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Contexte et motivation

Tous les secteurs scientifiques sont maintenant concernés par la modélisation. Elle est source de progrès, mais son interprétation n'est pas sans risque. Elle s'est beaucoup développée ces dernières décennies suite au progrès des connaissances et au développement des outils informatiques. Elle consiste à intégrer les connaissances acquises par l'expérimentation, l'expérience et la théorie sous forme d'équations mathématiques. Un modèle mathématique est la traduction d'une observation dans le but de lui appliquer les outils, les techniques et les théories mathématiques. Un modèle mathématique est une représentation abstraite d'un système, d'un phénomène ou d'un processus réel à l'aide de concepts mathématiques. Il permet de décrire, d'analyser et de prédire le comportement de ce système en utilisant des équations mathématiques. Néanmoins, l'emploi du modèle n'est pas non plus sans risque, le plus important étant une mauvaise utilisation, hors de son champ de validité, ou utilisation maladroite d'un simulateur déficient. En effet, le modèle permet de représenter le monde tel que nous le pensons, comme nous le percevons, quelquefois tel que nous le souhaitons et non pas comme il est. Les modèles mathématiques sont utilisés dans de nombreux domaines, tels que la physique, la biologie, l'économie, l'ingénierie, la finance et les sciences sociales [START_REF] Braatz | The importance of model validation in process systems engineering[END_REF][START_REF] Charpentier | The importance of mathematical modelling in engineering and science[END_REF][START_REF] Gelman | Bayesian data analysis[END_REF].

Dans notre contexte, nous considérons un modèle dynamique représenté par l'équation mathématique suivante : Le contexte dans lequel nous nous intéressons dans cette thèse, est celui de l'analyse de sensibilité. L'analyse de sensibilité est une technique d'analyse statistique qui permet d'étudier la variation d'un modèle ou d'un système en fonction des changements dans les entrées ou les paramètres du modèle. Elle est souvent utilisée pour évaluer l'impact de l'incertitude des entrées sur les résultats du modèle, pour identifier les paramètres clés

Y (t) = f (X, t
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qui influencent le plus les résultats ou pour évaluer la robustesse du modèle.

Objectif et organisation de la thèse

Les méthodes d'analyse de sensibilité peuvent être locales ou globales. Les méthodes locales évaluent quantitativement l'impact d'une petite variation autour d'une valeur donnée des paramètres. Les méthodes globales permettent la détermination de l'impact sur la sortie de variations des paramètres dans la totalité de leur intervalle de variation. Dans différents domaines les paramètres varient dans un intervalle large. Par conséquent, l'application des méthodes locales d'analyse de sensibilité s'avèrent non pertinentes ou non concluantes. De plus, l'analyse globale permet de mettre en évidence les éventuelles interactions entre les paramètres. Pour cela, nous mettons l'accent, dans cette thèse, sur les méthodes d'analyse de sensibilité globales.

La grande majorité des études d'analyse de sensibilité globale supposent l'indépendance du vecteurs X des variables d'entrées. Lorsque les variables d'entrées sont dépendantes, il n'y a pas une façon unifié au sein de la communauté scientifique sur la manière de traiter une telle dépendance. Par exemple, l'analyse de sensibilité basée sur la δ-mesure [START_REF] Borgonovo | Moment independent importance measures : new results and analytical test cases[END_REF] est une méthode sans moment, mais la somme des indices n'est pas égale à l'unité. L'analyse de covariance ANCOVA [START_REF] Li | Global sensitivity analysis for systems with independent and/or correlated inputs[END_REF] est une autre méthode qui calcule les indices de sensibilité. Elle est complexe à interpréter car elle permet difficilement d'isoler les effets d'interaction des effets de corrélation. On peut également utiliser les indices de Shapley [START_REF] Owen | Sobol' indices and Shapley value[END_REF] qui consistent en une répartition équitable des parties de la variance de la sortie. Contrairement aux indices ANCOVA, ils sont toujours positifs et leur somme est égale à l'unité. L'objectif de cette thèse est de faire une analyse de sensibilité de certains modèles mathématiques issus de l'épidémiologie, du climat et de l'économie lorsque les variables d'entrées sont considérées indépendantes.

l'existence et l'unicité de la solution du système et la stabilité locale et globale des points d'équilibre. Dans le chapitre 3, on a repris le modèle épidémiologique définie dans le chapitre 2 pour effectuer une analyse de sensibilité. La méthode de collocation stochastique est utilisée pour estimer les indices de Sobol des certains paramètre qui interviennent dans le modèle.

Chapitre 4 : Dans le chapitre 4, nous avons entrepris une analyse de sensibilité globale en utilisant la méthode des polynômes chaos sur un modèle climatique pour déterminer l'influence des paramètres clés (propriétés chimiques de l'atmosphère, rotation, gradient de température, mouvement de convection). La méthode collocation stochastique est utilisée pour estimer les indices de Sobol.

Chapitre 5 : Dans le chapitre 5, nous avons considéré le modèle de Vasicek qui est largement utilisé en finance pour la modélisation des taux d'intérêt. Ce chapitre combine trois approches différentes pour effectuer une analyse de sensibilité. Tout d'abord, une analyse locale par la méthode d'expansion en série de Taylor et une analyse globale par les méthodes de Fourier Amplitude Sensitivity Test et Monte Carlo. Une étude comparative sur le temps d'execution et sur la précision est réalisée.

Chapitre 1

Analyse de sensibilité et présentation des résultats

L'analyse de sensibilité étudie comment les perturbations sur les variables d'entrée du modèle génèrent des perturbations sur la variable de sortie. Elle permet d'identifier un sous-ensemble de facteurs avec lesquels il faut travailler pour réduire la variabilité de la sortie. Bon nombre des publications sur le sujet explicitent et illustrent ces objectifs. On pourra se référer notamment aux travaux de Saltelli [START_REF] Mckay | Evaluating prediction uncertainty in simulation models[END_REF][START_REF] Saltelli | Making best use of model evaluations to compute sensitivity indices[END_REF][START_REF] Saltelli | Sensitivity analysis[END_REF][START_REF] Sobol | Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[END_REF].

Modèle d'étude

Tout au long de ce chapitre, on considère l'espace de probabilité (Ω, F, P) qui décrit le caractère aléatoire des variables d'entrées, où Ω désigne l'espace événementiel équipé d'une σ-algèbre F et de la mesure de probabilité P. Dans ce qui suit, nous considérons un modèle mathématique formé d'un ensemble des variables d'entrées aléatoires indépendantes X = (X 1 , ..., X p ) ∈ R p , d'une fonction f et d'une variable aléatoire de sortie Y : Y = f (X) = f (X 1 , ..., X p ).

(1.1)

La fonction f est considérer complexe et l'ensemble des variables de sortie est quant à lui supposé réduit à une unique variable Y .

Différentes techniques d'analyse de sensibilité sont présentées dans [START_REF] Saltelli | Sensitivity analysis[END_REF] ainsi que des exemples d'application dans différents domaines. Les méthodes d'analyse de sensibilité peuvent être classifiées en différentes catégories. Selon Frey [START_REF] Frey | Identification and review of sensitivity analysis methods[END_REF], les méthodes peuvent être statistiques ou graphiques. Selon Saltelli [START_REF] Saltelli | Making best use of model evaluations to compute sensitivity indices[END_REF][START_REF] Saltelli | Sensitivity analysis[END_REF], les méthodes d'analyse de sensibilité peuvent être classées en trois catégories : le premier groupe concerne les méthodes de criblages ou "screening" telles la méthode de Morris [START_REF] Morris | Factorial sampling plans for preliminary computational experiments[END_REF]. Ces méthodes quantitatives permettent de hiérarchiser les variables d'entrées en fonction de leurs impacts sur la variation de la sortie. Pour les modèles avec un nombre important des paramètres, ces méthodes sont généralement utilisées dans une première étape afin de déterminer le groupe des paramètres le plus influent. Dans le second groupe, nous retrouvons les méthodes dites locales (analyse basée sur les dérivées). L'analyse de sensibilité locale étudie comment de petites perturbations autour d'une valeur x 0 = (x 0 1 , ..., x 0 p ) des entrées se répercutent sur la valeur de la sortie. La méthode d'analyse locale la plus classique est l'approche OAT (One factor At Time), qui consiste à calculer ou estimer les indices de sensibilité définis par S i = ∂f ∂x i (x 1 0 , ..., x p 0 ).

Les paramètres avec l'indice de sensibilité le plus grand sont les plus influents. Cependant, les approches locales fournissent une information partielle en étudiant l'influence des paramètres autour d'un point de fonctionnement et ne tiennent pas compte de toute les variations des paramètres. Le lecteur pourra se référer à Turanyi [START_REF] Turányi | Sensitivity analysis of complex kinetic systems. Tools and applications[END_REF] pour une revue de ces méthodes. Pour pallier aux limites des méthodes locales, une nouvelle génération de méthodes s'est développée dans un cadre statistique. Par opposition aux méthodes locales, le troisième groupe concerne les méthodes dénommées globales car elles s'intéressent à l'ensemble des variations simultané des variables d'entrées [START_REF] Owen | Sobol' indices and Shapley value[END_REF][START_REF] Saltelli | Sensitivity analysis[END_REF][START_REF] Saltelli | A quantitative model-independent method for global sensitivity analysis of model output[END_REF][START_REF] Tarantola | Random balance designs for the estimation of first order global sensitivity indices[END_REF]. Cette dernière méthode regroupe plusieurs méthodes dont la méthode de Sobol [START_REF] Sobol | Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[END_REF] basée sur la décomposition de la variance et la méthode Fourier Amplitude Sensitivity Test (FAST) introduite par Cukier [START_REF] Cukier | Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I Theory[END_REF] qui permet de passer d'une intégrale de dimension p à une intégrale unidimensionnelle. Dans cette thèse, pour les méthodes globales, nous nous sommes intéressés aux méthodes Sobol et FAST, et la méthode d'expansion en série de Taylor pour une analyse locale.

Indices de Sobol

La méthode de Sobol [START_REF] Sobol | Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[END_REF] est largement utilisée en analyse de sensibilité pour des modèles de faible dimension. Cette méthode permet de quantifier l'influence de chaque paramètre sur la variance de la sortie du modèle, en supposant que les paramètres sont indépendants et suivent une distribution de probabilité connue. La décomposition de la variance est basée sur l'analyse de la variance (ANOVA) introduite en statistique mathématique par Hoeffding [START_REF] Hoeffding | A class of statistics with asymptotically normal distribution[END_REF]. Elle fut ensuite étudiée par Efron et Stein [START_REF] Efron | The jackknife estimate of variance[END_REF] dans le contexte de l'estimation de la variance. L'utilisation de cette méthode est largement rencontrée en analyse de sensibilité et le succès de cette décomposition vient du fait que l'ANOVA constitue une réponse alternative au fléau de la dimension.

Dans la suite, nous reprenons le modèle mathématique présenté dans (1.1) avec des variables aléatoires d'entrées (X 1 , . . . , X p ) indépendantes. Nous supposons que les entrées X i et la variable de sortie Y ont un moment d'ordre 2 fini. On considère la loi de probabilité État de l'art 1.2. Indices de Sobol de X = (X 1 , ..., X p ) définie par la fonction de densité

p X (x) = p i=1 p i (x i ),
où p i est la densité de probabilité marginale de X i .

Sobol [START_REF] Sobol | Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[END_REF] a proposé un indicateur de l'influence du paramètre d'entrée X i défini par

S i = V E(Y |X i ) V(Y )
.

(1.2) communément appelés "indices de Sobol du premier ordre" par Sobol [START_REF] Sobol | Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[END_REF] et correlation ratio par McKay [START_REF] Mckay | Evaluating prediction uncertainty in simulation models[END_REF]. C'est justement cette variance qui est utilisée dans le calcul des indices de Sobol dits de premier ordre. Les indices S i , compris entre 0 et 1, sont élevés lorsque l'influence de X i est grande. Sobol introduit cet indice de sensibilité en décomposant la fonction f du modèle (1.1) en somme de fonctions de dimensions croissantes.

De même, les indices de sensibilité d'ordre supérieur peuvent être définis en introduisant d'abord la décomposition suivante de la variance totale (voir [START_REF] Hoeffding | A class of statistics with asymptotically normal distribution[END_REF][START_REF] Van Der | Asymptotic statistics[END_REF])

V(Y ) = p i 1 =1 V i + 1≤i 1 <i 2 ≤p V i 1 i 2 + 1≤i 1 <i 2 <i 3 ≤p V i 1 i 2 i 3 + • • • + V i 1 ...ip , (1.3) 
où

V i 1 = V(E(Y /X i 1 )), V i 1 i 2 = V(E(Y /X i 1 , X i 2 )) -V i 1 -V i 2 , V i 1 i 2 i 3 = V(E(Y /X i 1 , X i 2 , X i 3 )) -V i 1 i 2 -V i 1 i 3 -V i 2 i 3 -V i 1 -V i 2 -V i 3 , • • • , (1.4) V i 1 ...ip = V - p i=1 V i - 1≤i 1 <i 2 ≤p V i 1 i 2 -• • • - 1≤i 1 <i 2 ...<i p-1 ≤p V i 1 ...i p-1 .
Cette décomposition est analogue à la décomposition "ANOVA decomposition" réalisée en analyse de variance et présentée par 

                                   S i,j = V E(Y |X i , X j ) V(Y ) -S i -S j , S i,j,k = V E(Y |X i , X j , X k ) V(Y ) -S i -S j -S k -S i,j -S i,k -S j,k , .... S 1,...,p = V E(Y |X 1 , ..., X p ) V(Y ) - U ⊆{1,...,p} S U .
(1. On peut aussi étudier l'indice de sensibilité total pour la variable X i . Homma et Saltelli [START_REF] Homma | Importance measures in global sensitivity analysis of nonlinear models[END_REF] ont introduit des indices de sensibilité totaux. Cela représente la somme des indices de sensibilité impliquant la variable X i . On note S T i = j∈I i S j , où I i représente tous les ensembles d'indices contenant l'indice i. Ces indices expriment la sensibilité totale de la variance Y à une variable, c'est-à-dire la sensibilité à la variable seule et sensibilité aux interactions de cette variable avec d'autres variables.

Méthodes d'estimations des indices de Sobol

Précisons que les indices de Sobol décrits ci-dessus ne sont valables que lorsque les facteurs sont non corrélés. Bien qu'il y a des méthodes adaptées, dans la suite on s'intéressera aux variables aléatoires indépendantes non corrélés. Les indices de sensibilité qui viennent d'être présentés dans la section 1.2 peuvent parfois être calculés analytiquement quand l'expression de la fonction f du modèle est connue et simple. Comme nous avons considéré l'hypothèse de complexité de la fonction f dans le modèle (1.1), ne pouvant calculer les indices de Sobol analytiquement, il est alors primordial de les estimer. La rédaction des parties (1.3.1) et (1.4) se réfèrent à la thèse de Julien Jacques [START_REF] Jacques | Contributions à l'analyse de sensibilité et à l'analyse discriminante généralisée[END_REF].

Méthode de Monte Carlo

La méthode Monte Carlo (MC) est une approche statistique qui consiste à générer de nombreuses réalisations aléatoires des entrées du modèle, puis à simuler les sorties cor-respondantes pour chacune d'entre elles. Elle est particulièrement utile pour les modèles complexes avec de nombreuses entrées. Dans la littérature, la méthode MC existe sous la forme déterministe (calcul d'intégrale) ainsi que sous la forme probabiliste (Calcul de densité de probabilité).

Considérons un échantillon de n réalisations X = (x k1 , ..., x kp ) k=1,...,n des variables aléatoires indépendantes (X 1 , ..., X p ) définies dans le modèle (1.1). La moyenne et la variance de Y sont estimées par :

f 0 = 1 n n k=1 f (x k1 , ..., x kp ) and V = 1 n n k=1 f 2 (x k1 , ..., x kp ) -f 2 0 .
Nous présentons une technique d'estimation due à Sobol [START_REF] Sobol | Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[END_REF]. L'estimation des indices de sensibilité du premier ordre (1.2) consiste à estimer la quantité

V E[Y |X i ] = E E[Y |X i ] 2 -E E[Y |X i ] 2 = V i = E i -E[Y ] 2 , où E i = E E[Y |X i ] 2
. Dans [START_REF] Sobol | Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[END_REF], l'auteur propose d'estimer la quantité E i comme une espérance classique, mais en tenant compte du conditionnement sur X i en faisant varier toutes les variables sauf la variable X i . Cela nécessite deux échantillons de réalisations des variables d'entrées, que nous désignons par X(1)

(n) et X (2) 
(n)

E i = 1 n n k=1 f (x (1) k1 , ..., x (1) 
k(i-1) , x (1) 
ki , x

(1)

k(i+1) , ..., x (1) kp ) × f (x (2) k1 , ..., x (2) 
k(i-1) , x (1) 
ki , x

(2)

k(i+1) , ..., x (2) 
kp ).

Les indices de Sobol de premier ordre (1.2) sont alors estimés par

S mc i = V i V = E i -f 0 2 V . (1.6)
Pour les indices de sensibilité de second ordre (1.5), nous estimons les quantités suivantes

E ij = E E[Y |X i , X j ] 2
de la même manière, en faisant varier toutes les variables à l'exception de X i et X j .

Les indices du second ordre sont alors estimés par 

S mc ij = Ẽij -f 2 0 -Ṽi -Ṽj Ṽ , ( 1 

Méthode de collocation stochastique

La méthode de collocation stochastique (MCS) est une méthode numérique pour résoudre des équations différentielles stochastiques. Elle consiste à approximer la solution exacte de l'équation en utilisant des points de collocation choisis de manière aléatoire. Elle est utilisée [START_REF] Narayan | Sparse grid stochastic collocation-based sensitivity analysis of systems with correlated inputs[END_REF][START_REF] Sankararaman | Stochastic collocation-based global sensitivity analysis of models with correlated parameters[END_REF] pour des applications telles que la modélisation des phénomènes aléatoires et la résolution de problèmes d'optimisation stochastique. Nous proposons ici une approche numérique qui permet de représenter une variable aléatoire Z de distribution inconnue en fonction d'une variable aléatoire X de distribution connue (gaussienne, uniforme, exponentielle,...) sous la forme suivante :

Z = p i=1 z i L i (X) (1.8)
où {L i (x)} p i=1 sont les bases du polynôme de Lagrange et {z i } p i=1 les nombres réels. Si une relation Z = h(X) existe alors z i = h(x i ) et la relation (1.8) devient la projection de h sur la base des polynômes de Lagrange. Avant de décrire la méthode, nous rappellons deux concepts (polynômes d'interpolation et règle de quadrature) qui sont empruntés à la communauté déterministe et nous commençons à rappeler certaines de leurs principales caractéristiques. Soit P p l'espace linéaire des polynômes de degré inférieur ou égal à p. Soit (p + 1) points distincts x 0 , x 1 , ..., x p et les valeurs correspondantes z 0 , z 1 , ..., z p , alors il existe un unique polynôme P ∈ P p tel que P (x i ) = z i . Lagrange établit une représentation de tels polynômes sous la forme

P (x) = p i=0 z i L i (x), où L i (x) = p j=0|j̸ =i x -x j x i -x j , i = 0, ..., p. (1.9)
forment une base polynomiale de degré p.

Concevoir un ensemble de points n'est pas aisé et pour les simulations numériques, il convient de choisir des points x i qui correspondent à des règles de quadrature car ils pré-sentent de bonnes propriétés d'approximation. Lorsque notre modèle contient un nombre limité de variables aléatoires d'entrée, la règle de quadrature de Gauss est utilisée. On rappelle ici qu'une règle de quadrature [START_REF] Golub | Calculation of Gauss quadrature rules[END_REF] s'écrit comme une somme pondérée comme suit

I h(x)p X (x)dx ≃ p i=0 ω i h(x i ) (1.10)
où ω i sont les poids de quadrature et x i sont les points de quadrature et p X est une fonction positive qui correspond à une densité de probabilité de X. On choisit x i et ω i pour que la relation (1.10) soit exacte quand h est un polynôme de degré inférieur ou égal à 2p -1, pour plus de détails voir [START_REF] Dahlquist | Numerical methods in scientific computing[END_REF][START_REF] Davis | Methods of numerical integration[END_REF][START_REF] Golub | Calculation of Gauss quadrature rules[END_REF][START_REF] Gottlieb | Numerical analysis of spectral methods : theory and applications[END_REF][START_REF] Rahman | Extended polynomial dimensional decomposition for arbitrary probability distributions[END_REF].

Étant donné l'ensemble des points de collocation {x i } 0⩽i⩽p , la fonction h peut être évaluée à ces points et approximée comme suit :

h(x) ≃ p i=0 h(x i )L i (x). (1.11)
La qualité de l'approximation dépend uniquement de la régularité de h et du choix des points de collocation {x i } 0⩽i⩽p . Elle est indépendante de la nature de l'argument d'entrée X, qu'il s'agisse d'une variable réelle, d'une variable aléatoire ou d'un processus stochastique. La perfection de la méthode réside dans les points d'interpolation qui sont choisis pour coïncider avec les points de quadrature de (1.10) et, d'après [START_REF] Chauvière | An efficient spectral method for the numerical solution to some classes of stochastic differential equations[END_REF][START_REF] Gottlieb | Numerical analysis of spectral methods : theory and applications[END_REF], l'erreur d'approximation de (1.11) pourrait-être contrôler car la construction de la règle de quadrature et des polynômes orthogonaux sont réalisés ensemble [START_REF] Gautschi | Orthogonal polynomials : computation and approximation[END_REF][START_REF] Gayrard | Analyse bayésienne de la gerbe d'éclats provoquée pa l'explosion d'une bombe à fragmentation naturelle[END_REF]. Dans le cas d'une variable aléatoire, on peut écrire l'approximation

Z = h(X) ≃ p i=0 h(x i )L i (X).
(1.12)

Les quantités statistiques telles que la moyenne ou la variance peuvent être calculées directement à partir de (1.12). En outre, en utilisant la propriété des polynômes de Lagrange 

L i (x j ) = δ ij (
E(Z) ≃ p i=0 ω i h(x i ) et V(Z) ≃ p i=0 ω i h(x i ) 2 -E(Z) 2 (1.13)
Pour plus d'informations sur la méthode de collocation stochastique, voir [START_REF] Chauvière | An efficient spectral method for the numerical solution to some classes of stochastic differential equations[END_REF][START_REF] Chauviere | Efficient computation of rcs from scatterers of uncertain shapes[END_REF][START_REF] Xiu | High-order collocation methods for differential equations with random inputs[END_REF] dans lequel les auteurs appliquent la méthode avec des variables aléatoires et des processus stochastiques.

Illustrons la méthode pour estimer les indices de Sobol avec le modèle (1.1) pour trois variables aléatoires (X 1 , X 2 , X 3 ) supposées indépendantes, État de l'art

Méthodes d'estimations des indices de Sobol

Z = h(X) = h(X 1 , X 2 , X 3 ) et de fonction de densité p X (x) = 3 k=1 p X k (x k ).
Par (1.12), on a la décomposition suivante de Z en polynômes de Lagrange :

Z = 3 i,j,k=0 h ijk L ijk (X), (1.14) avec la notation L i,j,k (X) := L i (X 1 )L j (X 2 )L k (X 3 )
, où les L i sont donnés dans (1.9). Les h ijk sont déterministes.

Par (1.10), on choisit les points de quadrature x = (x 1 , x2 , x3 ) tels que

L i,j,k (x) = L i (x 1 ) L j (x 2 ) L k (x 3 ) = δ i1 × δ j2 × δ k3
où δ est le symbole de Kronecker.

De plus, en utilisant (1.10), on peut montrer que

E[ Z] = 3 i,j,k=0 h ijk L ijk (x)p X (x)dx = 3 i,j,k=0 h ijk ω i ω j ω k . (1.15)
En prenant le carré de la décomposition (1.14), on obtient

Z 2 = 3 i,j,k,i * ,j * ,k * =0 h ijk h i * j * k * L ijk (X)L i * j * k * (X).
De la même manière que précédemment, en utilisant (1.10), on obtient :

E Z 2 = 3 i,j,k=0 h ijk 2 ω i ω j ω k (1.16)
Alors, la variance de Z s'écrit : 

V( Z) = E Z 2 -E[ Z] 2 . ( 1 
S 1 = V E( Z|X 1 ) V( Z) = E E( Z|X 1 ) 2 -E E( Z|X 1 ) 2 V( Z) , avec E( Z|X 1 ) = i,j,k h ijk L i (X 1 ) L j (x 2 )L k (x 3 )p X 2 (x 2 )p X 3 (x 3 )dx 2 dx 3 = i,j,k h ijk L i (X 1 )ω j ω k ,
en prenant la carré, on obtient

E( Z|X 1 ) 2 = 3 i,j,k,i * ,j * ,k * h ijk h i * j * k * ω j ω k L i (X 1 )ω j * ω k * L i * (X 1 )
la moyenne du terme au carré est

E E( Z|X 1 ) 2 = 3 i,j,k,i * ,j * ,k * h ijk h i * j * k * ω j ω k ω j * ω k * L i (x 1 )L i * (x 1 )p X 1 (x 1 )dx 1 = 3 i,j,k,j * ,k * h ijk h ij * k * ω i ω j ω k ω j * ω k * .
Le dernier terme E E( Z|X 

= V E(Z|X 1 , X 2 ) V(Z)
est donné par :

S 12 = V E( Z|X 1 , X 2 ) V( Z) = E E( Z|X 1 , X 2 ) 2 -E E( Z|X 1 , X 2 ) 2 V( Z) -S 1 -S 2 ,
en utilisant (1.10), nous avons

E( Z|X 1 , X 2 ) = 3 i,j,k h ijk L i (X 1 )L j (X 2 ) L k (x 3 )p X 3 (x 3 )dx 3 = 3 i,j,k h ijk L i (X 1 )L j (X 2 )ω k ,
en prenant le carré, on a :

E( Z|X 1 , X 2 ) 2 = 3 i,j,k,i * ,j * ,k * h ijk h i * j * k * L i (X 1 )L j (X 2 )L i * (X 1 )L j * (X 2 )ω k ω k *
L'espérance du terme au carré est donnée par :

E E( Z|X 1 , X 2 ) 2 = i,j,k,i * ,j * ,k * h ijk h i * j * k * ω k ω k * L i (x 1 )L i * (x 1 )p X 1 (x 1 )dx 1 L j (x 2 )L j * (x 2 )p X 2 (x 2 )dx 2 = i,j,k,k * h ijk h ijk * ω k ω k * ω i ω j .
Enfin le dernier terme E E( Z|X 1 , X 2 ) = E( Z) est donné par (1.15). Pour les autres indices de Sobol d'ordre 2 on fait exactement la même chose.

Méthode des polynômes chaos

Les méthodes des polynômes chaos (PC) et des collocations stochastiques (SCM) ont récemment fait l'objet d'un intérêt croissant pour le calcul de solutions approximatives. Depuis les travaux de Wiener en 1938 [START_REF] Wiener | The homogeneous chaos[END_REF] et le livre de Ghanem et Spanos dans les années 1990 [START_REF] Ghanem | Stochastic finite elements : a spectral approach[END_REF], les PC basés sur des polynômes orthonormés ont permis de résoudre une grande variété de problèmes impliquant des variables aléatoires. Plus tard, ses analogues basés sur les polynômes de Lagrange ont été popularisés par l'article de Hesthaven et Xiu [START_REF] Xiu | High-order collocation methods for differential equations with random inputs[END_REF]. Rapidement, ces deux techniques sont devenues les méthodes de choix pour les problèmes stochastiques impliquant un nombre limité des variables aléatoires. Le lecteur intéressé pourra se référer à l'ouvrage de Xiu [START_REF] Xiu | Numerical methods for stochastic computations : a spectral method approach[END_REF] pour une vue d'ensemble des possibilités offertes par les méthodes PC et SCM.

La décomposition en PC est un moyen efficace dans la plupart des cas pour construire un modèle permettant d'étudier la propagation de l'aléatoire dans un système complexe. Elle consiste à écrire la variable aléatoire de sortie Y (qui est supposée avoir une variance finie) en fonction d'une variable aléatoire d'entrée X sous la forme proposé par [START_REF] Ghanem | Stochastic finite elements : a spectral approach[END_REF][START_REF] Xiu | The Wiener-Askey polynomial chaos for stochastic differential equations[END_REF] :

État de l'art 1.3. Méthodes d'estimations des indices de Sobol Y (X) = ∞ i=0 α i Ψ i (X), (1.18) 
où les Ψ i (X) sont des polynômes orthonormés formant une base de degré n et {α i } qui doit être déterminée. Lorsque les variables aléatoires d'entrées sont normales, une base hilbertienne possible est la famille des polynômes d'Hermite multivariés, qui sont orthogonaux par rapport à la mesure gaussienne.

L'approche historique du calcul des coefficients de réponse dans l'analyse par éléments finis stochastiques est basée sur la minimisation du résidu dans l'équation d'équilibre au sens de Galerkin [START_REF] Ghanem | Stochastic finite elements : a spectral approach[END_REF][START_REF] Matthies | Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations[END_REF][START_REF] Pettersson | Polynomial chaos methods for hyperbolic partial differential equations[END_REF]. Cette stratégie de résolution de type Galerkin a été qualifiée d'intrusive, dans le sens où elle nécessite une implémentation lourde dans le code des éléments finis. Alternativement, des méthodes non intrusives [START_REF] Hosder | A non-intrusive polynomial chaos method for uncertainty propagation in CFD simulations[END_REF][START_REF] Mcrae | Global sensitivity analysis : A computational implementation of the Fourier amplitude sensitivity test (FAST)[END_REF] ont été récemment proposées, à savoir la méthode de régression introduit dans [START_REF] Ghiocel | Stochastic finite-element analysis of seismic soil-structure interaction[END_REF]. L'expansion en PC est basée sur les polynômes orthogonaux, nous commençons par donner quelques rappels sur ce sujet. Soit E l'espace vectoriel réel de tous les polynômes à une seule variable et à coefficients réels, doté du produit scalaire défini par :

< u, v >= I u(x)v(x)g(x)dx ∀u, v ∈ E, (1.19) 
où g : I ⊂ R → R + est une fonction intégrable positive. L'ensemble des polynômes {Ψ n } n⩾0 est dit orthogonal par rapport à la fonction g si

< Ψ n , Ψ m >= I Ψ n (x)Ψ m (x)g(x)dx = c 2 n δ n,m n, m ∈ N, (1.20) 
où δ est la fonction delta de Kronecker et les c n sont des constantes non nulles. Nous rappelons que, pour les polynômes orthogonaux Ψ 0 = 1. Le système (1.20) est appelé orthonormé si c n = 1.

