actual classification may change; 3) the classification will
not change, if the variables outside λ and at least one variable in λ keep their actual
values. The latter captures a form of necessity: when the values of the variables
outside λ are kept fixed, all variables in λ should be necessarily perturbed to change
the actual classification.

The syntactic abbreviation for contrastive explanation can be better understood
by observing that for a given CM C = (S, f) and s ∈ S, we have:

(C, s) |= CXp(λ, c) iff (i) (C, s) |= λ;
(ii) ∃s′ ∈ S s.t. s△s′ = Atm(λ) and (C, s′) |= ¬t(c); and
(iii) ∀s′ ∈ S, if s△s′ ⊂ Atm(λ) then (C, s′) |= t(c).

CXp has a counterfactual flavor since it answers to question: would the clas-
sification differ from the actual one, if the values of all variables in the explanans
were different? So, there seems to be a connection with the notion of counterfactual
conditional we introduced in Section 3.4. Actually in XAI, many researchers con-
sider contrastive explanation and counterfactual explanation either closely related
[Verma et al. 2020] or even interchangeable [Sokol & Flach 2019]. The following
proposition sheds light on this point.

Proposition 3.7. Let λ be a term and let l be a literal. Then, we have the following
two validities:

|=CMCXp(λ, c) →
(
t(c) ∧

(
λ ⇒ ¬t(c)

))
,

|=CMComp(Atm0) →
(
CXp(l, c) ↔

(
t(c) ∧

(
¬l ⇒ ¬t(c)

)))
.

According to the first validity, in the general case contrastive explanation implies
counterfactual explanation. According to the second validity, when the explanans
is a literal (a single-conjunct term), contrastive explanation coincides with coun-
terfactual explanation given Atm0-completeness. Particularly, literal l contrastively
explains the decision c if and only if (i) the actual decision is c and (ii) if literal
l were perturbed, the decision would be different from c. In other words, in the
“atomic” case under the completeness assumption, CXp is the same as counterfac-
tual explanation.

Note that the right-to-left direction of the first validity does not necessarily

3.5. EXPLANATIONS AND BIASES 43

hold. To see this, it is sufficient to suppose that Atm0 = {p, q} and Dec = {0, 1}
and to consider the CM (S, f) such that S = 2Atm0 with f

(
{p, q}

)
= 0 and f

(
{p}

)
=

f
(
{q}

)
= f

(
∅
)

= 1. It is easy to check that in the model so defined we have(
C, {p, q}

)
|= t(0) ∧

(
p ∧ q ⇒ ¬t(0)

)
,

but at the same time, (
C, {p, q}

)
|= ¬CXp(p ∧ q, 0).

The problem is that the model fails to satisfy the necessity condition of contrastive
explanation: it is not necessary to perturb both literals in p∧q to change the actual
decision from 0 to 1, it is sufficient to perturb one of them. We can conclude that
CXp is a special kind of counterfactual explanation with the additional requirement
of necessity for the explanans.

Example 3.4. In Alice’s case, we have (C, s) |= CXp(¬male, 0) ∧ CXp(¬owner, 0).
This means that both Alice’s being female and not owning property contrastively
explain the rejection. Moreover, we have (C, s) |= (male ∨ owner) ⇒ t(1), namely
if Alice were a male or an owner (of an immobile property), then her application
would have been accepted.

Moreover, since the feature ‘gender’ is hard to change, owing a property is the
(relatively) actionable explanation for Alice,14 if she intends to comply with the
classifier’s decision. But surely Alice has another option, i.e., alleging the classifier
as biased. As we will see in the next subsection, an application of CXp is to detect
decision biases in a classifier.

3.5.3 Decision Bias

A primary goal of XAI is to detect and avoid biases. Bias is understood as making
decision with respect to some protected features, e.g., ‘race’, ‘gender’ and ‘age’.

There is a widely accepted notion of decision bias in the setting of Boolean
functions which can be represented in our Example 3.2 (see [Darwiche & Hirth 2020,
Ignatiev et al. 2020a]). Intuitively, the rejection for Alice is biased if there is another
applicant, say Bob, who only differs from Alice on the protected feature ‘gender’,
but gets accepted.

Definition 3.15 (Decision bias). We write Bias(c) to mean that the decision c is
biased and define it as follows:

Bias(c) =def t(c) ∧ ⟨NF⟩¬t(c).

The definition says that the decision c is biased at a given state s, if (i) f(s) = c,
and (ii) ∃s′ ∈ S such that s△s′ ⊆ PF and f(s′) , c. The latter, in plain words,

14For the significance of actionability in XAI, see e.g. [Sokol & Flach 2019].

44CHAPTER 3. A LOGIC OF BINARY-INPUT CLASSIFIERS AND THEIR EXPLANATION

requires another instance s′, which only differs from s on some protected features,
but obtains a different classification.

As we stated, CXp can be used to detect decision biases. The following result
makes the statement precise.

Proposition 3.8. We have the following validity:

|=CMBias(c) ↔
∨

Atm(λ)⊆PF
CXp(λ, c).

Let us end up the whole section by answering the last question regarding Alice
raised at the end of Section 3.2.1.

Example 3.5. Split Atm0 in Example 3.2 into PF = {male, center} and NF =
{employed, owner}. We then have (C, s) |= Bias(0) ∧ CXp(male, 0) ∧

(
¬male ⇒

t(1)
)
. The decision for Alice is biased since ‘gender’ is the protected feature which

contrastively explains the rejection, and if Alice were male, her application would
have been accepted.

3.6 Extensions

In this section, we briefly discuss two interesting extensions of our logical framework
and analysis of binary classifiers. Their full development is left for future work.

3.6.1 Dynamic Extension

The first extension we want to discuss consists in adding to the language L(Atm)
dynamic operators of the form [c :=φ] with c ∈ Val, where c :=φ is a kind of assign-
ment in the sense of [Van Benthem et al. 2006, van Ditmarsch et al. 2005] and the
formula [c :=φ]ψ has to be read “ψ holds after every decision is set to c in context
φ”. The resulting language, noted Ldyn(Atm), is defined by the following grammar:

φ ::= p | t(c) | ¬φ | φ ∧ φ | [X]φ | [c :=φ]ψ,

where p ranges over Atm0, c ranges over Val, and X ⊆fin Atm0. The interpretation
of formula [c :=φ]ψ relative to a pointed classifier model (C, s) with C = (S, f) goes
as follows:

(C, s) |= [c :=φ]ψ ⇐⇒ (Cc:=φ, s) |= ψ,

where Cc:=φ = (S, f c:=φ) is the updated classifier model where, for every s′ ∈ S:

f c:=φ(s′) =

c if (C, s′) |= φ,

f(s′) otherwise.

Intuitively, the operation c := φ consists in globally classifying all instances
satisfying φ with value c.

3.6. EXTENSIONS 45

Dynamic operators [c :=φ] are useful for modeling a classifier’s revision. Specif-
ically, new knowledge can be injected into the classifier thereby leading to a change
in its classification. For example, the classifier could learn that if an object is a fur-
niture, has one or more legs and has a flat top, then it is a table. This is captured
by the following assignment:

table :=objIsFurniture ∧ objHasLegs ∧ objHasFlatTop.

An application of dynamic change is to model the training process of a clas-
sifier, together with counterfactual conditionals with “?” in Section 3.4. Sup-
pose at the beginning we have a CM C = (S, f) which is totally ignorant, i.e.,
∀s ∈ S, f(s) =?. We then prepare to train the classifier. The training set consists
of pairs (s1, x1), (s2, x2) . . . (sn, xn) where ∀i ∈ {1, . . . , n}, si ∈ S, xi ∈ (Val \ {?})
and ∀j ∈ {1, . . . , n}, i , j implies si , sj . We train the classifier by revising it
with [x1 := ŝ1] . . . [xn := ŝn] one by one. Obviously the order does not matter
here. In other words, we re-classify some states. With a bit abuse of notation,
let Ctrain = (S, f train) denote the model resulting from the series of revisions.
We finish training by inducing the final model C† = (S, f †) from Ctrain , where
∀s ∈ S, f †(s) = c, if (Ctrain, s) |= apprDec(Atm0,c), otherwise f †(s) = f train(s).
This is an example of modeling a special case of the so-called k-nearest neighbour
(KNN) classification in machine learning [Cunningham & Delany 2022], where the
distance is measured by cardinality. If a new case/instance has to be classified, we
see how the most similar cases to the new case were classified. If all of them (k of
them in the case of KNN) were classified using the same category, we put the new
case into that category.

The logics BCL−DC and WBCL−DC (BCL and WBCL with Decision Change)
extend the logic BCL and WBCL by the dynamic operators [c :=φ]. They are defined
as follows.

Definition 3.16 (Logics BCL−DC and WBCL−DC). We define BCL−DC (resp.
WBCL−DC) to be the extension of BCL (resp. WBCL) of Definition 3.7 (resp. Def-
inition 3.8) generated by the following reduction axioms for the dynamic operators
[c :=φ]:

[c :=φ]t(c) ↔
(
φ ∨ t(c)

)
[c :=φ]t(c′) ↔

(
¬φ ∧ t(c′)

)
if c , c′

[c :=φ]p ↔p

[c :=φ]¬ψ ↔¬[c :=φ]ψ
[c :=φ](ψ1 ∧ ψ2) ↔

(
[c :=φ]ψ1 ∧ [c :=φ]ψ2

)
[c :=φ][X]ψ ↔[X][c :=φ]ψ

46CHAPTER 3. A LOGIC OF BINARY-INPUT CLASSIFIERS AND THEIR EXPLANATION

and the following rule of inference:
φ1 ↔ φ2

ψ ↔ ψ[φ1/φ2] (RE)

It is routine exercise to verify that the equivalences in Definition 3.16 are valid
for the class CM and that the rule of replacement of equivalents (RE) preserves
validity. The completeness of BCL−DC (resp. WBCL−DC) for this class of models
under the finite-variable assumptions (resp. infinite-variable assumption) follows
from Corollary 3.1 (resp. Corollary 3.2), in view of the fact that the reduction
axioms and the rule of replacement of proved equivalents can be used to find, for
any Ldyn-formula, a provably equivalent L-formula.

Theorem 3.10. Let Atm0 be finite. Then, the logic BCL−DC is sound and complete
relative to the class CM.

Theorem 3.11. Let Atm0 be countably infinite. Then, the logic WBCL−DC is
sound and complete relative to the class CM.

The following complexity results are consequences of Theorems 3.7 and 3.8 and
the fact that via the reduction axioms in Definition 3.8 we can find a polynomial
reduction of satisfiability checking for formulas in Ldyn to satisfiability checking for
formulas in L.

Theorem 3.12. Let Atm0 be finite and fixed. Then, checking satisfiability of for-
mulas in Ldyn(Atm) relative to CM can be done in polynomial time.

Theorem 3.13. Let Atm0 be countably infinite. Then, checking satisfiability of
formulas in Ldyn(Atm) relative to CM is NEXPTIME-complete.

3.6.2 Epistemic Extension

In the second extension we suppose that a classifier is an agent which has to classify
what it perceives. The agent could have uncertainty about the actual instance to
be classified since it cannot see all its input features.

In order to represent the agent’s epistemic state and uncertainty, we introduce
an epistemic modality of the form K which is used to represent what the agent
knows in the light of what it sees. Similar notions of visibility-based knowledge
can be found in [Charrier et al. 2016, Van Der Hoek et al. 2011, Herzig et al. 2015,
van der Hoek et al. 2012].

The language for our epistemic extension is noted Lepi(Atm) and defined by the
following grammar:

φ ::= p | t(c) | ¬φ | φ ∧ φ | [X]φ | Kφ,

where p ranges over Atm0, c ranges over Val, and X ⊆fin Atm0.
In order to interpret the new modality K, we have to enrich classifier models

with an epistemic component.

3.6. EXTENSIONS 47

Definition 3.17 (Epistemic classifier model). An epistemic classifier model (ECM)
is a tuple E = (S, f,Obs) where C = (S, f) is a classifier model and Obs ⊆ Atm0
is the set of atomic propositions that are visible to the agent. The class of ECMs is
noted ECM.

Given an ECM E = (S, f,Obs), we can define an epistemic indistinguishability
relation which represents the agent’s uncertainty about the actual input instance.

Definition 3.18 (Epistemic indistinguishability relation). Let E = (S, f,Obs) be
an ECM. Then, ∼ is the binary relation on S such that, for all s, s′ ∈ S:

s ∼ s′ if and only if (s ∩ Obs) = (s′ ∩ Obs).

Clearly, the relation ∼ so defined is an equivalence relation. According to the
previous definition, the agent cannot distinguish between two states s and s′, noted
s ∼ s′, if and only if the truth values of the visible variables are the same at s and
s′.

The interpretation for formulas in Lepi(Atm) extends the interpretation for for-
mulas in L(Atm) given in Definition 3.2 by the following condition for the epistemic
operator:

(E, s) |= Kφ ⇐⇒ ∀s′ ∈ S : if s ∼ s′ then (E, s′) |= φ.

As the following theorem indicates, the complexity result of Section 3.3.2 for
the finite-variable case generalizes to the epistemic extension.

Theorem 3.14. Let Atm0 be finite. Then, checking satisfiability of formulas in
Lepi(Atm) relative to ECM can be done in polynomial time.

In order to illustrate the intuition behind the epistemic modality K we go back
to the example of the application for a loan to a bank.

Example 3.6. Suppose the application is submitted through an online system which
has to automatically decide whether it is acceptable or not. In his/her application,
an applicant has to specify a value for each feature. Moreover, suppose the system
receives an incomplete application: the applicant has only indicated that she is fe-
male, owns an apartment and lives in the city center, but she has forgotten to specify
whether she has an employment or not. In this case, the value of the employement
variable is not “visible” to the system. In formal terms, we extend the CM given
in Example 3.2 by the visibility set Obs = {male, center, owner} to obtain a ECM
E = (S, f,Obs). It is easy to check that the following holds:(

E, {center, employed, owner}
)

|= ¬K t(0) ∧ ¬K t(1).

This means that, on the basis of its partial knowledge of the applicant’s identity, the
system does not know what to decide.

48CHAPTER 3. A LOGIC OF BINARY-INPUT CLASSIFIERS AND THEIR EXPLANATION

However, the system knows that if turns out that the applicant is employed then
its application should be accepted:(

E, {center, employed, owner}
)

|= K
(
employed → t(1)

)
.

Finally, the classifier knows that if turns out that the applicant is employed, then
the fact that she is employed and that she owns a property will abductively explain
the decision to accept her application:(

E, {center, employed, owner}
)

|= K
(
employed → AXp(employed ∧ owner, 1)

)
.

3.7 Conclusion

We have introduced a modal language and a formal semantics that enable us to
capture the ceteris paribus nature of binary classifiers. We have formalized in the
language a variety of notions which are relevant for understanding a classifier’s
behavior including counterfactual conditional, abductive and contrastive explana-
tion, bias. We have provided two extensions that support reasoning about classifier
change and a classifier’s uncertainty about the actual instance to be classified. We
have also offered axiomatics and complexity results for our logical setting.

We believe that the complexity results presented here are exploitable in practice.
We have shown that satisfiability checking in the basic setting and in its dynamic
and epistemic extension is polynomial when finitely many variables are assumed.
In the infinite-variable setting, it becomes NEXPTIME-complete and NP-complete
when restricting to the language in which the only primitive modal operator is the
universal modality [∅]. In future work, we plan (i) to find a number of satisfiability
preserving translations from our modal languages to the modal logic S5 and then
from S5 to propositional logic using existing techniques [Caridroit et al. 2017], and
(ii) to exploit SAT solvers for automated verification and generation of explanations
and biases in binary classifiers.

Another direction of future research is the generalization of the epistemic exten-
sion given in Section 3.6.2 to the multi-agent case. The idea is to conceive classifiers
as agents and to be able to represent both the agents’ uncertainty about the in-
stance to be classified and their knowledge and uncertainty about other agents’
knowledge and uncertainty (i.e., higher-order knowledge and uncertainty). Simi-
larly, we plan to investigate more in depth classifier dynamics we briefly discussed
in Section 3.6.1. The idea is to see them as learning dynamics. Based on this idea,
we plan to study the problem of finding a sequence of update operations guaran-
teeing that the classifier will be able to make approximate decisions for a given set
of instances.

Finally, all classifiers we handle in this paper do not represent “black box”
classifiers, in the sense that we have perfect knowledge of them, so that we can
compute their explanations. However, black box classifiers are the most interesting
ones to XAI. As mentioned, in Chapter 6 we will conceive a black box classifier as

3.7. CONCLUSION 49

an agent’s uncertainty among many possible classifiers. All notions of explanation
we defined in this chapter can be generalized to the black box setting. However,
there are some important differences between the two settings. For instance, in a
black box classifier AXp does not always exist, as we will showed in Chapter 6,
which contradicts Proposition 3.6.

Chapter 4

Application to Legal Case-based
Reasoning

This chapter counts as an application of BCL in the last chapter. It offers a novel
framework for factor-based models of legal case-based reasoning (CBR). The un-
derlying intuition is simple: a case base is just a partial Boolean function (pBF),
which is in turn representable by our classifier model.

Case bases in the legal theory of precedent usually have more intricate structures
than mere pBFs largely due to the constraint of a fortiori reasoning. Horty has
developed factor-based models of CBR in relation to the theory of precedent. Our
aim is to associate case bases consistent in Horty’s sense with a subclass of our
classifier models. We will examine their relationship particularly with respect to
monotone pBFs. Furthermore, by introducing the perspective of the classifier, we
can analyze case bases using the notions of classifier explanation presented in the
previous chapter.

Contents
4.1 Introduction . 51
4.2 Horty’s Two Models of Case-Based Reasoning 53
4.3 A Representation Theorem 55
4.4 Genuine Classifier of Horty Case Base 58
4.5 Explanations and Landmarks 59

4.5.1 Prime implicant and abductive explanation 59
4.5.2 Prime implicant and landmark case 61
4.5.3 Contrastive explanation . 62

4.6 Horty Case Bases and Monotone pBFs 63
4.7 Conclusion . 65

4.1 Introduction

This chapter brings together two lines of research: factor-based models of case-based
reasoning (CBR) and the logical specification of classifiers.

As discussed in the previous chapter, logical approaches to classifiers capture
the connection between features and outcomes in classifier systems. They are well-
suited for modeling and computing a large variety of explanations of a classifier’s

52 CHAPTER 4. APPLICATION TO LEGAL CASE-BASED REASONING

decisions, e.g., prime implicants, abductive, contrastive and counterfactual expla-
nations. They can thus contribute to provide controllability and explainability over
automated decision-making (as required, e.g., by Art. 22 GDPR and by Art. 6
ECHR relative to judicial decisions).

Factor-based reasoning [Ashley 1990, Aleven 2003] is a popular approach to
precedential reasoning in AI&law research. The key idea is that a case can be
represented as a set of factors, where a factor is a legally relevant aspect. Factors
are assumed to have a direction, i.e., to favor certain outcomes. Usually both factors
and outcomes are assumed to be binary, so that each factor can be labelled with the
outcome it favors (usually denoted as π, the outcome requested by the plaintiff, and
δ, the outcome requested by the defendant). The party which is interested in a cer-
tain outcome in a new case can support her request by citing a past case that has the
same outcome, and shares with the new case some factors supporting that outcome.
The party that is interested in countering that outcome can respond with a distinc-
tion, i.e., can argue that some factors which supported that outcome in the prece-
dent are missing in the new case or that some additional factors against that out-
come are present in the new case. Horty [Horty 2004, Horty & Bench-Capon 2012]
has developed the factor-based models of precedent into a theory of precedential
constraints, i.e., of how a new case must be decided, in order to preserve consis-
tency in the case law. In [Horty 2011, Horty 2017], he takes into account the fact
that judges may also provide explicit reasons for their choice of a certain outcome.
This leads to the distinction between the result and the reason model of precedents.
In the first model, the message conveyed by the case is only that all factors sup-
porting the case-outcome (pro-factors) outweigh all factors against that outcome
(con-factors). In the second, the message is that the factors for the case outcome
indicated by the judge (a subset of all pro-factors) outweigh all con-factors.

In this chapter we shall combine the modal logic approach to classifiers and
their explanations in the previous chapter with the CBR introduced above. The
combination is based on the fact that both a classifier and CBR map sets of features
to decisions or classifications. In this way, our contribution is at least twofold.

First, we explore the relation between two apparently unrelated reasoning sys-
tems. While the connection between CBR and reasoning about classifier systems is
of interest in itself, we believe that, through this relation, new research perspectives
can be offered, since we could in the future investigate CBR by exploiting several
techniques and results from modal logic. We will see that the challenge of this
chapter is to adapt the formal representation of a classifier to the bidirectionality
of factors in the HYPO model. Once this is solved, we can provide a logical model
and a semantics for factor-based CBR.

Second, we investigate the idea of normative explanation: while the literature
on the concept of explanation is immense, the AI community is now paying at-
tention to it due to the development of explainable AI (XAI) [Miller et al. 2022,
Atkinson et al. 2020]. Our paper, by connecting CBR and reasoning about clas-
sifier systems, explores different notions of explanation in law, such as abductive
and contrastive explanations for the outcome suggested by the case-based reasoner.

4.2. HORTY’S TWO MODELS OF CASE-BASED REASONING 53

Our model allows for building explainable case-based reasoners, which could also
be deployed to reproduce and analyze the functioning of opaque predictors of the
outcome of cases. We import notions such as prime implicant and contrastive ex-
planation in the domain of XAI for classifiers to showcase how to analyze CBR in
the field of XAI.

The chapter is organized as follows. Section 4.2 presents Horty’s models of CBR.
In Section 4.3 we explore the connection between CBR and classifier models. Section
4.4 deepens the connection by establishing a one-one relation between consistent
case bases and certain classifier models. Section 4.5 shows that notions for classifier
explanation in XAI help study case bases. Section 4.6 reveals the relation between
Horty’s models of case bases and monotone pBFs. Finally, Section 4.7 discusses
related work and concludes. Proofs are in Appendix B.

4.2 Horty’s Two Models of Case-Based Reasoning

In this section we introduce the two models of precedential constraint of case-based
reasoning proposed by Horty. We will use the term result model as shorthand for
“the factor-based result model of precedential constraint”, and reason model for
“the factor-based reason model of precedential constraint”. Since the result model
can be viewed as a special kind of reason model, we will also use Horty case bases
and Horty’s models as umbrella terms for these cases.

Let Atm0 = Plt ∪ Dfd, where Plt and Dfd are disjoint sets of finitely many fac-
tors favoring the plaintiff and defendant respectively. In addition, let Val = {1, 0, ?}
where elements stand for plaintiff wins, defendant wins and indeterminacy respec-
tively. Let Dec = {t(c) : c ∈ Val} and read t(c) as “the actual decision/outcome (of
the judge/classifier) takes value c”. An outcome t(1) or t(0) means that, the judge
is predicted to decide for the plaintiff or for the defendant (the classifies “forces”
one of the two outcomes). The outcome t(?) means either outcome would be con-
sistent: the judge may develop the law in one direction or the other. This reflects
the incompleteness nature of CBR. We use Atm to denote Atm0 ∪ Dec.

We call s ⊆ Atm0 a fact situation. A set of atoms X is called a reason for an
outcome (decision) c if it a set of factors all favoring the same outcome: X ⊆ Plt is
a reason for 1 and X ⊆ Dfd is a reason for 0. A (defeasible) rule consist of a reason
and the corresponding outcome: X 7→ c is rule, if X ⊆ Plt and c = 1, or X ⊆ Dfd
and c = 0.1 For readability, we make a convention that, for c ∈ {0, 1}, let c = 1 − c

and c = c. Moreover, let Atmc
0 = Plt if c = 1, and Atmc

0 = Dfd if c = 0.
In the reason model, a precedent case (precedent) is a triple c = (s,X, c), where

s ⊆ Atm0, X ⊆ Atmc
0, c ∈ {0, 1}. In plain words, s ∩ Atmc

0 contains all pro-factors
in s for c, while s ∩ Atmc

0 all con-factors in s for c. X is the reason of the case,
namely a subset of the pro-factors which the judge considers sufficient to support
that outcome, relative to all con-factors in the case.

1Unlike [Horty 2011], we will follow [Prakken 2021] in using reason instead of rule when defining
a case as a triple.

54 CHAPTER 4. APPLICATION TO LEGAL CASE-BASED REASONING

A case base CB (for reason model) is a set of precedential cases. When the
reason contains all pro-factors within the situation (i.e., when c = (s, s ∩ Atmc

0, c))
all such factors are considered equally decisive. If a case base only contains cases of
this type, we obtain what Horty calls “the result model”, and note such a case base
CBres.2 The class of all CBs and CBress are noted CB and CBres respectively.

Example 4.1 (Running example). In the chapter we refer to the following running
example taken from [Prakken 2021]. Let us assume the following six factors, each
of which either favors the outcome ‘misuse of trade secrets’ (‘the plaintiff wins’)
or rather favors the outcome ‘no misuse of trade secrets’ (‘the defendant wins’).
Factors pro the plaintiff are

1. the defendant has obtained the secret by deceiving the plaintiff (deceive),

2. the defendant has bribed an employee of the plaintiff (bribe),

3. the plaintiff had taken security measures to keep the secret (security).

Factors pro the defendant are

1. the information is obtainable elsewhere (else-obtain),

2. the product is reverse-engineerable (re-engine),

3. the plaintiff had voluntarily disclosed the secret to outsiders (voluntary).

Hence in our running example Atm = {deceive, bribe, security, else-obtain,
re-engine, voluntary, t(0), t(1), t(?)} Let us consider a case base CBex = {c1, c2}
with

• c1 = ({deceive, security, else-obtain, voluntary}, {deceive}, 1);

• c2 = ({bribe, else-obtain, voluntary}, {voluntary}, 0)

That is to say, in precedent 1 the judge classified the plaintiff won, because of (regard-
ing its fact situation) the deceive; in precedent 2 the judge classified the defendant
won, because of (regarding its fact situation) the voluntary disclose.

A case base can be inconsistent when two precedents map the same fact situation
to different outcomes. Another scenario is that a consistent case base becomes
inconsistent after update, namely after expanding it with some new case. Hence
maintaining consistency is the crucial concern of case-based reasoning. But first
of all, one need to define these notions. The following definitions, except symbolic
difference, are based on [Horty 2011, Prakken 2021].

Definition 4.1 (Preference relation derived from a case). Let c = (s,X, c) be a
case. Then the preference relation <c derived from c is s.t. for any two reasons Y ,
Y ′ favoring c and c respectively, Y ′ <c Y iff Y ′ ⊆ s ∩ Atmc

0 and X ⊆ Y .
2So we view a result model as a special kind of reason model, as [Horty 2011, p. 25] also

mentioned.

4.3. A REPRESENTATION THEOREM 55

Definition 4.2 (Preference relation derived from a case base). Let CB be a case
base. Then the preference relation <CB derived from CB is s.t. for any two reasons
Y, Y ′ favoring c and c respectively, Y ′ <CB Y iff ∃c ∈ CB s.t. Y ′ <c Y .

Definition 4.3 ((In)consistency). A case base CB is inconsistent, if there are two
reasons Y, Y ′ s.t. Y ′ <CB Y and Y <CB Y ′. CB is consistent if it is not inconsis-
tent.

Definition 4.4 (Precedential constraint). Let CB be a consistent case base, X is a
reason for c in CB and applicable in a new fact situation s′, i.e. X ⊆ s′. Updating
CB with the new case (s′, X, c) meets the precedential constraint, iff CB∪{(s′, X, c)}
is still consistent.

There is more than one way to satisfy the precedential constraint, depending
on how the precedents in CB interact with the new case. The requirement of
consistency dictates the outcome when the so-called a fortiori constraint applies:
if reason X for c outweighs (i.e., is stronger that) reason s ∩ Atm c̄

0, “a fortiori” any
superset of X outweighs any subset of s ∩ Atm c̄

0, so that only by deciding for c
rather than for c consistency is maintained.3 In this way the doctrine of the theory
of precedent, stare decisis (to stand by things decided), is upheld.

Example 4.2 (Running example). Let us consider two fact situations according to
case base CBex running example.

• In s3 = {deceive, else-obtain, voluntary}, only a decision for 1 in s3 is
consistent with CBex, since a decision for 0 would entail that {else-obtain}
>CBex {deceive}, contrary to the preference {deceive} >CBex {else-obtain},
which is derivable from c1.

• In s4 = {bribe, re-engine} both (s4, {bribe}, 1) and (s4, {re-engine}, 0)
are consistent with CBex, since we have neither {bribe} >CBex {re-engine}
nor {re-engine} >CBex {bribe}.

4.3 A Representation Theorem

In this section we shall show that the language of case bases can be translated into
the language L(Atm); hence case bases can be studied by classifier models. Recall
Atm = Atm0 ∪ Dec, and we require Atm0 to be finite and Dec = {t(1), t(0), t(?)}.
Definitions of classifier models and their semantics can be found in Chapter 3.
Recall an important abbreviation that we use: for any X ⊆ Y ⊆ Atm0,

cnX,Y =def
∧
p∈X

p ∧
∧

p∈Y \X
¬p.

3We generalize a fortiori constraint from only acting on result models in [Horty 2011] to also
on reason models in the same manner as viewing a result model as a special reason model, whose
reason contains all pro-factors.

56 CHAPTER 4. APPLICATION TO LEGAL CASE-BASED REASONING

It will be shown that a case base is consistent in Horty’s sense, if and only if its
translation, together with the following two formulas that we abbreviate as Compl
and 2Mon, is satisfiable in CM the class of classifier models:

Compl =def
∧

X⊆Atm0

♢cnX,Atm0

2Mon =def
∧

c∈{0,1},X⊆Atmc
0,Y⊆Atmc

0

(
♢(cnX∪Y ,Atm0 ∧ t(c)) →

∧
Atmc

0⊇X′⊇X,Y ′⊆Y
□(cnX′∪Y ′,Atm0 → t(c))

)

According to Compl, every possible situation description must be satisfied in
the classifier, where a situation description is a conjunction of factors (those being
present in X) and negations of factors (those being absent from X).

2Mon introduces a two-way monotonicity, which is meant to implement the a
fortiori constraint: if the classifier associates a situation s to an outcome c, then it
must assign the same outcome to every situation s′ such that both (a) s′ includes
all factors for c that are in s and (b) s′ does not include factors for c that are outside
of s. This formula is meant to maintain consistency with respect to the preference
relation, as Definition 4.1 indicates: if a case including reason X for c and factors
Y for c, has outcome c, it means that X > Y . Thus it cannot be that outcome c
is assigned to a situation s′ including both a superset X ′ ⊇ X of factors for c and
only a subset Y ′ ⊆ Y of factors for c. In fact, if X > Y , then is must be the case
that also X ′ > Y ′, while a decision for c would entail that X ′ < Y ′.

Let CMprec = {C = (S, f) ∈ CM : ∀s ∈ S, (C, s) |= Compl ∧ 2Mon}, where
CMprec means the class of CMs for precedent theory. Satisfiability and validity
relative to CMprec are defined in an analogous way as CM.4

To translate a case base for result model CBres into a classifier model (S, f), we
need to ensure that all the precedents in the case base are “verified” in the classifier
model. That means, ∀(s, s ∩ Atmc

0, c) ∈ CBres, f(s) = c. This can be accomplished
directly through the following definition.

Definition 4.5 (Translation of case base for result model). The translation func-
tion tr1 maps each case from a case base CBres to a corresponding formula in the
language L(Atm). It is defined as follows:

tr1(s, s ∩ Atmc
0, c) =def ♢(cns,Atm0 ∧ t(c)).

We generalize it to the entire case base CBres as follows:

tr1(CBres) =def
∧

(s,s∩Atmc
0,c)∈CB

tr1(s, s ∩ Atmc
0, c).

4Since Compl makes it mandatory that ∀(S, f) ∈ CMprec, S = 2Atm0 , we will also sometimes
simply write (2Atm0 , f).

4.3. A REPRESENTATION THEOREM 57

Example 4.3. The precedent ({else-obtain, re-engine, deceive}, {else-obtain,
re-engine}, 1}) in a case base for result model is translated as ♢(else-obtain ∧
re-engine ∧ deceive ∧ ¬voluntary ∧ ¬bribe ∧ ¬security ∧ t(1)), which means
that f({else-obtain, re-engine, deceive}) = 1

In the translation for the reason model we need to capture the role of reasons.
This is obtained by ensuring that for every precedent (s,X, c), not the fact situation
s directly, but the one consisting only of reasonX and all c-factors in s (i.e. s∩Atmc

0)
is classified as c. It reflects the fact that the precedent finds pro-factors outside of
X dispensable for the outcome.

Definition 4.6 (Translation of case base for reason model). The translation func-
tion tr2 maps each case from a case base CB to a corresponding formula in the
language L(Atm). It is defined as follows:

tr2(s,X, c) =def ♢(cnX∪(s∩Atmc
0),Atm0

∧ t(c)).

We generalize it to the entire case base CB as follows:

tr2(CB) =def
∧

(s,X,c)∈CB
tr2(s,X, c).

Notice that the function tr1 for the result model is a special case of the function
tr2 for the reason model, since ((s ∩ Atmc

0) ∪ (s ∩ Atmc
0) = s.

Fact 4.1. tr1(s, s ∩ Atmc
0, c) = tr2(s, s ∩ Atmc

0, c).

Let us clarify the meaning of tr2, which may seem less obvious than tr1. The
goal is to find a CM C from CMprec for any consistent case base CB, such that all
the fact situations that can be forced to make decision c via a fortiori reasoning by
CB are “correctly” classified as c in the CM. In other words, C encodes not only
all actual, but also potential decisions that CB would make. Therefore for reason
models tr1 is insufficient, since for any precedent (s,X, c), even if X ∪ (s∩ Atmc

0) is
not the fact situation of any precedent in CB, we shall guarantee its classification
as c. As a result we have tr2, which enables us to obtain the following theorem.

