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Eventually, doctors will adopt AI and algorithms as their work partners. This leveling of the

medical knowledge landscape will ultimately lead to a new premium: to find and train
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Eric Topol, Deep Medicine: How Artificial Intelligence Can Make Healthcare Human Again

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0064/these.pdf 
© [Y. Vindas-Yassine], [2023], INSA Lyon, tous droits réservés



Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0064/these.pdf 
© [Y. Vindas-Yassine], [2023], INSA Lyon, tous droits réservés



Acknowledgement

I would like to express my deepest appreciation to the members of the jury for accepting to

examine my work and take part in the defense, despite their busy schedules and the distance.

This endeavor would not have been possible without my PhD thesis supervisor, Philippe

Delachartre, and my two co-supervisors, Emmanuel Roux and Blaise Kévin Guépié, who

guided and advised me throughout my doctoral thesis. I would particularly like to thank

them for all the revisions of my different works, as well as that of the present manuscript,

which have enabled me to greatly improve their quality. I would also like to extend my sincere

thanks to Marilys Almar of Atys Medical, who taught me various aspects of manual embolus

classification, as well as for her help in the annotation of the transcranial Doppler data used in

this work.

Thanks should also go to the different interns who helped me to develop various tools to

make it possible to use the models described in this work.

I am also grateful to the various permanent and non-permanent (PhD students and master’s

students) members of the laboratory, who have contributed to a pleasant working atmosphere.

In particular, I would like to thank the team directors who created a stimulating research

atmosphere, making it easier for me to learn new techniques useful in my research and future

career.

I would like to acknowledge Auvergne-Rhône-Alpes region who funded my research in

the context of the CAREMB project, within the Pack Ambition Recherche program. This work

was performed within the framework of the LABEX CELYA (ANR-10-LABX-0060) and PRIMES

(ANR-11-LABX-0063) of Universite de Lyon, within the program ”Investissements d’Avenir”

(ANR-11-IDEX-0 0 07) operated by the French National Research Agency (ANR).

I could not have undertaken this journey without my family and friends. Particularly, I

want to thank my parents, my siblings, and my partner, who supported me these past three

years. Without them, this work would not have been possible.

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0064/these.pdf 
© [Y. Vindas-Yassine], [2023], INSA Lyon, tous droits réservés



Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0064/these.pdf 
© [Y. Vindas-Yassine], [2023], INSA Lyon, tous droits réservés



Contents

Introduction 3

1 Context 5
I Medical context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

I.1 Cerebral emboli . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

I.1.A Origin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

I.1.B Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

I.1.C Possible sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

I.2 Transcranial Doppler ultrasound . . . . . . . . . . . . . . . . . . . . . . . . . 16

I.2.A General principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

I.2.B Atys medical robotized probe . . . . . . . . . . . . . . . . . . . . . 18

II Scientific context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

II.1 Used representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

II.1.A Raw signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

II.1.B Time-frequency representation . . . . . . . . . . . . . . . . . . . . 20

II.2 Other representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

II.3 Emboli detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

III Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

III.1 Medical challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

III.2 Scientific challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

IV Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 State-of-the-art 29
I Cerebral emboli detection and classification . . . . . . . . . . . . . . . . . . . . . . . 30

I.1 Signal processing and machine learning . . . . . . . . . . . . . . . . . . . . . 30

I.1.A General overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

I.1.B Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

I.2 Deep learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

I.2.A General overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

I.2.B Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

II Data annotation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

II.1 Representation learning and semi-automatic data annotation . . . . . . . . 33

II.1.A General overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

II.1.B Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

II.2 Dimensionality reduction quality evaluation . . . . . . . . . . . . . . . . . . 35

II.2.A Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

II.3 Working with noisy-labels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

II.3.A General overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

II.3.B Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

III Multi-feature signal classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

III.1 Image classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

ix

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0064/these.pdf 
© [Y. Vindas-Yassine], [2023], INSA Lyon, tous droits réservés



III.2 Signal classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

III.2.A General overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

III.2.B Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

III.3 Multi-feature classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

IV Model compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

IV.1 General overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

IV.2 Model pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

IV.2.A General overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

IV.2.B Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

IV.3 Model quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

IV.3.A General overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

IV.3.B Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

V Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3 Data Annotation 63
I Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

I.1 Limitations of previous methods . . . . . . . . . . . . . . . . . . . . . . . . . 65

I.2 Objectives and contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

II Proposed method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

II.1 General overview and assumptions . . . . . . . . . . . . . . . . . . . . . . . 66

II.2 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

II.3 Dimensionality reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

II.4 Automatic label propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

II.5 Classification with noisy labels . . . . . . . . . . . . . . . . . . . . . . . . . . 70

III Method evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

III.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

III.1.A MNIST and OrganCMNIST . . . . . . . . . . . . . . . . . . . . . . 72

III.1.B HITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

III.2 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

III.3 Evaluation metrics and strategy . . . . . . . . . . . . . . . . . . . . . . . . . 74

III.3.A Automatic data annotation . . . . . . . . . . . . . . . . . . . . . . . 74

III.3.B Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

III.4 Experimental setup and results . . . . . . . . . . . . . . . . . . . . . . . . . . 75

III.4.A Experiment 1: Automatic data annotation evaluation . . . . . . . . 75

III.4.B Experiment 2: Validation of the projection selection strategy . . . 77

III.4.C Experiment 3: Classification on a dataset with known label noise . 79

III.4.D Experiment 4: Classification on a semi-automatically labeled HITS-

large dataset with unknown label noise . . . . . . . . . . . . . . . . 84

III.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

III.5.A Experiment 1: Automatic data annotation evaluation . . . . . . . . 88

III.5.B Experiment 2: Validation of the projection selection strategy . . . 90

III.5.C Experiment 3: Classification on a dataset with known label noise . 90

III.5.D Experiment 4: Classification on a semi-automatically labeled HITS-

large dataset with unknown label noise . . . . . . . . . . . . . . . . 91

III.5.E Choice of 𝑘𝑠 and 𝑘𝑡 . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

III.5.F Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

IV Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

x

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0064/these.pdf 
© [Y. Vindas-Yassine], [2023], INSA Lyon, tous droits réservés



4 Medical Signal Classification 95
I Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

I.1 Limitations of previous methods . . . . . . . . . . . . . . . . . . . . . . . . . 97

I.2 Objectives and contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

II Proposed method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

II.1 General overview and assumptions . . . . . . . . . . . . . . . . . . . . . . . 98

II.2 Single feature models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

II.2.A Time-frequency 2D CNN . . . . . . . . . . . . . . . . . . . . . . . . 99

II.2.B Raw signal 1D CNN-transformer . . . . . . . . . . . . . . . . . . . 99

II.3 Late fusion approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

II.3.A Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

II.3.B Late fusion attention weights . . . . . . . . . . . . . . . . . . . . . . 100

II.4 Intermediate fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

II.4.A Simple intermediate fusion . . . . . . . . . . . . . . . . . . . . . . . 101

II.4.B Guided and regularized intermediate fusion . . . . . . . . . . . . . 102

III Method evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

III.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

III.1.A HITS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

III.1.B PTB (ECG) dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

III.1.C Epileptic seizure recognition (EEG) ESR dataset . . . . . . . . . . . 106

III.2 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

III.3 Evaluation metrics and strategy . . . . . . . . . . . . . . . . . . . . . . . . . 107

III.4 Experimental setup and results . . . . . . . . . . . . . . . . . . . . . . . . . . 107

III.4.A Experiment 1: Single feature vs multi-feature models . . . . . . . . 107

III.4.B Experiment 2: Advantage of guided and regularized end-to-end

training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

III.4.C Experiment 3: Influence of guided training . . . . . . . . . . . . . 112

III.4.D Experiment 4: Influence of DEC regularization . . . . . . . . . . . 113

III.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

III.5.A Experiment 1: Single feature vs multi-feature models . . . . . . . . 115

III.5.B Experiment 2: Advantage of end-to-end training . . . . . . . . . . 118

III.5.C Experiment 3: Influence of guided training . . . . . . . . . . . . . 119

III.5.D Experiment 4: Influence of DEC regularization . . . . . . . . . . . 121

III.5.E Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

IV Combination of semi-automatic data annotation and MIF-GR . . . . . . . . . . . . 123

V Interest from an industrial (Atys medical) perspective . . . . . . . . . . . . . . . . . 124

VI Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5 Model Compression 127
I Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

I.1 Limitations of previous methods . . . . . . . . . . . . . . . . . . . . . . . . . 129

I.2 Objectives and contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

II Proposed method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

II.1 General overview and assumptions . . . . . . . . . . . . . . . . . . . . . . . 130

II.2 Asymmetric weights statistics based pruning . . . . . . . . . . . . . . . . . . 132

II.3 Layer selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

II.4 Model compression metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

II.4.A Sparsity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

II.4.B Compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

II.5 Energy consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

III Method evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

III.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

xi

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0064/these.pdf 
© [Y. Vindas-Yassine], [2023], INSA Lyon, tous droits réservés



III.2 Baselines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

III.3 Evaluation metrics and strategy . . . . . . . . . . . . . . . . . . . . . . . . . 137

III.4 Experimental setup and results . . . . . . . . . . . . . . . . . . . . . . . . . . 137

III.4.A Experiment 1: Comparison with respect to TTQ . . . . . . . . . . . 139

III.4.B Experiment 2: Influence of 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥 . . . . . . . . . . . . . . . 140

III.4.C Experiment 3: Influence of weights normalization . . . . . . . . . 141

III.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

III.5.A Experiment 1: Comparison with respect to TTQ . . . . . . . . . . . 142

III.5.B Experiment 2: Influence of 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥 . . . . . . . . . . . . . . . 144

III.5.C Experiment 3: Influence of weights normalization . . . . . . . . . 145

III.5.D Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

IV Overview of single feature models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

V Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Conclusion 149

Appendices 153

Publications and conferences participation 181

xii

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0064/these.pdf 
© [Y. Vindas-Yassine], [2023], INSA Lyon, tous droits réservés



List of Figures

1.1 Three main parts of the brain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Examples of potential cerebral emboli detected using a portable transcranial Doppler

ultrasound device. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Illustration of systole and diastole on a time-frequency representation from a tran-

scranial Doppler ultrasound device. . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Blood supply to the brain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 Example of different sources of cerebral emboli. . . . . . . . . . . . . . . . . . . . . 15

1.6 Commonly used acoustic windows for transcranial Doppler ultrasonography mon-

itoring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.7 TCD-X Holter device from Atys Medical. . . . . . . . . . . . . . . . . . . . . . . . . 19

1.8 Short title . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1.9 Mel filter bank. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.10 Examples of binary representations of a temporal-dependent signal. . . . . . . . . 23

1.11 Two-dimensional projection of potential cerebral emboli detected using transcranial

Doppler ultrasonography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1 High intensity transient signals detection and classification from (Guepie, Martin,

Lacrosaz, Almar, Guibert and Delachartre, 2018) . . . . . . . . . . . . . . . . . . . . 32

2.2 Convolutional neural network for cerebral emboli classification with transcranial

Doppler data from (Sombune, Phienphanich, Phuechpanpaisal, Muengtaweep-

ongsa, Ruamthanthong and Tantibundhit, 2017) . . . . . . . . . . . . . . . . . . . . 33

2.3 Semi-automatic data annotation method proposed by (Benato, Gomes, Telea and

Falcão, 2021) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4 Illustration of how ranks are defined in the co-ranking framework of (Lueks, Mok-

bel, Biehl and Hammer, 2011) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5 Local quality metrics Swiss roll example from (Lueks et al.., 2011). . . . . . . . . . . 37

2.6 Convolutional neural networks overview . . . . . . . . . . . . . . . . . . . . . . . . 41

2.7 Short title . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.8 Transformer’s multi-head attention and scaled dot product. . . . . . . . . . . . . . . 44

2.9 Transformer’s positional encoding. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.10 1D CNN transformer model for ECG signal classification from (Natarajan, Chang,

Mariani, Rahman, Boverman, Vĳ and Rubin, 2020). . . . . . . . . . . . . . . . . . . . 47

2.11 Visual transformer’s class token principle. . . . . . . . . . . . . . . . . . . . . . . . . 49

2.12 Knowledge distillation principle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.13 Example of the differentiable pruning function proposed in (Manessi, Rozza, Bianco,

Napoletano and Schettini, 2017). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.14 Possible quantization granularities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.15 Trained ternary quantization overview. . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.1 Proposed label propagation approach based on local quality metrics. . . . . . . . . 66

3.2 Used auto-encoder architectures for the proposed label propagation approach. . . 76

xiii

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0064/these.pdf 
© [Y. Vindas-Yassine], [2023], INSA Lyon, tous droits réservés



3.3 Experiment 1: Label propagation hyperparameter study. . . . . . . . . . . . . . . . 79

3.4 Experiment 1: Evaluation of the importance of the propagation order on the HITS-

small . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.5 Experiment 1: Label propagation (on a two-dimensional space) for the HITS-small

dataset using LQ-KNN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.6 Experiment 2: Examples of best and worst 2D chosen projections of the HITS-small

dataset obtained using the silhouette scores. . . . . . . . . . . . . . . . . . . . . . . 82

3.7 Convolutional neural networks architectures used for classification on the MNIST,

OrganCMNIST, and HITS datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

3.8 Experiment 3: MNIST accuracy results. . . . . . . . . . . . . . . . . . . . . . . . . . 84

3.9 Experiment 3: OrganCMNIST accuracy results. . . . . . . . . . . . . . . . . . . . . . 84

3.10 Experiment 3: HITS-small MCC results . . . . . . . . . . . . . . . . . . . . . . . . . 85

3.11 Experiment 3: HITS-small solid emboli accuracy results. . . . . . . . . . . . . . . . 85

3.12 Experiment 3: HITS-small gaseous emboli accuracy results. . . . . . . . . . . . . . . 86

3.13 Experiment 3: HITS-small artifacts’ accuracy results. . . . . . . . . . . . . . . . . . . 86

3.14 Experiment 4: HITS-large MCC results. . . . . . . . . . . . . . . . . . . . . . . . . . 87

3.15 Experiment 4: HITS-large solid emboli accuracy results. . . . . . . . . . . . . . . . . 88

3.16 Experiment 4: HITS-large gaseous emboli accuracy results. . . . . . . . . . . . . . . 88

3.17 Experiment 4: HITS-large artifacts’ accuracy results. . . . . . . . . . . . . . . . . . . 89

3.18 Normalized global quality matrix (Lueks et al.., 2011) of a selected HITS-small

projection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.1 2D CNN architecture used to process time-frequency representations of a temporal-

dependent signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.2 1D CNN-transformer architecture used to directly process a raw temporal-dependent

signal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.3 Global pipeline of our multi-feature late fusion approach. . . . . . . . . . . . . . . . 101

4.4 Global pipeline of our proposed multi-feature guided and regularized intermediate

fusion approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.5 Experiment 3: Validation classification performances (MCC) of two MIF models

using guided training only on the 2D CNN encoder space, without DEC. . . . . . . 113

4.6 Experiment 3. Validation classification performances (MCC) of two MIF models

using guided training only on the 1D CNN-transformer encoder space, without DEC.114

4.7 Experiment 3: Classification performances of guided training on the two latent

spaces (2D CNN time-frequency encoder and 1D CNN-transformer raw signal

encoder) on the HITS dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.8 Experiment 4: Validation classification performances (MCC) of two MIF models

using DEC on the common fused space, without guided training. . . . . . . . . . . 116

4.9 Experiment 2: Test embeddings of the MIF-GR and MIF-N models on the HITS-

small-I dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

4.10 Experiment 1. Test embeddings of the MIF-GR and MIF-N models on the PTB dataset.121

5.1 Main components of our proposed extreme quantization approach. . . . . . . . . . 131

5.2 Overview of our asymmetric quantization method. . . . . . . . . . . . . . . . . . . 131

5.3 Example of computation of the energy consumption of data transfers for a vanilla

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.4 Experiment 1 results: sparsity rate of the quantized weights (𝑆𝑅𝑄𝑊) in %. . . . . . 140

5.5 Experiment 2 results: influence of 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥 (in %). . . . . . . . . . . . . . . . . 142

xiv

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0064/these.pdf 
© [Y. Vindas-Yassine], [2023], INSA Lyon, tous droits réservés



List of Tables

3.1 HITS subjects’ population characteristics. . . . . . . . . . . . . . . . . . . . . . . . . 73

3.2 Experiment 1: Training parameters of the auto-encoders. . . . . . . . . . . . . . . . 75

3.3 Experiment 1: Grid search parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.4 Label propagation parameters for experiment 1. . . . . . . . . . . . . . . . . . . . . 77

3.5 Experiment 1: Label propagation results. . . . . . . . . . . . . . . . . . . . . . . . . 78

3.6 Experiment 2: Label propagation on the HITS-small dataset using the best and

worst 2D projections according to the silhouette score. . . . . . . . . . . . . . . . . . 78

3.7 Different datasets used to train the classification models in experiment 3 . . . . . . 83

3.8 Experiment 3: Training parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.9 Datasets used in experiment 4 without controlled label noise. . . . . . . . . . . . . 86

4.1 HITS-sada dataset train/test splits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.2 Training parameters of the different classification models. . . . . . . . . . . . . . . . 108

4.3 Architecture parameters of the different classification models based on the used

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

4.4 Experiment 1: Classification performances of different single and multi-feature

models on three medical datasets: HITS-small-I, PTB, and ESR. . . . . . . . . . . . 110

4.5 Experiment 2: Classification performances of different multi-feature models on

three medical datasets: HITS-small-I, PTB, and ESR . . . . . . . . . . . . . . . . . . 111

4.6 Experiment 1: Learned late fusion attention weight on the HITS-small-I and PTB

datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.7 Combination of semi-automatic data annotation and MIF-GR: training parameters

of the different models on HITS-sada. . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4.8 Combination of semi-automatic data annotation and MIF-GR: classification perfor-

mances of different single and multi-feature models on HITS-sada . . . . . . . . . . 124

4.9 Average inference times (in 𝑚𝑠) and class accuracies of the different single and

multi-feature models for one sample. . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.1 Architectures parameters of the classification models to be compressed, based on

the used dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.2 Training parameters of the different classification models (for model compression). 138

5.3 Experiment 1: classification, compression and energy consumption results (in %),

comparing our approach against trained ternary quantization. . . . . . . . . . . . . 140

5.4 Experiment 3: results illustrating the influence of the normalization of the weights

before quantization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

5.5 Experiment 1: artifacts, gaseous emboli, and solid emboli accuracies of the different

compressed models on the HITS-small dataset. . . . . . . . . . . . . . . . . . . . . . 143

5.6 Experiment 1: energy consumption decomposition between the multiplication-

s/additions term, and the data transfer term. . . . . . . . . . . . . . . . . . . . . . . 145

5.7 Overview of single feature models on the HITS-small dataset in terms of energy

consumption, inference time, and classification performances. . . . . . . . . . . . . 147

xv

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0064/these.pdf 
© [Y. Vindas-Yassine], [2023], INSA Lyon, tous droits réservés



5.8 TCD-X maximum recording duration based on the pulse repetition frequency. . . . 153

5.9 Distribution of the HITS per class and per subject (subjects 0 to 19). The HITS are

classified using three classes: artifacts, solid emboli and gaseous emboli. Some

HITS are classified as unknown, but they are not used to train or evaluate the

classification models. Indeed, in some cases, an expert is not able to annotate a

HITS. This happens particularly when a HITS can be a solid or gaseous emboli, or

when there is doubt between a small intensity solid emboli and an artifact. . . . . . 154

5.10 Distribution of the HITS per class and per subject (subjects 20 to 38). The HITS

are classified using three classes: artifacts, solid emboli and gaseous emboli. Some

HITS are classified as unknown, but they are not used to train or evaluate the

classification models. Indeed, in some cases, an expert is not able to annotate a

HITS. This happens particularly when a HITS can be a solid or gaseous emboli, or

when there is doubt between a small intensity solid emboli and an artifact. . . . . . 155

5.11 Distribution of the HITS per class and per subject (subjects 39 to 51). The HITS

are classified using three classes: artifacts, solid emboli and gaseous emboli. Some

HITS are classified as unknown, but they are not used to train or evaluate the

classification models. Indeed, in some cases, an expert is not able to annotate a

HITS. This happens particularly when a HITS can be a solid or gaseous emboli, or

when there is doubt between a small intensity solid emboli and an artifact. . . . . . 156

5.12 Hessian-based metricH values of the 2D CNN models for layer quantization selection.157

5.13 Hessian-based metricH values of the 1D CNN-transformer models for layer quan-

tization selection on the HITS dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . 158

5.14 Hessian-based metricH values of the 1D CNN-transformer models for layer quan-

tization selection on the ESR dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

xvi

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0064/these.pdf 
© [Y. Vindas-Yassine], [2023], INSA Lyon, tous droits réservés



1

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0064/these.pdf 
© [Y. Vindas-Yassine], [2023], INSA Lyon, tous droits réservés



2

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0064/these.pdf 
© [Y. Vindas-Yassine], [2023], INSA Lyon, tous droits réservés



Introduction

Context and objective

According to the World Health Organization (WHO), stroke is one of the most common neuro-

logical disorders (Organization, 2006; Feigin, Nichols, Alam, Bannick, Beghi, Blake, Culpepper,

Dorsey, Elbaz, Ellenbogen, Fisher, Fitzmaurice, Giussani, Glennie, James, Johnson, Kassebaum,

Logroscino, Marin and Vos, 2019) and one of the leading causes of death and disability in the

world (Johnson, Onuma, Owolabi and Sachdev, 2016). The most common type of stroke is

ischemic (Meschia and Brott, 2018), which is caused when a foreign body, blocks a cerebral

artery. Some of these extraneous objects can be cerebral emboli (Meyer, Mutamatsu and Shirai,

1996; Rosenkranz, Fiehler, Niesen, Waiblinger, Eckert, Wittkugel, Kucinski, Röther, Zeumer,

Weiller and Sliwka, 2006), which can be of two natures, solid or gaseous. Therefore, to ensure

better patient management and help clinicians prevent stroke, accurate and early detection of

foreign bodies is necessary.

Moreover, cerebral emboli can be generated by different sources, such as atheromatous

plaques (Rosenkranz et al.., 2006), or the fragments generated by some surgical procedures

such as transcatheter aortic valve implantation (TAVI) (Aggarwal, Delahunty RN, Menezes,

Perry, Wong, Reinthaler, Ozkor and Mullen, 2018). They can also be spawn by other medical

procedures such as patent foramen ovale (PFO) tests (Serena, Jimenez-Nieto, Silva and Castel-

lanos, 2010), or cerebral angiography (Markus, Israel, Brown, Loh, Buckenham and Clifton,

1993a). In addition, cerebral emboli can occur randomly (Georgiadis, Grosset, Kelman, Faich-

ney and Lees, 1994; Spencer, 1992), therefore, to be able to detect them in such heterogeneous

situations, a flexible long-duration monitoring of the cerebral arteries is crucial. This can be

achieved with a transcranial Doppler (TCD) ultrasound device, which has the advantage of

being relatively cheap and non-invasive compared to other techniques, such as magnetic reso-

nance imaging (MRI) or computed tomography (CT). Additionally, to increase the duration of

the patient monitoring, a portable TCD device such as the TCD-X Atys Medical Holter can be

used without being overly obtrusive to the patient. The objective of this thesis is to establish

the extent to which these devices can be used to detect emboli. The main idea is to use an

ultrasound probe to measure the cerebral blood flow, mainly using the middle cerebral artery

(MCA). Then, potential emboli are detected through high intensity transient signals (HITS),

which correspond to over intensities in the acquired signal with respect to the intensity of the

cerebral blood flow (Ringelstein, Droste, Babikian, Evans, Grosset, Kaps, Markus, Russell and

Siebler, 1998).

The work was conducted in collaboration with Atys Medical thanks to the regional project

CAREMB (funded by the Auvergne-Rhône-Alpes region) in order to enhance cerebral emboli

classification, adapted to industrial constraints (which will be detailed in chapter 1). Therefore,

in this thesis, I shall to focus on semi-supervised learning methods with the aim to enhance the

classification of cerebral emboli right after HITS detection, in order to help clinicians in both

their research and patient management.
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Main contributions

In this thesis, we present three primary contributions. First, we introduce an innovative semi-

automatic data annotation method designed for the efficient and accurate annotation of data

with controlled annotation error. While our primary focus is on cerebral emboli detection using

TCD devices, our method is versatile and applicable to various other types of data.

Secondly, we propose a novel multi-feature learning approach to enhance the precision of

medical signal classification. Our method leverages diverse signal representations to capitalize

on their complementary nature. Furthermore, our approach demonstrates relative robustness

against label noise in samples, making it compatible with our semi-automatic data annotation

method.

Lastly, we introduce an innovative model compression technique employing pruning and

quantization. Our approach involves utilizing the statistics of the weights of the model to de-

termine which weights should be removed (pruning). Subsequently, we ternarize the retained

weights based on their sign. This method was designed to be versatile, applicable to models

derived from the preceding contributions.

Thesis structure

The first chapter is dedicated to the introduction of the medical and scientific context through

the presentation of cerebral emboli, transcranial Doppler (TCD) ultrasonography, and the

current challenges of HITS detection and classification.

The second chapter presents an overview of the state-of-the-art of the four main topics

related to my research: (1) cerebral emboli detection and classification, (2) automatic and

semi-automatic data annotation, (3) multi-feature classification, and (4) model compression.

The third chapter will introduce and detail the method that we developed for semi-

automatic data annotation. This method was used to generate and annotate different HITS

datasets used in the following chapters. The results and validation of this method will also be

presented in this third chapter.

The fourth chapter tackles directly the different classification models that we proposed to

improve cerebral emboli classification. These models focus on multi-feature classification, and

are validated on three medical datasets.

The fifth chapter is devoted to the model compression approach that we developed in

order to reduce the resource and energy requirements of the models developed in the previous

chapter. This is an important step in our research as we want these models to be compatible

with the clinical context, where the devices may have resources limitations.

Finally, in chapter six, we conclude and present some perspectives that could push further

the boundaries of cerebral emboli classification.
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1 Context

This chapter will introduce the general context in which my work takes place. First, I will

introduce the medical context regarding cerebral emboli and its associated risks. Secondly,

I will introduce the scientific context, concerning the post-processing techniques applied to

obtain the features used for emboli detection and classification. This chapter does not intend

to do an exhaustive review of cerebral emboli and its detection, but presents the main concepts

for our study.

Contents
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General objective

Stroke is one of the leading causes of dead and disability in the world (George, 2017). The most

common type of stroke, ischemic stroke, can often be caused by cerebral emboli (Meyer et al..,
1996; Rosenkranz et al.., 2006; Iguchi, Kimura, Kobayashi, Ueno, Shibazaki and Inoue, 2008).

Thus, cerebral emboli detection and classification is an important tool to help clinicians prevent

stroke and manage their patients.

Moreover, transcranial Doppler (TCD) ultrasonography have improved cerebral emboli

detection, as it is more flexible (non-invasive, relatively cheap, easy to transport and to adjust)

and allows long-duration recordings compared to other modalities. However, no methods in

the literature are able to accurately do cerebral emboli classification with portable TCD data,

according to the main three classes: solid embolus, gaseous embolus, and artifact.

Therefore, in this work we will focus on the classification and characterization of cerebral

emboli using the portable TCD device from Atys Medical, TCD-X.

I Medical context

I.1 Cerebral emboli

I.1.A Origin

Definition and associated risks. Cerebral emboli are extraneous materials that can circulate

in the blood flow and block an artery supplying blood to the brain (Chung and Caplan, 2007;

Haines, 2018). When this happens, ischemic stroke can occur as a result of the occlusion, which

prevents the brain of having a correct supply of oxygen (Roth, 2011). Based on the type of

ischemic stroke, the affected zone of the brain, and the degree of the occlusion, the effects of the

stroke can vary. First, let us define the two types of ischemic strokes according to (Types of Stroke,
2022): thrombotic and embolic. The former occurs when the source of the blockage is a blood

clot originated in a blood vessel directly connected to the brain or inside it. This happens, for

instance, when the middle cerebral artery (MCA) is blocked by a fragment of an atheromatous

plaque due to carotid stenosis (Stork, Kimura, Levi, Chambers, Abbott and Donnan, 2002).

Moreover, in some cases, this type of stroke can be preceded by transient ischemic attacks,

which can be an indicator of a possible stroke. On the other side, the embolic stroke takes place

when the material blocking the blood vessel is generated elsewhere in the body, for instance due

to a cardiac problem such as atrial fibrillation. Furthermore, the stroke can occur in different

zones in the brain, and based on the zone, the symptoms may differ (Effects of Stroke, 2023,

2022). Globally, as one side of the brain controls the opposite side of the body, the effects of

stroke in one side of the brain are materialized in the opposite side of the body (Effects of Stroke,
2023). What is more, not only the side of the brain touched by the stroke is important, but also

the part of the brain that is concerned (Effects of Stroke, 2022). The brain is mainly divided in

three parts: the brainstem, the cerebellum, and the cerebrum (see Figure 1.1). The brainstem

is located at the bottom of the brain, and it connects the spinal cord and the brain. It controls

some involuntary functions such as the regulation of the body temperature, breathing, heart

rate, blood pressure, balance, hearing, and swallowing. Therefore, a stroke touching this area

may disrupt some of these functions, and in some serious cases, it could lead to coma. By the

same token, the cerebellum can be found at the back of the brain, between the brainstem and

the cerebrum. It controls motor commands such as balance, posture, coordination of muscle

movements, as well as some cognitive functions such as language and attention. Thus, a stroke

affecting this zone can create motor and coordination problems, as well as headaches, nausea,
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Figure 1.1: Three main parts of the brain: brainstem, cerebellum, and cerebrum. Medical

Illustrations by Patrick Lynch, generated for multimedia teaching projects by the Yale University

School of Medicine, Center for Advanced Instructional Media, 1987-2000.

and dizziness. Last but not least, the cerebrum corresponds to the largest part of the brain

and it is composed of two parts, the right and left hemispheres. It controls many important

functions such as learning, speech, vision, hearing, reasoning, emotions, muscle functions,

etc. As a consequence, a stroke touching the cerebrum may cause (based on the hemisphere)

memory issues, weakness and/or paralysis of a part of the body, visual and speech problems,

behavioral changes, etc.

Characterization with transcranial Doppler. In this work, we focus on cerebral emboli detec-

tion and classification using portable transcranial Doppler ultrasound devices. Therefore, for

the detection task, we used the identification criteria established on the consensus committee of

the 9
𝑡ℎ

international cerebral hemodynamic symposium (Basic Identification Criteria of Doppler
Microembolic Signals, 1995). The criteria are the following:

• The duration of microembolic signals is smaller than 300 ms, as they are transient signals

and we search to remove artifacts (voice of the patient, probe movement, etc.) which tend

to be of longer duration.

• The increase in intensity of microembolic signals with respect to the signal of the blood

flow is of at least 3 dB.

• Microembolic signals are unidirectional in the time-frequency representation of the

Doppler signal. This is an important criterion allowing to distinguish solid and gaseous

emboli from artifacts (see Figure 1.2).

• Cerebral emboli signals have a music sound, similar to a "snap" or "chirp".

These criteria are not absolute, and they depend on different factors such as the recording

duration, the ultrasound probe frequency, the fast Fourier transform (FFT) parameters, etc.

Therefore, a new committee was established in 1998 (Ringelstein et al.., 1998) to discuss more

guidelines about the use of TCD devices for emboli detection. However, the 1995 consensus

guidelines remains used in clinical practice.
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Figure 1.2: Example of time-frequency representations and raw signals of the three types of

HITS. The first row corresponds to a solid embolus, the second row corresponds to a gaseous

embolus, and the third row corresponds to a (voice) artifact. The first column correspond to the

time-frequency representations (where the baseline is the horizontal white line, indicating the

0 Hz (or cm/s) value), and the second column correspond to the amplitude of the in quadrature

(IQ) signal (composed of two channels) as a function of the time. We can see that the two emboli

(solid and gaseous) are unidirectional on the time-frequency representation, contrary to the

artifact. Indeed, the artifact presents a symmetry with respect to the baseline (zero frequency

line), which is not present for the emboli. If an embolus exhibits symmetry concerning the

baseline, with both positive and negative velocities simultaneously, it implies that it is traveling

in two opposing directions simultaneously—along with the blood flow direction and against

it. This scenario is not physically plausible.
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I.1.B Types

As mentioned before, cerebral emboli can be detected using TCD ultrasonography. To do

this, HITS are detected in the patient TCD signal recording. These high intensity transient

signals correspond to zones in the Doppler signal having a higher intensity than the one of

the background (mainly the blood flow)1. Therefore, to be able to perform cerebral emboli

classification, it is important to understand the characteristics of the different types of HITS.

Here, we are going to describe the three main types of HITS (solid embolus, gaseous embolus,

and artifacts) based on the seminar of Dr. Ruud W.M. Keunen (Keunen, 2022).

Zero-crossing dynamics. According to the consensus committee of the 9
𝑡ℎ

International

Cerebral Hemodynamic Symposium (Basic Identification Criteria of Doppler Microembolic Sig-
nals, 1995), emboli have a characteristic musical sound, similar to a "chirp", "snap" or "moan".

However, in that comittee, this was not quantified. Dr. Keunen quantified this through the

zero-crossing dynamics of the signal (Keunen, Hoogenboezem, Wĳnands, Van den Hengel and

Ackerstaff, 2008). Indeed, the musical sound of emboli come from two factors. First, there

is the intensity increase with respect to the background, with higher amplitude variations.

However, artifacts can also have these amplitude variations. The second factor, which is the

most important one for emboli according to (Keunen et al.., 2008), is the influence of the veloc-

ity and the regularity of the zero-crossings. Dr. Keunen and his collaborators noted that, in

the background signal (i.e. the blood flow), the zero-crossings are quite irregular compared

to microembolic signals. To quantify this, they introduced the zero-cross index (ZCI), which

measures the different frequencies at which the zero-crossings occurs. Thus, its value lies be-

tween 0 and infinity, smaller values indicating more regular zero-crossings, and higher values

indicating more irregular zero-crossings.

Thanks to this, Dr. Keunen quantified the musical characteristics of solid and gaseous

emboli by its ZCI range values, that will be detailed for the different type of HITS hereafter.

Solid embolus. Solid emboli are solid particles (with a mass) that can circulate in the cerebral

blood flow. As the blood flow in the vessels is laminar, higher velocities are observed at their

center, thus solid emboli will tend to circulate at the center of the vessels at higher velocities.

Therefore, in a time-frequency representation, solid emboli will tend to have higher frequencies

(see first row of Figure 1.2).

Moreover, Dr. Keunen identified the following criteria to characterize solid emboli with

TCD devices:

• An intensity increase with respect to the background signal in the range of 3 to 5 dB;

• A duration smaller than 30 ms;

• A ZCI value between 25-50;

• Unidirectional in a time-frequency representation.

Furthermore, the source of a solid embolus can be related to its position in the cardiac cycle2

(Keunen, 2022). On the one hand, if the source of the solid embolus is in the bifurcation between

the internal and external carotid arteries (see Figure 1.4.a), e.g., coming from an unstable plaque

1More details about the detection mechanism will be specified in Section II.3.

2The rationale behind Dr Keunen explanation is that, as a solid particle, a solid embolus will circulate in the

cerebral blood stream at a certain velocity, so based on the origin, it is more probable to observe it at some cardiac

cycle positions than others.
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Figure 1.3: Systole and diastole, observed in a time-frequency representation of a TCD sig-

nal. The systole corresponds to the contraction of the heart. The diastole corresponds to

the expansion of the heart. The systolic velocity, 𝑉𝑠, is defined as the maximum velocity

during the systole, which happens at the systolic peak. The diastolic velocity, 𝑉𝑑 , is de-

fined at the velocity at the end of the diastole. Heart mages from BruceBlaus. English: Systole

vs Diastole. See a full animation of this medical topic. 5 novembre 2015. Own work, Wikimedia Commons,

https://commons.wikimedia.org/wiki/File:Systolevs_Diastole.png.

in a carotid stenosis patient, the embolus will be released during the systole (corresponding

to the contraction of the heart, see Figure 1.3), and it will be observed in the middle cerebral

artery (MCA during diastole, corresponding to the expansion of the heart). Therefore, if an

important number of solid emboli are observed only during the diastole, the origin of these

emboli could be at the bifurcation of the two aforementioned arteries. On the other hand, if

the source of the solid embolus is an unstable plaque located near the bifurcation between the

internal carotid artery and the anterior cerebral artery (see Figure 1.4.b), then if the embolus is

released during the systole, it will probably appear in the MCA during the systole too.

What is more, the impact of solid emboli on a patient depends on cerebral hemodynamics

(Ogasawara, Suga, Sasaki, Chida, Kobayashi, Yoshida, Otawara and Ogawa, 2008a; Keunen,

2022). Indeed, higher cerebral blood flow velocities allow a better clearance of solid emboli

than low flow velocities. Therefore, small solid emboli are more dangerous in poorly perfused

brains as it has more chances of being stuck. Additionally, as these small solid emboli are

asymptomatic, particular care have to be taken for patients with that profile1.

Gaseous embolus. Contrary to solid emboli, gaseous emboli do not have a mass, so their

movement in the blood vessels is more chaotic, going from one wall to another. That is why,

in a time-frequency representation, one gaseous embolus can alternate between high and low

frequencies (or velocities), having a more elongated shape than solid emboli, or a v-shape (see

1A solid asymptomatic embolus do not produce any evident symptoms, but as indicated, they can (partially)

block a cerebral artery and cause ischemic stroke, thus they can be dangerous.

10

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0064/these.pdf 
© [Y. Vindas-Yassine], [2023], INSA Lyon, tous droits réservés



(a)

(b)

Figure 1.4: Main components of the blood supply to the brain. Base images

from: (a) Żbiczek, LadyofHats, translated by. Polski: Uproszczony schemat układu tętniczego

u człowieka. May 3, 2009. translation of File:Arterial System en.svg, Wikimedia Commons,

https://commons.wikimedia.org/wiki/File:Arterial_system_pl.svg. (b) College, OpenStax. Illustration from

Anatomy Physiology, Connexions Web site. http://cnx.org/content/col11496/1.6/, Jun 19, 2013. Anatomy

Physiology, Connexions Web site. http://cnx.org/content/col11496/1.6/, Jun 19, 2013., Wikimedia Commons,

https://commons.wikimedia.org/wiki/File:2123_Arteries_of_the_Brain.jpgfilelinks. Referred to the 12/06/2023.
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second row of Figure 1.2). Additionally, gaseous emboli are strong reflectors of the ultrasound

signal, therefore, when they enter the sample volume, they can overload the signal and create

increase of the amplitudes with respect to the background signal.

Moreover, the main characteristics identified by Dr. Keunen for gaseous emboli with TCD

devices are the following:

• An intensity increase with respect to the background signal in a range of 5 to 15 dB (higher

intensities than solid emboli);

• A duration in the range of 30-100 ms (longer than solid emboli);

• A ZCI value between 0-25 (smaller than solid emboli);

• Unidirectional in a time-frequency representation;

• There is no relation between the occurrence of a gaseous embolus and the cardiac cycle

position.

We can see that, even if the basic identification criteria of gaseous and solid emboli are different,

in some cases they can be confused. For instance, a small gaseous embolus can be mixed up

with a large solid embolus, when the intensity increase with respect to the background signal

is of 5 dB, the duration around 30 ms and the ZCI of 25.

Furthermore, gaseous emboli have been less studied than solid emboli with TCD devices, as

their identification is not an easy task. However, they can have an impact on the brain. Indeed,

too much air in the brain can generate cognitive dysfunctions after surgery, and gaseous emboli

can occlude capillaries which can lead to small lesions in the brain. More details about the

impact of gaseous emboli on the brain are going to be discussed in Section I.1.C.

Artifact. Artifacts are parasite and undesired HITS that may be artificially generated and do

not give any useful information to the clinicians. They can be generated by different sources,

such as the voice of the patient, the movement of the patient, the movement of the robotic probe

(for devices equipped with robotic probes such as Atys Medical TCD-X device or WAKIe R3),

electrical noise, etc.

The basic identification criteria established by Dr. Keunen for artifacts are the following

(see third row of Figure 1.2):

• Lower frequencies than solid or gaseous emboli.

• An intensity increase with respect to the background signal in a range of 5 to 15 dB,

similar to gaseous emboli.

• Duration between 15 and 300 ms (300 ms is the maximal duration of a HITS according to

the 1995 consensus).

• They can be bidirectional. This translates in the time-frequency representation as sym-

metric with respect to the time (horizontal) axis.

• ZCI values larger than 200, much higher than the ZCI values of solid and gaseous emboli.

Artifacts are HITS that are not clinically useful. However, it is important to identify them

to avoid confusion with emboli, specially for portable TCD devices which are more prone to

artifacts. Indeed, confusing an artifact as a solid or gaseous embolus can be serious, as it can

mislead the treatment given to the patients.
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I.1.C Possible sources

Cerebral emboli can be generated by different sources. They often come from the heart (cardio-

genic) or proximal arteries such as the internal carotid artery. To better understand the origin

of the emboli, we divided the sources between pathologies, medical procedures, and external

sources.

Pathologies.

Carotid stenosis. A common source of cerebral emboli is carotid stenosis. Its link with

ischemic stroke has been largely studied by the medical community for symptomatic and

asymptomatic patients (Stork et al.., 2002; Sitzer, Müller, Siebler, Hort, Kniemeyer, Jäncke and

Steinmetz, 1995; Markus and MacKinnon, 2005; Siebler, Kleinschmidt, Sitzer, Steinmetz and

Freund, 1994). Carotid stenosis is the narrowing of a carotid artery due to the formation of

plaques in the walls of the artery (see Figure 1.5.a). This plaque can be composed of fat,

cholesterol, calcium or other substances (Carotid Artery Stenosis, 2022). Moreover, patients

suffering from carotid stenosis can have strokes in two contexts: (1) when the narrowing is

large enough to directly block the supply of blood to the brain in the formation place, and

(2) when a fragment of the plaque separates from it (becoming a solid embolus), follows the

blood flow, and blocks it at another location (in the same artery or another one). Similarly to

carotid stenosis, recent studies have established a link between ischemic stroke and aortic arch

atheroma (Viguier, Pavy le Traon, Massabuau, Valton and Larrue, 2001; Zavala, Amarrenco,

Davis, Jones, Young, Macleod, Horky and Donnan, 2006; Viedma-Guiard, Guidoux, Amarenco

and Meseguer, 2021). Indeed, atheromatous plaques can also appear in the aortic arc, and

cerebral emboli can be generated from it if a fragment detaches from the plaque.

Atrial fibrillation. Atrial fibrillation (AF) can also be a source of cerebral emboli (Atrial
Fibrillation and Stroke | National Institute of Neurological Disorders and Stroke, 2023). AF is a type

of arrhythmia where the two upper chambers of the heart, the atria, beat at an irregular rhythm

(CDC, 2022), generating fast contractions with small amplitudes. Because of this, the blood

flow between the upper and lower chambers of the heart is slow and irregular. Therefore,

blood can be quasi-static, generating blood clots that can become emboli. These emboli can

then go to the brain and cause cardiogenic embolic stroke, as it has been shown by several

clinical studies (Tsao, Aday, Almarzooq, Alonso, Beaton, Bittencourt, Boehme, Buxton, Carson,

Commodore-Mensah, Elkind, Evenson, Eze-Nliam, Ferguson, Generoso, Ho, Kalani, Khan,

Kissela, Knutson, Levine, Lewis, Liu, Loop, Ma, Mussolino, Navaneethan, Perak, Poudel, Rezk-

Hanna, Roth, Schroeder, Shah, Thacker, VanWagner, Virani, Voecks, Wang, Yaffe and Martin,

2022; Kamel, Okin, Elkind and Iadecola, 2016; Freedman, Potpara and Lip, 2016; Stirling,

Muramatsu and Shirai, 1996).

Patent Foramen Ovale. Patent foramen ovale (PFO) can be associated to ischemic stroke

(Patent Foramen Ovale (PFO), 2011; Schminke, Ries, Daffertshofer, Staedt and Hennerici, 1995).

Contrary to carotid stenosis or AF, PFO do not generate emboli. However, they allow particles

and materials generated elsewhere in the body to go to other parts (such as the brain) becoming

cerebral emboli that can cause stroke (Anzola, Magoni, Guindani, Rozzini and Volta, 1999;

Serena, nez Nieto, Silva and Castellanos, 2010). Indeed, PFO is a type of hole between the left

and right upper chambers of the heart that occurs when the foramen ovale do not close after

birth. Normally, materials circulating in the bloodstream are filtered by the lungs after passing

by the right atria and ventricle. However, in patients with PFO, these materials can bypass the
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lungs and go directly to the left atria and ventricle, which can then go to other organs such

as the brain (Patent Foramen Ovale (PFO), 2011) causing paradoxical stroke. Additionally, the

size of the PFO also has an influence on the risk of stroke (Schuchlenz, Weihs, Horner and

Quehenberger, 2000). Because of this, PFO existence tests have been developed (Kamel et al..,
2016; Telman, Kouperberg, Sprecher, Goldsher and Yarnitsky, 2005), where contrast agents are

injected into the patient, and TCD monitoring is used to detect potential microbubbles (gaseous

emboli) in the cerebral arteries (MCA) associated to the presence of a PFO.

Other pathologies. In addition, other pathologies such as mitral annular calcification,

pulmonary arterionvenous malformation, or valvular vegetations can be a source of cerebral

emboli. For more details about this, we refer the reader to (Marcoff and Homma, 2014).

Medical procedures. Different types of emboli can be generated during different medical

procedures, surgical or nonsurgical.

Carotid endarterectomy. A common surgical procedure producing emboli is carotid en-

darterectomy (CEA) (Ackerstaff, Jansen, Moll, Vermeulen, Hamerlĳnck and Mauser, 1995; Ack-

erstaff, Moons, van de Vlasakker, Moll, Vermeulen, Algra and Spencer, 2000; Jansen, Ramos,

van Heesewĳk, Moll, van Gĳn and Ackerstaff, 1994; Ogasawara, Suga, Sasaki, Chida, Kobayashi,

Yoshida, Otawara and Ogawa, 2008b), as it is strongly related to carotid stenosis. Indeed, CEA

consists in removing the atheromatous plaque formed in the carotid artery in patients with

carotid stenosis (Carotid endarterectomy, 2017). This is an important procedure when the narrow-

ing of the concerned carotid artery has become important or the plaque is unstable, becoming

a potential source of cerebral emboli (Bonati, Kakkos, Berkefeld, de Borst, Bulbulia, Halliday,

van Herzeele, Koncar, McCabe, Lal, Ricco, Ringleb, Taylor-Rowan and Eckstein, 2021). Because

of the nature of the procedure, some debris of the plaque can go to the brain and cause embolic

stroke (Ackerstaff et al.., 1995, 2000; Spencer, Thomas, Nicholls and Sauvage, 1990), which is

paradoxical. As a consequence of this paradox, several studies have shown that CEA is not

always the best alternative to treat carotid stenosis. Therefore, a recent guideline has been

proposed by the European Stroke Organization to handle carotid stenosis with CEA (Bonati

et al.., 2021), while trying to minimize the emboli generation risks.

Transcatheter aortic valve implantation. Another surgical procedure generating different

types of emboli is transcatheter aortic valve implantation (TAVI) (Szeto, Augoustides, Desai,

Moeller, McGarvey, Walsh, Bannan, Herrmann and Bavaria, 2011), which is used to replace

damaged aortic valves unable to properly open because of (aortic) stenosis (see Figure 1.5.b).

The procedure is minimally invasive and consists in accessing the aortic valve using a catheter

guided through the femoral artery or through the apex of the heart. Then, the catheter is used

to deploy a new artificial valve within the damaged aortic valve to restore the function of the

latter. The procedure is composed of several stages where emboli can be generated. Indeed,

solid emboli can be generated from atheroma in the aorta, calcification of the aortic valve, or by

the catheter when moving through the artery (Masson, Kovac, Schuler, Ye, Cheung, Kapadia,

Tuzcu, Kodali, Leon and Webb, 2009; Van Mieghem, El Faquir, Rahhab, Rodríguez-Olivares,

Wilschut, Ouhlous, Galema, Geleĳnse, Kappetein, Schipper and de Jaegere, 2015). Gaseous

emboli can also be generated from the left ventricular cannulation (Masson et al.., 2009), contrast

agent injection, or catheter flushing (Aggarwal et al.., 2018). For more details about the different

stages and embolization risk, we refer the reader to (Masson et al.., 2009; Aggarwal et al.., 2018).
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(a) (b)

Figure 1.5: Different sources of emboli. (a) Narrowing of a carotid artery due to

atherosclerosis. Oregon State University. Artery disease. photo, April 18, 2016. Flickr,

https://www.flickr.com/photos/oregonstateuniversity/26481606576/. (b) Transcatheter aor-

tic valve implantation, TAVI (Source: Edwards Lifesciences). The aortic valve is replaced by an

artificial valve without narrowing, allowing it to open properly. First (1), a balloon catheter is

put into the heart valve passing through the aorta. Then (2), the transcatheter valve is posi-

tioned over the defective aortic valve. Finally (3), when the new synthetic valve is in place, the

catheter is retired and the procedure finished.

Other procedures. Other procedures such as cerebral angiography (Ikizceli, Donmez,

Kahveci and Kahriman, 2021; Markus, Israel, Brown, Loh, Buckenham and Clifton, 1993b) or

cardiopulmonary bypass (CPB) (Abu-Omar, Balacumaraswami, Pigott, Matthews and Taggart,

2004) can generate solid and gaseous emboli. Cerebral angiography can generate solid emboli

from the manipulation of the catheter (Ikizceli et al.., 2021) and gaseous emboli from the

injection of the contrast agent (Markus et al.., 1993b). CPB can also generate emboli, mainly

gaseous, at different stages: perfusionist interventions, aortic cannulas, or cross-clamp (Borger

and Feindel, 2002; Abu-Omar et al.., 2004).

External sources. As we have seen in the previous paragraph (Medical procedures), emboli can

be of artificial nature. For instance, gaseous emboli can be generated during the injection of

contrast agents as it is done during PFO tests (Schminke et al.., 1995) and cerebral angiography

(Markus et al.., 1993b), or created during surgical procedures such as cardiac surgeries (Mitchell

and Gorman, 2002; Abu-Omar et al.., 2004). However, other external sources can be at the origin

of solid and gaseous emboli. Hereafter, we present two types of external sources of cerebral

emboli based on (Judge, Mello, Bradley and Harbison, 2017): pressure-related gaseous emboli

and (solid) foreign bodies.

Pressure-related gaseous emboli. Gaseous emboli can be artificially generated because

of pressure-related causes. This can occur in several circumstances such as diving, hyperbaric

treatments or cabin decompression in flights. In the literature, diving accidents are one of

the most common sources of gaseous emboli. Indeed, according to Boyle’s law, at a fixed

temperature, the pressure is inversely proportional to the volume of gas. When diving, the

external (water) pressure changes, modifying the volume of the spaces filled with gas in the

body. During descent, the water pressure will increase, compressing (i.e. reducing) the volume

of the spaces filled with gas in the body. Then, according to Boyle’s law, as the volume of the

gas has decreased, the pressure inside those spaces will increase, which can lead to damages in
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those spaces1 and the formation of arterial gas emboli. During ascent, the inverse phenomenon

happens: as the water pressure decreases, the gas inside the body is decompressed (i.e. the

volume increases). Therefore, as the gas expands, bubbles can be liberated in the tissues,

creating gaseous emboli. Because of these reasons, it is important to regulate the volume of gas

inside the body. However, this is not always done, which can lead to decompression sickness

or stroke due to gaseous cerebral emboli.

Foreign bodies. Another external (but less common) source of cerebral emboli are foreign

bodies such as gun pellets (mainly happening in military populations) or illicit drugs. Indeed,

in the military domain, fragments from gun pellets or other military munitions can become

emboli if they go inside the body. In some rare cases, they reach the brain, and cause ischemic

stroke. Moreover, illicit drugs are also a source of emboli as they are often mixed with unknown

materials which do not dilute well. Because of these, for intravenous illicit drugs, solid foreign

bodies can be introduced in the blood flow, becoming potential cerebral emboli.

I.2 Transcranial Doppler ultrasound

I.2.A General principle

In this section, we are going to review the general principle of transcranial Doppler (TCD)

ultrasonography. This neuroimaging tool is the core of our work with Atys medical, as it is the

technology that we used to acquire all the TCD data utilized in this work. To do this, we are

going to build on (Purkayastha and Sorond, 2013; Naqvi, Yap, Ahmad and Ghosh, 2013).

Physical principle. Transcranial Doppler ultrasonography is a noninvasive, relatively cheap

and portable ultrasound technique allowing a real-time monitoring of the cerebral arteries over

long periods of time.

The principle at the core of TCD ultrasonography is the Doppler effect. Indeed, TCD devices

are composed of an ultrasound probe that is placed on one of the acoustic windows of the skull

(see Figure 1.6). This probe is composed of piezoelectric crystals allowing to transmit and

receive ultrasound waves. When a wave is emitted at a frequency 𝑓𝑒, it will go through the

skull2 and encounter moving blood composed of red cells. Because of the movement of the red

cells, the frequency 𝑓𝑟 of the received wave will not be the same as the one of the emitted wave

(Doppler effect). As one can measure the frequency 𝑓𝑟 of the received wave, and the frequency

𝑓𝑒 of the emitted wave is known, one can use the Doppler effect to get the velocity 𝑣𝑟 of the

moving red cells:

𝑣𝑟 =
| 𝑓𝑟 − 𝑓𝑒 | × 𝑐

2 × 𝑓𝑒 × 𝑐𝑜𝑠(𝜃)
(1.1)

where 𝑐 is the speed of the emitted wave in the propagation medium (for soft tissues it is

assumed constant with a value of 1541 m/s) and 𝜃 is the Doppler angle of the wave with

respect to the direction of the blood flow.

For TCD measurements, one important assumption regarding 𝜃 is made to be able to

compute the velocity 𝑣𝑟 . Indeed, the angle 𝜃 is not always easy to measure and it has an impact

on the precision of the estimated 𝑣𝑟 . In the ideal case, to have an accurate measurement of

𝑣𝑟 , 𝜃 = 0 which means that the emitted wave is parallel to the blood flow. However, this is

1This is because, the tissue will fill these spaces to equalize pressure, which can lead to its rupture.

2In fact, this depends on the chosen emission frequency: higher frequencies are more attenuated through their

path, so they may not penetrate the skull. That is why, in general, for TCD ultrasonography, low frequencies are

chosen, below 2 MHz.
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Figure 1.6: Acoustic windows commonly used in transcranial Doppler ultrasound monitoring.

The different windows allow to insonate different arteries. The transtemporal window is the

one used in this work, as it allows to insonate the middle cerebral artery (MCA), as well as

the anterior and posterior cerebral arteries (however, in this work we focus on the MCA). The

transorbital window allows to insonate the internal carotid artery and the ophtalmic artery.

The submandibular window allows to insonate the MCA. The suboccipital window allows to

insonate the vertebral arteries as well as the basilar artery. Image from (Weir, 2016).

not possible in practice, so this angle should be reduced as much as possible to decrease the

approximation error of 𝑣𝑟 . According to (Purkayastha and Sorond, 2013), for 𝜃 ≥ 30, the made

error is higher than 15%, so an angle of 𝜃 ≤ 30 should be used to guarantee a good quality of

the measurement.

Acoustic windows. As mentioned before, different acoustic windows can be used with TCD

ultrasonography: the transtemporal window, the suboccipital window, the transorbital win-

dow, and the submandibular window. It is important to place the probe at an acoustic window

and not elsewhere as they correspond to thin regions of the skull where the used ultrasound

waves can penetrate it. For emboli detection, the most commonly used window is the transtem-

poral window, as it allows to insonate the middle cerebral artery (MCA), which can be found

at depths of 35-55 𝑚𝑚 depending on the patient. Moreover, in this artery, the flow is unidi-

rectional towards the probe up to the MCA trifurcation, where it becomes bidirectional. By

the same token, the transtemporal window is particularly interesting for Atys Medical portable

TCD device, the TCD-X Holter, as it allows the device to be attached using a headband or a

glasses-inspired attachment (see Figure 1.7).

Types. There are mainly two types of TCD devices: duplex and non-duplex. The main

difference between them is that, in duplex devices the imaging of the organs is done in parallel

to the blood flow measurement. Therefore, in duplex devices the monitored vessels are directly

known, and thanks to the imaging, an estimation of the Doppler angle can be done, improving

the quality of the estimated velocities. On the contrary, in non-duplex devices, such as Atys

17

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0064/these.pdf 
© [Y. Vindas-Yassine], [2023], INSA Lyon, tous droits réservés



Medical TCD-X Holter, the vessels are not directly identified, but the acquired information

(audible signal, time-frequency representation, used acoustic window, etc.) has to be used to

determine the monitored vessel. In this work, we focus on non-duplex TCD devices, as it is the

only one allowing a long-duration real-time monitoring of the cerebral blood flow.

Advantages and drawbacks. TCD devices have different advantages and drawbacks. From

the one hand, the main advantages of TCD devices are that they are noninvasive, they have

good temporal resolution, they are relatively cheap, they are more portable than other medical

devices (such as magnetic resonance imaging, MRI, or computed tomography, CT), and they

are the only medical devices allowing a real-time monitoring of the cerebral blood flow. This

last point is particularly interesting, as many applications require real-time monitoring of the

cerebral blood flow, such as TAVI, cardiopulmonary bypass, or AF ablation (AFA). On the

other hand, TCD devices have some drawbacks which can limit the quality of the monitoring.

Indeed, TCD devices make some assumptions to be able to measure the velocities of the

bodies in movement in the blood flow (mainly assumptions about the Doppler angle and

the diameter of the vessels). Moreover, TCD ultrasound measurements depend on the used

acoustic window (some patients can have inadequate acoustic windows), as well as the operator

(training, experience, etc.). This last point has been partially solved by Atys Medical TCD-X

Holter, which uses a robotized probe to automatically detect the best signal in the MCA, using

the transtemporal window.

I.2.B Atys medical robotized probe

In this work, the TCD data were acquired using the portable TCD device from Atys Medical,

the TCD-X Holter (Figure 1.7). It can be used on ambulatory patients to monitor their cerebral

blood flows on the MCA using the transtemporal window, for long term monitoring sessions

with a duration going up to 10 hours1 (signal recorded in an SD card). To achieve this, a

robotized probe automatically finds the best MCA signal during the recording, allowing to

avoid loosing the Doppler signal. This property of the TCD-X is particularly interesting as

cerebral emboli are rare events, so long duration monitoring are required to catch these events.

However, the main inconvenient of this is that it tends to generate more artifacts than classical

TCD devices, as the patient is in free movement, so they can talk, walk, or do other activities

during the recording.

Furthermore, the main two components allowing portable TCD recordings with the TCD-X

Holter are the following: (1) a single robotized ultrasound probe2 and (2) a headset, allowing

to fixate the probe to the transtemporal window of the patient during all the recording (see

Figure 1.7.b). First, the robotized probe is able to automatically find the signal in the MCA.

To do this, the probe tries different orientations in order to search for the Doppler signal, and

then it chooses the orientation maximizing the signal. This is interesting as, in long term

recordings on ambulatory patients, the Doppler signal can easily be lost (patient can freely

move), requiring a recalibration to find the signal. Classically, this is done by clinicians or

qualified technicians, but this is not practical for ambulatory patients. The proposed robotized

probe allows overcoming this difficulty, making long duration monitoring on ambulatory

patients more reliable. Secondly, in order to keep the robotized probe in the transtemporal

window of the patient, the TCD-X Holter uses a headset as in Figure 1.7.b. The headset is

composed of a spectacle frame, the robotized probe, a counterweight, and a headband. The

1The monitoring duration depends on the pulse repetition frequency, see Appendix 1 for more details.

