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Used notations

In this section, we represent the notations used throughout this thesis: 

𝒈 :

Résumé en français

Les images acquises par les capteurs subissent souvent une dégradation due à plusieurs facteurs. Ces facteurs comprennent le flou délocalisation, le mouvement ou la distorsion atmosphérique. Ces dégradations ont un impact significatif sur la qualité et la précision des images acquises, ce qui rend l'analyse et l'interprétation ultérieures difficiles. Par conséquent, une étape de restauration d'image est nécessaire pour récupérer l'image originale non dégradée.

Dans ce contexte, la restauration d'image présente un challenge considérable lorsque les valeurs des paramètres de régularisation, la PSF (Point Spread Function) et d'autres connaissances a priori ne sont pas disponibles. Par conséquent, la conception d'une méthode de restauration d'image fiable, qui se repose uniquement sur l'image dégradée, sans nécessité d'informations préalables, est un problème complexe.

Une méthode de restauration optimale doit répondre à plusieurs objectifs, notamment la restauration efficace tout en préservant les détails de l'image, et être facile à utiliser pour différentes applications. Par exemple, elle devrait éliminer l'ajustement empirique des valeurs des paramètres de régularisation spécifiques à chaque application.

Sur la base des connaissances a priori fournies par l'utilisateur, nous avons catégorisé les méthodes de restauration en trois classes :

Classe non aveugle : Dans cette catégorie, le processus de restauration repose sur une connaissance complète de la PSF, y compris la taille du support et les valeurs, qui sont fournies par l'utilisateur en tant que connaissances a priori. Cependant, la fixation empirique des valeurs des paramètres de régularisation dans cette classe ne garantit pas une restauration d'image optimisée.

Classe semi-aveugle : Cette classe implique une connaissance partielle de la PSF, où l'utilisateur fournit des informations concernant la taille du support de la PSF et fixe les valeurs des paramètres de régularisation.

Classe aveugle : Les techniques de restauration de cette catégorie reposent uniquement sur l'image observée pour estimer la PSF (taille du support et valeurs), l'image d'origine et les paramètres de régularisation.

La littérature scientifique sur la restauration d'images est assez vaste et de nombreuses méthodes ont été proposées, principalement dans un contexte semi-aveugle plutôt que complètement aveugle. Quoi qu'il en soit, l'objectif ultime de toute méthode de restauration est d'obtenir une image aussi proche que possible de la version originale.

Dans le cadre de cette thèse, nous portons une attention particulière aux deux dernières classes de méthodes. Dans la plupart des cas, les méthodes désignées comme aveugles sont en réalité semi-aveugles, car elles reposent encore sur un minimum d'informations a priori. L'objectif final est d'éliminer efficacement cette dépendance en estimant les informations nécessaires. Résoudre ce problème complexe nécessite le développement d'une approche sans connaissance a priori. Deux approches sont couramment utilisées pour ces deux classes :

Approche alternée : Dans cette approche, l'estimation de la PSF et de l'image d'origine se fait de manière alternée.

Approche hybride : Cette approche consiste à estimer alternativement la PSF et une image latente avant de procéder à l'estimation de l'image d'origine.

Les principales raisons de cette situation critique de la restauration aveugle d'images résident dans le compromis crucial à réaliser entre plusieurs objectifs différents (élimination du flou, préservation des textures, amélioration des détails, lissage des régions homogènes) et dans l'ajustement manuel nécessaire des valeurs des paramètres de régularisation correspondant à ces objectifs.

Le modèle standard d'observation d'une image monochrome dégradée est exprimé par l'équation suivante: 𝑔 = ℎ * 𝑓 + 𝑛, où 𝑔 représente l'image dégradée observée, 𝑓 l'image d'origine à restaurer, ℎ la PSF considérée comme linéaire et invariante spatialement, et (ℎ * 𝑓) l'image floutée. Le bruit 𝑛 est supposé être additif, indépendant et non corrélé à l'image d'origine 𝑓. Ce modèle choisi paraît adéquat pour résoudre le problème que nous visons dans cette thèse, en offrant un équilibre optimal entre la complexité des processus impliqués et la qualité des résultats obtenus.

L'estimation de la PSF et la restauration de l'image d'origine sont réalisées en formulant une fonction coût à minimiser qui intègre à la fois l'image et la PSF. Cette fonction coût est composée du terme de fidélité aux données et de deux termes supplémentaires de régularisation comme suit :

𝐶(𝑓, ℎ) = ‖𝑔 -ℎ * 𝑓‖ 2 2 + 𝝀 𝒇 𝑅 𝑓 (𝑓) + 𝝀 𝒉 𝑅 ℎ (ℎ)

Où le premier terme désigne la fidélité aux données, 𝑅 𝑓 représente le terme de régularisation lié à la fonction coût de l'estimation de l'image, et 𝑅 ℎ correspond au terme de régularisation lié à la fonction coût de l'estimation de la PSF. 𝜆 𝑓 et 𝜆 ℎ sont les paramètres de régularisation associés à 𝑅 𝑓 (𝑓) et 𝑅 ℎ (ℎ), respectivement.

Pour obtenir la solution optimale qui minimise cette fonction coût, il est nécessaire d'estimer les paramètres de régularisation plutôt que de fixer leurs valeurs. Pour l'estimation de f et de h, la fonction coût peut être décomposée comme suite :

𝐶(𝑓) = ‖𝑔 -ℎ 𝐸 * 𝑓‖ 2 2 + 𝝀 𝒇 𝑅 𝑓 (𝑓) 𝐶(ℎ) = ‖𝑔 -ℎ * 𝑓 𝐸 ‖ 2 2 + 𝝀 𝒉 𝑅 ℎ (ℎ)
ℎ 𝐸 et 𝑓 𝐸 désignent respectivement la PSF et l'image estimées et sont supposées fixes dans les fonctions coût mentionnées ci-dessus.

En se basant sur le modèle d'observation, les méthodes de restauration, qu'elles soient aveugles, semiaveugles ou non aveugles, introduisent des termes de régularisation dans le but de remplacer le problème initial mal posé par un problème bien posé. Cela revient à imposer des contraintes supplémentaires sur les caractéristiques souhaitées de l'une ou l'autre des inconnues : l'image originale et la PSF.

L'objectif de cette thèse est donc de développer une méthode de restauration facilement applicable en éliminant la nécessité d'une information préalable et d'un réglage empirique des paramètres. Dans ce cadre, la méthode de restauration hybride aveugle recherchée doit améliorer la qualité de la restauration, en fournissant une solution optimale pour toutes les tâches de restauration d'images, surpassant les approches récentes de l'état de l'art. Pour répondre efficacement à ce problème, cette thèse se concentre sur le développement d'une méthode adaptative aveugle de restauration d'images qui fonctionne sans informations préalables.

La thèse est composée de trois chapitres après une introduction. Le premier chapitre est consacré à l'analyse des méthodes de restauration récentes de l'état de l'art. Neuf méthodes récentes classées comme méthodes non neuronales semi-supervisées et une méthode neuronale supervisée sont étudiées et les valeurs fixes des paramètres de régularisation des fonctions de coût utilisées pour optimiser les solutions sont mises en évidence. En outre, une discussion détaillée est menée pour souligner les avantages, les inconvénients et les limites de ces méthodes.

Dans le deuxième chapitre, une étude détaillée est menée pour évaluer l'impact des paramètres de régularisation prédéfinis sur la qualité de la restauration d'images. La méthode hybride proposée par Pan et al. a été choisie pour cette étude en raison de ses meilleures performances par rapport aux méthodes évaluées dans notre laboratoire. Divers critères d'évaluation objectifs sont présentés et classés en deux catégories : les critères non aveugles et les critères aveugles. Cette étude vise à démontrer que la qualité de la restauration d'images varie en fonction du choix empirique des valeurs des paramètres de régularisation dans les fonctions coût, conduisant à des résultats sous-optimaux. L'influence du choix empirique de ces valeurs sur les résultats de la restauration est analysée à l'aide de deux images monochromes dégradées par trois fonctions de mouvements différents avec différentes tailles de support de la PSF. Les critères d'évaluation comprennent le PSNR, le SNR, la norme 𝐿 1 , le MSE et le SSIM. Cette étude souligne l'importance de l'estimation automatique des valeurs des paramètres de régularisation qui peuvent s'adapter à différents types de flou et à chaque image dégradée, plutôt que de s'appuyer sur des valeurs fixes définies par l'utilisateur.

Le troisième chapitre est consacré à la méthode de restauration adaptative aveugle développée et explore plusieurs améliorations qui optimisent les résultats de la restauration tout en minimisant les connaissances préalables requises. La méthode proposée peut être appliquée à la restauration d'images monochromes, multispectrales et hyperspectrales. Pour le traitement des images hyperspectrales, deux stratégies de restauration sont proposées : la première consiste à former des groupes de composantes spectrales fortement corrélées à l'aide d'une méthode de partitionnement non supervisée développée au laboratoire.

Pour chaque groupe ainsi formé, une composante spectrale exemplaire est sélectionnée pour le représenter, et l'estimation de la PSF est effectuée en utilisant uniquement ces composantes exemplaires. Ensuite, la PSF estimée de chaque groupe est utilisée pour restaurer toutes les composantes spectrales au sein du groupe désigné. Pour la deuxième stratégie, l'estimation de la PSF la plus précise parmi les PSF obtenues dans le cadre de la première stratégie est sélectionnée à l'aide du critère de la norme 𝐿 1 de l'erreur d'estimation entre la composante exemplaire de l'image dégradée observée et son estimé de chaque groupe. La PSF sélectionnée est ensuite utilisée pour restaurer toutes les composantes spectrales de l'image hyperspectrale. La seconde stratégie permet une meilleure restauration de l'image que la première.

Les évaluations menées sur diverses bases de données d'images démontrent la supériorité de la méthode de restauration adaptative aveugle que nous proposons par rapport à onze méthodes non-neuronales et neuronales supervisées/semi-supervisées de l'état de l'art. Pour évaluer les résultats de restauration, nous avons sélectionné plusieurs critères, notamment le PSNR, le SSIM, le RMSE et la norme 𝐿 1 de l'erreur d'estimation.

Cette supériorité s'étend aux images monochromes, multispectrales et hyperspectrales dégradées avec différentes fonctions floues (mouvement et délocalisation) et tailles de support. Pour l'évaluation des images hyperspectrales, nous avons également observé localement les signatures spectrales.

En conclusion, la méthode proposée répond efficacement aux objectifs fixés. Elle permet une application facile grâce à sa nature aveugle tout en optimisant les résultats de la restauration sans nécessiter de réglage empirique des paramètres. Les résultats de l'évaluation ont démontré son efficacité par rapport aux principales méthodes existantes de l'état de l'art comparées. Elle peut s'appliquer pour restaurer des images monochromes, multispectrales et hyperspectrales.

General introduction

Image restoration is a technique used to improve image quality by removing degradation caused by blur and noise. This process enables better analysis and interpretation of the image's information content. It is applied in numerous application fields such as medicine, civil and military safety, environment, using various data types like monochrome, multispectral, hyperspectral (HSI), and MRI.

A hyperspectral image (HSI) is a 3-D image captured using multiple spectral components spanning from the visible to near-infrared spectrum [START_REF] Dian | Deep Hyperspectral Image Sharpening[END_REF][2][3] [4]. It consists of hundreds of narrow and consecutive components, allowing for accurate material identification and finding applications in fields such as military, agriculture, and mineralogy. Unlike conventional RGB or grayscale images, each pixel in an HSI contains a continuous spectrum, enhancing pixel differentiation [5][6]. This unique characteristic has led to the extensive use of HSIs in various computer vision tasks, including target detection [5], change detection [START_REF] Wu | Hyperspectral anomalous change detection based on joint sparse representation[END_REF], scene classification [START_REF] Wang | Salient Band Selection for Hyperspectral Image Classification via Manifold Ranking[END_REF][9] [START_REF] He | Skip-Connected Covariance Network for Remote Sensing Scene Classification[END_REF], and object tracking [START_REF] Nguyen | Tracking via object reflectance using a hyperspectral video camera[END_REF].

We are interested in the reliability and applicability of the optimized restoration methods, specifically blind or semi-blind, to automatically and accurately performing image deburring using the observed image. Despite the availability of a large number of methods, selecting a suitable technique and effectively adjusting its parameters to achieve meaningful results for a specific application remains a challenging task for users.

An optimal restoration method must jointly meet multiple objectives, including effective deblurring while preserving image details, and being user-friendly for various applications. For instance, it should eliminate the need for tedious empirical adjustment of the regularization parameter values specific for each application.

Based on the prior information introduced by the user, we have categorized the restoration methods into three classes:

Non-blind class: Within this category, the restoration process relies on complete knowledge of the point spread function (PSF), including support size and values, which are provided by the user as prior knowledge. However, the empirical fixing of regularization parameter values in this class does not guarantee optimized image restoration.

Semi-blind class: This class involves partial knowledge of the PSF, where the user provides information regarding the PSF's support size and fixes the regularization parameters accordingly.

Blind class:

The restoration techniques in this category solely rely on the observed image to estimate the PSF (support size and values), the original image, and the regularization parameters.

The scientific literature on blind restoration of digital images is quite extensive, and numerous methods proposed, mostly in a semi-blind context rather than a fully blind one. In any case, the ultimate goal of any restoration method is to obtain an image that is as close as possible to the ideal image.

In the scope of this thesis, we pay particular attention to the last two classes of methods. In most cases, so-called blind methods are actually semi-blind, as they still rely on a minimum amount of a priori information. The final objective is to effectively eliminate this reliance by estimating the required information. Solving this complex problem requires the development of an approach with no a priori knowledge. Two approaches are commonly used for these two classes:

Alternated approach: In this approach, the estimation of the point spread function (PSF) and the original image occurs consecutively.

Hybrid approach: This approach involves alternately estimating the PSF and a latent image before proceeding to estimate the original image.

The main reasons leading to this critical situation of blind image restoration lie in the crucial compromise that needs to be made among several different objectives (blur elimination, texture preservation, detail enhancement, smoothing of homogeneous regions) and the necessary manual adjustment of regularization parameters corresponding to these objectives.

Despite the large number of available methods, it is difficult for a user to choose a specific method that achieves meaningful results for a target application. Furthermore, several drawbacks arise from the difficulty faced by the user in formalizing adequate values for the regularization parameters weighting the regularization terms in the cost functions. These parameters must be defined according to the characteristics expected from the solutions sought and meet the convergence requirements.

-

Observation model

The standard observation model used for a monochrome degraded image is as follows:

𝑔 = ℎ * 𝑓 + 𝑛 (0.1) In this model, 𝑔 represents the observed degraded image, 𝑓 is the original image to be restore, ℎ is the PSF (Point Spread Function) considered as linear and spatially invariant, and (ℎ * 𝑓) is the blurred image. The noise 𝑛 is assumed additive, independent, and non-correlated with the original image 𝑓.

The selected model should enable us to achieve the best compromise between the complexity of the implemented processes and the quality of the results obtained.

-Discussion on the problematic Based only on the observed image, the challenging goal of blind restoration of a degraded image is to effectively estimate the degradation function and restore the original image.

In case of a total blind restoration approach, no prior information about the original image and the degradation is available, making the problem difficult. However, in practice, to partially mitigate the difficulties, the PSF is generally modeled as a linearly invariant operator.

In particular, the two properties mentioned above are often considered for multi-and hyper-spectral images [START_REF] Larsen | Restoration of Hyperspectral Push-Broom Scanner Data[END_REF], especially in those acquired by remote sensing systems (mounted on satellite, airborne, or more recently drone platforms) [START_REF] Song | Online deconvolution for pushbroom hyperspectral imaging systems[END_REF] [START_REF] Hadj-Youcef | Restoration from multispectral blurred data with non-stationary instrument response[END_REF].

Hyperspectral images are subject to degradation from observation noise [START_REF] Foi | Practical Poissonian-Gaussian Noise Modeling and Fitting for Single-Image Raw-Data[END_REF][16] [START_REF] Bourennane | Rare signals detection in nonwhite noise environment based on multidimensional signal subspace for hyperspectral image[END_REF], and they can also be affected by blur [START_REF] Mourya | Université Jean Monnet[END_REF]. Various factors contribute to the blur in hyperspectral images, such as lens imperfections, defocusing, atmospheric or air turbulence, relative motion between the sensor and the scene, or even sensor degradation occurring after the acquisition platform's deployment.

Note that the spatial invariance of the PSF is a property imposed on the blur in each spectral component to simplify the problem compared to the more general assumption of a spatially varying blur impulse response [START_REF] Song | Online deconvolution for pushbroom hyperspectral imaging systems[END_REF].

Another characteristic of hyperspectral images is that the spectral signature and the corresponding signalto-noise ratio in each spectral component are known to vary along the spectral dimensions [START_REF] Acito | Signal-Dependent Noise Modeling and Model Parameter Estimation in Hyperspectral Images[END_REF] [START_REF] Uss | Local Signal-Dependent Noise Variance Estimation From Hyperspectral Textural Images[END_REF]. Therefore, it is essential that, at the output of the restoration phase, the original spectral signature of the imaged content is recovered at each spatial position.

Consequently, the estimation of the PSF and the restoration of the original image are accomplished by formulating a cost function that incorporates both the image and the PSF. This cost function consists of the following components: 𝐶(𝑓, ℎ) = ‖𝑔 -ℎ * 𝑓‖ 2 2 + 𝝀 𝒇 𝑅 𝑓 (𝑓) + 𝝀 𝒉 𝑅 ℎ (ℎ) (0.2)

Where the first term denotes data fidelity, 𝑅 𝑓 represents the regularization term related to the cost function of image estimation, and 𝑅 ℎ corresponds to the regularization term associated with the cost function of PSF estimation. 𝜆 𝑓 and 𝜆 ℎ are the regularization parameters associated with 𝑅 𝑓 (𝑓) and 𝑅 ℎ (ℎ), respectively.

The objective of the cost function (0.2) is to estimate the original image 𝑓. To obtain the optimal solution that minimizes the cost function (0.2), it is also necessary to estimate the regularization parameters 𝜆 𝑓 and 𝜆 ℎ instead of fixing their values. The cost function (0.2) can be solved using the half quadratic splitting technique and expressed as equations (0.3) and (0.4).

𝐶(𝑓) = ‖𝑔 -ℎ 𝐸 * 𝑓‖ 2 2 + 𝝀 𝒇 𝑅 𝑓 (𝑓) (0.3) 𝐶(ℎ) = ‖𝑔 -ℎ * 𝑓 𝐸 ‖ 2 2 + 𝝀 𝒉 𝑅 ℎ (ℎ) (0.4)
In equations (0.3) and (0.4), ℎ 𝐸 and 𝑓 𝐸 represent the estimated PSF and image from the previous iteration, respectively. Additionally, they are supposed to be fixed.

-

Conclusion

Based on the observation model, restoration methods, whether blind, semi-blind, or non-blind, introduce regularization terms with the objective of transforming the ill-posed initial problem with a well-posed problem, this is equivalent to imposing additional constraints on the desired characteristics of either one or both unknowns: the original mage and the PSF.

In practice, this results in the addition of extra regularization terms to the usual data fidelity term as shown in equation (0.2). Each of these terms is weighted by an associated regularization parameter to adjust its relative weight in the overall objective function to be optimized. The goal is to achieve the closest approximation to the solution of the initial problem while ensuring facilitated convergence of the cost function.

The compromise often encountered in practice is to settle for an acceptable approximation of the true unknown solution. However, some of these methods, when finely tuned, can achieve quite impressive results according to well-known standard evaluation criteria such as Structure Similarity Index Measurement (SSIM) or Peak-Signal-to-Noise Ratio (PSNR).

However, it's important to highlight several drawbacks related to unresolved issues. Among them, we can mention the difficulty of formulating appropriate regularization terms concerning the expected characteristics of the desired solutions on one hand, and the convergence requirements on the other hand.

Additionally, there is also the potential instability of the resulting method, convergence to local minima, manual or non-automatic adjustment of the optimal values of the involved regularization parameters, and sensitivity to the choice of initialization for different unknown variables (original image, PSF).

Therefore, in the scope of this thesis, we are interested in the ability and applicability of the blind restoration methods to operate automatically, efficiently and with no manual adjustment for the restoration of monochrome and hyperspectral images.

-

Structure of the thesis

This thesis manuscript consists of three chapters. The first chapter is dedicated to the state-of-the-art, providing an overview of the existing research in the field. In the second chapter, an assessment is conducted to evaluate the influence of manual adjustment of the regularization parameters on the image restoration quality. Finally, the third chapter outlines different proposals to enhance the final quality of the restoration. The following paragraphs provide a detailed overview of the content in each of the three chapters. Lastly, to conclude the entirety of the analyses and work conducted in this thesis, this document ends with a general conclusion and outlines prospects for future research.

-Detailed content of each chapter

Chapter 1: state of the art: analysis of the recent methods

The objective of this first chapter is to present the methods developed in the literature for solving the posed restoration problem. Among these methods, we have selected those that require a minimum amount of prior knowledge (semi-blind) and/or utilize neural networks, as there are no truly blind methods in reality.

A representative set of nine proposed methods in the literature has been chosen. These methods are all based on the same observation model, which is identical to the one selected in (0.1). However, they require prior knowledge such as the PSF support size, the values of regularization parameters, the number of layers, learning rate, and more.

Chapter 2: Influence of the regularization parameters over the restoration quality

In the second chapter, our aim was to evaluate the influence of manually adjusting the regularization parameters for the original method proposed by Pan et al and selected by Zhang Mo in her previous thesis.

To conduct this study, a database of monochrome images was utilized. Before conducting the comparative study, we provided a reminder regarding the evaluation criteria used to assess the quality of restored images. Subsequently, the assessment of restored image quality for different regularization parameter values was performed using several evaluation metrics such as PSNR, SSIM, MSE, and the 𝐿 1 norm of the estimation error.

The study initially demonstrated that the fixed regularization parameter values in the original method are not optimal. Furthermore, this evaluation emphasized the importance of estimating these regularization parameter values instead of manually fixing them, as it ensures optimal image restoration quality.

Chapter 3: Developed blind method

In this chapter, we focus on the developed approach, which is based on the same principles as the PAN method. The first section provides a comprehensive overview of the various steps involved in the proposed method. It emphasizes the properties and characteristics of the selected solutions for PSF and latent image estimation, as well as the final image restoration.

Moving on to the second section, we focus on the enhancements proposed to improve the restoration results of the original image while minimizing the required prior knowledge. These modifications aim to optimize the method by utilizing a noiseless observation model.

The third represents the proposed strategies to restore a full hyperspectral image by blindly selecting a exemplar spectral component to represent highly correlated spectral components groups in order to reduce the number of spectral components used for the PSF estimation.

In the fourth section, we present a series of tests conducted to evaluate the performance of the proposed blind method. These tests demonstrate its superiority not only over the original method but also over recent methods proposed in the literature. The proposed method is validated using diverse databases containing monochrome, multicomponent, and hyperspectral images.

Overall, this chapter covers the development and evaluation of the proposed approach, showcasing its effectiveness and advancements over existing methods.

Introduction

In this chapter, we analyze recent and representative methods from the literature to provide a deeper understanding of their principles, advantages, drawbacks, and limitations in the context of our study. These methods are considered semi-blind because they rely on prior knowledge, including the support size of the Point Spread Function (PSF), the values of regularization parameters that weight the regularization terms in the cost functions, the number of layers consisting the network architecture in the case of a CNN, the predefined training sets, etc.

To better represent the state-of-the-art methods, we have identified two distinct approaches for image restoration commonly used to restore degraded images based on their optimization principles. The first approach is an alternate method in which the point spread function and the original image are estimated consecutively. The second approach is a hybrid method, where the PSF is estimated first using an alternate method with an intermediate image, and the estimated PSF is then used to restore the final image.

For this study, we have selected nine methods, each of which uses regularization terms in their cost function, weighted by regularization parameters, to estimate the original component and the PSF (component by component).

In the following paragraphs, we will briefly describe these nine methods. The description will highlight their underlying principles, the corresponding set of parameters to be adjusted by the user, and the recommended values for these parameters by the method authors.

Alternated approach

In our analysis, we have selected three methods belonging to the alternate approach namely Alternative Direction Method of Multipliers (ADMM) [START_REF] Almeida | Deconvolving Images With Unknown Boundaries Using the Alternating Direction Method of Multipliers[END_REF], Sroubek [START_REF] Sroubek | Robust Multichannel Blind Deconvolution via Fast Alternating Minimization[END_REF], and Ren [START_REF] Ren | Neural Blind Deconvolution Using Deep Priors[END_REF]. For each of these methods, we will describe their principle and practical implementation conditions.

Method 1: Alternating Direction Method of Multipliers

The method described in [START_REF] Almeida | Deconvolving Images With Unknown Boundaries Using the Alternating Direction Method of Multipliers[END_REF] can be considered as an extension of the standard method [START_REF] Almeida | Blind and Semi-Blind Deblurring of Natural Images[END_REF], which employs the Alternating Direction Method of Multipliers (ADMM) technique. The goal is to benefit from the fast convergence speed of this efficient optimization tool under non-smooth convex regularization.

The ADMM technique involves breaking down the original challenging optimization problem into simpler sub-problems that can be easily solved using, for instance, a fast Fourier transform or wavelets if the observational operator can be assumed in a circulant version, or by utilizing proximal operators.

The method presented in [START_REF] Almeida | Deconvolving Images With Unknown Boundaries Using the Alternating Direction Method of Multipliers[END_REF] uses a slightly different cost function than that in [START_REF] Almeida | Blind and Semi-Blind Deblurring of Natural Images[END_REF] and is optimized according to the image 𝑓 and PSF ℎ as shown in [START_REF] Dian | Deep Hyperspectral Image Sharpening[END_REF].

𝐶(𝑓, ℎ) = 1 2 ‖𝑔 -ℎ * 𝑓‖ 2 2 + 𝝀 ∑ (‖𝐹 𝑖 (𝑓)‖ 𝑞 ) 𝑞 𝑖 + 𝜄 𝑠+ (ℎ) (1) 
This method differs from the standard method in [START_REF] Almeida | Blind and Semi-Blind Deblurring of Natural Images[END_REF] in terms of the specific choice of a non-convex and non-smooth regularization term, denoted as 𝐿 1/2 , defined as

𝐿1 2 ⁄ (. ) = ‖. ‖ 1 2 ⁄ 1 2
⁄ and related to the image estimation 𝑓. This particular choice of the parsimony parameter 𝑞 = 1 2 allows us to benefit from an analytical solution that can be expressed and solved by an iterative thresholding algorithm [START_REF] Xu | Representative of L1/2 Regularization among Lq (0 < q ≤ 1) Regularizations: an Experimental Study Based on Phase Diagram[END_REF], leading to a faster solution.

The operator 𝐹(. ) is an edge detection operator in the four cardinal directions (Sobel operator), and 𝑖 representd the 𝑖 𝑡ℎ pixel in the edge image. The regularization term related to the PSF estimation is represented a function indicator, 𝜄 𝑠+ (. ), for a set of filters (PSFs) with positive input on a given support (L1 norm of the positive PSFs).

The default sequence proposed for the regularization parameter λ related to the PSF estimation is different from that defined by the author in [START_REF] Almeida | Blind and Semi-Blind Deblurring of Natural Images[END_REF], which is based on standard gradient descent. In this case, the initial value of λ is considered to be equal to ½, and the ratio of the geometric progression is

1 𝑟 with 𝑟 ≥ 1.5.

Method 2: Sroubek

The second method, proposed by Sroubek et al. [START_REF] Sroubek | Robust Multichannel Blind Deconvolution via Fast Alternating Minimization[END_REF], follows the same regularization approach as the previously described method. The estimation of the original image component is achieved through the use of an isotropic regularization term (total variation with L2 norm), which is chosen to acquire a solution with a sparse distribution of the image gradient, as shown in (2).

𝐶(𝑓) = 𝜸 2 ‖𝑔 -ℎ 𝐸 * 𝑓‖ 2 + 𝑅 𝑓 With 𝑅 𝑓 = ∑ √ (∇ 𝑥 𝑓(𝑖)) 2 + (∇ 𝑦 𝑓(𝑖)) 2 𝑖 (2) 
The regularization parameter 𝛾 is inversely proportional to the noise variance, and 𝑅 𝑓 represents the regularization term related to the image estimation.

To achieve the balance between complexity and precision in the PSF estimation, the authors in [START_REF] Sroubek | Robust Multichannel Blind Deconvolution via Fast Alternating Minimization[END_REF] defined a regularization term that ensures the positivity property of the PSF (penalizing negative values) and the parsimony of its coefficients (by calculating the L1 norm of positive PSFs), as shown in (3).

𝐶(ℎ) = 𝜸 2 ‖𝑔 -ℎ * 𝑓 𝐸 ‖ 2 + 𝑅 ℎ With 𝑅 ℎ = ∑ 𝜓(ℎ(𝑖)) 𝑖 , 𝜓(𝜍) = { 𝜍 𝑖𝑓 𝜍 ≥ 0 +∞ 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (3)
This method applies an alternate minimization of the global function with respect to the original image and the PSF. The two updated steps involve a specialized function 𝐿(𝑓, 𝑣 𝑥 , 𝑣 𝑦 ) and 𝐿(ℎ, 𝑤), shown in (4) and ( 5) respectively. This is achieved by using the technique of variable separation to substitute either the derivatives in the horizontal and vertical directions of the unknowns located in the regularization term of type TV, or simply the unknown PSF in the corresponding regularization term. An augmented Lagrangian method (ALM) is used to transform the constrained problem into an unconstrained one.

𝐿(𝑓, 𝑣 𝑥 , 𝑣

𝑦 ) = 𝜸 2 ‖𝑔 -ℎ 𝐸 * 𝑓‖ 2 + 𝑅 𝑓 (𝑣 𝑥 , 𝑣 𝑦 ) + 𝜶 2 ‖𝐷 𝑥 𝑓 -𝑣 𝑥 -𝑎 𝑥 ‖ 2 + 𝜶 2 ‖𝐷 𝑦 𝑓 -𝑣 𝑦 -𝑎 𝑦 ‖ 2 (4) 𝐿(ℎ, 𝑤) = 𝜸 2 ‖𝑔 -ℎ * 𝑓 𝐸 ‖ 2 + 𝜓(𝑤) + 𝜷 2 ‖ℎ -𝑤 -𝑏‖ 2 (5) 
With 𝑣 𝑥 = 𝐷 𝑥 𝑓, 𝑣 𝑦 = 𝐷 𝑦 𝑓 and 𝑎 𝑥 , 𝑎 𝑦 , 𝑏 are the variables introduced by the augmented Lagrangian method.

The two updating steps for estimating either the original image or the PSF are solved with an iterative algorithm. The number of iterations of the main loop and the two update stages are limited (less than ten) to avoid local minima.

Method 3: Ren

This method [START_REF] Ren | Neural Blind Deconvolution Using Deep Priors[END_REF], conducted by Dongwei Ren et al., connects Maximum A Posterior (MAP) and deep models by proposing two generative networks for modeling clean images and PSF, respectively. The approach adopts an asymmetric autoencoder and a fully connected network (FCN) to detect the structure of the clear image and the PSF, respectively. Moreover, a SoftMax function is applied at the output of the FCN to ensure the PSF constraints.

Inspired by the Deep Image Prior network [START_REF] Lempitsky | Deep Image Prior[END_REF], the authors used an image generator network 𝒢 𝑓 , which is an asymmetric autoencoder with skip connections, to capture the statistical properties of the underlying clean image. However, 𝒢 𝑓 is not well-suited to characterizing the prior of the PSF. To address this, the authors suggested the use of a fully-connected network (FCN) called 𝒢 ℎ for modeling the prior of the PSF. The SoftMax nonlinearity is applied to the output layer of 𝒢 ℎ to ensure that the PSF satisfies non-negativity and equality constraints.

By fixing the network structures (𝒢 𝑓 and 𝒢 ℎ ) and inputs (𝑧 𝑓 and 𝑧 ℎ ) sampled from a uniform distribution, they have formulated a deconvolution neural optimization problem on the network parameters of 𝒢 𝑓 and 𝒢 ℎ as follows:

min (𝒢 𝑓 ,𝒢 ℎ ) ‖𝒢 ℎ (𝑧 ℎ ) * 𝒢 𝑓 (𝑧 𝑓 ) -𝑔‖ 2 + 𝝀 𝑇𝑉 (𝒢 𝑓 (𝑧 𝑓 )) 𝑠. 𝑡. 0 ≤ (𝒢 𝑓 (𝑧 𝑓 )) 𝑖 ≤ 1 , ∀𝑖 (𝒢 ℎ (𝑧 ℎ )) 𝑗 ≥ 0, ∑ (𝒢 ℎ (𝑧 ℎ )) 𝑗 𝑗 = 1, ∀𝑗 (6) 
𝑇𝑉 (𝒢 𝑓 (𝑧 𝑓 )) is the regularization term used to capture image priors. 𝜆 is the regularization parameter for the image prior that is controlled by the noise level.

However, certain parameters such as the number of layers in the deep neural network, the learning rate used during training, and the regularization parameter used to balance the data fidelity term and the regularization term in the cost function, must be set by the user.

For the experiments conducted in [START_REF] Ren | Neural Blind Deconvolution Using Deep Priors[END_REF], four empirically fixed parameters by the user: the number of layers set to 5, the learning rate is set to 0.01 and decreases by 0.5 at the iteration 2000, 3000, and 4000, and the regularization parameter 𝜆 = 10 -6 is imposed to improve the robustness in handling blurred images.

Hybrid approach

In contrast to previous alternating methods, the approaches introduced in this section first estimate the PSF, often using the image contours extracted from an estimated intermediate (latent) image or the degraded image. The advantage of this approach is that the maximum a posteriori formulation no longer fails when the estimation concerns (ℎ, 𝛻𝑓), with 𝛻𝑓 representing the gradient of the original image [START_REF] Zhang | Vers une méthode de restauration aveugle d'images hyperspectrales[END_REF]. Once the PSF is well estimated, it is injected into the final restoration process to estimate the original image. These methods are called Pan, Haoyuan, Zhou, Huang, Zhang, and Ge. For these methods, we will explain their principles, as well as the practical conditions for implementation. Method 4: PAN Pan et al. [26][27] proposed a method that suggests detecting, selecting, and using sufficiently salient edges in an image to achieve a more precise PSF estimation. Although edges in a degraded image can provide relevant information for PSF estimation, not all edges are useful for this purpose. Only salient contours with large amplitude values of the 𝐿 2 norm of the gradient can positively impact and improve the precision of the PSF estimation. Conversely, lower amplitude contours, small details, and rich textures can deteriorate the PSF estimation, leading to decreased precision, noise, or poor estimation. Such content in the degraded component can severely weaken the accuracy of the PSF estimation, particularly for blur with large support values. A deconvolved degraded component with a PSF estimated from all contours without distinction is likely to have an unacceptable level of residual blurring and severe artifacts.

Therefore, the selection of appropriate structures in a degraded component to support the estimation of the PSF is of utmost importance for obtaining an acceptable restoration result. Pan et al. achieved this objective by implementing an alternating multi-scale estimation of an intermediate latent image and the PSF before proceeding with the final image restoration using the estimated PSF.

Given the current version of the latent image, the estimation of the Point Spread Function (PSF) is obtained by detecting, selecting, and efficiently using sufficiently salient contours in the intermediate latent image. To achieve this objective, the latent image is decomposed into two components: one being structural and the other textural. This is done by optimizing an appropriate energy function that involves the L2 norm of the gradient amplitude of the structural component. It separates the main useful structures from the harmful fine-scale details and the noise grouped together within the texture component. The texture is removed using an adaptive total variation regularization term. Next, the main structures retained, which are essentially the edges, are improved by shock filtering, and the salient edges are selected. Finally, the PSF estimation is carried out only based on the salient edges, with an a priori constraint of parsimony and continuity.

Then, given the current estimation of the PSF, the estimation of the intermediate latent image is updated by imposing that the gradient of the current unknown is sufficiently close to those of the salient contours previously selected. This update is accomplished by using low-rank before imposing a denoising effect on the current estimate.

Therefore, this method involves considering a pyramidal multi-resolution image and iteratively estimating the PSF and an intermediate latent image, which is initialized by the observed image. The estimation of the PSF is based on the adequate selection of sufficiently contrasting and salient contours in the current intermediate latent image, and this selection process involves three steps.

