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École doctorale n◦626 École doctorale de l’Institut Polytechnique de Paris (EDIPP)
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Abstract

The present study deals with computer-aided design, 3D-printing, large strain numerical
simulation, and experimental testing of random geometries with focus on porous mate-
rials. In particular, we attempt to assess the effect of random porous features on the
mechanical response at large strain by comparing the response of well-chosen random and
periodic porous geometries. We first investigate the computer-aided design process of a
variety of porous geometries including random polydisperse porous materials with spheri-
cal and ellipsoidal voids, standard eroded Voronoi geometries, hexagonal honeycombs, and
TPMS structures. In addition, we propose a novel computer-design strategy to obtain
a new type of random Voronoi-type porous materials called M-Voronoi (from mechan-
ically grown) with smooth void shapes and variable intervoid ligament sizes that can
reach very low relative densities. This is achieved via a numerical, large strain, nonlinear
elastic, void growth mechanical process. The proposed M-Voronoi method is general and
can be applied to create both two and three-dimensional random geometries and allows
the formation of isotropic or anisotropic materials. The void growth process is a direct
consequence of mass conservation and the incompressibility of the surrounding nonlinear
elastic matrix phase and the final achieved relative density may be analytically estimated
in terms of the determinant of the applied deformation gradient. The extremely low den-
sities in the M-Voronoi geometries are achieved through an intermediate remesh step in
the virtual fabrication process. For this purpose, we developed a versatile and general
remeshing algorithm based on the geometry reconstruction of an orphan mesh that can
handle arbitrarily complex meshes, including those that contain voids or multiple phases.
Moreover, the studied random geometries are general to model seamlessly a wide range
of composites involving particles, multi-phase, and even polycrystals with finite interfaces
under mechanical or coupled loads (e.g. magneto-electro mechanical, etc.).

In the next part of the study, we fabricate the designed porous materials by means of
a polymer 3D-printer via PolyJet technology and a UV-curable resin called TangoBlack
which is a highly viscous soft polymer with brittle fracture. Meanwhile, the viscous be-
havior of TangoBlack is studied under uni-axial tensile, loading-unloading, and relaxation
tests on a new proposed specimen geometry and is subsequently characterized by a non-
linear rubber viscoelastic model for incompressible isotropic elastomers. We then use this
material to 3D-print the designed two-dimensional porous materials with square represen-
tative geometries and isotropic/anisotropic features in terms of void size and realization.
The mechanical response of the fabricated porous materials is experimentally investigated
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by testing them under uni-axial large strain compression and very low strain rates. We
show that the randomness of the proposed M-Voronoi geometries and their non-uniform in-
tervoid ligament size leads to enhanced mechanical properties at large compressive strains
with no apparent peak-stress and strong hardening well before densification, while they
become very close to random eroded Voronoi geometries at low densities.

In the last part of this study, we investigate numerically the mechanical properties of
the three-dimensional random porous geometries consisting of M-Voronoi, polydisperse
porous materials with spherical voids, and the classical TPMS-like geometries. The sim-
ulations are performed at large strains under compression loading while considering the
matrix an elastic-perfectly plastic material without hardening. We observe an enhanced
plastic flow stress in the geometries with random topologies as opposed to the TPMS
periodic structures. This behavior is explained by noting that deformation localizes in
geometries with a periodic pattern, contrary to the random geometries which exhibit a
rather diffused localization.

Key words: Architected materials, Porous materials, Void growth, additive manu-
facturing, finite strain experiments, homogenization



Résumé

Cette étude porte sur la conception assistée par ordinateur, l’impression 3D, la simulation
numérique à grandes transformations et la caractérisation expérimentale de géométries
aléatoires, en mettant l’accent sur les matériaux poreux. En particulier, nous cherchons
à quantifier l’effet des architectures aléatoires sur la réponse mécanique en grandes trans-
formations de géométries poreuses aléatoires et périodiques bien choisies. Dans un pre-
mier temps, nous nous intéressons à la conception assistée par ordinateur d’une variété
de géométries poreuses, y compris les matériaux contentant des distributions aléatoires
de pores sphériques et ellipsöıdaux, des structures Voronöı, à d’abeilles et TPMS. Par
ailleurs, nous proposons une nouvelle famille de matériaux poreux de type Voronöı ap-
pelés M-Voronöı (de mécaniquement cultivé) contenant de pores de taille hétérogène et
de ligaments d’épaisseur variable. Ces matériaux peuvent atteindre des densités relatives
très faibles, et sont obtenus à l’aide de simulations numériques par un processus de crois-
sance de pores dans une matrice élastique non linéaire et à grandes transformations. La
méthode M-Voronöı proposée est versatile et peut être appliquée pour créer des géométries
aléatoires bidimensionnelles et tridimensionnelles avec (an-)isotropie contrôlée. Cette
méthode de génération découle de la conservation de la masse et de l’incompressibilité de
la matrice. Les densités extrêmement faibles des géométries M-Voronöı sont obtenues par
une étape intermédiaire de remaillage dans le processus de fabrication virtuelle. Pour ce
faire, un nouveau algorithme de remaillage a été proposé. Ceci repose sur la reconstruc-
tion de la géométrie d’un maillage orphelin qui peut traiter des maillages arbitrairement
complexes, contenant des phases multiples. De ce fait, les géométries M-Voronoi peuvent
être utilisés pour modéliser de nombreux matériaux composites (y compris ceux à renfort
de particules), ainsi que les polycristaux sous des charges mécaniques ou couplées (par
exemple magnéto-électro-mécanique, etc.).

Dans un deuxième temps, nous nous sommes intéressés à la caractérisation expérimentale
des matériaux poreux ainsi obtenus. Ceux-ci ont été fabriqués par impression 3D polymère
via la technologie PolyJet en utilisant une résine, appelée TangoBlack moue hautement
visqueuse, dont la loi de comportement a été quantifiée à l’aide des essais mécaniques
et caractérisé par un modèle viscoélastique non linéaire formulé pour les élastomères
isotropes incompressibles. Par la suite, des essais de compression uni-axiales ont été menés
pour étudier la réponse mécanique de structures poreuses 3D-imprimées en Tangoblack.
Ceux-ci ont montrés que, dans le régime de grandes transformations les géométries M-
Voronöı ont des propriétés mécaniques améliorées du fait de leur architecture poreuse.
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Notamment, leur réponse sous compression durcie bien avant la densification et devient
similaire à celle de géométries Voronöı aléatoires érodées à de faibles densités.

Dans la dernière partie de cette étude, nous avons étudié à l’aide de simulations
numériques les propriétés mécaniques des géométries poreuses aléatoires tridimension-
nelles constituées de M-Voronöı, de matériaux poreux polydispersés avec des vides sphériques,
et des géométries classiques de type TPMS. Les simulations ont été menées à grandes
transformations sous une charge de compression tout en considérant la matrice comme un
matériau élastique-parfaitement plastique sans durcissement. Ces résultats ont montré
que l’écoulement plastique accrue dans les géométries à topologies aléatoires par rap-
port aux structures périodiques TPMS. Ce comportement est expliqué en observant que
la déformation se localise dans les géométries avec motif périodique, contrairement aux
géométries aléatoires qui présentent une localisation plutôt diffusée.

Mots clés: Matériaux architecturés, Matériaux poreux, Croissance de cavités, Fabri-
cation additive, Expériences de déformation finie, Homogénéisation
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1.1 Randomness versus periodicity

The characteristics of composite materials can be classified in a variety of ways. Given
that the subject is vast, we focus in the following mostly on porous or cellular materials.
There is an important classification that pertains to the topologies of porous materials
and divides them into periodic and random topologies. Studies of periodic cellular ma-
terials date back to the 1950s. Geometries of this type are often created by repeating
elementary unit-cells in 2D or 3D. These materials have been extensively used to design
lightweight cellular materials with high strength-to-weight ratios. Furthermore, the effect
of unit-cell geometry on periodic cellular materials has also been investigated extensively.
Nevertheless, the inherent instabilities of these geometries are not adequately addressed in
these studies (Singamaneni and Tsukruk, 2010). Instabilities in periodic geometries often
result in buckles and localized deformations (Combescure et al., 2016, 2020; Balit et al.,
2021; Dong et al., 2015; Andrew et al., 2021). Moreover, these geometries are often de-
signed to be 3D-printed with different materials such as polymers and metals and various
3D-printing methods like powder bed fusion (Heinl et al., 2007), stereolithography (Hengs-
bach and Lantada, 2014) and 3D laser lithography (Schaedler et al., 2011). However, no
3D-printing technique is flawless, and all of them produce varying levels of imperfections
in the printed parts depending on the 3D-printing accuracy. Figures 1.1a,b represent the
examples of the manufactured periodic geometries, while Figures 1.1c,d,e,f,g illustrate the
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geometrical imperfections created by the 3D-printing process. In most periodic cellular
materials, imperfections include missing geometrical elements (such as beams, holes, and
walls), varying cross-section, waviness, misplaced nodes, additional voids, joint separa-
tions, material augmentation, etc. (De Angelo et al., 2019; Grenestedt, 1998; Grenestedt
and Tanaka, 1998; Ronan et al., 2016). Noteworthy is the study of Symons and Fleck
(2008) on the imperfection sensitivity of the effective elastic properties for three planar
isotropic lattices: fully triangulated, the Kagome grid, and the hexagonal honeycomb. It
is shown that the moduli of the chosen lattices are degraded significantly by imperfections.
The imperfection sensitivity of periodic cellular materials results in an experimental re-
sponse that is not in accordance with the numerically predicted response. This is due to
the fact that the numerical model does not account for imperfections. Periodic cellular
materials are also characterized by their direction-dependent mechanical properties and
inherent anisotropy (Dirrenberger et al., 2013). In this case, anisotropy can be viewed
as an undesirable property, especially when the structure is exposed to an unknown load
(i.e. a load of unknown magnitude and direction).

In contrast to periodic cellular materials, random topologies are more common in na-
ture and biological tissues. Furthermore, natural periodic materials that are interpreted as
periodic geometries often contain a certain irregularity. Honeycombs of bees, for example,
are not as perfect as numerically designed hexagonal lattices (Ashby and Gibson, 1997).
Figures 1.2a-i represent a few examples of random topologies containing irregular voids
or particles that are observed in different natural porous materials. In these materials,
not only do the voids have varying sizes and shapes, but also a gradient of porosity and
consequently mechanical properties might be present (see Figure 1.2c). The complexity
of the structural topology in random cellular materials makes their geometry realization
very challenging. Several structural models have been developed by replacing the actual
random topology with those that have simpler periodic or random geometries. Replac-
ing random geometry with a periodic structure has two major drawbacks. First, they
lack microstructural characteristics such as random cell size, shape, orientation, and po-
sition. Secondly, they often have instabilities and direction-dependent properties, which
make their response far from random geometry (see Warren and Kraynik (1997) for liq-
uid foams, and Simone and Gibson (1998) for metal foams). One of the most popular
methods for the numerical construction of random foams is tomography scanning of the
real microstructure, which creates exact random geometry. This method uses X-ray com-
puted tomography scans to characterize the microstructures (Ghazi et al., 2020; Wang
et al., 2021). As a drawback, this method requires the user to perform the scanning
procedure each time in order to analyze the samples numerically. In this regard, it is
necessary to construct realistic random geometries based on the general properties of real
microstructures rather than on the exact properties of the microstructures themselves.
Using additive manufacturing techniques, we can also design random geometries with
controlled properties.

Many studies have been conducted on methods of creating random geometries. One
of the oldest random geometries corresponds to microstructures containing randomly dis-
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Figure 1.1: Periodic lattices and their geometrical imperfections created by the manu-
facturing process: (a) 20 mm cube lattice structures based on the BCC unit cell (Smith
et al., 2013), (b) Octet-truss lattice material made from a casting aluminum alloy, LM25
(Deshpande et al., 2001), (c) SEM images of lattice struts showing the variation of strut
diameter along its length (Smith et al., 2013), (d) Geometrical irregularities in an L-PBF
lattice: strut waviness and strut cross-section variation on a horizontal strut (Liu et al.,
2017), (e) Example of filleted cubic lattice showing excess material accumulated on the
down-facing surface of the horizontal struts (Benedetti et al., 2021), (f) Boundary irreg-
ularity and spherical pores of varying sizes in a beam of a Pantographic structure that
is additively manufactured by aluminum (De Angelo et al., 2019), (g) Imperfections of a
pantographic sheet with a beam diameter of 1mm manufactured of AlSi10Mg (De Angelo
et al., 2019).

tributed spherical voids generated by the random sequential adsorption (RSA) or random
closed packing (RCP) methods (Lubachevsky et al., 1991; Torquato, 2002). In the con-
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Figure 1.2: Composite materials with random inclusions: (a) optical micrograph of the
Al-matrix composites containing a dense random packing of polygonal Al2O3 particles
(Tarantino and Mortensen, 2022), (b) cedar (Gibson et al., 2010), (c) Alporas metallic
foam (Gibson, 2000), (d) Scanning electron microscopy (SEM) images of carbonyl iron
(CI) particles in silicone matrix (Perales-Mart́ınez et al., 2017), (e) skull (Gibson et al.,
2010), (f) trabecular bone (Gibson et al., 2010), (g) Histological cross-sections of the
healthy (left) and pathologic(right) muscle tissues (Spyrou et al., 2019), (h) SEM image
of the NdFeB particles in the PDMS matrix (Linke et al., 2016), (i) Microstructure of
rigid polyurethane foam (Kairytė et al., 2020).

text of the RSA algorithm, several modifications have been applied to employ it in more
general cases. Segurado and Llorca (2002) modified the algorithm to create RSA geome-
tries with periodic unit-cell boundaries while keeping the minimum distance between the
voids. Later on, Pierard et al. (2007) extended the RSA algorithm to create random
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ellipsoidal inclusions. In the work of Lopez-Pamies et al. (2013), another modification
to the RSA algorithm has been proposed to construct polydisperse microstructures with
different families of particle sizes. The most general case of the RSA algorithm is proposed
by Anoukou et al. (2018) which contains all the aforementioned features. It employs a
robust and iterative numerical method to find the minimum distance between the inclu-
sions. It is imperative to note that one of the major limitations of RSA geometries is their
limited range of inclusion volume fractions (porosity in the case of voids). With the RSA
algorithm, due to the irreversible nature of the sequential process, it is difficult to achieve
large volume fractions while maintaining the non-overlapping condition. It becomes even
more challenging if the inclusions must be distributed in a monodisperse manner. In
this case, the maximum volume fraction approximately corresponds to 0.38 and 0.55 for
3D and 2D RSA, respectively (Feder (1980), Cooper (1988)). In order to overcome the
volume fraction limit, one must create polydisperse distributions to fill the unit-cell with
smaller inclusion sizes. Nevertheless, even with polydisperse distribution, reaching large
volume fractions with representative microstructure (greater than 0.8 in 3D and 0.9 in 2D)
becomes extremely difficult and requires a large number of inclusions. In terms of man-
ufacturing, depending on the method employed, a minimum distance between inclusions
must be maintained. This value is determined by the accuracy of the 3D printing process.
This constraint will lead to an increasingly large small-to-large void size ratio, which will
result in large polydispersity when reaching a large volume fraction of the inclusions. We
will show in this study that current additive manufacturing technologies have difficulties
producing material geometries with a representative response, especially in the nonlinear
regime. As a final point, we would like to point out that the anisotropy of RSA geometries
can be imposed and controlled by the use of ellipsoidal inclusions oriented in a particular
direction (Anoukou et al., 2018).

Another type of random porous geometries corresponds to Voronoi tessellation ge-
ometries that are generated by the Laguerre-Voronoi diagram algorithm. This algorithm
divides the space into polygonal cells with constant thickness and variable length (Spy-
rou et al., 2019). The use of Voronoi geometries is very common in the simulation of
polycrystalline microstructures which are modeled as composite materials. In this study,
we are specifically interested in porous Voronoi geometries. In this case, the Voronoi tes-
sellation geometries lack two significant characteristics of real random geometries which
are the variable cell wall thickness and the smooth corners. These two limitations make
Voronoi tessellation geometries prone to localized deformation when subjected to com-
pressive loading.

Spinodal topologies are another type of random geometries (Hsieh et al., 2019; Ku-
mar et al., 2020). These geometries cover a limited density range between 0.7 and 0.2
(Maskery et al., 2017; Hsieh et al., 2019), whereas corresponding shell models can achieve
ultra-low densities but usually lead to an anisotropic response beyond the linear elastic
response. However, in the latter, due to their perfect periodicity, they are susceptible
to long wavelength instabilities and localization bands that span the entire specimen. In
turn, Gaussian type topologies have only a limited range of mechanical responses and
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are known to be non-optimal (Roberts and Garboczi, 2001; Zerhouni et al., 2021) when
compared with rigorous mathematical bounds in linear elasticity but can be versatile in
obtaining isotropic and anisotropic responses by design (Kumar et al., 2020). By contrast,
RSA porous geometries (Zerhouni et al., 2019; Tarantino et al., 2019) are mechanically
nearly optimal in the linear regime as their moduli have been shown (both numerically and
experimentally) to lie very close to the Hashin-Shtrikman bounds (Hashin and Shtrikman,
1963).

We close this section with a summary of the main points discussed in random and pe-
riodic cellular materials. In contrast to periodic geometries, random topologies inherently
contain imperfections because they are naturally imperfect. Therefore, the existing im-
perfections in 3D-printing methods are expected to not significantly affect the response of
random topologies. This advantage has made them resilient when subjected to unknown
mechanical loading. Furthermore, since they distribute the deformation, they do not show
instabilities or banding localization at the global microstructure level. In turn, they con-
tain local buckling instabilities in the individual cell walls. It is important to note that as
compared to random geometries, achieving large porosities in periodic topologies is much
easier. Both RSA and spinodal random topologies are unable to reach large porosities
with representative geometries. In contrast, the Voronoi tessellation method enables us
to reach a full range of porosity. However, these geometries comprise a constant wall
thickness and sharp corners, leading to a more localized response. Finally, in contrast to
the periodic topologies, providing a sufficient number of inclusions in random geometries
results in an isotropic response in both small and large strains.

1.2 Morphogenesis methods

Numerous living organisms, from plants to animals, possess a distinctive internal architec-
ture that evolves during ontogeny. Morphological evolution in natural systems underpins
a variety of life functions, including growth, locomotion and predation. For example,
plants transport water and other minerals through an intricate network of hollow chan-
nels, the aerenchyma, whose size and shape change during plant growth (Corson et al.,
2009; Zhao et al., 2018). Likewise, skeletal muscles enable us to run and walk via the
contraction of multiply innervated (randomly distributed) fibers whose surrounding con-
nective tissue, the extracellular matrix, thickens during motoneuron lesions (Tidball and
Wehling-Henricks, 2004; Spyrou et al., 2019). These are only a few enticing examples that
show the functional diversity enabled in living organisms by morphogenesis.

Unlike nature where morphogenesis occurs naturally via multiple actuation mecha-
nisms (chemical, mechanical, electrical, thermal, etc.), synthetic systems require robust
computational algorithms or man-made processing methods to evolve. Over the past two
decades, significant efforts have been made to harness computational morphogenesis in
synthetic structures. Examples are numerous and can be found in many areas of research
including materials science (Portela et al., 2020; Tarantino et al., 2019; Zerhouni et al.,
2019; Kumar et al., 2020), mechanobiology (Spyrou et al., 2019; Zhao et al., 2018; Ma
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et al., 2021), design (Mart́ınez et al., 2016, 2018; Aage et al., 2017; Baandrup et al.,
2020; Panetta et al., 2021) and architecture (Menges, 2012; Roudavski, 2009). In par-
ticular, in the context of materials science and mechanics, today one is able to mimic
complex heterogeneous structures that are reminiscent of bone (Portela et al., 2020; Ku-
mar et al., 2020; Mart́ınez et al., 2016, 2018; Aage et al., 2017; Wu et al., 2017), skeletal
muscles (Spyrou et al., 2019), plants (Faisal et al., 2012; Zhao et al., 2018) and even
particle-reinforced polymers (Segurado and Llorca, 2002; Lopez-Pamies et al., 2013) and
geomaterials (Roberts and Teubner, 1995; Roberts and Garboczi, 2001). Traditionally,
computational morphogenesis has relied on voxel-based algorithms that enable generating
complex distributions of Voronoi polyhedra. The latter typically consist of beam elements
with uniform thickness and variable length, which are arranged in a disordered manner to
form either a 2D (Spyrou et al., 2019; Tekoglu et al., 2011) or a 3D structure (Mart́ınez
et al., 2016, 2018; Aage et al., 2017; Baandrup et al., 2020). In the context of additive
manufacturing, Voronoi polyhedra generated by tessellation enables the design of multi-
phase composite structures and can feature very low solid densities, if the inclusion phase
is taken as void. On the other hand, tessellated Voronoi cellular materials contain points
of high stress concentration thereby proving highly sensitive to geometrical and fabri-
cation defects like many truss- and shell-based lattices (Ashby and Gibson, 1997; Onck
et al., 2001; Papka and Kyriakides, 1994, 1998; Deshpande et al., 2001; Symons and Fleck,
2008; O’Masta et al., 2017; Liu et al., 2017; Bonatti and Mohr, 2019). They may thus be
further optimized especially for use in applications where large nonlinear deformations,
buckling loads and fractures are involved (e.g. energy , bending stiffness). To overcome
this issue, in very recent years novel periodic plate-based cellular materials (see for in-
stance Tancogne-Dejean et al. (2018); Wang and Sigmund (2021)) as well as non-periodic
porous architectures have been designed, optimized and studied experimentally. Notable
examples include double gyroid nanolattices (Crossland et al., 2008; Prusty et al., 2020)
and microlattices (Maskery et al., 2017) very recently extended to stochastic geometries
(Al-Ketan et al., 2021), as well as spinoidal Gaussian architectures using both threshold
and phase-field methods (Teubner, 1991; Roberts and Teubner, 1995; Roberts and Gar-
boczi, 2001; Hsieh et al., 2019; Khristenko et al., 2020) and machine-learning techniques
(Kumar et al., 2020). Another random geometry is that of polydisperse (i.e. multiple size)
particulate microstructures designed via a random adsorption algorithm (RSA) combined
with computational homogenization (Torquato, 2002; Segurado and Llorca, 2002; Lopez-
Pamies et al., 2013; Anoukou et al., 2018; Tarantino et al., 2019; Zerhouni et al., 2019). Of
course a large class of low-density random porous solids involves foams (see for instance
Deshpande and Fleck (2000) and Gong and Kyriakides (2005)). In the present study, we
will include a two-dimensional equivalent of the foam geometry, that of standard Voronoi
to be discussed later.

More generally, most lightweight porous materials are great candidates for energy
absorption and structural applications because of their particular compressive response
which may be divided into three regimes: (i) an initial almost linear regime up to a
peak-stress, (ii) a stress-oscillating plateau or very low hardening regime and finally (iii)
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a strongly hardening regime, called as densification. Without giving the most general
discussion here for the sake of brevity, one may attribute the peak-stress and subsequent
plateau to a combination of an elastic buckling instability and/or plastic localization or
even secondary bifurcations (see for instance discussions in Ashby and Gibson (1997),
Triantafyllidis and Schraad (1998) and Schaedler and Carter (2016)). In brittle polymers,
fracture of ligaments occurs before or immediately after elastic instabilities following the
peak-stress (Thornton and Magee, 1975; Ashby and Gibson, 1997; Triantafillou and Gib-
son, 1990; Bi et al., 2020). In turn, the recent study of Luan et al. (2022) has focused on
the compressive response of flexible elastomers, where the effect of smoothness of the in-
tervoid ligaments and polydispersity of void size has been addressed numerically. Therein,
those two geometrical characteristics have been shown to affect both the initial stiffness
of foams (which is in qualitative agreement with the experimental work of Zerhouni et al.
(2019)) as well as the level of the peak-stress.

1.3 Scope of the study

The present thesis is concerned with materials with random topologies, with a particular
focus on porous materials. In this regard, we assess the mechanical response of random
porous materials at large strains by numerical simulations or experimental testing. After
studying a variety of existing random porous geometries, we propose a novel computa-
tional morphogenesis process allowing to design of random (i.e. non-periodic) composite
materials that contain smooth, polydisperse Voronoi-type inclusions with non-uniform
intervoid ligament thicknesses randomly embedded into a base matrix phase. This pro-
cess is developed drawing inspiration from prior studies on epithelial cell remodeling (Liu
et al., 2010; Kasza et al., 2014) and is implemented using a finite-element (FE) frame-
work. The response of the resulting geometries is studied numerically and experimentally.
Specifically, it consists of deforming numerically – under uniform displacement (Dirichlet)
boundary conditions – an arbitrarily-shaped convex cell that contains a discrete number of
circular void inclusions. The latter are randomly dispersed into a non-linear elastic matrix
phase and are generated via the general-purpose RSA algorithm developed in Segurado
and Llorca (2002) and Lopez-Pamies et al. (2013). Countless composite architectures
can be generated with this process depending on the type of the inclusion phase, which
may be void, solid, or fluid-like and can potentially span relative densities from zero to
unity. The full density range and especially the large porosities are achieved through a
numerical intermediate remeshing step in the M-Voronoi generation process. To facilitate
numerical deformation reaching large porosities, we develop an algorithm to remesh an
extremely deformed orphan mesh. This has been done through geometry reconstruction
of the orphan mesh and subsequent mesh generation with higher quality.

For illustrative purposes, we first focus on two-dimensional porous inclusions embed-
ded in a semi-brittle polymer solid. To begin with, the mechanical properties of the base
polymer matrix which is a highly viscous material are investigated. We will perform a
mechanical characterization of this material by carrying out different tests such as tensile,

CHAPTER 1. INTRODUCTION



9

loading-unloading, cyclic, and relaxation tests. Then we will 3D-print two-dimensional
porous materials with this polymer as a matrix. Subsequently, we will thoroughly inves-
tigate experimentally the mechanical response of porous architectures at various relative
densities. The newly developed void geometries closely resemble the polyhedra obtained
by standard Voronoi tessellations but differ in two ways; they comprise non-uniform in-
tervoid ligament thickness and have smooth void boundaries. Due to the mechanically-
grown origin of the void geometry, we call these materials M-Voronoi throughout the
study. We note that the heart of the process, which is based on numerical nonlinear
elastic energy minimization and uniform displacement boundary conditions, is indepen-
dent of the dimension and shape of the primary cell (provided it is convex). The latter
allows the seamless assembly of the individual cells (of any porosity) in macro-geometries
of any shape and variable spatial stiffness. We will show in particular that the M-Voronoi
exhibit continuous strong hardening (and thus no apparent peak-stress) well before den-
sification. The second part of this study is concerned with the extension of this method
to three-dimensional space. It is observed that this method is able to produce 3D polyg-
onal smooth shape voids with variant wall thicknesses. These geometries are called 3D
M-Voronoi. Using a matrix that is elastic-perfectly plastic without hardening, we numeri-
cally evaluate the mechanical properties of the 3D geometries at large compressive strains.
Specifically, the random 3D M-Voronoi geometries are compared with the random RSA
and Gyroid lattices of the same porosity.

1.4 Organization of the thesis

Following this introduction, the thesis is organized as follows:
In Chapter 2, we selectively review the computer-aided design of several well-chosen

random and periodic geometries. In Section 2.1, we review the origin of the RSA algorithm
and its general concepts. The modified algorithms to create 3D and 2D RSA geometries
are briefly discussed in Sections 2.2 and 2.3, respectively. Subsequently, in Section 2.4, we
describe the Voronoi tessellation algorithm implemented in this study. The design process
of two periodic geometries corresponding to hexagonal lattices and TPMS structures is
discussed in Sections 2.5 and 2.6, respectively.

In Chapter 3, the general numerical construction process of the M-Voronoi geometry
is presented. In Section 3.1, we discuss in detail all the numerical steps and assumptions
of the developed method. The governing equations for porosity evolution are described in
Section 3.2. Further, a novel algorithm has been proposed for the remeshing of 2D orphan
meshes that contain multiple phases or voids without corresponding CAD models. The
proposed remeshing method enables us to achieve large porosities in M-Voronoi geometries
by an intermediate remeshing step. The mesh reconstruction algorithm is described in Sec-
tion 3.3. Subsequently, various representative numerical realizations of porous M-Voronoi
topologies are obtained in different unit-cell geometries (Section 3.4). Furthermore, in
Section 3.7, the M-Voronoi method has been extended to create anisotropic M-Voronoi
geometries with tunable mechanical properties. In Section 3.8, triangular, trapezoidal,
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and rectangular M-Voronoi cells are seamlessly assembled to design a complex structure
with variable porosity in different regions.

Chapter 4 discusses the 3D-printing, experimental, and numerical study of randomly
designed two-dimensional geometries. First, the mechanical properties of the base polymer
material (TangoBlack) used in the 3D-printing of porous geometries are characterized in
Section 4.2. This has been performed by testing the TangoBlack sample under tensile,
loading-unloading, and relaxation tests. At ultimate stress values, the studied material
exhibits brittle fractures while also showing highly viscous behavior. In Section 4.2.8,
the nonlinear viscous behavior of TangoBlack is modeled using nonlinear hyperelastic
viscous material modeling. The characterized material parameters at small strain rates
are employed to model porous geometries manufactured with TangoBlack material as the
matrix. The experimental methods including the 3D-printing strategy and the protocol for
mechanical compression tests on random porous geometries are described in Section 4.3.
Then, in Section 4.5.2 we analyze the representativity of the M-Voronoi response in terms
of different realizations and the size of voids. Subsequently, in Section 4.5.3, we compare
the M-Voronoi with two additional random porous geometries. The first comprises 2D
RSA geometries, and the second is obtained by a uniformly eroded Voronoi tessellation
algorithm, named E-Voronoi. Then, in order to make contact with the literature and
further clarify the origin of the hardening response, we also compare the M-Voronoi with
honeycomb materials (Section 4.5.4). The chapter ends with a selection of numerical
simulations of the tested geometries under large strain compression loading.

In Chapter 5, we extend the M-Voronoi morphogenesis method to three-dimensional
space to create random 3D porous geometries. In Section 5.2, the proposed two-dimensional
remeshing algorithm is extended to the general three-dimensional case. We show in Sec-
tion 5.3, that a full range density is attainable by the proposed M-Voronoi method. Sub-
sequently, in Section 5.4, the obtained 3D M-Voronoi geometries are numerically studied
by considering the matrix as an elastic perfectly plastic material. Additionally, RSA ran-
dom geometries and Gyroid lattices were compared with 3D M-Voronoi, and we observed
an enhanced plastic response in random topologies.

Key features of the developed method to create M-Voronoi and other random geome-
tries are summarized in Chapter 6. Finally, in Section 6.2, we propose possible future
directions of research in the context of this work.
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Chapter 2

Random and periodic geometries: a
selective review

Chapter summary: This chapter provides a brief review of the computer-aided design
process of selected random and periodic geometries that are used in the next chapters.
The random geometries correspond to random polydisperse porous materials with non-
overlapping spherical and ellipsoidal voids obtained by the random sequential adsorption
(RSA) method, and standard eroded Voronoi geometries. In addition, the design pro-
cess of two periodic geometries including hexagonal honeycombs and TPMS geometries
(Gyroid) is studied. We first investigate the RSA algorithm in three-dimensional space
while proposing a slightly different algorithm to find the minimum distance between the
inclusions. Then, an extension of the RSA algorithm is developed to achieve a large vol-
ume fraction of the inclusions. The two-dimensional version of the RSA algorithm is then
developed to generate random elliptical inclusions in a 2D unit-cell. In the next part, we
review the standard eroded Voronoi method used to create Voronoi-type 2D geometries
and we discuss the modifications applied to it, in order to use the final geometry under
compression loading. The computer-design process of two periodic geometries correspond-
ing to hexagonal honeycombs in 2D and Gyroid lattices in 3D is studied while discussing
the governing equations.
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2.2 RSA algorithm in three-dimensional space . . . . . . . . . . . 17
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2.2.5 The periodicity of the unit-cell . . . . . . . . . . . . . . . . . . 24
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2.2.6 An extension of the RSA algorithm to achieve large volume frac-
tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 RSA algorithm in two-dimensions . . . . . . . . . . . . . . . . 26

2.3.1 Microstructure parameters of the 2D RSA algorithm . . . . . . 27

2.3.2 The minimum distance between two ellipses . . . . . . . . . . 28

2.3.3 The minimum distance between an ellipse and the unit-cell bound-
aries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.3.4 The periodicity of a 2D unit-cell . . . . . . . . . . . . . . . . . 29

2.4 The eroded Voronoi (E-Voronoi) method . . . . . . . . . . . . 30

2.5 Hexagonal lattices . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5.1 Prescribed LW and NW . . . . . . . . . . . . . . . . . . . . . . 33

2.5.2 Prescribed LH and NH . . . . . . . . . . . . . . . . . . . . . . 34

2.6 Triply periodic minimal surfaces (TPMS) structures . . . . . 35

2.7 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.1 What is RSA algorithm?

The construction of random spheres in a volume has always been a popular topic in many
scientific communities including physics, material science, and chemical physics. In a
broad sense, two types of random constructions of spheres in a volume exist, the random
close packing (RCP) and the random sequential adsorption (RSA). The RCP algorithm
typically begins with fixed or rearranged seeds, which then grow until the target volume
fraction is achieved. This algorithm was proposed by (Lubachevsky and Stillinger, 1990)
for random packing of disks and (Lubachevsky et al., 1991) for random packing of spheres
and it follows the primary works of (Mason et al., 1967) and (Adams and Matheson, 1972).
The basic idea of the RSA algorithm was proposed by (Widom, 1966) which consists of
randomly, irreversibly, and sequentially placing non-overlapping spheres into a volume.
This algorithm has been used to generate equi-sized disks by (Rintoul and Torquato, 1997)
and discussed in detail in Chapter 3 of (Torquato, 2002).

Several modifications have been applied to the RSA algorithm to employ it in more
general cases. Segurado and Llorca (2002) modified the RSA algorithm to create periodic
RSA microstructures while satisfying two essential geometric conditions: 1- the distance
between any pair of particles has to exceed a minimum value (here noted as s1), and 2-
the distance between every particle and the unit cell faces has to be more than a minimum
value (here noted as s2). Using both conditions ensures adequate spatial discretization for
numerical simulations or printing accuracy for the manufacturing process. Furthermore,
in order to impose periodicity in the microstructure, all spheres that intersect the unit
cell surfaces have been duplicated in three directions at the distance of the cell length.
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In several studies, this form of RSA algorithm has been explained and implemented to
create random spherical voids or particles. For instance, Fritzen et al. (2012) has used the
periodic RSA microstructures for computational homogenization of elastoplastic porous
metals. In the work of Lopez-Pamies et al. (2013), another modification to the RSA
algorithm has been proposed to construct polydisperse microstructures with different
families of particle sizes.