2Atys medical has now developed a new bilateral TCD-X Holter composed of two probes, allowing to monitor

the cerebral blood flow using the two transtemporal windows.
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(a) (b)

Figure 1.7: TCD-X Holter device. (a) Recorder module. (b) headset used for fixating the

robotized probe to the temporal window. Images from Atys Medical.

spectacle frame and the headband allow supporting the probe and linking the probe to the

counterweight. The counterweight allows mainly balancing the spectacle frame and ensuring

the tension of the headband. This fixation mechanism of the probe is important allows as it

allows having a reliable and comfortable portable TCD device usable on ambulatory patients,

specially for long term recordings. Indeed, as the patient is in movement, so will be the probe

if it is not properly fixed (it can also be moved by external sources, for instance when the

recording is done during a surgical procedure). Moreover, the robotized probe must remain in

the transtemporal window, close to a region where the signal can be found, to be able to stay

on the best Doppler signal: the presented headset allows this.

At last, the acquired Doppler signal is recorded in an SD card, which can then be analyzed

with the proprietary software, Atys data management software (ADMS). This software will

detect all the possible HITS present in the signal, classify them between potential artifacts and

emboli (no distinction between solid and gaseous), and compute many features that can be

analyzed by the user, such as the HITS-to-blood ratio (HBR), the HITS velocity, its position in

the cardiac cycle, the systolic, diastolic and mean velocities, the embolic relative duration, etc.

II Scientific context

II.1 Used representations

II.1.A Raw signal

The raw signal of a HITS corresponds to the Doppler signal acquired by the TCD device.

Indeed, the received ultrasound wave (acoustic perturbation reflected by the moving bodies

such as red cells or emboli in the cerebral blood flow) is processed by the TCD device, and

demodulated using a quadrature demodulation. Because of this demodulation, we obtain a

signal 𝑆 ∈ ℝ2×𝑁
of length 𝑁 , composed of two channels, 𝐼 ∈ ℝ𝑁 and 𝑄 ∈ ℝ𝑁 , corresponding

to the in-phase and quadrature components, respectively. This stereo signal can be used to

identify emboli according to the criteria mentioned in Section I.1.A.
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Figure 1.8: Overview of the short-time Fourier transform (STFT). Image from (Jeon et al.., 2020)

II.1.B Time-frequency representation

Time-frequency representations (TFRs) are commonly used to identify HITS and classify them

between solid embolus, gaseous embolus, and artifact. These representations have several

advantages. First, it allows giving a visual representation of the Doppler signal, which is easier

to analyze by clinicians, specially for long duration recordings. Second, it allows measuring

different useful quantities such as the systolic, diastolic and mean velocities. Indeed, this can

be achieved as we work with Doppler signals, so there is a direct correspondence between

velocity and frequency according to equation 1.1.

Logarithmic scale spectrogram. The most commonly used time-frequency representation

(and the one used by ADMS) is the logarithmic scale spectrogram. To obtain this representation,

we detail hereafter the various steps that are applied (Guepie et al.., 2018): (1) extraction of a

complex IQ signal from the stereo signal, (2) signal filtering, (3) short-time Fourier transform

(STFT), (4) spectrogram computation, (5) logarithmic scaling, (6) fast Fourier transform (FFT)

shifting, and (7) amplitude filtering based on the obtained spectrogram’s statistics.

First, from the stereo signal 𝑆, we extract a complex mono signal 𝑆𝐶 defined as follows:

𝑆𝐶 = 𝐼 + 𝑖 ×𝑄 (1.2)

Then, the so obtained signal is filtered using a 4
𝑡ℎ

order Butterworth digital high-pass filter,

with a cut-off frequency of 150 Hz, to obtain a filtered signal 𝑆𝐹
𝐶

.

Afterwards, the STFT of the filtered signal 𝑆𝐹
𝐶

is computed (see Figure 1.8), using a Hamming

window of length 𝑛𝐹𝐹𝑇 , with an overlap between two consecutive windows’ centers of 𝑛𝑜𝑣𝑒𝑟𝑙𝑎𝑝
points, and a hop length between two consecutive windows of 𝑛ℎ𝑜𝑝 = 𝑛𝐹𝐹𝑇 − 𝑛𝑜𝑣𝑒𝑟𝑙𝑎𝑝. For the

HITS, we used 𝑛𝐹𝐹𝑇 = 128 and 𝑛𝑜𝑣𝑒𝑟𝑙𝑎𝑝 = 8.

Subsequently, the logarithmic scale spectrogram is computed:

𝑆𝑝𝑒𝑐𝑙𝑜𝑔 (𝑆) = 10 × 𝑙𝑜𝑔10( |𝑆𝑇𝐹𝑇 (𝑆𝐹𝐶) |
2) (1.3)

This logarithmic scale spectrogram is a 2D matrix, composed of 𝐹 = 𝑛𝐹𝐹𝑇 rows correspond-

ing to the frequency bins, and 𝑇 = ⌊ 𝑁
𝑛ℎ𝑜𝑝
⌋ columns corresponding to the time bins.

Next, FFT shifting is applied to 𝑆𝑝𝑒𝑐𝑙𝑜𝑔 (𝑆) to center the spectrogram around the zero fre-

quency component, obtaining 𝑆𝑝𝑒𝑐
𝑠ℎ𝑖 𝑓 𝑡

𝑙𝑜𝑔
(𝑆). Finally, a new filtering is done on the amplitudes of
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the shifted spectrogram, to remove extreme amplitude values, obtaining the final spectrogram

𝑆𝑝𝑒𝑐𝑓 𝑖𝑛𝑎𝑙. To do this, two thresholds are defined as follows:

𝑚𝑖𝑛𝑑𝐵 = 𝜇𝑆𝑝𝑒𝑐 + 𝑎 × 𝜎𝑆𝑝𝑒𝑐 (1.4)

𝑚𝑎𝑥𝑑𝐵 = 𝜇𝑆𝑝𝑒𝑐 + 𝑏 × 𝜎𝑆𝑝𝑒𝑐 (1.5)

where 𝜇𝑆𝑝𝑒𝑐 and 𝜎𝑆𝑝𝑒𝑐 correspond to the mean and standard deviation of the logarithmic

scale spectrogram, respectively, and 𝑎 and 𝑏 (𝑎 ≤ 𝑏) correspond to two adjustable parameters,

fixed to 𝑎 = 0.5 and 𝑏 = 6. The filtering is then performed according to:

∀𝑖 ∈ [1, 𝐹], 𝑗 ∈ [1, 𝑇], 𝑆𝑝𝑒𝑐𝑓 𝑖𝑛𝑎𝑙 (𝑆) [𝑖, 𝑗] =


𝑚𝑖𝑛𝑑𝐵 if 𝑆𝑝𝑒𝑐

𝑠ℎ𝑖 𝑓 𝑡

𝑙𝑜𝑔
(𝑆) [𝑖, 𝑗] < 𝑚𝑖𝑛𝑑𝐵

𝑆𝑝𝑒𝑐
𝑠ℎ𝑖 𝑓 𝑡

𝑙𝑜𝑔
(𝑆) [𝑖, 𝑗] if 𝑆𝑝𝑒𝑐

𝑠ℎ𝑖 𝑓 𝑡

𝑙𝑜𝑔
(𝑆) [𝑖, 𝑗] ∈ [𝑚𝑖𝑛𝑑𝐵, 𝑚𝑎𝑥𝑑𝐵]

𝑚𝑎𝑥𝑑𝐵 if 𝑆𝑝𝑒𝑐
𝑠ℎ𝑖 𝑓 𝑡

𝑙𝑜𝑔
(𝑆) [𝑖, 𝑗] > 𝑚𝑎𝑥𝑑𝐵

This filtered logarithmic scale spectrogram is the used TFR in the rest of this work, as well

as the representation computed by ADMS TCD data processing software. It is important to

note that this representation was optimized by Atys Medical for emboli detection by modifying

the classical STFT, where the proposed normalization improves the visual quality of the TFRs,

as well as emboli detection. Therefore, the chosen parameters abovementioned were chosen

accordingly.

Other time-frequency representations. Other types of TFR exist and are commonly used in

the signal processing and machine learning fields.

One commonly used representation is the Mel spectrogram, which works in a different

frequency scale, the Mel scale, defined as follows:

𝑚 = 2595 × 𝑙𝑜𝑔10(1 +
𝑓

100

)

where 𝑓 is a frequency in Hertz and 𝑚 is a frequency in Mels.

This scale tries to get closer to the non-linear way that sounds are perceived by humans,

where lower frequencies are more discriminative than higher frequencies. In this way, in the

Mel scale, we have more lower frequencies than higher frequencies (see figure 1.9), as more Hz

frequencies are mapped into lower mel frequencies than high mel frequencies.

Moreover, from a mel spectrogram, it is possible to obtain another compressed representa-

tion, the mel-frequency cepstral coefficients (MFCC). To do this, a discrete cosine transform is

applied to the mel spectrogram to decorrelate some coefficients obtained by applying the mel

filter bank.

By the same token, another popular TFR based on the human ear is the cochleagram (Lyon,

2017), which is based on a gammatone filter bank. The idea of this TFR is to mimic the

functioning of the cochlea, to have a representation that is similar to what is perceived by

humans. To do this, a gammatone filter bank is applied to the input signal, and then the energy

of each frequency channel (center frequency of each gammatone filter) is computed.

Furthermore, the chromagram, or chroma feature, is another commonly use TFR, specially

for music analysis. These feature is more centered on the musical characteristics of the input

signal, based on the pitch classes.

However, the main inconvenient with all the abovementioned TFRs is that they are not

necessarily the ones the more adapted to HITS classification as, for humans, HITS are not easy

to detect nor classify using the Doppler signal. Indeed, there are fine details in the Doppler

signal that are not easy to perceive by the human ear. Thus, translating the Doppler signal into

an image in the same way that humans perceive it may not be optimal.
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Figure 1.9: Mel filter bank. In the upper x-axis we have the frequencies in Mel and in the

lower x-axis we have the frequencies in Hertz. Each filter have a triangular response, centered

at a given mel frequency. Image from PyFilterbank: Mel Filter Bank — PyFilterbank devN

documentation. https://siggigue.github.io/pyfilterbank/melbank.html. Referred to June 12,

2023.

II.2 Other representations

Time-frequency representations are a good way to represent signals as they make explicit

the spectral characteristics of the signal. However, theoretically, the spectral information is

implicitly present in the raw signal as this information is computed using the signal. Therefore,

one can use other signal representations that are not frequency-based, in order to study the

signal from other points of view.

Two interesting representations of a signal without loss of information are their binary en-

codings: bit-based pulse waveform and bit pattern image (Okawa, Saito, Sawada and Nishizaki,

2019). The first representation (bit-based pulse waveform) correspond to a binary multichannel

signal (see Figure 1.10.a). If we suppose that we have a signal where the amplitudes are en-

coded using 𝐵 bits, then, for each value 𝑆(𝑖), 𝑖 ∈ [1, 𝑁] of the raw signal, we compute its binary

encoding using 𝐵 bits. Then, we concatenate the obtained binary encodings channel-wise to

obtain a new signal of length 𝑁 , with 𝐵 channels, and with binary values. The second repre-

sentation (bit pattern image) is a visual representation extracted similarly to the bit-based pulse

waveform (see Figure 1.10.b). Indeed, the only difference with respect to the bit-based pulse

waveform is that, the binary encodings of each element of 𝑆 are concatenated column-wise, in

order to form an image where the 𝑖𝑡ℎ column represents the binary encoding of 𝑆(𝑖), using 𝐵

bits. Therefore, this representation is an image of height 𝐵 and width 𝑁 .

These representations can be interesting to exploit for emboli classification. However,

few works have explored their use for signal classification (Okawa et al.., 2019), and some

difficulties come with them. The main difficulty for both representations is the length of the

representations. Indeed, for both representations, the length remains the same (𝑁), whereas

we increase the number of channels or columns, leading to larger models to process these type

of inputs. Moreover, for bit pattern images, we end up with an image of shape 𝐵 × 𝑁 , with

𝐵 << 𝑁 , with makes feature extraction more difficult (large image with wide temporal context

(width) and very small amplitude dimension (height dimension).
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(a) (b)

Figure 1.10: Binary representations of a temporal-dependent signal. (a) Bit-based pulse wave-

form. (b) Binary pattern image. Images from (Okawa et al.., 2019)

II.3 Emboli detection

The principles used to detect emboli are based on the two consensus of 1995 and 1998 (Basic
Identification Criteria of Doppler Microembolic Signals, 1995; Ringelstein et al.., 1998), as mentioned

in Section I.1.A.

First, before doing emboli detection, a 4
𝑡ℎ

order digital Butterworth high pass filter with a

cut-off frequency of 150 Hz (3 dB attenuation) is applied to the raw Doppler signal correspond-

ing to the recording. This allows to remove some artifacts coming from the movement of the

patient.

Second, emboli are detected through HITS, which correspond to high intensity signals of

brief duration, detected using the hits to blood ratio (HBR), measured in dB. The HBR can be

computed sequentially, as in (Guepie et al.., 2018). Let us denote a 𝑆 ∈ ℝ2×𝑁
a pre-processed

Doppler IQ signal of length 𝑁 , 𝑓𝑠 the sampling rate and, for all 𝑛 ∈ [1, 𝑁], 𝑆(𝑛) ∈ ℝ2
the sample

𝑛 of 𝑆. Likewise, we denote as 𝐵 ∈ ℝ2×𝑁
the signal corresponding to the blood flow, where

the first 𝑓𝑠 values are initialized using 𝑆 (∀𝑛 ∈ [1, 𝑓𝑠], 𝐵(𝑛) = 𝑆(𝑛)) and the following values are

iteratively computed. The average power, 𝑃(𝑛), of the signal at discrete time 𝑛 ∈ [ 𝑓𝑠 + 1, 𝑁] is

defined as follows:

𝑃(𝑛) = 1

𝑓𝑠
×
𝑓𝑠−1∑︁
𝑖=0

|𝐵(𝑖 + 𝑛 − 𝑓𝑠) |2

Note that, to compute 𝑃(𝑛) for all 𝑛 ∈ [ 𝑓𝑠 + 1, 𝑁], we only need the values 𝐵(0), ..., 𝐵(𝑛 − 1)
and not 𝐵(𝑛). The HBR at discrete time 𝑛 ∈ [ 𝑓𝑠 + 1, 𝑁] is then defined as follows:

𝐻𝐵𝑅(𝑛) = 10 × 𝑙𝑜𝑔10(
|𝑆(𝑛) |2
𝑃(𝑛) )

For 𝑛 ≥ 𝑓𝑠 + 1, the HBR is computed by computing 𝐵(𝑛) and 𝑃(𝑛) iteratively:

𝐵(𝑛) =
{
𝐵(𝑛 − 𝑓𝑠) if 𝐻𝐵𝑅(𝑛) ≥ ℎ
𝑆(𝑛) if 𝐻𝐵𝑅(𝑛) < ℎ

𝑃(𝑛) =
{
𝑃(𝑛 − 1) if 𝐻𝐵𝑅(𝑛 − 1) ≥ ℎ
𝑃(𝑛 − 1) + |𝑆 (𝑛−1) |2−|𝐵(𝑛−1− 𝑓𝑠 ) |2

𝑓𝑠
if 𝐻𝐵𝑅(𝑛 − 1) < ℎ
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where ℎ is the threshold used to detect HITS (ℎ > 3 dB). Then 𝐻𝐵𝑅(𝑛 + 1) can be computed,

and the process be restarted.

Moreover, all the detected HITS are not necessarily emboli, as some artifacts generated

during the recording can have similar features to emboli. To further remove evident artifacts,

other criteria are used based on the abovementioned consensuses:

• HBR larger than 3 dB. This allows to remove artifacts such as speckle noise. Atys Medical

recommends using an intensity threshold between 7 dB and 12 dB for their TCD-X Holter1;

• Duration smaller than 300 ms. This allows to remove an important number of voice

artifacts, as they tend to be longer;

• No symmetry with respect to the baseline in the time frequency domain (horizontal 0 Hz

(cm/s) value line). This allows to remove some voice artifacts as well as probe movement

artifacts.

Even though the emboli detection method used by Atys Medical allows removing an im-

portant number of artifacts, we include some of them on the different HITS datasets used in

this work, in order to create an independent system from ADMS for Atys Medical, which can

enhance artifacts rejection.

III Challenges

III.1 Medical challenges

Different medical challenges exist when it comes to cerebral emboli, its detection, and classifi-

cation with TCD devices.

First, the characterization of micro-embolic signals using TCD has not been largely studied

in the medical domain. All microembolic signals do not have the same TCD signature, therefore,

there may exist different subtypes of emboli (within the solid and gaseous type). These subtypes

of emboli may be characterized by the pathologies of the patients (carotid stenosis, AF, etc.),

their treatments (coagulants, shots, etc.), the recording conditions (ambulatory patient, surgical

intervention, diving, etc.), or the position in the cardiac cycle when the micro-embolic signal

occurs. This characterization is important and interesting from a medical point of view, as it

can help clinicians to better understand emboli and their origin, allowing a better prevention

and management of patients.

By the same token, one important challenge related to emboli characterization, is the origin

of the embolus. Indeed, based on the origin of the emboli, the treatment, and the care unit han-

dling the patient, may not be the same. For instance, patients with cerebral emboli originated in

the heart (e.g., AF or mitral annular calcification patients) are mainly treated by cardiovascular

units, whereas patients with emboli originated near the brain (e.g., atheromatous plaques in

cerebral arteries) are mainly treated by neurovascular units. Even though it is not possible

to accurately determine the origin of an embolus with the current TCD devices and emboli

detection methods, exploiting the whole long-duration TCD recording can guide clinicians to

determine their origin as mentioned in Section I.1.B.

Finally, another important medical challenge concerns the detection of gaseous emboli and

its distinction with respect to solid emboli. Indeed, current methods allowing to do this are

1In the official documentation of the TCD-X, the recommended thresholds are 9 dB to 15 dB. However, the

research and development engineers of Atys medical recommend 7 dB to 12 dB, which is more adapted for

pathologies such as carotid stenosis.
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based on non-portable TCD devices, often equipped with two probes allowing an emission

at two different frequencies, 2 MHz and 2.5 MHz (Russell and Brucher, 2002; Markus and

Punter, 2005), which facilitates classification between solid and gaseous emboli as the relative

intensity of both types of HITS will differ based on the insonation frequency (solid emboli

reflect more at higher frequencies, whereas gaseous emboli are stronger reflectors for lower

frequencies). Additionally, (Markus and Punter, 2005) showed that the proposed TCD device

and emboli detection method do not allow an accurate enough distinction between solid and

gaseous emboli to be usable in clinics. Moreover, current portable TCD devices do not allow any

distinction between solid and gaseous emboli. From a medical point of view this is important,

as the treatments are not the same for solid or gaseous emboli as seen in I.1.C. Additionally,

an accurate distinction between the two types of emboli will allow more clinical studies on

gaseous emboli to determine their consequences on public healthcare.

III.2 Scientific challenges

The main objective of this work is to develop novel deep learning (DL) techniques to improve

the analysis (detection/classification) of cerebral emboli monitored by portable TCD devices.

Therefore, a portable TCD signals database is necessary to train the different models, allowing

their study. However, there is no publicly available database of portable TCD signals. Therefore,

in order to develop DL models, these databases need to be created.

Moreover, several challenges arise when creating a portable TCD database. First, annotation

of HITS is not an easy task, and even clinicians or experts can face difficulties classifying some

HITS between solid embolus, gaseous embolus and artifacts. This creates noisy labels, as HITS

can be wrongly labeled. Second, with portable TCD long duration recordings, an important

amount of HITS can be generated (it can go to more than 10 000 HITS per patient for some

specific procedures such as heart surgery, but on average there are 14 HITS per minute), so it

becomes nearly impossible to manually label all the data. Third, classes are highly imbalanced,

as solid emboli are rare events (while being the riskiest ones for the patient), and gaseous emboli

and artifacts are more common. All these difficulties associated to the creation and annotation

of a portable TCD signals dataset can be observed in Figure 1.11, where we projected 68

491 HITS on a 2D plane, using a dimensionality reduction technique (t-distributed stochastic

neighbor embedding, t-SNE (Maaten and Hinton, 2008)). In this figure, we can note that we

have a very important number of HITS, with the vast majority of the HITS unlabeled (purple

points), whereas the solid emboli (teal points) are a minority compared to artifacts (red points)

and gaseous emboli (yellow points).

Furthermore, as we work with medical signals, we have a temporal aspect that we need

to take into account. Indeed, inside a signal, there is a temporal dependency between the

different elements composing it. This means that, for all 𝑖, 𝑗 ∈ [1, 𝑁], such that 𝑖 < 𝑗 , 𝑆(𝑖)
may have an influence on 𝑆( 𝑗). Therefore, the different models that are used to study these

signals have to take this temporal dependency into account. Moreover, as we are working with

signals representing a physical phenomenon evolving over time, the question of which type

of representation of this signal is optimal for a specific task raises. As we saw in Section II.1,

a same signal can be represented under different forms, which can be complementary. Based

on the used representation, the used model is not necessarily the same. For instance, for

raw signals, 1D convolutional neural networks (CNNs), long short term memory (LSTM)

networks, or transformers models can be used, whereas for time-frequency representations

can be interpreted as images, thus 2D CNNs can be used. What is more, contrary to image

classification, in DL there is not proven global type of model able to achieve good performances

for different types of signals with different characteristics, contrary to images, where 2D CNNs

achieve globally great performances in different tasks. This is related to the fact that temporal
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Figure 1.11: 2D projection of 68 491 HITS, using t-distributed stochastic neighbor embedding.

Over all the available HITS, only 8 685 ( 13%) are labeled. Moreover, the dataset is highly

imbalanced, as the solid emboli represent less than 10% of all the labeledHITS.

dependent signals have additional characteristics to images: long sequences, multiple channels,

different representations, etc. This point will be further discussed in Chapter 2.

Finally, one important remaining scientific and industrial challenge (as we work in collab-

oration with a company) is the memory, energy, time, and computation resources needed by

the developed models. Indeed, it is well known that deep learning models tend to be over-

parametrized, often having from hundreds of thousands to hundreds of millions of parameters,

requiring important memory resources, as well as important computation resources and high

levels of energy consumption (Lane, Bhattacharya, Georgiev, Forlivesi and Kawsar, 2015). This

makes their use in embedded systems and clinical practice difficult, as they have often limited

resources. In the particular case of TCD portable devices, it is important to develop lite models

requiring the least amount of memory and computation resources possible. If this is not taken

into account, the developed models can be difficult to use in practical applications. By the

same token, related to the used computation resources, DL models can have large inferences

times per samples, which can also limit their use in practice, not only for embedded devices.

Indeed, one patient undergoing a TCD examination can have thousands of HITS, which need

to be analyzed in a few minutes to be usable by clinicians.

IV Conclusion

In this chapter, we have provided an overview of the medical and scientific context of cerebral

emboli classification using transcranial Doppler ultrasonography.

From a medical point of view, emboli are solid or gaseous particles that can circulate in

the cerebral blood flow and create stroke or transient ischemic attacks by blocking an artery

supplying blood to the brain. Different sources can generate cerebral emboli, such as patholo-

gies, medical procedures, or external sources. Transcranial Doppler (TCD) ultrasonography

is the only relatively cheap and noninvasive technique allowing a real-time monitoring of the

cerebral blood flow. Thus, it is one of the most used and promising techniques for cerebral

emboli detection and classification.
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Furthermore, from a scientific point of view, the data acquired by TCD devices are repre-

sented as signals with a temporal dependency. Therefore, this temporal dependency has to be

taken into account when studying cerebral emboli using TCD. What is more, it is important

to choose a good representation to study these signals, as the different representations do not

show the same information.

Finally, to make the developed models usable in practice, it is important to take into account

their memory and energy consumption footprint, as well as the needed computation resources

and inference times.

In the following chapter, we shall review the state-of-the-art related to the abovementioned

challenges.
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2 State-of-the-art

This chapter presents a brief overview about the different topics related to my work. First, in

Section I we focus on cerebral emboli detection and classification using TCD signals and three

families of techniques (signal processing, machine learning and deep learning). Afterwards,

in Section II we introduce semi-automatic data annotation methods allowing to label large

datasets, as well as noisy-labels resistant methods to perform classification with the obtained

datasets. Then, in Section III we explore some works on multi-feature signal classification,

allowing to take advantage of the complementarity of different representations of a signal.

Finally, in Section IV we overview some model compression methods allowing to reduce the

memory, computation, and energy resources of different deep learning (DL) models.
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I Cerebral emboli detection and classification

I.1 Signal processing and machine learning

I.1.A General overview

Cerebral emboli detection and classification using TCD ultrasonography have been largely

studied since the 1990s. Different approaches have been taken to do this, based on different

fields: signal processing, machine learning and deep learning.

The first approaches, which are still being used nowadays, are mainly based on signal

processing handcrafted features such as Fourier or wavelet transforms (Markus and Punter,

2005; Keunen et al.., 2008; Uğuz, 2012; Gencer, Bilgin and Aydin, 2013; Serbes and Aydin, 2014;

Karahoca and Tunga, 2015; Sombune, Phienphanich, Muengtaweepongsa, Ruamthanthong

and Tantibundhit, 2016; Sombune, Phienphanich, Phuechpanpaisal, Muengtaweepongsa, Ru-

amthanthong, Chazal and Tantibundhit, 2018), and mainly focus on artifact vs. emboli clas-

sification, without distinction between solid and gaseous emboli. (Keunen et al.., 2008) pro-

posed to extract different feature from the Doppler signal to then pass them through a neural

network. These features are mainly based on statistical characteristics of the signal and its

zero-crossings (mean duration, intensity, and ZCI, maximum intensity, minimum ZCI, number

of zero-crossings). (Gencer et al.., 2013) showed that features extracted from well-designed

time-frequency representations (TFRs) can help cerebral emboli detection. They suggest using

the fractional Fourier transform (FrTF), which can be seen as a generalization of the classical

Fourier transform, to extract handcrafted features such as the HBR, the quotient between the

maximum value and the mean value of the FrTF, etc. (Serbes and Aydin, 2014) proposed to

improve the HBR computation by using modified dual-tree complex wavelet transform, which

can denoise Doppler signal and has the advantage of being relatively invariant against shifting.

This is an important step as the HBR is used in most of the cerebral emboli detection and classi-

fication methods based on TCD signals. (Karahoca and Tunga, 2015) proposed to classify HITS

between embolus (no distinction between solid and gaseous), artifacts, and Doppler speckle,

using a polynomial based algorithm. (Sombune et al.., 2016, 2018) introduced a cerebral em-

boli detection and classification system (no distinction between solid and gaseous) based on

adaptive gain control (AGC), adaptive wavelet packet transform, and adaptive neuro-fuzzy

classifier. At last, (Markus and Punter, 2005) focused on solid vs. gaseous emboli classification,

thanks to a dual frequency TCD capable of insonating at two ultrasound frequencies (2 MHz

and 2.5 MHz). As a result of this, they obtain two signals, one for each frequency, so they can

compute the difference between intensity increases (with respect to the background signal) of

these two signals. This value is then used to detect and classify possible and definite solid and

gaseous emboli.

I.1.B Related work

More recently, different machine learning approaches have been combined with signal process-

ing approaches, to enhance the detection and classification of cerebral emboli using portable

TCD data (Imaduddin, LaRovere, Kussman and Heldt, 2019; Guépié, Sciolla, Millioz, Almar

and Delachartre, 2017; Guepie et al.., 2018). Moreover, to our knowledge, only the last two

works (Guépié et al.., 2017; Guepie et al.., 2018) used data acquired with portable TCD devices,

which are more prone to artifacts. First, (Imaduddin et al.., 2019), proposed a time-frequency

based approach for cerebral emboli detection and characterization using TCD data. To start,

a weighted-frequency Fourier linear combiner estimates the power of the Doppler signal and

classifies it as a HITS if a certain adaptive threshold is exceeded (this threshold depends on
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the power variance with respect to the baseline, and it is not the same as the HBR). Then, the

obtained HITS is separated to obtain individual potential embolic signals, as often they can

superimpose. This is done by extracting a TFR from the signal (wavelet transform), process-

ing the TFR as an image to do morphological segmentation, and then going back to the time

domain. Finally, from each individual embolic signal, different time and spectral features are

extracted, and then passed through a logistic regression classifier.

The method proposed in (Guépié et al.., 2017) does HITS detection and classification be-

tween artifact and embolus, based on signal processing (detection, pre-processing and feature

extraction) and machine learning (classification) techniques. Compared to previous methods

for HITS detection and classification (Gencer et al.., 2013; Serbes and Aydin, 2014), the proposed

method is non-parametric as no hypothesis are made about the probability distribution of the

background noise. First, HITS are detected using a TFR of the initial quadrature Doppler

signal and a two hypothesis statistical test where a pixel value of the TFR is considered as

the realization of a random variable. Then, the average blood-flow magnitude is estimated

using spectral kurtosis, in order to get rid of parts of the Doppler signal/TFR which do not

contain a HITS. Afterwards, evident artifacts are removed (symmetric, small magnitude, small

surface, small number of pixels), based on the average magnitude of the HITS and bounding

boxes around them. Finally, a classification of the remaining HITS is done using a support

vector machine (SVM), taking as input the ratio between the height and the width of the HITS

bounding boxes, and the magnitude of the HITS. This method showed impressive results,

allowing to reduce the number of artifacts predicted as emboli by 92% between the first and

last steps. Moreover, the same team introduced another approach in (Guepie et al.., 2018), also

based in signal processing and machine learning, for automatic sequential HITS detection and

classification. First, sequential calculation of the HITS-to-blood ratio (HBR) on the quadrature

Doppler signal is done as specified in Chapter 1: this HBR is used to select potential HITS

based on a prdefined threshold, fixed to 3 dB using the Elbow method. Then a log-magnitude

spectrogram is computed, and regions of interest (ROIs) are automatically extracted. These

ROIs are computed only on the positive frequencies and are nonsymmetrical. Once this is

done, handcrafted features are extracted using the HITS and the selected ROI (see Figure 2.1).

Finally, these features are fed to a machine learning classifier (SVM, naive Bayes and decision

tree). This approach was able to divide the number of artifacts detected as emboli by a factor of

more than 10 compared to previous methods (Karahoca and Tunga, 2015; Guépié et al.., 2017),

passing from 6 detected artifacts per minute in (Guépié et al.., 2017) to 0.6, for the same amount

of detected emboli.

I.2 Deep learning

With the raising of deep learning techniques in the past years, these techniques have also been

explored for TCD signals classification (Seera, Lim, Tan and Liew, 2017; Sombune et al.., 2017;

Tafsast, Ferroudji, Hadjili, Bouakaz and Benoudjit, 2018).

I.2.A General overview

The work done in (Seera et al.., 2017) proposed to use recurrent neural networks (RNNs)

and ensemble methods to classify TCD signals between two classes: (1) signals from patients

with intracranial arterial stenosis, and (2) signals from patients without intracranial arterial

stenosis. To do this, they acquired seven TCD signals coming from different sources: anterior

cerebral artery, basilar artery, internal carotid artery, middle cerebral artery, ophthalmic artery,

intracranial vertebral artery, and carotid siphon. Then, they extracted five features per signal

(depth, upper and lower mean flow velocities, and the upper and lower pulsatility index), and
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Figure 2.1: HITS detection and classification pipeline proposed in (Guepie et al.., 2018). The

used features are not learned, but manually designed.

passed them thought a RNN. This work showed the interest of deep learning for TCD signal

classification, but it is out of the scope of our work as different TCD signals (not only the one

of the MCA) were used and no emboli detection nor classification was done.

I.2.B Related work

What is more, (Sombune et al.., 2017) suggest to use convolutional neural networks (CNNs) to

classify TCD signals between three classes: (1) embolic signals ES (no distinction between solid

and gaseous), (2) artifacts, and (3) normal interval (NI) signal. To do this, the authors proposed

to used AGC to detect the HITS, and then compute their spectrogram. Afterwards, the obtained

spectrograms were transformed into grayscale images to be fed to the proposed CNN. The CNN

architecture was relatively simple, composed of two 5 × 5 convolutional layers with 48 filters,

followed by a 2 × 2 max-pooling layer for feature extraction, and two fully-connected (FC)

layers for classification (see Figure 2.2). However, their work did not outperform their previous

ANFIS-based method, which was justified by the small number of samples for training and the

simple used architecture due to resource limitations. Additionally, this paper did not take into

account gaseous emboli for the classification task. To our knowledge, the only work doing this

is the work of (Tafsast et al.., 2018), but this was done with in vitro TCD acquired data1.

We can see that, even though much effort has been dedicated to improve cerebral emboli

detection and classification with TCD data, most of the techniques are based on classical sig-

nal processing and machine learning approaches which require time-consuming handcrafted

features. Moreover, most of these works do not use portable TCD data, and none does in vivo
distinction between solid and gaseous emboli. Exploring more complex deep learning methods

could help do a better emboli discrimination with automatic feature extraction, as well as allow

1The acquired gaseous emboli were obtained with a phantom under controlled conditions, which is not the case

with in vivo data.
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Figure 2.2: A CNN-based method used for cerebral emboli classification in (Sombune et al..,
2017). ES stands for embolic signal, Art. for artifact, and NI for normal interval.

and improve solid vs. gaseous emboli classification.

II Data annotation

Data acquisition and annotation is one of the main difficulties in several deep learning tasks.

This is particularly true in the medical domain, where annotation is costly and difficult to

perform. However, these steps are essential in the development of deep learning methods and

models as they are often data-hungry, needing important amounts of samples to achieve good

generalization.

II.1 Representation learning and semi-automatic data annotation

II.1.A General overview

Different semi-supervised learning methods have tried to tackle the data annotation problem

based on the structure assumption (Chapelle, Scholkopf and Zien, 2009), which states that sam-

ples that are in the same structure (cluster or manifold), are likely to have the same label.

Therefore, techniques such as self-training (Rosenberg, Hebert and Schneiderman, 2005), gen-

erative models (Kingma, Rezende, Mohamed and Welling, 2014), or label propagation (Zhu

and Ghahramani, 2002; Weston, Ratle, Mobahi and Collobert, 2012; Benato, Telea and Falcao,

2018; Benato et al.., 2021), have been used for semi-automatic data annotation.

(Rosenberg et al.., 2005) iteratively annotate a dataset using a classification model that is

trained multiple times. In addition, at each iteration, the classifier is trained with the new

labeled dataset, composed of the originally labeled samples, plus the new ones annotated with

the classifier from the previous iteration. (Kingma et al.., 2014) used a different approach, where

the labels of the unlabeled samples are considered as latent variables which can be generated
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using a learned distribution, obtained through generative models. (Zhu and Ghahramani, 2002)

approach the problem differently by propagating the labels from the labeled samples to the

unlabeled ones, based on a K-nearest neighbor (KNN) strategy. This last method can be related

to Laplacian support vector machine (LapSVM) (Sindhwani, Niyogi and Belkin, 2005; Belkin,

Niyogi and Sindhwani, 2006) using the formalism of (Weston et al.., 2012). Let us suppose

that we have a dataset D = {(𝑋1, 𝑦1), ..., (𝑋𝐴, 𝑦𝐴), (𝑋𝐴+1, 𝑦𝐴+1), ..., (𝑋𝐴+𝑈 , 𝑦𝐴+𝑈)} composed of a

large number of unlabeled samples, U = {(𝑋𝐴+1, 𝑦𝐴+1), ..., (𝑋𝐴+𝑈 , 𝑦𝐴+𝑈)}, and a small number

of annotated samples, A = {(𝑋1, 𝑦1), ..., (𝑋𝐴, 𝑦𝐴)} (usually |A| << |U|, and 𝑦𝐴+1, ..., 𝑦𝐴+𝑈 are

unknown). Let us denote as𝑊 ∈ ℝ(𝐴+𝑈)×(𝐴+𝑈) an adjacency matrix where, for all 𝑖, 𝑗 ∈ [1, 𝐴+𝑈],
𝑊𝑖 𝑗 measures the similarity (or dissimilarity) of sample 𝑋𝑖 with sample 𝑋𝑗 . We aim to find a

function 𝑓 , mapping each point 𝑋 ∈ D to an embedding 𝑓 (𝑋), which usually is a predicted

label. We can then compare label propagation and LapSVM by the loss function to optimize:

min

𝑓
=

𝐴∑︁
𝑖=1

| | 𝑓 (𝑋𝑖) − 𝑦𝑖 | |2 + 𝜆𝐼 | | 𝑓 | |2𝐼 (Label propagation) (2.1)

min

𝑓
=

𝐴∑︁
𝑖=1

𝐹 (𝑦𝑖 , 𝑓 (𝑋𝑖)) + 𝜆𝐴𝑚 | | 𝑓 | |2𝐴𝑚 + 𝜆𝐼 | | 𝑓 | |
2

𝐼 (LapSVM) (2.2)

where:

• 𝐹 is a given loss function, often the Hinge loss 𝐻 (𝑦𝑖 , 𝑓 (𝑋𝑖)) = 𝑚𝑎𝑥(0, 1− 𝑦𝑖 × 𝑓 (𝑋𝑖)) or the

squared error 𝑆𝐸 (𝑦𝑖 , 𝑓 (𝑋𝑖)) = (𝑦𝑖 − 𝑓 (𝑋𝑖))2.

• | | 𝑓 | |2
𝐼
=

∑𝐴+𝑈
𝑖, 𝑗=1

𝑤𝑖 𝑗 × || 𝑓 (𝑋𝑖) − 𝑓 (𝑋𝑗) | |2 is the intrinsic regularizer and 𝜆𝐼 its associated

hyperparameter.

• | | 𝑓 | |2
𝐴𝑚

is the ambient regularizer and 𝜆𝐴𝑚 its associated hyperparameter.

We can note in the previous formalism that both methods are similar as they both exploit the

similarity between samples, whether they are labeled or not, thanks to the intrinsic regularizer.

II.1.B Related work

More recent work has mainly focused on deep learning methods for semi-automatic data anno-

tation through label propagation (Benato et al.., 2018, 2021). These works, based on represen-

tation learning techniques, use auto-encoders (AE) to extract features from high-dimensional

data, as they have been proven effective for this task (Doersch, Gupta and Efros, 2015; Chen,

Shi, Zhang, Wu and Guizani, 2017; Zhang, Isola, Efros, Shechtman and Wang, 2018). The core

idea of these works is the following (see Figure 2.3). The first step consists in extracting features

of the data, using all the available samples from D. Even though this step allows reducing

the dimensionality of the original samples, the dimensionality remains too important to be

easily usable by human annotators. Therefore, an additional step of dimensionality reduction

is used, based on t-distributed stochastic neighbor embedding (t-SNE) (Maaten and Hinton,

2008), allowing to project the extracted features (previous step), into a 2D space. This space

is then used for semi-automatic annotation through label propagation. Indeed, the user can

select the regions to propagate the labels from the labeled to the unlabeled samples, or di-

rectly annotate some samples. Moreover, in this last step, automatic label propagation is done

using two different methods: LapSVM or semi-supervised optimum-path forest (OPF-semi)

(Amorim, Falcão and Carvalho, 2014). OPF-semi is selected to compute the confidence values

defining if a sample should be manually labeled or not. This confidence score is computed as
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Figure 2.3: Semi-automatic data annotation method proposed by (Benato et al.., 2021)

follows. Let us suppose that we have a cost function L and that all the 2D samples are mapped

as nodes in a graph 𝐺 = (𝑉, 𝐸), where 𝑉 is the set of nodes and 𝐸 the set of edges. A node

(sample) 𝑠 ∈ 𝑉 is considered as conquered (labeled) by the root 𝑅 ∈ 𝑉 (a labeled sample) if it

leads to a minimum cost L(𝑠, 𝑅) (i.e. ∀𝑃 ∈ 𝑉,L(𝑠, 𝑅) ≤ L(𝑠, 𝑃)). Therefore, if we denote as

𝑅1, 𝑅2 ∈ 𝑉 two roots such that ∀𝑃 ∈ 𝑉,L(𝑠, 𝑅1) ≤ L(𝑠, 𝑅2) ≤ L(𝑠, 𝑃), then the confidence score,

𝑐(𝑠) ∈ [0, 1], is defined as follows

𝑐(𝑠) = 1 − L(𝑠, 𝑅1)
L(𝑠, 𝑅1) + L(𝑠, 𝑅2)

(2.3)

where 𝑐(𝑠) = 0 indicates a low confidence in the annotation, whereas 𝑐(𝑠) = 1 indicates high

confidence. In that way, if the cost L(𝑠, 𝑅2) is larger than L(𝑠, 𝑅1) (i.e. the second optimal path

to 𝑠 is much longer than the optimal path), then the sample is confidently labeled (𝑐(𝑠) ≈ 1)1.

Then, using a pre-defined threshold, we can define high or low confidence samples. Based on

this, if the sample is of high confidence, it is automatically annotated, if not, it can be annotated

by an expert.

However, the approach of (Benato et al.., 2021) has two main limitations: (1) it does not take

into account the quality of the embedding space used for semi-automatic data annotation, and

(2) for the classification task, it does not take into account the noise introduced in the labels

due to automatic annotation errors.

II.2 Dimensionality reduction quality evaluation

II.2.A Related work

The first limitation of the work in (Benato et al.., 2021) can be tackled using metrics allowing to

measure the global and local quality of the projection of a high dimensional space into a lower

1On the contrary, if the cost L(𝑠, 𝑅
2
) is relatively close to L(𝑠, 𝑅

1
) (i.e. the second optimal path to 𝑠 has a similar

length than the optimal path), then the sample is labeled with low confidence (𝑐(𝑠) ≈ 0).
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Figure 2.4: Illustration of how ranks are defined in the co-ranking framework of (Lueks et al..,
2011). In this example, the rank 𝑅𝑖 𝑗 of sample 𝑖 with respect to sample 𝑗 is equal to 5 as there

are five neighbors in the closed ball 𝐵𝑟 (𝜂𝑖) of center on 𝜂𝑖 and of radius 𝑟 = 𝐷𝑖 𝑗 .

dimensional one (Lueks et al.., 2011). These metrics are often based on the co-ranking matrix,

which translates the preservation of the samples’ neighborhoods when the dimensionality

reduction (DR) is done. We are going to build on (Lueks et al.., 2011) to introduce the co-

ranking framework.

Suppose that we have a set of high-dimensional samples 𝐻 = {𝜂1, 𝜂2, ..., 𝜂𝑁 } with for all 𝑖 ∈
[1, 𝑁], 𝜂𝑖 ∈ ℝ𝑀 , and a lower dimensional representation set Λ = {𝜆𝑖 , 𝑖 ∈ [1, 𝑁], 𝜆𝑖 = 𝑓 (𝜂𝑖) ∈ ℝ𝑚}
obtained by applying a DR mapping 𝑓 : ℝ𝑀 → ℝ𝑚 (𝑚 << 𝑀). Let us denote for all 𝑖, 𝑗 ∈ [1, 𝑁],
𝐷𝑖 𝑗 the distance between 𝜂𝑖 and 𝜂𝑗 , and 𝑑𝑖 𝑗 the distance between 𝜆𝑖 and 𝜆𝑗 . We can now define

the rank 𝑅𝑖 𝑗 of sample 𝜂𝑗 with respect to sample 𝜂𝑖 as follows:

∀𝑖, 𝑗 ∈ [1, 𝑁], 𝑅𝑖 𝑗 = |{𝜂𝑘 , 𝐷𝑖𝑘 ≤ 𝐷𝑖 𝑗 and 𝑘 ∈ [1, 𝑁]\ 𝑗}| (2.4)

In other terms, 𝑅𝑖 𝑗 denotes the number of samples that are closer to 𝜂𝑖 than 𝜂𝑗 (i.e. number of

samples within the closed ball 𝐵𝑟 (𝜂𝑖) of center 𝜂𝑖 and of radius 𝑟 = 𝐷𝑖 𝑗 , see Figure 2.4). We

denote for all 𝑖, 𝑗 ∈ [1, 𝑁], 𝑟𝑖 𝑗 the rank of sample 𝜆𝑗 with respect to sample 𝜆𝑖 (in the lower

dimensional space)1. We can now define the co-ranking matrix 𝑄 ∈ ℝ(𝑁−1)×(𝑁−1)
, where each

element 𝑄𝑖 𝑗 corresponds to the number of points that have a rank of 𝑖 in 𝐻 and a rank of 𝑗 in

Λ. More formally:

∀𝑖, 𝑗 ∈ [1, 𝑁 − 1], 𝑄𝑖 𝑗 = |{(𝑛, 𝑝), 𝑅𝑛𝑝 = 𝑖 and 𝑟𝑛𝑝 = 𝑗}| (2.5)

This co-ranking matrix gives a general overview about the neighborhood errors made by 𝑓

when reducing the dimension of 𝐻:

• Ideally, if all the neighborhoods of 𝐻 were preserved by 𝑓 when obtaining Λ, then 𝑄 is a

diagonal matrix;

• If 𝑖 < 𝑗 , then we have an extrusion as for some samples the rank increased when applying

𝑓 2;

1It is important to note that the ranks are not symmetric as, for instance, the rank of 𝜂𝑗 with respect to 𝜂𝑖 can be

1 but the rank of 𝜂𝑖 with respect to 𝜂𝑗 can be greater than 1. This is true in the high and low dimensional spaces.

2This means that, for some samples in 𝐻, some of its neighbors got further away from them in Λ, because some

other samples got closer in Λ.
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Figure 2.5: Illustration of the local quality metrics on the Swiss roll benchmark dataset from

(Lueks et al.., 2011). (a) Original space in ℝ3
. (b) Unrolled embedded 2D space obtained by

t-SNE. The points in (b) are colored by local quality. We can notice that the points that were

in the center of the Swiss roll in ℝ3
are the lowest local quality points in ℝ2

, as those are the

points where the neighborhood changed the most.

• If 𝑖 > 𝑗 , then we have an intrusion, as for some samples the rank decreased when applying

𝑓 1.

Moreover, using this co-ranking matrix (through the ranks), we can define two metrics, one

global𝑄𝐺 and one local𝑄𝑖
𝐿

for 𝑖 ∈ [1, 𝑁], measuring how well the neighborhood of the samples

was preserved during the projection by 𝑓 :

𝑄𝐺 (𝑘𝑠, 𝑘𝑡 ) =
1

𝑘𝑠 × 𝑁
×

𝑁∑︁
𝑖, 𝑗=1

𝜇𝑡 (𝑅𝑖 𝑗 , 𝑟𝑖 𝑗 , 𝑘𝑡 ) × 𝜇𝑠 (𝑅𝑖 𝑗 , 𝑟𝑖 𝑗 , 𝑘𝑠) (2.6)

𝑄𝑖𝐿 (𝑘𝑠, 𝑘𝑡 ) =
1

2 × 𝑘𝑠 × 𝑁
×
𝑁∑︁
𝑗=1

(𝜇𝑡 (𝑅𝑖 𝑗 , 𝑟𝑖 𝑗 , 𝑘𝑡 )×𝜇𝑠 (𝑅𝑖 𝑗 , 𝑟𝑖 𝑗 , 𝑘𝑠)+𝜇𝑡 (𝑅𝑗𝑖 , 𝑟𝑗𝑖 , 𝑘𝑡 )×𝜇𝑠 (𝑅𝑗𝑖 , 𝑟𝑗𝑖 , 𝑘𝑠)) (2.7)

where 𝜇𝑡 and 𝜇𝑠 are two functions indicating the rank error tolerance (size of the tolerated rank

errors) and rank significance (rank errors to be considered), respectively, and 𝑘𝑡 and 𝑘𝑠 are two

hyperparameters of these functions2. These functions are defined for all 𝑖, 𝑗 ∈ [1, 𝑁] as follows:

𝜇𝑡 (𝑅𝑖 𝑗 , 𝑟𝑖 𝑗 , 𝑘𝑡 ) =
{

1 if |𝑅𝑖 𝑗 − 𝑟𝑖 𝑗 | ≤ 𝑘𝑡
0 else

(2.8)

𝜇𝑠 (𝑅𝑖 𝑗 , 𝑟𝑖 𝑗 , 𝑘𝑠) =
{

1 if 𝑅𝑖 𝑗 ≤ 𝑘𝑠 or 𝑟𝑖 𝑗 ≤ 𝑘𝑠
0 else

(2.9)

Using these metrics, it is possible to evaluate whether the obtained 2D space and/or samples

can be used for label propagation (low local quality samples are not reliable, see Figure 2.5).

1This means that, for some samples in 𝐻, some of its neighbors got closer in Λ, by replacing neighbors that were

closer in 𝐻.

2The influence of 𝑘𝑡 and 𝑘𝑠 will be studied in Chapter 3.
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II.3 Working with noisy-labels

II.3.A General overview

The second limitation of (Benato et al.., 2021) can be handled using robust methods against

noisy labels. Different approaches exist allowing to train deep learning classification models

with noisy-labels. We are going to build on (Song, Kim, Park, Shin and Lee, 2022) to do a quick

overview of the different concepts and approaches.

First, a set of labels is considered as noisy if we are not certain that they are correct (i.e.

some noise could be present in the labels). The typical approach for modeling noise in labels

makes the assumption that the noise is independent of the data features when the true label

is given. Formally, we can define a label transition matrix 𝑇 where 𝑇𝑖 𝑗 := 𝑝( 𝑦̃ = 𝑗 |𝑦 = 𝑖) is the

probability that a true label 𝑦 = 𝑖 is corrupted to become a noisy label 𝑦̃ = 𝑗 . From this, we can

define two types of noise:

• Symmetric or uniform: A true label can be corrupted to another label with the same

probability. If we have a noise rate 𝜁 ∈ [0, 1] and a set of labels C = [1, ..., 𝐶], then

∀𝑖, 𝑗 ∈ [1, 𝐶]𝑇𝑖 𝑗 = 𝑝( 𝑦̃ = 𝑗 |𝑦 = 𝑖) =
{

1 − 𝜁 if 𝑖 = 𝑗
𝜁

𝐶−1
otherwise

• Asymmetric or label-dependent: A certain label has a higher probability of being corrupted

to some labels than to others. In other words, there exists three different labels 𝑖, 𝑗 and 𝑘

such that 𝑇𝑖 𝑗 > 𝑇𝑖𝑘 . In our application, we will have to model the label noise using this

type of noise, since solid emboli are more likely to be mislabeled into gaseous emboli

than artifacts.

In the following paragraphs we present different approaches that can be used to handle

noisy-labels: robust architectures, robust regularization, loss adjustment, sample selection,

meta-learning, semi-supervised learning, and robust loss functions.

Robust architectures: The main idea is to model the label transition matrix of a dataset using

the architecture of a neural network (NN). The two main methods are: noise adaptation layer

(Goldberger and Ben-Reuven, 2017) and dedicated architectures (Xiao, Xia, Yang, Huang and

Wang, 2015). The former adds a layer in order to mimic the noise process of the labels, whereas

the latter uses dedicated architectures to learn the label transition matrix, for instance, using

two networks, one to predict the noise type (e.g., noise free, random noise, etc.) and another

one to model the label transition matrix.

Robust regularization: Regularization techniques are known to be simple and efficient ap-

proaches to avoid overfitting. Some classical regularization methods such as data augmenta-

tion, L2 penalty, dropout, and batch normalization can be used to improve the classification

performances when working with noisy-labeled data. Other techniques such as adversarial

training (Goodfellow, Shlens and Szegedy, 2015), label smoothing (Pereyra, Tucker, Chorowski,

Kaiser and Hinton, 2017) or mixup (Zhang, Cisse, Dauphin and Lopez-Paz, 2018) have been

introduced to enhance the training process with noisy-labels. Adversarial training (Goodfellow

et al.., 2015) gives to the model original inputs samples and perturbed input samples (without

perturbing the labels) during the training process in order to encourage the model to be resis-

tant to perturbations and therefore to eventual noise. Label smoothing (Pereyra et al.., 2017)

tries to estimate the effect of noisy-labels during training and then improves the generalization

capability of the model by avoiding the model to be confident on noisy training samples. Mixup
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(Zhang, Cisse, Dauphin and Lopez-Paz, 2018) encourages a linear behavior between training

samples by constructing a new training dataset composed of linear combinations of the original

noisy-training samples (both the samples themselves and the labels are used to construct the

new samples).

Loss adjustment: The idea is to reduce the negative influence of noisy labeled samples by

adjusting them before updating the weights of the model. There are three main categories:

loss correction (Patrini, Rozza, Menon, Nock and Qu, 2017), loss reweighting (Wang, Liu and

Tao, 2018), and label refurbishment (Reed, Lee, Anguelov, Szegedy, Erhan and Rabinovich,

2015). Loss correction tries to estimate the label transition matrix to correct the wrongly labeled

samples before the forward or backward passes. Loss reweighting assigns different weights

to different samples: greater weights are assigned to samples with correct labels and smaller

weights to samples that are potentially wrongly labeled. Thanks to this, the wrongly labeled

samples will have a little influence on the learning process of the model. Label refurbishment

adjusts the labels of the samples by creating new labels as a convex combination of the original

label and the predicted label by the model.

Sample selection: The main idea is to select clean data samples (i.e. with good labels) to

avoid introducing noise to the learning process. Because we want to exploit all the data that

we have, we did not investigate deeply this family of methods.

Meta-learning: Meta learning aims at creating models that can quickly adapt to different

tasks and that can learn some meta-parameters by themselves (Gaier and Ha, 2019). This can

be used for noisy-labels learning in different ways. First, fast adaptation (Garcia, Carvalho and

Lorena, 2016) proposes to create a model able to perform several tasks and adapt quickly to

make it robust against wrongly labeled samples. Second, learning to update (Li, Yang, Song,

Cao, Luo and Li, 2017) learns the loss adjustment rule to lower the negative effect of the wrongly

labeled samples during the learning process of the model.

II.3.B Related work

Robust loss functions: In this work we mainly focus on robust loss functions, as they do not

depend on the model architecture, can easily adapt to new datasets, do not need pre-training,

allow exploiting all the available samples, and do not need to know the noise rate nor a clean

validation set. The idea is to design loss functions that are robust to noise in the labels. We

define a loss function as noise-tolerant if a classifier trained on a noisy labeled dataset with it

has the same misclassification probability as a classifier trained on a clean dataset (i.e. with no

noise). More formally, if we have a dataset D = {(𝑋1, 𝑦1), ..., (𝑋𝐴, 𝑦𝐴)} composed of 𝐴 labeled

samples with 𝐶 classes, a loss function L is noise-tolerant under symmetric noise if (Ghosh,

Kumar and Sastry, 2017):

• The noise rate, 𝜁 , verifies: 𝜁 < 𝐶−1

𝐶
.

• L is symmetric: ∀𝑋 ∈ D,∀ 𝑓 ∈ F ,∑𝐶
𝑖=1
L( 𝑓 (𝑋,Θ), 𝑦 = 𝑖) = 𝑃, with F the space of functions

where we search for the model, Θ the parameters of the model 𝑓 , and 𝑃 ∈ ℝ a constant.

This can be extended to asymmetric noise by imposing that RL ( 𝑓 ∗) = 0 where 𝑓 ∗ is a global

minimizer of the risk RL , defined as follows:

∀ 𝑓 ∈ F ,RL ( 𝑓 ) = 𝔼D [L( 𝑓 (𝑥), 𝑦)]
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RL is the risk, and 𝑓 ∗ is a global risk minimizer of RL .

Furthermore, even though classical categorical cross entropy (CE) loss function has fast

convergence and high generalization capability, this function is not noise-tolerant. That is why,

theoretically, other loss functions, such as Mean Absolute Error (MAE) (Ghosh et al.., 2017),

have better generalization capabilities when working with noisy labels. However, the main

inconvenient of MAE is that it has slow convergence and their performances drop when using

complicated data. Therefore, other close to noise-tolerant loss functions were proposed such as

generalized cross entropy (GCE) (Zhang and Sabuncu, 2018) which combines the advantages

of both CE and MAE, and symmetrical cross entropy (SymCE) (Wang, Ma, Chen, Luo, Yi and

Bailey, 2019) which combines a noise-tolerant term (the reverse cross entropy Loss) with CE.

Formally, if we denote as 𝑓 ∈ F the classifier, 𝑦 the true one-hot encoded label of a sample

𝑋 ∈ D, and 𝐻 the cross-entropy, the GCE and SymCE loss functions are defined as follows:

L𝐺𝐶𝐸 ( 𝑓 (𝑋), 𝑦) =
𝐾∑︁
𝑘=1

𝑦𝑘 − 𝑓𝑘 (𝑋)𝑞
𝑞

(2.10)

L𝑆𝑦𝑚𝐶𝐸 ( 𝑓 (𝑋), 𝑦) = 𝛼×𝐻 ( 𝑓 (𝑋), 𝑦)+𝛽×𝐻 (𝑦, 𝑓 (𝑋)) = −
𝐾∑︁
𝑘=1

(𝛼× 𝑓 (𝑋)𝑘×𝑙𝑜𝑔(𝑦𝑘)+𝛽×𝑦𝑘×𝑙𝑜𝑔( 𝑓 (𝑋)𝑘))

(2.11)

where 𝑦𝑘 and 𝑓𝑘 (𝑋) are the 𝑘 𝑡ℎ components of 𝑦 and 𝑓 (𝑋), and 𝑞, 𝛼, 𝛽 are hyperparameters. For

GCE, the hyperparameter 𝑞 allows controlling the noise tolerance and the convergence speed:

• when 𝑞 → 1, we obtain (ignoring a multiplication factor) the MAE loss function, which

is known to be noise tolerant but with slow convergence speed,

• when 𝑞 → 0, we arrive at the CE loss function, which is known to have fast convergence

speed but which is not noise tolerant.

III Multi-feature signal classification

In the past years, several works have focused on image classification using deep learning

methods such as deep neural networks (DNNs) and convolutional neural networks (CNN)

(Rawat and Wang, 2017). Nevertheless, fewer works have focused on signals with a temporal

dependence, such as audio signals or sensors signals. Yet, temporal dependency is particularly

interesting in the medical field as different devices such as TCD ultrasound, electrocardiogram

(ECG) or electroencephalogram (EEG), produce signals with a rich temporal dimension.

III.1 Image classification

In this section, we focus on 2D images of the form 𝐼 ∈ ℝ𝐻×𝑊×𝐷 , having a height of 𝐻, a width

of𝑊 , and 𝐷 channels. Several of the notions seen here can be extended to 3D images, but they

are out of the scope of this work.

CNNs are convolution-based models capable of automatically extracting features from the

input data. This is an important advantage as it avoids the time-consuming task of manual

feature design that is done to fed classical machine learning techniques such as SVMs, decision

trees, naive Bayes, etc. We are going to build on (Rawat and Wang, 2017) to explain the general

principle of CNNs.

Usually, CNNs are composed of two sub-networks: an encoder and a classifier (see Fig-

ure 2.6.a). The former is composed of convolutional blocks, consisting often of convolutional
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Figure 2.6: Convolutional neural networks overview. (a) General overview. (b) Receptive field

of convolutional layers. (c) Pooling layer principle.

layers followed by pooling layers helping to reduce dimensionality (see Figure 2.6.c), end-

ing with a (non-linear) activation function. The classifier is often composed of a multi-layer

perceptron (MLP), consisting in a sequence of fully-connected layers followed by non-linear

activation functions. Moreover, the main component of CNNs are the convolutional layers that

serve as feature extractors. These layers are composed of several convolutional filters that are

applied iteratively to the whole input, to give an output composed of several features maps

(each feature map is the output of a convolutional filter). Each feature map is composed of

neurons, which have a receptive field corresponding to the neighboring neurons in the previous

layer (see Figure 2.6.b). This receptive field is an important factor that has an influence on the

performances of the model because it defines the temporal or spatial context that we take into

account to extract features and solve the task. In audio signal processing terms, the receptive

field corresponds to the number of samples or spectra used to compute the prediction; when we

fix the CNN architecture, we fix the receptive field. In order to increase the receptive field, we

can increase the number of convolutional layers and/or the size of the convolutional kernels,

or we can use dilated convolutions (Yu and Koltun, 2016) which allows keeping a reasonable

number of parameters for the model.

