
HAL Id: tel-04431993
https://theses.hal.science/tel-04431993

Submitted on 1 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contributions to the optimization of TFHE’s functional
bootstrapping for the evaluation of non-polynomial

operators
Pierre-Emmanuel Clet

To cite this version:
Pierre-Emmanuel Clet. Contributions to the optimization of TFHE’s functional bootstrapping for the
evaluation of non-polynomial operators. Cryptography and Security [cs.CR]. Université Paris-Saclay,
2024. English. �NNT : 2024UPASG001�. �tel-04431993�

https://theses.hal.science/tel-04431993
https://hal.archives-ouvertes.fr

TH
ES
E
D
E
D
O
CT
O
RA

T
N
N
T
:2
02
4U

PA
SG

00
1

Contributions to the optimization of
TFHE’s functional bootstrapping for the
evaluation of non-polynomial operators

Contributions à l’optimisation du bootstrapping
fonctionnel de TFHE pour l’évaluation d’opérateurs non

polynomiaux

Thèse de doctorat de l’université Paris-Saclay

École doctorale n◦ 580, Sciences et technologies de l’information et de la
communication (STIC)

Spécialité de doctorat : Informatique mathématique
Graduate School : Informatique et sciences du numérique

Référent : Université de Versailles-Saint-Quentin-en-Yvelines

Thèse préparée dans l’unité de recherche Institut LIST (Université
Paris-Saclay, CEA),

sous la direction de Renaud SIRDEY, directeur de recherche CEA-LIST,
le co-encadrement de Aymen BOUDGUIGA, ingénieur-chercheur CEA-LIST,
le co-encadrement de Cédric GOUY-PAILLER, ingénieur-chercheur CEA-LIST

Thèse soutenue à Palaiseau, le 15 janvier 2024, par

Pierre-Emmanuel CLET

Composition du jury
Membres du jury avec voix délibérative

Caroline FONTAINE Présidente
Directrice de recherche CNRS, ENS Paris-Saclay
Philippe GABORIT Rapporteur & Examinateur
Professeur des universités, Université de Limoges
Melek ÖNEN Rapportrice & Examinatrice
Maîtresse de conférence, HDR, Eurecom
Mariya GEORGIEVA Examinatrice
Experte en cryptographie, Inpher
Pascal PAILLIER Examinateur
Expert en cryptographie, CryptoExpert
David POINTCHEVAL Examinateur
Directeur de recherche CNRS, ENS Paris

Titre: Contributions à l’optimisation du bootstrapping fonctionnel de TFHE
pour l’évaluation d’opérateurs non polynomiaux.

Mots clés: FHE, TFHE, réseaux de neurones, bootstrapping fonctionnel, cryptographie.

Résumé: Avec la création et l’utilisation inces-
santes de données numériques, ces dernières an-
nées ont vu naître des inquiétudes au sujet des
données sensibles et personnelles. De nouvelles
lois, telles que le Règlement Général sur la Pro-
tection des Données, ont alors vu le jour pour as-
surer le respect de la confidentialité des données
des individus. Cependant, l’externalisation gran-
dissante du traitement des données notamment
avec l’apparition du "machine learning as a ser-
vice" soulève la question suivante: est-il possible
de laisser un tiers traiter nos données tout en les
gardant confidentielles ?

Une solution à ce problème vient des chiffrements
dits FHE, de l’anglais Fully Homomorphic Encryp-
tion. À l’aide de tels cryptosystèmes, des opéra-
tions peuvent être appliquées directement sur des
messages chiffrés, sans jamais dévoiler ni le mes-
sage d’origine, ni le message résultant des opéra-
tions. Ce corpus de techniques permet donc en
théorie d’externaliser des calculs sans compromet-
tre la confidentialité des données utilisées lors de
ces calculs. Cela pourrait ouvrir la voie à de nom-
breuses applications telle que la possibilité d’ouvrir
des services de diagnostic médicaux en ligne of-
frant une totale confidentialité des données médi-
cales des patients.

Malgré cette promesse alléchante, l’important coût
computationnel des opérateurs FHE en limite la
portée pratique. En effet, un calcul sur don-
nées chiffrées peut prendre plusieurs millions de
fois plus de temps que son équivalent sur des
données non chiffrées. Cela rend inenvisageable
l’évaluation d’algorithme trop complexes sur des

données chiffrées. Par ailleurs, le surcoût en mé-
moire apporté par les chiffrements FHE s’élève à
un facteur multiplicatif de plusieurs milliers. Ce
surcoût peut donc s’avérer rédhibitoire pour des
applications sur des systèmes à basse mémoire tels
que des systèmes embarqués.

Dans cette thèse nous développons une nou-
velle primitive pour le calcul sur données chiffrées
basée sur l’opération de "bootstrapping fonction-
nel" supportée par le cryptosystème TFHE. Cette
primitive permet un gain en latence et en mé-
moire par rapport aux autres techniques compa-
rables de l’état de l’art. Aussi, nous introduisons
une seconde primitive permettant d’effectuer des
calculs sous forme de circuit logique permettant
un gain significatif de vitesse de calcul par rapport
à l’état de l’art. Cette approche pourra notam-
ment être intéressante auprès des concepteurs de
compilateurs homomorphes comme alternative à
l’utilisation de chiffrement binaire. Ces deux outils
se veulent suffisamment généraux pour être appli-
cables à un large panel de cas d’utilisation et ne
sont donc pas limités aux cas d’usage présentés
dans ce manuscrit.

En guise d’illustration, nous appliquons nos opéra-
teurs au calcul confidentiel de réseaux de neurones
externalisés, montrant ainsi la possibilité d’évaluer
des réseaux de neurones avec une relativement
faible latence, même dans le cas de réseau de neu-
rones de type récurrents. Enfin, nous appliquons
nos opérateurs à une technique dite de transchiffre-
ment permettant de s’affranchir des considérations
de limitation en mémoire dûes à la grande taille des
chiffrés FHE côté client.

Title: Contributions to the optimization of TFHE’s functional bootstrapping for the evaluation of
non-polynomial operators

Keywords: FHE, TFHE, neural networks, functional bootstrapping, cryptography.

Abstract: In recent years, concerns about sensi-
tive and personal data arose due to the increasing
creation and use of digital data. New laws, such
as the General Data Protection Regulation, have
been introduced to ensure that the confidential-
ity of individuals’ data is respected. However, the
growing outsourcing of data processing, particu-
larly with the emergence of "machine learning as
a service", raises the following question: is it pos-
sible to let a third party process our data while
keeping it confidential?

One solution to this problem comes in the form of
Fully Homomorphic Encryption, or FHE for short.
Using FHE cryptosystems, operations can be ap-
plied directly to encrypted messages, without ever
revealing either the original message or the mes-
sage resulting from the operations. In theory, this
collection of techniques makes it possible to exter-
nalise calculations without compromising on the
confidentiality of the data used during these cal-
culations. This could pave the way for numerous
applications, such as the possibility of offering on-
line medical diagnostic services while ensuring the
total confidentiality of the patients’ medical data.

Despite this promise, the high computational cost
of FHE operators limits their practical scope. A
calculation on encrypted data can take several
million times longer than its equivalent on non-
encrypted data. This makes it unthinkable to
evaluate highly time consuming algorithms on en-

crypted data. In addition, the memory cost of FHE
encryption is several thousand times greater than
unencrypted data. This overhead may prove to be
prohibitive for applications on low-memory systems
such as embedded systems.

In this thesis we develop a new primitive for com-
puting on encrypted data based on the "functional
bootstrapping" operation supported by the TFHE
cryptosystem. This primitive allows a gain in la-
tency and memory compared to other comparable
techniques in the state of the art. We are also in-
troducing a second primitive enabling calculations
to be performed in the form of a logic circuit, pro-
viding a significant gain in calculation speed com-
pared with the state of the art. This approach
could be of particular interest to designers of ho-
momorphic compilers as an alternative to the use
of binary encryption. These two tools are intended
to be sufficiently generic to be applicable to a wide
range of use cases and are therefore not limited to
the use cases presented in this manuscript.

As an illustration, we apply our operators to the
confidential computation of outsourced neural net-
works, thus demonstrating the possibility of eval-
uating neural networks with relatively low latency,
even in the case of recurrent neural networks. Fi-
nally, we apply our operators to a technique known
as transciphering, making it possible to overcome
memory limitation on the client side coming with
the large size of FHE ciphertexts.

Résumé étendu
Avec la création et l’utilisation incessantes de données numériques, ces dernières
années ont vu naître des inquiétudes au sujet des données sensibles et personnelles.
De nouvelles lois, telles que le Règlement Général sur la Protection des Données
(RGPD) ou la California Consumer Privacy Act (CCPA), ont alors vu le jour
pour assurer le respect de la confidentialité des données des individus. Cepen-
dant, l’externalisation grandissante du traitement des données notamment avec
l’apparition du "machine learning as a service" soulève la question suivante: est-il
possible de laisser un tiers traiter nos données tout en les gardant confidentielles
?

Une solution à ce problème vient des chiffrements dits totalement homomorphe ou
FHE, de l’anglais Fully Homomorphic Encryption. À l’aide de tels cryptosystèmes,
des opérations peuvent être appliquées directement sur des messages chiffrés, sans
jamais dévoiler ni le message d’origine, ni le message résultant des opérations.
Ce corpus de techniques permet donc en théorie d’externaliser des calculs sans
compromettre la confidentialité des données utilisées lors de ces calculs. Cela
pourrait ouvrir la voie à de nombreuses applications telles que la possibilité d’ouvrir
des services de diagnostic médicaux en ligne offrant une totale confidentialité des
données médicales des patients.

Malgré cette promesse alléchante, l’important coût computationnel des opérateurs
FHE en limite la portée pratique. En effet, un calcul sur données chiffrées peut
prendre plusieurs millions de fois plus de temps que son équivalent sur des données
non chiffrées. Cela rend inenvisageable l’évaluation d’algorithme trop complexes
sur des données chiffrées. Par ailleurs, le surcoût en mémoire apporté par les chiffre-
ments totalement homomorphes s’élève à un facteur multiplicatif de plusieurs mil-
liers. Ce surcoût peut donc s’avérer rédhibitoire pour des applications sur des
systèmes à basse mémoire tels que des systèmes embarqués.

Dans cette thèse nous développons une nouvelle primitive pour le calcul sur don-
nées chiffrées basée sur l’opération de "bootstrapping fonctionnel" supportée par
le cryptosystème TFHE. Cette primitive permet un gain en latence et en mémoire
par rapport aux autres techniques comparables de l’état de l’art. Aussi, nous
introduisons une seconde primitive permettant d’effectuer des calculs sous forme
de circuit logique permettant un gain significatif de vitesse de calcul par rapport
à l’état de l’art. Cette approche pourra notamment être intéressante auprès des
concepteurs de compilateurs homomorphes comme alternative à l’utilisation de
chiffrement binaire. En effet, notre méthode permet une factorisation des opéra-
teurs binaires à l’aide d’opérateurs sur des espaces de messages plus large, résul-
tant en une diminution du nombre total d’opérations à effectuer sur des données

4

chiffrées et par conséquent en un gain global de temps de calcul sans complexifier
la tâche des ces compilateurs. Ces deux outils se veulent suffisamment généraux
pour être applicables à un large panel de cas d’utilisation et ne sont donc pas
limités aux cas d’usage présentés dans ce manuscrit.

En guise d’illustration, nous appliquons nos opérateurs au calcul confidentiel de
réseaux de neurones externalisés, montrant ainsi la possibilité d’évaluer des réseaux
de neurones avec une relativement faible latence, même dans le cas de réseau de
neurones de type récurrents. Dans ce cadre, le but est d’ouvrir à la technologie
FHE le large panel d’applications utilisant des réseaux de neurones, comprenant
de manière non exhaustive la reconnaissance d’image, le traitement du langage et
la détection d’erreur dans des systèmes complexes. Enfin, nous appliquons nos
opérateurs à une technique dite de transchiffrement, autrement dit de changement
de format de chiffrement sans jamais passer par une étape de déchiffrement. En
particulier, nous nous intéressons au passage d’un chiffrement symétrique compact
vers un chiffrement FHE, permettant ainsi de s’affranchir des considérations de
limitation en mémoire dûes à la grande taille des chiffrés FHE côté client.

5

Acknowledgements
These three years of PhD reached their end smoothly, and I have many people to
thank for that. First, i thank my advisors Aymen Boudguiga, Cédric Gouy-Paillier
and Renaud Sirdey. Thank you for the trust you put in me from the beginning of
my thesis, I definitely enjoyed the freedom you gave me to explore and research a
subject I was very much unfamiliar with, and I appreciated all the help you gave
me during these three years.

I also thank Oana Stan and Martin Zuber with whom I got the chance to work
even before my PhD. This thesis would not have even started if not for the great
introduction to the FHE world you gave me during my internship.

I thank Akram Bendoukha, Keiten Han and Daphné Trama whom I got to super-
vise during their own internships. I learned a lot from imparting my knowledge to
new researchers and hope that it was as interesting for you that it was for me.

I thank my office roommates Jonathan Fontaine, Valentin Gilbert, Julien Ro-
driguez, Simon Tollec, and our group of PhD students Antonina Bondarchuk, Ma-
rina Checri, Robin Ollive, Marc Renard, Guillaume Roumage, and the Anonymous-
one who made each day more fun.

I was amazed by the amount of rock climbers among researchers at CEA, and
on that note, I thank Arnaud Grivet with whom I had more opportunities to go
climbing than to do research...

I extend my thanks to everyone else at CEA I got to interact with and learn
from during these three years of PhD. In particular, the members of the crypto
team with whom I got great cryptographic discussions : Jean-Paul Bultel, Olive
Chakraborty and Antoine Choffrut.

I thank all the members of the jury of my thesis, Caroline Fontaine, Philippe
Gaborit, Mariya Georgieva, Melek Önen, Pascal Paillier et David Pointcheval, for
the interest they have shown in my work and the goodwill they have shown during
the reviewing process and the PhD defense.

Special thanks to Mathilde and Tomer, not blood related but still part of the
family. I will probably have more time from now on, so prepare those RPG board
games!

And above all else, I want to thank my family for their unconditional love, it seems
that spoiling the last child can also lead to good things...

Bisous papi, toi qui m’a montré que les sciences peuvent être amusantes et qui
aurais certainement été le plus fier d’entre nous de me voir devenir docteur.

6

Contents

Introduction 11

Personal Publications 17

I Background 19

1 Introduction to FHE 21
1.1 What is Fully Homomorphic Encryption? 21
1.2 A Short Story of Homomorphic Encryption 23
1.3 LWE and RLWE . 25
1.4 BFV & BGV . 27

1.4.1 BFV . 27
1.4.2 BGV . 28
1.4.3 Batching and Bootstrapping for BFV & BGV 30

1.5 CKKS . 31
1.5.1 The CKKS Cryptosystem 31
1.5.2 Bootstrapping for CKKS . 32

2 TFHE 35
2.1 Specificity and Strengths of TFHE 35
2.2 Preliminary: Probability . 36
2.3 TFHE Cryptosystem . 38
2.4 Arithmetic Operations . 41
2.5 Advanced operations . 43
2.6 Noise Analysis . 50
2.7 TFHE in This Thesis . 52

3 Neural Networks 53
3.1 Neural Networks and FHE . 53
3.2 Transfer Learning to the Rescue of FHE 58

7

3.3 Homomorphic Neural Network Evaluation 61

II Contributions 65

4 ComBo 67
4.1 Introduction . 68
4.2 TFHE . 70

4.2.1 Notations . 70
4.2.2 TFHE Structures . 71
4.2.3 TFHE Bootstrapping . 72

4.3 TFHE Functional Bootstrapping 75
4.3.1 Encoding and Decoding . 75
4.3.2 Functional Bootstrapping Idea 75
4.3.3 Example of Functional Bootstrapping in Z4 77
4.3.4 Multi-Value Functional Bootstrapping 78

4.4 Look-Up-Tables over a Single Ciphertext 79
4.4.1 Partial Domain Functional Bootstrapping – Half-Torus . . . 80
4.4.2 Full Domain Functional Bootstrapping – FDFB 80
4.4.3 Full Domain Functional Bootstrapping – TOTA 81
4.4.4 Full Domain Functional Bootstrapping with Composition -

ComBo . 82
4.5 Error rate and noise variance . 85

4.5.1 Noise variance . 85
4.5.2 Probability of Error . 86

4.6 Experimental Results . 88
4.6.1 Parameters . 88
4.6.2 Error Rate . 89
4.6.3 Time Performance . 91
4.6.4 Wrapping-up: Time-Error trade-offs 92

4.7 Conclusion . 93

5 Chocobo 95
5.1 Introduction . 95
5.2 Background . 97

5.2.1 Notations . 97
5.2.2 TFHE Structures . 97
5.2.3 TFHE Bootstrapping . 98
5.2.4 TFHE Functional Bootstrapping 100

5.3 KeySwitch . 101
5.4 Time, Noise and Variance Analysis 102

8

5.4.1 Time complexity . 102
5.4.2 Noise variance . 103
5.4.3 Success probability . 104

5.5 LUTs with Multiple Encrypted Inputs 106
5.5.1 Tree-based Method . 106
5.5.2 Chaining Method . 108
5.5.3 Performances Comparison 109

5.6 Circuit Method . 111
5.6.1 Extended Lupanov Bound 111
5.6.2 Computing B-gates . 112

5.7 Empirical Performances . 115
5.8 Example: Sorting Algorithm . 117
5.9 Conclusion . 119

6 Selection of Applications 121
6.1 Comparison of Cryptosystems . 121

6.1.1 Introduction . 121
6.1.2 Sign Network . 122
6.1.3 Square Network . 123
6.1.4 Performances and Conclusions 124

6.2 Homomorphic LSTM . 126
6.2.1 Introduction . 126
6.2.2 LSTM Discretization . 127
6.2.3 FHE implementation . 129
6.2.4 Conclusions and Perspectives 130

6.3 Transciphering . 130
6.3.1 Introduction . 130
6.3.2 Grain128-AEAD . 131
6.3.3 The Set Up . 132
6.3.4 Base B Adaptation . 132
6.3.5 Experimental Results . 133

9

Introduction

Data and privacy: Data is a powerful resource used everywhere to guide de-
cision processes. Indeed, with the advent of numerical technologies, data can be
efficiently stored and processed in unfathomable amounts. It can, for instance,
help a business target its client’s preferences by processing consumer data, or help
a doctor find the right diagnosis by accessing a patient past medical data.

If data is a powerful resource, it can also be detrimental to the data owner when
leaked to unwanted third parties. Indeed, attackers can also make use of data to
build more efficient attacks. According to a Federal Trade Commission report1,
more than one fourth of the people who reported losing money to fraud in 2021 got
scammed through social medias, which are indeed an efficient way for attackers to
both reach many people and easily gain access to massive amount of data to tailor
specific attacks and scams. Those attacks resulted in at least 1.2 billion dollars
of loss in 2022 (only counting fraud via social media and reported to the Federal
Trade Commission2).

However, data leakage may cause harm even when users remain vigilant. AAD-
HAR is an Indian biometric ID system, and also the largest in the world. It links
the biometric information of Indian citizens and a unique identification number.
Suggestions have been made to make it mandatory to get a passport issued, open
a bank account, and more. As such, more than a billion Indian citizens used this
biometric system. However, in 2018, the AADHAR biometric data of 1.1 billion
Indian citizens became available online due to a data leak from on a government
website. This data breach could lead to identity theft, financial fraud, and harass-
ment. It could also lead to further privacy breaches, since personal information
such as name, address and date of birth, have also been exposed.

These issues highlight the necessity to enhance the technologies and techniques to
1https://www.ftc.gov/system/files/attachments/blog_posts/Social media a gold mine for

scammers in 2021/social_media_spotlight.pdf
2Statistics found at https://www.ftc.gov/business-guidance/blog/2023/02/ftc-crunches-2022-

numbers-see-where-scammers-continue-crunch-consumers

11

protect the data and privacy of people when personal data are used. The handling
of data, and more specifically personal data, has been acknowledged as a sensitive
topic all over the world. As such, new regulations were issued to ensure that some
rights to privacy are given to data subjects3. In the EU, the most prominent
regulation on data privacy is the General Data Protection Regulation (GDPR)
which also inspired similar regulations across the world, such as the California
Consumer Privacy Act (CCPA). Notably, the GDPR requires that organisations
consider data protection by design and by default.

In this context, new Privacy Enhancing Technologies (PETs), such as Homomor-
phic Encryption (HE), Multi-Party Computation (MPC), and Trusted Execution
Environments (TEE), are under research to contribute to giving people more
control over their data and make organisations compliant with the new legisla-
tion.

Neural Network and Homomorphic Encryption: Nowadays, Artificial In-
telligence (AI) and especially Neural Networks (NNs) are heavily employed tech-
niques allowing for efficient image recognition [21], speech recognition [49], artistic
creations [70] and more.

The creation and fine tuning of neural networks rely on massive amount of data
which need to be handled with care. For instance, neural networks are used in
healthcare to diagnose patients more efficiently in hospitals. In order to train
such networks, available medical databases are needed. Thus, special care must
be taken to ensure the privacy and confidentiality of the medical data of patients
as medical data is private.

Furthermore, when neural network solutions are deployed to the cloud, the query
of a user may hold some sensitive information. ChatGPT from OpenAI is one such
neural network accessible online on which more and more users become reliant for
various usages. Its uses can range from answering questions to correcting computer
programs or even writing books, if used cleverly. Considering the wide range of
utilities held by ChatGPT, a lot of users’ private information may be accessible to
OpenAI through its use. Incorporating PETs in the equation, and more specifically
Homomorphic Encryption, would allow the use of such neural networks without
leaking the input to the service provider.

Besides, some potential applications of outsourced neural networks are also impos-
sible so far due to the threat to privacy involved with their use. For instance, we
can easily see the threat an online medical diagnosis neural network would pose
to the privacy of individuals’ medical data. However, such an application may

3Defined in the GDPR as "an identified or identifiable natural person".

12

become feasible in the near future without infringing on the secrecy of medical
data by leveraging Homomorphic Encryption.

Thesis in Context

We focus on Fully Homomorphic Encryption (FHE), which is a technology allowing
for computating on encrypted data. Simply put, a client using FHE can ask a third
party to process some of their data while keeping the aforementioned data hidden
from the third party.

The wide range of uses of neural networks makes them the perfect target for
FHE technology. Indeed, successfully and efficiently computing neural networks
over encrypted inputs would provide privacy guarantees to a host of applications,
notably most Machine Learning as a Service (MLaaS) applications.

Besides, with the help of FHE, the conception of new secure applications requiring
sensitive data becomes possible. For instance, we could imagine having a remote
medical diagnosis server working without accessing clear information on the pa-
tient. This would allow us to earn meaningful feedback on our health without en-
trusting any third party with our personal medical data. Thus, FHE does not only
add privacy to pre-existing applications, but also enables the deployment of new
applications previously impossible due to unachievable privacy requirements.

However, evaluating neural networks in the encrypted domain remains challeng-
ing. One such challenge comes from the computation of non-linear functions used
in neural networks as FHE cryptosystems mainly compute low degree polynomial
functions in practice. Another challenge is to compute efficiently a recurrent or
deep neural network as FHE parameters are often chosen depending on the mul-
tiplicative depth of computation.

Every fully homomorphic encryption scheme so far rely on a concept of noise to
ensure security, which can be managed during computation thanks to the "boot-
strapping" operation. The bootstrapping procedure of the Fully Homomorphic
Encryption over the Torus cryptosystem (TFHE) is of particular interest as it
is the most efficient bootstrapping algorithm in the literature. Besides, the boot-
strapping operator of TFHE can be specialized to compute specific Look-Up Tables
(LUTs) over encrypted inputs with no overhead compared to a simple bootstrap-
ping. It is then called "functional bootstrapping", and is an operator specific to
TFHE that can greatly help with the computation of the non-linear part of neural
networks.

In this thesis, we explore the details of the Fully Homomorphic Encryption over

13

the Torus cryptosystem (TFHE) and its functional bootstrapping operator as we
aim to make it efficient enough for real life applications.

Contributions Overview

The main contributions of this thesis lie in the following three categories:

Full Torus Functional Bootstrapping: The usual functional bootstrapping
technique comes with restrictions either on the size of messages encrypted with a
given set of parameters, or on the type of functions it can perform. We leverage
this technique to build a new functional bootstrapping operator without such
restrictions. In addition, we analyse and compare ourselves to other state of the
art methods and achieve better results, in particular regarding the error rate of
the bootstrapping procedure.

Circuits in Any Basis: The functional bootstrapping operation only computes
functions with one single input. We investigate ways to compute similar Look-Up
Tables (LUTs) over multiple inputs and come with an original way to compute
circuits using inputs in any basis with TFHE. We compare ourselves to other
generic ways to compute multi-inputs LUTs from the literature which highlights
the benefits of our method.

Applications: We build neural networks in the encrypted domain with the aim
to reduce the latency of computation as much as possible. We investigate different
types of structure for neural networks, such as fully connected feedforward neural
networks and LSTMs, and analyse the challenges that come with their "homo-
morphic" implementation. We also investigate how to make FHE accessible to
memory constrained devices by mitigating the memory overhead of homomorphic
encryption on the device’s side thanks to "transciphering".

Outline of the Manuscript

The manuscript is organized in two parts. The first part is related to the state
of the art of fully homomorphic encryption and neural networks over encrypted
inputs. The second part describes the main contributions of this thesis.

• Part one: In Chapter 1, we give a short history of fully homomorphic
encryption and describe its potential as a privacy enhancing technology for
outsourced computation. We then give a more in depth description of the
mathematical concept underlying fully homomorphic encryption and give a
short description of three fully homomorphic cryptosystems: BFV, BGV and

14

CKKS.

In Chapter 2, we give an in depth description of the TFHE cryptosystem
which is at the core of this thesis. Notably, we make an emphasis on the
noise growth resulting from each operation as it impacts the probability of
error of the bootstrapping operation.

In Chapter 3, we describe the basic structure of neural networks and some of
the results from the state of the art about the evaluation of neural networks in
the homomorphic domain. We highlight an interesting technique to make the
evaluation of homomorphic neural networks viable, called transfer learning.
However, we show that many challenges still remain to make FHE efficient
enough for real life applications of homomorphic neural networks.

• Part two: In Chapter 4, we describe a novel full torus functional boot-
strapping and compare it to the state of the art. Simply put, the aim is to
efficiently compute look-up tables for any encrypted message. Our technique
leverages the properties of the standard functional bootstrapping to build a
new operator. This operator achieves less error rate than any other func-
tional bootstrapping from the state of the art for a given set of parameters.

In Chapter 5, we make use of the functional bootstrapping of TFHE to com-
pute logic gates in any basis B. This allows the construction of logic circuits
with inputs in the same basis B and gives more flexibility to homomorphic
computation. An example highlights the gain from our approach compared
to another technique from the state of the art.

In Chapter 6, we summarize some of our results on concrete applications of
the functional bootstrapping. This includes a comparison of cryptosystem
for the evaluation of neural networks, building blocks for the computation
of a recurrent neural network with FHE, and an efficient transciphering of
a stream cipher. These applications span from the beginning of the thesis
to its end, which brings to light the evolution of our understanding of the
TFHE cryptosystem.

15

Personal Publications

Papers

• Pierre-Emmanuel Clet, Oana Stan, and Martin Zuber. “BFV, CKKS, TFHE:
Which One is the Best for a Secure Neural Network Evaluation in the Cloud?”
In: Applied Cryptography and Network Security Workshops - ACNS 2021
Satellite Workshops, Cloud S&P, June 21-24 2021. doi:10.1007/978-3-030-
81645-2_16.

• Aymen Boudguiga, Oana Stan, Abdessamad Fazzat, Houda Labiod, and
Pierre-Emmanuel Clet. “Privacy Preserving Services for Intelligent Trans-
portation Systems with Homomorphic Encryption”. In: ICISSP 2021. doi:
10.5220/0010349706840693.

• Daphné Trama, Pierre-Emmanuel Clet, Aymen Boudguiga, and Renaud
Sirdey. “Building Blocks For LSTM Homomorphic Evaluation With TFHE”.
In: Cyber Security, Cryptology, and Machine Learning: 7th International
Symposium, CSCML 2023, June 29–30. doi: 10.1007/978-3-031-34671-2_9.

• Pierre-Emmanuel Clet, Aymen Boudguiga, Renaud Sirdey, and Martin Zu-
ber. "ComBo: a Novel Functional Bootstrapping Method for Efficient Eval-
uation of Nonlinear Functions in the Encrypted Domain". In: AfricaCrypt
2023, Jul. 2023. doi: 10.1007/978-3-031-37586-6_6.

• Adda-Akram Bendoukha, Pierre-Emmanuel Clet, Aymen Boudguiga, and
Renaud Sirdey. "Optimized stream-cipher-based transciphering by means of
functional-bootstrapping". In: DBSec 2023, Jul. 2023. doi: 10.1007/978-3-
031-37586-6_6

• Pierre-Emmanuel Clet, Aymen Boudguiga, and Renaud Sirdey. "Chocobo:
Creating Homomorphic Circuit Operating with Functional Bootstrapping in
basis B". (in submission).

17

Communications
• FHE.org (Workshop 2022): Poster - "ComBo: a Novel Functional Bootstrap-

ping Method for Efficient Evaluation of Nonlinear Functions in the Encrypted
Domain".

• HES (2023): Poster - "Chocobo: Creating Homomorphic Circuit Operating
with Functional Bootstrapping in basis B".

• FHE.org (Workshop 2023): Poster - "Chocobo: Creating Homomorphic Cir-
cuit Operating with Functional Bootstrapping in basis B".

• FHE.org: Invited talk (06/07/2023) - TFHE functional bootstrapping over
multiple inputs.

• AIcrypt (2023): Talk - "ComBo: a Novel Functional Bootstrapping Method
for Efficient Evaluation of Nonlinear Functions in the Encrypted Domain".

18

Part I

Background

19

Chapter 1

Introduction to Fully Homomorphic
Encryption

1.1 What is Fully Homomorphic Encryption?

Informally, a cryptosystem is an encryption mechanism that depends on a set of
parameters p. The parameter set p defines: the set Pp of possible plaintexts, the set
Cp of possible encryptions, the set Kp of possible secret and public keys necessary
for the scheme, and the sets Ep and Dp of procedures to encrypt and decrypt
messages. A nuance exists between a message and a plaintext since messages
usually need to be mapped into the plaintext space first before being encrypted.
However, these two words are sometimes used interchangeably. We say that a
message is "in clear" if it is not encrypted.

Some extra properties may exist on top. This is the case in Homomorphic Encryp-
tion (HE) schemes where some operations, such as additions or multiplications,
can be evaluated on messages while encrypted. Multiple types of HE schemes
exist:

• Partially Homomorphic Encryption: A cryptosystem that supports the
evaluation of one type of operation (either additions or multiplications). This
includes cryptosystems such as RSA and ElGamal which can compute multi-
plications as well as the Paillier cryptosystem which can compute additions.
Note that RSA is widely used, notably to encrypt online transactions. How-
ever, it is usually coupled with padding schemes depriving RSA from its
homomorphic properties [104].

• Somewhat Homomorphic Encryption (SHE): A cryptosystem that

21

supports both the evaluation of additions and multiplications but only for a
subset of arithmetic circuits. For instance, Sanders et al., [83] specify such
a cryptosystem allowing for the computation of binary circuits in the NC1

complexity class. The BGV scheme [12] and TFHE scheme [25] are also SHE
schemes when used without bootstrapping.

• Levelled Fully Homomorphic Encryption (LHE): A cryptosystem that
supports the evaluation of both additions and multiplications. The depth of
the arithmetic circuits that can be computed, which can be roughly inter-
preted as the maximum amount of multiplications performed on any given
ciphertext, depends on the parameters used for the cryptosystem. Schemes
such as BFV [39] and CKKS [23] are all LHE schemes when used without
their bootstrapping procedure.

• Fully Homomorphic Encryption (FHE): There exists at least one set of
parameters so that the cryptosystem supports the evaluation of both addi-
tions and multiplications without restrictions. Schemes such as BFV, BGV,
CKKS and TFHE are all FHE schemes when used with their bootstrapping
procedure.

At first glance, fully homomorphic seems like a strong word to describe a cryp-
tosystem that can only compute additions and multiplications. However, using a
binary plaintext space, any logic circuit can be built using additions, multiplica-
tions and constants. As such, any function that can be evaluated on a computer
can in theory be evaluated with an FHE scheme.

Naturally, one can wonder why we should care about evaluating functions over
encrypted inputs. We claim that it cannot only enhance privacy in existing ap-
plications, but also open completely new possibilities by challenging previously
"obvious" assumptions. Indeed, it seems obvious that in order to use a GPS, our
location must be send to another entity. It also seems obvious that in order to have
a diagnosis, we must share a part of our medical data with a doctor. But what
if it was not actually needed? That is one of the promises of FHE: to be able to
receive meaningful answers without anyone else knowing the question. Or asking
the shortest path to destination without letting anyone know what is the destina-
tion. Indeed, those applications can be seen as a function to compute (finding the
answer) over an encrypted input (the question).

One of the most obvious place for FHE to shine is in healthcare since medical
data are sensitive data, and spreading one’s medical data can lead to undesirable
consequences. However, FHE could allow us to have access to fast and secure
diagnosis online, even in medical deserts.

22

The use of FHE could also help generalizing AI as an outsourced helper. ChatGPT
has shown the potential of AI chat bots to help in many domains if used correctly.
Its applications would be further broaden if sensitive data could be fed to the AI
without risks on privacy.

However, FHE does not come for free. Indeed, in the current state of the art,
fully homomorphic encryption comes with a massive time overhead (approximately
×10, 000, 000 on a CPU for logic gates using TFHE [27]) and memory overhead
(at least ×32, 000 for the encryption of a bit). As such, further research is needed
to discover the full potential of FHE and materialize its use in our daily lives to
protect our privacy.

1.2 A Short Story of Homomorphic Encryption

The first published scheme with homomorphic properties was the RSA [81] cryp-
tosystem, publicly described in 1978 by Ronald Rivest, Adi Shamir and Leonard
Adleman. This cryptosystem has the peculiarity to allow for the evaluation of
multiplications on encrypted data. This interesting property soon lead to the fol-
lowing question [80]: is it possible to build a cryptosystem enabling the evaluation
of any operation on encrypted data? Which is to say, is it possible to achieve fully
homomorphic encryption?