Nous utilisons la relation de récurrence suivante pour construire ces polynômes : Nous considérons le modèle Y = Y (X) = f (X 1 , ..., X p ) défini dans (1.1) avec f la fonction de sortie qui a un moment d'ordre deux fini. Selon [START_REF] Ghanem | Stochastic finite elements : a spectral approach[END_REF][START_REF] Xiu | The Wiener-Askey polynomial chaos for stochastic differential equations[END_REF], la sortie peut être représentée par :

     Ψ n+1 (x) = (x -a n )Ψ n (x) -b n Ψ n-1 (x) Ψ 0 (x) = 1, Ψ -1 (x) = 0 (1.21) with          a n = < xΨ n , Ψ n > < Ψ n , Ψ n > n ∈ N b n = < Ψ n , Ψ n > < Ψ n-1 , Ψ n-1 > n ∈ N * (1.
Y (X) = ∞ i=0 α i Ψ i (X). (1.23)
Soit Ỹ (X) une réponse de la forme (1.23), avec {Ψ i } 0⩽i⩽P une famille de polynômes orthonormés, qui modélise le système Y = f (X). Pour une valeur d'entrée donnée x i , la réponse du système y i = f (x i ) est déterministe. La somme (1.23) est tronquée (voir [START_REF] Xiu | The Wiener-Askey polynomial chaos for stochastic differential equations[END_REF] et la thèse de Emeline Gayrard [START_REF] Gayrard | Analyse bayésienne de la gerbe d'éclats provoquée pa l'explosion d'une bombe à fragmentation naturelle[END_REF]) en gardant les termes inférieurs à un degré P : 

Y (X) ≃ Ỹ (X) = P i=0 α i Ψ i (X) (1.
E( Ỹ ) = P i=0 α i E(Ψ i (X)) = P i=0 α i R n Ψ i (x)f X (x)dx = P i=0 α i R n Ψ 0 (x)Ψ i (x)f X (x)dx, où f X la fonction densité de X. Par orthonormalité de {Ψ i } i⩾0 , on a E( Ỹ ) = α 0 .
De la même manière, nous trouvons

V( Ỹ ) = P i=1 α 2 i .
Nous détaillons maintenant une manière, plus connue sous le nom de projection de Galerkin, de calculer les coefficients {α i } 0⩽i⩽P lorsqu'une relation fonctionnelle de la forme

Y = f (X) est connue. Multipliant (1.24) par Ψ j (X), Ỹ (X)Ψ j (X) = P i=0 α i Ψ i (X)Ψ j (X),
en prenant l'espérance, nous avons

E( Ỹ (X)Ψ j (X)) = E P i=0 α i Ψ i (X)Ψ j (X) .
Ensuite, en utilisant la linéarité de l'espérance et l'orthonormalité des polynômes Ψ i (X), nous obtenons

α i = E Ỹ (X)Ψ i (X) = R p f (x)Ψ i (x)g X (x)dx (1.25)
avec g X la densité de la variable aléatoire X.

Cette procédure est connue sous le nom de projection de Galerkin et elle est étroitement liée à la technique de la moyenne quadratique linéaire (le calcul du minimum de la moyenne quadratique) de E f (X)

-P i=0 α i Ψ i (X) 2 
). L'étape suivante consiste à évaluer l'intégrale ci-dessus, en utilisant les points connus de la fonction f . On reprend la règle de quadrature de Gauss énoncer dans la partie (1.3.2) pour une seule variable :

I f (x)g(x)dx ≃ p k=1 ω k f (x k ), (1.26) 
pour toute fonction g intégrable sur I. En combinant (1.25) et (1.26), on obtient l'expression pour le calcul des coefficients du PC suivant :

α i = k 1 ,••• ,kp ω k 1 • • • ω kp f (x k 1 , • • • , x kp )Ψ i (x k 1 , • • • , x kp ). (1.27) 
Il est important de souligner que le calcul de α i nécessite l'évaluation de f [START_REF] Dahlquist | Numerical methods in scientific computing[END_REF][START_REF] Davis | Methods of numerical integration[END_REF][START_REF] Rahman | Extended polynomial dimensional decomposition for arbitrary probability distributions[END_REF] pour plus d'explications. Pour plus de détails sur cette méthode PC, voir aussi [START_REF] Sudret | Global sensitivity analysis using polynomial chaos expansions[END_REF][START_REF] Xiu | The Wiener-Askey polynomial chaos for stochastic differential equations[END_REF][START_REF] Xiu | Modeling uncertainty in flow simulations via generalized polynomial chaos[END_REF] qui applique la méthode avec des variables aléatoires et des processus stochastiques.

(x k 1 , • • • , x kp ) au point spécifié (x k 1 , • • • , x kp ), voir

Méthode de Fourier Amplitude Sensitivity Test

La méthode de Fourier Amplitude Sensitivity Test (FAST) est une technique utilisée pour l'analyse de sensibilité en mathématiques et en ingéniérie. Cette méthode a été développée par Cukier [START_REF] Cukier | Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I Theory[END_REF][START_REF] Cukier | Nonlinear sensitivity analysis of multiparameter model systems[END_REF][START_REF] Cukier | Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. III. Analysis of the approximations[END_REF] ainsi que par Schaibly et Shuler [START_REF] Schaibly | Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients[END_REF]. Elle se concentre sur le premier et le deuxième moment de la distribution de chaque variable clé du modèle. La rédaction de cette partie se réfère à la thèse de Julien Jacques [START_REF] Jacques | Contributions à l'analyse de sensibilité et à l'analyse discriminante généralisée[END_REF].

L'objectif de la méthode FAST est de déterminer quelles variables clés du modèle ont le plus grand impact sur les résultats du modèle. Si l'on considère le modèle de sortie défini par (1. 

x i (s) = g i (sin(ω i s)) = 1 π arcsin(sin(ω i s)) + 1 2 .
Ainsi, lorsque s ∈ [-π, π], le vecteur x(s) = (x 1 (s), ..., x p (s)) décrit une courbe qui passe par [0, 1] p . Cukier [START_REF] Cukier | Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I Theory[END_REF][START_REF] Cukier | Nonlinear sensitivity analysis of multiparameter model systems[END_REF][START_REF] Cukier | Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. III. Analysis of the approximations[END_REF] montre qu'on a alors

h 0 = [0,1] p f(x)dx = lim T→∞ 1 π T -T f(x(s))ds.
Les fréquences (ω 1 , ..., ω p ) étant entières, la courbe ne remplit pas l'espace [0, 1] p mais est périodique avec une période 2π, donc

h 0 = 1 2π π -π f(x(s))ds.
Si nous appliquons ces idées au calcul de la variance du modèle (1.1), en notant h 0 = E[Y], nous avons une etimation de la variace de Y

1 2π π -π f 2 (x(s))ds -h 2 0 ≃ V = +∞ j=-∞ A 2 j + B 2 j -A 2 0 + B 2 0 = 2 +∞ j=1 A 2 j + B 2 j , (1.29)
où A j et B j sont les coefficients de Fourier définis par

A j = 1 2π π -π f(x(s)) cos(js)ds, B j = 1 2π π -π
f(x(s)) sin(js)ds.

Cukier [START_REF] Cukier | Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I Theory[END_REF][START_REF] Cukier | Nonlinear sensitivity analysis of multiparameter model systems[END_REF][START_REF] Cukier | Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. III. Analysis of the approximations[END_REF] explique que la partie de la variance (1.29) due à une variable X i est la somme des carrés des coefficients de Fourier A j et B j attribués à la fréquence ω i relative à X i .

V i = ∞ j=1 (A 2 jω i + B 2 jω i ).
(1.30)

L'indice de sensibilité est alors défini 

S fast i = V i V = ∞ j=1 (A 2 jω i + B 2 jω i ) ∞ j=1 (A 2 j + B 2 j ) (1.

Méthode de développements multivariés en série de Taylor

La méthode locale analysent la manière dont une petite perturbation près d'une valeur de l'espace d'entrée x 0 = (x 0 1 , ..., x 0 p ) influence la valeur de y = f (x 0 ). Elle consiste à estimer la dérivée partielle du premier ordre de Y par rapport à chaque variable d'entrée x i au point x 0 , dénotée par : 

∂f ∂x i (x 0 1 , ...,
Y α = Y(ᾱ) + |η|⩾1 α -ᾱ η η! L η Y ᾱ + R ᾱ, (1.33 
)

où ᾱ = (ᾱ 1 , ..., ᾱp ), |η| = η 1 + ... + η p , η! = η 1 ! × η 2 ! × ... × η p ! et L η Y ᾱ est la dérivée partielle d'ordre |η|-ième de Y définie L η Y ᾱ = ∂ |η| Y ᾱ ∂α η 1 1 ∂α η 2 2 ...∂α ηp p
Le terme résiduel R ᾱ de l'approximation est donné par :

R ᾱ = Y ᾱ - |η|⩾0 α -ᾱ η η! L η Y ᾱ . (1.34)
Dans la suite, nous considérons que le terme restant R ᾱ peut-être contrôler et sera considérer négligeable. Nous supposons maintenant que les moments E ϵ(ω) |η| sont finis et comme les variables aléatoires ϵ i sont indépendantes pour tout 1 ⩽ i ⩽ p. D'après [START_REF] Abbas | A Taylor series expansion approach to the functional approximation of finite queues[END_REF][START_REF] Bachi | Propagation of epistemic uncertainty in queueing models with unreliable server using chaos expansions[END_REF][START_REF] Soufit | Taylor series expansion approach for epistemic uncertainty propagation in queueing-inventory models[END_REF], nous obtenons une expression explicite de la moyenne et de la variance de la sortie du modèle Y comme suit

E Y = |η|⩾0 L η Y ᾱ η! E α -ᾱ η = |η|⩾0 λ η L η Y ᾱ η! E p i=1 ϵ i η i = |η|⩾0 λ η L η Y ᾱ η! p i=1 E ϵ i η i (1.35) où λ η = p i=1 λ η i i .
Pour simplifier l'expression de la variance, nous fixons : 

β η = λ η L η Y η! et donnons de la même manière l'estimation de la variance de Y V(Y ) = |η|⩾0 β 2 η V p i=1 ϵ i (ω) η i = |η|⩾0 β 2 η E p i=1 ϵ i (ω) 2η i -E p i=1 ϵ i (ω) η i 2 = |η|⩾0 β 2 η p i=1 E ϵ i (ω) 2η i - |γ|⩾0 β 2 2γ p i=1 E ϵ i (ω) 2γ i 2 . ( 1 
Y(α 1 , α 2 ) = Y( ᾱ1 + λ 1 ϵ 1 , ᾱ2 + λ 2 ϵ 2 ).
La série de Taylor d'ordre 3 de la fonction Y (α 1 , α 2 ) autour du point ᾱ = ( ᾱ1 , ᾱ2 ) est donnée par :

Y (α 1 , α 2 ) = Y ( ᾱ1 + λ 1 ϵ 1 , ᾱ2 + λ 2 ϵ 2 ) ≈ Y (ᾱ) + λ 1 ∂Y (ᾱ) ∂α 1 ϵ 1 + λ 2 ∂Y (ᾱ) ∂α 2 ϵ 2 + 1 2! λ 2 1 ∂ 2 Y (ᾱ) ∂α 2 1 ϵ 2 1 + λ 2 2 ∂ 2 Y (ᾱ) ∂α 2 2 ϵ 2 2 + 2λ 1 λ 2 ∂ 2 Y (ᾱ) ∂α 1 ∂α 2 ϵ 1 ϵ 2 + 1 3! λ 3 1 ∂ 3 Y (ᾱ) ∂α 3 1 ϵ 3 1 + λ 3 2 ∂ 3 Y (ᾱ) ∂α 3 2 ϵ 3 2 + 3λ 2 1 λ 2 ∂ 3 Y (ᾱ) ∂α 2 1 ∂α 2 ϵ 2 1 ϵ 2 + 3λ 1 λ 2 2 ∂ 3 Y (ᾱ) ∂α 1 ∂α 2 2 ϵ 1 ϵ 2 2 ,
où ϵ 1 et ϵ 2 sont des bruits aléatoires indépendants.

La quantité E[Y ] est donnée dans (1.35). Par [START_REF] Abbas | A Taylor series expansion approach to the functional approximation of finite queues[END_REF][START_REF] Bachi | Propagation of epistemic uncertainty in queueing models with unreliable server using chaos expansions[END_REF][START_REF] Soufit | Taylor series expansion approach for epistemic uncertainty propagation in queueing-inventory models[END_REF], nous pouvons maintenant calculer les autres quantités 

E Y |ϵ 1 , E Y |ϵ 2 et E Y |ϵ 1 , ϵ 2 : E Y |ϵ 1 = Y (ᾱ) + λ 1 ∂Y (ᾱ) ∂α 1 ϵ 1 + λ 2 ∂Y (ᾱ) ∂α 2 E ϵ 2 + 1 2! λ 2 1 ∂ 2 Y (ᾱ) ∂α 2 1 ϵ 2 1 + λ 2 2 ∂ 2 Y (ᾱ) ∂α 2 2 E ϵ 2 2 + 2λ 1 λ 2 ∂ 2 Y (ᾱ) ∂α 1 ∂α 2 ϵ 1 E ϵ 2 + 1 3! λ 3 1 ∂ 3 Y (ᾱ) ∂α 3 1 ϵ 3 1 + λ 3 2 ∂ 3 Y (ᾱ) ∂α 3 2 E ϵ 3 2 + 3λ 2 1 λ 2 ∂ 3 Y (ᾱ) ∂α 2 1 ∂α 2 ϵ 2 1 E ϵ 2 + 3λ 1 λ 2 2 ∂ 3 Y (ᾱ) ∂α 1 ∂α 2 2 ϵ 1 E ϵ 2 2 . ( 1 
E Y ϵ 1 , ϵ 2 = Y (ᾱ) + λ 1 ∂Y (ᾱ) ∂α 1 E ϵ 1 + λ 2 ∂Y (ᾱ) ∂α 2 E ϵ 2 + 1 2 λ 2 1 ∂ 2 Y (ᾱ) ∂α 2 1 E ϵ 2 1 + λ 2 2 ∂ 2 Y (ᾱ) ∂α 2 2 E ϵ 2 2 + 2λ 1 λ 2 ∂ 2 Y (ᾱ) ∂α 1 ∂α 2 ϵ 1 ϵ 2 + 1 3! λ 3 1 ∂ 3 Y (ᾱ) ∂α 3 1 E ϵ 3 1 + λ 3 2 ∂ 3 Y (ᾱ) ∂α 3 2 E ϵ 3 2 + 3λ 2 1 λ 2 ∂ 3 Y (ᾱ) ∂α 2 1 ∂α 2 ϵ 2 1 ϵ 2 + 3λ 1 λ 2 2 ∂ 3 Y (ᾱ) ∂α 1 ∂α 2 2 ϵ 1 ϵ 2 2 .
(1.38)

Selon les formules (1.37) et (1.38), nous estimons les variances conditionnelles

V E Y|ϵ 1 = V 1 = λ 1 ∂Y(ᾱ) ∂α 1 2 V(ϵ 1 ) + 1 2 λ 2 1 ∂ 2 Y(ᾱ) ∂α 2 1 2 V ϵ 2 1 + 1 3! λ 3 1 ∂ 3 Y(ᾱ) ∂α 3 1 2 V ϵ 3 1 . Pour V E Y|ϵ 2 = V 2 on remplace ϵ 1 par ϵ 2 . V E Y|ϵ 1 , ϵ 2 = V 12 = 1 2 2 2λ 1 λ 2 ∂ 2 Y(ᾱ) ∂α 1 ∂ 2 2 V ϵ 1 ϵ 2 + 1 3! 2 3λ 2 1 λ 2 ∂ 3 Y(ᾱ) ∂α 2 1 ∂α 2 2 V ϵ 2 1 ϵ 2 + 1 3! 2 3λ 1 λ 2 2 ∂ 3 Y(ᾱ) ∂α 1 ∂α 2 2 2 V ϵ 1 ϵ 2 2 -V loc 1 -V loc 2 .
Les indices de sensibilité sont donnés :

S taylor 1 = V 1 V(Y) , S taylor 2 = V 2 V(Y) , S taylor 1,2 = V 12 V(Y) (1.39)

Résultats principaux

Dans cette partie, nous allons faire un résumer des différents résultats obtenus et qui sont présentés sous forme d'articles dans les chapitres 2, 3, 4 et 5. 

Modèle épidémiologique

                       dS dt = τ -µS -βSI dI dt = βSI -(ν + µ + γ + α)I dH dt = αI -(ν + µ + λ)H dR dt = γI + λH -µR.
(1.40) avec les conditions initiales S(0) > 0, I(0) > 0, H(0) ≥ 0, R(0) ≥ 0 où l'interprétation des paramètres est présentée dans le tableau 1.

L'organigramme du modèle proposé dans cet article est donné par la Figure 1. Le modèle (1.40) admet un point trivial à l'équilibre sans maladie noté E 0 = ( τ µ , 0, 0, 0) et donc le nombre de reproduction de base peut être calculé en utilisant la technique de matrice de nouvelle génération [START_REF] Diekmann | The construction of nextgeneration matrices for compartmental epidemic models[END_REF], on trouve :

R 0 = β τ µ(ν + µ + γ + α) (1.41)
En résolvant le système ci-dessous,

dS dt = 0, dI dt = 0, dH dt = 0, dR dt = 0
nous obtenons le point d'équilibre endémique

E 1 = (S 1 , I 1 , H 1 , R 1 )
où

S 1 = ν + µ + γ + α β , I 1 = τ β -µ(ν + µ + γ + α) β(ν + µ + γ + α) , H 1 = ατ β -αµ(ν + µ + γ + α) β(ν + µ + λ)(ν + µ + γ + α) , R 1 = (γ(ν + µ + λ) + λα)(τ β -µ(ν + µ + γ + α)) βµ(ν + µ + λ)(ν + µ + γ + α)
Nous obtenons les théorèmes de stabilité suivants :

Theorem 2 Le point E 0 est localement asymptotiquement stable si R 0 < 1 et instable si R 0 > 1. Theorem 3 L'état d'équilibre endémique E 1 = (S 1 , I 1 , H 1 , R 1 ) est stable si R 0 > 1.
Proof 1.6.1 Pour les preuves des théorèmes 2 et 3, il suffit de calculer la matrice jacobienne au point d'équilibre et de montrer qu'elle admet quatre valeurs propres négatives dont trois sont triviales et la quatrième on utilisant la condition sur R 0 pour montrer qu'elle est négative.

Les prevues des théorèmes 1, 2 et 3 sont données dans le chapitre 2.

Analyse de sensibilité

Compte tenu de l'évolution de la maladie dans le temps, nous supposons que le taux de transmission β varie. Nous nous intéressons à deux taux d'infection, la fonction logistique (voir [START_REF] Tian | Data-driven analysis of the simulations of the spread of COVID-19 under different interventions of China[END_REF]) donnée par

β t = β 0 1 + exp(-kt) (1.42)
où k est l'intensité de la convergence bêta vers β 0 . Et la fonction sinusoïdale donnée par

β t = β 0 1 + ϵ sin 2π T t , (1.43) 
où ϵ est l'amplitude et T la période. Le taux de reproduction de base correspondant est :

R t = τ µ(ν + µ + γ + α) β t = R 0 β 0 β t qui varie dans l'intervalle β -τ µ(ν + µ + γ + α) ; β + τ µ(ν + µ + γ + α) .
Lorsque 2(a), nous pouvons voir que les paramètres qui influencent le plus le compartiment des infectées sont γ et R 

Indices de Sobol

X * = S * X * = I * X * = H * X * = R * X * R ( 
* = S * X * = I * X * = H * X * = R * X * R (2) 0
0.9999 0.9938 0.9868 0.9999 Table 1.5 -Indices de Sobol au temps final t f = 600 avec R (2) 0 et un taux logistique.

Modèle climatique

En 1963, le météorologue Edward Lorenz a été le premier à mettre en évidence la nature probablement chaotique de la météorologie. Le modèle Lorenz Stenflo (en abrégé LS) [START_REF] Leonov | Generalized Lorenz equations for acoustic-gravity waves in the atmosphere. Attractors dimension, convergence and homoclinic trajectories[END_REF] est un modèle simplifié des phénomènes météorologiques basé sur la mécanique des fluides. Le modèle LS est une modélisation dynamique des ondes de gravité acoustiques atmosphériques dans une atmosphère en rotation. La connaissance des ondes acoustiques de gravité est importante car elle peut être à l'origine de changements météorologiques mineurs et de phénomènes à grande échelle. Ce type de phénomène se produit sur tout fluide soumis à un champ de gravité, et peut être rendu visible lorsqu'il y a plusieurs fluides disposés en plusieurs couches. Dans ce cas, les différentes couches de l'atmosphère peuvent donner naissance à des nuages d'ondes de gravité visibles.

Ce travail qui concerne le chapitre 4 consiste à développer une approche numérique de résolution d'équations différentielles basée sur les projections de Galerkin et les extensions des polynômes chaos, présentés dans la section (1.3.3), pour estimer l'influence des paramètres clés (propriétés chimiques de l'atmosphère, rotation, gradient de température, mouvement de convection) du modèle LS. En outre, nous effectuons des simulations du modèle dans un cas non chaotique et dans un cas chaotique et estimons les indices de Sobol lorsque les paramètres suivent la loi uniforme.

Le système LS [START_REF] Leonov | Generalized Lorenz equations for acoustic-gravity waves in the atmosphere. Attractors dimension, convergence and homoclinic trajectories[END_REF] permet de montrer que les perturbations de la gravité acoustique à basse fréquence et à courte longueur d'onde dans l'atmosphère peuvent être décrites par un système de quatre équations de Lorenz généralisées. Ces équations couplées se réduisent aux trois équations de Lorenz classique [START_REF] Lorenz | Deterministic nonperiodic flow[END_REF] lorsque la rotation de la terre n'est pas prise en compte : Le système LS (1.44) a trois points fixes qui sont : l'origine E 0 = (0, 0, 0, 0) et deux autres points

                         ẋ = σ(y -x) + sv ẏ = rx -y -xz ż = xy -bz v = -x -σv (1.
E 1 = -β 1 , -β 2 , β 3 , -β 4 et E 2 = β 1 , β 2 , β 3 , β 4 avec :
β 1 = bβ 3 / 1 + s σ 2 1/2 , β 2 = bβ 3 1 + s σ 2 1/2 , β 3 = r -1 - s σ 2 , β 4 = - β 1 σ .
Dans les deux cas (non chaotique et chaotique), nous supposons que les paramètres σ, b, r, s sont des variables aléatoires indépendantes et nous calculons les indices de Sobol en utilisant la méthode PC détaillée dans la section (1.3.3) pour identifier les paramètres les plus influents. Nous fixons le temps final à t f = 20, les points de quadrature de la méthode On considère un taux court r t , pour tout t ⩾ 0, adapté sur un espace de probabilité filtré (Ω, F t , P). Nous supposons que sous une probabilité Q neutre au risque, le taux court instantané r t suit le processus d'Ornstein-Uhlenbeck avec des coefficients constants :

N q = 8, le degré n = 10 et la condition initiale p 0 = (1, 1, 1, 1

Modèle économique

dr t = κ(θ -r t )dt + σdW t , (1.45) 
où θ représente la valeur moyenne ou valeur à l'équilibre de r, κ est la force de retour à la moyenne qui détermine la vitesse à laquelle le processus reviendra à sa valeur d'équilibre et σ est la volatilité et (W t ) t⩾0 est un mouvement brownien standard. Les constantes σ, θ et κ sont bien définies à long terme et sont toutes positives.

La solution de l'équation (1.45) est définie ∀s ⩽ t, :

r t = r s exp -κ(t -s) + θ 1 -exp -κ(t -s) + σ t s exp -κ(t -u) dW u , ( 1.46) 
Dans le chapitre 5, nous avons développé une approche numérique pour analyser la sensibilité des paramètres (σ, θ, κ) sur le taux d'intérêt r t défini dans (1.46). Une analyse de sensibilité locale est réalisée en utilisant la méthode d'expansion en série de Taylor (TSE) définie dans la section 1.5. En outre, une analyse de sensibilité globale est entreprise à l'aide des techniques de MC (présenté dans la section 5.3.2.2) et FAST (présenté dans la section 1.4). Les indices de sensibilité sont estimés pour les différentes méthodes.

Nous supposons dans le modèle (1.46) que les paramètres d'entrée

X = [X 1 = σ, X 2 = θ, X 3 = κ]
subissent la perturbation suivante :

σ(σ) = σ + λ σ ϵ σ (σ), θ(ω) = θ + λ θ ϵ θ (ω), κ(ω) = κ + λ κ ϵ κ (ω),
où la moyenne et l'écart-type de ces variables aléatoires sont fixés respectivement à : 

σ = 1, θ = 1, κ = 1, λ σ = 0, 1, λ θ = 0, 1 et λ κ = 0,

Introduction

Covid-19 is an infectious disease caused by a coronavirus, Sars-CoV-2, which primarily affects the respiratory tract. Transmission occurs through close contact with a person carrying the virus (mainly through direct contact or through respiratory secretions emitted into the air when coughing, sneezing or talking). This disease appeared in China at the end of 2019 and the virus was identified in early January 2020. The World Health Organization (WHO) declared the disease as a pandemic and was named SARS-CoV-2 virus (March 11, 2020). On August 2021, the number of infected cases confirmed by who reached 202 608 306, and by this date there were 4293591 deaths related to the disease worldwide. On the other hand, the Republic of Djibouti declared its first case of Covid-19 on March 23 (2020) and recorded a very low mortality rate.

Disease models play an important role in understanding and managing the transmission dynamics of various pathogens. We can use them to describe the spatial and temporal patterns of disease prevalence, as well as to explore or better understand the factors that influence infection incidence. Modeling is a key step in understanding what treatments and interventions can be the most effective, how cost-effective these approaches may be, and what specific factors need to be considered when trying to eradicate disease. Some recent studies provided different guidelines by introducing basic reproduction number, education and socio-economic index and lock-down strategies [START_REF] Ahmed | Analysis coronavirus disease (covid-19) model using numerical approaches and logistic model[END_REF][START_REF] Samui | A mathematical model for COVID-19 transmission dynamics with a case study of India[END_REF][START_REF] Tuan | A mathematical model for COVID-19 transmission by using the Caputo fractional derivative[END_REF][START_REF] Okuonghae | Analysis of a mathematical model for COVID-19 population dynamics in Lagos, Nigeria[END_REF].

New variants of the virus are circulating, in particular the Alpha, Beta, Gamma and Delta variants, initially discovered in the United Kingdom, South Africa, Brazil and India respectively. In France, the Delta variant is very predominant. This variant is more contagious, but the vaccines generally retain their efficacy against this variant provided that the vaccination is complete. Djibouti has not been spared by the new variant of Covid19. The most contagious variant spread is hit hard compared to the first wave. The highest average number of daily contamination cases was reported on April 4. There have been 11663 cases of contamination and 156 deaths linked to the coronavirus recorded in Djibouti since the start of the epidemic with 53016 people vaccinated. Some academic studies are conducted in this context, Foy, B.H. and al, (2021) [START_REF] Foy | Comparing COVID-19 vaccine allocation strategies in India : A mathematical modelling study[END_REF], Yavuz, M. and al, (2021) [START_REF] Yavuz | A new mathematical modeling of the COVID-19 pandemic including the vaccination campaign[END_REF], have shown different types of vaccine strategies for Covid-19.

The simplest way to model epidemic spread in populations is to classify people into different population groups or compartments. Compartmental models are governed by a system of differential equations that track the population as a function of time, stratifying it into a different groups based on the risk or infection status, several extensions have been proposed to explain the evolution of Covid-19 disease [START_REF] Yokus | Novel comparison of numerical and analytical methods for fractional Burger-Fisher equation[END_REF][START_REF] Yokuş | Symbolic computation of Caudrey-Dodd-Gibbon equation subject to periodic trigonometric and hyperbolic symmetries[END_REF]. These models have been widely used by scientists around the world to model more complex compartments [START_REF] Yavuz | Stability analysis and numerical computation of the fractional predator-prey model with the harvesting rate[END_REF][START_REF] Inc | Analysis of novel fractional COVID-19 model with real-life data application[END_REF][START_REF] Yusuf | Mathematical modeling of pine wilt disease with Caputo fractional operator[END_REF]. Compartmental models are deterministic, that is, given the same inputs, they produce the same results every time. They are able to predict the various properties of pathogen spread, can estimate the duration of epidemics, and can be used to understand how different situations or interventions can impact the outcome of pathogen spread.

Several extensions have been proposed to explain the evolution of diseases Covid-19 [START_REF] Naik | The role of prostitution on HIV transmission with memory : A modeling approach[END_REF][START_REF] Ndaïrou | Mathematical modeling of COVID-19 transmission dynamics with a case study of Wuhan[END_REF]. Therefore, the model with multiple compartments is useful tool to predict the nature of Covid-19. Thereby, to predict the nature of the Covid-19 à Djibouti, in this works we develop the SIHR model that stratify a population based on their infection status as a function of time such as susceptible class (S), infected class (I), persons Hospitalized (H) and removed class (R). The key objectives of this study are as follows :

1. We analyze the stability of the equilibrium of the model using the basic reproduction number to understand its severity.

2. Theoretical results are established using local and global analysis of the model. 3. Numerical demonstrations validated the analytic outcomes.

The paper is organized as follows : Mathematical Model is elaborately discussed in section 2.2. Positivity and boundedness of solution including auxiliary results are described in section 2.3. In section 2.4, we present the result of existence and uniqueness of the solution.

Then, in section 2.5, we study the basic reproduction number DFE and EEP. Localglobal stability analysis are prescribed in section 2.6. Finally, Section 2.7 provides the data analysis in comparison with the model solution with further prediction to control the epidemic, as a case study in Djibouti.

Model

To study the epidemic of Covid-19 spread at Djibouti, we extend the classical deterministic susceptible-infectious-removed (SIR) epidemic model by adding a hospitalized compartment. In the proposed model, let the total population is divided into four compartment ; those are the susceptible population (S), infected population (I), hospitalized population (H) and recovered population (R).

The differential system that describes this SIHR model is

                       dS dt = τ -µS -βSI dI dt = βSI -(ν + µ + γ + α)I dH dt = αI -(ν + µ + λ)H dR dt = γI + λH -µR. (2.1)
with the initial conditions S(0) > 0, I(0) > 0, H(0) ≥ 0, R(0) ≥ 0 where the interpretation of the parameters is presented in Table 1 below. The flow diagram of the proposed model in this paper is given by the Figure 2.2. 

