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Résumé

L’imagerie par Résonance Magnétique (IRM) dynamique est d’une grande valeur pour le diagnostic
médical grâce à sa polyvalence en termes de contraste, sa haute résolution spatiale, son rapport
signal/bruit élevé et permet l’obtention non invasives d’images multi-planaires. Elle peut être par-
ticulièrement utile pour l’imagerie du cerveau, du cœur, de la colonne vertébrale et des articulations,
ainsi que pour la détection d’anomalies. De plus, la disponibilité croissante de machines de Tomogra-
phie par Émission de Positrons (TEP) / IRM permet l’acquisition simultanée de données de TEP et
pour de meilleures reconstructions et des informations complémentaires. Cependant, un défi majeur
en IRM dynamique est la reconstruction d’images à partir de données d’espace-k échantillonnées
en dessous de la fréquence de Nyquist. De nombreuses méthodes ont été proposées pour l’imagerie
IRM sous-échantillonnée, notamment l’imagerie parallèle et le compressed sensing, mais ces méth-
odes restent limitées en imagerie dynamique du au taux de sous-échantillonnage intrinsèquement
élevé.

Le premier objectif de cette thèse est de montrer le potentiel et l’utilité du modèle de sous-espace
linéaire pour l’imagerie IRM sous respiration libre. Un tel modèle peut théoriquement capturer des
mouvements respiratoires et cardiaques réguliers. Cependant, lorsqu’il s’agit de scans prolongés, des
mouvements irréguliers peuvent survenir, tels qu’une respiration erratique ou un mouvement global
causé par l’inconfort du patient. Une première question se pose donc naturellement : un tel modèle
peut-il capturer ces types de mouvement et, si oui, peut-il reconstruire des images à partir d’un
scan IRM dynamique présentant ces mouvements ? Nous démontrons dans cette thèse comment le
modèle de sous-espace peut efficacement reconstruire des images sans d’artefacts à partir de données
d’espace-k fortement sous-échantillonnées. Une première application est présentée où nous recon-
struisons des images IRM dynamiques avec haute résolution spatiale et temporelle et les utilisons
pour corriger le mouvement des données TEP simultanément acquise, capturant ainsi des mouve-
ment complexes tels qu’une respiration erratique ou un mouvement global. Une deuxième applica-
tion sur la cartographie T1 cardiaque est présentée. Des données d’espace-k sous-échantillonnées
ont été acquises à l’aide d’une séquence de type inversion-récupération et sous respiration libre,
et des images IRM 3D dynamiques du cœur entier ont été reconstruites en utilisant le modèle de
sous-espace linéaire.

Le deuxième objectif de cette thèse est de comprendre les limites du modèle de sous-espace
linéaire et de développer un nouveau modèle de reconstruction d’imagerie IRM dynamique qui
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pallie ces limitations. Plus spécifiquement, le modèle de sous-espace suppose que les données de
haute dimension résident dans un sous-espace linéaire de basse dimension qui capture les corrélations
spatiotemporelles des images dynamiques. Cette méthode repose donc sur un modèle de réduction
de dimension linéaire et ne prend pas en compte les caractéristiques intrinsèquement non linéaires
du signal, ce qui peut montrer ses limites avec des taux de sous-échantillonnage plus élevés. Des
modèles basés sur l’apprentissage de variétés ont donc été explorés pour la reconstruction d’images en
IRM dynamique et visent à apprendre la structure intrinsèque du signal en résolvant des problèmes
de réduction de dimensionnalité non linéaires. Nous présentons dans cette thèse une stratégie
alternative pour la reconstruction d’images IRM basée sur l’apprentissage de variétés. La méthode
proposée apprend la structure de variété via un alignement linéaire des espaces tangents (LTSA)
et peut être interprétée comme une généralisation non linéaire du modèle de sous-espace. Des
validations ont été effectuées sur des études de simulation numérique ainsi que sur des expériences
d’imagerie cardiaque 2D et 3D in vivo, démontrant des performances améliorées par rapport à
l’état-de-l’art.

Les deux premiers objectifs présentent respectivement des modèles linéaires et non linéaires,
mais ces méthodes utilisent des techniques d’optimisation linéaire conventionnelles pour résoudre
le problème de reconstruction. En revanche, l’utilisation de réseaux de neurones profonds pour
l’optimisation peut procurer une meilleure puissance de représentation non linéaire. Cet axe de
recherche a donc été exploré à la fin de cette thèse. Des premiers résultats sur les approches basées
sur l’apprentissage profond sont présentés dans cette thèse et l’état-de-l’art est discuté. Le dernier
chapitre présente les conclusions, discute des contributions de l’auteur et détaille les perspectives
de recherche potentielles ouvertes par le travail effectué dans cette thèse.



Abstract

Dynamic Magnetic Resonance (MR) imaging is of high value in medical diagnosis thanks to its
contrast versatility, high spatial resolution, and high Signal-to-Noise Ratio (SNR), and allows for
non-invasive multi-planar images of the body. It can be particularly useful for imaging the brain,
heart, spine, and joints, as well as for detecting abnormalities. In addition, MR images can now
be simultaneously acquired with Positron Emission Tomography (PET) data with the increasing
availability of hybrid PET/MR. This can aid the PET data reconstruction using techniques such as
MR-based PET data motion correction or get complementary information such as relaxation times
T1 that can prove useful for diagnosis or derived parameters calculations (e.g., membrane potential
calculations). However, a key challenge in dynamic MRI is reconstructing high-dimensional images
from sparse k-space data sampled below the Nyquist sampling rate. Many methods have been
proposed for accelerated imaging with sparse sampling, including parallel imaging, compressed
sensing.

The first objective of this thesis is to show the potential and usefulness of free-breathing MR
imaging using a linear subspace model. It has been proved that such a model can in principle capture
regular respiratory and cardiac motion. However, when dealing with lengthy scans, irregular motion
patterns can occur, such as erratic breathing or bulk motion caused by patient discomfort. A first
question thus naturally arises: can such a model capture irregular types of motion and, if so, can
it reconstruct images from a dynamic MR scan presenting bulk motion and irregular respiratory
motion? To answer this question, we demonstrate how the subspace model can efficiently reconstruct
artifact-free images from highly undersampled k-space data with various motion patterns. A first
application is presented where we reconstruct high-resolution, high frame-rate dynamic MR images
from a PET/MR scanner. Reconstructed dynamic MR images were then used to correct motion in
the PET reconstruction by estimating phase-to-phase nonrigid motion fields able to capture complex
motion patterns such as irregular respiratory patterns and bulk motion. A second application on
cardiac T1 mapping is presented. Undersampled k-space data were acquired using a free-breathing,
ECG-gated inversion recovery sequence, and dynamic 3D MR images of the whole heart were
reconstructed leveraging the linear subspace model.

The second objective of this thesis is to understand the limits of the linear subspace model and
develop a novel dynamic MR reconstruction scheme that palliates these limitations. More specif-
ically, the subspace model assumes that high-dimensional data reside in a low-dimensional linear
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subspace that captures the spatiotemporal correlations of dynamic MR images. This dimension-
ality reduction significantly reduces the degrees of freedom of the underlying signals and therefore
allows for undersampled signal reconstruction. However, this model relies on a linear dimensionality
reduction model of highly dimensional data and does not account for intrinsic non-linear features
of the signal, which may show its limits with higher undersampling rates. Manifold learning-based
models have therefore been explored for image reconstruction in dynamic MRI and aim at learning
the intrinsic low-dimensional structure of the input data that are embedded in a high-dimensional
signal space by solving non-linear dimensionality reduction problems. We present in this thesis an
alternative strategy for manifold learning-based image reconstruction in dynamic MRI. The pro-
posed method is closely related to machine learning methods that learn manifolds via linear tangent
space alignment (LTSA) and can be interpreted as a non-linear generalization of the subspace model.
Validation on numerical simulation studies as well as in vivo 2D and 3D cardiac imaging experi-
ments were performed. The proposed method offered improved performances in terms of noise and
undersampling artifacts compared to the state-of-the-art techniques.

Finally, research on deep learning-based approaches for MR image reconstruction is ongoing to
further improve reconstruction performances. The two first objectives present respectively linear
and non-linear based approaches for MR image reconstruction. However, even though the LTSA
method is based on a non-linear model, both methods actually use conventional linear optimization
techniques to solve the reconstruction problem. Using deep neural networks for optimization has
shown promising results in many fields, as they procure non-linear and extensive representation
power. Early results are presented in this thesis and state-of-the-art techniques are discussed.
A last chapter then presents conclusions, discusses the author’s contributions, and considers the
potential research perspectives that have been opened up by the work presented in this thesis.
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Introduction

Magnetic resonance imaging (MRI) is a widely used medical imaging technique that enables non-
invasive visualization of the structure and function of the human body. It is based on the detection of
nuclear magnetic resonance (NMR) signals emanating from the hydrogen atoms present in water and
fat molecules within the body. By applying a strong, static magnetic field and pulsed radiofrequency
(RF) excitation, MR signals can be selectively detected from different tissues and used to generate
detailed images of the body. This modality has several advantages over other imaging methods
such as X-ray, CT, and ultrasound. First, it does not expose the patient to ionizing radiation,
which makes it safer for repeated examinations and for imaging pregnant women or children. In
addition, MR imaging has excellent soft tissue contrast, high spatial resolution, and relatively
straightforward full 3D-imaging. These features yield one of the main advantages of MRI: the
differentiation between several types of tissues and visualization of subtle abnormalities that may
not be visible with other imaging modalities. Finally, MR imaging is highly versatile and can be
used for both anatomical and functional imaging. Using various types of sequences, we can obtain
virtually an infinite number of images with different contrast between the tissues. With adequate
MR sequences, we can even obtain information such as blood flow and tissue perfusion. Techniques
such as functional MRI (fMRI), which measures brain activity by detecting changes in blood flow,
and diffusion MRI, which examines the movement of water molecules to study the integrity of white
matter in the brain (and other organs), can then be real assets to assess neurological disorders or
tumor evolution over time.

In addition, dynamic MRI, which refers to the acquisition of MR images over time in a dynamic
way, is becoming more and more common and allows for the visualization of dynamic processes
within the body such as cardiac contractions or dynamic contrast enhanced (DCE) imaging of the
liver. With the increasing availability of hybrid PET/MR, MR imaging can now be simultaneously
acquired with PET data. This can aid the PET data reconstruction using techniques such as MR-
based PET data motion correction, and get complimentary information such as relaxation times
T1 or T2 that can prove useful for diagnosis or for derived parameters calculations. However, MRI
– and dynamic MRI mostly, have some inherent limitations. The imaged objects in dynamic MRI
move, and can produce motion artifacts. Then, to be able to correctly capture motion, one needs a
high temporal resolution, which can be obtained but at the cost of a decreased spatial resolution.
The compromise is therefore to be able to acquire k-space samples at a temporal resolution high
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14 INTRODUCTION

enough to capture the motion of the moving objects (e.g., heart beating or respiratory motion). This
compromise is translated as undersampled MR measurement, especially for dynamic MRI, leading to
an ill-posed optimization problem when it comes to recover the true image behind the measurement.
Applying a simple Fourier transform is therefore not sufficient anymore, as undersampled MR data
result in images corrupted with aliasing artifacts and noise.

A solution to this problem is to use advanced image reconstruction schemes, using mathematical
models, or leveraging prior information on the data. These reconstruction techniques are iterative
(unlike the Fourier transform reconstruction) and optimize some well-defined cost function to recover
the image from the undersampled measurements. Many techniques have been developed through
the years, such as Parallel imaging (PI) techniques [43, 121, 146], Compressed Sensing (CS) [88],
or more recently, subspace/manifold based techniques that model the data as lying close to a lower
dimensional manifold [118, 170, 171].

This PhD thesis explores reconstruction techniques for MRI. We used pre-existing models for
innovative applications, understood the limitations of such models, and contributed to the MR
image reconstruction field with a new reconstruction model overcoming these limitations. The first
objective of this thesis is to show the potential and usefulness of free-breathing MR imaging using
a linear subspace model. Indeed, it has been proved that such a model can in principle capture
regular respiratory and cardiac motion. However, when dealing with lengthy scans, irregular motion
patterns can occur, such as erratic breathing or bulk motion caused by patient discomfort. A first
question thus naturally arises: can such a model capture irregular types of motion and, if so, can
it reconstruct images from a dynamic MR scan presenting bulk motion and irregular respiratory
motion? To answer this question, we demonstrate that the subspace model can efficiently reconstruct
artifact-free images from highly undersampled k-space data with various motion patterns. A first
application is presented where we reconstruct high-resolution, high frame-rate dynamic MR images
from a PET/MR scanner. Reconstructed dynamic MR images were then used to correct motion in
the PET reconstruction by estimating phase-to-phase nonrigid motion fields able to capture complex
motion patterns such as irregular respiratory patterns and bulk motion. A second application on
cardiac T1 mapping is presented. Undersampled k-space data were acquired using a free-breathing,
ECG-gated inversion recovery sequence, and dynamic 3D MR images of the whole heart were
reconstructed leveraging the linear subspace model.

The second objective of this thesis is to understand the limits of the linear subspace model and
develop a novel dynamic MR reconstruction scheme that palliates these limitations. More specif-
ically, the subspace model assumes that high-dimensional data reside in a low-dimensional linear
subspace that captures the spatiotemporal correlations of dynamic MR images. This dimension-
ality reduction significantly reduces the degrees of freedom of the underlying signals and therefore
allows for undersampled signal reconstruction. However, this model relies on a linear dimensionality
reduction model of highly dimensional data and does not account for intrinsic non-linear features
of the signal, which may show its limits with higher undersampling rates. Manifold learning-based
models have therefore been explored for image reconstruction in dynamic MRI and aim at learning
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the intrinsic low-dimensional structure of the input data that are embedded in a high-dimensional
signal space by solving non-linear dimensionality reduction problems. We present in this thesis an
alternative strategy for manifold learning-based image reconstruction in dynamic MRI. The pro-
posed method is closely related to machine learning methods that learn manifolds via linear tangent
space alignment (LTSA) and can be interpreted as a non-linear generalization of the subspace model.
Validation on numerical simulation studies as well as in vivo 2D and 3D cardiac imaging experi-
ments were performed. The proposed method offered improved performances in terms of noise and
undersampling artifacts compared to the state-of-the-art techniques.

Finally, research on deep learning-based approaches for MR image reconstruction is ongoing to
further improve reconstruction performances. The two first objectives present respectively linear
and non-linear based approaches for MR image reconstruction. However, even though the LTSA
method is based on a non-linear model, both methods actually use conventional linear optimization
techniques to solve the reconstruction problem. Using deep neural networks for optimization has
shown promising results in many fields as they procure non-linear and extensive representation
power. General concepts are discussed, a state-of-the-art technique is discussed, and early results
are presented.

This manuscript is organized as follows. In Chapter 1, we present the key concepts of NMR:
where the signal originates, how it can be used for imaging, and how images can be reconstructed
from that signal. In Chapter 2, we present the subspace model [170] and how we can leverage
spatiotemporal correlation to reconstruct artifact-free images with high spatial and temporal res-
olution. Two contributions are then presented. First, we show that applying the subspace model
to reconstruct high quality dynamic MR images can aid PET applications with PET data motion
correction. Secondly, we demonstrate that the subspace model manages to reconstruct 4D volumes
(3D + time) from highly undersampled k-space data acquired in a cardiac scan with free-breathing.
We also show that the model successfully captures motion and dynamic contrast changes, allowing
for 3D cardiac T1 mapping. Chapter 3 then presents the main contribution of this PhD thesis,
that is, a novel image reconstruction method based on linear tangent space alignment developed to
overcome the limitations of the linear subspace model. We also provide mathematical connections
between this model and state-of-the-art subspace models, and discuss ongoing research to further
improve the developed method. Chapter 4 presents current investigations on deep learning-based
MR image reconstruction techniques and discussions on future directions. Finally, Chapter 5 con-
cludes on the work done during this PhD thesis, and gives a global outlook and perspectives for the
future.
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Chapter 1

Background on MRI

This chapter briefly summarizes the physics behind Nuclear Magnetic Resonance (NMR) and how
this phenomenon is used for Magnetic Resonance Imaging (MRI). Section 1.1 presents the NMR
phenomenon with a spin-based point of view along the Bloch equations that mathematically de-
scribe the macroscopic changes in magnetization. Section 1.2 explains how the NMR signal can be
used for imaging with spatial encoding, and defines the notion of k-space and MR signal sampling,
which lays ground to the principle of MR imaging. Section 1.3 details the basic and advanced image
reconstruction techniques in MR imaging in order to recover images from undersampled measure-
ments. Finally, Section 1.4 discusses the limitations of conventional reconstruction techniques along
with the challenges in dynamic MRI.

1.1 Nuclear Magnetic Resonance

Historically, the term NMR was first used to describe the phenomenon of stimulated absorption
and emission of energy from nuclei placed within a magnetic field. This phenomenon discovery is
credited to Isidor Isaac Rabi in the 1930s, who received the Nobel Prize in Physics in 1944 for that
discovery. Felix Bloch and Edward Mills Purcell later discovered NMR in liquid and solid materials.
NMR was then used for imaging, which gave birth to NMR imaging, later re-branded as Magnetic
Resonance Imaging (MRI) in the 1980s due to the negative connotation of the word “nuclear”. Due
to the highly complicated nature and history of the MR phenomenon, we only give here a brief and
compact overview of MR physics for the reader’s convenience. In-depth explanation of MR physics
can be found in [13, 19, 82, 110, 144].

1.1.1 Introduction to the NMR phenomenon

Magnetic resonance relies on the resonance phenomenon of nuclei possessing a magnetic moment
when undergoing a strong magnetic field (e.g., hydrogen protons 1H in most MRI studies, but also
19F, 31P, etc.). Each of these nuclei possesses an intrinsic magnetic moment µ⃗ called “spin” aligned
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along an axis with random orientation under normal conditions. Due to the randomness of the spin
orientation, the macroscopic resulting magnetic moment M⃗ of a body full of these nuclei is null,
i.e.,

∑
µ⃗ = M⃗ = 0⃗. However, in the presence of a strong magnetic field (denoted as B0 or B⃗0), all

the magnetic spins align along its direction either in a parallel or antiparallel fashion. In average,
more spins will tend to align in a parallel fashion, as it represents a lower energy level. This leads
to an observable macroscopic magnetic moment M⃗ ̸= 0⃗ with a component along the B⃗0 axis (see
Figure 1.1).

Figure 1.1: Magnetic moment alignment of protons in presence of an external magnetic field [120].

Then, a key concept of NMR is what we call "precession". This can can roughly be explained with
a simple analogy, illustrated in Figure 1.2: a spinning gyroscope exhibits angular momentum that
makes it resist potential changes in orientation, preventing it from aligning with Earth’s gravitational
field. Therefore, instead of falling on its side, the gyroscope will rotate on a plane perpendicular to
the field it undergoes at a frequency and direction correlated to its spinning velocity, mass, shape
and external gravitational field. Similarly, a nucleus precession is described by its gyromagnetic
ratio γ, a nuclei-specific quantity related to its spin, mass and size, and the external magnetic field
strength |B⃗0|. This relationship is mathematically represented by the so-called Larmor frequency
f0 = γB0 (or similarly w0 = γ

2π
B0 in rad.s−1), i.e., the resonant frequency at which the magnetic

spin precesses along B⃗0. For example, in the case of a hydrogen nuclei 1H, the gyromagnetic ratio
is equal to 42.58 MHz.T−1.

Note that even though individual spins precess on a plan perpendicular to B⃗0, the vector sum
of the spin angular moment M⃗ does not have a component on the transversal plane. Despite the
quantum behavior of the individual spin angular moment, once summed and averaged over many
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Figure 1.2: Precession of a spinning gyroscope and nuclear precession. They are both similar in the sense that an
external force induces precession due to their inherent spinning energy [120].

of them, the macroscopic resultant (M⃗) follows the rules of classical physics. As such, M⃗ does
not precess and is aligned with the external field B⃗0 when at equilibrium. However, when the
equilibrium is disrupted with external energy input, we will see in Section 1.1.2 that M⃗ can also
precess. Upon defining the z axis as z⃗ = B⃗0

|B⃗0|
, the global magnetic moment (or magnetization) of

an excited body is then commonly expressed as a combination of two terms: a longitudinal (M⃗z)
and a transversal (M⃗xy) term:

M⃗ = M⃗z + M⃗xy (1.1)

where M⃗xy = 0⃗ at equilibrium.

1.1.2 Radio-frequency pulse excitation

In practice, measuring the magnetization M⃗ is difficult at equilibrium due to its negligible order
of magnitude compared to the external magnetic field B⃗0. However, it is possible to indirectly
measure it by “flipping” the magnetization to the transversal plane using a radio frequency (RF)
pulse. To do so, we apply an oscillating magnetic field B⃗1, oscillating at the Larmor frequency ω0

(or equivalently f0) in a plane perpendicular to B⃗0. This will make the spins resonate and change
their energy level, which as a resultant will create phase coherence of individual spins and thus
transversal magnetization M⃗xy ̸= 0⃗.

As long as the RF pulse B⃗1 is applied, the macroscopic magnetization M⃗ will rotate along
an axis perpendicular to B⃗0 and form an angle θ with B⃗0 called “flip angle”. M⃗ is then out of
equilibrium due to the external energy absorption caused by B⃗1 and will therefore try to get back
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to equilibrium. Doing so, it will start precessing around B⃗0 (i.e., in the transverse plane), as shown
in Figure 1.3.

Figure 1.3: Net Magnetization M⃗ can be tipped out of equilibrium with an oscillating magnetic field B⃗1, rotat-
ing at the Larmor. Once tipped off, M⃗ precesses until reaching equilibrium back. Courtesy of Allen D. Elster,
MRIquestions.com

1.1.3 Bloch equations and free-induction decay

The NMR phenomenon was mathematically described by Felix Bloch in 1946 [9], where he pre-
sented the so-called Bloch equations. Instead of the more common quantum point of view of
the individual spins, Bloch hypothesized that the system — potentially composed of millions of
spins, could actually be seen as a single macroscopic vector: the magnetization M⃗ . This vector
behaves like a regular vector in the sense of classical physics (i.e., unlike quantum physics) and
has three spatial components. Bloch equations then tell us that M⃗ is actually a function of time
M⃗ (t) = (Mx(t),My(t),Mz(t)) directly related to the gyromagnetic ratio γ, the external magnetic
field the nuclei undergoes B⃗(t) = B⃗0+B⃗1(t), and characteristic constants of the excited body called
relaxation times (T1 and T2) that represent respectively the longitudinal regrowth and transversal
decay of the magnetization:

d

dt

 Mx

My

Mz

 =

 − 1
T2

γBz −γBy

−γBz − 1
T2

γBx

γBy −γBx − 1
T1


 Mx

My

Mz

+

 0

0
M0

T1

 (1.2)

These equations allow us to predict the behavior of the NMR signal, and have simple close form
solutions in some trivial cases. Take the example of a sample with homogeneous magnetic field B⃗0
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to which is applied an RF pulse with a flip angle θ = 90 degrees. Denote M0 the original maximum
value of the magnetization M⃗ , a quantity proportional to the proton density. The solution of the
Bloch equations then predicts the following magnetization over time:

Mx(t) = M0 exp
(
− t

T2

)
sin(ωt) (1.3)

My(t) = M0 exp
(
− t

T2

)
cos(ωt) (1.4)

Mz(t) = M0(1− exp
(
− t

T1

)
) (1.5)

This means that upon applying a 90 degrees RF pulse, the magnetization M⃗ is flipped and gradually
returns to equilibrium by precessing on a plane perpendicular to B⃗0 (Equations (1.3) and (1.4)) while
growing back its transverse component following a negative exponential trend with time constant
T1. Note that the magnitude of the transverse magnetization Mxy(t) = M0 exp

(
− t

T2

)
decays in

an exponential trend with time constant T2. This is illustrated in Figure 1.4.

Figure 1.4: Visualization of M⃗ during precession with a 90 degrees flip angle. (a.) 3D Plot of the trajectory of M⃗
along time during precession. (b.) Plot of the longitudinal magnetization decay M⃗xy along time. (b.) Plot of the
transversal magnetization regrowth of M⃗z along time. Figures modified from MRIquestions.com

T1 is also called the spin-lattice relaxation time or sometimes thermal relaxation time, as this
time constant is related to the energy transfers from the spins to their environment (i.e., the lattice).
Similarly, T2 is also called the spin-spin relaxation time and is not always related to energy transfer
like T1 as it can occur with spin dephasing caused by local field homogeneity and the neighboring
spins. In short, most phenomenon inducing T1 relaxation will also cause T2 relaxation, while T2

relaxation may also appear without T1 relaxation.

As a side note, it should be noted that the magnetization signal usually decays faster than the
expected T1 and T2, yielding shorter apparent T1 and T2. This effect can be mostly caused by B0

field inhomogeneity but also potential magnetic susceptibility differences within the sample inducing
fields distortions. In the case of T2, the shorter apparent relaxation time, denoted by T ∗

2 (T2 “star”),
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is related to T2 in the following way:
1

T ∗
2

=
1

T2

+
1

T2in

(1.6)

where T2in is the contribution of all the potential inhomogeneities to the transverse relaxation.
The decaying signal in the transverse plane (Equations (1.3) and (1.4)) has exponential envelope

(related to T1 and T2), and sinusoidal carrier wave: this is what we actually measure in MRI, and
more globally in NMR. This signal is called free-induction decay (FID) and corresponds to the
transverse magnetization signal induced by an RF pulse excitation. Most tissues and/or liquids in
our body possess distinguishable relaxation times T1 and T2, which therefore allow differentiation
of their signals.

1.2 Magnetic Resonance Imaging

Traditional MRI mostly focuses on the magnetic resonance of hydrogen nuclei (i.e., protons) as they
are the most prominent in the human body and therefore yield the highest sensitivity. Even though
other nuclei can be excited by changing the frequency of the excitation pulse for example, we will
focus here on traditional 1H MRI. A brief RF pulse (typically less than a few milliseconds) rotates
M⃗ in the transverse plane by a degree θ. The magnetization then starts precessing, creating an
alternate magnetic field in the transverse plane that produces an alternate voltage in presence of a
coil sensor (induction).

1.2.1 From magnetization to voltage

Coil receivers are used to capture the oscillating magnetic signal and transform it into an electrical
signal as per the Faraday Law. The electromagnetic signal produced in the coil receiver is then
derived from the time-variation of the magnetic flux going through its surface. This will form an
alternate voltage signal s̃(t) with a carrier wave frequency being the Larmor frequency ω0. For
example, in the case of a 1 Tesla magnetic field B0, the electrical signal will oscillate around 42.58
MHz within a relatively small bandwidth. Therefore, instead of directly measuring the incoming
signal from the coil(s), we actually perform complex demodulation of the real-valued signal s̃(t) to
re-center it on zero. Define a small spatial variation in the magnetic field δ⃗B. In the case of a FID,
and upon defining ω = γ

(
B0 + δB(x, y, z, t)

)
= ω0 + δω, the demodulated signal s(t) is then:

s(t) ∝
∫
V
M(x, y, z)ω0 exp

(
− t

T2

)
exp

(
− iδωt

)
dx dy dz (1.7)

where V is the volume of the excited sample. An important note from Equation (1.7) is that both
M and ω0 are linearly dependent on the external magnetic field strength B = B0, which means that
the voltage is proportional to B2 and therefore the sensitivity of the signal too. Having higher values
for B is therefore favorable, at the expense of potential other issues such as field inhomogeneity.



1.2. MAGNETIC RESONANCE IMAGING 23

However, the signal captured is not localized at this point: it comes from the whole sample
within the external magnetic field and does not contain spatial information. Forming an image out
of the NMR signal therefore requires some sort of “spatial encoding” to discriminate the location of
the signal.

1.2.2 Spatial encoding of the NMR signal

In 1973, Paul Lauterbur and Peter Mansfield found a way to get spatial encoding in the NMR signal
and therefore produce an image out of it. They were later awarded the 2003 Nobel Prize for their
contribution in what is nowadays known as Magnetic Resonance Imaging. In a nutshell, in addition
to the magnetic field B⃗0, they used a spatially-varying magnetic field. Therefore, as the magnetic
field is different between two spatial locations, the spatial gradient field G⃗(x, y, z, t) = ∇B⃗(x, y, z, t)

is now non-zero in magnitude. Because of this gradient, the magnetic field B⃗(x, y, z, t) perceived by
the spins throughout the sample will be different based on their spatial location, and their precessing
frequency ω(x, y, z, t) = γB(x, y, z, t) will also be different: their spatial location is encoded by the
gradient (Figure 1.5).

Figure 1.5: Spatial encoding with magnetic field gradient. The spatial location is encoded by the varying magnetic
field strength due to a different resonating frequency at different spatial locations in the sample. Courtesy of Allen
D. Elster, MRIquestions.com

Without loss of generality, we define the small spatial variation in the magnetic field δB(x, y, z)

varying according to a linear magnetic gradient in the spatial directions:

δ⃗B(x, y, z) =

 Gxx

Gyy

Gzz

 (1.8)

At a location (x, y, z), δω defined in Equation (1.7) can therefore be expressed as δω = γ(Gxx+
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Gyy +Gzz). Equation (1.7) can then be written:

s(t) ∝
∫
V
ρ(x, y, z, t) exp

(
− iγ(Gxx+Gyy +Gzz)t

)
dx dy dz, (1.9)

where ρ(x, y, z, t) = ω0M(x, y, z) exp
(
− t

T2

)
in the case of a FID.

In addition, we introduce a spatial location vector r = (x, y, z) and another vector denoted k

related to the gyromagnetic ratio and the gradient field:

k(t) =
γ

2π

 Gxt

Gyt

Gzt

 , (1.10)

Equation (1.9) can finally be further simplified to:

s(k, t) ∝
∫
V
ρ(r, t) exp

(
− i2πk · r

)
dr (1.11)

One can notice that Equation (1.11) links s(k, t) as being the Fourier transform (denoted F) of the
quantity ρ(r, t), i.e.,

s(k, t) ∝ F{ρ(r, t)} (1.12)

An important conclusion from this relationship is that the vector k represents a spatial frequency
in a space dual to the image space represented by r. The consequence of this conclusion is that
the signal retrieved from the coil receiver is actually in the spatial frequency domain and not in
the image domain. The outputted MR signal is therefore commonly called k-space as it maps the
spatial frequency space (k) rather than the original image space (r). As k and r are dual variables
linked by the Fourier transform, controlling the trajectory of k using gradients (Equation (1.10))
also gives us some control on the spatial location of the signal, hence the denomination “Fourier
encoding” for this kind of spatial encoding.

Slice, phase, and frequency encoding

In MRI, k-space sample locations are commonly controlled using gradients. Applying gradients will
move the vector k to another location in the spatial frequency space (i.e., k-space) and a signal can
be measured after RF pulse for different k-space locations. The spatial encoding is commonly done
in three step: slice selection, frequency encoding and phase encoding.

During the slice selection, a linear gradient Gz is applied. This means that spins in the sample
will have different precession frequency, linearly dependent on their position along the z axis. An
RF pulse with limited bandwidth will be able to excite a specific slice with specific slice thickness
related to the gradient strength. For simplicity, let us assume we excite a 2D slice, i.e., after slice
selection the spin excitation is purely in-plane in the x and y directions. Frequency and phase
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encoding then commonly refer to the steps where gradients are applied along the x and y directions
respectively (Gx and Gy). These gradients will encode the spatial location of the MR signal: voxels
within the sample will have different phases and frequencies in the x and y directions due to the
different apparent magnetic field.

MR sequences: Gradients and k-space location

One can also conceptually understand that applying these two gradients is the same as moving in
the k-space of a value equal to the strength of the gradient multiplied by the elapsed time (assuming
Gx and Gy are constant), as indicated by Equation (1.10). Coincidentally, if the gradients are not
constant, the term Git, i = [x, y, z] is replaced by

∫ t

0
Gi(t

′) dt′ in Equation (1.10). For example,
applying a negative gradient for a duration ∆t along the x axis is equivalent to move in the k-space
of a value γ

2π
Gxt along the x axis in the spatial frequency domain (denoted kx). The data samples

are then acquired after an excitation pulse, mapping the k-space using gradients according to an
MR sequence (Figure 1.6).

The aim in MRI is then to acquire MR signal samples at as many spatial frequencies as possible
(kx and ky) to fill the k-space and obtain an image after Fourier transform. Note that the recon-
structed image properties (such as resolution and field-of-view (FOV)) will depend on the k-space
measurements such as the maximum frequency value kmax and the sampling interval ∆k.

Two important sequence parameters controlling the contrast and acquisition speed are the echo
time (TE) and the repetition time (TR) (see Figure 1.6). TE is defined as the time between the
middle of the RF pulse and the middle of the echo signal. For multiple echos, we commonly use
TE1, TE2, etc. When the RF spin echo and gradient echo are not coincident in time, TE refers to
the time of the gradient spin echo [4]. TR is defined as the period of time between the beginning of
a pulse sequence and the beginning of the succeeding pulse sequence [4]. Note that in the current
and previous sections, the concept of the MR signal is explained using a simple excitation case
with a single RF pulse: the free-induction decay. However, using multiple RF pulses or combining
them with gradients is also possible. In particular, widely used MR imaging techniques such as
Gradient-echo (GRE) and Spin-echo (SE) can be produced using respectively an RF pulse with
gradient rephasing and 2 RF pulses (2nd pulse one for spin rephasing) [62].

1.2.3 Signal and noise model in dynamic MRI

Equation (1.11) in the previous section presents the relationship between the acquired signal and
the imaged object, but does not take into account potential noise from the MR signal. The noise
of the MR signal is governed by a Rician distribution [44]. It is however commonly approximated
to Gaussian noise when the signal-to-noise ratio (SNR) is above 2 [44]. In addition, for simplicity
purpose, we will consider the two quantities to be equal instead of proportional. The signal model



26 CHAPTER 1. BACKGROUND ON MRI

Figure 1.6: Basic MR sequence for 2D coverage of the k-space. On the left, the MR sequence with RF pulse and
gradients application. On the right, the equivalent k-space trajectory for time-points A, B, C and D. The prewinding
gradient is required to start the acquisition with negative spatial frequencies. The operation is then repeated for
several phase-encoding gradient intensity (blue line) to cover the whole k-space. Courtesy of radiologykey.com

of the measured data at k-space location k and time t can then be written as:

s(k, t) =

∫
V
x(r, t)e−i2πk·rdr+ ε(k, t), (1.13)

where x(r, t) denotes the image intensity at location r and time t in volume V and ε(k, t) is the
measurement noise (assumed to be identical and independent Gaussian noise). Note that in the
rest of this manuscript, the imaged object at a location r and time t will be denoted by x(r, t) and
not ρ(r, t). This choice is purely practical and is motivated by the usual notations in optimization
and image reconstruction, where the unknown matrix to recover is commonly denoted by X.