New cryptosystems with homomorphic properties followed the publication of RSA.
Notably the ElGamal cryptosystem [38] in 1985 with similar multiplicative prop-
erties as RSA, and the Paillier cryptosystem [77] and Goldwasser-Micali cryp-
tosystem [46] with additive properties. In addition to the possibility to compute
homomorphic additions with the Paillier cryptosystem, multiplications by a plain-
text are also possible, bringing the community one step closer to an FHE scheme.
However, the dream of an actual FHE scheme was still out of reach.

Craig Gentry built in 2009 the first FHE scheme [42] thanks to a self-made noisy
lattice-based somewhat homomorphic cryptosystem. Noisy means that a random
noise term is part of the encryption process, and this happened to be the only lim-
iting factor preventing the scheme to be fully homomorphic. The key component
of his thesis is the concept of "bootstrapping" which allows him to reset the noise
level of his ciphertexts, making the cryptosystem effectively fully homomorphic.
The core idea of the bootstrapping procedure is to homomorphically compute the
decryption of a ciphertext, leading to a less noisy encryption of the same message.
Gentry’s cryptosystem requires a bitwise encryption of each message, allowing the
computation of functions in the encrypted domain as binary circuits.

The blueprint of his approach was used as the basis for all the newer FHE cryp-

23

tosystems. The main improvements came from using cryptosystems based on
variants of the Learning With Error problem [79] allowing for more efficient boot-
strapping procedures and arithmetic operations on larger plaintext spaces [39, 12,
23, 25]. This notably allows to compute arithmetic circuits much more efficiently.
Thus, it has become usual to compute functions in the encrypted domain as low de-
gree approximations instead of generating homomorphic logic circuits, even though
this approach remains relevant.

FHE cryptosystems can roughly be grouped in three generations:

• First generation: This generation is limited to the lattice-based cryptosys-
tem from Gentry’s thesis. It builds the basis for all newer FHE schemes so far.
Gentry shows how to turn a somewhat homomorphic encryption scheme into
a FHE scheme as long as it is bootstrappable. He also shows the existence
of such bootstrappable scheme by building his own lattice based cryptosys-
tem. However, it is not used in practice, notably due to an excessive lack of
efficiency.

• Second generation: This generation builds on the previous one and brings
some much needed improvements regarding efficiency. First, the schemes
from the second generation mainly rely on the Learning With Errors prob-
lem rather than standard lattice problems, making things easier to implement
and allowing for larger plaintext spaces. Furthermore, by leveraging tensor-
ing operations such as the constructions of Aguilar-Melchor et al., [71] and
Brakerski [11], the multiplication of ciphertexts becomes less noisy, improv-
ing the overall efficiency of FHE cryptosystems. Even better, Single Input
Multiple Data (SIMD) operations become doable in the encrypted domain
with a technique called "batching".
The best representatives of this second generation are the BFV and BGV
cryptosystem which are based on the Ring Learning With Errors problem.
They both allow for efficient evaluation of polynomial functions without re-
quiring binary decomposition of messages. However, one bootstrapping with
BFV and BGV usually takes between 1 minute and 30 minutes for 80-bit
security parameter sets [40], making it a bottleneck for the efficiency of com-
putation. As such, these cryptosystems are usually used in LHE mode.

• Third generation: This generation includes two different types of cryp-
tosystems:

– The first type includes FHEW and TFHE. They allow for a more ef-
ficient bootstrapping procedure than any other schemes. Indeed, one
bootstrapping usually takes less than a second and as low as 0.01 second
with standard 128-bit security parameter sets [27].

24

– The second type includes CKKS. It allows evaluating polynomial func-
tions efficiently with approximate arithmetic (float type operations)
over batched inputs. One bootstrapping takes between 30 seconds and
a couple of minutes with standard 128-bit security parameter sets [55].

1.3 Learning With Errors and Ring Learning With
Errors

Learning With Errors [79], abbreviated as LWE, is a mathematical problem intro-
duced by Oded Regev in 2005. He showed the existence of a quantum reduction
from some well known worst-case lattice problems, such as the approximate Short-
est Vector Problem (Approx-SVP), to LWE. Most recent FHE cryptosystems rely
on the hardness of LWE as the basis of their security. The original problem is
defined over the following elements:

• Let n be an integer.

• Let p be a prime number.

• Let (ai)i∈N ∈ (Zn
p)

N where each ai are sampled independently and uniformly
from Zn

p .

• Let s ∈ Zn
p be a secret vector. The secret can also be sampled with binary

coefficients.

• Let (ei)i∈N ∈ (Zp)
N where ei is sampled from a distribution X . The elements

ei are called error terms or noise.

• Let (bi)i∈N ∈ (Zp)
N where bi = ai · s+ ei.

• A pair (ai, bi) is called an LWEp,X sample. We may note LWE sample to
simplify the notation.

The LWE search problem is to find s given p, n, (ai)i∈N, and (bi)i∈N. This problem
is considered as difficult even against a quantum attacker when X is a gaussian
distribution with sufficient standard deviation.

The Ring Learning With Errors problem, abbreviated as RLWE problem, is an
extension of the LWE problem described and analysed by Stehlé et al., [93] in
2009 and further studied by Lyubashevsky et al., [68] in 2010. It is defined as
follows:

• Let N be a power of 2.

• Let k be a positive integer.

25

• Let p ≡ 1[2N] be a prime number.

• Let (ai)i∈N ∈ ((Zp[X]/(XN+1))k)N where each ai are sampled independently
and uniformly from (Zp[X]/(XN + 1))k. Note that since N is a power of 2,
XN + 1 is cyclotomic.

• Let s ∈ (Zp[X]/(XN + 1))k be a secret polynomial. The coefficients of the
secret s can be restricted to binary values.

• Let (ei)i∈N ∈ (Zp[X]/(XN + 1))N where ei is sampled from a distribution X
usually a gaussian for each coefficient.

• Let (bi)i∈N ∈ (Zp[X]/(XN + 1))N where bi = ai · s+ ei.

• A pair (ai, bi) is called an RLWEp,N,X sample. We may note RLWE sample
to simplify the notation.

The RLWE search problem is to find s given p, N , (ai)i∈N, and (bi)i∈N. In 2010,
Vadim Lyubashevsky, Chris Peikert and Oded Regev proved that RLWE is as
hard as the approximation problem Approx-SVP via a quantum reduction [68].
This result supports the hardness of RLWE as Approx-SVP is assumed as a hard
problem [72].

We obtain the Torus Learning With Errors problem (respectively Torus Ring
Learning With Errors), abbreviated as TLWE problem (respectively TRLWE),
simply by switching each Zp for T = R/Z in the LWE problem (respectively RLWE
problem), and sampling the secret s from Zn (respectively Z[X]/(XN + 1)). The
TLWE problem (respectively TRLWE problem) is at least as hard as the LWE
problem [28] (respectively RLWE problem).

Each search problem is associated to a decision problem. The decision problem is
to distinguish between LWE samples and uniformly random samples. The search
and decision problems are of equal hardness [79].

In practice, LWE problems are used as the hardness assumption of most FHE
schemes. As such, parameters of the LWE problems need to be taken large enough
to ensure a sufficient level of security for the cryptosystems. This security is
directly linked to the most efficient cryptanalysis techniques found so far in the
state of the art, which turns parameter selection into a arduous task. Thankfully,
the lattice-estimator [2] is here to give an up-to-date security level approximation
of an LWE problem for any parameter set.

26

1.4 BFV & BGV

1.4.1 BFV

In this section, we give a brief summary of the BFV cryptosystem. The BFV
cryptosystem conceived by Fan and Vercauteren [39] is an amelioration of a cryp-
tosystem by Brakerski [11]. It is based on the RLWE problem and can be defined
as follows:

• Plaintext space : P := Zt[X]/(XN + 1).

• Ciphertext space : C :=
�
Zq[X]/(XN + 1)

�2. Note that q must be greater
than t. We note Δ := � q

t
�.

• SecretKeyGen : s ← U
�
B[X]/(XN + 1)

�
.

• Encrypt(m) : (a, [−a · s+Δ ·m+ e]q) with a ← U(C), e ← X where X is
the error distribution, and [·]x denotes the modulo x operation.

• Decrypt(a, b) :
��

t·[a·s+b]q
q

��
t
.

Let us consider the two ciphertexts c1 = (a1, b1) = (a1, [−a1 ·s+Δ ·m1+ e1]q) and
c2 = (a2, b2) = (a2, [−a2 ·s+Δ ·m2+ e2]q), and note q · ri = ai ·s+ bi−Δ ·mi− ei.
The homomorphic addition of c1 and c2 can be computed as (a1+a2, b1+b2).

However, their homomorphic multiplication is much trickier to compute. To that
end, we first consider the tuple (c0, c1, c2) = (a1 · a2, a1 · b2 + a2 · b1, b1 · b2) which
holds enough information to decrypt the message m1 ·m2. Indeed,

c2 + c1 · s+ c0 · s2
=

Δ2 ·m1 ·m2 +Δ · (e1 ·m2 + e2 ·m1) + e1 · e2
+q ·Δ(r1 ·m2 + r2 ·m1) + q · (r1 · e2 + r2 · e1) + q2 · r1 · r2

With the right sequence of rescaling and modulo operations, it seems possible to
decrypt the message m1 · m2 assuming that the noise terms are small enough.
The first rescaling operation is to consider

��
t·c0
q

�
,
�
t·c1
q

�
,
�
t·c2
q

��
. Then, denoting

�t(q) = 1− t·Δ
q

∈ [0, t
q
] and � = t

q
· (c2+ c1 ·s+c0 ·s2)−

�
t·c2
q

�
+
�
t·c1
q

�
·s+

�
t·c0
q

�
·s2,

we get:
�
t·c2
q

�
+
�
t·c1
q

�
· s+

�
t·c0
q

�
· s2

=
Δ ·m1 ·m2 −Δ · �t(q) ·m1 ·m2 + (1− �t(q))(e1 ·m2 + e2 ·m1) +

t·e1·e2
q

+t ·Δ(r1 ·m2 + r2 ·m1) + t · (r1 · e2 + r2 · e1) + t · q · r1 · r2 + �

27

If we can find a ciphertext c = (a, b) so that [a·s+b]q =
�
t·c2
q

�
+
�
t·c1
q

�
·s+

�
t·c0
q

�
·s2,

then c can be decrypted as [m1 · m2 + t(r1 · m1 + r2 · m1)]t = [m1 · m2]t as long
as the noise terms and the � term are small enough and the ciphertext space is
large enough compared to the plaintext space. To that end, an encryption of s2,
called a relinearisation key, is needed to build the ciphertext c. Indeed, if we note
RK= (RK0,RK1) the relinearisation key, then

(c1 +

�
t · c0
q

�
· RK0, c2 +

�
t · c0
q

�
· RK1)

is a valid encryption of m1 · m2. However, this crude relinearisation introduce
a lot of extra noise. Hence, more subtle relinearisation techniques are usually
used.

Relinearisation 1: The first technique is to decompose
�
t·c0
q

�
=

�logB(q)��

i=0

c(i) · Bi

in a given basis B and give encryptions RK(i) = (RK(i)
0 ,RK(i)

1) of Bi · s2 for
i ∈ �0, logB(q)� as the relinearisation key. Then,

c1 +

�logB(q)��

i=0

c(i) · RK(i)
0 , c2 +

�logB(q)��

i=0

c(i) · RK(i)
1

is an encryption of m1 ·m2 with less noise than the previous naive method.

Relinearisation 2: The second technique relies on a rescaling technique called
modulus switching to reduce the noise. The relinearisation key RK is then an
encryption of p · s2 using a plaintext space of size p · q for some integer p. Then�
� t·c0

q �·RK
p

�
+(c1, c2) is an encryption of m1 ·m2. Note that since the relinearisation

key uses a different plaintext space than the other messages, its encryption and
security must be analysed separately.

1.4.2 BGV

The BGV cryptosystem [12] developed by Brakerski, Gentry, and Vaikuntanathan
is very similar to BFV. It is also based on the RLWE problem and can be defined
as follows:

• Plaintext space : P := Zt[X]/(XN + 1).

• Ciphertext space : C :=
�
Zq[X]/(XN + 1)

�2. Note that q must be greater
than t.

28

• SecretKeyGen : s ← U
�
B[X]/(XN + 1)

�
.

• Encrypt(m) : (a, [−a · s+m+ t · e]q) with a ← U(C) and e ← X where X
is the error distribution.

• Decrypt(a, b) : [[a · s+ b]q]t.

Let us consider the two ciphertexts c1 = (a1, b1) = (a1, [−a1 · s+m1 + t · e1]q) and
c2 = (a2, b2) = (a2, [−a2 · s+m2 + t · e2]q), and note q · ri = ai · s+ bi −mi − t · ei.
The homomorphic addition of c1 and c2 can be computed as (a1+a2, b1+b2).

Their homomorphic multiplication is similar to that of BFV. We first consider the
tuple (c0, c1, c2) = (a1 · a2, a1 · b2 + a2 · b1, b1 · b2) and then relinearise it.

Note that:

c2 + c1 · s+ c0 · s2
=

m1 ·m2 + t · (e1 ·m2 + e2 ·m1) + t2 · e1 · e2
+q(r1 ·m2 + r2 ·m1) + q · t(r1 · e2 + r2 · e1) + q2 · r1 · r2

Which can be decrypted as [[c2 + c1 · s + c0 · s2]q]t = [m1 · m2]t as long as (e1 ·
m2 + e2 ·m1) + t · e1 · e2 is small enough. It is then followed by a relinearisation
procedure similar to that of BFV.

As opposed to BFV, no scaling is required inside of this multiplication to go back
to a valid ciphertext format. However this lead to a quadratic noise growth t·e1 ·e2.
A modulus switching is then used to reduce the noise to a linear growth.

Modulus switching: This operation switches the ciphertext modulus from a
large integer q to a smaller integer p with less noise under some condition over the
cryptosystem parameters. Notably, given a ciphertext c = (a, b) using a ciphertext
space of size q, it requires that [q]t = [p]t = 1, q > p >> t and ||[a · s + b]|| small
enough compared to q. Then, we simply compute p

q
c and round it to the closest

vector c� = (a�, b�) for the l1 norm which satisfies [c�]t = [c]t.

We now verify that c� and c encrypt the same value. We note q·r = a·s+b−[a·s+b]q
and ep = a� · s+ b� − p · r. Note that

||ep||1 ≤ ||a� · s+ b� − p
q
(a · s+ b)||1 + ||p

q
(a · s+ b− q · r)||1

≤ ||a� · s+ b� − p
q
(a · s+ b)||1 + p

q
||(a · s+ b− q · r)||1

≤ ||a� · s+ b� − p
q
(a · s+ b)||1 + p

q
||[a · s+ b]q||1

The first term is bounded by definition of c� and can be considered small if t << p.
The second term is small by compared to p since ||[a ·s+b]q||1 is small compared to
q by assumption. More details on the bound are given in [12]. As such, parameters

29

can be chosen so that ||ep||1 ≤ p
2
, which proves that a� ·s+b�−p·r = ep = [a� ·s+b�]p.

Given the assumptions that [c�]t = [c]t and [q]t = [p]t we get that [a� ·s+b�−p ·r]t =
[a ·s+b−q ·r]t and thus [[a� ·s+b�]p]t = [[a ·s+b]q]t, which finalize the proof that c�
and c are encryptions of the same value. Besides, the noise of c� is approximately
the noise of c rescaled by p

q
. If q

p
is of similar size to the bound on the noise, we

can reduce the noise of a homomorphic multiplication from quadratic to linear at
the cost of the size of the ciphertext space.

1.4.3 Batching and Bootstrapping for BFV & BGV

The BFV and BGV are very similar cryptosystems. Their batching and boot-
strapping procedures thus hold similar performances. The aim of this section is to
give a brief understanding of these two concepts.

Batching: Using the Chinese Remainder Theorem (CRT), we get a ring homomor-
phism between the plaintext space and a product of smaller spaces. Intuitively,
a message in the original space can be seen as a vector of messages in smaller
spaces. Each position in this vector is called a slot, and ring operations on the
initial plaintext space correspond to slot wise operations on the product of smaller
spaces. The parameters t and N define the CRT representation of the plaintext
space, and as a consequence, the number and the size of the slots usable for batch-
ing. Interactions between slots are also possible thanks to ring automorphisms
which effectively apply permutations of the slots of a plaintext message. More
details on batching techniques can be found in [44, 91, 43].

Bootstrapping: The aim of this operation is to reduce the noise of a ciphertext
even when using batching techniques. Note that rounding operations cannot be
applied coefficient wise to end up with a proper result slot wise. The basic structure
of the bootstrapping procedure is as follows:

• A parameterized rescaling procedure directly on the coefficient of the cipher-
text. It is the only operation which differs between BFV and BGV.

• An inner product relying on the bootstrapping key (an encryption of the
secret s) to compute a · s+ b homomorphically.

• A rescaling procedure.

• A homomorphic rounding.

Both rescaling and the inner product are straightforward operations with FHE
cryptosystems. However, the rounding must be applied on the coefficients of the
message polynomial and not on the slots. This requires to decompose the rounding
operation accordingly:

30

• Apply a linear transformation to send the coefficients of the message into the
slots of a ciphertext (or multiple ciphertexts if needed).

• Approximate the rounding operation on the slots of each ciphertext with
polynomials. This step is also called digit extraction and requires the evalu-
ation of multiple polynomials to retrieve recursively each useful digit.

• Reverse the linear transformation.

This procedure usually takes multiple minutes as shown in [40]. However, a faster
bootstrapping procedure, called thin bootstrapping, can be computed in about
a minute for sparsely packed ciphertexts. More details on both bootstrapping
procedure can be found in [41, 40].

1.5 CKKS

1.5.1 The CKKS Cryptosystem

The CKKS cryptosystem [23] developed by Jung Hee Cheon, Andrey Kim, Miran
Kim, and Yongsoo Song, is build with a specific batching technique in mind to
create an approximate arithmetic scheme. As such, the message space and the
way to encode messages into the plaintext space are directly taken into account
in the definition of the scheme. Instead of relying on CRT decomposition over
a finite field or ring, they use the CRT on complex numbers and introduce a
rounding error, which allows for computation on approximate complex numbers.
The cryptosystem can be defined as follows:

• Message space : M := C
N
2 .

• Plaintext space : P := Zql [X]/(XN + 1) where ql =
l�

i=1

pi · q0 for given

integers pi and q0.

• Ciphertext space : C :=
�
Zql [X]/(XN + 1)

�2.

• SecretKeyGen : s ← U
�
B[X]/(XN + 1)

�
.

• Encode(m) : We note ω = e
2iπ
2N and Pm the only real polynomial satisfying

∀ odd k ∈ �0, N
2
− 1�, Pm(ω

2·k+1) = Pm(ω−(2·k+1)) = mk where mk is the
kth coefficient of the vector m. We denote by Δ a scaling factor which is
a parameter defining the precision of computation. Then, Encode(m) =
�Δ · Pm�.

31

• Decode(Pm) : m =
�

Pm(ω2·k+1)
Δ

�
k∈�0,N

2
−1�

.

• Encrypt(m) : (a, [−a · s+m+ e]ql) with a ← U(C) and e ← X where X is
the error distribution.

• Decrypt(a, b) : [a · s+ b]ql .

Let us consider the two ciphertexts c1 = (a1, b1) = (a1, [−a1 · s +m1 + e1]ql) and
c2 = (a2, b2) = (a2, [−a2 · s+m2+ e2]ql), and note ql · ri = ai · s+ bi−mi− ei. The
homomorphic addition of c1 and c2 can be computed as (a1 + a2, b1 + b2).

Their homomorphic multiplication is similar to that of BFV. The only distinc-
tion is that the rescaling operation is done by a factor p instead of a factor t

q
as

in BFV, and that the ciphertext modulus is reduced from ql to ql−1 during the
rescaling.

We first consider the tuple (c0, c1, c2) = (a1 · a2, a1 · b2 + a2 · b1, b1 · b2) and then
relinearise it. A rescaling operation, similar to the modulus switching of BGV, is
then performed as a noise management step.

Note that:

c2 + c1 · s+ c0 · s2
=

m1 ·m2 + (e1 ·m2 + e2 ·m1) + e1 · e2
+ql(r1 ·m2 + r2 ·m1) + ql(r1 · e2 + r2 · e1) + q2l · r1 · r2

Which can be decrypted as [c2+c1 ·s+c0 ·s2]ql = [m1 ·m2+(e1 ·m2+e2 ·m1)+e1 ·e2]ql
where (e1 ·m2+e2 ·m1)+e1 ·e2 is a small approximation error compared to m1 ·m2.
It is then followed by a relinearisation procedure similar to that of BFV.

The rescaling procedure then reduces the size of the ciphertext modulus from ql
to ql−1 by multiplying each coefficient by 1

pl
and rounding the result. Each pi are

generally chosen close to the scaling factor Δ. A more detailed explanation of the
CKKS cryptosystem can be found in [23].

1.5.2 Bootstrapping for CKKS

In the CKKS cryptosystem, the noise is intertwined with the least significant bits
of the message. As such, the noise is considered as a part of the message, or more
precisely, as an approximation error. Thus, the noise cannot really be reduced.
However, the multiplicative depth of a circuit computable with given parameters
is limited by the number l of rescaling operations which can be performed. The
"bootstrapping" of CKKS aims at switching a small ciphertext modulus ql� back

32

to a large ciphertext modulus ql. This renews the ability of the scheme to use
rescaling operations, which effectively improves the multiplicative depth of circuits
computable with low error approximation. Since it does not reduce the ratio
between the noise and the message, it can be considered as an upward modulus
switching rather than an actual bootstrapping.

The computation of the CKKS bootstrapping can roughly be summarized as fol-
lows:

• Upward modulus switching. No computation is required but an error term
multiple of ql� is introduced.

• Coefficient to slot operation. This is performed either as a matrix multipli-
cation or as a FFT like computation.

• Modulo ql� operation. Uses a polynomial approximation of the modulo op-
eration.

• Slot to coefficient operation. This is the inverse of the coefficient to slot
operation.

Different approaches are discussed for the slot-coefficient transformations and for
the approximation of the modulo operation. However, the latency never reaches
lower than 20 seconds for a single bootstrapping in the literature. More details
are given in [62, 55, 22, 19] regarding the efficient implementation of each step of
this bootstrapping procedure.

33

Chapter 2

TFHE

The Fully Homomorphic encryption over the Torus cryptosystem [25] or TFHE for
short, first described in 2016, is the cryptosystem used at the core of this thesis. It
builds on the FHEW cryptosystem [37], and specifically on its accumulator-based
bootstrapping, to achieve the fastest bootstrapping procedure from the state of the
art. This chapter aims at giving a detailed description of this cryptosystem.

2.1 Specificity and Strengths of TFHE

Two main drawbacks plague the majority of current FHE cryptosystem.

• The first drawback is their inefficient bootstrapping taking dozens of seconds
at least, as mentioned in Section 1.2. This limits the usage of bootstrapping
to use cases where high latency is allowed. This also means that using those
cryptosystems requires specific knowledge on tailoring the set of parameters
to each use case in order to avoid using the bootstrapping procedure.

• The second drawback is their inability to compute non polynomial functions
without decomposing messages into bits. As such, polynomial approxima-
tions must be evaluated, requiring further specific knowledge to find balance
between speed of computation and precision of the result.

These two drawbacks also make the computation of high degree polynomials very
inefficient. Indeed, they would require either the use of large parameters or the use
of the cryptosystem’s inefficient bootstrapping, slowing the overall computation
down.

The TFHE cryptosystem avoid both of these drawbacks:

35

• TFHE’s bootstrapping is the most efficient of the state of the art. It can be
as fast as 10ms, which does not jeopardize its usage even in some use cases
requiring relatively low latency.

• TFHE’s bootstrapping can become "functional" or "programmable", allow-
ing for the computation of non polynomial functions via Look-Up Tables
(LUTs) within its procedure.

Besides, the use of bootstrapping put TFHE as a good candidate to become usable
by non expert. Indeed, if we can both standardize secure sets of parameters and
find efficient ways to compute any functions under these parameter sets, we could
prevent the users from having to tediously find appropriate parameter sets for
each of their use cases. It could also lead to the creation of automated tools to
transform standard algorithms into homomorphic circuits. Attempts at building
such technologies already exist in the form of Cingulata/Armadillo [15], Transpiler
from Google [47] and the compiler from the Concrete library [29].

However, the interesting properties of TFHE come with some restrictions. Indeed,
TFHE is limited to fairly small plaintext spaces compared to cryptosystems such
as CKKS or BFV, and as of now, there is no known practical way to compute
TFHE’s bootstrapping with batched inputs, even though some research exists on
the subject [63].

2.2 Preliminary: Probability

Considering that the TFHE cryptosystem is inherently noisy, a proper analysis of
this noise needs to be taken into account to ensure proper decryption of messages
as well as to ensure the proper computation of some operations such as the boot-
strapping procedure. This noise analysis relies on the following assumption called
the independence heuristic and formalised in the TFHE paper [25]:

"Independence Heuristic: All the coefficients of the errors of samples that oc-
cur in all the linear combinations we consider are independent and concentrated.
More precisely, they are σ-subgaussian where σ is the square-root of their vari-
ance."

Note that many ciphertexts, notably bootstrapped ciphertexts, may have coeffi-
cients with correlated inputs. However, the independence heuristic allows for a
much easier study of the noise by assuming that the complex relations between
the distribution of the noise of these ciphertexts behave as if they were indepen-
dent. This heuristic is empirically validated as long as it is not used for the linear
combination of a ciphertext with itself. In order to fully understand this heuristic,

36

let us define some specific terms.

Concentrated Distribution Over T: Due to the modular nature of the torus,
it is often hard to define an expectation or a variance for a given distribution such
as the uniform distribution over T. However, it becomes much more natural to
define these values when the support of the distribution lies on a small interval by
considering the distribution over the small interval rather than on the full torus.
More formally, a distribution X is said to be concentrated if its support is almost
surely included in a ball of radius 1

4
over T. Then, the variance of X is defined as

Var(X) = minx∈T(
�
I
|x − y|2dX (y)) where I is an interval of length l < 1

2
which

contains the support of X . The expectation E(X) is then the value x for which
the minimum in the definition of the variance is reached. These definitions can
easily be extended to Tn and (T[X]/(XN + 1))k with the following rules:

• A distribution over Tn is concentrated if the distributions of the projections
over each coefficient are concentrated.

• A distribution over (T[X]/(XN + 1))k is concentrated if the distribution of
each coefficient of each polynomial is concentrated.

• The expectation of a vector is the vector of its expectations.

• The expectation of a polynomial is the vector of expectations of its coeffi-
cients.

• The variance of a vector is the greatest variance among the variances of its
coefficients.

• The variance of a polynomial is the greatest variance among the variances
of its coefficients.

These variance and expectation follow the same linearity rule as their counterpart
over real numbers.

Subgaussian Distribution: In addition to the noise sampled from gaussian dis-
tributions for fresh ciphertexts, some rounding operation may appear which leads
to additional noise term sampled from uniformly random distributions over small
intervals. As such, the study of gaussian distribution is not enough for a precise
noise analysis. This is where subgaussian distributions come into play as both
gaussian distributions and uniform distributions over small intervals are subgaus-
sian. Intuitively, a subgaussian distribution is a distribution that is somewhat
bounded by a gaussian.
More formally, a random variable X sampled from a distribution X over R is σ-
subgaussian if for all t > 0,PX (|X| ≥ t) ≤ 2exp(−t2

2σ2). Notably, a gaussian distri-
bution with standard deviation σ and a uniform distribution over [−

√
3σ,

√
3σ] are

37

both σ-subgaussian. The linear combination of independent subgaussian variables
follows similar rules to the linear combination of independent gaussian variables.
As such, the sum of two independent variables, one being σ1-subgaussian and the
other being σ2-subgaussian, gives a

�
σ2
1 + σ2

2-subgaussian variable.
Besides, the definition and linear properties are naturally extended to concen-
trated distributions over T as long as the combinations stay concentrated. Note
that we cannot expect a proper decryption from a ciphertext if its noise is not
concentrated.

2.3 TFHE Cryptosystem

The security assumption of TFHE relies on the hardness of the TLWE and TRLWE
problems described in Section 1.3. TFHE relies on three types of encryption re-
spectively called TLWE encryption, TRLWE encryption and TRGSW encryption.
But first, a set of parameters must be chosen to instantiate the cryptosystem.
The parameters required to define the instantiation of the TLWE and TRLWE
problems are the following:

• An integer n defining the size of the TLWE secret key.

• An integer k defining the size of the TRLWE secret key.

• An integer N defining the degree of the polynomial XN + 1 in the TRLWE
problem. The integer N must be a power of 2.

• A standard deviation σTLWE for the gaussian distribution of the TLWE noise.

• A standard deviation σTRLWE for the gaussian distribution of the TRLWE
noise.

Additional parameters are required to define specific operations. The parameters
required to define the bootstrapping operation are the following:

• An integer Bg which serves as a decomposition basis.

• An integer l which bounds the size of the decomposition used in the boot-
strapping procedure.

Finally, some parameters are required to define a key switching procedure:

• An integer BKS which serves as a decomposition basis.

• An integer t which bounds the size of the decomposition used in the key
switching procedure.

38

From now on, we assume that one such set of parameters is chosen to define the
cryptosystem. Let us define the 3 types of encryption used in TFHE.

TLWE Encryption:

• The plaintext space is a discretized subset of T. More specifically, it is of the
form {0, 1

p
, 2
p
, ..., p−1

p
} for a given integer p.

• The ciphertext space is Tn × T.

• The key space is Zn. In this thesis we will only consider binary keys.

• The encryption procedure for a given key s and a message m is as follows.
Sample a from a uniformly random distribution over Tn. Sample e from
a centered gaussian distribution with standard deviation σTLWE. A TLWE
encryption of m is defined as TLWEs(m) = (a,a · s+m+ e).

• The phase of a TLWE ciphertext given a key s is φs(a, b) = b − a · s. The
decryption procedure rounds the phase of a ciphertext to the nearest element
of the plaintext space. This procedure outputs the right result as long as the
noise is bounded by 1

2p
.

This can be considered as the main encryption type of TFHE as it is the only one
that can be efficiently bootstrapped. In the literature, two types of bootstrapping
can be found over TLWE ciphertexts, namely the "gate bootstrapping" which out-
puts a TLWE ciphertext and the "circuit bootstrapping" which outputs a TRGSW
ciphertext. Since the circuit bootstrapping can be seen as multiple gate bootstrap-
pings followed by the construction of a TRGSW ciphertext from multiple TLWE
ciphertext, we will only consider the gate bootstrapping as a bootstrapping.

TRLWE Encryption:

• The plaintext space is a discretized subset of T[X]/(XN + 1). More specif-
ically, it is composed of polynomials with coefficients in {0, 1

p
, 2
p
, ..., p−1

p
} for

a given integer p.

• The ciphertext space is (T[X]/(XN + 1))k × T[X]/(XN + 1).

• The key space is (Z[X]/(XN + 1))k.

• The encryption procedure for a given key s and a message m is as follows.
Sample a from a uniformly random distribution over (T[X]/(XN+1))k. Sam-
ple each coefficient of e from a centered gaussian distribution with standard
deviation σTRLWE. A TRLWE encryption of m is defined as TRLWEs(m) =
(a,a · s+m+ e).

39

• The phase of a TRLWE ciphertext given a key s is φs(a, b) = b− a · s. The
decryption procedure rounds the phase of a ciphertext to the nearest element
of the plaintext space. This procedure outputs the right result as long as the
coefficients of the noise are bounded by 1

2p
.

In the context of bootstrapping, this can be considered as an auxiliary type of
encryption to compute the bootstrapping of TLWE ciphertexts.

TRGSW Encryption:

This type of encryption relies on a so called "gadget matrix" H ∈ M(k+1)·l,k+1(T)
which can be defined as follows in practice:

Let us note

V =

1
Bg
1
B2

g

...
1
Bl

g

∈ Ml,1(T) and 0 =

0
...
0

 ∈ Ml,1(T)

Then

H =

V 0 · · · 0
0 V · · · 0
...

...
...

...
0 0 · · · V

• The plaintext space is Z[X]/(XN + 1) modulo Bl
g.

• The ciphertext space is M(k+1)·l,k+1(T[X]/(XN + 1)). This can also be seen
as vectors of TRLWE ciphertexts.

• The key space is (Z[X]/(XN + 1))k.

• The encryption procedure for a given key s and a message m is as follows.
Sample a vector Z of (k + 1) · l TRLWE samples. A TRGSW encryption of
m is then defined as Z +m ·H.

• The message can be decrypted like a TRLWE ciphertext by using the last
line of the matrix and multiplying the result by B l

g.

In the context of bootstrapping, this can be considered as another auxiliary type
of encryption to compute the bootstrapping of TLWE ciphertexts.

40

2.4 Arithmetic Operations

What would be a cryptosystem without homomorphic properties? Well, not FHE.
So let us dive into the homomorphic properties of TFHE.

Additions: It is a very straight forward operation for each cryptosystem. Let
us note m1 and m2 two messages from the same plaintext space. We also note
(a1, b1) ∈ T(R)LWEs(m1) and (a2, b2) ∈ T(R)LWEs(m2) two ciphertexts with
noise e1 and e2, respectively. Finally, we note C1 = Z1+m1 ·H and C2 = Z2+m2 ·H
two TRGSW ciphertexts.
Then (a1 + a2, b1 + b2) = (a1 + a2, (a1 + a2) · s+ (m1 +m2) + e1 + e2) is an en-
cryption of m1 +m2. The ciphertext (a1, b1 +m2) = (a1,a1 · s+ (m1 +m2) + e1)
is also an encryption of m1 +m2.

Similarly, C1+C2 = (Z1+Z2)+(m1+m2) ·H is an encryption of m1+m2. Indeed,
the sum of two TRLWE encryption of 0 is a TRLWE encryption of 0, thus Z =
Z1+Z2 is still a vector of TRLWE encryptions of 0 and C1+C2 = Z+(m1+m2)·H
is an encryption of m1 + m2. We also get that C1 + m2 · H is an encryption of
m1 +m2.

In every cases, the addition of two encrypted ciphertexts leads to an additive
growth of the resulting noise while the addition of an encrypted ciphertext and
a clear text does not lead to any noise growth. Note that additions between
ciphertexts must be done between ciphertexts of a same type.