The extension of spheres to ellipsoids inclusions in the RSA algorithm has been pro-
posed by Pierard et al. (2007). In that work, they construct a rectangular prism that
contains random and homogeneous dispersion of identical unidirectional ellipsoids. Un-
like spheres, the computation of the minimum distance between two ellipsoids is not
straightforward, especially if the ellipsoids are oriented randomly. Therefore, Pierard
et al. (2007) has used an iterative algorithm proposed by Lin and Han (2002) to compute
the minimum distance between two randomly oriented ellipsoids.

In a more recent work by Anoukou et al. (2018), a general case of RSA algorithm
has been proposed to construct periodic RSA microstructures containing non-overlapping
randomly oriented inclusions of ellipsoidal shape that are uniformly distributed in the unit
cell. Moreover, different families of inclusions could be specified to create polydispersity
in size, shape, or polydispersity in size and shape. As a result, the algorithm will be
able to achieve a larger volume fraction of inclusions. Zerhouni (2019) have proposed
another extension to the RSA algorithm. This extension assists in achieving large volume
fractions by automatically constructing unlimited numbers of inclusion families until the
target volume fraction is achieved.

In this thesis, the latter form of the RSA algorithm with a slight modification has been
used to create RSA structures. The modification concerns the intersection check method
proposed by Anoukou et al. (2018) and will be discussed in Section 2.2.3. Eventually,
the code contains all of the extended features of the RSA algorithm including automatic
regression to facilitate obtaining large volume fractions. Furthermore, the 2D version of
the RSA algorithm has been developed and described in detail in Section 2.3. In the
following sections, we have followed the same notation as in Anoukou et al. (2018).

2.1.1 General concepts of the RSA algorithm

The consecutive generation of inclusions in the RSA method consists of placing randomly
and sequentially non-overlapping objects into a volume. In this process, subsequent in-
clusions are accepted based on geometrical constraints relating to the previously accepted
inclusions and the cell faces. In contrast to the RCP method, the acceptance of inclusions
in the RSA method is irreversible, hence the position, size, and shape of the inclusions
cannot be further modified. Generally, there are three types of geometrical conditions
upon the acceptance of an inclusion:

1- Inclusions must not overlap and maintain a minimum distance s1 between each
other to ensure sufficient spatial discretization.

2- Inclusions must keep a minimum distance s2 from the boundary surfaces to ensure
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(a) (b)

(c) (d)

Figure 2.1: Realizations of microstructures with different types of distributions: (a)
Monodisperse, (b) Polydispersity only in size, (c) Polydispersity only in shape, and (d)
Polydispersity in size and shape.

sufficient spatial discretization.

3- Any inclusion which intersects with any of the boundary surfaces must be duplicated
on the opposite surface to impose the periodicity of the microstructure.

Once a random inclusion in the matrix has been generated, the examination process
will begin to evaluate the geometrical constraints. If all constraints are met, the inclusion
would be accepted; otherwise, the process would have to be repeated with a new random
inclusion.

Following the study of Lopez-Pamies et al. (2013), in a monodisperse microstructure,
the inclusions are randomly located and oriented and have the same shape and size.
However, in a polydisperse microstructure, the inclusions have a variety of sizes and shapes.
For illustrative purposes, Figure 2.1 shows the examples of monodisperse and polydisperse
distributions (polydispersity in size, shape, size and shape) in 2D.
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Figure 2.2: A cuboidal RSA microstructure that contains random inclusions and the
characteristics of an ellipsoidal geometry: the aspect ratios ωr

1 = cr/ar and ωr
2 = cr/br

the orthonormal vectors nr
1, n

r
2 and nr

3.

2.2 RSA algorithm in three-dimensional space

In the present work, we have slightly modified the original algorithm of Anoukou et al.
(2018) to make it more robust. For this reason, we find it useful to provide the details
below.

2.2.1 Microstructure parameters of the 3D RSA algorithm

We consider a cuboidal unit-cell with dimensions L1, L2, and L3, and the total volume V .
We note that the unit-cell shape options are limitless and not restricted to the cuboidal
shape. The unit-cell volume consists of Np phases, where the first phase corresponds to
the matrix phase and Np − 1 families of inclusions are embedded in the matrix. The

volume of every family r is V r, such that
∑Np

r=1 V
r = V and the corresponding volume

fractions are cr = V r/V such that
∑Np

r=2 c
r = c, where c is the total volume fraction of

the inclusions. Considering the inclusions to be ellipsoidal, every family r has two aspect
ratios ωr

1 = cr/ar and ωr
2 = cr/br (r = 2, ..., Np) and the orientation of every ellipsoidal

inclusion is characterized by orthonormal basis vectors nr
i (i = 1, 2, 3). The characteristics

of a random ellipsoidal inclusion embedded in a matrix are displayed in Figure 2.2.
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In order to calibrate the inclusion size and/or shape of every family/phase, we define
a reference size of inclusions N ref . In a monodisperse distribution, the reference number
of inclusions is N ref = N , where N is the total number of inclusions. In contrast, in
a polydisperse distribution N ref < N , and the reference number is obtained by using
the reference number in monodisperse distribution for consistency. The total number
of inclusions could be written as

∑Np

r=2N
r = N , where N r corresponds to the number

of inclusions in the family/phase r. In the most general case of polydispersity which is
the size and shape polydispersity, the reference inclusion is a sphere of radius Rref , from
which all families are calibrated. Considering χr the size ratio of families, Rref could be
identified via the following relation 1

c =
V inc

V
=
N ref 4π Rref 3

3L1L2L3

. (2.1)

Therefore

Rref =

(
3 c L1L2L3

4π N ref

)1/3

. (2.2)

Subsequently, the characteristic lengths of each family of inclusions are described as fol-
lows:

cr = χr(ωr
1ω

r
2)

1/3Rref , ar =
cr

ωr
1

, br =
cr

ωr
2

. (2.3)

2.2.2 Description of the general structure of the RSA algorithm

Assuming the microstructural characterization described in Section 2.2.1, we give a precise
description of the RSA algorithm structure below.

Initiation: we start with the first family of inclusions r = 1 and the current total
volume fraction ct being 0. As we iteratively add accepted inclusions, the total volume
fraction will increase until the cr has been achieved. Then, the construction of the next
family will begin. At each iteration, we create a random inclusion with a random center
position vector vr

i , a random orientation, and the semi-axes lengths ari , b
r
i , c

r
i . The

subscript i corresponds to the ellipsoidal inclusion number i = 1, ..., N , and the superscript
r determines the family/phase number.

General steps : For each phase r = 2, ..., Np, the RSA algorithm can be decomposed
into the following steps:

Step 1 : For the current volume fraction being cr−1 ≤ ct < cr, we evaluate the semi-
axis lengths of the inclusion i belonging to phase r with the general equations (2.2) and
(2.3) developed in the Section 2.2.1. In sequential addition, we generate an inclusion with
a random center position vector vr

i and a random orientation characterized with Euler

1We note that if the unit-cell is not cuboidal, the total volume V does not have this form.
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angles ϕr
i , θ

r
i , ψ

r
i .

2

Step 2 : We compute the minimum possible distance ∆1 between a new inclusion i
and any previously accepted inclusion j = 1, ..., i − 1 including its 26 (9 in 2D) periodic
images defined by the center to center translation vector h = (h1, h2, h3) with h1, h2, h3 ∈
{0,−Li, Li}. The computed distance will be compared to the minimum value s1, which
corresponds to

s1 =
(
max(ari , b

r
i , c

r
i ) + max(arj , b

r
j , c

r
j)
)
tol1, (2.4)

where tol1 is an input parameter. If for inclusion i and all of its periodic images ∆1 < s1,
the process is stopped and will be returned to the Step 1 to generate a new random inclu-
sion center and orientation. Otherwise, the algorithm proceeds to Step 3. This algorithm
is described in Section 2.2.3 for 3D RSA and in Section 2.3.2 for 2D RSA.

Step 3 : We compute the minimum possible distance ∆2 between a new inclusion
i and all the unit-cell boundary faces, including its 26 (9 in 2D) periodic images, and
compare this distance to the minimum value s2, which corresponds to

s2 = (max(ari , b
r
i , c

r
i )) tol2, (2.5)

where tol2 is an input file. Similarly, if ∆2 < s2 the algorithm is reset to step1, otherwise
the inclusion is irreversibly accepted and the algorithm proceeds to step 4. The current
volume fraction is then incremented by the volume fraction of the newly added inclusion
i which corresponds to

ctnew = ctold +
4πari b

r
i c

r
i

3L1L2L3

. (2.6)

The algorithm for this step is described in Section 2.2.4 for 3D RSA and in Section 2.3.3
for 2D RSA.

Step 4 : If the accepted inclusion i intersects the unit-cell boundary faces, we ensure
the periodicity of the unit-cell by adding periodic images of the inclusion. The periodicity
algorithm is described in Section 2.2.5. 3

2The ϕri and ψr
i are generated randomly in [−π, π] interval, However the angle θri is obtained by

randomly generating cos θri ∈ [−1, 1] and then by setting θri = cos−1(cos θri ). This allows to maintain a
uniform distribution of points in a unit-cell.

3We note that the periodicity condition does not apply to all unit-cell geometries. For example, if
the unit-cell is circular (spherical in 3D) or triangular, or an irregular quadrilateral, the periodicity is
pointless.
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2.2.3 The minimum distance between two ellipsoids

In this section, we discuss in detail the procedure used to compute the minimum distance
between two randomly oriented ellipsoids. For non-spherical inclusions, the evaluation
of the minimum distance is not as straightforward as for spheres in which the center-
to-center distance is taken into account. Studies on the analytical methods evaluating
the minimum distance between two algebraic surfaces, lead to solving complex nonlinear
equations (Chen et al., 2006), which are unsuitable for numerical computations. Instead,
we use the iterative method proposed by Lin and Han (2002) and used in the work of
Pierard et al. (2007). Unlike existing analytical approaches, this algorithm is fast and has
excellent convergence.

To compute the minimum distance, it is necessary to check whether two ellipsoids
intersect. In the algorithm of Lin and Han (2002), the intersection is checked by solving
two one-dimensional quadratic inequalities at each iteration. In the work of Anoukou
et al. (2018), they modified the intersection identification of the algorithm of Lin and
Han (2002) by using a lemma on the intersection of ellipsoids outlined in the book of
Kurzhanski and Vályi (1997). According to these authors, the latter method is faster
than the method proposed by Lin and Han (2002). In this work, we modify the method
of Anoukou et al. (2018) by using the algorithm proposed by Lin and Han (2002), to check
the intersection of the ellipsoids. We realized that this algorithm is way more general,
simpler, and could be faster if we impose an important condition of the algorithm of Lin
and Han (2002) while solving the set of two quadratic equations. Moreover, unlike the
algorithm of Anoukou et al. (2018), this method can also be applied easily to the 2D
version of the RSA algorithm.

We consider a general form of an arbitrarily oriented ellipsoid Ei in the following

Ei = E(vi;Zi) :=
{
x : Qi(x) ≤ 0

}
, (2.7)

where vi denotes the center position of the ellipsoid i and Qi(x) is a quadratic function
and corresponds to

Qi(x) = (x− vi)
TZi(x− vi)− 1. (2.8)

Zi is a positive definite square 3×3 matrix that describes the shape and the orientation
of the ellipsoid Ei. Its eigenvalues correspond to the semi-axis lengths of the ellipsoid i
(i.e., ai, bi, ci) and its eigenvectors are the orthonormal basis of the ellipsoid n1,n2,n3.
Therefore, the matrix Z for an arbitrarily oriented ellipsoid E(v;Z) is defined as

Zi =
1

c2i
(ω2

i,1ni,1 ⊗ ni,1 + ω2
i,2ni,2 ⊗ ni,2 + ni,3 ⊗ ni,3). (2.9)

Indeed, the orientation of the ellipsoid is determined by the rotation matrix Ri(ϕi, θi, ψi)
such that ni,j = Ri ej (j = 1, 2, 3) and ej determines the orthonormal basis of the reference
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coordinate (e1, e2, e3) (see Figure 2.2). Finally, the principal axes of the ellipsoid Ei could
be expressed as4

n1 = (cosϕ cosψ − cos θ sin2 ϕ, cos θ cosψ sinϕ+ cosϕ sinψ, sinϕ sin θ)

n2 = (− cosψ sinϕ− cosϕ cos θ sinψ, cosϕ cos θ cosψ − sinϕ sinψ, cosϕ sin θ)

n3 = (sin θ sinψ, − cosψ sin θ, cos θ).

(2.10)

The matrix Zi could be obtained by substitution of the n1,n2,n3 into the equation (2.9).
All the mentioned equations could be modified to the 2D RSA code. For more discussion,
see Section 2.3.

Considering two arbitrarily oriented ellipsoids defined respectively by E1 = E(v1;Z1)
and E2 = E(v2;Z2) as described in equation (2.7), the minimum distance between two
ellipsoids could be expressed as an optimization problem such that

d(E1, E2) = min
x1∈E1,x2∈E2

||x1 − x2||, (2.11)

where ||.|| denotes the Euclidean norm. As we are looking for the minimum distance
between two non-overlapping ellipsoids, we can restrict the selected points xi to those on
the ellipsoids surfaces, which means (x1−v1)

TZ1(x1−v1)−1 = 0 and (x2−v2)
TZ2(x2−

v2)− 1 = 0.
In order to solve the optimization problem, we use the algorithm proposed by Lin

and Han (2002) for intersection checking and minimization simultaneously. This method
uses an iterative process where at each iteration number k, the ellipsoid Ei is locally
approximated by a spherical ball which is tangent to the ellipsoidal surface at a single point
xk
i and marches along the internal surface of the ellipsoid (Figure 2.3). Two constructed

tangent spheres B1 = B(ok
1; βk

1 ) and B2 = B(ok
2; βk

2 ) are defined as

Bi = B(ok
i ; βk

i ) :=
{
y : ||y − ok

i || ≤ βk
i

}
, i = 1, 2 (2.12)

where ok
i and βk

i are the center and radius of the sphere Bi at the kth iteration, respectively,
and correspond to

ok
i = xk

i −
γi
2
Nk

i ,

βk
i =

γi
2
||Nk

i ||,
(2.13)

where Ni = ∇Qi denotes the normal to the ellipsoid surface Ei at the point xi. The
parameter γi is the matrix norm of Zi and is related to its spectral radius ρ(Zi), such that

γi =
1

||Zi||F
and 0 < γi ≤

1

ρ(Zi)
, (2.14)

4here we dropped the subscript i for simplifications.
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where || • ||F is the Frobenius (Euclidean) norm.

Figure 2.3: A schematic representation of the iterative algorithm for finding the minimum
distance between two arbitrarily oriented ellipsoids. The picture has been taken from
Anoukou et al. (2018) and has been modified according to our parameters.

The iterative process of computing the minimum distance between two ellipsoids is
schematically displayed in Figure 2.3 and has been summarized in the following steps:

Initiation : We start by taking the sphere center point o1 and o2 as the centers v1

and v2 of the ellipsoids E1 and E2, respectively.

step 1 : We consider ok
1 and ok

2 as two spherical center points at the kth iteration.
Next, we solve two one-dimensional quadratic equations to obtain the step sizes t1 and t2.

ti = {t ∈ [0, 1] : Ai t
2 +Bi t+ Ci = 0}, i = 1, 2 (2.15)

with

Ai = (ok
2 − ok

1)TZi(o
k
2 − ok

1),

Bi = (ok
1 − vi)

TZi(o
k
2 − ok

1),

Ci = (ok
1 − vi)

TZi(o
k
1 − vi),

(2.16)

Two ellipsoids E1 and E2 have a nonempty intersection if t1 or t2 have one of the
following conditions:
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E1 ∩ E2 ̸= 0 if :


t2 ≤ t1 or

t1 ∈ (−∞, 0) ∪ (1,+∞) or

t2 ∈ (−∞, 0) ∪ (1,+∞)

(2.17)

If the intersection is nonempty then the minimum distance d(E1, E2) = 0, the process
terminates, and the inclusion is not accepted. Otherwise, we proceed to the next step.

step 2 : If the ellipsoids do not overlap, we compute two points xk+1
1 and xk+1

2 as the
intersections of the center-to-center line of the tangent spheres [ok

1,o
k
2] with the ellipsoids

surfaces, such that

xk+1
1 = ck1 + t1(o

k
2 − ok

1),

xk+1
2 = ck1 + t2(o

k
2 − ok

1),
(2.18)

step 3 : We now check whether the two points xk+1
1 and xk+1

2 are the closest points
by computing the normal on the ellipsoid surfaces at these points i.e. Nk+1

1 and Nk+1
2 . If

these normals and the vector xk+1
2 −xk+1

1 are colinear, the minimum distance corresponds
to d(E1, E2) = ||xk+1

1 −xk+1
2 ||. Collinearity is evaluated by determining whether the angles

α1 = ∠(Nk+1
1 ,xk+1

2 −xk+1
1 ) and α2 = ∠(Nk+1

2 ,xk+1
2 −xk+1

1 ) are zero. In practice, we check
α1 ≤ ϵ and α2 ≤ ϵ instead of α1 = α2 = 0, where ϵ is a small tolerance. If there is no
collinearity, we proceed to the next step.

step 4 : We generate two new balls with centers ok+1
1 and ok+1

2 , obtained from equation
(2.13) as

ck+1
1 = xk+1

1 − γ1
2
Nk+1

1 ,

ck+1
2 = xk+1

2 − γ2
2
Nk+1

2 .
(2.19)

We start the new iteration with new tangent balls and return to the first step to repeat
the process.

2.2.4 The minimum distance between an ellipsoid and a plane

In order to find the minimum distance between an arbitrarily oriented ellipsoid and a
plane (defined as dmin(E,P )), we follow a similar collinearity condition that we presented
in the previous section. In this case, we are solving a geometrical problem to find the
closest point on the surface boundary of the ellipsoid Ei, in which the normal N = ∇Q(x)
is parallel with the normal of the plane.
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We define the surface of the cuboidal unit-cell by the plane equation

P (n, ξ) := {x : x .n + ξ = 0}, (2.20)

where n is the normal vector of the plane P , and ξ is a constant that can be evaluated
by the scalar product of n and a known point on the plane P . In a cuboidal unit-cell
of dimensions L1, L2 and L3, with a corner located at the origin, the normal n and the
constant ξ for six facing planes are defined as

Face 1 : n = (−1, 0, 0), ξ = 0,

Face 2 : n = (1, 0, 0), ξ = −L1,

Face 3 : n = (0,−1, 0), ξ = 0,

Face 4 : n = (0, 1, 0), ξ = −L2,

Face 5 : n = (0, 0,−1), ξ = 0,

Face 6 : n = (0, 0, 1), ξ = −L3.

(2.21)

Our task now is to find the solution to the following set of equations

N× n = 0 and Q(x) = 0. (2.22)

There are two solutions to the above equations that correspond to the closest and farthest
points of the ellipsoid from the plane. A closer point is chosen by calculating the distance
between the two points from the plane P and keeping the smaller one

d(E,P ) =
|x .n + ξ|
||n||

. (2.23)

Therefore, xmin is the solution of equation (2.22) which minimizes the distance d(E,P ).
As a result, the minimum distance between the ellipsoid of the plane is defined as
dmin(E,P ) = n .xmin + ξ.

2.2.5 The periodicity of the unit-cell

If periodicity is required, every accepted inclusion that intersects the unit-cell bound-
ary faces has to be projected to the opposite faces. In order to determine whether the
inclusions intersect the unit-cell boundaries, we use the following relations:

∀j ∈ {1, 3, 5}, if : dmin(E,P ) < 0 =⇒ The inclusion intersects the face j,

∀j ∈ {2, 4, 6}, if : dmin(E,P ) > 0 =⇒ The inclusion intersects the face j.

We relocate the intersecting inclusions to the opposite faces by adding or subtracting the
periodicity vectors h to the center of the inclusion. If the inclusion intersects more than
one face, one has to repeat the process in the other directions. The periodicity vectors
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are a set of 26 vectors h = (h1, h2, h3) where h1, h2 and h3 take the values (0,−L1, L1),
(0,−L2, L2) and (0,−L3, L3), respectively. We note that the intersection condition has
also been used to create microstructures with no inclusions intersecting the boundaries.
In this case, the intersecting inclusions are not accepted by the algorithm and a rigid
bounding box with a minimum thickness of tol2 will cover the microstructure.

2.2.6 An extension of the RSA algorithm to achieve large vol-
ume fractions

Due to the irreversible nature of the sequential process in the RSA algorithm, achieving
large volume fractions is more difficult than in the RCP algorithm. This drawback is
more pronounced when we are interested in the monodisperse distribution of inclusions.
There have been many numerical and experimental studies in the literature on the max-
imum volume fraction that can be achieved by RCP method for spheres of equal size
(monodisperse distribution). However there is only one rigorous proof devised by Hales
(1998) for Kepler’s conjecture: the densest possible packing fraction c for identical spheres
in three dimensions is π/

√
18 ≈ 0.7405, corresponding to the close-packed face-centered

cubic (FCC) lattice or its stacking variants. For identical RSA spheres, the filling pro-
cess reaches the saturation limit at a substantially lower value. It turns out that for a
monodisperse distribution with RSA algorithm, the maximum volume fraction approx-
imately corresponds to 0.38 and 0.55 for 3D and 2D RSA, respectively (Feder (1980),
Cooper (1988)).

In order to overcome the volume fraction limitation, we create polydisperse distribu-
tions to fill the unit-cell with inclusions of smaller sizes. One can control the morphology
of the microstructure by defining different families of inclusions to achieve the target vol-
ume fraction. However, finding the suitable set of parameters as described in the previous
sections to obtain a microstructure with the target volume fraction c, could be long and
difficult; especially if a large volume fraction is desired. Therefore, we use an automatic
process to create an unlimited number of inclusion families by reducing the size of inclu-
sions incrementally. Although there is not the same control over the morphology of the
microstructure, one can define the limiting and regression parameters. Zerhouni (2019)
have proposed another form of RSA algorithm to achieve large volume fractions. In this
algorithm, he specifies the maximum and minimum sizes of the inclusions and the maxi-
mum iteration number for adding a new inclusion of the same size. When the maximum
number of iterations is achieved, the algorithm reduces the size of inclusions by a regres-
sion number called g such that Rref,new = g Rref,old. This process continues until either
the target volume fraction is reached or Rref,new = Rmin.

In this work, we use the method proposed by Zerhouni (2019) and modify it in our
algorithm. In contrast to his work, we do not specify the maximum and minimum sizes of
inclusions. Instead, the automatic regression process begins if the maximum number of
iterations has been reached for each family of inclusions. This would lead the code to be
more flexible in achieving the final volume fraction. This is due to the fact that, depending
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Inputs Outputs
Parameters Definition Parameters Definition
L1, L2, L3 Unit-cell dimension vi Center of the inclusions
Np − 1 Number of inclusion fam-

ilies
ai, bi, ci semi-axis lengths of the

ellipsoids
N ref Number of inclusions ϕi, θi, ψi Euler angles of the ellip-

soids orientation
c Expected volume fraction

of inclusions
ωr
1, ω

r
2 the aspect ratios of the el-

lipsoids
χr Size ratio of the families
cr/c Volume fraction per in-

clusion family
s1, s2 Offsets for adequate dis-

cretization
g Regression number
nit maximum iteration num-

ber for an inclusion

Table 2.1: The inputs and Outputs of the 3D RSA algorithm.

on the characteristics of each family, there may not be sufficient space to accommodate
new inclusions of the same size and shape. Therefore, automatic regression will assist the
algorithm to fill the space and achieve the target porosity. The regression factor and the
maximum iteration number are inputs and have to be specified by the user. In addition,
the automatic regression process is optional and could be activated in the input file.

Finally, the input parameters are specified by the user and are listed in the table 2.1.
In this table, r refers to the family number of inclusions and it is equal to r = 1, .., Np−1.
The parameter i corresponds to the accepted inclusion number i = 1, ..., N . The Output
of the algorithm is a .geo file format readable in Gmsh or Netgen software.

2.3 RSA algorithm in two-dimensions

We established a 2D version of the RSA algorithm, which generates random distributions
of random mono and polydisperse non-overlapping elliptical inclusions with arbitrary
shape, size, and orientation in a 2D Unit-cell. Without loosing generality, one can use the
same 3D RSA algorithm and modify all the corresponding relations to the two-dimensional
space. The same geometrical constraints described in Section 2.1.1 are applied to the 2D
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Figure 2.4: A rectangular RSA microstructure containing random 2D inclusions and the
characteristics of an ellipse: the aspect ratio ωr and the orthonormal vectors nr

1 and nr
2.

RSA. However the microstructure parameters are different and are defined in the following
section.

2.3.1 Microstructure parameters of the 2D RSA algorithm

We consider a rectangular unit-cell with dimensions L1 and L2 and a total surface S. The
surface of every family r is Sr, such that

∑Np

r=1 S
r = S and the corresponding surface

fractions are cr = Sr/S such that
∑NP

r=2 c
r = c, where c is the total surface fraction

of the inclusions. We note that the same parameter c is used to indicate the volume
fraction in 3D and the surface fraction in 2D. In contrast to the ellipsoids in 3D space,
an ellipse in 2D can be defined by two principal axes ar and br and one aspect ratio
ωr = br/ar (r = 2, ..., Np). In addition, the orientation of the ellipse is characterized by
orthonormal basis vectors nr

i (i = 1, 2). The characteristics of a random elliptical inclusion
embedded in a 2D matrix are displayed in Figure 2.4.

Similar to the 3D RSA algorithm, we define a reference size of inclusions N ref to
calibrate the inclusion size and/or shape of every family. Again, in the most general case
of polydispersity which is the polydispersity in size and shape, the reference inclusion is a
circle of radius Rref , from which all families are calibrated. Considering χr the size ratio
of families, Rref could be identified via the relation 5

c =
Sinc

S
=
N refπRref 2

L1 L2

, (2.24)

5We note that if the unit-cell is not rectangular, the total surface S does not have this form.
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therefore

Rref =

√
c L1 L2

πN ref
. (2.25)

Subsequently, the characteristic length of each inclusion family is defined as

br = χr
√
ωrRref , ar =

br

ωr
, where χr ≤ 1. (2.26)

2.3.2 The minimum distance between two ellipses

Following the 3D RSA code, the minimum distance between two 2D ellipses must exceed
the minimum value s1, which corresponds to

s1 =
(
max(ari , b

r
i ) + max(arj , b

r
j)
)
tol1, (2.27)

where tol1 is an input parameter. We follow the algorithm proposed by Lin and Han
(2002) to check the intersection and compute the minimum distance, by transforming it
into two-dimensional space. The equations (2.7) and (2.8) have also the general form of
an arbitrarily oriented 2D ellipse E(v;Z), along with its corresponding 2D vectors. The
Zi matrix is a positive definite square 2×2 matrix, where its eigenvalues are the semi-axis
lengths of the ellipse (i.e., ai, bi) and its eigenvectors are the orthonormal basis of the
ellipse n1,n2. Therefore, the matrix Z in 2D space is defined as

Zi =
1

b2i
(ω2

i ni,1 ⊗ ni,1 + ni,2 ⊗ ni,2). (2.28)

The orientation of the ellipse can be determined by one orientation angle θi such that the
principal axes of the ellipse correspond to

n1 = (cos θ, sin θ),

n2 = (− sin θ, cos θ).
(2.29)

By substitution of n1 and n2 into the equation (2.28), the expression for matrix Zi is
given by

Zi =
1

a2

[
cos2θ sinθ cosθ

sinθ cosθ sin2θ

]
+

1

b2

[
sin2θ −sinθ cosθ

−sinθ cosθ cos2θ

]
. (2.30)

We use the same algorithm to check the intersection and compute the minimum distance
between two randomly oriented 2D ellipses E1 and E2, defined by the equations (2.7), (2.8)
and (2.28). However, in the iterative process, the 2D ellipse Ei is locally approximated by
a 2D ball i.e., a circle that is tangent to the ellipse boundary line at a single point xk

i and
marches along the internal boundary line of the ellipse (see Figure 2.3). All the vectors
and equations are the same as the 3D algorithm, but with a 2D perspective, which means
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all vectors contain two components and all matrices are 2 × 2. For more discussion see
Section 2.2.3.

2.3.3 The minimum distance between an ellipse and the unit-
cell boundaries

The minimum distance between an ellipse and the boundary line of the unit-cell must
exceed the minimum value s2, which corresponds to

s2 = max(ari , b
r
i ). tol2, (2.31)

where tol2 is an input parameter. Similar to the 3D RSA, the minimum distance is
obtained by solving a geometrical problem for finding the closest point on the boundary
line of the ellipse Ei where the normal N = ∇Q(x) is collinear with the normal of the
plane n. However, the unit-cell surfaces are transformed to unit-cell boundary lines in 2D
and defined by

L(n, ξ) := {x : x .n + ξ = 0}, (2.32)

where n is the normal vector of the line L, and ξ is a constant that can be evaluated by
the scalar product of n and a known point on the line L. In a rectangular unit-cell of
dimensions L1 and L2, with a corner located at the origin, the normal n and the constant
ξ for four boundary lines are defined as

Line 1 : n = (−1, 0), ξ = 0,

Line 2 : n = (1, 0), ξ = −L1,

Line 3 : n = (0,−1), ξ = 0,

Line 4 : n = (0, 1), ξ = −L2.

(2.33)

Subsequently, we find the minimum distance dmin(E,L) by solving the minimization prob-
lem in equation (2.22). If the unit-cell is not rectangular, one can define the corresponding
normal vectors of the unit-cell boundary lines and follow the same procedure.

2.3.4 The periodicity of a 2D unit-cell

In order to determine periodic images of an inclusion intersecting the boundary lines,
8 vectors h = (h1, h2) are defined, where h1 and h2 take the values (0,−L1, L1) and
(0,−L2, L2), respectively. In order to check the intersection of the inclusion with the
boundary lines, we evaluate the sign of dmin = n.xmin + ξ, such that:

∀j ∈ {1, 3}, if : dmin(E,L) < 0 =⇒ The inclusion intersects the face j,

∀j ∈ {2, 4}, if : dmin(E,L) > 0 =⇒ The inclusion intersects the face j.
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2.4 The eroded Voronoi (E-Voronoi) method

The Voronoi tessellation geometries are random geometries that are generated by the
Laguerre-Voronoi diagram algorithm. In this algorithm, a 2D finite space is randomly
divided into partitions of polygonal cells that are defined by a set of random seeds. The
seeds are distributed randomly into the domain and they correspond to the center of circles
which grow until connection occurs at the edges of circles in which the polygonal cell walls
are defined. For each circle in this method, there is one cell, which is composed of all the
points that lie within the circle such that their power distance is smaller than the power
distance to the rest of the circles. The use of Voronoi geometries is very common in the
simulation of polycrystalline microstructures which are modeled as composite materials.
However, in this study, we are specifically interested in porous Voronoi geometries.

a b c

Figure 2.5: Generation of E-Voronoi geometries. (a) Random distribution of seeds. (b)
To obtain the desired density, the cell walls are eroded and offset with a specific thickness.
(c) The final E-Voronoi geometry with a surrounding solid box.

We follow the algorithm presented in Spyrou et al. (2019) for the modeling of human
muscles to create these geometries. In that study, a standard Voronoi tessellation is first
created by randomly distributed seeds and subsequently, the walls of each Voronoi inclu-
sion are eroded in a uniform manner leading to constant-thickness intervoid ligaments.
Therefore, we call them Eroded Voronoi (E-Voronoi) geometries. Figure 2.5 represents
the generation process of E-Voronoi geometries with this algorithm. In Figure 2.5a the
seeds of Voronoi are distributed randomly into the unit-cell by a random sequential ad-
dition algorithm Torquato (2002) such that they respect the defined minimum distance
to ensure that the resulting Voronoi cells are not too small. Subsequently, the walls of
each Voronoi cell are eroded to divide the domain into polygonal cells while applying a
parallel offset to each Voronoi cell to generate a constant thickness area surrounding the
cell (Figure 2.5b). The amplitude of erosion defines the final relative density of the unit-
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cell. The erosion process has been performed by the Python Voronoi libraries Qhull and
Python/Scipy. The geometric operations, such as applying as offset, are carried out by
the Python/Shapely library. The periodicity condition has been applied to the geometries
such that each seed is replicated in the neighboring cells. Nevertheless, the boundaries of
the Voronoi geometry can be closed by a solid box if it is required. Closing the boundaries
can be useful to avoid the collapse of the cells in the first rows when compression loading
is applied to the unit-cell (see for example Section 4.5.3). In this case, the thickness of the
surrounding box must be small enough to not affect the cell behavior and its thickness
should be considered when calculating the volume fraction of the unit-cell.

The resulting structure of the Eroded-Voronoi algorithm is generated in the Gmsh

format for mesh generation. The intervoid ligaments are meshed by two-dimensional
elements to reach arbitrary density values (as opposed to earlier studies such as in Tekoglu
et al. (2011) where beam elements were used). By construction, the E-Voronoi void
boundaries exhibit sharp corners, while the process may lead to locally more elongated
inclusions of large aspect ratio towards an arbitrary direction. The E-Voronoi geometries
can span the entire range of practical relative densities from 0 to very low (e.g., 0.01) and
are isotropic as a direct consequence of the random Voronoi tessellation process (but see
the recent extension to anisotropic ones by van Nuland et al. (2021)).

2.5 Hexagonal lattices

Hexagonal lattices are a type of periodic cellular material that is certainly the most studied
of all existing cellular materials. The term Hexagonal lattice is, in fact, a subgroup of
honeycomb structures that contain also square or triangular cells. However, in this study,
we will be specifically focusing on hexagonal lattices, and the honeycomb term wherever
used refers to hexagonal lattices with six cell sides and three edge connectivity. Since
centuries ago, this structure has been fascinating for mathematicians, physicists, and
biologists (Ashby and Gibson, 1997). Particularly, in the mechanics community, there
are countless studies on the properties of hexagonal lattices (Papka and Kyriakides, 1994;
Ashby and Gibson, 1997; Papka and Kyriakides, 1998; Jiménez and Triantafyllidis, 2013).
Therefore, we do not discuss these studies, but instead, we study the process to create
these lattices and will employ it in the studies in the next chapters.