Firstly, the current latent image is decomposed into two components, one being structural and the other textural, using an adaptive isotropic total variation 𝑇𝑉 -𝐿2 regularization term when no a priori knowledge on the texture is available. To improve the decomposition, the weight on the fidelity term of the current latent image is increased.

Secondly, the structural component is improved and enhanced by shock filtering.

Lastly, the salient edges with large values of L2 norm of the gradient are selected by thresholding the enhanced structural component, (𝐼 𝑠 )

̃. The threshold is initially set to ensure that a minimum number of 0.5 × √𝑛 𝑖 . 𝑛 𝑘 pixels participate in the estimation of the PSF in each of the sectors, where 𝑛 𝑖 and 𝑛 𝑘 denote the total number of pixels in the image and the PSF, respectively, with 𝑛 𝑖 = 𝑀 × 𝑁 and 𝑛 𝑘 = 𝑘 × 𝑘.

Its value is then regularly reduced as the iterations progress.

At each scale, the current intermediate latent image, 𝑓 𝑙𝑎𝑡 , is first divided into a structural component containing the main edges, denoted as 𝐼 𝑠 , and a texture component defined as its complementary part, denoted 𝐼 𝑡 , simply calculated by 𝐼 𝑡 = 𝐼 -𝐼 𝑠 . This is achieved by minimizing the cost function (7) [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF]:

𝐶(𝐼 𝑠 ) = ∑‖∇𝐼 𝑠 ‖ 2 + 1 2𝜃𝜔(𝑥) (𝐼 𝑠 (𝑥) -𝐼(𝑥)) 2 𝑥 ( 7 
)
Here 𝜃 is an adjustment parameter, and 𝜔(𝑥) = 𝑒 (-𝑟(𝑥)) 0.8 , where

𝑟(𝑥) = ‖∑ ∇𝑔(𝑦) 𝑦∈ℜ ℎ (𝑥) ‖ 2 ∑ ‖∇𝑔(𝑦)‖ 𝑦∈ℜ ℎ (𝑥) 2 +0.5 with ℜ ℎ (𝑥)
is a window of size 5 × 5 centred at x to ensure the spatial adaptivity.

The enhanced structural component obtained by shock filtering [START_REF] Osher | Feature-Oriented Image Enhancement Using Shock Filters[END_REF] is given by:

𝜕𝐼 𝑠 ∂ 𝑡 = -𝑠𝑖𝑔𝑛(∆𝐼 𝑠 ̃) × ‖∇𝐼 𝑠 ̃‖2 (8) 
Finally, the salient edges are obtained by using the equation [START_REF] Akhtar | Nonparametric Coupled Bayesian Dictionary and Classifier Learning for Hyperspectral Classification[END_REF].

∇𝑆 = ∇𝐼 𝑆 ̃⊙ 𝐻 (‖∇𝐼 𝑆 ̃‖2 , 𝑡𝑟) , with 𝐻 (‖∇𝐼 𝑆 ̃‖2 , 𝑡𝑟) = { 1, 𝑖𝑓 ‖∇𝐼 𝑠 ̃‖2 ≥ 𝑡𝑟 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (9) 
The operator ⊙ denotes element-wise multiplication, and 𝑡𝑟 denotes a threshold applied to the norm of the gradient of the current version of the structural component after shock filtering.

Following the three previous steps, the PSF is estimated using a priori Hyper Laplacian. The corresponding cost function [START_REF] He | Skip-Connected Covariance Network for Remote Sensing Scene Classification[END_REF] is optimized using an iterative reweighted least squares (IRLS) constrained method [START_REF] Levin | Image and depth from a conventional camera with a coded aperture[END_REF] given by:

𝐶(ℎ) = ‖∇𝑆 * ℎ -∇𝑔‖ 2 2 + 𝛼‖ℎ‖ 0.5 0.5 With ℎ(𝑥) ≥ 0, ∑ ℎ(𝑥) 𝑥 = 1 (10) 
𝛼 represents the regularization parameter related to the PSF estimation. Once, the new version of the PSF (ℎ) is estimated, the intermediate latent image is updated by solving an anisotropic total variation term [START_REF] Nguyen | Tracking via object reflectance using a hyperspectral video camera[END_REF], using an IRLS method.

𝐶(𝑓 𝑙𝑎𝑡 ) = 𝜆‖𝑓 𝑙𝑎𝑡 * ℎ 𝐸 -𝑔‖ 2 2 + ‖∇𝑓 𝑙𝑎𝑡 ‖ 1 ( 11 
)
where λ is a regularization parameter related to the latent image estimation noting that 𝛽 = 

Where 𝛽 is a regularization parameter related to the final image restoration.

The authors of [26][27] have fixed the regularization parameters related to the PSF and the latent image estimation as 𝛼 = 0.01 and 𝛽 = 0.005, respectively. Subsequently, following the PSF estimation phase, the regularization parameter related to the final image restoration is also fixed at 𝛽 = 0.003, as per their report.

Method 5: Haoyuan

In this study [START_REF] Yang | Blind Image Deconvolution Algorithm Based on Sparse Optimization with an Adaptive Blur Kernel Estimation[END_REF], Yang et al. proposed a deblurring method based on sparse optimization. The method utilizes an image prior based on nonzero measurement in the image gradient domain and introduces an analytical solution without requiring additional searching iterations during optimization. First, the proposed method estimates the PSF using an alternating scheme and a half-quadratic optimization algorithm. Next, the latent sharp image is estimated using a non-blind deconvolution algorithm with priors based on the hyper-Laplacian distribution.

The joint cost function proposed in [START_REF] Yang | Blind Image Deconvolution Algorithm Based on Sparse Optimization with an Adaptive Blur Kernel Estimation[END_REF], denoted by 𝐶(𝑓, ℎ), is formulated as follows:

𝐶(𝑓, ℎ) = ‖𝑔 -ℎ * 𝑓‖ 2 2 + 𝝀 𝒇 𝑅 𝑓 + 𝝀 𝒉 𝑅 ℎ (13) Here, 𝑅 𝑓 and 𝑅 ℎ represent the image and PSF regularization terms, respectively, and 𝜆 𝑓 and 𝜆 ℎ correspond to their respective weights.

𝑅 𝑓 = ∑(1 -𝛿(|∇ 1 𝑓 𝑖 | + |∇ 2 𝑓 𝑖 | + |∇ 3 𝑓 𝑖 | + |∇ 4 𝑓 𝑖 |)) 𝑖∈𝛺 With 𝛿(𝑚) = { 0 𝑖𝑓 𝑚 ≠ 0 1 𝑖𝑓 𝑚 = 0 ( 14 
)
𝑅 𝑓 is obtained from the nonzero measurements of the 𝑖 𝑡ℎ element in the gradient image domain in four orientations, which are stored in lexicographic order [START_REF] Snyder | Machine Vision[END_REF]. Specifically, the pixel values of the gradient image domain are arranged in a vector using raster scan order, where pixels are scanned one by one from left to right and line by line. The gradient operator 𝛻 𝑛 , where 𝑛 ∈ {1, 2, 3, 4}, corresponds to each orientation of {0, 𝜋

}.

Equation ( 14) essentially counts nonzero values in the four directions of the gradient image. An evaluation based on the histogram representation of an original image and its blurred image revealed that the pixel intensity is more concentrated in the blurred image, indicating that the blurred image has a higher sparsity. By assessing the nonzero values, it was confirmed that their intensity is significantly higher than that in the original image.

The joint cost function in Equation ( 13) is solved using an alternating scheme, where the PSF is estimated first, then the latent sharp image is acquired. Equation ( 13) is divided into two subproblems: one for the PSF estimation [START_REF] Foi | Practical Poissonian-Gaussian Noise Modeling and Fitting for Single-Image Raw-Data[END_REF] and the other for the latent image estimation [START_REF] Acito | Signal-Dependent Noise Modeling and Model Parameter Estimation in Hyperspectral Images[END_REF]. These subproblems are then solved alternately as follows:

ℎ ̂= arg min ℎ (‖𝑔 -ℎ * 𝑓 𝐸 ‖ 2 2 + 𝝀 𝒉 𝑅 ℎ ) (15) 
𝑓 ̂= arg min f (‖𝑔 -ℎ 𝐸 * 𝑓‖ 2 2 + 𝝀 𝒇 𝑅 𝑓 ) (16) 
To avoid local minima during PSF estimation, the authors of [START_REF] Snyder | Machine Vision[END_REF] employ a coarse-to-fine scheme using the image pyramid technique, generating the target image from coarse-to-fine levels.

Non-blind deconvolution algorithms can be applied with the estimated PSF to restore the final image. To further enhance the restoration result, sparse representation techniques can be utilized, that was inspired by the previously deployed PSF estimation method. Specifically, a hyper-Laplacian distribution-based prior is incorporated into the cost function as a regularization term. The cost function is formulated as follows:

𝐶(𝑓) = ‖𝑔 -ℎ 𝐸 * 𝑓‖ 2 2 + 𝝀 𝒇 ‖(∇ 𝑥 𝑓, ∇ 𝑦 𝑓)‖ 𝑝 (17) 
Here, p is derived from the hyper Laplacian model and serves as a constraint term in a quasi-norm form. ∇ 𝑥 𝑓 and ∇ 𝑦 𝑓 denote the horizontal and vertical image gradients, respectively. The cost function is solved using half-quadratic penalty method, similar to the solution of equation [START_REF] Acito | Signal-Dependent Noise Modeling and Model Parameter Estimation in Hyperspectral Images[END_REF].

Furthermore, the weights of the image and the PSF priors, namely 𝜆 𝑓 and 𝜆 ℎ , were empirically selected through experimental evaluation of the proposed method. The authors conducted experiments on various test images and evaluated the performance of the proposed method under different weight combinations of 𝜆 𝑓 and 𝜆 ℎ . After examining the results, they concluded that the values of 𝜆 𝑓 = 0.2 and 𝜆 ℎ = 0.8 offered the best trade-off between image quality and computational efficiency.

Method 6: Zhou

In [START_REF] Zhou | Fraction-Order Total Variation Image Blind Restoration Based on Self-Similarity Features[END_REF], L. Zhou et al. proposed a new approach to restoring degraded images by combining two techniques: fractional-order total variation [START_REF] Zhou | Fraction-order total variation blind image restoration based on L1-norm[END_REF] and self-similarity features [START_REF] Mandelbrot | Fractional Brownian Motions, Fractional Noises and Applications[END_REF]. The total variation measures the amount of variation in an image, while fractional-order total variation extends this concept to fractional derivatives, which can capture complex image structures. Self-similarity features, refer to the inherent repeating patterns present in an image. The cost function used in [START_REF] Zhou | Fraction-Order Total Variation Image Blind Restoration Based on Self-Similarity Features[END_REF] is given as follows:

𝐶(𝑓, ℎ) = ‖ℎ * 𝑓 -𝑔‖ 1 + 𝜶 𝟏 ‖∇ 𝑟 𝑓‖ 1 + 𝜶 𝟐 ‖∇ 2 ℎ‖ 2 2 + 𝝀 𝜎 𝑁 2 (𝑓 𝑡 ∑ 𝑓 𝑖,𝑢 ) (18) 
Here, 𝑔 is the degraded image, 𝑓 and ℎ represent the original image and the PSF respectively. While 𝛼 1 , 𝛼 2 , and 𝜆 are their respective regularization parameters. 𝜎 𝑁 2 represents the noise variance of the observed blurry image. ∇ 𝑟 denotes the r-order derivative, where 𝑟 is a decimal number. ∑ 𝑓 ̂. 𝑖,𝑢 denotes the patch-based Fractional Brownian Motion (FBM) [START_REF] Mandelbrot | Fractional Brownian Motions, Fractional Noises and Applications[END_REF] covariance matrix with Hurst parameter 𝑢 and patch 𝑖. The cost function ( 18) is resolved using half-quadratic regularization.

The optimization of the proposed method is solved using iterative minimization, by splitting [START_REF] Mourya | Université Jean Monnet[END_REF] into two cost functions: [START_REF] Uss | Local Signal-Dependent Noise Variance Estimation From Hyperspectral Textural Images[END_REF] and [START_REF] Almeida | Deconvolving Images With Unknown Boundaries Using the Alternating Direction Method of Multipliers[END_REF] for the image and PSF estimation, respectively, as shown below:

𝐶(𝑓) = ‖ℎ 𝐸 * 𝑓 -𝑔‖ 1 + 𝜶 𝟏 ‖∇ 𝑟 𝑓‖ 1 + 𝝀 𝜎 𝑁 2 (𝑓 𝑡 ∑ 𝑓 𝑖,𝑢 ) (19) 
𝐶(ℎ) = ‖ℎ * 𝑓 𝐸 -𝑔‖ 1 + 𝜶 𝟐 ‖∇ 2 ℎ‖ 2 2 (20) 
These two cost functions [START_REF] Uss | Local Signal-Dependent Noise Variance Estimation From Hyperspectral Textural Images[END_REF] and [START_REF] Almeida | Deconvolving Images With Unknown Boundaries Using the Alternating Direction Method of Multipliers[END_REF] are solved by setting their partial derivative with respect to 𝑓 and ℎ to zero, respectively.

In terms of the implementation details, 𝛼 1 is inversely proportional to the observed image noise, while 𝛼 2 is set to 1.4, 𝜆 is set to 0.25, and the decimal order 𝑟 is set to 1.5. The evaluation conducted in [START_REF] Zhou | Fraction-Order Total Variation Image Blind Restoration Based on Self-Similarity Features[END_REF] demonstrated that the proposed method effectively restored fine details and preserve edges compared to other state-of-the-art methods. However, the values of the regularization parameters in [START_REF] Mourya | Université Jean Monnet[END_REF] were determined experimentally through multiple tests to balance the regularization terms. As a result, the proposed approach is not a blind image restoration technique as the regularization parameter values are subjectively fixed.

Method 7: Ge Xianyu Ge et al. [START_REF] Ge | Blind Image Deblurring Using a Non-Linear Channel Prior Based on Dark and Bright Channels[END_REF] propose a novel algorithm for image restoration based on projected alternating minimization (PAM) that incorporates a nonlinear channel (NLC) regularization term based on the dark channel [START_REF] He | Single Image Haze Removal Using Dark Channel Prior[END_REF] shown in equation ( 21) and bright channel [START_REF] Yan | Image Deblurring via Extreme Channels Prior[END_REF] shown in equation [START_REF] Xu | Representative of L1/2 Regularization among Lq (0 < q ≤ 1) Regularizations: an Experimental Study Based on Phase Diagram[END_REF].

𝐶 𝑑 (𝑓) 𝑖 = min

𝑗∈Φ(i) (min 𝑓(𝑗)) (21) 
𝐶 𝑏 (𝑓) 𝑖 = max

𝑗∈Φ(i) (max 𝑓(𝑗)) (22) 
These channels, 𝐶 𝑑 (𝑓) 𝑖 and 𝐶 𝑏 (𝑓) 𝑖 , represent the dark and bright channels, respectively, of a grayscale image f at a location 𝑖. Φ(i) refers to a local image patch, and 𝑗 denotes the position within this patch.

According to [START_REF] Yan | Image Deblurring via Extreme Channels Prior[END_REF][39], clean images have dark channel pixels that are not greater than their blurred versions, whereas the bright channel pixels have the opposite impact. The authors in [START_REF] Ge | Blind Image Deblurring Using a Non-Linear Channel Prior Based on Dark and Bright Channels[END_REF] defined the NLC as a ratio between the dark channel and the bright channel represented in [START_REF] Sroubek | Robust Multichannel Blind Deconvolution via Fast Alternating Minimization[END_REF].

𝐶 𝑛𝑙 (𝑓) 𝑖 = 𝐶 𝑑 (𝑓) 𝑖 𝐶 𝑏 (𝑓) 𝑖 (23) 
The cost function adopted in this proposed method is expressed as follows:

𝐶(𝑓, ℎ) = ‖ℎ * ℎ -𝑔‖ 2 2 + 𝜶 ‖𝐶 𝑛𝑙 (𝑓)‖ 1 + 𝜷 ‖∇𝑓‖ 0 + 𝜸 ‖ℎ‖ 2 2 (24) 
Here, the parameters 𝛼, 𝛽, and 𝛾 are the regularization parameter that balance the regularization terms related to the image and PSF, respectively. The first term in this cost function is the fidelity term, and the second term is the non-linear channel. The third term was introduced in [START_REF] Xu | Image smoothing via L0 gradient minimization[END_REF] for edge preservation, and the fourth term is the regularization term related to the PSF estimation.

To solve the cost function in [START_REF] Ren | Neural Blind Deconvolution Using Deep Priors[END_REF], a projected alternating minimization (PAM) [START_REF] Perrone | Total Variation Blind Deconvolution: The Devil Is in the Details[END_REF] is used to alternately estimate the PSF and the original image. Therefore, ( 24) is divided into two cost functions one for the image restoration and the other for the PSF estimation shown in equations ( 25) and [START_REF] Pan | Kernel Estimation from Salient Structure for Robust Motion Deblurring[END_REF], respectively.

𝐶(𝑓) = ‖ℎ 𝐸 * 𝑓 -𝑔‖ 2 2 + 𝜶 ‖ 𝐶 𝑑 (𝑓) 𝐶 𝑏 (𝑓 𝐸 ) ‖ 1 + 𝜷 ‖∇𝑓‖ 0 (25) 
𝐶(ℎ) = ‖ℎ * 𝑓 𝐸 -𝑔‖ 2 2 + 𝜸 ‖ℎ‖ 2 2 ( 26 
)
Where 𝑓 𝐸 is the latent image estimated in the previous iteration.

A coarse-to-fine approach is used to estimate the PSF, using a pyramidal model with a fixed downsampling factor √2 2

. The regularization parameters that balance the NLC prior and the image regularization term are fixed 𝛼 = 𝛽 = 0.004. The regularization parameter related to the PSF estimation is predefined by the user, set to 𝛾 = 2. The NLC patch size is fixed to 35 × 35.

Method 8: Huang

Liqing Huang et al. proposed in [START_REF] Huang | Joint blur kernel estimation and CNN for blind image restoration[END_REF] a method based on combining convolutional neural network (CNN) and PSF estimation module. The proposed method consists of two main stages: PSF estimation and image restoration.

The first stage of the proposed method involves identifying the type of blur and estimating of the corresponding PSF. The blur kernel is a mathematical representation of the blur introduced in the image due to various factors like camera motion or out-of-focus imaging. To estimate the PSF, the proposed method utilizes a PSF estimation module in a patch-based manner. The module is based on a deep learning architecture, including a convolutional neural network (CNN) and a regression layer. The CNN takes a patch of the blurred image as input and generates a set of features, which are then fed to the regression layer to estimate the PSF. Additionally, to determine the support size of the PSF, the authors proposed computing the normalized logarithm of the Fourier transform of a degraded image and producing a binary transform matrix using an edge function, as described in equations ( 27) and [START_REF] Rudin | Nonlinear total variation based noise removal algorithms[END_REF], respectively. The method estimates the support parameter of Gaussian and uniform blur kernels by calculating the number of feature lines in the binary feature matrix, where each feature line has a pixel value of 1. The article discusses recognizing the feature lines in each row and column using a positive integer number (e.g., half of the image size). When the number of pixel values equal to 1 exceeds this positive integer, they consider this row or column to be a feature line.

(log(|𝑌|)) 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 = log(|𝑌|) -log(|𝑌 𝑚𝑖𝑛 |) log(|𝑌 𝑚𝑎𝑥 |) -log(|𝑌 𝑚𝑖𝑛 |) (27) 
𝐽 = 𝑒𝑑𝑔𝑒((log(|𝑌|)) 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 ) (28) 
After estimating the PSF support size, Huang et al. proposed a PSF type identification method that uses a dictionary learning-based approach. The method combines the logarithmic power spectrum [START_REF] Kobayashi | BFO Meets HOG: Feature Extraction Based on Histograms of Oriented p.d.f. Gradients for Image Classification[END_REF], log-Gabor filter [START_REF] Wang | Design and implementation of Log-Gabor filter in fingerprint image enhancement[END_REF], and feature similarity index [START_REF] Zhang | FSIM: A Feature Similarity Index for Image Quality Assessment[END_REF] to identify the best structural similarity between observed and dictionary images. The dictionary library contains original images and PSFs, and the proposed algorithm computes the gradient magnitude and phase correspondence matrix of the images. Finally, the algorithm uses the feature similarity index (FSIM) to identify the best structural similarity between observed and dictionary images.

In the second stage, the proposed method restores the image using the estimated PSF. To achieve this, the method utilizes a CNN-based image restoration module that takes the input blurred image and the estimated PSF and produces the restored image. The image restoration module is based on a deep learning architecture that employs a CNN with skip connections. These skip connections help to preserve the image details and reduce artifacts. The cost function used in [START_REF] Huang | Joint blur kernel estimation and CNN for blind image restoration[END_REF] is as follows:

𝐶(𝑓) = ‖ℎ 𝐸 * 𝑓 -𝑔‖ 2 2 + 𝝀 Φ(𝑓) (29) 
Where Φ(𝑓) is the regularization term and 𝜆 > 0 is the regularization parameter. Subsequently, the solution of ( 29) is used as an input to the CNN to minimize the loss function of the residual image, given by:

𝑙(Θ) = 1 2𝑁 ∑‖Ζ Θ (𝑔 𝑖 ) -(𝑔 𝑖 -𝑓 𝑖 )‖ 2 2 𝑖=1 (30) 
Here, 𝑔 𝑖 and 𝑓 𝑖 represent the blur and the restored patch pairs. Ζ Θ represents the image generator network, and Θ denotes the network parameter optimized using ADAM [START_REF] Kingma | Adam: A Method for Stochastic Optimization[END_REF]. Finally, the image-dependent code 𝑬 is as follows:

𝐸 = 𝛼𝑔 𝜃 ℎ ℎ (𝑋) + (1 -𝛼)𝑔 𝜃 𝑝 𝑝 (𝑌) (35) 
Where 𝛼 is a predefined regulation parameter for the two sub-networks.

The method proposed by L. Zhang et al requires fixing certain parameters, including the learning rate of the used ADAM optimizer [START_REF] Kingma | Adam: A Method for Stochastic Optimization[END_REF] fixed at 0.001, along with the two regularization parameters 𝜆 = 0.0005 and 𝛼 = 0.8. These fixed parameters make the method parametric and non-blind, relying on subjective parameter choices for image restoration.

Conclusion

In this chapter, we have focused on nine image restoration methods, highlighting their distinctive characteristics. These methods adopt regularization terms that preserve the sparsity of edges in the image and incorporate specific constraints on the PSF, such as being non-negative and summing up to one. The selection of these nine methods represents a variety of implementation and regularization term formalization found in the literature for image restoration and PSF estimation.

These methods either perform alternating minimization of the multi-term cost function with respect to both the original image and PSF (which are assumed to be spatially invariant) or minimize a specific cost function for either the original component or PSF in a hybrid approach. Additionally, some methods use an image pyramid with different detail resolutions to avoid local minima.

In general, the objective of all nine analyzed methods is to achieve a solution with a sparse distribution of edges in the original image, and each method utilizes its own cost function formulation to accomplish this goal. However, for a user, it can be challenging to choose a specific method that yields meaningful results for a target application.

Furthermore, several drawbacks related to PSF estimation and image restoration arise due to the difficulty of formalizing adequate values for the parameters weighting the regularization terms. These parameter values significantly influence the restoration quality and, therefore, must be defined according to the expected characteristics of the sought solutions and meet the convergence requirements.

The main reason for this critical situation is that the restoration step must jointly meet multiple objectives, such as deblurring with texture and detail preservation, while also allowing user exploration for various application domains. For instance, the manual tuning of the regularization parameter values used in the optimization functions is a complex process that does not guarantee reliable and relevant processing to meets these objectives.

To facilitate the application of a restoration method when the prior knowledge is limited or non-existent, an adaptive and optimized blind method is the most appropriate solution. Based on a study by M. Zhang et al [START_REF] Zhang | Accuracy assessment of blind and semi-blind restoration methods for hyperspectral images[END_REF][49], conducted objectively and subjectively to assess the estimation accuracy of the impulse response of the blur and the original image, we will evaluate the influence of the regularization parameters related to the PSF and original image estimation for [START_REF] Pan | Kernel Estimation from Salient Structure for Robust Motion Deblurring[END_REF]. This evaluation aims to demonstrate the importance of automatic estimation of these regularization parameters. Evaluating the influence of the regularization parameter βlat over the restoration quality by fixing α and β .. 

Introduction

In this chapter, a study is conducted to assess the influence of the predefined regularization parameter values in PAN's method [START_REF] Pan | Kernel Estimation from Salient Structure for Robust Motion Deblurring[END_REF] on the image restoration quality. The aim of this study is to demonstrate that automatically estimating the regularization parameter values related to the PSF estimation and the original image restoration is preferable to fixing them manually by the user. Automatic estimation of the regularization parameters provides adaptive values for different blur types, specific for each degraded image.

PAN method [START_REF] Pan | Kernel Estimation from Salient Structure for Robust Motion Deblurring[END_REF] was selected for a comparative study [START_REF] Zhang | Accuracy assessment of blind and semi-blind restoration methods for hyperspectral images[END_REF][49] among five semi-blind methods [START_REF] Almeida | Deconvolving Images With Unknown Boundaries Using the Alternating Direction Method of Multipliers[END_REF][21] [23][26][50], conducted on a dataset of monochrome, multi-component, and hyperspectral images. These images were degraded by a defocus PSF with a support of 5x5 and 9x9. The evaluation criterion used was the 𝐿 1 norm of the estimation error. The results showed that the ranking of the methods depends on the PSF support, image type, and noise level. The method proposed by Pan et al. [START_REF] Pan | Kernel Estimation from Salient Structure for Robust Motion Deblurring[END_REF] performed the best overall, followed by ADMM [START_REF] Almeida | Blind and Semi-Blind Deblurring of Natural Images[END_REF], while Sroubek [START_REF] Sroubek | Robust Multichannel Blind Deconvolution via Fast Alternating Minimization[END_REF] had the worst performance. A complementary study showed that the ranking was similar for a linear motion degradation. Therefore, we performed an evaluation for the predefined regularization parameters in the method proposed in [START_REF] Pan | Kernel Estimation from Salient Structure for Robust Motion Deblurring[END_REF].

Before presenting the results of this study, we will review the main evaluation criteria and specify those used subsequently.

Evaluation criteria

In this section, we are interested in the main evaluation criteria used in the state-of-the-art, as describe in Chapter 1. Various objective metrics can be employed to reveal information about the nature and magnitude of the distortions, as well as the distribution of the errors. Multiple objective criteria exist for assessing the quality of both the estimated PSF (ℎ ̂) and the restored image (𝑓 ̂). A restoration method is considered superior to another if it maximizes or minimizes a specific criterion.

When evaluating the quality of a restored image, subjective criteria can be linked to the characteristics of the human visual system [START_REF] Charrier | Evaluation de la qualité des images[END_REF]. A subjective evaluation of image quality requires conducting psycho-visual experiments, where panel of observers measures image quality under specific and identical environmental conditions. The established measurements allow for an estimation of the actual perceived quality. However, implementing such evaluations remains time-consuming and challenging.

As a result, objective quality evaluation has been proposed as an alternative solution, aiming to replacing subjective evaluation with a measurement tool that is correlated with human visual perception [START_REF] Charrier | Evaluation de la qualité des images[END_REF]. Objective criteria can be classified into two categories: non-blind (with reference) and blind (without reference) criteria. Non-blind criteria require complete knowledge of the original image, the PSF, or information about statistical noise parameters. They can be used regardless of the type of degradation. In contrast, blind criteria only utilize the degraded image as the available data. The main criteria for evaluating the image restoration quality or PSF are listed in the following subsection.

Non Blind criteria

To evaluate the quality of different restoration algorithms, several evaluation criteria have been defined, many of which can also be used to assess the quality of the estimated PSF. While some of these criteria are commonly employed, others are used less frequently.

➢ Mean Bias and Variance of the estimation error

The mean bias and variance of the estimation error are among the most commonly used metrics in estimation.

Mean bias: 𝐸(𝑓 -𝑓 ̂)

Variance: 𝑉𝑎𝑟(𝑓 -𝑓 ̂)

➢ 𝑳 𝟏 -norm of the estimation error

This measure provides the actual overall difference between the original and restored images by calculating the direct sum of the absolute value of the error at each pixel over the entire image support. It is considered a reliable criterion, applicable regardless of whether the image is normalized or not.

‖𝑓 -𝑓 ̂‖1 = ∑ ∑|𝑓(𝑖, 𝑗) -𝑓 ̂(𝑖, 𝑗)|

𝑗 𝑖 (𝑖, 𝑗) is the position of each pixel in the original (𝑓) and the restored (𝑓 ̂) image.

➢ Sum of Squared Difference (SSD)

SSD, also known as the 𝐿 2 norm of the estimation error, measures the overall difference between the original and restored image by computing the square root of the sum of squared differences between corresponding pixels in the two images over the entire support of the image. This metric is also referred to as the Euclidean norm or the Root Mean Square (RMS) norm.

‖𝑓 -𝑓 ̂‖2 2 = √(∑ ∑|𝑓(𝑖, 𝑗) -𝑓 ̂(𝑖, 𝑗)| 2 𝑗 𝑖 )
The summation is performed over the entire support of the image.

➢ Mean Square Error (MSE)

MSE is used to measure the quality of a restored image by computing the average of the squared differences between corresponding pixels in the original and restored images over the entire image support.

𝑀𝑆𝐸 = ∑ ∑ |𝑓(𝑖, 𝑗) -𝑓 ̂(𝑖, 𝑗)| 2 𝑗 𝑖 𝑀 × 𝑁
Where M and N represent the number of rows and columns of the image, respectively. This criterion was used by Sroubek [START_REF] Sroubek | Robust Multichannel Blind Deconvolution via Fast Alternating Minimization[END_REF] and Haoyuan [START_REF] Yang | Blind Image Deconvolution Algorithm Based on Sparse Optimization with an Adaptive Blur Kernel Estimation[END_REF] to evaluate the quality of restored images.

➢ Normalized Squared Error (NSE)

NSE is the normalized version of the MSE developed in [START_REF] Yang | Blind Image Deconvolution Algorithm Based on Sparse Optimization with an Adaptive Blur Kernel Estimation[END_REF].

𝑁𝑆𝐸 = ∑ ∑ |𝑓(𝑖, 𝑗) -𝑓 ̂(𝑖, 𝑗)| 2 𝑗 𝑖 ∑ ∑ |𝑓(𝑖, 𝑗)| 2 𝑗 𝑖 ➢ Root Mean Square Error (RMSE)
RMSE is another variation of the MSE. It is computed by taking the square root of the average of the squared differences between corresponding pixels in the original and restored images, over the entire support of the image. Deployed by Zhang et al. [START_REF] Zhang | Deep Blind Hyperspectral Image Super-Resolution[END_REF] to evaluate the obtained restored images.

𝑅𝑀𝑆𝐸 = √ ∑ ∑ |𝑓(𝑖, 𝑗) -𝑓 ̂(𝑖, 𝑗)| 2 𝑗 𝑖 𝑀 × 𝑁 ➢ Peak Signal to Noise Ratio (PSNR)
PSNR is a commonly used metric for evaluating the quality of the restored image. It is defined as the ratio of the square of the maximum possible pixel value of the image to the mean squared error (MSE) between the original and restored images, expressed in decibels (dB) [START_REF] Horé | Image Quality Metrics: PSNR vs. SSIM[END_REF]. A higher PSNR value indicates a better quality restoration.

𝑃𝑆𝑁𝑅 = 10 × log 10 ( (max 𝐷) 2 𝑀𝑆𝐸 )
Where D is the full range pixel values (for 8-bit images 𝐷=255 and MSE is the mean squared error between the original and restored images.

➢ Structure Similarity Index Measurement (SSIM)

This criterion consists of three terms that allow detecting the changes in luminance 𝑙(𝑓, 𝑓 ̂), contrast 𝑐(𝑓, 𝑓 ̂), and local structure 𝑠(𝑓, 𝑓 ̂) between the original and restored image versions [START_REF] Wang | Image quality assessment: from error visibility to structural similarity[END_REF].

𝑆𝑆𝐼𝑀(𝑓, 𝑓 ̂) = 𝑙(𝑓, 𝑓 ̂) × 𝑐(𝑓, 𝑓 ̂) × 𝑠(𝑓, 𝑓 ̂)
The two images are analyzed through a sliding window or decomposed into blocks of the same size. The three terms are then calculated in each of the windows or blocks and are defined as follows:

𝑙(𝑓, 𝑓 ̂) = (2𝜇 𝑓 𝜇 𝑓 ̂+ 𝑐1) (𝜇 𝑓 2 + 𝜇 𝑓 2 + 𝑐1) 𝑐(𝑓, 𝑓 ̂) = (2𝜎 𝑓 𝜎 𝑓 ̂+ 𝑐2) (𝜎 𝑓 2 + 𝜎 𝑓 2 + 𝑐2) 𝑠(𝑓, 𝑓 ̂) = 𝜎 𝑓𝑓 2 + 𝑐 3 𝜎 𝑓 𝜎 𝑓 ̂+ 𝑐 3
The constants 𝐶 1 , 𝐶 2 , and 𝐶 3 ensure the stability of the measurement in homogeneous areas. 𝐶 1 = (0.01 × 𝐿) 2 , 𝐶 2 = (0.03 × 𝐿) 2 , and

𝐶 3 = 𝐶 2 2
, where 𝐿 = 2 # 𝑏𝑖𝑡𝑠 𝑝𝑒𝑟 𝑝𝑖𝑥𝑒𝑙 -1. μ is the mean level, and σ is the standard deviation of the luminance in the analysis window (𝜎 𝑓𝑓 2 represents the covariance between 𝑓 and 𝑓 ̂).

➢ Signal to Noise Ratio (SNR)

This metric measures the ratio of the image power to the noise power. It quantifies the level of the desired image relative to the background noise.

𝑆𝑁𝑅 = 10 × log 10 ( ∑ 𝑓 2 𝑁 𝑖=1 ‖𝑓 -𝑓 ̂‖2 )
Higher SNR values indicate a stronger restored image and better quality.

➢ Improved Signal to Noise Ratio (ISNR)

The authors proposed in [START_REF] Almeida | Blind and Semi-Blind Deblurring of Natural Images[END_REF] a new criterion for evaluating the quality of the restored image based on the signal-to-noise ratio, used by Huang et al. [START_REF] Huang | Joint blur kernel estimation and CNN for blind image restoration[END_REF], defined as:

𝐼𝑆𝑁𝑅 = 10 × log 10 ( ‖𝑓 -𝑔‖ 2 ‖𝑓 -𝑓 ̂‖2 ) ➢ Gradient Magnitude Similarity Deviation (GMSD)
The quality of the image can be evaluated using the global variation of the local gradient [START_REF] Xue | Gradient Magnitude Similarity Deviation: A Highly Efficient Perceptual Image Quality Index[END_REF]. The deviation of the gradient amplitude similarity between the original and estimated images is therefore introduced. The images are divided into 𝑃 blocks of the same size. The gradient of the image in the horizontal and vertical directions is calculated using the Prewitt filter, such as:

ℎ 𝑥 = [ 1/3 0 -1/3 1/3 0 -1/3 1/3 0 -1/3 ] ℎ 𝑦 = [ 1/3 1/3 1/3 0 0 0 -1/3 -1/3 -1/3 ]
The amplitudes of the gradients of the original image and the estimated image on the 𝑖 𝑡ℎ block is given by:

𝑚 𝑓 (𝑖) = √ (𝑓 * ℎ 𝑥 ) 2 (𝑖) + (𝑓 * ℎ 𝑦 ) 2 (𝑖) 𝑚 𝑓 ̂(𝑖) = √ (𝑓 ̂ * ℎ 𝑥 ) 2 (𝑖) + (𝑓 ̂ * ℎ 𝑦 ) 2 (𝑖)
The similarity of the amplitude of gradients (GMS) between the original and estimated image is expressed as follows:

𝐺𝑀𝑆(𝑖) = 2𝑚 𝑓 (𝑖)𝑚 𝑓 ̂(𝑖) + 𝑐 𝑚 𝑓 2 (𝑖) + 𝑚 𝑓 2(𝑖) + 𝑐
Where c is a positive constant ensuring stability [START_REF] Xue | Gradient Magnitude Similarity Deviation: A Highly Efficient Perceptual Image Quality Index[END_REF].