Multiplications: For a given integer m and a ciphertext c of any type encrypting
an element m1 with noise e, it is easy to see that m · c encrypts m ·m1 with noise
m · e. We can see here that the multiplication of a clear message and an encrypted
message leads to a noise growth as opposed to the addition of a clear message and
a ciphertext.

Let us note C = Z+m1 ·H a TRGSW ciphertext and c = (a, b) a TRLWE encryp-
tion of a message m with noise e, both under the same key s = (s1, ..., sk). We note
ai the polynomials which are the coefficients of the vector a. These polynomials

as well as b can be decomposed in basis Bg in the format ai =
l�

j=1

ai,jB
−j
g + �i and

b =
l�

j=1

bjB
−j
g +�b where each ai,j and bj are polynomials with coefficients bounded

by Bg

2
. Besides, each �x term is a polynomial with coefficients bounded by 1

2Bl
g
. We

note ãi = ai − �i and b̃ = b− �b. We define the following decomposition procedure

41

over TRLWE ciphertexts:

Dec(c) = (a1,1, a1,2, ..., ak,l, b1, ..., bl)

which is effectively a rounded decomposition of each ai and b in basis Bg with
coefficients in �−Bg

2
, Bg

2
− 1�. Let us note Zi the ith line of Z so that each Zi is a

TRLWE sample with noise ei, and S =
k�

i=1

l�

j=1

ai,jZi·l+j +
l�

j=1

bjZk·l+j.

Then,

Dec(c) · C = Dec(c) · (Z +m1 ·H)
= Dec(c) · Z +m1 · Dec(c) ·H

=
k�

i=1

l�

j=1

ai,jZi·l+j +
l�

j=1

bjZk·l+j +m1 · (ã1, ..., ãk, b̃)

= S +m1 · (�1, ..., �k, �b) +m1 · (a, b)

Note that S is a linear combination of TRLWE encryptions of 0, so S is also a
TRLWE encryption of 0. Besides, m1 · (�1, ..., �k, �b) can be seen as an error term.
Finally, m1 ·(a, b) is an encryption of m1 ·m. As such, Dec(c)·C gives an encryption
of m1 ·m. This operation is called external product as it is performed between two
different types of ciphertexts.

Besides, the resulting noise of this procedure is given by:

k�

i=1

l�

j=1

ai,j · ei·l+j +
l�

j=1

bj · ek·l+j +m1 · (�b −
k�

i=1

�i · si) +m1 · e

Note that the coefficients of each �x term can be considered as random terms
sampled independently from a uniform distribution in [− 1

2Bl
g
, 1
2Bl

g
] with standard

deviation 1
2
√
3Bl

g
. As such, they are 1

2
√
3Bl

g
-subgaussian. Considering that each

error term ei follows a gaussian distribution with variance at most VTRGSW and e
follows a gaussian distribution with variance at most VTRLWE, we get that each
coefficient of the noise of the output follows a gaussian distribution with variance
at most:

(k + 1) · l ·N ·
�
Bg

2

�2

· VTRGSW + ||m1||22 ·
�
1 + k ·N
12B2l

g

�
+ ||m1||22 · VTRLWE

Note that this result improves slightly on the original TFHE paper [25] since they
considered a variance of 1

4B2l
g

instead of 1
12B2l

g
for the �i terms.

42

Besides, this bound heavily rely on the independence assumption. Notably to
compute the variance of each coefficient m1 · �i · si. We can first consider that each
�i · si is a random variable with independent coefficients and variances bounded by

N
12B2l

g
, then multiply by m1 to get a variance bounded by ||m1||22 N

12B2l
g

. But in truth,
the coefficients of �i · si are not independent and the best bound we would find for
m1 · �i · si is ||m1||21 N

12B2l
g

. Since this bound is identical when m1 is a constant, the
choice of || · ||1 or || · ||2 will not impact any results in this thesis.

Considering that a TRGSW ciphertext is actually a vector of TRLWE ciphertexts,
it is possible to multiply two TRGSW ciphertexts with the same technique. This
operation is then called internal multiplication.

2.5 Advanced operations

In this section, we describe the non arithmetic operation supported in the TFHE
cryptosystem. Notably, we describe its efficient bootstrapping procedure and show
how it can become "functional".

Keyswitching: The goal of this operation is to change a TLWE encryption of a
message m under a key s1 to a T(R)LWE encryption of m under another key s2.
It can additionally be tweaked to compute a linear combination of multiple cipher-
texts during its computation. When the linear computation performed during the
keyswitch is publicly known, it is referred as public functional keyswitch. Oth-
erwise, it is referred as private functional keyswitch. The description of this two
procedures are given in Algorithms 1 and 2. Note that the output of the keyswitch
can be a TLWE ciphertext if N = 1. Besides, we will simply call keyswitch the

public functional keyswitch used when f :

�
T → T
x �→ x

.

Let us prove that Algorithm 1 outputs the right value and analyse the noise of its
output. To that end, we note ẽi = ai − ãi, b = (b(1), ..., b(p)), ei,j the noise term in
each KSi,j and ei the noise in each c(i). Then we get the following formulas:

43

Algorithm 1 Public Functional Key Switching

Input: p TLWE ciphertexts c(i) = (a(i), b(i)) ∈ TLWEs(mi), a public morphism
f : Tp → T[X]/(XN + 1), a keyswitch key KSi,j ∈ T(R)LWEk(

si
Bj

KS

) for i ∈
�1, n� and j ∈ �1, t�.

Output: A T(R)LWE ciphertext c ∈ T(R)LWEk(f(m1, ...,mp))
1: for i ∈ �1, n� do
2: ai := f(a

(1)
i , ..., a

(p)
i)

3: Let ãi be the closest multiple of B−t
KS to ai

4: Let
t�

j=1

ãi,j

Bj
KS

be the decomposition of ãi in basis BKS with

ãi,j ∈ �−BKS

2
, BKS

2
− 1�

5: Return
�
0, f(b(1), ..., b(p))

�
−

n�

i=1

t�

j=1

ãi,j · KSi,j

φk(c) = f(b)−
n�

i=1

t�

j=1

ãi,j · φk (KSi,j)

= f(b)−
n�

i=1

t�

j=1

ãi,j ·
�

si

Bj
KS

+ ei,j

�

= f(b)−
n�

i=1

ãi · si −
n�

i=1

t�

j=1

ãi,j · ei,j

= f(b)−
n�

i=1

(ai − ẽi) · si −
n�

i=1

t�

j=1

ãi,j · ei,j

= f(b)−
n�

i=1

ai · si +
n�

i=1

ẽi · si −
n�

i=1

t�

j=1

ãi,j · ei,j

= f(b(1), ..., b(p))−
n�

i=1

f(a
(1)
i , ..., a

(p)
i) · si +

n�

i=1

ẽisi −
n�

i=1

t�

j=1

ãi,jei,j

= f

�
b(1) −

n�

i=1

a
(1)
i si, ..., b

(p) −
n�

i=1

a
(p)
i si

�
+

n�

i=1

ẽisi −
n�

i=1

t�

j=1

ãi,jei,j

= f (m1, ...,mp) + f (e1, ..., ep) +
n�

i=1

ẽi · si −
n�

i=1

t�

j=1

ãi,j · ei,j

44

Thus, c ∈ T(R)LWEk (f(m1, ...,mp)) with noise:

f (e1, ..., ep) +
n�

i=1

ẽi · si −
n�

i=1

t�

j=1

ãi,j · ei,j

By definition of ãi, each coefficient of ẽi is in [− 1
2Bt

KS
, 1
2Bt

KS
] and as such are 1

2
√
3Bt

KS

-
subgaussian. Thus, given R so that f is R-Lipschitz, we get the following bound
on the noise variance of c:

Var(c) ≤ R2 · Var(c(1), ..., c(p)) +
n

12B2t
KS

+ n ·N · t ·
�
BKS

2

�2

· VarKS

where VarKS is the maximum variance of the ciphertexts making up the keyswitch
key.

Note that Algorithm 1 and its noise formula improve on the result from the original
TFHE paper [25] on multiple levels. Indeed, they only considered the binary de-
composition basis, which make our result more general, and they bounded the error
terms ẽi by considering a standard deviation of 1

2Bt
KS

rather than 1
2
√
3Bt

KS

.

Algorithm 2 Private Functional Key Switching

Input: p TLWE ciphertexts c(i) = (c
(i)
1 , ..., c

(i)
n+1) ∈ TLWEs(mi), a keyswitch key

KS(f)
i,j,q ∈ T(R)LWEk(f(0, ..., 0,

si
Bj

KS

, 0, ..., 0)) for i ∈ �1, n + 1�, j ∈ �1, t� and
q ∈ �1, p� with sn+1 = −1 by convention.

Output: A T(R)LWE ciphertext c ∈ T(R)LWEk(f(m1, ...,mp))
1: for i ∈ �1, n+ 1� do
2: for q ∈ �1, p� do
3: Let c̃(q)i be the closest multiple of B−t

KS to c
(q)
i

4: Let
t�

j=1

c̃
(q)
i,j

Bj
KS

be the decomposition of c̃
(q)
i in basis BKS with c̃

(q)
i,j ∈

�−BKS

2
, BKS

2
− 1�

5: Return −
p�

q=1

n+1�

i=1

t�

j=1

c̃
(q)
i,j · KS(f)

i,j,q

Let us now prove that Algorithm 2 outputs the right value and analyse the noise
of its output. To that end, we note ẽi,q = c

(q)
i − c̃

(q)
i , ei,j,q the noise term in each

KS(f)
i,j,q and ei the noise in each c(i). Finally, let us note fq(x) := f(0, ..., 0, x, 0, ..., 0)

where x is in the qth position. Then we get the following formulas:

45

φk(c) = −
p�

q=1

n+1�

i=1

t�

j=1

c̃
(q)
i,j · φk

�
KS(f)

i,j,q

�

= −
p�

q=1

n+1�

i=1

t�

j=1

c̃
(q)
i,j ·

�
fq(

si

Bj
KS

) + ei,j,q

�

= −
p�

q=1

n+1�

i=1

t�

j=1

fq

�
c̃
(q)
i,j · si

Bj
KS

�
−

p�

q=1

n+1�

i=1

t�

j=1

c̃
(q)
i,j · ei,j,q

= −
p�

q=1

n+1�

i=1

fq

�
c̃
(q)
i · si

�
−

p�

q=1

n+1�

i=1

t�

j=1

c̃
(q)
i,j · ei,j,q

= −
p�

q=1

n+1�

i=1

fq

�
(c

(q)
i − ẽi,q) · si

�
−

p�

q=1

n+1�

i=1

t�

j=1

c̃
(q)
i,j · ei,j,q

= −
p�

q=1

n+1�

i=1

fq

�
c
(q)
i · si

�
+

p�

q=1

n+1�

i=1

fq (ẽi,q · si)−
p�

q=1

n+1�

i=1

t�

j=1

c̃
(q)
i,j · ei,j,q

=

p�

q=1

fq

�
c
(q)
n+1 −

n�

i=1

c
(q)
i · si

�
+

p�

q=1

n+1�

i=1

fq (ẽi,q · si) −

p�

q=1

n+1�

i=1

t�

j=1

c̃
(q)
i,j · ei,j,q

=

p�

q=1

fq (mq + eq) +

p�

q=1

n+1�

i=1

fq (ẽi,q · si)−
p�

q=1

n+1�

i=1

t�

j=1

c̃
(q)
i,j · ei,j,q

= f(m1, ...,mp) + f(e1, ..., ep) +

p�

q=1

n+1�

i=1

fq (ẽi,q · si) −

p�

q=1

n+1�

i=1

t�

j=1

c̃
(q)
i,j · ei,j,q

Thus, c ∈ T(R)LWEk (f(m1, ...,mp)) with noise:

f(e1, ..., ep) +

p�

q=1

n+1�

i=1

fq (ẽi,q · si)−
p�

q=1

n+1�

i=1

t�

j=1

c̃
(q)
i,j · ei,j,q

By definition of c̃
(q)
i , each coefficient of ẽi,q is in [− 1

2Bt
KS

, 1
2Bt

KS
] and as such are

1
2
√
3Bt

KS

-subgaussian. Besides,
p�

q=1

n+1�

i=1

fq (ẽi,q · si) = f

�
n+1�

i=1

ẽi,1 · si, ...,
n+1�

i=1

ẽi,p · si
�

.

46

Thus, given R so that f is R-Lipschitz, we get the following bound on the noise
variance of c:

Var(c) ≤ R2 · Var(c(1), ..., c(p)) +R2 · n+ 1

12B2t
KS

+ p · (n+ 1) · t ·
�
BKS

2

�2

· VarKS

where VarKS is the maximum variance of the ciphertexts making up the keyswitch
key.

This algorithm and noise formula give similar improvement to the TFHE paper as
in the public keyswitch case.

Extraction: Each coefficient of a message in T[X]/(XN + 1) can be seen as
a message in T. Similarly, we can extract TLWE ciphertexts from a TRLWE
ciphertext. Insight can be found in the evaluation of the phase of a TRLWE

ciphertext. Given c = (a1, ..., ak, b) ∈ TRLWEs (m) with m =
N−1�

i=0

mi ·X i, we

get:

φs (c) = b−
k�

i=1

ai · si

If we note ai =
N−1�

j=0

ai,j ·Xj, si =
N−1�

j=0

si,j ·Xj, b =
N−1�

j=0

bj ·Xj, and consider the

qth coefficient of φs (c) we get:

φs (c)q = bq −
k�

i=1

q�

j=0

ai,q−j · si,j +
k�

i=1

N−1�

j=q+1

ai,N+q−j · si,j

From this, we get that for any q ∈ �0, N − 1�, we can build a TLWE encryption of
mq under the key s seen as a vector (s1,0, ..., s1,N−1, ..., sk,N−1) ∈ Bk·N as

TLWEs(mq) = (�1,0 · a1,0, ..., �k,N−1 · ak,N−1, bq)

where �i,j =

�
1 if j ≤ q

−1 otherwise and with no additional noise compared to the

TRLWE ciphertext it is extracted from.

CMux gate: The CMux gate is used to make a homomorphic selection between
two encrypted messages given an encrypted bit. Given C ∈ TRGSWs(B) with
B ∈ B, c1 ∈ TRLWEs(m1), and c2 ∈ TRLWEs(m2), the CMux gate verifies:

CMux(C, c2, c1) ∈
�

TRLWEs(m1) if B = 0
TRLWEs(m2) if B = 1

47

Simply put, if C is an encryption of 0, the CMux gate outputs a new encryption of
m1, whereas if C is an encryption of 1, the CMux gate outputs a new encryption
of m2. It is computed using the external product as follows:

CMux(C, c2, c1) = Dec (c2 − c1) ·C + c1

The variance of the noise from this operation can easily be inferred from the noise
of an external multiplication:

Var (CMux(C, c2, c1)) ≤ (k+1) · l ·N ·
�
Bg

2

�2

·VTRGSW +

�
1 + k ·N
12B2l

g

�
+VTRLWE

where VTRLWE is the maximum between the variance of c1 and c2.

BlindRotate: The goal of the BlindRotate is to perform a hidden rotation of the
coefficients of the message encrypted in a TRLWE ciphertext. More specifically,
given a ciphertext TLWEs(m) and a ciphertext TRLWEk(P), the BlindRotate
operation aims at computing an encryption of X−�2N ·m� · P .

Algorithm 3 Blind Rotation
Input: a TLWE ciphertext (a1, ..., an, b) ∈ TLWEs(m), a TRLWE ciphertext

cin ∈ TRLWEk(P), and a bootstrapping key (BKi ∈ TRGSWk(si))i∈�1,n�.
Output: A ciphertext ACC ∈ TRLWEk(X

−ρ · P) where ρ = �2N · b� −
n�

i=1

�2N · ai · si�

1: b := �2N · b�
2: for i ∈ �1, n� do
3: ai := �2N · ai�
4: ACC := X−b · cin

5: for i ∈ �1, n� do
6: ACC = CMux (BKi, X

ai · ACC,ACC)

7: Return ACC

Algorithm 3 describes how to leverage the CMux gate operation to compute a
BlindRotate. We can easily see that at any time t in the for loop, ACC is set to

X−ρt · cin where ρt =
t�

i=1

(ai · si)− b. As such, by the end of Algorithm 3, ACC

is set to X−ρ · cin ∈ TRLWEs (X
−ρ · P) as expected. Since multiplying a TRLWE

ciphertext by Xx does not increase the noise of the ciphertext, the noise of the
output of a Blind Rotation can be inferred easily from the noise of the CMux gate

48

operation. Hence, the variance of the error of a BlindRotate is bounded by:

Var(ACC) ≤ n ·
�
(k + 1) · l ·N ·

�
Bg

2

�2

· VTRGSW +

�
1 + k ·N
12B2l

g

��
+ VTRLWE

Bootstrapping: Thanks to all the previous operations described in this section,
we can now describe the noise management operation called bootstrapping in
Algorithm 4. Note that this algorithm is tailored for a binary plaintext space.

Algorithm 4 Bootstrapping

Input: a TLWE ciphertext c ∈ TLWEs(m) with m ∈ {0, 1
2
}, a boot-

strapping key BK = (BKi ∈ TRGSWk(si))i∈�1,n�, a keyswitch key KS =�
KSi,j ∈ TLWEs

�
ki

Bj
KS

��
i∈�1,n�;j∈�1,t�

.

Output: A ciphertext cout ∈ TLWEs(m) with noise small and independent from
c.

1: P = (0, X
N
2

N−1�

i=0

1

4
·X i)

2: ACC= BlindRotate(c, P,BK)
3: Let cextr be the result of the extraction of the first coefficient of ACC
4: cout = KeySwitch(cextr,KS)
5: cout = cout +

�
0, 1

4

�

6: Return cout

Let us note

VarKS =
N

12B2t
KS

+N · t ·
�
BKS

2

�2

· VarKS

the noise introduced by the Keyswitch procedure from key k to s, and

VarBR = n ·
�
(k + 1) · l ·N ·

�
Bg

2

�2

· VTRGSW +

�
1 + k ·N
12B2l

g

��

the noise added by the BlindRotate procedure. Considering that the initial TRLWE

ciphertext (0, X
N
2

N−1�

i=0

1

4
·X i) is noiseless, and that the identity function is 1-

Lipschitz, we find the following bound on the variance of the output of the boot-
strapping procedure:

Var(cout) ≤ EBR + EKS

49

Besides, the result is an encryption of the right message only if the first coefficient

of X−ρ ·P , where ρ = �2N · b�−
n�

i=1

�2N · ai · si�, is the same as the first coefficient

of X−2N ·m · P in T[X]/(XN + 1). This is true only if |ρ − 2N · m| < N
2

which
introduces a probability of error to this algorithm.

It can be seen that the bootstrapping procedure actually is a look-up table evalu-
ation where the look-up table is defined by P and the index of the table is defined

by ρ. As such, for any TRLWE ciphertext Q =

�
0,

N−1�

i=0

pi ·X i

�
, a bootstrapping

procedure can be defined by replacing P with Q, achieving the computation of the
table

(p0, ..., pN−1,−p0, ...,−pN−1)

The symmetric property of this table, called "negacyclicity", comes from the mod-
ulo XN + 1 used to define our plaintext space. Given a non binary plaintext
space, this allows the computation of non polynomial negacyclic functions with
no overhead compared to the binary bootstrapping. This technique is then called
functional bootstrapping. Note that proper redundancy must be introduced in
the coefficients of the polynomial to ensure a low probability of error during this
procedure. In general, given a plaintext space of 2r elements, the result is an
encryption of the right element only if |ρ− 2N ·m| < N

2r
.

2.6 Noise Analysis

In this section, we gather all the noise results mentioned in previous sections to
make them easily accessible. We assume here that the noise variance of each input
TLWE sample (respectively TRLWE sample and TRGSW sample) is bounded by
VTLWE (respectively VTRLWE). We note V the noise variance of the output of each
operation. Finally, we note VBS and VKS the noise variances of the bootstrapping
key and keyswitch key.

Additions:

• Between a TLWE and a cleartext: V ≤ VTLWE.

• Between two TLWE: V ≤ 2 · VTLWE.

• Between a TRLWE and a cleartext: V ≤ VTRLWE.

• Between two TRLWE: V ≤ 2 · VTRLWE.

• Between a TRGSW and a cleartext: V ≤ VTRLWE.

50

• Between two TRGSW: V ≤ 2 · VTRLWE.

Multiplications:

• Between a TLWE and a cleartext m ∈ Z: V ≤ m2 · VTLWE.

• Between a TRLWE and a cleartext m ∈ Z[X]: V ≤ ||m||22 · VTRLWE.

• Between a TRGSW and a cleartext m ∈ Z[X]: V ≤ ||m||22 · VTRLWE.

• Between a TRGSW(m) and a TLWE:

V ≤ (k+ 1) · l ·N ·
�
Bg

2

�2

· VTRLWE + ||m||22 ·
�
1 + k ·N
12B2l

g

�
+ ||m||22 · VTRLWE

Public Functional Keyswitch:

V ≤ R2 · VTLWE +
n

12B2t
KS

+ n ·N · t ·
�
BKS

2

�2

· VarKS

Private Functional Keyswitch:

V ≤ R2 · VTLWE +R2 · n+ 1

12B2t
KS

+ p · (n+ 1) · t ·
�
BKS

2

�2

· VarKS

Extraction:
V ≤ VTRLWE

CMux gate:

V ≤ (k + 1) · l ·N ·
�
Bg

2

�2

· VTRLWE +

�
1 + k ·N
12B2l

g

�
+ VTRLWE

BlindRotate:

V ≤ n ·
�
(k + 1) · l ·N ·

�
Bg

2

�2

· VBS +

�
1 + k ·N
12B2l

g

��
+ VTRLWE

Bootstrapping:

V ≤ n

�
(k + 1) · l ·N

�
Bg

2

�2

VBS +

�
1 + kN

12B2l
g

�
+

1

12B2t
KS

+N · t
�
BKS

2

�2

VKS

�

51

2.7 TFHE in This Thesis
Most FHE cryptosystems can be utilized in either of two modes:

• Binary mode: functions are evaluated as logic circuits.

• Larger plaintext mode: functions are approximated by low degree poly-
nomials over a large plaintext space. The functional bootstrapping of TFHE
can also compute negacyclic functions.

In this thesis, we improve TFHE on both points as follows:

• We extend the computation of logic circuits to inputs decomposed in any
basis B rather than 2.

• We build a functional bootstrapping that is not restricted to negacyclic func-
tions.

Besides, the analysis of the noise formulas of each building blocks of TFHE allows
us to efficiently estimate the noise growth and error rate of our techniques. This
also gives us different metrics to compare our work to the state of the art, namely
the latency, the noise growth, and the error rate.

Apart from extending the toolkit of TFHE, we apply our knowledge of TFHE to
interesting tasks, such as transciphering and neural network inferences.

52

Chapter 3

Neural Networks

3.1 Neural Networks and FHE

An artificial neural network, or neural network for short, is a type of machine
learning model which can "learn" from a dataset to infer some specific information
over new data. In 1957, Rosenblatt introduced the first neural network called
"perceptron" [82]. His aim was to build a system with the ability to learn and
generalize from limited information, similarly to what he calls "higher organisms".
The basic structure that he came up with gave birth to the concept of feedforward
neural networks. Since then, feedforward neural networks have been used in diverse
fields such as pattern classification, image processing, control systems and many
more [84].

Deep neural networks gained a tremendous boost in popularity in 2015 when Al-
phaGo [89] achieved victory in the board game Go against a professional player.
Only 2 years later, it successfully beat the world champion of Go, fostering the
dream of conceiving an artificial intelligence (AI) smarter than humans. In 2022,
deep neural networks became a hot societal topic again with the development of
ChatGPT [76], a deep neural network-based conversational AI. This chatbot can
hold human-like conversation on any subject but raised many concerns, notably
privacy issues coming with its use [106].

But concretely, what is a neural network? We describe a basic feedforward neural
network structure in Figure 3.1. Let us introduce the required terminology:

• Neuron: A neuron is the smallest unit in the neural network. They are
represented as circle in Figure 3.1.

• Layer: A layer is a group of neurons all working on the same inputs. The

53

result of their computation is sent as the input of the next layer of neurons.
They are represented as rectangles in Figure 3.1. The intermediary layers
are often called hidden layer.

• Weights: The linear combinations computed in each layer depends on the
input of the layer and the weights of the layer.

• Activation: The activation functions are nonlinear function computed by
each neuron after the linear operation and noted as fi on Figure 3.1. Note
that if an activation function was linear, multiple layer could be merged
leading to a smaller network computing the same function. The most usual
activation functions are the Rectified Linear Unit ReLU(x) = max(0, x), the
Sigmoid σ(x) = 1

1+e−x and the hyperbolic tangent tanh(x) = ez−e−z

ez+e−z .

• Hyperparameter: The number of neurons in each layer, the number of
layers, the choice of activation functions, and other parameters related to
the structure of the neural network are called hyperparameters.

linear operationInput Outputlinear operation

f (x)
1

f (x)
2

f (x)
3

Figure 3.1 – Basic structure of a feedforward neural network.

A neural network usually lives through two phases:

• Training: During the training phase, the neural network uses large amount
of data to find the most appropriate weights to fit a targeted application.
Fine tuning of the hyperparameters can also be performed during the training
process.

• Inference: The inference phase is the application of the neural network to
new inputs.

The most usual training methods are variants of the gradient descent [75]. To that
end, a loss function is defined and empirically evaluated to determine how close

54

the outputs of the neural network are for a given set of weights. Then, the weights
of the neural network are updated by following the gradient of the loss function
to improve the loss. A technique called "back propagation" allows for an efficient
computation of the gradient by leveraging the structure of neural networks. This
operation is iterated until convergence of the result to a local optimal set of weights.
Many more efficient variants of this training technique exist, such as the stochastic
gradient descent or the adaptive gradient descent [95].

Trained neural networks are often highly valuable intellectual properties. As such,
service providers usually have to make computations on their end on the client’s
requests in order to avoid disclosing the network.

For the purpose of this thesis, we assume that the server doing the computation
is honest but curious. Concretely, this means that the server can be trusted to
compute the expected function while trying to extract information from clients
for its own purposes. In this context, we only aim to ensure the confidentiality of
the client’s input data against attack from the service provider. Hence, we do not
investigate ways to ensure that the server computes the intended function, such as
verifiable computing [102]. In Figure 3.2, we describe a basic interaction between a
client and the cloud. The client’s input x represents personal data, which could be
medical data, geographic position, or any other sensitive data. The cloud only has
access to x and f(x) between brackets, which denotes encrypted information. As
such, it does not learn anything about either x or f(x) as long as the cryptosystem
used is secure1 and malleable enough to compute the encryption of f(x) from
the encryption of x. Meanwhile, the client can decrypt the result f(x) using his
private key. The mentioned security and malleability requirements are met by
FHE cryptosystems, which are perfect candidates for this type of application. It
is important to note that thanks to FHE the client does not need to interact with
the server at all during the computation of the function f .

FHE computations can theoretically be used either during the training phase or
the inference phase of the neural network. However, the training phase is much
more difficult to compute in the encrypted domain than the inference phase. In-
deed, difficulties such as discretization leading to numerical error propagation come
into play during the training process. Since the loss function and the precision of
the network cannot be monitored while encrypted, the impact of numerical errors
cannot be assessed without decryption. This also makes the fine tuning of hyper-
parameters difficult without interactions with the client. Some works ([74],[65])
try to tackle the problem of homomorphic training. However, they fail to address
some of the subtleties of a complete training process, in particular in regard to
numerical stability, and still require a prohibitively long training process: an ex-

1In the "honest but curious" model, CPA security is enough to be considered secure.

55

[x]

[f(x)]

[x]

[f(x)]

x
f

f(x)

[x]=?

Figure 3.2 – Exchange between client and honest but curious cloud. Brackets
denote encryption.

pected time of 13 years for the full training of a fairly small neural network. A
more realistic approach exists in a different setting when allowing for interaction
between the server and clients thanks to federated learning [92, 86]. However, in
the federated learning setting, most of the actual training of the network is per-
formed in the clear domain while FHE is used for a crucial but restricted part of
the protocol. Since this thesis focus on FHE computation, it makes sense to focus
first on the inference phase.

The inference of neural networks can be roughly categorized in 2 types:

• Feedforward Neural Networks: Essentially following the structure of
Figure 3.1, feedforward neural networks are a succession of layer fixed during
the training phase. Although the most efficient homomorphic evaluations of
this type of neural networks rely on the LHE mode of cryptosystems such as
BGV and CKKS, difficulties arise when computing the activation functions.
The neural network can be purposely designed to be FHE friendly by using
low degree polynomial activation functions or the usual activation functions
can be approximated by polynomials. Besides, such neural networks are
usually very deep in practice (VGG16 has 16 layers [90]), but the largest
standard LHE parameters allow for a multiplicative depth of up to 30 [61]
(which would not even allow a multiplication depth of 2 per layer for the
evaluation of VGG16). In order to scale to deep and useful neural networks,
it is required to switch to FHE mode.

• Recurrent Neural Networks: As opposed to feedforward neural networks,
recurrent neural networks work on a list of inputs of arbitrary size, such as
sentences. The neural network takes as input one element of the list as well as

56

its own output and is used recursively over each element of the list of inputs
as shown on Figure 3.3. As such, the multiplicative depth of computation
is unbounded due to the recurrent nature of the network, and FHE needs
to be used over LHE. Furthermore, errors from polynomial approximations
propagate through each layer of the neural network. It can be considered as
a more prospective type of neural networks from the FHE perspective.

x

h

o

Unfold

xt-1

ht-1

ot-1

xt

ht

ot

xt+1

ht+1

ot+1

... . . .

Figure 3.3 – Recurrent Neural Network Structure.
Image from https://commons.wikimedia.org/wiki/File:Recurrent_neural_network_unfold.svg?uselang=fr

The ease of implementation of neural network in the encrypted domain is deeply
correlated to the resilience of the networks to discretization and approximation.
On the one hand, with BFV, BGV, and CKKS, each activation function of a given
network need to be approximated as low degree polynomials, which may impact
the accuracy of the results. On the other hand, TFHE is usually used with small
plaintext space, which requires a heavy discretization of the network. Thus, re-
search on discretized neural networks, whether with discretization a posteriori [52]
or discretization by design [20], may give fruitful resource to build FHE friendly
neural networks.

Our ultimate goal is to be able to evaluate any neural network over encrypted
inputs. As such, in this work we focus on improving FHE operators for evaluating
neural networks building blocks rather than designing FHE friendly networks.
Indeed, some FHE friendly networks can be evaluated in less than a second, but
are only efficient for extremely simple tasks. For instance, in [13], Brutzkus et al.,
build an FHE evaluation of a feedforward neural network which can be evaluated
in half a second with 96.9% precision over the MNIST [60] dataset. The MNIST
dataset is essentially the easiest dataset to fit with a neural network and 96.9%
accuracy is not considered that high for this specific task. Besides, timings scale
up to 12 minutes and 10 seconds to reach 74.1% accuracy over the CIFAR-10 [58]
dataset which is still a fairly simple dataset to fit.

57

3.2 Transfer Learning to the Rescue of FHE
Nowadays, a wide variety of neural networks consist of pre-trained models. Indeed
the neural network ecosystem is structured around open source publicly available
libraries of training algorithms as well as building blocks, pre-trained models and
full networks for solving numerous tasks. When a new model needs to be built,
on top of using publicly available training algorithms, one generally uses relevant
pre-trained models or subsets of existing models as starting points for easier net-
work design and faster convergence of training. Some approaches, referred to as
transfer learning approaches, do so by inducing no or very little modifications of
the building blocks used in a pre-existing publicly known network.

Transfer learning is particularly suited for building networks for new image analysis
tasks from networks already built for other such tasks [90]. Indeed, a network able
to perform an image analysis task is generally structured in two parts: the first
part takes raw pixels as inputs and, layer after layer, turns them into abstract
"features". Essentially, at some point in the network, a high dimensional vector
is built which components quantify the presence of a given concept in the input
image. This idea is illustrated in Figure 3.4 over a dummy neural network where
we see what kind of image activate each neuron in each layer. In this occurrence,
neurons from the first layer are activated by edges from the input images while the
third layer are activated by more complex concept such as vehicles. The remaining
of the neural network layers then turn this features into a prediction, in accordance
to actual task of the network.

Figure 3.4 – Visualization of features recognized at each layer.
Image modified from: https://cs.nyu.edu/∼fergus/tutorials/deep_learning_cvpr12/CVPR2012-Tutorial_lee.pdf

When building a network for a new image analysis task, one can reuse the first
layers of the network almost as is and replace the few last layers by newly trained
ones, specific to the new task. A most relevant example is the VGG16 model [90]
which has been trained on the ImageNet database and which is able to turn any
image into feature vectors of dimension ≈ 25000. Plugging a small network of a
few hundred neurons after VGG16 is then enough to perform many image analysis
tasks with high reliability.

58

Let us now consider the following scenario. A radiologist has just acquired images
from the body of one of its patient and needs to interact with a remote proprietary
diagnostic service to get some insight. Said service provider carefully crafted a
neural network for this purpose using a lot of precious hard-earned training data
and is considered critical intellectual property. It is thus unacceptable for the
service provider to disclose the details of their neural network. Besides, as health-
related data, the patient images and data are considered sensitive and cannot be
shared without protecting their confidentiality.

One way to resolve these conflicting requirements is by bringing privacy preserving
FHE calculations into the picture. The use of transfer learning can make this
computation much more FHE friendly. Indeed, the network can then be split in
two parts as shown in Figure 3.5:

• A preprocessing network (such as VGG16) which is publicly available and
has no dependencies on the precious hard-earned training data of the service
provider. This part can thus be disclosed to the radiologist’s information
system and run in the clear domain before encryption.

• A much smaller decisional network trained on the service provider sensitive
data which turns the outputs of the preprocessing network into the highly
reliable insight expected by the radiologist. This part must be kept hidden
as critical intellectual property.