The MR signal in Equation (1.13) represents a continuous signal in the k-space. Just like the
input image space, the k-space is infinite and only a specific part of it is interesting to the user: its
center, where most of the energy is. However, in terms of signal processing, we would need to cover
the whole k-space for all frequencies at an infinite precision to obtain a perfect representation of the
imaged object. To remedy this problem, we actually use a discretized representation of the imaged
object (denoted by X) and discretized k-space measurement (denoted by s). In the discretized case,
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the dynamic image series formed by x(r, t) is represented as follows:

x(r1,1, tN) . . . x(r1,M2 , tN)

... . . . ...
x(rM1,1, tN) . . . x(rM1,M2 , tN)x(r1,1, tn) . . . x(r1,M2 , tn)

... . . . ...
x(rM1,1, tn) . . . x(rM1,M2 , tn)x(r1,1, t1) . . . x(r1,M2 , t1)

... . . . ...
x(rM1,1, t1) . . . x(rM1,M2 , t1)

where M1 and M2 are the vertical and horizontal sizes of the image, and N is the number of temporal
frames. For mathematical practicality, the discretized images are vectorized, i.e., an image of size
M1 ×M2 is represented as a vector M × 1 where M = M1M2, and the image vectors at different
time points are concatenated along rows. This 2D matrix representing the image series is commonly
called the Casorati matrix:

X =

 x(r1, t1) . . . x(r1, tN)
... . . . ...

x(rM , t1) . . . x(rM , tN)

 , (1.14)

where X ∈ CM×N , M is the number of voxels, and N is the number of temporal frames.

The discretized MR signal is obtained from the continuous NMR signal sampled throughout
time, aiming at filling the k-space “grid” defined by the spatial frequency step ∆k and maximum
spatial frequency kmax. The image is then recovered using the one-to-one mapping between the
k-space samples and imaged object: the Fourier transform (see Figure 1.7).

Accordingly, using the relationship in Equation (1.12), the signal model in Equation (1.13) can
be expressed in the discretized case as:

S = FsX+ E, (1.15)

where S ∈ CP×N is a matrix containing the measured k-space data at P frequency locations for
the N frames, Fs denotes the spatial domain Discrete Fourier Transform (DFT), and E contains
the noise of the measured data. Using this relationship, the image X can be obtained from the
measured k-space data using an inverse DFT: this process is called image reconstruction.

Equation (1.15) represents a case where we fully sample the k-space, i.e., we acquire all the
k-space locations needed at a rate above the Nyquist rate to be able to directly recover X from
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Figure 1.7: (a) Discretized 2D MR signal outputted from the scanner. The raw data shown here are denoted as
k-space measurement. (b) Corresponding image data in the image space. The mapping between the two spaces is
the Fourier transform (FT). As k-space measurements are complex numbers, both (a) and (b) are shown in terms
of magnitude. Original figure from [111].

S with a DFT. However, in practice, scans are limited by the acquisition time and acquiring all
the k-space locations can prove to be challenging. The acquired k-space data is therefore often
undersampled. In such a case, the discretized signal model is then:

s = Ω (FsX) + ε, (1.16)

where s ∈ CK×1 contains the vectorized undersampled k-space measurements, Ω denotes a sampling
mask operator in the (k, t)-space, and ε is a vector containing the noise of the measured data. Image
reconstruction can be performed solving Equation (1.16) using the least-square method:

X̂ = argmin
X

∥∥Ω(FsX
)
− s
∥∥2
2
, (1.17)

The signal model presented in Equation (1.16) is in the case of single-coiled measured data. If
multiple coils are available for image acquisition, a data vector s is acquired from each of them,
forming a multicoil array [s1, . . . , sncoil

], where ncoil is the number of coil receivers. In such a
case, images can be reconstructed separately for each coil data si, i = 1, . . . , ncoil, forming ncoil

reconstructed images Xi. A magnitude dynamic image series X can then be generated by combining
the reconstructed dynamic images of each coil using the sum-of-square (SoS) method:

X =

√√√√ncoil∑
i=1

|Xi|2, (1.18)

where | • | is the element-wise absolute value and •2 is the element-wise square function.
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1.2.4 Sampling of the MR signal

When performing an MR scan, various k-space locations are sampled throughout time. As explained
in the previous section, the k-space locations correspond to spatial frequencies: the center of the
k-space represents the low frequency components while the edges represent the higher frequency
components. As such, most of the energy of the signal is located in the center of the k-space, which
determines the overall contrast and basic shapes of the image, while the edges of the k-space encode
the image details and sharpness [99, 111]. It is therefore crucial to acquire samples in the center
of the k-space (k-space without its center would only show edges [29, 99]), without neglecting the
edges to obtain reasonable image details. To do so, many sampling trajectories are possible, each
of them with pros and cons.

Cartesian k-space sampling

Cartesian sampling refers to the sampling of k-space points on a Cartesian grid. This is done by
acquiring data samples at a fixed phase encoding gradient Gy while varying the frequency encoding
gradient Gx. Data points are sampled regularly along the frequency direction (also called readout
direction). In general, one k-space line along the readout direction is acquired per excitation pulse.
An example of k-space measurements sampled on a Cartesian grid is shown in Figure 1.8. However,
depending on the imaged object and the desired resolution/FOV, acquiring one readout line per
TR might be too slow. In such cases, some fast MR imaging techniques exist such as Echo planar
imaging (EPI) to cover larger k-space zones with a single RF pulse. One of the main advantages of
Cartesian sampling is that the data collection is uniform, there is therefore no need to compensate for
its density when performing image reconstruction. Additionally, efficient reconstruction algorithms
such as the Fast Fourier Transform (FFT) can be used.

Figure 1.8: Discretized k-space acquired using Cartesian sampling trajectory. Every purple square in the k-space
represents one measurement on the Cartesian grid.
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Non-Cartesian k-space sampling

Despite the efficiency of the Cartesian sampling for image reconstruction using the FFT, other
sampling trajectories such as radial or spiral are getting more popular by the day. Indeed, as
explained above, most of the signal energy is located in the center of the k-space, and that location
also encodes the basic shapes and contrast of the image while the edges of the k-space have lower
energy and are more prone to noise. Despite these facts, we still want to acquire signal at both
locations. Yet, it could be beneficial to acquire data in a way such that the center of the k-space
is more sampled than the edges. Non-uniform sampling of the k-space therefore seems to be of
interest as classical Cartesian sampling does not offer this flexibility.

Most common non-Cartesian sampling trajectories are radial and spiral (see Figure 1.9). With
these trajectories, both frequency and phase encoding gradients are turned on, creating a spiral
or radial trajectory. Some of the main advantages with these techniques are their relatively low
sensitivity to motion artifacts, incoherently distributed aliasing artifacts, and higher SNR due to the
heavily sampled center of the k-space at regular rate [29, 111]. However, due to their non-uniform
sample density, reconstruction is computationally heavier than with Cartesian sampling (the FFT
algorithm cannot be utilized here) and due to gradients delays and distortions, the exact position
of the k-space samples may be different than expected, creating artifacts.

Figure 1.9: Example of a non-Cartesian sampling trajectory. Here, k-space measurements are acquired using a
radial sampling trajectory. Every pink dot in the k-space represents one measurement along the radial trajectory
indicated by the blue line. Using this sampling trajectory, the center of the k-space is denser than the edges (i.e.,
more samples in the center). Courtesy of Allen D. Elster, MRIquestions.com

1.3 Magnetic Resonance image reconstruction

Applying the Fourier transform to the measured k-space data, along some potential advanced opti-
mization schemes following Equations (1.15) and (1.16), is called image reconstruction. We present
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here some state-of-the-art techniques for MR image reconstruction.

1.3.1 Non-iterative image reconstruction techniques

Cartesian k-space sampling: Fast Fourier Transform (FFT)

As presented in Section 1.2.4, k-space samples acquired following a Cartesian trajectory can be
reconstructed using a Fast Fourier transform, especially fast for matrix sizes being a power of 2.
When the k-space is fully sampled, i.e., above the Nyquist rate, the image array is obtained with a
simple FFT. With the current available CPU machines, applying the FFT to a 256× 256 images is
in the order of the millisecond (or less), without considering potential acceleration from GPUs.

However, when the k-space is not fully sampled, i.e., there is a sampling mask Ω as in Equa-
tion (1.16), applying the FFT on the undersampled k-space will produce aliasing artifacts. These
artifacts are mostly dependent on the k-space trajectory and on which samples are missing. In the
case of Cartesian trajectory, the undersampling is mostly applied on the phase direction (generally
y axis) as it corresponds to the bottleneck in terms of acquisition time (the frequency encoding
direction is almost “free” in terms of acquisition time). In such a case, the artifacts will correspond
to aliasing along the phase-encoding direction, as shown in Figure 1.10c. As fewer samples are
acquired in the phase-encoding direction, the FOV will be smaller in that direction. Note that
zero-filled image reconstruction can also be performed to get an image of same FOV as the fully
sampled, yet still with heavy aliasing artifacts.

Non-Cartesian k-space sampling: Gridding and Non-Uniform FFT (NuFFT)

In the case of non-Cartesian k-space trajectory, we cannot rely on the FFT for the reconstruction of
the image as the samples are not uniformly distributed anymore. There are mainly three alternatives
[113]: the first one is using specific trajectories (e.g., spiral) with specific angular criteria to use pre-
existing algorithms such as the projection reconstruction from X-ray CT. Another technique, a little
more common, is to re-sample the non-uniform samples s on a Cartesian grid using interpolation
kernels to produce new uniformly distributed samples s̃. The FFT can then be applied on s̃ to
reconstruct images as in Section 1.3.1 – Cartesian case. This process is called gridding, and can
be seen as a pre-processing step on the original input data that produces a new input easier to
reconstruct with more conventional algorithms (i.e., the FFT). Lastly, the third and most popular
option is to use a fast Fourier transform algorithm adapted to non-uniform sampling patterns.
Notably, due to the growing interest and need to perform fast Fourier transform on arbitrarily
distributed samples, many fast interpolation algorithms have been developed in the late 1990s and
early 2000s [32, 41]. These algorithms, commonly referred to as Non-uniform FFT (NuFFT), rely on
one step of interpolation (gridding) and one step of FFT. Despite their flexibility, these algorithms
require more computation time than the FFT (possibly 10-50 times) due to the interpolation step,
which is one of the main drawbacks when dealing with high dimensional data.
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Figure 1.10: (a) full-resolution image with samples covering the k-space at the Nyquist rate. (b): Undersampling
of the edges of the k-space. Reducing ky,max maintains the FOV but decreases the image resolution. (c) Regular
undersampling in the phase-encoding direction. Increasing ∆ky while holding ky,max constant maintains image
resolution but decreases the FOV, resulting in spatial aliasing artifacts in the corresponding image [28].

Figure 1.11 shows the NuFFT reconstructed image from undersampled k-space data with radial
trajectory. Due to the radial pattern of the sampling trajectory, the aliasing occurring is different
from the Cartesian case, causing streaks along the angles of the missing spoke angles (i.e., missing
projections).

Note that in the case of a non-iterative reconstruction scheme, applying the gridding method
or the NuFFT is strictly equivalent. However, in the case of iterative reconstruction schemes (see
Section 1.3.2) a difference arises. When using the gridding method, the input is s̃ and Fs in
Equation (1.16) corresponds to the FFT. Yet, when reconstructing using the NuFFT, the input
data vector s is not pre-processed. More precisely, the input of the reconstruction scheme is the
original input data s and the NuFFT is applied as long as we iterate (i.e., Fs in Equation (1.16)
corresponds to the NuFFT).

1.3.2 Iterative image reconstruction techniques

Despite numerous advantages such as versatility and spatial resolution, MR imaging is inherently
a modality with slow imaging speed. The acquired dynamic MR data are therefore often highly
undersampled. A key challenge in dynamic MRI is then reconstructing high-dimensional images
from sparse (k, t)-space data sampled below the Nyquist sampling rate. Henceforth, several MR
image reconstruction schemes based on different types of assumptions have been developed as a
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Figure 1.11: Reconstructed images of a Shepp-Logan phantom with matrix size 256 × 256. The Nyquist rate for
radial sampling is 256 × Π

2 = 402 spokes, hence the artifact-free image reconstructed on the left. When decreasing
the number of spokes acquired, streaking artifacts appear.

mean to counter the slow-imaging. As a result, advanced constrained/model-based reconstruction
techniques are often used to recover the dynamic MR images from the highly undersampled (k, t)-
space data. We show here some of the state of the art iterative MR image reconstruction techniques
used to deal with undersampling.

Parallel imaging (PI)

Parallel imaging has emerged as a powerful tool to reduce scanning time and improve patient com-
fort, and became widely available in industrial MR scanners in the early 2000s. This technique
aims at using the spatial sensitivity information of the coil receivers to combine them during re-
construction, instead of using the sum-of-square technique to combine independently reconstructed
images.

In parallel imaging, the k-space measurements are sampled at a frequency rate lower than the
Nyquist rate, skipping the acquisition of certain lines in the k-space (e.g., in the phase encoding
direction). With the conventional non-iterative reconstruction method, this undersampled pattern
leads to artifacts as shown in Section 1.3.1. The gist of PI is then to rely on the numerous coil
receivers to “unfold” the overlapping signal causing aliasing.

One of the main advantages of parallel imaging is its versatility as it can be used to nearly all
MR applications and only requires multi-coil receivers for image acquisition with no need of higher
gradient system performances [8] to increase imaging by a factor R of 1.5 to 3 in most cases [38].
However, parallel imaging can be challenging in practice as it tends to cause a decrease in signal-
to-noise ratio (SNR) and, when needed, the estimation of the coil sensitivity map may not always
be straightforward. PI techniques can be categorized in two: the techniques applied in the image
domain, i.e., untangling the aliasing signal in the image; and the techniques applied in the k-space
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domain, i.e., estimating the missing data-points causing aliasing.

SENSE The Sensitivity Encoding (SENSE) [121, 122] is one of the most common PI techniques
applied in the image domain [28]. As shown in Section 1.3.1, missing k-space lines cause aliasing
and reduced FOV in the image domain. With ncoil coils covering the whole imaged object, we can
reconstruct ncoil individual coil images. For a given pixel of the full-FOV reconstructed image, the
ncoil will contribute to its signal in a way that is weighted by the coils sensitivities in that region.
In other words, assuming a reduction factor R, the ncoil individual coil images are a R-way “folded”
version of the original image, and we rely on a known coil sensitivity to “unfold” the images and
recover the underlying full-FOV signal [8, 28]. For simplicity, let us consider R = ncoil = 2 in
the Cartesian case, i.e., 1 k-space line over 2 is missing in the phase encoding direction. Denote
the reduced-FOV and aliased images as X̃1 and X̃2, and their underlying non-aliased reduced-FOV
version X1 and X2. We can then write:

X̃1 = X1 ◦ S1 +X2 ◦ S1

X̃2 = X1 ◦ S2 +X2 ◦ S2 (1.19)

where ◦ represents the element-wise product and S1 and S2 are the coil sensitivity maps of the
coils 1 and 2. The principle of this technique is illustrated in Figure 1.12.

Assuming the sensitivity maps are known, the above two equations with two unknowns X1 and
X2 can easily be solved with linear algebra to form the full-FOV image X. This can be generalized
to an arbitrary undersampling factor R and coil receivers ncoil, where we obtain ncoil equations with
R unknowns (due to the R-way “folding”). Therefore, in theory, as long as R ≤ ncoil the system of
equations can be inverted to recover the full-FOV image.

Despite being first theorized for the Cartesian case in [121], the SENSE method is generalized
to arbitrary trajectories along with conjugate gradient (CG) methods to solve the optimization
problem more efficiently [122]. The coil sensitivity matrix is then incorporated in the reconstruction
formulation:

smc = ASENSE(X) + ε (1.20)

where smc is the vectorized multi-coil k-space data and ASENSE, often called generalized encod-
ing matrix (GEM), is an operator composed of the sampling mask, the Fourier transform (as in
Equation (1.16)) and the coil sensitivity maps for the SENSE model.

A least square estimate of the above equation can be obtained by solving the normal equa-
tion [125] and using a CG iterative scheme. This allows for better memory usage / processing time
for large linear systems, which is particularly suited to for the FFT, and does not require strong
provisions to ensure convergence [122]. This technique, now widely used in clinical settings as well,
assumes that coil sensitivity maps are known and estimated during a pre-scan, which is not always
feasible. In such a case, the coil sensitivity maps can be estimated from low-resolution images or
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Figure 1.12: Principle of SENSE-like techniques. Known (or estimated) coil sensitivity maps are used to untangle
the aliased signals in the image space. SiA and SiB denote the sensitivity of the ith coil for the voxels A and B. Pi

represents the voxel signal intensity in the aliased image X̃i for the ith coil. [29]

time-averaged images for dynamic MRI. However, note that inaccurate coil sensitivity maps can
cause artifact in the full-FOV reconstructed image [28, 164].

GRAPPA While the SENSE method focuses on removing the aliasing signal in the image domain,
the Generalized Autocalibrating Partially Parallel Acquisition (GRAPPA) (and its non-Cartesian
adaptations) aims at processing directly the input k-space data to recover the missing informa-
tion [15, 43, 56, 140]. Unlike SENSE, the GRAPPA method reconstructs full-FOV individual coil
images that are then combined using the sum-of-square to produce the original image X. One can
think of GRAPPA as the dual method of SENSE: if the original image multiplied by a sensitivity
matrix yields an aliasing-free individual coil image, then, equivalently, the original k-space convo-
luted with some weight-matrix should yield the non-aliasing k-space data. Another way to see it is
to consider that each coil weighs the image signal intensity based on its sensitivity (i.e. the closer to
the coil, the better). This translates into a smearing of information in the k-space in coil-dependent
fashion [28, 164] and if that smearing pattern can be estimated for each coil (through weights),
missing k-space samples can be estimated from their neighbors.

Differently from SENSE, the GRAPPA method does not require knowing the coil sensitivity
before reconstruction: it uses a technique called autocalibration to determine the relationship be-
tween the data from the several coil receivers. This autocalibration is done using a set of fully
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sampled k-space lines acquired in the center of the k-space called the autocalibration signal (ACS).
The GRAPPA method is then typically formulated as a least-squares optimization problem, where
the objective is to minimize the difference between the estimated k-space data and the ACS. Note
that in this method, missing k-space lines are zero-filled. The principle of missing lines estimation
is illustrated in Figure 1.13.

Figure 1.13: Missing k-space lines estimation using GRAPPA. Each dot represents a line in the k-space. GRAPPA
uses multiple lines from all coils to fit one line in a target coil (here coil 4). This procedure is repeated for every coil,
resulting in fully-sampled k-space measurements estimated for each coil. The FFT-reconstructed images can then be
combined using a sum-of-squares reconstruction [8].

For simplicity, take the case of a 2D Cartesian dataset with an R reduction factor, i.e., only one
k-space line over R is acquired in the phase-encoding direction. The GRAPPA formulation then
fits the target points from a coil i (i.e., the missing samples starg,i) to the source points from all the
coils (i.e., acquired samples ssrc,j, j = 1, . . . , ncoil):

starg,i (kx, ky +∆ky) =

ncoil∑
j=1

∑
τx

∑
τy

w (i, j, τx, τy) · ssrc,j (kx + τx, ky + τy) (1.21)

where τx and τy represent the position along x and y in the kernel formed by the weights w,
w (i, j, τx, τy) represents the value of the kernel for a target sample in coil i, source sample in coil j,
and at the indexes τx, τy. Note that τx and τy depend on the kernel size (e.g., 2× 3) that is chosen
before reconstruction.

Thanks to the ACS, the target samples can be known for the center of the k-space, i.e., starg,i is
known and only the weights w are unknown. We can then form a weight matrix W of size ncoil ×
ncoilnw from the nw kernel weights for the ncoil coils sources and ncoil targets to write Equation (1.21)
in matrix notation:

sACS,targ = WsACS,src (1.22)

where sACS,targ and sACS,src are vectors containing the target and the source samples.
Note that the weights are shift-invariant, which means that the same set of weights is used for

the whole k-space, and that the relationship in Equation (1.22) must be satisfied for all the samples
in the k-space. The above problem can efficiently be solved using a least-square method and, if
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ill-conditioned, a regularization term can also be added on W. One of the main advantages of
this technique is that it does not require the coil sensitivity to be known before reconstruction and
can be directly estimated using the acquired data, making it usually more robust than SENSE in
inhomogeneous areas.

Compressed Sensing (CS) The compressed sensing theory for MRI application has been de-
scribed in [88, 89] and aims at recovering signals and images from data sampled below the theoretical
Nyquist frequency. Well-known transform-based compression algorithms such as JPEG are already
extensively used to compress images. Natural images in particular can often be compressed without
loss of information. In MR image reconstruction, CS exploits the MR data intrinsic property of
being sparse in an appropriate transformed domain. Lustig et al. therefore present the MR signal
as being compressible [88], making it possible from the acquisition itself to only acquire (“sense”)
the relevant (“compressed”) components of the data. This new concept of “Compressed Sensing”
was well described in [88]: “Since the images we intend to acquire will be compressible, with most
transform coefficients negligible or unimportant, is it really necessary to acquire all that data in the
first place? Can we not simply measure the compressed information directly from a small number of
measurements, and still reconstruct the same image, which would arise from the fully sampled set?
Furthermore, since MRI measures Fourier coefficients [. . . ] the question is whether it is possible to
do the above by measuring only a subset of k-space.”

To successfully apply CS, three key conditions have to be met [89]. The most fundamental
one is that the data must be sparse in some transformed domain [36, 89]. As explained above,
this condition is already met for MR images. In addition, the undersampling artifacts must be
incoherent in the sparsifying transformed domain. For MR data, this means that the artifacts
created by the k-space undersampling should not have a consistent pattern (i.e., streaks or obvious
aliasing) and can be obtained using pseudo-random sampling. A way to meet this condition is to
acquire k-space data for random locations along the acquisition. Finally, the sparsity of the image
in the transformed domain must be enforced by some non-linear reconstruction scheme. In practice,
this can be done by adding a 1-norm regularization term on the domain-transformed data.

To summarize, in CS applications, the image model from Equation (1.16) is fitted to the un-
dersampled k-space data with an additional term, sometimes denoted as prior. The optimization
problem to solve can be written as:

X̂ = argmin
X

∥∥Ω(FsX
)
− s
∥∥2
2
+ λ ∥D(X)∥1 , (1.23)

where D is a sparsifying transform operator such as finite difference, λ is a parameter weighing
the CS regularization, and ∥•∥1 is the l1-norm defined as the sum of the absolute value of entries
elements. This can be solved using algorithms such as ISTA/FISTA [5] or the alternating direction
methods of multipliers (ADMM) algorithm [12]. Note that compressed sensing can be used along
other models, such as SENSE. In such a case, the coil sensitivity matrix is added to the forward
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model in Equation (1.23) and the multi-coil data is used.

1.4 Limitations for dynamic MRI

Despite advanced reconstruction schemes such as SENSE/GRAPPA or CS presented in the previous
section, reconstructing artifact-free images is still a challenge for dynamic MRI. In theory, parallel
imaging can offer a reduction factor as high as the number of coil receivers, however, in practice, this
kind of technique only offers a reduction factor of 1.5 to 3 without noticeable artifacts [38] and is
not always fitted for dynamic imaging with inhomogeneous regions such as lungs. CS also allows for
higher undersampling of the k-space, but the actual reduction factor it allows is highly dependent
on the application (i.e., DCE-liver, MRA, cardiac, etc.) and a too strong CS regularization will
tend to blur the image, rendering them non-diagnostic [64].

Overall, the difficulty with dynamic MRI is that it requires high spatial resolution to provide
detailed images of the anatomy being imaged (just as static MRI) but also high temporal resolution
to capture rapid changes in the image over time. The main limitation is the trade-off between tem-
poral and spatial resolution. Increasing the temporal resolution typically requires sacrificing spatial
resolution: the shorter the temporal resolution, the smaller the time window for k-space line sam-
pling within one frame. Dynamic MR image reconstruction is therefore a highly underdetermined
problem due to the extra time dimension of the dynamic series. Another limitation of dynamic
MRI is motion artifact. Motion during the imaging process can cause blurring and distortion in the
reconstructed images, particularly in fast-moving or highly deformable tissue such as the heart or
lungs. Motion correction techniques [39, 153, 163] can be used to mitigate these artifacts, but they
may not always be effective, particularly in cases of large or complex motion. Finally, conventional
MR image reconstruction techniques may also be limited by the length of the acquisition time. In
dynamic MRI, the longer the acquisition time, the more detailed the images will be, but this can
also lead to increased motion artifact, and increased burden for the patient. Finding the optimal
balance between acquisition time and image quality is often a challenge in dynamic MRI.

To address these challenges, dynamic MRI reconstruction algorithms often rely on additional
constraints or prior knowledge about the image sequence to help guide the reconstruction process.
This can include assumptions about the smoothness/pseudo-periodicity of the dynamic image series,
or assumptions about an underlying low-dimensional space where the k-space samples lie. These
types of technique will be discussed in Chapter 2 where a linear low-dimensional model for dynamic
MRI is presented with applications to PET motion correction, and in Chapter 3 where a novel
non-linear low-dimensional model based on linear tangent space alignment is derived and presented
with application to dynamic MRI.



Chapter 2

Subspace model-based image reconstruction
for dynamic MRI

Chapter 1 presented background knowledge on the NMR phenomenon and how it is used in MR
imaging. Notions such as k-space sampling strategies (e.g., Cartesian and radial trajectories) were
detailed, and state-of-the-art iterative and non-iterative reconstruction techniques were presented
to reconstruct images from undersampled k-space data. However, these techniques show limita-
tions with high undersampling rates, which is especially bound to happen in dynamic MRI due
to the limited sampling time-window per temporal frame. Using a model that takes into account
spatiotemporal correlations in the MR signal can therefore be particularly useful to overcome these
limitations. We present in this chapter a method that models the dynamic k-space data as high-
dimensional data lying close or onto a low-dimensional linear subspace and demonstrate how it
can reconstruct MR images with fewer unknowns by fixing a set of temporal basis functions. The
mathematical formulation of the subspace model is first shown along an efficient MR acquisition
scheme to maximize the potency of the model by estimating temporal basis from the undersampled
k-space data. Two applications leveraging the subspace model for MR image reconstruction are then
presented, respectively for MR-based PET data motion correction and free-breathing 3D cardiac T1

mapping.

2.1 Subspace model

2.1.1 Mathematical formulation

We denote the dynamic image series as x(r, t) and its matrix representation X ∈ CM×N as described
in Section 1.2.3:

X =

 x(r1, t1) . . . x(r1, tN)
... . . . ...

x(rM , t1) . . . x(rM , tN)

 . (2.1)

39
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The temporal signal at the m-th voxel of the dynamic images is denoted as zm =[
x(rm, t1), . . . , x(rm, tN)

]T ∈ CN×1 , where ’T’ represents the matrix transpose operation. In the
subspace model, we assume that zm resides in a low-dimensional subspace and can therefore be
expressed as:

zm = Φθm,m = 1, . . . ,M, (2.2)

where Φ = [ϕ1, . . . ,ϕD] ∈ CN×D concatenates along columns the temporal bases (i.e., ϕd =

[ϕd(t1), . . . , ϕd(tN)]
T ∈ CN×1) that span a D-dimensional subspace (D << M or N), and θm ∈ CD×1

concatenates the corresponding spatial coefficients (or equivalently coordinates) of zm in this sub-
space.

The subspace model in Equation (2.2) can be written more concisely in the form of a low-rank
decomposition of the Casorati matrix X presented in Equation (2.1):

X = ΘΦT, (2.3)

where Θ ∈ CM×D concatenates along rows the spatial coefficients θT
m of all M voxels with respect

to the subspace basis, Φ. However, this decomposition may not be always possible in an exact way,
and an approximation is then searched for.

The optimal Θ and Φ then minimize the low-rank approximation error of X:

argmin
Θ,Φ

∥∥X−ΘΦT
∥∥2
F

(2.4)

The above optimization problem can be solved by singular value decomposition (SVD), which
provides the best rank-D linear approximation of the Casorati matrix X:

ΘΦT = UDΣDV
H
D, (2.5)

where ’H’ represents the matrix Hermitian transpose operation, ΣD = diag{σ1, σ2, . . . , σD} are
the D largest singular values of X, and UD and VD are the corresponding left and right singular
vectors. The singular value decomposition in Equation (2.5) actually provides a way of verifying the
assumption of low-rankness implied in the subspace model by plotting the singular value distribution
of X, in addition to an ideal cut-off rank D.

In practice, X is the matrix we want to recover in the image reconstruction process, therefore,
directly performing an SVD on X to verify the low-rankness assumption is usually not possible.
However, workarounds exist, such as performing the SVD on a first estimate X̂ provided from
another reconstruction technique. Another more practical way is to perform the SVD on a set of
k-space data forming a basis spanning the underlying spatiotemporal subspace [22] (see details on
“training” k-space samples defined in Section 2.1.2). The temporal basis functions [ϕ1, . . . ,ϕD] can
then be estimated from the acquired data and fixed before image reconstruction (Sections 2.1.2
and 2.1.3). This only leaves Θ to be estimated during image reconstruction, i.e., M ×D unknowns
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instead of the original M ×N unknowns (N >> D).
Therefore, the subspace model significantly reduces the degrees of freedom of the underlying spa-

tiotemporal distribution and enables special (k, t)-space sampling schemes and image reconstruction
methods that recover dynamic images from undersampled data with high spatial resolution and high
frame rate [21, 22, 81, 83, 114, 171]. In practice, the dimension of the subspace just needs to be
sufficiently high to capture the temporal changes of the signals in dynamic MRI [21, 22, 171].

2.1.2 Data acquisition scheme

The data acquisition scheme of the subspace-based methods usually relies on two interleaved sets
of k-space data sampled within one acquisition [81]. In each frame, a set of data is acquired at a
high temporal rate (to enable high temporal resolution) but covering only limited k-space for the
determination of the temporal bases. This set is referred to as “training” k-space data. Note that
the term “training” k-space data (or “navigator data” in some manuscripts) is commonly used in
the literature related to subspace-based approaches for samples acquired with high temporal rate
for temporal basis estimation and is different from the “training” datasets used in deep learning
applications. The other set, namely the “imaging” set, is composed of data acquired in the entire k-
space sparsely sampled throughout the acquisition (to enable high spatial resolution), i.e., covering
the entire k-space but at a low temporal rate. This “imaging” set is then fitted to the imaging model
(i.e., subspace model) in the image reconstruction process.

To further illustrate the data acquisition scheme of subspace-based image reconstruction meth-
ods, take the case of an acquisition with radial trajectory in the kx-ky plane. Denote nt the number
of k-space lines per frame for temporal basis estimation and nim the number of k-space lines per
frame for image reconstruction. A total of (nt+nim) k-space lines are acquired each frame, resulting
in K = N(nt + nim) acquired k-space lines in the acquisition. In such a case, the scheme described
above commonly translates to nt = 2 k-space lines acquired each frame in 2D imaging and nt = 3

in 3D imaging: one line along kx, one line along ky and one line along kz in 3D imaging; to span the
spatiotemporal subspace. Another nim lines at random spoke angles are acquired, sparsely covering
the rest of the k-space. These two steps are repeated N times to produce the undersampled k-space
data vector s ∈ CK×1. An example of such an acquisition in the 2D case is shown in Figure 2.1.

Many k-space trajectories, such as Cartesian, spiral, and radial trajectories, can be used [89].
In the work presented in this manuscript, we used random radial trajectories for the 2D imaging
experiments and random stack-of-stars trajectories for the 3D imaging experiments because of their
superior performance in dynamic MRI applications.

2.1.3 Temporal basis estimation

In the subspace model, a temporal basis spanning the underlying linear subspace is estimated prior
to image reconstruction. The approach presented below is based on the assumption that the training
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Figure 2.1: Example of an efficient 2D data acquisition scheme for temporal basis estimation and subspace modeling.
The white dots represent individual k-space measurements along the readout direction. In this example, training
lines for temporal basis estimation are acquired at the beginning of each frame along the kx and ky directions (black
lines). For the remaining time of each frame, k-space lines along random spoke angles are then acquired (red lines).

data and the imaging data share the same temporal subspace, which has been proved to be valid [22].

Suppose there are in total N temporal frames with, in each frame, nt k-space lines acquired as
training data, as described in Section 2.1.2, and denote Ro the readout dimension of the measured
k-space data. A Casorati matrix Λ of size (ntRo × N) can be formed by concatenating the nt

training k-space lines of each frame along rows. In the case of imaging with ncoil phased-array
coils, with ncoil > 1, the training lines from each coil are additionally concatenated along columns,
forming a multi-coil Casorati matrix of size (ncoilntRo × N). The temporal basis of the subspace,
Φ ∈ CN×D, is then estimated by calculating the first D right singular vectors of Λ. See [22] for an
in-depth analysis of the subspace estimation using “training” k-space data acquired in this way.

2.1.4 Image reconstruction

Once an estimation of Φ is obtained, the image reconstruction problem is reduced to the determi-
nation of the spatial coefficients matrix Θ. We solve this problem by fitting the subspace model –
also referred to as Low-Rank (LR) model – to the undersampled (k, t)-space data with additional
sparsity constraints [171]:

Θ = argmin
Θ

∥∥Ω (FsΘΦT)− s
∥∥2
2
+ λ

∥∥T (ΘΦT)
∥∥
1
+ µ ∥Θ∥2F , (2.6)
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where s is the measured k-space data, Fs is the Fourier transform operator in the spatial domain, i.e.
Non-Uniform FFT (NuFFT) operator [32] for the stack-of-stars trajectory, Ω is the sparse sampling
operator in the (k, t)-space, T is a sparsifying transform, e.g., the finite difference operator along
the spatial and/or temporal directions, ∥.∥F is the Frobenius norm and the scalar variables λ and
µ are regularization parameters. The first term in Equation (2.6) is a data fidelity term, fitting
the subspace model to the measured k-space data s. The second term is a complementary sparsity
penalty promoting the piecewise smoothness of the reconstructed images X = ΘΦT along the
spatial and temporal dimensions. The third term is an l2-norm regularization term introduced to
improve the numerical stability and favoring minimal norm solutions for Θ.

We solve the optimization problem in Equation (2.6) using the Alternating Direction Methods
of Multipliers (ADMM) algorithm [12], which leads to solving the following three sub-optimization
problem in an alternative fashion:

z(k+1) = Sλ
ρ

(
T
(
Θ(k) ΦT)+ η(k)

)
, (2.7)

Θ(k+1) = argmin
Θ

∥∥Ω (FsΘΦT)− s
∥∥2
2
+

ρ

2

∥∥T (ΘΦT)− z(k+1) + η(k)
∥∥2
F
+ µ ∥Θ∥F , (2.8)

η(k+1) = η(k) +
(
T
(
Θ(k+1) ΦT)− z(k+1)

)
, (2.9)

where z is the split variable, η is the dual variable, and ρ is a scalar relaxation parameter. The z

update (Equation (2.7)) is a soft thresholding operation and the Θ update (Equation (2.8)) is a
convex-optimization problem, which is solved using the conjugate gradient algorithm. In the rest
of this manuscript, the subspace model will also be denoted Low-Rank (LR) model.

2.2 Application to MR-based motion correction for PET-MR

2.2.1 Introduction

Motion, including physiological motion (i.e., cardiac and respiratory motions) and involuntary bulk
motion, is a major source of image quality degradation in Positron Emission Tomography (PET),
which can result in spatial blurring artifacts and mismatch between emission and attenuation maps,
altering quantification of tracer concentration and deteriorating the diagnostic value of PET im-
ages [85, 109, 133]. The conventional way to handle motion in PET is the gating method, which
bins PET list-mode data to different cardiac and/or respiratory motion phases followed by recon-
structions of images of each phase. However, gating results in increased noise levels due to the
reduced number of events in each motion phase. To address the limitations of the gating method,
many PET motion correction methods have been developed, which consist of two consecutive steps:
motion field estimation and motion correction by either applying the estimated motion fields to the
gated images or modeling it within motion-compensated PET image reconstruction [126].

