
HAL Id: tel-04434691
https://theses.hal.science/tel-04434691

Submitted on 2 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Efficient Query Processing when Spatial Data Meets Rdf
Graph

Houssameddine Yousfi

To cite this version:
Houssameddine Yousfi. Efficient Query Processing when Spatial Data Meets Rdf Graph. Other
[cs.OH]. ISAE-ENSMA Ecole Nationale Supérieure de Mécanique et d’Aérotechique - Poitiers; Uni-
versité Abou Bekr Belkaid (Tlemcen, Algérie), 2023. English. �NNT : 2023ESMA0016�. �tel-04434691�

https://theses.hal.science/tel-04434691
https://hal.archives-ouvertes.fr

THESE en cotutelle
pour l’obtention du Grade de

DOCTEUR DE L'ÉCOLE NATIONALE SUPÉRIEURE DE
MÉCANIQUE ET D'AÉROTECHNIQUE

(Diplôme National – Arrêté du 25 mai 2016)
Ecole Doctorale : Mathématiques, informatique, matériaux, mécanique, énergétique (MIMME)

 Secteur de Recherche : Informatique et Applications
Et

de l’Université de Tlemcen Abou Bekr Belkaid
 Spécialité : Ingénierie des Systèmes d'Information et de connaissances et Aide à la

décision

Présentée par :

Houssameddine YOUSFI

**
Efficient query processing when spatial data meets RDF graph
**

Directeurs de Thèse : Allel HADJALI et Houcine MATALLAH
Co-encadrant: Amin MESMOUDI

 Soutenue le 07/12/2023

 devant la Commission d’Examen

JURY

Rapporteurs : Mme Fatima DEBBAT Professeur, Université de Mascara M. STAMBOULI, Algérie
 M. Laurent D'ORAZIO Professeur, Université Rennes 1, France

Membres du jury : M. Azeddine CHIKH Professeur, Université de Tlemcen, Algérie

 M. Mohand-Said HACID. Professeur, Université Lyon 1, France

 M. Houcine MATALLAH Maître de conférences - HDR, Université de Tlemcen, Algérie

 M. Amin MESMOUDI Maître de conférences, Université de Poitiers, France

 M. Allel HADJALI Professeur, ISAE-ENSMA, Poitiers, France

Acknowledgments

I would like to express my gratitude to the following individuals whose support and

inspiration were instrumental in the completion of this thesis:

• First and foremost, I extend my heartfelt thanks to my supervisors Prof. Allel

HADJALI, Dr. Amin MESMOUDI, and Dr. Houcine MATALLAH. Their guid-

ance, patience, and unwavering support throughout my thesis were invaluable. The

insightful discussions I had with each of them greatly influenced my ideas and helped

me navigate my research. I am also grateful for their meticulous editing, which sig-

nificantly contributed to the quality of this manuscript. I am truly grateful for the

invaluable lessons in research they have imparted to me.

• I would like to express my sincere appreciation to Professors Fatima DEBBAT and

Laurent D’ORAZIO for generously serving as the reviewers of my thesis. Their

feedback and constructive criticism have been indispensable in enhancing the quality

of my work. I am also thankful to Azeddine CHIKH Azeddine and Mohand-Säıd

HACID for their involvement as members of the examination committee. Their

thought-provoking questions have enriched my study from diverse perspectives.

• My gratitude extends to all the members of the LIAS laboratory who warmly wel-

comed me and with whom I shared numerous enjoyable moments throughout these

three years. I am especially grateful to Pascal Richard for mentoring me during the

initial stages of my teaching career. Additionally, I would like to express my sincere

thanks to Bénédicte Boinot for her kindness, generosity, and invaluable administra-

tive assistance in coordinating my thesis project.

• I am deeply thankful to my fellow Ph.D. colleagues and friends, both past and

present. I am grateful for the fruitful discussions we had, where we exchanged ideas

i

on our academic endeavors. Your diverse conversations have been instrumental in

broadening my perspective during challenging times.

• I want to express my heartfelt appreciation to my group of friends, who provided me

with laughter and relief from the pressures of academic life. Your sense of humor has

been a constant source of joy, brightening even the cloudiest days throughout this

journey. Special thanks to Réda and Samir for their unwavering support throughout.

• Finally, I would like to convey my deep and sincere gratitude to my family for

their unconditional love, unparalleled assistance, and unwavering support. To my

parents, my sister Zakia, and my brother Mouhamed, thank you for always being

there to uplift my spirits during moments of doubt. I am forever grateful for your

unwavering support, as this journey would not have been possible without you.

ii

Contents

Contents iii

List of Figures vii

List of Tables ix

Introduction 1

I State of the art 11

1 Preliminary 13

1.1 Introduction . 15

1.2 Spatial data processing . 15

1.2.1 Spatial Queries . 18

1.3 RDF graph formalisation . 20

1.4 Architectural overview of RDF QDAG . 22

1.4.1 Data storage . 22

1.4.2 Scheduling layer . 24

1.4.3 Engine layer . 25

1.5 Conclusion . 27

2 State of the art 29

2.1 Introduction . 30

2.2 Taxonomy of spatial processing techniques 31

2.2.1 Storage medium . 31

2.2.2 Indexing strategy . 32

2.2.3 Parallel strategy . 33

iii

2.3 Centrelised spatial data processing . 33

2.3.1 Nested Loop . 33

2.3.2 Plane Sweep . 35

2.3.3 Index Nested Loop . 37

2.3.4 TOUCH . 40

2.3.5 Partition based spatial-merge join (PBSM) 42

2.3.6 Dual index traversal (DIT) . 43

2.3.7 Discussion . 44

2.4 Spatial data processing at scale . 45

2.4.1 Distance-based join in Hadoop . 45

2.4.2 Spatial processing in Spark . 53

2.4.3 Discussion . 57

2.5 RDF data processing . 57

2.6 Spatial-RDF data processing . 59

2.7 Conclusion . 60

II Spatial and graph data processing 63

3 I/O Efficient R-tree utilisation 65

3.1 Introduction . 67

3.2 Problem Definition . 68

3.2.1 R-Tree Structure . 69

3.2.2 Problem statement . 69

3.3 FASTER approach . 71

3.3.1 Principle of FASTER . 71

3.3.2 Proof of correctness . 71

3.4 Experimental validation . 73

3.4.1 Experimental setup and data-sets 74

3.4.2 Results discussion . 74

3.5 Conclusion . 75

4 Spatial RDF data querying 77

4.1 Introduction . 79

iv

4.2 Query Evaluation strategies . 81

4.2.1 BGP-First strategy . 83

4.2.2 Spatial-First strategy . 85

4.3 Optimization techniques . 87

4.3.1 Query scheduling . 87

4.3.2 Spatial pruning . 91

4.4 Experimental evaluation . 92

4.4.1 Experimental setup and methodology 93

4.4.2 Effect of evaluation strategies . 93

4.4.3 Effect of Scheduling . 94

4.4.4 Effect of Encoding . 96

4.4.5 Effect of spatial pruning . 97

4.4.6 Comparison against Virtuoso . 97

4.5 Conclusion . 98

Conclusion and Perspectives 101

Bibliographie 107

A 117

A.1 Queries used for the experimental validation 117

A.2 Results of estimation of each plan for the different queries considered . . . 119

v

vi

List of Figures

1 Examples for RDF and SPARQL . 3

2 Linked Open Data (LOD) evolution . 4

3 Thesis outline. 8

1.1 Raster and vector representation. 16

1.2 Architectural overview of RDF QDAG . 23

2.1 Representation of the Revers Run Plane Sweep. 36

2.2 Representation of a kd-Tree. 38

2.3 Tree building and objects assignment in TOUCH. 41

2.4 Classification of scalable distance-based join techniques. 53

3.1 Overview of an R-tree’s structure. 70

3.2 The effect of the number of the returned objects on the number of disk

pages loaded. 73

3.3 Execution time (nanoseconds) of queries using SRT and FASTER. 75

4.1 The execution of an BGP-First plan . 84

4.2 The structure of index pages and entries 86

4.3 Execution of Spatial-First strategy . 86

4.4 Execution time (nanoseconds) of queries using both strategies BGP-first

and Spatial-first. 93

4.5 Initial accuracy and the improved accuracy of the optimizer. 94

4.6 Execution time (ms) of queries using WKT and WKB. 96

4.7 Execution time (ms) of queries with and without Spatial Pruning. 97

4.8 Compression of execution time between Virtuoso and RDF QDAG. 98

vii

viii

List of Tables

2.1 Summery of main contributions in spatial processing techniques 34

2.2 Summery of main contributions in spatial processing techniques (part 2) . 35

2.3 Types of spatial indices. 37

2.4 classification of join techniques. 45

2.5 Summery of main contributions in distance-based join processing in popular

MPP frameworks (Hadoop and spark) . 46

2.6 Summery of main contributions in distance-based join processing in popular

MPP frameworks (Hadoop and spark), part 2. 47

2.7 Comparison of different storage strategies for RDF data, including exam-

ples of triplestores that utilize each strategy, their advantages and disad-

vantages. 58

2.8 Overview of different spatial extensions of RDF Triplestores. 60

3.1 Symbols and their meanings. 69

4.1 Example of RDF triples (dataset D1). 82

4.2 Execution time of queries on YAGO . 94

A.1 Results of estimation of Q1 . 120

A.2 Results of estimation of Q2 . 120

A.3 Results of estimation of Q3 . 120

A.4 Results of estimation of Q4 . 120

A.5 Results of estimation of Q5 . 121

A.6 Results of estimation of Q6 . 121

A.7 Results of estimation of Q7 . 121

A.8 Results of estimation of Q8 . 121

ix

Introduction

Context

The explosion in the amount of data generated and collected from various sources has

led to the emergence of what is now known as the era of Big Data, where the manage-

ment, analysis, and utilization of these vast volumes of data present significant challenges

[FHL14]. According to estimates, we are witnessing an unprecedented production of spa-

tial data. For example, space telescopes (e.g., Rubin Observatory) generate up to 20

terabytes (TB) of data per night1 and hospitals produce spatial images (X-rays) at a rate

of 50 petabytes (PB) per year2. Moreover, within the Twitter (now X) platform alone,

there are 10 million geolocated tweets issued daily, accounting for approximately 2% of the

total Twitter firehose [FMSHFM12]. This abundance of data and the increasing demand

for large-scale processing characterize the era of Big Data. In the face of these chal-

lenges, it becomes essential to develop innovative methods for the efficient management

of this data, leveraging technological advancements and proposing suitable approaches for

storage, access, and processing of large scale data.

The rise of the Web has also played a significant role in the production and collection

of large-scale data, giving rise to a wealth of structured and unstructured information.

A key approach to organizing this knowledge and making it actionable is the creation of

knowledge graphs, such as Google’s well-known Knowledge Graph 3. Knowledge graphs

are labeled and directed data structures that encode information in the form of entities

and relationships relevant to a specific domain or organization. These knowledge graphs

play a crucial role in capturing and organizing a large amount of structured and multi-

relational data, facilitating their exploration using query mechanisms. As powerful tools,

1https://www.lsst.org/about/dm
2https://www.tibco.com/blog/2021/02/26/
3https://developers.google.com/knowledge-graph

1

https://www.lsst.org/about/dm
https://www.tibco.com/blog/2021/02/26/why-healthcare-needs-new-data-and-analytics-solutions-before-the-next-pandemic/
https://developers.google.com/knowledge-graph

Introduction

knowledge graphs become the backbone of the Web and existing information systems in

various academic domains and industrial applications. Their power lies in their ability to

extend existing knowledge without affecting previous knowledge, allowing for the contin-

uous maintenance and enrichment of the knowledge base. This shift towards the creation

of knowledge graphs further fuels the demand for standardized and efficient data repre-

sentations, especially in the context of the semantic Web [BLHL01] with its vision of a

globally accessible and linked internet of data.

The volume of knowledge graphs continues to grow exponentially, reflecting the in-

creasing amount of structured information available on the Web. For example, Google’s

Knowledge Graph, which is one of the most widely known and used, contains billions of

entities and relationships 4. Additionally, initiatives such as DBpedia 5, which extracts

structured data from Wikipedia, contain billions of facts representing knowledge in vari-

ous domains. Another significant resource is the Wikidata project 6, which aims to create

a free and collaborative knowledge base, also containing billions of facts. Furthermore,

many organizations and institutions are creating their own knowledge graphs to repre-

sent and organize domain-specific information. The scale of these knowledge graphs is a

testament to the growing importance of structured data and its potential to fuel artifi-

cial intelligence [TLH20], advanced information retrieval [LRZ+20], and numerous other

knowledge-based applications.

In this context, the Linked Open Data (LOD) movement plays a central role in the

aggregation and publication of large-scale knowledge graphs. LOD aims to make data

available on the Web in a standardized and interconnected format, using the principles of

the Semantic Web [Hit21]. Many organizations, universities, governments, and research

projects actively contribute to LOD by publishing their structured datasets as publicly

accessible knowledge graphs. These datasets cover a variety of domains such as geography

7, life sciences 8, culture 9, and more. For example, datasets such as DBpedia 10, Wikidata

4https://kennyallen.co.uk/exploring-googles-knowledge-graph/
5https://www.dbpedia.org/
6https://www.wikidata.org/wiki/Wikidata:Main_Page
7http://linkedgeodata.org/
8https://sparql.uniprot.org/
9https://data.bnf.fr/

10https://www.dbpedia.org/

2

https://kennyallen.co.uk/exploring-googles-knowledge-graph/
https://www.dbpedia.org/
https://www.wikidata.org/wiki/Wikidata:Main_Page
http://linkedgeodata.org/
https://sparql.uniprot.org/
https://data.bnf.fr/
https://www.dbpedia.org/

Introduction

Paris

France

Paris

Île-de-France

Roland Garros

Event

Tennis

20 May 2024

city of
name

region is a

sport
date

hosted in

http://dbpedia.org/ http://example.org/

(a) RDF Graph

@prefix db:<http://dbpedia.org/> .

@prefix ex:<http://example.org/> .

SELECT ?x ?y WHERE {

?x ex:hosted_in db:Paris .

?x ex:sport ?y .

}

(b) SPARQL query

Figure 1: Examples for RDF and SPARQL

11, GeoNames 12, and PubMed 13 provide rich and interconnected information on diverse

subjects. By combining these datasets, semantic links can be established between different

sources, allowing users to discover additional relations and knowledge. LOD is a valuable

resource for research, data exploration, application development, and global knowledge

enrichment.

RDF (Resource Description Framework) and SPARQL (SPARQL Protocol and RDF

Query Language) play a fundamental role in leveraging knowledge graphs within the

Linked Open Data (LOD) paradigm. RDF provides a standardized and extensible data

model for representing information in the form of subject-predicate-object triplets, thereby

structuring data in a format that is comprehensible by both humans and machines. This

graph-based representation allows for capturing complex relationships between entities,

enabling seamless data interconnection within the LOD.

Example 1 The statement “Paris is a city of France” can be represented by

a triple as ⟨Paris, city of, France⟩14. This triple can be represented logically

as a graph where two nodes (subject and object) are joined with a directed

arc (predicate) as shown in Figure 1a.

SPARQL, on the other hand, is a query language specifically designed for querying

RDF data. It provides powerful mechanisms for traversing knowledge graphs and extract-

ing precise information from these interconnected datasets. SPARQL queries allow users

to specify graph patterns, filters, and join operations to retrieve relevant information from

the LOD. They also offer advanced features such as aggregation, sorting, and pagination

of results.

11https://www.wikidata.org/wiki/Wikidata:Main_Page
12https://www.geonames.org/
13https://pubmed.ncbi.nlm.nih.gov/
14This triple is a part of DBpedia’s Knowledge Graph.

3

https://www.wikidata.org/wiki/Wikidata:Main_Page
https://www.geonames.org/
https://pubmed.ncbi.nlm.nih.gov/

Introduction

Figure 2: Linked Open Data (LOD) evolution

Example 2 The query in Figure 1b asks for all the events hosted in Paris.

The answer of this query is a subgraph of the queried graph(s) in which the

variable terms are mapped to the values of the resulting subgraph. Processing

a SPARQL query can be viewed as a subgraph matching problem. The results

for the previous query are the mappings of ?x→ <http://example.org/Roland

Garros> and ?y → <http:// example.org/Tennis>.

The capabilities provided by RDF have led to the creation of large-scale databases.

One notable initiative is the Linked Open Data (LOD) cloud, which allows for the refer-

encing of available datasets on the Web. The number of datasets within the LOD cloud

has grown rapidly, currently surpassing 1260 datasets. Many of these datasets consist of

several billions of triples, as illustrated in Figure 2. Access to these datasets is facilitated

through SPARQL endpoints, which are RESTful Web services that expose RDF data

queried with SPARQL, or by downloading the data as data dumps.

RDF triples can be used to express spatial relationships by assigning geographic co-

ordinates to entities such as places, points of interest, or geographic boundaries. This

integration of spatial information in RDF enables the creation of interconnected geospa-

tial knowledge graphs, opening up new possibilities for analyzing and discovering complex

spatial relationships. However, to fully leverage this spatial information, it is necessary

to incorporate spatial operators into SPARQL queries.

Spatial operators are features that allow specifying spatial conditions and relationships

in SPARQL queries. For example, operators like ”within”, ”intersects”, or ”near” can be

used to filter geospatial entities based on their spatial relationships with other entities.

These spatial operators provide powerful querying capabilities for analyzing and extracting

geospatial information from RDF knowledge graphs.

Integrating spatial operators into SPARQL enables advanced queries that combine

4

Introduction

both spatial conditions and graph criteria. This allows for sophisticated geospatial analysis

and the discovery of rich relationships among geospatial entities. The combined use of

RDF data representation and spatial operators in SPARQL provides a powerful means to

explore and exploit geospatial information in knowledge graphs.

In the context of this thesis, our main objective is to address the challenge of efficient

management of RDF data when incorporating spatial information, while ensuring an

optimal balance between scalability and performance.

Spatial RDF: New Challenges for Data Management

RDF data processing represent a challenge that has been the focus of many studies.

There are four main approaches to storing RDF data. The first approach is the single

table strategy, which involves using a large relational table with three columns for subject,

predicate, and object like Sesame [BKVH01]and 3-Store [HG03]. Another option is the

binary table approach, where a binary table is created for each property, containing subject

and object information like [AMMH09], C-store [WKB08]. This method is commonly used

in scalable distributed systems. The third approach is the property table, where subjects

with common properties are grouped and stored in a horizontal table with each column

representing a property like Jena [WSK+03] and DB2RDF [BDK+13]. Finally, the fourth

approach involves modeling and storing RDF data in its native graph form, treating

subjects and objects as nodes and properties as labeled edges like Trinity [ZYW+13] and

RDF QDAG [KMG+21, ZMG+21].

Spatial data presents a significant challenge due to its inherently multi-dimensional

nature. Consequently, establishing a global order for the dataset becomes unfeasible.

Traditional tree-based indexes rely on a global order, making them unsuitable for spatial

data. Likewise, hash-based indexes are not well-suited since spatial operations primarily

depend on proximity rather than exact matches. To tackle this challenge, researchers

have proposed new indexing techniques. One approach taken by some researchers involves

single-dimensional embedding. Works like Z-Curve and Hilbert-Curve aim to establish a

global order by employing space-filling curves. Other researchers have opted to develop

specialized indexes specifically designed for spatial data. These spatial indexes can be

constructed using either object grouping techniques, such as R-tree and CR-tree [KCK01],

5

Introduction

or space partitioning techniques, such as Xbr-Tree[RVL+15], Kdb-Tree [Rob81].

A second challenge rises not from spatial data itself but with the combination with

the RDF data. Due to the difference between the two data representations, techniques

that work for one representation do not work on the other. Many works have takled this

challenge for example, Strabon [KKK12], which is an extension of Sesame [BKVH01],

provides support for spatial data storage. It utilizes PostGIS to store the data and adopts

a proprietary table-based approach.The query optimizer extension in Strabon is relatively

simplistic, relying on heuristics to push down spatial filters. As Strabon is based on an

older RDF store (Sesame), it lacks many of the optimization techniques employed in mod-

ern Triplestores. Brodt et al. [BNM10] also extended RDF-3X [NW08] to accommodate

spatial data. However, their work only supports the range selection operation, offering

a limited extension. Another spatial extension of RDF-3X is Geo-Store [WKC12], which

employs a grid file for spatial data indexing. It is worth noting that many commercial

systems, such as Oracle, Virtuoso [vir], and GraphDB [Gra], also support spatial RDF

queries. However, specific details about their internal designs are not publicly accessible.

Despite these efforts, efficient and large-scale management of spatial RDF data remains

a challenging task that requires a complete revision of some components of RDF data

management systems.

Approach and contributions

To accomplish our objective of achieving efficient Spatial RDF data management, we

have made the decision to revise the core components of RDF QDAG to incorporate Spa-

tial operators. Numerous studies have demonstrated that RDF QDAG offers a favorable

balance between scalability and performance. This system relies on the physical fragmen-

tation of RDF data and the exploration of the corresponding logical graph. Our proposals

primarily focus on the storage, evaluation, and optimization layers.

The contributions made in this research can be summarized as follows. Firstly, we

conduct an in-depth analysis of spatial data processing techniques in centralized en-

vironments, providing a comprehensive understanding of the existing approaches and

techniques. Secondly, we propose a systematic classification of spatial data processing

approaches at a large scale, specifically within popular frameworks. This classification

6

Introduction

helps to categorize and compare different techniques based on their characteristics and

capabilities.

Additionally, we introduce a novel exploration algorithm called FASTER, designed

specifically for R-trees. This algorithm effectively reduces the number of input/output

(I/O) operations, leading to improved performance in spatial data processing tasks. To

ensure the reliability and accuracy of FASTER, we develop a formal proof of its correct-

ness, validating its suitability for practical implementation.

Furthermore, we address the efficient processing of Spatial-RDF data within RDF -

QDAG. We propose two evaluation approaches, namely Spatial-First and BGP-First,

specifically tailored for spatial-RDF data. By adapting the FASTER indexing approach

to be compatible with the graph exploration logic in RDF QDAG, we enable efficient

spatial data processing within the Spatial-First strategies.

To assess the performance of the proposed approaches, we conduct a comprehensive

experimental evaluation using real-world datasets. We evaluate various measures and com-

pare the results with a well-known commercial Triplestore, establishing the effectiveness

and efficiency of the proposed techniques. Additionally, we study the impact of query

evaluation strategies and optimization techniques on the performance of RDF QDAG,

providing insights into the factors influencing the system’s efficiency.

Finally, we propose an optimizer capable of selecting the most suitable evaluation

strategy based on the query characteristics and statistics about the RDF and spatial

data. This optimizer enhances the overall performance of RDF QDAG by dynamically

choosing the optimal approach for query execution. The experimental evaluation and

comparisons performed demonstrate the advantages of our proposed approaches in terms

of efficiency and effectiveness, validating their applicability in real-world scenarios.

Thesis outline

The thesis is divided into two parts, as illustrated in figure 3. The first part consists of

two chapters, which focus on fundamental concepts and the current state of the field. The

second part, also comprising two chapters, is dedicated to presenting the contributions

made by this thesis and describing the findings and results of the experimental validation.

Chapter 1 provides an introduction to background concepts related to RDF data and

7

Introduction

Part I: State of the art

Preliminary
- Spatial data processing
- RDF graph formalisation
- Architectural overview of RDF QDG

State of the art
- Spatial data processing
- RDF data processing
- Spatial-RDF data processing

Chapter 1

Chapter 2

Part II: Spatial and graph data processing techniques

I/O Efficient R-tree utilisation
- Problem definition
- FASTER approach
- Experimental validation

Spatial RDF data querying
- Query evaluation strategies
- Optimization techniques
- Experimental evaluation

Chapter 4

Chapter 3

Introduction

Conclusion

Figure 3: Thesis outline.

Spatial data. This involves formally defining various concepts and explaining the syntax

of the querying language. The aim of this chapter is to provide the foundational elements

that are crucial for comprehending the challenges addressed in this thesis, as well as the

proposed solutions.

In Chapter 2, the state of the art in spatial data processing is examined. This chapter

begins by presenting a taxonomy of spatial processing techniques, encompassing various

aspects such as storage medium, indexing strategy, and parallel strategy. Additionally,

centralized spatial data processing techniques are explored. The chapter further delves

into spatial data processing at scale. The discussion also encompasses RDF data process-

ing and the challenges it poses, as well as spatial-RDF data processing.

Chapter 3 focuses on the I/O efficient utilization of R-trees, a widely used spatial index

structure. The chapter introduces the R-tree structure and the challenges associated with

8

Introduction

its efficient utilization. The FASTER approach, which aims to improve I/O efficiency

is proposed along with its underlying principles and proof of correctness. Experimental

validation is conducted to assess the effectiveness of the proposed approach.

In Chapter 4, the attention shifts towards spatial RDF data processing. The chapter

begins by exploring different query evaluation strategies, including BGP-First strategy

and Spatial-First strategy, and their impact on performance. Optimization techniques,

such as query scheduling and spatial pruning, are investigated to enhance query execution

efficiency. Experimental evaluation is performed to evaluate the effectiveness of these

techniques, considering various factors such as evaluation strategies, scheduling, encoding,

and spatial pruning. Furthermore, a comparison against Virtuoso, a well-known RDF

database system, is conducted to assess the performance improvements achieved.

Finally, the thesis concludes with a general conclusion and Perspectives, summarizing

the key findings and contributions of the research. Future directions and potential areas

for further exploration are discussed, highlighting the importance of ongoing advancements

in spatial data processing and optimization techniques.

Publications

• Yousfi, H., Mesmoudi, A., Hadjali, A., Matallah, H., Benkabou, S.: SRDF QDAG:

An Efficient End-to-End RDF Data Management when Graph Exploration Meets

Spatial Processing. Computer Science and Information Systems, https://doi.

org/10.2298/CSIS230225046Y.

• Yousfi, H. Spatial data processing meets RDF graph exploration: student research

abstract. In : Proceedings of the 37th ACM/SIGAPP Symposium on Applied

Computing. 2022. p. 389-392. https://doi.org/10.1145/3477314.3506964.

• Yousfi, H., Mesmoudi, A., Hadjali, A., Matallah, H., Lahfa, F. (2022). Efficient

R-Tree Exploration for Big Spatial Data. In: Kacprzyk, J., Balas, V.E., Ezziyyani,

M. (eds) Advanced Intelligent Systems for Sustainable Development (AI2SD’2020).

AI2SD 2020. Advances in Intelligent Systems and Computing, vol 1418. Springer,

Cham. https://doi.org/10.1007/978-3-030-90639-9_70.

• Saidi, B., Yousfi, H., Mesmoudi, A., Benkabou, SE., Hadjali, A., Matallah, H.