GMS only provides the local quality measure of the image. The global measure is obtained by averaging over the number of blocks.

𝐺𝑀𝑆𝑀 = 1 𝑃 ∑ 𝐺𝑀𝑆(𝑖) 𝑃 𝑖=1
Based on the idea that the variation of local quality in an image can reflect the overall quality of the image, the standard deviation of GMS is proposed as a final measure, such that:

𝐺𝑀𝑆𝐷 = √ 1 𝑃 ∑(𝐺𝑀𝑆(𝑖) -𝐺𝑀𝑆𝑀(𝑖)) 2 𝑃 𝑖=1
GMSD and GMS metrics are used by Huang et al. [START_REF] Huang | Joint blur kernel estimation and CNN for blind image restoration[END_REF] to evaluate their proposed restoration method. The smaller the value of GMSD, the better the quality of the image.

➢ Error ratio

The Error ratio, also called SSD ratio, compares the square of the 𝐿 2 norm of the difference between the restored image and the ground truth image using the estimated PSF to the square of the 𝐿 2 norm of the difference between the image restored using the ground truth PSF and the ground truth image. It was first introduced by A. Levin [START_REF] Levin | Efficient marginal likelihood optimization in blind deconvolution[END_REF] and subsequently used in [START_REF] Ren | Neural Blind Deconvolution Using Deep Priors[END_REF][26][50] [START_REF] Tao | Scale-Recurrent Network for Deep Image Deblurring[END_REF][57] [START_REF] Zuo | Learning Iteration-wise Generalized Shrinkage-Thresholding Operators for Blind Deconvolution[END_REF].

𝐸𝑟 = ‖𝑓 ̂𝑟 -𝑓 𝐺𝑇 ‖ 2 2 ‖𝑓 ̂𝑡 -𝑓 𝐺𝑇 ‖ 2 2
Here, 𝑓 ̂𝑟 represents the restored image obtained using the estimated PSF, 𝑓 ̂𝑡 represents the restored image obtained using the ground truth PSF, and 𝑓 𝐺𝑇 represents the ground truth image.

➢ Kernel Similarity (KS)

The kernel similarity metric proposed in [START_REF] Hu | Good Regions to Deblur[END_REF] and used by [START_REF] Sun | Edge-based blur kernel estimation using patch priors[END_REF] is based on the normalized correlation coefficient between the estimated and ground truth PSF.

𝐾𝑆(ℎ, ℎ ̂) = max 𝛾 ∑ ℎ(𝛾). 𝛾 ℎ ̂(𝜏 + 𝛾) ‖ℎ‖ 2 .

‖ℎ ̂‖2

The kernel similarity involves formula involves the known PSF ℎ, the estimated PSF ℎ ̂, the element coordinates 𝜏, and the possible shift 𝛾 between the two PSFs.

Blind criteria

In practical and operational scenarios, measures without references are highly desirable as they enable quality assessment without any prior information about the original image. In this subsection, we will introduce the most frequently employed criteria.

➢ The estimation error of the observation

This criterion measures the difference between the degraded image and its estimated one. It quantifies how accurately the restoration method is able to estimate the PSF and restore the original image from the degraded observations.

‖𝑔 -ℎ ̂ * 𝑓 ̂‖𝑝

Here 𝐿 denotes the 𝐿 𝑃 norm. ℎ ̂ and 𝑓 ̂ denotes the estimated PSF and the restored image, respectively. Therefore, ℎ ̂ * 𝑓 ̂ represents the estimated degraded image 𝑔 ̂.

➢ Whiteness measures

The authors propose in [START_REF] Almeida | Parameter Estimation for Blind and Non-Blind Deblurring Using Residual Whiteness Measures[END_REF] three evaluation criteria based on the whiteness measurement of the degraded image. The residual image (i.e., 𝑔 -ℎ ̂ * 𝑓 ̂) is first centered and reduced:

𝑟 = 𝐼𝑟 -𝐼𝑟 ̅ 𝜎 𝑟
Where 𝐼𝑟 is the residual image not normalized and 𝐼𝑟 ̅ its mean value and 𝜎 𝑟 its standard deviation. The first measure is based on the opposite of the estimated auto-covariance energy:

𝑅(𝑟) = - ∑ (𝑅 𝑟𝑟 (𝑎 1 , 𝑎 2 )) 2 (𝑈,𝑈) (𝑎 1 ,𝑎 2 )=(-𝑈,-𝑈) (𝑎 1 ,𝑎 2 )≠(0,0)
The purpose of introducing the minus sign is to make this measurement larger when the residual error is whiter. In the case of a white image, its autocovariance follows a Dirac distribution at zero. Typically, the autocovariance pattern shows a significant decrease regarding the original image [START_REF] Almeida | Parameter Estimation for Blind and Non-Blind Deblurring Using Residual Whiteness Measures[END_REF].

Therefore, the authors of [START_REF] Almeida | Parameter Estimation for Blind and Non-Blind Deblurring Using Residual Whiteness Measures[END_REF] suggest weighting the values of the estimated autocovariance with a Gaussian for the second measurement in order to give more weight to the values close to the origin in the previous measurement.

𝑅𝐺(𝑟) = -𝐶 ∑ 𝑊(𝑎 1 , 𝑎 2 )(𝑅 𝑟𝑟 (𝑎 1 , 𝑎 2 )) 2 (𝑈,𝑈) (𝑎 1 ,𝑎 2 )=(-𝑈,-𝑈) (𝑎 1 ,𝑎 2 )≠(0,0)
Where 𝑈 = 4, 𝐶 > 1 and 𝑊(𝑎 1 , 𝑎 2 ) is the weighting matrix:

𝑊(𝑎 1 , 𝑎 2 ) = exp(-1.25(𝑎 1 2 + 𝑎 2 2 ))
Given that the autocorrelation of a white process is represented by a delta function, a white signal exhibits a uniform power spectral density. In order to evaluate this flatness, they suggested to quantify its Shannon entropy after normalization. It is important to note that a flat distribution achieves maximum entropy.

𝐻(𝑟) = -∑ 𝑆 𝑟𝑟 ̃(𝑤, 𝑣) log 𝑆 𝑟𝑟 ̃(𝑤, 𝑣) (𝑤,𝑣)
Where

𝑆 𝑟𝑟 ̃(𝑤, 𝑣) = 𝑆 𝑟𝑟 (𝑤,𝑣) ∑ 𝑆 𝑟𝑟 (𝑤 ′ ,𝑣 ′ ) 𝑤 ′ ,𝑣 ′
and 𝑆 𝑟𝑟 (𝑤, 𝑣) is the power spectral density of 𝑟 at the frequency (𝑤, 𝑣).

In all three cases, the residual image is not always spatially invariant. Hence, the authors suggest computing a local whiteness measure. The auto-covariance estimation is performed on blocks 𝑏 × 𝑏 measuring 9x9 with a 5-pixel overlap in both horizontal and vertical directions. Whiteness measurements are referred to as 𝑅 𝑏 , 𝑅𝐺 𝑏 , and 𝐻 𝑏 . To obtain the overall measurement for each case, the local measurements are averaged solely for the blocks entirely contained within the image.

Conclusion

To assess restoration methods, various criteria are used to evaluate the estimation error. When evaluating the method performance, the choice of a criterion can significantly impact the preference for one method over another. While a method may be evaluated and validated by its authors using a specific criterion, it may receive a lower ranking when compared to another method that employs a different criterion. The search for reliable evaluation criteria is crucial in objectively determining method performance. One notable criterion is the 𝐿 1 norm of the estimation error, which gives a direct measurement without altering the difference between the restored image and its original version. Moreover, this criterion can be applied with and without reference.

Evaluation of PAN's method

The method proposed by PAN [START_REF] Pan | Kernel Estimation from Salient Structure for Robust Motion Deblurring[END_REF] was selected by a previous comparison study made by Zhang et al. [START_REF] Zhang | Accuracy assessment of blind and semi-blind restoration methods for hyperspectral images[END_REF]. In this section we are interested in evaluating the choice of the fixed regularization parameters related to the estimation of the PSF (𝛼) and the latent image (𝛽 𝑙𝑎𝑡 ) and the final image restoration (𝛽).

In Table 1, we represent the cost functions used by PAN [START_REF] Pan | Kernel Estimation from Salient Structure for Robust Motion Deblurring[END_REF] to estimate the Point Spread function (PSF), the latent image 𝑓 𝑙𝑎𝑡 and restore the final image. The regularization parameters 𝛼, 𝛽 𝑙𝑎𝑡 and 𝛽 are associated with the cost function used for PSF estimation, latent image estimation, and final image restoration, respectively.

Usage

Cost function

PSF estimation 𝐶(ℎ) =∥ ∇𝑔 -ℎ * ∇𝑆 ∥ 2 2 + 𝜶 ∥ ℎ ∥ 0.5 0.5 (36) 
Latent image estimation

𝐶(𝑓 𝑙𝑎𝑡 ) = ∥ 𝑔 -ℎ 𝐸 * 𝑓 𝑙𝑎𝑡 ∥ 2 2 + 𝜷 𝒍𝒂𝒕 ∥ ∇𝑓 𝑙𝑎𝑡 ∥ 1 (37) 
Final image restoration

𝐶(𝑓) = ∥ 𝑔 -ℎ 𝐸 * 𝑓 ∥ 2 2 + 𝜷 (𝑒 -‖∇ 𝑥 𝑆‖ 0.8 × ‖∇ 𝑥 𝑓‖ 1 + 𝑒 -‖∇ 𝑦 𝑆‖ 0.8 × ‖∇ 𝑦 𝑓‖ 1 ) (38) 
Table 1: Cost functions used by PAN [START_REF] Pan | Kernel Estimation from Salient Structure for Robust Motion Deblurring[END_REF] 

related to the estimation of the PSF, latent image and final image restoration

According to PAN's method, the regularization parameters 𝛼, 𝛽 𝑙𝑎𝑡 , and 𝛽 related to the estimation of the PSF, latent image and the final image restoration, respectively. These regularization parameters are empirically fixed to (𝛼, 𝛽 𝑙𝑎𝑡 , 𝛽) = (0.01, 0.005, 0.003) after a series of tests conducted by Pan et al.

Initially, the empirical choice of regularization parameters was assessed, emphasizing the complexity of determining manually the most suitable values for these regularization parameters. Additionally, the influence of each regularization parameter was individually evaluated to gain insights into their respective effects on image restoration quality.

Therefore, in the following we have evaluated the empirical choice of the regularization parameters fixed in the method developed by Pan et al [START_REF] Pan | Kernel Estimation from Salient Structure for Robust Motion Deblurring[END_REF]. Then an evaluation was conducted to assess the influence of each regularization parameter over the image restoration quality by first analyzing the influence of the regularization parameter 𝛼 on image restoration quality while keeping the values of 𝛽 𝑙𝑎𝑡 and 𝛽 fixed. This allowed for a thorough examination of the specific impact of 𝛼 on the restoration process. Similarly, the influence of the regularization parameter 𝛽 𝑙𝑎𝑡 was investigated by fixing the values of 𝛼 and 𝛽, enabling an isolated assessment of the effect of 𝛽 𝑙𝑎𝑡 on the restoration quality. Furthermore, the influence of the regularization parameter 𝛽 was examined while keeping 𝛼 and 𝛽 𝑙𝑎𝑡 fixed, shedding light on the specific contribution of 𝛽 to the restoration process.

All these evaluations were conducted using two monochrome images "Bridge" and "Photo" artificially degraded by 3 different motion PSFs of different support sizes 13 × 13, 19 × 19, and 23 × 23 from the dataset [START_REF] Levin | Understanding and evaluating blind deconvolution algorithms[END_REF] shown in Table 2.

Furthermore, for each series of tests, the evaluation was conducted based on four evaluation criteria: Peak Signal to Noise Ratio (PSNR), Signal to Noise Ratio (SNR), Structure Similarity Index Measure (SSIM), the 𝐿 1 norm of the estimation error, and 𝐸(𝐿 1 ) the mean of the 𝐿 1 norm. The two monochrome images in the evaluations and the three motion PSFs used to artificially degraded the images.

Evaluating the empirical choice of the regularization parameters fixed by PAN

The first evaluation aims to assess the fixed values of the regularization parameters 𝛼, 𝛽 𝑙𝑎𝑡 , and 𝛽 chosen by PAN. For this evaluation, ten different combinations of the regularization parameters were randomly selected from the range of ]0, 1]. This assessment was performed on two monochrome images, namely "Bridge" and "Photo," using three different Point Spread Functions (PSFs) of sizes 13 × 13, 19 × 19, and 23 × 23 from Table 2. The Test 1 -PAN, in Table 3, denotes the results using the chosen values for the regularization parameter in Pan's method (𝛼, 𝛽 𝑙𝑎𝑡 , 𝛽) = (0.01, 0.005, 0.003).

Evaluation using PSF of support size 13×13

In this subsection, we degraded the two monochrome images using a PSF of size 13×13 and restored them using ten different combinations for the regularization parameters α, 𝛽 𝑙𝑎𝑡 , and β. The evaluation of the restored images based on the 𝐿 1 norm and SSIM is shown in Table 3. As observed in Table 3, we noticed that for the "Bridge" image, we found a combination of regularization parameters that yielded superior results compared to those fixed by Pan et al. in terms of L1 norm and SSIM. This particular combination, referred to as test 3 and denoted as (𝛼, 𝛽 𝑙𝑎𝑡 , 𝛽) = (0.001,0.05,0.03), achieved better outcomes. For example, using Pan's parameter values, we obtained an 𝐿 1 norm of 3862.49 and an SSIM of 0.7175 dB. On the other hand, using the combination from test 3, the performance is improved, resulted in an 𝐿 1 norm of 3108.2 and an SSIM of 0.8058 dB.

Test

Furthermore, for the "Photo" image, the combination suggested in test 10 of Table 3, (𝛼, 𝛽 𝑙𝑎𝑡 , 𝛽) = (0.05,0.004,0.002), outperformed the proposed combination by Pan et al., (𝛼, 𝛽 𝑙𝑎𝑡 , 𝛽) = (0.01,0.005,0.003), based on the evaluation criteria used in this study. Upon examining the results in Table 3, we can see that using Pan's parameter values for the restoration of the "Photo" image yielded an 𝐿 1 norm of 1131.44 and an SSIM of 0.9356 dB. Conversely, when employing the parameter values from test 10, we obtained an 𝐿 1 norm of 1124.93 and SSIM of 0.9360 dB. In this case, performance is enhanced.

Comparisons using other selected evaluation criteria (PSNR, SNR, 𝐸(𝐿 1 ) norm, and MSE) yielded the same results obtained above, see appendix.

Table 4 shows a visual comparison, in addition to numerical evaluation, between the original images ("Bridge" and "Photo") and the restored images the restoration was performed using specific regularization parameters set for Test Based on Table 3, Table 4, and Figures 123, we can observe that when applying the same degradation function (PSF of support size 13 × 13) to two different monochrome images, the combination of regularization parameters that yielded the best result for the "Bridge" image, as shown in Table 3, differs from the one that produced the best result for the "Photo" image. 

Evaluating the influence of each regularization parameter over the image restoration quality

In this section, we evaluated the influence of each regularization parameter α, 𝛽 𝑙𝑎𝑡 , and β over the image restoration quality. For these evaluations, we used the same evaluation criteria mentioned before: PSNR, SNR, SSIM, 𝐸(𝐿 1 ) norm, 𝐿 1 norm, and MSE.

To evaluate each parameter alone, we need to fix two parameters and varying the other with a step size of 0.05. We took the regularization parameter values from Table 5 which yielded better results than the others.

Additionally, for this evaluation, we have used the image "Bridge" and "Photo" with the same PSFs used before (13 × 13, 19 × 19, and 23 × 23).

Evaluation using PSF of support size 13x13

Here, we are evaluating the influence of the regularization parameters 𝛼, 𝛽 𝑙𝑎𝑡 , and 𝛽 over the image restoration quality using a PSF of support size 13 × 13 for two image "Bridge" and "Photo".

Evaluating the influence of the regularization parameter 𝛼 over the restoration quality by fixing 𝛽 𝑙𝑎𝑡 and 𝛽

To evaluate the influence of the regularization parameter 𝛼 related to the PSF estimation, we fixed 𝛽 𝑙𝑎𝑡 and 𝛽 , then varied 𝛼 within the range ]0, 1] with a step size of 0.05.

Table 6 demonstrates the impact of the regularization parameter 𝛼 on the PSF of support size 13 × 13 using five evaluation metrics. For the "Bridge" image, 𝛽 𝑙𝑎𝑡 = 0.05 and 𝛽 = 0.03 are fixed, whereas for the "Photo" image, 𝛽 𝑙𝑎𝑡 = 0.004 and 𝛽 = 0.002. In this subsection, we conducted an evaluation to assess the impact of the regularization parameter related to the latent image, 𝛽 𝑙𝑎𝑡 , on the quality of the image restoration. To achieve this, we varied the value of 𝛽 𝑙𝑎𝑡 within the range ]0.1], using a step size 0.05. Additionally, we maintained the value of 𝛽 as it was fixed in the previous subsection, with a value of 0.03 for the "Bridge" image and 0.002 for the "Photo" image. The fixed values of 𝛼 are set to the values found in the previous subsection that provided better performance than Table 5. For the "Bridge" image, the fixed value of 𝛼 was set to 0.15, while for the "Photo" image, 𝛼 was set to 0.25. Regarding the "Photo" image, it can be observed that the combination (𝛼, 𝛽 𝑙𝑎𝑡 , 𝛽) = (0.25,0.001,0.002) yielded an 𝐿 1 norm value of 942.86 and an SSIM value of 0.9492 dB. In contrast, the previous combination (𝛼, 𝛽 𝑙𝑎𝑡 , 𝛽) = (0.25,0.004,0.02) resulted in an 𝐿 1 norm value of 1054.41 dB and SSIM value of 0.9414 dB. Therefore, the new combination demonstrated better restoration quality than the previous one.

Test

In addition to that, the other selected evaluation criteria confirm the results obtained above and presented in the Appendix.

Figures 67illustrate the influence of the regularization parameter 𝛽 𝑙𝑎𝑡 on the quality of image restoration. The combination (𝛼, 𝛽 𝑙𝑎𝑡 , 𝛽) = (0.15, 𝜷 𝒍𝒂𝒕 , 0.03) was used for the "Bridge" image, while (𝛼, 𝜷 𝒍𝒂𝒕 , 𝛽) = (0.25, 𝜷 𝒍𝒂𝒕 , 0.002) was employed for the "Photo" image. Providing a visual insight into how different values of 𝛼 impact the restoration quality for each respective image. After finding the value of 𝛼 and 𝛽 𝑙𝑎𝑡 that gave the best restoration quality based on the series of testes conducted in section 3.2.1.1. and 3.2.1.2. for both monochrome images "Bridge" and "Photo", we fixed these values to evaluate the influence of the regularization parameter 𝛽 on the restoration quality of both images. For the restoration of the "Bridge" image, we fixed 𝛼 = 0.15 and 𝛽 𝑙𝑎𝑡 = 0.35, while for the "Photo" image, 𝛼 = 0.25 and 𝛽 𝑙𝑎𝑡 = 0.001. 𝛽 varies in both cases in the rang ]0,1] with a step size 0.05. Regarding the "Photo" image, it can be observed that the combination (𝛼, 𝛽 𝑙𝑎𝑡 , 𝛽) = (0.25,0.001,0.001) yielded an SSIM value of 0.9492 dB and an 𝐿 1 norm value of 942.86. In contrast, the previous combination (𝛼, 𝛽 𝑙𝑎𝑡 , 𝛽) = (0.25,0.001,0.002) yielded an SSIM value of 0.9504 dB and an 𝐿 1 norm value of 981.88. Therefore, the previous combination demonstrated better restoration quality than the current one.

Furthermore, Figures 89visually illustrate the impact of the regularization parameter 𝛽 on the image restoration quality. After separately evaluations of the influence of each regularization parameter value α, 𝛽 𝑙𝑎𝑡 , and β, related to the estimation of the PSF, latent image, and final image restoration, respectively, we have found the combinations (𝛼, 𝛽 𝑙𝑎𝑡 , 𝛽) = (0.15,0.35,0.03) and (𝛼, 𝛽 𝑙𝑎𝑡 , 𝛽) = (0.25,0.001,0.001) for the "Bridge" and "Photo" images, respectively, resulting in superior restoration quality compared to the fixed parameters used by Pan et al. (𝛼, 𝛽 𝑙𝑎𝑡 , 𝛽) = (0.01,0.005,0.003). These evaluations were conducted on two monochrome images, "Bridge" and "Photo", which were artificially degraded by a PSF with a support size of 13×13. 

Conclusion

In conclusion, the evaluation of restoration methods involves the use of various criteria to assess the estimation error. The choice of a criterion can significantly impact the preference for one method over another, highlighting the importance of reliable evaluation criteria for objective performance assessment.

The 𝐿 1 norm emerges as a notable criterion that provides a direct measurement of the difference between the restored image and the original, applicable both with and without reference.

Furthermore, the evaluation of Pan's algorithm using different combinations of regularization parameters revealed that certain parameter combinations outperformed the fixed values proposed by Pan et al. This indicates that the fixed values are suboptimal and do not yield the highest image restoration quality. Through the analysis of metrics such as PSNR, SNR, 𝐿 1 norm, MSE, and SSIM, it becomes evident that fine-tuning of parameters can lead to improved restoration outcomes.

Moreover, a comprehensive analysis of the influence of each regularization parameter over the restoration quality was conducted in order to find experimentally an optimal combination that yields the optimal solution. Table 9 shows the best combination found in this chapter that gave the highest restoration quality for both monochrome images used and degraded by three different PSF of different support sizes (13 × 13, 19 × 19, 23 × 23).

Table 10 presents a comparison between the restored "Bridge" and "Photo" images using the regularization parameter values found in Table 9, and the restored images using the fixed values of PAN. When examining the results for both images with the PSF of support size 13 × 13 in Table 10, it is evident that the newly combined parameter values result in higher visual quality for both "Bridges" and "Photo" images compared to PAN's combination. As depicted in Table 9, each image and PSF combination shows a specific set of parameters that result in superior restoration quality. Conversely, the fixed combination proposed by PAN et al (𝛼, 𝛽 𝑙𝑎𝑡 , 𝛽) = (0.01, 0.005, 0.003) is applied to any PSF and image, leading to a suboptimal solution.

Images

Moreover, experimentally determining the optimal combination for achieving the highest restoration quality is a daunting task, as it requires testing an enormous number of possible combinations, to cover the range of each regularization parameter. Consequently, such a task becomes nearly impossible to accomplish within a reasonable timeframe Hence, to find the optimal combination, an automatic estimation of the regularization parameter values is necessary to achieve convergence of the cost functions associated with the PSF, latent image, and final image restoration. This topic will be explored in detail in the upcoming chapter. 

Introduction

Based on the comparative study made by Mo Zhang et al. [START_REF] Zhang | Accuracy assessment of blind and semi-blind restoration methods for hyperspectral images[END_REF], the selected semi blind hybrid method proposed by Pan et al. relies on prior knowledge such as regularization parameter values, the number of iterations, the PSF support size, and more. Following the study conducted in the previous chapter over the proposed method by Pan et al., we highlighted on the influence of the regularization parameter 𝛼, 𝛽 𝑙𝑎𝑡 , and 𝛽 related to the estimation of the PSF, latent image and final image restoration, respectively, on the quality of the image restoration. We also emphasized the variability in the performance of this method based on the image to be restored, the support size of the degradation function and the choice of the regularization parameter values. All of these challenges make it more difficult to appropriately choose a combination yielding the optimal result. This difficulty is further amplified by the empirical and manual selection of the regularization parameter values.

In order to address these limitations and drawbacks, this chapter focuses on the development of a blind restoration method that eliminates the need for any prior knowledge. The goal is to design an approach that can restore images without relying on explicit information about regularization parameters, or specific characteristics of the degradation function.

By developing a blind restoration method, we aim to overcome the inherent challenges associated with traditional restoration techniques. These challenges include the reliance on pre-defined parameters, the variability in performance based on image types, and the subjective nature of regularization parameter selection. These difficulties make the selection of an appropriate restoration method a more complicated task.

To tackle these issues, our objective is to develop a method that can autonomously restore images by leveraging inherent structures and patterns within the image itself. By developing a blind restoration approach, we aim to reduce the reliance on empirical choices and facilitate the restoration process.

Before presenting the proposed solutions to achieve this objective, we first highlight the challenges inherent to the problem of blind restoration.

The Challenges of Blind restoration

Our objective is to estimate both the PSF (ℎ) and the original image (𝑓) only from the observation image (𝑔), without any prior knowledge. To minimize the reliance on prior knowledge, we propose to developing a blind restoration method where the only required prior information is the PSF support size.

To achieve our goal, we will decompose the restoration problem into two sub-problems: first, the estimation of the PSF, and then the estimation of the original image, as suggested in most of the hybrid methods such as PAN [START_REF] Pan | Kernel Estimation from Salient Structure for Robust Motion Deblurring[END_REF] and Krishnan [START_REF] Krishnan | Blind deconvolution using a normalized sparsity measure[END_REF]. The estimation of the PSF is performed alternately by exploiting the edges of a latent image. Subsequently, the estimated PSF is used for restoring the desired original image. This method is defined as a hybrid approach.

By adopting this approach, we aim to minimize the prior knowledge required for blind restoration and focus on estimating both the PSF and the original image from the observed data only. This allows for a more reliable and robust restoration method that can adapt to different image characteristics and eliminate the need for explicit prior information except the PSF support size.

This chapter is divided into four sections. Given that the proposed method is based on the same principles as the PAN method (referred to as the original method throughout the manuscript), the first section provides a comprehensive overview of its various steps, highlighting the properties and characteristics of the selected solutions for the PSF and latent image estimation as well as the final image restoration.

The second section specifies the different enhancements proposed to the original method in order to improve the restoration results of the original monochrome image while reducing the required prior knowledge. It is assumed that the PSF support size is known, along with a noiseless observation model.

The third section denotes the two strategies proposed to restore a full hyperspectral image based on the developed blind method for monochrome images.

The fourth section represents the series of tests conducted to evaluated the performance of the proposed blind method proving its superiority over the original method as well as the recent proposed methods in the literature. These evaluations are conducted on diverse databases consisting of monochrome, multicomponent, and hyperspectral images. To degrade the images, different blur functions with different support sizes are employed.

Principle of the original method

In the comparative study [START_REF] Zhang | Accuracy assessment of blind and semi-blind restoration methods for hyperspectral images[END_REF] conducted by Zhang et al., the hybrid method developed by PAN et al. [START_REF] Pan | Kernel Estimation from Salient Structure for Robust Motion Deblurring[END_REF] yielded the most promising results. Implementing this method allows for accurate estimation of both the PSF and the latent image using regularized cost functions. In the context of this thesis, we pursued a similar approach, but with a primary objective of developing a blind method with improved performance compared to existing ones.

Additionally, the evaluation conducted in Chapter 2, pointed out the suboptimality of the manual fixation of the regularization parameter values 𝛼, 𝛽 𝑙𝑎𝑡 , and 𝛽 related to the estimation of the PSF, the latent image, as well as the final image restoration, respectively. This emphasizes the importance of the automatic tuning of these parameters. Therefore, we first recall the principle of this semi-blind method.

In the method proposed in [START_REF] Pan | Kernel Estimation from Salient Structure for Robust Motion Deblurring[END_REF], it is assumed that the observation model is noise-free (𝑔 = ℎ * 𝑓). This multi-scale method estimates the PSF and an intermediate latent image, 𝑓 𝑙𝑎𝑡 , alternately. The estimated PSF is then used for restoring the original image. Table 11, provides a summary of the two main steps, namely the estimation of the PSF and the original image, and specifies the different empirical a priori knowledge set by the user.

The PSF is estimated by minimizing a cost function with three terms. The first two terms correspond to data fidelity in the horizontal and vertical gradient spaces, respectively, while the third term is based on the sparsity assumption of the PSF. The latent image is estimated by minimizing a cost function with two terms.

• 

Developed Blind Method for monochrome images

In this section, we propose a method to solve the complex problem of blind monochrome image restoration where there is no prior information available about the original monochrome image, blur, or regularization parameter values.

Based on a study by Zhang et al. [START_REF] Zhang | Accuracy assessment of blind and semi-blind restoration methods for hyperspectral images[END_REF][49], the proposed blind method is considered a hybrid approach that follows the same principles as the semi-blind method proposed by Pan et al. [START_REF] Pan | Kernel Estimation from Salient Structure for Robust Motion Deblurring[END_REF] with an adaptive selection step for regularization parameter values. To develop a method with the same principle while improving the restoration quality, various solutions are proposed related to the estimation of the PSF and the latent image also for the final image restoration.

Proposed solution for the PSF and latent image estimation

To reduce the number of prior known information and avoid the manual tuning of the regularization parameters while optimizing the results, four steps are introduced for the PSF and the latent image estimation illustrated in Figure 10 The estimation of the PSF (Point Spread Function) and the latent image is performed following a multiscale pyramidal model, starting from the coarsest scale and progressing to the finest scale (also known as full scale). At the coarsest scale the PSF support size, assumed to be square, is defined as 𝑒 1 ℎ = 𝐿 1 ℎ × 𝐿 1 ℎ as for the latent image 𝑒 1 𝑓 = 𝐿 1 𝑓 × 𝐻 1 𝑓 .

𝒈 𝒉 ̂, 𝒇 𝒍𝒂𝒕

Having the PSF support size of 𝐾 × 𝐾 pixels and the image of size 𝑀 × 𝑁 pixels, the PSF size at the current 𝑖 𝑡ℎ scale is defined as 𝐿 𝑖 ℎ × 𝐿 𝑖 ℎ .

𝐿 (𝑖+1)ℎ = 𝐿 𝑖ℎ + 2 (39) 
As for the latent image at the 𝑖 𝑡ℎ scale, its size is equal to 𝑒 1 𝑓 = 𝐿 1 𝑓 × 𝐻 1 𝑓 where:

𝐿 (𝑖+1)𝑓 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑝𝑎𝑟𝑡 [𝑀 × 𝐿 (𝑖+1)ℎ 𝐾 ] (40) 
𝐻 (𝑖+1)𝑓 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 𝑝𝑎𝑟𝑡 [𝑁 × 𝐿 (𝑖+1)ℎ 𝐾 ] (41) 
The sizes of the coarsest scales 𝑒 1 ℎ and 𝑒 1 𝑓 are determined to be half of the sizes of the PSF and degraded image at full scale, respectively.

Separation of the structural and textural components of an image

To estimate the PSF and the latent image, the separation of the structural (edges) and textural components (textured and flat regions) of an image is a necessary step. Recalling the model for the structural and textural components separation:

min 𝐼 𝑠 1 2 ∋ 𝒔,𝒕 × 𝑒 -‖𝑟‖ 0.8 × ‖𝐼 𝑠 -𝑓 𝑙𝑎𝑡 ‖ 2 2 + ‖𝛻𝐼 𝑠 ‖ 2 (42) 
∋ 𝑠,𝑡 denotes the regularization parameter for the separation of the structural and textural components.

To mitigate the impact of the staircase effect in the structural component on the PSF estimation, the value of the regularization parameter needs to be large in smooth areas and small near the edges. Therefore, in [START_REF] Huang | Joint blur kernel estimation and CNN for blind image restoration[END_REF] an adjustment parameter 𝑒 -‖𝑟‖ 0.8 is introduced, where 𝑟(𝑖) is defined as follows:

𝑟(𝑖) = ‖∑ 𝛻𝑓 𝑙𝑎𝑡 (𝑧) 𝑧∈𝑊 𝑞 (𝑖) ‖ 2 ∑ ‖𝛻𝑓 𝑙𝑎𝑡 (𝑧)‖ 2 𝑧∈𝑊 𝑞 (𝑖) + 0.5 (43) 
𝑊 𝑞 (𝑖) is a window of size 𝑞 × 𝑞 centered at pixel 𝑖. The divider consists of two parts: the first one indicates how strong the image structure is in a window 𝑊 𝑞 (𝑖). The second part is the added 0.5 value to prevent producing a large value in flat areas of the image.

Following the separation phase, a shock filter ( 44) is applied to refine the previously obtained edges. In the original method [START_REF] Pan | Kernel Estimation from Salient Structure for Robust Motion Deblurring[END_REF], the authors update three regularization parameters:

𝜕𝐼 𝑠 ∂ 𝑡 = -𝑠𝑖𝑔𝑛(∆𝐼 𝑠 ̃ ) × ‖𝛻𝐼 𝑠 ̃‖2 ( 
i)

The regularization parameter related to the structural and textural components separation, ∋ 𝑠,𝑡 ii)

The regularization parameter related to the cock filter to enhance the structural component, 𝐼 𝑠 iii)

The edge selection threshold, 𝜗 For these three regularization parameters, the reduction factor is fixed to 1.1. Additionally, the number of iterations for selecting the estimated PSF and the latent image is empirically fixed to 5 iterations.

In the thesis of Mo Zhang [START_REF] Zhang | Vers une méthode de restauration aveugle d'images hyperspectrales[END_REF], a series of tests were conducted, showing the following drawbacks:

i)

The evolution of the regularization parameters ∋ 𝑠,𝑡 , 𝑡, and 𝜗, chosen by the authors, does not guarantee the convergence of the algorithm ii)

Fixing the number of iterations to 5 for selecting the estimation results yields to a suboptimal solution.

To resolve the problem mentioned in i), we propose to handle the decreasing evolution of the values of the two parameters ∋ 𝑠,𝑡 and 𝑡 differently at each scale, and the edge selecting threshold of the latent image.

The values of ∋ 𝑠,𝑡 and 𝑡 are determined at the beginning of each scale and remain constant throughout all iterations. However, at the full scale, they vary during the first five iterations to extract relevant contours and then remain constant thereafter.

The initialization value for the regularization parameter ∋ 𝑠,𝑡 and 𝑡 is fixed at 1. To eliminate the fixed decreasing ratio for these parameters, the updating values is ensured by a scale factor 𝑓𝑎𝑐 𝑒𝑐ℎ as follows:

∋ 𝑠,𝑡 𝑖+1 = ∋ 𝑠,𝑡 𝑖 𝑓𝑎𝑐 𝑒𝑐ℎ , 𝑡 𝑖+1 = 𝑡 𝑖 𝑓𝑎𝑐 𝑒𝑐ℎ
, 𝑓𝑎𝑐 𝑒𝑐ℎ = 𝐿 (𝑖+1)ℎ × 𝐿 (𝑖+1)ℎ 𝐿 𝑖ℎ × 𝐿 𝑖ℎ At the full scale, the values of these two regularization parameters are updated for the first five iterations as follows:

∋ 𝑠,𝑡 𝑛𝑏+1 = ∋ 𝑠,𝑡 𝑛𝑏 𝑓𝑎𝑐 𝑒𝑐ℎ , 𝑡 𝑛𝑏+1 = 𝑡 𝑛𝑏 𝑓𝑎𝑐 𝑒𝑐ℎ
Where 𝑛𝑏 corresponds to the number of iterations.

As for the edge selecting threshold 𝜗, estimated at each iteration, and determined by: first the edges of 𝐼 𝑠 ̃ are classified into eight groups based on the eight orientations instead of four. Then, for each group, the magnitude of the edges is calculated, and only the top 1% of edges with the highest magnitude are retained. Finally, the estimated threshold value is determined as the lowest value among the retained edges.

Furthermore, to improve the original method, we propose a blind stopping criterion to ensure a better estimation of the PSF and the latent image. Defining a blind stopping criterion can only rely on the available data. In our case, the only available data is the observed image and its estimation. Since the L1 norm provides a direct and untransformed estimation error (direct sum over each pixel), we prioritize it over the L1 norm of the estimation error. Therefore, the optimal solution is the one that minimizes ‖𝑔 -ℎ * 𝑓 𝑙𝑎𝑡 ‖ 1 .

