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Abstract

The vanilla bandit model assumes that the rewards are independent and identically distributed.
However, this assumption is restrictive: it prevents from modeling evolving behaviors that are
common in real-world applications. In the medical domain, the efficiency of a treatment is likely
to diminish over time. The opening rate of news articles fades for aging news. Fashion trends and
consumers preferences evolve rapidly. Any recommender system ignoring the non-stationarity
of the distributions of rewards is likely to make suboptimal choices. The objective of this
thesis is the study of stochastic bandit algorithms in non-stationary environments. There are
several ways to include non-stationarity into bandit models. We first study a variant of the
best arm identification problem where the learner seeks to identify the set of arms that are
better than a control arm in the presence of subpopulations. Those subpopulations can encode a
temporal information (e.g. day of the week) and properly using them makes it possible to include
non-stationarity in the pure exploration setting. We characterize the complexity of this learning
task and propose optimal algorithms for solving it. We then propose theoretically grounded
algorithms for minimizing the regret and discuss the exploration-exploitation trade-off the learner
is facing in dynamically changing environments. Our findings concern three different settings: the
well-known multi-armed bandit, the more general linear bandit but also generalized linear bandit.
For each of those settings, we identify the technical challenges brought by non-stationarity.

Keywords: Sequential learning, bandit algorithms, non-stationary environments, regret mini-
mization.
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Resumé

La version classique du modele de bandit suppose que les distributions de probabilité des
récompenses sont indépendantes et identiquement distribuées. Pour autant, cette hypothese est
restrictive dans de nombreux cas, puisqu’elle ne permet pas de prendre en compte d’éventuels
changements de comportements. Dans le domaine médical, 'efficacité d’un traitement peut
diminuer au cours du temps. Pour un site internet d’information en temps réel, le taux de
consultation d'une page diminue a raison de sa date d’ancienneté. Les tendances de mode et les
préférences des consommateurs évoluent rapidement. Un algorithme de recommendation ignorant
ces formes de non-stationarité est alors susceptible de faire des suggestions sous-optimales. Ainsi,
I’objet de cette these est ’étude des algorithmes de bandits stochastiques dans des environnements
non-stationnaires. La non-stationarité peut étre incorporée de plusieurs manieres dans les modeles
de bandits. Dans un premier temps, nous étudions une variante du probléme d’identification du
meilleur bras. Cette variante correspond a un systéeme d’apprentissage qui cherche a identifier
I’ensemble des options qui sont meilleures qu’un bras de controle, et ce en présence de sous-
populations. Entre autres, 'utilisation de sous-populations permet la modélisation de 1’évolution
temporelle des différents bras. Nous proposons ensuite des algorithmes avec des garanties
théorique fortes pour la minimisation du regret et étudions le compromis exploration-exploitation
pour de tels environnements. Nos recherches portent sur trois modeles différents: le bandit
classique multi-bras, le bandit linéaire ou encore le bandit linéaire généralisé. Nous examinons les
spécificités de chacun de ces trois modeles, ainsi que les défis techniques liés a la non-stationarité.

Mots clés : Apprentissage séquentiel, algorithmes de bandits, environnements non stationnaires,
minimisation du regret.
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Contributions and Thesis Outline

The organization of this thesis is the following:

Chapter 1 is an introduction to the settings that will be considered in this thesis and an
overview of the different contributions. The stochastic multi-armed bandit model is first discussed
with known upper and lower-bounds for quantifying the regret. Understanding this setting is
useful for Chapter 3. We then describe the best arm identification task which is the starting
point for Chapter 2. After that, we extend the multi-armed bandit framework and present the
linear bandit model where contextual information can be used. Linear bandits are the point of
departure for Chapter 4. Finally, in Chapters 5 and 6, we consider generalized linear bandits
that consider richer reward models. In all of those settings, we present the most common forms
of non-stationarity and how they impact the learning.

Chapter 2 presents our contribution to a pure exploration task where the objective is to identify
all the arms that are better than a control arm in the presence of subpopulations (ABC-S). We
discuss how the complexity of the ABC-S problem varies with the level of interaction with the
subpopulations. We design strategies that are asymptotically optimal in the following sense: if 75
is the first time when the strategy is able to output the correct answer with probability at least
1 — 9, then E[7s] grows linearly with log(1/9) at the exact optimal rate. This rate is identified
in three different settings: (1) when the experimenter does not observe the subpopulation
information, (2) when the subpopulation of each sample is observed but not chosen, and (3)
when the experimenter can select the subpopulation from which each response is sampled.

Chapter 3 first describes a non-parametric and asymptotically optimal algorithm LB-SDA
based on subsampling for the vanilla bandit model. Starting from this chapter, the objective is
to maximize the expected sum of rewards the agent collects while interacting with the bandits.
In this chapter, we present a new technique for using a limited memory for the observations
of each arm. We prove that storing Q((log T')?) observations instead of T' is enough to ensure
asymptotic optimality in stationary environments. For non-stationary environments, we propose
SW-LB-SDA, an adaptation of LB-SDA where subsampling is allowed only within a sliding
window. We establish the minimax optimality of the approach and obtain guarantees in more
general non-stationary settings where no existing algorithms were previously analyzed.

Chapter 4 gathers new results for stochastic linear bandits, a setting where the rewards
follow a non-stationary linear regression model. In those environments, the unknown regression
parameter is allowed to vary in time. We propose D-LinUCB a novel optimistic algorithm
based on discounted linear regression where exponential weights are used to smoothly forget the
past. We study the deviations of the sequentially weighted least-squares estimator under generic

xi



xii

assumption, and we provide theoretical guarantees for D-LinUCB in both slowly-varying and
abruptly changing environments.

Chapter 5 considers a generalization of the stochastic linear bandit known as generalized
linear bandit. In this setting, a layer of non-linearity is added on top of the linear regression
model. In abruptly changing environments, we obtain novel confidence-based algorithm for
the maximum-likelihood estimator with forgetting that better captures the non-linearity of the
environment. We propose SC-D-GLUCB and obtain improved regret guarantees in abruptly
changing environments.

Chapter 6 also considers generalized linear bandits but in different non-stationary environ-
ments. More precisely, we consider drifting environments where the level of non-stationarity is
characterized by a general metric known as the variation budget. We uncover important mistakes
in existing analyses for generalized linear bandits in this setting and we propose BVD-GLM-UCB
the first algorithm with regret guarantees in those specific non-stationary environments.

Publications

The contributions from this thesis are the results of the work done under the supervision of
my two PhD advisors Olivier Cappé and Aurélien Garivier, but also with other PhD students:
Louis Faury and Dorian Baudry, and other researchers: Claire Vernade, Marc Abeille, Wouter
M. Koolen, Clément Calauzenes, Christina Katsimerou.
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2 1.1. Context of the Thesis

1.1 Context of the Thesis

1.1.1 General Overview

In the past twenty years, we have seen the rise of Internet services such as online retailing,
online advertising, video streaming, social networks. In this context, being able to recommend
the most interesting products among a tremendous number of possibilities for a given customer
is a crucial matter.

Multi-armed bandit algorithms have become a go-to paradigm for handling the “explore-
exploit” dilemma for sequential learning tasks under uncertainty: after interacting with
some users, the learning system needs to decide whether it commits to the seemingly best
performing option (exploitation) or continues exploring for discovering potentially better can-
didates (exploration). In its vanilla formulation, the stochastic multi-armed bandit assumes
that several unknown probability distributions are available. This is a partial information
setting where the learner repeatedly picks an action among the different alternatives and only
observes the reward associated with his actions. By interacting with the environment, the
learner aims at maximizing the expected sum of rewards or at identifying the best performing
arm. He needs to sequentially adapt his decision strategy in light of the information gained.
Multi-armed bandits have been succesfully used for different applications, the most notable
of which being Monte-Carlo Tree Search [Kocsis and Szepesvari, 2006a, Munos, 2014] and the
success of AlphaGo [Silver et al., 2016]. In some cases, additional information is available
to the learner such as the characteristics of the users and features describing the available
items. In this scenario, contextual bandits offer an efficient solution for leveraging this addi-
tional data. Bandit algorithms have been successfully applied to various domains including
recommender systems [Li et al., 2010, Bouneffouf et al., 2012], for displaying advertisements
[Wang et al., 2017], for online learning to rank widgets [Radlinski et al., 2008], for auction de-
signs [Nguyen, 2020, Achddou et al., 2021] and for A/B testing [Kaufmann et al., 2014].

Traditional machine learning methods start by collecting some data and use all available
information to train a model. When facing unseen data, the algorithm will predict an outcome
based on patterns learned from the training samples. The story is different for bandit algorithms:
instead of accumulating data before making any prediction, the learning process is done in
an online fashion. In some cases, accumulating data is costly and the learning system needs
statistical guarantees as soon as possible. This is typically the case in [Durand et al., 2018] where
an allocation strategy for treating mouse skin cancer is proposed. In this example, the learner
cannot wait to have 1000 individuals before selecting a reasonable treatment.

However, whether the learning is sequential or not, an algorithm will be able to make accurate
predictions on future data only if this data shares similarity with previously collected samples.
When the efficiency of medical treatment diminishes with time, any algorithm assuming stationary
data will make suboptimal decisions. Similarly, a recommender system that fails to recognize
that users have ever-changing preferences is likely to propose irrelevant content.

Bandit algorithms are now used for an ever growing number of tasks where non-stationarity
is an important aspect (e.g news recommendations, recommender systems). In order to design
successful sequential learning algorithms for those applications, there is a need for a better
understanding of bandits in non-stationary environments. This comes with new challenges
that need to be solved: (1) the design of algorithms that learn sequentially with only partial
feedback in uncertain and dynamically evolving environments. (2) a proper balance between
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the exploration and exploitation in those more complicated environments. This brings us to the
central question of this thesis:

How can one design bandit algorithms for non-stationary environments with strong theoretical
guarantees and with an emphasis on their practical applicability?

Throughout the thesis, we consider two different settings.

e A variant of the best arm identification setting (Chapter 2) where for a given level of risk §,
the learner tries to identify a set of arms satisfying specific constraints as fast as possible,
while guaranteeing that the output set matches the true one with high probability.

e A reward mazximization setting (Chapter 4-6) where the learner aims at maximizing his
expected sum of rewards obtained through the interaction with the bandit.

For both settings, we explain how to deal with non-stationarity while preserving strong theoretical
guarantees.

1.1.2 Motivating Examples
Let us introduce a few examples motivating and explaining the framework of our contributions.

E-commerce company. Pauline is an engineer in a large e-commerce company. She has
millions of users coming to her website everyday and she is looking for the perfect webpage for a
given category of product. She already has a webpage called control into production and she
is testing different options (called alternative A and alternative B) to see if she should deploy
some of them in addition to the existing one. She is willing to A/B test the different options, i.e.
to randomly allocate some proportion of the traffic to the different versions of the webpage to
compare their efficiency. Interestingly, she has discovered with the control version that depending
on the time of the day, the opening rate of the product differs significantly. Along with the
product team, they are wondering if among the different options some would perform better
than the control version for some parts of the day. Assuming that the environment is stationary,
any A/B test that randomly assigns users to the different versions will converge to the overall
best performing version. From the marketing team, Pauline knows that users logging during the
night have a specific behavior and are more likely to buy the product she is trying to sell but
represent only 1% of the overall traffic. For those users, the control version has little success
but they have empirical evidence that alternative A performs well. In this example, assuming
a stationary environment, Pauline might miss the opportunity to push the alternative A into
production and to satisfy the users logging during the night.

In Chapter 2, we propose a model that includes non-stationarity and where users from
different periods of the days can be treated differently. More precisely, the model we develop
has the flexibility to value differently the users from different subpopulations. Based on this
model, depending how the E-commerce company values the users logging during the night,
Pauline will be able to discover that alternative A is worth deploying.

Coin-game. Let us assume that Clément is playing the following coin game: three coins are
placed in front of him with different probabilities of giving a head when tossed. Clément has
a total of 100 tosses. His score will be the total number of heads he will obtain over the 100
tosses. Clément is familiar with bandit algorithms and knows that this is typically a game where
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a bandit algorithm would offer a solid policy for selecting the coin that should be flipped at
each round. Clément’s friend Arnaud finds the game boring and wants to further complicate
it. He proposes the following alternative: during the game Arnaud will be able to exchange
the three coins in front of Clément without notifying him. Clément ignores when the coins will
be exchanged but knows that this will happen only once. Clément is thinking out loud: “How
should I balance exploration and exploitation in this new game? I want to keep track of the best
coin even after Arnaud messes things up.”

In Chapter 3, we propose to help Clément and design asymptotically optimal policies in any
abruptly changing environment for the stochastic multi-armed bandit problem. Clément is
right about one thing, there is a need to properly balance exploration and exploitation and
we propose an efficient algorithm for doing this.

Mosquitoes repellent. This time let us step into the shoes of a producer of mosquitoes
repellents. Depending on external factors such as the country (which impacts the species of
mosquitoes we encounter), characteristics of users (tolerant or not to a specific rnolecule), we want
to propose an effective repellent. For a given user with fixed characteristics if the environment is
stationary, the best repellent will remain the same. Yet, mosquitoes can become more resistant
to a repellent which progressively leads to an ineffective product. Adding a non-stationary
component to the problem will allow the producer to adapt to more resistant mosquitoes and to
keep offering effective treatments.

In Chapters 4 to 6, we propose contextual bandit algorithms that leverage external in-
formation while taking into account potential non-stationarity in the learning task. We
use forgetting strategies, that estimate the different parameters using the most recent
observations only. By properly calibrating the amount of observations that are kept, we
expect being able to offer efficient repellents even if the tolerance of the mosquitoes evolves
over time.

1.2 Multi-Armed Bandit

In this section, we present the multi-armed bandit model and the two settings we consider in
this thesis: the best arm identification task that will be the starting point for Chapter 2 and the
regret minimization setting that will be the object of the following chapters. In each case, we
specify what we call an optimal algorithm, present the best guarantees any optimal algorithm
should be able to reach and give a brief overview of existing methods.

1.2.1 Presentation of the Model

A stochastic multi-armed bandit is characterized by K unknown probability distributions
(v1,...,vK) usually called “arms”. The learner interacts sequentially with an environment (the
K arms from the bandit) by selecting an action (an arm) at each round and receives the
associated reward. At time ¢ when selecting an action A; € {1,..., K}, a reward X; drawn
from the distribution v4, is observed. The term stochastic refers to the assumption on how
the environment generates rewards, i.e an independent reward sampled from the associated
probability distribution. In a full information setting, after selecting action A; € {1,..., K} the
learner observes the K rewards he would have obtained from all the arms. On the contrary, the
bandit feedback is a partial information setting where only the reward associated to the
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selected action A, is observed. Naturally, this partial information setting makes the learning
more complicated. A bandit algorithm or policy consists in an allocation strategy for selecting
the action A; that is played at the different rounds.

This model was first studied in [Thompson, 1933] for clinical trials. At each time step, a
patient is coming and the doctor can choose between K available treatments. Each of these
treatments a € {1,..., K} can heal a patient with a probability p,. When proposing the
treatment A; to a patient ¢, the doctor observes the health of this patient X;. There is a clear
tension for the doctor between focusing on seemingly well performing treatments and trying the
other ones for making sure that they are not better. This exploration-exploitation trade-off is
central in bandits. Quite far from medicine, the denomination “bandit” refers to a slot machine
that is popular in casino.

The amount of information available to the learner at time ¢ can be summarized with
Fi—1 the o-algebra generated by the actions and the rewards collected up to round t, i.e.
Fi1=0(A1,Xq,..., A1, Xs—1). We assume that the action A; selected by a bandit algorithm
is F;_1-measurable, i.e the action can be selected based on past information only. Of course, the
different probability distributions are unknown to the learner and an efficient policy will have to
estimate the quantities of interest depending on the learning objective.

In the following, we present two different learning objectives: the regret minimization
framework where the learner wants to maximize his expected sum of rewards, explaining the
analogy with slot machines. We also consider pure exploration tasks where there is no cost for
exploring the different options.

1.2.2 Regret Minimization

In the regret minimization setting, the learner seeks to maximize his expected sum of rewards.
Let us denote py := E[vg| the mean of the arm k. If the environment was perfectly known to the
learner (i.e. the different probability distributions were known) only the arm k* with the highest
mean, denoted p* := argmaxycy . g3tk would be pulled. The best expected cumulative reward
one can expect when playing for T rounds is then T' x p*. The expected regret (usually only
called regret for simplicity) quantifies how close the learner can get to this oracle when following
a given policy for selecting the actions to play.

Definition 1.1. For a policy 7, a bandit model v = (v1, ..., vk) and a T rounds interaction
with the environment, the regret is defined as

T
R, (T,7) :=Tu* —E, [Z Xt] .
t=1

We call sub-optimal an arm whose mean is strictly smaller than the highest mean p*.
Interestingly, the regret can be related to the number of times the different sub-optimal arms
have been pulled. Denoting N (T) = S.L_, 1(A; = k), the number of pulls of arm k up to time
T, the regret can be rewritten as:

K
Ru(T,m) = (1 — i B [Ny (T)] (L1)

k=1
This equation features a key quantity Ay := pu* — ug called gap that represents how far on
average a reward from arm k will be, compared to a reward from the optimal arm. Ay is strictly
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positive for any suboptimal arm. The exploration-exploitation trade-off previously mentioned
can already be understood from Equation (1.1). For obtaining a small regret, there is a need to
identify the arms with small gaps and to pull them most of the time. The ideal scenario being a
strategy that only selects the arm k* and would not suffer any regret. Yet, the only way to gain
information on arm k is to pull it, hence augmenting Nj and the regret. A trade-off has to be
found between gaining more information about an arm to detect that its gap is smaller than
previously thought, or focusing on the arm for which the estimated gap is the smallest.

Environment Class. A common assumption is that the K arms come from the same family
of distributions that we call environment class and denote £. For example, we call a Bernoulli
bandit an instance for which vq, ..., vk are Bernoulli distributions. In Chapter 2 and Chapter 3,
we consider the more general class of exponential family bandit models where any bandit instance
is of the form v = (vy,,...,vp,), where 6, € © for all k and the arms belong to the same
one-parameter exponential family:

dvg
P {(yg)g S = explba b(e))} . (12)
Here, £ is a reference measure on R and b is the log-partition function that takes input in ©
and values in R and is assumed to be twice differentiable. For the exponential family bandit
model, the mean of a distribution vy is entirely characterized by 6 through E[vg] = b(6). In this

case, £ ={v = (vg,,...,vp,) st Vk e {1,..., K}, vy, € P}

The exponential family environment class contains most of usual distributions such as
Bernoulli, Poisson, Gaussian with known variance. Our results for multi-armed bandits will be
stated for this environment class. In the following, we formalize the natural idea that one wants
to design strategies that work well for any v € £ and not only for specific instances.

On the Notion of Optimality. Going back to Equation (1.1), by upper-bounding Ay by
the largest gap denoted Apax and the expected number of pulls by 7', for any policy we have
Ru(T,m) < ApaxT'. A linear regret means that a constant error is made at each step and that
potentially no learning occurs throughout the interaction with the environment. For this reason,
we aim for policies with sub-linear regret within an environment class £ for which:

Yv e &, lim M
T—o0 T

Equation (1.3) naturally brings the notion of worst-case regret of a policy 7 in an environment
class £ that is defined bellow.

=0. (1.3)

Definition 1.2 (Worst case regret). For a policy 7, an environment class £ and a 7" rounds
interaction with the environment, the worst-case regret of m within £ is defined as

Re(T,m) :=sup R, (T, ) .
ve€

While we can always find a policy with null regret for a specific instance (by always selecting
the best arm), obtaining a small regret over all possible instances of an environment class is a
stronger and more meaningful metric for evaluating the performance of a policy. Let II be a set
of policies, it is sometimes interesting to understand how well the best policy within II performs
on the hardest instance of the environment class. This metric is the minimax regret and we
define it below.
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Definition 1.3 (Minimax regret). For a set of policies II, an environment class £ and a T'
rounds interaction with the environment, the minimax regret of the set of policies II within
€ is defined as

RE(T) = inf Re(T,n) = inf sup R, (T, ) .
=(T) inf e(T, ) S (T, )

A policy 7 is said to be minimax optimal when 7 satisfies Re (T, 7) = RE(T).

While interesting, upper-bounds for the regrets are only meaningful when compared to
lower-bounds. Lower-bounds essentially give us the best guarantee any algorithm can hope for in
a particular setting. An algorithm can be said to be optimal when an upper-bound for the regret
that matches a lower bound for the same setting can be obtained.

Minimax Lower-Bound. What types of guarantees can we expect for a finite time horizon
for the hardest instance in the exponential family bandit model? Let us assume that v1,...,vi
are Gaussian distributions with unit variance for simplicity. The following theorem shows that
for any policy m we can find a Gaussian instance such that the regret of the policy 7 for that
instance is larger than O(vVKT).

Theorem 1.4 (Theorem 15.2 from [Lattimore and Szepesvari, 2020]). Let K > 1 and
T > K — 1. Then, for any policy w there exists an instance of Gaussian bandits with unit
variances and a mean vector p € [0,1]% denoted v, such that

Eﬂﬂﬂz% (K—1)T.

The main idea for obtaining this result is to design an instance such that the learner is not
able to distinguish between the different arms. In the particular case where K = 2, the objective
is to find the maximum gap such that we can fool the learner for the entire time horizon T’
and is illustrated on Figure 1.1. It can be shown that this maximum gap is of order 1/v/T.
Hence, with a gap of this order, the learner will essentially choose randomly and will on average
select the bad arm T'/2 times. This implies a regret of order T x 1/v/T and gives the announced
dependence in 7. For a given policy m and an instance u, the proof of this result relies on
building a well-designed instance g’ such that the learner can not perform well on both g and p'.

A
—— Arm 1
14 Arm 2
1 /1\/:7 iy
%51
0 > e

Figure 1.1: Indistinguishable means for a learner interacting for T steps with the bandit (u1, o).

Given that the exponential family bandit model contains the Gaussian bandits with unit
variance, an immediate consequence of Theorem 1.4 is that the minimax lower bound in the
more general exponential family bandit model is at least of this order.



8 1.2. Multi-Armed Bandit

Problem-Dependent Lower-Bounds. The worst case regret measures a certain form of
robustness of a policy but can be overly conservative. In particular, a problem-dependent bound
that quantifies how well a policy will perform on a given instance is also an interesting indicator.
For this reason, other forms of optimality have been considered. Let us first define the notion of
uniformly efficient strategy [Lai and Robbins, 1985].

Definition 1.5 (Uniformly efficient policy). Let £ be the exponential family bandit model.
A policy 7 is said to be uniformly efficient if, for all v € £ with a unique optimal arm, one
has

Va >0, lim M:O.

T—o0 T~

When the number of interactions with the environment increases, we expect a sound learner to
make fewer mistakes and to select the best arm more frequently. With Definition 1.5 a uniformly
efficient policy is effectively able to learn with a regret scaling sublinearly with the time horizon
for every instance in the environment class.

Let 61,02 € © and consider vy, , vp, two distributions from P (defined in Equation (1.2)) with
respective mean /i1 and po. The Ku]lback—Leibler di'vergence from v, to vp, induces a divergence
function d on b(©). Knowing that b(01) = uy and b(62) = pe, it is defined by:

d(p, p2) = KL(vg,, vg,) = b(02) — b(61) — pua (62 — 61) . (1.4)
Following [Lai and Robbins, 1985], for the exponential family bandit model and for any
instance with mean g = (u1, ..., uK ), the regret can be lower-bounded with a problem-dependent

quantity.

Theorem 1.6 (Lai and Robbins Lower Bound). Let £ be the exponential family bandit
model. For any instance v with mean vector p = (p1, ..., ug) with a unique optimal arm
denoted k*, and any uniformly efficient policy,

v(T, A
liminf AL S 5 Bk
T—o0 IOg(T) kk* d(:“’k? :u’k*)

Theorem 1.6 is a direct consequence of a related result regarding the minimum expected
number of pulls of any suboptimal arm for a uniformly efficient policy:

(1.5)

Vk # k*, liminf Ey [Nk (T)] > L .
T—oo  logT d (g, pr)
The proof of Equation 1.5 relies on changes of distribution and has interesting consequences
for policies that have sublinear regret on every instance v € £. First, it proves that asymptotically
every sub-optimal arm will be pulled infinitely often at a logarithmic rate. Second, this rate is
exactly 1/d(ux, u*). Note that for the Gaussian case with unit variance as d(pg, u*) = (up—p*)?/2,
we recover the natural idea that the closer from the optimal arm, the more frequent a suboptimal
arm will have to be pulled when a learner is trying to maximize his expected sum of rewards.

[Burnetas and Katehakis, 1996] have extended this result to more general environment classes
that are out of the scope of this thesis. With this lower-bound at hand, we can define the notion
of asymptotically optimal policy.
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Definition 1.7 (Asymptotically optimal policy). Let € be the exponential family bandit
model. A policy 7 is said to be asymptotically optimal if if, for all v € £ with mean vector

M= (Mla"' 7/1/K):
. R,(T,m) Ay
lim

T—oo 10g(T) B k;* d(:u’ka,u'k*) ‘

Some work has also been done to provide finite-time (instead of asymptotic) problem-
dependent lower bounds e.g. [Garivier et al., 2019] but those will not be discussed here.

In Chapter 3, we build on the notion defined here and propose LB-SDA an algorithm
that is asymptotically optimal for the exponential family bandit model. This remains
true without the need to know the distribution of the arms (e.g. Bernoulli, Poisson or
Gaussian with known variance). This makes the algorithm appealing because with the same
implementation, we obtain strong theoretical guarantees for a broad class of distributions.

To balance exploration and exploitation and obtain asymptotically optimal strategies, two
standard techniques have been studied in the literature: Upper-Confidence Bound or Thompson
Sampling. We briefly introduce those concepts in the following sections and refer the interested
reader to [Lattimore and Szepesvari, 2020] for other common approaches (resampling, epsilon-
greedy, etc.).

1.2.2.1 Upper-Confidence Bounds

Throughout his interaction with the environment, the learner can build confidence intervals
for estimating the K unknown means. At time ¢, for an arm & that has been played N(t) times
and a given level of risk J, the learner can build a confidence region Zy(t, ) = [Li(t, 6), Uk(t, 6)]
such that:

Vk‘E{l,...,K}, IP’(,uk eIk(t,é)) >1-9.

Arm 2
~  Arm1 . 7-";5 777777777777777
' T- Ul(tv(s) Ag(t) Arm 3
| T
® [u(t) ® /s
.
Qo
AN —L Ll(t75)

Figure 1.2: Upper confidence bounds for three arms at time ¢. When following the OFUL principle, the
arm 2 (with the highest UCB) will be selected by the learner.
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Optimism in the Face Of Uncertainty. The optimism in the face of uncertainty (OFUL)
principle [Agrawal, 1995, Auer et al., 2002a] recommends to play “as if the environment was as
nice as plausibly possible” [Lattimore and Szepesvari, 2020]. At time ¢, the mean of the arm &
can be estimated using the upper bound of the confidence region Z(t — 1,0). In its simplest
formulation this upper confidence bound (UCB) takes the form:

Uk(t,0) = fu(t) + cx(t,6)

where fix(t) = ﬁ(t) Zﬁvz’“l(t) Y}, ; where Y}, ; denotes the i-th sample obtained from distribution
v and ¢ (t,0) is the exploration bonus and depends on the distribution at hand. The OFUL
principle recommends to play the arm with the largest UCB at each round. When the number of
samples from arm k increases, the hope is that Z(t, ) concentrates around the true mean.

Let us describe the simplest version of an algorithm based on the use of upper-confidence
bounds. [Auer et al., 2002a] propose UCB-1 for stochastic bandits with distributions with support
in [0,1]. In this case, at time ¢ for an arm k that has been played Nj(t — 1) times, the UCB
takes the following form:

21log(t)

Up(t) = fu.(Ng(t — 1)) + Nolt—1)°

(1.6)

Based in this quantity, the algorithm UCB1 works as follows

Input: (v1,...,vk) with support in [0, 1]
Initialization: Ny (0) =0 for all k € {1,..., K}
for t <T do
if ¢t < K then
| Play action A; =t
else

L Play action A; = argmaxycqy gyl (Ni(t — 1)) + ﬁ;?fﬁtl))

-----

Receive reward X; ~ vy,
Updating phase:
Ni(t) = Nip(t—1)+1(A, =k) for ke {1,...,K}
Update the empirical means and the Upper-confidence bounds.
Algorithm 1: UCBI1 [Auer et al., 2002a]

Intuitively, the best arm is expected to have the largest UCB most of the time. Yet, the UCB
of an arm that is not pulled anymore will increase up to the point where it reaches the highest
UCB. At this moment, another observation will be collected for this arm and its UCB will be
refined. This is in particular the case with UCB1 and the y/log(¢) term in the exploration bonus.
This principle allows for a natural balance between exploration and exploitation and ensures that
every suboptimal arm will be pulled infinitely often as T" — oo, which is necessary according to
the lower bound from Theorem 1.6 and Equation (1.5).

1.2.2.2 Thompson Sampling

An alternative to UCB based algorithm is a Bayesian algorithm called Thompson Sampling.
This method was the first one to be proposed for studying bandit models by [Thompson, 1933]
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when K = 2. Thompson Sampling, as the name suggests, is a method based on randomized arm
pulls. In this Bayesian framework, the learner has an initial prior on the different distributions.
Throughout the interaction with the environment, the learner computes the posterior distribution
for each of the K arms based on the previous rewards and actions. At each time step, samples
from the K posterior distributions are obtained and the learner plays the arm associated with the
largest sample. Interestingly, in this setting the exploration is not imposed by construction but is
the consequence of the randomness of the samples. An arm that has been barely pulled will have
a poorly concentrated posterior and the rewards obtained by sampling from this posterior will
vary a lot. On the contrary, the more an arm is pulled, the tighter the posterior concentrates
around the true distribution and the learner starts exploiting.

Exploration by sampling will also be a central component of the subsampling algorithms we
propose in Chapter 3.

1.2.2.3 Asymptotically Optimal Policies

In the exponential family bandit model where the K arms come from the same one-parameter
exponential family, both UCB techniques and Thompson Sampling approaches are now known to
be asymptotically optimal. [Cappé et al., 2013] designed kl-UCB a UCB based algorithm using
KL divergences for obtaining the upper-confidence bound for the different arms. Using these
refined bounds, the authors were able to prove the asymptotic optimality of this strategy. When
selecting a proper prior, Thompson Sampling is also asymptotically optimal in the exponential
family bandit model [Kaufmann et al., 2012, Korda et al., 2013]. To some extent, all of these
approaches need to have some information on the rewards distributions at hand. Relaxing this
while maintaining the asymptotic optimality is at the core of Chapter 3.

1.2.3 Pure Exploration Tasks

In some cases, the cost of exploration is less important and the regret is not the most
appropriate metric. For example, in an A/B test experiment, an e-commerce company probably
cares more about being able to identify as fast as possible the best version of a webpage at the
cost of potentially losing a few clients. We refer to the tasks where there is no penalization for
the exploration as pure exploration tasks. In those tasks, there is no exploration-exploitation
trade-off and optimal policies for this setting are not necessarily strong candidates for the regret
minimization setting and vice versa. The most studied pure exploration setting is the task of
identifying the arm with the highest mean: it is entitled the Best Arm Identification task, and
we describe it in more detail below.

Fixed Confidence vs. Fixed Budget Setting. Let Sy € {1,...,K} denote the arm
recommended by a strategy after T interactions with the environment. Two different settings
are of interest. In the fized budget setting, the learner is given a number of rounds 7T and the
objective is to design a sampling strategy that minimizes ]P’(ST # k*) where k* is the arm with
the highest mean p*. On the contrary, in the fized confidence setting the number of rounds is
not fixed in advance. Here, the learner seeks to design a policy that requires as few samples as
possible for identifying &* with a confidence of at least 1 — J. Mathematically, for any risk level
d, the learner chooses a stopping rule (a stopping time) 75 adapted to the filtration F = (F;)t>0
and aims at minimizing E[75] while satisfying the J-correctness constraint:

P(75 < 00,Sry # k*) <6 . (1.7)
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The constraint ensures that if the algorithm is able to stop in a finite time, then the probability
of recommending the wrong arm should be smaller than the risk 4. In this thesis, we only focus
on the fixed confidence setting and we refer to [Bubeck et al., 2009, Audibert et al., 2010] for
a better understanding of the fixed budget setting. From a high level, any policy tailored to
the fixed confidence setting has three essential components: (i) a sampling rule: how should
we select A; based on F;_1? (ii) a stopping rule: when should we stop playing? and (iii) a
recommendation rule: which arm should we output?

On the Complexity of Identifying the Best Arm. Similarly to the regret minimization
setting, we want to understand the complexity of identifying the best arm for any bandit instance
v. This complexity will be the target for the expected number of pulls required by the different
sampling methods we will develop. In the pure exploration setting, lower bounds are not only
useful for characterizing optimal algorithms but they also guide the design of asymptotically
optimal sampling strategies. As mentioned above, we focus on J-correct strategies that guarantee
that the correct arm is identified with probability higher than 1 — . We define £ the set of
bandit instances with a unique optimal arm and where all the K distributions come from the
same one-parameter exponential family. Recall that an instance v € L is entirely defined by its
mean vector p. For a bandit instance v, € £ with mean vector p, we denote k*(p) the arm with
the highest mean and Y = {z € [0,1]%,3, #; = 1} the K-dimensional simplex. For a given
mean vector p, we define the alternative model as the set of instances for which the optimal arm
is different than for the instance p. Formally:

Alt(p) := {vx € L F*N) # K ()} -
We now give a lower-bound for the complexity of identifying the best arm.

Theorem 1.8 (Theorem 1 in [Garivier and Kaufmann, 2016]). Let 6 € (0,1). For any
d-correct strategy and any bandit model v, € L,

E[rs] > T*(p)k1(6,1 —9) ,

where
K

T (p)~ ' = inf A, k) -
00752 220, sl & vl 2

Once this complexity is obtained, the authors of [Garivier and Kaufmann, 2016] propose a
sampling strategy called D-Tracking and a stopping criteria based on a Generalized Likelihood
Ratio statistic for obtaining an asymptotically optimal algorithm in this setting. In the following,
we explain how the stopping rule and the sampling strategy work as they will be our starting
point for Chapter 2.

First note that the supremum for the optimal weights is indeed a maximum as established
in [Garivier and Kaufmann, 2016]. Using this, we learn from the proof of Theorem 1.8 that the
only way to obtain a policy matching the lower bound is to sample the different arms k with a
proportion wj (), where:

K

w*(p) = argmax, ey, . )\eiﬂtf(u) Z wid(pg, A\k) -
k=1

This is the guiding principle that is used for building the sampling rule.
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Sampling Rule. At time ¢, based on the previous interactions with the environment, the learner
has access to f1; an estimate of the means of the K arms. The most naive idea that we can have
for estimating w*(w) is to compute w*(f1;) and to draw the next arm based on this value. This is
the central idea of the D-Tracking strategy that is proposed in [Garivier and Kaufmann, 2016].
However, an additional forced exploration is necessary for ensuring that fi; will converge to u
when t tends to infinity. We introduce Uy = {k € {1,..., K} | Ny(t) < v/t — K/2}. Using the
D-Tracking strategy, the arms are pulled as follows:

A argmingcp, Ni(t) if Uy # 0,
argmax << g twi(fty) — Ni(t) otherwise .

Note that taking the argmax for twy(ft;) — Ni(t) is natural: it permits to identify the arm
for which the gap between Ny (t)/t and wi(f;) is the largest. By pulling it in the next round, we
necessarily reduce this gap for the next steps and tend towards drawing the different arms with
their optimal proportions w*(ft) which will converge to w*(p).

Stopping Rule. We now have the ingredients for explaining the stopping criterion. The
objective with the stopping rule is to stop as soon as we have statistical evidence that one arm is
better than all the others. For ki, ko € {1,..., K}2, an efficient way for doing this is to consider
the Generalized Likelihood Ratio statistic:

maxyy > Py (M ()0, (His (1))
maXu;‘,l g,u;Q p,u;€1 (Hk1 (t))pM;Q (Hk’z (t)) .

In the above expression, H(t) = {Xs | As = k, s < t} is the history of the rewards available
at time ¢ for arm k and py, (Z1, ..., Z,) is the likelihood of n i.i.d observations from a distribution
Vu,- Recalling that we consider a one-parameter exponential family, p,, (Z1,...,Z,) can be
expressed as a function of uy following:

Ziy g (1) = log (L8)

P (Z1s. s Zy) = ﬁ exp (I.fl(uk)Zi — b(l.fl(,uk))) .
i=1

Using this expression a closed form expression for Z, j,(t) can be obtained. Intuitively, a
large Zj, 1, (t) suggests that at time ¢ there is statistical evidence that the arm ki has a largest
mean than the arm k9. It remains to quantify what “large” means for satisfying the §-correct
constraint. Introducing the threshold (¢, ) (that needs to be tuned appropriately), the stopping
rule is the following:

73 = inf{t > 0 ] e {1, K}V € {1, K}, Zyp(t) > B(t0)} . (1.9)

This stopping rule is usually referred to as Chernoft’s stopping rule because it shares similarities
with [Chernoff, 1959]. We now have all the ingredients for presenting the Track-And-Stop strategy
introduced in [Garivier and Kaufmann, 2016] and reported in Algorithm 2.

With a proper tuning of the threshold (¢, d), the d-correct constraint is satisfied and Track-
and-Stop reaches asymptotic optimality.

Proposition 1.9 (Proposition 12 in [Garivier and Kaufmann, 2016]). Consider the expo-
nential family bandit model. Let § € (0,1) and o > 1. There exists a constant C = C(«, K)
such that whatever the sampling strategy, using Chernoff’s stopping rule from Equation (1.9)
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,0) threshold

Input: K arms, horizon T, 5(¢
) < 8(t,6) do

while maxp<K minklsK Zk,k’(
if Uy # () then
| Pick arm Ayy1 = argming;, Ni (1)
else
| Pick A1 = argmax; << i twi(far) — Ng(t)
Obtain sample X; 1 from v4,,,

Result: Recommend 5}5

Algorithm 2: Track-and-Stop with D-Tracking sampling

with the threshold e
B(t,6) =log <5>

P, (15 < 00, krs # k%) < 6.

ensures that for all v € L

Proposition 1.9 proves that regardless of the used sampling strategy, the Chernoff’s stopping
rule is sufficient to guarantee the d-correctness of a policy. It is also possible to establish the
asymptotic optimality of the Track-and-Stop algorithm.

Theorem 1.10 (Theorem 14 in [Garivier and Kaufmann, 2016]). Consider the exponential
family bandit model. Let o € [1,e/2] and r(t) = O(t*). Using Chernoff’s stopping rule with
B(t,8) =log(r(t)/d) and the D-Tracking sampling strategy, the following holds

E
lim sup 73]

50 log(1/4) <aT'(w)

In Chapter 2, we consider a variant of the best arm identification task where the objective is
to find all the arms that are better than a baseline. We start by quantifying the complexity
of this task and propose asymptotically optimal algorithms for solving it. We adapt the
D-Tracking and the stopping rule presented in this section to this setting. The framework
we propose allows us to model (among others) the practical scenario where a company is
looking for the best variant of a webpage and want to identify the candidates that are better
than a default version that is used in production. Chapter 2 is based on work done in
collaboration with researchers from an online travel agency. A crucial aspect of this problem
is the non-stationarity of the data as represented on Figure 1.3 with an actual A/B/n
experiment run by this company. The metric of interest in this experiment is whether the
visitor clicked at least once during the experiment to the next page after getting exposed to
one of the variants. In this experiment, K = 2 copies compete against the control used in
production. Due to global traffic, the data exhibits strong seasonality patterns within a day,
as seen in Figure 1.3, in which every point corresponds to click-through rate per six hours
(quarter of day) for 12 consecutive days. We explain how to adapt pure exploration tasks to
this more general scenario in Chapter 2.

Understanding non-stationary environments where the distributions of the arms can evolve
over time is of interest for practical applications. In the following section, we give an overview of
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Figure 1.3: Click-through rate per 6 hours for 12 days for different variants of a webpage.

non-stationary stochastic bandits and we describe common assumptions made on the structure
of the non-stationarity.

1.3 Non-Stationary Stochastic Bandits

Scenarios where non-stationarity is a crucial aspect of the learning have already been
considered in the 1980s. In [Whittle, 1988], the author considers the case of the treatment of a
mutating virus. A doctor has K treatments and their efficiency is evolving as soon as the virus
mutates. In this example, even when a treatment is not selected by the doctor, its performance
might change.

Historically, [Gittins, 1974] first proposed to solve the following problem that was raised as
soon as the Second World War. A learner is offered to select among K different projects and
only one project can be selected at a time. When selecting the project k, the state of this project
is modified and the learner receives the reward from this project. The overall objective of the
learner is to maximize the expected discounted reward.

[Whittle, 1988] proposes another martial example where non-stationarity naturally appears.
Assume that a learner has one plane and aims at tracking n different enemy submarines. The
objective is to properly allocate the plane to the different positions for monitoring the submarines.
When a submarine is under observation, the learner gathers information about its position, its
velocity, etc. For all the submarines that are not observed during that time, some information is
lost and the uncertainty about their position increases. The future position of the submarine is
hardly predictable. Those examples motivate the study of non-stationary environments where
the state of an action can evolve depending on the action taken by the learner or not.

The model that we have presented so far assumes that the K distributions (v, ..., vx) remain
constant over time. Specifically, the notion of regret from Definition 1.1 can be adapted when
the distributions are time-dependent. We now denote v} ; the distribution of arm £ at time ¢.
When maximizing the expected sum of rewards, an oracle that would know the distributions
(vg,t) of the arms at every time step will switch to the highest mean as soon as there is a change.
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This requires defining a stronger competitor that selects the best arm at every time step, and
the associated notion of regret.

Definition 1.11. For a policy 7w and a 1" rounds interaction in an environment with time
dependent distributions, the dynamic regret is defined as

T

T
R(T, 7 := —E(S X, .
(T, ) 2. B Pt L; t]

It is natural to wonder how to model non-stationarity. If the distributions can evolve
in a completely arbitrary way, there is no hope for learning. For this reason, adding some
structure on the non-stationarity seems reasonable. A variety of non-stationary bandits have
been considered with different levels of assumption on the non-stationarity structure. At one
extreme, non-stationarity follows probabilistic dynamics and we can try to predict the changes.
In [Whittle, 1988] for example, the state of all the arms goes from py(t) to ux(t + 1) following
a Markov rule specific to each arm. At the other extreme lies non-stochastic adversarial
models where the rewards are arbitrary and are not even supposed to be drawn stochastically
[Auer et al., 2002b]. Our interest in this thesis lies between these two extremes. We do not make
a stochastic assumption on the non-stationarity itself, but the means of the rewards’ distributions
can not evolve completely arbitrarily. We focus on two models of non-stationarity that have
received significant interest: abruptly changing environments that we describe in Section 1.3.1
and the variation budget model allowing for a broader class of non-stationary environments that
is the subject of Section 1.3.2.

1.3.1 Abruptly Changing Environments

We first consider abruptly changing (or piece-wise stationary) bandits, where over a 7" rounds
interaction, the environment can change at most I'r times. Formally, this requires

Tz:l]l{zlk S {17"'7K} ‘ Kt #Nk,t—i—l} <Ir.
t=1

The time instants (¢1, ..., tr,) associated to these breakpoints define I'r + 1 stationary phases
where the reward distributions are fixed. This setting was probably considered because for each
stationary phase there is hope for leveraging existing tools from the stationary bandit literature
and to adapt them to piece-wise stationary environments. How hard is it to learn a policy in
abruptly changing environments? The following theorem offers an interesting answer.

Theorem 1.12 (Theorem 31.2 in [Lattimore and Szepesvari, 2020]). Let © be a policy,
assume that K = 2 and that p;(t) = u; is constant for both arms. Assume that the arm 1 is
optimal and define A = py —pg > 0. If the regret of policy m on the instance (u1, p2) satisfies
Ru(T,m) = o(T), then for T large enough, there exists a non-stationary bandit v’ with means
() (t), ph(t)) for t < T with at most 2 breakpoints, satisfying ming<p [p)(t) — phH(t)] > A
such that

g
() >
R ’”)—2273M(T,7r)

Let us explain the implication of this result. If a policy 7 is such that it has a worst-case
regret on stationary instances of order R(T,7) = O(v/T) then Theorem 1.12 ensures that
an instance with at most 2 breakpoints can be built with a regret of order Q(+v/T). On the
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other hand, if a policy 7 has strong problem-dependent guarantees on a specific instance pu,
a regret of order R, (T, m) = O(logT) is achievable (see asymptotically optimal policy from
Definition 1.7). Theorem 1.12 implies that this policy would suffer a regret of order Q(7'/logT)
for a non-stationary instance. Essentially, this result smooths out the hope for obtaining policies
with a regret of order log7 in abruptly changing environments. The intuition by which this is
true is quite natural. If a learner wants to hedge against an abrupt change, he has to explore
suboptimal arms frequently to make sure that they have not changed. When an exploration of
order log T was sufficient in stationary environments, in non-stationary environments, additional
exploration is required: without it there is a risk of always making suboptimal decisions and to
suffer linear regret.

A A

1 wh

H

: : >
T

T

Instance p Instance p’

Figure 1.4: Trade-off between the regret on a stationary instance and a non-stationary instance. A policy
7 optimal on g will have a large regret on .

Theorem 1.12 can be traced back to [Garivier and Moulines, 2008] where an instance p' is
constructed such that it equals g for all time steps except on a period of length H, as illustrated
on Figure 1.4. During those H steps, the suboptimal arm from g becomes optimal. By tuning
the length of H inversely proportional to the expected number of pulls of the suboptimal arm
from the instance p, they obtain an equivalent of the aforementioned theorem. The trade-off
is natural, the less frequent the suboptimal arm in g was pulled, the longer it will take for the
learner to notice the change on the instance p'. [Seznec et al., 2020, Proposition 4] extends
Theorem 1.12 and shows that for any policy 7 there exists a piece-wise stationary environment
with I'p breakpoints such that the regret satisfies:

R(T,7) > KTy . (1.10)

Consequently, the best worst-case regret guarantee one can expect in abruptly changing
environment with I'r breakpoints is of order O(v/KTT'r).

Two main mechanisms have been used to develop non-stationary bandit algorithms: strategies
relying on change-point detectors and passively forgetting strategies that discard old data. Let
us first briefly describe what change point detection is.

Change-Point Detection. The objective when using change-point detectors is to actively
detect when a change in a distribution happens as fast and as accurately as possible. This implies
being able to detect whether or not several changes might have occurred and to identify the times
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of any such changes. Usually, the parameters in the change point detector have to be tuned for
finding the trade-off between the false alarm rate (falsely detecting a change), the misdetection
rate (missing a true change) and the detection delay. In Figure 1.5, we illustrate an example of
time series data commonly used in change detection.

« ¢ ° ..' :
$ ! ‘? o e .. . .....'0 ... .:. 'S | o... %y ..o i iR
| | : | i | | |
1870 1890 1910 1930 1950 1970

Figure 1.5: Yearly volume of the Nile river at Aswan. Dotted line denotes a detected change point.
Extracted from https://en.wikipedia.org/wiki/Change_detection

Actively Adaptive Strategies. Algorithms based on change-point detectors contain three
main components: (1) a bandit algorithm (any policy that was designed for stationary environ-
ments), (2) a change-point detector and (3) a fixed forced exploration rate. When a change is
detected, the algorithm is restarted and the learner estimates the different quantities from scratch.
The forced exploration is required. Indeed, without additional assumption on the structure of
the non-stationarity, it is the only way to detect when a suboptimal arm becomes optimal after
a breakpoint. Depending on the statistical test used for the change-point detector, several algo-
rithms have been proposed. [Hartland et al., 2006, Srivastava et al., 2014] use a Page-Hinkley
[Hinkley, 1971] algorithm for detecting the changes with the algorithms Adapt-EvE and SW-UCL
respectively. [Liu et al., 2018] uses the cumulative sum (CUSUM) [Page, 1954] as a detector
and obtains a regret of order O(/KTTrlogT) for CUSUM-UCB. GLR-kIUCB proposed in
[Besson et al., 2020] relies on sequential Generalized Likelihood Ratio Test for detecting the
changes with a regret of order O(v/KI'tT logT). [Cao et al., 2019] propose to compare running
sample means over a sliding window for the change-point detection procedure. The algorithm
M-UCB resulting from this procedure has the same regret as CUSUM-UCB. To some extent, all of
those change-point detectors require scanning previously collected data and are computationally
expensive. Furthermore, they are highly dependent on the nature of the non-stationarity and
do not generalize well to smoothly changing environments. For these reasons, in this thesis we
mostly focus on passively adaptive strategies that are computationally more attractive and more
flexible. We describe them now.

Passively Adaptive Strategies. Instead of actively looking for a change in the rewards’
distribution, another line of works has developed algorithms that passively discard old data
considered as irrelevant for the estimation procedure. [Kocsis and Szepesvari, 2006b] suggest
the use of discount factors for estimating the mean of the different arms with Discounted-UCB
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(D-UCB). In this case, when using a discount factor v the arm k at time ¢ is estimated by:

s= 17t = s]l(A — )
Zs lf)/t 1= s]l(A k)

[Garivier and Moulines, 2008, Garivier and Moulines, 2011] analyzes D-UCB with a regret of

order O(K /T 7T logT) with a well-selected discount factor. They also propose SW-UCB based
on a sliding window for approximating the means following:

(t) = (1.11)

. 1 1A, = k)X,

(1.12)
s:tf'r+1 ]l(AS = k)

When properly tuning the sliding window 7, they obtain a regret guarantee of order
O(K+/T1TlogT). The use of discount factors was also extended to Thompson Sampling in
[Raj and Kalyani, 2017]. More recently, [Trovo et al., 2020] proposed SW-TS where Thomspon
sampling is coupled with the use of a sliding window.

In Chapter 3, we build upon the sliding window ideas from [Garivier and Moulines, 2008] and
propose a subsampling method combined with a sliding window whose guarantees match the
lower bound from Equation 1.10 when I'p is known. In addition to the traditional exploration-
exploitation trade-off that a learner is facing in a sequential task, non-stationarity brings
another trade-off with the tension between remembering old data for a better estimation of
the means or forgetting data for keeping track of evolving means. We quantify at which
rate the learner should forget past information for obtaining optimal strategies.

Knowledge of I'p.  Except [Besson et al., 2020], all the methods discussed in the previous
paragraphs require some information about the non-stationarity of the environment such as
an upper-bound on the number of changes. Note that even when the number of breakpoints
are known, none of those methods know when the breakpoints happen. One drawback of
those approaches is that if the number of changes is not set correctly, the performance of
the resulting algorithms might be significantly impacted. For this reason, some recent works
aim at obtaining optimal regret guarantees without the knowledge of the number of changes
[Chen et al., 2019, Auer et al., 2019]. Yet, those algorithms can not be used in practical scenarios
(for the moment) or relies on strong assumption on the distribution of the arms and/or the form of
the changes. For example [Mukherjee and Maillard, 2019, Komiyama et al., 2021] assume that
all the arms change in a coordinated way. They show that the forced exploration can be canceled
in this case and obtain guarantees of order O(y/TT'r) without knowing I'z. [Besson et al., 2020]
requires Bernoulli distributions and additional assumption for the detectability of the gaps for
obtaining similar guarantees.

1.3.2 Variation Budget

An alternative way to model non-stationarity is to introduce the variation budget and to
restrict the total amount of variation of the means. A non-stationary instance can be characterized
by the means of the different arms at the different time steps p = (pg,t)i<7 k<K . Formally, one
can consider the instances satisfying:

T-1

B = — < Bp.
(1) 2 keg’?}fK}\Mk,t+1 Hk,t’ S br
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Br(p) defines the true variation budget of an instance characterized by its mean p whereas
By is an upper-bound for it. This setting allows for a rich class of non-stationary environments.
In particular, it contains smoothly changing environments with a small drift for the means
at every step [Krishnamurthy and Gopalan, 2021] with the constraint Vk € {1,..., K},Vt <
T, |tk t41—pot| < b but also abruptly changing environments as long as the number of breakpoints
multiplied by the amplitude of the changes remain bounded by Bry.

The variation budget metric is more general. In some practical scenarios the environment is
more likely to change smoothly, and obtaining guarantees for those environments is desirable.
A lower bound established in [Besbes et al., 2014] quantifies the difficulty of learning in such
environments similarly than in abruptly changing environments.

Theorem 1.13 (Theorem 1 in [Besbes et al., 2014]). Assume that rewards have a Bernoulli
distribution. Then, there is some absolute constant C' > 0 such that for any policy m and
forany T > 1, K > 2 and By € [1/K,T/K], the regret satisfies

R(T,w) > C(KBp)31%/3 .

An important consequence of Theorem 1.13 is that when the variation budget scales linearly
with respect to T' the regret grows linearly and no learning is possible.
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Figure 1.6: Example of instance used for obtaining the lower-bound for the variation budget setting when
K = 2. For each block, the optimal arm is randomly selected in {1, 2}.

We now give a high level overview of the proof of this theorem. The entire time horizon T'
is separated in T'/Ar blocks of length Ap. For each of this block an optimal arm with mean
w* =1/2 + € is uniformly drawn from {1,..., K} while the K — 1 remaining arms have a mean
p = 1/2. The situation is illustrated on Figure 1.6 in the particular case K = 2. The identity
of the best arm can only change at each block. For a fixed variation budget By, we have the
constraint that By = € x T/Ap < Br must be satisfied (the maximum gap for an arm between
two consecutive blocks is €). € is tuned such that no policy can identify the best arm within a
block. It can be shown that € ~ 1/\/Ar is enough for ensuring this. With this choice, in the
worst case, a constant regret of order e can be suffered at every round within a block. This gives
a regret of order eAr ~ \/Ar for a block and of order T'/ VAt for the entire horizon. The final
step consists in tuning Az for ensuring that € x T/Ar ~ T/(A7)3/? < By is satisfied. Taking

Ap = B:FZ/ 32/3 guarantees this and gives a regret of order O (T2 3B:1F/ 3) as announced.
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Overall, change-point detection based algorithms do not perform optimally in smoothly chang-
ing environments because they are designed to achieve strong guarantees on a stationary phase
and to detect changes effectively. In some drifting environments, there is no stationary phase and
detecting the change can be much harder. Relatively few works have tried to extend change-point
detectors to smoothly changing environments. [Karnin and Anava, 2016] combine two statistical
tests and obtain a suboptimal regret guarantee of order O(log(T)T%82B%18+1log(T)T"7™!) without
knowing Bp. Most of existing methods that can be analyzed in this more general setting rely either
on adversarial bandit algorithms and/or on passively forgetting strategies. [Besbes et al., 2014]
propose Rexp3 an adaptation of the Exp3 algorithm [Auer et al., 2002b] with periodic restart

and obtain regret guarantees of order O ((K log(K)Br)Y/31?/ 3). [Wei et al., 2016] use periodic

restarts combined with a UCB algorithm and propose Rerun-UCB-V. [Cheung et al., 2019] ex-
tend the analysis of SW-UCB to the variation budget setting and obtain order optimal bounds
with respect to T' and Br.

In Chapter 4, we extend the discount factor principle from D-UCB to the variation budget.
This is another advantage of passively forgetting strategies, they can be analyzed in more general
non-stationary settings without any modification as long as some knowledge on the variation
budget Br is available.

1.3.3 Other Forms of Non-Stationarity

Here, we mention other non-stationary settings that are not discussed in this thesis. In
some scenarios, it is natural to assume that the mean of an arm evolves only when the arm
is played. Those are called rested bandits. For example in [Kleinberg and Immorlica, 2018,
Pike-Burke and Grunewalder, 2019] when an arm is not played its mean will augment.

For a recommender system, a product is less interesting to a specific user once this user has
bought it and this product should probably not be proposed in the close future. This is a case
where the rewards of the different options depend on the algorithm choices. Sometimes, it is
further assumed that the mean of an arm can only decrease when the arm is played. This setting is
called rotting bandits and have been precisely studied in [Seznec et al., 2019, Seznec et al., 2020].
Quite interestingly, in [Seznec et al., 2019] the authors show that this non-stationary setting
is not harder than stationary stochastic bandits. They design FEWA an algorithm with a
problem-dependent regret guarantees of order O(log(KT')) and a worst case regret of order
O(VKT). They obtain these bounds without any knowledge of the decay function of the rotting
bandit.

In the restless setting the means of the arms evolve independently from the algorithm choices.
Abruptly changing environment and the variation budget discussed in the previous sections are
special cases of restless bandits, however other variants have also been studied. For example
in [Chen et al., 2020, Traca et al., 2021] an additional seasonality in the reward distributions is
assumed.

All the environments presented in this section are unstructured in the sense that by playing
arm k nothing can be learned on the arm &’ for ¥’ # k. In the following sections, we consider
richer structured models where it is sometimes possible to estimate precisely the reward from an
action without even playing it.
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1.4 Linear Contextual Bandits

Recalling our example for the mosquitoes repellent, a few elements have to be highlighted.
First, depending on the mosquito species the effectiveness of a repellent might differ significantly.
Second, depending on the characteristics of a user (age, tolerance to certain molecules, etc.) some
repellents might be much more attractive than others. Algorithms presented in the previous
sections can not use this sort of side information. Furthermore, if an efficient repellent has
been found for a given species, this information might guide the learner to find a good repellent
for a close species. Adding more structure to the multi-armed bandit model is tempting for
generalizing from one set of characteristics to another. Contextual bandit algorithms have been
considered for all of those reasons.

1.4.1 Stationary Linear Bandits
1.4.1.1 From Stochastic Contextual Bandits to Stochastic Linear Bandits

Unlike in the multi-armed bandit problem, at time ¢ the learner receives a context c¢; from a
set of possible contexts C. After seing this context, the learner picks an action u; from an action
set U. In the stochastic contextual bandit setting, the rewards are assumed to satisfy:

Xi =r(ce,us) + 1

Here (14)¢>1 are assumed to be conditionally on the past o-subgaussian (see Definition 1.14).
r is a reward function that takes a context and an action as input. In online advertising, c¢;
would typically contain information about the user to be served whereas U would represent
some features for the different ads that are available. It is usually convenient to assume that
contextualized actions can be built from the different pairs of actions and contexts and to add
some structure on the reward model. We assume that there are functions f and ¢ and an
unknown vector #* € R? such that:

Ve e C,Yu elU, r(c,u) = f{0%, ¢(c,u))) .

Assuming such a structure and denoting A; the different contextualized actions with A; =
¢(ct, ug) naturally brings to the study of a reward model of the form:

Xe= f({0%, Ar)) + e -

Depending on the assumption on the function f several models have been considered in
literature. In Chapter 4 and in this section, we consider the case where there exists § € R? such
that f(x) = x a setting called linear contextual bandit and first studied in [Auer, 2002]. When
f(z) = p(z) with p some link function, the setting is called generalized linear bandit model and
was introduced by [Filippi et al., 2010]. This setting is studied in Chapter 5 and Chapter 6.

1.4.1.2 Reward Model

The reward model we consider is the following. At each time step ¢ the learner receives A; a
set of K actions (A1, ..., Ar k) lying in a d-dimensional space. We denote a' the transpose
of a vector a. The dot product between two vectors a and b is equal to a'b. By selecting the
action A; based on previous information, the learner receives a reward X; satisfying

X, =Al0" +n, . (1.13)
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The parameter 6% € R? is an unknown vector that has to be learned for finding the optimal
action A} at each step defined by:

* T p*
A} = argmax,c 4,0 0% .

Note that contrarily to the multi-armed bandit setting, even in stationary environments
the best action can differ at every round because the learner receives time-dependent set of
actions. Coming back to the online advertising example, allowing for time dependent action
sets is necessary if we want to allow the candidate ads to differ from one user to another or to
model the unavailability of ads for particular instants.

At round t the information collected so far can be summarized with a o-field defined by
Fr=o0(A1, Ar,m, oo Ay Ay ey A1, Ayg1). F contains the information available at the end of
round ¢ in addition to the action selected at round ¢+ 1. Using this definition, 7; is F;-measurable
and Ay is F;_1-measurable. We add A; in F;_1 because the noise 7; might depend on the most
recent action A;. Additional assumptions on the noise are usually made, conditioned on the past
the noise is centered i.e.

E[neFi—1] =0 a.s.
and the noise is conditionally o-subgaussian.

Definition 1.14. A centered F;_j-measurable random variable 7, is said conditionally
o-subgaussian when

N2
VA € R, Elexp(An)|Fi—1] < exp ( > ) a.s.

1.4.1.3 Definition of the Regret

In this setting, the performance of a policy 7 for an instance 6* is evaluated with a quantity
usually referred to as pseudo-regret (that we will simply call regret) defined by:

T T
Ro«(T,m) =) maxa'0*—> Al0*.
i=1 oA t=1
The regret is a random variable because of the term A; which depends on the previous
choices of the algorithm. Note that the comparison is done with Zthl maxqc4, a' 0% which is on
average the best cumulative reward a learner can expect if he knows ahead of the game the true
parameter 6* of the environment. We will also consider the expected regret that is defined as:

Definition 1.15 (Regret). For a policy 7, a linear bandit with an unknown vector §* € R?
and a T rounds interaction with the environment, the expected regret is defined as

T

T
Ro+ (T, m) == Eg«[Ro« (T, m)] = Y _maxa'60* —E |> A/ 6*| .
j=1 0€A t=1

Link to the multi-armed bandit. Note that the multi-armed bandit setting with K arms is
recovered when d = K and when the action set at every time step is equal to A; = {e1,...,eq}
where e; is the i-th canonical vector from R? containing a one at the i-th coordinate and zero
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elsewhere. This link has strong consequences for the regret guarantees as it implies that the
worst case regret for linear bandits is at least of the order of the worst case regret from the
multi-armed bandit.