Theorem 4.1. Let CB ∈ CB be a case base. Then, CB is consistent iff tr2(CB)
is satisfiable in CMprec.

In light of the theorem and the fact above, the special case regarding result
models turns to be a corollary.

Corollary 4.1. Let CBres ∈ CBres be a case base for the result model. Then, CBres

is consistent iff tr1(CBres) is satisfiable in CMprec.

Similarly, the precedential constraint can also be represented as a corollary.

Corollary 4.2. Let CB ∈ CB be a consistent case base and (s′, X, c) a case. Up-
dating CB with (s′, X, c) meets the precedential constraint, iff tr2(CB)∧ tr2(s′, X, c)
is satisfiable in CMprec.

58 CHAPTER 4. APPLICATION TO LEGAL CASE-BASED REASONING

Example 4.4. Case c3 = ({deceive, bribe, voluntary}, {voluntary} , 0) is in-
compatible with the CBex. Otherwise according to tr2(CBex ∪ {c3}), 2Mon and
Compl, for any classifier model representing the updated case base, the fact situation
{deceive, bribe, else-obtain, voluntary} should be classified both as 1, based on
CBex, and 0, based on c3.

4.4 Genuine Classifier of Horty Case Base

The representation theorem above associates a Horty case base with a set of classifier
models. In this section we refine the association by corresponding a Horty case base
to a unique classifier model, in which sense we call it “genuine”. In doing so, we
can study Horty case bases with notions of explanation for classifiers, which is the
topic of the next section.

The basic idea is that the genuine classifier of a case base outputs ? for all and
only fact situations which cannot be forced to make a decision by the case base.5

Definition 4.7 (Genuine classifier). Let CB be a case base. Then the genuine
classifier of CB is defined as a function f : 2Atm0 −→ {0, 1, ?}, s.t. for any fact
situation s,

f(s) =

c if ∃c = (s′, X, c) ∈ CB s.t.

X ∩ Atmc
0 ⊆ s ∩ Atmc

0, s
′ ∩ Atmc

0 ⊇ s ∩ Atmc
0;

? otherwise.

The genuine classifier model of CB is therefore C = (2Atm0 , f).

That is to say, f(s′) =? if and only if a fortiori reasoning fails to force s′ to take
either decision 0 or 1. We can also define the genuine CM for a case base in terms
of a formula.

Proposition 4.1. Let CB be a Horty case base. Then a classifier model C = (S, f)
is the genuine classifier of CB, if ∀s ∈ S, (C, s) |= φCB where

φCB =def
∧

X⊆Atm0

♢cnX,Atm0 ∧
∧

c∈{0,1}
□

(
t(c) ↔

∨
c=(s′,X,c)∈CB

cnX,X∪(Atmc
0\s′)

)
.

The “syntactic” representation φCB is stronger than the formula Compl∧2Mon∧
tr2(CB) in the previous section, due to the bi-conditional in φCB for t(c) with
c ∈ {0, 1}. Hence, fixing the language, φCB is satisfied in exactly one CM.

Proposition 4.2. Every Horty case base induces exactly one genuine classifier
model.

5It is therefore the “smallest” representation, if we think of every classifier as a partial function
by naturally viewing ? as undefined.

4.5. EXPLANATIONS AND LANDMARKS 59

The inverse, however, does not hold, for two possibilities. 1) There can be
two case bases forcing exactly the same set of fact situations but they have some
precedents differing in their fact situations and/or reasons. 2) More intriguing, two
case bases are identical but in different languages, namely, their plaintiff-defendant
partitions of sets of factors differ, but they still force the same set of fact situa-
tions. This is possible, because case bases can be incomplete and some factors are
“dummy”. The following examples instantiates both possibilities.

Example 4.5. Let Plt = {p1} and Dfd = {p2}. Then, the following two case bases
have the same genuine classifier

• {({p1, p2}, {p1}, 1)}

• {({p1, p2}, {p1}, 1), ({p1}, {p1}, 1)}

namely an f : 2{p1,p2} −→ {0, 1, ?} s.t. f(s) = 1 if p1 ∈ s, f(s) =? otherwise.
Moreover, if we set Plt ′ = {p1, p2},Dfd ′ = ∅, the two case bases are still instances
of the new language, and have the same genuine classifier.

4.5 Explanations and Landmarks

The notion of genuine classifier of Horty case bases paves the way to providing
classifier explanations for the outcomes of legal cases. For this purpose it is necessary
to introduce the following notations. (Most of them are already introduced in
Chapter 3 and for the sake of self-containment of the chapter we restate them
here.)

Let λ denote a conjunction of finitely many literals, where a literal is an atom p

(positive literal) or its negation ¬p (negative literal). We write λ ⊆ λ′, call λ a part
(subset) of λ′, if all literals in λ also occur in λ′; and λ ⊂ λ′ if λ ⊆ λ′ but not λ′ ⊆ λ.
We write Lit(λ), Lit+(λ), Lit−(λ) to mean all literals, all positive literals and all
negative literals in λ respectively. By convention ⊤ is a term of zero conjuncts. In
the glossary of Boolean classifier (function), λ is called a term or property (of the
instance s). The set of terms is noted Term. A key role in our analysis is played
by the notion of a (prime) implicant, i.e., a (subset-minimal) term which makes a
classification necessarily true.

4.5.1 Prime implicant and abductive explanation

Definition 4.8 (Implicant (Imp) and prime implicant (PImp)). We write Imp(λ, c)
to mean that λ is an implicant for c and define it as Imp(λ, c) =def □(λ → t(c)).
We write PImp(λ, c) to mean that λ is a prime implicant for c and define it as

PImp(λ, c) =def □
(
λ →

(
t(c) ∧

∧
p∈Atm(λ)

⟨Atm(λ) \ {p}⟩¬t(c)
))
.

60 CHAPTER 4. APPLICATION TO LEGAL CASE-BASED REASONING

According to the definition, λ being an implicant for c means that any state s
verifying λ is necessarily classified as c (necessity); and λ being a prime implicant
for c means that any proper subset of λ is not an implicant for c (minimality).6
Implicants explain the classifier in the sense that to know an implicant satisfied at
a state is to know the classification of the state.

Our first result bridging classifier explanations and case bases is the following
proposition. To put it simply, if a consistent case base CB has a precedent (s,X, c),
then for any classifier model representing CB, s must be incompatible with every
prime implicant λ for c. Otherwise, by definition s should be classified as c instead of
c. This would imply that CB is inconsistent thanks to the representation theorem.
To ensure that s is incompatible with every prime implicant λ for c, either λ has
some literal ¬p, where p is in X and hence is true at s; or λ has some literal p,
where p < s ∩ Atmc

0 and hence is false at s.

Proposition 4.3. Let CB be a consistent case base and (s,X, c) ∈ CB, and C ∈
CMprec s.t. (C, s) |= tr2(CB). Then, ∀λ ∈ Term,, if (C, s) |= PImp(λ, c), then
either X ∩ Atm(Lit−(λ)) , ∅ or s ∩ Atmc

0 ⊉ Atm(Lit+(λ)).

Example 4.6. Let C = (S, f) ∈ CMprec be a model of tr2(CBex). Obviously
deceive cannot be PImp for 0, otherwise f(s1) = 0, contrary to c1. Also ¬re-engine
∧bribe cannot be PImp for 1, otherwise f({bribe, else-obtain, voluntary}) = 1,
contrary to c2.

As mentioned, people in XAI focus more on local (prime) implicants, namely
(prime) implicants true at the current state. This gives rise to definitions of abduc-
tive explanation and its weak version.

Definition 4.9 (Abductive explanation (AXp) and weak abductive explanation
(wAXp)). We write AXp(λ, c) to mean that λ abductively explains the decision
c and define it as AXp(λ, c) =def λ ∧ PImp(λ, c). We write wAXp (λ, c) to mean
that λ weak-abductively explains the decision c and define it as wAXp (λ, c) =def
λ ∧ Imp(λ, c).

The proposition below states that every reason (of a fact situation in a consistent
case base) is a positive part of some weak AXp of that situation in any classifier
representing the case base. In fact, for any precedent (s,X, c) in a consistent case
base, we can always identify one weak AXp in any of its CM representation, i.e.,
simply the conjunction of all factors in X and negations of all c-factors that are in
s.

Proposition 4.4. Let CB be a consistent case base, (s,X, c) ∈ CB, and C ∈
CMprec be a model of tr2(CB). Then ∃λ ∈ Term s.t. Atm(Lit+(λ)) = X and
(C, s) |= wAXp (λ, c).

6Notice that we have not fully used the expressive power of [X]φ and ⟨X⟩φ until now for
minimality. The intuitive meaning of ⟨Atm(λ) \ {p}⟩¬t(c) in the formula is that even if we just
perturb one variable p in λ from its actual value, the classification will no longer be c.

4.5. EXPLANATIONS AND LANDMARKS 61

Example 4.7. Let C ∈ CMprec be a model of tr2(CBex). Then we have (C, s1) |=
wAXp (deceive ∧ ¬re-engine, 1) and (C, s2) |= wAXp (voluntary ∧ ¬deceive ∧
¬security, 0). Notice that (C, s2) |= ¬wAXp (voluntary, 0) though {voluntary}
is the reason of c2, because e.g. (C, s1) |= voluntary∧¬t(0). It exemplifies that both
pro-factors in the reason and con-factors absent (i.e. deceive, security here) are
decisive.

The proposition above has a notable limitation: it bridges only the relation
between reasons (of a consistent case base) and weak AXps (in the CMs that rep-
resent it), since reasons in general do not meet the minimality condition in the CM
representations. This is due to the fact that according to Theorem 4.3, there are
different CMs which can represent the same case base CB, as long as they satisfy
tr2(CB) ∧ 2Mon ∧ Compl. They may well have different prime implicants. In light
of this we should concentrate on genuine classifiers as defined in the last section,
for we have “better control” over the genuine classifier of a case base compared to
other classifiers representing it. Interestingly, in genuine classifiers the prime impli-
cant is shown to be related to a specific notion that has been recently suggested in
case-based reasoning.

4.5.2 Prime implicant and landmark case

In [Van Woerkom et al. 2022], a notion called landmark case was introduced. The
notion relies on an observation, that some precedents are superfluous in a case base,
since their outcomes are forced by other precedents. In contrast, a landmark case
“represents new legal ground, and the decision maker has used its discretion, going
beyond what is decided by other cases” [Van Woerkom et al. 2022].

The original context of landmark cases is in dimensions rather than factor-based
models. However, we can easily define the landmark case in the latter context. We
bridge landmark cases and prime implicants, in showing that in the factor-based
models landmarks “are” prime implicants, because the former have a subset-minimal
pro-factors present, and a subset-minimal con-factors absent, which correspond the
positive literals and negative literals in the latter respectively.

Definition 4.10 (Landmark case in factor-based case base). Let CB be a Horty
case base and c = (s,X, c) ∈ CB. We say that c is ordinary, if ∃c′ = (s′, X ′, c) ∈ CB
s.t. s ∩ Atmc

0 <c′ X and c′ , c. Otherwise c is called a landmark case.

In plain words, (s,X, c) ∈ CB is a landmark, if the decision c for s cannot be
forced by any other precedent in CB via a fortiori reasoning.

Example 4.8. Take the case base CBex. Suppose it expands with a new case
({deceive, else-obtain, re-engine, voluntary}, {deceive}, 1). The new case
is a landmark and c1 = ({deceive, security, else-obtain, voluntary}, {deceive}, 1)
becomes ordinary, since the latter is forced by the former.

62 CHAPTER 4. APPLICATION TO LEGAL CASE-BASED REASONING

Indeed, the new precedent above is a “strongest” case, since it has only one
Plt-factor present but beats all Dfd-factors (i.e. no Dfd-factor absent). We say “a”
rather than “the”, because it is subset-minimality rather than cardinal-minimality.

The result below reveals the aforementioned relation between landmarks in a
case base and prime implicants in its genuine classifier.

Proposition 4.5. Let CB be a consistent case base and C = (2Atm0 , f) its genuine
CM. Then, c = (s,X, c) is a landmark if and only if (C, s) |= PImp(∧p∈s∩X p ∧∧
q∈Atmc

0\s ¬q, c).

The following fact is not hard to see in light of the fact that a classifier always
has a prime implicant for each direction.

Fact 4.2. Let f be the genuine classifier of some consistent case base CB and s

a fact situation. Then, f(s) = c with c ∈ {0, 1} if and only if there is a landmark
precedent for c in CB.

At the end of last section we mentioned that some case bases have the same
genuine classifier. The following fact is not hard to see and gives the sufficient and
necessary condition of having the same genuine classifier in terms of landmark cases.

Fact 4.3. Two case bases (regardless of whether in the same language) force the
same set of fact situations, if and only if they have the same landmark cases.

4.5.3 Contrastive explanation

The idea of contrastive explanation is dual with abductive explanation, since it
points to a minimal part of a situation whose change would falsify the current
decision, and the duality between their weak versions is similar [Huang et al. 2022].
A conjunction of literals λ is a contrastive explanation for outcome c in situation
s, if the following conditions are satisfied: (a) λ is true at s, and s has outcome c,
(b) if all literals in λ were false then the outcome would be different, (c) λ is the
subset-minimal literals satisfying (a) and (b). A weak contrastive explanation is
only based on conditions (a) and (b).

Definition 4.11 (Contrastive explanation (CXp) and weak CXP (wCXp)). We
write CXp(λ, c) to mean that λ constrastively explains the decision c and define

CXp(λ, c) =def λ ∧ ⟨Atm0 \ Atm(λ)⟩¬t(c) ∧
∧

p∈Atm(λ)
[(Atm0 \Atm(λ)) ∪ {p}]t(c).

We write wCXp (λ, c) to mean that λ weak-contrastively explains the decision c and
define it as wCXp (λ, c) =def λ ∧ t(c) ∧ ⟨Atm0 \ Atm(λ)⟩¬t(c).

Intuitively speaking, we can test whether λ is a wCXp of situation s having
outcome c by “flipping” its positive literals to negative, and negative to positive,
and observe if the resulting state is classified differently from c. CXps are the
subset-minimal wCXps.

4.6. HORTY CASE BASES AND MONOTONE PBFS 63

We can investigate the relations between precedents in a case base and CXps
of its genuine classifier. 7 In plain words, given a genuine classifier of a case base,
consider any CXp λ of a fact situation s. According to the proposition below, there
exists a precedent in the case base, such that by flipping values of factors in λ one
moves from s to a fact situation which is classified differently by a fortiori reasoning
with the precedent.

Proposition 4.6. Let CB be a consistent case base, C = (2Atm0 , f) its genuine
classifier. Then, for all λ ∈ Term, s ∈ 2Atm0 with f(s) = c, if (C, s) |= CXp(λ, c)
then ∃(s′, X, c) ∈ CB s.t. Lit−(λ) ⊆ X and Lit+(λ) ⊆ Atmc

0 \ s′.

Notice that the inverse of the proposition does not hold but has to be weakened
from CXp to wCXp . The reason for that is, again, that a precedent in a case base
may not be “minimal” in terms of a fortiori reasoning.

Let us end this section with a continuation of our running example.

Example 4.9. Let C = (S, f) be the genuine classifier of CBex. Recall that c2 =
({bribe, else-obtain, voluntary}, {voluntary}, 0) where {bribe, else-obtain,
voluntary} is simply noted s2. We have (C, s2) |= CXp(bribe ∧ ¬deceive, 0),
for c1 = ({deceive, security, else-obtain, voluntary}, {deceive}, 1) ∈ CBex,
such that Lit−(bribe ∧ ¬deceive) = {deceive} and Lit+(bribe ∧ ¬deceive) =
{bribe} ⊆ Dfd \ s1.

4.6 Horty Case Bases and Monotone pBFs

We have been frequently spoken of monotonicity. For instance, the pivotal formula
for the representation theorem is termed two-way monotonicity. The formula is
designed to encode a fortiori reasoning, which follows the superset of pro-factors
plus subset of con-factors pattern. Now we show that this naming is not arbitrary
due to the relation between genuine classifiers and partial Boolean functions (pBFs).

Partial Boolean function (or partially defined Boolean function, as being used in
[Crama & Hammer 2011]) is a generalization of Boolean function where the domain
is partial. The definition of monotone Boolean function defined in Section 2.1.4 ap-
plies to partial Boolean functions with only a slight refinement, namely introducing
a third output 0.5 standing for “undefined”. Though the idea is natural and simple,
to the best of my knowledge, monotone PBFs have not been studied in literature.
Notice that in pBF there are also another two ways of defining monotone variables,
see details in Appendix C.

Definition 4.12 (Monotonicity in pBF). Let f : 2Atm0 −→ {0, 1, 0.5}. We say that

• f is positive in p, if ∀s ∈ 2Atm0 , f(s) ≥ f(s \ {p});
7Without defining genuine classifier we cannot use CXp, since for a case base, its CM rep-

resentations may have different contrastive fact situations minimally changed from the current
one.

64 CHAPTER 4. APPLICATION TO LEGAL CASE-BASED REASONING

• f is negative in p, if ∀s ∈ 2Atm0 , f(s) ≤ f(s \ {p}).

We say that f is monotone in p, if f is positive or negative in p. Moreover, f is
monotone, if f is monotone in all its variables.

We also sometimes say p is positive/negative instead of f being positive/negative
in p for short. Obviously the definition above is completely in line with us if we
interpret ? as 0.5, and therefore below we will write ? instead of 0.5 for uniformity.

Equipped with the definitions of monotone variable and pBFs we can see their
correspondence with Horty case bases. The main result is below.

Proposition 4.7. Fix a language with Atm0 = Plt ∪ Dfd. Let f be the genuine
classifier of some consistent Horty case base. Then ∀p ∈ Atm0,

1. if p is non-negative, then p ∈ Plt; and if p ∈ Plt, then p is positive;

2. p is non-negative, if and only if

• p is present in the reason of some landmark precedent for 1 or p is absent
from some landmark precedent for 0;

3. if p is non-positive, then p ∈ Dfd; and if p ∈ Dfd, then p is negative;

4. p is non-positive, if and only if

• p is present in the reason of some landmark precedent for 0 or p is absent
from some landmark precedent for 1.

So we provide a necessary and a sufficient condition respectively for a variable
being a member of Plt (or Dfd) by means of monotone variables. What is more, we
show what role a variable plays in the case base if it is non-positive or non-negative.
Namely, p plays essential roles in landmarks – either it is present in the reason in
some landmark, or it is absent from the set of con-factors in some landmark. The
equal importance of being present and being absent is in line with the observations
in the previous sections.

Notice that the inverses of the first and third statements in Proposition 4.7 do
not hold. Namely, we cannot from e.g. p being positive infer p ∈ Plt. The reason
is that p can be inessential when it is both positive and negative. The notion of
(in)essential variable in Boolean functions is defined in Section 2.16, and naturally
applies also to pBFs. Plainly speaking, it means f(s) = f(s \ {p}) for any s. The
partition of Plt∪Dfd is a priori such that in general we cannot “revive” the partition
through the monotonicity of variables in the classifier.

The observation therefore indicates that, comparing with p being A for A ∈
{positive, negative}, it is rather p being non-A more informative. To be non-A one
needs a “pair of witnesses” (s, s \ {p}) s.t. flipping the value of p alone changes
the output. This gives us extra information about the case base that the classifier
genuinely represents.

4.7. CONCLUSION 65

a variable can be yes/no when/because
both positive and negative ✓ when it is inessential

neither positive nor negative × because of a fortiori reasoning
both A and non-B ✓ when it plays a pivotal role landmarks

Table 4.1: Monotonicity of variables in genuine classifiers, A,B ∈ {negative,
positive} and A , B

We can summarize the monotonicity of variables in genuine classifiers through
Table 4.1, where ✓ means can be and × cannot be. We say “it plays a pivotal role in
landmarks” to mean it appears in the reason of, or disappears from the con-factors
of some landmark precedent, s.t. when its value flips in some case of the case base,
the outcomes changes accordingly.

The final result comes as a corollary of Proposition 4.7, which establishes the
expected relation between genuine classifiers and monotone pBFs.

Corollary 4.3. Any genuine classifier of some consistent Horty case base is a
monotone pBF.

At last, we analyze what grounds the correspondence. Apparently a fortiori
reasoning is a key property that leads to monotone pBFs. But it is not the only
one responsible for that. There are another two properties, without which it is
impossible to represent a case base as a pBF, “a fortiori” a monotone pBF.

1) The closed-world assumption. In database and AI, the closed-world assump-
tion says that absence means falsity. Namely, if a variable is not found in the current
database, then it is assumed to be false. Since we represent the absence of p as ¬p,
we adopt the closed-world assumption.

2) The finiteness of |Atm0|. Recall that we fix our language as the union of
finite set of variables/features/factors and the decision set {t(0), t(1), t(?)}. This,
together with the closed-world assumption, allows us to syntactically represent a
fact situation as the conjunction of a maximal consistent set of literals. Recall
that if |Atm0| is infinite, the conjunction of maximal consistent set of literals is
syntactically illegal, i.e. not a well-formed formula.

4.7 Conclusion

In this chapter, we have demonstrated that through the concept of classifier a novel
logical model of factor-based case-based reasoning can be provided, which allows
for a rigorous analysis of case bases and of the inferences they support. In addition,
it is revealed that under which conditions case bases under precedential constraint
with a fortiori reasoning can be viewed as monotone partial Boolean functions.

As noted in the introduction, our work is based upon the case-based reasoning
models of HYPO and CATO [Ashley 1990, Aleven 2003] and upon the analysis of

66 CHAPTER 4. APPLICATION TO LEGAL CASE-BASED REASONING

precedential constraint by Horty [Horty 2011, Horty & Bench-Capon 2012]. Fur-
ther approaches exist that make use of logic in reasoning with cases. For instance,
[Prakken & Sartor 1998] provided a factor-based model based on formal defeasible
argumentation. More recently [Zheng et al. 2020a, Zheng et al. 2020b] represent
precedents as propositional formulas and compare precedents by (propositional)
logical entailment.

However, the propositional representation does not fully use the power of logic,
in the sense that it does not provide a proof theory (axiomatics) for reasoning with
precedents. By contrast, besides the semantic framework presented here, we can
make syntactic derivations of properties of CBR using the axiomatics of BCL (an
instance can be found at the end of Appendix B).

Moreover, our results allow for exploring different notions of explanation, such
as abductive and contrastive explanations. We can accordingly explain why a case-
based reasoning suggests a particular outcome (rather then a different one) in a
new case. Thus, our model could be used to build explainable case-based reasoners,
which could also be deployed to reproduce and analyze the functioning of opaque
predictors of the outcome of cases. Thus, by bringing CBR into the broader context
of classifier systems, we connect three lines of research: legal case-based reasoning,
AI&Law approaches to explanation [Atkinson et al. 2020], techniques and results
developed in the context of XAI.

In future work we will examine more deeply the relation between classifiers,
explanations, and reasoning with legal precedents. Interesting developments pertain
to addressing analogical reasoning beyond the a fortiori constraint considered here
and to deploying ideas of explanation to extract knowledge out of cases (e.g., to
determine the direction of factors and the way in which they interact).

Chapter 5

Hamming Distance as
Grounded Distance

In Chapter 3 we have introduced a family of counterfactual conditional opera-
tor ⇒X . The semantic interpretation is based on the Hamming distance between
states/worlds. It was mentioned there when Atm0 is finite, ⇒Atm0 satisfies all se-
mantic conditions of Lewis’ logic VC. Moreover, since in classifiers we assume all
inputs can be perturbed into any other input, the semantic constraint U (unifor-
mity) is also satisfied, which makes the ⇒Atm0 an operator for Lewis’ VCU.

This chapter is dedicated to a follow-up, relatively independent, question: what
if Atm0 is infinite, and we make the counterfactual conditional operator as primitive
instead of defining it from the modal operator (as we did for ⇒X)? That is to ask,
what axiom besides the ones in VCU, if any, does one need in order to capture
such a Hammingian semantics. As we will see, the answer is no, no extra axiom
is needed. In other words, any abstract notion of minimal change for VC and VCU
can be re-interpreted as the Hamming distance. It is in this sense we call Hamming
distance “grounded”.

Contents
5.1 Introduction . 68

5.2 Lewis’ V Models . 69

5.3 Hammingian Models for Counterfactuals 72

5.3.1 Hammingian Lewis Models 72

5.3.2 Model (Sub)classes: a Comparison 73

5.3.3 Hamming State Models . 74

5.4 Equivalence Results Given Infinite Atoms 75

5.4.1 A Failed Attempt . 76

5.4.2 Weighted Tree is Hammingian 77

5.4.3 VC ≡ HVC . 78

5.4.4 VCU ≡ HVCU . 81

5.5 Conclusion . 84

68 CHAPTER 5. HAMMING DISTANCE AS GROUNDED DISTANCE

5.1 Introduction

Logics of counterfactual conditionals are widely studied and used in different ar-
eas including philosophy, linguistics and artificial intelligence. Among many log-
ics of counterfactuals Lewis’ VC, VCU and their relatives are arguably the most
influential ones.1 They correspond to, not only many other logics of counterfac-
tuals, but also many popular theories in other fields e.g. AGM (belief revision)
[Grove 1988], KM (belief update) [Grahne 1998], and KLM (preferential reasoning)
[Kraus et al. 1990].

One reason for the correspondences is that they can all be subject to some se-
mantics of minimal change, a term first used in [Gärdenfors 1984] and later becomes
a standard umbrella term for the relative fields, e.g. [Katsuno & Mendelzon 1991,
Aiguier et al. 2018]. That is to say, for instance, given a counterfactual conditional
φ � ψ, if φ is not true at the actual world w, then one should check whether
ψ holds at the worlds “closest” to w regarding φ. Closeness in the sense that the
change from the actual one must be minimal.

But how is the distance for closeness defined? Most former systems in the
literature are equipped with some abstract relation such as epistemic entrenchment,
system of spheres, subformulas relations, faithful ordering etc, in order to obtain
the additional information to construct the distance measure.

On the other hand, the Hamming distance is defined as the minimum number of
substitutions required to change one string into another. In the context of possible
world, it needs no more information than the number of atomic propositions that
two worlds disagree on.

Now if we ask for some concrete definition of distance instead of those mysterious
ones, the Hamming distance is a natural example, e.g. “one candidate of explication
. . . is the Hamming distance” [Dizadji-Bahmani & Bradley 2014], “the most com-
monly used is the Hamming distance” [Aiguier et al. 2018]. To our knowledge, this
is the much preferred of the only two concrete definitions of distance.2

Hence it is not a surprise that a few systems directly define distance as Hammin-
gian. The most famous one is the Dalal operator for belief revision [Dalal 1988], and
follow-up works are e.g. [Pozos-Parra et al. 2013, Delgrande & Peppas 2015]. How-
ever, a shortcoming is that they all only consider a finite set of atoms/variables. To
our limited knowledge, no much literature in AI studies/justifies using Hamming
distance given (countably) infinite atoms, though there are some [Williamson 1988,
Floridi 2010] in philosophy with different interests.

In explainable AI (XAI), the Hamming distance is the “right” distance measure
for binary classifier explanation, because the input variables are mutually indepen-
dent, and counterfactual reasoning is performed by perturbing some variables and

1Through this chapter, we use VC to denote both the logic and its axiomatics, VC is the name
of the model of VC and VC its model class. We do the same for other Lewis’ logics mentioned
here.

2The other one not requiring additional information uses the subset relation: v ⪯w u iff
V (w)△V (v) ⊆ V (w)△V (u), △ denoting symmetric difference.

5.2. LEWIS’ V MODELS 69

observing the output. In Chapter 3 we came up with a conditional operator ⇒
based on the Hamming distance and finite atoms in the language that essentially
corresponds to a version of Lewis’ VCU. Moreover, ⇒ “is axiomatizable” by reduc-
ing to the S5 modal operator. But the case of infinite atoms was left unstudied.
3

To address the undone work, we conjecture the semantic constraint of distance
being Hammingian is unaxiomatizable if the language has (countably) infinite atoms.
That indicates that the Hamming distance grounds VC and VCU, in the sense that
their classes of models satisfy the same set of formulas as their subclasses with
Hamming distance.

The rest of the chapter is structured as follows. Section 2 introduces Lewis’ V
models. In Section 3 we define Hammingian models and demonstrate some findings
in their own right. The main result is in Section 4, where we show Hamming
distance grounds VC and VCU. Section 5 concludes. 4

5.2 Lewis’ V Models

Definition 5.1. The language for logics of counterfactual L(Atm) is defined as
follows

φ ::= p | ¬φ | φ ∧ φ | φ� φ,

where p ranges over Atm, a set of countable atomic propositions. Let atm(φ) denote
the atoms occurring in φ.

Operators ∨,→,↔ are defined as usual, and ⊥ defined as p ∧ ¬p, ⊤ as ¬⊥,
φ� ψ as ¬(φ� ¬ψ), □φ as ¬φ� ⊥ and ^φ as ¬(φ� ⊥).

We then introduce the comparative similarity model of Lewis’ V logics (V model
in short).

Definition 5.2 (V model). A tuple M = (W, (Ww)w∈W , (⪯w)w∈W , V) is called a
V model if W is a non-empty set of worlds, V : W −→ 2Atm a valuation, and for
all w ∈ W , Ww ⊆ W and ⪯w is a partial order on Ww for comparative similarity
with the following constraint:

• Connectedness: ∀v, u ∈ Ww either v ⪯w u or u ⪯w v.

We have v ≺w u if v ⪯w u and u ⪯̸w v; v ≈w u if v ⪯w u and u ⪯w v. We call M
finite if W is finite. The class of V models is noted V.5

3We keep the notational difference of ⇒ in Chapter 3 and � here. It helps remind the fact
that ⇒ is a shorthand for ⇒Atm0 where Atm0 is finite, while � has been discussed in a broader
context where the cardinality of the language is restricted to finiteness. Also we do not introduce
Dec into Atm as before since the axioms for decision atoms are not at stake.

4Since the main section of the chapter is a proof, we do not put proofs into the appendices as
before.

5Unfortunately the V for V model coincides with the V for valuation. While the reader can
distinguish them from context, we mostly discuss V models with extra properties like VC and VCU
models, so there should be minimal confusion. We do not simply say ⪯w is a total order to hint
that there are weaker models than V models as investigated e.g. in [Burgess 1981].

70 CHAPTER 5. HAMMING DISTANCE AS GROUNDED DISTANCE

We note that standard presentations of V models usually do not contain the
family of world-indexed sets of accessible worlds Ww but define it from ⪯w by
Ww =def {u : ∃v ∈ W,u ⪯w v}. We prefer to make this component explicit because
it will be useful in the rest of the chapter.
Definition 5.3 (Satisfaction relation). Let M = (W, (Ww)w∈W , (⪯w)w∈W , V) be a
V model and w ∈ W :

(M,w) |= p ⇐⇒ p ∈ V (w);
(M,w) |= ¬φ ⇐⇒ it is not (M,w) |= φ;

(M,w) |= φ ∧ ψ ⇐⇒ (M,w) |= φ and (M,w) |= ψ;
(M,w) |= φ� ψ ⇐⇒ ∀v ∈ Ww, if (M,v) |= φ then

∃u ∈ Ww s.t. 1) u ⪯w v,

2) (M,u) |= φ ∧ ψ, 3) ∄u′ ∈ Ww,

u′ ⪯w u and (M,u′) |= φ ∧ ¬ψ.

Satisfiability and validity are defined in the usual way. We write |=V φ if φ is
valid relative to V, that is, if (M,w) |= φ for every M ∈ V and every w of M .

The satisfaction relation for φ� ψ, complex as it seems, captures the idea of
minimal change by means of ⪯w. In virtue of connectedness, it can be simplified as
(∀v ∈ Wv, (M, v) |= ¬φ) or (∃u ∈ Wv, (M,u) |= φ and ∀u′ ≤w u, (M,u′) |= φ → ψ).
Intuitively, (M,w) |= φ� ψ means that all the closest φ-worlds to w make ψ true,
with the vacuously true case when φ is false everywhere in Ww. Actually, if the
model satisfies the limit assumption (defined below), we have a simpler, equivalent
satisfaction relation below in the light of Lewis’ famous equivalence result.6

Definition 5.4 (Selection function). Let M = (W, (Ww)w∈W , (⪯w)w∈W , V) be a
V model, w ∈ W and φ ∈ L(Atm). We define σw(φ), the selection function of w
regarding φ, as

σw(φ) =def {v ∈ Ww : (M,v) |= φ & ∀u ∈ Ww, if u , v
and (M,u) |= φ, then u ⊀w v}.

Definition 5.5 (Limit assumption). Let M = (W, (Ww)w∈W , (⪯w)w∈W , V) be a
V model. It satisfies the limit assumption, if for all w and φ, if ∃v ∈ Ww s.t.
(M, v) |= φ then ∃u ∈ Ww s.t. (M,u) |= φ, and ∀u′ ∈ Ww either u′ ⊀w u or
(M,u′) |= ¬φ.
Fact 5.1. Let M = (W, (Ww)w∈W , (⪯w)w∈W , V) be a V model sharing limit assump-
tion and w ∈ W . Then (M,w) |= φ� ψ if and only if ∀v ∈ σw(φ), (M,v) |= ψ.

Since the limit assumption cannot be axiomatized, accepting it or not (Lewis
rejected it, unlike most people) actually does not make a substantial difference.
However, it echoes in the next section as an interlude.

6We ignore the technical issue that σw shall take as input the semantic proposition ||φ||M =def
{v : (M, v) |= φ} instead of the formula φ.

5.2. LEWIS’ V MODELS 71

The V models are too weak to capture most intuitions about counterfactual rea-
soning. Hence many additional constraints have been considered in the literature.
The following are commonly accepted, for every w of the given model,

• Normality (N): Ww , ∅;

• Total reflexivity (T): w ∈ Ww;

• Weak centering (W): w ∈ Ww and ∀v ∈ Ww, w ⪯w v;

• Centering (C): w ∈ Ww and ∀v ∈ W , if v ⪯w w then v = w;

• Uniformity (U): Ww = W .