In the literature, there are different formulations for the geometrical relations of hexag-
onal lattices insuring different morphological conditions such as variable beam length or
thickness of the cell sides. Here, we assume that the geometry has a constant wall thick-
ness and length. Furthermore, we consider that all cells in the geometry are closed and
there are no open and incomplete cells at the edges of the lattice. This is a necessary
condition to perform a compression test on these structures without having the first cell
row collapsed. By imposing the mentioned constraints, we propose the following geomet-
ric formulation for hexagonal lattices. Figure 2.6a represents a considered single unit-cell
in a honeycomb structure. This unit-cell will be repeated in the horizontal and vertical
directions to construct the final lattice with the desired number of cells. Figure 2.6b shows
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Figure 2.6: (a) A single unit-cell of the considered hexagonal lattice. (b) The geometrical
parts of a half single hexagon unit-cell.

the geometric entities for half of the single hexagon unit-cell, where L corresponds to the
constant length of the cell walls and t is their thickness. Moreover, Hc and Wc correspond
to the height and width of the half unit-cell such that

Hc = 3L+
√

3t, Wc =

√
3L

2
+
t

2
. (2.34)

This geometry consists of four different sub-geometries with the area of A1, A2, A3 and
A4. Therefore, the area occupied by the solid As constructing a half hexagon unit-cell
can be obtained by

As = 2A1 + A2 + 2A3 + 4A4 = 3Lt+

√
3t2

2
. (2.35)

Similarly, the total area occupied by the unit-cell Ac corresponds to

Ac = HcWc = (3L+
√

3t)(

√
3L+ t

2
). (2.36)

Now, one can obtain the density of the unit-cell by

ρH =
As

Ac

=
6Lt+

√
3t2

(3L+
√

3t)(
√

3L+ t)
. (2.37)
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Figure 2.7: A honeycomb structure with horizontal length LW and vertical length LH ,
where LH ≈ LW . The NW and NH denote the number of cells in the horizontal and
vertical directions, respectively.

where ρH denotes the density of the hexagonal unit-cell. We consider that the parameters
L and t are unknown while ρH is an input. Moreover, it is assumed that the number of
cells in the horizontal and vertical directions is also defined by the user. However, if an
almost square cell is desired, only one of the lengths is sufficient to design the lattice.
Figure 2.7 shows a honeycomb structure with the horizontal length LW and the vertical
length LH . NW and NH also denote the number of cells in the horizontal and vertical
directions, respectively. In order to design this geometry, it has been assumed that the
LH ≈ LW

6. As a result, assuming either NW , LW or NH , LH will result in the other
parameters. Therefore, depending on the prescribed parameters two sets of formulations
can be obtained. In the following, we discuss each of the formulations.

2.5.1 Prescribed LW and NW

If LW and NW are prescribed, the input parameters consist of LW , NW , and ρH , where
again ρH is the density of the lattice. The outputs correspond to t, L, NH , and LH which
can be obtained from a set of equations

6We note that the equality of LH and LW never happens if all cells are restricted to be close.
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Wc =

LW

2NW

=
t

2
+

√
3L

2

ρH =
6Lt+

√
3t2

(3L+
√

3t)(
√

3L+ t)

. (2.38)

There are two solutions to this set of equations such that one of them leads to a negative
L which is not acceptable. Therefore, the accepted positive solution is

L =
LW

√
1− ρH√

3NW

, t =
LW (1−

√
1− ρH)

NW

. (2.39)

where NH will be the integer part of the following approximate equation

NH ≈
LW + L

Hc

. (2.40)

2.5.2 Prescribed LH and NH

Similar to the previous case, if LH and NH are prescribed, the input parameters consist
of LH , NH , and ρH . The outputs correspond to t, L, NW , and LW which can be obtained
from a set of equations 

Hc =
L+ LH

2NH

= 3L+
√

3t

ρH =
6Lt+

√
3t2

(3L+
√

3t)(
√

3L+ t)

(2.41)

Similarly, there is one acceptable positive solution, which corresponds to

L =
LH(1 + 3NH

√
1− ρH − ρH)

−1 + 9N2
H + ρH

,

t = −
√

3LH(1− 3NH + (−1 + 3NH)
√

1− ρH − ρH)

−1 + 9N2
H + ρH

.

(2.42)

where NW will be the integer part of the following approximate equation

NW ≈
LH

2Wc

. (2.43)

It is worth mentioning that the slenderness of the cell walls L/t in both equations (2.39)
and (2.42) have the following relation which is independent of NW and NH and only
depends on the density ρH .

L

t
=

√
1− ρH√

3(1−
√

1− ρH)
. (2.44)
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Figure 2.8: A 3D model of Gyroid minimal surface

The proposed set of equations have been implemented in Gmsh software to create the
designed hexagonal lattices with the number of cells and porosity defined by the user.

2.6 Triply periodic minimal surfaces (TPMS) struc-

tures

The triply periodic minimal surfaces (TPMS) structures are a group of periodic cellular
materials that are constructed based on the minimum surface condition. Mathematically,
a minimal surface is one whose area is minimized locally which also corresponds to zero
mean curvature. This type of geometry has been observed in various natural and bio-
logical systems such as butterfly wings(Schröder-Turk et al., 2011), beetle skin (Galusha
et al., 2008; Al-Ketan and Abu Al-Rub, 2019). The TPMS are frequently used to design
structures with different crystalline symmetry groups. Due to their simple mathemati-
cal definitions, they are easy to design and can be created in very low volume fractions
(Soyarslan et al., 2019). TPMS-based structures are interesting candidates for designing
multifunctional materials with optimal properties due to their smooth curvature and ca-
pability to design functionally graded structures. Nevertheless, it should be noted that
their properties are strongly direction dependent which could be considered as a drawback
if the designed material is under multi-directional loading (Bonatti and Mohr, 2019).

The first study of TPMS originated from Schwarz (1972). Over the years, different
types of TPMS structures have been discovered such as Schwarz-P, Schwarz-D, Diamond,
Gyroid, etc. One of the most interesting geometries among them corresponds to the
Gyroid surface introduced by Schoen (1970), which has been investigated extensively in
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Figure 2.9: The TPMS Designer graphical user interface.

Figure 2.10: A Gyroid lattice with 50% solid volume fraction and 5× 5× 5 cells.
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Export the MATLAB generated
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by MeshLab

Geometry identification of 

the surface mesh by Gmsh

Export the Abaqus .inp file 

for FE simulations

Creating Gyroid with

TPMS Designer

Volume mesh construction 
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Figure 2.11: Flowchart of the steps for surface mesh quality improvement and conversion
of the surface mesh to the volume mesh for numerical simulations.

different studies. In this thesis, we focus on the Gyroid structures and we will compare
their properties with other cellular materials in Chapter 5. The Gyroid surface in the
Euclidean space R3 is displayed in Figure 2.8 and can be approximated by the equation

sin(x) cos(y) + sin(y) cos(z) + sin(z) cos(x) = 0. (2.45)

Using this equation, a Gyroid surface can be created in a variety of available software
programs with graphical options. In this study, we have used TPMS Designer developed
by Jones et al. (2021), which is a software package that runs within MATLAB 7 and is
used for designing and visualizing surface-based cellular structures. This software has a
graphical user interface (Figure 2.9) and it not only contains different TPMS minimal
surfaces but also it permits the user to define the arbitrary minimal surface function. The
generated Gyroid could have a desired number of cells in a different direction. Figure
2.10, shows a Gyroid with 50% solid volume fraction and 5× 5× 5 number of cells.

By using MATLAB mesh generator, the TPMS Designer software produces a Gyroid
structure in STL format. The quality of the generated mesh is not acceptable and it is
unnecessarily fine. Furthermore, for further numerical simulations, the surface mesh has to
be converted into a volume mesh. Since the simulations in this study have been performed
in the Abaqus software, the desired volume mesh format is the Abaqus input mesh format
.inp. Several steps have been taken to obtain a good-quality volume mesh from a low-
quality surface mesh. These steps are summarized in a flowchart in Figure 2.11. As

7TPMS Designer could also run within MATLAB Runtime which is a free MATLAB compiler.
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a b

Figure 2.12: The improvement of the surface mesh quality by Meshlab in a MATLAB
generated mesh. (a) A surface mesh generated by MATLAB with a low quality and large
mesh size. (b) The same mesh with improved quality and smaller mesh size.

described, the generated low-quality surface mesh is improved by MeshLab which is mesh
manipulation software. The improved surface mesh is then converted to a CAD geometry
by Gmsh software. The generated geometry will construct a volume that can be simply
meshed with 3D volume elements for further numerical analysis. Figure 2.12, illustrates
the improvement in the surface mesh quality by MeshLab. Clearly, this procedure can be
applied to cases requiring a good quality mesh with a low number of elements (Optimum
quality mesh). Nevertheless, due to the incapability of the STL format to identify voids
or the second phase, this method cannot be used in voided or multi-phase materials. A
more general method for mesh reconstruction will be proposed in the Sections 3.3 for 2D
and 5.2 for 3D mesh.

2.7 Concluding remarks

In summary, this chapter presents a review of a computer-aided design process for se-
lected random and periodic geometries. The 3D RSA algorithm for generating randomly
oriented ellipsoidal inclusions of arbitrary size, shape, and orientation (i.e. polydisperse)
has been studied and we have shown the algorithm proposed by Lin and Han (2002) is
sufficiently fast and effective to check the intersection and compute the minimum distance
simultaneously. The modified 3D RSA algorithm is then converted to 2D space to create
2D random circular or elliptical inclusions. In addition, we note that the RSA algorithm
is not able to obtain very large volume fractions due to the irreversibility of the sequential
addition process.

The second random geometry corresponds to the Eroded Voronoi (E-Voronoi) geome-
tries, which are created by a Voronoi tessellation method. Although this geometry is
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random in cell shape and size, it has the constraint of a constant wall thickness. This will
be shown later as a drawback of this class of random geometries. Subsequently, a brief
review has been performed on hexagonal lattices while proposing two forms of geometry
formulations based on the input parameters. These forms enable us to create hexagonal
lattices with fully closed cell boundaries while keeping the horizontal and vertical lengths
of the geometry very close. Finally, the process to create the Gyroid geometries which
are a type of TPMS structures has been described. This generation process is within
a MATLAB-based software proposed by Jones et al. (2021) and requires mesh quality
improvement before numerical analysis on the geometries.
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Chapter 3

The M-Voronoi

Chapter summary: This chapter deals with a novel computer-aided design process to
create a new type of random Voronoi-type porous materials called M-Voronoi (from me-
chanically grown) with smooth void shapes and variable intervoid ligament sizes that can
reach very low relative densities. This is achieved via a numerical, large strain, nonlinear
elastic, void growth mechanical process. First, the general form of the morphogenesis
process is described in different steps. Following that, we discuss the theoretical rela-
tions for controlling the final porosity and the growth of voids. We show that the final
achieved relative density may be analytically estimated in terms of the determinant of
the applied deformation gradient. Subsequently, we propose a new method to remesh an
orphan mesh by constructing the deformed geometry that can be applied to any complex
orphan mesh and is specifically useful for composite or porous materials. The proposed
remeshing method has enabled us to reach low densities in M-Voronoi geometries. An
extension of the M-Voronoi method has also been proposed to create M-Voronoi geometry
at various convex cell domains. This has been further used to assemble the porous cells
into a macroscopic structure. Furthermore, the method is employed to create anisotropic
M-Voronoi which enables us to design random geometries with controllable properties.
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3.9 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.A Appendix A. Equality between the applied and average de-
formation gradients . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.B Appendix B. Algorithms for remeshing a 2D orphan mesh
by constructing the geometry . . . . . . . . . . . . . . . . . . . 71

3.1 M-Voronoi morphogenesis method

This section describes the computational morphogenesis process and its major steps to
obtain the M-Voronoi porous materials. As a first attempt, we focus on voided materials
that exhibit a two-dimensional random geometry. Those are then extruded in the third
(out-of-plane) dimension for subsequent 3D-printing and mechanical experiments. The
proposed process consists of four main steps, which are discussed in the following and are
also summarized in Figure 3.1.

Step 1: Construction of the initial porous cell. The proposed void growth process
begins with the construction of an initial porous unit-cell (Figure 3.1). We note that the
unit dimensions of the cell are inconsequential and are only chosen for simplicity. It is
noted here that the choice of the initial void distribution and cell geometry affects, in
general, the final porous geometry obtained via this process, as it will be shown below.
For illustration purposes at this stage, a square unit-cell occupying the volume V0 in the
undeformed (reference) configuration is considered. The unit-cell comprises a random
distribution of voids at initial volume fraction c0, or equivalently at initial relative density
ρ0 ≡ 1 − c0 (see Section 3.2). The voids may be of any shape, size or orientation (e.g.,
ellipsoidal or even non-convex). Here, for simplicity and numerical efficiency, the random
sequential absorption(RSA) algorithm described in Section 2.3 is used to embed, randomly
and uniformly (in the sense of Torquato (1997, 2002)), circular holes of equal size in the
square domain. Nevertheless, the proposed morphogenesis approach is general and thus
any initial void geometry may be used to increase the final inclusion volume fraction (e.g.
one may start with spinodal geometries at small volume fraction (Maskery et al., 2017;
Portela et al., 2020; Zerhouni et al., 2021).

Step 2: Uniform displacement boundary conditions. The unit-cell is subsequently
subjected to uniform Dirichlet (affine) displacement boundary conditions over the entire
cell boundary ∂V0 (Figure 3.1). For clarity, the most important finite strain kinematics
and constitutive laws used in this work are hereinafter recalled. The deformable unit-cell
occupies a volume V0 in the undeformed (Lagrangian) configuration with boundary ∂V0.
We use X ∈ V0 to denote the reference position vector of a material point in V0. The
deformed position vector x(X) of any material point is related to X via x(X) = X+u(X),
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Figure 3.1: Computational process for the generation of the M-Voronoi material. For
illustration purposes, the diagram shows the four steps required to obtain a virtual M-
Voronoi geometry starting from a square unit cell containing a discrete number of mono-
sized circular pores. Step 1: Random distribution of circular holes in a square domain.
Step 2: Application of uniform displacement boundary conditions. Step 3: Numerical FE
simulation at large strains using nonlinear elastic energy minimization and incompressible
matrix behavior. The zoom image shows locally the deformed mesh. The color bar
indicates the maximum principal logarithmic strain. Step 4: Uniform re-scaling of the
deformed geometry to the desired size. Remeshing (as shown in the zoomed image), 3D
extrusion and STL generation of the final geometry used for 3D-printing.

where u(X) denotes the displacement vector of any material point. The deformation
gradient is defined then as F = ∂x/∂X = I + Gradu, where Grad denotes the gradient
operator with respect to X. We then impose the Dirichlet boundary conditions

u = (Fapp − I)X, ∀X ∈ ∂V0, (3.1)

where Fapp is a prescribed, constant, non-symmetric second-order tensor with four and
nine independent components in 2D and 3D, respectively. By virtue of the divergence
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theorem, one may easily show that Fapp corresponds to the average deformation gradient
in the entire cell, i.e., Fapp = |V0|−1

∫
V0
F(X)dX (The proof of this is provided in Ap-

pendix 3.A). It is further noted that the deformed volume of the unit-cell, V , is entirely
defined in terms of the average deformation gradient Fapp from the purely kinematic rela-
tion V = detFapp V0 (see Section 3.2). Given that the initial unit-cell is porous and thus
compressible, a detFapp > 1 readily leads to an increase of V . A second condition for the
growth of voids is provided next.

Step 3: Nonlinear elastic energy minimization. Subsequently, we trigger the me-
chanical growth of the voids by solving numerically a finite-strain (Figure 3.1), nonlinear
elastic boundary value problem (BVP), whose geometry is defined in Step 1 and applied
boundary conditions in Step 2. For this, we use the finite element (FE) method since
the geometry is extremely complex and involves large deformations leading to a non-
analytical BVP. In this study, the commercial FE solver ABAQUS (Dassault Systems) is
used and finite strains are enabled by the option NLGEOM. Moreover, quadratic six-node,
plane-strain (2D) hybrid elements (CPE6H) are used to deal with incompressibility.

Specifically, the void phase has zero energy density and thus is simply modeled as
empty with traction-free boundaries and is not meshed, while the solid phase (blue in
Figure 3.1) is assumed to follow an incompressible, neo-Hookean law described formally
by the Helmholtz free energy density

W (F) =
µ

2
(F · F− d), such that C(F) = detF− 1 = 0, (3.2)

with d = 2, 3 depending on the dimensionality of the problem. In this last expression, µ
denotes the shear modulus and its value may be set equal to unity for the purposes of
this study, while the incompressibility constraint C(F) needs to be imposed everywhere
in the solid phase. Then, the solution of the BVP is formally defined in terms of the
optimization problem

{u, p} = arg

{
min

u∗∈K(Fapp)
max
p∗

∫
V0

W (F(u∗))dX

}
, (3.3)

where K(Fapp) = {u : regular,u = (Fapp − I)X, ∀X ∈ ∂V0} and p is a scalar pressure
field (acting as a Lagrange multiplier to impose the incompressibility constraint detF =
1). The corresponding first Piola-Kirchhoff stress is given by

S =
∂W

∂F
− p∂C

∂F
= µF− pF−T . (3.4)

Even though the solid phase is incompressible, the embedded voids are fully compress-
ible and can grow or shrink under large deformations. By prescribing detFapp > 1, the
volume of the unit-cell is forced to grow, which can only occur via void growth. Specif-
ically, using the incompressibility of the solid matrix phase, mass conservation and the
applied Dirichlet boundary conditions, one may readily show that the current relative
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density of the deformed unit-cell ρ is simply given in terms of the overall initial relative
density ρ0 via the purely kinematic relation (see Section 3.2)

ρ =
ρ0

detFapp
. (3.5)

Equivalently, this last relation allows to estimate directly the detFapp that needs to be
prescribed to the unit-cell to reach the desired final relative density ρ. Note that detFapp

does not define the entire tensor Fapp. Thus, one has countless choices for the remaining
components allowing to obtain a multitude of void-grown geometries and deformed cell
shapes. As can be easily observed in the example problem in Figure 3.1, the voids grow
substantially exhibiting convex, polygonized but smooth shapes. Their exact growth rate
and final shape are a complex outcome of interactions with neighboring voids and the
boundary of the cell. The thickness of the intervoid ligaments is highly variable, while
dense pockets of solid phase are observed across the cell, as shown by the blue spot
regions in Step 3 of Figure 3.1. It is also important to note that at such large strains the
underlying mesh may be significantly distorted at various regions (see the zoom image in
Step 3 of Figure 3.1). In order to avoid such problems, one may remesh the geometry
(see remeshed figure) without the need to transfer the stress and displacement fields and
re-start the calculation from that point on (see Section 3.3.1). This is obviously allowed
here since we are solely interested in the geometrical features and not in the calculated
stresses themselves. Such an operation will allow us to reach very low relative densities
as is discussed in Section 3.6.

Step 4: Void geometry extraction, rescaling, remeshing and 3D-printing. The
deformed unit-cell is then uniformly rescaled back to any desired size (see Figure 3.1).
By doing so, the relative density is preserved. For this re-scaling step and for subsequent
accuracy in 3D-printing, the following strategy is proposed, without that being neither
unique nor optimal in the sense of speed. Specifically, the nodal coordinates of the ex-
ternal and internal void boundaries of the unit-cell are first extracted and then rescaled
uniformly. The deformed mesh is exported using an Abaqus python script and the geo-
metrical entities, such as void boundaries and cell boundaries, are read by a custom made
code. It is also remarked at this point that one could use an intermediate deformation
state as the initial geometry. In this case, every rescaled geometry resulting from Step
4 could be plugged in back to Step 2 to apply a new deformation history. The various
options are countless. The rescaled unit-cell obtained in Step 4 is then remeshed and
extruded in the third dimension. This step is conducted using the open-source meshing
software Gmsh (see Section 3.3.1). It is further noted that during the remeshing operation,
we do not transfer the computed displacement and stress fields, instead only the deformed
cell and void boundaries are retained. Finally, the extruded geometry is exported in stere-
olithography (STL) format for 3D-printing. The experimental methods used to fabricate
and test the samples are discussed in detail in Section 4.3.
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3.2 Relative density and porosity evolution

We discuss here the evolution of the porous volume fraction or equivalently of the relative
density under prescribed uniform displacement (Dirichlet only) boundary conditions. We
recall that the solid phase (matrix) is considered to be incompressible, and thus the
volume of the cell changes under large deformation, due to void growth only. Therefore,
Fapp can be cast in any form (provided of course that detFapp > 0 to satisfy material
impenetrability), although the embedded voids may grow or shrink depending on the
magnitude of detFapp. For the voids to grow, one needs detFapp > 1 and the contrary
case to shrink (0 < detFapp < 1). Denote next the volumes of the matrix and voids in
the reference (undeformed) configuration to be Vm

0 (Vm) and Vv
0 (Vv), respectively. Then,

incompressibility in the matrix phase implies that

Vm = Vm
0 , (3.6)

while the total volumes in the reference and deformed configurations are given by

V0 = Vm
0 + Vv

0 , V = Vm + Vv. (3.7)

We note further that the deformed volume of the cell, V , is entirely defined in terms of
the applied deformation gradient Fapp by the relation

V = detFapp V0, (3.8)

given that Fapp corresponds to the average deformation gradient in the cell. The proof of
this is provided in Appendix 3.A.

Note further that the relative density in the reference, ρ0 and deformed, ρ, configura-
tions for a porous material are defined as

ρ0 =
ρ̂0
ρ̂m0

, ρ =
ρ̂

ρ̂m
. (3.9)

Here, ρ̂m0 and ρ̂m indicate the density of the matrix phase in the reference and deformed
configurations, respectively, and ρ̂0 and ρ̂ the density of the cell in the reference and
deformed configurations, respectively.

Moreover, in a porous material, the total mass in the cell, m, is equal to the mass of
the matrix, mm, i.e.,

m = ρ̂0 V0 = ρ̂V , mm = ρ̂m0 Vm
0 = ρ̂m Vm. (3.10)

and thus from mass conservation we have

m = mm ρ̂0
ρ̂m0

=
Vm
0

V0
= ρ0, ⇒ ρ̂

ρ̂m
=
Vm

V
= ρ. (3.11)
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Figure 3.2: Evolution of porosity c = 1−ρ as a function of the applied determinant of the
deformation gradient, as obtained by numerical simulations and the analytical expression
(3.14).

Using the last definitions together with relations (3.6) and (3.8), we readily get

Vm

V
=

1

detFapp

Vm
0

V0
or ρ =

ρ0
detFapp

, (3.12)

which corresponds to equation (3.5).
One may further define the void volume fraction in the reference, c0, and deformed

configuration, c, as

c0 =
Vv
0

V0
=
V0 − Vm

0

V0
= 1− ρ0, c =

Vv

V
=
V − Vm

V
= 1− ρ. (3.13)

Using the result (3.12), one readily gets

c = 1− 1− c0
detFapp

. (3.14)

It can be readily observed that the aforementioned relations are purely kinematic due
to the incompressibility of the matrix phase as well as the application of the Dirichlet-
only boundary conditions and consequently only Fapp controls the final porosity/relative
density of the cell. In the case of mixed Neumann–Dirichlet boundary conditions and
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incompressible matrix, still the void growth is controlled by the average deformation gra-
dient in the cell but that does not correspond exactly to the partially applied deformation
gradient imposed via the displacement field in a part of the boundary.

In Figure 3.2, we assess our numerical calculations by simulating RSA voided cells with
different initial porosities c0 applying equi-biaxial loads with detFapp > 1 and comparing
the induced numerical porosity with that obtained by the analytical expression (3.14).
The numerical simulation recovers to excellent accuracy the exact analytical result (3.14).
In this figure, we observe that obtaining the desired porosity is easier with a larger initial
porosity and requires less deformation. Furthermore, there is a nonlinear saturation type
increase in the porosity with increasing detFapp. This saturated type response indicates
that very large strains are, in general, necessary to reach very high porosities (or very
low relative densities). This, in turn, leads to severe mesh distortion. In order to avoid
numerical issues, a strategy consists in ceasing the simulation, extracting the geometry
(but not the stress and strain fields), remeshing and restarting the simulation from the
lastly obtained geometry. This allows for efficient and very accurate resolution at very
low relative densities. The operation is discussed in detail in Section 3.3.1.

3.3 Geometry reconstruction and Remeshing

Well-shaped elements are crucial for the stability and efficiency of numerical computa-
tions. Large strain simulations often lead to severe mesh distortion, which is the main
reason for terminating the simulation. Having a high-quality mesh not only improves the
accuracy of the results but also might enable the simulation to proceed to larger strains.
However, improving the initial mesh quality will increase computational costs and time.
Furthermore, in complex geometries undergoing large strains, there might be regions that
undergo larger deformations. Adaptive mesh techniques might lead to larger deforma-
tions, but still, mesh distortion is inevitable in such geometries. In order to achieve larger
strains in a reasonable running time, it is essential to remesh the distorted mesh after
termination of the simulation and resume it with/without mapping the fields to the new
mesh.

Remeshing is a technique that automatically rebuilds the existing mesh (normally
meshes containing ill-shaped elements) with a better-quality mesh. It can be done either
by refining the existing mesh or reconstructing a new mesh with different approxima-
tive operations. Generally, refining the existing mesh will increase the mesh size and
consequently the computational time and cost. Also, since the distorted elements are
just refined to smaller sizes, the new refined mesh will not be sufficiently efficient for
the simulation to go much further and avoid excessive distortion. In contrast, the mesh
reconstruction technique consists of rebuilding a new mesh by approximating the current
mesh to a uniform topology and remesh it. It can either add or remove the amount of
topology depending on a defined resolution. In addition to being extensively studied in
Computer Graphics, the technique of surface remeshing has also received considerable
attention from other fields concerned with mesh generation, mainly Computational Fluid
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Dynamics, Finite Element Methods, and Computational Geometry. However, the draw-
back of this technique consists of the accuracy of the approximated geometry and the
computational time to rebuild the new mesh.

There are a variety of remeshing tools available in different commercial or open source
software. For example, in open-source meshing software Gmsh, there is an option to
remesh an STL file without an underlying CAD model. In this method, by employing
the “classifySurfaces” option, the current surface mesh is classified based on the surface
normal angle threshold in order to force splitting of the generated surfaces, resulting in
the creation of new discrete entities and topologies. When the angle between two mesh
element surfaces is above the threshold, the edge is considered a sharp angle. Then, a
geometry for all the discrete curves and surfaces in the mesh is created, by computing
a parametrization for each one. The latter is performed by the “CreateGeometry” com-
mand. The final parametrized geometry can be remeshed with higher-quality elements
or an arbitrary element type. However, this method is highly dependent on the surface
classification parameters and fails in complex geometries and especially in extremely dis-
torted quadratic elements. In addition, it is unable to build a periodic or multi-phase
mesh.

Another available remeshing tool is the Meshlab free software, which is based on
improving the quality of the STL mesh, again without an underlying CAD model. In
this method, the original topology of the geometry is preserved while the quality of the
elements is improved by optimizing the node coordinates. Although this technique is
an incredibly fast remeshing method, it is unable to create a periodic mesh. Also, the
newly created surface mesh is exported in STL format, whereas in 3D, closed surface voids
cannot be identified.

Additionally, Abaqus software can generate geometry from mesh files by using the
Mesh to Geometry Plug-in. This plug-in converts .STL files and meshes back to geome-
try, allowing the structure to be remeshed and imported into a variety of CAD packages.
Nevertheless, it fails to handle closed curves or surfaces, namely 2D and 3D voids. Fur-
thermore, it is not able to deal with complex deformed voided geometries with large
porosities, such as 3D M-Voronoi structures. Figure 3.3 shows the non-smooth imperfect
2D voided geometry created by Abaqus software when the mesh contains voids. Origi-
nally, the orphan mesh had no sharp corners at the edge of every void. Moreover, we
note that there are adaptive meshing/remeshing techniques available in Abaqus software
which improve the mesh during the simulation based on the evolving deformation applied
to the mesh. However, they are limited to dealing only with first-order elements, whereas
quadratic elements are more commonly used in large strain simulations.

In summary, the existing remeshing methods are incapable of taking into account voids
and different element sets in multi-phase materials, especially in complex geometries when
the elements are extremely distorted. Furthermore, none of the above methods are able
to generate periodic meshes during the remeshing process. We present a new remeshing
technique, both precise and efficient, for remeshing any orphan mesh in 2D and 3D. Using
this technique, only an orphan mesh is required (i.e. no geometry information) and the
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Figure 3.3: The geometry containing non-smooth void boundaries generated by Abaqus
from orphan mesh.

surface elements are used to create the deformed geometry exactly as it appears on the
surface. The generated geometry is subsequently remeshed with an arbitrary mesh size
and algorithm (for example Delaunay triangulation). Unlike previous techniques, our
remeshing technique has the following advantages:

• Producing the geometry of any orphan mesh.

• Preserving the exact geometry without any approximation.

• Constructing of regions with no elements i.e. voids. (Hollow structures)

• Considering different phases of multi-phase materials.

• Containing both 2D and 3D meshes.

• Dealing with different element types.

As a result, the proposed remeshing method is extremely versatile and general, en-
abling us to produce arbitrarily complex meshes with a variety of properties. The focus
of our study is on the void construction feature of the developed remeshing algorithm,
which is not found in commercial or open-source remeshing algorithms. This algorithm
has been developed for both 2D and 3D meshes. In the following section, we discuss the
details of the proposed remeshing algorithm for 2D geometries. Subsequently, the 3D
remeshing technique will be described in Section 5.2.
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3.3.1 Description of 2D remeshing algorithm

We developed a Fortran code and its corresponding Python version of the remeshing algo-
rithm, which is based on Gmsh reconstruction process. The proposed remeshing algorithm
consists of the following steps and is also summarized in Figure 3.4.

Step 1 Step 2

Step 3Step 4

Figure 3.4: 2D remeshing algorithm for an orphan mesh based on geometry reconstruction.
For illustration purposes, a simple orphan mesh containing a void is demonstrated. The
diagram shows the four steps required to remesh an orphan mesh. Step 1: Reading the
nodes and elements of the orphan mesh. Step 2: Finding the free sides of the elements.
Step 3: Constructing the geometry of the orphan mesh. Step 4: Remeshing the new mesh
with an arbitrary mesh algorithm.

Step 1: Importing the orphan mesh and reading the nodes and elements. Be-
fore the algorithm can be initiated, it is necessary to know the nodes and their connectivity.
As soon as the orphan mesh file is imported, the nodes and elements are read, and stored
in the corresponding matrices. We use this information to identify free lines/surfaces in
the next step. We consider the mesh contains n nodes and each node i contains three
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Figure 3.5: Different 2D element types and their number of nodes.

coordinate components xi, yi, zi in 3D space. We define a matrix Nn×3, containing the
information of all nodes. Clearly, the row number corresponds to the nodes number. Sim-
ilarly, we define a matrix Mm×h to store the information of the elements. In this matrix,
m is the number of elements and h denotes the number of nodes at each element. h will
vary depending on the type and order of the elements. Figure 3.5 shows different 2D
element types and their number of nodes. Therefore, h could be 3, 4, 6, 8.

1
2

3

4

56

Figure 3.6: Reorganizing the order of the stored nodes for each quadratic element.

In the case of quadratic elements, one needs to reorganize the stored element nodes to
provide proper connectivity between them as described in Figure 3.6. This reorganization

CHAPTER 3. THE M-VORONOI



53

Figure 3.7: An illustrative example of a 2D orphan mesh containing free and shared lines
corresponding to the blue and red colors, respectively.

has been performed to consider the displacement of the middle nodes after the deforma-
tion. This is because they would not stay on the same line as other two corner nodes.
It is possible to ignore the middle nodes and let the geometry be constructed only by
the corner nodes. However, this will affect the accuracy of the new geometry and mesh,
depending on the geometry features and mesh size.

Step 2: Finding the free sides of the elements. Considering that we have a closed 2D
object, the geometry can be constructed by connecting the free lines of the 2D elements,
which make the exterior boundary of the object (see Figure 3.4). The free lines can be
distinguished from other lines of a given element by their inherent feature, which is that
they belong only to that element. A non-free side of an element, on the other hand, is
shared by two elements at the same time. Figure 3.7 shows an illustrative example of a
2D orphan mesh containing free and shared lines corresponding to the blue and red colors,
respectively. All free lines characterized by a couple of nodes will be stored in the matrix
Lf×2, where f denotes the total number of free lines. The algorithm for finding the free
lines of an orphan mesh is described in Algorithm 1 in Appendix 3.B. This process consists
of two main loops that compare each element’s nodes with all other elements. To speed
up the loops, we defined a matrix that contains the elements connected to each node in
order to limit the search over all elements. It has resulted in a significant improvement
in the algorithm’s speed.

Step 3: Constructing the geometry from the free element sides. The free lines
are then organized and connected to construct the geometry. The geometry is constructed
using the geometry module of Gmsh. Generally, a geometry in Gmsh is defined using its
Boundary Representation (BRep): a volume is bounded by a set of surfaces, a surface
is bounded by a series of curves, and a curve is bounded by two endpoints (Geuzaine
and Remacle, 2009). Geometry entities are built in a bottom-up manner (first points,
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Figure 3.8: 2D geometry entities built in a bottom-up manner with the OpenCASCADE
kernel in Gmsh: points, lines, curve loops, surfaces, and physical surfaces.

CHAPTER 3. THE M-VORONOI



55

Adding the first line

Reference node

Constructing the new line

First node?

The last free line?

New surface

N

New reference node

End

Y

N

Figure 3.9: Flowchart of 2D geometry reconstruction from the identified free lines of an
orphan mesh

then curves, surfaces, and volumes) with the built-in OpenCASCADE kernel. Figure
3.8 describes the bottom-up building process in Gmsh for a simple rectangle and the
corresponding commands. Following this process, we construct the geometry surfaces by
connecting the free points and lines. We propose an algorithm that consecutively connects
the identified free lines. Initially, it starts with the first free line of the matrix Lf×2 and
then finds the second free line adjacent to it. This is determined by the node shared
between the two lines. The process will continue to build a closed curve of the lines
(Curve Loop in Gmsh), which happens when the current free line connects to the first free
line. If all the free lines have been investigated, the process will terminate; otherwise, it
will continue to build the next closed curve. This algorithm is summarized in Figure 3.9
and described in Algorithm 2 in Appendix 3.B.