PET motion correction methods can be divided into two major subcategories, depending on how



44 CHAPTER 2. SUBSPACE MODEL-BASED MR IMAGE RECONSTRUCTION

the motion field is estimated: PET-based methods and Magnetic Resonance (MR)-based methods.
In the PET-based motion correction methods, the measured emission data are first assigned to
specific motion phases based on surrogate signals [66], e.g., electrocardiogram (EKG), respiratory
bellow, optical tracking, etc. [35, 103, 168], or the PET-data themselves [69, 86, 147], e.g., center of
mass, time-of-flight information, frame-by-frame images, etc. Motion fields are then estimated by
registering the reconstructed image of each phase to a reference phase [27]. However, the accuracy of
the motion fields estimated by the PET-based methods is limited by low signal-to-noise ratio (SNR),
especially in the case of dual gating, and the overall lack of anatomical structural information of
PET images [109, 117].

The increasing availability of hybrid PET/MR systems provides a unique opportunity for mit-
igating effects of motion in PET using MR-based motion correction. Because of its excellent soft-
tissue contrast, high spatial resolution, and high SNR, MR provides more accurate estimation of
motion fields than the PET-based methods. MR-based PET motion correction methods have been
successfully applied to compensate for respiratory and cardiac motion in various applications in-
volving both static and dynamic PET imaging [14, 37, 59, 73, 115, 117]. One major limitation
of the MR-based motion correction methods is that the conventional non-iterative MR imaging
methods are unable to resolve cardiac or respiratory motion in real time due to the slow imaging
speed. Binning-based MR imaging methods [31, 42, 104, 127, 130] are often used to address this
issue, where MR k-space data are grouped into different motion phases based on surrogate signals
(e.g., EKG), navigator signals, or k-space data alone, and images of each motion phase are then
reconstructed for the estimation of motion fields. However, the binning-based MR imaging meth-
ods suffer from three noticeable limitations. First, they assume pseudo periodic motion, which does
not hold well in the case of arrhythmia and irregular respiratory motion. Secondly, they rely on
either surrogate signals or navigator signals acquired along a single direction to assign k-space data
to specific motion phases, which cannot reliably capture involuntary bulk motion. Thirdly, their
performance is limited by the inherent trade-off between the number of motion phases (and thus
the accuracy of motion field measurement) and data acquisition time.

In this work, we propose a real-time MR imaging method for PET motion corrections in
PET/MR. High resolution real-time MR imaging is achieved by a subspace-based imaging method,
which takes advantage of a unique property of high-dimensional dynamic MR signals [80]. This
model takes advantages of the spatial-temporal correlations of dynamic MR images, significantly
reduces the number of unknowns of the underlying spatiotemporal signal, and makes it possible
to recover high resolution, high frame-rate dynamic MR images from highly undersampled k-space
data [22, 171]. For PET motion correction, the reconstructed real-time MR images are used to de-
termine motion phases and estimate motion fields. PET list-mode data are binned into sinograms
accordingly and ordered-subset expectation-maximization (OSEM) reconstruction [61] is performed
integrating the estimated displacement in the system matrix for motion correction. We demon-
strate the performance of the proposed method by carrying out in vivo 18F-FDG PET/MR imaging
experiments using a 3T simultaneous PET/MR scanner.
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2.2.2 Methods

Simulation Study: Irregular respiratory motion

The key assumption of the subspace-based imaging method is the low-rank property of dynamic
MR signals. We performed a simulation study to investigate this property in the case of regular and
irregular respiratory motion. Two phantoms (shown in Figure 2.2) were generated frame by frame
using the XCAT software [139] to simulate regular and irregular respiratory motion. Respiratory
and cardiac cycles were divided into respectively 30 and 40 phases and 3D volumes were computed
for each respiratory and cardiac phase combination (i.e. 1200 volumes). A 4D (3D space + time)
phantom was then built by selecting and concatenating frame by frame the 3D volumes based on
simulated EKG and respiratory signals. Both the breathing frequency and diaphragm expansion
were varied while keeping a constant heart rate in the simulation of the irregular respiratory motion.
Each phantom contained 6 respiratory cycles. The contrast was designed to simulate a Balanced
Steady-State Free Precession (bSSFP) signal for several compartments such as fat, muscles, etc.
using T1 and T2 values from the literature [10].

Figure 2.2: Simulated MR phantom for regular (left) and irregular (right) respiratory patterns. The plots shown
in the bottom are 1D time-profiles of the liver along the yellow vertical line in the phantom image. These profiles
show the frequency and amplitude variations in both cases.

A singular value decomposition was then performed to investigate the effect of an irregular res-
piratory pattern on the rank, and its corresponding approximation error with low-rank truncation.
The result, shown in Figure 2.3, presents plots of the normalized singular values calculated using the
phantom with regular (solid lines) and irregular (dashed line) respiratory pattern. In both cases, an
approximation error smaller than 3% is achieved with a rank up to 9. The decay of the calculated
singular values from both phantoms is therefore very similar, indicating that the breathing pattern
does not substantially affect the rank of the data.
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Figure 2.3: Normalized singular values decay for irregular respiratory pattern (plain blue line) and regular res-
piratory pattern (dashed orange line). An approximation error inferior to 3% can be achieved with a rank of 9 or
higher, proving the signal indeed shows low-rank characteristics.

PET/MR imaging experiment

An 18F-FDG PET/MR scan was performed on one healthy subject under a study protocol approved
by our local Institutional Review Board (IRB). PET and MR data were simultaneously acquired 30
minutes after 18F-FDG injection (around 10 mCi) using a 3T PET/MR scanner (Siemens Biograph
mMR, Siemens Healthcare, Erlangen, Germany).

Two 5-minute MR acquisitions were performed using a spoiled gradient-recalled echo (GRE)
sequence with stack-of-stars radial sampling trajectories in the coronal plane. The imaging parame-
ters are as follows: image size = 384×384×32, voxel size = 1.9×1.9×5mm3, TR/TE = 3/1.6 ms,
and flip angle = 7 degrees. The (k, t)-space data were acquired using a random sampling pattern
shown in Figure 2.4. A total of 35 k-space spokes were sampled in each frame, resulting in a frame
rate of 9.5 volumes per second. For each frame, the first three spokes were respectively acquired
along the kx, ky and kz directions across the center of the k-space to estimate the temporal basis of
the subspace model, as described in Section 2.1.3. The remaining 32 spokes were along a random
angle in the kx-ky plane for every kz.

During the first 5-minute acquisition, the subject was instructed to move once to assess the
effect of both respiratory and bulk motion. During the second 5-minute acquisition, the subject was
instructed to simulate an irregular respiratory pattern including both deep and shallow breaths. The
vendor-provided two-point Dixon sequence was performed with breath-holding to obtain attenuation
coefficients.

For comparison, we reconstructed MR images using the same data by a binning-based method,
known as XD-GRASP [31]. The respiratory motion signal used for binning was processed the
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Figure 2.4: MR Sampling scheme used for the proposed method. 35 lines per frame are acquired: 1 line along kz
and 34 lines in the kx-ky plane. For a better visibility, only the kx-ky in-plane acquired lines are shown in the figure.
Two training lines along kx and ky at kz = 0 are consistently acquired through the whole acquisition to estimate
the temporal basis Vt (red lines). A random angle is chosen every frame and is consistently acquired every kz for
imaging.

same way the authors of [31] did, i.e., the Fourier transform of the data at the center of the k-
space at each frame was sorted into a 2D matrix, with data from each coil concatenated along the
first dimension. A Principal Component Analysis (PCA) was then applied on this matrix and the
component with the highest peak in the respiratory frequency range [0.1, 0.5] Hz was selected as the
binning signal. The k-space data were then grouped into balanced bins, i.e., each bin containing the
same number of spokes. The actual number of bins is experiment dependent and will be described
later in Section 2.2.3. The XD-GRASP reconstruction was performed the same way as in [31],
i.e., solving the same optimization problem with sparsity penalty. Note that in this study, the
sparsifying transform T in Equation (2.6) for both the subspace model and XD-GRASP was the
finite difference operator along the spatial and temporal directions.

Motion estimation

The reconstructed real-time MR images were first binned into a small number of phases correspond-
ing to different body positions (respiratory and bulk motion phases). Binning was performed in
three steps. The first step consists in visually determining the bulk motion phases from the MR
images and discarding time frames corresponding to the transition between bulk motion phases. In
the second step, a bin is assigned to each (real-time) frame by tracking the tip of the right lobe of
the liver over time while ensuring balanced bins (i.e., all bins should contain a similar number of
frames). Finally, a combined MR image is formed for each bin by averaging all real-time images in
a bin. Volumetric image registration was then performed between all bins and a reference bin using
the multiscale B-spline registration algorithm described in [24].
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PET reconstruction

The acquired list-mode PET events were first rearranged into B sinograms y = (y1, . . . ,yB) follow-
ing the binning determined from MR images and discarding PET list-mode events occurring during
bulk motion transitions.

PET reconstruction was performed using the OSEM algorithm [61] (an iterative statistical al-
gorithm maximizing the log-likelihood of the measured data given the model of the data) and
integrating the estimated motion fields in the forward model [84, 116]. Let x denote the PET
image to reconstruct arranged in vector form. The system matrix, denoted by F, is decomposed as
F = NAGM, where:

• M = [M1, . . . ,MB]
⊤ is a stack of deformation operators estimated using the procedure de-

scribed in Section 2.2.2,

• G = diag(G, . . . ,G) is a block-diagonal geometrical projection matrix constructed by re-
peating the static projection matrix G implemented using Siddon’s algorithm [145] (a fast
implementation of the Radon transform specifically tailored for PET imaging),

• A = diag(A1, . . . ,AB) is a diagonal matrix with time-varying attenuation coefficients,

• N = diag(S, . . . ,S) is a diagonal matrix with detector sensitivity coefficients S repeated for
all bins.

With these notations, the motion-corrected OSEM update for a given subset l is given by:

x(n+1) =
x(n)

F⊤
l 1

F⊤
l

yl

Flx(n) + sl
, (2.10)

where Fl is the system matrix for the l-th subset, 1 is a vector full of 1’s, and sl is the combined
additive correction sinogram for subset l including randoms and scatter. Correction sinograms were
constructed as follows. Random coincidences were estimated using the delayed window method
[72]. Scatter was estimated using the single scatter simulation algorithm [161] from an initial
reconstruction performed without motion correction. Scatter was estimated separately for each
bulk motion phase. Attenuation coefficients were obtained from a vendor-provided Dixon sequence
during breath-holding. The attenuation map was deformed to each bin and forward projected to
calculate sinogram-domain attenuation coefficients.

The OSEM used 12 subsets and 5 iterations. This motion-corrected reconstruction is denoted
by MC in the rest of this work. For comparison, two other reconstruction methods were considered:
a traditional OSEM without motion correction (NMC) and a gated reconstruction where only list-
mode events occurring in a given motion phase are reconstructed without motion correction (Gated).
Note that no time-of-flight information was available and that the scanner’s point spread function
was not included in the imaging model. Both reference methods used 4 iterations to account for the
difference in convergence speed, aiming to match the noise level in MC and NMC reconstructions.
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The noise level was not matched for the Gated method in order to keep gated reconstructions
sharp and better compare with motion correction methods (in practice, gated reconstruction would
typically use fewer subsets and/or iterations).

Quantitative analysis

In order to compare PET reconstructions, two evaluation measures were used: the contrast-to-noise
ratio (CNR) and target-to-background ratio (TBR). The contrast-to-noise ratio is defined as:

CNR(x,R1) =
x̄R1 − x̄R0

σ0

, (2.11)

where σ0 is the standard deviation in the background region R0 and x̄R1 is the average activity of
image x in region R1. The background region R0 was a spherical region with a diameter of 14 mm,
which was placed in a low activity region (lung) and defined large enough to estimate the noise
level. With the same notations, the target-to-background ratio is given by:

TBR(x,R1) =
x̄R1

x̄R2

, (2.12)

where R2 is a small spherical region with diameter 4 mm located in the liver. Both measures
were evaluated in a small spherical region with diameter 4 mm located in the kidney (R1 shown
in Figure 2.5). The region was selected in the kidney with the highest activity, and its size was
defined to cover the high activity region. Note that all regions of interest were located at the same
position for all reconstruction methods. In the absence of ground truth, the contrast-to-noise and
target-to-background ratios were used as indicators of image quality.

(a)
ROI 0

ROI 1

ROI 2

(b)
ROI 0

ROI 1

ROI 2

Figure 2.5: Regions of interest used for quantitative analysis: (a) bulk motion experiment, (b) irregular respiratory
motion experiment. ROI 0 (R0) in the lung, ROI 1 (R1) in the kidney, ROI 2 (R2) in the liver. For each experiment,
a small region in the kidney with the highest activity was selected to assess the effects of different PET reconstruction
methods on contrast-to-noise ratio.
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2.2.3 Results

Correction of bulk motion

In this experiment the subject was instructed to move after around 2.5 minutes in the 5-minute
acquisition. Images reconstructed by XD-GRASP and the proposed method at the end-inhalation
and end-exhalation phases are shown in Figure 2.6. The k-space data were grouped into 6 balanced
bins as in [31] in the XD-GRASP reconstruction. The images obtained by XD-GRASP method show
noticeable blurring artifacts largely because the bulk motion was not detected from the navigator
signal. More specifically, Figure 2.7(a) shows the navigator signal obtained from the training line
along the kz direction in each frame as in [31]. Since the bulk motion of the subject was along the x
direction (left to right), the navigator signal only recorded abnormal changes during the bulk motion,
i.e., the red region in Figure 2.7(a), but did not contain sufficient information to indicate what type
of motion occurred. Therefore, six motion bins were chosen in XD-GRASP while the k-space data
acquired in the red region of Figure 2.7(a) were discarded, resulting in blurring artifacts.
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Figure 2.6: Representative MR images obtained with the XD-GRASP and the proposed method. The red dashed-
line indicates the top of the liver position for end-inhalation and the green dashed-line indicates the top of the liver
position for end-exhalation. Note that, besides respiratory motion, bulk motion indicated by the yellow arrows is
clearly seen in the proposed low-rank based image reconstruction. The images obtained by XD-GRASP show blurring
artifacts largely because the bulk motion was not detected from the navigator signal (see Figure 2.7 for more details).

The images obtained by the proposed method shown in Figure 2.6 successfully capture both
respiratory motion (as indicated by the red and green dashed lines) and bulk motion (as indicated
by the yellow arrows). Figure 2.7(b) to (d) show the temporal basis functions of the PS model
estimated from the three training lines, where, intuitively, the first component (Figure 2.7(b))
shows respiratory patterns and the second component (Figure 2.7(c)) indicates bulk motion. To
further demonstrate the real-time capabilities of the proposed method, Figure 2.8 shows images
at multiple time frames along with a 1D profile through the liver along time. The images from
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before and after bulk motion demonstrate the ability to capture both respiratory and bulk motion.
The yellow overlay emphasizes the body displacement between Stage 1 and Stage 2. The profile
plot shows the respiratory motion, captured for both bulk motion phases. The transition portion
between the two bulk motion phases corresponds to the frames that were discarded in the PET
reconstruction.
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Figure 2.7: (a) Plot of the processed navigator along time, which was used to bin the k-space data in XD-GRASP.
(b) to (d) Real part of the temporal basis ΦT for the components 1, 2, and 15 of the PS model, respectively.
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Figure 2.8: Dynamic MR images reconstructed by the proposed method. The real-time profile (e) is plotted for a
part of the experiment where the bulk motion happens, and two representative images (a) & (b) and (c) & (d) are
shown for each body position. The white line in (a) shows where the time profile was taken. A yellow box at the edge
of the patient has been drawn for the first body position (b) and the same box was also drawn for the second body
position (d) at the same coordinates (regarding the image). One can clearly see that the body of the subject moved
to the right of the image during the bulk motion, and that the proposed method managed to catch that motion.
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To account for the two body positions and for respiratory motion in PET reconstruction, real-
time MR images obtained by the proposed method were grouped into 12 bins (6 bins for each body
position) for motion field estimation. Frames in the transition between the two bulk motion phases
were excluded (a total of 15 seconds were discarded). Motion was estimated between all bins and
the bin corresponding to the end-exhalation, which was used as reference bin. Estimated motion
fields are shown in Figure 2.9. The top left image shows motion caused by respiration, mostly
visible as a vertical displacement near the liver (shown with more details in the inset image). The
left column images show the bulk motion, which is mostly lateral. Finally, the bottom right figure
shows a combination of respiratory motion between end-inhalation and end-exhalation and bulk
motion.

Body position 1, end−exhalation Body position 1, end−inhalation

Body position 2, end−exhalation Body position 2, end−inhalation

Figure 2.9: Estimated motion field between bins from different bulk motion phases. The top left panel corresponds
to the bin used as reference (Body position 1 and the end of exhalation). The top right panel shows the same
body position at the end of inhalation; the overlaid motion field exhibits mostly vertical displacement near the liver,
corresponding to respiratory motion. The bottom row shows the estimated motion field at the end of exhalation
and inhalation for the second body position (after bulk motion). Motion fields demonstrate the lateral displacement
between body positions.

Reconstructed PET images are shown in Figure 2.10. Figures 2.10(a) and 2.10(b) show coronal
and axial slices using different reconstruction methods. Motion caused blurring artifacts are clearly
visible on the NMC reconstruction primarily in the lateral direction, corresponding to bulk motion
but also in the vertical direction due to respiratory motion. The gated reconstruction, which uses one
sixth of the PET counts at a single body position, shows sharper features but is severely corrupted
by noise. The motion-corrected reconstruction using XD-GRASP for motion estimation (denoted
by MC-XDG) still shows noticeable motion artifacts because the XD-GRASP reconstruction failed
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to capture the bulk motion. The proposed method compensates both respiratory and bulk motion,
significantly reducing motion-blur, while exhibiting a low noise level. Figure 2.10(c) shows line
profiles through the kidney. Without motion correction, the activity peak is lowered by motion.
Instead, two distinct peaks are visible, which correspond to the two bulk motion phases. The
two peaks are also visible for the XD-GRASP based motion correction. The gated reconstructions
and the motion-corrected reconstructions by the proposed method both preserve the peak activity.
However, the gated reconstructions exhibit a high level of noise due to the reduced amount of data
used for reconstruction.

Evaluation measures are reported in Table 2.1. The table shows that motion corrected recon-
struction leads to the highest CNR: an 83% improvement was observed over reconstruction without
motion correction, 47% over XD-GRASP-based motion correction and 198% over gated reconstruc-
tion. The noise level in NMC and MC is similar (within 15%) but the contrast is substantially
improved by motion correction, while the noise level in the gated reconstruction is three times
higher leading to the low CNR. This is expected since gated reconstructions were not tuned to
reduce noise but to increase contrast. One could expect a lower CNR for gated reconstruction with
a tuned number of subsets and iterations. For the TBR, the gated reconstruction achieves the
highest ratio, because gated reconstructions favor high contrast (at the expense of high noise). The
proposed motion compensation method approaches the gated TBR (25% decrease) and outperforms
NMC (20% increase).

Table 2.1: Contrast-to-noise ratio (CNR) and target-to-background ratio (TBR) for kidney region of interest. See
Figure 2.5 for a view of the regions of interest.

NMC Gated MC-XDG MC-LR
CNR 42.07 25.88 52.49 77.26
TBR 6.05 9.57 6.84 7.25

Correction of irregular respiratory motion

The second experiment was designed to evaluate the performance of the proposed method in the
case of irregular respiratory motion. The subject was instructed to alternate between slow deep and
fast shallow breaths throughout the 5 minutes PET/MR acquisition.

MR images obtained by the proposed method are shown in Figure 2.11. The top row shows
images at different frames: two at the end of inhalation and two at the end of exhalation taken from
different breathing patterns (deep/shallow), respectively. The full extent of the respiratory motion
is captured and the images are artifacts-free. Figures 2.11(e) and 2.11(f) show 1D profiles of the
image through the liver changing over time. Both the images and the plot in Figure 2.11 clearly
show the breathing patterns, alternating between deep slow breaths and fast shallow ones. Based
on the reconstructed real-time MR images, 12 bins were determined through analysis of the liver
displacement in the MR images and were consequently used for motion field estimation and motion
corrected PET reconstruction.
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(a) NMC Gated MC�XDG MC�LR
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Figure 2.10: PET reconstructions for the bulk motion experiment using three different methods: reconstruc-
tion without motion correction (NMC), reconstruction from PET data corresponding to a single respiratory phase
and body position (Gated), motion correction using motion estimated from the XD-GRASP MR reconstructions
(MC-XDG) and proposed motion-corrected reconstruction from low-rank MR reconstruction (MC-LR). Profile plots
through the right kidney (along the orange line drawn on the NMC image) are shown in (c).

Corresponding PET reconstructions are shown in Figure 2.12. Images reconstructed without
motion correction (NMC) exhibit blurring artifacts. This is particularly visible on the left kidney
(see the green line on the gated coronal image) where the bright spot visible on other images is
elongated in the vertical direction, due to the large amplitude of the respiratory motion. The gated
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Figure 2.11: Reconstructed MR images in the case of irregular respiratory motion. The real-time profile (e) is
plotted for a few minutes of the experiment, where the subject changes their breathing pattern from slow and deep
to fast and shallow respiration. Images (a) and (b) show representative images at end-inhalation during deep breath
and shallow breath, respectively; (c) and (d) at end-exhalation. The red dashed-line indicates the top of the liver
position for end-inhalation and the green dashed-line indicates the top of the liver position for end-exhalation for
each breathing pattern.

reconstruction uses one sixth of the total number of counts and therefore is degraded by noise,
despite resulting in a sharper image. The motion corrected reconstructions using XD-GRASP and
the proposed method for motion estimation both produce sharper images with higher SNR, while the
proposed motion correction method results in the best image quality, in terms of noise and contrast.
Corresponding line profiles are plotted in Figure 2.12(c). The NMC peak is elongated along the
y-axis, due to the large extent of the mostly vertical respiratory motion. The Gated line profile
is sharper near its peak but has a large noise level. The proposed MC method results in a good
compromise between sharpness and low noise. Contrast-to-noise and target-to-background ratios
(defined in Equation (2.11) and Equation (2.12) respectively) are reported in Table 2.2 (regions of
interest are shown in Figure 2.5(b)). These measures show the superior performance of the proposed
motion correction method. The improvement in CNR is around 163% over NMC and over 200%
over gated reconstruction. As for the bulk motion experiment, the gated reconstructions were tuned
to maximize contrast rather than reduce noise. The CNR for the gated reconstructions could be
improved with further tuning (i.e. by decreasing the number of subsets and iterations). The TBR
for the proposed method is within 15% of the gated TBR and around 95% larger than NMC.
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Figure 2.12: PET reconstructions for the irregular motion experiment using three different methods: reconstruction
without motion correction (NMC), reconstruction from PET data corresponding to a single respiratory phase (Gated)
and proposed motion-corrected reconstruction (MC-LR). (c) shows profile plots through the left kidney (the profile
line is shown on the NMC coronal PET image).

Table 2.2: Contrast-to-noise ratio and target-to-background ratio for kidney region of interest. Regions are shown
in Figure 2.5.

NMC Gated MC-XDG MC-LR
CNR 17.52 15.28 37.39 46.18
TBR 3.92 9.00 6.33 7.64
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2.2.4 Discussion

We have demonstrated the performance of the proposed MR-based motion correction for PET
in two challenging cases: bulk motion and irregular respiratory motion. The proposed subspace-
based MR imaging method allows for reconstruction of high-resolution 3D volumes at a rate of
9.5 volume/s, which enables accurate motion field estimation even in the case of irregular motions.
Another important benefit of the proposed approach is the ability to perform informed binning for
PET motion correction, rather than relying on navigators or external markers which offer limited
information on the subject motion. With full real-time volumetric MR images, detecting motion
becomes straightforward, and the process of determining an appropriate number of bins is greatly
simplified.

The proposed method utilizes an MR acquisition which fully overlaps with the PET acquisition
and provides real-time MR images for motion correction. The proposed method can still have
benefits for other commonly used acquisition protocols. It is common in practice to reserve a first
part of the PET acquisition to perform MR motion field measurements and use the remaining PET
acquisition time to perform additional MR measurements (e.g. using T1 or T2 contrast sequences)
that can be used for other diagnostic tasks [117]. The proposed method can advantageously replace
the motion field measurement sequence, possibly reducing the acquisition time while preserving
image quality. A gating signal (e.g. navigator or external marker) can then be used in subsequent
MR sequences to select an appropriate bin for each PET frame. Another approach is to integrate
contrast sequences into the motion field estimation sequence described in this work.

The study reported in this chapter has some limitations. First, the computation time for the
low-rank reconstruction with sparsely sampled non-Cartesian k-space data could be a concern [165].
The current MATLAB (The MathWorks, Inc., Natick, Massachusetts, United States) implementa-
tion performs reconstruction of one slice and one coil in around one hour. However, progress has
been made on that end and the low-rank reconstruction scheme has been implemented using a lower
level programming language and parallel computing devices (i.e., GPU) to help achieve reasonable
runtimes (about 5 minutes per coil for all slices). Secondly, the proposed method does not have
sufficient temporal resolution to resolve the motion in the transition phase between the two bulk
motion phases of experiment 1 (Figure 2.8(e)). The time-varying profile plot shows that the image
quality in the transition is severely degraded. The corresponding list-mode data were excluded from
the PET reconstruction. Since the duration of the bulk motion was short, only about 5% of the
list-mode data were discarded and thus should not be a significant limitation. Thirdly, this study
focuses on demonstrating the feasibility of using subspaced-based real-time MR for PET motion
correction. We showed the performance of our method in two cases (bulk motion and irregular
respiratory motion) from in vivo PET/MR experiments on a healthy subject. More subjects are
needed to fully evaluate the performance of the proposed method in clinical settings. It is also
worthwhile to explore incorporating advanced system modeling including time-of-flight information
and point-spread function modeling into the proposed method. While advanced imaging models
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are expected to improve low-count (e.g. gated) reconstructions and quantitative metrics, all re-
construction methods, including the proposed motion correction, would benefit from more accurate
modeling.

2.3 Application to cardiac T1 mapping

2.3.1 Introduction

Cardiac T1 mapping is a powerful cardiovascular magnetic resonance imaging (MRI) technique that
allows for quantitative assessment of tissue characteristics and underlying pathology of myocardium.
Native (i.e., without the usage of exogenous contrast agent) myocardial T1 is a well-recognized
biomarker that characterizes alterations in the structure and intra-/extra-cellular components of my-
ocardium, such as iron deposition, amyloid disease, Anderson-Fabry disease, and myocarditis [47,
98, 136]. Extracellular volume fraction (ECV), measured from pre- and post-contrast T1 values,
provides quantitative measurement of interstitial expansion and associated diseases, such as amy-
loidosis, fibrosis, or myocardial edema [47, 98]. ECV is an emerging biomarker for diffuse fibrosis
(e.g., in heart failure, dilated cardiomyopathy, and amyloidosis) [98], which is challenging to detect
using qualitative late gadolinium enhancement (LGE) methods.

Modified Look-Locker inversion-recovery (MOLLI) [97] is a widely used method for 2D cardiac
T1 mapping which utilizes adiabatic inversion pulses for magnetization preparation and performs
electrocardiogram (ECG)-gated balanced steady-state free precession (bSSFP) acquisitions through
multiple cardiac cycles with breath-holding. Although MOLLI produces myocardial T1 maps with
high precision [68], the method is limited to a single-slice imaging per breath-hold. Methods have
been developed to extend conventional 2D MOLLI method to multi-slice 2D or 3D acquisitions
with breath-holding by leveraging the state-of-the-art parallel imaging, simultaneous multi-slice
acquisition, compressed sensing, and non-Cartesian sampling techniques [17, 160]. However, these
methods suffer from limited through-plane resolution and coverage, often involving long or repetitive
breath-holds to obtain volumetric T1 maps of the heart which imposes significant burden on patients.

Various methods have been developed to overcome the limitations of breath-holding and allow
for 3D cardiac T1 mapping with free-breathing acquisitions. Respiratory and cardiac gating-based
T1 mapping methods have been developed to acquire interleaved multi-slice 2D [46, 63, 159] or
segmented 3D k-space data [45, 106, 158] at end-diastole with free-breathing, where effects from
respiratory motion were mitigated by prospectively tracking respiratory motion using navigators or
self-navigation techniques. MR fingerprinting approaches have been combined with free-breathing
ECG gated acquisitions for multi-parametric cardiac MRI [26]. However, most of these methods
are limited by spatial coverage, resolution in slice direction, or imaging time due to the low data
acquisition efficiency of gating. Recently, free-running (i.e., no cardiac or respiratory gating) con-
tinuous acquisition methods have been proposed for 2D or 3D cardiac T1 mapping [23, 49, 65, 101,
123, 142]. Of note, Qi et al. have reported a free-running 3D whole-heart T1 mapping method [123],
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which uses translational respiratory motion correction and a patch-based low-rank tensor model to
reconstruct 3D T1 maps with isotropic resolution. The T1 maps obtained by this method, however,
were from 1.5T and the method may not translate well to 3T for reasons discussed below.

While 3D cardiac T1 mapping methods developed up to date have been applied mostly at 1.5T,
unique technical challenges arising from more severe B0 and transmit B1 (B+

1 ) inhomogeneities
need to be addressed at 3T. For instance, spoiled gradient-echo (SPGR) readout with small flip
angle (FA) is often used in 3D cardiac imaging at 3T to avoid B0 inhomogeneity-caused banding-
artifacts associated with bSSFP readout [17, 23, 49, 142]. However, T1 mapping with SPGR readout
is known to be sensitive to errors in FA caused by imperfect RF pulses and B+

1 inhomogeneities
[33]. The latter is particularly problematic at 3T, where B+

1 variation over the left ventricle with
body-coil transmission is reported on the order of 30-60% [148], leading to bias in T1 estimation.
The robustness of cardiac T1 mapping methods with SPGR acquisitions needs to be thoroughly
investigated in the presence of B+

1 inhomogeneity [141, 172].
In this work, we present a new cardiac T1 mapping method for rapid 3D T1 mapping of the heart

at 3T. Here, we focus on the main contribution of the author of this PhD thesis, which was the
MR image reconstruction of high-dimensional data with dynamic contrast (due to the inversion-
recovery sequence). To do so, a sparse (k, t)-space sampling along a stack-of-stars trajectory was
used to accelerate imaging and a subspace-based image reconstruction method was used to recover
high frame-rate dynamic images from highly undersampled (k, t)-space data. These reconstructions
were then used for T1 fitting to obtain 3D T1 maps of the heart, as presented in [54]. The details
of the improvement in the acquisition protocol, T1 fitting, and other aspect of the study can be
found in the published article [54], also provided in Appendix A. The performance of the proposed
method was characterized and validated through numerical simulations, phantom studies, and in
vivo experiments on healthy human subjects (n=6). Preliminary accounts of this work have been
presented previously in the form of conference abstracts [51, 52, 53].

2.3.2 Methods

Data Acquisition

The proposed ECG-gated cardiac T1 mapping sequence is shown in Figure 2.13. A non-selective
inversion pulse was applied every N+M heartbeats with two different inversion times (TI). This
scheme is referred to as N-(M)-N-(M) protocol for simplicity, where N denotes number of cardiac
cycles for acquisition and M denotes number of cardiac cycles for signal recovery. Data were acquired
at end-diastole period using SPGR readout. A special data acquisition scheme was employed for
sparse sampling (k, t)-space data along a stack-of-stars trajectory, as described in Section 2.1.2.
A limited number of “training” data (e.g., along the kx, ky, and kz directions across the center
of the k-space) were acquired with high sampling rate to determine the temporal changes of the
underlying signal. Data at all other k-space locations were sparsely-sampled over the entire (k, t)-
space to ensure that a sufficient number of measurements were acquired at each k-space location
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for subspace-based image reconstruction.

Figure 2.13: Schematic diagram of the proposed data acquisition scheme. N-(M)-N-(M) protocol is shown with
non-selective inversion pulse applied every N+M heartbeats (where N denotes the number of cardiac cycles for
acquisition and M denotes the number of cardiac cycles for signal recovery) with two different inversion times (TI).
Data acquisition consists of “training” dataset acquiring a limited number of k-space lines with high sampling rate
and “imaging” dataset sparsely-sampling all other k-space locations for subspace-based image reconstruction (see
Section 2.1.2). To track respiratory motion, 1D respiratory navigator signals were acquired in the sagittal plane at
the dome of the right hemidiaphragm after a spatially-selective inversion pulse was applied in the same sagittal plane
to invert the magnetization signals back to the equilibrium state.

To track respiratory motion, 1D respiratory navigator signals were acquired in the sagittal
plane at the dome of the right hemidiaphragm at the beginning and end of data acquisition of each
cardiac cycle. A spatially-selective inversion pulse was applied right after the non-selective inversion
pulse to invert the magnetization signals in the same sagittal plane back to the equilibrium state
and, therefore, to mitigate the contrast changes caused by the non-selective inversion pulses in the
navigator signals.

Image reconstruction

Image reconstruction of sparsely-sampled data was performed by solving a constrained optimization
problem using the subspace model from Equation (2.6) with a sparsity constraint in the spatio-
spectral domain [171]:

Θ = argmin
Θ

∥∥Ω (FsΘΦT)− s
∥∥2
2
+ λ

∥∥Ft(ΘΦT)
∥∥
1
+ µ ∥Θ∥2F , (2.13)

where, as in Section 2.1.4, s is the measured k-space data, Fs is the Fourier transform operator in
the spatial domain, i.e., Non-Uniform FFT (NuFFT) operator [32] for the stack-of-stars trajectory,
Ω is the sparse sampling operator in the (k, t)-space, Ft is the Fourier transform operator in the
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temporal domain, ∥.∥F is the Frobenius norm and the scalar variables λ and µ are regularization
parameters. Note that compared to the image reconstruction in Section 2.2.2, only the sparsifying
transform is different.

In this work, Φ was estimated separately from training data using singular value decomposi-
tion (SVD) as described in Section 2.1.3. The image reconstruction problem is then reduced to
determining the spatial coefficients Θ from the measured data. The optimization problem in Equa-
tion (2.13) was solved using an alternating direction method of multipliers (ADMM) [12]. For fast
computation of Fs, 1D Fourier transform was applied along the kz direction first and the NuFFT
was applied in the kx-ky plane for slice-by-slice reconstruction. The dynamic images were recon-
structed in a coil-by-coil fashion and then combined using the sum-of-squares method to form the
final reconstruction. We implemented the image reconstruction algorithm in Python and utilized
the SigPy package [108] to accelerate the computation using Graphical Processing Units (GPUs).
Reconstructions were performed on four NVIDIA Tesla V100 SXM2 GPUs (parallelized over slice
and coil dimensions) with reconstruction time around one minute for each slice and coil.