Most constraints are self-explained. Weak centering says that no other world is
closer to the current world than itself (but can be equally close); while Centering
says that the current world is closer to itself than any other world. The hierarchy
of the first four is not hard to see, that each one is stronger than the one above it.

From the metaphysical viewpoint, Centering is an almost self-evident assump-
tion. Therefore Lewis takes VC, the logic V in adddition with Centering, as his
“official logic for counterfactuals”.7 Uniformity is an additional constraint desir-
able for VC “in order to forget the bothersome accessibility restrictions and identify
the outer modalities with the logical modalities” [Lewis 1995, p. 130]. That means,
□φ expresses the universal S5 modality. Lewis names the resulting logic VCU.

By contrast, the following constraints are less desirable:

• Stalnakerian (S) (Conditional excluded middle): for each w and φ,
either σφ(w) = ∅ or |σφ(w)| = 1;

• Absoluteness (A): ∀w, v ∈ W , ⪯w = ⪯v.

Lewis calls the first one “Stalnaker’s assumption”, for [Stalnaker 1968] assumes
the selection function associates to every world at most one world (and not a set of
worlds as the above functions σw). It is a bit arbitrary to rule out the possibility that
two worlds are equally close to the current one, as illustrated by the famous “if Bizet
and Verdi had been compatriots, they would be French” example of [Quine 1950].

As for the second one, it is assumed in some papers in the literature e.g.
[Kraus et al. 1990, Goldszmidt & Pearl 1992] .[Friedman & Halpern 1994] proves that
for the complexity of conditional logics “absoluteness makes the problem easier”.
However, it is such a strong constraint that it becomes unimportant which the in-
dexical/actual world is. Hence [Lewis 1973, p. 131] already says that (to design a
logic for counterfactuals) “we surely must reject absoluteness”.

7Rigorously speaking, it is V plus the characteristic axiom of Centering, similar for other
cases. We will see that the model and axiomatic characterizations not always coincide in the next
section.

72 CHAPTER 5. HAMMING DISTANCE AS GROUNDED DISTANCE

Definition 5.6 (Semantics of subclasses of V). A VX model is a V model satisfying
property(ies) X with X ⊆ {N, T, W, C, U, S, A}. The class of VX models is
noted VX. Satisfaction relation, satisfiability and validity in each VX are defined
in the same way as in V.

All the model classes above can be axiomatized in a combinatorial way as the
axiomatic of V plus characteristic axioms. But for our main interests we only
introduce the axiomatics of VC and VCU.

Definition 5.7 (Axiomatics of VC and VCU). The axiomatics of VCU is the ex-
tension of propositional logic with the following axioms and inference rule. A4
characterizes Weak centering, A5 Centering and A6-7 Uniformity. Hence the
axiomatics of VC is VCU minus A6-7.

φ� φ (A1)
(φ� ¬φ) → (ψ� ¬φ) (A2)(
(φ� ¬ψ) ∨ ((φ ∧ ψ)� χ)

)
↔ (φ� (ψ → χ)) (A3)

(φ� ψ) → (φ → ψ) (A4)
(φ ∧ ψ) → (φ� ψ) (A5)
(φ� ⊥) → (¬(φ� ⊥)� ⊥) (A6)
¬(φ� ⊥) → ((φ� ⊥)� ⊥) (A7)

(ψ1 ∧ · · · ∧ ψn) → χ(
(φ� ψ1) ∧ . . . (φ� ψn)

)
→ (φ� χ)

(RCK)

Table 5.1: Axioms and rule of inference

The last notion to mention is semantic strength. Besides comparing two model
classes by subset relation, we can say one class is no weaker than the other regarding
their sets of satisfiable formulas.

Definition 5.8 (Semantic strength). Let A,B be two model classes on the same
language. By A ⊑ B we denote for every φ, if φ is satisfiable in A, then φ is
satisfiable in B; by A ⊏ B we denote A ⊑ B but not B ⊑ A; by A ≡ B we denote
both A ⊑ B and B ⊑ A and call them equivalence.

Notice that if A ⊆ B then B ⊑ A, but the inverse does not necessarily hold. In
particular, possibly A , B and A ≡ B.

5.3 Hammingian Models for Counterfactuals

5.3.1 Hammingian Lewis Models

In a certain sense, Lewis’ models are Kripke models plus relations of comparative
similarity. A natural question is: closeness (similarity) according to what measure?

5.3. HAMMINGIAN MODELS FOR COUNTERFACTUALS 73

As mentioned in literature, the most concrete and almost standard example in the
literature is closeness in the sense of the Hamming distance between possible worlds.

Definition 5.9 (Hamming distance between worlds). Let W be a non-empty set of
worlds and V : W −→ 2Atm. For any w, v ∈ W , their Hamming distance under V
is defined as ℏV (w, v) = |V (w)△V (v)|, where △ denotes symmetric difference.

Definition 5.10 (Hammingian V model). A V model M = (W, (Ww)w∈W , (⪯w

)w∈W , V) is Hammingian if ∀v, u ∈ Ww, v ⪯w u iff ℏV (w, v) ≤ ℏV (w, u). The class
of HV models is noted HV. The subclasses of HV models are defined and noted in
the similar way as V models.

Interestingly, the disputation of accepting limit assuption or not does not bother
us in HV.

Fact 5.2. Every HV model satisfies the limit assumption.

Although the limit assumption is closely related to well-foundedness, it is not
the case that ⪯w is well-founded. Indeed, let p1, p2, . . . be some enumeration of the
atoms of Atm and let M = (W, (Ww)w∈W , (⪯w)w∈W , V) be the HVU model where
W = Atm ∪ {p1, . . . , pn : n ∈ N} and V is identity. Then {p1} ≻Atm {p1, p2} ≻Atm
{p1, p2, p3} ≻Atm . . . is an infinite descending chain.

A special case are HV models containing all logically possible worlds, i.e., all
elements of 2Atm . This corresponds to the semantics of [Dalal 1988] for database
updates. For that semantics, Πp

2 completeness of deciding whether φ → (ψ �
χ) was proved in [Eiter & Gottlob 1992], and the validities were axiomatized in
[Herzig 1998].

5.3.2 Model (Sub)classes: a Comparison

Subset relations between V model subclasses are shown in [Lewis 1973, Figure 5, p.
131], where semantic strength relations are just inverses of the former. We will see
that in HV, Hamming distance not only determines the comparative similarity, but
also “perturbs” the constraints of V models. Consequently, more relations between
subclasses of HV can be found. Particularly, subset and semantic strength relations
no more just inverse. A summary is in Figure 5.1.

Proposition 5.1. HVT = HVW.

Proof. Inherited from the V models, HVT ⊇ HVW. For the other direction,
let M = (W, (Ww)w∈W , (⪯w)w∈W , V) be an HVT model. Then by the Hamming
distance obviously ∀w ∈ W, ∀v ∈ Ww, w ⪯w v, i.e. M is weakly centered. □

Similarly, the fact below is easy to see.

Fact 5.3. HVU ⊂ HVW.

74 CHAPTER 5. HAMMING DISTANCE AS GROUNDED DISTANCE

•
HV

•
HVN

•
HVT

•
HVW

•
HVC

•
HVCU

•
HVU

=
⊂ ⊏ ≡

Figure 5.1: Model class relations. Black parts are results of Lewis where arrow
means subset relation between model classes; blue parts are new findings of their
Hammingian subclasses, where each dash line means the relation by its indicator in
{=,≡,⊂,⊏}.

Fact 5.4 (Indiscernibility). Let M = (W, (Ww)w∈W , (⪯w)w∈W , V) be an HVU
model. Then ∀w, v ∈ W , V (w) = V (v), if and only if v ⪯w w if and only if
⪯w = ⪯v.

Proposition 5.2. HVC ⊐ HVU.

Proof. Suppose M ∈ HVU. First, observe that for every w ∈ W , the closest worlds
around w is all those worlds v such that v ⪯w w. Second, by Fact 5.4 v ⪯w w implies
that V (v) = V (w) and ⪯v=⪯w. Third, we define a relation Z ⊆ W ×W by: wZv
iff V (w) = V (v). Thanks to the second observation, it is not hard to see that Z is a
bisimulation. It follows that all closest worlds around w satisfy the same formulas.
Hence the centering axiom is valid in HVU models. □

Noticing that HVCU ⊂ HVU, the following result becomes obvious.

Fact 5.5. HVU ≡ HVCU.

5.3.3 Hamming State Models

One can argue conceptually that Hamming distance commits us to identify a world
with its valuation, or even stronger, that the real model shall be defined by valua-
tions of variables rather than more abstract entities, namely worlds. Formally we
can define the following.

Definition 5.11 (Hamming state model). We call a model S = (S, (Ss)s∈S) a
Hamming state model with parameters8 if S ⊆ 2Atm and ∀s ∈ S, Ss ⊆ S. If Ss = S

for each s ∈ S, we just call it a Hamming state model.

The use of the Hamming distance is justified by Leibniz’s law in [Floridi 2010].
For any w, v in a model, they are identical if w = v; equivalent if V (w) = V (v);
indiscernible if w ≈u v for every u in the model. Fact 5.4 states the indiscernibility
of equivalences in HVU. Centering states a stronger property: the identity of
equivalences in HVU (but with a restriction to accessible worlds). Thus we can

8We call this one “Hamming”, while the adjective “Hammingian” qualifies HV models.

5.4. EQUIVALENCE RESULTS GIVEN INFINITE ATOMS 75

examine the philosophy from a more logical viewpoint in terms of bisimilarity and
isomorphism.

Fact 5.6. Let M = (W, (Ww)w∈W , (⪯w)w∈W , V) be an HVC model. Then ∀v ∈ Ww,
V (w) = V (v) if and only if w = v. Particularly, if M is an HVCU model then
∀w, v ∈ W,V (w) = V (v) if and only if w = v.

Proposition 5.3. Every HVU model is bisimilar to a Hamming state model with
parameters; every HVCU model is isomorphic to a Hamming state model.

Proof. Let M = (W, (Ww)w∈W , (⪯w)w∈W , V) be an HVU model. For each w ∈ W ,
let sw denote V (w). Consider S = (S, (Ss)s∈S) s.t. S = {sw : w ∈ W} and
∀sw ∈ S, sv ∈ Ssw iff v ∈ Ww. The bisimulation between the two models is obvious.
The same construction applies to HVCU but the result is stronger because of Fact
5.6. □

The above result for HVCU does not hold for weaker logics: for every X ∈
{N,T,W,C} there is a model in HVX that is not bisimular to any Hamming
state model with parameters. To see that, simply consider an HVX model with two
worlds w, v, s.t. V (w) = V (v), Ww = {w} and Wv = {v}.

Despite the isomorphism between HVCU and state models, we keep using pos-
sible worlds semantics in line with other HV models until Section 6 when state
models debut.

5.4 Equivalence Results Given Infinite Atoms

Now that the stage is set, let us raise the bold question: is the Hamming distance not
just an example, but the grounded measure of distance for VC and VCU? Grounded
in the intuitive sense that, given an infinite supply of atoms, we can transform any
non-Hammingian model to a Hammingian one while preserving the truth of some
formula. Formally the question is put as the following theses of equivalences.

Thesis 1. VC ≡ HVC.

Thesis 2. VCU ≡ HVCU.

We describe below the strategy of our proof, so that the basic line of thought is
transparent from the beginning.

Proof strategy Not all V C models can be Hammingized by simply manipulating
their valuations (no need to say preserve the truth of some φ), but any V C model
which has some tree structure can. Moreover, [Friedman & Halpern 1994] offered a
tree construction from some V C model while preserving the truth of some formula
φ. Hence, we aim to Hammingize the Friedman-Halpern tree V C model while not
affecting the truth of φ. To divide the proof into steps and conquer them separately,
we will show that if φ is satisfiable in VC then it is satisfied in a pointed VC model
(M,w0), where M is a Friedman-Halpern tree model, which fulfills the following
missions:

76 CHAPTER 5. HAMMING DISTANCE AS GROUNDED DISTANCE

1. Hammingianization: M induces an HVC model M ′;

2. Truth-preservation: (M ′, w0) |= φ.

The strategy for V CU is the same but need one further treatment.

5.4.1 A Failed Attempt

Let us start with an easy but failed attempt.
A simple thought for Mission 1, Hammingianization, is to keep the worlds and

their similarity relations, and only manipulate the valuation on Atm \ atm(φ),
resulting in a new valuation V ′ so that the Hamming distance by V ′ is in accordance
with the similarity relations in the original model. We may call such a VC model
“substantially Hammingian”.9

Definition 5.12 (Substantial Hammingianness). Let M = (W, (Ww)w∈W , (⪯w

)w∈W , V) be a VC model. We call M substantially Hammingian if there is a valu-
ation V ′, s.t. M ′ = (W, (Ww)w∈W , (⪯w)w∈W , V

′) is a Hammingian model.

Naturally this leads us to the following question: Are all VC models substantially
Hammingian? The answer is, however, negative, especially when a VC model has
a vicious circle.

Definition 5.13 (Vicious circle). Let M = (W, (Ww)w∈W , (⪯w)w∈W , V) be a VC
model. We say that M has a vicious counterfactual circle, if ∃w0, w1, . . . , wn ∈ W

s.t. w0 ⪯w1 w2 . . . , and wn−2 ⪯wn−1 wn, and wn−1 ⪯wn w0, but wn ≺w0 w1.

Then we have the following impossibility result.

Proposition 5.4. Any VC model that has a vicious circle is not substantially Ham-
mingian.

Proof. We show the case when the circle consists of 3 worlds; the other cases are sim-
ilar. Let M = (W, (Ww)w∈W , (⪯w)w∈W , V) be a VC model and w, v, u ∈ W form a
vicious circle. For whatever V ′, we should have ℏV ′(w, v) ≤ ℏV ′(v, u) ≤ ℏV ′(u,w) <
ℏV ′(w, v), by the definition of Hammingian model and using the condition of the
circle. But ℏV ′(w, v) = ℏV ′(v, w), a contradiction. □

The same definitions and same result, as its proof indicates, apply to VCU
models as well.

Example 5.1. Let φ† be the formula ¬p1 ∧ (p1 � (¬p2 ∧ (p2 � (¬p3 ∧ (p3 �

p1)))). Let a VCU model M = (W, (Ww)w∈W , (⪯w)w∈W , V) be s.t. W = {w, v, u},
V (w) = {p2, p3}, V (v) = {p1, p3}, V (u) = {p1, p2}, and v ≺w u, u ≺v w,w ≺u v.
This is depicted in Figure 5.2. Then (M,w) |= φ†, but M is not substantially
Hammingian.

5.4. EQUIVALENCE RESULTS GIVEN INFINITE ATOMS 77

•
u

• v
•w

p1
p2

p3

Figure 5.2: The vicious circle in Example 5.1. Arrows denote the relevant selection
functions. E.g., σw(p1) = {v} due to the fact that v ≺w u, though p3 is in both
V (v) and V (u).

Actually this is a difficulty not only to Hamming distance, but any total order
on pairs of worlds which intends to extend the sets of triple relations on worlds.
We can take advantage of the study in [Williamson 1988], which helps us prove the
following proposition.

Proposition 5.5. Let M = (W, (Ww)w∈W , (⪯w)w∈W , V) be a VCU model. It has
no vicious circle, if and only if there exists a total order ≤ on W 2 s.t. if v ⪯w u

then (v, w) ≤ (w, u).

Proof sketch. Necessity is shown by Example 5.1. For sufficiency, we need constitute
a total ordering ≤ on W 2. First, notice that every ⪯w can be seen as a partial
ordering on W 2 by stipulating ∀v ∈ Ww, u < Ww, v ≺w u. Hence we union all
of them to obtain a partial ordering on W 2, noted ⪯. No vicious circle ensures
the union. The second step is taking transitive closure of it, noted ⪯′. The next
step is taking the quotient w.r.t. equivalence relation of ⪯′, i.e. the relation on
the equivalent classes of W 2 with respect to ⪯′, noted ⪯′′. Last, we can use the
famous theorem in order theory that every partial order can be extended to a total
order. □

5.4.2 Weighted Tree is Hammingian

What can we learn from the former failure? The lesson is that without further
constraint on the original VC or VCU model, the ternary relations may conflict
with each other.

The last proposition indicates that the necessary condition of being a Hammin-
gian model is no vicious circle. So the tree structure appears as a natural choice.

The intuition illustrated in Figure 5.3 is that if the model associates with a
tree structure, and moreoever the tree is weighted, then it can be Hammingized by
adding the weights of edges of the path between any two vertices (worlds). But
before formalizing the intuition, let us make two remarks.

1) We beg patience at this stage about where the mysterious tree structure of a
model comes from. It will be clear in the next steps.

9Let us distinguish “substantially” and “potentially” Hammingian. The former only needs to
manipulate V to become Hammingian; while the later may copy worlds to unravel the vicious circle,
as we will do. Actually all VC models are potentially Hammingianizable by first transforming to
substantially Hammingian ones.

78 CHAPTER 5. HAMMING DISTANCE AS GROUNDED DISTANCE

•w0

•
w1

• w2

• w3

• w4

2

3

2

1

Figure 5.3: Given such a weighted tree, one can build an HV model as follows: let
W consist of the five vertices, and take a V s.t. ∀wi, wj , ℏV (wi, wj) = n if π(wi, wj)
is weighted n. Restricting Wwi = W for all wi the model is HVCU, otherwise HVC.
But of course, we cannot guarantee any truth-preservation at this stage.

2) We recall the basic notions of graph theory. For any two points (vertices)
w, v, (w, v) denotes the undirected edge between w and v. A path between w and v
is a sequence of vertices (w1, . . . , wn) s.t. w = w1, v = wn and (wi, wi+1) is an edge
for 1 ≤ i < n. A tree is an undirected graph where each two vertices w and u have
exactly one path, denoted by π(w, v). We write (wi, wj) ∈ π(w, v) if (wi, wj) is a
member of the sequence.

A weighted tree is a triple G# = (W,E,#) where G = (W,E) is a tree (with
E ⊆ W×W) and # : E −→ N. The weight of a path π(w, v) in G# is #π(w, v) =def∑

(wi,wj)∈π(w,v) #(wi, wj).

Definition 5.14 (Weighted tree VC model). Let M = (W, (Ww)w∈W , (⪯w)w∈W , V)
be a VC model, for which there exists an associated weighted tree G# = (W,E,#),
s.t. ∀w ∈ W , ∀v, u ∈ Ww, v ⪯w u ⇐⇒ #π(v, w) ≤ #π(w, u).

Lemma 5.1. Let M = (W, (⪯w)w∈W , V) be a finite VC model associated with
a weighted tree G#. Then, there is an HVC model M ′ = (W, (Ww)w∈W , (⪯w

)w∈W , V
′), s.t. ∀w, v ∈ W , ℏV ′(w, v) = 2 × #π(w, v), and ∀w ∈ W , |V (w)| is

finite.

Proof. Since no formula need be truth-preserved here, we construct V ′ ignoring V .
We take a series of disjoint unions X1 ∪ Y1 ∪ X2 ∪ Y2 ∪ . . . X|E| ∪ Y|E| ⊂ Atm and
enumerate E as e1, e2, . . . , e|E|, s.t. |Xi| = |Yi| = #(ei) for all 1 ≤ i ≤ |E|. For every
p that is not in those disjoint unions, let p < V ′(w) for all w. The construction of
V ′ says for all ei = (wj , wk) ∈ E, if π(w0, wj) ⊂ π(w0, wk), viz. wj is nearer to w0
than wk, then let V ′(wj) ∩ (Xi ∪Yi) = Xi and V ′(wk) ∩ (Xi ∪Yi) = Yi; for all el not
linking wj , simply let V (wj) ∩ (Xl ∪ Yl) = ∅. Thus, for any V ′(w), V ′(v) they differ
on 2 × #π(w, v) many variables, which makes the desired ℏV ′(w, v) = 2 × #π(w, v).
|V (w)| is finite because G# has finitely many edges with finite weights. □

The proposition below directly follows from the lemma.

Proposition 5.6. All weighted tree VC models are substantially Hammingian.

5.4.3 VC ≡ HVC

Before exhausting the reader’s patience, we now reveal where the tree comes from:
it is constructed according to subformulas in the formula φ of interest. The tree

5.4. EQUIVALENCE RESULTS GIVEN INFINITE ATOMS 79

construction is described in [Friedman & Halpern 1994].

Proposition 5.7 ([Friedman & Halpern 1994]). If φ is satisfiable in VC, then φ

is satisfiable in some tree VC model.

The proof relies on a series of lemmas to construct such a tree, which we shall
call the FH tree after the authors. For the sake of both self-containedness and
simplicity, we rephrase how the tree is constructed.

Friedman-Halpern tree for VC model The first key notion is basici(φ) ⊆
atm(φ) ∪ sub�(φ) where sub�(φ) denotes the subformulas of φ whose principal
connective is�. Intuitively, basici(φ) is defined as the union of all atoms in φ and
counterfactuals in exactly the i-th level of the nesting of φ. A formal definition is:

basici(p) =

{p} if i = 0,
∅ otherwise;

basici(¬φ) = basici(φ);
basici(φ ∧ ψ) = basici(φ) ∪ basici(ψ);

basici(φ� ψ) =

{φ� ψ} if i = 0,
basici−1(φ) ∪ basici−1(ψ) otherwise.

Take φ† = ¬p1 ∧ (p1 � (¬p2 ∧ (p2 � (¬p3 ∧ (p3 � p1)))) from Example 5.1,
then basic0(φ†) = {p1, p1 � (¬p2 ∧ (p2 � (¬p3 ∧ (p3 � p1))))}, basic1(φ†) =
{p1, p2, p2 � (¬p3 ∧(p3 � p1))}, basic2(φ†) = {p2, p3, p3 � p1} and basic3(φ†) =
{p1, p3}.

We describe an FH tree given a finite VC model M = (W, (Ww)w∈W , (⪯w

)w∈W , V) and a formula φ s.t. (M,w0) |= φ. The tree iteratively “chooses” worlds
in W as vertices according to vertices and formulas at the previous level. The root
is w0. Since the function of choosing is not necessarily injective, for any vertex v

we write v−1 for the chosen world in M . But we only write w0 for simplicity. Level
0 has only the root w0. At level 1, for any ξ � θ ∈ basic0(φ) there is a vertex
named as w0,ξ�θ. And w−1

0,ξ�θ was chosen from M with the following constraints:

1. w−1
0,ξ�θ ∈ σw0(ξ� θ), if (M,w0) |= ξ� θ and σw0(ξ� θ) , ∅;

2. w−1
0,ξ�θ is w0, if σw0(ξ� θ) = ∅;

3. w−1
0,ξ�θ ∈ σw0(ξ� θ) and (M,v) |= ¬θ, if (M,w0) |= ¬(ξ� θ).

Notice that when (M,w0) |= ξ, w−1
0,ξ�θ has to be w0. Naturally, for every such

vertex, we draw an edge between it and w0 to obtain a (sub)tree. Then define a
model Mw0 = (Ww0 , (Ww0

v)v∈W0 , (⪯w0
w)w∈Ww0

, V w0) s.t. v ∈ Ww0 if (w0, v) is an
edge; V w0(v) = V (v−1). Then, we simply put Ww0

v = ∅ if v , w0. Let ⪯w0
w0 be

a total order on Ww0 s.t. Centering is satisfied and ∀w0,ξ�θ, w0,ξ′�θ′ ∈ Ww0 ,
w0,ξ�θ ⪯w0

w0 w0,ξ′�θ′ iff (M,w0) |= ξ ∨ ξ′ � ξ.

80 CHAPTER 5. HAMMING DISTANCE AS GROUNDED DISTANCE

p� (q � r),
¬((q � p)� r)

w0

p, q � r, r

¬(q � p)
w1

q � p, ¬r, p

¬(q � r),
w2

q, r

w3

q, ¬p

w4

q, p

w5

q, ¬r

w6

p

q � p

q

q

q

q

Figure 5.4: Example for (p� (q� r) ∧ ¬((q� q)� r)

Now let v be a vertex at level 1. We define φv := ∧
ψ∈basic1(φ),(M,v−1)|=ψ ψ ∧∧

ψ∈basic1(φ),(M,v−1)|=¬ψ ¬ψ. We recursively apply the procedure on (M, v−1) and
φv to obtain a subtree and a submodel. Since sub�(φv) ⊆ sub�(φ), basici(φv) ⊆
basici+1(φ), the construction terminates. Finally, we union all of them to obtain
the FH tree and its associated VC model noted M t. Figure 5.4 illustrates a tree
truth-preserving φ relative to VC.10

Remark & convention For readability we save the recursively defined function
for the “standard name” of worlds in M t, which takes the form w∗,ξ�θ where
ξ� θ ∈ basici(φ) for some i and w∗ is the name of a world at level i. We may
enumerate these names and hence wk = wj,ψ if wk exists w.r.t. some world wj and
formula ξ� θ. Notice that while wj , wk for j , k, it is possible that w−1

j = w−1
k .

Example 5.2. Figure 5.4 is the graph G of the tree model M t constructed from some
finite VC model M and (p� (q� r) ∧ ¬((q� q)� r). The formula attached
to every edge denotes the member of basici(φ) making the target vertex exist. For
example, the arrow with p means that w1 is chosen from σw0(p� (q� r)) during
the tree construction. Formulas in each world v are the conjuncts of φv as defined
in the proof of Proposition 5.7. Notice, e.g. though w4 exists for sake of ¬(q� p),
we also know (M t, w4) |= r, because w4 is chosen from M as w−1

4 ∈ σw−1
1

(q). Since
(M,w−1

1) |= q� r, it must be r ∈ V t(w3).

Lemma 5.2. Let (M,w0) |= φ where M is a finite VC model. Then there is an
FH tree VC model M t built from (M,w0) and φ, s.t. (M t, w0) |= φ.

Hammingize the tree VC model Are we done? Almost yet not. We know
that FH tree construction is truth-preserving, and a weighted tree is substantially
Hammingian. It remains to Hammingize the weighted FH tree in order to turn
Thesis 1 into a theorem.

10We defined our tree as undirected in accordance with the semantics of ⪯w. In fact, the tree
in the construction above is better understood as directed in accordance with the semantics of
σw. However, since it causes minor problems of understanding, we do not add more definitions to
increase the opaqueness.

5.4. EQUIVALENCE RESULTS GIVEN INFINITE ATOMS 81

Theorem 5.1. Let Atm be infinite. Then VC ≡ HVC.

Proof. HVC ⊂ VC, so only need prove the only-if-part. For any φ satisfiable in
VC, using the filtration result of [Segerberg 1989], there is a finite model Mf =
(W f , (W f

w)w∈W f , (⪯f
w)w∈W f , V f) s.t. (Mf , w0) |= φ, and particularly ⋃

v∈W f V f (v) ⊆
atm(φ). That is, no world in W f verifies any variable outside of atm(φ). We
build an FH tree model M = (W, (Ww)w∈W , (⪯w)w∈W , V) from (Mf , w0) and φ.
By Lemma 5.2, (M,w0) |= φ. A weighted tree G# = (W,E,#) is defined s.t.
E = {(wj , wj,ξ�θ) : wj , wj,ξ�θ ∈ W)}, and ∀w, v, u ∈ W , if v ⪯w u then #(v, w) ≤
#(w, u). We obtain V ′ by assembling three valuations. The first one is some V h

which enables Hammingization in Lemma 5.1, with ⋃
v∈W V h(v) ∩ atm(φ) = ∅.

The second one is V , because we want V ′(w) ∩ atm(φ) = V (w) ∩ atm(φ) for truth-
preserving φ. But now the Hamming distance perturbs, which needs a third one
V b to “counterbalance” it. Let w◦, w◦ be two worlds that differ at most on atoms
in atm(φ), say, ℏV (w◦, w◦) = n. Let ⋃

v∈W V b(v) = X be disjoint from atm(φ) and⋃
v∈W V h(v) with |X| = n. Then we enumerate V (w◦)△V (w◦) as p1, p2, . . . pn, and

X as q1, q2, . . . qn,

1. let V b(w◦) ∩X = X and V b(w◦) ∩X = ∅;

2. ∀v ∈ W , ∀pi ∈ atm(φ), pi ∈ V (v) ∩ V (w◦) if and only if qi < V b(v).

This step guarantees that ∀w, v ∈ W, |V b(w) ∩ (X ∪ atm(φ))| = |V b(v) ∩ (X ∪
atm(φ))|. Namely w and v are “numerically equal” regarding atm(φ) ∪X, so that
V h can do its job right. Finally we let ∀w ∈ W,V ′(w) = V (w) ∪ V b(w) ∪ V h(w).
Obviously, M ′ is Hammingian and still (M ′, w0) |= φ. □

5.4.4 VCU ≡ HVCU

We did not apply the method above directly to VCU, because of an apparent short-
coming and a potential danger. 1) The tree VC model is not uniform but “local”:
each Wv contains only v and its adjacents. We can of course extend ⪯v to obtain
Uniformity by the information of the weighted FH tree. But then 2) one may
suppose that (Mv, v) |= ¬ξ � ⊥ holds vacuously, i.e. σvv(¬ξ) = ∅, but after the
extending possibly in M , σv(¬ξ) , ∅. Hence finally (M, v) |= ¬(¬ξ� ⊥).11

We are going to show that refining the tree construction in a certain way, not
only the shortage is overcome, the potential danger is actually no danger. The key
fact is that, though every Mwj is constructed “shortsightedly”, the original finite
model this time satisfies Uniformity. Hence if some ξ� ⊥ is vacuously true in
the tree model, that must be already vacuously true in the original model.

Instead of first presenting the refined FH tree for a VCU model and then Ham-
mingianize it, for simplicity we do the two steps simultaneously.

11[Friedman & Halpern 1994] mentioned a similar concern and hinted how to resolve it, and the
solution will in general raise the complexity to EXPTIME. They claimed to give the full details in
the full paper. According to personal communication, no full paper.

82 CHAPTER 5. HAMMING DISTANCE AS GROUNDED DISTANCE

p� (q � r),
¬((q � p)� r)

w0

p, q � r, r

¬(q � p)
w1

q � p, ¬r, p

¬(q � r),
w2

q, r

w3

q, ¬p

w4

q, p

w5

q, ¬r

w6

2: p

3: q � p

1: q

1: q

1: q

1: q

Figure 5.5: A weighted tree G# for G in Figure 5.4

Forward-weighted tree for HVCU model Let the FH tree construction re-
main the same, but the input model is VCU instead of VC. The output model is
(still) a tree VC model. Now our goal is an HVCU model, where Uniformity is
obtained naturally by generalizing all W t

w to the whole W t; and the information of
the weighted tree truth-preserves certain formulas.

To this end we need ensure the distance between worlds to go with the “direc-
tion” of the tree construction, so that for each v, its sets of closest worlds regarding
basic0(φv) remain invariant. Thus we need the wanted weighted tree to have a
particular global property defined as following.

Definition 5.15 (Forward-weighted tree). Let M be a tree VC model associated
with a weighted tree G# = (W,E,#) and w0 be the root. We call G# forward-
weighted, if ∀w, v, u, if π(w0, w) ⊂ π(w0, v) ⊂ π(w0, u), then #π(w, v) > #(v, u).

In plain words, the farther we go from the root, the smaller weights we assign
the edges. If in the graph (w0, w, v, u) forms a path, then #(w, v) > #(v, u). So
when we search the closest worlds of v regarding some ξ, we will not “go back” to
w. This is the intuition where the term comes from.

It is not hard to see, similar to what we did in the last subsection, that a forward-
weighted tree associating a VCU model induces an HVCU model. In particular, we
have the following lemma, which is proven similar to Theorem 5.1.

Example 5.3. Figure 5.5 hammingizes the G in Figure 5.4 as G#. For example,
the edge labelled 2:p is because we want w1 ∈ σw0(p). Notice if the edge with q� p

weighted as 2, then we would also have w2 ∈ σw0(p) since (M,w2) |= p, which
would make (M,w0) ̸|= p � (q � r), since (M,w2) |= ¬(q � r). Also, if
(M,w0) |= q ∧ ¬r and we weighted the edge of r � q as 1, then we would have
(M,w2) ̸|= q� r, since w0 ∈ σw2(q), and we “go back”. Finally, construct an HV
model M ′ via G# instructed by Theorem 5.1, s.t. for its V ′:

• ℏV ′(i, j) = 2n iff #π(wi, wj) = n;

• ∀pk ∈ {p, q, r}, pk ∈ V ′(wi) iff pk ∈ V (wi).

5.4. EQUIVALENCE RESULTS GIVEN INFINITE ATOMS 83

Lemma 5.3. Let M t = (W t, (W t
w)w∈W t , (⪯t

w)w∈W , V) be an FH tree VC model con-
structed from some finite VCU model and φ. Then there exists a forward-weighted
tree G# of M , which induces an HVCU model M ′ = (W t, (W ′

w)w∈W , (⪯′
w)w∈W , V

′),
s.t. ∀w ∈ W , W ′

w = W t and V (w) ∩ atm(φ) = V ′(w) ∩ atm(φ).

Key lemma We have enabled FH tree VC model with Uniformity and Ham-
mingized it to obtain an HVCU model. We aim to show a key property. But before,
let sub□(φ) denote all subformulas of φ of the form χ� ⊥. Clearly but crucially,
∀ψ ∈ sub□(φ), ψ ∈ basici(φ) for some i.

Lemma 5.4. Let M = (W, (Ww)w∈W , (⪯w)w∈W , V) be a finite VCU model, w0 ∈
W , φ ∈ L(Atm) s.t. (M,w0) |= φ. Let M ′ = (W t, (W t

w)w∈W t , (⪯′
w)w∈W , V

′) be an
HVCU model constructed through FH tree and Lemma 5.1. Then (M,w0) |= φ if
and only if (M ′, w0) |= φ.

Proof. Inherited from the FH tree for VC models, we have ∀wj ∈ W t chosen by the
tree construction at level i, ∀ψ ∈ basici(φ), we have (M,w−1

j) |= ψ if and only if
(M ′, wj) |= ψ.