Furthermore, several variants of CNNs have been proposed, achieving state-of-the-art per-

formances in image classification tasks, such as AlexNet (Gao, Zhang and Wang, 2019), VGG

(Simonyan and Zisserman, 2015), GoogLeNet with inception modules (Szegedy, Liu, Jia, Ser-

manet, Reed, Anguelov, Erhan, Vanhoucke and Rabinovich, 2015), or ResNet (He, Zhang, Ren

and Sun, 2016). What is more, recent works on signal processing have exploited CNN tech-

niques, specially for audio related tasks (Purwins, Li, Virtanen, Schlüter, Chang and Sainath,

2019), by applying 2D convolutions on TFRs (Park and Yoo, 2020; Yeh, Mahadeokar, Kal-

gaonkar, Wang, Le, Jain, Schubert, Fuegen and Seltzer, 2019; Okawa et al.., 2019; Pu, Panagakis

and Pantic, 2021; Sharan, Xiong and Berkovsky, 2021). (Park and Yoo, 2020) propose to do

environmental sound classification by creating a TFR from the raw signal using a learnable
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gammatone filterbank, and then passing it through a series of 2D convolutions. (Pu et al.., 2021)

did speaker identification and acoustic event recognition by feeding a 2D CNN and a DNN

with a carefully designed TFR. This TFR was created by applying 1D Morlet filters with learn-

able parameters to the raw signal, and then using 2D separable Morlet filters to obtain the final

embedding. (Yeh et al.., 2019) did speech recognition by applying 2D causal convolutions on a

log-mel spectrogram extracted from the raw signal and then feeding the result to a transformer

model. (Sharan et al.., 2021) combined different TFRs to increase the performance of a 2D CNN

model for sound scene and speech commands classification.

III.2 Signal classification

As seen in Section I, classical signal processing techniques can be combined with machine

learning models to do signal classification (Guepie et al.., 2018; Sombune et al.., 2017; Wasimud-

din, Elleithy, Abuzneid, Faezipour and Abuzaghleh, 2020). However, in this work we focus

on deep learning techniques, allowing automatic feature extraction from raw signals and/or

TFRs.

Furthermore, temporal-dependent signals have some distinctive characteristics with respect

to images. Indeed, these signals are often of large variable length, can have several channels

(more than three), but only one dimension (instead of two spatial dimensions for images).

Therefore, classical 2D CNN models cannot be easily used with this type of signals, unless

using TFRs. Therefore, other types of DL models have to be used, such as 1D CNNs, RNNs, or

transformers models (Purwins et al.., 2019).

III.2.A General overview

One-dimensional CNNs are a direct adaptation of classical 2D CNNs for image classification,

that can be easily used with temporal dependent-signals (Dieleman and Schrauwen, 2014; Lee,

Park, Kim and Nam, 2017; Nguyen, Nguyen, Zeng, Nguyen, Tran, Nguyen, Sridharan and

Fookes, 2021). (Dieleman and Schrauwen, 2014) compared raw signals and log-mel spectro-

grams for music automatic tagging, using a 1D CNN. Even though the TFR representation

achieves higher performances, the raw signal model was able to extract spectral features from

it. (Lee et al.., 2017) performed audio classification by creating a multilevel representation of the

raw signal that is fed to a 1D CNN with residual connections. (Nguyen et al.., 2021) carried out

multi-modal emotion recognition using two convolutional AE: a 2D convolutional AE to handle

face images, and a 1D convolutional AE to take care of the voice audio. Then, the embedded

spaces of both models were fused by concatenation, and the formed feature passed through

an LSTM. Into the bargain, these models can also be combined with RNNs or transformers

(Okawa et al.., 2019; Natarajan et al.., 2020; Che, Zhang, Zhu, Qu and Jin, 2021), to enhance their

performances.

What is more, the main advantage of RNNs with respect to CNNs is that they can take into

account more context (by an indefinitely large receptive field), thus doing a better modeling

of the temporal dependencies within the inputs. However, one of the main disadvantages of

RNNs is vanishing gradients during training. If we see in more detail the vanishing gradient

problem, it means that the weights of the first layers will be updated with a very small gradient,

so they won’t really be updated: the firsts layers have a forgetting problem. A way to solve this

gradient problem is to use Long Short Term Memory (LSTM) models which use different gates

and memory cells to keep the important information to remember over time, mitigating the

information flow. These type of models can be extended to model audio signals across time

and frequency domains by using local filters and recurrent connections to capture translational

invariance (F-LSTMs (Li, Mohamed, Zweig and Gong, 2015)) or by using local filters and
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Figure 2.7: Original transformer architecture from (Vaswani et al.., 2017).

recurrent connections to model spectral and temporal variations (TF-LSTMs (Sainath and Li,

2016)). Likewise, (Nishizaki and Makino, 2019) applied an LSTM model with FC layers to

the power spectrum of the raw signal to do sound classification and tennis swing motion

classification. As well, (Okawa et al.., 2019) created two binary representations of the raw

signals, by doing a binary encoding of its amplitudes. They fed these representations to

different models (2D CNN, LSTM and bidirectional gated recurrent unit) to tackle different

tasks (acoustic event detection, music classification, and speech classification). On top of that,

CNNs and RNNs can be combined to create convolutional recurrent neural networks (McFee

and Bello, 2017) where the output of a CNN is the input of an RNN. In convolutional RNN,

the CNN is used to extract features, whereas the RNN is used to combine the features over a

temporal context.

On the other hand, a newer family of models that has shown some success for signal

processing, is the transformer family. This architecture was originally designed for sequence-

to-sequence modelling in natural language processing (Vaswani, Shazeer, Parmar, Uszkoreit,

Jones, Gomez, Kaiser and Polosukhin, 2017), where the main idea is to transform an input se-

quence into an output sequence (for instance a phrase in English into a phrase in French). These

types of models are mainly based on attention mechanisms and do not require recurrence or

convolutional layers. These models have an encoder-decoder architecture and are autoregres-

sive i.e. the output is computed using only the previous generated outputs to create the next

output of the model. The main parts of the transformers are the following (see Figure 2.7):

• Encoder: The input sequence is given to an embedding layer that will transform this input

into an embedded representation. Then, to take into account the temporal information,

a positional encoding is added to these embeddings. Afterwards, we find a stack of

several identical layers, composed of a multi-head attention mechanism and a point-wise

fully-connected layer.

• Decoder: It aims at decoding the encoded representations obtained by the encoder into

the output sequence. In this work we focus on classification rather than sequence-to-

sequence modelling, thus this component is not going to be detailed.
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Figure 2.8: Multi-head attention mechanism based on the scaled dot product attention, where

L corresponds to the length of the input sequence.

• Multi-head attention (Figure 2.8): The idea is to exploit the information of different

representations sub-spaces at different positions. To do this, the input is copied three

times, to form a query Q, key K, and value V tensors. They are then projected into a new

space using linear layers, to obtain Q’, K’, and V’. The results are then passed through a

scaled dot product attention module, where the softmax of a scaled cosine similarity is

computed between Q’ and V’, to obtain an attention filter. Then, this filter is multiplied

by V’ to obtain the filtered value matrix by the attention weights.

• Position-wise Feed-Forward Networks: It is composed of two FC layers, each one followed

by a ReLU activation. They are applied to each position identically, so the weights are

shared within a layer.

• Embeddings and softmax: The inputs of the encoder and decoder (the targets/labels

fed to the decoder) are encoded into an embedded representation thanks to embedding

layers that are learned. Softmax is used to transform the output of the decoder into

probabilities.

• Positional Encoding (Figure 2.9): It is one of the key aspects of the transformers, as

it is used to compensate the lack of recurrence or convolutions while exploiting the

ordering/temporal information. The main idea is to add to the learned embeddings

some positional information. The positional embeddings can be learned or fixed, but in

the original paper they are fixed.

Transformers can achieve state-of-the-art performances in several tasks while being less

computationally expensive than some CNNs or RNNs models (Vaswani et al.., 2017), easier

to parallelize, and able to learn long-range dependencies between inputs or outputs. This is

particularly interesting for signal processing, where several works have applied this type of ar-

chitecture (Karita, Wang, Watanabe, Yoshimura, Zhang, Chen, Hayashi, Hori, Inaguma, Jiang,
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(a)

(b)

Figure 2.9: Positional encoding used on transformer architectures to compensate the lack of

convolutions, recurrence, and take into account the positional/temporal information. Thanks

to the proposed sinusoidal encoding, two different positions cannot have the same positional

encoding.
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Someki, Soplin and Yamamoto, 2019; Mohamed, Okhonko and Zettlemoyer, 2019; Yeh et al..,
2019; Boes and Van Hamme, 2019; Tjandra, Liu, Zhang, Zhang, Wang, Synnaeve, Nakamura

and Zweig, 2020; Che et al.., 2021; Gong, Chung and Glass, 2021; Akbari, Yuan, Qian, Chuang,

Chang, Cui and Gong, 2021; Ding, Jia, Miao and Cao, 2022).

(Karita et al.., 2019) compared different transformers and RNNs on 15 different audio speech

recognition datasets, reaching the conclusion that transformers are often superior to RNN

models, as they outperform them in 13 of the 15 datasets.

(Mohamed et al.., 2019) carried out speech recognition using a encoder-decoder transformer-

based model. From the one hand, the encoder of this model is composed of a 2D CNN feature

extractor taking as input a log-mel spectrogram, followed by a transformer block. On the other

hand, the decoder is composed of a 1D CNN taking as input the previously predicted word, a

multi-head attention layer taking as input the output of the encoder, and a transformer block

combing both previously generated outputs.

(Ding et al.., 2022) and (Gong et al.., 2021) proposed to apply a transformer model to a

TFR of the raw signal to do fault diagnosis of rolling bearings and audio classification. The

main difference between the two approaches is that the latter slices the TFR into patches before

projecting each patch into a 1D vector which is then used as input to the transformer, whereas

the former gives as input to the transformer all the frequency components of the TFR at a given

time.

III.2.B Related work

(Tjandra et al.., 2020) performed speech recognition based on a transformer model guided

by an iterated loss doing feature re-presentation (and not representation) at different depths

of the model. To accomplish this, they extract features from the raw signal using a mel

filterbank which are then fed to a sequence of transformer modules. At different levels, the

authors re-introduce input features of the model (feature re-presentation) and do intermediate

predictions using the learned features at that particular level (iterated loss). Let us denote asM
a DL classification model with 𝑙 layers, L a loss function to optimize using a datasetD = X×Y,

for all 𝑘 ∈ [1, 𝑙] 𝑂𝑘 the output of layer 𝑘 , and 𝑚𝑘 a classification model (for instance and MLP)

using𝑂𝑘 . M is trained with an iterated loss strategy by optimizing the following loss function:

∀𝑋 ∈ X,∀𝑦 ∈ Y,L𝐼𝑡 (M(𝑋), 𝑦) = L(M(𝑋), 𝑦) + 𝜆 ×
∑︁
𝑖∈𝑙𝑠𝑢𝑏

L(𝑚𝑖 (𝑂𝑖), 𝑦) (2.12)

where 𝑙𝑠𝑢𝑏 ⊂ {1, ..., 𝑙} is a subset of layers, and 𝜆 a hyperparameter. With this formulation,

we can see the feature re-presentation done at intermediate levels, thanks to the second term.

Even though this method is general, Tjanadra et al. applied it in the context of transformers to

do speech recognition.

(Natarajan et al.., 2020) proposed a wide and deep transformer-based model for ECG signal

classification. They mixed handcrafted features extracted from the raw signal with automati-

cally extracted features using a deep learning model. The deep learning model was a 1D CNN

model followed by a transformer encoder (see Figure 2.10), and it is composed of three parts.

The first part is a 1D CNN feature extractor used to extract embeddings from the raw signal,

replacing thus the embedding layer of the original transformer architecture. These embed-

dings are then passed through a sequence of transformer encoder layers, which allows taking

into account the positional (temporal) information of the input samples, as well as to apply

attention mechanisms. Then, average pooling and fully connected layers allow obtaining the

final encoding that is then fused with the wide handcrafted features for final classification.

Similar to the previous work, (Che et al.., 2021) used a 1D CNN-transformer architecture to

classify 12 lead ECG signals (no wide feature used). The main difference with (Natarajan et al..,
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Figure 2.10: 1D CNN transformer wide and deep transformer-based architecture for ECG signal

classification (Natarajan et al.., 2020), where 𝑑𝑚𝑜𝑑𝑒𝑙 corresponds to the dimension of a token of

the input sequence.

2020) is the proposed regularization technique based on link constraints (Qu, Liu, Zhang, Xiao,

Jin and Xiong, 2021), allowing to increase classification performance while handling imbalanced

datasets. Let us suppose that we have a labeled datasetD = {(𝑋1, 𝑦1), . . . , (𝑋𝑁 , 𝑦𝑁 )}, composed

of 𝑁 labeled samples distributed in 𝐶 classes, where the samples are 𝑋1, . . . , 𝑋𝑁 and the labels

are 𝑦1, ..., 𝑦𝑁 . Let us suppose that we have a classification model M = C ◦ E composed of

an encoder E and a classifier C. We denote as 𝐸1 = E(𝑋1), ..., 𝐸𝑁 = E(𝑋𝑁 ) the embeddings

of the 𝑁 samples, 𝑋1, ..., 𝑋𝑁 , and given two embeddings 𝐸𝑖 , 𝐸𝑗 with 𝑖, 𝑗 ∈ [1, 𝑁], we make the

two following assumptions (Che et al.., 2021): (1) if the correlation between 𝐸𝑖 and 𝐸𝑗 is high,

it is likely thatM will put 𝑋𝑖 and 𝑋𝑗 on the same class, (2) if the correlation between 𝐸𝑖 and

𝐸𝑗 is small, it is likely thatM will put 𝑋𝑖 and 𝑋𝑗 on the different classes. Based on these two

assumptions, (Che et al.., 2021) proposed the following regularization term:

I(M) = 𝜆 ×
𝑁∑︁
𝑖 𝑗=1

1

2

× ||𝐸𝑖 − 𝑒𝑖 𝑗 × 𝐸𝑗 | |2 (2.13)

∀𝑖, 𝑗 ∈ [1, 𝑁]𝑒𝑖 𝑗 =
{

1 if 𝑦𝑖 = 𝑦𝑗

−1 otherwise

(2.14)

where 𝜆 is a hyperparameter, and 𝑒𝑖 𝑗 is the link between samples 𝑋𝑖 and 𝑋𝑗 .

Even tough this approach is very interesting, it has the disadvantage of directly depending

on the labels, which makes it less robust against noisy labels. One alternative solution, is to

adapt similar unsupervised strategies such as deep embedded clustering (DEC) (Xie, Girshick

and Farhadi, 2016), as they do not depend on the labels of the samples, but rather on the hidden

structure/features.

Keeping the notations of the previous paragraph, DEC (Xie et al.., 2016) propose to do

clustering on the latent space of the encoderE of an AE, by using the embedded representations.

We denote as c1, . . . , c𝐽 the centroids of the different 𝐽 clusters, initialized using k-means. We

can now define, for all 𝑖 ∈ [1, 𝑁] and 𝑗 ∈ [1, 𝐽], the soft assignments 𝑞𝑖 𝑗 (interpreted as the
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probability to assign sampleE(𝑋𝑖) to the cluster of centroid 𝑐𝑗) using the Student’s t-distribution:

∀𝑖 ∈ [1, 𝑁],∀ 𝑗 ∈ [1, 𝐽], 𝑞𝑖 𝑗 =
∑𝐽
𝑝=1
(1 + | | E (𝑋𝑖 )−c𝑝 | |2

𝛼
) 𝛼+12

(1 + | | E (𝑋𝑖 )−c𝑗 | |2
𝛼

) 𝛼+12

(2.15)

where 𝛼 is the degrees of freedom of the Student’s t-distribution, fixed to 𝛼 = 1 in (Xie et al..,
2016) . We denote as𝑄 the predicted labels’ distribution obtained by the 𝑞𝑖 𝑗 . Moreover, in order

to train the encoder model and the centroids, (Xie et al.., 2016) introduce a target distribution,

𝑃, having three main properties: (1) cluster purity, (2) focus on high confidence samples, and

(3) normalization of the contribution of each centroid to the final loss. First, we want to have

distinct clusters without too much overlapping with neighboring clusters. Second, we want to

give more importance to samples assigned to clusters with high confidence (large values of 𝑞𝑖 𝑗)

than to samples assigned to a cluster with small confidence (small values of 𝑞𝑖 𝑗). Finally, we

want to avoid modifying too much the embedding space by the presence of large clusters. To

obtain these three properties, (Xie et al.., 2016) propose to define 𝑃 as follows:

∀𝑖 ∈ [1, 𝑁], 𝑗 ∈ [1, 𝐽], 𝑝𝑖 𝑗 =
𝑞2

𝑖 𝑗

𝑓𝑗∑𝐽
𝑝=1

𝑞2

𝑖𝑝

𝑓𝑝

(2.16)

where 𝑓𝑗 =
∑𝐽
𝑝=1

𝑞𝑝 𝑗 is the soft frequency of cluster 𝑗 . The DEC module is then optimized

using the Kullback-Leibler (KL) divergence between the target distribution 𝑃 and the predicted

labels’ distribution 𝑄:

L𝐷𝐸𝐶 = 𝐾𝐿 (𝑃 | |𝑄) =
𝑁∑︁
𝑖=1

𝐽∑︁
𝑗=1

𝑝𝑖 𝑗 × log(
𝑝𝑖 𝑗

𝑞𝑖 𝑗
) (2.17)

Furthermore, transformer were originally designed for sequence-to-sequence modelling

tasks in natural language processing (NLP), for instance, translation from one language to

another one. Therefore, it had an encoder-decoder architecture. Several works adapt the

architecture for classification tasks, using the mean or max of the output scores, or using a class

token (Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer,

Heigold, Gelly, Uszkoreit and Houlsby, 2021; Devlin, Chang, Lee and Toutanova, 2018). Indeed,

(Dosovitskiy et al.., 2021; Devlin et al.., 2018) proposed to add a learnable class token, that is

used for classification purposes (see Figure 2.11). The idea is to add at the beginning of the

embeddings sequence, an artificial embedding with learnable parameters, that is going to pass

through the transformer encoder with the whole input sequence. Then, the encoding of this

class token is retrieved and used as extracted feature for classification. This approach often

reaches better classification performances than averaging or taking the max., while reducing

the computational costs, as the input to the classifier is not the encoding of the whole input

sequence, but only the one of the class token.

III.3 Multi-feature classification

In this work, we have different representations of cerebral emboli through the Doppler IQ

signal of a patient (raw signal, TFR, binary encoding, etc.): we have one modality but multiple

ways of encoding its information. Therefore, it is important to exploit the complementarity of

the different available representations of a single modality efficiently, in order to improve the

performance of DL models.

To tackle this problem, one can get inspired from the multi-modal learning community, as

each representation could be treated as a different modality. We will build on (Baltrusaitis,
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Figure 2.11: Class token principle to adapt transformer architectures for classification tasks.

Ahuja and Morency, 2017) to understand the main challenges in the field of multi-modal

learning, which can be also interesting in the multi-feature learning domain.

In multi-modal machine learning we can identify five main core challenges: representation,

translation, alignment, fusion and co-learning. In this work, we focus on representation and

fusion. For the rest of the challenges we refer the reader to (Baltrusaitis et al.., 2017)

Representation: Representation in multi-modal learning refers to the way of structuring data

with the aim of exploiting the complementary and redundancy of the different modalities. In

simple terms, a representation of an entity is a set of features stored as as a vector or a tensor.

On top of that, in multi-feature learning, one can extract different representations from one

single modality, for instance the raw signal and a TFR. We can then define two main types of

multi-modal/feature representations:

• Joint representations: It is mainly used in tasks where multi-modal/feature data is

present both during training and inference. The idea is to find a representation on a

common latent space of the different modalities/representations that we have access to.

Different methods allow doing this, from early fusion by simple concatenation of the

representations, to neural networks, AEs and deep Boltzmann machines.

• Coordinated representations: It is mainly used when only one modality is available at

test time. In these kinds of representations, the different unimodal signals are processed

separately, but similarity between the representations is enforced by some constraints.

Techniques allowing to do this go from Canonical Correlation Analysis to DNNs.

Fusion: The idea of multi-modal/feature fusion is to integrate information from multiple

modalities/representations with the goal of predicting an outcome (e.g., class or continuous

value). It can be closely linked with multi-modal/feature representation, but they are not

exactly the same because they do not (necessarily) want to achieve the same goal. There are

mainly two categories of approaches: model-agnostic and model-based. We focus on model-

agnostic methods as they are independent of the used model. In this category, we can identify

four main approaches:

• Early fusion approaches: The features of the entities of the different modalities/rep-

resentations are fused just after they are extracted (often by simply concatenation or

multiplication). It allows exploiting the correlation and interaction between low level

features of each modality, and it only requires one model.

• Late fusion approaches: Performs the fusion after each modality/representation has

made the task (classification, for instance). The fusing mechanism can be averaging,

voting schemes, weighting based on channel noise, signal variance, learned models, etc.
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The main advantage is that if one modality/representation is missing, it is quite simple to

do the prediction. However, this method ignores the correlation and interaction between

low level features of each modality/representation.

• Intermediate fusion: The features of the different modalities/representations are fused

at an intermediate level of a model, after encoding but before classification. As early

fusion, it allows exploiting the correlation and interaction between low level features.

• Hybrid fusion approaches: Mix between early and late fusion, it takes the advantages

of both methods. One way of doing this is by having one model per modality, each

one using features extracted from each modality, and having another model using a

combination (early fusion) of these features; then the output of the three models can be

fused to generate the final output (late fusion).

Fusion is one of the main core challenges of multi-modal/feature learning that we are

interested in. Indeed, in our application, we want to find a way to combine information of

different representations of a signal (such as the raw signal or the TFR). This approach if often

used for video action recognition and audio event classification, to combine images and audio

signals (Hori, Hori, Wichern, Wang, Lee, Cherian and Marks, 2018; Boes and Van Hamme,

2019; Ortega, Senoussaoui, Granger, Pedersoli, Cardinal and Koerich, 2019; Akbari et al.., 2021).

(Hori et al.., 2018) did video description generation by combining audio and video using a

RNN architecture with an attention fusion mechanism in the intermediate layers. (Boes and

Van Hamme, 2019) extracted mel-spectrograms from the raw audio and images from the video

using a pre-trained VGG model. Then, the extracted features are projected in a space of

fixed dimension before being fed to the transformer encoder and decoder (one modality is

the input for the encoder and the other one of the decoder). (Ortega et al.., 2019) performed

emotion recognition based on three modalities: video, audio and text. They combined by

concatenation the features extracted from each modality by the means of a DNN to obtain a

joint representation. (Akbari et al.., 2021) used a FC layer to extract features from each modality

(video, audio and text), and then passed them to a transformer encoder. Afterwards, the

extracted embeddings are projected in different common spaces with different granularities to

do classification.

What is more, motivated by the advantages of using multiple modalities to solve a classifi-

cation tasks, different works have exploited these methods using different representations of a

single modality instead of different modalities, as it is often easier to obtain1.

Computer vision: Different features can be extracted from an image, and then combined to

enhance the performances of different models (Wang, Zhang, Liu, Choo and Huang, 2017; Mao,

Li, Ma, Zhang, Zhou and Wang, 2020; Zhu and Jiang, 2020; Tiong, Kim and Ro, 2019).

(Wang et al.., 2017) did hyperspectral image classification by decomposing them into prin-

cipal components using principal component analysis (PCA). This allowed them to obtain two

type of images: one mainly representing the spectral characteristics of the image and composed

of the concatenation of the different principal components obtained before, and another one

which translates the spatial properties, composed of the first K filtered principal components

(obtained using a guided filter). These two images are then fused by concatenation, and the

result is fed to a sparse AE to do classification.

On the same principle, (Zhu and Jiang, 2020) performed face recognition by fusing two

types of features extracted from the images: global ones using 2D PCA, and local ones through

local binary patterns.

1For instance, for cerebral emboli classification, MRI can be a helpful modality to TCD, but it is expensive and

harder to obtain.
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(Mao et al.., 2020) extract three new images from one single image by selecting the three

color components of the latter using iterative RELIEF. Then, they were fed into a multi-path

CNN to extract new features, which are then fused by concatenation. Finally, these last features

are projected using PCA, and the result is fed to a support vector machine (SVM) classifier, to

do object detection.

Signal processing: In the signal processing community, multi-feature learning is often based

on the combination of TFR and other handcrafted features (Kim and Lee, 2019; Jin, Yang, Zhao,

Luo and Woo, 2020; Feng, Feng, Li, Hou and Liu, 2020; Liu, 2021; Ertugrul, Acar, Aldemir and

Öztekin, 2021; Chen, Cheng, Wang, Lu, Xv, Liu and Zhu, 2021; Yao, Gao, Zhang and Ma, 2021;

Ahmad, Tabassum, Guan and Khan, 2021).

(Kim and Lee, 2019) performed power signal analysis by fusing (by concatenation) different

TFRs of the raw signal (spectrogram, mel-spectrogram and MFCC), and feeding them to an

LSTM model.

(Jin, Yang, Zhao, Luo and Woo, 2020) did multi-feature and multi-modal emotion recogni-

tion by passing through an LSTM different MFCCs extracted from audio samples representing

distinct emotions. The obtained features were then fused by weighted concatenation and pro-

jected using an FC layer into an intermediate latent space. In parallel, behavioral features were

extracted from signals coming from wearable devices, and passed through a DNN, with an out-

put latent space of the same dimension as the one handling the audio features. Finally, the two

obtained representations were fused by weighted concatenation to get a joint-representation

used for classification.

(Feng et al.., 2020) performed well-testing (classification) by concatenating features extracted

from the raw signal (wavelet packet decomposition-approximate entropy, gradient and its

extreme value, fast Fourier transform coefficients, empirical mode decomposition-approximate

entropy) to obtain a joint-representation which was used to extract new features through a

deep Boltzmann machine. Then, these features were purified using the maximum information

coefficient and used for classification with an SVM.

(Ertugrul et al.., 2021) did heartbeat classification using 12-lead ECG signals. Because these

signals have multiple channels, they were able to create a gray-scale image (of 12 rows) by

concatenating the channels. Then, from this image 4 different features were extracted: gray

level co-occurence matrix, texture energy measure, histogram of oriented gradients and Gabor

wavelet transform. Finally, each feature is passed to a (distinct) randomized neural network to

do classification.

At last, (Ahmad et al.., 2021) also used ECG signals to classify heartbeats. As the previous

work, they also extracted different images from the raw signal: gramian angular field, recurrent

plot and Markov transition field. These images were then fused, and the result used for

classification based on two different strategies: multimodal image fusion and multimodal

feature fusion. The former, is an early fusion approach where the images are fused before

passing them through an AlexNet model for classification. The latter is an intermediate fusion

approach where features are first extracted using an AlexNet model, then fused to create a

final feature for classification through an SVM. This allowed them to achieve state-of-the-art

performances on two heartbeat categorization dataset PTB (Bousseljot, Kreiseler and Schnabel,

1995) and MIT-BIH (Moody and Mark, 2001).

IV Model compression
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Figure 2.12: Knowledge distillation principle.

As seen in the previous sections, DNNs such as CNNs and transformer models have reached

state-of-the-art performances in several tasks, going from computer vision, NLP, and signal

processing. However, these methods tend to be energy greedy and often require important

computation and memory resources. This is an important point to consider in the medical

field, where more and more DL models are being used (Piccialli, Somma, Giampaolo, Cuomo

and Fortino, 2021), with limited computation and energy resources. If deep learning models

want to be used with these embedded devices, some efforts have to be made to develop more

energy and computation efficient models.

We are going to build on (Gholami, Kim, Zhen, Yao, Mahoney and Keutzer, 2022) to present

the main concepts and subfields of model compression, and then we are going to focus on two

approaches: model pruning and model quantization.

IV.1 General overview

We can categorize the different model compression methods in five (non-exclusive) families:

pruning, quantization, knowledge distillation, efficient NN design, and hardware-adapted NN

architectures. The two first families will be detailed later in sections IV.2 and IV.3, whereas the

last three families are going to do a briefly overviewed hereafter.

Knowledge distillation: This technique was introduced for neural networks by (Hinton,

Vinyals and Dean, 2015), allowing to reduce their size. The main idea is to train a smaller

network, called the student, using a larger pre-trained model, called the teacher. To do this,

the student model is trained to match the soft-predictions of the teacher model, instead of

only using the hard labels of the samples (see Figure 2.12), which can achieved owing to

the soft CE, or the KL divergence. Even though this technique is interesting, it has some

difficulties achieving by itself important compression rates without an important degradation

of the classification performances compared to other families of methods (such as pruning

or quantization). Moreover, when this method is applied alone, it often gives models with

floating-point weights, which are difficult to adapt to efficient arithmetic operations (capable

of reducing latency and energy consumption) without specialized hardware.

Efficient NN design: Another way to obtain lighter models, is to use efficient components

such as dilated convolutions (Yu and Koltun, 2016), depth-wise convolutions (Howard, Zhu,
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Chen, Kalenichenko, Wang, Weyand, Andreetto and Adam, 2017), or efficient decomposition of

the existent components through methods such as singular value decomposition (Kanjilal, Dey

and Banerjee, 1993). Moreover, more global mechanisms have been introduced to design more

efficient architectures, such as residual connections (He et al.., 2016) and inception modules (Gao

et al.., 2019). The main inconvenient with this manual approach is that they are time-consuming

as different combinations are possible, and it is difficult to find the optimal combination for a

given task. This drawback can be partially tackled using neural architecture search techniques

where the optimal architecture is searched under some constraints (memory requirements,

size, depth, etc.) (Elsken, Metzen and Hutter, 2019). Nevertheless, this approach still requires

important amounts of computation and energy resources to find the efficient models.

Hardware-adapted NN architecutres: DL models can be optimized using specialized hard-

ware, allowing to efficiently perform the different operations needed for inference. Some

works propose to design hardware-aware models (Yao, Dong, Zheng, Gholami, Yu, Tan, Wang,

Huang, Wang, Mahoney and Keutzer, 2021), taking into account the hardware where they will

be deployed as well as other constraints. Other works focus on designing specialized hardware

where some operations can be performed efficiently, for instance using systolic arrays (Bosio,

O’Connor, Traiola, Echavarria, Teich, Hanif, Shafique, Hamdioui, Deveautour, Girard, Virazel

and Bertels, 2021) as in TPUs (Quantifying the performance of the TPU, our first machine learning
chip, n.d.). These approaches have the advantage that high optimization can be done, which

allow important reduction in inference times as well as energy consumption. However, they

are time-consuming and more difficult to generalize to generic architectures.

IV.2 Model pruning

IV.2.A General overview

Model pruning is another family of methods allowing to reduce the memory and energy

consumption needed by DL models. The main idea is to zero a subset of the parameters of

a model based on different criterion. This can be done as NN models are over-parametrized

and redundant, where often an important number of parameters are close to zero (Ji, Jain,

Ferdman, Milder, Schwartz and Balasubramanian, 2021). Because of this, pruning can act as

a regularizer, improving the generalization of the obtained models (Hoefler, Alistarh, Ben-

Nun, Dryden and Peste, 2022). Additionally, it has the advantage that it does not require an

important modification of the model architecture or the training strategy, contrary to other

model compression methods.

Furthermore, pruning can be performed in two ways: structured if entire blocks are re-

moved (for instance as group of a layer), and unstructured if all the weights following some

criterion are removed, whether they are in the same structure or not (weights can be zeroed even

if not in the same layer or convolutional filter). Classical unstructured approaches consist in

removing weights using the L1 or L2 norms (Han, Pool, Tran and Dally, 2015), or second order

derivatives (Hassibi, Stork and Wolff, 1993). More formally, if we have a modelM composed of

𝑙 layers 𝐿1, ..., 𝐿𝑙, such that (without loss of generality), for all 𝑘 ∈ [1, 𝑙], 𝑛𝑘 , 𝑚𝑘 , ∈ ℕ∗𝐿𝑘 ∈ ℝ𝑛𝑘×𝑚𝑘
,

a simple pruning strategy can be based on thresholds:

∀𝑘 ∈ [1, 𝑙], 𝑖 ∈ [1, 𝑛𝑘], 𝑗 ∈ [1, 𝑚𝑘], 𝐿̃𝑖 𝑗𝑘 =

{
0 if | |𝐿𝑖 𝑗

𝑘
| | ≤ 𝜏

𝐿
𝑖 𝑗

𝑘
otherwise

(2.18)

where 𝐿̃𝑘 is the pruned version of 𝐿𝑘 , and 𝜏 is a pre-defined threshold. What is more, to avoid

using pre-defined thresholds and to have more control on the amount of weights to remove,
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these approaches propose to remove a pre-defined percentage of weights having the smallest

norm.

More sophisticated methods exists, based on more complex strategies. (Zhu and Gupta,

2018) propose gradual pruning during training by starting with an initial sparsity value and

then increasing it progressively over the iterations to reach a final desired sparsity value (so

sparsity is done gradually over the iterations).

(Mariet and Sra, 2016) proposed to use determinantal point processes (DPPs) to determinate

a subset of neurons in a layer, and then fuse the non-selected neurons (the redundant ones)

into the selected subset. To do this, an initial kernel matrix is computed for a layer 𝐿𝑘 based on

their activations, and then scaled to obtain the final DPP kernel matrix. Then, one can sample

from this matrix to obtain the important neurons of 𝐿𝑘 . Therefore, if some neurons are not

sampled by the DPP, then those neurons are considered as redundant and can be removed

from 𝐿𝑘 . However, to avoid changing the inputs of the next layer 𝐿𝑘+1, one cannot just discard

the unselected neurons. To solve this, the information of the unselected neurons are fused with

the sampled neurons through a reweighting process.

Following the same idea of the importance of neurons, (Luo, Wu and Lin, 2017) proposed a

structured pruning approach for CNNs, by carefully selecting the layers/filters to prune, based

on the statistics of the (next) layer’s parameters. The idea is that, if we have a convolutional

layer 𝐿𝑖 , followed by another convolutional layer 𝐿𝑖+1, the input of layer 𝐿𝑖+1 is generated by

the filters of layer 𝐿𝑖 . Therefore, if using only a subset of filters of 𝐿𝑖 , one can generate an input

for 𝐿𝑖+1 capable of accurately estimating the true output of 𝐿𝑖+1 (as if no filter were removed),

then the filters that are not in this subset can be removed.

What is more, because the threshold operator often used in pruning is not non-differentiable,

it is difficult to automatically tune the pruning hyperparameters during training. Some ap-

proaches try to solve this by using different methods to optimize pruning, such as reinforcement

learning (RL) (He, Lin, Liu, Wang, Li and Han, 2018), genetic algorithms (Xu, Zhang, An, Liu,

Liu and Wang, 2021), or differentiable pruning functions (Manessi et al.., 2017). (He et al.., 2018)

used reinforcement learning to do model compression automatically without the need of any

human effort. The idea is to process layer by layer a pre-trained model using RL, where the RL

agent inputs the embedding of a layer, and outputs a sparsity ratio (the reward is a function of

the accuracy and the number of floating operations per second, FLOPS). After compression of

the layer with the given sparsity ratio, it goes to the next layer. (Xu et al.., 2021) follow a similar

principle using genetic algorithms to find layer by layer a good sparsity ratio.

IV.2.B Related work

By the same token, (Manessi et al.., 2017) proposed a differentiable pruning function with

symmetric thresholds, allowing direct optimization of its hyperparameters using gradient

descent. In fact, the method proposes a regularizer enforcing pruning, using the this function.

The first term is a regularization with respect to the learned threshold for pruning (indirect

influence of the weights), and the second term is the classical weight decay regularization

(direct influence on the weights). Even though these two regularizers are important, we focus

here on the pruning function, as it is at the core of the method (see Figure 2.13). The proposed

pruning function is defined as follows:

∀𝑥, 𝑡, 𝛼 ∈ ℝ, 𝑝(𝑥; 𝑡, 𝛼) = [𝑅𝑒𝐿𝑈 (𝑥 − 𝑡) + 𝑡 × 𝜎(𝛼 × (𝑥 − 𝑡)]
+ [−𝑅𝑒𝐿𝑈 (−𝑥 − 𝑡) − 𝑡 × 𝜎(𝛼 × (−𝑥 − 𝑡))]

(2.19)

where 𝑡 is the pruning threshold, 𝛼 is a parameter controlling the slope of the linear parts of

the function (pruning speed), ReLU corresponds to the rectified linear unit function
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Figure 2.13: Example of the differentiable pruning function proposed in (Manessi et al.., 2017).

(a) Pruning function with 𝑡 = 2 and 𝛼 = 5. (b) Pruning function with 𝑡 = 2 and 𝛼 = 100. One

can note that higher values of 𝛼 give a more aggressive pruning. Note that, besides the case

𝑥 = 0, the value of the pruning function between 𝑡 and −𝑡 is not exactly zero, but close to zero,

converging to zero when 𝛼 tends to +∞. However, one can define a threshold to determinate

which values can be considered as zero, for instance, all the values smaller to 10
−3

as in (Manessi

et al.., 2017).

𝑅𝑒𝐿𝑈 : 𝑥 → 𝑚𝑎𝑥(0, 𝑥), and 𝜎 to the sigmoid function 𝜎 : 𝑥 → 𝑒𝑥

𝑒𝑥+1 . This function has the

advantage of being weakly differentiable with respect to 𝑥 and 𝑡.

IV.3 Model quantization

Quantization is the process allowing to reduce the precision of a floating point number, for

instance from 32 or 64 bits to 16 bits or fewer. This can be beneficial from different points of

views. First, from a memory perspective, reducing the precision of the weights of a model

reduce the memory needed to store them and to load them into RAM. Second, from a compu-

tation point of view, some precisions allow more efficient computation, for instance, if using

integers, or dyadic numbers, more efficient arithmetic operations can be used. Following the

two previous points, quantization can also help from an energy perspective, as reducing the

memory required to load models can help decrease the number of memory and processor

transfers (data transfers), and more efficient arithmetic operations tend to consume less energy

than classical floating point operations.

IV.3.A General overview

Because of the previous motivations, different works have focused on the application of quan-

tization to deep learning models (Gholami et al.., 2022). Let us suppose that we have a full

precision (FP) weight tensor 𝑊 and a quantization operator 𝑄 giving the quantized weight

𝑊𝑄 = 𝑄(𝑊). The quantization procedure can be characterized by the clipping range [𝑎, 𝑏]
(interval where the values of the FP tensor 𝑊 should be, if not they are clipped), the calibra-

tion (clipping range search), and scaling factor 𝑆. Therefore, a quantization process can be of

different natures, based on the definition of these seven concepts (Gholami et al.., 2022):

• Uniformity: the clipping range can be discretized into equally distant values or not.

• Symmetry: based on the symmetry of the clipping range (symmetric if 𝑎 = −𝑏).

• Static/dynamic: based on when the clipping range is computed (static if it is before

inference, dynamic if it is during inference).
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• Granularity (see Figure 2.14): based on at what level/component the quantization is done.

It can be done channel-wise for CNNs, using subgroups of weights in the different layers

(Prato, Charlaix and Rezagholizadeh, 2020), or at different levels in depth and width of

the weights’ tensors based on the quantization error (Xu, Wang, Zhou, Lin and Xiong,

2018).

• Training aware: based on its relationship with the training procedure. If quantization is

done during training, then it is quantized aware training (QAT). If it is done after training,

then it can be post-training quantization (PTQ) or zero-shot quantization.

• Stochasticity: the quantization operator can be based on probability measures: 𝑄(𝑊) =
𝑊𝑄 with probability 𝑝 and𝑄(𝑊) = 𝑊𝑄′ with probability 1− 𝑝. It can also be deterministic

if the quantization operator always gives the same quantized output for a fixed input.

• Simulation: most quantization methods are simulated as, even though quantization is

done, the computations are done in full-precision without taking advantage of quantiza-

tion acceleration (for instance when using integer-only quantization, efficient arithmetic

operations can be used).

The first approaches applying quantization to DL were based on matrix factorization (Gong,

Liu, Yang and Bourdev, 2014; Kim and Lee, 2019) or weight sharing and/or clustering (Han,

Mao and Dally, 2016; Ullrich, Meeds and Welling, 2017; Dubey, Chatterjee and Ahuja, 2018;

Lan, Chen, Goodman, Gimpel, Sharma and Soricut, 2020). The former can be achieved through

singular value decomposition or vector quantization, whereas the latter can be implemented

through, k-means clustering of the weights (with or without identification of the important con-

volutional filters) (Han et al.., 2016; Dubey et al.., 2018), soft weight-sharing based on Gaussian

mixture models (Ullrich et al.., 2017), or cross-layer parameter sharing (Lan et al.., 2020).

Furthermore, as seen before, knowledge distillation can be used for model compression.

However, it tends to give low compression rates for small performance drops. Some works

have proposed to combine quantization with knowledge distillation to improve the compression

rates of knowledge distillation while keeping close performances to the full precision model

(Polino, Pascanu and Alistarh, 2018; Zhang, Hou, Yin, Shang, Chen, Jiang and Liu, 2020;

Sun, Cheng, Gan and Liu, 2019; Bai, Zhang, Hou, Shang, Jin, Jiang, Liu, Lyu and King,

2021). Indeed, knowledge distillation can directly be used to compensate the performance drop

due to quantization, without reducing the size of the network nor modifying its architecture

(Zhang et al.., 2020). Likewise, other methods use it to reduce the size of the model while

doing quantization (Polino et al.., 2018) at the same time. (Bai et al.., 2021) propose binary

quantization for BERT models using QAT and PTQ. First, they start by training with QAT a

half-sized ternary BERT. Then, they initialize the weights of a full-size Binary BERT using a

ternary weight splitting operator. Finally, they applied knowledge distillation to recover from

the performance drop due to quantization.

Over and above that, most QAT methods are hard to optimize because of the non-differentiable

nature of quantization operators. Therefore, often the straight through estimator (STE) (Yin,

Lyu, Zhang, Osher, Qi and Xin, 2019) is used to approximate gradients (Zhang, Yang, Ye and

Hua, 2018; Bhalgat, Lee, Nagel, Blankevoort and Kwak, 2020; Zhu, Han, Mao and Dally, 2017;

Zhou, Ni, Zhou, Wen, Wu and Zou, 2016). (Zhang, Yang, Ye and Hua, 2018) proposed to

use learnable quantizers with the objective of minimizing the quantization error. The idea is

to quantize the FP weights to its nearest integer representation, with the advantage that an

integer can be seen as a combination of power of 2 with binary linear coefficients, allowing

efficient (bit-wise) operations. Then, the quantizer operator can be seen as a learnable FP basis

and a binary vector ({0, 1}𝐵 or {−1, 1}𝐵), with 𝐵 the number of bits used to encode the nearest
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Figure 2.14: Different granularities to apply quantization from (Gholami et al.., 2022). In the

bottom figure, the first row corresponds to the global distribution of all the weights in the

convolutional layer (of all the filters). The remaining rows corresponds to the distribution of

each filter. The main difference between the two approaches is the way the clipping range is

determined. For layerwise quantization, the clipping range is defined using the distribution

of all the weights of the layer (two black dotted lines in the left column). For channelwise

quantization, we have one clipping range per filter in the convolutional layer (colored dotted

lines in the right column). We can note that the number of channels of the output feature

map is equal to the number of convolutional filters in the convolutional layer, hence the name

channelwise quantization when quantization is done filterwise.
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integer of the FP weight. (Bhalgat et al.., 2020) proposed LSQ+, an asymmetric quantization

method for skewed distributions with negative values, and a trainable scale and offset (with

STE used to approximate their gradients). The main drawback of this approach is that the

final performances of the model are very sensitive to the initialization of the scale factor and

the offset. To solve this, the authors proposed to initialize them in two different ways. For

the weights’ quantization, the scale factor is initialized using the weights’ statistics. For the

activations, the scale and offset are obtained by minimizing the Frobenius norm between the

quantized and full precision activations. By the same token, other approaches focus on the

reformulation of the quantization problem as a differentiable one using non-linear functions

(Yang, Shen, Xing, Tian, Li, Deng, Huang and Hua, 2019). In fact, the quantized value of a

weight/activation can be computed as an affine sum (with several scale factors and one bias)

of unit step functions. However, as the unit step function is not smooth, the authors proposed

to replace it by a sigmoid function, which is differentiable. In addition, they add a temperature

hyperparameter to the sigmoid function, controlling the gap between the step unit function

and the sigmoid.

On the other hand, to take advantage of efficient arithmetic operations (Jacob, Kligys,

Chen, Zhu, Tang, Howard, Adam and Kalenichenko, 2018), it is important to know whether

quantization is simulated or not. Some recent works propose to use integer-only quantization,

in order to profit from arithmetic operations (Jacob et al.., 2018; Zafrir, Boudoukh, Izsak and

Wasserblat, 2019; Kim, Gholami, Yao, Mahoney and Keutzer, 2021) to reduce inference time and

energy consumption, simultaneously to memory requirements. (Zafrir et al.., 2019) proposed

a QAT method to fine-tune transformer (BERT) models, compressing them and reducing the

inference times thanks to integer operations. To do this, they quantized weights and activations

using symmetric uniform quantization with 8 bits (gradients approximated with STE), with

a scaling factor determined statically or dynamically during inference. Additionally, they

adopted a mixed precision strategy, where the embedding and FC layers were quantized to 8

bits, whereas the biases to 32 bits. (Kim et al.., 2021) proposed a similar approach allowing

to quantize transformer-based models (BERT) using integer only arithmetic during inference,

reducing latency and energy consumption. The used quantization is relatively simple, as

it is an uniform, symmetric and static quantization approach. The main difficulty comes

when quantizing activations, as most activation functions are non-linear, which are difficult

to quantize. To solve this, the authors proposed a polynomial approximation of non-linear

functions, which has the advantage of being computable using integer-only arithmetic. Using

this approach, the authors proposed a 2 degree polynomial approximation of the Gaussian

error linear unit (GELU) and Softmax activation functions, with an approximation error of the

order of the order of 10
−3

.

IV.3.B Related work

Performance drop is almost inherent to quantization as information about the original weights

is lost during the process. One solution to mitigate this problem is using different precisions at

different levels/layers of the model (Dong, Yao, Gholami, Mahoney and Keutzer, 2019; Dong,

Yao, Arfeen, Gholami, Mahoney and Keutzer, 2020; Yao, Dong, Zheng, Gholami, Yu, Tan, Wang,

Huang, Wang, Mahoney and Keutzer, 2021; Shen, Dong, Ye, Ma, Yao, Gholami, Mahoney and

Keutzer, 2019; Gholami et al.., 2022). These mixed quantization approaches can be costly, as

the number of possible precisions combinations increases exponentially with the number of

layers. To reduce the exploration cost, some works have proposed metrics allowing to measure

the sensibility of a layer to quantization (Dong et al.., 2019, 2020). Indeed, using second order

derivatives (Hessian), one can quantify the flatness of the loss landscape and therefore know if

we are in an irregular (sensible) or regular (robust) zones. More formally, if we have a model

58

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0064/these.pdf 
© [Y. Vindas-Yassine], [2023], INSA Lyon, tous droits réservés



M composed of 𝑙 layers with weights 𝑊1, ..., 𝑊𝑙, and a supervised loss function L, then we

can define the following second order metric measuring the sensitivity to quantization for an

entire model (Dong et al.., 2020):

Ω =

𝑙∑︁
𝑘=1

𝑇𝑟 (𝐻𝑘) × ||𝑊𝑘 −𝑄(𝑊𝑘) | |2
2

(2.20)

where for all 𝑘 ∈ [1, 𝑙] , 𝐻𝑘 is the Hessian of the 𝑘 𝑡ℎ layer, 𝑇𝑟 (𝐻𝑘) is the mean Hessian trace1,

and 𝑄 is a quantization operator. More interestingly, under some assumptions, (Dong et al..,
2020) proved that for all 𝑘 ∈ [1, 𝑙], 𝑇𝑟 (𝐻𝑘) × ||𝑊𝑘 − 𝑄(𝑊𝑘) | |2

2
is a local measure indicating the

sensitivity of the 𝑘 𝑡ℎ layer to quantization. These assumptions are the following. First, the

model must be twice differentiable as the Hessian has to be computed, and it has to have

converged to a local minimum (with respect to L, as the first order derivative (gradient) should

be zero and the Hessian positive semi-definite, which facilitates the Hessian approximation

and computation using Taylor approximation). Second, the third order term of the Taylor series

approximation should be close to zero. Third, if we denote for all 𝑘 ∈ [1, 𝑙], 𝑊𝑄∗
𝑘

= 𝑄∗(𝑊𝑘)
the optimal quantization of𝑊𝑘 obtained after QAT, then Δ𝑊∗

𝑘
= 𝑊

𝑄∗
𝑘
−𝑊𝑘 can be decomposed

in a base of the orthonormal eigenvectors of the respective Hessian 𝐻𝑘 (positive semi-definite

assumption), with coefficients that depend on the chosen quantization precision of that layer.

The idea of HAWQ-v2 (Dong et al.., 2020) is to try different mixed-precision combinations for the

different layers, compute Ω, sort the results by values of Ω, and then choose the configuration

with the smallest value of Ω. An improvement of this method was recently done to take

into account hardware constraints during quantization (Yao, Dong, Zheng, Gholami, Yu, Tan,

Wang, Huang, Wang, Mahoney and Keutzer, 2021). What is more, other teams have shown

that, for pre-trained models, near-optimal low-bit solutions exist close to the full-precision

solutions (McKinstry, Esser, Appuswamy, Bablani, Arthur, Yildiz and Modha, 2019), allowing

to effectively do quantization without important drop of performances. Based on this idea,

adaptive quantization methods have been proposed, where the number of bits used to encode

the weights can be adapted to the resources and states (low battery for example) of the hardware

or the device (Jin, Yang and Liao, 2020).

Furthermore, to obtain even higher compression rates and reduce the number of bits used to

store the weights, extreme quantization approaches have been developed, using less than 4 bits

to encode them. This has been achieved through binary networks (Zhou et al.., 2016; Rastegari,

Ordonez, Redmon and Farhadi, 2016; Lin, Zhao and Pan, 2017; Bai et al.., 2021), ternary models

(Zhu et al.., 2017; Zhang et al.., 2020; Xu et al.., 2018; Hou and Kwok, 2018), or mixed-precision

quantization (Shen et al.., 2019; Dong et al.., 2020). Most of these binary or ternary networks,

work with binary or ternary weights’ matrices, having (0 or 1) or (-1, 0, or 1) values multiplied

by unique full-precision learnable coefficients (or scaling factors). The main difference between

methods is the heuristics used to quantize the weights, which often depends on manually

selected thresholds, or thresholds based on the weights’ statistics. In ternary networks (Li,

Liu, Wang, Zhang and Yan, 2022), weights are quantized using a single symmetric threshold

𝑡 and one scaling factor 𝜆. Let us define the following ternarization operator, depending on a

threshold 𝑡:

∀𝑥 ∈ ℝ, 𝑄𝑡 (𝑥) =


−1 if 𝑥 < −𝑡
0 if 𝑥 ∈ [−𝑡, 𝑡]
1 if 𝑥 > 𝑡

(2.21)

Then, the ternarization 𝑤𝑡 of a FP weight 𝑤 coming from a weight matrix 𝑊 is defined as

follows: 𝑤𝑡 = 𝑄
𝜆
𝑡 (𝑤) = 𝜆 × 𝑄𝑡 (𝑤). The two quantization parameters 𝑡 and 𝜆 are obtained by

1Indeed, the Hessian changes based on the input, therefore, it is computed for different inputs and then averaged.
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Figure 2.15: Overview of trained ternary quantization (TTQ) from (Zhu et al.., 2017)

solving an optimization problem where the ternarized weights approximate the FP ones, based

on 𝑡 and 𝜆:

𝑡∗, 𝜆∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝑡≥0,𝜆≥0(𝑊 − 𝜆 ×𝑄𝑡 (𝑊)) (2.22)

The authors proposed an approximation of these two parameters to alleviate computation,

based on the statistics of the weight matrix𝑊 : 𝑡 ≈ 0.75× 𝜇(𝑊) and 𝜆 = 𝜇({𝑤 > 𝑡, 𝑤 ∈ 𝑊}) where

𝜇 is the average operator. By the same token, (Zhu et al.., 2017), improved the previous method

by introducing two trainable asymmetric scaling factors 𝜆, 𝛾 and changing the ternarization

heuristics (see Figure 2.15) corresponding to the way that the threshold 𝑡 is computed: 𝑡 =

𝜏 × max(𝑊), where 𝜏 is a hyperparameter controlling the sparsity of the quantized weight

matrix 𝑊 . Therefore, the new quantization operator for a weight 𝑤 of a matrix weight 𝑊 is

defined as follows:

𝑄
𝜆,𝛾
𝑡 (𝑤) =


𝜆 if 𝑤 < −𝑡
0 if 𝑤 ∈ [−𝑡, 𝑡]
𝛾 if 𝑤 > 𝑡

(2.23)

This approach allows decreasing the classification performance drop, while keeping a good

compression rate.

Moreover, one important drawback of extreme quantization is the significant-created noise

during training because of STE approximation of the gradients, which makes optimization

difficult. (Fan, Stock*, , Graham, Grave, Gribonval, Jegou and Joulin, 2020) propose to solve

this by selecting a random subset of weights to quantize instead of quantizing all the weights,

allowing to keep some gradients without error, thus improving the gradient flow.

Finally, quantization can be combined with other model compression techniques to fur-

ther improve the compression rates without important performance drop. Therefore, some

approaches have proposed to combine quantization and pruning, as they are complementary

(Han et al.., 2016; Park, Xu and Brick, 2018; Tung and Mori, 2020; Ullrich et al.., 2017). This can

be done by a sequential application of the both techniques (Han et al.., 2016; Park et al.., 2018),

using Bayesian optimization techniques (Tung and Mori, 2020), or soft-weight sharing (Ullrich

et al.., 2017). We focus on Deep Compression (Han et al.., 2016), as it is one of the state-of-the-art

approaches, and it can be easily adapted using newer and more efficient quantization and

pruning methods. The method is composed of three components. The first one is network

pruning, where small weights are removed based on a threshold. Once this is done, the model

is re-trained to compensate the performance drop because of pruning. The second component
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is trained quantization using weight sharing. In this part, weights are clustered during training

using k-means, then taking the value of the respective centroid. Finally, to further compress

the model, lossless Huffman encoding is applied to the final obtained weights.

V Conclusion

In this chapter we have made an overview of the main fields related to my work: cerebral and

emboli detection and classification, data annotation, signal classification, and model compres-

sion.

In the following three chapters, we are going to detail the approaches that we developped

to solve the limitations of some state-of-the-art methods presented in the current chapter.
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3 Data Annotation

Chapter based on our published conference paper (Vindas, Roux, Guépié, Almar
and Delachartre, 2021) in the International Ultrasonics Symposium (IUS) 2021, and
journal paper (Vindas, Guépié, Almar, Roux and Delachartre, 2022) in Medical
Image Analysis (MEDIA) 2022.

As seen in chapters 1 and 2, data annotation is a particularly difficult and costly (but crucial)

task in the medical field. In our case, as we work with portable TCD data, we have a huge

amount of data as the recording of a patient can go from 30 to 180 minutes, having on average 14

HITS per minute. Nevertheless, the majority of the acquired data is not labeled, which can limit

the training of deep learning models. To be able to quickly label an important quantity of data

from a small number of labeled samples, different approaches have been proposed such as self-

training (Rosenberg et al.., 2005), generative models (Kingma et al.., 2014), or label propagation

(Zhu and Ghahramani, 2002; Weston et al.., 2012; Benato et al.., 2018, 2021). However, these

methods have their limitations, which will be detailed in section I. Then, in section II we will

present our proposed approach allowing to solve these limitations, and in section III we will

validate it through a series of experiments.
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I Motivation

I.1 Limitations of previous methods

The previous semi-automatic data annotation methods have achieved great annotation perfor-

mances while reducing the annotation time. They are mainly based on the structure assump-

tion, which states that samples living in the same structure (or manifold) are likely to have the

same label.

The first limitation of these approaches is strongly related to this assumption. Indeed, in

order for this assumption to be valid, the extracted features as well as the used dimensionality

reduction techniques should represent the space/manifold in which the original samples (the

images or signals) live, and where the structure assumption is verified. The above-mentioned

works do not measure the quality of the reduced working latent space, which can lead to

important annotation errors because the structure assumption is not verified in that latent

space. In fact, if the working reduced latent space is strongly modified with respect to the

original space, then samples from different classes can be close to each other, which disrupts

neighborhood labeling using labeled samples.

The second limitation is related to annotation errors. Indeed, annotation errors are inherent

to semi-automatic data annotation methods, specially when annotation is difficult for human

annotators. These errors translate in noise in the labels, and come from different sources.

First, if the human expert made some errors annotating the small amount of labeled samples

needed to label the rest of the samples, then these errors will be propagated to the rest of the

samples. Second, if the semi-automatic annotation method is applied iteratively, errors made

by the method itself will be propagated too over the iterations. The previously mentioned

approaches do not directly take into account these errors when using the semi-automatically

labeled datasets for classification purposes.

Finally, most of the semi-automatic data annotation approaches are designed for classical

machine learning classifiers (SVM, OPF-semi, random forest, etc.), and not evaluated in DL

models which are known to be highly sensitive to label noise (Karimi, Dou, Warfield and

Gholipour, 2020).

I.2 Objectives and contributions

We want to overcome the above-mentioned limitations by proposing a semi-automatic annota-

tion and classification approach where numerous samples can be automatically labeled from

a small amount of manually labeled ones. The obtained dataset can then be used to train DL

models for classification under a noisy labels context. Our method is characterized by the

following contributions:

• Novel approach for semi-automatic data annotation based on local quality metrics, al-

lowing to control the annotation error.

• Selection strategy of the 2D projection used for automatic label propagation.

• Improvement of DL models trained on the obtained (semi-automatically labeled) datasets,

thanks to noise-robust loss functions.

II Proposed method

In this section, we shall to detail our proposed semi-automatic data annotation method based

on feature space projection, and local quality metrics.

65

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0064/these.pdf 
© [Y. Vindas-Yassine], [2023], INSA Lyon, tous droits réservés



Figure 3.1: Global pipeline of our proposed label propagation approach. It is composed of

four steps: (a) feature extraction through unsupervised learning, (b) dimensionality reduction

through t-SNE, (c) manual annotation using the 2D reduced latent space, and (d) automatic

label propagation from the labeled samples to the unlabeled ones, based on local quality

metrics.

II.1 General overview and assumptions

Let us suppose that we have a dataset D = X ×Y = A ∪U with 𝐶 classes composed of a small

number 𝐴 of labeled samples A = X𝐴 × Y𝐴 = {(𝑋1, 𝑦1), ..., (𝑋𝐴, 𝑦𝐴)} (|A| = 𝐴 is the cardinal of

A), and a large number of unlabeled samples U = X𝑈 × Y𝑈 = {(𝑋𝐴+1, 𝑦𝐴+1), ..., (𝑋𝐴+𝑈 , 𝑦𝐴+𝑈)}
(|U| = 𝑈), with for all 𝑖 ∈ [1, 𝐴 + 𝑈], 𝑋𝑖 ∈ ℝ𝑑𝐼 , 𝑦𝑖 ∈ [0, 1]𝐶 and | |𝑦𝑖 | |1 = 1. The set of labels

Y𝑈 is unknown, so our main objective is to determine them using the samples in A. To do

so, we make the following three assumptions: structure assumption (Chapelle et al.., 2009),

preservation of the local structure during dimensionality reduction, and annotation space
coverage. The first assumption has been explained in the previous section I, and it mainly

states that samples living in the same structure, are likely to have the same label. The second

assumption asserts that, the reduced latent space obtained after applying a dimensionality

reduction technique, should have a similar local structure to the original latent space, i.e., the

neighborhoods of the samples should be globally preserved. The last assumption says that,

the few initial manually labeled samples (samples in A) should cover as much as possible

the whole annotation space, so there should not be isolated regions without labeled samples

(which allows reducing annotation errors during label propagation).