1.4.1.4 Worst Case Regret

Similarly to the case of the multi-armed bandits, for any policy 7, one can obtain a worst
case regret lower bound by creating hard instances that aim at fooling the learner. Knowing that
the linear setting is strictly more general than the non contextual case, we know that the worst
case regret scales at least as /T with respect to the time horizon. Yet, it remains unclear how it
should scale with respect to the dimension d or the number of actions. The following theorem
shows that a lower bound can be obtained even with an infinite action set.

Theorem 1.16 (Theorem 24.2 in [Lattimore and Szepesvari, 2020]). Assume d < 2T and
assume that the action set is constant and equal to A = {a € R? | |ja|2 < 1}. For any
policy m, there exists 0* € R such that

dvT
Ro~(T,m) > —— .
9( 7T) 16\/§

We knew that the scaling in 7' should be at least of order /7. This bounds does not indicate
that the scaling should be worse than this. Another interesting aspect is that the bound was
obtained using an infinite action set. This suggests that the scaling in K should be rather mild
when the number of actions is finite. By adding structure on reward model, the dependency
in the number of arms is significantly reduced compared to the multi-armed bandit where the
worst case regret was scaling as the square root of the number of arms (see Theorem 1.4). This
comes at a cost which is the linear dependency in the dimension parameter d. Yet, for practical
examples d is usually much smaller than K and reducing the dependency of K at the cost of an
increase in the dependency of d remains desirable.

Linear bandits have been extensively studied in literature with for example [Dani et al., 2008,
Rusmevichientong and Tsitsiklis, 2010, Abbasi-Yadkori et al., 2011] or [Chu et al., 2011]. As in
the non-contextual case, the most popular methods for linear bandits rely either on upper-
confidence bounds or on Thompson sampling. We only discuss how to obtain upper-confidence
bounds in this setting and we refer to [Agrawal and Goyal, 2013b, Abeille and Lazaric, 2017] for
an adaptation of Thompson Sampling to linear bandits.

1.4.1.5 Upper-confidence Bounds and Linear Bandits

A natural way for estimating 6* at time t using previous information is to consider the
regularized least squares estimator defined as:

t
0; = argming pa <Z(Xs —Al0)? + )\||9||%) . (1.14)
s=1

This optimization program admits a closed form solution with:

t t
b, = 174 ZASXS where V; = ZASAI + Mg, (1.15)

s=1 s=1



Chapter 1. Introduction 25

and I; denotes the d-dimensional identity matrix.

An important characteristic in the multi-armed bandit model is that the UCBs are disjoint,
i.e the upper-confidence bound from arm k carries no information about the other arms k' # k.
The story is different in the linear setting where the different directions of R are interconnected
through the dot product with 8*. We now explain the form that takes the UCB in the linear
setting. The objective is to find a confidence region C;(d) depending only on Ay,..., A;—1 and
on Xi,..., X1 that contains the true parameter 8* with high probability. One of the tightest
UCB based on self-normalized tail inequality for vector-values martingales was proposed in
[Abbasi-Yadkori et al., 2011] and has the following form.

Theorem 1.17 (Theorem 2 in [Abbasi-Yadkori et al., 2011]). Assume that ||0*||2 < S, that
for all a € Ay, |lall2 < L and that the noise 1, is conditionally o-subgaussian. Then, for any
0 > 0, with probability at least 1 — &, for all t > 0,

) 14+ tL2/\
101l o < VAS + o (FER))

0* € C(d) = {9 € R?

Note that C;(6) is an ellipsoid centered around 6;_; and with a radius 3,(6) defined as 8;(0) =
1+¢L2/)
VAS + o dlog (f) .

Optimism in the Face of Uncertainty for Linear Bandits (OFUL). Once a confidence
region is obtained for the regression parameter 8*, optimistic algorithms apply the optimism in
the face of uncertainty principle by selecting the action:

Ay = argmax,¢ 4, 916%?();) a'f . (1.16)

Among the statistically plausible values for 6* contained in C¢(d), an optimistic algorithm
selects the most valuable action.

For a d x d positive semi-definite matrix M and = € R? we define the norm ||z||5; :== Va T Mz
which is non-negative by definition. Note that once the confidence region is obtained, the learner
can estimate the reward in every direction a € A; and the following can be deduced from
Theorem 1.17

Vae A, a0 <a'b_q + Bt(é)HaH‘,;ll . (1.17)

Equation (1.17) gives an upper-bound on the mean reward the learner can expect by playing
action a € A; at time t. With the specific form of the confidence region from Theorem 1.17 (an
ellipsoid) Equation (1.16) can be rewritten and the maximum for 6 in C;(J) can be computed.
The selection rule in this case is:

Ay = argmax,c 4, 0 01 + Be(®)ally, -1 - (1.18)

1.4.1.6 A Minimax Optimal Algorithm

We now have all the ingredients for building an algorithm relying on the confidence region Cy(6)
that we have obtained. [Abbasi-Yadkori et al., 2011] propose OFUL an algorithm leveraging
this confidence region that we report in Algorithm 3. This algorithm can also be seen under
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the name LinUCB as it shares strong similarities with the algorithm LinUCB proposed in
[Chu et al., 2011] except that the exploration term in OFUL contains ;(d) the radius of the
confidence ellipsoid whereas in LinUCB this quantity is denoted « and is an input of the algorithm.
[Abbasi-Yadkori et al., 2011] obtain strong guarantees for this algorithm.

Input: Failure probability ¢, subgaussianity constant o, dimension d, regularization A,
upper-bound for actions L, upper-bound for parameters S
Initialization: V; = AI; and él = Opa
for t <T do
Receive A;
L Play action A; = argmaxaeAtaTGAt,l + Bt(6)||a||vt_11

Receive reward X;
Updating phase: Compute 6; and update the confidence region C;1(0)

Algorithm 3: OFUL [Abbasi-Yadkori et al., 2011]

Theorem 1.18 (Theorem 3 in [Abbasi-Yadkori et al., 2011]). Assume that ||60*||2 < S, that
Ya € Ay, ||lall2 < L but also that Ya € Ay, |a’ 0| < 1. Then, with probability at least 1 — 4§,
the regret of OFUL satisfies

VT, Ro+(T) < 4/dT log(A + TL/d)Bz(5) .

Using this theorem and by observing that the radius of the ellipsoid Cy(d) scales as the square
root of the dimension, we easily obtain that under the same assumptions as Theorem 1.18 the
regret of OFUL scales as:

Ro«(T) = O(dVT) , (1.19)

where O hides polylogarithmic terms depending on T'. Up to logarithmic terms, this regret is of
the same order as the worst case regret established in Theorem 1.16 which explains why OFUL
is optimal in the class of instances defined by the constraints ||6*||2 < S and Va € Ay, |ja|2 < L.

A typical application of bandit algorithms based on the linear model is online recommendation
where actions are items to be, for instance, efficiently arranged on personalized web pages to
maximize some conversion rate. However, it is unlikely that customers’ preferences remain stable
and the collected data becomes progressively obsolete as the interest for the items evolve. Hence,
it is essential to design adaptive bandit agents rather than restarting the learning from scratch
on a regular basis. This motivates the study of non-stationary linear bandits.

1.4.2 Non-Stationary Linear Bandits

Similarly to the multi-armed bandit, a non-stationary component can be added to the model.
In the linear bandit model this takes the form of a time-dependent regression parameter #;. In
this case, the reward obtained by selecting action A; at time ¢ satisfies:

A learner that knows the exact evolution of the sequence (6} )< would obtain an expected
cumulative reward of order Y7, max,c4, a' 0f. For this reason, the dynamic regret in non-
stationary environments is defined as R(T,7) = Y1, maxc4, a' 0f — A 6F. Again, this is a
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random quantity and we obtain the regret by taking the expectation over the choices of the
algorithm to obtain:

Definition 1.19. For a policy 7, a linear bandit with unknown vectors (67);<7 € R? for
and a T rounds interaction with the environment, the dynamic expected regret is defined as

T T
R(T,7) = maxa'0f —E [Z A;HZ] .
11 %A t=1

1.4.2.1 Abruptly Changing Environments

Compared to the multi-armed bandit model relatively few works have considered non-
stationary linear bandits. Without surprise some structure on the non-stationarity is again
necessary. By analogy with the multi-armed bandit model, some works consider abruptly changing
environments where the regression vector ; is only allowed to change I'r times. Mathematically,
this means considering instances satisfying;:

T-1

Y06 #65,) <Tr. (1.21)
t=1

An interesting example of abruptly changing environment is music taste which can change
really fast for specific period of the year. For example the taste of some users change quite drasti-
cally around Christmas or Halloween but come back to normal later. Any music recommendation
system that fails to model those potential changes will make suboptimal recommendation during
this period.

Detecting a change in the linear setting can be tedious and the geometry of the arms set (\A;);
can make the detection even more complicated. Some works still follow this path and propose
change-point detection strategies for linear bandits. [Hariri et al., 2015] use the CUSUM change-
point detector and restart the learning when the learner is confident enough about a change.
[Wu et al., 2018] assume the action set .4 remains static over time and build a pool of LinUCB
learners called slave models as experts. A new model is added to the pool when no existing slave is
able to give good prediction, that is, when a change is detected. [Di Benedetto et al., 2020] build
on [Wu et al., 2018] and propose an algorithm for seasonal environments for which 6* is abruptly
changing but where there is a periodicity of the non-stationary environments. [Ding et al., 2020]
build a multiscale change-point detector and propose Multiscale-LinUCB that can be analyzed
with time-dependent action sets. [Xu et al., 2020] use a change-point detector based on a sliding
window and show good empirical performance on real-world data. However, the limitation of
such approaches is that they can not adapt to some slowly-varying environments that we describe
now.

1.4.2.2 Variation Budget

Quantifying the non-stationarity with the variation budget gives a more general framework
for studying non-stationary linear bandits. Under this model, we consider only the instances
(0F )e<T satisfying

T—-1
Bri= Y61~ 6fll2 < Br . (1:22)
t=1
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One of the advantage of this non-stationary structure is to encapsulate both abruptly changing
environments and environments in which 6} drifts slowly. When dealing with user preferences,
there is a no prior reason to believe that the preferences should change abruptly. Having this
additional degree of freedom on the non-stationarity might be of interest for practical scenarios.

Once again, since linear bandits are more general than their multi-armed bandits counter-
part, we know that the worst case regret in this setting should scale at least with leﬂ/ S72/3,
[Cheung et al., 2021] establishes a lower bound tailored to non-stationary linear bandits.

Theorem 1.20. In the drifting linear bandit setting, for any T > d and Br € [d/\/T, 8T /d?],
there exists a sequence of action sets (Ai)i<r and parameters (0F )< and some absolute
constant C such that the dynamic regret for any non-anticipatory policy w satisfies

R(T,w) > Cd2/3BY3T%/3 .

This results suggests that the dependency in By and T remains the same than for non
contextual bandits but that instead of scaling with K/3, in the linear setting only the dimension
d matters with an order d%/3.

Passively forgetting strategies were also developed for this setting. [Cheung et al., 2019,
Cheung et al., 2021] extended the sliding window forgetting principle to linear bandits propose
SW-UCB which is based on the following least squares estimator:

t
0; = argming pa ( Z (Xs— Al0)? + AH@H%) . (1.23)
s=t—7+1

[Zhao et al., 2020] proposed an even simpler method with RestartUCB where the learning is
restarted every H steps and H is tuned based on the knowledge of Br. They show that similar
guarantees than SW-UCB can be obtained. Both methods initially established regret bounds of
order @(dz/?’B:lp/gTQ/S) with a known Br thus matching the lower bound from Theorem 1.20 up
to logarithmic terms. [Touati and Vincent, 2020] find out that all passively forgetting method in
linear setting [Cheung et al., 2019, Russac et al., 2019, Zhao et al., 2020] have a technical gap

in their analysis and that the regret bounds yield degraded rates of order @(B;/ 43/ 4) without
further assumption on the action sets.

Even when additional assumption on the action sets is made, we stress out that the minimax-
optimality of the passively forgetting policies is conditioned on the knowledge of an upper-bound
Br on the true parameter drift Br. Naturally, the tighter this upper-bound, the better the
performance. Yet, whether such a knowledge is available in real-life problems is questionable. In
the linear setting, [Cheung et al., 2019] circumvent this drawback with the Bandit-Over-Bandit
(BOB) strategy where By is learned by a master algorithm that tunes the window size of SW-UCB
adaptively but yields degraded rates. Other methods have been designed for obtaining guarantees
without knowing B under different modeling assumption.

[Luo et al., 2018] propose a change point detector for contextual bandits in drifting environ-
ments and assuming that the context-reward pairs are drawn from D; at time ¢ and denoting
Br = ZtT;ll IDi+1 — D¢||Tv the sum of total variations between consecutive distributions, they
obtain a regret bound of order @(BTT2/ 3) without any information on the non-stationarity
of the environment. [Chen et al., 2019] build upon this work and propose ADA-ILTCB™ and

improve the regret guarantees with a scaling of order (’)(B;ﬂ/ 72/ 3) but without emphasis on
actual practical performance.
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In Chapter 4, we address sequential learning problems in which the parameter of the linear
bandit is evolving with time. For doing this, we consider the weighted least-squares estimator
defined as

¢
0, = argmingpa (Z ws (X — AZG)2 + )\HHH%) ,
s=1
as an efficient method to progressively forget past interactions. We design a new confidence
region for this estimator where we detail the particular role of the weights and propose
the D-LinUCB algorithm. With additional assumption on the geometry of the action
sets, we recover the @(B%/ 2/ 3) (omitting the dependency in d) optimal regret bound.
Without this assumption, we show a regret bound of order 6(3;/ 43/ 4). All previously
existing algorithms based on forgetting principle suffer from the same technical flaw that we
discuss. In particular, existing algorithms suffer a regret @(B;/ A3/ 4) without additional

assumption on the action sets contrarily to what was announced in [Cheung et al., 2019,
Russac et al., 2019, Zhao et al., 2020].

The linear bandit framework has proven to be an important paradigm for sequential decision
making under uncertainty. It notably extends the multi-armed bandit framework to address the
exploration-exploitation dilemma when the arm-set is large (potentially infinite) or changing
over time. Several extensions show that under appropriate algorithmic changes, existing linear
bandit concepts can be leveraged to handle non-stationarity in the reward model. Perhaps the
main limitation of linear bandits resides in their inability to model specific (e.g binary, discrete)
rewards. One axis of research to operate beyond linearity was initiated with the introduction of
generalized linear bandit, the topic of the following section.

1.5 Generalized Linear Bandits

1.5.1 Setting

When selecting action A; at time ¢, the main difference with generalized linear bandits is the
addition of a function p on top of the dot product AtT 0* to allow for non linear reward models.
This framework was introduced in [Filippi et al., 2010] and allows to handle reward which can
be expressed as a generalized linear model. Those include for instance the Poisson model and
logistic model. At time ¢ the learner receives a set of actions A;. The agent then selects an action
A; € A; and receives the stochastic reward in the form of:

E[X)|Fo1] = (AT 0%), (1.24)
where Fy = o(A1, A1, Xy, ..., A, Ay, X4, Ayg1, Apy1) is the o-field containing all information
before obtaining the reward at time t + 1.

The reward model assumes that the conditional distribution of the reward x given some
feature vector a belongs to the canonical exponential family as presented in Equation (1.2), i.e
there is a reference measure £ such that the density conditioned on a is of the form

dvy,
dg

Under this reward model, simple computations show that

= exp (xea - b(ea)) :

E[X|a] = b(f,) and Var(X|a) = b(8,) .
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We deduce from this that g := b. p is a real-valued function that is assumed to be twice
differentiable and from the equality featuring the variance we get that p is strictly increasing. p
is most often referred to as the inverse link function. Finally, is it also assumed in a generalized
linear model that 6, has a convenient form:

30* € R% such that 6, = a ' 6*

Note that the generalized linear bandit framework contains both the linear bandit framework
when p(z) = z and also the logistic bandits when p(z) = 1/(1+exp(—=x)). Similarly to the linear
bandits, an oracle that knows 6* ahead of time can obtain an average cumulative reward of order
s /,L(a;— 0%) with a . = argmax,e 4,p(a’ 6*). The regret is then the random quantity defined
as Ry« (T, ) = YL 1,u(at 0%) — ST (A 6%). Following the analogy with the linear model,
the regret is defined as:

Definition 1.21 (Expected Regret). For a policy m, a generalized linear bandit with a
unknown vector #* € R? and inverse link function x and a 7' rounds interaction with the
environment, the expected regret is defined as

T
Ro« (T, ) == Zmax,u )—E lZ,u,(AIG*)] :

aGAt =

We give the main assumptions under which this model can be analyzed. We assume that
the bandit parameter * has a bounded norm following ||#*||2 < S. Further, we assume that
the actions have bounded norms: |alls < L for all a € A;. We denote © = {0 : ||0||2 < S} the
set of admissible parameters and A = {a : ||a|l2 < L}. We assume that the quantities L, S
are known to the agent. For a given inverse link function u, we will follow the notation from
[Filippi et al., 2010] and denote:

k, = Ty = inf (a'0).
TSR e )

Note that in the linear case, we obtain k, = ¢, = 1.

1.5.2 The Particular Role of ¢,

In the linear setting the least squares estimator had a convenient closed form expression. In
this more general setting, the penalized maximum likelihood estimator is defined as:

t
A A
6, = argmaxepa Y | XoAL0 — b(A]0)] — ZII015 .
s=1

and needs to be computed numerically.

Upon differentiating this expression that is strictly concave in 6, ét is the unique solution

satisfying
¢

> X As —b(AL0) A — N0, =0.
s=1

For this reason, 6; is the unique # € R? that satisfies
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Z”A 0i)As + A0, = ZXA (1.25)
s=1
The analysis provided in [Filippi et al., 2010] aims at using existing tools in the linear
bandits by linearizing the reward signal. For understanding how this is done, let us upper-bound
(AL 10) — (A[L10%)|. We assume for now that 6; € © and define g,(0) == 01 (Al 0) A+ M.
The Fundamental Theorem of Calculus guarantees the following:

t

9u(6%) — gi(6,) = Z(N(A;r@*) — (A 0) A + N(0* — 6y)
s=1

1 N ~ ~
-y / A(wAT 6" + (1 — w)AT6,) dud AT (0" — 8,) + A6 — 8,)
=0

t 1 R .
- <Z / (uAl 6" + (1 —uw)Al,) dud, Al + )\Id> (0* — 6,
s=17u=0

Gt
= Gy(6" — 6,) . (1.26)

In particular, under the assumption that 6, € O, the following lower bound holds

t
Gi>c,Vi where V;=Y AAl +¢,'My.
s=1

This lower bound ensures that Gy is invertible and we can now upper-bound | M(A;Llét) -
(A, 10%)] in the following way:

1z (At+10*) (At+19t)| < ku|At+1( ét)|
= kulAL1 Gy (9:(0%) — 9¢(6:))|  (Equation (1.26))
<k ”At+1HG—1 llg¢(8:) — gt(G*)HGt_1 (Cauchy—Schwarz inequality)

Fy HAtHHV 1”2 (X = (A 0)) Ag = 20|y - (1.27)

In the last inequality, we have used Equation (1.26), the characterization of the maximum
likelihood estimator from Equation (1.25) and the assumption on the reward model. The
interesting aspect of the previous upper-bound is that except the term k,/c, the right hand side
from Equation (1.27) does not feature any term associated with the non-linearity of the reward
distribution. All the remaining terms can actually be bounded following existing analysis in the
linear setting by remarking that X, — u(A/ 6*) is conditionally on the past a zero mean noise
term.

Based on this upper-bound, the analysis from [Abbasi-Yadkori et al., 2011] can be applied and
[Filippi et al., 2010] show that the GLM-UCB algorithm that they propose has regret guarantees
of order (9( “d\ﬁ T). At first sight, this suggests that learning in this more general setting is
not harder than learning in the linear bandit setting and the only major difference comes from
the constant term k,/c,. Note however, that in the logistic case for example, k,/c, scales
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exponentially with S the upper-bound of the true parameter §*. This has consequences on the
practical applicability of the generalized linear bandit algorithms that will perform poorly in the
logistic case when S is large.

We underline that this is not a specificity of [Filippi et al., 2010] analysis and that most of
existing algorithms for generalized linear bandits have a similar scaling [Abeille and Lazaric, 2017,
Kveton et al., 2020, Li et al., 2017]. In the paper from [Filippi et al., 2010], the authors already
suggest an asymptotic argument suggesting that a scaling with k,/,/¢,, could be obtained. It
is only recently that a first paper managed to obtain a regret bound of this order with a new
concentration inequality tailored to generalized linear bandits. We elaborate on this in Chapter 5
and extend the concentration inequality of [Faury et al., 2020] to more general estimators.

Projection Step. In the previous reasoning we have assumed ét € ©. There is a priori no
reason why this should hold and [Filippi et al., 2010] circumvent this issue by considering another
estimator 6; defined as

0; == argmingce||g:(0) — gt(ét)Hv;l : (1.28)
By construction 6, € ©. We can replace 6, by 6, and use the following.

(AT 16%) — p(AT )| < kAT (6% - )
= kA1 G7 (90(0%) — 90(B0))
< kull Aesllg-119:6%) — 9 @0)ll -

We fall back on our feet using:

l90(8) = (6 1 < N196@) — 9e(B) g + 190(Be) — 906
< 2:(01) — 9061 -

Given the remarkable importance and widespread use of generalized models in practice,
ensuring their resilience to non-stationarity stands as a crucial milestone in the parametric bandit
literature. We present the first attempts for building non-stationary generalized linear bandit
models in the following section.

1.5.3 Extension to Non-Stationary Environments

In this section, we consider the generalized linear bandit models in non-stationary environ-
ments. The main difference compared to the stationary counterpart is that the environment
starts by picking a sequence of parameters (6} );<7. The reward model is modified as follows:

E[X|Fi1] = n(A[ 67) . (1.29)
Assumption 6.1 also need to be adapted by imposing that the entire sequence (6;)¢<7 lies in

the admissible set ©. The key quantities k,, and ¢, are unchanged. Similarly than in the previous
chapter, we focus on abruptly changing environments and on smoothly changing environments.
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1.5.3.1 Abruptly Changing Environments and Generalized Linear Bandits

[Russac et al., 2020] is the first paper to consider generalized linear bandits under abruptly
changing environments where the bandit instances considered satisfy the same constraint as
in the linear setting i.e Y, ' 1 (6F # 07,1) < T'r. In this initial work, the analysis from
[Filippi et al., 2010] is adapted to deal with non-stationarity. The authors combine GLB-UCB
with passively forgetting mechanisms and propose SW-GLUCB based on a sliding window
together with D-GLUCB using a discount factor.

In Chapter 5, we build upon [Russac et al., 2020] to obtain better regret guarantees (with
respect to c,) for generalized linear bandits in abruptly changing environments. This is done
by leveraging the concentration inequality from [Faury et al., 2020] under the assumption
that the inverse link function is self-concordant, a notion that will be explained in Chapter 5.
We propose SC-D-GLUCB an algorithm with a regret guarantee of order (5(0;1/ 2dy/ r'rT)
in any abruptly changing environments with at most I'; breakpoints.

1.5.3.2 Variation Budget and Generalized Linear Bandits

The study of generalized linear bandits where non-stationarity is characterized through the
variation budget (Equation (1.22)) has received more interest. In this case, the variation budget is
defined as in Equation (1.22) and only the instances satisfying By :== >7'(|6; 1 —07|]2 < Br are
kept. All existing works rely on the same conceptual approach, i.e addressing the reward’s drift
by progressively forgetting past data [Cheung et al., 2021, Zhao et al., 2020]. This is achieved by
maintaining estimation based on a truncated history of the data, judging that old observations
no longer carry valuable signal about the current ground truth ;. Formally, the learning is
canonically performed through the quasi-maximum likelihood principle, albeit equipped with a
forgetting mechanism. Let b be a primitive of p, A > 0, {ws,} the sequence of forgetting weights,
and define:

t
0, = argmaxgega Y wey [ XAL0 —b(A]0)] % 16]3 . (1.30)
s=1
This formulation covers the sliding-window approach of [Cheung et al., 2019] with w,; =
1(t — s < 7) (7 being the length of the sliding window) and the exponential-weights with
wst =% and v € (0,1). The exploration is conducted according to the optimism-in-face-of-
uncertainty principle: confidence regions for the ground-truth parameters are build around 0,
and leveraged to ensure that the learner plays optimistic arms.

[Cheung et al., 2021, Zhao et al., 2020] extended their linear bandit analysis to generalized
linear bandits with an inflated exploration bonus of order k,/c, to account for non-linearity. They

claim regret bound of order Ry = O(k#cﬁldB%/ 32/ 3) when given access to an upper-bound
Br on the true variation budget Br. Nevertheless both approaches disregard the fundamental
non-linear aspect of generalized linear bandits. Following [Filippi et al., 2010], they rely on
a linearization of the reward function around ;. Naturally, the linear approximation must
accurately describe the effective behavior of the reward signal (characterized by the ground-truth
07). This translates in the structural constraint 0, € ©, which is implicitly assumed to hold in
[Cheung et al., 2021, Zhao et al., 2020]. Unfortunately, there exists no proof guaranteeing that
0; € © could hold. Actually, existing deviation bounds [Abbasi-Yadkori et al., 2011, Theorem 1]
rather suggest that in some directions, even in the stationary case, 0, can grow to be /dlog(t)
far from ©. The situation is worse under non-stationarity since ét can be B; far from ©.
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Reward Model Assumption Regret Upper Bound

Orthogonal action sets O (Bl/3T2/3>
1/4T3/4)

Linear (Chapter 4)

X

Generalized Linear (Chapter 6)

o(p
Orthogonal action sets O (B T2/3>
X 9] (

Bl/5T4/5)

Table 1.1: Non-stationary contextuals bandits under drifting environments: regret upper-bounds presented
in this thesis.

In Chapter 6, we propose the first correct analysis of generalized linear bandits under
parameter drift. We detail the mistakes that were done by previous attempts. Under a
geometric assumption on the action sets our algorithm BVD-GLM-UCB enjoys a regret
of order (9( BY31?/ 3). In the general case, we show that it suffers at most a @(B;/ 4/ %)
regret. At the core of our contribution is a generalization of the projection step introduced
in [Filippi et al., 2010] and detailed in Section 1.5.2 adapted to the non-stationary nature
of the problem.

In Table 1.1, we report the different regret guarantees that we obtain with the algorithm
developed for the linear bandits and for the generalized linear bandits in drifting environments
that are presented in this thesis.
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Motivated by A/B/n testing applications, we study in this chapter an alternative to the best
arm identification task. We consider a finite set of distributions where one of them is treated
as a control. We assume that the population is stratified into homogeneous subpopulations. At
every time step, a subpopulation is sampled and an arm is chosen: the resulting observation
is an independent draw from the arm conditioned on the subpopulation. The quality of each
arm is assessed through a weighted combination of its subpopulation means. We propose a
strategy for sequentially choosing one arm per time step so as to discover as fast as possible which
arms, if any, have higher weighted expectation than the control. This strategy is shown to be
asymptotically optimal in the following sense: if 75 is the first time when the strategy ensures that
it is able to output the correct answer with probability at least 1 — ¢, then E[rs] grows linearly
with log(1/§) at the exact optimal rate. In this chapter, we identify this rate in three different
settings: (1) when the experimenter does not observe the subpopulation information, (2) when
the subpopulation of each sample is observed but not chosen, and (3) when the experimenter
can select the subpopulation from which each response is sampled. We illustrate the efficiency
of the proposed strategy with numerical simulations on synthetic data. The results from this
chapter are based on [Russac et al., 2021b].
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2.1 Introduction

A/B/n testing is a website optimization procedure where multiple versions of the content
(called "arms" below) are compared, often in order to find the one with the highest conversion
rate as represented on Figure 2.1. However, many e-commerce companies use A/B/n testing
not only to deploy the best product implementation, but primarily to draw post-experiment
inferences [Johari et al., 2015]. In addition to the experiment results several factors are taken
into account before making a decision (e.g. the cost of scaling-up a solution). In this setting,
each of the arms better than the default product (which we will refer to as the "control" arm) is
a contender for being deployed and the interest is not only in the best arm.

Version A- Control Version B Version C

Figure 2.1: Three different versions of a webpage. The version A corresponds to the control arm that is
currently used in production.

Given the control and K > 1 alternative implementations (variants), the simplest idea is
to distribute the traffic uniformly among the arms; the arms that appear to be significantly
better than the control at the end of the experiment are considered for deployment. While
well-established, this process can be inefficient in terms of resources. Some alternatives are
soon obviously worse (or better) than the control and would require fewer samples than the
alternatives closer to the control. A second related shortcoming of the basic A/B/n testing
approach is that setting the duration of the experiment —when done in advance— necessitates a
very conservative approach by choosing a run-length that is sufficiently long to differentiate even
the smallest possible changes.

To address these limitations, we consider in this chapter sequential testing policies that
can both adjust the allocation of the samples and be stopped adaptively, in light of the data
gathered during the experiment. This corresponds to a pure exploration task, see Section 1.2.3
for a brief introduction to this framework. A pure exploration strategy will typically choose
every minute (say), an allocation of traffic that favors arms for which the uncertainty is the
highest. The experiment is stopped as soon as the significance is considered sufficient for every
arm. Approaches have been developed in [Even-Dar et al., 2006, Kalyanakrishnan et al., 2012,
Garivier and Kaufmann, 2016] for the identification of the single arm with the highest mean. In
particular, [Garivier and Kaufmann, 2016] propose a strategy that is asymptotically optimal in
the fized confidence setting, meaning that, given a risk parameter 4, it finds the best arm with
probability at least 1 — 4, using an expected number of samples that is hardly improvable when
0 is small. Later, [Yang et al., 2017] incorporated the special role of the control arm in BAI and
proposed an algorithm that declares as winning arm the one with the highest mean only if it is
significantly better than the control.
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In this chapter, we propose a solution to the problem of identifying all the arms that are
better than the control, in a framework that generalizes the fixed confidence setting.

In order to provide useful tools for practical A/B/n testing, we address two additional issues.
First, traditional stochastic bandit models are based on the assumption that the arm samples
are i.i.d., whereas real world data streams usually show trends or some form of inhomogeneity. A
particular case of interest for website optimization are the seasonal patterns caused by time-of-day
or day-of-week variations. We henceforth include in our model observed covariates (e.g. the
time of the day, but possibly also the country of origin, or controlled covariates like the order
in which partners appear on the page, etc.) that stratify the observations into homogeneous
subpopulations. Using subpopulations can allow us to deal with non-stationary environment
where the behavior of the users differs depending on the period of the day. We study different
scenarios, depending on how much interaction is possible with these subpopulations. We provide
a sample complexity analysis and an efficient algorithm in each case. In particular, we will
show that using the subpopulation information efficiently can provide significant speedups of the
decision-making. In the following, we will refer to the task of identifying the set of Arms that
are Better than the Control in the presence of Subpopulations as the ABC-S problem.

Second, the practice of A/B/n testing often differs from a pure sequential experiment in that
the experimenter cannot always fix a risk d at the beginning and passively wait for the stopping
time of the experiment without any time limitation. To address this issue, [Johari et al., 2015]
proposed to define some notion of sequential "p-values" that can be monitored as the experiment
progresses and used to terminate it. This notion was further used in the BAI setting in
[Yang et al., 2017]. In this chapter, we elaborate on this idea by sequentially updating a suggested
solution to the ABC-S problem together with a risk assessment for this suggestion. We show that,
for any stopping time, the probability that the suggested solution is incorrect is indeed lower
than the risk assessment. When the stopping time is selected as in usual fixed-confidence pure
exploration, we recover the exact same guarantees but this view of the problem also provides
useful results, for instance, if the experiment needs to be terminated prematurely.

Structure of the Chapter. The chapter is organized as follows. In Section 2.3, we present the
mathematical model and study the information-theoretic complexity of the problem, extending
the lower bound of [Garivier and Kaufmann, 2016] to the ABC-S setting. We show how the com-
plexity of the problem depends on the degree of interaction that one has with the subpopulations,
introducing different modes of interaction to be defined in Figure 2.4 below. We also consider
in detail the Gaussian case which gives rise to more interpretable results. Section 2.4 describes
how to implement the proposed strategy, which involves the numerical resolution of non-trivial
optimization problems. Finally, we provide the results of numerical experiments on synthetic
data sets in Section 2.5. All the missing elements for the results presented in this chapter are
reported in Appendix.

2.2 Related Work

Pure exploration strategies have been studied in various settings: the identification of the
best arm [Even-Dar et al., 2006, Garivier and Kaufmann, 2016], the identification of the top
m arms [Chen et al., 2017, Kalyanakrishnan et al., 2012, Gabillon et al., 2012] identifying the
arms that are better than a threshold [Locatelli et al., 2016, Cheshire et al., 2020], or identifying
all e-good arms [Mason et al., 2020]. As far as we know, the work presented here is the first
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to consider the problem of identifying all the arms better than a control. It is also the first
to consider subpopulations in pure exploration tasks. While motivated by the example of
online companies, we believe that the proposed algorithms are relevant to other domains where
randomized controlled trials are used for learning. An example could be clinical trials: one may
wish to identify all the alternative treatments that work better that some reference medical
treatment. This would permit to choose among them taking into account different characteristics
(some could be cheaper, using another molecule for avoiding allergy, etc.).

Close to the notion of the control is the notion of threshold. [Locatelli et al., 2016] propose an
algorithm for identifying all arms above a given threshold. Their algorithm samples according to
the significance of a statistical test, and shares some similarities with the approach presented here
in the Gaussian case; however, the perspective is rather different because the authors consider the
fized-budget setting. Here, the index of the control arm is known but its probability distribution
is not.

€]

Figure 2.2: Mean of the control arm (k = 0) and of three other arms.

In Figure 2.2, we illustrate a setting with a control arm (k = 0) and three other arms. The
four different probability distributions are unknown to the learner. We want to convince the
reader that the problem of identifying the arms that are better than the control is different than
(a) the BAI problem or (b) the problem of identifying arms that are better than a threshold. We
focus on the fixed confidence setting. Quite intuitively, the larger the gaps between two means
the easier it is to detect which one is the larger. For (a), the arm 1 is the one with the highest
mean and is the target. Any reasonable algorithm will quickly discover that the arms 0 and 3
perform significantly worse than the arm 1. We expect an efficient policy to focus mostly on arm
1 and 3 for which the gap is smaller. For (b), the threshold problem assumes that the mean of
the arm 0 is known. Again, the arms 1 and 3 will be quickly eliminated because they are far
above the threshold. In this scenario, we expect the sampling strategy to sample mostly arm
2 because the mean of arm 0 is known. In our setting, the performance of the control arm is
unknown and the arms better than the baseline are the arms 1 and 3. We expect the algorithm
to pull the arms 0 and 2 most of the time in this case because those are the harder to distinguish
and there is a need to estimate the control arm as well.

In this chapter, we also add an additional layer of complexity for measuring the performance
of an arm. The quality of the different arms is assessed with a weighted combination of its
subpopulations means. Minimizing the estimation error of a convex combination of means through
adaptive sampling was considered in [Carpentier and Munos, 2011] with the introduction of a
stratified estimator that will naturally appear in our analysis.
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2.3 Complexity of the ABC-S Problem

2.3.1 Mathematical Framework

A problem instance consists of the following ingredients. Known to the learner are the number
of arms K > 1 in addition to the designated control arm 0, the number of subpopulations J (a
standard bandit being J = 1), and the vector 8 € R’ representing the relative importance of
the subpopulations for the learning objective. We further make the stochastic assumption that
samples from each arm k (including the control) and subpopulation i are drawn i.i.d. from an
unknown probability distribution v ; on R, whose mean we will denote by ;. The quality of
arm k is pg = Z;-le Bipik,i» the combination of the means of the arms in the different populations.
We now define formally the ABC-S problem.

Definition 2.1. For 8 € R’, we define the ABC-S problem as the correct identification of
the set

Sp(m) = {k € {1,..., K} | S it > iﬁm,i} .
=1 i=1

At every time step t, the algorithm selects an arm A; based on previous choices and outcomes
and observes or selects (except when explicitly specified) the population type I;. Upon the
selection of the arm A; a reward X; is obtained. This defines a sigma-field generated by the
observations up to time ¢ denoted F; = o(A1, [1, X1, ..., As, I+, X¢). The number of times arm &
was selected for subpopulation i at time ¢ is denoted Ny ;(t) :== >%_; 1(As = k, I = i) and the
number of draws of arm k, Ni(t) == S%_; 1(A; = k). We define the gap with the control arm
and arm k, Ay = po — pk-

2 2, B o amd, 2t
MR
&1:3/10 ()43:2/10

Figure 2.3: Example with three subpopulations and a = (0.3,0.5,0.2) € X3.

Modes of interaction We consider four modes of interaction of the learner with the bandit,
as specified in Figure 2.4 below. In any of the three passive modes of interaction (described in
Figures 2.4b to 2.4d), we assume that the subpopulation i represents a known proportion «; of
the total population, and hence that the sequence of subpopulations is drawn i.i.d. from the fixed
and discrete distribution I; ~ o = (a1, ..., ) with a € X7 == {x € [0,1]7 | 3; z; = 1} the
J-dimensional simplex. An example of a population with 3 different subpopulations is illustrated
in Figure 2.3. « is an exogenous parameter and can differ from 8 which is inherent to the learning
objective and is also assumed to be known. Although it is most natural in many applications to
consider that B = a (it is even necessary in the oblivious mode to make the estimation of the p’s
feasible), Example 2 below describes a concrete scenario in which 8 has negative components.

Example 1. Let us consider a company that sells cap to the subpopulations from Figure 2.3. It
might be the case that users from different subpopulations behave differently when offered the
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1. See I; ~ ax 1. Pick A; 1. Pick A;
1. Pick A; and I; 2. Pick A; 2. See I} ~ 2. Do not see I} ~ a
2. See Xy ~wva,.r, 3. See Xy ~ vy, 1, 3. See Xy ~vq, 1, 3. See Xy ~ g, 1,
(a) Active mode (b) Proportional mode (c) Agnostic mode (d) Oblivious mode.

Figure 2.4: Modes of Interaction between Learner and Bandit in each round. In Active mode the learner
determines the subpopulation, while in the right three passive modes it is sampled from a.

same product as illustrated in Figure 2.5. For this reason, it seems natural from the company
perspective to consider the performance of a product as the weighted sum over the different
subpopulations. While natural proportion a might exist, it could be the case that for some
reason the company is really interested in targeting a specific subpopulation. This is when
allowing 8 # « in the learning objective becomes attractive.

Figure 2.5: A company selling caps to a population with J = 3 subpopulations.

Example 2 ([Kaufmann and Koolen, 2018, Largest Profit Identification problem]). Consider a
company choosing among K product designs the model to mass produce. Each candidate design
k has an (equilibrium) sales price j;, 1 and production cost ju 2. The goal is to find the model &
with the largest profit ji,1 — 2. Prices and costs are currently unknown, but can be adaptively
sampled. Sampling the "price" subpopulation ¢ = 1 is typically implemented by performing user
preference studies, taking questionnaires, etc. Samples from the "cost' subpopulation i = 2
involve rating manufacturing facilities, forecasting material and labor costs etc. The importance
vector is here 8 = (1,—1) and « has to be set by the learner.

The distributions (v4,i)q,; are assumed to belong the same one-parameter exponential family,
P = {(vg)g : dvg/d§ = exp(fz — b(0))}, with £ a reference measure on R and b: © C R — R.
Every probability distribution vy in P is entirely defined by its mean b(8) [Cappé et al., 2013)].
We may hence identify any bandit instance with its matrix of means p € RE+D*J In addition,
the Kullback-Leibler divergence between two distributions vy and vy € P may be written in the
following Bregman form:

d(p, 1) = KL(vg, ver) = b(8') — b(6) — b(6)(¢' — 0) ,
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where 1 = b(#) and p/ = b(¢’) correspond to the means of the two distributions vy and v
We also use the notation kl(p, ¢) to denote the KL divergence of two Bernoulli distributions of
parameter p and gq.

We define £ .= {p:Vk e {1,..., K} U{0},Vie {1,...,J}, v, € Pand o # pu} the set of
identifiable instances where no arm has the same weighted mean as the control. Our objective is
to solve the ABC-S problem for any bandit instance u € L. At every time step, the policies we
consider output a risk assessment b together with a recommendation S;. We focus on safely
calibrated policies, that are defined below.

Definition 2.2 (Safely Calibrated Policies). A policy is said to be safely calibrated when
satisfying

Vpe L, W e (0,1), Pu(3t>1:8#8s(p) N&<3)<s, (2.1)

Finally, when fixing a level of risk §, we consider the stopping time associated to the filtration
Fi, 75 = inf{t > 0, 5 <6 }. The objective is then to minimize the expected number of rounds
necessary to obtain a level of risk of at most §. Contrary to usual d-correct algorithms if stopped
before 75, the strategy still provides guarantees on the output set following Equation 2.1. In
particular, safely calibrated policies have a sampling rule that does not depend on any pre-specified
6§, and as such they are d-correct for any 9.

2.3.2 General Form of the Sample Complexity

Depending on the mode of interaction from Figure 2.4, the learner has a set of sampling
constraints to satisfy, here denoted C and precisely defined in the next section. We define Altg(p),
the different problem instances where the set of arms better than the control differs from that of

the instance p. Formally, Altg(p) = {X € L | Sg(A) # Sg(w)}. This allows us to bound the
sample complexity.

Theorem 2.3. Let § € (0,1) and B € R7. For any strategy satisfying Equation 2.1 and any
u € L, the expected number of rounds for the ABC-S problem for the agnostic, proportional
and active mode satisfies:

Eylrs] > T*(w)KI(6,1 = 8) and liminf 1%1[;?) > T*(p) . (2.2)

where recalling that A\, = Z‘i]:l BiXk.is

T () ' = f ; i N 2.3
7 =5, 5SSt ) >

— supmin  inf Z Zw]“ (M is Akyi) - (2.4)
wee bE0 AeLdo=h, | 4o

Proof. Using the transportation lemma from [Kaufmann et al., 2016] and recalling that
Ny i(t) is the number of draws of arm k in subpopulation ¢ up to time ¢, we have for any
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safely calibrated policies

J K
VA € Altg(p), DO Epu[Nii(75)]d(pk,is Aki) > k1(8,1 = 6) .

i=1 k=0
Therefore,
kl(6,1—46 Inf ZZE [Nk,i(75)]d(pke,is Aki)
)\EAltg k 0i=1

K J
E Nk 7’5
=E, f “ ot
DN

kal

d(preir M i)

< E,l7s5] su inf w A .
> [6weIC)/\EA1tﬁ I;)Zzl kz ,ukla k’L)

In the last inequality, we used the fact that the normalized expected numbers of draws
satisfy the set of constraints defined by C C ¥(x41);. Using kl(6,1 —6) ~ In(1/§) when &
tends to 0 gives the first result.

We denote Aj(w, A\, p) = Zfzo Z%I:1 Wi, id(ftk i, Ak,i)- To obtain the second result, we will
simplify the expression of T*(u)~!. Using that the KL divergences and the weights are
positive, for A to be in the alternative, one of the two following conditions need to be
met: (1) there exists k € Sg(p) such that A, < Ag or (2) there exists k € Sg(p) == {k €
{1,...,K} | L < ,uo} such that A\ > Ag.

For this reason, one has

inf  Aj(w,\, ) =min | min inf Aj(w,A min inf  Ay(w, A .
)\GAltB(u) J( IJI) (kESﬂ(u) Al )\k<)\0 J( “) kGS ( ) Al )\k>)\0 J( IJI))

We obtain the desired result by remarking that the inner optimization programs infy are
each achieved on the boundary (the constraint being satisfied with equality) where they
coincide, and that {1,..., K} = Sg(p) U S5 (k). O

2.3.3 Influence of the Mode of Interaction

We consider the four different modes governing the sampling rule as outlined in Figure 2.4.

2.3.3.1 Agnostic Mode

In the agnostic mode (Fig. 2.4c) an arm is first selected, after which the subpopulation type
is observed. Mathematically, this brings the equality E, [Ny ;(T)] = oE,[Ni(T)] established
in Lemma 2.4 and the independence constraint on the weights w € Cagnostic = {wk,i = auy, :
(uQ, ceey uK) S ZK+1}-

Lemma 2.4. For any agnostic policy where Ay is chosen knowing Fi—1 but independently
from I, when defining Ny, ;(t) = Y41 1(As = k N Iy = j) and N(t) = YL 1(As = k),
then

Vk € {0, 800 ,K},Vj € {1, 00T J},Vt >1, Eu[NkJ(t)] = ajIE“[Nk(t)]
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Proof.
t
Eyu[Nk,;(t) ZJP’ I,=j) = ZPM(AS = k|1, = j)P(I, = j)

:Za] (As = k|Is = j) Za] (As =k)
:ajEM[Nk( )]

where in the fourth equality, we have used that the action A; is selected independently from
the population indicator I;. ]

2.3.3.2 Proportional Mode.

In the proportional mode (Fig. 2.4b), A; is chosen based on F;_; and the current subpopulation
I;. Here, the constraint is that the total number of pulls of the different arms in the subpopulation
i should respect the frequency of this subpopulation, i.e. >, E, [Ny ;(T)] = a;T. This induces a
marginal constraint on the weights of the form w € Cprop = {w € X1 1)y [ Vi < J, Yopwp; =
a;}. This result is established in Lemma 2.5 reported below.

Lemma 2.5. For any proportional policy where A; is chosen knowing F;_1 and I, when
defining Ny, ;(t) = XL _1 1(As =k N Iy = j) and Ni(t) = X', 1(As = k), then

Vie{l,...,J}Vt>1, ZE [Ni.; ()] = ajt
Proof.

K t K t K
ZEu[Nk,J(t)] = Z ZEM [ﬂ(ls = j)1(As = k)] = ZEH 1(Is = j) Z 1(As = k)
k=0 s=1k=0 s=1 k=0

t

= ZIP’u(IS =j) =t
s=1
O

2.3.3.3 Active Mode

In the active mode (Fig. 2.4a), the learner has an additional degree of freedom and can ask
for any subpopulation type at any round. In that case, w € Cactive = X(f41)s is unconstrained.

By remarking that Cagnostic C Cprop C Cactive; and given the optimization program (Equa-
tion (2.3)) solved to obtain the characteristic time, one immediately gets

Vllz € [’7 T;ctlve( ) < proportlonal( ) < T;gnostlc(“) . (25)

Hence, as expected, the more control/information on the subpopulation the learner has, the
faster he is able to identify the set of arms that are better than the control.
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2.3.3.4 Oblivious Mode

To compare with the oblivious mode, in which the subpopulation information is not even
observed, we have to assume that a = B. In that case, the arm rewards follow a mixture
distribution: Xy|A; =k ~ Z;le a;vy ;. We properly define the characteristic time of an oblivious
safely calibrated policy in the following proposition.

Proposition 2.6. Let 6 € (0,1) and B € R’. For any oblivious strategy satisfying Equa-
tion 2.1 and any p € L, the expected number of rounds for the ABC-S problem for the
oblivious mode satisfies:

.o Eyul7s]
> _ m Lad > Tx . .
E [ ] T b11v1ous( ) kl((S? 1 5) and hé_}(l)lf 111(1/6) — +oblivious (N)

where

Tgblivious(ﬂ’)il = Sup inf Z wiKL <Z Qi VE i, Z O‘z”k z) ° (26)

'UJEEK+1 v'e Alt(v

Furthermore,
V[,l, S Ea T bhv10us( ) > T;gnostlc(l“l’) :

Proof. While with observable subpopulations the distributions are entirely characterized
by their means, this is no longer the case with mixture distributions. In particular, this
requires defining a different alternative.

J
Alt(v) = {1/ = ZaiVl/c,i with v, ; € P and Sg(v') # Sp(v) } .
i=1

Using the transportation lemma from [Kaufmann et al., 2016], we have for any safely
calibrated oblivious policy

J J
v € Alt(v ZE [Ny (75)]KL (ZalykZ,ZalukJ > Kkl(6,1—9) .
k=0 =1 =1

Therefore,

v eAlt(v

J
=E,[rs] inf Z Eu IEEZNECT(;?) KL <Z iV 4, Zazukl>

A
vIEAl(w) i

J
< E,[r5] sup inf ZkaL (ZO‘ZV’”’Z%VM> )

J J
kl(6,1 —0) < inf ZE [Nk (75)]KL (Zalykz,ZalukJ

wWEX K41 V 'eAlt(v

Using kl(d,1—9) ~ In(1/6) when ¢ tends to 0 gives the first result. Using the joint convexity
of the KL divergence one gets

J J J
KL (Z V4, Zaw,;’i> < ZaiKL(Vk:,ia V];i) .
i=1 i=1 i=1
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Assuming that the mean of V,’m. equals Ay ; and recalling that for distributions in P, one has
KL(v 1/,{”) = d(pk,i, M\ii), we deduce,

Tgblivious(“)_l = Sup inf Z w, KL (Z AV, Z azl/k z)

WGEKH v'e Alt(v

< sup inf ZZa,wkd (Kkir Asi)
w€2K+1 AC Al () 2050

- T;gnostlc (/’l’) - .

O]

This completes the picture of the ordering of the characteristic times by showing that, when

a=p,

VN S ‘Cv T;ctlve( ) < proportlonal(“) < T;(gnostic(u) < obhv10us(y’) . (27)

Note that although we provide, in Section 2.4, algorithms to numerically compute the first
three complexites, evaluating T i ious(#) Would be much harder, as the mixture distributions
can no more be parameterized by their mean only. Our current techniques do not yield a
general-purpose practical algorithm that is asymptotically optimal in the oblivious mode for
the ABC-S problem. In the Bernoulli case, however, as mixtures of Bernoulli distributions are
Bernoulli distribution, one can use the single-population Bernoulli approach discussed in the
next paragraph. For Gaussian distributions, one can use a suboptimal approach based on the
observation that location mixtures of Gaussians with bounded means are sub-Gaussian (see
Appendix 2.E.1 for details).

2.3.4 Single Population and Relationship with Best Arm Identification

In order to illustrate the nature of the ABC-S problem, we make a detour through the
single population case, that is, when J = 1. Given two weights wg, wp, and two means pq, iy,
we introduce the minimum weighted transportation cost for moving the means to a common
position.

dmid (wa7 Ha, Wy, /J'b) = H’l}f wad(ﬂm U) + wbd(:ubv U) = wad<:uﬂ7 /U;’b) + wbd(ubv v;,b) (28)
where v7, . the optimal common location, is the weighted average, i.e.
* wa wb
vy = + :
a,b Wy + wbtu'a Wy + wblub

Constructing an Instance in the Alternative When identifying all the arms better than
a control, there are two different ways to obtain a close-by bandit model X in the alternative.
The first option consists in taking an arm which does not belong to Sg(ut) and to augment its
mean on the alternative model such that it becomes above the control (or to reduce the mean of
the control). Otherwise, it is possible to take an arm that is better than the control in the bandit
model p and to shrink its mean such that it becomes lower than the control on the alternative
(or augment the control). Note that the infimum over the alternative has the same expression in
the two cases (see proof of Proposition 2.7).
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There is a priori no link between a BAI problem and an ABC one. In particular, in the
BAI problem there are only K + 1 possible choices for the best arm while when looking for
Sp(p) there are up to 2K (different sets to consider. Yet, the next proposition shows that the
characteristic time T* of any ABC problem with J = 1 subpopulation shares strong similarities
with that of BAI problems.

Proposition 2.7 (Characteristic time with a single population). Let § € (0,1), p € L and
assume that J = 1. For any strategy satisfying FEquation 2.1, Equation 2.2 holds with

K

inf > wed(ug, Ap) = sup migdmid(w07MOawbaﬂb)~

T*(p)™' = sup
wGEK+1 AeAltﬁ(N) k=0 wGZK+1

Proof. In the particular case when J = 1, the expression of the characteristic time can be
simplified. The first part of the proof can be obtained using similar argument than for
Theorem 2.3. The missing part is the simplification of the expression of T*(u).

We denote Aq(w, A, p) = ZkK:O wid(pg, A\,). Following the reasoning from the proof of
Theorem 2.3 one of the two following conditions needs to be met: (1) there exists k € Sg(u)
such that Ay < Ag. (2) there exists k € Sg(p) == {k € {1,..., K} | px < po} such that
AL > Ag.

For this reason, one has

inf  Aj(w,A\,p) =min| min inf Aj(w,A, ), min inf  Aqj(w, A, )
AcAltg(p) 1( u) (kesﬁ(p,) A <o 1( u) keSy () A:Ak>Ao 1( IJ/)>

In this simpler case, it is possible to obtain an explicit formula for this infimum. We start
from

T*(w) ' = sup min| min inf Aj(w, A\, p), min _ inf A;(w, X, .
(“) wEZ;I()_H keSg (1) A:Ap<Xo 1( ”‘) kGSE(u)’\:/\k>>‘0 1( “)

Let us focus on the case, A\, < Ag and fix an index k € Sg(p). Ay is always smaller when
all the Ay for b # 0 and b # k coincides with pp. This gives,
min inf Aj(w, A\, ;) = min inf d(po, M) + wrd(pg, Ak) -
k‘ES;(N) )\5){k<)\0 1 2 kzesé(u) )\3/\1k§)\0 wod(po, do) + wid{puk; Ar)
We consider the Lagrangian function, L(\g, Ak, q) = wod (1o, Ao) + wrd(pg, k) + ¢( Ak — o).
Differentiating with respect to A\p and A\ brings the condition
wo Wi

Ay = AL = \i o = argmin,wod(uo, \) + wrd(pig, \) = +
0 = A = Ao = argminywod(po, A) + wid(pr, A) = =70 + =

Recalling, dmid(w(]a Ho, W, ,Uk) = inf, de(luOv U) + wkd(,uka U) one has,

i inf A S ) = in  dp; s 10, W, . 2.9
ke%lél(l”) NN 1w, A, ) ke%l;(lu) a(wo, fo, Wi, fur;) (2.9)

Solving the optimization program for k € Sﬂ_(u) and under the constraint A\ > Ao, gives
the exact same set of constraints and optimal solution, i.e.

min _ inf  Aj(w, A\, p) = min  dpiq(wo, po, W, LK) - (2.10)
k€S (1) M Ak>A0 k€S (1)

Bringing Equation 2.9 and Equation 2.10 together and remarking that {1,..., K} =
Sp(pn) U Sg(p) gives the announced result. O
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Note that the expression of the sample complexity is really close to the one in the BAI setting
([Garivier and Kaufmann, 2016, Lemma 3] or Theorem 1.8 from Section 1.2.3) except that we
consider all the indices different from the control here instead of the indices different from the
best arm.

2.3.5 The Gaussian Case

In this section, we consider the Gaussian case which is of interest as the characteristic
time admits a more explicit expression, making it possible to further investigate the differences
between the various modes of interaction. We will state our results for the heteroscedastic case,
in particular to get a closed-form proxy for the Bernoulli case, where each variance is a function
of the (unknown) mean.

A /B Testing. When K =1 (one arm and the control arm), we are considering a standard A/B
test with subpopulations and one can prove the following result (established in Appendix 2.A).

Proposition 2.8. For any p € L with K = 1 and vi; = N(Nk,j»alz,j)f caallimg
A= Z;'Izl Bi(po,i — p1,) one has

1. In the agnostic case, the characteristic time and the optimal weights satisfy

2
BUOI 5012
o VPR

ic (k) =
agnostic A%

W
and Vi < J, Yk € {0,1}, w}; =
\/z 1 01 \/E Z %"

2. In the proportional case, the characteristic time and the optimal weights satisfy

2L, & (o0, + 01,02
A?
and Vi < J, Vk € {0,1}, wj,; =

Thop(p) =

prop
Q0L
00,i + 01,

3. In the active case, the characteristic time and the optimal weights satisfy

J 2
. 2 (Zi:l |Bil(00,; + 0’1,1))
Tactlve(p’) = A2
1
|Bilok,i

and Vi < J, Vk € {0,1}, wi,; = :
’ J:I |5i|(00,i + 01,1')

The optimal allocations in the agnostic and proportional cases are constrained by the
proportion of the different subpopulations «, whereas, for the active mode, the optimal weights
only depend on 3. In general, the optimal weights also depend on the subpopulation variances, as
is well-known in stratified sampling estimation. Note however, that when (a) the subpopulations
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all have a common variance o2 and (b) 8 = «, then the optimal allocations and the characteristic
times are equal for the agnostic, the proportional and the active modes. In that case, w;ﬂ» =q;/2,
which also corresponds to the well-known result in Gaussian A /B testing [Kaufmann et al., 2016].
We have more generally observed that whenever the subpopulations have approximately the
same variances, the agnostic and proportional modes yield very similar performances.

Weight Computation in the Homoscedastic Case Even in scenarios where all subpop-
ulation variances are equal to 2, the active mode remains very attractive in the cases where
B # a. The following proposition shows that in that case, the optimal weights for the ABC-S
problem can be computed efficiently.

Proposition 2.9 (Efficient computation of the optimal weights in the Gaussian case).
Assume Gaussian distributions with a known variance o2, and let

A2
(g, - - - Uk ) = argmax,cy;, | min —0b
b#0 1 1
02 (5 +a)
The optimal weights for the active mode satisfy
. P ’/BZ‘
Vke{0,...,K}, Vi< J, wp;, =up =5 -
=116l

If, in addition o« = B, the above also holds for the agnostic and the proportional modes.

The interesting part of Proposition 2.9 is that computing (uf, . .., u} ) can be done efficiently
using Theorem 5 from [Garivier and Kaufmann, 2016]. The optimal weights of the ABC-S
problem can be deduced from u* without any further calculation.

2.4 Algorithms

To obtain our algorithms, we instantiate the Track-and-Stop algorithm template introduced
and analyzed in [Garivier and Kaufmann, 2016] for the BAI setting and extend it to our ABC-S
problem. We refer the reader to Section 1.2.3 for a brief overview of the tools used for the BAI
task.

The Sampling Rule. The high level overview of the algorithm is as follows. We are given
the number of arms K and subpopulations J, the exponential family, the mode of interaction,
the subpopulation importance coefficients 8 and, for passive modes, their natural frequencies
a. The algorithm then proceeds in rounds ¢t = 1,2,... Each round ¢, it calculates the empirical
frequencies fi; € RETD*J given by

fieat) = Nii(t) <=

)

1 t
> X {A =k, I, =i} .
s=1

It then computes (a suitable approximation of) the maximiser (i.e. the oracle policy) w; =
w*(f1t) € X(g41)xs of problem Equation (2.2). In the active mode, we “D-track” wy, i.e. we
sample (A, I;) € argmaxy, ;N ;(t — 1) — tw;(k, 7). In the proportional mode, the subpopulation
I, is given and we “D-track” the conditional distribution of w; on arms given the subpopulation,
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i.e. Ay € argmax Ny, 1,(t — 1) — tag,we(k|1;), where wy(k,i) = cywy(k|i). In the agnostic mode
we “D-track” the marginal distribution of w; on arms, i.e. A; € argmax; N (t — 1) — tw (k). For
each mode, this sampling strategy ensures that Ny ;(t) ~ tw:(k, i) ~ tw}, ;(p), thus driving down
the reported level of confidence as quickly as possible given the lower bound from Theorem 2.3.

The Recommendation. Concluding each round, we recommend
. J J
8() = {k e {1, . K} | D Bifslt) > > Bifios(t) } (2.11)
i=1 i=1

at confidence level §(t) = min {§ € (0,1)|Z(t) > B(t,6)} obtained by inverting the threshold
B(t,0) at the GLR statistic

J
Z(t) = min inf Noi()d(fiai (), Aas) - 2.12
(1) ggAeﬁggozAbae%b}; A(Od(frai (1), Aa) (2.12)

At first sight the expression of Z(t) may seem coming out of nowhere. In Appendix 2.E.2, we
explain in the single population case why it is quite natural to consider this quantity and the
relation with its counterpart in the BAI setting from Equation (1.8).

The Threshold. For obtaining a valid threshold, we can rely on existing works that can
be applied to our setting. For the sharpest theoretically supported thresholds we refer to
[Kaufmann and Koolen, 2018]. Namely, an ABC-S problem with K-arms and J-subpopulations
has 25 answers, and its rank [Kaufmann and Koolen, 2018, Definition 22] is 2.J, as can be read
off from Equation (2.4). By [Kaufmann and Koolen, 2018, Proposition 23] we have validity for
B(t,6) = 6JInlnt+In 34+ K+2J-O(Inln $). In practice, we follow [Garivier and Kaufmann, 2016]
and use instead the heavily stylized In((1 + Int¢)/J) that omits several union bounds.

2.4.1 Implementation Details

In this section we go into more details on the algorithm for each mode. Let us start with
some notation. Let 3(t,d) be a threshold function. We denote the inverse of 3(¢,9) in its second
argument by

B7Yt,Z) = min{s € (0,1)|Z > B(t,0)}.

We extend the definition of the GLR statistic to sample frequencies w and bandit p by

J
Z = mi inf ; ; ;
(w, p) %;g)l )\Eﬁlzr){():kb Z Zwa,zd(ﬂaﬂa Aasi) 5
ae{0,b} =1

so that the original definition Equation (2.12) is Z(t) = Z(IN(t)/t, a(t)). For any p, we denote
by VwZ(w, u) any sub-gradient of w — Z(w, u). We can obtain one such a sub-gradient by
letting (b, A) be any minimiser of Z(w, p), and constructing the vector with entry (a,i) given by

d(/ubaﬂ', )\a,i) iface {O, b}
0 otherwise .