So the only concern is when ψ ∈ sub(φ) is some χ� χ′ such that either χ is
vacuously true at (M,w−1

j) but not vacuously true at (M ′, wj); or the other way
around. Notice ψ may not be at the same level as wj is chosen, but crucially it
must be ψ ∈ basick(φ) for some k. For convenience instead of saying vacuously true
or σw−1

j
(χ) = ∅ we write (M,w−1

j) |= χ� ⊥. We do induction on the conditional
degree of χ.

The induction basis is cd(χ) = 0, viz. χ is Boolean. If (M,w−1
j) |= χ� ⊥,

then ∀v ∈ W t we have (M, v−1) |= ¬χ. Since χ is Boolean we have (M ′, v) |= ¬χ,
hence (M ′, wj) |= χ � ⊥. For the other direction let (M ′, wj) |= χ � ⊥,
and we need show (M,w−1

j) |= χ � ⊥. Notice, crucially, that χ � χ′ must
occur in basick(φ) for some k. At level k we must choose a world wl to decide
whether χ� χ′ holds at (M ′, wl) according to what happens at (M,w−1

l). But
whatever w−1

l ∈ W is, it must be (M,w−1
l) |= χ� ⊥, otherwise at level k + 1

we would have chosen a wl,χ�χ′ s.t. (M ′, wl,χ�χ′) |= χ , which eventually made
(M ′, wj) |= ¬(χ � ⊥), a contradiction. This indicates ∀v ∈ W, (M, v) |= ¬χ.
Since χ is Boolean, ∀w ∈ W t, (M,w) |= ¬χ, viz. (M,w−1

j) |= χ� ⊥ as we want.
Now we run the induction. Suppose for any subformula of conditional degree n,

it is true at (M, v−1) if and only if true at (M ′, v) for all v ∈ W t. Now we consider
χ with cd(χ) = n + 1 and show (M,w−1

j) |= χ� ⊥ iff (M ′, wj) |= χ� ⊥. It
needs a further induction on the main connective of χ.

1) The case of conjunction is straightforward. 2) If χ has the form ξ� θ and
(M,w−1

j) |= (ξ� θ) � ⊥, then suppose towards a contradiction that ∃v ∈ W t

s.t. (M ′, v) |= ξ � θ. By induction hypothesis we have (M,v−1) |= ξ � θ,
which contradicts (M,w−1

j) |= (ξ � θ) � ⊥. For the other direction suppose
towards a contradiction that (M ′, wj) |= (ξ� θ)� ⊥ but (M,w−1

j) |= ¬((ξ�
θ) � ⊥). Notice, crucially, that (ξ � θ) � χ′ occurs in basick(φ) for some

84 CHAPTER 5. HAMMING DISTANCE AS GROUNDED DISTANCE

k. Thus at level k of the tree construction there was a wl ∈ W t which chose a
wl,(ξ�θ)�χ′ from W for the level k+ 1 according to whether (ξ� θ)� χ′ holds
at (M,w−1

l). It must be (M,w−1
l) |= ¬((ξ� θ)� ⊥) because of the supposition

(M,w−1
j) |= ¬((ξ� θ)� ⊥). Thus the tree construction chose a wl,(ξ�θ)�χ′ s.t.

(M,w−1
l,(ξ�θ)�χ′) |= ξ� θ. By induction hypothesis (M ′, wl,(ξ�θ)�χ′) |= ξ� θ,

contradicting (M ′, wj) |= (ξ� θ)� ⊥ as we want.
3) If χ has the form ¬ζ, we need a further induction. But the only interesting

case is when χ equals some ¬(ξ� θ). Assume (M,w−1
j) |= ¬(ξ� θ) � ⊥, we

need now show (M ′, wj) |= ¬(ξ� θ)� ⊥. Suppose not towards a contradiction.
Then ∃v ∈ W t, (M ′, v) |= ¬(ξ � θ), viz. ∃u ∈ σtv(ξ), (M ′, u) |= ξ ∧ ¬θ. By
induction hypothesis, (M,u−1) |= ξ ∧ ¬θ. By Centering we have (M,u−1) |=
¬(ξ� θ), contradicting the assumption.

For the other direction, suppose towards a contradiction that (M ′, wj) |= ¬(ξ�
θ) � ⊥ but (M,w−1

j) |= ¬(¬(ξ � θ) � ⊥). Now notice, crucially, that
¬(ξ � θ) � χ′ occurs in basick(φ) for some k. Then at level k there was
a wl ∈ W t which chose a wl,¬(ξ�θ)�χ′ from W for the level k + 1. Because
of the eventual (M ′, w−1

j) |= ¬(ξ � θ) � ⊥ it must be during the tree con-
struction we had (M ′, wl,¬(ξ�θ)�χ′) |= ¬(ξ � θ). By induction hypothesis
(M,w−1

l,¬(ξ�θ)�χ′) |= ¬(ξ� θ), a wanted contradiction. □

Now Thesis 2 becomes a theorem.

Theorem 5.2. Let Atm be infinite. Then VCU ≡ HVCU.

Proof. Since HVCU ⊂ VCU, we only need prove the rest direction. Similar to
the proof of Theorem 5.1, for any φ satisfiable in VCU, we start with a filtration
model Mf = (W f , (W f

w)w∈W f (⪯f
w)w∈W f , V f) and a w0 ∈ W f s.t. (Mf , w0) |= φ.

Then we build an FH tree model M by Lemma 5.3. The next step is associating
M with a forward-weighted tree G# and construct an HVCU model M ′. Finally,
with the help of Lemma 5.4, an induction on φ can show that (M ′, w0) |= φ, which
is what we want. □

5.5 Conclusion

We studied the Hammingian V models, and in particular proved VC ≡ HVC and
VCU ≡ HVCU given infinite variables in the language. Notice the precondition,
which is because Hammingization relies on manipulating variables out of atm(φ).
This cannot happen without an unbounded number of fresh variables: it is known
that when Atm is finite then Hamming distance can be axiomatized by, essentially,
taking the conjunction of a maximal consistent set of literal to express a state
syntactically.

The technical conclusion is that the property of being Hammingian is un-
axiomatizable given the basic language of counterfactuals with infinite variables.
The most straightforward philosophical interpretation is that any abstract notion

5.5. CONCLUSION 85

of distance, e.g. epistemic entrenchment, system of spheres, etc, can be reinter-
preted/implemented by Hamming distance by means of “hidden variables”. In this
sense we call Hamming distance “grounded” for VC and VCU.

For future work, we conjecture the complexity of model checking for VCU is
PSPACE-complete and will address it. Another intriguing topic is that given that
Hamming distance grounds the comparative similarity when it is a total preorder,
does another concrete definition of distance, subset relation of valuations, ground
the partial order version?

Chapter 6

A Logic of “Black Box”
Classifier Systems

Boolean classifiers are traditionally studied by propositional logic. It expresses the
inner mechanisms of the classifiers transparently as propositional formulas. Classi-
fiers trained by machine learning usually have opaque inner mechanisms, and are
therefore described as black boxes. In this chapter, we provide a product modal
logic called PLC (Product modal Logic for binary input Classifier) in which the
notion of “black box” is interpreted as the uncertainty over a set of classifiers. We
give results about axiomatics and complexity of satisfiability checking for our logic.
Moreover, we present a dynamic extension in which the process of acquiring new
information about the actual classifier can be represented.

Contents
6.1 Introduction . 87
6.2 Language and Semantics . 91
6.3 Axiomatics and Complexity 93

6.3.1 Alternative Kripke Semantics 93
6.3.2 Finite-Variable Case . 94
6.3.3 Infinite-Variable Case . 95
6.3.4 Complexity Results . 96

6.4 Application . 97
6.4.1 An Example of Classification Task 97
6.4.2 Explanations . 98

6.5 Dynamic Extension . 100
6.6 Conclusion . 102

6.1 Introduction

In Chapter 3 we have introduced several logic-based approaches to XAI. They can
compute e.g., abductive explanations of a given classification, detect biases in the
classification process by means of counterfactual reasoning. But all these approaches
do not apply to black box classifiers, for the classifiers they deal with are expressible
by propositional formulas, and therefore not opaque. Nevertheless, as mentioned

88 CHAPTER 6. A LOGIC OF “BLACK BOX” CLASSIFIER SYSTEMS

in Chapter 1, the motivation and main driven force of XAI is to explain black
box classifiers. Thus a natural topic is to investigate is whether the modal logic
framework in Chapter 3 can be further developed to handle black box classifiers.
However, before delving into technical details, a conceptual analysis is needed on
what do we talk about when using the black box metaphor in AI.

What is a black box classifier, comparing with the white box? In AI
the black box metaphor is almost exclusively used for classifier systems, which
mathematically are nothing but classification functions. Let us first compare the
black box classifier with its opponent, the white box classifier. We start by stating
the followings.

• A white box is a function whose inner mechanism is transparent.
A black box is a function whose inner mechanism is opaque.

It should be little controversial to understand white and black employed as metaphor-
ical vehicles to convey the transparency/opacity of the model at stake. Actually,
the concern of black box is also addressed in name of model transparency1, where
model here refers to the final classification function. It is also almost self-evident
that the opacity of a model depends on the opacity of its inner mechanism / inside
mechanism / inner working. When people talk about opening or without opening
the black box, as Zednik describes “this metaphorical way of speaking is grounded
in the intuition that a system’s behavior can be explained by ‘looking inside’ ”
[Zednik 2021].

The next question is, what is the inner mechanism? Or more properly, what
represents the inner mechanism? We argue that the inner mechanism of a classifier
is represented by its mathematical expression/formula/algorithm. For example, a
white box classifier is the classification function f : N −→ {0, 1} expressed by the
formula

f(x) =
{

1 if (x+ 1) mod 4 = 0
0 otherwise. (6.1)

This expression instructs its mechanism of decision-making, namely it outputs 1 for
odd numbers which modulo 4 is 3.

By contrast, a black box can be trained by a training set T = {(3, 1), (7, 1), (8, 0),
(11, 1)} with the following algorithm

arg min
θ

1
2|T|

∑
(xi,yi)∈T

(fθ(xi) − yi)2 (6.2)

1For example, the Amazon Web Services’ 2023 white paper https://docs.
aws.amazon.com/pdfs/whitepapers/latest/model-explainability-aws-ai-ml/
model-explainability-aws-ai-ml.pdf

https://docs.aws.amazon.com/pdfs/whitepapers/latest/model-explainability-aws-ai-ml/model-explainability-aws-ai-ml.pdf
https://docs.aws.amazon.com/pdfs/whitepapers/latest/model-explainability-aws-ai-ml/model-explainability-aws-ai-ml.pdf
https://docs.aws.amazon.com/pdfs/whitepapers/latest/model-explainability-aws-ai-ml/model-explainability-aws-ai-ml.pdf

6.1. INTRODUCTION 89

3
1

8
0

(x+ 1) mod 4 = 0? p → q

3
1

8
0

Figure 6.1: Example of two boxes

where θ denotes parameters of modulus function f , and the loss function is simply
the average of squares of differences between the predicted fθ(xi) and the actual yi.

Though this is a simple example and we do not train a machine learning algo-
rithm to learn modulus functions, it shows the crucial difference between white and
black boxes which is ascribed to the key property of machine learning, as Kearn
and Roth in their book The ethical algorithm describes.

Rather than trying to directly specify an algorithm for making these
predictions – which could be quite difficult and subtle – we write a
meta-algorithm that uses the historical data to derive our model or
prediction algorithm. [Kearns & Roth 2019, p. 6]

Using their term, in machine learning there is a distinction between the meta-
algorithm and our model or prediction algorithm. We, or at least the designer, have
complete knowledge about the meta-algorithm and the training set that feeds into
it. The knowledge may increase as we can observe its outputs given new inputs.
What we do not know, or more properly speaking, fully know is the resulting model.
“The designer may have had a good understanding of the algorithm that was used
to find the decision-making model, but not the model itself.”[Kearns & Roth 2019,
p. 11]

Roughly we can view the model itself as the real resulting model doing the
classification task. Since the expression/algorithm of the real model is unknown,
with only partial knowledge there are many compatible models such that we have
uncertainty which among them is the real.

Back to the example, the classifier expressed by Formula 6.1 is compatible with
our knowledge of the black box. However, the real classifier learned may fairly be
the function which classifies odd numbers and even numbers. We would never know
which one it really is until inputting the new, unseen data which make differences,
e.g. 1, 9. If the observation so far is credible (if not even too plain to say), we
derive the following statement, which motivates our representation framework.

• A black box can be represented as a set of functions, which are all compatible
with the observer’s partial knowledge such that she is uncertain about the
real classifier.

This intuition is illustrated by Figures 6.1 and 6.2.

90 CHAPTER 6. A LOGIC OF “BLACK BOX” CLASSIFIER SYSTEMS

f0

f1

...

0
1

1

1
3

1

1
7

1

0
8

0

0
9

1

1
11

1

. . .

. . .

...
...

...
...

...
...

Figure 6.2: A multi-classifier model for the black box example Equation 6.2

What are explanations for black boxes binary classifiers The nouns and
phrases “(partial) knowledge”, “we know”, “we do not know” are heavily used so
far. They are more than rhetoric. Indeed, we have to introduce the epistemic
viewpoint/dimension to talk about explanations for black boxes. But again, let
us first compare it with the white box case, where the epistemic dimension is not
needed.2

In literature it is common to treat prime implicant as explanations for the
Boolean classifiers as we have introduced many times. A prime implicant, if it
is locally true in an input, counts as an explanans (sentence that explains the
explanandum) of the current input, for it necessarily leads to the classification.

This picture is meaningful in the sense of causal explanation, where agents’
possibly limited knowledge of facts of the world are not involved. A locally true
prime implicant can be seen as a cause of the phenomenon.3 Nevertheless, in the
black box contest the picture is no more proper, not because it is not wrong, but
insufficient. It is not enough to state that a classification has a cause, but we need
to know the cause.

Since we understand a black box as a set of classifiers compatible with the
current knowledge, it is possible that our knowledge is limited that, though onto-
logically speaking every classification has a cause (which can be proven with ease,
since the expression of a binary classifier, i.e. a propositional formula, is known),
but no cause is known to us according to our current knowledge of the classifier.

Last, it is worth noting that being black is not the only obstacle to explana-
tion. Some AI researchers argue the terminal difference between explainable AI
and interpretable AI, as the title of the paper “Stop explaining black box machine
learning models and use interpretable models instead” [Rudin 2019]. While the
former is about black box, the latter is about obtaining white boxes, e.g. de-
cision tree, decision set and binary decision digraph. But white boxes may still
too complex to be intuitively understood, hence explanation work may still be

2There is a subtle distinction between ‘white’ and ‘colorless’ boxes. Precisely speaking, white
box has the epistemic dimension, just it is fully known, while the examples we give below can be
interpreted without knowledge-based perspective (viz. no color) at all. Therefore we use objective
vs. subjective explanation to remark situations without or with epistemic viewpoint, instead of
white box vs. black box explanation.

3We intend to use “a” instead of “the” to circumvent the philosophical discussion of overdeter-
minism – if both can cause the explanandum, they are both causes.

6.2. LANGUAGE AND SEMANTICS 91

needed, as the subtitle “interpretable ML models must be explained” of the paper
[Marques-Silva & Ignatiev 2023] argues. Also philosophically speaking it is far from
clear the terminological difference between interpretable and explainable. Since our
focus is on representing black boxes (and their explanations), we will not be back
to this issue.

Representing black boxes with product modal logic We have shown the
central idea to represent a black box classifier as a set of classifiers compatible
with the agent’s partial knowledge, also the necessity to introduce the epistemic
dimension in explaining the black box. By using a two-dimensional logic both
can be satisfied in the proper way. One dimension is that fixing a classifier, how
all possible input instances are classified. As we have shown in Chapter 3, it is
natural to think of a classifier with binary inputs as a partition of an S5 Kripke
model, where each possible state stands for an input instance. Another, additional
dimension is that fixing an input instance, how all possible classifiers classifies it,
where possible is interpreted as compatible/admissible with respect to the agent’s
partial knowledge. Two dimensions indexed by modal operators □,■ respectively.
The agent knows φ, therefore, if all the admissible classifiers compatible with her
knowledge verify φ. In figure 6.2, □ ranges over input instances 1, 3, 7, . . . and ■
ranges over f0, f1, . . . The agent knows that ■(¬□¬3 ∧ □(3 → 1)), namely there is
an input 3 and it is classified as 1.4 It results in a proper extension of the product
modal logic S5 ×S5 = S52 [Gabbay et al. 2003] we call PLC (Product modal Logic
of binary-input Classifiers).

The chapter is structured as follows. Section 2 introduces the modal language
and semantic model of PLC which we name multi-classifier model (MCM) and is
visualized as Figure 6.2. Its axiomatics along with the completeness and complexity
results for the satisfiability checking problem are given in Section 3. In Section 4, we
will exemplify the logic’s application by using it to represent the notion of black box
and to formalize different notions of classifier explanation. A dynamic extension is
given in Section 6 to capture the process of acquisition of new knowledge about the
classifier. Some non-routine proofs are given in Appendix D.

6.2 Language and Semantics

Let Atm0 = {p, q, . . .} be a countable set of atomic propositions which intend to
denote input variables (features) of a classifier. We introduce a finite set Val to de-
note the possible output values (classifications, decisions) of the classifier. Elements
of Val are noted c, c′, . . . where c for classification. For any c ∈ Val, we call t(c) a
decision atom, and have Dec = {t(c) : c ∈ Val}.5 Finally let Atm = Atm0 ∪ Dec.

The modal language L is defined by the following grammar:
4In other words, the agent observes that inputting 3 outputs 1.
5Notice that p denotes an input variable, while c is an output value rather than the output

variable, which makes sense of the symbolic difference between p and t(c).

92 CHAPTER 6. A LOGIC OF “BLACK BOX” CLASSIFIER SYSTEMS

φ ::= p | t(c) | ¬φ | φ1 ∧ φ2 | □φ | ■φ,

where p ranges over Atm0 and c ranges over Val.

Definition 6.1. A multi-classifier model (MCM) is a pair Γ = (S, FS) where S ⊆
2Atm0 and FS ⊆ ValS the set of functions with domain S and codomain Val. A
pointed MCM is a triple (Γ, s, f) where Γ = (S, FS) is an MCM, s ∈ S and f ∈ FS.
The class of all multi-classifier models is noted MCM.

Formulas in L are interpreted relative to a pointed MCM as follows.

Definition 6.2 (Satisfaction relation). Let Γ = (S, FS) be an MCM, s ∈ S and
f ∈ FS. Then,

(Γ, s, f) |= p ⇐⇒ p ∈ s,

(Γ, s, f) |= t(c) ⇐⇒ f(s) = c,

(Γ, s, f) |= ¬φ ⇐⇒ (Γ, s, f) ̸|= φ,

(Γ, s, f) |= φ ∧ ψ ⇐⇒ (Γ, s, f) |= φ and (Γ, s, f) |= ψ,

(Γ, s, f) |= □φ ⇐⇒ ∀s′ ∈ S : (Γ, s′, f) |= φ,

(Γ, s, f) |= ■φ ⇐⇒ ∀f ′ ∈ FS : (Γ, s, f ′) |= φ.

Both □φ and ■φ have standard modal reading but range over different sets. □φ
has to be read “φ necessarily holds for the actual function, regardless of the input
instance”, while its dual ♢φ =def ¬□¬φ has to be read “φ possibly holds for the
actual function, regardless of the input instance”. Similarly, ■φ has to be read “φ
necessarily holds for the actual input instance, regardless of the function” and its
dual ♦φ has to be read “φ possibly holds for the actual input instance, regardless
of the function”.

Let X be a finite subset of Atm0. An important abbreviation is the following:

[X]φ =def
∧
Y⊆X

(
(

∧
p∈Y

∧
∧

p∈X\Y
¬p) → □((

∧
p∈Y

∧
∧

p∈X\Y
¬p) → φ)

)
.

Complex as it seems, [X]φ means nothing but “φ necessarily holds, regardless of the
values of the input variables outside X” or “φ necessarily holds, if the values of the
input variables in X are kept fixed”. It can be justified by checking that (Γ, s, f) |=
[X]φ, if and only if ∀s′ ∈ S, if s∩X = s′ ∩X then (Γ, s′, f) |= φ. Its dual ⟨X⟩φ =def
¬[X]¬φ has to be read “φ possibly holds, if the values of the input variables in X

are kept fixed”’. These modalities have a ceteris paribus reading and were first
introduced in [Grossi et al. 2015]. Similar modalities are used in existing logics of
functional dependence [Yang & Väänänen 2016, Baltag & van Benthem 2021].

A formula φ of L is said to be satisfiable relative to the class MCM if there exists
a pointed multi-classifier model (Γ, s, f) with Γ ∈ MCM such that (Γ, s, f) |= φ.
We say that that φ is valid in the multi-classifier model Γ = (S, FS), noted Γ |= φ,
if (Γ, s, f) |= φ for every s ∈ S, f ∈ FS . It is said to be valid relative to MCM,
noted |=MCM φ, if ¬φ is not satisfiable relative to MCM.

6.3. AXIOMATICS AND COMPLEXITY 93

6.3 Axiomatics and Complexity

In this section, we are going to present two axiomatics for the language L by distin-
guishing the finite-variable from the infinite-variable case. We will moreover give
complexity results for satisfiability checking. Before, we are going to introduce an
alternative Kripke semantics for the interpretation of the language L. It will allow
us to use the standard canonical model technique for proving completeness. Indeed,
this technique cannot be directly applied to MCMs in the infinite-variable case.

6.3.1 Alternative Kripke Semantics

The crucial concept of the alternative semantics is multi-decision model (MDM).

Definition 6.3. An MDM is a tuple M =
(
W,∼□,∼■, V

)
where:

- W is a set of worlds,

- ∼□ and ∼■ are equivalence relations on W ,

- V : W −→ 2Atm is a valuation function,

and which satisfies the following constraints, ∀w, v ∈ W , ∀c, c′ ∈ Val :

(C1) ∼□ ◦ ∼■=∼■ ◦ ∼□,

(C2) if VAtm0(w) = VAtm0(v) and w ∼□ v then VDec(w) = VDec(v),

(C3) if w ∼■ v then VAtm0(w) = VAtm0(v),

(C4) if t(c) ∈ V (w) and c , c′ then t(c′) < V (w),

(C5) ∃c ∈ Val such that t(c) ∈ V (w),

with VY (w) =
(
V (w) ∩ Y

)
for every w ∈ W and for every Y ⊆ Atm, and ◦ the

standard composition operator for binary relations.

The class of multi-decision models is noted MDM. An MDMM = (W,∼□,∼■, V)
is called finite if W is finite. The class of finite MDMs is noted finite-MDM. In-
terpretation of formulas in L relative to a pointed MDM goes as follows. (We omit
interpretations for ¬ and ∧ which are defined as usual.)

Definition 6.4 (Satisfaction Relation). Let M =
(
W,∼□,∼■, V

)
be an MDM and

let w ∈ W . Then,

(M,w) |= q ⇐⇒ q ∈ V (w) for q ∈ Atm,
(M,w) |= □φ ⇐⇒ ∀v ∈ W, if w∼□ v then v |= φ,

(M,w) |= ■φ ⇐⇒ ∀v ∈ W, if w ∼■ v then v |= φ.

94 CHAPTER 6. A LOGIC OF “BLACK BOX” CLASSIFIER SYSTEMS

Validity and satisfiability of formulas in L relative to class MDM (resp. finite-
MDM) are defined in the usual way.

The most important result in this subsection is the semantic equivalence be-
tween MCM and MDM, regardless of Atm0 being finite or infinite. Although a
pointed MDM (M,w) looks like a pointed MCM (Γ, s, f), it only approximates it.
Indeed, unlike an MCM, an MDM M may be redundant, that is, (i) a classifier in M
(i.e., a ∼□-equivalence class) may include multiple copies of the same input instance
(i.e., of the same valuation for the atoms in Atm0), or (ii) M may contain multiple
copies of the same classifier (i.e., two identical ∼■-equivalence classes). Moreover,
an MDM M may be “defective” insofar as (iii) the intersection between a classifier
in M (i.e., a ∼□-equivalence class) and the set of all possible classifications of a
given input instance by the classifiers in M (i.e., a ∼■-equivalence class) is not a
singleton. What makes the proof of the following theorem non-trivial is transform-
ing a possibly redundant or defective MDM into a non-redundant and non-defective
one by preserving truth of formulas. A non-redundant and non-defective MDM is
then isomorphic to an MCM.

Theorem 6.1. Let φ ∈ L. Then, φ is satisfiable relative to the class MCM if and
only if it is satisfiable relative to the class MDM.

6.3.2 Finite-Variable Case

We first consider the variant of the logic with finitely many propositional atoms in
Atm0. For every finite X,Y ⊆ Atm0 we define:

cnX,Y =def
∧
p∈X

p ∧
∧

p∈(Y \X)
¬p.

Definition 6.5 (Logic PLC). Let Atm0 be finite. We define PLC as the extension
of classical propositional logic given by axioms and rules of inference in Table 6.1.

Axioms AtLeastt(c), AtMostt(c) and Funct guarantee that every input Y ⊆
Atm0, whose syntactic counterpart is cnY ,Atm0 , has only one decision atom as out-
put. Axioms K⊞, T⊞, 4⊞ and 5⊞ together with the rule of inference Nec⊞ indicate
that both modal operators ■ and □ satisfy the principles of the modal logic S5. Ac-
cording to Axioms Comm and Conf (also known as Churcher-Rosser property),
they moreover commute and converge. These make the logic meet the requirement
of a product of two S5 modal logics, i.e., S52 [Gabbay et al. 2003]. Nevertheless,
the existence of the two “independence” Axioms Indep■p and Indep■¬p indicates
that PLC is stronger than S52 in general.

Soundness of PLC relative to MCM is a simple exercise. To prove the complete-
ness result, we first need to show that PLC is complete relative to MDM, which is
proven by the canonical model construction.

Theorem 6.2. Let Atm0 be finite. Then, the logic PLC is sound and complete
relative to the class MDM.

6.3. AXIOMATICS AND COMPLEXITY 95

(
⊞ φ ∧ ⊞(φ → ψ)

)
→ ⊞ψ (K⊞)

⊞ φ → φ (T⊞)
⊞ φ → ⊞ ⊞ φ (4⊞)
¬ ⊞ φ → ⊞¬ ⊞ φ (5⊞)
■□φ ↔ □■φ (Comm)
¬□¬■φ → ■¬□¬φ (Conf)∨
c∈Val

t(c) (AtLeastt(c))

t(c) → ¬t(c′) if c , c′ (AtMostt(c))(
cnX,Atm0 ∧ t(c)

)
→ □

(
cnX,Atm0 → t(c)

)
(Funct)

p → ■p (Indep■p)
¬p → ■¬p (Indep■¬p)
φ

⊞φ
(Nec⊞)

Table 6.1: Axioms and rules of inference, with ⊞ ∈ {□,■}

Our main result of this subsection becomes a corollary of Theorems 6.1 and 6.2.

Corollary 6.1. Let Atm0 be finite. Then, the logic PLC is sound and complete
relative to the class MCM.

6.3.3 Infinite-Variable Case

We now move to the infinite-variable variant of our logic, under the assumption
that the set Atm0 is countably infinite. In order to obtain an axiomatics we just
need to drop the “functionality” Axiom Funct of Table 6.1. Indeed, when Atm0 is
infinite, the construction cnX,Atm0 cannot be expressed in a finitary way.

Definition 6.6 (Logic WPLC). We define WPLC (Weak PLC) to be the extension
of classical propositional logic given by Axioms K⊞, T⊞, 4⊞, 5⊞, Comm, Conf,
AtLeastt(c), AtMostt(c), Indep■p and Indep■¬p, and the rule of inference Nec⊞
in Table 6.1.

Soundness of the logic WPLC is a straightforward exercise. For completeness,
we need to distinguish MDMs from quasi-MDMs that are obtained by removing the
“functionality” Constraint C2 from Definition 6.3.

Definition 6.7 (Quasi-MDM). A quasi-MDM is a tuple M = (W,∼□,∼■, V) where
W , ∼□, ∼■ and V are defined as in Definition 6.3 and which satisfies all constraints
of Definition 6.3 except C2.

The class of quasi-MDMs is noted QMDM. A quasi-MDM M = (W,∼□,∼■, V)
is said to be finite if W is finite. The class of finite quasi-MDMs is noted finite-
QMDM. Semantic interpretation of formulas in L relative to quasi-MDMs is

96 CHAPTER 6. A LOGIC OF “BLACK BOX” CLASSIFIER SYSTEMS

analogous to semantic interpretation relative to MDMs given in Definition 6.4.
Moreover, validity and satisfiability of formulas in L relative to class QMDM
(resp. finite-QMDM) is again defined in the usual way.

The first crucial result of this subsection is that when Atm0 is infinite the lan-
guage L cannot distinguish finite MDMs from finite quasi-MDMs.

Theorem 6.3. Let φ ∈ L with Atm0 infinite. Then, φ is satisfiable relative to the
class finite-MDM if and only if it is satisfiable relative to the class finite-QMDM.

The second result is that satisfiability for formulas in L relative to the class
QMDM is equivalent to satisfiability relative to the class finite-QMDM.

Theorem 6.4. Let φ ∈ L. Then, φ is satisfiable relative to the class QMDM if
and only if it is satisfiable relative to the class finite-QMDM.

The following theorem is provable by standard canonical model argument. Note
that like Theorems 6.1 and 6.4, it does not rely on Atm0 being infinite or finite.

Theorem 6.5. The logic WPLC is sound and complete relative to the class QMDM.

The fact that the logic WPLC is sound and complete relative to the class MCM
is a direct corollary of Theorems 6.1, 6.3, 6.4 and 6.5.

Corollary 6.2. Let Atm0 be infinite. Then, the logic WPLC is sound and complete
relative to the class MCM.

6.3.4 Complexity Results

We now move to complexity of satisfiability checking. As for the axiomatics, we
distinguish the finite-variable from the infinite-variable case. When Atm0 is finite,
the problem of verifying whether a formula is satisfiable is polynomial. The latter
problem mirrors the satisfiability checking problem for the finite-variable modal
logic S5 which is also known to be polynomial [Halpern 1995].

Theorem 6.6. Let Atm0 be finite. Then, checking satisfiability of L-formulas rel-
ative to the class MCM can be done in polynomial time.

We know that when moving from the finite-variable to the infinite-variable case
complexity of satisfiability checking is in NEXPTIME.

Theorem 6.7. Let Atm0 be infinite. Then, checking satisfiability of L-formulas
relative to the class MCM is in NEXPTIME.

In [Bezhanishvili & Hodkinson 2004] (see also [Bezhanishvili & Marx 2003]) it
is proved that all proper normal extensions of the product modal logic S52 are
in NP. In future work, we plan to verify whether these results are applicable to
our setting in order to improve our complexity upper bound. The problem is that
Axioms Indep■p, Indep■¬p, AtMostt(c) and AtLeastt(c) are not axiom schemata
in the proper sense.

6.4. APPLICATION 97

6.4 Application

As mentioned, the ■ operator is interpreted as partial knowledge about the classifier
properties.6 In this section, we are going to exemplify how to use it for representing
abductive explanations of a black box classifier.

6.4.1 An Example of Classification Task

Consider a selection function which specifies whether a paper submitted to a con-
ference is acceptable for presentation (1) or not (0) depending on its feature profile
composed of four input features: significance (si), originality (or), clarity of the
presentation (cl) and fulfillment of the anonymity requirement (an). For the sake
of simplicity, we assume each feature in a paper profile is binary: si means the
paper is significant while ¬si means the paper is not significant, or means the paper
is original while ¬or means the paper is not original, and so on. We say that a
first paper profile dominates a second paper profile, if all conditions satisfied by the
second profile are satisfied by the first profile, and there exists a condition satisfied
by the first profile which is not satisfied by the second profile. For example if the
first profile is si ∧ ¬or ∧ cl ∧ an and the second profile is si ∧ ¬or ∧ ¬cl ∧ an, then
the first dominates the second.

The selection function is implemented in a classifier system that has to auto-
matically split papers into two sets, the set of acceptable papers and the set of
non-acceptable ones. We assume a certain agent (e.g., the author of a paper sub-
mitted to the conference) has only partial knowledge of the classifier system. In
particular, she only knows that the classifier complies with the following three con-
straints: (1) submissions that satisfy the four conditions should be automatically
accepted, (2) if a first paper profile dominates a second paper profile and the second
paper profile is acceptable, then the first paper profile should also be acceptable,
and (3) submissions that violate the anonymity requirement should be automati-
cally rejected. In this case, the classifier is a black box for the agent.

Example 6.1. The multi-classifier model (MCM) representing the previous situa-
tion is the tuple Γ = (S, FS) such that S = 2{si,or,cl,an} and

∀f ∈ ValS , f ∈ FS iff (i) ∀s ∈ S, if {si, or, cl, an} ⊆ s then f(s) = 1,
(ii) ∀s, s′ ∈ S, if s ⊂ s′ and f(s) = 1 then f(s′) = 1.

(iii) ∀s ∈ S, if an < s then f(s) = 0.

The agent does not know which function in FS corresponds to the actual classifier,
i.e., they are epistemically indistinguishable for her.

6In the real world, partial knowledge may come from the data set as well as from the training
process. For example, through learning, we may acquire knowledge that certain input features
behave monotonically [You et al. 2017], also in [Kearns & Roth 2019] the authors provide several
methods to implement some constraints in training the algorithm to meet ethical requirements.

98 CHAPTER 6. A LOGIC OF “BLACK BOX” CLASSIFIER SYSTEMS

6.4.2 Explanations

We exemplify explanations for white and black box classifiers by showing the di-
chotomy global vs. local explanation and the notion of abductive explanation based
on prime implicant.