In vivo study

Six healthy volunteers (four males and two females; 32 ± 3 years) were recruited under a study
protocol approved by our local Institutional Review Board (IRB). Written informed consent was
obtained from all subjects before study participation. Imaging experiments were performed using a
3T MR scanner (MAGNETOM Trio, Siemens Healthcare, Erlangen, Germany) with a body-coil for
transmission and spine and surface coils for reception. Imaging was performed using 10-(3)-10-(3)
protocol with data sampling following a stack-of-stars trajectory. Two frames were acquired per
cardiac cycle, each consisting of k-space spokes along the same angle in the kx-ky plane over all
kz encodings and 3 additional training lines at the center of the k-space along the kx, ky, and kz

direction, respectively (Figure 2.13). The spoke angle varied randomly from frame to frame following
uniform random distribution. The other imaging parameters were: FOV=308 × 308 × 180mm3,
matrix-size=160 × 160 × 40, image orientation=short-axis view, FA=9°, TR/TE=3.4/1.7ms, and
inversion delay times=100/180ms. The reconstructed images were then used for T1 fitting. More
details on the acquisition and T1 and B1 maps estimation can be found in Appendix A.

2.3.3 Results

In vivo study

The results from the in vivo study are shown in Figures 2.14. Figure 2.14 shows representative
reconstructed images at various slice positions and inversion times from Subject 1 using the proposed
method. Visually, no noticeable artifacts were shown in the reconstructed images from the proposed
method across different slices and TI times. More result can be found in Appendix A.
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Figure 2.14: in vivo study results of reconstructed images from the proposed method. Representative reconstructed
images from Subject 1 are shown at various slice positions for a fixed TI of 1343 ms (top row) and various TI times
for slice position index of 18 (bottom row).

2.3.4 Discussion

In this work, we proposed a new cardiac T1 mapping method for fast, high-resolution 3D T1 mapping
of the whole heart at 3T. The proposed method has several novel features compared to the existing
cardiac T1 mapping methods, among which acquisition protocol advances and simulation studies
(presented in Appendix A). The novel feature presented in this manuscript is how the proposed
method utilizes special (k, t)-space sampling scheme and subspace-based image reconstruction to
recover dynamic images in clock time from the undersampled data, i.e., two 3D volumes for every
cardiac cycle. This allows mitigating the effects of natural heart-rate variations on T1 mapping
by fitting the reconstructed dynamic signals to a signal dictionary generated with subject-specific
timing of data acquisition recorded during the imaging experiment. The data acquisition advances
along with the subspace-based image reconstruction with sparsity constraint allowed for accurate
T1 mapping in the presence of B+

1 inhomogeneity at 3T with high spatial resolution (i.e., 1.9 mm
in-plane and 4.5 mm through-plane) and large through-plane coverage (i.e., 40 slices) in a 10-min
free-breathing acquisition.

The current work has several limitations. First, the method proposed in this work involves ECG-
gated acquisition, which is susceptible to ECG mis-triggering and may suffer from image blurring
due to cardiac motion. The former could be addressed by adaptive heartbeat rate prediction as in
the double-gating technique [31]. The latter can be mitigated by retrospectively discarding k-space
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data acquired outside the end-diastole window based on the recorded ECG signals. Free-running
(i.e., no cardiac or respiratory gating)-based continuous acquisition scheme may be preferable over
ECG-gated acquisition schemes for maximizing data acquisition efficiency. However, in the case
of free-running continuous acquisition scheme, the inversion recovery rate is strongly coupled with
B+

1 and estimation of B+
1 is expected to be critical for accurate and precise T1 estimation in the

presence of B+
1 inhomogeneity at 3T. Secondly, the performance of the proposed was validated using

in vivo experiments with a small number of healthy subjects (n=6). Studies with a larger number of
healthy subjects and patients are needed to assess the accuracy and reproducibility of the proposed
method and to evaluate its value in clinical applications. More detailed discussion on the estimation
of the T1 maps and B+

1 inhomogeneity (e.g., joint T1 B+
1 estimation) can be found in Appendix A.

2.4 Conclusion

This chapter presented the subspace model (also denoted as low-rank model) and how it can be effi-
ciently used for MR image reconstruction of highly undersampled k-space data. We first presented
an application for PET/MR scanner where dynamic MR data are used for PET data motion cor-
rection. In this contribution, we proposed an MR-based method for PET motion correction using a
subspace-based real-time MR imaging for motion field estimation. We demonstrated the feasibility
of the proposed method using 18F-FDG-PET/MR studies on a healthy subject. Our results show
that the proposed method can capture and correct for normal and irregular respiratory motions as
well as bulk body motion. The proposed method can be beneficial to a range of clinical applica-
tions where irregular motion patterns are expected. Then, we demonstrated the versatility of the
subspace model by presenting how that same model can be used for free-breathing 3D cardiac T1

mapping. A new method was developed and optimized for fast, high-resolution 3D T1 mapping of
the whole heart at 3T with advances in the acquisition side and the reconstruction side. The main
contribution of the author in this PhD thesis was the image reconstruction, where we utilized the
subspace model with sparsity constraint implemented on GPU to achieve 3D T1 mapping of the
whole-heart with high spatial resolution and through-plane coverage in 10 minutes with reasonable
reconstruction time.

However, we do notice some limitations in this linear subspace model. For example, this model
was not powerful enough to reconstruct images from 10 minutes worth of continuously sampled
k-space data and we acquired ECG-triggered data to simplify the reconstruction process as cardiac
motion would not come into play. Indeed, continuous free-breathing 3D cardiac scans induce a
lot of dynamics in the data: respiratory motion, cardiac motion, and dynamic contrast on top
of that. That is without mentioning the very high undersampling rate due the large 3D matrix
size necessary for high spatial resolution, exponentially increasing the number of unknowns. All
these reasons will cause the subspace model to fail to reconstruct artifacts-free images as it assumes
linear dimensionality reduction is enough to model complex data. Then, such a model may not
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handle the increasing complexity in the data (i.e., without ECG-triggering), as shown in the next
chapter (Figure 3.9). To alleviate ourselves from these limitations, we developed a new MR image
reconstruction method with more flexibility and better modeling of the underlying manifold (i.e.,
in a non-linear way). We present this model in Chapter 3 and demonstrate its added value to MR
image reconstruction.



Chapter 3

Non-linear manifold learning-based model:
Linear tangent space alignment

Chapter 2 presented a strategy using a linear subspace to represent the MR data, and reconstruct
them with fewer unknowns by fixing a set of temporal basis functions. Despite offering promising
results, this technique relies on a linear dimensionality reduction model of high-dimensional data,
which may show its limits with higher undersampling rate. We derive and present here a novel and
more versatile MR image reconstruction method relying on non-linear dimensionality reduction tech-
niques through manifold-learning and tangent space alignment. The rest of this chapter is organized
as follows. Section 3.1 introduces related work on dynamic MRI. Section 3.2 presents background
information of dynamic MR, subspace model, and tangent spaces of a manifold. Section 3.3 then
describes the LTSA model-based MR image reconstruction method, a novel MR image reconstruc-
tion scheme developed during the PhD thesis. Section 3.4 presents results and comparisons of the
proposed method with state-of-the-art methods. Finally, Section 3.5 discusses the proposed method
and presents how the LTSA model is a non-linear generalization of existing linear subspace models.

3.1 Related Work

A key challenge in dynamic Magnetic Resonance Imaging (MRI) is reconstructing high-dimensional
images from sparse (k, t)-space data sampled below the Nyquist sampling rate. Many methods have
been proposed for accelerated imaging with sparse sampling, including parallel imaging [43, 121,
146], compressed sensing [88, 89], and more recently, the subspace model based imaging methods
[21, 22, 81, 83, 114, 171]. The subspace model, or the so-called partially separable (PS) model [81],
assumes that high-dimensional data reside in a low-dimensional subspace which captures the spa-
tiotemporal correlations of dynamic MR images. Mathematically, the subspace model leads to a low-
rank (LR) model of the spatiotemporal signals, which significantly reduces the degrees of freedom of
the underlying signals and enables reconstruction of dynamic MR images from highly undersampled
(k, t)-space data. The subspace model has been extended to the local low-rank (LLR) model [151,

65
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152], exploiting the local low-dimensional subspace structure, and to the low-rank tensor (LRT)
model [55] leveraging the low-dimensional structure of multi-array data for accelerated dynamic
MRI. The subspace model-based image reconstruction methods have been successfully applied to
free-running multi-parametric cardiac MR, e.g., the multitasking method [23], and high-resolution
MR Spectroscopic Imaging (MRSI) [74, 75, 92].

The dimensionality of dynamic MR images can be further reduced using nonlinear models.
For example, deep neural networks (DNNs) have been studied for applications in MR image re-
construction for improved denoising and dealiasing [79, 87], often requiring a large database with
labels for training. By contrast, manifold learning-based methods aim at learning the intrinsic
low-dimensional structure of the input data that are embedded in a high-dimensional signal space
without any training labels. Many methods have been proposed to solve the nonlinear dimen-
sionality reduction problem, including locally linear embedding (LLE) [132], Isomap [149], graph
Laplacian [6], etc. These methods can be interpreted by a kernel principal component analysis
(kernel PCA) framework [48], where an implicit mapping between training data and a feature space
is constructed while preserving the local geometry of the training data. Manifold learning-based
methods have been applied to pattern recognition, data clustering and classification, showing su-
perior performance over the conventional linear model-based methods such as principal component
analysis (PCA) [48].

Manifold models have also been explored for image reconstruction in dynamic MRI [16, 102, 105,
118, 119, 143, 154]. Different from applications in data clustering and classification, where tasks
are performed in the feature space, manifold learning based-image reconstruction requires solving
an additional manifold reconstruction problem (or the so-called pre-imaging problem), which maps
the learned low-dimensional representation in the feature space back to the signal space. This im-
poses a unique challenge for manifold model-based image reconstruction when the kernel matrix
is, as often the case in practice, formed implicitly from training data. The SToRM method and
its variations [2, 7, 102, 118, 119, 173] address this issue by adding a manifold regularization term
to the image reconstruction problem, which penalizes the smoothness of the embedding manifold
through a graph Laplacian matrix formed by the input data. The kernel-based low-rank (KLR)
method [105] explicitly models dynamic MR images as low-dimensional manifolds for image re-
construction. Shetty et al., have recently proposed a machine-learning framework, called bi-linear
modeling of data manifolds (BiLMDM), for image reconstruction in dynamic MRI [143]. While
both the BiLMDM method and the proposed method represent dynamic images using a bi-linear
model, the two methods are different from each other in terms of model construction and image
reconstruction algorithm (see Section 3.5.3 for more detailed discussions on the difference between
the proposed method and BiLMDM).

However, these models have some limitations. First, applying non-linear dimensionality re-
duction (i.e., finding the best low-dimensional feature space) is not enough in manifold learning
methods, as one needs to be able to go back to the input space. In image reconstruction, this is
called the pre-imaging problem. For example, in the case of PCA, the mapping is straightforward
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as the model is linear, and we can just express the low-dimensional coordinates as a linear combina-
tion of basis function vectors. Methods based on kernel PCA [105] are limited by the use of generic
kernels with invertible mappings between the signal space and the feature space, which may not
be most effective in capturing the inherent low-dimensional structure of the underlying data. This
type of method does not have data-driven non-linear mapping but “man-made” kernels for easier
pre-imaging, which greatly reduces the representation power. Methods such as SToRM [118] as-
tutely penalize the low-dimensional manifold from the input space to avoid solving the pre-imaging
problem, but such methods do not manage to explicitly characterize the underlying manifold, which
in turn may also decrease the representation power of the model.

This chapter presents an alternative strategy for manifold learning-based image reconstruction
in dynamic MRI. The proposed method is closely related to machine learning methods that learn
manifolds via linear tangent space alignment (LTSA) [170]. While most manifold learning methods
focus on learning a low-dimensional representation of a manifold in a feature space, the LTSA
methods solve both the nonlinear dimensionality reduction and manifold reconstruction problems
explicitly. In this work, we propose a LTSA model-based framework for reconstructing dynamic MR
images from highly undersampled (k, t)-space data. An efficient Alternating Direction Methods of
Multipliers [11] (ADMM)-based algorithm is developed to solve the resultant image reconstruction
problem with additional sparsity constraints. Numerical simulation studies as well as in vivo 2D
and 3D cardiac imaging experiments are performed to validate the performance of the proposed
method and compare with state-of-the-art image reconstruction methods.

3.2 Background

3.2.1 Subspace model of dynamic images

We use in this chapter the same notations for the signal model and the subspace model of the MR
signal as in Section 2.1.1. As a reminder, the temporal signal at the m-th voxel of the dynamic
images (denoted by zm =

[
x(rm, t1), . . . , x(rm, tN)

]T ∈ CN×1) , can be expressed as:

zm = Φθm,m = 1, . . . ,M, (3.1)

or equivalently in the form of a low-rank decomposition of the Casorati matrix formed by the
dynamic images:

X = ΘΦT, (3.2)

where Θ ∈ CM×D concatenates along rows the spatial coefficients θT
m of all M voxels with respect

to the basis of the temporal subspace Φ = [ϕ1, . . . ,ϕD] ∈ CN×D.
As detailed in Section 2.1.1, the subspace model assumes that the high-dimensional input data

(i.e., dynamic images) reside in a low-dimensional subspace. Then, one just needs to use a sufficiently



68 CHAPTER 3. MANIFOLD LEARNING-BASED MR IMAGE RECONSTRUCTION

high subspace dimension to capture the temporal changes of the signals in dynamic MRI. However,
the subspace model is a linear model treating the data globally: it does not take advantage of the
local structure of the data in the low-dimensional space, resulting in a potentially larger number
of unknowns than actually needed. On the other side, manifold models leverage the intrinsic low-
dimensional nonlinear manifold structure of the dynamic MRI signals for image reconstruction [16,
102, 105, 118, 119, 143, 154], leading to a smaller number of unknowns and thus reduced imaging
time and better image reconstruction performance compared to the linear subspace model.

3.2.2 Tangent space of a manifold

A parametric manifold model of the temporal signal zm is given by:

zm = f(τm),m = 1, . . . ,M, (3.3)

where τm ∈ CD×1 represents a low-dimensional vector (or global coordinate) in the feature space,
and f is a nonlinear function mapping a vector in the feature space to a data point in the signal
space.

If f is smooth, the signal at a location τm can be approximated by its neighbor at τ using the
first-order Taylor expansion:

f(τm) = f(τ ) + Jf (τ )
(
τm − τ

)
+O

(
∥τm − τ∥22

)
, (3.4)

where Jf (τ ) ∈ CN×D is the Jacobian matrix of f . The tangent space Tτ of f is defined as the
subspace spanned by the column vectors of Jf (τ ). If the manifold is regular, Jf (τ ) is full rank for
any τ [170].

3.3 Linear tangent space alignment

This work presents a linear tangent space alignment (LTSA) model-based image reconstruction
method, which leverages the intrinsic low dimensional manifold structure of the underlying signals
for accelerated dynamic MRI through tangent space alignment. Specifically, the dynamic images are
first grouped into several neighborhoods along the time axis. The local geometry of the manifold
is learned via a subspace approximation of the images in each neighborhood. The learned local
coordinates can be aligned to the global coordinates of the manifold using linear transforms if the
underlying manifold is smooth. In image reconstruction, the global coordinates along with the linear
transform matrices are determined by fitting the LTSA model to the measured k-space data. The
LTSA model and the formulation of the corresponding image reconstruction problem are discussed
in detail below.
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3.3.1 LTSA model of dynamic images

Given a set of dynamic images expressed in the form of a Casorati matrix X as in Equation (3.2),
we assume that the temporal signals zm =

[
x(rm, t1), . . . , x(rm, tN)

]T reside in a low-dimensional
manifold:

zm = f(τm),m = 1, . . . ,M, (3.5)

where τm ∈ CD×1 denotes the global coordinate of zm in the feature space.

We propose to group the dynamic images into C neighborhoods based on a certain similarity
metric:

Xc =

 x(r1, tjc,1) . . . x(r1, tjc,Pc
)

... . . . ...
x(rM , tjc,1) . . . x(rM , tjc,Pc

)

 ∈ CM×Pc , (3.6)

where {tjc,p}Pc
p=1 ⊂ [1, . . . , N ] are the selected temporal frames in neighborhood c. The temporal

signals in each neighborhood, denoted by z
(c)
m =

[
x(rm, tjc,1), . . . , x(rm, tjc,Pc

)
]T ∈ CPc×1 are given

by
z(c)m = Πczm = Πcf(τm) ∈ CPc×1, (3.7)

where Πc ∈ RPc×N is a selection operator determined by the indices {jc,p}Pc
p=1. Note that the

neighborhoods may overlap, in which case the selection operator Πc is normalized by the number
of neighborhoods that a frame contributes to.

If the underlying manifold is smooth, the signals in the neighborhood c can be approximated
using the first-order Taylor expansion:

z(c)m ≈ Πcf(τ̄ ) +ΠcJf (τ̄ )(τm − τ̄ )

≈ ΠcJf (0)τm. (3.8)

Here, we further assume that the centroid of the global coordinates is τ̄ = 0 and f(τ̄ ) = 0 for the
simplicity of expressions and without loss of generality. However, direct calculation of the Jacobian
of the manifold Jf is difficult because the nonlinear mapping f is built implicitly.

If the manifold is also regular, Equation (3.8) indicates that the Casorati matrix in Equation (3.6)
can be approximated by a low-rank matrix, which can be obtained by PCA:

Xc ≈ ΘcΦ
T
c , (3.9)

where Φc ∈ CPc×D concatenates along columns the temporal bases that span the subspace of
{z(c)m }Mm=1, and Θc ∈ CM×D concatenates along rows the corresponding local coordinates. Here we
assume that the rank of ΠcJf (0) is also D for the simplicity of expressions. Note that ΦT

c Φc = I ∈
CD×D.

Comparing Equation (3.8) and Equation (3.9), the local coordinates in Equation (3.9) can be
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aligned with the global coordinates through a linear transforma:

Θc = TJf (0)
TΠT

c Φc

= TLc, (3.10)

where T = [τ1, . . . , τM ]T ∈ CM×D concatenates along rows the global coordinates of the manifold
and Lc ∈ CD×D represents a linear transform aligning the local coordinates with the global coor-
dinates. The matrices of local coordinates Θc of each neighborhood can be concatenated into a
matrix Θ = [Θ1, . . . ,ΘC ] ∈ CM×CD. Equation (3.10) indicates that Θ has the following low-rank
decomposition:

Θ = TL, (3.11)

where L = [L1, . . . ,LC ] ∈ CD×CD.
For image reconstruction applications, Equation (3.9) and Equation (3.10) lead to a linear tan-

gent space alignment (LTSA) model that explicitly reconstructs dynamic images from feature vec-
tors:

Xc = TLcΦ
T
c , (3.12)

and

X =
C∑
c=1

TLcΦ
T
c Πc. (3.13)

3.3.2 LTSA model-based MR image reconstruction

The image reconstruction problem is formulated as determining the global coordinates T =

[τ1, . . . , τM ]T and linear transform matrices lumped in L = [L1, . . . ,LC ] by fitting the LTSA-model
of dynamic images in Equation (3.13) to the measured (k, t)-space data with a sparsity constraint:

argmin
T,L

∥∥∥∥∥Ω(Fs

C∑
c=1

TLcΦ
T
c Πc

)
− s

∥∥∥∥∥
2

2

+
µT

2
∥T∥2F

+
µL

2
∥L∥2F + λ ∥D(TL)∥1 , (3.14)

where, as in Section 2.1.4, s is the measured k-space data, Fs is the Fourier transform operator in the
spatial domain, i.e., Non-Uniform FFT (NuFFT) operator [32] for the stack-of-stars trajectory, Ω is
the sparse sampling operator in the (k, t)-space, D is the finite difference operator along the spatial
dimensions, ∥.∥F is the Frobenius norm and the scalar variables λ and µT and µL are regularization
parameters.

In Equation (3.14), the first term of the cost function is a data fidelity penalty; the second

aNote that stacking the M temporal signal z(c)m on the 2nd dimension gives XT
c = ΦcΘ

T
c . We transposed it for

better readability. Without transposition, Equation 3.10 would be ΘT
c = LT

c T
T with a more common expression of

the linear transform operation on the left side of the global spatial coordinates TT.
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and the third ones are l2-norm regularization terms introduced to improve the numerical stability
of the image reconstruction; and the last term is a complementary sparsity penalty on the local
coordinates to promote the piece-wise smoothness of the reconstructed images. Here we assume that
the temporal bases of each neighborhood {Φc}Cc=1 are pre-determined from simultaneously acquired
“training” k-space data as described in Section 3.3.3.

The optimization problem in Equation (3.14) is a non-convex optimization problem but can be
solved efficiently using the ADMM algorithm [11], which leads to solving the following sub-problems
in an alternative fashion:

T(k+1) = argmin
T

{∥∥∥∥∥Ω(Fs

C∑
c=1

TLc
(k)ΦT

c Πc

)
− s

∥∥∥∥∥
2

2

+
ρ

2

∥∥∥D(TL(k)
)
−G(k) + η(k)

∥∥∥2
2
+

µT

2
∥T∥2F

}
, (3.15)

L(k+1) = argmin
L

{∥∥∥∥∥Ω(Fs

C∑
c=1

T(k+1)LcΦ
T
c Πc

)
− s

∥∥∥∥∥
2

2

+
ρ

2

∥∥∥D(T(k+1)L
)
−G(k) + η(k)

∥∥∥2
2
+

µL

2
∥L∥2F

}
, (3.16)

G(k+1) = Sλ
ρ

(
D
(
T(k+1)L(k+1)

)
+ η(k)

)
, (3.17)

η(k+1) = η(k) +D
(
T(k+1)L(k+1)

)
−G(k+1), (3.18)

where G is the augmented Lagrangian split variable, η is the dual variable, ρ is a relaxation
parameter, and Sλ

ρ
is a soft-thresholding operator with threshold λ

ρ
. The optimization problem in

Equation (3.15) and Equation (3.16) are convex and can be efficiently solved using the conjugate
gradient method.

The LTSA-based image reconstruction problem in Equation (3.14) is formulated with an ex-
plicit low-rank constraint on the local coordinate matrix, i.e., Θ = TL. Alternatively, the image
reconstruction problem can be formulated with a soft nuclear norm penalty on Θ to promote the
low rankness of Θ, which could be advantageous in terms of representation power. However, imple-
menting the LTSA with a nuclear norm penalty requires performing SVD on Θ in each iteration,
which can be both computationally expensive and memory demanding in the case of 3D dynamic
MRI.
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3.3.3 Implementation details

Data acquisition scheme

The data acquisition scheme of the proposed method shares similarities with that of the subspace-
based methods [81]. Many k-space trajectories, such as Cartesian, spiral, and radial trajectories,
can be used [89]. In this work, we used random radial trajectories in the 2D imaging experiment
and random stack-of-stars trajectories in the 3D imaging experiment because of their superior
performance in dynamic MRI applications. Exploring optimal sampling trajectories for a specific
application is beyond the scope of this work. For the 2D imaging experiment, two sets of k-space
data were acquired in each temporal frame during the imaging experiment. The first set of k-space
data consisted of two k-space lines acquired at the center of the k-space along the kx- and ky-axis.
This dataset was used to estimate the temporal bases of the LTSA model as in the subspace-based
methods [22, 81], which is often referred to as “training” k-space data in the literature. See [22] for
an in-depth analysis of subspace estimation using “training” k-space data acquired as such. The
second set of k-space data sparsely sampled the entire (k, t)-space (see Section 2.1.2). This dataset
was fitted to the LTSA model in image reconstruction as in Equation (3.14). The data acquisition
scheme of the 3D imaging experiment was similar. See Section 3.4 for more details.

Forming the neighborhoods

Given an initial reconstruction of the dynamic images, grouping the images into different neighbor-
hoods can be solved using any clustering methods (e.g., k-means). However, this would require a
high-quality initial image reconstruction and could be time-consuming when the dimension of the
reconstructed dynamic images is large. In the current implementation, we chose to group (k, t)-
space data into different neighborhoods based on respiratory motion. The motion phases can be
estimated using respiratory surrogate signals such as navigators or by tracking the dome of the liver
over time in the dynamic images reconstructed by a LR-based method. In this work, the latter
strategy was implemented. The number of neighborhoods C was set as the maximum amplitude
of the liver displacement in pixels. An example of how respiratory motion estimated through liver
displacement can be used for neighborhood estimation is shown in Figure 3.1.

Estimation of temporal bases

In this work, temporal bases were estimated using the training data prior to image reconstruction
in Equation (3.14). Suppose there were in total Pc temporal frames in neighborhood c, each had nt

k-space lines acquired as training data. A Casorati matrix of size ntro × Pc was formed using these
k-space lines, where ro was the size of the readout dimension. In the case of imaging with phased-
array coils, the training lines from each coil were concatenated along columns. The temporal bases
of neighborhood c, i.e., Φc, were then estimated by calculating the first D right singular vectors of
the Casorati matrix.
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Figure 3.1: Estimated position of the liver throughout a 2D acquisition. The liver position is estimated with an erf
fitting on the edge of the liver using an initial LR reconstruction. In this example, 7 neighborhoods would be used
with the proposed LTSA method based on the maximum amplitude of the liver displacement in pixels, as described
in Section 3.3.3.

Initialization

In the current implementation, the optimization problem in Equation (3.14) was solved by solving
the sub-problems in Equation (3.15) to Equation (3.18) iteratively, which required a proper initial-
ization of Lc. One way to initialize Lc is to use Equation (3.11). More specifically, an initial image
reconstruction was first performed using the LR-based method, followed by grouping the recon-
structed images into different neighborhoods. The local coordinates, i.e., Θc, were then estimated
by performing SVD on the Casorati matrix of each neighborhood as in Equation (3.9). Finally,
an initial guess of Lc was obtained by performing SVD on the Casorati matrix formed by Θc as
in Equation (3.11). Another strategy was to initialize Lc with random matrices. According to our
experience, the two initialization approaches led to similar image reconstruction performance. The
latter initialization approach was used in this work due to its simple implementation.

CPU/GPU implementation

The proposed image reconstruction algorithm was implemented on CPUs using Matlab (The Math-
Works, Inc., Natick, Massachusetts, United States) for reconstructions of 2D dynamic images. The
typical computation time for reconstructing 2D dynamic images (e.g., those in Section 3.4.2 and
Section 3.4.3) using a workstation (8 Intel Xeon 2.4 GHz CPUs) was 1.8 hours. The algorithm
was further implemented on GPUs using Python with the CuPy [107], SigPy [108], and MRRT
(https://github.com/mritools/mrrt.nufft) packages for accelerated image reconstructions of 3D dy-
namic images. The typical computation time for reconstructing 3D dynamic images (e.g., those in
Section 3.4.4) using a GPU (NVIDIA Tesla V100 SXM2) was about 10 minutes.
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Algorithm 1 LTSA model with sparsity constraint for MR data reconstruction
Input: Undersampled (k, t)-space data s.
Output: Reconstructed dynamic MR image set X.

A. Preparation of the data
Set the reconstruction rank D.
Define neighborhoods and set C as in Section 3.3.3.
Calculate temporal bases Φc as in Section 3.3.3.
B. Reconstruction of T and {Lc}
Set Nloop, λ, µT , µL, ρ.
Initialize {Lc}(0) c = 1, . . . , C with random matrices.
for k = 1 to Nloop do

Compute T (k) by solving Equation (3.15).
Compute Lc

(k) c = 1, . . . , C by solving Equation (3.16).
Soft-threshold G(k) as in Equation (3.17).
Update the dual variable η(k) from Equation (3.18).

end for
Form the dynamic set X using Equation (3.13).

3.4 Results

We performed both numerical simulation studies and in vivo MR cardiac imaging experiments using
in-house developed dynamic MR sequences on healthy subjects at 3T to validate the performance
of the proposed method. The results from the proposed method were compared with the low rank
(LR) method, the temporal local low-rank (t-LLR) method, and the SToRM method. The image
reconstruction error was evaluated using Normalized Root Mean Square Error (NRMSE) defined as

NRMSE =
∥Xref −Xrecon∥F

∥Xref∥F
, (3.19)

where Xref and Xrecon denote the Casorati matrices formed by the reference and reconstructed
images, respectively. The performance of the compared methods was also evaluated by calculating
the Structural Similarity (SSIM) between the reconstructed images and the reference images, defined
as:

SSIM(x,y) =
(2µxµy + c1) (2σxy + c2)(

µ2
x + µ2

y + c1
) (

σ2
x + σ2

y + c2
) (3.20)

where µx is the pixel sample mean of x, µy is the pixel sample mean of y; σ2
x is the variance of x,

σ2
y is the variance of y, σxy is the covariance of x and y, c1 = (k1L)

2 , c2 = (k2L)
2 are two variables

to stabilize the division with weak denominator (k1 = 0.01 and k2 = 0.03 by default) and L is the
dynamic range of the pixel-values.

For all the compared methods, dynamic images of each coil were reconstructed from undersam-
pled complex-valued k-space data. Magnitude images were then generated by combining the recon-
structed dynamic images of each coil using the sum-of-square method (described in Section 1.2.3)
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for display and comparison purposes.

3.4.1 Compared methods

In the LR method (also denoted as subspace model, described in Chapter 2), dynamic images were
reconstructed by fitting the subspace model in Equation (3.2) to the measured data, resulting in
the following optimization problem [171]:

argmin
Θ

∥∥∥Ω(FsΘΦT
)
− s
∥∥∥2
2
+

µ

2
∥Θ∥2F + λ ∥D(Θ)∥1 , (3.21)

where Φ is estimated from the “training” k-space data in the same way as in Section 3.3.3. The last
term of Equation (3.21) is a sparsity penalty introduced to promote the piece-wise smoothness of
the reconstructed images as in Equation (3.14). As a sidenote, images reconstructed with a sparsity
constraint, i.e., λ ̸= 0 in Equation (3.14) or Equation (3.21), are denoted using the prefix “l1”, e.g,
l1-LR and l1-LTSA, in the rest of this section. We selected λ to balance the sparsity constraint term
with the data fidelity term, setting a similar target ratio between the two terms for both the LR
and LTSA methods.

In the t-LLR method, dynamic images were reconstructed by solving the following optimization
problem:

argmin
{Θc}Cc=1

∥∥∥∥∥Ω(Fs

C∑
c=1

ΘcΦ
T
c Πc

)
− s

∥∥∥∥∥
2

2

+
µ

2

C∑
c=1

∥Θc∥2F . (3.22)

Note that the temporal neighborhoods in the t-LLR method were defined in the same way as in
the proposed LTSA method. Compared to the proposed LTSA method, the t-LLR method aims at
recovering the local coordinates of each neighborhood independently without aligning them to the
tangent space of the manifold.

The SToRM method with l2-norm regularization was implemented using the code provided on
GitHub as in [118]. The SToRM optimization problem is:

argmin
X

∥∥∥Ω(FsX
)
− s
∥∥∥2
2
+ 2λTr

(
XLpX

H
)

(3.23)

where Tr denotes the trace operator, and Lp is the Laplacian matrix of X (the calculation of Lp

described in [118]).
Equation (3.21) describes a linear (global) subspace-based image reconstruction scheme, as de-

scribed in Chapter 2. The resulting signal model of this method is a global low-rank decomposition of
the dynamic image series X = ΘΦT (see Equation 2.3) where we fix the temporal basis and recover
the much smaller spatial coordinates, incidentally greatly decreasing the number of unknowns.

In comparison, the t-LLR in Equation (3.22) operates on “parts” of the dynamic image series and
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not globally, leveraging an “informed” and local spatiotemporal correlation. This method suggests
that if we have information on some similarity among the temporal frames (i.e., similar frames
repeated within the dynamic series), we can do a low-rank decomposition of these similar frames
(denoted as neighborhood) Xc = ΘcΦ

T
c ∈ CM×Pc and have less intraframe variation than with the

global data. Doing a low-rank decomposition for all the neighborhoods separately and putting the
images back in their original time-frame position therefore recover the dynamic image series X =∑C

c=1ΘcΦ
T
c Πc. However, one of the main drawbacks is that doing local low-rank decompositions

increases the number of unknowns by a factor C (typically 10 in the results shown later in this
section), justifying the need of an alignment of the local coordinates in a global manifold, as in the
proposed method.

Finally, the SToRM method operates on manifolds, similarly to the proposed method, but in
a different way: it proposes a regularization on the smoothness of the manifold through graph
Laplacian embedding, as indicated by the second term in Equation (3.23). In order to avoid explicit
characterization of the manifold and therefore avoid the pre-image problem (see Section 3.1) the
SToRM method operates in the input domain instead of the feature domain to indirectly penalize
the underlying manifold.

3.4.2 Numerical simulation study

Numerical phantom

A numerical phantom (Figure 3.2a) was built using the XCAT software [138]. Image intensities of
different tissues, including muscle, liver, myocardium, and blood, were assigned to mimic typical
contrasts of a balanced Steady-State Free Precession (bSSFP) sequence using proton density, T1

and T2 values from the literature. Cardiac and respiratory motions were simulated using the XCAT
software, producing a series of images, denoted as xref(pc, pr), pc = 1, . . . , 40, pr = 1, . . . , 30, that
consisted of 40 cardiac phases and 30 respiratory phases (i.e., a combination of 1200 different motion
phases). EKG and respiratory signals were then simulated to mimic variations of heart beat rate (60
to 75 beats per minute) and irregular respiratory rate (from 20 to 30 breaths per minute). Finally,
dynamic images were synthesized based on the simulated EKG and respiratory signals, i.e.,

xn = xref(pcn, prn), n = 1, . . . , N, (3.24)

where pcn and prn denote the cardiac and respiratory motion phase of the n-th frame, respectively.
The matrix size of each frame was 192 × 192, resulting in a voxel size of 2.6 mm2.

Figure 3.2b plots the normalized singular values of the “global” Casorati matrix X as in Equa-
tion (3.2) formed by the simulated dynamic images of all frames (denoted by black solid line) and
those of the “local” Casorati matrices Xc as in Equation (3.6) formed by the simulated dynamic
images that were grouped into 10 neighborhoods based on respiratory motion (denoted by colored
dashed lines). As can be seen, the singular values of the “local” Casorati matrices Xc decayed much
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faster than those of the “global” Casorati matrix X. Figure 3.2c plots the normalized singular values
of the matrix Θ as in Equation (3.11) formed by the local coordinates, illustrating the low-rank
structure of Θ. The singular value distributions shown in Figures 3.2b and 3.2c indicate that the
intrinsic low-dimensional structure of the dynamic images can be more effectively captured by the
proposed LTSA model (i.e., with a smaller rank) than the LR model.

Reconstruction results

To compare the performance of different image reconstruction methods, k-space data were simulated
along a radial trajectory with Gaussian noise for each frame. Among the 301 k-space lines of each
frame, 7 lines were randomly sampled for image reconstruction while 2 lines along the kx and ky

axis across the center of the k-space were sampled for the estimation of the temporal bases. This
translates to a frame rate of roughly 30 frames per second in a practical imaging experiment. In
this experiment, the number of neighborhoods was 10 (C = 10), corresponding to a maximum liver
displacement of 26 mm as the setup in the XCAT simulation.