Identifying multiple curve-loops/surfaces implies that the orphan mesh consists of a
multi-phase material (i.e. there are either voids or particles or a combination of both).
1 To remove voids or create a mesh for particles, we must cut out the inclusion surfaces
from the matrix surface. To do so, we use the Boolean operations available in Gmsh Open-
CASCADE kernel. We apply the BooleanDifference operator to the matrix and void
surfaces to create empty voids. On the other hand, if we want to have a multi-phase mesh
for particles and matrix, we thus use BooleanFragments operator which intersects all vol-
umes in a conformal manner (without creating duplicate interfaces). Figure 3.10 shows
three different cases of the Boolean operator and their corresponding mesh. We consider

1The number and type of phases can be assessed by the number of element sets in the orphan mesh.
In particular, when the material is porous, there is only one element set for the matrix phase.
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Figure 3.10: Gmsh Boolean operator. The surface P1 is the rectangular matrix surface
and P2 is the inclusion surface. The first row displays the geometry and the second row
corresponds to the meshed surfaces. (a) Without the Boolean operator, two surfaces are
overlapping and are not distinguishable. (b) The BooleanDifference operator removes the
inclusion surface. (c) The BooleanFragments operator preserves the inclusion surface and
creates a conformal mesh at the interface between the inclusion and matrix

surface P1 as the rectangular matrix surface and P2 as the inclusion surface, which can
be void or particle. In the absence of the Boolean operator in Figure 3.10a, two surfaces
cannot be distinguished and the generated mesh is overlapping. With Boolean operators
however, two surfaces become distinguishable. The BooleanDifference operator is ap-
plied to remove the inclusion surface when the second phase is an empty void (Figure
3.10b). Alternatively, one can apply BooleanFragment operator to preserve the inclusion
surface and create a conformal mesh at the interface between the inclusion and matrix
(Figure 3.10c). We note that in both Boolean operators, the largest surface must be de-
termined to allocate the matrix phase to it. This is achieved by comparing the maximum
or minimum coordinates of different surfaces when all surfaces are detected.

Step 4: Exporting the geometry, rescaling and remeshing. Once the geometry
is constructed, it is possible to use it in CAD software or to generate a new mesh from
it. By having the geometry, we have a high level of control over the output mesh and we
can remesh it according to any meshing algorithm and element type that we desire. The
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a) Deformed orphan mesh b) Identified free nodes and lines c) Constructed geometry d) New mesh

Figure 3.11: Remeshing steps applied to an orphan mesh of M-Voronoi containing ex-
tremely deformed elements and the corresponding new mesh with significantly higher
quality.(as shown in the zoomed image)

geometry is written in Gmsh .geo format and is built based on a bottom-up manner (see
Figure 3.8). Since remeshing is mostly applied to deformed structures, one might need to
rescale the whole geometry to a specific size. By multiplying a fixed scaling number by all
coordinate components of points in the geometry, a uniform scaling can be achieved. The
scaling factor is normally an input parameter required from the user. The new mesh is
created with Gmsh software and is exported as an Abaqus input file (.inp) for simulations.
Various meshing options are available in Gmsh. If printing of 2D mesh is required, the
mesh has to be extruded in an out-of-plane direction with a specific thickness. We have
developed a Fortran code to extrude 2D meshes with a desired thickness and create the
stereolithography (.stl) mesh file format, which is printable in 3D printers.

3.3.2 Application of 2D remeshing algorithm in M-Voronoi

As described in Section 3.1, the mechanical growth of the voids is triggered by applying
large deformations to the unit-cell, which leads to severe mesh distortion. Generating a
new mesh is therefore a fundamental step for further numerical simulation or 3D-printing
of the final M-Voronoi geometries. Furthermore, due to the severe mesh distortion, the
simulation might terminate before the target volume fraction of voids is achieved, which

CHAPTER 3. THE M-VORONOI



58

Figure 3.12: M-Voronoi containing particles instead of voids. The void regions can be
meshed by applying the BooleanFragments operator.

happens especially when very low relative densities (ρ ≤ 0.05) are required. In this case,
one could use an intermediate deformation state as the initial geometry, remesh it and re-
launch the simulation to proceed to larger strains. In Figure 3.11, we show the remeshing
steps applied to an orphan mesh of M-Voronoi containing extremely deformed elements
and the corresponding new mesh with significantly higher quality.

The proposed flexible remeshing technique also allows us to consider the voids in M-
Voronoi as particles by applying the BooleanFragments operator and meshing the void
regions. The same physical characteristics could be attributed by defining all particle
surfaces as one physical group. The final mesh will contain two element/node sets: the
matrix and the particles. Figure 3.12 illustrates the same M-Voronoi geometry containing
particles instead of voids. We note that it is possible to create particles with different
physical properties or a combination of voids and particles (i.e. materials with more than
two phases).

3.4 M-Voronoi in convex cell domains

The discussed morphogenesis process is employed to obtain M-Voronoi geometries in
rectangular, circular and triangular domains (Figure 3.13). For simplicity in presentation,
we specialize to diagonal deformation loads, i.e., Fapp = diag(λapp1 , λapp2 ) (with λapp1 , λapp2

denoting the applied principal stretches).
In Figure 3.13a, we begin with a large number of initially circular voids (ρ0 = 0.9),

and subject the unit-cell to equi-biaxial tension with λapp1 = λapp2 = λapp > 1. Three
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rescaled contours show the maximum local principal logarithmic strain at current relative
density ρ = 0.7, 0.5, 0.3 (Figures 3.13b-d). The circular voids gradually polygonize, albeit
remaining smooth. This smoothness is a key feature of these newly obtained inclusion
geometries. In particular, the complex interactions resulting from the disordered distribu-
tions of the voids and the underlying nonlinear large elastic deformations lead to convex
and non-canonical Voronoi-type shapes. Most of these shapes resemble a pentagon and
are of fairly similar size. By contrast, due to the random distance of the centers of the
original circular voids, the deformed intervoid ligaments exhibit a rather random thick-
ness variation. Pockets of almost undeformed solid regions (indicated by the blue spots in
e.g., Figure 3.13c) are formed. Those pockets gradually shrink with further increase of the
applied strains (Figure 3.13d). As a second representative example, the proposed morpho-
genesis process is employed to design M-Voronoi geometries with anisotropy. Specifically,
as shown Figures 3.13e-h, we apply a biaxial tension with 2λapp2 = λapp1 = λapp > 1. Such a
load transforms the initial square to a rectangle and the initially circular voids to elongated
Voronoi-type shapes. Similar to the previous equi-biaxial case, the intervoid ligaments
are again non-uniform. The possibilities for designing such M-Voronoi obviously are lim-
itless since any combinations of the Fapp components can lead to different void formations
and anisotropies. A selected set of such anisotropic M-Voronoi are discussed later in Sec-
tion 3.7. This case of anisotropic M-Voronoi reveals the versatility of the method. This
allows for a more tunable response by employing an inverse design protocol, albeit in a
large nonlinear strain framework.

Finally, the simplicity of the process and the prescribed boundary conditions al-
lows to grow M-Voronoi geometries in initially circular (Figures 3.13i,j), triangular (Fig-
ures 3.13k,l) or any other type of convex domain cells2. The applied stretches may be
chosen to be equi-biaxial retaining the original shape of the domain or simply biaxial
leading to anisotropic responses. Interestingly, the grown voids exhibit similar polygonal
(pentagon) type features except for a few ones that lie very close to the boundaries. For
instance, the voids lying near the circle periphery or the corners of the triangle take a
rather triangular shape (Figure 3.13l). The use of equi-biaxial loads tends to lead to a
more isotropic growth even in anisotropic domains such as the triangular one. In turn, the
use of non-equi-biaxial loads triggers a direction-dependent (i.e. anisotropic) void growth.
In all cases, the only constraint that needs to be imposed for positive void growth is sim-
ply detFapp > 1, while the remaining components of Fapp may be arbitrarily chosen. It
is important to note, that the randomness of void distributions allows to “fill” efficiently
and uniformly those domains with voids/inclusions, a process that would be extremely
difficult to achieve with periodic geometries (such as honeycombs, periodic lattices, etc.).

2Even though it is not shown rigorously, it is rather intuitive to see that a non-convex initial geometry
of the unit-cell would lead to contact of the exterior faces of the cell and subsequent cease of the simulation
under uniform affine loads. Thus a convex cell geometry, albeit of arbitrary shape is essential at the initial
stage.
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Figure 3.13: Representative M-Voronoi porous geometries for porous domains with dif-
ferent shapes: (a-d) isotropic geometries obtained using a rectangular cell subjected to
equi-biaxial tension (λapp1 = λapp2 = λapp > 1); (e-h) anisotropic geometries obtained using
a rectangular cell subjected to biaxial tension (2λapp2 = λapp1 = λapp > 1) and isotropic
geometries obtained using respectively a (i-j) circular and a (k-l) triangular cell subjected
to equi-biaxial load. The initial geometries in (a), (e), (i) and (k) are obtained using the
RSA algorithm and monodisperse circular voids at relative density ρ0 = 0.9. All deformed
cells are scaled for visualization reasons.
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Figure 3.14: M-Voronoi obtained by using a RSA geometry with initial relative density
(a) ρ0 = 0.9, (b) ρ0 = 0.7 and (c) ρ0 = 0.5 as shown in the insets of the first row. The
ρ = 0.01 geometries in, are obtained by using the corresponding ρ = 0.1 as an initial
geometry after remeshing it. The top color bar indicates the final relative density ρ.

3.5 Effect of initial volume fraction and attainable

relative density

The M-Voronoi geometries are numerically and experimentally realizable at solid densities
spanning the full spectrum from 1 to very low (e.g., 0.01). Figure 3.14 represents M-
Voronoi geometries with square unit-cell at different initial and final densities subjected
to equi-biaxial loading which leads to an isotropic final geometry. We show that the initial
relative density, ρ0, affects strongly the final M-Voronoi geometry. A higher initial ρ0 =
0.9 (Figure 3.14a) leads to substantially more uniform and equi-sized Voronoi inclusions
contrary to a lower initial ρ0 = 0.7, 0.5 (Figures 3.14b,c). The latter tends to create
disordered clustering of smaller and larger voids randomly distributed in the cell. It is
important to note at this point that in order to achieve very low relative densities such as
ρ = 0.01 while avoiding excessive mesh distortions, it is preferable to stop the simulation
at an intermediate value of ρ, e.g. ρ = 0.1, extract the geometrical characteristics, remesh
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Figure 3.15: The effect of the intermediate re-launching step on M-Voronoi final geome-
tries. The simulations have been stopped when the intermediate density ρi is achieved and
the deformed geometry is extracted and remeshed. Then, the simulation is re-launched to
obtain the final density ρ. (a),(b) M-Voronoi geometries of identical initial and final den-
sity (ρ0 = 0.5 and ρ = 0.05), but with and without the intermediate M-Voronoi geometry,
respectively. (c),(d) M-Voronoi geometries of identical initial and final density (ρ0 = 0.9
and ρ = 0.1), but with and without the intermediate M-Voronoi geometry, respectively.

and re-launch the simulation to reach the final relative density desired. This last process
implies re-launching Steps 1-3 discussed in Figure 3.1, but using an intermediate M-
Voronoi geometry as an initial one. Obviously, this process can be repeated whenever
necessary to avoid severe mesh distortion or numerical convergence issues.

We note that if the intermediate re-launching step is performed without stress field
mapping, the final geometry would be different from its counterpart without the inter-
mediate step. This difference, however, is negligible when the initial density is higher
(ρ = 0.9) and the size of the inclusions is more uniform and equi-sized contrary to a lower
initial density ( ρ0 = 0.7, 0.5 ). In the latter, using an intermediate M-Voronoi geom-
etry enhances the disorder size distribution of the inclusions. Figures 3.15a,b show the
M-Voronoi geometries of identical final density, but with and without the intermediate
M-Voronoi geometry, respectively. In the left side geometry, the simulation has stopped
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when the intermediate density ρi = 0.1 is achieved. Then, the deformed geometry is ex-
tracted and remeshed without mapping the stress fields. The simulation is subsequently
re-launched to obtain ρ = 0.05. In the right side geometry, the ρ = 0.05 is achieved
directly from ρ0 = 0.5 without the intermediate remeshed geometry. As a result of the
intermediate step, the inclusions have become more polydisperse in size. Figures 3.15c,d
show a similar comparison for the geometries with ρ0 = 0.9 with and without the inter-
mediate step. This step is performed at ρi = 0.2 for the left side geometry, while the final
density ρ = 0.1 is identical. This process has a substantially lower effect on the more
uniform size of the inclusions.

3.6 E-Voronoi and RSA versus M-Voronoi

For later use, we examine now the differences between the M-Voronoi geometries proposed
in the present work versus the E-Voronoi and RSA polydisperse geometries (Figure 3.16).
The (eroded) E-Voronoi geometries (Figure 3.16a) are constructed by use of the algo-
rithms presented in Spyrou et al. (2019) for the modeling of human muscles. In that
study, a standard Voronoi tessellation is first created and subsequently the walls of each
Voronoi inclusion are eroded in a uniform manner leading to constant-thickness intervoid
ligaments. The amplitude of erosion defines the final relative density, while the intervoid
ligaments are meshed in two-dimensions to reach arbitrary values of ρ (as opposed to
earlier studies such as in Tekoglu et al. (2011) where beam elements were used). By con-
struction, the E-Voronoi void boundaries exhibit sharp corners, while the process may lead
to locally more elongated inclusions of large aspect ratio towards an arbitrary direction.
The E-Voronoi geometries can span the entire range of practical relative densities from 1
to very low (e.g., 0.01) and are isotropic as a direct consequence of the random Voronoi
tessellation process (but see the recent extension to anisotropic ones by van Nuland et al.
(2021)).

The random sequential adsorption algorithm (RSA) geometries (Lopez-Pamies et al.,
2013) contain multiple sized (i.e. polydisperse) circular voids that are embedded randomly
in the square domain (Figure 3.16b). Similar to the M-Voronoi, the RSA geometries
exhibit non-uniform intervoid ligament thickness, while being extensively polydisperse
with decreasing relative density. The main challenge in constructing the RSA geometries
lies in the fact that it becomes increasingly difficult to reach representative specimens in
the nonlinear finite-strain regime with very low relative densities (less than 0.2 in 2D and
less than 0.3 in 3D) that are realizable numerically (for instance, no geometry has been
achieved for ρ < 0.05 as shown in Figure 3.16b) as well as with 3D-printing technology.
This is due to the extremely large difference between the largest and the smallest voids
necessary to achieve such low densities. In turn, the RSA geometries may be isotropic
or anisotropic depending on the void shapes (Anoukou et al., 2018) (e.g. ellipsoidal
shape) and their distribution. In the present work, we focus on circular voids distributed
randomly and uniformly in the square cell leading to a fairly isotropic response.

By contrast, the proposed M-Voronoi geometries are numerically and experimentally
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Figure 3.16: Random porous geometries: (a) E-Voronoi. (b) RSA polydisperse circles.
(c) M-Voronoi obtained by using a RSA geometry with initial relative density ρ0 = 0.9.
The relative densities less than ρ = 0.1 are obtained by an intermediate remeshing step.
The top color bar indicates the final relative density ρ.

realizable at solid densities spanning the full spectrum from 1 to very low (e.g., 0.01)
(Figures 3.16c-e). For conciseness, we report M-Voronoi geometries obtained via an equi-
biaxial loading history applied to a RSA geometry with initial relative density ρ0 = 0.9,
which leads to an isotropic final geometry. The number of inclusions in M-Voronoi and
E-Voronoi geometries is identical (=200) contrary to the RSA geometries where there
is no control over the number of voids due to the polydispersity nature. In very low
densities, the M-Voronoi and E-Voronoi are very similar. This is due to the uniform
ligament thickness in the M-Voronoi allowing the voids to expand and fill the matrix.

3.7 Anisotropic M-Voronoi

The morphogenesis process for designing M-Voronoi geometries leads to macroscopic
isotropy or anisotropy depending on the prescribed boundary conditions. As already
shown in Figures 3.13e-h, anisotropic M-Voronoi geometries can be obtained using a
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Figure 3.17: The variation of λapp2 as a function of the anisotropy parameter η at different
applied deformations detFapp. The red region shows the range of η and detFapp leading
to compressive deformations λapp2 < 1 in the anisotropic generation process.

rectangular cell subjected to biaxial deformation Fapp = diag(λapp1 , λapp2 ), where principal
stretches are not equal λapp1 ̸= λapp2 and maintaining positive void growth via detFapp > 1.

However, one may readily employ an inverse design protocol to achieve a final square
M-Voronoi cell with final dimensions l1 = l2 through a biaxial loading applied on an
initially rectangular cell with dimensions L1 ̸= L2. The latter imposes a geometrical con-
straint on the applied deformation to obtain the target porosity. The mechanical response
of the final M-Voronoi with a specific porosity is tunable and depends on the applied de-
formation ratio η = λapp1 /λapp2 . By taking into account the geometrical constraint l1 = l2,
one can readily show that the deformation ratio determines entirely the aspect ratio of
the initial cell via the relation

η =
λapp1

λapp2

=
L2

L1

. (3.15)

Here, η is an anisotropy parameter that leads to isotropic responses for η = 1 or anisotropic
otherwise.

Using the last definitions together with (3.5), we readily obtain the following relations
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Figure 3.18: The generation process of an anisotropic M-Voronoi material with η = 2
obtained using a rectangular cell (L1 = 1 and L2 = 2) subjected to non equi-biaxial
tension loading. The initial geometry in (a) is obtained using the RSA algorithm and
monodisperse circular voids at the relative density ρ0 = 0.9. (c) and (d) indicate the
deformations at intermediate values of stretch. The final anisotropic geometry in (d) has
a square shape with l1 = l2 = 2.44 and the relative density ρ = 0.3. The color bar
indicates the maximum principal logarithmic strain.

for the applied deformation

λapp2 =

√
ρ0
η ρ

, λapp1 = η λapp2 , (3.16)

where ρ0 and ρ denote the initial and final relative density. It is important to note that
void growth is achieved when detFapp > 1, which imposes the constraint (λapp1 )2 > η,
(or equivalently (λapp2 )2 > η−1). In spite of this, the void growth does not indicate tensile
deformations in both directions, and both principal stretches are greater than one. In fact,
even with detFapp > 1, compressive deformation might occur in either directions(λapp1 < 1
or λapp2 < 1). Following the relation (3.5), we denote ρ0/ρ with detFapp. Figure 3.17 shows
λapp2 as a function of η for different values of detFapp ≥ 1. There is obviously a compression
in one direction for λapp2 < 1, and that happens when η > detFapp (red region in Figure
3.17). Therefore, in order to avoid such compressions one should consider the limit of
aspect ratio η.

In practice, we create anisotropic M-Voronoi by prescribing the initial and final relative
density, and the anisotropy parameter η. The initial RSA geometry is then constructed
with L1 = 1 and L2 = η. Subsequently, the biaxial deformation Fapp = diag(λapp1 , λapp2 )
is applied, where λapp1 and λapp2 are obtained from equation (3.16). The final deformed
geometry has the dimension of l1 = λapp1 and l2 = λapp2 L2 where l1 = l2. This geometry is
then remeshed and uniformly rescaled to 1 × 1 dimension with the remeshing algorithm.
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a b c d

Figure 3.19: Isotropic and anisotropic M-Voronoi geometries with identical relative density
ρ = 0.3 and different anisotropy parameters: (a) η = 1, isotropic M-Voronoi (b) η = 0.5,
(c) η = 2, (d) η = 4.

In Figure 3.18, we show the generation process of an anisotropic M-Voronoi geometry
with anisotropy parameter η = 2 and final density ρ = 0.3, constructed from a RSA
geometry with initial density ρ0 = 0.9 and dimensions L1 = 1 and L2 = 2. The initial
unit-cell is subjected to a biaxial tension with λapp1 = 2.44 and λapp2 = 1.22. The contours
show the maximum principal logarithmic strain at different current stretches until the
final relative density is achieved. The final anisotropic M-Voronoi unit-cell has a square
shape with l1 = l2 = 2.44 and it will be uniformly rescaled to 1× 1 dimension for further
studies. Similar to the isotropic M-Voronoi, the circular voids gradually polygonize, albeit
remaining smooth and the intervoid ligaments are again non-uniform. However, the non
equi-biaxial loads transform the circular voids to elongated voronoi-type shapes, resulting
into a geometry with anisotropic properties. Such elongations in the horizontal direction
are due to the strain field bonds created in the vertical direction, as a consequence of a
larger deformation in the horizontal direction. These bonds are shown in Figure 3.18b with
green color. Equivalently, dense pockets of solid phase are observed more in the horizontal
intervoid ligaments. Finally the anisotropic M-Voronoi results in voids elongated two
times more horizontally. The design process could be repeated for any arbitrary value of
η to obtain an anisotropic M-Voronoi with controlled mechanical properties.

Following the same procedure, we created anisotropic M-Voronoi geometries with iden-
tical relative density ρ = 0.3 and different anisotropy parameters η = 0.5, 1, 2, 4, but
identical relative densities ρ = 0.3 (Figure 3.19). For consistency, all geometries are uni-
formly rescaled to 1×1 dimension. The geometry with η = 1 corresponds to the isotropic
M-Voronoi and we observe its difference from anisotropic geometries. Clearly, for η > 1
the voids are elongated horizontally, while for η < 1 the elongation is vertically. The
possibilities for designing such an anisotropic M-Voronoi are countless since any combina-
tion of principal stretches λapp1 and λapp2 can lead to different anisotropies and properties.
This reveals the versatility of the M-Vronoi method to design a geometries with tunable
properties. A selected set of such anisotropic M-Voronoi are manufactured and studied
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experimentally in Section 4.5.5.

3.8 The assembly of the porous cells into macroscopic

structures

In this section, we take advantage of the M-Voronoi growth process over a variety of
domains (Figure 3.13) to propose a novel modular assembly of the porous cells into
macroscopic structures of arbitrary shape (Figure 3.20). As an example, we consider
the logo of Ecole Polytechnique, which involves an X-shape with triangular curved ends
(Figure 3.20a). The latter may be discretized in arbitrary finite volume elements (FVE)
(similar to the finite elements in numerical methods) of triangular, trapezoidal and rectan-
gular shape (Figure 3.20b). In addition, each FVE may be attributed a different relative
density and be generated by applying a different deformation history (e.g., equi-biaxial,
anisotropic biaxial, or shear plus biaxial, etc.). Once created, each FVE is assembled

Figure 3.20: Assembly of individual M-Voronoi cells into a macroscopic geometry. (a)
Ecole Polytechnique Logo. (b) Finite Volume Element (FVE) discretization with arbitrary
porosity and anisotropy. (c) Numerical creation and assembly of the individual porous
cells. (d) 3D-printed specimen.

numerically to reconstruct the original macroscopic X-shape geometry (Figure 3.20c).
We recall that each FVE can be uniformly rescaled at will. The final X-shape is then
transformed to STL format and 3D-printed (Figure 3.20d). We note that this modular
assembly process is easily employed using the M-Voronoi geometries and at any relative
density desired spatially. The advantage of such an assembly is that the FVEs have a
versatile isotropic or anisotropic representative response with their relative density as an
input. This relative density may be further optimized by use of the earlier homogenization-
based methods proposed by Allaire (1992), allowing for a finite void volume fraction per
FVE. Of course, an RSA geometry may also be considered, however, in the context of
triangular or trapezoidal FVEs, the circles (and more generally the quadric objects) be-
come highly non-conforming near the sharp corners of the triangles limiting even further
the relative densities that can be reached. In turn, the E-Voronoi have the potential to
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be implemented in such an assembly process (Mart́ınez et al., 2018) recalling nonethe-
less the weaker mechanical resilience as compared to the M-Voronoi geometries at finite
strains and buckling/fracture loads. One can further envisage a more uniform transition
between the FVE boundaries by applying smoothing techniques (Mart́ınez et al., 2016;
Kumar et al., 2020). Obviously, the present assembly method is limited by the minimum
3D-printing feature capability, i.e., the minimum void size that can be properly realized
in practice.

3.9 Concluding remarks

In the present chapter, we propose a versatile mechanically-grown morphogenesis method
to obtain random geometries called M-Voronoi. This method is based on a nonlinear
elastic finite strain computational strategy and creates random geometries with smooth
void shapes and variable ligament thickness. We show that the final volume fraction
of inclusions in M-Voronoi geometries can be controlled by a pure kinematic relation.
Moreover, a full density range can be obtained by the proposed method. To achieve
this, we propose a novel intermediate remeshing algorithm to improve mesh quality in
the intermediate deformation steps. The developed algorithm is able to construct the
deformed geometry of an orphan mesh with no information from the corresponding CAD
model. It can then remesh it with improved mesh quality. This algorithm can also
deal with arbitrary complex geometries containing either voids or multiphases. It is
important to note that the discussed M-Voronoi method is general and can be applied
to design random porous materials or particulate composites (Figure 3.12). In addition,
random M-Voronoi can be constructed in various cell domain geometries (e.g. triangles,
circles, trapezoids, rectangles, etc.), enabling us to assemble the porous cells (finite volume
elements (FVEs)) into macroscopic structures. M-Voronoi geometries are also affected by
the initial porous geometry. As an example, as we increase the porosity of the initial
RSA domain, the final M-Voronoi geometry will become more polydisperse. We note that
the choice of the initial geometry is countless and this method could be applied to any
porous cell domain including irregular and periodic geometries. The comparison between
the M-Voronoi, E-Voronoi and RSA geometries reveals that the M-Voronoi and E-Voronoi
become very similar at large porosities, because of the satuarion of the ligament thickness
achieved in M-Voronoi geometries. Our study also indicated that RSA geometries are not
able to cover the entire density range, especially with a representative microstructure.
Therefore, at large porosities, one can use M-Voronoi geometries instead of random RSA
materials. Finally, we note that anisotropic M-Voronoi geometries with tunable properties
can be obtained by controlling the initial porous geometry dimension and the applied
deformations.
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3.A Appendix A. Equality between the applied and

average deformation gradients

Using the finite strain kinematics definitions in Section 3.1, we show here that Fapp cor-
responds to the average deformation gradient in the cell, i.e., Fapp = |V0|−1

∫
V0
F(X)dX.

We start by noting

1

|V0|

∫
V0

F(X) dX =
1

|V0|

∫
V0

Gradx dX. (A.1)

Using the divergence theorem and the previous definitions, one gets

1

|V0|

∫
V0

Gradx dX =
1

|V0|

∫
S0

x⊗ n dS0 =
1

|V0|

∫
S0

(u + X)⊗ n dS0 =
1

|V0|

∫
S0

(FappX)⊗ n dS0

(A.2)

Since Fapp is a constant second order tensor, it may be taken outside of the integral, thus
leading to

1

|V0|

∫
V0

F(X)dX =
1

|V0|
Fapp

∫
S0

X⊗ n dS0 =
1

|V0|
Fapp

∫
V0

GradX dV0 = Fapp, (A.3)

since GradX = I. This proof is due to Hill (Hill, 1963).
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3.B Appendix B. Algorithms for remeshing a 2D or-

phan mesh by constructing the geometry

Nomenclature:

• n: total number of nodes in the orphan mesh

• m: total number of elements in the orphan mesh

• h: the number of nodes per element

• f : the number of free lines

• t: the reference node

• Nn×3: matrix containing the nodes coordinates

• Mm×h: matrix containing the elements information

• Lf×2: matrix containing the nodes of free lines

Algorithm 1 finding the free lines of a 2D orphan mesh

1: Initialize the algorithm with number of free lines f = 0
2: for p = 1,m do
3: for q = 1, h do
4: ref = [M(p, q), M(p, q + 1) ]
5: for u = 1,m do
6: for v = 1, h do
7: comp = [M(u, v), M(u, v + 1) ]
8: if ref = comp then
9: goto 3

10: else
11: L(f, :) = [M(p, q), M(p, q + 1) ]
12: f ← f + 1
13: end if
14: end for
15: end for
16: end for
17: end for
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Algorithm 2 Constructing the geometry by the free element sides

1: for i = 1, f do
2: write new points L(i, 1) and L(i, 2)
3: write and store new line from point L(i, 1) to point L(i, 2)
4: t = L(i, 2) ▷ t is the temporary reference node which is in common between two

consecutive lines.
5: for j = 1, f do
6: w = 0
7: if L(j, 1) = t then
8: write next point L(j, 2)
9: write and store new line from point t to point L(j, 2)
10: t← L(j, 2)
11: w = 1
12: goto 5
13: else if L(j, 2) = t then
14: write next point L(j, 1)
15: write and store new line from point t to point L(j, 1)
16: t← L(j, 1)
17: w = 1
18: goto 5
19: end if
20: end for
21: if w=0 then ▷ The curve loop is closed.
22: write Curve Loop of all lines of the loop
23: write a Plane surface from the Curve Loop
24: end if
25: end for
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Chapter 4

3D-printing, experiments and
numerical assessment for 2D
M-Voronoi

Chapter summary: This chapter is focused on 3D printing, experiments and the numeri-
cal study of two-dimensional random and periodic geometries described in chapters 2 and
3. In the first part of this chapter, we study TangoBlack material which is a commercial
polymer used in our 3D-printer and tested experimentally under uni-axial tension loading.
Due to the brittle fracture of TangoBlack material, normal test specimen geometries like
standard dog-bones are not suitable for identification of TangoBlack material properties.
Instead, we propose a new specimen geometry to avoid early fracture of this material.
When TangoBlack materials are tested under tensile, relaxation, and loading-unloading
tests, they exhibit highly viscous and strain-rate dependent behavior. The material be-
havior of TangoBlack is then modeled by the rubber viscoelastic material model proposed
by Kumar and Lopez-Pamies (2016) and the corresponding parameters are identified. We
also show that the ultimate tensile properties of TangoBlack material can be characterized
by a unique failure envelope.

The second part of this chapter deals with the fabrication process and uni-axial com-
pression tests carried out on different two-dimensional random porous geometries. The
M-Voronoi has shown remarkable ability in terms of energy absorption while being the
most resilient porous geometry at certain porosities. The study of the representativity
of M-Voronoi geometries has confirmed that with more than 200 voids the response is
representative. Moreover, M-Voronoi has an isotropic response in both large and small
strains which is in contrast to periodic 2D lattices such as hexagons. The experimental
results are then simulated numerically by identifying material parameters and show a
fairly reasonable response.
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4.1 3D-printing method

In this study, the test specimens are 3D-printed via PolyJet technology, using an EDEN
260VS printer from Stratasys and a rubber-like UV-curable resin (commercial name Tan-
goBlack FLX 973 from Stratasys). With PolyJet 3D Printing, layers of liquid photopoly-
mer are jetted onto a build tray before being instantly cured by UV light. The fine layers
with a resolution of 16 µm build up to create a precise 3D object with very fine feature
details (more information: http://www.stratasys.com). After printing, the printed ma-
terials are ready to be handled without the need for post-curing. A support material is
required in the 3D-printer to build a removable layer between the sample and tray, fill in
the voided regions or cover the entire sample for a non-glossy resolution. The support ma-
terial used in this study to print TangoBlack samples has the commercial name SUP705
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and is removable with a waterjet. As this support material is not soluble in water, careful
handling is required when using a waterjet.

4.2 Characterization and modeling of TangoBlack ma-

terial

4.2.1 TangoBlack reported characteristics

The photopolymeric resin employed for 3D-printing has the commercial name TangoB-
lack FLX 973 and exhibits rubber-like qualities. Due to its flexible characteristics, it
can be used in soft-touch coatings, non-slip surfaces, overmolding grips, shoe soles, and
other applications (see TangoBlack information). The material properties of TangoBlack
reported by Stratasys company are listed in Table 4.1. The reported values for tensile
strength and elongation at break have shown a great discrepancy with our measured val-
ues. A reason for this is the viscous nature of TangoBlack, which is a rubber-like polymer.
Therefore, the performance of this material is significantly affected by the loading rates
and the temperature, and the reported values by Stratasys do not provide adequate infor-
mation about the experimental conditions. Nevertheless, we confirm the reported value
of the polymerized density by weighing a printed cuboid TangoBlack of the dimension
5 × 5 × 1 cm3 (see Figure 4.1). The measured weight and density correspond to 28.644
g and 1.14576 g/cm3, respectively, which are in agreement with the reported value in
table 4.1. Subsequently, one can characterize the non-linear viscous behavior of Tangob-
lack material by conducting uni-axial tensile and relaxation tests at different strain rates.
In the following sections, the details of the experimental tests and the actual material
properties are discussed.

ASTM METRIC ENGLISH
Tensile Strength D-412 1.8-2.4 MPa 115-220 psi

Elongation at Break D-412 45-55% 45-55%
Compressive Set D-395 0.5-1.5 % 0.5-1.5%

Shore Hardness (A) D-2240 60-62 Scale A 60-62 Scale A
Tensile Tear Resistance D-624 3-5 Kg/cm 18-24 lb/in

Polymerized Density D-792 1.14-1.15 g/cm3

Table 4.1: TangoBlack FLX973 material properties reported by Stratasys.