So rather than sending FHE-encrypted images, the radiologist only sends an FHE-
encryption of the preprocessed image, which is a vector of much smaller size than
high-resolution images. On the service provider side, only the smaller decisional
network has to be run in the encrypted domain therefore dramatically decreasing
the footprint of FHE-calculations and resulting in much better scaling proper-
ties. Since transfer learning techniques are widely applicable and applied in the
neural network community we can therefore claim that performing advanced ma-
chine learning tasks over encrypted data does not require scaling encrypted-domain
calculation to large networks, since, as argued above, the fact of running the pre-
processing on the user side does not impact the confidentiality properties of the
setup.

Since its introduction in early 2010s [36, 87], transfer learning has become a com-
monly used technique in machine learning, as shown in [90, 103]. In particular,
many examples have been published in medical context, as described in [73, 78, 56,
3]. It offers numerous advantages compared to training a new network from scratch.
First it significantly reduces the amount of computational resources needed to con-
verge towards a satisfying statistical model during the training phase. Second it
can drastically reduce the amount of data needed during the training phase. Last

59

Public NN

Private NN

Frozen and transferred layers from the
public NN to the private NN

Encrypted layers

Figure 3.5 – Transfer learning set up for FHE

it can even significantly improve overall performances in the target domain. To
achieve these goals, many approaches have been proposed in the literature [105] to
design specific transformations able to transfer knowledge from the source domain
to the target domain. In the specific context of deep learning, a wide variety of
methods have been designed [94] to overcome training limitations of large scale
deep learning approaches. For the purpose of FHE, we consider transfer learning
in its simplest form. It consists in using deep features from a pre-trained as a pre-
processing step for a target domain-specific classifier, as inspired by [88], without
fine-tuning the preprocessing network. This approach assumes relative proximity
between the source domain and the target domain, as noted in [101]. However,
in the context of homomorphic evaluation, it allows us to consider the prepro-
cessing step as public knowledge which can thus be performed in clear by the
client, restricting the amount of homomorphic computation to be evaluated by the
server. The main advantages we derive from this technique are a lower multiplica-
tive depth for the homomorphic part of the network and a lowered latency for the
overall evaluation of the network. In addition, the output of the preprocessing part
is usually smaller than its input, which further ease the following homomorphic

60

computation.

3.3 Homomorphic Neural Network Evaluation

The rise of machine learning as a service (MLaaS) has grown concerns regarding
the privacy of the users’ data. This led a part of the research community to look
into privacy enhancing techniques that could fit well with these services. As such,
multiple works study the use of FHE as a way to enable a private evaluation of
an outsourced neural network. The first results come from CryptoNets [45] in
2016 which succeeded in computing a small neural network with 2 hidden layers
in 4 minutes and 10 seconds, achieving an accuracy of 98.95% over the MNIST
dataset. However, this first milestone is far from enough: the activation function
are restricted to square functions to be FHE friendly and the latency of 4 minutes
is huge considering how small the network is. Besides, an LHE cryptosystem is
used. As such, the parameters of the cryptosystem, and consequently the running
time of each operation, grow with the depth of the network, thwarting any attempt
to infer the running time of a deeper neural network from this result.

In 2017, a new approach relying on heavy discretization is proposed in [9]. They
apply their strategy over the MNIST dataset and reach an accuracy of 93.7% for
a latency of 0.5s or an accuracy of 96.3% for a latency of 1.6s. To that end, they
discretize the inputs to the binary level while keeping the weights in �−10, 10�,
while using the sign function for the activations thanks to TFHE’s functional
bootstrapping. This strategy shows the possibility to evaluate a neural network in
the encrypted domain with a low latency, and more specifically, below the threshold
of one second. Furthermore, this approach relies on a cryptosystem in FHE mode,
making it easier to infer the running time of deeper neural networks. From this
point, the question that remains is whether deep and accurate neural networks
can be evaluated while using more complex activation functions and keeping a
reasonable latency.

The problem of evaluating more usual activation function is explored in [32] using
polynomial approximations. In this work, each activation is approximated by
a degree two polynomial. The idea of quantization and pruning of the neural
network are also addressed to make homomorphic computation efficient. They
achieve an accuracy of 98.7% over the MNIST dataset with a latency of 39s on
a network of similar structure to the first CryptoNets. Furthermore, they extend
their experiments to a more complex dataset: CIFAR-10. To fit this dataset
properly, they require a much deeper network, with a latency close to 30 minutes
and only achieving 76% accuracy. This work highlights well the gap left to bridge
in order to evaluate practical neural networks in the span of a second.

61

So far, no work made use of batching techniques to reduce the latency when
possible. Indeed, both CryptoNet [45] and its improvement [32] use batching to
achieve an amortized running time of 0.06s. However, it is doubtful that a user
would request for the inference of a neural network over thousands of inputs at
once. As such, it makes sense to use batching to achieve lower latency rather than
lower amortized computation time. In [13], efforts are put in batching inputs in the
most efficient manner to reach the best latency possible. They compare themselves
to both CryptoNet [32] and DiNN [9]. First, they use the CryptoNet structure and
reach a latency of 2.2s to reach 98.95% accuracy on the MNIST dataset. Then, they
build a smaller network reaching an accuracy of 96.92% for a latency of 0.29s. With
this, they top all other approaches of the state of the art on the MNIST dataset.
However, they acknowledge that this result is not enough to evaluate efficiently a
deep neural network. As such, they suggest the use of "deep representation" to
scale their work to deep neural network. This deep representation is, in fact, the
transfer learning approach discussed in Section 3.2.

In [66], more work is done to study binary discretization for homomorphic compu-
tation, reaching an accuracy of 99.77%, the highest accuracy so far on MNIST with
an FHE implementation with a latency of 2 minutes, and an accuracy of 99.54%
with a latency of 9 seconds. They also achieve a better scaling to CIFAR-10 than
other methods by achieving an accuracy of 94.62% with a latency of 3 hours and
40 minutes or an accuracy of 92.54% with a latency of 38 minutes.

So far, all these works study the implementation of simple feedforward neural
network. However, different types of neural networks exist. In [53], Izabachène
et al., show that one update of a Hopfield neural network can be computed in
less than a second in the homomorphic domain. However, the literature is limited
regarding the evaluation of other types of recurrent neural networks.

Besides, in [59], Lam et al., show that using transfer learning, we can achieve state
of the art accuracy (100% accuracy) on practical tasks such as face recognition
with a latency lower than a second. However, a degradation of the accuracy occur
for tasks such as voice recognition when aiming for low latency: from 97% in the
clear down to 91% accuracy even with a latency of 10 seconds. This work confirms
that the conjunction of transfer learning and FHE is an excellent candidate to
make a privacy preserving outsourced neural network. This fact is further vali-
dated in [107] where transfer learning is used along FHE to implement an efficient
homomorphic speaker recognition system.

The main roadblocks are now the computation of precise activation functions, the
latency of the evaluation for deep neural network, and the evaluation of recurrent
neural networks in the homomorphic domain. In this context, one of our aims is to

62

improve the toolbox of FHE operators so that activation functions become easier
to compute in the homomorphic domain.

63

Part II

Contributions

65

Chapter 4

ComBo: a novel functional
bootstrapping method for efficient
evaluation of nonlinear functions in
the encrypted domain

This chapter is a reproduction of our paper ComBo [33] accepted in AfricaCrypt
2023 and co-written with Aymen Boudguiga and Renaud Sirdey.

Abstract. The application of Fully Homomorphic Encryption (FHE) to
privacy issues arising in inference or training of neural networks has been
actively researched over the last few years. Yet, although practical perfor-
mances have been demonstrated on certain classes of neural networks, the
inherent high computational cost of FHE operators has prevented the scaling
capabilities of FHE-based encrypted domain inference to the large and deep
networks used to deliver advanced classification functions such as image in-
terpretation tasks. To achieve this goal, a new hope is coming from TFHE
functional bootstrapping which, rather than being just used for refreshing
ciphertexts (i.e., reducing their noise level), can be used to evaluate opera-
tors which are difficult to express as low complexity arithmetic circuits, at
no additional cost. In this work, we first propose ComBo (Composition of
Bootstrappings) a new full domain functional bootstrapping method with
TFHE for evaluating any function of domain and codomain the real torus T
by using a small number of bootstrappings. This result improves on previous
approaches: like them, we allow for evaluating any functions, but with error
rates reduced by a factor of up to 280. This claim is supported by a theo-
retical analysis of the error rate of other functional bootstrapping methods

67

from the literature. The paper is concluded by extensive experimental re-
sults demonstrating that our method achieves better performances in terms
of both time and precision, in particular for the Rectified Linear Unit (ReLU)
function, a nonlinear activation function commonly used in neural networks.
As such, this work provides a fundamental building-block towards scaling the
homomorphic evaluation of neural networks over encrypted data.

Keywords: FHE; TFHE; functional bootstrapping; ReLU; ComBo

4.1 Introduction
Machine learning application to the analysis of private data, such as health or
genomic data, has encouraged the use of homomorphic encryption for private in-
ference or prediction with classification or regression algorithms where the ML
models and/or their inputs are encrypted homomorphically [99, 18, 17, 9, 107, 53,
108]. Even training machine learning models with privacy guarantees on the train-
ing data has been investigated in the centralized [54, 24, 74, 65] and collaborative
[86, 69] settings. In practice, machine learning algorithms and especially neural
networks require the computation of non-linear activation functions such as the
sign, ReLU or sigmoid functions. Still, computing non-linear functions homomor-
phically remains challenging. For levelled homomorphic schemes such as BFV [11,
39] or CKKS [23], non-linear functions have to be approximated by polynomials.
However, the precision of these approximations differs with respect to the consid-
ered plaintext space (i.e., input range), approximation polynomial degree and its
coefficients size, and has a direct impact on the multiplicative depth and param-
eters of the cryptosystem. The more precise is the approximation, the larger are
the cryptosystem parameters and the slower is the computation. On the other
hand, homomorphic encryption schemes having an efficient bootstrapping, such
as TFHE [25, 28] or FHEW [37], can be tweaked to encode functions via look-
up table (LUT) evaluations within their bootstrapping procedure. Hence, rather
than being just used for refreshing ciphertexts (i.e., reducing their noise level), the
bootstrapping becomes functional [10] or programmable [30] by allowing the evalu-
ation of arbitrary functions as a bonus. These capabilities result in promising new
approaches for improving the overall performances of homomorphic calculations,
making the FHE “API” better suited to the evaluation of mathematical opera-
tors which are difficult to express as low complexity arithmetic circuits. It is also
important to note that FHE cryptosystems can be hybridized, for example BFV
ciphertexts can be efficiently (and homomorphically) turned into TFHE ones [7,
107]. As such, the building blocks discussed in this paper are of relevance also
in the setting where the desired encrypted-domain calculation can be split into a
preprocessing step more efficiently done using BFV (e.g. several inner product or

68

distance computations) followed by a nonlinear postprocessing step (such as an
activation function or an argmin) which can then be more conveniently performed
by exploiting TFHE functional bootstrapping. In this work, we thus systematize
and further investigate the capabilities of TFHE functional bootstrapping.

Contributions – The main contribution of this paper is a novel functional boot-
strapping algorithm. It is a full domain functional bootstrapping algorithm in the
sense that it does not require to add a bit of padding to the encoding of the mes-
sages (as described clearly in [30]). There are several other such methods in the
literature. We show that ours is the best option to date for single-digit operations
on the full torus (where a message is encoded into a single ciphertext).
There are several other contributions in this paper. We present them succinctly
here:

• Our novel functional bootstrapping algorithm (ComBo) is built by composing
several bootstrapping operations. It is based on the idea to separate any
function in a even and odd part and then compute both in parallel. We
present several versions to increase its efficiency and show that our method
is the most accurate among state-of-the art full domain bootstrapping algo-
rithms.

• We implement and test our algorithms by evaluating several functions ho-
momorphically. Among them, the Rectified Linear Unit (ReLU) function is
of particular interest for private neural network applications. This allows us
to compare the computational overhead of our algorithm with other existing
methods.

• In order to compare the error rate of the different existing methods (which
this work aims to reduce), we develop an error analysis methodology and
describe it in detail. This shows that our algorithm improves on previous
approaches, most of the time by a significant margin. This methodology, we
argue, is the most appropriate way to compare similar algorithms and can
be reused for further research on the subject to improve comparability.

• As a bonus, in order to compare our algorithm fairly to other previous solu-
tions from the community, we introduce consistent notations for describing
all existing solutions and their error probabilities in a unified way. We also
fully implemented and tested all of them. We consider that this strengthens
the present paper and can be considered, in and of itself, a worthy contribu-
tion to the development of the field.

Related works – In 2016, the TFHE paper made a breakthrough by propos-
ing an efficient bootstrapping for homomorphic gate computation. Then, Bourse

69

et al., [9] and Izabachene et al., [53] used the same bootstrapping algorithm for
extracting the (encrypted) sign of an encrypted input. Boura et al., [8] showed
later that TFHE bootstrapping could be extended to support a wider class of
functionalities. Indeed, TFHE bootstrapping naturally allows to encode function
evaluation via their representation as look-up tables (LUTs). Recently, different
approaches have been investigated for functional bootstrapping improvement. In
particular, Kluczniak and Schild [57], Liu et al., [64] and Yang et al., [100] pro-
posed methods that take into consideration the negacyclicity of the cyclotomic
polynomial used within the bootstrapping, for encoding look-up tables over the
full real torus T. Meanwhile, Guimarães et al., [48] extended the ideas in Bourse
et al., [10] to support the evaluation of certain activation functions such as the
sigmoid. One last method (WoP-PBS), presented in Chillotti et al., [31] achieves
a functional bootstrapping over the full torus using a BFV type multiplication,
which was designed for and only applicable to parameter sets much larger than
standard TFHE parameters. Besides, since the probabilistic behavior of decryp-
tion also appears during the bootstrapping procedure, the error rate analysis of
homomorphic computation are becoming of interest when using TFHE as shown
in [48] and [5].

Paper organization – The remainder of this paper is organized as follows. Sec-
tion 4.2 reviews TFHE building blocks. Section 4.3 describes the functional boot-
strapping idea coming from the TFHE gate bootstrapping. Sections 4.4 presents
our new functional bootstrapping method ComBo in full detail. It also describes,
under a unified formalism, the other available methods for single digit functional
bootstrapping. Finally, Section 4.6 provides experimental results for ComBo and
compares it to the other methods which we also implemented. These results are
provided for both generic LUT evaluations over encrypted data as well as the ReLU
neural network activation function.

4.2 TFHE

4.2.1 Notations

In the upcoming sections, we denote vectors by bold letters and so, each vector x
of n elements is described as: x = (x1, . . . , xn). �x,y� is the inner product of two
vectors x and y. We denote matrices by capital letters, and the set of matrices
with m rows and n columns with entries sampled in K by Mm,n(K).

We refer to the real torus R/Z as T. TN [X] denotes the Z-module R[X]/(XN +
1) mod [1] of torus polynomials, where N is a power of 2. R is the ring Z[X]/(XN+
1) and its subring of polynomials with binary coefficients is BN [X] = B[X]/(XN +

70

1) (B = {0, 1}). Finally, we denote respectively by [x]T, [x]TN [X] and [x]R the
encryption of x over T, TN [X] or R.

x
$←− K denotes sampling x uniformly from K, while x

N (µ,σ2)←−−−− K refers to sampling
x from K following a Gaussian distribution of mean µ and variance σ2. Given

x
N (µ,σ2)←−−−− R, the probability P (a ≤ x ≤ b) is equal to 1

2
(erf(b−µ√

2σ
) − erf(a−µ√

2σ
)),

where erf is Gauss error function; erf(x) = 2√
π

� x

0
e−t2 . If µ = 0, we will denote

P (−a ≤ x ≤ a) = erf(a√
2σ
) by P(a, σ2). The same result and notation apply for

x
N (0,σ2)←−−−− T as long as the distribution is concentrated as described in [28].

Given a function f : T → T and an integer k, we define LUTk(f) to be the Look-
Up Table defined by the set of k pairs

�
i, f

�
i
k

��
for i ∈ �0, k − 1�. We will write

LUT(f) when the value of k is tacit.

Given a function f : T → T and an integer k ≤ N , we define a polynomial

Pf,k ∈ TN [X] of degree N as: Pf,k =
N−1�

i=0

f
�

� k·i
2N

�
k

�
·X i. If k is a divisor of 2N , Pf,k

can be written as Pf,k =

k
2
−1�

i=0

2N
k

−1�

j=0

f(i
k
) ·X 2N

k
·i+j . For simplicity sake, we will write

Pf instead of Pf,k when the value k is tacit.

4.2.2 TFHE Structures

The TFHE encryption scheme was proposed in 2016 [25]. It improves the FHEW
cryptosystem [37] and introduces the TLWE problem as an adaptation of the LWE
problem to T. It was updated later in [26] and both works were recently unified
in [28]. The TFHE scheme is implemented in the TFHE library [27]. TFHE relies
on three structures to encrypt plaintexts defined over T, TN [X] or R:

• TLWE Sample: (a, b) is a valid TLWE sample if a $←− Tn and b ∈ T verifies

b = �a, s�+ e, where s
$←− Bn is the secret key, and e

N (0,σ2)←−−−− T. Then, (a, b)
is a fresh TLWE encryption of 0.

• TRLWE Sample: a pair (a, b) ∈ TN [X]k×TN [X] is a valid TRLWE sample
if a $←− TN [X]k, and b = �a, s� + e, where s

$←− BN [X]k is a TRLWE secret

key and e
N (0,σ2)←−−−− TN [X] is a noise polynomial. In this case, (a, b) is a fresh

TRLWE encryption of 0.

The TRLWE decision problem consists of distinguishing TRLWE samples

71

from random samples in TN [X]k × TN [X]. Meanwhile, the TRLWE search
problem consists in finding the private polynomial s given arbitrarily many
TRLWE samples. When N = 1 and k is large, the TRLWE decision and
search problems become the TLWE decision and search problems, respec-
tively.

Let M ⊂ TN [X] (or M ⊂ T) be the discrete message space1. To encrypt a
message m ∈ M, we add (0,m) ∈ {0}k ×M to a TRLWE sample (or to a
TLWE sample if M ⊂ T). In the following, we refer to an encryption of m
with the secret key s as a T(R)LWE ciphertext noted c ∈ T(R)LWEs(m).

To decrypt a ciphertext c ∈ T(R)LWEs(m), we compute its phase φ(c) =
b−�a, s� = m+e. Then, we round it to the nearest element of M. Therefore,
if the error e was chosen to be small enough (yet high enough to ensure
security), the decryption will be accurate.

• TRGSW Sample: a valid TRGSW sample is a vector of TRLWE samples.
To encrypt a message m ∈ R, we add m · H to a TRGSW sample, where
H is a gadget matrix2 using an integer Bg as a base for its decomposition.
Chilotti et al., [28] defines an external product between a TRGSW sample A
encrypting ma ∈ R and a TRLWE sample b encrypting mb ∈ TN [X]. This
external product consists in multiplying A by the approximate decomposition
of b with respect to H (Definition 3.12 in [28]). It yields an encryption of
ma · mb i.e., a TRLWE sample c ∈ TRLWEs(ma · mb). Otherwise, the
external product allows also to compute a controlled MUX gate (CMUX)
where the selector is Cb ∈ TRGSWs(b), b ∈ {0, 1}, and the inputs are c0 ∈
TRLWEs(m0) and c1 ∈ TRLWEs(m1).

4.2.3 TFHE Bootstrapping

TFHE bootstrapping relies mainly on three building blocks:

• Blind Rotate: rotates a plaintext polynomial encrypted as a TRLWE ci-
phertext by an encrypted position. It takes as inputs: a TRLWE ciphertext
c ∈ TRLWEk(m), a vector (a1, . . . , an, an+1 = b) where ∀i, ai ∈ Z2N , and n
TRGSW ciphertexts encrypting (s1, . . . , sn) where ∀i, si ∈ B. It returns a
TRLWE ciphertext c� ∈ TRLWEk(X

�a,s�−b ·m). In this paper, we will refer

1In practice, we discretize the Torus with respect to our plaintext modulus. For example,
the usual encryption of a message m ∈ Z4 = {0, 1, 2, 3} would be one of the following value
{0, 0.25, 0.5, 0.75}.

2Refer to Definition 3.6 and Lemma 3.7 in TFHE paper [28] for more information about the
gadget matrix H.

72

to this algorithm as BlindRotate. With respect to independence heuristic3

stated in [28], the variance VBR of the resulting noise after a BlindRotate
satisfies the formula:

VBR < Vc + n

�
(k + 1)�N

�
Bg

2

�2

ϑBK +
(1 + kN)

12 · B2l
g

�

where Vc is the variance of the noise of the input ciphertext c, and ϑBK is the
variance of the error of the bootstrapping key. In the following, we define:

EBR = n

�
(k + 1)�N

�
Bg

2

�2

ϑBK +
(1 + kN)

12 · B2l
g

�

• TLWE Sample Extract: takes as inputs both a position p ∈ �0, N�
and a ciphertext c ∈ TRLWEk(m), and returns a TLWE ciphertext c� ∈
TLWEk(mp) where mp is the pth coefficient of the polynomial m. In this
paper, we will refer to this algorithm as SampleExtract. This algorithm does
not add any noise to the ciphertext.

• Public Functional Keyswitching: transforms a set of p ciphertexts ci ∈
TLWEk(mi) into the resulting ciphertext c� ∈ T(R)LWEs(f(m1, . . . ,mp)),
where f() is a public linear morphism from Tp to TN [X]. This algorithm uses
2 specific parameters, namely BKS which is used as a base to decompose some
coefficients, and t which gives the precision of the decomposition. Note that
functional keyswitching serves at changing encryption keys and parameters.
In this paper, we will refer to this algorithm as KeySwitch. As stated in
[28, 48], the variance VKS of the resulting noise after KeySwitch follows the
formula4:

VKS < R2 · Vc + n

�
tNϑKS +

B−2t
KS

12

�

where Vc is the variance of the noise of the input ciphertext c, R is the Lips-
chitz constant of f and ϑKS the variance of the error of the keyswitching key.
Note that n is a parameter of the input ciphertext, while N is a parameter
of the output ciphertext. Thus, N = 1 if the output is a TLWE ciphertext.
In this paper and in most cases, R = 1. In the following, we define:

En,N
KS = n

�
tNϑKS +

B−2t
KS

12

�

3The independence heuristic ensures that all the coefficients of the errors of TLWE, TRLWE
or TRGSW samples are independent and concentrated. More precisely, they are σ-subgaussian
where σ is their standard deviation.

4Note that there is a discrepancy in the original TFHE papers [25, 26, 28] between the theorem
and the proof.

73

TFHE comes with two bootstrapping algorithms. The first one is the gate boot-
strapping. It aims at reducing the noise level of a TLWE sample that encrypts the
result of a boolean gate evaluation on two ciphertexts, each of them encrypting a
binary input. The binary nature of inputs/outputs of this algorithm is not due to
inherent limitations of the TFHE scheme but rather to the fact that the authors
of the paper were building a bitwise set of operators for which this bootstrapping
operation was perfectly fitted.

TFHE gate bootstrapping steps are summarized in Algorithm 5. Note that {0, 1}
is encoded as {0, 1

2
}. Step 1 consists in selecting a value µ ∈ T which will serve later

for setting the coefficients of the test polynomial testv (in step 3). Step 2 rescales
the components of the input ciphertext c as elements of Z2N . Step 3 defines the test
polynomial testv. Note that for all p ∈ �0, 2N�, the constant term of testv · Xp

is µ if p ∈�N
2
, 3N

2
� and −µ otherwise. Step 4 returns an accumulator ACC ∈

TRLWEs�(testv ·X�ā,s�−b̄). Indeed, the constant term of ACC is −µ if c encrypts
0, or µ if c encrypts 1

2
as long as the noise of the ciphertext is small enough. Then,

step 5 creates a new ciphertext c by extracting the constant term of ACC and
adding to it (0, µ). That is, c either encrypts 0 if c encrypts 0, or m if c encrypts
1
2

(By choosing m = 1
2
, we get a fresh encryption of c). Since a bootstrapping

operation can be summarized as a BlindRotate over a noiseless TRLWE followed
by a KeySwitch, the bootstrapping noise (VBS) satisfies: VBS < EBR + EN,1

KS .

Algorithm 5 TFHE gate bootstrapping [28]

Input: a constant m ∈ T, a TLWE sample c = (a, b) ∈ TLWEs(x · 12) with x ∈ B,
a bootstrapping key BKs→s� = (BKi ∈ TRGSWS�(si))i∈�1,n� where S � is the
TRLWE interpretation of a secret key s�

Output: a TLWE sample c ∈ TLWEs(x.m)
1: Let µ = 1

2
m ∈ T (pick one of the two possible values)

2: Let b̄ = �2Nb� and āi = �2Nai� ∈ Z, ∀i ∈ �1, n�
3: Let testv := (1 +X + · · ·+XN−1) ·X N

2 · µ ∈ TN [X]
4: ACC ← BlindRotate((0, testv), (ā1, . . . , ān, b̄), (BK1, . . . , BKn))

5: c = (0, µ) + SampleExtract(ACC)
6: return KeySwitchs�→s(c)

TFHE specifies a second type of bootstrapping called circuit bootstrapping. It
converts TLWE samples into TRGSW samples and serves mainly for TFHE used
in a leveled manner. This additional type of bootstrapping will not be discussed
further in this paper.

74

4.3 TFHE Functional Bootstrapping

4.3.1 Encoding and Decoding

Our goal is to build a homomorphic LUT for any function f : Zp → Zp for any
integer p. As we are using TFHE, every message from Zp has to be encoded in T.
To that end, we use the encoding function:

Ep :
Zp → T
k �→ k

p

and its corresponding decoding function:

Dp :
T → Zp

x �→ �x · p�

Finally, we specify a torus-to-torus function fT to get f = Dp ◦ fT ◦ Ep.

Zp
f=Dp◦fT◦Ep−−−−−−−→ Zp

Ep ↓ ↑ Dp

T −→
fT

T

Since the function fT = Ep ◦ f ◦Dp makes the diagram commutative, we consider
this function as the encoding of f over T.

We use m(p) to refer to a message in Zp, and m to refer to Ep(m
(p)). That is, m is

the representation of m(p) in T after discretization.

4.3.2 Functional Bootstrapping Idea

The original bootstrapping algorithm from [25] had already all the tools to imple-
ment a LUT of any negacyclic function5. In particular, TFHE is well-suited for
1
2
-antiperiodic function, as the plaintext space for TFHE is T, where [0, 1

2
[corre-

sponds to positive values and [1
2
, 1[to negative ones, and the bootstrapping step 2

of the Algorithm 5 encodes elements from T into powers of X modulo (XN + 1),
where ∀α ∈ �0, N�, Xα+N ≡ −Xα mod [XN + 1].

Boura et al., [8] were the first to use the term functional bootstrapping for TFHE.
They describe how TFHE bootstrapping computes a sign function. In addition,

5Negacyclic functions are antiperiodic functions over T with period 1
2 , i.e., verifying f(x) =

−f(x+ 1
2).

75

they use bootstrapping to build a Rectified Linear Unit (ReLU). However, they do
not delve into the details of how to implement the ReLU in practice6.

Algorithm 6 describes a sign computation with the TFHE bootstrapping. It returns
µ if m is positive (i.e., m ∈ [0, 1

2
[), and −µ if m is negative.

Algorithm 6 Sign extraction with bootstrapping
Input: a constant µ ∈ T, a TLWE sample c = (a, b) ∈ TLWEs(m) with m ∈ T,

a bootstrapping key BKs→s� = (BKi ∈ TRGSWS�(si))i∈�1,n� where S � is the
TRLWE interpretation of a secret key s�

Output: a TLWE sample c ∈ TLWEs(µ.sign(m))
1: Let b̄ = �2Nb� and āi = �2Nai� ∈ Z, ∀i ∈ �1, n�
2: Let testv := (1 +X + · · ·+XN−1) · µ ∈ TN [X]
3: ACC ← BlindRotate((0, testv), (ā1, . . . , ān, b̄), (BK1, . . . , BKn))
4: c = SampleExtract(ACC)
5: return KeySwitchs�→s(c)

When we look at the building blocks of Algorithm 6, we notice that we can build
more complex functions just by changing the coefficients of the test polynomial
testv. Indeed, if we consider t =

�N−1
i=0 ti ·X i where ti ∈ T and t∗(x) is the function:

t∗ :
�−N,N − 1� → T

i �→
�

ti
− ti+N

if i ∈ �0, N�
if i ∈ �−N, 0� ,

the output of the bootstrapping of a TLWE ciphertext [x]T = (a, b) with the test
polynomial testv = t is [t∗(φ(ā, b̄))]T, where (ā, b̄) is the rescaled version of (a, b)
in Z2N (line 1 of Algorithm 6).

Indeed, we first remind that for any positive integer i s.t. 0 ≤ i < N , we
have:

testv.X−i = ti + · · ·− t0X
N−i − · · ·− ti−1X

N−1 mod [XN + 1] (4.1)

Then, we notice that BlindRotate (line 3 of Algorithm 6) computes testv · X−φ(ā,b̄).
Therefore, we get using equation (4.1) the following results:

• if φ(ā, b̄) ∈ �0, N�, the constant term of testv ·X−φ(ā,b̄) is tφ(ā,b̄).

• if φ(ā, b̄) ∈ �−N, 0�, we have:

6They build the function 2×ReLU from an absolute value function, but do not explain how
to divide by two to get the ReLU result.

76

Figure 4.1 – Functional bootstrapping outputs with Z4 as plaintext space.

testv ·X−φ(ā,b̄) = −testv ·X−φ(ā,b̄)−N mod [XN + 1]

with (φ(ā, b̄) + N) ∈ �0, N�. So, the constant term of testv · X−φ(ā,b̄) is
−tφ(ā,b̄)+N .

All that remains for the bootstrapping algorithm is extracting the previous con-
stant term (in line 4) and keyswitching (in line 5) to get the TLWE sample
[t∗(φ(ā, b̄))]T.

Now, we can tweak the previous idea to evaluate discretized functions. Let f :
Zp → Zp be any negacyclic function over Zp and fT = Ep ◦ f ◦Dp. We call f̃ the
well-defined function fT ◦ E2N that satisfies:

f̃ :
�−N,N − 1� → T

x �→
�

fT(
x
2N

)
− fT(

x+N
2N

)
if x ∈ �0, N�
if x ∈ �−N, 0�

(4.2)

Let Pf be the polynomial Pf =
N−1�

i=0

f̃ (i) ·X i. Now, if we apply the bootstrapping

Algorithm 6 to a TLWE ciphertext [m]T = (a, b) with m(p) ∈ Zp and testv = Pf , it
outputs [f̃(φ(ā, b̄))]T. That is, Algorithm 6 allows the encoding of the function f

as long as φ(ā,b̄)
2N

= m+e�, for some e� small enough. Further details on the variance
of e� and the error probability of the bootstrapping are given in Section 4.5.

4.3.3 Example of Functional Bootstrapping in Z4

As an example, let us consider the plaintext space Z4 and a negacyclic function f .
We represent Z4 in T by the set { 0

4
, 1
4
, 2
4
, 3
4
}. We denote by fT a function over T

77

that satisfies: fT(
i
4
) = f(i)

4
for all i ∈ �0, 3�. We consider a ciphertext c0 encrypting

the value 0. We present in Algorithm 7 the functional bootstrapping algorithm
that computes LUT (f). We use the notation Pf,k from Section 4.2.1.

Algorithm 7 TFHE functional bootstrapping example

Input: a TLWE sample c = (a, b) ∈ TLWEs(m) with x ∈ {0
4
, 1
4
, 2
4
, 3
4
}, a boot-

strapping key BKs→s� = (BKi ∈ TRGSWS�(si))i∈�1,n� where S � is the TRLWE
interpretation of a secret key s�

Output: a TLWE sample c ∈ TLWEs(fT(m))
1: Let b̄ = �2Nb� and āi = �2Nai� ∈ Z, ∀i ∈ �1, n�
2: Let testv := PfT,4 ·X−N

4 ∈ TN [X]
3: ACC ← BlindRotate((0, testv), (ā1, . . . , ān, b̄), (BK1, . . . , BKn))

4: c = SampleExtract(ACC)
5: return KeySwitchs�→s(c)

In step 2 of Algorithm 7, we set the test polynomial testv = PfT,4 · X−N
4 , where

PfT,4 encodes a look up table corresponding to fT, and X−N
4 is an offset term.

In Figure 4.1, we describe the action of the offset X−N
4 on PfT,4. We represent

in the outer circle the possible phases associated to each entry from our plaintext
space Z4. Meanwhile, we represent in the inner circle the returned coefficients
after a bootstrapping. In the left part of Figure 4.1, we consider the result of
the bootstrapping algorithm without the offset. We note that the red part of the
inner and outer circles do not overlap. So, whenever the error term e in the phase
is negative (even for small values of e), the considered functional bootstrapping
outputs an incorrect value. In our example, the bootstrapping returns fT(

3
4
) =

−fT(
1
4
) instead of fT(0). Meanwhile, in the right part of the Figure 4.1, we consider

the bootstrapping algorithm with the offset. Now, the red part of the inner and
outer circles overlap, and so, the functional bootstrapping returns the right value
as long as the error term remains small enough.

For a given plaintext space Zp, the offset is X−�N
p
�. We assume from now on that

p divides N to ease notations and formulas.

4.3.4 Multi-Value Functional Bootstrapping

Carpov et al., [16] introduced a nice method for evaluating multiple LUTs with
one bootstrapping. They factor the test polynomial Pfi associated to the function
fi into a product of two polynomials v0 and vi, where v0 is a common factor to all

78

Pfi . Indeed, they notice that:

(1 +X + · · ·+XN−1) · (1−X) = 2 mod [XN + 1] (4.3)

Let Pfi =
�N−1

j=0 αi,jX
j with αi,j ∈ T, and q ∈ N∗ the smallest integer so that: ∀i,

q · (1−X) · Pfi ∈ Z[X] (q is a divisor of p). We get using equation (4.3):

Pfi =
1

2q
· (1 + · · ·+XN−1) · (q · (1−X) · Pfi) mod [XN + 1]

= v0 · vi mod [XN + 1]

where:

v0 =
1

2q
· (1 + · · ·+XN−1)

vi = q · (αi,0 + αi,N−1 +
N−1�

j=1

(αi,j − αi,j−1) ·Xj)

Thanks to this factorization, it becomes possible to compute many LUTs with one
bootstrapping. Indeed, we just have to set the initial test polynomial to testv = v0
during the bootstrapping. Then, after the BlindRotate, we multiply the obtained
ACC by each vi corresponding to LUT(fi) to obtain ACCi.