Estimation of the regularization parameter 𝛼 and the PSF

In this subsection, we are looking to estimate the regularization parameter 𝛼 related to the estimation of the PSF. The objective here is to determine the value of 𝛼 at each iteration.

After introducing the separation of the structural and textural components to extract the most significant edges, from which the PSF estimation is derived, a pyramidal multiscale approach, as suggested in [START_REF] Pan | Kernel Estimation from Salient Structure for Robust Motion Deblurring[END_REF] is being implemented. The approach involves minimizing the cost function ( 45) related to the PSF at each scale.

𝐶(ℎ) = 1 2 [‖ℎ × ∇ x 𝑆 -∇ 𝑥 𝑔‖ 2 2 + ‖ℎ × ∇ 𝑦 𝑆 -∇ 𝑦 𝑔‖ 2 2 ] + 𝜶 ̂ ‖ℎ‖ 0.5 0.5 (45) 
Where ∇ 𝑥 𝑆 and ∇ 𝑦 𝑆 represent the horizontal and vertical salient edges, respectively, after the postprocessing of 𝑓 𝑙𝑎𝑡 .

The "Generalized Cross Validation" (GCV) approach allows the estimation of the regularization parameter 𝛼 without prior known information. It exists a variant known as "Weighted Generalized Cross Validation" (WGCV), proposed in [START_REF] Chung | A weighted GCV method for Lanczos hybrid regularization[END_REF] as an enhancement to the GCV approach. Both of these approaches were developed for Tikhonov-type regularization (L2 norm), noting that the cost function used in the original approach [START_REF] Pan | Kernel Estimation from Salient Structure for Robust Motion Deblurring[END_REF] for the PSF estimation is of hyper-Laplacian-type (L1/2 norm).

In the previous thesis of Zhang Mo [49], the choice of the hyper-Laplacian-type regularization was justified. An analysis to evaluate the effectiveness of applying GCV and WGCV for estimating the regularization parameter 𝛼 was also conducted in [START_REF] Zhang | Vers une méthode de restauration aveugle d'images hyperspectrales[END_REF]. This analysis justified the utilization of the WGCV approach, which is seen as minimizing the sum of prediction errors. The PSF cost function used for the WGCV is as follows :

𝐶(ℎ) = 1 2 ‖ℎ 𝐸 × ∇ x 𝑆 -∇ 𝑥 𝑔‖ 2 2 + 𝛼 ̂𝑥 ‖ℎ 𝐸 ‖ 2 2 + 1 2 ‖ℎ 𝐸 × ∇ 𝑦 𝑆 -∇ 𝑦 𝑔‖ 2 2 + 𝛼 ̂𝑦‖ℎ 𝐸 ‖ 2 2 (46) 
Considering {[𝛻 𝑖 𝑔] 𝐿 -[ℎ 𝐸 × 𝛻 𝑖 𝑆] 𝐿 } 2 as the error prediction at the 𝐿 𝑡ℎ component of the gradients in the horizontal and vertical directions. To calculate the values of 𝛼 𝑥 and 𝛼 𝑦 , we need to estimate the PSF (ℎ) by minimizing the following:

𝐶(ℎ) = ∑ 1 2 ‖𝐹 𝑗 × ([∇ 𝑖 𝑔] 𝑙 -[ℎ 𝐸 × ∇ 𝑖 𝑆] 𝐿 )‖ 2 2 𝑚 2 𝐿=1 + 𝜶 ̂𝒊 × ‖ℎ 𝐸 ‖ 2 2 ( 47 
)
𝑚 2 is the size of the enhanced and thresholded structural components ∇ 𝑖 𝑆. The authors of [START_REF] Chung | A weighted GCV method for Lanczos hybrid regularization[END_REF] proposed, to partially preserve the observation [𝛻 𝑖 𝑔 ] 𝐿 , a diagonal matrix

𝐹 𝑗 = 𝑑𝑖𝑎𝑔 (1,1, … 1, √(1 -𝜔), 1, … ,1)
with 𝜔 ∈ [0,1]. Therefore, the corresponding model for the estimation of the regularization parameter 𝛼 𝑖 is the one that minimizes the WGCV criteria [START_REF] Chung | A weighted GCV method for Lanczos hybrid regularization[END_REF]:

➢ Algorithm for the estimation of the regularization parameter 𝜶 and the PSF

The following algorithms are implemented to estimate the regularization parameter α associated with the cost function of the PSF(Algorithm 1), along with the estimation of the PSF (Algorithm 2). )

Algorithm 1

Input: k =1, 𝜔 1 =
) -1 × (∇ 𝑥 𝑆 𝑇 ∇ 𝑥 𝑔 + ∇ 𝑦 𝑆 𝑇 ∇ 𝑦 𝑔) ℎ ̂1 = ℎ ̂ End for ℎ ̂(ℎ ̂< 0) = 0 ℎ ̂= ℎ ∑ℎ ̂(𝑖, 𝑗)

Estimation of the regularization parameter 𝛽 𝑙𝑎𝑡 and 𝑓 𝑙𝑎𝑡

In this subsection, we will now focus on estimating the regularization parameter 𝛽 𝑙𝑎𝑡 associated with the regularization term of the latent image in the cost function [START_REF] He | Single Image Haze Removal Using Dark Channel Prior[END_REF].

𝐶(𝑓 𝑙𝑎𝑡 ) = ∥ 𝑔 -ℎ 𝐸 * 𝑓 lat ∥ 2 2 + 𝛽 𝑙𝑎𝑡 ∥ ∇𝑓 𝑙𝑎𝑡 ∥ 1
The value of 𝛽 𝑙𝑎𝑡 ∈ ]0,1[.

The estimation of 𝛽 𝑙𝑎𝑡 involves estimating the parameter λ (given that 𝛽 𝑙𝑎𝑡 = 1

𝜆

) according to the relationship established in [START_REF] Dong | Automated Regularization Parameter Selection in Multi-Scale Total Variation Models for Image Restoration[END_REF]. Once the value of 𝜆 is determined, it is integrated into the cost function [START_REF] He | Single Image Haze Removal Using Dark Channel Prior[END_REF] for the estimation of 𝑓 𝑙𝑎𝑡 .

We first define (𝜆 𝑘 ) (𝑖,𝑗) as the approximation of the regularization parameter 𝜆 for each pixel (𝑖, 𝑗) at each iteration 𝑘. The local variation of 𝑓 ̂𝑙𝑎𝑡 at (𝑖, 𝑗) is defined by the average filter proposed in [START_REF] Dong | Automated Regularization Parameter Selection in Multi-Scale Total Variation Models for Image Restoration[END_REF][66]:

𝑆 𝑖,𝑗 𝑣 = 1 𝑣 × 𝑣 × ∑ [𝑔(𝑠, 𝑡) -ℎ 𝐸 * 𝑓 𝑙𝑎𝑡 (𝑠, 𝑡)] 2 𝑠,𝑡∈𝛺 𝑖,𝑗 𝑣 (50) 
where 𝑣 × 𝑣 is the window size and 𝛺 𝑖,𝑗 𝑣 = {(𝑠 + 𝑖, 𝑡 + 𝑗), -

𝑣-1 2 ≤ 𝑠, 𝑡 ≤ 𝑣+1 2 }.
With the definition provided above, the estimation of the regularization parameter 𝜆, as outlined in [START_REF] Hintermüller | Expected absolute value estimators for a spatially adapted regularization parameter choice rule in L1-TV-based image restoration[END_REF] and evaluated in Zhang Mo's thesis [START_REF] Zhang | Vers une méthode de restauration aveugle d'images hyperspectrales[END_REF], is as follows:

(𝜆 ̂𝑘+1 ) 𝑖,𝑗 = 1 𝑣 × 𝑣 × ∑ (𝜆 ̃𝑘+1 ) 𝑠,𝑡 𝑠,𝑡∈𝑆 𝑖,𝑗 𝑣 (51) 
With (𝜆 ̃𝑘+1 ) 𝑖,𝑗 = 2 × [(𝜆 ̂𝑘) 𝑖,𝑗 + 𝜌 𝑘 × max ((𝑆 𝑖,𝑗 𝑣 -𝜎), 0)]

Here, the multiplication by 2 accelerates the convergence speed, and since the process of updating the value of λ is iterative, the value of 𝜆 0 is initialized as the degraded image. 𝜎 = 𝑒 -10 , and 𝜌 𝑘 is set to ‖𝜆 𝑘 ‖ ∞ to maintain the same scale order.

At the full scale, 𝑓 𝑙𝑎𝑡 is initialized with the blurred image. Then, the intermediate image is estimated, and 𝜆 ̂ is recalculated based on the latent image. The recalculated 𝜆 ̂ is used as input for the next scale.

The stopping criteria is when the variation of ‖𝑔 -ℎ * 𝑓 𝑙𝑎𝑡 ‖ 2 2 between two consecutive iterations is less than a threshold (𝑇ℎ = 10 -3 ).

‖𝑔 -ℎ 𝑘-1 * 𝑓 𝑙𝑎𝑡 𝑘-1 ‖ 2 2 -‖𝑔 -ℎ 𝑘 * 𝑓 𝑙𝑎𝑡 𝑘 ‖ 2 2 ≤ 𝑇ℎ (52) 
After determining the update relationship of the parameter λ, we will incorporate it into the implementation process of the algorithm for estimating the latent image 𝑓 𝑙𝑎𝑡 .

In the coarsest scale, the parameter λ is initialized using the degraded image For the estimation of 𝑓 𝑙𝑎𝑡 , we need to minimize the cost function [START_REF] He | Single Image Haze Removal Using Dark Channel Prior[END_REF]. First, the initialization of 𝑓 𝑙𝑎𝑡 is set to the degraded image. Following the same algorithm proposed in [START_REF] Pan | Kernel Estimation from Salient Structure for Robust Motion Deblurring[END_REF], the optimality condition is when ∇𝐶(𝑓 𝑙𝑎𝑡 ) = 0. Meanwhile, the regularization term ∥ ∇𝑓 𝑙𝑎𝑡 ∥ 1 is undifferentiable when ∇𝑓 𝑙𝑎𝑡 is null. Therefore, the approximation of ∇[∥ ∇𝑓 𝑙𝑎𝑡 ∥ 1 ] at the iteration 𝑘 is as follows: 

∇ 𝑓 𝑙𝑎𝑡 [∥ ∇𝑓 𝑙𝑎𝑡,

End for

➢ The global algorithm for the estimation of the PSF

Here, we present the global algorithm for the alternating step of estimating the Point Spread Function (PSF) and the corresponding latent image 𝑓 𝑙𝑎𝑡 , along with the estimation of the regularization parameters α and 𝛽 𝑙𝑎𝑡 . The algorithm follows the proposed solutions and incorporates the suggested modifications.

The specific description of the alternating step for estimating the PSF and the latent image is provided below:

Algorithm 4 Input:

➢ Degraded image 𝒈 ➢ PSF size 𝒌 𝟏 , 𝒌 𝟐 ➢ Initialization of the regularization parameter related to the cost function of the estimation of 𝑓 𝑙𝑎𝑡 : 𝜆 0 = 𝑔 ➢ Initialization of the regularization parameters related to the separation between the structural and textural components ϶ 𝐬,𝐭 = 𝟏 ➢ Initialization the parameter related to the chock filter 𝒕 = 𝟏 ➢ Calculating the maximum number of scales, 𝒎𝒂𝒙 𝒔𝒄𝒂𝒍𝒆𝒔 (section 3.1.1) ➢ Calculating the PSF size for each scale PSF estimation:

for 𝑖 𝑠𝑐𝑎𝑙𝑒 = 1: 𝑚𝑎𝑥 𝑠𝑐𝑎𝑙𝑒𝑠 𝜆 0 = 𝑔 (subsampled)

If 𝑖 𝑠𝑐𝑎𝑙𝑒 == 1 𝑓 𝑙𝑎𝑡 = 𝑔 (subsampled) Else 𝑓 𝑙𝑎𝑡 = [ℎ 𝐸 𝑇 × ℎ 𝐸 𝑇 + 𝜆 0 -1 ( ∇ 𝑥 ×𝐼 max(|∇ 𝑥 𝑓 𝑙𝑎𝑡 |,𝜏 𝑥 ) + ∇ 𝑦 ×𝐼 max(|∇ 𝑦 𝑓 𝑙𝑎𝑡 |,𝜏 𝑦 ) )] -1 × (ℎ 𝐸 𝑇 𝑔)

End if 𝜆 ̂= 𝜆 0

For 𝑘 = 1: 𝒎𝒂𝒙𝒊𝒕𝒓 • Estimation of the structural component 𝐼 ̂𝑠 from 𝑓 ̂𝑙𝑎𝑡 using (42)

• Compute 𝐼 𝑠 ̃ by applying shock filter for 𝐼 ̂𝑠 using (44)

• Edge extraction from 𝐼 𝑠 ̃ then apply the estimated threshold 𝜗 to select significant edges • Estimation of the regularization parameter 𝛼 by applying the WGCV approach (Algorithm 1). Then estimation of the PSF (Algorithm 2) • Estimation of the regularization parameter 𝜆, then estimate 𝑓 𝑙𝑎𝑡 (Algorithm 3) End for Retain ℎ ̂ corresponding to the minimum of the criterion ‖𝑔 -𝑔 ̂‖1 for all the 𝒎𝒂𝒙𝒊𝒕𝒓 iterations. Update the regularization parameters ϶ 𝐬,𝐭 and 𝒕 as described in section 3.1.1.

End for

Output: ℎ ̂, 𝑓 𝑙𝑎𝑡 corresponding to the minimum of the criterion ‖𝑔 -𝑔 ‖₁ over 100 iterations.

Original image estimation

For this subsection we are interested in the original image restoration. For this restoration we use the estimated PSF from the previous alternated step explained in subsection 3.1.

To restore the original image, two steps are introduced shown in Figure 11 This approach retains only the essential values of the estimated PSF while adjusting its support size. Initially, an adaptive threshold is applied based on the standard deviation of the estimated PSF. Then the support size is reduced by eliminating pixels values lower than the threshold. If, after this adjustment, the number of rows or columns is even, an additional row or column is added to ensure an odd-sized PSF support. Finally, a re-normalization step is performed to guarantee that the sum of all values is equal to 1.

Estimation of the regularization parameter 𝛽 and the final image

After reducing the spatial shifting induced in the PSF estimation phase, we are interested in restoring the final image using the refined estimated PSF. First, we represent the cost function related to the final image restoration used in this second step.

𝐶(𝑓) = ‖ℎ 𝐸 * 𝑓 -𝑔‖ 2 2 + 𝛽 ̂ ‖∇ 2 𝑓‖ 1 ( 54 
)
𝜷 ̂ is the estimated regularization parameter related to the original image estimation equal to λ -1 , ‖∇ 2 𝑓‖ 1 is the total anisotropic variation of second order.

To find the optimal solution for the cost function [START_REF] Xue | Gradient Magnitude Similarity Deviation: A Highly Efficient Perceptual Image Quality Index[END_REF], we use the same approach proposed in [START_REF] Levin | Image and depth from a conventional camera with a coded aperture[END_REF]:

The optimality condition is ∇𝐶(𝑓) = 0. While the term ‖∇ 2 𝑓‖ 1 is not differentiable when ∇ 2 𝑓 is null, an approximation of ∇[‖∇ 2 𝑓‖ 1 ] is expressed as follows:

∇ 𝑓 [‖∇ 2 𝑓 ̂𝑘‖ 1 ] ≈ ∑ ∇ 𝑢 𝑓 ̂𝑘 max(|∇ 𝑢 𝑓 ̂𝑘-1 |, 𝜏 𝑢 ) 𝑢
𝑓 ̂𝑘-1 is the estimated image in the previous iteration, initially estimated by the solution of 𝛻‖ℎ 𝐸 * 𝑓 ̂-𝑔‖ 2 2 = 0, 𝑢 ∈ {𝑥, 𝑦, 𝑥𝑦, 𝑥𝑥, 𝑦𝑦}, 𝜏 𝑢 are values introduced to prevent the division by zero.

Here, instead of setting the values to 10 -2 as proposed in [START_REF] Levin | Image and depth from a conventional camera with a coded aperture[END_REF], 𝜏 𝑢 is equal to the average of |𝛻 𝑢 𝑓 ̂𝑘-1 |.

Finally, the optimal solution is obtained as follows:

𝑓 ̂𝑘 = [ℎ 𝐸 𝑇 × ℎ 𝐸 + 𝜆 ̂-1 × ∑ ( ∇ 𝑢 × 𝐼 max(|∇ 𝑢 𝑓 ̂𝑘-1 |, 𝜏 𝑢 ) )] -1 × (ℎ 𝐸 𝑇 𝑔) (55) 
The equation ( 55) is resolved using the conjugate gradient algorithm with a fixed number of iterations set to 100. The estimation of the regularization parameter 𝜆 is performed in the same way as before [START_REF] Charrier | Evaluation de la qualité des images[END_REF]. 

➢

Blind developed method for hyperspectral images

A hyperspectral image is composed of B spectral components of spatial dimension M×N. Therefore, after establishing a blind image restoration for monochrome images, in this section we represent two strategies for restoring a full hyperspectral image. These strategies are intended to be compared in terms of their effectiveness and performance.

First strategy:

In the first strategy, we propose a spectral component selection method called Unsupervised Partitioning based on Affinity Propagation (UP-OAP) [START_REF] Alameddine | Hierarchical Unsupervised Partitioning of Large Size Data and Its Application to Hyperspectral Images[END_REF]. This method employs an unsupervised partitioning technique to group highly correlated spectral components and selects an exemplar component to represent each group. The main objective of this method is to reduce the number of spectral components used in the PSF estimation phase.

Instead of estimating the Point Spread Function (PSF) using all spectral components, this approach utilizes selected exemplar spectral components from each correlated group. The estimation of a latent image is then performed for each selected exemplar component (as a monochrome image) using the previously explained proposed blind restoration method for monochrome images. The estimated PSF from each exemplar spectral component is employed to restore all spectral components belonging to its respective group.

By employing the UP-OAP method [START_REF] Alameddine | Hierarchical Unsupervised Partitioning of Large Size Data and Its Application to Hyperspectral Images[END_REF], we aim to enhance the efficiency and accuracy of the restoration process by reducing the computational complexity associated with estimating the PSF using all spectral components.

Second strategy:

In the second strategy, we retain the first two steps from the first strategy. That is, we employ the UP-OAP method to select exemplar components and estimate the PSF and latent image for each selected exemplar component.

However, in the second strategy, after obtaining the estimated PSFs from each exemplar spectral component, we evaluate the accuracy of each estimated PSF by using the 𝐿 1 norm of the error estimation between the estimated PSF and the ground truth (‖ℎ -ℎ ̂‖1 ). Additionally, we examine the 𝐿 1 norm of the error estimation between the observed degraded image and the estimated degraded image (‖𝑔 -𝑔 ̂‖1 ). The purpose of this evaluation is to identify the most accurate estimated PSF from the selected exemplar spectral component.

From this examination, we can determine which estimated PSF exhibits the highest accuracy. Once the most accurate estimated PSF is identified, we utilize it to restore the entire hyperspectral image. This means that instead of using multiple estimated PSFs for the hyperspectral image restoration, we rely on the single most accurate estimated PSF. By using only one estimated PSF, we simplify the restoration process and potentially improve the overall image quality of the restored hyperspectral image. image in the dataset has a spatial resolution of 512 × 512 pixels and contains 31 spectral components, ranging from 400 to 700 nm with a 10-nm interval e) DBS5: The Harvard dataset [START_REF]Statistics of Real-World Hyperspectral Images[END_REF] comprises 50 hyperspectral images (HSIs) that feature natural scenes. These images were captured using a commercial hyperspectral camera [START_REF] Zhang | Coarse-to-Fine Learning for Single-Image Super-Resolution[END_REF]. Similar to the CAVE dataset, each image in the Harvard dataset consists of 31 consecutive spectral components, covering the wavelength range from 420 to 720 nm with a 10-nm interval. The spatial resolution of each image in the Harvard dataset is 1392 × 1040 pixels. However, for evaluation purposes, the images are cropped to a resolution of 512 × 512 pixels.

Evaluation criteria

In this subsection, we focus on the evaluation criteria employed to objectively assess the performance of our blind image restoration approach. we have selected a range of widely used evaluation criteria that provide quantitative measures for analyzing and comparing the effectiveness our algorithm.

The evaluation criteria considered in this subsection include the 𝐿 1 norm, Peak Signal-to-Noise Ratio (PSNR), Mean Peak Signal-to-Noise Ratio (MPSNR), Structural Similarity Index (SSIM), Mean Structural Similarity Index (MSSIM), Root Mean Square Error (RMSE), Kernel similarity (KS), and spectral signature. These objective criteria are commonly utilized in the literature and offer valuable insights into the quality and fidelity of the restored images.

The 𝐿 1 norm measures the absolute pixel-wise differences between the restored and original images. PSNR and MPSNR evaluate the quality of the restoration by quantifying the signal-to-noise ratio. SSIM and MSSIM assess the structural similarity between the restored and original images, considering both luminance and structural information. RMSE calculates the root mean square error, providing a measure of overall pixel-wise differences.

In addition to these image-based criteria, kernel similarity evaluates the similarity between the estimated and true blur kernels. Spectral signature criteria analyze the accuracy of the spectral information in the restored images.

Evaluation using monochrome images

To validate our proposed method, we first compared its performance to the original method [START_REF] Pan | Kernel Estimation from Salient Structure for Robust Motion Deblurring[END_REF], which utilizes empirically tuned regularization parameters, as exploit in Chapter two. The choice of this method was based on the method's superior performance in a comparative study [48][49]. For this evaluation, we have used four monochrome images ("Bridge," "Photo," "Face," and "Wall") from DBS1 [START_REF] Levin | Understanding and evaluating blind deconvolution algorithms[END_REF]. Each image underwent artificial degradation using eight different PSFs of different support sizes, resulting in a total of 32 monochrome degraded images. The specific PSF functions and support sizes used in this series of tests are presented in Table 12. Looking at the PSF number 6 and 7, they have the same support size but different functions. Additionally, Figure 12 represents the four original monochrome images.

Table 14 visualizes the image restoration stages of two monochrome images, namely "Bridge" and "Photo", using three degradation functions (13×13, 19×19, 27×27) employed in the evaluation. Showing the progression from the blurred image to the latent image obtained during the PSF estimation step, and finally to the restored image after refining the estimated PSF. Additionally, the edge recovery process for each phase is shown in Table 14.

When examining the latent image of the "Photo" for the 13×13 PSF support size, a contrast difference is noticeable when compared to the final restored image. Similarly, for the "Bridge" latent image with the 27×27 PSF support size, there is a visible difference in contrast and a slight presence of blur.

In terms of edge recovery, it is evident that the final image restoration successfully recovers most of the salient edges in both images, as compared to the original edges shown in Figure 13. Moreover, the final restored images present more defined and continuous edges. In contrast, the edges in the estimated latent image appear discontinuous and less prominent. 13: Visual comparison between the original PSFs, estimated PSFs using the original method, and the estimated PSF using the proposed method from the "Bridge" degraded image. Furthermore, an objective assessment was carried out to evaluate the performance of the PSF estimation and restored image using our proposed method compared to the original method [START_REF] Pan | Kernel Estimation from Salient Structure for Robust Motion Deblurring[END_REF]. This assessment relied on three evaluation metrics: Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), and the absolute value of the 𝐿 1 norm of the estimated PSF and the restored image.

The results in Table 15 shows the comparison conducted between the original method and our proposed method using the absolute value of the 𝐿 1 norm to assess the estimation error of the PSF and the final restored image.

These results demonstrate that the proposed method outperforms the original method in terms of PSF estimation accuracy. The estimated PSFs obtained using our proposed method closely resemble the original degradation source, indicating higher precision. In addition to that, the absolute estimation error related to the final restored image is better than the original method. To conclude the evaluation of the monochrome images, we also assessed the estimated regularization parameter obtained through our proposed method. According to the original method, the regularization parameters are fixed as (𝛼, 𝛽 𝑙𝑎𝑡 ) = (0.01, 0.005) for the PSF and the latent image estimation, and 𝛽 = 0.003 for the final image restoration, regardless of the image type used. In contrast, our proposed method estimates these parameters dynamically based on the specific characteristics of the image being processed. Table 17 represents the estimated values for the regularization parameters related to the PSF and the latent image estimation at the iteration that yielded the optimal solution. These results are obtained for the four images and the eight PSFs of DBS1 [START_REF] Levin | Understanding and evaluating blind deconvolution algorithms[END_REF]. We can see from this table that the minimum is reached at different iteration number even for two PSFs with the same support size (23x23).

As evident from Table 17, the combination of regularization parameters is specific to each individual image and degradation function. The proposed algorithm successfully estimated different parameter values based on the unique characteristics of the degraded image. This adaptability allows our algorithm to adapt the regularization process to effectively estimate the respective PSF and latent image, resulting in improved performance compared to the fixed parameter values used in the original method.

Table 18 displays the estimated parameters for the final image restoration, along with the corresponding iteration numbers at which the solutions are retained. The results presented in 

18: The estimated regularization parameter values related to the final image restoration along with the iteration number of the solution retained for the full database DBS1

Moreover, Table 19 presents a comparison between results obtained by our proposed blind method with the results obtained using the regularization parameter values found by the manual adjustment, shown in Table 9, in chapter 2.

For this evaluation, we have selected PSNR, SSIM, and the L1 norm to compare the quality of the restored image. Based on the results shown in Table 19, we noticed that despite manually finding a better combination of regularization parameter values than the ones fixed by PAN, they are not the optimal values that yield the best restoration quality. Furthermore, it is shown that our proposed method yielded a higher restoration quality than the newly manually found combination. To further evaluate the accuracy of the estimated Point Spread Function (PSF), we conducted an additional quantitative assessment using the kernel similarity criterion [START_REF] Hu | Good Regions to Deblur[END_REF]. For this evaluation, we utilized the DBS1 [START_REF] Levin | Understanding and evaluating blind deconvolution algorithms[END_REF]. In Figure 14 we present the kernel similarity results for the whole dataset used (32 degraded images) obtained from four different restoration methods from the literature [START_REF] Zhou | Fraction-Order Total Variation Image Blind Restoration Based on Self-Similarity Features[END_REF][START_REF] Zhou | Fraction-order total variation blind image restoration based on L1-norm[END_REF][START_REF] Zhong | Handling Noise in Single Image Deblurring Using Directional Filters[END_REF][START_REF] Sola | Blind image deblurring based on multi-resolution ringing removal[END_REF] as well as our proposed blind method. The kernel similarity metric allows us to compare the similarity between the estimated PSFs of these methods and the ground truth PSF.

PSF size

After analyzing the results in Table 20, it becomes evident that our proposed blind method surpasses the performance of the other restoration methods. The kernel similarity scores clearly demonstrate that our method achieves a higher level of similarity to the ground truth PSF, indicating its superior capability in accurately estimating the PSF for image restoration.

[ [START_REF] Zhou | Fraction-Order Total Variation Image Blind Restoration Based on Self-Similarity Features[END_REF] [ [START_REF] Zhou | Fraction-order total variation blind image restoration based on L1-norm[END_REF][START_REF] Zhong | Handling Noise in Single Image Deblurring Using Directional Filters[END_REF][START_REF] Sola | Blind image deblurring based on multi-resolution ringing removal[END_REF] using DBS1 [START_REF] Levin | Understanding and evaluating blind deconvolution algorithms[END_REF] Figure 14: Kernel similarity criterion for the estimated PSF from our proposed method and four methods from the literature [33] [73-75] using DBS1 [START_REF] Levin | Understanding and evaluating blind deconvolution algorithms[END_REF] 

Evaluation using multicomponent images

After validating the superior performance of our proposed method on monochrome images, we proceed to evaluate the developed approach on multicomponent images (RGB). In the case of these images, the same Point Spread Function (PSF) is applied to degrade each component.

Firstly, we utilize two images, namely "Butterfly" and "Lighthouse," sourced from DBS2 [START_REF]Laboratory for Image and Video Engineering -The University of Texas at Austin[END_REF] and DBS3 [START_REF]True Color Kodak Images[END_REF], respectively, as shown in Figure 15. Each image has a size of 768 × 512 pixels. we apply a PSF of support size 13 × 13 obtained from DBS1 [START_REF] Levin | Understanding and evaluating blind deconvolution algorithms[END_REF] to degrade each component of the images.

Figure 15: The original "Butterfly"(left) and "Lighthouse"(right) images from DBS2 [START_REF]Laboratory for Image and Video Engineering -The University of Texas at Austin[END_REF] and DBS3 [START_REF]True Color Kodak Images[END_REF] We have estimated the PSF from each component (R, G, and B) also we have calculated the average estimated PSF (PSFavg) as follows:

ℎ ̂𝑎𝑣𝑔 = 1 3 ∑ ℎ ̂𝑖 3 𝑛=1
with 𝑖 ∈ {𝑅, 𝐺, 𝐵}

The visual results of the PSF estimation for both RGB images can be seen in Table 21. Upon visual inspection, it is difficult to discern any noticeable differences between the estimated PSFs from each component and the average estimated PSF. Therefore, a qualitative assessment is conducted using the 𝐿 1 norm of the estimation error and the kernel similarity as evaluation metrics, as shown in Analyzing the results in Table 22, we observe that the 𝐿 1 norm of the error estimation and the kernel similarity metrics indicate that there is one estimated PSF that exhibits higher accuracy compared to all other estimations regarding both images. The results also demonstrate that, contrary to expectations, the average PSF does not provide the most accurate estimation.

For instance, in the case of the "Lighthouse" image, the estimated PSF from the Blue component yields the best estimation with an 𝐿 1 norm of 0.2382, whereas the average estimated PSF has an 𝐿 1 norm of 0.3405. As for the "Butterfly" image, the kernel similarity of the average PSF is 0.9309, slightly higher than the kernel similarity of the estimated PSF from the Green component (0.9212). However, the highest kernel similarity value is obtained by the estimated PSF from the Red component, with a value of 0.9506.

Moreover, to indicate which of the estimated PSFs is the most accurate estimation in a blind manner, Table 23 represents the 𝐿 1 nom of the error estimation between the observed degraded image components (R, G, B) with the estimated degraded image components obtained by using the PSFs estimated from R, G, and B components, along with the average estimated PSF.

Original PSF Lighthouse Butterfly Estimated PSF Looking in Table 23, we can notice that the most accurate PSF estimation for the "Lighthouse" image is the from the blue components, where the 𝐿 1 norm between the observed degrade R, G and B components and the estimated degraded image using the PSF estimated from the blue component gave the lowest value. Regarding the "Butterfly" image, the PSF estimated from the red component gave the lowest 𝐿 1 norm value. These results confirm the results obtained in Table 22.

ℎ ̂𝑅 ℎ ̂𝐺 ℎ ̂𝐵 ℎ ̂𝑅 ℎ ̂𝐺 ℎ ̂𝐵 Average PSF ℎ ̂𝑎𝑣𝑔 ℎ ̂𝑎𝑣𝑔
After evaluating the estimated PSFs, it was determined that the estimated PSF from the Blue component provides the most accurate estimation for the image "Lighthouse", while the estimated PSF from the Red component is the most accurate for the "Butterfly" image. We compare, in Table 24, the restoration results using the most accurate estimated PSF for each image with the restoration results obtained using each estimated PSF to restore its respective component. Additionally, we include the restoration results obtained using the average PSF for comparison.

In Table 24, we present the results obtained using the evaluation criteria of PSNR and SSIM. The analysis of the results reveals that the best image restoration outcomes are achieved when utilizing the most accurate PSF for both the "Lighthouse" and "Butterfly" images, respectively. These results highlight the effectiveness of using the most accurate PSF estimation in achieving superior image restoration quality. After obtaining these results, we proceeded to compare the restoration of these two RGB images with four methods from the literature [33] [73-75]. The comparison was based on the evaluation criteria of PSNR and SSIM, as shown in Table 25. By comparing the restoration results using these metrics, we were able to assess the performance and effectiveness of the proposed method in relation to the existing methods from the literature.

Most accurate

Following this qualitative evaluation, we present in Figure 16 the visual assessment of the two restored RGB images obtained using our proposed method, as well as the four methods from the literature [START_REF] Zhou | Fraction-Order Total Variation Image Blind Restoration Based on Self-Similarity Features[END_REF] [ [START_REF] Zhou | Fraction-order total variation blind image restoration based on L1-norm[END_REF][START_REF] Zhong | Handling Noise in Single Image Deblurring Using Directional Filters[END_REF][START_REF] Sola | Blind image deblurring based on multi-resolution ringing removal[END_REF]. Upon observing the visual evaluation, it is evident that our proposed method exhibits the highest visual quality for both restored images. The images restored using our method showcase superior visual fidelity and clarity compared to the results obtained from the other methods. This visual confirmation further supports the conclusion that our proposed method outperforms the existing methods from the literature in terms of visual restoration quality. 

Image

Evaluation using Hyperspectral images

The previous evaluation of RGB images has demonstrated that, despite degrading each component using the same PSF, the accuracy level of the estimated PSF differs across the components. Furthermore, employing the most accurate PSF to restore all components leads to superior image restoration results.

Moreover, when the most accurate PSF estimation was utilized for the restoration of all components, it resulted in improved image restoration compared to using component-specific PSFs or an average PSF.

Therefore, in the evaluation of hyperspectral images, we intend to examine the two proposed strategies for restore a full hyperspectral image.

Evaluation of the first strategy

To assess the first strategies, we utilized a synthetic Hyperspectral Image (HSI) comprising 100 spectral components with a size of 60×60 pixels. Each component underwent degradation using two different motion blurs of different support sourced from DBS1 dataset [START_REF] Levin | Understanding and evaluating blind deconvolution algorithms[END_REF]. Additionally, a Gaussian blur with a standard deviation of 1.5 and a support size of 9×9 was also applied.

By implementing the unsupervised partitioning method [START_REF] Alameddine | Hierarchical Unsupervised Partitioning of Large Size Data and Its Application to Hyperspectral Images[END_REF], we blindly grouped the spectral components into five distinct groups. Each group was represented by a specific exemplar component. These exemplar components were employed for estimating the Point Spread Function (PSF) associated with each group. Subsequently, the estimated PSFs were utilized to restore all the spectral components belonging to their respective groups.

Figure 17 shows the synthetic HSI used in RGB mode and the correlation matrix between all spectral components, indicating the different correlation groups blindly formed by the UP-OAP method. Table 26 provides details of each formed group, indicating the range of spectral components included in each group, along with the exemplary spectral component selected to represent each group in the PSF estimation phase. In the PSF estimation phase we have only used the selected spectral components of each group to estimate the PSF. A visual evaluation was performed shown in Table 27, representing the estimated PSF of support size 9 × 9, 13 × 13, and 19 × 19. The visual assessment shows no difference between the estimated PSF therefore a qualitative evaluation was performed based on the 𝐿 1 norm of the error estimation of the PSF shown in Table 27.

PSF Size 9 × 9 13x13 19x19

Original PSF (ℎ)

Estimated PSF (ℎ ̂18 ) from B18 Estimated PSF (ℎ ̂39 ) from B39 Estimated PSF (ℎ ̂50 ) from B50 92 Estimated PSF (ℎ ̂60 ) from B60
Estimated PSF (ℎ ̂88 ) from B88 After obtaining the PSF estimation from the exemplar spectral component of each group, we applied the estimated PSF to restore all the spectral components belonging to their respective groups.

To assess the effectiveness of our first proposed strategy, we conducted a visual evaluation, as depicted in Table 29. The table showcases the original, degraded, and restored RGB mode images of three exemplar components (B18, B50, and B60) using different PSF sizes. The visual evaluation demonstrates that our proposed method successfully restores the original colors and details, resulting in a visually enhanced image representation compared to the degraded and original one image

In addition to the visual evaluation, we also employed quantitative measures to evaluate the restoration quality. Three criteria were considered: Mean Peak Signal-to-Noise Ratio (MPSNR), Mean Structural Similarity Index Measure (MSSIM), Mean 𝐿 1 norm of the estimation error, and Mean Root Mean Squared Error (MRMSE). These metrics provide measurements of the fidelity and accuracy of the restoration process.

Table 30 presents the results of the qualitative evaluation for the different PSF sizes used in the restoration. The obtained values for MPSNR, MSSIM, 𝐿 1 norm of the estimation error, and MRMSE indicate the high quality of the restored hyperspectral image. The proposed method effectively preserves the important spectral and spatial information, resulting in accurate restorations.