4.2.2 The design of the specimen and experimental setup

Generally, the design of the specimen in a mechanical test is constrained by the type of
required test, the material properties, the testing machine, and the grips that hold the
sample. A sample design process for materials with exceptional properties may involve
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5 cm

5 cm

1 cm

Figure 4.1: The density measurement of a polymerized TangoBlack FLX973 sample. The
measured density corresponds to 1.14576 g/cm3.

different experimental trials and errors along with a preliminary numerical study in or-
der to obtain a sample that performs as expected. We realized that it was particularly
challenging to design a tensile test specimen for TangoBlack material due to its brittle
fracture characteristics. Thus, we conducted several experiments and numerical analyses
of different sample geometries in order to determine which geometry is best suited to deal
properly with the brittle nature of the TangoBlack. The dog bone standard geometry is
the first specimen option when a tensile test is required. Figure 4.2a shows the designed
dog-bone specimen with a 12× 12 mm2 cross-section. The geometry is subsequently 3D-
printed with the TangoBlack material and stretched in a standard tensile test. We used
a servo-hydraulic tensile test machine (Instron 5967) with hydraulic grips (Figure 4.2b).
Several experiments have been conducted under displacement control with a constant
strain rate of 0.0007 s−1, while the deformations have been captured by a CCD camera
with an optical strain measurement method (Figures 4.2b,c). The longitudinal and lat-
eral strains are measured by means of the deformation of four white points that have
been placed manually at the center of the specimen where the deformation is uniform.
Choosing a white color ensures sufficient contrast in the deformation captured with the
CCD camera. LED fiber lights have been used to enhance the contrast by focusing on the
middle part of the specimen (Figure 4.2d). The experiments revealed that depending on
the pressure applied by the grips, the dog-bone TangoBlack specimen would either slip
off the grip surface or break at its edges. Figure 4.2d shows the TangoBlack dog-bone
sample fractured at the edge of the top grip. It has been observed that the specimen will
slip if the grip pressure is too low, and it will break if the pressure is too high. Moreover,
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Figure 4.2: The TangoBlack dog-bone specimen. (a) The designed dog-bone geometry
with a 12 × 12 mm2 cross-section. (b) The experimental setup for a tensile test on
the specimen. (c) The lateral view of the sample held in the hydraulic grips. (d) The
TangoBlack sample that was early broken at the edges of the top grip.

due to the incompressibility of TangoBlack and the change in cross-section, it is nearly
impossible to determine the ideal pressure for the grips.

Consequently, we proposed a new specimen and grip geometry to apply tensile loading
without transverse pressure. Initially, we proposed an I-shape geometry for the TangoB-
lack material, stretched by a surrounding box of the grips (Figure 4.3a). A harder mate-
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Figure 4.3: (a) I-shape design of TangoBlack specimen with VeroWhite Plus grips. (b)
The stress field and deformation of the specimen under uni-axial tension. (c) The stress
field in the deformed TangoBlack specimen is concentrated near the VeroWhite Plus
contact region. The color bar indicates the von Mises stress field in MPa.

rial is obviously required for the grips so that they do not deform. We used VeroWhite
Plus (RDG835) with Young’s modulus of 1400 MPa to 3D-print the designed grips with a
Stratasys 3D-printer. In order to ensure the designed specimen meets our expectations, we
performed numerical simulations with Abaqus FE software. A hyperelastic Neo-Hookean
material model has been used for TangoBlack with Young’s modulus of 3.0 MPa and
Poisson’s ratio of 0.499 (almost incompressible). VeroWhite Plus is modeled as an elastic
material with a Young modulus of 1400 MPa and Poisson’s ratio of 0.42. Figure 4.3b
illustrates the stress field and deformation of each part. The low thickness of VeroWhite
Plus causes the grips to deform significantly, so reinforcement of the geometry is necessary
due to the large deformation. Moreover, the stress fields in the TangoBlack sample are
concentrated at the tangent point between the uniform length and the curvature where
it comes into contact with VeroWhite Plus (Figure 4.3c). In real experiments, this would
predict a fracture in this region. Therefore, both the TangoBlack and VeroWhite Plus
parts must be reinforced geometrically.

We will next revise the proposed geometry by curving the structured regions to avoid
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Figure 4.4: (a) The curved I-shape design of the TangoBlack specimen with geometrically
reinforced VeroWhite Plus grips. (b) The stress field and deformation of the specimen
under uni-axial tension. (c) The stress field in the deformed TangoBlack specimen is
concentrated near the contact region with VeroWhite Plus. The color bar indicates the
von Mises stress field in MPa.

large deformations in the grips while enhancing the thickness of the weak regions. Figure
4.4a shows the revised geometry with a curved shape and larger thickness. We note that
the square notch on the VeroWhite parts is created to properly hold the grips on the
tensile test machine (This is achieved by eliminating the risk of slipping). The geometry
is subsequently evaluated numerically and experimentally to ensure its performance when
dealing with the fracture of TangoBlack. A friction coefficient of 0.5 is employed in
the contact regions for numerical convergence. Figure 4.4b illustrates the stress field
in the specimen and grips stretched up to 100% strain. The deformation of the grips
is now negligible with this geometry and they will sustain the applied load very well.
Nevertheless, the stress field in the TangoBlack sample reveals once again a concentration
near the VeroWhite Plus contact region (Figure 4.4c). The numerical tensile test has
been conducted experimentally to assess the fracture point of the TangoBlack sample.
Figure 4.5 shows the printed TangoBlack and VeroWhite parts under the tensile test. As
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Fracture

Fracture

Figure 4.5: The tensile test on the second proposed geometry to assess the fracture point
of the TangoBlack sample. The sample broke in the pointed section, where it gets in
contact with the VeroWhite Plus grips.

predicted, the TangoBlack sample broke exactly at the line with the largest stress fields,
indicated by yellow arrows. Consequently, one needs to revise the proposed geometry of
TangoBlack in its middle part.

The discussed undesired fracture could be eliminated by avoiding a constant area
cross-section. The stress concentration region of the TangoBlack sample must be moved
from the contact point of VeroWhite Plus to the middle part of the specimen. The
specimen geometry has subsequently been modified to incorporate a smooth curvature
that gradually reduces the thickness of the sample to a constant value. However, this
will result in an unavoidable increase in specimen length. Figures 4.6a,b represent the
final virtually designed geometry and its corresponding 3D-printed part realized for the
experiments. The geometry is subsequently simulated in Abaqus to assess the deformation
and stress fields in the parts (Figure 4.6c). As expected, the smooth curvature has properly
concentrated the stress in the middle, while the VeroWhite Plus grips exhibit minimal
deformation. Additionally, the tensile test experiment verifies proper concentration at the
middle part, where the specimen breaks (Figure 4.6d). This geometry is the final geometry
configuration for all tensile test specimens throughout this study. The dimensions of the
3D-printed samples are provided in Figure 4.7. It is important to note that the length
and the cross-section of the middle part of the specimen might differ depending on the
experiment. 1 As a result, if a square cross-section is required, the out-of-plane thickness
of the sample will also change. It is expected that out-of-plane deformation takes place
in the top and bottom parts of small cross-sections if the thickness of the specimen is
less than 6mm. For this reason, we have added two side plates that are screwed to

1During this work, we will mention wherever there has been a change to the geometry.
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Figure 4.6: (a) The final I-shape design of the TangoBlack specimen with geometrically
reinforced VeroWhite Plus grips. (b) The 3D-printed parts in the experimental setup. (c)
The numerical simulation of the specimen under uni-axial tension and the corresponding
stress field in the assembly of the parts and TangoBlack individually. (d) The TangoBlack
specimen after the tensile test, broke in the middle part of the sample. The color bar
indicates the von Mises stress field in MPa.

VeroWhite Plus parts in order to prevent the curved parts from buckling. Furthermore,
this modification will reinforce VeroWhite Plus parts and prevent large deformations. It
is worth mentioning that the thickness of the middle part of VeroWhite Plus will change
depending on the thickness of the specimen. The entire assembly of the TangoBlack
specimen and VeroWhite Plus parts is displayed in Figure 4.8. We note that the bottom
plate can be in a different shape depending on the testing machine and loading cells.
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Figure 4.7: The dimensions of the 3D-printed TangoBlack and VeroWhite parts. All
numbers are in mm units.

4.2.3 Testing protocol

The designed I-shape TangoBlack specimens are 3D-printed with TB FLX 973 and SUP705
as the main and support materials, respectively. Since SUP705 is not soluble in water, the
3D-printed samples have to be cleaned from the support material using a waterjet. This
process requires careful handling to prevent material imperfections from causing early
unexpected fractures in the test sample. As a result of these risks, we avoided cleaning
the entire surface of several samples and left the support material intact in the uniform
section of the sample. Subsequently, the 3D-printed I-shape TangoBlack specimens are
subjected to uni-axial tension in a servo-hydraulic testing machine under displacement
control. Depending on each test requirement, we used two different hydraulic tensile
testing machines MTS 100kN and MTS 250kN. Their characteristics are listed in Table
4.2. As TangoBlack is a soft polymer, its load range is rather limited. Therefore, both
machines are suitable in that aspect. However, there is a significant difference between
the two machines, primarily due to the larger actuator maximum speed in MTS 100 kN,
which is essential for testing specimens with large strain rates. Figure 4.9 shows the two
tensile test machines and the details of the experimental setups. For the measurement of
the force signal, two different load transducers with capacity 1500±1.5 N and 200±0.2 N
are employed depending on the cross-section of the specimen. Specifically, the 200N trans-
ducer has been used in the relaxation testing, where the relaxed force is too small to be
captured by a 1500N load cell.
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Figure 4.8: The assembly of the final experimental setup consisting of different parts.
Two side plates are screwed to VeroWhite Plus parts in order to prevent the curved parts
from buckling when the cross-section of the specimen is small.

MTS 100 kN MTS 250 kN

Light

Load 

transducers

Camera lens

Camera
Moving 
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Figure 4.9: Tensile test setups with two different tensile testing machines MTS 100 kN
(on the left side) and MTS 250 kN (on the right side).
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MTS 100kN MTS 250kN
Load capacity ±100 kN ±250 kN
stroke range ±100 mm ±80 mm

Actuator maximum speed ±100 mm · s−1 ±30 mm · s−1

Table 4.2: Characteristics of the MTS tensile testing machines.

4.2.4 Optical strain measurement

An optical strain measurement method by point tracking is employed to perform a com-
plete strain measurement. In contrast to strain gages and extensometers, optical strain
measurement reveals more details about deformation and is more suitable for materials
that are soft, easy to deform, and tested at high strain rates. In this study, the defor-
mation of the test specimen is tracked by a high-resolution camera (Figure 4.9), while
a sequence of pictures is captured at a specific time interval that depends on the strain
rate. The changes in the recorded pictures are then analyzed to accurately measure the
local strain and displacement fields. The longitudinal and transverse strains are calcu-
lated by measuring the deformation of four white dots placed in the middle part of the
uniform section. The white color on the black surface of TangoBlack provides sufficient
contrast for tracking points. Also, a white background behind the test specimen is placed
to assist image processing (Figure 4.9). Figure 4.10a shows the arrangement of the four
dots in a real image of the test sample. The block of pixels in the red box is tracked
during deformation and their distance is calculated by means of the Software Sylvie IC.
When transverse strain is not required or the thickness of the sample is very thin, one
can place only two points to measure only the longitudinal strain (Figure 4.10b). In some
cases, however, tracking of the points may not succeed due to the large deformation of
the specimen. This has also been observed at high strain rates, where the deformation is
faster than the frequency of image capture. Therefore, we have used two parallel white
lines called calipers, to measure the axial deformation of the sample (Figure 4.10c). This
has significantly improved the range of image tracking. It should be noted that due to the
rapid deformation of the specimen at high strain rates, automatic image tracking cannot
be performed and it must be carried out manually.

4.2.5 Tensile test and high strain rates deformations

We conducted several tensile tests on 3D-printed TangoBlack I-shape geometry at different
strain rates in order to characterize its dependence on strain rate. The tensile tests are
conducted until the sample fails. A smaller cross-section 3×6 mm2 is employed to further
concentrate the stress in the middle part of the sample. Moreover, the length of the
uniform section of the test specimen has been shortened to achieve higher strain rates.
Figure 4.11 shows the modified I-shaped geometries with two different lengths used in
the tensile tests. Due to the shape complexity of the tensile test specimens, obtaining
the gage length is not straightforward. Therefore, the effective length of the specimens
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Support material

Callipers

Figure 4.10: The optical strain measurement method by point tracking employed to
measure the local strain fields. (a) The longitudinal and transverse strain measurements
by means of four white dots. (b) The longitudinal strain measured by only two white
dots. (c) Using the callipers to measure the strain in the large deformations and high
strain rates, where the tracking by points becomes difficult.

has been determined by dividing the displacement rate by the measured strain rate. As
a result, for each specimen geometry, a constant effective length has been obtained at all
strain rates. The effective lengths of the tensile samples 1 and 2 in Figure 4.11 correspond
to 78 mm and 45 mm.

Sample 1 was initially tested in the tensile test machine MTS 250 kN with a maximum
strain rate of 0.4s−1. The same sample has been then tested in the MTS 100 kN tensile
machine with a larger maximum displacement rate equivalent to 100 mm s−1. As a result,
the maximum strain rate has been increased to 1.3s−1. We have further increased the
strain rate by reducing the effective length of sample 1 and modifying it to sample 2 with
an effective length of 45 mm. This has enabled us to reach a strain rate of 2.2s−1, which
is the limit of the strain rate that could be accomplished with our available equipment.
Moreover, moving to larger strain values will lead to a nonlinear increase in the strain,
due to the dynamic effects during the deformation process. A slight nonlinearity has also
been observed in the large strain rates performed in this study.

Figure 4.12 shows the results of tensile tests at different strain rates until failure2.
Throughout this work, stress is defined as the reaction force divided by the unstressed
cross-section area of the specimen (unless it is mentioned). In the same manner, strain
is defined as the increase in the distance between two defined points in the optical strain
measurement method divided by their initial distance when the specimen is unstressed.
The stress-strain response and the elongation at break show a strong rate-dependent

2We note that for visualization reasons, all tested strain rates are not displayed in this figure. These
results will be further used in the fracture analysis in Section 4.2.9.
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Figure 4.11: Dimensions of the specimens used in the tensile tests. The measured effective
length of samples 1 and 2 corresponds to 78 mm and 45 mm, respectively. The out-of-
plane thickness of both samples is 6mm.

behavior. From the inset of Figure 4.12, we observe that as the strain rate increases,
the initial slope of the curves, which corresponds to material stiffness, increases at low
strain rates (less than 1%). The Young’s modulus of the material at different strain rates
can now be assessed by calculating the initial slopes. Also, the Poisson’s ratio can be
obtained by the ratio of the transverse and axial strains. These values at different strain
rates are listed in Table 4.3. It can be observed that the material tends to be more
compressible as we increase the strain rates. In contrast, the material shows an almost
incompressible behavior in very small strain rates 10−4 s−1. It should be noted that as the
Young’s modulus strongly depends on strain rates, one must be cautious when reporting
the properties of this material and the loading rate must be taken into consideration.
At large strains, the material response becomes non-linear with a similar dependency on
the strain rate. However, due to the nonlinear behavior, the curves might overlap each
other and might not necessarily show a stiffer response as the strain rate is increased in
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Figure 4.12: Tensile experiments results for TangoBlack at different strain rates 0.0007-2.1
s−1 until failure. The × shows the breaking point of the sample. Inset shows the initial
slope of the curves at different strain rates until 1% strain. Stress values correspond to
engineering or first Piola-Kirchhoff stresses, and strain values correspond to engineering
strains.

a consecutive manner. Instead, the global tenancy of the response indicates that higher
strain rates result in greater stiffness and elongation at break.

Strain rate (s−1) Young’s modulus (MPa) Poisson’s ratio
10−1 4.1 0.46
10−2 4.007 0.4766
10−3 3.914 0.4879
10−4 3.818 0.4956

Table 4.3: The Young’s modulus and Poisson’s ration of TangoBlack FLX 973 at different
strain rates.
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Figure 4.13: Loading-unloading tests at various strain rates: 0.0001 s−1, 0.01 s−1, 0.06
s−1, 0.1 s−1, 0.7 s−1, 1.4 s−1, 2.2 s−1. The specimen is unloaded just before the ultimate
stress at each strain rate is reached. Stress values correspond to engineering or first
Piola-Kirchhoff stresses, and strain values correspond to engineering strains.

4.2.6 Loading-Unloading and cyclic tensile tests

The ultimate tensile stress at the break of a material at each strain rate represents the
maximum stress that it can withstand at a given strain rate. Based on this data, we have
performed loading-unloading and cyclic tests at constant strain rates so that unloading
occurs just before the ultimate tensile stress is reached. The results of these tests are
essential to characterize the viscoelastic properties of TangoBlack since they represent
the rate-dependent behavior of the material. Figure 4.13 shows the results of the loading-
unloading tests in terms of nominal stress as a function of nominal strain. The tests
have been carried out on TangoBlack specimens with the geometry of sample 2 (Figure
4.11) at different strain rates ranging from 0.0001 s−1 to 2.2 s−1. The results demonstrate
a clear rate-dependent highly nonlinear behavior of the material where the nonlinearity
increases at higher strain rates. Although TangoBlack material is considered a soft poly-
mer, rather high strain rates (greater than 0.1s−1) are required to reveal its dissipative
behavior. The results of the strain rates in this range clearly indicate the presence of a
hysteresis loop as well as a permanent unrecovered deformation after full unloading. The
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results of low strain rates (0.0001 s−1 and 0.01 s−1) on the other hand, show almost no
dissipation and residual strain. Furthermore, as the strain rate increases, the amount of
dissipated energy corresponding to the hysteresis curve area increases. We note that some
of these experimental data will be used in Section 4.2.8 to identify the material modeling
of TangoBlack.

ሶ𝜀 = 0.06 s−1

a b

c d

ሶ𝜀 = 0.7 s−1

ሶ𝜀 = 1.4 s−1 ሶ𝜀 = 2.2 s−1

Figure 4.14: Cyclic loading-unloading tests with three cycles at various strain rates: (a)
0.06 s−1, (b) 0.7 s−1, (c) 1.4 s−1, (d) 2.2 s−1. The specimen is unloaded just before the
ultimate stress of each strain rate is reached, whereas the re-loading started upon achieving
zero displacement. Stress values correspond to engineering or first Piola-Kirchhoff stresses,
and strain values correspond to engineering strains.
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In order to further investigate the dissipative behavior of TangoBlack, we conducted
cyclic loading-unloading tests with three cycles at a constant strain rate such that the
unloading occurred prior to the ultimate tensile stress being reached and the re-loading
started upon achieving zero displacements. Figures 4.14a-d represent the results of the
cyclic loading with three cycles at four different strain rates 0.06 s−1, 0.7 s−1, 1.4 s−1 and
2.2 s−1. Clearly, as the strain rate increases, the hysteresis loop area increases, which
is consistent with the loading-unloading results. The hysteresis loop at strain rate 0.06
s−1 indicates very small dissipation and almost 2% residual strain with a more linear-
like behavior (Figure 4.14). Contrary to this, as we increase the strain rate, a more
non-linear dissipative loop is obtained with a larger residual strain. Specifically, at a
constant strain rate, the area of the hysteresis loop slightly increases with the number
of loading-unloading cycles. Nonetheless, the amount of the residual strain remained
almost unchanged as we repeated the cycles. It is important to note that there exists a
compressive strain corresponding to the negative of the residual strain as we unload the
specimen to the zero displacement position. This also indicates that the specimen in a
stress-free state is significantly elongated.

4.2.7 Single-step Relaxation tests

In order to observe the time-dependent viscous behavior of TangoBlack, we conducted
single-step relaxation tests at various strain rates and levels. Initially, the experiments
were performed on sample 2 in Figure 4.11 with an effective length of 45 mm. However,
due to its small cross-section, the detected force after relaxation contains a significant
amount of noise, which makes the data difficult to interpret. Therefore, we first used
a more sensitive load transducer with a capacity of 200 ± 0.2N . Then, we modified the
uniform section of the specimen geometry to enlarge the cross-section area from 3×6 mm2

to 12×6 mm2 ( Sample 3 in Figure 4.15). Although this modification has notably cleaned
the detected force data, the measured local strain of the sample reveals a slight nonlinear
deviation upon relaxation initiation, where the strain is assumed to be constant. Figure
4.16 shows the experimentally measured strain at a relaxation test performed at 20%
strain level on the specimen with sample 3 geometry that is primarily stretched with a
constant strain rate 0.83 s−1. It can be observed that there is an initial small increase
followed by an immediate decay toward the imposed strain value. Such a deviation could
be either due to the sample configuration, the movement of the grips, or the inertial
effect because of the large size and mass of the specimen. Nevertheless, it will vanish as
we move to lower strain rates and it has never exceeded 1% of the strain. In order to
eliminate the deviation, we modified the specimen geometry to a dog-bone configuration
with ASTM D638 Type IV standard dimensions. In this case, it is permissible to use
this geometry since we are only concerned with the relaxation properties and not the
ultimate properties. Thus, the range of force and deformation remains rather small and
the specimen will not be exposed to the risk of unexpected fracture or slip. Figure 4.15b
shows the dimension of the specimen denoted with Sample 4 with an effective length of 55
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Figure 4.15: The dimensions of the specimens used in the relaxation tests. The measured
effective length of samples 3 and 4 corresponds to 120 mm and 55 mm, respectively. In
sample 3, the out of plane thickness is 6mm, whereas in sample 4, it is 3.3mm.

mm and an out-of-plane thickness of 3.3 mm. In order to perform the experimental test,
the sample has been held between two parallel gripes with a distance of 3 mm to ensure
the same fixation force was applied to both sides of the sample. As a result of several
relaxation tests carried out on this geometry, we observed that either there is no deviation
or that it is of a very small magnitude. In Figure 4.16, the dashed line corresponds to the
typical strain curve obtained in the relaxation test on sample 4.

The discussed geometries have been subsequently subjected to relaxation tests at dif-
ferent strain rates and values. In relaxation tests, the specimen was initially deformed at a
constant strain rate and subsequently held at a constant strain value until the equilibrium
or time-independent stress was achieved. Figures 4.17a-d show the results of the relax-
ation tests at different loading strain rates 0.02 s−1, 0.1 s−1, 0.83 s−1 and 2.2 s−1. For all
performed tests, we measured the stress values for 30 minutes after relaxation initiation.
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Figure 4.16: Nominal strain as a function of time during the relaxation test performed
on a TangoBlack specimen with the geometry of sample 3. The dashed line indicates the
expected strain curve from the dog-bone geometry with the dimension of sample 4.

However, the stress value converges rapidly before almost 50 seconds, which is a consider-
ably short time compared to other existing viscous polymers and has added difficulties to
the experimental measurements. Here, for illustrative reasons, we present the results for
the first 350 or 400 seconds. At each strain rate, the specimen is tested at different strain
levels. The inset figures indicate the variation in strain values over time for each strain
rate. We note that the time in the inset figure differs from the relaxation time, which
corresponds to the time after the strain is kept constant. Defining the overstress as the
difference between the current and equilibrium stresses (Hossain et al., 2012), we observe
that higher strain rates result in larger overstresses as compared to those at lower strain
rates. As an example, a very small overstress of less than 20 kPa is observed at the strain
rate 0.02 s−1 (Figure 4.17a), whereas at 2.2 s−1, the maximum overstresses correspond
to 100 kPa (Figure 4.17d). Furthermore, as expected from the material viscosity, the
comparison between the results at a constant strain rate and various strain values indi-
cates that higher strain values lead to larger overstress and equilibrium stress. Finally,
the occurrence of fracture in the relaxation tests will be discussed in Section 4.2.10.
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ሶ𝜀 = 0.02 s−1 ሶ𝜀 = 0.1 s−1

ሶ𝜀 = 0.83 s−1 ሶ𝜀 = 2.2 s−1

Figure 4.17: Single-step relaxation tests at different strain rates and levels: (a) Strain
rate= 0.02s−1 tested at 14%, 22% and 37% strain levels. (b) Strain rate= 0.1s−1 tested
at 15% and 19.6% strain levels. (c) Strain rate= 0.83s−1 tested at 17%, 19% and 20%
strain levels. (d) Strain rate= 2.2s−1 tested at 14% and 16% strain levels. The × shows
the break point of the sample. Stress values correspond to engineering or first Piola-
Kirchhoff stresses, and strain values correspond to engineering strains.
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4.2.8 Constitutive modeling of viscoelastic behavior of TangoB-
lack

By using the experimental data obtained in the previous sections, this section charac-
terizes the TangoBlack material using viscous hyperelastic models. Since TangoBlack
exhibits almost incompressible behavior, it can be identified using incompressible hypere-
lastic models. However, due to the nonlinearity of the Tangoblack response (especially at
large strain rates), simple hyperelastic models such as the incompressible Neo-Hookean
model are unable to model its response. Specifically, we observed that the Neo-Hookean
incompressible model fails to model the strong nonlinearity of TangoBlack, especially
when there is a hardening in the material response. Consequently, higher-order energy
functions are necessary to be employed in material modeling.

General constitutive relations

We have used the rubber viscoelastic model for incompressible isotropic elastomers that is
proposed by Kumar and Lopez-Pamies (2016) and is obtained by using the two-potential
constitutive framework. In the following, we provide a brief overview of the main equations
in the model that they proposed. Considering that F denotes the deformation gradient
tensor as described in Section 3.1, the total deformation F can be decomposed into the
dissipative part of the deformation Fv and the elastic/non-dissipative part of the defor-
mation Fe such that F = FeFv. Subsequently, based on the two-potential framework, the
stored and dissipated energy of the material are described using the free energy function
ψ and the dissipation potential ϕ, respectively. The free energy function ψ is decomposed
into the equilibrium ψEq and non-equilibrium ψNEq parts, where the equilibrium part is
associated with the thermodynamic equilibrium states, while the non-equilibrium part
serves to provide additional energy storage at non-equilibrium states. Representing these
terms as a function of the deformation gradient tensor provides the following form

ψ = ψEq(F) + ψNEq(FFv−1) and ϕ = ϕ(F,Fv, Ḟv), (4.1)

which implies that the dependence of ψNEq on Fv is only through Fe = FFv−1. Following
these expressions, we can obtain the constitutive relation implied by these potentials as
shown in the following two coupled equations

S =
∂ψEq

∂F
(F) +

∂ψNEq

∂F
(FFv−1) and

∂ψNEq

∂Fv
(FFv−1) +

∂ϕ

∂Ḟv
(F,Fv, Ḟv) = 0, (4.2)

where S represent the first Piola-Kirchhoff stress tensor. Kumar and Lopez-Pamies (2016)
characterized the equilibrium and non-equilibrium free energy functions for isotropic in-
compressible elastomers in the following form.
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ψEq(F) =

31−α1

2α1

µ1[I
α1
1 − 3α1 ] +

31−α2

2α2

µ2[I
α2
1 − 3α2 ] if J = 1

+∞ otherwise
(4.3)

ψNEq(Fe) =

31−a1

2a1
m1[I

a1
1 − 3a1 ] +

31−a2

2a2
m2[I

a2
1 − 3a2 ] if J = 1

+∞ otherwise
(4.4)

where I1 = trC and J =
√

detC = detF are the first and third principal invariants of the

right Cauchy-Green deformation tensor C = FTF. In addition, µr, αr,mr, ar (r = 1, 2)
are the material parameters to be identified. Using the equation (4.2), the Piola-Kirchhoff
stress tensor is

S =

[
2∑

r=1

31−αrµrI
αr−1
1

]
F +

[
2∑

r=1

31−armr

(
C ·Cv−1

)ar−1

]
FCv−1 − pF−T, (4.5)

where Cv = FvTFv and p is the hydrostatic pressure associated with the incompressibility
constraint J = detF = 1. Subsequently, since the dissipation potential ϕ is a non-negative
function and convex in Ḟv, it could be written as

ϕ(F,Fv, Ḟv) =
1

2
Γ̃v · A(F,Fe)Γ̃v, (4.6)

where Γ̃v and Aijkl(F,F
e) are

Γ̃v = FeΓvFe−1, Γv = ḞvFv−1, (4.7)

Aijkl(F,F
e) = ηK [Kijkl +KijmnF

e
mpF

e
lpF

e−1
qn Fe−1

qk ] + 3ηJJijkl. (4.8)

It should be noted that A has been represented by the isotropy and material frame indif-
ference conditions. The K and J are the orthogonal projection tensors. The parameters
ηk and ηJ are defined by the following relations

ηK(Ie1 , I
e
2 , I

v
1 ) = η∞ +

η0 − η∞ +K1[I
vβ1

1 − 3β1 ]

1 + (K2J
NEq
2 )β2

, (4.9)
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JNEq
2 =

(
Ie1

2

3
− Ie2

)( 2∑
r=1

31−armrI
e
1
ar−1

)2

, (4.10)

where Ie1 = trCe, Ie2 = 1/2[(trCe)2 − trCe2] and Iv1 = trBv. Here Bv is the left
Cauchy-Green viscous deformation tensor defined as Bv = FvFvT. The parameters
η∞, η0, K1, K2, β1, β2 are also the material parameters to be identified by the experimental
data. Substituting the above relations into the evolution equation on the right hand side
of (4.2) leads to the following ODE equation.

Ċ
v

=

2∑
r=1

31−armr

(
C ·Cv−1

)ar−1

ηk

(
C− 1

3

(
C ·Cv−1

)
Cv

)
. (4.11)

Constitutive relations for a uni-axial tensile test

Since all the tests performed on TangoBlack in this study are of uni-axial type, we focus
our attention on the uni-axial boundary conditions. The developed constitutive relations
now can be formulated for one-dimensional loading. A uni-axial tension test is character-
ized by the specimen elongating only in one direction, whereas the other two directions
are free to move. In this case, the principal stretches λ1, λ2 and λ3 are related by the
incompressibility constraint detF = λ1λ2λ3 = 1. Considering that the loading is applied
in the λ3 = λ direction, the deformation gradient tensors F and Fv then become

F =

λ−1/2 0 0
0 λ−1/2 0
0 0 λ

 , Fv =

λ−1/2
v 0 0

0 λ
−1/2
v 0

0 0 λv

 . (4.12)

We note that, in the case of uni-axial tension, all the components of the stress tensor S
except S33 are zero. By substituting the tensors F and Fv into the equations (4.5) and
(4.11), the following relations are obtained for the first Piola-Kirchhoff stress tensor and
the differential equation.

S33 =

[
2∑

r=1

31−αrµr

(
2

λ
+ λ2

)αr−1
] [

λ− 1

λ2

]

+

[
2∑

r=1

31−armr

(
2λv
λ

+
λ2

λ2v

)ar−1
] [

λ

λ2v
− λv
λ2

]
,

(4.13)
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λ̇v =

2∑
r=1

31−armr

(
2λv
λ

+
λ2

λ2v

)ar−1

3ηk

[
λ2

λv
− λ2v

λ

]
, (4.14)

where

ηk = η∞ +

η0 − η∞ +K1

[(
2

λv
+ λ2v

)β1

− 3β1

]
1 +

[
K2J

NEq
2

]β2
, (4.15)

and

JNEq
2 =

1

3

[
λv
λ
− λ2

λ2v

]2 [ 2∑
r=1

31−armr

(
2λv
λ

+
λ2

λ2v

)ar−1
]2
. (4.16)

µ1(MPa) µ2(MPa) α1 α2 m1(MPa) m2(MPa) a1
0.6258 0.6258 2.3664 2.3668 0.3628 0.3627 -1.3595

a2 η0(MPa.s) η∞(MPa.s) β1 β2 K1(MPa.s) K2(MPa−2)
-1.3600 0.2740 0.0047 0.0000 26.7236 0.0000 18.9752

Table 4.4: Material parameters of TangoBlack FLX 973.

The last four equations imply that in order to model the material behavior, there
are 14 parameters to be characterized: µr, αr,mr, ar, βr, Kr (r = 1, 2), η0 and η∞. We
used the experimental data of the loading-unloading tests at three different strain rates
of 0.06, 0.7, and 1.4 s−1 and a relaxation test at λ = 1.155 initially stretched with
0.02 s−1 (Figure 4.18). The parameters are fitted by a self-developed Matlab code to
solve the ODE equation (4.14) by numerical Runge-Kutta method given an initial value
for the parameters. The initial value is iteratively updated to converge to optimized
parameters that minimize the squared difference value between the experimental data
and the modeling. Figure 4.18 represents the comparison between the experimental data
and the model of Kumar and Lopez-Pamies (2016) with the optimized material parameters
in Table 4.4. The model shows its good capability to deal with the nonlinearity of the
material. We note that the optimized parameter values denote no dependence on the
parameters K1 and β1. Therefore, 12 parameters are sufficient to model the behavior
of TangoBlack under uni-axial loading. We have performed several model validation to
ensure the validity of the parameters and the employed model has predicted well the
experimental data. These results however have not been presented here.
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ሶ𝜀 = 0.06 s−1

a b

c d

ሶ𝜀 = 0.7 s−1

ሶ𝜀 = 1.4 s−1 strain= 0.15

Figure 4.18: The modeling of the experimental data of TangoBlack with the viscoelastic
incompressible model proposed by Kumar and Lopez-Pamies (2016) and the material pa-
rameters in the table 4.4. TangoBlack is subjected to uni-axial tension loading-unloading
at different constant strain rates: (a) 0.06 s−1, (b) 0.7 s−1, (c) 1.4 s−1. (d) Single-step
relaxation test with the strain held at 0.15 and the primary strain rate 0.02 s−1. Stress
values correspond to engineering or first Piola-Kirchhoff stresses, and strain values corre-
spond to engineering strains.
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4.2.9 Fracture and ultimate tensile properties of TangoBlack

TangoBlack as a viscous rubbery elastomer exhibits a semi-brittle fracture when the
ultimate stress is reached. In a uni-axial tensile test, the ultimate stress value corresponds
to the tensile stress at break Sb

uni; likewise, the associated ultimate strain corresponds to
the strain at break εb which is equal to εb = λb − 1, where Suni represents the first Piola-
Kirchhoff stress 3 component in the uni-axial direction and λb is the principal stretch at
the break. The corresponding Cauchy stress component of the ultimate stress can be
obtained by σb

uni = Sb
uni λ

b 4. The elongation at break (εb) reported by the manufacturing
company of TangoBlack is equal to 45-50% (Table 4.1). Our experiments, however, show
an extensive range of εb from 13 to 100%, highly dependent on the strain rate (see the
ultimate points of the stress-strain curves in Figure 4.12). The higher the strain rate, the
higher the ultimate strain can be achieved.

a b

Figure 4.19: Failure envelope for TangoBlack FLX 973 from data obtained at various
strain rates. (a) The Cauchy stress at break σb

uni as a function of the principal stretch
at break λb at different strain rates. (b) The logarithmic values of the Cauchy stress at
break log

(
σb
uni

)
as a function of the logarithmic values of the principal stretch at break

log
(
λb
)

at different strain rates.