9

https://doi.org/10.2298/CSIS230225046Y
https://doi.org/10.2298/CSIS230225046Y
https://doi.org/10.1145/3477314.3506964
https://doi.org/10.1007/978-3-030-90639-9_70

Introduction

(2022). RDF QDAG in Action: Efficient RDF Data Querying at Scale. In: Chbeir,

R., Huang, H., Silvestri, F., Manolopoulos, Y., Zhang, Y. (eds) Web Information

Systems Engineering –WISE 2022. WISE 2022. Lecture Notes in Computer Science,

vol 13724. Springer, Cham. https://doi.org/10.1007/978-3-031-20891-1_45

10

https://doi.org/10.1007/978-3-031-20891-1_45

Part I

State of the art

11

Chapter 1

Preliminary

Contents

1.1 Introduction . 15

1.2 Spatial data processing . 15

1.2.1 Spatial Queries . 18

1.3 RDF graph formalisation . 20

1.4 Architectural overview of RDF QDAG 22

1.4.1 Data storage . 22

1.4.2 Scheduling layer . 24

1.4.3 Engine layer . 25

1.5 Conclusion . 27

In this chapter, we will establish the fundamental concepts related to spatial data

and RDF data, which will serve as the basis for the subsequent chapters. Our focus

will be on introducing spatial data types and exploring spatial queries. Additionally, we

will dive into the representation of graph data within the RDF framework and discuss

querying techniques using SPARQL. Lastly, we will present the key concepts associated

with RDF QDAG, a triple store specifically designed to efficiently handle RDF data and

provide effective answers to SPARQL queries. By covering these essential topics, our goal

is to provide the necessary background knowledge for the upcoming chapters.

13

CHAPTER 1. PRELIMINARY

14

1.1. INTRODUCTION

1.1 Introduction

The proposition of a novel approach for processing spatial graph data necessitates a pro-

found comprehension of the techniques and models utilized in both the graph and spatial

domains. As mentioned previously, the demand for efficient processing of spatial and

graph data is on the rise, leading to the central problem addressed in this thesis. Prior to

delving into the explanation of the contributions, it is imperative to establish the back-

ground information. This involves providing formal definitions of various concepts and

elucidating the syntax of the querying language.

The aim of this chapter is to furnish the essential components required to comprehend

the challenges tackled in this thesis, as well as the proposed solutions. The chapter will

follow this structure: an initial section 1.2 will provide pertinent insights into spatial

data storage and processing, followed by an presentation on the Resource Description

Framework (RDF)(section 1.3). Finally, the architecture of RDF QDAG, a specialized

triple store tailored to effectively manage large scale RDF datasets and provide optimized

answers to SPARQL queries, will be presented in section 1.4. This arrangement will enable

readers to develop a comprehensive grasp of the indispensable concepts and technologies

necessary for the subsequent discussions and analyses within this thesis.

1.2 Spatial data processing

Spatial Database Management Systems (SDBMS) are designed to integrate spatial data

types into their models and query languages, enabling efficient processing of spatial oper-

ations [Güt94]. Spatial data types encompass any data object that includes coordinates

within a multi-dimensional metric space. SDBMSs serve as the foundation for Geographic

Information Systems (GIS) and various computer-assisted design systems (CADs).

There are two primary representations for spatial information: Raster and Vector

[SKS+97]. Raster data is structured as an array or matrix, where each cell or pixel

corresponds to a spatial unit. However, this study does not focus on spatial operations

with raster data. On the other hand, vector data represents object features using a

list of vertices, where curves and polygons are depicted through line segments. Figure

1.1 visually demonstrates the same spatial area mapped using both vector and raster

representations.

15

CHAPTER 1. PRELIMINARY

Raster representation Vector representation

Figure 1.1: Raster and vector representation.

In addition to storing spatial data, Spatial Database Management Systems (SDBMS)

are required to execute spatial operations in order to effectively respond to queries. Spa-

tial queries can be classified into three categories: nearness queries, region queries, and

join queries. Nearness queries involve retrieving objects that are in close proximity to a

specified point, with a special case being the K nearest neighbor query. Region queries

aim to identify objects that either fully or partially reside within a specified region. Lastly,

join queries involve filtering the Cartesian product of two datasets based on a condition,

typically expressed as a Boolean expression. When this condition involves a spatial oper-

ation, it is referred to as a spatial join. Further elaboration on the concept of spatial join,

including a formal definition, will be provided in subsequent sections.

When considering a distance-based join, it refers to a join operation wherein the fil-

tering condition requires the calculation of a distance. This distance is a function that

assesses the separation between two objects within a metric space. The formal definition

is provided below:

Definition 1.2.1 (Distance function). given a set X, the distance d is a function

d : X ×X −→ [0; +∞[

In order to consider a function as a metric (i.e distance).For all x, y and z ∈ X the

following axioms must be satisfied:

Non negativity axiom: d(x; y) ≥ 0 (1.1)

Identity of indiscernible: d(x; y) = 0⇔ x = y (1.2)

symmetry: d(x; y) = d(y; x) (1.3)

triangle inequality: d(x; z) ≤ d(x; y) + d(y; z) (1.4)

16

1.2. SPATIAL DATA PROCESSING

Numerous distinct distance functions are utilized across various fields. Notable ex-

amples include the edit distance, applied in the realm of natural language processing

[XWL08, WXLZ09, ZHOS10, WFL10, JDW+13], and the geodesic distance, commonly

used in graph theory. However, among these measures, the Euclidean distance stands out

as the most widely recognized and frequently employed. This distance metric is defined

as the norm of the line segment connecting two points within Cartesian space. Formally,

it can be expressed as follows:

Definition 1.2.2 (Euclidean distance). in Cartesian space if p = (p1, p2, ..., pn) and q =

(q1, q2, ..., qn) are two points in Euclidean n-space, then the distance (d) from p to q is:

d(p, q) =
√√√√ n∑

i=1
(pi − qi)2

Most of the approaches found in the existing literature are designed with a focus on

the Euclidean distance in two or three-dimensional spaces. While these approaches could

potentially be applied using different distance functions and in higher dimensions, the

effects of these two parameters have not been thoroughly studied.

The second type of distance we will focus on throughout this work is the great-circle

distance [Adm22]. It is defined as the length of the shortest arc between two points on

the surface of a sphere. For any two points that are not opposite each other on a sphere,

there exists a unique great circle that passes through the two points. This circle divides

into two arcs, and the great-circle distance between the two points is determined by the

length of the shorter arc. The great-circle distance is also referred to as the orthodromic

distance or spherical distance. The formula for calculating the great-circle distance is as

follows:

Definition 1.2.3 (Great-circle distance). Let λ1, ϕ1 and λ2, ϕ2 be the geographical longi-

tude and latitude of two points 1 and 2, ∆λ, ∆ϕ be their absolute differences; then ∆σ,

the central angle between them, is given by the spherical law of cosines if one of the poles

is used as an auxiliary third point on the sphere:

∆σ = arccos
(

sin ϕ1 sin ϕ2 + cos ϕ1 cos ϕ2 cos(∆λ)
)
.

17

CHAPTER 1. PRELIMINARY

1.2.1 Spatial Queries

Spatial queries are database queries that involve spatial data, such as maps, spatial

databases, and geographic information systems. These queries allow users to search,

analyze, and manipulate spatial data to extract meaningful insights and patterns. Spatial

queries can be used to answer a wide range of questions, such as: What is the distance

between two points? What features are located within a given area? Spatial queries can

be categorized into three main types: region queries, nearness queries and join queries.

Nearness queries are a type of spatial query that focuses on identifying objects or

features that are in close proximity to a specified location. These queries find widespread

use in applications requiring geospatial analysis, including location-based services, en-

vironmental monitoring, and urban planning. For example, a nearness query can be

employed to discover all restaurants within a specific distance from a given point. This

type of query proves beneficial for both tourists and locals seeking dining options in a

particular area. Likewise, a nearest-neighbor query can be executed to ascertain the ob-

ject or feature nearest to a specified point, such as locating the closest gasoline station.

This query type serves the needs of drivers who require refueling while on the road.

An important characteristic of nearness queries is their ability to be executed without

requiring prior knowledge of the distance to the nearest object or feature. For instance, a

nearest-neighbor query for a gasoline station can be conducted even when the user lacks

information about the proximity of the nearest station. This inherent flexibility renders

nearness queries highly advantageous, especially in scenarios where the user’s familiarity

with the surrounding area is limited.

The second type of spatial queries is region queries. They are a type of spatial query

that focuses on identifying objects or features located within a specified spatial region.

These queries find common use in geospatial analysis applications, including urban plan-

ning, environmental management, and natural resource management. A specific type of

region query is the partial or complete containment query, which seeks objects located

within a defined region on a map or within specific geographic boundaries. For example,

a region query could be employed to identify all retail shops that are either partially or

entirely situated within the geographic boundaries of a given town.

Such queries can serve a variety of purposes. For instance, urban planners may utilize

region queries to pinpoint areas with a significant concentration of retail shops within a

18

1.2. SPATIAL DATA PROCESSING

specific town, aiding decisions regarding zoning and land use. Environmental managers

may employ region queries to locate areas containing protected habitats, thus informing

decisions concerning land conservation and wildlife management.

Furthermore, queries can also inquire about the union and intersection of regions. For

example, a query might seek regions characterized by both low yearly rainfall and high

population density, using details such as annual rainfall and population density.

The last category of queries involves distance-based joins. In our work, we focus on

some of the most extensively studied ones, namely the k nearest neighbor join (KNNJ),

the k closest pairs join (KCPJ) and the ϵ distance join (ϵDJ). It is worth noting that

KCPJ and ϵDJ share similarities, making it relatively straightforward to adapt algo-

rithms from one to the other. There are other more specialized distance-based joins, such

as the multi-way [VNB03] join and the iceberg join [LGWL17], but these are beyond the

scope of this thesis.

Consider two datasets, D and Q. An ϵ-distance join requests objects from D that

fall within a distance threshold of ϵ from objects in Q. The outcome is a set of pairs

of objects that meet the specified distance criterion. For instance, an application could

involve identifying all buildings that are within 10 km of a hospital. The formal definition

of ϵDJ is provided below:

Definition 1.2.4 (ϵ Distance Join (ϵDJ)). Let P = {p0, p1, ..., pn−1} and Q = {q0, q1, ..., qn−1}

be two set of points in Ed, and a range of distance defined by [ϵ1, ϵ2] such as that

ϵ1, ϵ2 ∈ IR+, and ϵ1 ≤ ϵ2.The ϵ Distance Join (ϵDJ) of P and Q (ϵDJ(P, Q, ϵ1, ϵ2) ⊆ P×Q)

is a set which contains all the possible pairs of points (pi, qj) that can be formed by choos-

ing one point pi ∈ P and one point qj ∈ Q such as: ϵDJ(P, Q, ϵ1, ϵ2) = {(pi, qj) ∈ P ×Q :

dist(pi, qj) ∈ [ϵ1, ϵ2]}.

The K closest pair join differs slightly in that, for two datasets, D and Q, the result

consists of the top k items from the list of pair combinations formed by D and Q, sorted

by distance in ascending order. An illustrative real-life scenario involves identifying the

nearest 10 hotels to a park. The formal definition is as follows:

Definition 1.2.5 (K Closest Pair Query, KCPQ)). Let

P = {p0, p1, ..., pn−1} and Q = {q0, q1, ..., qn−1} be two set of points in Ed, let K ∈ IN+,

the K Closest Pairs Query (KCPQ) of P and Q (KCPQ(P, Q, K) ⊆ P × Q) is set of

19

CHAPTER 1. PRELIMINARY

K different ordered pairs KCPQ(P, Q, K) = {(pZ1, qL1), (pZ2, qL2), ..., (pZ1k, qLk))} with

(pZi, qLi) ̸= (pZj, qLj), Zi ̸= Zj ∧ Li ̸= Lj such that:

for any (p, q) ∈ P × Q{(pZ1, qL1), (pZ2, qL2), ..., (pZ1k, qLk)} we have dist(pZ1, qL1) ≤

dist(pZ2, qL2) ≤ ... ≤ dist(pZ1k, qLk) ≤ dist(p, q).

The case of the K nearest neighbor join is markedly distinct. Involving two datasets,

D and Q, the KNNJ query aims to locate, for each object in Q, the k nearest objects in

D. For instance, one might seek the three closest taxis for each client. To formally define

the KNNJ , we first introduce the following definition of ”nearness”:

Definition 1.2.6 (k nearest neighbors, KNN)). Given an object r, a dataset S and an

integer k, the k nearest neighbors of r from S, denoted as KNN(r, S), is a set of k objects

from S that ∀o ∈ KNN(r, S),∀s ∈ S −KNN(r, S), |o, r| ≤ |s, r|.

Definition 1.2.7 (k nearest neighbors join, KNNJ)). Given two datasets R and S and

an integer k, kNNjoin of R and S (R ⋊⋉ S) is defined as:

R ⋊⋉kNN S = {(r, s)|∀r ∈ R, ∀s ∈ KNN(r, S)}

1.3 RDF graph formalisation

In the following sections of this study, we will introduce a system designed to handle spatial

and graph data in RDF format. Consequently, this section is dedicated to presenting the

fundamental concepts related to RDF. RDF serves as the cornerstone for semantic Web

applications that can effectively manage extensive knowledge graphs [Hit21].

Data in RDF is expressed through triples known as SPO triples, which comprise a

subject, property, and object. Subjects are uniquely identified using a Uniform Resource

Identifier (URI). The property signifies the relationship between the subject and the ob-

ject. The object in a triple can either serve as the subject of another triple or represent

a simple data value known as a literal. By adhering to this format, data can be repre-

sented as a graph, where nodes correspond to subjects or objects, and edges symbolize

the connecting properties. To aid comprehension in the subsequent sections, we provide

the following formal definitions relevant to RDF graphs.

Definition 1.3.1. (RDF graph) An RDF graph is a four-tuple G = ⟨V, LV , E, LE⟩, where

20

1.3. RDF GRAPH FORMALISATION

1. V Is a collection of vertices that correspond to all subjects and objects in RDF data.

The set V can be divided into Vl and Ve where Vl is the set of literal vertices and

Ve is the set of entity vertices.

2. LV is the set of vertex labels. The label of a vertex u ∈ Vl is its literal value, and

the label of a vertex u ∈ Ve is its corresponding URI.

3. E = −−−→u1, u2 is a collection of directed edges that connect the corresponding subject

and objects.

4. LE is a collection of edge labels. Given an edge e ∈ E, its edge label is its corre-

sponding property.

For querying RDF data, the SPARQL query language is utilized [PAG09]. SPARQL

formulates queries using a basic graph pattern (BGP) that involves variables. The query’s

outcome is a collection of variable mappings, wherein a subgraph within the data aligns

with the query’s graph pattern. Filters can be integrated into the query to define con-

ditions on the graph elements. The forthcoming section offers a formal definition of a

SPARQL query:

Definition 1.3.2. (Query graph) A query graph is a five-tuple Q = ⟨V Q, LQ
V , EQ, LQ

E, FL⟩,

where

1. V Q = V Q
e ∪ V Q

l ∪ V Q
p is a collection of vertices that correspond to all subjects and

objects in a SPARQL query, where V Q
p is a collection of parameter vertices, and V Q

e

and V Q
l are collections of entity vertices and literal vertices in the query graph Q

respectively.

2. LQ
V is a collection of vertex labels in Q. A vertex v ∈ V Q

p has no label, while that of

a vertex v ∈ V Q
l is its literal value and that of a vertex v ∈ V Q

e is its corresponding

URI.

3. EQ is a collection of edges that correspond to properties in a SPARQL query. LQ
E

are the edge labels in EQ.

4. FL are constraint filters, such as a wildcard constraint or a spatial constraint.

21

CHAPTER 1. PRELIMINARY

When spatial data is stored in RDF format, the spatial information is commonly

represented as literals. Consequently, to express spatial operations, spatial functions are

employed within the filter section of a SPARQL query. Numerous extensions to the

SPARQL language have been developed to support spatial filters. In this context, we rely

on the GeoSPARQL standard [BK12] established by the Open Geospatial Consortium

(OGC). GeoSPARQL extends both RDF and SPARQL to facilitate the representation

and querying of spatial information. For a comparable range of functionalities, stSPARQL

[KK10] can also be considered.

1.4 Architectural overview of RDF QDAG

RDF QDAG [KMG+21] is structured into multiple layers, with each layer comprising

several components, as illustrated in Figure 1.2. This section provides an overview of the

system’s architecture and delves into the intricacies of the query evaluation process.

1.4.1 Data storage

The storage layer within RDF QDAG plays a pivotal role in the efficient storage and

retrieval of diverse data types, with a particular focus on Graph and Spatial data. The

data within RDF QDAG encompasses various native types, such as Strings, Integers,

Doubles, and more. To ensure optimal querying across this spectrum of data, RDF -

QDAG relies predominantly on three access methods: B+tree, R-tree, and a Dictionary.

The B+tree serves as the central storage mechanism for graph data within RDF -

QDAG, enabling efficient indexing and retrieval of data based on key-value pairs. Through

the utilization of B+trees, the storage layer ensures the organization and access of graph

data in an ordered and optimized fashion.

To uphold the semantics of the graph, which hinges on the relationships among the

graph elements (predicates in the context of RDF), the graph is divided into graph frag-

ments. This partitioning accounts for the connectivity between these fragments. An

optimal graph partitioning strategy seeks to maximize inter-partition connectivity while

minimizing intra-partition connectivity. This strategic partitioning not only maintains

the integrity of the graph but also amplifies the performance and efficiency of queries

conducted on the graph data.

22

1.4. ARCHITECTURAL OVERVIEW OF RDF QDAG

Storage
layer

Buffer
Layer

Engine
Layer

Scheduling
layer

System
statistics

Data
Extractor

SQ
Matcher

Dictionary
decoder

Spatial
Engine

Optimizer

Volcano Handler

B+ Trees R Tree

Access methods

Dictionary

Figure 1.2: Architectural overview of RDF QDAG

Collectively, the synergy between B+trees as the primary storage structure and a

proficient graph partitioning strategy empowers RDF QDAG to adeptly store and access

graph data, while upholding its semantics and facilitating high-performance querying.

Every graph fragment comprises a collection of Data Stars. Data Stars expand upon

the concept of a tuple in the relational model. Formally, we define Data Stars as follows:

Definition 1.4.1. (Data Star) Given a node x (named data star head) in a RDF graph G, a

Data Star DS(x) is the set of either triples sharing the same subject x, or the same object

x. We name Forward Data Star and Backward Data Star the sets
−→
DS(x) = {(x, p, o)|∃p,o :

(x, p, o) ∈ G} and
←−
DS(x) = {(s, p, x)|∃s,p : (s, p, x) ∈ G} respectively.

When we contrast the concept of a Data Star with that of a tuple, the primary key of

a tuple aligns with the head x of a Data Star DS(x). RDF QDAG organizes comparable

Data Stars into sets referred to as Graph Fragments, utilizing characteristic sets [NM11].

Each subject s in the graph G possesses a characteristic set defined as −→cs(s) =

p|∃o : (s, p, o) ∈ G. Similarly, for objects, ←−cs(o) = p|∃s : (s, p, o) ∈ G. Forward graph

fragments, denoted as
−→
Gf , group forward Data Stars with the same characteristic set.

Backward graph fragments, represented as
←−
Gf , are formed in a similar manner. The

formal definition of this concept is provided in Definition 1.4.2.

Definition 1.4.2. (Graph Fragment) A Graph Fragment is a set of Data Stars. It is named

a Forward Graph Fragment
−→
Gf if it groups Forward Data Stars such that:

−→
Gf = {−→DS(x)|∀i ̸=j

−→cs(xi) = −→cs(xj)}.

23

CHAPTER 1. PRELIMINARY

Likewise, a Backward Graph Fragment
←−
Gf is defined as

←−
Gf = {←−DS(x)|∀i ̸=j

←−cs(xi) =←−cs(xj)}.

After partitioning the graph into graph fragments, each fragment is loaded into an

index. In the context of RDF QDAG, a B+tree is employed as the index. The efficacy of

this indexing approach for graph data is extensively explored [KMG+21]. Additionally,

compression techniques are employed to optimize storage space utilization and reduce the

number of pages loaded into buffers during query evaluation [NW08].

As part of the effort to optimize space usage, Subjects and Objects within the graph,

if of the type String or URI, are substituted with an ID. This step is essential to manage

the potential substantial size of the fragments, particularly when subject/object values

recur frequently within the fragments. However, this approach mandates the creation

of a dictionary to store < value, ID > pairs. Furthermore, an additional encoding and

decoding process becomes necessary for evaluating each query.

The third and final access method is a spatial access method, specifically the R-tree.

We introduced this extension to RDF QDAG within the context of this work to facilitate

support for spatial queries. Further details regarding spatial indexing are provided in

Section 4.2.

1.4.2 Scheduling layer

The main component of the scheduling layer is the optimizer. The optimizer has the role

of selecting the best execution plan for a given query. This process is divided into two

steps: (i) plan enumeration and (ii) cost estimation. The plan with the lowest estimated

cost is the one chosen by the optimizer for evaluation.

The nature of the plan is contingent upon the system design. In conventional systems,

a plan can be viewed as a sequence of join operations on triple patterns. However, in the

context of RDF QDAG, the concept of a data star is introduced as an analog of a tuple

in the relational model. Similarly, the notion of a star query is proposed, wherein triple

patterns sharing the same Subject or Object are grouped as either a forward or backward

data star.

Definition 1.4.3. (Query Star) Let Q be the SPARQL query graph. A Forward Query

24

1.4. ARCHITECTURAL OVERVIEW OF RDF QDAG

Star
−→
QS(x) is the set of triple patterns such that

−→
QS(x) = {(x, p, o)|∃p,o : (x, p, o) ∈ Q},

x is named the head of the Query Star. Likewise, a Backward Query Star
←−
QS(x) is

←−
QS(x) = {(s, p, x)|∃s,p : (s, p, x) ∈ Q}. We use

−→
QS,
←−
QS to denote the set of forward and

backward query stars and qs to denote indistinctly a forward and backward query star.

An execution plan is an ordering function applied to a set of Query Stars and Filter

Units. This function determines the sequence in which the mappings for each Query Star

will be identified and the order in which the filter units will be evaluated.

Definition 1.4.4. (Execution Plan) . We denote by P = [QS1, QS2, Fu1(p1, p2), ..., QSn]

the plan formed by executing QS1, then QS2, then evaluating the filter unit Fu1(p1, p2)

which requires the mappings of p1 and p2 parameters.

1.4.3 Engine layer

The engine layer is assigned the responsibility of assessing the query, with a specific

emphasis on executing the most advantageous plan as furnished by the optimizer.

The evaluation of a Query Star involves identifying matches between the variables of

the Query Star and the nodes within the data graph. For each triple within the star, we

aim to identify the set of mappings that fulfill its conditions. Subsequently, we combine

the mappings associated with the individual triples to construct the matches for the Query

Star.

Definition 1.4.5. (Star Query Evaluation) The evaluation of a Query Star QS(x) against

the graph G is formally defined as follows:

JQS(x)KG := {Jtp1KG ⋊⋉ Jtp2KG ⋊⋉ ... ⋊⋉ JtpnKG|n = card(QS(x))}

where:

JtpiKG ⋊⋉ JtpjKG = {µl ∪ µr|µl ∈ JtpiKG and µr ∈ JtpjKG, µl ∼ µr and µl(tpi) ̸= µr(tpj)}

We denote that a mapping µ is a function V Q
p −→V G. Given two mappings µ1 and µ2,

µ1 ∼ µ2 ⇒ µ1(?x) = µ2(?x).

Based on the previous definitions, we can determine the evaluation of a query using

the set of query stars, as follows:

25

CHAPTER 1. PRELIMINARY

Definition 1.4.6. (Query Evaluation) Given a set of stars, {qs1, qs2,...,qsn}, that cover the

query, Triplesq(qs1)∪ Triplesq(qs2)∪ ...∪ Triplesq(qsn) = Triplets(q), the evaluation of

the BGP part of the query q using the set of query stars is defined as follows:

JqKG = {µ : ∀µ ∈ Jqs1KG ⋊⋉ Jqs2KG ⋊⋉ ... ⋊⋉ JqsnKG }

We can also set the query BGP evaluation based on fragments, as follows:

JqgKG = {µ : ∀µ ∈ ⋃
Gf |=qs1Jqs1KGf ⋊⋉ ⋃

Gf |=qs2Jqs2KGf ⋊⋉ ... ⋊⋉ ⋃
Gf |=qsn

JqsnKGf}

Where Gf |= qs iff cs(qs) ⊂ cs(Gf)

The full evaluation of the query is the evaluation of the BGP part and the filters FL

and it is defined as follows

JqgKG = {µ : ∀µ ∈ Jqs1KG ⋊⋉ Jqs2KG ⋊⋉ ... ⋊⋉ JqsnKG|µ |= FL}

Listing 1.1: Example of simple RDF query (Q1)

SELECT ?p

WHERE {

?p <hasArea> ?a .

?p <isLocatedIn> ?l .

?l <hasGeometry> ?g .

};

An execution plan P is called an Acceptable Execution Plan if it fulfills the following

conditions:

1. Coverage: All nodes and predicates of the given query are covered by the set of

Query Stars of the plan. In the case of Query Q1 the execution plan [←−?l ,
−→?p] is

not an acceptable plan since it does not cover the edge < hasGeometry > and the

variable ?g.

2. Instantiated head: This condition guarantees that for a plan P = [QS1, ... , QSn],

∀i>1QS, the head of the QSi must be already instantiated. We use this condition

to avoid to a Cartesian product when mappings are exchanged between two star

queries. For example, in the case of Query Q1 the execution plan [←−?l ,
←−?g,
−→?p] is not

an acceptable plan since the mapping of ?g is not yet available for the second
←−?g to

be evaluated. In this case the instantiated head condition is not satisfied.

The formal definition of an Acceptable Plan is given in Proposition 1.4.7.

26

1.5. CONCLUSION

Definition 1.4.7. (Acceptable Plan) AP Let us consider Q as a given query,
−→
QS and

←−
QS

as the sets of forward and backward graph star queries respectively, T has the set of triple

patterns and the following functions:

• Tr: Q ∪
−→
QS ∪

←−
QS → T It returns the set triple patterns of a query star or a query.

• Nd:
−→
QS ∪

←−
QS → V It returns the nodes of a query star (subject or object).

• Head:
−→
QS ∪

←−
QS → V a function that returns the head of a query star.

An acceptable plan AP is a tuple < X, f > where X ⊂
−→
QS ∪

←−
QS and f : X → {1...|X|}

is the query stars order function such that:

1.
⋃

QS∈X Tr(QS) = Tr(Q)

2. ∀i ∈ {2...|X|}, Head(f−1(i)) ∈ ⋃i−1
j=1 Nd(f−1(j))

1.5 Conclusion

In conclusion, this chapter has laid the groundwork for understanding the subsequent

chapter by introducing fundamental concepts related to spatial data representation and

processing. The discussion also encompassed the representation of graph data within

the RDF framework. Moreover, the main architecture of RDF QDAG, a triple store

specifically designed for storing RDF data and executing SPARQL queries, was presented.

It is important to emphasize that comprehending the architecture of RDF QDAG is

essential for grasping the subsequent exploration of the integration of spatial features, as

discussed in Chapter 4. The insights gained from this chapter serve as a solid foundation

for delving into the spatial aspects of RDF QDAG in the following chapters.