(a,i) — {

Our algorithms will make use of an online learning method (called .4 below) for linear losses
defined on the simplex. This online learning task is known as the Hedge or Experts setting in
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the literature. We will make use of AdaHedge [De Rooij et al., 2014], as it adapts automatically
to the range of the losses and does not require tuning. Our methods for the active, proportional
and agnostic modes are displayed as Algorithms 4, 5 and 6. Each algorithm consists of a
Forced Exploration part, which serves to ensure that the empirical estimate of the bandit model
converges, i.e. f1(t) — p. By forcing exploration sub-linearly often, the main term in the sample
complexity is unaffected asymptotically. Each algorithm further makes use of online learning to
compute w*(u). In the notation of this section, we have

w*(pu) = argmax Z(w,p) .
weC

Our approach to learning w*(u) is to perform gradient steps on the plug-in loss function
w — —Z(w, 1(t)). Tt is in the convex domain C C ¥ (k1) that we see the main difference
between the three modes. Recall from Section 2.3.3 that in the active mode w is not constrained
further, in the proportional mode the subpopulation marginal of w must equal a, i.e. (1, w) = «,
and in the agnostic mode w must be the independent product w = va of some arm marginal
v € Y41 and the subpopulation frequencies ae. We hence need to design online learners for
each of the three sets of constraints. In the active case, we have one learner A that learns the
full joint w*(a, j) directly, in the proportional case we use one learner A; for each subpopulation
j €{1,...,J} to learn the conditional distribution w*(a|j), and in the agnostic case we again
use one learner to learn the common marginal w*(a). This difference is reflected in the loss
function used in each mode, and hence in the gradient that is fed to each learner. In the active
case we use the full (K + 1) x J gradients

N = N, Z(wy, fu(t)) .

In the proportional case we have w(a,i) = w(ali)a;, and by the chain rule we hence have
gradients ' '
ei,proportlonal — _vw(ah)Z(wt’ﬁ’(t)) = —aiva('wt’ﬂ(t))ei ,

where e; is the i-th canonical vector from R”’. Finally, in the agnostic case we have w(a,i) =
w(a)a;, and again by the chain rule we have

K?gnOSﬁC — —Vw(a)Z(wbﬂ(t)) = —VwZ(wt,ﬂ(t))a.

In the following, we report the pseudo code of the algorithm in the active mode. The pseudo
code for the agnostic and the proportional modes is deferred to Appendix 2.D with a discussion
on the run time of the algorithms.

2.4.2 Theoretical Guarantees

We now establish the asymptotic optimality of our approach with the following theorem
proved in Appendix 2.C.

Theorem 2.10. For every mode, Subpopulation Track-and-Stop is safely calibrated (Equa-
tion 2.1). Moreover, Subpopulation Track-and-Stop is asymptotically optimal and matches
the lower bound from Theorem 2.3, in the sense that

: _ E[r
f 1 =T .
or every bandit pu € L, lim In(1/0) (n)
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Input: K arms, 3(t,0) threshold, A online learner for (K + 1) x J experts.
fort=1,2,...do
if any pair (a,i) has Noi(t — 1) </t then
| Pick Ay, I; any such pair
else
Get wy from online learner A
L Pick (A¢, Iy) € argmin, ; Ny i(t — 1) — twy(a, 1)
Send loss vector £y = =V, Z(wy, f1(t)) to A
Obtain sample X; from vy, ,
| Recommend S(t) from Equation (2.11) at confidence &; = S~ (t, Z(N (t)/t, ja(t)))

Algorithm 4: Algorithm for Active Mode.

2.5 Experiments

We conduct numerical experiments' to evaluate the proposed algorithms, focusing on Bernoulli
bandit models, which are ubiquitous in practical applications. In our experiments, in addition
to our T-a-S algorithms with the various interaction modes, we include two more sampling
rules for comparison: (1) uniform sampling as a baseline, and (2) the experimentally efficient
Best Challenger (BC) heuristic inspired by [Garivier and Kaufmann, 2016], adapted to the ABC
problem and denoted BC-ABC in the sequel. BC for the BAI problem samples in every round
the empirical best arm a; or its best challenger, i.e. the arm é # a; at which the GLR statistic
(Equation 1.8) reaches its minimum. Our BC-ABC adaptation samples in every round the
control arm or the arm that yields the minimum GLR statistic Z(¢) in the agnostic interaction
mode (since Z(t) is subpopulation independent). For clearer comparison between the sampling
strategies, all algorithms use the Chernoff stopping criterion to determine either when to stop or
output the risk assessment at a given time. We also opted for sampling rules independent from
the confidence parameter d, because we are aiming for safely calibrated policies.

We first illustrate the fact that the T-a-S algorithm provides a correct —but rather conservative—
assessment of the risk of its decision whatever the time it is stopped at. To do so, we generated
1000 bandit instances uniformly at random from [0, 1] with K = 2 arms. For each instance,
we recorded the first time a certain risk assessment level is reached and the correctness of the
algorithm’s recommendation at that point. We map to each risk assessment level the proportion
of errors across all instances. We chose two stopping rates that are not supported by theory
but are recommended in practice [Garivier and Kaufmann, 2016]. Figure 2.6 (Left) illustrates
the isotonic curve fitted on our observations and suggests that even the most lenient stopping
threshold In((In(¢) 4+ 1)/6) results in much lower empirical probability of error than the risk
assessment. In the following, we use the stopping threshold In((In(t) + 1)/4).

In our second experiment, we generated 3000 Bernoulli bandit instances with K = 2 and a
random number of subpopulations J between 2 and 10. Each subpopulation-arm’s mean 4 ;
is drawn uniformly at random from [0, 1], and the subpopulation frequency vector « is drawn
from a Dirichlet(10) distribution. Table 2.1 reports the average stopping time of each algorithm
across all bandit instances. On average, the T-a-S algorithms at all modes stop at similar times,
and all adaptive sampling methods terminate faster than uniform sampling.

!Code at https://gitlab.com/ckatsimerou/abc_s_public
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Figure 2.6: (Left) Risk assessment calibration on a log-log scale. (Right) Stopping time boxplot for
po=1[0.10.40.3;0.20.50.2;0.50.10.1] € [0,1)K+Vx7 when B = [1/3,1/3,1/3], e = [0.4,0.5,0.1] with
Bernoulli distributions.

Table 2.1: Average stopping time. Description in text.

T-a-S (active) T-a-S (proportional) T-a-S (agnostic) BC-ABC Uniform
14871 15231 15444 15279 21586

To better understand the role of 8 and «, we ran the algorithms on a specific model (see
Figure 2.6, Right) with e # 8. In this case, the optimal proportions are constrained by the
frequencies of the subpopulation for passive interaction modes. The expected number of samples
needed to identify the ABC-S solution is lower for the active policy, which has an additional
degree of freedom in its sampling strategy. The proportional interaction mode and the agnostic
interaction modes perform similarly. As expected, all the proposed strategies outperform the
uniform sampling rule. We contrast the stopping time with the lower bound kl(d,1 — 0)T™(u),
and with a more practical version, which indicates, approximately, the first time at which the
GLR statistic crosses the threshold, i.e. solving ¢t = In((In(¢) + 1)/0)T*(p), as was done in
[Degenne et al., 2019]. All adaptive algorithms perform well on this instance, with their average
runtime being very close to their respective practical bound.

2.6 Conclusion

In this chapter, we considered the pure exploration task of identifying all the arms that are
better than a control arm in the presence of subpopulations (ABC-S). We designed asymptotically
optimal policies for this problem under different assumptions on the mode of interaction between
the learner and the bandit. We observed that the active mode, in which the learner decides
which subpopulation he samples, may significantly reduce decision times. On the other hand,
the other modes, in which the learner has to respect the natural proportions of the different
subpopulations (i.e., in proportional and agnostic modes) produce more modest effects, except
when the subpopulations differ significantly in variances. Finally, we proposed a natural way to
provide anytime decisions with risk guarantees in the Track-and-Stop framework.



Appendix

Appendix 2.A Optimal Allocations in the Gaussian Case for
K=1

Lemma 2.11. When K = 1 with Gaussian distributions such that va; = N (fiai, 0 M) the
following holds

A2
)\){nf Z'LUOZ /1/07,7)\02 +Zwlz H].Zu)\].l): : o2 .
= = 2L, 67 (B + )
Proof. One has for b € {0,1},
Abi — i)
d(pp,is Avi) = (2;) :
Obi

Using the result from Theorem 2.3 for the case K = 1, the following holds

inf ZZwa, Nazy ai :AELI:n)\l;l)\lZZwaz Hayis az).

A€Altg (1) 70 i3 —0i—1

We introduce

L(Xo, A1, 9) Zwol/\m ) +Zw1z/\“ ) (Zﬁz)\m )\1z>.

0 1,1
One has,
1 J
min Z Zwaz (Ha,ir Naji) = Sup mf L(/\O,)\l, q) .
AEL: o= —0i=1 qeR AEL

Differentiating with respect to A\g; and A1; brings the conditions

2 2
qu‘goﬂ' Q5i017i
- and A= pii+——.
Wo,i W1 i

A0,i = [0,

Plugging these values back in L gives the function
f(q):—qQZJﬁ?(Ua“r of )—I—qZﬂu ).
2 =7 \woy  wiy pt i\H0i = K
Easy calculations show that the maximum of the function f is attained for
. _ Yo Bilpoq — pq) '
Loop (e + )

Plugging this value back in the expression of f,

A2
2, 07 (e o)

flg") =

53
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Proposition 2.8. For any p € £ with K = 1 and v; = N(Nk,jﬁiz,j); recalling that
A= 2%1:1 Bi(po; — p1,:) one has

1. In the agnostic case, the characteristic time and the optimal weights satisfy

BUOZ [3201, 2
)

agnostic (/’l’ AQ
1

IZ ﬁzakz
and Vi < J, Vk € {0, 1}, wi; = .
\/ZJ ﬁz 0,7 \/Z ’L 11

2. In the proportional case, the characteristic time and the optimal weights satisfy

2 zz 1o, (UO,Z + o1 7,)2

Throp(m) = A2
and Vi < J, Vk € {0,1}, w}, = — ki
T 004 T 01

3. In the active case, the characteristic time and the optimal weights satisfy

2
. 2 (Z%]=1 1Bil(c0,: + 01,1))
active(/J/) = A2
1

|Bilogs
L1 1Bil(00 + 014)

and Vi < J, Vk € {0,1}, wj,; =

Proof.

Agnostic mode From the Lemma 2.4, we have

* -1 _
Tagnostlc(u) = wGCS::fomc )\EAlﬁi ZO ; We,id ,Ua i Aa z)

= sup mf)\lZZwm Hajis Aa,i) (Theorem 2.3)

wecagnostlc a=0i=1

A2
= sup 02
wecag‘noatlc 2 Z —1 62 ( 1»1')
wo,; w1y

(Lemma 2.11) .

W € Cagnostic implies wq; = oyu, with (u, ..., ux) € Xg41. For this reason,
2 2
oy .
/B 1,2
w™* = argmin E — + —=] .
S Muiugur =1 — (uo u1>
BZo2

We let ¢, = 37,

IT;” for a € {0,1}. Plugging u; = 1 — ug in the previous expression and



Chapter 2. The ABC-S Learning Task

differentiating with respect to ug brings the condition

o [&0]
u(Q) + 2uyg — .
C1 — Co €1 — Co

Solving this polynomial and using that u € 39 gives the unique solution

u*zi\/% )
O Vet er

Implying,

\/Z Biog \/ZJ Bza“ \/Z B2ad, \/Z 8ot fz

With those values,
o 2
<\/2J Bz 0,7 \/Z 7, 1 7,)

T;gnostlc (l‘l’) = AQ
1

* P .
and wi; =q;

Proportional mode Following the same line of proof, gives

A2
* -1 _
Torop(#)™ = sup NI
prop 22 1/8 (wOl w1:1)
The main difference is now on the constraints on the weights. In the proportional mode,
following Lemma 2.5, Vi < J, Ea 0 Wa,i = 0. We consider the Lagrangian function:

o2 J
M) +Zﬂh Z Wa,i — Q4
Wi, i=1

a€{0,1}

L(w(]awlaQI?"'vqj Z/B2<

Z

Differentiating with respect to wp; and w;; gives the constraints:

2 2 2 2
—B202 —B202.
12 71"’1':0 and 12 71"’@:0
Wy, 1,
From which we can deduce
Wo; Wi
00, 01,

From wo; + w1; = «;, we deduce,

o Biooi+01)?
g ="

Q;

Plugging this value in the first constraint gives

Using those weights,
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Active mode Following the proof of Proposition 2.8, one has

AQ
* -1 _
Tactlvo (/J') - sup o o2 .
0,i 1,3
(wo i wl,i)

(2.13)

weX(ic41s 25 | B2

Using the constraint w € (g1, one gets
J—1
wyg=1- Z Z Wa,i — Wo,J - (2.14)
a={0,1} i=1

We need to minimize the function (where w; ; has been replaced by the expression from
Equation 2.14)

2252 a,]+52 0J+5 %J

J .
a={0,1} i=1 Wo, 1_Za 0 2ai= 1waz wo,J

For i« < J — 1, taking the derivative with respect to wp; and wi; gives the following

constraints
1 J-1 2

2 2 2 2 2
B; 00, <1 - Z Z Wa,i — wO,J) = 5J01,on,z‘ )
a=0 1=1
1 J-1 2
2 2 o p2.2 9
Bjoi <1 =2 Wai— wOJ) = Bjo1,wi -
a=0 1=1
From which we deduce w w
. 0,i 1,
Vi<J-—1, . (2.15)
00,i 01,

Differentiating with respect to wy ; gives

1 J-1
00,7 <1 =3 wai— wO,J) = 01,JW0,J -

a=0 i=1

Rearranging and using Equation 2.15 gives,

J—1
00,J wWo,; 004 + 014

woJ = — 0—0”] . (2.16)
00,J 01 i 00400+ 017

Using Equation 2.15 and Equation 2.16, we define the function

J—-1 2 2
0 Bi(o0,g + 01,
g(wo,, ..., wo,s-1) = E :ﬁQ OZ(O' itoui)+ 1 J(Jfl woi(Uor)‘ral )
i— % -3 ) O'(;,Z‘ )

Differentiating with respect to wop; for ¢ < J — 1 brings

. . J_l .
Vi< J -1, M <1 — Z wo’? (00,i + 0171')) = |Bs|wo - (2.17)

00,7 +01,J =1 00,i
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Multiplying both sides of this equation by (o¢; + 01,)/00,; and summing for ¢ < J — 1,

J-1 _
3 Wo,i (004 +014) = S Bil(o0 + 01,)

5T ) — .
i—1 90, Z%]:1 1Bil(00,i + 01,i)

Plugging this value back in Equation 2.17 one has:

VZ § !] — 1, wO,i = 7 ‘57:’0-0’7: .
>zt 1Bil(00,i + 01,4)

From Equation 2.15, we deduce,

Vi<J—1, wi=— |Bilo,i .
Yi=11Bil(o0 + 01,4)
We obtain the value of wg j using Equation 2.16 and that of wi ; using Equation 2.14.
Plugging those weights in the expression given by Equation 2.13 yields the characteristic
time. O

Appendix 2.B Optimal Allocation in the Gaussian Case with
K>1

Proposition 2.9 (Efficient computation of the optimal weights in the Gaussian case).
Assume Gaussian distributions with a known variance o2, and let
A2
* *\ : b
(ugs - - -, k) = argmax,ey, .| il 5 (ui N L) .
0 Up

The optimal weights for the active mode satisfy

: |Bil
Vke{0,...,K}, Vi < J, wi; = uf—7—— .
s

If, in addition o« = B, the above also holds for the agnostic and the proportional modes.

Proof. From Lemma 2.11, when the distribution are Gaussian with a known variance o2

one has

1 Af
* pa— .
active (l‘l’) = Sup min .
J 2 2 2
weSgerys VA0 2500, B2 (2 + 2

Using the same continuity argument than in [Garivier and Kaufmann, 2016], we know that
the supremum of w is attained and is indeed a maximum. Let

_ A
2y B (2 +2)

Ap(v,w) -
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Then

max min Ap(wg, wp max min Ay (wg, wy
WEN (e y1y7 bFAD (1o, w) = Skt bAD (wo, ws)

Va,ZiJ:l Wq, i =Ua
= max max min Ay (wo, wp)
UEX K41 wEZ(K+1)J b#0
Va’zi Wgq,:=Ua
< max min  max  Ap(wp,wp) (Max-min inequality) .
u€X 41 b#0 w€E<K+1>J
Va,y  wa,i=ta

Let b # 0,
A2
max Ap(wo, wp) = max

WEX (K y1)g WEX (K y1)g 22 162 (w 1;72‘)
Va,zi Wa,i=Uq Va,zi Wa,i=Uq 0,2 by

Equivalently, we are interested in

J
min Zﬁ3<02+02>.

wWEX (K1) =1 wWo,; Wp,;
va’zi Wq, i =Ua

We introduce the associated Lagrangian function

2
§ E E Wi — .
/8 (woz wbz>+ QQ< az a)
Taking the derivative with respect to wo; and wy; for the different values of 7 yields

|5l and wp; = 1B
bi — .
v/ 40 v ab

wo,; =

Summing over ¢ implies that

J . J )
\/%Z Z’Lil |Bl‘ and \/q>b: ZZ:l |IBZ| ,
Uug Up
and plugging the above in the expression of the weights yields
wo,; = ‘BZ’ and  wp; = ’ﬁz‘
1B 1Bl
In particular,
A? A?
max . — = ; L : (2.18)
we o 1 1
vy 2% B <ww ) 2o (Shsl) (6 + )
yielding
A2 1 A2

max min 3 < 5 Imax minﬁ.
o B AT (2 ) o (i) B ()
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|1Bil

On the other hand, letting w,; = Wua with >, u, =1 we have
i=1 1Pt
1 , A? , A?
max min-—< max min

2 —_— 2 2 )
J ey bA0 (1L . 1 weY b#0 J 2( o o
202 (Zi:l |Bz‘> ueBtyg b (uo T ub) (+1)s 070 257 ) B; (wO,i + wb,i)

showing that the two optimization programs are equivalent and that when denoting

A
(ugy - .- uf) = ArgMAax,es; ., sz%l Ty
(5 + )
one has "
Va€{0,...,K}, Vi < J, wy; :uz% )
2i=11Bil

This corresponds to the optimal allocation strategy in the active mode. Recalling that when
a = 3, the optimal weights for the active mode satisfy both Cprop and Cagnostic completes
the proof. O

Appendix 2.C Proof of Theorem 2.10

In this section we show that T-a-S with C-tracking [Garivier and Kaufmann, 2016] and a
certain threshold (¢, ) is safely calibrated and asymptotically optimal. This is an important
sanity check to validate our approach theoretically. Note that for the experimental validation we
have explored a practically appealing variant of this algorithm: we employ an iterative scheme
to approximate w*(f(t)), use D-tracking, and stylise the threshold.

Safe calibration follows from the definition of the recommendation rule (we report the answer
Sp(fr(t)) at the empirical estimate fi(t) of the bandit instance), together with the computation
of the risk assessment d;. It does not depend on the sampling rule. Our confidence level o is
obtained by inverting the threshold (¢, ) at the GLR statistic Equation (2.12). Safe calibration
then follows from an anytime-valid GLR deviation inequality with boundary 5(¢,0). We refer
to [Kaufmann and Koolen, 2018, Proposition 23] for a boundary that is, in case of the ABC-S
problem, of order In } + K +2J - O(Inln £).

It remains to argue that the T-a-S sampling rule converges to the oracle weights. The original
T-a-S proof for the BAI problem is due to [Garivier and Kaufmann, 2016, Theorem 14]. An up-
grade to any single-answer problem, including our ABC-S, is due to [Degenne and Koolen, 2019].
For active mode, their theorem applies directly, while for agnostic mode it applies with the pair
(It, X¢) regarded as the observation. We get:

Theorem 2.12 ([Degenne and Koolen, 2019, Theorems 7 and 10]). For all ABC-S instances
pn € L in active mode and agnostic mode, Track-and-Stop with C-tracking and stopping
threshold 3(t,8) = In(t?/8)+O(1) is 6-correct with asymptotically optimal sample complezity.

In proportional mode, we have the additional constraint that the learner chooses its arm in
response to seeing (but not controlling) the subpopulation [;. Still, the tracking convergence
result [Degenne and Koolen, 2019, Lemma 6] goes through, upon observing that the empirical
distribution of I; converges to a by the law of the large numbers, and hence our conditional
tracking (see “sampling rule” in Section 2.4) adds the right conditional to the right marginal.
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All in all, the computed joint weights converge to the joint wg, ., (p), and tracking makes the

sampling proportions also converge there.

We conclude with a remark on our use of D-tracking. Recall that D-tracking is the idea of
advancing Ny, (t) towards ¢ times the most current oracle weights, i.e. twj(fi(t)), while C-tracking
makes Ny (t) advance towards the sum of encountered oracle weights, i.e. 3%, wi(fi(s)). As
argued in [Degenne et al., 2019, Appendix EJ], D-tracking can fail to make Ny(t)/t converge to
wj(p). However, this requires that the maximiser of the lower bound problem is not unique at
p (as we are maximising a concave function, the set of maximisers is always convex). Here we
argue that such a situation does not occur for the ABC-S problem. To see why, note that the
lower bound objective, as a function of w, is strictly concave. It suffices to show this for the
active mode problem, as the problems for the other modes are further constrained maximisation
problems of the same objective.

Lemma 2.13. Fiz a bandit instance p € L. Let X — d(pur j, A) be a strongly convex function
for each arm k and subpopulation j. Then for the ABC-S problem with B such that B; # 0
for all j, the oracle weights w*(p) are unique.

Proof. Let w*(u) be any oracle weights at p. We will show the lower bound objective
Equation (2.4) is strictly concave as a function of w around w*(u), so that w*(u) was in
fact unique. For each k > 0, let A¥ be the minimiser in Altk(u) of the weighted divergence
in Equation (2.4).

We perform a second-order Taylor expansion of the inner objective around A, which is a
good approximation near A* (which is, after all, what matters when reasoning about w
near w*(u)). To this end, let us abbreviate the divergences, and their first and second
derivatives in their second argument by d’(jj = d(ta,j /\’;7]‘)7 gfjj = d'(lta,j, /\I;,j) and h’;j =
d" (e, )\];7 j), which all depend on A*. A second-order Taylor expansion of the inner objective
of Equation (2.4) around AF yields

gk 9k 2
. i (95;’)2 2P hg; by
inf Y wajd(pag, Aag) & Y, waj|de;— o |+ 5
AEALL, “— , 2h%. B;
weioi TR ST
JhE;

where the optimiser is given by

k £ (- )
ok Y45 Bi(0a=0 — Oa=p) I\ hg; by
Aaj = XajToE t T o 7z

aj a7 aj Zae{o,k},j wa,jjh];j
Due to the last term, each of these is a strictly concave function of w, ; for a € {0,k} and
all j < J (here we use 3; # 0 and strong convexity h’;j > 0).
Now we still need to consider the maxyes ), , Ming>o problem. Let’s convexify this for the
inside finite min, and min-max swap to get a problem of the form minges, MAXwES gy 1)y s
Fixing the minimax outer strategy for g, we find that w is the maximiser of the strictly

concave function

9 9k 2
ey, (e (R -)

w — qu Z Wq,j daj— ok + 52
aj 2 ac{ok},j m

k>0 a€{0,k},j
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To complete the argument, we argue that q; > 0 for all £ > 0, or, equivalently, that at w*
the ming~ o are all equalised. As if not, we can move mass from wy, ; for the higher k£ > 0
to wy ; for the lower &’ and increase the objective value. This then proves that w*(u) is
unique, as the objective function is bounded above by a strictly concave function itself
maximised at w = w*(w). O

Appendix 2.D Algorithm Details

Input: K arms, 5(t,6) threshold, J online learners AL AY) for (K + 1) experts

each.
fort=1,2,...do
See I} ~ «

if any arm k has Ny 1, (t —1) < \/Zle Ni1,(t —1) then
| Pick A; any such arm

else
L Get 'w,gi) from each online learner A®
Pick Ay € argming Ny, 1,(t — 1) — tw(k, Iy)
Obtain sample X; from vy, ,
For ¢ < J send £§“ =—-o;VuwZ ([alwgl) . aleEJ)], /l(t)) ei to A®
Recommend S(t) from Equation (2.11) at confidence &; = 5~1(t, Z(IN(t)/t, u(t)))

Algorithm 5: Algorithm for Proportional Mode.

Input: K arms, 3(t, ) threshold, Online learner A for (K + 1) experts.
fort=1,2,...do

if any arm a has Z}]:1 N, j(t—1) </t then
| Pick A; any such arm

else

L Get wy from online learner A

Pick A; € argmin, Z}‘le N j(t —1) — twe(a)
See I} ~ o
Obtain sample X; from v4, g,

Send loss vector £; = —V,A (wtaT, ﬂ(t)) ato A
Recommend S(t) from Equation (2.11) at confidence §; = 571(t, Z(N(t)/t, 1(t)))
Algorithm 6: Algorithm for Agnostic Mode.

Run Time In each of the three modes, our algorithms evaluate A for the confidence in the
recommendation, compute one sub-gradient of A for the loss function, and spend O(K x J) time
bookkeeping. Evaluation and sub-gradient computation for A boil down to solving a convex
minimisation problem with an equality constraint. We use Newton’s method with backtracking
line search to find the minimiser given b. Each Newton iteration takes O(J?) time (recall that
only 2 arms are involved), and we never needed more than 40. Doing this K times for the explicit
minimum over b yields a total per iteration run time of O(KJ?).
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Appendix 2.E Miscellaneous

2.E.1 Sub-gaussianity and Mixtures

Except in the case of Bernoulli distributions, where the mixture is also a Bernoulli distribution,
finding a strategy that matches Tgbhvious(u)*l is a hard task. However, one may use the following
lemma to treat the mixture in a sub-optimal way, based on the fact that it exhibits sub-gaussian

behavior.

Lemma 2.14 (Sub-gaussianity of mixture). For each u € R, assume that v, is a distribution
on R with mean Ex.,,[X] = p that is o-subgaussian, meaning that Ex.,, {eA(X_“)} <
e*A?/2 for any A € R. Further let a(p) be a prior on p with mean m that is itself
n-subgaussian, meaning that E, . [e’\(“_m)} < eN"/2. Then the mizture distribution

Q =Euwa (V] is /0?2 + n?-subgaussian.

Proof. The mixture distribution obviously has mean Ex.q[X] = m and

Ex~g {e’\(X_m)} = Ejnn {e/\(u—m)EXWH [e/\(X—u)” < Fpea [ek(u—m)} e /2

< QoM mDN/2

O]

In particular, if « is supported on [+M], then « is M-subgaussian, and hence @ is v o2 + M?-
subgaussian.

2.E.2 Generalized Likelihood Ratio Statistic

Let us focus on the best arm identification setting for which J = 1. In the BAI setting, the
stopping rule from Equation (1.9) features max,<x minge(1 . g\ fa} Zap(t) with Zg () defined
in Equation (1.8). Interestingly, when fi4(t) > fip(t), a closed form expression for Z, ;(t) can be
obtained

Za,b(t) = Na(t)d(ﬂa(t)v ﬂa,b(t)) + Nb(t)d(ﬂb(t)v ﬂa7b(t))

where
N, (t) ~ Nb (t)
P+ N0 + Ny

AGES Ol fnl)

flap(t) =

Let us denote a; the arm with the highest empirical mean at time t.
We have minye(y. g\ {a} Za,b(t) is positive only if fi,(t) > jip(t) for all b # a. Which gives
Z'(t) =

Zap(t) Zayp(t)

max min = min
a<K be{l,..K}\{a} be{l,... K \{as}

Recalling the expression of dyyiq from Equation (2.8)
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Z'(t Za, »(t
(t) = befl,.. K}\{at} ol

)
i o (20220,
)

be{l,.. ,K}\{at}

= min (t
_t)\eAlt(u(t))Z d(fta(t); Aa)

— min inf Na(t a(t); Aa
be{l,...,K}\{at} AEL:Aa,=Np aE%t:b} (M ( ) )

In the ABC-S problem, instead of the best empirical arm a;, the comparison is around the
control arm. We recall the expression Z(t) that is used.

Z(t) = min _ inf N Z ZN‘“ ai(t), Aai) -

b#0 AeL:\
#0 AeLiXo= ac{0,b} i=1

Comparing the two expression justifies why it is natural to consider Z(t).
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3 | On Limited-Memory Subsampling
Strategies

In the previous chapter, we have discussed a pure exploration task where we were trying to
identify the different arms better than a control. For the remaining part of the thesis, we switch
to the regret minimization setting. In this chapter, we propose an alternative to traditional
upper-confidence bounds based algorithms where subsampling is used for comparing the means of
the different arms. In stationary environment, we design a policy that is asymptotically optimal
without knowing the distribution of the arms. We also propose a variant of this algorithm that
achieves optimal regret guarantees in any abruptly changing environment. The results from this
chapter are based on [Baudry et al., 2021].
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3.1 Introduction

3.1.1 Setting

In this chapter, we consider the K-armed stochastic bandit model that was presented in
Section 1.2. We recall that the learner aims at maximizing his expected sum of rewards and
needs to sequentially adapt his decision strategy in light of the information gained up to now.
In this model, over-confident policies are provably suboptimal and a proper trade-off between
exploitation and exploration has to be found. In its standard formulation the multi-armed bandit
model postulates that the distributions of the rewards obtained when drawing the different arms
remain constant over time. However, in some scenarios the stationary assumption is not realistic.
In clinical trials, the disease to defeat may mutate and the initially optimal treatment could
become suboptimal compared to another candidate [Gorre et al., 2001]. In strategic pricing
problems, the price maximizing the profit of a given asset can evolve with the introduction of a
new product on the market [Eliashberg and Jeuland, 1986]. For online recommendation systems,
the preferences of the users are likely to evolve [Wu et al., 2018] and collected data becomes
progressively obsolete.

During the past ten years, several works have considered non-stationary variants of the
multi-armed bandit model, proposing methods that can be grouped into two main categories:
they either actively try to detect modifications in the distribution of the arms with change-
point detection algorithms [Liu et al., 2018, Cao et al., 2019, Auer et al., 2019, Chen et al., 2019,
Besson et al., 2020] or they passively forget past information [Garivier and Moulines, 2011] but
also [Raj and Kalyani, 2017, Trovo et al., 2020]. To some extent, all of these methods require
some knowledge on the distribution to obtain theoretical guarantees.

To balance exploration and exploitation, the algorithms mentioned so far are based on one of
the two standard building blocks introduced in the bandit literature: Upper Confidence Bound
(UCB) constructions [Auer et al., 2002a] or Thompson Sampling (TS) [Thompson, 1933]. How-
ever, there has been a recent surge of interest for alternative non-parametric bandit strategies with
for example [Kveton et al., 2019a] but also [Kveton et al., 2019b] and [Riou and Honda, 2020].
Instead of using prior information on the reward distributions as in Thompson sampling or
of building tailored upper-confidence bounds [Cappé et al., 2013] those methods only use the
empirical distribution of the data. These algorithms are non-parametric in the sense that the
exact same implementation can be used with different probability distributions, while still achiev-
ing optimal regret guarantees. An interesting class of non-parametric algorithms are based on
subsampling.

3.1.2 Subsampling Algorithms

A striking characteristic of the vast majority of UCB-based techniques is that except the
exploration bonus only the sample means are used. Getting away from the computation of
upper-confidence bounds seems necessary if we aim at building asymptotically optimal and
non-parametric algorithms. Indeed, either the UCB are tailored to a specific distribution (i.e.
a different implementation is required when using another distribution) and asymptotically
optimality can be obtained [Cappé et al., 2013] or we approximate the distributions with a more
general class of probability distributions (e.g. subgaussian for Bernoulli distributions) at the cost
of loosing the optimality. The following question is central in this chapter.
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Is it possible to maintain the asymptotic optimality while using the same algorithm’s
implementation for a broad class of probability distributions?

We answer positively to this question using a subsampling bandit algorithm. The idea of
subsampling algorithms is to modify the way the empirical means are computed for ensuring
enough exploration. When comparing two arms looking at their empirical means is too con-
servative and greedy policy are known to be suboptimal. One way for comparing two arms
using their empirical means while ensuring enough exploration is to use subsampling. Assume
arm 1 has been pulled n; times and arm 2 has been pulled no times with n; > no. The idea
of subsampling is to compute the empirical mean of arm 1 using only no samples. Depend-
ing on how those no samples will be collected gives rise to different algorithms that we discuss now.

From a high level perspective subsampling algorithms all rely on the same two components.
(1) subsampling: the arms that have been pulled a lot are randomized by sampling only a fraction
of their history. (2) duels: the arms are pulled based on the outcomes of duels between the
different pairs of arms. Note that the term duel, used throughout the chapter, refers to the
algorithmic principle of comparing the arms two by two, based on their subsamples. It is totally
unrelated to the dueling bandit framework introduced by [Yue and Joachims, 2009].

The first subsampling algorithm called Best Empirical Sampled Average (BESA) was pro-
posed in [Baransi et al., 2014]. When K = 2, the ny samples from arm 1 are sampled randomly
without replacement from the history of arm 1. The arm 1 competes with its empirical mean
based on a subsample of size no while the arm 2 uses its entire history of size no. The arm
with the largest empirical mean is declared winner and is pulled. By introducing, this sub-
sampling layer, the comparison between the arms is fairer. When K > 2, [Baransi et al., 2014]
propose a tournament structure with a divide-an-conquer like algorithm. The arms are sepa-
rated in two different groups, we compute the winner of each group and at the next stage the
winners from each group compete against each other. The winner of the tournament is then pulled.

Following BESA, [Chan, 2020] introduces SubSample Mean Comparison (SSMC). When
K > 2, it departs from the tournament structure and introduces the notion of leader, that will
be the arm competing with all the other challengers. We define this precisely in the chapter.
Let us explain the duel between the arm 1 and the arm 2 assuming that 1 is the leader. With
SSMC several subsamples are used for the leader. The algorithm looks at all possible blocks of
ng consecutive samples from the arm 1. If there is a block for which the empirical mean based
its samples is smaller than the empirical mean of the arm 2 (based on its entire history), then
the arm 2 is the winner.

Building on the tools introduced in [Chan, 2020], [Baudry et al., 2020] introduced the Sub-
sampling Duelling Algorithm (SDA) framework. They propose several sampling strategies
and prove their asymptotical optimality when they are based on a randomized sampler and
the distributions belong to the same one-parameter exponential family. They also present a
deterministic sampling strategy Last Block sampling (without analyzing it) that will be the core
of this chapter.
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3.1.3 Scope and Contributions

In this chapter, we build on the Last-Block Subsampling Duelling Algorithm (LB-SDA)
introduced by [Baudry et al., 2020] but for which no theoretical guarantees were provided. This
approach is of interest because of its simplicity and its computational efficiency compared to other
strategies based on randomized subsampling. We first prove that for stationary environments
LB-SDA is asymptotically optimal in one-parameter exponential family models and therefore
matches the guarantees obtained by [Baudry et al., 2020] for randomized subsampling schemes.
The main technical challenge is to devise an alternative to the diversity condition used in their
work, which was specifically designed for randomized subsampling schemes.

Furthermore, we show that, without additional changes, these guarantees still hold for a
variant of the algorithm using a limited memory of the observations of each arm. We prove that
storing  ((log T)Q) observations instead of T is sufficient to ensure the asymptotic guarantees,
making the algorithm more tractable for larger time horizons. To the best of our knowledge, we
are the first to propose an asymptotically optimal subsampling algorithm with polylogarithmic
storage of rewards under general assumptions.

Building a subsampling algorithm based on the most recent observations makes it an ideal
candidate for a passively forgetting policy. Our third contribution is to propose a natural
extension of the LB-SDA strategy to non-stationary environments. By limiting the extent of
the time window in which subsampling is allowed to occur, one obtains a passively forgetting
non-parametric bandit algorithm, which we refer to as Sliding Window Last Block Subsampling
Duelling Algorithm (SW-LB-SDA). To analyze the performance of this algorithm, we assume an
abruptly changing environment in which the reward distributions change at unknown time instants
called breakpoints. We show that SW-LB-SDA guarantees a regret of order O(\/I'tT log(T')) for
any abruptly changing environment with at most I'y breakpoints, thus matching the lower bound
from [Garivier and Moulines, 2011], up to logarithmic factors. The only required assumption is
that, during each stationary phase, the reward distributions belong to the same one-parameter
exponential family for all arms. Due to its non-parametric nature, this algorithm can thus be
used in many scenarios of interest beyond the standard bounded-rewards / change-in-the-mean
framework. We discuss some of these scenarios in Section 3.5, where we validate numerically
the potential of the approach by comparing it with a variety of state-of-the-art algorithms for
non-stationary bandits.

Structure of the Chapter. The chapter is organized as follows. In Section 3.2, we introduce
the mathematical model of the problem. In Section 3.3, we analyze LB-SDA in any stationary
environment and propose Memory-Limited LB-SDA an adaptation of LB-SDA that enjoys a
significant reduction of the storage cost. In Section 3.4, we add additional mechanisms for using
LB-SDA in any abruptly changing environment and obtain order optimal regret bounds. Finally,
in Section 3.5, extensive numerical simulations highlight the merits of this approach, particularly
when the changes are not only affecting the means of the rewards. All the missing elements for
the results presented in this chapter are reported in appendix.
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3.2 Preliminaries

The algorithms to be presented below are designed for the stochastic K-armed bandit model
that was presented in Section 1.2. We recall in this section the two variants that will be considered
in this chapter: stationary and abruptly changing environments.

Stationary Environments. When the environment is stationary, the K arms are character-
ized by the reward distributions (v)r<x and their associated means (uy)r<x, we recall that
p* = maxpeq1,.. k) pk denotes the highest expected reward. We denote by (Y s)sen the ii.d.
sequence of rewards from arm k. Following [Chan, 2020], our algorithm operates in successive
rounds, whose length varies between 1 and K time steps. At each round r, the leader denoted
{(r) is defined and (K — 1) duels with the remaining arms called challengers are performed.
Denoting by N (r) the number of pulls of arm & up to the round r the leader is the arm that

has been pulled the most. Namely,

Definition 3.1. At round r the leader is the arm satisfying
(r) = argmaxyeqy, . gy Nk(r) - (3.1)

When several arms are candidate for the maximum number of pulls, the one with the largest
sum of rewards is chosen. If this is still not sufficient to obtain a unique arm, the leader is chosen
at random among the arms maximizing both criteria. At round r, a subset A, C {1,..., K} is
selected by the learner based on the outcomes of the duels against ¢(r). Next, all arms in A,
are drawn, yielding Y, y, () for k € A;, where Ni(r) = >°(_; 1(k € As). In these stationary
environments when considering the exponential family bandit model any asymptotically optimal
strategy will satisfy the lower bound from Definition 1.7.

Abruptly changing environments. In Section 3.4, we consider abruptly changing environ-
ments. The number of breakpoints up to time 7', denoted 'y, is defined by

T-1
I'r = Z ]1{3/6 S {1, .. .,K}, Vi t 7é Vk,tJrl} .
t=1

The time instants (¢1, ..., tr,) associated to these breakpoints define I'r + 1 stationary phases
where the reward distributions are fixed. Note that in this model, the change do not need to
affect all arms simultaneously. In such environments, letting u; = maxgc(1,. k) fk,+ denote the
best arm at time t, the performance of a policy is measured through the dynamic regret defined

as
T

R(T) =E lZ(M? — pa,)

t=1

The notion of leader in those non-stationary environments is slightly different and we explain
how to extend it in Section 3.4. We recall that in the non-stationary case, the lower bound for
the dynamic regret takes a different form: for any strategy, there exists an abruptly changing
instance such that E[Ry] = Q(y/TTr) [Garivier and Moulines, 2011, Seznec et al., 2020]. Even
if the non-stationarity could be characterized by the more general variation budget introduced
by [Besbes et al., 2014] and defined in 1.3, we focus in this chapter on abruptly changing
environments.
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3.3 LB-SDA in Stationary Environments

In this section we detail the subsampling strategy used in the LB-DSA algorithm and obtain
asymptotically optimal regret guarantees for its performance. In Section 3.3.4, we consider the
variant of LB-SDA in which the memory available to the algorithm is strongly limited.

3.3.1 Last Block Sampling

Compared to the algorithms analyzed in [Baudry et al., 2020] where the sampler is random-
ized, we consider a deterministic sampler. At round r, the duel between arm k # ¢(r) and the
leader consists in comparing the average reward from arm k with the average reward computed
only from the last Ny (r) observations of the leader. The challenger k thus wins its duel if

Ve Nu(r) 2 Ye(r) Nory (7)— Nic(r) +1: Ny () (3.2)

where ?k,i:j = ]_ﬁ Zfl:i Y. n denotes the average computed on t_he j — i+ 1 observations of
arm k between its i-th and j-th pull, and Y} ,, is a shortcut for Yy 1.,. We denote Hy(r) the
history available for arm k at round r. We illustrate the duel procedure on Figure 3.1.

Hoery () Hoery ()
((r) : :
Arm k Arm k'
) Hi(r) ] ‘ Hyr (1) ]
Duel between k and £(r) at round 7 Duel between &k’ and ¢(r) at round r

Figure 3.1: Ilustration of the Last Block sampling at roud r for the duel between the arm £k and the
leader ¢(r) # k and the duel between the leader and the arm k’. For the leader only the data in the green
box (respectively red box) is kept for the duel against k (respectively k'), whereas arms k and k' use their
entire history. Note that the number of datapoints kept by the leader in its duel with k is equal to |H(r)|.

At each round, the set A, includes all of the challengers that have defeated the leader,
according to Equation (3.2), as well as under-explored arms for which Ny (r) < y/log(r). If A4
is empty, only the leader is pulled. Combining these elements gives LB-SDA detailed below.

[Baransi et al., 2014] propose interesting arguments explaining why subsampling methods
work. Essentially, if the sampler allows enough diversity in the duels, the probability of repeatedly
selecting a suboptimal arm is small. On the sampler side, this condition is satisfied when out of a
large number of duels between two arms there is a reasonable amount of them with non-overlapping
subsamples. We prove that last block sampling satisfies such property. The second requirement
concerns the distribution of the arms, and has been formulated by [Baransi et al., 2014] who
introduced the balance function of a family of distributions. In particular, [Chan, 2020] shows
that introducing an asymptotically negligible sampling obligation of /logr is enough to make
subsampling suitable when the arms come from the same one-parameter exponential family of
distributions. Namely, if each arm has at least y/logr samples at round r, the diversity of duels
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Input: K arms, horizon T'
Initialization: ¢t < 1, r + 1, Vk € {1,..., K}, Ny < 0
while ¢t < T do
A+ {}, ¢ < leader(N,Y)
if r =1 then
| A<« {1,...,K} (Draw each arm once)
else
for k#£(ec{1,..,K} do
if Ny < \/log(r) or Yy, n, > Yy n,—nN,+1:N, then
| A AUk}
if |A| =0 then
| A« {¢}

for k € A do
| Pull arm k, observe reward Y n, 11, Nk < N+ 1, t <t +1

L r<r+1

Algorithm 7: LB-SDA

will guarantee each arm to be pulled enough. This exploration rate does not have to be tuned
and is not detrimental in practice : for an horizon of, say, T = 10 it only forces each arm to be
sampled at least 4 times.

3.3.2 Regret Analysis of LB-SDA

We consider that the arms come from the same one-parameter exponential family of distribu-
tions as described in Equation (1.2) with P = {(vp)s : dvp/d€ = exp(6z—b(#))}. This assumption
is standard in literature and covers a broad range of bandits applications. The exact knowledge of
the family of distributions of the arms (e.g Bernoulli, Gaussian with known variance, Poisson, etc.)
can be used to calibrate algorithms like Thompson Sampling [Kaufmann et al., 2012], KL-UCB
[Cappé et al., 2013] or IMED [Honda and Takemura, 2015] in order to reach asymptotic optimal-
ity. Recently, subsampling algorithms like SSMC [Chan, 2020] and RB-SDA [Baudry et al., 2020]
have been proved to be optimal without knowing exactly P. This means that the same algorithm
can run on Bernoulli or Gaussian distributions and achieve optimality. We first prove that LB-
SDA matches these theoretical guarantees. As before, we denote kl(u, p’) the Kullback-Leibler
divergence between two distributions of mean p and p’ in the exponential family P.

Theorem 3.2 (Asymptotic optimality of LB-SDA). Let £ be the exponential family bandit
model and v = (v1,...,vkg) € & with respective means (p1, ..., ux) where the K arms
belong to the same one-parameter exponential family of distributions. The regret of LB-SDA
satisfies, for all € > 0,

(1+€)A
kl(ﬂkaﬂ*)

R(T)< Y

kipp <p*

log(T) + C(v,€) ,

where C(v,€) is a problem-dependent constant.
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Proof. We assume without loss of generality that there is a unique optimal arm denoted k*.
The analysis of [Chan, 2020] and [Baudry et al., 2020] shows that for any SDA algorithm
the number of pulls of a suboptimal arm may be bounded as follow.

Lemma 3.3 (Lemma 4.1 in [Baudry et al., 2020]). For any suboptimal arm k # k*,
the expected number of pulls of k is upper bounded by

1+e€ I
E[N,(T)] < kl(u:u) log(T) + Ci(v, €) + 32 3" P(Nis (1) < (log7)?) ,

r=1

where C(v,€) is a problem-dependent constant.

The next step consists in upper bounding the probability that the best arm is not pulled
"enough" during a run of the algorithm. This part is more challenging and relies on the
notion of diversity in the subsamples provided by the subsampling algorithm. This notion
was introduced by [Baransi et al., 2014] to analyze the Best Empirical Sampled Average
(BESA) algorithm. Intuitively, random block sampling [Baudry et al., 2020] or sampling
without replacement [Baransi et al., 2014] explore different part of the history thus bringing
diversity in the duels. Unfortunately, this property is not satisfied by deterministic samplers.
Nonetheless, with a careful examination of the relation implied by the deterministic nature
of last-block subsampling it is possible to prove that the number of pulls of the optimal
arm is large enough with high probability.

Lemma 3.4. The probability that the optimal arm is not pulled enough by LB-SDA
can be upper bounded as follows

400
> P (Nis(r) < (log)?) < Cie(v)
r=1

for some constant Cis(v).

O
Plugging the result of Lemma 3.4 in Lemma 3.3 gives the asymptotic optimality of LB-SDA
(Theorem 3.2). We prove Lemma 3.4 in the following section.

3.3.3 Proof of Lemma 3.4

We recall that Yk,i denotes the mean of the ¢ first rewards of arm k and that for a set B,
Ykﬁ = ﬁ > ses Yrs- When |B| =i, l_/mg and kai have the same distribution. Before establishing
our main result for LB-SDA, we introduce the balance function of an arm, which was first defined
in [Baransi et al., 2014]. Assume that the K arms are characterized by the reward distributions
(v1,...,VK). Assume that there is a unique optimal arm denoted k*.

Definition 3.5 (Balance function). Let v} ; denote the distribution of the sum of j inde-
pendent variables drawn from v, and F), ; the corresponding CDF. The balance function
of arm k is

(M, §) = Exry, | [(1 - F,, (X)>M} .

If we draw one sample from a distribution v« ; and M independent samples from another
distribution v, ;, the balance function ay (4, j) quantifies the probability that each sample from
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Vk,; is larger than the sample from v+ ;. The index j represents itself the fact that these variables
are built as the sum of j independent random variables from the same distribution (respectively
vi~ and vk ). This function has been studied in detail in [Baudry et al., 2020] (Appendix G and
H), and we will use its properties to prove the following result.

Lemma 3.4. The probability that the optimal arm is not pulled enough by LB-SDA can be
upper bounded as follows

+oo
S°P (N () < (log7)?) < Ci () ,
for some constant Cyx (V).

Proof. Let us fix a round » > 1 and assume N« (r) < (logr)2. The main problem with the
last block sampling is that if both the leader and a given challenger are not played for some time,
the index used in their duels remain the same due to the deterministic nature of the sampler.
As a consequence this challenger is never played as long as the leader remains the same. If this
situation occur too often, this would limit the diversity for the duels played by the optimal arm
k* against suboptimal leaders. We show that this is not possible by proving that the leader will
be played a large number of times, which necessarily brings some diversity. To measure this, we
define the quantity of duels won by the leader at the different rounds as

r:_1+zn A1 = {(s)}),

where we added 1 to consider the first round where every arm is pulled once. We recall the
sampling obligation rule introduced in Section 3.3. and that we use to consider rounds where
the optimal arm has enough samples. At any round r each arm with less than f(r) = /logr
samples is pulled. We focus on rounds where we are sure that arm k* has been pulled “enough”,
and compute the probability that it has lost a lot of duels after this moment. In particular, we
consider a, as the smallest round satisfying f(a,) > f(r) — 1, ensuring Ng«(a,) > [ f(r) — 1].
This round is exactly [f~(f(r) — 1)], that can be computed as

FHAE) = 1) = exp ((f(r) = 1)) = exp (£(r)? +1 - 2f(r))
=rxexp(=2f(r)+1).

This means that for any v € (0, 1), if r is large enough to satisfy f(r) > H% then a, < vr.
For the rest of the proof we consider the number of duels lost by the arm k* after the round
a, against unique subsamples of a suboptimal leader. The number of duels won by the leader
between the rounds a, and r is equal to W, — W,.. Out of those duels, at most (logr)? of
them can concern the optimal arm k* because Nj«(r) < (logr)?. Consequently, there is at least
W, — W,, — (logr)? duels won by a suboptimal leader (k # k*) between rounds a, and r. Using
Lemma 3.6 stated below and W, < a, one has,

W, — Wa, — (logr)? > — — a, — (logr)?

> — (logr)?

N\‘EN\*
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Lemma 3.6. With W, = 1+ Y721 1(Asy1 = {€(s)}), for any round r under LB-SDA it
holds that
Wi = Nyiy(r) 2 7/K .

To simplify the expression we just write that for any 5 € (0, 1) there exists a constant (5, K)
satisfying Vr > r(8, K),

W, — W, — (logr)? > B% . (3.3)

Under Ng«(r) < (logr)?, we show that there exists some j € {1, ..., [(logr)?|} such that a
fraction 1/( (log 7)? of the Br/K duels counted above have been played with j samples for k*. Let
us denote W, := W, — W, — (log7)? and show this by contradiction. Out of those duels, we
denote W, j the indices of duels played when k* uses j samples and |WT j| the number of duels in
W, j- Note that the rounds in W, r,j are necessarily consecutive because the number of samples
in the entire history of £* can only increase when performing a duel with a suboptimal leader.
In particular, if there is a round s in Wm’ where k* wins against a suboptimal leader then in
the next round the history of k* will be of length j + 1. No round after s will belong to If/lv/m
because the following duels in W, will contain at least j+ 1 samples for k*. If we assume that for
all j < [(log7)?], there is strictly less than Toar? % duels played when £* has j samples. The
following would hold,

1og T

.~ l(logr)?] [(log )2 3 7 ,
WT—WQT—(IOgr) :W»p: ]2:1 ’Wr7]| < jz:l WE<BE

There is a contradiction with Equation (3.3). This means that there exists a value j <
| (log7)?] and Br/((logr)2K) duels such that k* competes using its same block of observations
of size j.

Furthermore, using a similar reasoning we are sure that a fraction 1/(K — 1) of these duels
is played against the same leader k € {2,..., K}. We would now like to obtain duels with
non-overlapping blocks. Even if the blocks are all consecutive, waiting for j steps is enough to
ensure that the blocks used by the leader are not overlapping. Taking a fraction 1/j of the duels
from the previous subset is hence enough to guarantee this. We illustrate this on Figure 3.2

Combining all previous arguments, we can conclude that for any g € (0, 1) there exists a
constant 7(3, K) such that for any round r > r(3, K), under the event {Ny-(r) < (logr)?},
there exists some k € {2,..., K} and some j € {|Iogr — 1], [(logr)?|} such that arm k*
lost at least M = BW duels against non-overlapping blocks of arm k. For all
those duels, k is the leader and k* use the same block of j observations.

We denote By, ..., By the M non-overlapping blocks of observations for arm k& containing j
observations each. We also denote B* the block containing the j observations from arm k* that
are used for all those duels. We have then established that for all » > r(53, K),

[(logr)?] M
{Nis(r) <(ogr)*}c U U Ve <Yap,}-

k#k* j=|f(r)—1] m=1
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Arm k

Arm k

Arm k

Arm k*

Arm k*

new observation for arm k

/

7 samples for k*

samples used by leader k in the duel

r o T rounds

Figure 3.2: Let (71,...,7;) be j consecutive duels between the leader k and k* where k* keep the same j
samples. Waiting j steps is enough for obtaining non-overlapping blocks (the red and the blue blocks
here).

For this reason, using the notation from Definition 3.5 and introducing Z* ~ v}« ; and an
ii.d sequence Z1,...,Zy ~ v j, when r > r(, K) one has

L(og7)?)
P(Nk*() (logr) )< >y ]P’(Z*<i {minM}Zi> :

k#k* j=|f(r)—1] T

We can then rewrite P (Z* < ming_{1, Zi> as follows

M
P|Z* < i Zi| =E zrp, . 1(Z* < Z;
( i={101) ) P [E[l A

21y M~V j
M

H L(Z* < Z;)

= EZ*NVk*,j [Ezl,...7ZMNVk7j

= Egrnye [(1— Fy, (Z%) ] :

The term in the last equality corresponds exactly to the balance function ay(M,j) from

Definition 3.5, with M = W Hence, we have the following upper bound

[(log )2

T
> P (Nes(r) < (logr)?) < 7(8,K) + Y Z Y ar (M) .

k#k* r=r(8,K) j=|log(r)—1]
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Remark 3.1. The fact that the duels concern non-overlapping blocks of arm k is necessary
to obtain independent samples. It is also important that those duels are based on exactly j
observations in order to introduce the balance function.

We conclude the proof using the following lemma which is proved in appendix.

Lemma 3.7. If the arms k and k* come from the same one-parameter exponential family
of distributions it holds that

L(log 7)?] .

T .
D S e e ) RO

r=r(8,K) j=|log(r)—1]

3.3.4 Memory-Limited LB-SDA

One of our main motivations for studying LB-SDA is its simplicity and efficiency. Yet, all
existing subsampling algorithms [Baransi et al., 2014, Chan, 2020, Baudry et al., 2020] as well
as the vanilla version of LB-SDA have to store the entire history of rewards for all the arms. In
this section, we explain how to modify LB-SDA to reduce the storage cost while preserving the
theoretical guarantees.

The fact that LB-SDA is asymptotically optimal means that, when T is large, the arm with
the largest mean is most often the leader with all of its challengers having a number of pulls that
is of order O(logT') only. With duels based on the last block, this would mean in particular that
only the last O(logT) observations from the optimal arm should be stored and that previous
observations will never be used again in practice. Based on this intuition, one might think that
keeping only log(T")/(u* — px)? observations is enough for LB-SDA. However, this could only be
done with the knowledge of the gaps that are unknown. We propose instead to limit the storage
memory of each arm at round r to a value of the form

m, = max (M, [C(log 7“)2—‘) )

where C > 0 and M € N. M ensures that a minimum number of samples are stored during the
first few rounds. Following the definition of [Agrawal and Goyal, 2012], we then define the set of
saturated arms at a round r as

Sp={ke{l,...,K}: Ni(r)>m,}.

The only modification of LB-SDA is the following: at each round r, if a saturated arm is
pulled then the newly collected observation replaces the oldest observation in its history.

3.3.4.1 The Algorithm

Before giving the algorithm, we introduce additional notations that are used in the statement
of the algorithm. The stored history for the arm k at round r is denoted Hy(r). At round r
when comparing the leader ¢(r) and the arm k # £(r) the last block of the history of £(r) is used
and is denoted S(Hy(r), He(r)). In particular, when both arms are saturated their entire history
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of length m,. is used for the duel. The Last Block Subsampling Duelling Algorithm with Limited
Memory is reported in Algorithm 8

Input: K arms, horizon 7', m, storage limitation
Initialization: t + 1, r =1Vk € {1,.... K}, N < 0, Hr = {}
while ¢t < T do

A+ {}, € < leader(N, )

if =1 then
| A<« {1,...,K} (Draw each arm once)
else

for k#(e{l,.. K} do B
if N < logr or Yy, > Yy s(3,,n,) then
| A+ AU{k}
if |A| =0 then
L A<}

for k € A do
if card(Hy) > m, then
L pop(Hy) // Removing the oldest observation

Pull arm k, observe reward Yj n, 41, Ng < Np+1,t <t +1
| Hi = HrU{Yrn,+1} // Append the new observation

L r<r+1

Algorithm 8: LB-SDA with Limited Memory

3.3.4.2 Theoretical Guarantees

The following result shows that LB-SDA with Limited Memory keeps the same asymptotical
performance as LB-SDA under general assumptions on m,..

Theorem 3.8 (Asymptotic optimality of LB-SDA with Limited Memory). Let £ be the
exponential family bandit model and v = (v1,...,vK) € € with means (u1, ..., ux) where
the K arms belong to the same one-parameter exponential family of distributions. If
m,./log(r) — oo, the regret of LB-SDA with Limited Memory satisfies, for all e > 0,

(L4 €A

1 T +Cl ) 7M )
Kl(pug, ) o&(T) el

R,(T)< Y

Fozpug <p*

where M = (my, ma,...,mr) denotes the sequence (my)ren and C'(v,e, M) is a problem-
dependent constant.

The proof of this theorem is reported in Appendix 3.B, which provides precise estimates of
the dependence of C’(v, e, M) with respect to the parameters, and in particular, with respect
to the sequence M. Note that LB-SDA-LM remains an anytime algorithm because the storage
constraint does not depend on the time horizon 7" but only on the current round.

3.3.5 Storage and Computational Cost

To the best of our knowledge, LB-SDA-LM is the only subsampling bandit algorithm that
does not require to store the full history of rewards. We report in Table 3.1 estimates of the
computational cost of LB-SDA-LM and its competitors.
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Table 3.1: Storage and computational cost at round T for existing subsampling algorithms.

Algorithm Storage Computational cost
Best-Worst case

BESA

[Baransi et al., 2014] o(T) O((log T)%)
[012?117\420020] o(T) O(1)-0(T)
[Baudi/B(_)tS ]21[}, 2020] o(T) O(log T)
(thiI;BélslaD;ier) o(T) 0(1)-O(log T)
LB-SDA LM

(this chapter)

The computational cost can be broken into two parts: (a) the subsampling cost and (b)
the computation of the means of the samples. We assume that drawing a sample of size n
without replacement has O(n) cost and that computing the mean of this subsample costs another
O(n). Furthermore, at round 7', each challenger to the best arm has about O(logT") samples.
This gives an estimated cost of O ((logT)?) for BESA [Baransi et al., 2014]. For RB-SDA
[Baudry et al., 2020] the estimated cost is O(log(T")), because the sampling cost for random
block sampling is O(1) and only the sample mean has to be recomputed at each round.

For the three deterministic algorithms (namely SSMC [Chan, 2020], LB-SDA, LB-SDA-LM),
when the leader arm wins all its duels, its sample mean can be updated sequentially at cost
O(1). This is the best case in terms of computational cost. However, when a challenger arm is
pulled, SSMC requires a full screening of the leader’s history, with O(T") cost, while LB-SDA
and LB-SDA-LM only need the computation of the mean of the last O(logT") samples from the
leader.

3.4 LB-SDA in Non-Stationary Environments

In stationary environments, LB-SDA achieves optimal regret rates, even when its decisions
are constrained to use at most O((logT)?) observations. One might think that this argument
itself is sufficient to address non-stationary scenarios as the duels are performed mostly using
recent observations. However, the latter is only true for the best arm and in the case where an
arm that has been bad for a long period of time suddenly becomes the best arm, adapting to the
change would still be prohibitively slow. For this reason, LB-SDA has to be equipped with an
additional mechanism to perform well in non-stationary environments.

3.4.1 SW-LB-SA: LB-SDA with a Sliding-Window

We keep a round-based structure for the algorithm, where, at each round r, duels between
arms are performed and the algorithm subsequently selects the subset of arms A, that will be
pulled. In contrast to Section 3.3.4, where a constraint on storage related to the number of pulls
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was added, here, we use a sliding window of length 7 to limit the historical data available to the
algorithm to that of the last 7 rounds.

er—1) g
i round r
S 3 £(r)
2 T
C nnn
e S
| | | | \ | | | | \
| | | | L4 | | | | 4
r—T r—1 r—1+1 T

Figure 3.3: Illustration of a passive leadership takeover with a sliding window 7 = 4 when the standard
definition of leader is used. The bold rectangle correspond to the leader. A blue square is added when an
arm has an observation for the corresponding round and the red square correspond to the information
that will be lost at the end of the round due to the sliding window.

Modified Leader Definition. The introduction of a sliding window requires a new definition
for the leader. By analogy with the stationary case, the leader could be defined as the arm that
has been pulled the most during the 7 last rounds. However, with the inclusion of the sliding
window, a new phenomenon, which we call passive leadership takeover, can occur. Let us define
N(r) = X"} 1 (k € Asy1), the number of times arm k has been pulled during the last T
rounds and consider a situation with 3 arms {1,2,3}. Assume that the leader is arm 1 and at
a round (r — 1) we have N{ (r — 1) = NJ(r — 1). If the leader has been pulled 7 rounds away
and wins its duel against arm 2 but looses against arm 3, only arm 3 will be pulled at round r.
Consequently, at round r, arm 2 will have a strictly larger number of pulls than arm 1 without
having actually defeated the leader. This situation, illustrated on Figure 3.3, is not desirable as
it can lead to spurious leadership changes. We fix this by imposing that any arm has to defeat

the current leader to become the leader itself. Define,
B, ={ke A1 N{NL(r+1) > min(r,7)/K}} .

Then for any r € N, the leader is defined as follows.

Definition 3.9 (Leader in non-stationary environments). The leader at round r + 1 is
defined as

1) = {argmaxke{lwwK}NkT(r +1) if Ny (,y(r +1) <min(r,7)/(2K)

argmaxyeg e ()} Vi (1 +1)  otherwise .