Representative images reconstructed by different methods are shown in Figure 3.3. We chose
the images reconstructed by the LR method with a rank of 30 using noiseless k-space data of 2114

Figure 3.2: (a) Representative image of the numerical simulation phantom. Plotted at the bottom is the temporal
profile of the simulated dynamic images along the white line at the dome of the liver, showing an irregular respiratory
motion pattern. (b) Plots of the normalized singular values of the “global” Casorati matrix X (black solid line) and
the “local” Casorati matrices Xc (colored dashed lines), formed by the simulated dynamic images as in Equation (3.2)
and Equation (3.6), respectively. (c) Plot of the normalized singular values of the matrix Θ formed by the local
coordinates as in Equation (3.11).
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Figure 3.3: Images in the numerical simulation study reconstructed by (a) the reference method, (b) the LR
method with a rank of 14, (c) the LR method with a rank of 25, (d) the t-LLR method with a rank of 14, (e) the
SToRM method, and (f) the proposed LTSA method with a rank of 14. The first three columns show images in
three representative frames. The last column shows representative difference maps between the dynamic images
reconstructed by different methods and the reference images. Displayed in the top right corner are the corresponding
NRMSEs in white and SSIMs averaged over all the frames in green.
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frames (i.e., 49 measurements per spoke) as the reference, shown in Figure 3.3a. The rank was
chosen based on the singular value decay of the Casorati matrix formed by the “training” k-space
data as in [22]. The normalized singular value of rank 30 is below 0.5%. Based on our previous
experience (described in Section 2.2.2 and in [95]), choosing such a rank is sufficient to capture
both cardiac and respiratory motions while yielding artifacts-free images. The rank of the reference
LR-based image reconstruction was chosen in the same way in the in vivo experiments. Images
reconstructed by different methods using noisy k-space data of 600 frames (i.e., 14 measurements
per spoke) are shown in Figures 3.3b to 3.3f. The images reconstructed by the LR method with
a rank of 14 and 25 (Figures 3.3b and 3.3c) both suffered from noise and aliasing artifacts. The
images reconstructed by the t-LLR (Figure 3.3d) method showed significant aliasing artifacts. In
comparison, the images reconstructed by the SToRM method (Figure 3.3e) were less noisy but
suffered from aliasing artifacts and spatial blurring, which were most noticeable in the difference
map. The regularization parameter of the SToRM method controls the trade-off between aliasing
artifacts and spatial blurring. Here, we tuned the regularization parameter to produce images with
the smallest NRMSE. Compared to the LR and SToRM methods, the proposed LTSA method with
a rank of 14 (i.e., the rank of the global coordinate matrix T) reconstructed images (Figure 3.3f)
with the best quality and the smallest NRMSE. The SSIMs of the SToRM and the proposed method
were similar and significantly higher than the other compared methods.

Figures 3.4 and 3.5 show the NRMSE per frame, representative (y-t) profiles, and the NRMSE
of these profiles obtained by the compared methods. Compared to the temporal profile of the
reference images (Figure 3.5a), the LR and t-LLR reconstructions with a rank of 14 (Figure 3.5b
and 3.5d) failed to capture details of the cardiac and respiratory motion, which led to the two
highest NRMSEs among the compared methods (Figure 3.4b). Increasing the rank of the LR
reconstruction to 25 better captured the temporal changes of the cardiac and respiratory motion at
the cost of noise (Figure 3.5c). The temporal profile using the SToRM method was overly smoothed
compared to the reference. In comparison, the proposed LTSA method with a rank of 14 produced
the most accurate temporal profiles with the smallest NRMSE (Figure 3.5f) and in terms of NRMSE
per frame (Figure 3.4b). Figure 3.4a shows representative images reconstructed by the compared
methods during a deep inhalation, which was particularly challenging to recover, except for the
proposed method.

3.4.3 2D cardiac imaging experiment

Data acquisition

An in vivo 2D cardiac imaging experiment was performed on a healthy volunteer under a study
protocol approved by our local Institutional Review Board (IRB). The subject was imaged on a 3T
MR scanner (Siemens MAGNETOM Trio) with spine and surface coils for reception and a body coil
for transmission. The (k, t)-space data were sampled in the kx-ky plane along a radial trajectory with
random spoke angles uniformly distributed between 0 and π. The data were acquired continuously
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Figure 3.4: NRMSEs of different image reconstruction methods in the numerical simulation study. (a) Represen-
tative images during a deep inhalation. (b) The NRMSEs per frame.

without EKG or respiratory gating using a spoiled gradient recalled echo (SPGR) sequence in the
coronal view with the following imaging parameters: TR/TE = 3/1.6 ms, flip angle = 7 degrees,
image size = 128 × 128 (201 k-space lines in the kx-ky plane), voxel size = 1.9 × 1.9 × 6 mm3, and
acquisition time = 3 minutes. A total of 10 k-space lines were sampled in each frame, including 1
navigator for tracking respiratory motion, 2 lines along the kx and ky axis across the center of the
k-space for the estimation of temporal bases, and 7 random lines for image reconstruction, resulting
in a frame rate of 30 ms per frame. In this experiment, the number of neighborhoods was 8 (C = 8),
corresponding to a maximum liver displacement of 15.2 mm as expected from a regular breathing
pattern (8 voxels at 1.9 mm2 in-plane resolution).

Reconstruction results

Representative images reconstructed by different methods are shown in Figures 3.6 to 3.8. The
reference images were reconstructed by the LR method with a rank of 30 and using the (k, t)-
space data acquired in the entire 3-min acquisition (i.e., a total of 6000 frames). Figures 3.6b
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Figure 3.5: Comparison of the (y-t) temporal profiles of different image reconstruction methods in the numerical
simulation study. Temporal profiles along the white line across the heart (Figure 3.4a) are shown for (a) the reference
image, (b) the LR method with a rank of 14, (c) the LR method with a rank of 25, (d) the t-LLR method with a
rank of 14, (e) the SToRM method, and (f) the proposed LTSA method with a rank of 14. The NRMSE of the (y-t)
profile is displayed on the top of each image.

to 3.6f show images reconstructed by different methods using (k, t)-space data acquired in a 26-
sec acquisition (i.e., a total of 863 frames, resulting in 30 measurements per k-space spoke). The
images reconstructed by the LR method with a rank of 14 (Figure 3.6b) suffered from noise and
spatial blurring, especially in the heart region (indicated by the yellow arrow in Figure 3.6). The
images reconstructed by the LR method with a rank of 20 (Figure 3.6c) had less spatial blurring at
the cost of SNR. The images reconstructed by the t-LLR method (Figure 3.6d) showed significant
aliasing artifacts presumably due to the large number of unknowns in the t-LLR model. The images
reconstructed by the SToRM method (Figure 3.6e) were less noisy but suffered from noticeable
spatial blurring as reflected by bright edges in the difference map. The proposed LTSA method
produced images (Figure 3.6f) with the best overall quality, the smallest NRMSE, and the highest
SSIM among the compared methods.

Figures 3.7 and 3.8 show another set of reconstruction results obtained by the LR and LTSA
methods with and without sparsity constraints using even less (k, t)-space data (i.e., a total of 663
frames in a 20-sec acquisition, resulting in 23 measurements per k-space spoke). As expected, incor-
porating sparsity constraints in the LR method significantly suppressed the noise while preserving
the edges of the reconstructed images as shown in Figures 3.7b and 3.7c, resulting in reduced NRM-
SEs. The benefits of incorporating sparsity into the proposed LTSA method were less significant
in the 2D cardiac imaging case. This is not surprising because the LTSA reconstruction without
sparsity constraints (Figure 3.7d) had a much better SNR than that of the LR reconstruction (Fig-
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Figure 3.6: Comparison of image reconstruction results of the in vivo 2D cardiac imaging experiment. (a) Reference
images reconstructed by the LR method with a rank 30 using data collected in a 3-min acquisition. (b) to (f) Images
reconstructed using k-space data collected in a 26-sec acquisition by the LR method with a rank of 14, the LR method
with a rank of 25, the t-LLR method with a rank of 14, the SToRM method, and the proposed LTSA method with a
rank of 14, respectively. The first three columns show images in three representative frames. The last column shows
a representative difference image between the images reconstructed by different methods and the reference images.
Displayed in the top right corner are the corresponding NRMSEs in white and SSIMs averaged over all the frames
in green.
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Figure 3.7: Comparison of the in vivo 2D cardiac images reconstructed without and with sparsity constraints.
(a) Reference images reconstructed by the LR method with a rank 30 using data collected in a 3-min acquisition.
(b) and (c) mages reconstructed by the LR method using k-space data collected in a 20-sec acquisition without
and with sparsity constraints, respectively. (d) and (e) Images reconstructed by the proposed LTSA method using
k-space data collected in a 20-sec acquisition without and with sparsity constraints, respectively. The first three
columns show images in three representative frames. The last column shows representative difference maps between
the dynamic images reconstructed by different methods and the reference images. Displayed in the top right corner
are the corresponding NRMSEs in white and SSIMs averaged over all the frames in green.

ure 3.7b). The LTSA reconstruction with sparsity constraints (Figure 3.7e) produced images with
similar image quality, NRMSEs, and SSIMs compared to the LR reconstruction with sparsity con-
straints (Figure 3.7c). However, the proposed method reconstructed sharper temporal profiles in
the heart region than the LR method as shown in Figure 3.8, especially in regions indicated by the
green arrows.
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Figure 3.8: Comparison of the (y-t) temporal profiles and NRMSE per frame by different image reconstruction
methods in the 2D cardiac imaging experiment. The temporal profiles along the white line across the heart are
shown for (a) the reference image, (b) the LR method without sparsity constraints, (c) the LR method with sparsity
constraints, (d) the LTSA method without sparsity constraints, and (e) the LTSA method with sparsity constraints,
respectively. Representative images reconstructed by the compared methods are shown in (f). The NRMSEs per
frame of the reconstructed images are plotted in (g) and the NRMSEs of the (y-t) profiles are displayed in the top
left corner of (b)-(e).

3.4.4 3D cardiac imaging experiment

Data acquisition

An in vivo 3D cardiac imaging experiment was performed on a healthy volunteer under a study
protocol approved by our local IRB. The subject was imaged on a 3T PET/MR scanner (Siemens
Biograph, mMR) with spine and surface coils for reception and a body coil for transmission. The
(k, t)-space data were sampled along a random stack-of-stars trajectory in the kx-ky plane, (i.e.,
random sampling along a radial trajectory in the kx-ky plane and on a Cartesian grid in the kz

axis). The spoke angle and the kz position were uniformly distributed. The data were acquired
continuously without EKG or respiratory gating using a SPGR sequence in the short-axis view.
Adiabatic inversion pulses were inserted every 1528 ms for inversion recovery. The rest of the
imaging parameters were as follows: TR/TE = 5.5/2.0 ms, flip angle = 5 degrees, image size =
160 × 160 × 32 (251 k-space lines in the kx-ky plane), voxel size = 1.9 × 1.9 × 4 mm3, and
acquisition time = 12.4 minutes. A total of 11 k-space lines were sampled in each frame, including 3
k-space lines along the kx, ky and kz axis across the center of the k-space acquired in one TR for the
estimation of temporal bases and 8 random k-space lines acquired in 8 TRs for image reconstruction.
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The resultant frame rate was 49.5 ms per frame. The number of neighborhoods C was 8, the same
as in the 2D in vivo experiment.

Reconstruction results

Representative images reconstructed by the LR and LTSA methods with and without sparsity
constraints are shown in Figure 3.9. The entire 12.4-min acquisition was used for reconstruction (i.e.,
about 15000 frames), resulting in 15 measurements per k-space spoke angle. Note that the sparsity
penalty was imposed on the global coordinates in the total variation domain D

(
T
)

in the proposed
LTSA-based image reconstruction with sparsity constraints due to the limited memory capacity of
the GPU. The images reconstructed by the LR method with a rank of 15 (Figure 3.9a) suffered
from noise and aliasing artifacts, especially in the heart region. Incorporating sparsity constraints
into the LR method significantly reduced the noise. However, some aliasing artifacts remained, as
indicated by the yellow arrow in Figure 3.9b. The images reconstructed by the proposed LTSA
method with a rank 15 (Figures 3.9c and 3.9d) had improved visual quality and fewer artifacts.
Incorporating the sparsity constraint to the proposed LTSA method (Figure 3.9d) further reduced
noise and aliasing artifacts.

Images reconstructed using the LTSA method with the sparsity constraint are shown in Fig-
ure 3.10 for representative slices (Figure 3.10a), T1 contrasts (Figure 3.10b), respiratory phases
(Figure 3.10c) and cardiac phases (Figure 3.10d). The T1 contrast was synthesized via T1 paramet-
ric fitting. As can be seen, the proposed LTSA model successfully captured the high dimensional
dynamics of the data, resolving contrast changes, respiratory motion, and cardiac motion in real-
time cardiac MR.

3.5 Conclusion and discussions

This chapter presented a novel linear tangent space alignment (LTSA) model-based framework that
exploits the intrinsic low-dimensional manifold structure of the underlying spatiotemporal signals
for reconstruction of high-resolution, high-frame rate dynamic images from undersampled (k, t)-
space data. The proposed LTSA model is a non-linear generalization of the conventional linear
subspace models, including the low-rank and low-rank tensor models. The performance of the
proposed method was evaluated using numerical simulation studies as well as 2D and 3D in vivo
cardiac imaging experiments. Compared to state-of-the-art methods, including the low-rank model
based methods and SToRM, the proposed LTSA method achieved the best performance in image
reconstruction. The proposed LTSA method could prove useful for many other applications beyond
dynamic MRI, including multi-parametric MRI and MRSI. For example, the LTSA model has
been applied to MRSI spectral quantification in a recent conference abstract [91], where individual
temporal bases were estimated to represent the temporal signals of each metabolite, showing superior
performance compared to the state-of-the-art spectral quantification methods. An article extending
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Figure 3.9: Comparison of the in vivo 3D cardiac imaging results. (a) and (b) Image reconstructed by the LR
method without/with sparsity constraints, respectively. (c) and (d) Image reconstructed by the proposed LTSA
method without/with sparsity constraints, respectively.

the work presented in the conference abstract has also been published [93] and can be found in
Appendix B.

3.5.1 Comparison with low-rank models

The LTSA model in Equation (3.13) can be reduced to several well-known linear models as special
cases. A trivial case is that the LTSA model becomes the LR model (also denoted as subspace
model) in Equation (3.2) when there is only one neighborhood, i.e., C = 1,Lc = I,T = Θ. This
basically means that the non-linear manifold learning-based scheme presented in this chapter is
a non-linear generalization of the subspace model presented in Chapter 2 with one neighborhood.
The results section of this chapter (Section 3.4) therefore presents a critical comparison between the
two reconstruction methods. Compared to the global LR model, the LTSA model allows recovering
images with a smaller number of unknowns by exploiting the intrinsic nonlinear low-dimensional
structure of dynamic images.

One can leverage the low-rank structure of each neighborhood, i.e., Equation (3.9) for image
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Figure 3.10: Reconstructed 3D cardiac images using the proposed LTSA model with sparsity constraints. Re-
constructed images are shown for representative (a) slices, (b) T1 contrasts, (c) respiratory phases (exhalation to
inhalation) and (d) cardiac phases (diastole to systole, zoomed on the heart region). The green dashed lines in (c)
show the position of the tip of the liver at the end-exhalation phase. The red dashed lines indicate the position of
the ventricle during diastole to better visualize cardiac contraction.

reconstruction. This leads to a form of local low-rank (LLR) model of dynamic images, which is
referred to as the temporal local low-rank (t-LLR) method in Section 3.4.1. Assuming that the
temporal bases are predetermined from “training” k-space data, image reconstruction using the t-
LLR model requires the estimation of the local coordinates Θc in each neighborhood, resulting in
a total number of unknowns of M ×D × C. In comparison, image reconstruction using the LTSA
model requires the estimation of the global coordinates T and a set of small linear transform matrices
{Lc}Cc=1, resulting in a total number of unknowns of M×D+D×D×C. This is significantly smaller
than that of the t-LLR model for typical dynamic MR applications, resulting in better performance
in image reconstruction as shown in Figures 3.3-3.6.

The more popular “local low-rank” model in the literature is the spatial patch-based local low-
rank method [151, 152], which is referred to as the spatial local low-rank (s-LLR) method in this
work. The s-LLR method assumes that the dynamic signals in each spatial patch reside in a



88 CHAPTER 3. MANIFOLD LEARNING-BASED MR IMAGE RECONSTRUCTION

low-dimensional subspace. The image reconstruction of the s-LLR method is performed by fitting
the measured k-space data with nuclear norm constraints on the dynamic signals in patches to
promote low-rankness. Therefore, the proposed method is different from the s-LLR method in
both the underlying mathematical model (i.e., global manifold model vs. local low-rank model in
patches) and the image reconstruction process (i.e., estimation of the manifold global coordinates
and linear transforms for alignment vs. estimation of the dynamic signals in patches via nuclear
norm constraints). Furthermore, dividing images into spatial patches is a commonly used technique
to lift the underlying signals to a higher-dimensional space. For example, applying spatial patches to
the low-rank model and the SToRM model of dynamic images leads to the s-LLR method [151, 152]
and the iSToRM method [102], respectively. The proposed method is no exception. Extension of
the proposed LTSA model to spatial patch-based image reconstruction and comparison with other
spatial patch-based methods, e.g., iSToRM, s-LLR, and dictionary learning-based method [128], is
an ongoing research.

In summary, the advantage of the proposed LTSA model over the LR and t-LLR models lies in
both the freedom to independently define individual temporal basis for each neighborhood and the
linear transform aligning local coordinates to low-dimensional global coordinates. The former is a
desirable feature for many applications. The latter keeps the number of unknowns of the model
roughly independent of the number of neighborhoods. Unlike the LR model that recovers one set of
spatial coordinates Θ used to span the subspace of whole dynamic image series (with subspace basis
Φ), the LTSA model allows us to recover local coordinates Θc for each neighborhood, and therefore
span the local subspaces formed by each of them (with subspace basis Φc), as shown in Figure 3.11.
The relatively small linear transform matrix (see Figure 3.11) aligns these local subspaces, avoiding
the unnecessary large amount of unknowns from methods such as t-LLR.

3.5.2 Comparison with low-rank tensor model

Another case is the low-rank tensor (LRT) model of multi-array data [55]. Assume that X can be
arranged into a three-way tensor X ∈ CM×P×C . Equivalently, X can be grouped into C neighbor-
hoods, i.e., Xc = [X 1,c,X 2,c, . . . ,X P,c] ∈ CM×P , where X p,c denotes a M × 1 vector in X at the
p-th column and c-th slice. Assume that the tensor X can be written as a low-rank tensor in the
Tucker form with a rank of (D,D,C):

X =
D∑

l1=1

D∑
l2=1

C∑
l3=1

Gl1,l2,l3ul1 ◦ vl2 ◦wl3 , (3.25)

where “◦” denotes Kronecker product, ul1 ∈ CM×1, vl2 ∈ CP×1, and wl3 ∈ CC×1 denote the bases
of X , G ∈ CD×D×C is the core tensor, and Gl1,l2,l3 is the entry of G with index (l1, l2, l3). The c-th
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Figure 3.11: Global coordinates (spatial coefficients) and linear transform matrices of the proposed method. The
linear transform matrices Lc are represented using gray levels. In this example, a rank D = 10 was used, hence
each Lc matrix having a size 10 × 10. The 1st component of T is a temporal average of all the neighborhoods
while higher components represent dynamic changes. Our proposed model successfully reconstructs the subspace of
each neighborhood by applying Lc to the global coordinates T. Note that the symbol “×” represents the matrix
multiplication operation between the components of T and Lc. The red dashed lines indicate the position of the liver
for the 1st component of the 1st neighborhood.

slice of X can be then written as:

Xc =
D∑

l1=1

D∑
l2=1

ul1

(
C∑

l3=1

Gl1,l2,l3wl3(c)

)
vT
l2

= UGcV
T, (3.26)

where U ∈ CM×D, Gc ∈ CD×D, and V ∈ CP×D. The LTSA model in Equation (3.12) reduces to the
LRT model in Equation (3.26) when T = U, L−1

c = Gc and Φc = V, ∀c. In other words, the LTSA
model is reduced to a global LRT model of the dynamic images by assuming that all neighborhoods
share the same set of temporal bases. In the case of dynamic imaging, the LRT model essentially
groups the dynamic images into different motion phases, i.e., P ×C motion phases for the tensor in
Equation (3.25), while ignoring interphase variations. On the other hand, the LTSA model allows
representing images in each neighborhood using independent temporal bases, enabling real-time
imaging.

3.5.3 Comparison with BiLMDM

Both the proposed method and the bi-linear modeling of data manifolds (BiLMDM) method [143]
employ a bi-linear model of dynamic MR images for image reconstruction from sparsely sampled
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k-space data. However, despite the similarities in mathematical expressions, the two methods are
different in model construction and image reconstruction algorithm.

The proposed method is built upon the idea that the local coordinates of a smooth manifold can
be aligned with the global coordinates via a linear transform, which leads to the LTSA model in
Equation (3.13). With the temporal bases of each neighborhood pre-determined, the bi-linearity of
the LTSA model arises in the form of TLc, which links the global coordinates of the manifold T to
the local coordinates Θc of the neighborhood c through a small linear transform matrix Lc ∈ CD×D.
In addition, as shown in Section 3.5.1 and Section 3.5.2, such a bi-linear transform builds direct
connections to the low-rank, temporal local low-rank, and low-rank tensor models, making the
proposed LTSA model a natural non-linear generalization of these linear models.

On the other hand, the BiLMDM method leverages the fact that each data vector on a smooth
manifold can be approximated by an affine combination of neighboring landmark points, leading to
the following model of the Casorati matrix in Equation (3.2):

X = UΛ̌B, (3.27)

where Λ̌ ∈ CD×Ml represents a low-dimensional latent structure of the dynamic images, which is
pre-learned from Ml (Ml ≤ M) “landmark” points via robust sparse embedding; B ∈ CMl×N is a
large sparse matrix gathering the coefficients of the affine combinations of the landmark points; and
U ∈ CM×D captures spatial features of the dynamic images. The bi-linearity of the BiLMDM model
means that X is linear with respect to U or B when one of them is fixed. In image reconstruction,
the BiLMDM method requires the estimation of the spatial feature matrix U and the sparse affine
transformation matrix B.

3.5.4 Future prospects

During this PhD thesis, we developed a novel MR image reconstruction method that can be directly
linked to state-of-the art reconstruction models such as the low-rank and low-rank tensor models.
Much work has been done by the whole research team to understand better this manifold-learning
based method, yet further improvement in some areas are still ongoing efforts. We discuss here
some of the ongoing investigations on the LTSA method.

Initialization and effect of the iterative scheme

The LTSA model for MR image reconstruction is a bi-linear model, which makes its optimization not
trivial. In the current work, we proposed a simple alternating optimization scheme (with ADMM
when using an additional sparsity penalty). However, the optimization problem is bi-convex (i.e.,
convex in T when Lc is fixed and vice versa) and such an algorithm does not guarantee global
optimality of the solution, especially when using bad initialization. Therefore, a good first guess
of either the global coordinates T or the linear transform Lc is of the essence. In our optimization
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scheme, we first fix Lc and recover T in the first iteration. Therefore, as the first sub-problem is
convex for T, the initialization of T is not relevant and making sure Lc is correctly initialized is
important. The choice to start the optimization with T and fix Lc was made due to the relatively
small size of the linear transform matrix. There is then less room for error when trying to estimate
Lc than trying to estimate a large matrix such as T. This intuition proved to be successful, and
several ways to initialize the linear transform matrices have been explored. To this day we kept
in mind two: low-rank initialized and random matrix as described in Section 3.3.3. The random
initialization actually yielded good reconstruction results on par with LR initialized reconstructions.
We also noticed that in some cases where the LR reconstructed images displayed artifacts, the
random initialized LTSA images had better overall quality than the LR initialized.

Figure 3.12: NRMSE of the dynamic image series per alternating optimization iteration for the proposed LTSA
method (yellow line). The Lc matrices were initialized with random matrices in this example. The 2D dataset
presented in Section 3.4.3 was used with 26 seconds of data for this plot. The NRMSE of the final reconstruction
of the LR rank 14 (blue), LR rank 20 (orange) and SToRM (purple) methods are also displayed, demonstrating the
advantage of the proposed LTSA method with only a couple of iterations. The images at the iterations indicated by
the black, red, and green circles are shown in Figure 3.13. Note that despite the alternating optimization scheme,
the proposed method and SToRM had similar reconstruction time.

The fact that the LTSA is a bilinear model makes us pursue two different variables, which leads to
this alternating optimization scheme. Having perfect linear transforms Lc from the beginning would
obviously be ideal to alleviate ourselves from an alternating scheme and further increase the speed
of the reconstruction. However, the iterative scheme itself is not without merit, as it allows us to get
closer to a good solution in a controlled way (i.e., with a chosen number of iterations). Figure 3.12
displays the NRMSE of the dynamic image series X per alternating optimization iteration for the
proposed method and the compared methods. As the LR and the SToRM methods do not have
an alternating optimization process, the NRMSE of the resulting reconstructed images is displayed
as constant. After only 5 iterations, the proposed LTSA method already yields a lower NRMSE
than the NRMSE of the compared methods, and seems to start converging after 20 iterations, with



92 CHAPTER 3. MANIFOLD LEARNING-BASED MR IMAGE RECONSTRUCTION

small gain past 25 iterations. Please also note that despite the alternating iterative scheme, the
proposed method had similar reconstruction time than SToRM on CPU workstation and much less
memory demand due to the dimensionality reduction it operates. The improvement in terms of
image quality is shown in Figure 3.13, which gives better insight on how the iterations affect the
reconstruction.

Iteration 1 Iteration 15 Iteration 30

Figure 3.13: Reconstructed images of the proposed method at the iterations 1 (black box), 15 (red box), and 30
(green box). The noise in the image gradually decreases and details are gained through iterations. Corresponding
NRMSE can be found in Figure 3.12 for the iterations indicated with the black, red, and green circles.

Spatial patch extension

In the background section where we derive the LTSA model, we first started the derivation with a
single pixel in Equation (3.8) and generalized to the whole image by stacking the temporal signals
together and forming the matrix Xc. However, we could also think that the spatial dimension
(i.e, within pixels) is redundant and assume that a dimensionality reduction on the first dimension
of the image (i.e., spatial dimension) is feasible. In such a case, not only would we leverage the
spatiotemporal correlation of a rank D matrix for image reconstruction, but we would also utilize
the spatial redundancy to reconstruct the whole image from a set of temporal signals P < M , which
leads to a patch-based version of the LTSA method. Therefore, one of the investigated paths with
the LTSA scheme was to determine how well it would perform with patches.

After mathematical derivations, we implemented the patch-based LTSA model and performed
image reconstruction. However, the lead was abandoned due mainly to three reasons. First, this
new version of LTSA was tested on a CPU workstation and extending to patches was quite ex-
pensive in terms of computation time and memory. In addition, integration with the current GPU
implementation was not straightforward and could not be done in reasonable timing. Secondly, the
preliminary results did not show much improvement compared to the original LTSA-method. We
believe this is mostly due to newly introduced parameters (such as the patch size, the number of
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patches, the overlap percentage of the patches, etc.) that have not yet been fully optimized. Fur-
ther optimization of these parameters and understanding what is the optimal way to form patches
within the dynamic image series would have been ideal but also time-consuming, which leads us
to the third reason. Moving on deep learning-based image reconstruction was a goal of the author
during this PhD thesis and further developing the patch-based approach would not have allowed
for enough time to actually pursue this route. The choice to move on to deep learning-based image
reconstruction was then made, which leads us to the following Chapter 4.
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Chapter 4

Non-linear model using neural networks:
towards deep learning based reconstruction

Chapters 2 and 3 presented respectively linear and non-linear based approaches for MR image
reconstruction. However, even though the LTSA method is based on a non-linear model, both
methods actually use conventional linear optimization techniques to solve the optimization problem.
This chapter presents an emerging MR image reconstruction field where neural networks (NN) are
used for optimization.

4.1 Introduction

Machine learning is a branch of artificial intelligence (AI) and computer science which focuses on
the use of data and algorithms to imitate the way that humans learn [162]. A sub-field of ML is then
artificial neural networks (ANNs) [96]. They are computational models inspired by the structure
and functioning of the human brain. ANNs are composed of interconnected nodes, called artificial
neurons (ANs), which process and transmit information. Conventional ANNs typically use a single
(or very few) AN units organized as layers between inputs and outputs. By contrast, Deep learning
(DL) is a subset of ANN and ML that uses a large number of layers (i.e., hidden layers) between
inputs and outputs, allowing for a more complex representation of the data.

Techniques based on deep neural networks (DNNs) have emerged as powerful tools for optimiza-
tion over the past two decades, showing promising results in many fields, from natural language
processing to image processing [77]. These algorithms can learn features such as patterns, low-
dimensional representation, distributions, etc. from large datasets. The network’s weights are
adjusted during a training process, allowing the network to learn and adapt to the training dataset
(notably by solving an optimization problem). The weights learned from the training set are then
utilized to perform specific tasks (e.g., classification, segmentation, interpolation, etc.) on new “test-
ing” datasets. The new datasets must however show similarities to the training set in some aspect,
e.g., be from the same imaging modalities or have similar noise floor in order to have a relevant

95
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output.
In particular, deep learning techniques have recently been extensively studied and tested in the

field of medical imaging to improve the image quality and further accelerate imaging time. In the
case of MR image reconstruction, deep neural networks such as recurrent or convolutional neural
networks (RNNs or CNNs) [1, 124, 137, 156] or generative adversarial networks (GANs) [25, 90,
94, 166] have been studied for various applications in both static and dynamic MRI. There can
be several attack angles such as denoising/deblurring [60], dealiasing [78], low-dimensional features
learning [150, 167] or extension of CS using neural networks [50, 67]. These schemes traditionally
process data either in the image space or in the k-space, but some methods also do both [30, 157].
Despite promising results, this type of technique can be computationally expensive and may require
a large amount of data and resources to train. More precisely, one of the main hurdles in the case
of dynamic MR imaging is the lack of available data. Indeed, one would require a large set of
high-resolution artifact-free images as labels for network training and acquiring such training labels
can be difficult for some dynamic MRI applications such as 3D cardiac imaging. In addition, these
networks may be prone to overfitting, meaning that they may perform well on the training data but
poorly on new, unseen data. To address these issues, some techniques have been developed such as
regularization and model ensembles to improve the performance and generalization of deep learning
networks [57, 112, 129, 155].

Overall, deep learning techniques have been shown to be effective at improving the speed and
accuracy of static MR imaging, yet more work is still needed for dynamic MR imaging. Despite a
potentially long training time, once the network is trained, the reconstruction is usually relatively
fast which can be very useful for online reconstruction in clinical settings: the weights of the networks
are already determined and only the inference time affects the reconstruction time. To this day,
deep learning methods are still being investigated to further improve MR image reconstruction
from highly undersampled k-space data. We present here some of the basic concepts of deep neural
networks. Then we give a brief overview of a DL-based MR image reconstruction technique. Finally,
we show some preliminary results of the current work performed in that field.

4.2 Background

4.2.1 Individual neuron and layer architecture

Neural networks are composed of individual units called neurons that mimic the way the brain
processes information and that perform simple tasks [96]. As simple as these individual tasks may
be, a sufficient amount of neurons (or nodes) connected together and forming layers can procure a
large representation power. A neuron is typically described by four parameters: inputs, weight, bias,
and activation function. The computation performed by a neuron is then a simple mathematical
operation, such as a dot product of the input data and a set of weights, with an offset (bias),
followed by the application of an activation function. While the inputs and activation function are
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fixed, weights and biases on the other hand are trainable parameters that are learned during the
training process, determining the specific computation that a neuron performs on its input data.
This learning process aims at optimizing a loss function that depends on the task.

Weights The weights of a neuron are values that determine the strength of the connection between
that neuron and the neurons in the previous layer. The weights are typically represented as an array
of values, one for each connection to a neuron in the previous layer

Bias The bias of a neuron is a single value that represents an additional input to the neuron
that is independent of the input data. The bias can be thought of as a trainable parameter that
determines the overall “shift” or “offset” of the neuron’s output.

Activation function The activation function of a neuron is a function that determines the output
of the neuron. Activation functions can be used to introduce non-linearity into the network, which
allows it to learn more complex patterns in the data. Indeed, without activation functions, a
neural network would be limited to learning linear relationships between the input and output
data. Some common activation functions include the sigmoid function, the tanh function, and the
ReLU (Rectified Linear Unit) function.

Figure 4.1: Illustration of a neuron unit in an artificial neural network. Source: www.freecodecamp.org

A schematic of an individual neuron unit is shown in Figure 4.1. These neurons can then be
stacked and interconnected to form layers and eventually a neural network. Neural networks are
traditionally represented with an input layer, one or more hidden layers, and an output layer. The
input layer is the first layer of the neural network, it represents the input data. The input data
can be raw data such as images, text, or audio, or it can be preprocessed and transformed data.
For example, in the case of image processing, each unit in the input layer could represent a single
voxel of the input data. The hidden layers are located between the input and output layers and
they process the input data features. They transform the input data by combining them according
to the neurons’ weights and biases. The number of hidden layers and the number of units in each
layer are design choices that can significantly impact the performance of the network. The output
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layer is then the last layer in the neural network and it produces the final output of the network.
This can be a single value, such as a prediction or a probability, or it can be a vector of multiple
values, such as a classification label or even an image (e.g., denoised).

4.2.2 Conventional neural network models

As described in Section 4.2.1, neuron units can be connected together to form layers and complex
networks. We describe here some of the conventional networks used in deep learning and in image
processing tasks.

Perceptron and feed-forward neural network

The simplest network, namely the perceptron [131], consists of a single layer without hidden layers
and is mostly used for binary classification tasks. It receives input data and combines them together
with weights and biases to produce an output. If the output is above a certain threshold, the
perceptron classifies the input as belonging to the first class; otherwise, it classifies the input as
belonging to the second class. Similarly, the feed-forward neural network is composed of perceptrons
stacked together, forming multiple layers, with the input data flowing through the network in a single
direction. This network can be used for a variety of tasks, including classification, regression, and
function approximation. Note that the perceptron and feed-forward network are not considered
“deep” (because of their limited number of layers) and are the predecessors of current deep neural
network architectures.

Multi-layer perceptron (MLP)

A multi-layer perceptron (Figure 4.2) is a type of neural network that consists of multiple hidden
layers of interconnected neurons. Each neuron receives inputs from other neurons from the previous
layer, which is why they are often denoted as “dense” or “fully-connected” networks. In addition,
the hidden layers do not necessarily have the same amount of feature units than the previous layer.
Most importantly, MLPs have bidirectional propagation [134, 135] (forward and backward), which is
one of the most notable difference with regular feed-forward networks. Such networks can be trained
to perform a variety of tasks, such as complex classification, regression, and feature learning.

Convolutional neural network (CNN)

A convolutional neural network (Figure 4.3) is a type of neural network that is specifically designed
to process data with a grid-like topology, such as an image [34, 76]. CNNs are composed of multiple
layers of interconnected neurons, but the layers are arranged in a way that preserves the spatial
relationship between pixels of the input data. Each layer then learns to extract increasingly complex
features from the input based on spatial convolutions. This specificity makes CNNs particularly
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Figure 4.2: Example of an MLP architecture. In this example, there are two hidden layers. Source: analyticsvid-
hya.com

well-suited for image processing tasks. In the context of image processing, CNNs can be used to
denoise images for example.