Lastly, in order to further validate our results, Table 31 depicts the comparison of the original, degraded, and restored spectral signatures of different pixel coordinated {(1,1), [START_REF] Zhou | Fraction-order total variation blind image restoration based on L1-norm[END_REF][START_REF] Wang | Salient Band Selection for Hyperspectral Image Classification via Manifold Ranking[END_REF], [START_REF] Sun | Edge-based blur kernel estimation using patch priors[END_REF][START_REF] Hadj-Youcef | Restoration from multispectral blurred data with non-stationary instrument response[END_REF]} for the three degradation functions used 9 × 9, 13 × 13,and 19 × 19.

Upon careful examination, we can observe that the restored spectral signature closely resembles the original spectral signature, specially at the spectral component 71, where we were able to precisely recover the important information lost during the degradation. This indicates that our proposed method successfully recovers the spectral information that was lost during the degradation process. The restored spectral signature demonstrates the accuracy and reliability of our restoration approach, providing further evidence of the effectiveness of our method.

Based on the analysis of the spectral signature, it has been observed that the last ten spectral components exhibit significant fluctuations. These fluctuations suggest the presence of acquisition noise without any substantial information. Consequently, in the second suggested strategy, we will exclude these ten spectral components. 

Evaluation of the second strategy

In the second strategy, we proceeded by eliminating the last ten spectral components due to the hight alternation in the spectral signature and less informative spectral components. By eliminating them, we aim to improve the overall quality and accuracy of the restoration process. This strategic decision allows us to focus on the more relevant spectral components, which are expected to contribute significantly to the restoration of the hyperspectral image.

By applying the partitioning method described in [START_REF] Alameddine | Hierarchical Unsupervised Partitioning of Large Size Data and Its Application to Hyperspectral Images[END_REF], we obtained five correlation groups, which differed in their partitioning of spectral components and the selection of exemplar components compared to the first strategy.

Figure 18 illustrates the new correlation map. Additionally, Table 32 provides a detailed overview of the content of each group and specifies the exemplar component chosen to represent it. After partitioning the spectral components, we proceeded with the estimation of the Point Spread Function (PSF) using only the exemplar spectral components indicated in Table 32. We utilized the same PSFs as in the first strategy. The estimation results of the PSF are presented in Table 33.

A qualitative assessment was conducted to evaluate the accuracy of the estimated PSFs for the exemplar spectral components. This assessment considered the 𝐿 1 norm of the estimation error for the estimated PSFs and the estimated degraded image.

Table 34 displays the results of the assessment based on the 𝐿 1 norm of the estimation error for the estimated PSFs with support sizes of 9×9, 13×13, and 19×19. The values obtained were 0.0460, 0.1847, and 0.3056, respectively. Notably, the exemplar B85 exhibited the lowest estimation errors for all three PSFs, indicating a more accurate estimation. Conversely, the exemplar B58 had the highest estimation errors for the PSFs with support sizes of 9×9 and 13×13, with values of 0.1051 and 0.3654, respectively. The exemplar B11 showed the highest estimation error for the PSF with a support size of 19×19, with a value of 0.9719.

Table 35 presents the 𝐿 1 norm values of the error estimation between the observed degraded exemplar spectral component and the estimated degraded exemplar spectral component using the estimated PSFs with support sizes of 9 × 9, 13 × 13, and 19 × 19. These results further confirm that the most accurate estimation is achieved when using the exemplar spectral component B85. For each estimated degraded exemplar spectral component, the 𝐿 1 norm values are 1.5417 × 10 4 , 1.8159 × 10 4 , and 2.0102 × 10 4 , respectively. These values indicate a close resemblance between the observed spectral component and the estimated degraded spectral component, validating the accuracy of the PSF estimation process using the B85 exemplar spectral component.

Based on the results presented in Tables 34 and35, we can conclude that the most accurate estimation for the three PSFs with support sizes of 9×9, 13×13, and 19×19 is achieved when utilizing the exemplar spectral component B85. Therefore, for the restoration of the full hyperspectral image, we will exclusively employ the most accurate estimated PSF obtained from B85.

PSF Size 9 × 9 13x13 19x19

Original PSF (ℎ)

Estimated PSF (ℎ ̂11 ) from B11 Estimated PSF (ℎ ̂38 ) from B38 Estimated PSF (ℎ ̂49 ) from B49 Estimated PSF (ℎ ̂58 ) from B58
Estimated PSF (ℎ ̂85 ) from B85 After analyzing the estimated Point Spread Functions (PSFs) obtained in the second strategy, we selected the most accurate estimated PSF to restore all the spectral components of our degraded hyperspectral image.

The first assessment involves a visual comparison of the hyperspectral image restoration between the first and second strategies. Table 35 illustrates the original hyperspectral image visualized in RGB mode using the spectral components B18, B50, and B60, along with its restoration using both the first and second strategies for three different PSF functions with support sizes of 9×9, 13×13, and 19×19.

Upon visual inspection, it is apparent that in the case of the PSF with a support size of 13×13, the restored image using the first strategy exhibits blurriness on the right side, which is not observed in the second strategy. Additionally, when considering the restored image using the first strategy with a PSF of support size 19×19, a difference in pixel intensity is noticeable, resulting in a difference in color compared to the original image. This difference can be attributed to the lower estimation accuracy of the PSF obtained from the exemplar spectral component B11, as indicated in Tables 333435. Conversely, the restored image using the second strategy demonstrates significant improvements and better definition.

A comprehensive comparison was conducted between the first and second strategies using four evaluation metrics: Mean Peak Signal-to-Noise Ratio (MPSNR), Mean Structural Similarity Index Measure (MSSIM), mean 𝐿 1 norm of the estimation error, and Mean Root Mean Squared Error (MRMSE). The results, as presented in Table 37, clearly demonstrate the superior performance of the second strategy across all evaluated metrics. The second strategy consistently outperforms the first strategy, indicating its effectiveness in achieving higher restoration accuracy and fidelity.

In addition to the quantitative evaluation, a qualitative assessment was performed on the spectral signatures of seven different pixel coordinates {(1,1), (, 1,19), [START_REF] Yang | Blind Image Deconvolution Algorithm Based on Sparse Optimization with an Adaptive Blur Kernel Estimation[END_REF][START_REF] Li | Deep Learning for Hyperspectral Image Classification: An Overview[END_REF], [START_REF] Yang | Blind Image Deconvolution Algorithm Based on Sparse Optimization with an Adaptive Blur Kernel Estimation[END_REF][START_REF] Akhtar | Nonparametric Coupled Bayesian Dictionary and Classifier Learning for Hyperspectral Classification[END_REF], [START_REF] Zhou | Fraction-order total variation blind image restoration based on L1-norm[END_REF][START_REF] Wang | Salient Band Selection for Hyperspectral Image Classification via Manifold Ranking[END_REF], [START_REF] Sun | Edge-based blur kernel estimation using patch priors[END_REF][START_REF] Hadj-Youcef | Restoration from multispectral blurred data with non-stationary instrument response[END_REF], [START_REF] Sun | Edge-based blur kernel estimation using patch priors[END_REF][START_REF] Sroubek | Robust Multichannel Blind Deconvolution via Fast Alternating Minimization[END_REF]}.

The evaluation aimed to compare the original spectral signatures with the degraded and restored (first strategy) spectral signatures, as well as the restored spectral signatures obtained through the second strategy. The findings, illustrated in Table 38, reveal the notable success of the second strategy in accurately recovering the spectral signatures of these pixel coordinates. The spectral signatures restored using the second strategy exhibit remarkable similarity to the original signatures, surpassing the quality of the degraded and restored (first strategy) spectral signatures. In line with our second strategy, we conducted an evaluation of the estimated PSF derived from each selected exemplar spectral component for both images. The evaluation process involved the utilization of two criteria: the 𝐿 1 norm of the error estimation.

For the "TOY" image, the evaluation results revealed that the estimated PSF obtained from the exemplar spectral component five (ℎ ̂𝐵5 ) demonstrated the highest level of accuracy. It exhibited an 𝐿 1 norm of 0.2054, indicating a remarkably close approximation to the true PSF. Furthermore, the kernel similarity score for this estimated PSF was calculated to be 0.9840, further affirming its accuracy and similarity to the ideal PSF.

As for the "HARV" image, we discovered that the estimated PSF derived from the exemplar spectral component eight, denoted as ℎ ̂𝐵8 , yielded the most accurate result according to the evaluation metrics. This estimated PSF possessed an 𝐿 1 norm value of 0.5502, implying a reasonably accurate approximation of the true PSF for this image. The kernel similarity score for this PSF estimation was determined to be 0.8944, showing a significant degree of similarity between the estimated PSF and the ground truth PSF.

As suggested in the second strategy, we will use the most accurate PSFs, ℎ ̂𝐵5 and ℎ ̂𝐵8 to restore the degraded hyperspectral images "TOY" and "HARV" respectively.

A comparison of results is conducted for the two images displayed in Table 41. The results presented in this table are derived from the article [START_REF] Zhang | Deep Blind Hyperspectral Image Super-Resolution[END_REF] and are compared to our own results, utilizing the MPSNR, MSSIM, and MRMSE metrics.

Upon analyzing the obtained results, it is evident that our proposed method, following the second strategy, yielded better image quality compared with the other super resolution methods [47][77-81] in terms of the selected criteria (MPSNR, MSSIM, and MRMSE). This comparison serves to demonstrate the reliability of the results obtained through our proposed method.

For a more comprehensive analysis of the restoration quality of these two images, Table 42 and Table 43 present a visualization of the original, degraded, and restored spectral signatures of multiple pixel coordinates from the "HARV" and "TOY" images, respectively. These tables serve as evidence for the effectiveness of the restoration quality. method involves investing time to accurately estimate all the necessary regularization parameters. This parameter estimation process contributes in achieving an optimal restoration quality.

HSI

While the method might take more time for the restoration itself, this additional time is dedicated to ensuring that the restoration results are of the highest possible quality. Therefore, the trade-off between restoration quality and computation time is a strategic decision that prioritizes the final outcome. By dedicating the necessary time to parameter estimation and optimization, our method aims to deliver results that align with the desired restoration quality, even if it involves slightly longer CPU runtime. 

PSF estimation

Conclusion

In this chapter, we propose a new image restoration method with the main objective of eliminating all prior information and avoiding empirical parameter tuning. This guarantees an optimal solution while improving the restoration quality compared to existing restoration methods. The proposed hybrid method is applied to various types of images, including monochrome, RGB, and hyperspectral images.

Two strategies are suggested for restoring a hyperspectral image. The first strategy involves forming groups of highly correlated spectral components using an unsupervised partition method. For each group, one exemplar spectral component is selected to represent the group, and the PSF estimation is performed using only these exemplar components. Finally, the estimated PSF of each group is used to restore all the spectral components of it designated group.

For the second strategy we have introduced an evaluation of the estimated PSFs from each exemplar spectral component obtained in the first strategy to find the most accurate estimation. Subsequently, the most accurate estimated PSF is used to restore all the spectral components of our hyperspectral image.

Our proposed method was evaluated and validated using different images from various databases artificially degraded. We employed different degradation functions with different support sizes to degraded our reference image. To assess the results, we selected multiple evaluation metrics, including PSNR, SSIM, RMSE, and 𝐿 1 norm for error estimation. For the assessment of hyperspectral images, we also evaluated the spectral signature. The assessment results demonstrated the effectiveness of our proposed method compared to existing methods in the literature, emphasizing the significant improvement achieved by our approach. Title : Adaptive blind image restoration for monochrome and hyperspectral images Key words : Blind restoration, regularization parameters estimation, PSF, hyperspectral image, automatic tuning.

Abstract: Image restoration presents a significant challenge when regularization parameter values, PSF, and other a priori knowledge are not available. The objective of this thesis is to develop an easily applicable restoration method by eliminating the necessity for prior information and empirical parameter tuning. To achieve this objective, we have developed an adaptive blind image restoration method that operates without requiring prior information. This method can be applied to restore monochrome, multispectral, and hyperspectral images, while optimizing restoration results without the need for empirical parameter tuning. The superiority of our proposed adaptive blind restoration method is demonstrated through evaluations on diverse image databases, outperforming eleven existing non-neural network and supervised/semisupervised neural network methods from the stateof-the-art. In conclusion, the proposed method can be easily applied to restore degraded images due to its blind nature.
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 a16 Figure 16: Visual comparison of the restored image between our proposed method and four methods from the literature using the "Lighthouse" (left) and the "Butterfly" (right) images
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  observed monochrome image formed of 𝑀 × 𝑁 pixels

	𝑷𝑺𝑵𝑹	: Peak-Signal-to-Noise Ratio
	𝑺𝑵𝑹	: Signal-to-Noise Ratio
	𝑺𝑺𝑰𝑴	: Structure Similarity Index Measurement
	𝑬(𝑳 𝟏 )	: average 𝐿 1 norm by pixel
	𝒇 𝑴𝑳 𝟏	: original image : mean of 𝐿 1 norm
	𝑷𝑺𝑭 𝑴𝑷𝑺𝑵𝑹	: Point Spread Function : mean of PSNR
	𝑯𝑺𝑰 𝑴𝑺𝑺𝑰𝑴	: Hyperspectral image formed of 𝑀 × 𝑁 pixels × 𝐵 spectral components : mean of SSIM
	𝒉 𝑴𝑹𝑴𝑺𝑬	: impulse response (PSF) : mean of Root Mean Square Error
	𝒏 ‖. ‖ 𝒑	: noise : absolute value of the 𝐿 𝑝 norm
	(𝒙, 𝒚) 𝑴𝑺𝑬	: contentious spatial coordinates : Mean Square Error
	(𝒊, 𝒋) 𝑲𝑺	: discreet spatial coordinates : Kernel Similarity
	𝒇(𝒊, 𝒋) 𝑴𝑹𝑰	: the pixel value of the monochrome image 𝑓 at coordinates (𝑖, 𝑗) : Magnetic Resonance Image
	𝒇 𝒍𝒂𝒕 𝑩𝟏𝟖	: latent monochrome image : spectral component number 18
	𝒇 ̂ CPU	: restored/ estimated monochrome image : Central Processing Unit
	𝒉 ̂	: estimated PSF formed of 𝑘 × 𝑘 pixels
	𝒇 𝑬	: estimated monochrome image from previous step
	𝒉 𝑬	: estimated PSF from previous step
	*	: convolution operator
	𝜶	: regularization parameter related to the PSF cost function
	𝜷 𝒍𝒂𝒕	: regularization parameter related to the latent image cost function
	𝜷	: regularization parameter related to the final image restoration
	𝝈	: standard deviation
	𝛁(. )	: gradient operator of (. )
	𝛁 𝟐 (. )	: second order derivative of (. )
	∆(. )	: Laplacian operator of (. )
	𝑫	: first order derivative operator
	(. ) 𝑻	: transpose of the matrix (. )
	(. ) -𝟏	: inverse of the matrix (. )
	𝑾𝑮𝑪𝑽	: Weighted Generalized Cross Validation

  𝜆 is the regularization parameter that weights the PSF regularization term in both spatial and spectral domains, ↓ 𝑠 indicates the downsampling with a scaling factor of 𝑠, and ℱ Θ (. ) is the image generator network for the latent image 𝒁, and 𝑬 is the precomputed code for the input of ℱ Θ .The Paired image patches {𝑥 ̂𝑖, 𝑥 𝑖 } and {𝑥 ̂𝑖, 𝑦 𝑖 } are collected from the input HR MSI X and LR HSI Y to train the subnetworks. The paired patches were generated from X and Y using a predefined degeneration 𝐻' in the spatial domain. The patches 𝑥 ̂𝑖 and 𝑥 𝑖 were used to train 𝑔 𝜃 ℎ ℎ , while the patches 𝑥 ̂𝑖 and 𝑦 𝑖 were

	is initialized to 0.001 and reduced by a factor of 10 after 100 epochs, with a total of 200 epochs for training. 𝐶(𝜃 ℎ ) = 1 𝑁 ℎ ∑ ℒ(𝑥 𝑖 , 𝑥 𝑖 ′ ) 𝑖=1 , s.t. 𝑥 𝑖 ℎ (𝑥 ̂𝑖) (33) ′ = 𝑔 𝜃 ℎ It should be noted that these parameter values are specific to the training dataset used. 𝐶(𝜃 𝑝 ) = 1 𝑁 𝑝 ∑ ℒ(𝑦 𝑖 , 𝑦 𝑖 ′ ) 𝑖=1 , s.t. 𝑦 𝑖 𝑝 (𝑥 ̂𝑖) (34) ′ = 𝑔 𝜃 𝑝 Method 9: Zhang The number of training pairs used for training 𝑔 𝜃 ℎ ℎ and 𝑔 𝜃 𝑝 𝑝 is 𝑁 ℎ and 𝑁 𝑝 , respectively. ℒ(. ) represents the
	Lei Zhang et al. proposed in [47] a method for hyperspectral image super-resolution restoration that uses L1 norm loss.
	a deep learning approach. The proposed method aims to enhance the spatial resolution of a hyperspectral
	image by learning a mapping function from a low-resolution hyperspectral image to a high-resolution
	hyperspectral image.		
	The method consists of two main stages: a deep feature extraction stage and a deep regression stage. In
	the first stage, a convolutional neural network (CNN) is used to extract deep features from the low-
	resolution hyperspectral image. These features are then fed into a fully connected layer that maps them
	capturing the underlying spatial and spectral information of the input image. The output of this stage is a
	set of high-dimensional features. In the second stage, another CNN is used to regress the high-resolution
	hyperspectral image from the high-dimensional features obtained in the first stage. The network is trained
	in a supervised manner using a dataset of paired low and high resolution hyperspectral images.	
	A 3-D hyperspectral image is transformed into a 2-D matrix 𝚭, where each column of this matrix
	represents a spectrum vector of a pixel. The correlation between the matrix 𝚭 with an HR MSI 𝐗 and an
	LR HSI 𝐘 is formulated as follows:		
	𝑋 = 𝑃𝑍,	𝑌 = 𝑍𝐻	(31)
	Where 𝑋 and 𝑌 are the HR MSI and the LR HSI, respectively. 𝑃 and 𝐻 are the degradation function in the
	spectral and spatial domains.		
	The proposed cost function for the deep framework is formulated as follows:	
	𝐶(𝜃, 𝑃, 𝐻) = ‖𝑋 -𝑃𝑍‖ 2 + ‖𝑌 -(𝑍𝐻) ↓ 𝑠 ‖ 2 + 𝝀 (‖𝐻‖ 2 2 + ‖𝑃‖ 2 2 )	(32)
	s.t. 𝑍 = ℱ Θ (𝐸)		
	The proposed image generator network is developed to model image 𝒁 by highlighting the image-specific
	statistics based on images 𝑿 and 𝒀. To accomplish this, two up-sampling subnetworks 𝑔 𝜃 ℎ ℎ and 𝑔 𝜃 𝑝 𝑝 were
	trained to increase the spatial resolution of Y and the spectral resolution of X, respectively, to match a
	latent HSI Z.		
	The proposed CNN-based method requires predefined parameters, including the patch size of 64 × 64 for
	both PSF and image restoration phases. The network architecture of the PSF estimation phase consists of
	15 convolutional layers and a regression layer, while that of the image restoration phase includes 16
	convolutional layers with skip connection. The CNN-based approach is trained using stochastic gradient descent (SGD) with a batch size of 16, a momentum of 0.9, and weight decay of 0.0001. The learning rate used to train 𝑔 𝜃 𝑝 𝑝 as follows:
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Table 2 :

 2 

Table 3 :

 3 Results of the evaluation criteria chosen for ten different combinations of the regularization parameters for PSF support size 13×13 using PAN's algorithm

		L1 norm	SSIM	𝜶	𝜷 𝒍𝒂𝒕	𝜷
			« Bridge »			
	Test 1 -PAN	3862.49	0.7175	0.01	0.005	0.003
	Test 2	4402.19	0.5146	1	1	1
	Test 3	3108.20	0.8058	0.001	0.05	0.03
	Test 4	4259.14	0.5664	0.5	0.01	0.7
	Test 5	3999.04	0.6035	0.5	0.5	0.5
	Test 6	3660.91	0.6629	0.058	0.4	0.25
	Test 7	3472.34	0.7024	0.75	0.3333	0.1429
	Test 8	3270.76	0.7524	0.04	0.2	0.072
	Test 9	3966.53	0.6115	0.9	0.001	0.4
	Test 10	3979.53	0.6105	0.05	0.004	0.002
			« Photo »			
	Test 1 -PAN	1131.44	0.9356	0.01	0.005	0.003

Table 4 :

 4 

visual comparison between the original images ("Bridge" and "Photo") and the restored images the restoration was performed using specific regularization parameters set for Test 1 -PAN, Test 2 and Test 3 form the "Bridge" image and Test 2 and Test 10 for the "Photo" image degraded by the PSF od support size 13 × 13.

  The results obtained for the PSF of support size 19 × 19 and 23 × 23 confirm the results shown for the PSF of support size 13 × 13. The details are these bigger PSFs are shown in Appendix.In this section, a series of tests were conducted on Pan's algorithm, utilizing ten random combinations of the regularization parameters 𝛼, 𝛽 𝑙𝑎𝑡 , and 𝛽. These parameters are associated with the estimation of the PSF, latent image, and final image restoration, respectively. The tests involved two monochrome images and three PSFs with different support sizes. The quality of image restoration using these parameter combinations was assessed by calculating the metrics of PSNR, SNR, 𝐸(𝐿 1 ) norm, 𝐿 1 norm, MSE, and SSIM.As a result, it was observed that certain combinations of regularization parameters outperformed the fixed values proposed by Pan et al., based on the aforementioned evaluation metrics. This suggests that the fixed values are not optimal and do not yield optimal image restoration quality. The specific parameter combinations yielding better results based on a manual adjustment are presented in Table5.

		0.07 3.1.2. Conclusion						
		0.065							
		0.06							
		0.055							
	E(L 1 ) norm	0.03 0.035 0.04 0.045 0.05							
		0.025							
		0.02							
		0.015							
		0.01							
		Test 1 -PAN Test 2	Test 3	Test 4	Test 5	Test 6	Test 7	Test 8	Test 9	Test 10
					Bridge	Photo		
	PSF size	Test	PSNR	SNR	E(L1) norm L1 norm MSE SSIM	𝜶	𝜷 𝒍𝒂𝒕	𝜷
					"Bridge"			
	0.95 13 × 13 Test 3 21.7414 13.4455 1 19 × 19 Test 1 21.0529 12.8807	0.0478 0.0498	3108.20 0.0048 0.8058 0.001 0.05 3238.25 0.0056 0.8257 0.01 0.005 0.003 0.03
	0.9 23 × 23 Test 9 17.4117 8.3865	0.0895	5819.74 0.0129 0.4388	0.9	0.001	0.4
		0.85			"Photo"			
	0.65 0.75 0.8 13 × 13 Test 10 29.2307 21.4301 SSIM 19 × 19 Test 10 27.6787 19.9342 0.7 23 × 23 Test 6 20.4484 12.2344	0.0173 0.0205 0.0548	1124.93 0.0009 0.9360 0.05 0.004 0.002 1333.01 0.0013 0.9012 0.05 0.004 0.002 3563.37 0.0071 0.6331 0.058 0.4 0.25
		0.6							
		0.55							
		0.5							
		Test 1 -PAN Test 2	Test 3	Test 4	Test 5	Test 6	Test 7	Test 8	Test 9	Test 10
					Bridge	Photo		

Table 5 :

 5 Summary of the tests achieved for the two monochrome images using three different PSFs of different support sizes

Table 6 :

 6 The effect of the regularization parameter α using the PSF of support size 13×13, where 𝛽 𝑙𝑎𝑡 =0.05 and 𝛽=0.03 are fixed for the image "Bridge" and for the "photo" image 𝛽 𝑙𝑎𝑡 = 0.004 and 𝛽 = 0.002 , while 𝛼 increase by a step size of 0.05Looking at Table6, we observed that for the "Bridge" image, the combination [𝜶, 𝛽 𝑙𝑎𝑡 , 𝛽] = [𝟎. 𝟏𝟓, 0.05,0.03] yielded in the highest restored image quality among all 21 tests conducted. This particular combination outperformed the combination (𝛼, 𝛽 𝑙𝑎𝑡 , 𝛽) = (0.001,0.05,0.03) from Table5in terms of PSNR, SNR, 𝐸(𝐿 1 ) norm and MSE, except for the SSIM metric. On the other hand, for the
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		Figure 4: The effect of the regularization parameter α over the SSIM (left), L1 norm (right) for the "Bridge" image using a PSF of support
									size 13x13 and fixing 𝛽 𝑙𝑎𝑡 =0.05 and 𝛽 = 0.03							

"Photo" image, the highest values for all evaluation metrics were obtained with 𝛼 = 0.25, denoted in Test 6. The combination (𝛼, 𝛽 𝑙𝑎𝑡 , 𝛽) = (0.25,0.004,0.002) performed better than the result presented in Table

5

. To see the results of the other selected evaluation criteria, refer to Appendix.

A graphical representation depicting the impact of the regularization parameter 𝛼 on image restoration quality is shown in Figures

4-5

. The combination (𝛼, 𝛽 𝑙𝑎𝑡 , 𝛽) = (𝜶, 0.05,0.3) and (𝛼, 𝛽 𝑙𝑎𝑡 , 𝛽) = (𝜶, 0.004,0.002) were used for the "Bridge" and "Photo" images, respectively. norm α Figure 5: The effect of the regularization parameter α over the SSIM (left), and L1 norm (right) for the "Photo" image using a PSF of support size 13x13 and fixing 𝛽 𝑙𝑎𝑡 = 0.004 and 𝛽 = 0.002 3.2.1.2. Evaluating the influence of the regularization parameter 𝛽 𝑙𝑎𝑡 over the restoration quality by fixing 𝛼 and 𝛽

Table 7

 7 shows the results of the conducted evaluation based on five metrics L1 norm and SSIM.

	SSIM	0.86 0.865 0.87 0.875 0.88 0.885 0.89 0.895 0.9 0.905 0.91 0.95 0.945 0.94 0.935 0.93 0.925 0.92 0.915								L 1 norm	1000 1100 1200 1700 1600 1500 1300 1400
		0.001 0.05	0.1 0.15	0.2 0.25	0.3 0.35	0.4 0.45	0.5 0.55	0.6 0.65	0.7 0.75	0.8 0.85 0.9 0.95 0.99	0.001 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 0.99
							α				α
			Test					L1 norm	SSIM	𝜷 𝒍𝒂𝒕
										« Bridge »
			Test 1					3725.93	0.7050	0.001
			Test 2					3108.20	0.8054	0.05
			Test 3					3166.72	0.7936	0.1
			Test 4					3179.72	0.7906	0.15
			Test 5					3101.69	0.8019	0.2
			Test 6					3134.21	0.7972	0.25
			Test 7					3108.20	0.8004	0.3
			Test 8					3036.67	0.8099	0.35
			Test 9					3069.18	0.8048	0.4
		Test 10					3108.20	0.7991	0.45
		Test 11					3101.69	0.8007	0.5
		Test 12					3101.69	0.7999	0.55

Table 7 :

 7 The effect of the regularization parameter 𝛽 𝑙𝑎𝑡 using the PSF of support size 13×13, where 𝛼=0.15 and 𝛽=0.03 are fixed for the image "Bridge" and for the "photo" image 𝛼 = 0.25 and 𝛽 = 0.002 , while 𝛽 𝑙𝑎𝑡 increase by a step size of 0.05 By examining the results presented in Table7, we can observe that for the "Bridge" image, the combination [𝛼, 𝛽 𝑙𝑎𝑡 , 𝛽] = [0.15, 0.35, 0.03] yielded a PSNR value of 0.8099 dB and an 𝐿 1 norm value of 3036.67 In comparison, the previous combination [𝛼, 𝛽 𝑙𝑎𝑡 , 𝛽] = [0.15,0.05,0.03] resulted in a SSIM value of 0.8054 dB and 𝐿 1 norm values of 3108.2. These findings indicate that the new combination led to superior restoration quality compared to the previous one.

Table 8

 8 presents the evaluation results obtained by varying the value of 𝛽 for both the "Bridge" and "Photo" images. This table provides a comprehensive overview of the performance and quality achieved in the restoration process as β was systematically adjusted.

	Test	L1 norm	SSIM	𝜷
		« Bridge »		
	Test 1	3361.79	0.8215	0.001
	Test 2	3127.70	0.8267	0.05
	Test 3	3296.77	0.7371	0.1
	Test 4	3433.32	0.7074	0.15
	Test 5	3537.36	0.6848	0.2
	Test 6	3634.90	0.6663	0.25
	Test 7	3719.43	0.6507	0.3
	Test 8	3797.46	0.6370	0.35
	Test 9	3868.99	0.6250	0.4
	Test 10	3934.01	0.6142	0.45
	Test 11	3992.54	0.6046	0.5
	Test 12	4044.56	0.5958	0.55
	Test 13	4096.58	0.5877	0.6
	Test 14	4142.09	0.5803	0.65
	Test 15	4187.61	0.5734	0.7
	Test 16	4226.63	0.5671	0.75
	Test 17	4265.64	0.5611	0.8
	Test 18	4304.66	0.5555	0.85
	Test 19	4337.17	0.5503	0.9
	Test 20	4369.68	0.5454	0.95
	Test 21	4402.19	0.5416	0.99
		« Photo »		
	Test 1	981.88	0.9504	0.001
	Test 2	1326.51	0.8684	0.05
	Test 3	1554.10	0.8369	0.1
	Test 4	1716.66	0.8160	0.15
	Test 5	1859.72	0.7999	0.2
	Test 6	1983.26	0.7865	0.25
	Test 7	2093.81	0.7748	0.3
	Test 8	2197.85	0.7644	0.35

Table 8 :

 8 The effect of the regularization parameter 𝛽 using the PSF of support size 13×13, where 𝛼=0.15 and 𝛽 𝑙𝑎𝑡 =0.35 are fixed for the

image "Bridge" and for the "photo" image 𝛼 = 0.25 and 𝛽 𝑙𝑎𝑡 = 0.001 , while 𝛽 increase by a step size of 0.05 Upon analyzing the results presented in Table

8

, it is evident that for the "Bridge" image, the combination (𝛼, 𝛽 𝑙𝑎𝑡 , 𝛽) = (0.15,0.35,0.05) yielded the best result among the 21 tests conducted. When comparing it with the previous combination (𝛼, 𝛽 𝑙𝑎𝑡 , 𝛽) = (0.15,0.35,0.03), we obtained better results with this latter. For example, the combination (𝛼, 𝛽 𝑙𝑎𝑡 , 𝛽) = (0.15,0.35,0.05) gave an SSIM value of 0.8267 dB and 𝐿 1 norm value of 3127.70. Conversely, the previous combination (𝛼, 𝛽 𝑙𝑎𝑡 , 𝛽) = (0.15,0.35,0.03) resulted in an SSIM value of 0.8099 dB and 𝐿 1 norm value of 3036.67. Therefore, the best combination remains the previous one (𝛼, 𝛽 𝑙𝑎𝑡 , 𝛽) = (0.15,0.35,0.03).

  The results of the evaluation using the PSF of support size 19 × 19 and 23 × 23 confirm the same outcome as the PSF of support size 13 × 13. These results are shown in Appendix.
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Table 9 :

 9 The best combination of regularization parameters found specific for each image degraded by each PSF

	Image	Restored image (new combination)	Restored image (PAN's combination
		13 × 13	
	"Bridge"		
	"Photo"		
		19 × 19	
	"Bridge"		
	"Photo"		

Table 10 :

 10 visual comparison between the restored "Bridge" and "Photo" images using PAN's combination and the new better combination for the three PSFs sizes used 13 × 13, 19 × 19, and 23 × 23
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Alternated step: estimation of h and flat: -Structural and textural components separation:

  𝟏 𝟐϶ s,t × 𝑒 -‖𝑟‖ 0.8 × ‖𝑰 𝒔 -𝒇 𝒍𝒂𝒕 ‖ 𝟐 𝟐 + ‖𝛁𝑰 𝒔 ‖ 𝟐 where 𝐼 𝑠 is the structural part of 𝑓 𝑙𝑎𝑡 and 𝑟 =

						‖∑ ∇𝑔 𝛿 ∑ ‖∇𝑔‖ 2 +0.5 ‖ 2 𝛿	with 𝛿 a window of size
	5 × 5.				
	϶ 𝐬,𝐭 : regularization parameter for the separation of the structural components.
	-Structural component 𝑰 𝒔 :	
			𝜕𝐼 𝑠 ∂ 𝑡	= -𝑠𝑖𝑔𝑛(∆𝐼 𝑠 ̃) × ‖∇𝐼 𝑠 ̃‖2
	𝐭 : chock filter parameter.		
	𝐶(ℎ) =	1 2	‖ℎ * ∇ 𝑥 𝑆 -∇ 𝑥 𝑔‖ 2 2 +	1 2	‖ℎ * ∇ 𝑦 𝑆 -∇ 𝑦 𝑔‖ 2 2 + 𝛼‖ℎ‖ 0.5 0.5

With h≥ 0 and ∑ ℎ(𝑖, 𝑗) = 1 𝑖,𝑗

Table 11 :

 11 Parameter values and number of iterations empirically fixed in the original method.

  𝑦, 𝑡) is the enhanced structural component, 𝑠𝑖𝑔𝑛(. ) is the sign function, ∆ is the Laplacian operator and 𝑡 is a scalar regularization parameter related to the shock filter.