Furthermore, our global approach is composed of two main steps: (1) semi-automatic label

propagation and (2) noisy-labels classification using noise-tolerant loss functions. The first

step, (1), is subdivided in four parts (see figure 3.1):

• Feature extraction: We start by extracting features from the original input data using a

DL unsupervised learning technique (auto-encoder), to bypass time-consuming feature

handcrafting. For this step, all the samples in D are used, as the label information is not
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necessary.

• Dimensionality reduction: Because of the high dimensionality of the latent space ob-

tained in the previous step, it is necessary to further reduce its dimension. Indeed,

(Benato et al.., 2021) showed that working on a reduced and interactive latent space al-

lows more efficient manual and automatic labeling. In this step, several reduced latent

spaces are generated, and the best one for semi-automatic label propagation is selected

with a strategy detailed in the section II.3.

• Manual annotation: Our method relies on a small number of labeled samples to label a

larger number of unlabeled ones. Because of this, a manual annotation step is necessary.

This can be done using the original input data space (images), or using the 2D reduced

latent space obtained in the previous step, with the help of the original data associated to

each 2D sample. Moreover, it is important to take into account the annotation space cov-
erage assumption when doing this process, as our method strongly relies on it. Therefore,

manual annotation using the 2D reduce latent space is recommended.

• Automatic label propagation: At last, the obtained 2D reduced latent space is used

to propagate the labels from the labeled samples to the unlabeled ones, based on local

quality metrics. The use of local quality metrics allows ensuring the second assumption

regarding the preservation of the local structure after dimensionality reduction. What is

more, this step allows creating a high quality and richer training set (i.e., increase the size

of A) with a controlled annotation error and reduced annotation effort.

Finally, once the semi-automatically labeled dataset is obtained, DL models can be trained

on it, using noise-tolerant loss functions to compensate the noise introduced in the labels by

automatic label propagation.

II.2 Feature extraction

To avoid time-consuming manual design of features, we propose to use an unsupervised

deep learning model to automatically extract features from the input data. This also has the

advantage to extract data-specific feature from the inputs, being easier to use on different

datasets than handcrafted features.

Moreover, the model that we propose to use is an auto-encoder (AE), denoted 𝐴𝐸 = 𝐷 ◦ E,

composed of two parts: an encoder E extracting features from the input data on a latent feature

space T = E(X) ⊂ ℝ𝑑𝑇 (with dimension 𝑑𝑇 >> 2), and a decoder 𝐷 which uses these feature to

reconstruct the original samples. Thus, the objective of 𝐴𝐸 is to minimize the reconstruction

error between X and its approximation X̂ = 𝐷 (T ).
The principle of AEs is generic and can be adapted to different types of data (e.g., images,

volumes, time-series, text, ...), but in our case we use a convolutional AE as, in this chapter, we

will directly work with images or TFRs which can be interpreted as images.

Ultimately, as our main objective is to annotate the largest number of samples in U ⊂ D
using A ⊂ D (and not reconstruct samples from its encoded representations), we are going to

use all the available samples in D to train the models.

II.3 Dimensionality reduction

Even if the dimension of the targeted feature space, 𝑑𝑇 , is smaller than the dimension of the

original space, 𝑑𝐼 , the previous step allows doing a first dimensionality reduction step while

doing automatic feature extraction. However, this dimension remains too large for manual
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annotation and efficient automatic label propagation. Indeed, (Benato et al.., 2021) showed

that working on a reduced low dimensional space allows doing a more efficient manual and

automatic annotation. This is understandable for two main reasons. First, for human experts

it is easier and faster to work in a 2D space where all the samples are visualizable at once,

rather than in a high-dimensional space where only one sample (e.g., image) can be visualized

at a time, and where no global or local structure is discernible. Second, doing automatic label

propagation is more computationally and energy efficient in low dimensional spaces. This

last point is important, as we want to reduce the annotation times, so fast automatic label

propagation is necessary.

Furthermore, dimensionality reduction can be obtained using different techniques such as

PCA (Jolliffe and Cadima, 2016), ISOMAP (Tenenbaum, de Silva and Langford, 2000), t-SNE

(Maaten and Hinton, 2008), or UMAP (McInnes, Healy and Melville, 2020). These techniques

often depends on different hyperparameters, and the obtained projection can drastically change

based on the chosen ones (this will be illustrated in subsection III.4.B, figure 3.6). Therefore,

it is important to define a criterion allowing to identify the best projection for the desired

task, namely automatic label propagation. To do so, we propose to use the silhouette score

(Rousseeuw, 1987), which allows measuring the compactness of each class cluster (i.e., set

of samples belonging to the same class), as well as their distances with respect to the other

class clusters. This is interesting for neighborhood-based label propagation strategies, because

we want to increase the inter-cluster distances and reduce the intra-cluster distances, as an

important part of annotation errors come from the label propagation at the boundaries of two

clusters corresponding to different classes.

More formally, let us assume that we have a dimensionality reduction technique 𝑃𝛾 with

hyperparameters 𝛾 ∈ ℝℎ, allowing to reduce the dimension 𝑑𝑇 of T to 𝑑𝑃, obtaining a final

reduced latent space F = 𝑃𝛾 (T ) = {𝑃𝛾 (E(𝑋1)), ..., 𝑃𝛾 (E(𝑋𝐴)), 𝑃𝛾 (E(𝑋𝐴+1)), ..., 𝑃𝛾 (E(𝑋𝐴+𝑈))}.
Let us denote for all 𝑝 ∈ [1, 𝐶], 𝐶𝑝 = { 𝑗 ∈ [1, 𝐴] / 𝑦𝑗 = 𝑝} the set of indices of the samples of

class 𝑝. The silhouette score, 𝑆, is then defined as follows:

𝑆(𝑃𝛾) =
1

𝐴

𝐴∑︁
𝑘=1

𝑠(𝑘) (3.1)

where

∀𝑝 ∈ [1, 𝐶],∀𝑘 ∈ 𝐶𝑝, 𝑠(𝑘) =
{

𝜇𝑖𝑛𝑡𝑒𝑟 (𝑘 )−𝜇𝑖𝑛𝑡𝑟𝑎 (𝑘 )
𝑚𝑎𝑥 (𝜇𝑖𝑛𝑡𝑒𝑟 (𝑘 ) ,𝜇𝑖𝑛𝑡𝑟𝑎 (𝑘 ) ) if |𝐶𝑝 | ≥ 2

0 else

(3.2)

and where 𝜇𝑖𝑛𝑡𝑒𝑟 (𝑘) is the smallest mean distance between the labeled sample𝑃𝛾 (E(𝑋𝑘)) and

all the labeled samples for the other classes (i.e. smallest mean inter-cluster distance), whereas

𝜇𝑖𝑛𝑡𝑟𝑎 (𝑘) is the mean distance between the labeled sample 𝑃𝛾 (E(𝑋𝑘)) and all the labeled samples

of the same class (i.e. mean intra-cluster distance). In simple terms, for all 𝑝 ∈ [1, 𝐶] and 𝑘 ∈ 𝐶𝑝,

the silhouette score compares the similarity of the 𝑘 𝑡ℎ sample between the samples of its own

class and the samples of the other classes. Note that, to compute 𝑆, we need the labels of the

samples, so only the embeddings of the labeled samples 𝑃𝛾 (E(𝑋1)), ..., 𝑃𝛾 (E(𝑋𝐴)) are used.

Moreover, to select the best projection for automatic label propagation using this metric,

one can solve the following optimization problem:

arg max

𝛾∈ℝℎ
𝑆(𝑃𝛾) (3.3)

For computational reasons, we relax the previous optimization problem, by limiting the possible

hyperparameters to a smaller finite set H = {ℎ𝑖 ,∀𝑖 ∈ [1, 𝑚], ℎ𝑖 ∈ ℝℎ} ⊂ ℝℎ of 𝑚 possible
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combinations:

arg max

𝛾∈H
𝑆(𝑃𝛾) (3.4)

This problem can be simply solved by computing all the projections 𝑃𝛾
1
, ..., 𝑃𝛾𝑚 , computing their

respective silhouette scores, and then choosing the one with the highest value. Subsequently,

we denote as 𝑃𝛾 the best projection selected with our proposed strategy, for automatic label

propagation.

At last, in our approach, we used t-SNE following the recommendations of (Benato et al..,
2018, 2021). This choice is justified by the second assumption of our method (preservation

of the local structure): we are more interested in the local structure (neighborhood) of the

feature spaces than in their global one, so methods focusing on this property are preferred over

more global methods such as PCA or UMAP. What is more, t-SNE has three hyperparameters

(perplexity, learning rate and early exaggeration) which have to be tuned to obtain the desired

2D reduced latent space. This is done by combining a grid search with the abovementioned

projection selection strategy.

II.4 Automatic label propagation

The core of our method is the automatic label propagation step. This step is based on the concept

of the local quality metric, 𝑙𝑞, introduced in (Lueks et al.., 2011), and detailed in Chapter 2.

We propose to use this metric to guide a k-nearest neighbor (KNN) label propagation strategy,

allowing to select from which labeled samples we are going to propagate the labels, and to

which unlabeled samples we are going to do it.

More formally, let us suppose that the previous steps were done, and that we have a suitable

working latent space for label propagation obtained by a fine-tuned dimensionality reduction

technique 𝑃𝛾 . As these steps were done, we suppose that the structure assumption is verified

in the high-dimensional space (the one of the AE), and in the low-dimensional one (the one

obtained by 𝑃𝛾). The local quality of sample 𝑖 ∈ [1, 𝐴 +𝑈], denoted as 𝑙𝑞(𝑃𝛾 (E(𝑋𝑖)), 𝑘𝑠, 𝑘𝑡 ) =
𝑄𝑖
𝐴
(𝑘𝑠, 𝑘𝑡 ), measures the neighborhood modification of the projected sample 𝑃𝛾 (E(𝑋𝑖)) with

respect to the encoded representation by the AE, E(𝑋𝑖). Let us recall that 𝑘𝑠 controls the size

of the neighborhood that it is used to compare the samples in the high and low dimensional

manifolds1, whereas 𝑘𝑡 controls the tolerated rank errors2 (in other words, rank errors below

𝑘𝑡 will not be considered as errors).

Furthermore, following the notations of (Zhu and Ghahramani, 2002), let us denote as

𝑌 ∈ ℝ(𝐴+𝑈)×𝑁 the label matrix, where the first 𝐴 rows correspond to the labeled samples and

the last 𝑈 rows correspond to the unlabeled samples. As we work with probabilistic labels,

the element of the 𝑖𝑡ℎ row and the 𝑝𝑡ℎ column, 𝑌𝑖 𝑝, represents the probability that the sample 𝑖

is from class 𝑝. Moreover, let us denote as 𝑇𝐾,𝜏 ∈ 𝑅 (𝐴+𝑈,𝐴+𝑈) a probabilistic transition matrix,

where 𝑇
𝐾,𝜏
𝑖 𝑗

is the probability to pass from sample 𝑖 to sample 𝑗 . This probability depends on

the size 𝐾 of the neighborhoodV𝐾 (𝑃𝛾 (𝑢)) used to search for labeled neighbors of an unlabeled

sample 𝑢 ∈ U (𝐾 must not be confused with 𝑘𝑠, which is used to compute the local quality of

the 𝑃𝛾 (𝑋𝑖) for 𝑖 ∈ [1, 𝐴+𝑈]), and 𝜏, the threshold used to determine whether the local quality of

a point is considered acceptable or not (𝜏 must not be mistaken for 𝑘𝑠, which is used to compute

the local quality). We define 𝑇𝐾,𝜏 based on the nearest-neighbors method and the local quality:

∀𝑖, 𝑗 ∈ [1, 𝐴 +𝑈], 𝑇𝐾,𝜏
𝑖 𝑗

=

{
1 if (𝑖, 𝑗 ∈ [1, 𝐴] ∧ 𝑖 = 𝑗) ∨ (𝑖, 𝑗 ∈ P𝐾,𝜏) ∨ (𝑖 = 𝑗 ∧ 𝑖 ∈ C𝜏)
0 else

(3.5)

1The higher 𝑘𝑠 , the more demanding the global quality (and not the local one) as we ask for less rank errors in

larger neighborhoods.

2The higher 𝑘𝑡 , the more errors are tolerated. This implicates that the local quality becomes less informative.
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with

• P𝐾,𝜏 = {𝑖 ∈ [𝐴 + 1, 𝐴 +𝑈], 𝑗 ∈ [1, 𝐴]/𝑃𝛾 (𝑋𝑖) ∈ V𝐾 (𝑃𝛾 (𝑋𝑗)), 𝑙𝑞(𝑃𝛾 (𝑋𝑖), 𝑘𝑠, 𝑘𝑡 ) > 𝜏,
𝑙𝑞(𝑃𝛾 (𝑋𝑗), 𝑘𝑠, 𝑘𝑡 ) > 𝜏,∀ 𝑓 ∈ V𝐾 (𝑃𝛾 (𝑋𝑖)), 𝑙𝑞(𝑃𝛾 (𝑋𝑗), 𝑘𝑠, 𝑘𝑡 ) > 𝑙𝑞( 𝑓 , 𝑘𝑠, 𝑘𝑡 )}, where

– 𝑃𝛾 (𝑋𝑖) ∈ V𝐾 (𝑃𝛾 (𝑋𝑗)) means that the embedded representation of the unlabeled

sample 𝑖 is in the 𝐾-neighborhood of the embedded representation of the labeled

sample 𝑗 ;

– 𝑙𝑞(𝑃𝛾 (𝑋𝑖), 𝑘𝑠, 𝑘𝑡 ) > 𝜏, 𝑙𝑞(𝑃𝛾 (𝑋𝑗), 𝑘𝑠, 𝑘𝑡 ) > 𝜏 means that the local quality of samples

𝑋𝑖 and 𝑋𝑗 are greater than the defined threshold 𝜏;

– ∀ 𝑓 ∈ V𝐾 (𝑃𝛾 (𝑋𝑖)), 𝑙𝑞(𝑃𝛾 (𝑋𝑗), 𝑘𝑠, 𝑘𝑡 ) > 𝑙𝑞( 𝑓 , 𝑘𝑠, 𝑘𝑡 ) means that the embedded repre-

sentation of the labeled sample 𝑋𝑗 is the one that has the best local quality in the

K-neighborhood of the unlabeled sample 𝑋𝑖 .

• C𝜏 = {𝑖 ∈ [𝐴 + 1, 𝐴 +𝑈]/𝑙𝑞(𝑃𝛾 (𝑋𝑖), 𝑘𝑠𝑘, 𝑘𝑡 ) < 𝜏} is a set that contains all of the unlabeled

samples with a local quality score smaller than the defined threshold 𝜏. These samples

will not be taken into account for label propagation.

The setP𝐾,𝜏 allows label propagation from the labeled samples to their unlabeled neighbors

based on a local quality criterion, while the set 𝐶𝜏 avoids labeling samples that do not respect

this criterion. We can now define our label propagation algorithm as in (Zhu and Ghahramani,

2002):

• Propagate the labels from the good local quality labeled samples to the good local quality

unlabeled samples: 𝑌 ← 𝑇𝐾,𝜏 × 𝑌 ;

• Row normalize 𝑌 (by construction of 𝑇𝐾,𝜏 , 𝑌 is row-normalized)1;

• Update 𝑇𝐾,𝜏 by considering adding the new labeled samples to A;

• Repeat the process until there are no more samples to label (or until some number of

iterations is reached).

Now, we can directly compare our proposed approach with the one of (Benato et al.., 2018,

2021). Indeed, in our method, the transition matrix 𝑇 is computed through KNN and a local

quality criterion, whereas in (Benato et al.., 2021) the transition matrix 𝑇 is computed using

Laplacian SVM and OPF-semi.

Finally, our algorithm converges as it will finish when there are no more samples to label,

or when there are no more unlabeled samples with local quality greater than the established

threshold. The final algorithm of our method is presented in Algorithm 1.

II.5 Classification with noisy labels

The final step of our approach consists in classification. Indeed, our main objective is to

classify HITS between artifacts, gaseous emboli, and solid emboli, but we only dispose of a

small limited number of labeled samples. The previous steps allow us to get a larger labeled

samples of HITS with reduce annotation effort. However, the obtained semi-automatically

labeled datasets are by nature noisy, mainly because of automatic label propagation, which can

disrupt the learning process of DL models. Therefore, to efficiently train DL models on these

datasets without decreasing their final performances, one need to take into account this noise

1As its name indicate it, row-normalization is done with respect to each row. This step is done to still have a

label probability interpretation of 𝑌 , if not, the sum of the elements in one row can be smaller or greater than 1.
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Algorithm 1: Local quality with KNN (LQ-KNN) label propagation algorithm.

1 Input: D = A ∪U, 𝑘𝑠, 𝑘𝑡 , 𝐾 , 𝜏

2 Output: New labeled dataset D̃
3 Initialization: P𝐾,𝜏 and 𝑇𝐾,𝜏 using their definition.

4 Iterations:

• Extract features of ALL of the samples using an auto-encoder model.

• Dimensionality reduction of the previous representations:

– Apply t-SNE with grid search;

– Select the best projection 𝑃𝛾 using the silhouette score;

– Obtain the embedded representations 𝑃𝛾 (𝑋1), ..., 𝑃𝛾 (𝑋𝑖𝐴 +𝑈) of the samples using

𝑃𝛾 ;

– Compute the local quality 𝑙𝑞(., 𝑘𝑠, 𝑘𝑡 ) of each sample;

– Sort the representations obtained by decreasing the local quality.

• Propagate the labels using the local quality of the embedded representations:

while P𝐾,𝜏 ≠ ∅ do
𝑌 ← 𝑇𝐾,𝜏 × 𝑌 ;

Row normalize 𝑌 ;

Update A,U, 𝑇𝐾,𝜏 and P𝐾,𝜏 ;
end

• Define D̃ = A
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during the training process. As seen in Chapter 2, several techniques allow learning under a

noisy-labels context, but here we propose to use noise-tolerant loss functions, as they can easily

adapt to new datasets/architectures, do not need pre-training nor the knowledge of the noise

rate, and allow using all the available labeled samples.

More precisely, we propose to use the generalized cross-entropy (GCE) (Zhang and Sabuncu,

2018) which presents interesting noise tolerance properties while still having a good conver-

gence rate, thanks to the hyperparameter 𝑞. Following the recommendations of (Zhang and

Sabuncu, 2018), we fix 𝑞 = 0.7 as it allows getting a good compromise between convergence

speed and noise tolerance.

III Method evaluation

To validate our method, we proposed different experiments evaluating the main aspects of

our method: automatic label propagation, projection selection, and classification under noisy

labels. To do so, we perform four experiments that will be detailed in the following sections,

using three different datasets.

III.1 Datasets

We used three datasets for the different conducted experiments: two publicly available ones,

MNIST (LeCun and Cortes, 2010) and OrganCMNIST (Yang, Shi, Wei, Liu, Zhao, Ke, Pfister

and Ni, 2021; Bilic, Christ et al.., 2019), and one private HITS dataset.

III.1.A MNIST and OrganCMNIST

MNIST: The MNIST dataset is a well-known machine learning dataset composed of 28 ×
28 grayscale images of handwritten digits, distributed in 10 classes. The original dataset is

composed of 60 000 training labeled samples, and 10 000 testing labeled samples. However, for

computation and energy consumption reasons, we only used a subset of this dataset, composed

of 15 000 randomly sampled training samples (25% of the original training dataset), and 10 000

testing samples (all the available testing samples).

OrganCMNIST: We also validate our approach on a publicly available dataset, OrganCM-

NIST, composed of 28 × 28 computed tomography images of 11 different organs. The dataset

includes 15 392 training labeled samples, and 8 268 testing labeled samples. All the available

samples (training and testing) were used to train and evaluate our method.

III.1.B HITS

We apply our approach to a more realistic and difficult dataset, composed of HITS samples ex-

tracted from different subjects coming from different healthcare centers. This dataset, detailed

hereafter, is by nature minimally labeled, with potential manual annotation errors.

Data acquisition: TCD recordings of a duration between 30 and 180 min were performed on

51subjects (see table 3.1 for the details about the population) from 11 different healthcare centers

(in France, Switzerland, Belgium, England and The Netherlands) using two Atys Medical

devices (TCD-X Holter or WAKIe R3) with an insonation frequency of 1.5 MHz. The recordings

were done under heterogeneous conditions as the subjects can have different pathologies

(carotid stenosis, patent foramen ovale or none), come from different care units (neurovascular
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Table 3.1: HITS subject’s population characteristics computed with the available information.

F stands for female, M for male, and U for unknown.

Sex Number Median Age Range Age Mean n° HITS/min

F 25 73.5 24-91 13.15

M 20 62.5 21-88 14.27

U 7 74.5 71-78 12.99

All 51 68.5 21-91 13.56

or cardiovascular) were injected with different contrast agents (sonovue, iodine-containing

contrast agent, or none), and underwent different procedures (TAVI, AFA, or none). What

is more, according to the recommendations to monitor the MCA for emboli detection, the

following acquisition information was used:

• Pulse repetition frequency: 4.4-6.2 kHz;

• Transmitted ultrasound frequency: 1.5 MHz;

• Insonation depth: 45 − 55 𝑚𝑚;

• Sample volume: 8 − 10 𝑚𝑚3
.

Data pre-processing: From the abovementioned recordings, Atys medical data management

software (ADMS), was used to compute their log-scale scale spectrogram, detect HITS using

the criteria in Chapter 1, and export the obtained HITS into raw signals (WAV files) and TFRs

(PNG images files). In a nutshell, we used a high-pass 4
𝑡ℎ

order Butterworth digital filter

with a cutting frequency of 150𝐻𝑧, a detection threshold for the HITS of 7𝑑𝐵, a gain of 6𝑑𝐵,

and no noise reduction. For the spectrogram computation, the length of the windowed signal

after padding with zeros1 was of 𝑛𝑓 𝑓 𝑡 = 128, the overlap size of 𝑛𝑜𝑣𝑒𝑟𝑙𝑎𝑝 = 8, and a Blackman

window was used. This resulted in 68 492 total HITS, among which 1 545 were manually

labeled according to four classes: 569 solid emboli, 569 gaseous emboli, 403 artifacts, and 4

unknown. We refer the reader to appendix 2 for the details about the HITS distribution per

subject.

Final datasets: We distinguish two datasets: (1) the fully labeled one composed of 1 541

labeled ones2, henceforth referred as the HITS-small dataset, and (2) the partially labeled one,

from now on referred as the HITS-large dataset, composed of 68 492 HITS, where only 1 541

are labeled (the same as the HITS-small dataset).

III.2 Baselines

Automatic data annotation: In all the label propagation experiments, we compared three

models: LQ-KNN (our proposed approach based on local quality metrics and KNN), Std-KNN

(standard KNN without local quality metrics), and OPF-semi (Amorim et al.., 2014) which

is commonly used for data annotation. To implement the OPF-semi models, we used the

python library OPFython (De Rosa and Papa, 2021), whereas for the first two, we used Scikit-

Learn (Buitinck, Louppe, Blondel, Pedregosa, Mueller, Grisel, Niculae, Prettenhofer, Gramfort,

Grobler, Layton, VanderPlas, Joly, Holt and Varoquaux, 2013).

1Padding with zeros is only done if necessary.

2We do not use the unknown HITS (coming from only 39 patients), as we only have four of none expert annotator

was able to determine their true class.
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Classification under noisy labels: We trained different CNNs on the different datasets, using

two different loss functions: the CE (non-noise-tolerant), and the GCE (noise-tolerant). The

different models were trained on a clean non-noisy dataset, as well as on artificially (symmetric)

noisy datasets, and semi-automatically labeled datasets.

III.3 Evaluation metrics and strategy

To validate our method, we have to consider two perspectives: automatic data annotation

through label propagation, and classification under noisy-labels. Therefore, for each task, we

need to select the correct evaluation metrics and strategies.

III.3.A Automatic data annotation

Evaluation metrics: To measure the performance of the different automatic data annotation

methods, we use two metrics: the annotation accuracy 𝛼, and the percentage of labeled samples

𝑝𝐴. The metrics are defined as follows:

𝛼 =
|G|
|Ã |

and 𝑝𝐴 =
|Ã |
|U|

where Ã is the set of all the newly automatically labeled samples, G is the set of correctly

automatically labeled samples from Ã and |.| is the cardinal operator.

Evaluation strategy: For all the fully labeled datasets, we consider that only 10% of the

samples are annotated i.e. A is composed of 10% of the available labeled samples (randomly

selected), and U is composed of the remaining ones1. Therefore, for the selected projection

𝑃𝐵, we used only a part of the labeled samples (10%), and we propagate the labels from these

samples to the rest of the samples on the 2D reduced latent space obtained by 𝑃𝐵.

Moreover, to compute the local quality of the samples, we fixed 𝑘𝑠 = 10 and 𝑘𝑡 = 10. Three

reasons motivate this choice. First, we observe experimentally that the values of 𝑘𝑠 and 𝑘𝑡 do

not have an important influence on the annotation accuracy, as long as their values are not too

large (i.e., less than 50); this will be further discussed in subsection III.5.E. Second, we want

to have good local qualities in small neighborhoods in order to do a better label propagation.

Third, as abovementioned, large values of 𝑘𝑠 and 𝑘𝑡 can lead to misleading values of local

quality, where high values do not accurately translate the preservation of the local structure.

At last, for statistical purposes, each label propagation experiment was repeated 50 times.

On top of that, for the MNIST dataset, 10 different auto-encoder models were trained, allowing

to get tighter statistical results.

III.3.B Classification

Evaluation metrics: To evaluate the classification performances of the different trained clas-

sifiers, we used two metrics: the accuracy and the Matthew’s correlation coefficient (MCC).

The first metric is used for the MNIST and OrganCMNIST datasets, whereas the both are used

for the HITS datasets. Indeed, to facilitate comparison with other works, accuracy is preferred

for the MNIST and OrganCMNIST datasets, as it is commonly used. For the HITS datasets, the

MCC is a good metric as it translated better the classification performances under imbalanced

classes, as it will be the case for the semi-automatically labeled finally HITS-large dataset.

1This allows us to evaluate the annotation performance of automatic label propagation, as we know the true

label of the automatically labeled samples.
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Table 3.2: Training parameters of the auto-encoders used in experiment 1. MSE stands for

mean squared error loss.

Dataset Epochs Batch Size Learning rate Optimizer Weight Decay Loss function

MNIST

50 32

5e-2 1e-5

Adamax MSEOrganCMNIST 50 32 5e-5 1e-7

HITS 5e-3 1e-2

Evaluation strategy: Two different evaluation strategies were used, based on the dataset:

• HITS datasets: We used a leave-one-subject-out based strategy. First, label propagation

is used to automatically label a part of the unlabeled samples. For the HITS-small dataset,

only 10% of the samples are considered as labeled, whereas for the HITS-large dataset,

all the labeled samples are used as this dataset is partially labeled. Second, different

train/test splits are created by taking as test samples the manually labeled samples of a

fixed subject and as train samples all the (manually and automatically) labeled samples

of the rest of the subjects. In this way, we get 39 or 51train/test splits. Finally, different

models are trained using these splits, and the process is repeated 10 times for the HITS-

large dataset and 20 times for the HITS-small dataset.

• MNIST and OrganCMNIST: We used 50 times repeated holdout as evaluation method.

The final training set was obtained by considering only 10% of the training samples as

labeled, and then propagating their labels to the rest of the training samples. This was

not done for the test set, which remained untouched and composed only of the manually

labeled testing samples (10000 for MNIST and 8268 for OrganCMNIST).

III.4 Experimental setup and results

We conducted four series of experiments to validate the different components of our approach.

Hereafter, we are going to detail the experimental setups, as well as the obtained results for

each experiment.

III.4.A Experiment 1: Automatic data annotation evaluation

Objective: The objective of this experiment is to test our automatic label propagation method

on three different datasets: the MNIST subset, OrgnaCMNIST, and HITS-small.

Experimental setup: We used two different AE architectures, which can be found in figure 3.2

with the parameters established in table 3.2. What is more, to find the projection to use,

three t-SNE parameters were fine-tuned using grid search (learning rate, perplexity, and early

exaggeration), and the explored values can be found in table 3.3. At last, the parameters that

we used for label propagation for each dataset can be found in table 3.4.

Results: The results of this first experiment can be found in table 3.5 and figures 3.3, 3.4,

and 3.5. Several interesting points can be highlighted.

Firstly, from table 3.5 we can see that LQ-KNN outperforms OPF-semi in all the tested

datasets, and this, with annotation times reduced by a factor of at least 10
2
. In fact, even though

LQ-KNN (nor Std-KNN) is not able to annotate all the available samples as OPF-semi, it is able

to annotate more than 96% of the unlabeled samples with annotation accuracies greater than
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(a)

(b)

Figure 3.2: Auto-encoder architectures used. (a) Architecture for the MNIST and OrganCM-

NIST datasets. (b) Architecture for the HITS dataset.

Table 3.3: Parameters for the grid search in experiment 1. As the HITS and OrganCMNIST

datasets are more complex than the MNIST dataset, a more complete grid search is needed to

find the projections to keep.

Dataset Perplexity Early Exaggeration Learning rate

MNIST [10, 30, 50] [50, 250, 500] [10, 100, 1000]

OrganCMNIST

[5, 10, 15, 20, 25, 30, 35, 40, 45, 50] [5, 10, 25, 50, 75, 100, 200, 500] [10, 50, 100, 500, 1000]

HITS

82% against 78% for OPF-semi. What is more, compared to the baseline Std-KNN, LQ-KNN is

able to annotate more samples with comparable accuracies. For instance, for the HITS dataset,

LQ-KNN annotates around 98.50% of the available samples with an annotation accuracy of

82.67%, against 95.99% and 82.12% respectively for Std-KNN. A similar phenomenon can be

observed for the other datasets.

Secondly, from Figures 3.3, and 3.5 we can see that, the proportion of finally labeled samples,

𝑝𝐴, as well as the annotation accuracy, 𝛼, are dependent from the chosen neighborhood for KNN

label propagation, 𝐾 . Actually, the smaller 𝐾 , the higher 𝛼 but the smaller 𝑝𝐴; inversely, the

higher 𝐾 , the higher 𝑝𝐴 but the smaller 𝛼. By the same token, there is a dependency between

𝜏, the threshold allowing to define good quality samples, and 𝛼 and 𝑝𝐴. Indeed, smaller values

of 𝜏 gives higher values of 𝑝𝐴 but smaller ones of 𝛼, whereas increasing 𝜏 allows to increase 𝛼

but decreases 𝑝𝐴.

Thirdly, from figure 3.3 we can identify two main label propagation regimes. The first

regime, designed as ’dynamic regime’, corresponds to small values of 𝐾 , and is characterized

by a decreasing annotation accuracy but an increasing number of labeled samples. The sec-

ond regime, referred as the ’permanent’ regime, corresponds to higher values of 𝐾 , and is

characterized by a plateau for 𝛼 and 𝑝𝐴.
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Table 3.4: Parameters used for label propagation in experiment 1. As all the tested datasets are

fully manually labeled, we randomly select 10% of the samples and consider them as labeled

(A), whereas the rest are considered as unlabeled (U). Then, we propagate the labels from

the labeled samples to some of the unlabeled ones using one of the propagation methods. The

experiments using the HITS-small dataset were repeated 50 times. The experiments using the

MNIST dataset were repeated 50 times for 10 different auto-encoders (500 repetitions in total),

except for OPF-semi, where we did 20 repetitions for each auto-encoder. 𝐾 corresponds to the

size of the neighborhood used to search for labeled neighbors for an unlabeled sample.

Exp. name Dataset |A| |U| Propagation K 𝜏 Repetitions

Std-KNN

MNIST 1496 13504

Std-KNN

1 ≤ 𝐾 ≤ 20

- 500

HITS-small 152 1393 - 50

OrganCMNIST 1534 13858 - 50

LQ-KNN-𝜏

MNIST 1496 13504

LQ-KNN 0.1 ≤ 𝜏 ≤ 0.5

500

HITS-small 152 1393 50

OrganCMNIST 1534 13858 50

OPF-semi

MNIST 1496 13504

OPF-semi

- - 200

HITS-small 152 1393 - - 50

OrganCMNIST 1534 13858 - - 20

Finally, we examine the importance of the label propagation order. To do this, we fix the used

projection where label propagation is done, and then propagate the labels from the labeled

samples to the unlabeled ones, using two strategies: (1) sorting the samples by decreasing

local quality values, and (2) without sorting the samples. Figure 3.4 indicates that strategy

(1) achieves higher annotation accuracies than strategy (2). On top of that, the annotation

accuracy performance gap becomes more important when the neighborhood size used for

label propagation, 𝐾 , increases.

III.4.B Experiment 2: Validation of the projection selection strategy

Objective: The objective of this experiment is to validate our projection selection strategy,

used for efficient label propagation.

Experimental setup: We used the same parameters as in the previous experiment, but we

only used the HITS-small dataset. From the obtained t-SNE projections, for each dataset,

we selected the best and worst projections in terms of silhouette scores. This gives us two

projections per dataset, as seen in figure 3.6 for the HITS (silhouette scores of 0.54 and −0.23 for

the best and worst projections, respectively). Then, we propagate the labels as in experiment

1, using these two projections.

Results: Results can be found in table 3.6. We observe that, for all values of 𝐾 , and for

both KNN-based label propagation methods, the best annotation accuracies are obtained when

the selected projection is used, and this with an important margin with respect to the worst

projection. Additionally, we can note that the number of labeled samples is often higher when

the best projection is used. What is more, we can also note that, even when we use the worst

projection, LQ-KNN tends to give higher annotation accuracies than Std-KNN, at the expense

of a lower number of labeled samples.

77

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0064/these.pdf 
© [Y. Vindas-Yassine], [2023], INSA Lyon, tous droits réservés



Table 3.5: Experiment 1: Label propagation results. A corresponds to the set of initially (man-

ually) labeled samples,U corresponds to the set of initially unlabeled samples, 𝜏 corresponds

to the local quality threshold defining if a sample is of good quality, 𝐾 corresponds to the

size of the neighborhood used to search for labeled neighbors for an unlabeled sample, 𝛼 is

the annotation accuracy, 𝑝𝐴 the final percentage of labeled samples, and the annotation time

corresponds to the one needed to label one sample in ms. Our proposed approach LQ-KNN

outperforms OPF-semi (Amorim et al.., 2014) and the baseline Std-KNN, at the expense of

a smaller number of labeled samples. Additionally, LQ-KNN and Std-KNN are faster than

OPF-semi by a factor of at least 10
2
.

Dataset
Propagation |A| |U| 𝜏 K 𝛼 pA

Annotation
method time (ms)

MNIST

Std-KNN

1496 13504

- 5 91.83 ± 1.47 95.39 ± 1.05 (30.98 ± 5.84) × 10
−3

- 10 90.74 ± 1.45 99.43 ± 0.23 (28.78 ± 5.13) × 10−3

LQ-KNN 0.1

5 93.12 ± 1.36 93.88 ± 0.66 (59.10 ± 12.35) × 10
−3

10 92.66 ± 1.30 98.16 ± 0.42 (50.48 ± 11.32) × 10
−3

OPF-semi - - 82.32 ± 6.17 100.0 ± 0.0 102.71 ± 17.52

OrganCMNIST

Std-KNN

1534 13858

- 5 81.87 ± 0.76 90.26 ± 2.64 (26.33 ± 2.65) × 10
−3

- 10 79.86 ± 0.67 99.00 ± 0.20 (23.41 ± 1.98) × 10−3

LQ-KNN 0.1

5 84.46 ± 0.57 85.62 ± 1.99 (53.00 ± 7.47) × 10
−3

10 82.73 ± 0.44 96.24 ± 1.09 (44.36 ± 5.69) × 10
−3

OPF-semi - - 75.22 ± 4.48 100.0 ± 0.0 86.52 ± 0.51

HITS-small

Std-KNN

152 1393

- 5 82.12 ± 2.37 95.99 ± 1.70 (10.39 ± 0.20) × 10
−2

- 10 81.36 ± 1.81 99.58 ± 0.63 (10.04 ± 0.18) × 10−2

LQ-KNN 0.1

5 82.84 ± 2.12 94.48 ± 1.72 (16.87 ± 0.48) × 10
−3

10 82.67 ± 2.02 98.50 ± 0.80 (16.13 ± 0.35) × 10
−2

OPF-semi - - 78.40 ± 13.44 100.0 ± 0.0 9.48 ± 1.1

Table 3.6: Experiment 2. Label propagation for the HITS-small dataset using the best and worst

selected 2D projections according to the silhouette scores. The best selected projection allows

automatic annotation of more samples with higher annotation accuracy. 𝑆, silhouette score;A,

set of initially (manually) labeled samples;U, set of initially unlabeled samples; 𝜏, local quality

threshold that defines if a sample is considered as of good quality; 𝛼, annotation accuracy; 𝑝𝐴,

proportion of labeled samples.

K
Propagation

Projection 𝑆 |A| |U| 𝜏 𝛼 𝑝𝐴method

5
Std-KNN

Best 0.53 ± 0.05

152 1393

- 82.11 ± 2.37 95.99 ± 1.70

Worst −0.26 ± 0.07 - 58.43 ± 8.95 98.03 ± 1.22

LQ-KNN
Best 0.53 ± 0.04 0.1 82.84 ± 2.12 94.47 ± 1.72

Worst −0.25 ± 0.09 0.1 70.87 ± 7.18 68.57 ± 10.16

15
Std-KNN

Best 0.53 ± 0.05 - 80.31 ± 2.03 99.97 ± 0.07
Worst −0.26 ± 0.07 - 56.44 ± 9.83 99.66 ± 0.20

LQ-KNN
Best 0.53 ± 0.04 0.1 82.82 ± 1.96 98.84 ± 0.67

Worst −0.25 ± 0.09 0.1 66.16 ± 8.76 79.92 ± 7.531
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(a) (b)

(c) (d)

(e) (f)

Figure 3.3: Experiment 1: Label propagation hyperparameter study. (a) MNIST dataset annota-

tion accuracy. (b) MNIST dataset labeled samples (in %). (c) OrganCMNIST dataset annotation

accuracy (in %). (d) OrganCMNIST dataset labeled samples (in %). (e) HITS-small dataset

annotation accuracy. (f) HITS-small dataset labeled samples (in %). 𝜏 corresponds to the

threshold used to define good local-quality samples. For LQ-KNN: purple curves, 𝜏 = 0.1;

green curves, 𝜏 = 0.3; blue curves, 𝜏 = 0.5. The proportion (%) of unlabeled samples that were

labeled by the methods converges with 𝐾 , hence we show here the results for 𝐾 ≤ 11.

III.4.C Experiment 3: Classification on a dataset with known label noise

Objective: This experiment has two objectives. Firstly, we want to measure the classification

performances changes, when using a semi-automatically (noisy) labeled dataset obtained with

our approach. Secondly, we want to confirm if a noise-tolerant loss function can compensate

for the noise introduced in the labels by automatic label propagation.

Experimental setup: We trained a CNN classifier (see figure 3.7) with different parameters

(see table 3.8) on different datasets (see table 3.7). In order to work on a controlled environment,

in this experiment we only work using fully manually labeled datasets, where only 10% of the

samples are considered as labeled. Therefore, we can accurately estimate the noise rate, 𝜁 ,
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(a)

(b)

Figure 3.4: Experiment 1: Evaluation of the importance of the propagation order on the HITS-

small. (a) Annotation accuracy (in %). (b) Labeled samples (in %). For LQ-KNN with 𝜏 = 0.1:

blue curves, starting by labeling the higher local quality samples (the samples are sorted by

decreasing local qualities); red curves, without taking into account the propagation order (the

samples are not sorted by decreasing local qualities).

of the obtained semi-automatically labeled dataset using the results of experiment 1. Thus,

we estimate the noise rate created by a label propagation method as 𝜁𝑒𝑠𝑡 = 1 − 𝛼, with 𝛼 the

annotation accuracy of the method. Indeed, as seen in Chapter 2, in order for GCE to be

relatively robust against noisy labels, the noise rate should verify 𝜁 < 𝐶−1

𝐶
, with 𝐶 the number

of classes in the dataset.

Results: The results of this experiment can be found in figures 3.8 (MNIST), 3.9 (OrganCM-

NIST), 3.10, 3.11, 3.12, and 3.13 (HITS-small).

On the one hand, if we focus on the OrganCMNIST results (figure 3.9), three main phe-

nomena can be observed. First, we notice that, for a fixed loss function, the best classification

performances are obtained when we train the classifier on an LQ-KNN dataset, achieving a

global accuracy of 75.76% with OrganCMNIST LQ-KNN and GCE opposed to 74.58% with

OrganCMNIST Std-KNN and GCE, or 70.62% without label propagation and GCE. Secondly,

we can note that the robust loss function has an important impact on the final classification

performances, being able to increase the accuracy by more than 2% when noise is present.

Finally, we can see that even when we do not use a robust loss function (i.e., when we use

CE), our label propagation method provides models with better classification performances

(72.73%) than the baseline OrganCMNIST Std-KNN (71.71%). A similar trend is observed in

figure 3.8 for the MNIST dataset.

On the other hand, from the classification results of the HITS-small dataset (figures 3.10,

3.11) we can extract some information. First, for all the classes, both label propagation meth-
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(a)

(b)

(c)

Figure 3.5: Experiment 1: Label propagation for the HITS-small dataset using LQ-KNN with

𝐾 = 3 and 𝜏 = 0.3, and with 𝐾 = 10 and 𝜏 = 0.1. (a) Local quality map of the automatically

labeled samples. (b) LQ-KNN results with 𝐾 = 3 and 𝜏 = 0.3 (36.32% of labeled samples, with

96.44% accuracy). (c) LQ-KNN results with 𝐾 = 10 and 𝜏 = 0.1 (98.85% of labeled samples, with

92.52% accuracy). The diamonds correspond to the wrongly labeled samples. The manually

labeled samples are not shown here, for clarity. We note that the most of the errors are located

at the boundaries between two clusters of different classes.

ods (LQ-KNN and Std-KNN) allow improving classification performances of the model with

respect to the model trained using less labeled samples (but no noise). In fact, in terms of

MCC, the model trained on HITS-small LQ-KNN-K10 with CE outperforms the one without

propagation by a margin of 5.68%, whereas when GCE is used, this margin increases to 9.71%.

Secondly, for a fixed loss function, classifiers trained on LQ-KNN based datasets with

enough samples (i.e., 𝐾 = 10) outperform the ones trained on Std-KNN based datasets, in terms

of MCC and class accuracy. Actually, regardless of the loss functions, HITS-small LQ-KNN-K10

outperforms HITS-small Std-KNN-K10 in terms of solid emboli accuracy by a margin of over
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(a) (b)

Figure 3.6: Experiment 2: Examples of best and worst 2D chosen projections of the HITS-

small dataset (1545 samples) obtained with respect to the silhouette scores. (a) Best projection

(silhouette score, 0.54 ± 0.05). (b) Worst projection (silhouette score, −0.23 ± 0.09). The best

selected projection gives more distinct clusters per class than the worst. Art., artifact; GE,

gaseous emboli; SE, solid emboli.

(a)

(b)

Figure 3.7: Convolutional neural network architectures used for classification for the different

datasets. (a) Architecture for the MNIST dataset. (b) Architecture for the HITS datasets.

3.5%. This is particularly interesting in our case because solid emboli are the most dangerous

ones as they can cause ischemic stroke. On top of that, a model trained on HITS-small LQ-

KNN-K10 using GCE achieve similar performances than models trained on fully manually

labeled datasets (HITS-small Whole).
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Table 3.7: Different datasets used to train the models in experiment 3. The Core dataset

corresponds to the dataset used as the basis to apply label propagation. Only 10% of the

samples are considered as labeled (A), and the rest are unlabeled (U). 𝐾 corresponds to the

neighborhood that we consider to propagate the labels, and 𝜏 corresponds to the local quality

threshold that defines if a sample is considered of good quality. None, no labeled propagation

used to obtain the final dataset. 𝜁𝑚𝑎𝑥 corresponds to the maximum tolerated noise rate, whereas

𝜁𝑒𝑠𝑡 corresponds to the estimated noise rate, defined as 𝜁𝑚𝑎𝑥 = 1− 1

𝐶
and 𝜁𝑒𝑠𝑡 = 1−𝛼, where𝐶 is

the number of classes of the dataset, and 𝛼 is the annotation accuracy of the label propagation

method.

Dataset Core dataset 𝜁𝑚𝑎𝑥 Prop. method |A| |U|
# automatically

𝜁𝑒𝑠𝑡 K 𝜏labeled
samples

MNIST No propagation

MNIST 90

None 1496 13504 - - - -

MNIST Std-KNN Std-KNN 13426 ± 31 9.83 ± 1.45 10 -

MNIST LQ-KNN LQ-KNN 13256 ± 56 7.34 ± 1.30 10 0.1

OrganCMNIST No propagation

OrganCMNIST 91

None 1534 13858 - - - -

OrganCMNIST Std-KNN Std-KNN 13720 ± 28 18.13 ± 0.76 10 -

OrganCMNIST LQ-KNN LQ-KNN 13336 ± 151 17.27 ± 0.44 10 0.1

HITS-small Whole

HITS-small 67

None 1545 0 - - - -

HITS-small No propagation None 152 1393 - - - -

HITS-small Std-KNN-K2

Std-KNN

591 ± 42 15.05 ± 2.61 2 -

HITS-small Std-KNN-K10 1387 ± 8.7 18.64 ± 1.81 10 -

HITS-small LQ-KNN-K3

LQ-KNN

554 ± 63 10.12 ± 2.77 3 0.3

HITS-small LQ-KNN-K4 700 ± 54 10.35 ± 2.36 4 0.3

HITS-small LQ-KNN-K10 1372 ± 11 17.33 ± 2.02 10 0.1

Table 3.8: Training parameters used in experiment 3. 𝑞 represents the GCE hyperparameter

of the GCE controlling the trade-off between convergence speed and robustness to label-noise.

The higher the value of 𝑞, the more robust GCE but the lower the convergence speed; the

smaller the value of 𝑞 the faster the convergence but the smaller the robustness to label-noise.

Dataset Epochs Batch Size Learning rate Optimizer Weight Decay Loss function q

MNIST 100

32

7e-3 1e-7

Adamax

CE -

GCE 0.7

OrganCMNIST 150 7e-3 1e-5

CE -

GCE 0.5

HITS-small 50

2e-2

1e-7

CE -

1e-3 GCE 0.7

Finally, if we focus only on datasets obtained by automatically labeling less than 50% of

the unlabeled samples (i.e., HITS-small Std-KNN-K2 and HITS-small LQ-KNN-K4 datasets

in table 3.7), we see that LQ-KNN labeled datasets allow obtaining models that outperform

those trained on Std-KNN datasets, regardless the loss function. Interestingly, we can see that

even though HITS-small LQ-KNN-K3 has fewer labeled samples than HITS-small Std-KNN-

K2, it provides better classification performances, when nonrobust CE loss function is used.

Indeed, the classifier trained on HITS-small LQ-KNN-K3 with CE outperforms that trained on

HITS-small Std-KNN-K2 with CE by a margin of 1.90% in terms of MCC. However, this is not

observed when robust loss function GCE is used.

83

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0064/these.pdf 
© [Y. Vindas-Yassine], [2023], INSA Lyon, tous droits réservés



Figure 3.8: Experiment 3: MNIST accuracy results. The best performing classification model

is the one trained on the semi-automatically labeled dataset obtained with LQ-KNN, using a

robust loss function. When using nonrobust loss functions, the best performing classifier is

also the one trained with the dataset obtained using LQ-KNN.

Figure 3.9: Experiment 3: OrganCMNIST accuracy results. The best performing classification

model is the one trained on the semi-automatically labeled dataset obtained with LQ-KNN,

using a robust loss function. When using nonrobust loss functions, the best performing classifier

is also the one trained with the dataset obtained using LQ-KNN.

III.4.D Experiment 4: Classification on a semi-automatically labeled HITS-large
dataset with unknown label noise

Objective: The objective of this experiment is to study the behavior of our pipeline (semi-

automatic annotation followed by robust classification) on a real large medical HITS dataset,

where most of the samples are not labeled (less than 3%).

Experimental setup: We created different dataset by applying LQ-KNN and Std-KNN to

HITS-large, propagating the labels of the 1 545 labeled samples to a part of the unlabeled
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Figure 3.10: Experiment 3: HITS-small MCC results. Both label propagation methods increase

the classification performances of the trained models, with similar performances to a model

trained with a fully manually labeled dataset. Our proposed method, LQ-KNN, globally

outperforms the baseline model.

Figure 3.11: Experiment 3: HITS-small solid emboli accuracy results. Our proposed method,

LQ-KNN, allows creating datasets where models can learn almost as well as on fully manually

labeled datasets.

samples with unknown labels (see table 3.9). Based on the results of the previous experiments,

we make the assumption that the noise rate stays smaller than the maximum tolerated noise

rate, 𝜁𝑚𝑎𝑥 = 67%. Moreover, to avoid having imbalanced classes in those datasets, we apply

undersampling in order to have as many samples per class as the minority class, which always

is the solid emboli one. Once we get these datasets, we train different classifiers on them, under

the same conditions as in the previous experiment. The training of these models was done

using two loss functions (CE and GCE), a learning rate of 1𝑒 − 3, a batch size of 32, a weight

decay of 1𝑒 − 7, and 50 epochs.
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Figure 3.12: Experiment 3: HITS-small gaseous emboli accuracy results. Our proposed method,

LQ-KNN, allows creating datasets where models can learn almost as well as on fully manually

labeled datasets.

Figure 3.13: Experiment 3: HITS-small artifacts’ accuracy results. Our proposed method, LQ-

KNN, allows creating datasets where models can learn almost as well as on fully manually

labeled datasets.

Table 3.9: Datasets used in experiment 4 without controlled label noise. In this experiment

we study the behavior of our method on a real semi-automatically labeled dataset, without

controlled noise.

Dataset
Prop. |A| |U| # of automatically Samples

K 𝜏
method labeled samples per class

HITS-large Std-KNN Std-KNN

1545 66947

13653 4551

10

-

HITS-large LQ-KNN LQ-KNN 14970 4990 0.1
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Figure 3.14: Experiment 4: HITS-large MCC results. We compare different semi-automatically

labeled samples, obtained using all the available manually samples of HITS-large (1 545).

The number of finally labeled samples depend on the used label propagation method used

(however, the classes are always balanced).

Results: Figures 3.14 and 3.15 show the results of this experiment. Three main points can

be highlighted. Firstly, we can observe that, regardless of the loss function, classifiers trained

on datasets obtained by applying LQ-KNN on HITS-large (two last columns of figures 3.14

and 3.15) outperform the ones trained on all the other datasets (including those of experiment

3). More precisely, if we focus on HITS-large LQ-KNN, the model trained on this dataset

outperforms the one trained on HITS-large Std-KNN by a MCC margin greater than 2%. A

similar trend is observed for the class accuracies.

Secondly, if we compare the per class accuracies (figures 3.15, 3.16, 3.17) and the results

of the previous experiments, we note that the models trained on HITS-large Std-KNN have

higher solid emboli performance, at the expense of smaller artifacts’ and gaseous emboli per-

formances, while the variability is generally reduced when using more samples. Similarly, the

performances of the model trained on HITS-large LQ-KNN have higher solid and gaseous em-

boli performances, but smaller the artifacts’ performance, while the variability is still reduced.

At last, the best performing model of this experiment is the one trained on HITS-large LQ-

KNN with GCE loss function, which outperforms the best performing model of experiment

3 trained on HITS-small, a fully manually labeled dataset and without label noise. Neverthe-

less, even when using a nonrobust loss function such as CE, classifiers trained on HITS-large

LQ-KNN and HITS-small achieve similar performances, although HITS-large LQ-KNN is a

larger dataset. More interestingly, for both loss functions, HITS-large LQ-KNN trained models

achieve higher solid emboli accuracy compared to models trained on HITS-small. However,

this phenomenon comes at the expense of an important lowering of the artifacts’ accuracy.

Nonetheless, when we use robust loss functions to compensate for the LQ-KNN label noise

(mainly between the gaseous emboli and solid emboli classes), the obtained model also out-

performs the HITS-small trained models for the gaseous emboli class (see figure 3.16).

III.5 Discussion
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Figure 3.15: Experiment 4: HITS-large solid emboli accuracy results. We compare different

semi-automatically labeled datasets, obtained using all the available manually samples of HITS-

large (1 545). The number of finally labeled samples depend on the used label propagation

method used (however, the classes are always balanced).

Figure 3.16: Experiment 4: HITS-large gaseous emboli accuracy results. We compare different

semi-automatically labeled datasets, obtained using all the available manually samples of HITS-

large (1 545). The number of finally labeled samples depend on the used label propagation

method used (however, the classes are always balanced).

III.5.A Experiment 1: Automatic data annotation evaluation

This first experiment corroborates that our proposed automatic label propagation method, LQ-

KNN, achieves comparable performance to other state-of-the-art methods such as OPF-semi,

which is often used for data annotation. This translates in higher annotation accuracies, at the

expense of a small reduction in the number of labeled samples, with 1.5% to 3.8% less labeled

samples for LQ-KNN compared to OPF-semi in all the tested datasets. What is more, LQ-KNN

is 2 to 3 orders of magnitude faster than OPF-semi, a non-negligible difference, specially when

working with large datasets. This is an understandable observation, as data annotation with
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Figure 3.17: Experiment 4:HITS-large artifacts’ accuracy results. We compare different semi-

automatically labeled datasets, obtained using all the available manually samples of HITS-large

(1 545). The number of finally labeled samples depend on the used label propagation method

used (however, the classes are always balanced).

OPF-semi is time-consuming because it implies training a classifier with all the labeled and

unlabeled samples, and then predicting the labels of the unlabeled samples with the trained

classifiers. Furthermore, the results of this experiment also confirm that our approach LQ-

KNN with 𝜏 = 0.1 behaves better than the baseline Std-KNN, showing the interest of local

quality for label propagation. This phenomenon becomes more apparent when the value of 𝜏

increases, achieving very high annotation accuracies for a small proportion of labeled samples,

with 𝛼 = 99.34% and 𝑝𝐴 = 15.51 for 𝜏 = 0.5 and 𝐾 = 20, on the MNIST dataset.

By the same token, the results show that the annotation performances can vary from

one dataset to another one. Indeed, they are significantly smaller on the HITS-small and

OrganCMNIST datasets, for all the label propagation methods. If we take the example of our

dataset of interest, the HITS-small one, we can explain this observation on the basis that gaseous

and solid emboli can be mistaken in some cases (even for expert human annotators), and this

translates in overlapping clusters in the reduced annotation latent space. Because of this, when

we propagate labels at the boundary between the solid and gaseous emboli clusters, we are

going to make more annotation errors. Therefore, if these boundaries between overlapping

clusters are reduced (as in the MNIST dataset), the annotation errors too, hence the annotation

accuracies tend to increase. More interestingly, as the annotation accuracies show it, using the

local quality of the projection to select the samples for label propagation allows a more cautious

annotation, so samples that were wrongly projected at the boundary between two clusters are

not used for label propagation.

Moreover, the results of this experiment also reveal one important advantage of LQ-KNN:

the control of the annotation error thanks to the local quality threshold, 𝜏, and the neighborhood

𝐾 considered for label propagation. Indeed, these hyperparameters can reduce the annotation

errors at the expense of the number of labeled samples. We can directly visualize this by

comparing different set of hyperparameters as in figure 3.5. In this figure, we have a clear

example where the annotation errors (and the number of labeled samples) are reduced by

reducing the values 𝜏 and 𝐾 . On top of that, this figure also shows that most of the annotation

errors are located between the boundaries of clusters of different classes or in low local quality
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zones. Therefore, if we increase the local quality threshold, incorrectly projected labeled and

unlabeled samples are not going to be used for label propagation, reducing the number of

propagated errors.

Furthermore, we observe that, globally, when the annotation accuracy increases, the pro-

portion of labeled samples tends to decrease, which is why higher values of 𝜏 give higher

annotation accuracies but fewer newly labeled samples. Indeed, the success of our method

strongly depends on the structure assumption (Chapelle et al.., 2009). Thanks to the use of the

local quality criterion (Lueks et al.., 2011), we can guarantee that, if the structure assumption is

(partially) verified in the feature space obtained by the AE model, then it should be (partially)

verified in the 2D reduced annotation latent space obtained by t-SNE. Therefore, the higher the

values of the threshold 𝜏, the more demanding we are in terms of structure assumption guar-

antees, so we reduce the samples that can be annotated to only ’good samples’, thus labeling

fewer samples. On the contrary, the smaller the values of 𝜏, the more changes we tolerate in the

projected space, allowing to annotate more samples. Into the bargain, we can see that choosing

good values for 𝐾 and 𝜏 is difficult, and it is application-dependent: if the quality of the labels

is crucial for the application, higher values of 𝜏 should be favored (e.g., 0.3 ≤ 𝜏 ≤ 0.7) and/or

smaller values of 𝐾 (e.g., 𝐾 ≤ 5), paying with fewer labeled samples, whereas if the quality of

the labels is not crucial and the number of samples is, higher values of 𝐾 should be favored

(e.g., 𝐾 > 5) and/or smaller values of 𝜏 (e.g., 𝜏 ≤ 0.3).

Finally, one last interesting point is the importance of the propagation order. In fact, in our

method, an annotation order is established based on the local quality values: higher local quality

samples are labeled first than the lower quality ones. The rationale behind this is that high local

quality samples are stronger representatives of the local space where they are found; therefore,

it is more likely for the samples located in that zone to have the same label as the highest

local quality neighbors, rather than the lowest ones. This was confirmed by this experiment,

especially for high values of 𝐾 , whereas for small values, there is no important difference. This

indicates that the labeling order is very important for applications that need to consider large

neighborhoods for label propagation, for instance if we want a quicker annotation.

III.5.B Experiment 2: Validation of the projection selection strategy

This experiment validate our projection selection strategy for automatic label propagation

purposes. It is clear that, when selecting the best projection with our strategy, we obtain sig-

nificantly better annotation performance than when the worst selected projection is used. This

can be explained on the basis that our method strongly relies on the structure assumption,

therefore it is important that the selected lower dimensional working space follows a similar

local structure than the high-dimensional original one. Thanks to the silhouette score, our

proposed selection strategy selects the best projection for this objective (i.e., highest score),

keeping the samples of a same class/cluster in the same structure. What is more, this experi-

ment also showed the cautiousness of LQ-KNN with respect to Std-KNN, as it allows labeling

fewer samples with higher accuracies, by selecting only the reliable samples based on the local

quality. This result is particularly interesting, as it shows that LQ-KNN is more robust than

Std-KNN against 2D projection degrading the latent space structure.

III.5.C Experiment 3: Classification on a dataset with known label noise

This experiment confirms the interest of our method for classification purposes. Indeed, the

obtained semi-automatically labeled datasets can be used to train classifiers. The results suggest

that, for the three tested datasets, training classifiers on datasets obtained with LQ-KNN (i.e.,
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𝐾 = 10, 𝜏 = 0.1) allows yielding better classification performances than models trained on

reduced datasets without label propagation, or datasets obtained with Std-KNN.