Algorithm 8 Multi-value bootstrapping
Input: a TLWE sample c = (a, b) ∈ TLWEs(m) with m ∈ T, a bootstrapping key

BKs→s� = (BKi ∈ TRGSWS�(si))i∈�1,n� where S � is the TRLWE interpretation
of a secret key s�, k LUTs s.t. LUT(fi) = v0.vi, ∀i ∈ �1, k�

Output: a list of k TLWE ciphertexts ci ∈ TLWEs(fi(
φ(ā,b̄)
2N

))
1: Let b̄ = �2Nb� and āi = �2Nai� ∈ Z, ∀i ∈ �1, n�
2: Let testv := v0
3: ACC ← BlindRotate((0, testv), (ā1, . . . , ān, b̄), (BK1, . . . , BKn))
4: for i ← 1 to k do
5: ACCi := ACC · vi
6: ci = SampleExtract(ACCi)
7: return KeySwitchs�→s(ci)

4.4 Look-Up-Tables over a Single Ciphertext
In Section 4.3.2, we demonstrated that functional bootstrapping can serve to com-
pute LUT(f) for any negacyclic function f . In this section, we describe 4 different

79

ways to specify homomorphic LUTs for any function (i.e., not necessarily nega-
cyclic ones). We present 3 solutions from the state of the art [30, 57, 100] in
Sections 4.4.1, 4.4.2 and 4.4.3, and our novel method ComBo in Section 4.4.4. In
addition, we discuss a solution to reduce the noise of the functional bootstrapping
from [57] in Section 4.4.2.

As in Section 4.3.1, we call fT : T → T the function that specifies our homomorphic
LUT, and f : Zp → Zp its corresponding function over the input and output space
Zp.

4.4.1 Partial Domain Functional Bootstrapping – Half-Torus

The Half-Torus method gets around the negacyclic restriction of functional boot-
strapping by encoding values only on [0, 1

2
[(i.e., half of the torus). Let’s consider

the test polynomial Ph for a given negacyclic function h. Recall Equation 4.2 that
defines the output of the bootstrapping operation as:

h̃ :
�−N,N − 1� → T

x �→
�

h(x
2N

)
− h(x+N

2N
)

if x ∈ �0, N�
if x ∈ �−N, 0�

As we restrict the encoding space to [0, 1
2
[, we also restrict h̃ domain to �0, N�,

where h has no negacyclic property. That is, we get a method to evaluate a LUT
with a single bootstrapping.

4.4.2 Full Domain Functional Bootstrapping – FDFB

Kluczniak and Schild [57] specified FDFB to evaluate encrypted LUTs of domain
the full torus T. Let’s consider a TLWE ciphertext [m]T given a message m(p) ∈ Zp.
We denote by g the function:

g :
T → T
x �→ −fT(x+ 1

2
)

We denote by q ∈ N∗ the smallest integer such that q · (Pf − Pg) is a polynomial
with coefficients in Z. Then, we define P1 = q · Pf and P2 = q · Pg. We note that
the coefficients of Pf − Pg are multiples of 1

p
in T, where T corresponds to [− 1

2
, 1
2
[.

We note that q is a divisor of p and P2−P1 has coefficients of norm lower or equal
to q

2
.

We define the Heaviside function H as:

H : x �→
�

1 if x ≥ 0
0 if x < 0

80

We can express H by using the sign function as follows: H(x) = sign(x)+1
2

.

In order to evaluate a LUT, we first compute [Eq(H(m))]T with one bootstrapping
(using Algorithm 6) and deduce [Eq((1−H)(m))]T = (0, 1

q
)− [Eq(H(m))]T. Then,

we make a keyswitch to transform the TLWE sample [Eq((1 − H)(m))]T into a
TRLWE sample [Eq((1−H)(m))]TN [X]. Finally, we define:

cLUT = (P2 − P1) · [Eq((1−H)(m))]TN [X] + (0, Pf)

such that:
cLUT =

�
[Pf]TN [X] if m ≥ 0
[Pg]TN [X] if m < 0

We note that depending on the sign of m, cLUT is a TRLWE encryption of Pf or
Pg, the test polynomials of f or g, respectively. As such, we obtain [fT(m)]T after
a second bootstrapping with [m]T as input and cLUT as a test polynomial.

We can reduce the noise of cLUT by applying to Pf and Pg the factorization de-
scribed in Section 4.3.4. First, we replace the polynomials Pf and Pg by vf =
(1−X) · Pf and vg = (1−X) · Pg, respectively. Thanks to the redundancy of the
coefficients of Pf and Pg, vf and vg have at most p

2
non null coefficients. We denote

by q� ∈ N∗ the smallest integer such that q� · (vf − vg) is a polynomial with coeffi-
cients in Z. We ensure that q� ≤ q as q ·(1−X) ·(Pf −Pg) = (1−X) ·(q ·(Pf −Pg))
has coefficients in Z. Then, we define v1 = q� · vf and v2 = q� · vg. We get
that v2 − v1 has coefficients in Z of norm lower or equal to q�. Finally, we com-

pute a TRLWE encryption of
N−1�

i=0

X i · E2·q�((1 −H)(m)) from the TLWE sample

[E2·q�((1−H)(m))]T, by applying a KeySwitch. We get:

cLUT = (v2 − v1) · [
N−1�

i=0

X i · E2·q�((1−H)(m))]TN [X] + (0, Pf)

such that:
cLUT =

�
[Pf]TN [X] if m ≥ 0
[Pg]TN [X] if m < 0

4.4.3 Full Domain Functional Bootstrapping – TOTA

Both Liu et al., [64] and Yan et al., [100] independently proposed the same ap-
proach7 to evaluate arbitrary functions over the torus using a functional bootstrap-
ping. As such, we refer to both methods in this paper with the name TOTA (as

7Although both papers use different notations, both methods rescale the message space into
the first half of the torus before applying a half torus functional bootstrapping. In both cases, a
sign evaluation is performed to compute that rescaling.

81

proposed by Yan et al.). Let’s consider a ciphertext [m1]T = (a, b = �a, s�+m1+e).
Then, by dividing each coefficient of this ciphertext by 2, we get a ciphertext
[m2]T = (a

2
, �a

2
, s� +m2 +

e
2
) where m2 =

m1

2
+ k

2
with k ∈ {0, 1} and m1

2
∈ [0, 1

2
[.

Using the original bootstrapping algorithm, we compute [sign(m2)
4

]T an encryption

of sign(m2)
4

=

�
1
4

if k = 0
−1

4
if k = 1

. Then, we get an encryption of m1

2
by computing:

[m2]T − [sign(m2)
4

]T + (0, 1
4
).

For any function fT, let’s define f(2) such that f(2)(x) = fT(2x). Since m1

2
∈ [0, 1

2
[,

we can compute f(2)(
m1

2
) with a single bootstrapping using the partial domain

approach from 4.4.1, and f(2)(
m1

2
) = fT(m1).

4.4.4 Full Domain Functional Bootstrapping with Compo-
sition - ComBo

In this section, we present ComBo, a novel method to compute any function using
the full (discretized) torus as plaintext space. We will assume that p is even and
fixed8.

Pseudo odd functions: We call pseudo odd function a function f that satisfies:
∀x ∈ Zp, f(−x− 1) = −f(x).

Let f be a pseudo odd function over Zp. We define the following negacyclic func-
tions:

fneg :
�0, p− 1� → Zp

x �→
�

f(x) if x ∈ �0, p
2
− 1�

−f(x− p
2
) if x ∈ �p

2
, p− 1�

and

Idneg :
�0, p− 1� → Rp

x �→
�

x+ 1
2

if x ∈ �0, p
2
− 1�

p
2
− x− 1

2
if x ∈ �p

2
, p− 1�

Since these 2 functions are negacyclic, they can be computed with the usual nega-
cyclic functional bootstrapping (presented in section 4.3.2).

Note that (Idneg− 1
2
) is a bijection of Zp that satisfies the equality (Idneg− 1

2
)(x) = x,

for all x ∈ �0, p
2
− 1�. Otherwise, for all x ∈ � p

2
, p− 1�, (Idneg − 1

2
)(x) = p

2
− x− 1.

In Zp, ∀x ∈ �p
2
, p− 1�, we have (p

2
− x− 1) ∈ �p

2
, p− 1�.

Now, we compose it with fneg to obtain: fneg ◦ (Idneg − 1
2
)(x) = fneg(x) = f(x) if

x ∈ �0, p
2
−1�. If x ∈ �p

2
, p−1�, fneg◦(Idneg− 1

2
)(x) = fneg(

p
2
−x−1) = −f(−x−1).

Since f is pseudo odd, we have: −f(−x− 1) = f(x).
8If p is odd, we set p := p+ 1 to get back to the assumption that p is even.

82

Pseudo even functions: We call pseudo even function a function f that satisfies:
∀x ∈ Zp, f(−x− 1) = f(x).

Let f be a pseudo even function over Zp. We define the following negacyclic
functions:

fneg :
�0, p− 1� → Zp

x �→
�

f(x) if x ∈ �0, p
2
− 1�

−f(x− p
2
) if x ∈ �p

2
, p− 1�

and

absneg :
�0, p− 1� → Rp

x �→
�

x+ p
4
+ 1

2
if x ∈ �0, p

2
− 1�

p
4
− x− 1

2
if x ∈ �p

2
, p− 1�

Since these 2 functions are also negacyclic, they can similarly be computed with
the usual negacyclic functional bootstrapping (presented in section 4.3.2).

Note that (absneg − p
4
− 1

2
) satisfies the equality (absneg − p

4
− 1

2
)(x) = x for all

x ∈ �0, p
2
−1�. However, if x ∈ �p

2
, p−1�, (absneg− p

4
− 1

2
)(x) = −x−1 ∈ �0, p

2
−1�.

As such, we ensure that the function (absneg − p
4
− 1

2
) behaves similarly to the

absolute value function.

It follows that fneg ◦ (absneg − p
4
− 1

2
)(x) = fneg(x) = f(x) if x ∈ �0, p

2
− 1�. If

x ∈ �p
2
, p − 1�, fneg ◦ (absneg − p

4
− 1

2
)(x) = fneg(−x − 1) = f(−x − 1). Since f is

pseudo even, we have f(−x− 1) = f(x).

Any function: We write any function f ∈ Zp as a sum of a pseudo even function
and a pseudo odd function: f(x) = feven(x)+fodd(x), where feven(x) =

f(x)+f(−x−1)
2

and fodd(x) = f(x)−f(−x−1)
2

. Besides, we build any pseudo odd or pseudo even
function with at most 2 bootstrappings. So, we can build any function with at
most 4 bootstrappings.

We describe in Algorithm 9 the overall algorithm for running ComBo. We denote by
FB[f]((a, b)) the application of the negacyclic functional bootstrapping procedure
using the test vector P f

p
(as defined in Section 4.2.1) and applied to a ciphertext

(a, b) given a function f : Zp → Rp.

Correctness: If we assume that the negacyclic functional bootstrapping (FB) is
correct, we obtain by Algorithm 9 a ciphertext [f(m)

p
]T where m ∈ Zp is the input

of the algorithm and f : Zp → Zp is the target function. Indeed, Step 1 computes
an encryption of Idneg(m)

p
since Idneg is a negacyclic function. Step 2 computes

an encryption of Idneg(m)− 1
2

p
=

(Idneg− 1
2
)(m)

p
. Let us refer by fneg to the negacyclic

function corresponding to fodd over �0, p
2
−1�. Then Step 3 computes an encryption

83

Algorithm 9 ComBo
Input: a TLWE sample [m

p
]T ∈ TLWEs(

m
p
) with m ∈ Zp, a bootstrapping key

BKs→s� = (BKi ∈ TRGSWS�(si))i∈�1,n� where S � is the TRLWE interpretation
of a secret key s�, a target function f : Zp → Zp, and the two functions

fodd :
Zp → Rp

x �→ f(x)−f(−x−1)
2

and feven :
Zp → Rp

x �→ f(x)+f(−x−1)
2

Output: a TLWE ciphertext (a�, b�) = [f(m)
p

]T ∈ TLWEs(
f(m)
p

)

1: (a, b) = FB[Idneg]([
m
p
]T) � Start of pseudo odd computation

2: (a, b) = (a, b− 1
2p
)

3: (aodd, bodd) = FB[fodd]((a, b)) � End of pseudo odd computation
4: (a, b) = FB[absneg]([

m
p
]T) � Start of pseudo even computation

5: (a, b) = (a, b− 1
2p

− 1
4
)

6: (aeven, beven) = FB[feven]((a, b)) � End of pseudo even computation
7: (a�, b�) = (aodd, bodd) + (aeven, beven)

of fneg◦(Idneg− 1
2
)(m)

p
: the encoding of fodd(m) over T (as discussed in the paragraph

about pseudo odd functions in Section 4.4.4). Similarly, Steps 4 to 6 compute an
encryption of the encoding of feven(m) over T. Finally, Step 7 computes the sum
of the pseudo odd and pseudo even outputs which results in an encryption of f(m)

p
:

the encoding of f(m) over T.

In practice, we can reduce the (single-shot) computation time by using parallelism
(e.g. multithreading or SIMD) for evaluating the pseudo odd and pseudo even
functions simultaneously. So, we end-up with a computation time of 2 bootstrap-
pings. We can alternatively reduce the number of bootstrappings to 3 thanks to
the multi-value functional bootstrapping (see Section 4.3.4).

From now on, we call ComBoMV the ComBo method when used with the multi-
value bootstrapping, and ComboP with parallelism.

Examples: We describe how to build the functions Id, and ReLU with ComBo.

For Id, the decomposition in pseudo even and pseudo odd functions gives Id(x) =
(−1

2
) + (x + 1

2
). The pseudo even function Ideven = −1

2
is a constant and does

not require any bootstrapping. We only have to compute the pseudo odd function
Idodd = x + 1

2
. In this case, we have no need for multithreading or multi-value

bootstrapping.

For ReLU, the decomposition gives ReLU(x) = ReLUeven(x)+ReLUodd(x) where:

ReLUeven : x �→
�

x
2

if x ∈ �0, p
2
− 1�

−x
2
− 1

2
otherwise

84

ReLUodd : x �→
�

x
2

if x ∈ �0, p
2
− 1�

x
2
+ 1

2
otherwise

Applying ComBo naively results in 4 bootstrappings. However, we can actually
compute ReLUeven with only 1 bootstrapping as for absneg. This specific improve-
ment is useful for ComBo, as it reduces the number of consecutive bootstrappings
to 3.

4.5 Error rate and noise variance

In this section, we analyze the noise variance and error rate for the aforementioned
functional bootstrapping methods. We refer to each bootstrapping method by its
acronym as defined in Section 4.4.

4.5.1 Noise variance

The noise variance of a bootstrapped ciphertext depends on the operations applied
to the input ciphertext during the bootstrapping. Table 4.1 gives the theoretical
variance of each of these operations. These formulas are taken from [28].

Operation Variance
ci + cj Vi + Vj

Ci +Cj Vi + Vj

P ·Ci ||P ||22 · Vi

Keyswitch(ci) Vi + En,N
KS

BlindRotate(Ci, v) Vi + EBR

Bootstrap(ci) EBR + EN,1
KS

Table 4.1 – Obtained noise variances when applying basic operations to indepen-
dent inputs: ci is a TLWE ciphertext of variance Vi, Ci is a TRLWE ciphertext
of variance Vi, P is a plaintext polynomial and v ∈ Zn+1

2N .

Each of the bootstrapping methods of Section 4.4 relies on a composition of the
operations from Table 4.1. So, we compute their resulting variances in Table 4.2
by simply composing the formulas from Table 4.1.

85

Bootstrapping Variance
Half-Torus EBR + EN,1

KS

FDFB ||v2 − v1||22 · (EBR + EN,1
KS + En,N

KS) + EBR + EN,1
KS

TOTA EBR + EN,1
KS

ComBo & ComBoP 2 · (EBR + EN,1
KS)

ComBoMV (||v1||22 + ||v2||22) · EBR + 2 · EN,1
KS

Table 4.2 – Output noise variance of the aforementioned functional bootstrapping
methods

We identify in Table 4.2 two kinds of functional bootstrapping algorithms. On
the one hand, we have functional bootstrapping algorithms that do not use any
intermediary polynomial multiplication and end-up with a similar noise growth to
a gate bootstrapping. On the other hand, we have functional bootstrapping algo-
rithms that have a quadratic growth of the output noise variance with respect to
the norm of the used test polynomial. For this second category, we can reduce the
output noise by using the factorization technique described in Section 4.3.4.

4.5.2 Probability of Error

We discuss in this section the probabilities of error of all the functional bootstrap-
ping methods from Section 4.4. Similar approaches to compute the probability of
error of functional bootstrapping can be found in [5] and [48].

We first consider a single BlindRotate operation given a message m(p) ∈ Zp, a
TLWE ciphertext (a, b) where b = (�a, s� + m + e), and a TRLWE ciphertext
(0, t), where t is the test polynomial. Following the notation from Section 4.3.1,
we have m = Ep(m

(p)).

As mentioned in Section 4.3.2, applying a BlindRotate and extracting the first co-
efficient outputs [t∗(φ(ā, b̄))]T. Hence, we need the equality [t∗(φ(ā, b̄))] = [f (m)]
to hold true for any message m(p) in order to compute LUTp(f) for a given ne-
gacyclic function f . To that end, we consider t = Pf,p · X−N

p assuming that p
divides N (we motivated this choice in Figure 4.1 and Section 4.3.3). Note that
φ(ā, b̄) = 2N · (m + e + r) mod [2N] where r is an error introduced when scaling
and rounding the coefficients of (a, b) from T to Z2N . Thus, we have:

[t∗(φ(ā, b̄))] =

f

�
p·(φ(ā,b̄)+N

p
)

2N

�

p

 =

�
f

��p · (m+ e+ r) + 1
2
�

p

��

86

It follows that [t∗(φ(ā, b̄))] = [f (m)] as long as |e+ r| < 1
2p

. The error r follows a
translated Irwin-Hall distribution with variance n+1

48·N2 that, as is well known, can be
closely approximated by a centered Gaussian distribution. With the assumptions
that e and r are independent random variables, the probability that |e + r| < 1

2p

is P(1
2p
, Vc + Vr), where Vc and Vr are respectively the variances of the ciphertext

and r, and P is the notation introduced in Section 4.2.1. The probability of error
is then 1− P(1

2p
, Vc + Vr).

When multiple BlindRotate operations occur during a functional bootstrapping,
each of them must succeed to ensure a correct computation. We can use the well
known formulas of probabilities for independent or correlated events to find the
overall probability of error of a functional bootstrapping method.

The probabilities of success of the functional bootstrapping methods from Sec-
tion 4.4 are summarized in Table 4.3. We denote by:

V = EBR + EN,1
KS

the variance of a simple gate bootstrapping, and by:

Vi = ||vi||22 · EBR + EN,1
KS

the variance of a bootstrapping using an intermediary polynomial multiplica-
tion.

Bootstrapping Probability of success

Half-Torus P(
1

4 · p, Vc + Vr)

FDFB P(
1

2 · p, Vc + Vr)

TOTA P(
1

4
, Vc + Vr) · P(

1

4 · p,
Vc

4
+ Vr + V)

ComBo & ComBoP P(
1

2 · p, Vc + Vr) · P(
1

2 · p, V + Vr)
2

ComBoMV P(
1

2 · p, Vc + Vr) ·
1�

i=0

P(
1

2 · p, Vi + Vr)

Table 4.3 – Probability of success for each functional bootstrapping method with
plaintext size p

The variances and the value of p given as inputs to the formulas of Table 4.3 have
a high impact on the error rate. Indeed, 1−P(a, V) gets exponentially closer to 0

87

when a increases or when V decreases. For example, for a given p and V , the error
rate of the Half-Torus method (i.e., (1− P(1

4p
, V))) is higher than the probability

of error of FDFB (1− P(1
2p
, V)).

4.6 Experimental Results

In this section, we compare the computation time and the error rate for the func-
tional bootstrapping methods of Section 4.4. We wrap up this section with a
time-error trade-off analysis. All experiments9 were implemented on an Intel Core
i5-8250U CPU @ 1.60GHz by building on the TFHE open source library10.

4.6.1 Parameters

We present in Table 4.4 the parameter sets used for our tests. We generate these
parameters by following the guidelines below:

• We fix the security level λ to 128 bits, which is the lowest security level
considered as secure by present day standard.

• For efficiency, we want N to be a small power of 2. We notice that for
N = 512, the noise level required for ensuring security is too large to compute
properly a functional bootstrapping. Thus, we choose N = 1024, which is
the default value for the degree of the cyclotomic polynomial with TFHE.

• We note σTN [X] the standard deviation used for the noise of the bootstrapping
key and the keyswitch key from TLWE to TRLWE. We use the lattice-
estimator [2] to set σTN [X] as low as possible with respect to the security
level λ. Thus, σTN [X] = 5.6 · 10−8.

• For efficiency, we choose values of n lower than N . As such, we generate sets
of parameters for all n between 700 and 1024 by step of 100.

• We note σT the standard deviation used for the noise of the keyswitch key
from TLWE to TLWE and fresh ciphertexts. For each n, we use the lattice-
estimator to set σT as low as possible with respect to the security level λ.

The remaining parameters, present in Table 4.4, are unrelated to the security level
of the cryptosystem. We choose them using the following guidelines:

9Code available at: https://github.com/CEA-LIST/Cingulata/experiments/tfhe-
funcbootstrap-experiments.zip.

10https://github.com/tfhe/tfhe

88

• We consider the Half-Torus method as the baseline for the error rate of each
method. As such, we tailor sets of parameters to reach an error rate close to
2−30 using the Half-Torus method for a plaintext space of p = 8.

• For faster bootstrapping operations, we need to have l as low as possible.
We still need to select l high enough to reach the target error rate.

• For given l, n, N , and σTN [X], we choose Bg to minimize the noise of the
BlindRotate.

• For lower noise, we need BKS to be as high as possible. Since the size of the
keys grows with the basis, we set it to 1024 to avoid memory issues.

• For faster keyswitching operations, we need to have t as low as possible. We
still need to select t high enough to reach the target error rate. Given the
choice of BKS, we find that t = 2 is the optimal choice.

Set n l Bg σT σTN [X]

1 1024 5 16 5.6e−08 5.6e−08

2 1024 4 32 5.6e−08 5.6e−08

3 900 4 32 5.1e−07 5.6e−08

4 900 3 64 5.1e−07 5.6e−08

5 800 4 32 3.1e−06 5.6e−08

6 800 3 64 3.1e−06 5.6e−08

7 700 4 32 1.9e−05 5.6e−08

8 700 3 64 1.9e−05 5.6e−08

Table 4.4 – Selected parameter sets with p = 8, N = 1024, BKS = 1024, t = 2,
and λ = 128, following the guidelines of Section 4.6.1

4.6.2 Error Rate

In this section, we compute the probability of error for the functional bootstrap-
ping methods of Section 4.4 with respect to every set of parameters described in
Table 4.4.

In order to have a fair evaluation of the ability to consecutively bootstrap with
the same method, we assume that the input to each method immediately follows a
bootstrapping with the same method. We present in Table 4.5 the obtained error
rates with respect to each method.

We note that the error rate of each method does not depend on the function
computed during the bootstrapping except for FDFB and ComBoMV. Thus, we
define a dedicated analysis methodology for these methods:

89

• For FDFB, we evaluate the error rate for the functions Id and ReLU as well as
the worst case that maximizes the output noise. Since we use the multi-value
bootstrapping factorization (described in Section 4.3.4), the worst case test
polynomial v2 − v1 has p

2
non-zero values each equal to p. If we apply the

FDFB error variance formula from Table 4.2, we obtain the worst case noise
bound for the output ciphertext: p3

2
· (EBR + EN,1

KS + En,N
KS) + EBR + EN,1

KS .

• For ComBoMV, we follow the decomposition fodd,neg ◦ Idneg + feven,neg ◦ absneg

given in Section 4.4.4, and use a multi-value bootstrapping to compute Idneg

and absneg at the same time. As such, the error rate becomes independent
from the computed function.

Set 1 2 3 4 5 6 7 8
Half-Torus 34 28 32 20 36 23 39 25

TOTA 33 27 30 18 34 20 36 22
Worst 7 3 3 1 3 1 3 1

FDFB Id 55 27 31 11 34 13 35 14
ReLU 55 27 31 11 34 13 35 14

ComBo 116 85 97 50 108 56 116 61
ComBoP 116 85 97 50 108 56 116 61

ComBoMV 46 21 23 8 26 9 29 10

Table 4.5 – − log2 of error rate for p = 8

In Table 4.5, we show that for any given set of parameters, the probability of error
is almost identical between TOTA and Half-Torus, or slightly in favor of the latter.
Meanwhile, ComBo and ComBoP outperform the other methods in every case by
at least 30 orders of magnitude.

We notice that FDFB and ComBoMV do not behave in the same fashion as the
other methods with respect to changes in parameters:

• They favorably compare to the others when the noise of the input ciphertext
is small compared to Vr, as in set 1 where ComBoMV reaches an error rate
of 2−46 while the Half-Torus method reaches an error rate of 2−34. In these
cases, the overhead of the noise created by the intermediary polynomial
multiplication is absorbed by Vr.

• They unfavorably compare to the other methods when Vr is small compared
to the noise of the input ciphertext, as in set 8 where ComBoMV reaches an
error rate of 2−10 while the Half-Torus method reaches an error rate of 2−25.

In addition, for FDFB, the specific values of the polynomial (P2 − P1 from Sec-
tion4.4.2) also have to be taken into account when trying to gauge whether the

90

parameters are favorable or not towards FDFB use. Indeed, in simple cases such
as the ReLU and Id functions, we can see a huge improvement (from 2−7 to 2−55

for the set 1) compared to the worst case approximation for FDFB.

4.6.3 Time Performance

The Half-Torus method is the fastest as it requires one BlindRotate. Then, TOTA
is slightly faster than FDFB as it requires less KeySwitch operations. It is also on
par with ComBoP as the parallelism overhead is negligible. As far as the ComBo
method is concerned, the number of BlindRotate depends on the evaluated function.
For a simple function such as the absolute value, its speed is identical to the Half-
Torus method. Meanwhile, more complex functions need up to 4 bootstrappings.
So, a sequential execution of ComBo becomes twice slower than TOTA and FDFB.
Note however that these latter methods are intrinsically sequential. As such, they
cannot outperform ComBoP.

As a bonus, we obtain a rule of thumb to get the computation time of each func-
tional bootstrapping method. Indeed, multiplying the computation time of one
bootstrapping with the number of consecutive BlindRotate gives accurate estima-
tions of the result from Table 4.6. We remind that the computation time of one
bootstrapping is almost equal to the time required to run to 1 BlindRotate plus 1
KeySwitch.

Set 1 2 3 4 5 6 7 8
Half-Torus 135.0 126.1 101.4 94.6 97.4 84.5 85.5 72.0

TOTA 274.7 252.4 209.3 189.3 194.9 169.1 174.3 147.9
FDFB 287.0 268.1 220.5 203.2 207.4 181.2 182.8 157.8

ComBo abs 136.5 126.0 104.9 94.6 97.5 84.5 87.0 74.2
gen 551.5 503.6 417.7 378.0 389.6 337.5 341.4 296.5

ComBoP 273.6 258.8 211.1 200.1 205.3 182.1 183.3 153.5
ComBoMV 419.0 386.2 319.7 290.9 299.0 260.1 262.0 224.6

Table 4.6 – Computation time in ms. gen stands for a generic function.

Another way of showing ComBoP advantages is to compute the time performance
of each method given their own optimized parameter set with respect to the same
target error rate and plaintext space of size p. When doing so, we get the following
example results with a target error rate of 2−32:

• p=4: We achieve a speed up of x1.04 versus TOTA, x1.1 versus FDFB (ReLU)
and x2 versus FDFB (worst case).

91

• p=8: We achieve a speed up of x1.09 versus TOTA, x1.12 versus FDFB
(ReLU) and x4 versus FDFB (worst case).

• p=16: We achieve a speed up of x1.12 versus TOTA, x1.4 versus FDFB
(ReLU) and x2 versus FDFB (worst case).

Besides, ComBo, ComBoP and ComBoMV are the only method allowing for pa-
rameters using N = 1024 when p = 16. This lead to ciphertexts twice smaller in
this specific case, which is another important metric for FHE computations.

4.6.4 Wrapping-up: Time-Error trade-offs

We summarize the trade-offs between the computation time and the error rate
for each method in Figure 4.2 and Figure 4.3. We separate the sets defined in
Table 4.4 in order to have better readability of the figures.

0 100 200 300 400 500 600
0

20

40

60

80

100

120

140

1
2357

1
2

3
57

1

2
3

57

1

2

3

5

7 1

2

3

5

7

1

23
5

7

1

2

3

5

7

1
2

3
5

7

Half-Torus

ComBoP

ComBoMV

ComBo

ComBo abs

FDFB ReLU

TOTA

FDFB Worst

Figure 4.2 – Time-Error trade-off for parameters 1, 2, 3, 5 and 7

For FDFB, we represent both the worst case and the ReLU, which is the best case
among the functions we considered. For ComBo, ComBoMV and ComBoP methods,
the best case is represented with the absolute value function and noted ComBo abs.
The ComBo, ComBoMV and ComBoP points are all relative to a generic function
following the pseudo even and pseudo odd decomposition from Section 4.4.4.

Fast operations will result in having points closer to the left. Meanwhile, a low error
rate corresponds to points close to the upper parts of the graphs from Figures 4.2
and 4.3. With those two considerations in mind, we notice that the only methods
on the left of the red line are the Half-Torus method and ComBo in the best case
scenario. In this specific scenario, the ComBo method is the best in all regards.
For functions requiring more bootstrappings, a compromise between speed and

92

50 100 150 200 250 300 350 400 450
0

10

20

30

40

50

60

70

8 46

8

4
6

8
4

6

8

4

6

8

4

6

8
4

6

8

4

6

8

4
6

Half-Torus

ComBoP

ComBoMV

ComBo

ComBo abs

FDFB ReLU

TOTA

FDFB Worst

Figure 4.3 – Time-Error trade-off for parameters 4, 6 and 8

error rate must be made. In the red circle lies the points relative to the ComBoP
method. We can clearly see that it is both more accurate and faster than all the
other methods except for the Half-Torus one. Thus, it is the best alternative to the
Half-Torus method among the suggested functional bootstrapping.

4.7 Conclusion

Through the use of several bootstrappings and, most of the time, additional oper-
ations, every full domain method adds some output noise when compared to the
partial domain method (Section 4.4.1). So the bottom line is: does a larger initial
plaintext space make up for the added noise and computation time?
Table 4.5 and Table 4.6 confirm that the Yan et al., [100] (TOTA) method is both
less accurate and twice as time-consuming than the partial domain method. Both
Kluczniak and Schild’s [57] (FDFB) and ComBoP methods provide a better ac-
curacy than the partial domain method for well chosen parameters with varying
additional computational costs.

Among the above full-domain methods, ComBoP achieves the best performance
and accuracy. Furthermore, it outperforms the partial domain method in the
following cases:

• The parameters of the cryptosystem are limited due to application con-
straints and the error rate of the Half-Torus is too large.

• Intermediate operations such as additions and multiplications push messages
out of the Half-Torus space.

93

• Modular arithmetic is needed (which is impossible with the partial domain
method).

When none of the above applies, however, the Half-Torus bootstrapping method
still achieves better performances. This illustrates the fact, that there is no univer-
sal best method for functional bootstrapping and that one should carefully choose
the most appropriate one depending on his or her application constraints. This
paper’s methodology and unified analysis gives a complete set of tools for making
these choices.

ComBo (Section 4.4.4) has a smaller error rate than any other method available in
the literature. In addition, as it allows to perform two bootstrappings in parallel,
it may come without additional computational cost compared to the other full
domain methods which are intrinsically serial. As such, ComBoP appears espe-
cially well adapted to benefit from the SIMD instruction sets available in modern
processors. Furthermore, ComBo is particularly suited to homomorphic evaluation
of functions such as ReLU, one of the key building-blocks for enabling advanced
deep learning functions over encrypted data at larger scale.

94

Chapter 5

Chocobo: Creating Homomorphic
Circuit Operating with Functional
Bootstrapping in basis B

This chapter is a reproduction of our paper Chocobo co-written with Aymen
Boudguiga and Renaud Sirdey and currently in reviewing process.

Abstract. The TFHE cryptosystem only supports small plaintext space,
up to 5 bits with usual parameters. However, one solution to circumvent this
limitation is to decompose input messages into a basis B over multiple cipher-
texts. In this work, we introduce B-gates, an extension of logic gates to non
binary bases, to compute base B logic circuit. The flexibility introduced by
our approach improves the speed performance over previous approaches such
as the so called tree-based method which requires an exponential amount of
operations in the number of inputs. As an additional result, we introduce a
keyswitching key specific to packing TLWE ciphertexts into TRLWE cipher-
texts with redundancy, which is of interest in many functional bootstrapping
scenarios.

keywords: FHE; TFHE; functional bootstrapping

5.1 Introduction
Homomorphic encryption schemes having an efficient bootstrapping, such as TFHE
[28], can be tweaked to evaluate look-up tables within their bootstrapping proce-
dure. Hence, rather than being just used for refreshing ciphertexts (i.e., reducing
their noise level), the bootstrapping becomes functional [10] or programmable [30]

95

by allowing the evaluation of arbitrary functions as a bonus. These capabilities
result in promising new approaches for improving the overall performances of ho-
momorphic calculations, making the FHE “API” better suited to the evaluation of
mathematical operators which are difficult to express as low complexity arithmetic
circuits.

TFHE made a first breakthrough by proposing an efficient bootstrapping for homo-
morphic gate computation. Then, Bourse et al., [9] used the same bootstrapping
algorithm for extracting the (encrypted) sign of an encrypted input. It was later
used by Izabachene et al., [53] to evaluate a Hopfield network in the encrypted do-
main. Boura et al., [8] showed in 2019 that TFHE bootstrapping naturally allows
to encode function evaluation via their representation as look-up tables (LUTs).
Recently, different approaches have been investigated for functional bootstrapping
improvement. Guimarães et al., [48] extended the ideas in Bourse et al., [10] to
support the evaluation of functions over multiple inputs via LUTs. In this work,
we build on the work of Guimarães et al., and extend it to provide a new evaluation
technique for arbitrary circuits.