This modified definition of the leader ensures that an arm can become the leader only after
earning at least 7/K samples and winning a duel against the current leader, or if the leader loses
a lot of duels and its number of samples falls under a fixed threshold. Thanks to this definition
it holds that Ny, (r) > min(r,7)/(2K). More details are given in Appendix 3.C.
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Additional Diversity Flag. Asin the vanilla LB-SDA, we use a sampling obligation to ensure
that each arm has a minimal number of samples. However, in contrast to the stationary case,
this very limited number of forced samples may not be sufficient to guarantee an adequate variety
of duels due to the forgetting window. To this end, the sampling obligation is coupled with a
diversity flag.

Definition 3.10 (Diversity flag). The diversity flag for arm k& at round r is a binary
variable that is equal to 1 only when for the last [(K — 1)(log 7)?] rounds the three following
conditions are satisfied:

1. some arm k' # k has been leader during all these rounds
2. k' has not been pulled

3. k has not been pulled and satisfy NJ (r) < (log 7).

In practice, there is a very low probability that these conditions are met simultaneously but
this additional mechanism is required for the theoretical analysis. Note that the diversity flags
have no impact on the computational cost of the algorithm as they require only to store the
number of rounds since the last draw of the different arms (which can be updated recursively) as
well as the last leader takeover. Arms that raise their diversity flag are automatically added to
the set of pulled arms. Bringing these parts together, gives the pseudo-code of SW-LB-SDA in
Algorithm 9.

3.4.2 Regret Analysis in Abruptly Changing Environments

In this section we aim at upper bounding the dynamic regret in abruptly changing environ-
ments, as defined in Section 3.2. Our main result is the proof that the regret of SW-LB-SDA
matches the asymptotic lower bound of [Garivier and Moulines, 2011].

Theorem 3.11 (Asymptotic optimality of SW-LB-SDA). If the time horizon T and number
of breakpoint T'r are known, choosing 7 = O(\/T log(T')/T'r) ensures that the dynamic regret

of SW-LB-SDA satisfies
R,(T) = O (\/TFT log T) .

To prove this result we only need to assume that, during each stationary period, the rewards
come from the same one-parameter exponential family of distributions. In contrast, current
state-of-the-art algorithms for non-stationary bandits typically require the assumption that the
rewards are bounded to obtain similar guarantees. Hence, this result is of particular interest for
tasks involving unbounded reward distributions that can be discrete (e.g Poisson) or continuous
(e.g Gaussian, Exponential). SW-LB-SDA can also be used for general bounded rewards with the
same performance guarantees by using the binarization trick [Agrawal and Goyal, 2013a]. Note
however, that the knowledge of the horizon T" and the estimated number of change point I'r is
still required to obtain optimal rates, which is an interesting direction for future works on this
approach [Auer et al., 2019, Besson et al., 2020]. We provide a high-level outline of the analysis
behind Theorem 3.11 and the complete proof is given in Appendix 3.C.
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Input: K arms, horizon 7T, 7 length of sliding window
Initialization: ¢t < 1, r < 1,Vk e {1,..., K}, Ny < 0, N] <0
while ¢t < T do

A {}, ¢ < leader(N,Y, 1)

if r =1 then
| A+ {1,...,K} (Draw each arm once)
else

for k#£(ec{1,..,K} do
if NJ <y/log(r) or D(r) =1 then
| A+ AU{k}
else B
Bk = Yk, Ny— N7 +1:N,
N = min(N7, N})
Bk = YN,—N+1:N,
if A > fij,, then
| A~ AU{k}

ifT\A| =0 then
[ A« {6

for k € Ado
Pull arm k, observe reward Y}, n, +1

| Update N <~ Ny +1, Nf < N[ +1,t <1t +1
for k€ {1,..., K} do

if k€ A,_;11 then

| N« Nj -1

rer+1

Algorithm 9: SW-LB-SDA

Regret decomposition For the I'r + 1 stationary phases [tg, 411 — 1] with ¢ € {1,...,I'7},

we define 74 as the first round where an observation from the phase ¢ was pulled. We further
define IV, ;f = Z:i";;__zl 1(k € Ay4+1) the number of pulls of an arm & during a phase ¢. Introducing

the gaps A? = Wi , — Mgk and denoting the optimal arm k(’;, we can rewrite the regret as

Ir Te+1—2 I'r
R =E|S Y S ikeA Al =3 3 ENJA?.
¢=1r=ry—1k£k}, ¢=1 btk

Note that the quantities ¢4, r4 and Ai for the different stationary phases ¢ are only required
for the theoretical analysis and the algorithm has no access to those values.

Remark 3.2. We highlight that the sequence (14)g>1 s a random variable that depends on the
trajectory of the algorithm. However, we show in Appendix 3.C that this causes no additional
difficulty for upper bounding the regret.

We introduce 64 = tg41 —1g the length of a phase ¢ and give a sketch of proof for Theorem 3.11.
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Sketch of Proof. Combining elements from the proofs of [Garivier and Moulines, 2011] and
that of Theorem 3.2, we first provide an upper bound on E[N. ,‘f | for any suboptimal arm & during
the phase ¢ as

By <27+ 274 B[] B [5] +E[0]

We define A¢’T = b¢ log(7) for some constant b¢ > 0, along with the terms cf’l, cf; and

ck 5, which all represents a different technical aspect of the regret decomposition of SW-LB-SDA.
Before interpreting them we start with their formal definition.

Te+1—2
gf= > 1(ke€ A, () =kj N{(r) > AL7, Di(r) =0) ,
r=rg+27-2
Ter1—2
cz= Y. 1(re)=kyDi()=1),
r=rg+27-2
Tor1—2
r= > L(C()#£K)

r=rg+27-2

Bounding Individual Terms. The three terms have intuitive interpretation and summarize
well the technical contributions behind Theorem 3.11. To some extent they all rely on the notion
of saturated arms defined in Section 3.3.4 and that we refine in Appendix 3.C for the problems
considered in this section (mainly by properly tuning Ai’T in the theoretical analysis).

First, E[cf’l] is an upper bound on the expectation of the number of times a saturated
suboptimal arm can defeat the optimal leader (i.e £7(r) = k). To prove this result we establish a
new concentration inequality for Last-Block Sampling in the context of SW-LB-SDA.

The second term E[ck 5] controls the probability that the diversity flag is activated when
the optimal arm k:;; is the leader. We prove that if this event happen, then k;; has necessarily
lost at least one duel against a saturated sub-optimal arm, and that this event has only a low
probability.

The term E[ck 3] is the most difficult to handle, the main challenge is to upper bound the
probability that the optimal arm is not saturated after a large number of rounds. We provide
the complete analysis of each of these terms and a full description of all the technical results
that led to Theorem 3.11 in Appendix 3.C .

3.5 Experiments

3.5.1 Limiting the Storage in Stationary Environments.

In our first experiment! reported on Figure 3.4, we compare LB-SDA and LB-SDA-LM on a
stationary instance with K = 2 arms with Bernoulli distributions for a horizon 7" = 10000. We
add natural competitors (Thompson Sampling [Thompson, 1933], kI-UCB [Cappé et al., 2013]),
that know ahead of the experiment that the reward distributions are Bernoulli and are tuned

'The code for obtaining the different figures reported in the chapter is available at https://github.com/
YRussac/LB-SDA.


https://github.com/YRussac/LB-SDA
https://github.com/YRussac/LB-SDA
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accordingly. The arms satisfy (ui1, p2) = (0.05,0.15) with a gap A = 0.1. We run LB-SDA-LM
with a memory limit m, = log(r)? + 50, which gives a storage ranging from 50 to 150 samples
(much smaller than the horizon 7' = 10000). The regret is averaged on 2000 independent
replications and the upper and lower quartiles are reported. In this setup LB-SDA-LM performs
similarly to KL-UCB, and the impact of limiting the memory is mild, when compared to LB-SDA.
This illustrates that even with relatively small gaps (here 0.1), a substantial reduction of the
storage can be done with only minor loss of performance with LB-SDA-LM.

351 UCB1
—— LB-SDA-LM
301 —e— LB-SDA
- kl-UCB
251 —— TS
)
g 20
&
~+
<
2,15
(5}
o
10
5 -
0 4
0 2000 4000 6000 8000 10000
Round ¢

Figure 3.4: Cost of storage limitation on a Bernoulli instance. The reported regret are averaged over 2000
independent replications.

3.5.2 Empirical Performance in Abruptly Changing Environments.
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Figure 3.5: Evolution of the means: Left, Bernoulli arms (used in Fig. 3.6); Right, Gaussian arms (used
in Figs. 3.7 and 3.8).

In the second experiment, we compare different state-of-the-art algorithms on a problem
with K = 3 Bernoulli-distributed arms. The means of the distributions are represented on the
left hand side of Figure 3.5 and the performance averaged on 2000 independent replications are
reported on Figure 3.6. Two changepoint detection algorithms, CUSUM [Liu et al., 2018] and
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M-UCB [Cao et al., 2019] are compared with progressively forgetting policies based on upper
confidence bound, SW-kIUCB and D-kIUCB adapted from [Garivier and Moulines, 2011], or
Thompson sampling, DTS [Raj and Kalyani, 2017] and SW-TS [Trovo et al., 2020]. We also add
EXP3S [Auer et al., 2002a] designed for adversarial bandits and our SW-LB-SDA algorithm for
the comparison. The different algorithms make use of the knowledge of T and I'r.

— SW-LB-SDA
500 1 =—o— EXP3S
CUSUM
—#— M-UCB
4001 —¥— D-kl-UCB
Q = = SW-kI-UCB
ESOO —=— SW-TS o
- ---- DTS | A W 7" =i
[ B AN~ P S .
= -
M)
[}
s 200 A
100 1
0_
0 2000 4000 6000 8000 10000
Round ¢

Figure 3.6: Performance on a Bernoulli instance averaged on 2000 independent replications.

To allow for fair comparison, we use for SW-LB-SDA, the same value of 7 = 2/T log(T")/I'r
that is recommended for SW-UCB [Garivier and Moulines, 2011]. D-UCB uses the discount
factor suggested by [Garivier and Moulines, 2011}, 1/(1 — ) = 4\/T/T'r. The changepoint
detection algorithms need extra information such has the minimal gap for a breakpoint and the
minimum length of a stationary phase. For M-UCB, we set w = 800 and b = \/w/2log(2KT?)
as recommended by [Cao et al., 2019] but set the amount of exploration to v = /KI'rlog(T)/T
following [Besson et al., 2020]. In practice, using this value rather than the theoretical suggestion
from [Cao et al., 2019] improved significantly the empirical performance of M-UCB for the horizon
considered here. For CUSUM, « and h are tuned using suggestions from [Liu et al., 2018], namely
a = +/Tp/T1og(T/Tr) and h = log(T/T'r). On this specific instance, using € = 0.05 (to satisfy
Assumption 2 of [Liu et al., 2018]) and M = 50 gives good performance. For the EXP3S
algorithm, following [Auer et al., 2002a] the parameters « and v are tuned as follows: a = 1/T
and v = min(1, /K (e + Iy log(KT)/((e — 1)T).

This problem is challenging because a policy that focuses on arm 1 to minimize the regret in
the first stationary phase also has to explore sufficiently to detect that the second arm is the best
in the second phase. SW-LB-SDA has performance comparable to the forgetting TS algorithms
and is the best performing algorithm in this scenario. Note that both TS algorithms use the
assumption that the arms are Bernoulli whereas SW-LB-SDA does not. SW-kIUCB performs
better than D-kIUCB and its regret closely matches the one from the changepoint detection
algorithms. By observing the lower and the upper quartiles, one sees that the performance
of CUSUM vary much more than the other algorithms depending on its ability to detect the
breakpoints. Finally, EXP3S, which can adapt to more general adversarial settings, lags behind
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the other algorithms in this abruptly changing stochastic environment.
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Figure 3.7: Performance on a Gaussian instance with a constant standard deviation of ¢ = 0.5 averaged
on 2000 independent runs.

In the third experiment with I'y = 3 breakpoints, the K = 3 arms comes from Gaussian
distributions with a fixed standard deviation of & = 0.5 but time dependent means. The evolution
of the arm’s means is pictured on the right of Figure 3.5 and Figure 3.7 displays the performance
of the algorithms.

CUSUM and M-UCB can not be applied in this setting because CUSUM is only analyzed
for Bernoulli distributions and M-UCB assume that the distributions are bounded. Even if no
theoretical guarantees exist for Thompson sampling with a sliding window or discount factors,
when the distribution are Gaussian with known variance, we add them as competitors.

The analysis of SW-UCB and D-UCB was done under the bounded reward assumption
but the algorithms can be adapted to the Gaussian case. Yet, the tuning of the discount
factor and the sliding window had to be adapted to obtain reasonable performance, using
T = 2(1 + 20)y/Tlog(T)/I'r for D-UCB and v = 1 — 1/(4(1 + 20))/I'r/T for SW-UCB

(considering that, practically, most of the rewards lie under 1 + 20).

For reference, Figure 3.7 also displays the performance of the UCB1 algorithm that ignores
the non-stationary structure. Clearly, SW-LB-SDA, in addition of being the only algorithm
analyzed in this setting with unbounded rewards, also has the best empirical performance.

3.5.3 Non-stationarity Affecting the Variance

The last experiment features the same Gaussian means but with different standard errors.
The standard error takes the values 0.5,0.25,1 and 0.25, respectively, in the four stationary
phases. The algorithms based on upper confidence bound are given the maximum standard error
o = 1, whereas SW-LB-SDA is not provided with any information of this sort. Figure 3.8 shows
that the non-parametric nature of SW-LB-SDA is effective, with a significant improvement over
state-of-the-art methods in such settings.
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3.6. Conclusion
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Figure 3.8: Performance on a Gaussian instance with time dependent standard deviations averaged on

2000 independent replications.

3.6 Conclusion

In this chapter, we considered the stochastic multi-armed bandit framework. We designed
a non-parametric and asymptotically optimal policy for the exponential family bandit model.
We also presented ideas for significantly reducing the storage required for performing the
subsampling while preserving theoretical guarantees. We extended those ideas in abruptly
changing environments where when given an upper-bound on the number of breakpoints, we
propose an optimal algorithm. Finally, we assessed the performance of the approach empirically
and obtained a strong competitor for this setting that can be analyzed with fewer restrictions on

the distribution of the arms.



Appendix
Organization of the appendix

The appendix is organized as follows:
e In Section 3.A we provide some details on our analysis for the vanilla LB-SDA algorithm.

e In Section 3.B explain how to adapt LB-SDA when a limited memory is used and derive
an upper-bound for the regret of this variant of LB-SDA.

e In Section 3.C a detailed analysis of LB-SDA with a sliding window in any abruptly
changing environment is proposed.

Appendix 3.A Auxiliary Results for LB-SDA

Lemma 3.6. With W, = 1+ Y721 1(Asy1 = {€(s)}), for any round r under LB-SDA it
holds that
W, = Né(r)(r> > T/K :

Proof. We consider any trajectory of the bandit algorithm. For this trajectory we consider
the sequence of the rounds where a change of leader occurred and write them as the
(potentially infinite) set ) = [rg,r1,72,...]. These are basically all the rounds r satisfying
O(r) #L(r —1). ro = 1 as it is the first round where we start defining the leader in the
algorithm, and it holds that Ny)(1) = 1 as every arm is drawn once at the first round. As
the leader was not defined before it holds that W1 =1 = Ny)(1) so the property holds in
ro. As a first step, we show that the property is valid for all r; when ¢ € N. Let i € N, we
assume that the property holds in r; and we consider the round r;y;. It holds that

Ti+171

WT1'+1 =W, + Z L(As1 = £(s)) -

s=r;

The sum is exactly the number of duels won by the arm that is leader during the interval
[ri,rix1 — 1] and it holds that ZZQ,?i_l 1(Ast1 = €(s)) = Ny (ri1) — Ny (ri). Further-
more, when a change of leader happens the number of elements of the new and former
leader are the same, i.e. Ny, )(Ti+1) = Nygr,)(riv1). This is due to the fact that when a
challenger reaches the history size of the leader then the arm with the largest mean is chosen
as the leader. In particular, if the challenger has a lower index than the leader at this round
it cannot take the leadership at the next round as it will otherwise lose its duel against
the leader. For this reason, the only possibility for a challenger to take the leadership is to
reach to number of samples of the leader and to have a better index at this moment. We

can write

87
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Ti+1—1

Wh‘+1 =Wy + Z L(As1 = {£(s)})

s=r;
=W, + Né(n’)(riJrl) o Ng(n)(’f’i)
=W, + NZ(Ti+1)(ri+1) - Nf(n‘)(ri)
= NZ(T'L)(ri) + Nf(ﬁﬂ)(ri"'l) o Ng(ri)(m) (Inductive step)
= Nitryyr)(rig1) -
Therefore, if the property holds in r; then it holds in r;j; which gives the result. The

extension to any round is obtained with similar arguments: Vr ¢ Y, Ji : r; < r < riqq.
Then we write

r—1
Wy =Wy, + > L(Asy1 = £(s))
= Ny (1) + (Nogr) (1) — Ny py (12))
= Nyry) (1) = Noygry (1)

where the last inequality comes from the fact that the leader is unchanged between the
rounds r; and . We conclude the proof by using the property that as the leader always has
a number of samples larger than /K, as it is the arm with the largest number of pulls at
each round. O

Before proving Lemma 3.7 we prove an intermediary result that will also be useful to handle
the balance function in the proof for switching bandits in Appendix 3.C. This result was already
presented in [Chan, 2020], but we provide its proof for completeness.

Lemma 3.12. Let Fi and F5 be the cumulative distribution function of two distributions
with respective means p1 and po, p1 > po. For any integer j > 1 we denote Fyj and Fs ;
the cumulative distribution function of the sum of j independent random variables drawn
respectively from Fy and Fy, and

(M, j) = Exnr, (1= Foy(X)Y]
the balance function of these two distributions. For any u € R it holds that
a(M, j) < Fuj(u) + (1 = Fa ()™ .

Furthermore, if we assume that Fy and Fy come from the same one-parameter exponential
family of distributions, for any u € [0, 1] satisfying Fa(u) < Fy(us2) the following result holds

a(M, §) < e MO0y 1 (1 )M |

where k1(02,01) is the Kullback-Leibler divergence between Fy and Fy, expressed with their
canonical parameters 01 and 65.

|  Proof. We prove the first result, that is valid for any distribution F; and F5 and is a direct
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property of the definition of the balance function. For u € R, it holds that

oM, 5) = /_J:o(l — Py j(x))MdFyj(x)
= /uoo(l — Fps(@) M dPy(x) + /u+oo(1 — Py j(x)MdFyj(2)

< Fj(u) + (1= Fyj(u)™

We now assume that F; and F5 come from the same one-parameter exponential family of
distributions. In this case they admit a density fy(y) = f(y,0)e"@¥=%© for some natural
parameter 6 € R. We write 6; the parameter of F, and 6 the parameter of F,. We then
define some yi,...,y; € RJ. If the sequence yi, ..., y; satisfies Y7 | y,, < jpa, it holds that

J J J
H f91 (yu) = H 6(77(91)*71(92))74“*(1&(91)71/1(92)).]092 (yu) < eijkl(%ﬂl) H f6’2 (yu) .
u=1 u=1

u=1

where we write kl(6y,0;) for the Kullback-Leibler divergence between F; and F,. This
inequality first ensures that for all x < uo

Fyj(z) < e MO By ()

If we insert this expression in the first result, we have that for any u € [0, 1] satisfying
F>(u) < Fy(p2) the following result holds

(M, ) < MOy 4 (1)

O]

Remark 3.3. The second result is particularly interesting because there is a trade-off in the
choice of u. If we want to upper bound a(M,j) by a relatively small quantity we need to choose
small values for u, however if u is too small then the second term may become too large. In
particular, making the approzimation (1 —u)™ ~ e=M provides an optimal scaling of u of the
form

o = jkl(02,61) 4 log M
= i ,

and as a consequence

(M, j) < e KO0 4 (1 — )M

jkl(09,01)+log M
6M10g<177J (62 ]%4) o8 )

< JKl(02,01) +1og M _ i, ,) N
o M
M ’

for some constant C1.

With these technical results we can now prove Lemma 3.7 by simply replacing M by its value
in the double sum.
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Lemma 3.7. If the arms k and k* come from the same one-parameter exponential family
of distributions it holds that

[(log )] r '
> Y (B =) =00

r=r(B,K) j=|log(r)—1]

Proof. We denote ay, the balance function between the arm k* and an arm k& and want to
upper bound

[(logT)

Z Z A (ﬁK(K—lr)(logr) "7) '

r=r(8,K) j=|Vlogr—1]

We directly use the second result of Lemma 3.12, and choose the tuning of v from Remark 3.3.
If we write a,; = oy, (BW,]’) and try to extract the order of a,; just in terms

i2(1 2 )
a; = O (] (logr) e—]kl(ekﬂk*)) '

of r and j we obtain

r

We then upper bound the term in j2 by another (logr)* using the upper limit on the sum on
4, hence the only term left in j is e 7K(?201) which sums in a term of order exp(—y/logr).
So we then obtain a term of the form

| (log )

r A ( )66
> % a’“(ﬁfcm—l)uogr)?ﬂ)‘O<Zr

r=r(B,K) j=|vlogr—1]

We conclude, using that for any integer & > 1, (logr)* = o(eV'°8"). Hence

(log )~ ViesT ((1> ,

T ~ “\r(log 7)?
which is the general term of a convergent series. Hence we finally obtain

|(log )

Z Z ar (8 - i) =oq).
r=r(B,K) j=|/ITogr—1] ( K(K—l)(IOgT) >

Appendix 3.B LB-SDA with a Limited Memory

In this section the variant of LB-SDA using a limited storage memory introduced in Sec-
tion 3.3.4 is analyzed. After introducing a few notations, we present a detailed version of the
algorithm. We then provide a detailed proof of Theorem 3.8.
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3.B.1 Notation for the Proof of Theorem 3.8

For simplifying the notation in this section, we assume without loss of generality that arm 1
is the optimal arm (with the highest mean). We now introduce the main notations.

K number of arms

v, distribution of the arm k, with mean ui. We assume that Vk, v, € P, a one-parameter
exponential family.

We assume that p1 = maxe(g) pir so we call the (unique) optimal arm "arm 1". In this
part, the optimal arm is either denoted 1 or k*.

I (z) some large deviation rate function of the arm k, evaluated in z. For one-parameter
exponential families this function will always be the KL-divergence between v, and the
distribution from the same family with mean z.

N (r) number of pull of arm & up to (and including) round 7.
Y} ; reward obtained at the i-th pull of arm k.

ifk,i mean of the i-th first reward of arm k, ffk,n:m mean of the rewards of k on a subset
of indices n < m: Yy .y = m%nﬂ Yok, Y. If m —n =s, then Yy, 5 and Y}, .., have the
same distribution.

£(r) leader at round r, £(r) = argmaxycqq, . g} Vi(r).

A, set of arms pulled at a round 7.

Notations for the regret analysis, part relying on concentration:

Z" = {l(r) # 1}, the leader used at round r + 1 is suboptimal.

D" ={3u € {|r/4],...,r} such that £(u—1) = 1}, the optimal arm has been leader at least
once between |r/4] and r.

B* = {l(u) =1,k € Ays1, Np(u) = Ni(u) — 1 for some arm k}, the optimal arm is leader
in u but loses its duel against arm k, that have been pulled enough to possibly take over
the leadership at next round.

cY = {Hk‘ 7& 1,Nk(u) > Nl(u)>?k,Nk(u)—Nl(u)—&-l:Nk(u) > YLNl(U)}’ the optimal arm is not
the leader and has lost its duel against the suboptimal leader.

ﬁT‘ == ZZ:LT/AIJ ]lcu .

3.B.2 Proof of Theorem 3.8

The beginning of the proof of [Baudry et al., 2020] is valid for LB-SDA, however it has to
be rewritten completely to introduce the storage limitation. We use the same notation as in
Section 3.3.4 and introduce a sequence m, of allowed memory for each arm at a round r. In
the beginning of the proof we do not make any assumption on the sequence m, except that
m,./ log(r) — 400, which is required in the statement of Theorem 3.8. We further assume that
m, is an integer for any round r, which does not change anything for the algorithm but simplifies
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the notations for the proof. In this section, without loss of generality, we assume that the arm 1
is the unique optimal arm p; = maxe(g] i We also recall that the arms are assumed to come
from the same one-parameter exponential family of distributions.

In terms of notation, we remark that if Ni(r) > m, and {(r) # k then the duel be-
tween k and /(r) is the comparison between Y}, n, (r)—m, .~ (r) and YE(T),Ne(r)(T)—mv-:l\im)(f)' Oth-
erwise, if Ni(r) < m, and £(r) # k then the duel is the comparison between Y} y, ;) and
}_/Z(T),Né(r)(T)_Nk(T)fNe(r)("')’ which is the same as for the vanilla LB-SDA. We recall that the set of
saturated arms at round r is defined as

Sr={ke{l,...,K}: Ni(r) >m,}. (3.4)

However, we do not change the definition of the leader that is still defined as ¢(r) =
argmaxy,« i Ni(r) nor the corresponding tie-breaking rules. All along the proof we will use the
Chernoff inequality, that states that for any exponential family of distribution and any z,y
satisfying « < pugp < y, then

P (Yk,n < x) < e Kl@mk) anq P(?k,n > ) < okl (yone)

To simplify the notation for each arm k we define the real number zy = HFEE € (py, 1),
and write wr = min(kl(zk, p1), kl(zk, pi)). Hence, we will write most of our results using
concentration with this value wy for arm k.

We write Ny (T) as Np(T) = 1+ 7' 1(k € A,11). The first step of the proof is to
decompose the number of pulls according to the events {{(r) =1} and k € S,

T-1 T—1
ENe(T)] =14E |> 1k € A1 L(r) # )| +E | > 1(k € A1,k € S, U(r) = 1)1

r=1 r=1

T—1

+E|) U(ke A1k ¢S l(r) = 1)]
T:;fl T—1
ST4+E D 1l(r) #1)| +E | 1(k € Ay, k €Sy, l(r) = 1)1

r=1 r=1

Ey

+E

Tz:_l]l(k‘ €A1,k ¢ S, l(r) = 1)] .

r=1

E>

We first study the term E; = E [Z;tll 1k e Ay, k€S, l(r) = 1)} and use that under
k € S, the index of both arms will be a subsample of size m, of their history. We start the sum
on the rounds at 2m; because two arms cannot be saturated before this round is reached, so it
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holds that

T-1
Ey < Z P(l(r) =1,k € Ary1, Ni(r) > my, Ni(r) > my)
r=2mi
Z P (Nk(T) > My, Yk,Nk(r)—mT—l—l:Nk(r) > $k)
r=2mi
T—-1 3
+ Z P (Nl(r) > mMYVLNl(T)—mT—&-l:Nl(T) < $k‘>
r=2mi
T—-1 T 3
< Z Z P (Yk,nkfmr+1:nk > Tk, Nk(r) = nk)
r=2mi Ng=my
T-1 r

+ Z Z P (?17n1—mr+1:n1 < xg, Nl(r) = nl)

r=2mi N1=ms

IN

T-1 T T-1 r

< Z Z P (Yk,nk—mr—s—l:nk > ﬂjkz) + Z Z P (Yl,nl—mr—i—l:nl < xk)
r=2mj Ng=mr r=2mij N1=msr
T—1
<2 Z re” M@k
r=2m

where we used two main elements: 1) if two random variables X and Y satisfy X > Y then
for any threshold 7 it holds that either X > n or Y < 7 (second line), and 2) the empirical

averages of the fixed blocks of observations satisfy the Chernoff concentration inequality. Using
the notation, we introduced

P(Y1;—mpt1my < Tk) = PV, < ap) < e 7%

and

P(Yemimyt1imy, 2 2k) = P(Yim, 2 a5) < 7%

Therefore, the following holds

T—1 T—-1
Ei=Y PkeAq1,keS l(r)=1)<2 > re ™. (3.5)
r=1 r=2mq

We then study Ey = E [Zg;ll 1(k e Ay, k ¢ S, 0(r) = 1)} We further distinguish two

cases, whenever N (1) < ng(T") holds or not at each round, for some ny(7") that will be specified
later.

EQ < no(T) +E

T—1
ST Ak € Arpr,k ¢ Sn 0(r) = 1, Nio(r) > no(T))] .
r=1

On the event k ¢ S, the duels played between k and 1 will be the classical duel with the last
block: k will compete with its empirical mean and 1 with the mean of its last block of size Ny (r).
We define some ny € (ug, p1) and write
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L(k € Ary1, k & S, l(r) =1, Ni(r) > no(T))l

<no(T)+E

Z L(k € Ari1, Yo Ny () = YNy ()= Ny (r)+1:N: () Ne(r) > no(T))]
< no(T) + Z P (k € Ari1, Y Ny(r) = s Nio(r) > no(T))
r=1

-1
+> P (k € A1, Y1 N, () - Ny () 1181 (r) < ks Nie(1) 2 mo(T), Ni(r) > no(T)) :
r=1

where we used the same trick as for E; to obtain the last result. We then use a union bound on
the values of Ng(r) for the first sum and on both Ni(r) and Np(r) for the second sum, leading to

T-1 T-
Ey <nog(T)+ > Z P (k € Ari1, Yin, = Mk, Ni(r) = nk)
r=1 ng=no(T)

_ n
+ Z Z Z P (k € Ar+1a?vl,n17nk+1:n1 < ’f]k,Nk(T‘) = TLk,Nl(’I") = nl)

=1 ni1=no(T) ng=no(T)

> n0<T) + :,f P (yk,nk > nk) + Tzl Z P (YLm—nk—l—l:m < 77k) )

ng=no(T) ng=no(T) ni=no(7T)

where we used that 32 ' 1(k € A, 41, Np(r) = ng) < 1 to remove the sums in 7 (simply ignoring
the event Ni(r) = n; in the second term). Using the Chernoff inequality, we write

e~ 0 (T)KI(np k) e~ 10 (T)kl (1)

<
E2 nO(T) + 1— e—kl(nk,uk) + T 1— e_kl(nknu'l) )

We then calibrate ng(T) and Nk in order to make these terms converge properly. We define

e > 0 and take no(T) = m logT. We then use the continuity of the kullback-leibler
divergence on (pu, p1) to state that for any § > 0, there exists some ¢ > 0 and 1, € (uk, p1)

satisfying kl(ng, p1) > kl(pg, p1) — 6 > %J:Q This means that for any € > 0, there exists some

kl(pg,m1)

M, > 0 satisfying Teno(TKnem) < Te ™)~ < 1. Hence, for any € > 0 it holds that

E2< 1+

< logT + C ¢
Iy () & &

where C}, . is a constant.

Combining these results we can write a first decomposition of E[Ny(T)] as

1+ T—1 T—1
EN(T)] <1+ 7 o )logT—l—Q Sore R 4 Cre+ Y P(Ur) £1). (3.6)
1 r=2mi r=2mi

We remark that this expression provides an explicit dependence in m, in the second term,
that justifies the condition in Theorem 3.8 for m, (namely, m,/(logr) — +00). Indeed, this
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condition is sufficient to ensure for instance that m, > w% log r for r large enough, making the

term inside the sum a o(r—2).

The next step is to prove that S/ P(¢(r) # 1) = o(log T'). As in the proof of [Chan, 2020]
this part causes a lot of technical challenges, and we need to define several new events to analyze
the different scenarios that could lead a suboptimal arm to be the leader at a round r. In the
next steps we will consider the same events as in the original proof, but the storage limitation will
add some complexity to the task. We will use the following property, issued from the definition
of the leader

Ur) =k = Ni(r) > |~
() =k = Ne(r) =[]

Adding the storage constraint we have that for any r satisfying r > Km, the leader has
necessarily more than m, observations. For this reason, its history will be truncated to the m,
last observations. However, we leverage the property that when r is reasonably large, m, is large
enough to guarantee a good concentration of the empirical mean of the saturated arms around
their true mean. We will explain how this can be done in this section. We define a, = [%], and
write the following decomposition

B(Ur) #1) = P({{(r) #1} N D) + B ({£(r) 1} nD") , (3.7)
where D" is the event under which the optimal arm has been leader at least once in [a,, r]|.
D" = {3Ju € [a,,r] such that {(u) = 1}.

We now explain how to upper bound the term in the left hand side of Equation (3.7). We
look at the rounds larger than some round rg that will be specified later in the proof.

3.B.2.1 Arm 1 has been leader between a, and r

We introduce a new event
B* = {l(u) =1,k € Ayy1, Np(u) = Ni(u) — 1 for some arm k} .

Under the event D", {{(r) # 1} can only be true only if the leadership has been taken over
by a suboptimal arm at some round between a, and r, that is

{e(r) #13ND" C U,ZL {0(u) = 1,0(u+1) #1} C U,_ B*. (3.8)

Indeed, a leadership takeover can only happen after a challenger has defeated the leader
while having at least the same number of observations minus one (however this situation is
necessary but not sufficient to cause a change of leader, hence the strict inclusion). We now
upper bound Zf;rlo u—a, P(B"). We use the notation b, = [a, /K| representing the minimum
of samples of the leader at the round a,. Hence we are sure that under B“ arm 1 had at least b,
observations when it lost the duel that cost it the leadership. We then take an union bound on

all the suboptimal arms k € {2,..., K}, with B* = U,f;(:QB}; where
}; = {E(U) = 1,]<7 S .Au+1,Nk(u) = N1<u) — 1} .

This fixes the specific suboptimal arm that could have taken the leadership.
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Choosing xj,wy as in the previous section we can write

z_: Z P(BY) = E [i Z 1(0(u) = 1,k € Aurr, Ni(u) = Ni(u) + 1)

r=ro U=ar r=ro U=a,

T-1 r
>3 1(l(u) =1,k € Ayr1, Ni(u) = Ni(u) + 1,k ¢ Su)]

r=TQ U=ar

B1

i i ]l(ﬂ(u) =1,ke€e Au—i—l,Nl(U) = Nk(u) + 1,k € Su)] .

r=T0 U=ar

+E

Bs

We proceed similarly as in the previous part, analyzing separately the case k € S, and the
case k ¢ S, with S,, defined in Equation (3.4). We start with the term By,

B <E lz > ANy (u) = b, Vi nyw) = T, N1 (u) = Nk(u)—i—l,keAuH,kgéSu)] (3.9)

=70 U=a,

Z Z ) = by Y18, (w) = Ny () +1:N: () < Tk, N1(u) = Ni(u) + 1,k € Au+1)] - (3.10)

=70 U=0ar,

We now separately upper bound each of these two terms. First,

r My —1

Equation 3.9 < E Z Z Z 1(Nk(u) = ng, k € -Au+1,37k,nk > xk)]

=70 U=0r nj=b,—1

<E Z Xr: ]l(}_/k,nk > x) zr: T(Nk(u) = ngp)L(k € Aut1)

r=ro ny=b,—1 u=ar

L <1

v

T
Z P(Yk,nk 2 xk)

np=br—1

IA
i

b
’—‘C

T

> exp(—mgwr)

np—=br—1
e~ (br—1wy

1—ewr °

IA IA
T
|

\2
Il
5
o

We remark that by definition b, > a,/K > r/(4K) and using 9 > 8, we conclude that

e(l_%)wk

. 9 < .
Equation 3.9 < (1 —ewn)(1— e—wk/(‘lK))

As the subsampling in LB-SDA is deterministic, thanks to Ny(r) = Ni(u) + 1 we obtain the
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same result for Equation (3.10),

-
Equation 3.10 < E Z Z Z 1(Y1, < 2)1(Ni(u) = ng)1(k € Aus1)
_7':7‘0 u=ar nk:bel

T '
<SE|Y. > A(Yin, <a) D> L(Nk(u) = ng)L(k € Ausr)
=T np=b,—1 u=ar
L <1
T r B
< Z P(Yl,nk < xk)
T=T0 np=br,—1
-1 r

_Z eXP (—nrwe)

=b,—
< .
- (1 — e_wk)(l — efwk/(‘lK))

We then control By. For Bs the condition Nj(u) = Ni(u) 4+ 1 will not be used but instead
we use Equation (3.5) already established in the previous section.

ZMeAu+1,kesu,€() ) <2 Z ue” "k

u=1 u=2m1

which leads to

Z i ]l(ﬁ(u) =1,ke Au+1,N1(u) = Nk(u) +1,ke Su)

r=rQ U=ar

T-1 r
< Z Z 2ue” Mk

r=T0 y=max(ar,2m1)

Then, if we consider rop = min{r : a, > 2m;} we can further upper bound Bs by

T-1 r T—1 r T_1
Bo< Y 2uemer <23 ¢ 30 2o <2 Y p2emmarn

r=ro U=a, r=rg u=ar r=rg
We first use this result without commenting its dependence in the sequence (m;),>1. Summing
on all suboptimal arms k& we obtain

6(1_%)(“”6

T—1 K
s —Ma,Wgk
r;O]P’({E(r)yél}ﬂD ) §2k§ 0 emon) (1 — o= /i) ;;Or e : (3.11)
Hence, the sums of the probability that arm 1 is not the leader while it has already been
before is upper bounded by two terms: a problem-dependent constant, and a term that depends
of the sequence of memory limits (m,),>1. We can further analyze this second term. First, we
remark that contrarily to the term in m, in Equation (3.6) this time we have both 72 and m,,
instead of m,, with a, = [r/4]. Hence, for a fixed r the term of the sum is larger in this case.
However, the constraint m, /log(r) — 400 is again sufficient to ensure a proper convergence of
this sum to a constant with the same arguments. This is mainly because the choice of a, as a
fraction of r ensures that m,, will be sufficiently large.
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3.B.2.2 Arm 1 has never been leader between a, and r

The idea in this part is to leverage the fact that if the optimal arm is not leader between
|7/4] and r, then it has necessarily lost a lot of duels against the current leader at each round.
We then use the fact that when the leader has been drawn "enough", concentration prevents this
situation with large probability. We introduce

T
:Z]lcua

with C* defined as C* = {3k # 1,0(u) = k,1 ¢ Ay+1}. The following holds
P({(r) #1ND") <P(L" >r/4) . (3.12)

This result comes from [Chan, 2020], along with the direct use of the Markov inequality to
provide the upper bound

Z P(C") (3.13)

We further decompose the probability of P(C*) in two parts depending on the value of the
number of selections of arm 1. For the next steps we define the following events, {Ny(u) <
C/4log(u)} and {Ni(u) > C/4log(u)}, for some constant C' that is not known by the algorithm
and that we will define later. The idea is to handle the memory limit through this parameter C.
Indeed, we only know that the sequence (m,),>1 satisfies m,/(log(r)) — +oc. For this reason,
we know that for any C' > 0 there exists a round r¢ such that for any r > r¢ then m, > C'log(r).
Using Equation (3.12) and Equation (3.13), we have

T-1 C
ZP({E(r);él}mD Z ZP(M < log ()>

B

+Z ZIP’(C Ni(u Zl()).

r=rQ uar

D

Again, D can be upper bounded by splitting the cases when the optimal arm is saturated or
not. We define Dy ; and Dy o as

T-1 r
4
Dy = E - E P (C}é,Nl(u) > —log(u),1 € Su>

.=
r=ro  U=ar

T714 r
Dpo=> =->P (cg,Nl(u) >

r=ro  U=ar

~Q e Q

log(u), 1 ¢ su)

We also introduce Cjf == {{(u) = k,1 ¢ Ay41} for any k € {2,..., K} and obtain

K
D <Y (D + Dyp) -
;)
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For the event featuring {1 € S, } we can use the result of the previous sections because in
the event we consider there is no difference between ¢(r) = 1 and ¢(r) = k when both arms are
saturated. Following the proof for obtaining Equation (3.5), one has

Z P(1 ¢ Ayt1,1 € Sy, l(u) = k) <2 Z ue Mk (3.14)

u=ar u=ar

With this result we then obtain

T714 r
Dpi= Y . S P(CE1ES8)

r=rg ' u=ar

T-1 r

4
<> =Y P ¢ Ausr,1€8,,6(u) =k)
r=ro r U=ar,
T-1 4 T
< — 2ue” M@k (Equation 3.14)

T-1
<8 ) e Martk
r=rg

T-1 4 T C
Dra=Y_ = P(C Ni(u) > 7 los(u), 1 ¢ Su)

T=TQ U=ar

T-1 4 T C

<> - D PV N (w) - (w18 ) > Y13, () N1 (w) > 7 log(u), 1 ¢ Su, Ni(u) > Ni(u))

r=ro U=ar

T—1
yo ! {1631%(&,.)% 4T S om(a)e
.

IN

1—ewr 1—ewr
T=To
T-1
Ar+1) e

< 1 log(ar)wi
- Z r(l—e wr)

T=7T0
<y _ 6 —Srogawn
- 1—e vk

r=7q

So finally

D < Z 8 Z re MarWk | Z i Wk -5 S log(ar)ws

T=T0 r= ’l"()

At this step we remark that we need to choose the constant C' large enough in order to make
this sum converge to a constant. We remind here, that C is only an analysis parameter. We
then consider the term B. As in [Baudry et al., 2020] we transform the double sum in a simple
sum by simply counting the number of times each term is included. For any integer s and any
round r, the term % appears only if a; < r < s. With the value a, = [ﬂ we obtain

B= Z ZIP’(Nl < 7 log(u ) Z

r=rg uaT r=rQ

<Z —1(t € [r,4r] )) P <N1(7“) < Zlog(u)) .
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If we remark that Y71 $1(¢ € [s,4s]) < (4s — s + 1) x 2 < 16, we finally get:

T o T C
Z P({l(r) #1}ND") <ro+ 16 Z P <N1 (<7 log(r)> + D(v). (3.15)

Combining Equation (3.11) and Equation (3.15) yields

T T C
> B A1) < ro+16 Y B (Nilr) < Slog(r)) + D)

for some constant D) (v) that depends on k and v. Hence, the storage limit may introduce larger
constant terms in the proof, but asymptotically the dominant terms are the same as in the proof
of the vanilla LB-SDA algorithm.

The last step is to show that we can upper the last term as we did in Appendix 3.A. To do
so, we only need to prove that if ry is large enough and {N;(r) < C/4log(r)}, then the arm 1
has not been saturated for a long time. This way we would handle the saturation exactly as we
handled the forced exploration (which is still present here) in the proof for the vanilla LB-SDA.
To do so, we define the function m~1(z) = inf{r : m, > x}. If we had exactly m, = Clogr then
this function would be m~!(z) = exp(z/C). Up to choosing a slightly larger rg, we consider
that for any 7 > 7o we also have m~1(C/4logr) < exp(C/4log(r)C~') = /4. Hence, after the
round ry we are sure that arm 1 has never been saturated since the round /4, hence we can
apply the same sketch of proof as in Appendix 3.A to conclude that

T
> 7 (M) < S og)) 0.

r=rQ

Appendix 3.C Proof for Switching Bandits

Bounding E[N, ;f |, the number of pulls of a suboptimal arm & during a phase ¢ is sufficient to
control the dynamic regret. During the phase ¢ the best arm is denoted k7. We consider the

SW-LB-SDA policy with a sliding window of size 7. We also define 3¢ = T¢41 — ', the random
number of rounds in the phase ¢. Due to the sliding window, we use the definition of the leader
introduced in Section 3.4 and recall that N (r) = >0= 1 (k € As41), i.e. number of times

s=r—7
arm k has been pulled during the 7 last rounds.

3.C.1 Details for SW-LB-SDA Implementation

With our new definition of the leader, it could happen that for some rounds the leader is
not the arm with the largest number of samples when K > 3. We give an example of such a
behavior: assume that the first round is r = 1, there are 2n + m rounds and K = 3 arms drawn
in the following order (1 arm per round): m pulls of arm 1, followed by n > m pulls of arm 3
and then n — m pulls of arm 1. If the length of the sliding window is 7 = 2n and the leader at
the round (m +n + (n —m) = 2n) is 1, then we see that 1 will lose samples during the next m
rounds. If for those m successive rounds only the arm 2 is pulled, then 1 will stay leader with
n — m samples while 3 still have n samples. At the end (round 2n + m), the leader is arm 1, we
have N{(2n 4+ m) =n —m < N (2n +m) = n. This example highlights that is it possible that
the leader is not the arm that has been played the most with a sliding window.
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For this reason, the duels are slightly different to the stationary case. The index of the leader
for duels against an arm with a larger number of samples is simply the mean of its observations
collected during the last 7 rounds. Indeed, in this case both arms have a large number of samples
hence subsampling is not necessary. This explain why the term fij , is used in Algorithm 9.

3.C.2 Analysis

We use the notation introduced in Section 3.4. The beginning of the proof takes elements from
[Garivier and Moulines, 2008] and [Baudry et al., 2020]. For k # kj and an arbitrary function

AZ’T, we write

Tgt1—2 Te+1—2
Ny= Y 1(keAp)<2r+ Y L(keA)
r=ry—l r=rg+27—2
Tg+1—2
<ort > (k€A () =k, NI(r) > A7)
r=r4+27—2
T¢+172 T¢+172
+ > (ke A NI < AT+ Y L (k€ Ay, O7(r) # k)
r=r¢+27—2 r=r¢+27—2
To+1—2
<o+ Y 1 (k€A 0(r) =k, N{(r) = AL, Di(r) =0)
r=rg+27—2
To+1—2
+ > () =k, Di(r) = 1)
r=r¢+27—2
Tg41—2 Tgt1—2
+ 0> (ke A NI < AT+ Y L (k€ A, (r) £ k)
r=r¢+27—2 r=rg+27—1

We then use the following lemma.

Lemma 3.13 (Adaptation of Lemma 25 from [Garivier and Moulines, 2008]).

Toy1—2 5. A
Yo Lk A, Ni(r) < 4) < 2=
T=r¢+27—2 (&
Therefore,
S AP T¢r1—2
N <2r+ b S (k€ A, 0(r) = K, Ni(r) > AYT, Di(r) = 0)
T r=rg+27—2
i
Tor1—2 Tpt1—2
+ > 1(Ce) =k DR =1)+ > 1(C(r) £k) -
r:7‘¢+27'—2 T:7’¢+2T—1
i s

We control the expectation of these terms separately.
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3.C.2.1 Upper bounding E[cﬁﬂ
We recall that

Tp+1—2
o1 (k € Apy1, 7(r) = K5, N[ (r) > AP, D (r) = 0)]
7':1'¢+27-—2

Elc)]] =E

We start by stating a lemma on the concentration of subsample means in Last Block sampling
that is crucial for the proof.

Lemma 3.14. We consider a stationary phase ¢ and the multi-arm bandit model charac-
terized by (uf, e ,V}%). Let kj, denote the arm with the largest mean.

Then, for any constant n € N satisfyingn > f(7) = /log 7, by letting it = min(n, |7/(2K)])
it holds that

Ter1—2 — W
€
T — * T > T = < -
E TT¢Z+2T_2 1 (k € Avyr, €7(r) = k3, Ni (r) > n, DE(r) 0)] <05+ D7
(3.16)

where we defined wj, = min <Ik (5(#? + ,u%))) iy (;(,u,i + ,u%)))), ¢ 1s the length of the

phase and T the size of the sliding window. Similarly,

7‘¢+172 —ﬁwk
El > 1(k¢An0@)= k, N (r) = n)] SOty - (317)
r=rg+1—2

Proof. We start with the first claim. Under the considered event, an arm k can be drawn
for three reason: 1) Df(r) = 1, the diversity flag of this arm is raised 2) N[ (r) < y/logT,
the forced exploration is used, or 3) k has won its duel against the leader kg here. In our
case, as D (r) = 0 and N[ (r) > n > y/log, if k is pulled while k7 is leader then & has won
its duel against k.

Under this event, the duel between k and kj; is a comparison between the mean of two blocks

containing at least min(n,7/(2K)) observations because of the definition of the leader. As
in [Baudry et al., 2020] we use that for any threshold &, k& wins the duel only if either
fr(r) = & or fig (1) < &. For the sake of simplicity in our results we choose ¢, as the

number satisfying &, = %(uﬁ + u%), and this choice will remain the same for the rest of the

appendix. We then write

Tet1—2
A=FE Z Il(k:eATH,KT(T):k;;,N,:(r) zn,D;(r):O)]
_r:r¢+27'72

Tet1—2
~T ~T T T T
<E o1 (k? € v, {Bk(r) 2 & U Rk k(1) < &by Ni (r) 2 572, NE(r) 2 ”)]

r=r¢+27—2

[ rep—2
<e| Y 1 (k € Ay, ik 1(r) < &5, NI (1) > 7/ (2K), Ni (1) > n)

r=r¢+27—2

Te+1—2
+ E Z ]l(kEArJrlaﬁ;c—(T)thNl%(T)ZT/(2K)7NIZ(T) Zn)] .

r=r¢+2T7—2
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First note that for a given arm k all possible blocks of observations are uniquely described
by two quantities: IV, ;f (r) the number of observations of arm & from the beginning of the
phase ¢ and N/ () number of observations of arm k over the last 7 rounds. We will use

this property to bound the two previous sums.
Starting by the simpler term featuring the arm k, we use

{b € A1, BL() 2 6 N (1) 2 5, NE(r) 2 ) © (€ Apyn, BE() 2 6, NE() 2 0} . (3.18)

N,f is defined by N,‘f(r) ==l 1(k € Agpq). For a given round r if the indicator from

=rg—1
the RHS of Equation (3.18) is equal to 1, it implies that there is a block of length at least
n with a mean at least £,. More formally, when introducing

Sp™(r) = {k € Avya, AR(r) > &, NP(r) =m+n—1,N[(r) =n},
the following holds,

by by
{k € A1, fif(r) = & NE(r) =n}t | | Sp=™ (). (3.19)

nE=n mkzl

For the sake of clarity, we denote Yy 1, ..., Yk7 5, the set of possible rewards for the arm k for
the phase ¢. If the indicator function equals one for a given round ro, then {k € A, +1}
holds. The same block (same value for both n and m) can not be used for upcoming rounds
because N;f(ro +1) will satisfy N,‘f(ro +1) =1+ fo(ro). More specifically, for the arm & for
any possible block there is at most one round for which the indicator function can be 1., i.e.

b by rop1-2 8 by ~
DD IS DR ICEOIED DI SR I ATRET AR
nE=nmy=1r=ry+27-2 nE=nmp=1
Similarly, we denote Yk;,l’ N 5 the set of possible rewards for the arm k:j;) and let
¢7

SE"(r) = {k € Apyr, Ay 1) < & Nf (1) = m+n— 1, NE () = n}

We also have
5 0y
k€ Argrs g 1o (r) < &y Niis (1) 2 n"tc U U Sgg’m (r). (3.20)

n*=n/ m*=1

The main difference here is that several rounds can use the same block of observations
of kg This can be explained because when the indicator function equals 1 the arm k is
drawn instead of kj and the previous argument does not hold anymore. Yet, NJ.(r) can
not remain unchanged for more than 7 steps because of the sliding window. This implies in
particular,

bg by To41-2 s by

>y > ]I(SZ;m*(r)) <t > > 1 (ifk;‘),m*:m*-i-n*—l < fk) .

n*=n/ m*=1r=ry+27-2 n*=n’m*=1
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Bringing things together and applying the previous inequality with n’ = |7/(2K)| we obtain

by by 8y by
A < E Z Z 71 (Yk;,m*:m*+n*fl < glc) + Z Z 1 (Yvk,mk:mk+nk71 > gk)
m*=1n*=n/ mp=1ng=n

We then have to handle carefully the fact that (5A¢ is actually a random variable depending
on the bandit algorithm. Indeed, as several arms can be pulled at each round we don’t
know what will be the length of a phase in terms of rounds. However, this quantity is upper
bounded by the actual length of the phase in terms of arms pulled 4.

Thus, using the concentration inequality corresponding to the family of distributions for an
appropriate rate function we can write

d¢ 0 d¢ 0
A< Z Z TP (Yk:;,m*:m*—l-n*—l < §k> + Z Z P (Yk,mk:mk—l-nk—l > £k>
m*=1n*=n’ mr=1ng=n
by b T (€) d¢
BB S SR L Sl STt
m*=1n*=n' mp=1ng=n
s e*n/lk;‘b(fk) e_nlk(é‘k)
S0g | T T T -
1—e Ik¢(£k) 1 — e—1x(ék)
-

where in the last inequality we have introduced 7 = min(n,n') = min(n, |7/(2K)]).

Finally, the proof of the second statement is a direct adaptation of this proof by inverting k
and kj. We don’t need the event D,f(r) = 0 because if kj is not drawn it has necessarily
lost its duel against the leader k. O

We then remark that Equation (3.16) in Lemma 3.14 can be used to upper bound the term
ck 1, by replacing n by A¢’ Assuming that Ai’T < 7/(2K) it holds that

—A¢’7wk

P < b7+ 1) 3.21

El¢fT] < bolr + 1) (3.21)

3.C.2.2 Upper bounding E[ck 3]
We recall that,
T¢+1—2
Elp3]=E| Y 1 (0 () =k},Di(r)=1)
r=rg+27—2

To upper bound E[ck 5] we have to study the probability that the optimal arm for the phase ¢
loses [(K — 1)(log 7)?] successive duels while being leader. We derive in Lemma 3.15 an intuitive

consequence of this property: the optimal arm has necessarily lost at least one duel against a
concentrated arm.
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Lemma 3.15. Consider K arms, and assume that some arm k has been leader for M
consecutive rounds with M < T. For any m satisfying (K — 1)m < M, if k has lost more
than (K — 1)m duels then it has lost at least one duel against an arm with more than m

samples.

Proof. We assume that arm k has been leader for M consecutive rounds and that arm &
lost strictly more than (K — 1)m duels. We also assume that all the challengers that have
won against the arm k have less than m samples. We assume there exists an arm k' # k
such that k¥’ won at least m + 1 duels against arm k while having less than m samples. We
denote the rounds corresponding to the first m + 1 wins of k" against k by 71,...,7mi1.
The following holds,

Tm+1

N]z/(rm-i-l) = N]z—/(T’l) +m — Z ]l(k/ S As—r—f—l) .
s=r1
As the number of rounds where &’ wins against & is smaller than 7, we have Y it (k" €

As—r+1) < N(r1). Plugging this in the previous equation gives,

Ny (rmg1) > m .

We have the contradiction and it concludes the proof. ]

Under the event cig , the optimal arm k:(’; is the leader and the diversity flag for the arm
k is raised. If Df(r) = 1, and kj is the leader, it means that the leader has not changed
for [(K — 1)(log7)?] successive rounds and has lost more than (K — 1)(log7)? duels. All the
conditions for applying Lemma 3.15 are met. Using Lemma 3.15 and the fact that the diversity
flag cannot be activated in 7 if it has already been activated in the last [(K — 1)(log7)?] rounds
it holds that

1(¢7(r) = kj, Di(r) = 1)
r—1
<3 3 1(07(s) = ki, Ni(s) > (log7)%, k' € Agy1, Di(s) = 0) . (3.22)
k'#k% s=r—[(K—1)(log 7)?]

Furthermore, we can add that an event {¢7(r) =k}, NJ(s) > (log )2,k € Ast1, DL(s) = 0}
can only be associated with at most one event D] (r) =1 for some . Indeed, if the diversity flag
is activated it cannot be anymore before at least [(K — 1)(log7)?] rounds. Hence, combining
these results we obtain

Te+1-2
Y. L((r)=k; Di(r)=1)
r=rg+27-2

To+1—2
<> Y 1K € A, 07 (r) = K}, Ni(r) > (log 7)%, Dfy(r) = 0) .
kl?ék;b r=r¢+27—2

Applying the first equality from Lemma 3.14 with n = (log7)? gives,

o7 e*(log T)ka/
Elcyy] < ) Op(T+ 1) ———f - (3.23)
K/ Ak* L—emx
¢
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3.C.2.3 Upper bounding E[cfg]

We recall that,

To+1—2

Eepgl =E | Y (@) #k)

r=rg+27—1

As for the stationary case the trickiest part is to prove that the leader is the best arm with
high probability. We will first look at the terms involving the event that the best arm has already
been leader after the first 7 rounds of the phase, and then analyze the situation where it has
never been leader. As the upper bound for Ci:; is difficult to obtain, we break this section into

different parts.

Part 1: the optimal arm has been leader between v — 7 and r — 1. If the best arm has already
been leader between r — 7 and r — 1 then it has necessarily lost its leadership at some intermediate
round. Loosing the leadership can be done in two different ways. The first one called the active
leadership takeover corresponds to the case where an arm takes the leadership by winning against
the leader. The second one, passive leadership takeover is simply the case where the leader loses
so many duels that its number of samples falls below 7/(2K). We handle the first case similarly
as in [Baudry et al., 2020], while for the second we use Lemma 3.15. We denote

D(r)={3se[r—7,r—1]:L7(s) = k3} .
We will upper bound P({¢"(r) # k3} ND(r)). We introduce,

Br):={3s€lr—rr—1:0(s) =k}, ("(s+1) £ k3 }
U A0 =k s+ 1) £ k)

One has,
L(7(r) # kg, D(r)) < L(B(r)) .

The change of leader can happen under three different scenarios: 1) some arm k takes the
leadership after winning against k7 (active takeover), 2) arm k loses the leadership because its
number of samples falls below the threshold 7/(2K) and 3) some arm takes the leadership after
being pulled because of the diversity flag. We remark that the activation of the diversity flag for
some arm k cannot lead to a leadership takeover by arm k if (log7)? < 7/K, so this scenario
can only happen for relatively small values of 7. These properties can be formulated as

{07() = k5, (5 + 1) £ K} C Unas {£7(5) = k3, €7 (s + 1) = k. b € gy, Df(5) = 0}
U{7(s) = ki N (s +1) < 7/(2K) |
U{e7(s) = k3, 3k £ K 2 €7 (s +1) = k, Dj(s) = 1} .
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Using this property it holds that

Tp+1—2

> I{(r) # k3N D(r))

r=rg+27—1

Te1—2 r—1

< Y > Y (ke A 7(s) = k5075 +1) = k, D(s) = 0)

r=rg+27—1s=r—7 k;ék:;

To41—2 r—1

+ > Y () =k N (s + 1) < 7/(2K))

r=rg+27—1s=r—71

Toy1—2 r—1

+ > Y S () =k (s+1) =k, Di(s) =1) .

r=rg+27—1s=r—71 k;;ék;

We remark that if we reorganize the sums in s and r each element in the range [ry + 27 —
1,7¢+1 — 2] will appear at most 7 times, which leads to

T¢+1—2
> 1{(r) # k5N D(r))
r=rg+27—1
Tot+1—2

< Y Y A(C0) =K G+ 1) = k€ Ay, D) = 0)
r=rgt2r—2  k#tk,

C1
Tp+1—2
+ > () =k, NE gy (r+1) < 7/(2K))
r=r¢+27—2
Ca
Tgt1—2

+ Y s () =k Cr+1) =k Di(r) =1) .

r=re+27—1 k#k;

C3

We then bound the three terms separately. We can upper bound C; using Lemma 3.14
replacing n by the value 7/K — 2,

Tp+1—2
T * T T T
E[Cl]g Z TE[ Z ﬂ(keAr+1,€ (T):k¢,Nk(T)ZK—Q,Dk(r):())]
k;ék; r=r¢+27—2
67(7/K72)wk
1 —e Wk

<> (T +1)
k#k

To handle Cy we will use Lemma 3.15. The definition of the leader ensures that when one
arm takes the leadership is does it with at least 7/K observations. Hence, to make this number
go below the threshold 7/(2K), k7 has to lose at least 7/(2K) duels between the moment this

arm took the leadership and the round r. There are two possibilities. The first one is that k:;;
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was leader for at least 7 rounds: as the index of each arms are computed from observations
that have been all drawn under the leadership of k;; then at least one arm has to beat k:(’; while

having more than 7/K — 1 observations, which results in an active leadership takeover by this
arm. Hence, a passive change of leader can only happen if k:;; was leader for less than 7 rounds.
In this case, we apply Lemma 3.15, it ensures that k:;; lost at least one duel with an arm with
more than Lmj observations during the time it was leader. Formally,

* T T r— T * T T
{ZT(T) = k¢,Nk;(7‘+ 1) < ﬁ} CUZrr {Elk,k € Ast, 07 (s) = kg, Nii(s) = {W_UJ} .

We can write

To+1—2

E[C] = TE |: Z 107 (r) = k;,N,%(r—i— 1) < 7/(2K))

r=r¢+27—2

<r Y E [ %52 f 1 (k € A, U7 (s) = k2, N (s) > {M(IEDJ ,DI(s) = 0)]

k#k}, r=r¢+27—2s5=r—"T
Te+1—2 T
2 T _ Lk T T _
<7 ZE Z ]l<k’€./4r+1,1€ (T)—k¢,Nk(T)Z \‘QI((I{DJ’D]“(T)_O)
k-;ék;‘) r=r¢+27-2

e Lmj “k

1—e wr

< Z 5¢T2(7’ +1)

k£KS
In the second to last inequality, we have used that the terms can appear at most 7 times and
the last inequality result from the first inequality from Lemma 3.14.

We now focus on the term C3. We use that {¢{"(s + 1) = k, D](s) = 1} can happen only if
/K < (log7)? because if (log7)? < 7/K, the activation of the diversity flag is not sufficient to
take over the leadership. We recall that,

To+1—2
ECs)=E| Y =Y 1(€() =k, (r+1)=kDi(r)=1)
r=ret2T=2  k#k}
Using Equation (3.22), and letting b = [(K — 1)(log 7)?], one has
To+1—2 r—1
ECs] <7 Y E| > > > AUk €A, 07(s) =k}, Ni.(s) > (log7)*, D}, (s) = 0)

k;ék:; r=r¢+27—2 k’;ék(’; s=r—>b

x1(r/K < (logT)Q)} .

This can be further bounded using

E[Cs] < 7(K —1) Y 1(r/K < (log7)?)
k/#ky

r=r¢+27—2

To+1—2
x E |: Z ]l(kl € Ar+1a€7-(r) = k:;aNl:’(T) Z (10g7)27D£’(r) = O)
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As 1 (1/K < (log7)?) is deterministic, we conclude by applying Lemma 3.14.