Figure 4.3: Example of a CNN architecture. In this example, an RGB 256 × 256 image is processed. The RGB
color features are stacked in the channel dimension [100].

Recurrent neural network (RNN)

A recurrent neural network (RNN) is a type of neural network that has a “time memory” and is
designed to process sequential data, such as time series or natural language [58, 134]. RNNs are
composed of multiple layers of neurons, but the connections between neurons are not fully connected
like in a standard neural network. Instead, the connections between neurons are designed to form a
directed cycle, which allows the RNN to maintain a “memory” of past input and use it to inform the
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processing of current input. This makes RNNs well-suited for tasks such as language translation,
language modeling, and speech recognition.

Generative Adversarial Network (GAN)

A generative adversarial network (GAN) [40] is a more advanced and recent type of network that
is composed of two networks: a generator network and a discriminator network. The generator
network is trained to generate new data that are similar to a training dataset, while the discriminator
network is trained to distinguish between the generated data and the real data from the training
dataset. The two networks are trained in an adversarial manner, with the generator trying to “fool”
the discriminator and the discriminator trying to correctly identify the generated data. GANs can
be used to generate synthetic images, text, and other types of data. In the context of MR image
reconstruction, they can be used to learn a mapping from undersampled or noisy MR data to a
high-resolution or noise-free image.

4.2.3 Training types

To operate correctly, the networks presented above first need to “learn” from a training dataset,
a step where the weights of the network will be updated depending on the task at hand. There
are mainly three training categories for deep-learning based neural networks: supervised, semi-
supervised, and unsupervised. We present them here with an MR image reconstruction perspective.

Supervised training Supervised MR image reconstruction techniques involve training a model
on a labeled dataset, where the correct output (e.g., a high-resolution or noise-free image) is provided
for each input (e.g., undersampled or noisy MR data) in the training set. The goal of the model is
to learn a function that can predict the correct output for new, unseen inputs based on the patterns
it has learned from the training data. This type of approach is typically the most accurate and is
often used when large amounts of labeled data are available.

Semi-supervised training Semi-supervised MR image reconstruction techniques involve train-
ing a model on a dataset that contains a mix of labeled and unlabeled examples. The goal is still
to learn a function that can predict the correct output for new, unseen inputs, but the model can
also use the unlabeled examples to learn additional patterns in the data that may not be present
in the labeled examples. This type of approach can be a good compromise when some labeled data
are available, but not enough to fully train a supervised learning model.

Unsupervised training Lastly, unsupervised MR image reconstruction techniques do not use
any labeled examples and instead rely on the model to learn to discover patterns in the data on
its own. Such type of techniques include for example NN-based dimensionality reduction, feature
learning (e.g., using auto-encoder networks [134]); or clustering and segmentation (e.g., using
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contrastive learning approaches [20]). Unsupervised learning algorithms do not always have a
specific output that they are trying to predict, but instead may try to find structures or patterns
in the data. This type of approach is often used when labeled data are scarce or not available.

Overall, the choice of which type of dynamic MR image reconstruction technique to use will
depend on the specific task and the availability of labeled data. One of the main hurdles when
training a neural network for MR image reconstruction is the availability of ground-trutha, i.e.,
a large set of high-resolution artifact-free images. Depending on the application, obtaining such
a reference may not even be feasible (e.g., 3D cardiac dynamic MRI with high temporal/spatial
resolution).

4.2.4 DNN for MR image reconstruction: MoDL

We present in this section an existing unrolling-based MR image reconstruction scheme which
lays ground to the foundation of the current work of this PhD thesis, and potential future work.
Unrolling-based DNNs involve breaking down an image reconstruction process into a series of steps
or “unrolling” the process over a number of iterations, where free-parameters can be learned through
training [79]. For example, we can break down an iterative optimization algorithm such as gradient
descent. Then, each step of the gradient descent is done by going through some neural network
layers. Along that line, we chose to focus on the Model-based Deep Learning (MoDL) [1] framework
due to its versatility (designed for generalized inverse problems) and its mathematical foundations.
While we focus on this framework here, other schemes of interest that are non-unrolling based and
that directly estimate the non-aliased images or the fully-sampled k-spaces do exist [3, 94].

MoDL [1] introduced a systematic approach for architecture design and inverse problem reso-
lution of arbitrary structure. While several contributions can be attributed to MoDL, one of the
main contributions of the authors in [1] is that their approach can be used to learn a variety of
different model-based optimization algorithms for MR image reconstruction, including algorithms
based on different image priors and optimization approaches, with mathematical grounds justifying
the model. In addition, MoDL successfully uses and merges gradual improvement from several
DNN-based MR image reconstruction such as end-to-end approach, data consistency enforcement,
or residual learning.

Forward model

The general optimization problem for image reconstruction with regularization is posed as follows:

X̂ = argmin
X

∥A(X)− s∥2F + λ ∥R(X)∥2F (4.1)

aNote that in this thesis, the term ground-truth for MR images may refer to reference artifact-free images and
not obviously to images obtained from fully-sampled k-spaces (which is impossible to obtain in many cases).
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where A(•) = Ω(Fs•) is the forward imaging model. The first term is the data consistency (DC).
It enforces fidelity to the measurements s. The second term is a regularization done using the
transform R and weighted by λ. This term commonly involves “prior” knowledge of the data.

In MoDL, a CNN Nw learning noise and alias pattern in the residual image through the trained
weights w is used for regularization. An important point is that the CNN learns from the residual
image and is not estimating the image itself but the “remaining” that is unwanted:

Nw(X) = X−Dw(X) (4.2)

where Dw(X) is a denoised/dealiased version of X after going through the denoising/dealiasing
CNN. Equation (4.2) can therefore be written as:

X̂ = argmin
X

∥A(X)− s∥2F + λ ∥X−Dw(X)∥2F (4.3)

Note that λ is also a learnable parameter of the network.

The above scheme is then decoupled and solved in an alternating and iterative manner, yielding
two sub-problems:

Zn = Dw(Xn) (4.4a)

Xn+1 = argmin
X

∥A(X)− s∥2F + λ ∥X− Zn∥2F (4.4b)

The sub-problem in Equation (4.4b) enforces data consistency (DC) and can easily be solved using
conjugate gradient methods for example. This “layer” updating Xn is denoted as DC layer. The
sub-problem in Equation (4.4a) updates the regularization term used in Equation (4.4b) with the
CNN-based denoiser and can be solved with standard backpropagation schemes to update weights
with end-to-end training. A schematic of the MoDL scheme is shown in Figure 4.4. In-depth
mathematical details can be found in [1].

Figure 4.4: Iterative scheme of MoDL at an iteration n + 1 that alternates between CNN-based denoising (Dw)
layer and data consistency (DC) layer.
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CNN architecture and implementation details

The CNN-based denoiser in MoDL is composed of Nlayers layers with 64 convolution (Conv) filters,
batch normalization (BN) and rectified linear unit (ReLU) activation function. In [1], the authors
show results with different number of layers, and set the optimal number of layers to Nlayers = 5.
More specifically, all the layers include (Conv + BN + ReLU), except the last one, that does not
have ReLU activation function in order to prevent negative part truncation before the DC layer. A
figure of the Dw layer is shown in Figure 4.5.

Figure 4.5: CNN denoiser architecture. This layer, shown as the first layer in Figure 4.4, learns aliasing patterns
and noise from the difference image (shortcut connection represented by the orange arrow).

The Dw and DC layers are repeated K times to produce the equivalent of K iterations of the
traditional alternating optimization process (gradient descent with decoupling). The optimal K is
set to 10 in [1] and the starting image X0 is a zero-filled Fourier transform of the undersampled
k-space data s. Note that the k-space data and the initial value X0 are complex numbers, which
is not always supported by deep learning libraries. A common workaround that the authors of
MoDL used is to treat complex data as real vectors with two channels by concatenating the real
and imaginary part in the channel dimension (i.e., convert from CM×N to RM×N×2).

Another important note is that with 64 convolutional filters times 5 Dw inner layer, times 10
iterations, the total number of unknowns of the resulting network is very large, hence requiring a
large amount of data to train. A main contribution of MoDL regarding this aspect (as ground-truth
MR images can sometimes be difficult to obtain) is to share weights between iterations. This means
that the weights of the K = 10 iterations of successive Dw layer and DC layers are the same, which
considerably reduces the amount of trainable parameters and the complexity of the training. It
should be noted that the sharing is not only on the Dw layer’s weight, but also on the DC layer’s
only weight: λ. More details and results using MoDL can be found in [1].

4.3 Current work on DNNs

We present here preliminary work done during this PhD thesis in the field of deep learning for MR
based image reconstruction.
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4.3.1 Choice of dataset

The task at hand in this DNN investigation is to reconstruct artifacts-free images from undersampled
MR data. To do so, we first need to decide the type of training, which stems from the characteristics
of the available data (i.e., amount of data and labels). In this work, we used freely-available MR
data with ground-truth to enable DNN-based MR image reconstruction. Many websites or scientific
challenges offer MR k-space data with ground-truth for research purpose, as reviewed in [18, 87].
However, almost all the data available online are static images/k-space (i.e., static MRI) and only
a handful of websites propose dynamic MR data such as short cardiac cine images (e.g., 10 to
30 frames). Despite our interest in dynamic MRI, the scarceness of dynamic MR data lead us
to choose to start our deep learning journey with static MR image reconstruction. This will help
gaining valuable experience in a first step, as most of the skills and insight learned will most likely
be transferable to dynamic MRI. Note also that most of the k-space data available for deep learning
are based on Cartesian sampling due to a lack of deep-learning library compatible NuFFT.

We made the choice of using the fastMRI dataset [169] similarly to MoDL in [1]. The fastMRIb

database is composed of brain and knee images/k-space data with both single-coil and multi-coil
options. The MR data chosen for the reconstruction task were the single-coil knee data. More
information on the dataset can be found in Section 4.3.2 – “Training and testing”.

4.3.2 Implementation details

A starting point was necessary to explore the power of DNNs in this deep learning journey. Due to
the flexibility and mathematical foundations of MoDL, we decided to implement a MoDL-like deep
neural network with denoising layer and DC layer in the single-coil case. Note that in the case of
single-coiled data with Cartesian trajectory, there is no need of gradient descent in the DC layer as
an analytical solution exists [1]. In addition, as we used single-coil data we did not benefit from the
acceleration factor from coil combination (i.e., parallel imaging): one of the main goals here was
mostly to assess the denoising/dealiasing power of neural networks when given a large database of
MR data with ground-truth even without advanced schemes such as parallel imaging.

Network architecture We used Nlayers = 5 similarly to MoDL and several architecture cases
were evaluated, such as K = 1 (i.e., 1 [Dw + DC] iteration) and K = 10 with Dw weights shared
but independent λ between DC layers. Indeed, we believe that despite the potential usefulness
of sharing the large amount of weights from the convolutional layers (when memory and amount
of available data are troublesome), sharing the one variable shaping the DC layer and ruling the
contribution of the CNN versus the data consistency is not relevant, especially when the gain in
memory is negligible. If equal λ’s between DC layers yield optimal results, we believe that the
neural network training will then assign equal λ weights for each DC layer. Another difference with

bMore information on the available data can also be found at https://fastmri.org/
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the original MoDL is that a non-negative constraint was added on the λ weights to avoid potential
negative values that would not make sense from an optimization point-of-view. The algorithm was
implemented in Python using the TensorFlow library with Keras API on a NVIDIA GeForce RTX
2080 Ti 11GB. The training batches were loaded on the fly for better memory management using
a custom Keras generator.

Undersampling masks As described in the section above, the MR data from the fastMRI
database are fully sampled k-space giving ground-truth (artifacts-free) images with a simple Fourier
transform (see Section 1.3.1). Therefore, to train the network to denoise/dealias, we first need to
produce masks mimicking prospective undersampling in clinical settings. Sampling masks following
Cartesian trajectories with random undersampling along the phase-encoding direction were pro-
duced randomly for every batch. For every mask, 20 lines were consistently acquired in the center
of the k-space to acquire low-frequency components gathering most of the signal energy. The rest
of the k-space was randomly undersampled to obtain an undersampling ratio R between 2 and 4.
A representative image of the undersampling mask with undersampling ratio R = 4 is shown in
Figure 4.6.

Figure 4.6: Undersampling mask produced for generating retrospectively undersampled MR images. 20 lines in the
center of the k-space along the readout direction are constantly acquired, while the rest of the k-space is randomly
undersampled. The undersampling ratio of the mask shown in this figure is R = 4.
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Training and hyper-parameters 973 files were used to train the neural network and 199 files
for validation. Note that each file corresponds to a subject and contains between 28 and 42 slices.
As some of the first and last slices did not contain relevant anatomical information, the 10 first and
10 last slices of each file were not used for training. In the training step and the validation step,
the undersampling masks were randomly produced on the fly. The matrix size was 640 × 372 and
includes k-space data from five sequences for different contrasts and image orientations. A minority
of scans showed matrix sizes smaller than 640 × 372, in which case the k-space was zero-padded.
More details can be found in [71]. Undersampled images were produced using undersampling masks
as described above.

The K = 1 neural network was first pre-trained with undersampled k-space data with under-
sampling ratio R = 2 for a few epochs and then with R = 4 after decent initialization. 50 epochs
were used for the case where K = 1 and R = 4, with a batch size of 4, and 8 slices randomly picked
for each batch. The full network (K = 10) was then trained with masks produced with R = 4 for
100 epochs, and later fine-tuned with 50 epochs at a lower learning rate. Due to a higher memory
footprint, the batch size was decreased to 2, and 8 slices were randomly picked for each batch.
The optimizer was Adam [70] with default Keras parameters, and an exponential decaying learning
rate was used in order to avoid overshooting the gradient in late epochs (learning rate decaying
from 10−2 to 10−3). A gradient clipping method was also used to ensure stability in case of noisy
gradients or irregular (e.g., steep) manifold structure (gradient norm was clipped to 1). Results are
shown in Section 4.4.

4.4 Preliminary results

4.4.1 Ground-truth and undersampled images

Figure 4.7 displays the ground-truth MR images, i.e., the artifact-free images reconstructed from the
fully sampled k-space measurement with an FFT. In order to show the variability among subjects,
and to demonstrate the versatility of the denoising/dealiasing, images from 5 subjects from the
testing set are shown. As can be seen, images from sequences with various contrasts and from
various slice positions are present in the dataset.

The undersampled images are then produced by applying the undersampling mask to the k-space
data (see Section 4.3.2). An FFT reconstruction of the zero-filled k-space data gives the images in
Figure 4.8. As expected, the images show aliasing artifacts that look similar to blurring artifacts
and white noise. Note that, due to the undersampling in the phase-encoding direction, most of the
aliasing pattern is along the horizontal (phase-encoding) axis. The aim of the DNN implemented is
then to recover the original artifact-free images.
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Figure 4.7: Ground-truth MR images of the single-coil knee dataset from the fastMRI database. Images from
several sequences with different contrasts and image orientations are present in this dataset.

64.63% 32.46% 52.91% 21.74% 52.97%NRMSE

Figure 4.8: Retrospectively undersampled images of the ground-truth MR images shown in Figure 4.7. These
images were produced using randomly generated sampling masks with R = 4 as described in Section 4.3. Their
respective NRMSE is displayed at the bottom of each image.

4.4.2 Pre-training: K = 1 unrolled iteration

We show in this section the preliminary results obtained with the MoDL-like DNN detailed in
Section 4.3. Training the full neural network (i.e., with 10 unrolled iterations) directly can be
challenging as the weights are randomly initialized, and a non-linear optimization problem with so
many unknowns could easily be stuck in local minima or have difficulties to converge. Therefore, a
first step to prevent this is to pre-train the network with only one unrolled iteration, i.e., K = 1.
Using only one unrolled iteration considerably reduces the complexity of the problem and can get
us closer to the relevant weight distribution. The first row of Figure 4.9 shows the reconstructed
images after inference of the trained DNN with K = 1. The second row of Figure 4.9 shows the
absolute difference images defined by the absolute value of the difference between the ground-truth
(or reference) image Xref and the DNN-reconstructed image XDNN . The reconstructed images
still exhibit undersampling artifacts (see second row of Figure 4.9) but appear to have gained edge
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information, look less blurred, and have less noise, as indicated by the decreased NRMSE compared
to the zero-padded reconstruction in Figure 4.8. The training loss values of the DNN reconstructing
the images in Figure 4.9 are shown in Figure 4.10b. Figure 4.10a displays the training and validation
loss values in the case where the fixed learning rate is most likely too large for the late epochs, and
where there is no clipped gradient, clearly showing the advantage of decaying learning rate along
with gradient clipping in the current scenario. Note that these plots represent preliminary results
shown here, and could be consolidated with more experience training neural networks.

33.74% 23.13% 34.35% 14.18% 23.56%NRMSE

Figure 4.9: First row shows reconstructed images using the DNN architecture presented in Section 4.3 with K = 1
unrolled iteration. Their respective NRMSE is displayed at the bottom of each image. Second row shows the
absolute difference images defined by |Xref −XDNN |. The images were reconstructed from undersampled k-space
data (R = 4). The corresponding zero-filled reconstructed images are presented in Figure 4.8. The reconstructed
images shown here still exhibit aliasing artifacts (mostly in the homogeneous regions) yet improvement on the image
noise and sharpness is noticeable.

4.4.3 Trained DNN with K = 10, shared CNN weights and independent

λ weights

After having pre-trained the network with K = 1, we used the learned weights to initialize the
K = 10 network. As in this example we share the CNN-denoiser weights, the K = 1 network
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Figure 4.10: Training and validation loss values for two training cases. (a) Training and validation loss values in
the case of a learning rate too large in the late epochs and where there is no gradient clipping. (b) Loss values with
the same training (and the same initial learning rate) but with exponentially decaying learning rate and gradient
clipping. The training loss values in (b) correspond to the DNN weights reconstructing the images in Figure 4.9.

was basically concatenated 10 times, interleaved with DC layers, and the training was performed
again. Note that the [λ0, · · · , λ9] weights were all initialized with the λ from the pre-trained K = 1

network but are not bound to stay the same after training. The reconstructed images using the fully
trained K = 10 DNN can be found in the first row of Figure 4.11, along their respective NRMSE
at the bottom. The second row of Figure 4.11 shows the absolute difference images between the
groundtruth images in Figure 4.7 and the DNN-reconstructed images with K = 10.

The reconstructed images shown have considerably improved overall quality and sharpness, and
very little to no aliasing artifact left compared to the original undersampled images in Figure 4.8
or compared to the reconstructed images with K = 1 in Figure 4.9. The [λ0, · · · , λ9] weights after
training are given in Table 4.1. As can be seen, the λ values are different between layers, potentially
indicating that shared λ weights are not optimal. Note that the value of λ9 is considerably higher
than the other ones. This means that during all the iterations 0 to 8, more emphasis is given to the
fidelity of the data to the measurement to recover information from the missing samples, while for
the last iteration, more emphasis is given to the estimated result of the CNN denoiser.
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32.83% 20.42% 28.81% 10.88% 20.81%NRMSE

Figure 4.11: First row shows reconstructed images using the DNN architecture presented in Section 4.3 with K = 10
unrolled iterations, shared CNN weights, but independent DC weights [λ0, · · · , λ9]. Their respective NRMSE is
displayed at the bottom of each image. Second row shows the absolute difference images defined by |Xref −XDNN |.
The images were reconstructed from undersampled k-space data (R = 4). The corresponding zero-filled reconstructed
images are presented in Figure 4.8.

Table 4.1: Weights λ0 to λ9 after training for the DC layers 0 to 9 in the case where K = 10 (corresponding to the
reconstruction results shown in Figure 4.11). These values weigh the contribution of the CNN regularization versus
the fidelity to the original k-space measurements in the DC layer.

λ0 λ1 λ2 λ3 λ4

6.4e-07 9.25e-07 8.88e-07 6.75e-07 6.87e-07
λ5 λ6 λ7 λ8 λ9

4.47e-07 4.94e-07 2.34e-07 9.48e-07 1.12e-01

4.5 Conclusion and discussions

The work presented in this chapter is a preliminary research in deep learning-based MR image
reconstruction and only scratches the tip of the iceberg of a very active field of study. In a first
section, we presented the overall notions and network architectures in deep learning. To do so, a
literature review of many neural network architectures was performed. This was beneficial to better
understand the core concepts behind the more advanced DNN-based schemes such as MoDL. In a
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second step, a narrower literature review of DNN-based MR image reconstruction works helped grasp
the potential difficulties ahead (e.g., dynamic or static, available dataset, optimization problems,
etc.) and a popular DNN-based method (MoDL) was used as a starting point. One of the main
outcomes of this work was its invaluable insight on how deep neural networks behave, insight that
can only be acquired through trial-and-error, with additional programming skills in TensorFlow and
Python. Last but not least, this investigation gave rise to new research ideas on how to use DNNs
to further improve MR image reconstruction.

However, there are lacking components in the work presented in this chapter, as this investigation
is still ongoing. First, the presented work relies on an existing framework to obtain artifact-free
reconstructions. Then, the results shown here could be improved with more training or better
hyperparameter tuning. Other common methods such as data augmentation, or simply GPU with
larger memory for larger batch size during training would also be helpful. Note that using techniques
such as parallel imaging (taking into account coil sensitivity in the forward model) could further
help increasing the undersampling ratio.

One of the main critics of the work presented here is the absence of comparison with state-of-
the-art reconstruction techniques. This can be explained by the fact that this research route is still
fresh in this PhD thesis, and that preliminary investigations are presented in this chapter. Efforts
to leverage DNNs for MR image reconstruction are still ongoing, and the author showed interest to
pursue this route in future research. Last but not least, the work presented here deals with static
MRI, despite a higher interest in dynamic MRI. This can be explained by mainly two reasons. Static
MR image reconstruction is an easier task than dynamic MR image reconstruction as dynamic MRI
has a fourth (time) dimension that highly decrease the amount of k-space samples per 2D/3D
volume. Starting MR research on a new field with a new library and a new programming language
was therefore challenging and we made the choice of going step-by-step in that direction: first, an
intermediate goal of working on static MRI, then extending to dynamic MRI once more experience
and insight is gained. The second reason for working on static MRI as a first step was also the very
scarce amount of dynamic MR data and labels available online. Acquiring and using MR data from
our own center was also a possibility, but the main hurdle was that creating a database big enough
to train a DNN would not have been feasible within the timeline of this PhD thesis.

Several leads can then be pursued to extend the current framework to dynamic imaging. A
first lead would be to simply add a prior to the MoDL framework. This was done in [7] with
MoDL-SToRM, where there is one CNN regularizer, and one manifold-learning based regularizer
(SToRM [118]). However, this “plug-and-use” method just adds the SToRM regularizer and does not
take full advantage of the manifold-learning technique: it mostly balances the contribution between
the solutions of the SToRM method and the CNN. Another more interesting lead is to extend the
LTSA method presented in Chapter 3 to deep learning. One way to do so could be to unroll the
LTSA iterative scheme and use neural networks to solve the optimization problem.
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Chapter 5

Conclusion and perspectives

MR imaging is a wide-spread modality used in many settings due to its versatility, excellent soft-
tissue contrast, and high spatial resolution. In addition, being able to acquire in a dynamic way
using dynamic MR imaging techniques is desirable for many applications such as cardiac imaging or
dynamic contrast imaging. However, constraints such as limited acquisition times or inherent body
motion often lead to measurements sampled below the Nyquist rate in both static and dynamic
MRI. Advanced reconstruction techniques are therefore needed to obtain artifact-free images from
the undersampled MR data. This PhD thesis presented some advanced schemes for MR image
reconstruction and contributed to the development of a new reconstruction method for dynamic
MRI, with additional prospective work in deep learning-based approaches.

5.1 Objectives and contributions

The first objective of this PhD thesis was to assess the usefulness, but also the limitations of
the linear subspace model (also referred to as low-rank model) in a real-world setting. The main
question was: can the subspace model capture irregular types of motion (e.g., bulk motion or
irregular respiratory motion) and reconstruct artifact-free images from MR scans presenting such
types of motion? An extension of this question was then to assess whether such a reconstruction
method could deal with further variability within the data and reconstruct images with dynamic
contrast. We answered these questions with two different works presented in Chapter 2.

First, we demonstrated in Section 2.2 the performance of the subspace model for dynamic MR
image reconstruction in two challenging cases: bulk motion and irregular respiratory motion. In
addition, we showed that the dynamic MR images obtained from a PET/MR scanner could success-
fully be used for PET data motion correction. The proposed scheme allowed for the reconstruction
of high-resolution 3D volumes at a rate of 9.5 volume/s, which was sufficient to capture irregular
respiratory motion and bulk motion. Instead of relying on navigator data or other respiratory signal
surrogates to estimate respiratory motion (and neglect other types of motion), we relied on real-
time dynamic MR images to correct motion in PET data and proved the versatility of the subspace

113
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model. Then, in a separate work presented in Section 2.3, we leveraged the subspace model to
successfully reconstruct free-breathing 3D dynamic MR images with dynamic contrast for cardiac
applications. Using an efficient MR acquisition scheme developed in [54], the reconstructed 3D im-
ages were used for T1 estimation of the whole heart, enabling high-resolution 3D T1 mapping on a 3T
scanner. This work, combined to the previous one, answers the questions raised in the introduction,
demonstrating how the subspace model can be used to efficiently reconstruct high-dimensional data
exhibiting complex motion patterns and dynamic contrast.

However, the works presented here are not without limitations. For example, neither manages
to resolve cardiac motion (in a free-running way). In the first work on PET data motion correction,
the spatial resolution of the images is one of the bottleneck. In addition, the contrast in the heart
(i.e., between the myocardium and the blood pool) was poor due to the 3D excitation slab (without
inversion pulse). For that study, the spatial resolution was not a problem as the focus was on
the kidneys and the resolution was therefore good enough. Decreasing the spatial resolution was
thus not wanted, as it would have implied a decreased SNR and the need of a larger FOV (i.e.,
larger number of unknowns). Both of these consequences would have made the reconstruction more
challenging for the subspace model, let alone considering the additional cardiac motion to resolve
in a 3D setting. Note that the temporal resolution was also on the lower end to resolve cardiac
motion, and decreasing it would mean further undersampling of the data. In the case of cardiac
T1 mapping, respiratory motion and dynamic contrast were resolved for systole and diastole. Using
ECG-triggered data was needed here as free-running 3D cardiac imaging with dynamic contrast
would have been too undersampled at the given spatial resolution, and too complex to model for
this method with such undersampling ratio, as shown in Figure 3.9a and 3.9b. The linear subspace
model then arguably shows limitations with higher undersampling ratios and higher data complexity,
which clearly demonstrates the need of a more efficient reconstruction scheme with better modeling
of the intrinsic data structure.

This led us to our second objective and main contribution of this PhD thesis: overcoming the
limitations of the subspace model and developing a novel dynamic MR image reconstruction scheme
relying on non-linear manifold learning techniques (Chapter 3). Due to the “naive” linear dimension-
ality reduction operated in the subspace model, the intrinsic structure of the data may not always be
correctly approximated, especially with high undersampling ratios. To overcome these limitations,
we relied on a tangent space alignment technique through a linear transform to efficiently model
the non-linear structure of the underlying manifold. The improved performances of the proposed
LTSA method were demonstrated (e.g., Figures 3.6 and 3.12) and strong mathematical derivations
were given, such as links with other subspace methods (Sections 3.5.1 and 3.5.2). Ongoing efforts to
further improve the proposed model are being made, as discussed in Section 3.5.4, and we believe
many dynamic MR applications could benefit from this model.

Finally, we presented some preliminary work on deep learning-based image reconstruction in
Chapter 4 to answer to our third objective and further broaden our horizon. While more work is
still needed to claim any contribution on image reconstruction methods based on DNNs, we gave
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a brief overview of the current progress and showed how this translated in the development of new
skills and insight. We believe that image reconstruction leveraging the representation power of
DNNs is fascinating, shows many possibilities for the future, and is a route the author of this PhD
thesis would like to pursue.

5.2 Perspectives

This PhD opens several perspective projects that could be interesting to lead in a post-doctorate
position and beyond. First, the development of the LTSA method opened the path to many vari-
ants and improvements that could be worth taking time to pursue. For example, the LTSA method
could be used for other applications such as speech imaging, or for PET data motion correction
similarly as Section 2.2 with the subspace model. There is also a wide outlook on further research
to improve the LTSA scheme. A path for improvement is for example the choice of neighborhoods:
in the presented work, we used respiratory signals to form temporal neighborhoods and reconstruct
their subspaces with joint global coordinates. This choice, although intuitive, was studied in a sim-
ulation study (Figure 3.2) and proved to be a good candidate for neighborhood formation: the local
Casorati matrices formed by the dynamic images showed low-rank properties (i.e., good low-rank
approximation), and the Casorati matrix formed by the local coordinates showed low-rank prop-
erties as well (i.e., linear alignment of the tangent space feasible). However, other choices to form
neighborhoods exist, and some other ways of forming neighborhoods with a better representation
of the underlying manifold most likely exist. One of the perspective works along this line is to
find an automated / semi-automated way to form neighborhoods using clustering algorithms (e.g.,
k-means), or even DNN-based methods.

Another perspective project in the LTSA improvement line is to use spatial patches as discussed
in Section 3.5.4. Despite some inconclusive results on extending the current framework to spatial
patches, we do believe that further research and trials on that end could eventually lead to greater
improvement of the current method, leveraging the spatial locality and redundancy. A final potential
lead in the LTSA line that would be interesting pursuing is to extend the current LTSA framework
to deep learning. Indeed, in the essence, the LTSA method is an iterative scheme. Then, similarly to
other unrolling-based methods, we could try to unroll these iterations and use DNNs for each block.
Following that direction, many questions arise. What architecture to use? How will the problem be
formulated? What type of data is available for training? Do we include automated neighborhood
formation in such a scheme? etc. As we can see, following this route, many paths are possible.
These many paths will most likely need “trials and errors”, but that is also what makes research
interesting. A last advantage of this perspective work for the author of this PhD thesis is that it
merges two of the objectives presented in the introduction: developing an MR image reconstruction
scheme based on non-linear manifold learning and leveraging the representation power of DNNs.

Finally, other perspectives also present themselves with the skills and scientific open-mindedness
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acquired during the complex training that is a PhD program. In this PhD thesis, skills such as
optimization, programming, and more globally, image reconstruction and inverse problem resolution
were developed. A fascinating realization along the way was that most optimization problems are
inverse problems that can be solved with similar means. For example, the subspace model can
be used in many common applications, such as compression of video displaying spatiotemporal
redundancy (e.g., soccer games). This means that the skills learned to this day are transferable
to many fields, which further developed interest in fellow imaging modalities. In the case of PET
imaging, similar resolution techniques for inverse problems can be used and one of the main difference
is then the forward model in the optimization problem. Research on PET image processing is then
also one of outlook after this PhD thesis, and working on advanced processing schemes (e.g., using
DNNs) of both PET and MR data on PET/MR scanners would be compelling.
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Purpose: To	 develop	 a	 cardiac	 T1	 mapping	 method	 for	 free-	breathing	 3D	 T1	
mapping	of	the	whole	heart	at	3	T	with	transmit	B1	(B+

1)	correction.
Methods: A	 free-	breathing,	 electrocardiogram-	gated	 inversion-	recovery	 se-
quence	 with	 spoiled	 gradient-	echo	 readout	 was	 developed	 and	 optimized	 for	
cardiac	T1	mapping	at	3	T.	High-	frame-	rate	dynamic	images	were	reconstructed	
from	 sparse	 (k,t)-	space	 data	 acquired	 along	 a	 stack-	of-	stars	 trajectory	 using	 a	
subspace-	based	method	for	accelerated	imaging.	Joint	T1	and	flip-	angle	estima-
tion	was	performed	 in	T1	mapping	 to	 improve	 its	 robustness	 to	B+

1 	 inhomoge-
neity.	Subject-	specific	timing	of	data	acquisition	was	used	in	the	estimation	to	
account	for	natural	heart-	rate	variations	during	the	imaging	experiment.
Results: Simulations	showed	that	accuracy	and	precision	of	T1	mapping	can	be	im-
proved	with	joint	T1	and	flip-	angle	estimation	and	optimized	electrocardiogram-	
gated	spoiled	gradient	echo–	based	inversion-	recovery	acquisition	scheme.	The	
phantom	study	showed	good	agreement	between	the	T1	maps	from	the	proposed	
method	 and	 the	 reference	 method.	 Three-	dimensional	 cardiac	 T1	 maps	 (40	
slices)	 were	 obtained	 at	 a	 1.9-	mm	 in-	plane	 and	 4.5-	mm	 through-	plane	 spatial	
resolution	from	healthy	subjects	(n	=	6)	with	an	average	imaging	time	of	14.2	±	
1.6	minutes	(heartbeat	rate:	64.2	±	7.1	bpm),	showing	myocardial	T1	values	com-
parable	 to	 those	obtained	 from	modified	Look-	Locker	 inversion	recovery.	The	
proposed	method	generated	B+

1 	maps	with	spatially	smooth	variation	showing	
21%–	32%	and	11%–	15%	variations	across	the	septal–	lateral	and	inferior–	anterior	
regions	of	the	myocardium	in	the	left	ventricle.
Conclusion: The	proposed	method	allows	free-	breathing	3D	T1	mapping	of	the	
whole	heart	with	transmit	B1	correction	in	a	practical	imaging	time.

K E Y W O R D S
cardiac	T1	mapping,	free-	breathing,	low-	rank,	myocardial	T1	mapping,	spoiled	gradient-	echo,	
transmit	B1	inhomogeneity
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1 |  INTRODUCTION

Cardiac	 T1	 mapping	 is	 a	 powerful	 cardiovascular	 MRI	
technique	 that	 allows	 quantitative	 assessment	 of	 tis-
sue	 characteristics	 and	 underlying	 pathology	 of	 the	
myocardium.	 Native	 (i.e.,	 without	 the	 use	 of	 exogenous	
contrast	 agent)	 myocardial	 T1	 characterizes	 alterations	
in	 the	 structure	 and	 intracellular/extracellular	 compo-
nents	of	the	myocardium.	Native	myocardial	T1	is	a	well-	
recognized	 biomarker	 for	 quantitative	 assessment	 of	
diseases	that	alter	tissue	composition,	such	as	iron	deposi-
tion,	amyloid	disease,	Anderson-	Fabry	disease,	and	myo-
carditis.1–	3	Extracellular	volume	fraction,	measured	from	
pre-	contrast	and	post-	contrast	T1	values,	provides	quanti-
tative	measurement	of	 interstitial	expansion	and	associ-
ated	diseases,	such	as	amyloidosis,	fibrosis,	or	myocardial	
edema.2,3	 Extracellular	 volume	 fraction	 is	 an	 emerging	
biomarker	 for	diffuse	 fibrosis	 (e.g.,	heart	 failure,	dilated	
cardiomyopathy,	 amyloidosis),3	 which	 is	 challenging	 to	
detect	 using	 qualitative	 late-	gadolinium	 enhancement	
methods.