Positivity and Boundedness of Solution

Positivity and Boundedness of Solution

In this section, we present the study of positivity and limitation of the solution. Taking into account the nonlinear system of equations (2.1), we consider the first equation 

dS dt = τ -µS -βSI, ( 2 
S(t) ≥ 0.
By following the similar steps with the condition in S(t) , it can easily be shown that

I(t) ≥ 0, H(t) ≥ 0 and R(t) ≥ 0 ∀ t > 0 .
The population (N) is then divided into four classes ; the susceptible (S), the infected (I), the hospitalized (H), and the recovered (R) at any time t ≥ 0,

N (t) = S(t) + I(t) + H(t) + R(t)
with the initial conditions S(0) > 0, I(0) > 0, H(0) ≥ 0, R(0) ≥ 0. Now we use the model (2.1) we have

dN dt = dS dt + dI dt + dH dt + dR dt = τ -µN -νI -νH Which give dN dt ≤ τ -µN (2.5)
Integrating the inequality (2.5), using initial condition, we obtain

N (t) ≤ N (0)e -µt + τ µ 1 -e -µt
Letting t tends to infnity, asymptotically we get N (t) < τ µ . Thus we can summarize the above results in the following theorem Theorem 4 The closed region Ω = {(S, I, H, R) ∈ R 4 + : 0 < N < τ µ } is positively invariant set for the system (2.1).

In the next section, we will show the existence and uniqueness of the solution.

Existence and uniqueness

In this section, we present the result of existence and uniqueness of the solution of the COVID-19 model which is given in system (2.1). First, by integrating the system (2.1) over the interval [0, t], we obtain.

S(t) -S(0) = t 0 Φ 1 (z, S) dz, I(t) -I(0) = t 0 Φ 2 (z, I) dz, H(t) -H(0) = t 0 Φ 3 (z, H) dz, R(t) -R(0) = t 0 Φ 4 (z, R) dz. With Φ 1 (t) = τ -(µ + βI(t))S(t), Φ 2 (t) = βS(t) -(ν + µ + γ + α) I(t) Φ 3 (t) = αI(t) -(ν + µ + λ)H(t), Φ 4 (t) = γI(t) + λH(t) -µR(t).
We have the result of the following theorem : Theorem 5 The kernels Φ 1 , Φ 2 , Φ 3 and Φ 4 satisfy the Lipschitz assumptions and contractions if the following inequality is verified :

0 ≤ k 1 , k 2 , k 3 , k 4 < 1.
(2.6)

Where, ||S|| ≤ c 1 , ||I|| ≤ c 2 , ||H|| ≤ c 3 , ||R|| ≤ c 4 , k 1 = µ + βc 2 , k 2 = βc 1 + ν + µ + γ + α, k 3 = ν + µ + λ and k 4 = µ Proof 6
We consider the two functions S 1 and S 2 for the kernel Φ 1 ; I 1 and I 2 be two functions for the kernel Φ 2 ; H 1 and H 2 be two functions for the kernel Φ 3 ; and R 1 and R 2 be two functions for the kernel Φ 4 . Then we have

||Φ 1 (t, S 1 ) -Φ 1 (t, S 2 )|| = ||(µ + βI)(S 1 -S 2 )|| ≤ k 1 ||S 1 -S 2 || ||Φ 2 (t, I 1 ) -Φ 2 (t, I 2 )|| = ||(βS -(ν + µ + γ + α))(I 1 -I 2 )|| ≤ k 2 ||I 1 -I 2 || ||Φ 3 (t, H 1 ) -Φ 2 (t, H 2 )|| = ||(ν + µ + λ)(H 1 -H 2 )|| ≤ k 3 ||H 1 -H 2 ||
and

||Φ 4 (t, R 1 ) -Φ 4 (t, R 2 )|| = ||µ(R 1 -R 2 )|| ≤ k 4 ||R 1 -R 2 ||
Therefore, the Lipschitz conditions are satisfied for kernels Φ 1 , Φ 

S n (t) = S(0) + t 0 Φ 1 (z, S n-1 ) dz, I n (t) = I(0) + t 0 Φ 2 (z, I n-1 ) dz, H n (t) = H(0) + t 0 Φ 3 (z, H n-1 ) dz, R n (t) = R(0) + t 0 Φ 4 (z, R n-1 ) dz.
where S 0 (t) = S(0), I 0 (t) = I(0), H 0 (t) = H(0) and R 0 (t) = R(0). Then we can write

||Ψ n (t)|| = ||S n (t) -S n-1 (t)|| ≤ || t 0 Φ 1 (z, S n-1 ) -Φ 1 (z, S n-2 ) dz||, ||Θ n (t)|| = ||I n (t) -I n-1 (t)|| ≤ || t 0 Φ 2 (z, I n-1 ) -Φ 2 (z, I n-2 ) , dz||, ||Γ n (t)|| = ||H n (t) -H n-1 (t)|| ≤ || t 0 Φ 3 (z, H n-1 ) -Φ 3 (z, H n-2 ) dz||, ||Σ n (t)|| = ||R n (t) -R n-1 (t)|| ≤ || t 0 Φ 4 (z, R n-1 ) -Φ 4 (z, R n-2 ) dz||.
Since the kernels satisfy the Lipschitz condition (see Theorem 5), we get

                       ||Ψ n (t)|| ≤ k 1 t 0 ||S n-1 -S n-2 || dz ≤ k 1 t 0 ||Ψ n-1 (z)|| dz ||Θ n (t)|| ≤ k 2 t 0 ||I n-1 -I n-2 || dz ≤ k 2 t 0 ||Θ n-1 (z)|| dz, ||Γ n (t)|| ≤ k 3 || t 0 ||H n-1 -H n-2 || dz ≤ k 3 || t 0 ||Γ n-1 (z)|| dz, ||Σ n (t)|| ≤ k 4 || t 0 ||R n-1 -R n-2 || dz ≤ k 4 || t 0 ||Σ n-1 (z)|| dz.
(2.7)

Therefore, we obtain results of the following theorem.

Theorem 7 The model of system (2.1) that we have proposed has a solution under the condition :

k i t max < 1, i = 1, 2, 3, 4. (2.8)
Proof 8 Assuming that the hypothesis of the Theorem 5 for the functions 1 ; 2 ; 3 and 4 hold, we can give the following by taking Equation (2.7) into account

     ||Ψ n (t)|| ≤ ||S 0 (t)||(k 1 t max ) n , ||Θ n (t)|| ≤ ||I 0 (t)||(k 2 t max ) n , ||Γ n (t)|| ≤ ||H 0 (t)||(k 3 t max ) n , ||Σ n (t)|| ≤ ||R 0 (t)||(k 4 t max ) n .
(2.9)

Now we assume

     S(t) -S(0) = S n (t) -f n (t), I(t) -I(0) = I n (t) -g n (t), H(t) -H(0) = H n (t) -h n (t), R(t) -R(0) = R n (t) -ρ n (t).
(2.10)

Then we get

||f n (t)|| ≤ || t 0 Φ 1 (z, S) -Φ 1 (z, S n-1 ) dz|| ≤ t k 1 ||S -S n-1 ||, ||g n (t)|| ≤ || t 0 Φ 2 (z, I) -Φ 2 (z, I n-1 ) , dz|| ≤ t k 2 ||I -I n-1 ||, ||h n (t)|| ≤ || t 0 Φ 3 (z, H) -Φ 3 (z, H n-1 ) dz|| ≤ t k 3 ||H -H n-1 ||, ||ρ n (t)|| ≤ || t 0 Φ 4 (z, R) -Φ 4 (z, R n-1 ) dz|| ≤ t k 4 ||R -R n-1 ||,
repeating this process recursively and considering t = t max , taking the upper bound of the time interval into account, we get

     ||f n (t)|| ≤ (t max ) n+1 k n 1 σ, ||g n (t)|| ≤ (t max ) n+1 k n 2 σ, ||h n (t)|| ≤ (t max ) n+1 k n 3 σ, ||ρ n (t)|| ≤ (t max ) n+1 k n 4 σ.
(2.11)

Basic reproduction number

Let n tends to infinity, we then obtain 

||f ∞ (t)|| → 0, ||g ∞ (t)|| → 0, |h ∞ (t)|| → 0,
||S 1 (t) -S 2 (t)|| = || t 0 Φ 1 (z, S 1 ) -Φ 1 (z, S 2 ) dz|| ≤ k 1 t||S 1 (t) -S 2 (t)||, ||I 1 (t) -I 2 (t)|| = || t 0 Φ 2 (z, I 1 ) -Φ 2 (z, I 2 ) dz|| ≤ k 2 t||I 1 (t) -I 2 (t)||, ||H 1 (t) -H 2 (t)|| = || t 0 Φ 3 (z, H 1 ) -Φ 3 (z, H 2 ) dz|| ≤ k 3 t||H 1 (t) -H 2 (t)||, ||R 1 (t) -R 2 (t)|| = || t 0 Φ 4 (z, R 1 ) -Φ 4 (z, R 2 ) dz|| ≤ k 4 t||R 1 (t) -R 2 (t)||,
we deduce that

||S 1 (t) -S 2 (t)||(1 -k 1 t) ≤ 0, ||I 1 (t) -I 2 (t)||(1 -k 2 t) ≤ 0, ||H 1 (t) -H 2 (t)||(1 -k 3 t) ≤ 0, ||R 1 (t) -R 2 (t)||(1 -k 4 t) ≤ 0. Therefore, we obtain ||S 1 (t) -S 2 (t)|| = 0, ||I 1 (t) -I 2 (t)|| = 0, ||H 1 (t) -H 2 (t)|| = 0 and ||R 1 (t) -R 2 (t)|| = 0 which means that S 1 (t) = S 2 (t), I 1 (t) = I 2 (t), H 1 (t) = H 2 (t) and R 1 (t) = R 2 (t).
This explains that the model has a unique solution which is the proof of the theorem. □

Basic reproduction number

Compartmental models are deterministic, that is, given the same inputs, they produce the same results every time. They are able to predict the various properties of the spread of the virus, can estimate the duration of epidemics and can be used to understand how different situations or interventions can affect the results of the spread. To do this, the R 0 parameter, describing the average number of new infections due to a sick individual, plays a crucial role. As you can imagine, if this number is less than 1 then the epidemic will tend to die out. In this case, the disease-free equilibrium (DFE) will be locally asymptotically stable and the disease cannot persist in the population. However, if R 0 > 1, it may persist or even spread to the whole population. This implies that the disease-free equilibrium (DFE) is unstable. Using next generation matrix [START_REF] Diekmann | The construction of nextgeneration matrices for compartmental epidemic models[END_REF] the basic reproduction of (2.1) is found here. Since the DFE is E 0 = ( τ µ , 0, 0, 0) t and hence the basic reproduction number can be found using the analytical approach. Let us we define F = ∂G ∂x j (E 0 ) and V = ∂U ∂x j (E 0 ), the reproduction number for the Covid-19 model given by (2.1) can be calculated from the relation R 0 = ρ(F V -1 ), the spectral radius of F V -1 is given below

R 0 = β τ µ(ν + µ + γ + α) (2.12)
To find the endemic equilibrium state of the model we set

dS dt = 0, dI dt = 0, dH dt = 0, dR dt = 0
Solving the above system, we get the epidemic equilibrium (EEF) state

E 1 = (S 1 , I 1 , H 1 , R 1 )
where

S 1 = ν + µ + γ + α β , I 1 = τ β -µ(ν + µ + γ + α) β(ν + µ + γ + α) , H 1 = ατ β -αµ(ν + µ + γ + α) β(ν + µ + λ)(ν + µ + γ + α) , R 1 = (γ(ν + µ + λ) + λα)(τ β -µ(ν + µ + γ + α)) βµ(ν + µ + λ)(ν + µ + γ + α)

Stability and bifurcation of the equilibrium states

In this section we shall establish the stability and bifurcation condition if the equilibrium points. In Theorem 11, we shall establish nature of the E 0 and in Theorem 13 nature of E 1 .

Stability and bifurcation of disease-free equilibrium state

Theorem 11 The DFE will be locally asymptotically stable if R 0 < 1 and unstable if R 0 > 1.

Proof 12

The Jacobian matrix corresponding to the system (2.1) at DFE point E 0 = ( τ µ , 0, 0, 0)

J (E 0 ) =                  -µ -βτ µ 0 0 0 βτ µ -(ν + µ + γ + α) 0 0 0 α -(ν + µ + λ) 0 0 γ λ -µ                 
The characteristic roots of the Jacobian matrix at J (E 0 ) are -µ, -λ -ν -µ, -µ and

(ν + µ + γ + α)(R 0 -1)
. Since the first three roots are negative the other is negative if

R 0 < 1 and positive if R 0 > 1. Therefore, the disease-free equilibrium state (E 0 ) is locally asymptotically stable if R 0 < 1 and unstable if R 0 > 1. □ Since when R 0 = 1 i.e when β = β = µ(ν + µ + γ + α) τ
then one of the eigenvalues of the Jacobin matrix corresponding to the system (2.1) at DFE is zero. Using the Theorem by Castillo-Chavez and Song [START_REF] Castillo-Chavez | Dynamical models of tuberculosis and their applications[END_REF] and Martcheva Maia [START_REF] Martcheva | An introduction to mathematical epidemiology[END_REF], we investigate the nature of the disease free equilibrium points. Let V d and V g be the eigenvector corresponding to the zero eigenvalue of J (E 0 ) and [J (E 0 )] t respectively then

V d =              -(ν+µ+γ+α µ ) 1 α ν+µ+λ αλ+γ(ν+µ+λ) µ(ν+µ+λ)              and V g =              0 1 0 0              and let T =              τ -µS -βSI βSI -(ν + µ + γ + α)I αI -(ν + µ + λ)H γI + λH -µR.              then V t g T β | E 0 ,β= β = 0, V t g DT β | E 0 ,β= β V d = τ µ ̸ = 0 V t g D 2 T | E 0 ,β= β (V d , V d ) = -2(ν + µ + γ + α) 2 τ ̸ = 0
Hence the system experiences transcritical bifurcation when the rate of infection crosses the critical value β = β. Thus to spreading the disease the rate of transmission plays important role. There are critical values of the rate of infection which the disease easy to control but above of which the society will experience endemic disease spreading.

Stability of endemic equilibrium state

Theorem [START_REF] Castillo-Chavez | Dynamical models of tuberculosis and their applications[END_REF] The endemic equilibrium state

E 1 = (S 1 , I 1 , H 1 , R 1 ) is stable if R 0 > 1.

Proof 14

The Jacobian corresponding to the endemic equilibrium point E 1 is J (E 1 ) is given below

J (E 1 ) =                  -µ -βI 1 -βS 1 0 0 βI 1 βS 1 -(ν + µ + γ + α) 0 0 0 α -(ν + µ + λ) 0 0 γ λ -µ                 
The characteristic polynomial of the Jacobian matrix at J (E 1 ) is

det(J (E 1 ) -X I 4 ) = -µ -X -ν -µ -λ -X X 2 -aX + b)
The roots of the characteristic equations are X 1 = -µ < 0, X 2 = -ν -µ -λ < 0 and other two satisfies the following quadratic equation

X 2 -aX + b = 0, (2.13)
the two roots of (2.13) are negative because

a = -τ β ν + µ + γ + α < 0 and b = µ(ν + µ + γ + α)(R 0 -1) > 0 if R 0 > 1. □

Parameter Estimation, Model Validation and Prediction

In this study, we considered the country Djibouti less infected with the Covid-19 virus and collected the data available online in chronological order from World Health Organization.

Parameter Estimation

Using Matlab minimization technique and fminsearch software package, we have estimated the important model parameters using the Djibouti infection cases from 15th March to 15th May, 2021 (total days 60) which are given in Table 2. To estimate the important model parameters we consider the cumulative number of infected persons from the real data source and the model predicted cumulative number of infected persons. The fitness of the model comparing to the real data can be verified by computing the residual. The residuals are defined as

residuals = Y j -I(t j ) |j = 1, 2, 3, ...., n
where Y j is the j th day cumulative infection data and I(t j ) model predicted cumulative infected data of the same day. If the residuals are randomly distributed then we can say that the fitness is reasonably good [START_REF] Biswas | Mathematical model of ZIKA virus dynamics with vector control and sensitivity analysis[END_REF]. To study the particular case : the spreading of Covid-19 in Djibouti we have considered the real cases in cumulative number of infection (from March 15 to May 15, 2021) and using the above described formula we have estimated the model parameters, using the global sensitivity index method we found the sensitivity index of the parameters. To execute the Matlab package, we have considered the initial population size as S(0) = 986363, I(0) = 2, H(0) = 0, and R(0) = 0. The estimated model parameters and their sensitivity induces are given in Table 2. To validate the model we consider the real case of Covid-19 infection of Djibouti from 15 March to 15 May, 2021 i.e. the real cases for 60 days. "' the curves word missing new infection of real cases and the model predictions.

Figure 14 shows that the peak of death corresponding to the peak of number of confirmed cases in figure 13(b). As a result, the more the Covid-19 epidemic spreads, the more the number increases. Figure 15(a) shows that the infected gradually decreases compared to the day before while we see a strong increase in deaths between the 10th day and 20th day. for whoever is in Figure 15(b), the percentage of the number of deaths and infected evolves in a regressive manner. As a result, the more the number of infected increases, the more the number of deaths from the epidemic increases. We observe in Figure 16 (a-b) that the susceptible population is decreasing with time, which means more and more people are getting exposed. Since infected population is increasing, therefore they are getting large number of infected individuals over time which can lead to an outbreak in a very short time. If we analyze the rest of the population dynamics, we see that the infected population grew faster over the last 40 days, which shows that the spread of the epidemic over time and this corresponds well to the actual data of Figure 13 (b). We also see in Figure 16 (a) a lower rate infected initially meanwhile the recovered population is not growing as much as infected population in Figure 16 (b). Using the parameters that are estimated in Table 2, we can determine the value of the basic reproduction number in equation (2.12), 

Conclusion

In this study, we have formulated a SIHR epidemic model for pandemic Covid-19. All the properties necessary for epidemiological relevance have also been proved. Theoretically it is proven that the dynamics depends on the basic reproduction number to examine the stability of the system. All the properties necessary for epidemiological relevance have also been proved. We have estimated the parametric values for Djibouti using on the data of the ministry of health. The maximum number of reported cases was observed on 4 April 2021 ; which means that the number of infections was on an upward quickly trend for the next 10 days. After that day, the number of daily reported cases was observed to decrease asymptotically. In future studies, vaccination strategies may be implemented to control the COVID-19 epidemic. Also, the extension of the compartment model can be considered.

Chapitre 3

Analyse de sensibilité globale du modèle épidémiologique SIHR

Introduction

The simplest way to model epidemic spread in populations is to classify people into different population groups or compartments. Compartmental models are governed by a system of differential equations that follow the population over time, dividing them into different groups based on risk or infection status. The Kermack-Mckendric SIR model (susceptible-infectious-removed) is a very well established model and is widely used for various epidemics [START_REF] Kermack | A contribution to the mathematical theory of epidemics[END_REF]. To do this, the SIR, SIRS and SEIR models have been developed which highlight the crucial role played by the R 0 parameter, describing the average number of new infections due to a sick individual [START_REF] Yokuş | Symbolic computation of Caudrey-Dodd-Gibbon equation subject to periodic trigonometric and hyperbolic symmetries[END_REF][START_REF] Yavuz | Stability analysis and numerical computation of the fractional predator-prey model with the harvesting rate[END_REF]. We are interested in the SIHR model obtained from the classical SIR epidemic model by adding a hospitalized

3.1. Introduction compartment.
The SIHR model appears in several research works [START_REF] Jiao | An SIHR epidemic model of the COVID-19 with general population-size dependent contact rate[END_REF][START_REF] Tian | Data-driven analysis of the simulations of the spread of COVID-19 under different interventions of China[END_REF]. The course of a disease depends on several parameters (infection rate, cure rate, hospitalization rate, vaccination, ...,etc).

During the development, construction or use of a mathematical model, sensitivity analysis can prove to be a valuable tool. It is possible to group the sensitivity analysis methods into three classes : screening methods, which consist of a qualitative analysis sensitivity of the output variable to the input variables, local analysis methods [START_REF] Turányi | Sensitivity analysis of complex kinetic systems. Tools and applications[END_REF], which quantitatively assess the impact of a small variation around a given value of the inputs and finally the global sensitivity analysis methods [START_REF] Arnst | Computation of Sobol indices in global sensitivity analysis from small data sets by probabilistic learning on manifolds[END_REF][START_REF] Morio | Global and local sensitivity analysis methods for a physical system[END_REF][START_REF] Sobol | Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[END_REF] which are interested in the variability of the output of the model in the whole of its range of variation. Global sensitivity analysis studies how the variability of inputs affects that of output, by determining how much of the variance of output is due to a given input or set of inputs. Indeed, by studying how the response of the model reacts to variations in its input variables, the sensitivity analysis makes it possible to answer a number of questions : what are the variables that most contribute to the variability of the model response ? What are the least influential variables ? Which variables, or which groups of variables, interact with which others ? To answer these questions, we use the Sobol indices. The sensitivity analysis is used in different mathematical models [START_REF] Arnst | Computation of Sobol indices in global sensitivity analysis from small data sets by probabilistic learning on manifolds[END_REF][START_REF] Morio | Global and local sensitivity analysis methods for a physical system[END_REF][START_REF] Zhang | Global sensitivity analysis of COVID-19 mathematical model[END_REF]. A global sensitivity analysis based on the chaos polynomial method is illustrated in several works [START_REF] Chen-Charpentier | Epidemic models with random coefficients[END_REF][START_REF] Santonja | Uncertainty quantification in simulations of epidemics using polynomial chaos[END_REF][START_REF] Xiong | Dynamic system uncertainty propagation using polynomial chaos[END_REF]. Several articles [START_REF] Chen-Charpentier | Epidemic models with random coefficients[END_REF][START_REF] Kloeden | The dynamics of epidemiological systems with nonautonomous and random coefficients[END_REF] have studied the sensitivity analysis of a nonautonomous system and with random parameters.

Among the significant number of papers dealing with the COVID-19 disease, a large proportion of them are dedicated to predict the number of infected people. For example, we can quote [START_REF] Singh | Prediction of COVID-19 CORONA virus pandemic based on time series data using support vector machine[END_REF] that use a machine learning model (namely a Support Vector Machine model) to accurately predict the spread of the disease. It is also worth noticing that in the descriptive analysis performed in [START_REF] Bhatnagar | Descriptive analysis of COVID-19 patients in the context of India[END_REF] on Indians people, the authors show that the age of the infected people is not the most significant factor with respect to the fatality of the disease. The objective of this paper is to develop the stochastic collocation method based on Lagrange polynomials to study the sensitivity analysis in the input parameters of the nonautonomous SIHR epidemiological model on the course of the disease with an infection rate depending on time. We assume that these parameters are not precisely known and that they can therefore be modeled as random variables with known laws. To compute the Sobol indices, applied to the numerical approximation of differential equations, we use the stochastic collocation method based on the Lagrange polynomials [START_REF] Chauvière | An efficient spectral method for the numerical solution to some classes of stochastic differential equations[END_REF]. In [START_REF] Khan | Numerical analysis of stochastic SIR model by Legendre spectral collocation method[END_REF], the authors used the stochastic collocation method based on Legendre polynomials. The solution of the differential equation is represented by means of orthogonal's polynomials. The coefficients of the polynomial basis are functions of time and can be calculated by solving a system of deterministic ordinary differential equations.

The organization of the paper is as follows : in section 3.2, we introduce the model and describe the evolution of the disease with a nonautonomous infection rate. In section 3.3 and 3.4, we introduce the theory on sensitivity analysis and the stochastic collocation method. In section 3.5, we compute the Sobol indices to understand the influence of the random input variables on the compartments. We simulate the Sobol indice when the parameters follow the uniform law with two different nonautonomous infection rate.

The SIHR epidemiological model

In this paper, we consider the following SIHR compartment model :

                           dS t dt = τ -µS t -βS t I t dI t dt = βS t I t -(ν + µ + γ + α)I t dH t dt = αI t -(ν + µ + λ)H t dR t dt = γI t + λH t -µR t , (3.1) 
where S t (respectively, I t , H t and R t ) is the proportion of susceptible (respectively, infected, hospitalized, recovered) in the population at time t and with initial condition S 0 > 0, I 0 > 0, H 0 ≥ 0, R 0 ≥ 0. We consider that the mortality of infected people and hospitalized people is the same. The interpretation of parameters is presented in Table 1. The system (3.1) is positive that means that the solution remains positive for any trajectory initialized at positive conditions.

Notations

The basic reproduction number R 0 is an epidemiological metric used to describe the contagiousness or transmissibility of infectious agents. This number is the average number of susceptible an infected person will infect at the start of the epidemic. This parameter plays a crucial role. Following [START_REF] Castillo-Chavez | Dynamical models of tuberculosis and their applications[END_REF][START_REF] Diekmann | The construction of nextgeneration matrices for compartmental epidemic models[END_REF][START_REF] Van Den Driessche | Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission[END_REF], R 0 of the system (3.1) is given by

R 0 = τ µ(ν + µ + γ + α) β .
When the parameter β don't varies over time, the system (3.1) is said to be autonomous and one can check readily that it admits two equilibrium points. The disease-free equilibrium E 0 = τ µ , 0, 0, 0 which always exists and it is globally asymptotically stable if R 0 < 1. If R 0 > 1, there is an endemic equilibrium state E * = (S * , I * , H * , R * ) which is locally asymptotically stable and given by (see [START_REF] Jiao | An SIHR epidemic model of the COVID-19 with general population-size dependent contact rate[END_REF]) :

                           S * = S * (R 0 , α, γ, λ) = τ µ × R 0 I * = I * (R 0 , α, γ, λ) = τ µ + ν + γ + α 1 - 1 R 0 H * = H * (R 0 , α, γ, λ) = ατ (µ + ν + λ)(µ + ν + γ + α) 1 - 1 R 0 R * = R * (R 0 , α, γ, λ) = γτ (µ + ν + λ) + λατ µ(µ + ν + λ)(µ + ν + γ + α) 1 - 1 R 0 . (3.2)
Taking policy interventions into account, it makes sense to assume that the transmission rate varies over time in the SIHR model, in such case the system is said nonautonomous. We assume that the parameter β varies over time and would decrease with the interventions. For example, we assume that 

β t ∈ C R, [β -, β + ] , where 0 < β -⩽ β + < ∞.
R t = τ µ(ν + µ + γ + α) β t = R 0 β 0 β t which varies in the interval β -τ µ(ν + µ + γ + α) ; β + τ µ(ν + µ + γ + α) .
We will be intersted in two infection rate. The logistic function (see [START_REF] Tian | Data-driven analysis of the simulations of the spread of COVID-19 under different interventions of China[END_REF]) given by

β t = β 0 1 + exp(-kt) (3.3)
where k is the intensity of beta convergence towards β 0 . And the sinusoidal function given by

β t = β 0 1 + ϵ sin 2π T t , (3.4)
where ϵ is the amplitude and T the period.

Parameter estimation and simulations

The COVID-19 virus is a new virus linked to the same family of viruses as Severe Acute Respiratory Syndrome (SARS) and some types of common cold [START_REF] Chowell | SARS outbreaks in Ontario, Hong Kong and Singapore : the role of diagnosis and isolation as a control mechanism[END_REF][START_REF] Ma | Dynamical modeling and analysis of epidemics[END_REF][START_REF] Martcheva | An introduction to mathematical epidemiology[END_REF]. Coronaviruses are a large family of viruses that can be pathogenic for humans and animals. The novel corona virus was first identified by health authority of Wuhan province of China.

This epidemic is deadlier than the 21st century seasonal flu epidemics in France. You have to go back to 1957-1958 and 1968-1969 R 0 is calculated from a population that is fully susceptible to be infected. It corresponds to the product of three factors : the risk of contracting the virus during contact, the number of contacts in a unit of time and the number of days an infected person is contagious (up to 14 days for coronavirus). In case of the coronavirus, which is a very contagious virus, this R 0 was before confinement at 3 or more. For the same virus, the R 0 can vary from one population to another depending on population density, susceptibility and other factors.

In Figures 17 and18, we consider the sinusoidal transmission rate (3.4) for two different basic reproduction rate R In Figures 17 and19, we see exactly the same evolution of the system with two different transmission rates. We notice that there will be one wave after 13 days. In these Figures, we observe that the susceptible population is decreasing with time and more people are getting exposed. Since infected population is increasing, there is a large number of infected individuals over time which can lead to an outbreak in a very short time. If we analyze the rest of the population dynamics, we see that the infected population grew faster in the first 20 days, which shows the spread of the epidemic over time.

In Figures 18 and20, for R

(2) 0 = 0.95 < 1, we note that the population increases almost linearly and that the number of infected and hospitalized decreases until approaching to zero. We see exactly the same evolution of the system with two different transmission rates. We note that with a reproduction rate R

(2) 0 the epidemic will not last over time.

For an R

(1) 0 = 3 we have a peak of infectivity in the population after 13 days, see Figures 17 and 19. In contrary, there is not a peak of infectivity in the population for an R (2) 0 = 0.95 and an epidemic that will not last over time, see Figures 18 and20.

Sensitivity analysis

The purpose of sensitivity analysis, is to investigate the influence of each input parameter and their possible interactions onto the output measures. Sensitivity analysis can be divided into two main methods : local analysis based on a local perturbation around an average value and global analysis that considers input parameters as random variables and decomposes the output variance into several components. The Sobol indices belong to the latter type of methods.

Denote by (Ω, A, P) the probability space, where Ω is the set of all possible outcomes, A is a σ-algebra over Ω, and P is a function A → [0, 1] that gives a probability measure on A. Consider an R p -valued random vector with independent components X = (X 1 , • • • , X p ) that describes input uncertainties. The probability law of X is defined by the probability density function

p X (x) = p i=1 p i (x i ),
where p i is the marginal probability density of X i . We suppose that each component X i is a real random variable with finite second order moments, i.e.

E(X

2 i ) = x 2 i p i (x i )dx i < ∞, (3.5) 
where E stands for the mathematical expectation.

We consider the mathematical model Y = Y (X), where the input parameter X = (X 1 , . . . , X p ) consists of p independent random variables which satisfy (3.5), and similarly, Y is assumed to have a finite second order moment. [START_REF] Sobol | Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[END_REF] proposed an indicator of the influence of the input parameter X i defined by

S i = V E(Y |X i ) V(Y ) . ( 3.6) 
commonly termed 'first order Sobol index'. The S i index, between 0 and 1, is high when the influence of X i is large.