6_(10g T)ka

E[Cg] < (K — 1) Z (5¢7’(7‘+ 1)ﬁ

KAk,

1 (T/K < (logT)Q) .

We then use the condition on 7 to simply upper bound C5 by

—(r/K)wy,
E[Cs] < (K —1) > d47(T+1)

e
1—e @k’
-

We observe that the three terms E[C}], E[C3] and E[C3] have very similar upper bounds, so
we finally regroup them in a single term using mJ <7/K-2<7/K.

| zrck=my
e

1—e vk

E[C1] + E[Cy] + E[C3] < 36y (T + 1)(K — 1) >
k#k;,

(3.24)

Part 2: the optimal arm has never been the leader after the 27 first observations of the phase.
We now aim at upper bounding E [2:221227_2 ]l(D(r)C)}, where D(r)¢ is the event that £} has
never been the leader between r — 7 and » — 1. To do so, we use that

r—1
D(r) { >0 1(K ¢ Avr € (s) # k) > T} ,

2
S=r—T

and as in [Chan, 2020] we would like to handle this term using the Markov inequality. However,
the problem in non-stationary environment is that the index of the sum is a random variable.
Hence, to get back to a sum with a deterministic number of terms we introduce the set Ry =
[7¢ +27 —1,rg11 — 2] and write

To+1—2 T
E Z 1(D(r)4)| =E [Z 1(D(r),r e 72@]
r=ry+27—1 r=2T
T
< Y E[M(D(),r € Ry)]
r=2T1
T r—1
<y ]P’( S u (k¢ A () £ h) = Zor e R¢>
r=2T1 S=r—T

T r—1
< Z P( Z ]1(7’ S R¢)]1 (k:;) ¢ .AS_H,KT(S) =+ k:;)) > ;) .

=r—7
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At this step we can use the Markov inequality, and obtain

To+1—2
E [ >

Z E[ Z 1(r € Ry)1 (k;,ngS“,ﬁ(s);ék;)]

r=r4+27—1 r=271 S=r—T
r T
<E|Y (r€R¢ Z 1(k¢¢A5+1, (s);«ékj;)]
_r:27— S=r—T

<E Z Z ]l(k¢¢~’48+17 (5)7“‘7:2)}

reR¢ S=r—T

[ o412 9

—E| Y = f n(k;¢As+1,eT(s)¢k;)] .

|[r=re+27—1 T S=r—T

Hence,
To1-2 o2 5 r-l
E| > 1@ <E| > 2 Y (k¢ A, 0(s) £ k)
r=rg+27—1 r=ry+27— 1T =r—7
S Dl + D2 )
where,

i 7‘¢+1—2 2 —

Di=E| > = Z <k¢ ¢ Asi1, U7 (s) # K, Ni; () > Aﬁf)
| = r¢+27- 1 T S=r— ¢
i Top+1— 2 2 —

Dy =E Z = Z (Nk* < A¢’ )
| "= =re+27—1 T

The different rounds can appear at most 7 times in the double sum. Using this and the
second equation of Lemma 3.14, D7 can be upper bounded

Tot1—2 _Azi‘“k
§ * T * T &, 7 €
r=r¢+217—2 k;ﬁk;‘)

Contrarily to the stationary case, we cannot work directly with Dy and have to further
decompose 1(N, l% (r) < Ai(’{). Indeed, the proof in the stationary case use the sparsity of the

observations of k‘; when it has not been pulled a lot, and the fact that in this case it has
necessarily lost a lot of duel while having a fixed sample size. This is not the case in the non
stationary environment, as for instance if k:;‘; has been pulled a lot in the previous window its
index may change a lot. To avoid this we split the event according to the values of N[ (r — 7).

1(NE () < A7) <1 (NE0) < ARTNE (- 1) > A

1 (N,%(r) < AL NE(r—7) < A;%T) .
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We then write Dy = 2(D3 + Dy), with

[ ro41-1
D3:E Z ]I(N’:*(T) SAg;T,N;—*(T—T) >Ai£—> ,
|r=r¢+27—1 ¢ ¢ ¢ ¢ ]
[ et i
D,=E| Y 1 (Ng* (r) < AYT N (r—7) < Aﬁf)
|7=re+27—1 ¢ ¢ ¢ ¢ ]

D3 can be upper bounded using Equation (3.17) in Lemma 3.14. Indeed, if N,% (r) < A‘,%T
and N ,% (r—m,7)> A"i{, for large enough values of 7, k;; can not be the leader and lost at least

one duel against a suboptimal leader while having exactly A(’%T samples between round r — 7
and round r — 1, thus

{N,% (r) < AL NE (= 7) > Af{} curtl_ {k;; ¢ Auir, 07(s) # k. N (s) = A;fg} .
We use the same trick as for D1 and Dy to handle the sums and write
rer1—1 r—1

S X 1K A T() # R N () = AFF)

r=rg+27—1s=r—71

D3 <E

Tot1—1
<tE| > 1 (k;;, ¢ Ari1, 07(r) # kg, Ni- (r) = Afg)
r=rg+27—1

We can directly use Lemma 3.14, however we remark that as we do not have to use an union
bound on the values of N ,% we can remove the factor 1/(1 — e”“*). Hence, we finally get

—A¢;ka

D3 < 047(T + 1) Z e o
KAk

We then handle D4 by using the arguments introduced by [Baransi et al., 2014] with some
novelty due to the sliding window. Indeed, we remark that if both N,%) (r—r7) < A%T and
N,I; (r) < A%T, then k} competes with at most QA%’T different index in the entire window
[r — 7,7 — 1]. This is due to the fact that the index change only if k7, is pulled (can happen at

most A%T times) or if k7 loses one observation from the window [r — 27,7 — 7 — 1] due to the
sliding window (which can also happen at most Ai{ times). Thanks to these properties we know
that during the interval [r — 7,7 — 1] we are sure that kj lost at least 7 — A%T duels, and that a

fraction 1/ (ZA%;) of them occurred while the index of £} remained the same.

Our objective is to highlight a property similar to the balance condition. To do so we need to
identify the fraction of the duels played by kj with the same index and against non-overlapping
blocks (i.e of mutually independent means) of any suboptimal arm k € {1,..., K}, k # kj. To
avoid cumbersome notations we summarize the elements that allow this conclusion, first recalling
the arguments of the previous paragraph:
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e k7 lost at least 7 — A%T duels in the window [r — 7,7 — 1]

e A fraction 1/ (ZA%)T) of them has been played with a fixed index for £}, i.e with the

subsample mean of the same block. With a forced exploration B(7) = y/log 7 this block
can have any size between +/log 7 and Azf.
¢

e Among those duels, a fraction of at least 1/(K — 1) of them has been played against the
same suboptimal arm k 7# k.

The next step is to identify the proportion of these duels that have been played against
non-overlapping blocks of k. As in the proof for the stationary case we proceed in 2 steps. First
we identify the number of different duels (i.e the index of k is not based on the same block of
observations of k) played by kj against k. However, thanks to the diversity flag we know a new
duel happens after at most each (K — 1)(log 7)? rounds. So we further process the set of duels
previously identified stating that:

e A fraction of 1 E has been played against different index of k based on different

(K—1)(log T
blocks of observations from the history of k, thanks to the diversity flag.

e As the blocks are of maximum size A% a fraction at least 1/AJ7 of them are non-
¢ ¢

overlapping.
We put all these elements together to state that there exist some 5 € (0, 1) such that for

BT
2(K—1)2(log 1)2(A77 )2
)

any value of 7 large enough, k3 lost at least C7 = duels against non-

overlapping blocks of some challenger k, with a fixed index. We write this event E7. Summing
on all the arms, rounds, possible interval (index n) and size of the history of £, (index j), we

obtain
2| A% | | A%
re+1—1 { k¢J { ¥ J

piE|Y Y Y Y

k¢k2r=r¢+2771 n=1 j=\/log7

As these events do not depend on r and on n we have

"

¢

Dy <26,A437 > 30 E[1(E])]
KRy jo o T

!
ks
<205 ALT 2C7,j) .
k#k j=+/log T
Here ay, is the balance function. We index these functions by ¢ and k in order to denote the
balance function between k;; and k in the phase ¢. We recall the definition of oy, for any integer
M

af(M.j) =By |1 FC0)M] |
[
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where y,(f, ; 1s the distribution of the sum of j random variables drawn from the distribution of
an arm k' in the phase ¢, and F, ,?i ; its cdf. We then use Lemma 3.12. We recall that this result
states that for any u < uﬁ it holds that

—iKI(u?
ag(cfjj)<e J (Uk/‘k¢)u

+(1—u)"".

We write kl(uf, Mk;) = w,‘f, and choose the value u = 3100#. Thanks to this choice, there exist

a constant v > 1 such that

(1= ) = exp (C7 log(1 - )
{1~ 227)
exp (—3log )

s%.

If we plug this expression to upper bound the sums we obtain

5

’ _ig¢3logT oy
Dy<20AL 30 D e ”CTJF]

-3
kAR, j=\/log T
J— b,
< 20,407 3 e VL 3log T Ak
=% k; —-w® C7 T3
KAk, 1—e "k

where w® = ming_p+ w®.
k;ék¢ k

Even if these terms look impressive we explain in the next section that they are not first
order terms in the regret analysis. Indeed, if we only look at the order of A,‘ff, C7™, we can

¢
use the same argument as in the proof of Lemma 3.7. Considering that for any integer k > 1,

(log7)¥ =0 (e log”") we obtain that asymptotically Dy is a o ( ) for any integer k' > 1

2
7log 7K

when Ai{ is of order (log7)" for some u > 0.

3.C.3 Summary: Upper Bound on the Dynamic Regret

Objective. Due to the many terms introduced in the analysis we provide in this section a
clarification of the final terms in the regret. First of all we recall the decomposition introduced
in the Section 3.4 to control the number of pulls of a suboptimal arm during a phase ¢ € [1,T'7],

¢ 6 Aqs’ b, 7
E[N{] < 27 + 22k L E[e) T+ Elcp3] +Elcp3] -

T
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Results of Section 3.C We first provide the results we obtained in Appendix 3.C, that are
true for any value of the sliding window 7 and the function Ai’T, that we will properly calibrate

later. We also recall that for any sub-optimal arm k in a phase ¢ we defined a constant w,(f,
satisfying w,(f = min (kl (,ui, %(,uf + ,uf:;)) ,kl (,u%, %(,ui + ,u%))).

We first obtained an upper bound on E[ci”T], which controls the probability that a "concen-
trated" suboptimal arm k is pulled when the best arm is leader. Then we have proposed an upper
bound for ]E[cz’T] that represents the expectation of the number of pulls of the arm k because of
the diversity ﬂég when the best arm is leader. These upper bounds are

_A¢,Tw<f> —(log T)2w¢,

€ "k 7k e 1
BT < 8olr+ DI BLZI<0u(r+1) 30
€ Wk 1—e W

We then provided an upper bound of E[ci’T] composed of multiple terms. This is because
this term represents the expectation of the number of rounds when the best arm is not leader.
To provide a general overview, this term is composed of two parts: the first one for the cases
when the best arm has already been leader in the last 7 rounds, and the case when the best
arm has never been leader in the last 7 round. The first general scenario was handled by the
constants Cp, Co and C3, that we have upper bounded in expectation by,

- st
9 e
E[01+CQ+C3]§36¢T (T—I—l)(K—l) Z —_—
k‘/#k; 1— e_wk/

We observe that this term has a larger order in 7 than the previous one before the exponential,
but as a larger term in the exponential that compensates. After that, we handled the cases when
the best arm has never been leader. We distinguish again different cases. The terms D; and Dsg
provide terms that share similar order with the ones we obtained before, namely:

7A¢’Tw¢ A¢’T
e K K TAAEx Wi
Dy <264(14+1) E ——— and D3 <dg7(r+1)e ¢

/ * — 7wk/
Kk 1 —e

The last term is the one that corresponds to the balance condition in the stationary case.
Yet, its adaptation to the non-stationary case was not trivial. We obtained

oNs

—/Tog Tw® 3loo T ’yAk*

Dy < 20,A%T (K — 1 ¢ & ¢
4> ¢k¢( ) 1—ew® CT 3 ’

T — 57— d) = i * ¢
where C' 20K =172 (log 7)2(14?;)2 and w MingLgs Wy -
®

Tuning of the parameters The previous results allow to control precisely the dynamic regret
of SW-LB-SDA for general values of 7 and the constants of the problem. We first remark that

one could tune each of the constants Af({ to optimize the term in each phase. However, in this

paragraph we propose a more general asymptotic analysis that proves that an optimal tuning
of 7 allows the algorithm to reach optimal guarantees. To catch this generality we will simply
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define Ai({ = A(7) = Blogr for some constant B, and define w = min¢e[17FT]{mink7§k; w,‘f}

With these new definitions, we can group several terms together, and obtain for 7 > K

E[N]] < 27 +

5¢A(T) + 26¢(T + 1)I(efA('r)oJ + K5¢T(T + 1)67(10g7)2w
T 1—ew l1—ev
e~ L=

l1—ew

e~ VI1eTw 300 1 n ~vA(T)

+ 3647 (T + 1) (K — 1) i =

+20,A(T)(K —1)

As the only term that depends on the phase is d4 it is now straightforward to sum on the
phases and the arms to obtain the dynamic regret, recalling that Zgil 04 = T. Without loss of

generality, we also assume that for all ¢ and for all k # k;;, Ai <1

I'r
R(T) =Y Y EINJIA]

d=1k#k?,
K—-1)TA 2T H)K(K -1
< 25— 1y S UTAD) | 2T+ DR 1)
E1 E2
L TEE =D 41) o, STIK = Dr(r+ DK =12 ||
1—ew 1—ew
E3 Ey
—VlogTw 3190 1 A(r)
WA(r)EK —1)2 | & 28T (g )7
+2TAR) )[1_€w 08T 4 (k1)
Es

Knowing the horizon T" and an order of the number of breakpoints I'r we propose a tuning

for 7 in L}?gT
T

terms in Fj.

. We then prove that the only first order terms in the decomposition are the

First, as log 7 is of order log T, choosing A(71) = %logT ensures that Fo is upper bounded by
a constant. Then, the terms E3 and E4 are also both upper bounded by constants as the term in
the exponent dominates the polynomial in 7 preceding it. The term FEs needs more work. Indeed,
its second component causes no difficulty and is upper bounded by a constant. However, for the
first term we need to use the fact C™ is of order 7/log(7)?, hence there exists some integer j/
such that the dominant term in FEj is of order % x (log T)j'e* log7w  Ag in Appendix 3.A we
use that (log7)7 e~ V187w — o(log(r)~!) (for instance). Hence, thanks to the log terms Fs is of

lower order than E;. Finally, we obtain

R(T)=0O(/TTrlogT) .

This concludes the proof of Theorem 3.11.
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4 | Weighted Linear Bandits for Non-
Stationary Environments

In the previous chapter, we discussed an alternative to upper-confidence bound based or Thompson
Sampling algorithms for the stochastic multi-armed bandit problem. From now on, we consider
richer structured models. This chapter is dedicated to the study of the linear contextual bandit
problem in which the available actions correspond to arbitrary context vectors whose associated
rewards follow a non-stationary linear regression model. In this setting, the unknown regression
parameter is allowed to vary in time. To address this problem, we propose a novel optimistic
algorithm based on discounted linear regression D-LinUCB, where exponential weights are used
to smoothly forget the past. This involves studying the deviations of the sequential weighted
least-squares estimator under generic assumptions. As a by-product, we obtain novel deviation
results that can be used beyond non-stationary environments. We provide theoretical guarantees
on the behavior of D-LinUCB in both slowly-varying and abruptly-changing environments. The
results from this chapter are based on [Russac et al., 2019].
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4.1 Introduction

In this chapter we are interested in structured bandit models, known as stochastic lin-
ear bandits, in which linear regression is used to predict rewards [Abbasi-Yadkori et al., 2011,
Auer, 2002, Li et al., 2010].

Our first contribution consists in extending existing deviation inequalities to sequential
weighted least-squares. Our result applies to a large variety of bandit problems and is of
independent interest. In particular, it extends the recent analysis of heteroscedastic environments
by [Kirschner and Krause, 2018]. It can also be useful to deal with class imbalance situations,
or, as we focus on here, in non-stationary environments.

As a second major contribution, we apply our results to propose D-LinUCB, an adaptive linear
bandit algorithm based on carefully designed exponential weights. D-LinUCB can be implemented
fully recursively (without requiring the storage of past actions) with a numerical complexity that
is comparable to that of LinUCB. To characterize the performance of the algorithm, we provide
a unified regret analysis for abruptly-changing or slowly-varying environments.

The setting and notations are presented below and we state our main deviation result in
Section 4.2. Section 4.3 is dedicated to non-stationary linear bandits: we describe our algorithms
and provide regret upper bounds in abruptly-changing and slowly-varying environments. We
complete this theoretical study with a set of experiments in Section 4.4.

4.1.1 Model and Notations

The setting we consider in this chapter is a non-stationary variant of the stochastic linear bandit
problem studied in [Abbasi-Yadkori et al., 2011, Li et al., 2010] and presented in Section 1.4.2.
We recall the main ingredients here. At each round ¢ > 1, the learner receives a set of feasible
actions A; € R? and chooses an action 4; € A;. Based on this choice, the learner receives a
reward X, satisfying Equation (1.20), i.e

Xt - <At79;>+77t7

where 07 € R? is an unknown parameter and 7; is, conditionally on the past, a o—subgaussian
random noise.

The action set A4; may be arbitrary but its components are assumed to be bounded, in the
sense that ||all2 < L, Va € A;. The time-varying parameter is also assumed to be bounded:
Vi, |0F]l2 < S. We further assume that | (a,0F)| < 1, Vt,Va € A;, (obviously, this could be
guaranteed by assuming that L = S = 1, but we indicate the dependence in L and S in order to
facilitate the interpretation of some results). For a positive semi definite matrix M and a vector
x, we denote by ||z|[ps the norm vVaT Mz. The goal of the learner is to build a policy 7 that
minimizes the dynamic regret defined as

T

R(T,m) =) max(a— A 0f) . (4.1)
=1 acAg

Even in the stationary case (i.e. when 6f = *), there is, in general, no single fixed best action
in this model.

When making stronger structural assumption on 4;, one recovers specific instances that have
also been studied in the literature. In particular, the canonical basis of RY, A; = {ei,...,eq},
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yields the familiar non contextual multi-armed bandit model [Lattimore and Szepesvari, 2020].
Another variant, studied by [Goldenshluger and Zeevi, 2013] and others, is obtained when A; =
{e1 ®ay,...,ep ®ar}, where ® denotes the Kronecker product and a; is a time-varying context
vector shared by the k actions.

4.1.2 Related Work

In recent years, linear bandits have become the go-to paradigm to balance exploration and ex-
ploitation in contextual sequential decision making problems. Linear bandits have typically found
applications for content-based recommendations [Li et al., 2010, Valko et al., 2014], real-time bid-
ding [Flajolet and Jaillet, 2017] and even mobile-health interventions [Tewari and Murphy, 2017].
In these application, non-stationary often plays a crucial role. In this chapter, we focus on
non-stationary environments. For the sake of conciseness, we restrict the discussion to works
that consider specifically the stochastic linear bandit model from Equation (1.20), including its
restriction to the simpler (non-stationnary) multi-armed bandit model. Note that there is also a
rich line of works that consider possibly non-linear contextual models in the case where one can
make probabilistic assumptions on the contexts [Chen et al., 2019, Luo et al., 2018].

Controlling the regret with respect to the non-stationary optimal action defined in Equa-
tion (4.1) depends on the assumptions that are made on the time-variations of 6. A generic way
of quantifying them is through a variation bound Br = 3.1 M|0% — 6%, |2 [Besbes et al., 2014,
Besbes et al., 2018, Cheung et al., 2019], similar to the penalty used in the group fused Lasso
[Bleakley and Vert, 2011]. The main advantage of using the variation budget is that it includes
both slowly-varying and abruptly-changing environments. Assuming that an upper-bound B
for the variation bound is known, [Besbes et al., 2014, Besbes et al., 2015, Besbes et al., 2018]

achieve the tight dynamic regret bound of (5([( 1/ 3311/ S12/ 3) for the K—armed bandits. For
linear bandits, [Cheung et al., 2019, Cheung et al., 2021] propose an algorithm based on the use
of a sliding-window and provide a (5(d2/ 3B71~/ S12/ 3) dynamic regret bound; since this contribution
is close to ours, we discuss it further in Section 4.3.2. [Zhao et al., 2020] suggest to restart the
algorithm every H steps. H is tuned based on the knowledge of By.

A more specific non-stationary setting arises when the number of changes in the parameter
is bounded by I'p, as in traditional change-point models. The problem is usually referred
to as switching bandits or abruptly-changing environments. It is, for instance, the setting
considered in the work by [Garivier and Moulines, 2011], who analyzed the dynamic regret
of UCB strategies based on either a sliding-window or exponential discounting. For both
policies, they prove upper bounds on the regret in (’3(\/FTT ) when I'p is known. They also
provide a lower bound in a specific non-stationary setting, showing that R(T) = Q(v/T). We
refer the reader to Section 1.3.1 for a better intuition on this lower bound. The algorithm
ideas from [Garivier and Moulines, 2011] can be traced back to [Kocsis and Szepesvari, 2006b].
[Wei and Srivatsva, 2018] shows that an horizon-independent version of the sliding window
algorithm can also be analyzed in a slowly-varying setting. [Keskin and Zeevi, 2017] analyze
windowing and discounting approaches to address dynamic pricing guided by a (time-varying)
linear regression model. Discount factors have also been used with Thomson sampling in dynamic
environments as in [Gupta et al., 2011, Raj and Kalyani, 2017].

In abruptly-changing environments, the alternative approach relies on change-point detection
[Auer et al., 2019, Besson et al., 2020, Cao et al., 2019, Wu et al., 2018, Yu and Mannor, 2009].
A bound on the regret in (’)((}2 + %) log(T)) is proven by [Yu and Mannor, 2009], where e is the
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smallest gap that can be detected by the algorithm, which had to be given as prior knowledge.
[Cao et al., 2019] proves a minimax bound in O(y/I'rKT) if I'r is known. [Besson et al., 2020]
achieves a rate of O(y/I'rKT) without any prior knowledge of the gaps or I'y. In the contextual
case, [Wu et al., 2018] builds on the same idea: they use a pool of LinUCB learners called slave
models as experts and they add a new model when no existing slave is able to give good prediction,
that is, when a change is detected. A limitation however of such an approach is that it can
not adapt to some slowly-varying environments, as will be illustrated in Section 4.4. From
a practical viewpoint, the methods based either on sliding window or change-point detection
require the storage of past actions whereas those based on discount factors can be implemented
fully recursively.

Finally, non-stationarity may also arise in more specific scenarios connected, for instance,
to the decaying attention of the users, as investigated in [Levine et al., 2017, Mintz et al., 2020,
Seznec et al., 2019]. In the following, we consider the general case where the parameters satisfy
the variation bound, i.e., By = L 6F — 07,1l]2 < Br and we propose an algorithm based on
discounted linear regression.

4.2 Confidence Bounds for Weighted Linear Bandits

In this section, we consider the concentration of the weighted regularized least-squares
estimator, when used with general weights and regularization parameters. To the best of our
knowledge there is no such results in the literature for sequential learning —i.e., when the
current regressor may depend on the random outcomes observed in the past. The particular
case considered in Lemma 5 of [Kirschner and Krause, 2018] (heteroscedastic noise with optimal
weights) stays very close to the unweighted case and we show below how to extend this result.
We believe that this new bound is of interest beyond the specific model considered in this chapter.

For the sake of clarity, we first focus on the case of regression models with fixed parameter, where
0 = 6%, for all ¢.

First consider a deterministic sequence of regularization parameters (A¢)¢>1. The reason why
these should be non-constant for weighted least-squares will appear clearly in Section 4.3. Next,
define by F; = o( A1, A1, X1, ..., Ay, Xt, Ary1, Apyr) the filtration from Section 1.4.1.2. Using
this filtration the actions A; are predictable, that is, they are F;_1 measurable. We also assume
that the positive weights (w;); are predictable. Defining by

t
9,5 = argmingeRd (Z ws(Xs - <A5,9>)2 + )‘tHeH%) ’

s=1

the regularized weighted least-squares estimator of 6* at time ¢, one has

t ¢
0, = V;_l Z wsAs Xy where V;= ZwSASAST + Aelg (4.2)

s=1 s=1

and I; denotes the d-dimensional identity matrix. We further consider an arbitrary sequence of
positive parameters (yu¢)¢>1 and define the matrix

t
Vi=> wiAA] +mly. (4.3)

s=1



Chapter 4. Weighted Linear Bandits for Non-Stationary Environments 121

V, is strongly connected to the variance of the estimator 8;, which involves the squares of the
weights (w?)s>1. For the time being, y; is arbitrary and will be set as a function of )\; in order
to optimize the deviation inequality.

We now establish the following maximal deviation inequality.

Theorem 4.1. For any F;-predictable sequences of actions (A¢)i>1 and positive weights
(we)e>1 and for all § > 0,

. At L2577t w2
P | Ve, |6 — HVV 1y, S \/>S+U 2log(1/0) +dlog |1+ —="—=] | >1-6.

dput

Proof. We define the quantity S; = >.%_; wsAsns. First note that,

0, =V~ ZwSAX—thzws (A]0* 4+ ns)
s=1 s=1

t
B (Z wsAsAL 0% + N6 — At9*> + VNS =05 — NV VTS,
s=1

Thus,
0 — 0" = V1S, — N\ V10" (4.4)
Va € RY, V¥t > 0, we have

27 (0= 69)] < el g0 (IVi'SH + [Py e*

[ vy,

*
< Jally gy (I1Sellg-1 +Aello* 1) -
By applying the previous inequality with =z = V;f/t_lV;(ét — 0*), we have

vt, (16, — 6% < |[Sellgr + Adll07l5:

ViV, W, (s

Knowing that V; > ;I and that V; is positive definite, we have 107|551 < \/%H@*Hg.
: ;
Finally,

N At *
V110 = 0"y, < 1Sellg— + ﬁIIH lo - (4.5)

The result is then obtained using Proposition 4.8, where the following any time high

probability upper bound for [|S||¢-1 is established,
t

h =
(Vt >0, !|St||~_1 < a\l 2log <5> + log (det(th)>> >1-9.
Mg

Therefore by using inequality 4.5,

- A 1 det(V;)
< ol < - >1-4.
]P’(Vt_O,HHt HHth_\/thS—i-a$2log(5>+log< . ))_1 )

We obtain the exact formula of Theorem 4.1 by upper bounding det(fft) as proposed in
Proposition 4.9 O
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The standard result used for least-squares [Lattimore and Szepesvari, 2020, Chapter 20] is
recovered by taking p; = Ay and w; = 1 (note that V, is then equal to V;). When the weights are
not equal to 1, the appearance of the matrix V, is a consequence of the fact that the variance
terms are proportional to the squared weights w?, while the least-squares estimator itself is
defined with the weights w;. In the weighted case, the matrix VtXN/t_IVt must be used to define
the confidence ellipsoid.

An important property of the least-squares estimator is to be scale-invariant, in the sense that
multiplying all weights (ws)1<s<¢—1 and the regularization parameter \; by a constant leaves the
estimator 6, unchanged. In Theorem 4.1, the only choice of sequence (j¢);>1 that is compatible
with this scale-invariance property is to take y; proportional to AZ: then the matrix ‘/}‘7;_1‘/}
becomes scale-invariant (i.e. unchanged by the transformation wg — cws) and so does the upper
bound of ||6; — 6?*Hvt iy, in Theorem 4.1. In the following, we will stick to this choice, while

particularizing the choice of the weights w; to allow for non-stationary models.

It is possible to extend this result to heteroscedastic noise, when 7, is oy sub-Gaussian and oy
is F;—1 measurable, by defining 17,5 as 22:1 wzagAsA;r + wely. In the next section, we will also
use an extension of Theorem 4.1 to the non-stationary linear model. In this case, Theorem 4.1
holds with 6* replaced by V; ' (X, wsAsAl0F + M\67), where r is an arbitrary time index
(proposition 4.12 in Appendix). The fact that r can be chosen freely is a consequence of the
assumption that the sequence of ¢o-norms of the parameters (6;);>1 is bounded by S.

4.3 Application to Non-stationary Linear Bandits

In this section, we consider the non-stationary linear bandit model from Section 4.1.1 and
propose a bandit algorithm in Section 4.3.1, called Discounted Linear Upper Confidence Bound
(D-LinUCB), that relies on weighted least-squares to adapt to changes in the parameters 6;}.
Analyzing the performance of D-LinUCB in Section 4.3.2, we show that it achieves reliable
performance both for abruptly changing or slowly drifting parameters.

4.3.1 The D-LinUCB Algorithm

Being adaptive to parameter changes indeed implies to reduce the influence of observations
that are far back in the past, which suggests using weights w; that increase with time. In doing
so, there are two important caveats to consider. First, this can only be effective if the sequence
of weights is growing sufficiently fast (see the analysis in the next section). We thus consider
exponentially increasing weights of the form w; = v, where 0 < v < 1 is the discount factor.

Next, due to the absence of assumptions on the action sets A, the regularization is instru-
mental in obtaining guarantees of the form given in Theorem 4.1. In fact, if w; = v~ while \;
does not increase sufficiently fast (and hence y;), then the term log(1 + (L2 >F_; w?)/(dput)) will
eventually dominate the radius of the confidence region since we choose y; proportional to A7.
This occurs because there is no guarantee that the algorithm will persistently select actions A,
that span the entire space. With this in mind, we consider an increasing regularization factor of
the form \; = v\, where A > 0 is a hyperparameter.

Note that due to the scale-invariance property of the weighted least-square estimator, we
can equivalently consider that at time ¢, we are given time-dependent weights w; s = 7'~%, for
1 < s <t and that 0; is defined as
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¢
argmingcga (Z 7T (X = (As,0))% + /\||9H§> :
s=1
For numerical stability reasons, this form is preferable and is used in the statement of
Algorithm 10. In the analysis of Section 4.3.2 however we revert to the standard form of the
weights, which is required to apply the concentration result of Section 4.1. We are now ready to
describe D-LinUCB in Algorithm 10.

Input: Failure probability §, subgaussianity constant o, dimension d, regularization A,
upper bound for actions L, upper bound for parameters S, discount factor ~.
Initialization: b = Oga, V = Mg, V = M, 6 = Oa
for ¢t >1do
Receive Ay, compute Bi_1 = VAS + 0\/2 log (%) + dlog (1 + %)
for a € A; do
L Compute UCB(a) = a0+ B;_1Va V-1VV-1q
Ay = argmax, ¢ 4, UCB(a)
Play action A;
Receive reward X;
Updating phase: V =~V + A AT + (1 — )My, V =2V + LA + (1 — 42y,
b=~b+ X; Ay, 6 =V~1b

Algorithm 10: D-LinUCB

4.3.2 Analysis

As discussed previously, we consider weights of the form w; = v~ (where 0 < v < 1) in the
D-LinUCB algorithm. In accordance with the discussion at the end of Section 4.1, Algorithm 10
uses jiy = v~ 2'\ as the parameter to define the confidence ellipsoid around #;_;. The confidence
ellipsoid C; is defined as {6 : ||0 — 915*1”\471‘7;11%71 < B4—1} where

B, = VAS + oy [21og(1/8) + dlo <1+ L2(172t>> (4.6)
= o —_—— | . .
Using standard algebraic calculations together with the remark above about scale-invariance

it is easily checked that at time ¢, Algorithm 10 selects the action A; that maximizes (a, §) for
a € A; and 0 € C;.

A strong conceptual advantage (at least from an analysis point of view) of forgetting strategies
is that it allows for a natural decoupling of the learning and tracking aspects of non-stationary
bandit problems. At each round ¢, the learning aspect is rooted in the noisy nature of the
environment, which blurs the sequence of {#%}._, that generated observed rewards. The learning
guarantees of forgetting policies can be extended from existing stationary analyses, this is what
we obtain with the expression of C; and Equation 4.6.

On the other hand, the tracking aspect is inherited from the drift of 8 ; to € which induces
an incompressible estimation error. It is therefore fundamentally tied to the variation-budget
defined by Br = 37|07 —6; 1/l2, which is an off-policy metric (i.e independent of the trajectory



124 4.3. Application to Non-stationary Linear Bandits

that was played) characterized by the ¢ norm. Both aspects are conflicting sources of regret;
reaching optimality requires finding the correct balance between the two of them.

Using forgetting mechanisms is helpful for controlling the bias. When considering the ordinary
least squares estimator (hence without forgetting) [Luo et al., 2021, Figure 1] build a simple
example in 2 dimensional space without noise where the bias is large even when the true
parameters at two consecutive times 7 and 65 are € close to each other.

We now show how to isolate bias (related to the tracking aspect of the problem) and variance
(related to the learning) terms. In contrast with the stationary case, the confidence ellipsoid C;
does not necessarily contain (with high probability) the actual parameter value 6 due to the
(unknown) bias arising from the time variations of the parameter. We thus define

t—1
0, =V} <Z NTIAGALOE + Aw“)e;) )

s=1

which is an action-dependent analogue of the parameter value 0 in the stationary setting
(although this is a random value). As mentioned in section 4.2, 6, does belong to C; with
probability at least 1 — 0 (see Proposition 4.12 in Appendix).

Let A7 = argmax,¢ 4,(a, 07) and 0; = argmaxycc, (A¢, 0). The instantaneous regret r; satisfies,

1y i= max(a, 0f) — (A, 0F) = (A} — Ay, 05)

a€As

— (A} — A ) + (A] — A0 6y (4.7)

Under the event {Vt > 0, 6; € C;}, that occurs with probability at least 1 — § thanks to
Proposition 4.12, we have,

(A}, 0;) < argmaxgee, (A7, 0) = UCBy(A}) < UCB,(A;) = argmaxgee, (A1, 0) = (A, 0;) . (4.8)
Then, with probability at least 1 — 9§, V¢ > 0,

ry < <At,9t — ét> + <A; — At,Ot* — ét>

< || A + ||AF — Ag||2]|6F — 6¢]]2  (Cauchy-Schwarz)

ij%mj 16 — Ht”wfl\”/tjvtfl

S HAt + QLHH: — ét”Q (Va S At, HCLHQ S L) .

“\4:11%_1\/;:11 16 — QtHw_ﬂZ:llw_l

The two terms are upper bounded using different techniques. The first term is handled with
the equivalent in a non-stationary environment of the deviation inequality of Theorem 4.1 and
the second term is the equivalent of the bias. We now explain how to control [0y — 0¢ll,, -1,

Vv
which is related to the learning aspect of the problem. We have,

16 — 9t”wfﬂ7;11w71 =16 - 9‘5*1”\471\7;11%71 + 110 — 9’5*1||w71\7;11wfl <261,

where the last inequality holds because under our assumption 6; € C; with high probability and
by definition 0; € Cs.
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4.3.2.1 An Error in the Control of the Bias Term

The tracking error can only be observed (at least at analysis time) in the directions that
were actually played by the algorithm and for which rewards were collected. Henceforth, the
main challenge when controlling the tracking error lies in converting its on-policy version to
its off-policy counterpart (which is By). This is where current approaches make a mistake by
claiming that this can be done at no cost on the regret.

The bias term can be bounded deterministically, from the assumption made on S 2 }'[|0% —
0%, 1l/2- In doing so, we introduce the analysis parameter D that, roughly speaking, corresponds
to the window length equivalent to a particular choice of discount factor v: the bias resulting
from observations that are less than D time steps apart may be bounded in term of D. Let
D € N*, one has

t—1
167 — Oello = |ViZi D v AAS (05 — 07)
s=1 2
t—1 t—D—1
<| Y0 Vit AAl(G - 6p) +‘Vt:i STy TAALGE - 67)
s=t—D 2 s=1 2
t—1 t—1 t—D—1
<UD Vi AL Y (0 — )| | DD v ASAT (0 - 6))
s=t—D p=s 2 s=1 |
t—1 p 1 D1
<\ DD VISV TAAL D (05— 6500) +3 o ATITNAALGE - 002
p=t—D s=t—D 2 s=1
t—1 P 2at—D—-1
- -5 * * 2L°S —1-—s
< VoD DD v TAAN G - 0| S D0 T
p=t—D s=t—D 9 s=1

The first inequality is a consequence of the triangular inequality. The third inequality uses

_ t—1
‘/;5—21 < (A/)\ )2Id-

In [Cheung et al., 2019, Russac et al., 2019, Zhao et al., 2020], the authors control the first
term using the following argument

P P
Vt:11 Z ’Y_SASAI(Q; - ;+1) < Amax (V;t—ll Z ’Y_SASAI) ||9;*; - 9;+1||2
s=t—D 9 s=t—D

<1165 = Opall (49)

Unfortunately, this bound is in general false. V;j S p 7% AsA/] being not a symmetric
matrix its operator norm cannot be bounded by its largest eigenvalue and the maximum eigenvalue
itself is not necessarily smaller than 1. In Section 4.3.2.4, we give a correct bound for this term.

4.3.2.2 A Correct Bound with an Additional Assumption

We can however look at sufficient conditions for the current analysis to hold. In particular,
it is sufficient that V;:ll P b W_SASAST is a symmetric matrix for the different values p.
Equivalently, we can require for the two positive semidefinite matrices V;:ll and P, ,y7® AGAT
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to share the same basis of eigenvectors. This is a strong requirement; not only should it hold
for all t < T, but furthermore such matrices are generated by the algorithm itself. This co-
diagonalizability requirement must therefore hold for virtually any sequence of arms {As}. The
only reasonable situation where this can be verified arises when it is de-facto imposed by the
geometry of the action set A := U;<7.Ay; for instance, when A lies along an orthogonal basis.

Assumption 4.1 (Orthogonal arm-set). Let {e;}{, an orthonormal basis of R. We call a
collection of arm-sets {A;}; orthogonal if for allt > 1 and any a € Ay, there exists o and i such
that a = «e;.

This assumption allows for more general models than the multi-armed bandit setting and
in particular it allows each of the action set A; to have an arbitrarily large number of actions.
Equipped with this additional assumption, we can proceed in upper-bounding the bias using the
following property.

P P
Vb Y Al =V Y vraalvo = (4.10)
s=t—D s=t—D
The advantage, now is that the matrix on the right-hand side of Equation (4.10) is symmetric
and we can use the relation ||[Mal| < ||M]|||al|2 that holds for every symmetric matrix M and
where ||M]|| denotes the operator norm of M. The final step consists in upper-bounding the
operator norm of J;_1. Let € R? such that ||z||2 < 1, we have:

P
! J_x = xTV;;ll/z Z 'y_SASA;rV;:ll/Qx < a:T‘/;:llﬂVz,ﬂ/t:ll/Qx <z'z<1.
s=t—D

From which we deduce,

[ el < 1. (4.11)
Using this, under Assumption 6.4 the bias term can be bounded by:
-1 P t—1
Z Vil Z ’Y_SAsAI(G; —0p1)|| < Z 105 — Opiall2 -
p=t—D s=t—D 2 p=t—D

Combining the previous results and using the assumption on the action sets, we have the
following regret guarantee:

Theorem 4.2. With orthogonal arm-sets, assuming that 3.1 _'|0% — 0%, |l < Br, the
regret of the D-LinUCB algorithm is bounded for all v € (0,1) and integer D > 1, with
probability at least 1 — 4, by

4138 ’YD 2

A 1—v

R(T) <2LDBr+ T+2V267VdT | T log(1/7) + log (1 + d)\(L

1_7)> . (4.12)

Proof. With this additional assumption and combining previous arguments, the instanta-
neous regret is bounded with high probability by
=1 4138 ’yD

re <20 ) (165 — O ll2 + X 14 + 25t—1”At||Vt—711\7t71‘4—711-
p=t—D

The assumption Va € Ay, [(As, 6F)] < 1 also implies 7, < 2. Hence, with probability at least
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1—2¢:
t—1 7D
* * 3 .
T < 2Lp:§t:D”9p - 9p+1H2 +4L Sﬁ + 20¢—1 min <17 HAtHthlffz_ﬂ/tll) : (4.13)

To conclude the proof we use the results of Subsection 4.B.2 established in Appendix.

T _
4138 7
= g :Z, K T”ﬁT;m”‘(l 437, )
T -1
* 4138 ~y
<2 Z Yo N6y —0ialle + —— 1o 7T—|—2ﬁT\F\lme<1 HAtH?/ v )
=1p=t—D
4138 ’y I
< 2LBrD T 742 dT\|Tlog(1/7) +1 oy
< D + N1 + 2V2B7VdT og(1/7) + og( dA(1_7)>

In the first inequality, we use that ¢t — [(; is increasing. The second inequality is an
application of the Cauchy-Schwarz inequality to the third term and the last inequality is an
application of Corollary 4.15 reported in Appendix. O

In Theorem 4.2 the first two terms of the r.h.s. of Equation (4.16) are the result of the bias
due to the non-stationary environment. The last term is the consequence of the high probability
bound established in the previous section.

4.3.2.3 Analysis in the General Case

A first fix to the flaw presented in Section 4.3.2.1 was proposed in [Touati and Vincent, 2020].
Here, we follow their line of proof for proposing a valid bound for the bias term without assumption
on the geometry of the different action sets. We use:

t—1 t—1

AT Ao o) = e VAT Al |
s=1 wliwll2= s=1
Let 2 € R? such that ||z||2 = 1, we have
t—1 t—D—1
e VI v T AAL (0 - 0| < e TViD YD T AGAL(0F - 67)
s=1 s=1
t—1
+ VI YD v AAL0; - 07)
s=t—D

For the first term, we use Cauchy-Schwarz as before and obtain:

t—D—1
VI D AL (6 - 67)

s=1

25L2 AP

1—~"

< lzl2
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For the second term b := ‘ TV ISt s AAT (67 - 6F)

extra work is required.

=1 t=1 t—1
b< >yt la T VIIAG AL (0 - 6)] < TV Al Al S - 0n )
s=t—D s=t—D p=s
t—1 t—1
<L Y 4 e VAL 0 - 05,0)| (Cauchy-Schwary, || Agll2 < L)
s=t—D p=s 2
t—1 D
<L ST oy e TV A 165 — 0544 [l

<L Z z *y_s\/xTV;;llx\/A;rV;:llASHG; — 051102 (Cauchy-Schwarz)

t—1 t—1 t—1
<L Z \l Z 'y_sscTVt_llx\l Z Y SATV, 1A, |05 — 65,1]l2 (Cauchy-Schwarz) .
D \ s=t—D s=t—D

t—1 t—1 -1
J Yooy AV A = (e | YD v ATVIIA = e (Vi YD vt AGA]
s=t—D s=t—D s=t—D
< /Jtr(ly) = \/g

Further,

t—1
v TVIe < —= el ——
JZ e Gyl

Bringing those bounds together, we get

2812 AP V4 L &2
N T T AV Z 165 — 0511 l2 - (4.15)

Combining the previous results and without the extra assumptlon on the action sets, we have
the following regret guarantee:

167 — Bell2 <

Theorem 4.3. Assuming that Y1 '||6% — 05,1ll2 < Br, the regret of the D-LinUCB al-
gorithm is bounded for all v € (0, 1) and integer D > 1, with probability at least 1 — 46,

by

R(T) < mDBTjLLjS 7 T+2\fﬂT\/cﬁ Tlog( )—i—log (1+CM(1LQ_7)> .
(4.16)

Proof. Combining previous arguments, the instantaneous regret is bounded with high
probability by:
oLvVd 1 2 4138 AP

o 2hva 9* 2 Aglli,-15 -1 -
SR iy 2 W Gl S 2y
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t—

We then follow the steps from Theorem 4.2 and let W; = thlf/tVt*l
4138 P d

oVd - 22
Z vd Z 165 — 65 1lle + ——— T+2BTme (L[| Adllw,_,)
= N1 —~) A1 — A 1-—

tlptD t=1

20\/d 4L3S~yP
T

< m WT—F 2V/2BpVdT || Tlog(1/7) + log <1 + L2>

dA(1—7)

In the first inequality, we use that ¢ — (; is increasing and the last inequality is an
application of Corollary 4.15 reported in Appendix. O

Again here, the first two terms of the r.h.s. of Equation (4.16) are the result of the bias due
to the non-stationary environment with the larger dependency in 1/(1 — ) for the first term
now. In the next section, we show that this extra dependency is unfortunately necessary and is
not a consequence of a loose upper-bound.

4.3.2.4 Controlling the Bias in Non-Stationary Environments

We recall the error that was made when controlling the bias term:

p
Yo A TCAAL (O - 0500)
s=t—D

p
< )\max ( t:11 Z ’YSASA;F) HGZ - H;JrlHQ .
2

s=t—D

Without a symmetric matrix and denoting omax(M) the largest singular of a matrix M, the
bound would hold with op,,x instead of Apax. Naturally, the initial bound for controlling the bias
from Equation (4.9) would hold if it was possible to show that oymax (thll b V*SASAST) <1.
Let I denote an interval included in [1;¢ — 1].

In [Cheung et al., 2019], the authors first show (up to the fact that they use a sliding
window instead of weights) that V," ] 3,c; 7 *AsA] and Vt:11/2 dosel 'y*sAsA;thill/Q share the
same characteristic polynomials. Secondly, as the matrix ‘/;:11/ ’y sel 'y*SAsASTV;:i/ ? is positive

semidefinite, the authors claim that the matrix V,"] 3 ,c; 7 *AsA/ is also positive semidefinite.

If thll S b fy_SASAST was positive semidefinite, for t — D < p <t — 1, we would conclude
using the following arguments:

a:||z||2=

p
Umax( A Z ’y_sAsA;r) = max g Tyt Z FTEAAl

s=t—D s=t—D
t—D—1
< max z' V) Z Y AAl e+ 2TV Z Y AAl x
willellz=1 s=t—D s=1
(4.17)
t—1
< max thZ’Y SAAlz+ 2TV Z YR AGAl x
I:“xll2:1 s=1 s=p+1
(4.18)

< max z'V Vi <1,
z:|zf|2=1
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In Equation (4.17) and in Equation (4.18) we have used the semi-definite property that
was assumed to hold. Unfortunately, if My and Ms are two matrices such that M; is positive
semidefinite (PSD) and M; and Ms have the same characteristic polynomial, it does not imply
in general that M is PSD. [Touati and Vincent, 2020] propose the following counterexample
when d = 2, My = I the 2-dimensional identity matrix, My = ((1,0)",(—10,1)T). Both matrix
share the same characteristic polynomial p(x) = (1 — )2, I is clearly PSD but Ms is not PSD
as with z = (1,1) T, 2T Moz = -8 < 0.

[Zhao and Zhang, 2021] consider the simpler restart setting and obtain similar regret guaran-
tees than when using a sliding window or discount factors. They further show that establishing
Omax (V;:ll ZIS):F D W_SASAST) < 1 is not possible and construct a hard problem instance that
shows that (the equivalent in the restart setting) the additional 1/4/1 — v dependence when bound-
ing V21 S2) v e A,47 (02 — 607)
additional cost for bounding the bias without assumption on the action sets.

is indeed necessary. This shows that there is necessarily an

4.3.3 Asymptotical Bound

It can be checked that, as T tends to infinity, the optimal choice of the analysis parameter
D is to take D = log(T")/(1 — ). Further assuming that one may tune v as a function of the
horizon T and the variation upper bound By yields the following result.

Corollary 4.4. With orthogonal arm-sets, by choosing v =1 — (Bp/(dT))?/3, the pseudo
regret of the D-LinUCB algorithm is asymptotically upper bounded with high probability by
a term (’)(d2/3B:1F/3T2/3) when T — 00.

Without this assumption, by choosing v = 1 — (Bp/(\/dT))Y/2, the pseudo regret of
the D-LinUCB algorithm is asymptotically upper bounded with high probability by a term
O(d7/BBZ}/4T3/4) when T — 0.

With orthogonal arm-sets, this result is favorable as it corresponds to the same order as the
lower bound established by [Besbes et al., 2014] and [Cheung et al., 2019]. On the other hand,
the guarantee of Corollary 4.4 requires horizon-dependent tuning of the discount factor . A first
approach for obtaining guarantees without this additional assumption is the Bandit-Over-Bandit
mechanism introduced in [Cheung et al., 2019] and for which a regret guarantee of the same
order can be obtained [Zhao and Zhang, 2021, Theorem 5.

4.4 Experiments

This section is devoted to the evaluation of the empirical performance of D-LinUCB. We
first consider two simulated low-dimensional environments that illustrate the behavior of the
algorithms when confronted to either abrupt changes or slow variations of the parameters.
The analysis of the previous section suggests that D-LinUCB should behave properly in both
situations. We then consider a more realistic scenario in Section 4.4.2, where the contexts are
high-dimensional and extracted from a data set of actual user interactions with a web service.

For benchmarking purposes, we compare D-LinUCB to the Dynamic Linear Upper Confidence
Bound (dLinUCB) algorithm proposed by [Wu et al., 2018] and with the Sliding Window Linear
UCB (SW-LinUCB) of [Cheung et al., 2019]. The principle of the dLinUCB algorithm is that a
master bandit algorithm is in charge of choosing the best LinUCB slave bandit for making the
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recommendation. Each slave model is built to run in each one of the different environments. The
choice of the slave model is based on a lower confidence bound for the so-called badness of the
different models. The badness is defined as the number of times the expected reward was found
to be far enough from the actual observed reward on the last 7, steps, where 7, is a parameter of
the algorithm. When a slave is chosen, the action proposed to a user is the result of the LinUCB
algorithm associated with this slave. When the action is made, all the slave models that were
good enough are updated and the models whose badness were too high are deleted from the pool
of slaves models. If none of the slaves were found to be sufficiently good, a new slave is added to
the pool.

The other algorithm that we use for comparison is SW-LinUCB from [Cheung et al., 2019].
Rather than using exponentially increasing weights, a hard threshold is adopted. Indeed, the
actions and rewards included in the 7-length sliding window are used to estimate the linear
regression coefficients. We expect D-LinUCB and SW-LinUCB to behave similarly as they both
may be shown to have the same sort of regret guarantees (see appendix).

In the case of abrupt changes, we also compare these algorithms to the Oracle Restart
LinUCB (LinUCB-OR) strategy that would know the change-points and simply restart, after
each change, a new instance of the LinUCB algorithm. The regret of this strategy may be seen
as an empirical lower bound on the optimal behavior of an online learning algorithm in abruptly
changing environments.

In the following figures, the vertical red dashed lines correspond to the change-points (in
abrupt changes scenarios). They are represented to ease the understanding but except for
LinUCB-OR, they are of course unknown to the learning algorithms. When applicable, the blue
dashed lines correspond to the average detection time of the breakpoints with the dLinUCB
algorithm. For D-LinUCB the discount parameter is chosen as vy = 1— (d—%)Q/ 3. For SW-LinUCB
the window’s length is set to 7 = (%)z/ 3 where d = 2 in the experiment. Those values are
theoretically supposed to minimize the asymptotic regret with the orthogonal arm-set assumption
and provided good empirical results. For the Dynamic Linear UCB algorithm, the badness is

estimated from 7, = 200 steps, as in the experimental section of [Wu et al., 2018].

4.4.1 Synthetic Data in Abruptly-Changing or Slowly-Varying Scenarios

In this first experiment, we observe the empirical performance of all algorithms in an abruptly
changing environment of dimension 2 with 3 breakpoints. The number of rounds is set to T" = 6000.
The light blue triangles correspond to the different positions of the true unknown parameter 6;:
before t = 1000, 67 = (1,0); for ¢ € [1000,2000],0; = (—1,0); for t € [2000,3000], 7 = (0,1);
and, finally, for ¢ > 3000, 607 = (0,—1). This corresponds to a hard problem as the sequence
of parameters is widely spread in the unit ball. Indeed it forces the algorithm to adapt to
big changes, which typically requires a longer adaptation phase. On the other hand, it makes
the detection of changes easier, which is an advantage for dLinUCB. In the second half of the
experiment (when ¢ > 3000) there is no change, LinUCB struggles to catch up and suffers linear
regret for long periods after the last change-point. The results of our simulations are shown in the
left column of Figure 4.1. On the top row we show a 2-dimensional scatter plot of the estimate
of the unknown parameters 0, every 1000 steps averaged on 100 independent experiment. The
bottom row corresponds to the regret averaged over 100 independent experiments with the upper
and the lower 5% quantiles. In this environment, with 1-subgaussian random noise, dLinUCB
struggles to detect the change-points. Over the 100 experiments, the first change-point was
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Figure 4.1: Performances of the algorithms in the abruptly-changing environment (on the left), and, the
slowly-varying environment (on the right). The upper plots correspond to the estimated parameter and
the lower ones to the accumulated regret, both are averaged on N = 100 independent experiments

detected in 95% of the runs, the second was never detected and the third only in 6% of the runs,
thus limiting the effectiveness of the dLinUCB approach. When decreasing the variance of the
noise, the performance of dLinUCB improves and gets closer to the performance of the oracle
restart strategy LinUCB-OR. It is worth noting that for both SW-LinUCB and D-LinUCB, the
estimator 6, adapts itself to non-stationarity and is able to follow 6} (with some delay), as shown
on the scatter plot. Predictably, LinUCB-OR achieves the best performance by restarting exactly
whenever a change-point happens.

The second experiment corresponds to a slowly-changing environment. It is easier for
LinUCB to keep up with the adaptive policies in this scenario. Here, the parameter 6; starts
at 1 and moves continuously counter-clockwise on the unit-circle up to the position [0,1] in
3000 steps. We then have a steady period of 3000 steps. For this sequence of parameters,
Br = SF3M|0F — 074]|2 = 1.57. The results are reported in the right column of Figure 4.1.
Unsurprisingly, dLinUCB does not detect any change and thus displays the same performance
as LinUCB. SW-LinUCB and D-LinUCB behaves similarly and are both robust to such an
evolution in the regression parameters. The performance of LinUCB-OR is not reported here, as
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restarting becomes ineffective when the changes are too frequent (here, during the first 3000 time
steps, there is a change at every single step). The scatter plot also gives interesting information:
0, tracks 07 quite effectively for both SW-LinUCB and D-LinUCB but the two others algorithms
lag behind. LinUCB will eventually catch up if the length of the stationary period becomes
larger.

4.4.2 Simulation Based on a Real Dataset

=§= D-LinUCB

| SW-LinUCB
== dLinUCB

+ LinUCE

=@ LinUCB-OR

Regret R(T)

0 2000 4000 6000 8000 10000
Round ¢

Figure 4.2: Behavior of the different algorithms on large-dimensional data

D-LinUCB also performs well in high-dimensional space (d = 50). For this experiment, a
dataset providing a sample of 30 days of Criteo live traffic data [Diemert et al., 2017] was used.
It contains banners that were displayed to different users and contextual variables, including the
information of whether the banner was clicked or not. We kept the categorical variables catl
to cat9 , together with the variable campaign, which is a unique identifier of each campaign.
Beforehand, these contexts have been one-hot encoded and 50 of the resulting features have
been selected using a Singular Value Decomposition. 6* is obtained by linear regression. The
rewards are then simulated using the regression model with an additional Gaussian noise of
variance 02 = 0.15. At each time step, the different algorithms have the choice between two 50-
dimensional contexts drawn at random from two separate pools of 10000 contexts corresponding,
respectively, to clicked or not clicked banners. The non-stationarity is created by switching 60%
of 8* coordinates to —8* at time 4000, corresponding to a partial class inversion. The cumulative
dynamic regret is then averaged over 100 independent replications. The results are shown on
Figure 4.2. In the first stationary period, LinUCB and dLinUCB perform better than the adaptive
policies by using all available data, whereas the adaptive policies only use the most recent events.
After the breakpoint, LinUCB suffers a large regret, as the algorithm fails to adapt to the new
environment. In this experiment, dLinUCB does not detect the change-point systematically and
performs similarly as LinUCB on average, it can still outperform adaptive policies from time
to time when the breakpoint is detected as can be seen with the 5% quantile. D-LinUCB and
SW-LinUCB adapt more quickly to the change-point and perform significantly better than the
non-adaptive policies after the breakpoint. Of course, the oracle policy LinUCB-OR is the best
performing policy. The take-away message is that there is no free lunch: in a stationary period
by using only the most recent events SW-LinUCB and D-LinUCB do not perform as good as a
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policy that uses all the available information. Nevertheless, after a breakpoint, the recovery is
much faster with the adaptive policies.

4.5 Conclusion

In this chapter, we considered the non-stationary linear bandit setting where the regression
parameter 8* can vary over time. We measured the non-stationarity through the variation budget
Br a general setting that contains both abruptly changing and slowly drifting environments. We
proposed D-LinUCB an adaptive linear bandit algorithm based on carefully designed exponential
weights. With an additional assumption on the different action-sets and with the knowledge of
an upper-bound B on the true variation budget, we established the asymptotic optimality of
this algorithm. A regret of order O(B;,/ 2/ 3) was obtained, matching the existing lower bound
for this setting (Theorem 1.20). In the general case however, we explained a technical flaw in
existing approaches based on forgetting mechanisms, and obtained a degraded regret bound of
order (’)(B%MT?’/‘L).
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Appendix 4.A Confidence Bounds for Weighted Linear Bandits

4.A.1 Preliminary Results

In this section we give the main results for obtaining Theorem 4.1. For the sake of conciseness
all the results will be stated with o-subgaussian noises but the proofs will be done with the
particular value of o = 1. We recall that (n,)s is, conditionally on the past, a sequence of
o-subgaussian random noises. The results of this section are close to the one proposed in
[Abbasi-Yadkori et al., 2011] but our results are valid with a sequence of predictable weights.

We introduce the quantity S; = 2221 wsAgns and V, = 221 w?AsAI + pely. When the
regularization term is omitted, we let V;(0) = 3%, w2A,A]. The filtration associated with the
random observations is denoted F; such that A; is F;_j-measurable and 7, is Fy-measurable.
The weights are also assumed to be predictable. The following lemma is an extension to the
weighted case of Lemma 8 of [Abbasi-Yadkori et al., 2011].

Lemma 4.5. Let (w)i>1 be a sequence of predictable and positive weights. Let x € R? be
arbitrary and consider for any t > 1

1 1 —=
M;(x) == exp (a:TSt = QxT%(O)x> .
o
Let T be a stopping time with respect to the filtration {Fi};2,. Then M.(x) is almost

surely well-defined and
vz eRY E[M,(z)] <1.

Proof. First, we prove that Va € R (M;(x))2, is a super-martingale.
Let z € R?,

E[My(x)|Fi1] = E [exp (27 Sp-1 + 2 widim = 1/207 (Viea (0) + w}Ai A )z ) | Fi

2
1
= M;_1(z)exp <—2wt2xTAtA;rx) E {exp(xthAmt)\]:t_l]

1
= M;_1(z)E {exp(a:thAmt — w?xTAtAtT:I:)]]-}_l}

= Mt_l(.fC) .

The second equality comes from the fact that S;_; and ‘775_1 are F;_i-measurable. The
inequality comes from the definition of the conditional 1-subgaussianity where we also use
the F;_i-measurability of w;.

Using this supermartingale property, we have E[M;(x)] < 1. The convergence theorem
for non-negative supermartingales ensures that My, () = lim;_,o Mi(x) is almost surely
well defined. By introducing the stopped supermartingale My (x) = M7 (), we have
M (z) = limy_y00o M (z). Knowing that M;(x) is also a supermartingale, we have

E[M(2)] = E[Muin(t,r) (2)] < E[Mpingo,r) (2)] = E[Mo(2)] = 1.
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By using Fatou’s lemma:
E[M,(z)] = E[ligginf./\/lt(as)] < litrginfE[./\/lt(x)] <1.
O

In the next lemma, we will integrate M;(x) with respect to a time-dependent probability
measure. This is the key for allowing sequential regularizations in the concentration inequality
stated in Theorem 4.1. This lemma is inspired by the method of mixtures first presented in
[Pena et al., 2008]. The idea of using time-varying probability measures is inspired from the
proof of Theorem 11 in [Kirschner and Krause, 2018]. The two following lemmas are included
in the appendix so that the chapter is self-contained. There are not a mere consequence
of the results in [Abbasi-Yadkori et al., 2011] because of the time-dependent regularization
parameters.

Lemma 4.6. Let (hy); be a sequence of probability measures on RY. We define Mt =
f]Rd Mt dht( ) Th@’ll,
Vt, E[M]<1

Proof.
R[] :/M} d,IP’:/(/Rd Mt(m)dht(:n)) dP
= (/ Mt(:r)dIP’> dh¢(x) (Fubini’s theorem)
R

= / E Mt dht / dht Lemma 45)

< 1. (hy probability measure.)

d

Lemma 4.6 is a warm-up for the next lemma and is helpful for understanding why Lemma
4.7 holds. It is valid for any fixed time ¢t. The next step is to give its equivalent in a stopped
version in the specific case of gaussian random vectors.

Lemma 4.7. Let (u); be a deterministic sequence of regularization parameters. Let JF.

o (U2, F) be the tail o-algebra of the filtration (F)t. Let X = (X¢)e>1 be an independent
sequence of gaussian random vectors such that X; ~ N(O 1;) = hy with X independent of
Foo- We define

Ny (1) = E[Mi(X0)| Fo] /Mt 2) (@)

where f,, is the probability density function associated with hy defined as,

) = L ex _,uthac>
1460 J@m)adet(1/ e La) p( 2 )

Let T be a stopping time with respect to the filtration (F;); then,

E[M(u:)] < 1.
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Proof. We can use the result of Lemma 4.5 which gives Vo € R?, E[M,(z)] < 1. We have,

E[M;(ur)] = E[E[M;(X7)|Fool] = E[E[E[M: (X7)| Foo]|(Xt)1]]
= E[E[E[M: (X:)|(Xt)iz1]|Fool] < 1

The inequality is a consequence of Lemma 4.5 as, conditionally to the sequence (Xj)q,
M, (X;) is of the form M, (z) with a fixed x. O
We finally state the main result needed to obtain Theorem 4.1.