What is more, this experiment also highlights the importance of robust loss functions when

using semi-automatically noisy labeled data. Indeed, these types of loss functions are able

to partially compensate the introduced annotation error by the automatic label propagation

method. That is why, when we use this type of functions, LQ-KNN and Std-KNN achieve

similar performance. As a matter of fact, both label propagation methods introduce similar

levels of noise (for the chosen hyperparameters, LQ-KNN is slightly better), so noise-tolerant

loss functions can compensate this difference. Nevertheless, when this annotation error dif-

ference increases, the robust loss function is not able to totally compensate the gap, allowing

the models trained on LQ-KNN based datasets to achieve better classification results, as it is

shown in the OrganCMNIST results.

At last, this experiment showed that applying our proposed automatic label propagation

approach on a real medical dataset can be beneficial for classification purposes. Indeed,

regardless of the loss function, the obtained datasets allow the trained models to improve

their classification performances with respect to the datasets having limited labeled samples.

In addition, these models can achieve similar performances than fully manually annotated

datasets. Moreover, the proportion of labeled samples by the method also play an important

role as, when we propagate the labels to less than 50% of the available samples, LQ-KNN

outperforms Std-KNN. However, when the proportion of labeled samples increases, both

method behave similarly, even if LQ-KNN based datasets allow training classifiers with better

mean performances, especially when noise-tolerant loss functions are used.

III.5.D Experiment 4: Classification on a semi-automatically labeled HITS-large
dataset with unknown label noise

This last experiment confirms that our approach is stable when using large-scale datasets, per-

mitting to obtain a large semi-automatically labeled dataset, allowing to train classifiers with

better generalization capabilities. Models trained on HITS-large LQ-KNN with both loss func-

tions, outperform the models trained using the other datasets, including those of experiment

3. More interestingly, in terms of MCC and emboli accuracies, when using a noise-tolerant loss

function, our method is able to outperform the models trained with CE/GCE losses on the

HITS-small fully manually (but reduced) dataset, as it partially compensates the noise intro-

duced in the labels by our approach. Nevertheless, this is not the case for the artifact accuracy.

Our hypothesis is that, in the HITS-large dataset, the obtained 2D reduced working latent

space do not verify the structure assumption anymore. There are two potential explanations

for this: (1) the original HITS image space does not verify the structure assumption, or (2)

the AE high-dimensional space does not (which could be partially solved using more complex

architectures). Because of this, when doing label propagation, we introduce unexpectedly high

noise in the labels of the artifact class (besides the one already present in the gaseous and

solid emboli classes), no longer verifying the noise-tolerant assumption (𝜁 < 𝐶−1

𝐶
≈ 67%, for

the HITS dataset), therefore, the noise-tolerant loss function is not able to compensate for this

noise anymore. Nevertheless, our LQ-KNN approach is more stable, as its artifact accuracy is

higher than the one obtained with Std-KNN, and its gaseous emboli accuracy remains similar

(or even better) to the HITS-small one.

III.5.E Choice of 𝑘𝑠 and 𝑘𝑡
An important aspect of our method that we have not discussed so far, is the choice of 𝑘𝑡 = 10 and

𝑘𝑠 = 10 for all the experiments. Indeed, these parameters are important for the computation
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of the global and local quality measures. As seen in Chapter 2, 𝑘𝑡 controls the tolerated errors

in terms of rank modification, whereas 𝑘𝑠 controls the size of the neighborhood that is going

to be used to evaluate the structure preservation through ranks modifications. As shown in

(Lueks et al.., 2011) and figure 3.18, when 𝑘𝑡 and 𝑘𝑠 increase, the global quality varies smoothly,

as between two consecutive values of 𝑘𝑡 and 𝑘𝑠, its variation is small. When 𝑘𝑡 and 𝑘𝑠 increase,

we tolerate more errors and we expand the neighborhood considered to measure these errors,

therefore the measured global quality with respect to these parameters is higher. However,

these high values of the global quality are not necessarily representative. In fact, in those cases,

what the global quality means is that, for the chosen tolerated errors and for the chosen size of

the neighborhood to measure them (both are high), we can consider that the structure of the

high and low dimensional manifold are similar. This shows that the value of the global and

local qualities should be interpreted with the chosen values of 𝑘𝑡 and 𝑘𝑠 and not alone. Thus,

smaller values of these parameters, means that we are more demanding in terms of errors, and

that the used neighborhood to measure these errors is small, which is why we obtain lower

global quality values (dimensionality reduction techniques always modify the global and local

structure of the high dimensional manifold as it reduces the number of degrees of freedom).

At last, in our case, as we are interested in accurate automatic label propagation, it is

important to have meaningful and demanding values of the global and local qualities to assess

as best as possible the preservation of the local structure assumption mentioned in section II.

Therefore, we follow the recommendations of (Lueks et al.., 2011) by first focusing on the error

tolerance 𝑘𝑡 and then to choosing the value of 𝑘𝑠, allowing a good selection of the samples to

benefit for label propagation.

III.5.F Limitations

During the study of our approach, we can identify five main limitations.

The first one concerns the validation framework. Indeed, we limited our study to three

datasets, and one type of classifier (CNN). To strengthen the results of our study, it can be

interesting to study our approach using other types of datasets and models.

The second limitation regards the used feature extraction model. We used a simple AE

model, whereas more complex models and architectures can be used (variational AE, siamese

AE, etc.). Therefore, the influence of different types of models should be quantitatively mea-

sured.

Thirdly, in terms of development time, our projection selection strategy can be expensive

to compute and only takes advantage of the labeled samples, which can lead to sub-optimal

projections for label propagation. Indeed, if all the labeled samples are not representative of

the true structure of the different classes’ manifolds, then we can select biased projections.

Semi-supervised learning metrics and approaches can be introduced to better exploit both,

labeled and unlabeled samples, and reduce the development time.

Fourthly, the choice of the automatic label propagation methods (𝑘𝑡 , 𝑘𝑠, 𝐾 , and 𝜏) is not

trivial. In fact, even if the results showed that the choice 𝑘𝑠 = 10, 𝑘𝑡 = 10, 𝐾 = 10 and 𝜏 = 0.1 tend

to give good results for different datasets, more efficient hyperparameter selection strategies

can be developed for this task.

Finally, for classification under noisy-labels coming from the semi-automatic annotation

method, we only tested one robust loss function, GCE, but other loss functions can be used

such as symmetric CE (Wang et al.., 2019), or other strategies can be adopted such as robust

regularization, robust architectures, loss adjustment, etc. (Song et al.., 2022).

IV Conclusion
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Figure 3.18: Normalized global quality matrix (Lueks et al.., 2011) of a selected HITS-small

projection. The x-axis shows the values of 𝑘𝑡 and the y-axis the values of 𝑘𝑠. For smaller

values of 𝑘𝑠 and larger values of 𝑘𝑡 , we have higher global quality, because we take a smaller

neighborhood for the computation and we tolerate more errors. The global quality decreases

when the error tolerance 𝑘𝑡 decreases, because we are more demanding on the preservation of

the neighborhood of size 𝑘𝑠 of each sample. For 𝑘𝑠 = 10 and 𝑘𝑡 = 10, we have a global quality

of 0.61 (as indicated). (Lueks et al.., 2011) recommend to first focus on the error tolerance 𝑘𝑡
and then to choose the value of 𝑘𝑠.

In this chapter we proposed our semi-automatic data annotation method, LQ-KNN, allowing to

annotate an important number of unlabeled samples, from a small number of labeled samples,

and this with controlled annotation error. Our method is based on feature extraction using an

AE model, dimensionality reduction through t-SNE, projection selection based on the silhouette

score, and local structure preservation measurements using local quality metrics. Moreover,

as annotation errors are inherent to semi-automatic data annotation, we propose to partially

compensate them through noise-tolerant loss functions, when training classifiers on these

datasets.

What is more, our approach was validated through extensive experiments, giving interest-

ing results. Firstly, our automatic label propagation results outperform the baseline, Std-KNN,

and other state-of-the-art methods such as OPF-semi. Secondly, we observed that, thanks to

the choice of the hyperparameters 𝐾 and 𝜏, we are able to control the annotation error, which

can be beneficial if the targeted application is very sensitive to annotation errors. Thirdly, the

use of robust loss functions such as GCE was proven beneficial to train the classifiers on the

obtained semi-automatically noisy labeled datasets, allowing to achieve similar performances

to a fully manually labeled dataset. This point is particularly interesting, as automatic label

propagation is much faster than manual annotation (0.2 ms per samples against 8 s per sample

for an expert annotator). Finally, even though it was not exhaustively tested, our method was

designed to be general and applicable to different datasets and models, the only components

that should be adapted are the feature extraction block, and the classification block.

At last, a semi-automatic data annotation tool was developed using the proposed method,
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allowing to quickly and interactively label HITS1. In addition, once the HITS labeled, they can

be manually verified before being introduced in the final database.

In the following chapters, we are going to develop more complex architectures for HITS clas-

sification, allowing to exploit both, the temporal and spectral information of the signals, as well

as model compression methods to reduce the memory, computation, and energy requirements

of the developed models.

1This annotation is done using soft labels and not hard labels. This means that the label of a sample is composed

of membership scores for each class, and note one single label.
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4 Medical Signal Classification

Chapter based on the following papers: conference paper (Vindas, Guepie, Almar,
Roux and Delachartre, 2022) in Machine Learning for Healthcare (MLHC) 2022;
conference paper (Vindas, Roux, Guépié, Almar and Delachartre, 2023a) at EUSIPCO
2023; journal paper (Vindas, Roux, Guépié, Almar and Delachartre, 2023b) in Pattern
Recognition.

In chapters 1 and 2 we saw that the distinction between artifact and emboli is important to

help clinician with patient management. More interestingly, separating solid from gaseous

emboli can enhance patient treatment as well as medical and clinical studies. Different classical

signal processing and machine learning techniques have been used to detect and classify HITS

between artifacts and emboli (Markus and Punter, 2005; Keunen et al.., 2008; Serbes and Aydin,

2014; Sombune et al.., 2018; Imaduddin et al.., 2019; Guepie et al.., 2018). Other works used deep

learning techniques (CNNs) to classify HITS (Sombune et al.., 2017; Tafsast et al.., 2018), without

surpassing classical approaches, but showing promising results. However, these methods do

not make a distinction between solid and gaseous emboli, and the only one that does it (Tafsast

et al.., 2018) used in vitro TCD data. To cope with the limitations of previous works (which will

be detailed in section I.1) we propose generic multi-feature classification approaches, presented

in section II, and validated in section III.
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I Motivation

I.1 Limitations of previous methods

The previous methods have achieved great performances when it comes to HITS detection

and classification between artifact and emboli. These methods mainly try to extract features

translating the emboli detection criteria of the 1998 consensus (Ringelstein et al.., 1998).

The first limitation of these approaches is that, almost none of them make a distinction

between solid and gaseous emboli. Indeed, either they use dual-frequency (non-portable) TCD

devices, using different frequencies to separate solid from gaseous emboli, or they work on

(non-portable) TCD data acquired in vitro. This is an important limitation because, as seen in

Chapter 1, the causes and treatments for solid and gaseous emboli are not exactly the same.

A second important limitation is that, the majority of these approaches have been designed

and tested using data acquired using non-portable TCD devices, which are less prone to

artifacts. In fact, because of the free movement of the subjects and the heterogeneous recording

conditions, portable TCD devices tend to give an important number of artifacts coming from

different sources (subject’s voice, robotized probe movement, electrical noise, etc.). However,

the main advantage of portable devices is that they allow long-duration monitoring, which

increases the chance of detecting emboli, which are rare events. Therefore, it is important to be

able to develop robust methods against these types of devices.

Furthermore, the previously mentioned methods are mainly based on signal processing and

statistical based handcrafted features, which are time-consuming, and not necessarily optimal

for the task that we want to solve. Additionally, these features depend on the data acquisition

system, as well as on the final used classification model. Therefore, they are less robust against

new types of TCD data (for instance non-portable to portable TCD acquired data, different

insonation frequencies, new types of HITS, etc.).

At last, even though it is not the main scope of this work, an important limitation of previous

works is that they are not easily adaptable to new types of data (for instance EEG or ECG data).

Often, specific methods are developed for the specific task, and not tested on a variety of

different medical signal data types to prove and validate its generalizability.

I.2 Objectives and contributions

We suggest solving the previously mentioned limitations by proposing a multi-feature classifi-

cation framework, where both the temporal and spectral characteristics of the medical signals

are used to do the final classification. The proposed approach achieve state-of-the-art per-

formances on several medical signal classification datasets. Our main contributions can be

summarized as follows:

• Novel hybrid CNN-transformer models, exploiting the complementarity between the

temporal and spectral characteristics of the input (Doppler) medical signal.

• Guided and regularized training of an intermediate fusion approach, improving gener-

alization while partially handling imbalanced datasets and label-noise.

• Late-fusion mechanisms, based on learnable and interpretable attention weights.

II Proposed method

In this section, we are going to detail the different multi-feature learning approaches that we

developed to classify medical signals. In particular, our main objective is to classify HITS,
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between solid emboli (SE), gaseous emboli (GE), and artifacts (Art.), using in vivo TCD data

acquired with portable devices (TCD-X from Atys Medical).

II.1 General overview and assumptions

The methods detailed in this section were designed to be general and applicable to different

types of data, with different representations, and different model architectures. However, as

our main interest is medical signal classification, we are going to focus on (medical) temporal-

dependent signals, and we are going to use a hybrid CNN-transformer model, where a 2D CNN

model exploits the spectral information (taking as input a TFR), and a 1D CNN-transformer

model exploits the temporal information (taking as input the raw signal).

Our method relies on four main assumptions. The first one is that the raw signal and an

associated TFR share complementary information. Indeed, even though the TFR is obtained

from the raw signal, it will mainly focus on the frequency content information, whereas the

raw signal better translates the temporal dependencies between the samples of a signal. The

second assumption is closely related to the previous one. Indeed, we suppose that temporal

information is important, as the context before or after an event (e.g. a HITS) can help to its

classification. Moreover, we also make the assumption that the length of the studied signals is

variable, as the acquisition and pre-processing parameters can change (for instance, different

sampling frequencies can be used). At last, in order to efficiently process these signals with

the proposed models, we suppose that the number of samples per signal is short, smaller than

1 600. This is a reasonable hypothesis as we work with short duration signals (HITS with

duration smaller than 250 ms) and/or small sampling frequencies (around 4.4 kHz for the

HITS, and 100-200 Hz for the other medical signals).

Furthermore, we propose to use different methods to classify medical signals, with a special

interest on TCD HITS:

• Single feature models: We propose to use two different types of models, based on

the used input representation. For the TFR, we propose to use a VGG like vanilla 2D

CNN, where the input is processed as an image. For the raw signal, we use a 1D CNN-

transformer, where a 1D CNN encoder allows extracting features from the input signal,

which will then be passed as tokens to a transformer encoder and classifier.

• Late-fusion model: Hybrid model based on interpretable late attention weights, com-

bining the classification outputs of the two previous single feature models.

• Intermediate-fusion models: End-to-end joint-trainable hybrid model, taking as input

both the raw signal and a TFR. The encoders, used to extract features from each input

representation, are based on the 2D CNN and 1D CNN-transformer single feature models.

Fusion is done at an intermediate level, between the latent spaces of the two encoder

models. This obtained common latent space is then used for final classification. What

is more, the training of each encoder is guided through iterated losses, and the common

fused latent space is regularized by adapting DEC to a supervised learning context.

In the following sections, each of these models will be detailed. But first, let us define

some general notations for this chapter. Let us suppose that we have a fully labeled dataset

D = X ×Y, composed of 𝑁 labeled samples X = {𝑋𝑖}𝑖∈[1,𝑁 ] divided into 𝐶 classes (Y = {y𝑖/𝑖 ∈
[1, 𝑁], y𝑖 ∈ {0, 1}𝐶}). Moreover, we assume that each input sample 𝑋𝑖 ∈ X, with 𝑖 ∈ [1, 𝑁], is

composed of two representations, a raw signal 𝑋𝑅𝑆
𝑖
∈ ℝ𝐿×𝑉 (composed of 𝐿 samples and 𝑉

channels), and a TFR 𝑋𝑇𝐹𝑅
𝑖

∈ ℝ𝐹×𝑀 (composed of 𝐹 frequency bins, and 𝑀 time bins). At last,

we suppose that each classification modelM can be written under the formM = C ◦ E, where

C is a classifier and E is an encoder/feature extractor.
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Figure 4.1: Used 2D CNN architecture, taking as input a TFR (considered as grayscale or RGB

image).

II.2 Single feature models

II.2.A Time-frequency 2D CNN

To extract features from the TFRs, we use a vanilla VGG like 2D CNN architecture, where

each TFR is processed as an image (with multiple channels or a single channel). The global

architecture of the model can be found in figure 4.1. The encoder of the model, denoted E𝑇𝐹𝑅,

is composed of four convolutional blocks and a flatten operation. Each convolutional block

has four components (applied sequentially): convolutional layer, batch normalization, leaky

ReLU activation function, and pooling layer (average or max). The flatten operation is applied

to convert the output into a hidden feature vector, H𝑇𝐹𝑅 = E𝑇𝐹𝑅 (𝑋𝑇𝐹𝑅). Then, the obtained

feature vector is passed thought a classifier, C𝑇𝐹𝑅, composed of a fully connected layer with

dropout, obtaining classification scores O𝑇𝐹𝑅 = C𝑇𝐹𝑅 (E𝑇𝐹𝑅 (𝑋𝑇𝐹𝑅)) ∈ ℝ𝐶×1
. Additionally, this

feature vector can be used for intermediate fusion, as it will be detailed in section II.4.

II.2.B Raw signal 1D CNN-transformer

To extract features from the raw signals, we use a 1D CNN-transformer inspired from (Natarajan

et al.., 2020; Dosovitskiy et al.., 2021), and presented in figure 4.2.

The first part, the encoding one (denoted as E𝑅𝑆) is composed of two blocs. The first block

is a 1D CNN encoder, where a series of 1D convolutional blocks are applied to the input signal

(with overlapping convolutional kernels), in order to extract embeddings from the input raw

signal. Indeed, at the output of the last convolutional block, embedding vectors (corresponding

to local patches of the raw signal) are formed by taking all the channel components of each

position in the encoded signal. This gives a sequence of embedding vectors, where a learnable

class token vector is added at the beginning. Then, this sequence is passed through a second

block, a transformer encoder, where the positional (temporal) information is taken into account

thanks to the sinusoidal positional embeddings, and the attention mechanism. The final

embedding, H𝑅𝑆 = E𝑅𝑆 (𝑋𝑅𝑆) is then obtained by taking the first vector of the signal encoding,

which corresponds to the class token embedding.

The second part, the classification one (denoted as C𝑅𝑆), uses the previously obtained

encoding of the raw signal, and passes it through a series of layer normalization and FC blocks,
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Figure 4.2: Used 1D CNN-transformer architecture, taking as input the (multi-channel) raw

signal.

giving the classification scores O𝑅𝑆 = C𝑅𝑆 (E𝑅𝑆 (𝑋𝑅𝑆)) ∈ ℝ𝐶×1
. We can see that the main

difference with respect to (Natarajan et al.., 2020) is that classification is done using a class token

with a single feature, instead of using multiple heterogeneous features, and global average

pooling at the last block of the transformer model. At last, as for the previous single feature

model, H𝑅𝑆 can be used for intermediate fusion (section II.4).

II.3 Late fusion approach

II.3.A Principle

The core idea of our late fusion approach is to combine the classification outputs of two models

taking different representations of a same input, in our case the raw signal and a TFR (see

figure 4.3). This allows to take into account different representations for the final classification,

while still allowing to do classification if one representation of the input is not available.

Moreover, for expert annotators, one representation can be more useful than another one (even

though they are complementary), based on the sample. Therefore, to simulate this behavior, we

introduce learnable attention weights, indicating for each class and each input representation,

its importance with respect to the final classification output.

II.3.B Late fusion attention weights

Let us denote by W𝑅𝑆 ,W𝑇𝐹𝑅 ∈ ℝ𝐶×1
two attention weight vectors associated to the raw signal

and the TFR outputs, O𝑅𝑆 ,O𝑇𝐹𝑅 ∈ ℝ𝐶×1
, respectively. By making the assumption that the two

single feature models are pre-trained, we compute the final classification multi-feature scores,

O𝐿𝐹 ∈ R𝐶×1
, as follows:

O𝐿𝐹 = W𝑅𝑆 ⊙ O𝑅𝑆 +W𝑇𝐹𝑅 ⊙ O𝑇𝐹𝑅 (4.1)
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Figure 4.3: Global pipeline of our late fusion approach. We suppose that the single feature

classification models are pre-trained. Moreover, we use learnable attention weights to simu-

late the behavior of expert annotators, where different representations do not have the same

importance for the final decision.

where ⊙ represents the Hadamard product, and the weights vectors W𝑅𝑆 and W𝑇𝐹𝑅 are learned

using gradient descent.

Furthermore, to obtain more interpretable weights, once the training is finished, we convert

these attention weights into scores by applying a softmax function, obtaining A𝑅𝑆 and A𝑇𝐹𝑅:

A𝑅𝑆 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(W𝑅𝑆) (4.2)

A𝑇𝐹𝑅 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥(W𝑇𝐹𝑅) (4.3)

Under this form, the 𝑖𝑡ℎ element, A𝑖
𝑅𝑆

of A𝑅𝑆 , corresponds to the contribution of the raw signal

for the final score prediction of class 𝑖. Likewise, A𝑖
𝑇𝐹𝑅

indicates the contribution of the TFR to

the prediction of class 𝑖.

II.4 Intermediate fusion

In this section, we will introduce the intermediate fusion approach that we adopt for multi-

feature learning, where the fused outputs are the ones of the encoders of the single feature

models, namely H𝑅𝑆 = E𝑅𝑆 (𝑋𝑅𝑆) and H𝑇𝐹𝑅 = E𝑇𝐹𝑅 (𝑋𝑇𝐹𝑅).

II.4.A Simple intermediate fusion

The first intermediate fusion approach consists in three simple intermediate fusion strategies:

sum, weighted sum, and concatenation. The idea is to get a joint representation embedding

space from the two single feature latent spaces obtained by each single feature encoder.

To allow the sum of the encodings of each input representation, we cannot directly use H𝑅𝑆

nor H𝑇𝐹𝑅 since they do not necessarily have the same dimension. Therefore, before fusion,

we used two FC layers (with layer normalization), denoted FC𝑅𝑆 and FC𝑇𝐹𝑅, allowing to

project H𝑅𝑆 and H𝑇𝐹𝑅 into spaces of same dimension, 𝑑𝑐𝑜𝑚, obtaining two new embeddings,

H̃𝑅𝑆 , H̃𝑇𝐹𝑅 ∈ ℝ𝑑𝑐𝑜𝑚 :

H̃𝑅𝑆 = 𝐿𝑁 (F C𝑅𝑆 (H𝑅𝑆))

H̃𝑇𝐹𝑅 = 𝐿𝑁 (F C𝑇𝐹𝑅 (H𝑇𝐹𝑅))
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where 𝐿𝑁 is the layer normalization operator.

Moreover, thanks to these embeddings, we can obtain a joint representation in a common

fused latent space, using a fusion function, 𝑓 :

H𝑓 𝑢𝑠 = 𝑓 (H̃𝑅𝑆 , H̃𝑇𝐹𝑅) (4.4)

This fusion function depends on the selected fusion strategy. We propose to use three different

strategies

• Concatenation:

𝑓 : ℝ𝑑𝑐𝑜𝑚 ×ℝ𝑑𝑐𝑜𝑚 → ℝ2𝑑𝑐𝑜𝑚

(H1,H2) ↦→ H1 ⊕ H2

with ⊕ the concatenation operator.

• Sum:

𝑓 : ℝ𝑑𝑐𝑜𝑚 ×ℝ𝑑𝑐𝑜𝑚 → ℝ𝑑𝑐𝑜𝑚

(H1,H2) ↦→ H1 +H2

• Weighted sum:

𝑓𝑤
1
,𝑤

2
: ℝ𝑑𝑐𝑜𝑚 ×ℝ𝑑𝑐𝑜𝑚 → ℝ𝑑𝑐𝑜𝑚

(H1,H2) ↦→ 𝑤1 ×H1 + 𝑤2 ×H2

where 𝑤1, 𝑤2 ∈ [0, 1] are two learnable parameters such that 𝑤1 + 𝑤2 = 1, indicating the

global importance of each input representation to obtain the final fused representation

(used for classification).

II.4.B Guided and regularized intermediate fusion

Global pipeline: In order to facilitate joint-training of the different representations’ encoders,

E𝑅𝑆 andE𝑇𝐹𝑅, and regularize the final fused common latent space, we propose to use two strate-

gies (see figure 4.4). For the former, we guide the joint-training of the encoders thanks to two

iterated losses, one per input representation, allowing classification even if one representation

is not available (this will be explained in the next paragraph). For the latter, we propose to

adapt unsupervised DEC to a semi-supervised context, where the number of clusters to use is

defined as the number of classes to classify, 𝐶.

Guided training: Guided training is obtained using two intermediate classifiers, one per input

representation. Hence, during training of the whole model, we also train single feature vanilla

classifiers, taking as input the encodings of each input representation1, H𝑅𝑆 and H𝑇𝐹𝑅. In fact,

these classifiers correspond to the classification parts of the single feature models introduced

in section II.2, denoted as C𝑅𝑆 and C𝑇𝐹𝑅. This will force the encoder of each representation to

generate intermediate (single feature) latent spaces discriminative enough to do classification

by themselves (thus classification with a single representation is possible)2. Moreover, let us

denote by ỹRS = C𝑅𝑆 (H̃RS) and ỹTFR = C𝑇𝐹𝑅 (H̃TFR) the intermediate classification output of

the raw signal and the TFR, respectively. The iterated losses are defined as the cross entropy

1This is why our approach allows performing classification even if one representation is missing.

2This can be seen as a decoupling of the global classification task and the feature encoding task.
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Figure 4.4: Global pipeline of our guided and regularized intermediate fusion approach. The

intermediate representation, H𝑓 𝑢𝑠, used for classification is guided by using two iterated losses,

and regularized thanks to semi-supervised DEC.

(CE) loss between the intermediate classification outputs, and the true labels of the samples

denoted as y:

L𝑅𝑆 = L𝐶𝐸 (ỹRS, y) (4.5)

L𝑇𝐹𝑅 = L𝐶𝐸 (ỹTFR, y) (4.6)

Semi-supervised DEC regularization: The last module of our intermediate fusion approach

consists in semi-supervised DEC regularization of the joint representation embedding space.

The rationale behind this is threefold. First, we want to enforce clustering in the final fused

latent space in order to get a more discriminant space, improving the generalization capabilities

of the obtained model. Second, we want to partially handle imbalanced datasets, as DEC is

relatively robust against this. Finally, we want to be able to handle noisy labeled datasets (as

ours HITS dataset are noisy), which can be done by applying a clustering technique which is

independent of the labels (noise tolerant).

Moreover, in Chapter 2, we saw that the idea behind DEC is to form clusters in the latent

space obtained by a DL encoder model, where the centroids of each cluster are initialized with

k-means, and then learned through the training of the model. What is more, because of the

formulation of DEC, it contributes to the update of the weights of the encoder model through

the iterations.

More particularly, in our case, let us denote as H1

𝑓 𝑢𝑠
, ..., H𝑁

𝑓 𝑢𝑠
the generic fused embeddings

obtained from the inputs samples (𝑋1

𝑅𝑆
, 𝑋1

𝑇𝐹𝑅
), ..., (𝑋𝑁

𝑅𝑆
, 𝑋𝑁
𝑇𝐹𝑅
), after the encoding and fusion

modules. We propose to apply DEC to these samples (joint latent space) using𝐶 clusters (same

as the number of classes). Thus, if we denote as c1, ..., c𝐶 the centroids of the 𝐶 clusters, DEC
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will jointly optimize these centroids and the weights of the encoder models, E𝑅𝑆 and E𝑇𝐹𝑅, as

the fused representations depends on them.

On top of that, contrary to the original unsupervised DEC method which needs pre-training,

we propose to avoid this by introducing a hyperparameter 𝑒𝑖𝑛𝑖𝑡 , corresponding to the epoch

from which DEC will be activated. Indeed, our DEC regularization approach is not applied

from the beginning to avoid a random k-means intialization of the centroids: at the beginning

of the training process the joint latent space is not yet structured which makes the unsupervised

clustering difficult. Therefore, our proposed semi-supervised DEC regularization term can be

defined as follows:

L̃𝐷𝐸𝐶 (𝑒𝑐) = 1𝐸 (𝑒𝑐) × L𝐷𝐸𝐶

with 𝑒𝑐 the current epoch number, 𝐸 = {𝑒 ∈ ℕ/𝑒 ≥ 𝑒𝑖𝑛𝑖𝑡 }, and L𝐷𝐸𝐶 is the DEC loss defined

in Chapter 2.

Furthermore, the influence of 𝑒𝑖𝑛𝑖𝑡 will be discussed in the experimental validation, but

in a nutshell, we should choose 𝑒𝑖𝑛𝑖𝑡 such that, from that epoch, the joint embedded space is

relatively clustered, allowing a good initialization of the DEC centroids through k-means.

Final loss function: Our main goal is to do supervised classification using two different

representations of a signal, namely the raw signal and a TFR. Therefore, we optimize a CE loss

function, L𝐶𝐸 , between the final predicted class scores, ỹ, and the true labels scores, y. Indeed,

the predicted labels scores are obtained by feeding a classifier C with the joint representation

H𝑓 𝑢𝑠 = 𝑓 (H̃𝑅𝑆 , H̃𝑇𝐹𝑅). The final loss function is then defined as follows:

L = L𝐶𝐸 + 𝛼 × L𝑇𝐹𝑅 + 𝛽 × L𝑅𝑆 + 𝛾 × L̃𝐷𝐸𝐶 (4.7)

where 𝛼, 𝛽, and 𝛾 are hyperparameters defining the importance of each term in the final

loss. It is important to note that all the terms have an influence on the weights of the single

feature encoders:

• ỹ = C( 𝑓 (𝐿𝑁 (F C𝑅𝑆 (E𝑅𝑆 (𝑋𝑅𝑆))), 𝐿𝑁 (F C𝑇𝐹𝑅 (E𝑇𝐹𝑅 (𝑋𝑇𝐹𝑅))))) used in general CE loss,

L𝐶𝐸 .

• ỹRS = C𝑅𝑆 (𝐿𝑁 (F C𝑅𝑆 (E𝑅𝑆 (𝑋𝑅𝑆)))) used in the raw signal iterated loss, L𝑅𝑆 .

• ỹTFR = C𝑇𝐹𝑅 (𝐿𝑁 (F C𝑇𝐹𝑅 (E𝑇𝐹𝑅 (𝑋𝑇𝐹𝑅)))) used in the TFR iterated loss, L𝑇𝐹𝑅.

• H𝑓 𝑢𝑠 = 𝑓 (𝐿𝑁 (F C𝑅𝑆 (E𝑅𝑆 (𝑋𝑅𝑆))), 𝐿𝑁 (F C𝑇𝐹𝑅 (E𝑇𝐹𝑅 (𝑋𝑇𝐹𝑅))) used in the semi-supervised

DEC loss, L̃𝐷𝐸𝐶 .

III Method evaluation

We validate different aspects of our approach through a series of five experiments. We mainly

study the advantage of using multiple features, the influence of guided training, as well as a

detailed study of the different components of the proposed semi-supervised DEC regulariza-

tion.

III.1 Datasets

We used three medical signal datasets to evaluate our method: a HITS (TCD), PTB (ECG), and

ESR (EEG).
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Table 4.1: HITS-sada dataset train/test splits.

Split No. patients Total SE GE Art.

Train 40 7 264 456 610 6 198

Test 11 1 421 240 392 789

III.1.A HITS

As our main interest is emboli classification, we used the same HITS as the ones described in

the previous chapter (see Chapter 3). From these HITS, different datasets were created.

HITS-small-I: It corresponds to an improvement of the HITS-small dataset of the previous

chapter (Chapter 3), and it is composed of 1 680 HITS from 51patients, distributed in three

classes: 608 solid emboli, 616 gaseous emboli, and 456 artifacts. From these HITS, 1 541 are the

same as the HITS-small dataset (39 patients), and are used for training and validation, whereas

the remaining 139 are used for testing (coming from 13 new patients). It is important to note

that the new 139 HITS do not follow the same distribution as the 1 541 used for training and

validation, as their extraction was performed with a more recent version of ADMS, where the

HBR computation was modified. What is more, in the 1 541 training and validation samples,

the maximal observed length of a Doppler signal in terms of samples was of 1 400, whereas

in the new 139 HITS, there are signals with up to 1600 samples (which also translates in more

points used to compute the TFR).

HITS-sada: This dataset corresponds to a large HITS dataset that was semi-automatically

labeled with the method introduced in the previous Chapter 3. All the semi-automatic data

annotation (sada) procedure was done with 𝑘𝑠 = 10 and 𝑘𝑡 = 10 (see Chapter 3), and it was

composed of several steps. First, we started by automatically propagating the labels from the

1 541 manually labeled HITS from other unlabeled samples using𝐾 = 10 and 𝜏 = 0.5. Once there

were no more samples to label, manual annotation was done using the 2D reduced latent space,

with the objective of labeling zones without labeled samples (to ensure the annotation space

coverage assumption), and boundaries between clusters of different classes. Then, automatic

label propagation was re-applied, and this step was repeated several times. At last, to improve

the quality of the dataset and reduce label-noise, all the solid emboli samples and a majority

of the gaseous ones were carefully and manually verified, whereas the artifacts samples were

rapidly verified. Thanks to this procedure, we obtained a dataset composed of 8 685 HITS

from 51patients, distributed in three classes: 696 solid emboli, 1 002 gaseous emboli, and 6 987

artifacts (see Table 4.1). It is important to note that the test dataset used here is not the same

as HITS-small-I, as the distribution of HITS per class and per subject is not the same, so no

direct comparison can be made between the results obtained with these two datasets. For this

dataset, we used 84% of the samples for training (7 295 HITS), and 16% for testing (1 390 HITS).

III.1.B PTB (ECG) dataset

General description: Since the HITS datasets are private ones, we also evaluate our approach

on publicly available medical signal datasets. The first one is a Physionet (Goldberger, Amaral,

Glass, Hausdorff, Ivanov, Mark, Mietus, Moody, Peng and Stanley, 2000) dataset for myocardial

infarction identification, called PTB (Bousseljot et al.., 1995). This dataset is composed of 14 552

ECG lead-II recordings, with a sample frequency of 125 Hz. The heartbeats are distributed into

two classes, normal (10 506) and abnormal (4 046), which are imbalanced.
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Pre-processing: We used the standardized and pre-processed version of the dataset from

(Kachuee, Fazeli and Sarrafzadeh, 2018)1, where the signals are segmented into heartbeats (of

around 1 s), denoised and normalized. On top of that, we computed a log-scaled spectrogram

(TFR) using 𝑛𝑓 𝑓 𝑡 = 32, 𝑛𝑜𝑣𝑒𝑟𝑙𝑎𝑝 = 4, and a Blackman window of length 𝑛𝑓 𝑓 𝑡 2.

Data splitting: We split the dataset into three subsets: train (64%), validation (16%), and

test (20%)3. The hyperparameters selection and study were performed using the validation

split. However, for a fair comparison with (Ahmad et al.., 2021), the final model was trained

by regrouping the train and validation subsets, in order to use 80% of the samples for training,

and 20% for testing.

A supplementary larger ECG dataset, MIT-BIH, was also used to validate our late fusion

approach, but for the sake of space, we do not present the results here. We refer the reader to

(Vindas, Guepie, Almar, Roux and Delachartre, 2022) for further details.

III.1.C Epileptic seizure recognition (EEG) ESR dataset

To further validate our approach on a different medical classification task, we used the epileptic

recognition dataset (ESR) from the UCI repository (Andrzejak, Lehnertz, Mormann, Rieke,

David and Elger, 2002).

General description: The ESR dataset is composed of EEG signals with a sample frequency

of 178 Hz, showing the cerebral activity of 500 subjects under different circumstances during

23.6 s: (1) seizure activity, (2) recording in a brain tumor area, (3) recording in a healthy brain

area, (4) the patient had their eyes closed, and (5) the patient had their eyes opened. For more

information, we refer the reader to (Andrzejak et al.., 2002).

Pre-processing: We used the pre-processed and publicly available version found at https://
www.kaggle.com/datasets/harunshimanto/epileptic-seizure-recognition. In this ver-

sion, the EEG signals were segmented into 23 segments of duration around 1 s, giving a total

of 11 500 samples, distributed in the abovementioned five classes which are equally distributed

(2 300 samples per class). However, as most works, we focus on binary classification where the

first class is composed of the seizure activity samples (2 300), and the second one of the non

seizure activity samples (9 200), giving an imbalanced dataset. Moreover, to compute the TFR,

we used the same strategy as for the PTB dataset; we compute a log-scale spectrogram with

𝑛𝑓 𝑓 𝑡 = 32, 𝑛𝑜𝑣𝑒𝑟𝑙𝑎𝑝 = 4, and a Blackman window of length 𝑛𝑓 𝑓 𝑡 .

Data splitting: We split the dataset into two subsets: train (90%) and test (10%)3. As no

special hyperparameter tuning was performed, we do not used a validation set. On top of that,

we follow the same splitting strategy as (Xu, Ren, Chen and Che, 2020), where no validation

set was used.

1We use the public available versions found in https://www.kaggle.com/datasets/shayanfazeli/heartbeat
2The choice of these parameters was motivated by a trade-off between model performance, model complexity,

and available training data. Indeed, lower values of 𝑛𝑓 𝑓 𝑡 reduce the performance of the model while reducing the

number of parameters. Higher values of 𝑛𝑓 𝑓 𝑡 increase performance (up to some threshold value) while increasing

the number of parameters.

3Because of the structure of the dataset, we were not able to obtain a subject-wise split.

106

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0064/these.pdf 
© [Y. Vindas-Yassine], [2023], INSA Lyon, tous droits réservés

https://www.kaggle.com/datasets/harunshimanto/epileptic-seizure-recognition
https://www.kaggle.com/datasets/harunshimanto/epileptic-seizure-recognition
https://www.kaggle.com/datasets/shayanfazeli/heartbeat


III.2 Baselines

HITS: For these datasets, we use as baselines the single feature models presented in sec-

tion II.2, and we compare their performances with respect to our late and intermediate fusion

approaches.

Heartbeat categorization dataset: For the PTB dataset, we take as reference the single feature

models presented in section II.2, as well as the multi-feature model of (Ahmad et al.., 2021),

detailed in Chapter 2.

Epileptic seizure recognition dataset: For this dataset, we also use the single feature models

of section II.2, in addition to the single feature models of (Xu et al.., 2020; Hilal, Albraikan,

Dhahbi, Nour, Mohamed, Motwakel, Zamani and Rizwanullah, 2022), based on 1D CNN-

LSTMs and sparse AE, respectively.

III.3 Evaluation metrics and strategy

All the models/methods were evaluated using a train/test split, and repeated 10 times for

statistical purposes. For the HITS and PTB dataset, we have an additional validation test, used

to choose and fine-tune the different hyperparameters.

Moreover, for the different models, we compute several metrics to evaluate their perfor-

mances from different perspectives. For the classification point of view, we used the MCC,

macro-averaged F1-score and the accuracy. At last, to measure the computation complexity

of the models, we used the number of parameters of the models, as well as the number of

multiplications and additions (mult-adds).

III.4 Experimental setup and results

Different experiments were performed to study our proposed methods. Hereafter we are going

to detail the experimental setup and the obtained results.

For most of the experiments, we fixed the training and models’ architectures, and these can

be found in Tables 4.2 and 4.3:

• 1D-CNN-trans: single feature model taking as input the raw signal

• 2D CNN single feature model taking as input the log-scale spectrogram.

• Late Fusion: multifeature model, taking as input both representations, and using late

learnable attention weights, where models 1D CNN-trans and 2D CNN are used to

obtain the classification outputs to fuse.

• MIF-N: joint-trained multifeature intermediate fusion (MIF) model with no (N) guiding

nor DEC regularization.

• MIF-GR: joint-trained guided and regularized (GR) MIF model.

Additionally, all the 2D CNN models were trained with Adam optimizer, whereas Noam was

used for models using a transformer architecture. The batch size was of 32, except for the late

fusion model, where the batch size was fixed to 16.

III.4.A Experiment 1: Single feature vs multi-feature models

Objective: The objective of this experiment is to compare multi-feature and single-feature

models, without special guiding or regularization.
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Table 4.2: Training parameters of the different models. 𝛼, 𝛽, and 𝛾 correspond to the impor-

tance of L𝑇𝐹𝑅, L𝑅𝑆 , and L̃𝐷𝐸𝐶 , respectively. Cat stands for concatenation and Weight. Sum
for weighted sum. Two versions of our joint-trained model are evaluated: one without reg-

ularization and guided training, named MIF-N, and another with guiding and the proposed

regularization, named MIF-GR. The 1D CNN-transformer and 2D CNN models are single fea-

ture models, taking as input the raw signal and a TFR, respectively. The other models are late

fusion multifeature models, taking as input both the raw signal and a TFR.

Dataset Model Epochs
Learning Weight

𝛼 𝛽 𝛾 𝑒𝑖𝑛𝑖𝑡 Fusion
rate decay

HITS-small-I

1D CNN-trans 150 0.07 1𝑒−7
- - - - -

2D CNN 50 0.001 1𝑒−7
- - - - -

Late Fusion 15 0.01 1𝑒−8
- - - -

MIF-N

150 0.3 1𝑒−7

- - - - Cat.

- - - - Weight. Sum

MIF-GR

0.01 0.1 0.01 50 Cat

0.001 1 0.1 50 Weight. Sum

PTB

1D CNN-trans 150 0.1 1𝑒−7
- - - - -

2D CNN 50 0.0001 1𝑒−7
- - - - -

Late Fusion 15 0.01 1𝑒−8
- - - -

MIF-N

150 0.3 1𝑒−7

- - - - Cat.

- - - - Weight. Sum

MIF-GR

0.01 1 0.0001 50 Cat.

0.01 0.1 0.1 50 Weight. Sum

ESR

1D CNN-trans 100 0.3 0.0001 - - - - -

2D CNN 100 0.001 0.00001 - - - - -

Late Fusion 15 0.001 1𝑒−8
- - - -

MIF-N

200 0.3 0.0001

- - - - Cat.

- - - - Weight. Sum

MIF-GR 0.01 1 0.0001 50

Cat.

Weight. Sum
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Table 4.3: Architecture parameters of the models based on the used dataset. We refer the reader

to figures 4.1 and 4.2 for the definition of the model parameters. Models 1D CNN-trans, 2D

CNN, MIF-N, and MIF-GR are the same as those in Table 4.2. Model Late Fusion from Table 4.2

is not presented here since the base models of Late Fusion are 1D CNN-trans and 2D CNN

models.

Dataset Model nhead dhid nlayers pdropout nproj draw nconv nfilters dcom Pool

HITS-small-I

1D CNN-trans 8 64 8 0.1 10 128 2 - - -

2D CNN - - - 0.2 - - - 64 - Max

MIF-N

4 64 4 0.1 10 128 2 64 64 Max

MIF-GR

PTB

1D CNN-trans 8 64 8 0.1 10 128 4 - - -

2D CNN - - - 0.2 - - - 64 - Max

MIF-N

4 64 4 0.1 10 128 2 64 64 Max

MIF-GR

ESR

1D CNN-trans 4 8 4 0.3 4 64 2 - - -

2D CNN - - - 0.2 - - - 64 - Max

MIF-N

4 8 4 0.3 4 64 2 64 64 Max

MIF-GR

Experimental setup: We trained single-feature and multi-feature models 1D CNN-trans, 2D

CNN, Late Fusion, and MIF-N, presented in Tables 4.2 and 4.3 with the indicated parameters,

on three different medical signal datasets, HITS-small-I, PTB, and ESR.

Results: Results can be found in Table 4.4. Several points can be highlighted.

First, we can note that, for all the datasets, the best performing models that we proposed are

always multi-feature ones. More particularly, our late fusion approach always outperform the

single feature models, on the three datasets, with MCC, F1-Score, and accuracy improvements

up to 8.77%, 7.07%, and 6.19%. However, this is not observed for the intermediate fusion

approaches on the PTB and ESR datasets, where the performance tend to be similar to the

worst performing single feature model.

Second, our proposed late fusion approach achieves state-of-the-art performances on HITS-

small-I and PTB datasets compared to other multi-feature methods, with an improvement up

to 3.41%, 1.83%, and 2.09% in terms of MCC, F1-Score, and accuracy, respectively. What is

more, on the ESR dataset, although this same approach is generic (i.e. not designed specifically

for this ESR dataset), it achieves the second-best performances, with an MCC, F1-Score, and

accuracy performances gaps of 1.64%, 0.18%, and 0.23%, respectively, compared to (Hilal et al..,
2022; Xu et al.., 2020).

Third, compared to the manual classification performances on the PTB dataset (Maki-

moto, Höckmann, Lin, Glöckner, Gerguri, Clasen, Schmidt, Assadi-Schmidt, Bejinariu, Müller,

Angendohr, Babady, Brinkmeyer, Makimoto and Kelm, 2020), all the models give better classi-

fication performances, in terms of F1-Score and accuracy, with an improvement up to 29.22%

and 32.2% (respectively), for the late fusion model, with a great reduction in the variability.

Finally, we observe that multi-feature models often have more parameters than single-

feature models, using more operations to obtain the final classification. However, the number

of parameters for our proposed approaches, specially the late fusion, remains of the same order

of magnitude as the largest single feature model.
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Table 4.4: Experiment 1. Test classification performances of different single and multi-feature

models on three medical datasets: HITS-small-I, PTB, and ESR. The results confirm the appeal

and adaptability of multi-feature approaches as it can outperform the single-feature models,

1D CNN-trans and 2D CNN, on the three datasets. The proposed late fusion approach achieves

state-of-the-art performance on two datasets, the HITS-small-I and PTB datasets, and an excel-

lent performance on the ESR dataset. The number of multiplications and additions (mult-adds)

is given in billions (G).

Dataset Model Representation
Fusion

MCC F1-Score Accuracy
No. No. mult-

method Parameters adds (G)

HITS-small-I

1D CNN-trans Raw signal

-

79.17 ± 6.64 84.37 ± 6.62 85.61 ± 4.74 766 271 0.173
2D CNN TFR 87.09 ± 4.31 90.98 ± 2.95 91.29 ± 2.96 1 681 923 1.23

Late Fusion

Both

Weight. Sum 87.94 ± 2.60 91.44 ± 1.91 91.80 ± 1.83 2 448 072 1.40

MIF-N Cat 84.53 ± 1.58 89.61 ± 1.06 89.71 ± 1.02 4 833 727 1.40

MIF-N Weight. Sum 85.93 ± 1.21 90.56 ± 0.78 90.58 ± 0.82 4 876 233 1.40

PTB

Manual classification

-

-

- 70 ± 7 67 ± 7 - -

Makimoto et al.. (2020)

1D CNN-trans Raw signal 98.31 ± 0.43 99.16 ± 0.22 99.32 ± 0.17 765 876 0.026
2D CNN TFR 97.03 ± 1.22 98.51 ± 0.61 98.80 ± 0.50 1 555 842 0.063

Ahmad et al.. (2021)

GAF

Weight. Sum - 98 99.2 9 259 427 -MTF

RP

Late Fusion

Both

Weight. Sum 98.45 ± 0.49 99.22 ± 0.25 99.38 ± 0.20 2 321 594 0.089

MIF-N Cat 97.11 ± 0.43 98.6 ± 0.22 98.84 ± 0.18 2 128 820 0.236

MIF-N Weight. Sum 97.29 ± 0.50 98.64 ± 0.25 98.91 ± 0.20 2 130 366 0.236

ESR

1D CNN-trans Raw signal

-

95.14 ± 1.67 97.55 ± 0.87 98.40 ± 0.59 109 942 0.008
2D CNN TFR 92.81 ± 3.53 96.33 ± 1.88 97.59 ± 1.35 1 555 842 0.062

Hilal et al.. (2022)

Raw signal

99.09 98.89 98.67 - -

Xu et al.. (2020) − 98.59 99.39 - -

Late Fusion

Both

Weight. Sum 97.45 ± 1.49 98.71 ± 0.77 99.16 ± 0.51 1 665 724 0.070

MIF-N Cat 93.40 ± 1.32 96.67 ± 0.68 97.89 ± 0.45 1 801 590 0.123

MIF-N Weight. Sum 93.01 ± 2.22 96.45 ± 1.22 97.77 ± 0.69 1 803 456 0.123
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Table 4.5: Experiment 2: Test classification performances of different multi-feature models

on three medical datasets: HITS-small-I, PTB, and ESR. The results confirm the appeal and

adaptability of guiding and regularization while jointly training end-to-end models as it im-

proves the performances of the intermediate fusion models, on the three datasets. Moreover,

our proposed guided and regularized hybrid model achieves state-of-the-art performance on

two datasets, the HITS and PTB datasets, and excellent performance on the ESR dataset. The

number of multiplications and additions (mult-adds) is given in billions (G).

Dataset Model Representation
Fusion

MCC F1-Score Accuracy
No. No. mult-

method Parameters adds (G)

HITS-small-I

Late Fusion

Both

Weight. Sum 87.94 ± 2.60 91.44 ± 1.91 91.80 ± 1.83 2 448 072

1.40

MIF-N Cat 84.53 ± 1.58 89.61 ± 1.06 89.71 ± 1.02 4 833 727

MIF-N Weight. Sum 85.93 ± 1.21 90.56 ± 0.78 90.58 ± 0.82 4 876 233

MIF-GR Cat 91.89 ± 2.64 94.31 ± 1.66 94.53 ± 1.74 4 833 727
MIF-GR Weight. Sum 88.28 ± 6.91 91.69 ± 4.81 92.01 ± 4.73 4 876 233

PTB

Ahmad et al.. (2021)

GAF

Weight. Sum - 98 99.2 9 259 427 -MTF

RP

Late Fusion

Both

Weight. Sum 98.45 ± 0.49 99.22 ± 0.25 99.38 ± 0.20 2 321 594 0.089
MIF-N Cat 97.11 ± 0.43 98.6 ± 0.22 98.84 ± 0.18 2 128 820

0.236
MIF-N Weight. Sum 97.29 ± 0.50 98.64 ± 0.25 98.91 ± 0.20 2 130 366

MIF-GR Cat 99.28 ± 0.11 99.64 ± 0.05 99.71 ± 0.04 2 128 820
MIF-GR Weight. Sum 99.18 ± 0.25 99.59 ± 0.13 99.67 ± 0.10 2 130 366

ESR

Hilal et al.. (2022)

Raw signal -

99.09 98.89 98.67 - -

Xu et al.. (2020) − 98.59 99.39 - -

Late Fusion

Both

Weight. Sum 97.45 ± 1.49 98.71 ± 0.77 99.16 ± 0.51 1 665 724 0.070
MIF-N Cat 93.40 ± 1.32 96.67 ± 0.68 97.89 ± 0.45 1 801 590

0.123
MIF-N Weight. Sum 93.01 ± 2.22 96.45 ± 1.22 97.77 ± 0.69 1 803 456

MIF-GR Cat 96.51 ± 0.46 98.25 ± 0.23 98.88 ± 0.15 1 801 590
MIF-GR Weight. Sum 96.85 ± 0.70 98.42 ± 0.35 98.98 ± 0.23 1 803 456

III.4.B Experiment 2: Advantage of guided and regularized end-to-end training

Objective: The objective of this experiment is to study the influence of guiding and regular-

ization while jointly training end-to-end models.

Experimental setup: We trained (intermediate and late fusion) multi-feature models Late

Fusion, MIF-N, and MIF-GR presented in Tables 4.2 and 4.3 with the indicated parameters, on

three different medical signal datasets, HITS-small-I, PTB, and ESR.

Results: Results can be found in Table 4.5. Several interesting points can be noted.

First, for all the datasets and all the models, our proposed guiding and regularization

strategy allow improving the performances of the MIF models, with a margin up to 7.36%

in terms of MCC (same behavior for the F1-Score and the accuracy). More interestingly, this

strategy allows obtaining MIF models outperforming the single feature models, on the three

datasets, by a margin up to 4.80% in terms of MCC. Additionally, the obtained models with

our proposed guiding and regularization strategy are more stable than models without it (late

fusion and single feature models) with a variability that can be reduced by a factor up to 10.

Second, MIF-GR models achieve state-of-the-art performances on the HITS and PTB datasets.

Indeed, on the HITS dataset, the best performing model is MIF-GR with concatenation, out-

performing the late fusion approach by a margin of 3.95% in terms of MCC. Similarly, in the

PTB dataset, the MIF-GR model with concatenation outperforms the late fusion approach by a

margin of 0.83% in terms of MCC, and (Ahmad et al.., 2021) by a margin of 0.51% in terms of
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accuracy. However, this is not observed in the ESR dataset, where MIF-GR are the third best

performing models in terms of accuracy, outperformed by (Xu et al.., 2020) and the late fusion

approach, by a margin of at least 0.51%.

At last, as in the previous experiment, we can note that multi-feature models tend to have

more parameters than the single-feature ones. Nevertheless, the order of magnitude of these

parameters remains similar to single feature models. Additionally, MIF models can have a

similar (or even less) number of parameters than the late fusion approach, with a comparable

number of operations (mult-adds). What is more, our proposed guiding and regularization

strategy does not increase the number of parameters, as it does not introduce new parameters

needed for inference. Indeed, the vanilla classifiers used to guide the training of each feature

encoder are only necessary during training, and not during inference, except if trying to predict

with only one representation (in case the other one is missing).

III.4.C Experiment 3: Influence of guided training

Objective: The objective of this experiment is to study the influence of guided training on the

final classification performances of MIF models.

Experimental setup: To this end, we trained model MIF-GR from Table 4.3 without semi-

supervised DEC regularization (𝛾 = 0), and introducing the guiding at different levels (see

equation 4.7) in the model’s architecture: (1) in the TFR encoder’s latent space only (𝛼 > 0 and

𝛽 = 0), (2) in the raw signal encoder’s latent space (𝛼 = 0 and 𝛽 > 0), (3) and in both encoder’s

latent spaces (𝛼 > 0 and 𝛽 > 0). On top of that, we varied the values of 𝛼 and 𝛽 in the range

{0, 0.0001, 0.001, 0.01, 0.1, 1}, and we used the HITS and PTB datasets for sub-experiments (1)

and (2), whereas for experiment (3) we only used the HITS dataset due to energy and resources

limitations.

Results: The results can be found in figures 4.5, 4.6, and 4.7. Several observations can be

done.

First, from figure 4.5 we can see that, on both datasets, guiding the training of the TFR

encoder does not allow important improvements on the classification performances. Indeed,

on the HITS dataset, for 𝛼 = 1𝑒−4
, MIF with weighted sum yields an MCC of 90.28±0.77% when

guiding is applied, whereas the unguided model achieves 90.49 ± 1.21%. On the other hand,

on the PTB dataset we observe a higher performance gap, with 93.31 ± 3.65% MCC for MIF

guided and with concatenation (𝛼 = 0.01), whereas for the unguided counterpart we obtain

91.83 ± 3.13%. These results are relatively stable for different values of 𝛼.

Second, we can see the importance of the raw signal encoder’s guiding (see figure 4.6): it has

a favorable effect on the classification performances of the model. Indeed, on both datasets, the

presence of guiding tends to improve the classification performances, with MCC improvements

greater than 0.84% and 6.68% on the HITS and PTB datasets, respectively. More interestingly,

it seems that what is important is the presence of raw signal encoder’s guiding rather than its

amplitude (value of 𝛽), as different values of 𝛽 achieve similar results on both datasets (and

more particularly in the PTB dataset).

Finally, from figure 4.7 we observe that guiding both encoders has also a beneficial effect on

the model performances. Globally, for 𝛼 ≤ 𝛽, there is a performance improvement allowing to

outperform the unguided MIF models. Moreover, when we fix the importance of L𝑇𝐹𝑅 (value

of 𝛼) and we increase the one of L𝑅𝑆 (value of 𝛽), the MCC tends to increase. As well, when we

do the opposite (fix 𝛽 and vary 𝛼), the classification performances do not necessarily increase,

but it remains relatively stable, specially for large values of 𝛽.
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(a) HITS-small-I dataset

(b) PTB dataset

Figure 4.5: Experiment 3. Validation classification performances (MCC) of two MIF models

using guided training only on the 2D CNN encoder space, without DEC (i.e, 𝛼 > 0, 𝛽 = 0,

𝛾 = 0). (a) HITS dataset, (b) PTB dataset. 𝛼 corresponds to the importance of L𝑇𝐹𝑅. Globally,

guiding the training of the 2D CNN encoder does not improve the classification performances

of the model considerably with respect to the unregularized model.

III.4.D Experiment 4: Influence of DEC regularization

Objective: The objective of this experiment is to study the influence of our semi-supervised

DEC regularization on the model performances.

Experimental setup: To do this, we also trained model MIF-GR from Table 4.3 on the HITS-

small-I and PTB datasets, but this time we removed guiding (𝛼 = 𝛽 = 0) and kept the regulariza-
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(a) HITS-small-I dataset

(b) PTB dataset

Figure 4.6: Experiment 3. Validation classification performances (MCC) of two MIF models

using guided training only on the 1D CNN-transformer encoder space, without DEC (i.e.,

𝛼 = 0, 𝛽 > 0, 𝛾 = 0). (a) HITS dataset, (b) PTB dataset. 𝛽 corresponds to the importance of L𝑅𝑆 .

We observe that guiding the training of the 1D CNN-transformer encoder can considerably

increase the classification performances of the model with respect to the unregularized model,

especially in the PTB dataset (imbalanced dataset).

tion (𝛾 > 0). On top of that, we varied the values of 𝛾 in the range {0, 0.0001, 0.001, 0.01, 0.1, 1}.

Results: Results can be found in figure 4.8. Some interesting points can be highlighted.

First, we can see that, even if the HITS-small-I dataset is balanced, semi-supervised DEC

regularization do not damage the classification performances, but they are not globally im-
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Figure 4.7: Experiment 3. Guided training on the two latent spaces (2D CNN TFR encoder and

1D CNN-transformer raw signal encoder) for the MIF model with concatenation on the HITS

dataset. 𝛼 and 𝛽 correspond to the importance of L𝑇𝐹𝑅 and L𝑅𝑆 , respectively. We see that

the guiding of the 1D CNN-transformer encoder is more important than that of the 2D CNN

encoder. Indeed, for a fixed 𝛼, when 𝛽 decreases, the MCC tends to decrease, whereas for a

fixed 𝛽, when 𝛼 decreases, the MCC remains relatively stable.

proved either1. Indeed, semi-supervised DEC regularization allows achieving similar or better

classification performances than when it is not applied, with 91.09 ± 1.09 (𝛾 = 0.001) and

90.45± 1.43 (𝛾 = 0.1) MCC against 90.18± 1.03 and 90.49± 1.21 MCC for the concatenation and

weighted sum fusion strategies, respectively.

Second, the results show the interest of our semi-supervised DEC regularization to partially

handle imbalanced datasets2. Indeed, the HITS dataset is balanced, contrary to PTB dataset

(imbalance ratio of 2.6). Therefore, as expected, DEC regularization has a higher influence on

the PTB trained models than those trained on the HITS-small-I dataset. More interestingly,

when the importance of L̂𝐷𝐸𝐶 increases (higher values of 𝛾), the classification performances

tend to increase too, while its variability decreases. In that way, we obtain important perfor-

mances gaps with, 95.07± 3.07% and 95.64± 1.52% MCC against 91.83± 3.12% and 91.19± 5.09

for the unregularized concatenation and weighted sum strategies models, respectively.