Recall that s is called an instance, λ denotes a set of consistent literals and
is called a term or property (of the instance). The set of terms is noted Term.
Moreover, let Atm(φ) denote the atoms occurring in φ. Finally, notice that the
abbreviations [X]φ and ⟨X⟩φ introduced in Section 2 will be used.

Recall prime implicant, a key concept in the theory of Boolean functions since
[Quine 1955]. It can be presented in the language L(Atm) as follows:

PImp(λ, c) =def□
(
λ →

(
t(c) ∧

∧
p∈Atm(λ)

⟨Atm(λ) \ {p}⟩¬t(c)
))
.

The abbreviation PImp(λ, c) has to be read “λ is a prime implicant for the classi-
fication c”. Roughly speaking, the latter means that (i) λ necessarily leads to the
classification c (why λ is an implicant), and (ii) for any of its proper subsets λ′,
possibly there is a state where λ′ holds but the classification is different from c (why
λ is prime).

Prime implicant counts as a “global” explanation, in the sense that it is a prop-
erty of the classifier and holds at all its input instances. The localized version of
prime implicant is called abductive explanation. An abductive explanation is not
only a prime implicant, but also a property of the actual instance. It is expressed
in L as follows:

AXp(λ, c) =def λ ∧ PImp(λ, c).

AXp(λ, c) just means that λ is an abductive explanation of the actual classification
c. Let us instantiate the notions of prime implicant and abductive explanation in
the paper example we introduced in Section 6.4.1.

Example 6.2. Take the MCM Γ = (S, FS) in Example 6.1, and let s1 = {si, or, an} ∈
S. Consider the function f1 s.t. ∀s ∈ S : f1(s) = 1 iff an ∈ s and {or, cl} ∩ s , ∅.
The function f1 is syntactically expressed by the formula □

(
t(1) ↔ ((or ∧ an) ∨ (cl ∧

an))
)
. Clearly f1 ∈ FS for it satisfies the three constraints. Hence, we have:

(Γ, s1, f1) |=AXp(or ∧ an, 1) ∧ PImp(or ∧ an, 1) ∧ PImp(cl ∧ an, 1).

Meanwhile (Γ, s1, f1) ̸|= AXp(cl ∧ an, 1), because (Γ, s1, f1) ̸|= cl ∧ an. But consider
s2 = {si, cl, an} ∈ S. We have (Γ, s2, f1) |= AXp(cl ∧ an, 1).

Now we investigate what happens when facing a black box model Γ = (S, FS).
The agent has uncertainty about the actual classifier’s properties. Therefore, it is
interesting to draw the distinction between objective and subjective (or epistemic)
explanation. Objective explanation coincides with the notion of explanation in the

6.4. APPLICATION 99

context of white box classifiers defined above. Subjective explanation refers to the
agent’s interpretation of the classifier and her explanation of the classifier’s decision
in the light of her partial knowledge.

We say the term λ is a subjective prime implicant for c, noted SubPImp(λ, c), if
the agent knows that λ is a prime implicant for c, that is:

SubPImp(λ, c) =def ■PImp(λ, c).

Similarly, we say λ is a subjective abductive explanation of the actual classification
c, noted SubAXp(λ, c), if the agent knows that λ is an abductive explanation of the
actual classification c, that is:

SubAXp(λ, c) =def ■AXp(λ, c).

It is worth noting that in the case of a white box classifier, where the set of
input instances S is finite, we can always find an abductive explanation of the
actual classification. That is, for every Γ = (S, FS) ∈ MCM, s ∈ S and f ∈ FS :

if S is finite then ∃λ ∈ Term such that (Γ, s, f) |= AXp
(
λ, f(s)

)
.

Nonetheless, this result cannot be generalized to the black box case. Indeed, as the
following example shows, there is no guarantee for the existence of a subjective ex-
planation of the actual classification. The problem is that the minimality condition
can collapse when moving from objective to subjective explanation, since the agent
can have more than one classifier in her epistemic state.

Example 6.3. Let Γ = (S, FS), f1 and s1 be the same as in Example 6.2. There
is no λ such that (Γ, s1, f1) |= ■AXp(λ, 1). To see this, consider f2 s.t. ∀s ∈ S :
f2(s) = 1 iff {si, an} ⊆ s. The function f2 is syntactically expressed by the formula
□(t(1) ↔ (si ∧ an)). Clearly f2 ∈ FS for it satisfies the three constraints. We have
(Γ, s1, f2) |= AXp(si ∧ an, 1). But there is no term which minimally explains both
f1(s1) and f2(s1). Indeed, or ∧ an is not enough for explaining f2(s1), si ∧ an is
not enough for explaining f1(s1), and si ∧ or ∧ an fails the minimality condition for
both. Therefore, we have

(Γ, s1, f1) |=AXp(or ∧ an, 1) ∧
∧

λ∈Term({si,or,cl,an})
¬SubAXp(λ, 1).

However, this does not mean that the agent knows nothing about the classifier. For
instance, she knows that violating the anonymity requirement is a prime implicant
for rejection, that is, (Γ, s1, f1) |= SubAXp(¬an, 0).

To sum up, the four notions of explanation we introduced can be organized in
Table 6.2 along the two dimensions objective vs subjective and local vs global.

100 CHAPTER 6. A LOGIC OF “BLACK BOX” CLASSIFIER SYSTEMS

Local Global
Objective AXp(λ, c) PImp(λ, c)
Subjective SubAXp(λ, c) SubPImp(λ, c)

Table 6.2: Notions of prime implicant and abductive explanation

6.5 Dynamic Extension

Before concluding, we are going to present a simple dynamic extension of the lan-
guage L by operators of the form [φ]. They describe the consequences of removing
from the actual model all classifiers that do not globally satisfy the constraint φ.
More generally, they allow us to model the process of gaining new knowledge about
the classifier’s properties. The extended modal language Ldyn is defined by the
following grammar:

φ ::= p | t(c) | ¬φ | φ1 ∧ φ2 | □φ | ■φ | [φ]ψ,

where p ranges over Atm0 and c ranges over Val.
The new formula [φ]ψ has to be read “ψ holds after having discarded all clas-

sifiers that do not globally satisfy the property φ”. Notice the similar but different
notations [X] and [φ]. For example, [{p}], [{p, q}] are abbreviations with ceteris
paribus meaning, while [p], [p ∧ ¬q] are dynamic operators.

The interpretation of the operators [φ] relative to a pointed MCM (Γ, s, f) with
Γ = (S, FS), s ∈ S and f ∈ FS goes as follows:

(Γ, s, f) |= [φ]ψ ⇐⇒ if (Γ, s, f) |= □φ then (Γφ, s, f) |= ψ,

where Γφ = (Sφ, FφS) is the MCM such that:

Sφ = S,

FφS = {f ′ ∈ FS : ∀s′ ∈ S, (Γ, s′, f ′) |= φ}.

The previous update semantics for the operator [φ] is reminiscent of the seman-
tics of public announcement logic (PAL) [Plaza 2007, van Ditmarsch et al. 2007].
However, there is an important difference. While PAL has a one-dimensional state
elimination semantics, our update semantics operates on a single dimension of the
product in an MCM. In particular, it only removes classifiers that do not globally
satisfy the constraint φ, without modifying the set S of input instances.

The logics DPLC and WDPLC (Dynamic PLC and WDPLC) extend the logic
PLC and WPLC by the dynamic operators [φ]. They are defined as follows.

Definition 6.8 (Logics DPLC and WDPLC). We define DPLC (resp. WDPLC) to
be the extension of PLC (resp. WPLC) of Definition 6.5 (resp. Definition 6.6)

6.5. DYNAMIC EXTENSION 101

generated by the following reduction axioms for the dynamic operators [φ]:

[φ]p ↔(□φ → p)
[φ]t(c) ↔

(
□φ → t(c)

)
[φ]¬ψ ↔(□φ → ¬[φ]ψ)

[φ](ψ1 ∧ ψ2) ↔
(
[φ]ψ1 ∧ [φ]ψ2

)
[φ]□ψ ↔(□φ → □[φ]ψ)
[φ]■ψ ↔(□φ → ■[φ]ψ)

and the following rule of inference:
φ1 ↔ φ2

ψ ↔ ψ[φ1/φ2] (RE)

It is a routine exercise to verify that the equivalences in Definition 6.8 are valid
for the class MCM and that the rule of replacement of equivalents (RE) preserves
validity. We show the validity of the sixth equivalence as an example:

(Γ, s, f) |= [φ]■ψ ⇐⇒ if (Γ, s, f) |= □φ then(Γφ, s, f) |= ■ψ;
⇐⇒ if (Γ, s, f) |= □φ then∀f ′ ∈ FφS , (Γ

φ, s, f ′) |= ψ;
⇐⇒ if (Γ, s, f) |= □φ then ∀f ′ ∈ FS ,(

if ∀s′ ∈ S, (Γ, s′, f ′) |= ψ then (Γφ, s, f ′) |= ψ
)
;

⇐⇒ if (Γ, s, f) |= □φ then ∀f ′ ∈ FS ,(
if (Γ, s, f ′) |= □ψ then (Γφ, s, f ′) |= ψ

)
;

⇐⇒ if (Γ, s, f) |= □φ then ∀f ′ ∈ FS , (Γ, s, f ′) |= [φ]ψ;
⇐⇒(Γ, s, f) |= □φ → ■[φ]ψ.

The completeness of DPLC and WDPLC for this class of models follows from
Theorem 6.2 and Corollary 6.1, in view of the fact that the reduction axioms and
the rule of replacement of proved equivalents can be used to find, for any Ldyn-
formula, a provably equivalent L-formula.

Theorem 6.8. Let Atm0 be finite. Then, the logic DPLC is sound and complete
relative to the class MCM.

Theorem 6.9. Let Atm0 be infinite. Then, the logic WDPLC is sound and complete
relative to the class MCM.

The following decidability result is a consequence of Theorem 6.7 and the fact
that via the reduction axioms in Definition 6.8 we can find a reduction of satisfia-
bility checking of Ldyn-formulas to satisfiability checking of L-formulas.

Theorem 6.10. Checking satisfiability of Ldyn-formulas relative to MCM is de-
cidable.

102 CHAPTER 6. A LOGIC OF “BLACK BOX” CLASSIFIER SYSTEMS

Let us end up with the paper example to illustrate to expressive power of our
dynamic extension.

Example 6.4. Let Γ = (S, FS), f1 and s1 be the same as in Example 6.2. We have

(Γ, s1, f1) |= [(or ∧ an) → t(1)]■
∨

λ⊆(or∧an)
AXp(λ, 1).

This means that after having discarded all classifiers which do not take (or ∧ an) as
an implicant for acceptance of a paper, the agent knows that there must be a part
of or ∧ an that abductively explains the acceptance of the paper s1.

6.6 Conclusion

We have presented a product modal logic which supports reasoning about (i) par-
tial knowledge and uncertainty of a classifier’s properties and, (ii) objective and
subjective explanations of a classifier’s decision. Moreover, we have studied a dy-
namic extension of the logic which allows us to represent the event of gaining new
knowledge about the classifier’s properties.

Our logic is intrinsically single-agent: it models the uncertainty of one agent
about the actual classifier’s properties. In future work, we plan to generalize
our framework to the multi-agent setting. The extension would result in a multi-
relational product semantics in which every agent has her own epistemic indistin-
guishability relation which commutes with the input instance dimension (the equiv-
alence relation ∼□ in Definition 6.3 of MDM). We also plan to enrich this semantics
with a knowledge update mechanism in the spirit of Section 6.5. This would allow us
to represent exchange of information between agents with an explanatory purpose,
which is named dialogical explanation by philosophers [Walton 2004] and interactive
explanation by researchers in the XAI domain [Amershi et al. 2014, Miller 2019].

Chapter 7

Perspectives

In this chapter we deal with two problems which rose in the previous chapters.
Although these are interesting as technical issues in their own right, there are also
conceptual reasons that make them worth studying. The first problem concerns the
complexity of satisfiability problem in MCM. The second one concerns whether we
can define and axiomatize model classes that even when the language has infinite
atoms, every classifier therein is definite with respect to some finite subset of atoms.

7.1 How Hard is Black Box Explanation? A Complex-
ity Study

It is clear that black box classifiers are hard to explain since without opening up
them and looking inside the only way is based on perturbation. But how hard
is it in general from the computational complexity viewpoint? In Chapter 6 we
have shown that the satisfiability problem in MCM is in NEXPTIME, since the
filtration construction of MDM gives an NEXPTIME algorithm for it, and every
MDM can be transformed into an MCM in linear time. We will study further on
this issue, and give a new lower-bound.

7.1.1 Some hints

The complexity of satisfiability problem in MCM is sensitive to the cardinality of
Dec. If |Dec| = 1, then whatever we write it, t(0), t(?) etc., it trivially equals ⊤.
Then the whole logic collapses to mono-dimensional, which makes every MCM just
a CM. Therefore, what interesting is when |Dec| > 1.

It can be shown that the problem is PSPACE-hard already when |Dec| = 2.
The reason is that, in product modal logic at latest from Marx [Marx 1999] we
know that two S5-operators can mimic a K-operator. We can thus define [K]φ :=
■(t(0) → □(t(1) → φ)). To see that it is indeed a K-operator, one can show that
axioms like T, D, B, 4 are not valid.

Different with [Marx 1999] who used arbitrary two variables p, q into the abbre-
viation, it seems that we have to use decision atoms, otherwise the formula reduces
and fails to invalidate those axioms, for the formula will “collapese” because of ax-
ioms p → ■p and ¬p → ■¬p. This is one reason that at least two decision atoms
are needed.

On the other hand, the normal proof strategy for NEXPTIME-hardness ap-
pears unable to be directly brought into MCM. In [Marx 1999], Marx showed the

104 CHAPTER 7. PERSPECTIVES

Figure 7.1: An example in [van Emde Boas 1997] of the tiling representing the
computation 11+1=12

NEXPTIME-hardness of the satisfiability problem in S52 by reduction of a tiling
problem. (We will introduce tiling problems soon.) The key difference is that, while
Marx can use infinite supply of atomic propositions to reduce the increasing 2n×2n
tiling, in our case it reaches a limit since |Dec| is a finite number. Hence I will work
with a more modest goal, namely to prove an EXPTIME lower-bound.

7.1.2 Tiling problems

Tiling problem, or domino problem, is a mathematical problem first proposed by
logician and philosopher Wang Hao. A Wang tile, or Wang domino, is a square
with four colors on its four sides. Tiling problems take the form as “given a set of
tile types and a plane, can they tile it in such a way that, the adjacent sides of any
two tiles share the same color?”. It has been shown that various Turing machines
have a visualized way to reduce to corresponding tiling problems. Therefore tiling
problems have different computability and complexity with respect to 1) the size of
the plane, e.g. infinite columns and rows, n× n square, m× n corridor, etc., 2) the
type of the game, i.e. whether it is a single player or two-player game and what the
winning condition is.

In virtue of the variety of computational degree of tiling problems, they are used
widely in the complexity of modal logics. Van Emde Boas [van Emde Boas 1997]
argues that using tiling problem in complexity is a master reduction, in the sense
that it provides “an intended directly visible correspondence between records of
accepting computations for the computational problem and solutions of the com-
binotarial problem under consideration”. The reduction of Turing machine is a
prime example of master reduction. Tiling problems, because of their visualization,
are also good tools of master reductions. We will reduce the satisfiability problem
in MCM to the tiling problem below.

7.1. HOW HARD IS BLACK BOX EXPLANATION? A COMPLEXITY STUDY105

Figure 7.2: The two-player tiling game example in [Schwarzentruber 2019]

Two-player tiling game The tiling problem that we aim to reduce is a two-
player game. Each role is tiled by a player and the two players take turns. We call
the first player Eloise and the second Abelard (nicknames for ∃ and ∀ respectively).
The winning condition for Eloise is to tile a 2n × n corridor, where n is given by
the input. Namely, 2n rows and n columns. For technical reason, we suppose there
are a 0th row, a 0th column and an n+ 1th column, and they are previously tiled
(by a third party and not shown in the plane) by a white domino tile type.

We say that Eloise has a winning strategy, if whatever Abelard tiles, Eloise can
tile after Abelard’s row until finish tiling the corridor. The complexity of deciding
whether Eloise has a winning strategy for this tiling game is EXPTIME-complete.

Recall that Eloise has a winning strategy, if there is a game tree such that

1. each node denotes a tiling of a row;

2. all nodes in the odd levels (including the root) belong to Eloise, the rest to
Abelard;

3. every node encodes a tiling of a row such that if a node is a successor of
another one, then these two rows are compatible in all their tiles;

4. at each level of the tree, all possible tiling of Abelard are encoded by a node;

5. the tree has 2n depth.

Every branch from the root to a leaf is called a game. The game tree guarantees
that whatever Abelard plays, Eloise can keep tiling to let the game go on until the
2n − 1-st round.

7.1.3 Tiling for lower bound

Variables and operator needed The basic thought is that S consists of two
disjoint sets of states, tiling states and counting states, that tell which tile in a
cell of a row and which step the current row is respectively. Each member of FS
represents a row of a tiling game – and hence a node of the intended game tree.

The variables we need are partitioned as {eloise, aberlard}⊎{p#, ptil}⊎{pi : 1 ≤
i ≤ n}⊎{posi : 0 ≤ i ≤ n+1}⊎{pd : d ∈ T}⊎{coli(d) : 0 ≤ i ≤ n+1, d ∈ T} ⊆ Atm0

106 CHAPTER 7. PERSPECTIVES

and {t(1), t(0)} ⊆ Dec.1
Clearly, eloise and aberlard refer to the two players. The intended meanings of

p# and ptil are to denote whether a state is a counting state or tiling state, i.e. the
state conveys the information of counting (of the whole row), or the information
of tiling (of some cell). T stands for the set of all domino tile types. We always
assume a special domino type pwhite ∈ T , which has all four sides colored white.
This domino type tiles exclusively the cells in the 0th row, the 0th column, and the
n+1st column, which mark the boundary of the plane. The variable coli(d) has the
reading “the previous tiling of position i is domino type d”. Dec has double roles
regarding tiling and counting states which we will explicate soon.

Intuition Suppose Eloise has a winning stragtegy, viz, there is a game tree for
her. We want the reduction formula (of the game tree) defined later satisfied in
the desired model defined later Γ = (S, FS), such that each f ∈ FS contains the
following information

1. Who tiles the row;

2. How (s)he tiles each cell

- for any position posi, a domino type is put pd, only if it fits the right-
side’s color of coli−1(d′) (i.e. the i−1-st column’s tile) and the top-side’s
color of coli(d′′) (i.e. the i-th column’s tile of the previous row d′′);

3. Which round the game is at.

Therefore there are two types of states in S, responsible for tiling and for counting
respectively. And/but they work in different ways regarding f . For any tiling state
s, f(s) = 1 means that state is “activated” in order to tell us which position to
put what domino type; thus f(s) = 0 means “inactivated”. For counting states the
interpretation of classification is different. We will prepare n counting states each
representing some natural number 1 ≤ i ≤ n,2 i.e. a counting state is like {p#, pi}.
Then f({p#, pi}) = 1 means the i-th digit has number one and f({p#, pi}) = 0
means it has number zero in the row f .

It would be a shame if I said tiling problems are easily visualized without pro-
viding an illustration here. Figure 7.3 exemplifies the intuition. The left part is
just the example in [Schwarzentruber 2019] of the tiling game we use. We take a
dynamic perspective to construct a tiling game row by row, cell by cell. In the
right part we concentrate on the central cell, namely the second row of the second
column. Suppose that all the cells before it are already tiled and now is its turn.
Since it is the second row, it is Abelard’s round. Three possibilities of tiling will be
represented as the following states in the desired model

1The difference of i ranging from 1 through n and from 0 through n + 1 is only for the technical
trick of letting the 0th row, the 0th and n + 1st columns be tiled by pwhite.

2Do not confuse this with the i of posi.

7.1. HOW HARD IS BLACK BOX EXPLANATION? A COMPLEXITY STUDY107

Figure 7.3: Tiling the center cell

s = {ptil, abelard, pos2, col1(prrrw), col2(pgrwg), pyrgr}

s′ = {ptil, abelard, pos2, col1(prrrw), col2(pgrwg), pyygr}

s′′ = {ptil, abelard, pos2, col1(prrrw), col2(pgrwg), pyggr}

where domino types here are named after their colors clockwise as up-right-down-
left. For instance, pyrgr means the up-color is yellow, right-color red, down-color
green and left-color red. All three states are legal, since the colors match. However,
in every classifier, which intends to encode a row, at most one of them can be
classified as 1. In our case it is f(s) = 1 while f(s′) = f(s′′) = 0.

Also f must encode the information of which round it is at. Hence we shall have
two counting states {p#, p1}, {p#, p2} s.t. f({p#, p1}) = 1 and f({p#, p2}) = 0
encoding binary 01. It is the decimal 1 which represents round 2.

Thus we finish the construction of f . The desired MCM is a model of many
such fs. It satisfies the game tree for Eloise’s winning strategy. A game is therefore
a branch from the root to a leaf with depth 2n, which is in turn a series of classifiers
f0, f1, . . . f2n s.t. f0 denotes root (i.e. the initial row that Eloise tiles), and for
each i > 0, fi encodes the tiling information of itself and fi−1 (because of variables
coli(d′′)). Since Eloise has a winning strategy, whatever Abelard tiles, a game will
be done.

Reduction So the formula consists of the following parts, recall that we define
[K]φ := ■(t(0) → □(t(1) → φ)) and use it to denote “in all the possible tilings for
the next round, φ holds”.

0. Each state represents either a number of row or a tiling of position

■□
(
(p# ∨ ptil) ∧ ¬(p# ∧ ptil)

)
(7.1)

108 CHAPTER 7. PERSPECTIVES

1. Tiling

(a) each cell position i encodes exactly one tile, one previous tile for i and
one previous tile for i− 1 3

■□(ptil∧t(1)) ↔
∨

i,d1,d2,d3

(
(posi ∧ pd3 ∧ coli−1(d2) ∧ coli(d1))

∧
∧

(i′,d′
1,d

′
2,d

′
3),(i,d1,d2,d3)

¬(posi′ ∧ pd′
3

∧ coli−1(d′
2) ∧ coli(d′

1))
)

(7.2)

(b) start configuration: all previous tiles are pwhite and the number of row
is 0 ∧

i

♢(posi ∧ ptil ∧ coli(pwhite) ∧ coli−1(pwhite) ∧ t(1) ∧ eloise)

∧
∧
i

♢(pi ∧ p# ∧ t(0)) (7.3)

(c) color matches both horizontally and vertically, where right(d′) denotes
the set of dominos whose left-color is the right-color of d′, and similar to
top(d′′)

■□
∧

i,d′,d′′

(
(ptil ∧ posi ∧ t(1) ∧ coli(d′′) ∧ coli−1(d′)) →

∨
d∈right(d′)∩top(d′′)

pd
)

(7.4)

(d) The current tiling of the current position in the current row is the pre-
vious tiling of the current position in whatever next row

■□
∧
i,d

(
(ptil ∧ posi ∧ t(1) ∧ pd) → [K]□((ptil ∧ posi ∧ t(1)) → coli(d))

)
(7.5)

2. Counting: we use pi,#,c to denote (pi ∧ p# ∧ t(c)) with 1 ≤ i ≤ n, c ∈ {1, 0}

(a) every digit of every row has at least a value

■
∧

1≤i≤n
♢(pi,#,1 ∨ pi,#,0) (7.6)

3To save space we write
∨

i
instead of

∨
1≤0≤n+1,

∨
d

instead of
∨

d∈T
for all the formulas

below, and similar for the conjunction cases. We will write explicitly
∧

1≤i≤n
when i ranges from

1 through n instead of from 0 through n + 1.

7.1. HOW HARD IS BLACK BOX EXPLANATION? A COMPLEXITY STUDY109

(b) start counting with 0

□
∧

1≤i≤n
((pi ∧ p#) → t(0)) (7.7)

(c) in an incremental way

inc := ■
∧

1≤k≤n

(
♢pk,#,0 ∧

∧
1≤i<k

♢pk,#,1) →
(
[K]□

(
(pk ∧ p#) → t(1)

)
∧

∧
1≤i<k

□
(
(pk ∧ p#) → t(0)

)
∧

∧
n≥i>k

store(pi)
))

(7.8)

where

store(pi) :=
∧

c∈{0,1}

(
♢pi,#,c → [K]□

(
(pk ∧ p#) → t(c)

))

(d) not terminates before 2n − 1

■([K]⊥ →
∧

1≤i≤n
♢pi,#,1) (7.9)

3. Players

(a) Each whole row belongs to a player

■
(
♢(eloise ∧ t(1)) → □(abelard → t(0))

)
(7.10)

(b) players alternate

■
(
♢(eloise ∧ t(1)) → [K]□(abelard → t(1))∧
♢(abelard ∧ t(1)) → [K]□(eloise → t(1))

)
(7.11)

(c) winning strategy: Abelard can play whatever possible until the 2n-th
round(
■□

∧
i,d′,d′′

(
eloise ∧ posi ∧ t(1) ∧ coli(d′′) ∧ coli(d′))

→
∧

d∈right(d′)∩top(d′′)
⟨K⟩♢(posi ∧ t(1) ∧ pd)

))
∨

∧
1≤i≤n

♢pi,#,1

(7.12)

The desired model (for a game tree) If Eloise has a winning strategy in the
two-player corridor tiling game we present above, then there exists a game tree, so
that Eloise tiles according to its instruction.

Given that game tree, the desired model Γ = (S, FS) is defined as follows

110 CHAPTER 7. PERSPECTIVES

• S = Stil ∪ S# is partitioned as sets of tiling and counting states respectively,
where

– Stil = {{ptil, π, posi, pd, coli−1(d′), coli(d′′)} : π ∈ {eloise, abelard}, 0 ≤
i ≤ n+ 1, d, d′, d′′ ∈ T}

– S# = {{p#, pi} : 1 ≤ i ≤ n}

• f ∈ FS , if and only if there is a node in the game tree, which encodes a row,
such that

– it is played by player π iff (∃s ∈ S, π ∈ s, f(s) = 1) implies that (∀s ∈ S,
if π′ ∈ s then f(s) = 0), for π, π′ ∈ {eloise, abelard} and π , π′.

– for every row which is tiled by some π, every i-th column of the row, it
is tiled by d, the i − 1-st of the row tiled by d′, the i-th column of its
previous row tiled by d′′, iff f({ptil, π, posi, pd, coli−1(d′), coli(d′′)}) = 1

– it is at the k-th level of the tree, iff the sequence f(pn)f(pn−1) . . . f(p1)
binary encodes k − 1.4

How many states we have? Exactly 2n3|T |3 +n many, where they refer to the num-
ber of tiling and counting states respectively. Hence how many possible functions in
FS at most? We have 2n×2×|pos1|× . . . |posn|, where 2n is the possible numbers n
in binary encodes; 2 the number of players; |posi| = {s : posi ∈ S} the tiling states
encoding the tiling of position i. For each i, |posi| ≤ |T | × |T | × |T |, namely the
choices of d, d′, d′′ of pd, coli(d′′), coli−1(d′). How many pointed model, i.e. the pair
(s, f) we have? It is (n+ 2n2(n− 1)|T |3) × 2n+1|T |3n, exponential in n.

It is not hard to see that the model indeed satisfies the game tree. Let us take
a look anyways by checking conditions one by one. The root of the tree is a row,
which is encoded by a classifier f , that belongs to Eloise. And ∀s ∈ S#, f(s) = 0,
therefore it represents 000 . . . 0 (n many), which encodes 0; ∀posi,∃!s ∈ S, s =
{eloise, posi, coli−1(white), coli(white)} and f(s) = 1. It indicates that all the
previous tiling is the white one, which fits our supposition of the additional white
tiling. Moreover, for that s, pd ∈ s if and only if Eloise tiles domino type d on cell
i at the root of the game tree. This is the first round of a tiling game.

In round two, Abelard has many possible returns. Each of them will be encoded
by a classifier f ′ ∈ FS , such that the number f ′ encodes is 1, namely 00 . . . 01. Now,
every legal tile of Abelard should be compatible with the tiling in f . That is to say,
for any posi, if in f we have f(s) = 1 for some s s.t. eloise, posi, pd ∈ s for some
i, d, then we shall have f ′(s′) = 1 for some s′ s.t. abelard, posi, coli(d) ∈ s′. And
moreover, if coli−1(d′), pd′′ ∈ s′, then it must be d ∈ top(d′′) ∩ right(d′).

For all the rest of the rounds it is similarly checked one by one. Finally, the
tree ends up with nodes which have depth 2n, while the model has classifiers which
encode the number 2n − 1, and no classifier shall encode the number larger than it.

4Notice again we start counting game rounds from 1 while the binary encoding starts from 0.

7.2. FINITELY DEFINITE CLASSIFIER MODELS 111

Lemma 7.1. Eloise has a winning strategy in the two-player 2n ×n corridor tiling
game if and only if the reduction formula is satisfiable in MCM.

Proof. Suppose Eloise has a winning strategy. Then there shall be a game tree for
Eloise, which is satisfied by the desired model for it. We need show that the model
also satisfies the reduction formula φ. Obviously, the tiling and counting conjuncts
are satisfied, otherwise either some row is not legally tiled or some player cannot
tile after some k-round for 1 ≤ k < 2n. In both cases the game tree would not exist.
For the player conjunct, that each player holds a whole row and players alternate
are clearly satisfied. To see the winning strategy formula is satisfied, notice that if
it is not satisfied in the desired model, then either Abelard has some move in some
k-th round (1 ≤ k < 2n) that is “unexpected” by the game tree, or the game does
not terminate after 2n rounds. In both case Eloise would have no winning strategy.

Let the formula be satisfiable. We first reduce any model satisfying the formula
to a tree model in terms of the K-accessibility relation. Then Eloise starts the game
from the pointed model that satisfies the formula. Whatever Abelard plays in his
round, say k with 1 ≤ k < 2n, what Eloise need do is to find a classifier f ′ in the
model whose number is k− 1 and whose tiling is exactly what Abelard tiles. Then,
she chooses any of its K-successor f ′′, and tiles as f ′′’s instruction. The formula
guarantees that whatever Abelard tiles, Eloise does not stop tiling before the 2n-th
round. □

With the lemma above and the knowledge that the two player tiling game is
EXPTIME-complete, we have the main result of this section.

Theorem 7.1. Let Atm0 be infinite. Then deciding satisfiability of L-formulas
relative to the class MCM is EXPTIME-hard.

7.2 Finitely Definite Classifier Models

7.2.1 Motivation

By finite definiteness we mean a property of classifier being X-definite for some
finite X ⊆ Atm0 (recall Definition 3.4). In this section we deal with the class of
finitely definite CMs and the classs of finitely definite MCMs respectively, where
finite definiteness will be defined as X-definite for some finite X. The main technical
challenge is to find proper axiomatics. It will turn out that all we need is not an
axiom but a rule of inference informally saying that

if the state is not X-definite for all finite X, then falsum.

To prove the completeness results we, as usual, will make use of decision models
(DMs) and multi-decision models (MDMs). Though the main part of this section
will be proofs, the interests are both technical and conceptual.

112 CHAPTER 7. PERSPECTIVES

Bridge the axiomatic gap In the past chapters we have provided several modal
logics for classifier systems including (single) classifiers and multi-classifiers. In
both axiomatics a salient inconvenience is that the axiomatics are always presented
as two instead of a unified one, namely cases of finite variables and of countably
infinite variables. As we mentioned, the focus is always on the axiom Funct, which
informally says that

there is an instance s with classification c → □(inputting s outputs c)

In the finite-variable case this axiom guarantees the property of functionality, i.e.
every CM is indeed a function. Nonetheless, in the infinite-variable case such a
proposition would be illegal (not a well-formed formula) because an instance s

would be represented as a conjunction of infinite literals. In other words, there the
axiomatics cannot capture functionality from a syntactic viewpoint.

By contrast, we will show that in light of the rule of inference informally given
above and formalized later, the axiomatics for finitely definite (single or multi-)
classifier models is unified regardless of the cardinality of Atm0. This is because
Funct will be derived from the rule when Atm0 is finite.

Possible syntactic expression We have briefly mentioned that the inner mech-
anism of a binary-input classifier can be recognized as its syntactic expression, i.e.
some formula that expresses it. In our language, when Atm0 is finite we can express
a classifier f by the following formula∧

s∈dom(f)
♢cns,Atm0 ∧

∧
s′<dom(f)

□¬cns′,Atm0 ∧
∧

(s,c)∈f
□(cns,Atm0 → t(c)) (7.13)

which one may call a modal normal form of f . The first two conjuncts encode the
domain of f , while the third one encodes the mapping of f .

If the classifier is X-definite, even if in the infinite-variable case, we have the
expression for f ∧

Y⊆X,c∈Val,∃(s,c)∈dom(f),s∩X=Y

(
♢cnY ,X ∧ □(cnY ,X → t(c))

)
∧

∧
Z⊆X,∀s∈dom(f),s∩X,Z

□¬cnZ,X . (7.14)

which can be seen as a relativized version of the formula above.
The problem is when f is not finitely definite, as we pointed out in Fact 3.3

by giving an easy diagonal proof. Those classifiers cannot be expressed by any
formula, since again the illegal infinite conjunction would be yielded.5 Therefore,
by restricting to finitely definite classifiers we can ensure that for any such classifier

5One can even argue that those classifiers have in principle unkownable inner mechanisms and
are unexplainable. We will leave this as a further topic.

7.2. FINITELY DEFINITE CLASSIFIER MODELS 113

there always exists some formula to express it, which is what happens in real life.6

Strong completeness Last, the technical benefit is that we can expect a strong
completeness result, instead of the previous weak one for the target aximatics.
The reason is that, take the one-dimensional logic for example, we used QDM
(quasi-decision model) instead of decision model directly to do the canonical model
argument for the completeness proof. Then, we showed that for any φ, if it is
satisfied in some QDM, it is satisfied in some DM. Since the transformation from
QDM to DM depends on the fixed φ, eventually we only reached |=DM φ =⇒⊢BCL φ

but not Φ |=DM φ =⇒ Φ ⊢BCL φ, i.e. weak rather than strong completeness for
DM (recall Definition 2.29), and consequently for CM.