It is often possible to characterize the ultimate tensile properties of polymers by defin-
ing a failure envelope based on the values of ultimate stress and strain (σb

uni and εb)
measured at various strain rates. A unique failure envelope is a characteristic of each

3Nominal or engineering stress
4The Cauchy stress tensor σ can be obtained from the first Piola-Kirchhoff stress S by this relation

σ = J−1SFT , where J = 1 for incompressible TangoBlack material.
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elastomer regardless of the test conditions and is distinct from that of other elastomers.
For example, Smith (1963) showed in his work that there is a unique failure envelope for
SBR-II whether it is tested at different strain rates or temperatures. Figure 4.19a shows
the ultimate Cauchy stress and engineering strain of TangoBlack at various strain rates.
The ultimate values obtained from the results of the uni-axial tensile tests are reported
in Figure 4.12. Figure 4.19b shows the corresponding logarithmic values of the ultimate
Cauchy stress and strain. The failure envelope is subsequently obtained by fitting a third-
order polynomial function y = 14.04x3−19.02x2 +13.05x−2.15 where y = log

(
σb
uni

)
and

x = log
(
λb
)
. It can be observed that the failure envelope fitted with logarithmic values

shows a smaller deviation as opposed to the left figure. The obtained failure envelope
indicates that for each value of σb

uni there exists a unique value of λb independent of the
test conditions. The value of the unique ultimate stress and strain is determined by the
strain rate. By increasing the strain rate, the fracture point moves across the envelope
in the counterclockwise direction. Moreover, these results have enabled us to predict the
occurrence of rupture in TangoBlack specimens subjected to a variety of tests and under
a variety of conditions. One can confirm the obtained failure envelope by performing
tensile tests at different temperatures subjected to a constant strain rate. Although more
test data is required to determine the exact failure envelope, it remains a relatively good
approximation of fracture behavior.

4.2.10 Fracture in Relaxation tests

The occurrence of fracture in a few seconds after relaxation initiation is one of the major
challenges of performing relaxation tests on the Tango Black material. On the one hand,
high strain levels are essential for observing stress relaxation, while on the other hand,
strain levels above approximately 20% lead to the sample breaking before equilibrium
stress is achieved. Figure 4.17a displays the occurrence of fracture when the sample has
been relaxed at 22% and 37% strain levels. It shows that fracture occurs more quickly
as the strain level increases. A similar fracture has been observed in Figure 4.17b at
150 s in the specimen loaded to 19.6% strain level with a constant strain rate of 0.1 s−1.
Comparing the time when the fracture occurs between the strain levels 0.02 s−1 and 0.1
s−1 also reveals that higher strain rates are associated with earlier fractures.

The observed fracture in the relaxation test at high strain levels can be justified
by a similar fracture envelope presented by Smith (1963). He illustrated a schematic
representation of the stress-strain curves at different strain levels and the corresponding
fracture envelope. Inspired by his work, we have shown the fracture envelope of the
TangoBlack material in Figure 4.20. In this figure, we particularly show the stress-strain
curves at 1.3 s−1 strain rate by a black line originating from the diagram’s origin, while the
fracture points are connected by the envelope with the red line. The important remark
in this figure is the dotted lines originating from points A and B, which represent the
stress relaxation at a constant strain. The line from point A shows that if the strain
level in the relaxation test is below the initial point of the envelope, the stress will reach
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Fracture in relaxation

Fracture envelope
A

B

Tensile1.3 s-1

Figure 4.20: The failure envelope of the TangoBlack material and the result of the tensile
test at 1.3 s−1 strain rate. Points A and B indicate the initiation of the relaxation. The
red region represents the stress and strain values where the fracture occurs during the
relaxation process. In contrast, the green region shows stress and strain values without
fracture when relaxed.

equilibrium without any fracture occurring in the specimen. This region is indicated
by green color, assuming that the specimen will not reach the fracture envelope before
the relaxation. On the other hand, if the relaxation initiates from point B which has a
strain level above the initial point of the envelope, the stress will be relaxed followed by a
fracture occurring when the fracture envelope is reached (red color region). We note here
that the results of Smith (1963) and Ferry (1980) have indicated that the determination
of the exact initial point of the fracture envelope might not be possible and a sharp corner
at the beginning of the fracture envelope does not exist. Nevertheless, it provides a rough
approximation of the range of failures occurring. Particularly, the dotted line from point
B shows qualitatively why a fracture is observed in the TangoBlack material when it
goes under relaxation at large strain levels. From this figure, we also realize that the
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stress equilibrium line for the TangoBlack sample is very short and the strain level at the
beginning of the fracture envelope corresponds to approximately 19% to 20%. Hence, it
is necessary to apply high strain rates to the specimen until the strain level falls below
20% to properly observe stress relaxation in the TangoBlack material.

4.2.11 Neo-Hookean modeling at low strain rates

The experimental results of the TangoBlack materials indicate that the material nonlin-
earity is observed at large strain rates approximately greater than 0.01 s−1. This is due to
the fact that at low strain rates, the TangoBlack material breaks at smaller strain values
before nonlinearity appears. Therefore, at strain rates below 0.01 s−1 one may use a sim-
pler material viscoelastic model. As an example, we modeled the TangoBlack material
with a Neo-Hookean viscous incompressible model for hyperelastic materials. A simi-
lar approach to the previous constitutive modeling has been followed. The equilibrium
and non-equilibrium energy functions associated with the Neo-Hookean incompressible
hyperelastic viscous model are

ψEq(F) =
µ1

2
(F · F− 3), (4.17)

ψNEq(Fe) =
µ2

2
(Fe · Fe − 3), (4.18)

where F and Fe are defined similar to the previous constitutive model and µ1 and µ2 are
the material parameters. The dissipation potential ϕ could be written in the following
form

ϕ(Fv) =
1

2
Γv · (2ηKK + 3ηJJ)Γv, (4.19)

where ηK and ηJ are the material parameters and ηJ → ∞ due to the material incom-
pressibility. Also, Γv is defined by equation (4.7). By imposing the similar uni-axial
boundary conditions defined in equation (4.12) and using the evolution equation (4.2),
we obtain the first Piola-Kirchhoff stress component.

S33 = µ1(λ−
1

λ2
) + µ2(

λ

λ2v
− λv
λ2

), (4.20)

and the following differential equation for λv

λ̇v =
µ2

3ηK
(
λ3 − λ3v
λλv

). (4.21)
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The last couple of equations implies that in order to model the material behavior, there
are 3 parameters to be characterized: µ1, µ2, and ηK . We used the experimental results
to identify the parameters. Figure 4.21 shows the comparison between the experimental
data and the Neo-Hookean modeling at two strain rates 0.66 s−1 and 0.0007 s−1. We
observe that this model fails to fit the hardening part of the curve at large strains. It
implies that we would need some power in the energy functions to fit the increase in stress.
Therefore, at large strains, we must use the rubber viscoelastic model proposed by Kumar
and Lopez-Pamies (2016). However, at low strain rates, the TangoBlack material breaks
at below 30% strain and it is not able to reach high strain values. One may conclude that
the simple Neo-Hookean model can be used either at low strain rates (for TangoBlack
material below 0.01 s−1), or at small strains, when large strain rate deformations are
applied.

0.66 s-1

0.0007 s-1

×

×

Figure 4.21: The modeling of the experimental data of TangoBlack at two strain rates
0.66 s−1 and 0.0007 s−1 with Neo-Hookean viscous incompressible model for hyperelastic
materials. The × shows the breaking point of the sample. Stress values correspond to
engineering or first Piola-Kirchhoff stresses, and strain values correspond to engineering
strains.

During this study, we use the TangoBlack material as the base polymer matrix to
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manufacture the designed random porous geometries for experimental testing. However,
we apply very low strain rates 10−4 s−1 at all performed experiments and we expect to
observe a fracture at less than 20% strain. Therefore, for the modeling of deformation
in porous geometries, we will use the simple Neo-Hookean model with the identified
parameters. Consequently, the ligaments will break when their local strain values reach
almost 15%.

4.3 3D-printing method and limits for porous geome-

tries

In this study, the designed porous test specimens at different porosities are 3D-printed by
the Stratasys 3D-printer and TangoBlack material. The 3D-printer specifications and the
Tangoblack material properties are discussed in Sections 4.1 and 4.2, respectively. Prior
to the manufacturing of the porous specimens, a straightforward 3D-printing test using
isolated and closely packed aligned circular and rectangular voids was conducted to quan-
tify the size of the pore features that could be manufactured with sufficient geometrical
accuracy (Figure 4.22). The equal-sized rectangular and circular voids are printed with
a variety of intervoid ligament thicknesses to evaluate the minimum printing thickness
of the 3D-printer. Circular voids of different sizes also determine the minimum size of a
printable empty void. Therein, we have found that the minimum pore diameter and in-
tervoid thickness ligament that may be 3D-printed once-off with acceptable accuracy are
respectively, ∼ 300 µm and ∼ 600 µm. These numbers are slightly larger than those re-
ported in a study considering RSA geometries with VeroWhite material (Tarantino et al.,
2019) and imply that TangoBlack has an actual lower resolution.

4.4 3D-printing interruption strategy

For the experimental study, and in order to attain with our 3D-printer the minimum
ligament thicknesses required for representativity of the results discussed in detail in Sec-
tion 4.5.2, we consider porous test specimens with in-plane dimensions 100×100 mm2 and
out-of-plane thickness 10 mm. In the M-Voronoi materials, we do not control entirely the
thickness of the intervoid ligaments. In fact, those are highly variable at different posi-
tions. As a result, as one reaches lower relative densities, the intervoid ligament thickness
may become less than the minimum that can be accurately 3D-printed (i.e., < 300 µm)
resulting to a rather low quality reproduction of the numerically obtained geometrical
features, especially along the out-of-plane direction, as shown in Figure 4.23a. In order to
improve further upon this limitation directly related to the specific 3D-printing technology
used, we propose here an interruption strategy. In the present case of a commercial 3D-
printer, this simply consists in manually interrupting the 3D-printing process for a few
minutes thus allowing the existing polymer layer to solidify partially before additional
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D=400 µm

D=500 µm

D=600 µm

D=700 µm

D=800 µm

D=900 µm

D=1000 µm

t=250 µm

t=300 µm

t=350 µm

t=400 µm

t=450 µm

t=500 µm

t=250 µm

t=300 µm

t=350 µm

t=400 µm

t=450 µm

t=500 µm

Figure 4.22: 3D-printing accuracy test of TangoBlack material with circular and rectan-
gular voids. The minimum pore diameter and intervoid thickness ligament that may be
3D-printed once-off with acceptable accuracy are ∼ 300 µm and ∼ 600 µm respectively.

layers with additional weight are positioned atop. As clearly shown in Figure 4.23b, this
interruption strategy allows to improve substantially on the quality of the 3D-printed
specimen, even though some imperfections are still present in these extreme relative den-
sities. For completeness, we also include in Figures 4.23c,d, corresponding E-Voronoi
geometries. Even in this case of uniform intervoid ligament thickness, we observe that
an once-off 3D-printing approach still leads to imperfections, albeit of smaller amplitude
than those observed for the M-Voronoi geometries.

More precisely, the interruption period depends on the in-plane dimensions of the
specimen and the number of specimens laid on the 3D-printer tray. The reason for this
is simply related to the time that the 3D-printer heads require to return to exactly the
same printing point. As a rule of thumb in our work, we use the following time steps.
For one specimen of in-plane dimensions 100 × 100 mm2, we 3D-print for 10 min and
interrupt for another 10 min. Given that the total estimated time for a single-step 3D-
printing of the given specimen with an out-of-plane thickness of 10 mm is about 1 hour,
the interruption delay time is taking place every about 10/6 mm intermediate layers.
If additional specimens are added to the tray, the 3D-printing time before applying an
interruption should be calculated accordingly. Obviously, the proposed time scales do not
constitute a universal protocol expected to work for any arbitrary geometry. Nevertheless,
the idea itself of interruption clearly allowed us to improve the quality of the 3D-printed
specimens, especially at low relative densities. Finally, Figure 4.24 illustrates more clearly
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Figure 4.23: (a,b) M-Voronoi and (c,d) E-Voronoi 3D-printed specimens with relative den-
sity ρ = 0.1. The specimens are obtained in (a,c) without and (b,d) with the interruption
strategy.

a b

Figure 4.24: The effect of interruption method on hexagons with a constant intervoid
ligament thickness that are 3D-printed a)without interruption method, and b)with inter-
ruption method. The relative density of the geometry corresponds to ρ = 0.05.

how the interruption method affects hexagonal lattices with a constant thickness.

For completeness, we show in Figure 4.25, 3D-printed specimens for ρ = 0.2 for all
three geometries, i.e., (a) M-Voronoi, (b) E-Voronoi and (c) RSA. In this case, no inter-
ruption during the 3D-printing is necessary to achieve sufficient specimen quality. Even
so, one may observe at the boundaries of the cell a few regions where the 3D-printing
has not been entirely complete. Nevertheless, those regions are only a very minor propor-
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Figure 4.25: (a) M-Voronoi, (b) E-Voronoi and (c) RSA 3D-printed specimens with no
interruption strategy and ρ = 0.2.

tion of the specimen and they do not affect the overall response, as we will show in the
representativity study in Section 4.5.2.

4.5 Experimental results and discussion

In this section, we quantify experimentally the response of the M-Voronoi, E-Voronoi
and RSA geometries when subjected to uni-axial compression loads. First, we study the
representativity and isotropy of response of the M-Voronoi (the E-Voronoi have a similar
response to the M-Voronoi in terms of representativity) and RSA specimens in terms of
number of voids as well as direction of loading (in order to probe isotropy even partially).
Subsequently, we carry out a comparison analysis between the M-Voronoi, E-Voronoi and
RSA geometries for isotropic and anisotropic geometries.

4.5.1 Testing protocol

The 3D-printed test specimens are subjected to quasi-static uni-axial compression using
a servo-hydraulic testing machine and their deformation history is tracked by means of
a CCD camera. Experiments have been carried out under displacement control with a
constant strain rate of 0.001 s−1. For the measurement of the force signal, two different
load transducers with capacity 200 ± 0.2 N and 10 ± 0.01 N are employed depending on
the relative density of the test specimen. Specifically, the 200 N transducer was mounted
onto the fixed platen of the testing machine, whereas the 10 N transducer (mounted onto
the movable platen of the crosshead) is designed to double as a piston. To this end, a
dedicated testing set-up proposed by Tarantino and Danas (2019) is re-adapted and used.
Finally, during experiments all specimens are enclosed between two transparent PMMA
plates of 10 mm thickness in order to avoid out-of-plane-buckling of the test specimens.
The two plates are lubricated with teflon at the inner side to reduce contact friction with
the test specimen.
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4.5.2 Representativity and isotropy of M-Voronoi

Considering the previously-mentioned fabrication constraints, we choose the overall size
to be 100× 100× 10 mm3 for all 3D-printed specimens. These dimensions allow to reach
a large enough number of voids (∼ 250) leading to a sufficiently representative response
(i.e., scattering of the response as a function of realization and number of voids) and low
relative density realizability5. By considering 200 voids (or ∼ 14 per each direction) in
the M-Voronoi, we obtain a minimum void diameter size of ∼ 5 mm. Note that since
the void distribution and size are random, these numbers should only be considered in
an average sense. Decreasing the number of voids leads gradually to a more “structural”
(i.e. with larger scatter) response that is strongly dependent on realization. In order to
assess the effect of the number of voids in the cell (or equivalently void size) effect on the
representativity of the response, we have carried out experiments for six different numbers
of voids, Np = 30, 50, 100, 150, 200, 250 with ρ = 0.3 in M-Voronoi specimens, as shown in
Figure 4.26.

Specifically, Figure 4.26a shows the overall “engineering” stress-strain response of the
relevant M-Voronoi geometries. At this stage, only one realization is considered. As
easily observed in Figure 4.26a, convergence of the stress-strain response is achieved as
we increase Np ≥ 200 voids6. The cross-plot in Figure 4.26b shows the engineering stress
as a function of Np at different levels of the strain. We conclude that beyond Np ≥ 200
a sufficiently converged response is obtained, as this is revealed by the saturation of the
stress measures with increasing Np. This average number of voids is used in the next
sections to compare the various geometries. It is further pointed out that even in fully
periodic systems such an analysis is necessary to assess the representativity of the results
as a function of the specimen size. Such an analysis is even more critical at large strains
where nonlinear phenomena such as buckling or fracture are involved (Michel et al., 2007).

In order to complete the study of representativity as well as obtain a rough measure
of the isotropy of the M-Voronoi geometries, we analyze in Figure 4.27 the scatter in
the stress-strain response due to different realizations but for a fixed number of voids.
Figures 4.27a,b correspond to Np = 30 and 200 with ρ = 0.3. For each Np, we consider two
different realizations subjected to two different loading directions thus effectively studying
four realizations, as shown in Figures 4.27c,d. One readily observes that increasing the
number of Np leads to a decrease of the apparent scatter. The rough convergence of the
results for Np ≥ 200 indicates that the M-Voronoi geometries behave similarly in the two
main directions of the square cell. This invariance to directionality is a strong evidence
of isotropy at large strains, albeit not entirely complete. Nevertheless, a more complete
isotropy analysis is not possible with our current experimental setup. Yet, considering

5It is noted here that experimental realizability of the geometries is directly tight to the accuracy of
the 3D-printer. The resulting representative geometries are, in turn, scalable and independent of the size
of the specimen itself.

6Convergence should be thought in a less strict manner here given that in experiments scatter is also
due to small fabrication variations as discussed already in Section 4.4 as well as small testing uncertainties
ranging from one experiment to the other.

CHAPTER 4. 3D-PRINTING, EXPERIMENTS AND NUMERICAL ASSESSMENT
FOR 2D M-VORONOI



109

Figure 4.26: Experimental representativity study for M-Voronoi with ρ = 0.3 in terms of
number of voids Np. (a) Stress-strain response of the M-Voronoi with different number
of voids and (b) engineering stress as a function of Np for different levels of the overall
strain. (c) Optical images of the corresponding realizations for different Np. The values
of stress and strain correspond to their nominal or engineering values.

the randomness of the geometry and the different realizations, the present results imply
a sufficient isotropic response even at large strains, a feature usually ignored in many
recent studies of plates, trusses and more generally periodic cellular materials. We recall
here that isotropy in linear elasticity and small strains does not imply7 isotropy at large
strains as we show clearly in Section 4.5.4. It is also noted that additional geometries
(not shown here for brevity) and tests were performed with open voids reaching the lateral
boundaries. The latter did not change the converged response observed in Figure 4.27b.

By contrast, for Np = 30, while at small strains all four realizations exhibit very
similar response (up to an acceptable scatter discussed in the following), their scatter
increases substantially leading to a different initial buckling as well as post-bifurcated
response. This observation reveals the extremely complex local mechanisms that enter

7Perhaps the most straightforward example is that of two-dimensional hexagonal trusses which are
studied further below. At small strains, they are exactly isotropic (Francfort and Murat, 1986), but
become highly anisotropic in the post-buckling regime and finite strains (Spyrou et al., 2019).
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Figure 4.27: Experimental representativity study for M-Voronoi with ρ = 0.3 in terms
of number of realizations and number of voids. Stress-strain response for four different
realizations for (a) Np = 30 and (b) Np = 200. Corresponding optical images of the
realizations for (c) Np = 30 and (d) Np = 200. The values of stress and strain correspond
to their nominal or engineering values.

in the response of the post-bifurcation regime, as well as the fact that representativity of
response is strongly dependent on realization, void sizes as well as the consideration or
not of large strains.

Next, we analyze the scatter induced by the different realizations discussed previously.
The scatter of a quantity A is defined as

Realization scatter % =
Amax − Amin

Aave

× 100, (4.22)

where Amax, Amin and Aave correspond to the maximum, minimum and average value of
the quantity among different realizations.

In Table 4.5, we show the average and scatter values for the apparent Young’s modulus
obtained at very small strains (0−0.2%). We observe that increase of Np leads effectively
to a stiffer and less scattered response as expected.

In turn, in Figure 4.28, we show the scatter of the stress values in the strain range
0.05 − 0.6. Therein, the M-Voronoi with Np = 30 are found to be highly dependent
upon realization exhibiting a large scatter in the order of 40% (reaching a maximum
of 90% and a minimum of 10%) while the ones for Np = 200 are substantially more

CHAPTER 4. 3D-PRINTING, EXPERIMENTS AND NUMERICAL ASSESSMENT
FOR 2D M-VORONOI



111

Np Eave(kPa) Scatter (%)
30 206 11.2
200 267 5

Table 4.5: Average and scatter values of the Young’s modulus.
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Figure 4.28: The scatter in the stress-strain response induced by four different realizations
of M-Voronoi geometries with ρ = 0.3 and number of voids Np = 30, 200. The straight
dotted lines indicate the average value over the strain range considered in the figure.

representative showing an average scatter in the order of 10% (reaching a maximum of
20% and a minimum of 1%) throughout the entire strain history. We should mention here
that fabrication imperfections (see Section 4.4) as well as uncontrollable experimental
uncertainties always lead to a certain level of scatter from sample to sample. It is clear,
however, that the scatter substantially decreases with increasing number of Np.

We close this section by noting that the RSA and E-Voronoi geometries exhibit similar
behavior in terms of representativity with the M-Voronoi ones at relative densities ρ =
0.3, 0.4. Nevertheless, it is substantially more difficult to reach low relative densities
(ρ ≤ 0.2) and simultaneously representative responses at large strains with the RSA
approach. This is a direct consequence of the necessity for a very large polydispersity
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Figure 4.29: Experimental representativity study for RSA with ρ = 0.1 in terms of
number of realizations. (a) Stress-strain response for four different realizations. (b) Stress-
strain realization scatter. The straight dotted line indicates the average value over the
strain range considered in the figure. (c) Corresponding optical images of the realizations
considered. The values of stress and strain correspond to their nominal or engineering
values.

ratio (i.e. difference between the largest and smallest void added in the cell) to reach low
densities below ρ = 0.2. The difficulty is mainly linked to the limitations of our 3D-printer
(e.g. the minimum ligament size that can be printed) and less of the numerical scheme
itself.

In order to show this clearly, Figures 4.29a,b show compression tests for RSA ge-
ometries with ρ = 0.1 using two different realizations subjected to two different loading
directions (see Figure 4.29c). Given the 3D-printing and realization constraints discussed
in the previous section, we can only reach low relative densities by considering 3-4 “large”
voids per-direction (with approximate size ∼ 15− 20 mm) and many smaller ones with a
polydispersity ratio in the order of∼ 50/1 (Tarantino et al., 2019). Figure 4.29a represents
the engineering stress-strain response, while the corresponding realization scatter is shown
in Figure 4.29b. In agreement with earlier studies by Zerhouni et al. (2018), Zerhouni
et al. (2019) and Tarantino et al. (2019), at small strains, the response is rather converged
and representative. Nonetheless, the initial buckling and post-buckling response becomes
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highly scattered at large strains. It can be observed in Figure 4.29b that the amplitude
of this scatter reaches very large values (∼ 100% at maximum). Similar representativity
limitations are in general true for ρ ≤ 0.2, and therefore their use in the next section is
only done for completeness purposes.

4.5.3 Comparison among the three geometries

In order to compare the three geometries considered in this study, we show in Fig-
ures 4.30 and 4.31 quasi-static, uni-axial compression experiments for relative densities
ρ = 0.4, 0.3, 0.2, 0.1. The representativity analysis carried out in the previous section
allows to consider only one realization for the M-Voronoi geometries. In order for the
comparison to be meaningful, the corresponding E-Voronoi geometries also contain a sim-
ilar number of voids with the corresponding M-Voronoi ones. For a better understanding,
we also include optical images of the three geometries selected at three intermediate strains
levels, denoted with (1), (2) and (3).

In Figure 4.30 corresponding to relative densities ρ = 0.3, 0.4, the initial response for
all tested geometries has a net linear behavior. The range of the initial linearity decreases
with decreasing relative density, as shown in Figure 4.31 corresponding to ρ = 0.1, 0.2.
In all cases however, this initial linear response remains free of oscillations. After this
initial smooth behavior, initial buckling, deformation localization and fracture occur at
different regions in the specimen (see green lines on the optical images). Since the tested
samples are random, ligaments bend, buckle and rupture at different positions inducing
an oscillatory overall response. Rather remarkably, the M-Voronoi exhibit the strongest
hardening response with no apparent major peak-stress up to complete densification and
for all relative densities considered here. This leads to overall the stiffest response at large
strains, even if initially the M-Voronoi may exhibit a lower modulus than the correspond-
ing RSA geometries in some cases (e.g., ρ = 0.3). In particular, for ρ = 0.3, the RSA
geometries show an initially stiffer response than the M-Voronoi which however becomes
softer at larger strains leading to a lower hardening modulus than that of the M-Voronoi
at moderate and large strains. Note that in general, the RSA geometries exhibit similar
trends with the M-Voronoi ones, except at lower ρ = 0.1, 0.2 (Figure 4.31), where the
response becomes non-representative for the reasons discussed in Section 4.5.2. As conse-
quence, at low densities ρ = 0.1, 0.2, the RSA depict a more flat, plateau-type, response
beyond the occurrence of the first peak-stress. Such plateau type responses are very usual
in lattice, truss and plate-type models (Symons and Fleck, 2008) as well as in stochastic
porous composites (Jang et al., 2008; Gong and Kyriakides, 2005). A few exceptions
have been reported for random foams produced by replication processing (San Marchi
and Mortensen, 2001) though.

By contrast, the E-Voronoi, even though they exhibit no major peak-stress, their
stress-strain response and overall hardening rate lies always lower than that of the M-
Voronoi for all relative densities considered here. To explain this further, we focus on
the corresponding optical images. It is clear that the non-uniform intervoid ligament
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Figure 4.30: Compression experiments and corresponding optical images for the M-
Voronoi, E-Voronoi and RSA geometries for relative densities (a) ρ = 0.4 and (b) ρ = 0.3.
For all cases, snapshots are shown of the three geometries selected at three intermediate
strains levels, denoted with (1), (2) and (3). The green lines indicate zones of strong
localization and fracturing of the intervoid ligaments. The in-plane dimensions of the
undeformed specimens are 100× 100 mm2. The values of stress and strain correspond to
their nominal or engineering values.

thickness of the M-Voronoi geometry leads to a diffuse distribution of buckled, bended
and fractured unconnected zones throughout the entire specimen (see for instance the
corresponding image in Figure 4.30b for the M-Voronoi). The RSA exhibit a similar dis-
tribution of disordered and disconnected pockets of localized deformation. By contrast,
the E-Voronoi cells, despite being random too, very early form a localization/fracture
band that spans the entire specimen for all relative densities considered here. This is a
direct consequence of the uniform intervoid ligament thickness. Again, such responses
are also representative in periodic geometries including trusses, lattices and plate-based
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Figure 4.31: Compression experiments and corresponding optical images for the M-
Voronoi, E-Voronoi and RSA geometries for different relative densities (a) ρ = 0.2 and
(b) ρ = 0.1. For all cases, snapshots are shown of the three geometries selected at three
intermediate strains levels, denoted with (1), (2) and (3). The green lines indicate zones
of strong localization and fracturing of the intervoid ligaments. The RSA for ρ = 0.2, 0.1
are non-representative due to fabrication limitations. The in-plane dimensions of the un-
deformed specimens are 100 × 100 mm2. The values of stress and strain correspond to
their nominal or engineering values.

architected materials (Symons and Fleck, 2008). Interestingly, the E-Voronoi response ap-
proaches the M-Voronoi one at lower relative density ρ = 0.1. This is somehow expected
since at such low relative densities the M-Voronoi samples exhibit a gradually more uni-
form intervoid ligament thickness, but somehow the M-Voronoi still remains superior,
especially at larger strains. Note however, that at such low densities, the differences are
in the order of the realization scatter. We note further that as ρ decreases, fracture be-
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comes less dominant and the thin ligaments mainly deform by bending and stretching and
less by shearing. Even so, the long-wavelength localization bands in E-Voronoi persist for
all ρ considered here, while the M-Voronoi continue to exhibit more disconnected and dif-
fuse deformation modes. Finally, it is important to note that overall the higher hardening
modulus of the M-Voronoi leads to a lower densification strain than the corresponding
E-Voronoi one.

4.5.4 Comparison with Honeycombs

In this section, we compare the M-Voronoi geometries with the widely used honeycomb or
hexagonal void geometries. While honeycombs are exactly isotropic in the linear elastic
regime, they become highly anisotropic beyond buckling exhibiting a peak-stress, a pro-
nounced plateau and subsequent densification. For this reason, the honeycombs constitute
a perfect case study in the present work allowing to clarify whether the corresponding
M-Voronoi hardening response at large strains is due to geometry or is strongly affected
by the constitutive response of the 3D-printed polymer itself.

In Figure 4.32a, corresponding to relative density ρ = 0.4, we observe that both the
longitudinal and transverse response of the hexagonal geometries is initially linear. This
linearity changes abruptly at strains of about 0.15 where the longitudinal geometry ex-
hibits a clear peak-stress and subsequent softening due to the appearance of a localization
band spanning the entire specimen (see the corresponding optical image). Beyond that
peak-stress the response is oscillatory due to fracturing and the occurrence of additional
localization bands. As a result, the longitudinal honeycomb response exhibits no apparent
hardening, except much later near the densification regime. By contrast, the response of
the transverse honeycomb sample does not exhibit a clear peak-stress but still shows a
much lower apparent hardening than the corresponding M-Voronoi geometry. Interest-
ingly, the transverse hexagon geometry shows localization at larger strains and overall
exhibits a stiffer response and hence better absorption properties than the longitudinal
geometry since they both exhibit very similar densification strains. The results are qual-
itatively similar for ρ = 0.3, not shown here for brevity. Therefore, one may conclude,
that for moderate relative densities ρ ≥ 0.3, the hardening exhibited by the M-Voronoi is
mainly due to its geometrical characteristics–i.e., randomness in both void and ligament
size as well as the rounding of the void surfaces–and not a result of the base material
hardening.

In Figure 4.32b, we compare M-Voronoi with honeycombs for a lower relative density
ρ = 0.1. The main observations made for ρ = 0.4 remain valid here too except for the fact
that all geometries now exhibit a clear hardening less or more pronounced depending on
the loading direction. A main difference between ρ = 0.1 and 0.4 is that at low relative
densities the intervoid ligaments mainly buckle or bend but very little fracture is observed
in all geometries considered here. This change of deformation mode (i.e. from shear
fracturing to bending) leads to a much smoother response throughout the entire process
for both the M-Voronoi and the hexagons. Rather interestingly, the longitudinal hexagonal
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Figure 4.32: Compression experiments and corresponding optical images for the M-
Voronoi, Honeycombs along the longitudinal and transverse direction for two relative
densities (a) ρ = 0.4 and (b) ρ = 0.1. For all cases, snapshots are shown of the three
relevant geometries selected at three intermediate strains levels, denoted with (1), (2) and
(3). The green lines indicate zones of strong localization and fracturing of the intervoid
ligaments. The in-plane dimensions of the undeformed specimens are 100×100 mm2. The
values of stress and strain correspond to their nominal or engineering values.

geometry exhibits a remarkably uniform local bifurcated pattern up to very large strains
showing no apparent localization band (see also Ohno et al. (2002) for corresponding
theoretical results). Obviously this response is strongly related to the use of a base
polymer material instead of a metallic one. In the latter case, the longitudinal hexagon
geometry only shows such local bifurcated patterns in a fairly short region of straining
before plastification beyond which localization bands and crushing appears (Papka and
Kyriakides, 1994; Ashby and Gibson, 1997; Papka and Kyriakides, 1998). In turn, the
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transverse hexagon geometry exhibits localization bands originating from the boundaries
in the present case.

In closing, we observe that the M-Voronoi geometry, although softer initially, over-
comes both the longitudinal and transverse honeycomb curves as a result of its strong
hardening. In this lower density case, as expected from the early studies of Ashby and
Gibson (1997), the hardening of the polymer material leads to a slight hardening of the
hexagonal geometries (see Figure 4.2 in that reference). Yet, that mild hardening, which
is a direct result of the stable post-buckling response of the honeycombs, remains substan-
tially lower than that exhibited by the M-Voronoi. At this point, one may also comment
on the possible imperfection sensitivity of the random versus periodic geometries. The
M-Voronoi, RSA and E-Voronoi geometries are expected to be relatively insensitive to
small imperfections owing to their intrinsic randomness, while it is intuitively straightfor-
ward to assume that the very uniform deformation process of the longitudinal hexagonal
material in Figure 4.32b may be lost under the presence of fabrication imperfections (such
as missing or of varying thickness ligaments) or leading to an even less pronounced hard-
ening response. Nonetheless, such claims need to be further confirmed by experiments
along such directions. Such an analysis is beyond the scope of the present study.

4.5.5 Anisotropic M-Voronoi

As already discussed in Section 3.7, anisotropic M-Voronoi geometries can be obtained
using a rectangular cell subjected to biaxial deformation where principal stretches are
not equal λapp1 ̸= λapp2 and the deformation ratio (anisotropy parameter) is defined as
η = λapp1 /λapp2 . We assess the effect of anisotropy by designing two anisotropic M-Voronoi
with η = 2, 4 and ρ = 0.3. In Figure 4.33, we observe that the initial linear response of
the anisotropic M-Voronoi geometries in the longitudinal direction becomes stiffer with
increasing η as compared to the the corresponding transverse direction as well as the
isotropic one (shown again here for completeness). Subsequently, the anisotropic M-
Voronoi exhibit buckling at lower stresses with increasing η in both directions but maintain
a hardening response at large strains, even though the hardening slope tends to decrease
with increasing η. Interestingly, one can observe that significant fracturing occurs in the
longitudinal direction but substantially less in the transverse direction which is rather
soft. We conclude this discussion by the most important observation in the context of
this figure which is that the isotropic response, although slightly more compliant in the
initial linear regime, leads to the larger buckling stress loads as well as overall the stiffest
and with largest hardening rate response throughout the deformation process.

4.6 Numerical results and discussions

In this section, we study numerically the designed random geometries under large strain
compression loading and try to simulate the experimental results. We use the commercial
FE solver ABAQUS (Dassault system) to deal with nonlinear finite strain simulations.
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Figure 4.33: Compression experiments and corresponding optical images for the isotropic
and anisotropic M-Voronoi along the longitudinal and transverse direction for ρ = 0.3.
For all cases, snapshots are shown of the three relevant geometries selected at three
intermediate strains levels, denoted with (1), (2) and (3). The green lines indicate zones
of strong localization and fracturing of the intervoid ligaments. The in-plane dimensions of
the undeformed specimens are 100× 100 mm2. The values of stress and strain correspond
to their nominal or engineering values.