										44)
	𝐼 𝑠 ̃= 𝐼 𝑠 ̃(𝑥, With 𝛻𝐼 𝑠 ̃(𝑥, 𝑦) = (	𝜕𝐼 𝑠 ∂ 𝑥 )	2	×	𝜕 2 𝐼 𝑠 ∂𝑥 2 + 2 × (	𝜕 2 𝐼 𝑠 ∂𝑥𝜕𝑦 ) ×	𝜕𝐼 𝑠 ∂ 𝑥 ×	𝜕𝐼 𝑠 ∂ 𝑦 + ( 𝜕𝐼 𝑠 ∂ 𝑦 ) 2	×	𝜕 2 𝐼 𝑠 ∂𝑦 2

  𝑥 𝑆 𝑇 ∇ 𝑥 𝑆 + ∇ 𝑦 𝑆 𝑇 ∇ 𝑦 𝑆) -1 × (∇ 𝑥 𝑆 𝑇 ∇ 𝑥 𝑔 + ∇ 𝑦 𝑆 𝑇 ∇ 𝑦 𝑔)

	1, 𝑖 𝑠𝑎𝑣𝑒 = 1;
	Output: 𝛼 ̂	
	For 𝑖 = 𝑥, 𝑦	
	While 𝑘 ≤ 800	
	𝛼 ̂𝑖,𝑘 = arg min 𝛼 𝑖	𝑊𝐺𝐶𝑉(𝛼 𝑖 )
	If ‖ 𝑊𝐺𝐶𝑉(𝛼 ̂𝑖,𝑘 )-𝑊𝐺𝐶𝑉(𝛼 ̂𝑖,𝑘-1 ) 𝑊𝐺𝐶𝑉(𝛼 ̂𝑖,1 ) ‖ 1	≤ 𝑒 -5 & k > 1
	𝑖 𝑠𝑎𝑣𝑒 = 𝑖 𝑠𝑎𝑣𝑒 + 1
	If 𝑖 𝑠𝑎𝑣𝑒 ≥ 5
	Return 𝛼 ̂𝑖,𝑘
	End if	
	End if	
	End while	
	End for	
	𝛼 ̂= 𝛼 ̂𝑥+𝛼 ̂𝑦 2	
			Algorithm 2
	Input: 𝛼 ̂, ∇ 𝑥 𝑆, ∇ 𝑦 𝑆, ∇ 𝑥 𝑔 and ∇ 𝑦 𝑔
	Output: ℎ ̂	
	ℎ ̂1 = (∇ For 𝑖 𝑒𝑥𝑡 = 1: 2	
	𝛼×𝐼 2 max(|ℎ ̂1| ℎ ̂= (∇ 𝑥 𝑆 𝑇 ∇ 𝑥 𝑆 + ∇ 𝑦 𝑆 𝑇 ∇ 𝑦 𝑆 + (	1,5 ,𝜏)

  𝐼 is the identity matrix, while 𝜏 𝑥 and 𝜏 𝑦 represent, respectively, the desired solution accuracy in the 𝑥 and 𝑦 directions to prevent the dividing by zero. Instead of setting a low value as proposed in[START_REF] Pan | Kernel Estimation from Salient Structure for Robust Motion Deblurring[END_REF], the values of 𝜏 𝑥 and 𝜏 𝑦 are determined by averaging the absolute value of 𝛻 𝑥 𝑓 𝑙𝑎𝑡,𝑘-1 and 𝛻 𝑦 𝑓 𝑙𝑎𝑡,𝑘-1 , respectively. As a result, the equation 𝛻𝐶(𝑓 𝑙𝑎𝑡 ) = 0 is equivalent to:

	𝑘 ∥ 1 ] ≈ [	∇ 𝑥 𝐼 max(|𝛻 𝑥 𝑓 𝑙𝑎𝑡,𝑘-1 |, 𝜏 𝑥 )	+	∇ 𝑦 𝐼 max(|𝛻 𝑦 𝑓 𝑙𝑎𝑡,𝑘-1 |, 𝜏 𝑦 )	] × 𝑓 𝑙𝑎𝑡,𝑘
	𝑘 represents the iteration number, 𝑓 𝑙𝑎𝑡,𝑘 = [ℎ 𝐸 𝑘 𝑇 × ℎ 𝐸 𝑘 + 𝛽 𝑙𝑎𝑡,𝑘-1 ( max(|∇ 𝑥 𝑓 𝑙𝑎𝑡,𝑘-1 |, 𝜏 𝑥 ) ∇ 𝑥 × 𝐼	+	∇ 𝑦 × 𝐼 max(|∇ 𝑦 𝑓 𝑙𝑎𝑡,𝑘-1 |, 𝜏 𝑦 )	)]	-1	× (ℎ 𝐸 𝑘 𝑇 𝑔) (53)
		Algorithm 3	
	Input: 𝑔, 𝜆 ̂𝑘-1 , 𝑓 𝑙𝑎𝑡,𝑘-1 , and ℎ 𝐸 𝑘					
	Output: 𝑓 𝑙𝑎𝑡,𝑘 , 𝜆 ̂𝑘					
	For 𝑖 𝑒𝑥𝑡 = 1: 2					
	𝑓 𝑙𝑎𝑡,𝑘 = [ℎ 𝐸 𝑘 𝑇 × ℎ 𝐸 𝑘 + 𝛽 𝑙𝑎𝑡,𝑘-1 ( max(|∇ 𝑥 𝑓 𝑙𝑎𝑡,𝑘-1 |,𝜏 𝑥 ) + ∇ 𝑥 ×𝐼	∇ 𝑦 ×𝐼 max(|∇ 𝑦 𝑓 𝑙𝑎𝑡,𝑘-1 |,𝜏 𝑦 )	)]	-1	× (ℎ 𝐸 𝑘 𝑇 𝑔)
	If ‖𝑔 -ℎ 𝐸 𝑘-1 * 𝑓 𝑙𝑎𝑡 𝑘-1 ‖ 2 2 -‖𝑔 -ℎ 𝐸 𝑘 * 𝑓 𝑙𝑎𝑡 𝑘 ‖ 2 2 ≤ 𝑇ℎ
	Return					
	Else update the regularization parameter 𝜆 using (51) to get 𝜆 ̂𝑘
	𝜆 ̂𝑘-1 = 𝜆 ̂𝑘					
	End if					
	𝑓 𝑙𝑎𝑡,𝑘-1 = 𝑓 𝑙𝑎𝑡,𝑘					

➢ Algorithm for the estimation of the regularization parameter 𝜷 𝒍𝒂𝒕 and the latent image 𝒇 𝒍𝒂𝒕

The overall algorithm for estimating the latent image 𝑓 𝑙𝑎𝑡 , considering the adaptive estimation of the regularization parameter 𝜆 of the 𝑘 𝑡ℎ iteration in the current scale is as follows:

The Algorithm for the final image restoration Algorithm 5

  Input: 𝑔, 𝜆 ̂𝑘-1 , 𝑓 ̂𝑘-1 , and ℎ 𝐸 Output : 𝑓 ̂, and 𝜆 ̂𝑘

	For 𝑖 𝑒𝑥𝑡 = 1: 2						
	𝑓 ̂𝑘 = {ℎ 𝐸 𝑇 × ℎ 𝐸 + 𝜆 ̂𝑘-1	-1				
	× [ max(|∇ 𝑥 𝑓 ̂𝑘-1 |, 𝜏 𝑥 ) ∇ 𝑥 × 𝐼	+	∇ 𝑦 × 𝐼 max(|∇ 𝑦 𝑓 ̂𝑘-1 |, 𝜏 𝑦 )	+	∇ 𝑥𝑦 × 𝐼 max(|∇ 𝑥𝑦 𝑓 ̂𝑘-1 |, 𝜏 𝑥𝑦 )
	+	∇ 𝑥𝑥 × 𝐼 max(|∇ 𝑥𝑥 𝑓 ̂𝑘-1 |, 𝜏 𝑥𝑥 )	+	∇ 𝑦𝑦 × 𝐼 max(|∇ 𝑦𝑦 𝑓 ̂𝑘-1 |, 𝜏 𝑦𝑦 )	]}	-1	× (ℎ 𝐸 𝑇 𝑔)
	If ‖ℎ 𝐸 * 𝑓 ̂𝑘-1 -𝑔‖ 2 2 -‖ℎ 𝐸 * 𝑓 ̂𝑘 -𝑔‖ 2 2 ≤ 10 -3
	Return						
	Else update the value of 𝜆 using (51)			
	𝜆 ̂𝑘-1 = 𝜆 ̂𝑘						
	End If						
	𝑓 ̂𝑘-1 = 𝑓 ̂𝑘						
	End For						

Table 14 :

 14 

Comparison of degraded image, latent image, and final image restored with respective edges for "Bridge" and "Photo" images using PSF support size 13 × 13, 19 × 19, and 27 × 27

Table 16

 16 represent the evaluation conducted on the restored image using PSNR and SSIM evaluation criteria. Evaluating the final restored image using PSNR and SSIM and evaluation metrics shown the superiority and accuracy of our proposed method over the original method.

		PSF size	13x13	15x15	17x17	19x19	21x21	23x23	23x23	27x27
						Bridge			
	‖ℎ -ℎ ̂‖1	Original Proposed	1.0436 0.5166	1.0706 0.5426	0.8514 0.5547	1.0501 0.7561	1.6043 1.7024 1.6120 1.8183 0.5500 0.5403 0.5040 0.7457
		Original	3862.5	4256.3	3466.5	3238.1	7453.1 7039.7 7055.2 7323.7

Table 15 :

 15 ‖ℎ -ℎ ̂‖1 𝑎𝑛𝑑 ‖𝑓 -𝑓 ̂‖1 of the proposed method and the original methods

Table 16 :

 16 Comparison of the final restored image between the original method and the proposed method using PSNR and SSIM evaluation criteria

8030 1536.9 930.3412 984.9006 1022.9 1319.2 1193.7 1587.5

  

										Photo
	‖ℎ -ℎ ̂‖1	Original Proposed	0.7003 0.6321	0.6858 0.5730	0.8475 0.7600	1.0068 0.9128	1.4357 1.6348 1.2606 1.7584 0.7789 0.7700 0.6998 0.9824
	‖𝑓 -𝑓 ̂‖1	Original Proposed 938.0729 1214.2 1131.4 1361.2	1798.8 1302.9	1404.5 1320	5533.6 5923.1 4135.6 5831.4 1464.4 1513.4 1165.5 1329.5
										Face
	‖ℎ -ℎ ̂‖1	Original Proposed	1.0031 0.7744	0.6943 0.7494	1.0797 0.8241	1.1826 1.0201	1.6606 1.7282 1.6215 1.7715 0.9081 0.9513 1.0823 1.1973
	‖𝑓 -𝑓 ̂‖1	Original Proposed	2093.8 637.73	969.10 1149.9	2574.8 1318.4	1895.6 1331.9	6113.5 5154.6 5004.2 5785.4 1189.3 1549 3015.6 3126.9
										Wall
	‖ℎ -ℎ ̂‖1	Original Proposed	1.0067 0.7181	0.5903 0.5895	1.2191 0.66729	0.9607 0.9084	1.5822 1.6969 1.4457 1.6956 0.7127 0.6890 0.6814 0.8863
	‖𝑓 -𝑓 ̂‖1	Original Proposed	2227.5 1259.5	1040.8 1076.5 955.8388 2595.5	1272.4 1085.5	6580.3 5610.4 5278.7 6254.3 1200.9 1073.8 1229.9 1654
		PSF size	13x13	15x15	17x17	19x19	21x21	23x23	23x23	27x27
										Bridge
	PSNR	Original 19.2438 19.8016 21.8706 Proposed 29.	21.0529	14.8784 15.3588 13.8763 15.4549

‖𝑓 -𝑓 ̂‖1 Proposed 998.

3216 23.0437 25.1264 22.8250 20.1690 23.2581 25.3792 21.3737

  

	SSIM	Original Proposed 0.9641 0.7175	0.6573 0.7457	0.7874 0.8423	0.8257 0.8876	0.2676 0.5771	0.3222 0.7397	0.3210 0.8235	0.2700 0.6146
					Photo				
	PSNR	Original 29.2214 27.7363 26.2064 Proposed 23.4926 28.3343 25.1247	27.5756 27.6978	16.5486 16.0657 17.8423 16.5517 22.2322 21.1035 26.9023 24.5353
	SSIM	Original Proposed 0.8260 0.9356	0.9057 0.9203	0.8576 0.8428	0.8310 0.9145	0.4417 0.7402	0.4420 0.6789	0.5576 0.8794	0.4167 0.8022
					Face				
	PSNR	Original 24.8458 32.6592 23.7707 Proposed	26.1673	16.8617 18.2953 18.7898 17.6096

24.9343 24.4035 26.9823 29.3207 23.6247 26.6309 21.4071 22.0792

  

	SSIM	Original Proposed 0.8919 0.8328	0.9429 0.9094	0.7357 0.9004	0.8385 0.9048	0.3656 0.7849	0.4285 0.8902	0.4426 0.6117	0.3980 0.6648
					Wall				
	PSNR	Original 23.9710 31.7460 22.8936 Proposed 25.1000 24.7539 24.7643	29.8902 30.6666	15.8735 16.9208 17.5547 16.4025 21.2992 24.5423 23.2951 23.4602
	SSIM	Original Proposed 0.9210 0.8136	0.9483 0.8468	0.7717 0.8379	0.9236 0.9398	0.3308 0.6901	0.3884 0.8338	0.4219 0.7793	0.3491 0.7627

  Table 18 highlight the distinctive nature of the regularization parameter values for each degraded image, emphasizing the significance of accurately estimating these parameters to achieve improved restoration outcomes.

		15 ×		28	[2, 456]	[0.0022, 0.5]	0.0082	0.2934	0.2934	0.4530
		17 ×		79	[2, 393]	[0.0025, 0.5]	0.0595	0.2831	0.2831	0.4468
		19 ×		8	[1, 391]	[0.0026, 1]	0.0057	0.3320	0.3320	0.4216
		21 ×		62	[1,339]	[0.0029, 1]	0.0620	0.3176	0.3176	0.4174
		23 ×		98	[1, 304]	[0.0033, 1]	0.0597	0.3587	0.3587	0.3948
		23 ×		12	[2, 290]	[0.0034, 0.5]	0.0035	0.3587	0.3587	0.3970
		27 ×		74	[1,293]	[0.0034, 1]	0.0591	0.3781	0.3781	0.3430
						Estimated parameters			
		PSF size	Solution iteration number	𝜆 variation range	𝛽 𝑙𝑎𝑡 variation range	𝛼 ̂	∋ 𝑠,𝑡	𝑡	𝜗
		13 × 13			[1, 908]	[0.001, 1]	0.0587	0.2336	0.2336	0.3178
		15 × 15			[1,881]	[0.0012, 1]	0.0080	0.2934	0.2934	0.3719
	Bridge"	17 × 17 19 × 19 21 × 21			[5, 677] [5, 683] [3, 588] [0.0017, 0.3333] 0.1253 [0.0015, 0.2] 0.0636 [0.0015, 0.2] 0.0408	0.2831 0.3320 0.3176	0.2831 0.3320 0.3176	0.3671 0.2694 0.3315
	"	23 × 23			[3, 563] [0.0018, 0.3333] 0.1194	0.3587	0.3587	0.2759
		23 × 23			[3, 538] [0.0019, 0.3333] 0.0750	0.3587	0.3587	0.2541
		27 × 27			[4, 508]	[0.002, 0.25]	0.1376	0.3781	0.3781	0.2524
		13 × 13			[2, 674]	[0.0015, 0.5]	0.0403	0.2336	0.2336	0.2021
		15 × 15			[2, 704]	[0.0014, 0.5]	0.0377	0.2934	0.2934	0.2943
	Photo"	17 × 17 19 × 19 21 × 21			[2, 522] [3, 551] [0.0018, 0.3333] 0.0068 [0.0019, 0.5] 0.0066 [4, 480] [0.0021, 0.25] 0.0052	0.2831 0.3320 0.3176	0.2831 0.3320 0.3176	0.2570 0.1879 0.1062
	"	23 × 23			[2, 485]	[0.0021, 0.5]	0.0042	0.3587	0.3587	0.2132
		23 × 23			[2, 512]	[0.002, 0.5]	0.0067	0.3587	0.3587	0.2440
		27 × 27			[2, 470]	[0.0021, 0.5]	0.0101	0.3781	0.3781	0.2163
		13 × 13			[6, 286] [0.0035, 0.1667] 0.1194	0.2336	0.2336	0.3511
		15 × 15			[4, 272]	[0.0037, 0.25]	0.0057	0.2934	0.2934	0.3250
	Face"	17 × 17 19 × 19 21 × 21			[7, 297] [0.0034, 0.1429] 0.0627 [5, 285] [0.0035, 0.2] 0.0656 [4, 289] [0.0035, 0.25] 0.0584	0.2831 0.3320 0.3176	0.2831 0.3320 0.3176	0.3261 0.2834 0.2879
	"	23 × 23			[3, 276] [0.0036, 0.3333] 0.0608	0.3587	0.3587	0.2522
		23 × 23		9	[3, 273 [0.0037, 0.3333] 0.0053	0.3587	0.3587	0.1746
	"	27 × 27 W a l l 13 × 13	"	5	[1, 288] [5, 457]	[0.0035, 1] [0.0022, 0.2]	0.0106 0.1198	0.3781 0.2336	0.3781 0.2336	0.1911 0.4828

Table 17 :

 17 The estimated regularization parameter values related to the PSF estimated and the latent image along with the iteration number of the solution retained for the full database DBS1.

	Estimated parameters

Table

  

Table 19 :

 19 

		Method	PSNR	SSIM	𝑳 𝟏 norm
			" Bridge"		
	𝟏𝟑 × 𝟏𝟑	Ours	29.3216	0.9641	998.8030
		PAN	22.1019	0.8099	3036.67
	𝟏𝟗 × 𝟏𝟗	Ours	22.8250	0.8876	984.9006
		PAN	22.3450	0.8826	2880.61
	𝟐𝟑 × 𝟐𝟑	Ours	25.3792	0.8235	1193.7
		PAN	17.6851	0.4424	5175.99
			"Photo"		
	𝟏𝟑 × 𝟏𝟑	Ours	23.4926	0.8260	938.0729
		PAN	30.9476	0.9492	942.86
	𝟏𝟗 × 𝟏𝟗	Ours	27.6978	0.9145	1320
		PAN	27.6787	0.9012	1333.01
	𝟐𝟑 × 𝟐𝟑	Ours	26.9023	0.8794	1165.5
		PAN	21.6381	0.7111	2757.06

comparison between results obtained by our proposed blind method with the results obtained using the regularization parameter values found by the manual adjustment

Table 20 :

 20 Kernel similarity Comparison between our proposed method and four methods from the literature

				33]	[73]	[74]	[75]	Proposed method
		n°	PSF size			Kernel similarity	
		1	13 × 13	0.7880	0.7625	0.7270	0.8100	0.7842
		2	15 × 15	0.8060	0.6900	0.7230	0.7250	0.7908
		3	17 × 17	0.8750	0.8625	0.8270	0.8250	0.8725
	"Photo"	4 5	19 × 19 21 × 21	0.6700 0.8820	0.5850 0.7880	0.5875 0.7200	0.6400 0.8125	0.7440 0.8882
		6	23 × 23	0.8750	0.5650	0.7700	0.7720	0.8146
		7	23 × 23	0.8125	0.5200	0.7950	0.7950	0.8160
		8	27 × 27	0.7590	0.6580	0.6500	0.5000	0.8433
		1	13 × 13	0.8375	0.7590	0.7005	0.8125	0.8130
		2	15 × 15	0.8060	0.7760	0.7500	0.7250	0.8506
		3	17 × 17	0.8750	0.8500	0.8374	0.8510	0.8804
	"Bridge"	4 5	19 × 19 21 × 21	0.7000 0.8250	0.5760 0.8500	0.6530 0.8060	0.6050 0.8300	0.7668 0.9128
		6	23 × 23	0.7790	0.5270	0.7250	0.8127	0.8925
		7	23 × 23	0.8010	0.4875	0.8375	0.8770	0.8915
		8	27 × 27	0.7760	0.6745	0.6635	0.7700	0.8954
		1	13 × 13	0.7930	0.7780	0.7350	0.7750	0.7435
		2	15 × 15	0.7901	0.7187	0.7125	0.7290	0.8090
		3	17 × 17	0.8760	0.8625	0.8240	0.8400	0.8684
	"Wall"	4 5	19 × 19 21 × 21	0.7250 0.8875	0.6050 0.8400	0.5625 0.8130	0.5625 0.8750	0.7285 0.8900
		6	23 × 23	0.8500	0.5800	0.7210	0.7625	0.8211
		7	23 × 23	0.9010	0.5270	0.8400	0.8525	0.9184
		8	27 × 27	0.7500	0.6625	0.6625	0.7060	0.8224
		1	13 × 13	0.8125	0.7270	0.6850	0.7630	0.7270
		2	15 × 15	0.7620	0.7200	0.6750	0.7220	0.7689
		3	17 × 17	0.8500	0.8270	0.8270	0.8270	0.8576
	"Face"	4 5	19 × 19 21 × 21	0.6625 0.8600	0.5650 0.7750	0.5850 0.7650	0.5375 0.8250	0.6681 0.8642
		6	23 × 23	0.8200	0.7750	0.7550	0.7690	0.7913
		7	23 × 23	0.8125	0.7100	0.6650	0.7510	0.7733
		8	27 × 27	0.6875	0.6500	0.6460	0.7150	0.6875

Table 22 .

 22 
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Table 21 :

 21 

	Lighthouse	𝐿 1 norm Kernel similarity	‖ℎ -ℎ ̂𝑅‖ 1 0.5098 𝐾𝑆 𝑅 0.8926	‖ℎ -ℎ ̂𝐺‖ 1 0.2734 𝐾𝑆 𝐺 0.9760	‖ℎ -ℎ ̂𝐵‖ 1 0.2382 𝐾𝑆 𝐵 0.9812	‖ℎ -ℎ ̂𝑎𝑣𝑔 ‖ 1 0.3405 𝐾𝑆 𝑎𝑣𝑔 0.9300
	Butterfly	𝐿 1 norm Kernel similarity	‖ℎ -ℎ ̂𝑅‖ 1 0.4334 𝐾𝑆 𝑅 0.9506	‖ℎ -ℎ ̂𝐺‖ 1 0.4880 𝐾𝑆 𝐺 0.9212	‖ℎ -ℎ ̂𝐵‖ 1 0.4451 𝐾𝑆 𝐵 0.9484	‖ℎ -ℎ ̂𝑎𝑣𝑔 ‖ 1 0.4555 𝐾𝑆 𝑎𝑣𝑔 0.9309

Visual evaluation for the estimated PSF from each component and the average estimated PSF for the "Lighthouse" and "Butterfly" images degraded by the original PSF of support size 13×13

Table 22 :

 22 Qualitative evaluation of the estimated PSF of each component and the average estimated PSF for the "Lighthouse" and "Butterfly" images using the 𝐿 1 norm of the error estimation and the kernel similarity as evaluation criteria

	Image		𝐿 1 norm: ‖𝑔 -𝑔 ̂‖1
			Red component
	Lighthouse"	‖𝑔 𝑅 -𝑔 ̂𝑅𝑅 ‖ 1 3.1681 × 10 4 ‖𝑔 𝐺 -𝑔 ̂𝐺𝑅 ‖ 1 3.1053 × 10 4	‖𝑔 𝑅 -𝑔 ̂𝑅𝐺 ‖ 1 2.4812 × 10 4 Green component ‖𝑔 𝑅 -𝑔 ̂𝑅𝐵 ‖ 1 𝟐. 𝟏𝟑𝟓𝟑 × 𝟏𝟎 𝟒 ‖𝑔 𝐺 -𝑔 ̂𝐺𝐺 ‖ 1 ‖𝑔 𝐺 -𝑔 ̂𝐺𝐵 ‖ 1 2.6934 × 10 4 𝟐. 𝟐𝟓𝟓𝟏 × 𝟏𝟎 𝟒	‖𝑔 𝑅 -𝑔 ̂𝑅𝑎𝑣𝑔 ‖ 1 4.1264 × 10 4 ‖𝑔 𝐺 -𝑔 ̂𝐺𝑎𝑣𝑔 ‖ 1 4.2616 × 10 4
	"		Blue components
		‖𝑔 𝐵 -𝑔 ̂𝐵𝑅 ‖ 1 3.3659 × 10 4	‖𝑔 𝐵 -𝑔 ̂𝐵𝐺 ‖ 1 2.7486 × 10 4	‖𝑔 𝐵 -𝑔 ̂𝐵𝐵 ‖ 1 𝟐. 𝟑𝟕𝟔𝟒 × 𝟏𝟎 𝟒	‖𝑔 𝐵 -𝑔 ̂𝐵𝑎𝑣𝑔 ‖ 1 4.2876 × 10 4
			Red component
	Butterfly"	‖𝑔 𝑅 -𝑔 ̂𝑅𝑅 ‖ 1 𝟐. 𝟒𝟒𝟐𝟒 × 𝟏𝟎 𝟒 ‖𝑔 𝐺 -𝑔 ̂𝐺𝑅 ‖ 1 𝟐. 𝟓𝟏𝟏𝟖 × 𝟏𝟎 𝟒	‖𝑔 𝑅 -𝑔 ̂𝑅𝐺 ‖ 1 2.76564 × 10 4 Green component ‖𝑔 𝑅 -𝑔 ̂𝑅𝐵 ‖ 1 2.7446 × 10 4 ‖𝑔 𝐺 -𝑔 ̂𝐺𝐺 ‖ 1 ‖𝑔 𝐺 -𝑔 ̂𝐺𝐵 ‖ 1 2.7946 × 10 4 2.9924 × 10 4	‖𝑔 𝑅 -𝑔 ̂𝑅𝑎𝑣𝑔 ‖ 1 3.0255 × 10 4 ‖𝑔 𝐺 -𝑔 ̂𝐺𝑎𝑣𝑔 ‖ 1 3.0697 × 10 4
	"		Blue components
		‖𝑔 𝐵 -𝑔 ̂𝐵𝑅 ‖ 1 𝟐. 𝟓𝟗𝟐𝟕 × 𝟏𝟎 𝟒	‖𝑔 𝐵 -𝑔 ̂𝐵𝐺 ‖ 1 2.7486 × 10 4	‖𝑔 𝐵 -𝑔 ̂𝐵𝐵 ‖ 1 2.6000 × 10 4	‖𝑔 𝐵 -𝑔 ̂𝐵𝑎𝑣𝑔 ‖ 1 3.0981 × 10 4

Table 23 :

 23 Evaluation of the 𝐿

1 norm of the error estimation between the observed degraded image and the estimated degraded image for both "Lighthouse" and "butterfly" images

Table 24 :

 24 Comparing the restoration result using the most accurate PSF, the appropriate estimated PSF from each component and the average PSF based on the PSNR and SSIM metrics

				Estimated	Appropriate estimated	Average estimated
			PSF		PSF		PSF	
		Restored image	PSNR	SSIM	PSNR	SSIM	PSNR	SSIM
	Lighthouse"	𝑓 ̂𝑅 𝑓 ̂𝐺 𝑓 ̂𝐵 𝑓 ̂𝑅𝐺𝐵	24.2029 24.0023 24.2981 24.3660	0.8283 0.8245 0.8473 0.8876	22.0331 23.1457 24.2981 23.0612	0.7059 0.8096 0.8473 0.8443	24.1528 24.0549 20.1346 22.3485	0.7985 0.7949 0.7511 0.7592
	"							
	" Butterfly"	𝑓 ̂𝑅 𝑓 ̂𝐺 𝑓 ̂𝐵 𝑓 ̂𝑅𝐺𝐵	23.3033 25.5007 25.5090 26.1700	0.8577 0.8836 0.8954 0.9556	20.3033 21.5242 22.2588 21.2862	0.8577 0.8513 0.8405 0.9350	20.9401 22.2208 23.0102 21.9721	0.8763 0.8704 0.8609 0.9448

Table 25 :

 25 qualitative comparison between out proposed method and four methods from the literature for the restoration of the "Lighthouse" and "Butterfly" images using PSNR and SSIM

		Evaluation metric	[33]	[73]	[74]	[75]	Our proposed method
	"Lighthouse	PSNR SSIM	24.02 22.58 19.96 23.51 0.8073 0.7787 0.6475 0.7924	24.37 0.8876
	"Butterfly"	PSNR SSIM	26.11 0.9552 0.9147 0.8355 0.9458 21.71 17.48 25.08	26.17 0.9556

Table 26 :

 26 Correlated groups and their exemplar spectral component for the first strategy

Table 27 :

 27 Estimated PSF from each exemplar

	PSF size	𝟗 × 𝟗	𝟏𝟑 × 𝟏𝟑	𝟏𝟗 × 𝟏𝟗
	‖𝒉 -𝒉 ̂𝟏𝟖 ‖ 𝟏 ‖𝒉 -𝒉 ̂𝟑𝟗 ‖ 𝟏 ‖𝒉 -𝒉 ̂𝟓𝟎 ‖ 𝟏 ‖𝒉 -𝒉 ̂𝟔𝟎 ‖ 𝟏 ‖𝒉 -𝒉 ̂𝟖𝟖 ‖ 𝟏	0.1071 0.0713 0.1124 0.1034 0.0515	0.2348 0.3271 0.3746 0.7404 0.1850	0.3739 0.4772 0.5133 0.4819 0.2789

Table 28 :

 28 Qualitative evaluation of the estimated PSF from the exemplar spectral components using the 𝐿 1 norm

Table 29 :

 29 visual representation of the original, degraded, and restored HSI shown in RGB mode using the spectral component B18, B50 and B60
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Table 30 :

 30 Qualitative evaluation of the full HSI for the three PSF used, utilizing the MPSNR, MSSIM, 𝐿 1 norm, and MRMSE as evaluation metrics.

	PSF size	9 × 9	13 × 13	19 × 19
	Pixel			
	(1,1)			
	Pixel			
	(34,8)			
	Pixel			
	(60,14)			

Table 31 :

 31 Comparison between the original, degraded and restored spectral signature of three different pixel coordinates using three different PSF functions of different support sizes

Table 32 :

 32 Correlated groups and their exemplar spectral component for the first strategy

Table 33 :

 33 visual evaluation of the estimated PSF of the exemplar spectral components

	PSF size	𝟗 × 𝟗	𝟏𝟑 × 𝟏𝟑	𝟏𝟗 × 𝟏𝟗
	‖𝒉 -𝒉 ̂𝟏𝟏 ‖ 𝟏 ‖𝒉 -𝒉 ̂𝟑𝟖 ‖ 𝟏 ‖𝒉 -𝒉 ̂𝟒𝟗 ‖ 𝟏 ‖𝒉 -𝒉 ̂𝟓𝟖 ‖ 𝟏 ‖𝒉 -𝒉 ̂𝟖𝟓 ‖ 𝟏	0.0517 0.0594 0.1026 0.1051 0.0460	0.2092 0.3251 0.3334 0.3654 0.1847	0.9719 0.4689 0.4932 0.5074 0.3056

Table 34 :

 34 Qualitative evaluation of the estimated PSFs of the exemplar spectral components using the 𝐿 1 norm of the error estimation

	PSF size	𝟗 × 𝟗	𝟏𝟑 × 𝟏𝟑	𝟏𝟗 × 𝟏𝟗
	‖𝒈 𝟏𝟏 -𝒈 ̂𝟏𝟏 ‖ 𝟏	1.3936 × 10 4	1.9894 × 10 4	4.2004 × 10
	‖𝒈 𝟑𝟖 -𝒈 ̂𝟑𝟖 ‖ 𝟏	1.9052 × 10 4	2.5728 × 10 4	3.9480 × 10
	‖𝒈 𝟒𝟗 -𝒈 ̂𝟒𝟗 ‖ 𝟏	1.9017 × 10 4	2.3532 × 10 4	3.7629 × 10
	‖𝒈 𝟓𝟖 -𝒈 ̂𝟓𝟖 ‖ 𝟏	1.5777 × 10 4	2.1772 × 10 4	3.1886 × 10
	‖𝒈 𝟖𝟓 -𝒈 ̂𝟖𝟓 ‖ 𝟏	𝟏. 𝟓𝟒𝟏𝟕 × 𝟏𝟎 𝟒	𝟏. 𝟖𝟏𝟓𝟗 × 𝟏𝟎 𝟒	𝟐. 𝟎𝟏𝟎𝟐 × 𝟏𝟎 𝟒

Table 35 :

 35 Qualitative evaluation of the estimated degraded exemplar spectral components using the 𝐿 1 norm of the error estimation

Table 36 :

 36 visual comparison between the 1 st and 2 nd strategy for the original, degraded, and restored HSI shown in RGB mode using the spectral component B18, B50 and B60

	PSF size	MPSNR strategy 1 st strategy 2 nd	MSSIM strategy 1 st strategy 2 nd	𝑴𝑳 𝟏 norm 1 st 2 nd strategy strategy	MRMSE strategy 1 st strategy 2 nd
	𝟗 × 𝟗	47.7992	47.8180	0.9825	0.9828	195.06	194.57	1.1130	1.1109
	𝟏𝟑 × 𝟏𝟑	39.5419	41.2643	0.9257	0.9445	151.63	135.65	2.7773	2.3460
	𝟏𝟗 × 𝟏𝟗	39.5586	41.0850	0.9301	0.9408	194.87	172.88	2.7652	2.3986

Table 37 :

 37 Qualitative comparison between the 1 st and 2 nd strategies of the full HSI for the three PSF used, utilizing the MPSNR, MSSIM, 𝑀𝐿 1 norm, and MRMSE as evaluation metrics.

	PSF size	9 × 9	13 × 13	19 × 19
	Pixel			
	(1,1)			
	Pixel			
	(1,19)			
	Pixel			
	(31,6)			
	Pixel			
	(31,9)			
	Pixel			
	(34,8)			

Table 39 :

 39 Correlated groups and their exemplar spectral component for the "TOY" image

		"HARV"			
	Spectral group	G1	G2	G3	G4
	Range of spectral components	1-4	5-11	12-19	20-31
	Exemplar	B3	B8	B15	B24

Table 40 :

 40 Correlated groups and their exemplar spectral component for the "HARV" image

Table 41 :

 41 

	coordinates	Spectral signature	coordinates	Spectral signature
	Pixel (0,8)		Pixel (391,325)	
	Pixel		Pixel	
	(2,25)		(401,106)	

Comparison result for the full HSI restoration between our method and six methods from the literature based on the MPSNR, MSSIM, and MRMSE for the two images of the databases DBS4

[START_REF]CAVE | Projects: Multispectral Image Database[END_REF] 

and DBS5

[START_REF]Statistics of Real-World Hyperspectral Images[END_REF]

, "TOY" and "HARV", respectively.

Table 42 :

 42 Comparison between the original, degraded and restored spectral signature of four different pixel coordinates using a gaussian blue of support size 9 × 9 for the image "HARV

Table 44 :

 44 CPU run time for the PSF estimation

		Final image restoration CPU run time (seconds)	
	PSF size	𝟗 × 𝟗	𝟏𝟑 × 𝟏𝟑	𝟏𝟗 × 𝟏𝟗	𝟐𝟑 × 𝟐𝟑
	Bridge	-	2237.2	2574.3	3609.5
	Photo	-	2205.9	2491	3360
	Wall	-	2362.1	2600	3075.3
	Face	-	2386.4	2718.5	3145.7
	𝟔𝟎 × 𝟔𝟎 × 𝟗𝟎	47300.7	41067.2	38007.8	-
	TOY	237751.1	-	-	-
	HARV	259861.5	-	-	-

Table 45 :

 45 CPU Time for the final image restoration

	PSF size	𝟏𝟑 × 𝟏𝟑	𝟏𝟗 × 𝟏𝟗	𝟐𝟑 × 𝟐𝟑
		"Bridge"		
	PAN	81.33	105.84	118.58
	OURS	9085.6	9459.8	11818.4
		"Photo"		
	PAN	78.5	106.33	118.31
	OURS	7992.2	9026.8	11125.6
		"Wall"		
	PAN	77.78	103	115.03
	OURS	8558	9420.5	12100.2
		"Face"		
	PAN	75.36	95.02	112.98
	OURS	8585.3	9849.2	11397.1

Table 46 :

 46 Comparison of the CPU runtime between the original method and our proposed blind method105
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PAN 21.0529 12.8807 0.0498 3238.25 0.0056 0.8257

  

	1. Evaluating the empirical choice of the regularization parameters fixed by PAN Test 10 20.7864 12.6474 0.0508 3303.27 0.0059 0.8193 0.05 0.004 0.002
					« Photo »				
	a) Evaluation using PSF of support size 13×13 Test 1-PAN 27.5756 19.7405 0.0216 1404.54 0.0014 0.8945	0.01	0.005	0.003
	Test 2	19.1974 10.7597 0.0660 4291.65 0.0094 0.5783	1	1	1
	Test Test 3	PSNR 26.1470 18.2515 0.0277 1801.19 0.0019 0.8148 0.001 SNR 𝐸(𝐿 1 ) norm MSE 𝜶	𝜷 𝒍𝒂𝒕 0.05	𝜷 0.03
	Test 4	« Bridge » 21.6094 13.2919 0.0515 3348.79 0.0054 0.6536	0.5	0.01	0.7
	Test 1 -PAN Test 5	19.2438 20.5552 12.2997 0.0543 3530.86 0.0069 0.6362 11.0613 0.0594 0.0085	0.01 0.5	0.005 0.5	0.003 0.5
	Test 2 Test 6	19.5721 22.0782 13.9610 0.0445 2893.61 0.0049 0.6918 0.058 10.7201 0.0677 0.0078 1	1	0.4	1 0.25
	Test 3 Test 4 Test 7 Test 5 Test 8 Test 6 Test 9 Test 7 Test 10	21.7414 19.7669 21.6541 13.5588 0.0447 2906.62 0.0054 0.6955 13.4455 0.0478 0.0048 0.001 11.0048 0.0655 0.0075 0.5 0.75 20.2814 11.5949 0.0615 0.0067 0.5 23.6497 15.6599 0.0357 2321.39 0.0034 0.7539 0.04 20.8642 12.3153 0.0563 0.0058 0.058 22.3023 14.0487 0.0466 3030.17 0.0046 0.6868 0.9 21.2287 12.7262 0.0534 0.0054 0.75 27.6787 19.9342 0.0205 1333.01 0.0013 0.9012 0.05	0.05 0.01 0.3333 0.1429 0.03 0.7 0.5 0.2 0.072 0.5 0.4 0.001 0.4 0.25 0.3333 0.1429 0.004 0.002
	Test 8	21.5111	13.1235	0.0503	0.0050		0.04	0.2	0.072
	Test 9	20.2453	11.5718	0.0610	0.0067		0.9	0.001	0.4
	Test 10	18.9111	10.7625	0.0612	0.0090		0.05	0.004	0.002
					« Photo »				
	Test 1 -PAN	29.2214	21.4220	0.0174	0.001		0.01	0.005	0.003
	Test 2	21.9594	13.6235	0.0500	0.0050		1	1	1
	Test 3	27.7456	19.8834	0.0220	0.0013	0.001	0.05	0.03
	Test 4	22.7683	14.5357	0.0440	0.0042		0.5	0.01	0.7
	Test 5	23.8351	15.6728	0.0384	0.0032		0.5	0.5	0.5
	Test 6	25.1503	17.1138	0.0313	0.0024	0.058	0.4	0.25
	Test 7	26.3759	18.3707	0.0269	0.0018		0.75	0.3333	0.1429
	Test 8	27.2160	19.2997	0.0237	0.0015		0.04	0.2	0.072
	Test 9	24.5295	16.3878	0.0356	0.0028		0.9	0.001	0.4
	Test 10	29.2307	21.4301	0.0173	0.0009		0.05	0.004	0.002
	Table A1: Results of the evaluation criteria chosen for ten different combinations of the regularization parameters for PSF support size
				13×13 using PAN's algorithm			
	b) Evaluation using PSF of support size 19×19				
	Test	PSNR	SNR	E(L1) norm	L1 norm MSE	SSIM		𝜶	𝜷 𝒍𝒂𝒕	𝜷
					« Bridge »				
	Test 1 -0.01	0.005	0.003
	Test 2	18.2024 9.2974	0.0777 5052.44 0.0108 0.4721	1	1	1
	Test 3	20.1557 11.7738 0.0574 3732.44 0.0069 0.6840 0.001	0.05	0.03
	Test 4	19.1362 10.2831 0.0696 4525.74 0.0087 0.5190	0.5	0.01	0.7
	Test 5	19.4087 10.6460 0.0674 4382.69 0.0081 0.5396	0.5	0.5	0.5
	Test 6	19.9156 11.2844 0.0624 4057.56 0.0072 0.5864 0.058	0.4	0.25
	Test 7	20.3016 11.6902 0.0593 3855.98 0.0066 0.6212	0.75	0.3333 0.1429
	Test 8	20.2234 11.7327 0.0583 3790.96 0.0068 0.6482	0.04	0.2	0.072
	Test 9	19.5663 10.7821 0.0659 4285.15 0.0079 0.5541	0.9	0.001	0.4

Table A2 :

 A2 Results of the evaluation criteria chosen for ten different combinations of the regularization parameters for PSF support size 19×19 using PAN's algorithm

	Original image	Restored image	
		Test 2	Test 1 -PAN	Test 10

Table A3 :

 A3 Visual comparison between the original image "Photo" and the restored images the restoration was performed using specific regularization parameters set for Test 1 -PAN, and Test 10 for the "Photo" image degraded by the PSF od support size19 × 19. 