V i = V(E(Y /X i ))
is the conditional variance of Y with respect to X i and V = V(Y ) is the total variance of Y . Similarly, sensitivity indices of higher order can be defined by first introducing the following decomposition of the total variance

V(Y ) = p i 1 =1 V i + 1≤i 1 <i 2 ≤p V i 1 i 2 + 1≤i 1 <i 2 <i 3 ≤p V i 1 i 2 i 3 + • • • + V i 1 ...ip , ( 3.7) 
where

V i 1 = V(E(Y /X i 1 )), V i 1 i 2 = V(E(Y /X i 1 , X i 2 )) -V i 1 -V i 2 , V i 1 i 2 i 3 = V(E(Y /X i 1 , X i 2 , X i 3 )) -V i 1 i 2 -V i 1 i 3 -V i 2 i 3 -V i 1 -V i 2 -V i 3 , • • • , (3.8) V i 1 ...ip = V - p i=1 V i - 1≤i 1 <i 2 ≤p V i 1 i 2 -• • • - 1≤i 1 <i 2 ...<i p-1 ≤p V i 1 ...i p-1 .
By equations (3.6) and (3.7) we obtain the formulas for the various Sobol indices of orders greater than 1

                                   S i,j = V E(Y |X i , X j ) V(Y ) -S i -S j , S i,j,k = V E(Y |X i , X j , X k ) V(Y ) -S i -S j -S k -S i,j -S i,k -S j,k , .... S 1,...,p = V E(Y |X 1 , ..., X p ) V(Y ) - U ⊆{1,...,p} S U .
(3.9)

For a problem with p input random parameters, it can be shown that (2 p -1) Sobol indices can be computed for each output random quantity of interest. When the number of input random variables is large, the number of Sobol indices grows exponentially and it becomes difficult to draw information from these statistics. Although Sobol indices could be computed by estimating integrals appearing into equa-tions (3.8), such a procedure would be both computationally expensive and hardly tractable. Instead, computing those indices from the Lagrange polynomials representation of the random output Y turns out to be an efficient alternative and it is adopted in this work.

The Stochastic collocation method

In this section, we describe a method called the stochastic collocation method (SCM).

We will present briefly this method when Y depends only on one random variable X and then apply it to the case of many random variables. This method makes it possible to represent a random variable Y of unknown distribution as a function of a random variable X of known distribution in the form

Y = p i=1 y i L i (X) (3.10)
where {L i (x)} p i=1 are Lagrange polynomial basis and {y i } p i=1 are real numbers. If a relation Y = f (X) exists then y i = f (x i ) and relation (3.10) becomes the projection of f on the basis of Lagrange polynomials. Before describing the method, we will recall two concepts that are important. These two notions are the interpolation polynomials and the quadrature rule. Let P p denote the linear space of polynomials of degree less or equal to p. Let (p + 1) distinct points x 0 , x 1 , ..., x n and corresponding values y 0 , y 1 , ..., y p , then there exists a unique polynomial P ∈ P p such that P (x i ) = y i . Lagrange establishes a representation of such polynomials under the form

P (x) = p i=0 y i L i (x),
where

L i (x) = p j=0|j̸ =i x -x j x i -x j , i = 0, ..., p. (3.11)
This equality shows that the quality of the approximation depends only on the choice of the points x i , for more details see [START_REF] Gottlieb | Numerical analysis of spectral methods : theory and applications[END_REF].

Designing a set of points is not easy and for numerical simulations, it is convenient to choose points x i which correspond to quadrature rules because they present good approximation properties. When our model contains a limited number of random input variables, the Gauss quadrature rule is used. We recall here that a quadrature rule is written as a weighted sum as follows

I f (x)p X (x)dx ≈ p i=0 ω i f (x i ) (3.12)
where ω i are the quadrature weight and x i are the quadrature points and p X is a positive function that corresponds to a probability density of X. We choose x i and ω i so that the relation (3.12) is exact when f is a polynomial of degree less than or equal to 2p -1, for more details see [START_REF] Dahlquist | Numerical methods in scientific computing[END_REF][START_REF] Davis | Methods of numerical integration[END_REF][START_REF] Golub | Calculation of Gauss quadrature rules[END_REF][START_REF] Rahman | Extended polynomial dimensional decomposition for arbitrary probability distributions[END_REF].

Given the set of collocation points {x i } 0⩽i⩽p , the function h can be evaluated at these points and approximated as follows :

h(x) ≃ p i=0 h(x i )L i (x). (3.13)
The quality of the approximation depends solely on the regularity of h and the choice of collocation points {x i } 0⩽i⩽p . It is independent of the nature of the input argument X, whether it is a real variable, a random variable or a stochastic process. The perfection of the method lies in the interpolation points which are chosen to coincide with the quadrature points of (3.12) and, according to [START_REF] Chauvière | An efficient spectral method for the numerical solution to some classes of stochastic differential equations[END_REF][START_REF] Gottlieb | Numerical analysis of spectral methods : theory and applications[END_REF], the approximation error of (3.13) could be controlled because the construction of the quadrature rule and the orthogonal polynomials are carried out together [START_REF] Gautschi | Orthogonal polynomials : computation and approximation[END_REF][START_REF] Gayrard | Analyse bayésienne de la gerbe d'éclats provoquée pa l'explosion d'une bombe à fragmentation naturelle[END_REF]. In the case of a random variable, we can write the approximation

Z = h(X) ≃ p i=0 h(x i )L i (X). (3.14)
Statistical quantities such as the mean or variance can be calculated directly from (3.14). Furthermore, using the property of Lagrange polynomials L i (x j ) = δ ij (where δ ij is the Kronecker symbol) and the equations (3.10) and (3.12), it is easy to show that the formulae for the mean and variance simplify to

E(Z) ≃ p i=0 ω i h(x i ) et V(Z) ≃ p i=0 ω i h(x i ) 2 -E(Z) 2 (3.15)
For more information on the stochastic collocation method, see [START_REF] Chauvière | An efficient spectral method for the numerical solution to some classes of stochastic differential equations[END_REF][START_REF] Chauviere | Efficient computation of rcs from scatterers of uncertain shapes[END_REF][START_REF] Xiu | High-order collocation methods for differential equations with random inputs[END_REF] in which the authors apply the method with random variables and stochastic processes.

We will illustrate the method by computing the Sobol indices for the SHIR model (3.1). We consider the compartment susceptible S. We suppose that the input variable

X := (X 1 , X 2 , X 3 , X 4 ) := (β, α, γ, λ)
are independent random variables with density function p X (x) = 4 k=1 p X k (x k ).

We have the following decomposition of S in Lagrange polynomials

S t (X) = 4 i,j,k,l=0
S ijkl (t)L ijkl (X), (3.16)

I t (X) = 4 i * ,j * ,k * ,l * =0 I i * j * k * l * (t)L i * j * k * l * (X), (3.17) 
where we used the notation L i,j,k,l (X) : 

= L i (X 1 )L j (X 2 )L k (X 3 )L l (X 4 ),
dS ijkl (t) dt L ijkl (X) = τ -β 4 i,j,k,l=0 S ijkl (t)L ijkl (X) × 4 i * ,j * ,k * ,l * =0 I i * j * k * l * (t)L i * j * k * l * (X) -µ 4 i,j,k,l=0 S ijkl (t)L ijkl (X). (3.18)
For the particular value X ′ = (x m , x n , x p , x q ), we obtain

L i,j,k,l (X ′ ) = L i (x m ) L j (x n ) L k (x p ) L l (x q ) = δ im × δ jn × δ kp × δ lq
where δ im is the Kronecker symbol. So, the last equation (3.18) becomes

dS mnpq dt = τ -β m S mnpq I mnpq -µS mnpq . (3.19)
Similar equations can be written for the other components of the differential equation.

Furthermore, using (3.12), it can be shown that

E[S t (X)] = 4 i,j,k,l=0 S ijkl (t) L ijkl (x)p X (x)dx = 4 i,j,k,l=0 S ijkl (t)ω i ω j ω k ω l . (3.20)
Taking the square of the decomposition (3.16), we obtain

S t (X) 2 = 4 i,j,k,l,i * ,j * ,k * ,l * =0 S ijkl (t)S i * j * k * l * (t)L ijkl (X)L i * j * k * l * (X).

The Stochastic collocation method

In a similar way as before and using (3.12), we obtain :

E S t (X) 2 = 4 i,j,k,l=0 S ijkl (t) 2 ω i ω j ω k ω l . (3.21)
The variance of S t (X) is given by

V(S t (X)) = E S t (X) 2 -E[S t (X)] 2 .
Now, we will calculate the Sobol indices for S. We recall the Sobol indice S X 1

S X 1 (t) = V E(S t (X)|X 1 ) V(S t (X)) = E E(S t (X)|X 1 ) 2 -E E(S t (X)|X 1 ) 2 V(S t (X)) . (3.22)
We have

E(S t (X)|X 1 ) = i,j,k,l S ijkl (t)L i (X 1 ) L j (x 2 )L k (x 3 )L l (x 4 )p X 2 (x 2 )p X 3 (x 3 )p X 4 (x 4 )dx 2 dx 3 dx 4 = i,j,k,l S ijkl (t)L i (X 1 )ω j ω k ω l .
Taking its square, we obtain

E(S t (X)|X 1 ) 2 = i,j,k,l,i * ,j * ,k * ,l * S ijkl (t)S i * j * k * l * (t)ω j ω k ω l L i (X 1 )ω j * ω k * ω l * L i * (X 1 ) .
Then, the mean of the squared term is

E E(S t (X)|X 1 ) 2 = i,j,k,l,i * ,j * ,k * ,l * S ijkl (t)S i * j * k * l * (t)ω j ω k ω l ω j * ω k * ω l * L i (x 1 )L i * (x 1 )p X 1 (x 1 )dx 1 = i,j,k,l,j * ,k * ,l * S ijkl (t)S ij * k * l * (t)ω i ω j ω k ω l ω j * ω k * ω l * .
And the term E E(S t (X)|X 1 ) appearing in (3.22) is equal to E(S t (X)) which is given by (3.20).

For the other Sobol indices of order 1, we do exactly the same. Now, we are going to calculate the Sobol indice of order 2. As for the indices of order 1, we will just calculate a single indice of order 2 and the other indices are done in exactly the same way.

We recall the Sobol indice S X 1 ,X 2 (t) :

S X 1 ,X 2 (t) = E E(S t (X)|X 1 , X 2 ) 2 -E E(S t (X)|X 1 , X 2 ) 2 V(S t (X)) -S X 1 (t) -S X 2 (t). (3.23)
Using (3.12), we have

E(S t (X)|X 1 , X 2 ) = i,j,k,l S ijkl (t)L i (X 1 )L j (X 2 ) L k (x 3 )L l (x 4 )p X 3 (x 3 )p X 4 (x 4 )dx 3 dx 4 = i,j,k,l S ijkl (t)L i (X 1 )L j (X 2 )ω k ω l .
Taking the square of the last expression, we obtain :

E(S t (X)|X 1 , X 2 ) 2 = i,j,k,l,i * ,j * ,k * ,l * S ijkl (t)S i * j * k * l * (t)L i (X 1 )L j (X 2 )L i * (X 1 )L j * (X 2 )ω k ω l ω k * ω l * .
The expectation of this expression is given by :

E E(S t (X)|X 1 , X 2 ) 2 = i,j,k,l,i * ,j * ,k * ,l * S ijkl (t)S i * j * k * l * (t)ω k ω l ω k * ω l * L i (x 1 )L i * (x 1 )p X 1 (x 1 )dx 1 L j (x 2 )L j * (x 2 )p X 2 (x 2 )dx 2 = i,j,k,l,k * ,l * S ijkl (t)S ijk * l * (t)ω k ω l ω k * ω l * ω i ω j .
And finally the term E E(S t (X)|X 1 , X 2 ) appearing in (3.23) is equal to E(S t (X)) which is given by (3.20).

For the Sobol indices of order 1 and 2 for S, I, H and R, we do exactly the same.

Numerical application

In this section, we consider the stochastic collocation method to propagate the uncertainty in epidemiological model (3.1). When the input variables are dependent, there is no general agreement in the scientific community on how to treat such a problem numerically. In this numerical section, we consider the hypothesis of neglecting the correlation effects of the random variables (R 0 , α, γ, λ) so as to have the variance decomposition (3.7). This assumption is abusive, but in keeping with the academic aspect of our model, it will be useful for our numerical calculations. We compute the Sobol indices of order 1 and 2 using the Lagrange polynomial with two different infection rate and two different basic reproduction number. Finally, we identify the most influential parameters for each compartment.

We consider that the random input variables (X 1 , X 2 , X 3 , X 4 ) = (R 0 , α, γ, λ) of the system (3.1) follow the uniform law

U[a X i , b X i ].
In Table 3.3, we give the values of the different parameters with their confidence intervals. We have distinguished two different values of R 0 which are noted R

(1) 0 (before the lockdown) and R

(2) 0 (after the lockdown) . 

Random input parameters Support of the uniform law [a

X i , b X i ] R ( 

Sobol indices of the stationary regime

We recall the endemic stationary point of the system (3.1) given in (4.10) :

                           S * = S * (R 0 , α, γ, λ) = τ µ × R 0 I * = I * (R 0 , α, γ, λ) = τ µ + ν + γ + α 1 - 1 R 0 H * = H * (R 0 , α, γ, λ) = ατ (µ + ν + λ)(µ + ν + γ + α) 1 - 1 R 0 R * = R * (R 0 , α, γ, λ) = γτ (µ + ν + λ) + λατ µ(µ + ν + λ)(µ + ν + γ + α) 1 - 1 R 0 ,
The analytical calculation of the Sobol indices for the endemic equilibrium point are done explicitly.

In Table 3.4 (resp. Table 3.5) we give the Sobol indices of the stationary endemic state with R

(1)

0 (resp. R (2) 
0 ) that we calculated in an analytical way. 

Sobol Indices X

* = S * X * = I * X * = H * X * = R * X * R ( 1 

Sobol Indices X

* = S * X * = I * X * = H * X * = R * X * R
(2) 0 1 0.99663 0.99023 0.9999 Table 3.5 -Sobol indices of the stationary regime calculated analytically with R (2) 0 .

We note that after the lockdown, the states (S * , I * , H * , R * ) are almost exclusively impacted by the parameter R

(2) 0 . And before the lockdown, only S * and R * are mostly impacted by R

(2) 0 .

Sobol indices of the transient regime before lockdown

The Sobol indices for each parameters depend on time and admit a stationary equilibrium that is reached at T f = 600. We give in Table 3.6 (resp. Table 3.7) the steady state Sobol indices using the stochastic collocation method defined in section (3.4) and the influences of all variable on each compartment with R

(1) 0 and sinusoidal transmission rate (resp. logistic transmission rate). In Tables 3.6 and 3.7, we notice the variable R (1) 0 strongly influences the compartments of susceptible S and recovered R at 99%, it influences the compartments of infected I at 7% and hospitalized H at 2%. The variable γ influences the compartments of infected I at more than 92% and hospitalized H people at more than 33%. In Figures 21222324, we have presented the evolution over time of Sobol indices of each parameter on each compartment for a sinusoidal transmission rate. Figures showing the same results but with a logistic transmission rate are not included since the plots are almost identical to the one of Figures 21222324.

Sobol Indices X

* = S * X * = I * X * = H * X * = R * X * R ( 

Sobol Indices X

* = S * X * = I * X * = H * X * = R * X * R ( 
In Figure 22, we can see that the parameters that most influence the compartment of the infected are γ and R

(1) 0 . In Figure 23, we observe that the variables α and λ only influence the compartment of hospitalized H people. Here again, we only show results with a sinusoidal transmission rate since the ones with a logistic transmission rate are very similar. The Sobol indices of order 2 inform us that the combined effects on the compartments remains weak. We notice that there is an interaction between R (1) 0 and γ in the four compartments with different intensity. This interaction is strong at the beginning of the propagation but suddenly disappears and tends towards zero.

Sobol indices of the transient regime afterlockdown

In Table 3.8 (resp. Table 3.9) we compute the Sobol indices of the stationary regime (T f = 600) with a sinusoidal transmission rate (3.4) (resp. with a logistic transmission rate (3.3)) with R

(2) 0 . In Tables 3.8 and 3.9, we notice the variable R 3.8 -Sobol indices at final time T f = 600 calculated numerically with R (2) 0 and sinusoidal rate.

Sobol Indices X

* = S * X * = I * X * = H * X * = R * X * R (2) 0
0.9999 0.9938 0.9868 0.9999 Table 3.9 -Sobol indices at final time T f = 600 calculated numerically with R (2) 0 and logistic rate.

S, I, H and R at 99%. In Figure 29 

Conclusion

From all models for epidemics, the SIR and SIRS are among the simplest. However, the parameters involved cannot be determined exactly and it is necessary to introduce randomness. In this research work, we chose to perform a sensitivity analysis on an SIHR epidemiological model with random parameters (R 0 , α, γ, λ). To study their impact on the evolution of the COVID19 disease, we considered a nonautonomous infection rate of transmission. Then, we developed the stochastic collocation approach based on Lagrange polynomials to calculate the Sobol indices of order 1 and 2 to study the sensitivity of these factors which intervene in the nonautonomous SIHR epidemiological model. We also have analytically calculated the Sobol indices of the stationary state. The SIHR model was studied for two cases : before and after lockdown. In both cases, the influence of the parameters on the compartments reach a steady state. We have shown that for after lockdown, the basic reproduction rate R 0 is the only parameter that acts on the compartments as well as on the spread of the disease. Before lockdown, the influence of the parameters (α, γ, λ) is considerable on the infected and recovered compartments. We have also shown that, in both cases, the combined effect of the parameters can be considered negligible.

Annexe

Analytical calculation of the steady-state Sobol indices

In this section, we give the explicit expressions of Sobol indices computed for the stationary state of the SIHR model :

                           S * = S * (R 0 , α, γ, λ) = τ µ × R 0 I * = I * (R 0 , α, γ, λ) = τ µ + ν + γ + α 1 - 1 R 0 H * = H * (R 0 , α, γ, λ) = ατ (µ + ν + λ)(µ + ν + γ + α) 1 - 1 R 0 R * = R * (R 0 , α, γ, λ) = γτ (µ + ν + λ) + λατ µ(µ + ν + λ)(µ + ν + γ + α) 1 - 1 R 0 , ( 3.24) 
We set µ 2 = µ + ν and note X = (X 1 , X 2 , X 3 , X 4 ) = (R 0 , α, γ, λ) the random input variables of the system (3.24).

Annexe

For the rest, we consider that (R 0 , α, γ, λ)

follow the uniform law U[a X i , b X i ].
To simplify the equations, we consider the following notations and primitives :

We give some notations

1. T 1 (X) = (µ 2 + X) ln(µ 2 + X), 2. T 2 (X) = (µ 2 + X) 2 ln(µ 2 + X), 3. T 3 (X) = (µ 2 + X) ln(µ 2 + X) 2 , 4. T 4 (X) = ln(µ 2 + X), 5. X 2 ln(X) 2 dX = X 3 3 ln(X) 2 - 2 3 ln(X) + 2 9 , 6. X ln(X) 2 dX = X 2 2 ln(X) 2 -ln(X) + 1 2 , 7. ln(X) 2 dX = X ln(X) 2 -2 ln(X) + 2 , 8. X ln(X)dX = X 2 2 ln(X) - 1 2 , 9. d α = b α -a α , d γ = b γ -a γ , d λ = b λ -a λ and d R 0 = b R 0 -a R 0 .

Sobol indices for S

Definition 3.7.1 The Sobol indices of order 1 and 2 for S * are defined :

S * X i = V E(S * |X i ) V(S * ) i = 1, ..., 4 (3.25) S * X i ,X j = V E(S * |X i , X j ) V(S * ) -S * X i -S * X j . (3.26)
To calculate the Sobol indices for S * , we need :

                               E 1 R 0 = ln(b R 0 ) -ln(a R 0 ) d R 0 E 1 R 2 0 = 1 b R 0 × a R 0 E(S * ) = τ µ 1 ln(b R 0 ) -ln(a R 0 ) d R 0 V(S * ) = τ µ 1 2 1 a R 0 ×b R 0 - ln(b R 0 )-ln(a R 0 ) d R 0 2 . (3.27)
We obtain :

S * R 0 = V(E(S * |R 0 )) V(S * ) = V(S * ) V(S * ) = 1,
the other Sobol indices for S * are zero.

Sobol indices for

I Definition 3.7.2
The Sobol indices of order 1 and 2 for I * are defined :

I * X i = V E(I * |X i ) V(I * ) i = 1, ..., 4 (3.28) 
I * X i ,X j = V E(I * |X i , X j ) V(I * ) -I * X i -I * X j . (3.29)

Sobol indices of order 1

First of all we calculate,

E 1 µ 2 + γ + α = 1 d α × d γ T 1 (b α + b γ ) -T 1 (a α + b γ ) -T 1 (b α + a γ ) + T 1 (a α + a γ ) , (3.30) 
The mean of I 1 becomes :

E(I * ) = τ E 1 µ 2 + γ + α 1 -E( 1 R 0 ) = τ E 1 µ 2 + γ + α 1 - ln(b R 0 ) -ln(a R 0 ) d R 0 . (3.31)
To calculate the variance of I 1 , we need :

E 1 (µ 2 + γ + α) 2 = 1 d α × d γ -T 4 (b α + b γ ) + T 4 (a α + b γ ) + T 4 (b α + a γ ) -T 4 (a α + a γ ) , (3.32) E 1 - 1 R 0 2 = 1 + 2 ln(a R 0 ) -ln(b R 0 ) d R 0 + 1 a R 0 × b R 0 . (3.33)
With the equations (3.32), (3.33) and (3.31), the variance of I * is then equal

V(I * ) = τ 2 E 1 (µ 2 + γ + α) 2 E   1 - 1 R 0 2   -E(I * ) 2 .
(3.34)

For Sobol indices of order 1 of I * , we will need :

             E R 0 (I * ) = τ (1 -1/R 0 ) E 1 µ 2 +γ+α , E γ (I * ) = τ E γ ( 1 µ 2 +γ+α )E (1 -1/R 0 ) E α (I * ) = τ E α 1 µ 2 +γ+α E(1 -1/R 0 ). (3.35) 
with

E γ 1 µ 2 + γ + α = T 4 (γ + b α ) -T 4 (γ + a α ) d α . E α 1 µ 2 + γ + α = T 4 (α + b γ ) -T 4 (α + a γ ) d γ . (3.36)
We obtain

I * R 0 = V(E (I * |R 0 )) V(I * ) = τ E 1 µ 2 +γ+α V 1 -1/R 0 V(I * ) . (3.37)
Sobol indice for α :

I * α = V E(I * |α) V(I * ) = τ E(1 -1/R 0 ) 2 V T 4 (α + b γ ) -T 4 (α + a γ ) d 2 γ V(I * ) (3.38)
Now we calculate,

V T 4 (α+b γ )-T 4 (α+a γ ) = E T 4 (α+b γ )-T 4 (α+a γ ) 2 -E T 4 (α+b γ )-T 4 (α+a γ ) 2 .
(3.39)

The second term of (3.39) :

E T 4 (α + b γ ) -T 4 (α + a γ ) = 1 d α T 1 (b α + b γ ) -T 1 (a α + b γ ) -T 1 (b α + a γ ) + T 1 (a α + a γ ) + a γ -b γ . (3.40)
The first term of (3.39) :

E T 4 (α + b γ ) -T 4 (α + a γ 2 = E T 4 (α + b γ ) 2 + E T 4 (α + a γ ) 2 -2 E T 4 (α + b γ ) × T 4 (α + a γ ) (3.41)
We use the primitive of (ln(x)) 2 , the first two terms of (3.41) are easy to calculate :

E ln(µ 2 + α + b γ ) 2 = 1 d α T 3 (b α + b γ ) -T 3 (a α + b γ ) -2T 1 (b α + b γ ) + 2 T 1 (a α + b γ ) + 2d α , E ln(µ 2 + α + b γ ) 2 = 1 d α T 3 (b α + a γ ) -T 3 (a α + a γ ) -2T 1 (b α + a γ ) + 2T 1 (a α + a γ ) + 2d α ,
We consider F 1 (α) a primitive of the function ln(µ 2 + α + b γ ) ln(µ 2 + α + a γ ). We obtain We redo exactly the same work for the Sobol indice I * γ : you have to permute α and γ.

E ln(µ 2 + α + b γ ) × ln(µ 2 + α + a γ ) = F 1 (b α ) -F 1 (a α ). ( 3 
I * γ = V E(I * |γ) V(I * ) = τ E(1 -1/R 0 ) 2 V T 4 (γ + b α ) -T 4 (γ + a α ) d 2 α V(I * )
.

Sobol indices of order 2

We start with the indice I 1,α,γ :

I * α,γ = V E(I * |α, γ) V(I * ) (3.43)
We known that :

E(I * |α, γ) = τ µ 2 + γ + α E(1 -1/R 0 ) = τ µ 2 + γ + α 1 - ln(b R ) -ln(a R ) d R 0
The Sobol indice I * α,γ :

I * α,γ = τ (1 - ln(b R 0 ) -ln(a R 0 ) d R 0 ) 2 V(1/(µ 2 + α + γ)) V(I * ) ,
The term V(1/(µ 2 + α + γ)) which is equal to :

V(1/(µ 2 + α + γ)) = E 1 (µ 2 + γ + α) 2 -E( 1 µ 2 + γ + α ) 2 ,
is calculated using the equations (3.30) and (3.32).

For the Sobol indice I * α,R 0 , we calculate first :

E(I * |α, R 0 ) = τ (1 -1/R 0 ) T 4 (α + b γ ) -T 4 (α + a γ ) d γ .
We finally obtain :

I * α,R 0 = τ 2 d 2 γ V (1 -1/R 0 )(T 4 (α + b γ ) -T 4 (α + a γ )) V(I 1 )
,

We calculate the term :

V (1 - 1 R 0 )(T 4 (α + b γ ) -T 4 (α + a γ )) = E (1 -1/R 0 ) 2 E T 4 (α + b γ ) -T 4 (α + a γ ) 2 -E(1 -1/R 0 ) 2 E T 4 (α + b γ ) -T 4 (α + a γ ) 2 With E T 4 (α + b γ ) -T 4 (α + a γ ) 2 which is given by (3.41), E (1 -1/R 0 ) 2 ] which is
given by (3.27) et E T 4 (α + b γ ) -T 4 (α + a γ ) which is given by (3.40).

We redo exactly the same work for the Sobol index I * γ,R 0 :

E(I * |γ, R 0 ) = τ (1 -1/R 0 ) T 4 (γ + b α ) -T 4 (γ + a α ) d α .
Finally we obtain : 

I * γ,R 0 = τ 2 d 2 α V (1 -1/R 0 )(T 4 (γ + b α ) -T 4 (γ + a α )) V(I 1 )
H * X i = V E(H * |X i ) V(H * ) i = 1, ..., 4 (3.44) H * X i ,X J = V E(H * |X i , X j ) V(H * ) -H * X i -H * X j . (3.45)
First we calculate the mean and the variance of

H * , E 1 µ 2 + λ = T 4 (b λ ) -T 4 (a λ ) d λ , E 1 (µ 2 + λ) 2 = 1 (µ 2 + b λ )(µ 2 + a λ ) , ( 3.46) 
The mean H * is obtained :

E(H * ) = τ E 1 µ 2 + λ E 1 -1/R 0 E α µ 2 + γ + α , with E α µ 2 + γ + α = 1 2 × d α × d γ T 2 (b γ + b α ) -T 2 (b γ + a α ) -T 2 (a γ + b α ) + T 2 (a γ + a α ) - µ 2 + b γ d α × d γ T 1 (b γ + b α ) -T 1 (b γ + a α ) -d α (3.47) + µ 2 + a γ d α × d γ T 1 (a γ + b α ) -T 1 (a γ + a α ) -d α - 1 2 .
For the variance of H * :

V(H * ) = τ 2 E 1 (µ 2 + λ) 2 E (1 -1/R 0 ) 2 E α 2 (µ 2 + γ + α) 2 -E(H * ) with E α 2 (µ 2 + γ + α) 2 = E (1 - γ + µ 2 µ 2 + γ + α ) 2 (3.48) = 1 d α × d γ 1 -2 µ 2 + γ µ 2 + γ + α + (µ 2 + γ) 2 (µ 2 + γ + α) 2 dαdγ.
The second term of (3.48) is equal to :

µ 2 + γ µ 2 + γ + α dαdγ = 1 2 T 2 (b γ + b α ) -T 2 (a γ + b α ) -T 2 (b γ + a α ) + T 2 (a γ + a α ) -b α T 1 (b γ + b α ) -T 1 (a γ + b α ) + a α T 1 (b γ + a α ) -T 1 (a γ + a α ) + 1 2 d α × d γ .
The third term : just use the following decomposition

(µ 2 + γ) 2 = (µ 2 + γ + a α -a α ) 2 = (µ 2 + γ + a α ) 2 -2(µ 2 + γ + a α )a α + a 2 α (3.49)
and we obtain : 

(µ 2 + γ) 2 (µ 2 + γ + α) 2 dαdγ = bγ aγ (µ 2 + γ) 2 - 1 µ 2 + γ + b α + 1 µ 2 + γ + a α dγ = - bγ aγ (µ 2 + γ) 2 µ 2 + γ + b α dγ + bγ aγ (µ 2 + γ) 2 µ 2 + γ + b α dγ = -b 2 α T 4 (b γ + b α ) -T 4 (a γ + b α ) + a 2 α T 4 (b γ + a α ) -T 4 (a γ + a α ) -d α × d γ .

Sobol indices of order 1

For Sobol indices H * R 0 and H * λ , we calculate firstly :

E(H * |R 0 ) = τ (1 -1/R 0 )E 1 µ 2 + λ E α µ 2 + γ + α , E(H * |λ) = τ µ 2 + λ E 1 -1/R 0 E α µ 2 + γ + α .
and we have :

3.7. Annexe H * R 0 = V E(H * |R 0 ) V(H * ) = τ E 1 µ 2 + λ E α µ 2 + γ + α 2 V(1/R 0 ) V(H * ) , H * λ = V E(H * |λ) V(H * ) = τ E(1 -1/R 0 )E α µ 2 + γ + α 2 V(1/(µ 2 + λ)) V(H * )
We have already calculated all the terms in the equations (3.27), (3.46) and (3.47).