Related works – After Bourse et al., [9] described how the functional bootstrap-
ping of TFHE computes a sign function, researchers investigated the implemen-
tation of LUT(f) for any function f with domain either half of the torus [30] or
the entire torus [57, 100, 31, 35]. Encoding plaintext values only on [0, 1

2
[(i.e.,

half of the torus) avoids the restriction of managing negacyclic functions during
the bootstrapping. However, it reduces the size of the plaintext space as it is
encoded on a smaller portion of the torus T. Meanwhile, other methods [57, 100,
31, 35] support T as a plaintext space at the cost of adding more bootstrappings.
Subsequently, Guimarães et al., have proposed the tree-based and chaining-based
methods to evaluate functions of multiple ciphertexts by means of several func-
tional bootstrapping. However, the efficiency of their tree-based method is limited
by its exponential complexity relatively to the number of inputs. Meanwhile, the
chaining-method is only well suited for computing carry-like functions [48].

Contributions – In this work, we first revisit the noise variances and success
probabilities of the tree-based and chain-based method of Guimarães et al. We
also describe and compare in detail multiple methods to compute B-gates which
are logic gates extended to bases B greater than 2, and serve as building blocks for
the computation of base B logic circuits. We show that the evaluation of circuits
with our novel building block favorably compares to the tree-based method in
terms of time performance. As an application, we show that our technique can be
implemented efficiently in practice by taking as example a sorting algorithm.

Paper organization – The remainder of this paper is organized as follows. Sec-

96

tion 5.2 reviews TFHE building blocks. Section 5.5 describes techniques from the
literature to evaluate look up tables with multiple inputs. Section 5.6 describes
our method to compute multi-inputs functions using functional bootstrapping. Fi-
nally, Section 5.8 highlights the benefits of our method through the evaluation of
a sorting algorithm.

5.2 Background

5.2.1 Notations

We refer to the real torus by T = R/Z. T is the additive group of real num-
bers modulo 1 (R mod [1]) and it is a Z-module. TN [X] denotes the Z-module
R[X]/(XN + 1) mod [1] of torus polynomials, where N is a power of 2. R is
the ring Z[X]/(XN + 1) and its subring of polynomials with binary coefficients is
BN [X] = B[X]/(XN + 1) (B = {0, 1}). We denote by Zn the ring Z/nZ. Finally,
we denote respectively by [x]T, [x]TN [X] and [x]R the encryption of x over T, TN [X]
or R.

We refer to vectors by bold letters. �x,y� is the inner product of two vectors x
and y. We denote matrices by capital letters, and the set of matrices with m rows
and n columns with entries sampled in K by Mm,n(K). x

$←− K denotes sampling

x uniformly from K, while x
N (µ,σ2)←−−−− K refers to sampling x from K following a

Gaussian distribution of mean µ and variance σ2.

Given x
N (µ,σ2)←−−−− R, the probability P (a ≤ x ≤ b) is equal to 1

2
(erf(b−µ√

2σ
)−erf(a−µ√

2σ
)),

where erf is the Gauss error function: erf(x) = 2√
π

� x

0
e−t2 . The same result apply

to x
N (0,σ2)←−−−− T as long as the distribution is concentrated as described in [28].

5.2.2 TFHE Structures

The TFHE encryption scheme was proposed in 2016 [25] and updated in [28]. It
introduces the TLWE problem as an adaptation of the LWE problem to T. TFHE
relies on three structures to encrypt plaintexts defined over T, TN [X] or R:

• TLWE Sample: (a, b) is a valid TLWE sample if a $←− Tn and b ∈ T verifies

b = �a, s�+ e, where s
$←− Bn is the secret key, and e

N (0,σ2)←−−−− T.

• TRLWE Sample: a pair (a, b) ∈ TN [X]k×TN [X] is a valid TRLWE sample
if a $←− TN [X]k, and b = �a, s� + e, where s

$←− BN [X]k is a TRLWE secret

97

key and e
N (0,σ2)←−−−− TN [X] is a noise polynomial.

Let M ⊂ TN [X] (or M ⊂ T) be the discrete message space1. To encrypt
a message m ∈ M, we add (0,m) to a fresh T(R)LWE sample. In the
following, we refer to an encryption of m with the secret key s as a T(R)LWE
ciphertext noted c ∈ T(R)LWEs(m).

To decrypt a sample c ∈ T(R)LWEs(m), we compute its phase φ(c) = b −
�a, s� = m+e. Then, we round to it to the nearest element of M. Therefore,
if the error e was chosen to be small enough while ensuring security, the
decryption will be accurate.

• TRGSW Sample: a TRGSW sample is a vector of TRLWE samples. To
encrypt a message m ∈ R, we add m · H to a TRGSW sample, where H
is a gadget matrix2 using an integer Bg as a basis for its decomposition.
Chilotti et al., [28] defines an external product between a TRGSW sample A
encrypting ma ∈ R and a TRLWE sample b encrypting mb ∈ TN [X]. This
external product consists in multiplying A by the approximate decomposition
of b with respect to H (Definition 3.12 in [28]). It yields an encryption of
ma · mb i.e., a TRLWE sample c ∈ TRLWEs(ma · mb). Otherwise, the
external product allows also to compute a controlled MUX gate (CMUX)
where the selector is Cb ∈ TRGSWs(b), b ∈ {0, 1}, and the inputs are c0 ∈
TRLWEs(m0) and c1 ∈ TRLWEs(m1).

5.2.3 TFHE Bootstrapping

TFHE bootstrapping relies mainly on three building blocks:

• Blind Rotate: rotates a plaintext polynomial encrypted as c ∈ TRLWEk(m)
by a position encrypted as cp ∈TLWEs(p). It takes as inputs: the TRLWE
ciphertext c ∈ TRLWEk(m), a rescaled and rounded vector of cp represented
by (a1, . . . , an, an+1 = b) where ∀i, ai ∈ Z2N , and n TRGSW ciphertexts en-
crypting (s1, . . . , sn) where ∀i, si ∈ B. It returns a TRLWE ciphertext c� ∈
TRLWEk(X

�a,s�−b · m). In this paper, we will refer to this algorithm by
BlindRotate. With respect to the independence heuristic3 stated in [28], the

1In practice, we discretize the Torus with respect to our plaintext modulus. For example,
if we want to encrypt m ∈ Z4 = {0, 1, 2, 3}, we encode it in T as one of the following value
{0, 0.25, 0.5, 0.75}.

2Refer to Definition 3.6 and Lemma 3.7 in TFHE paper [28] for more information about the
gadget matrix H.

3The independence heuristic ensures that all the coefficients of the errors of TLWE, TRLWE
or TRGSW samples are independent and concentrated. More precisely, they are σ-subgaussian
where σ is the square-root of their variance.

98

variance VBR of the resulting noise after a BlindRotate satisfies the formula:

VBR < Vc + EBR, where EBR = n

�
(k + 1)�N

�
Bg

2

�2

ϑBK +
(1 + kN)

12 · B2l
g

�

(5.1)

Vc is the variance of the noise of the input ciphertext c, and ϑBK is the
variance of the error of the bootstrapping key. l and Bg are the parameters
defining the gadget matrix as in [28]. Note that the noise of the BlindRotate
is independent from the noise of the encrypted position cp.

• TLWE Sample Extract: takes as inputs both a position p ∈ �0, N�
and a ciphertext c ∈ TRLWEk(m), and returns a TLWE ciphertext c� ∈
TLWEk(mp) where mp is the pth coefficient of the polynomial m. In this
paper, we will refer to this algorithm by SampleExtract. This algorithm does
not add any noise to the ciphertext.

• Public Functional Keyswitching: transforms a set of p ciphertexts ci ∈
TLWEk(mi) into the resulting ciphertext c� ∈ T(R)LWEs(f(m1, . . . ,mp)),
where f() is a public linear morphism from Tp to TN [X]. Note that N = 1
when keyswitching to a TLWE ciphertext. This algorithm requires 2 param-
eters: the decomposition basis BKS and the precision of the decomposition
t. In this paper, we will refer to this algorithm by KeySwitch. As stated in
[28], the variance VKS of the resulting noise after a KeySwitch with BKS = 2
follows the formula4:

VKS < R2 · Vc + n
�
tNϑKS + 2−2(t+1)

�

where Vc is the variance of the noise of the input ciphertext c, R is the
Lipschitz constant of f and ϑKS the variance of the error of the keyswitching
key. In this paper and in most cases, R = 1.

TFHE specifies a gate bootstrapping to reduce the noise level of a TLWE sample
that encrypts the result of a boolean gate evaluation on two ciphertexts, each of
them encrypting a binary input. TFHE gate bootstrapping steps are summarized
in Algorithm 10. The step 1 consists in selecting a value m̂ ∈ T which will serve
later for setting the coefficients of the test polynomial testv (in step 3). The step
2 rescales the components of the input ciphertext c as elements of Z2N . The step
3 defines the test polynomial testv. Note that for all p ∈ �0, 2N�, the constant
term of testv · Xp is m̂ if p ∈�N

2
, 3N

2
� and −m̂ otherwise. The step 4 returns

an accumulator ACC ∈ TRLWEs�(testv · X�ā,s�−b̄). Indeed, the constant term
4Note that as of now, the formula from [28] has a discrepancy between Theorem4.1 and its

proof. The formula from the proof should be followed.

99

of ACC is −m̂ if c encrypts 0, or m̂ if c encrypts 1 as long as the noise of the
ciphertext is small enough5. Then, step 5 creates a new ciphertext c by extracting
the constant term of ACC and adding to it (0, m̂). That is, c either encrypts 0 if
c encrypts 0, or m if c encrypts 1 (By choosing m = 1

2
, we get a fresh encryption

of 1).

Since a bootstrapping operation is a BlindRotate over a noiseless TRLWE followed
by a Keyswitch, the bootstrapping noise (VBS) satisfies:

VBS < EBR + n
�
tϑKS + 2−2(t+1)

�

Algorithm 10 TFHE gate bootstrapping [28]

Input: a constant m ∈ T, a TLWE sample c = (a, b) ∈ TLWEs(x · 12) with x ∈ B,
a bootstrapping key BKs→s� = (BKi ∈ TRGSWS�(si))i∈�1,n� where S � is the
TRLWE interpretation of a secret key s�

Output: a TLWE sample c ∈ TLWEs(x.m)
1: Let m̂ = 1

2
m ∈ T (pick one of the two possible values)

2: Let b̄ = �2Nb� and āi = �2Nai� ∈ Z, ∀i ∈ �1, n�
3: Let testv := (1 +X + · · ·+XN−1) ·X N

2 · m̂ ∈ TN [X]
4: ACC ← BlindRotate((0, testv), (ā1, . . . , ān, b̄), (BK1, . . . , BKn))

5: c = (0, m̂) + SampleExtract(ACC)
6: return KeySwitchs�→s(c)

5.2.4 TFHE Functional Bootstrapping

Functional bootstrapping [30, 57, 100, 31, 35] refers to TFHE’s ability of evaluating
a Look-Up Table (LUT) of any single input function during the bootstrapping. In
particular, TFHE is well-suited for negacyclic function6, as the plaintext space for
TFHE is T, where [0, 1

2
[corresponds to positive values and [1

2
, 1[to negative ones,

and the bootstrapping step 2 of the Algorithm 10 encodes elements from T into
powers of X modulo (XN + 1), and Xα+N ≡ −Xα mod [XN + 1].

In section 5.5, we will discuss methods for increasing the plaintext precision during
a functional bootstrapping. We will focus on Guimarães et al., [48] ideas for
combining several bootstrappings with many digits as input. These digits come
from the decomposition of a plaintext in a basis B.

5Further details on the proper bound of the noise are given in Section 5.4.
6Negacyclic functions are antiperiodic functions over T with period 1

2 , i.e., f(x) = −f(x+ 1
2).

100

5.3 KeySwitch with decomposition basis greater
than 2

In this section, we detail the KeySwitch operation using any decomposition basis
BKS, usually a power of 2.

We give in Algorithm 11 an adaptation of the KeySwitch from [28] for a decom-
position basis greater than 2. This algorithm leads to the following noise formula:

VKS < R2 · Vc + En,N
KS where En,N

KS = n

�
tNϑKS ·

�
BKS

2

�2

+
B−2t

KS

12

�
(5.2)

We call this KeySwitch packing when f(m(1), ...,m(p)) =

p�

i=1

m(i)X i−1 and packing

with redundancy when f(m(1), ...,m(p)) =

p�

i=1

�
m(i)

r−1�

j=0

Xr·(i−1)+j

�
where r is the

redundancy term satisfying r · p ≤ N .

Algorithm 11 general TFHE KeySwitch

Input: p TLWE ciphertexts c(i) = (a(i), b(i)) ∈ TLWEs(m
(i)) for i ∈ �1, p�, a

public R-Lipschitz morphism f : Tp → TN [X], and KSi,j ∈ T(R)LWEK(
si

Bj
KS

)

for i ∈ �1, n�, j ∈ �1, t�.
Output: A T(R)LWE sample c ∈ T(R)LWEK(f(m

(1), ...,m(p))).
1: for i ∈ �1, n� do
2: Let ai = f(a

(1)
i , ..., a

(p)
i)

3: Let ãi =
�Bt

KS ·ai�
Bt

KS

4: Let ãi,j ∈ ZN [X] with coefficients in �−BKS

2
, BKS

2
− 1� so that

t�

j=1

ãi,j · B−j
KS = ãi

return (0, f(b(1), ..., b(p)))−
n�

i=1

t�

j=1

ãi,j · KSi,j

When applying a TLWE to TLWE KeySwitch the analysis from [48] regarding the
variance of the rounding part of the algorithm applies. Since N = 1 in this case,
the noise formula then drops to:

VKS < R2 · Vc + En,1
KS

101

Algorithm 12 further improves the noise bound for KeySwitch between TLWE
ciphertexts by introducing a larger key. More specifically, the size of the key grows
linearly with the chosen decomposition basis. The noise formula for this algorithm
is:

VKS < R2 · Vc + n

�
tϑKS +

B−2t
KS

12

�

Algorithm 12 TFHE KeySwitch between TLWE ciphertexts

Input: p TLWE ciphertexts c(i) = (a(i), b(i)) ∈ TLWEs(m
(i)) for i ∈ �1, p�, a

public R-Lipschitz morphism f : Tp → T, and KSi,j,k ∈ TLWEK(k · si
Bj

KS

) for
i ∈ �1, n�, j ∈ �1, t�, k ∈ �0, BKS − 1�.

Output: A TLWE sample c ∈ TLWEK(f(m
(1), ...,m(p))).

1: for i ∈ �1, n� do
2: Let ai = f(a

(1)
i , ..., a

(p)
i)

3: Let ãi =
�Bt

KS ·ai�
Bt

KS

4: Let ãi,j ∈ �0, BKS − 1� so that
t�

j=1

ãi,j · B−j
KS = ãi

return (0, f(b(1), ..., b(p)))−
n�

i=1

t�

j=1

KSi,j,ãi,j

Finally, we show in Algorithm 13 how to compute a packing with redundancy
with less noise compared to Algorithm 11 thanks to a specific keyswitch key. Al-
gorithm 13 improves on the base aware Keyswitch of [48] by avoiding the multi-
plicative increase in size of the key and correcting the algorithm. This algorithm
leads to the following noise formula:

VKS < Vc + En,p
KS (5.3)

5.4 Time complexity, noise variance and success
probability

5.4.1 Time complexity

The algorithms we present in this paper use primarily BlindRotate and Keyswitch
operations. Those 2 operations are the most time consuming FHE operations.

102

Algorithm 13 TFHE packing with redundancy

Input: p TLWE ciphertexts c(i) = (a(i), b(i)) ∈ TLWEs(m
(i)) for i ∈ �1, p�, and

KSi,j ∈ TRLWEK(
si

Bj
KS

r−1�

k=0

Xk) for i ∈ �1, n�, j ∈ �1, t�.

Output: A TRLWE sample c ∈ TRLWEK

�
p�

i=1

�
m(i)

r−1�

j=0

Xr·(i−1)+j

��
.

1: for i ∈ �1, n� do

2: Let ai =
p�

j=1

a
(j)
i Xr·(j−1)

3: Let ãi =
�Bt

KS ·ai�
Bt

KS

4: Let ãi,j ∈ ZN [X] with coefficients in �−BKS

2
, BKS

2
− 1� so that

t�

j=1

ãi,j · B−j
KS = ãi

return

�
0,

p�

i=1

b(i)
r−1�

j=0

Xr·(i−1)+j

�
−

n�

i=1

t�

j=1

ãi,j · KSi,j

Note that a BlindRotate is 2 · 104 times slower than additions and 103 times slower
than polynomial multiplications with default parameters in TFHElib7.

The following formula gives a good approximation of the time needed for each
algorithm : n · tBR +m · tKS + p · tKSR, where n is the number of BlindRotate, m is
the number of KeySwitch between TLWE ciphertexts, p is the number of KeySwitch
from TLWE to TRLWE ciphertexts and the indexed t coefficients correspond to
the time computation of each operation.

5.4.2 Noise variance

The noise variances resulting from homomorphic computations with bootstrap-
pings are calculated from the noise variances of the input ciphertexts, and the
noise bounds of BlindRotate and KeySwitch (Equations 5.1 and 5.2). We summa-
rize in Table 5.1 the noise variances for basic operations such as the addition of
two ciphertexts or the multiplication of a ciphertext by a plaintext. These for-
mulas can be used as building-blocks to compute the resulting noise variance of
operations in the remainder of this paper.

7https://tfhe.github.io/tfhe/

103

Operation Variance
ci + cj Vi + Vj

Ci +Cj Vi + Vj

P ·Ci ||P ||22 · Vi

Keyswitch(ci) Vi + En,N
KS

BlindRotate(Ci) Vi + EBR

Bootstrap(ci) EBR + EN,1
KS

Table 5.1 – Obtained noise variances when applying basic operations to indepen-
dent inputs: ci is a TLWE ciphertext of variance Vi, Ci is a TRLWE ciphertext
of variance Vi and P is a plaintext polynomial.

5.4.3 Success probability

The success probability of a BlindRotate is expressed with the Gauss error function.
It depends on the noise of the input ciphertext, the size of the plaintext space and
its encoding over the torus [35, 48]. Indeed, Clet et al., [33] showed that for a small
plaintext space, functional bootstrapping is more efficient when the plaintexts are
encoded over half of the torus.

As in the upcoming section, we consider the decomposition of plaintexts within
a small basis B, we only remind the formula for the probability of success of a
BlindRotate when the plaintext space is encoded over half of the torus:

erf

�
1

4B
�

2(Vc + Vr)

�

where erf is the Gauss error function, Vc is the noise variance of the input ci-
phertext, and Vr = n+1

48N2 is the rounding variance (introduced by the step 2 of
Algorithm 10). From now on, we use the notation:

PB(Vc) = erf(
1

4B
�

2(Vc + Vr)
) (5.4)

Let’s consider an algorithm requiring to compute n BlindRotate on independent
ciphertexts (ci)i∈�0,m−1�. Each ci is used, at least once, as input to a BlindRo-
tate. Then the probability of success of the algorithm is the probability that each
BlindRotate succeeds. It is equal to:

m−1�

i=0

PB(Vci)

104

We note FB = 1−PB so that F represents the error rate of a BlindRotate. Then,
if each FB(Vci) is small enough, we get the approximation:

1−
m−1�

i=0

PB(Vci) �
m−1�

i=0

FB(Vci) (5.5)

Let’s analyse how precise this approximation can be.
We get thanks to Boole’s inequality that

1−
m−1�

i=0

PB(Vci) ≤
m−1�

i=0

FB(Vci) (5.6)

Besides, if we note α =
m−1�

i=0

FB(Vci)(� 1 since each FB(Vci) is small), we get

m−1�

i=0

PB(Vci) =
m−1�

i=0

(1− FB(Vci))

≤
�
1− α

m

�m
= 1− α + m−1

2m
α2 +

m�

k=3

�
m

k

�
(− α

m
)k

Note that |
m�

k=3

�
m

k

�
(− α

m
)k| ≤

m�

k=3

αk

k!
≤ α3 · (e− 2, 5) ≤ 0.22 · α3.

Thus for any � > 0 we can ensure that

1−
m−1�

i=0

PB(Vci) ≥
m−1�

i=0

FB(Vci)(1− α(
m− 1

2m
+ 0.22α))

≥
m−1�

i=0

FB(Vci)(1− �)

(5.7)

as long as α(m−1
2m

+ 0.22α) ≤ �. To satisfy this inequality, it is enough that
0.72α ≤ min(�, 1).

We combine Equations 5.6 and 5.7 to get

m−1�

i=0

FB(Vci)(1− �) ≤ 1−
m−1�

i=0

PB(Vci) ≤
m−1�

i=0

FB(Vci)

which shows that the approximation is tight when the error rate is low.

105

We use the same independence heuristic as in [25] to avoid overly complex formula
when the correlation between ciphertexts becomes too intricate. From now on, we
use Boole’s inequality given in Equation 5.6 as a tight approximation of the error
rate of our computations under this assumption.

5.5 LUTs with Multiple Encrypted Inputs
The aforementioned functional bootstrapping methods ([30, 57, 100, 31, 35]) are
univariate and have a limited plaintext precision. They evaluate look-up tables
with a size bounded by the degree N of the used cyclotomic polynomial. The size
of the plaintext space gets even smaller when taking noise into account [35]. In
addition, these methods are not suited for computing a LUT for a multivariate
function f with two or more encrypted inputs. In order to overcome these issues,
Guimarães et al., [48] proposed two methods for homomorphic computation with
digits: a tree-based approach and a chaining approach. In this section, we discuss
these two methods and give bounds for their noise variances and error rates.

5.5.1 Tree-based Method

We consider d TLWE ciphertexts (c0, . . . , cd−1) encrypting (m0, . . . ,md−1) ∈ Zd
B

over half of the torus for some B ∈ N. That is, each ciphertext ci corresponds
to an encryption of mi ∈ �0, B − 1�. (m0, . . . ,md−1) can represent a message
decomposed in a basis B, via the bijection:

gd :
�0, B − 1�d → �0, Bd − 1�

(m0, . . . ,md−1) �→ �d−1
i=0 mi · Bi (5.8)

or simply d uncorrelated messages.

In the following, we describe a tree-like structure to build a LUT for the function
f : �0, B − 1�d → �0, B − 1�. An example is described in Figure 5.1 of a tree of
depth d = 2

First, we encode the LUT for f in Bd−1 TRLWE ciphertexts. Each ciphertext
encrypts a polynomial Pi where:

Pi(X) =
B−1�

j=0

N
B
−1�

k=0

f ◦ g−1
d (j · Bd−1 + i) ·Xj·N

B
+k, i ∈ �0, Bd−1 − 1�

Then, we apply the BlindRotate algorithm to cd−1 and TRLWE(Pi), ∀i ∈ �0, Bd−1−
1�. That is, we rotate each TRLWE(Pi) by the encrypted position in cd−1. Fi-
nally, we run the SampleExtract algorithm on each of the rotated TRLWE(Pi). We

106

end up with Bd−1 TLWE ciphertexts, each encrypting f ◦ g−1
d (md−1 ·Bd−1 + i) for

i ∈ �0, Bd−1−1�. Then, we apply Bd−2 KeySwitch to pack these Bd−1 TLWE cipher-
texts into Bd−2 TRLWE ciphertexts, that correspond to the LUT of h where:

h :
�0, B − 1�d−1 → �0, B − 1�
(a0, . . . , ad−2) �→ f(a0, . . . , ad−2,md−1)

We iterate this operation until getting only one TLWE ciphertext encrypting
f(m0, . . . ,md−1), at the cost of running

�d−1
i=0 B

i = Bd−1
B−1

BlindRotate,
�d−2

i=0 B
i =

Bd−1−1
B−1

KeySwitch from TLWE ciphertexts to TRLWE ciphertext and one KeySwitch
between TLWE to go back to the initial parameters. Intermediary KeySwitch be-
tween TLWE can be performed before keyswitching to TRLWE ciphertexts which
reduce the overall noise as long as EN,1

KS +En,B
KS ≤ EN,B

KS at the cost of Bd−B
B−1

additional
KeySwitch.

Figure 5.1 – Tree of depth 2 in basis 4 with inputs c0 and c1 encrypting 1 and 2
respectively.

We can accelerate the tree evaluation by encoding the first LUTs in plaintext
polynomials rather than TRLWE ciphertexts. Then, we use the multi-value boot-
strapping from [16] to compute only one BlindRotate instead of Bd−1 at the first
level of the tree. We call selector the result of the BlindRotate of the first layer.
Thus, we now compute: 1 +

�d−2
i=0 B

i = 1 + Bd−1−1
B−1

BlindRotate.

107

Note that we can build any function from �0, B − 1�d to �0, B − 1�k given any
k, d ∈ N∗ with the tree-based method. Indeed, any function from �0, B − 1�d to
�0, B− 1�k can be decomposed as k functions from �0, B− 1�d to �0, B− 1�.

Noise variance

The noise variances of the Blindrotate and Keyswitch are additive. Thus, the noise
variance of the tree-based method when applied to d inputs is less than d · EBR +
(d−1)EN,B

KS +EN,1
KS or d · (EBR+EN,1

KS)+(d−1)En,B
KS with the intermediary Keyswitch

operations. In order to simplify the noise analysis, we only consider the tree-based
method without the intermediary Keyswitch operations from now on. Note that
our bound rely on our specific packing with redundancy technique introduced in
Section 5.3.

If we implement the multi-value bootstrapping [16] for the evaluation of the first
level of the tree with the polynomials (Pi)i∈�0,d−1�, the noise bound increases to
(d − 1 + max(||Pi||22)) · EBR + (d − 1) · EN,B

KS + EN,1
KS . Note that in the worst case

maxi(||Pi||22) ≤ (B + 3) · (B − 1)2 which leads to a worst case noise variance of
(d− 1 + (B + 3) · (B − 1)2) · EBR + (d− 1) · EN,B

KS + EN,1
KS .

Error rate

We consider that the input ciphertexts (ci)i∈�0,d−1� encrypting the set of messages
(mi)i∈�0,d−1� are mutually independent. We refer by (Vci)i∈�0,d−1� to the noise vari-
ances of the input ciphertexts (ci)i∈�0,d−1�.

Each BlindRotate takes as input one of the ciphertext ci. As such, we can apply

the Equation 5.6 from Section 5.4 to find the bound FTM ≤
d−1�

i=0

FB(Vci), where

FTM is the error rate of the tree based method. This bound holds true whether
we use the multi-value bootstrapping or not.

5.5.2 Chaining Method

The chaining method has a much lower complexity and a lower error growth than
the tree-based method. However, as stated in [48], it works only for a restricted
set of functions, i.e., functions with carry-like logic.

We consider d TLWE ciphertexts (c0, . . . , cd−1) respectively encrypting the mes-
sages (m0, . . . ,md−1). We denote by LC(a, b) any linear combination of a and b.
Given a set of functions (fi)i∈�0,d−1� such that fi : �0, B−1� → �0, B−1�, we build
with Algorithm 14 a function f : �0, B − 1�d → �0, B − 1�.

108

Algorithm 14 Chaining method
Input: A vector (c0, . . . , cd−1) of TLWE ciphertexts encrypting the vector of mes-

sages (m0, . . . ,md−1).
Output: A ciphertext encrypting f(m0, . . . ,md−1). f is defined by the different

linear combinations and the univariate functions fi.
1: c0 ← f0(c0)
2: for i ∈ �0, d− 2� do
3: ci+1 ← fi+1(LC(ci, ci+1))

return cd−1

The functions (fi)i∈�0,d−1� can be implemented using any method from the state of
the art for univariate functional bootstrapping. We remind that in this paper, we
choose the usual encoding method where the plaintext space is restricted to half
of the torus [30].

Noise variance

Since Algorithm 14 ends with a functional bootstrapping, the resulting noise vari-
ance of its output ciphertext is bounded by EBR + EN,1

KS .

Error rate

The inputs of each BlindRotate are linear combinations of the independent cipher-
texts (ci)i∈�0,d−1�. Thus, we bound the error rate by:

FCM ≤ FB(Vc0) +
d−1�

i=1

FB(VLCi(cboot,ci))

where LCi is the linear combination used at the ith step of Algorithm 14, cboot

is a freshly bootstrapped ciphertext and FCM is the error rate of the chaining
method.

5.5.3 Performances Comparison

Table 5.2 summarizes the noise variances and probabilities of success for the tree-
based and chaining methods. We refer by TBM to the tree-based method without
using the multi-value bootstrapping trick, by TMV to the tree-based method when
using the multi-value bootstrapping, and by CM to the chaining method.

Table 5.3 summarizes the time complexity of both methods. As mentioned in Sec-
tion 5.4, the time complexity is given as the number of BlindRotate and KeySwitch.

109

Method Noise variance Bound on error rate

TBM d · EBR + (d− 1)EN,B
KS + EN,1

KS

d−1�

i=0

FB(Vci)

TMV
(d− 1 + max(||Pi||22)) · EBR

+(d− 1) · EN,B
KS + EN,1

KS

d−1�

i=0

FB(Vci)

CM EBR + EN,1
KS

FB(Vc0)

+
d−1�

i=1

FB(VLCi(cboot,ci))

Table 5.2 – Noise variance and success rate in basis B for d inputs

Method Blindrotate KeySwitch
to TLWE to TRLWE

TBM
Bd − 1

B − 1
1

Bd−1 − 1

B − 1

TMV 1 +
Bd−1 − 1

B − 1
1

Bd−1 − 1

B − 1
CM d d 0

Table 5.3 – Time complexity in basis B for d inputs

It is straightforward to see from Table 5.2 and 5.3 that CM leads to a lower noise
variance with more efficient computation. These benefits come with limitations
since CM is not a method that generalize well to every function. Besides, the
error rate can be much higher with CM depending on the linear combination in-
volved in Algorithm 14. Note that FB(x) = erfc(1

4B
√

2·(x+Vr)
). We use the bound

erfc(X) � e−X2

X
√
π

which has the same order of magnitude as erfc as long as X > 1

to get that

FB(x) � 4B · e−
1

32B2(x+Vr)

�
2(x+ Vr)

π
(5.9)

From this formula we get that the growth of the error rate induced by the growth
of x heavily depends on the relative size of x and Vr. Indeed, when x � Vr,

FB(x) � 4B · e− 1
32B2·x

�
2x

π
. Thus a growth of x has an exponential impact on

the error rate. Whereas x � Vr implies that FB(x) � 4B · e−
1

32B2·Vr

�
2Vr

π
. Thus

the growth of x is absorbed by the term Vr. Since Vr = n+1
48N2 , this means that

110

depending on the encryption parameters, the drawback on the error rate of CM
can be mitigated.

5.6 Circuit Method

Both of the previous methods come with restrictions. On the one hand, the tree-
based method requires an exponential number of BlindRotate relatively to the depth
d of the tree. On the other hand, the chaining method can only be applied to some
specific functions.

In the following sections, we propose an alternative method relying on logic circuits
with encrypted inputs (in section 5.6.1). The plaintext space for these inputs is
�0, B − 1� for a given integer B = 2k.

5.6.1 Extended Lupanov Bound

A logic circuit of a function f takes as input a set of d digits {d0, . . . , dd−1} in
�0, B − 1� and feeds them to a circuit of B-gates to evaluate f(d0, . . . , dd−1). A
B-gate is any function that takes at most 2 digits and outputs 1 digit. As such,
a logic circuit as we mean it can be seen as an extension of binary circuits to non
binary basis.

The Lupanov bound [67] states that any function f : Bd → B can be computed
using a circuit with at most 2d

d
(1 + ◦(1)) binary gates. This result can easily be

extended to any base B logic circuit as follows. For any basis B = 2k, a function
f : �0, B−1�d → �0, B−1� can be seen as a vector of k functions fi : �0, B−1�d →
B. Similarly, each function fi can be seen as a function gi : Bk·d → B. Applying
the Lupanov bound to the functions gi, we get that each of them can be computed
with a circuit of size at most 2kd

kd
(1 + ◦(1)). Thus the function f can be computed

using a circuit of size k · 2kd

kd
(1 + ◦(1)) = Bd

d
(1 + ◦(1)) which extends the Lupanov

bound to functions with inputs in other bases.

This result shows that even for functions with large circuit representation, it is
possible to improve on the purely exponential bound of the tree-based method.
However, the circuit method truly shines when the computed functions are well
structured. For instance, a list of encrypted messages can be sorted in quadratic
time using a homomorphic circuit, which cannot be achieved using the tree-based
method naively.

111

5.6.2 Computing B-gates

In this section, we describe in detail how to build B-gates. Each B-gate can be
computed either with the chaining method CM, the tree-based method TBM, or
the tree-based method with multi-value bootstrapping TMV.

Using CM as a building block

We can combine two digits x and y with the bijection:

g2 :
�0, B − 1�2 → �0, B2 − 1�

(x, y) �→ x+ B · y (5.10)

That is, we compute any B-gate with encrypted digits c1 and c2 by applying one
functional bootstrapping to g2(c1, c2). To that end, we need to use a plaintext size
of B2 instead of B to encrypt each digit. We summarize in Table 5.4 and Table 5.5
the noise variance, the error rate and the time complexity of a generic gate using
CM found following the formulas from Table 5.2. From now on, we call CM-gate
gates computed with the CM method.

Noise variance Error rate
EBR + EN,1

KS FB(Vc0 + B2 · Vc1)

Table 5.4 – CM-gate error rate and noise variance. Vc0 and Vc1 respectively repre-
sent the noise variance of the first and second inputs of the B-gate.

Blindrotate Keyswitch
to TLWE to TRLWE

1 1 0

Table 5.5 – CM-gate time complexity

Using TBM as a building block

B-gates can be computed as trees of depth 2. We summarize in Table 5.6 and
Table 5.7 the noise variance, the error rate and the time complexity of a generic
gate using TBM found following the formulas from Table 5.2 and Table 5.3. From
now on, we call TBM-gate gates computed with the TBM method.

112

Noise variance Error rate
2 · EBR + EN,B

KS + EN,1
KS FB(Vc0) + FB(Vc1)

Table 5.6 – TBM-gate error rate and noise variance. Vc0 and Vc1 respectively
represent the noise variance of the first and second inputs of the B-gate.