Proposition 4.8. For (ws)s>1 a sequence of predictable and positive weights, Y6 > 0, the
following deviation inequality holds

! =
P (Elt >0, ||StH‘7tfl > U\J 2log <5) + log (dei({}é))) <9d.
t

Proof. For a fixed ¢,

_ 1 1
t(,u’t) /};d t('r)fﬂt (.Z‘) X \/(27T)d det(]_/,u,tfd) /};d exp <1‘ St Hx”utfd ||x||vt(0)> v

1 - 1 , )
\/(27T)ddet(1/ﬂtld) /Rd P (x 9 =[5, ) d=

1 1, o~
VG 27T)ddet (1/ped, )/ P (2St”?‘71 “glle-Ve 1St||2‘7) e
tld ¢ ¢

exp(Qnstn L) o
[ e (<3l T, ) o

V(@2m)ddet(1/uly

€xXp (é |St||gv— ) ~ 1 det I
(27)d det (v;l) — exp (|st|%_1> det(pela)
\/ 2m)4 det(1/puely) 2 Vi det(V})

We introduce the particular stopping time,

. =
T = min {t >0, H5t||~—1 = J?log <5> +log <m>} ‘

P (Elt >0, HSt”f/tﬂ > \l210g ((15) + log <m>) =P(r < 0)
( < o0, ||S- HV 1 > $2log( ) <d€€1:tltrle)>)

<HS||V1>leog (( ))
- ( LlS-1% )W

Thus,

| /\

S \

) pr)] <0 (Lemma 4.7) .
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Appendix 4.B D-LinUCB Analysis

In this section, the environment is non-stationary, which means that the unknown parameter
6* may evolve over time and is henceforth denoted 6;. The reward generation process in the one
presented in Equation (1.20).

4.B.1 Preliminary Results
In this section, V; and 17t are defined by

t t
Vi=Y 7T AA A 0Ty, V=Y T EAAL T

s=1 s=1

We recall the definition of 3;:

L2(1 — ~2t
By = \f)\S+a\/210g(1/5) + dlog (1 + (1)> .
With 6, defined in Equation (4.2), the confidence ellipsoid we consider is defined by

_ d . ) ~
C, — {GER SR gﬁtl}. (4.19)
Theorem 4.1 can be applied with this choice of weights and regularization. We combine it
with an upper bound for det(V;) given below.

Proposition 4.9 (Determinant inequality for the weighted design matrix). Let (A¢); be a
deterministic sequence of reqularization parameters. Let V; = 2221 wsASAST + A\ely be the
weighted design matriz. Under the assumption Vi, ||A¢l|2 < L, the following holds

L2 t, . d
det(V;) < (At n le) .

Proof.

d

g4 A\ d
< (cll Z li> (AM-GM inequality)

d
1 4 (1
< (dtrace(Vt)> < (d Z wtrace(A Al ) + )\t>

s=1
d

1< ¢ L2
s=1
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Corollary 4.10. In the specific case where the weights are given by wy = v~ with 0 < v < 1.
Proposition 4.9 can be rewritten

det(V;) < (At+m> _ (M‘t+w> -
We also have,

det(V}) < +w d_ A\ _2t+w a

et V) = | Ut d(l—’yQ) = Y d(l—fy2)

,Y—Qt_l

‘ Proof. Apply Proposition 4.9 and use 3f_; 7% = I— L and St v %= T O

Corollary 4.10 and Proposition 4.8 yield the following result.

Corollary 4.11. V5§ > 0, with the weights w; = v~ and 0 < v < 1, we have

1 L2(1 — ~2t
P (Elt >0, ||St||‘7t—1 > a\/Qlog (5> + dlog (1 + M)) <.

Thanks to this corollary we are now ready to show that 6; belongs to C;_; with high probability.

Proposition 4.12. Let C; = {9 eRe: Ha_ét_lHVt T, < ﬂt_l} denote the confidence
LV Vi
ellipsoid. Let 0, = Vt:11 ( 1 Ly=sa,AT 0% + )\'y_(t_l)ez‘) Then, Y§ > 0,
P(Vtzl,e_tect) >1-4§.

Proof.
-1
0 — 0,1 = V}:ll <Z ’Y_SASAZ@* + )\7 (t=1) 9t Z’y‘sA X )

t—1 t—1
=V} <Z N TEAGAT O+ 2y — Z YEAALOE = 7‘3A5n5>
s=1 s=1
= V1S + Dy ey
Therefore,
16 — < HSHII;;1 +m‘“‘”||9*lla—1

< [[Sitllp +VAS (V7] <1/(7207DA) 1 and 1672 < 5)
t—

9‘**1”\471\7;11%71

< Bi—1. (Corollary 4.11)

4.B.2 Control of the Norm of Actions



140 4.B. D-LinUCB Analysis

Lemma 4.13. Let V; = Y. v SAA] + My, V; = L v AA] + M2, and
0<vy<1. We have _
vt7 ‘/;—1‘/; ‘/t_l S ,yft ‘/;—1 )

Proof.
t t
— Z,Y—ZSASA;F + )\'7_2tId < ,y—tz,y—sAsAz + )\,y—2t1d — ,Y—t‘/t ]
s=1 s=1
Consequently, N
‘/tfl‘/z‘/tfl S ,_y—t‘/tfl‘/t‘/tfl S fy—t‘/;fl
O

Thanks to Lemma 4.13 we establish the following proposition,
Proposition 4.14.

5 i 1, || 412 <2 log (1+77" A% ) <21 det(Vr)
tzz:lmln 7” t”‘/t_—llf/:t*l‘/t:ll Z Og +’y H t” = Og ? o

t=1

Proof. We first use the fact that: Vz > 0, min(1,z) < 2log(1 + ).

. 2 2
min (1, HAtH‘/t__ll‘N/thf_ll) < 2log (1 + HAtHVf_lﬂlet—_ll)

< 2log (1 - fy(tl)HAtH%/_l) (Lemma 4.13)
t—1
<2log (14774l ) - (<)
t—1
Furthermore,
Vi >y AA] + Vi > VY e+ VPl v AT

Given that all those matrices are symmetric positive definite, the previous inequality implies
that

et(Vy) > det(Vi-r) det(1+ (V{240 (V240 T)
> det(Vi-1) <1 + 'y—tHAtH%/_11) . (Using det(Iy4+zz') =1+ ||5UH%)
t—

Therefore,

det(Vp) & T
T~ HANR L) .
i = [ S w - H( vl t"m_a)

t=1 t=1

Finally by applying the log function to the previous inequality,

ZT:min <1 A% -1~ > < 2210 <1+ A ||2 ) <2lo <det(VT))
P ) t Vtilth— g Y t — g det(%) .

t=1
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Corollary 4.15.

T
1 L2
§ in (1|42, ~ ><\/2d T1 <> 1 <1 >
\Jtlmln( ’|| t||‘/;111‘/;f—1‘/,t:11 — Og fy _'_ Og +d}\(1—’}/)

Proof. The proof of this corollary is based on the previous lemma and on Corollary 4.10.
We have

_ d
s (det(VT)> < log (Ald </\,YT N LQ(VT;)U ) ) (Corollary 4.10)

det (V)
1 L?
nglog(>—|—dlog 1+ —— .
5 dA\(1—7)

4.B.3 Proof of Corollary 4.4

Corollary 4.4. With orthogonal arm-sets, by choosing v =1 — (Bp/(dT))?/3, the pseudo
regret of the D-LinUCB algorithm is asymptotically upper bounded with high probability by
a term O(d2/3B:1F/3T2/3) when T — 00.

Without this assumption, by choosing v = 1 — (Byp/(\/dT))Y/2, the pseudo regret of
the D-LinUCB algorithm is asymptotically upper bounded with high probability by a term
O(d7/83%/4T3/4) when T — 0.

Proof. Let us start with the case where the actions sets are orthogonal. Using Theorem 4.2,
the pseudo-regret of D-LinUCB can be bounded with high probability in the following way:

R(T) < 2LDBy + S V7 o e /dT [T o (1/7) + 1o (1 + L2>
= TN 14 g BT eR d\(1—=7)/ "
Let v be defined as vy =1 — (%)2/ 3and D = l(olg_(:)) With this choice of v, D is equivalent

to d2/3B;2/3T2/3 log(T"). Thus, DBy is equivalent to dQ/?’B:lr/gTz/3 log(T).
In addition,

1P = exp(Dlog(y) = exp (2 (1)) ~ 1/7

Hence, T'yDﬁ behaves as d2/3T2/3B;2/3.
Furthermore, log(1/v) ~ d’2/3B%/3T’2/37 implying that T log(1/v) ~ d’2/3B;/3T1/3.
As a result, it holds that, SpvdT/T log(1/7v)+ log (1 + ﬁiv)) is equivalent to

dTY/2\/log(T/Br)\/d-2/3BX*T1/3 = d2/3BY/*T?/3,/log(T/By). By adding those three

terms and neglecting the log factors, we obtain the desired result.

Let us now drop the additional assumption on the action-sets. Using Theorem 4.3, the



142 4.B. D-LinUCB Analysis

pseudo-regret now satisfies

20\/d 4138 ~P 1 L?
R(T)< ———_DBr+——-—1  T+492/28VdT|T1 () +1 (1 + ) .
(T) < i) T+ T Br og {7 og A7)

This time Let « be defined as v =1 — (%)1/ 2 and D is unchanged. With this choice of v,

VADBy  VdBrlogT
VI=7y  (1=7)32

N d7/8B;/4T3/4 .
In addition,
lo
1P = exp(D1og) = exp (P2 bog(1)) ~ 17

Hence, Tle% behaves as d1/4T1/2Br;1/2 and is negligible.
v
Furthermore, log(1/7) ~ d_1/4B:1F/2T_1/2, implying that T log(1/y) ~ d_1/4BT1F/2T1/2.
As a result, it holds that, BT\/dT\/T log(1/7) + log (1 + ﬁiv)) is equivalent to

dT1/2, /IOg(T/BT)\/d_1/4B:1r/2T1/2 = cl7/EBB:1F/4T3/4 log(T'/Br). By adding those three

terms and neglecting the log factors, we obtain the desired result. O




5 | Generalized Linear Bandits in
Abruptly Changing Environments

Contextual sequential decision problems with categorical or numerical observations are common
and Generalized Linear Bandits (GLB) offer a solid theoretical framework to address them.
In contrast to linear bandits that were discussed in the previous chapter, existing algorithms
for GLB have two drawbacks undermining their applicability. First, they rely on excessively
pessimistic concentration bounds due to the non-linear nature of the model. Second, they require
either non-convex projection steps or burn-in phases to enforce boundedness of the estimators.
Both of these issues are worsened when considering non-stationary models, in which the GLB
parameter may vary with time. In this chapter, we focus on self-concordant GLB (which include
logistic and Poisson regression) with forgetting achieved either by the use of a sliding window or
exponential weights. We propose a novel confidence-based algorithm for the maximum-likelihood
estimator with forgetting and analyze its performance in abruptly changing environments. The
results from this chapter are based on [Russac et al., 2021a].
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5.1 Introduction

Generalized linear bandits (GLB) have been introduced as a generalization of linear bandits,
able to describe broader reward models of considerable practical relevance, in particular binary
or categorical rewards [Filippi et al., 2010, Li et al., 2017]. Generalized linear bandits are for
instance a natural option in online advertising applications where the rewards take the form of
clicks [Chapelle and Li, 2011]. In this chapter, we focus on deterministic algorithms and refer
to [Chapelle and Li, 2011, Kveton et al., 2020] for randomized algorithms applicable to GLB.
Compared to the linear bandit case, there are two distinctive drawbacks of GLB algorithms. The
first is (1) the presence of a problem-dependent constant, imposed by the non-linear nature of
the model, that is possibly prohibitively large and has a negative impact both on the design of
algorithms and on their analysis. The second is (2) the need to modify the Maximum Likelihood
Estimator (MLE) to ensure that it has a bounded norm. Usually this is achieved by resorting to
an additional non-convex projection program applied to the MLE [Filippi et al., 2010]. These
distinctions correspond to a fundamental difference between the models, and explain why methods
developed for linear bandits may fail in the case of GLB.

The first drawback (1) was recently addressed by [Faury et al., 2020], in the specific case
of logistic bandits. They showed that in this particular setting, the regret bounds of carefully
designed algorithms could be significantly improved only at the cost of minor algorithmic
modifications. Their analysis tightens the gap with the linear case, and takes a significant step
towards the development of efficient GLB algorithms.

The second drawback (2) has seen little treatment in the literature, except for the work
of [Li et al., 2017] who proved that the projection step of [Filippi et al., 2010] could be avoided
by resorting to random initialization phases. However, a careful examination of the required
conditions shows that these initialization phases can be prohibitively long to be deployed in
scenarios of practical interest.

The aforementioned improvements to the original GLB algorithm of [Filippi et al., 2010] were
developed under a stationarity assumption. However relaxing this assumption is of interest in
real-world applications of contextual bandits. In the linear bandit literature, this has motivated
the development of adequate algorithms, able to handle changes in the structure of the reward
signal as discussed in the previous chapter. [Russac et al., 2020] generalized such approaches
to GLB, but without addressing neither (1) nor (2). As a result, the practical relevance of
their approach remains questionable and the development of efficient and non-stationary GLB
algorithms stands incomplete.

This chapter aims at closing this gap. We study a broad family of GLB, known as self-
concordant (which includes for instance the logistic and Poisson bandits), in environments where
the parameter is allowed to switch arbitrarily over time. Under this setting, we answer (1) by
providing a non-trivial extension of the concentration results from [Faury et al., 2020]. We also
leverage the self-concordance property to remowve the projection step, henceforth overcoming
(2). This is made possible by an improved characterization of the, possibly weighted, MLE in
(self-concordant) generalized linear models. Combined together, these two contributions lead to
the design of efficient GLB algorithms, with improved regret bounds and which do not require to
solve hard (i.e. non-convex) optimization programs. In doing so, we also answer the long-standing
issue of providing proper confidence regions centered around the pristine MLE in GLB.



Chapter 5. Generalized Linear Bandits in Abruptly Changing Environments 145

5.2 Background

5.2.1 Setting and Assumptions

We consider the same setting than in Section 1.5.1 and we recall the main ingredients here.
At each time step, the environment provides a (time-dependent) action set A; and the agent
plays a d-dimensional action A; € A;. We will assume that the reward’s distribution belongs to a
canonical exponential family with respect to a reference measure £&. The conditional distribution
of the reward x given some feature vector a satisfies

dPy(z|a)
dg

Thanks to the properties of exponential families, b is convex and can be related to the function
@ = b, itself referred to as the inverse link or mean function.

Let Ft = 0(Ay, A1, Xq, ..., Ap, Ay Xoy A1, Arrq) denote the o field containing the informa-
tion available before obtaining the reward at time ¢t + 1. A key feature of this description is
that given a ground-truth parameter 6*, selecting an action A; at time t yields a reward X;
conditionally independent on the past and such that E[X;|F;_1] = u(A/ 6%).

= exp (azaTO - b(aTO)) .

The non-stationary nature of the considered environments is characterized as follows: the
bandit parameter 6* is allowed to change in an arbitrary fashion up to I'r times within the
horizon T'. In the following, 8* will be indexed by ¢ to clearly exhibit its dependency w.r.t round
t, and the reward signal will follow:

E[X|Fi1] = p(Al 67) .
The focus of this chapter is the dynamic regret defined as

T
ZmaXM (705) = Y (AT 07)

We will work under the following assumptions.

Assumption 5.1 (Bounded actions and bandit parameters).
Vi > 1,052 < S and Vae€ Ay llal2 <1.

We define the admissible parameter space © = {6 € R?,||0]|2 < S}.

Assumption 5.2 (Bounded rewards).
Im € Rt such thatVt >1,0< X; < m .

Assumption 5.3. The mean function pu: R — R is continuously differentiable, Lipschitz with
constant k,, and such that
. T
cy = inf a 6)>0.
*= peolia A 9)

The quantity ¢, is crucial in the analysis, as it represents the (worst case) sensitivity of the
mean function. Our last assumption differs from most of existing works as we focus here on
self-concordant GLMs. This assumption on the curvature of the mean function is rather mild,
and covers for instance the logistic and Poisson models.
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Assumption 5.4 (Generalized self-concordance). The mean function verifies |ji| < [ .

In order to estimate the unknown bandit parameter 6}, we will adopt a weighted regularized
maximum-likelihood principle. Formally, we define 6; for A > 0 and « € (0, 1] as the solution of
the strictly convex program

t

~ . _ A
0, = argmingcpa — E 7% log Po(Xs| As) + 5”0”% . (5.1)
s=1

Equivalently, f; may be defined as the minimizer of — Y>t_; 775 log Pg(Xs| As) + )‘7_;t_1) 16113,
with time-independent increasing weights v~* and time-varying regularization Ay~(*=1), which is
more handy for analysis purposes, see Chapter 4.

5.2.2 Stationary Generalized Linear Bandits

GLB were first considered in the seminal work of [Filippi et al., 2010] who proposed GLM-
UCB, an optimistic algorithm with a regret upper bound of the form (’j(cljld\/f). A key
characteristic of GLM-UCB is a projection step, used to map the MLE onto the set of admissible
parameters ©. Formally, when the MLE 6, is not in O, it needs to be replaced by

¢
Z 1(A]0) = (AL 0)] A,

0, = argming.go

(5.2)

Vvt—l
where V; is an invertible d x d square matrix.

With GLM-UCB, both the size of the confidence set (thus the exploration bonus) and the
regret bound scale as c;l. However, this constant can be prohibitively large. In the cases of the
logistic and Poisson bandits, one has c;l > ¢, revealing an ezponential dependency on S. If we
consider the example of click prediction in onhne advertising with the logistic GLB, ¢, Lis of the

order 102, corresponding to typical click rates of less than a percent.

This critical dependency was addressed by [Faury et al., 2020] for the logistic bandit. They

introduce LogUCB1 and LogUCB2 for which they respectively prove @(c,jlﬂdﬁ) and @(d\/T+
c;l) regret upper bounds. Their analysis relies on the self-concordance property of the logis-
tic log-likelihood. Self-concordance offers a refined way to control the curvature of the log-
likelihood, and has been used in batch statistical learning [Bach, 2010] and online optimization
[Bach and Moulines, 2013] (see also [Boyd and Vandenberghe, 2004, Section 9.6] for a broader
picture). However, the analysis of [Faury et al., 2020] does not use the self-concordance to its
fullest and a projection step is still required, as detailed in Section 5.5.

Since the mean function p can be non-convex (as for example in the case of logistic regression),
the projection step defined in Equation (P0) generally involves the minimization of a non-convex
function. Solving this program can be arduous and finding ways to bypass it is desirable. This
was achieved by [Li et al., 2017] using a burn-in phase corresponding to an initial number of
rounds during which the agent plays randomly. This ensures that 6, stays in © for subsequent
rounds and therefore avoids the projection step. This technique was re-used in other recent works,
such as [Kveton et al., 2020, Zhou et al., 2019]. A major drawback of this approach however is
the length of this burn-in phase, which typically grows with 0;2 [Kveton et al., 2020, Section 4.5].
In the previously cited example of click-prediction, this would lead the agent to act randomly for
approximately 10% rounds.
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5.2.3 Forgetting in Non-Stationary Environments

Motivated by the non-stationary nature of most real-life applications of contextual bandits, a
consequent theory for linear bandits in non-stationary environments has been recently developed
as pointed out in Chapter 4. We focus here on forgetting policies, a broader perspective is
discussed in Section 5.5. In [Cheung et al., 2021], a sliding window is used and the estimator
is constructed based on the most recent observations only. In [Russac et al., 2019] exponen-
tially increasing weights are used to give more importance to most recent observations. In
[Zhao et al., 2020] the algorithm is restarted on a regular basis. These contributions were gen-
eralized to GLB by [Russac et al., 2020, Cheung et al., 2021, Zhao et al., 2020]. However, the
approach of [Russac et al., 2020] still suffers from the aforementioned limitations (dependency
w.r.t. ¢, and need for a projection step) while the analysis of both [Cheung et al., 2021] and
[Zhao et al., 2020] are missing key features of the problem at hand (see [Russac et al., 2020,
Section 1] and discussion in Section 6.3.2 in the next Chapter).

The non-stationary nature of the problem rules out the use of burning phases as changes
in the GLB parameter can lead 0; to leave O, even when well initialized. This also accentuates
the inconveniences brought by the projection step, as 0, leaving © is more likely to happen.
This is why finding alternatives without projection is even more attractive in this particular
setting. Furthermore, a generalization of the improvements brought by [Faury et al., 2020] to
non-stationary world is missing, and it is unclear if the dependency in ¢, can still be reduced in
this harder setting.

5.2.4 Contributions

The present chapter addresses these challenges, focusing on the use of exponential weights
to adapt to changes in the model. First, we extend in Theorem 5.3 the Bernstein-like tail-
inequality of [Faury et al., 2020, Theorem 1] to weighted self-normalized martingales. We then
leverage the self-concordance property (Assumption 5.4) to provide an improved characterization
of the maximum-likelihood estimator (Proposition 5.4). This allows to provide concentration
guarantees without projecting 6, back to ©. Combining these results leads to the SC-D-GLUCB
strategy (Algorithm 11), which does not resort to a non-convex projection step and enjoys an
@(0;1/3d2/3F1T/3T2/3) worst case regret upper bound (Theorem 5.2). A (’)(c,jl/?A*ld\/I‘TT)
regret bound is also obtained (Theorem 5.1) under an additional minimal gap A > 0 assumption
(Assumption 5.5).

A summary of our contributions and comparison with prior work are given in Table 5.1.

5.3 Algorithm and Results

5.3.1 Algorithms

In this section, we consider the abruptly changing environments defined in Section 5.2. We
propose two algorithms: SC-D-GLUCB, which is based on discount factors, and SC-SW-GLUCB
using a sliding window. The pseudo-code of SC-SW-GLUCB and the corresponding theoretical
results are reported in Appendix 5.C. Associated with the weighed MLE defined in Equation (5.1),
define the weighted design matrix as

t
s A
Vi=D> 2'TAAl + ~a (5.3)
i

s=1
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Algorithm Setting Projection Regret Bound
GLM-UCB Stationary ~( 1
[Filippi et al., 2010] GLM Non-convex 0 (c# - \/T)
LogUCB1 Stationary ~( —1/2
[Faury et al., 2020] Logistic Non-convex © (c” dﬁ)
[Rusgﬁ\% EICBQOQO} NOD_SGtE;;IOHary Non-convex O (c; ta*r 1T/3T2/3)
SC-D-GLUCB Non-Stationary .. A~ —1/2 ;, =
(this chapter) GLM + SC + Ass. 5.5 No projection © (c” d rTT)
SC-D-GLUCB Non-Stationar .. ~/ _
(this chapter) GLM + SC ’ No projection | O (c,, 1/3d2/3F1T/3T2/3>

Table 5.1: Comparison of regret guarantees for different algorithms in the GLM setting with respect to
the degree of non-linearity c,,, the dimension d, the horizon 1" and the number I'r of abrupt changes. In
the table SC stands for self-concordant. Regret guarantees for SC-SW-GLUCB are the same than for
SC-D-GLUCB.

The SC-D-GLUCB algorithm proceeds as follows. First, based on the previous rewards and
actions, 0; is computed. After receiving the action set A;, the action A; is chosen optimistically
as the maximizer of the current estimate p(a'6;) of each arm’s reward inflated by the confidence

bonus c,:l/ 26%\\04]‘/71. Finally, the reward X, is received and the matrix V; is updated. The
t

expression of B% is a consequence of our novel concentration result and is defined in Equation (5.4).
A pseudo-code of the algorithm is presented in Algorithm 11.

There are two differences between SC-D-GLUCB and the algorithm from [Russac et al., 2020].
First, we directly use ét to make predictions about the arms’ performances, whether it belongs to
© or not. Second, the exploration term scales as 0;1/ 2 (instead of cljl), as in [Faury et al., 2020].
The latter has a direct impact on the regret-bound of SC-D-GLUCB, to be stated below.

Input: Failure probability §, dimension d, regularization A, upper bound for actions L,
upper bound for parameters S, discount factor ~.
Initialization: Vy = (\/c,) 14, O = Oga
fort=11toT do
Receive A;, compute 0,1 according to (5.1)

A~ &
Play A, = argmax,¢ 4, pu(a' 0;—1) + 50%||a||vt:11 with 8 defined in Equation (5.4)

Receive reward X;
Update: V; < A A] +~V,_ 1 + ﬁ(l — )y

Algorithm 11: SC-D-GLUCB

5.3.2 Regret Upper Bounds

We detail in this section the performance guarantees for SC-D-GLUCB. Define

9\ 3/2

- 1+S o
5 _ 1 & T 4
By =k, VA |1+85+ AT 7 (5.4)
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with
_ 2S5k, +m
=S+ A=) (5.5)
and where
s VA 2m <T) 2m dm ku(1—T72)
=— 4+ —log| = |+ —=dlog(2)+ —<=log [1+ tF+—7-2] .
Or=om T 0BG ) TR R o dA(1-7?)

The latter expression is a direct consequence of the concentration result presented in The-
orem 5.3 below. The difference between S and S is a bias term due to the non-stationarity.

Before stating our first theorem, we add an additional assumption on the minimal gap. This
assumption is discussed in Section 5.5 and is only used in Theorem 5.1.

Assumption 5.5. Let A;, = argmax,c4,pu(a' 0F) denote the optimal action at time t. The
reward gaps Ay = minaeAt,u(aW?Ku(AZ*O:) ,u(A;*H;) — u(a0F) satisfies

Vi<T,Ay>A>0.

Theorem 5.1. Under Assumption 5.5, the regret of the SC-D-GLUCB algorithm is bounded
for all v € (1/2,1) with probability at least 1 —§ by

r 1
R(T) < Ch 1 —T’Y + CQT(l A
3\/dT 1
T
+ O3 Vo T'log(1/7) + log (1+d)\(1—7)>
d(57)? 1
a4 04 CMZ <T10g(1/"}/) ol lOg (1 = m)) )

where C1, Cq, C3, Cy are universal constants independent of c,, v with only logarithmic
terms in T.

In particular, setting v =1 — ”;\;;T and \ = dlog(T) leads to

R(T) = O(A™ ¢, %dV/T1T) .

There is a strong link between the cost of non-stationarity in the K-arm setting and the one
observed in the more general GLB setting. In the K-arm setting, any sub-optimal arm ¢ is played
at most O(A; ?log(T)) times (e.g [Munos, 2014, Proposition 1.1]), whereas in any abruptly
changing environment, forgetting policies play a sub-optimal arm i at most (5((AT(i))_2\/FTT )
[Garivier and Moulines, 2011]. Ap(7) is the minimum distance between the mean of the optimal
arm and the mean of the suboptimal arm ¢ over the entire time horizon. For GLBs, in the
stationary case [Filippi et al., 2010, Theorem 1] give a gap-dependent bound on the regret scaling
as O(A‘lc;2d2 log(T")). Here, the bound of Theorem 5.1 is of order (’)(A‘lcll/Qd\/FTT). The
reduced dependency in ¢, in the latter bound is a direct consequence of the use of self-concordance.
Also note that when the inverse link function is the identity and the action set is the canonical
basis, our analysis recovers the results of [Garivier and Moulines, 2011].

We give an upper bound for the worst case regret of Algorithm 11 in the following theorem;
its proof is deferred to the appendix.



150 5.4. Key Arguments

Theorem 5.2. The regret of the SC-D-GLUCB algorithm is bounded for all v € (1/2,1)
with probability at least 1 —§ by

I'r 9N dT (1> < 1 >
T) < Tlog (=) +log(1+
R( )_011_7+02 NG og|~ ) +loe(1+ 57—

where Cy and Co are universal constants independent of ¢, and v with only logarithmic
terms in T'.

1/2
L/

2/3
In particular, setting v =1 — ( “d;T) and A = dlog(T) leads to

R(T) = O(c;, BTy *T?3) .

As in the linear case (see Chapter 4), this regret bound highlights the existence of two
mechanisms of different nature. The first term is due to non-stationarity, the number of changes
I'r being multiplied by 1/(1 — =), which is a rough measure of the forgetting time induced by
the exponential weights. The second term characterizes the rate at which the weighted MLE 0,
approaches 0;. By balancing both terms, we can characterize the asymptotic behavior of the
regret bound.

In Theorem 5.2, optimally tuning ~ yields the asymptotic worst case rate of T%/3. This is
similar to the asymptotic rate achievable in the linear case with a different measure of non-
stationarity (Corollary 4.4) the same dependency is attained with a sliding window for MDPs in
abruptly changing environments [Gajane et al., 2018] and with restart factors [Auer et al., 2008].

Remark 5.1. The proof of Theorem 5.2 reveals that for rounds t where 0, lies in O, it is possible
to obtain a (usually) tighter concentration result (depending on the values of A and S) by replacing
B% with k1 + 25(V S + p‘%). This cannot be used to improve the result of Theorem 5.2, as
one doesn’t know in advance for which rounds the condition will be satisfied, but this minor
modification of Algorithm 11 is most often advisable in practice. See Section 5.B.4 in Appendiz
for more details.

5.4 Key Arguments

In this section, we detail some key elements of our analysis. First, we describe the concentration
result in its most generic form. Then, we explain the main steps to derive the upper bound of

the regret of SC-D-GLUCB.

5.4.1 A Tail-Inequality for Self-Normalized Weighted Martingales

To reduce the dependency in c,, it is essential to take into account the actual conditional
variance of the generalized linear model [Faury et al., 2020]. With exponentially increasing
weights, we also need time-dependent regularization parameters to avoid a vanishing effect of the
regularization [Russac et al., 2019]. Carefully combining these two elements yields the following
concentration result.
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Theorem 5.3. Let t be a fived time instant. Let {F,},_, be a filtration. Let {A,},_, be a
stochastic process on R? such that A, is F,_1 measurable and ||Ay||2 < 1. Let {eu}t_o be
a martingale difference sequence such that €, is F, measurable. Assume that the weights
are non-decreasing, strictly positive and the time horizon is known. Furthermore, assume
that conditionally on F, we have |e,| < m a.s. Let {\,}\,_, be a deterministic sequence of
reqularization terms and denote o? = E [¢2|F;_1]. Let Hy = Y\ w202 A, Al + M1y and
Sy = St wses A, then for any 6 € (0,1],

X 2 det(Hy)Y?2\ 2
(HstHHl_ Sy ””“”tlog( - )+ ot
SN Ve

log(2) | < 6.
omws T x dog()>_5

5.4.2 Upper Bounding the Regret of SC-D-GLUCB

In a non-stationary environment, each change in the parameter will necessarily result in a
number of rounds where the bias of the weighted MLE estimator cannot be controlled. This
gives rise to the first term in the upper bound in Theorem 5.2. To make this observation more
explicit, for D > 1, define T(y) = {1 <t < T, such that 0% = 6; for t — D + 1 < s <t} the set
of time instants that are at least D steps away from the previous closest breakpoint. Central in
the analysis of weighted GLBs is the matrix

t
Gi(0,07) = 7' a(As, 01, 07) ALAL + My
s=1

where

a(As, 01,6 / (AT (1= 0)6; + vb,))dv .

As in the linear case, we define its analogue with squared exponential weights,

t
G0, 07) =3V Da (A, 0, 07) AL AL + I,

s=1

We add the subscript ¢t — D : t to a quantity when the sum is for time instants between t —D+1
and t. In this subsection, for space constraints, we will denote equivalently ét(ét, 0r) (resp.
Gt(Gt, 07)) by G, (resp. Gt). As for linear bandits, the exploration bonus is designed to mitigate
the impact of prediction errors. We focus below on upper bounding the prediction error in ét
defined as Ay(a, 0;) = |u(a’ ;) — u(a" 67)]. The exact link between the regret and this quantity is
made explicit in Proposition 5.32 in Appendix. By defining g:(0) = 3%, pi1 7 (Al 0) As+ N0,
when ¢ € T () one can upper bound the prediction error in 0;.

N C/YD N *
Ar(a,0¢) < 77— + kullge(0) — g (0)llg— llallgr -
- t—D:t t

® @

The first term corresponds to the bias due to non-stationarity. (1) is a measure of the deviation
of 0, from 6 adapted to the non-linear nature of the problem. Note that g,(8;) — g;(6}) involves
a martingale difference sequence (thanks to the optimality condition of the MLE) that can be
controlled using Theorem 5.3. However, to bound (1) using Theorem 5.3 one needs to link the
matrix C:’t, D-¢ With ﬁt, Dt , the self-concordance allows exactly to do this.
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Self-Concordance. More precisely, the use of self-concordance offers a sharp relation (inde-
pendent of ¢,) between the first derivative of the mean function evaluated at different points.
Using Lemma 5.23 reported in Appendix 5.D, standard calculations yield:

~ 1 . -
Gi—p+ > (14 C+ —=|g:(0r) — g:(67) || 5- )H 5.6
o1 = (140 + @) = ), ) Fire (5.

Note that Equation (5.6) involves the deviation term that we want to control. Here, C' is a
residual bias due to the non-stationarity of the environment.

Better Characterization of the MLE. By leveraging Equation (5.6) to bound the deviation
9:(0;) — 9:(67) in the G '), -norm, one obtains an implicit equation. Solving it leads to the
following proposition.

Proposition 5.4. When t € T (), the following holds,

A 1 2
o *\ || _ R 4 - 5
l9t00) = 9851, 3,00y < VIHCob+ = (o)

where C' is a residual term due to non-stationarity.

Remark 5.2. In stark contrast with previously existing works (see [Filippi et al., 2010, Proposi-
tion 1]), deviations from the true parameter 0f are characterized uniquely by the MLE (and not
by its projected counterpart). This can be done whether 0, belongs to © or not and without any
projection. This is not specific to the non-stationary nature of the problem but fundamentally
relies on an improved analysis of the MLE. Similar guarantees can be obtained in any station-
ary environment. See Section 5.5 for a more detailed comparison of the possible uses of the
self-concordance property.

(D can be upper bounded using Proposition 5.4. To upper bound (2) we use the following
inequality.

1 R -1
Gi = (1+C+ @) - a@Dlgn, ) o 6.1

Combining Proposition 5.4 with Equation (5.7) gives the upper bound for (2). Putting
everything together, we obtain the form of [5’% given in Equation 5.4. The regret bound is
then obtained by summing the exploration bonus for the different time instants. Applying
the so-called elliptical lemma (see [Lattimore and Szepesvari, 2020, Chap. 19]) and letting
D = log(T')/log(1/v) completes the proof.

5.5 Discussion

Assumption on the Gaps. Assumptions similar to our Assumption 5.5 requiring a minimum
gap are frequent in non-stationary bandits. First, note that A is not required for the algorithm
but only for the theoretical analysis. Second, similar assumptions can be found for K-arm
bandits in several works to obtain the optimal O(y/T'7T) regret bound. This is in particular the
case for change-points detection methods: [Cao et al., 2019, Corollary 1] and [Zhou et al., 2020,
Corollary 4.3] is proved under an assumption on the minimal gap. This remains true for forgetting
strategies: the bound of [Garivier and Moulines, 2011] is gap-dependent, [Trovo et al., 2020]
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achieve a O(A~'/TT'7) regret. More demanding, the LM-DSEE and SW-UCB# algorithms
from [Wei and Srivatsva, 2018] require the minimum gap as an input of the algorithm. Generally
speaking, none of those works provide an analysis when the minimum gap can depend on the
time horizon T" and when the mean of different arms can be arbitrarily close. We suspect that
forgetting policies would obtain a (’)(FlT/ 72/ 3) worst case dependency as in Theorem 5.2 and
that changepoint detection methods are likely to fail in such a case.

Tightness of the Bound. For problems with a finite number of actions, [Auer et al., 2018]
have developed an algorithm that does not require the knowledge of the number of breakpoints
nor assumption on the gaps. This was extended to the K-arm setting by [Auer et al., 2019] and
to the more general contextual bandits by [Chen et al., 2019]. Both works ([Auer et al., 2019,
Chen et al., 2019]) achieve the optimal (5(\/FTT) regret bound. Yet, their analysis does not apply
to the GLB framework. Furthermore, both works rely on replaying phases that are incompatible
with time-dependent action sets as considered here. Additionally, in [Chen et al., 2019] the
regret is defined with respect to the best policy in some finite class, whereas our results apply
to the general setting where actions can change over time and the regret benchmark is the
ground-truth of the environment. The best lower-bound for forgetting policies in abruptly
changing environments with time-dependent action sets remains unknown. While it is known
that forgetting policies are minimax optimal when non-stationarity is measured through the
so-called variational budget and adding structure on the action-sets, whether such methods are
optimal in abruptly changing environments is unclear. Nonetheless, the bound obtained by
[Garivier and Moulines, 2011] in the K-arm setting yields a worst case regret bound that can be

shown to be of order O(F%F/?’TQ/?’) (see appendix Section 5.E).

Knowledge of I'r. Optimizing the choice of the forgetting parameter v (w.r.t. the regret
bound) requires the knowledge of I'y. The Bandit over Bandit (BOB) framework introduced
by [Cheung et al., 2019] can be used to circumvent this requirement. When the assumption
5.5 is satisfied, following the proof from [Cheung et al., 2021] one would obtain a regret bound

of order @(A‘ldc;1/2\/T max (L7, TY2)) (see [Auer et al., 2019, Remark 2]). Similarly, in the

absence of Assumption 5.5 an upper bound of order (5(0;1/3d2/3T2/3 max(I'r, d~V2T1/*)1/3) can
be achieved (see [Zhao et al., 2020, Theorem 4]).

Self-Concordance. The analysis of [Faury et al., 2020] does not use self-concordance to its
fullest. We present an improved analysis valid in any stationary time frame, proving that a better
treatment of the self-concordance removes the need for the inconvenient projection. Informally,
the self-concordance links p(a'6;) to pu(a6*) without resorting to global bounds on fi (e.g k.,
and c,). In [Faury et al., 2020], this takes the form of a Taylor-like expansion:

o™ (6" — 64))

T < T px
pla 0 < pla 07) + — =

fu(a’0%),

where 6, is a projected version of 6, in ©. The denominator of the r.h.s. is reminiscent of
this projection step. We show here that a finer analysis yields the following, more implicit but
powerful bound:

la” (6" — 6y)|
14 ‘GT(Q* — ét)’

w(a'0y) < p(a’0%) +

fu(a’0) .
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We illustrate the Figure 5.1 the difference between the two bounds in the logistic case with
scalar values.

p(x) = 1/(1 + exp(—x))

x> pla) + it Ala)

z— pla) + {55 fla)

®
a T

Figure 5.1: Ilustration of the tighter bound that we use in the logistic case when d =1

Note that when ét € O (i.e there is no need for a projection), our bound implies the one
of [Faury et al., 2020]. The kind of relationship displayed in the above equation allows us to
derive a tail inequality for the deviation from 6; to 6* without projecting ;, by solving an
implicit equation. We believe that this new approach is of interest in other settings involving
self-concordant GLBs. The self-concordance assumption (Assumption 5.4) is not particularly
restrictive and goes beyond logistic functions. Under the classical Assumption 5.1 (i.e. bounded
features) all GLMs are self-concordant (cf. Sec. 2 of [Bach, 2014]) with constants that depend
on the link function.

5.6 Experiments

In this section, we illustrate the empirical performance of SC-D-GLUCB in a simulated,
abruptly changing environment with a logistic link function u(x) = 1/(1 + exp(—=x)). In this
two-dimensional problem, there is a switch in the reward distribution at ¢ = 4000 (red dashed
line on Figure 6.2).

SC-D-GLUCB (Algorithm 11) is compared with GLM-UCB from [Filippi et al., 2010], LogUCB1
from [Faury et al., 2020] and with D-GLUCB from [Russac et al., 2020]. SC-D-GLUCB (resp.
D-GLUCB) is related with LogUCB1 (resp. GLM-UCB) in the sense that the exploration terms
have the same scaling but the former incorporate the exponential weights making it possible
to adapt to changes. The average regret of the different policies together with their central
50% quantiles, averaged on 200 independent runs, are reported in Figure 6.2 for two different
parameter values.

In Fig. 6.2a, 6* starts on the circle of radius S = 6 (corresponding to c;l = exp(S) &~ 400)
with an angle of 27/3 and jumps at ¢ = 4000 to an angle of 47/3. The experiment reported
on Fig. 6.2b is identical with a radius S = 7 corresponding to a cljl ~ 1000. As previously
discussed, using such values of S is required in situation where the actions return binary rewards
with expected values in the range 1072 — 10~2, which is typically the case in web advertising or
recommendation applications.
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Figure 5.2: Regret of the different algorithms in a 2D abruptly changing environment averaged on 200
independent experiments and the 25% associated quantiles.

For both experiments, at every time steps, 50 randomly generated actions in the unit circle
are proposed to the learner. For SC-D-GLUCB and D-GLUCB the asymptotically optimal choice
of the discount factors is used: v = 1 — (I'r/(d x T))?/3 with d = 2, I'y = 2 and T = 8000.
To speed up the learning that is hard with those values of c,, all the algorithms have their
exploration bonus divided by 5.

As expected, the algorithms tuned for non stationary situations (SC-D-GLUCB, D-GLUCB)
perform worse than their stationary counterparts (LogUCB1 and GLM-UCB) during the first
stationary phase. More precisely, with the choice made for + the estimation of 6, for algorithms
that use exponential weights is roughly based on the 1/(1 — «) ~ 400 most recent observations.
In contrast, LogUCB1 and GLM-UCB use all the observations from the start to compute the
MLE, which eventually leads to a more precise estimation. Right after the change, the bias
caused by the non-stationarity results in a significant increase in regret. Unweighted algorithms
are affected much more deeply by this phenomenon that will eventually cause large losses in
performance due to the persistence of obsolete information.

The theoretical analysis of Section 5.3.2 suggests that the advantage of SC-D-GLUCB is
all the more significant in strongly non-linear (large cljl) non-stationary environments. This
is obvious in Figure 6.2, particularly when comparing Fig. 6.2a and Fig. 6.2b, which differ
by the range on which the logistic function is used for making reward predictions. Note that,
on average, for these two simulated scenarios the fact that the MLE 6, does not belong to ©
happens for several hundred of rounds. All the algorithms except SC-D-GLUCB would require
non convex projection steps at these instants, or equivalently, one should inflate S (and thus
c;l) to ensure the compliance of these algorithms with the associated theory. In producing
Figure 6.2, this projection step was simply bypassed, which provides an optimistic evaluation
of the performance of the competitors of SC-D-GLUCB. Interestingly, the observation that the
dispersion of performance of SC-D-GLUCB is slightly higher than that of D-GLUCB can be
traced back to the use of Remark 5.1 in these simulations: SC-D-GLUCB adapts to the events
{0, ¢ ©} (rather than pretending that these did not happen) and thus its performance is made
somewhat dependent on the actual occurrence of these events.
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5.7 Conclusion

In this chapter, we considered self-concordant generalized linear bandits in abruptly changing
environments. Thanks to the self-concordance assumption, we were able to remove the projection
step that was required for obtaining estimators in the admissible space. In doing so, we proposed
an improved characterization of the weighted maximum likelihood estimator. Furthermore,
we extended an existing concentration inequality tailored to self-concordant generalized linear
models to more general estimators. Thanks to this concentration inequality, we obtained a
reduced dependency in a problem-dependent constant coming from the non-linearity of the model.
Studying generalized linear bandits in more general drifting environments is the topic of the next
chapter.



Appendix

The Appendix is structured as follows. In Section 5.A, our new concentration result for
self-normalized weighted martingales with time dependent regularization parameters is presented.
In Section 5.A.3, similar concentration results are established when a sliding window is used.
Section 5.B studies the regret with discount factors through our improved characterization of the
MLE. Section 5.C gives similar results with a sliding window. Section 5.D gathers some technical
results, in particular the main properties resulting from the self-concordance assumption. Finally
in Section 5.E, a worst case bound for a sliding window policy in the K-arm setting is presented.

Appendix 5.A Tail-inequality for Self-normalized Weighted Mar-
tingales

While keeping in mind our objective of obtaining a deviation inequality with exponentially
increasing weights, we give more generic results under two assumptions on the weights.

Assumption 5.6. The time horizon T is known in advance.

Assumption 5.7. The weights are deterministic, strictly positive and non-decreasing, i.e,
ViI<t<T,0<wy<w <wpyy <wrp.
We recall the statement of the corresponding concentration result.

Theorem 5.3. Let t be a fized time instant. Let {F,},_, be a filtration. Let {A,},_, be a
stochastic process on RY such that A, is F,—1 measurable and ||Ayll2 < 1. Let {e,},_, be
a martingale difference sequence such that €, is F, measurable. Assume that the weights
are non-decreasing, strictly positive and the time horizon is known. Furthermore, assume
that conditionally on F,, we have \6u| <m a.s. Let {\}_; be a deterministic sequence of
regularization terms and denote o} = E [e7|Fi_1]. Let H, = _qwio?AAl + NIy and
Sy = L wsesAg, then for any 6 € (0,1],

N 2 det(H,;)/2 2
(IIStHH— s VA 2muy 10g< et(H;) >+ mwy

mwy Y oW

dlog(2)> <é.

Theorem 5.3 is a non-trivial extension of [Faury et al., 2020, Theorem 1] allowing for the use
of time-dependent regularization parameters and weights. We now state several lemmas that are
useful for establishing Theorem 5.3.

5.A.1 Useful Lemmas

As a first step we fix a time instant ¢. Let M. (¢) for € € R and 0 < u < t be defined as
1 1 ~

ML) = ——¢18, — ——€&THy(0 ) 5.8

HO) = exp (€S — € L) (53)

with Sy, = 3% | weesAg and H,(0) = %, w202 A,A] where 02 = E[€2|F,_1].

We prefer the notation M! to M, to clearly indicate the dependency on the weight w;_1.
When u = ¢, we prefer the notation M; to M{. For the entire appendix, we use the notation
Bsy(d) = {a € RY, [|al|s < 1}.
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Lemma 5.5. For all £ € Ba(d) and 1 < u < t, under Assumption 5.6 and 5.7, we have
E [Mzi(f)’fu—l] <ME (&), as.

Proof.

B [MUOIF] = Mes(©exp (- ¢ TudotA,4T¢)

m2w?
I T
X E |exp | ——& wyenay | [ Fu-1]| -
mwy
The equality holds because A, is F,_1 measurable and €,_1 is F,_1 measurable. With
€u = €,/m and v = %fTAu, the conditions of Lemma 5.7 (stated below) are met and:

1 2
E [exp (mwt fTwueuAu> |.7-"u1} = E [exp(véy,)|Fu—1] <1+ %05 .

|v| <1 holds because of Assumption 5.7 and both £ and A,_; € Ba(d). Therefore,

w2
E | M}(€)|Fumt| < Mi_y(€) exp (—megéTwiaiAuAI 5) x (1 ezt AuAl
< Mjy(§) (as.),
where the last inequality uses 1 + = < exp(x). O

Hence, for all 0 < u < t and € € By(d), E[My(€)] < E [ML(€)] < E [M§(6)] = 1.
For 0 < u <t we define,

Ml = [ MLEdh©) (59)
3

Here, h, is the density of an isotropic normal distribution of precision 752’\;2 truncated on Ba(d).
t

We will denote N (h,) its normalization constant.
Lemma 5.6. Lett be a fized time instant, for all 0 < u < t, under assumptions 5.6 and 5.7,
with {hy YL, the density of an isotropic normal distribution of precision 5952 truncated on
t

Ba(d) we have,

E[M]<1.

Proof.
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Remark 5.3. Allowing time-dependent regularization parameters is essential in our analysis
to avoid the vanishing effect of the reqularization with exponentially increasing weights for
example. This is a fundamental difference with the deviation result provided in [Faury et al., 2020)].
Furthermore, allowing the regqularization parameters to be time-dependent comes at a cost here,
we loose the property []\7[5\.7:”_1} < M! | that would hold with a fized reqularization parameter
(as in [Faury et al., 2020]). In the linear bandit setting, this issue was discussed in Lemma 2 in
[Russac et al., 2019].

In particular, applying Lemma 5.6 for v =t gives,

E [Mt] —E [Mf] <1. (5.10)

Lemma 5.7 (Lemma 7 of [Faury et al., 2020]). Let ¢ be a centered random variable of
variance o and such that |e| < 1 almost surely. Then for all v € [—1,1],

E [exp(ve)] < 1+ v?0? .

Remark 5.4. We stress out that v € [—1, 1] is required for Lemma 5.7 to hold. It has strong
consequences in our setting with the weights as the normalization 1/w; and 1/w? in the definition
of M! are needed to ensure that v = (w,/w;)€" A, that appears in the proof of Lemma 5.5 will
be smaller than 1. As a consequence, the stopping trick presented in [Abbasi- Yadkori et al., 2011]
can not be applied to ]\_45 because of its dependency on t. For this reason, the deviation result
presented in Theorem 5.3 is only valid for a fized time instant t. To obtain a deviation result on
the entire trajectory a union bound is required.

5.A.2 Proof of Theorem 5.3

The proof of this theorem follows the line of proof of [Faury et al., 2020]. The main differences

are the time-dependent regularization parameters and the presence of weights. We recall that in

Equation (5.9) h; is the density of an isotropic normal distribution of precision nfﬁgﬁ truncated
t

on Bz(d) and denote N (h;) its normalization constant.

The following holds,

VIR 1 e 1 7
Y N Ry /Rd]l[felb(d)]exp (mwtg St met2§ Htg) de . (5.11)

Let fy : RY — R be defined as fi(€) = —-¢15, — —L5¢T H6. As a quadratic function, f;

muwy m2w?
can be rewritten for £* = argmax;¢,<1/2 fi(§),

Fi€) = A€ + VAEY (€~ ) + 5(6— €)TV2(ENE ~€)
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m2wt2 Ht7

Using V§ c Bg(d), Vth(f) = —

- eft(€") - ) . »
M= N [, 1 lEl < e (Vﬁ(& T6=€) — o mglle—¢ Hg) de
)

= 6’ft(§ * *\ T 1 2

=y a1 €1 < e (VAE)TE~ el ) a
eft(€") - ) )

> Sy o Ll <172 exp (VA€ ~ g el ) d
el €N (gy) X

> e, o (V(€))]

The second equality is obtained after a change of variable £ — & — £*. In the last inequality,
e+ is the density of a d-dimensional normal distribution with precision matrix o th truncated

on {a € RY, [lafl2 < 1/2}.

_ eft(é-*)N(et) T , . .
M; > TN exp (ngt [Vft(ﬁ ) §D . (Jensen’s inequality)

e; is symmetric which implies E¢.., [{] = 0. Hence,

eft(g*)N(et>

> S (512

Therefore,

— 1
M; > 5> (Equation (5.10) + Markov’s Inequality)

(
> P <ft(§*) > log (;) +log < )) (Equation (5.12))

s 1100 > g (5) 41w (19

m H*S
In the last inequality & is defined as & = I , such that [|&]|2 < 1/2 holds. This

can be seen by using Ht > Mly. We also have,

1 1 ~
fi(&o) = Mﬁgst - mngfoTHtfo =

Therefore,

V )\t 2mwt Qmwt < )
P [|S|z-1 > log(1/d 1 <9J. 5.13
<H tHHt 1= 2mawy + \/Tt Og( / >+ \/)Tt 0g N(et) = ( )

We conclude using Proposition 5.8 stated below.
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Proposition 5.8. Let h; be the density of a d-dimensional isotropic normal distribution

of precision 77122/\122 truncated on Ba(d). Let e; be the density of a d-dimensional normal
t

distribution with precision matrix ﬁﬁt truncated on {a € R, ||allz < 1/2}. The following
t

log (N(ht)> <log (de:é/ )> + dlog(2) . (5.14)

inequality holds,

N (er) ¢
Proof.
1 2>\
0= [, 1€l < Yexp (—5 2 1) de
R4
) d/2
m2w? 20 ( 1 2)
= —— dg .
( - ) [Hﬁ\ v wt] exp (3 €]13) de
1 2 -
N(et) = L[ll2 < 1/2]exp —*ﬁf H§ ) dg
R 2m
Lo
lello < 322 exp (—3el3) d
R e . B
m2w? a2 _ 1\/2/\ 1
> (M) ety [ il < Y2 o (- 1) e
Therefore,
N(he) _ det(dy) Jrat [I€] < 3¢ exo (—311€18) ¢ 51s)
< —7 .
N(e) = NP ot [I€]l2 < 32 exp (<3 €13) de
R
The last step consists in upper bounding the ratio of the integrals R. Following,
[Faury et al., 2020, Lemma 6], one gets R = 2¢.
We conclude by using this equality in Equation (5.15) and applying the logarithm on both
sides. O

5.A.3 A Unifying Concentration Result for Discount Factors and Sliding-
Window

In this section, we explain how Theorem 5.3 can be used with self-concordant GLBs to
obtain a concentration inequality that encapsulates the analysis for both discount-factors and
the sliding-window.

Up to now, we have stated the results in the most generic way. Actually, in our analysis we
will use a weaker version of the concentration inequality established in Theorem 5.3.

Theorem 5.9. Let t be a fived time instant. Let {F,}._, be a filtration. Let {A,},_,
be a stochastic process on R such that A, is Fy_1 measurable and ||Aylls < 1. Let
{eu}tuzo be a martingale difference sequence such that €, is F, measurable. Assume that the
weights are non-decreasing, positive and the time horizon is known. Furthermore, assume
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that conditionally on F, we have |e,| < m a.s. Let {\,}!,_; be a deterministic sequence of
regularization terms and denote o2 = [e%|}"t_1]. Let Hy_4y:t = Zfs:t—to-l—l w2o2A,A] 4y
and Si—to:t = Y bi_yo41 Ws€sAs. Then for any § € (0,1],

\/)Tt 2mwt det(flt_t ‘t)1/2 2mwt
Pl|Si—ioitll mer > 1 o dlog(2) | <9 .
(” oty = o Y BT ) m 1P =
Proof. The arguments used to establish Theorem 5.9 are the same than for Theorem 5.3.
We only give the main term that differs from the proof of Theorem 5.3.
With ¢ a fixed time instant, for any u such that t —tg + 1 < u < t, M_ is defined as

1 1 v
M'Z(é) = exp (mwt gTSt—tozu - 7§T Z ’UJ?ASAST§> ’

2
mewy s=t—to

with Sty = Zg:t—to—s—l wsesAg. Following the steps of the proof of Theorem 5.3 with
these slight differences gives the result. O

Discount Factors Let tg = D be the equivalent of the sliding window length with exponential
weights, wy = vt and \y = Ay ™2 for 0 < v < 1. Even when v depends on T, the weights satisfy
the assumptions 5.6 and 5.7. We can obtain:

Corollary 5.10 (Concentration result with discount factors). Under the same assumption
than Theorem 5.9, when defining Hi_p+ = >ty piq V2 E=8) (AT 09 AL AT + My and
Sth:t = ZZ:t—D—i—l V_SESAs- For any NS (Oa 1];

\/X 2m det(ﬁt,D;t)1/2
~, >2—+—F=log — 5z

2m
+ —dlog(2) ] <¢.
Hth:t - 2m \/X g( )> o

VA

P (H’Ytst—D:t‘

Sliding Window With ¢ty = 7 the length of the sliding window, with the weights satisfying
wg=1fort—74+1<s<tand A\ =\, we have:

Corollary 5.11 (Concentration result with a sliding window). Under the same assumption
than Theorem 5.9, when defining Hy = Zi:max(l,t—fﬂ) (A0 AGAL + My and S, =
Eg:max(l,t77+l) esAs. For any ¢ € (0,1],

VA 2m (det(Ht)1/2> 2m
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Appendix 5.B Regret Analysis with Discount Factors

In this section we detail the regret analysis of SC-D-GLUCB. First we recall the main

notation.

5.B.1 Notation

For any 0 € RY,
t

Hy(0) = 9 i(AL0)AA] + My .

s=1

t
Hy(0) =Y 7" (A 0)AAS + My .
s=1

t
- A
Vi=> 7 AAT + 21y
s=1 Cu
t A
Vi=Y 2t AAl + .
s=1 ]

t
9:(0) =D 2" (AL 0)As + 20 .

s=1

t
Se=Y 7 %A
s=1

For any 61,6, € R?,

1
ala,bq,6) = / f(va’ 0y + (1 —v)a'6y)dv .
0

t

Gi(01,02) = > 7' a(As, 01,02) A AL + M .

s=1

t

Gi(01,02) = > YAy, 01,00) A, AL + M .

s=1
Let .FNIt be defined as

t
Hy =Y 79 u(Al05)AA] + M, .
s=1

Let us define 7 () as

T(y) ={1<t<T,such thatVs, t — D +1<s<t60 =6},

(5.16)

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)

Remark 5.5. t € T(y) when t is a least D steps away from the closest previous breakpoint.
On the contrary to the analysis with the sliding window (see Appendiz 5.C) the bias does not

completely cancel out when we are far enough from a breakpoint.
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D is an analysis parameter and will be specified later in the different theorems. For the
entire section we will use the notation ¢t — D : ¢ when the sum concerns time instants s such
that t — D4+ 1 < s <t. In the weighted setting, we construct an estimator based on a weighted
penalized log-likelihood. 0, is defined as the unique maximizer of

t
s A
Z')’t IOgPH(Xs’As) - 5“0”% .

s=1

By using the definition of the GLM and thanks to the concavity of this equation in 6, 6, is

the unique solution of
t

> AT (X — (AL 0)As — A0 =0.

s=1

This can be summarized with

t t
9t(0) =3 ATXA = A1S + D T (A 00 As (5.25)

s=1 s=1

5.B.2 Analysis of the Regret of SC-D-GLUCB

In this section, we present the main ideas to obtain an analysis of the regret of the
SC-D-GLUCB algorithm when the projection step is avoided.

We define
s VA 2m (T) dm k(1 —~2P) 2m
=l—+—4=log|—=)+—F=log |1+ ———-=| + —=dlog(2) | , 5.26
and also,
D
_ v (25k, +m)
S=5+—F——-= 5.27
Al =) (5.27)

The expression of p‘} and S given here coincide with the expression in the main content of
the chapter when D = log(T')/log(1/7). p is defined such that thanks to Corollary 5.10 with
high probability for all ¢ in T(y), [|V*Si-p:llz-1 < p% holds.

t—D:t

The next result uses the self-concordance to relate the first derivative of the link function
evaluated at different points. This relation is independent of ¢, and only depends on the distance
between the parameters.

Proposition 5.12. When 0, is the mazimum likelihood as defined in Equation (5.1) and
t € T(y), we have

. _ 1 -1
(05,80 > (14 5+ Z=I'Si-pallga, oray) HaT00).

where S is defined in Equation (5.27).

‘ Proof. In the proof, we will replace the notation ét_D;t(H;, ét) with Gy_p.; and @t(ﬁl’{, ét)
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with Gy but also G(07, ét) with G¢. Using Lemma 5.23 we have,
. . -1
ala,07,00) > (1+]a™ (0 = 07)|) e 6;) .
Combining this with the mean value theorem gives
. . -1
ala, 07,60 > (1+ "G (a0 — 90)|) intaT07) .

Next, it is possible to upper bound |a'G; ! (gt(ét) — g:(0F )) | using the triangle inequality
and Equation (5.25).

t
Gt 3o (AT 02) — (A 014,

a7 G7 (91(8) = 9u(0))] < |

blyt(a)

t—D
a' Gt (—Aeg +> 'ytsesAs> ‘

s=1

bgyt((l)
+]aTGr ' S1-pa

b3, (a)

The first term is controlled as follows,

bii(a) = |a Gy IZ'yt *(n(A]0) - (AL 0) A
< HaHG 1 Z’yt S(u(Al0) — u(AL67)) A, (Cauchy-Schwarz ineq.)
Gt
-D
<L 2 W(ATO) — (ATON A (Ge> Mgandt e T(3))
i -
1 ‘X t—s * Ok T p* * : :
< " la(As, 0%,07)| x |Ag (6 — 0%)| x || Asll2  (Triangle ineq. + Gy > Aly)
s=1
2 -D
Z % (#* and 0} € ©)
s=1
25’1{: ’yD
- A 1-

Using similar arguments, one can upper bound by ¢(a).

t—D
TG < )\9*4‘27 65 s>

s=1

bat(a) =

<SS+ Z 'Yt_sesASHGt—?

7D
~—. s| <
S+)\1 (les] < m)
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Before upper bounding, b3 ¢(a), we need the following relation.
When 0 < v < 1, v2(t=5) < ~4!=5 for s smaller than ¢ which implies

V01,00 € R, Gy(61,02) < Gy(01,065) . (5.28)
We have,

1 51/25-1/2
bsa(a) = o’ GGG S, pal
< ||aHG;15tG;1HVtSt*D:tHét—l (Cauchy-Schwarz ineq.)

< ”CLHG;1||7tSt—D:tH5;1 (Equation (5.28))

1 t
< WH,‘Y St—D:t“ang:t . (Gt > )\Id)

By combining all the results we have,

1
ola.05.0) > (1+5+ = ln'Sipallg, ) a6

O]

Corollary 5.13. When 0, is the mazimum likelihood as defined in Equation (5.1), and
t € T(y), we have

e~ ~ =l ~
thD:t(ez(?et) Z (1 + S + T||7 St D: t||G— (9;79})) Hth:t .