Due to the complexity of the geometry, large compressive deformations, and contact be-
tween the cells, Abaqus/Standard (Implicit) solver is unable to simulate the deformations
and it stops as soon as the first cell collapses and the cell walls contact. Consequently,
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Figure 4.34: Comparison between the compression experimental and numerical results
for the M-Voronoi, E-Voronoi and RSA geometries for relative density 0.4. For all cases,
snapshots of the experimental samples and numerical geometries are shown of the three
geometries selected at three intermediate strain levels, denoted with (1), (2) and (3).
The legend indicates the maximum principal logarithmic strain values. The green lines
indicate zones of strong localization and fracturing of the intervoid ligaments. The values
of stress and strain correspond to their nominal or engineering values.

we use the Abaqus/Explicit solver to simulate the deformations and material behavior
(see Section 5.4 for more discussion). Nevertheless, the Abaqus/Explicit solver requires
three-dimensional elements to deal with the contact between the cells by activating the
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Figure 4.35: Comparison between the compression experimental and numerical results
for the M-Voronoi, E-Voronoi and RSA geometries for relative density 0.3. For all cases,
snapshots of the experimental samples and numerical geometries are shown of the three
geometries selected at three intermediate strain levels, denoted with (1), (2) and (3).
The legend indicates the maximum principal logarithmic strain values. The green lines
indicate zones of strong localization and fracturing of the intervoid ligaments. The values
of stress and strain correspond to their nominal or engineering values.

command Contact inclusions, All exterior. We developed an algorithm to extrude the two-
dimensional meshes in an out-of-plane direction. A sufficient number of brick elements
C3D8 are used to mesh the domain. Due to the small strain rate, TangoBlack is considered
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an incompressible Neo-Hookean material with Young’s modulus of 3.92 MPa and Poisson’s
ratio of 0.49 (see Section 4.2.11 for more discussion on material modeling). It has been
determined that the time increment is sufficiently small to guarantee compliance with the
quasi-static requirement while running within an acceptable time frame. As an example,
a mesh containing brick elements and 360 000 nodes (DOF) requires approximately 60
hours of running time with 40 cores in parallel.

During real compression tests, random geometries encounter a variety of phenomena,
including buckling, contact, fracture, and shear. In addition, every ligament within a
random porous geometry is subjected to a complex set of stresses. Therefore, modeling
the fractures occurring in TangoBlack ligaments is not an easy task. Although in our
simulation, neither fracture nor buckling criteria are defined, the comparison between
the experimental and numerical results shows a fairly good agreement. Figures 4.34 and
4.35 represent the stress-strain results obtained from the numerical and experimental
studies at ρ = 0.4, 0.3. Moreover, a side-by-side comparison is performed between the
deformations of the real test sample and the simulated random geometry. Generally, we
observe great consistency between the numerical and experimental stress-strain results
for M-Voronoi and RSA geometries. However, there is a larger deviation for E-Voronoi
geometries. E-Voronoi simulations at large strains show a stiffer response at both densities.
This discrepancy might be due to two factors. First the imperfections during 3D-printing
pprocess create a non-uniform ligament thickness, leading tto earlycell collapse. Secondly,
the deformation of the E-Voronoi is fracture dominant and there is a collapsed row of
broken cells at intermediate strain values. Consequently, the absence of fracture modeling
may result in a numerically stiffer response. It is interesting to note that when comparing
the deformation patterns in side-by-side numerical and experimental deformed geometries,
there is a remarkable consistency in the localized deformation, especially at moderate
strain levels. At both densities, a localized collapsed cell row (green lines) is observed
in E-Voronoi geometries. Moreover, an identical deformation distribution is observed in
the numerical results of the M-Voronoi and RSA geometries. In spite of this, we note
that due to the absence of fracture modeling, the deformation patterns at larger strains
deviate from those observed in experiments since more fracture is involved.

4.7 Concluding remarks

We characterize the viscoelastic behavior of a brittle soft polymer material called Tan-
goBlack by performing different mechanical tests such as tensile, loading-unloading and
relaxation tests. In contrast to the reported material properties provided by the manu-
facturing company, who do not provide strain rate information, we observed highly rate
dependent mechanical properties in the TangoBlack materials. We used the rubber vis-
cous incompressible hyperelastic model proposed by Kumar and Lopez-Pamies (2016),
to characterize the mechanical behavior of the TangoBlack material. The study of the
ultimate tensile properties of the TangoBlack material shows a short equilibrium stress
response at small strains followed by a fracture envelope spanning 90% strain ranges.

CHAPTER 4. 3D-PRINTING, EXPERIMENTS AND NUMERICAL ASSESSMENT
FOR 2D M-VORONOI



123

We showed that TangoBlack can be characterized by simple incompressible Neo-Hookean
material modeling at low strain rates or small strain values.

The TangoBlack material is used as a base polymer matrix to manufacture porous
polymer materials. In order to achieve sufficient specimen quality, we propose an inter-
ruption program during 3D-printing which consists in alternate additive manufacturing
and interruption time increments. The resulting porous specimens are then experimen-
tally tested under uni-axial compression. In particular, the newly proposed M-Voronoi
materials exhibit a strong hardening behavior under compressive loads as compared to
RSA and E-Voronoi geometries, which tend to exhibit either a peak stress and a plateau
or only weak hardening for most of the deformation process before final densification.
This hardening response is mainly a consequence of three geometrical characteristics: (i)
the randomness of the void geometries, (ii) the non-uniformity of the intervoid ligaments
and (iii) the smooth void geometry reducing efficiently stress localization. In addition, the
randomness of the M-Voronoi geometry makes these materials less sensitive to imperfec-
tions and realization variations. Nevertheless, a more detailed study is required along this
direction perhaps including additional loading conditions such as tensile and hydrostatic
ones (Tankasala et al., 2017).
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Chapter 5

M-Voronoi in 3D

Chapter summary: In this chapter, the 2D M-Voronoi morphogenesis process is extended
into 3D space to obtain random smooth polygonal inclusions. A similar procedure has
been followed in order to create 3D M-Voronoi geometries. However, in order to cre-
ate periodic M-Voronoi, periodic boundary conditions have been applied. To achieve
the full density range, an intermediate remeshing step is required to improve the mesh
quality. This has been performed by generalizing the developed 2D remeshing algorithm
into 3D space. We investigate numerically the random 3D M-Voronoi, RSA, and Gy-
roid geometries under large compressive deformations while considering the matrix as an
elastic-perfectly plastic material without hardening. We observe delayed yield stress and
enhanced plastic response in structures with random voids.
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5.1 The M-Voronoi morphogenesis method in 3D

This section describes the computational morphogenesis process and its steps to obtain 3D
M-Voronoi porous materials. The M-Voronoi morphogenesis process in 3D is an extension
of 2D M-Voronoi process described in Section 3.1 by prescribing the 3D objects. The main
steps are identical with minor differences discussed in the following.

Step 1: Construction of the initial porous cell. Similar to the 2D morphogenesis
method of M-Voronoi geometries, the void growth process begins with the construction
of an initial porous unit-cell (Figure 5.1). We remind that the choice of the unit-cell
shape and size is arbitrary and will affect the final porous geometry. Furthermore, the
unit-cell can comprise voids with any shape, size, or orientation. Once again, it should
be noted that the initial volume fraction of the voids is denoted as c0 which is related to
the initial density ρ0 ≡ 1− c0. For illustration purposes, we consider a simple case where
the voids are equal-sized spheres and randomly distributed in the matrix. Here, the 3D
random sequential absorption (RSA) algorithm (Section 2.2) is employed to create 3D
random porous unit-cells. Also, for simplicity, a cubic unit-cell with 1 × 1 × 1 dimension
is considered and all deformed geometries will be rescaled to this dimension. We note
again that the unit dimensions of the cell are inconsequential and are only chosen for
simplicity.

Step 2: Periodic displacement boundary conditions. In order to ensure the peri-
odicity of the final geometry, the unit-cell is subsequently subjected to periodic displace-
ment boundary conditions (PBC) over the entire cell boundary ∂V0 (Figure 3.1). All
finite strain kinematics and constitutive laws are identical with 2D M-Voronoi method
and the deformation gradient tensor is again defined as F = ∂x/∂X = I + Gradu, where
u(X) denotes the displacement vector of any material point between the reference and
deformed configurations. The definition of periodic displacement boundary conditions
implies that the displacement field is periodic about an average strain field. Therefore,
the displacement field can be split into the average strain field and a correction u∗(X)
which accounts for the presence of heterogeneities (see Michel et al. (1999) and Mbiakop
et al. (2015)). We then impose the periodic boundary conditions

u(X) = (Fapp − I)X + u∗(X), ∀X ∈ ∂V0, (5.1)

where u∗(X) represents an L-periodic displacement field that accounts for the field fluctu-
ations and has volume average equal to zero such that |V0|−1

∫
V0
u∗(X)dX = 0. Evidently,

the components of u∗(X) have identical values at points on the opposite faces of the unit-
cell. In order to eliminate rigid body motion in the FE calculations, it is further necessary
to fix a corner node of the unit-cell (Danas, 2017). Moreover, to prevent the wavy bound-
aries of the unit-cell, the LEFT, BOTTOM, and BACK sides have no deformation in
e1, e2, and e3 directions, respectively. Similar to Section 3.1, Fapp is a prescribed, con-
stant, non-symmetric second-order tensor with nine independent components in 3D. Also,
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Figure 5.1: Computational process for the generation of the 3D M-Voronoi material.
For illustration purposes, the diagram shows the four steps required to obtain a virtual
M-Voronoi geometry starting from a cubic unit cell containing a discrete number of mono-
sized spherical voids. Step 1: Random distribution of spherical voids in a cubic domain
with initial relative density ρ = 0.7. Step 2: Application of displacement boundary
conditions. Step 3: Numerical FE simulation at large strains using nonlinear elastic energy
minimization and incompressible matrix behavior. The final relative density corresponds
to ρ = 0.3. The cut image shows inside of the deformed geometry. The color bar indicates
the maximum principal logarithmic strain. Step 4: Remeshing and uniform re-scaling of
the deformed geometry to the desired size. The final 3D M-Voronoi and its containing
inclusions are uniformly re-scaled to the size of the initial geometry.
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detFapp > 1 is the first void growth condition of the voids. The second condition for the
growth of voids is provided by the material characteristics described in the next step.

We note that one can prescribe the uniform Dirichlet(affine) boundary conditions
to have the same void growth as described in Section 3.1. Such deformations lead to
non-periodic M-Voronoi geometries and are especially applicable to non-periodic unit-cell
shapes such as: triangular and quadrilateral in 2D and cylindrical or others in 3D.

Step 3: Nonlinear elastic energy minimization. We trigger the mechanical growth
of the voids by solving numerically a finite-strain (Figure 5.1), nonlinear elastic bound-
ary value problem (BVP), whose geometry is defined in Step 1 and applied boundary
conditions in Step 2. For this, we use the finite element (FE) method with commercial
ABAQUS software and material properties described in Step 3 of Section 3.1. In contrast
to the 2D M-Voronoi method, we apply periodic boundary conditions to solve the mini-
mization problem such that K(Fapp) = {u : regular,u = (Fapp − I)X + u∗, ∀X ∈ ∂V0}.
Moreover, quadratic 10-node, three-dimensional (3D) hybrid elements (C3D10H) are used
to deal with incompressibility. Similarly, given the incompressibility of the solid phase, the
purely kinematic relation 3.5 is governed between the initial ρ0 and final relative density
ρ of the unit-cell (see 3.2).

As can be easily observed in the example problem in Figure 5.1, the voids grow sub-
stantially exhibiting 3D convex, polyhedralized but smooth shapes. Their exact growth
rate and final shape are a complex outcome of interactions with neighboring voids and
the boundary of the cell. The thickness of the intervoid ligaments is highly variable, while
dense pockets of solid phase are observed across the cell, as shown by the blue spot re-
gions in Step 3 of Figure 5.1. The same dense pockets have been observed while studying
the 2D M-Voronoi morphogenesis process in Step 3 of Figure 3.1. The cut view of the
deformed M-Voronoi in Figure 5.1 also demonstrate that the deformation at a plane of
the 3D geometry is similar to 2D M-Voronoi geometries.

Step 4: Void geometry extraction, rescaling and remeshing. The large strain
simulations may lead to significant mesh distortion at various regions (see the right image
in Step 4 of Figure 5.1). A final distorted mesh cannot be used for further numerical
study or 3D-printing. Therefore, one may remesh the geometry (see remeshed figure on
the left side of Step 4) without modifying the deformed geometry features. Also, severe
mesh distortion might stop the simulation and prevent the final relative density to be
achieved. In such cases, we need to extract the deformed mesh from the stopping point,
remesh it, and re-start the calculation from that point on. Such an operation will allow
us to reach very low relative densities even in 3D M-Voronoi as is discussed in Section 5.3.

The main strategy to remesh the distorted mesh is similar to the 2D remeshing method
described in Section 3.3.1. In this strategy, the deformed mesh is exported using an
Abaqus python script and the geometrical entities, such as void boundaries and cell
boundaries, are read by a custom-made code. However, the algorithm to reconstruct
the deformed geometry and remesh is substantially different in 3D geometries. The new
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mesh is subsequently uniformly rescaled back to any desired size while preserving the
relative density (see the re-scaled 3D M-Voronoi in Figure 5.1). The remeshing algorithm
employed in this step is discussed in Section 5.2.

5.2 Geometry reconstruction and Remeshing in 3D

In this section, we extend the 2D remeshing algorithm in Section 3.3.1 to 3D mesh and
geometries. The main steps of the algorithm are identical to those of the 2D method, and
here we are only discussing the differences. The main difference involves the shape of 3D
elements and the construction of 3D objects. Particularly, the free surfaces of polyhedral
element shapes are identified rather than the free edges of polygonal elements. Similar to
the 2D method, we developed a Fortran code for the remeshing algorithm, which is based
on the open-source meshing software Gmsh. The corresponding Python version follows a
slightly different algorithm to connect the free surfaces and will be discussed later. The
advantages of the proposed remeshing algorithm over the existing tools are discussed in
Section 3.3.

5.2.1 Description of 3D remeshing algorithm

In the following, we summarize the steps of the algorithm focusing on the differences
with the 2D method (Hooshmand-Ahoor et al., 2022). The steps are also summarized
in Figure 5.2. For illustrative purposes, we consider a simple 3D geometry containing a
single spherical void in the middle.

Step 1: Importing the orphan mesh and reading the nodes and elements. Sim-
ilarly, we read the nodes and elements data of the orphan mesh and store them to the
corresponding matrices. We define matrices Nn×3 and Mm×h, containing all nodes coor-
dinates and element connectivity information, respectively. Here n denotes the number
of nodes, m is the number of elements and h is the number of nodes at each element
which will vary depending on the type and order of the elements. In addition, we have
considered tetrahedron and brick element types with linear or quadratic element orders.
Therefore, h = 4, 8, 10, 20. One can extend this method to the triangular prism element
type. It should be noted that unlike the 2D remeshing algorithm described in Figure 3.6,
here we do not reorganize the quadratic element orders. Step 1 in Figure 5.2 represents an
orphan mesh of a matrix containing one spherical void, where the right side image shows
a cut view of the mesh.

Step 2: Finding the free surfaces of the elements. The resulting geometry from the
remeshing algorithm will be written in Gmsh format and can be further converted to various
CAD versions. Gmsh allows building a complex 3D closed volume by connecting a series
of planes, which are the surface planes that make the exterior boundary of the volume.

CHAPTER 5. M-VORONOI IN 3D



130

Shared surface
Free surface

Step 1
Step 2

Step 3Step 4

Figure 5.2: 3D remeshing algorithm for an orphan mesh based on geometry reconstruc-
tion. For illustration purposes, a simple 3D orphan mesh containing a spherical void is
demonstrated. The diagram shows the four steps required to remesh an orphan mesh.
Step 1: Reading the nodes and elements of the orphan mesh. Step 2: Finding the free
surfaces of the elements. The green color corresponds to accepted free surfaces, whereas
the red regions are rejected shared surfaces. Step 3: Constructing the geometry of the
orphan mesh. Step 4: Remeshing the new mesh with an arbitrary mesh algorithm.

The free surfaces of an orphan mesh can be distinguished from the shared surfaces of a
given element by their inherent feature, which is that they belong only to that element.
A shared surface of an element, on the other hand, is shared by two elements at the same
time. The left image of the Step 2 in Figure 5.2 displays the identification process of the
free surfaces. The green surfaces correspond to the free sides of the individual elements
and the red surfaces denote the shared side of tetrahedron elements. The right image of
Step 2 shows all identified free points (nodes) and element surfaces of the orphan mesh.
These surfaces will construct the geometry in the next step.

The algorithm for finding the free surfaces of an orphan mesh is described in Algorithm
3 in Appendix 5.A. This process consists of two main loops that compare the nodes at
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each surface of an element with all other elements. Consequently, the surfaces that are
not in common between two different elements are identified and stored as free surfaces.
We consider that each surface of an element contains 3 or 4 nodes for the tetrahedron
or brick element type. In the case of quadratic elements, the middle nodes are identified
according to the corner nodes. To speed up the loops, we defined a matrix that contains
the elements connected to each node in order to limit the search over all elements, which
results in a significant improvement in the speed of the algorithm. Similar to the 2D
remeshing algorithm, the free surfaces are stored in the matrix Sf×r, where f denotes the
total number of free surfaces and r = 3, 4, 6, 8 corresponds to the number of nodes on
every side of elements and will vary depending on the element type and order. It is noted
that the type and order of the elements are determined as input by the user.

Step 3: Constructing the 3D geometry by the free element sides. Once the free
surfaces have been identified in Step 2, they must be organized and connected in order to
construct the closed volumes of the 3D geometry. Similar to 2D geometry reconstruction,
geometry entities are built in a bottom-up manner (first points, then curves, surfaces,
and volumes) with the built-in OpenCASCADE kernel of the geometry module in the
open source software Gmsh (see Figure 3.8). Following a similar approach, we construct
the geometry volumes by connecting the free surfaces built up from the free points and
curves. The algorithm is implemented in the Fortran and Python languages, where the
Python version follows a different approach to the geometry construction step. Different
methods are employed specifically to reduce the running time required to construct the
geometry, which has been found to be much longer in the Python format with an almost
identical algorithm. Here, we will be focused on the algorithm used in the Fortran version
and will discuss briefly the differences with the Python algorithm.

In contrast to the 2D method, geometry reconstruction in 3D requires a different
approach. In the former case, each free line is connected to only two lines, whereas in 3D,
each surface is surrounded by more than two surfaces. Initially, the Fortran algorithm
starts with the first free surface s1 ∈ {s1, s2, ..., sf} 1 and then finds the second free
surface connected to it, which is determined by the line in common between the two
neighboring surfaces. As a result, there are three possible scenarios when a second free
surface is identified. Figure 5.3 represents an example of three different cases of newly
identified free surfaces displayed in red color. In this figure, the previously constructed
surfaces are shown in gray. We consider Noderef 1 and Noderef 2 to be two reference nodes,
from which the new red surface is constructed. The third node of the newly added surface
corresponds to Noderef 3, which is connected to the reference nodes by Line 23 and Line 13.
Depending on the repetition of the new geometry entities Noderef 3, Line 23, and Line 13,
three different cases exist. In the first case, all new entities are not previously constructed
and have to be newly added to the geometry. In the second case, only one line will be
added to the geometry and finally, in the last case, all entities are already constructed
and one needs to only add a new surface from the constructed entities. The process will

1si = S(i, r)
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Noderef 1 Noderef 2

Case 1 Case 2 Case 3

Noderef 3 Noderef 3 Noderef 3

Line 23Line 13

Case 1 Case 2 Case 3

Noderef 3 New Repeated Repeated Repeated

Line 23 New Repeated New Repeated

Line 13 New New Repeated Repeated

Noderef 1 Noderef 2 Noderef 1 Noderef 2

Figure 5.3: Three possible scenarios in the geometry construction method of the Fortran
algorithm. New and old identified free surfaces are shown in red and gray, respectively.
Noderef 1 and Noderef 2 are two reference nodes, from which the new red surface is
constructed. The new surface is characterized by three geometry entities, Noderef 3, Line
23 and Line 13. The table shows the conditions in each case. Case 1: All three entities
are new. Case 2: only one line of the new surface is new. Case 3: All three entities were
previously added.

continue until all free surfaces have been investigated. The distinction between different
closed volumes vi ∈ {v1, v2, ..., vN} of the geometry is performed by checking whether
all lines of the free surfaces are investigated. If no free line remains, the volume will
be closed and the process continues to construct a new volume until all N volumes are
identified. We note that this method requires all data of previously existing entities of
the geometry and thus might be time-consuming. However, to speed up the process, we
have limited the search over all elements by looping over the defined matrix in Step 2,
which contains the elements connected to each node. Therefore, the construction process
even with extremely complex geometry will not exceed a few seconds. This algorithm is
summarized in Figure 5.4 and described in Algorithm 4 in Appendix 5.A.

Similar to the 2D remeshing method, multiphases can be identified when there are
either voids or particles or a combination of both. We apply Boolean operators (from
Gmsh OpenCASCADE kernel) to the 3D geometry volumes to distinguish or remove them.
Similarly, we use BooleanDifference and BooleanFragments operators to create empty
voids or particles, respectively (see Figure 3.10). We note that the largest volume must
be determined to allocate the matrix phase to it. This has been done by evaluating the
coordinates of different volumes when all volumes are detected.
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Figure 5.4: Flowchart of 3D geometry reconstruction from the identified free surfaces of
an orphan mesh with Fortran and Python versions of the algorithm

Step 4: Exporting the geometry, rescaling andremeshing. The constructed 3D
geometry is written in Gmsh .geo format and is built based on the bottom-up manner
(see Figure 3.8). It can be subsequently converted into any CAD version or meshed with
an arbitrary method. Specifically, in contrast to the other existing remeshing methods,
having the geometry gives a high level of control over the output mesh type. Either the
final geometry or new mesh can be uniformly rescaled back to a specific size by multiplying
a fixed calculated scaling number by all coordinate components of points created in the
geometry. In our study of 3D geometries, the new mesh is created with Gmsh software
and is exported as an Abaqus input file (.inp) for simulations with different element types
and orders.

5.2.2 The span of the 3D remeshing technique

In spite of the flexibility of the proposed remeshing method, here we state the limitations
of this approach. The proposed remeshing method is applicable to all element types with
linear order. Also in practice, one can approximate the quadratic elements with the cor-
responding linear type, by connecting the corner nodes and ignoring the middle nodes.
However, this will lead to a minor difference (< 3% depending on the mesh size) between
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Figure 5.5: The limitations of the 3D remeshing algorithm in the case of quadratic el-
ements. (a) The possible node connection methods for a free surface of a quadratic
tetrahedral element type. We note that the nodes are not in the same plane. (b) The
degenerate cases of each connection method when excessive element distortion exists. In
both cases, the red line overlaps the neighboring elements.

the actual volume fraction of different phases. In general, the reconstruction algorithm
is found to have limitations when dealing with quadratic elements under very large de-
formations. Such limitations persist even with linear approximations of the elements. In
contrast to linear elements, the points of a surface in a deformed 3D quadratic element
are not in the same plane. One can construct the deformed surface by connecting the tri-
angular planes built up of three nodes. Therefore, the middle nodes of quadratic elements
must be connected properly to construct the 3D element surface.

In Figure 5.5a, two possible connection methods for points on a free element surface
are shown, where the corner and middle nodes are represented by solid circles and crosses,
respectively. It is important to note that the points are not on the same surface. The 3D
surface is then constructed by connecting four triangular surfaces. It has been observed
that both of the proposed connection methods can accurately (without any approximation
of volume fraction) construct the deformed geometry up to excessive distortions of the
elements. Large deformations in the geometry, whether local or global, may cause the
elements to be distorted such that both approaches will not work. Figure 5.5b represents
the degenerate cases of each approach. In both cases, the red line is overlapping the
neighboring elements and subsequently, the geometry construction will be unsuccessful.
Such distortions are mainly present at low densities ρ < 0.2. In order to avoid such
limitations, two approaches can be followed: 1-the simulation can be stopped before
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excessive element distortion and the deformed mesh can be remeshed (with or without
stress mapping) to improve the quality of the elements. 2-the quadratic elements can be
approximated by linear type. We note that the second approach will add a small error to
the final volume fraction and might not work if the elements are highly distorted.

Subsequently, we discuss the required time and feasibility of the proposed algorithm.
In practice, both of the Fortran and Python construction methods will take less than two
minutes to read the orphan mesh, rebuild the geometry and write it to the Gmsh format.
When there are quadratic elements or degrees of freedom (DOF) greater than 500 000,
this time may increase to five or ten minutes, depending on the mesh size. Therefore,
we consider the algorithm processing time reasonably fast and feasible for practical use.
However, the time required for Gmsh to read and construct the geometry is substantially
larger and in some cases not feasible. As an example, the required time for the geometry
to be built corresponds to approximately two hours for DOF 200 000. This time will vary
depending on computer power or the number of voids/particles in the mesh. One can
reduce the required time considerably by approximating the quadratic elements in linear
order. Moreover, we have realized that the intermediate remeshing step will also reduce
the DOF and, thus, the time required to complete the remeshing process.

5.3 Attainable relative density in 3D M-Voronoi

In this study, we apply the discussed 3D morphogenesis process to obtain 3D M-Voronoi
geometries in a cubic domain. It is important to note that the geometry choice for unit-
cells is generally not limited to the cubic shape. Nevertheless, due to the periodicity
requirement, we specialize in cubic unit-cells with diagonal deformation loads, i.e., Fapp =
diag(λapp1 , λapp2 , λapp3 ) (with λapp1 , λapp2 , λapp3 denoting the applied principal stretch). In order
to ensure void growth, one has to apply deformation such that detFapp > 1, where
λapp1 , λapp2 , λapp3 ≥ 1 to have tensile deformation in all directions.

Similar to the 2D M-Voronoi geometries, the 3D M-Voronoi geometries are numerically
and experimentally realizable at solid densities spanning the full spectrum from 1 to very
low (e.g., 0.01). However, in order to obtain very low relative densities ρ < 0.2, it is
required to perform intermediate remeshing to assist the simulation going to final relative
densities. As we discussed previously in Section 3.3, the excessive distortion of elements
is the main reason for the early termination of simulation in large strain calculations.
Such deformations prevent the 3D M-Voronoi morphogenesis process to achieve the target
porosity especially when large porosities are required. Initially, a good-quality mesh will
facilitate the process, but very fine meshes are not suitable for large deformations that
occur locally in complex geometries under large strains. This is due to the fact that they
will be distorted and collapsed more quickly. Instead, a good quality mesh in large strain
simulations refers to a smooth medium size mesh that is fine enough in thin regions. To do
so, we use the Delaunay optimization algorithm in Gmsh, which automatically optimizes
the quality of tetrahedra elements. Furthermore, a uniform mesh size distribution is
performed over the curvature of sphere surfaces in the initial RSA geometry. Despite the
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Figure 5.6: 3D M-Voronoi obtained by using RSA geometry with initial relative density
ρ0 = 0.7 (The first geometry). The color bar indicates the final relative density ρ and the
right images represent the void shapes inside of the geometry. The densities ρ > 0.2 are
obtained by using the corresponding ρ = 0.3 as an initial geometry after remeshing it.
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significant assistance of the initial mesh quality, the simulation might stop under very large
deformations. In this case, it is required to remesh the deformed geometry and resume
the simulation with or without mapping the existing fields. Since we are solely interested
in the geometric features and not in the calculated stresses, we remesh the deformed
geometry without stress mapping. Such an operation has allowed us to reach very low
relative densities as shown in Figure 5.6. This figure represents 3D M-Voronoi geometries
obtained with tensile deformations λapp1 = λapp2 = λapp3 . The initial relative density of
the RSA geometry corresponds to ρ0 = 0.7. Evidently, the 3D M-Voronoi geometries are
numerically realizable at solid densities spanning the full spectrum from 1 to very low
(e.g., 0.01). 2 In order to achieve the M-Voronoi with relative densities ρ = 0.2, 0.1, we
have performed a remeshing on the M-Voronoi with ρ = 0.3 and resumed the process
without mapping the stress fields. For lower relative densities i.e., ρ = 0.05, 0.01 a second
remeshing is required on M-Voronoi with ρ = 0.1. As a result of the limitations of the
remeshing algorithm for severely distorted quadratic elements (see Section 5.2.2), the new
mesh is generated in linear order with C3D4H, so that the final geometry can be constructed
accurately after remeshing in large porosities.

5.4 Large strain simulation of 3D M-Voronoi

In this section, we study 3D M-Voronoi geometries under large deformations with different
material models. In general, the numerical simulation of a material/structure undergoing
large strains is a challenging task that requires a specific effort in the choice between the
element types and the solving method. These choices largely depend on the nature of the
problem. In this study, the commercial FE solver ABAQUS (Dassault system) is used to
deal with finite strain simulations, while enabling the option NLGEOM. For such simula-
tions, there are two solvers available in Abaqus: Abaqus/Explicit and Abaqus/Standard
(Implicit), which are based on explicit and implicit approaches in FEM analysis. It is
possible to understand which solver is to be used by identifying the distinction between
the two approaches. In the implicit method, at each solution step, equilibrium is en-
sured between the external load and the reaction forces generated by the internal load.
Therefore, iteration and convergence checking are required. In the case of the explicit
method, neither iteration nor convergence checking are required. At each solution step,
the unknown values are obtained from information already known in the previous step.
As a result, the time increment has to be small enough in order to accurately predict
the results. In applications, Abaqus/Standard is very good at solving linear to moder-
ately nonlinear problems quickly on large time scales, while it may be slower or unable to
solve extremely nonlinear problems at all. Abaqus/Explicit, on the other hand, is more
beneficial for high-speed dynamic problems and non-linear analyses. In addition, it has
capabilities that make it easy to simulate quasi-static problems involving nonlinearity
such as crash analyses of structural members, post-buckling and collapse simulations, and

2Similar density range has been observed for 2D M-Voronoi geoemtries in Section 3.5.
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changes in contact in complex geometries. Specifically, the contact between surfaces has
extremely nonlinear behavior that typically requires many iterations to be resolved by
the implicit method. Abaqus/Explicit method, on the other hand, can effectively handle
such severely nonlinear behavior, due to its incremental schema.

The present study focuses specifically on large strain compressive loadings on porous
geometries, in which contact is actively involved. Therefore, we employed the Abaqus/Explicit
solver with sufficiently small time increments to preserve quasi-static conditions. The el-
ement type has been chosen depending on the considered material properties. Due to the
small time increment in Abaqus/Explicit, the total time required to finish the calculation
can be very long taking several days. One needs to retain the data at the end of each
increment to protect the data if the system crashes or the CPU time limit is exceeded.
Therefore, we use RESTART, WRITE option to store the data and subsequently resume the
process from the termination point. However, restoring the data at the end of each incre-
ment can create big size files and is not efficient. We employ option OVERLAY, which stores
the data in the most recent increment and removes the previously stored data. Thus, it
minimizes the space required to store the restart files, while retaining the information
of the last increment for a later resume. Subsequently, Abaqus Explicit uses RECOVER

analysis option in the execution command to resume the simulation from the last stored
increment. In this work, the OVERLAY and RECOVER options have been implemented in all
Abaqus/Explicit simulations regardless of material properties.

5.4.1 Plasticity in random and periodic structures

Contitutive relations for elastic-perfectly plastic materials

In this section, we briefly review the constitutive equations for materials with elastic-
perfectly plastic properties. Generally, these materials are capable of irreversible defor-
mation without increasing their stresses or loads. Perfect plasticity is characterized by
a constant yield stress regardless of the plastic strain. Here, we employ the Mises yield
function with the associated flow rule in plasticity. The formulation follows an incremen-
tal plastic strain approach that facilitates numerical implementations (McMeeking and
Rice, 1975). We begin by additive decomposition of the total strain increment into elastic
and plastic parts as

dε = dεe + dεp. (5.2)

Furthermore, the Cauchy stress (true stress) tensor σ can be similarly decomposed into
the volumetric and deviatoric stresses, such that the deviatoric stress σd can be obtained
by the following relation:

σd = σ − 1

3
(σkk)I, (5.3)

where I is the identity tensor.
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The yield function ϕ(σd) determines the yielding surfaces of a material and depends
on the deviatoric stress. For an isotropic material, the yield function can be defined by
the principal invariants of the deviatoric stress σd. The von Mises yield criterion states
that yielding begins when the second invariant of the deviatoric stress reaches a critical
value. Moreover, in this criterion, there is no volumetric plastic strain and the plastic
strain consists of only the deviatoric term. Therefore, the yield function is defined as

ϕ(σd) = σ2
eq − σ2

Y , (5.4)

where σY is the tensile yield strength of the material and σ2
eq is

σ2
eq =

3

2
σd : σd. (5.5)

Next, by considering the flow rule assumption, the plastic strain increment is directly
proportional to the gradient of the yield surface, which means that it is normal to the
yield surface. As a result of the normality rule and from Hill (1998), the flow rule takes
the following form

dεp = dλ
∂ϕ

∂σ
, (5.6)

where the dλ is a plastic multiplier and is a positive scalar. In order to determine the
magnitude of the plastic strain increment dεp, it is necessary to obtain the value of dλ. To
do so, we solve the full set of equations (5.4) and (5.6). The defined equations characterize
the material behavior such that in any increment when the plastic flow is occurring (after
the yield surface is reached), the equations should be integrated and solved to obtain
the state at the end of the increment. In Abaqus FE solver, the integration is done
by applying the backward Euler method to the flow rule. For more discussion on the
numerical implementation of the incremental set of equations, see Smith (2009).