	0.085 Test		15.6157 7.1232		0.0919 5975.80 0.0195 0.4011 0.04	0.2	0.072
	0.065 0.08 Test 0.075 Test 10 0.07		17.4464 8.3865 15.0310 6.6404		0.0895 5819.74 0.0129 0.4388 0.0980 6372.45 0.0221 0.2776 0.05 0.9 « Photo »	0.001 0.004 0.002 0.4
	0.03 0.04 0.045 0.055 0.06 Test 1 -PAN 17.8423 10.0405 0.0636 4135.59 0.0129 0.5576 0.01 norm Test 17.7895 9.2318 0.0795 5169.49 0.0131 0.5220 1 0.05 ) Test 19.1347 11.2122 0.0558 3628.40 0.0096 0.5289 0.001 E(L 1 Test 18.8341 10.2785 0.0712 4629.78 0.0103 0.5477 0.5 0.035 Test 20.2605 11.8995 0.0596 3875.49 0.0074 0.6099 0.5	0.005 0.003 1 1 0.05 0.03 0.01 0.7 0.5 0.5
	0.015 0.025 Test 0.02 Test		20.4484 12.2344 0.0548 3563.37 0.0071 0.6331 0.058 20.0566 11.8307 0.0604 3927.51 0.0076 0.6057 0.75	0.4 0.3333 0.1429 0.25
	Test	Test 1 -PAN Test 2 20.1982 12.1446 0.0513 3335.78 0.0075 0.6571 0.04 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8	Test 9 0.2	Test 10 0.072
	Test Test 10		Bridge 18.8140 10.2863 0.0704 4577.76 0.0103 0.5437 Photo 17.9404 10.0881 0.0632 4109.58 0.0126 0.5409 0.05 0.9	0.001 0.004 0.002 0.4
	Figure A2: E(L1) norm variation using ten different regularization parameters combinations for the "Bridge" and "Photo" images, with PSF
							support size 19 × 19
		0.95							
		0.9							
		0.85							
		0.8							
	SSIM	0.7 0.75							
		0.65							
		0.6							
		0.55							
		0.5							
		0.45							
		Test 1 -PAN Test 2	Test 3		Test 4	Test 5	Test 6	Test 7	Test 8	Test 9	Test 10
								Bridge	Photo
	Figure A3: SSIM variation using ten different regularization parameters combinations for the "Bridge" and "Photo" images, with PSF
							support size 19 × 19
	c) Evaluation using PSF of support size 23×23	
		Test		PSNR	SNR		E(L1) norm	L1 norm MSE	SSIM	𝜶	𝜷 𝒍𝒂𝒕	𝜷
								« Bridge »
	Test 1 -PAN 13.8763 5.7559		0.1085 7055.21 0.0291 0.3210 0.01	0.005 0.003
	Test 1 -PAN Test 2	Test 2 15.6256 6.5417 Test 3	Test 4 0.1022 6645.56 0.0195 0.3593 Test 5 Test 6 Test 7 Test 8	1	Test 9	1	Test 10	1
	Test 3 Test 4		PSNR -Bridge 14.8350 6.4875 17.4117 8.3621	PSNR -Photo 0.0965 6274.91 0.0234 0.3842 0.001 SNR -Bridge SNR -Photo 0.0830 5397.08 0.0128 0.4335 0.5	0.05 0.01	0.03 0.7
	Figure A1: PSNR and SNR variation using ten different regularization parameters combinations for the "Bridge" and "Photo" images, with Test 5 15.7526 6.8051 0.0991 6443.98 0.0189 0.3648 0.5 0.5 0.5
	Test 6		16.1439 7.4654		PSF support size 19 × 19 0.0900 5852.25 0.0173 0.4057 0.058	0.4	0.25
	Test 7		15.2437 6.4076		0.1031 6704.08 0.0213 0.3371 0.75	0.3333 0.1429

Table A4 :

 A4 Results of the evaluation criteria chosen for ten different combinations of the regularization parameters for PSF support size 23×23 using PAN's algorithm

	Original image	Test 7	Restored image Test 1 -PAN	Test 9
	Bridge"			
	"			
		Test 2	Test 1 -PAN	Test 6
	Photo"			
	"			

Table A5 :

 A5 

	0.7 Test	21.5270		13.1150	0.0499		3244.75		0.0050	0.7691	0.95
	0.65 Test	21.4982		13.0833	0.0501		3257.75		0.0050	0.7670	0.99
	0.6				« Photo »		
	0.55 Test 1	28.5341		20.7552	0.0183		1189.96		0.0011	0.9345	0.001
	0.4 0.45 Test 2 0.5 Test 3 SSIM Test 4	29.2307 29.4675 29.5712		21.4301 21.6550 21.7528	0.0171 0.0167 0.0165		1111.93 1085.92 1072.91		0.00092 0.00088 0.00086	0.9396 0.9405 0.9408	0.05 0.1 0.15
	0.35 Test 5	29.6848		21.8599	0.0163		1059.91		0.00084	0.9409	0.2
	5 7 9 Test 6 0.3 8 0.25 Test 7 6 0.2 Test 8	29.8364 29.7366 29.7608		22.0043 21.8999 21.9205	0.0162 0.0163 0.0163		1053.41 1059.91 1059.91		0.00081 0.00083 0.00083	0.9414 0.9397 0.9392	0.25 0.3 0.35
	Test 1 -PAN Test 1 -PAN Test 2 Test 2 Test 9 29.3851	Test 3 Test 3 21.5416 Test 4 Test 4 0.0169 Test 5 Test 5	Test 6 Test 6 1098.92 Test 7 Test 7	Test 8 Test 8 0.00091	Test 9 Test 9 0.9351	Test 10 Test 10 0.4
	Test Test		PSNR -Bridge 29.2849 28.8492	21.4374 20.9979	PSNR -Photo Bridge 0.0170 0.0178	SNR -Bridge 1105.43 Photo 1157.45	SNR -Photo 0.00093 0.9332 0.0010 0.9277	0.45 0.5
	Figure A4: PSNR and SNR variation using ten different regularization parameters combinations for the "Bridge" and "Photo" images, with Figure A6: SSIM variation using ten different regularization parameters combinations for the "Bridge" and "Photo" images, with PSF Test 29.1966 21.3396 0.0173 1124.93 0.00094 0.9307 0.55
	Test		28.4288		20.5670	PSF support size 23 × 23 support size 23×23 0.0187 1215.97		0.0011	0.9207	0.6
	Test 2. Evaluating the influence of each regularization parameter over the image restoration 28.1452 20.2788 0.0193 1254.98 0.0012 0.9161 0.65 Test 27.6146 19.7443 0.0204 1326.51 0.0014 0.9074 0.7
	Test	quality 28.2323		20.3592	0.0192		1248.48		0.0012	0.9156	0.75
	Test		27.6872		19.8097	0.0203		1320.01		0.0013	0.9066	0.8
	0.1 0.11 Test 0.105 Test	26.3676 27.0311		18.4837 19.1440	0.0234 0.0219		1521.59 1424.05		0.0018 0.0016	0.8817 0.8933	0.85 0.9
	0.065 0.07 0.075 0.08 0.085 0.095 Test 0.09 Test 1 E(L 1 ) Test norm Test	27.0885 21.7414 PSNR 25.6885		19.1985 13.4455 SNR 17.7921	0.0218 0.0478 E(L1) norm « Bridge » 0.0253	1417.55 3108.20 L1 norm 1645.13		0.0015 0.0048 MSE 0.0021	0.8935 0.8058 SSIM 0.8629	0.95 0.001 𝜶 0.99
	0.045 0.06 Test 2 0.055 Test 3 0.05 Test 4	21.7084 21.7380 21.8156		13.4023 13.4243 13.4952	0.0481 0.0481 0.0478		3127.70 3127.70 3108.20		0.0048 0.0048 0.0047	0.8027 0.8024 0.8054	0.05 0.1 0.15
	0.04 Test 5 Test 6	Test 1 -PAN Test 2 21.7524 21.7639	Test 3 13.4235 13.4285	Test 4 0.0481 Test 5 0.0482		Test 6 3127.70 3134.21	Test 7	Test 8 0.0047 0.0047	Test 9 0.8001 0.7999	0.2 Test 10 0.25
	Test 7	21.7701		13.4270	Bridge 0.0482	Photo 3134.21		0.0047	0.7975	0.3
	Test 8 Figure A5: E(L1) norm variation using ten different regularization parameters combinations for the "Bridge" and "Photo" images, with PSF 21.7345 13.3843 0.0484 3147.21 0.0048 0.7944 0.35 Test 9 21.7333 13.3778 0.0485 3153.71 0.0048 0.7931 0.4 support size 23×23 Test 10 21.6658 13.3023 0.0488 3173.22 0.0048 0.7885 0.45
	Test 11	21.6886		13.3167	0.0488		3173.22		0.0048	0.7875	0.5
	Test 12	21.6802		13.3027	0.0489		3179.72		0.0048	0.7857	0.55
	Test 13	21.6614		13.2781	0.0490		3186.23		0.0048	0.7833	0.6
	Test 14	21.6442		13.2555	0.0492		3199.23		0.0049	0.7811	0.65
	Test 15	21.6147		13.2214	0.0494		3212.24		0.0049	0.7785	0.7
	Test 16	21.5929		13.1958	0.0495		3218.74		0.0049	0.7763	0.75
	Test 17	21.5896		13.1886	0.0496		3225.24		0.0049	0.7752	0.8
	Test 18	21.5846		13.1788	0.0496		3225.24		0.0049	0.7735	0.85
	Test 19	21.5614		13.1525	0.0498		3238.25		0.0050	0.7716	0.9
										120

visual comparison between the original images ("Bridge" and "Photo") and the restored images the restoration was performed using specific regularization parameters set for Test 1 -PAN, Test 9 form the "Bridge" image and Test 6 for the "Photo" image degraded by the PSF od support size 23 × 23.

i) Evaluation using PSF of support size 13x13

a) Evaluating the influence of the regularization parameter 𝛼 over the restoration quality by fixing 𝛽 𝑙𝑎𝑡 and 𝛽

Table A6 :

 A6 The effect of the regularization parameter α using the PSF of support size 13×13, where 𝛽 𝑙𝑎𝑡 =0.05 and 𝛽=0.03 are fixed for the image "Bridge" and for the "photo" image 𝛽 𝑙𝑎𝑡 = 0.004 and 𝛽 = 0.002 , while 𝛼 increase by a step size of 0.05 b) Evaluating the influence of the regularization parameter 𝛽 𝑙𝑎𝑡 over the restoration quality by fixing 𝛼 and 𝛽

	Test 15	21.8495	13.5157	0.0479	3114.70	0.0046	0.7985	0.7
	Test 16	21.7841	13.4557	0.0481	3127.70	0.0047	0.7962	0.75
	Test 17	21.7690	13.4379	0.0483	3140.71	0.0047	0.7949	0.8
	Test 18	21.7969	13.4668	0.0481	3127.70	0.0047	0.7959	0.85
	Test 19	21.7722	13.4426	0.0483	3140.71	0.0047	0.7947	0.9
	Test 20	21.8334	13.5067	0.0480	3121.20	0.0047	0.7978	0.95
	Test 21	21.8411	13.5169	0.0479	3114.70	0.0047	0.7985	0.99
				« Photo »				
	Test 1	30.9476	23.1062	0.0145	942.86	0.00063	0.9492	0.001
	Test 2	27.7687	19.9607	0.0202	1313.51	0.0013	0.9192	0.05
	Test 3	26.8577	19.0584	0.0223	1450.06	0.0016	0.9057	0.1
	Test 4	27.4806	19.6854	0.0209	1359.02	0.0014	0.9148	0.15
	Test 5	27.7592	19.9674	0.0204	1326.51	0.0013	0.9187	0.2
	Test 6	27.6442	19.8548	0.0207	1346.02	0.0014	0.9174	0.25
	Test 7	27.5714	19.7851	0.0209	1359.02	0.0014	0.9168	0.3
	Test 8	27.6590	19.8754	0.0208	1352.52	0.0013	0.9180	0.35
	Test 9	27.0752	19.2952	0.0221	1437.05	0.0015	0.9096	0.4
	Test 10	27.1817	19.4058	0.0219	1424.05	0.0015	0.9111	0.45
	Test 11	26.6772	18.9034	0.0232	1508.58	0.0017	0.9035	0.5
	Test 12	26.9579	19.1845	0.0225	1463.06	0.0016	0.9074	0.55
	Test 13	26.5446	18.7710	0.0235	1528.09	0.0017	0.9012	0.6
	Test 14	26.4402	18.6690	0.0238	1547.60	0.0018	0.8994	0.65
	Test 15	26.3364	18.5667	0.0241	1567.10	0.0018	0.8974	0.7
	Test 16	26.2054	18.4386	0.0245	1593.11	0.0019	0.8951	0.75
	Test 17	26.1334	18.3684	0.0247	1606.12	0.0019	0.8937	0.8
	Test 18	25.8860	18.1235	0.0254	1651.64	0.0020	0.8898	0.85
	Test 19	25.7483	17.9896	0.0258	1677.65	0.0021	0.8877	0.9
	Test 20	25.8113	18.0548	0.0256	1664.64	0.0021	0.8891	0.95
	Test Test 21	PSNR 25.8376	SNR 18.0822	E(L1) norm 0.0255	L1 norm 1658.14	MSE 0.0020	SSIM 0.8895	𝜷 𝒍𝒂𝒕 0.99
				« Bridge »				
	Test 1	19.9227	11.5718	0.0573	3725.93	0.0072	0.7050	0.001
	Test 2	21.8156	13.4952	0.0478	3108.20	0.0047	0.8054	0.05
	Test 3	21.6103	13.2819	0.0487	3166.72	0.0049	0.7936	0.1
	Test 4	21.5610	13.2363	0.0489	3179.72	0.0050	0.7906	0.15
	Test 5	21.8348	13.5091	0.0477	3101.69	0.0047	0.8019	0.2
	Test 6	21.7390	13.4130	0.0482	3134.21	0.0048	0.7972	0.25
	Test 7	21.8421	13.5116	0.0478	3108.20	0.0047	0.8004	0.3
	Test 8	22.1019	13.7664	0.0467	3036.67	0.0044	0.8099	0.35
	Test 9	21.9780	13.6424	0.0472	3069.18	0.0045	0.8048	0.4
	Test	21.8562	13.5198	0.0478	3108.20	0.0046	0.7991	0.45
	Test	21.8974	13.5598	0.0477	3101.69	0.0046	0.8007	0.5
	Test	21.8814	13.5459	0.0477	3101.69	0.0046	0.7999	0.55
	Test	21.8835	13.5476	0.0477	3101.69	0.0046	0.7999	0.6
	Test	21.8245	13.4888	0.0480	3121.20	0.0047	0.7971	0.65

Table A7 :

 A7 The effect of the regularization parameter 𝛽 𝑙𝑎𝑡 using the PSF of support size 13×13, where 𝛼=0.15 and 𝛽=0.03 are fixed for the image "Bridge" and for the "photo" image 𝛼 = 0.25 and 𝛽 = 0.002 , while 𝛽 𝑙𝑎𝑡 increase by a step size of 0.05 c) Evaluating the influence of the regularization parameter 𝛽 over the restoration quality by fixing 𝛽 𝑙𝑎𝑡 and 𝛼

	Test 9	20.5235	11.8891	0.0595	3868.99	0.0063	0.6250	0.4
	Test	20.4083	11.7511	0.0605	3934.01	0.0065	0.6142	0.45
	Test	20.3028	11.6243	0.0614	3992.54	0.0066	0.6046	0.5
	Test	20.2057	11.5071	0.0622	4044.56	0.0068	0.5958	0.55
	Test	20.1158	11.3981	0.0630	4096.58	0.0069	0.5877	0.6
	Test	20.0322	11.2962	0.0637	4142.09	0.0071	0.5803	0.65
	Test	19.9539	11.2006	0.0644	4187.61	0.0072	0.5734	0.7
	Test	19.8805	11.1105	0.0650	4226.63	0.0073	0.5671	0.75
	Test	19.8114	11.0252	0.0656	4265.64	0.0074	0.5611	0.8
	Test	19.7459	10.9442	0.0662	4304.66	0.0075	0.5555	0.85
	Test	19.6839	10.8671	0.0667	4337.17	0.0076	0.5503	0.9
	Test	19.6248	10.7933	0.0672	4369.68	0.0078	0.5454	0.95
	Test	19.5795	10.7366	0.0677	4402.19	0.0078	0.5416	0.99
				« Photo »				
	Test 1	30.3552	22.5296	0.0151	981.88	0.00072	0.9504	0.001
	Test 2	28.5687	20.6347	0.0204	1326.51	0.0011	0.8684	0.05
	Test 3	27.3687	19.3946	0.0239	1554.10	0.0014	0.8369	0.1
	Test 4	26.6034	18.5975	0.0264	1716.66	0.0017	0.8160	0.15
	Test 5	26.0301	17.9965	0.0286	1859.72	0.0020	0.7999	0.2
	Test 6	25.5648	17.5060	0.0305	1983.26	0.0022	0.7865	0.25
	Test 7	25.1699	17.0876	0.0322	2093.81	0.0024	0.7748	0.3
	Test 8	24.8244	16.7202	0.0338	2197.85	0.0026	0.7644	0.35
	Test 9	24.5158	16.3906	0.0353	2295.38	0.0028	0.7550	0.4
	Test	24.2362	16.0910	0.0367	2386.42	0.0030	0.7462	0.45
	Test	23.9807	15.8163	0.0381	2477.45	0.0031	0.7382	0.5
	Test	23.7453	15.5624	0.0393	2555.48	0.0033	0.7306	0.55
	Test	23.5269	15.3262	0.0406	2640.02	0.0035	0.7235	0.6
	Test	23.3231	15.1051	0.0417	2711.54	0.0037	0.7168	0.65
	Test	23.1319	14.8972	0.0429	2789.57	0.0038	0.7105	0.7
	Test	22.9518	14.7009	0.0439	2854.60	0.0040	0.7044	0.75
	Test	22.7816	14.5148	0.0450	2926.13	0.0041	0.6987	0.8
	Test	22.6202	14.3379	0.0460	2991.15	0.0043	0.6932	0.85
	Test	22.4669	14.1694	0.0470	3056.18	0.0045	0.6879	0.9
	Test Test Test	PSNR 22.3207 22.2085	SNR 14.0084 13.8845	E(L1) norm 0.0480 0.0487	3121.20 L1 norm 3166.72	0.0046 MSE 0.0047	0.6829 SSIM 0.6790	0.95 𝜷 0.99
				« Bridge »				
	Test	20.6751	12.5813	0.0517	3361.79	0.0061	0.8215	0.001
	Test	21.9367	13.5627	0.0481	3127.70	0.0046	0.8267	0.05
	Test	21.5965	13.1590	0.0507	3296.77	0.0049	0.7371	0.1
	Test	21.3399	12.8563	0.0528	3433.32	0.0052	0.7074	0.15
	Test	21.1293	12.6079	0.0544	3537.36	0.0055	0.6848	0.2
	Test	20.9493	12.3951	0.0559	3634.90	0.0057	0.6663	0.25
	Test	20.7912	12.2078	0.0572	3719.43	0.0059	0.6507	0.3
	Test	20.6503	12.0405	0.0584	3797.46	0.0061	0.6370	0.35

Table A8 :

 A8 The effect of the regularization parameter 𝛽 using the PSF of support size 13×13, where 𝛼=0.15 and 𝛽 𝑙𝑎𝑡 =0.35 are fixed for the image "Bridge" and for the "photo" image 𝛼 = 0.25 and 𝛽 𝑙𝑎𝑡 = 0.001 , while 𝛽 increase by a step size of 0.05 ii) Evaluation using PSF of support size 19x19 a) Evaluating the influence of the regularization parameter 𝛼 over the restoration quality by fixing 𝛽 𝑙𝑎𝑡 and 𝛽

	Test 2	21.0186	12.8150	0.0503	3270.76	0.0056	0.8181	0.05
	Test 3	21.0076	12.7817	0.0506	3290.27	0.0056	0.8126	0.1
	Test 4	20.8338	12.5872	0.0516	3355.29	0.0059	0.7991	0.15
	Test 5	20.8202	12.5537	0.0519	3374.80	0.0059	0.7932	0.2
	Test 6	20.6830	12.4004	0.0528	3433.32	0.0061	0.7817	0.25
	Test 7	20.7373	12.4325	0.0528	3433.32	0.0060	0.7784	0.3
	Test 8	20.5511	12.2357	0.0538	3498.35	0.0063	0.7647	0.35
	Test 9	20.3576	12.0211	0.0551	3582.88	0.0065	0.7488	0.4
	Test	20.3837	12.0322	0.0551	3582.88	0.0065	0.7449	0.45
	Test	20.3006	11.9297	0.0558	3628.40	0.0066	0.7322	0.5
	Test	20.3576	11.9685	0.0557	3621.89	0.0065	0.7298	0.55
	Test	19.8532	11.4561	0.0584	3797.46	0.0074	0.6967	0.6
	Test	19.8929	11.4828	0.0583	3790.96	0.0073	0.6952	0.65
	Test	19.7893	11.3646	0.0590	3836.48	0.0075	0.6828	0.7
	Test	19.9908	11.5409	0.0583	3790.96	0.0071	0.6825	0.75
	Test	20.0286	11.5755	0.0581	3777.95	0.0071	0.6838	0.8
	Test	19.8947	11.4305	0.0589	3829.97	0.0073	0.6708	0.85
	Test	19.8600	11.3823	0.0592	3849.48	0.0073	0.6649	0.9
	Test	19.6475	11.1593	0.0605	3934.01	0.0077	0.6412	0.95
	Test	19.6669	11.1634	0.0605	3934.01	0.0077	0.6364	0.99
				« Photo »				
	Test 1	27.3370	19.5319	0.0217	1411.04	0.0015	0.9008	0.001
	Test 2	27.6787	19.9342	0.0205	1333.01	0.0013	0.9012	0.05
	Test 3	26.5211	18.6600	0.0245	1593.11	0.0017	0.8800	0.1
	Test 4	26.5937	18.7184	0.0247	1606.12	0.0017	0.8776	0.15
	Test 5	26.6028	18.7127	0.0251	1632.13	0.0017	0.8731	0.2
	Test 6	26.6002	18.6968	0.0254	1651.64	0.0017	0.8692	0.25
	Test 7	27.0564	19.1379	0.0248	1612.62	0.0015	0.8734	0.3
	Test 8	26.9736	19.0422	0.0253	1645.13	0.0016	0.8689	0.35
	Test 9	26.6070	18.6652	0.0262	1703.66	0.0017	0.8606	0.4
	Test	26.3948	18.4429	0.0269	1749.17	0.0018	0.8543	0.45
	Test	26.1603	18.1982	0.0278	1807.70	0.0019	0.8471	0.5
	Test	25.9898	18.0178	0.0284	1846.71	0.0020	0.8422	0.55
	Test	25.8057	17.8226	0.0291	1892.23	0.0021	0.8367	0.6
	Test	25.3808	17.3863	0.0305	1983.26	0.0023	0.8256	0.65
	Test	25.1675	17.1650	0.0313	2035.28	0.0024	0.8193	0.7
	Test	25.1134	17.1031	0.0315	2048.29	0.0024	0.8167	0.75
	Test	24.9763	16.9592	0.0320	2080.80	0.0025	0.8122	0.8
	Test	24.9130	16.8897	0.0323	2100.31	0.0025	0.8096	0.85
	Test	24.7187	16.6880	0.0330	2145.83	0.0027	0.8028	0.9
	Test	24.5916	16.5557	0.0334	2171.84	0.0027	0.7990	0.95
	Test Test	PSNR 24.6434	SNR 16.6040	𝐸(𝐿 1 ) norm 0.0334	𝐿 1 norm 2171.84	MSE 0.0027	SSIM 0.8000	𝜶 0.99
				« Bridge »				
	Test 1	22.3450	14.2008	0.0443	2880.61	0.0041	0.8826	0.001

Table A9 :

 A9 The Evaluating the influence of the regularization parameter 𝛽 𝑙𝑎𝑡 over the restoration quality by fixing 𝛼 and 𝛽

		22.5 28	Test 9		21.6942			13.5743	0.0472		0.065 3069.18	0.0048	0.8443	0.4
		22 27.5	Test Test		21.7601 21.3706			13.6567 13.2705	0.0469 0.0486		0.06 0.034 3049.67 0.032 3160.22	0.0047 0.0052	0.8513 0.8346	0.45 0.5
	PSNR PSNR	20 21 21.5 26 26.5 27 20.5 25.5 25	Test Test Test Test Test Test Test Test			21.4548 21.4652 21.2274 21.2223 19.4929 17.5590 17.2537 16.9508			13.3658 13.3858 13.1530 13.1627 11.4553 9.5448 9.2601 8.9719	0.0482 0.0482 0.0494 0.0494 0.0580 0.0704 0.0729 0.0755	E(L 1 ) norm norm ) E(L 1	0.05 0.055 0.028 3134.21 0.03 3134.21 3212.24 0.026 3212.24 3771.45 0.024 4577.76 0.045 4740.32 0.022 4909.39	0.0051 0.0051 0.0054 0.0054 0.0080 0.0125 0.0134 0.0143	0.8411 0.8426 0.8328 0.8357 0.7587 0.6300 0.6073 0.5875	0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
		19.5 24.5	0.001 0.001 Test 0.05 0.05 Test	0.1 0.15 0.1 0.15	0.2 0.25 0.2 0.25	0.3 0.35 0.4 0.3 0.35 0.4 17.0454 0.45 0.5 0.55 0.45 0.5 0.55 16.6009	0.6 0.65 0.6 0.65 9.0716 0.7 0.75 0.8 0.85 0.9 0.95 0.99 0.7 0.75 0.8 0.85 0.9 0.95 0.99 0.0748 8.6337 0.0788		0.04 0.02 4863.87 0.001 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 0.99 0.0140 0.5971 0.95 0.001 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 0.99 5123.97 0.0155 0.5597 0.99
						α α				« Photo »	α α
			Test 1		26.9868			19.1388	0.0233		1515.08	0.0016	0.8912	0.001
			Test 2 Test 3		27.4599 26.0654	0.91 0.9	19.6416 18.2502	0.0221 0.0243		1437.05 1580.11	0.0014 0.0019	0.8965 0.8789	0.05 0.1
			Test 4		23.2608	0.85 0.89	15.4454	0.0323		2100.31	0.0037	0.8154	0.15
			Test 5		23.3759	0.87	15.5652	0.0320		2080.80	0.0036	0.8199	0.2
			Test 6		22.9789		0.8	15.1753	0.0334		2171.84	0.0040	0.8100	0.25
			Test 7 Test 8 Test 9 Test		SSIM 22.9052 SSIM 21.9266 21.4009 21.2553	0.75 0.85 0.83 0.7 0.81	15.1049 14.1324 13.6022 13.4596	0.0337 0.0374 0.0394 0.0401		2191.34 2431.94 2561.99 2607.50	0.0040 0.0050 0.0057 0.0059	0.8080 0.7788 0.7583 0.7530	0.3 0.35 0.4 0.45
			Test Test			20.8569 21.1177	0.65 0.79	13.0614 13.3311	0.0419 0.0410		2724.55 2666.03	0.0064 0.0061	0.7369 0.7475	0.5 0.55
			Test Test Test Test			20.6770 20.6950 20.5698 20.2331	0.6 0.77	0.001 12.8771 0.05 0.1 0.15 0.05 0.1 0.15 12.8994 0.001 12.7746 12.4371	0.2 0.25 0.3 0.2 0.25 0.3 0.0425 0.35 0.4 0.45 0.35 0.4 0.45 0.0424 0.0431 0.0447	0.5 0.55 α 0.5 0.55 2763.56 0.6 0.65 0.7 0.75 0.6 0.65 0.7 0.75 2757.06 2802.58 α 2906.62	0.8 0.85 0.8 0.85 0.0067 0.9 0.95 0.99 0.9 0.95 0.99 0.0067 0.0069 0.0074	0.7278 0.7290 0.7244 0.7098	0.6 0.65 0.7 0.75
			Test			19.1238			11.3287	0.0505		3283.76	0.0096	0.6599	0.8
			Test			18.7862			10.9955	0.0531		3452.83	0.0104	0.6395	0.85
			Test			18.7239			10.9357	0.0536		3485.34	0.0105	0.6363	0.9
			Test			18.6535			10.8663	0.0541		3517.85	0.0107	0.6323	0.95
			Test Test		PSNR 18.7256			SNR 10.9381	𝐸(𝐿 1 ) norm 𝐿1 norm 0.0538 3498.35	MSE 0.0105	SSIM 0.6342	𝜷 𝒍𝒂𝒕 0.99
										« Bridge »
			Test 1		20.4485			12.3055	0.0524		3407.31	0.0064	0.8017	0.001
			Test 2		19.6254			11.4376	0.0583		3790.96	0.0077	0.7303	0.05
			Test 3		19.2971			11.1131	0.0603		3921.01	0.0084	0.7077	0.1
			Test 4		19.8277			11.6475	0.0570		3706.43	0.0074	0.7383	0.15
			Test 5		19.9009			11.7313	0.0565		3673.91	0.0073	0.7436	0.2
			Test 6		19.8541			11.6926	0.0566		3680.42	0.0074	0.7423	0.25
			Test 7		19.4777			11.3338	0.0586		3810.47	0.0080	0.7238	0.3
			Test 8		20.5714			12.4509	0.0525		3413.81	0.0062	0.7944	0.35
												127

effect of the regularization parameter α using the PSF of support size 19×19, where 𝛽 𝑙𝑎𝑡 =0.005 and 𝛽=0.003 are fixed for the image "Bridge" and for the "Photo" image 𝛽 𝑙𝑎𝑡 = 0.004 and 𝛽 = 0.002 , while 𝛼 increase by a step size of 0.05 126 Figure A7: The effect of the regularization parameter 𝛼 over the PSNR (top left), E(L1) norm (Top right), and SSIM (middle) for the "Bridge" image using a PSF of support size 19x19 and fixing 𝛽 𝑙𝑎𝑡 = 0.005 and 𝛽 = 0.003 Figure A8: The effect of the regularization parameter 𝛼 over the PSNR (top left), E(L1) norm (Top right), and SSIM (middle) for the "Photo" image using a PSF of support size 19x19 and fixing 𝛽 𝑙𝑎𝑡 = 0.004 and 𝛽 = 0.002 b)

Table A10 :

 A10 The effect of the regularization parameter 𝛽 𝑙𝑎𝑡 using the PSF of support size 19×19, where 𝛼 = 0.001 and 𝛽 = 0.003 are fixed for the image "Bridge" and for the "photo" image 𝛼 = 0.05 and 𝛽 = 0.002 , while 𝛽 𝑙𝑎𝑡 increase by a step size of 0.05 Evaluating the influence of the regularization parameter 𝛽 over the restoration quality by fixing 𝛽 𝑙𝑎𝑡 and 𝛼