This proposition establishes a useful link between Gy (07, ét) and Hy_p..
Proof. Thanks to Proposition 5.12,
N -1 T
Q07,00 = (14 5+ T 'Stpallgor gy ) HATED
f
Therefore,

—1
S 2 a(A,, 60,0, AAT > ( +S+7llv St-pitllg-1, e*))

t
xS A2 (ATer) A AT
s=t—D+1

We obtain the announced result by using 0% = 65 for t — D + 1 < s < because t € T ()
and by adding the regularization terms. O

Using Proposition 5.12 and Corollary 5.13, we can now prove Proposition 5.4. The proposition
establishes an upper bound for the deviation of the MLE (through +*S;_p.;) that only depends
on p% the high probability upper bound obtained using Corollary 5.10.
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Proposition 5.4. For any § € (0, 1], with probability higher than 1 — ¢,

Ve e TM), 1 Sepallss 5 oo < 1+§5+i(5)2
Y)s ||V Ot—D:t Gt_—lD:t(etﬁ:)_ Pr \/X Pr )

where p% is defined in Equation (5.26).

Remark 5.6. Here, note that the left-hand side is controlled under the norm é;_lD:t(ét,Hz),
whereas the right hand side is the consequence of the upper bound of the same term controlled
in the ﬁ;_lD:t—norm (Corollary 5.10). Linking those two matrices independently from c, is
not-straightforward. The self-concordance is the key ingredient to obtain this bound.

Proof. Applying Corollary 5.13,
H’Ytst—D:tHgét—_lD:t(ét,Ot*) = (1 + S+ THV Si-pitllg-1_ 4,00 ) H'ytSt—D:tHgvt__lDt

Let X = "S-l

(60,00 it gives the following constraint,
—D:t "t

VX, X2 - X = (14 8) ' Se-pal% 1 <0
t—D:t

1 t 2
—=|7"St—p:t %
=

Solving this polynomial inequality yields

1 / _
t - N T 1At 2 t -
H’y St_D:tHG;I(G;,Qt) S \/XH’Y St—DItH t—_lD:t + 1 + SH’Y St_D:tHH;lD:t .

The result is then obtained by applying Corollary 5.10. O

Corollary 5.14. When 0, is the mazimum likelihood as defined in Equation (5.1) and
t € T(v), we have

-1
Gt(ef,ﬁt) > (1 = S+ TH’)’ St DtHG 1 (9* 0t)> C/,L‘/t a

|  Proof. Similar to the proof of Corollary 5.13. O

In the next proposition, we give an upper bound for Ay(a, 9t) the prediction error in 6, which
is directly connected to the instantaneous regret. Here, B% is defined as in the main content of the
chapter in Equation (5.4) but we replace p} and S with the expressions stated in Equation (5.26)
and Equation (5.27).

Proposition 5.15. For any ¢ € (0, 1], with probability higher than 1 — 6,
D

A k, v )
< ZE_v T -1 .
Vit € T(y), Aa,b;) < PN _7(251@ +m) + \/@HaHVt 1
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Proof. We denote Gy = G¢(07, 0,5) and we have,

Ay(a,0;) = |p(a’6F) — p(a’6y)]
< kpla" (67 = 0,)]
= kula" Gy gi(0F) — g:(B:))|  (Mean-Value Theorem)

(th *(1(A]07) — <AI€:>>AS+A9:—M>| :

In the last equality, we have used the characterization of the MLE ( Equation (5.25)).

Ai(a,8;) <k, la thz’yt S(u(AT07) — (AT 609)) A,

s=1

ci1,t(a)
t—D
aTGt—l Z ,Yt—sesAs
s=1

c2,t(a)

+ky

i |a TG (4 Spa = A7) | -

c3,t(a)
We will bound the different terms.
c1+(a) can be bounded like by ¢(a) in the proof of Proposition 5.12.

25k, 'y
A 1—x

Cl,t( ) =

c2¢(a) can be bounded like by ¢(a) in the proof of the same proposition.
c2e(a) <

The last term requires more work. ét(Gf ) ét) will be denoted Gy for simplicity.
c3t(a) = ’aTGfl (Vtst—D:t — >\9t*> = ‘GTGfléiﬂét_lﬂ ('Ytst—D:t - /\9,5*)’
< HaHGt_léth_l H’Ytst—D:t - )‘9:”5;1

< llall g1 17" St Dt — AO; (Equation (5.28))

Hét_l
< Ha||Gt_1 (\/XS + HVtSt—DitH@‘l) (Gy > M and Assumption 5.1)

lally— T
< L 1+S+ —=||7tSi_ptl| ~— S tS el = ) .
B \/Ci e \/X”Fy K D'tHGtJD:t (f * H7 t D.t“thD:t

“w

In the last inequality we used Corollary 5.14. The next step consists in upper bounding
17tS;— p- tH G-l with Proposition 5.4 and to combine this with the high probability upper
—D:t

bound from Corollary 5.10. Therefore, with probability higher than 1 — 4,
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VA - 148 1 1+S 5, 1. 5
STMHGHV[l 14+S+ TP6T+X(105T)2 S+ X PT+X(pT)2
/3 - 3/2
) 148 5 1, 5.
< Tl (1+s+ o)

O
The first term of the right hand side of Proposition 5.15 is a bias term resulting from the
non-stationarity of the environment. The second term results from the concentration results we
have established in Section 5.A combined with the self-concordance assumption.

With 84 defined in Equation (5.4), the algorithm SC-D-GLUCB selects the action at time ¢
as follows,

TA Bf‘r ku ’YD
At = argmaxaeAt ,u(a, (915) + TMHGHVt—l + TS(QSI{:M + m)
Ty + B
= argmax,¢ 4, | u(a’ 6;) + —CuHaHthl . (5.29)

Note that the bias term is independent of the action. Nevertheless, this term will appear in
the upper bound for the regret. Equation (5.29) explains how the actions are chosen in Algorithm
11.

We can now give the main theorem.

Theorem 5.2. The regret of the SC-D-GLUCB algorithm is bounded for all v € (1/2,1)
with probability at least 1 — 9§ by

2log(T 2k, (2 1
1—7 A 1—7v

)
+ ?/ﬁ%\/ﬁ\# max (1, i) \/Tlog(l/y) +log (1 +

dA(ll—v)>'

1/2
L/

2/3
In particular, setting v =1 — ( “dTFT> and A = dlog(T) leads to

R(T) = @(0;1/3d2/3F;/3T2/3) '

Proof. Using Proposition 5.15, we obtain a high probability upper bound for As(a, ét) We
recall that the exploration bonus of SC-D-GLUCB is defined as,

1
Veu

Furthermore, the estimator used by SC-D-GLUCB is the MLE 0, as defined in Equation (5.1),

) ku "
BTHatHv;l + Tﬁ@s}@ +m) .
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all the conditions required for applying Proposition 5.32 are met. Hence when ¢ € T (v),

2 2k
rt<—ﬁT\|atHV 4 e n”

N N 1o (2Sk +m) .

The dynamic pseudo-regret can then be upper bounded by,

T
TY=>r= >, rn+ y, n<TrD+ > n
=1

teT () tET () tGT ™)
k‘ D
1=7  teT(y
2 D
<I'rD+ %177(2516“ +m)T BT VT Z \|At|| (Cauchy-Schwarz ineq.)
—7 “n teT (7)

2k, ~P 5
<Trp D+T“1—(25k +m)T+\/—Z\F ZHAtu

2k, P 25T 1 det(Vr)

The last inequality uses Lemma 5.30. Next, we use Corollary 5.28 to upper bound the

determinant,
d
1— T
dectl;vz) < (14 g .
YHN Ad(1—7)

Applying the logarithm function on both sides yields

2k, (2Sk, +m) P
A 1—x

QBT m\/Q maX )\/Tlog(1/7 ) +log (1 * d)‘(ll_’V)) .

With the additional constraint 1/2 < v < 1, by setting D = log(7T")/log(1/7), noticing that
0<1/y—1<1and using log(1 + x) > /2 for 0 < z < 1, we have

Rr <T'rD + T

1—
log(1/y) =log(1+1/y—1) > W’Y :

Therefore, we have D < %%T).

By properly balancing the bias term due to the non-stationarity and the rate at which

the weighted MLE approaches the true bandit parameter, the asymptotic behavior of

o1/2

2/3
SC-D-GLUCB can be characterized as follows: By setting v =1 — ( s FT) and \ =

dr
dlog(T), we have:

. 21%@1} scales as (’3(0,71/3d2/31"%p/3T2/3).

. 2ku(25>\ku+m)ﬁ scales as (9( —1/3 g2/3p 2/3T2/3)
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288
° \/%\/CTT\/QmaX (1,§>\/T10g(1/'y) + log (1 + m) scales as \/%dT log(1/7)

when omitting logarithmic factors and constant terms.

Using —log(1 —z) < &=L for 0 < z < 1, we also have

Viog(1/7) =/~ log(1 — (1 -~ ,/ =7 o=+

log(1/7) scales as (5(0,1/6(1_1/3F1T/3T_1/3). Hence 0;1/2dT\/log(1/7) scales as
(’N)(c;l/ a2/ 311}/ S2/ 3). Combining the different terms concludes the proof. O
Using Assumption 5.5, we can obtain refined regret bounds.

5.B.3 Gap-Dependent Bound

Theorem 5.1. Under Assumption 5.5, the regret of the SC-D-GLUCB algorithm is bounded
for all v € (1/2,1) with probability at least 1 —§ by

Tt 1 2\ dT < 1 )
T) < T log(1 1 14+ —7——
R(T) 011_7+02T(1_7)2A+C3 e og(1/v) + log +d)\(1—fy)
52
1
+C4d(5T)

T log(1 log(l4+ ———
"y (T'log(1/) + log( +dA(1_,y))),
where C1, Cq, C3, Cy are universal constants independent of c,, v with only logarithmic
terms in T.

In particular, setting v =1 — ”dc\;;T and A = dlog(T) leads to

R(T) = O(A™ ¢, ?d/T7T) .

Proof. First note that for any suboptimal action a € Ay,
WAL — pal07) = A

This implies

2
L (mALey) —uAl ) 2
= n(Ag07) - <A39t>§< A ) =X (5.30)

Using Proposition 5.32 one has,

2k, ~P
re < 7/3T‘|AtHV + =5 (QSk m).
Ve A l—
This implies in particular,
4 4k2 2D ]k 56 D
2 52 2 w 2 p P
Ty < a(ﬁ:ﬁ) HAtHVt—l + VW@S’% +m)”+ Tﬁﬁ(%ku + m)HAtHthl :
T1,t T2,t T3,t

(5.31)
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The dynamic regret can then be upper bounded by,

T
:Z = >+ > n<TrD+ Y (WAL — A/l 6)))

tET('y) tgT () teT ()
I'rD —|— — Z r2 . (BEquation (5.30))
teT(v

By applying Equation (5.31), the regret can be separated in 4 different terms.
When summing for the different time instants r1; becomes

irl,t < é(ﬁ%)z max (L 1\) log (%) (Lemma 5.30)
< %(BT) max< i\) <T10g(1/7) —I-log( + d)\(ll—'Y))> . (Corollary 5.28)

Cu

For r9, we have

4k2  ~42DT
th < ui(f E (2Sk, +m)? .

Furthermore, r3; is treated as follows:

T

5T ’7
ert S 28k m ) S A -
)\ \/ 1 t=1 K

<%ﬁi(25k +m)\/T iHA 12
RARRVATE St . t=1 Hv

S)i’;’g 177 (2Sk, + m)\/2dT max <1, i\) \/Tlog (i) + log (1 + M)

When X\ = dlog(T), D = 152%@) and vy =1 — Y dc\“ﬁT, we can upper bound the different

terms following the proof of Theorem 5.2.
With those choices,

1. D7D scales as (5(0;1/2d1“;/2T1/2)

2. ST r1y scales as O(cy, /*dTy/*T1/2)
3. Zthl ro¢ scales as (’3(0;11“;1)

4. YF | 34 scales as 6(d1/40;3/4f;1/4T1/4)

Keeping the highest order term in 7" and dividing by A yields the announced result. O
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5.B.4 Refined Exploration Bonus when 9t €0

As briefly explained in Remark 5.1 in the main text, when the MLE is an admissible parameter
(ét € 0) it is possible to obtain a usually tighter concentration result. In this section, we explain
exactly how this can be done. Note that this improvement is mostly useful for the design of the
algorithm and has no impact on the regret guarantees.

We define B
By = kuVT+28 (VAS+p}) (5.32)

where pf. is defined in Equation (5.26).

Proposition 5.16. For any ¢ € (0,1], with probability higher than 1 — 6,

R R k D 85
Vt € T(v) 5.t 0; € ©, Ay(a, ;) < 7“—(281{: +m) + \/%Hauvt_l .

Proof. We use the notation G; (respectively Gy) instead of Gy (67, 8;) (respectively G(6F, 0;)).
Following the same steps as for the proof of Proposition 5.15, one gets

<k, AP -
Aula,00) < S 2k m) + ke Gy ' ()" Sipe = 2|
ku ~ t
S 7 1 7(25[@’“ + m) + ”aHG‘t—létG?lH’Y Sth:t - Ag:”ét—l
k D
< 7“1 7(25’]{: W+ m) + HCLHG [y S pi — Millg-1 - (Equation (5.28))

Here, with the additional assumption Qt € 0, the self-concordance can be used to obtain an
easier relation between Gt and Ht as stated in Lemma 5.25.

~ k; D
A(a,by) < 71_ (28ky +m) + V1+28]all g1 [V S-pa = Al 1 (Lemma 5.25)
< kH fyD 25k m t—lS \O*
- 7 1— ,-Y( = + m) + + HG‘HG’;l ”’7 t—D:t — t ‘|ﬁt:1D;t .

The last inequality uses ﬁt_ Dt < H,;. Now by applying Corollary 5.10, At(a,ét) can be
further upper bounded.

A k
Ala,by) < 7“77(25% +m) + VI+28all g (VAS +pF) -
The final step consists in using G; == Gy(67,6;) > ¢, Vi which holds because both 0, and 0}
are in ©. g

Consequently, when 0, € ©, the action a; at time ¢ can be chosen according to:

By
NGn

— argmax,. 4, (u( 0) + ﬁ%uaum_l) . (5.33)

k,,
HQHV 1+

D
“ T (25K +m)>

Ay = argmax,e 4, (m ) +
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Appendix 5.C Regret Analysis with a Sliding Window

In the main text only the analysis with discount factors is discussed. However as in the linear
bandit literature, the analysis with exponential weights and a sliding window share similarities,
in particular they have the same form of guarantees for the regret. For the sake of completeness,
we give a detailed analysis of the results achievable with a sliding window.

5.C.1 Notation

Let us first introduce the main notations. For any value of § € R?, we define,

t
Hy(0) = > (AL AAT + 21, . (5.34)
s=max(1,t—7+1)

! A
Vi = > AA + 21, (5.35)

s=max(1,t—7+1) Cp

t

g:(0) = > (Al0) A, + M. (5.36)

s=max(1l,t—7+1)

t

Sy = > €sAs . (5.37)

s=max(l,t—7+1)

For any 61,6, € R?,

1
ala,b1,02) = /0 f(va’ 0y + (1 —v)a'6y)dv .

~+

Gi(6y1,6;) = > (A, 01,02) A Al + N1y (5.38)
s=max(1,t—7+1)

Let H; be defined as
t

H, = > (AL AAT + NI (5.39)
s=max(l,t—7+1)

Let us define 7(7) as
T(r)={1<t<T,Vs,such thatt —7+1<s<t60;, =0;}. (5.40)

t € T(7) when t is a least T steps away from the closest previous breakpoint. When focusing
on time instants in 7 (7) the bias due to non-stationarity disappears. In the sliding window
setting, we construct an estimator based on a truncated penalized log-likelihood.

In this section, 0, is defined as the unique maximizer of

t

A
E logPO(Xs‘As) - 5”9‘@ . (5‘41)
s=max(1,t—7+1)
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By using the definition of the GLM and thanks to the concavity of this equation in 6, ; is the

unique solution of
¢

Yo (X —u(AJ0)A; - M =0.
s=max(1,t—7+1)

This can be summarized with

t t
g¢(0r) = Yoo XA =S+ > wAJE)A,.
s=max(1,t—7+1) s=max(l,t—7+1)

5.C.2 Algorithm

The SC-SW-GLUCB algorithm proceeds as follows. First, based on the 7 last rewards and
actions, 0,_; is computed using Equation (5.41). Then, after receiving the action set .4; the
action A; is chosen optimistically. Finally, by proposing this action a reward X; is received and
the design matrix is updated. The pseudo code of SC-SW-GLUCB is reported in Algorithm 12.

Input: Failure probability §, dimension d, regularization A, upper bound for actions L,
upper bound for parameters S, sliding window 7.
Initialization: Vy = (\/c,)I4, o = Oa
fort=1toT do
Receive Ay, compute ;1 according to (5.41)
Play A; = argmaxaeAt,u(aTét,l) + \5—(’§TL||¢1||V711 with 37 defined in Equation (5.43)
Receive reward X;
Update:
if ¢t <7 then
‘ Vig1 < AtA;r + Vi
else
L Vit1 < AtAtT - AthAtT_T + Vi

Algorithm 12: SC-SW-GLUCB

5.C.3 Analysis of the Regret of SC-SW-GLUCB

In Section 5.B, the self-concordance is the key tool to obtain an analysis without using a
projection step. In the next proposition, we link the matrix G¢(0, 6F) with H;(6}) independently
from c,,.

m

Proposition 5.17. When 0, is the mazimum likelihood estimator as defined in Equa-
tion (5.41) and t € T(7), we have:

. 1 -1
O[(CL, 0:, 9,5) > <1 + S+ \/XHStHth(g;,ét)) H(CLTG:) .

Note that the main difference with Proposition 5.12 is that S is now replaced by S. This is
due to the fact that the bias disappears when using a sliding window for ¢ € T (7).
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Proof. Thanks to Lemma 5.23, we have:

. < -1
a(a, 07,00 > (1+ |aT (07 = 0)|) e 07)
—i—‘ TGL(07,0,)(ge(07) — gt(ét))Dil i(a'6F) (Mean-Value Theorem)

v

-1
) -0 T p*
’gt — 9:(6;) ‘G;I(G* 6})> j(a’ 0F) (Cauchy-Schwarz)

-1
-0 T px < A
’Gt_l(ef,ét)) M(CL 91&) (Gt(etvet) Z )‘Id)

-1
LA ATY2US = Ml gr.gy) A@T67) (€ T(r))

14 \1/2

= (1
(2 el .0
(12

Y

Hgt 07) gt(ét)

v

(
(1

—1
+ S+ A2 Sl gr gy a6

v

O]

Corollary 5.18. When 0, is the mazimum likelihood estimator as defined in Equation (5.41),
when t € T (1) and Hy is defined in Equation (5.39), we have,

1
Gt(eg",et)z(lJrSJerStHG M)> H, .

Furthermore,

vVt <T, ||StHG (9* 6y) <V1+S§ ”StHH 1+ \fHSt”H—

Proof. Using Proposition 5.17 and summing for time instants s such that max(1,t—741) <
s <t,

t
> a(46,0,0)AAT = (14 S+ X218l g1 e 4, ) Z (AT 0) A AT .

s=t—7+1 s=t—7+1

Where we use 0% = 0f for t — 7+ 1 < s < t thanks to the assumption ¢t € T(7).
The next step consists in adding the regularization term on both sides. Note that

(1 + S+ A7/ HStHG;l(Q;,ét)) A > X\ and obtain,

-1
Gul07,00) > (1+ S+ 272|861 ge ) Ho-
This in turn implies,

IStz (00 6y < (1 4+ S+ A2 1Skl g1 ) ) 1Se13

= 1510y = XIS ISl gy = (14 ) 1S <0

Solving this polynomial inequality (in [|.S| G;1(9:7ét)) finally gives,

2
1St 10,6, < VEH SISl g1 + —= 1Sl -

f |
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Using this technique, we have established an explicit link between G4(67,0;) and H, without
the need to project 6; on © when ¢ € T (7).

We define

o Q 2m (T> am ( kumin(t,7)> 27m1 9 49
pt—<m+ log 5 —|—\F)\log 1+ Y +\F)\dog() , (5.42)

o\ 3/2
Bf:kuﬁ(l+8+ﬁpf+<\p/%>) . (5.43)

In the next proposition, we give an upper bound for A¢(a, ét)

and

Proposition 5.19. For any ¢ € (0,1], with probability higher than 1 — 4,
Vi€ T(), Ala.f) < Lo fafly s
) t\W, V) > \/C? V; .

Proof.

Ai(a,60) = |u(a"67) — pla’ 0;)| < kyla" (67 — 6,)]
= kula " G705, 0,) (9:(07) — g1(61))]  (Mean-Value Theorem)
< kMHaHG 105 00) lg:(07) — gt(é\t)”Ggl(e;’ét) (Cauchy-Schwarz ineq.)
< kﬂHaHG; (9;7@)“51% - /\H?HG;I(Q;,Q}) . (teT(r)

We can use Corollary 5.18 to link ||aHG71(9* 6,y With ||a||Ht_1.
t to

A 1
A¢(a, ;) < k?u\/l +5+ \ﬁ HStHG;l(e;,éz)Ha”H{l (\f)\S—i— ||StHGt—1(9;,ét))

1 1
< kzmw £+ ﬁ ISt 0p ool (S + TSt 0 )

3/2

Then, using Corollary 5.18 we can upper bound HStHG—l(a* 4,) With a combination of terms
t o
depending on ||| H Recall that Corollary 5.11 gives with probability higher than 1 —§ |
for all t in T(7), |||l ;-1 < .
t

3/2
R 1+S 5 1
Av(a,0;) <k, VN (1 +S+ § oY+ 1P )2) lall -1 -

The proof is completed using H; > ¢,V;, which holds thanks to Assumption 5.1 on the
bandit parameters. ]

Finally, we give an upper bound for the regret enjoyed by SC-SW-GLUCB.



178 5.C. Regret Analysis with a Sliding Window

Theorem 5.20. The regret of the SC-SW-GLUCB algorithm is bounded with probability at
least 1 — 0 by,

R(T) <Tpr+ BT\/ﬁ\/ [T/7] \/Zmax \/log( ;}\),

where B9 is defined in Equation (5.43).

Proof. The proof essentially follows the steps of the proof of Theorem 5.2. The main
difference is that ! from Equation (5.43) is used and the elliptical lemma is different
because the design matrix used a sliding window instead of weights.

Applying Proposition 5.32 when ¢ € T (7), with probability higher than 1 — 4,

2 d
< — —1 . 5.44
Tt = BtHatH\’t 1 ( )

The dynamic regret can then be upper bounded by,

T
T):Zrt: Z r + Z re < Tp7m + Z Tt
t=1

tGT( ) tET(7) tET(T)
<T T_|_ Z HAtHv 1 (Equation (5.44))
Cu teT
<Tpr -|- Z HAtH (Cauchy-Schwarz ineq.)
“ teT (1

288 IS 2
SFT’T—F\/?\/T ZHAtH t_l

<Dpr+ + Ly dTW\/Q max log < dT)\> . (Lemma 5.31)

O]

2/3
Corollary 5.21 (Asymptotic bound). If I'p is known, by choosing T = < 1727; ) and
¢ ‘T
A = dlog(T), the regret of SC-SW-GLUCB scales as '

R(T) = O(c; YPa?*Ty/*T%3) .

2/3
If T'p is unknown, by choosing T = ( ‘f%) , the regret of SC-SW-GLUCB scales as
Cu

R(T) = O(c,*3d*Pry1?/3) .

2/3
Proof. When I'r is known, we set A = dlog(7T") and 7 = ( \/%T> / . With those choices,

1. B9 scales as /dlog(T).
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2. I'p7 scales as (5(0;1/3d2/31“§/3T2/3).
s — 1y
3. %\/T\/dg scales as O(cy 1/5d2/3F%F/3T2/3).
The proof is similar when I'7 is unknown. O

When the reward gaps are bounded from below we can obtain the following gap-dependent
upper bound:

dVT

cul'r

Theorem 5.22. Under Assumption 5.5, when setting 7 = the regret of the algorithm

SC-SW-GLUCB satisfies: _
Rr = O(A™ ¢, 2dyTrT) .
Proof. First note that for any suboptimal action a € Ay,
u(al 07) — pl(aT67) = A

This implies

o (el - talen) 2
Tt = N(a*,tet) — pla, 07) < A = A (5.45)

Using Proposition 5.32 one has,

2 1
< — 1.
Te = ﬁcuﬁtHatHVt L

The dynamic regret can then be upper bounded by,

R(T) <Trpt +% Z r?  (Equation (5.45))
teT (1)

1(ﬁ§l )2 2
<TI'pr+ g -
> Cuﬁ . 1HatH f 1

ey ( 1) ( v )
< — — | . .
<Tpr+ P max ( 1, 3 d[T/7]log 1+ d (Lemma 5.31)

We set A = dlog(T') and 7 = ~VT_ With those choices,

cul'r

1. BS scales as v/dlog(T).

2. Tpr scales as O(cy, l/zdF%,PTl/Q).

d ~
3. @d% scales as O(cﬁlﬂdF;mTl/Q).

Dividing by A yields the announced result. O

When 6, is in © it is also possible with a sliding window to obtain a usually better concentration
result. This discussion is not reported here, but can be easily adapted from Proposition 5.16.
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Appendix 5.D Useful Results

5.D.1 Self-Concordant Properties

In this section we state the main properties and lemma that can be obtained with the
self-concordance assumption.

Lemma 5.23 (Lemma 9 in [Faury et al., 2020]). For any z1,z2 € R, we have the following
inequality

exp(|z1 — 22]) — 1
|21 — 22|

)1 — exp(—|z1 — 22|)

1
i) T < [ e+ v — 2o < i)

Furthermore,
1
/0 (21 4+ 0(z2 — 21))dv > fu(z1) (1 + |21 — 2a) "
Thanks to the self-concordance property we have an interesting relation between Gy(61,62)
and Hy(01) or Hi(62) when both 6; and 6, € ©. This relation is made explicit in the next lemma.

Lemma 5.24 (Self-concordance and sliding window). For all 01,602 € ©, with Gy defined
in Equation (5.38) and H; defined in Equation (5.34) the following inequalities hold

Gt((gl, 92) > (1 + QS)_lHt(Gl) , Gt(gl, 02) > (1 + 25)_1Ht((92) .
Proof. Applying Lemma 5.23, for any 61,6, € RY,

(T
a(a, 91’92) > ,u(a 01)

[L(a 02)
) ) d 01,605) >
1 | T( ) 2)| an a(a, 1, 2)

— 1+ |CLT(01 — 92)| '

Furthermore, if #; and 65 € ©, then

la’ (6 —62)| < 28 .

d

Lemma 5.25 (Self—concordarlce and discount factors). For all 61,62 € ©, with f[t(ﬁl)
defined in Equation (5.16) and G¢(01, 02) defined in Equation (5.22) the following inequalities
hold:

Gi(01,05) > (14 25)"VH (1), Gy(01,605) > (1+25)" Hy(6,) .

Proof. Same arguments than for Lemma 5.24 O
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5.D.2 Determinant Inequalities

Proposition 5.26 (Determinant inequality). Let (A\¢); be a deterministic sequence of
regularization parameters. Let Hy == Yt _ w202 A Al 4+ \1y. Under the Assumption 5.1
and Vt,of < k., the following holds

k t, 2 d
det(H,) < (At + uZ;ﬂ%) .

Proof.

d
det(H;) = H l; (l; are the eigenvalues) < < Zl > (AM-GM inequality)
i=1

d
1t
trace(Hy) ) <d > w?otrace(AAl) + )\t>

ISHN

IN
Ul

. d d
k
( > wio?| As Hg+At> S(At+;ng> .
s=1

O]

Corollary 5.27. Let {A;}°, a sequence in R? such that ||As|, < L for all s € N¥,

and let X be a non-negative scalar. In the specific case where the weights are given by

wy = 'y_t with 0 < v < 1, under the same assumptions than Proposition 5.26, with

H = Zs t—to+1 7Y 2(t=9) 2A A + My, one has

. BuL(1 = 7%0)\*

Corollary 5.28. Let {A,}2, a sequence in R? such that HA lo < L for all s € N*, and
let A be a non-negative scalar. Fort > 1 define V; == t _1 YV TS A A—r + Aly. The followmg
inequality holds:

L1 -49)*
det(V3) < ()\—i— 2 > .

Corollary 5.29. Let {A;}22, a sequence in R? such that ||As|, < L for all s € N*, and
let X be a non-negative scalar. With H; := ZZZmaX(M_TH) 02 AsAl + My, one has

k, L min(t, 7)\*
det(Ht)g(/\Jr"m;n(’T)) :

5.D.3 Elliptical Lemma

The following lemma is a version of the Elliptical Lemma when discount factors are used. It
comes from Proposition 4.14 from Chapter 4 and is stated here for the sake of completeness.
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Lemma 5.30 (Elliptical potential with discount factors (based on Proposition 4.14)). Let
{A}2, a sequence in R such that ||Asllz < 1 for all s € N, and let X be a non-negative
scalar. Fort > 1 define V; == L1 v' 75 A Al + My, the following inequality holds

T
1 det(VT)

Proof. In the proof we introduce the matrix W; = %, v *A,A] + 77!\l ; such that
Vi = v'W;. We have,

t
Wy =Y v AA] +v "\

s=1
t—1
=y AA] + Y v TIAAT + I+ TIN DA
s=1

=y AA] + T = )AL+ Wi
>y AL Wiy > W (L+ WA a] W) wit
This implies,
det(Wy) > det(Wy—1) det (Ig + (v~"/2W, 2 40) (2w, 12 4,)T)
> det(Wit) (1477|451 ) (det(fg+aw’) = 1+ []3) .

This in turn gives,

det(WT) o =1 det Wt+1 r
det(Wp) tl;[o det (W) H( ) ’

Taking the logarithm on both sides gives:

T—1 T—1
det(WT) (t+1) A 2 t A
log ( —7— ) = >_ log( Ly Al ) 2 Y log(L+ 47 Al )
t=0 t=0
-1 vﬂwﬂw4
oY g (14wt
=0 max (17X>

Next, by using W; > v~ A1, we see that
1

—t 2
T Al < 5

Which ensures that . )
VA [l

V= max (1, i)t

Finally, using log(1 + x) > x/2 which is valid when 0 < z < 1, we get:

det(W- 1 =1
m(eﬁﬂ)z > Al
A 2max(l,/\)t0

<1.
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The following lemma is a version of the Elliptical Lemma when a sliding window is used and
can be extracted from [Russac et al., 2019, Proposition 9]. The proof is included here for the
sake of completeness.

Lemma 5.31 (Elliptical potential with sliding window). Let {A,}32, a sequence in R?
such that ||Asll2 < 1 for all s € N, and let X be a non-negative scalar. For t > 1 define
V, = Zizmax(l,t—rﬂ) AsAl + N1y, The following inequality holds:

T
2 1 T
>4l -y < 2dmax (1, 3) (1/7]hog (14 1) -

t=1

Proof. We start by rewriting the sum as follows.

[T/71-1 (k+1)r

ZHAt”z—l— Z > AT -

k=0 t=k7+1

For the k-th block of length 7 we define the matrix Wt(k) = 3t 1 AsAL + M. We

also have Vt € [k7, (k+ 1)7],V; > Wt(k) as every term in Wt(k) is contained in V; and the
extra-terms in V; correspond to positive definite matrices.

[T/7]-1 (k+1)7 [T/7]-1 (k+1)7
>y ||At||v 1S >N AR k-1
k=0 t=k7t+1 k=0 t=k7t+1

Furthermore, Vt € [k7 + 1, (k 4+ 1)7] we have,
det(Wt(f)l) — det(W ) (1 + ||At+1H?Wt(k))_1) :
With positive definitive matrices whose determinants are strictly positive, this implies that

det(W((k4)r1)) (kD=1 4. (W(k)) (k4+1)7—1

S I SR (il )

det(W,) i detW ™)y I

By definition we have WkT SokT i1 ALAL + Ny = M.

det (W® (k+1)r—1
log (<("3+1)T)): Z log( +\|At+1||(W(k> >

d
A t=kt

(k+1)7—1

1
> 1 1+——||A .
> tor (1 s Ay

t=kt

In the next step we use, V0 < = < 1,log(1 + z) > z/2.

det W(k) (k+1)7—1
log (Wictr) > ! > Al o,
Ad 2max(1,1/)) S (W,
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By summing, over the different blocks, we obtain

[T/7]-1 (k+1)7 [T/7]-1 (k+1)T
Z > Al < Z > HAtH
k=0 t=k7t+1 k=0 t=k7t+1
[T/r]-1 det W(:)
+1)7
< 2max(1,1/)\) Z log ((/\Si)> .
k=0
Then, we upper bound det(W((]Z)rl)T) using similar arguments than for Corollary 5.29,
(k) m\*
det(Wil), ) < (/\ 4 d) .
Applying the logarithm function on both sides concludes the proof. O

5.D.4 Link Between A; and the Instantaneous Regret
For any optimistic algorithm, even in a non-stationary environment the instantaneous regret
can be directly related to A¢(a, ) defined as
Ay(a,0) = [p(a8) — u(a"67)] -

Proposition 5.32 (Based on Lemma 14 in [Faury et al., 2020]). Consider any optimistic
algorithm in a possibly non-stationary environment such that the exploration bonus for action
a at time t is defined by Bi(a). Let 0y be the estimator used at time t by the algorithm to
compute the UCB, i.e. UCBy(a) = u(a'0;)+Bi(a). Under the assumption Ai(a,0;) < Bi(a),
the following inequality holds

re < 2B4(at) -

Proof. Let A;, = argmax,¢ 4,11(a’ 65)

= n(ALO) = n(AL ) < [(ALOF) — p(ALO) | + (AL — (AL 0r) + [(A] 6:) — p(A] 67))
= Dy(Ae, 00) + Ai(Ares 0) + (AL 0:) — p(A[ 6,)
= A¢(A, 01) + Ay(Ap s, 0:) + M(AT 0;) + By (Af) — (A;ret) — Bi(As) + Bi(Ar) — Be(A7) -
For any optimistic algorithm with an exploration bonus of 3;(.) and such that the upper
confidence bound of the action a at time ¢ is given by u(a'6;) 4 B:(a), by definition for all

a € At
p(a’0;) + Bila) < u(A/ 0) + Bi(Ay) -

In particular, this is also true for the action A; .. Therefore, plugging this inequality in the
expression of the instantaneous regret gives

re < Ap(Ap, 0r) + A (Ar i, 0:) + B(Ar) — B(A47) .

Under the additional assumption that A¢(a, ) < Bi(a), we obtain the announced result. [J

This proposition shows that any improvement in an upper bound of A;(a,8;) will result in
an improvement of the regret, as long as the exploration bonus satisfies the assumption stated in
the proposition.
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Appendix 5.E On the Worst Case Regret in the K-arm Setting

In this section, we build upon the analysis from [Garivier and Moulines, 2011] to provide a
worst case regret bound for the sliding window policy in the K-arm setting. Even if a proper
lower bound is missing, the results we provide here suggest that in some cases sliding window
policies can suffer a regret of order O(F%F/ 2/ 3) in the simpler multi-armed bandit setting. In
particular, this would mean that the T2/3 dependency is not a sub-optimality from our setting
but can already be seen for forgetting policies in the non-contextual setting. Worst-case regret
bounds (i.e. gap-independent) for forgetting policies in non-stationary environments have seen
little treatment in the literature.

Setting. The setting considered in this section is the one from [Garivier and Moulines, 2011].
At each time ¢, the player chooses an arm I; € {1,..., K} based on the previous rewards
and actions. Upon selecting I; a reward X;(I;) is observed. We consider abruptly changing
environments as in other sections, where the distribution of the rewards remains constant
during phases and changes at unknown time instants. At time ¢, the arm ¢ has a mean
reward p(i). As before, I'r denote the number of abrupt changes in the reward distributions
before time T'. Following the notation from [Trovo et al., 2020], we denote the I'z breakpoints
B = {b1,...,br,. }. We can associate I'r stationary phases {¢1, ..., ¢r,. } with these breakpoints,
where ¢; = {t € {1,...,T} s.t bj—1 <t < b;} and by = 1. It is further assumed that for all arms
and all time instants the means of the reward distributions lie in [0, B]. In this section the focus
is on the forgetting policy using a sliding window but the same arguments can be used with
exponentially increasing weights.

Improving the problem-dependent bound. In [Garivier and Moulines, 2011, Theorem 2],
the number of times the arm ¢ is played before time 71" while being sub-optimal is upper bounded
in expectation as

C(r) Tlog(r)

Gur()E - TTTrtlee’(n) (5.46)

where
Apr(i) = min{p(if) — pe(i) 1t € {1, T pu(d) < pu(if)} -

This result has a worst case flavor in the sense that Aup(i) is the minimum distance between
the mean of the optimal arm and the mean of the i-th arm when ¢ is sub-optimal over the entire
time horizon. We obtain a less pessimistic bound by decomposing the regret into the 'y different
stationary phases and upper-bounding the number of times a sub-optimal arm is drawn in each
of these phases ¢. The upper-bound naturally depends on Af’, the difference between the mean

of the optimal arm and the i-th arm in the ¢-th stationary phase rather than App(é). This is of
utmost importance as for some phases Af can be significantly larger than Apup(i).

During the ¢-th stationary phase, let ,uf) denote the mean of the i-th arm and Nf denote the
number of times the arm i is selected. The regret can be decomposed as follows:

T K T'r

E[R(T)) = (uf — (i) = 3. > AE[NY] . (5.47)

t=1 i=1 ¢=1
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A worst-case bound. The bound from Equation (5.46) is problem-dependent and depends
explicitly on the minimum gap. It is interesting to study the worst case regret. In particular
when Apr(i) goes to 0 the upper bound from Equation (5.46) becomes uninformative. At the
same time, with a small gap A? the cost of selecting the i-th arm rather than the optimal one
diminishes. The trade-off between these two opposite effects is made explicit in the following
result.

Theorem 5.33. The following upper bound holds for the worst case regret of the sliding
window policy from [Garivier and Moulines, 2011]

T T
E[R(T)] < Clm% + CQ\/ETFT F CgK; ,

with C1, Cy and C3 universal constants that depends only on the logarithm of 7. In particular,

setting T = 1/27;2/3 yields:
E[Rr] = O(K?/3T3/3T2/3) |
Proof.
K Tp
=Y N AENS] = Y APEN]+ ST APENY]
i=l¢=1 L, gAY >A i, p: AP <A
K Tp
< N AENI+HAYSEN < Y APENS] +AT.
i, p: AL >A i=1¢=1 i, APSA

The next step consists in upper bounding the expected number of times the arm 7 is selected
in the ¢-th phase. We recall that Nf is defined as

be
=Y WL=i#i)= Y Wl =i#i).
teg t=by_1

We introduce Ny(7,1) = Zg=t77—+1 1(Is; = i), the number of times the arm i was selected in
the 7 steps preceding t. We have the following:

b¢_1+7’—1 b¢ b¢
N = S ALi=i#i)+ Y Wh=i#q)<t+ Y LL=i#)
t=by—1 t=bg_1+T t=bg_1+7
be
<t+ > WL=i#Ai N(ri) AN+ Y 1L =i # i, Ny(r,i) > A) .
t:b¢*1+7— t:bd),lJrT

The first term can be bounded using [Garivier and Moulines, 2011, Lemma 1] that is restated
here.

Lemma 5.34 (Lemma 1 in [Garivier and Moulines, 2011]). Let i € {1,..., K}. For
any positive integer T and any positive m,

T
Z 1(I; = i, Ne(7,3) <m) < [T/1|m .
t=K+1
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Lemma 5.34 can be adapted to our setting and by introducing T? the length of the ¢-th
stationary phase, one has:

by
S Al =i#if, Nu(ri) < A?) < [T?/7] A7
t:bd),l—l-T
This in turn gives,
by
NP <7+ [T?/r)A?+ Y. AL =i #if, N(r,0) > A?) .
t:b¢_1+’7'

We recall that the upper confidence bound for the sliding-window strategy has the following
form in the K arm setting [Garivier and Moulines, 2011]:

UCB;(t) = Xi(7,1) + ci(7,1)

with

Xy(r,i) = Nt(lf, B SZEH Xs()1(Iy=14) and c¢(7,i) = B\/W .

Following the same arguments than [Garivier and Moulines, 2011] when the event {I; =
i # iy, Ny(1,1) > Aff} holds, at least one of the three following events E1, Fo, F3 must be
true where:

By = {Xy(1,4) > (i) + c¢(7,4)}  the case where (i) is over-estimated.
By = {Xy(7,i}) < uf—ci(7,3F)}  the case where the best arm at time ¢ is under-estimated.

Es = {u;—pu(i) < 2¢(7,i), Ne(1,4) > A?} the case where the means are too close to each others.

From now on, we set
4B%¢log(7)

(Af)?
In doing so, on the event E3 the following holds:

AP —

N B
el(.1) A? 2 log(7) <7

]

¢log(min(t, 7)) B ¢log(min(t, 7)) Aif) log(min(t, 7)) Aif)
Nt (7—7 Z)

Therefore, this choice of Af ensures that the event F3 never occurs. Bounding the probability

of the events Fy and FEs can be done with the concentration inequality established in

[Garivier and Moulines, 2011]. For any n > 0, by selecting a specific value of £ one can

obtain,

"lo%(miln(t,r))—‘ "logff(miln(tj))—‘
P(E;) < ﬂ and P(E) < ﬂ
min(¢, 7) min(¢, 7)

Consequently we have,

by [loatminter)]

4B%¢1 o
E[N?] < 7+ [T¢/71§+g(7)+2 3 w
(A?)? bty min(¢, 7)
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Plugging this in the regret’s upper bound gives:

log(min(¢,7))

2 by
BRI < Y A |7 re ), 5 WHM AT
' (A9)2 _ min(t, 7)
LA >A i t=by_1+7

log(min(¢,7))

b
3 4B%¢1 e o
= gizgmw%“ > Affre2 3 M tar
gAY SA A i AP>A t=bg_1+7 ’

log(1+7)
min(¢, 7)

Ty by ’Tog(min(tﬁ))

2
_ AB%log(n)K T |

< A ;+TKFTB+2KBZ Z
¢:1 t:bd),l—l-T

In the last inequality we have used A? < B coming from p;(t) € [0, B] for all ¢ and all
t < T. Furthermore,

3 5 Dt oy T 1T leglr) )
=Lty bt min(t,7) T &  min(t,7) 7 \log(1 +n) .
Hence,
E(R(T) < LEBOKT | \p oy kT B+ 2KB <10g<7) 1) T
A T log(1 +n) T

By differentiating with respect to A, the right hand side is maximized when setting
A = 2B/ HEOK \yith this value of A,

E[R(T)] < 4B\/£log(7)\/g\; + BK1T'p + 2BK10g(7')z :

T

Now by selecting 7 = we obtain the announced scaling. O

T2/3
2/39
K1/377!

Remark 5.7. The term T'/\/T that can be seen in the worst case bound proposed in Theorem 5.33
also appears in the gap independent bound of SC-SW-GLUCB (Theorem 5.20). When focusing
on gap dependent bounds, there is also a strong similarity. In the K-arm setting, Equation (5.46)
has a T /T dependency. This term can also be seen in the GLB setting in Theorem 5.22 using
an analogous assumption on the gap. This analogy explains why the upper-bounds have the
same scaling in the K-arm and in the GLB setting. Going from T /\/T to T /T when adding the
assumption on the gaps is the key step allowing a scaling of the regret of order @(\/TFT).



6 | Generalized Linear Bandits

under Parameter Drift

In this chapter, we still consider GLBs in non-stationary environments, but non-stationarity is
now characterized by the general metric known as the variation-budget or parameter-drift, denoted
Br. While previous attempts have been made to extend linear bandit algorithms to this setting,
they overlook a salient feature of GLBs which flaws their results. In this work, we introduce a
new algorithm that addresses this difficulty. We prove that under a geometric assumption on the

action sets, our approach enjoys a (5(B:1F/ 72/ 3) regret bound. In the general case, we show that

it suffers at most a @(lew/ T4/ %) regret. At the core of our contribution is a generalization of the
projection step introduced in [Filippi et al., 2010], adapted to the non-stationary nature of the
problem. Our analysis sheds light on central mechanisms inherited from the setting by explicitly
splitting the treatment of the learning and tracking aspects of the problem. The results from
this chapter are based on [Faury et al., 2021b] and [Faury et al., 2021a].
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6.1 Introduction

Given that this chapter shares strong similarity with Chapter 5, we refer the reader to
Chapter 5 for a more detailed introduction and a discussion on existing works. We will focus
here on the works that consider exactly generalized linear bandits under parameter drift. At first
glance, as the analysis of generalized linear bandits mainly relies on tools from the linear bandit
literature, one could expect this demonstration to be straight-forward. As a matter of fact, the
treatment of GLBs in non-stationary environments was already proposed as a direct extension of
non-stationary linear bandit algorithms ([Cheung et al., 2021, Section 8.3] and [Zhao et al., 2020,
Section 5.2]). However, as recently pointed out by [Russac et al., 2020], some crucial subtleties
of the generalized linear bandits flaw the analysis and negates the validity of such extensions.
An answer to this issue was brought by [Russac et al., 2020] and the analysis we proposed in
Chapter 5, where a valid analysis for generalized linear bandits in non-stationary environments
is obtained. However, those analysis are restricted to a specific kind of non-stationarity known
as abrupt changes, leaving the treatment of the superior parameter-drift case for future work. To
the best of our knowledge, a correct derivation of generalized linear bandits’ behavior under this
more general description of non-stationarity is still missing.

Scope and contributions. We focus in this chapter on closing this gap. Our main contribution
is (1) the design of BVD-GLM-UCB (Algorithm 13), the first generalized linear bandit algorithm
resilient to parameter-drift and matching the known minimax rates - though only for some
action sets (Theorem 6.1). For more general configurations, we still provide a sub-linear regret
bound, slightly lagging behind the known rates for non-stationary LBs. Our result relies on (2)
a generalization of the projection step of [Filippi et al., 2010] to non-stationary environments,
of similar complexity than its stationary counterpart (Proposition 6.2). Our analysis (3) sheds
light on some salient mechanisms of non-stationary bandits.

6.2 Preliminaries

We consider in this work the stochastic contextual bandit setting under parameter-drift. The
environment starts by picking a sequence of parameters {07 }22,. A repeated game then begins
between the environment and an agent. At each round ¢, the environment presents the agent
with a set of actions A; (potentially contextual, large or even infinite). The agent selects an
action A; € Ay and receives a (stochastic) reward X;. The reward model we consider is the same
than in Chapter 5 and with 7, = (A1, A1, X1,..., A, Ay, Xi, Apr1, Air1) the o-field from the
previous chapter, we assume

E[X,|Fa] = p(A]6]). (6.1)

1 is a strictly increasing, continuously differentiable real-valued function most often referred
to as the inverse link function. Notable instances of such a problem include the logistic bandit
and the Poisson bandit. The goal of the agent is to minimize the cumulative pseudo-regret:

T T

R(T) = Z/‘(AZ*G:) -> (A 07) where Ay, = argmaxge 4, u(a’ 6;) .
t=1 t=1

We recall the assumptions that are made for this chapter.
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Assumption 6.1 (Bounded decision set). For allt > 1, the following holds true: ||0F||, < S.
Further, the actions have bounded norms: |lall, < L for all a € Ay.

Assumption 6.2 (Bounded reward). There exists m > 0 s.t 0 < X; < m holds almost surely.

We will denote © = {6, ||0]|, < S} the set of admissible parameters and A = {a, ||a||, < L}.
We assume that the quantities L, S and m are known to the agent. The true parameters {6;}$2;
are unknown, and their drift is quantified by the variation variation-budget, which characterizes
the magnitude of the non-stationarity in the environment:

T—1
Br = Z ||‘9f+1 - 0:“2'
=1

Naturally Br is unknown. For the sake of simplicity and to isolate the main contribution
of this chapter (i.e minimax-optimality in non-stationary GLBs), we will make the following
assumption.

Assumption 6.3 (Variation-budget upper-bound). By is a known quantity such that By > Br.

This assumption is common in non-stationary bandits [Besbes et al., 2014, Cheung et al., 2021,
Zhao et al., 2020]. We will show in Section 6.4.4 how to bypass it with little to no impact on the
regret. For a given inverse link function p, we will follow the notation from [Filippi et al., 2010]
and denote:

k, = su 1a'0), ¢, = inf f(a'B), R, =1
H aeAﬁe@“( ) H aeA,ﬁe@'u( ) B e,
As in the stationary setting, learning can be performed through the quasi-maximum likelihood
principle, albeit with adequate modifications. Let b be a primitive of y. Thanks to the strict
increasing nature of the latter, b is a strictly convex function. Let A > 0 and for v € (0,1) define!:

t
fy = argmingcne Y41 [0(AT0) - X,4T6] + L;“ 102, (6.2)
s=1

which is well-defined and unique as the minimizer of a strictly convex and coercive function.
Further:

t

9e(0) =D 7" (AL 0)As + ey .
s=1

Finally, we will use

t t
Vii= Y ATEAAL 40 and V=Y A2 9AAT 40D,
s=1 s=1
Some of our results require the following assumption on the arm-sets A;. We will discuss the
reasons behind this hypothesis, as well as its main implications in the following section.

Assumption 6.4 (Orthogonal arm-set). Let {e;}{, an orthonormal basis of RY. We call a
collection of arm-sets {A;}¢ orthogonal if for allt > 1 and any a € Ay, there exists a and i such
that a = «e;.

"We follow Chapter 4 and use an exponential moving-average strategy. Our contribution is not specific to this
approach and can easily be extended to other alternatives, e.g the sliding window.
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6.3 Related Work: Limitations and Challenges

6.3.1 Generalized Linear Bandits

Generalized linear bandits were first introduced by [Filippi et al., 2010] who studied opti-
mistic algorithms which enjoy a @(Rud\/f ) regret upper-bound. This bound was later refined
for K-arms problem to O(R,+/dlog(K)T) [Li et al., 2017]. These findings were extended to
randomized algorithms, both in the frequentist [Abeille and Lazaric, 2017] and Bayesian setting
[Russo and Van Roy, 2014, Dong and Van Roy, 2018]. Generalized linear bandits also received
an increasing attention targeted at improving their practical implementations [Jun et al., 2017,
Dumitrascu et al., 2018]. In this chapter, we focus on generalized linear bandits in smoothly
drifting environments.

6.3.2 Toward Non-Stationary GLBs: Limitations

On the limits of piece-wise stationarity. To the best of our knowledge, the first valid
analysis of non-stationary GLBs was conducted by [Russac et al., 2020, Russac et al., 2021a].
However, their work is restricted to piece-wise stationary environments, characterized by the
number 't of switches of the reward signal. On the practical side, this drastically narrows down
the non-stationary scenarios that can be efficiently addressed, as the measure I'r can grossly
overestimate the importance of the non-stationarity. In such case, any algorithm based on this
measure will be sub-optimal and discard too fast previous data, quickly judged uninformative since
the level of non-stationarity is expected to be high. This is typically the case in environments with
many switches of small amplitude, characteristic of smooth drifts (e.g user-fatigue in recommender
systems). On the theoretical side, this approach tells us little about the difficulties and challenges
brought by the non-stationarity, as it relies on the fact that far enough from a switch, the
environment is stationary. On the contrary, the variation-budget metric Br introduced and
discussed in [Besbes et al., 2014, Section 2], allows for much finer considerations. It stands
as a powerful characterization of the non-stationarity, measuring the number of switches and
their amplitude jointly. As a result, it can efficiently cover different scenarios, from drifting to
piece-wise stationary environments. An adequate treatment of generalized linear bandits under
this superior metric is therefore a crucial missing piece, and requires a sensibly different analysis
and an appropriate algorithmic design.

Parameter-drift and GLBs: flaws of previous approaches. Most of the existing non-
stationary linear bandit algorithms address the parameter-drift setting, and their extension to gen-
eralized linear bandits was at first considered as relatively straight-forward [Cheung et al., 2021,
Zhao et al., 2020]. Unfortunately, existing analyses suffer from important caveats because they
overlook a crucial feature of generalized linear bandits. Following [Filippi et al., 2010], they rely
on a linearization of the reward function around ét. Naturally, the linear approximation must
accurately describe the effective behavior of the reward signal (characterized by the ground-truth
07). From Assumption 6.2, this translates in the constraint 6, € O, which is implicitly assumed
to hold in previous attempts. Unfortunately, there exists no proof guaranteeing that 6, € ©
could hold. Even worse, existing deviation bounds [Abbasi-Yadkori et al., 2011, Theorem 1]
rather suggest that in some directions, even in the stationary case, 0, can grow to be y/log(t)
far from ©! The situation is even worse under non-stationarity since, as we shall see, ét can be
B; far from ©. This flaw in the analysis is critical and cannot be easily fixed without severely
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degrading the regret guarantee. When 0, ¢ O, this impacts the ratio R, which captures the
degree of non-linearity of the inverse link function. For the highly non-linear logistic function,
easy computations show that R, > eSL. If we were to inflate the radius of the admissible set
O from S to S + dg (so that it contains ét), the estimated non-linearity of the reward function
would be even stronger and R, would be multiplied by a factor el9s| Because the regret bound
scales linearly with R, this exponential growth would lead to prohibitively deficient performance
guarantees.

Remark 6.1. The fact that 0, can leave the admissible set © is not merely a theoretical
construction inherited from potentially loose deviation bounds. As highlighted in Figure 6.2b, we
can see in our numerical simulations that this often happens in practice when the environment is
non-stationary.

6.3.3 Non-stationary GLBs: Challenges

In their seminal work, [Filippi et al., 2010] countered the aforementioned difficulty by intro-
ducing a projection step, mapping 6; back to an admissible parameter 6, € ©. Formally, they
compute:

0, = argminge g Hgt(e) - gt(ét)HV,l (PO)

t
and use 6, to predict the performance of the available actions. The projection step Equation (PO0)
essentially incorporates the prior knowledge 6, € © (Assumption 6.2) without degrading the
learning guarantees of the maximum likelihood estimator. This strategy was also leveraged by
[Russac et al., 2020], which was made possible thanks to their piece-wise stationarity assumption.

The situation is different in our setting, as the parameter-drift framework allows the sequence
{67} to change at every round. This introduces (1) the need to characterize two phenomenons
of different nature that we will designate as learning and tracking. The former (learning) is
linked to the deviation of the maximum-likelihood estimator ét from its noiseless counterpart 0,
(the estimator that one would have obtained if one could have averaged an infinite number of
realization of the trajectory). The later (tracking) measures the deviation of §; from the current
07,1, due to an incompressible error inherited from the drifting nature of the sequence {6%}._;.
The learning and tracking mechanisms are both sources of deviation of 6, away from ©, each
under a different metric. This leads to (2) a tension in the design of the projection as this
requires to incorporate the knowledge {0} } € O, without degrading neither the learning nor the
tracking guarantees. This rules out the projection step Equation (PO0), oblivious to the tracking
aspect of the problem and which needs to be generalized to adapt to the two sources of deviation
(i.e learning and tracking).

6.4 Algorithm and Regret Bound

6.4.1 Algorithm

This section is dedicated to the description of the design of our new algorithm BVD-GLM-
UCB. It operates in two steps: (Step 1) the computation of an appropriate admissible parameter
0; € O (to be used for predicting the rewards associated with the actions a € A; available
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O(Bt

Ef (CA)

E(0)
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Figure 6.1: Illustration of the different parameters of interest. As stated by Lemma 6.5 and Lemma 6.7,
the deviations (0} <> 0;) and (6; <> 6},,) are linked to the parameter-drift B;. On the other hand, the
deviations (ét < 0,) and (0; < 07) are characterized by the stochastic nature of the problem.

at round t) and (Step 2) the construction of a suitable exploration bonus to compensate for
prediction errors.

The first step builds on the following set, linked to the deviation incurred through the learning
process:

£5(0) = {9/ cRY st Hgt(e’) N gt(a)H%1 < @(5)}, (6.3)

where 5;() is a slowly-increasing function of time (to be defined later) and § € (0, 1].

Step 1. We start by identifying an intermediary parameter 67, solution of the following
constrained optimization program (ties can be broken arbitrarily):

67 € argmingcpa {Hgt(ﬁ) - gt(ét)Hv*Z st ONEN(H) # @} : (P1)

The optimization program Equation (P1) is well-posed as it consists in minimizing a smooth
function over a non-empty compact set?. Once 6} is computed, the algorithm simply chooses
any parameter 0, € © N &) (6F). An efficient procedure to find such a parameter is detailed
in Section 6.4.3. The different parameters of interest for BVD-GLM-UCB are illustrated in
Figure 6.1.

Remark 6.2. Notice the difference with the projection step used in the stationary case. In our
case it is possible that E(0;) (which is the confidence set centered at 0,) does not intersect the
admissible set ©. Our strategy for finding 0 is then to compute an appropriate vibration £)(67)
of Sf(ét) which does intersect ©, while minimizing the deviation between 6Y and 0, according to a
metric related to the tracking error (through the map g; and the squared inverse of the design
matriz).

*Notice that {# s.t © N &P (0) # 0} always contains 04, while the compactness is inherited from ©.
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Step 2. The exploration bonus at round ¢ for a given arm a € A; is defined as b;_1(a) =
2Ruﬂt—1(5)“a||v—llv where § € (0,1] and:
i

m L2(1 —~2t)
0) = VaAc,S+ —1/2log(1/6) +dlog |1+ ——5= | .
5u(8) == VAeuS + M o8(1/8) + dlog (1+ S0 —"1 )
BVD-GLM-UCB then follows an optimistic strategy, boosting the predicted reward associated
with 6;_1 by b;_1 and plays A; € argmaxaeAtu(aTHt_l)—I—bt_l(a). The pseudo-code is summarized
in Algorithm 13.

Input: Regularization A, confidence J, inverse link function g, discount factor -,
constants S, L and m.
Initialization: Compute R, let V <- AI; and By < 04
for ¢t > 1do
Find 67, by solving Equation (P1) and select 6;_; € © N &Y (67 _,).
Play A; < argmaxaeAtu(aTHt_l) + ZRMBt_l(é)HaHth.

Observe reward X;, update ; by solving Equation (6.2).
Update design matrix: V; < vVi_1 + AtAtT + (1 —v)Aly.

Algorithm 13: BVD-GLM-UCB

6.4.2 Regret bound
We provide in Theorem 6.1 a high-probability bound on the regret of BVD-GLM-UCB.

Theorem 6.1. Under Assumptions 6.1-6.2-6.3 and 6.4, setting v = 1 — (Br/(dT))%/?
ensures that the regret of BVD-GLM-UCB satisfies:

R(T) = O (Rud*B°T**)  whp

Under general arm-set geometry and Assumptions 6.1-6.2-6.3, setting y = 1—(By/(\/dT))?/®
ensures that the regret of BVD-GLM-UCB satisfies:

R(T) = O (Rud*/B/°T*")  whp

A few comments are in order. First, we note that as in the linear case, under Assumption 6.4
the upper-bound on R(7') matches the asymptotic rates of the linear bandit lower-bound under
parameter drift [Cheung et al., 2021, Theorem 1]. Without this assumption, the upper-bound
suffers a small lag behind the linear bandit rates, from T%/* to T*" (Corollary 4.4). Second,
one can notice the presence in the bound of the ratio R, typical of the linearization approach
performed to analyze generalized linear bandits. The bounds presented in Theorem 6.1 are
therefore quite natural and extends the work of [Filippi et al., 2010] to non-stationary worlds.
We emphasize that if the result seems unsurprising, it required a substantially different machinery,
both for the design of the algorithm and its analysis. We highlight this last point in Section 6.5,
dedicated at providing a comprehensive sketch of proof for Theorem 6.1. The complete and
detailed proof is deferred to Section 6.B in the supplementary material.
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6.4.3 Solving the Projection Step

The optimization program Equation (P1) and the subsequent search of a valid parameter
0, can raise some legitimate concerns regarding the ease of practical implementation. Indeed,
the feasible set of Equation (P1) is given by {#s.t. © N &) (A) # 0}, where & (0) is defined
in Equation (6.3). Hence, the associated constraint is implicit as it involves an additional
non-conver minimization program. As a result, it makes the constraint uneasy to manipulate
and even hard to check. The same difficulty arises when searching for §; € © N & (67) where
67 is a solution of Equation (P1), due to the non-convexity of the set £ (6). The following
proposition provides an alternative that avoids those difficulties.

Proposition 6.2. Let 0; be such that:

0 . _ X
(%) € argming crd ,cRd {Hgtw/) + 5t(5)‘/1tl/277 - gt(et)HV72 st [|6]], < S, [Imlly < 1} )
t
(P2)

It exists 67 solution of Equation (P1) such that 6; € © N EY(OY).

Proposition 6.2 shows that a valid 6; can be found by solving Equation (P2), bypassing
the need to compute 67. Essentially, the initial two-steps procedure to find 0, (through the
intermediary program Equation (P1)) is replaced by a single minimization program augmented
with a slack variable n. The attentive reader may notice that Equation (P2) is now similar
to Equation (PO0), the projection step employed in [Filippi et al., 2010]. As a result, BVD-GLM-
UCB is comparable to the original algorithm GLM-UCB in terms of computational burden. The
proof of Proposition 6.2 is given in Section 6.C in the appendix.