Blindrotate Keyswitch
to TLWE to TRLWE

B + 1 1 1

Table 5.7 – TBM-gate time complexity

Using TMV as a building block

Similarly to TBM, logic gates can be computed as trees of depth 2. Note that
if multiple logic gates share an input, they can also share the "selector". This
allows us to reduce the amount of BlindRotate in a circuit. We summarize in
Table 5.8 and Table 5.9 the noise variance, the error rate and the time complexity
of a generic gate using TMV found following the formulas from Table 5.2 and
Table 5.3. We consider the polynomials maximizing the error rate to bound the
resulting error rate. From now on, we call TMV-gate gates computed with the
TMV method.

Noise variance Error rate
(1 + (B + 3) · (B − 1)2) · EBR + EN,B

KS + EN,1
KS FB(Vc0) + FB(Vc1)

Table 5.8 – TMV-gate generic error rate and noise variance. Vc0 and Vc1 respec-
tively represent the noise variance of the first and second inputs of the logic gate.

Blindrotate Keyswitch
to TLWE to TRLWE

2 1 1

Table 5.9 – TMV-gate generic time complexity

Example of TMV-gate

Any B-gate can be computed with ease using CM and TBM. However, TMV-
gates require to understand the multi-value bootstrapping technique and leads to
a noticeable impact on the resulting noise variance. As an example, we describe

113

the B-gate AddGate(x, y) = x + y[B]. Note that we work on half of the torus,
which prevents the modulus operation to be performed using a homomorphic ad-
dition.

Since additions are commutative, the same tree is used whether we want to use
the first or the second input as the selector. We show in Figure 5.2 an example
of this tree when B = 4. The polynomials we end up with are the Qi for i ∈

�0, B − 1� where Qi =

N
B
−1�

k=0

B−1�

j=0

((i+ k) mod B)Xk·N
B
+j. To apply the multi-value

bootstrapping technique, we consider Pi = (1 − X) · Qi. Then P0 = (B − 1) +
B−1�

k=1

Xk·N
B and for all i > 0, Pi = (2i− 1)−B ·X(B−i)·N

B +
B−1�

k=1

Xk·N
B as polynomial

for the noise formulas. We get that maxi(||Pi||22) = (B − 1) · (5B − 8).
We summarize in Table 5.10 and Table 5.11 the noise variance, the error rate and
the time complexity of a TMV-AddGate. The results are calculated following the
formulas from Table 5.2 and Table 5.3.

Noise variance Error rate
(1 + (B − 1) · (5B − 8)) · EBR + EN,B

KS + EN,1
KS FB(Vc0) + FB(Vc1)

Table 5.10 – TMV-AddGate error rate and noise variance. Vc0 and Vc1 respectively
represent the noise variance of the first and second inputs of the B-gate.

Blindrotate Keyswitch
to TLWE to TRLWE

2 1 1

Table 5.11 – TMV-AddGate time complexity. Note that the selector may be shared
between multiple gates. Then, one less BlindRotate is necessary for each gate after
the first.

114

0 1 2 3

1 2 3 0

2 3 0 1

3 0 1 2

0 1 2 3

: Extract

: KeySwitch

Figure 5.2 – Tree of AddGate

5.7 Empirical Performances

In this section we give empirical time results for computing generic B-gates. All
computation were made on an Intel Core i5-8250U CPU @ 1.60GHz by extending
the TFHE open source library8. We use the sets of parameters from Table 5.12,
Table 5.13 and Table 5.14 to achieve 128 bits of security and an error rate of at
most 2−32.

The parameters are chosen following this methodology for each B-gate and each
method:

• The parameters n and N are chosen as low as possible without jeopardizing
security to ensure better speed performance.

• The parameters n, N , σT and σTN [X] are chosen to reach at least λ = 128
bits of security.

• The parameters l, t, Bg, and BKS lead to an error rate lower than 2−32 for
the chosen B-gate and method for inputs with noise equal to the output of a
B-gate. We keep l and t as low as possible for speed performance. We note
respectively Bgbit and BKSbit the log2 of Bg and BKS.

8https://github.com/tfhe/tfhe

115

Basis n N σT σTN[X] l Bgbit t BKSbit
4 900 2048 5.1 · 10−7 9.6 · 10−11 3 8 6 3
8 1100 8192 1.4 · 10−8 7 · 10−65 1 31 7 3
16 1300 65536 3.77 · 10−10 1 · 10−300 1 31 4 6

Table 5.12 – Parameters sets with CM (λ=128)

Basis n N σT σTN[X] l Bgbit t BKSbit
4 800 1024 3.1 · 10−6 5.6 · 10−8 3 6 3 4
8 800 1024 3.1 · 10−6 5.6 · 10−8 5 4 7 2
16 900 2048 5.1 · 10−7 9.6 · 10−11 2 11 5 3

Table 5.13 – Parameters sets with TBM (λ=128)

Basis n N σT σTN[X] l Bgbit t BKSbit
4 800 2048 3.1 · 10−6 9.6 · 10−11 2 11 3 4
8 900 2048 5.1 · 10−7 9.6 · 10−11 3 8 3 5
16 1024 2048 5.6 · 10−8 9.6 · 10−11 6 5 3 6

Table 5.14 – Parameters sets with TMV (λ=128)

Given these sets of parameters, we show in Table 5.15 the time requirements of
each method in basis 4, 8 and 16.

Basis CM TBM TMV
4 177 351 528
8 617 1073 643
16 7016 3622 973

Table 5.15 – Gate Evaluation Time in ms

It is interesting to note that when using a small basis B, CM-gates are the most
efficient. However, the quadratic growth of the plaintext space relatively to B
greatly degrades its performances with larger bases. On the other side of the spec-
trum, TMV-gates become more and more interesting with larger bases. Besides,
TBM-gates seem of limited interest since it is outclassed by CM-gates for small
basis, and by TMV-gates for larger basis. This is due to the linear growth of the
number of operations required to perform a TBM-gate with the size of the basis.

116

Note that the TFHElib does not natively have a TLWE to TRLWE KeySwitch im-
plemented and our personal implementation of this KeySwitch does not make use of
parallelism. Since this KeySwitch operation takes a large part of the computation
time, the performances of TBM-gates and TMV-gates can be greatly optimised.
Besides, the parameter sets used for TMV-gates are meant to work for any gate.
In practice, the error bound must be tailored to specific gates, which will improve
the overall performance of TMV-gates. Finally, performances must be optimized
depending on the amount of memory available. For instance, multiple KeySwitch
techniques exist as shown in Section 5.3 which lead to different trade-offs between
noise growth, memory usage and speed.

5.8 Example: Sorting Algorithm
In this section, we compare a circuit dedicated to sorting a list of encrypted inputs
in base B to the direct application of the tree-based method. Note that we do
not know of any way of merging lists efficiently in the homomorphic domain. This
prevents us from performing sorting algorithms with a worst-case complexity of
n log(n). Thus, we describe in Algorithm 15 the bubble sort algorithm which is
possible to implement homomorphically.

Algorithm 15 Bubble Sort
Input: A list (c0, c1, ..., cd−1) of d ciphertexts encrypting the messages

(m0,m1, ...,md−1).
Output: A list of ciphertexts (r0, r1, ..., rd−1) encrypting the messages in sorted

order.
1: r0 = c0
2: for i ∈ �1, d− 1� do
3: (r0, ri) = (min(r0, ci),max(r0, ci))
4: for j ∈ �1, i− 1� do
5: (rj, ri) = (min(rj, ri),max(rj, ri))

return (r0, r1, ..., rd−1)

The speed and noise performance of B-gates computed with CM and TBM are
unrelated to the specific B-gates. Thus, we reuse the same parameter sets as in
Table 5.12 and Table 5.13. Besides, the only required B-gates are min(x, y) and
max(x, y) gates. Since the resulting noise using TMV depends on the function
computed, we give the bound on the noise relatively to these two B-gates:

• min gate noise variance:

(1 + B · (B − 1)) · EBR + EN,B
KS + EN,1

KS

117

• max gate noise variance:

(1 + 4 · (B − 1)2) · EBR + EN,B
KS + EN,1

KS

As such, both noise variances are bounded by (1+4 · (B−1)2) · EBR+EN,B
KS +EN,1

KS .
We use this formula to find the parameters from Table 5.16, leading to an error
rate lower than 2−32 per gate with TMV.

Basis n N σT σTN[X] l Bgbit t BKSbit
4 800 1024 3.1 · 10−6 5.6 · 10−8 6 3 3 4
8 900 2048 5.1 · 10−7 9.6 · 10−11 3 8 3 5
16 1024 2048 5.6 · 10−8 9.6 · 10−11 5 6 3 6

Table 5.16 – Parameters sets with TMV for sorting circuit (λ=128)

Using the tree-based method naively to sort a list of d encrypted inputs would
require the computation of d trees of depth d, leading to a total of approximately
d · Bd−1 operations instead of d2. We use the same parameter sets for the naive
tree-based method as for TBM-gates to reach an error rate lower than 2−32 per
BlindRotate.

We show in Table 5.17 the empirical time result we get for each method. We call
CM-circuit, TBM-circuit and TMV-circuit, circuits build with CM-gates, TBM-
gates and TMV-gates, respectively.

Basis CM-circuit TBM-circuit TMV-circuit Tree-Based Method
4 3.00 6.19 3.88 14.94
8 10.41 19.14 10.53 134.77
16 85.14 56.40 12.59 2083.63

Table 5.17 – Sorting Time (in s) of 4 inputs.

As seen in Table 5.17, the naive tree-based method becomes prohibitively long
even for small bases and low number of inputs. Our circuit method allows more
flexibility in the way homomorphic computation are performed and thus reach
much better performances for highly structured functions such as sorting func-
tions.

118

5.9 Conclusion
We introduced and compared multiple techniques to compute B-gates as efficient
building blocks for the computation of base B logic circuits. Our approach allows
for efficient evaluation of structured functions, largely improving on the speed
performance of the tree-based method from the literature. As a side result, we
introduced a keyswitching key specific to packing TLWE ciphertexts into TRLWE
ciphertexts with redundancy, which is of separate interest.

To go further, it would be interesting to compare our method to [5] which relies on
the circuit bootstrapping not implemented natively in TFHElib. It would also be
interesting to optimize the implementation of B-gates by introducing parallelism
to harness the full potential of this technique.

Our method can also be of interest to research on homomorphic compilers such as
Cingulata [15], Transpiler [47] and the Concrete compiler [29] as an alternative to
binary computation.

119

Chapter 6

Selection of Applications

This chapter compiles some of the more practical research done during this thesis
on the functional bootstrapping of TFHE. In the first section, we compare 3 cryp-
tosystems for the computation of small feedforward neural networks. In the second
section, we describe our work on the implementation of a recurrent neural network
over encrypted inputs. Finally, in the third section, we show how we performed
the transciphering of Grain128-AEAD using TFHE.

6.1 Comparison of Cryptosystems on Small Neural
Networks

This section is based on our article [34] on cryptosystem comparison for cloud
evaluation of small neural networks, written in collaboration with Oana Stan and
Martin Zuber. This is a work done early in the thesis which partly determined the
direction we took for the remainder of the thesis.

6.1.1 Introduction

The use of remote machine learning algorithms, and in particular neural networks,
raises major privacy issues which can be avoided through the use of FHE. However,
choosing the right cryptosystem for a given application can be difficult and have
tremendous impact on the performances of said application. Thus, we investigate
in this work the differences between three of the most used FHE cryptosystems,
namely BFV, CKKS and TFHE, regarding the evaluation of small neural networks
in the cloud.

For each cryptosystem we built a small neural network with one hidden layer and

121

the same amount of neurons, with the task of discriminating between handwritten
digits from the MNIST database [60]. We use FHE friendly activation functions
specific to each cryptosystem. More specifically, we use the square function for
BFV and CKKS, and the sign function for TFHE. We show in Figure 6.1 the
structure of our neural networks. The activation function is simply replaced by
the sign or square function depending on the cryptosystem.

Fully Connected Fully ConnectedInput Output

784 128 10

activation activation

Figure 6.1 – Structure of our network

Even though this network is extremely simplistic, its homomorphic evaluation al-
ready highlights many challenges we have to face in order to compute neural net-
work on encrypted data, and gives insight on the possibility to scale each method.
Besides, we show in [6] that such simple architecture can already be of use for
practical tasks such as driver behaviour analysis. Note that only the inference
phase of the networks is performed on encrypted data and this work does not dive
into the possibility of homomorphic training.

6.1.2 Sign Network

The main difficulty to tackle with TFHE is the strong discretization required to
fit its small plaintext space. This is especially true since the lack of knowledge of
the cryptosystem at the time lead us to use the default (and deprecated) 128-bit
security parameters of TFHElib [27] (currently only 119 bits of security) rather
than a custom set tailored for our purpose. We used 230 values to quantize the
torus as to ensure that the result of each operation could hold in one ciphertext.
As such, errors due to noise overflowing are expected.

We discretize the weights of the network over 8 bits while keeping the inputs as
is. The sign activation function allows us to naturally reduce the number of bits
required at each step of the homomorphic evaluation of the network which fits

122

perfectly with the requirements on the plaintext space of a TFHE encryption.
Besides, the sign function is freely computed during the bootstrapping procedure.
This also mitigates the errors due to noise overflow as long as the sign of the
message is not changed.

On the other hand, BFV and CKKS are ill suited to compute such a network
since the sign function cannot be approximated properly near 0 with polynomials.
This highlights one of the main benefits of the TFHE cryptosystem: its ability
to compute non polynomial and even discontinuous functions thanks to its boot-
strapping.

6.1.3 Square Network

Similarly to the sign network, we discretized the weights of the network over 8 bits
and kept the inputs as is when using TFHE and BFV. However, the use of the
square activation function makes the output of each layer larger and larger, which
prevents TFHE from holding all the information about the output of each cell in
only one ciphertext. This leads us to use TFHE in binary mode.

The CKKS cryptosystem handles floating point arithmetic which allows us to avoid
any explicit discretization on the weights of the cryptosystem.

Besides, we investigate multiple batching techniques to make the best use of BFV
and CKKS. We independently end up with similar batching techniques as in [13]
and as such reuse some of their terminology. The different vector representations
that we identify are:

• Dense representation: a vector v = (v0, ..., vn−1) is represented as a mes-

sage µ =
n−1�

i=0

vi ·X i.

• Redundant representation: a vector v = (v0, ..., vn−1) is represented as

a message µ =
n−1�

i=0

r−1�

k=0

vi ·Xr·i+k where r is a redundancy variable. This

representation is not used in [13].

• Stacked representation: a vector v = (v0, ..., vn−1) is represented as a

message µ =
n−1�

i=0

r−1�

k=0

vi ·Xn·k+i.

We also identify the corresponding matrix vector multiplications given a matrix
M = [mi,j] ∈ Mr,n and a message µ encrypting the vector v = (v0, ..., vn−1). In

123

each case, we note s the number of slots available in a ciphertext (which is a power
of 2) and we assume that r = s

n
with n divisor of s:

• Redundant vector multiplication:

1. Multiply µ and (m0,0,m1,0, ...,mm−1,0,m0,1, ...,mm−1,n−1) to get an en-
cryption of (m0,0 ·v0,m1,0 ·v0, ...,mm−1,0 ·v0,m0,1 ·v1, ...,mm−1,n−1 ·vn−1).

2. Apply log2(n) rotations and additions to get (l0, l1, ..., lm−1, l0, ..., lm−1)
where lj is the result of the dot product between the jth line of M and
the vector v. Thus we end up with a stacked representation of the result
of the multiplication between M and v.

• Stacked vector multiplication:

1. Multiply µ and (m0,0,m0,1, ...,m0,n−1,m1,0, ...,mm−1,n−1) to get an en-
cryption of (m0,0·v0,m0,1·v1, ...,m0,n−1·vn−1,m1,0·v0, ...,mm−1,n−1·vn−1).

2. Apply log2(n) rotations and additions to get (l0, ∗, ..., ∗, l1, ..., lm−1)
where lj is in the (j × n)th slot of the resulting ciphertext. The other
slots hold useless values in regard to the matrix multiplication. Thus
we end up with a dense representation of a vector holding the result of
the multiplication between M and v in specific slots.

Note that our assumptions on r and n are not restrictive as we can either extend
the matrix M and vector v with zeros and/or cut the matrix M in sub-matrices
along the lines so that each matrix multiplication fits the assumption.

Since our network has only one hidden layer, we can chain the representations
redundant → stacked → dense from input to output to get the wanted results.
Other vector representations have to be used to compute a deeper network.

6.1.4 Performances and Conclusions

All the experiments are made on an Intel Core i7-6600U CPU @ 2.60GHz. We
used the version 3.5.4 of SEAL [85] to use the BFV and CKKS cryptosystems, and
the version 1.1 of TFHElib for TFHE.

In order to obtain secure parameters, the SEAL implementation of BFV and CKKS
requires that we give the polynomial degree N and either the number of bits needed
to write the plaintext modulus p with BFV, or a list which represents the number
of bits of all the primes in the decomposition of the ciphertext modulus with
CKKS.

For BFV, we need p to be large enough to encode the result of the neural network
when each step is scaled to integers. Besides, we need it to be as small as possible

124

for efficiency. Thus we end up with a modulo p over 50 bits. Furthermore, the
multiplicative depth of computation that can be evaluated is approximately q

p

where q is the ciphertext modulus. Knowing that the polynomial degree N follows
approximately the formula N = 1024 ∗ log2(q)/27 and must be a power of 2, we
settled in our case with N = 16384. We then use the built in function of the
SEAL library to get secure parameters according to N and the number of bits
of p. This gives a ciphertext modulus using 390 bits. According to Albrecht’s
lwe-estimator [2], the security was of 146 bits at the time of the experiment which
is more than high enough for most applications.

For CKKS, the list of primes must have two more values than the number of
multiplications to be made. A generally good strategy to choose them according
to SEAL’s guidelines, is to have the first values at 60 bits as it will give the most
precision, the last value also at 60 bits as it must be at least as large as the other
values, and choose every other values close to each other. The resulting list is
{60, 40, 40, 40, 40, 60} which makes a ciphertext modulo using 280 bits. The sum
of the values in the list must stay lower to a bound depending on the polynomial
degree N . Same as with BFV, we chose a polynomial degree of N = 16384, as it
was the smallest value that allowed the list above. We found a security of 279 bits
at the time of the experiment using the lwe-estimator.

Finally, we used the default parameters for 128 bits of security of TFHElib for the
TFHE implementation.

We summarize in Table 6.1 the computation time of each method.

BFV CKKS TFHE (sign) Binary TFHE
0.97s 0.24s 2.5s > 3 days∗

Table 6.1 – Time performance with each cryptosystem
∗ : estimation based on previous performance.

Using BFV and CKKS did not lead to any degradation of the accuracy of the
evaluated network. This shows that neural networks can be extremely resilient
to discretization. Besides the fast evaluation of the network makes it viable for
real life situation. However, this is mainly due to the fact that the network using
a square activation is a low degree polynomial, which can be computed naturally
and efficiently with FHE cryptosystems. The main hindrances to use these two
cryptosystems for neural networks evaluation appear to be the following:

• The bootstrapping procedure must be avoided to reach low latency. This
limits the depth of the evaluated network as choosing bigger parameters can
quickly lead to prohibitive costs in time and memory.

125

• It is hard to find fitting batching techniques to reach low latency with a
deeper network. Indeed, most works focus on low throughput rather than
low latency.

• Finding a fitting polynomial approximation for standard activation functions
is a challenge.

Using TFHE for the sign network gives us a drop of 6 percentage points in ac-
curacy due to the high noise relatively to the heavy discretization of the torus1.
Considering the very high level of noise relatively to the discretization of the torus
in this experiment, this proves that this network has good resilience against noisy
inputs and noisy computation. Furthermore, we obtain a relatively low latency
even though we are using the bootstrapping procedure. However, using TFHE
in binary mode leads to prohibitively long latency. The main hindrances to use
TFHE for neural networks evaluation appear to be the following:

• A heavy discretization of the torus leads to noisy computation, while a light
discretization of the torus leads to a very small plaintext space.

• There is no automated tool to choose TFHE parameters and this task can
be tedious.

• The use of binary TFHE is prohibitively long for such a task.

These pieces of insight lead us to dig deeper into TFHE’s properties. Notably, this
gave an incentive to analyse TFHE’s functional bootstrapping and noise level as
shown in Chapter 4 and to find ways to compute non binary circuits with TFHE
as shown in Chapter 5.

6.2 Homomorphic LSTM
This section summarizes our article [97] on building blocks for the evaluation of
LSTMs done in collaboration with Daphné Trama, Aymen Boudguiga and Renaud
Sirdey and published in CSCML 2023.

6.2.1 Introduction

A Long Short-Termed Memory network (LSTM) is a type of recurrent neural net-
work introduced in 1997 by Hochreiter and Schmidhuber [51]. It has a wide range
of applications, from anomaly detection in time series to music composition, as
well as for prediction in medical care pathways and more. Some of these applica-
tion, notably those related to medical data, require that the privacy of the client

1The article does not mention this drop in accuracy due to a mistake in implementation.

126

is ensured. Thus, LSTM networks fall in the wide range of neural networks ben-
efiting from the privacy gained through homomorphic evaluation. However, the
recurring nature of this type of network naturally excludes LHE schemes as the
multiplicative depth of the computation is not known in advance. This naturally
leads us to try and compute such a network with the TFHE cryptosystem and its
efficient bootstrapping.

The role of cells in usual neural network is played by units inside of an LSTM
network. Similarly, an LSTM layer plays the same role as a layer of neurons
except that an LSTM layer loops on itself due to its recurring nature. A unit
in the ith loop takes three vector of inputs: the ith input to the network xi, the
activation vector of the last layer ai−1, and the memory cell vector ci−1. The
outputs of the ith loop are the ith output of the network yi, an activation vector
ai, and a memory variable vector ci. The outputs are computed through a forget
gate Γ

�i�
f , an update gate Γ

�i�
u , and an output gate Γ

�i�
o . The equations needed to

evaluate the ith loop are as follows:

c̃i = tanh(Wc · [ai−1, xi] + bc)

Γ
�i�
u = σ(Wu · [ai−1, xi] + bu)

Γ
�i�
f = σ(Wf · [ai−1, xi] + bf)

Γ
�i�
o = σ(Wo · [ai−1, xi] + bo)

ci = Γ
�i�
u � c̃i + Γ

�i�
f � ci−1

ai = Γ
�i�
o � tanh(ci)

yi = f(ai)

where σ denotes the sigmoid function, � denotes the Hadamard product, Wj are
weight matrices and bj are bias vectors. We summarize in Figure 6.2 the basic
structure of a LSTM layer.

Given the equation to compute, we aim to efficiently compute dot products, sigmoid
functions, and tanh functions with enough precision to prevent the precision of
the neural network to drop. In this work, we focused more specifically on the
computation of the activation functions sigmoid and tanh to evaluate the feasibility
of evaluating LSTMs in the encrypted domain.

6.2.2 LSTM Discretization

In order to evaluate the efficiency attainable with TFHE for the computation of
LSTM units, we based our network on the work of Woodbridge et al., [98]. The
full network contains an embedding layer, a 128 units LSTM layer that we want

127

Figure 6.2 – Structure of a LSTM layer

to evaluate, and a fully connected layer. It was trained for Domain Generation
Algorithm (DGA) recognition and we found an accuracy of 95.6% on a test set
when reproducing their experimental results. However, TFHE does not handle
floating points arithmetic which lead us to discretize the LSTM layer.

We first experiment in the clear domain to find the strongest level of quantization
on the weights and inputs that does not impact the accuracy of the neural net-
work negatively. We find that using only 4 bits of information is enough for each
coefficient of the inputs and each weight coefficient to maintain the same level of
accuracy.

We then aim to find a suitable discretization of the activation functions. As a
first step, we try to approximate both the Sigmoid and Tanh using piecewise linear
functions. We settle with 5-piece approximations for both the Sigmoid and Tanh
functions defined as follows:

σ(x) � 0.13 · 1]−6,−1](x) + 1]−1,1](x) · (0.24x+ 0.5) + 0.87 · 1]1,6](x)

+ ·1]6,∞[(x)

Tanh(x) � −1 · 1]−∞,−3](x) − 0.875 · 1]−3,−1](x) + 1]−1,1](x) · (0.76x)
+ 0.92 · 1]1,6](x) + ·1]6,∞[(x).

These approximations deteriorate the accuracy down to 93.6% which we estimate
to be acceptable while keeping the computation simple enough for homomorphic
computation. As a comparison, using the sign and Heaviside functions to approxi-
mate the Tanh and Sigmoid deteriorates the accuracy down to 50%.

128

We then discretize the linear part over 12 values which maintains the 93.6% accu-
racy thanks to the k-means algorithm. The final discretization used is summarized
in Table 6.2 where StepSigmoid is the discretized Sigmoid and StepTanh is the dis-
cretized Tanh.

x ∈ StepSigmoid(x) x ∈ StepTanh(x)
]-∞, -6] 0]-∞, -3] -1
]-6, -1] 0.13]-3, -1] -0.875
]-1, -0.834] 0.26]-1, -0.834] -0.76
]-0.834, -0.668] 0.30]-0.834, -0.668] -0.622
]-0.668, -0.501] 0.34]-0.668, -0.501] -0.484
]-0.501, -0.335] 0.39]-0.501, -0.335] -0.346
]-0.335, -0.169] 0.43]-0.335, -0.169] -0.207
]-0.169, 0] 0.47]-0.169, 0] -0.069
]0, 0.166] 0.52]0, 0.166] 0.069
]0.166, 0.332] 0.56]0.166, 0.332] 0.207
]0.332, 0.499] 0.60]0.332, 0.499] 0.346
]0.499, 0.665] 0.65]0.499, 0.665] 0.484
]0.665, 0.831] 0.69]0.665, 0.831] 0.622
]0.831, 1] 0.74]0.831, 1] 0.76
]1, 6] 0.87]1, 3] 0.92
]6, +∞] 1]3, +∞] 1

Table 6.2 – Our 16-steps StepSigmoid and StepTanh.

6.2.3 FHE implementation

The FHE implementation of the activation functions uses the tree-based method
with inputs in basis 4 and outputs in basis 16. For each activation function,
we map each of the 16 possible outputs of the quantized function to a value in
{ 0
32
, ..., 15

32
}.

In order to evaluate the precision of the homomorphic activation functions, we
computed the rest of the network in the clear domain, which did not lead to any
loss of accuracy for the network. We performed our experiment with the default
parameters of TFHElib on a 4-core Intel Core i7-7600U 2.90GHz CPU (with only
one core activated) and 16GiB total system memory with a Ubuntu 20.04.5 LTS
server.

The evaluation of each activation function takes 0.15 second which would lead to
a total of 96 seconds to compute all the activation functions of the 128 units of
the LSTM.

129

6.2.4 Conclusions and Perspectives

Our experiment shows that LSTM networks are resilient to a relatively strong
discretization, which is promising for their implementation in the homomorphic
domain. However, even with our simplified framework, we evaluate that the com-
putation of the LSTM layer would take minutes. Thus, a low latency LSTM in
the encrypted domain is still a challenging task to perform.

Besides, we raise a notable difficulty with our approach. The uneven discretization
that we obtain using the k-means algorithm for the output of each activation
function makes the computation of the dot products harder. As such, we still need
to investigate techniques to make this unusual discretization fit with the evaluation
of the rest of the network. This can be avoided by using either base decomposition
as in Chapter 5 at the cost of a slower computation of the activation function.

Another line of investigation is to verify how resilient the network is to noisy com-
putation. This would allow us to avoid base decomposition entirely by considering
a large plaintext space with TFHE at the cost of non negligible noise in the com-
putation. This could lead to great improvement of the latency assuming that it
does not impact the accuracy of the network too heavily.

6.3 Transciphering

This section summarizes our article [4] on transciphering with TFHE done in col-
laboration with Adda-Akram Bendoukha, Aymen Boudguiga and Renaud Sirdey,
and published in DBSEC2023.

6.3.1 Introduction

One notable drawback of FHE is the expansion factor of the data when encrypted.
This limits its applicability for embedded systems and other systems with low
memory requirements. Transciphering allows such systems to encrypt their data
with a low expansion factor cryptosystem while allowing for FHE computation. To
that end, the client encrypts his message m with a symmetric encryption scheme
as: SYMsk(m), and encrypts the symmetric key sk with a homomorphic cryp-
tosystem as: FHEs(sk). At the reception of SYMsk(m) and FHEs(sk), the evalua-
tion server homomorphically runs the symmetric cryptosystem’s decryption func-
tion. This operation results in an encryption of m under the FHE cryptosystem
FHEs(m).

With a stream-cipher, the client encrypts his message m with a keystream ks as:
m⊕ks, where ⊕ is the XOR operator. He then sends m⊕ks and the stream-cipher

130

secret key FHEs(sk) to the evaluation server which runs the stream-cipher warm-
up homomorphically thanks to the encrypted symmetric key FHEs(sk) where sk is
the secret key of the symmetric scheme and s is the secret key of the FHE scheme.
This operation outputs an encryption of the keystream FHEs(ks). The server
finally computes m⊕ ks⊕ FHEs(ks) homomorphically to obtain FHEs(m).

In [4], we explore the use of TFHE and its functional bootstrapping as a transci-
phering technique and validate its efficiency on Grain128-AEAD [50].

6.3.2 Grain128-AEAD

Grain128-AEAD [50] was a stream-cipher finalist in the NIST competition on
lightweight cryptography which ended in February 2023. It builds on Grain128a [1]
and extends it to support an Authenticated Encryption with Associated Data
(AEAD) mode. This mode allows for the encryption of a subset of plaintext bits
using a mask d with the formula ci = mi⊕(ksi ·di). Additionally, a 64-bit Message
Authentification Code (MAC) is computed on the encrypted data. The structure
of Grain128-AEAD contains two main blocks: a 256-bit pre-output generator and
a 128-bit authenticator generator. The pre-output generator contains a 128-bit
Linear Feedback Shift Register (LFSR) and a 128-bit Non-linear Feedback Shift
Register (NFSR) while the authenticator contains a 64-bit accumulator and a 64-
bit shift registers for MAC computation. Figure 6.3 describes the structure of this
stream cipher.

Figure 6.3 – Structure of Grain128-AEAD. Image extracted from [50]

131

After a 384 rounds warm up phase, Grain128-AEAD generates two streams of bits,
namely the encryption keystream (ks) and the MAC keystream (ms), which are
extracted from the main keystream using bit parity. Given that yt denotes the tth

bit of the keystream outputted by Grain128-AEAD, ksi is equal to y384+2i and msi
is equal to y384+2i+1.

Notably, the only operations required to evaluate this stream cipher homomorphi-
cally are bitwise XOR and bit shifting operations.

6.3.3 The Set Up

In [14], Canteaut et al., suggest an efficient set up to minimize the amount of
data exchanged between the embedded system and the evaluation server. They
distinguish between 3 phases:

1. An offline key set up.

2. An offline decompression phase.

3. An online decompression phase.

In our stream-cipher context, these phases would correspond to:

1. The client send the evaluation keys to the server via a non memory con-
strained device. This operation is done once and for all before the embedded
device start sending messages to the server.

2. The server can compute the homomorphic keystream FHEs(ks) from the
evaluation keys.

3. The server only needs to compute the homomorphic XOR operation between
the messages sent by the embedded system and the precomputed homomor-
phic keystream.

Using this simple set up, the constrained device does not need to send any FHE
encrypted information such as the evaluation keys which can be very memory
intensive. In particular, this legitimizes the use of memory intensive keyswitch-
ing keys which allow for faster computation with less noise growth, as discussed
in 5.3.

6.3.4 Base B Adaptation

We aim to adapt this stream-cipher to multiple different bases B, and more specif-
ically to bases in {2, 4, 16}. This allows us to compare the efficiency of the usual

132

binary TFHE and larger bases TFHE on this specific use case. For this experi-
mentation, we used the CM type of B-gates as defined in Chapter 5 Section 5.6.1.
As such, the natural modulus of TFHE corresponds to a modulus 2 ·B2. We now
adapt some operations to this specific setting.

The first thing to note is that the bitwise XOR between the keystream and the mes-
sage can be replaced by an addition in ZB without any consequence on the security.
As such, the homomorphic decryption becomes [[m+ks]B+FHEs(ks)]B where [.]B
denotes the modulo B operation. We aim to make use of the natural modulus of
TFHE to compute this sum without needing any functional bootstrapping for the
modulus operation. To that end we can simply rescale values as follows:

[2B · [m+ ks]B + FHEs(2B · ks)]2B2

The value 2B · [m+ ks]B can be obtained easily since [m+ ks] is already in clear,
and FHEs(2B · ks) can be obtained at no extra cost by simply changing the last
functional bootstrapping of the homomorphic computation of the keystream from
FHEs(ks) to FHEs(2B · ks). Thanks to this trick, the only costly part of the
FHE evaluation lies in the homomorphic generation of the keystream which can
be performed independently from the message m.

We compute the homomorphic generation of the keystream in a very straightfor-
ward fashion by simply implementing B-gates corresponding to the bitwise XOR
operation and bit shift operations.

6.3.5 Experimental Results

We ran all the performance tests on a 12th Gen Intel(R) Core(TM) i7-12700H v6
@ 2.60GHz with 22GB RAM using a single core.

We show in Table 6.3 the parameter sets used to reach 128 bits of security. Note
that here we use the memory intensive keyswitch keys, as it is not handled by the
memory restricted device anyway. These parameters are chosen to reach an error
rate of approximately 2−32 for the whole warm up circuit.

Basis n N σT σTN[X] l Bgbit t BKSbit
2 595 1024 1.26 · 10−4 5.6 · 10−8 4 5 2 10
4 740 2048 9.17 · 10−6 9.6 · 10−11 3 11 2 10
16 930 65536 3 · 10−7 1 · 10−100 1 32 2 10

Table 6.3 – Parameters sets for λ=128

133

We show in Table 6.4 the speed of the warm up phase given each basis. Note that
generating additional bits simply requires 1

384

th of these timings per bit.

Basis 2 4 16
of bootstrappings 18912 16608 7718

Single bootstrapping (in ms) 13 17 92
Warm up circuit (in min) 4.80 3.98 11.83

Table 6.4 – Time performance

Note that for the basis 16, the TMV was approximately 7 times faster than the CM
method in 5.8. As such, it is fair to assume that a better choice of B-gates for basis
16 would have lead to much better performances, potentially even achieving better
results than 3.98 minutes of basis 4. Nonetheless, the experimental results show
that using bases larger than 2 can lead to better performances, even for applications
which are extremely binary oriented. This reinforce our idea that exploring non
binary bases to compute circuits is a worthwhile research domain.