27

CHAPTER 1. PRELIMINARY

28

Chapter 2

State of the art

Contents

2.1 Introduction . 30

2.2 Taxonomy of spatial processing techniques 31

2.2.1 Storage medium . 31

2.2.2 Indexing strategy . 32

2.2.3 Parallel strategy . 33

2.3 Centrelised spatial data processing . 33

2.3.1 Nested Loop . 33

2.3.2 Plane Sweep . 35

2.3.3 Index Nested Loop . 37

2.3.4 TOUCH . 40

2.3.5 Partition based spatial-merge join (PBSM) 42

2.3.6 Dual index traversal (DIT) . 43

2.3.7 Discussion . 44

2.4 Spatial data processing at scale . 45

2.4.1 Distance-based join in Hadoop 45

2.4.2 Spatial processing in Spark . 53

2.4.3 Discussion . 57

2.5 RDF data processing . 57

2.6 Spatial-RDF data processing . 59

2.7 Conclusion . 60

29

CHAPTER 2. STATE OF THE ART

This chapter presents a comprehensive exploration of the contemporary landscape in

spatial data processing, RDF data processing, and the intersection of spatial-RDF data

processing. It commences by introducing a taxonomy of spatial processing techniques,

encompassing considerations of storage medium, indexing strategy, and parallelization

approach. Subsequently, the chapter delves into centralized spatial data processing tech-

niques, offering insights into methods such as nested loops, Plane Sweep, and partition-

based spatial-merge join. It then delves into the realm of scalable spatial data process-

ing, focusing on distance-based joins within Hadoop and spatial processing using Spark.

The chapter also addresses RDF data processing, encompassing RDF triple stores and

SPARQL query processing. Finally, it explores the emergent field of spatial-RDF data

processing, shedding light on the integration of spatial and RDF data. By laying this

multifaceted groundwork, the chapter establishes a solid platform for the ensuing chap-

ters while providing valuable insights into the advancements and challenges across these

domains.

2.1 Introduction

This chapter provides an in-depth exploration of the state of the art in spatial data pro-

cessing, RDF data processing, and spatial-RDF data processing. It begins by presenting

a taxonomy of spatial processing techniques, considering factors such as storage medium,

indexing strategy, and parallel strategy. This taxonomy serves as a foundation for under-

standing the different approaches and algorithms discussed throughout the chapter.

The chapter then delves into the centralized spatial data processing techniques. It ex-

plores various methods, including nested loop[ME92], Plane Sweep[CB17], TOUCH[NTH+13],

partition-based spatial-merge join (PBSM)[PD96], and dual index traversal (DIT)[BKS93].

Each technique is analyzed in terms of its strengths, limitations, and applicability to dif-

ferent scenarios.

Next, the chapter focuses on spatial data processing at scale, considering the chal-

lenges posed by large-scale datasets. It discusses distance-based join in Hadoop, which

enables efficient spatial processing in a distributed computing environment. Addition-

ally, it explores spatial processing in Spark, a popular framework for big data processing,

highlighting its capabilities and performance characteristics.

30

2.2. TAXONOMY OF SPATIAL PROCESSING TECHNIQUES

Subsequently, the chapter shifts its attention to RDF data processing. It examines the

unique characteristics of RDF data and presents various approaches for storage, querying,

and analysis. The discussion encompasses RDF triple stores, SPARQL query processing,

and RDF data integration techniques.

Finally, the chapter addresses the emerging field of spatial-RDF data processing. It

explores the integration of spatial and RDF data, highlighting the potential benefits and

challenges. The chapter concludes with a summary of the discussed techniques, their

implications, and potential future directions for research and development in the field.

2.2 Taxonomy of spatial processing techniques

Before introducing existing techniques from the literature, we initiate by describing our

proposed taxonomy and elucidating the rationale behind our classification criteria. Indeed,

numerous approaches exist for classifying distance-based join techniques. Our chosen cri-

teria for this taxonomy include: firstly, the consideration of the storage medium; secondly,

the reliance on the indexing strategy; and lastly, the classification based on the parallel

strategy.

2.2.1 Storage medium

In terms of the storage medium utilized, we can categorize existing work into two dis-

tinct groups: those that employ internal memory and those that utilize external memory

(i.e.,disk).

Memory-based approaches have gained significant popularity in recent years due to the

declining cost of memory acquisition and the continuous increase in main memory size.

This approach offers numerous advantages. Firstly, it leads to performance improvements

by eliminating disk overhead (i.e., no seek time is required). Moreover, managing data

in internal memory is facilitated by the random access capabilities of this medium. it

is worth noting that many in-disk approaches ultimately involve in-memory execution at

some stage. Consequently, one potential implication is that in-memory techniques can be

extended to leverage available disk space.

Despite the advantages presented by memory-based approaches, they are not without

their challenges. For instance, the dataset size is constrained by the available memory

31

CHAPTER 2. STATE OF THE ART

size. Although spilling to secondary disk is feasible, it contradicts the core objective of the

approach. Another notable issue is the lack of fault tolerance for in-memory data, owing

to the volatile nature of this storage medium. To address this concern, various in-memory

replication techniques spanning multiple workers have been proposed.

In contrast, a typical in-disk workflow involves several steps. The first step involves

splitting the data into partitions, a process known as data partitioning. These generated

partitions are then loaded into memory and processed independently. The process of

loading and processing all partitions of the dataset is referred to as a run. Depending on

the process, multiple runs may be performed on the data to answer the query. Between

two runs, intermediary results can be generated and stored on disk. The final step involves

aggregating these intermediary results to obtain the final outcome.

The primary advantage of disk-based approaches lies in their capability to process

a virtually unlimited amount of data, owing to the availability of secondary storage.

However, such propositions are often constrained by I/O costs. Indeed, a well-optimized

algorithm strives to avoid loading unnecessary data into memory, which may require

intricate access methods and buffer management strategies. Additionally, the unique

challenge of spatial data being situated in a continuous multi-dimensional space further

complicates the partitioning process necessary for in-disk approaches. Often, the need to

consider adjacent partitions arises when query points are located close to the edge of a

given partition.

2.2.2 Indexing strategy

The presence of indices is a prerequisite for several approaches, albeit the process of

building them can be resource-intensive. A conventional query optimizer may prioritize

certain plans over others based on the presence of indices. It is in this context that we

have chosen to categorize existing techniques based on the number of indices needed for

processing the join. This classification can be divided into three cases: neither of the two

sets is indexed, both sets are indexed, or only one of the sets is indexed.

Various indexing techniques have been proposed for spatial data. Some employ one-

dimensional embedding to leverage existing mono-dimensional structures like B-trees.

Others are purpose-built for spatial data. The simplest structure utilizes grid files [LN97],

where the space is partitioned into adjacent rectangular cells. More sophisticated tree-

32

2.3. CENTRELISED SPATIAL DATA PROCESSING

based structures have also been introduced. Among the most well-known are Kd-trees[Ben75]

and quad-trees [FB74]. For preserving the concept of nearness more effectively, other tree-

based structures have been proposed. The most prevalent ones in the literature include

R-trees, which rely on Minimum Bounding Boxes (MBRs), and M-trees, which rely on

minimum bounding hyperspheres [BKS93].

2.2.3 Parallel strategy

In the era of large-scale data processing, it becomes imperative to facilitate substantial

parallel execution for a given approach. From this perspective, we differentiate between

two cases: parallel algorithms and local algorithms. In the context of local algorithms,

we refer to sequential single-threaded algorithms.

For parallel evaluation of the join operator, data partitioning across multiple workers is

essential. As mentioned earlier, partitioning spatial data while preserving nearness poses

a challenge. Any partitioning undertaken may incur an additional cost associated with

inter-worker communication during the join process. Consequently, a parallel approach

must strike a balance between performance and scalability.

2.3 Centrelised spatial data processing

In this section, we outline the primary contributions concerning the processing of distance-

based join. We commence by introducing the naive algorithm, which serves as a baseline

for processing such joins. Subsequently, we delve into various other approaches, providing

an analysis of their strengths and trade-offs. Finally, we conclude with a summarizing

table categorizing the presented techniques. Additionally, a comprehensive discussion of

these approaches is provided. The surveyed work in this section are listed in Table 2.1.

2.3.1 Nested Loop

The nested loop algorithm (NL) [ME92] is often regarded as the naive join algorithm. It

exhibits the worst computational complexity, with an order of O(n2).

The NL algorithm compares each object in the first dataset with every object from

the second dataset using the joining condition. In other words, it relies on filtering the

Cartesian product of the two datasets.

33

CHAPTER 2. STATE OF THE ART

Table 2.1: Summery of main contributions in spatial processing techniques

Author Approach
name

Compared with Evaluation
metrics

Evaluation
dataset

Klaus Hinrichs
et al

PS Theoretical
evaluation

Jon Louis
Bentley

kd-Tree Theoretical
evaluation

John T. Robin-
son

Kdb-Tree Storage utili-
sation, pages
accessed, query
efficiency.

Synthetic data

R. A. Finkel et
al.

Quad-Trees Pages accessed Synthetic data

George
Roumelis
et al (2014)

RRPS Plane Sweep Response time,
distance com-
putations,
X-axis distance
computations

6 Real world
datasets

George
Roumelis
et al (2016)

FCCPS
SCCPS
FRCPS
SRCPS

Compare
the proposed
approaches
mutually

Response time,
distance com-
putations,
X-axis distance
computations,
The number of
disk accesses

6 Real world
dataset

George
Roumelis
et al (2011)

Xbr-tree (using
BF and DF al-
gorithems)

Compare BF
and DF mutu-
ally

Disk accesses
and execution
time

6 Real world
dataset

Kihong Kim et
al

CR-tree R-tree Operations
execution time,
Nbr of node ac-
cesses, False hit
ratio, Nbr of
caches misses

Synthetic data

34

2.3. CENTRELISED SPATIAL DATA PROCESSING

Table 2.2: Summery of main contributions in spatial processing techniques (part 2)

Author Approach
name

Compared with Evaluation
metrics

Evaluation
dataset

Sadegh Nobari
et al

TOUCH NL, Nes R-tree,
PS, Dual R-
tree PBSM, S3

Nbr of com-
parisons, Ex-
ecution time,
Memory usage,
Nbr of object
filtered

Sythetic data,
Private neuro
simulation data

Jignesh M Pa-
tel et al

PBSM Nes R-tree,
Dual R-tree

Execution
time, Replica-
tion overhead

TIGER data,
Hydrogra-phy,
Rail

The nested loop algorithm was initially proposed as an in-memory solution. Despite

its simplicity, adapting it for on-disk execution is straightforward since it requires the

presence of only two objects in memory at any given time. The on-disk version is referred

to as the ”external nested loop join” (ENL). This approach divides both datasets into

smaller partitions, allowing two subsets to fit into memory simultaneously. The ENL

then applies a classic NL operation on each possible combination of subset pairs.

2.3.2 Plane Sweep

The Plane Sweep (PS) algorithm was originally proposed in [HNS88] as an approach that

does not rely on any index yet offers improved performance compared to NL by reducing

the search space. This method was initially used in computational geometry to perform

interval joins and find line intersections [CB17]. However, it can also be adapted for

spatial data processing. The steps to execute the Plane Sweep algorithm are as follows:

• The first step is to sort both datasets along one axis (the same axis for both datasets),

let say the X axis for the sake of simplicity.

• The second step consists on passing a sweeping plane along this axis (let say from

left to right). The idea of the sweeping plane is to compare the most left point from

both datasets(called the reference point) to the left points of the second dataset

by calculating ∆x with δx being the distance on the x axis. If ∆x < ϵ then the

true distance is calculated. If ∆x > ϵ, there is no more object to be joined with

the current object on the second dataset since it’s sorted by X. In this case the

35

CHAPTER 2. STATE OF THE ART

algorithm pass to the next most left object from any of the two datasets.

An example of Plane Sweep execution is shown in figure 2.1

Various improvements can be applied to enhance the classical Plane Sweep by in-

troducing additional filtering steps between the ∆x evaluation and the actual distance

calculation. For instance, the Sliding Window Plane Sweep (SWPS) [RVCM14] incorpo-

rates a ∆y evaluation. On the other hand, the Sliding Semi-circle Plane Sweep (SSPS)

[RVCM14] introduces further comparisons involving the squared distance, which is the

computationally intensive part of the Euclidean distance calculation. This evaluation can

be visualized geometrically as a sliding semicircle centered on the query point. Figure 2.1

depicts the geometric interpretation of the window and semicircle evaluations.

The Reverse Run Plane Sweep (RRPS) is an advancement over the PS that achieves

even more effective filtering by altering the evaluation order [RVCM14]. It introduces

the concept of ”runs” defined as sequences of points ordered by x from one dataset that

remain uninterrupted by any object from the other dataset, as illustrated in Figure 2.1.

By comparing each pair of consecutive runs starting from the closest pair and extending

outward, the algorithm can filter objects from both sides, resulting in a further reduction

of the search space.

x

y

δ

δ

comparison direction

A run of 2 objects

{

Figure 2.1: Representation of the Revers Run Plane Sweep.

The PS and its variants were proposed originally as an in-memory approaches. How-

ever further work adapt them for secondary storage by combining them with partitioning

mechanisms. In [RCVM16] the authors propose and evaluate four variants of disk-based

Plane Sweep witch are FCCPS, FRRPS, SCCPS and SRRPS. The four variants are based

on different plane sweep techniques combined with partitioning techniques. The results

of the experiments show that FRRPS outperforms the others in most of the cases.

36

2.3. CENTRELISED SPATIAL DATA PROCESSING

2.3.3 Index Nested Loop

Index Nested Loop (INL) is a variation of the NL algorithm that incorporates an index

lookup, resulting in a reduced search space. In the INL approach, one of the datasets

(typically the outer dataset) is traversed, and potential join candidates from the second

dataset are selected using index lookups. This algorithm can be tailored to support various

types of indices. The effectiveness of the algorithm hinges on the pruning capabilities of

the chosen index.

Spatial indices can be categorized into two main groups: space-based partitioning

and object-based grouping. Space-based partitioning indices involve dividing the space

into distinct non-overlapping regions. This approach can result in data duplication when

objects intersect multiple regions, leading to their insertion into multiple partitions. Con-

versely, object-based partitioning indices permit partition intersection while preventing

object fragmentation. If an object falls within multiple partitions, it is inserted into just

one of them. Table 2.3 provides a classification of various existing indices, which will be

elaborated further in the subsequent sections.

Table 2.3: Types of spatial indices.

Space partitioning based indices Object partitioning based indices
Grid files R-tree
Kd-tree CR-tree
Q-tree
Xbr-tree
R*-tree

Grid files

Grid files represent one of the simplest multidimensional data indices that can outperform

single-dimensional embedding. This technique involves partitioning the space into stripes

along each dimension.

The intersection of n stripes from n distinct dimensions is referred to as a cell. Each

cell is associated with a data bucket, typically containing data bounded by its left and

lower boundaries, while excluding the upper and right boundaries. The width of a stripe

can vary, and the number of stripes can differ for each dimension.

Grid files can exhibit good performance in specific applications [ŠŠC+09], but they

also suffer from significant drawbacks. For instance, as the dimensionality of the data

37

CHAPTER 2. STATE OF THE ART

increases, performance tends to deteriorate, particularly for nearness queries where pro-

cessing surrounding cells becomes necessary. In n dimensions, the number of surrounding

cells is (3n) − 1, and checking all of these cells can substantially degrade performance.

Another limitation pertains to the cost of balancing. Splitting or resizing a single cell

requires evaluating all cells in the same stripe and, in some cases, adjacent stripes as well.

This limitation makes grid files ill-suited for highly skewed data.

Kd-trees

Kd-trees are a tree-based structure that stores data entries in the leaves [Ben75]. They rely

on the fact that each internal node splits the objects into two sets along one dimension.

This operation is repeated by cycling through dimensions until a fixed point condition is

reached. The fixed point condition is related, for example, to the limit on the number of

objects in each cell or, in some other cases, to the cell coverage (such as covered area, for

example).

Figure 2.2 provides a structural representation of a kd-tree and its associated geomet-

ric interpretation. In a similar context, the kdb-tree structure was introduced to support

secondary storage. This variant of the kd-tree permits a larger fan-out[Rob81]. Construct-

ing a kd-tree is efficient, with a time complexity of O(n log n) [WH06]. Kd-trees excel in

efficient nearness search, offering a time complexity of O(log n). However, balancing the

tree proves challenging. Traditional tree rotation techniques are ineffective due to the

changing split direction in each level. To address this, Adaptive kd-trees[Rob81] tackle

the balancing issue during construction by selecting the optimal dimension for splitting

at each level. While this approach yields well-balanced trees for static data, it struggles

to maintain this balance with frequently updated dynamic data.

x1

y2y1

x2

x3

x4 x1

y1 y2

x2 x3 x4

Figure 2.2: Representation of a kd-Tree.

38

2.3. CENTRELISED SPATIAL DATA PROCESSING

Quad-trees

In the context of a two-dimensional plane, Quad-trees enable each internal node to par-

tition its designated space into four quadrants [FB74]. This concept can be extended to

higher dimensions. For instance, the oct-tree was introduced to handle three-dimensional

space, while the hyper-quad-tree generalizes the idea to more than three dimensions.

Quad-trees operate by recursively dividing their space until each bucket (leaf node)

contains fewer objects than a specified maximum capacity. During update operations,

when a bucket surpasses this capacity threshold, a split operation is triggered. Quad-trees

demonstrate strong performance in nearness queries and KNN join scenarios [TYA+16].

However, they do face challenges with regard to balancing since they rigidly divide the

space into four quadrants. Furthermore, they tend to store numerous empty nodes, and at

times, they exhibit long mono-child chains that could be shortened. Notably, Quad-trees

possess a low fan-out (equal to 4 in 2D space), making them less suitable for secondary

storage.

Many contributions have been made in the literature to overcome this limitation and

adapt this structure for secondary storage. One such effort is the External Balanced

Regular (x-BR) Trees [RVC11]. XBR-trees similarly divide space using the same process

adopted by quad trees, but each internal node has a dynamic number of children (a

multi-way tree). To achieve this, each node stores pointers for each child and an address

to describe the zone covered by it. The size of the address is also dynamic and limited

only by the page size of the given node.

Further improvements of XBR-trees were proposed within the framework of XBR+trees

[RVL+15], aimed at mitigating the dynamic size of children addresses in an internal node.

Another effort, known as PBL+, introduced an efficient algorithm for bulk loading an

xbr+ tree [RVCM18].

R-trees

R-trees are another tree-based access method that relies on objects grouping through

a bottom-up approach, as opposed to the previously mentioned structures that use a

top-down approach based on the subdivision of space [Gut84].

In the case of R-trees, objects grouping is based on constructing Minimum Bounding

Rectangles (MBRs), also known as minimum bounding boxes, from the data objects.

39

CHAPTER 2. STATE OF THE ART

Each MBR is designed to satisfy either a maximum space criterion or a maximum filling

criterion in terms of the number of objects.

To achieve a tree-like structure, we recursively group MBRs inside each other to con-

struct higher levels, continuing this process until we obtain a single root for the tree.

MBRs can overlap with each other, but a single object is inserted into only one of

them. Consequently, R-trees have a lighter memory footprint compared to the previ-

ously mentioned indices. However, to answer a query, multiple MBRs need to be checked.

The intersection of MBRs significantly impacts the performance of operations on R-trees.

Finding the optimal clustering of MBRs is a NP-Hard problem [Gut84]. Different imple-

mentations address this issue in the splitting procedure. In addition to the exhaustive

algorithm, the original R-tree paper proposes two splitting strategies: Quadratic split and

Linear split [Gut84].

To execute the quadratic split, the algorithm selects two objects to be the first inserted

in two separate nodes. These chosen objects are the two that would result in the maximum

wasted area if inserted in the same node. For each of the remaining objects, the algorithm

identifies the object that leads to the minimum increase in area after insertion. This

process is repeated until all objects are inserted.

The linear split is much simpler; it involves selecting the two objects that are most

widely separated to be placed in separate nodes. Then, each of the remaining objects

is inserted into the appropriate node based on the increase in area, without taking into

consideration the other objects that need to be inserted.

Further work have improved upon the original R-trees. For instance, in [KCK01],

the authors propose the CR-tree, which is a cache-conscious version of the R-tree. The

rationale behind this approach involves compressing the MBR keys of children to achieve

a higher fan-out within a fixed page size.

Other variants, such as the R*-trees, adopt a space partitioning approach by preventing

partitions from intersecting at a given level. Objects that intersect multiple partitions are

assigned to each of them [BKSS90].

2.3.4 TOUCH

Touch is a novel spatial join algorithm that relies on a hierarchical tree-based index,

similar to an R-tree. However, it distinguishes itself from a regular R-tree by including

40

2.3. CENTRELISED SPATIAL DATA PROCESSING

Tree building (dataset A)Objects assignment (dataset B)

Figure 2.3: Tree building and objects assignment in TOUCH.

data entries in both intermediary nodes and leaves. Additionally, the index incorporates

entries from both datasets involved in the join. The join operation performed by TOUCH

is executed in three steps [NTH+13].

1. Tree building. An R-tree is constructed based on one of the datasets. The original

implementation uses STR for efficient bulk loading. At this step, all the data entries

reside in the leaf nodes.

2. Objects assigning. In this step, we assign objects from the other dataset to the

existing tree. Notice that this is not an update operation since the structure of the

index does not change. The objects are inserted into the intermediary nodes while

adhering to the following rules:

• If the object does not intersect any MBR in a given level, it gets filtered.

• If the object intersects with one and only one MBR in a given level, we distin-

guish between two cases. In the case where this MBR has only leaf children,

we insert the object to the node with the associated MBR. In the other case

(i.e., MBR with intermediate children), the algorithm checks its overlap with

children MBRs and decides recursively where insert the object.

41

CHAPTER 2. STATE OF THE ART

• If the object intersects multiple MBR in a given level, the object gets inserted

in the lowest common parent node.

Both Tree building and assignment steps are represented in figure 2.3.

3. Join processing. In this step, each object in the intermediate node is compared with

its children using Plane Sweep as a local join algorithm. A proof of the correctness

and completeness of the approach is provided in [NTH+13].

Touch is memory-efficient as it utilizes a single index structure for both datasets.

Furthermore, it mitigates data-object duplication by employing object-based partitioning

rather than space-based partitioning. Additionally, Touch prevents query object duplica-

tion through its hierarchical structure, which involves assigning objects to intermediary

nodes.

The efficiency of TOUCH is primarily influenced by the fan-out parameter, which

should be low (preferably 2). A low fan-out parameter leads to a high tree structure.

As each intermediary node is connected to both its direct and indirect children, a high

tree can effectively reduce the search space. While a low fan-out parameter is suitable for

in-memory processing, it becomes less ideal for on-disk processing due to the increased

loading of numerous disk pages.

Another limitation of TOUCH is its sensitivity to the order of joins, as demonstrated

in [NQJ17]. The study shows that TOUCH performs better when the index is constructed

using the larger dataset to maximize the filtering effect. In cases where data statistics are

unavailable, it is advisable to use the smaller dataset to build the index.

2.3.5 Partition based spatial-merge join (PBSM)

This approach was introduced by Patel et al. in [PD96] as a comprehensive solution that

covers both the filtering and refinement steps. In the initial filtering step, only Minimum

Bounding Rectangles (MBRs) are taken into consideration. The filtering step is preceded

by a partitioning process, which operates as follows:

• Since the algorithm is implemented within the context of a Spatial Database Man-

agement System (SDBMS), it estimates the universe of the input from a catalog.

42

2.3. CENTRELISED SPATIAL DATA PROCESSING

• Given the two input sets R and S, along with their cardinalities ||R|| and ||S||

respectively, the number of partitions (P) is calculated using the following function:

P = ⌈(||R||+ ||S||) · E
M

⌉

Here, E represents the size of an entry (object ID + MBR), and M is the size of

the main memory.

• To perform the partitioning, the universe is initially divided into T tiles, where

T ≫ P . Subsequently, each tile is assigned to a partition using either a round-robin

approach or a hash function based on the tile number.

• Every object is assigned to the partitions of the tiles it intersects with. If an ob-

ject intersects with tiles from different partitions, it will be duplicated across those

partitions.

In the filtering step, a Plane Sweep algorithm is executed on each partition. In the

subsequent refinement step, the complete shapes of the objects to be evaluated are re-

trieved from disk. To mitigate random seeks, the objects are sorted before being fetched.

Drawing inspiration from [Val87], a duplicate elimination process is integrated into the

sorting algorithm.

This approach is designed as an external algorithm, and its partitioning nature makes

it suitable for implementation in a parallel environment. However, applying PBSM to real-

world data presents several challenges. Finding the optimal tile size is crucial: a large

tile size might result in imbalanced partitions for skewed datasets, while an excessively

small tile size could introduce more duplication overhead, thereby degrading algorithm

performance.

2.3.6 Dual index traversal (DIT)

Dual index traversal was originally introduced as a dual R*-tree traversal [BKS93], al-

though it can be adapted to support various tree indices. For the sake of simplicity, we

will elucidate the underlying concept of this algorithm using the case of a dual R-tree

traversal.

43

CHAPTER 2. STATE OF THE ART

The first property utilized by this approach is based on the observation that if two

intermediary nodes from the two indexes do not intersect, the objects contained within

them do not intersect either. The algorithm can iteratively examine the intersection of

intermediary nodes, eventually reaching the intersecting data stored at the leaf nodes.

Further improvement can be made to reduce the search space using the following

property. Given two data nodes Es and Er and there respective Mbrs Ms and Mr:

(or, os) ∈ (Es ⋊⋉ Er) =⇒ or ∩ (Ms ∩Mr) ∧ os ∩ (Ms ∩Mr)

Using this property, we can limit the search to only the intersection space between the

two MBRs.

A well-implemented DIT algorithm enables a sorted intersection test, which reduces

the number of intersection checks and takes advantage of data locality in the buffer.

Furthermore, the local order facilitates the utilization of a Plane Sweep technique as a

local join algorithm, enhancing the pruning capabilities even further.

Enhanced performance can be achieved by tailoring the buffer manager strategy to

align with this approach. The original authors suggest pinning frequently accessed pages

in the buffer. This is determined by a degree score assigned to each page during the

pinning phase. At a given point in execution, a page’s score corresponds to the count

of its intersections with pages from the other dataset that have not been processed yet.

When page replacement is necessary, the pages with the lowest degree scores are selected

for eviction. However, a potential drawback of this approach arises from the concurrent use

of two indices, which can result in increased space overhead. Moreover, for non-selective

queries, this approach might incur high disk costs.

2.3.7 Discussion

Based on the previous analysis of existing techniques in the literature, it is evident that

none of the proposed approaches can be considered a comprehensive solution. Each ap-

proach has its own set of advantages and trade-offs. The various contributions have been

summarized in Table 2.4, and we have classified them according to the taxonomy outlined

in Section 2.2.

Observing Table 2.4, it becomes evident that there is a notable absence of approaches

44

2.4. SPATIAL DATA PROCESSING AT SCALE

Table 2.4: classification of join techniques.

In memory approaches On disk approaches

0 Index
NL [ME92], PS [HNS88],
SSPS, RRPS [RVCM14].

FCCPS, FRRPS, FRRPS [RCVM16]. Local

PBSM [PD96]. Parallel

1 Index
Touch [NTH+13].

Nes Grid [ŠŠC+09],
Nes CR-tree [KCK01],
Nes Kd-tree [Rob81],
Nes Q-tree [FB74],
Nes Xbr+ tree [RVL+15].

Local

Parallel

2 Indices
Dual R-tree [BKS93]. Local

Parallel

that are inherently designed for parallel execution. A majority of the existing approaches

that enable large-scale processing of distance-based joins rely on Big Data frameworks such

as Hadoop and Spark. However, within these frameworks, users often lack control over

data locality. This disparity is the reason we dedicate a distinct section to the processing

of distance-based joins for large-scale datasets.