The difficulty is that when Atm0 is infinite, we cannot guarantee the “function-
ality” from the proof theory. The quasi-DM is exactly inferior in this property and
thus easier to handle. Nevertheless, with the inference rule guaranteeing the finite
definiteness, we no more need QDMs but can directly work with DMs. For this
reason we can enhance the completeness result from weak to strong. The resulting
logic has therefore compactness. The case of multi-classifiers is similar.

7.2.2 Semantics

In Chapter 3 and Chapter 6, we dealt with different languages. Here for the no-
tional convenience, we use L to denote the language of PLC, and L\■ to denote the
language of BCL.

Definition 7.1 (Finitely definite classifier). For any classifier f : S −→ Val, we
say f is finitely definite, if ∃X ⊆fin Atm0, s.t. ∀s, s′ ∈ S, if s ∩ X = s′ ∩ X then
f(s) = f(s′).

Definition 7.2 (Finitely definite CM). A finitely definite CM is a model C = (S, f)
where f is finitely definite. The class of finitely definite MCMs is noted as CMfd.

Definition 7.3 (Finitely definite DM). A finitely definite DM M = (W,∼□, V) is
a DM, if it satisfies the following constraint

Cd ∀w ∈ W, ∃X ⊆fin Atm0 s.t. ∀v ∈ W , if VX(w) = VX(v) then VDec(w) =
VDec(V).

The class of finitely definite MCMs is noted as DMfd.

Definition 7.4 (Finitely definite MCM). Let Γ = (S, FS) be an MCM. We say that
Γ is finitely definite, iff ∃X ⊆fin Atm0 s.t. ∀f ∈ FS , f is X-definite. The class of
finitely definite MCMs is noted as MCMfd.

Definition 7.5 (Finitely definite MDM). Let M = (W,∼□,∼■, V) be an MDM. We
say that M is is finitely definite, if it satisfies the following constraint

6To be more precise, real life is that we have Atm0 neither fixed nor infinite, but unbounded
and finite.

114 CHAPTER 7. PERSPECTIVES

Cmd ∃X ⊆fin Atm0 s.t. ∀w, v ∈ W , if w ∼□ v and VX(w) = VX(v), then VDec(w) =
VDec(v).

The class of finitely definite MDMs is noted as MDMfd.
The satisfaction relation and validity for each modal classes here are defined in

exactly the same way as previous, and hence omitted. The theorem below is proven
in the same way as we did previously, and hence omitted.
Theorem 7.2. We have the following equivalence results:

• let φ ∈ L\■, then φ is satisfiable in CMfd if and only if φ is satisfiable in
DMfd;

• let φ ∈ L, then φ is satisfiable in MCMfd if and only if φ is satisfiable in
MDMfd.

7.2.3 Axiomatics and strong completeness for single classifiers

In this subsection our language is restricted to the language of BCL.
Axiomatically the finite definiteness is characterized by not an axiom, but a rule

of inference.

φ → ¬Defin(X) for all X ⊆fin Atm0
□¬φ

(Findef)

Recall that in Definition 3.2, we have

Defin(X) =def
∧
c∈Val

□
(
(t(c) → [X]t(c)) ∧ (¬t(c) → [X]¬t(c))

)
which can be simplified as ∧

c∈Val
□

(
⟨X⟩t(c) → [X]t(c)

)
.

The rule we propose is a kind of infinitary inference rule which has been origi-
nally studied in logics with names in e.g. [Gargov et al. 1987], [Gargov & Goranko 1993]
and [Lorini 2019].
Definition 7.6. We write BCL + Findef for the axiomatics resulting from adding
Findef into BCL.

The definitions below and following in this subsection are all defined relative to
BCL + Findef , and we omit all the subscripts BCL + Findef since the context is
clear.
Definition 7.7 (⊢). Let ∆ be a set of formulas and φ a formula. We use ∆ ⊢
φ to denote that φ is derivable from ∆ with the axioms and inference rules in
BCL + Findef ; ∆ ⊬ φ to denote that it is not the case ∆ ⊢ φ; ⊢ φ means that φ is
a theorem of BCL + Findef .

7.2. FINITELY DEFINITE CLASSIFIER MODELS 115

7.2.3.1 Axiom Funct is derivable

As we mentioned, an advantage of this framework is unifying two former axiomatics
w.r.t. different cardinality of Atm0. This can be established by the fact that the
only axiom differing the two, namely Funct, turns to be derivable here.

Lemma 7.2. ⊢ Defin(X) → Defin(X ∪ Y)

Proof. It is easy to prove that ⟨X ∪ Y ⟩φ → ⟨X⟩φ and [X]φ → [X ∪ Y]φ for any
X,Y ⊆fin Atm0 and formula φ. Thus together with ⟨X⟩t(c) → [X]t(c) for any
c ∈ Val which is derived from Defin(X) and modus ponens, we have ∧

c∈Val □(⟨X ∪
Y ⟩t(c) ∧ Defin(X)) → [X ∪ Y]t(c), which is what we want. □

Proposition 7.1. ⊢ Funct, when the language has |Atm0| finite.

Proof. Followed from the lemma above it is easy to prove ⊢ ¬Funct → ¬Defin(X)
for all X ⊆ Atm0, therefore ⊢ □¬¬Funct, which by T□ follows ⊢ Funct. □

7.2.3.2 Proof of strong completeness

We give the canonical model proof for the completeness of BCL + Findef relative
to DMfd in detail. The completeness relative to CMfd follows as a corollary in
virtue of Theorem 7.2. As usual it starts with the definition of maximal consistent
set (relative to the current logic, i.e. BCL + Findef).

Definition 7.8 (MCT). A theory is a set of formulas containing all axioms above
and closed under MP,Nec,Findef . A consistent theory is a set of formulas does
not contain ⊥. A maximal consistent theory (MCT) ∆ is a set of formulas s.t. for
any consistent theory ∆′, we have ∆ 1 ∆′.

The main difference between the standard proof and ours here is the Lindenbaum-
type lemma. We have to extend the consistent set of formulas more carefully to
ensure that at least one Def(X) is in the eventual MCT, so that Findef will not
be “triggered” to cause inconsistency.

Lemma 7.3 (Lindenbaum-type). Let ∆0 be a consistent theory and ψ < ∆0. Then,
it can extend to an MCT ∆, s.t. ψ < ∆.

Proof. The proof is in the same spirit of the works of Gargov, Passy and Tinchev,
but easier. The proof structure is constructing a chain of extensions from ∆0.
The main concern will be to avoid that every ∆i is consistent, while ⋃

i∈N∆i is
inconsistent using Findef . We can avoid it by adding some Defin(X) which is
consistent with ∆0.

Claim: for all theory ∆′, ∃X ⊆fin Atm0 s.t. ¬Defin(X) < ∆′.
Suppose not towards a contradiction. Then we have ¬Defin(X) ∈ ∆′ for all

X ⊆fin Atm0. Since (⊤ → ¬Defin(X)) ↔ ¬Defin(X) is a theorem, by MP we
have ⊤ → ¬Defin(X) ∈ ∆′ for all X ⊆fin Atm0. Hence by Findef and T we have
¬⊤ ∈ ∆′, i.e. ⊥ ∈ ∆′, which contradicts the assumption that ∆′ is consistent.

116 CHAPTER 7. PERSPECTIVES

So we extend ∆0 step by step as follows. Let Th(∆i ∪ {φi}) =Defin {χ : ∆i ∪
{φi} ⊢ χ}.

• ∆1 = Th(∆0 ∪ {¬ψ});

• ∆2 = Th(∆1 ∪ {Defin(X ′)}) for some X ′ ⊆fin Atm0 s.t. ¬Defin(X ′) < ∆1,
which necessarily exists as we showed;

• Enumerate all formulas as φ3, . . . , φn, . . . , and ∀∆i+1 for i > 2,

– ∆i+1 = Th(∆i ∪ {φi}), if the latter is consistent;
– ∆i+1 = ∆i, otherwise;

• ∆ = ⋃
i∈N∆i.

We claim that ∆ is an MCT. All others are the same as standard Lindenbaum
lemma proof, the only interesting potential danger is that ∆ contains ⊥ by using
Findef . That is to say, there exists some φ s.t. φ → ¬Defin(X) ∈ ∆ for all
X ⊆fin Atm0, and φ ∈ ∆.

We show this is impossible by contradiction. Suppose there were such a φ.
First, we know by the claim before and the construction, ∆2 is consistent. Then,
we would have φm := φ → ¬Defin(X ′), φn := φ with some m,n > 1. By the
construction, φm ∈ ∆m, φn ∈ ∆n. Then, we would derive a contradiction by MP
in ∆max{m,n}, since it contains both Defin(X ′) and ¬Defin(X ′). But it contradicts
the construction of ∆i. □

Definition 7.9 (Canonical Model). We define the canonical finitely definite DM
M c = (W c,∼c

□, V
c) as follows:

• W c = {w : w is an MCT}

• ∀w, v, w ∼c
□ v ⇐⇒ {□φ : □φ ∈ w} = {□φ : □φ ∈ v}

• V c(w) = w ∩ Atm0.

Lemma 7.4 (Indeedness). M c is indeed a finitely definite DM.

Proof. Comparing with the previous lemma for QDM in Chapter 3, we have two
more properties to prove. Let us begin by dealing with Cd. we need show that
it is captured by Findef . Suppose the latter is not satisfied, then there is an
MCT w, s.t. ∀X ⊆fin Atm0, there is another MCT v s.t. w ∼□ v, VX(w) = VX(v)
but VDec(w) , VDec(v). Let VDec(w) = {t(c)}. We have that ¬Defin(X) ∈ w for
all X ⊆fin Atm0. Since ¬Defin(X) ↔ (⊤ → ¬Defin(X)) is a theorem, we have
⊤ → ¬Defin(X) ∈ w for all X ⊆ Atm0. Since w is closed under Findef , we have
□¬⊤ ∈ w, which derives ⊥ ∈ w, contradicting that w is consistent. Then we need
show it satisfies the constraint C4 of DM, recall that requires if w∩Atm0 = v∩Atm0
then w ∩ Dec = v ∩ Dec. This is however obvious now in light of Findef . □

7.2. FINITELY DEFINITE CLASSIFIER MODELS 117

The proof of the existence lemma below is a bit different from the normal one.
Since we have Findef , there are two possible ways to derive the inconsistency
instead of one. And we need prove both are actually impossible.

Lemma 7.5 (Existence). Let M c be the canonical DM. Then ∀w ∈ W, ♢φ ∈ w,
∃v ∈ W s.t. w ∼□ v and φ ∈ v.

Proof. We claim the set w□ := {□ψ : □ψ ∈ w} is consistent with {φ}. Suppose
not towards a contradiction, two possibilities. First, there are some ⊢ (□ψ1 ∧ · · · ∧
□ψn) → ¬φ without using Findef , where ∀i ∈ {1, . . . n},□φi ∈ w□. Then using
Nec, K,T and MP it is not hard to derive □¬φ from w□, therefore □¬φ ∈ w, con-
tradicting ♢φ ∈ w. Another possibility is that ∀X ⊆fin Atm0,□(φ → ¬Defin(X)) ∈
w□, hence by Findef we have □¬φ ∈ w, hence by T, w□ is inconsistent with φ.
However, again □¬φ ∈ w contradicts ♢φ ∈ w. Use Lemma 7.3 to obtain v from
w□ ∪ {φ}. □

With help of the existence lemma, the truth lemma is straightforwardly provable.

Lemma 7.6 (Truth). Let M c be the canonical DM and w ∈ W . Then for any φ,
φ ∈ w ⇐⇒ (M c, w) |= φ.

Theorem 7.3. The logic BCL + Findef is sound and strongly complete relative to
the modal class DMfd.

Proof. Soundness is a straightforward test. To show strong completeness, suppose
Φ be a set of consistent formulas and φ a formula, and Φ ̸|= φ. By Lemma 7.3 we
have an MCT φ < w ⊇ Φ. By Lemma 7.6 we have ∀ψ ∈ Φ, (M c, w) |= ψ, while
(M c, w) ̸|= φ. □

Corollary 7.1. The logic BCL + Findef is sound and strongly complete relative to
the modal class CMfd.

7.2.4 Axiomatics and strong completeness for multi-classifiers

Now we turn to the two-dimensional case. The motivation and proof strategy are
the same as the one-dimensional case. However, we need to enhance the inference
rule accordingly as the following.

φ → ¬Defin(X) for all X ⊆fin Atm0
■□¬φ

(FinDef)

The definitions of MCT, canonical model are defined in the similar way as the
case of single classifiers. Also the Lindenbaum-type lemma is proven in a similar
way. The only difference is that in Step two we add some ■Defin(X ′) into the set.

Lemma 7.7 (Indeedness). M c is indeed a finitely definite MDM.

Proof. It is easy to see the correspondence between axioms and constraints: Comm
and C1, Indep■p, Indep■¬p and C3, AtMostt(c) and C4, AtLeastt(c) and C5,
FinDef and Cmd. Finally, C2 automatically holds because of Cmd. □

118 CHAPTER 7. PERSPECTIVES

Lemma 7.8 (Existence). Let M c be the canonical finitely definite MDM. Then
∀w ∈ W,¬ ⊞ ¬φ ∈ w,∃v ∈ W, s.t. w ∼⊞ v and φ ∈ v.

Proof. Let ⊞ be ■. We claim the set w■ := {■ψ : ■ψ ∈ w} is consistent with
φ. Suppose not towards a contradiction, two possibilities. First, there are some
⊢ (■ψ1 ∧ · · · ∧ ■ψn) → ¬φ without using FinDef , where ∀i ∈ {1, . . . , n},■φi ∈
w■. Then it is not hard to derive ■¬φ from w■, contradicting ♦φ ∈ w. Another
possibility is that {■(φ → ¬Defin(X)) : X ⊆fin Atm0} ⊆ w■, thus by T⊞ and
FinDef , ■□¬φ ∈ w. Then by T⊞, ¬φ ∈ w which lets w■ inconsistent with φ.
However, by T⊞ and Comm we have ■φ ∈ w, which already contradicts ♦φ ∈ w.
Now since the claim holds, the Lindenbaum-type lemma permits us to obtain a v
from w■ ∪ {φ}. The case of ⊞ being □ is proven in the same way. □

The following theorem directly follows from the lemmas above.

Theorem 7.4. The logic PLC + FinDef is sound and strongly complete relative to
the modal class MDMfd.

The main result now turns to be a corollary.

Corollary 7.2. The logic PLC + FinDef is sound and strongly complete relative
to the modal class MCMfd.

Conclusions and Future Work

In the thesis I have investigated a variety of logics with the aim of advancing
explainable AI. The investigation began with a simple yet powerful idea that a
Boolean function can be represented, instead of a propositional formula in the
traditional way, an S5 Kripke model. Generalizing this idea from finite-airty to
infinite-arity, from binary output to finitary output, we came up with the binary-
input classifier logic BCL, a logic for (binary-input) classifier models in Chapter
3. With this logic we have been able to express the most important notions of
classifier explanation in symbolic XAI, namely abductive explanation, contrastive
explanation, counterfactual explanation, and concepts of bias and fairness.

As an application, we used BCL to legal case-based reasoning (CBR). The guid-
ing principle was that a case base can be viewed as a classifier. Specifically, we
represented Horty’s factor-based models for CBR as classifier models of BCL. By
this step allowed us to apply many notions from Boolean functions and XAI to
CBR. These constituted of Chapter 4.

In developing BCL we introduced a counterfactual conditional operator using
Hamming distance as distance between worlds. In the finite-variable case, the
operator was found to be definable by the universal modality □. A natural question
rose: does this still hold, when the variables are infinite? And if not, what else
axiom would we need? Our study in Chapter 5 demonstrated that answers to both
questions are negative. Among other findings, we showed that the class of VC
models using Hamming distance satisfies exactly the same set of formulas as the
class of all VC models of Lewis, and the same for VCU. This suggests that, in XAI
we can safely use Hamming distance as the “canonical” measure of distance without
loss of generality. The reason is that, any other measure can be reinterpreted as
Hamming distance by adding “hidden variables”.

The primary targets of XAI are black box classifiers, which we had not ad-
dressed yet. In Chapter 6, we took a closer look at the black box metaphor by
highlighting that what black is not the learning algorithm, but the learned model.
The term black box is an epistemic notion to denote the agent’s uncertainty of what
is the “real” classifier due to the lack of complete knowledge. In light of that, we
represented a black box classifier as a set of classifiers compatible with the agent’s
partial knowledge. To achieve this we needed a two-dimensional product modal
logic. Thus besides □ ranging over all possible instances, we introduced ■ to range
over all possible classifiers. The resulting class of models is called multi-classifier
models MCM and the logic is called product modal logic for classifiers PLC. The
notions of explanation expressed in Chapter 3 thus found their correspondences in
the black box setting, and the latter were, without surprise, harder than the former.
For example, in the black box case we may not know the abductive explanation,
even though it exists.

Explanations for black box classifiers are hard. But how hard? In the first half

120 Conclusions and Future Works

of Chapter 7, we studied the complexity of deciding satisfiability problem in MCM
and obtained a new lower-bound as EXPTIME. The second half of Chapter 7 was
dedicated to bridging an axiomatic gap between logics with different cardinality of
atomic propositions. This allowed us to study a particular subclass of CM (and
MCM, respectively) such that even their number of arguments is infinite, they
are always finitely-definite. This guarantees that all such classifier models (multi-
classifier models, respectively) can be expressed by some formula.

As for future work, there are several interesting open questions have arisen in
the previous study. For instance, what is the complexity of model checking problem
in Hammingized models? Is the the lower bound result of satisfiability problem in
MCMs optimal, i.e. is there an EXPTIME algorithm to decide the satisfiability,
or there is an NEXPTIME lower bound for it? Beyond classifiers, which are the
main objects of model-agnostic XAI, there are also topics in model-specific XAI.
Popular systems include Bayesian network and causal graphs, which can be seen
as compositions of classifiers. It would be interesting to investigate whether the
current logical frameworks can extend to them.

Appendices

Appendix A

Proofs for Chapter 3

Proof of Proposition 3.2

Proof. Suppose C is X-definite but (C, s) |= ¬Defin(X), which means that ∃c ∈
Val s.t. (C, s) |= ¬ = (X, t(c)). W.l.o.g., we assume that (C, s) |= ¬□(¬t(c) →
[X]¬t(c)). That is to say, ∃s′ ∈ S, s.t. f(s′) , c but (C, s′) |= ⟨X⟩t(c). The
latter indicates that ∃s′′ ∈ S, s.t. s′′ ∩ X = s′ ∩ X but f(s′′) = c, which violates
X-definiteness.

Let (C, s) |= Defin(X), and assume f(s) = c Then since (C, s) |= □(t(c) →
[X]t(c)), we have ∀s′ ∈ S if s′ ∩ X = s ∩ X then f(s′) = c = f(s), which is what
X-definiteness says. □

Proof of Theorem 3.1

Proof. For the left to right direction, given a CM C = (S, f) and s0 ∈ S s.t.
(C, s0) |= φ, we construct a DM M ♭ = (W ♭, (≡♭

X)X⊆finAtm0 , V
♭) as follows

• W ♭ = S

• s ≡♭
X s′ if s ∩X = s′ ∩X

• V ♭(s) = s ∪ {t(f(s))}.

It is easy to check that M ♭ is indeed a DM and (M ♭, s0) |= φ.
For the other direction, given a DM

(
W, (≡X)X⊆finAtm0 , V

)
and w0 ∈ W s.t.

(M,w0) |= φ, we construct a CM C♯ = (S♯, f ♯) as follows

• S♯ = {VAtm0(w) : w ∈ W}

• ∀VAtm0(w) ∈ S♯, f ♯(VAtm0(w)) = c, if VDec(w) = {t(c)}.

It is routine to check that C♯ is a CM, and (C♯, VAtm0(w0)) |= φ.
□

Proof of Theorem 3.2

Proof. The proof is conducted by constructing the canonical model.

Definition A.1 (Theory). A set of formulas ∆ is said to be a BCL-theory if it
contains all theorems of BCL and is closed under Modus Ponens and Nec□. It is
said to be a consistent BCL-theory if it is a theory and ⊥ < ∆. It is said to be a
maximal consistent BCL-theory (MCT for short), if it is a consistent theory and for
all consistent theory ∆′, if ∆ ⊆ ∆′ then ∆ = ∆′.

124 APPENDIX A. PROOFS FOR CHAPTER 3

Lemma A.1 (Lindenbaum-type). Let ∆ be a consistent BCL-theory and φ < ∆
Then, there is a maximal consistent BCL-theory ∆′ s.t. ∆′ ⊆ ∆ and φ < ∆.

The proof is standard and omitted (see, e.g. [Blackburn et al. 2001, p. 197]).

Definition A.2 (Canonical model). The canonical decision model M = (W c, (≡c
X

)X⊆finAtm0 , V
c) is defined as follows

• W c = {w : w is a maximal consistent BCL theory.}

• w ≡c
X v ⇐⇒ {[X]φ : [X]φ ∈ w} = {[X]φ : [X]φ ∈ v}

• V c(w) = {p : p ∈ w}

Lemma A.2. Let w be an MCT. Then [X]φ → φ ∈ w.

Proof. Suppose [X]φ → φ < w, then by the maximality of w and Red[∅], we have∧
Y⊆X

(
cnY ,X → [∅](cnY ,X → φ)

)
∧ ¬φ ∈ w. Since w is maximally consistent, there

is exactly one Z ⊆ X s.t. cnZ,X ∈ w. By Modus Ponens we have □(cnZ,X → φ) ∈ w,
and by K[∅] and Modus Ponens we have φ ∈ w. But than w is inconsistent, since
φ ∧ ¬φ ∈ w. Hence the supposition fails, which means [X]φ → φ ∈ w. □

Lemma A.3. The canonical model M is indeed a decision model.

Proof. Check the conditions one by one. For C1, we need show w ≡c
X v, if ∀p, p ∈

w ∩ X implies p ∈ v. Suppose not, then w.l.o.g. we have some q ∈ w ∩ X, q < v,
by maximality of v namely ¬q ∈ v. However, we have [q]q ∈ w, for q → [q]q is a
theorem, and by definition of ≡c

X , [q]q ∈ v, hence q ∈ v, since [q]q → q ∈ v. But now
we have a contradiction. C2-4 hold obviously due to axioms AtLeast,AtMost,
Def and Funct respectively. □

Lemma A.4 (Existence). LetM = (W c, (≡c
X)X⊆finAtm0 , V

c) be the canonical model,
w be an MCT, X ⊆fin Atm0. Then, if ⟨X⟩φ ∈ w then ∃v ∈ W c s.t. w ≡c

X v and
φ ∈ v.

Proof. We first claim that {ψ : [X]ψ ∈ w}∪{φ} is consistent. The proof is following
the same line in e.g. [Blackburn et al. 2001, p. 198-199] and omitted. We claim then
that {[X]ψ : [X]ψ ∈ w} ∪ {φ} is consistent. Suppose not towards a contradiction.
It must be the case that [X]ψ1 ∧ · · · ∧ [X]ψm ⊢ ¬φ. It is not hard to prove that
□ψ → [X]ψ is a theorem. Hence we have □ξi ∈ w for all i ∈ {1, . . .m}. Moreover,
⊢ □ψ1 ∧ □ψm → ¬φ. Then use Nec□ T□ and Modus Ponens we have □¬φ ∈ w.
However, because ⊢ □¬φ → [X]¬φ we have [X]¬φ ∈ w, contradicting ⟨X⟩φ ∈
w. □

Lemma A.5 (Truth). Let M be the canonical model, w be an MCT, φ ∈ L(Atm0).
Then (M, w) |= φ ⇐⇒ φ ∈ w.

125

Proof. By induction on φ. We only show the interesting case when φ takes the
form [X]ψ.

For ⇐= direction, if [X]ψ ∈ w, since for any v ≡X w, [X]ψ ∈ v, then thanks
to [X]ψ → ψ ∈ v we have ψ ∈ v. By induction hypothesis this means (M, v) |= ψ,
therefore (M, w) |= [X]ψ.

For =⇒ direction, suppose not, namely [X]ψ < w. Then by the exitence lemma
∃v ≡c

X w,¬ψ ∈ v. Hence (M, v) ⊭ ψ by induction hypothesis. However, this
contradicts (M, w) |= [X]ψ. □

Now the completeness of DM w.r.t. BCL is a corollary of Lemma A.3 and A.5.
□

Alternative proof of Corollary 3.1 We slightly modify the canonical model
technique to prove the completeness result in the finite-variable case directly via
CMs.

The definition of MCTs and Lindenbaum-type lemma are the same and omitted.

Definition A.3 (Canonical CM for w). Let w be an MCT. We define its corre-
sponding canonical CM Cw = (Sw, fw) s.t.

• Sw = {w′ ∩ Atm0 : {□φ : □φ ∈ w′} = {□φ : □φ ∈ w}}

• fw = {(w′ ∩ Atm0, x) : w′ ∩ Atm0 ∈ Sw and t(x) ∈ w}.

The satisfaction relation is defined as the one of CM and omitted.

Lemma A.6. Let w be an MCT, then Cw is indeed a CM.

Proof sketch. We only need show the functionality of fw, which is guaranteed by
the axiom Funct. □

Lemma A.7 (Existence). Let w be an MCT and Cw = (Sw, fw) be its correspond-
ing CM. Then ∀♢φ ∈ L(Atm), if ♢φ ∈ w, then there exists a w′ ∩ Atm0 ∈ Sw s.t.
(w′ ∩ Atm0, x) ∈ fw and φ ∈ w′.

Proof. Let ∆ = {φ} ∪ {ψ : □ψ ∈ w}. We claim that ∆ is consistent. For if no,
then there are ψ1 . . . ψm ∈ {ψ : □ψ ∈ w}, s.t. (ψ1 ∧ · · · ∧ ψm) → ¬φ is a BCL
theorem. It is derivable that □(ψ1 ∧ · · · ∧ ψm) → □¬φ is a BCL theorem. Hence
we have □¬φ ∈ w, which contradicts that w is consistent, since ♢φ ∈ w. Now, by
Lindenbaum-type lemma we can extend ∆ to an MCT w′. By definition of ∆ and
Cw, obviously w′ ∩ Atm0 ∈ Sw. □

Lemma A.8 (Truth). Let w be an MCT, then ∀φ ∈ L(Atm0), φ ∈ w ⇐⇒
(Cw, w ∩ Atm0) |= φ.

Proof. By induction on φ. We prove the case when φ takes the form □ψ. Suppose
□ψ ∈ w, we need show that ∀w′ ∩ Atm0 ∈ Sw, (Cw, w′ ∩ Atm0) |= ψ, which is shown
by induction hypothesis and the definition of Sw.

126 APPENDIX A. PROOFS FOR CHAPTER 3

For the other direction we show its countraposition. Suppose (Cw, w ∩ Atm0) ⊭
□ψ, by definition ∃w′ ∩ Atm0 ∈ Sw, s.t. (Cw, w′ ∩ Atm0) |= ¬ψ. By induction
hypothesis we have ¬ψ ∈ w′. Then by the existence lemma we have ♢¬ψ ∈ w′,
which by the maximality of w means □ψ < w. □

The theorem of strong completeness turns out to be a corollary of the lemmas
above.

Proof of Theorem 3.3

Proof. Let
(
W, (≡X)X⊆finAtm0 , V

)
be a QDM and w0 ∈ W s.t. (M,w0) |= φ. Let

sf (φ) be the set of all subformulas of φ and let sf +(φ) = sf (φ) ∪ Dec. Moreover,
∀v, u ∈ W , we define v ≃ u ⇐⇒ ∀ψ ∈ sf +(φ), (M,v) |= ψ iff (M,u) |= ψ. Finally,
we define [v] = {u ∈ W : v ≃ u}.

Now we construct a filtration through sf +(φ), M ′ = (W ′, (≡′
X)X⊆finAtm0 , V

′) as
follows

• W ′ = {[v] : v ∈ W}

• ∀X ⊆fin Atm0, [v] ≡′
X [u], iff V ′

X([v]) = V ′
X([u])

• V ′([v]) = Vsf +(φ)∩Atm0
(v)

M ′ is indeed a filtration. We need show that it satisfies the two conditions.
1) v ≡X u ⇐⇒ VX(v) = VX(u) =⇒ V ′

X([v]) = V ′
X([u]) ⇐⇒ [v] ≡′

X [u].
Suppose v ≡X u. By construction of V ′, ∀p ∈ X∩sf +(φ), p ∈ V ′

X([v])p ∈ V (v) ⇐⇒
p ∈ V (u) ⇐⇒ p ∈ V ′

X([u]), and ∀p ∈ X \ sf +(φ), p < V ′
X([v]) and p < V ′

X([u]). As
a result, V ′

X([v]) = V ′
X([u]) which means [v] ≡′

X [u].
2) If [v] ≡′

X [u], then ∀[X]ψ ∈ sf +(φ): if (M, v) |= [X]ψ then (M,u) |= ψ. The
crucial point is that ∀v, v′ ∈ [v],∀u, u′ ∈ [u], ∀[X]ψ ∈ sf +(φ), if [v] ≡′

X [u], then
v ≡X v′ ≡X u ≡X u′ by the definitions of V ′ and ≃. Hence by satisfaction relation
of M we have if (M, v) |= [X]ψ then (M,u) |= ψ.

Moreover, M ′ is a finite-QDM. For C1 it is given as the definition of V ′. C2
and C3 hold because of sf +(φ) = sf (φ) ∪ Dec.

Finally, we need prove (M,w0) |= φ iff (M ′, [w0]) |= φ. We only show when
φ takes the form [X]ψ. Given (M,w0) |= [X]ψ, i.e. ∀v ∈ W , if w0 ≡X v then
(M,v) |= ψ. By definitions of ≡′

X and C1 we have V ′
X([w0]) = V ′

X([v]), by induction
hypothesis (M ′, [v]) |= ψ, which means (M ′, [w0]) |= [X]ψ. If (M ′, [w0]) |= [X]ψ,
i.e. ∀[v] ∈ W ′, if [v] ≡′

X [w0] then (M ′, [v]) |= ψ. Then by definitions of V ′ and ≃
we have w0 ≡X v, by induction hypothesis (M,v) |= ψ. □

Proof of Theorem 3.4

Proof. The right to left direction is obvious since any finite-DM is a finite-QDM. For
the other direction, suppose there is a finite-QDM

(
W, (≡X)X⊆finAtm0 , V

)
and w ∈

W s.t. (M,w) |= φ. Since Atm0 is infinite, we can construct an injection ι : W −→

127

Atm0 \ Atm(φ). Then, we construct a finite-DM M ′ = (W ′, (≡′
X)X⊆finAtm0 , V

′) as
follows

• W ′ = W

• w ≡′
X v iff V ′

X(w) = V ′
X(v)

• V ′(w) = (V (w) ∪ {ι(w)}) \ {p : ∃v ∈ W, v , w & ι(v) = p}.

It is easy to check that M ′ is indeed a finite-DM. By induction we show that
(M ′, w) |= φ. When φ is some p, we have V (w) = V ′(w) since the injection
ι has nothing to do with φ. The case of t(c) is the same. The Boolean cases
are straightforward. Finally when φ takes form [X]ψ. Again since ι does not
change valuation in φ, we have ∀v ∈ W,VX(v) = V ′

X(v). Hence we have (M,w) |=
[X]ψ ⇐⇒ ∀v ∈ W, if VX(w) = VX(v) then (M, v) |= ψ ⇐⇒ ∀v ∈ W, if
V ′
X(w) = V ′

X(v) then (M ′, v) |= ψ ⇐⇒ (M ′, w) |= [X]ψ. □

Proof of Theorem 3.7

Proof. Suppose Atm0 is finite and fixed. In order to determine whether a formula
φ is satisfiable for the class CM, we are going to verify whether φ is satisfied in
each CM, by doing this sequentially one CM after the other. The corresponding
algorithm runs in polynomial time in the size of φ since: (i) there is a finite,
constant number of CMs and (ii) model checking for the language L(Atm) relative
to a pointed CM is polynomial. This means that, when Atm0 is finite and fixed,
satisfiability checking has the same complexity as model checking. Regarding (i),
the finite, constant number of CMs in the class CM is ∑

S⊆2Atm0 |Val||S|. Indeed,
for every S ⊆ 2Atm0 , we consider the number of functions from S to Val. Regarding
(ii), it is easy to build a model checking algorithm running in polynomial time. It
is sufficient to adapt the well-known “labelling” model checking algorithm for the
basic multimodal logics and CTL [Clarke & Schlingloff 2001]. The general idea of
the algorithm is to label the states of a finite model step-by-step with sub-formulas of
the formula φ to be checked, starting from the smallest ones, the atomic propositions
appearing in φ. At each step, a formula should be added as a label to just those
states of the model at which it is true.

□

Proof of Theorem 3.8

Proof. As for NEXPTIME-hardness, in [Grossi et al. 2015] the following ceteris
paribus modal language, noted LCP(Prop), is considered with Prop a countable
set of atomic propositions:

φ ::= p | ¬φ | φ ∧ φ | [X]φ,

where p ranges over Prop and X is a finite set of atomic propositions from Prop.
Formulas for this language are interpreted relative to a simple model S ⊆ 2Atm0

128 APPENDIX A. PROOFS FOR CHAPTER 3

and a state s ∈ S in the expected way as follows (we omit boolean cases since they
are interpreted in the usual way): (S, s) |= p iff p ∈ s; (S, s) |= [X]φ iff ∀s′ ∈ S :
if s ∩ X = s′ ∩ X then (S, s′) |= φ. It is proved that, when Prop is countably

infinite, satisfiability checking for formulas in LCP(Prop) relative to the class SM
of simple models is NEXPTIME-hard [Grossi et al. 2015, Lemma 2 and Corollary
2]. It follows that satisfiability checking for formulas in our language L(Atm) with
Atm0 countably infinite is NEXPTIME-hard too.