This work inspired us to apply a similar transciphering technique to the AES
in [96], where we successfully achieved a latency of 30 seconds for a full homomor-
phic evaluation of the AES.

134

Conclusion

Toward Efficient FHE

Data privacy is a growing concern in our increasingly connected society. Fully
homomorphic encryption is a powerful tool that enables privacy in unforeseen
circumstances. Indeed, as opposed to what common sense dictates, it is possible
to make meaningful computation on encrypted data. This allows cloud services
to provide more privacy to their clients and enables the conception of completely
new applications intrinsically relying on privacy.

However, the main bottleneck for the adoption of this technology is its current
computational cost, too high for many applications. As such, reducing the cost
of homomorphic computation is the current main challenge for research on FHE.
The conception of specific hardware devices for homomorphic computation gives
promising results but are not enough on their own to make up for the homomorphic
overhead. Thus, it is necessary to keep on enhancing software implementations to
lower the cost of homomorphic computation.

The memory overhead coming with the use of FHE cryptosystem also needs to
be taken into account. This makes transciphering friendly cryptosystems, such as
TFHE, more interesting for a wide panel of applications as it mitigates or even
completely avoid any memory overhead.

Finally, the ease of use of FHE cryptosystems can determinate whether this tech-
nology will get adopted. Indeed, allowing people with little to no expertise in
cryptography to easily build applications relying on FHE is a good way to raise
interest in this technology. To that end, the community works on FHE compilers
such as Cingulata [15] or the more recent Concrete compiler [29].

The TFHE cryptosystem gathers many desirable characteristics, such as an effi-
cient bootstrapping procedure, and the possibility to build logic circuits naturally.
This makes it particularly well suited for the implementation of FHE compilers
and for transciphering algorithms. Could it be the cryptosystem that will make

135

homomorphic computation cheap enough for real life implementation?

Contributions

Neural networks are a natural use case for FHE evaluation thanks to their great
versatility. Hence, our first aim was to build neural networks that could be evalu-
ated efficiently with encrypted inputs as shown in Section 6.1. This gave us much
needed insight on the challenges of homomorphic computation and the pros and
cons of each cryptosystems.

The main contribution, shown in Chapter 4, naturally followed to investigate in
more detail the possibilities of TFHE’s functional bootstrapping. We successfully
built an efficient full torus functional bootstrapping technique which truly benefits
from using the whole torus. The noise and error rate analysis described in the
paper also allows for optimized parameter selection given a specific use case.

A second important contributions is shown in Chapter 5. It expands the toolkit
of homomorphic circuits evaluation thanks to easy to compute non binary logic
gates called B-gates. These B-gates are an interesting new building block for FHE
computations which can notably be interesting to optimize the resulting circuits
of FHE compilers.

Besides, we investigated multiple applications of homomorphic computation and
TFHE’s functional bootstrapping, such as LSTM evaluations described in Sec-
tion 6.2 and transciphering described in Section 6.3.

Perspectives

Some applications remain extremely challenging to achieve in the homomorphic
domain. In particular, we tried without success to train a small neural network
entirely in the homomorphic domain. Indeed, the state of the art on homomor-
phic training generally rely on techniques such as federated learning where the
homomorphic part of the computation is restricted to a small "aggregation" part.
However, the literature is scarce concerning a completely homomorphic training,
and papers on the subject such as [65, 74] omit crucial details to achieve this
goal, such as how to manage the precision of the weights during training while
using a strong quantization. As such, this subject is essentially unexplored as of
now.

Looking for ways to make FHE faster is not the only way to improve homomorphic
computation’s applicability. Even though this thesis mainly focuses on improving

136

homomorphic operations to eventually compute neural networks in the homomor-
phic domain, the opposite is also a nice subject of research: how can we build
accurate and FHE-friendly neural networks? Research on neural networks for em-
bedded systems is a fruitful line of research which can give some answers to this
question. Considering other technologies such as transfer learning is also a good
way to lessen the burden on the homomorphic computation.

Fully homomorphic encryption has matured a lot since its birth in 2009 and con-
tinues to improve at great speed. It will certainly be a part of our daily life in the
near future, opening new and exciting opportunities.

137

138

Bibliography

[1] Martin Ågren, Martin Hell, Thomas Johansson, and Willi Meier. “Grain-
128a: a new version of Grain-128 with optional authentication”. In: IJWMC
5 (2011), pp. 48–59.

[2] Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hard-
ness of Learning with Errors. Cryptology ePrint Archive, Paper 2015/046.
2015.

[3] Joseph Antony, Kevin McGuinness, Noel E. O. Connor, and Kieran Moran.
“Quantifying Radiographic Knee Osteoarthritis Severity Using Deep Con-
volutional Neural Networks”. In: arXiv:1609.02469 [cs] (Sept. 2016). arXiv:
1609.02469 [cs].

[4] Adda-Akram Bendoukha, Pierre-Emmanuel Clet, Aymen Boudguiga, and
Renaud Sirdey. Optimized stream-cipher-based transciphering by means of
functional-bootstrapping. Cryptology ePrint Archive. 2023. url: https://
eprint.iacr.org/2023/1111.

[5] Loris Bergerat, Anas Boudi, Quentin Bourgerie, Ilaria Chillotti, Damien
Ligier, Jean-Baptiste Orfila, and Samuel Tap. Parameter Optimization &
Larger Precision for (T)FHE. Cryptology ePrint Archive, Paper 2022/704.
2022.

[6] Aymen Boudguiga, Oana Stan, Abdessamad Fazzat, Houda Labiod, and
Pierre-Emmanuel Clet. “Privacy Preserving Services for Intelligent Trans-
portation Systems with Homomorphic Encryption”. In: Jan. 2021, pp. 684–
693. doi: 10.5220/0010349706840693.

[7] Christina Boura, Nicolas Gama, Mariya Georgieva, and Dimitar Jetchev.
“CHIMERA: Combining Ring-LWE-based Fully Homomorphic Encryption
Schemes”. In: Journal of Mathematical Cryptology 14.1 (2020), pp. 316–338.
doi: https://doi.org/10.1515/jmc-2019-0026.

139

[8] Christina Boura, Nicolas Gama, Mariya Georgieva, and Dimitar Jetchev.
“Simulating Homomorphic Evaluation of Deep Learning Predictions”. In:
Cyber Security Cryptography and Machine Learning. Ed. by Shlomi Dolev,
Danny Hendler, Sachin Lodha, and Moti Yung. Cham: Springer Interna-
tional Publishing, 2019, pp. 212–230.

[9] F. Bourse, M. Minelli, M. Minihold, and P. Paillier. “Fast Homomorphic
Evaluation of Deep Discretized Neural Networks”. In: Proceedings of
CRYPTO 2018. Springer, 2018.

[10] Florian Bourse, Olivier Sanders, and Jacques Traoré. Improved Secure Inte-
ger Comparison via Homomorphic Encryption. Cryptology ePrint Archive,
Report 2019/427. 2019.

[11] Zvika Brakerski. “Fully Homomorphic Encryption without Modulus Switch-
ing from Classical GapSVP”. In: Advances in Cryptology – CRYPTO 2012.
Ed. by Reihaneh Safavi-Naini and Ran Canetti. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2012, pp. 868–886. isbn: 978-3-642-32009-5.

[12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. “(Leveled) Fully
Homomorphic Encryption without Bootstrapping”. In: Proceedings of the
3rd Innovations in Theoretical Computer Science Conference. ITCS ’12.
Cambridge, Massachusetts: Association for Computing Machinery, 2012,
pp. 309–325. isbn: 9781450311151. doi: 10.1145/2090236.2090262.

[13] Alon Brutzkus, Oren Elisha, and Ran Gilad-Bachrach. “Low Latency Pri-
vacy Preserving Inference”. In: CoRR abs/1812.10659 (2018). arXiv: 1812.
10659. url: http://arxiv.org/abs/1812.10659.

[14] Anne Canteaut, Sergiu Carpov, Caroline Fontaine, Tancrède Lepoint, María
Naya-Plasencia, Pascal Paillier, and Renaud Sirdey. Stream ciphers: A Prac-
tical Solution for Efficient Homomorphic-Ciphertext Compression. Cryptol-
ogy ePrint Archive, Paper 2015/113. 2015. url: https://eprint.iacr.
org/2015/113.

[15] Sergiu Carpov, Paul Dubrulle, and Renaud Sirdey. “Armadillo: A Compila-
tion Chain for Privacy Preserving Applications”. In: Proceedings of the 3rd
International Workshop on Security in Cloud Computing. SCC ’15. Singa-
pore, Republic of Singapore: Association for Computing Machinery, 2015,
pp. 13–19. isbn: 9781450334471. doi: 10.1145/2732516.2732520. url:
https://doi.org/10.1145/2732516.2732520.

[16] Sergiu Carpov, Malika Izabachène, and Victor Mollimard. “New Techniques
for Multi-value Input Homomorphic Evaluation and Applications”. In: Top-
ics in Cryptology – CT-RSA 2019. Ed. by Mitsuru Matsui. Cham: Springer
International Publishing, 2019, pp. 106–126. isbn: 978-3-030-12612-4.

140

[17] Herve Chabanne, Roch Lescuyer, Jonathan Milgram, Constance Morel, and
Emmanuel Prouff. “Recognition Over Encrypted Faces: 4th International
Conference, MSPN 2018, Paris, France”. In: 2019.

[18] Hervé Chabanne, Amaury de Wargny, Jonathan Milgram, Constance Morel,
and Emmanuel Prouff. Privacy-Preserving Classification on Deep Neural
Network. Cryptology ePrint Archive, Report 2017/035. 2017.

[19] Hao Chen, Ilaria Chillotti, and Yongsoo Song. Improved Bootstrapping for
Approximate Homomorphic Encryption. Cryptology ePrint Archive, Paper
2018/1043. 2018. url: https://eprint.iacr.org/2018/1043.

[20] Jun Chen, Hanwen Chen, Mengmeng Wang, Guang Dai, Ivor W. Tsang,
and Yong Liu. Learning Discretized Neural Networks under Ricci Flow.
2023. arXiv: 2302.03390 [cs.LG].

[21] Gong CHENG, Pujian LAI, Decheng GAO, and Junwei HAN. “Class atten-
tion network for image recognition”. In: SCIENCE CHINA Information Sci-
ences 66.3 (2023), pp. 132105–. doi: https://doi.org/10.1007/s11432-
021-3493-7.

[22] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo
Song. Bootstrapping for Approximate Homomorphic Encryption. Cryptol-
ogy ePrint Archive, Paper 2018/153. 2018. url: https://eprint.iacr.
org/2018/153.

[23] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. “Homo-
morphic Encryption for Arithmetic of Approximate Numbers”. In: (2017).
Ed. by Tsuyoshi Takagi and Thomas Peyrin.

[24] Jung Hee Cheon, Duhyeong Kim, and Jai Hyun Park. “Towards a Practi-
cal Clustering Analysis over Encrypted Data”. In: IACR Cryptology ePrint
Archive (2019).

[25] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
“Faster Fully Homomorphic Encryption: Bootstrapping in Less Than 0.1
Seconds”. In: Advances in Cryptology – ASIACRYPT 2016. Ed. by Jung Hee
Cheon and Tsuyoshi Takagi. Berlin, Heidelberg: Springer Berlin Heidelberg,
2016, pp. 3–33. isbn: 978-3-662-53887-6.

[26] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
“Faster Packed Homomorphic Operations and Efficient Circuit Bootstrap-
ping for TFHE”. In: ASIACRYPT. 2017.

[27] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
TFHE: Fast Fully Homomorphic Encryption Library.

141

[28] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
“TFHE: Fast Fully Homomorphic Encryption Over the Torus”. In: Journal
of Cryptology 33 (Jan. 2020). doi: 10.1007/s00145-019-09319-x.

[29] Ilaria Chillotti, Marc Joye, Damien Ligier, Jean-Baptiste Orfila, and Samuel
Tap. CONCRETE: Concrete Operates oN Ciphertexts Rapidly by Extending
TfhE. WAHC 2020 - 8th Workshop on Encrypted Computing & Applied
Homomorphic Cryptography. HAL id:〈hal-03926650〉. 2020.

[30] Ilaria Chillotti, Marc Joye, and Pascal Paillier. “Programmable Bootstrap-
ping Enables Efficient Homomorphic Inference of Deep Neural Networks”.
In: Cyber Security Cryptography and Machine Learning. Ed. by Shlomi
Dolev, Oded Margalit, Benny Pinkas, and Alexander Schwarzmann. Cham:
Springer International Publishing, 2021, pp. 1–19. isbn: 978-3-030-78086-9.

[31] Ilaria Chillotti, Damien Ligier, Jean-Baptiste Orfila, and Samuel Tap. Im-
proved Programmable Bootstrapping with Larger Precision and Efficient
Arithmetic Circuits for TFHE. 2021. url: https://ia.cr/2021/729.

[32] Edward Chou, Josh Beal, Daniel Levy, Serena Yeung, Albert Haque, and
Li Fei-Fei. “Faster CryptoNets: Leveraging Sparsity for Real-World En-
crypted Inference”. In: CoRR abs/1811.09953 (2018). arXiv: 1811.09953.
url: http://arxiv.org/abs/1811.09953.

[33] Pierre-Emmanuel Clet, Aymen Boudguiga, Renaud Sirdey, and Martin Zu-
ber. “ComBo: A Novel Functional Bootstrapping Method for Efficient Eval-
uation of Nonlinear Functions in the Encrypted Domain”. In: Progress in
Cryptology - AFRICACRYPT 2023. Springer, 2023. doi: 10.1007/978-3-
031-37679-5_14.

[34] Pierre-Emmanuel Clet, Oana Stan, and Martin Zuber. “BFV, CKKS,
TFHE: Which One is the Best for a Secure Neural Network Evaluation
in the Cloud?” In: Applied Cryptography and Network Security Workshops.
Lecture Notes in Computer Science. Springer, 2021, pp. 279–300. isbn: 978-
3-030-81645-2. doi: 10.1007/978-3-030-81645-2_16.

[35] Pierre-Emmanuel Clet, Martin Zuber, Aymen Boudguiga, Renaud Sirdey,
and Cédric Gouy-Pailler. Putting up the swiss army knife of homomorphic
calculations by means of TFHE functional bootstrapping. Cryptology ePrint
Archive, Paper 2022/149. 2022. url: https://eprint.iacr.org/2022/
149.

[36] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang,
Eric Tzeng, and Trevor Darrell. “Decaf: A Deep Convolutional Activation
Feature for Generic Visual Recognition”. In: International Conference on
Machine Learning. PMLR, 2014, pp. 647–655.

142

[37] Léo Ducas and Daniele Micciancio. “FHEW: Bootstrapping Homomorphic
Encryption in Less Than a Second”. In: Advances in Cryptology – EURO-
CRYPT 2015. Ed. by Elisabeth Oswald and Marc Fischlin. Berlin, Heidel-
berg: Springer Berlin Heidelberg, 2015, pp. 617–640. isbn: 978-3-662-46800-
5.

[38] T. Elgamal. “A public key cryptosystem and a signature scheme based on
discrete logarithms”. In: IEEE Transactions on Information Theory 31.4
(1985), pp. 469–472. doi: 10.1109/TIT.1985.1057074.

[39] Junfeng Fan and Frederik Vercauteren. Somewhat Practical Fully Homo-
morphic Encryption. Cryptology ePrint Archive, Report 2012/144. 2012.
url: https://ia.cr/2012/144.

[40] Robin Geelen, Ilia Iliashenko, Jiayi Kang, and Frederik Vercauteren. On
Polynomial Functions Modulo pe and Faster Bootstrapping for Homomor-
phic Encryption. Cryptology ePrint Archive, Paper 2022/1364. 2022. doi:
10.1007/978-3-031-30620-4_9. url: https://eprint.iacr.org/2022/
1364.

[41] Robin Geelen and Frederik Vercauteren. Bootstrapping for BGV and BFV
Revisited. Cryptology ePrint Archive, Paper 2022/1363. 2022. doi: 10 .
1007/s00145-023-09454-6. url: https://eprint.iacr.org/2022/
1363.

[42] Craig Gentry. “A Fully Homomorphic Encryption Scheme”. PhD thesis.
Stanford, CA, USA, 2009. isbn: 9781109444506.

[43] Craig Gentry, Shai Halevi, and Nigel P. Smart. Better Bootstrapping in
Fully Homomorphic Encryption. 2011. url: https://eprint.iacr.org/
2011/680.

[44] Craig Gentry, Shai Halevi, and Nigel P. Smart. Fully Homomorphic Encryp-
tion with Polylog Overhead. Cryptology ePrint Archive, Paper 2011/566.
2011. url: https://eprint.iacr.org/2011/566.

[45] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael
Naehrig, and John Wernsing. “CryptoNets: Applying Neural Networks to
Encrypted Data with High Throughput and Accuracy”. In: Proceedings of
The 33rd International Conference on Machine Learning. Ed. by Maria
Florina Balcan and Kilian Q. Weinberger. Vol. 48. Proceedings of Machine
Learning Research. New York, New York, USA: PMLR, June 2016, pp. 201–
210. url: https://proceedings.mlr.press/v48/gilad-bachrach16.
html.

143

[46] Shafi Goldwasser and Silvio Micali. “Probabilistic Encryption & How to
Play Mental Poker Keeping Secret All Partial Information”. In: Proceed-
ings of the Fourteenth Annual ACM Symposium on Theory of Comput-
ing. Association for Computing Machinery, 1982. isbn: 0897910702. doi:
10.1145/800070.802212.

[47] Shruthi Gorantala et al. A General Purpose Transpiler for Fully Homomor-
phic Encryption. Cryptology ePrint Archive, Paper 2021/811. 2021. url:
https://eprint.iacr.org/2021/811.

[48] Antonio Guimarães, Edson Borin, and Diego F. Aranha. “Revisiting the
functional bootstrap in TFHE”. In: 2021 (Feb. 2021), pp. 229–253. doi:
10.46586/tches.v2021.i2.229-253.

[49] Minglun Han, Qingyu Wang, Tielin Zhang, Yi Wang, Duzhen Zhang, and
Bo Xu. Complex Dynamic Neurons Improved Spiking Transformer Net-
work for Efficient Automatic Speech Recognition. 2023. arXiv: 2302.01194
[cs.NE].

[50] Martin Hell, Thomas Johansson, Alexander Maximov, Willi Meier, and Hi-
rotaka Yoshida. Grain-128AEADv2: Strengthening the Initialization Against
Key Reconstruction. Cryptology ePrint Archive, Report 2021/751. 2021.
url: https://ia.cr/2021/751.

[51] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-term Memory”. In:
Neural computation 9 (Dec. 1997), pp. 1735–80. doi: 10.1162/neco.1997.
9.8.1735.

[52] Kai Huang, Bowen Li, Dongliang Xiong, Haitian Jiang, Xiaowen Jiang,
Xiaolang Yan, Luc Claesen, Dehong Liu, Junjian Chen, and Zhili Liu.
“Structured Dynamic Precision for Deep Neural Networks Quantization”.
In: ACM Trans. Des. Autom. Electron. Syst. 28.1 (2023). issn: 1084-4309.
doi: 10.1145/3549535.

[53] M. Izabachène, R. Sirdey, and M. Zuber. “Practical Fully Homomorphic
Encryption for Fully Masked Neural Networks”. In: Cryptology and Net-
work Security - 18th International Conference, CANS 2019, Proceedings.
Vol. 11829. Lecture Notes in Computer Science. Springer, 2019, pp. 24–36.

[54] Angela Jäschke and Frederik Armknecht. “Unsupervised Machine Learning
on Encrypted Data”. In: IACR Cryptology ePrint Archive (2018).

[55] Charanjit Singh Jutla and Nathan Manohar. Sine Series Approximation of
the Mod Function for Bootstrapping of Approximate HE. Cryptology ePrint
Archive, Paper 2021/572. 2021. url: https://eprint.iacr.org/2021/
572.

144

[56] Brady Kieffer, Morteza Babaie, Shivam Kalra, and H. R. Tizhoosh. “Convo-
lutional Neural Networks for Histopathology Image Classification: Training
vs. Using Pre-Trained Networks”. In: arXiv:1710.05726 [cs] (Oct. 2017).
arXiv: 1710.05726 [cs].

[57] Kamil Kluczniak and Leonard Schild. FDFB: Full Domain Functional Boot-
strapping Towards Practical Fully Homomorphic Encryption. Cryptology
ePrint Archive, Report 2021/1135. 2021. url: https://ia.cr/2021/1135.

[58] Alex Krizhevsky. “Learning Multiple Layers of Features from Tiny Images”.
In: University of Toronto (May 2012).

[59] Kwok-Yan Lam, Xianhui Lu, Linru Zhang, Xiangning Wang, Huaxiong
Wang, and Si Qi Goh. Efficient FHE-based Privacy-Enhanced Neural Net-
work for AI-as-a-Service. Cryptology ePrint Archive, Paper 2023/647. 2023.
url: https://eprint.iacr.org/2023/647.

[60] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. “Gradient-based learning
applied to document recognition”. In: Proceedings of the IEEE 86.11 (1998),
pp. 2278–2324. doi: 10.1109/5.726791.

[61] Jaehyeok Lee, Phap Ngoc Duong, and Hanho Lee. “Configurable Encryption
and Decryption Architectures for CKKS-Based Homomorphic Encryption”.
In: Sensors 23.17 (2023). issn: 1424-8220. doi: 10.3390/s23177389. url:
https://www.mdpi.com/1424-8220/23/17/7389.

[62] Yongwoo Lee, Joon-Woo Lee, Young-Sik Kim, Yongjune Kim, Jong-Seon
No, and HyungChul Kang. High-Precision Bootstrapping for Approximate
Homomorphic Encryption by Error Variance Minimization. Cryptology
ePrint Archive, Paper 2020/1549. 2020. url: https://eprint.iacr.org/
2020/1549.

[63] Feng-Hao Liu and Han Wang. “Batch Bootstrapping II: Bootstrapping in
Polynomial Modulus Only Requires Õ(1) FHE Multiplications in Amorti-
zation”. In: Springer-Verlag, 2023. doi: 10.1007/978-3-031-30620-4_12.

[64] Zeyu Liu, Daniele Micciancio, and Yuriy Polyakov. “Large-Precision Ho-
momorphic Sign Evaluation Using FHEW/TFHE Bootstrapping”. In: Ad-
vances in Cryptology – ASIACRYPT 2022: 28th International Conference
on the Theory and Application of Cryptology and Information Security,
Taipei, Taiwan, December 5–9, 2022, Proceedings, Part II. Taipei, Tai-
wan: Springer-Verlag, 2023, pp. 130–160. isbn: 978-3-031-22965-7. doi:
10.1007/978-3-031-22966-4_5.

145

[65] Qian Lou, Bo Feng, Geoffrey Charles Fox, and Lei Jiang. “Glyph: Fast and
Accurately Training Deep Neural Networks on Encrypted Data”. In: Ad-
vances in Neural Information Processing Systems. Ed. by H. Larochelle, M.
Ranzato, R. Hadsell, M. F. Balcan, and H. Lin. Vol. 33. Curran Associates,
Inc., 2020, pp. 9193–9202.

[66] Qian Lou and Lei Jiang. “SHE: A Fast and Accurate Privacy-Preserving
Deep Neural Network Via Leveled TFHE and Logarithmic Data Represen-
tation”. In: CoRR abs/1906.00148 (2019). arXiv: 1906.00148. url: http:
//arxiv.org/abs/1906.00148.

[67] Sergei Lozhkin and Alexander Shiganov. “On a Modification of Lupanov’s
Method with More Uniform Distribution of Fan-out.” In: Electronic Collo-
quium on Computational Complexity (ECCC) 18 (Jan. 2011), p. 130.

[68] V Lyubashevsky, C. Peikert, and O. Regev. “On ideal lattices and learning
with errors over rings”. In: (2010).

[69] Abbass Madi, Oana Stan, Aurélien Mayoue, Arnaud Grivet-Sébert, Cédric
Gouy-Pailler, and Renaud Sirdey. “A Secure Federated Learning framework
using Homomorphic Encryption and Verifiable Computing”. In: 2021, pp. 1–
8. doi: 10.1109/RDAAPS48126.2021.9452005.

[70] Anne-Sofie Maerten and Derya Soydaner. From paintbrush to pixel: A re-
view of deep neural networks in AI-generated art. 2023. arXiv: 2302.10913
[cs.LG].

[71] Carlos Aguilar Melchor, Philippe Gaborit, and Javier Herranz. “Additively
Homomorphic Encryption with d-Operand Multiplications”. In: Advances
in Cryptology – CRYPTO 2010. Springer Berlin Heidelberg, 2010, pp. 138–
154. doi: 10.1007/978-3-642-14623-7_8.

[72] Daniele Micciancio. “The Shortest Vector Problem is NP-hard to approxi-
mate to within some constant”. In: SIAM Journal on Computing 30.6 (Mar.
2001). Preliminary version in FOCS 1998, pp. 2008–2035. doi: 10.1137/
S0097539700373039.

[73] Romain Mormont, Pierre Geurts, and Raphaël Marée. “Comparison of Deep
Transfer Learning Strategies for Digital Pathology”. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition Workshops.
2018, pp. 2262–2271.

[74] Karthik Nandakumar, Nalini Ratha, Sharath Pankanti, and Shai Halevi.
“Towards Deep Neural Network Training on Encrypted Data”. In: 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition Work-
shops (CVPRW). 2019, pp. 40–48. doi: 10.1109/CVPRW.2019.00011.

146

[75] Varun Kumar Ojha, Ajith Abraham, and Václav Snášel. “Metaheuristic
design of feedforward neural networks: A review of two decades of research”.
In: Engineering Applications of Artificial Intelligence 60 (2017), pp. 97–116.
issn: 0952-1976. doi: https://doi.org/10.1016/j.engappai.2017.01.
013.

[76] OpenAI. GPT-4 Technical Report. 2023. arXiv: 2303.08774 [cs.CL].

[77] Pascal Paillier. “Public-Key Cryptosystems Based on Composite Degree
Residuosity Classes”. In: Proceedings of the 17th International Conference
on Theory and Application of Cryptographic Techniques. EUROCRYPT’99.
Prague, Czech Republic: Springer-Verlag, 1999, pp. 223–238. isbn: 354065
8890.

[78] Hariharan Ravishankar, Prasad Sudhakar, Rahul Venkataramani, Sheshadri
Thiruvenkadam, Pavan Annangi, Narayanan Babu, and Vivek Vaidya. “Un-
derstanding the Mechanisms of Deep Transfer Learning for Medical Images”.
In: arXiv:1704.06040 [cs] (Apr. 2017). arXiv: 1704.06040 [cs].

[79] Oded Regev. “On Lattices, Learning with Errors, Random Linear Codes,
and Cryptography”. In: (2005).

[80] R L Rivest, L Adleman, and M L Dertouzos. “On Data Banks and Privacy
Homomorphisms”. In: Foundations of Secure Computation, Academia Press
(1978), pp. 169–179.

[81] R. L. Rivest, A. Shamir, and L. Adleman. “A Method for Obtaining Digital
Signatures and Public-Key Cryptosystems”. In: Commun. ACM (1978).
issn: 0001-0782. doi: 10.1145/359340.359342.

[82] Frank Rosenblatt. “The perceptron: a probabilistic model for information
storage and organization in the brain.” In: Psychological review 65.6 (1958),
p. 386.

[83] Tomas Sander, Adam Young, and Moti Yung. “Non-Interactive Crypto-
Computing For NC1”. In: Proceedings of the 40th Annual Symposium on
Foundations of Computer Science. FOCS ’99. USA: IEEE Computer Soci-
ety, 1999, p. 554. isbn: 0769504094.

[84] Murat H. Sazlı. “A brief review of feed-forward neural networks”. In: Com-
munications Faculty of Sciences University of Ankara Series A2-A3 Phys-
ical Sciences and Engineering 50.01 (2006). doi: 10.1501/commua1-2\
_0000000026.

[85] Microsoft SEAL (release 3.2). https://github.com/Microsoft/SEAL.
Microsoft Research, Redmond, WA. Feb. 2019.

147

[86] Arnaud Grivet Sébert, Rafael Pinot, Martin Zuber, Cédric Gouy-Pailler,
and Renaud Sirdey. “SPEED: secure, PrivatE, and efficient deep learning”.
In: Mach. Learn. 110.4 (2021), pp. 675–694. doi: 10.1007/s10994-021-
05970-3.

[87] Pierre Sermanet, David Eigen, Xiang Zhang, Michaël Mathieu, Rob Fergus,
and Yann LeCun. “Overfeat: Integrated Recognition, Localization and De-
tection Using Convolutional Networks”. In: arXiv preprint arXiv:1312.6229
(2013). arXiv: 1312.6229.

[88] Ali Sharif Razavian, Hossein Azizpour, Josephine Sullivan, and Stefan Carls-
son. “CNN Features Off-the-Shelf: An Astounding Baseline for Recogni-
tion”. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops. 2014, pp. 806–813.

[89] David Silver et al. “Mastering the Game of Go with Deep Neural Networks
and Tree Search”. In: Nature 529 (2016), pp. 484–489. doi: 10 . 1038 /
nature16961.

[90] Karen Simonyan and Andrew Zisserman. “Very Deep Convolutional Net-
works for Large-Scale Image Recognition”. In: (2014). arXiv: 1409.1556.

[91] N. P. Smart and F. Vercauteren. Fully Homomorphic SIMD Operations.
Cryptology ePrint Archive, Paper 2011/133. 2011. url: https://eprint.
iacr.org/2011/133.

[92] Oana Stan., Vincent Thouvenot., Aymen Boudguiga., Katarzyna Kapusta.,
Martin Zuber., and Renaud Sirdey. “A Secure Federated Learning: Analy-
sis of Different Cryptographic Tools”. In: Proceedings of the 19th Interna-
tional Conference on Security and Cryptography - SECRYPT. INSTICC.
SciTePress, 2022, pp. 669–674. isbn: 978-989-758-590-6. doi: 10.5220/
0011322700003283.

[93] Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa. Efficient
Public Key Encryption Based on Ideal Lattices. Cryptology ePrint Archive,
Paper 2009/285. 2009. url: https://eprint.iacr.org/2009/285.

[94] Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, and
Chunfang Liu. “A Survey on Deep Transfer Learning”. In: International
Conference on Artificial Neural Networks. Springer, 2018, pp. 270–279.

[95] Yingjie Tian, Yuqi Zhang, and Haibin Zhang. “Recent Advances in Stochas-
tic Gradient Descent in Deep Learning”. In: Mathematics 11.3 (2023). issn:
2227-7390. doi: 10.3390/math11030682.

[96] Daphné Trama, Pierre-Emmanuel Clet, Aymen Boudguiga, and Renaud
Sirdey. “At Last! A Homomorphic AES Evaluation in Less than 30 Seconds
by Means of TFHE”. In: IACR Cryptol. ePrint Arch. (2023), p. 1020.

148

[97] Daphné Trama, Pierre-Emmanuel Clet, Aymen Boudguiga, and Renaud
Sirdey. “Building Blocks For LSTM Homomorphic Evaluation With TFHE”.
In: Cyber Security, Cryptology, and Machine Learning: 7th International
Symposium, CSCML 2023, Be’er Sheva, Israel, June 29–30, 2023, Proceed-
ings. Be’er Sheva, Israel: Springer-Verlag, 2023, pp. 117–134. isbn: 978-
3-031-34670-5. doi: 10 . 1007 / 978 - 3 - 031 - 34671 - 2 _ 9. url: https :
//doi.org/10.1007/978-3-031-34671-2_9.

[98] Jonathan Woodbridge, Hyrum S. Anderson, Anjum Ahuja, and Daniel
Grant. “Predicting Domain Generation Algorithms with Long Short-Term
Memory Networks”. In: CoRR abs/1611.00791 (2016). arXiv: 1611.00791.
url: http://arxiv.org/abs/1611.00791.

[99] Pengtao Xie, Misha Bilenko, Tom Finley, Ran Gilad-Bachrach, Kristin E.
Lauter, and Michael Naehrig. “Crypto-Nets: Neural Networks over En-
crypted Data”. In: CoRR (2014).

[100] Zhaomin Yang, Xiang Xie, Huajie Shen, Shiying Chen, and Jun Zhou.
TOTA: Fully Homomorphic Encryption with Smaller Parameters and
Stronger Security. Cryptology ePrint Archive, Report 2021/1347. 2021.
url: https://ia.cr/2021/1347.

[101] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. “How Transfer-
able Are Features in Deep Neural Networks?” In: (2014). arXiv: 1411.1792.

[102] Xixun Yu, Zheng Yan, and Athanasios V Vasilakos. “A survey of verifiable
computation”. In: Mobile Networks and Applications 22 (2017), pp. 438–
453.

[103] Matthew D. Zeiler and Rob Fergus. “Visualizing and Understanding Convo-
lutional Networks”. In: European Conference on Computer Vision. Springer,
2014, pp. 818–833.

[104] Yutong Zhong. “An Overview of RSA and OAEP Padding”. In: Highlights
in Science, Engineering and Technology 1 (2022). doi: 10.54097/hset.
v1i.431.

[105] Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Heng-
shu Zhu, Hui Xiong, and Qing He. “A Comprehensive Survey on Transfer
Learning”. In: Proceedings of the IEEE 109.1 (2020), pp. 43–76.

[106] Mingyu Zong and Bhaskar Krishnamachari. a survey on GPT-3. 2022.
arXiv: 2212.00857 [cs.CL].

149

[107] Martin Zuber, Sergiu Carpov, and Renaud Sirdey. “Towards Real-Time
Hidden Speaker Recognition by Means of Fully Homomorphic Encryption”.
In: Information and Communications Security. Ed. by Weizhi Meng, Di-
eter Gollmann, Christian D. Jensen, and Jianying Zhou. Cham: Springer
International Publishing, 2020, pp. 403–421. isbn: 978-3-030-61078-4.

[108] Martin Zuber and Renaud Sirdey. “Efficient homomorphic evaluation of k-
NN classifiers”. In: Proc. Priv. Enhancing Technol. 2021.2 (2021), pp. 111–
129. doi: 10.2478/popets-2021-0020.

150