2.4 Spatial data processing at scale

So far this chapter has focused on spatial processing within centralized environments. We

presented several techniques and we proposed a taxonomy of them. The subsequent sec-

tion will delve into join processing within a distributed environment. The reviewed work

is outlined in Table 2.5, accompanied by pertinent details about the validation approach

and datasets employed for validation in each case. Our focus centers on the processing

of distance-based joins utilizing the MPP (Massively Parallel Processing) frameworks,

namely Hadoop and Spark, which are renowned as the most fitting tools for scalable data

processing.

2.4.1 Distance-based join in Hadoop

Hadoop, a free and open-source framework, is meticulously designed to facilitate highly

parallel data processing by leveraging a cluster of machines within a shared-nothing archi-

tecture. It operationalizes the Map-Reduce parallel programming paradigm [DG08] as its

core processing model. Since its inception, Hadoop has swiftly emerged as the preferred

45

CHAPTER 2. STATE OF THE ART

Table 2.5: Summery of main contributions in distance-based join processing in popular MPP
frameworks (Hadoop and spark)

Author Approach
name

Compared with Evaluation
metrics

Evaluation
dataset

Shubin Zhang
et al.[ZHL+09]

SJMR PPBSM Execution time TIGER/Line

Chi Zhang et
al.[ZLJ12]

H-BRJ H-BNLJ Execution time OpenStreetMap,
Synthetic Data

Wei Lu et
al.[LSCO12]

PGBJ H-BRJ Partition size,
Execution
time, Selectiv-
ity, Shuffling
cost

OpenStreetMap
Forest cover
Expanded for-
est cover

Ablimit Aji et
al.[AWV+13]

Hadoop-GIS Comertial
SDBMS

Execution time OpenStreetMap
Pathology
imaging

Ahmed Eldawy
et al.[EM15]

SpatialHadoop Hadoop Execution
time, Through-
put(Jobs/Minute)

TIGER, Open-
StreetMap,
NASA, Syn-
thetic data

Simin You et
al.[YZG15]

SpatialSpark ,
ISP-Mc

Proposed
approaches,
mutually

Execution time NYC taxi trip
data, NYC
street network,
GBIF species
occurrence

Jia Yu et
al.[YWS15]

GeoSpark SpatialHadoop Execution time TIGER

F Garćıa-
Garćıa et
al.(2016)
[GGCI+16]

KCPQ in S-
Hadoop

Compare the
proposed,
approaches
mutually

Execution
time, Distance
computations

OpenStreetMap

46

2.4. SPATIAL DATA PROCESSING AT SCALE

Table 2.6: Summery of main contributions in distance-based join processing in popular MPP
frameworks (Hadoop and spark), part 2.

Author Approach
name

Compared with Evaluation
metrics

Evaluation
dataset

Dong Xie et
al.[XLY+16]

SIMBA GeoSpark,
SpatialSpark,
SpatialHadoop,
Hadoop GIS,
Geomesa, com-
ercial SDBMS

Execution
time, hrough-
put(jobs/min)

OpenStreetMap,
GDELT, Syn-
thetic data

Mingjie Tang
et al.[TYM+16]

LocationSpark PGBJ,
GeoSpark,
SpatialSpark,
Simba

Execution
time, Nbr of
shuffled records

OpenStreetMap,
Collected
Tweets

F Garćıa-
Garćıa et
al.(2018)
[GGCI+18]

Improvement
on S-Hadoop

KCPQ and
ϵDJ in S-
Hadoop

Nbr of consid-
ered cells, Exe-
cution time

OpenStreetMap

choice for extensive data processing. With the burgeoning requirement for scaling spatial

data operations, Hadoop has been identified as a pivotal solution for executing spatial

tasks.

Within this section, we showcase endeavors aimed at implementing distance-based join

within the Hadoop framework. Moreover, we delve into various initiatives that strive to

enhance Hadoop’s core functionality to provide more robust support for spatial operations

and spatial data types.

Spatial processing in Hadoop

We begin by introducing the SJMR (Spatial Join with MapReduce) technique [ZHL+09].

This approach draws inspiration from PBSM and employs a comparable tile-based parti-

tioning method. The spatial join is executed through a single map/reduce job.

Regarding the map phase, a space partitioning function (SPF) is executed to divide

the universe into Nt uniform tiles. Notably, the number of tiles Nt is significantly higher

than the desired number of partitions P . it is important to note that P also signifies

the number of reducers, as each reducer is responsible for performing a local join on a

specific partition. To uniquely identify each tile, an identifier is generated using a coding

47

CHAPTER 2. STATE OF THE ART

technique, such as Z-curve or Hilbert-curve.

The algorithm then iterates through the tiles and assigns each one to a specific par-

tition. The spatial partitioning function is defined by three parameters: the tile number,

the tile coding method (either Z-curve or Hilbert-curve), and the tile-to-partition mapping

scheme (Round Robin or hashing). Based on experiments conducted by the designers of

SJMR, the optimal choice appears to be using the Z-curve as the tile coding technique

and Round Robin as the mapping scheme. Similar to the partitioning algorithm uti-

lized in PBSM, this approach handles objects that overlap with multiple tiles through a

duplication avoidance technique.

On the reduce side, each reducer carries out the join over one partition following a two-

step strategy: filtering and refinement. Filtering is accomplished using a variant of the

Plane Sweep technique referred to as ”strip Plane Sweep,” as coined by the authors. The

concept underlying strip Plane Sweep involves dividing a single partition into a number

of strips that are parallel to the sweeping axis. The conventional Plane Sweep technique

is then executed for each strip, enabling the pruning of many objects along the axis that

isn’t being swept. This approach significantly enhances the performance of the Plane

Sweep, with the performance improving as the number of strips increases, up to a certain

point. Through experimentation, the authors determined that utilizing 8 strips yielded

the best results for their validation data. Similar to the partitioning phase, objects that

are associated with multiple strips are managed using the same duplication avoidance

technique.

In the refinement step, the actual geometric shapes of the objects are taken into

consideration. To avoid random seeking, the objects are sorted based on their IDs, and

the chosen ID order closely follows the storage order.

When it comes to handling duplicates, SJMR prioritizes duplicate avoidance over

duplicate elimination, which is implemented at two levels: inter-partitions and inter-

stripes. To achieve this, the authors introduce the ”duplication avoidance technology.”

The underlying idea of this technology is that if two intersecting objects span multiple

tiles (or stripes), they are reported only by the partition that contains the smallest tile

common to both objects.

SJMR marked a significant advancement in the realm of efficient parallel processing for

spatial join. Following its lead, subsequent research endeavors aimed to implement various

48

2.4. SPATIAL DATA PROCESSING AT SCALE

types of distance-based join queries within the Hadoop framework. In the subsequent

section, we delve into a selection of studies that pertain to the implementation of parallel

KNN-join algorithms using Hadoop.

Knn join processing in Hadoop

KNN-join presents a relatively higher processing complexity compared to ϵ-DJ or KCPJ .

Designing a parallel KNN join algorithm is more challenging than designing parallel

ϵ-DJ or KCPJ algorithms. Traditionally, processing KNN join within Hadoop involves

partitioning the larger dataset across reducers and sending the entirety of the smaller

dataset to all reducers. However, this approach is computationally expensive and cannot

be effectively used for datasets of equal size, as the data volume can exceed reducer

memory limits. A more optimized strategy, proposed in [ZLJ12], is called H-BRJ. This

strategy involves dividing both datasets into
√

N partitions, where N represents the

number of reducers. Each reducer performs a local join on a combination of Ri and Si.

While H-BRJ addresses the memory overflow issue, it still faces performance challenges

due to high shuffle costs.

Further improvements are proposed in [LSCO12] to minimize the shuffle cost. The

proposed solution is based on the Voronoi diagram and is executed in the following three

steps:

1. Pivot Point Selection. In this step, a set of points is selected as pivots for the Voronoi

diagram. The selection is done by sampling and applying some pivot selection

strategy on the sample. The proposed strategies are the following: random selection,

furthest selection, and k-means selection. From experiments done by the authors,

farthest selection and k-means selection are harder to perform yet they don’t provide

better partitioning than the standard random selection.

2. First partitioning. This task is executed as a map job. It allows partitioning both

datasets based on the distance of each object to the selected pivots. In addition to

partitioning, the map function outputs a summary table for each dataset to derive

a distance boundary which will serve to re-partition the second dataset.

3. Re-partitioning of the second dataset. This task is executed as a map job. Its

purpose is to re-partition the second dataset S so that each partition Si contains

49

CHAPTER 2. STATE OF THE ART

the k nearest neighbors (k-NN) of each object in partition Ri. This is achieved by

computing a distance threshold to determine the adherence of each object Os to a

specific partition Si.

4. Local join. This step is executed as a reduce task. Each reducer performs the k-NN

join on their local sets. No further processing is required, as the completeness of the

result is ensured by the previously calculated distance boundary.

Despite the enhancements in distance-based join processing presented in the previous

work, performing spatial operations in Hadoop remains inefficient and challenging due to

the lack of support for spatial data types. The following section will delve into work that

aim to enhance Hadoop’s spatial awareness, with a specific focus on Hadoop-GIS and

Spatial-Hadoop. Throughout the discussion, we will emphasize the join aspect of each

proposal.

Hadoop-GIS

[AWV+13, ASV+13] Hadoop-GIS is a data warehousing system designed for executing

large-scale spatial queries on Hadoop. It is developed as a package for HBase, a distributed

and non-relational database solution within the Hadoop ecosystem.

Hadoop-GIS is structured into three layers on the Hadoop system. In the language

layer, it offers an implementation of the ISO SQL/MM Spatial standard [Sto03]. In the

query translation layer, Hadoop-GIS supplies a parser and query optimizer. Lastly, in the

engine layer, the authors introduce RESQUE, a Real-time Spatial Query Engine capable

of constructing and querying spatial indexes.

Hadoop-GIS partitions data using a uniform grid, with the option for further recursive

cell splitting. To address data skew, Hadoop-GIS splits high-density cells along the best

axis. Each partition is identified by a UID and an MBR (Minimum Bounding Rectangle).

Objects that span multiple cells are accommodated through duplication. The resultant

tiles are consolidated and stored in HDFS as a single large file.

When it comes to handling spatial joins, Hadoop-GIS employs an algorithm similar

to the standard relational join. However, it invokes the RESQUE engine when executing

spatial operations. The join process is outlined as follows:

1. A map function executes the ”WHERE”clause of the query to eliminate unnecessary

50

2.4. SPATIAL DATA PROCESSING AT SCALE

objects and then outputs the remaining objects using the UID as the key. If the

query is a self-join, only one scan will be performed to generate multiple Key/Value

pairs.

2. Hadoop will handle the entire shuffle phase, grouping objects with the same UID

together.

3. In the reduce function, two temporary files are initialized to hold records from the

datasets to be joined. Then, the RESQUE engine is invoked to execute the join.

4. The RESQUE engine builds an R*-tree from the temporary files with a page uti-

lization ratio of 100% (since the indices will not be re-used or updated). Then the

engine performs a Dual tree traversal algorithm to join the datasets.

While Hadoop-GIS provides better support for spatial data, it still suffers from serious

drawbacks:

1. Since it uses Hadoop as a black box, it inherits the same bottlenecks and performance

issues as other Hadoop-based approaches.

2. It supports only a uniform grid as a global partitioning and indexing strategy.

3. It does not allow the re-use of the constructed indices.

4. It does not support other distance-based join operations (e.g., kNNJ and KCPQ).

5. It relies on additional software components other than Hadoop (i.e., Hbase).

In the next section, we present Spatial-Hadoop that allows to mitigate some limitations

imposed by Hadoop-GIS.

Spatial-Hadoop [EM15, EM13]

Spatial-Hadoop offers spatial capabilities within Hadoop itself, instead of adding a layer

on top of it. Spatial-Hadoop modifies the core components of Hadoop at four different

levels:

• Language Level: Spatial-Hadoop enables the use of various spatial data types (e.g.,

lines and polygons) and spatial operations (e.g., overlap) within the Hadoop envi-

ronment.

51

CHAPTER 2. STATE OF THE ART

• Storage Level: Originally designed to support three types of spatial indices (Grid,

R-trees, and R+-trees), Spatial-Hadoop has later incorporated additional index sup-

port, including Quadtree, k-d tree, Z-Curve, and Hilbert-Curve.

• Map/Reduce Level: Spatial-Hadoop introduces a spatial files splitter and spatial

record reader to take advantage of the spatial indices.

• Operations Level: Spatial-Hadoop extends Hadoop with a variety of spatial opera-

tions, such as range queries, k-nearest neighbor queries, and spatial joins.

The creators of Spatial-Hadoop implemented an indexing logic within HDFS to lever-

age existing spatial index structures. They introduced a two-level index system: global

and local.

• Local Index: The local index is designed to fit within a single HDFS block, which

has a default size of 64 MB (Now the default size is 256). This design choice ensures

that the default HDFS load balancer can handle the index as a single unit while

distributing blocks across the cluster.

• Global Index: The global index is stored in the master node’s memory. This in-

memory index provides a comprehensive overview of the spatial data distribution

across the entire dataset.

Spatial-Hadoop proposes a distributed spatial join algorithm, which consists of four

steps. While two of these steps are mandatory, the other two are executed only if neces-

sary:

1. Pre-processing Step: In this initial stage, the smaller dataset is partitioned to align

with the partitions of the larger dataset. The decision to perform pre-processing

involves estimating the costs of the join with and without re-partitioning. This step

aims to optimize the subsequent join operation.

2. Global Join: Leveraging the global index, overlapping partitions are paired together.

Meanwhile, partition pruning is conducted for non-overlapping partitions, as they

will not contain any overlapping objects.

3. Local Join: Utilizing the local index, Spatial-Hadoop efficiently processes the local

join using a dual index traversal technique.

52

2.4. SPATIAL DATA PROCESSING AT SCALE

4. Duplicate Elimination: This step is optional and is executed only when the em-

ployed indices allow for duplicates. This is the case with the Grid index and R+-tree,

for example.

Francisco Garćıa-Garćıa et al.[GGCI+16] propose further improvement by adding KCPQ

join to Spatial-Hadoop.

The implementation of KCPQ follows the same principles as the distributed spatial

join initially proposed by Spatial-Hadoop. It involves executing a Plane Sweep algorithm

at the inter-block level, followed by another Plane Sweep at the intra-block level.

In the same work, an improvement has also been proposed to eliminate certain parti-

tions and objects. A pre-processing step is triggered to derive an upper bound distance δ

using a data sample. This distance is subsequently utilized in both the global and local

joins to prune combinations of partitions or objects that are not promising.

Finally, another improvement is presented in [GGCI+18], demonstrating that a more

accurate estimation of the δ value through local sampling can lead to significant perfor-

mance improvements.

2.4.2 Spatial processing in Spark

Scalable distance-based jion

Hadoop-based approaches Spark-based approaches

Native Hadoop Modified Hadoop Native Spark Modified Spark

S Zhang et al.

C Zhang et al.

Wei Lu et al.

A Aji et al.

A Eldawy et al.

F Garcia-Garcia
et al (2016).

F Garcia-Garcia
et al (2018).

S You et al.

Jia Yu et al.

D Xie et al.

M Tang et al.

Figure 2.4: Classification of scalable distance-based join techniques.

Spark is a free and open-source framework for in-memory parallel data processing

over commodity shared-nothing clusters [ZCF+10]. It introduces the concept of RDDs

53

CHAPTER 2. STATE OF THE ART

(Resilient Distributed Datasets), which are an abstraction of a collection of objects par-

titioned across several machines [ZCD+12]. Spark can outperform Hadoop by up to 10x

in iterative operations that reuse the same set of data across multiple parallel operations,

while also providing similar fault tolerance and load balancing features.

Several Spark-based spatial data processing frameworks have emerged over the years,

such as SIMBA [XLY+16], LocationSpark [TYM+16], GeoSpark [YWS15], SpatialSpark

[YZG15], and GeoMesa [HAE+15]. To keep this chapter concise, we focus on two impor-

tant frameworks: LocationSpark and SIMBA. These two frameworks were chosen due to

their efficient processing of distance-based joins and their representation of the techniques

commonly used by other frameworks for distance-based join processing.

LocationSpark [TYM+16]

LocationSpark is a parallel spatial data processing framework built on top of Spark. It

extends Spark by incorporating spatial indices, query scheduling, and a query executor.

Moreover, the designers of LocationSpark have incorporated innovative techniques to im-

prove performance, such as a spatial Bloom filter and adaptive data caching. This caching

strategy enables less frequently accessed objects to be stored on disk, reducing memory

pressure.

LocationSpark is capable of performing both spatial join and kNN join. In the following

sections, we will delve into how LocationSpark manages these types of operations.

To execute spatial queries, LocationSpark employs a global execution plan that or-

chestrates the data (re)partitioning and local plan execution. Each worker node selects

a local plan based on the available spatial indices. The chosen local plan corresponds to

the specific local join algorithm utilized.

LocationSpark offers two algorithms for spatial join: indexed nested-loop and dual

index traversal. The indexed nested-loop algorithm employs one of the available indices

locally. LocationSpark supports three types of indices: R-trees, Grids, and Quad-trees.

On the other hand, the dual index traversal algorithm conducts a parallel depth-first

search over the two indices, as explained in section 2.3.6. Typically, LocationSpark’s

planner prioritizes nested Quad-trees for point data and dual R-tree traversal for more

intricate geometric shapes.

In terms of the kNN join, LocationSpark incorporates two nested index loop algorithms

54

2.4. SPATIAL DATA PROCESSING AT SCALE

using R-trees and Quad-trees. The creators of LocationSpark also evaluated three existing

block-based approaches: Gorder [XLOH04], PGBJ [LSCO12], and Spitfire [CCZY+15].

Ultimately, they settled on an indexed nested-loop approach based on a quadtree index

due to its superior performance compared to other methods.

Simba (Spatial In-Memory Big data Analytics) [XLY+16]

Simba is an extension of the Spark SQL engine [AXL+15], designed to incorporate support

for various spatial data types and spatial queries. It stands as the pioneering spatial

extension for Spark that combines the capabilities of both SQL and DataFrame APIs.

Simba enhances the overall performance of generic Spark operations by introducing spatial

indexes over RDDs and a spatial-aware query optimizer, thereby achieving low latency

and high throughput.

From an architectural perspective, Simba introduces modifications to Spark SQL with-

out directly altering the core Spark engine. This loose coupling ensures that developers

can readily adapt Simba to accommodate future Spark releases. Before delving into how

distance-based join is managed in Simba, it is important to discuss the indexing and

partitioning strategies that are implemented within this framework.

Simba introduces indexing capabilities through the introduction of a new RDD type

known as Index RDD. The indexing is implemented across two levels: a local level within

each RDD partition, and a global level within the driver program stored in the master

node. At the local index level, data is embedded in an array to ensure efficient random

access, followed by the construction of an R-tree on top of this array. The R-tree is stored

within the same partition, and the leaf nodes of the R-tree contain the array indexes. This

arrangement facilitates the creation of a local index without significantly compromising

scan performance.

Regarding the data partitioning task, Simba introduces a new strategy that offers

improved data locality characteristics. This new partitioner utilizes a set of random

samples and employs the STR algorithm to establish the boundaries of partitions. These

boundaries are subsequently extended to encompass the entire data space.

When it comes to processing ϵDJ , Simba follows a three-step process, which is outlined

as follows:

1. Data Partitioning: This step is omitted if both datasets are already indexed. Oth-

55

CHAPTER 2. STATE OF THE ART

erwise, the same STR partitioning strategy is applied. The only modification is that

the partitioner ensures that two partitions (one from each dataset) can fit into the

main memory simultaneously.

2. Global Join: Pairs of partitions are chosen where the distance between them is

below the ϵ threshold.

3. Local Join: If no local index exists for the data in one of the two partitions, it is

indexed locally. Otherwise, an indexed nested-loop algorithm is executed.

Unlike the ϵDJ query, processing the kNN join in Simba is not straightforward.

Instead, a novel join algorithm called RKJSpark (R-tree kNN join in Spark) is introduced.

This new approach involves partitioning a dataset S into n partitions so that for each

object r ∈ R, kNN(r, S) ⊆ Si. To achieve this, the following process is proposed:

1. R Partitioning: If not already done, the dataset R is partitioned using the same

STR strategy as used in the ϵDJ . The center of each partition cri, and the distance

from this center to the furthest object in the partition ui are then sent to the master

node.

2. S Pre-processing: A sample S ′ is selected from S, and an R-tree is built on top of

it. The R-tree is then sent to the master node for the next step.

3. Distance Bound Calculation: In this step, the master collects the results of the

two previous steps and then calculates knn(cri, S ′) for each partition center. The

distance δi is defined as the distance between cri and the furthest knn(cri, S ′). The

following maximum distance bound is derived:

γi = 2ui + δi for each partition Ri

The proof that for any partition Ri, we have ∀r ∈ Ri, knn(r, S) ⊂ {s|s ∈ S, |cri, s| ≤

γi} is detailed in [XLY+16]. The distance bound γi will serve to partition S.

4. Parallel kNNJ Processing: After partitioning both R and S, an indexed nested-

loop algorithm based on R-tree is executed on every partition pair (Ri, Si). In this

case, Si is used as the inner table (The R-tree is built over Si).

56

2.5. RDF DATA PROCESSING

2.4.3 Discussion

In this section, we propose a classification of scalable distance-based join techniques, which

we illustrate in Figure 2.4. We observe in this classification the lack of approaches that use

the native Spark. We explain this with the success of spatial-enhanced Hadoop frameworks

over traditional map/reduce-only approaches. This has made spatial-enhanced Spark a

promising research proposition.

One major downside when using an enhanced version of Spark (or even Hadoop) over

the standard approach is the effort needed to support newer versions of the framework.

Developers need to adapt their approaches to the updated programming interfaces, which

is time-consuming.

From the previous analysis of the join process in spatial data-parallel processing frame-

works, we can observe some patterns that emerge. The first common technique used by

most of the approaches is to reduce the search space as early as possible in the join process.

This is generally done by sampling the data to prune as many partitions as possible. The

second common technique that we noticed in processing kNN join is the aim to eliminate

the intermediary shuffle by better partitioning the data. This is generally achieved by

deriving a maximum distance bound for each Ri partition and using it to find the objects

that will be part of the Si partition.

2.5 RDF data processing

One can summarize the approaches dedicated to RDF data processing with respect to

their storage strategies for data. Four families of approaches can be distinguished (see

Table 2.7 for a comparison):

1. The most intuitive way to store RDF data is by using a single big relational table

that contains three columns corresponding to the subject, predicate, and object.

This strategy is known as the single table strategy.

2. A second alternative storage option is the binary table. In this approach, for each

property, the system stores a binary table containing the subject and the object.

This approach is widely used for scalable distributed systems [CSPG20].

3. The third approach is called the ”Property table”. In this approach, subjects with

57

CHAPTER 2. STATE OF THE ART

Table 2.7: Comparison of different storage strategies for RDF data, including examples of triple-
stores that utilize each strategy, their advantages and disadvantages.

Storage Strategy Triplestore Ex-
amples

Advantages Disadvantages

Single Table Oracle, Sesame
[BKVH01], 3-
Store [HG03]

Intuitive Large number of self joins
needed for queries

Binary Table SW-Store
[AMMH09],
C-store [WKB08]

Suitable for dis-
tributed systems

Loss in performance with
multiple properties, many
tables needed for updates

Property Table Jena [WSK+03],
DB2RDF
[BDK+13], 4store
[HLS+09]

Efficient for
queries with star
patterns

Difficulties with chain
queries, storage overhead
due to null values, does
not allow multiple values
for the same property

Native Graph
Form

Trinity
[ZYW+13],
gStore,
RDF QDAG
[KMG+21,
ZMG+21]

Stores RDF data
in its native form

N/A

common properties are grouped and stored in a large horizontal table. Each column

in the table corresponds to a property.

4. In the fourth approach, RDF data is modeled and stored in its native graph form.

Subjects and objects are considered as nodes, while properties are considered as

labeled edges.

The most intuitive way to store RDF data is by using a single big relational table

that contains three columns corresponding to the subject, predicate, and object. This

strategy is known as the single table strategy. Examples of stores that use this strategy

are Oracle, Sesame [BKVH01], and 3-Store [HG03]. The problem with this approach is

the large number of self-joins that need to be executed to answer the generated SQL

query. Various studies have attempted to address this issue using heavy indexing, such

as RDF-3x [NW08] and Hexastore [WKB08].

A second alternative storage option is the binary table. In this approach, for each

property, the system stores a binary table containing the subject and the object. This

approach is widely used for scalable distributed systems [CSPG20]. However, this can

result in a loss of performance when a query requires many properties, leading to numerous

58

2.6. SPATIAL-RDF DATA PROCESSING

join operations. Another limitation of this approach is that many tables need to be

accessed in the case of an update. This makes it more suitable for analytical workloads

rather than transactional ones.

The third approach is called the ”Property table”. In this approach, subjects with

common properties are grouped and stored in a large horizontal table. Each column in

the table corresponds to a property. Some examples of this design are Jena [WSK+03],

DB2RDF [BDK+13], and 4store [HLS+09]. This approach is very efficient for queries with

star patterns. However, it faces difficulties when processing chain queries. Additionally,

the property table can have many null values, which can increase the storage overhead.

This standard approach does not allow multiple values for the same property as well.

In the last approach, RDF data is modeled and stored in its native graph form. Sub-

jects and objects are considered as nodes, while properties are considered as labeled edges.

As examples of this design, one can cite Trinity [ZYW+13], gStore, and RDF QDAG

[KMG+21, ZMG+21]. As our work is based on RDF QDAG, we provide below more

details about this Triplestore.

As for the Triplestore RDF QDAG [KMG+21], it stores RDF data in a graph form and

it answers queries using graph exploration. For efficient exploration, RDF QDAG uses a

combination of data partitioning and indexing techniques. First, the graph is partitioned

into many fragments called Graph Fragments (GF for short). Each GF is then indexed

using a clustered B+Tree. Similar to some existing work, RDF QDAG keeps a separate

dictionary of string values. The indices store only IDs rather than the strings. For more

efficiency, RDF QDAG makes use of two different orders: SPO and OPS, to store indices.

2.6 Spatial-RDF data processing

In order to represent geographical linked data for the semantic Web, the Open Geospa-

tial Consortium has proposed GeoSPARQL [BK12] as a standard that extends classic

SPARQL. Many Triplestores have subsequently been extended to support the processing

of this new standard. The spatial extension of RDF stores extensively depends on the

storage model and the query evaluation engine.

For instance, Strabon [KKK12], an extension of Sesame [BKVH01], supports spatial

data. It stores data in PostGIS and implements a property table approach, where each

59

CHAPTER 2. STATE OF THE ART

Table 2.8: Overview of different spatial extensions of RDF Triplestores.