For Sobol indices H * γ et H * α , we calculate :

E γ (H * ) = τ E(1 -1/R 0 )E 1 µ 2 + λ E γ α µ 2 + γ + α , E ( H * |α) = τ αE(1 -1/R 0 )E 1 µ 2 + λ E α 1 µ 2 + γ + α .
We will need the following means :

E γ α µ 2 + γ + α = E α µ 2 + γ + α |γ = 1 - µ 2 + γ d α T 4 (γ + b α ) -T 4 (γ + a α ) , E α 1 µ 2 + γ + α = E 1 µ 2 + γ + α |α = 1 d γ T 4 (α + b γ ) -T 4 (α + a γ ) . (3.50)
We also calculate the following two variances :

V E γ α µ 2 + γ + α = E E γ α µ 2 + γ + α 2 -EE γ α µ 2 + γ + α 2 . V αE α 1 µ 2 + γ + α = E αE α 1 µ 2 + γ + α 2 -E αE α 1 µ 2 + γ + α 2 (3.51) = E α 2 E α 1 µ 2 + γ + α 2 -E αE α 1 µ 2 + γ + α 2 . with EE Σ = E[E(X|Σ)] = E(X).
To calculate the first variance, just calculate the first term :

E E γ α µ 2 + γ + α 2 = E 1 - µ 2 + γ d α T 4 (γ + b α ) -T 4 (γ + a α ) 2 = E 1 -2 µ 2 + γ d α T 4 (γ + b α ) -T 4 (γ + a α ) + (µ 2 + γ) 2 d 2 α T 4 (γ + b α ) -T 4 (γ + a α ) 2 (3.52)
For the second term of (3.52), we obtain :

E (µ 2 + γ)T 4 (γ + b α ) = E T 1 (γ + b α ) -b α E T 4 (γ + b α ) = 1 2 * d g T 2 (b γ + b α ) -T 2 (a γ + b α ) - 1 2 b γ (b γ + 2µ 2 + 2b α ) + 1 2 a γ (a γ + 2µ 2 + 2b α ) -b α T 1 (b γ + b α ) -T 1 (a γ + b α ) -d γ . E (µ 2 + γ)T 4 (γ + a α ) = E T 1 (γ + a α ) -a α E T 4 (γ + a α ) = 1 2 × d γ T 2 (b γ + a α ) -T 2 (a γ + a α ) - 1 2 b γ (b γ + 2µ 2 + 2a α ) + 1 2 a γ (a γ + 2µ 2 + 2a α ) -a α T 1 (b γ + a α ) -T 1 (a γ + a α ) -d γ .
For the third term of (3.52), we develop the term squared then we first calculate the term

E (µ 2 + γ) 2 T 4 (γ + b α ) 2 = E (µ 2 + γ + b α -b α ) 2 T 4 (γ + b α ) 2 = E (µ 2 + γ + b α ) 2 -2b α (µ 2 + γ + b α ) + b 2 α ln(T 4 (γ + b α ) 2 = E (µ 2 + γ + b α ) 2 T 4 (γ + b α ) 2 -2b α E T 3 (γ + b α ) + b 2 α E T 4 (γ + b α ) 2 .
To continue the calculations, we use the primitives of functions X 2 (ln(X)) 2 , X(ln(X)) 2 and (ln(X)) 2 which are given in [START_REF] Borgonovo | Moment independent importance measures : new results and analytical test cases[END_REF] We do the same for the term

E (µ 2 + γ) 2 T 4 (γ + a α ) 2 .
To complete the calculation of (3.52), we consider the function

F 2 (x) = x 2 ln(x + A) ln(x + B) dx (3.53)
for all A and B two reals. The last term of (3.52) then becomes :

E (µ 2 + γ) 2 ln(µ 2 + γ + b α ) ln(µ 2 + γ + a α ) = F 2 (b γ ) -F 2 (a γ ), with A = b α and B = a α .
For the second variance, we start by calculating the first term :

E αE α 1 µ 2 + γ + α 2 = 1 d 2 γ * d α α 2 T 4 (α + b γ ) -T 4 (α + a γ ) 2 dα (3.54)
With :

α 2 T 4 (α + b γ )) 2 dα = (µ 2 + α + b γ ) 2 T 4 (α + b γ )) 2 dα + (µ 2 + b γ ) 2 T 4 (α + b γ )) 2 dα + 2(µ 2 + b γ ) T 3 (α + b γ )dα = 1 3 X 3 (ln(x)) 2 - 1 3 ln(X) + 1 9 bα aα + (µ 2 + b γ ) X 2 (ln(X)) 2 -ln(X) + 1 2 bα aα + (µ 2 + b γ ) 2 X (ln(X)) 2 -2 ln(X) + 2 bα aα with X = µ 2 + α + b γ For α 2 T 4 (α + a γ )) 2 dα,
we do exactly the same way a γ instead of b γ .

For the last term

α 2 ln(µ 2 + α + b γ ) ln(µ 2 + α + a γ ))dα,
we use the function (3.53).

The second term of the second variance in (3.51)

E αE α 1 µ 2 + γ + α 2 = 1 d 2 γ × d 2 α α T 4 (α + b γ ) -T 4 (α + a γ ) dα 2 (3.55)
Knowing that :

α ln(µ 2 + α + b γ ) -ln(µ 2 + α + a γ ) dα = X 2 2 ln(X) - 1 2 -(µ 2 + b γ ) X ln(X) -X bα aα (3.56) - Y 2 2 ln(Y ) - 1 2 -(µ 2 + a γ ) Y ln(Y ) -Y bα aα , with X = µ 2 + α + b γ and Y = µ 2 + α + a γ .
Thus we conclude the Sobol indice H * γ and we redo exactly the same procedures to assess the Sobol indice H * α .

H * γ = V E(H * |γ) V(H * ) = τ E 1 µ 2 + λ E 1 -1/R 0 2 V E γ α µ 2 +γ+λ V(H * ) H * α = V E(H * |α) V(H * ) = τ E 1 µ 2 + λ E(1 -1/R 0 ) 2 V αE α 1 µ 2 +γ+λ V(H * )

Sobol indices of order 2

For Sobol indices H * R 0 ,α and H * R 0 ,γ :

H * R 0 ,α = V E(H * |R 0 , α) V(H * ) = τ E 1 µ 2 + λ 2 V α(1 -1/R 0 )E α 1 µ 2 +γ+α V(H * ) H * R 0 ,γ = V E(H * |R 0 , γ) V(H * ) = τ E 1 µ 2 + λ 2 V (1 -1/R 0 )E γ α µ 2 +γ+α V(H * )
we have already calculated in (3.27) 

H * R 0 ,λ = V E(H * |R 0 , λ) V(H * ) = τ E α µ 2 + γ + α 3.7. Annexe H * α,γ = V E(H * |α, γ) V(H * ) = τ E(1 -1/R 0 )E 1 µ 2 + λ 2 V α µ 2 +γ+α V(H * )
we have already calculated all the terms in (3.47), (3.48) 

H * α,λ = V E(H * |α, λ) V(H * ) = τ E(1 -1/R 0 ) 2 V α µ 2 +λ E α 1 µ 2 +γ+α V(H * ) H * γ,λ = V E(H * |γ, λ) V(H * ) = τ E(1 -1/R 0 ) 2 V 1 µ 2 +λ E γ α µ 2 +γ+α V(H * )
we have everything we need in (3.27), (3.46), (3.36) and (3.51).

Sobol indices for R

Definition 3.7. [START_REF] Arnst | Computation of Sobol indices in global sensitivity analysis from small data sets by probabilistic learning on manifolds[END_REF] Sobol indices of order 1 and 2 for R * are defined :

R * X i = V E(R * |X i ) V(R * ) i = 1, ..., 4 (3.57) R * X i ,X J = V E(R * |X i , X j ) V(R * ) -R * X i -R * X j . (3.58)
Remarque 3.7.1 The expression of R * is written in the following form :

R * = τ µ γ µ 2 + γ + α + λ (µ 2 + λ) α µ 2 + γ + α 1 - 1 R 0 . (3.59)
First we calculate the mean and the variance of R * ,

E λ µ 2 + λ = E 1 - µ 2 µ 2 + λ = 1 -µ 2 T 4 (b λ ) -T 4 (a λ ) d λ , (3.60) E λ 2 (µ 2 + λ) 2 = 1 d λ d λ -2µ 2 T 4 (b λ ) -T 4 (a λ ) + µ 2 2 d λ (µ 2 + b λ )(µ 2 + a λ )
.

For E 1 -1 R 0 see (3.27). For E α µ 2 +γ+α see (3.47). And for E γ µ 2 +γ+α just permute α and γ in (3.47).

With these results, we have

E(R * ) = τ µ E γ µ 2 + γ + α + E λ (µ 2 + λ) E α µ 2 + γ + α E 1 - 1 R 0
For the variance of R * , we calculate E (R * ) 2 :

E (R * ) 2 = τ 2 µ 2 E (1 - 1 R 0 ) 2 E γ (µ 2 + γ + α) 2 + λ (µ 2 + λ) α (µ 2 + γ + α) 2 + 2 λ (µ 2 + λ) α (µ 2 + γ + α) γ (µ 2 + γ + α) = τ 2 E (1 -1 R 0 ) 2 µ 2 E γ 2 (µ 2 + γ + α) 2 + E λ 2 (µ 2 + λ) 2 E α 2 (µ 2 + γ + α) 2 + 2E λ (µ 2 + λ) E α (µ 2 + γ + α) γ (µ 2 + γ + α) with E γ µ 2 +γ+α 2 et E α µ 2 +γ+α 2
which are given in (3.48) and E (1 -1 R 0 ) 2 given in (3.33). Now let's calculate the last term :

E αγ (µ 2 + γ + α) 2 = 1 d α × d γ bα aα α bγ aγ γ (µ 2 + γ + α) 2 dγdα = 1 d α × d γ bα aα α T 4 (b γ + α) -T 4 (a γ + α) (3.61) -(µ 2 + α) 1 µ 2 + b γ + α - 1 µ 2 + a γ + α dα
We calculate the first term :

bα aα α T 4 (b γ + α) -T 4 (a γ + α) dα = bα aα T 1 (α + b γ ) -(b γ + µ 2 ) ln(µ 2 + b γ + α) dα - bα aα T 1 (α + a γ ) -(a γ + µ 2 ) ln(µ 2 + a γ + α) dα.
To continue it is necessary to use the primitives of ln(x) et x ln(x). For the second term :

bα aα α(µ 2 + α) µ 2 + b γ + α dα = bα aα α -b γ 1 - µ 2 + b γ µ 2 + b γ + α dα = 1 b α -a α α 2 /2 -b γ α -(µ 2 + b γ ) ln(µ 2 + b γ + α) bα aα .
And the same for the last term we replace b α by a α .

Sobol indices of order 1

For Sobol indices R * R 0 and R * λ , we have the following result for the mean :

E(R * |R 0 ) = τ (1 -1/R 0 ) µ E γ µ 2 + γ + α + E λ µ 2 + λ E α µ 2 + γ + α E(R * |λ) = τ µ E(1 - 1 R 0 ) E γ µ 2 + γ + α + λ µ 2 + λ E α µ 2 + γ + α
All these terms are well calculated. So the Sobol indices are :

R * R 0 = V E(R * |R 0 ) V(R * ) = τ 2 µ 2 E γ µ 2 + γ + α + E λ (µ 2 + λ) E α µ 2 + γ + α 2 V 1 R 0 V(R * ) R * λ = V E(R * |λ) V(R * ) = τ 2 µ 2 E(1 - 1 R 0 ) 2 V E γ µ 2 +γ+α + λ µ 2 +λ E α µ 2 +γ+α 2 V(R * ) where V 1
R 0 and V λ µ 2 +λ are given in (3.27) et (3.60).

For Sobol indices R * γ and R * α , we start by calculating the mean :

E(R * |γ) = τ µ 1 γE γ 1 µ 2 + γ + α + E λ (µ 2 + λ) E γ α µ 2 + γ + α E(1 - 1 R 0 ) E(R * |α) = τ µ 1 E α γ µ 2 + γ + α + E λ (µ 2 + λ) αE α 1 µ 2 + γ + α E(1 - 1 R 0 )
To facilitate the calculation and the notations, we consider

M 1 = E λ µ 2 + λ Q 1 = γ E γ 1 µ 2 + γ + α + E λ µ 2 + λ E γ α µ 2 + γ + α Q 2 = E α γ µ 2 + γ + α + E λ µ 2 + λ αE α 1 µ 2 + γ + α
For expressions E α and E γ see (3.50).

To calculate V Q 1 , just calculate E Q 1 2 ( E Q 1 can be easily computed) E Q 1 2 = 1 d 2 α E (γ -M 1 (µ 2 + γ))(T 4 (γ + b α ) -T 4 (γ + a α ) + M 1 × d α 2 . (3.62)
After simplification we find : '

E Q 1 2 = 1 d 2 α E (T 4 (γ + b α ) -T 4 (γ + a α ) 2 γ(1 -M 1 ) -M 1 µ 2 2 , + 2M 1 d a E (T 4 (γ + b α )T 4 (γ + a α ) γ(1 -M 1 ) -M 1 µ 2 + M 2 1 .
To calculate the second term, it suffices to reduce under the form X ln(X).

E (T 4 (γ + b α ) γ(1 -M 1 ) -M 1 µ 2 = (1 -M 1 ) d g 1 2 T 2 (b γ + b α ) -T 2 (a γ + b α ) -(µ 2 + b α ) T 1 (b γ + b α ) -T 1 (a γ + b α ) + 1 4 -b γ (b γ + 2µ 2 + 2b α ) + a γ (a γ + 2µ 2 + 2b α ) + d γ -M 1 µ 2 d g T 1 (b γ + b α ) -T 1 (a γ + b α ) -d g . E (T 4 (γ + a α ) γ(1 -M 1 ) -M 1 µ 2 = (1 -M 1 ) d g 1 2 T 2 (b γ + a α ) -T 2 (a γ + a α ) -(µ 2 + a α ) T 1 (b γ + a α ) -T 1 (a γ + a α ) + 1 4 -b γ (b γ + 2µ 2 + 2a α ) + a γ (a γ + 2µ 2 + 2a α ) + d γ -M 1 µ 2 d g T 1 (b γ + a α ) -T 1 (a γ + a α ) -d γ .
We make the difference and we get :

Q 3 = E (T 4 (γ + b α ) -T 4 (γ + a α ) γ(M 1 -1) -M 1 µ 2 = (1 -M 1 ) d g 1 2 T 2 (b γ + b α ) -T 2 (a γ + b α ) -T 2 (b γ + a α ) + T 2 (a γ + a α ) -(µ 2 + b α ) T 1 (b γ + b α ) -T 1 (a γ + b α ) + (µ 2 + a α ) T 1 (b γ + a α ) -T 1 (a γ + a α ) - 1 2 d α × d γ - M 1 µ 2 d γ T 1 (b γ + b α ) -T 1 (a γ + b α ) + T 1 (b γ + a α ) -T 1 (a γ + a α ) .
For the first term, we consider F 3 (X) a primitive of the function ln

(X + A) -ln(X + B) 2 X.C + D 2
. Finally we have,

E Q 1 2 = 1 d 2 α F 3 (b γ ) -F 3 (a α ) + 2M 1 d α Q 3 + M 2 1 with A = µ 2 + b α , B = µ 2 + a α , C = d α -M 1 and D = -M 1 µ 2 .
Finally, we obtain :

V E(R * |γ) = τ 2 µ 2 E(1 -1/R 0 ) 2 E Q 2 1 -E Q 1 2
The Sobol indice R * γ :

R * γ = V E(R * |γ)
V(R * ) The Sobol indice R * α : we proceed in the same way with :

V E(R * |α) = τ 2 µ 2 E(1 -1/R 0 ) 2 E Q 2 2 -E Q 2 2 , R * α = V E(R * |α) V(R * )
For the calculation of E Q 2 2 we proceed as for E Q 2 1 knowing that :

E Q 2 2 = 1 d 2 γ E (α.M 1 -(µ 2 + α))(T 4 (α + b γ ) -T 4 (α + a γ ) + d γ 2 . (3.63)

Sobol indices of order 2

We consider some notations of known expressions :

-

K 0 = E 1 µ 2 +γ+α 3.7. Annexe -K 1 = E γ µ 2 +γ+α -K 2 = E α µ 2 +γ+α -K 1,1 = E γ 2 (µ 2 +γ+α) 2 -K 2,2 = E α 2 (µ 2 +γ+α) 2 -K 3 = E (1 -1/R 0 ) 2 -K 4 = E 1 -1/R 0 -K 5 = E λ 2 (µ 2 +λ) 2 -K 6 = E λ µ 2 +λ -K 7 = E αγ (µ 2 + γ + α) 2 -K 8 = E α γ µ 2 +γ+α -K 8,8 = E α 1 µ 2 +γ+α -K 9 = E γ α µ 2 +γ+α -K 9,9 = E γ 1 µ 2 +γ+α -K 10 = E E γ α µ 2 +γ+α 2 -K 11 = E E α γ µ 2 +γ+α 2 -K 12 = E E γ 1 µ 2 +γ+α 2 -K 13 = E E α 1 µ 2 +γ+α 2
K 0 is given by(3.30), K 1 and K 2 are given by (3.47), K 3 is given by (3.33), K 4 is given by (3.27), K 5 and K 6 are given by (3.60), K 7 is given by (3.61), for K 8 and K 9 are given by (3.50), for K 8,8 and K 9,9 are given byr (3.36), K 1,1 and K 2,2 given by (3.48), for K 10 and K 11 are given by (3.52), for K 12 and K 13 are given by (3.50).

We start with the indice R * R 0 ,λ . We have :

E R * |R 0 , λ = τ µ 1 -1/R 0 K 1 + λ µ 2 + λ K 2
The variance of the previous term :

V E R * |R 0 , λ = τ 2 µ 2 K 3 E K 1 + λ µ 2 + λ K 2 2 -K 4 K 1 + K 6 .K 2 2
Then :

R * R 0 ,λ = V E R * |R 0 , λ V(R * )
For the Sobol indice R * α,γ . We have :

E R * |α, γ = τ µ K 4 γ µ 2 + γ + α + α µ 2 + γ + α K 6
Its variance is equal :

V E R * |α, γ = τ 2 K 2 4 µ 2 K 1,1 + K 2 6 K 2,2 + 2K 6 K 7 -(K 1 + K 6 K 2 ) 2 R * α,γ = V E R * |α, γ V(R * ) For the Sobol indice R * R 0 ,α . E R * |R 0 , α = τ µ 1 -1/R 0 K 8 + αK 6 K 8,8
Its variance is equal :

V E R * |R 0 , α = τ 2 µ 2 K 3 E K 2 8 + α 2 K 2 6 K 2 8,8 + 2αK 6 K 8 K 8,8 -K 2 4 (K 1 + K 6 E(αK 8,8 )) 2 , because E(K 8 ) = K 1 and E(αK 8,8
) is given by (3.56).

As E(K 2 8 ) = K 11 then the variance becomes :

V E R * |R 0 , α = τ 2 µ 2 K 3 K 11 +K 2 6 E[α 2 K 2 8,8 ]+2K 6 E[αK 8 K 8,8 ] -K 2 4 (K 1 +K 6 E(αK 8,8 )) 2 ,
The term E[α 2 K 2 8,8 ] is given in (3.54) and we now calculate E[αK 8 K 8,8 ].

E[αK 8 K 8,8 ] = E α 1 - µ 2 + α d γ T 4 (α + b γ ) -T 4 (α + a γ ) 1 d γ T 4 (α + b γ ) -T 4 (α + a γ ) = 1 d γ E α T 4 (α + b γ ) -T 4 (α + a γ ) - 1 d 2 γ E α(µ 2 + α) T 4 (α + b γ ) -T 4 (α + a γ ) 2 
The term E α T 4 (α + b γ ) -T 4 (α + a γ ) is given in (3.56). For the second term, we do exactly the same way we treated the term in (3.54).

We note

P 1 = E[α 2 K 2 8,8 ], P 2 = E[αK 8 K 8,8 ] et P 3 = E(αK 8,8 ) The Sobol indice R * R 0 ,α : R * R 0 ,α = V E R * |R 0 , α V(R * ) = τ 2 µ 2 K 3 K 2 11 + K 2 6 P 1 + 2K 6 P 2 -K 2 4 (K 1 + K 6 P 3 ) 2 V(R * ) For the Sobol indice R * R 0 ,γ , E R * |R 0 , γ = τ µ 1 -1/R 0 γK 9,9 + K 6 K 9
Its variance is equal :

V E R * |R 0 , γ = τ 2 µ 2 K 3 E γ 2 K 2 9,9 + K 2 6 K 2 9 + 2γK 6 K 9,9 K 9 -K 2 4 (E(γK 9,9 ) + K 6 K 2 ) 2 ,
We note U 1 = E(γK 9,9 ) is given in (3.56). The term E(K 2 9 ) = K 10 . We also note

U 2 = E[γ 2 K 2 9,9
] which is given in (3.54) and we calculate U 3 = E[γK 9 K 9,9 ] the same way as (3.56). The Sobol indice R * R 0 ,γ :

R * R 0 ,γ = V E G 1 |R 0 , γ V(G 1 ) = τ 2 µ 2 K 3 U 2 + K 2 6 K 10 + 2K 6 U 3 -K 2 4 (U 1 + K 6 K 2 ) 2 V(R * ) For the Sobol indice R * α,λ , E R * |α, λ = τ µ K 4 K 8 + λ µ 2 + λ αK 8,8
Its variance is equal :

V E R * |α, λ = τ 2 µ 2 K 2 4 E K 2 8 + λ 2 (µ 2 + λ) 2 α 2 K 2 8,8 + 2αK 8 K 8,8 λ µ 2 + λ -(K 1 + K 6 P 3 ) 2 = τ 2 µ 2 K 2 4 K 11 + K 5 P 1 + 2P 2 K 6 -(K 1 + K 6 P 3 ) 2 .
The Sobol indice R * α,λ :

R * α,λ = V E R * |α, λ V(R * ) = τ 2 µ 2 K 2 4 K 11 + K 5 P 1 + 2P 2 K 6 -(K 1 + K 6 P 3 ) 2 V(R * ) For the Sobol indice R * γ,λ , E R * |γ, λ = τ µ K 4 γK 9,9 + λ µ 2 + λ αK 9
Its variance is equal :

V E R * |γ, λ = τ 2 µ 2 K 2 4 E γ 2 K 2 9,9 + λ 2 (µ 2 + λ) 2 K 2 9 + 2γK 9 K 9,9 λ µ 2 + λ -(U 1 + K 6 k 2 ) 2 = τ 2 µ 2 K 2 4 U 2 + K 5 K 10 + 2U 3 K 6 -(K 1 + K 6 P 3 ) 2 .
The Sobol indice R * γ,λ :

R * γ,λ = V E R * |γ, λ V(R * ) = τ 2 µ 2 K 2 4 U 2 + K 5 K 10 + 2U 3 K 6 -(K 1 + K 6 P 3 ) 2 V(R * )

Introduction

The phenomena of chaos and chaotic systems have been studied by many researchers because of their various applications in the fields of atmospheric dynamics, population dynamics, electrical circuits, cryptology, fluid dynamics, lasers, engineering, stock exchanges, chemical reactions, etc. Most of the complex dynamic phenomena are characterized by chaotic and hyper-chaotic systems of nonlinear ordinary differential equations [START_REF] Kuznetsov | Numerical justification of Leonov conjecture on Lyapunov dimension of Rossler attractor[END_REF][START_REF] Leonov | Hidden attractors in dynamical systems. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits[END_REF][START_REF] Leonov | Bounds for attractors and the existence of homoclinic orbits in the Lorenz system[END_REF][START_REF] Lorenz | Deterministic nonperiodic flow[END_REF][START_REF] Matouk | Chaos synchronization of a fractional-order modified van der Pol-Duffing system via new linear control, backstepping control and Takagi-Sugeno fuzzy approaches[END_REF][START_REF] Zhang | Further results on ultimate bound on the trajectories of the Lorenz system[END_REF]. The Lorenz Stenflo model appears in several research works, in particular the articles [START_REF] Leonov | Generalized Lorenz equations for acoustic-gravity waves in the atmosphere. Attractors dimension, convergence and homoclinic trajectories[END_REF][START_REF] Moon | A physically extended Lorenz system[END_REF][START_REF] Park | Stability and periodicity of high-order Lorenz-Stenflo equations[END_REF][START_REF] Rech | On the dynamics of a modified Lorenz-Stenflo system[END_REF][START_REF] Zhou | Bifurcation behavior of the generalized Lorenz equations at large rotation numbers[END_REF]. Many dynamic behaviors such as the stability, bifurcation, periodic solutions and chaotic behaviors have been thoroughly studied for decades after Stenflo.

During the development, construction or use of a mathematical model, sensitivity analysis can prove to be a valuable tool. Such analysis can be achieved with two different techniques : local and global methods. The first ones are the historical approach and study the impact of small input perturbations on the model output around a specific point.

Introduction

They are commonly used when the model has a large number of input variables. This approach is relatively easy to implement since it only requires the computation of partial derivatives of the model at specific points. One may refer to the paper of Zhou and Lin [START_REF] Zhou | Local sensitivity analysis[END_REF] for a detailed overview of techniques belonging to that category. The local methods show some limitation (assumption of linearity and local variation) that can be overcome with global techniques. Among them, the variance based and the moment-free ones are the most popular. Because they consider the entire range of variation of the input they quickly became the methods of choice of researchers. The moment-free method is based on the normalized expected shift in the distribution of the model output provoked by some of its input variables [START_REF] Borgonovo | A new uncertainty importance measure[END_REF].

In this paper, the sensitivity analysis is performed with Sobol' indices introduced in 1993 in the seminal work [START_REF] Sobol | Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[END_REF]. Assuming finite second order moment for the model, the computation of these indices is based on the decomposition of the variance. Later, Sudret provided a convenient way of computing these indices using a polynomial chaos expansion as meta model [START_REF] Sudret | Global sensitivity analysis using polynomial chaos expansions[END_REF]. In particular, he showed that Sobol' indices could be directly expressed as a function of the polynomial coefficients.

The sensitivity analysis is used with the chaotic model of Lorenz in several articles [START_REF] Akinlar | A new method for parameter sensitivity analysis of Lorenz equations[END_REF][START_REF] Hart | Robustness of the Sobol indices to distribution uncertainty[END_REF][START_REF] Lea | Sensitivity analysis of the climate of a chaotic ocean circulation model[END_REF][START_REF] Marzban | Variance-based sensitivity analysis : an illustration on the Lorenz'63 model[END_REF]]. An analysis based on the staggered methods is considered, in the article [START_REF] Akinlar | A new method for parameter sensitivity analysis of Lorenz equations[END_REF], to eliminate the least effective parameters. In [START_REF] Hart | Robustness of the Sobol indices to distribution uncertainty[END_REF], the author considered an output function which corresponds to a ratio of temperature variations after a duration of 1 time unit. The paper [START_REF] Lea | Sensitivity analysis of the climate of a chaotic ocean circulation model[END_REF] addresses some fundamental methodological questions concerning the sensitivity analysis of chaotic geophysical systems. In [START_REF] Shen | Polynomial chaos quantification of the growth of uncertainty investigated with a Lorenz model[END_REF], the authors performed sensitivity analysis by the polynomial chaos approach for the Lorenz system without calculating the Sobol indices.

A vast majority of sensitivity analysis studies assume independence between input variables. When the input variables are dependent, there is no general agreement among the scientific community on how to treat a such problem. For example, sensitivity analysis based on the δ-measure (see [START_REF] Borgonovo | Moment independent importance measures : new results and analytical test cases[END_REF]) is a moment-free method but the indices do not sum to unity. The analysis of covariance ANCOVA (see [START_REF] Li | Global sensitivity analysis for systems with independent and/or correlated inputs[END_REF]) is another way to compute sensitivity indices that requires a function decomposition of the model. It is complex to interpret since it makes it difficult to isolate the interaction effects from the correlation ones. One can also use the Shapley indices see [START_REF] Owen | Sobol' indices and Shapley value[END_REF][START_REF] Schaibly | Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients[END_REF][START_REF] Sobol | Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[END_REF] which consist of an equitable allocation of the part of the variance of the output. Unlike the ANCOVA indices, they are always positive and their sum is one.

In this work, we use Sobol' indices to measure the sensitivity of the model. These indices give us the influence of several natural parameters (temperature, rotation, convection motion, fluid properties) that are involved in the Lorenz Stenflo climate systems and describe how they affect the evolution of the climate. We assume that these parameters are not precisely known and therefore can be modelled as random variables with given laws. We make the hypothesis of independence of σ (which depends on the properties of the fluid), b (which varies with a geometry of the convection cell), r (varies according to the temperature gradient) and s (the rotation parameter of the system). However those variables are not strictly independent, we assume that they are weakly correlated in order to neglect their effects on the decomposition of the variance.

We have chosen uniform laws for the input random variables to ensure that their support lies in the positive domain. In doing so, we also make sure that the system stays in a non-chaotic (resp. chaotic) regime. However this hypothesis is not restrictive since by the inversion method, any random variable can be mapped to one that follows the uniform law.

To calculate the Sobol indices, relative to the numerical approximation of differential equations, we use the polynomial chaos method [START_REF] Bachi | Propagation of epistemic uncertainty in queueing models with unreliable server using chaos expansions[END_REF][START_REF] Hosder | A non-intrusive polynomial chaos method for uncertainty propagation in CFD simulations[END_REF][START_REF] Pettersson | Polynomial chaos methods for hyperbolic partial differential equations[END_REF]. The solution of the differential equation is represented by means of orthogonals polynomials. The coefficients of the polynomial basis are functions of time and can be calculated by solving a system of deterministic ordinary differential equations. Numerical examples are presented to illustrate the accuracy and efficiency of the stated method. Interestingly enough, we found that in the non-chaotic case, the combined influence of input variables can be neglected and all statistical quantities (including Sobol' indices) reach a steady state. On the other hand, in the chaotic case, this study shows that combined effects play a prominent role, and we could also observe a pseudo-periodic regime.

The paper is organized as follows. In Section 2, we introduce the Lorenz-Stenflo model and describe different aspects of the climate system. In Section 3, we introduce the theory of sensitivity analysis and the polynomial chaos method. In Section 4, we compute the Sobol indices in the non-chaotic case and in the chaotic case to understand the influence of the input random variables on the output variable. Finally, we draw some conclusions.