As for membership, let tr be the following translation from the language L(Atm)
to the language LCP

(
Atm0 ∪ {pt(c) : c ∈ Val}

)
:

tr(p) = p,

tr(t(c)) = pt(c),

tr(¬φ) = ¬tr(φ),
tr(φ ∧ ψ) = tr(φ) ∧ tr(ψ),
tr([X]φ) = [X]tr(φ).

By induction on the structure of φ, it is routine to verify that φ ∈ L(Atm) is
satisfiable for the class QDM of Definition 3.9 if and only if [∅]

(
φ1 ∧ φ2

)
∧ tr(φ) is

satisfiable for the class SM of simple models, with

φ1 =def
∨
c∈Val

pt(c),

φ2 =def
∧

c,c′∈Val:c,c′

(
pt(c) → ¬pt(c′)

)
.

Hence, by Theorem 3.5 we have that, when Atm0 is countably infinite, φ ∈ L(Atm)
is satisfiable for the class CM of classifier models if and only if [∅]

(
φ1 ∧φ2

)
∧ tr(φ)

is satisfiable for the class SM of simple models. Since the translation tr is linear
and satisfiability checking for formulas in LCP

(
Atm0 ∪ {pt(c) : c ∈ Val}

)
relative

to the class SM is in NEXPTIME in the infinite-variable case [Grossi et al. 2015,
Lemma 2 and Corollary 1], checking satisfiability of formulas in L(Atm) relative to
the class CM is in NEXPTIME too, with Atm0 countably infinite.

□

Proof of Theorem 3.9

Proof. NP-hardness follows from the NP-harndess of propositional logic.
In order to prove NP-membership, we can use the translation given in the proof

of Theorem 3.8 to give a polynomial reduction of satisfiability checking of formulas
in L{[∅]}(Atm) relative to CM to satisfiability checking in the modal logic S5. The
latter problem is known to be in NP in the infinite-variable case [Ladner 1977]. □

Proof of Proposition 3.3

129

Proof. For the right direction, we have closestC(s,φ,X) ⊆ ||ψ||C from the an-
tecedent. Suppose towards a contradiction that the consequent does not hold.
Then, ∃k ∈ {0, . . . , |X|}, Y1, Y2 ⊆ X with |Y1| = |Y2| = k, s.t. (C, s) |= ⟨Y1⟩φ ∧∧
Y⊆X:k<|Y |[Y]¬φ ∧ ⟨Y2⟩(φ ∧ ¬ψ). The last conjunct means that ∃s′ ∈ S, s′ ∩X =

s ∩ X = Y2 and (C, s′) |= φ ∧ ¬ψ. But the conjuncts together guarantee that
s′ ∈ closestC(s,φ,X), because simC(s,s′,X) = k, and it is an argmax by definition
of closestC(s,φ,X). It is the desired contradiction, since s′ < ||ψ||C .

For the other direction, we need show closestC(s,φ,X) ⊆ ||ψ||C , given the
antecedent. Suppose the opposite towards a contradiction. Then by definition,
∃s∗ ∈ closestC(s,φ,X), s′ < ||ψ||C . Let s∩X = s∗∩X = Y ∗, and simC(s,s′,X) = k∗.
Then we have (C, s) |= maxSim(φ,X,k∗) ∧ ⟨Y ∗⟩(φ ∧ ¬ψ), which contradicts the an-
tecedent. To see that, notice the second conjunct is because of (C, s∗) |= φ ∧ ¬ψ,
and the first conjunct because of simC(s,s∗,X) = k∗ and s∗ ∈ closestC(s,φ,X). □

Proof of Proposition 3.4

Proof. The first validity is obvious, since if closestC(s,φ,X) ⊆ ||t(c)||C then closestC(s,φ,X) ⊈
||t(c′)||C given c′ , c. For the second validity, notice that {s} = closestC(s,φ,Atm0),
if (C, s) |= φ. Hence if (C, s) |= t(c), then we have closestC(s,∨c′∈Val:c′,? ,Atm0) =
{s} ⊆ ||t(c)||C . □

Proof of Proposition 3.5

Proof. Let (C, s) be a pointed CM and (C, s) |= AXp(λ, c), which directly gives us
(C, s) |= λ. Now since λ is an implicant of c, (C, s) |= [Atm(λ)]t(c), for otherwise ∃s′,
s.t. (C, s′) |= λ ∧ ¬t(c); and since λ is prime, we have (C, s) |= ∧

p∈Atm(λ)⟨Atm(λ) \
{p}⟩¬t(c)), otherwise ∃λ′, s.t. λ′ ⊂ λ and λ′ is also an implicant of c. The other
direction is proven in the same way and omitted. □

Proof of Proposition 3.6

Proof. Suppose towards a contradiction that C is finitely-definite, but ∃c ∈ Val,
s.t. ∀λ ∈ Term, if (C, s) |= λ then (C, s) |= ¬PImp(λ, c). That is to say, ∃s1 ∈ S

s.t. (M, s1) |= λ but either f(s1) , c or ∃s2 ∈ S s.t. ∃p ∈ Atm(λ), s1 ∩ (Atm(λ \
{p}) = s2 ∩ (Atm(λ \ {p}) but f(s2) , c. Hence C is neither Atm(λ)-definite nor
(Atm(λ \ {p})-definite. Either case C is not finitely-definite, since λ is arbitrarily
selected from Term. □

Proof of Proposition 3.7

Proof. For the first validity, let C = (S, f) ∈ CM and s ∈ S and suppose (C, s) |=
CXp(λ, c). By definition of CXp(λ, c) we have (C, s) |= t(c). We need to show
(C, s) |= λ ⇒ ¬t(c). By the antecedent, ∃s′ ∈ S, s.t. s△s′ = Atm(λ) and f(s′) , c.
It is not hard to show that closestC(s,λ,Atm) = {s′}. Therefore (C, s) |= λ ⇒ ¬t(c),
since closestC(s,λ,Atm0) ⊆ ||¬t(c)||C . For the second validity, the right direction of

130 APPENDIX A. PROOFS FOR CHAPTER 3

the iff is a special case of the first validity. To show the left direction, from Atm0-
completeness and the counterfactual conditional we have ∃s′ ∈ S, s.t. s′△s =
Atm(l) and {s′} = closestC(s,l,Atm0). Hence (C, s) |= l ∧ ⟨Atm0 \ Atm(l)⟩¬t(c) ∧
[Atm0]t(c), which is by definition (C, s) |= CXp(l, c). □

Proof of Proposition 3.8

Proof. We show that for any C = (S, f) ∈ CM, both directions are satisfied in (C, s)
for some s ∈ S. The right to left direction is obvious, since from the antecedent we
know there is a property λ′ s.t. ∃s′ ∈ S, s△s′ = Atm(λ′) ⊆ PF and (C, s′) |= ¬t(c),
which means (C, s) |= Bias(c). The other direction is proven by contraposition.
Suppose for any λ s.t. Atm(λ) ⊆ PF, (C, s) |= ¬CXp(λ, c), then it means ∀s′ ∈ S,
if s△s′ = Atm(λ), then f(s′) = c, which means (C, s) |= ¬Bias(c). □

Proof of Theorem 3.14

Proof. Suppose |Atm0| is finite. As in the proof of Theorem 3.7, we can show
that the size of the model class ECM is bounded by some fixed integer. Thus, in
order to determine whether a formula φ Lepi(Atm) is satisfiable for this class, it is
sufficient to repeat model checking a number of times which is bounded by some
integer. Model checking for the language Lepi(Atm) with respect to a pointed ECM
is polynomial. □

Appendix B

Proofs for Chapter 4

Proof of Theorem 4.1

Proof. Suppose CB is consistent. We construct a classifier model C = (S, f) s.t.
S = 2Atm0 , and ∀s ∈ S, we have

f(s) =
{

c for c ∈ {0, 1}, if ∃(s′, X, c) ∈ CB s.t. s ∩ Atmc
0 ⊇ X and s ∩ Atmc

0 ⊆ s′ ∩ Atmc
0;

? otherwise.

Obviously (C, s) |= Compl since S = 2Atm0 . We need show that (C, s) |= 2Mon.
Suppose the opposite towards a contradiction. W.l.o.g., suppose ∃s = X ∪ Y ∈
S, f(s) = 0, where X ⊆ Dfd, Y ⊆ Plt and ∃s′ = X ′ ∪ Y ′ s.t. X ′ ⊇ X,Y ′ ⊆ Y but
f(s′) , 1. According to the construction of f , since f(s) = 0, ∃c0 = (s0, X0, 0) ∈ CB
s.t. X ⊇ X0 and Y ⊆ s0 ∩ Plt. By transitivity of ⊆, we have X ′ ⊇ X0 and
Y ′ ⊆ s0 ∩ Plt. According to the construction of f again it has to be f(s′) = c, a
contradiction.

For the other direction, suppose CB is inconsistent, we show that tr2(CB) ∧
Compl ∧ 2Mon is unsatisfiable. Since CB is inconsistent, by definition we shall have
Y0 <CB Y1 and Y1 <CB Y0. W.l.o.g., assume in CB there are two precedents
c0 = (s0, X0, 0), c1 = (s1, X1, 1) s.t. Y0 <c1 Y1, Y1 <c0 Y0. Unravel the definition we
have Y0 ⊆ s1 ∩ Dfd and X1 ⊆ Y1; Y1 ⊆ s0 ∩ Plt and X0 ⊆ Y0.

Now towards a contradiction suppose (C, s) be a pointed CM s.t. (C, s) |=
tr2(CB) ∧ Compl ∧ 2Mon. Consider the state s2 = Y0 ∪ Y1. Since (C, s) |= Compl
we always have s2 ∈ S. Then by 2Mon, we have f(s2) = 0 with respect to s0, since
s2 ∩ Dfd = Y0 ⊇ X0 ⊇ s0 ∩ Dfd and s2 ∩ Plt = Y1 ⊆ s0 ∩ Plt. But also by 2Mon we
have f(s2) = 1 with respect to s1. Hence f fails to be functional, a contradiction
that we want. □

Proof of Proposition 4.3

Proof. Suppose towards a contradiction that ∃λ, (C, s′) |= PImp(λ, c), X∩Atm(Lit−(λ)) =
∅ and s ∩ Atmc

0 ⊇ Atm(Lit+(λ)). Then λ ∧ cnX,X is consistent. By Compl we have
some s† ∈ S, (C, s†) |= λ ∧ cnX,X and f(s†) = c since λ is a PImp. However, by
virtue of 2Mon according to s we shall have f(s†) = c, a contradiction that we
want. □

Proof of Proposition 4.4

132 APPENDIX B. PROOFS FOR CHAPTER 4

Proof. If it were no such λ, then we would have some s′ ∈ S s.t. X ⊆ s′, s′ ∩Atmc
0 ⊆

s∩ Atmc
0 and f(s′) , c. However, this contradicts 2Mon. Notice that if the classifier

is trivial, i.e. ∀s′ ∈ S, f(s′) = c, then we have (C, s) |= AXp(⊤, c) and by definition
of term, X ⊇ Atm(Lit(⊤)) = ∅. □

Proof of Proposition 4.5

Proof. Let ς abbreviate ∧
p∈X p∧

∧
q∈Atmc

0\s ¬q. W.l.o.g., we consider the case when
c = 1. Let c be a landmark and suppose towards a contradiction that (C, s) |=
¬PImp(ς, 1). There are three possibilities.

1) ς is not even an implicant, i.e. (C, s) |= ¬Imp(ς, 1). Hence ∃s′ s.t. s′ ∩ Plt ⊇
X, and s′ ∩ Dfd ⊆ s ∩ Dfd, while f(s′) = 0. But according to the definition of
genuine classifier, there must ∃c0 = (s0, Y, 0) ∈ CB s.t. s0 ∩ Y ⊆ s′ ∩ Dfd and
s0 ∩ Plt ⊇ s′ ∩ Plt. By transitivity of ⊆ it is easy to see that CB is inconsistent,
contradicting the assumption.

Then it is still possible that ς is an implicant but not prime. That is to say,
“drawing” a literal from the conjunction ς, the resulting conjunction is still an
implicant. Two possibilities regarding whether a positive or negative literal is drawn.

2) ς − p′ is still an implicant, where ς − p′ denotes the resulting conjunction
of drawing some p′ from ς.1 Then, from (C, s) |= Imp(ς − p′, 1) we know that
for the state s′ = (X \ {p′}) ∪ (s ∩ Dfd), f(s′) = 1. By the definition of genuine
classifier, the reason of f(s′) = 1 is that there must ∃c1 = (s1, X1, 1) ∈ CB s.t.
X1 ⊆ X \ {p′}, s1 ∩ Dfd ⊇ s ∩ Dfd. However, by transitivity we have X1 ⊆ X as
well, which indicates that s is forced to be 1 by c1, contradicting the supposition.

3) This time we draw a negative literal and claim the resulting ς − ¬q′ is still
an implicant. The proof is similar and omitted.

For the other direction, let (C, s) |= PImp(ς, 1), we need show c is a landmark.
Suppose towards a contradiction that ∃c1 = (s1, X1, 1) ∈ CB a landmark and forces
s. By definition, X1 ⊆ s ∩ Plt and s1 ∩ Dfd ⊇ s ∩ Dfd. Furthermore, we claim
(C, s) |= Imp(ς −

∧
p∈(s∩Plt)\X1 ∧

∧
q∈(Dfd\s)∩s1 ¬q, 1). Namely we draw from ς the

plaintiff-factors present in s but absent from X1, and the defendant-factors absent
from s but present in s1. They are all literals that seem “redundant” in the eye of
s1. This contradicts the assumption that ς is a prime implicant. □

Proof of Proposition 4.6

Proof. We use s− λ to denote (s \Lit+(λ)) ∪Lit−(λ), i.e. the state resulting from
flipping the literals in λ of s. W.l.o.g., assume c = 1.

We first show that Lit+(λ) ⊆ Plt, Lit−(λ) ⊆ Dfd. If not, suppose ∃p ∈ Lit+(λ)
s.t. p ∈ Dfd. Then we claim that the λ′ ⊂ λ, which results from retracting p from
λ, is still a WCXp for 1, contradicting the minimality condition of λ being a CXp.

Since λ is a CXp, we have f(s− λ) = 0. By the definition of genuine classifier,
there must exists a landmark c0 = (s0, X, 0) ∈ CB s.t. X ⊆ (s−λ)∩Dfd, s0 ∩Plt ⊇

1Formally, ς − p′ :=
∧

p∈X\{p′} p ∧
∧

q∈Dfd\s
¬q.

133

(s − λ) ∩ Plt. Now suppose a contradiction that Lit−(λ) ⊈ X, i.e. ∃p ∈ Dfd ∩
Atm(λ), p < X. But then p is “unnecessary” since it is not a part of the reason of c
which forces s. That means the λ′ ⊂ λ resulting from retracting ¬p from λ, is also
a WCXp for 1. Hence it contradicts the minimality condition of λ being a CXp.

Suppose towards a contradiction Lit+(λ) ⊈ Plt\s0, which means p ∈ (s∩s0)∩Plt.
The rest of the proof is similar, namely p is “unnecessary” which makes λ a WCXp
but not a CXp. □

Proof of Proposition 4.7

Proof. Suppose towards a contradiction that p ∈ Plt but p is non-positive. That is,
∃s ∈ 2Atm0 , f(s) < f(s \ {p}). There are two possibilities: f(s) = 0 , f(s \ {p}),
and f(s \ {p}) = 1 , f(s). For the first, since f(s) = 0, by definition of genuine
classifier we know a precedent (s′, Y, 0) s.t. Y ⊆ s ∩ Dfd, s′ ∩ Plt ⊇ s ∩ Plt that
forces f(s) = 0. But since p ∈ Plt, we have Y ⊆ s ∩ Dfd = (s \ {p}) ∩ Dfd. On
the other hand, s′ ∩ Plt ⊇ s ∩ Plt, a fortiori s′ ∩ Plt ⊇ (s \ {p}) ∩ Plt. Hence by a
fortiori reasoning f(s \ {p}) = 0, a contradiction. The second possibility is proven
similarly.

Let p be non-negative, we show p ∈ Plt. Then ∃s ∈ dom(f), f(s) > f(s \ {p}).
There are two possibilities: f(s) = 1 , f(s \ {p}), and f(s) , 0 = f(s \ {p}). For
the first, by definition of genuine classifier we know a landmark precedent (s′, X, 1)
s.t. X ⊆ s ∩ Plt and s ∩ Dfd ⊇ s′ ∩ Dfd, which forces f(s) = 1. The fact that
the landmark cannot force f(s \ {p}) indicates that either X ⊈ (s \ {p}) ∩ Plt or
(s \ {p}) ∩ Dfd ⊉ s′ ∩ Dfd. The latter is impossible due to the transitivity of ⊇.
Hence it has to be X ⊈ (s \ {p}) ∩ Plt. We know therefore p ∈ X ⊆ Plt. For
the second, from f(s \ {p}) we know a landmark precedent (s′′, Y, 0) s.t. Y ⊆
(s \ {p}) ∩ Dfd, s′′ ∩ Plt ⊇ (s \ {p}) ∩ Plt forcing f(s \ {p}) = 0. The fact that it
does not force f(s) = 0 indicates that either Y ⊈ s∩ Dfd or s′′ ∩ Plt ⊉ s∩ Plt. The
former is impossible by the transitivity of ⊆. The latter means that p < s′′ ∩ Plt.
As a result, we have not only shown p ∈ Plt, but also p must be present as a part
of the reason X in the landmark (s′, X, 1), or absent from the con-factors of the
landmark (s′′, Y, 0).

The other half of the proposition is proven similarly. □

A syntactic proof of Proposition 4.4 The proof exercises the axiomatics BCL
in Definition 3.7. Recall Proposition 4.4 as below.

Proposition B.1. We have the following validity

|=CM tr2(s,X, c) →
∨

λ∈Term

(
Imp(λ, c) ∧ (λ → cnX,X)

)
.

Proof. We prove by deriving ⊢BCL tr2(s,X, c) →
∨
λ∈Term

(
Imp(λ, c) ∧ (λ → cnX,X

)
.

For readability we write sxX for X ∪ (s ∩ Atmc
0).

134 APPENDIX B. PROOFS FOR CHAPTER 4

1. ⊢BCL
∧
λ∈Term ¬(Imp(λ, c) → cnX,X) → ¬(Imp(cnsx

X ,Atm0 , c) ∧ (cnsx
X ,Atm0 →

cnX,X)
by the fact that cnsx

X
,Atm0 is a term

2. ⊢BCL ¬(Imp(cnsx
X ,Atm0 , c) ∧ (cnsx

X ,Atm0 → cnX,X) → ¬Imp(cnsx
X ,Atm0 , c)

by the fact that cnsx
X

,Atm0 → cnX,X

3. ⊢BCL ¬Imp(cnsx
X ,Atm0 , c) → ¬□(cnsx

X ,Atm0 → t(c))
by definition of Imp

4. ⊢BCL tr2(s,X, c) → □(cnsx
X ,Atm0 → t(c))

by definition of tr2(s,X, c), Funct, Modus Ponens and a theorem proven below

5. ⊢BCL (tr2(s,X, c) ∧ ¬Imp(cnsx
X ,Atm0 , c)) → ⊥

from 3, 4 by propositional logic

6. ⊢BCL tr2(s,X, c) →
∨
λ∈Term

(
Imp(λ, c) ∧ (λ → cnX,X

)
from 2, 5 by propositional logic

The theorem used in 4 is ⊢BCL ♢(cnY ,Atm0 ∧ t(c)) → □(cnY ,Atm0 → t(c)) and is
derived as follows.

1. ⊢BCL t(y) → ¬t(c) for c , y

2. ⊢BCL (¬cnY ,Atm0 ∨ t(y)) → (¬cnY ,Atm0 ∨ ¬t(c))
by propositional logic

3. ⊢BCL □(¬cnY ,Atm0 ∨ t(y)) → □(¬cnY ,Atm0 ∨ ¬t(c))
from 1, 2 by Nec,K and Modus Ponens

4. ⊢BCL □(cnY ,Atm0 → t(y)) → □(cnY ,Atm0 → ¬t(c))

5. ⊢BCL
∨
c′∈Val\{c} □(cnY ,Atm0 → t(c′)) → □(cnY ,Atm0 → ¬t(c))

6. ⊢BCL ♢(cnY ,Atm0 ∧ t(c)) →
∧
c′∈Val\{c} ♢(cnY ,Atm0 ∧ ¬t(c′))

by countraposition of 5

7. ⊢BCL
∧
c′∈Val\{c}(♢(cnY ,Atm0 ∧ ¬t(c)) → □(cnY ,Atm0 → ¬t(c′))

by propositional logic and countraposition of Funct

8. ⊢BCL ♢(cnY ,Atm0 ∧ t(c)) →
∧
c′∈Val\{c} □(cnY ,Atm0 → ¬t(c′))

from 6, 7 by Modus Ponens

9. ⊢BCL
∧
c′∈Val\{c} □(cnY ,Atm0 → ¬t(c′)) ↔ □(cnY ,Atm0 → t(c))

by AtLeast,AtMost,Nec, K and propositional logic

10. ⊢BCL ♢(cnY ,Atm0 ∧ t(c)) → □(cnY ,Atm0 → t(c))
from 8, 9 by Modus Ponens

□

Appendix C

Three ways of defining
monotone variables in pBFs

The partial domain introduces a salient difference in the definition of monotone
variables, a distinction that is hidden in the total domain. As we will see, in this
context there are not one, but three possible ways to define monotone variables and
functions, which “collapse” into a single one in (total) Boolean functions. To the
best of my knowledge, they are not yet studied in literature.

Definition C.1 (Three definitions of monotone variable in pBF). Let f : 2Atm0 −→
{0, 1, 0.5} and dod(f) (domain of definition) denotes f -ı(1) ∪ f -ı(0). We say that
f is positive, weak positive, and even weaker positive in p, if the followings hold
respectively

∀s ∈ dom(f),
∀s ∈ dod(f),

∀s, s \ {p} ∈ dod(f),

 f(s) ≥ f(s \ {p}).

We say that f is negative, weak negative and even weaker negative in p, if the
following hold respectively

∀s ∈ dom(f),
∀s ∈ dod(f),

∀s, s \ {p} ∈ dod(f),

 f(s) ≤ f(s \ {p})

We say that f is (weak / even weaker) monotone in p, if f is either (weak / even
weaker) positive or (weak / even weaker) negative in p.

Definition C.2 (Three definitions of monotone pBF). Let f : 2Atm0 −→ {1, 0, ?}.
We say that f is monotone·, if it is monotone· in all its variables, where · is either
blank, w or ew.

Clearly, a Boolean function f belongs to a special sort of partial Boolean function
with dod(f) = dom(f). We say sometimes total Boolean function to denote the
Boolean function in usual sense; and non-trivial partial Boolean function to denote
the pBF whose domain of definition is a proper subset of its domain.

Fact C.1. 1. In total Boolean functions,

136APPENDIX C. THREE WAYS OF DEFINING MONOTONE VARIABLES IN PBFS

(a) A variable is positive (negative, monotone) iff it is positive·, for · ∈
{w, ew}

(b) a variable can be both positive and negative, iff it is inessential;1

(c) the function is trivial, namely ∀s, s′ ∈ dom(f), f(s) = f(s′), iff every
variable is both positive and negative;

(d) a variable can be both non-negative,and non-positive.

2. In partial Boolean functions,

(a) a variable is positive implies that it is positivew, which implies that it is
positiveew, and same to negative;

(b) a variable can be both positive· and negative·, iff it is inessential, where
· is blank or w;

(c) possibly all variables are both positiveew and negativeew, while the func-
tion is non-trivial

• Example: dod(f) = {11, 00} s.t. f(11) = 1, f(00) = 0;
(d) a variable can be both non-negative·,and non-positive·, where · is blank,

w or ew.

The following example demonstrates that how s ∈ dom(f) but s < dod(f) can
affect at which level of the “hierarchy of monotonicity” a variable locates.

Example C.1. Let f : 2{p1,p2,p3,q,r} −→ {0, 1, ?} s.t. f(∅) = f({r}) = f({p2, q}) =?
and f({p3, r}) = 0, and f(s) = 1 for all other states. Then, f is positive in p1;
positivew but non-positive in p2 because of {p2, q} and {q}; positiveew but non-
positivew in p3 because of {p3, r} and {r}.

A natural question is, can we have “sharper” results using the other definitions
of monotone variable in analyzing Horty case base? For the “if p ∈ Plt” part we
have achieved the best, since that p is positive implies that p is positivew, which
further implies that p is positiveew, as Fact C.1 says. And same for p ∈ Dfd. Also,
it is not surprising that, e.g., p is non-negativew implies p ∈ Plt, since by Fact C.1
being non-negativew implies being non-negative. It is rather the correspondences
between a variable being non-weakly-monotone and its role playing in the case base
that can be more informative.

Proposition C.1. Fix a language with Atm0 = Plt ∪ Dfd. Let f be the genuine
classifier of some consistent Horty case base. Then ∀p ∈ Atm0,

• p is non-negativew, if and only if, p is present in the reason of some landmark
precedent for 1;

• p is non-positivew, if and only if, p is present in the reason of some landmark
precedent for 0.

1Recall the definition of essential variable Definition 2.16. Plainly speaking, it means f(s) =
f(s \ p) for all s. The only adjustment we need to make here is that f does not need to be total.

137

Proof. We prove the second half, and the first half is proven in the same way. Let
p by non-positivew. By definition it promises there ∃s ∈ dod(f), f(s) < f(s \ {p}).
We thus know it has to be f(s) = 0 , f(s \ {p}). By the definition of genuine
classifier, from f(s) = 0 we know there is a precedent (s′, Y, 0) s.t. Y ⊆ s and
s′ ∩Plt ⊇ s∩Plt. But f(s\{p} , 0, meaning Y ⊈ s\{p} or s′ ∩Plt ⊉ (s\{p})∩Plt.
The latter is impossible in light of the monotonicity of ⊇. We therefore have shown
p ∈ Y ⊆ Dfd, otherwise it is impossible to have Y ⊈ s \ {p}. □

At this point comes a subtlety. The proposition holds, because in the definition
of, e.g. weak negative variable we use the expression like ∀s ∈ dod(f), f(s) ≤
f(s \ {p}). If we redefine it as comparing f(s) with f(s ∪ {p}), the proposition
above will be revised as p is absent from some landmark precedent for 0. This
observation implies that the notion of weak monotone variable should better be
divided as two definitions. However, it is too pedantic to go through that regarding
our purpose here. So we treat it as transitional and move on to the last definition.
Proposition C.2. Fix a language with Atm0 = Plt ∪ Dfd. Let f be the genuine
classifier of some consistent Horty case base. Then ∀p ∈ Atm0,

• p is non-negativeew, if and only if

– p is present in the reason of some landmark precedent for 1 and p is
absent from some landmark precedent for 0;

• p is non-negativeew, if and only if

– p is present in the reason of some landmark precedent for 0 and p is
absent from some landmark precedent for 1.

Proof. Again we prove the first half part only. By definitions of positiveew variable
and genuine classifier, we have some s, s \ {p} s.t. f(s) = 0 and f(s \ {p}) = 1.
There thus must exist two landmarks (s0, Y, 0), (s1, X, 1) s.t.

• s \ {p} ⊉ Y ⊆ s, though s0 ∩ Plt ⊇ s ∩ Plt ⊇ (s \ {p}) ∩ Plt;

• s ∩ Dfd ⊉ s1 ∩ Dfd ⊇ (s \ {p}) ∩ Dfd, though X ⊆ (s \ {p}) ∩ Plt ⊆ s ∩ Plt.
Hence we have p ∈ Y ⊆ Dfd and p < s1 ∩ Dfd, which are literally what the
proposition says. □

It becomes not a surprise that by strengthening p,2 e.g. from non-positive to
non-positiveew, we simply replace the “or” in Proposition 4.7 with an “and”. In
those (pairs of) cases, p plays the pivotal role not once but twice, which indicates
these cases, jointly, are even more informative than the usual landmarks.

In a nutshell, we show the natural and nice correspondences between the three
definitions of monotone variables on one hand, and whether p is partitioned in Plt or
Dfd, and plays a pivotal role in some landmark(s) of the case base (by its presence
and/or absence) on the other hand.

2Since positiveewness is weaker than positiveness, certainly the negation of the former is stronger
than the negation of the latter.

Appendix D

Proofs for Chapter 6

Proof of Theorem 6.1

Proof. We start with the left-to-right direction of the proof. Let (Γ, s0, f0) be a
pointed MCM with Γ = (S, FS), S ⊆ 2Atm0 and FS ⊆ ValS such that (Γ, s0, f0) |= φ.
We define the tuple M =

(
W,∼□,∼■, V

)
as follows:

- W = {(s, f) : s ∈ S and f ∈ FS},

- ∀(s, f), (s′, f ′) ∈ W , (s, f) ∼□ (s′, f ′) iff f = f ′

- ∀(s, f), (s′, f ′) ∈ W , (s, f) ∼■ (s′, f ′) iff s = s′,

- ∀(s, f) ∈ W , V (s, f) = s ∪ {t(f(s))}.

It is routine exercise to verify that M so defined is an MDM. Moreover, by induction
on the structure of φ, it is easy to prove that “(Γ, s, f) |= φ iff

(
M, (s, f)

)
|= φ” for

every s ∈ S and f ∈ FS . Thus,
(
M, (s0, f0)

)
|= φ since (Γ, s0, f0) |= φ.

Let us now prove the right-to-left direction. Let M = (W,∼□,∼■, V) be an
MDM and w0 ∈ W such that (M,w0) |= φ. Given v ∈ W , let |v| = {u ∈ W : v ∼□
u and V (v) = V (u)}. We transform the MDM M into a tuple M ′ =

(
W ′,∼′

□,∼′
■

, V ′) such that:

- W ′ = {|v| : v ∈ W},

- ∀|v|, |u| ∈ W ′, |v| ∼□ |u| iff ∃v′ ∈ |v|, u′ ∈ |u| such that v′ ∼□ u′,

- ∀|v|, |u| ∈ W ′, |v| ∼′
■ |u| iff ∃v′ ∈ |v|, u′ ∈ |u| such that v′ ∼■ u′,

- ∀|v| ∈ W ′, V ′(|v|) = V (v).

Like what we did for V , let V ′
Y (|v|) = V ′(|v|) ∩ Y for all Y ⊆ Atm.

It is a routine exercise to verify that M ′ is an MDM and, by induction on
the structure of φ, that “(M, v) |= φ iff (M ′, |v|) |= φ” for every v ∈ W . Thus,
(M, |w0|) |= φ since (M,w0) |= φ. Finally, because of Constraints C2 and C3 in
Definition 6.3, the following property holds:

(C6)
(

∼′
□ ∩ ∼′

■

)
= idW ′ ,

where idW ′ is the identity relation on W ′.
Let W ′/ ∼′

□ be the quotient set of W ′ by the equivalence relation ∼′
□. We

note τ, τ ′, . . . its elements. Given τ, τ ′ ∈ W ′/ ∼′
□, we write τ ≈F τ ′ if and only

140 APPENDIX D. PROOFS FOR CHAPTER 6

if, ∀|v| ∈ τ,∀|u| ∈ τ ′, if V ′
Atm0

(|v|) = V ′
Atm0

(|u|) then V ′
Dec(|v|) = V ′

Dec(|u|). Given
|v|, |u| ∈ W ′, we write |v| ≃ |u| if and only if ∃τ, τ ′ ∈ W ′/ ∼′

□ such that |v| ∈
τ, |u| ∈ τ ′, τ ≈F τ

′ and V ′
Atm0

(|v|) = V ′
Atm0

(|u|). Clearly, ≈F and ≃ are equivalence
relations.

We are going to transform the MDM M ′ into an MDM which does not contain
multiple copies of the same function and which satisfies the same formulas as M ′.
We define it to be a tuple M ′′ =

(
W ′′,∼′′

□,∼′′
■, V

′′) such that:

- W ′′ = {≃(|v|) : |v| ∈ W ′},

- ∀ ≃(|v|),≃(|u|) ∈ W ′′, ≃(|v|) ∼′′
□≃(|u|) iff ∃|v′| ∈≃(|v|), |u′| ∈≃(|u|) such that

|v′| ∼′
□ |u′|,

- ∀ ≃(|v|),≃(|u|) ∈ W ′′, ≃(|v|) ∼′′
■≃(|u|) iff ∃|v′| ∈≃(|v|), |u′| ∈≃(|u|) such that

|v′| ∼′
■ |u′|,

- ∀ ≃(|v|) ∈ W ′′, V ′′(≃(|v|)
)

= V ′(|v|).

Again, it is routine to verify that M ′′ is an MDM which satisfies the previous
Constraint C6. Moreover, by induction on the structure of φ, it is easy to prove that
“(M ′, |v|) |= φ iff

(
M ′′,≃(|v|)

)
|= φ” for every |v| ∈ W ′. Thus,

(
M ′′,≃(|w0|)

)
|= φ

since (M ′, |w0|) |= φ.
We can easily build an MCM isomorphic to M ′′.

□

Proof of Theorem 6.3

Proof. The left-to-right direction is trivial. We prove the right-to-left direction.
Suppose Atm0 is infinite. Moreover, let M = (W,∼□,∼■, V) be a finite quasi-MDM
and w0 ∈ W such that (M,w0) |= φ. Since Atm0 is infinite and W is finite, we can
define an injection g : W −→ Atm0 \ Atm(φ). We define the tuple M ′ =

(
W ′,∼′

□

,∼′
■, V

′) as follows:

- W ′ = W ;

- ∼′
□=∼□

- ∼′
■=∼■;

- for every w ∈ W ′,

V ′(w) =
(
V (w) \ {g(v) : v ∈ W and w , v}

)
∪ {g(w)}.