Extension Underlying
system

RDF Storage Spatial storage

Strabon [KKK12] Sesame
[BKVH01]

Triple table in PostgreSQL R-tree

Brodt et al.
[BNM10]

RDF-
3X[NW08]

Heavy indexing R-Tree

Geo-Store
[WKC12]

RDF-
3X[NW08]

Heavy indexing Grid file

Virtuoso [vir] RDBMS N/A N/A
Oracle N/A N/A N/A
GraphDB [Gra] N/A N/A N/A

table is indexed using SO and OS indices. Spatial data are saved in a separate relational

table, which is indexed using an R-tree [Gut84]. The query optimizer extension of Strabon

is simple and relies on heuristics to push down spatial filters. However, since Strabon is

based on an older RDF store (i.e., Sesame), it lacks many optimization techniques used

in modern Triplestores.

Brodt et al. [BNM10] extended RDF-3X [NW08] to support spatial data. In this

work, only the range selection operation is supported, leading to a very limited extension.

Moreover, spatial filtering is also limited to either the beginning or the end of query

evaluation.

Geo-Store [WKC12] is another spatial extension of RDF-3X. Geo-Store relies on a

grid file to index the spatial data, using the Hilbert space-filling curve to establish a

global order for each cell on the grid. Each spatial object is paired in the order of the

cell it resides in. An additional triple is added to the data graph in the form of <

o, hasPosition, gridPosition >, which adds an extra join step to query processing.

it is worth noting that many commercial systems also support spatial RDF queries,

such as Oracle, Virtuoso [vir], and GraphDB [Gra]. However, details about their internal

design are not easily accessible.

2.7 Conclusion

In conclusion, this chapter has provided a comprehensive overview of the current state of

spatial data processing, RDF data processing, and the intersection of the two in spatial-

RDF data processing. We have delved into a multitude of techniques and methodologies

60

2.7. CONCLUSION

employed in each domain. Starting from centralized spatial data processing techniques to

scalable approaches utilizing platforms like Hadoop and Spark, we have examined diverse

strategies for managing spatial data across varying scales. Furthermore, we have explored

RDF data processing, encompassing storage and query processing methodologies. Lastly,

the emerging field of spatial-RDF data processing has been introduced, emphasizing the

fusion of spatial and RDF data. This chapter lays the groundwork for subsequent sections,

providing the necessary foundation for further exploration and research in the realms of

spatial and RDF data processing. The insights gleaned from this chapter will contribute

significantly to the development of efficient and effective solutions for the manipulation

and analysis of spatial and RDF data within the context of large-scale applications.

61

CHAPTER 2. STATE OF THE ART

62

Part II

Spatial and graph data processing

63

Chapter 3

I/O Efficient R-tree utilisation

Contents

3.1 Introduction . 67

3.2 Problem Definition . 68

3.2.1 R-Tree Structure . 69

3.2.2 Problem statement . 69

3.3 FASTER approach . 71

3.3.1 Principle of FASTER . 71

3.3.2 Proof of correctness . 71

3.4 Experimental validation . 73

3.4.1 Experimental setup and data-sets 74

3.4.2 Results discussion . 74

3.5 Conclusion . 75

In this chapter, we delve into our first contribution, which concerns a novel strategy for

exploring R-Trees. We thoroughly examine the problem at hand and present the FASTER

(FASter r-Tree ExploRation) approach as a solution. We introduce the R-Tree structure

and outline the problem statement, emphasizing the need to minimize disk usage and I/O

operations in spatial data exploration. The FASTER approach is presented, highlighting

its core principle and providing the proof of its correctness. To validate our approach, we

conduct experimental validation using various datasets and discuss the results in detail.

The chapter concludes with a summary of the findings, emphasizing the effectiveness of

the FASTER approach in reducing I/O operations and enhancing overall performance in

65

CHAPTER 3. I/O EFFICIENT R-TREE UTILISATION

spatial data processing. These insights lay the groundwork for the subsequent chapters,

where we integrate FASTER into a more complex system for processing spatial-RDF data.

66

3.1. INTRODUCTION

3.1 Introduction

The rise of the internet has triggered a transformative revolution in data management.

Individuals, businesses, and devices have become prolific data producers, generating an

overwhelming volume of information daily. Yet, effectively handling such immense data

volumes poses a significant challenge, hindering the optimization and utilization of the

diverse datasets collected. This challenge is particularly crucial for applications in do-

mains such as Smart cities, location-based services, and the Internet of Things (IoT),

where meticulous attention is needed to ensure the efficient utilization of collected data.

These applications specifically require considering the spatial nature of the data to make

informed decisions. Moreover, domains like medical imagery processing [WKC+11] and

molecular dynamics simulation [Ver67] also have the potential to benefit from spatial data

processing capabilities.

As data management has progressed from centralized processing to Massively Paral-

lel Processing (MPP), novel approaches are essential to manage spatial data efficiently.

Within this context, established and widely adopted solutions are constructed upon

frameworks like Hadoop-MapReduce or Spark. Notable examples include Spatial-Hadoop

[EM15] and Location-Spark [TYM+16]. These solutions augment traditional frameworks

by infusing spatial awareness into different layers and components of the system.

At the processing layer, support for various spatial operators, such as range queries,

nearness queries, and spatial joins, has been introduced. This enables the efficient execu-

tion of spatial operations on large-scale datasets. On the storage and access method layer,

the Hadoop Distributed File System (HDFS) is enhanced with spatial-aware partitioning

techniques, optimized spatial indexes, and refined data structures. These enhancements

collectively enhance the storage and retrieval performance of spatial data within the dis-

tributed file system.

To ensure efficient access to spatial data, solutions like Spatial-Hadoop and Location-

Spark adopt a two-level indexing structure. This structure comprises a local index within

each block or machine, alongside a global index typically stored on the name node. It

is important to highlight that the R-Tree structure is the prevalent choice for indexing

spatial data. Moreover, the exploration methods utilized with this index have a direct

influence on performance.

Nonetheless, conventional browsing methods of R-trees exhibit a notable drawback.

67

CHAPTER 3. I/O EFFICIENT R-TREE UTILISATION

Retrieving objects that meet a specific query demands a considerable number of page

loads. This limitation can potentially impede the overall efficiency of spatial data retrieval.

In this context, we present FASTER (FASter r-Tree ExploRation), an advanced index

browsing algorithm specifically designed for R-tree family indices. FASTER is engineered

to simultaneously minimize disk usage and reduce the count of I/O operations, while

retaining the existing index structure without any modifications. We will offer a formal

proof to establish the correctness of this algorithm. Furthermore, a series of experiments

will be conducted using real-world datasets to illustrate the impact of our solution on

the count of I/O operations and execution time. These experiments serve to evaluate

and highlight the effectiveness of FASTER in enhancing the performance of spatial data

retrieval.

The remaining part of this chapter is organized as follows:

• Problem Definition: We begin by outlining the specific problem we intend to address

in this research.

• Enhanced R-tree Spatial Indexing: We introduce our enhanced R-tree spatial in-

dexing method, highlighting its key features and advantages. Furthermore, we pro-

vide a formal proof to establish its correctness.

• Experimental Evaluation: To underscore the significance of our proposal, we present

an extensive series of experiments conducted on real-world datasets. These experi-

ments are meticulously described and analyzed.

• Conclusion: We wrap up this chapter by summarizing our findings and contribu-

tions.

By following this organization, we aim to present a clear and logical progression of our

research, addressing the problem, introducing our solution, validating it through experi-

ments, and concluding with insights and future prospects.

3.2 Problem Definition

In this section, we will revisit fundamental concepts associated with the R-Tree structure.

Subsequently, we will provide an outline of the specific problem that has captured our

interest.

68

3.2. PROBLEM DEFINITION

To begin, we will introduce the symbols and notations that will be used throughout

the chapter. These are summarized in Table 3.1.

Table 3.1: Symbols and their meanings.

Symbol Meaning
o ∈ Ed A spatial object in d-dimensional Euclidean space (E)
S ⊂ Ed A set of spatial objects
si ∈ S An object form the set S
U ⊂ Ed The universe, defined as the set of all objects in the spatial database
Q ⊂ Ed The set of objects that answer the query at hand
Qb The Minimum Bounding Rectangle (MBR) that contains all objects of the set Q.
Pi The disk page with the id i
P bi The MBR that contains all objects of the page Pi

|a, b| The distance between two objects a and b

3.2.1 R-Tree Structure

In the context of an R-tree structure, it is important to understand the roles of various

elements. An R-tree consists of internal nodes and leaf nodes, each potentially containing

multiple children. Leaf nodes store either entire objects or their corresponding identifiers.

Within each node, the concept of a Minimum Bounding Rectangle (MBR) is pivotal.

The MBR, also referred to as the Minimum Bounding Box, defines the smallest rectangle

aligned with the axes (applicable to both X and Y dimensions and extendable to higher

dimensions) that encloses all objects encompassed by the node. The coordinates of the

MBR’s upper-left and lower-right corners are essential in determining the key for locating

a specific node within its parent node. For a visual representation of the R-tree structure,

please refer to Figure 3.1.

3.2.2 Problem statement

To illustrate the Standard R-Tree exploration (SRT) algorithm, we will walk through a

practical example. In this case, we will use a basic window query to demonstrate the

execution process. The goal of this example is to retrieve all objects that intersect with a

specified rectangle.

In Figure 3.1, we present the R-tree that is being utilized in this particular example.

The structure comprises two levels of intermediary nodes and one level of leaf nodes.

Each intermediary node directs to five children, and we have displayed only the relevant

69

CHAPTER 3. I/O EFFICIENT R-TREE UTILISATION

children for the query at hand. The leaf nodes, on the other hand, hold five spatial objects,

with only the objects that intersect the query being shown. To visually differentiate the

objects and pointers that are relevant to the query, we use a green color. It is clear that

the exploration process is based on Property 3.2.1, which allows us to assess only the

pages where the intersection between Pbi and Qb occurs.

1 2 3 4 5

6 7 8 9 10 111213 15 16171819 20

o1

o2

o3 o4

o5

o6

14

P0:

P1:

P6:

P9:

P3:

P13:

P14:

P19:

P4:

Figure 3.1: Overview of an R-tree’s structure.

Property 3.2.1. Let o ∈ Ed, S = {s1, s2, .., sn} ⊂ Ed and Sb the MBR that bound all

elements of S.

|o, Sb| > ϵ =⇒ ∀si ∈ S, |o, s| > ϵ (3.1)

When processing the example from Figure 3.1, and after evaluating the leaf page

number 6, we need to load the parent page (page number 1) in order to get the next leaf

page. This backtrack operation will be repeated many times during the evaluation of the

query. As a result, many unnecessary input operations will be performed. The loading

sequence, in this case, will contain fifteen (15) Input operations that are listed as follows:

P0, P1, P6, P1, P9, P1, P0, P3, P13, P3, P14, P3, P0, P4, P19

assuming that no buffer is associated to the R-Tree exploration algorithm. Otherwise,

the number of pages loaded depends on the strategy (e.g., LRU, FIFO) adopted by the

buffer, which avoids loading some pages.

One can observe that the serious drawback of STR-based approaches resides in the exces-

sive need of I/O operations when it comes to doing a back tracking while browsing the

R-Tree.

The problem we are interested in this chapter is how to reduce the number of I/O

operations related to backtracking when managing R-Tree indexing in the spatial data

context.

70

3.3. FASTER APPROACH

3.3 FASTER approach

In this section, we delve into the concept underlying FASTER and subsequently provide

a proof of its correctness.

3.3.1 Principle of FASTER

To minimize the number of loaded pages by the R-tree, we introduce an enhancement

using an additional queue. Algorithm 1 outlines this improvement, incorporating a queue

named L. The management of this queue is separate and does not impact the structure

of the R-tree. Each loaded page is examined to determine whether it is an internal or

leaf node. For internal nodes, only pages that satisfy Property 3.2.1 are placed into the

queue L (line 14). The process is then recursively repeated until the queue is empty. It is

important to note that the root page of the index needs to be loaded into L prior to the

first invocation of the function.

By incorporating an additional queue to store upcoming pages for loading, we effec-

tively minimize unnecessary I/O operations. When applying the algorithm to the scenario

depicted in Figure 3.1, the resulting loading sequence involves just nine (9) input opera-

tions:

P0, P1, P6, P9, P3, P13, P14, P4, P19

3.3.2 Proof of correctness

The correctness of Algorithm 1 is proven by Theorem 3.3.4. The proof is based on the

following propriety that we derive directly from Propriety 3.2.1:

Property 3.3.1. Let o ∈ Ed, S = {s1, s2, .., sn} ⊂ Ed, Sb and Qb the MBRs that bound

all elements of S and Q respectively.

Qb ∩ Sb = ‰ =⇒ ∀si ∈ S, si ∩Qb = ‰ (3.2)

Proof. From Propriety 3.2.1 we have:

|Qb, Sb| > ϵ =⇒ ∀si ∈ S, |si, Qb| > ϵ (3.3)

71

CHAPTER 3. I/O EFFICIENT R-TREE UTILISATION

Algorithm 1: Window Query Using R-tree (L,Qb,Q)

Result: Q: The set of object that satisfy the query
1 if L is empty then
2 return Q;
3 else
4 P ← dequeue(L);
5 load P into memory;
6 if P is a leaf page then
7 for oi ∈ objectsOf(P) do
8 if obi ∩Qb then
9 add oi to Q

10 end

11 else
12 for pi ∈ referencedPagesIn(P) do
13 if pbi ∩Qb then
14 add pi to L

15 end

16 end
17 Window Query Using R-tree(L,Qb,Q)

18 end

for ϵ = 0

|Qb, Sb| > 0 =⇒ ∀si ∈ S, |si, Qb| > 0 (3.4)

Qb ∩ Sb = ‰ =⇒ ∀si ∈ S, si ∩Qb = ‰ (3.5)

Lemma 3.3.2 (Completeness). The algorithm does not miss any object that satisfies the

query.

Proof. In line 12, we iterate throw all keys in current page and we prune pages that do

not have any results using Propriety 3.3.1. We suppose that the result set is not empty:

From (2) we have:

Qb ∩ Pb = ‰ =⇒ ∀pi ∈ P, pi ∩Qb = ‰ (3.6)

=⇒ Qb ⊆ (Ub− Pb) (3.7)

=⇒ Qb ⊆ L∗ (3.8)

72

3.4. EXPERIMENTAL VALIDATION

L∗ denotes the space covered by all pages in L. Since we call the algorithm recursively

with L in line 17, every value in L is evaluated. Thus, the algorithm does not miss any

object o ∈ Q.

Lemma 3.3.3 (Soundness). The set of objects returned by the algorithm is a subset of

objects that intersect with the query window.

Proof. In line 7 of Algorithm 1, all objects inserted into Q are tested for intersection with

Qb.

Theorem 3.3.4 (Correctness). The algorithm finds all and only objects that intersect with

the query window.

Proof. Since the algorithm is complete (Lemma 1) and sound (Lemma 2) then the algo-

rithm is correct.

3.4 Experimental validation

In this section, we present the outcomes of a series of experiments that we conducted

to assess the performance of the novel FASTER algorithm in comparison to the STR

algorithm. Our evaluation is based on two key performance metrics: the overall execution

time and the count of input operations, which corresponds to the number of pages loaded

into memory. We start by providing specifics about the experimental configuration and

the datasets employed for validation purposes.

0 0,5 1 1,5 2 2,4
·107

0

0,5

1

1,5

2
·105

Number of returned objects

N
u
m
b
er

of
lo
ad

ed
p
ag
es SRT

FASTER

Figure 3.2: The effect of the number of the returned objects on the number of disk pages loaded.

73

CHAPTER 3. I/O EFFICIENT R-TREE UTILISATION

3.4.1 Experimental setup and data-sets

The experiments have been performed on a Linux machine running Ubuntu server 18.04

LTS with kernel version x86 64 Linux 4.15.0-72-generic, equipped with an Intel(R) Xeon(R)

CPU E5-2630 v3 clocked at 2.40GHz and 4 GB RAM. For a fair comparison, all experi-

ments are performed on the same pre-loaded index. We used STR [LLE97] to bulk-load

the index. Both approaches are implemented in C++ and compiled using GCC version

7.5.0.

We used the TIGER dataset 1 , which is a real-world dataset extracted from US Census

Bureau TIGER files. This dataset contains 70 million polygons with a total volume of

25 GB. As for the queries we used randomly generated region queries and intersection

queries.

3.4.2 Results discussion

As shown in Figure 3.2, FASTER requires fewer input operations to get the results and

provides a significant improvement of 30% on average. This improvement in I/O directly

translates to an improvement in the execution time (as shown in Figure 3.3). When it

comes to execution time, SRT varies significantly depending on the number of backtracking

operations performed and the availability of pages (managed by the OS buffer) in main

memory.

For SRT, the best-case scenario is when no backtracking operations are performed or

all requested backtracked pages are buffered by the OS. In this case, SRT performs as

well as FASTER. However, from our experiments shown in Figure 3.3, this scenario rarely

occurs (for example, in query Q6). Otherwise, FASTER performs better, providing up to

a 50% speedup (as in the case of query Q4).

1https://www.census.gov/programs-surveys/geography/technical-documentation/

complete-technical-documentation/tiger-geo-line.html

74

https://www.census.gov/programs-surveys/geography/technical-documentation/complete-technical-documentation/tiger-geo-line.html
https://www.census.gov/programs-surveys/geography/technical-documentation/complete-technical-documentation/tiger-geo-line.html

3.5. CONCLUSION

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11

0

1

2

3

4

·105

Queries sorted by execution time of FASTER

E
x
ec
u
ti
on

ti
m
e
in

n
an

os
ec
on

d
s

SRT
FASTER

Figure 3.3: Execution time (nanoseconds) of queries using SRT and FASTER.

3.5 Conclusion

Modern spatial data processing applications are expected to efficiently process significant

amounts of data using a distributed architecture. Traditional indexing structures and

access methods can no longer keep up with the increasing volume and velocity of spatial

data. In this work, we discussed the limitations of traditional indexing techniques. Specif-

ically, we highlighted the unnecessary I/O operations performed by the standard R-tree

exploration method.

To cope with the increasing performance demands of modern applications, we pro-

posed FASTER, a novel R-tree exploration algorithm that minimizes the number of I/O

operations required to answer a query. We demonstrated the correctness of FASTER and

conducted a series of experiments to study its impact on total execution time and the

number of disk pages loaded into main memory. The experiments revealed that FASTER

consistently requires 30% fewer I/O operations compared to traditional exploration meth-

ods. Furthermore, it achieves up to a 50% reduction in execution time.

As a future perspective of this work, we intend to explore more complex spatial queries,

such as spatial joins and k-nearest neighbor (k-n-n) joins. We believe that FASTER could

be readily adapted to handle these query types as well. Additionally, we plan to integrate

FASTER with spatial data partitioning techniques to minimize not only disk costs but

also the network costs associated with parallel processing of spatial queries.

75

CHAPTER 3. I/O EFFICIENT R-TREE UTILISATION

76

Chapter 4

Spatial RDF data querying

Contents

4.1 Introduction . 79

4.2 Query Evaluation strategies . 81

4.2.1 BGP-First strategy . 83

4.2.2 Spatial-First strategy . 85

4.3 Optimization techniques . 87

4.3.1 Query scheduling . 87

4.3.2 Spatial pruning . 91

4.4 Experimental evaluation . 92

4.4.1 Experimental setup and methodology 93

4.4.2 Effect of evaluation strategies 93

4.4.3 Effect of Scheduling . 94

4.4.4 Effect of Encoding . 96

4.4.5 Effect of spatial pruning . 97

4.4.6 Comparison against Virtuoso 97

4.5 Conclusion . 98

In this chapter, we delved into query evaluation strategies within the context of Spatial

RDF data processing. We examined two primary strategies: BGP-First and Spatial-First,

elucidating their distinct characteristics and advantages. Furthermore, we delved into op-

timization techniques, with a specific focus on query scheduling and spatial pruning. To

empirically validate these approaches, we conducted an extensive experimental evalua-

tion. We provided insights into our experimental setup and methodology, and presented

77

CHAPTER 4. SPATIAL RDF DATA QUERYING

the resultant evaluation outcomes, encompassing the influence of evaluation strategies,

scheduling, encoding, and spatial pruning. To offer a comprehensive perspective, we

also compared our approach against Virtuoso, a prominent RDF data management sys-

tem. In conclusion, the chapter summarized the accumulated insights, underscoring the

advantages of the proposed query evaluation strategies and optimization techniques in

augmenting the efficiency of Spatial RDF data processing.

78

4.1. INTRODUCTION

4.1 Introduction

Ever since Google popularized the term ”Knowledge Graph”to describe the body of knowl-

edge employed by its search engine, the proliferation of datasets of this nature has been

relentless. Knowledge Graphs (KGs) can be defined as labeled and directed multi-graphs

that encapsulate information in the form of entities and relationships pertinent to a spe-

cific domain or organization. These KGs stand as potent tools for capturing and struc-

turing substantial volumes of data that are multi-relational in nature, thereby offering

the ability to explore them through query mechanisms. Given these attributes, KGs have

evolved into foundational elements within the fabric of the Web and existing information

systems across diverse academic domains and industrial applications. Their potency em-

anates from their capability to seamlessly expand existing knowledge while safeguarding

the integrity of prior information.

With the surging popularity of knowledge graphs, the necessity for a standardized

data representation format has become increasingly evident. This need is particularly

pronounced in the context of the semantic Web, which envisions a landscape of glob-

ally accessible and interconnected data on the internet. To fulfill this requirement, the

Resource Description Framework (RDF) has emerged as the primary standard for the se-

mantic Web. Within the RDF format, data are logically depicted through a graph-based

structure. The notable advantage of this representation lies in its schema-less nature, im-

parting flexibility and adaptability across various application domains. Furthermore, this

inherent flexibility renders RDF particularly suitable for swiftly evolving data scenarios,

where the constraints of normalization may not be feasible or practical due to frequent

alterations in the underlying schema.

RDF data is organized using the concept of triples in the form of < subject, predicate,

object >. In this structure, the object can either be a literal with predetermined types

(such as string or double) or it can serve as the subject of another triple, thus creating a

graph-like structure.

In the realm of RDF data, SPARQL has emerged as a prominent query language.

Given that RDF represents data in a graph structure, a SPARQL query predominantly

consists of a sub-graph wherein certain subjects, predicates, or objects are substituted

with variables. This sub-graph is termed a Basic Graph Pattern (BGP). The task of

answering a SPARQL query entails locating sub-graphs that match the specified query

79

CHAPTER 4. SPATIAL RDF DATA QUERYING

pattern. Beyond BGP matching, filters can be applied to variables, encompassing Boolean

expressions and regular expressions. The standard W3C specification for SPARQL lacks

inherent support for spatial filters. Nevertheless, several extensions have been proposed

to enhance SPARQL’s expressiveness, enabling the inclusion of spatial filters. Notable

extensions include GeoSPARQL [BK12] and stSPARQL [KK10].

The implementation of OGC GeoSPARQL [BK12] has been the focus of numerous

endeavors within the community. This implementation poses a formidable challenge due

to the necessity for modifications across various facets of the triple store, encompassing

storage, indexing, evaluation engines, and optimizers. The nature of these changes is also

contingent upon the type and architecture of the Triplestore. For instance, strategies that

prove effective for a Triplestore built upon a single table approach (e.g., 3-Store [HG03])

may not be applicable to one built upon a property table approach (e.g., Jena [WSK+03]).

Several existing Triplestores possess varying capabilities in responding to Spatial-RDF

queries. Many of these are rooted in the relational model, while others are founded upon

single table or fact strategies. However, a common drawback across these approaches is the

prevalence of a high number of joins, leading to notable issues in terms of performance

and scalability. Notably, a recent advancement in the field [KMG+21] introduced the

RDF QDAG Triplestore, leveraging graph fragmentation and exploration to strike a more

favorable balance between performance and scalability. Building upon this foundation, our

work extends the system’s capabilities to accommodate spatial data without compromising

this trade-off. To the best of our knowledge, the proposed extensions represent the first

instance of providing spatial-RDF data processing within a graph exploration framework.

In this chapter, we discuss the extension of RDF QDAG in order to add the support

of spatial operators and filters proposed in GeoSPARQL. The contributions presented in

this chapter can be summarized follows:

• Two evaluation approaches for spatial-RDF data (Spatial-First and BGP-First) are

proposed.

• An existing spatial indexing approach [LLE97] is adapted to be compatible with the

graph exploration logic in RDF QDAG triplestore. This indexing approach is used

in the Spatial First strategies.

• The effect of the query evaluation strategies and the optimization techniques on the

80

4.2. QUERY EVALUATION STRATEGIES

performance of RDF QDAG, is studied in depth.

• An optimizer capable of selecting the best available evaluation strategy based on

the query and statistics about the RDF and spatial data, is developed.

• Finally, we conduct a comprehensive experimental evaluation of the proposed ap-

proaches and compare them against a widely recognized and utilized commercial

Triplestore.

4.2 Query Evaluation strategies

In this section, we introduce two evaluation strategies for Geo-SPARQL queries, both

implemented within RDF QDAG. To better illustrate these strategies, we walk through

the processing of an example query, Q1, on the dataset D1.

Listing 4.1: Example of spatial selection query (Q1)

PREFIX gv: <http://geovocab.org/geometry#>

PREFIX ogis: <http://www.opengis.net/ont/geosparql#>

select ?g

where {

?o type "cultural".

?o gv:geometry ?p.

?p ogis:asWKT ?g.

FILTER(bif:st_intersects(

bif:st_geomfromtext("POLYGON((7 43, 8 43,

8 44, 7 44, 7 43))"), ?g))

};

It is worth noticing that the existing formal framework for query plan and query

evaluation do not take the filters into consideration. Previous contributions have focused

on the graph matching aspect of the query evaluation. The filters were considered as

an implementation detail. However, to introduce support for spatial filter, the existing

formal definitions need to be extended to consider the spatial operators used in the filter

clause of the query.

81

CHAPTER 4. SPATIAL RDF DATA QUERYING

Table 4.1: Example of RDF triples (dataset D1).

Subject Predicate Object
Tennis Championship hostedIn Paris
Tennis Championship type Sports
Tennis Championship geometry G1
G1 asWKT Point(2.34 48.85)
Festival of Lights hostedIn Lyon
Festival of Lights type Cultural
Festival of Lights geometry G2
G2 asWKT Poit(4.846 45.75)
Film Festival hostedIn Cannes
Film Festival Type Cultural
Film Festival geometry G3
G3 asWKT Point(7.012 43.55)

As we mentioned in definition 1.3.2, the Filter function FL is a truth function. We

then express this function in a conjunctive normal form. We also introduce the concept

of filter units as the operands of the mentioned conjunction.

Definition 4.2.1. (Filter Unit)

Let P be a subset of query parameters P ∈ P(V Q
p). and qsp the parameters of the star

query qs. A filter is a truth function FL : JqgKG−→{0, 1}. Filter function can be expressed

as a conjunction of operands. We name each operand a filter unit Fu.

FL = Fu1 ∧ Fu2 ∧ ... ∧ Fun

Using this concept of filter units Fu, one can see that the definition of an execution

plan is extended. In the previous definition, the execution plan is a sequence of star query

evaluation. While this is sufficient to perform the graph matching, it is not enough to

consider the filters. In the new definition of the plan, we consider two types of operators:

the classical star query evaluation and the new filter unit evaluation.

Definition 4.2.2. (Execution Plan - extended definition) .Let P be a tuple < X, f > where

X ⊂
−→
QS ∪

←−
QS ∪ FL and f : X → {1...|X|} is the query stars order function.