Climate system model

In 1963, meteorologist Edward Lorenz was the first to highlight the likely chaotic nature of meteorology. The Lorenz Stenflo model (in short LS) [START_REF] Leonov | Generalized Lorenz equations for acoustic-gravity waves in the atmosphere. Attractors dimension, convergence and homoclinic trajectories[END_REF] is a simplified model of meteorological phenomena based on fluid mechanics. This model is a dynamic fourdimensional system which generates chaotic behavior under certain conditions. The LS model had important repercussions in showing the possible limits on the ability to predict long-term climate and meteorological evolution. An important part of the theory is that the atmospheres of planets and stars can have a wide variety of quasi-periodic regimes and are subject to abrupt and random changes.

The LS model is a dynamic modeling for atmospheric acoustic gravity waves in a rotating atmosphere. Knowledge of gravity acoustic waves is important as they can be responsible for both minor weather changes and large-scale phenomena. This kind of phenomenon occurs on any fluid subject to a field of gravity, and can be made visible when there are several fluids arranged in several layers. In this case, the different layers in the atmosphere can give rise to visible gravity waves clouds.

The LS system [START_REF] Leonov | Generalized Lorenz equations for acoustic-gravity waves in the atmosphere. Attractors dimension, convergence and homoclinic trajectories[END_REF] allows one to show that disturbances of acoustic gravity at low frequency and short wavelength in the atmosphere can be described by a system of four generalized Lorenz equations. These coupled equations reduce to the usual three Lorenz equations [START_REF] Lorenz | Deterministic nonperiodic flow[END_REF] when the rotation of the earth is not considered :

                         ẋ = σ(y -x) + sv ẏ = rx -y -xz ż = xy -bz v = -x -σv (4.1)
where the dot represents the derivative of the variable over time. The variable x characterizes the intensity of the convection movement, y the horizontal temperature gradient, z the vertical temperature gradient and v is proportional to the current function. The parameters have the following meanings : σ depends on the properties of the fluid, b varies with the geometry of the convection cell, r varies according to the temperature gradient in the cell and s is the rotation parameter of the system (it depends on the angle of rotation and kinematic viscosity). Here, v and s are the new variable and parameter associated with rotational effects. For more details on the LS system see [START_REF] Leonov | Generalized Lorenz equations for acoustic-gravity waves in the atmosphere. Attractors dimension, convergence and homoclinic trajectories[END_REF][START_REF] Moon | A physically extended Lorenz system[END_REF].

Various dynamical behaviors such as stability, periodic and chaotic solutions, Lyapunov exponents spectra of the high-order LS equations (4.1) have been thoroughly studied [START_REF] Park | Stability and periodicity of high-order Lorenz-Stenflo equations[END_REF][START_REF] Rech | On the dynamics of a modified Lorenz-Stenflo system[END_REF].

For the values taken by Lorenz in his work [START_REF] Lorenz | Deterministic nonperiodic flow[END_REF], that is σ = 10, b = 8/3, r = 28, with s = 10, we have represented the chaotic system of LS (4.1). Figure 31 shows the evolution of each state, Figure 32 (respectively Figure 33) displays the evolution in dimension 2 (in dimension 3).

In Figure 34, we have plotted the solution x 1 (t) with initial conditions (1, 1, 1, 1) and another solution x 2 (t) with initial conditions (1, 1, 1, 1.0001). We notice that, with a very small modification of the initial conditions, the two solutions separate after a certain time and will evolve in a totally different way.

The attractor resembles the two outstretched wings of a butterfly, see Figure 32. Each wing seems to be formed by a series of concentric circles. The points describe several circles on one wing then switch to the other without any particular rhythm and without ever cutting their trajectories.

The LS system (4.1) is symmetrical with respect to the transformation (x, y, z, v) → (-x, -y, z, -v). It is also a dissipative system. The dissipativity of this system depends only on σ and b, similarly to what happen in classical Lorenz system [START_REF] Lorenz | Deterministic nonperiodic flow[END_REF].

The LS system (4.1) has three fixed points which are : the origin E 0 = (0, 0, 0, 0) and two others points that are symmetrical with respect to the transformation :

E 1 = - β 1 , -β 2 , β 3 , -β 4 and E 2 = β 1 , β 2 , β 3 , β 4
where :

β 1 = bβ 3 / 1 + s σ 2 1/2 , β 2 = bβ 3 1 + s σ 2 1/2 , β 3 = r -1 - s σ 2 , β 4 = - β 1 σ .
The linear instability of LS equations around stationary points has been studied in [START_REF] Park | Stability and periodicity of high-order Lorenz-Stenflo equations[END_REF]. It has been found that usually the presence of the rotation parameter reduces the chaotic regime. Several periodic and chaotic solutions were also presented. For the value studied, the solutions were qualitatively similar to those of the Lorenz system [START_REF] Lorenz | Deterministic nonperiodic flow[END_REF]. For appropriate parameters, the origin E 0 and (E 1 and E 2 ) are saddle points. The point E 0 has a onedimensional unstable manifold and a three-dimensional stable manifold. The two points (E 1 and E 2 ) have one-dimensional stable manifold and a three-dimensional unstable manifold where the orbits have an outwards spiralling motion.

Sensitivity analysis 4.3.1 Sobol' indices

The purpose of sensitivity analysis is to investigate the influence of each input parameter and their possible interactions on the output measures. Sensitivity analysis can be separated into two main methods : local analysis based on a local perturbation around an average value and global analysis that considers input parameters as random variables and decomposes the output variance into several components. The Sobol indices belong to the latter type of methods.

Denote by (Ω, A, P) the probability space, where Ω is the set of all possible outcomes, A is a σ-algebra over Ω, and P a function A → [0, 1] that gives a probability measure on A. Consider an R n -valued random vector with independent random components X = (X 1 , • • • , X p ) that describes input uncertainties. The probability law of X is defined by the probability density function

f X (x) = n i=1 f X i (x i ),
where f X i is the marginal probability density of X i . We suppose that each real random variable X i has a finite second order moment, i.e.

E(X

2 i ) = R x 2 i f X i (x i )dx i < ∞, (4.2) 
where E stands for the mathematical expectation.

We consider the mathematical model Y = Y (X), where the input parameter X = (X 1 , . . . , X p ) consists of p independent random variables satisfying (5.12) and similarly, Y is assumed to have a finite second order moment. [START_REF] Sobol | Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[END_REF] proposed an indicator of the influence of the input parameter X i defined by

S i = V E(Y |X i ) V(Y ) . ( 4.3) 
commonly termed 'first order Sobol index'. The S i index, between 0 and 1, is high when the influence of X i is large.

V i = V(E(Y /X i ))
is the conditional variance of Y with respect to X i and V = V(Y ) is the total variance of Y . Similarly, sensitivity indices of higher order can be defined by first introducing the following decomposition of the total variance

V(Y ) = p i 1 =1 V i + 1≤i 1 <i 2 ≤p V i 1 i 2 + 1≤i 1 <i 2 <i 3 ≤p V i 1 i 2 i 3 + • • • + V i 1 ...ip , (4.4) 
where

V i 1 = V(E(Y /X i 1 )), V i 1 i 2 = V(E(Y /X i 1 , X i 2 )) -V i 1 -V i 2 , V i 1 i 2 i 3 = V(E(Y /X i 1 , X i 2 , X i 3 )) -V i 1 i 2 -V i 1 i 3 -V i 2 i 3 -V i 1 -V i 2 -V i 3 , • • • , ( 4.5) 
V i 1 ...ip = V - p i=1 V i - 1≤i 1 <i 2 ≤p V i 1 i 2 -• • • - 1≤i 1 <i 2 ...<i p-1 ≤p V i 1 ...i p-1 .
By Equations (5.13) and (5.14) we obtain the formulas for the various Sobol indices of orders greater than 1 :

                                   S i,j = V E(Y |X i , X j ) V(Y ) -S i -S j , S i,j,k = V E(Y |X i , X j , X k ) V(Y ) -S i -S j -S k -S i,j -S i,k -S j,k , .... S 1,...,p = V E(Y |X 1 , ..., X p ) V(Y ) - U ⊆{1,...,p} S U . ( 4.6) 
For a problem with p input random parameters, it can be shown that (2 p -1) Sobol' indices can be computed for each output random quantity of interest. When the number of input random variables is large, the number of Sobol indices grows exponentially and it becomes difficult to draw information from these statistics. Although Sobol indices could be computed by estimating integrals, such a procedure would be both computationally expensive and hardly tractable. Instead, computing those indices from the polynomials chaos representation of the random output Y turns out to be an efficient alternative and it is adopted in this work. This is why we introduce polynomials chaos in the next section.

Polynomials chaos

In the work of Wiener in 1938 [START_REF] Wiener | The homogeneous chaos[END_REF] and the book by Ghanem and Spanos in the 1990s [START_REF] Ghanem | Stochastic finite elements : a spectral approach[END_REF] polynomial chaos (PC) has successfully solved a wide variety of random problems in different domains. The decomposition in PC is an efficient way to build a model enabling to study the propagation of the randomness in a complex system. In this decomposition, we write the random variable of interest Y as a function of a random variable taken as input X under the form :

Y (X) = i α i Ψ i (X),
where {Ψ i } i is a set of orthonormal polynomials that form a basis of some degree, the {α i } i must be determined. There are several techniques for that : intrusive techniques, see [START_REF] Pettersson | Polynomial chaos methods for hyperbolic partial differential equations[END_REF] and non-intrusive techniques, see [START_REF] Hosder | A non-intrusive polynomial chaos method for uncertainty propagation in CFD simulations[END_REF][START_REF] Mcrae | Global sensitivity analysis : A computational implementation of the Fourier amplitude sensitivity test (FAST)[END_REF]. After getting the coefficients {α i } i , mean, variance or Sobol'indices of the output Y can be easily calculated. Indeed, when one wishes to model a data sample, a prior distribution law is chosen and its parameters are estimated, for example by using the maximum likelihood estimator or the method of moments.

We shall explain in a more detail the PC expansion of a function. Then, we will describe how one can calculate the coefficients of the PC decomposition.

Development in polynomial chaos

The expansion into PC is based on orthogonal polynomials, this is why in this section we start by providing a few reminders on this topic. Let E be the real vector space of all polynomials with a single variable and real coefficients, endowed with the scalar product defined by :

< u, v >= I u(x)v(x)f (x)dx ∀u, v ∈ E, ( 4.7) 
where f :

I ⊂ R → R + is a nonnegative integrable function. The set of polynomials
{Ψ n } n⩾0 is said to be orthogonal with respect to the function f if

< Ψ n , Ψ m >= I Ψ n (x)Ψ m (x)f (x)dx = h 2 n δ n,m n, m ∈ N, (4.8) 
where δ is the Kronecker delta functions and the h n are non-zero constants. We recall that, for orthogonal polynomials Ψ 0 = 1. The system (4.8) is called orthonormal if h n = 1.

We use the following recurrence relation to construct these polynomials : ). The first polynomials of this basis, defined for all x ∈ [-1, 1], are constructed as :

     Ψ n+1 (x) = (x -a n )Ψ n (x) -b n Ψ n-1 (x) Ψ 0 (x) = 1, Ψ -1 (x) = 0 (4.9) with          a n = < xΨ n , Ψ n > < Ψ n , Ψ n > n ∈ N b n = < Ψ n , Ψ n > < Ψ n-1 , Ψ n-1 > n ∈ N *
Q -1 (x) = 0 and Q 0 (x) = 1 a 0 = < xQ 0 , Q 0 > < Q 0 , Q 0 > = 1 -1 xdx 1 -1 1dx = 0,
and b 0 = 0, so we have

Q 1 (x) = (x -a 0 )Q 0 (x) -b 0 Q -1 (x) = x, a 1 = < xQ 1 , Q 1 > < Q 1 , Q 1 > = 1 -1 x 3 dx 1 -1 x 2 dx = 0, b 1 = < Q 1 , Q 1 > < Q 0 , Q 0 > = 2/3 2 = 1 3 , Q 2 (x) = (x -a 1 )Q 1 (x) -b 1 Q 0 (x) = x 2 -1/3, a 2 = < xQ 2 , Q 2 > < Q 2 , Q 2 > = 1 -1 x(x 2 -1/3) 2 dx 1 -1 (x 2 -1/3) 2 dx = 0, b 2 = < Q 2 , Q 2 > < Q 1 , Q 1 > = 8/45 2/3 = 4 15 , Q 3 (x) = (x -a 2 )Q 2 (x) -b 2 Q 1 (x) = x(x 2 -1/3) -4/15x = x 3 -3/5x.
Remarque 4.3.1 The polynomials constructed according to the formulas (4.9) and (4.10)
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are only orthogonal. For all j ∈ N, we can divide the polynomial Q j by the root of its norm < Q j , Q j > so that it becomes orthonormal.

Exmple 4.3.2 Hermite polynomials form a basis of polynomials that are orthogonal with respect to the density of a normal distribution N (0, 1). For all n ∈ N, corresponding to the degree of the polynomial, and for all x ∈ R, they are defined by :

Q n (x) = (-1) n e x 2 /2 d n dx n e -x 2 /2 . (4.11)
We can prove by induction, for all n ∈ N and x ∈ R,

d n dx n e -x 2 /2 = e -x 2 /2 [n/2] k=0 (-1) n+k n! 2 k k!(n -2k)!
x n-2k , (4.12)

Q n (x) = [n/2] k=0 (-1) k n! 2 k k!(n -2k)! x n-2k , with [n/2] the integer part of n/2.
The first polynomials of the Hermite basis are therefore the following :

Q 0 (x) = 1, Q 1 (x) = x, Q 2 (x) = x 2 -1, Q 3 (x) = x 3 -3x, Q 4 (x) = x 4 -6x 2 + 3.
All these polynomials are orthogonal with respect to the density of the reduced centered normal distribution.

When analytical calculations are not possible a basi of PC can be constructed according to (4.9) and (4.10) using the quadrature formula. We consider Y = Y (X) = Y (X 1 , ..., X n ) a given output function with a finite second order moment, it can be represented by [START_REF] Ghanem | Stochastic finite elements : a spectral approach[END_REF][START_REF] Xiu | The Wiener-Askey polynomial chaos for stochastic differential equations[END_REF] :

Y (X) = ∞ i=0 α i Ψ i (X). (4.13)
Let Ỹ (X) be a response of the form (4.13), with {P si i } 0⩽i⩽P a family of orthonormal polynomials, which models the system Y = f (X). For a given input value bf x i , the response of the system y i = f (x i ) is deterministic. The sum (4.13) is truncated (see [START_REF] Xiu | The Wiener-Askey polynomial chaos for stochastic differential equations[END_REF] and Emeline Gayrard's thesis [START_REF] Gayrard | Analyse bayésienne de la gerbe d'éclats provoquée pa l'explosion d'une bombe à fragmentation naturelle[END_REF]) by keeping the terms lower than a degree P :

Y (X) ≈ Ỹ (X) = P i=0 α i Ψ i (X) (4.14) 
where P + 1 = (p + n)! n!p! with p the number of independent random variables and n the degree of the PC.

Once this approximation of the system response has been found, in the form of a decomposition into PC, it is easy to calculate the different macroscopic quantities. For example, the mean of Ỹ is simply the first coefficient of the decomposition into PC,

E( Ỹ ) = P i=0 α i E(Ψ i (X)) = P i=0 α i R p Ψ i (x)f X (x)dx = P i=0 α i R p Ψ 0 (x)Ψ i (x)f X (x)dx,
where f X is the density function of X. By orthonormality of {Ψ i } i⩾0 , we have E( Ỹ ) = α 0 .

In the same way, we find

V( Ỹ ) = P i=1 α 2 i .
In the next section, we detail a method to calculate the coefficients {α i } 0⩽i⩽P when a functional relation of the form Y = g(X) is known : the Galerkin projection.

Coefficients of polynomials chaos

Let Ỹ (X) be a response of the form (4.14), with {Ψ i } 0⩽i⩽P a family of orthonormal polynomials, which models the system Y = g(X). We can consider g as a black box representing our model such that for a given input value x i the response of the system

y i = g(x i
) is computable. To calculate the coefficients {α i } 0⩽i⩽P of (4.14), we operate as follows :

Ỹ (X) = P i=0 α i Ψ i (X), multiply by Ψ j (X), Ỹ (X)Ψ j (X) = P i=0 α i Ψ i (X)Ψ j (X),
taking the expectation value, we have

E( Ỹ (X)Ψ j (X)) = E P i=0 α i Ψ i (X)Ψ j (X) .
Then, using the linearity of the expectation and the orthonormality of the polynomials Ψ i (X), we obtain

α i = E Ỹ (X)Ψ i (X) ≈ R n g(x)Ψ i (x)f X (x)dx (4.15)
with f X the density of the random variable X. This procedure is known as the Galerkin projection in the deterministic community and it also has a strong connection with the linear square mean technique used in the statistical community (the calculation of the minimum of E g(X) -P i=0 α i Ψ i (X)

2

). The next step is to evaluate the above integral, using the known points of the function g. When the problem contains a low number of input random variables, Gaussian quadrature rules are generally used (see [START_REF] Golub | Calculation of Gauss quadrature rules[END_REF]). For a single variable, they take the form

I h(x)f (x)dx ≈ m k=1 ω k h(x k ), (4.16) 
for any function h integrable over I. The construction of the quadrature rules is usually carried out in tandem with the construction of polynomials orthogonal with respect to the weight function f (see [START_REF] Gautschi | Orthogonal polynomials : computation and approximation[END_REF]). Note that the points and weights are such that the formula (4.16) is exact when h is a polynomial of degree at most 2 m -1. By combining (4.15) and (4.16), we obtain the expression for the computation of the coefficients of the following PC :

α i = k 1 ,••• ,kp ω k 1 • • • ω kp g(x k 1 , • • • , x kp )Ψ i (x k 1 , • • • , x kp ). (4.17)
It is important to stress that the computation of α i requires the evaluation of g( [START_REF] Dahlquist | Numerical methods in scientific computing[END_REF][START_REF] Davis | Methods of numerical integration[END_REF][START_REF] Rahman | Extended polynomial dimensional decomposition for arbitrary probability distributions[END_REF]] for more explanation. For more details on this PC method see also [START_REF] Sudret | Global sensitivity analysis using polynomial chaos expansions[END_REF][START_REF] Xiu | The Wiener-Askey polynomial chaos for stochastic differential equations[END_REF][START_REF] Xiu | Modeling uncertainty in flow simulations via generalized polynomial chaos[END_REF] which applies the method with random variables and stochastic processes.

x k 1 , • • • , x kp ) at the specified point (x k 1 , • • • , x kn ), see
We break down the state variables that satisfy the system (4.1) in the form of polynomials of degree p and we fix the time t = t k . We consider that the parameters X = (σ, b, r, s) are independent random variables and we decompose the state variables as follows :

                                   x(t k , X) = x(t k , σ, b, r, s) = P i=0 x i (t k )Ψ i (σ, b, r, s), y(t k , X) = y(t k , σ, b, r, s) = P i=0 y i (t k )Ψ i (σ, b, r, s), z(t k , X) = z(t k , σ, b, r, s) = P i=0 z i (t k )Ψ i (σ, b, r, s), v(t k , X) = v(t k , σ, b, r, s) = P i=0 v i (t k )Ψ i (σ, b, r, s), (4.18) 
with

P + 1 = (4 + n)! n!4!
, where {Ψ i } is a complete basis of orthonormal polynomials of degree p.

We illustrate the method on the component x(t k , σ, b, r, s). We multiply by Ψ j , use orthogonality and then we integrate, than we find (4.19) in particular, with Ψ 0 (σ, b, r, s) = 1, it follows that E x(t k , σ, b, r, s) = x 0 (t k ). We fix the points (σ q 1 , b q 2 , r q 3 , s q 4 ) and we determine the coefficients x j (t k ), y j (t k ), z j (t k ), v j (t k ) by solving the system :

E x(t k , σ, b, r, s)Ψ j (σ, b, r, s) = P i=0 x i (t k )E Ψ i (σ, b, r, s)Ψ j (σ, b, r, s) = x j (t k ),
                               dx(t, σ q 1 , b q 2 , r q 3 , s q 4 ) dt = σ q 1 (y -x) + s q 4 v, dy(t, σ q 1 , b q 2 , r q 3 , s q 4 ) dt = r q 3 x -y -xz, dz(t, σ q 1 , b q 2 , r q 3 , s q 4 ) dt = xy -b q 2 z, dv(t, σ q 1 , b q 2 , r q 3 , s q 4 ) dt = -x -σ q 1 z, ( 4.20) 
with initial conditions (x 0 , y 0 , z 0 , v 0 ). As

x(t k , σ, b, r, s)

2 = P i,j=0
x i (t k )x j (t k )Ψ i (σ, b, r, s)Ψ j (σ, b, r, s), by using orthonormality of the {Ψ i }, we obtain

E x(t k , σ, b, r, s) 2 = P i,j=0 x i (t k )x j (t k )E Ψ i (σ, b, r, s)Ψ j (σ, b, r, s) = P i=0 x i (t k ) 2 E Ψ 2 i (σ, b, r, s) = P i=0 x i (t k ) 2 ,
which leads to

V x(t k , σ, b, r, s) = P i=0 x i (t k ) 2 -x 0 (t k ) 2 = P i=1 x i (t k ) 2 .
For the calculation of the Sobol indices, we use the method presented by B. Sudret in [START_REF] Sudret | Global sensitivity analysis using polynomial chaos expansions[END_REF], which consists in using a basis of PC. By construction, the basis {Ψ j (X)} j⩾0 = {Ψ j (X 1 , X 2 , X 3 , X 4 )} j⩾0 = {Ψ j (σ, b, r, s)} j⩾0 satisfied two conditions. Firstly, for all (σ, b, r, s

) ∈ R 4 , Ψ 0 (σ, b, r, s) = 1.
The second condition, is that to each j ∈ {0, 1, ..., P } corresponds a multi-index (γ 1 , γ 2 , γ 3 , γ 4 ) ∈ {0, 1, ..., n} 4 such that

Ψ j (X) = Ψ j (X 1 , X 2 , X 3 , X 4 ) = Ψ j (σ, b, r, s) = Ψ γ 1 ,γ 2 ,γ 3 ,γ 4 (σ, b, r, s) = Ψ 1 γ 1 (σ)Ψ 2 γ 2 (b)Ψ 3 γ 3 (r)Ψ 4 γ 4 (s), (4.21) 
with for all (h, i) ∈ {1, 2, 3, 4} 2 , Ψ h 0 (X h ) = 1, Ψ h γ i is a polynomial of degree γ i , and {Ψ h γ i } forms a one-dimensional basis of polynomials that are orthogonal with respect to the density f X h of X h , that is to say : ∀(l, m) ∈ {0, ..., n}

2 with l ̸ = m, R Ψ h l (x h ) 2 f X h (x h )dx h = 1 and R Ψ h l (x h )Ψ h m (x h )f X h (x h )dx h = 0. (4.22)
According to Formula (4.21), we can then rewrite Equation (4.18) for the component x as follows :

x(t k , σ, b, r, s) = (γ 1 ,...,γ 4 )∈{0,...,n} 4

x γ 1 ,...,γ

4 (t k )Ψ 1 γ 1 (σ)Ψ 2 γ 2 (b)Ψ 3 γ 3 (r)Ψ 4 γ 4 (s), (4.23) 
with (γ 1 , ..., γ 4 ) ∈ {0, ..., n} 4 such that 4 i=1 γ i ⩽ n. Now we calculate the Sobol index S xr for x with respect to the influence of the parameter r :

S xr (t k ) = V E x(t k , σ, b, r, s) r V x(t k , σ, b, r, s) = E E x(t k , σ, b, r, s) r 2 -E E x(t k , σ, b, r, s) r 2 V x(t k , σ, b, r, s) . (4.24)
The Sobol indices of the first order (4.24) can then be expressed as a function of the coefficients of the PC decomposition (4.23). All that remains is to calculate the following conditional expectation :

E x(t k , σ, b, r, s) r = j=(γ 1 ,...,γ 4 )∈{0,...,n} 4 x j (t k )Ψ 3 γ 3 (r)E h⩽4;h̸ =3 Ψ h γ h (X h ) = j=(γ 1 ,...,γ 4 )∈{0,...,n} 4 x j (t k )Ψ 3 γ 3 (r) × h⩽4;h̸ =3 R Ψ h 0 (x h )Ψ h γ h (x h )f X h (x h )dx h = n γ 3 =0
x 0,0,γ 3 ,0 (t k )Ψ 3 γ 3 (r). (4.25)

According to Equation (4.22), we obtain the variance

V E x(t k , σ, b, r, s) r = n γ 3 =0 x 0,0,γ 3 ,0 (t k ) 2 V Ψ 3 γ 3 (r) = n γ 3 =1
x 0,0,γ 3 ,0 (t k )

2 . (4.26)

We then have the Sobol index S xr 

S xr (t k ) = V E x(t k , σ, b, r, s) r V x(t k , σ, b, r, s) = n γ 3 =1 x 0,0,γ 3 ,0 (t k ) 2 P i=1 x i (t k ) 2 . ( 4 
S x b,r = V E x(t k , σ, b, r, s) b, r V x(t k , σ, b, r, s) = E E x(t k , σ, b, r, s) b, r 2 -E E x(t k , σ, b, r, s) b, r 2 V x(t k , σ, b, r, s)
.

Firstly we calculate the expectation E x(t k , σ, b, r, s) b, r . We have

E x(t k , σ, b, r, s) b, r = j=(γ 1 ,...,γ 4 )∈{0,...,n} 4 x j (t k )Ψ 2 γ 2 (b)Ψ 3 γ 3 (r)E h⩽4;h̸ ={2,3} Ψ h γ h (X h ) = j=(γ 1 ,...,γ 4 )∈{0,...,n} 4 x j (t k )Ψ 2 γ 2 (b)Ψ 3 γ 3 (r) × h⩽4;h̸ ={2,3} R Ψ h 0 (x h )Ψ h γ h (x h )f X h (x h )dx h = n γ 2 ,γ 3 =0 x 0,γ 2 ,γ 3 ,0 (t k )Ψ 2 γ 2 (b)Ψ 3 γ 3 (r), (4.28) 
which gives the variance,

V E x(t k , σ, b, r, s) b, r = n γ 2 ,γ 3 =0 x 0,γ 2 ,γ 3 ,0 (t k ) 2 V Ψ 2 γ 2 (b)Ψ 3 γ 3 (r) = n γ 2 ,γ 3 =1 x 0,γ 2 ,γ 3 ,0 (t k ) 2 .
We then obtain the Sobol index S x b,r For the states x and y (see Figures 36 and37), the two parameters that have the most influence are r and b. The variable b influences x at 45% and y at 46%. The variable r influences x at 52% and y at 52%. The state z is almost exclusively influenced by r (at 99, 9%).

S x b,r (t k ) = V E x(t k , σ, b, r, s) b, r V x(t k , σ, b, r, s) = n γ 2 ,γ 3 =1 x 0,γ 2 ,γ 3 ,0 (t k ) 2 P i=1 x i (t k ) 2 . ( 4 
The parameters σ, b and r affect the state v at 60%, 18% and 21% respectively, see Figure 39. For the parameter s (see , which represents the rotation, there is no influence on the state, its influence on the stability of the system is negligible. The parameter r is the only one that influences all four states (x, y, z, v) with the greatest intensity on z. show the influence of all parameters on the states for t ∈ [0, T f ]. We see that during the first half of this time interval, Sobol' indices have a pseudoperiodic behavior before reaching a steady state regime. Table 4.3 gives the sum of first order indices. They are very close to one, showing that the combined effect of the variables remains weak.

Sobol' indices in the chaotic regime

In this subsection, we consider the chaotic case. We set the parameters p = 10, N q = 8, the initial condition p 0 = (1, 1, 1, 1) and the final time T f = 100. Table 4.4 specifies the law of the random input parameters. 

Conclusion

When qualitative estimates of sensitivity are desired, a mathematical model of the phenomena is necessary. However, such a model poses questions of stability, optimality and sensitivity. In this research work, we chose to perform a sensitivity analysis of the LS climate model.

We developed a numerical approach based on chaos polynomials to calculate Sobol' indices in order to study the sensitivity of the factors (σ, b, r, s) that are involved in the LS climate system. The LS model has been studied for two cases : non-chaotic and chaotic. In the nonchaotic case, all the statistical quantities reach a steady state. This does not happen for the chaotic case, where we could observe a pseudo-periodic regime. A noticeable difference between the two cases lies in the higher order Sobol indices. They are close to zero for the chaotic case, showing that the combined effect of parameters can be considered negligible. On the other hand, for the chaotic case higher order Sobol indices can take higher values.

The proposed method makes it possible to carry out such an analysis and numerical examples have been presented to show its effectiveness. Chaos polynomials can be extended to more complex stochastic systems governed by partial differential equations without any fundamental difficulty. This will be the subject of ongoing research.

Chapitre 5

Analyse de sensibilité locale et globale de la fonction de taux d'intérêt du modèle économique de Vasicek.

Introduction

Credit risk with interest rates is one of the primary risks in the financial sector, and effective management of this risk is crucial for the industry. Credit default swaps (CDS) have become one of the most important derivatives for managing credit risk due to their advantages since their introduction. However, as the swap market rapidly expanded, some hidden contradictions gradually emerged, such as the subprime mortgage crisis in the United States and the European sovereign debt crisis. These crises have shown that credit derivatives are not only convenient but also carry significant risks, especially contagious risk. Therefore, the valuation and pricing of interest rates require more efficient models based on the real market. Various models have been proposed in the literature, such as Vasicek [START_REF] Vasicek | An equilibrium characterization of the term structure[END_REF], Dothan [START_REF] Dothan | On the term structure of interest rates[END_REF], Brennan and Schwarz [START_REF] Brennan | A continuous time approach to the pricing of bonds[END_REF], Cox, Ingersoll and Ross [START_REF] Cox | A theory of the term structure of interest rates[END_REF], Rendleman and Bartter [START_REF] Rendleman | The pricing of options on debt securities[END_REF], Longstaff [START_REF] Longstaff | A nonlinear general equilibrium model of the term structure of interest rates[END_REF], Hull and White [START_REF] Hull | Pricing interest-rate-derivative securities[END_REF], Pearson and Sun [START_REF] Pearson | Exploiting the conditional density in estimating the term structure : An application to the Cox, Ingersoll, and Ross model[END_REF]. These models can be used to value all interest rate contingent claims in different scenarios. Interest rates and their dynamics provide probably the most computationally challenging part of modern financial theory, and the introduction of derivatives for fixed-income securities has complicated the analysis even further. However, older and simpler models such as the Vasicek model [START_REF] Giuseppe | Forecasting interest rates through Vasicek and CIR models : a partitioning approach[END_REF][START_REF] Sorwar | Valuation of derivatives based on single-factor interest rate models[END_REF][START_REF] Vasicek | An equilibrium characterization of the term structure[END_REF], described in this paper, remain relevant and provide a good starting point for understanding the complex world of interest rate modeling. The Vasicek economic model is a bond pricing model that describes the dynamics of the short-term interest rate in stochastic diffusion form. It was developed by Oldrich Vasicek in 1977 [START_REF] Vasicek | An equilibrium characterization of the term structure[END_REF] and is considered one of the first stochastic interest rate models. Interest rate modeling plays an important role in investment decision and risk management in financial markets. Stochastic modeling of interest rates began with Vasicek's model in 1977 [START_REF] Vasicek | An equilibrium characterization of the term structure[END_REF], which has had a significant impact on finance over the past twenty years. Vasicek's work introduced the Ornstein-Uhlenbeck process, in which the interest rate depends only on the instantaneous rate but allows negative rates. The Vasicek and CIR [START_REF] Cox | A theory of the term structure of interest rates[END_REF] models are two important short-rate models in the class of single-factor models.