6.4.4 Online Estimation of the Variation Budget

Motivation. The attentive reader may notice that the minimax-optimality of BVD-GLM-UCB
is conditioned on the knowledge of an upper-bound By for the true parameter-drift Br. Naturally,
the tighter this upper-bound, the better the performance. Yet, whether such a knowledge is
available in real-life problems is, to say the least, questionable. This issue is not specific to our
approach but is shared with all non-stationary parametric bandit methods - see for instance
[Cheung et al., 2019, Zhao et al., 2020]. For linear bandits, previous approaches circumvented
this drawback with a Bandit-over-Bandit strategy [Cheung et al., 2021, Section 7], where Br
is learned online by a master algorithm. This guarantees sub-linear regret without having the
knowledge of Br. We however note that this technique was specialized for linear bandits and
for the sliding-window strategy. One could easily design a sliding-window approach of BVD-
GLM-UCB (using very similar arguments as the ones displayed in this chapter) and extend the
Bandit-over-Bandit of [Cheung et al., 2021] to the GLB framework. Here, we follow a different
path and introduce an equivalent method for the exponential-weighting strategy. To the best of
our knowledge, this technique was missing in the non-stationary parametric bandit literature.
It notably proves that the online learning of By can be efficiently performed under discounted
strategies.
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Bandit-over-Bandit for discounted strategies. For the sake of simplicity, we describe the
Bandit-over-bandit approach adopted when Assumption 6.4 holds. A similar reasoning holds
in general but naturally yields different rates. Notice that naive bounding gives Br € (0,25T].
The main idea for learning By online is to grid on a log-scale the interval (0,2S7] with N values
{Bj}évzl. We then create N instances of BVD-GLM-UCB, each set with a different discount
factor:

B, 2/3 2]'71
vi=1- =) =1 ——-
J dT 25/342/3782/3 °

These instances will be our experts. We then deploy a master algorithm - a version of EXP3
[Auer et al., 2002b], which acts repeatedly as follows: 1. it chooses an expert j (i.e a new
instance of BVD-GLM-UCB with parameter 7;) to interact with the environment during a
time frame of length H (H is a positive integer). 2. The master algorithm then observes the
cumulative reward (aggregated on the time frame) of the expert j. We give the pseudo-algorithm
of this procedure in Algorithm 14.

Input: Length H, time horizon T, regularization A, confidence 9, inverse link function
u, constants .S, L and m. .
Initialization: Let N < [2log,(2ST%/?)] and H < {y; =1 — m é\le,
initialize EXP3 with action set indexed by H.

fori=1,...,[T/H] do

j < action selected by EXP3

Initialize a sub-routine BVD-GLM-UCB with parameter ;.

fort=1,...,H do

| Play with BVD-GLM-UCB with parameter ~;, observe reward Xj.

Update EXP3 with reward 2| X;.

Algorithm 14: BOB-BVD-GLM-UCB (a more detailed version is deferred to Ap-
pendix 6.D.2).

Informally, the idea is that EXP3 will learn to select the best performing +; associated with the
best estimate B; of Br. Intuitively, this should guarantee small regret as EXP3 will mostly play
instances of BVD-GLM-UCB which nearly capture the true magnitude of the non-stationarity.
This intuition is made rigorous in Theorem 6.3, whose proof is deferred to Section 6.D in the
appendix.

Theorem 6.3. Under Assumptions 6.1-6.2 and 6.4, the expected regret of BOB-BVD-GLM-
UCB when setting H = |dv/'T| satisfies:

~ 1/3
R(T) = O (Rud2/3T2/3 max (Br, d~'/2T"/) / ) .

Under the orthogonal arm-set assumption, we obtain a regret bound which is identical to the
ones of the Bandit-over-Bandit algorithms of [Cheung et al., 2021] and [Zhao et al., 2020]. The
conclusions are therefore of similar nature: namely, when By > d~1/271/4 we obtain a minimax
rate, without knowing Br. Again, note here the presence of the problem-dependant constant R,,,
inherited from the non-linear reward structure imposed in GLBs.
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6.5 Proof Sketch

In this section, we detail the key steps of the proof of Theorem 6.1. In particular, we shed
light on the tension between the learning and tracking aspects of the problem and their role in
the choice of the estimator 6y, through the use of an appropriate projection step. For simplicity
we assume that Assumption 6.4 holds, although the spirit of the proof is almost identical in the
general case.

Learning versus tracking. A crucial feature of non-stationary GLBs lies in the singular
nature of the deviation of §; from 6 " 1- This arises from two fundamentally different mechanisms:
learning and tracking. We introduce the following estimator, which allows for a clean-cut
distinction between the two phenomenons:

t

7l . s Ac
0; == argming ga {Z A [b( Al) — N,(Aje;)AsTe} + 50 - 9;+1H§} : (6.4)
s=1

The parameter 6; is the minimizer of a strictly convex and coercive function, thus is well-
defined and unique. Intuitively, 6; would be the estimator obtained under a perfect (e.g noiseless)
observation of the reward®. As a result, the deviation between 6, and 6, is solely due to the
stochastic nature of the problem (learning). On the other hand, the deviation between 6; and 7,
is a consequence of the unpredictable changes of the sequence {0%}s (tracking). The introduction
of the reference point 6; allows us to characterize both deviations separately in Lemma 6.4 and
Lemma 6.5.

Lemma 6.4. [Learning] Let § € (0,1]. With probability at least 1 — §:

forallt >1, 6,€&(6;) = {9 e R? s.t Hgt(Q) — g:(6,)

< ﬁt(é)}.

~ ., <
Vi

Lemma 6.4 ensures that with high probability the set £(;) is a confidence set for 0,. A
complete proof of this result is deferred to Section 6.A.1 in the supplementary material.

Lemma 6.5. [Tracking with orthogonal action sets| Let D € N*. The following holds:

- 2k, L2S ~P :
1g¢(0¢) — gt(9§+1)|lvt—2 < %ﬁ +ky Z ||‘9; - 9;—&-1”2'
s=t—D+1

Lemma, 6.5 effectively links the deviation of §; from 6} to the variation-budget By through the
drift 3>, pi1 [0 — 021, The proof of this result borrows tools from [Russac et al., 2019]
and is deferred to Section 6.A.5 in appendix. The integer D appearing in Lemma 6.5 is introduced
for the sake of the analysis only. It allows to treat separately old and recent observations. We
provide its optimal value later in this section.

3Note the difference between 6; and 0;, where the rewards X, are replaced by their conditional expected values
(A 07)
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Remark 6.3. Behind the statement of Lemma 6.4 and Lemma 6.5 hides the main reason why
the projection step of [lezppz et al., 2010] needs to be generalized. Indeed, it appears that the
deviations (0; < 0;) and (0; < 9t+1) are controlled through different metrics (V™' and V72,
respectively). Projecting according to the first metric would corrupt the control of the second
deviation, and conversely.

Regret decomposition and prediction error. To bound the instantaneous regret at round
t, we rely on the prediction error A; defined as follows for any arm a € A;:

Asfa) = |p(a”0) = p(aT07)|

The next Lemma ties the cumulative regret to the sum of prediction errors. This derivation
is classical and the proof is deferred to Section 6.B.1 in the supplementary material.

Lemma 6.6. The following holds:

T

R(T) < 2R Zﬁu )[4l =1 = 1Al ] + 37 (A1 (Ae) + Ara(An)].-
t=1

Thanks to Lemma 6.6 we are left to characterize the prediction error Ay(a) for any a € Auy;.
Following [Filippi et al., 2010], we rely on the mean-value theorem to ensure that it exists
0; € [0;,07] such that:

Av(a) < ky (a, Ho(0r) (9:(0) — 90(67))) (6.5)

where H;(0) == >ty (AT 0)AA] + Ac, 1y Since 0,07 € ©, we obtain by convexity that 0, €©
and we can use the lower bound Hy(0;) > ¢, V;.

Remark 6.4. In this last inequality resides the mistake that was made in previous extension
of [Filippi et al., 2010] to the non-stationary setting [Cheung et al., 2021, Zhao et al., 2020)].
Indeed, if the prediction error is measured at 0, we are left with 0, € [0F,0;], and 0; can lie
outside of the admissible set © (since 0, can). The lower-bound linking Hy(0;) and V; would
therefore not hold. More precisely, and as detailed in Section 6.3.2, when 0; € [0F,0:] not much
can be said on the link between Hy(0;) and Vi without severely degrading the final regret guarantees.

Adding and removing g;(0;) 4+ g¢(67) + g:(6;) inside the inner-product in Equation (6.5),
followed by easy manipulations yields:

Bila) < Byl (@) - 900 +[e@) - o))
t t

::A}tearn ((l)

+ Ry HaH2 (Hgt(ef) - gt(ét)HV;Q + Hgt(ét) - gt(et*H)HVtQ) .

=atrack(q)

YFormally, 6, € [0;,0;] means that there exists v € [0,1] such that 6, = vf; + (1 — v)6;.
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Leveraging the projection step. We can now bound the terms Alearn(g) and Alrack(q)
separately. Lemma 6.4 along with the design 6; € £(6%) leads to:

AF™(q) < 2R, HaHth Bi(0)  w.h.p (6.6)

The first term in A%raCk(a) is kept under control by the specific design of the projection
step Equation (P1). This is formalized in the following Lemma, whose proof is deferred to
Section 6.A.4 in the appendix.

Lemma 6.7. Under the event {0; € E(6;)} the following holds:

19:(8F) — 9e(B0)lly, 2 < 1192(8e) — ge(B1)lly = -

As a result, bounding A% (a) reduces to bounding ||g;(6;) — g¢(0;11)|l;~2. Combined with
t

Lemma 6.5, this result states that the deviation between 67 and ét is characterized by B, the
parameter-drift up to round t, as illustrated in Figure 6.1. This leads to:

‘o 2k, L%S 7D ¢ N N
A R(q) < 2R, |lall, ( “)\ -~ +he D, 05 —054],] whop (6.7)

s=t—D+1

Putting everything together. Combining Equation (6.6) and Equation (6.7) with Lemma 6.6
and the Elliptical Lemma (Lemma 5.30 from Chapter 5) yields:

R(T) < C1R,dTlog(1/v) + CoR,~°T/(1 —v) + C3R,DBr  w.h.p

where the constants C1, Co and C5 hide log(7T") multiplicative dependencies. A detailed proof
of this result is deferred to Section 6.B.2 in the supplementary material. Setting the hyper-

parameters D = log(T)/(1 —~) and y =1 — (%)2/3 concludes the proof of Theorem 6.1.

6.6 Experiments

We illustrate in Figure 6.2 the behavior and performance of BVD-GLM-UCB with numerical
simulations in a two-dimensional non-stationary logistic environment. Formally, we let X; ~
Bernoulli(( A/ 6F)) where u(z) = (1 + e #)~! is the logistic function. The sequence {6} };>1
evolves as follows: we let 0 = (0,1) for t € [1,7/3]. Between t = T'/3 and t = 27"/3 we smoothly
rotate 07 from (0,1) to (1,0). Finally we let 87 = (0,1) for ¢t € [27'/3,T]. A thorough description
of the experimental setting can be found in Appendix 6.E. We compare in Figure 6.2a the
four following algorithms: OFUL [Abbasi-Yadkori et al., 2011] (stationary, here mispecified),
GLM-UCB [Filippi et al., 2010] (stationary, here well-specified), D-LinUCB [Russac et al., 2019]
(an exponentially weighted LB algorithm, non-stationary but here mispecified) and BVD-GLM-
UCB (non-stationary, well-specified). For D-LinUCB and BVD-GLM-UCB we use the value
of v recommended by the asymptotic analysis. This figure highlights the necessity to employ
algorithms that are well-specified; both GLM-UCB and BVD-GLM-UCB outperform their linear
counterparts (OFUL and D-LinUCB, respectively). Note that an appropriate treatment of
non-stationarity is also crucial to obtain small regret as for the considered horizon the two
best performing algorithms are D-LinUCB and BVD-GLM-UCB. The latter being well-specified
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and resilient to non-stationary, it naturally performs best. In Figure 6.2b we highlight the fact
that the projection step is necessary as, in this non-stationary setting, #; regularly leaves the
admissible set ©.
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(a) Regret bounds of different stochastic bandit al- (b) Evolution of the parameters of interest (6}, 6y, ;)
gorithms under parameter-drift. The grey region for BVD-GLM-UCB. Note that in this non-
indicates a smooth drift of 6;. stationary setting 0; ¢ © is frequent.

Figure 6.2: Numerical simulations in a non-stationary logistic setting. For the first figure, results are
averaged over 50 independent runs and shaded areas represent one standard-deviation variation.

6.7 Conclusion

We highlighted in this chapter a central difficulty in the theoretical treatment of non-stationary
GLBs, overlooked in existing approaches and intimately linked to the non-linear nature of the
reward function. To overcome this difficulty, we introduced a generalization of the projection step
from [Filippi et al., 2010], which allows to simultaneously t¢rack the non-stationary ground-truth
while preserving the learning guarantees of weighted maximum-likelihood strategies. This novel
algorithmic design along with a careful analysis proves that an order-optimal (w.r.t d, T' and Br)
regret-bound can be achieved for GLBs under parameter-drift, although up to a rather restrictive
assumption on the arm set’s geometry. The nature of the minimax-rates in the general case is
open, as in both LB (c.f. [Touati and Vincent, 2020]) and GLB setting (this chapter) we observe
a mismatch between existing upper-bounds and the lower-bound of [Cheung et al., 2019].

We underlined in Section 6.3.2 the problematic scaling of the problem-dependent constant R,,.
Consequent research efforts have recently been deployed to reduce its impact on regret-bounds,
both in the stationary [Faury et al., 2020, Jun et al., 2021] and piece-wise stationary settings
(Chapter 5). What is the optimal dependency w.r.t R, in the more general parameter-drift
setting, and how it can be achieved are exciting open questions that we here leave for future
work.



Appendix

The appendix is organized as follows:

In Section 6.A we provide some concentration results, along with a bound on the prediction
error A; inherited from the design of the projection step.

In Section 6.B we link the prediction error A; to the regret R(T) of BVD-GLM-UCB. We
then proceed to prove the bound on R(T") announced in Theorem 6.1.

In Section 6.C we provide a proof for the equivalence of the optimization programs
Equation (P1) (along with the computation of #;) and Equation (P2).

In Section 6.D we provide a proof for the regret upper-bound of BOB-BVD-GLM-UCB
claimed in Theorem 6.3.

Finally, in Section 6.E we provide some details on our numerical simulations.

Appendix 6.A Concentration and Predictions Bound

6.A.1 Confidence sets

Lemma 6.4. [Learning] Let § € (0,1]. With probability at least 1 — §:

forallt >1, 6, €&(6;) = {9 eR? s.t Hgt(e) — g:(8y)

5 <8O}

Proof. Recall that:

£(6) = {6 € R .t 9u(6) — e (0) |1 < B9}

where

Bu(8) = Ve + ?\/2 log(1/6) + dlog (1 + W‘f”) '

Also, from the definition of 6; in Equation (6.4), by setting to 0 the differential of the convex
objective minimized by 6; we obtain that:

t
gi(0:) = Z Vt_SM(A;re:)As + Acubiyq - (6.8)

s=1

Further, for all s > 1, define

€5 = X, — n(Al67) . (6.9)

Note that:

E [es| Fs—1] =0 (Equation (6.1))
—u(Al6%) <es <m+ p(Al6) as. (Assumption 6.2)

Therefore €4 is m/2-subGaussian conditionally on Fs_;. Furthermore, by optimality of ét,

203
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differentiating the objective function in Equation (6.2) yields:

t
> [M(Azét) = Xs] As+ Ay =0

s=1
t
& g(0) = 7 u(Al0) A + Z'yt SesAg (Equation (6.9))
s=1
& g:(0,) = g1 (61) + Z Y PesAs — Aepbiy (Equation (6.8))  (6.10)
s=1

& ll9:(0r) = 91(00)ll7- = Z’Yt Pesds — Al

s=1 Vt—l

Therefore since 03, € © and V; = M we obtain:

l9680) = 91B0)lig—+ < VAcuS +

th Sesds

s=1

Vvt—l

Simplifying the factors 4% in the most right term and applying Proposition 4.8 from Chapter 4
proves that with probability at least 1 — 9§, for all ¢ > 1:

g:(0;) — gt(ét)Hf/t—l < \f)\cus + T;\/Q log(1/§) + dlog (1 + IM) = 5(9)

hence proving the desired result. O

6.A.2 Bounding the prediction error

Lemma 6.8. Let § € (0,1] and D € N*. With probability at least 1 — §: for allt > 1, for
all a € Ay, under Assumption 6.4 the following holds.

2k, 4k2L3S D 2k2L ¢
Ai(a) < == By(0)lally—1 + —F - 05 = 05lls -
e Vi A (1—7) Cu Stgﬂ H +1ls

Without Assumption 6.4, under general arm-set geometry, the following holds.

2k,
A¢a) < 7&( )lally,-1
u
2%k, L L2 2k, SL? ~P d i
+ == 1+ K + kyy | ——— 0F — 0; :
Cu M—v)( A l=y VA=) S:E)HH sl

Proof. In the following, we assume that the event E; = {6; € £(6;) for all t > 1} holds,
which happens with probability at least 1 — § (Lemma 6.4). From the definition of the
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prediction error:

Aila) = |ula’ 8:) = p(aO7,)|
< ( sup  fu(a 9)) ’ (9?5 - 9:—0—1)‘ (a €A, 07,, € 0,0, ©)
acA,0€0
<k, ’(a, 0 — 9:+1>‘ . (by definition of k) (6.11)

Further, thanks to the mean value theorem:

9t(9t — 0t 9t+1 ZVt ’ [ ATGt (A;FG;H)} + )‘Cu(ét - 9;+1)
= Gt ' (et - 9t+1) ) (6.12)
where:

t 1 5
= Z,yt—s {/ [ <<A3, (1—v)05, + v9t>) dv} AAl + Aeply = c,Vi .
s=1 v=0

Note that because A; € A for all s € [t — 1] and 0,, 07,1 € © we have Gy > ¢, V;. Assembling
together Equation (6.11) and Equation (6.12) we get:

Avla) < k| (@, Gy M0 0) = 9:65:0)))|
< o [ (@, G (@ (00) = 9 (0F) + 9 (07) — e (00) + 9u(80) = 91(80) + 91(81) = 91(6711)))|
< k| (@, G 9 0) = e (07) + 9u(01) — 9u(61)) )|

::Aieam(a)
+ ke [, G (e (0F) = 9u00) + u(00) — 0 (0721)) )|
::Agr“k(a)
< Al (g) 4 Ak (q) (6.13)

This decomposition brings out the contribution of two different phenomenons (learning and
tracking) which will be handled separately. Starting with the learning:

Arm(a) = k| (0, GTH @ 00) — 90 (0F) + 9u(80) — 91(81)) )|
=m\<vt”2at 0, Vi 2 (gu(00) = 9u(8]) + 9u(00) — :(01)))|

< kullall gorgigr (19:(00) = 960 -1 + ll90(8e) — 90(@)l5—1)  (Cauchy-Schwarz)
< kullallg iy (11980 = gu(0) I + 196(8r) = 9160l ) (V: < Vo)
< j;;“nang;l (11968 = 9O lg-1 + l9e(80) — 916 1) (Vi < ¢, 'Gy)
< el (9@ = 9e@Dlig + e @) = 9:@0)lg) (G <"V
< 5 ally-s (8006) + e B) ~ 9e@o)lg ) R ACH)
< ol (B(6) + Bu(9)) (Es holds)

m
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We used V; < V; which is a consequence of v € (0,1). As a result:

earn 2k
A (a) < =L By(0) fally,-1 - (6.14)

1
The tracking term is bounded differently when the action set satisfies Assumption 6.4 or for
general arm-set geometry. The bound on the tracking term is reported in Lemma 6.9 and
its proof is reported in Section 6.A.3

Lemma 6.9. Let D € N*. When Assumption 6.4 holds, we have the following:
42138 AP 2K2L ¢
. 1—7) +—= > g -5l - (6.15)

Cu s=t—D+1

Agmck(a) <

CuA

For general arm-set geometry, we have the following

2k, L L2 2k, SL? AP d i
Atmck<a) < © 14+ © 4k = 9; A
' Cu Al —17) Ao 1—y *V A -7y S:;;HH onall

Assembling Equation (6.13), Equation (6.14) and the two different inequalities from
Lemma 6.9 gives the two statements of the proof. O

6.A.3 Proof of Lemma 6.9

Proof. Throughout the proof, we will use the following lemma, proven in Sec-
tion 6.A.4.

Lemma 6.7. Under the event {0; € E(0;)} the following holds:
19:(8F) — 9e(B0)lly, 2 < 1192(8e) — ge(B1)lly, = -

With Assumption 4. In this first part of the proof, we assume that Assumption 6.4 holds.
We have the following:

AP(a) = by |(a, G (91(8]) = 9 0e) + 9u(01) — 90(0511))|

< b Nl 0 (69) = 9e@0) + 9008 — (6721 (Canchy-Schwarz)
< 7L Hgt(Qf) — 9:(6) + g:(6;) — gt(ﬁt*Jrl)HV;s_2 (lzll, < L,G? = CinQ)
< - k L (Hgt gt(ét)HV,g + Hgt(ét) - gt(Qt*H)HVtQ) (Triangle inequality)
< 2k = et gt(9t+1)HV— (Lemma 6.7)

where the third inequality can be obtained only because when Assumption 6.4 holds, G
and V; commute.

The final result is obtained using Lemma 6.5 reported here and established in Sec-
tion 6.5
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Lemma 6.5. [Tracking with orthogonal action sets| Let D € N*. The following holds:

= 2k,L?S ~P i
19:(62) — 96(071.1)lly - < H)\ . theo Y (105 =054,
s=t—D+1

Without Assumption 4. We now explain how to extend the analysis with general arm-set
geometry.

Agrack(a) — ku ’<a’ G;l(gt(gf) — gt(ét) + gt(ét) - gt(9:+1))>’
= b (0, GV 000) — 91 00) + 9100) — 9u07:1)) )|
< kullallgy vy |(8D) = 00) + 91(@) = (67,) o (Canchy-Selwara)

\/ max(V2) HGHG WGy
< 7\/ max ‘/t HG’HG

max ‘/t

9:(0F) = 90(00) + 9:(0) = 907 |

(6) = 9:00) + 9:0) — 91670, (Gr= Vi)
t

— g1(0y) + 9:(01) — 91(0711) (Gt = Acpla)

V2

< \’}f oV (Hgtwf) — 0@, + 90 ~ 9020, . )
< 2 W) 00 — 0050 . (e 67)

We then use:

2
Amax (V) <

+ . (6.16)

That can be obtained by computing the operator norm of the matrix V;. Combining this
with Lemma 6.10 reported here and proved in Section 6.A.6 achieves the proof.

Lemma 6.10. [Tracking with general action sets| Let D € N*. The following holds:
2k, L2S ~P k

_ . Vd
1g¢(6%) — gt(‘gt—s—l)”v{2 < 2\ ﬁ + ﬁm Z HH: s+1H2

s=t—D+1

6.A.4 Proof of Lemma 6.7
Lemma 6.7. Under the event {0; € E(6;)} the following holds:
19:(8F) — 9e(B0)lly, -2 < 119:(8e) — ge(B1)lly—= -

Proof. We prove this result by contradiction. Assume that:

llg:(6F) — gt(ét)Hvt—Z > [ g:(6:) — Qt(efﬂ)”vt—?a (6.17)
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For all s > 1 define:
X = (Al 05 ,) +es, (6.18)
where {¢;}s is defined in Equation (6.9). Further, let:
i 5 Ac
0o = argmingega Y 7'~ [b(A]0) - X,AT0] + el
s=1

which is well-defined as the minimizer of a strictly convex, coercive function. Upon
differentiating we get:

t
gt(ec) = Z’Yt_sXsAs

s=1
t t

= A e A+ D A T (AL 07 ) As (Equation (6.18))

s=1 s=1

. _ t
= 9¢(0¢) — 9¢(0r) + Acubr, 4 + Z’YFSM(A;FQ:H)AS (Equation (6.10))
s=1

= g1(6) — 91(01) + 9:(0711) - (6.19)

Therefore:

19:(8e) = 980y -2 = llge(Be) = 9u(6ir) 2
< |lg:(67) — gt(ét)||vt—2 . (Equation (6.17))

Further from Equation (6.19) we get:

1g¢(0c) — gt(efﬂ)HVt—l = [lg:(6) — Qt(ét)”\”/t—l
< B4(9) (0, € £ (0y))
& 07, € E(0.) .

To sum-up, we have ||g;(6.) — gt(ét)HVt_Q < |lge(67) — gt(ét)th_Q and & (6.) N © # () since

071 € ©NE(H.). This contradicts the definition of ! (in Equation (P1)) and therefore
Equation (6.17) must be wrong, which proves the announced result. O

6.A.5 Proof of Lemma 6.5

Lemma 6.5. [Tracking with orthogonal action sets| Let D € N*. The following holds:

_ . 2k,L28 P !
l9:(82) = 98(0:1)lly, = < = T Th > 18E =6l
s=t—D+1
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Proof. Thanks to Equation (6.8) we have:
nyt SU(A] ) Ag + Aepbri
< g(0) — o (0341) = ZVt * [ ATQ* (A;r‘gfﬂ)} Ag
& g:(0:) — ge(071) Z'yt s [/ 1 ((As, v07 1 + (1 —0)63)) dv] AAl (0 — 1)

& g:(0;) — g:(0; 1) Z'Yt s As A (0 —0:14)
s=1

where we defined:
1
ay = / (AU (L= 0)05) dv € Lo k]
Therefore:

t
Z ’Yt_sasAsA;r(Q; - 9:—1—1) (6.20)

s=1

lge(62) — ge (07 1)lly—2 =

Vt_2
The rest of the proof follows the strategy from Section 4.3.2.3 to yield the announced result.
Let D € N* and notice that:

t
Z’YFSO‘SASA;F(%_ Z(‘l’l) TasAs A (05 — ;Fl)

s=1

v,:““ v, ?

=dy

¢
Z 'yt_sasASA (05 —051)

s=t—D+1 V;Q
=do
Both terms are bounded separately; starting with d:
dy < X7t PagAs A (05 —071) (Vi > \y)
2
<\t Z o] || As AL (67 — :H)HZ (Triangle inequality)
s=1

t—D
<2k ATISLE Y 4 Aslly < L, 05,0711 € O, |as| < ky)

s=1

< 2k, ANTESLAP (1 —y) 7t
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For dy a careful analysis is required.

¢
dy = V;t_l Z 'Yt_sasAsA;r(eg_ 1)
s=t—D+1

t
= Z V;t_l’Yt_SO‘SAsAIw; —054)

s=t—D+1 9
t t
= Z VY g AGA]L Z (9; - ;H) (Telescopic sum)
s=t—D+1 p=s 9
13 4
<> Vit Y A alAA] (9; - ;H) (Re-arranging)
p=t—D+1 s=t—D+1 9
t P
< 3 WTE Y AT AAL (9; - ;H) (Triangle inequality)
p=t—D+1 s=t—D+1 9

At this point, Assumption 6.4 can be used to upper-bound the operator norm of the matrix
viish o, 17 %A Al Under Assumption 6.4, the following holds:

P P
v, Z Y AGAl = Vt_l/2 Z 'yt_sozsAsA;,rV;f_l/2 =J; (6.21)
s=t—D+1 s=t—D+1
The advantage, now is that the matrix on the right-hand side of Equation (4.10) is symmetric
and we can use the relation | Mzx| < ||M||||x||2 that holds for all symmetric matrix M and
where || M]| denotes the operator norm of M. The final step consists in upper-bounding the
operator norm of J;. Let x such that |z|2 < 1, we have,

P P
a' Jur = xTVt_l/z Z 'yt_SaSASA;—Vt_lmx = Z aschw_lmAsAZVfl/Zx
s=t—D+1 s=t—D+1
- t— T —1/2 )2 z t— Ty, —1/2 \?
= Z ¥ P (As Vi x) <k, Z v TE (As Vi 33)

s=t—D+1 s=t—D+1
p
Ty —1/2 t—s Ty —1/2
<kux'V; Z VTPAAG YV, .
s=t—D+1

Furthermore, by adding some PSD matrices one has:

p t
Vo, el <1 2TVTYE YD A AAlv T e < Ty (Z 'yt‘sAsA;r> vV
s=t—D+1 s—1
<z'lz<1.

Combining the two inequalities ensures that
[ el < Ky (6.22)

Finally,
¢

do <ku Y 165 —6pilla-
p=t—D+1
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6.A.6 Proof of Lemma 6.10

Lemma 6.10. [Tracking with general action sets] Let D € N*. The following holds:

_ 2k, LS ’y k Vd t
_ * . < =
l19¢(0+) gt(9t+1)”vt 25—+ + = s:t§+1

165 = 0314l -

Proof. Following the proof of Lemma 6.5, one has:

t
Vit Y A s AGAL (0 — 0744)
s=1

19:(62) = 9:(0711)lly, - = ‘
2

The remaining part follow the same arguments as Section 4.3.2.4 where there is a need to

be cautious with the ay term. We refer the reader to [Faury et al., 2021a, Lemma 7] for

the complete proof. O

Appendix 6.B Regret Bound

6.B.1 Regret decomposition

Lemma 6.6. The following holds:

T T
Zﬁt 10) [ 4elly-2 = [Aeally-1 ] + D7 TA1(An) + Apoa(As)]
— t=1

Proof. We recall that A, , = argmax,¢ 4,p(a’ 0F). Note that:

=
-

I
M=

1(ALL0) — u(A/ 07)

H
Il
R

u(ALO7) — (AL i) + (Al 1) — (Al 1) + (Al O 1) — p(A] 67)

I
M=

i
I,

[M(Az*ét—l) (AL O, 1} EZ:[ (AL 1)}

Il
M=

W
I
—

_l’_
M=

(A 1) — (AT 67)]

§
~
' Il

IA
|
="

Bi1(8) [I4dlly1 = I Aeally, 1|

o
=
-
I
—_

i
Mﬂ

[(ALGE) = p(ALG-)] +i[u<AZ 61) — (AL 07)] -
t=1

~~
Il
—

In the last inequality, we used the fact that Ay =
argmax,e 4 {,u(aTét_l) + %5t—1(5)\|a||v—1 } Using the definition of A;(a) we con-
t—1
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clude that:

T T
RT) < 257 5,8) [ Aullys — Auellyos] + 32 e a(A0) + Au1(40,)]
t=1

Hot=1

6.B.2 Regret Bound
We now claim Theorem 6.1, bounding the regret of BVD-GLM-UCB.

Theorem 6.1. Let 6 € (0,1] and D € N*. Under Assumptions 6.1 -6.2-6.3 and Assump-
tion 6.4 with probability at least 1 —§:

D

1 —
R(T) < CyR,Br(5) \/dT\/Tlog (1/7) + log (1 + M) + O2R#1 " T+ C3R, DBy

Further, setting v = 1 — (Br/(dT))?/3 ensures:
Ry =0 (Rud2/33;/ 3T2/3> w.h.p

Under general arm-set geometry and Assumptions 6.1-6.2-6.3, with probability at least 1 — ¢

T)
R(T) < C1R,f7(6) \/ﬁ\/Tlog (1/7) + log <1+ il 7'77) )

+C4R 7T—|—C5k R, ( )3/2T+Cﬁk M DBT+C7I€ R, ’yDBT

2/5
Further, settingy =1 — dl/;W ensures:

R(T) = O (Rud*/B°T*")  whp

Proof. In the following, we assume that the event {6; € £(6;), vt > 1} holds, which happens
with probability at least 1 — ¢ (Lemma 6.4). Thanks to Lemma 6.8, when Assumption 6.4
the following holds:

2k 4k 4k2 L3S
At(Ar) + =B 0) [ Aally 1 < T“Bt( Azl - +mvl’
2K2L ¢ )
+ a Z Hes s+1H2 .

Cu s=t—D+1
2k 4k2L3S 2k2L &
Ay(A 1*_7‘[‘55 A Lxlly-1 < i ’YD = 9;—9; .
(v, = RO Al € s =Y =l

Assembling this result with Lemma 6.6 yields:
4 8k2L3S D AR2L 2

Z ”@ 1( ||At||v 1‘1’2 Z 165 — 05445

C s=t—D
Rlearn track
T Ripac
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We now bound each term separately. Starting with leiam:

Rlgsmn < ZHAtHV L (t — Bi(9) increasing)

4k
< ?NBTQ)\/T« ZHAtH%/—ll (Cauchy-Schwarz)
H t=1 i

< Hug s (8)y/27 max(1 LQ/)\)\/ dT log(1/7) + log <de;3/T) (Lernma 5.30)
Cu
Ak L2(1 —47)
< C:BT((;)\/2dT maX(l,LQ/)\)\/T log(1/7) + log <1 + )‘d(l_'Y)> . (Lemma 5.28)

The bounding of the tracking term is straight-forward:

Rtrack_ 8]63[135 D 4kiLi — He* ||
cuA(1 — ) T — Sl
8k2L3S 4k2L
< —t——APT+ DBy
cuA(l =) Cu

Assembling this two bounds (R¥™ and R$%2K) yields the first announced result, with the
following constants:

C1 = y/32max(1, L2/)) .

8k, L3S
CQ = 'uf .
Cy = 4kuL .

The last part of the proof follows the asymptotic argument presented in Chapter 4. We
assume that Bp is sub-linear and let:

D = =1-
Y ’y dT

log T (BT)2/3
11—~ '

We therefore have the following asymptotic equivalences (omitting logarithmic dependencies):

1/3
§)VAT /T log(1/~) ~ dT - (f}”) = d*P BT/
D Br\ %3 _ 2/3—2/37:2/3
v T/(1—7) ~exp(—logT)T I =d“°B;”°T
—2/3
_DBT ~ BT (5;) — d2/3B;w/3T2/3

Merged with the regret-bound we just proved, this yields the announced result.

Without Assumption 6.4 similar results can be obtained. The main difference consists
in using the upper-bound for the tracking term under general arm-set geometry which
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is slightly more complicated. Plugging the bound from Lemma 6.8 and upper bounding
1+ /\(fijv) by 1+ \/ﬁ gives the announced regret decomposition. Let:

2/5
B
d1/572/5
VaTy/ B;/E)dfl/lo 9/10 1/574/5
d1/572/5 3/2 B
D 3/2 _ 73/10 p—3/53/5
APT/(1 —~)32 ~ exp(—log T)T <B2/5> =d%/ B T3/
T
1/572/5\ 2
1\/g DBy ~ dY/2By <d e ) _ /0 BYS T/
-7 B
O
Appendix 6.C On the Projection Step
6.C.1 Equivalent Minimization Program
Recall the original minimization program for finding 67:
0P € argming g {Hgt(ﬁ) — 90|, . stOnEN®) # @} . (P1)
t

Note that this minimum exists (04 is feasible) and is indeed attained (the feasible set is
compact and the objective smooth). The following reformulation is motivated by the fact that
only §; € ©NEY (6%) is needed for the algorithm. To this end, we explicitly introduce 0, in the
program via a slack variable. Formally, we study:

0 . A
(02) € argming cpd gepa {Hgtw) — g0, st o el@)n @} . (P1’)
t t
We also introduce the following program:

0 : - 5
(;) € Argming cra cp {nge') + BV = g8, st 0], < S, Inlly < 1} . (P2)
t

We claim and prove the following result, which is an equivalent reformulation of Proposi-
tion 6.2.

I Proposition 6.11. The programs Equation (P1°) and Equation (P2) are equivalent.

| Proof. The proof consists in building a bijection between the solutions of Equation (P1”)
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and Equation (P2). Let us introduce the mapping;:

f:OxR* 50O xR?

()= () = (o6 - o)
y fale,y)) — \ B OV (guly) — gil))

We now claim the following Lemma, which proof is deferred to Section 6.C.2.
Lemma 6.12. The function:
gt ‘R — R
t—1

0 — > V'S u(A]0)As + Acub

s=1
s a bijection.

A straight-forward implication of this Lemma is the bijectivity of f. Let (8',6”) be a
solution of Equation (P1°) and let:

#)-(2)

We are going to show that (62, 7”) is a solution of Equation (P2). Because (', 6) is optimal
for Equation (P1’), we have that:

19:(67) = 9:(00) -2 < 1192(8) — g(0e) Iy
V(#',0) € © x R s.t 0 € E(0)
& [19:(67) — ge(B0)lly, 2 < 119(8) — ge(Be)lly, = (def. of £(6))
V(0',0) € © x R st [|g4(6') — g (0)ll5 1 < Bi(0)
& [19:(6”) = g (80)lly, = < l|9:(8) — gu(80)lly, =
V(@,0) € @ x RY st || f2(6/,0)]|, < 1

Noticing that for all (z,y) € © x R? we have g,(y) = gi(z) + 51;(5)‘/;1/2]"2(1', y) we therefore
obtain:
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l96(8") + B0V £2(0",07) = ge (@)l -2 < llge(®") + Be(O) V' 20", 0) = gu(B)l .
V(0',0) € © xR s.t || f2(6',0)], <1
& lg:0") + B OV 1" = g0y < 190(0") + Bu(&)V, > £2(0,60) = gu(01)
V(@,0) € @ xR st | fo(0,0)], < 1
& ll9:(0%) + B OV = grB)ly— < 1900 + BUOV, 128, 0) — gu(00) |y
( )
(
(
(
(

V(@.0) € @ xR st | fo(0,0)], <1 (8" =67

& 19:0%) + B OV, 1" = g0l < 190(0) + Bu(&)V, > £2(0,0) = gu(01)
V(0',0) st || f2(8,0)]|, < 1,[|6)], <

& 119:(0%) + BuO) V20" = (Bl < 1l9u(0) + BBV, "0 = gu(0r)]] -
V(@) st llnlly < 1,0, < S

where we last used the fact that fo spans R? (surjectivity). Finally, we have that:

H@PHQ <S (62 =0' € 0)

7112 = 81 (9) [l (6) = @), <1 (6" € £1(07))

Combining the last two results proves that (62,7P) is feasible for Equation (P2), and
optimal within the feasible set. As a consequence, (62, 77) is a solution of Equation (P2).
Therefore, f is a bijection between the minimizers of Equation (P1’) and Equation (P2),
which concludes the proof. O

6.C.2 Bijectivity of g;
Lemma 6.12. The function:

g R4 - RY
t—1
0= > 7" (Al 0)As + Aend
s=1

is a bijection.

Proof. Injectivity. Notice that V0 € R%:

t
Vog(0) = > ' (Al 0)A;AL + AeyIq = 0.

s=1

Hence Vyg is P.S.D, and a simple integral Taylor expansion is enough to prove injectivity.
Surjectivity Let z € R?. Let A = Span(4;, .., A;) be the vectorial space spanned by {As}_;.
Let z, be the orthogonal projection of z on A and 2| =z — 2. Since z; € A, there exists
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{as}t_, € R such that:

t
zZ| = ZasAs .
s=1

Recall that b(-) is a primitive of p, which is convex since p is strictly increasing. Define:

t

L) => "

s=1

2
Qg 2

,ytfs

Ay
2

0 —

b(Al) — Alo| +

Acy

which is a strictly convex, coercive function. Its minimum 6, (which therefore exists and is
uniquely defined) checks:

VoL(6,) =0

t
o Z ,ytfs
s=1

u(AT0.) — ‘j‘_] Ay + Ay (02 - Z”) —0
v

t
& g(0,) = Z asTs + 2|
s=1

@g(&z):zL—i—zH:z.

which proves surjectivity. a

Appendix 6.D BVD-GLM-UCB Algorithm

6.D.1 High-level ideas

In this part of the appendix, we denote v* as follows:

1/ Br \?3
* R 4L
v =1 5 < 25) . (6.23)

Remark 6.5. v* as defined in Equation (6.23) has a different expression than the discount
factor proposed in Theorem 6.1. This slight modification is to ensure that v* is larger than 1/2
and simplifies the finite time analysis of the regret. Yet, it has no consequence on the asymptotic
bound.

Br being unknown, we cannot compute the optimal discount factor that depends on the
parameter drift. The general idea is to use a set of different values for the discount factor
(respectively the Br values) called H, covering the [1/2,1) space (respectively the [0,257T') space).
Then, we divide the time horizon T into different blocks of length H. Every H steps, we create
a new instance of BVD-GLM-UCB with a « that is chosen by a master algorithm: the EXP3
algorithm from [Auer et al., 2002b]. At the end of each block, this master algorithm receives
the cumulative rewards from the instantiated worker and updates its probability distribution
over the set H. The objective of the master algorithm is to learn the most suitable value of v
S0 as to maximise the cumulative rewards in accordance with the dynamics of the environment.
On the other side, the different workers algorithms act exactly as if the BVD-GLM-UCB
algorithm was launched on a H-steps experiment. This setting is similar to the one presented
in [Cheung et al., 2021] (respectively [Zhao et al., 2020]) with discount factors instead of sliding
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windows (respectively restart parameters). This framework is called Bandit-over-Bandit (BOB)
precisely because of this two-stage structure between the master and the workers algorithms.

6.D.2 Algorithm
The coverage H with the different discount factors is defined in the following way:
H={y=1-plj=1,...,N} (6.24)

, 2 3/2 1
The main algorithm is an instance of the EXP3 algorithm from [Auer et al., 2002b] where
the different arms correspond to the different discount factors. Following EXP3 analysis
[Auer et al., 2002b], the probability of drawing -y; for the block 4 is

(6.25)

Vi

V(1) 4 2 Y =1,2,...,N 6.26
D; ( Oé) Z] S;'yj + N’ J ) 4y ) ) ( )
where « is defined as
. N log(N)
a=ming 1,/ ————"— (6.27)
{ (e —1)[T/H]
and szj is initialised at 1 and is updated at the end of each block when selected with
min{iH,T} X

Vi Y @ Zt:(i_l)H“ ! 6.28
sy = sl exp ( T ) ' (6.28)

Note that in Equation (6.28), X; is the noisy reward obtained when the action A; is selected
with the BVD-GLM-UCB algorithm with parameter ;. Equation (6.26), Equation (6.27) and
Equation (6.28) are the same as in [Auer et al., 2002b] except for the rescaling of the cumulative
rewards on a block that is required to ensure that they lie in [0, 1]. Details on this rescaling part
can be found in Proposition 6.15.

Input: Length H, time horizon T, regularization A, confidence 4, inverse link function
u, constants S, L and m
Initialization: Create the covering space H as defined in Equation (6.24), set s]* = 1,
Vv € H.
fori=1,...,[T/H] do
7vj ~ p;, the probability vector defined in Equation (6.26).
Start a BVD-GLM-UCB subroutine with parameter -;
fort=(i—1)H+1,..., min{iH,T} do
Receive the action set Aj.
L Select Ay(v;) € Ay with BVD-GLM-UCB.
Observe reward X;.
Update s, according to Equation (6.28).
| Update s/, = s/, ¥y # 7.

Algorithm 15: BOB-BVD-GLM-UCB (detailed)

Remark 6.6. We denote Ai(7y) the action chosen with the BVD-GLM-UCB algorithm with a
discount factor ~y.
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6.D.3 Regret Guarantees

In this section, we give an upper-bound for the expected dynamic regret of BOB-BVD-GLM-
UCB. By construction, it is natural to decompose the regret into two sources of errors. First
the master error committed by the EXP3 algorithm by not choosing the best possible discount
factor. Second the worker error inherent to the BVD-GLM-UCB algorithm. Note that there
are two independent sources of randomness: the stochasticity of the rewards (whose expectation
is denoted Ey) and the randomness of the EXP3 algorithm (denoted Egxps). Bringing things
together,

E[R(T)] =En |5 u(A7,07) — Epxps[X]

T [T/H] min{iH,T}
=En Y w(AL6) - > > wAM@)6)

worker
[T/H] min{:H,T}

> > uwlA(3)"6;) — Eexps [Xt]] .

i=1 t=(i—1)H+1

+ En

master

The next step consists in upper-bounding the worker error and the master error from
Equation (6.29) respectively.

Lemma 6.13. With pavement H defined in Equation (6.24) for any unknown Bp > 0,
setting k = | 2 logy(BrTY/?)| + 1 yields

Yer1 <V <

Proof. With assumption 6.1, we have By < 25T. Using this, k (as defined in the statement
of the lemma) is smaller than N. We have,

2
k—1< g1og2(zs’TT1/2) <k

1 2kt 1 ( Br )2/3 1 ok
&> [ —— > =
2d2/37(25)2/3 = 2 \dT2S ~2423T7(28)2/3
Adding one for the different terms gives the result. O

For the rest of the section, we set ¥ = 75 with £ defined in Lemma 6.13. We denote

B; = ZiI:{(_iil)H+1|’9;+l - 9;”2 and

. 2L?
B = VAS + 7;\/2 log(T) + dlog (1 + Ad(l—v*Q)) . (6.30)
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Proposition 6.14. The worker error can be upper-bounded in the following way:

T T 212
< L * Ak _ —_—
worker ~ mH aF ClRuﬁH@\/2T(1 Y ) + H 10g (1 + d)\(l _ ’Y*))
11 N 3C3R, Brlog(T)
PVT1—v log(2) 1—9*

with Cy, Ca, C3 constant terms from Theorem 6.1 and 3 defined in Equation (6.30).

+ 209R

Proof. First, note that our objective here is to bound the expected regret whereas Theorem
6.1 bounds the regret and gives a high probability upper-bound. We denote E} = {6, €
EX(;) for t st (i —1)H +1 <t < min{iH,T}}. This event holds with probability higher
than 1 — . When Eg does not hold, the maximum regret could theoretically be suffered for
all time instants.

As explained in the algorithm mechanism, a new instance of BVD-GLM-UCB will be
launched every H steps with a discount factor selected by the EXP3 algorithm. Restarting
a new algorithm and forgetting previous information comes at a cost in terms of regret.
This is made explicit in the following decomposition of worker.

[[T/H] min{iH,T}

worker = Exn Z Z ,LL(AI*H?) p(A(y )TQ*)]

| =1 t=(i-1)H+1

[[T/H] min{iH,T} T/H (T
=Ex | > Y AL - wAa® e (0" Bgy | P (02 EY)
| i=1 t=(i—1)H+1
workery
R T 17/ i T/
> wAle) - pa@) e N M ERe | P (101 E)
=1 t=(i—1)H+1

workers

Thanks to Lemma 6.4, E} holds with probability higher than 1 — §. By setting § = 1/T', we
have

P (WL (Ey") < [T/HT . (6.31)

Under the event {UE{Iﬂ (E%)¢} not much can be said. The maximum regret rmax = m can
be suffered at every time step. Therefore, using the upper-bound from Equation (6.31), we
obtain

[T/H| min{iH,T}

workers =En | Y > p(ALG;) — p(A(F)"6;)

i=1 ¢=(i—1)H+1
< Tmax |VT/H-| .

ul ey P (WL (Ep)e)
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This term is related to the number of restarts of the algorithm. In the BOB framework,
whatever the worker algorithm (sliding window, restart factor) a cost of order T'/H will be
paid due to the restarting of the worker at the beginning of each block.

On the contrary, under the event {HE{H] E%}, using the assumption that the blocks are
independent, we can follow the line of proof from Lemma 6.6 and Theorem 6.1 for every
block. We introduce,

Bir = VAS + ZL\I 2log(T) + dlog <1 + Im> . (6.32)

(T By | B ([ E5)

[[T/H] min{iH,T}

workery =En | > > u(ALGY) — u(A(7)6))
| i=1 t=(i—1)H+1

[[T/H] min{iH,T} - .
SEnv | Y, Y alALE) - u(A(A)6)
| i=1 t=(i—1)H+1

(N By

/7 - T3 5D

< zz:; (ClﬁHﬁ\/Hlog(l/W) + log (1 + d)\(l—’A}/)> + 021 — "AYH + 0381D>
N T 2 ,AYD

< C’lﬂH\/diT1 Tlog(1/7) + Elog (1 + M) + 021 — ,’?T-i— CsBrD ,

where the second inequality is a consequence of Theorem 6.1. We set,

3/2log(T)
_ 3/2log(1) 6.33
loa(1/5) (6:33)
Hence,
3C3BT10g(T)
< 2 23FL HeAr )
CBrD < 5 0g(1/7)
305 B log(T)—2—  (Using log(z) > log(2)(z — 1) for z € [1,2))
= 2log@ 2" og = sing log(z) > log(2)(x or x ,

3C3 Brlog(T R
< 3 T g( ) (’7§ 1)
2log(2) 1—
3C3 Brlog(T)
~ log(2) 1T — k41
3C3 Brlog(T)

(Definition of H)

(Lemma 6.13) .

~log(2) 1—o*
We also have,
Cy fAyDAT < Cgi ! —  (Equation (6.33))
1-75 VT1-7
< 202\/171—?%“ (Definition of H)
< 20 ! ! (Lemma 6.13) .

VT1—7*
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Finally, using x — log(xz) <z — 1 for z > 1 and Lemma 6.13, one has:

T L? 1-57 T 22
Tlog(1/7) + —log [ 1 <T “log {1+ —7T—
og( /VHHOg( +d)\(1—f7)>_ 5 +H0g< +d)\(1—7*)>

T 2L2
< 2T(1 —~* —1 14 ——-—7-1] .
~ ( Y )+H Og( +d)\(1—’7*)>

Following similar steps, we can upper-bound Sy from Equation (6.32) by

Br < B -

Bringing things together, we have shown that under the event {ﬂ[T/ HWE } all the terms
depending on 4 can be replaced by terms depending only on 4* at the cost of multiplicative
constant independent of T'. Finally, one has

T . T 212
worker < mor + C1RMBHM\/2T(1 -7+ I log (1 + M)

1 1 303R# BT log(T)

2 _
T T  leee) 1o

O

The above proposition bounds the regret incurred if the same discount factor 7 is used for
each block. To successfully upper bound BVD-GLM-UCB’s regret, we need to upper bound the
second part master which is the error due to the use of the EXP3 algorithm. This part can be
controlled thanks to the analysis proposed in [Auer et al., 2002b]. Yet, two issues need to be
overcome. (1) The rewards received at the end of a block does not lie in [0, 1] which is required
to use the result from [Auer et al., 2002b]. (2) We are in a stochastic environment with noisy
rewards.

In the next proposition, we upper-bound the term of interest and explain how to deal with
the two issues. The big picture is the following: using the assumption on the bounded rewards
we can obtain an upper-bound for the maximum reward on a single block.

Proposition 6.15. The regret due to the master algorithm can be bounded in the following
way,

[T/H| min{¢H,T} T
[ Z Z w(A:(3)T07) — Egxps [Xt]] <2mHve— 1\/Hcard(7-[) log(card(H)) .

=1 t=(i—1)H+1

Proof. We denote ~; the discount factor chosen by the EXP3 algorithm in the i-th block.
The regret due to the use of the EXP3 main algorithm can be written as follows:

[T/H] min{iH,T} [T/H| min{iH,T} ] ]

master = Ey [ Z Z w(A:(7)"0F) — Epxps

i=1 t=(i—1)H+1

> X X

i=1 t=(i—1)H+1

min{iH,T} min{i¢H,T}
We introduce Q;(v;) = > Xily) = S w(Ai(v) T6F) + €, using Equa-
t=(i—1)H+1 t=(i—1)H+1

tion (6.9). This quantity corresponds to the reward obtained on the i-th block when
using BVD-GLM-UCB with the discount factor ;. We also use Q; = max,cy Qi(7).
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Contrarily to existing works in the linear setting (e.g [Cheung et al., 2019, Lemma3]) our
assumption on the bounded rewards is sufficient to solve both problems. We have, |Q;| < mH
almost surely using r; < m for all time instants.

Let U = {Vt <T,0 <ry <m}. Thanks to Assumption 6.2, we have P(U) =
One has,

[[T/H] [T/H) [T/H) [T/H]
master < En Z Qi(vk) — max Z Qi(7y) + max Z Qi(7) — Egxps [ Z Qi(vi ]]
’YEH i=1 'YEH i=1
[ [T/H] [1T/H) i
< Ey |max Z Qi(v) — Egxps Z Qi)
YEH =1
r [T/H) T/H1
<Epn Ivnea% Z Qz( )_EEXP3 Z Qz 'Yz ‘u P(U) :
i=1
We introduce Qi(v)
) w7y

For all v in H, Y;(7) lies in [0, 1]. Therefore,

[T/H] [T/H]
master < mHEy |max Yi(y) - E Yi (v
N |ma Z EXP3 ; i (1)
The last step consists in using [Auer et al., 2002b, Corollary 3.2]. We have,
[T/H] T
Yi(v) < —.
a2 i) <5

All the conditions of Corollary 3.2 in [Auer et al., 2002b] are met and we obtain:

master < 2mH+/e — 1\/£card(7-l) log(card(H)) .

d

The two parts of regret in Equation (6.29) are bounded in Proposition 6.14 and Proposition
6.15 respectively. Combining them, we get our main result below:

Theorem 6.3. Under Assumptions 6.1-6.2 and 6.4, the expected regret of BOB-BVD-GLM-
UCB when setting H = |dv/T| satisfies:

R(T) = O (Rud2/3T2/3 max (Br, d*1/2T1/4)1/ 3) .

Remark 6.7. This theorem establishes an upper-bound for the expected regret in the Generalized
Linear Bandits framework when the variational budget is unknown. When Br is sufficiently large
(Br > d_1/2T1/4) the obtained bound can not be improved. Yet, there is still a gap with the lower
bound when the variation budget is small. This can be explained by the frequent restarts in the
BOB framework.
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Proof. Using Proposition 6.15 and Proposition 6.14, we obtain:

2

i 1 303R“ BT log(T)
PVTT =y log(2) 1-*

First note that card(#) = N defined in Equation (6.25) scales as log(T") and 7 scales as
V/dlog(T). By plugging H = |dv/T| in the upper-bound we obtain:

+ C39R

+2mHve — 1\/£card(7-[) log(card(H))

T[S

=O0(d'?VT).

T 212 ~ TBQ/S T
* A - =) = T =
ﬁH\/dT\/ZT(l v*) + Hlog (1—1— d)\(l—'y*)) (@] d\/f$ max <d2/3T2/3’d T

— J2/372/3 maX(B;/i%’d—l/(sTl/lz)
— d2/3T2/3(maX(BT’d71/2T1/4))1/3 ]

11 0( T1/6 )
NG = 2/3 :
VT 1—7 dz/ggT/

-0 <d2/38;/3T2/3) '

1—*

T _
H\/Hcard(H) log(card(H)) = O <d1/2T3/4) .
To conclude we notice that when By < d~1/2T71/4,
dL/23/4 — d2/3T2/3(max(BT,d_1/2T1/4))1/3 ‘
On the contrary, when By > d—1/271/4,

4234 < d2/3T2/3(max(BT,d_1/2T1/4))1/3 .

Finally, keeping the highest order term yields the announced result. O

Appendix 6.E Experimental Setup

This section is dedicated at providing useful details about the illustrative experiments
presented in Section 6.6. The logistic setting at hand is characterized by the constants S = L = 1.
At each round, the environment randomly draws 10 news arms, presented to the agent. All
algorithms use the same ¢ regularization parameter A = 1. The sequence 6 evolves as follows:
we let 0 = (0,1) for ¢t € [1,T/3]. Between t = T'/3 and t = 2T'/3 we smoothly rotate 65 from
(0,1) to (1,0). Finally we let 67 = (0,1) for t € [27'/3,T]. Easy computations show that the
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total variation budget is
. (37
Br = (2T'/3) sin <4T) ~15.

We used the optimal value of v recommended by the asymptotic analysis for D-LinUCB
and BVD-GLM-UCB. We solve the projection step of GLM-UCB and BVD-GLM-UCB by
(constrained) gradient-based methods, thanks to the SLSQP solver of scipy.

Remark 6.8. In our experiments, we did not report the performance of the algorithms from
[Russac et al., 2020, Russac et al., 2021a] that are using a projection step similar to the one used
in [Filippi et al., 2010]). Because such algorithms are based on discrete switches of the reward
stgnal, their behavior in this slowly-varying environment is largely sub-optimal. Indeed, in our
experiment the number of abrupt-changes is U'r = 1000. For exponentially weighted algorithms,
the recommended asymptotic value for the weights becomes v ~ 0.70, which in turns leads to
algorithms that over-estimate the non-stationary nature of the problem, and perform poorly in
practice.



226 6.E. Experimental Setup




7 | Conclusion

In this thesis two different settings have been considered. In Chapter 2, we addressed a new
pure exploration task. Its objective was to identify all the arms that are better than a control
arm in the presence of subpopulations. We were able to quantify the complexity of the learning
objective depending on the level of interaction of the learner with the different subpopulations.

The remaining chapters are devoted to the problem of reward maximization in non-stationary
bandit models, with an increasing level of generality throughout the thesis. In Chapter 3, we
considered the multi-armed bandit model, whereas Chapter 4 focused on the linear bandit model
and Chapters 5 and 6 dealt with generalized linear models. In all of those settings, we proposed
to combine forgetting mechanisms (through discount factors or with a sliding window) with
subsampling (Chapter 3) or upper-confidence bound based techniques (Chapters 4, 5 and 6).

In the simpler multi-armed bandit model, we were able to obtain an asymptotically optimal
algorithm in abruptly changing environments using a sliding window with the SW-LB-SDA
algorithm (Chapter 3). Even when non-stationarity is measured through the variation budget,
we have empirical evidence that the algorithm works well. An interesting future direction would
be to extend the analysis to those more general non-stationary environments.

In the linear bandit model, we proposed D-LinUCB, an algorithm based on a weighted
least squares estimator. With an additional assumption on the action sets, we established the
asymptotic optimality of D-LinUCB. Yet, for general action sets, the upper-bound we obtained
is larger than existing lower bounds that apply to specific instances of this setting. It is not clear
if forgetting strategies are fundamentally suboptimal for general action sets or if this setting is
fundamentally harder, which should be confirmed with a proper lower bound.

In the generalized linear model with abruptly changing environments, we obtained an
asymptotically optimal (with respect to T and I'y) algorithm when adding an assumption on
the gaps. With a new concentration inequality, we reduced the dependency in c,, a problem-
dependent constant coming from the non-linearity of the model. Nevertheless, the analysis of the
algorithms we designed suggests that the more non-linear the model, the harder the learning.
[Abeille et al., 2021] recently came up with a new analysis with a different conclusion. They
proposed an algorithm, termed OFU-GLB, where the effect of the non-linearity is a second order
term for the regret and is tied to a transitory regime. For large time horizons, the effect of the
non-linearity impacts the regret only through the reward sensitivity around the optimal action
(1(A]6%). Interestingly, this suggests that some non-linear problems are much easier than their
linear counterparts. These findings can be used in abruptly changing environments as proposed
in [Faury, 2021, Chapter 4]. Understanding how to adapt these ideas to more general drifting
environments is an interesting direction for future work.

For generalized linear bandits in drifting environments, we proposed a first complete analysis
and uncovered mistakes made in several existing works. The nature of the difference between the
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regret bounds from the linear bandit (of order @(B%/ 3/ 1)) and those of the generalized linear

bandit models (of order 6(B;/ °T%/5)) in drifting environments is unsettled. We postulate that
this is an artefact of the proof and that an improved analysis should yield the same rates.

Finally, all the algorithms that we have proposed for the regret minimization setting require
some information about the non-stationarity of the environment. Obtaining optimal algorithms
without this knowledge is still a domain under investigation [Chen et al., 2019, Auer et al., 2019,
Wei and Luo, 2021]. However, doing without this knowledge about the non-stationarity comes at
a cost: for the moment, these algorithms can not be implemented easily. None of the previously
mentioned papers provide simulation to assess the empirical performance of the algorithms they
propose. The ultimate goal for non-stationary bandits would be to simultaneously satisfy the
three following requirements: (1) reaching optimality, (2) being agnostic to the non-stationarity
of the environment and (3) being tractable in practice.
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RESUME

La version classique du modeéle de bandit suppose que les distributions de probabilité des récompenses sont indépen-
dantes et identiquement distribuées. Pour autant, cette hypothése est restrictive dans de nombreux cas, puisqu’elle ne
permet pas de prendre en compte d’éventuels changements de comportements. Dans le domaine médical, I'efficacité
d’un traitement peut diminuer au cours du temps. Pour un site internet d’'information en temps réel, le taux de consultation
d’'une page diminue a raison de sa date d’ancienneté. Les tendances de mode et les préférences des consommateurs
évoluent rapidement. Un algorithme de recommendation ignorant ces formes de non-stationarité est alors susceptible
de faire des suggestions sous-optimales. Ainsi, 'objet de cette these est I'étude des algorithmes de bandits stochas-
tiques dans des environnements non-stationnaires. La non-stationarité peut étre incorporée de plusieurs maniéres dans
les modéles de bandits. Dans un premier temps, nous étudions une variante du probléme d’identification du meilleur
bras. Cette variante correspond a un systéme d’apprentissage qui cherche a identifier 'ensemble des options qui sont
meilleures qu’un bras de contrdle, et ce en présence de sous-populations. Entre autres, I'utilisation de sous-populations
permet la modélisation de I'évolution temporelle des différents bras. Nous proposons ensuite des algorithmes avec des
garanties théorique fortes pour la minimisation du regret et étudions le compromis exploration-exploitation pour de tels
environnements. Nos recherches portent sur trois modéles différents: le bandit classique multi-bras, le bandit linéaire ou
encore le bandit linéaire généralisé. Nous examinons les spécificités de chacun de ces trois modeéles, ainsi que les défis
techniques liés a la non-stationarité.

MOTS CLES

Apprentissage séquentiel, algorithmes de bandits, environnements non stationnaires, minimisation du regret.

ABSTRACT

The vanilla bandit model assumes that the rewards are independent and identically distributed. However, this assumption
is restrictive: it prevents from modeling evolving behaviors that are common in real-world applications. In the medical
domain, the efficiency of a treatment is likely to diminish over time. The opening rate of news articles fades for aging
news. Fashion trends and consumers preferences evolve rapidly. Any recommender system ignoring the non-stationarity
of the distributions of rewards is likely to make suboptimal choices. The objective of this thesis is the study of stochastic
bandit algorithms in non-stationary environments. There are several ways to include non-stationarity into bandit models.
We first study a variant of the best arm identification problem where the learner seeks to identify the set of arms that are
better than a control arm in the presence of subpopulations. Those subpopulations can encode a temporal information
(e.g. day of the week) and properly using them makes it possible to include non-stationarity in the pure exploration setting.
We characterize the complexity of this learning task and propose optimal algorithms for solving it. We then propose
theoretically grounded algorithms for minimizing the regret and discuss the exploration-exploitation trade-off the learner is
facing in dynamically changing environments. Our findings concern three different settings: the well-known multi-armed
bandit, the more general linear bandit but also generalized linear bandit. For each of those settings, we identify the
technical challenges brought by non-stationarity.

KEYWORDS

Sequential learning, bandit algorithms, non-stationary environments, regret minimization.
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