We denote by P = [QS1, QS2, Fu1(p1, p2), ..., QSn] the plan formed by executing QS1,

then QS2, then evaluating the filter unit Fu1(p1, p2) which requires the mappings param-

eters p1 and p2.

As mentioned before, to ensure a graph exploration logic, not all plans are acceptable.

82

4.2. QUERY EVALUATION STRATEGIES

An execution plan is considered acceptable if, starting from the second star query, the

head of the star is already instantiated. In a similar fashion, the position of the filter unit

is critical. We can execute a filter unit only if the mappings for the parameters of the filter

units are already available. On this principle, we extend the definition of an acceptable

plan using the following condition:

Definition 4.2.3. (Instantiated filter unit parameter) Let consider the function Param:

FU → Vp a function that returns the parameters of a Filter Unit. An acceptable plan

AP is a tuple < X, f > where X ⊂
−→
QS ∪

←−
QS ∪ FL and f : X → {1...|X|} is the query

stars order function such as ∀i ∈ {2...|X|}, Param(f−1(i)) ∈ ⋃i−1
j=1 Nd(f−1(j)).

To explain better the concept of an acceptable plan, let us return to the query Q1 wich

contain the following Star Queries in the BGP :
←−?g,
−→?p,
←−?p
−→?o and

←−?o. The filter function

consists of one filter unit Fu(?g) =?g¬DC”POLY GON((−100...20))”. One can see that

many execution plans can be built. However not all of them are acceptable. For example,

the plan [−→?o,
←−?g, Fu(?g)] is not an acceptable plan due to the instantiated head condition,

neither the plan [−→?o, Fu(?g),−→?p] due to the instantiated filter condition.

An example of an acceptable plan of the query Q1 is [−→?o,
−→?p, Fu(?g)] or [←−?g, Fu(?g),←−?p].

To evaluate acceptable plans, two strategies are discussed: BGP-First strategy and Spatial-

First strategy.

4.2.1 BGP-First strategy

This strategy consists of finding matches for the graph pattern first, before proceeding to

run the filter on the results of the matching process. An example of a plan where this

strategy can be considered is the following AP1 = [−→?o,
−→?p, Fu(?g)].

The sequence of star queries and filter units listed in the logical execution plan does not

consider implementation details. Therefore, we illustrate the full execution in figure 4.1.

First, the graph matching part of the query is evaluated. Appropriate graph fragments

are considered for evaluating each star query. Data in each fragment is stored in a B+tree

in order to efficiently retrieve it from the disk. Once the information needed is retrieved,

it is placed in a buffer, named SQ-buffer, so it can be used by the following operator in

the plan.

The same logic is applied to spatial values. The true objects shapes can be significantly

large depending on the geometry of the object (values describing Polygons are larger than

83

CHAPTER 4. SPATIAL RDF DATA QUERYING

Q3

?o

Graph

fragments

(B+ Trees)

?p Decoding
Spatial

filter

Fu(?g)

Output buffer

Output results

SQ-

buffer

Festival of lights

Film Festival

G2

G3

?o ?p

Film Festival G3 Point(7.012 43.55)

?g?o ?p

Festival of lights

Film Festival

G2

G3

Point(4.847 54.75)

Point(7.012 43.55)

?g?o ?p

1

3

1

2

2 3

Figure 4.1: The execution of an BGP-First plan

values describing points for example) and on the resolution used to represent the object.

To keep the size of the database low, and to maintain system performance, true shapes

are stored in the dictionary.

Algorithm 2: Intersection Filter (L, Qb, Q)
Data: M : List of mappings;
s: Spatial object;
use true shape: flag to use true shape;
Result: Q: The set of mappings that intersect s

1 Q← ∅;
2 for m ∈M do
3 (MBR(m), m)← decode(m);
4 if MBR(m)¬DCMBR(s) then
5 add m to Q;
6 continue;

7 if m is a point then
8 continue;
9 if use true shape = false then
10 continue ;
11 GEOm ← parseGeometry(m);
12 if GEOm¬DCs then
13 add m to Q;

14 end
15 return Q;

Once the shapes are retrieved from the dictionary, the filter function FL is evaluated.

In the case of Q1, the filter function is composed of a single filter unit Fu(?g). This latter is

evaluated in two steps (filter and refine). The Algorithm 2 is an example of an intersection

filter without any loss of generality to other region connection calculus operations. In the

84

4.2. QUERY EVALUATION STRATEGIES

filter step, only MBRs of the shapes are considered (line 4) to significantly reduce the

search space. The refining step considers the full geometry (line 11 and 12) hence, it is

computationally expensive. However, it is necessary to eliminate false positives from the

previous step.

4.2.2 Spatial-First strategy

The BGP-First strategy presented above can answer spatial-RDF queries and can be easily

integrated into the execution model of RDF QDAG. However, it has some limitations

that we discuss in this section. In this section, we introduce the second proposed strategy

Spatial-First.

When we consider the same example query Q1 with the same dataset D1, one can

observe that multiple valid plans can be run to answer the query. We can list a few of

them as an example: [−→?o,
−→?p, Fu(?g)], [←−−−−−cultural,

−→?o,
−→?p, Fu(?g)], [←−?p,

−→?p, Fu(?g),−→?o]. All

the listed plans have a common problem. Since the filter unit relies on the execution of

the previous query stars, values of the geometry need to be obtained from the dictionary.

As a result, it is impossible to use any spatial access method to speed up the spatial filter

evaluation.

In the Spatial-First strategy, we try to take advantage of a spatial access method. To

do so, we can only consider execution plans that start with the spatial filter. In the case of

query Q1, the plan we consider is the following [Fu(?g),←−?g,
←−?p,
−→?o]. As before, the spatial

filter is run using two steps. However, this time, the filtering step can benefit from the

spatial index.

The structure of the spatial index we use is an R-tree with some modifications for

better integration with RDF QDAG. The R-tree stores only object approximations in the

form of MBRs with the necessary information to continue the graph exploration. This

ensures the efficiency of the first step of the spatial filter by minimizing the number of

pages. The page size in the index is 16 Kb. The structure of the pages is demonstrated

in the figure 4.2.

For inner pages, we save 24 bytes as page header. The rest is filled with inner entries

where each entry is composed of an MBR (4 X 8 bytes) as a key and pointer to the

appropriate page (4 bytes). An inner page can have up to 454 entries.

As for the leaf pages, we keep two types of entries: Points and MBRs. The MBRs are

85

CHAPTER 4. SPATIAL RDF DATA QUERYING

Inner page:

Leaf page:

Page HeaderxminyminxmaxymaxPointer
...

24 Bytes 8B 4B8B 8B 8B

16 kB

TypePage Header xminyminxmaxymaxID
...

12 Bytes 8B 8B 8B 8B

SGin

8B 8B1B
Entry for a complex shape

Type x y ID

8B 8B 8B 8B

SGin

1B
Entry for a point

Figure 4.2: The structure of index pages and entries

Q3

?g ?o

Output buffer

Output results

Decoding
Fu(?g)

...

Spatial
Refine
step

3

21

?g

Point(7.012 43.55)G3Film Festival

?p?o?g

Point(7.012 43.55)G3Film Festival

?p?o?o

Point(7.012 43.55)

1 2

3

Figure 4.3: Execution of Spatial-First strategy

generally approximations of complex geometries. A point is represented by two coordi-

nates (x, y) and an MBR is represented by four (xmin, ymin, xmax, ymax). On the leaf page,

we save 12 bytes as page header, the rest is filled with leaf entries. For each entry, we

store the object type in 1 byte, then we store the key, which is a point/MBR in 2*8/4*8

bytes, respectively, the object id in 8 bytes and the inward pointing fragment ID also in 8

bytes. The fragment ID is used to continue with the graph exploration. A leaf page can

hold from 334 to 496 entries depending on the object types.

In the example shown in figure 4.3, only geometries ?g where MBR(?g) ¬DC MBR(q)

are returned after the exploration of the index. The next operator in the plan is standard

graph exploration matchings.

At the end of the evaluation, the decoding operation is performed to replace object

IDs with the true value. The same is applied to spatial data where MBR approximation

is replaced using the true geometries. Once the full shapes are available (true geometries)

the refining step can be performed in the same way as in the BGP-First strategy.

86

4.3. OPTIMIZATION TECHNIQUES

4.3 Optimization techniques

In this section, we present details about some optimization techniques that we propose to

further improve execution time for both proposed strategies.

4.3.1 Query scheduling

A typical DBMS can answer the same query using different execution plans. All the

plans provide the same results, however, the cost of execution for each plan is different.

The same logic applies for RDF QDAG. In the case of the latter, an execution plan is a

sequence of SQ and Filter units. Since the execution time can vary significantly from a

plan to another, it is important to choose the best execution plan for a given query.

A traditional approach to select the best plan is to use two steps: plan enumeration

and cost estimation. In the plan enumeration step, we list all the possible execution

plans. However the number of execution plans can be very significant, so enumerating

all the plans is either not possible or not efficient. Many DBMS use a heuristic approach

to enumerate only the most promising plans. In the cost estimation step, we estimate

the cost of executing each plan to select the plan with the lowest possible cost. This is

generally done using dynamic programming since many plans share some parts between

each other and it is not reasonable to recalculate the cost of the same plan segment

multiple times.

RDF QDAG uses the GOFast approach for the optimization [ZMG+21]. In this ap-

proach, both the enumeration and estimation are performed in parallel. In order to do

so, authors rely on a branch and bound algorithm. They start by constructing a tree

where each node represents the accumulated cost of all previous operations and the edges

represent plan operations. Naturally, the cost in the root is 0. The algorithm starts by

estimating the cost of all possible first operations, then it expands on the operation with

the lowest cost. GoFast continues on expanding the branch with the least cost until it

gets a full execution plan.

Estimation in GoFast is based on the statistics collected for each graph fragment. The

statistics also make it possible to reflect the interaction

The existing GOFast optimization do not takes into account the filters since the ma-

jority of the cost is caused by the graph exploration. However, this is not the case for

87

CHAPTER 4. SPATIAL RDF DATA QUERYING

the spatial filters since the cost of comparing complex shapes is high. On top of that, the

use of an additional access method (R-tree) must be accounted for in calculating the cost.

Consequently, we extend the existing logic in order to take into account the cost of filter

units. The cost of a plan is mainly the sum of cost of all star queries (both normal ans

spatial ones):

Cost(P) =
∑

qs∈ P
Cost(qs) (4.1)

The estimation of the cost of star query is already part of RDF QDAG system, however

we changed it to be calculated in terms of triples not in terms of data stars. We opted for

this change since the number of data star did not show (see appendix) a correlation with

the choice of the best plan in the case of spatial queries contrary to the number of triples.

To estimate the full cost of the plan, for each part of the execution plan, two estimations

needs to be done: estimation of the input and estimation of the number of results. This

is necessary since the estimation of the cost of part of the plan depends on the number of

results of the previous parts.

Estimation of the number of spatial objects.

The estimation of the cost of a star query is already detailed in previous work [ZMG+21],

we will detail only the cost of the filter unit. In the case of an BGP-First plan, no spatial

access method is used. In the case of Spatial-First plan, the cost of fu is the number of

spatial objects that needs to be retrieved from the index:

Cost(fu) = SOC(Q) (4.2)

SOC(Q) is the number of spatial objects estimated using the spatial index. We can

do this by taking advantage of the shallow depth of an R-tree. Indeed, since the fan-out

is high, the depth is low (generally 4 to 5 layers maximum). In the estimation phase,

we scan only the top layers of the R-Tree without loading the leaf layer. Naturally, we

count only pointers where the attached key satisfies the filter. To calculate the number of

objects (SOC(Q)) we simply multiply the number of leaf pages that satisfy the query by

the average number of objects in a page. This assumption is based on the fact that most

of the pages are close to 100% fill rate since the index is loaded using STR [LLE97] and

88

4.3. OPTIMIZATION TECHNIQUES

no updates are performed later. The only limitation of this estimation is the fact that not

all objects in the leaf pages satisfy the query.

Estimation of spatial filter results

.

The estimation of the number of results after the filter is necessary for the rest of

the process. The number of objects SOC(Q) can be considered as an estimation of the

number of results since it is an estimation of objects where the MBR satisfies the spatial

filter. However, to be able to continue calculating the cost with the GOFast approach for

the rest of the plan, the total number of objects is insufficient. We need to calculate an

estimation of the number of objects for each fragment.

The cost of a plan P is calculated in terms of the number of triples that need to be

retrieved from the disk since the disk cost is the most important cost of the query. The

cost of a particular plan is the sum of the cost of all star queries sqi that compose the

plan (equation 4.1). The cost of a star query is the number of triples retrieved from the

relevant fragments fgj:

Cost(qs) =
∑

fgj∈sq

Input Tr(fgj, sq) (4.3)

In the case of the first star query, no previous input is needed. As a consequence, the

number of triples retrieved from a particular fragment fgj is simply the number of triples

in the fragment that satisfy the predicates of the star query:

Input Tr(fgj, sq1) = #triples(fgi, prd(sq1)) (4.4)

However for the rest of the star queries, the number of triples retrieved from a partic-

ular fragment fgj is calculated using:

• #tripls(fgj, pred(sqi): the number of triples that satisfy the predicates of the star

query sqi

• Input Ds(fgj, sqi): the number of data stars considered as in input

• dist(fgj): the number of data stars in the fragment fgj

89

CHAPTER 4. SPATIAL RDF DATA QUERYING

The formula for calculating the number of triples retrieved in case i > 1 is the following:

Input Tr(fgi, sqi) = #triples(fgi, pred(sqi)) ∗ Input Ds(fg)

dist(fgj)
(4.5)

Detailed calculation of InputDs(fgj, sqi) and dist(fgj) is found in Zouaghi et al[ZMG+21]

since we did not change it. As for the number of triples retrieved from a particular frag-

ment it is the sum of all triples in the fragment where the predicate is the same as one of

the star query predicates:

#triples(fgi, prd(sq1)) =
∑

Pj∈P red(sqi)
count(pj, fg) (4.6)

In the case of Spatial-First plan, the number of triples is identical to the number of

spatial objects estimated for each fragment:

Input tr(fgi, SQ1) = #releventObject(fgj/Q) (4.7)

The number of spatial objects estimated for each fragment is estimated based on the

selectivity of the spatial query as follows:

#releventObject(fgj/Q) = size of(fgj) ∗ S select (4.8)

Where size of(fgj) is the total number of triples in the fragmentfgj and the spatial

selectivity (S select) is calculated as follows:

S select = SOC(Q)
total spatial

(4.9)

Where total spatial is the total number of spatial objects stored in the index.

On top of the estimation of the number of relevant triples to read from disk, GoFast

optimizer also relies on the number of results produced by each star query outpu DSsqi

defined in [ZMG+21] as follows:

output DSqsi
= {(Gf j, pi, k′′)|pi ∈ edges(qsi) ∧ k′′ = NDSpi

}

Where NDSpi
is the number of data stars heads relevant to the predicate pi (4.10)

90

4.3. OPTIMIZATION TECHNIQUES

However, we had to change the calculation of NDSpi
to take into account the spatial

filters. The new formula is the following:

NDSpi
=

 1 , if e.node is const

k′

dist(Gfj) ∗ dist NE(pi, Gfj) ∗ S select , otherwise
(4.11)

Where dist NE(pi, Gfj) is the number of distinct nodes linked to the data star head

in fgj with respect to the predicate pi.

With both estimations of the number of spatial objects and the spatial filter results,

the GoFast optimizer can choose the best execution plan for Spatial-RDF queries.

4.3.2 Spatial pruning

Earlier, we proposed two execution strategies, ”BGP-First” and ”Spatial-First”, of which

only the latter can benefit from a spatial access method. The ”BGP-first” strategy lacks

spatial awareness at the beginning of the process, which means that it misses opportunities

to reduce the search space based on spatial constraints. To address this issue, we propose

a new optimization technique called ”Spatial pruning”.

As discussed in section 1.4, the initial RDF graph is partitioned into graph fragments

GF for indexing and storage. When evaluating a query, only the necessary fragments

are considered based on the characteristic sets of each fragment. However, when a query

contains a spatial filter, many fragments that are considered due to their characteristic

sets do not contribute to the final results. This is because the spatial filter in the query

eliminates all the graph patterns produced by these fragments since they are connected

to spatial objects that do not satisfy the filter.

To eliminate fragments that do not contribute to the results earlier in the process, we

associate each graph fragment to an MBR such as all spatial objects connected to the

fragment are situated inside this MBR. When processing the query, the optimizer do not

choose fragment based on the graph part only, but also based on the spatial filter. If the

MBR of a fragment (MBR(Fg)) satisfies the filter, it can contain the results. However,

if the MBR does not satisfy the filter, it is immediately pruned and not considered while

evaluating the query.

The proposed algorithm 3 operates on a set of star queries specified in a query plan.

91

CHAPTER 4. SPATIAL RDF DATA QUERYING

The algorithm iterates through each star query in the plan (line 3). For each star query,

the relevant fragments are obtained based on the characteristic set (line 4). These frag-

ments are then linked to the fragments of the previous star query using the function

LinkToPreviousFragments() (line 5). If the current star query does not contain a spa-

tial filter (line 6), the algorithm proceeds to the next star query (line 7). However, if

the current star query contains a spatial filter (line 6), the algorithm loops through each

fragment while testing the intersection of the fragment’s Minimum Bounding Rectangle

(MBR) with the query (line 9). If there is no intersection between the fragment’s MBR

and the query (line 10), the fragment and all fragments linked to it are removed from

further consideration (line 11).

Algorithm 3: Spatial pruning

Data: P : Execution Plan
GF : Set of graph fragments
SF : Gfs →MBR(Gfs): List of spatial fragments MBRs
Result: Gfs : qs → GFSq|GFSq ⊆ GF :Set of fragment for each Sq

1 Gfs← [];
2 QS ← getQSList(P);
3 for sqi ∈ QS do
4 CurrentFGs← getCurrentFragments(sqi);
5 LinkToPreviousFragments(Gfs, CurrentGfs);
6 if isSpatialF ilter(qsi) = false then
7 continue;
8 for fgi ∈ CurrentFGs do
9 MBRfgi ← SF.getMBR(fgi);
10 if MBRfgi¬DCs then
11 Gfs.removeAllFGsConnectedTo(fgi);
12 end

13 end
14 return Gfs;

4.4 Experimental evaluation

In this section we discuss several experimental results on the various approaches and

optimisation techniques mentioned in the previous section. We also compare our proposed

solution with a well-known commercial Triplestore Virtuoso.

92

4.4. EXPERIMENTAL EVALUATION

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

0
0,2

0,5

1

·104

Queries

E
x
ec
u
ti
on

ti
m
e
(m

s) BGP-first
Spatial-first

Figure 4.4: Execution time (nanoseconds) of queries using both strategies BGP-first and Spatial-
first.

4.4.1 Experimental setup and methodology

We perform several experiments on RDF QDAG after integrating the approach and tech-

niques proposed in this chapter. RDF QDAG is a project developed using Java and

C++. The storage and access methods are developed using C++ and compiled using

GCC version 7.5.0. The engine and optimizer are implemented using Java 11 and built

using maven 3.8.6. For the run environment, we used Open JDK version 11.0.16.

All experiments were run on a machine equipped with Intel Xeon (Skylake, IBRS) @

10x 2.295GHz and 64 GB of RAM and an SSD running Ubuntu 18.04 bionic with linux

kernel x86 64 Linux 4.15.0-194-generic.

For the evaluation, we used the YAGO knowledge base. YAGO is a real world data-set

that contains more than 234 million facts on witch 4 million are spatial objects.

All experiments are performed on a fresh install of the operating system. We clear

page cache, dentry and inode cache before each query. Execution time is calculated from

the submission of the query to the end of writing the results into an output file.

4.4.2 Effect of evaluation strategies

To study the effect of evaluation strategies on the execution time, we ran several queries

on the YAGO data-set.

The results of the execution time for queries using the BGP-First and Spatial-first

strategies are shown in figure 4.4. Neither approach consistently outperforms the other,

as demonstrated by the varying performance in queries Q4, Q2, and Q5, where the Spatial-

93

CHAPTER 4. SPATIAL RDF DATA QUERYING

Table 4.2: Execution time of queries on YAGO

Query
Best BGP-First plan Best Spatial-First plan

Plan ID Exec time (ms) # Triples Plan ID Exec Time (ms) # Triples
Q1 1 1506 32503 5 11014 463841
Q2 4 7442 238414 6 6981 144671
Q3 4 735 4377 5 11896 699942
Q4 3 7855 217526 2 3864 91326
Q5 4 5005 205310 6 2942 60374
Q6 1 1488 10639 3 2435 38092
Q7 3 7749 217526 2 9296 56272
Q8 1 9366 369054 3 9548 438063

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

0

25

50

75

100

Queries

A
cc
u
ra
cy

%

Initial accuracy improved accuracy

Figure 4.5: Initial accuracy and the improved accuracy of the optimizer.

first approach is superior, and the remaining queries, in which BGP-first performs better.

To further investigate the factors contributing to the varying performance of each

approach, we analyzed intermediary results in both the spatial and graph parts of the

queries to extract the total number of triples loaded from the disk. The total number of

triples is displayed in table 4.2. The results in the table show a clear correlation between

the choice of the best execution strategy and the number of triples fetched from the disk.

In each query, the strategy with the lower number of triples is the best-performing one.

This observation has motivated the improvements of the optimizer and the cost model

proposed in section 4.3.

4.4.3 Effect of Scheduling

To select the best execution plan and execution strategy, we extended the GoFast op-

timizer to be able to estimate the cost and number of results of spatial filters. As far

as experimental validation goes, we propose to compare the improved version of GoFast

94

4.4. EXPERIMENTAL EVALUATION

with the existing one. For that, we use the accuracy of the best plan prediction as a

performance metric. The accuracy of the optimizer for a given query is calculated as

follows:

A = #plans−Rank plan

#plans− 1 (4.12)

The primary function of an optimizer is to select the optimal execution plan for a

given query. To accomplish this, the optimizer assigns a rank to each candidate plan

based on an estimation of its cost. The accuracy of the optimizer is measured in terms of

the rank of the true best plan. Specifically, the accuracy is calculated as the proportion

of the true best plan’s rank among all the candidate plans. A higher rank for the true

best plan corresponds to a higher accuracy, with an accuracy of 100% indicating that the

optimizer has successfully identified the true best plan as the top-ranked plan. Conversely,

an accuracy of 0% would indicate that the optimizer ranked the true best plan as the worst

among the candidates.

The figure 4.5 shows the initial accuracy of Go-Fast and the improved accuracy. As we

can notice, the optimizer after the proposed improvements provides a better prediction of

the best execution plan. It can find the actual best execution plan for the all of the test

queries except Q6 and Q7. Moreover, even for the latter queries, it provides the same or

better accuracy than the original optimizer. This is due to a better estimation of the cost

of the spatial filters.

The accuracy of both approaches is plotted in the figure 4.5. However, more detailed

results are in the Appendix where we list the results of estimation of each plan compared

to the true cost. We will refer to values form the detailed tables to better explain the

results. The accuracy on queries Q6 and Q7 demonstrates that there is still room for

improvement for the optimizer. In Q6, the improved optimizer chooses the second best

execution plan performing better then the old approach, which choose the third best plan.

This is due to the error of estimation. The best plan for Q6 is the plan P1 with a real cost

of 10639, followed by the plan P7 with a real cost of 7338. The results of the estimation

proposed a cost of 9894 for P1 and 7338 for P7 leading to the choice of P7 as the best

plan.

We can notice the same problem with the query Q7 where the cost of P3 is 217526

however it is estimated to be 194145. The gap between the real cost and the estimation

95

CHAPTER 4. SPATIAL RDF DATA QUERYING

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

0
0,2

0,5

1

1,5
·104

Queries

E
x
ec
u
ti
on

ti
m
e
(m

s) WKT
WKB

Figure 4.6: Execution time (ms) of queries using WKT and WKB.

is due to the number of objects eliminated with the refinement step in the spatial filter.

In the refinement step true shapes are considered and in the case of Q7 many objects do

not satisfy the spatial filter despite that there MBR approximations do satisfy the latter.

On top of that, the number of acceptable plans is very low for Q7 (only four acceptable

plans, meaning that each error is amplified when using the accuracy metric leading to

33% accuracy.

4.4.4 Effect of Encoding

As we mentioned in chapter 1, RDF QDAG stores data in three types of files: spatial

index, graph fragments and dictionary files. The description of a spatial object in a

vector format can be long, for example the map of a state or a river. For efficiency, we

store the full resolution shape definition in the dictionary. The full value will be replaced

by an ID in the graph fragments and with an approximation (MBR) in the spatial index.

For the storage of the spatial object, we have mainly two options: The Well Known

Text format (WKT) and the Well Known Binary format (WKB). RDF QDAG is capable

of outputting both representations, however, for the storage format, we experimented with

both representations to determine the best encoding format for the system.

In Figure 4.6, we show the effect of the encoding format on the performance of the

queries. We can clearly notice that the WKB encoding outperforms the WKT one for all

queries. This is due to the different sizes of the two encoding formats. WKB is generally

more compact than WKT, which leads to less I/O cost. On top of that, deserializing the

WKB format is more efficient than parsing the WKT format. For RDF QDAG system,

96

4.4. EXPERIMENTAL EVALUATION

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

0
0,2

0,5

1

1,5
·104

Queries

E
x
ec
u
ti
on

ti
m
e
(m

s) Without SP
With SP

Figure 4.7: Execution time (ms) of queries with and without Spatial Pruning.

if the user requests an output of the WKT format, it is more efficient to deserialize the

WKB stored and convert it to WKT than to parse the WKT format.

4.4.5 Effect of spatial pruning

In figure 4.7, we compare the execution time of queries with and without spatial pruning.

As demonstrated in the figure, the spatial pruning improves performance for most of the

queries. This is due to the decreasing size of the search space. However, this is not the

case of all queries, since the number of pruned fragments depends on the query and can

vary form one to another. This is the case of query Q2 where no fragment is pruned.

Furthermore, the incurred overhead associated with evaluating fragments for pruning

purposes can be deemed negligible, as exemplified by the examination of query. (Q2).

4.4.6 Comparison against Virtuoso

After the optimization techniques applied to improve the performance of RDF QDAG,

we compare it with a commercial Triplestore Virtuoso. We choose Virtuoso since it is a

stable and wildly used Triplestore. On top of that it is one of the few Triplestores capable

of answering spatial-rdf queries since it support the GeoSPARQL norm proposed by the

Open Geospatial Consortium. As for the other solutions (e.g., GraphDB and Strabon)

we where unable to load the dataset due to stability issues in the mentioned systems.

The figure 4.8 depicts the execution times of queries run on both Virtuoso and RDF -

QDAG. For RDF QDAG, we plot the execution time of two different runs, one without

97

CHAPTER 4. SPATIAL RDF DATA QUERYING

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8

0
0,2

0,5

1

1,5
·104

Queries

E
x
ec
u
ti
on

ti
m
e
(m

s) Virtuoso
RDF QDAG (WKT)

RDF QDAG (WKB + SP)

Figure 4.8: Compression of execution time between Virtuoso and RDF QDAG.

any optimization technique used (WKT) the other one with the optimization techniques

proposed and studied in previous sections (WKB+SP). We can notice that the WKT

approach outperforms Virtuoso in some queries like Q1 and Q5. However, on most of the

queries,Virtuoso still had better performace leading to a better total execution time of 47

seconds for Virtuoso compared to 52 seconds for WKT. On the other hand, after applying

the proposed optimization techniques (WKT+SP), RDF QDAG outperforms Virtuoso on

all of the test queries without exception and has a better total execution time.