III.5 Discussion

III.5.A Experiment 1: Single feature vs multi-feature models

The results of this first experiment confirm the interest of using multiple features of a same

modality to enhance the classification performances of a model, which was validated using

three medical signal datasets. Indeed, even if only one modality is used, different represen-

tations can have complementary information, therefore combining them can have a beneficial

effect. In our case, the raw signal focuses in the temporal context as well as the amplitude

1This was further studied in our work (Vindas, Roux, Guépié, Almar and Delachartre, 2023a)

2This was further studied in our work (Vindas, Roux, Guépié, Almar and Delachartre, 2023a)
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(a) HITS-small-I dataset

(b) PTB dataset

Figure 4.8: Experiment 4. Validation classification performances (MCC) of two MIF models

using DEC on the common fused space, without guided training (i.e., 𝛼 = 𝛽 = 0 and 𝛾 > 0). (a)

HITS dataset. (b) PTB dataset. 𝛾 corresponds to the importance of L̃𝐷𝐸𝐶 .

information, whereas the TFR focuses on the spectral characteristics of the sample. To further

analyze this, we can observe the learned attention weights per representation and per class

in Table 4.6. If we focus on the HITS-small-I dataset we can see that, for the artifact class,

the raw signal is as important as the TFR for the final decision of the model. However, for

the gaseous and solid emboli classes, the TFR is more important. This is coherent with the

emboli classification procedure used by expert annotators, where the TFR is primarily used to

differentiate artifacts from emboli, and solid emboli from gaseous emboli; it is mainly in case

of doubt that the expert listens to the raw Doppler signal.

Furthermore, we tested different multi-feature approaches on different datasets, and our

116

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0064/these.pdf 
© [Y. Vindas-Yassine], [2023], INSA Lyon, tous droits réservés



Table 4.6: Experiment 1. Learned late fusion attention weights (median and mean absolute

deviation) for the late fusion model on the HITS-small-I and PTB datasets.

Dataset Class TFR Raw Signal

HITS-small-I

Artifact 0.46 ± 0.29 0.54 ± 0.29

Gaseous emboli 0.65 ± 0.17 0.35 ± 0.17

Solid emboli 0.71 ± 0.15 0.29 ± 0.15

PTB

Normal 0.49 ± 0.12 0.51 ± 0.12

Abnormal 0.18 ± 0.10 0.82 ± 0.10

proposed late fusion approach outperforms all the single feature models on the three tested

datasets, showing its generality. Indeed, these three datasets correspond to different classifi-

cation tasks, and our late fusion approach showed the same behavior with great performances

and small variability (more stable results) on all the datasets. This can be explained by the

fact that, contrary to other multi-feature models such as (Ahmad et al.., 2021), we exploit two

common and simple representations in signal processing, namely the raw signal, and the TFR,

instead of designing specific representations for one particular task. Additionally, even if our

method was applied for medical signal classification, we designed it to be general, and easily

adaptable to other types of inputs and/or models.

By the same token, the late fusion approach achieves state-of-the-art performances on the

HITS and PTB datasets. However, we cannot easily compare our approaches with those of

(Ahmad et al.., 2021), as neither the MCC nor the variability of the classification metrics are

given in their publication. Indeed, the PTB dataset is an imbalanced dataset, so the MCC

is better suited to compare classifiers than the accuracy or the F1-Score (Chicco and Jurman,

2020). Additionally, the variability is important as in some cases one would prefer smaller

mean performances but more stable results (low variability), than higher mean performances

with high variability. As well, even though our approaches do not reach state-of-the-art

performances on the ESR dataset, our late fusion approach achieve excellent performances.

Nevertheless, the comparison with other state-of-the-art models such as (Xu et al.., 2020; Hilal

et al.., 2022) is not straightforward as the evaluation strategy/sets1 are not the same, and these

works did not give the standard deviation of their results. In fact, in the ESR dataset, it is

very difficult to create a subject-wise train/test split or cross-validation folds, as subjects do not

always have samples from all the classes, and their quantity vary from one subject to another

one. This can lead to overconfident results when evaluating the models. Likewise, the state-

of-the-art methods to which we compare were specifically designed to perform the task of the

targeted dataset, whereas our approaches are more generic.

On top of that, we observed that the classification performances on the HITS-small-I dataset

are considerably lower than the ones obtained on the PTB or ESR dataset. This can be explained

by different reasons. Firstly, the size of the HITS-small-I dataset is smaller than the other two

datasets, with around 500 samples per classes, against at least 5000 for PTB and at least 2300

for the ESR dataset. Secondly, the available temporal context is around 4 times smaller for the

HITS-small-I dataset compared to the PTB and ESR datasets. Indeed, for PTB and ESR datasets,

the samples represent events of at least 1 s, whereas for the HITS-small-I dataset they represent

events of around 0.250 s (less than one cardiac cycle). Thirdly, the HITS classification task is

more complex, specially when identifying solid emboli from gaseous emboli, as even expert

1(Xu et al.., 2020) used a 80/20% train/test split, whereas (Hilal et al.., 2022) used 10-fold cross-validation.
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annotators and clinicians have difficulties identifying them.

What is more, even if the multi-feature approaches tend to have a larger number of param-

eters and mult-adds compared to single feature models, they do not explode, and the order

of magnitude remains similar. Globally, we can observe that the number of parameters of

the multi-feature models as well as the number of mult-adds, is roughly the sum of the same

quantities for each single feature encoder composing the multi-feature model. Additionally,

it is important to note that, compared to the multi-feature model of (Ahmad et al.., 2021), our

models have at least 4 times fewer parameters, with similar or even better classification per-

formances. The size of all the models is smaller than 35 MB, and their mean inference time is

smaller than 1 s (using Intel (R) Xeon (R) CPU E5-2650L v3 @ 1.80GHz and no GPU).

Finally, even if the late fusion approach achieves better performances than the intermediate

fusion MIF approaches, it has two main drawbacks. First, the models are longer to train, as

two different single feature models have to be pre-trained (preferably on the same data) before

training the attention weights. This drawback can be partially solved if some computational

resources are available, as the models can be trained in parallel. Second, late fusion is harder

to optimize as we have two different sets of hyperparameters (one per single feature model),

which can take some time to properly fine-tune.

III.5.B Experiment 2: Advantage of end-to-end training

The results of this experiment confirm the interest of end-to-end multifeature jointly trained

models, specially when guiding and regularization is done. Indeed, thanks to guiding, we

have more clustered intermediate latent spaces, specially for the raw signal, whereas semi-

supervised DEC regularization enhance clustering in the fused common latent space that is

used for final classification. To reveal this, for the HITS-small-I and PTB datasets, we projected

the different latent spaces of MIF-GR and MIF-N on a 2D plane, using UMAP (McInnes et al..,
2020), and for each obtained set of 2D points, we computed the silhouette score (figures 4.9

and 4.10). From the one hand, these figures show that, regarding the TFR guided and unguided

latent spaces, there is no obvious difference between them, with silhouette scores of 0.21± 0.05

and 0.19± 0.04 on the HITS-small-I dataset, respectively. On the other hand, if we focus on the

raw signal guided and unguided latent spaces, we observe a more striking difference, with an

important gap between silhouette scores, with 0.38± 0.04 and −0.03± 0.01 on the HITS-small-I

dataset, respectively. Likewise, the difference between the DEC regularized and unregularized

fused common latent spaces is not that evident, as we achieve respective silhouette scores of

0.36 ± 0.11 and 0.39 ± 0.05 on the HITS-small-I dataset.

Furthermore, the guided and regularized MIF-GR model performs comparably and even

better than state-of-the-art models, including the late fusion approach of the previous exper-

iment. This can be explained by the fact that, as the late-fusion approach, MIF-GR is able to

exploit the complementarity of the different representations thanks to the guided and regular-

ized joint-training. As we saw in the previous experiment, the two chosen representations are

generic and complementary, as the raw signal focuses on the temporal and amplitude informa-

tion, whereas the TFR focuses on the spectral information. Therefore, with our approach, each

encoder is able to (partially) compensate for the weaknesses of the other one, as in the late-

fusion approach. Nevertheless, the results of Table 4.5 also show that, if no guiding nor DEC

regularization is applied, then the individual and common latent spaces are not discriminative

enough, thus giving similar performances than some single-feature models. Additionally, as

for the late-fusion approach, our MIF-GR models are not able to outperform the state-of-the

art methods on the ESR dataset (which can be justified by the same points mentioned in the

discussion of experiment 1), but the behavior is the same as in the other datasets: guiding and

DEC regularization improve the classification performances with respect to MIF-N models.
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Moreover, we can note that, on the three datasets, if guiding and regularization are not

applied, the MIF models can give worst results than single feature models. In fact, jointly

training multi-feature models makes the learning of each single feature encoder more difficult,

thus penalizing the final classification performances. Therefore, this shows that guiding and

regularization are important components of our approach.

At last, we can compare the different models in terms of number of parameters and mult-

adds (in billions, G), to better analyze them. First, we notice that, globally for all the datasets,

with respect to late-fusion approach, the number of parameters and mult-adds is not consid-

erably increased as they remain of the same order of magnitude. This can be justified by the

fact that the core of our method are not the used single-feature encoders, but rather the joint-

training strategy assisted by the guiding and the semi-supervised DEC regularization. Because

of this, the number of parameters remains of the same order of magnitude as the single-feature

models. As well, this is important as we want to keep this multi-feature models nearly as fast

and as lite as single-feature models for practical usage. By the same token, if we compare our

approach to the one of (Ahmad et al.., 2021) on the PTB dataset, our MIF-GR approach not only

outperforms it in terms of classification, but it also has at least 4.3 fewer parameters, giving

lighter models.

III.5.C Experiment 3: Influence of guided training

The results of this experiment showed the interest of guided training to enhance the classifica-

tion performances of joint-trained MIF models, on the HITS and PTB datasets.

First, we can see that, for the tested medical signal datasets, the guiding of the raw signal’s

encoder is crucial, as it is the one allowing to increase the most the classification performances.

As we mention it before, jointly training two different encoders with different inputs makes

the learning process harder, therefore guiding can help to ease this problem. The UMAP

2D projections in figures 4.9 and 4.10 show that guiding allows to learn more discriminative

features for the raw signal’s encoder latent space. On the other hand, when no guiding is done,

we can see that the obtained features are not discriminative at all (translated by silhouette

scores close to 0), which has a negative impact on the obtained common representation, and

therefore in the final classification performances.

Second, the results in this experiment allow us to have some guidelines about an strategy to

choose 𝛼, 𝛽, and 𝛾. Indeed, when the importance of L𝑇𝐹𝑅 is higher than the importance of L𝑅𝑆
(i.e., 𝛼 > 𝛽), the classification performances tend to decrease. This is consistent with the results

in figures 4.5, 4.6, 4.9, and 4.10, as they show that the raw signal’s encoder latent space is harder

to learn, whereas the one of the TFR’s encoder is easier. Therefore, giving too much importance

to L𝑇𝐹𝑅 at the expense of L𝑅𝑆 avoids important gains in classification performances, as we

guide the simple representation (TFR) and not enough that difficult one (raw signal). Thus, we

recommend choosing 𝛼 and 𝛽 such that 𝛼 ≤ 𝛽, since the guiding of the raw signal’s encoder is

more important than the one of the TFR’s encoder in a joint training context.

Finally, linked to the previous point, the results in figures 4.5 and 4.10 showed that guiding

training of the TFR’s encoder is not crucial, as it does not have a significant negative nor

positive impact on the classification performances of the model. On the contrary, the guiding

of the raw signal’s encoder training is important. Therefore, guiding the training of both

encoders can mostly be beneficial for the model, specially for other types of models and

representations. Indeed, here we focus on three medical signal datasets, two type of models,

and two type of features, but if the models, features or dataset characteristics change, the

guiding behavior may be the opposite, so keeping this guiding for all the encoders (of the

used representations) allows being more robust to model, representations, or dataset changes.

Additionally, as guiding enforces each single-feature encoder to learn discriminative features

119

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0064/these.pdf 
© [Y. Vindas-Yassine], [2023], INSA Lyon, tous droits réservés



(a) (b)

(c) (d)

(e) (f)

Figure 4.9: Experiment 1. Test embeddings of the MIF-GR and MIF-N models on the HITS-

small-I dataset. (a) TFR encoder’s latent space without regularization, (b) TFR encoder’s latent

space with regularization, (c) raw signal encoder’s latent space without regularization, (d)

raw signal encoder’s latent space with regularization, (e) fused common latent space without

regularization, (f) fused common latent space with regularization. For the regularized model

we used 𝛼 = 0.01, 𝛽 = 0.1, 𝛾 = 0.01, and 𝑒𝑖𝑛𝑖𝑡 = 50.

(which was shown through the UMAP 2D projections and the associated silhouette scores

greater than 0.2), it allows being more robust against missing features, as one can deactivate

the encoder of the missing feature during inference, and still perform classification.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.10: Experiment 1. Test embeddings of the MIF-GR and MIF-N models on the PTB

dataset. (a) TFR encoder’s latent space without regularization, (b) TFR encoder’s latent space

with regularization, (c) raw signal encoder’s latent space without regularization, (d) raw signal

encoder’s latent space with regularization, (e) fused common latent space without regulariza-

tion, (f) fused common latent space with regularization. For the regularized model we used

𝛼 = 0.01, 𝛽 = 1.0, 𝛾 = 0.0001, and 𝑒𝑖𝑛𝑖𝑡 = 50.

III.5.D Experiment 4: Influence of DEC regularization

The results of this experiment revealed the interest of semi-supervised DEC regularization,

specially when using imbalanced datasets such as PTB.
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First, the results showed that the proposed semi-supervised DEC regularization help deal-

ing with real-life imbalanced datasets, while improving its generalization capabilities with

respect to non regularized models. Indeed, in figures 4.8 we can see that DEC allows im-

proving the classification performances, specially for the PTB dataset, which is imbalanced:

the higher the importance of L̃𝐷𝐸𝐶 , the higher the mean classification performances and the

smaller the variability. Our hypothesis is that, because of semi-supevised DEC does not use

the label information (only the number of classes), it will enforce clustering regardless of the

number of samples per cluster (i.e. class)1. Additionally, in our work (Vindas, Roux, Guépié,

Almar and Delachartre, 2023a), we showed that this DEC regularization can also be used

in single-feature models under the presence of label-noise, outperforming other imbalanced

handling methods such as oversampling and class weights.

Second, linked to the last point, the obtained models with semi-supervised DEC regular-

ization yield smaller variability, thus being more stable. In addition, with the good choice of

hyperparameters2, one can be able to improve the classification performances with respect to

unregularized models, even for balanced datasets. This can also be justified by the more clus-

tered fused common latent space obtained thanks to DEC, which allows reducing the number

of errors because of the samples that are at the boundaries between clusters for different models

(thus the variability).

At last, the results showed that, in the worst-case scenario, semi-supervised DEC regular-

ization does not significantly degrade the classification performances of the models. This is

an important point as we combine this regularization with guided training. Indeed, even if

no particular hyperparameter optimization is done, the behavior of our proposed DEC regu-

larization will remain similar under the presence of guided training, specially for imbalanced

datasets such as PTB.

III.5.E Limitations

The proposed multi-feature learning methods showed to be a promising approach to enhance

the classification performances of medical signal classification tasks, thanks to the exploitation

of the complementarity between different representations of the same initial input. However,

some limitations can be highlighted.

First, for the late-fusion approach, the main drawback is its training and optimization

difficulty. Indeed, our proposed late-fusion approach is not end-to-end trainable, as it requires

to first train two independent single-feature classification models, and then train the attention

weights doing late fusion. The optimization and fine-tuning of each single-feature model can

be time-consuming, therefore, if possible, end-to-end trainable models are preferred.

Second, our guided and regularized jointly trained intermediate fusion model (MIF-GR)

overcomes the previous limitation, by proposing end-to-end trainable models, which are easier

to train and optimize. However, these models have an important drawback, regarding the

several introduced hyperparameters. Indeed, for the MIF-GR model, we introduced four

hyperparameters (𝛼, 𝛽, 𝛾, and 𝑒𝑖𝑛𝑖𝑡 ), which have to be carefully fine-tuned to obtain optimal

performances. Even though we give some guidelines on how to choose them, more extensive

experiments should be carried out in order to better understand their impact, as well as to

validate the generality of our method.

Third, linked to the generality of our method, we design MIF-GR to be generic, meaning

that it can be used with different representations (not only raw signals and TFRs) and types of

1In the original DEC paper (Xie et al.., 2016) it was shown that, under a fully unsupervised context, DEC is

relatively robust against data imbalance.

2We studied the influence of 𝑒𝑖𝑛𝑖𝑡 in (Vindas, Roux, Guépié, Almar and Delachartre, 2023a)
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Table 4.7: Combination of semi-automatic data annotation and MIF-GR: training parameters

of the different models on HITS-sada. 𝛼, 𝛽, and 𝛾 correspond to the importance of L𝑇𝐹𝑅,

L𝑅𝑆 , and L̃𝐷𝐸𝐶 , respectively. Cat stands for concatenation. 1D CNN-trans and 2D CNN are

single-feature models, whereas MIF-GR is multifeature.

Model Epochs
Learning Weight

𝛼 𝛽 𝛾 𝑒𝑖𝑛𝑖𝑡 Fusion
rate decay

1D CNN-trans 75 0.04

1𝑒−5
- - - - -

2D CNN 100 1𝑒−4
- - - - -

MIF-GR 75 0.05 1𝑒−7
0.001 0.1 0.001 1 Cat

models (not only 2D CNNs or transformer-based models). However, in this work, we did not

tested other types of representations or architectures.

Finally, we focused on medical signal classification datasets, as it is our main interest. Nev-

ertheless, more studies can be carried out on datasets of other natures (such as environmental

sound recognition, voice recognition, music classification, etc.) in order to further validate the

generality of our approach.

IV Combination of semi-automatic data annotation and MIF-GR

In the previous chapter, we presented a semi-automatic data annotation method based on fea-

ture space projection and local quality metrics in order to ease the difficult and time-consuming

annotation of HITS. Here, we applied this method to HITS data in order to obtain the semi-

automatically labeled dataset, HITS-sada, which was partially verified by an expert. Therefore,

we propose to train a MIF-GR model on this dataset, and compare its performances with single

feature models 1D CNN-trans and 2D CNN.

To do this, we trained the 1D CNN-trans, 2D CNN, and MIF-GR with concatenation models

on the HITS-sada dataset, using the GCE loss1, a batch size of 32, and the training parameters

of Table 4.7. Moreover, the models’ architectures and hyperparameters were the same as the

ones of section III, Table 4.3.

The results can be found in Table 4.8, where diverse points can be noted. First, we see that,

from a classification perspective, the best performing model in all the metrics is our MIF-GR

model, outperforming the 1D CNN-trans and 2D CNN models by 1.61% and 3.32% in terms

of MCC respectively, while reducing the variability. These results are coherent, as our MIF-GR

approach was designed to handle noisy-labeled and imbalanced datasets. There are two main

reasons explaining this: guiding (with GCE) and semi-supervised DEC regularization. Indeed,

the noise-tolerant loss function GCE is applied also in the intermediate classifiers C𝑅𝑆 and C𝑇𝐹𝑅
used for guiding, allowing to obtain intermediate representations, H𝑅𝑆 and H𝑇𝐹𝑅, relatively

robust against noisy-labels, thus improving the quality and robustness of the fused common

representation H𝑓 𝑢𝑠 used for final classification. In addition to this, GCE is also applied in the

final classifier C, reinforcing the robustness of the fused common representation. What is more,

our semi-supervised DEC regularization makes the model more robust against noisy-labeled

and imbalanced dataset. In fact, this regularization does not depend on the labels themselves,

but only on the number of classes, so the noise in the labels does not have any influence on

1The impact of GCE with respect to CE in noisy-labeled datasets was studied in the previous chapter, therefore

it will not be studied here.

123

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0064/these.pdf 
© [Y. Vindas-Yassine], [2023], INSA Lyon, tous droits réservés



Table 4.8: Combination of semi-automatic data annotation and MIF-GR: test classification

performances of different single and multi-feature models on HITS-sada. The results confirm

the appeal and adaptability of our guided and regularized multifeature intermediate fusion

approach for real-life noisy-labeled datasets. The number of multiplications and additions

(mult-adds) is given in billions (G).

Model MCC F1-Score Accuracy
No. No. mult-

Parameters adds (G)

1D CNN-trans 85.74 ± 1.16 88.96 ± 0.78 91.35 ± 0.77 766 271 0.173

2D CNN 84.03 ± 1.20 86.81 ± 1.50 90.68 ± 1.12 1 681 923 1.23

MIF-GR 87.35 ± 0.85 89.41 ± 0.64 92.59 ± 0.50 4 833 727 1.40

it. In top of that, DEC is relatively robust against imbalanced datasets in an unsupervised

(Xie et al.., 2016) and semi-supervised context (Vindas, Roux, Guépié, Almar and Delachartre,

2023a) because it only uses the learned hidden representations for clustering, and not the label

information, partially preventing the fused common latent space from being biased by the label

information.

Second, we observe that, contrary to experiment 1, the 1D CNN-trans model performs

relatively well, getting closer to the MIF-GR model, as well as outperforming the 2D CNN

model. On top of that, in terms of number of parameters, the 1D CNN-trans is the best model,

with 2.2 and 6.3 times fewer parameters compared to the 2D CNN and MIF-GR models (a

similar behavior can be observed for the number of mult-adds). This can be explained by the

fact that classical transformer models are data hungry, often requiring large training datasets

to generalize well. In this case, HITS-sada is around 5 times larger than HITS-small-I, which

is more adapted to train transformer models from scratch without pre-training. Furthermore,

this 1D CNN-trans model is the one having the smaller number of parameters and mult-adds,

making it well suited for resource-limited applications. What is more, even though MIF-GR is a

multifeature model whereas the 2D CNN is a single feature model, the former has only 2.9 times

more parameters and requires only 1.1 times more mult-adds. Thus, a good trade-off between

classification performances and resource requirements is our proposed MIF-GR model, as it is

the best classification model in the used dataset, while being relatively reasonable in terms of

number of parameters and number of operations.

V Interest from an industrial (Atys medical) perspective

Our work takes place within the context of the CAREMB project, where we work closely with

Atys medical to improve cerebral emboli detection and classification.

As it was discussed in Chapter 2, before starting my PhD thesis, cerebral emboli detection

and classification was principally done with non-portable TCD devices, and classification was

mainly done between artifacts and emboli, without distinction between solid or gaseous (the

latter were in some cases in the artifact class, and in other cases in the solid emboli class).

Thanks to our work, we pushed further cerebral emboli classification using portable TCD

devices, and allowing the classification of HITS between artifacts, gaseous emboli, and solid

emboli. In this chapter, we proposed different single and multi-feature models doing this,

and which can be used for research purposes. Indeed, in collaboration with Atys medical, we

developed an ADMS plugin, allowing to use the different proposed models of this chapter, to
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refine the first classification proposed by ADMS. However, the choice of the model to use in an

industrial context is not trivial, as there is a trade-off between inference time and classification

performances.

To further investigate this, we perform inference time measurements (in𝑚𝑠) for the different

models of experiment 2 on the HITS-small-I dataset, and the results can be found in Table 4.9.

The measurements were performed without GPU, on a computer with 64 Gb of RAM memory,

and a Intel(R) Core(TM) i7-6700HQ CPU. Several points can be discussed. Firstly, we can note

the fastest inference time model is the 2D CNN, with 97 ms to predict the class of one single

sample. This is interesting from an industrial application perspective, as patients often have

thousands of HITS, so a quick analysis is needed for a practical use. With this inference time,

one can process 1000 HITS in 97 s (1.5 minutes). Secondly, we can see that the MIF-GR model

with concatenation achieve the second-best inference time, being able to classify 1000 HITS in

223 s (4 minutes), while having the highest classification performances. Interestingly, the MIF-

GR with concatenation model which is multi-feature, is faster than the 1D CNN-transformer

model, which is single-feature. This can be explained by the fact that the 1D CNN-transformer

encoder of the MIF-GR with concatenation model is lighter than the single feature 1D CNN-

transformer model, the former having a lower inference time. Therefore, even if the MIF-GR

with concatenation model has more parameters than the 1D CNN-transformer model, it is

able to process data faster, as the majority of the parameters comes from the 2D CNN encoder,

which is relatively fast. Thirdly, we observe that, when we take into account the data loading,

an important part of the final inference time comes from the data loading itself. For instance, for

the 2D CNN classifier, the data loading represents around one third of the total inference time.

Therefore, for real applications, processing 1000 HITS takes at least 149 s (≈ 2.5 minutes), which

is still reasonable. This result is interesting as optimizing data loading in the ADMS plugin that

we developed could reduce processing time. Fourthly, we observe some interesting results. For

the artifact class, the classification performances are similar for the different models, achieving

up to 96% accuracy. For the gaseous and solid emboli classes, the proposed MIF-GR with

concatenation model is the best one, outperforming the other models by a margin of 2.55%

(gaseous emboli) and 26.15% (solid emboli) accuracy. This behavior is coherent with figure 4.9

where we observe more separable clusters in the fused common space than in the single-feature

latent spaces. In addition, we can see that the worst performing class is the gaseous emboli one,

where we are not able to reach performances superior to 90%. Thus, an important research axis

could be focused on improving these performances. At last, we recommend using the MIF-GR

with concatenation model for applications needing an accurate classification, whereas the 2D

CNN can be used for time-sensitive applications.

VI Conclusion

In this chapter we proposed two main approaches for multi-feature signal classification, based

on late and intermediate fusion, allowing to considerably increase the classification perfor-

mances compared to other methods/models. The late fusion approach is based on the training

of two independent single-feature classifiers, for which their classification outputs are com-

bined using learnable attention weights. The intermediate fusion approaches follow a similar

strategy, but this time the intermediate representations of each single-feature model are fused,

and the obtained common representation regularized through semi-supervised DEC. On top

of that, the classification part of each single-feature model is kept during training, to guide the

training of each single-feature encoder.

Furthermore, we validate and study our proposed approach through extensive experimen-

tation, yielding state-of-the-art results. Firstly, both late and guided-regularized intermediate
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Table 4.9: Average inference times (in 𝑚𝑠) and class accuracies of the different single and multi-

feature models of experiments 1 and 2, for one sample. The measurements were performed

using the test set of HITS-small-I, and repeated 5 times. Bold values are the best ones, and italic

ones are the second-best ones. Cat. stands for concatenation. The 2D CNN single feature model

is the fastest inference time model, whereas MIF-GR Cat. is the one with the best classification

performances.

Model
Inference Inference

MCC
Artifact Gaseous Solid

time with data Accuracy Emboli Emboli
loading Accuracy Accuracy

1D CNN-trans 297 ± 4 354 ± 4 79.17 ± 6.64 93.02 ± 7.74 86.81 ± 4.23 71.03 ± 24.68

2D CNN 97 ± 1 149 ± 2 87.09 ± 4.31 95.28 ± 4.87 87.45 ± 2.22 90.51 ± 6.98

Late Fusion 391 ± 4 446 ± 4 87.94 ± 2.60 96.04 ± 5.93 87.66 ± 2.48 91.28 ± 5.98

MIF-GR Cat. 223 ± 2 278 ± 3 91.89 ± 2.64 96.60 ± 4.29 89.36 ± 1.00 97.18 ± 2.42

fusion models achieve excellent and state-of-the-art performances on the tested datasets. Sec-

ondly, for the intermediate fusion models, we showed that guiding and regularization are

crucial as they allow more discriminative intermediate representations, as well as a more clus-

tered fused common latent space. Particularly, if guiding and regularization are not applied, the

intermediate fusion approaches can yield worse performances than some single-feature mod-

els. Thirdly, our model is relatively robust against semi-automatically labeled, noisy-labels and

imbalanced datasets, outperforming single feature models under the same training conditions

with a noise-tolerant loss function such as GCE. Finally, even if it was not directly tested during

experimentation, our method is intended to be generic and usable in other contexts, where the

datasets, the representations, or the used architectures are not the same as the ones used in our

experiments.

In the following chapter, we are going to work on model compression methods, allowing to

reduce the memory, computation, and energy requirements of the different models developed

in the current and the previous chapter.
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5 Model Compression

In the previous chapter (Chapter 4) we developed multi-feature models to push further the

HITS classification performances. These models can be trained on noisy-labeled datasets as

the ones obtained with our semi-automatic data annotation method presented in Chapter 3,

further improving their classification performances. However, these models are often memory

and energy greedy, which makes difficult their use in practical situations. To overcome this

difficulty, model compression techniques such as pruning (Hoefler et al.., 2022) or quantization

(Liang, Glossner, Wang, Shi and Zhang, 2021; Gholami et al.., 2022) can be used. As seen

in Chapter 2, some works have proposed to (directly or indirectly) combine pruning and

quantization to take advantage of both techniques, while keeping reasonable classification

performances (Han et al.., 2016; Park and Yoo, 2020; Tung and Mori, 2020; Rastegari et al.., 2016;

Zhu et al.., 2017). However, to our knowledge, not many works have tried to directly take into

account pruning during extreme quantization (using less than 4 bits to encode the quantized

weights).

In this chapter, we propose a new quantization heuristic to directly take into account asym-

metric pruning when doing trained ternary quantization (TTQ). This allows us to compress the

models developed in the previous chapters to reduce their memory requirements and energy

consumption.
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I Motivation

I.1 Limitations of previous methods

Several methods have done model compression on different types of deep learning models

as seen in Chapter 2. Here, we focus on pruning and quantization methods as they can be

combined relatively easily, and allow great compression and energy consumption gains, while

keeping reasonable classification performances for practical use.

The first limitation of previous methods is that, to our knowledge, they often do not directly

take into account pruning while doing extreme quantization (such as trained binary or ternary

quantization). Indeed, in trained extreme quantization, some heuristics are defined to decide

which quantized value will be associated to each weight, but pruning is not done unless 0 is part

of the quantized values (as for TTQ). If 0 is part of these values, then pruning is implicitly done

through the quantization heuristic, but often it is difficult to control it without modification of

the latter.

Another important limitation, related to the last one, is the difficulty of controlling the

trade-off between classification and compression performances. Indeed, even though the spar-

sity obtained through pruning can have a regularization effect on the trained models, very high

sparsity rates (i.e. aggressive pruning) can bring important losses of information, reducing

considerably the classification performances of the models. As the sparsity rate is difficult to

control in current extreme quantization methods (because of the proposed heuristics), control-

ling this trade-off is not an evident task.

Furthermore, the symmetry of the quantization heuristics and the quantized weights can

also be considered as a limitation. Indeed, TTQ (Zhu et al.., 2017) highlighted this for the

scaling factors used by ternary weight networks (Li and Liu, 2016) which were symmetric.

They proposed to improve the quantization procedure by using asymmetric learnable scaling

factors. However, regarding the quantization heuristic, positive and negative weights are

considered as having the same importance, as quantization is done based using symmetric

thresholds. The same rationale can be used to improve the quantization heuristic and process

the negative and positive weights differently.

Finally, even though different compression metrics are used in the previous works to mea-

sure the trade-off between model compression and classification performances, few works take

into account the sparsity, or use energy consumption based metrics. This is important to take

into account as sparsity can reduce energy consumption, by limiting the number of opera-

tions to perform, as well as the data transfers to memory. Therefore, to accurately compare

compressed models, it is necessary to take into account sparsity in the compression rates, and

energy consumption metrics. Likewise, hardware-independent energy consumption metrics

should be used to ease this comparison.

I.2 Objectives and contributions

We suggest solving the previous limitations with a new quantization heuristic based on asym-

metric pruning done using the weights’ statistics. We parametrize our quantization heuristic

with two hyperparameters, allowing to better control the trade-off between compression and

classification performances. This allows us to increase the sparsity rates, while keeping the

quantized weights in reduced precision (2 bits), and reasonable classification performances.

Our proposed approach outperforms TTQ (Zhu et al.., 2017) in terms of trade-off between

compression, energy consumption, and classification performances. Our main contributions

can be summarized as follows:
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• A new extreme quantization heuristics, based on the weights’ statistics of the layers of

the model to quantize.

• Asymmetric pruning before ternarization, giving a better trade-off between compression

and classification performances.

• Asymmetric parametrization of the sparsity rate of the layers to quantize using two

hyperparameters, allowing to control the abovementioned trade-off.

• A new hardware-independent energy consumption metric, taking into account the spar-

sity of the models’ weights, the number of bits needed to encode them, the number of

mult-adds performed by the model, as well as the number of data transfers to memory.

II Proposed method

In this section, we are going to detail the ternarization heuristic that we propose in order to

incorporate asymmetric pruning during the quantization procedure, as well as the compression

and energy consumption metrics that we use to compare the different models. Our approach

can be used for different types of models, including the ones developed in the previous chapter.

In this chapter, some notations may differ with respect to previous chapters. This is to

facilitate the explanation of the proposed quantization method, and the comparison with

similar works.

II.1 General overview and assumptions

Let us suppose that we have a pre-trained twice-differentiable full precision (FP) modelM𝐹𝑃

which has reached a local minimum, and composed of 𝑝 layers 𝐿1, ..., 𝐿𝑝. Without loss of

generality, we suppose thatM𝐹𝑃 can be written under the formM𝐹𝑃 = 𝐿1 ◦ 𝐿2 ◦ ... ◦ 𝐿𝑝, where

for all 𝑖 ∈ [1, 𝑝], 𝐿𝑖 ∈ R𝑛𝑖×𝑚𝑖
(𝑛𝑖 and 𝑚𝑖 are the dimensions of layer 𝐿𝑖). Our aim is to prune

and ternarizeM𝐹𝑃 using a quantization method Q, to obtain a compressed and sparse model

M𝐶 = 𝐿̃1 ◦ 𝐿̃2 ◦ ... ◦ 𝐿̃𝑝, where for all 𝑖 ∈ [1, 𝑝], 𝐿̃𝑖 is the 𝑖𝑡ℎ layer of the compressed model,

defined as:

𝐿̃𝑖 =

{
Q(𝐿𝑖) if 𝑖 ∈ 𝐼𝑄
𝐿𝑖 else

where 𝐼𝑄 is the set of indices of the layers that are going to be quantized, and Q is applied

element-wise to 𝐿𝑖 .

Moreover, our approach is composed of two main components (see figure 5.1): quantization

layer selection and asymmetric TTQ (aTTQ).

• Quantization layer selection: To avoid important classification performances drop, we

select the layers that are going to be quantized, 𝐼𝑄, using the Hessian based metric

introduced in Chapter 2 (equation 2.20).

• Asymmetric TTQ (aTTQ): Done through a new quantization heuristic where the pruning

thresholds are asymmetric, and computed using the mean and standard deviation of the

weights of each layer to quantize, parametrized by two hyperparameters, 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥 .

A general overview of this step is presented in figure 5.2.

Furthermore, our approach relies on several assumptions. First, in order to be able to select

the layer to quantize using the Hessian based metric of (Dong et al.., 2020), we need to have a

twice-differentiable pre-trained model which has reached a local minimum (in addition to the
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Figure 5.1: Main components of our proposed extreme quantization approach: layer quantiza-

tion selection and asymmetric TTQ (aTTQ). The layers to be quantized are obtained using the

Hessian-based metric of (Dong et al.., 2020). Asymmetric trained ternary quantization is based

on a new quantization heuristic where the quantization thresholds are computed based on the

weights statistics of a given layer.

Figure 5.2: Proposed asymmetric TTQ (aTTQ) method. The main difference with respect to TTQ

lies on the asymmetric pruning mechanism, which is done using two asymmetric thresholds,

Δ𝑚𝑖𝑛 and Δ𝑚𝑎𝑥 instead of one symmetric threshold Δ𝑚𝑖𝑛 = −Δ𝑚𝑎𝑥 = −Δ𝐿 . Additionally, these

thresholds are computed using the mean and standard deviation of the weights to quantize,

instead of the max. The normalization step, always used in TTQ, is optional in our approach.
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other two assumptions introduced in Chapter 2). Second, as (Zhu et al.., 2017) does it for the

learnable scaling factors, we make the assumption that asymmetry in the pruning thresholds

before quantization can be beneficial for the final compression and classification performances

of the quantized model. The rationale behind this is that it enlarges the quantized model search

space used during training, which allows searching for models having a better trade-off be-

tween compression, energy consumption, and classification performances1. Third, to simplify

the energy consumption computation, we make three assumptions: (1) only the nonzero pa-

rameters are counted to determine the number of mult-adds, (2) multiplications and additions

have the same energy cost, the one of a 32 floating-point multiplication (3.7𝑝𝐽 according to

(Horowitz, 2014)) and (3) only the nonzero weights are transferred to RAM memory, and all

transfers are done by blocks of 32 bits (4 bytes). The main reason we make assumption 2 is

that multiplications are more expensive than additions, and separating multiplications from

additions in current versions of torch and torchinfo is not straightforward.

II.2 Asymmetric weights statistics based pruning

We propose a novel asymmetric quantization heuristic for trained ternary quantization, based

on the weights’ statistics of the layers to quantize, allowing a better control of the sparsity rates

(see figure 5.2). Contrary to TTQ, the quantization thresholds are not the same for the positive

and the negative weights (asymmetry), and they do not depend on the maximum absolute

value of the weights’ tensors, but rather on their mean and standard deviation:

∀𝑖 ∈ 𝐼𝑄,∀𝑘 ∈ [1, 𝑛𝑖], 𝑗 ∈ [1, 𝑚𝑗],Q(𝐿𝑘, 𝑗𝑖 ) =


𝑊 𝑙
𝑖

if 𝐿
𝑘, 𝑗

𝑖
< Δ𝑖

𝑚𝑖𝑛

0 if 𝐿
𝑘, 𝑗

𝑖
∈ [Δ𝑖

𝑚𝑖𝑛
,Δ𝑖𝑚𝑎𝑥]

𝑊𝑟
𝑖

if 𝐿
𝑘, 𝑗

𝑖
> Δ𝑖𝑚𝑎𝑥

(5.1)

where 𝐿
𝑘, 𝑗

𝑖
∈ ℝ is the weight of layer 𝐿𝑖 at row 𝑘 and column 𝑗 , 𝑊 𝑙

𝑖
,𝑊𝑟

𝑖
∈ ℝ are learnable

scaling parameters (the superscript 𝑙 stands for "left" as the 𝑟 stands for "right") for layer 𝐿𝑖 ,

Δ𝑖
𝑚𝑖𝑛

= 𝜇𝑖 + 𝑡𝑚𝑖𝑛 × 𝜎𝑚𝑖𝑛 and Δ𝑖𝑚𝑎𝑥 = 𝜇𝑖 + 𝑡𝑚𝑎𝑥 × 𝜎𝑖 are the quantization thresholds for layer 𝐿𝑖 ,

𝜇𝑖 and 𝜎𝑖 are the mean and standard deviation of the weights of layer 𝐿𝑖 , and 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥
are two hyperparameters allowing to control the sparsity of the quantized weights (same for

all the layers), and following the constraint 𝑡𝑚𝑖𝑛 ≤ 𝑡𝑚𝑎𝑥 . This constraint is necessary because, if

𝑡𝑚𝑖𝑛 > 𝑡𝑚𝑎𝑥 , then Δ𝑖
𝑚𝑖𝑛

> Δ𝑖𝑚𝑎𝑥 , thus ∀𝑖 ∈ 𝐼𝑄,∀𝑘 ∈ [1, 𝑛𝑖], 𝑗 ∈ [1, 𝑚𝑗], 𝑄(𝐿𝑘, 𝑗𝑖 ) ≠ 0, avoiding any

pruning. On the contrary, the lower 𝑡𝑚𝑖𝑛 with respect to 𝑡𝑚𝑎𝑥 , the larger the range [Δ𝑖
𝑚𝑖𝑛

,Δ𝑖𝑚𝑎𝑥],
resulting in sparser models.

Furthermore, as for TTQ, we used the straight forward estimator to compute the gradients

of the loss L to optimize for the layers to quantize:

𝜕L
𝜕𝐿

𝑘, 𝑗

𝑖

=


𝑊𝑙 × 𝜕𝐿

𝜕𝐿̃
𝑘, 𝑗

𝑖

if 𝐿
𝑘, 𝑗

𝑖
< Δ𝑖

𝑚𝑖𝑛

0 if 𝐿
𝑘, 𝑗

𝑖
∈ [Δ𝑖

𝑚𝑖𝑛
,Δ𝑖𝑚𝑎𝑥]

𝑊𝑟 × 𝜕𝐿

𝜕𝐿̃
𝑘, 𝑗

𝑖

if 𝐿
𝑘, 𝑗

𝑖
> Δ𝑖𝑚𝑎𝑥

(5.2)

where 𝐿
𝑘, 𝑗

𝑖
and 𝐿̃

𝑘, 𝑗

𝑖
are the full-precision and ternarized weights of a given layer to quantize.

Thanks to this, aTTQ can be optimized through gradient descent.

1Note that the fact that we have two asymmetric thresholds do not have an influence during inference as they

are only used when quantizing the model during training.
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II.3 Layer selection

As we are doing extreme quantization (2 bits to store the ternary weights plus 32 bits for

each of the two the full precision scaling factors, per quantized layer), we need to select the

layers that can be quantized without considerably degrading the classification performances

of the model. To do this, we use the Hessian-based metric introduced in (Dong et al.., 2020),

allowing to quantify the curvature of the loss landscape, and therefore the less sensitive layers

for quantization. The logic behind this metric is that, layers with irregular loss landscapes (i.e.

high values of the trace of the Hessian matrix) are more sensitive to quantization, as they can

easily get out from the reached local minimum during pre-training of the full-precision model.

Therefore, we consider that a layer can be quantized if the Hessian-based metricH , is smaller

than a certain threshold 𝜏:

𝐼𝑄 (M) = {𝑖/𝑖 ∈ [1, 𝑝] andH(𝐿𝑖) ≤ 𝜏 and 𝐿𝑖 ∈ M} (5.3)

The threshold 𝜏 is a hyperparameter to tune as it depends on the application and the model.

It is important to note that, this threshold can be defined globally (for all the model), or locally,

for blocks of a given model. Note that one can also define this threshold based on the number

of layers that we would like to quantize (for instance, choose 𝜏 to quantize the 10 layers with

the smallest Hessian-based metric, i.e. such that |𝐼𝑄 (M)| = 10).

II.4 Model compression metrics

We propose to compare the quantized and full precision models using several metrics evalu-

ating different aspects: sparsity, compression, and energy consumption. We suppose that we

have the four following functions:

• nbits: counts the number of bits required to store the (nonzero) weights of the model

according to the COO encoding of sparse tensors1.

• nqw: for a full-precision modelM𝐹𝑃, it counts the total number of weights that can be

quantized. It can be defined as follows:

𝑛𝑞𝑤(M𝐹𝑃) = |{(𝑖, 𝑗 , 𝑘)/𝑖 ∈ 𝐼𝑄 (M𝐹𝑃), 𝑗 ∈ [1, 𝑛𝑖], 𝑘 ∈ [1, 𝑚𝑖]}|

• nzqw: for a quantized model, it counts the number of quantized weights having a value

of 02. It can be defined as follows:

𝑛𝑧𝑞𝑤(M𝐶) = |{(𝑖, 𝑗 , 𝑘)/𝑖 ∈ 𝐼𝑄, 𝑗 ∈ [1, 𝑛𝑖], 𝑘 ∈ [1, 𝑚𝑖], 𝐿̃ 𝑗 ,𝑘𝑖 = 0}|

• nnzw: for a given modelM, it counts the number of nonzero weights. It can be defined

as follows:

𝑛𝑛𝑧𝑤(M) = |{(𝑖, 𝑗 , 𝑘)/𝑖 ∈ [1, 𝑝], 𝑗 ∈ [1, 𝑛𝑖], 𝑘 ∈ [1, 𝑚𝑖], 𝐿 𝑗 ,𝑘𝑖 ≠ 0}|

1The coordinate list or COO encoding of sparse tensors consists in a list of tuples indicating the position of the

nonzero values in the tensor, as well as its value.

2If a weight was already 0 in a layer that is not in 𝐼𝑄 , it is counted in nzqw.
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II.4.A Sparsity

Different quantization methods can do implicit or explicit pruning during their procedure,

which can have an impact on the memory requirements of the model during inference. There-

fore, we propose to quantify the sparsity obtained by a quantization/pruning method, by

measuring the sparsity rate over the quantized weights, 𝑆𝑅𝑄𝑊 , and defined as follows:

𝑆𝑅𝑄𝑊 (M𝐹𝑃,M𝐶) =
𝑛𝑧𝑞𝑤(M𝐶)
𝑛𝑞𝑤(M𝐹𝑃)

(5.4)

where higher values of 𝑆𝑅𝑄𝑊 indicates sparser quantized models.

II.4.B Compression

The compression performance of a quantization method Q can be determined by measuring

the gain in terms of number of bits required to store the compressed model M𝐶 = Q(M𝐹𝑃)
with respect to the full precision modelM𝐹𝑃. Thus, we denote as 𝐶𝑅 the compression rate,

and 𝐶𝑅𝐺 the compression rate gain, defined as follows:

𝐶𝑅(M𝐹𝑃,M𝐶) =
𝑛𝑏𝑖𝑡𝑠(M𝐶)
𝑛𝑏𝑖𝑡𝑠(M𝐹𝑃)

(5.5)

𝐶𝑅𝐺 (M𝐹𝑃,M𝐶) = 1 − 𝐶𝑅(M𝐹𝑃,M𝐶) (5.6)

where smaller values of 𝐶𝑅 and higher values of 𝐶𝑅𝐺 indicate more compressed models.

It is important to note that these compression metrics take into account the sparsity of the

weights’ tensors, as they are stored using the sparse COO encoding.

Moreover, as not all the layers of the models are quantized, we can distinguish two types of

compression rates gains, one for the whole mode (quantized and unquantized layers), denoted

as 𝐶𝑅𝑇
𝐺

, and one focusing only on the quantized layers, denoted as 𝐶𝑅
𝑄

𝐺
.

II.5 Energy consumption

Energy consumption during inference of neural network model can come from different

sources, but we focus on the two most expensive ones: the number of mult-adds and the

number of data transfers to RAM memory. Indeed, the idea is to propose an energy consump-

tion metric hardware-independent, which does not require manual measurements for two

main reasons. First, it is difficult to make hardware-dependent manual measurements to fairly

compare different models as they are easily disturbed by other parallel tasks (operative system

tasks, browser, execution of other apps/programs, etc.). Second, it is possible to design specific

hardware taking advantage of the architecture and characteristics of a given model (for instance

the quantized and sparse weights), which can significantly reduce energy consumption (which

raises fairness comparison issues).

Therefore, we propose a new energy consumption metric, based on the order of magnitudes

of mult-adds given in (Horowitz, 2014), and the ones of RAM data transfers given in (Molka,

Hackenberg, Schöne and Müller, 2010). With this metric, one can obtain orders of magnitudes

(in Joules) of the energy consumption of a model, taking into account its sparsity and quantized

weights. Our energy consumption metric relies on three assumptions:

1. Only the nonzero weights are taken into account for the mult-adds and data transfers.
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2. Multiplications and additions are considered to have the same energy consumption, the

one of a 32 floating-point multiplication1, corresponding to 3.7 pJ according to Horowitz

(2014).

3. For the transfers of weights to RAM memory, we only take into account the nonzero

weights, and they are transferred by blocks of 32 bits (4 bytes).

We denote as 𝐸𝐶𝑀𝐴, 𝐸𝐶𝐷𝑇 , and 𝐸𝐶𝑇 , the energy cost of mult-adds, data transfers, and

total, respectively. It is important to note that, because of the used assumptions, our proposed

energy consumption metrics are upper bounds of the true energy consumption of the models.

Hereafter, we are going to detail how each term of the final energy consumption metric is

computed.

Number of operations: First, we start by computing the energy cost of mult-adds. To do this,

we star by counting the number 𝑁𝑀𝐴 of multiplications and additions needed to obtain the

output of the model, for a given input. Then, using the order of magnitudes of (Horowitz,

2014), we can compute the energy cost of a modelM in J as follows:

𝐸𝐶𝑀𝐴(M) = 𝑁𝑀𝐴 × 3.7 × 10
−12

(5.7)

where smaller values of 𝐸𝐶𝑀𝐴 indicates smaller energy consumption with respect to the mul-

tiplications and additions.

Number of data transfers: The number of data transfers depends on the number of bits

needed to store each weight (which can vary from one layer to another one), as well as on the

number of nonzero weights. Moreover, for a layer 𝐿𝑖 with 𝑖 ∈ [1, 𝑝], we denote as 𝑁 𝑖
𝑆𝐹

the

number of quantization scaling factors used in that layer (0 for a full-precision layer, 2 for a

ternarized one), and 𝐵𝑖 the number of bits necessary to encode a weight of the layer (32 for a

full-precision layer, and 2 for a ternarized one). Thus, the energy cost of data transfers in J for

a modelM can be defined as follows:

𝐸𝐶𝐷𝑇 (M) = 10
−9 ×

𝑝∑︁
𝑖=1

(⌈𝑛𝑛𝑧𝑤(𝐿𝑖) × 𝐵𝑖
32

⌉ + 𝑁 𝑖𝑆𝐹) (5.8)

where smaller values of 𝐸𝐶𝐷𝑇 indicates smaller energy consumption with respect to the data

transfers. An example of application can be found in figure 5.3. In simple terms, this metric will

count the number of 32 bits chunks in which we can distribute all the weights of the model2.

The first term of the sum corresponds to the number of 32 bit chunks needed to encode the

weights of a given layer 𝐿𝑖 , based on the number of nonzero weights 𝑛𝑛𝑧𝑤(𝐿𝑖) and the number

of bits 𝐵𝑖 needed to encode them. The second term in the sum corresponds to the number of

32 bit scaling factors 𝑁 𝑖
𝑆𝐹

needed in layer 𝐿𝑖 .

Final metric: The final energy consumption metric, 𝐸𝐶𝑇 , measures the total energy cost

needed to perform the inference of one model, and it is the sum of the two abovementioned

terms:

𝐸𝐶𝑇 (M) = 𝐸𝐶𝑀𝐴(M) + 𝐸𝐶𝐷𝑇 (M) (5.9)

1This is the worst case scenario as multiplications are more expensive than additions. We do this because

separating multiplications and additions in the current versions of torch and torchinfo is not straightforward.

2It is important to note that in this work we make the assumption that data transfers are done by chunks of 32

bits. In some particular hardwares, the data transfers can occur at other bit widths, in which case it is necessary to

adapt the proposed metric with the correct bit width value.
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Figure 5.3: Example of computation of the energy consumption of data transfers for a vanilla

model. We have a two layer model, with the first layer (blue) kept in full precision, and the

second layer (orange) quantized. As the first layer is in full precision and it is not quantized,

there are no scaling factors (𝑁1

𝑆𝐹
= 0), and the number of bits necessary to encode the weights

is 𝐵1 = 32. As the second layer is quantized, there are two scaling factors (𝑁2

𝑆𝐹
= 2), and the

number of bits necessary to encode the weights is 𝐵2 = 2.

where smaller values of 𝐸𝐶𝑇 indicates smaller energy consumption with respect to the multi-

plications, additions, and data transfers.

Finally, as we do it for the compression rates, we measure the energy consumption gain, 𝐸𝐶𝑇
𝐺

of a quantized and sparse modelM𝐶 = Q(M𝐹𝑃) with respect to its full-precision counterpart,

M𝐹𝑃 as follows:

𝐸𝐶𝑇𝐺 (M𝐹𝑃,M𝐶) =
|𝐸𝐶𝑇 (M𝐹𝑃) − 𝐸𝐶𝑇 (M𝐶) |

𝐸𝐶𝑇 (M𝐹𝑃)
(5.10)

where higher values of 𝐸𝐶𝑇
𝐺

indicates smaller global energy consumption with respect to the

full precision model.

III Method evaluation

We conduct three experiments to validate our proposed aTTQ approach. We studied: (1) the

advantage of aTTQ over TTQ, (2) the influence of 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥 , and (3) the influence of weight

normalization.

III.1 Datasets

We used three different datasets, among which two are medical signals datasets: HITS (TCD),

ESR (EEG), and MNIST.

136

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0064/these.pdf 
© [Y. Vindas-Yassine], [2023], INSA Lyon, tous droits réservés



HITS-small: It corresponds to the same HITS-small dataset as the one introduced in Chap-

ter 3, with the same pre-processing configuration. As a reminder, the dataset is composed of

1 545 labeled samples distributed in four classes, but only the first three are used: 569 solid

emboli, 569 gaseous emboli, 403 artifacts, and 4 unknown samples. Moreover, the dataset is

split into two subsets subject-wise, where 63% of the samples are used for training, and 37% of

them for testing.

ESR: It corresponds to the same ESR dataset as the one introduced in Chapter 3, with the

same pre-processing configuration. As a reminder, the dataset is composed of 11 500 samples,

distributed in 5 balanced classes. However, as most of the works, we focus on binary classifi-

cation, where the first class contains the seizure activity signals (2300 samples), and the second

class the non seizure activity signals (9200 samples). Moreover, as in the previous chapter, 90%

of the samples are used for training, and 10% for testing.

MNIST: We used a subset of MNIST (28×28 images), composed of 10% of the training samples

(random sampling), and all the available testing samples. Therefore, the dataset is composed

of 10 000 training samples, and 10 000 testing samples.

III.2 Baselines

For all the datasets, we considered two baselines:

• Full-precision models: corresponding to the reference and allowing to measure by how

much the compression, energy, and classification performances are degraded (or im-

proved) by aTTQ.

• TTQ quantized models: allowing to compare our proposed aTTQ approach with another

state-of-the-art ternary quantization method. The selection of the layers to quantize is

the same as the one used for aTTQ.

III.3 Evaluation metrics and strategy

We used several evaluation metrics to compare the different models between each other. Our

main interest is to compare the different methods from a compression and energy consumption

perspective, thus, we used all the metrics introduced in subsection II.4 of this chapter.

Furthermore, we also want to compare the different models from the classification perspec-

tive, as it is important to keep good classification performances after compression, to keep the

developed models usable in practice. Therefore, we use the MCC and the difference of MCC,

Δ𝑀𝐶𝐶, between the full-precision model and its quantized counterpart to evaluate this point:

Δ𝑀𝐶𝐶 = 𝑀𝐶𝐶 (M𝐶) − 𝑀𝐶𝐶 (M𝐹𝑃)

III.4 Experimental setup and results

Following the results of the previous chapter (Chapter 4), we start by focusing on the compres-

sion of single feature models as they have good classification performances, with fewer param-

eters than multi-feature models1. Therefore, we used the 2D CNN and 1D CNN-transformer

(1D CNN-trans) models of the previous chapter (with the same architecture parameters) for the

1In addition, the late fusion and intermediate fusion multi-feature models strongly depend on the single feature

models, so compressing the single feature models can help to compress multi-feature models.

137

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0064/these.pdf 
© [Y. Vindas-Yassine], [2023], INSA Lyon, tous droits réservés



Table 5.1: Architecture parameters of the models to be compressed, based on the dataset used.

We refer the reader to Chapter 4 for the definition of the model parameters.

Dataset Model nhead dhid nlayers pdropout nproj draw nconv nfilters dcom Pool

HITS-small

1D CNN-trans 8 64 8 0.1 10 128 2 - - -

2D CNN - - - 0.2 - - - 64 - Max

ESR

1D CNN-trans 4 8 4 0.3 4 64 2 - - -

2D CNN - - - 0.2 - - - 64 - Max

Table 5.2: Training parameters of different models (for model compression). The last column

corresponds to the percentage of weights of the model that are going to be quantized.

Dataset Model
Quant.

tmin tmax
Learning

Epochs
No. % weights

method rate params. to quantize

HITS

2D CNN

FP - - 10
−3

50

1 548 288

-

TTQ - - 3 × 10
−3

50

92.05

aTTQ −4 0 10
−4

150

1D CNN-trans.

FP - - 7 × 10
−2

150

766 271

-

TTQ - - 10
−4

50

14.97

aTTQ −2 1.5 5 × 10
−5

100

ESR

2D CNN

FP - - 10
−3

100

1 555 842

-

TTQ - - 10
−3

50

99.51

aTTQ −3 1 10
−3

200

1D CNN-trans.

FP - - 3 × 10
−1

100

109 942

-

TTQ - - 10
−3

100

24.22

aTTQ −2 1 5 × 10
−4

100

MNIST 2D MNIST CNN

FP - - 10
−3

70

9 840

-

TTQ - - 10
−4

200

53.35

aTTQ −1 0.5 10
−3

200

HITS and ESR datasets, whereas for the MNIST dataset, we used the vanilla 2D CNN MNIST

from Chapter 3.

Furthermore, for all the experiments, the models’ architectures hyperparameters and train-

ing parameters were fixed, and can be found in tables 5.1 and 5.2.

What is more, for all the experiments, we start by training a full precision model on the

given dataset, and then this model is quantized (with aTTQ or TTQ) on the same dataset to

obtain the quantized model. The layers selected for quantization (without the biases) depend

on the model:

• 2D CNN (HITS and ESR): all the convolutional layers except the first one.

• 1D CNN-trans: second convolutional layer, and second linear layer of all the encoder

layers of the transformer encoder.

• 2D CNN MNIST: all the convolutional layers.

We can note that the layers selected for quantization are the same for a given model on

different datasets. There are two main reasons for this. First, globally, for a fixed model and
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from one dataset to another one, the Hessian-based metric H tends to give the smaller values

for the selected layers in a given block1 (see appendix 3). Second, from appendix 3, we observe

that the selected layers to quantize are not always the ones with the smallest value inside the

model or inside a block. However, to simplify the experimental setup, we fixed the same layers

to quantize per block, by selecting the ones having the smallest H value, the highest number

of times (see appendix 3).

III.4.A Experiment 1: Comparison with respect to TTQ

Objective: The objective of this experiment is to compare our proposed aTTQ approach with

another extreme quantization approach, TTQ.

Experimental setup: We trained the abovementioned models with the indicated parameters,

and then we quantized them using aTTQ and TTQ. Additionally, TTQ was trained using weight

normalization for the layers to quantize (as its original version (Zhu et al.., 2017)), whereas for

aTTQ we did not use weight normalization.

Results: Results can be found in table 5.3 and figure 5.4 (the effect of normalization will be

discussed in experiment 3). Several points can be highlighted.

First, we observe that, from a compression perspective, all the aTTQ quantized models

outperform the TTQ ones by a large margin, for all the proposed metrics. If we focus on the

sparsity rates of the quantized weights (figure 5.4), 𝑆𝑅𝑄𝑊 , aTTQ outperforms TTQ by a margin

going from 2.7% to 86.8%. This margin is particularly important for the 1D CNN-transformer

based models, where aTTQ improves the sparsity rate over a factor of 13 compared with TTQ,

passing from 6.75% to 93.58%. A similar behavior is observed for 𝐶𝑅
𝑄

𝐺
and 𝐶𝑅𝑇

𝐺
. However,

for the global compression rates (of the whole model), 𝐶𝑅𝑇
𝐺

, the difference between aTTQ and

TTQ is less striking, which will be discussed later on.

Second, aTTQ also outperforms TTQ in terms of energy consumption by important margins,

going from 2.16% to 20.62% of energy consumption gain 𝐸𝐶𝑇
𝐺

. More interestingly, for the

HITS models, this margin is particularly important (larger signals and TFRs compared to the

other datasets), improving by a factor of 1.88 and 4.06 for the 2D CNN and 1D CNN-trans,

respectively.