It is routine to verify that M ′ is a finite MDM. Indeed, V ′
Atm0

(w) , V ′
Atm0

(v) for all
w, v ∈ W ′ such that w , v. This guarantees that M ′ satisfies the “functionality”
constraint C2. Moreover, by induction on the structure of φ, it is straightforward
to prove that “(M, v) |= φ iff (M ′, v) |= φ” for every v ∈ W . The crucial point of
the proof is that ∼′

□=∼□ and ∼′
■=∼■. Thus, (M ′, w0) |= φ since (M,w0) |= φ. □

141

Proof of Theorem 6.4

Proof. The right-to-left direction is clear. We are going to prove the left-to-right
direction by a filtration argument.

Let M = (W,∼□,∼■, V) be a quasi-MDM and w0 ∈ W such that (M,w0) |= φ.
It is routine to verify that (∼□ ∪ ∼■)∗ =∼□ ◦ ∼■=∼■ ◦ ∼□. Thus, we can define
M ′ = (W ′,∼′

□,∼′
■, V

′) to be the submodel of M generated from w0 through the
relation ∼□ ◦ ∼■. M ′ is a quasi-MDM and (M ′, w0) |= φ.

Let sf (φ) be the set of all subformulas of φ and let sf +(φ) = sf (φ) ∪ Dec.
Moreover, for every v ∈ W ′, let Θ(v) =

{
ψ ∈ sf +(φ) : (M ′, v) |= ψ

}
. For every

v, u ∈ W ′, we define

v ≃ u iff Θ(v) = Θ(u).

Moreover, we define [v] = {u ∈ W ′ : v ≃ u}.
We construct a new model M ′′ = (W ′′,∼′′

□,∼′′
■, V

′′) where:

- W ′′ = {[v] : v ∈ W ′};

- [v] ∼′′
□ [u] iff

∀□ψ ∈ sf (φ),
(
(M ′, v) |= □ψ iff (M ′, u) |= □ψ

)
;

- [v] ∼′′
■ [u] iff

∀■ψ ∈ sf (φ),
(
(M ′, v) |= ■ψ iff (M ′, u) |= ■ψ

)
and

∀p ∈ sf (φ) ∩ Atm0,
(
(M ′, v) |= p iff (M ′, u) |= p

)
;

- V ′′([v]
)

= V ′
sf (φ)∩Atm0

(v) ∪ V ′
Dec(v).

M ′′ is indeed a filtration, for it satisfies that if v ∼⊞ u, then [v] ∼⊞ [u]; and if
⊞ψ ∈ sf(φ) and (M ′, v) |= ⊞ψ, then (M ′, u) |= ψ, for ⊞ ∈ {□,■}. Additionally, the
valuation function is defined in the standard way.

To check that M ′′ is a finite quasi-MDM, we go through all constraints. For C1
a crucial fact is that M ′ generated from w0 through ∼□ ◦ ∼■, viz. ∀v, u ∈ W ′, v ∼□
◦ ∼■ u and v ∼■ ◦ ∼□ u. C3 holds because of the definition of ∼′′

■. C4,C5 hold,
since V ′′ not only considers sf (φ) ∩ Atm0 but also Dec.

It is routine to verify that M ′′ = (W ′′,∼′′
□,∼′′

■, V
′′) is a filtration of M ′ and is a

finite quasi-MDM. Therefore, (M ′′, [w0]) |= φ. □

Proof of Theorem 6.6

Proof. Suppose |Atm0| is finite. Then, the class MCM is bounded by some integer
k. So, in order to determine whether a formula φ is satisfiable for the class MCM,
it is sufficient to verify whether φ is satisfied in one of these MCMs. This verification
takes a polynomial time in the size of φ since it is a repeated model checking and
model checking in the product modal logic S52 is polynomial. □

142 APPENDIX D. PROOFS FOR CHAPTER 6

Proof of Theorem 6.7

Proof. We know that satisfiability checking for the product modal logic S52 with
two S5 modalities □1 and □2 is NEXPTIME-complete [Gabbay et al. 2003]. We
have a polynomial reduction of satisfiability checking for L-formulas relative to the
class MCM to the latter problem. In particular, given a formula φ ∈ L, we can
translate it into a formula tr(φ) of S52 where the translation tr is defined as follows:
(i) tr(q) = q for q ∈ Atm, (ii) tr(¬φ) = ¬tr(φ), (iii) tr(φ1 ∧ φ2) = tr(φ1) ∧ tr(φ2),
(iv) tr(□φ) = □1tr(φ), (v) tr(■φ) = □2tr(φ). We have that φ is satisfiable for the
class MCM if and only ∧

χ∈∆ □1□2χ∧ tr(φ) is a satisfiable formula of the product
modal logic S52, where ∆ is the following finite theory corresponding to the Axioms
Indep■p, Indep■¬p, AtMostt(c) and AtLeastt(c) of the logic WPLC:

∆ ={
∨
c∈Val

t(c)} ∪ {t(c) → ¬t(c′) : c , c′} ∪ {p → □2p : p ∈ Atm0(φ)}∪

{¬p → □2¬p : p ∈ Atm0(φ)},

and Atm0(φ) is the set of atoms in Atm0 which occur in φ. □

Bibliography

[Aiguier et al. 2018] Marc Aiguier, Jamal Atif, Isabelle Bloch and Céline Hudelot.
Belief revision, minimal change and relaxation: A general framework based
on satisfaction systems, and applications to description logics. Artificial
Intelligence, vol. 256, pages 160–180, 2018. (Cited on page 68.)

[Aleven 2003] Vincent Aleven. Using background knowledge in case-based legal rea-
soning: a computational model and an intelligent learning environment. Ar-
tificial Intelligence, vol. 150, no. 1-2, pages 183–237, 2003. (Cited on pages 52
and 65.)

[Amershi et al. 2014] Saleema Amershi, Maya Cakmak, William.B. Knox and Todd
Kulesza. Power to the people: The role of humans in interactive machine
learning. AI Magazine, vol. 35, no. 4, pages 105–120, 2014. (Cited on
page 102.)

[Amgoud & Ben-Naim 2022] Leila Amgoud and Jonathan Ben-Naim. Axiomatic
Foundations of Explainability. In 31st International Joint Conference on
Artificial Intelligence (IJCAI 2022), 2022. (Cited on page 24.)

[Ashley 1990] Kevin D. Ashley. Modeling legal argument: Reasoning with cases
and hypotheticals. MIT, 1990. (Cited on pages 52 and 65.)

[Atkinson et al. 2020] Katie Atkinson, Trevor Bench-Capon and Danushka Bolle-
gala. Explanation in AI and law: Past, present and future. Artificial Intel-
ligence, vol. 289, page 103387, 2020. (Cited on pages 52 and 66.)

[Audemard et al. 2021] Gilles Audemard, Steve Bellart, Louenas Bounia, Frédéric
Koriche, Jean-Marie Lagniez and Pierre Marquis. On the Computational
Intelligibility of Boolean Classifiers. In Proceedings of the International
Conference on Principles of Knowledge Representation and Reasoning, vol-
ume 18, pages 74–86, 2021. (Cited on page 24.)

[Baltag & van Benthem 2021] Alexandru Baltag and Johan van Benthem. A simple
logic of functional dependence. Journal of Philosophical Logic, vol. 50, no. 5,
pages 939–1005, 2021. (Cited on pages 27 and 92.)

[Bezhanishvili & Hodkinson 2004] Nick. Bezhanishvili and Ian. M. Hodkinson. All
Normal Extensions of S5-squared Are Finitely Axiomatizable. Studia Logica,
vol. 78, no. 3, pages 443–457, 2004. (Cited on page 96.)

[Bezhanishvili & Marx 2003] Nich. Bezhanishvili and Maarten. Marx. All Proper
Normal Extensions of S5-square have the Polynomial Size Model Property.
Studia Logica, vol. 73, no. 3, pages 367–382, 2003. (Cited on page 96.)

144 BIBLIOGRAPHY

[Biran & Cotton 2017] Or Biran and Courtenay Cotton. Explanation and justifica-
tion in machine learning: A survey. In IJCAI-17 workshop on explainable
AI (XAI), volume 8(1), pages 8–13, 2017. (Cited on page 24.)

[Blackburn et al. 2001] Patrick Blackburn, Maarten de Rijke and Yde Venema.
Modal logic. Cambridge University Press, Cambridge, Massachusetts, 2001.
(Cited on pages 19, 21 and 124.)

[Borgida 1985] Alexander Borgida. Language features for flexible handling of ex-
ceptions in information systems. ACM Transactions on Database Systems
(TODS), vol. 10, no. 4, pages 565–603, 1985. (Cited on page 38.)

[Burgess 1981] John P Burgess. Quick completeness proofs for some logics of con-
ditionals. Notre Dame Journal of Formal Logic, vol. 22, no. 1, pages 76–84,
1981. (Cited on page 69.)

[Card 2017] Dallas Card. The black box metaphor in ma-
chine learning. https://dallascard.medium.com/
the-black-box-metaphor-in-machine-learning-4e57a3a1d2b0, 2017.
Accessed: 2023-07-05. (Cited on pages 4 and 5.)

[Caridroit et al. 2017] Thomas Caridroit, Jean-Marie Lagniez, Daniel Le Berre,
Tiago de Lima and Valentin Montmirail. A SAT-Based Approach for Solving
the Modal Logic S5-Satisfiability Problem. In Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence (AAAI-17), pages 3864–3870.
AAAI Press, 2017. (Cited on page 48.)

[Carnap 1967] Rudolf Carnap. The logical structure ofthe world. Berkeley-Los
Angeles, Univ, 1967. (Cited on page 21.)

[Charrier et al. 2016] Tristan Charrier, Andreas Herzig, Emiliano Lorini, Faustine
Maffre and François Schwarzentruber. Building Epistemic Logic from Obser-
vations and Public Announcements. In Proceedings of the Fifteenth Interna-
tional Conference on Principles of Knowledge Representation and Reasoning
(KR 2016), pages 268–277. AAAI Press, 2016. (Cited on page 46.)

[Clarke & Schlingloff 2001] Edmund M. Clarke and Bernd-Holger Schlingloff.
Model checking. In Alan J. A. Robinson and Andrei Voronkov, editors,
Handbook of automated reasoning, pages 1635–1790. Elsevier, 2001. (Cited
on page 127.)

[Crama & Hammer 2011] Yves Crama and Peter L Hammer. Boolean functions:
Theory, algorithms, and applications. Cambridge University Press, 2011.
(Cited on pages 11, 12, 13, 14 and 63.)

[Cunningham & Delany 2022] Padraig Cunningham and Sarah Jane Delany. K-
Nearest Neighbour Classifiers - A Tutorial. ACM Computing Surveys,
vol. 54, no. 6, pages 1–25, 2022. (Cited on page 45.)

https://dallascard.medium.com/the-black-box-metaphor-in-machine-learning-4e57a3a1d2b0
https://dallascard.medium.com/the-black-box-metaphor-in-machine-learning-4e57a3a1d2b0

BIBLIOGRAPHY 145

[Dalal 1988] Mukesh Dalal. Investigations into a theory of knowledge base revision:
preliminary report. In Proceedings of the Seventh National Conference on
Artificial Intelligence, volume 2, pages 475–479. Citeseer, 1988. (Cited on
pages 38, 68 and 73.)

[Darwiche & Hirth 2020] Adnan Darwiche and Auguste Hirth. On the Reasons
Behind Decisions. In 24th European Conference on Artificial Intelligence
(ECAI 2020), volume 325 of Frontiers in Artificial Intelligence and Applica-
tions, pages 712–720. IOS Press, 2020. (Cited on pages 2, 3, 18, 19, 24, 25,
41 and 43.)

[Darwiche 2020] Adnan Darwiche. Three modern roles for logic in AI. In Proceed-
ings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems, pages 229–243, 2020. (Cited on page 2.)

[Delgrande & Peppas 2015] James P Delgrande and Pavlos Peppas. Belief revision
in Horn theories. Artificial Intelligence, vol. 218, pages 1–22, 2015. (Cited
on page 68.)

[Dhurandhar et al. 2018] Amit Dhurandhar, Pin-Yu Chen, Ronny Luss, Chun-
Chen Tu, Paishun Ting, Karthikeyan Shanmugam and Payel Das. Explana-
tions based on the missing: Towards contrastive explanations with pertinent
negatives. In Advances in Neural Information Processing Systems, pages
592–603, 2018. (Cited on page 24.)

[Dizadji-Bahmani & Bradley 2014] Foad Dizadji-Bahmani and Seamus Bradley.
Lewis’ account of counterfactuals is incongruent with Lewis’ account of laws
of nature. available in http://philsci-archive.pitt.edu/10875/, 2014.
(Cited on page 68.)

[Eiter & Gottlob 1992] Thomas Eiter and Georg Gottlob. On the Complexity of
Propositional Knowledge Base Revision, Updates, and Counterfactuals. Ar-
tif. Intell., vol. 57, no. 2-3, pages 227–270, 1992. (Cited on page 73.)

[Fagin et al. 1995] Ronald Fagin, Yoram Moses, Joseph Y Halpern and Moshe Y
Vardi. Reasoning about knowledge. MIT Press, 1995. (Cited on page 27.)

[Floridi 2010] Luciano Floridi. Information, possible worlds and the cooptation of
scepticism. Synthese, vol. 175, no. Suppl 1, pages 63–88, 2010. (Cited on
pages 68 and 74.)

[Friedman & Halpern 1994] Nir Friedman and Joseph Y Halpern. On the complex-
ity of conditional logics. In Principles of Knowledge Representation and
Reasoning, pages 202–213. Morgan Kaufmann, 1994. (Cited on pages 71,
75, 79 and 81.)

http://philsci-archive.pitt.edu/10875/

146 BIBLIOGRAPHY

[Gabbay et al. 2003] D. M. Gabbay, A. Kurucz, F. Wolter and M. Zakharyaschev.
Many-dimensional modal logics: theory and applications. Elsevier, 2003.
(Cited on pages 91, 94 and 142.)

[Gärdenfors 1984] Peter Gärdenfors. Epistemic importance and minimal changes
of belief. Australasian Journal of Philosophy, vol. 62, no. 2, pages 136–157,
1984. (Cited on page 68.)

[Gargov & Goranko 1993] G. Gargov and V. Goranko. Modal logic with names.
Journal of Philosophical Logic, vol. 22, pages 607–636, 1993. (Cited on
page 114.)

[Gargov et al. 1987] George Gargov, Solomon Passy and Tinko Tinchev. Modal
Environment for Boolean Speculations: preliminary report. Mathematical
logic and its applications, pages 253–263, 1987. (Cited on page 114.)

[Girard & Triplett 2016] Patrick Girard and Marcus Anthony Triplett. Ceteris
paribus logic in counterfactual reasoning. In Proceedings of the Fifteenth
Conference on Theoretical Aspects of Rationality and Knowledge (TARK
2015), pages 176–193, 2016. (Cited on page 38.)

[Goldszmidt & Pearl 1992] Moisés Goldszmidt and Judea Pearl. Rank-based sys-
tems: A simple approach to belief revision, belief update, and reasoning about
evidence and actions. KR, vol. 92, pages 661–672, 1992. (Cited on page 71.)

[Goodman 1955] Nelson Goodman. Fact, fiction, and forecast. Harvard University
Press, 1955. (Cited on page 25.)

[Grahne 1998] Gösta Grahne. Updates and counterfactuals. Journal of Logic and
Computation, vol. 8, no. 1, pages 87–117, 1998. (Cited on page 68.)

[Grossi et al. 2015] Davide Grossi, Emiliano Lorini and François Schwarzentruber.
The Ceteris Paribus Structure of Logics of Game Forms. Journal of Artificial
Intelligence Research, vol. 53, pages 91–126, 2015. (Cited on pages 26, 27,
92, 127 and 128.)

[Grove 1988] A. Grove. Two modellings for theory change. J. of Philosophical Logic,
vol. 17, pages 157–170, 1988. (Cited on page 68.)

[Halpern 1995] Joseph Y. Halpern. The Effect of Bounding the Number of Primitive
Propositions and the Depth of Nesting on the Complexity of Modal Logic.
Artificial Intelligence, vol. 75, no. 2, pages 361–372, 1995. (Cited on pages 36
and 96.)

[Halpern 2016] Joseph Y Halpern. Actual causality. MiT Press, 2016. (Cited on
page 25.)

BIBLIOGRAPHY 147

[Hempel & Oppenheim 1948] Carl G. Hempel and Paul Oppenheim. Studies in the
Logic of Explanation. Philosophy of science, vol. 15, no. 2, pages 135–175,
1948. (Cited on pages 14, 15 and 24.)

[Herzig et al. 2015] Andreas Herzig, Emiliano Lorini and Faustine Maffre. A Poor
Man’s Epistemic Logic Based on Propositional Assignment and Higher-Order
Observation. In Proceedings of the 5th International Workshop on Logic,
Rationality, and Interaction, Lecture Notes in Computer Science, pages 156–
168. Springer, 2015. (Cited on page 46.)

[Herzig 1998] Andreas Herzig. Logics for belief base updating. In Didier Dubois, Dov
Gabbay, Henri Prade and Philippe Smets, editors, Handbook of defeasible
reasoning and uncertainty management, volume 3 - Belief Change, pages
189–231. Kluwer, 1998. (Cited on page 73.)

[Horty & Bench-Capon 2012] John F. Horty and Trevor J. M. Bench-Capon. A
factor-based definition of precedential constraint. Artificial intelligence and
Law, vol. 20, pages 181–214, 2012. (Cited on pages 52 and 66.)

[Horty 2004] John F. Horty. The Result Model of Precedent. Legal Theory, vol. 10,
pages 19–31, 2004. (Cited on page 52.)

[Horty 2011] John F. Horty. Rules and reasons in the theory of precedent. Legal
theory, vol. 17, pages 1–33, 2011. (Cited on pages 52, 53, 54, 55 and 66.)

[Horty 2017] John Horty. Reasoning with Dimensions and Magnitudes. In Inter-
national Conference on Artificial Intelligence and Law, ICAIL2017. ACM,
2017. (Cited on page 52.)

[Huang et al. 2022] Xuanxiang Huang, Yacine Izza, Alexey Ignatiev, Martin
Cooper, Nicholas Asher and Joao Marques-Silva. Tractable explanations
for d-DNNF classifiers. In Proceedings of the AAAI Conference on Arti-
ficial Intelligence, volume 36, pages 5719–5728, 2022. (Cited on pages 40
and 62.)

[Ignatiev et al. 2019] Alexey Ignatiev, Nina Narodytska and Joao Marques-Silva.
Abduction-based explanations for machine learning models. In Proceedings
of the Thirty-third AAAI Conference on Artificial Intelligence (AAAI-19),
volume 33, pages 1511–1519, 2019. (Cited on pages 3, 18, 24, 25, 26 and 40.)

[Ignatiev et al. 2020a] Alexey Ignatiev, Martin C. Cooper, Mohamed Siala, Em-
manuel Hebrard and Joao Marques-Silva. Towards Formal Fairness in Ma-
chine Learning. In International Conference on Principles and Practice of
Constraint Programming, pages 846–867. Springer, 2020. (Cited on page 43.)

[Ignatiev et al. 2020b] Alexey Ignatiev, Nina Narodytska, Nicholas Asher and Joao
Marques-Silva. From contrastive to abductive explanations and back again. In

148 BIBLIOGRAPHY

International Conference of the Italian Association for Artificial Intelligence,
pages 335–355. Springer, 2020. (Cited on pages 2, 3, 17, 18, 24, 26 and 41.)

[Katsuno & Mendelzon 1991] Hirofumi Katsuno and Alberto O Mendelzon. Propo-
sitional Knowledge Base Revision and Minimal Change. Artificial Intelli-
gence, vol. 52, 1991. (Cited on page 68.)

[Kearns & Roth 2019] Michael Kearns and Aaron Roth. The ethical algorithm:
The science of socially aware algorithm design. Oxford University Press,
2019. (Cited on pages 5, 6, 7, 89 and 97.)

[Kment 2006] Boris Kment. Counterfactuals and explanation. Mind, vol. 115,
no. 458, pages 261–310, 2006. (Cited on page 24.)

[Kraus et al. 1990] Sarit Kraus, Daniel Lehmann and Menachem Magidor. Non-
monotonic reasoning, preferential models and acumulative logics. Artifi-
cial Intelligence, vol. 44, no. 1-2, pages 167–207, 1990. (Cited on pages 68
and 71.)

[Ladner 1977] Richard E. Ladner. The computational complexity of provability in
systems of modal propositional logic. SIAM journal on computing, vol. 6,
no. 3, pages 467–480, 1977. (Cited on page 128.)

[Lewis 1973] David K. Lewis. Counterfactuals. Harvard University Press, 1973.
(Cited on pages 37, 71 and 73.)

[Lewis 1979] David K. Lewis. Counterfactual dependence and time’s arrow. Noûs,
pages 455–476, 1979. (Cited on page 25.)

[Lewis 1986] David K. Lewis. Causal Explanation. In Philosophical Papers, vol-
ume 2, pages 214–240. Oxford University Press, 1986. (Cited on page 27.)

[Lewis 1995] David K. Lewis. Causation. Journal of Philosophy, vol. 70, no. 17,
pages 556–567, 1995. (Cited on pages 25 and 71.)

[Liu & Lorini 2021] Xinghan Liu and Emiliano Lorini. A Logic for Binary Classi-
fiers and Their Explanation. In P. Baroni, C. Benzmüller and Y. N. Wáng,
editors, Logic and Argumentation - 4th International Conference, CLAR
2021, Hangzhou, China, 2021, Proceedings, Lecture Notes in Computer Sci-
ence, pages 302–321. Springer, 2021. (Cited on page 7.)

[Liu & Lorini 2022] Xinghan Liu and Emiliano Lorini. A logic of “black box” clas-
sifier systems. In Logic, Language, Information, and Computation: 28th
International Workshop, WoLLIC 2022, Ias, i, Romania, 2022, Proceedings,
pages 158–174. Springer, 2022. (Cited on page 8.)

[Liu & Lorini 2023] Xinghan Liu and Emiliano Lorini. A unified logical framework
for explanations in classifier systems. Journal of Logic and Computation,
vol. 33, no. 2, pages 485–515, 2023. (Cited on page 7.)

BIBLIOGRAPHY 149

[Liu et al. 2022] Xinghan Liu, Emiliano Lorini, Antonino Rotolo and Giovanni Sar-
tor. Modelling and Explaining Legal Case-Based Reasoners Through Classi-
fiers. In Legal Knowledge and Information Systems, pages 83–92. IOS Press,
2022. (Cited on page 8.)

[Lorini 2019] Emiliano Lorini. Reasoning about cognitive attitudes in a qualita-
tive setting. In Logics in Artificial Intelligence: 16th European Conference,
JELIA 2019, Rende, Italy, May 7–11, 2019, Proceedings 16, pages 726–743.
Springer, 2019. (Cited on page 114.)

[Lundberg & Lee 2017] Scott Lundberg and Su-In Lee. A unified approach to in-
terpreting model predictions. arXiv preprint arXiv:1705.07874, 2017. (Cited
on pages 1, 16 and 17.)

[Marques-Silva & Ignatiev 2023] Joao Marques-Silva and Alexey Ignatiev. No sil-
ver bullet: interpretable ML models must be explained. Frontiers in Artificial
Intelligence, vol. 6, page 1128212, 2023. (Cited on page 91.)

[Marques-Silva 2023] Joao Marques-Silva. Logic-based explainability in machine
learning. In Reasoning Web. Causality, Explanations and Declarative Knowl-
edge: 18th International Summer School 2022, Berlin, Germany, September
27–30, 2022, Tutorial Lectures, pages 24–104. Springer, 2023. (Cited on
page 2.)

[Marx 1999] Maarten Marx. Complexity of products of modal logics. Journal of
Logic and Computation, vol. 9, no. 2, pages 197–214, 1999. (Cited on
page 103.)

[Mertes et al. 2022] Silvan Mertes, Christina Karle, Tobias Huber, Katharina
Weitz, Ruben Schlagowski and Elisabeth André. Alterfactual Explanations–
The Relevance of Irrelevance for Explaining AI Systems. arXiv preprint
arXiv:2207.09374, 2022. (Cited on page 24.)

[Miller et al. 2022] Tim Miller, Robert Hoffman, Ofra Amir and Andreas Holzinger.
Special issue on Explainable Artificial Intelligence (XAI). Artificial Intelli-
gence, vol. 307, 2022. (Cited on page 52.)

[Miller 2019] Tim Miller. Explanation in artificial intelligence: Insights from the
social sciences. Artificial intelligence, vol. 267, pages 1–38, 2019. (Cited on
pages 24 and 102.)

[Miller 2021] Tim Miller. Contrastive explanation: A structural-model approach.
The Knowledge Engineering Review, vol. 36, 2021. (Cited on page 24.)

[Mittelstadt et al. 2019] Brent Mittelstadt, Chris Russell and Sandra Wachter. Ex-
plaining explanations in AI. In Proceedings of the 2019 conference on Fair-
ness, Accountability, and Transparency, pages 279–288, 2019. (Cited on
page 24.)

150 BIBLIOGRAPHY

[Molnar 2023] Christoph Molnar. Interpretable machine learning. Lulu. com, 2023.
Available in https://christophm.github.io/interpretable-ml-book/
index.html. (Cited on page 1.)

[Mothilal et al. 2020] Ramaravind K. Mothilal, Amit Sharma and Chenhao Tan.
Explaining machine learning classifiers through diverse counterfactual expla-
nations. In Proceedings of the 2020 Conference on Fairness, Accountability,
and Transparency, pages 607–617, 2020. (Cited on page 24.)

[Pearl 2009] Judea Pearl. Causality. Cambridge university press, 2009. (Cited on
page 27.)

[Plaza 2007] J. Plaza. Logics of public communications. Synthese, vol. 158, no. 2,
pages 165–179, 2007. (Cited on page 100.)

[Pozos-Parra et al. 2013] Pilar Pozos-Parra, Weiru Liu and Laurent Perrussel.
Dalal’s revision without Hamming distance. In Advances in Artificial In-
telligence and Its Applications: 12th Mexican International Conference on
Artificial Intelligence, MICAI 2013, Mexico City, Mexico, November 24-
30, 2013, Proceedings, Part I 12, pages 41–53. Springer, 2013. (Cited on
page 68.)

[Prakken & Sartor 1998] Henry Prakken and Giovanni Sartor. Modelling Reasoning
with Precedents in a Formal Dialogue Game. Artificial Intelligence and Law,
vol. 6, pages 231–87, 1998. (Cited on page 66.)

[Prakken 2021] Henry Prakken. A formal analysis of some factor- and
precedent-based accounts of precedential constraint. Artificial Intelligence
and Law, 2021. (Cited on pages 53 and 54.)

[Quine 1950] Willard Van Orman Quine. Methods of logic. Harvard University
Press, 1950. (Cited on page 71.)

[Quine 1955] Willard V. Quine. A way to simplify truth functions. The Ameri-
can mathematical monthly, vol. 62, no. 9, pages 627–631, 1955. (Cited on
pages 40 and 98.)

[Ribeiro et al. 2016] Marco Tulio Ribeiro, Sameer Singh and Carlos Guestrin. "
Why should i trust you?" Explaining the predictions of any classifier. In
Proceedings of the 22nd ACM SIGKDD international conference on knowl-
edge discovery and data mining, pages 1135–1144, 2016. (Cited on pages 1,
15 and 16.)

[Rudin 2019] Cynthia Rudin. Stop explaining black box machine learning models for
high stakes decisions and use interpretable models instead. Nature machine
intelligence, vol. 1, no. 5, pages 206–215, 2019. (Cited on page 90.)

[Schwarzentruber 2019] François Schwarzentruber. The Complexity of Tiling Prob-
lems. arXiv preprint arXiv:1907.00102, 2019. (Cited on pages 105 and 106.)

https://christophm.github.io/interpretable-ml-book/index.html
https://christophm.github.io/interpretable-ml-book/index.html

BIBLIOGRAPHY 151

[Segerberg 1989] Krister Segerberg. Notes on conditional logic. Studia Logica,
pages 157–168, 1989. (Cited on page 81.)

[Shi et al. 2020] Weijia Shi, Andy Shih, Adnan Darwiche and Arthur Choi.
On tractable representations of binary neural networks. arXiv preprint
arXiv:2004.02082, 2020. (Cited on page 24.)

[Shih et al. 2018] Andy Shih, Arthur Choi and Adnan Darwiche. Formal verifica-
tion of Bayesian network classifiers. In International Conference on Proba-
bilistic Graphical Models, pages 427–438. PMLR, 2018. (Cited on pages 24
and 41.)

[Sokol & Flach 2019] Kacper Sokol and Peter A. Flach. Counterfactual explana-
tions of machine learning predictions: opportunities and challenges for AI
safety. In SafeAI@ AAAI, 2019. (Cited on pages 42 and 43.)

[Stalnaker 1968] Robert C Stalnaker. A theory of conditionals. In Ifs, pages 41–55.
Springer, 1968. (Cited on page 71.)

[Strumbelj & Kononenko 2010] Erik Strumbelj and Igor Kononenko. An efficient
explanation of individual classifications using game theory. The Journal of
Machine Learning Research, vol. 11, pages 1–18, 2010. (Cited on page 16.)

[Van Benthem et al. 2006] Johan Van Benthem, Jan Van Eijck and Barteld Kooi.
Logics of communication and change. Information and Computation,
vol. 204, no. 11, pages 1620–1662, 2006. (Cited on pages 27 and 44.)

[Van Der Hoek et al. 2011] Wiebe Van Der Hoek, Nicolas Troquard and Michael J
Wooldridge. Knowledge and control. In Proceedings of the 10th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2021),
pages 719–726. IFAAMAS, 2011. (Cited on page 46.)

[van der Hoek et al. 2012] Wiebe van der Hoek, Petar Iliev and Michael J
Wooldridge. A logic of revelation and concealment. In Proceedings of the
International Conference on Autonomous Agents and Multiagent Systems,
(AAMAS 2012), pages 1115–1122. IFAAMAS, 2012. (Cited on page 46.)

[van Ditmarsch et al. 2005] Hans P van Ditmarsch, Wiebe van der Hoek and
Barteld P Kooi. Dynamic epistemic logic with assignment. In Proceed-
ings of the 4th International Joint Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2005), pages 141–148. ACM, 2005. (Cited on
page 44.)

[van Ditmarsch et al. 2007] Hans van Ditmarsch, Wiebe van Der Hoek and Barteld
Kooi. Dynamic epistemic logic, volume 337 of Synthese Library. Springer,
2007. (Cited on pages 27 and 100.)

152 BIBLIOGRAPHY

[van Emde Boas 1997] Peter van Emde Boas. The Convenience of Tilings. In
Complexity, Logic, and Recursion Theory, pages 331–363. CRC Press, 1997.
(Cited on page 104.)

[Van Fraassen 1980] Bas C Van Fraassen. The scientific image. Oxford University
Press, 1980. (Cited on page 14.)

[Van Woerkom et al. 2022] Wijnand Van Woerkom, Davide Grossi, Henry Prakken
and Bart Verheij. Landmarks in case-based reasoning: From theory to data.
In HHAI2022: Augmenting Human Intellect, pages 212–224. IOS Press,
2022. (Cited on page 61.)

[Verma et al. 2020] Sahil Verma, John Dickerson and Keegan Hines. Counter-
factual Explanations for Machine Learning: A Review. arXiv preprint
arXiv:2010.10596, 2020. (Cited on pages 24 and 42.)

[Wachter et al. 2017] Sandra Wachter, Brent Mittelstadt and Chris Russell. Coun-
terfactual explanations without opening the black box: Automated decisions
and the GDPR. Harv. JL & Tech., vol. 31, page 841, 2017. (Cited on
page 24.)

[Walton 2004] D. Walton. A new dialectical theory of explanation. Philosophical
Explorations, vol. 7, no. 1, pages 71–89, 2004. (Cited on page 102.)

[Williamson 1988] Timothy Williamson. First-order logics for comparative similar-
ity. Notre Dame Journal of Formal Logic, vol. 29, no. 4, 1988. (Cited on
pages 68 and 77.)

[Woodward & Hitchcock 2003] James Woodward and Christopher Hitchcock. Ex-
planatory generalizations, part I: A counterfactual account. Noûs, vol. 37,
no. 1, pages 1–24, 2003. (Cited on page 25.)

[Woodward 2000] James Woodward. Explanation and invariance in the special sci-
ences. The British journal for the philosophy of science, vol. 51, no. 2, pages
197–254, 2000. (Cited on pages 24, 25, 26 and 27.)

[Woodward 2003] James Woodward. Making things happen: a theory of causal
explanation. Oxford University Press, 2003. (Cited on page 25.)

[Yang & Väänänen 2016] Fan Yang and Jouko Väänänen. Propositional logics of
dependence. Annals of Pure and Applied Logic, vol. 167, no. 7, pages 557–
589, 2016. (Cited on pages 31 and 92.)

[You et al. 2017] Seungil You, David Ding, Kevin Canini, Jan Pfeifer and Maya
Gupta. Deep lattice networks and partial monotonic functions. Advances in
neural information processing systems, vol. 30, 2017. (Cited on page 97.)

BIBLIOGRAPHY 153

[Zednik 2021] Carlos Zednik. Solving the black box problem: A normative frame-
work for explainable artificial intelligence. Philosophy & technology, vol. 34,
no. 2, pages 265–288, 2021. (Cited on page 88.)

[Zheng et al. 2020a] Heng Zheng, Davide Grossi and Bart Verheij. Case-based rea-
soning with precedent models: Preliminary report. In Computational Models
of Argument, pages 443–450. IOS Press, 2020. (Cited on page 66.)

[Zheng et al. 2020b] Heng Zheng, Davide Grossi and Bart Verheij. Precedent com-
parison in the precedent model formalism: theory and application to le-
gal cases. In Proceedings of the EXplainable and Responsible AI in Law
(XAILA) Workshop at JURIX, 2020. (Cited on page 66.)