4.5 Conclusion

In this chapter, we addressed the evaluation of spatial RDF queries issue in the setting

of a graph exploration-based system, known as RDF QDAG. To enhance the system’s

capability to answer such queries, we proposed an extension that integrates spatial aware-

ness into the system’s storage layer, evaluation engine and optimization process. More

specifically, we proposed the use of an R-tree data structure, which is adapted to better

fit the system, as well as the integration of the evaluation of spatial filters into the exe-

cution plans. Additionally, we introduced two evaluation strategies, namely, BGP-First

and Spatial-First, for the execution engine. In terms of optimization, we presented a cost

model that considers the cost of spatial operations in order to optimize the selection of

execution plans. Furthermore, we proposed a spatial pruning technique to further improve

performance by reducing the search space.

On the other hand, we validated our proposed extension to RDF QDAG through an

98

4.5. CONCLUSION

experimental setup using a real-world dataset (i.e., YAGO). Our results indicated that

the use of optimization techniques such as WKB encoding and spatial pruning improve

the performance of the system. We also evaluated the proposed execution strategies of

BGP-First and Spatial-First, and found that each strategy had advantages and limitations

depending on the query being executed. To address this, we developed a cost model to

determine the most suitable strategy for each query. Our results also indicated that

the proposed cost model enables the system to better predict the best execution plan

compared to the existing one.

99

CHAPTER 4. SPATIAL RDF DATA QUERYING

100

Conclusion and Perspectives

Conclusion

This thesis delves into the intricacies of spatial and RDF data processing, with a specific

focus on spatial data storage, the integration of spatial data processing into triplestores,

and optimization techniques applicable to hybrid spatial and RDF datasets. A thorough

exploration of spatial data processing techniques utilized in spatial database management

systems was undertaken to evaluate diverse trends and approaches. Furthermore, an

examination of triplestores capable of housing RDF data and handling SPARQL queries

was conducted. Through this study, numerous challenges affecting the performance of

spatial-RDF data processing were identified. These challenges include:

• Efficient Processing of Disk-Resident Spatial Data: As the magnitude of spatial

data handled by contemporary applications continues to grow, leveraging secondary

storage media becomes imperative. Yet, the access time associated with such media

presents a substantial bottleneck. The selection of a suitable indexing structure

and access method becomes pivotal to achieving peak performance. The intrinsic

characteristics of spatial data, including the absence of a universal order, further

complicate this endeavor, given that many access methods depend on such an order.

• Processing Spatial Data in the Context of Graph Databases: The central chal-

lenge pertains to processing spatial data within graph databases, with a special

emphasis on triplestores. Within graph structures, nodes might encapsulate spatial

details through coordinates or shapes. Queries can encompass both graph-related

constraints (e.g., connectivity to specific nodes) and spatial constraints (e.g., inter-

secting with a region or proximity to an object). These queries introduce distinctive

challenges due to the contrasting attributes of the two data types and the varied

101

Conclusion and Perspectives

processing methods employed. The development of a hybrid processing strategy,

adept at effectively managing both data types, becomes pivotal for attaining opti-

mal performance.

• Optimizing Execution Plans for Hybrid Spatial-RDF Data: Within the realm of

triplestores, multiple execution plans can arise as equivalents from a single query.

Nonetheless, the costs and execution times of these plans may exhibit substantial

discrepancies. The selection of the most suitable execution plan plays a pivotal role

in achieving optimal performance. This decision hinges upon cost estimation, a task

further complicated by the disparities in data types and processing methodologies

employed.

In response to the initial challenge of efficient processing of spatial data stored on disk,

we undertook an exhaustive examination of established indexing methodologies for spatial

data. We elucidated the merits and demerits associated with each indexing technique.

Through our exploration, a consistent pattern emerged within tree-based indexes, notably

in R-tree-based variants, wherein backtracking operations are employed to reassess upper

levels of the index tree. Nevertheless, these backtracking procedures frequently entail

supplementary disk expenses when reloading the necessary pages.

To mitigate these disk costs and improve efficiency, we proposed a novel indexing

technique called FASTER. FASTER is an R-tree traversal algorithm designed to minimize

disk costs by reducing the number of backtracks performed. The key concept behind

FASTER is to evaluate all entries within a specific index node and store the entries with

potential answers further down the tree in a highly available queue stored in the main

memory.

To evaluate the performance of FASTER, we compared it with the Standard R-Tree

Traversal algorithm (SRT) using real-world datasets. The results of our evaluation clearly

demonstrate that FASTER outperforms SRT in almost all scenarios. It provides a sig-

nificant speedup, reaching up to 50% improvement in favorable scenarios, while incurring

only minimal or negligible overhead in worst-case scenarios. These findings highlight the

effectiveness of FASTER in reducing disk costs and enhancing the efficiency of spatial

data processing.

To tackle the second challenge of processing spatial data in the context of graph

databases, we selected RDF QDAG as our triplestore and extended it to incorporate spa-

102

Conclusion and Perspectives

tial data processing capabilities. This decision was motivated by RDF QDAG’s efficiency

and its ability to strike a balance between performance and scalability. In order to inte-

grate spatial data processing, several modifications were made to different aspects of the

system, including storage, access methods, evaluation engine, parsing and optimizer.

We proposed two evaluation strategies: BGP-first strategy and Spatial-First strat-

egy. The BGP-first strategy involves evaluating the graph constraints before the spatial

constraints. However, this approach does not fully leverage the benefits of spatial ac-

cess methods since they typically require early utilization. To address this limitation,

we introduced the Spatial-First strategy, which takes advantage of the FASTER access

method.

Both of these strategies were empirically evaluated using real-world datasets and com-

pared against a commercial triplestore, specifically Virtuoso. The results demonstrated

significant variations in execution time across different queries and execution plans. Each

strategy exhibited the potential to outperform Virtuoso and deliver superior performance

in favorable scenarios. However, in worst-case scenarios, their performance fell short.

Consequently, the need arose to determine the best execution strategy for each query,

considering the specific characteristics of the query and the available execution plans.

The third challenge revolves around optimizing execution plans for hybrid Spatial-RDF

data. The selection of the most suitable execution plan relies on accurately estimating

their costs. RDF QDAG employs the GoFast optimizer for this purpose. However, Go-

Fast lacks spatial awareness as it does not gather information pertaining to the spatial

distribution of the data. To overcome this limitation, we proposed a novel cost model

that incorporates spatial data into the cost evaluation process at various stages of the

execution plan, leading to more precise estimations. The new cost model leverages the

previously described Index as a valuable source of statistics regarding spatial data.

Next, we compared the performance of the new cost model with that of the existing

one. To assess the accuracy of the optimizer, we employed a ranking system where a higher

rank assigned to the true best plan indicates a greater level of accuracy. The enhanced

optimizer demonstrated superior prediction of the best execution plan, surpassing the

original optimizer for the majority of the tested queries. The accuracy of the optimizer

was significantly improved, enabling it to identify the true best plan in most cases, with

only a few queries exhibiting room for further enhancement.

103

Conclusion and Perspectives

Perspectives

The research presented in this manuscript not only provides valuable insights into the

integration of spatial data in triplestores but also paves the way for numerous prospective

directions. Some avenues are currently under investigation, while others are envisaged for

the medium term.

Expanding the work to cover spatio-temporal data. While the primary emphasis of

this study revolves around the integration of spatial data, it’s imperative to recognize

that the temporal dimension holds immense importance in numerous real-world contexts.

Therefore, broadening the horizons of this work to encompass the integration of spatio-

temporal data presents a highly promising avenue for exploration.

Incorporating the temporal aspect into the existing framework poses intriguing chal-

lenges and opportunities. Users often require temporal constraints in their queries, such as

retrieving results that occurred before a specific event or within a certain time frame. In-

troducing the temporal dimension introduces the necessity to handle and process moving

objects, thereby necessitating the adoption of alternative storage, indexing, and processing

techniques. Consequently, future investigations should delve into the intricate interplay

between spatial and temporal data, exploring novel approaches for effectively managing

and querying spatio-temporal information within triplestores.

The use of machine learning techniques for spatial-RDF data. The increasing pop-

ularity and adoption of machine learning techniques within the realm of database man-

agement systems have engendered a multitude of notable contributions, such as learned

indexes and machine learning-based optimizers. Specifically, in the case of RDF QDAG,

the system is equipped with a wealth of valuable statistics pertaining to the databases, as

well as extensive query logs and execution plans, all of which serve optimization purposes.

Leveraging this abundance of information presents an opportunity to train a model that

can estimate the cost associated with executing different execution plans, thus facilitating

the selection of the optimal plan.

Within the domain of spatial data processing, machine learning models can be ef-

fectively trained to discern patterns and understand the distribution of spatial objects

throughout the data universe. By leveraging these models, it becomes possible to en-

hance the prediction accuracy of spatial object quantities and the associated costs of

performing spatial operations. Furthermore, the introduction of learned indexes offers a

104

Conclusion and Perspectives

promising alternative to the traditional spatial indexes employed by the system, enabling

more efficient spatial data retrieval and query processing.

The incorporation of machine learning techniques within the optimization framework

and spatial data processing modules of RDF QDAG introduces novel avenues for ex-

ploration and research. The exploitation of learned models for cost estimation and the

adoption of learned indexes for spatial data retrieval hold significant potential for ad-

vancing query optimization and bolstering the overall performance of hybrid Spatial-RDF

databases.

A Parallel Evolution of Spatial Queries. Recently, RDF QDAG has been equipped

with a parallel query evaluation strategy. This strategy is based on the Bulk Synchronous

Parallel (BSP) model, which aligns well with the exploration-based evaluation of the log-

ical graph associated with the data. Supporting spatial operators presents certain chal-

lenges. Indeed, our proposals in this thesis need to be adapted to preserve the scalability-

performance trade-off. Furthermore, an in-depth study of the data partitioning strategy is

required. In addition to the graph partitioning proposed in RDF QDAG, spatial object-

based partitioning based on spatial coordinates can be envisioned. The evaluation engine

will also be impacted by this evolution. It is essential to account for the distributed nature

of the data, especially for distance-based join processing. Lastly, the cost associated with

network transfers related to query evaluation must be incorporated into the cost model

integrated within the RDF QDAG optimizer.

105

Conclusion and Perspectives

106

Bibliographie

[Adm22] Great Britain Admiralty. Admiralty manual of navigation. (No Title),

1922. (Cited in page 17)

[AMMH09] Daniel J Abadi, Adam Marcus, Samuel R Madden, and Kate Hollenbach.

Sw-store: a vertically partitioned dbms for semantic web data manage-

ment. The VLDB Journal, 18(2):385–406, 2009. (Cited in page 5), (Cited

in page 58)

[ASV+13] Ablimit Aji, Xiling Sun, Hoang Vo, Qioaling Liu, Rubao Lee, Xiaodong

Zhang, Joel Saltz, and Fusheng Wang. Demonstration of hadoop-gis: a

spatial data warehousing system over mapreduce. In Proceedings of the 21st

ACM SIGSPATIAL International Conference on Advances in Geographic

Information Systems, pages 528–531. ACM, 2013. (Cited in page 50)

[AWV+13] Ablimit Aji, Fusheng Wang, Hoang Vo, Rubao Lee, Qiaoling Liu, Xiaodong

Zhang, and Joel Saltz. Hadoop gis: a high performance spatial data ware-

housing system over mapreduce. Proceedings of the VLDB Endowment,

6(11):1009–1020, 2013. (Cited in page 46), (Cited in page 50)

[AXL+15] Michael Armbrust, Reynold S Xin, Cheng Lian, Yin Huai, Davies Liu,

Joseph K Bradley, Xiangrui Meng, Tomer Kaftan, Michael J Franklin, Ali

Ghodsi, et al. Spark sql: Relational data processing in spark. In Proceedings

of the 2015 ACM SIGMOD international conference on management of

data, pages 1383–1394. ACM, 2015. (Cited in page 55)

[BDK+13] Mihaela A Bornea, Julian Dolby, Anastasios Kementsietsidis, Kavitha

Srinivas, Patrick Dantressangle, Octavian Udrea, and Bishwaranjan Bhat-

tacharjee. Building an efficient rdf store over a relational database. In

Proceedings of the 2013 ACM SIGMOD International Conference on Man-

agement of Data, pages 121–132, 2013. (Cited in page 5), (Cited in page

58), (Cited in page 59)

107

Conclusion and Perspectives

[Ben75] Jon Louis Bentley. Multidimensional binary search trees used for associa-

tive searching. Communications of the ACM, 18(9):509–517, 1975. (Cited

in page 33), (Cited in page 38)

[BK12] Robert Battle and Dave Kolas. Enabling the geospatial semantic web with

parliament and geosparql. Semantic Web, 3(4):355–370, 2012. (Cited in

page 22), (Cited in page 59), (Cited in page 80)

[BKS93] Thomas Brinkhoff, Hans-Peter Kriegel, and Bernhard Seeger. Efficient

processing of spatial joins using R-trees, volume 22. ACM, 1993. (Cited in

page 30), (Cited in page 33), (Cited in page 43), (Cited in page 45)

[BKSS90] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard

Seeger. The r*-tree: an efficient and robust access method for points and

rectangles. In Acm Sigmod Record, volume 19, pages 322–331. Acm, 1990.

(Cited in page 40)

[BKVH01] Jeen Broekstra, Arjohn Kampman, and Frank Van Harmelen. Sesame:

An architecture for storing and querying rdf data and schema information,

2001. (Cited in page 5), (Cited in page 6), (Cited in page 58), (Cited in

page 59), (Cited in page 60)

[BLHL01] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web.

Scientific american, 284(5):34–43, 2001. (Cited in page 2)

[BNM10] Andreas Brodt, Daniela Nicklas, and Bernhard Mitschang. Deep integra-

tion of spatial query processing into native rdf triple stores. In Proceedings

of the 18th SIGSPATIAL International Conference on Advances in Geo-

graphic Information Systems, pages 33–42, 2010. (Cited in page 6), (Cited

in page 60)

[CB17] Francesco Cafagna and Michael H Böhlen. Disjoint interval partitioning.

The VLDB Journal—The International Journal on Very Large Data Bases,

26(3):447–466, 2017. (Cited in page 30), (Cited in page 35)

[CCZY+15] Georgios Chatzimilioudis, Constantinos Costa, Demetrios Zeinalipour-

Yazti, Wang-Chien Lee, and Evaggelia Pitoura. Distributed in-memory

processing of all k nearest neighbor queries. IEEE Transactions on Knowl-

edge and Data Engineering, 28(4):925–938, 2015. (Cited in page 55)

[CSPG20] Tanvi Chawla, Girdhari Singh, Emmanuel S Pilli, and Mahesh Chandra

Govil. Storage, partitioning, indexing and retrieval in big rdf frameworks:

108

Conclusion and Perspectives

A survey. Computer Science Review, 38:100309, 2020. (Cited in page 57),

(Cited in page 58)

[DG08] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data process-

ing on large clusters. Communications of the ACM, 51(1):107–113, 2008.

(Cited in page 45)

[EM13] Ahmed Eldawy and Mohamed F Mokbel. A demonstration of spatial-

hadoop: An efficient mapreduce framework for spatial data. Proceedings

of the VLDB Endowment, 6(12):1230–1233, 2013. (Cited in page 51)

[EM15] Ahmed Eldawy and Mohamed F Mokbel. Spatialhadoop: A mapreduce

framework for spatial data. In 2015 IEEE 31st international conference

on Data Engineering, pages 1352–1363. IEEE, 2015. (Cited in page 46),

(Cited in page 51), (Cited in page 67)

[FB74] Raphael A. Finkel and Jon Louis Bentley. Quad trees a data structure for

retrieval on composite keys. Acta informatica, 4(1):1–9, 1974. (Cited in

page 33), (Cited in page 39), (Cited in page 45)

[FHL14] Jianqing Fan, Fang Han, and Han Liu. Challenges of big data analysis.

National science review, 1(2):293–314, 2014. (Cited in page 1)

[FMSHFM12] Vanessa Frias-Martinez, Victor Soto, Heath Hohwald, and Enrique Frias-

Martinez. Characterizing urban landscapes using geolocated tweets. In

2012 International conference on privacy, security, risk and trust and 2012

international confernece on social computing, pages 239–248. IEEE, 2012.

(Cited in page 1)

[GGCI+16] Francisco Garćıa-Garćıa, Antonio Corral, Luis Iribarne, Michael Vassi-

lakopoulos, and Yannis Manolopoulos. Enhancing spatialhadoop with clos-

est pair queries. In East European Conference on Advances in Databases

and Information Systems, pages 212–225. Springer, 2016. (Cited in page

46), (Cited in page 53)

[GGCI+18] Francisco Garćıa-Garćıa, Antonio Corral, Luis Iribarne, Michael Vassi-

lakopoulos, and Yannis Manolopoulos. Efficient large-scale distance-based

join queries in spatialhadoop. GeoInformatica, 22(2):171–209, 2018. (Cited

in page 47), (Cited in page 53)

[Gra] Graphdb. https://graphdb.ontotext.com/. Accessed: 2021-10-18.

(Cited in page 6), (Cited in page 60)

109

https://graphdb.ontotext.com/

Conclusion and Perspectives

[Gut84] Antonin Guttman. R-trees: a dynamic index structure for spatial searching,

volume 14. ACM, 1984. (Cited in page 39), (Cited in page 40), (Cited in

page 60)

[Güt94] Ralf Hartmut Güting. An introduction to spatial database systems. The

VLDB Journal—The International Journal on Very Large Data Bases,

3(4):357–399, 1994. (Cited in page 15)

[HAE+15] James N Hughes, Andrew Annex, Christopher N Eichelberger, Anthony

Fox, Andrew Hulbert, and Michael Ronquest. Geomesa: a distributed

architecture for spatio-temporal fusion. In Geospatial Informatics, Fusion,

and Motion Video Analytics V, volume 9473, page 94730F. International

Society for Optics and Photonics, 2015. (Cited in page 54)

[HG03] Stephen Harris and Nicholas Gibbins. 3store: Efficient bulk rdf storage.

1st International Workshop on Practical and Scalable Semantic Systems

(PSSS’03), Sanibel Island, Florida, pages 1–15, 2003. (Cited in page 5),

(Cited in page 58), (Cited in page 80)

[Hit21] Pascal Hitzler. A review of the semantic web field. Communications of the

ACM, 64(2):76–83, 2021. (Cited in page 2), (Cited in page 20)

[HLS+09] Steve Harris, Nick Lamb, Nigel Shadbolt, et al. 4store: The design and

implementation of a clustered rdf store. In 5th International Workshop on

Scalable Semantic Web Knowledge Base Systems (SSWS2009), volume 94,

2009. (Cited in page 58), (Cited in page 59)

[HNS88] Klaus Hinrichs, Jurg Nievergelt, and Peter Schorn. Plane-sweep solves the

closest pair problem elegantly. Information Processing Letters, 26(5):255–

261, 1988. (Cited in page 35), (Cited in page 45)

[JDW+13] Yu Jiang, Dong Deng, Jiannan Wang, Guoliang Li, and Jianhua Feng.

Efficient parallel partition-based algorithms for similarity search and join

with edit distance constraints. In Proceedings of the Joint EDBT/ICDT

2013 Workshops, pages 341–348. ACM, 2013. (Cited in page 17)

[KCK01] Kihong Kim, Sang K Cha, and Keunjoo Kwon. Optimizing multidimen-

sional index trees for main memory access. In ACM SIGMOD Record,

volume 30, pages 139–150. ACM, 2001. (Cited in page 5), (Cited in page

40), (Cited in page 45)

110

Conclusion and Perspectives

[KK10] Manolis Koubarakis and Kostis Kyzirakos. Modeling and querying meta-

data in the semantic sensor web: The model strdf and the query language

stsparql. In Extended Semantic Web Conference, pages 425–439. Springer,

2010. (Cited in page 22), (Cited in page 80)

[KKK12] Kostis Kyzirakos, Manos Karpathiotakis, and Manolis Koubarakis. Stra-

bon: A semantic geospatial dbms. In International Semantic Web Con-

ference, pages 295–311. Springer, 2012. (Cited in page 6), (Cited in page

59), (Cited in page 60)

[KMG+21] Abdallah Khelil, Amin Mesmoudi, Jorge Galicia, Ladjel Bellatreche,

Mohand-Säıd Hacid, and Emmanuel Coquery. Combining graph explo-

ration and fragmentation for scalable rdf query processing. Information

Systems Frontiers, 23(1):165–183, 2021. (Cited in page 5), (Cited in page

22), (Cited in page 24), (Cited in page 58), (Cited in page 59), (Cited

in page 80)

[LGWL17] Yongxuan Lai, Xing Gao, Tian Wang, and Ziyu Lin. Efficient iceberg join

processing in wireless sensor networks. International Journal of Embedded

Systems, 9(4):365–378, 2017. (Cited in page 19)

[LLE97] Scott T Leutenegger, Mario A Lopez, and Jeffrey Edgington. Str: A simple

and efficient algorithm for r-tree packing. In Proceedings 13th International

Conference on Data Engineering, pages 497–506. IEEE, 1997. (Cited in

page 74), (Cited in page 80), (Cited in page 88)

[LN97] Scott T Leutenegger and David M Nicol. Efficient bulk-loading of gridfiles.

IEEE Transactions on Knowledge and Data Engineering, 9(3):410–420,

1997. (Cited in page 32)

[LRZ+20] Jiaying Liu, Jing Ren, Wenqing Zheng, Lianhua Chi, Ivan Lee, and Feng

Xia. Web of scholars: A scholar knowledge graph. In Proceedings of the

43rd International ACM SIGIR Conference on Research and Development

in Information Retrieval, pages 2153–2156, 2020. (Cited in page 2)

[LSCO12] Wei Lu, Yanyan Shen, Su Chen, and Beng Chin Ooi. Efficient processing

of k nearest neighbor joins using mapreduce. Proceedings of the VLDB

Endowment, 5(10):1016–1027, 2012. (Cited in page 46), (Cited in page

49), (Cited in page 55)

[ME92] Priti Mishra and Margaret H Eich. Join processing in relational databases.

111

Conclusion and Perspectives

ACM Computing Surveys (CSUR), 24(1):63–113, 1992. (Cited in page 30),

(Cited in page 33), (Cited in page 45)

[NM11] Thomas Neumann and Guido Moerkotte. Characteristic sets: Accurate

cardinality estimation for rdf queries with multiple joins. In 2011 IEEE

27th International Conference on Data Engineering, pages 984–994. IEEE,

2011. (Cited in page 23)

[NQJ17] Sadegh Nobari, Qiang Qu, and Christian S Jensen. In-memory spatial join:

The data matters! In EDBT, pages 462–465, 2017. (Cited in page 42)

[NTH+13] Sadegh Nobari, Farhan Tauheed, Thomas Heinis, Panagiotis Karras,

Stéphane Bressan, and Anastasia Ailamaki. Touch: in-memory spatial

join by hierarchical data-oriented partitioning. In Proceedings of the 2013

ACM SIGMOD International Conference on Management of Data, pages

701–712. ACM, 2013. (Cited in page 30), (Cited in page 41), (Cited in

page 42), (Cited in page 45)

[NW08] Thomas Neumann and Gerhard Weikum. Rdf-3x: a risc-style engine for

rdf. Proceedings of the VLDB Endowment, 1(1):647–659, 2008. (Cited in

page 6), (Cited in page 24), (Cited in page 58), (Cited in page 60)

[PAG09] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and

complexity of sparql. ACM Transactions on Database Systems (TODS),

34(3):1–45, 2009. (Cited in page 21)

[PD96] Jignesh M Patel and David J DeWitt. Partition based spatial-merge join.

In ACM Sigmod Record, volume 25, pages 259–270. ACM, 1996. (Cited in

page 30), (Cited in page 42), (Cited in page 45)

[RCVM16] George Roumelis, Antonio Corral, Michael Vassilakopoulos, and Yannis

Manolopoulos. New plane-sweep algorithms for distance-based join queries

in spatial databases. GeoInformatica, 20(4):571–628, 2016. (Cited in page

36), (Cited in page 45)

[Rob81] John T Robinson. The kdb-tree: a search structure for large multidimen-

sional dynamic indexes. In Proceedings of the 1981 ACM SIGMOD in-

ternational conference on Management of data, pages 10–18. ACM, 1981.

(Cited in page 6), (Cited in page 38), (Cited in page 45)

[RVC11] George Roumelis, Michael Vassilakopoulos, and Antonio Corral. Nearest

neighbor algorithms using xbr-trees. In 2011 15th Panhellenic Conference

on Informatics, pages 51–55. IEEE, 2011. (Cited in page 39)

112

Conclusion and Perspectives

[RVCM14] George Roumelis, Michael Vassilakopoulos, Antonio Corral, and Yannis

Manolopoulos. A new plane-sweep algorithm for the k-closest-pairs query.

In International Conference on Current Trends in Theory and Practice of

Informatics, pages 478–490. Springer, 2014. (Cited in page 36), (Cited in

page 45)

[RVCM18] George Roumelis, Michael Vassilakopoulos, Antonio Corral, and Yannis

Manolopoulos. An efficient algorithm for bulk-loading xbr+-trees. Com-

puter Standards & Interfaces, 57:83–100, 2018. (Cited in page 39)

[RVL+15] George Roumelis, Michael Vassilakopoulos, Thanasis Loukopoulos, Anto-

nio Corral, and Yannis Manolopoulos. The xbr+-tree: An efficient access

method for points. In International Conference on Database and Expert

Systems Applications, pages 43–58. Springer, 2015. (Cited in page 6),

(Cited in page 39), (Cited in page 45)

[SKS+97] Abraham Silberschatz, Henry F Korth, Shashank Sudarshan, et al.

Database system concepts, volume 4. McGraw-Hill New York, 1997. (Cited

in page 15)

[ŠŠC+09] Darius Šidlauskas, Simonas Šaltenis, Christian W Christiansen, Jan M

Johansen, and Donatas Šaulys. Trees or grids?: indexing moving objects in

main memory. In Proceedings of the 17th ACM SIGSPATIAL international

conference on Advances in Geographic Information Systems, pages 236–

245. ACM, 2009. (Cited in page 37), (Cited in page 45)

[Sto03] Knut Stolze. Sql/mm spatial-the standard to manage spatial data in a

relational database system. In BTW, volume 2003, pages 247–264, 2003.

(Cited in page 50)

[TLH20] Ilaria Tiddi, Freddy Lécué, and Pascal Hitzler. Knowledge graphs for

explainable artificial intelligence: Foundations, applications and challenges.

2020. (Cited in page 2)

[TYA+16] M Tang, Y Yu, WG Aref, AR Mahmood, QM Malluhi, and M Ouzzani. In-

memory distributed spatial query processing and optimization. Technical

report, Purdue technical report, 2016. (Cited in page 39)

[TYM+16] Mingjie Tang, Yongyang Yu, Qutaibah M Malluhi, Mourad Ouzzani, and

Walid G Aref. Locationspark: A distributed in-memory data manage-

ment system for big spatial data. Proceedings of the VLDB Endowment,

113

Conclusion and Perspectives

9(13):1565–1568, 2016. (Cited in page 47), (Cited in page 54), (Cited in

page 67)

[Val87] Patrick Valduriez. Join indices. ACM Transactions on Database Systems

(TODS), 12(2):218–246, 1987. (Cited in page 43)

[Ver67] Loup Verlet. Computer” experiments” on classical fluids. i. thermodynami-

cal properties of lennard-jones molecules. Physical review, 159(1):98, 1967.