Sensitivity analysis can be achieved with two different techniques : local and global methods. The first ones are the historical approach and study the impact of small input perturbations on the model output around a specific point. They are commonly used when the model has a large number of input variables. This approach is relatively easy to implement since it only requires the computation of partial derivatives of the model at specific points. One may refer to the paper of Zhou and Lin [START_REF] Zhou | Local sensitivity analysis[END_REF] for a detailed overview of techniques belonging to that category. Among them, the variance based and the momentfree ones are the most popular. Because they consider the entire range of variation of the input they quickly became the methods of choice of researchers. The moment-free method is based on the normalized expected shift in the distribution of the model output provoked by some of its input variables (Borgonovo [8]). The so-called global sensitivity analysis methods [START_REF] Saltelli | Global sensitivity analysis : The primer[END_REF][START_REF] Saltelli | Sensitivity analysis in practice : a guide to assessing scientific models[END_REF][START_REF] Sobol | Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[END_REF], particularly those based on the ANOVA variance, are wellsuited to address the challenges and objectives of the proposed models. The estimation of sensitivity indices is robust, with intuitive interpretation and extraction of sensitivity and uncertainty information from the same simulations. However, ANOVA methods are often associated with prohibitively long computing times, especially those based on functional decomposition of variance, such as the Sobol method.

A vast majority of sensitivity analysis studies assume independence between input variables. When the input variables are dependent, there is no general agreement among the scientific community on how to treat a such problem. For example, sensitivity analysis based on the dmeasure (see Borgonovo [START_REF] Borgonovo | Moment independent importance measures : new results and analytical test cases[END_REF]) is a moment-free method, but the indices do not sum to unity. The analysis of covariance ANCOVA (see Li [START_REF] Li | Global sensitivity analysis for systems with independent and/or correlated inputs[END_REF]) is another way to compute sensitivity indices that requires a function decomposition of the model. It is complex to interpret since it makes it difficult to isolate the interaction effects from the correlation ones. One can also use the Shapley indices (see Owen [START_REF] Owen | Sobol' indices and Shapley value[END_REF]) which consist of an equitable allocation of the part of the variance of the output. Unlike the ANCOVA indices, they are always positive and their sum is one.

The first direct application of the tools developed in [START_REF] Saltelli | Global sensitivity analysis : The primer[END_REF][START_REF] Saltelli | Sensitivity analysis in practice : a guide to assessing scientific models[END_REF] on a macroeconomic model was published in [START_REF] Ratto | Analysing DSGE models with global sensitivity analysis[END_REF]. There is limited research on sensitivity analysis of economic models. We make the hypothesis of independence for the different parameters of the Vasicek model. However, those variables are not strictly independent, we assume that they are weakly correlated in order to neglect their effects on the decomposition of the variance. We assume that these parameters are not precisely known and therefore can be modeled as random variables with given laws. One of the classical sensitivity analysis techniques is the global sensitivity based on Sobol indices [START_REF] Ratto | Analysing DSGE models with global sensitivity analysis[END_REF][START_REF] Sobol | Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[END_REF]. Since the analytical calculation of these indices is impossible for most models, sensitivity indices are usually approximated from a sample of inputs and outputs. In this paper, we propose a new functional approach based on multivariate Taylor series expansions [START_REF] Abbas | A Taylor series expansion approach to the functional approximation of finite queues[END_REF][START_REF] Soufit | Taylor series expansion approach for epistemic uncertainty propagation in queueing-inventory models[END_REF] to perform this task. Specifically, we use this approach to estimate Sobol indices for the global sensitivity analysis of the Vasicek model [START_REF] Vasicek | An equilibrium characterization of the term structure[END_REF]. We also calculate sensitivity indices using the Fourier Amplitude Sensitivity Test (FAST) method [START_REF] Cukier | Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I Theory[END_REF][START_REF] Cukier | Nonlinear sensitivity analysis of multiparameter model systems[END_REF][START_REF] Cukier | Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. III. Analysis of the approximations[END_REF] and the classical Monte Carlo (MC). The main objective of this article is to provide a coherent framework for determining the percentage of influence of the parameters affecting the interest Vasicek rate and to compare the different methods (Taylor,FAST and MC).

The rest of the paper is organized as follows. In Section (5.2), we introduce the Vasicek's economic model. In Section (5.3), we provide a summary on a new estimation of Sobol indices based on multivariate Taylor series expansions. We also provide a brief summary of the FAST and MC methods. In Section (5.4), we consider the interest Vasicek rate function as an output model, and we perform sensitivity analysis by perturbing the involved parameters to understand the influence of the input random variables on the interest Vasicek rate.

Vasicek interest rate model

In this paper, we focus solely on equilibrium models, and in particular, we discuss only Vasicek's model [START_REF] Giuseppe | Forecasting interest rates through Vasicek and CIR models : a partitioning approach[END_REF][START_REF] Sorwar | Valuation of derivatives based on single-factor interest rate models[END_REF][START_REF] Vasicek | An equilibrium characterization of the term structure[END_REF]. The Vasicek equation is a widely used model in finance for interest rate modelling. We make the following assumptions : that the short rate r t , for all t ⩾ 0, is adapted on a filtered probability space (Ω, F t , P). We assume that under a risk-neutral probability Q, the instantaneous short rate r t follows the Ornstein-Uhlenbeck process with constant coefficients :

dr t = κ(θ -r t )dt + σdW t , ( 5.1) 
where θ represents the equilibrium value or the mean value of r, while κ is the mean reversion force, which determines the speed at which the process will return to its equilibrium value, σ is the volatility and (W t ) t⩾0 is a standard Brownian motion. The constants σ, θ and κ are well-defined in the long term, and are all positive.

Let s ⩽ t, the solution of equation (5.1) is :

r t = r s exp -κ(t -s) + θ 1 -exp -κ(t -s) + σ t s exp -κ(t -u) dW u , (5.2)
r t is normally distributed conditionally to F s , s < t, of mean and variance

E Q (r t |F s ) = r s exp -κ.(t -s) + θ 1 -exp -κ.(t -s) V Q (r t |F s ) = σ 2 2κ 1 -exp(-2κ(t -s) .
In the long run, we have

lim t→∞ E Q (r t |F s ) = θ and lim t→∞ V Q (r t |F s ) = σ 2 2κ . (5.3)
This process is characterized by being 'mean-reverting', meaning that it oscillates around its average value, which is the general case for spot rates. The most important role in Vasicek's model is mean reversion, which means that if the interest rate is higher than the long-run average (r > θ), the coefficient κ will result in a negative drift, pulling the rate down towards θ. Similarly, if the interest rate is lower than the long-term average (r < θ), the coefficient κ will result in a positive drift, pulling the rate up towards θ. Therefore, κ is the speed of adjustment of the interest rate towards its long-run level. There are also compelling economic arguments for mean reversion.

In Figures 57 and58, we have represented the process of the evolution of the short rate r t in the Vasicek model when t ∈ [0; 10] and s = 0 with different values of θ and σ.

In Figure 57, we can observe that the process will fluctuate around its mean with a certain amplitude. In Figure 58 (a), we can see that the process evolves around its initial mean value (θ = 1) and that the greater the volatility σ, the more the interest rate will oscillate. This confirms that the interest rate is a very volatile factor and can experience significant fluctuations.

When interest rates are high, it typically indicates a slower economy and lower demand for borrowing. As rates return to their long-run equilibrium value, they tend to decrease. Conversely, when rates are low, borrowers demand more funds, which tends to push rates up. This mean reversion feature is particularly important because it prevents interest rates from drifting permanently upward as stock prices sometimes do, which is not typically observed in financial markets.

In Figure 58 (b), the process of r t is represented with two different values of the mean reversion speed κ (κ = 1 and κ = 1.5). We can observe that when κ is larger, the process returns quickly towards its mean value θ = 1. One disadvantage of the Vasicek model is that it allows for the possibility of negative short rates ( see Figure 58 (a)) which is unrealistic and not economically meaningful. In reality, short rates cannot fall below zero because investors can always choose to hold cash instead, which has a zero interest rate. This issue has been addressed by extending the Vasicek model to include a zero lower bound or by using alternative models such as the Cox-Ingersoll-Ross model [START_REF] Cox | A theory of the term structure of interest rates[END_REF] or the Hull-White model [START_REF] Hull | Pricing interest-rate-derivative securities[END_REF], which do not allow for negative interest rates. Another disadvantage of the Vasicek model is that it assumes constant parameters over time, which may not always be accurate in practice.

In the following section, we introduce the sensitivity analysis methods (local and global) which will be used in the section (5.4).

Sensitivity analysis

Sensitivity analysis [START_REF] Hoeffding | A class of statistics with asymptotically normal distribution[END_REF][START_REF] Homma | Importance measures in global sensitivity analysis of nonlinear models[END_REF][START_REF] Van Der | Asymptotic statistics[END_REF] can also reveal how different variables interact with each other, and whether certain groups of variables have a synergistic or antagonistic effect on the model output. Let (Ω, F, P) be the probability space which describes the randomness of uncertain parameters, where Ω denotes the space provided with σ-algebra F and probability measure P. In the following, we consider a black-box system defined

Y = f (X) = f (X 1 , ..., X p ), (5.4) 
where f is a continuous scalar function f : R p → R . The input of this function is a p-dimensional random variable X = (X 1 , ..., X p ). In the following, we assume that the input components X i are supposed to be independent and identically distributed. The local sensitivity analysis is presented in section 5.3.1 and the global analysis is presented in section 5.3.2. Local and global sensitivity analysis are used to quantify the influence of uncertain variables in a mathematical model.

Local sensitivity : Multivariate Taylor-series expansions

Local sensitivity measures analyses how a small perturbation near an input space value α 0 = (α 0 1 , ..., α 0 p ) influences the value of y = f (α 0 ). It consists of estimating the first-order partial derivative of y with respect to each input variable x i at the point α 0 , denoted by :

∂f ∂x i (α 0 1 , ..., α 0 p ),
where the symbol ∂ denotes the partial derivative. These partial derivatives are often called sensitivity indices or local sensitivity indices. They measure the rate of change of the output y with respect to a small change in the input x i near the point. A classical approach to derive this quantity is to consider the OAT (One factor At Time) method.

The Taylor method is a sensitivity analysis technique for assessing changes in the results of a model due to small changes in the key variables of the model. It uses Taylor series expansions to approximate the model function for small changes in the key variables. The Taylor method is based on the theory of derivatives, which allows the first and second derivatives of a function to be calculated to determine the speed and acceleration of changes in the model results for small changes in the key variables. This technique can be used to assess the sensitivity of model results to changes in interest rates, stock prices, volatilities, and other key variables. The results of the sensitivity analysis can be presented in the form of graphs, tables, and statistics that show how the model results may be affected by small changes in key variables.

Suppose that a model output Y depends on p parameters α = (α 1 , ..., α p ). We also assume that Y is an infinitely differentiable function with respect to each parameter α i , where 1 ⩽ i ⩽ p. We assume that each parameter α i can be written as α i (ω) = ᾱi +λ i ϵ i (ω), where ᾱi and λ i represent the estimated mean value and standard deviation associated with the random variable α i , respectively, and ϵ i is a random variable that models the distribution of uncertainty. The Taylor series expansion of the model output Y of multiple-parameter 

α = (α 1 , ..., α p ) is given by Y α = Y(ᾱ) + |η|⩾1 α -ᾱ η η! L η Y ᾱ + R ᾱ, (5.5 
L η Y ᾱ = ∂ |η| Y ᾱ ∂α η 1 1 ∂α η 2 2 ...∂α ηp p .
The remainder term R ᾱ of the approximation is given by :

R ᾱ = Y ᾱ - |η|⩾0 α -ᾱ η η! L η Y ᾱ . (5.6)
In the following, we consider that the remaining term R ᾱ can be controlled and will be considered negligible. We now assume that the moments E ϵ(ω)

|η| are finite and that the random variables ϵ i are independent for all 1 ⩽ i ⩽ p. From [START_REF] Abbas | A Taylor series expansion approach to the functional approximation of finite queues[END_REF][START_REF] Bachi | Propagation of epistemic uncertainty in queueing models with unreliable server using chaos expansions[END_REF][START_REF] Soufit | Taylor series expansion approach for epistemic uncertainty propagation in queueing-inventory models[END_REF], we obtain an explicit expression for the mean and variance of the output of the Y model as follows

E Y ≈ |η|⩾0 L η Y ᾱ η! E α(ω) -ᾱ η ≈ |η|⩾0 λ η L η Y ᾱ η! E p i=1 ϵ i (ω) η i ≈ |η|⩾0 λ η L η Y ᾱ η! p i=1 E ϵ i (ω) η i (5.7)
where λ η = p i=1 λ η i i .

To simplify the expression of the variance, we set :

β η = λ η L η Y
η! and we give in the same way the expression of the variance as follows

V Y ≈ V = |η|⩾0 β 2 η V p i=1 ϵ i (ω) η i = |η|⩾0 β 2 η E p i=1 ϵ i (ω) 2η i -E p i=1 ϵ i (ω) η i 2 = |η|⩾0 β 2 η p i=1 E ϵ i (ω) 2η i - |γ|⩾0 β 2 2γ p i=1 E ϵ i (ω) 2γ i 2 . ( 5.8) 
This analytic expression for mean and variance propagation can be used to assess the sensitivity of the model results to changes in the input parameters. The results of the sensitivity analysis can be presented in the form of graphs, tables, and statistics that show how the model results may be affected by changes in the input parameters. To calculate the percentage uncertainty of each disturbance on the output using the Taylor series expansion, we consider the parameters α = (α 1 , α 2 ) and we decompose the model output Y as follows : Y

(α 1 , α 2 ) = Y( ᾱ1 + λ 1 ϵ 1 , ᾱ2 + λ 2 ϵ 2 ).
The Taylor series to third order of the function Y (α 1 , α 2 ) around the point ᾱ = ( ᾱ1 , ᾱ2 ) is given by :

Y (α 1 , α 2 ) ≈ Y ( ᾱ1 + λ 1 ϵ 1 , ᾱ2 + λ 2 ϵ 2 ) = Y (ᾱ) + λ 1 ∂Y (ᾱ) ∂α 1 ϵ 1 + λ 2 ∂Y (ᾱ) ∂α 2 ϵ 2 + 1 2! λ 2 1 ∂ 2 Y (ᾱ) ∂α 2 1 ϵ 2 1 + λ 2 2 ∂ 2 Y (ᾱ) ∂α 2 2 ϵ 2 2 + 2λ 1 λ 2 ∂ 2 Y (ᾱ) ∂α 1 ∂α 2 ϵ 1 ϵ 2 + 1 3! λ 3 1 ∂ 3 Y (ᾱ) ∂α 3 1 ϵ 3 1 + λ 3 2 ∂ 3 Y (ᾱ) ∂α 3 2 ϵ 3 2 + 3λ 2 1 λ 2 ∂ 3 Y (ᾱ) ∂α 2 1 ∂α 2 ϵ 2 1 ϵ 2 + 3λ 1 λ 2 2 ∂ 3 Y (ᾱ) ∂α 1 ∂α 2 2 ϵ 1 ϵ 2 2 ,
where ϵ 1 and ϵ 2 are independent random noises.

The quantity E Y α 

E Y |ϵ 1 = Y (ᾱ) + λ 1 ∂Y (ᾱ) ∂α 1 ϵ 1 + λ 2 ∂Y (ᾱ) ∂α 2 E ϵ 2 + 1 2! λ 2 1 ∂ 2 Y (ᾱ) ∂α 2 1 ϵ 2 1 + λ 2 2 ∂ 2 Y (ᾱ) ∂α 2 2 E ϵ 2 2 + 2λ 1 λ 2 ∂ 2 Y (ᾱ) ∂α 1 ∂α 2 ϵ 1 E ϵ 2 + 1 3! λ 3 1 ∂ 3 Y (ᾱ) ∂α 3 1 ϵ 3 1 + λ 3 2 ∂ 3 Y (ᾱ) ∂α 3 2 E ϵ 3 2 + 3λ 2 1 λ 2 ∂ 3 Y (ᾱ) ∂α 2 1 ∂α 2 ϵ 2 1 E ϵ 2 + 3λ 1 λ 2 2 ∂ 3 Y (ᾱ) ∂α 1 ∂α 2 2 ϵ 1 E ϵ 2 2 .
(5.9)

For E Y |ϵ 2 , ϵ 1 and ϵ 2 have a symmetric role , we replace ϵ 1 by ϵ 2 in the previous formula and finally, E Y |ϵ 1 , ϵ 2 is given by the following expression

E Y |ϵ 1 , ϵ 2 = Y (ᾱ) + λ 1 ∂Y (ᾱ) ∂α 1 E ϵ 1 + λ 2 ∂Y (ᾱ) ∂α 2 E ϵ 2 + 1 2 λ 2 1 ∂ 2 Y (ᾱ) ∂α 2 1 E ϵ 2 1 + λ 2 2 ∂ 2 Y (ᾱ) ∂α 2 2 E ϵ 2 2 + 2λ 1 λ 2 ∂ 2 Y (ᾱ) ∂α 1 ∂α 2 ϵ 1 ϵ 2 + 1 3! λ 3 1 ∂ 3 Y (ᾱ) ∂α 3 1 E ϵ 3 1 + λ 3 2 ∂ 3 Y (ᾱ) ∂α 3 2 E ϵ 3 2 + 3λ 2 1 λ 2 ∂ 3 Y (ᾱ) ∂α 2 1 ∂α 2 ϵ 2 1 ϵ 2 + 3λ 1 λ 2 2 ∂ 3 Y (ᾱ) ∂α 1 ∂α 2 2 ϵ 1 ϵ 2 2 .
(5.10)

According to the formulas (5.9) and (5.10), we calculate the conditional variances

V E Y|ϵ 1 ≈ V loc 1 = λ 1 ∂Y(ᾱ) ∂α 1 2 V(ϵ 1 ) + 1 2 λ 2 1 ∂ 2 Y(ᾱ) ∂α 2 1 2 V ϵ 2 1 + 1 3! λ 3 1 ∂ 3 Y(ᾱ) ∂α 3 1 2 V ϵ 3 1 .
For V E Y|ϵ 2 ≈ V loc 2 we replace ϵ 1 by ϵ 2 .

V E Y|ϵ 1 , ϵ 2 ≈ V loc 12 = 1 2 2 2λ 1 λ 2 ∂ 2 Y(ᾱ) ∂α 1 ∂ 2 2 V ϵ 1 ϵ 2 + 1 3! 2 3λ 2 1 λ 2 ∂ 3 Y(ᾱ) ∂α 2 1 ∂α 2 2 V ϵ 2 1 ϵ 2 + 1 3! 2 3λ 1 λ 2 2 ∂ 3 Y(ᾱ) ∂α 1 ∂α 2 2 2 V ϵ 1 ϵ 2 2 -V loc 1 -V loc 2 .
The Sobol indices are given : 

S taylor 1 = V loc 1 V , S taylor 2 = V loc 2 V , S taylor 

Global sensitivity

Global sensitivity analysis is a technique that evaluates how a model's output changes when there are significant variations in its key variables [42, 43, 88? ]. It is commonly used to measure a model's robustness in finance and to understand how uncertainties linked to specific assumptions may influence the model's results. Global sensitivity analysis considers the input parameters as random variables and decomposes the variance of the output into several components. Sobol indices belong to the latter type of methods. In the following section (5.3.2.1), we present the Sobol indices. The exact calculation of sensitivity indices, especially Sobol indices, is not always feasible. We estimated the Sobol indices by the classical Monte Carlo (MC) method described in section (5.3.2.2). Finally, in the section (5.3.2.3) the sensitivity indices will be described using the method of Fourier Amplitude Sensitivity Test (FAST).

Sobol indices

We define the probability law of X = (X 1 , • • • , X p ) by the density function

f X (x) = p i=1 f X i (x i ),
where f X i is the marginal probability density of X i . We suppose that each real random variable X i has a finite second order moment, i.e.

E(X

2 i ) = R x 2 i f X i (x i )dx i < ∞, (5.12) 
where E stands for the mathematical expectation.

We recall the mathematical model Y = Y(X) define in (5.4), where the independent random variables X = (X 1 , . . . , X p ) satisfying (5.12) and similarly, Y is assumed to have a finite second order moment. Sobol [START_REF] Sobol | Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[END_REF] proposed an indicator of the influence of the input parameter X i defined by

S i = V E(Y|X i ) V(Y) , ( 5.13) 
commonly termed 'first order Sobol index'. The S i index, between 0 and 1, is high when the influence of X i is large. V i = V(E(Y/X i )) is the conditional variance of Y with respect to X i and V = V(Y ) is the total variance of Y . The index S i is called the first-order sensitivity index by Sobol [? 101], the correlation ratio by McKay [START_REF] Mckay | Evaluating prediction uncertainty in simulation models[END_REF], or even the importance measure. It quantifies the sensitivity of the output Y to the input variable X i , or the part of the variance of Y due to the variable X i . This first-order index gives us an evaluation of the influence of an input variable X i on the output variable Y(X 1 , ..., X p ). Similarly, sensitivity

The S mc ij indices is then estimated by

S mc ij = E ij -V i -V j V , ( 5.20) 
and so on for higher-order sensitivity indices. A model with p input variables requires the estimation of 2 p -1 sensitivity indices with 2n simulations for two samples of size n. Estimating all the sensitivity indices requires n×2p calls to the function. The MC method is computationally demanding because it requires a large number of model simulations.

The results of these simulations can be used to assess the variability of the model results, identifying the uncertainties associated with the model assumptions.

Fourier Amplitude Sensitivity Test method

The Fourier Amplitude Sensitivity Test (FAST) is a sensitivity analysis method that uses statistical analysis techniques to assess the uncertainty of the model results. This method was developed by Cukier [START_REF] Cukier | Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I Theory[END_REF][START_REF] Cukier | Nonlinear sensitivity analysis of multiparameter model systems[END_REF][START_REF] Cukier | Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. III. Analysis of the approximations[END_REF] as well as Schaibly and Shuler [START_REF] Schaibly | Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients[END_REF]. It focuses on the first and second moment of the distribution of each key model variable to determine the uncertainty of the model results. The objective of the FAST method is to determine which key model variables have the greatest impact on the model results. This section is based on the thesis by Julien Jacques [START_REF] Jacques | Contributions à l'analyse de sensibilité et à l'analyse discriminante généralisée[END_REF]. We consider the output model defined by (5.4), it is possible to obtain a decomposition of the variance of Y by using the multi-dimensional Fourier transform of f . The calculation of such a multi-dimensional decomposition being too complex to be carried out in practice, the idea of the FAST method is to replace the multi-dimensional decompositions by one-dimensional decompositions along a curve traversing the space [0, 1] p . This curve is defined by a set of parametric equations x i (s) = g i (sin(ω i s)) for i = 1, ..., p, (

where g i are functions that allow for uniform covering of [0, 1] p . Several possibilities have been proposed for the choice of g i and where (ω 1 , ..., ω p ) ∈ N p is a set of integer frequencies linearly independent. We adopt those of Saltelli [START_REF] Saltelli | A quantitative model-independent method for global sensitivity analysis of model output[END_REF], defined by : x i (s) = g i (sin(ω i s)) = 1 π arcsin(sin(ω i s)) + 1 2 .

Thus, when s ∈ [-π, π], the vector x(s) = (x 1 (s), ..., x p (s)) describes a curve that runs through [0, 1] p . Cukier [START_REF] Cukier | Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I Theory[END_REF][START_REF] Cukier | Nonlinear sensitivity analysis of multiparameter model systems[END_REF][START_REF] Cukier | Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. III. Analysis of the approximations[END_REF] show that we then have Cukier [START_REF] Cukier | Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I Theory[END_REF][START_REF] Cukier | Nonlinear sensitivity analysis of multiparameter model systems[END_REF][START_REF] Cukier | Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. III. Analysis of the approximations[END_REF] explain that the part of the variance (5.22) due to a variable X i is the sum of the squares of the Fourier A j and B j coefficients attributed to the ω i frequency relating to X i

V i = ∞ j=1
(A 2 i,j + B 2 i,j ).

(5.23)

The sensitivity index S fast i is then defined

S fast i = V i V = ∞ j=1 (A 2 i,j + B 2 i,j ) V (5.24)
As infinite sums cannot be digitally evaluated, an integer M is chosen for the evaluation of the sums, and S fast i is expressed by equation,

S fast i = M j=1 (A 2 i,j + B 2 i,j ) M j=1 A 2 j + B 2 j , ( 5.25) 
where the A j and B j integrals are estimated using the Monte Carlo method. M is assessed based on two properties : a larger M results in indices that better reflect the effect of the variables, but also increases the computational cost. Cukier [START_REF] Cukier | Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. I Theory[END_REF][START_REF] Cukier | Nonlinear sensitivity analysis of multiparameter model systems[END_REF][START_REF] Cukier | Study of the sensitivity of coupled reaction systems to uncertainties in rate coefficients. III. Analysis of the approximations[END_REF] empirically determined that M = 4 or 6 is the best compromise regardless of the model size. For our experiments, we use the classic choice M = 4.

Implementing the FAST method is complicated, and it requires a large number of model evaluations, resulting in high computational costs. The FAST method is often used with simulation techniques to generate random scenarios for key model variables. The results of these simulations can be used to assess the variability of the model results and to determine the uncertainties associated with the model assumptions. One of the advantages of this and in the same way the relative error for the variances is defined. In Figure 60, we have plotted the relative error of the means et the variances and we notice that the two methods are very close.

Indeed, from the results obtained in Figure 61, we see that the input parameter θ has a significant influence on the output model r t while σ and κ have a weak influence on the response of the model r t , and lead to small variations of the latter. The examination of the sensitivity indices showed that the variability of r t is mainly due to the main effect of the equilibrium value of the interest rate θ. Therefore, the most influential parameter is θ compared to the parameters σ and κ. The sum of the first order indices being equal to 1, we can see that the interaction effect between the variables is negligible.

Global sensitivity analysis

The knowledge of the model parameters being incomplete, particularly on the speed of reversion to the mean of the interest rate. We conduct a global sensitivity analysis on the interest rate (5.1) by varying all parameters simultaneously. We consider two different global methods, the classical MC approach to estimated the Sobol indices defined in (5.13) and (5.16), and the FAST method to estimated the sensitivity indices defined in (5.25).

Using the global sensitivity analysis method, we calculate the different statistical measures (expectation, variance, skewness, and non-centered kurtosis) before starting the study of sensitivity indices. In Figures 62 and63, we show that the variance, skewness, and kurtosis for the interest rate r t converges. In Figure 63, when we increase the sample size to 1000 for the FAST method we see that there is a much better accuracy. We did not represent the curves for the mean because the two methods are well confused. In Figure 64, we compare the statistical moments by the relative error of the means and the variances defined in (5.26). We notice that the relative error is very small and converges to 0 . This will give us a very good approximation of the sensitivity indices defined in Figure 65.

From the results obtained in Figure 65, we notice that the parameter θ has the greatest influence on the output model r t , while the parameters σ and κ have a weak influence on the output r t . The study of the sensitivity indices shows that the interest rate r t is very sensitive to the equilibrium parameter θ. The sum of the first order indices being equal to 1, we can consider the interaction effects between the input variables as negligible. We note that the parameter σ has a decreasing effect from the beginning to the end. The parameter κ, at the beginning, has an effect of 60% and quickly its influence decreases drastically and becomes null. 

Conclusion

In this study, we chose to perform a sensitivity analysis on the Vasicek economic model (5.1). We developed a numerical approach for local analysis based on the Taylor series expansion technique and two global approaches based on the FAST method and the classical MC method. We applied these different methods to calculate the different sensitivity indices in order to study the sensitivity of the factors (σ, θ, κ) involved in the Vasicek model. We found for both approaches (local and global) that all statistical quantities reach a steady state and that the relative errors all converge to 0. We noticed, from Figures 5.11 According to the Table 5.1, in our case study of the Vasicek model, the Taylor method (TSE) is faster and simpler but it can only take into account one uncertain input at a time and is only suitable for simple models. The most appropriate method depends on the model being analysed and the uncertain inputs. The MC method is the most flexible and best able to take into account several uncertain inputs at the same time, but it can be more resource intensive. The Taylor method can be used for such an analysis, and a numerical example has been presented to demonstrate its effectiveness. The Fourier method uses the Fourier transform to model uncertain inputs in terms of frequencies and amplitudes. The FAST method can be extended to more complex stochastic systems governed by partial differential equations without much difficulty, this will be the subject of further research.