Thirdly, in terms of classification performances, both aTTQ and TTQ achieve similar per-

formances with respect to the full precision model. Indeed, the maximum observed MCC

drop, Δ𝑀𝐶𝐶, is obtained for the 2D CNN on the HITS datasets, where aTTQ drops the MCC

with respect to the FP model of −3.70%, whereas TTQ does it by −3.02%. However, for the

other models and datasets, this drop is smaller, going from −0.77 (performance drop) to +2.19

(performance gain). Indeed, in some cases, aTTQ and TTQ are able to increase the classification

performances with respect to the FP model, particularly on the ESR dataset where they do it

by +1.01% (aTTQ) and +1.92% (TTQ) respectively for the 1D CNN-transformer model.

At last, if we compare aTTQ and TTQ between each other from a classification performances

perspective, we note that the great compression and energy consumption performances of aTTQ

come at the expense of classification results. Indeed, TTQ weakly outperforms aTTQ on the

majority of the datasets by a margin going from 0.68% to 2.59% in terms of MCC. However,

this does not hold for the MNIST dataset, where aTTQ outperforms TTQ by a margin of 1.52%.

1A block inside a model can be considered as a set of layers with a given purpose. For instance, for the 2D CNN

model, we have two blocks, the convolutional feature extraction one (sequence of convolutions), and the classifier

(composed of FC layers). For the 1D CNN-transformer model, each transformer encoder layer can be considered as

one block.
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Table 5.3: Experiment 1 results (in %): comparison between aTTQ and TTQ. FP corresponds to

the full-precision model (no quantization). Δ𝑀𝐶𝐶 corresponds to the difference between the

MCC of the full precision model and the MCC of the quantized model. 𝐶𝑅𝑇
𝐺

, and𝐶𝑅
𝑄

𝐺
evaluate

the compression performance of each quantization method and were introduced in II.4. 𝐸𝐶𝑇
𝐺

evaluates the energy consumption performance, and it was introduced in II.4.

Dataset Model Quant. method Norm. 𝐶𝑅𝑇
𝐺
↑ 𝐶𝑅

𝑄

𝐺
↑ ECT

G ↑ MCC ↑ Δ MCC ↑

HITS

2D CNN

FP No - - - 89.84 ± 3.09 -

TTQ

Yes

24.96 ± 2.25 27.12 ± 2.44 23.42 ± 1.30 86.82 ± 2.29 −3.02
aTTQ 42.98 ± 0.23 46.69 ± 0.25 44.04 ± 0.19 86.14 ± 3.37 −3.70

1D CNN-trans.

FP No - - - 82.64 ± 1.77 -

TTQ Yes 0.14 ± 0.04 0.91 ± 0.27 1.88 ± 0.03 83.22 ± 2.36 +0.58
aTTQ No 13.94 ± 0.02 93.17 ± 0.16 7.64 ± 0.11 81.66 ± 4.17 −0.98

ESR

2D CNN

FP No - - - 92.81 ± 3.53 -

TTQ Yes 85.61 ± 1.37 86.03 ± 1.37 76.45 ± 1.13 95.00 ± 1.11 +2.19
aTTQ No 88.48 ± 0.44 88.91 ± 0.45 84.49 ± 0.33 92.41 ± 2.22 −0.40

1D CNN-trans.

FP No - - - 94.33 ± 1.51 -

TTQ Yes 11.40 ± 2.61 47.07 ± 10.79 3.21 ± 0.66 96.25 ± 0.79 +1.92
aTTQ No 21.02 ± 0.15 86.78 ± 0.63 5.37 ± 0.04 95.34 ± 0.79 +1.01

MNIST 2D MNIST CNN

FP No - - - 94.39 ± 0.46 -

TTQ Yes 13.86 ± 2.33 25.97 ± 4.37 2.58 ± 0.35 92.09 ± 0.89 −2.30

aTTQ No 28.98 ± 1.26 54.32 ± 2.36 4.97 ± 0.22 93.62 ± 0.96 −0.77

Figure 5.4: Experiment 1 results: sparsity rate of the quantized weights (𝑆𝑅𝑄𝑊) in %. The blue

boxes correspond to the FP model. The red and green curves correspond to the TTQ and aTTQ

models, respectively.

III.4.B Experiment 2: Influence of 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥
Objective: This experiment has two main objectives. First, highlight the interest of asymmet-

ric pruning during ternary quantization with respect to the symmetric one. Second, study the

influence of the two hyperparameters of our approach, 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥 .
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Experimental setup: To do so, we trained the 2D MNIST CNN on the MNIST dataset,

and the 1D CNN-transformer on the ESR dataset, varying the values of 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥 in

{−2,−1.5,−1,−0.5, 0, 0.5, 1, 1.5, 2}.

Results: Results can be found in figure 5.5. Different remarks can be done.

Firstly, we can note that the best classification performances for both models and datasets

are not obtained for symmetrical values of 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥 (i.e. 𝑡𝑚𝑖𝑛 = −𝑡𝑚𝑎𝑥), but rather for

asymmetrical values (i.e. 𝑡𝑚𝑖𝑛 ≠ 𝑡𝑚𝑎𝑥) where 𝑡𝑚𝑖𝑛 ≤ 0 and 𝑡𝑚𝑎𝑥 ≥ 0. In fact, the best models

acquired on the MNIST and ESR datasets are obtained for the couples (𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥) = (−1, 0.5)
and (𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥) = (−2, 1) respectively, achieving 93.56% and 95.09% MCC, for the 2D MNIST

CNN and the ESR 1D CNN-transformer, correspondingly. In addition, for both datasets and

models, the best sparsity rates of the quantized weights, 𝑆𝑅𝑄𝑊 , are obtained for the same

asymmetric values range of 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥 1.

Following this, we can observe the existence of trade-off between compression and classifi-

cation performances. In point of fact, for both datasets, the best model in terms of compression

is not the best one in terms of classification, or, in other words, the models with the highest

𝑆𝑅𝑊𝑄 are not the ones having the highest MCC. What is more, we can notice that, the higher

the distance between 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥 , the larger the sparsity rates (and subsequently the com-

pression rates), but at some point, the classification performances start decreasing, achieving

worse MCCs than closer 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥 values.

Finally, related to the last remark, an interesting point to highlight is the fact that small

distances between 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥 giving smaller sparsity rates, do not necessarily translate in

higher MCCs (i.e. better classification performances). Actually, models with sparsity rates

close to 0% are more prone to have worst classification performances than models with higher

sparsity rates.

III.4.C Experiment 3: Influence of weights normalization

Objective: The objective of this experiment is to study the influence of normalizing the layers

to quantize (before each quantization iteration), as it is done for TTQ. For recall, in TTQ,

normalization of the weights to quantize is done by the maximum of the absolute value of the

weights (of a given layer), at the beginning of each quantization iteration.

Experimental setup: To do this, all the models were quantized with and without normaliza-

tion of the layers to quantize. The training and model parameters were the same as the ones

introduced at the beginning of this subsection.

Results: Results can be found in table 5.4. Some interesting points can be observed.

First, we can see that the classification performances with or without normalization of the

weights to quantize are similar for almost all the datasets and models. However, there are

some cases, such as the 2D CNNs on the ESR and MNIST datasets, where weight normaliza-

tion before quantization has a substantial negative influence on the classification performances,

with respective MCC gaps of 84.16% and 93.62% between the normalized and non-normalized

models. In addition, in some cases normalization can weakly improve the classification perfor-

mances, such as for the 2D CNN HITS model, and the 1D CNN-transformer ESR one, where

we observe an MCC increase of 0.69% and 0.06%, respectively.

Ultimately, normalization does not seem to have an important effect on the compression

performance of aTTQ, as for all the models and datasets, the 𝐶𝑅
𝑄

𝐺
values are similar in terms

1Here we talk about the range of values on not the values themselves.
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(a) (b)

(c) (d)

Figure 5.5: Experiment 2 results: influence of 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥 (in %). (a) MCC for the 2D CNN

model trained on the MNIST dataset. (b) 𝑆𝑅𝑄𝑊 for the 2D CNN model trained on the MNIST

dataset. (c) MCC for 1D CNN-transformer model trained on the ESR dataset. (d) 𝑆𝑅𝑄𝑊 for 1D

CNN-transformer model trained on the ESR dataset. The x-axis corresponds to the different

tested values of 𝑡𝑚𝑖𝑛 and the y-axis to the different values of 𝑡𝑚𝑎𝑥 .

of means and standard deviations, with mean gaps going from 0% to 6%. Subsequently, the

values of the other compression and energy consumption metrics are also alike.

III.5 Discussion

III.5.A Experiment 1: Comparison with respect to TTQ

The results of this experiment confirm that, from a compression and energy perspective, our

proposed aTTQ approach is more interesting than TTQ. Indeed, aTTQ outperforms TTQ by

a large margin for all the tested models and datasets, in terms of compression rates, sparsity

rates, and energy consumption, at the expense of slightly smaller classification performances.

However, if we focus on the per class accuracies (table 5.5) on the HITS dataset, we observe

that, for the most critical class (the solid emboli one) both compressed models, aTTQ and

TTQ, outperform the full precision model. For the other classes, globally, the classification

performances have a slight decrease. This shows that aTTQ offers a better compression-energy-

classification trade-off than TTQ. Indeed, our approach allows choosing 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥 in order

to better control this trade-off. This is important as, for an important number of (medical

embedded) applications, we have limited memory, computation and energy resources, so even

though better classification models exist, if they do not respect the hardware limitations, they

are less prone to be used in practice, so we have to improve the trade-off between the different

performances to have the best model respecting those criteria.

Moreover, if we observe the different compression metrics, we notice that the performance

increase is not the same from one metric to another one. This is because some metrics focus only
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Table 5.4: Experiment 3 results: influence of the normalization of the weights to quantize at

the beginning of each iteration. The normalization column indicates if normalization is done

or not.

Dataset Model Normalization MCC ↑ 𝐶𝑅
𝑄

𝐺
↑

HITS

2D CNN

No 85.45 ± 3.33 46.69 ± 0.25

Yes 86.14 ± 3.37 46.69 ± 0.25

1D CNN-trans.

No 81.66 ± 4.17 93.11 ± 0.16

Yes 80.45 ± 3.59 93.17 ± 0.16

ESR

2D CNN

No 92.41 ± 2.22 88.91 ± 0.45

Yes 8.25 ± 13.47 88.95 ± 0.58

1D CNN-trans.

No 95.34 ± 0.79 86.78 ± 0.63

Yes 95.40 ± 0.73 86.77 ± 0.62

MNIST 2D MNIST CNN

No 93.62 ± 0.96 54.32 ± 2.36

Yes 0 ± 0 60.36 ± 3.01

Table 5.5: Experiment 1: artifacts, gaseous emboli, and solid emboli accuracies of the different

compressed models on the HITS-small dataset. Bold results correspond to the best ones, and

italic results correspond to the second-best ones.

Model Quant. method Norm.
Artifact Gaseous Emboli Solid Emboli

Accuracy Accuracy Accuracy

2D CNN

FP No 95.70 ± 3.01 94.47 ± 2.85 85.73 ± 4.23

TTQ

Yes

91.23 ± 3.83 93.52 ± 2.33 86.46 ± 8.89
aTTQ 90.96 ± 3.16 92.33 ± 6.30 88.41 ± 3.14

1D CNN-trans.

FP No 90.88 ± 4.72 88.62 ± 5.92 85.49 ± 3.51

TTQ Yes 93.33 ± 3.73 86.52 ± 3.97 87.80 ± 5.00
aTTQ No 91.45 ± 3.66 86.05 ± 7.82 87.20 ± 5.51
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on the quantized layers, whereas others are more global, taking into account the whole model.

Therefore, if we focus only on the quantized layers (𝑆𝑅𝑄𝑊 and 𝐶𝑅
𝑄

𝐺
), we will have larger

performances increases than if we focus on more global metrics (𝐶𝑅𝑇
𝐺

and 𝐸𝐶𝑇
𝐺

). Indeed, from

one model to another, we do not quantized the same proportion of weights (see last column of

table 5.2), so if the proportion of weights to quantize is small (as for the 1D CNN-transformer

models or the 2D CNN MNIST model), then the global compression or energy gains will be

relatively small compared to the ones focusing only on the quantized layers.

Furthermore, an important point to mention is that, in some cases, quantization allows

improving the classification performances with respect to the full precision models. This

can be explained by three elements. Firstly, as mentioned in (Hoefler et al.., 2022), sparsity

can act as regularization, and aTTQ and TTQ tend to give sparser models than FP models.

Secondly, neural networks are highly over-parametrized with a lot of redundancies, therefore,

quantization can also act as regularization because it helps to reduce over-parametrization and

redundancy. Finally, aTTQ and TTQ quantize pre-trained full-precision models, where the

selected layers to quantize are chosen using a Hessian-based metric, allowing to choose the

layers less sensitive to quantization. Because of this, the loss landscape of the layers to quantize

is relatively flat, which can help the pre-trained models to get closer to a local minimum,

improving its classification performances.

Finally, from the energy consumption perspective, we observe some interesting results.

Indeed, aTTQ and TTQ allow reducing the total energy consumption by important margins,

specially aTTQ, for all the models and datasets. The two main reasons for this reduction are the

following. First, sparsity in the weights allows reducing computation (so energy consumption)

as the operations with zero-weights can be ignored. In addition, it also reduces data transfers,

as zero weights do not need to be transferred to memory, but only the nonzero weights.

Secondly, linked to this, reduced precision has also an important impact on the data transfer

energy consumption term, 𝐸𝐶𝐷𝑇 , as if we reduce the number of bits necessary to encode one

weight, we reduce the transfers to memory (which are faster). Indeed, the transfer of one 32-bits

encoded weight is equivalent to transferring sixteen 2-bits encoded nonzero weights. What is

more, we can separate the total energy consumption, 𝐸𝐶𝑇 into the mult-adds term 𝐸𝐶𝑀𝐴 and

the data transfer term 𝐸𝐶𝐷𝑇 , to further study the different models and quantization methods,

as it is done in table 5.6. From this table, we can see that, depending on the dataset and the

model, 𝐸𝐶𝑀𝐴 or 𝐸𝐶𝐷𝑇 can be dominant, even though data transfers are more expensive than

mult-adds by a factor of 10
3
. This is because, based on the size of the input of the model, the

number of mult-adds can considerably increase, making the data transfer term smaller than

the mult-adds term. This is the case of the HITS dataset, where the size of the inputs makes

𝐸𝐶𝑀𝐴 the dominant term. Additionally, we can see that, with quantization, we often reduce

the 𝐸𝐶𝑀𝐴 term importance with respect to 𝐸𝐶𝐷𝑇 , as we remove an important number of useless

zero operations thanks to sparsity.

III.5.B Experiment 2: Influence of 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥

This experiment highlighted the importance of asymmetric pruning with respect to symmetric

one, in addition to the importance of the choice of the hyperparameters 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥 controlling

the pruning thresholds.

Firstly, we observed that asymmetric thresholds, obtained using asymmetric values of

𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥 , improved the classification performances with respect to symmetric thresholds

(where 𝑡𝑚𝑖𝑛 = −𝑡𝑚𝑎𝑥), and this with good sparsity rates for the quantized weights. We have

two main explanations for this. First, for a neural network, there is no reason that positive

and negative weights have the same importance starting from a fixed value (case of symmetric
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Table 5.6: Experiment 1 energy consumption decomposition. 𝐸𝐶𝑇 = 𝐸𝐶𝑀𝐴+𝐸𝐶𝐷𝑇 corresponds

to the total energy consumption. 𝐸𝐶𝑀𝐴 and 𝐸𝐶𝑃
𝑀𝐴

corresponds to the energy consumption

due to the number of mult-adds, and its proportion in 𝐸𝐶𝑇 . 𝐸𝐶𝐷𝑇 and 𝐸𝐶𝑃
𝐷𝑇

correspond to

the energy consumption due to data transfers, and its proportion in 𝐸𝐶𝑇 . All the energy values

are given in 𝜇𝐽, whereas the proportions are given in %.

Dataset Model Quant. method Norm. ECMA ↓ ECP
MA ECDT ↓ ECP

DT ECT ↓

HITS

2D CNN

FP No 4547 ± 0 83.15 ± 0 922 ± 0 16.85 ± 0 5469 ± 0

TTQ

Yes

3388 ± 63 80.90 ± 1.52 800 ± 9 19.10 ± 0.21 4188 ± 71

aTTQ 2331 ± 10 76.19 ± 0.32 729 ± 1 23.81 ± 0.03 3060 ± 11

1D CNN-trans.

FP No 1569 ± 0 37.32 ± 0 2635 ± 0 62.68 ± 0 4204 ± 0

TTQ Yes 1491.9 ± 1 36.17 ± 0.03 2633.1 ± 0.1 63.833 ± 0.002 4125 ± 1

aTTQ No 1274.8 ± 0.4 32.83 ± 0.01 2608.24 ± 0.04 67.171 ± 0.001 3883.0 ± 0.5

ESR

2D CNN

FP No 230 ± 0 35.53 ± 0 417 ± 0 64.47 ± 0 647 ± 0

TTQ Yes 71.34 ± 2.52 46.79 ± 1.65 81.12 ± 5.00 53.21 ± 3.28 152.47 ± 7.34

aTTQ No 29.80 ± 0.74 29.68 ± 0.74 70.62 ± 1.63 70.32 ± 1.62 100.42 ± 2.15

1D CNN-trans.

FP No 31.64 ± 0 8.51 ± 0 339.97 ± 0 91.49 ± 0 371.61 ± 0

TTQ Yes 23.05 ± 1.77 6.41 ± 0.49 336.62 ± 0.68 93.59 ± 0.19 359.67 ± 2.44

aTTQ No 17.51 ± 0.11 4.98 ± 0.03 334.13 ± 0.04 95.02 ± 0.01 351.64 ± 0.14

MNIST 2D MNIST CNN

FP No 0.56 ± 0 2.77 ± 0 19.68 ± 0 97.23 ± 0 20.24 ± 0

TTQ Yes 0.44 ± 0.01 2.22 ± 0.09 19.29 ± 0.05 97.78 ± 0.27 19.72 ± 0.07

aTTQ No 0.30 ± 0.02 1.58 ± 0.09 18.94 ± 0.03 98.42 ± 0.15 19.24 ± 0.04

thresholds), therefore, they should be treated differently as asymmetric thresholds do it. Sec-

ond, if normalization by the maximum of the absolute value of the weights is not done, then the

minimum and maximum of the weights to quantize are certainly not opposites, so we should

use thresholds adapted to this situation.

Second, we noted that there is a trade-off between the compression obtained from sparsity

and the classification performances. Indeed, increasing the sparsity rates of the quantized layers

by increasing the gap between 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥 , tends to reduce the classification performances

of the compressed models. However, this reduction is not always significant, whereas the gain

in sparsity is. Therefore, based on the targeted application, one could prefer higher sparsity

rates in order to respect some memory and/or energy requirements, despite the classification

performances decrease. But in our case, we decided to choose the values of 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥
which maximize the classification performances, giving a lower priority to the sparsity rates.

Nevertheless, the choice of 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥 can be done differently based on the application,

which is an advantage of our aTTQ approach, as our parametrization allows controlling the

trade-off between compression, energy, and classification performances.

Finally, the experiment confirmed that sparsity can act as a regularizer (figure 5.5). Indeed,

for a given model and dataset, there exist a range of values of 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥 , where the

classification performances increase along with the sparsity rates. However, for other values,

the classification performances tend to decrease while having very high sparsity rates. This

can be explained by the fact that, very high sparsity rates can come without an important loss

of information, which cannot be compensated otherwise, therefore, considerably reducing the

original performances of the pre-trained full-precision model.

III.5.C Experiment 3: Influence of weights normalization

This last experiment showed that our method is robust against weight normalization by the

maximum of the absolute value of the weights (same as the one used by TTQ). Indeed, for al-

most all the datasets, the classification performances between normalized and non-normalized
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models is similar, whereas the compression performance remains nearly the same. More inter-

estingly, in some cases, significantly better classification performances are obtained when not

applying normalization (2D CNN models on the ESR and MNIST datasets), whereas the de-

crease in performance when normalizing remains small for other datasets (up to 0.69% in terms

of MCC). Therefore, given these results, we recommend to not apply this type of normalization

when using our aTTQ approach.

III.5.D Limitations

Our quantization approach aTTQ showed promising results in terms of compression-energy-

classification performances trade-off, thanks to the use of weights’ statistics based asymmetric

pruning. However, we identified some limitations to our method.

First, the choice of 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥 is not straightforward and strongly depends on the tar-

geted application. Indeed, even if our method allows controlling the compression-energy-

classification trade-off through the choice of 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥 , this trade-off depends on the appli-

cation objective of the model, requiring potentially numerous experiments to find the adapted

values.

Second, if we want to take advantage of the obtained compressed models from an energy

consumption and inference times perspectives, specialized hardware need to be designed

to make computations more efficient, as classical hardwares are not designed for this task.

Indeed, as seen in Chapter 2, our approach does simulated quantization, which means that on

classical hardware all the quantized weights and computations are going to be done on 32 or

64 bits precision. What is more, sparse operations between (sparse or not) tensors are not fully

supported by the different deep learning libraries1, and not straightforward to optimize for

classical hardware, which also avoids fully taking advantage of the models obtained with our

aTTQ quantization approach. It is because of these reasons that table 4.9 of Chapter 4 cannot

be completed with the approach developed in this chapter.

Thirdly, as our aTTQ approach does extreme quantization, it does not allow quantizing

all the available layers of a model without important degradation of the classification perfor-

mances, which also limits the memory, energy consumption, and latency gains that we can

reach.

Finally, the last limitation of our work concerns our proposed energy consumption metric

𝐸𝐶𝑇 , and more particularly, the mult-adds term 𝐸𝐶𝑀𝐴. Indeed, this term does not take into

account the precision in which the nonzero weights are encoded, but only the fact that the

obtained quantized tensors are sparse. Therefore, we over-estimate the energy consumption

of mult-adds, as we consider all the nonzero weights encoded with 32-bits precision, which is

not the case for the obtained quantized weights.

IV Overview of single feature models

As in this chapter we compressed single feature models developed in previous chapters, we

can do a quick overview of the results, as it is done in table 5.7. Before this chapter, we had full

precision (FP) models, and at the end, we have compressed models. We can compare them in

terms of energy consumption, inference times and classification performances per class.

The different energy consumption and classification results have already been discussed

in detail in section III.5. To recall, aTTQ reduces considerably the energy consumption with

respect to the full precision model, while keeping close classification performances. In fact,

1Even tough some libraries such as PyTorch and Tensorflow have make important advances on this topic, through

torch.sparse and tensorflow.sparse.
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Table 5.7: Overview of single feature models on the HITS-small dataset in terms of energy

consumption (in 𝜇𝐽), inference time (in 𝑚𝑠), and classification performances. Bold results

correspond to the best ones. We do not observe significant differences in terms of inference

times between the full precision and compressed models. This is because for the compressed

models, simulated quantization is used, therefore, all operations are done in full precision. To

observe gains in inference time, specialized hardware or frameworks should be developed.

Model Quant. method Norm.
ECT

G Inference Artifact Gaseous Emboli Solid Emboli
time Accuracy Accuracy Accuracy

2D CNN

FP No 5469 ± 0 10.26 ± 1.67 95.70 ± 3.01 94.47 ± 2.85 85.73 ± 4.23

aTTQ Yes 3060 ± 11 10.15 ± 1.35 90.96 ± 3.16 92.33 ± 6.30 88.41 ± 3.14

1D CNN-trans.

FP No 4204 ± 0 33.81 ± 5.20 90.88 ± 4.72 88.62 ± 5.92 85.49 ± 3.51

aTTQ No 3883 ± 1 32.83 ± 4.99 91.45 ± 3.66 86.05 ± 7.82 87.20 ± 5.51

in terms of the critical class (solid emboli), models compressed with aTTQ achieve better

performances.

Moreover, what is interesting to note in table 5.7 is that, the inference times between the

compressed and full precision models are not significantly different. This can be explained by

the fact that for inference, simulated quantization is done, meaning that all the computations

are done in 32 bit precision. What is more, even if we work with sparse tensors, this is not taken

into account to optimize computations. Therefore, to observe significant changes between

the inference times of the compressed and full precision models, it is necessary to developed

specialized hardware and/or frameworks adapted to the used quantization precision, as well

as to sparse tensor operations.

V Conclusion

In this chapter we proposed a novel extreme quantization (ternary) approach based on a new

quantization heuristics relying on the weights’ statistics for parametrized pruning to perform

ternarization. Indeed, contrary to TTQ, we propose to compute two asymmetric thresholds,

one for the smaller values and one for the larger values, based on the mean and standard

deviation of the weights of a given layer, parametrized by two hyperparameters, 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥 .

These thresholds are then used to do a preliminary ternarization of the weights to quantize,

which are then scaled using two learnable parameters, one for the negative weights, and one

for the positive ones.

Moreover, we validated our method through a series of experiments on three different

models and datasets, obtaining promising results. Firstly, we showed that aTTQ achieves a

better trade-off than TTQ, in terms of compression, energy consumption, and classification

performances. Indeed, for all the models and datasets, aTTQ outperformed TTQ from a com-

pression and energy consumption perspective, while only slightly reducing the classification

performances with respect to TTQ and even the full-precision model. Secondly, we empiri-

cally proved that asymmetric thresholds for trained ternary quantization are beneficial over

symmetric pruning. Particularly, our asymmetric threshold parametrization allows to better

control the abovementioned trade-off, making it easier to adapt to a given application. Finally,

we demonstrated that our method do not need any particular prior normalization step be-

fore extreme quantization, as it achieves similar or even significantly better results than max

normalized models, when no normalization is employed.

In the following chapter, we are going to conclude about the main contributions of this
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work, and we are going to present some guidelines for future work.
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Conclusion and perspectives

Conclusion

In this thesis, we focused on deep learning methods for cerebral emboli classification and

characterization using portable TCD data. We mainly focused on the categorization of high

intensity transient signals (HITS), extracted from Doppler signals, into three main classes:

solid embolus, gaseous embolus, and artifacts. The distinction between emboli and artifacts

is crucial, as portable TCD devices are more prone to artifacts than the conventional ones.

Moreover, emboli are dangerous as they can cause ischemic stroke, one of the leading causes of

disability and death in the world. What is more, the differentiation between solid and gaseous

emboli is also critical, as the treatments are not the same for both of them.

Furthermore, in the first two chapters, we saw the medical and scientific context of this

work, as well as the main challenges and the state-of-the-art of the related fields: cerebral

emboli classification, semi-automatic data annotation, signal classification, and model com-

pression. Different approaches for cerebral emboli classification using TCD data exist, but they

mainly focus on nonportable TCD acquired data, and use classical signal processing or machine

learning techniques, without in vivo distinction between solid and gaseous emboli. Moreover,

HITS annotation is often done manually, which is time-consuming, and few methods in the

literature exist allowing to efficiently and accurately do semi-automatic data annotation with

controlled label-noise. On top of that, contrary to image classification with convolutional neu-

ral networks (CNNs), in the deep learning framework, there is not yet a generic and efficient

model architecture for signal classification, and the choice of the optimal representation of the

signal for a given task is not trivial. What is more, the obtained deep learning models are often

memory and energy greedy, making their use in practical applications limited. Therefore,

model compression methods such as pruning and quantization have been developed to reduce

their requirements, but they are often used sequentially, which limits the complementarity of

both compression approaches.

In this work, we proposed to solve the abovementioned limitations with three main con-

tributions. To begin with, we proposed a semi-automatic data annotation method based on

feature space projection and local quality metrics, allowing to efficiently and accurately label

large amounts of samples (e.g., HITS) from a small quantity of labeled samples. Our method

uses auto-encoders to automatically extract features from the input samples, and then projects

the obtained latent space into a 2D space for manual and automatic data annotation purposes.

We propose to control the annotation error by introducing local quality metrics, allowing to

indicate if the dataset local structure was preserved during projection into the 2D annotation

working space. This allowed us to obtain larger labeled datasets with controlled label noise,

which can then be used to train deep learning models using noise-robust loss functions, such as

the generalized cross entropy loss. What is more, we used this method to semi-automatically

label a larger HITS dataset, composed of 8 685 HITS (696 solid emboli, 1 002 gaseous emboli, 6
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987 artifacts), which were manually verified by an expert annotator. This dataset will be used

in future work to train and test the proposed models in this manuscript, as well as new models.

Second, we performed medical signal classification, based on multi-feature models, allow-

ing to take advantage of the complementarity of different representations of a signal, namely

the raw signal and a time-frequency representation (TFR), two of the most commonly used

representations. Thus, we proposed two multi-feature models, one based on late-fusion with

learnable attention weights, and another one based on guided and regularized intermediate

fusion. Both models have two branches, one exploiting the raw signal and composed of a

1D CNN-transformer model, and another one using a TFR and composed of a 2D CNN. The

late-fusion approach uses learnable attention weights per class and per representation, indicat-

ing the importance of each representation for each class. The intermediate fusion approach is

jointly-trained, and guides the training of each representation’s encoder with iterated losses, as

well as regularizes the fused common space with semi-supervised DEC regularization, enforc-

ing clustering in this space. The results showed that, both types of models allow increasing the

classification performances with respect to single-feature models in a variety of medical signal

classification tasks.

At last, we proposed to compress the previously developed single-feature models, by di-

rectly combining extreme quantization and pruning techniques. To do this, we suggest a

new ternary extreme quantization heuristic, based on the statistics of the weights to quantize.

Therefore, we introduced two hyperparameters controlling the trade-off between memory

requirements, energy consumption, and classification performances. Our approach, aTTQ,

achieved state-of-the-art compression and energy consumption performances, with slights de-

crease in the classification performances, comparable to the ones of TTQ, and close to the ones

of full-precision models.

In the end, our different contributions are strongly linked, as our model compression

method introduced in Chapter 5 can be applied to the multifeature models developed in

Chapter 4, which can be trained using the datasets obtained in Chapter 3.

Perspectives

Several improvements can be done to our work, opening the doors for several perspectives.

Data annotation : Our semi-automatic data annotation method can be improved in several

ways. First, we only tested our method using a simple AE taking as input TFRs of HITS.

One can imagine more complex AE architectures such as VAE or diffusion models, as well as

using mutli-feature autoencoders, simultaneously taking advantage of the raw signal and a

TFR. Second, one can imagine adding more structure to the AE feature space using different

regularization techniques such as contrastive learning or DEC, or by including the human expert

in the loop (active learning). Moreover, linked to this last point, we can improve the quality

of the semi-automatically labeled datasets, by proposing to human experts the opportunity to

label the most difficult samples (for instance those with the smaller local quality), and/or label

clusters without good local quality labeled samples.

Soft labels: Although we have not addressed this topic in this manuscript, it could be inter-

esting to do it in the future. Indeed, our HITS datasets are labeled with soft labels (one score

per class, instead of one single true class), as human annotators are not always certain about

their annotations. Therefore, it could be interesting to train deep learning models to match the

true soft labels probability distribution, instead of the hard-labels one, in order to better take
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into account this uncertainty (Vindas, Guépié, Almar, Roux and Delachartre, 2023). This can

be done using soft cross entropy loss or the Kullback-Leibler divergence as it is done for knowl-

edge distillation, or using other types of losses such as the Jensen-Shannon divergence, or the

Hellinger distance. On top of that, our semi-automatic data annotation method is completely

compatible with both hard and soft labels. In addition, soft labels can be relatively robust

against noisy labels, so their use for semi-automatically labeled datasets can be beneficial.

Signal classification : Our multi-feature medical signal classification approach establishes a

relatively generic model for this task. However, numerous improvements can be made. First,

even though our method was designed to be generic and easily adaptable to other types of

data and architectures, we did not test its capabilities on datasets of very different natures.

Therefore, it could be interesting to replace the encoders of each input representations using

other architectures, such as ResNets or visual transformers for the TFRs, or adapted cross

visual transformers for the raw signals, allowing to exploit different temporal scales of the

signal. What is more, it can be interesting to validate our approach using other representations

than the raw signal and/or a TFR, as well as use other datasets, not limited to medical signals.

Furthermore, our multi-feature approaches can be enhanced using other types of regularization

based on contrastive learning approaches with weak supervision, instead of semi-supervised

DEC.

Model compression : Our asymmetrically trained ternary quantization method, aTTQ, yields

a great trade-off between memory requirements, energy consumption, and classification per-

formances. Nevertheless, this was only a first step on what we have planned. A first and direct

improvement would be to apply our approach to multi-feature methods, as it was successfully

applied to single-feature models, but our best performing models uses different representations

of a signal and are not limited to one. On top of that, we can improve the energy consumption

metric that we proposed, as the mult-adds term only takes into account the sparsity of the

quantized tensors, and the precision in which the weights are encoded. What is more, it is

possible to practically improve the energy consumption and latency by designing specialized

hardware efficiently performing the different operations required by the model. This last point

can be coupled with mixed quantization approaches, where different precisions are used at

different levels of the models, in order to reduce classification performances drops, while al-

lowing a full quantization of the model. At last, more complex ways of combining pruning

and extreme ternary quantization can be proposed. For instance, one can use differentiable

pruning functions, allowing to learn the pruning thresholds before quantization.
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Appendices

Appendix 1: TCD-X maximum recording duration based on the pulse
repetition frequency.

Table 5.8: TCD-X maximum recording’s duration based on the pulse repetition frequency. The

frequencies are given in kHz, and the format of the recording durations is ℎℎ : 𝑚𝑚 : 𝑠𝑠, where ℎℎ

are the hours, 𝑚𝑚 the minutes, and 𝑠𝑠 the seconds. The maximum recording duration depends

on the pulse repetition frequency because when the latter increases, the number of recorded

samples increases too (giving a better resolution of the IQ Doppler signal). Thus, as the size

of the IQ Doppler signal that can be saved in the SD card is limited by Atys file management

system, when the number of recorded samples increases, the maximum recording duration

decreases. This is valid for the TCD-X R2, the one used in this work, but this limitation was

improved on the new version, the TCD-X R3, going up to 12 hours of recording’s duration.

Pulse repetition frequency (kHz) Max. recording duration

3.7 10:08:27

4.4 08:30:01

5.5 06:47:07

6.2 05:57:54

7.4 05:04:13
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Appendix 2: HITS distribution per subject.

Table 5.9: Distribution of the HITS per class and per subject (subjects 0 to 19). The HITS

are classified using three classes: artifacts, solid emboli and gaseous emboli. Some HITS are

classified as unknown, but they are not used to train or evaluate the classification models.

Indeed, in some cases, an expert is not able to annotate a HITS. This happens particularly when

a HITS can be a solid or gaseous emboli, or when there is doubt between a small intensity solid

emboli and an artifact.

Subject ID Artifacts Solid emboli Gaseous embolus Unknown Total

0 18 1 223 1 243

1 1 24 1 0 26

2 1 17 90 1 109

3 291 13 0 0 304

4 0 1 0 0 1

5 0 2 0 0 2

6 1770 0 32 0 1802

7 0 3 0 0 3

8 1 65 0 0 66

9 54 1 0 0 55

10 0 0 4 0 4

11 0 1 0 0 1

12 0 0 15 0 15

13 7 3 104 1 115

14 0 2 0 0 2

15 164 5 0 0 169

16 0 3 0 0 3

17 4 14 0 0 18

18 0 4 0 0 4

19 0 0 56 0 56
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Table 5.10: Distribution of the HITS per class and per subject (subjects 20 to 38). The HITS

are classified using three classes: artifacts, solid emboli and gaseous emboli. Some HITS are

classified as unknown, but they are not used to train or evaluate the classification models.

Indeed, in some cases, an expert is not able to annotate a HITS. This happens particularly when

a HITS can be a solid or gaseous emboli, or when there is doubt between a small intensity solid

emboli and an artifact.

Subject ID Artifacts Solid emboli Gaseous embolus Unknown Total

20 0 0 7 0 7

21 0 20 0 0 20

22 1 0 0 0 1

23 0 17 0 0 17

24 0 1 0 0 1

25 0 1 0 0 1

26 0 1 0 0 1

27 1 46 7 0 54

28 304 255 1 0 560

29 0 42 277 3 322

30 0 0 7 0 7

31 0 25 0 0 25

32 4 7 1 0 12

33 260 1 0 0 261

34 42 0 0 0 42

35 0 15 0 0 15

36 18 2 0 0 20

37 0 2 4 0 6

38 74 4 32 3 113

155

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0064/these.pdf 
© [Y. Vindas-Yassine], [2023], INSA Lyon, tous droits réservés



Table 5.11: Distribution of the HITS per class and per subject (subjects 39 to 51). The HITS

are classified using three classes: artifacts, solid emboli and gaseous emboli. Some HITS are

classified as unknown, but they are not used to train or evaluate the classification models.

Indeed, in some cases, an expert is not able to annotate a HITS. This happens particularly when

a HITS can be a solid or gaseous emboli, or when there is doubt between a small intensity solid

emboli and an artifact.

Subject ID Artifacts Solid emboli Gaseous embolus Unknown Total

39 0 0 0 0 0

40 44 23 4 0 71

41 774 16 12 0 802

42 598 4 15 2 619

43 93 17 18 0 128

44 804 3 14 1 822

45 521 11 17 0 549

46 523 5 14 0 542

47 108 0 23 0 131

48 490 16 18 1 525

49 1 1 0 0 2

50 6 1 0 0 7

51 10 1 6 0 17
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Appendix 3: Hessian-based metric values for the different quantized
models

Table 5.12: Hessian-based metric H values of the 2D CNN models for layer quantization

selection on the HITS, ESR, and MNIST datasets. The model is decomposed in two blocks, one

for encoding composed of convolutions (E), and one for classification composed of FC layers

(𝐶). The batch normalization layers are ignored for the sake of clarity. In bold we have the

selected layers for quantization and we can see that the selected layers are the ones with the

smallest value ofH in its belonging block.

Dataset Block Layer |H |

HITS

E

Conv. 1 9.52𝑒−2

Conv. 2 2.08e−3

Conv. 3 2.24e−4

Conv. 4 1.34e−5

𝐶 FC 1.27𝑒−3

ESR

E

Conv. 1 1.48𝑒−1

Conv. 2 4.35e−4

Conv. 3 4.48e−5

Conv. 4 1.10e−6

𝐶 FC 3.48𝑒−4

MNIST

E Conv. 1 7.42e−3

Conv. 2 5.18e−3

𝐶
FC 1 5.91𝑒−3

FC 2 2.99𝑒−3
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Table 5.13: Hessian-based metricH values of the 1D CNN-transformer models for layer quan-

tization selection on the HITS dataset. The model is decomposed into three blocks: one 1D

CNN encoder, one transformer encoder, and one classifier 𝐹𝑅𝑆 . The normalization layers, self

attention projection layers, and the classifier layers are ignored for the sake of clarity. In bold

we have the selected layers for quantization, and in italic the ones with the smallest value of

H per block. The selected layer is not always the one with the smallest value of H per block.

However, they are the ones coming the more often with the smallest value per block.

Block Layer |H |

1D CNN encoder

Conv. 1 6.42e−5

Conv. 2 2.39e−4

Conv. 3 1.04𝑒−3

Transformer encoder 1

FC 1 1.09e−4

FC 2 2.33e−4

Transformer encoder 2

FC 1 1.09𝑒−4

FC 2 7.50e−5

Transformer encoder 3

FC 1 1.22e−4

FC 2 2.14e−4

Transformer encoder 4

FC 1 8.42e−6

FC 2 6.17e−5

Transformer encoder 5

FC 1 4.51𝑒−5

FC 2 1.30e−5

Transformer encoder 6

FC 1 1.79𝑒−4

FC 2 5.93e−5

Transformer encoder 7

FC 1 2.77𝑒−4

FC 2 1.92e−4

Transformer encoder 8

FC 1 5.24𝑒−4

FC 2 2.81e−4
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Table 5.14: Hessian-based metricH values of the 1D CNN-transformer models for layer quan-

tization selection on the ESR dataset. The model is decomposed into three blocks: one 1D

CNN encoder, one transformer encoder, and one classifier 𝐹𝑅𝑆 . The normalization layers, self

attention projection layers, and the classifier layers are ignored for the sake of clarity. In bold

we have the selected layers for quantization, and in italic the ones with the smallest value of

H per block. The selected layer is not always the one with the smallest value of H per block.

However, they are the ones coming the more often with the smallest value per block.

Block Layer |H |

1D CNN encoder

Conv. 1 7.97𝑒−3

Conv. 2 1.98e−4

Conv. 3 2.18𝑒−3

Transformer encoder 1

FC 1 2.11e−5

FC 2 2.68e−5

Transformer encoder 2

FC 1 5.73𝑒−4

FC 2 1.16e−4

Transformer encoder 3

FC 1 6.56𝑒−5

FC 2 4.84e−6

Transformer encoder 4

FC 1 1.27𝑒−5

FC 2 2.59e−6

159

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0064/these.pdf 
© [Y. Vindas-Yassine], [2023], INSA Lyon, tous droits réservés



160

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0064/these.pdf 
© [Y. Vindas-Yassine], [2023], INSA Lyon, tous droits réservés



Bibliography

Abu-Omar, Y., Balacumaraswami, L., Pigott, D. W., Matthews, P. M. and Taggart, D. P. (2004).

Solid and gaseous cerebral microembolization during off-pump, on-pump, and open cardiac

surgery procedures, The Journal of Thoracic and Cardiovascular Surgery 127(6): 1759–1765.

URL: https://linkinghub.elsevier.com/retrieve/pii/S0022522303018282 15

Ackerstaff, R. G. A., Moons, K. G. M., van de Vlasakker, C. J. W., Moll, F. L., Vermeulen, F.

E. E., Algra, A. and Spencer, M. P. (2000). Association of Intraoperative Transcranial Doppler

Monitoring Variables With Stroke From Carotid Endarterectomy, Stroke 31(8): 1817–1823.

URL: https://www.ahajournals.org/doi/10.1161/01.STR.31.8.1817 14

Ackerstaff, R., Jansen, C., Moll, F., Vermeulen, F., Hamerlĳnck, R. and Mauser, H. (1995). The

significance of microemboli detection by means of transcranial Doppler ultrasonography

monitoring in carotid endarterectomy, Journal of Vascular Surgery 21(6): 963–969.

URL: https://linkinghub.elsevier.com/retrieve/pii/S0741521495702245 14

Aggarwal, S. K., Delahunty RN, N., Menezes, L. J., Perry, R., Wong, B., Reinthaler, M., Ozkor, M.

and Mullen, M. J. (2018). Patterns of solid particle embolization during transcatheter aortic

valve implantation and correlation with aortic valve calcification, Journal of Interventional
Cardiology 31(5): 648–654.

URL: http://doi.wiley.com/10.1111/joic.12526 3, 14

Ahmad, Z., Tabassum, A., Guan, L. and Khan, N. M. (2021). ECG heartbeat classification using

multimodal fusion, IEEE Access 9: 100615–100626. 51, 106, 107, 110, 111, 117, 118, 119

Akbari, H., Yuan, L., Qian, R., Chuang, W.-H., Chang, S.-F., Cui, Y. and Gong, B. (2021).

VATT: Transformers for multimodal self-supervised learning from raw video, audio and

text, Vol. 34. 46, 50

Amorim, W. P., Falcão, A. and Carvalho, M. H. (2014). Semi-supervised pattern classification

using optimum-path forest, pp. 111–118. 34, 73, 78

Andrzejak, R., Lehnertz, K., Mormann, F., Rieke, C., David, P. and Elger, C. (2002). Indications

of nonlinear deterministic and finite-dimensional structures in time series of brain electrical

activity: Dependence on recording region and brain state, Physical Review. E, Statistical,
Nonlinear, and Soft Matter Physics 64: 061907. 106

Anzola, G., Magoni, M., Guindani, M., Rozzini, L. and Volta, G. D. (1999). Potential source of

cerebral embolism in migraine with aura, Neurology 52(8): 1622–1622.

URL: https://n.neurology.org/content/52/8/1622 13

Atrial Fibrillation and Stroke | National Institute of Neurological Disorders and Stroke (2023).

URL: https://www.ninds.nih.gov/health-information/disorders/atrial-fibrillation-and-stroke 13

161

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0064/these.pdf 
© [Y. Vindas-Yassine], [2023], INSA Lyon, tous droits réservés



Bai, H., Zhang, W., Hou, L., Shang, L., Jin, J., Jiang, X., Liu, Q., Lyu, M. and King, I. (2021).

BinaryBERT: Pushing the limit of BERT quantization, Proceedings of the 59th Annual Meeting
of the Association for Computational Linguistics and the 11th International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers), Association for Computational Linguistics,

Online, pp. 4334–4348.

URL: https://aclanthology.org/2021.acl-long.334 56, 59

Baltrusaitis, T., Ahuja, C. and Morency, L.-P. (2017). Multimodal machine learning: A survey

and taxonomy, IEEE Transactions on Pattern Analysis and Machine Intelligence . 48, 49

Basic Identification Criteria of Doppler Microembolic Signals (1995). Stroke 26(6): 1123–1123.

URL: https://www.ahajournals.org/doi/10.1161/01.STR.26.6.1123 7, 9, 23

Belkin, M., Niyogi, P. and Sindhwani, V. (2006). Manifold regularization: A geometric frame-

work for learning from labeled and unlabeled examples, Journal of Machine Learning Research
7(85): 2399–2434.

URL: http://jmlr.org/papers/v7/belkin06a.html 34

Benato, B. C., Gomes, J. F., Telea, A. C. and Falcão, A. X. (2021). Semi-automatic data annotation

guided by feature space projection, Pattern Recognition 109: 107612.

URL: https://linkinghub.elsevier.com/retrieve/pii/S0031320320304155 xiii, 33, 34, 35, 38, 63, 67,

68, 69, 70

Benato, B. C., Telea, A. C. and Falcao, A. X. (2018). Semi-supervised learning with interactive

label propagation guided by feature space projections, Proceedings of the 31st SIBGRAPI
Conference on Graphics, Patterns and Images (SIBGRAPI), pp. 392–399.

URL: https://ieeexplore.ieee.org/document/8614354/ 33, 34, 63, 69, 70

Bhalgat, Y., Lee, J., Nagel, M., Blankevoort, T. and Kwak, N. (2020). LSQ+: Improving low-

bit quantization through learnable offsets and better initialization, Proceedings of the 33rd
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops. 56, 58

Bilic, P., Christ, P. F. et al.. (2019). The liver tumor segmentation benchmark (lits), CoRR
abs/1901.04056. 72

Boes, W. and Van Hamme, H. (2019). Audiovisual transformer architectures for large-scale

classification and synchronization of weakly labeled audio events, Proceedings of the 27th
ACM International Conference on Multimedia, MM ’19, Association for Computing Machinery,

New York, NY, USA, p. 1961–1969.

URL: https://doi.org/10.1145/3343031.3350873 46, 50

Bonati, L. H., Kakkos, S., Berkefeld, J., de Borst, G. J., Bulbulia, R., Halliday, A., van Herzeele,

I., Koncar, I., McCabe, D. J., Lal, A., Ricco, J.-B., Ringleb, P., Taylor-Rowan, M. and Eckstein,

H.-H. (2021). European Stroke Organisation guideline on endarterectomy and stenting for

carotid artery stenosis, European Stroke Journal 6(2).

URL: http://journals.sagepub.com/doi/10.1177/23969873211026990 14

Borger, M. A. and Feindel, C. M. (2002). Cerebral emboli during cardiopulmonary bypass: effect

of perfusionist interventions and aortic cannulas, The Journal of Extra-Corporeal Technology
34(1): 29–33. 15

Bosio, A., O’Connor, I., Traiola, M., Echavarria, J., Teich, J., Hanif, M. A., Shafique, M., Ham-

dioui, S., Deveautour, B., Girard, P., Virazel, A. and Bertels, K. (2021). Emerging computing

162

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0064/these.pdf 
© [Y. Vindas-Yassine], [2023], INSA Lyon, tous droits réservés



devices: Challenges and opportunities for test and reliability, 26th IEEE European Test Sym-
posium, ETS 2021, Bruges, Belgium, May 24-28, 2021, IEEE, pp. 1–10.

URL: https://doi.org/10.1109/ETS50041.2021.9465409 53

Bousseljot, R., Kreiseler, D. and Schnabel, A. (1995). Nutzung der EKG-signaldatenbank car-

diodat der PTB über das internet, 40(s1): 317–318.

URL: https://doi.org/10.1515/bmte.1995.40.s1.317 51, 105

Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O., Niculae, V., Pretten-

hofer, P., Gramfort, A., Grobler, J., Layton, R., VanderPlas, J., Joly, A., Holt, B. and Varoquaux,

G. (2013). API design for machine learning software: experiences from the scikit-learn

project, ECML PKDD Workshop: Languages for Data Mining and Machine Learning, pp. 108–122.

73

Carotid Artery Stenosis (2022).

URL: https://www.hopkinsmedicine.org/health/conditions-and-diseases/carotid-artery-disease 13

Carotid endarterectomy (2017).

URL: https://www.nhs.uk/conditions/carotid-endarterectomy/ 14

CDC (2022). Atrial Fibrillation | cdc.gov.

URL: https://www.cdc.gov/heartdisease/atrial_fibrillation.htm 13

Chapelle, O., Scholkopf, B. and Zien, Eds., A. (2009). Semi-supervised learning, IEEE Transac-
tions on Neural Networks 20(3): 542–542. 33, 66, 90

Che, C., Zhang, P., Zhu, M., Qu, Y. and Jin, B. (2021). Constrained transformer network for ECG

signal processing and arrhythmia classification, BMC Medical Informatics and Decision Making
21. 42, 46, 47

Chen, M., Shi, X., Zhang, Y., Wu, D. and Guizani, M. (2017). Deep features learning for medical

image analysis with convolutional autoencoder neural network, IEEE Transactions on Big Data
. 34

Chen, X., Cheng, Z., Wang, S., Lu, G., Xv, G., Liu, Q. and Zhu, X. (2021). Atrial fibrillation

detection based on multi-feature extraction and convolutional neural network for processing

ECG signals, Computer Methods and Programs in Biomedicine 202: 106009.

URL: https://www.sciencedirect.com/science/article/pii/S0169260721000845 51

Chicco, D. and Jurman, G. (2020). The advantages of the Matthews correlation coefficient

(MCC) over F1 score and accuracy in binary classification evaluation, BMC Genomics 21(1): 6.

URL: https://doi.org/10.1186/s12864-019-6413-7 117

Chung, C. and Caplan, L. R. (2007). Chapter 45 - stroke and other neurovascular disorders,

in C. G. Goetz (ed.), Textbook of Clinical Neurology (Third Edition), third edition edn, W.B.

Saunders, Philadelphia, pp. 1019–1051.

URL: https://www.sciencedirect.com/science/article/pii/B9781416036180100451 6

De Rosa, G. H. and Papa, J. P. (2021). OPFython: A Python implementation for optimum-path

forest, Software Impacts p. 100113. 73

Devlin, J., Chang, M.-W., Lee, K. and Toutanova, K. (2018). Bert: Pre-training of deep bidirec-

tional transformers for language understanding, arXiv preprint arXiv:1810.04805 . 48

163

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0064/these.pdf 
© [Y. Vindas-Yassine], [2023], INSA Lyon, tous droits réservés



Dieleman, S. and Schrauwen, B. (2014). End-to-end learning for music audio, Proceedings
of the 39th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 6964–6968. 42

Ding, Y., Jia, M., Miao, Q. and Cao, Y. (2022). A novel time–frequency transformer based on

self–attention mechanism and its application in fault diagnosis of rolling bearings, Mechanical
Systems and Signal Processing 168: 108616. 46

Doersch, C., Gupta, A. and Efros, A. A. (2015). Unsupervised visual representation learning by

context prediction, pp. 1422–1430. 34

Dong, Z., Yao, Z., Arfeen, D., Gholami, A., Mahoney, M. W. and Keutzer, K. (2020). Hawq-v2:

Hessian aware trace-weighted quantization of neural networks, in H. Larochelle, M. Ranzato,

R. Hadsell, M. Balcan and H. Lin (eds), Proceedings of the 33th International Conference on Neural
Information Processing Systems, Vol. 33, Curran Associates, Inc., pp. 18518–18529.

URL: https://proceedings.neurips.cc/paper/2020/file/d77c703536718b95308130ff2e5cf9ee-Paper.pdf
58, 59, 130, 131, 133

Dong, Z., Yao, Z., Gholami, A., Mahoney, M. W. and Keutzer, K. (2019). Hawq: Hessian

aware quantization of neural networks with mixed-precision, Proceedings of the IEEE/CVF
International Conference on Computer Vision (ICCV). 58

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani,

M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J. and Houlsby, N. (2021). An image is

worth 16x16 words: Transformers for image recognition at scale, ICLR . 48, 99

Dubey, A., Chatterjee, M. and Ahuja, N. (2018). Coreset-based neural network compression,

Proceedings of the 15th European Conference on Computer Vision (ECCV), Springer-Verlag, Berlin,

Heidelberg, p. 469–486.

URL: https://doi.org/10.1007/978-3-030-01234-2_28 56

Effects of Stroke (2022).

URL: https://www.hopkinsmedicine.org/health/conditions-and-diseases/stroke/effects-of-stroke 6

Effects of Stroke (2023).

URL: https://www.stroke.org/en/about-stroke/effects-of-stroke 6

Elsken, T., Metzen, J. H. and Hutter, F. (2019). Neural architecture search: A survey, J. Mach.
Learn. Res. 20(1): 1997–2017. 53

Ertugrul, Ö. F., Acar, E., Aldemir, E. and Öztekin, A. (2021). Automatic diagnosis of cardiovas-

cular disorders by sub images of the ECG signal using multi-feature extraction methods and

randomized neural network, Biomedical Signal Processing and Control 64: 102260. 51

Fan, A., Stock*, P., , Graham, B., Grave, E., Gribonval, R., Jegou, H. and Joulin, A. (2020).

Training with quantization noise for extreme model compression, ArXiv e-prints . 60

Feigin, V., Nichols, E., Alam, T., Bannick, M., Beghi, E., Blake, N., Culpepper, W., Dorsey, E.,

Elbaz, A., Ellenbogen, R., Fisher, J., Fitzmaurice, C., Giussani, G., Glennie, L., James, S.,

Johnson, C., Kassebaum, N., Logroscino, G., Marin, B. and Vos, T. (2019). Global, regional,

and national burden of neurological disorders, 1990-2016: a systematic analysis for the global

burden of disease study 2016, The Lancet Neurology 18: 459–480. 3

164

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0064/these.pdf 
© [Y. Vindas-Yassine], [2023], INSA Lyon, tous droits réservés



Feng, X., Feng, Q., Li, S., Hou, X. and Liu, S. (2020). A deep-learning-based oil-well-testing

stage interpretation model integrating multi-feature extraction methods, Energies 13(8).

URL: https://www.mdpi.com/1996-1073/13/8/2042 51

Freedman, B., Potpara, T. S. and Lip, G. Y. H. (2016). Stroke prevention in atrial fibrillation, The
Lancet 388(10046): 806–817.

URL: https://www.sciencedirect.com/science/article/pii/S0140673616312570 13

Gaier, A. and Ha, D. (2019). Weight agnostic neural networks.

URL: http://arxiv.org/abs/1906.04358 39

Gao, K., Zhang, Q. and Wang, H. (2019). A lightweight residual-inception convolutional neural

network, Journal of Physics: Conference Series 1237: 032058. 41, 53

Garcia, L. P., Carvalho, A. C. d. and Lorena, A. C. (2016). Noise detection in the meta-learning

level, Neurocomputing 176: 14–25.

URL: https://linkinghub.elsevier.com/retrieve/pii/S0925231215005482 39

Gencer, M., Bilgin, G. and Aydin, N. (2013). Embolic Doppler ultrasound signal detection via

fractional fourier transform, Proceedings of the 35th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC), IEEE, pp. 3050–3053.

URL: http://ieeexplore.ieee.org/document/6610184/ 30, 31

George, M. (2017). CDC Grand Rounds: Public Health Strategies to Prevent and Treat Strokes,

MMWR. Morbidity and Mortality Weekly Report 66.

URL: https://www.facebook.com/CDCMMWR 6

Georgiadis, D., Grosset, D. G., Kelman, A., Faichney, A. and Lees, K. R. (1994). Prevalence

and characteristics of intracranial microemboli signals in patients with different types of

prosthetic cardiac valves., Stroke 25(3): 587–592. 3

Gholami, A., Kim, S., Zhen, D., Yao, Z., Mahoney, M. and Keutzer, K. (2022). A survey of

quantization methods for efficient neural network inference, Low-Power Computer Vision,

pp. 291–326. 52, 55, 57, 58, 127

Ghosh, A., Kumar, H. and Sastry, P. S. (2017). Robust loss functions under label noise for deep

neural networks, ArXiv e-prints .

URL: http://arxiv.org/abs/1712.09482 39, 40

Goldberger, A. L., Amaral, L. A. N., Glass, L., Hausdorff, J. M., Ivanov, P. C.,

Mark, R. G., Mietus, J. E., Moody, G. B., Peng, C.-K. and Stanley, H. E. (2000).

PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource

for complex physiologic signals, Circulation 101(23): e215–e220. Circulation Elec-

tronic Pages: http://circ.ahajournals.org/content/101/23/e215.full PMID:1085218; doi:

10.1161/01.CIR.101.23.e215. 105

Goldberger, J. and Ben-Reuven, E. (2017). Training deep neural-networks using a noise adap-

tation layer, Proceedings of the 5th International Conference on Learning Representations, ICLR.

URL: https://openreview.net/forum?id=H12GRgcxg 38

Gong, Y., Chung, Y.-A. and Glass, J. (2021). AST: Audio Spectrogram Transformer, Proceedings
of the 22nd Interspeech Conference, pp. 571–575. 46

Gong, Y., Liu, L., Yang, M. and Bourdev, L. D. (2014). Compressing deep convolutional networks

using vector quantization, ArXiv e-prints abs/1412.6115. 56

165

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0064/these.pdf 
© [Y. Vindas-Yassine], [2023], INSA Lyon, tous droits réservés



Goodfellow, I., Shlens, J. and Szegedy, C. (2015). Explaining and harnessing adversarial exam-

ples, Proceedings of the 3rd International Conference on Learning Representations, ICLR.

URL: http://arxiv.org/abs/1412.6572 38

Guepie, B., Martin, M., Lacrosaz, V., Almar, M., Guibert, B. and Delachartre, P. (2018). Sequential

emboli detection from ultrasound outpatient data, IEEE Journal of Biomedical and Health
Informatics . xiii, 20, 23, 30, 31, 32, 42, 95

Guépié, B. K., Sciolla, B., Millioz, F., Almar, M. and Delachartre, P. (2017). Discrimination

between emboli and artifacts for outpatient transcranial Doppler ultrasound data, Medical &
Biological Engineering & Computing 55(10): 1787–1797. Number: 10.

URL: http://link.springer.com/10.1007/s11517-017-1624-z 30, 31

Haines, D. (2018). Chapter 8 - A survey of the cerebrovascular system, in D. E. Haines and G. A.

Mihailoff (eds), Fundamental Neuroscience for Basic and Clinical Applications (Fifth Edition), fifth

edition edn, Elsevier, pp. 122–137.e1.

URL: https://www.sciencedirect.com/science/article/pii/B9780323396325000086 6

Han, S., Mao, H. and Dally, W. J. (2016). Deep compression: Compressing deep neural network

with pruning, trained quantization and huffman coding, in Y. Bengio and Y. LeCun (eds),

Proceedings of the 4th International Conference on Learning Representations, ICLR 2016.