Modified	Look-	Locker	inversion	recovery	(MOLLI)4	is	
a	widely	used	method	for	2D	cardiac	T1	mapping,	which	
uses	adiabatic	inversion	pulses	for	magnetization	prepa-
ration	and	performs	electrocardiogram	(ECG)–	gated	bal-
anced	SSFP	acquisitions	through	multiple	cardiac	cycles	
with	 breath-	holding.	 Although	 MOLLI	 produces	 myo-
cardial	T1	maps	with	high	precision,5	the	method	is	lim-
ited	 to	a	 single-	slice	 imaging	per	breath-	hold.	Methods	
have	 been	 developed	 to	 extend	 the	 conventional	 2D	
MOLLI	 method	 to	 multislice	 2D	 or	 3D	 acquisitions	
with	 breath-	holding	 by	 leveraging	 the	 state-	of-	the-	art	
parallel	 imaging,	 simultaneous	 multislice	 acquisition,	
compressed	sensing,	and	non-	Cartesian	sampling	 tech-
niques.6,7	 However,	 these	 methods	 suffer	 from	 limited	
through-	plane	resolution	and	coverage,	often	 involving	
long	 or	 repetitive	 breath-	holds	 to	 obtain	 volumetric	 T1	
maps	of	the	heart,	which	imposes	significant	burden	on	
patients.

Various	 methods	 have	 been	 developed	 to	 overcome	
the	 limitations	of	breath-	holding	and	allow	3D	cardiac	
T1	mapping	with	free-	breathing	acquisitions.	Respiratory	
and	 cardiac	 gating–	based	 T1	 mapping	 methods	 have	
been	developed	to	acquire	 interleaved	multislice	2D8–	10	
or	 segmented	 3D	 k-	space	 data11–	13	 at	 end-	diastole	 with	
free-	breathing,	in	which	effects	from	respiratory	motion	
were	 mitigated	 by	 prospectively	 tracking	 respiratory	
motion	 using	 navigators	 or	 self-	navigation	 techniques.	
Magnetic	 resonance	 fingerprinting	 approaches	 have	
been	 combined	 with	 free-	breathing	 ECG-	gated	 acqui-
sitions	 for	 multi-	parametric	 cardiac	 MRI.14	 However,	
most	 of	 these	 methods	 are	 limited	 by	 spatial	 coverage,	
resolution	in	slice	direction,	or	imaging	time	due	to	the	

low	data-	acquisition	efficiency	of	gating.	Recently,	free-	
running	(i.e.,	no	cardiac	or	respiratory	gating)	continu-
ous	acquisition	methods	have	been	proposed	 for	2D	or	
3D	cardiac	T1	mapping.15–	20	Of	note,	Qi	et	al	reported	a	
free-	running	3D	whole-	heart	T1	mapping	method15	that	
uses	 translational	 respiratory	 motion	 correction	 and	 a	
patch-	based	low-	rank	tensor	model	to	reconstruct	3D	T1	
maps	with	isotropic	resolution.	The	T1	maps	obtained	by	
this	method,	however,	were	from	1.5	T,	and	the	method	
may	 not	 translate	 well	 to	 3	 T	 for	 reasons	 discussed	
subsequently.

Although	3D	cardiac	T1	mapping	methods	developed	
up	 until	 now	 have	 been	 applied	 mostly	 at	 1.5	T,	 unique	
technical	 challenges	 arising	 from	 more	 severe	 B0	 and	
transmit	B1	(B+

1)	inhomogeneities	need	to	be	addressed	at	
3	T.	 For	 instance,	 spoiled	 gradient-	echo	 (SPGR)	 readout	
with	small	flip	angle	(FA)	is	often	used	in	3D	cardiac	im-
aging	 at	 3	T	 to	 avoid	 B0	 inhomogeneity–	caused	 banding	
artifacts	 associated	 with	 balanced	 SSFP	 readout.7,16,17,19	
However,	T1	mapping	with	SPGR	readout	is	known	to	be	
sensitive	 to	 errors	 in	 FA	 caused	 by	 imperfect	 RF	 pulses	
and	B+

1 	inhomogeneities.21	The	latter	is	particularly	prob-
lematic	at	3	T,	in	which	B+

1 	variation	over	the	left	ventricle	
with	 body-	coil	 transmission	 is	 reported	 on	 the	 order	 of	
30%–	60%,22	 leading	 to	 bias	 in	T1	 estimation.	 Robustness	
of	 cardiac	T1	 mapping	 methods	 with	 SPGR	 acquisitions	
needs	to	be	thoroughly	investigated	in	the	presence	of	B+

1 	
inhomogeneity.23,24

In	 this	 work,	 we	 present	 a	 new	 cardiac	 T1	 mapping	
method	 for	 rapid	3D	T1	mapping	of	 the	heart	at	3	T.	A	
free-	breathing,	ECG-	gated	IR	sequence	with	SPRG	read-
out	 was	 developed	 and	 optimized	 in	 terms	 of	 acquisi-
tion	protocol	and	excitation	FA	for	accurate	and	precise	
cardiac	 T1	 mapping	 at	 3	 T.	 The	 optimized	 scheme	 was	
combined	with	sparse	(k,t)-	space	sampling	along	a	stack-	
of-	stars	 trajectory	 to	 accelerate	 imaging.	 A	 subspace-	
based	image-	reconstruction	method	was	used	to	recover	
high-	frame-	rate	 dynamic	 images	 from	 highly	 under-
sampled	(k,t)-	space	data.	The	effects	of	FA	errors	on	T1	
mapping	 were	 mitigated	 by	 joint	 estimation	 of	 T1	 and	
FA,	 in	 which	 the	 reconstructed	 dynamic	 images	 were	
first	 binned	 to	 different	 respiratory	 motion	 phases	 and	
then	fitted	voxel-	by-	voxel	to	a	signal	dictionary	generated	
using	 Bloch	 equation	 simulations.	The	 effects	 of	 heart-	
rate	variations	on	T1	mapping	were	reduced	by	generat-
ing	signal	dictionary	with	subject-	specific	timing	of	data	
acquisition	 recorded	 during	 imaging	 experiment.	 The	
performance	of	the	proposed	method	was	characterized	
and	validated	through	numerical	simulations,	phantom	
studies,	and	in	vivo	experiments	on	healthy	human	sub-
jects	 (n	 =	 6).	 Preliminary	 accounts	 of	 this	 work	 have	
been	 presented	 previously	 in	 the	 form	 of	 conference	
abstracts.25–	27
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2 |  METHODS

2.1 | Data acquisition

The	proposed	ECG-	gated	cardiac	T1	mapping	sequence	is	
shown	in	Figure	1.	A	nonselective	inversion	pulse	was	ap-
plied	every	N+M	heartbeats	with	two	different	TIs.	This	
scheme	is	referred	to	as	the	N-	(M)-	N-	(M)	protocol	for	sim-
plicity,	where	N	denotes	the	number	of	cardiac	cycles	for	
acquisition	and	M	denotes	 the	number	of	cardiac	cycles	
for	 signal	 recovery.	 Data	 were	 acquired	 at	 end-	diastole	
period	 using	 SPGR	 readout.	 A	 special	 data-	acquisition	
scheme	 was	 used	 for	 sparse	 sampling	 (k,t)-	space	 data	
along	 a	 stack-	of-	stars	 trajectory.	 A	 limited	 number	 of	
“training”	 data	 (e.g.,	 along	 the	 kx,	 ky,	 and	 kz	 directions	
across	the	center	of	the	k-	space)	were	acquired	with	high	
sampling	 rate	 to	 determine	 the	 temporal	 changes	 of	 the	
underlying	signal.	Data	at	all	other	k-	space	locations	were	
sparsely	sampled	over	the	entire	(k,t)-	space	to	ensure	that	
sufficient	number	of	measurements	were	acquired	at	each	
k-	space	location	for	subspace-	based	image	reconstruction.

To	track	respiratory	motion,	one-	dimensional	(1D)	respi-
ratory	navigator	signals	were	acquired	in	the	sagittal	plane	
at	the	dome	of	the	right	hemi-	diaphragm	at	the	beginning	
and	end	of	data	acquisition	of	each	cardiac	cycle.	A	spatially	
selective	inversion	pulse	was	applied	right	after	the	nonse-
lective	 inversion	pulse	 to	 invert	 the	magnetization	signals	
in	the	same	sagittal	plane	back	to	the	equilibrium	state,	and	

therefore	 to	 mitigate	 the	 contrast	 changes	 caused	 by	 the	
nonselective	inversion	pulses	in	the	navigator	signals.

2.2 | Image reconstruction

Image	 reconstruction	 of	 sparsely	 sampled	 data	 was	 per-
formed	by	solving	the	following	constrained	optimization	
problem:

where	 d (k, t)	 denotes	 the	 measured	 data;	ℱs	 denotes	 the	
Fourier	transform	in	the	spatial	domain;	Ω	denotes	the	sam-
pling	mask	in	the	(k,t)-	space;	and	�	denotes	the	regulariza-
tion	parameter,	which	was	chosen	based	on	the	discrepancy	
principle.28	The	first	term	of	the	cost	function	in	Equation	
1	penalizes	data	inconsistency,	while	the	second	term	pro-
motes	sparsity	of	the	reconstructed	dynamic	images	� (x, t)	
in	the	spatio-	spectral	domain.29	The	constraint	in	Equation	1	
represents	� (x, t)	as	a	partially	separable	function,30,31	where	
vl (t)	denotes	the	temporal	basis	function,	ul (x)	denotes	the	
corresponding	spatial	coefficients,	and	L	is	the	model	order.	
In	 this	 work,	 vl (t)	 was	 estimated	 separately	 from	 training	
data	using	singular	value	decomposition	for	simplified	com-
putation.29	Image	reconstruction	problem	was	then	reduced	

(1)

�̂ (x, t) =arg min
�(x,t)

‖d (k, t) −Ωℱs {� (x, t)} ‖2
2+�‖ℱt{�(x, t)}‖1,

s. t. � (x, t) =
�L

l=1
ul (x) vl (t)

F I G U R E  1  Schematic	diagram	of	the	proposed	data-	acquisition	scheme.	The	N-	(M)-	N-	(M)	protocol	is	shown	with	nonselective	
inversion	pulse	applied	every	N+M	heartbeats	(where	N	denotes	the	number	of	cardiac	cycles	for	acquisition	and	M	denotes	the	number	of	
cardiac	cycles	for	signal	recovery)	with	two	different	TIs.	Data	acquisition	consists	of	the	“training”	data	set,	acquiring	a	limited	number	of	
k-	space	lines	with	high	sampling	rate,	and	the	“imaging”	data	set,	sparsely	sampling	all	other	k-	space	locations	for	subspace-	based	image	
reconstruction.	To	track	respiratory	motion,	one-	dimensional	respiratory	navigator	signals	were	acquired	in	the	sagittal	plane	at	the	dome	of	
the	right	hemi-	diaphragm	after	a	spatially	selective	inversion	pulse	was	applied	in	the	same	sagittal	plane	to	invert	the	magnetization	signals	
back	to	the	equilibrium	state
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to	determining	the	spatial	coefficients	ul (x)	from	measured	
data.	The	 optimization	 problem	 in	 Equation	 1	 was	 solved	
using	 an	 alternating	 direction	 method	 of	 multipliers32–	
based	algorithm.33	For	 fast	computation	of	ℱs,	1D	Fourier	
transform	was	applied	along	the	kz	direction	first,	and	non-
uniform	 fast	 Fourier	 transform34	 was	 applied	 in	 the	 kx- ky	
plane	for	slice-	by-	slice	reconstruction.	The	dynamic	images	
were	reconstructed	in	a	coil-	by-	coil	fashion	and	then	com-
bined	 using	 the	 sum-	of-	squares	 method	 to	 form	 the	 final	
reconstruction.	We	implemented	the	image	reconstruction	
algorithm	in	Python	and	used	the	SigPy	package35	to	accel-
erate	 the	 computation	 using	 GPUs.	 Reconstructions	 were	
performed	on	four	NVIDIA	Tesla	V100	SXM2	GPUs	(paral-
lelized	over	slice	and	coil	dimensions)	with	reconstruction	
time	around	1	minute	for	each	slice	and	coil.

2.3 | Estimation of T1 and FA

Before	parameter	estimation,	 the	reconstructed	dynamic	
images	were	binned	to	different	respiratory-	motion	phases	
based	on	diaphragm	position	information	extracted	from	
the	navigator	signals.	Let	�̂n,mdenote	the	reconstructed	dy-
namic	signals	at	a	voxel	xnin	a	selected	respiratory	phase	
mand	�n,m =

[
T1,m

(
xn
)

, �m
(

xn
)]

	denote	the	nonlinear	pa-
rameters	(i.e.,	T1	and	FA).	We	estimated	the	�n,mthat	best	
fit	the	dynamic	signals	as	follows,	using	the	variable	pro-
jection	method36:

where	a (∙)	denotes	an	atom	of	a	dictionary	of	signals	calcu-
lated	using	Bloch	equation	simulation	with	varying	T1	and	
FA	values	defined	on	a	discrete	2D	grid	and	the	actual	tim-
ing	of	acquisition	recorded	during	the	imaging	experiment.	
The	evolution	of	the	bulk	magnetization	vector	was	calcu-
lated	excitation-	by-	excitation	over	 the	course	of	 the	entire	
scan	by	solving	the	Bloch	equation	numerically.	The	signal	
bases	 were	 formed	 using	 the	 simulated	 signals	 associated	
with	the	excitations	where	the	spoke	at	the	center	of	the	k-	
space	(e.g.,	kz	=	0)	was	acquired	at	each	frame.	The	bases	
were	then	binned	to	a	motion	phase	to	form	the	dictionary	
for	joint	T1	and	FA	fitting.	For	the	simulation	and	phantom	
studies,	a	dictionary	was	generated	for	a	range	of	T1	from	1	
to	3000	ms	in	increments	of	1	ms	and	for	a	range	of	FA	from	
0	 to	2×FAo	 in	 increments	of	0.01×FAo,	where	 FAo	 is	 the	
nominal	FA,	in	the	case	of	joint	estimation.	For	the	in	vivo	
study,	the	dictionary	was	generated	for	a	range	of	T1	from	
500	to	2500	ms	in	increments	of	10	ms	and	for	a	range	of	FA	
from	0.2×FAo	to	1.5×FAo	in	increments	of	0.01×FAo	in	the	
case	of	joint	estimation,	in	consideration	of	expected	smaller	

range	of	T1	and	FA	values	and	for	the	sake	of	reducing	com-
putation	time	in	dictionary	generation	and	fitting.	The	time	
to	generate	the	dictionary	and	to	fit	the	data	was	6.7	±	2.1	
minutes	and	51.1	±	2.8	seconds,	respectively,	using	8	Intel	
Xeon	2.4	GHz	CPUs	(4-	core	per	CPU)	on	a	workstation.

2.4 | Simulation study

We	 performed	 simulation	 studies	 to	 optimize	 the	 pro-
posed	 data	 acquisition	 scheme	 in	 Figure	 1.	 Bloch	 equa-
tion	simulations	were	performed	for	various	ECG-	gated	IR	
schemes	with	the	following	parameters	in	common	unless	
otherwise	 mentioned:	 heart-	rate	 =	 80	 bpm,	 acquisition	
window	 =	 180	 ms,	 inversion	 delay	 times	 =	 100/180	 ms		
(i.e.,	 delays	 from	 the	 inversion	 pulse	 to	 the	 beginning	 of	
the	 first	 acquisition),	 FA	 =	 6°,	 and	 SPGR	 readout.	 The	
effect	of	B+

1 	 inhomogeneity	on	the	accuracy	of	T1	estima-
tion	was	investigated	for	8-	8,	5-	(3)-	5-	(3),	and	10-	(3)-	10-	(3)	
protocols	without	noise	at	different	B+

1 	scenarios	(i.e.,	B+
1 	=	

0.8/1/1.2).	 Relative	 difference	 (in	 relation	 to	 the	 ground-	
truth	T1	value)	was	used	 to	assess	any	bias	 in	T1	estima-
tion.	 The	 precision	 of	 T1	 estimation	 was	 investigated	 for	
N-	(M)-	N-	(M)	protocols	with	noise	and	perfect	B+

1 	(i.e.,	B+
1 	=	

1)	using	Monte	Carlo	simulations	(i.e.,	10	000	noise	realiza-
tions).	Normalized	SD	(nSD)	(i.e.,	SD	of	estimated	T1	val-
ues	normalized	by	SD	of	noise	and	inverse	of	square	root	of	
acquisition	time)	was	used	to	assess	the	precision	of	the	T1	
estimation.	The	SD	of	noise	was	assumed	to	be	constant	for	
all	considered	scenarios.	Additionally,	the	effect	of	nomi-
nal	FA	on	T1	mapping	was	investigated	for	8-	8,	5-	(3)-	5-	(3),	
and	10-	(3)-	10-	(3)	protocols	with	FAs	ranging	from	1º	to	15°	
in	1°	increments.	Finally,	the	effect	of	heart-	rate	variation	
on	 T1	 mapping	 was	 investigated	 for	 10-	(3)-	10-	(3)	 proto-
col	with	heart-	rate	ranging	from	50	to	120	bpm	in	5	bpm	
increments.

Note	 that	 the	 (k,t)-	space	 is	 highly	 undersampled	 and	
the	 dynamic	 images	 are	 reconstructed	 with	 an	 explicit	
low-	rank	 constraint	 in	 the	 proposed	 method.	 Therefore,	
different	from	MOLLI,	in	which	the	k-	space	of	each	frame	
can	 be	 fully	 sampled,	 the	 imaging	 time	 of	 the	 proposed	
method	is	given	by	TProposed = PsPz L

Qc
× tRR × M +N

N ,	where	Ps	
and	Pz	denote	the	number	of	spokes	in	the	kx-	ky	plane	and	
phase	encoding	steps	in	the	kz	axis,	respectively,	which	are	
determined	 by	 the	 required	 spatial	 resolution;	 L	 is	 the	
rank	 of	 the	 dynamic	 images;	tRR	 denotes	 a	 fixed	 cardiac	
cycle	duration;	and	Qc	denotes	the	number	of	spokes	ac-
quired	per	cardiac	cycle.	Here,	PsPzL	is	the	total	number	
of	unknowns	of	 the	 low-	rank	model	when	the	 temporal	
basis	is	predetermined.	Note	that	the	inherent	rank	of	the	
dynamic	images	reflects	the	spatial-	temporal	correlations	
of	 the	 temporal	 signal	 variations	 of	 all	 the	 voxels.	 It	

(2)�̂n,m = arg min
�n,m

����̂n,maH �
�n,m

����
2

‖a ��n,m
� ‖2

2
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depends	 on	 the	 respiratory-	motion	 pattern	 and	 the	 T1	
value	distributions	rather	than	protocol	parameters	N	and	
M.	Because	tRR,	Ps,	Pz,	L,	and	Qc	were	the	same	for	different	
imaging	 protocols,	 the	 imaging	 time	 of	 the	 proposed	
method	was	calculated	as	TProposed = M +N

N 	 in	our	simula-
tion	study	for	simplicity.

2.5 | Phantom study

A	structured	phantom	consisting	of	21	vials	of	deionized	
water	doped	with	concentrations	of	gadolinium	(Dotarem)	
varying	from	0	to	0.5	mmol/L	was	built	to	validate	the	per-
formance	 of	 the	 proposed	 method.	 Imaging	 experiment	
was	 performed	 using	 a	 3T	 MR	 scanner	 (MAGNETOM	
Trio;	 Siemens	 Healthcare,	 Erlangen,	 Germany)	 with	 a	
body	 coil	 for	 transmission	 and	 a	 12-	channel	 head	 coil	
for	 reception.	 Acquisitions	 were	 performed	 using	 8-	8,	
5-	(3)-	5-	(3),	 and	 10-	(3)-	10-	(3)	 protocols	 for	 a	 simulated	
heart	rate	of	80	bpm.	Common	imaging	parameters	were	
FOV	 =	 360	 ×	 304	 mm2,	 matrix-	size	 =	 192	 ×	 162,	 slice-	
thickness	=	6	mm,	FA	=	9°,	TR/TE	=	3.0/1.5	ms,	inver-
sion	delay	times	=	100/180	ms,	and	SPGR	readout.	Fully	
sampled	 (k,t)-	space	 data	 were	 acquired	 on	 a	 Cartesian	
grid	with	a	 temporal	 resolution	of	30	ms	 (i.e.,	10	phase-	
encoding	lines	per	frame)	to	evaluate	the	performance	of	
different	 acquisition	 protocols.	 The	 8-	8,	 5-	(3)-	5-	(3),	 and	
10-	(3)-	10-	(3)	 protocols	 were	 repeated	 over	 400,	 400,	 and	
640	cardiac	cycles,	respectively,	to	ensure	full	sampling	of	
the	 (k,t)-	space	data.	An	IR	sequence	with	 fast	 spin	echo	
(FSE)	readout	was	performed	to	obtain	reference	T1	maps	
with	 the	 following	 imaging	 parameters:	 FOV	 =	 360	 ×		
304	mm2,	matrix-	size	=	192	×	162,	slice-	thickness	=	6	mm,	
TR	=	10,000	ms,	echo	train	length	=	7,	and	TI	=	50/100/2
50/500/750/1000/1500/2000/2500/3000	ms.	An	additional	
scan	with	MOLLI37	was	performed	 for	 comparison	with	
the	following	parameters:	FOV	=	360	×	304	mm2,	matrix-	
size	=	192	×	162,	and	slice	thickness	=	6	mm.	Regions	of	
interest	were	drawn	within	each	vial,	and	the	average	T1	
value	within	each	vial	was	used	for	analysis.	Scatter	plots	
were	 generated	 to	 show	 the	 correlation	 between	 the	 T1	
values	from	the	different	methods	and	those	from	the	ref-
erence	 IR-	FSE	 method.	 Bland-	Altman	 analysis	 was	 per-
formed	 to	 analyze	 the	 agreement	 between	 the	 T1	 values	
from	the	different	methods	and	those	from	the	reference	
IR-	FSE	method.

2.6 | In vivo study

Six	 healthy	 volunteers	 (4	 males	 and	 2	 females;	 32	 ±	 3	
years)	 were	 recruited	 under	 a	 study	 protocol	 approved	
by	our	local	institutional	review	board.	Written	informed	

consent	was	obtained	from	all	subjects	before	study	par-
ticipation.	Imaging	experiments	were	performed	using	a	
3T	MR	scanner	(MAGNETOM	Trio)	with	a	body	coil	for	
transmission	 and	 spine	 and	 surface	 coils	 for	 reception.	
Imaging	was	performed	using	10-	(3)-	10-	(3)	protocol	with	
data	 sampling	 following	 a	 stack-	of-	stars	 trajectory.	 Two	
frames	 were	 acquired	 per	 cardiac	 cycle,	 each	 consisting	
of	k-	space	spokes	along	the	same	angle	in	the	kx-	ky	plane	
over	 all	 kz	 encodings	 and	 three	 additional	 training	 lines	
at	the	center	of	the	k-	space	along	the	kx,	ky,	and	kz	direc-
tion,	respectively	(Figure	1).	The	spoke	angle	varied	ran-
domly	 from	 frame	 to	 frame	 following	 uniform	 random	
distribution.	The	other	imaging	parameters	were	FOV	=		
308	×	308	×	180	mm3,	matrix	size	=	160	×	160	×	40,	image	
orientation	=	short-	axis	view,	FA	=	9°,	TR/TE	=	3.4/1.7	ms,		
and	 inversion	 delay	 times	 =	 100/180	 ms.	 A	 relatively	
large	 through-	slice	 coverage	 was	 chosen	 to	 mitigate		
errors	in	FA	due	to	imperfect	slab	excitation	profile	in	the	
presence	 of	 both	 respiratory	 and	 cardiac	 motions.	 Data	
acquired	 over	 the	 first	 800	 cardiac	 cycles	 (correspond-
ing	 to	 anticipated	 scan	 time	 of	 10	 minutes	 considering	
average	adult	heart	rate	of	80	bpm)	were	used	for	recon-
struction	and	analysis.	The	dynamic	images	were	recon-
structed	 using	 temporal	 basis	 functions	 vl (t)	 estimated	
from	training	data	with	model	order	L	=	15.	The	model	
order	 was	 chosen	 based	 on	 the	 singular	 value	 decay	 of	
the	Casorati	matrix	formed	by	the	training	data	as	in	the	
previous	work	on	using	low-	rank	constraints	for	image	re-
construction.29,33	The	reconstructed	dynamic	images	were	
then	binned	into	eight	respiratory	motion	bins	using	the	
acquired	 1D	 respiratory	 navigator	 signals.	 The	 number	
of	 respiratory	 bins	 was	 chosen	 to	 be	 eight	 based	 on	 our	
previous	experience	on	using	MR	for	respiratory	motion	
correction	in	PET.33	The	diaphragm	position	was	first	es-
timated	for	each	frame	by	fitting	a	logistic	function	to	the	
1D	spatial	profile	near	the	interface	between	the	liver	and	
lung.	 Frames	 were	 then	 grouped	 into	 bins	 according	 to	
the	estimated	diaphragm	position	while	ensuring	a	simi-
lar	 number	 of	 frames	 within	 each	 bin.	 Results	 obtained	
from	respiratory	motion	phase	at	or	near	end-	exhalation	
were	used	for	analysis.	The	short-	axis	view	slices	were	di-
vided	into	ROIs	of	16	segments	according	to	the	American	
Heart	 Association	 recommendations38	 for	 analysis.	 For	
comparison,	2D	T1	maps	were	acquired	using	MOLLI37	for	
five	slices	in	the	short-	axis	view	over	the	apical,	midcavity,	
and	basal	regions	of	the	heart	and	for	one	slice	in	the	long-	
axis	 four-	chamber	 view	 with	 the	 following	 parameters:	
FOV	=	360	×	304	mm2,	matrix	size	=	192	×	162,	and	slice	
thickness	=	4.5	mm.	All	of	the	five	short-	axis	slices	were	
categorized	 into	apical,	midcavity,	and	 the	basal	 regions	
based	on	location	and	were	used	for	analysis.	The	mean	
and	SD	of	the	T1	and	B+

1 	(defined	as	the	ratio	between	the	
measured	and	nominal	FAs)	were	calculated	for	each	ROI	
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and	were	visualized	through	bull’s-	eye	plot	and	bar	plot.	
Statistical	analysis	was	performed	using	Wilcoxon	signed-	
rank	test	to	compare	T1	values	obtained	by	MOLLI	and	the	
proposed	method.

3 |  RESULTS

Results	 from	the	simulation	study	are	shown	in	Figures	2	
and	3.	When	estimating	T1	only	with	the	assumption	of	per-
fect	B+

1 	 (i.e.,	B+
1 	=	1),	noticeable	bias	 in	T1	estimation	was	

found	in	all	the	investigated	imaging	protocols	in	the	pres-
ence	of	typical	B+

1 	inhomogeneities	at	3	T	(the	blue	dashed	
lines	in	Figure	2).	The	8-	8	protocol,	which	has	the	highest	
data-	acquisition	 efficiency	 (i.e.,	 number	 of	 k-	space	 lines	
acquired	 per	 unit	 time)	 among	 all	 the	 schemes,	 showed	
the	 highest	 sensitivity	 to	 B+

1 	 inhomogeneity	 (Figure	 2A).	
Insertion	of	cardiac	cycles	for	signal	recovery	reduced	this	
bias	 in	 T1	 estimation	 at	 the	 cost	 of	 imaging	 time	 (Figure	
2B,C).	Joint	T1	and	FA	estimation	led	to	unbiased	T1	estima-
tion	in	the	simulation	study	as	expected	(the	red	solid	lines	
in	Figure	2).	Figure	3A	shows	the	precision	of	T1	estimation	
for	 different	 imaging	 protocols.	 The	 nSD	 of	 the	 proposed	
method	with	joint	T1	and	FA	estimation	was	minimized	and	
plateaued	around	N	=	13,	14,	14,	and	13	for	N-	N,	N-	(1)-	N-	(1),	

N-	(2)-	N-	(2),	 and	 N-	(3)-	N-	(3)	 protocols,	 respectively.	 The	
nSD	of	 the	proposed	method	with	T1	estimation	only	was	
minimized	and	plateaued	around	N	=	12,	8,	10,	and	12	for	
N-	N,	N-	(1)-	N-	(1),	N-	(2)-	N-	(2),	and	N-	(3)-	N-	(3)	protocols,	re-
spectively.	Although	resulting	in	unbiased	estimation	of	T1,	
joint	T1	and	FA	estimation	led	to	larger	nSD	than	the	case	of	
estimating	T1	only.	Increasing	the	number	of	cardiac	cycles	
for	signal	recovery	reduced	the	nSD	observed	in	joint	T1	and	
FA	estimation,	eventually	to	a	level	similar	to	those	observed	
in	the	case	of	estimating	T1	only	with	10-	(3)-	10-	(3)	protocol.	
Note	that	 joint	T1	and	FA	estimation	was	unstable	 for	 the	
8-	8	protocol	despite	the	desired	data-	acquisition	efficiency.	
Figure	3B	shows	the	effects	of	FAs	on	the	precision	of	T1	es-
timation	for	different	imaging	protocols.	The	nSD	was	mini-
mized	and	plateaued	around	FA	of	9°	in	the	case	of	joint	T1	
and	FA	estimation	for	both	5-	(3)-	5-	(3)	and	10-	(3)-	10-	(3)	pro-
tocols.	Based	on	the	results,	FA	of	9°	was	used	for	the	ECG-	
gated	IR	sequence	with	SPGR	readout	in	the	phantom	and	
in	vivo	experiments.	Figure	3C	further	shows	that	heartbeat	
rate	has	only	marginal	effects	on	the	precision	of	T1	estima-
tion	for	10-	(3)-	10-	(3)	protocol,	which	is	the	protocol	selected	
for	the	in	vivo	experiments.

The	 results	 from	 phantom	 studies	 are	 shown	 in		
Figure	4	and	Supporting	Information	Figures	S1	and	S2.	
Banding	artifacts	were	observed	in	the	estimated	T1	maps	

F I G U R E  2  Simulation	results	
showing	the	effect	of	B+

1 	inhomogeneity	
on	the	accuracy	of	T1	estimation.	Relative	
difference	plots	from	the	8-	8	(A),	5-	(3)-	
5-	(3)	(B),	and	10-	(3)-	10-	(3)	(C)	protocols	
are	shown	for	typical	B+

1 	inhomogeneities	
at	3	T	(i.e.,	B+

1 	=	0.8,	1,	and	1.2).	T1	values	
obtained	by	joint	T1	and	flip-	angle	
(FA)	estimation	(red	solid	line)	and	T1	
estimation	only	with	the	assumption	of	
perfect	B+

1 	(blue	dashed	line)	are	shown.	
Small	fluctuations	are	presumed	to	be	due	
to	numerical	errors



   | 7HAN et al.

from	MOLLI,	whereas	no	noticeable	artifacts	were	shown	
in	 the	 estimated	 T1	 maps	 from	 the	 proposed	 method	
(Figure	 4A).	 The	 5-	(3)-	5-	(3)	 and	 10-	(3)-	10-	(3)	 protocols	
both	showed	accurate	T1	mapping	 in	 relation	 to	 the	 ref-
erence	 IR-	FSE	 method	 when	T1	 and	 FA	 were	 estimated	
jointly,	 as	 shown	 in	 the	 correlation	 plots	 in	 Figure	 4B	
and	 Bland-	Altman	 plots	 in	 Figure	 4C.	 The	 8-	8	 protocol	
produced	T1	maps	with	large	variations	when	T1	and	FA	
were	estimated	jointly	(Figure	4A),	which	matched	with	
the	simulation	results	in	Figure	3.	Supporting	Information	
Figure	S1	shows	the	results	obtained	from	the	same	exper-
iment	but	with	estimation	of	T1	only	assuming	prefect	B+

1 	
(i.e.,	B+

1 	=	1).	B+
1 	inhomogeneity–	caused	bias	was	found	in	

the	estimated	T1	maps	from	IR	sequence	with	SPGR	read-
out	as	expected.	Compared	with	the	case	of	estimation	of	
T1	only,	joint	T1	and	FA	estimation	reduced	the	limits	of	
agreement	by	77.7,	44.7,	and	49.4	ms	for	the	T1	mapping	
experiment	with	8-	8,	5-	(3)-	5-	(3),	and	10-	(3)-	10-	(3)	proto-
col,	 respectively	 (Figure	4C	and	Supporting	 Information	
Figure	 S1C).	 Supporting	 Information	 Figure	 S2	 shows	
results	 from	 another	 phantom	 study	 with	 variation	 in	
B+

1 	 field	 strength	 via	 control	 of	 transmitter	 voltage.	 The	
5-	(3)-	5-	(3)	protocol	achieved	robust	T1	mapping	when	T1	
and	FA	were	estimated	jointly,	despite	the	variation	in	B+

1 	
field	 strength.	 The	 estimated	 T1	 from	 each	 vial	 were	 in	
good	agreement	with	those	estimated	from	the	reference	

IR-	FSE	 method.	 Ratios	 between	 different	 nominal	 FAs	
and	 estimated	 average	 FAs	 from	 each	 vial	 were	 also	 in	
good	agreement.

Results	from	the	in	vivo	study	are	shown	in	Figures	5–	10	
and	Supporting	Information	Figures	S3	and	S4.	The	average	
heart-	rate	of	the	6	volunteers	was	64.2	±	7.1	bpm	(min:	53.7	
bpm,	max:	73.5	bpm).	The	acquisition	time	for	the	6	volun-
teers	was	14.2	±	1.6	minutes	(min:	12.2	minutes,	max:	16.4	
minutes).	Figure	5	shows	representative	 reconstructed	 im-
ages	at	various	slice	positions	and	TIs	from	subject	1	using	
the	proposed	method.	No	significant	artifacts	were	seen	in	
the	reconstructed	images	across	different	slices	and	TI	times.	
After	 respiratory-	motion	 binning,	 an	 average	 of	 153.8	 ±	
23.4	TIs	were	observed	per	respiratory	motion	bin	over	the	
course	of	800	heartbeats	across	all	subjects.	Figure	6	shows	
representative	short-	axis-	view	T1	maps	from	subjects	1	and	2	
obtained	by	the	proposed	method.	Figure	6	also	shows	four-	
chamber-	view	T1	maps	that	were	generated	by	reslicing	the	
3D	T1	map	from	the	proposed	method.	For	comparison,	T1	
maps	from	MOLLI	at	the	same	slice	position	and	orientation	
are	shown	at	the	bottom	of	each	subfigure.	Overall,	the	T1	
maps	from	the	proposed	method	were	comparable	to	those	
from	MOLLI.	Note	that	the	nominal	in-	plane	and	through-	
plane	resolution	from	the	proposed	method	was	1.9	mm	and	
4.5	 mm,	 respectively.	 Figure	 7	 further	 shows	 3D	 T1	 maps	
from	subject	2,	covering	the	whole	left	ventricle	from	base	to	

F I G U R E  3  Simulation	results	showing	the	precision	of	T1	estimation	for	different	N-	(M)-	N-	(M)	protocols.	(A)	Effect	of	N-	(M)-	N-	
(M)	protocols	on	normalized	SD	(nSD).	(B)	Effect	of	FA	on	nSD	for	the	8-	8,	5-	(3)-	5-	(3),	and	10-	(3)-	10-	(3)	protocols.	C,	Effect	of	heart-	rate	
variation	on	nSD	for	the	10-	(3)-	10-	(3)	protocol.	T1	values	obtained	by	joint	T1	and	FA	estimation	(red	solid	line)	and	T1	estimation	only	with	
the	assumption	of	perfect	B+

1 	(blue	dashed	line)	are	shown
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apex.	As	can	be	seen,	high-	quality	3D	T1	maps	of	the	heart	
were	produced	using	the	proposed	method.	Figure	8	shows	
a	quantitative	comparison	of	T1	maps	from	all	subjects	using	
the	proposed	method	(with	and	without	joint	T1	and	FA	esti-
mation)	and	MOLLI,	respectively.	The	bull’s-	eye	plot	and	bar	
plot	of	the	mean	and	SD	of	T1	values	from	each	ROI	show	a	
very	good	agreement	between	the	two	methods.	This	obser-
vation	is	also	supported	by	the	Bland-	Altman	plots	shown	in	
Supporting	Information	Figure	S3.	Compared	with	the	case	
of	estimation	of	T1	only,	joint	T1	and	FA	estimation	reduced	
the	SD	of	T1	values	across	16	myocardial	segments	by	30.5	
ms.	Statistical	test	showed	that	the	T1	values	of	the	16	myo-
cardial	segments	from	the	proposed	method	with	joint	T1	and	
FA	estimation	were	not	statistically	different	from	MOLLI	at	
5%	significance	level	(p	=	.08).	The	mean	and	SD	of	septal	
T1	values	between	MOLLI	and	the	proposed	method	across	
subjects	is	compared	in	Supporting	Information	Table	S1.