Numerical results

The elastic-perfectly plastic material model has been employed into Abaqus FE software
to simulate different porous materials under large strains compression loading by con-
sidering that the matrix phase is an elastic-perfectly plastic material. We examine the
differences between three different geometries M-Voronoi, RSA, Gyroid with the same
volume fraction. Figure 5.7a shows the Gyroid lattices at four different densities ρ =0.4,
0.3, 0.2 and 0.1, with 5× 5× 5 unit-cells created by the method described in Section 2.6.
The M-Voronoi geometries with 110 voids are generated by deforming a 3D RSA with
initial density ρ0 = 0.7 (Figure 5.7b). The corresponding RSA geometries with the same
porosities as the M-Voronoi and Gyroid are generated by 3D RSA algorithm discussed
in Section 2.2. In order to have good mesh quality, the voids should keep a minimum
distance. This constraint result in uncontrolled number of voids and a more polydisperse
RSA geometry as we go to the lower densities. Consequently, the RSA geometry with a
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Figure 5.7: (a) Gyroid lattices created by the method described in Section 2.6 with
5 × 5 × 5 unit-cells. (b) M-Voronoi with 110 voids obtained by using a RSA geometry
with initial relative density ρ0 = 0.7. (c) Polydisperse RSA geometries with various sphere
sizes. All geometries are created at four different porosities ρ =0.4, 0.3, 0.2 and 0.1, except
RSA that is not realizable at relative density ρ =0.1.

relative density ρ =0.1 is not numerically and experimentally realizable. Therefore, only
M-Voronoi as a random and Gyroid as a periodic geometry can achieve very low densities.

As discussed in Section 5.4, for large strain simulations, Abaqus/Explicit has to be
implemented to solve the numerical problem without encountering convergence issues.
Our study of the mesh element type has shown that brick elements are the best element
type for compression with plasticity. Moreover, by using brick elements with reduced
integration C3D8R, the number of integration points will be reduced from four to one.
There has been a significant reduction in computation time as a result of this modification.
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Figure 5.8: Large strains compression simulations for M-Voronoi, RSA and Gyroid ge-
ometries at three different directions for relative densities (a) ρ =0.42 and (b) ρ =0.33.
The values of stress and strain correspond to their nominal or engineering values.

The three-dimensional mesh in all geometries is created with Gmsh software using the
hexagonal subdivision algorithm. The computation time for a brick element type mesh
with 870 000 nodes (DOF) corresponds to approximately 103 hours when running on
40 cores in parallel. To achieve this, the OVERLAY option in Abaqus/Explicit has been
activated to restore the last increment and enable the computation to continue for several
days with multiple restarts. The matrix phase is considered an elastic-perfectly plastic
material with Young’s modulus of 1000 MPa, Poisson’s ratio of 0.3, and yield stress
of 1 MPa. The choice of this material model has been made to ensure no presence of
the material hardening. Therefore, any observed material hardening would be a direct
consequence of the geometry characteristics.

In order to compare the three geometries, we show in Figures 5.8a,b uni-axial com-
pression simulations for relative densities ρ =0.42, 0.33. All geometries have been tested
in three different directions. The M-Voronoi and RSA geometries represent an isotropic
response at small and large strains. For the Gyroid geometry, although it represents an
isotropic response in three different directions, it is known to have a cubic anisotropy.
Interestingly, the yield stress and large strain plastic response of the M-Voronoi and RSA
geometries are very close and much higher than the Gyroid geometries. This result shows
that materials with random smooth geometries represent an enhanced plastic response
as compared to periodic geometries. For a better understanding, we also include the
deformations of three geometries at three different strain levels, denoted with (1), (2),
and (3) in Figures 5.9 and 5.10. By looking at the locations of the plastic strain equiv-
alent (PEEQ) of the deformed geometries, we observe that the random features of the
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Figure 5.9: Deformations of M-Voronoi, RSA and Gyroid geometries with the relative
density ρ = 0.42 at three different strain levels, denoted with (1), (2) and (3). The legend
indicates the plastic strain equivalent (PEEQ) values. The values of stress and strain
correspond to their nominal or engineering values.
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Figure 5.10: Deformations of M-Voronoi, RSA and Gyroid geometries with the relative
density ρ = 0.33 at three different strain levels, denoted with (1), (2) and (3). The legend
indicates the plastic strain equivalent (PEEQ) values. The values of stress and strain
correspond to their nominal or engineering values.
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Figure 5.11: Large strains compression simulations for M-Voronoi geometries at four
different relative densities ρ =0.42, 0.33, 0.20, and 0.1. The values of stress and strain
correspond to their nominal or engineering values.

M-Voronoi and RSA geometries such as random void size, shape, position, and ligament
thickness, lead to a diffuse distribution of unconnected zones of localized plastic strain
throughout the entire specimens. We note however, that the RSA geometries are not
realizable at low densities and only the M-Voronoi geometry can span the full density
range. In contrast to the random geometries, the Gyroid lattices, being one of the stiffest
periodic geometries, display a periodic localized deformation pattern spanning the cell
rows for both relative densities. This behavior is a consequence of the periodic geom-
etry features. Such responses are also expected in other periodic geometries including
trusses, lattices, and plate-based architected materials. It is also important to note that
the stress-strain curves converge after densification occurs in the geometries.

The M-Voronoi geometries are the easiest realizable geometry among the three studied
geometries. The proposed remeshing technique in Section 5.2, has enabled us to create
high-quality meshes with a less number of elements. As a result, the computation time
for the M-Voronoi geometries is significantly less than for the RSA and Gyroid lattices.
In particular, the large number of voids in the RSA geometries requires a very careful
fine mesh to perfectly capture the smallest voids and this will increase the computation
time. Figure 5.11, represents the stress-strain response of the M-Voronoi geometries at
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four different relative densities ρ = 0.42, 0.33, 0.20, 0.10. In accordance with expectations,
the larger the density, the stiffer the plastic response and the higher the yield stress will
be. A rather remarkable observation is that the hardening of the stress-strain response
decreases with decreasing relative densities. The reason for this can be explained by the
fact that at higher relative densities, the cell walls are able to establish contact earlier
than at lower densities.

5.5 Concluding remarks

In this chapter, we developed the mechanically-grown morphogenesis method to create the
three-dimensional random M-Voronoi geometries. In order to create periodic random 3D
M-Voronoi geometries with straight boundary faces, we generalized the assumed bound-
ary conditions to those of periodic ones. Moreover, the novel remeshing algorithm that
had been proposed for two-dimensional meshes in Section 3.3.1 is developed for arbitrary
three-dimensional orphan meshes. The span of the proposed method and the technical
challenges have also been discussed. With the new remeshing technique, we demonstrated
that it is possible to achieve a full density range of the 3D M-Voronoi geometries. The
mechanical properties of the 3D M-Voronoi geometries have been examined numerically
at large compressive strains by considering the matrix as an elastic-perfectly plastic ma-
terial without hardening. For comparison, we also study the Gyroid and RSA geometries
under the identical conditions and the same porosity as the M-Voronoi geometries. We
observe an enhanced yield stress and plastic flow in the geometries with random topolo-
gies as opposed to the TPMS periodic structures. This behavior is explained by noting
that deformation localizes in geometries with periodic pattern, contrary to the random
geometries which exhibit a rather diffused localization. Nevertheless, achieving very low
densities with random geometry is possible only with M-Voronoi materials. Further stud-
ies are required to compare other random geometries such as Spinodoid ones or 3D Voronoi
tessellation with the M-Voronoi. In addition, the geometries can be examined in other
loading conditions and material properties. We note that the flexibility of the M-Voronoi
method enables us to also create 3D anisotropic M-Voronoi geometries. The study on
such materials is left for in the future.
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5.A Appendix A. Algorithms for remeshing a 3D or-

phan mesh by constructing the geometry

Nomenclature:

• n: total number of nodes in the orphan mesh

• m: total number of elements in the orphan mesh

• h: the number of nodes per element

• r: the number of nodes per element surface

• f : the number of free surfaces

• t: the reference node

• Nn×3: matrix containing the nodes coordinates

• Mm×h: matrix containing the elements information

• Sf×p: matrix containing the nodes of free lines

• B: matrix containing the list of investigated lines
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Algorithm 3 finding the free surfaces of a 3D orphan mesh

1: Initialize the algorithm with number of free surfaces f = 0
2: for p = 1,m do
3: for q = 1, h do
4: ref = [M(p, q), M(p, q + 1), M(p, q + 2) ]
5: for u = 1,m do
6: for v = 1, h do
7: comp = [M(u, v), M(u, v + 1), M(u, v + 2) ]
8: if ref = comp then
9: goto 3

10: else
11: if h=4 then ▷ Linear tetrahedron element
12: S(f, :) = [M(p, q), M(p, q + 1), M(p, q + 2) ]
13: f ← f + 1
14: else if h=10 then ▷ Quadratic tetrahedron element
15: S(f, :) = [M(p, q), M(p, q + 1), M(p, q + 2), midnode12,

midnode23, midnode31 ]
16: f ← f + 1
17: end if
18: end if
19: end for
20: end for
21: end for
22: end for
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Algorithm 4 Fortran algorithm for constructing 3D geometry by the free element sides

1: Initialize the algorithm with number of identified volumes N = 0
2: for i = 1, f do ▷ Searching over all free surfaces
3: Construct the reference surface from three corner nodes S(i, 1), S(i, 2) and S(i, 3)
4: Add three lines of the surface to B
5: Noderef 1= S(i, 1) ▷ Noderef 1 and Noderef 2 are the temporary reference nodes
6: Noderef 2= S(i, 2) ▷ which are in common between two consecutive surfaces.
7: for j = 1, f do
8: w = 0
9: if Noderef 1 and Noderef 2 ∈ S(j, :) then
10: Noderef 3 ∈ S(j, :)
11: w = 1
12: if Noderef 3 and Noderef 1 ∈ B then
13: if Noderef 3 and Noderef 2 ∈ B then
14: Case 3
15: else
16: Case 2
17: end if
18: else if Noderef 3 and Noderef 2 ∈ B then
19: Case 2
20: else
21: Case 1
22: end if
23: if Case 1 then
24: Construct the surface by adding new point Noderef 3 and new lines
25: Noderef 2← Noderef 3
26: Add new two lines of the surface to B
27: else if Case 2 then
28: Construct the new surface by adding one new line
29: Noderef 2← Noderef 3
30: Add new line of the surface to B
31: else if Case 3 then
32: Close the existing surface
33: end if
34: end if
35: end for
36: if w=0 then ▷ The surface loop is closed.
37: N ← N + 1 ▷ A new volume is identified
38: write Surface Loop of all surfaces of the loop
39: write a volume from the Surface Loop
40: goto 2
41: end if
42: end for
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6.1 Concluding remarks

In this work, we study the mechanical response of random topologies with a focus on
porous materials. We assess the behavior of random porous materials at large strain by
numerical simulations and comparing with several random and periodic porous geometries.
We investigate the computer-aided design process of a variety of existing random and
periodic porous topologies including the random sequential adsorption (RSA) algorithm
for ellipsoidal inclusions, standard Voronoi geometries, hexagonal honeycombs and TPMS
geometries. We also propose a versatile mechanically-grown morphogenesis method to
obtain high-to-low density isotropic and anisotropic random porous and more generally
composite materials, called M-Voronoi. The method is based on a nonlinear elastic finite
strain computational strategy. It has been comprehensively developed to generate both 2D
and 3D M-Voronoi geometries in a variety of unit-cell geometry. In both cases, due to large
deformations, remeshing is required on the final deformed mesh for further numerical or
experimental investigations. We developed an algorithm that remeshes a highly deformed
orphan mesh in 2D and 3D by constructing the exact geometry of the deformed mesh. The
proposed algorithm is extremely versatile and general, enabling us to remesh arbitrarily
complex orphan meshes with a variety of properties containing multi-phase or voids. In
addition, it has assisted us in obtaining very large porosities by performing an intermediate
remeshing step either with or without stress field mapping.

The designed geometries have been 3D-printed using a soft polymer called TangoB-
lack material and subsequently have been tested under uni-axial compression. We have
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performed first a mechanical characterization to identify the material parameters of the
TangoBlack. This material shows a rate-dependent and highly viscous response under
relaxation and loading-unloading uni-axial tensile tests. It is then modeled by the rubber
viscoelastic model proposed by Kumar and Lopez-Pamies (2016) and the corresponding
parameters are identified. This material at ultimate stress limits shows a brittle fracture
that can be characterized by a unique failure envelope (Smith, 1963) which is independent
of the test conditions and is characterized by the break stress and strain values. The frac-
ture of the TangoBlack material during the relaxation can also be justified by obtained
failure envelope.

The extruded 2D M-Voronoi geometries have been 3D-printed with TangoBlack with
four different densities: 0.4, 0.3, 0.2, 0.1. For comparison, we have also printed the RSA
and E-Voronoi porous extruded 2D geometries with the same porosities as M-Voronoi,
while keeping the almost same number of voids. In order to achieve sufficient spec-
imen quality (especially at low-densities), we propose an interruption program during
3D-printing which consists of alternate additive manufacturing and interruption time in-
crements. The resulting porous specimens have then been experimentally tested under
in-plane uni-axial compression. In particular, the newly proposed M-Voronoi materials
exhibit a strong hardening behavior under compressive loads as compared to a number of
available voided and random cellular materials such as RSA and E-Voronoi, which tend to
exhibit either peak stress and a plateau or only weak hardening for most of the deforma-
tion process before final densification. This hardening response is mainly a consequence
of three geometrical characteristics: (i) the randomness of the void geometries, (ii) the
non-uniformity of the intervoid ligaments, and (iii) the smooth void geometry reducing
efficiently stress localization. In addition, the randomness of the M-Voronoi geometry
makes these materials less sensitive to imperfections and realization variations. Neverthe-
less, a more detailed study is required along this direction perhaps including additional
loading conditions such as tensile and hydrostatic ones (Tankasala et al., 2017).

The study on the representativity of the M-Voronoi materials shows that at small
strains for almost 30 voids, there is a converged representative response, while in order to
achieve convergence in large strains, at least 200 voids are required (see Figures 4.26 and
4.27). Most of the studies on the RVE size determination and representativity of heteroge-
neous materials are developed for small strains (Tarantino et al., 2019; Dirrenberger et al.,
2014). However, these materials under general loading conditions might be subjected to
large deformations, in which the small strain representative microstructure might not be
converged. Moreover, it is also important to consider loading conditions when determin-
ing the convergence limit. In our study, the large strain representative range is proposed
solely under compression loading. Therefore, further studies with different loading condi-
tions are required to obtain the exact representative range of the geometry. Accordingly,
the results of our study indicate that careful consideration of the deformation scale and
loading conditions is necessary when discussing representativity.

In the next approach, the M-Voronoi morphogenesis method is also applied to three-
dimensional geometries. The heart of the method which is the nonlinear elastic finite
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strain computations remains identical to the 2D M-Voronoi process. However in order to
create the 3D periodic M-Voronoi geometries, we applied periodic boundary conditions,
while keeping the edges straight. The resulting geometry is a periodic cubic unit-cell.
Of course, one can apply Dirichlet uniform boundary conditions to create non-periodic
M-Voronoi geometries with arbitrary unit-cell geometry. The proposed morphogenesis
method in 3D creates 3D smooth polygonal shape inclusions that are observed in many
natural and synthetic porous and composites such as metal foams, magnetorheological
elastomers (MREs), skeletal muscles, etc. Similar to the 2D M-Voronoi, an algorithm is
developed to remesh the extremely deformed 3D mesh, by constructing the geometry of
the orphan mesh. By performing intermediate remeshing steps, this algorithm enables us
to span a full density range from 0 to 1 with 3D M-Voronoi geometries.

Finally, the 3D M-Voronoi materials are numerically studied using a metallic ma-
terial with an elastic-perfectly plastic material model while subjected to uni-axial large
strain compression loading. The M-Voronoi materials show an enhancement in the plastic
response in both the yield stress and the stress plateau as compared to periodic cellu-
lar Gyroid lattices. Nevertheless, their response remains very close to the random RSA
geometries due to their random smooth void shape. Despite this, in contrast to the
M-Voronoi, the RSA geometries are unable to reach low densities (less than 0.2). There-
fore, in order to obtain an enhanced plastic response, one needs to use the M-Voronoi
geometries when low densities are required.

In summary, the random features of the proposed M-Voronoi geometries enhance the
mechanical response both in hyperelastic and elastoplastic materials i.e. polymers and
metals. These features consist of the random smooth shape, position, size, and orientation
of the inclusions as well as the random ligament thickness. The M-Voronoi geometries are
also able to span the full density range, which is a great advantage over the existing random
RSA geometries with a limited density range. The high randomness of the M-Voronoi ma-
terials enables them to have a representative response (given a sufficient number of voids)
in both small and large strains. Moreover, the M-Voronoi method is capable to create both
isotropic and anisotropic materials depending on the applied deformations. Contrary to
this, anisotropic geometries cannot be obtained by void-growth methods that use internal
gas pressures in the voids (Dabo et al., 2019; Bargmann et al., 2018). Remarkably, the
anisotropy in M-Voronoi materials is tunable by the designed parameters. Interestingly,
the induced anisotropy can stiffen up the material response in small strains, while in large
strains the isotropic M-Voronoi remains the stiffest microstructure. This is in contrast
to the conventional view that anisotropy enhances material response. Furthermore, the
results are in good agreement with those observed when comparing the M-Voronoi with
periodic lattices such as hexagons, which are isotropic in small strain regimes and highly
anisotropic (thus softer) in large deformation regimes. It is important to note that since
M-Voronoi materials have inherent randomness, they are less sensitive to imperfections,
whereas periodic geometries are not only intrinsically unstable, but they are also highly
vulnerable to any imperfections that may occur during the manufacturing process. As
a result, the random M-Voronoi material is the most resilient material under both small
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and large strains, exhibiting an isotropic representative response, and being less sensitive
to imperfections.

6.2 Perspectives

The versatility and generality of the M-Voronoi morphogenesis method, which is numerical
and is based on solving a nonlinear elastic problem subjected to only Dirichlet boundary
conditions, and unlike more classical periodic cells, allows to grow uniformly such M-
Voronoi geometries in arbitrary shaped domains or as called in this study, finite volume
elements (FVEs) (e.g. triangles, circles, trapezoids, rectangles, etc.). This allows for their
easy subsequent assembly into complex macroscopic geometries. A potential implication
of such processes is the future use of well-known (Allaire, 1992) as well as more recent
optimization techniques (Wang and Sigmund, 2021) to design lightweight structures that
behave optimally for a large number of loading states, since the proposed materials can
vary from isotropic to anisotropic at different regions in these structures.

On a different note, one could apply more complex non-shape-preserving Dirichlet
boundary conditions leading a non-trivial final domain shape. Such a process is beyond
the scope of the present study, however, the same design idea presented here is directly
applicable to such a case. Note, however, that such non-uniform Dirichlet boundary
conditions may lead to boundary inter-penetrations as well as non-uniform inclusion/void
concentrations throughout the domain. Yet, it may allow to reach a pre-designed domain
shape and thus deserves further study in the future.

The method proposed here is directly applicable to any type of composite which may
be created by simply replacing at the final stage the void phase with any inclusion(s) type
that may be required (see Figure 3.12 as an example of M-Voronoi materials). A compos-
ite obtained in this way can be used either as a model for existing composites or for the
design of new composite materials with random particles and tunable properties. In the
latter case, 3D-printing enables us to manufacture the designed composite materials with
high precision. Our first attempt to visualize such a composite was made by 3D-printing
a two-phase composite RSA geometry with TangoBlack Plus matrix and VeroWhite Plus
spherical inclusions using a multi-material Stratasys 3D printer (Figure 6.1). In this com-
posite, the volume fraction of the inclusions corresponds to 0.25, which has a significant
impact on the stiffness of the composite. Further investigations are required for such
composite materials, especially the study on the debonding of the matrix and inclusions
under tensile loading. It is also important to note that as a result of the multi-material
3D-printing, the properties of the constituents may differ from those of the constituents
printed individually. Such effects also require more studies.

The designed random geometries may also be used to model the existing composites
with random particles. Figures 1.2a,d,g,h represent such composites. For example in
the study of Spyrou et al. (2019), they employed 2D random E-Voronoi geometries to
model the human muscles consisting of two phases: the fibers and the extra-cellular ma-
trix (see Figure 1.2g). Such approaches can be further improved by using the M-Voronoi
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VeroWhite plusTangoBlack plus

Figure 6.1: A 3D-printed two-phase composite with random RSA geometry consisting
of TangoBlack plus matrix and VeroWhite plus spherical inclusions.

geometries which resemble more the real microstructure and contain all random features.
Furthermore, in the studies of magnetorheological elastomers (MREs), random composite
geometries (such as RSA) are employed to model the MREs (Mukherjee et al., 2021).
These materials are essentially two-phase composites with metallic magneto-active parti-
cles randomly distributed in a non-magnetic and mechanically soft elastomer matrix (see
Figures 1.2d,h). Figure 6.2 represents an example of the hard MREs 1 model created with
RSA random geometries by considering the perfectly rounded shape of the particles. Fig-
ure 6.2a shows the magnetization in the pre-magnetized hard magnetic particles dispersed
in a passive soft matrix. To study the variation of the magnetization and other mechanical
or coupled properties of the magnetized material, mechanical tensile loading is applied.
Figure 6.2b shows the change in the magnetization while Figure 6.2c represents the mag-
netic induction field and the interaction between the magnetic particles. Generally, the
manufactured MREs contain a moderate range of the magnetic particles volume fraction
up to approximately 30%. In this range of volume fraction, the RSA model is capable of
dealing with the randomness of the particles (see Figures 1.2d,h) and predicts very well
the response of the MREs. Recently, new 3D-printing techniques have been developed to
3D-print magnetoactive polymers, which by definition can be referred to as 4D-printing
(Falahati et al., 2020; Brusa da Costa Linn et al., 2022). With these techniques, we are
able to design and manufacture active composites or 3D surface patterns (Moreno-Mateos
et al., 2022) with a controlled regular or irregular morphology. As a result, one can take
a multi-scale design approach to embed MREs with random geometries as particles in

1Depending on the magnetic coercivity of the particle phase, the MREs are classified into two cate-
gories: hard and soft MREs. The hard MREs are capable of being permanently magnetized, while the
soft MREs have a small coercivity and are not able to preserve the magnetization.
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m2(T) m2(T) b2(T)

a b c

Figure 6.2: An example of the application of random geometries in coupled magneto-
mechanical problems. The geometry contains 500 particles with a 0.4 volume fraction
and is proposed to model hard magnetorheological elastomers (h-MREs). (a) The pre-
magnetized microstructure. m2 denotes the magnetization in the vertical direction. (b)
The deformation of the permanently magnetized microstructure under mechanical tensile
loading. (c) The magnetic induction field b2 in the deformed microstructure. The contours
illustrate particle interactions.

magnetically inactive polymers as a matrix. If a large volume fraction of MREs is re-
quired, a random M-Voronoi geometry can be used to design a random active particulate
composite. We note here again that in contrast to the RSA, M-Voronoi geometries are
capable of spanning a full density range and therefore they can be used to model materials
with large volume fractions.

In the future, a machine learning inverse approach (Kumar et al., 2020) could poten-
tially be extended to the nonlinear response to obtain a targeted family of M-Voronoi and
RSA materials with “tunable” an-isotropy, since the latter allow for a limitless number of
geometries that may be achieved via complex applied mechanical loads. We also note at
this point that the void growth mechanism via incompressible nonlinear elasticity may be
directly applied to porous solids with or without connectivity and with moderate relative
density in order to reach much lower relative densities (such as the spinodal geometries
in Portela et al. (2020) and Zerhouni et al. (2021)).

CHAPTER 6. CONCLUSION
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ing of closed-cell foam microstructures for structure-properties relationships. European
Journal of Mechanics-A/Solids 75, 128–141.

BIBLIOGRAPHY

https://doi.org/10.1016/j.pmatsci.2018.02.003
https://doi.org/10.1016/j.mser.2021.100606
https://doi.org/10.1016/j.mechmat.2020.103368
https://doi.org/10.1016/j.jmps.2018.08.022
https://doi.org/10.1016/j.cad.2006.04.012
https://doi.org/10.1016/j.jmps.2020.103976
https://doi.org/10.1016/j.jmps.2020.103976
https://doi.org/10.1016/j.ijsolstr.2016.02.016
https://doi.org/10.1016/j.ijsolstr.2016.02.016
https://doi.org/10.1103/PhysRevA.38.522
https://doi.org/10.1073/pnas.0812493106
https://doi.org/10.1073/pnas.0812493106
https://doi.org/10.3390/polym14091684
https://doi.org/10.1021/nl803174p
https://doi.org/10.1016/j.euromechsol.2019.01.016
https://doi.org/10.1016/j.euromechsol.2019.01.016


157

Danas, K., 2017. Effective response of classical, auxetic and chiral magnetoelastic ma-
terials by use of a new variational principle. Journal of the Mechanics and Physics of
Solids 105, 25–53.

De Angelo, M., Spagnuolo, M., D’annibale, F., Pfaff, A., Hoschke, K., Misra, A., Dupuy,
C., Peyre, P., Dirrenberger, J., Pawlikowski, M., 2019. The macroscopic behavior of
pantographic sheets depends mainly on their microstructure: experimental evidence
and qualitative analysis of damage in metallic specimens. Continuum Mechanics and
Thermodynamics 31, 1181–1203.

Deshpande, V., Fleck, N., 2000. Isotropic constitutive models for metallic foams. Journal
of the Mechanics and Physics of Solids 48, 1253–1283.

Deshpande, V., Fleck, N., Ashby, M., 2001. Effective properties of the octet-truss lattice
material. Journal of the Mechanics and Physics of Solids 49, 1747–1769.

Dirrenberger, J., Forest, S., Jeulin, D., 2013. Effective elastic properties of auxetic mi-
crostructures: anisotropy and structural applications. International Journal of Mechan-
ics and Materials in Design 9, 21–33.

Dirrenberger, J., Forest, S., Jeulin, D., 2014. Towards gigantic rve sizes for 3d stochastic
fibrous networks. International Journal of Solids and Structures 51, 359–376.

Dong, L., Deshpande, V., Wadley, H., 2015. Mechanical response of ti–6al–4v octet-truss
lattice structures. International Journal of Solids and Structures 60, 107–124.

Faisal, T.R., Hristozov, N., Rey, A.D., Western, T.L., Pasini, D., 2012. Experimental
determination of philodendron melinonii and arabidopsis thaliana tissue microstructure
and geometric modeling via finite-edge centroidal voronoi tessellation. Physical Review
E 86, 031921.

Falahati, M., Ahmadvand, P., Safaee, S., Chang, Y.C., Lyu, Z., Chen, R., Li, L., Lin, Y.,
2020. Smart polymers and nanocomposites for 3d and 4d printing. Materials today 40,
215–245.

Feder, J., 1980. Random sequential adsorption. Journal of Theoretical Biology 87, 237–
254.

Ferry, J.D., 1980. Viscoelastic properties of polymers. John Wiley & Sons.

Francfort, G., Murat, F., 1986. Homogenization and optimal bounds in linear elasticity.
Archive for Rational mechanics and Analysis 94, 307–334.
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Schröder-Turk, G.E., Wickham, S., Averdunk, H., Brink, F., Gerald, J.F., Poladian, L.,
Large, M., Hyde, S., 2011. The chiral structure of porous chitin within the wing-scales
of callophrys rubi. Journal of structural biology 174, 290–295.

Schwarz, H.A., 1972. Gesammelte mathematische abhandlungen. volume 260. American
Mathematical Soc.

BIBLIOGRAPHY

https://doi.org/10.1016/j.ijsolstr.2007.03.019
https://doi.org/10.1016/j.ijsolstr.2007.03.019
https://doi.org/10.1073/pnas.1916817117
https://doi.org/10.1016/j.scriptamat.2020.07.011
https://doi.org/10.1016/j.scriptamat.2020.07.011
https://doi.org/10.1006/jcis.1996.4675
https://doi.org/10.1006/jcis.1996.4675
https://doi.org/10.1016/S1359-6454(00)00314-1
https://doi.org/10.1103/PhysRevE.51.4141
https://doi.org/10.1016/j.ijsolstr.2016.10.004
https://doi.org/10.1260/147807709789621266
https://doi.org/10.1260/147807709789621266
https://doi.org/10.1016/S1359-6454(01)00294-4
https://doi.org/10.1016/S1359-6454(01)00294-4
https://doi.org/10.1146/annurev-matsci-070115-031624
https://doi.org/10.1146/annurev-matsci-070115-031624
https://doi.org/10.1126/science.1211649
https://ntrs.nasa.gov/citations/19700020472
https://ntrs.nasa.gov/citations/19700020472
https://doi.org/10.1016/j.jsb.2011.01.004
https://bookstore.ams.org/view?ProductCode=CHEL/260
https://bookstore.ams.org/view?ProductCode=CHEL/260


163

Segurado, J., Llorca, J., 2002. A numerical approximation to the elastic properties of
sphere-reinforced composites. Journal of the Mechanics and Physics of Solids 50.

Simone, A., Gibson, L., 1998. Effects of solid distribution on the stiffness and strength of
metallic foams. Acta Materialia 46, 2139–2150.

Singamaneni, S., Tsukruk, V.V., 2010. Buckling instabilities in periodic composite poly-
meric materials. Soft Matter 6, 5681–5692.

Smith, M., 2009. ABAQUS/Standard User’s Manual, Version 6.9. Dassault Systèmes
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Titre : Génération assistée par ordinateur, impression 3D et étude expérimentale de matériaux poreux et composites
Mots clés : Matériaux architecturés, Matériaux poreux, Croissance de cavités, Fabrication additive, Expériences de
déformation finie, Homogénéisation
Résumé : Cette étude porte sur la conception assistée
par ordinateur, l’impression 3D, la simulation numérique à
grandes transformations et la caractérisation expérimentale
de géométries aléatoires, en mettant l’accent sur les
matériaux poreux. En particulier, nous cherchons à quan-
tifier l’effet des architectures aléatoires sur la réponse
mécanique en grandes transformations de géométries po-
reuses aléatoires et périodiques bien choisies. Nous pro-
posons une nouvelle famille de matériaux poreux de
type Voronoı̈ appelés M-Voronoı̈ contenant de pores de
taille hétérogène et de ligaments d’épaisseur variable. Ces
matériaux peuvent atteindre des densités relatives très
faibles, et sont obtenus à l’aide de simulations numériques
par un processus de croissance de pores dans une ma-
trice élastique non linéaire et à grandes transformations. La
méthode M-Voronoı̈ proposée est versatile et peut être ap-
pliquée pour créer des géométries aléatoires bidimension-
nelles et tridimensionnelles avec (an-)isotropie contrôlée.
Dans la suite de l’étude, nous nous sommes intéressés à
la caractérisation expérimentale des matériaux poreux ainsi
obtenus. Ceux-ci ont été fabriqués par impression 3D po-
lymère via la technologie PolyJet en utilisant une résine,
appelée TangoBlack, polymer hautement visqueuse, dont
la loi de comportement a été quantifiée à l’aide des es-
sais mécaniques et caractérisé par un modèle viscoélastique

non linéaire formulé pour les élastomères isotropes incom-
pressibles. Par la suite, des essais de compression uni-
axiales ont été menés pour étudier la réponse mécanique
de structures poreuses 3D-imprimées en Tangoblack. Ceux-
ci ont montrés que, dans le régime de grandes trans-
formations les géométries M-Voronoı̈ ont des propriétés
mécaniques améliorées du fait de leur architecture po-
reuse. Notamment, leur réponse sous compression durcie
bien avant la densification et devient similaire à celle de
géométries Voronoı̈ aléatoires érodées à de faibles den-
sités. Dans la dernière partie de cette étude, nous avons
étudié à l’aide de simulations numériques les propriétés
mécaniques des géométries poreuses aléatoires tridimen-
sionnelles constituées de M-Voronoı̈, de matériaux poreux
polydispersés avec des vides sphériques, et des géométries
classiques de type TPMS. Les simulations ont été menées
à grandes transformations sous une charge de compression
tout en considérant la matrice comme un matériau élastique-
parfaitement plastique sans durcissement. Ces résultats
ont montré que l’écoulement plastique accrue dans les
géométries à topologies aléatoires par rapport aux structures
périodiques TPMS. Ce comportement est expliqué en obser-
vant que la déformation se localise dans les géométries avec
motif périodique, contrairement aux géométries aléatoires
qui présentent une localisation plutôt diffusée.

Title : Computer-aided generation, 3D-printing and experimental study of porous and composite materials
Keywords : Architected materials, Porous materials, Void growth, Additive manufacturing, Finite strain experiments, Homo-
genization
Abstract : The present study deals with computer-aided de-
sign, 3D-printing, large strain numerical simulation, and ex-
perimental testing of random geometries with focus on po-
rous materials. In particular, we attempt to assess the ef-
fect of random porous features on the mechanical response
at large strain by comparing the response of well-chosen
random and periodic porous geometries. We propose a no-
vel computer-aided design strategy to obtain a new type of
random Voronoi-type porous materials called M-Voronoi with
smooth void shapes and variable intervoid ligament sizes that
can reach very low relative densities. This is achieved via a
numerical, large strain, nonlinear elastic, void growth mecha-
nical process. The proposed M-Voronoi method is general
and can be applied to create both two and three-dimensional
random geometries and allows the formation of isotropic or
anisotropic materials. In the next part of the study, we fabri-
cate the designed porous materials with a polymer 3D-printer
via PolyJet technology and a UV-curable resin called Tango-
Black which is a highly viscous soft polymer with brittle frac-
ture. Meanwhile, the viscous behavior of TangoBlack is stu-
died under uniaxial tensile, loading-unloading, and relaxation
tests on a new proposed specimen geometry and is subse-
quently characterized by a nonlinear rubber viscoelastic mo-
del for incompressible isotropic elastomers. We then use this

material to 3D-print the designed two-dimensional porous
materials with square representative geometries and isotro-
pic/anisotropic features in terms of void size and realization.
The mechanical response of the fabricated porous materials
is experimentally investigated by testing them under uniaxial
large strain compression and low strain rates. We show that
the randomness of the proposed M-Voronoi geometries and
their non-uniform intervoid ligament size leads to enhanced
mechanical properties at large compressive strains with no
apparent peak-stress and strong hardening well before den-
sification, while they become very close to random eroded
Voronoi geometries at low densities. In the last part of this
study, we investigate numerically the mechanical properties
of the three-dimensional random porous geometries consis-
ting of M-Voronoi, polydisperse porous materials with sphe-
rical voids, and classical TPMS-like geometries. The simula-
tions are performed at large strains under compression loa-
ding while considering the matrix an elastic-perfectly plas-
tic material without hardening. We observe enhanced plas-
tic flow stress in the geometries with random topologies as
opposed to the TPMS periodic structures. This behavior is
explained by noting that deformation localizes in geometries
with a periodic pattern, contrary to the random geometries
which exhibit a rather diffused localization.
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