(Cited in page 67)

[vir] Virtuoso. https://virtuoso.openlinksw.com/. Accessed: 2021-10-18.

(Cited in page 6), (Cited in page 60)

[VNB03] Stratis D Viglas, Jeffrey F Naughton, and Josef Burger. Maximizing the

output rate of multi-way join queries over streaming information sources. In

Proceedings 2003 VLDB Conference, pages 285–296. Elsevier, 2003. (Cited

in page 19)

[WFL10] Jiannan Wang, Jianhua Feng, and Guoliang Li. Trie-join: Efficient trie-

based string similarity joins with edit-distance constraints. Proceedings of

the VLDB Endowment, 3(1-2):1219–1230, 2010. (Cited in page 17)

[WH06] Ingo Wald and Vlastimil Havran. On building fast kd-trees for ray tracing,

and on doing that in o (n log n). In 2006 IEEE Symposium on Interactive

Ray Tracing, pages 61–69. IEEE, 2006. (Cited in page 38)

[WKB08] Cathrin Weiss, Panagiotis Karras, and Abraham Bernstein. Hexastore:

sextuple indexing for semantic web data management. Proceedings of the

VLDB Endowment, 1(1):1008–1019, 2008. (Cited in page 5), (Cited in

page 58)

[WKC+11] Fusheng Wang, Jun Kong, Lee Cooper, Tony Pan, Tahsin Kurc, Wenjin

Chen, Ashish Sharma, Cristobal Niedermayr, Tae W Oh, Daniel Brat, et al.

A data model and database for high-resolution pathology analytical image

informatics. Journal of pathology informatics, 2, 2011. (Cited in page 67)

[WKC12] Chih-Jye Wang, Wei-Shinn Ku, and Haiquan Chen. Geo-store: a spatially-

augmented sparql query evaluation system. In Proceedings of the 20th

International Conference on Advances in Geographic Information Systems,

pages 562–565, 2012. (Cited in page 6), (Cited in page 60)

[WSK+03] Kevin Wilkinson, Craig Sayers, Harumi A Kuno, Dave Reynolds, et al.

Efficient rdf storage and retrieval in jena2. In SWDB, volume 3, pages

114

https://virtuoso.openlinksw.com/

Conclusion and Perspectives

131–150. Citeseer, 2003. (Cited in page 5), (Cited in page 58), (Cited in

page 59), (Cited in page 80)

[WXLZ09] Wei Wang, Chuan Xiao, Xuemin Lin, and Chengqi Zhang. Efficient ap-

proximate entity extraction with edit distance constraints. In Proceedings

of the 2009 ACM SIGMOD International Conference on Management of

data, pages 759–770. ACM, 2009. (Cited in page 17)

[XLOH04] Chenyi Xia, Hongjun Lu, Beng Chin Ooi, and Jing Hu. Gorder: an effi-

cient method for knn join processing. In Proceedings of the Thirtieth in-

ternational conference on Very large data bases-Volume 30, pages 756–767.

VLDB Endowment, 2004. (Cited in page 55)

[XLY+16] Dong Xie, Feifei Li, Bin Yao, Gefei Li, Liang Zhou, and Minyi Guo. Simba:

Efficient in-memory spatial analytics. In Proceedings of the 2016 Interna-

tional Conference on Management of Data, pages 1071–1085. ACM, 2016.

(Cited in page 47), (Cited in page 54), (Cited in page 55), (Cited in page

56)

[XWL08] Chuan Xiao, Wei Wang, and Xuemin Lin. Ed-join: an efficient algorithm

for similarity joins with edit distance constraints. Proceedings of the VLDB

Endowment, 1(1):933–944, 2008. (Cited in page 17)

[YWS15] Jia Yu, Jinxuan Wu, and Mohamed Sarwat. Geospark: A cluster comput-

ing framework for processing large-scale spatial data. In Proceedings of the

23rd SIGSPATIAL International Conference on Advances in Geographic

Information Systems, page 70. ACM, 2015. (Cited in page 46), (Cited in

page 54)

[YZG15] Simin You, Jianting Zhang, and Le Gruenwald. Large-scale spatial join

query processing in cloud. In 2015 31st IEEE International Conference on

Data Engineering Workshops, pages 34–41. IEEE, 2015. (Cited in page

46), (Cited in page 54)

[ZCD+12] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin

Ma, Murphy McCauley, Michael J Franklin, Scott Shenker, and Ion Stoica.

Resilient distributed datasets: A fault-tolerant abstraction for in-memory

cluster computing. In Proceedings of the 9th USENIX conference on Net-

worked Systems Design and Implementation, pages 2–2. USENIX Associ-

ation, 2012. (Cited in page 54)

115

Conclusion and Perspectives

[ZCF+10] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker,

and Ion Stoica. Spark: Cluster computing with working sets. HotCloud,

10(10-10):95, 2010. (Cited in page 53)

[ZHL+09] Shubin Zhang, Jizhong Han, Zhiyong Liu, Kai Wang, and Zhiyong Xu.

Sjmr: Parallelizing spatial join with mapreduce on clusters. In 2009 IEEE

International Conference on Cluster Computing and Workshops, pages 1–

8. IEEE, 2009. (Cited in page 46), (Cited in page 47)

[ZHOS10] Zhenjie Zhang, Marios Hadjieleftheriou, Beng Chin Ooi, and Divesh Srivas-

tava. Bed-tree: an all-purpose index structure for string similarity search

based on edit distance. In Proceedings of the 2010 ACM SIGMOD Inter-

national Conference on Management of data, pages 915–926. ACM, 2010.

(Cited in page 17)

[ZLJ12] Chi Zhang, Feifei Li, and Jeffrey Jestes. Efficient parallel knn joins for large

data in mapreduce. In Proceedings of the 15th international conference on

extending database technology, pages 38–49. ACM, 2012. (Cited in page

46), (Cited in page 49)

[ZMG+21] Ishaq Zouaghi, Amin Mesmoudi, Jorge Galicia, Ladjel Bellatreche, and

Taoufik Aguili. Gofast: Graph-based optimization for efficient and scalable

query evaluation. Information Systems, 99:101738, 2021. (Cited in page

5), (Cited in page 58), (Cited in page 59), (Cited in page 87), (Cited in

page 88), (Cited in page 90)

[ZYW+13] Kai Zeng, Jiacheng Yang, Haixun Wang, Bin Shao, and Zhongyuan Wang.

A distributed graph engine for web scale rdf data. Proceedings of the VLDB

Endowment, 6(4):265–276, 2013. (Cited in page 5), (Cited in page 58),

(Cited in page 59)

116

Appendix A

A.1 Queries used for the experimental validation

Q1.

SPARQL

SELECT (COUNT(?p) AS ?cnt)

FROM <http://YAGO_2S.com>

WHERE

{

?p <http://yago-knowledge.org/resource/hasGivenName> ?gn .

?p <http://yago-knowledge.org/resource/hasFamilyName> ?fn .

?p <http://yago-knowledge.org/resource/hasWonPrize> ?pr .

?p <http://yago-knowledge.org/resource/diedIn> ?c .

?c <http://yago-knowledge.org/resource/hasGeometry> ?g .

FILTER(bif:st_intersects(bif:st_geomfromtext(

"POLYGON((-100 20, -80 20, -80 40, -100 40, -100 20))"), bif:st_geomfromtext(?g)))

};

Q2.

SPARQL

SELECT (COUNT(?p) AS ?cnt)

FROM <http://YAGO_2S.com>

WHERE

{

?p <http://yago-knowledge.org/resource/hasGivenName> ?gn .

?p <http://yago-knowledge.org/resource/hasFamilyName> ?fn .

?p <http://yago-knowledge.org/resource/wasBornIn> ?c .

?c <http://yago-knowledge.org/resource/hasGeometry> ?g .

FILTER(bif:st_intersects(bif:st_geomfromtext(

"POLYGON((-95 40, -90 40, -90 45, -95 45, -95 40))"), bif:st_geomfromtext(?g)))

};

Q3.

SPARQL

SELECT (COUNT(?p) AS ?cnt)

117

Appendix

FROM <http://YAGO_2S.com>

WHERE

{

?p <http://yago-knowledge.org/resource/hasAcademicAdvisor> ?a .

?a <http://yago-knowledge.org/resource/worksAt> ?w .

?w <http://yago-knowledge.org/resource/isLocatedIn> ?l .

?l <http://yago-knowledge.org/resource/hasGeometry> ?g .

FILTER(bif:st_intersects(bif:st_geomfromtext(

"POLYGON((-160 -50, -150 -50, -150 -40, -160 -40, -160 -50))"), bif:st_geomfromtext(?g)))

};

Q4.

SPARQL

SELECT (COUNT(?e) AS ?cnt)

FROM <http://YAGO_2S.com>

WHERE

{

?e <http://yago-knowledge.org/resource/happenedIn> ?l .

?l <http://yago-knowledge.org/resource/hasGeometry> ?g .

FILTER(bif:st_intersects(bif:st_geomfromtext(

"POLYGON((-130 40, -120 40, -120 50, -130 50, -130 40))"), bif:st_geomfromtext(?g)))

};

Q5.

SPARQL

SELECT (COUNT(?p) AS ?cnt)

FROM <http://YAGO_2S.com>

WHERE

{

?p <http://yago-knowledge.org/resource/hasGivenName> ?gn .

?p <http://yago-knowledge.org/resource/hasFamilyName> ?fn .

?p <http://yago-knowledge.org/resource/wasBornIn> ?c .

?c <http://yago-knowledge.org/resource/hasGeometry> ?g .

FILTER(bif:st_intersects(bif:st_geomfromtext(

"POLYGON((-105 45, -100 45, -100 50, -105 50, -105 45))"), bif:st_geomfromtext(?g)))

};

Q6.

SPARQL

SELECT (COUNT(?p) AS ?cnt)

FROM <http://YAGO_2S.com>

WHERE

{

?p <http://yago-knowledge.org/resource/graduatedFrom> ?u .

?p <http://yago-knowledge.org/resource/worksAt> ?w .

?u <http://yago-knowledge.org/resource/isLocatedIn> ?l .

?l <http://yago-knowledge.org/resource/hasGeometry> ?g .

118

Appendix

FILTER(bif:st_intersects(bif:st_geomfromtext(

"POLYGON((-110 50, -100 50, -100 60, -110 60, -110 50))"), bif:st_geomfromtext(?g)))

};

Q7.

SPARQL

SELECT (COUNT(?e) AS ?cnt)

FROM <http://YAGO_2S.com>

WHERE

{

?e <http://yago-knowledge.org/resource/happenedIn> ?l .

?l <http://yago-knowledge.org/resource/hasGeometry> ?g .

FILTER(bif:st_intersects(bif:st_geomfromtext(

"POLYGON((-90 30, -80 30, -80 40, -90 40, -90 30))"), bif:st_geomfromtext(?g)))

};

Q8.

SPARQL

SELECT (COUNT(?p) AS ?cnt)

FROM <http://YAGO_2S.com>

WHERE

{

?p <http://yago-knowledge.org/resource/hasArea> ?a .

?p <http://yago-knowledge.org/resource/isLocatedIn> ?l .

?l <http://yago-knowledge.org/resource/hasGeometry> ?g .

FILTER(bif:st_intersects(bif:st_geomfromtext(

"POLYGON((-100 30, -90 30, -90 40, -100 40, -100 30))"), bif:st_geomfromtext(?g)))

};

A.2 Results of estimation of each plan for the different

queries considered

For all of the following tables, the best execution plan is highlighted in bold.

119

Appendix

Table A.1: Results of estimation of Q1

Plan ID Plan # DS # Triples Initial position New position

0 [
−→?c,Fu(?g), ←−?c,

−→?p] 4774913 4775175 7 7

1 [
−→?p,
−→?c,Fu(?g)] 5943.0 29657.0 3 1

2 [
←−?c,
−→?c, Fu(?g),−→?p] 5595 54502 1 2

3 [
←−?c,
−→?p,
−→?c,Fu(?g)] 5720 54627 2 3

4 [
←−?f ,
−→?p,
−→?c,Fu(?g)] 286682 859297 5 4

5 [Fu(?g),←−?g,
←−?c,
−→?p] 437395 446318 6 5

6 [
←−?n,
−→?p,
−→?c,Fu(?g)] 83750 857355 4 6

Table A.2: Results of estimation of Q2

Plan ID Plan # DS # Triples Initial position New position

0 [
−→?c,Fu(?g), ←−?c,

−→?p] 4775880.0 4777965.0 7 7

1 [
−→?p,
−→?c,Fu(?g)] 165958.0 493909.0 4 4

2 [
←−?a,
−→?p,
−→?c,Fu(?g)] 243796.0 1321696.0 5 6

3 [
←−?b,
−→?p,
−→?c,Fu(?g)] 389065.0 1154313.0 6 5

4 [
←−?c,
−→?c,Fu(?g), −→?p] 14421.0 192320.0 1 2

5 [
←−?c,
−→?p,
−→?c,Fu(?g)] 16412.0 194311.0 2 3

6 [Fu(?g),←−?g,
←−?c,
−→?p] 104914.0 129598.0 3 1

Table A.3: Results of estimation of Q3

Plan ID Plan # DS # Triples Initial position New position

0 [
−→?a,
←−?a,
−→?w,
−→?l ,Fu(?g)] 7231.0 7388.0 4 4

1 [
−→?l ,Fu(?g), ←−?l ,

←−?w,
←−?a] 4774850.0 4774858.0 8 8

2 [
−→?p,
−→?a,
−→?w,
−→?l ,Fu(?g)] 5447.0 5676.0 3 2

3 [
−→?w,
−→?l ,Fu(?g), ←−?w,

←−?a] 669919.0 1252615.0 7 7

4 [
←−?a,
−→?a,
−→?w,
−→?l ,Fu(?g)] 4231.0 5492.0 2 1

5 [Fu(?g),←−?g,
←−?l ,
←−?w,
←−?a] 441052.0 702586.0 6 5

6 [
←−?l ,
−→?l ,Fu(?g), ←−?w,

←−?a] 59251.0 1250718.0 5 6

7 [
←−?w,
←−?a,
−→?w,
−→?l ,Fu(?g)] 3245.0 7045.0 1 3

Table A.4: Results of estimation of Q4

Plan ID Plan # DS # Triples Initial position New position

0 [
−→?e,
−→?l ,Fu(?g)] 201726.0 208424.0 3 3

1 [
−→?l ,Fu(?g), ←−?l] 4774844.0 4774844.0 4 4

2 [Fu(?g),←−?g,
←−?l] 74903.0 98141.0 2 1

3 [
←−?l ,
−→?l ,Fu(?g)] 17716.0 194145.0 1 2

120

Appendix

Table A.5: Results of estimation of Q5

Plan ID Plan # DS # Triples Initial position New position

0 [
−→?c,
←−?c,
−→?p,Fu(?g)] 4775880.0 4777965.0 7 7

1 [
−→?p,Fu(?g), −→?c] 165958.0 493909.0 4 4

2 [
←−?a,
−→?p,Fu(?g), −→?c] 243796.0 1321696.0 5 5

3 [
←−?b,
−→?p,Fu(?g), −→?c] 389065.0 1154313.0 6 6

4 [
←−?c,
−→?c,
−→?p,Fu(?g)] 14421.0 192320.0 1 2

5 [
←−?c,
−→?p,Fu(?g), −→?c] 16412.0 194311.0 2 3

6 [Fu(?g),←−?g,
←−?c,
−→?p] 51616.0 75701.0 3 1

Table A.6: Results of estimation of Q6

Plan ID Plan # DS # Triples Initial position New position

0 [
−→?l ,Fu(?g), ←−?l ,

←−?u,
−→?p] 4774894.0 4774981.0 7 7

1 [
−→?p,
−→?u,
−→?l ,Fu(?g)] 5901.0 9894.0 3 2

2 [
−→?u,
−→?l ,Fu(?g), ←−?u,

−→?p] 669962.0 1252701.0 6 6

3 [Fu(?g),←−?g,
←−?l ,
←−?u,
−→?p] 30958.0 250625.0 5 4

4 [
←−?l ,
−→?l ,Fu(?g), ←−?u,

−→?p] 59295.0 1250841.0 4 5

5 [
←−?u,
−→?p,
−→?u,
−→?l ,Fu(?g)] 5192.0 32596.0 2 3

6 [
←−?w,
−→?p,
−→?u,
−→?l ,Fu(?g)] 3394.0 7338.0 1 1

Table A.7: Results of estimation of Q7

Plan ID Plan # DS # Triples Initial position New position

0 [
−→?e,
−→?l ,Fu(?g)] 201726.0 208424.0 2 2

1 [
−→?l ,Fu(?g), ←−?l] 4774844.0 4774844.0 4 3

2 [Fu(?g),←−?g,
←−?l] 270889.0 297661.0 3 4

3 [
←−?l ,
−→?l ,Fu(?g)] 17716.0 194145.0 1 1

Table A.8: Results of estimation of Q8

Plan ID Plan # DS # Triples Initial position New position

0 [
−→?l ,Fu(?g), ←−?l ,

−→?p] 4775053.0 4775546.0 6 6

1 [
−→?p,
−→?l ,Fu(?g)] 105462.0 339654.0 3 1

2 [
←−?a,
−→?p,
−→?l ,Fu(?g)] 134597.0 469582.0 4 3

3 [Fu(?g),←−?g,
←−?l ,
−→?p] 186351.0 420618.0 5 2

4 [
←−?l ,
−→?l ,Fu(?g), −→?p] 59454.0 1251406.0 1 4

5 [
←−?l ,
−→?p,
−→?l ,Fu(?g)] 59857.0 1251809.0 2 5

121

Résumé

Depuis l’apparition du modèle relationnel, les systèmes de gestion de données relationnelles ont

dominé les autres systèmes en raison de la simplicité liée à la représentation des données et de

leur capacité à répondre aux requêtes déclaratives. Cependant, le modèle relationnel souffre de

plusieurs limitations qui le rendent indésirable pour de nombreux cas d’utilisation. En effet, le

modèle relationnel ne convient pas à certains types de données comme les données graphes (souvent

utilisées dans la manipulation des graphes de connaissances) et les données spatiales (souvent utilisées

dans les systèmes d’information géographique). Cette limitation a conduit à l’introduction de bases

de données spatiales et les systèmes de stockage des triplets pour les données spatiales et les données

graphes respectivement.

Dans cette thèse, nous considérons les deux types de données : Graphe et Spatial. Cependant,

nous nous concentrons davantage sur les données spatiales et les défis imposés par les données hybrides

(contenant des objets provenant des deux représentations : spatiale et graphe). Le premier problème

est le coût élevé de l’évaluation des opérateurs spatiaux. Nous essayons d’améliorer les performances

des opérateurs spatiaux sur de grands jeux de données spatiales stockées sur disque. Le deuxième

problème abordé est le traitement des jeux de données hybrides, puisqu’ils donnent lieu à plusieurs

problèmes à plusieurs niveaux tels que le stockage, l’indexation, l’interrogation et l’optimisation.

Afin d’améliorer les performances des opérateurs spatiaux, nous proposons une nouvelle technique

pour explorer les indexes spatiaux tout en minimisant le nombre d’opérations d’E/S vers/depuis le

disque. Nous comparons l’approche proposée avec l’état de l’art en utilisant des jeux de données réels.

En plus de, et afin de résoudre les problèmes engendrés par les données hybrides, nous proposons

une extension (Spatial-Qdag) d’un triplestore existant (RDF QDAG) qui couvre plusieurs couches du

système : stockage, évaluation et optimisation. Nous comparons l’extension spatiale (Spatial-Qdag)

avec des triplestores commerciaux enutilisant des jeux de données réels.

Les résultats des expérimentations menées démontrent une amélioration significative des perfor-

mances des opérateurs spatiaux pour la plupart des requêtes en utilisant l’approche proposée. Ce qui

signifie une supériorité de l’extension proposée (Spatial-Qdag) par rapport aux systèmes comparés.

Mots-clés : Big Data, RDF, SPARQL, Données spatiales, Performance, Passage à l’échelle

Thèse préparée dans le cadre d’une cotutelle entre l’Université Abu Bekr Belkaid

Tlemcen et l’École Nationale Supérieure de Mécanique et d’Aérotechnique

Abstract

Since the appearance of the relational model, relational data management systems have dominated

the other systems due to simplicity related to data representation and their ability to answer declara-

tive queries. However, the relational model suffers from several problems that make it undesirable for

many use cases. For instance, the relational model is not suitable for some data types such as Graph

data that is often used in knowledge graphs and Spatial data that is often used in Geographical

information systems. The later limitation has led to the introduction of spatial databases and triple

stores for Spatial data and graph data respectively.

In this thesis, we consider both types of data Graph and Spatial. However, we focus more

on spatial data and the challenges imposed by hybrid data (the data-set contains objects from both

representations: spatial and graph). The first problem is the high cost of evaluating spatial operators.

We try to improve performance of spatial operators on large spatial data sets stored on disk. The

second problem is the processing of hybrid data sets, since they give rise to several challenges many

levels such as storage, indexing, querying and optimisation.

In order to improve the performance of spatial operators. We propose a novel technique to explore

spatial indices while minimizing the number of I/O operations to/from the disk. We compare our

approach with the existing state of art using real world dataset. On top of that, to solve problems

imposed by hybrid data, we propose an extension (Spatial-Qdag) of an existing triple store (RDF -

QDAG) that covers every layer: storage, evaluation and optimisation. We compare the spatial

extension (Spatial-Qdag) with commercial triple stores using real world datasets.

The experimental results demonstrate a significant improvement in spatial operators’ performance

in most queries while using the proposed approach. On top of that, the results demonstrate the

superiority of the proposed extension (Spatial-Qdag) compared to the competition.

Keywords : Big Data, RDF, SPARQL, Spatial Data, Performance, Scalability

Thèse préparée dans le cadre d’une cotutelle entre l’Université Abu Bekr Belkaid

Tlemcen et l’École Nationale Supérieure de Mécanique et d’Aérotechnique

ملخص

وقدرتهاالبياناتبتمثيلالمتعلقةالبساطةبسببالأخرىالأنظمةالعلائقيةالبياناتإدارةأنظمةسيطرت،العلائقيالنموذجظهورمنذ
فيهمرغوبغيرتجعلهالتيالمشاكلمنالعديدمنيعانيالعلائقيالنموذجفإن،ذلكومعالتوضيحية.الاستفساراتعلىالإجابةعلى
التيالبياناتالبيانيالرسممثلالبياناتأنواعلبعضمناسبغيرالعلائقيالنموذج،المثالسبيلعلىالاستخدام.حالاتمنالعديد

إلىاللاحقالقيدأدىوقدالمعلومات.نظمالجغرافيافيغالبًاتُستخدمالتيالمكانيةوالبياناتالمعرفيةالبيانيةالرسومفيغالبًاتُستخدم
نوعيكلانعتبر،الأطروحةهذهفيالتوالي.علىالبيانيالرسموبياناتالمكانيةللبياناتيخزنوالثلاثيةالمكانيةالبياناتقواعدإدخال

)تحتويالهجينةالبياناتتفرضهاالتيوالتحدياتالمكانيةالبياناتعلىأكثرنركزفإننا،ذلكومعوالمكاني.البيانيالرسمالبيانات
نحاولالمكانية.العوامللتقييمالعاليةالتكلفةهيالأولىالمشكلةبياني(.ورسممكانيةتمثيلات:كليهمامنكائناتعلىالبياناتمجموعة
مجموعاتمعالجةهيالثانيةالمشكلةالالقرص.علىالمخزنةالكبيرةالمكانيةالبياناتمجموعاتعلىالمكانيينالمشغلينأداءتحسين
أداءتحسينأجلمنوالتحسين.والاستعلاموالفهرسةالتخزينمثلمستوياتالتحدياتمنالعديدإلىتؤديلأنها،المختلطةالبيانات
نقارنالقرص.من/إلىالإخراج/الإدخالعملياتعددتقليلمعالمكانيةالمؤشراتللاستكشافجديدةتقنيةنقترحالمكانيين.المشغلين

،المختلطةالبياناتتفرضهاالتيالمشاكللحل،ذلكعلىعلاوةالحقيقي.العالمبياناتمجموعةباستخدامالحاليةالفنحالةمعنهجلدينا
امتدادًانقترح (Spatial-Qdag) موجودثلاثيلمتجر (RDF - QDAG) نقارنوالتحسين.والتقييمالتخزينطبقة:كلتغطيالتي

المكاني (Spatial-Qdag) أداءفيكبيرًاتحسنًاالتجريبيةالنتائجتظهرحقيقية.بياناتمجموعاتباستخدامتجاريةثلاثيةمتاجرمع
المقترحالامتدادتفوقأنالنتائجتظهر،ذلكعلىعلاوةالمقترح.النهجاستخدامأثناءالاستفساراتمعظمفيالمكانيينالمشغلين

(Spatial-Qdag) بالمنافسةمقارنة .

الرئيسيةالكلمات :

الضخمةالبيانات ، RDF ، SPARQL ، التوسعقابلية،الأداء،المكانيةالبيانات

THÈSE PRÉPARÉE DANS LE CADRE D’UNE COTUTELLE ENTRE L’UNIVERSIT E ABU BEKR
BELKAID TLEMCEN ET L ́ECOLE NATIONALE SUPÉRIEURE DE MÉCANIQUE ET

D’AÉROTECHNIQUE

	Contents
	List of Figures
	List of Tables
	Introduction
	I State of the art
	Preliminary
	Introduction
	Spatial data processing
	Spatial Queries

	RDF graph formalisation
	Architectural overview of RDF_QDAG
	Data storage
	Scheduling layer
	Engine layer

	Conclusion

	State of the art
	Introduction
	Taxonomy of spatial processing techniques
	Storage medium
	Indexing strategy
	Parallel strategy

	Centrelised spatial data processing
	Nested Loop
	Plane Sweep
	Index Nested Loop
	TOUCH
	Partition based spatial-merge join (PBSM)
	Dual index traversal (DIT)
	Discussion

	Spatial data processing at scale
	Distance-based join in Hadoop
	Spatial processing in Spark
	Discussion

	RDF data processing
	Spatial-RDF data processing
	Conclusion

	II Spatial and graph data processing
	I/O Efficient R-tree utilisation
	Introduction
	 Problem Definition
	R-Tree Structure
	Problem statement

	FASTER approach
	Principle of FASTER
	Proof of correctness

	Experimental validation
	Experimental setup and data-sets
	Results discussion

	Conclusion

	Spatial RDF data querying
	Introduction
	Query Evaluation strategies
	BGP-First strategy
	Spatial-First strategy

	Optimization techniques
	Query scheduling
	Spatial pruning

	Experimental evaluation
	Experimental setup and methodology
	Effect of evaluation strategies
	Effect of Scheduling
	Effect of Encoding
	Effect of spatial pruning
	Comparison against Virtuoso

	Conclusion

	Conclusion and Perspectives
	Bibliographie
	
	Queries used for the experimental validation
	Results of estimation of each plan for the different queries considered