		22 28.5 Test 9	19.5968		10.8973			0.0652		0.08 0.055 4239.63	0.0078	0.5577	0.4
		21 26.5 27.5 Test Test	19.5126 19.4364		10.7893 10.6908			0.0660 0.0668		0.075 4291.65 0.05 4343.67	0.0080 0.0081	0.5496 0.5423	0.45 0.5
	PSNR PSNR	17 18 19 20 22.5 23.5 24.5 Test 25.5 Test Test Test Test 21.5 Test 20.5 Test 19.5 Test	19.3665 19.3021 19.2421 19.1859 19.1330 19.0830 19.0354 18.9900		10.6000 10.5159 10.4372 10.3632 10.2933 10.2269 10.1636 10.1030			0.0675 0.0681 0.0687 0.0693 0.0698 0.0703 0.0708 0.0713	E(L 1 ) norm norm ) E(L 1	0.05 0.055 0.06 0.065 0.07 0.045 4389.19 0.04 4428.20 4467.22 0.035 4506.23 4538.75 0.03 4571.26 0.025 4603.77 4636.28	0.0082 0.0083 0.0085 0.0086 0.0087 0.0088 0.0089 0.0090	0.5358 0.5299 0.5245 0.5195 0.5149 0.5106 0.5066 0.5028	0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
		16 18.5 Test 0.001 0.05 0.001 0.05 0.1 0.15 0.1 0.15 0.2 0.25 0.2 0.25 0.3 0.35 0.3 0.35 0.4 0.4 0.45 0.45 0.5 0.55 0.5 0.55 0.6 0.65 0.6 0.65 0.7 0.75 0.7 0.75 0.8 0.85 0.9 0.95 0.99 0.8 0.85 0.9 0.95 0.99 18.9465 10.0447 0.0717 Test 18.9130 9.9996 0.0721		0.045 0.02 4662.29 0.001 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 0.99 0.0091 0.4992 0.95 0.001 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 0.99 4688.30 0.0091 0.4965 0.99
		Test 1	26.6481	β lat β lat	18.8275			« Photo » 0.0235		1528.09	0.0017	β lat β lat 0.8924	0.001
		Test 2 Test 3	25.4181 24.6015		0.9 17.4450 0.9 16.5817			0.0300 0.0334			1950.75 2171.84	0.0023 0.0027	0.7933 0.7638	0.05 0.1
		Test 4	24.0911		0.85 0.85 16.0352			0.0358			2327.90	0.0031	0.7453	0.15
		Test 5 Test 6	23.7000 23.3745		15.6132 0.8 0.8 15.2598			0.0379 0.0397			2464.45 2581.49	0.0034 0.0036	0.7310 0.7190	0.2 0.25
		Test 7 Test 8 Test 9 Test	23.0922 22.8415 22.6149 22.4078	0.65 0.75 0.75 14.9521 SSIM SSIM 14.6778 0.7 14.4290 0.7 14.2008			0.0414 0.0429 0.0443 0.0457			2692.04 2789.57 2880.61 2971.64	0.0039 0.0041 0.0043 0.0045	0.7084 0.6990 0.6905 0.6827	0.3 0.35 0.4 0.45
		Test Test	22.2173 22.0413		0.65 13.9901 0.6 13.7946			0.0469 0.0481			3049.67 3127.70	0.0047 0.0049	0.6755 0.6688	0.5 0.55
		Test Test Test Test	21.8779 21.7255 21.5827 21.4482		0.55 0.6 13.6126 0.001 13.4422 0.001 13.2821 13.1310	0.05 0.05	0.1 0.15 0.1 0.15	0.2 0.25 0.3 0.2 0.25 0.3 0.0492 0.35 0.4 0.45 β lat 0.5 0.55 0.35 0.4 0.45 0.5 0.55 0.0503 0.0514 β lat 0.0524	0.6 0.65 0.6 0.65 3199.23 0.7 0.75 0.8 0.85 0.7 0.75 0.8 0.85 3270.76 3342.29 3407.31	0.9 0.95 0.9 0.95 0.0051 0.99 0.99 0.0053 0.0055 0.0056	0.6626 0.6568 0.6514 0.6464	0.6 0.65 0.7 0.75
		Test Figure A9: The effect of the regularization parameter 𝛽 𝑙𝑎𝑡 over the PSNR (top left), E(L1) norm (Top right), and SSIM (middle) for the 21.3208 12.9876 0.0533 3465.83 0.0058 0.6416 0.8 "Bridge" image using a PSF of support size 19x19 and fixing 𝛼 = 0.001 and 𝛽 = 0.003 Test 21.1997 12.8509 0.0542 3524.36 0.0060 0.6371 0.85
		Test	21.0842		12.7201			0.0551			3582.88	0.0061	0.6328	0.9
		Test	20.9736		12.5946			0.0560			3641.40	0.0063	0.6287	0.95
		Test Test	PSNR 20.8884		SNR 12.4977		𝐸(𝐿 1 ) norm 0.0567			𝐿 1 norm 3686.92	MSE 0.0064	SSIM 0.6256	𝜷 0.99
								« Bridge »	
		Test	21.9133		13.8435			0.0457			2971.64	0.0046	0.8819	0.001
		Test	21.0529		12.6448			0.0535			3478.84	0.0056	0.7087	0.05
		Test	20.5311		12.0456			0.0571			3712.93	0.0063	0.6555	0.1
		Test	20.2560		11.7182			0.0592			3849.48	0.0067	0.6262	0.15
		Test	20.0668		11.4874			0.0609			3960.02	0.0070	0.6059	0.2
		Test	19.9194		11.3046			0.0622			4044.56	0.0072	0.5904	0.25
		Test	19.7967		11.1508			0.0633			4116.08	0.0074	0.5777	0.3
		Test	19.6906		11.0168			0.0643			4181.11	0.0076	0.5670	0.35
											130

Figure A10: The effect of the regularization parameter 𝛽 𝑙𝑎𝑡 over the PSNR (top left), E(L1) norm (Top right), and SSIM (middle) for the "Photo" image using a PSF of support size 19x19 and fixing 𝛼 = 0.05 and 𝛽 𝑙𝑎𝑡 = 0.002 c)

Table A11 :

 A11 The effect of the regularization parameter 𝛽 using the PSF of support size 19×19, where 𝛼 = 0.001 and 𝛽 𝑙𝑎𝑡 = 0.005 are fixed for the image "Bridge" and for the "photo" image 𝛼 = 0.05 and 𝛽 𝑙𝑎𝑡 = 0.004 , while 𝛽 increase by a step size of 0.05 132 Figure A11: The effect of the regularization parameter 𝛽 over the PSNR (top left), E(L1) norm (Top right), and SSIM (middle) for the "Bridge" image using a PSF of support size 19x19 and fixing 𝛼 = 0.001 and 𝛽 𝑙𝑎𝑡 = 0.005 The effect of the regularization parameter 𝛽 over the PSNR (top left), E(L1) norm (Top right), and SSIM (middle) for the "Photo" image using a PSF of support size 19x19 and fixing 𝛼 = 0.05 and 𝛽 𝑙𝑎𝑡 = 0.004 iii) Evaluation using PSF of support size 23x23 a) Evaluating the influence of the regularization parameter 𝛼 over the restoration quality by fixing 𝛽 𝑙𝑎𝑡 and 𝛽

		22.5 27.5 Test 7		17.3348			8.3580				0.0823	0.075 0.06 5351.56	0.0131	0.4386	0.3
	PSNR PSNR	19 19.5 20 20.5 21 21.5 22 26.5 Test 8 Test 9 25.5 Test 23.5 24.5 Test Test Test Test 22.5 Test 21.5 Test Test	17.4604 17.4686 17.4688 17.4678 17.4696 17.4677 17.4686 17.4669 17.4670 17.4654			8.4523 8.4584 8.4576 8.4562 8.4559 8.4553 8.4555 8.4535 8.4534 8.4507				0.0817 0.0817 0.0817 0.0817 0.0818 0.0817 0.0817 0.0817 0.0817 0.0817	) norm norm ) E(L 1 E(L 1	0.047 0.049 0.053 0.055 0.057 0.059 0.061 0.063 0.067 0.071 0.073 5312.54 0.055 5312.54 0.069 0.05 5312.54 0.065 0.035 0.045 5312.54 5319.05 0.04 5312.54 5312.54 0.03 5312.54 0.051 5312.54 0.025 5312.54	0.0128 0.0127 0.0127 0.0127 0.0127 0.0127 0.0127 0.0127 0.0127 0.0127	0.4414 0.4415 0.4415 0.4415 0.4414 0.4415 0.4414 0.4415 0.4415 0.4415	0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8
		18.5 20.5 Test 0.001 0.001 Test	0.05 0.05	0.1 0.15 0.1 0.15	0.2 0.25 0.2 0.25 17.4558 0.3 0.35 0.4 0.3 0.35 0.4 17.4117	0.45 0.45	0.5 0.55 0.5 0.55 8.4377 0.6 0.65 0.7 0.75 0.6 0.65 0.7 0.75 8.3865	0.8 0.85 0.9 0.95 0.99 0.8 0.85 0.9 0.95 0.99 0.0817 0.0817	0.045 0.02 5312.54 0.001 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 0.99 0.0128 0.4411 0.85 0.001 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 0.99 5312.54 0.0129 0.4388 0.9
		Test			17.4099		β β	8.3842				0.0817	5312.54	0.0129	β β 0.4387	0.95
		Test			17.4624			8.4512				0.0818	5319.05	0.0128	0.4413	0.99
		Test 1 Test 2	20.9303 20.4731			0.9 0.9 12.7403 0.85 0.85 12.2604				0.0524 0.0547	« Photo » 3407.31 3556.87	0.0063 0.0070	0.6457 0.6338	0.001 0.05
		Test 3		20.2151			0.8 11.9975				0.0560	3641.40	0.0075	0.6263	0.1
		Test 4		20.0129			0.75 0.8 11.7892				0.0570	3706.43	0.0078	0.6207	0.15
		Test 5 Test 6		20.5478 20.7325		0.65 0.7 0.75 12.3200 SSIM SSIM 12.5017				0.0546 0.0538	3550.37 3498.35	0.0069 0.0066	0.6354 0.6405	0.2 0.25
		Test 7 Test 8 Test 9		20.1939 20.0143 20.2468			0.6 11.9555 0.7 11.7716 0.55 0.65 12.0020				0.0564 0.0574 0.0563	3667.41 3732.44 3660.91	0.0075 0.0078 0.0074	0.6252 0.6196 0.6258	0.3 0.35 0.4
		Test			20.8172			0.5 12.5758				0.0537	3491.84	0.0065	0.6418	0.45
		Test Test Test Test			20.8352 20.5665 20.8067 20.7906			0.45 0.6 12.5895 0.001 12.3104 0.001 12.5501 12.5276	0.05 0.05	0.1 0.15 0.1 0.15	0.2 0.25 0.3 0.2 0.25 0.3 0.0538 0.35 0.4 0.45 0.35 0.4 0.45 0.0552 0.0543 0.0545	0.5 0.55 β 0.5 0.55 β	0.6 0.65 0.6 0.65 3498.35 0.7 0.75 0.8 0.85 0.7 0.75 0.8 0.85 3589.38 3530.86 3543.86	0.9 0.95 0.9 0.95 0.0065 0.99 0.99 0.0069 0.0065 0.0065	0.6416 0.6330 0.6402 0.6397	0.5 0.55 0.6 0.65
	Test Test Test Test Test Test Figure A12: Test Test		20.5895 20.5432 20.3741 20.2765 20.0812 19.8442 PSNR 19.7021			12.3116 12.2573 12.0760 11.9703 11.7623 11.5108 SNR 11.3600			0.0560 0.0564 0.0576 0.0583 0.0597 0.0613 𝐸(𝐿 1 ) norm 0.0623	3641.40 3667.41 3745.44 3790.96 3881.99 3986.03 𝐿 1 norm 4051.06	0.0069 0.0069 0.0072 0.0074 0.0077 0.0081 MSE 0.0084	0.6346 0.6336 0.6296 0.6282 0.6228 0.6170 SSIM 0.6137	0.7 0.75 0.8 0.85 0.9 0.95 𝜶 0.99
												« Bridge »
		Test 1		16.3907			7.6206				0.0861	5598.65	0.0163	0.4298	0.001
		Test 2		16.5657			7.7184				0.0857	5572.64	0.0157	0.4274	0.05
		Test 3		16.8138			7.9200				0.0844	5488.11	0.0148	0.4293	0.1
		Test 4		16.9954			8.1236				0.0832	5410.08	0.0142	0.4364	0.15
		Test 5		17.1428			8.2228				0.0830	5397.08	0.0137	0.4367	0.2
		Test 6		17.2279			8.2853				0.0827	5377.57	0.0135	0.4374	0.25
												133 134

Table A12 :

 A12 The effect of the regularization parameter 𝛼 using the PSF of support size 23×23, where 𝛽 𝑙𝑎𝑡 = 0.001 and 𝛽 = 0.4 are fixed for the image "Bridge" and for the "photo" image 𝛽 𝑙𝑎𝑡 = 0.4 and 𝛽 = 0.25 , while 𝛼 increase by a step size of 0.05 135 Figure A13: The effect of the regularization parameter 𝛼 over the PSNR (top left), E(L1) norm (Top right), and SSIM (middle) for the "Bridge" image using a PSF of support size 23x23 and fixing 𝛽 𝑙𝑎𝑡 = 0.001 and 𝛽 = 0.4 The effect of the regularization parameter 𝛼 over the PSNR (top left), E(L1) norm (Top right), and SSIM (middle) for the "Photo" image using a PSF of support size 23x23 and fixing 𝛽 𝑙𝑎𝑡 = 0.4 and 𝛽 = 0.25 b) Evaluating the influence of the regularization parameter 𝛽 𝑙𝑎𝑡 over the restoration quality by fixing 𝛼 and 𝛽

		17.6 21 Test 9		16.0605		7.1458				0.0952			0.0865 0.064 6190.38	0.0176	0.3779	0.4
	PSNR PSNR	16.4 16.6 16.8 17 17.2 17.4 19.7 20.1 20.2 20.3 20.4 20.5 20.6 20.9 Test 20.8 Test 20.7 Test Test Test Test Test 20 Test 19.9 Test 19.8 Test			16.0279 15.8416 15.7880 15.3258 15.2660 15.2186 15.2152 15.1899 15.1919 15.1301		7.1163 6.9356 6.8801 6.4424 6.3865 6.3426 6.3439 6.3269 6.3340 6.2746				0.0955 0.0975 0.0981 0.1029 0.1036 0.1041 0.1041 0.1043 0.1042 0.1049		E(L 1 ) norm ) norm E(L 1	0.082 0.0825 0.083 0.0835 0.084 0.0845 0.085 0.0855 0.086 0.063 6209.89 0.062 6339.94 0.057 0.058 0.059 0.061 6378.95 0.06 6691.07 6736.59 6769.10 6769.10 0.056 0.055 6782.11 0.054 6775.61 0.053 6821.12	0.0177 0.0185 0.0187 0.0209 0.0211 0.0214 0.0214 0.0215 0.0215 0.0218	0.3766 0.3697 0.3677 0.3487 0.3473 0.3456 0.3457 0.3450 0.3455 0.3436	0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
		16.2 19.6 Test 0.001 0.001 Test	0.05 0.05	0.1 0.15 0.1 0.15	0.2 0.25 0.2 0.25 15.1075 0.3 0.35 0.4 0.3 0.35 0.4 15.0435	0.45 0.45	0.5 0.55 0.5 0.55 6.2539 0.6 0.65 0.7 0.75 0.6 0.65 0.7 0.75 6.1942	0.8 0.85 0.9 0.95 0.99 0.8 0.85 0.9 0.95 0.99 0.1051 0.1059			0.0815 0.052 6834.13 0.001 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 0.99 0.0219 0.3430 0.95 0.001 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 0.99 6886.15 0.0223 0.3414 0.99
							α α					« Photo »	α α
		Test 1		19.1983		11.0234				0.0613			3986.03	0.0094	0.5955	0.001
		Test 2 Test 3 Test 4 Test 5 Test 6 Test 7 Test 8 Test 9 Test Test Test Test Test Test Test	19.5722 19.9835 19.9916 19.8931 20.4444 20.0550 20.3978 20.9303 20.6740 20.7206 20.5383 20.4707 20.4736 20.2867 20.5728		0.427 0.429 0.431 0.433 0.435 0.437 0.439 0.441 0.443 0.618 0.622 0.63 0.632 0.642 11.3968 0.001 SSIM 0.648 0.646 11.8035 0.644 11.8142 0.64 11.7069 0.638 0.636 12.2587 0.634 11.8648 SSIM 12.2103 0.628 0.626 12.7403 0.624 12.4815 0.62 12.5263 0.616 12.3417 0.614 0.612 12.2735 12.2775 0.001 12.0892 12.3763	0.05 0.05	0.1 0.15 0.1 0.15	0.2 0.25 0.0592 0.3 0.35 0.0570 0.0569 0.0574 0.0546 0.0565 0.0548 0.0524 0.0536 0.0534 0.0543 0.2 0.25 0.3 0.35 0.0546 0.0546 0.0554 0.0541	0.4 0.45 0.4 0.45	0.5 0.55 α 0.5 0.55 α	0.6 0.65 3849.48 0.7 0.75 3706.43 3699.92 3732.44 3550.37 3673.91 3563.37 3407.31 3485.34 3472.34 3530.86 0.6 0.65 0.7 0.75 3550.37 3550.37 3602.39 3517.85	0.8 0.85 0.8 0.85	0.9 0.95 0.99 0.0087 0.0079 0.0079 0.0081 0.0071 0.0078 0.0072 0.0063 0.0067 0.0067 0.0069 0.9 0.95 0.99 0.0070 0.0070 0.0074 0.0069	0.6070 0.6197 0.6198 0.6170 0.6329 0.6221 0.6315 0.6457 0.6391 0.6405 0.6356 0.6337 0.6337 0.6284 0.6363	0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
	Test Test Test Test Figure A14: Test Test		20.2462 20.0549 20.0407 19.8194 PSNR 19.7255		12.0494 11.8574 11.8425 11.6188 SNR 11.5255			0.0556 0.0566 0.0567 0.0578 𝐸(𝐿 1 ) norm 0.0582		3615.39 3680.42 3686.92 3758.45 𝐿 1 norm 3784.46	0.0074 0.0078 0.0078 0.0082 MSE 0.0084	0.6273 0.6219 0.6214 0.6156 SSIM 0.6130	0.8 0.85 0.9 0.95 𝜷 𝒍𝒂𝒕 0.99
												« Bridge »
		Test 1		17.4686		8.4584				0.0817			5312.54	0.0127	0.4415	0.001
		Test 2		17.3757		8.3944				0.0824			5358.06	0.0130	0.4386	0.05
		Test 3	17.6798		8.6968				0.0800			5202.00	0.0121	0.4415	0.1
		Test 4		16.7706		7.8300				0.0882			5735.21	0.0150	0.4080	0.15
		Test 5		16.4818		7.5483				0.0910			5917.28	0.0160	0.3949	0.2
		Test 6		16.3652		7.4437				0.0921			5988.80	0.0164	0.3897	0.25
		Test 7		16.3101		7.3920				0.0926			6021.32	0.0166	0.3874	0.3
		Test 8		16.0360		7.1226				0.0955			6209.89	0.0177	0.3780	0.35
														136 137

Table A13 :

 A13 The effect of the regularization parameter 𝛽 𝑙𝑎𝑡 using the PSF of support size 23×23, where 𝛼 = 0.4 and 𝛽 = 0.4 are fixed for the image "Bridge" and for the "photo" image 𝛼 = 0.001 and 𝛽 = 0.25 , while 𝛽 𝑙𝑎𝑡 increase by a step size of 0.05 138 Figure A15: The effect of the regularization parameter 𝛽 𝑙𝑎𝑡 over the PSNR (top left), E(L1) norm (Top right), and SSIM (middle) for the "Bridge" image using a PSF of support size 23x23 and fixing 𝛼 = 0.4 and 𝛽 = 0.4 The effect of the regularization parameter 𝛽 𝑙𝑎𝑡 over the PSNR (top left), E(L1) norm (Top right), and SSIM (middle) for the "Photo" image using a PSF of support size 23x23 and fixing 𝛼 = 0.001 and 𝛽 = 0.25 c) Evaluating the influence of the regularization parameter 𝛽 over the restoration quality by fixing 𝛽 𝑙𝑎𝑡 and 𝛼

		18 21 Test 9		17.6798			8.6968				0.0800	0.11 0.062 5202.00	0.0121	0.4415	0.4
		20.8 Test			17.6885			8.6902				0.0802	0.061 5215.01	0.0121	0.4407	0.45
		17.5 20.6 Test			17.6928			8.6797				0.0804	0.105 0.06 5228.01	0.0121	0.4398	0.5
	PSNR PSNR	15.5 16 16.5 17 19.2 19.4 19.6 19.8 20 20.2 20.4 Test Test Test Test Test Test Test Test			17.6934 17.6912 17.6866 17.6801 17.6721 17.6628 17.6524 17.6412			8.6662 8.6505 8.6329 8.6138 8.5937 8.5727 8.5510 8.5288				0.0806 0.0809 0.0811 0.0813 0.0816 0.0818 0.0821 0.0823	E(L 1 ) norm norm ) E(L 1	0.085 0.09 0.095 0.1 0.056 0.058 5241.02 0.059 5260.52 5273.53 0.057 5286.53 5306.04 0.055 5319.05 0.054 5338.55 0.053 5351.56	0.0121 0.0121 0.0121 0.0121 0.0122 0.0122 0.0122 0.0122	0.4388 0.4378 0.4366 0.4355 0.4344 0.4332 0.4321 0.4310	0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
		15 19 Test 0.001 0.001 Test	0.05 0.05	0.1 0.15 0.1 0.15	0.2 0.25 0.2 0.25 17.6293 0.3 0.35 0.4 0.3 0.35 0.4 17.6193	0.45 0.45	0.5 0.55 0.5 0.55 8.5062 0.6 0.65 0.7 0.75 0.6 0.65 0.7 0.75 8.4879	0.8 0.85 0.9 0.95 0.99 0.8 0.85 0.9 0.95 0.99 0.0826 0.0828	0.08 0.052 5371.07 0.001 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 0.99 0.0123 0.4299 0.95 0.001 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 0.99 5384.07 0.0123 0.4290 0.99
		Test 1		19.7322	β lat β lat	11.9807				0.0499	« Photo » 3244.75	0.0084	β lat β lat 0.6617	0.001
		Test 2 Test 3	21.6381 21.6014			0.65 13.8188 0.46 13.5681				0.0424 0.0457	2757.06 2971.64	0.053 0.0054	0.7111 0.6932	0.05 0.1
		Test 4		21.3758			0.44 0.64 13.2615				0.0484	3147.21	0.0057	0.6735	0.15
		Test 5 Test 6		21.1392 20.9303			12.9843 0.42 0.63 12.7403				0.0506 0.0524	3290.27 3407.31	0.0060 0.0063	0.6581 0.6457	0.2 0.25
		Test 7 Test 8 Test 9 Test		20.7452 20.5788 20.4273 20.2875		0.36 0.4 0.62 12.5240 SSIM SSIM 12.3294 0.38 12.1518 0.61 11.9875				0.0541 0.0556 0.0569 0.0582	3517.85 3615.39 3699.92 3784.46	0.0066 0.0069 0.0071 0.0074	0.6354 0.6266 0.6189 0.6121	0.3 0.35 0.4 0.45
		Test Test			20.1581 20.0377			0.6 11.8349 0.34 11.6923				0.0594 0.0605	3862.49 3934.01	0.0076 0.0078	0.6060 0.6004	0.5 0.55
		Test Test Test Test			19.9251 19.8194 19.7195 19.6249			0.32 0.59 11.5586 0.001 11.4327 0.001 11.3136 11.2005	0.05 0.05	0.1 0.15 0.1 0.15	0.2 0.25 0.3 0.2 0.25 0.3 0.0616 0.35 0.4 0.45 β lat 0.5 0.55 0.35 0.4 0.45 0.5 0.55 0.0626 0.0636 β lat 0.0646	0.6 0.65 0.6 0.65 4005.54 0.7 0.75 0.7 0.75 4070.57 4135.59 4200.62	0.8 0.85 0.8 0.85	0.9 0.95 0.9 0.95 0.0080 0.99 0.99 0.0082 0.0084 0.0086	0.5953 0.5906 0.5862 0.5821	0.6 0.65 0.7 0.75
		Test Test Test Test Figure A16: Test Test		19.5349 19.4491 19.3671 19.2881 PSNR 19.2271			11.0928 10.9900 10.8915 10.7966 SNR 10.7231			0.0655 0.0663 0.0672 0.0680 E(L1) norm 0.0686	4259.14 4311.16 4369.68 4421.70 L1 norm 4460.72	0.0087 0.0089 0.0091 0.0093 MSE 0.0094	0.5783 0.5747 0.5712 0.5680 SSIM 0.5655	0.8 0.85 0.9 0.95 𝜷 0.99
												« Bridge »
		Test 1		16.4545			7.7447				0.0866	5631.17	0.0161	0.3560	0.001
		Test 2		17.1848			8.3651				0.0811	5273.53	0.0136	0.4226	0.05
		Test 3		17.3774			8.5198				0.0801	5208.50	0.0130	0.4342	0.1
		Test 4		17.4882			8.6023				0.0797	5182.49	0.0127	0.4391	0.15
		Test 5		17.5601			8.6508				0.0797	5182.49	0.0125	0.4414	0.2
		Test 6		17.6087			8.6783				0.0798	5189.00	0.0123	0.4423	0.25
		Test 7		17.6423			8.6930				0.0797	5182.49	0.0122	0.4424	0.3
		Test 8		17.6851			8.6984				0.0796	5175.99	0.0121	0.4424	0.35
												139 140

Table A14 :

 A14 The effect of the regularization parameter 𝛽 using the PSF of support size 23×23, where 𝛼 = 0.4 and 𝛽 𝑙𝑎𝑡 = 0.1 are fixed for the image "Bridge" and for the "photo" image 𝛼 = 0.001 and 𝛽 𝑙𝑎𝑡 = 0.4 , while 𝛽 increase by a step size of 0.05 141 Figure A17: The effect of the regularization parameter 𝛽 over the PSNR (top left), E(L1) norm (Top right), and SSIM (middle) for the "Bridge" image using a PSF of support size 23x23 and fixing 𝛼 = 0.4 and 𝛽 𝑙𝑎𝑡 = 0.1 The effect of the regularization parameter 𝛽 over the PSNR (top left), E(L1) norm (Top right), and SSIM (middle) for the "Photo" image using a PSF of support size 23x23 and fixing 𝛼 = 0.001 and 𝛽 𝑙𝑎𝑡 = 0.4Titre : Restoration adaptative aveugle d'images monochrome et hyperspectrale Mots clés : Restauration aveugle, estimation de paramètres de régularisation, PSF, imagerie hyperspectral, réglage automatique Résumé : La restauration d'images représente un défi important lorsque les valeurs des paramètres de régularisation, la PSF et d'autres connaissances a priori ne sont pas disponibles. L'objectif de cette thèse est de développer une méthode de restauration facilement applicable en éliminant la nécessité d'informations préalables et d'un réglage empirique des paramètres. Pour atteindre cet objectif, nous avons développé une méthode adaptative de restauration d'images aveugle qui fonctionne sans nécessiter d'informations a priori. Cette méthode peut être appliquée pour restaurer des images monochromes, multispectrales et hyperspectrale, tout en optimisant les résultats de traitement sans nécessiter de réglage empirique des paramètres de régularisation. La supériorité de notre méthode de restauration aveugle adaptative est démontrée grâce à des évaluations sur diverses bases de données d'images, surpassant onze méthodes non-neuronales et neuronales supervisées/ semisupervisées de l'état de l'art. En conclusion, la méthode proposée peut être facilement appliquée pour restaurer des images dégradées en raison de sa nature aveugle.
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𝐼 is the identity matrix, and 𝐴 𝛼 𝑖 is the linear operator for deriving the solution 𝒉 ̂ in case of Tikhonov-type regularization: 𝐴 𝛼 𝑖 × ∇ 𝑖 𝑔 = ℎ 𝐸 ↔ 𝐴 𝛼 𝑖 = [(∇ 𝑖 𝑆) 𝑇 × ∇ 𝑖 𝑆 + 𝛼 𝑖 𝐼] -1 × (∇ 𝑖 𝑆) 𝑇 . To solve equation [START_REF] Zhang | Accuracy assessment of blind and semi-blind restoration methods for hyperspectral images[END_REF], the authors in [START_REF] Chung | A weighted GCV method for Lanczos hybrid regularization[END_REF] propose to apply a preliminary iterative algorithm called "Lanczos bidiagonalization" [START_REF] Larsen | Lanczos Bidiagonalization With Partial Reorthogonalization[END_REF] to the matrix ∇ 𝑖 𝑆, and perform a Singular Value Decomposition (SVD) on the obtained diagonal matrix.

When 𝜔 = 1, the WGCV cost function is reduced to the GCV cost function.

For the 𝑘 𝑡ℎ iteration the weight 𝜔 𝑘 is predicted by averaging all the previously estimated weights as follows:

Where 𝜔 ̂𝑗 is calculated by solving:

Since the estimation of 𝛼 𝑥 and 𝛼 𝑦 considers only the data fidelity term (‖ℎ 𝐸 × ∇ x 𝑆 -∇ 𝑥 𝑔‖ 2 2 𝑜𝑟 ‖ℎ 𝐸 × ∇ 𝑦 𝑆 -∇ 𝑦 𝑔‖ 2 2 ), the final estimation of the parameter 𝛼 is determined by averaging 𝛼 ̂𝑥 and 𝛼 ̂𝑦. The estimated value of 𝛼 is then used in the cost function [START_REF] Zhang | FSIM: A Feature Similarity Index for Image Quality Assessment[END_REF] for PSF estimation (where 𝜂 = 0.5). After establishing value 𝛼 ̂, the PSF is calculated using the cost function [START_REF] Zhang | FSIM: A Feature Similarity Index for Image Quality Assessment[END_REF], and the solution is as follows:

τ represents the solution constraint to avoid dividing by zero. The value of this threshold corresponds to the average value of |ℎ ̂|.

Evaluation of the proposed method

In this section, we present a comprehensive evaluation of the developed method by integrating all the proposed solutions discussed in the previous sections. The primary objective of this evaluation is to demonstrate the effectiveness and superiority of our method compared to state-of-the-art techniques.

To ensure a full analysis, we utilize diverse test image databases that encompass monochrome, multicomponent (RGB), and hyperspectral images. This wide range of image types allows us to assess the performance of our method across various scenarios. In addition to comparing our method with the original approach, we also evaluate it against recent state-of-the-art methods. The comparisons are based on several evaluation metrics, as detailed in subsection 4.1.

The main goal of conducting this evaluation is to validate the effectiveness and robustness of our proposed method. We aim to showcase its superiority over existing techniques by providing compelling evidence through the evaluation results. These insights into the performance of our approach will not only contribute to the field of blind image restoration but also highlight its potential for practical applications.

Databases and evaluation criteria

In order to obtain reliable results, various databases were used, and specific evaluation criteria were employed. This subsection provides an overview of the databases used and the criteria utilized for the analysis and assessment of the restored images.

Databases

In order to demonstrate the robustness and applicability of our blind restoration approach, we have utilized multiple databases of different data types for the evaluation. The databases employed in this study exhibit variations in characteristics such as size, structure, and content. By incorporating this diverse range of databases, we aim to provide comprehensive evidence of the effectiveness of our proposed method in handling various scenarios and data variations.

a) DBS1:

The database used in this study was constructed by A. Levin et al [START_REF] Levin | Understanding and evaluating blind deconvolution algorithms[END_REF]. It includes four distinct images (Bridge, Photo, Face, and Wall) that will be further explored. In addition to these images, eight motion blurs were captured using an 85 mm lens and a 0.3-second exposure. The size of the point spread function (PSF) support ranges from 13 × 13 to 27 × 27, which will be subsequently exploited in the analysis. b) DBS2: The database, LIV Public Domain Subjective Image Quality [START_REF]Laboratory for Image and Video Engineering -The University of Texas at Austin[END_REF], containing twenty-nine high-resolution images, was created in the Laboratory for Images and Video Engineering at the University of Texas-Austin. These images are in 24 bits/pixel RGB color format and typically have dimensions of 768 × 512 pixels. c) DBS3: The Kodak Lossless True Color Image Suite [START_REF]True Color Kodak Images[END_REF], released by the Eastman Kodak company, is composed of twenty-four high-quality true color images. Each image in the suite has a pixel depth of 24 bits per pixel (24bpp) and a resolution of 768 × 512 pixels. d) DBS4: The CAVE dataset [START_REF]CAVE | Projects: Multispectral Image Database[END_REF] was obtained using a generalized assorted pixel camera [START_REF] Yasuma | Generalized Assorted Pixel Camera: Postcapture Control of Resolution, Dynamic Range, and Spectrum[END_REF]. It comprises 32 indoor hyperspectral images (HSIs) capturing real-world materials and objects. Each "Bridge" "Wall" "Face" "Photo"

Figure 12: The four original monochrome images used from DBS1 [START_REF] Levin | Understanding and evaluating blind deconvolution algorithms[END_REF] An assessment of the estimated Point Spread Function (PSF) was conducted to visually compare the performance of the original method and our proposed method. We are showing only the results of the "Bridge" image in Table 13. It is evident from the comparison that our proposed method effectively addresses the issue of spatial shifting present in the estimated PSF, which is not properly handled by the original method. This means that our method provides better regulation and alignment of the PSF, resulting in improved accuracy.

Upon visual inspection, it becomes particularly noticeable that the estimated PSFs obtained using our proposed method exhibit higher levels of accuracy. This is especially seen when examining PSF numbers 5, 6, 7, and 8.

Additionally, a visual evaluation was conducted to assess the restored image and the restored edges. Figure 13 illustrates the original edges that are present in both the "Bridge" and "Photo" images. These combined evaluation results substantiate the effectiveness and superiority of the second strategy in achieving highly accurate and reliable restoration of the spectral signatures. Using the most accurate estimated PSF consistently provides superior results, enabling the better recovery of spectral information in the degraded hyperspectral image, thus demonstrating its significant advantages over the first strategy.

Comparing the proposed strategy with the recent developed methods of the literature

After conducting a thorough evaluation of the two strategies proposed for hyperspectral image restoration, we now turn our attention to comparing the second strategy with recent methods available in the literature. This comparative analysis aims to assess the performance and effectiveness of the second strategy in relation to other state-of-the-art approaches. We have chosen methods that focus on super resolution [START_REF] Zhang | Deep Blind Hyperspectral Image Super-Resolution[END_REF] that aims to improve the image quality in both spatial and spectral domains and compare the image quality obtained by super resolution with the one obtained by our blind image restoration method.

To facilitate a comprehensive comparison, we selected two hyperspectral images from different datasets. The first image, named "TOY", was chosen from the DBS4 dataset [START_REF]CAVE | Projects: Multispectral Image Database[END_REF], while the second image, named "HARV", was obtained from the DBS5 dataset [START_REF]Statistics of Real-World Hyperspectral Images[END_REF]. In order to conduct a meaningful comparison with the recent method proposed in [START_REF] Zhang | Deep Blind Hyperspectral Image Super-Resolution[END_REF], we employed the same degradation function utilized in their experiments. Specifically, we applied a Gaussian blur with a standard deviation of √2 and a support size of 9×9 to both of the selected images. Furthermore, we implemented the suggested unsupervised partitioning method described in reference [START_REF] Alameddine | Hierarchical Unsupervised Partitioning of Large Size Data and Its Application to Hyperspectral Images[END_REF] on the two chosen images. As a result, the image "TOY" yielded three correlation groups, while the image "HARV" produced four correlated groups. Detailed information regarding this partitioning process can be found in Table 39 for the "TOY" image and Table 40 for the "HARV" image. To quantify the computational efficiency of the proposed restoration methods, we utilized the "cpuruntime" function available in MATLAB 2020a to measure the CPU runtime. This approach allowed us to accurately capture the execution time of the restoration processes.

Table 44 presents the recorded CPU time measured in seconds for the PSF estimation using four monochrome images ("Bridge", "Photo", "Wall", and "Face") and three HSIs. We considered four different degradation functions of different support sizes (9 × 9, 13 × 13, 19 × 19, and 23 × 23). Table 45 focuses on the CPU run time needed for the final image restoration of the above-mentioned images. In Table 46 a comparison between the CPU runtime of the whole restoration process using PAN's method and our blind proposed method. For this comparison we have used the four monochrome images in DBS1 [START_REF] Levin | Understanding and evaluating blind deconvolution algorithms[END_REF] degraded by three different PSFs of different support size (13 × 13, 19 × 19, 23 × 23).

While the CPU time recorded in the presented tables may appear extensive, it is crucial to recognize that these durations reflect a balance between restoration quality and computational efficiency. Our proposed

General conclusion and prospective

In this thesis, we developed a method for blind image restoration where no prior information is required and we proposed a new approach to restore a full hyperspectral image. To better understand the importance of parameter estimation and evaluation of the influence of these regularization parameter values was conducted. This assessment was conducted on a database of monochrome images artificially degraded by three different motion blur functions.

Following this study, a multi-scale restoration method based on the principle of a hybrid method was developed. The contributions focused on several aspects. The first set of contributions involved redefining the scales and initializing the latent image at each scale, evolving parameters for selecting relevant edges to support PSF estimation. The second set of contributions focused on the blind estimation of the two regularization parameters involved to avoid having to fix them empirically. The first parameter is introduced into the cost function for PSF estimation and is estimated using the Weighted Generalized Cross Validation (WGCV) approach. The second parameter is integrated into the cost function for estimating the latent image and is also estimated. In the next step, we refine the support size of the PSF estimated before utilizing it in the image restoration process.

Two approaches were suggested and evaluated to restore a degraded hypercube. The first one uses unsupervised partitioning based on affinity propagation to form groups of highly correlated spectral components and blindly select an exemplar spectral component to represent each group. Then, only these exemplar spectral components are used to estimate the PSF for each group. These estimated PSFs are then used to restore all the spectral components of their designated group.

The second approach follows the same steps as the first one, forming groups of highly correlated spectral components with an exemplar for each group. This is followed by PSF estimation from each exemplar.

Then, an evaluation of these estimated PSFs is conducted to select the most accurate PSF, using the kernel similarity criterion. After identifying the most accurate estimated PSF, it is used to restore all the spectral components of the degraded hyperspectral image.

In comparison with many recent state-of-the-art methods, our proposed method outperforms them, leading to an improvement in the quality of the PSF estimation, as well as the restored image (monochrome, RGB, and hyperspectral).

Looking ahead, we can consider a more complex observation model, involving spatial variability, and explore the robustness of the proposed method in the presence of different types of noise.