URL: http://arxiv.org/abs/1510.00149 56, 60, 127

Han, S., Pool, J., Tran, J. and Dally, W. J. (2015). Learning both weights and connections for

efficient neural networks, Proceedings of the 28th International Conference on Neural Information
Processing Systems, NIPS’15, MIT Press, Cambridge, MA, USA, p. 1135–1143. 53

Hassibi, B., Stork, D. and Wolff, G. (1993). Optimal brain surgeon and general network pruning,

Proceedings of the IEEE 1993 International Conference on Neural Networks, pp. 293–299 vol.1. 53

He, K., Zhang, X., Ren, S. and Sun, J. (2016). Deep residual learning for image recognition,

Proceedings of the 29th IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 770–778. 41, 53

He, Y., Lin, J., Liu, Z., Wang, H., Li, L.-J. and Han, S. (2018). AMC: AutoML for model

compression and acceleration on mobile devices, in V. Ferrari, M. Hebert, C. Sminchisescu

and Y. Weiss (eds), Computer Vision – ECCV 2018, Springer International Publishing, Cham,

pp. 815–832. 54

Hilal, A. M., Albraikan, A. A., Dhahbi, S., Nour, M. K., Mohamed, A., Motwakel, A., Zamani,

A. S. and Rizwanullah, M. (2022). Intelligent epileptic seizure detection and classification

model using optimal deep canonical sparse autoencoder, Biology 11(8). 107, 109, 110, 111, 117

Hinton, G. E., Vinyals, O. and Dean, J. (2015). Distilling the knowledge in a neural network,

ArXiv abs/1503.02531. 52

Hoefler, T., Alistarh, D., Ben-Nun, T., Dryden, N. and Peste, A. (2022). Sparsity in deep learning:

Pruning and growth for efficient inference and training in neural networks, Journal of Machine
Learning Research 22(1). 53, 127, 144

Hori, C., Hori, T., Wichern, G., Wang, J., Lee, T.-Y., Cherian, A. and Marks, T. K. (2018).

Multimodal attention for fusion of audio and spatiotemporal features for video description,

CVPR Workshops. 50

166

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0064/these.pdf 
© [Y. Vindas-Yassine], [2023], INSA Lyon, tous droits réservés



Horowitz, M. (2014). 1.1 computing’s energy problem (and what we can do about it), Proceedings
of the 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC),
pp. 10–14. 132, 134, 135

Hou, L. and Kwok, J. T. (2018). Loss-aware weight quantization of deep networks, Proceedings
of the 6th International Conference on Learning Representations.
URL: https://openreview.net/forum?id=BkrSv0lA- 59

Howard, A., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M. and

Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision

applications. 52

Iguchi, Y., Kimura, K., Kobayashi, K., Ueno, Y., Shibazaki, K. and Inoue, T. (2008). Microembolic

signals at 48 hours after stroke onset contribute to new ischaemia within a week, Journal of
Neurology, Neurosurgery & Psychiatry 79(3): 253–259.

URL: https://jnnp.bmj.com/lookup/doi/10.1136/jnnp.2007.123414 6

Ikizceli, T., Donmez, H., Kahveci, S. and Kahriman, G. (2021). Ischaemic brain changes asso-

ciated with catheter-based diagnostic cerebral angiography: a diffusion-weighted imaging

study, Polish Journal of Radiology 86(1): 481–488.

URL: https://www.termedia.pl/doi/10.5114/pjr.2021.108793 15

Imaduddin, S. M., LaRovere, K. L., Kussman, B. D. and Heldt, T. (2019). A time-frequency

approach for cerebral embolic load monitoring, IEEE Transactions on Biomedical Engineering
67(4): 1007–1018. 30, 95

Jacob, B., Kligys, S., Chen, B., Zhu, M., Tang, M., Howard, A., Adam, H. and Kalenichenko,

D. (2018). Quantization and training of neural networks for efficient integer-arithmetic-

only inference, Proceedings of the 31st IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). 58

Jansen, C., Ramos, L. M., van Heesewĳk, J. P., Moll, F. L., van Gĳn, J. and Ackerstaff, R. G.

(1994). Impact of microembolism and hemodynamic changes in the brain during carotid

endarterectomy., Stroke 25(5): 992–997.

URL: https://www.ahajournals.org/doi/10.1161/01.STR.25.5.992 14

Jeon, H., Jung, Y., Lee, S. and Jung, Y. (2020). Area-efficient short-time fourier transform

processor for time–frequency analysis of non-stationary signals, Applied Sciences 10(20).

URL: https://www.mdpi.com/2076-3417/10/20/7208 20

Ji, T., Jain, S., Ferdman, M., Milder, P., Schwartz, H. A. and Balasubramanian, N. (2021). On the

distribution, sparsity, and inference-time quantization of attention values in transformers,

ArXiv abs/2106.01335. 53

Jin, J., Yang, S., Zhao, B., Luo, L. and Woo, W. L. (2020). Attention-block deep learning based

features fusion in wearable social sensor for mental wellbeing evaluations, IEEE Access 8. 51

Jin, Q., Yang, L. and Liao, Z. (2020). Adabits: Neural network quantization with adaptive bit-

widths, Proceedings of the 33rd IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR). 59

Johnson, W., Onuma, O., Owolabi, M. and Sachdev, S. (2016). Stroke: a global response is

needed, Bulletin of the World Health Organization 94(9): 634–634A. Number: 9.

URL: http://www.who.int/entity/bulletin/volumes/94/9/16-181636.pdf 3

167

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0064/these.pdf 
© [Y. Vindas-Yassine], [2023], INSA Lyon, tous droits réservés



Jolliffe, I. T. and Cadima, J. (2016). Principal component analysis: a review and recent develop-

ments, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering
Sciences 374(2065): 20150202. Number: 2065.

URL: https://royalsocietypublishing.org/doi/10.1098/rsta.2015.0202 68

Judge, C., Mello, S., Bradley, D. and Harbison, J. (2017). A Systematic Review of the Causes and

Management of Ischaemic Stroke Caused by Nontissue Emboli, Stroke Research and Treatment
2017: 1–8.

URL: https://www.hindawi.com/journals/srt/2017/7565702/ 15

Kachuee, M., Fazeli, S. and Sarrafzadeh, M. (2018). ECG heartbeat classification: A deep trans-

ferable representation, Proceedings of the IEEE International Conference on Healthcare Informatics
(ICHI), IEEE, pp. 443–444. 106

Kamel, H., Okin, P. M., Elkind, M. S. and Iadecola, C. (2016). Atrial fibrillation and mechanisms

of stroke, Stroke 47(3): 895–900.

URL: https://www.ahajournals.org/doi/abs/10.1161/STROKEAHA.115.012004 13, 14

Kanjilal, P., Dey, P. and Banerjee, D. (1993). Reduced-size neural networks through singular

value decomposition and subset selection, Electronics Letters 29: 1516–1518. 53

Karahoca, A. and Tunga, M. A. (2015). A polynomial based algorithm for detection of embolism,

Soft Computing 19(1): 167–177.

URL: http://link.springer.com/10.1007/s00500-014-1240-x 30, 31

Karimi, D., Dou, H., Warfield, S. K. and Gholipour, A. (2020). Deep learning with noisy

labels: Exploring techniques and remedies in medical image analysis, Medical Image Analysis
65: 101759.

URL: https://www.sciencedirect.com/science/article/pii/S1361841520301237 65

Karita, S., Wang, X., Watanabe, S., Yoshimura, T., Zhang, W., Chen, N., Hayashi, T., Hori, T.,

Inaguma, H., Jiang, Z., Someki, M., Soplin, N. and Yamamoto, R. (2019). A comparative

study on transformer vs rnn in speech applications, Proceedings of the 2019 IEEE Automatic
Speech Recognition and Understanding Workshop, IEEE, pp. 449–456. 44, 46

Keunen, R. W. (2022). The art of TCD embolus detection in prevention of stroke. Brain Physics

Seminar. 9, 10

Keunen, R. W. M., Hoogenboezem, R., Wĳnands, R., Van den Hengel, A. C. M. and Ackerstaff,

R. G. A. (2008). Introduction of an embolus detection system based on analysis of the

transcranial Doppler audio-signal, Journal of Medical Engineering & Technology 32(4): 296–304.

URL: http://www.tandfonline.com/doi/full/10.1080/03091900701541265 9, 30, 95

Kim, J.-G. and Lee, B. (2019). Appliance classification by power signal analysis based on multi-

feature combination multi-layer LSTM, Energies 12(14).

URL: https://www.mdpi.com/1996-1073/12/14/2804 51, 56

Kim, S., Gholami, A., Yao, Z., Mahoney, M. W. and Keutzer, K. (2021). I-bert: Integer-only bert

quantization, Proceedings of the 38th International Conference on Machine Learning. 58

Kingma, D. P., Rezende, D. J., Mohamed, S. and Welling, M. (2014). Semi-supervised learning

with deep generative models, Proceedings of the 27th International Conference on Neural Informa-
tion Processing Systems - Volume 2, NIPS’14, MIT Press, Cambridge, MA, USA, pp. 3581–3589.

33, 63

168

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0064/these.pdf 
© [Y. Vindas-Yassine], [2023], INSA Lyon, tous droits réservés



Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P. and Soricut, R. (2020). ALBERT:

A lite BERT for self-supervised learning of language representations, Proceedings of the 8th
International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020, OpenReview.net.

URL: https://openreview.net/forum?id=H1eA7AEtvS 56

Lane, N. D., Bhattacharya, S., Georgiev, P., Forlivesi, C. and Kawsar, F. (2015). An early resource

characterization of deep learning on wearables, smartphones and internet-of-things devices,

Proceedings of the 2015 International Workshop on Internet of Things towards Applications, IoT-App

’15, Association for Computing Machinery, New York, NY, USA, p. 7–12.

URL: https://doi.org/10.1145/2820975.2820980 26

LeCun, Y. and Cortes, C. (2010). MNIST handwritten digit database.

URL: http://yann.lecun.com/exdb/mnist/ 72

Lee, J., Park, J., Kim, K. and Nam, J. (2017). Sample-level deep convolutional neural networks

for music auto-tagging using raw waveforms, Proceedings of the 14th Sound Music Computing
Conference. 42

Li, F. and Liu, B. (2016). Ternary weight networks, ArXiv abs/1605.04711. 129

Li, F., Liu, B., Wang, X., Zhang, B. and Yan, J. (2022). Ternary weight networks, ArXiv e-prints .

59

Li, J., Mohamed, A., Zweig, G. and Gong, Y. (2015). LSTM time and frequency recurrence

for automatic speech recognition, 2015 IEEE Workshop on Automatic Speech Recognition and
Understanding (ASRU), IEEE, pp. 187–191.

URL: http://ieeexplore.ieee.org/document/7404793/ 42

Li, Y., Yang, J., Song, Y., Cao, L., Luo, J. and Li, L.-J. (2017). Learning from noisy labels with

distillation, arXiv e-prints .

URL: http://arxiv.org/abs/1703.02391 39

Liang, T., Glossner, J., Wang, L., Shi, S. and Zhang, X. (2021). Pruning and quantization for

deep neural network acceleration: A survey, Neurocomputing 461: 370–403.

URL: https://www.sciencedirect.com/science/article/pii/S0925231221010894 127

Lin, X., Zhao, C. and Pan, W. (2017). Towards accurate binary convolutional neural network, in
I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan and R. Garnett

(eds), Proceedings of the 30th International Conference on Neural Information Processing Systems,
Vol. 30, Curran Associates, Inc.

URL: https://proceedings.neurips.cc/paper/2017/file/b1a59b315fc9a3002ce38bbe070ec3f5-Paper.pdf
59

Liu, Z.-M. (2021). Multi-feature fusion for specific emitter identification via deep ensemble

learning, Digital Signal Processing 110: 102939.

URL: https://www.sciencedirect.com/science/article/pii/S1051200420302840 51

Lueks, W., Mokbel, B., Biehl, M. and Hammer, B. (2011). How to evaluate dimensionality

reduction? - Improving the co-ranking matrix, arXiv:1110.3917 [cs] .

URL: http://arxiv.org/abs/1110.3917 xiii, xiv, 36, 37, 69, 90, 92, 93

Luo, J.-H., Wu, J. and Lin, W. (2017). Thinet: A filter level pruning method for deep neural

network compression, Proceedings of the 16th IEEE International Conference on Computer Vision
(ICCV), pp. 5068–5076. 54

169

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0064/these.pdf 
© [Y. Vindas-Yassine], [2023], INSA Lyon, tous droits réservés



Lyon, R. F. (2017). Human and machine hearing: Extracting meaning from sound, Cambridge

University Press. 21

Maaten, L. V. D. and Hinton, G. (2008). Visualizing data using t-SNE, Journal of Machine Learning
Research 9(86): 2579–2605.

URL: http://jmlr.org/papers/v9/vandermaaten08a.html 25, 34, 68

Makimoto, H., Höckmann, M., Lin, T., Glöckner, D., Gerguri, S., Clasen, L., Schmidt, J., Assadi-

Schmidt, A., Bejinariu, A., Müller, P., Angendohr, S., Babady, M., Brinkmeyer, C., Makimoto,

A. and Kelm, M. (2020). Performance of a convolutional neural network derived from an

ECG database in recognizing myocardial infarction, Scientific Reports 10(1): 8445. 109, 110

Manessi, F., Rozza, A., Bianco, S., Napoletano, P. and Schettini, R. (2017). Automated pruning

for deep neural network compression, Proceedings of the 24th International Conference on Pattern
Recognition (ICPR), pp. 657–664.

URL: https://api.semanticscholar.org/CorpusID:23164747 xiii, 54, 55

Mao, S., Li, Y., Ma, Y., Zhang, B., Zhou, J. and Wang, K. (2020). Automatic cucumber recognition

algorithm for harvesting robots in the natural environment using deep learning and multi-

feature fusion, Computers and Electronics in Agriculture 170. 50, 51

Marcoff, L. and Homma, S. (2014). Embolism, cardiac and aortic, in M. J. Aminoff and R. B.

Daroff (eds), Encyclopedia of the Neurological Sciences (Second Edition), second edition edn,

Academic Press, Oxford, pp. 1–7.

URL: https://www.sciencedirect.com/science/article/pii/B9780123851574004140 14

Mariet, Z. and Sra, S. (2016). Diversity networks: Neural network compression using determi-

nantal point processes, Proceedings of the 4th International Conference on Learning Representations
(ICLR). 54

Markus, H., Israel, D., Brown, M., Loh, A., Buckenham, T. and Clifton, A. (1993a). Micro-

scopic air embolism during cerebral angiography and strategies for its avoidance, The Lancet
341(8848): 784–787. Number: 8848.

URL: https://linkinghub.elsevier.com/retrieve/pii/014067369390561T 3

Markus, H., Israel, D., Brown, M., Loh, A., Buckenham, T. and Clifton, A. (1993b). Micro-

scopic air embolism during cerebral angiography and strategies for its avoidance, The Lancet
341(8848): 784–787.

URL: https://linkinghub.elsevier.com/retrieve/pii/014067369390561T 15

Markus, H. S. and MacKinnon, A. (2005). Asymptomatic embolization detected by Doppler

ultrasound predicts stroke risk in symptomatic carotid artery stenosis, Stroke 36(5): 971–975.

URL: https://www.ahajournals.org/doi/abs/10.1161/01.STR.0000162717.62684.40 13

Markus, H. S. and Punter, M. (2005). Can Transcranial Doppler Discriminate Between Solid

and Gaseous Microemboli?: Assessment of a Dual-Frequency Transducer System, Stroke
36(8): 1731–1734.

URL: https://www.ahajournals.org/doi/10.1161/01.STR.0000173399.20127.b3 25, 30, 95

Masson, J.-B., Kovac, J., Schuler, G., Ye, J., Cheung, A., Kapadia, S., Tuzcu, M. E., Kodali, S., Leon,

M. B. and Webb, J. G. (2009). Transcatheter Aortic Valve Implantation, JACC: Cardiovascular
Interventions 2(9): 811–820.

URL: https://linkinghub.elsevier.com/retrieve/pii/S1936879809005044 14

170

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0064/these.pdf 
© [Y. Vindas-Yassine], [2023], INSA Lyon, tous droits réservés



McFee, B. and Bello, J. P. (2017). Structured training for large-vocabulary chord recognition,

Proceedings of the International Society for Music Information Retrieval Conference. 43

McInnes, L., Healy, J. and Melville, J. (2020). UMAP: Uniform manifold approximation and

projection for dimension reduction, arXiv:1802.03426 [cs, stat] .

URL: http://arxiv.org/abs/1802.03426 68, 118

McKinstry, J. L., Esser, S. K., Appuswamy, R., Bablani, D., Arthur, J. V., Yildiz, I. B. and Modha,

D. S. (2019). Discovering low-precision networks close to full-precision networks for efficient

inference, Proceedings of the 5th Workshop on Energy Efficient Machine Learning and Cognitive
Computing - NeurIPS Edition (EMC2-NIPS), pp. 6–9. 59

Meschia, J. and Brott, T. (2018). Ischaemic stroke, European journal of neurology 25(1): 35–40. 3

Meyer, J. S., Mutamatsu, K. and Shirai, T. (1996). Cerebral embolism as a cause of stroke and

transient ischemic attack, Echocardiography 13(5): 513–518.

URL: https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1540-8175.1996.tb00929.x 3, 6

Mitchell, S. and Gorman, D. (2002). The pathophysiology of cerebral arterial gas embolism, The
journal of extra-corporeal technology 34(1): 18—23.

URL: http://europepmc.org/abstract/MED/11911624 15

Mohamed, A., Okhonko, D. and Zettlemoyer, L. (2019). Transformers with convolutional

context for asr, ArXiv abs/1904.11660. 46

Molka, D., Hackenberg, D., Schöne, R. and Müller, M. S. (2010). Characterizing the energy

consumption of data transfers and arithmetic operations on x8664 processors, Proceedings of
the International Conference on Green Computing, pp. 123–133. 134

Moody, G. and Mark, R. (2001). The impact of the mit-bih arrhythmia database, IEEE Engineering
in Medicine and Biology Magazine 20(3): 45–50. 51

Naqvi, J., Yap, K. H., Ahmad, G. and Ghosh, J. (2013). Transcranial Doppler Ultrasound:

A Review of the Physical Principles and Major Applications in Critical Care, International
Journal of Vascular Medicine 2013: 1–13.

URL: http://www.hindawi.com/journals/ĳvm/2013/629378/ 16

Natarajan, A., Chang, Y., Mariani, S., Rahman, A., Boverman, G., Vĳ, S. and Rubin, J. (2020). A

wide and deep transformer neural network for 12-lead ECG classification, Proceedings of the
47th 2020 Computing in Cardiology Conference, pp. 1–4. xiii, 42, 46, 47, 99, 100

Nguyen, D., Nguyen, D. T., Zeng, R., Nguyen, T. T., Tran, S., Nguyen, T. K., Sridharan, S. and

Fookes, C. (2021). Deep auto-encoders with sequential learning for multimodal dimensional

emotion recognition, IEEE Transactions on Multimedia . 42

Nishizaki, H. and Makino, K. (2019). Signal classification using deep learning, Proceedings of
the 2019 IEEE International Conference on Sensors and Nanotechnology, pp. 1–4. 43

Ogasawara, K., Suga, Y., Sasaki, M., Chida, K., Kobayashi, M., Yoshida, K., Otawara, Y. and

Ogawa, A. (2008a). Intraoperative Microemboli and Low Middle Cerebral Artery Blood Flow

Velocity Are Additive in Predicting Development of Cerebral Ischemic Events After Carotid

Endarterectomy, Stroke 39(11): 3088–3091.

URL: https://www.ahajournals.org/doi/10.1161/STROKEAHA.107.511360 10

171

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0064/these.pdf 
© [Y. Vindas-Yassine], [2023], INSA Lyon, tous droits réservés



Ogasawara, K., Suga, Y., Sasaki, M., Chida, K., Kobayashi, M., Yoshida, K., Otawara, Y. and

Ogawa, A. (2008b). Intraoperative Microemboli and Low Middle Cerebral Artery Blood Flow

Velocity Are Additive in Predicting Development of Cerebral Ischemic Events After Carotid

Endarterectomy, Stroke 39(11): 3088–3091.

URL: https://www.ahajournals.org/doi/10.1161/STROKEAHA.107.511360 14

Okawa, M., Saito, T., Sawada, N. and Nishizaki, H. (2019). Audio classification of bit-

representation waveform, Proceedings of the 20th Interspeech Conference, pp. 2553–2557. 22,

23, 41, 42, 43

Organization, W. H. (2006). Neurological disorders: public health challenges, World Health

Organization. 3

Ortega, J. D. S., Senoussaoui, M., Granger, E., Pedersoli, M., Cardinal, P. and Koerich, A. L.

(2019). Multimodal fusion with deep neural networks for audio-video emotion recognition,

ArXiv abs/1907.03196. 50

Park, H. and Yoo, C. D. (2020). Cnn-based learnable gammatone filterbank and equal-loudness

normalization for environmental sound classification, IEEE Signal Processing Letters 27: 411–

415. 41, 127

Park, M. S., Xu, X. and Brick, C. (2018). SQuantizer: Simultaneous learning for both sparse and

low-precision neural networks, CoRR abs/1812.08301.

URL: http://arxiv.org/abs/1812.08301 60

Patent Foramen Ovale (PFO) (2011).

URL: https://www.heart.org/en/health-topics/congenital-heart-defects/about-congenital-heart-
defects/patent-foramen-ovale-pfo 13, 14

Patrini, G., Rozza, A., Menon, A., Nock, R. and Qu, L. (2017). Making deep neural networks

robust to label noise: a loss correction approach, arXiv e-prints .

URL: http://arxiv.org/abs/1609.03683 39

Pereyra, G., Tucker, G., Chorowski, J., Kaiser, and Hinton, G. (2017). Regularizing neural

networks by penalizing confident output distributions, arXiv e-prints .

URL: http://arxiv.org/abs/1701.06548 38

Piccialli, F., Somma, V. D., Giampaolo, F., Cuomo, S. and Fortino, G. (2021). A survey on deep

learning in medicine: Why, how and when?, Information Fusion 66: 111–137.

URL: https://www.sciencedirect.com/science/article/pii/S1566253520303651 52

Polino, A., Pascanu, R. and Alistarh, D. (2018). Model compression via distillation and quanti-

zation, ArXiv e-prints . 56

Prato, G., Charlaix, E. and Rezagholizadeh, M. (2020). Fully quantized transformer for machine

translation, Findings of the Association for Computational Linguistics: EMNLP 2020, Association

for Computational Linguistics, Online, pp. 1–14.

URL: https://aclanthology.org/2020.findings-emnlp.1 56

Pu, J., Panagakis, Y. and Pantic, M. (2021). Learning separable time-frequency filterbanks for

audio classification, Proceedings of the 46th IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 3000–3004. 41, 42

172

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0064/these.pdf 
© [Y. Vindas-Yassine], [2023], INSA Lyon, tous droits réservés



Purkayastha, S. and Sorond, F. (2013). Transcranial Doppler Ultrasound: Technique and Ap-

plication, Seminars in Neurology 32(04): 411–420.

URL: http://www.thieme-connect.de/DOI/DOI?10.1055/s-0032-1331812 16, 17

Purwins, H., Li, B., Virtanen, T., Schlüter, J., Chang, S.-Y. and Sainath, T. (2019). Deep learning

for audio signal processing, IEEE Journal of Selected Topics in Signal Processing 13(2): 206–219.

41, 42

Qu, Y., Liu, C., Zhang, K., Xiao, K., Jin, B. and Xiong, H. (2021). Diagnostic sparse connectivity

networks with regularization template, IEEE Transactions on Knowledge and Data Engineering
. 47

Quantifying the performance of the TPU, our first machine learning chip (n.d.).

URL: https://cloud.google.com/blog/products/gcp/quantifying-the-performance-of-the-tpu-our-first-
machine-learning-chip 53

Rastegari, M., Ordonez, V., Redmon, J. and Farhadi, A. (2016). Xnor-net: Imagenet classification

using binary convolutional neural networks, in B. Leibe, J. Matas, N. Sebe and M. Welling

(eds), Proceedings of the 14th European Conference on Computer Vision (ECCV), Springer Inter-

national Publishing, Cham, pp. 525–542. 59, 127

Rawat, W. and Wang, Z. (2017). Deep Convolutional Neural Networks for Image Classification:

A Comprehensive Review, Neural Computation 29(9): 2352–2449.

URL: https://doi.org/10.1162/neco_a_00990 40

Reed, S. E., Lee, H., Anguelov, D., Szegedy, C., Erhan, D. and Rabinovich, A. (2015). Training

deep neural networks on noisy labels with bootstrapping, in Y. Bengio and Y. LeCun (eds),

Proceedings of the 3rd International Conference on Learning Representations, ICLR.

URL: http://arxiv.org/abs/1412.6596 39

Ringelstein, E. B., Droste, D. W., Babikian, V. L., Evans, D. H., Grosset, D. G., Kaps, M., Markus,

H. S., Russell, D. and Siebler, M. (1998). Consensus on microembolus detection by TCD,

Stroke 29: 725–729. 3, 7, 23, 97

Rosenberg, C., Hebert, M. and Schneiderman, H. (2005). Semi-supervised self-training of

object detection models, 2005 Seventh IEEE Workshops on Applications of Computer Vision
(WACV/MOTION’05) - Volume 1, IEEE, pp. 29–36.

URL: http://ieeexplore.ieee.org/document/4129456/ 33, 63

Rosenkranz, M., Fiehler, J., Niesen, W., Waiblinger, C., Eckert, B., Wittkugel, O., Kucinski,

T., Röther, J., Zeumer, H., Weiller, C. and Sliwka, U. (2006). The amount of solid cerebral

microemboli during carotid stenting does not relate to the frequency of silent ischemic lesions,

American Journal of Neuroradiology 27(1): 157–161.

URL: http://www.ajnr.org/content/27/1/157 3, 6

Roth, E. J. (2011). Cerebral embolism, in J. S. Kreutzer, J. DeLuca and B. Caplan (eds), Encyclopedia
of Clinical Neuropsychology, Springer, New York, NY, pp. 530–531.

URL: https://doi.org/10.1007/978-0-387-79948-3_2166 6

Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of

cluster analysis, Journal of Computational and Applied Mathematics 20: 53–65.

URL: https://linkinghub.elsevier.com/retrieve/pii/0377042787901257 68

173

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0064/these.pdf 
© [Y. Vindas-Yassine], [2023], INSA Lyon, tous droits réservés



Russell, D. and Brucher, R. (2002). Online Automatic Discrimination Between Solid and Gaseous

Cerebral Microemboli With the First Multifrequency Transcranial Doppler, Stroke 33(8): 1975–

1980.

URL: https://www.ahajournals.org/doi/10.1161/01.STR.0000022809.46400.4B 25

Sainath, T. N. and Li, B. (2016). Modeling time-frequency patterns with LSTM vs. convolutional

architectures for LVCSR tasks, Proceedings of the 17th Interspeech Conference, pp. 813–817.

URL: http://www.isca-speech.org/archive/Interspeech_2016/abstracts/0084.html 43

Schminke, U., Ries, S., Daffertshofer, M., Staedt, U. and Hennerici, M. (1995). Patent foramen

ovale: A potential source of cerebral embolism?, Cerebrovascular Diseases 5(2): 133–138.

URL: https://www.karger.com/DOI/10.1159/000107838 13, 15

Schuchlenz, H. W., Weihs, W., Horner, S. and Quehenberger, F. (2000). The association between

the diameter of a patent foramen ovale and the risk of embolic cerebrovascular events, The
American Journal of Medicine 109(6): 456–462.

URL: https://www.sciencedirect.com/science/article/pii/S0002934300005301 14

Seera, M., Lim, C. P., Tan, K. S. and Liew, W. S. (2017). Classification of transcranial Doppler

signals using individual and ensemble recurrent neural networks, Neurocomputing 249: 337–

344.

URL: https://www.sciencedirect.com/science/article/pii/S0925231217305684 31

Serbes, G. and Aydin, N. (2014). Denoising performance of modified dual-tree complex wavelet

transform for processing quadrature embolic Doppler signals, Medical & Biological Engineering
& Computing 52(1): 29–43. Number: 1.

URL: http://link.springer.com/10.1007/s11517-013-1114-x 30, 31, 95

Serena, J., Jimenez-Nieto, M., Silva, Y. and Castellanos, M. (2010). Patent foramen ovale in

cerebral infarction, Current Cardiology Reviews 6(3): 162–174. Number: 3.

URL: http://www.eurekaselect.com/openurl/content.php?genre=articleissn=1573-
403Xvolume=6issue=3spage=162 3

Serena, J., nez Nieto, M., Silva, Y. and Castellanos, M. (2010). Patent foramen ovale in cerebral

infarction, Current Cardiology Reviews 6(3): 162–174. 13

Sharan, R., Xiong, H. and Berkovsky, S. (2021). Benchmarking audio signal representation

techniques for classification with convolutional neural networks, Sensors 21: 3434. 41, 42

Shen, S., Dong, Z., Ye, J., Ma, L., Yao, Z., Gholami, A., Mahoney, M. W. and Keutzer, K.

(2019). Q-bert: Hessian based ultra low precision quantization of bert, Proceedings of the
AAAI Conference on Artificial Intelligence. 58, 59

Siebler, M., Kleinschmidt, A., Sitzer, M., Steinmetz, H. and Freund, H. J. (1994). Cerebral mi-

croembolism in symptomatic and asymptomatic high-grade internal carotid artery stenosis,

Neurology 44(4): 615–618. 13

Simonyan, K. and Zisserman, A. (2015). Very deep convolutional networks for large-scale image

recognition, Proceedings of the International Conference on Learning Representations. 41

Sindhwani, V., Niyogi, P. and Belkin, M. (2005). Beyond the point cloud: from transductive to

semi-supervised learning, Proceedings of the 22nd International Conference on Machine learning.

34

174

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0064/these.pdf 
© [Y. Vindas-Yassine], [2023], INSA Lyon, tous droits réservés



Sitzer, M., Müller, W., Siebler, M., Hort, W., Kniemeyer, H.-W., Jäncke, L. and Steinmetz, H.

(1995). Plaque ulceration and lumen thrombus are the main sources of cerebral microemboli

in high-grade internal carotid artery stenosis, Stroke 26(7): 1231–1233.

URL: https://www.ahajournals.org/doi/abs/10.1161/01.STR.26.7.1231 13

Sombune, P., Phienphanich, P., Muengtaweepongsa, S., Ruamthanthong, A. and Tantibundhit,

C. (2016). Automated embolic signal detection using adaptive gain control and classification

using anfis, Proceedings of the 38th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC), pp. 3825–3828. 30

Sombune, P., Phienphanich, P., Phuechpanpaisal, S., Muengtaweepongsa, S., Ruamthanthong,

A., Chazal, P. D. and Tantibundhit, C. (2018). Automated cerebral emboli detection using

adaptive threshold and adaptive neuro-fuzzy inference system, IEEE Access 6: 55361–55371.

30, 95

Sombune, P., Phienphanich, P., Phuechpanpaisal, S., Muengtaweepongsa, S., Ruamthanthong,

A. and Tantibundhit, C. (2017). Automated embolic signal detection using deep convolutional

neural network, Proceedings of the 39th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society (EMBC), IEEE, pp. 3365–3368.

URL: https://ieeexplore.ieee.org/document/8037577/ xiii, 31, 32, 33, 42, 95

Song, H., Kim, M., Park, D., Shin, Y. and Lee, J.-G. (2022). Learning from noisy labels with deep

neural networks: A survey, IEEE Transactions on Neural Networks and Learning Systems . 38, 92

Spencer, M. P. (1992). Detection of cerebral arterial emboli, Transcranial Doppler pp. 215–230. 3

Spencer, M. P., Thomas, G. I., Nicholls, S. C. and Sauvage, L. R. (1990). Detection of middle

cerebral artery emboli during carotid endarterectomy using transcranial Doppler ultrasonog-

raphy., Stroke 21(3): 415–423.

URL: https://www.ahajournals.org/doi/10.1161/01.STR.21.3.415 14

Stirling, J., Muramatsu, K. and Shirai, T. (1996). Cerebral Embolism as a Cause of Stroke and

Transient Ischemic Attack, Echocardiography 13(5): 513–518. 13

Stork, J. L., Kimura, K., Levi, C. R., Chambers, B. R., Abbott, A. L. and Donnan, G. A.

(2002). Source of microembolic signals in patients with high-grade carotid stenosis, Stroke
33(8): 2014–2018.

URL: https://www.ahajournals.org/doi/abs/10.1161/01.STR.0000021002.17394.7F 6, 13

Sun, S., Cheng, Y., Gan, Z. and Liu, J. (2019). Patient knowledge distillation for bert model

compression, Proceedings of the Conference on Empirical Methods in Natural Language Processing.

56

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V.

and Rabinovich, A. (2015). Going deeper with convolutions, Proceedings of the 28th IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–9. 41

Szeto, W. Y., Augoustides, J. G., Desai, N. D., Moeller, P., McGarvey, M. L., Walsh, E., Bannan, A.,

Herrmann, H. C. and Bavaria, J. E. (2011). Cerebral Embolic Exposure During Transfemoral

and Transapical Transcatheter Aortic Valve Replacement, Journal of Cardiac Surgery 26(4): 348–

354.

URL: https://onlinelibrary.wiley.com/doi/10.1111/j.1540-8191.2011.01265.x 14

175

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0064/these.pdf 
© [Y. Vindas-Yassine], [2023], INSA Lyon, tous droits réservés



Tafsast, A., Ferroudji, K., Hadjili, M. L., Bouakaz, A. and Benoudjit, N. (2018). Automatic mi-

croemboli characterization using convolutional neural networks and radio frequency signals,

Proceedings of the International Conference on Communications and Electrical Engineering (ICCEE),
IEEE, pp. 1–4.

URL: https://ieeexplore.ieee.org/document/8634521/ 31, 32, 95

Telman, G., Kouperberg, E., Sprecher, E., Goldsher, D. and Yarnitsky, D. (2005). Distribution

of artificial cerebral microemboli in stroke patients with patent foramen ovale, Neurological
Research 27(1): 109–111. 14

Tenenbaum, J. B., de Silva, V. and Langford, J. C. (2000). A global geometric framework for

nonlinear dimensionality reduction, Science (New York, N.Y.) 290(5500): 2319–2323. 68

Tiong, L., Kim, S. T. and Ro, Y. (2019). Implementation of multimodal biometric recognition via

multi-feature deep learning networks and feature fusion, Multimedia Tools and Applications
78. 50

Tjandra, A., Liu, C., Zhang, F., Zhang, X., Wang, Y., Synnaeve, G., Nakamura, S. and Zweig, G.

(2020). Deja-vu: Double feature presentation and iterated loss in deep transformer networks,

Proceedings of the 45 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 6899–6903. 46

Tsao, C. W., Aday, A. W., Almarzooq, Z. I., Alonso, A., Beaton, A. Z., Bittencourt, M. S., Boehme,

A. K., Buxton, A. E., Carson, A. P., Commodore-Mensah, Y., Elkind, M. S. V., Evenson, K. R.,

Eze-Nliam, C., Ferguson, J. F., Generoso, G., Ho, J. E., Kalani, R., Khan, S. S., Kissela, B. M.,

Knutson, K. L., Levine, D. A., Lewis, T. T., Liu, J., Loop, M. S., Ma, J., Mussolino, M. E.,

Navaneethan, S. D., Perak, A. M., Poudel, R., Rezk-Hanna, M., Roth, G. A., Schroeder, E. B.,

Shah, S. H., Thacker, E. L., VanWagner, L. B., Virani, S. S., Voecks, J. H., Wang, N. Y., Yaffe,

K. and Martin, S. S. (2022). Heart Disease and Stroke Statistics-2022 Update: A Report From

the American Heart Association, Circulation 145(8): e153–e639. 13

Tung, F. and Mori, G. (2020). Deep neural network compression by in-parallel pruning-

quantization, IEEE Transactions on Pattern Analysis and Machine Intelligence 42(3): 568–579.

60, 127

Types of Stroke (2022).

URL: https://www.hopkinsmedicine.org/health/conditions-and-diseases/stroke/types-of-stroke 6

Ullrich, K., Meeds, E. and Welling, M. (2017). Soft weight-sharing for neural network compres-

sion, Proceedings of the International Conference on Learning Representations.
URL: https://openreview.net/forum?id=HJGwcKclx 56, 60

Uğuz, H. (2012). A hybrid system based on information gain and principal component anal-

ysis for the classification of transcranial Doppler signals, Computer Methods and Programs in
Biomedicine 107(3): 598–609.

URL: https://www.sciencedirect.com/science/article/pii/S0169260711000782 30

Van Mieghem, N. M., El Faquir, N., Rahhab, Z., Rodríguez-Olivares, R., Wilschut, J., Ouhlous,

M., Galema, T. W., Geleĳnse, M. L., Kappetein, A.-P., Schipper, M. E. and de Jaegere, P. P.

(2015). Incidence and Predictors of Debris Embolizing to the Brain During Transcatheter

Aortic Valve Implantation, JACC: Cardiovascular Interventions 8(5): 718–724.

URL: https://linkinghub.elsevier.com/retrieve/pii/S1936879815002277 14

176

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0064/these.pdf 
© [Y. Vindas-Yassine], [2023], INSA Lyon, tous droits réservés



Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L. u. and

Polosukhin, I. (2017). Attention is all you need, in I. Guyon, U. V. Luxburg, S. Bengio, H. Wal-

lach, R. Fergus, S. Vishwanathan and R. Garnett (eds), Proceedings of the 30th International
Conference on Neural Information Processing Systems, Vol. 30, Curran Associates, Inc.

URL: https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
43, 44

Viedma-Guiard, E., Guidoux, C., Amarenco, P. and Meseguer, E. (2021). Aortic Sources of

Embolism, Frontiers in Neurology 11: 606663.

URL: https://www.frontiersin.org/articles/10.3389/fneur.2020.606663/full 13

Viguier, A., Pavy le Traon, A., Massabuau, P., Valton, L. and Larrue, V. (2001). Asymptomatic

cerebral embolic signals in patients with acute cerebral ischaemia and severe aortic arch

atherosclerosis, Journal of Neurology 248(9): 768–771.

URL: https://doi.org/10.1007/s004150170092 13

Vindas, Y., Guepie, B. K., Almar, M., Roux, E. and Delachartre, P. (2022). An hybrid cnn-

transformer model based on multi-feature extraction and attention fusion mechanism for

cerebral emboli classification, in Z. Lipton, R. Ranganath, M. Sendak, M. Sjoding and S. Yeung

(eds), Proceedings of the 7th Machine Learning for Healthcare Conference, Vol. 182 of Proceedings
of Machine Learning Research, PMLR, pp. 270–296.

URL: https://proceedings.mlr.press/v182/vindas22a.html 95, 106

Vindas, Y., Guépié, B. K., Almar, M., Roux, E. and Delachartre, P. (2022). Semi-automatic data

annotation based on feature-space projection and local quality metrics: an application to

cerebral emboli characterization, Medical Image Analysis p. 102437. 63

Vindas, Y., Guépié, B. K., Almar, M., Roux, E. and Delachartre, P. (2023). Soft-labels noise

tolerant loss functions for transcranial Doppler ultrasound signal classification, 2023 IEEE
International Ultrasonics Symposium (IUS), pp. 1–4. 151

Vindas, Y., Roux, E., Guépié, B. K., Almar, M. and Delachartre, P. (2021). Semi-supervised

annotation of transcranial Doppler ultrasound micro-embolic data, 2021 IEEE International
Ultrasonics Symposium (IUS), pp. 1–4. 63

Vindas, Y., Roux, E., Guépié, B. K., Almar, M. and Delachartre, P. (2023a). Deep embed-

ded clustering regularization for supervised imbalanced cerebral emboli classification using

transcranial Doppler ultrasound, Proceedings of the 31st European Signal Processing Conference
(EUSIPCO), pp. 1165–1169. 95, 115, 122, 124

Vindas, Y., Roux, E., Guépié, B. K., Almar, M. and Delachartre, P. (2023b). Guided deep

embedded clustering regularization for multifeature medical signal classification. Submitted

to the Pattern Recognition (2023), minor revision. 95

Wang, L., Zhang, J., Liu, P., Choo, K.-K. R. and Huang, F. (2017). Spectral–spatial multi-feature-

based deep learning for hyperspectral remote sensing image classification, Soft Computing
21. 50

Wang, R., Liu, T. and Tao, D. (2018). Multiclass learning with partially corrupted labels, IEEE
Transactions on Neural Networks and Learning Systems 29(6): 2568–2580.

URL: https://ieeexplore.ieee.org/document/7929355/ 39

177

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0064/these.pdf 
© [Y. Vindas-Yassine], [2023], INSA Lyon, tous droits réservés



Wang, Y., Ma, X., Chen, Z., Luo, Y., Yi, J. and Bailey, J. (2019). Symmetric cross entropy for

robust learning with noisy labels, Proceedings of the 17th IEEE/CVF International Conference on
Computer Vision (ICCV), pp. 322–330. 40, 92

Wasimuddin, M., Elleithy, K., Abuzneid, A.-S., Faezipour, M. and Abuzaghleh, O. (2020).

Stages-based ECG signal analysis from traditional signal processing to machine learning

approaches: A survey, IEEE Access 8: 177782–177803. 42

Weir, A. (2016). Channel characterisation and modelling for transcranial Doppler ultrasound,

Heriot-Watt University.

URL: https://books.google.fr/books?id=5MVkwAEACAAJ 17

Weston, J., Ratle, F., Mobahi, H. and Collobert, R. (2012). Deep learning via semi-supervised

embedding, in G. Montavon, G. B. Orr and K.-R. Müller (eds), Neural Networks: Tricks of the
Trade: Second Edition, Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 639–655.

URL: https://doi.org/10.1007/978-3-642-35289-8_34 33, 34, 63

Xiao, T., Xia, T., Yang, Y., Huang, C. and Wang, X. (2015). Learning from massive noisy labeled

data for image classification, Proceedings of the 28th IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 2691–2699. 38

Xie, J., Girshick, R. and Farhadi, A. (2016). Unsupervised deep embedding for clustering

analysis, Proceedings of the 33rd International Conference on International Conference on Machine
Learning, ICML’16, JMLR.org, p. 478–487. 47, 48, 122, 124

Xu, G., Ren, T., Chen, Y. and Che, W. (2020). A one-dimensional cnn-lstm model for epileptic

seizure recognition using EEG signal analysis, Frontiers in Neuroscience 14. 106, 107, 109, 110,

111, 112, 117

Xu, K., Zhang, D., An, J., Liu, L., Liu, L. and Wang, D. (2021). Genexp: Multi-objective pruning

for deep neural network based on genetic algorithm, Neurocomputing 451: 81–94.

URL: https://www.sciencedirect.com/science/article/pii/S092523122100549X 54

Xu, Y., Wang, Y., Zhou, A., Lin, W. and Xiong, H. (2018). Deep neural network compres-

sion with single and multiple level quantization, Proceedings of the 32nd AAAI Conference on
Artificial Intelligence and 30th Innovative Applications of Artificial Intelligence Conference and 8th
AAAI Symposium on Educational Advances in Artificial Intelligence, AAAI’18/IAAI’18/EAAI’18,

AAAI Press. 56, 59

Yang, J., Shen, X., Xing, J., Tian, X., Li, H., Deng, B., Huang, J. and Hua, X.-s. (2019). Quanti-

zation networks, Proceedings of the 32nd IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR). 58

Yang, J., Shi, R., Wei, D., Liu, Z., Zhao, L., Ke, B., Pfister, H. and Ni, B. (2021). Medmnist v2:

A large-scale lightweight benchmark for 2d and 3d biomedical image classification, arXiv
preprint arXiv:2110.14795 . 72

Yao, T., Gao, F., Zhang, Q. and Ma, Y. (2021). Multi-feature gait recognition with dnn based on

semg signals, Mathematical Biosciences and Engineering 18: 3521–3542. 51

Yao, Z., Dong, Z., Zheng, Z., Gholami, A., Yu, J., Tan, E., Wang, L., Huang, Q., Wang, Y.,

Mahoney, M. and Keutzer, K. (2021). Hawq-v3: Dyadic neural network quantization, in
M. Meila and T. Zhang (eds), Proceedings of the 38th International Conference on Machine Learning,

Vol. 139 of Proceedings of Machine Learning Research, PMLR, pp. 11875–11886.

URL: https://proceedings.mlr.press/v139/yao21a.html 53, 58, 59

178

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0064/these.pdf 
© [Y. Vindas-Yassine], [2023], INSA Lyon, tous droits réservés



Yeh, C.-F., Mahadeokar, J., Kalgaonkar, K., Wang, Y., Le, D., Jain, M., Schubert, K., Fuegen,

C. and Seltzer, M. L. (2019). Transformer-transducer: End-to-end speech recognition with

self-attention, ArXiv abs/1910.12977. 41, 42, 46

Yin, P., Lyu, J., Zhang, S., Osher, S. J., Qi, Y. and Xin, J. (2019). Understanding straight-

through estimator in training activation quantized neural nets, Proceedings of the International
Conference on Learning Representations.
URL: https://openreview.net/forum?id=Skh4jRcKQ 56

Yu, F. and Koltun, V. (2016). Multi-scale context aggregation by dilated convolutions, in Y. Ben-

gio and Y. LeCun (eds), Proceedings of the 4th International Conference on Learning Representa-
tions, ICLR.

URL: http://arxiv.org/abs/1511.07122 41, 52

Zafrir, O., Boudoukh, G., Izsak, P. and Wasserblat, M. (2019). Q8BERT: quantized 8bit BERT,

Proceedings of the 5th Workshop on Energy Efficient Machine Learning and Cognitive Computing -
NeurIPS Edition, IEEE, pp. 36–39.

URL: https://doi.org/10.1109/EMC2-NIPS53020.2019.00016 58

Zavala, J. A., Amarrenco, P., Davis, S. M., Jones, E. F., Young, D., Macleod, M. R., Horky, L. L.

and Donnan, G. A. (2006). Aortic arch atheroma, International Journal of Stroke 1(2): 74–80. 13

Zhang, D., Yang, J., Ye, D. and Hua, G. (2018). LQ-Nets: Learned quantization for highly

accurate and compact deep neural networks, Proceedings of the 15th European Conference on
Computer Vision, Springer-Verlag, Berlin, Heidelberg, p. 373–390.

URL: https://doi.org/10.1007/978-3-030-01237-3_23 56

Zhang, H., Cisse, M., Dauphin, Y. N. and Lopez-Paz, D. (2018). Mixup: Beyond empirical risk

minimization, Proceedings of the 6th International Conference on Learning Representations, ICLR.

URL: https://openreview.net/forum?id=r1Ddp1-Rb 38, 39

Zhang, R., Isola, P., Efros, A. A., Shechtman, E. and Wang, O. (2018). The unreasonable effec-

tiveness of deep features as a perceptual metric, Proceedings of the 31st IEEE/CVF Conference
on Computer Vision and Pattern Recognition, IEEE, pp. 586–595.

URL: https://ieeexplore.ieee.org/document/8578166/ 34

Zhang, W., Hou, L., Yin, Y., Shang, L., Chen, X., Jiang, X. and Liu, Q. (2020). Ternarybert:

Distillation-aware ultra-low bit bert, Proceedings of the Conference on Empirical Methods in
Natural Language Processing. 56, 59

Zhang, Z. and Sabuncu, M. R. (2018). Generalized cross entropy loss for training deep neural

networks with noisy labels, Proceedings of the 32nd International Conference on Neural Information
Processing Systems, NIPS’18, Curran Associates Inc., Red Hook, NY, USA, p. 8792–8802. 40,

72

Zhou, S., Ni, Z., Zhou, X., Wen, H., Wu, Y. and Zou, Y. (2016). DoReFa-Net: Training

low bitwidth convolutional neural networks with low bitwidth gradients, arXiv e-prints
abs/1606.06160.

URL: http://arxiv.org/abs/1606.06160 56, 59

Zhu, C., Han, S., Mao, H. and Dally, W. J. (2017). Trained ternary quantization, Proceedings of
the 5th International Conference on Learning Representations.
URL: https://openreview.net/forum?id=S1_pAu9xl 56, 59, 60, 127, 129, 132, 139

179

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0064/these.pdf 
© [Y. Vindas-Yassine], [2023], INSA Lyon, tous droits réservés



Zhu, M. and Gupta, S. (2018). To prune, or not to prune: Exploring the efficacy of pruning for

model compression, Proceedings of the 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Workshop Track Proceedings, Open-

Review.net.

URL: https://openreview.net/forum?id=Sy1iIDkPM 54

Zhu, X. and Ghahramani, Z. (2002). Learning from labeled and unlabeled data with label

propagation, Technical Report CMU-CALD-02-107, School of Computer Science, Carnegie

Mellon University, Pittsburgh, PA. 33, 34, 63, 69, 70

Zhu, Y. and Jiang, Y. (2020). Optimization of face recognition algorithm based on deep learning

multi feature fusion driven by big data, Image and Vision Computing 104: 104023.

URL: https://www.sciencedirect.com/science/article/pii/S0262885620301554 50

180

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0064/these.pdf 
© [Y. Vindas-Yassine], [2023], INSA Lyon, tous droits réservés



Publications and conferences participation

Journal publications

Y. Vindas, B. K. Guépié, M. Almar, E. Roux, P. Delachartre, Semi-automatic data annotation

based on feature-space projection and local quality metrics: An application to cerebral

emboli characterization, Medical Image Analysis 79 (2022) 102437. URL: https://doi.org/
10.1016/j.media.2022.102437

Y. Vindas, E. Roux, B. K. Guépié, M. Almar and P. Delachartre, Guided deep embedded

clustering regularization for multifeature medical signal classification, Pattern Recognition

(2023), Pattern Recognition, vol. 143, novembre 2023, p. 109812. ScienceDirect, https:
//doi.org/10.1016/j.patcog.2023.109812.

Conference participation

With proceeding

Y. Vindas, E. Roux, B. K. Guépié, M. Almar and P. Delachartre, "Semi-supervised annotation of

Transcranial Doppler ultrasound micro-embolic data," 2021 IEEE International Ultrasonics

Symposium (IUS), Xi’an, China, 2021, pp. 1-4, doi: 10.1109/IUS52206.2021.9593847. URL:

https://ieeexplore.ieee.org/document/9593847

Y. Vindas, B. K. Guépié, M. Almar, E. Roux, P. Delachartre, An hybrid cnn-transformer model

based on multi-feature extraction and attention fusion mechanism for cerebral emboli classi-

fication, in: Z. Lipton,595R. Ranganath, M. Sendak, M. Sjoding, S. Yeung (Eds.), Proceedings

of the 7th Machine Learning for Healthcare Conference, volume 182 of Proceedings of Machine
Learning Research, PMLR, 2022, pp. 270–296. URL: https://proceedings.mlr.press/v182/
vindas22a.html

Y. Vindas, E. Roux, B. K. Guépié, M. Almar and P. Delachartre. Deep Embedded Clustering

regularization for supervised imbalanced cerebral emboli classification using transcranial

Doppler ultrasound. 2023 31th European Signal Processing Conference (EUSIPCO).

Y. Vindas, B. K. Guépié, M. Almar, E. Roux, P. Delachartre, "Soft-labels noise tolerant loss

functions for transcranial Doppler ultrasound signal classification,". 2023 IEEE International

Ultrasonics Symposium (IUS), Montreal, Canada, 2023.

181

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0064/these.pdf 
© [Y. Vindas-Yassine], [2023], INSA Lyon, tous droits réservés

https://doi.org/10.1016/j.media.2022.102437
https://doi.org/10.1016/j.media.2022.102437
https://doi.org/10.1016/j.patcog.2023.109812
https://doi.org/10.1016/j.patcog.2023.109812
https://ieeexplore.ieee.org/document/9593847
https://proceedings.mlr.press/v182/vindas22a.html
https://proceedings.mlr.press/v182/vindas22a.html


Without proceeding

Y. Vindas, B. K. Guépié, M. Almar, E. Roux, P. Delachartre. Classification multi-representation

d’emboles cerebraux a partir d’un dispositif de Doppler transcranien. 1er Colloque Français
d’Intelligence Artificielle en Imagerie Biomédicale (IABM 2023).

182

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0064/these.pdf 
© [Y. Vindas-Yassine], [2023], INSA Lyon, tous droits réservés



Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0064/these.pdf 
© [Y. Vindas-Yassine], [2023], INSA Lyon, tous droits réservés



Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0064/these.pdf 
© [Y. Vindas-Yassine], [2023], INSA Lyon, tous droits réservés



Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0064/these.pdf 
© [Y. Vindas-Yassine], [2023], INSA Lyon, tous droits réservés



 

 

 

 

 

FOLIO ADMINISTRATIF 
 

THESE DE L’UNIVERSITE DE LYON OPEREE AU SEIN DE L’INSA LYON 
 

NOM : VINDAS-YASSINE DATE de SOUTENANCE : 12/10/2023 
(avec précision du nom de jeune fille, le cas échéant) 
 
Prénoms : Yamil Emilio 
 
TITRE : Weakly-supervised learning for emboli characterization with Transcranial Doppler (TCD) monitoring 
 
NATURE : Doctorat Numéro d'ordre :  2023ISAL0064 
 

Ecole doctorale : N°160 Électronique, Électrotechnique, Automatique 

 

Spécialité : Traitement du Signal et de l’Image 

 
RESUME : This thesis focuses on the classification and characterization of high intensity transient signals coming from portable 
transcranial Doppler (TCD) ultrasound devices. The main objective is to help clinicians identify solid and gaseous emboli from 
artifacts generated during TCD monitoring sessions. In fact, emboli are solid or gaseous particles that can circulate in the 
cerebral arteries, sometimes blocking them and causing ischemic stroke. However, the identification and classification of HITS 
between solid embolus, gaseous embolus, and artifacts is not evident and require important expert knowledge. Because of this, 
even clinicians can have some trouble differentiating these different types of HITS, which makes the treatment of patients 
difficult. Therefore, its detection, classification and characterization are key factors to improve patient management in 
healthcare centers. 
In this work, we propose deep learning models capable of doing an accurate classification between solid embolus, gaseous 
embolus, and artifacts, with limited memory and energy consumption. Our approach combines semi-automatic data annotation, 
with multi-feature learning and model compression techniques. We evaluate the different components of our approach using 
several medical in vivo datasets, besides HITS classification. 
Our method proved to be effective, with great classification results, and low memory and energy consumption on several 
medical signal classification tasks. More precisely, for HITS classification, to our knowledge, our work is the only one proposing 
an in vivo classification of portable TCD HITS between solid embolus, gaseous embolus, and artifacts. 
The main contributions of this work are the following. Firstly, we proposed a semi-automatic data annotation method based on 
local quality metrics with controlled annotation error, allowing to quickly label a large dataset, using a small number of labeled 
samples. Secondly, we propose a hybrid guided and regularized multi-feature classification model allowing to accurately 
classify HITS, simultaneously taking advantage of the raw Doppler signal, and its time-frequency representation. Finally, we 
proposed new model compression techniques based on pruning and extreme quantization, allowing to reduce the memory 
requirements of the trained models, as well as the energy consumption. 
Finally, as we worked in close cooperation with Atys Medical, manufacturer of portable TCD devices, we were able to 
incorporate our developed models into their data management software. Even though validation is still needed, we hope that 
the models and methods developed in this work can help clinicians with their patient management. 
 
MOTS-CLÉS : Doppler transcrânien, Imagerie médicale, apprentissage profond, traitement du signal, apprentissage semi-
supervisé, annotation semi-automatique, classification, compression de modèles 
 
Laboratoire (s) de recherche : Centre de Recherche en Acquisition et Traitement de l’Image pour la Santé (CREATIS) 
 
Directeur de thèse : Philippe Delachartre 
 
Président de jury : Danilo MANDIC 
 
Composition du jury :  
        Su RUAN  
        François ROUSSEAU  
        Danilo MANDIC  
        Philippe DELACHARTRE  
        Emmanuel ROUX  

        Blaise Kévin GUÉPIÉ 

 

Cette thèse est accessible à l'adresse : https://theses.insa-lyon.fr/publication/2023ISAL0064/these.pdf 
© [Y. Vindas-Yassine], [2023], INSA Lyon, tous droits réservés


	Notice XML
	Page de titre
	Acknowledgement
	Contents
	List of Figures
	List of Tables
	Introduction
	Context
	Medical context
	Cerebral emboli
	Origin
	Types
	Possible sources

	Transcranial Doppler ultrasound
	General principle
	Atys medical robotized probe


	Scientific context
	Used representations
	Raw signal
	Time-frequency representation

	Other representations
	Emboli detection

	Challenges
	Medical challenges
	Scientific challenges

	Conclusion

	State-of-the-art
	Cerebral emboli detection and classification
	Signal processing and machine learning
	General overview
	Related work

	Deep learning
	General overview
	Related work


	Data annotation
	Representation learning and semi-automatic data annotation
	General overview
	Related work

	Dimensionality reduction quality evaluation
	Related work

	Working with noisy-labels
	General overview
	Related work


	Multi-feature signal classification
	Image classification
	Signal classification
	General overview
	Related work

	Multi-feature classification

	Model compression
	General overview
	Model pruning
	General overview
	Related work

	Model quantization
	General overview
	Related work


	Conclusion

	Data Annotation
	Motivation
	Limitations of previous methods
	Objectives and contributions

	Proposed method
	General overview and assumptions
	Feature extraction
	Dimensionality reduction
	Automatic label propagation
	Classification with noisy labels

	Method evaluation
	Datasets
	MNIST and OrganCMNIST
	HITS

	Baselines
	Evaluation metrics and strategy
	Automatic data annotation
	Classification

	Experimental setup and results
	Experiment 1: Automatic data annotation evaluation
	Experiment 2: Validation of the projection selection strategy
	Experiment 3: Classification on a dataset with known label noise
	Experiment 4: Classification on a semi-automatically labeled HITS-largedataset with unknown label noise

	Discussion
	Experiment 1: Automatic data annotation evaluation
	Experiment 2: Validation of the projection selection strategy
	Experiment 3: Classification on a dataset with known label noise
	Experiment 4: Classification on a semi-automatically labeled hits-large dataset with unknown label noise
	Choice of k_s and k_t
	Limitations


	Conclusion

	Medical Signal Classification
	Motivation
	Limitations of previous methods
	Objectives and contributions

	Proposed method
	General overview and assumptions
	Single feature models
	Time-frequency 2D cnn
	Raw signal 1D cnn-transformer

	Late fusion approach
	Principle
	Late fusion attention weights

	Intermediate fusion
	Simple intermediate fusion
	Guided and regularized intermediate fusion


	Method evaluation
	Datasets
	HITS
	PTB (ecg) dataset
	Epileptic seizure recognition (eeg) esr dataset

	Baselines
	Evaluation metrics and strategy
	Experimental setup and results
	Experiment 1: Single feature vs multi-feature models
	Experiment 2: Advantage of guided and regularized end-to-end training
	Experiment 3: Influence of guided training
	Experiment 4: Influence of DEC regularization

	Discussion
	Experiment 1: Single feature vs multi-feature models
	Experiment 2: Advantage of end-to-end training
	Experiment 3: Influence of guided training
	Experiment 4: Influence of DEC regularization
	Limitations


	Combination of semi-automatic data annotation and mifgr
	Interest from an industrial (Atys medical) perspective
	Conclusion

	Model Compression
	Motivation
	Limitations of previous methods
	Objectives and contributions

	Proposed method
	General overview and assumptions
	Asymmetric weights statistics based pruning
	Layer selection
	Model compression metrics
	Sparsity
	Compression

	Energy consumption

	Method evaluation
	Datasets
	Baselines
	Evaluation metrics and strategy
	Experimental setup and results
	Experiment 1: Comparison with respect to ttq
	Experiment 2: Influence of 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥
	Experiment 3: Influence of weights normalization

	Discussion
	Experiment 1: Comparison with respect to ttq
	Experiment 2: Influence of t_min and t_max
	Experiment 3: Influence of weights normalization
	Limitations


	Overview of single feature models
	Conclusion

	Conclusion
	Appendices
	Bibliography
	Publications and conferences participation
	Folio administratif