Chapitre 6

Conclusion et perspectives

Les travaux de cette thèse ont permis de mettre en évidence l'importance de l'analyse de sensibilité pour mieux comprendre les impacts des variables d'entrées sur les résultats des modèles dans les domaines de l'épidémiologie, le climat et l'économie. Le premier chapitre a fourni une revue détaillée des méthodes d'analyse de sensibilité, en introduisant notamment deux méthodes globales ( 

Perpectives

Je suis membre active d'un projet de recherche de l'Université de Djibouti financé par la banque mondiale. Ce projet consiste à modéliser mathématiquement les maladies épidémiques qui sévissent à Djibouti, d'identifier les facteurs qui contribuent à la propagation et de prédire l'évolution future de la maladie dans la population. Nous travaillons sur des modèles de co-infection (Tuberculose, Paludisme, SIDA, Cholera) de plusieurs compartiments et paramètres. Une première perspective consiste à appliquer les travaux de la thèse a ces nouveaux modèles de co-infection. Le travail réalisé jusqu'à présent porte sur des variables aléatoires indépendantes, des améliorations pourront être apportées aux différentes méthodes en tenant compte de la corrélation entre les paramètres.
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 11111 Figure 1 -Schéma de transmission du modèle SIHR.
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 2143 Figure 2 -(a) Influence de chaque paramètre sur le compartiment I avec R (1) 0 et un taux sinusoïdal., (b) Influence de chaque paramètre sur le compartiment H avec R (1) 0 et un taux sinusoïdal. Indices de Sobol X * = S * X * = I * X * = H * X * = R * X * R (2) 0
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 45 Figure 4 -Quantités statistiques du régime transitoire pour le cas non chaotique.
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 6 Figure 6 -Quantités statistiques du régime transitoire pour le cas chaotique.
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 7 Figure 7 -Influence de tous les paramètres sur x dans le cas chaotique (indices de Sobol d'ordre 1).
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 8 Figure 8 -Influence combinée de tous les paramètres sur x dans le cas chaotique (indices de Sobol d'ordre 2).
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 9 Figure 9 -Influence combinée de tous les paramètres sur x dans le cas chaotique (indices de Sobol d'ordre 3).

1 .

 1 Les paramètres du bruit (ϵ σ , ϵ θ , ϵ κ ) sont considérés indépendants suivant la loi normale centrée réduite. Nous considérons que la valeur initiale du taux d'intérêt est r 0 = 3, s = 0 et t ∈ [0; 10]. Nous avons montré que toutes les mesures statistiques (moyenne, variance, skewness, kurtosis) convergent, ce qui nous permet d'estimer les indices de sensibilité des différentes méthodes (Taylor, MC et FAST).

Figure 10 -

 10 Figure 10 -Indices de sensibilité avec la méthode TSE.
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 11 Figure 11 -Indices de sensibilité avec les méthodes MC(N = 10 3 ) et FAST(N = 10 3 ).

Figure 12 -

 12 Figure 12 -SIHR model transmission diagram.



  represents the rate of new infection matrix and U =    µ S + β S I (ν + µ + γ + α)I    denotes the transfer rate matrix of the individuals.
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 13 Figure 13 -(a) Fitting model to cumulative cases in Djibouti, (b) The time series of new cases of Covid-19 in Djibouti in 15 March to 15 May, 2021
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 1415 Figure 14 -Number of death cases in Djibouti.
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 16 Figure 16 -Validation of the SIHR model from March 15 to May 15, 2021

  in Figure 17 and R (2) 0 = 0.95 in Figure 18. The logistic transmission rate (3.3) is considered in Figures 19 and 20.
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 17 Figure 17 -Evolution of the system with sinusoidal rate : R (1) 0 = 3, ϵ = 0.1.
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 18 Figure 18 -Evolution of the system with sinusoidal rate : R (2) 0 = 0.95, ϵ = 0.1.
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 19 Figure 19 -Evolution of the system with logistic rate : R (1) 0 = 3 and k = 1.5.
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 20 Figure 20 -Evolution of the system with logistic rate : R (2) 0 = 0.95 and k = 1.5.
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 21 Figure 21 -Influence of each parameter on compartment S with R (1) 0 and sinusoidal rate.
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 22 Figure 22 -Influence of each parameters on compartment I with R (1) 0 and sinusoidal rate.

Figure 23 -

 23 Figure 23 -Influence of each parameters on compartment H with R (1) 0 and sinusoidal rate.
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 24 Figure24-Influence of each parameters on compartment R with R(1) 0 and sinusoidal rate.
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 25 Figure 25 -Combined influence of two parameters on compartment S with R (1) 0 and sinusoidal rate.
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 26 Figure 26 -Combined influence two parameters on compartment I with R (1) 0 and sinusoidal rate.
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 27 Figure 27 -Combined influence of two parameters on compartment H with R (1) 0 and sinusoidal rate.
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 28 Figure 28 -Combined influence of two parameters on compartment R with R (1) 0 and sinusoidal rate.

  all compartments Sobol Indices X * = S * X * = I * X * = H * X * = R *

  , we have shown the compartment results for each parameter when the transmission rate is sinusoidal. Only S R (2) 0 , I R (2) 0 , H R (2) 0 and R R (2) 0 are represented. The others indices of order 1 and the indices of order 2 remain close to zero over time. There is no interaction between the variables.
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 29 Figure29-Influence of R(2) 0 on all compartment with sinusoidal rate.
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 30 Figure30-Influence of R(2) 0 on all compartment with logistic rate.

Figure 30

 30 Figure30shows the compartment results for each parameter when the transmission rate is a logistic function. Indices that remain close to zero over time have not been represented. It should be noted that before the lockdown, wether the transmission rate is logistic or

. 42 )

 42 With (3.40), (3.41) and (3.42), we have (3.39) which gives us the Sobol indice I * α .

, 3 . 7 . 1 . 3 Definition 3 . 7 . 3

 3713373 Sobol indices for H The Sobol indices of order 1 and 2 for H * are defined :
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 31 Figure 31 -Evolution of each state on the chaotic case.
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 32 Figure 32 -Chaotic attractors of the LS system in two-dimensional spaces.
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 33 Figure 33 -Chaotic attractors of the LS system in three-dimensional spaces.
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 34 Figure 34 -Representation of x 1 (t) and x 2 (t).
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 10431 Exmple Legendre polynomials form a complete basis of polynomials that are orthogonal with respect to the density of a uniform law U([-1, 1]

. 27 )

 27 The other Sobol indices of order 1 namely, S xσ , S x b and S xs , are obtained in the same way. Now we calculate the Sobol index S x b,r for x with respect to the influence of the parameters b and r, given by

. 29 )

 29 The other Sobol indices of order 2 namely, S x σ,b , S xσ,r , S xσ,s , S x b,s and S xr,s , are obtained in the same way.
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 35 Figure 35 -Statistical quantities of the transient regime for the non-chaotic case. Sobol' indices of order 1 w = x w = y w = z w = v S wσ 0.0130 0.0087 0.0003 0.6029 S w b 0.4575 0.4603 0.0000 0.1841 S wr 0.5253 0.5272 0.9992 0.2113 S ws 0.0035 0.0023 0.0002 0.0013 Sum of indices of order 1 0.9973 0.9985 0.9997 0.9996 Table 4.3 -Sobol' indices of order 1 at final time T f = 20 .
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 36 Figure 36 -Influence of all parameters on x in the non-chaotic case.
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 37 Figure 37 -Influence of all parameters on y in the non-chaotic case.
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 38 Figure 38 -Influence of all parameters on z in the non-chaotic case.
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 3944 Figure 39 -Influence of all parameters on v in the non-chaotic case. Random input parameters Support of the uniform law σ [0.47 ; 0.53] b [0.47 ; 0.53] r [17.57 ; 19.43] s [2.37 ; 2.63]Table 4.4 -Specifications of the law of the random input parameters.

Figure 40

 40 Figure40shows the expectation, variance, skewness and kurtosis for the four states as a function of time for t ∈ [0; 100]. In contrast to the non-chaotic case, these statistical
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 40 Figure 40 -Statistical quantities of the transient regime for the chaotic case.
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 41 Figure 41 -Influence of all parameters on x in the chaotic case (Sobol' indices of order 1).
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 42 Figure 42 -Influence of all parameters on y in the chaotic case (Sobol' indices of order 1).
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 43 Figure 43 -Influence of all parameters on z in the chaotic case (Sobol' indices of order 1).
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 44 Figure 44 -Influence of all parameters on v in the chaotic case (Sobol' indices of order 1).
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 45 Figure 45 -Combined influence all parameters on x in the chaotic case (Sobol' indices of order 2).
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 46 Figure 46 -Combined influence all parameters on y in the chaotic case (Sobol' indices of order 2).
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 47 Figure 47 -Combined influence all parameters on z in the chaotic case (Sobol' indices of order 2).
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 48 Figure 48 -Combined influence all parameters on v in the chaotic case (Sobol' indices of order 2).
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 49 Figure 49 -Influence all parameters on x in the chaotic case on [0; 20].
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 50 Figure 50 -Influence all parameters on y in the chaotic case on [0; 20].
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 51 Figure 51 -Influence all parameters on z in the chaotic case on [0; 20].
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 52 Figure 52 -Influence all parameters on v in the chaotic case on [0; 20].
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 53 Figure 53 -Combined influence all parameters on x in the chaotic case (Sobol' indices of order 3).
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 - Figure -Combined influence all parameters on y in the chaotic case (Sobol' indices of order 3).
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 - Figure -Combined influence all parameters on z in the chaotic case (Sobol' indices of order 3).
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 - Figure -Combined influence all parameters on v in the chaotic case (Sobol' indices of order 3).
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 57 Figure 57 -The interest rate r t with three different values of θ with r 0 = 1, κ = 1 and σ = 1.

Figure 58 -

 58 Figure 58 -(a) The interest rate r t with three different values of σ with r 0 = 1, κ = 1 and θ = 1. (b) Graph of the Vasicek short rate r t with two different values of κ with σ = 1, θ = 1 and r 0 = 1.

  ) where ᾱ = (ᾱ 1 , ..., ᾱp ), |η| = η 1 + ... + η p , η! = η 1 ! × η 2 ! × ... × η p ! and L η Y ᾱ is the |η|-th order partial derivative of Y α defined as follows

  h 0 = [0,1] p f(x)dx = lim T→∞ 1 π T -T f(x(s))ds.The frequencies (ω 1 , ..., ω p ) being integers, the curve does not fill the space [0, 1] p but is periodic with period 2π, hence h s))ds.If we apply these ideas to the calculation of variance V of the model(5.4), by noting h 0 = E[Y], A j and B j are the Fourier coefficients defined byA j = 1 2π π -π f(x(s)) cos(js)ds, B j = 1 2π π -πf(x(s)) sin(js)ds.
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 59 Figure 59 -Mean and Variance of the interest rate by using TSE and MC method.
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 60 Figure 60 -The relative error of the mean and variance between TSE and MC method.
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 61 Figure 61 -Sensitivity indices with TSE method.
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 62 Figure 62 -Statistical quantities of the of the interest rate using MC and FAST(N = 10 2 ).
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 63 Figure 63 -Statistical quantities of the of the interest rate using MC and FAST(N = 10 3 ).

  and 65, that the parameter θ is the only factor that influences almost 100% the interest rate r t .

Figure 64 -

 64 Figure 64 -Relative error between MC(N = 10 3 ) and FAST(N = 10 3 ) of statistical quantities.

Figure 65 -

 65 Figure 65 -Sensitivity indices using the MC(N = 10 3 ) and FAST(N = 10 3 ) methods.
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  La fonction f représente le phènoméne étudié et elle est soit déterministe OU soit stochastique. En général, la représentation mathématique du phénomène est si complexe qu'il devient impossible d'identifier d'une manière simple et rapide, le sous ensemble de paramètres importants.

), où X est le vecteur des paramètres ou variables d'entrées et Y (t) est la sortie du modèle à la date t, pour t ∈ {1, 2, ..., T }.

  La décomposition de Sobol s'applique à divers modèles de différents domaines et consiste à projeter la variable réponse sur une base orthogonale (sections 1.3.2 et 1.3.3). Naturellement, il est plus intéressant de projeter une fonction périodique sur une base de Fourier et d'une façon générale, de projeter la fonction réponse sur une base bien adaptée aux phénomènes, c'est la méthode qui sera présentée dans la section 1.4.

.7) et ainsi de suite pour les indices de Sobol d'ordre supérieur. Un modèle avec p variables d'entrées nécessite l'estimation de 2 p -1 d'inces de sensibilités avec 2n simulations pour deux échantillons de taille n. L'estimation de tous les indices de sensibilité nécessite n × 2 p appels à la fonction.

  .37) Pour E Y |ϵ 2 , ϵ 1 et ϵ 2 ont un rôle symétrique, nous remplaçons ϵ 1 par ϵ 2 dans la formule

	1.6. Résultats principaux
	précédente et finalement, E Y ϵ 1 , ϵ 2 est donné par l'expression suivante

Table 1 . 2 -

 12 Indices de Sobol au temps final t f = 600 avec R(1) 

	les variables d'entrée sont dépendantes, il n'y a pas d'accord général au sein de
	la communauté scientifique sur la manière de traiter numériquement un tel problème.
	Dans cette partie numérique, nous considérons l'hypothèse de négliger les effets de cor-
	rélation des variables aléatoires (R 0 , α, γ, λ) de telle sorte d'avoir la décomposition de la
	variance (1.3). Cette hypothèse étant abusive mais en gardant l'aspect académique de
	notre modèle, elle nous sera utile pour les calculs numériques. Nous utilisons la méthode
	de collocation stochastique pour estimer les indices de Sobol d'ordre 1 et 2.	
	Dans le tableau 1.1, nous donnons le support de la loi des différents paramètres en distin-
	guant deux valeurs différentes de R 0 qui sont notées R (1) 0 (avant le confinement) et R	(2) 0
	(après le confinement). Ensuite,	
	Nous donnons dans le tableau 1.2 (resp. Tableau 1.3) les indices de Sobol à l'état sta-
	tionnaire et les influences des variables sur chaque compartiment avec R (1) 0 et un taux de

* = S * X * = I * X * = H * X * = R * 0 et un taux sinusoïdal.

  Nous avons développé une approche numérique pour l'analyse locale basée sur la technique d'expansion des séries de Taylor et deux approches globales basées sur la méthode FAST et la méthode MC classique. Nous avons appliqué ces différentes méthodes pour calculer les indices de sensibilité pour étudier la sensibilité des facteurs (σ, θ, κ) qui interviennent dans le modèle de Vasicek. Nous avons montré, à partir des F igures 10 et 11, pour les deux approches (locale et globale) que le paramètre θ est le seul facteur qui influence presque 100% le taux d'intérêt r t .

[START_REF] Gottlieb | Numerical analysis of spectral methods : theory and applications[END_REF] 

( respectivement les indices de sensibilité par les méthodes MC et FAST), nous avons montré que le paramètre θ a la plus grande influence sur le modèle de sortie r t , tandis que les paramètres σ et κ ont une faible influence sur la sortie r t . L'étude des indices de sensibilité montre que le taux d'intérêt r t est très sensible au paramètre d'équilibre θ. La somme des indices du premier ordre étant égale à 1, on peut considérer les effets d'interaction entre les variables d'entrées comme négligeables. Nous notons que le paramètre σ a un effet décroissant du début à la fin. Le paramètre κ, au début, a un effet de 60% et rapidement son influence diminue drastiquement et devient nulle.

Table 1 : Model parameters and their descriptions.

 1 

Notation Interpretations τ Recruitment rate of S class µ Natural death rate ν Death rate due to infection β Transmission rate γ Recovery rate of I class λ Recovery rate of H class α Hospitalized rate

  and ||ρ ∞ (t)|| → 0. Proof 10 We assume that system (2.1) admits two solutions, S 1 , S 2 , I 1 , I 2 , H 1 , H 2 and R 1 , R 2 . Using the Lipschitz condition satisfied by the fonctions Φ 1 , Φ 2 , Φ 3 and Φ 4 , we obtain

	□
	Theorem 9 System model (2.1) has only one solution.

Table 2 : Parameters estimation for Djibouti.

 2 

	Parameter value : 15 March -15 May References
	τ	0.03332	DATA
	µ	0.0444	DATA
	ν	0.0833	DATA
	β	0.99	Estimated
	γ	0.276 /0.160	Estimated
	λ	0.0026	Estimated
	α	0.0037	Estimated
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 31 Parameters and their descriptions.

		Interpretations
	τ	Birth rate of class S
	µ	Natural death rate
	ν	Death rate of infection
	β	Transmission infection rate
	γ	Recovery rate of class I
	λ	Recovery rate of class H
	α	Hospitalized rate

Table 3 . 2 -

 32 to find epidemics of seasonal that claimed more lives in France than Covid-19. As of 19 November 2020, the reports related to Covid-19 in medico-social establishments published daily by the National Public Health Agency show a total of 47,127 deaths and 2,086,288 confirmed positive cases by polymerase chain reaction (PCR) test. The total population in France is 64821957. According to the report cases about COVID-19 infection at 01th october 2020, we can see that : S 0 = 64806884/64821957, I 0 = 13970/64821957, H 0 = 626/64821957, R 0 = 474/64821957.We have estimated the important model parameters using the France infection cases from 01th october to 20th november, 2020 which are given in Table2. For the estimation of the parameters, we considered the average of each parameter over the number of days. Parameters estimations.

	Parameter value : 01 October 15 November
	τ	714000/64821954=0.011
	µ	599000/64821954=0.00924
	ν	0,0002
	γ	0.423254705
	λ	0.05732
	α	0.0336454691

Table 3 . 3 -

 33 Specification of the law of the random input parameters.

	1) 0	[2.85 ; 3.15]
	R (2) 0	[0.7 ; 1.2]
	α	[0.030 ; 0.037]
	γ	[0.38 ; 0.46]
	λ	[0.0515 ; 0.0630]

Table 3 .

 3 

	1)	0.9970	0.0700	0.0252	0.9882
	0 X * α	0.0000	0.0059	0.3407	0.0012
	X * γ	0.0012	0.9237	0.3347	0.0074
	X * λ	0.0000	0.0000	0.2967	0.0014

6 -Sobol indices at final time T f = 600 calculated numerically with R

(1) 

0 and sinusoidal rate.

Table 3 .

 3 

	1)	0.9999	0.0710	0.0252	0.9846
	0 X * α	0.0000	0.0058	0.3429	0.0011
	X * γ	0.0000	0.9223	0.3306	0.0129
	X * λ	0.0000	0.0000	0.2985	0.0013

7 -Sobol indices at final time T f = 600 calculated numerically with R

(1) 

0 and logistic rate.

  ,(3.46),(3.50),(3.32) and (3.51) all the terms that are present.

	For Sobol indices H * R 0 ,λ and H * α,γ :

Table 5 . 1 -

 51 Execution time for the computation of r t using MC, FAST and TSE approach.

  Sobol et FAST) et la méthode locale d'expansion en série de Taylor. Pour la méthode de Sobol, nous avons utilisé trois différentes techniques (collocation stochastique, polynôme chaos et Monte Carlo) pour les estimations des indices de Sobol. Les paramètres impliqués ne peuvent être déterminés avec exactitude alors il est nécessaire de considérer un caractère aléatoire. Dans cette thèse, nous avons considéré les hypothèses d'indépendance et de non-corrélation sur les variables aléatoires d'entrées.Dans le chapitre 2, nous avons considéré un modèle épidémiologique SIHR pour décrire l'évolution de la maladie COVID19. L'existence, l'unicité de la solution et la stabilité des points d'équilibres ont été établies .Ensuite, dans le chapitre 3, on a développé l'approche de collocation stochastique basée sur les polynômes de Lagrange pour estimer les indices de Sobol d'ordre 1 et 2 des certains paramètres intervenants dans le modèle SIHR. Ce dernier a été étudié dans deux cas (avant et après le confinement). Nous avons confirmé les resultats, après le confinement, que le taux de reproduction de base est le seul paramètre qui agit sur les compartiments mais par contre, avant le confinement, l'influence des paramètres (taux de guérison des infectées, taux de guérison des hospitalisées et taux d'hospitalisation des infectées) est considérable sur les compartiments infectés et guéris. Dans les deux cas, nous avons montré que l'effet combiné des paramètres est considéré comme négligeable. Nous avons également calculé analytiquement les indices de Sobol de l'état stationnaire et comparé avec les indices estimés.Dans le chapitre 4, nous avons développé l'approche numérique basée sur des polynômes de chaos pour estimer les indices de Sobol pour les paramètres intervennant dans le système climatique de Lorenz Stenflo. Ce modèle a été étudié dans deux cas : non chaotique et chaotique. Dans le cas non chaotique, toutes les quantités statistiques atteignent un état stable tandis que l'on peut observer un régime pseudo-périodique dans le cas chaotique. Une différence notable entre les deux cas réside dans les indices de Sobol d'ordre supérieur. Ils sont proches de zéro dans le cas non chaotique, ce qui montre que l'effet combiné des paramètres peut être considéré comme négligeable. En revanche, dans le cas chaotique, les indices de Sobol d'ordre supérieur peuvent prendre des valeurs plus élevées.Dans le chapitre 5, nous avons considéré la fonction du taux d'intérêt du modèle économique de Vasicek. Pour commencer, on a effectué une analyse locale basée sur la technique d'expansion des séries de Taylor et deux approches globales ( FAST et Monte Carlo). On a ensuite appliqué ces méthodes pour estimer les indices de sensibilité des paramètres qui interviennent dans la fonction du taux d'intérêt. Pour les deux approches (locale et globale), nous avons établi que toutes les quantités statistiques atteignent un état stable et le paramètre qui représente la valeur moyenne est le seul facteur qui influence la fonction du taux d'intérêt. Dans cette étude, nous avons montré que la méthode de Taylor est la plus rapide et la plus simple, mais elle ne peut prendre en compte qu'une seule entrée à la fois et ne convient qu'aux modèles simples. La méthode Monte Carlo est la plus flexible et la mieux à prendre en compte plusieurs entrées aléatoires en même temps, mais elle est gourmande en temps d'exécution.

Enfin, je tiens à exprimer ma profonde gratitude envers toi, ma merveilleuse épouse, pour tout le soutien inébranlable que tu m'as apporté tout au long de mon parcours académique. Ton amour inconditionnel, ton soutien indéfectible et ta présence constante ont été les piliers essentiels qui m'ont permis d'accomplir cette réalisation majeure de ma vie académique. Tout au long de mon parcours, tu as été ma source d'inspiration, ma confidente et ma meilleure amie. Tes encouragements chaleureux et tes mots d'encouragement ont nourri ma confiance et ont dissipé mes doutes dans les moments les plus difficiles. Tu as cru en moi lorsque j'ai douté de moi-même, et ta conviction en mes capacités a été une force motrice puissante. Ton soutien sans faille et ta compréhension infinie ont allégé le fardeau des responsabilités qui pesait sur mes épaules. Tu as assumé de nombreuses tâches et responsabilités pour me permettre de me concentrer sur mes recherches, et je suis profondément reconnaissant de tous les sacrifices que tu as consentis. Ton dévouement sans faille envers ma réussite a été le fondement sur lequel j'ai pu bâtir cette réalisation. Aujourd'hui, je dépose mon rapport de thèse non seulement en tant que fruit de mes efforts, mais aussi en témoignage de notre collaboration et de notre amour. Ce succès est tout autant le tien, car tu as été mon pilier, ma muse et mon inspiration constante. Je tiens à te remercier du fond du coeur pour ta présence précieuse, ton amour inépuisable et ton soutien indéfectible. Tu es bien plus qu'une épouse pour moi, tu es mon partenaire de vie et mon rocher. Je suis incroyablement chanceux de t'avoir à mes côtés, et je suis honoré de partager ce moment avec toi.

timents atteint un état stable. Nous avons montré qu'après le confinement, le taux de reproduction de base est le seul paramètre qui agit sur les compartiments. Par contre, avant le confinement, l'influence des paramètres (taux de guérison des infectées, taux de guérison des hospitalisées et taux d'hospitalisation des infectées) est considérable sur les compartiments infectés et guéris. Nous avons également montré que, dans les deux cas, l'effet combiné des paramètres peut être considéré comme négligeable.

V 1 µ 2 +λ (1 -1/R 0 ) V(H * )
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Chapitre 2

Analyse de la dynamique du modèle épidémiologique SIHR Chapitre 4 Système climatique : Une approche d'analyse de sensibilité globale

Numerical application

In this section, we consider the PC expansion to propagate the uncertainty in the LS model, due to the epistemic uncertainties in the input parameter of the model. We consider that the parameters σ, b, r, s are independent random variables and follow the uniform distribution (in the stable case and the chaotic case). We calculate Sobol' indices using the coefficients of the PC expansion as detailed in Section 3 and finally we identify the most influential parameters.

Sobol's indices in non-chaotic regime

In this subsection, we consider the stable case where there is no chaotic effect. We set the final time to T f = 20, the quadrature points N q = 8, the degree of the PC n = 10 and the initial condition p 0 = (1, 1, 1, 1). In Table 4.1, we specify the law of the random input parameters. 

Random input parameters

where

Thus, the separation of the effects of the different input variables made in the Sobol decomposition of the model function is well-transmitted in the decomposition of the variance of Y. By Equations (5.13) and (5.14), we obtain the formulas for the various Sobol indices of orders greater than 1 :

(5.16)

Higher-order Sobol indices assess the importance of the combined effects of several input variables on the output variable. For a problem with p input random parameters, it can be shown that (2 p -1) Sobol' indices can be computed for each output random quantity of interest. When the number of input random variables is large, the number of Sobol indices grows exponentially and it becomes difficult to draw information from these statistics. Although Sobol indices could be computed by estimating integrals, such a procedure would be both computationally expensive and hardly tractable. Instead, computing those indices from the classical MC representation of the random output Y turns out to be an efficient alternative and it is adopted in this work. This is why we introduce polynomials chaos in the next section.

Monte Carlo method

The MC sensitivity analysis is a method for conducting sensitivity analysis that utilizes random simulation to assess the variability of model results in relation to uncertainties associated with key model variables. This technique allows uncertainties in model assumptions to be taken into account by generating random scenarios for key variables, providing a more comprehensive representation of how uncertainties might impact model outcomes. This section is based on the thesis by Julien Jacques [START_REF] Jacques | Contributions à l'analyse de sensibilité et à l'analyse discriminante généralisée[END_REF]. To perform a MC sensitivity analysis, it is necessary to determine the probability distributions for the key variables in the model. We consider an n-sample of realizations of the input variables (X 1 , ..., X p ) :

The expectation of the output model Y in (5.4) and its variance are estimated by :

f (x k1 , ..., x kp ), (5.17)

The estimation of the sensitivity indices requires the estimation of the conditional variance expectation. We present an estimation technique due to Sobol [START_REF] Sobol | Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[END_REF]. The estimation of the first-order sensitivity indices (5.13) consists in estimating the quantity

where

and the variance of Y being classically estimated by (5.18). Sobol [START_REF] Sobol | Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[END_REF] proposes to estimate the quantity E i like a classical expectation but taking into account the conditioning on X i by varying all the variables except the variable X i . This requires two sample realizations of the input variables, which we denote X(1) (n) and X(2)

ki , x

(1)

ki , x

(2)

kp ).

The first-order sensitivity indices are then estimated by

For second-order sensitivity indices, we estimate the quantities

in the same way, by varying all the variables except X i and X j .

method is that the sensitivity indices can be calculated independently of each other, from the same sample of simulations, which is not possible with the Sobol method. from the same sample of simulations, which is not possible with the Sobol method, which requires two samples. method, which requires two samples. On the other hand, since the Sobol method is stochastic, it allows us to obtain a confidence interval on the index estimates, which is not possible with FAST.

Numerical Analysis

In this simulations section, we assume that the Vasicek model (5.1) have a epistemic uncertainty in all input parameters

We propose the following perturbation on these parameters :

where the mean and the standard deviation of these random variables are set respectively to : σ = 1, θ = 1, κ = 1, λ σ = 0.1, λ θ = 0.1 and λ κ = 0.1. We consider that the parameters (ϵ σ , ϵ θ , ϵ κ ) is a random independents noise and follows a standard normal distribution. The uncertainty analysis of the r t functional can be quantified by calculating its mean, variance, and higher-order moments. We consider the initial value of the interest rate is r 0 = 3, s = 0 and t ∈ [0; 10].

Local sensitivity analysis

In this section, we apply the generalized analytical formula (1.33). We use the TSE method to calculate the S taylor 1 , S taylor 2 , S taylor 12 indices defined in (5.11), which give us the influence of the input parameters and their effect on the uncertainty of the interest rate function. Before starting the study of sensitivity indices, we calculate the statistical measures (expectation and variance).

The corresponding results of the mean and variance of the Vasicek interest rate obtained using both approaches, Taylor series expansion (TSE) and Monte Carlo simulation (MC), are presented in Figures 59 and60. The numerical results evaluated with the MC simulations are obtained for sample sizes of 10 3 . In Figures 59, the approximation of two methods (TSE and MC) is so close that the two curves of the mean are merged. In Figures 59, we see that these quantities reach a steady state at t = 10. We see that the expectation and variance of the variables converges and therefore allows us to compute the sensitivity Résumé L'analyse de sensibilité d'un modèle mathématique étudie comment la variable de sortie réagit à des perturbations sur les variables d'entrées. Dans cette thèse, nous abordons deux méthodes globales (méthode de Sobol et méthode FAST) et la méthode locale d'expansion en série de Taylor. Nous utilisons trois différentes techniques (collocation stochastique, polynômes chaos et Monte Carlo) pour estimer les indices de sensibilité de Sobol. Le premier problème abordé est l'estimation des indices de Sobol par la collocation stochastique pour certains paramètres intervenant dans un modèle épidémiologique. Un second problème relatif à l'analyse de sensibilité globale en utilisant les polynômes de chaos a été étudié sur un modèle climatique. Pour finir, une analyse de sensibilité globale (Monte Carlo et FAST) et une analyse locale par la méthode de Taylor ont été effectuée sur un modèle financier. Pour ces trois problèmes, nous avons considéré des entrées aléatoires indépendantes. Cette thèse offre une vision globale de différentes techniques d'analyse de sensibilité et met en évidence leur utilisation dans plusieurs domaines. Dans la suite, les résultats de cette thèse pourront être améliorés en considérant des modèles beaucoup plus complexe et des variables aléatoires corrélées.

Mot Clés : Analyse de sensibilité ; Collocation Stochastique ; Polynomes Chaos ; Monte Carlo ; méthode FAST ; expansion de Taylor ; indices de sensibilité ; modèle épidémiologique ; modèle climatique ; modèle financier.

Abstract

Sensitivity analysis of a mathematical model studies how the output variable reacts to perturbations on the input variables. In this thesis, we discuss two global methods (Sobol method and FAST method) and the local Taylor series expansion method. We use three different techniques (stochastic collocation, chaos polynomials and Monte Carlo) to estimate the Sobol sensitivity indices. The first problem addressed is the estimation of Sobol indices by stochastic collocation for some parameters involved in an epidemiological model. A second problem relating to global sensitivity analysis using chaos polynomials was studied on a climate model. Finally, a global sensitivity analysis (Monte Carlo and FAST) and a local analysis using the Taylor method were performed on a financial model. For all three problems, we considered independent random inputs. This thesis provides an overview of different sensitivity analysis techniques and highlights their use in several areas. In the future, the results of this thesis can be improved by considering much more complex models and correlated random variables.