Figure	9	shows	representative	T1	and	B+
1 	maps	 from	

subject	2	obtained	by	the	proposed	method.	Notice	the	
similarity	 in	 estimated	 T1	 values	 for	 each	 tissue	 type	
(e.g.,	 myocardium,	 liver,	 muscle)	 even	 with	 signifi-
cant	variations	in	estimated	B+

1 	across	different	regions	
(Figure	 9A).	The	 3D	B+

1 	 maps	 of	 the	 heart	 (Figure	 9B)	
show	 larger	 B+

1 	 values	 in	 lateral/anterior	 regions	 than	
septal/inferior	 regions,	 which	 is	 consistent	 with	 liter-
ature.39	 Group	 analysis	 of	 B+

1 	 maps	 acquired	 from	 all	
subjects	is	shown	in	Figure	10.	B+

1 	variation	ranged	from	
21%–	32%	 and	 11%–	15%	 across	 the	 septal–	lateral	 and	
inferior–	anterior	regions	of	the	myocardium	in	the	left	
ventricle,	 respectively.	 When	 such	B+

1 	 inhomogeneities	
were	 ignored	 in	 T1	 estimation,	 T1	 values	 in	 the	 septal	
and	 inferior	 regions	 were	 overestimated	 (Supporting	
Information	 Figure	 S4).	 This	 was	 consistent	 with	 the	
simulation	results	in	Figure	2.

F I G U R E  4  Phantom	results	of	electrocardiogram	(ECG)–	gated	inversion-	recovery	(IR)	schemes	with	spoiled	gradient-	echo	(SPGR)	
readout	and	joint	T1	and	FA	estimation.	(A)	Estimated	T1	maps	from	different	methods.	(B)	Scatter	plots	showing	the	comparison	of	
estimated	T1	from	different	methods	with	those	from	IR–	fast	spin	echo	(FSE).	Solid	line	represents	the	line	of	identity,	and	dashed	line	
represents	the	line	of	regression.	(C)	Bland-	Altman	plots	showing	the	comparison	of	estimated	T1	from	different	methods	with	those	
from	IR-	FSE.	Solid	line	represents	the	mean	difference,	and	dashed	line	represents	the	95%	confidence	interval	for	limits	of	agreement.	
Abbreviation:	MOLLI,	modified	Look-	Locker	inversion	recovery
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4 |  DISCUSSION

In	 this	 work,	 a	 new	 free-	breathing	 cardiac	 T1	 mapping	
method	 is	 proposed	 for	 robust	 T1	 mapping	 of	 the	 heart	

at	3	T.	The	T1	maps	obtained	using	the	proposed	method	
have	a	strong	correlation	and	good	agreement	compared	
with	reference	and	comparison	methods	in	both	the	phan-
tom	 experiments	 with	 various	 conditions	 (Figure	 4	 and	

F I G U R E  5  In	vivo	study	results	of	
reconstructed	images	from	the	proposed	
method.	Representative	reconstructed	
images	from	subject	1	are	shown	at	
various	slice	positions	for	a	fixed	TI	of	
1343	ms	(top	row)	and	various	TI	times	
for	slice	position	index	of	18	(bottom	row).	
Note	that	the	images	were	selected	from	
reconstructed	images	in	clock	time	and	
may	be	at	different	respiratory	motion	
phase

F I G U R E  6  T1	maps	from	subjects	1	and	2	obtained	by	the	proposed	method.	Representative	T1	maps	are	shown	for	various	slice	
positions	in	the	short-	axis	view	and	four-	chamber	view.	T1	maps	from	MOLLI	at	the	same	slice	position	and	orientation	are	shown	at	
the	bottom	of	each	subfigure	for	comparison.	Note	that	for	the	four-	chamber	view,	the	T1	map	from	MOLLI	were	acquired	with	in-	plane	
resolution	of	1.5	mm,	whereas	the	T1	map	from	the	proposed	method	was	generated	by	reslicing	the	3D	T1	map	acquired	with	through-	plane	
resolution	of	4.5	mm
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Supporting	Information	Figure	S2)	and	the	in	vivo	experi-
ments	across	all	subjects	(Figures	6	and	8	and	Supporting	
Information	Figure	S3).	Robust	T1	mapping	was	achieved	
despite	significant	B+

1 	variations	at	3	T.	This	is	most	notice-
able	by	the	fact	that	uniform	T1	distributions	for	each	tis-
sue	type	(e.g.,	myocardium,	liver,	muscle)	were	achieved	
across	the	entire	FOV	(Figure	9A)	and	is	further	supported	
by	the	close	agreement	of	T1	maps	between	the	proposed	
method	 and	 MOLLI	 (Figure	 8),	 despite	 the	 observed	B+

1 	
variation	 across	 the	 septal–	lateral	 and	 inferior–	anterior	
regions	of	the	myocardium	in	the	left	ventricle	(Figure	10).	
Noticeable	bias	 in	T1	estimation	was	otherwise	observed	
when	B+

1 	 inhomogeneities	were	ignored	in	T1	estimation	
(Figures	2,	4,	8,	and	10;	Supporting	Information	Figures	S1	
and	 S4).	 These	 observations	 were	 consistent	 throughout	
simulation,	phantom,	and	 in	vivo	results.	The	estimated	
B+

1 	values	of	the	myocardium	show	spatial	variations	that	
are	consistent	with	those	reported	in	literature39	(i.e.,	the	
B+

1 	 values	 in	 the	 lateral/anterior	 regions	 were	 10%–	30%	
larger	 than	the	septal/inferior	regions).	However,	 the	B+

1 	
distributions	within	the	blood	pool	should	be	carefully	in-
terpreted,	as	flow	effects	were	not	considered	in	 joint	T1	
and	FA	estimation.	As	a	result,	the	estimated	T1	and	FA	
values	of	blood	may	be	biased.

This	method	has	several	novel	features.	First,	the	pro-
posed	 method	 mitigates	 bias	 in	T1	 estimation	 caused	 by	
errors	 in	 FA	 through	 joint	 estimation	 of	T1	 and	 FA.	We	
carried	out	systematic	numerical	simulation	studies	to	op-
timize	the	ECG-	gated	IR	sequence	with	SPGR	readout	in	
terms	of	acquisition	protocols	and	nominal	FAs,	with	the	
goal	 of	 minimizing	 the	 SD	 of	 the	 estimated	T1.	 Second,	
the	proposed	method	uses	the	special	(k,t)-	space	sampling	

scheme	 and	 subspace-	based	 image	 reconstruction	 to	 re-
cover	dynamic	images	from	undersampled	data	(i.e.,	two	
3D	volumes	for	every	cardiac	cycle	with	data	acquisition).	
This	 allows	 mitigating	 the	 effects	 of	 natural	 heart-	rate	
variations	 on	 T1	 mapping	 by	 fitting	 the	 reconstructed	
dynamic	 signals	 to	 a	 signal	 dictionary	 generated	 with	
subject-	specific	timing	of	data	acquisition	recorded	during	
imaging	experiment.	Third,	the	proposed	method	is	robust	
to	 B0	 inhomogeneities,	 as	 it	 uses	 adiabatic	 nonselective	
pulse	for	inversion	and	SPGR	acquisitions.	Altogether,	the	
proposed	method	achieves	 free-	breathing	T1	mapping	 in	
the	presence	of	B+

1 	and	B0	inhomogeneity	at	3	T	in	a	prac-
tical	imaging	time.

The	 proposed	 method	 may	 be	 potentially	 useful	 for	
quantification	 of	 post-	contrast	 T1	 and	 extracellular	 vol-
ume	 fraction	 mapping,	 in	 which	 accurate	 and	 precise	
estimation	 of	 T1	 is	 important.	 Although	 results	 from	
simulation	and	phantom	studies	show	that	the	proposed	
method	 can	 estimate	 short	T1	 values	 with	 accuracy	 and	
precision,	 further	 investigation	 is	 necessary	 to	 evaluate	
the	performance	of	proposed	method	for	post-	contrast	T1	
estimation.	 Because	 T1	 relaxation	 in	 the	 tissue	 changes	
over	time	in	vivo	after	contrast	agent	is	injected,	the	per-
formance	 of	 the	 proposed	 method	 needs	 to	 be	 carefully	
examined	for	these	applications,	including	investigations	
in	the	context	of	subspace-	based	reconstruction.	An	inter-
esting	next	step	would	be	to	 investigate	the	feasibility	as	
well	as	the	performance	of	the	proposed	method	for	these	
applications	in	vivo.

In	 this	work,	a	subspace-	based	 image	reconstruction	
method	 was	 used	 to	 recover	 dynamic	 images	 in	 clock	
time	for	ECG-	gated	acquisitions,	and	respiratory	motion	
was	resolved	by	subsequently	binning	reconstructed	im-
ages	to	different	respiratory	motion	phases.	A	potentially	
interesting	future	work	would	be	to	investigate	the	possi-
bility	of	treating	respiratory	motion	as	an	additional	tem-
poral	 dimension	 using	 the	 low-	rank	 tensor	 model16	 for	
ECG-	gated	acquisitions.	 In	 the	 ideal	 case	with	constant	
heart-	rate,	 this	 would	 be	 feasible,	 as	 T1-	weighted	 con-
trast	 changes	can	 then	be	modeled	by	 IR	at	 fixed	num-
ber	of	inversion	delay	times.	In	reality,	however,	natural	
variations	of	heartbeat	rate	will	require	modeling	the	T1-	
weighted	 contrast	 changes	 in	 clock	 time	 for	 ECG-	gated	
acquisitions	 over	 the	 entire	 imaging	 experiment.	 This	
can	impose	technical	challenges	when	attempting	to	rep-
resent	the	underlying	dynamic	images	using	a	low-	rank	
tensor	model.

Results	 from	the	 in	vivo	study	showed	 that	T1	values	
from	the	proposed	method	were	not	statistically	different	
from	MOLLI	at	5%	significance	level	(p	=	.08).	This	indi-
cates	that	the	proposed	method	has	similar	bias	as	MOLLI	
in	the	in	vivo	study.	Several	factors	contribute	to	the	appar-
ent	underestimation	of	T1	when	the	proposed	method	is	

F I G U R E  7  Representative	3D	T1	map	in	the	short-	axis	view	
covering	the	whole	left	ventricle	from	base	to	apex
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used	for	in	vivo	cardiac	T1	mapping.	First,	magnetization-	
transfer	 effects	 can	 lead	 to	 underestimated	 T1	 values	 in	
the	proposed	method	as	in	MOLLI,	because	both	methods	
use	IR-	based	acquisition	schemes	for	T1	mapping.	Second,	
the	proposed	method	currently	assumes	perfect	inversion	
pulse.	 Adding	 inversion	 efficiency	 to	 parametric	 fitting	
may	potentially	improve	the	accuracy	of	T1	estimation	at	
the	cost	of	computation	 time	 (i.e.,	 a	 larger	dictionary	of	
bases	needed	for	parametric	fitting).	Further	investigation	
is	 necessary	 to	 study	 the	 potential	 source	 of	 bias	 in	 the	
proposed	method	in	the	in	vivo	settings.

The	 current	 work	 has	 several	 limitations	 that	 war-
rant	 further	 investigation.	 First,	 the	 proposed	 method	
involves	 ECG-	gated	 acquisition,	 which	 is	 susceptible	 to	
ECG	 mistriggering	 and	 may	 suffer	 from	 image	 blurring	
due	 to	cardiac	motion.	The	 former	could	be	addressed	by	
adaptive	 heartbeat-	rate	 prediction	 as	 in	 the	 double-	gating	

technique.40	The	latter	can	be	mitigated	by	retrospectively	
discarding	 k-	space	 data	 acquired	 outside	 the	 end-	diastole	
window	 based	 on	 recorded	 ECG	 signals.	 Free-	running	
(i.e.,	 no	 cardiac	 or	 respiratory	 gating)	 based	 continuous	
acquisition	scheme	may	be	preferable	over	the	ECG-	gated	
acquisition	 schemes	 for	 maximizing	 data-	acquisition	 effi-
ciency.	 However,	 in	 the	 free-	running	 continuous	 acquisi-
tion	 scheme,	 apparent	 inversion	 recovery	 rate	 is	 strongly	
coupled	 with	 FA.	Therefore,	 accurate	 estimation	 of	 FA	 is	
expected	to	be	critical	for	accurate	T1	estimation	with	free-	
running	acquisition	in	the	presence	of	B+

1 	inhomogeneity	at	
3	T.	This	research	direction	is	currently	under	investigation.	
Second,	 FA	 estimation	 by	 the	 proposed	 method	 was	 vali-
dated	using	a	phantom	experiment	with	variation	in	B+

1 	field	
strength	 by	 changing	 the	 transmitter	 voltage	 (Supporting	
Information	Figure	S2).	Validation	with	a	reference	cardiac	
FA	or	B+

1 	mapping	method	(e.g.,	actual	flip-	angle	imaging	

F I G U R E  8  In	vivo	study	results	showing	quantitative	comparison	of	estimated	T1	from	MOLLI	and	those	from	the	proposed	method.	
(A)	Sixteen-	segment	American	Heart	Association	(AHA)	bull’s	eye	plots	of	mean	T1	from	MOLLI,	proposed	method	with	T1	estimation	only	
assuming	perfect	B+

1 	(i.e.,	B+
1 	=	1),	and	proposed	method	with	joint	T1	and	FA	estimation.	(B)	Bar	plots	showing	mean	and	SD	of	estimated	

T1	from	MOLLI	and	proposed	method.	Cases	of	proposed	method	with	T1	estimation	only	assuming	perfect	B+
1 	(i.e.,	B+

1 	=	1)	and	joint	T1	and	
FA	estimation	are	shown.	BA,	BAS,	BIS,	BI,	BIL,	BAL,	MA,	MAS,	MIS,	MA,	MIL,	MAL,	AA,	AS,	AI,	AL	each	denotes	basal	anterior,	basal	
anteroseptal,	basal	inferoseptal,	basal	inferior,	basal	inferolateral,	basal	anterolateral,	midcavity	anterior,	midcavity	anteroseptal,	midcavity	
inferoseptal,	midcavity	inferior,	midcavity	inferolateral,	midcavity	anterolateral,	apical	anterior,	apical	septal,	apical	inferior,	and	apical	
lateral	regions	of	the	myocardium	in	the	left	ventricle
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method,)41	in	human	subject	studies	is	necessary	to	further	
verify	the	performance	of	FA	mapping	results	from	the	pro-
posed	method.	Third,	performance	of	the	proposed	method	
was	validated	in	vivo	with	a	small	number	of	healthy	sub-
jects	(n	=	6).	Studies	with	a	larger	number	of	healthy	sub-
jects	and	patients	are	necessary	to	assess	the	accuracy	and	
reproducibility	of	the	proposed	method	and	to	evaluate	its	
value	in	clinical	applications.	Future	work	can	also	include	
investigation	with	different	sparsity	constraints	(e.g.,	finite	

difference	or	wavelet	transform),	investigation	with	differ-
ent	 sampling	 schemes,	 and	 multisite/multivendor	 valida-
tions	of	the	proposed	method	and	findings	from	this	work.

5 |  CONCLUSIONS

A	 new	 free-	breathing	 cardiac	 T1	 mapping	 method	 was	
proposed	 and	 optimized	 for	 fast	 3D	 T1	 mapping	 of	 the	

F I G U R E  9  Representative	3D	B+
1 	map	(defined	as	the	ratio	between	the	measured	and	nominal	FAs)	obtained	by	the	proposed	method.	

(A)	Short-	axis	view	T1	and	B+
1 	maps	at	two	slice	positions.	Notice	the	smooth	variation	of	B+

1 	across	regions.	Also	notice	the	similarity	in	
estimated	T1	for	each	tissue	type,	even	with	variation	in	the	estimated	B+

1 	across	different	regions.	(B)	Short-	axis	view	B+
1 	maps	of	the	heart	at	

various	slice	positions	from	base	to	apex

F I G U R E  1 0  In	vivo	study	results	of	estimated	B+
1 	(defined	as	the	ratio	between	the	measured	and	nominal	FAs)	from	all	of	the	subjects.	

(A)	16-	segment	AHA	bull’s	eye	plot	of	normalized	mean	B+
1 	(i.e.,	B+

1 	normalized	by	the	mean	B+
1 	estimated	from	the	midcavity	anterior	region	

of	the	myocardium	in	the	left	ventricle	for	each	subject)	estimated	from	the	proposed	method.	Notice	the	difference	in	estimated	B+
1 	between	

the	septal–	lateral	and	inferior–	anterior	regions	of	the	myocardium.	(B)	Bar	plot	showing	mean	and	SD	of	normalized	B+
1 	estimated	from	the	

proposed	method
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whole	heart	at	3	T	with	transmit	B1	correction	in	practical	
imaging	time.
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FIGURE S1	Phantom	results	of	electrocardiogram	(ECG)–	
gated	 inversion-	recovery	 (IR)	 schemes	 with	 spoiled	

gradient-	echo	 (SPGR)	 readout	and	T1	estimation	only	as-
suming	perfect	B+

1 	(i.e.,	B+
1 	=	1).	(A)	Estimated	T1	maps	from	

the	different	methods.	(B)	Scatter	plots	showing	compari-
son	of	estimated	T1	from	the	different	methods	with	those	
from	IR-	fast	spin	echo	(FSE).	Solid	line	represents	line	of	
identity,	and	dashed	line	represents	line	of	regression.	(C)	
Bland-	Altman	 plots	 showing	 comparison	 of	 estimated	T1	
from	different	methods	with	those	from	IR-	FSE.	Solid	line	
represents	the	mean	difference	and	dashed	line	represents	
the	95%	confidence	interval	for	limits	of	agreement
FIGURE S2	 Phantom	 study	 results	 with	 variation	 in	
B+

1 	 field	 strength	 via	 control	 of	 transmitter	 voltage.	 (A)	
Estimated	T1	maps	 from	IR-	FSE	and	5-	(3)-	5-	(3)	protocol	
with	 80%,	 100%,	 and	 120%	 of	 reference	 transmitter	 volt-
age.	 (B)	 Vial	 number	 positions.	 (C)	 Estimated	 B+

1 	 maps	
(defined	as	the	ratio	between	the	measured	and	nominal	
flip	angles	[FAs])	from	the	5-	(3)-	5-	(3)	protocol	with	80%,	
100%,	and	120%	of	the	reference	transmitter	voltage.	(D)	
Estimated	average	FA	within	each	vial	from	the	5-	(3)-	5-	(3)	
protocol	with	80%	(green	line	and	circle),	100%	(blue	line	
and	 circle),	 and	 120%	 (red	 line	 and	 circle)	 of	 reference	
transmitter	voltage.	Note	that	the	ratio	between	the	differ-
ent	B+

1 	field	strength	and	the	estimated	average	FAs	from	
each	vial	are	in	good	agreement
FIGURE S3	 In	vivo	study	results	of	Bland-	Altman	plots	
comparing	estimated	T1	from	the	proposed	method	with	
those	 from	 modified	 Look-	Locker	 inversion	 recovery	
(MOLLI).	 Results	 from	 the	 anterior,	 septal,	 inferior,	 and	
lateral	 regions	 of	 the	 myocardium	 in	 the	 left	 ventricle	
are	shown.	Solid	line	represents	the	mean	difference	and	
dashed	 line	 represents	 the	 95%	 confidence	 interval	 for	
limits	of	agreement
TABLE S1	Comparison	of	mean	and	SD	of	septal	T1	values	
between	MOLLI	and	the	proposed	method	across	subjects
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Purpose: To develop a manifold learning-based method that leverages the
intrinsic low-dimensional structure of MR Spectroscopic Imaging (MRSI) sig-
nals for joint spectral quantification.
Methods: A linear tangent space alignment (LTSA) model was proposed to
represent MRSI signals. In the proposed model, the signals of each metabolite
were represented using a subspace model and the local coordinates of the sub-
spaces were aligned to the global coordinates of the underlying low-dimensional
manifold via linear transform. With the basis functions of the subspaces pre-
determined via quantum mechanics simulations, the global coordinates and
the matrices for the local-to-global coordinate alignment were estimated by
fitting the proposed LTSA model to noisy MRSI data with a spatial smooth-
ness constraint on the global coordinates and a sparsity constraint on the
matrices.
Results: The performance of the proposed method was validated using numer-
ical simulation data and in vivo proton-MRSI experimental data acquired on
healthy volunteers at 3T. The results of the proposed method were compared
with the QUEST method and the subspace-based method. In all the compared
cases, the proposed method achieved superior performance over the QUEST and
the subspace-based methods both qualitatively in terms of noise and artifacts
in the estimated metabolite concentration maps, and quantitatively in terms
of spectral quantification accuracy measured by normalized root mean square
errors.
Conclusion: Joint spectral quantification using linear tangent space
alignment-based manifold learning improves the accuracy of MRSI spectral
quantification.
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1 INTRODUCTION

MR Spectroscopic Imaging (MRSI) is a label-free
metabolic imaging tool that measures the spatial dis-
tribution of metabolites in the human body using the
NMR phenomena. MRSI spectral quantification aims
to estimate metabolite concentrations from noise and
nuisance signal corrupted spectra and is a critical step
in quantitative MRSI.1-3 However, it is a challenging
problem because of the intrinsically low signal-to-noise
ratio (SNR) of MRSI, the nonlinear nature of the under-
lying parameter estimation problem, and the residual
nuisance signals. MRSI spectral quantification has been
extensively investigated in the literature. Early efforts
include nonparametric methods, such as the Hankel
Singular Value Decomposition- (HSVD) based meth-
ods4-7 that exploit the linear predictability of MRSI
signals for spectral quantification. The power of spec-
tral prior knowledge has been later recognized, leading
to several widely used spectral quantification meth-
ods, such as the variable projection (VARPRO)-based
method,8 LCModel,9 AMARES,10 QUEST,11 and AQSES.12

These methods differ in terms of the domain of the
signal model (i.e., frequency vs. time), the optimiza-
tion algorithm, and the additional constraints imposed
on spectral parameters. Recently, deep learning-based
methods13-18 have been proposed for MRSI spectral
quantification. However, the above methods estimate
the parameters of each voxel’s spectrum independently,
resulting in large variations in the estimated metabolite
concentration maps when the SNR of the MRSI data
is low.

Over the past decades, technique developments in data
acquisition and image reconstruction have significantly
improved the spatial resolution and imaging speed of
MRSI, making high-resolution MRSI practical in clinical
settings.19-21 This opens new opportunities to take advan-
tage of spatial and spectral prior knowledge of MRSI sig-
nals for spectral quantification. Spatial correlations among
spectra have been exploited indirectly by initializing or
constraining spectral quantification at each voxel with
the parameters estimated from the neighboring voxels.9,22

Alternatively, joint spectral quantification methods have
been proposed to directly impose spatial constraints on
the estimated parameter maps while simultaneously quan-
tifying the spectra of all MRSI voxels.23-26 However, the
underlying parameter estimation problem remains non-
linear in these methods, resulting in large-scale, nonlin-
ear, nonconvex optimization problems that are difficult to
solve efficiently.

Recently, Li et al. have proposed a subspace-based
method for MRSI spectral quantification,27 which is

referred to as the subspace method in the rest of the
paper. In this method, the spatiotemporal distribution
of each metabolite is represented by a subspace model,
which translates the MRSI spectral quantification problem
into a subspace estimation problem and enables effi-
cient and effective use of spatiotemporal priors for accu-
rate MRSI spectral quantification. However, modeling
the spatiotemporal distributions of metabolites as inde-
pendent linear subspaces leads to a large number of
unknowns, making the resultant subspace estimation
problem challenging when the SNR of the MRSI data
is low.

Manifold learning methods assume the data of
interest reside in a low-dimensional manifold embed-
ded in a high-dimensional space. Manifold learning
methods have been applied to pattern recognition,
classification, denoising, and image reconstruction
in supervised, semi-supervised, and unsupervised
settings, showing superior performance over the conven-
tional linear model-based methods.28-34 In MRSI, deep
learning-based methods have been proposed to leverage
the low-dimensional manifold structure of MRSI data
using neural networks for image reconstruction35 and sig-
nal separation.36 The deep neural network-based methods
require a large labeled dataset for network training, which
is often obtained from population experimental MRSI
data augmented with simulation data.

This work presents an unsupervised learning method
that takes advantage of the intrinsic low-dimensional
manifold structure of MRSI signals for joint spectral quan-
tification. More specifically, we propose using a linear tan-
gent space alignment (LTSA) model37 to represent the spa-
tiotemporal distribution of MRSI signals. In the proposed
model, the spatiotemporal distribution of each metabo-
lite is represented by a subspace model as in the subspace
method. The key innovation of the proposed model is that
the local coordinates of these subspaces can be aligned to
the global coordinates of a low-dimensional manifold via
linear transform when the underlying manifold is smooth
and regular.37 The proposed model significantly reduces
the number of unknowns in spectral quantification com-
pared to the subspace model. In the proposed method, the
temporal bases of the LTSA model are estimated via quan-
tum mechanics simulation. The global coordinates and the
associated linear transform matrices are determined by fit-
ting the LTSA model to noisy MRSI data while imposing
spatial smoothness constraints on the global coordinates.
We validated the proposed method using simulation data
and in vivo MRSI data acquired from healthy volunteers
on a 3T MR scanner. We compared the performance of
the proposed method with the QUEST method11 and the
subspace method.27
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2 THEORY

2.1 Spectral quantification problem

Without loss of generality, MRSI signals can be written in
the x − t domain as:

s(xn, tm) =
Q∑

q=1
𝜌q(xn, tm) + 𝜖(xn, tm), (1)

where 𝜌q(xn, tm) denotes the time domain signal of the qth
metabolite at spatial location xn, Q is the total number of
metabolites of interest, and 𝜖(xn, tm) is the measurement
noise that is assumed to be independent and identically
distributed (i.i.d.) Gaussian. When prior knowledge of the
spectrum is available, 𝜌q(xn, tm) can be expressed as

𝜌q(xn, tm) = aq,ne−i2𝜋fq,ntm+tm∕T∗2,q,n𝜓q(tm), (2)

where aq,n, fq,n, and T∗2,q,n denote the amplitude, frequency
shift, and T∗2 relaxation time of the qth metabolite, respec-
tively, and 𝜓q(tm) is the time-domain basis function of the
qth metabolite that can be obtained experimentally9 or
via quantum mechanics simulation.11 Note that the signal
model in Equation (2) can be generalized to a mixture of
Lorentzian and Gaussian model to account for lineshape
distortions in practical settings.38

Joint spectral quantification of the spectra from all
MRSI voxels can be formulated as the following optimiza-
tion problem:26

arg min{
aq,n,fq,n,T∗2,q,n

}

N∑
n=1

M∑
m=1

|||s(xn, tm)

−
Q∑

q=1
aq,ne−i2𝜋fq,ntm+tm∕T∗2,q,n𝜓q(tm)|||

2

2

+ R(aq,n, fq,n,T∗2,q,n), (3)

where N and M are the total number of voxels and
time-domain samples, respectively. The first term in
Equation (3) is a data fidelity term. The second is a regular-
ization term introduced to impose spatial prior knowledge
(e.g., piece-wise smoothness) on the estimated parameter
maps. Note that the optimization problem in Equation (3)
can be solved voxel by voxel, for example, as in the QUEST
method,11 when the regularization term is dropped. The
joint spectral quantification problem in Equation (3) is a
large-scale, nonlinear, nonconvex optimization problem,
which is difficult to solve efficiently.

This work adopts an alternative strategy first proposed
by Li et al.27 to tackle the spectral quantification problem
in a two-step process:

1. Separation of each metabolite’s signal from the noise
corrupted measurement:

{�̂�q(xn, tm)}q,n,m = arg min
{𝜌q(xn,tm)}

N∑
n=1

M∑
m=1

‖‖‖s(xn, tm)

−
Q∑

q=1
𝜌q(xn, tm)‖‖‖

2

2
. (4)

2. Voxel-wise estimation of spectral parameters
(
i.e., aq,n,

fq,n, and T∗2,q,n
)

from the separated spectrum:

{
âq,n, f̂ q,n, T̂

∗
2,q,n

}
= arg min

aq,n,fq,n,T∗2,q,n

M∑
m=1

‖‖‖�̂�q(xn, tm)

− aq,ne−i2𝜋fq,ntm+tm∕T∗2,q,n𝜓q(tm)‖‖‖
2

2
.
(5)

Note that Equation (4) alone is an ill-posed optimization
problem but can be solved with additional spatiotem-
poral constraints, that is, the subspace model in Refer-
ence 27, on the metabolite signals. The advantage of this
strategy is that once each metabolite’s signal is separated
from the measured data, the following spectral quantifica-
tion problem in Equation (5) is a voxel-wise optimization
problem with only two nonlinear unknowns (i.e., fq,n and
T∗2,q,n). Such optimization problem can be efficiently solved
using the VARPRO method.39 The rest of the paper focuses
on solving the optimization problem in Equation (4) by
imposing a novel LTSA model of the metabolite signals.

2.2 LTSA model of metabolite signal

We assume the metabolite signals {𝜌q(xn, tm)}q,n,m reside
in a D-dimensional (D ≪ M) manifold :

𝝆n = g(𝝉n), (6)

where 𝝆n = [𝜌1(xn, t1), · · · , 𝜌q(xn, tm), · · · , 𝜌Q(xn, tM)]T ∈
CMQ×1 is a vector concatenating the time-domain signal
of each metabolite at xn, 𝝉n ∈ CD×1 is a vector in the fea-
ture space, T denotes the transpose operation, and g is
a nonlinear function mapping the global coordinate of
the manifold 𝝉n to the time-domain signal 𝝆n. We fur-
ther assume the manifold  is regular, that is, its Jacobian
matrix is always of full rank D.37

The signals of the qth metabolite (i.e., 𝝆q,n =
[𝜌q(xn, t1), · · · , 𝜌q(xn, tM)]T ∈ CM×1,n = 1, … ,N) form a
neighborhood (i.e., neighborhood q, q = 1, … ,Q) in the
frequency domain as illustrated in Figure 1A. This is most
intuitive when there is no overlap between the spectra
of different metabolites while the mathematical model
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(A) (B) (C)

F I G U R E 1 Schematic diagram of the proposed MR spectroscopic imaging (MRSI) spectral quantification method. We assume the
spectra of metabolites from an MRSI experiment live in a low-dimensional smooth manifold. The intrinsic low-dimensional structure of the
manifold can be learned conceptually as follows: (1) determination of the local coordinates of the manifold via local subspace approximation
and (2) determination of the global coordinates of the manifold via tangent space alignment

derived below allows overlap between neighborhoods.
Note that representing the signals in the time or frequency
domain does not affect the underlying geometry of the
signals since the Fourier transform is a unitary transfor-
mation. We choose to represent the signals in the time
domain for the convenience of data processing.

If the underlying manifold  is smooth, the signals in
qth the neighborhood can be approximated locally using
the first-order Taylor expansion:

𝝆q,n ≈ 𝝆q +𝚷q (𝝉q)(𝝉n − 𝝉q), (7)

where 𝝆q denotes the centroid of the signals in the qth
neighborhood, 𝝉q denotes the corresponding global coor-
dinate of 𝝆q, that is, 𝝆q = 𝚷qg(𝝉q), 𝚷q ∈ RM×MQ is a selec-
tion operator, and  (𝝉q) ∈ CMQ×D denotes the Jacobian
matrix of g evaluated at 𝝉q.

Equation (7) indicates that the signals in the qth neigh-
borhood reside in a local subspace, the dimension of which
is upper bounded by the dimension of the underlying man-
ifold, that is, less than D + 1 accounting for the nonzero
centroids of the metabolite signals. More specifically, the
following Casorati matrix Pq ∈ CN×M formed by the sig-
nals in the qth neighborhood:

Pq =
⎡
⎢⎢⎢⎣

𝜌q(x1, t1) … 𝜌q(x1, tM)
⋮ ⋱ ⋮

𝜌q(xN , t1) … 𝜌q(xN , tM)

⎤
⎥⎥⎥⎦
, (8)

can be approximated by a low-rank matrix via SVD:

Pq =
Cq∑

c=1
𝜽q,c(x)𝝓T

q,c(t) = 𝚯q𝚽T
q , (9)

where Cq is the rank of the matrix (Cq ≤ D + 1),
𝝓q,c(t) = [𝜙q,c(t1), · · · , 𝜙q,c(tM)]T ∈ CM×1 denotes the
temporal basis of the local subspace, and 𝜽q,c(x) =
[𝜃q,c(x1), · · · , 𝜃q,c(xN)]T ∈ CN×1 denotes the corresponding
local coordinates.

In theory, the temporal basis 𝝓q,c(t) can be determined
by explicitly calculating the Jacobian matrix of g, which
is impractical, however, because g is defined implicitly.
Alternatively, the temporal basis 𝝓q,c(t) can be estimated
using quantum mechanics simulation as in Reference 27.
Briefly, instead of using in vivo MRSI signals, the Casorati
matrix in Equation (8) is synthesized using simulation sig-
nals expressed as in Equation (2), where𝜓q(tm) is obtained
by quantum mechanics simulation, aq,n = 1, fq,n, and T∗2,q,n
are random variables uniformly distributed in a typical
range matched to in vivo experiment setup. Figure 1B
shows a representative plot of the singular values of such
Casorati matrix, demonstrating the low-rank property of
the matrix.

Equation (9) uses a local subspace model to rep-
resent signals in each neighborhood, resulting in
a large number of unknowns when quantifying in
vivo MRSI data. The key innovation of the proposed
method is leveraging the fact that the local coordinates
{𝜽q,c(x)}

Cq
c=1 of the qth neighborhood can be aligned

with the global coordinates of the manifold by a linear
transform.

Substituting Equation (7) to Equation (8), yields

Pq = 1
(
𝚷qg(𝝉q) −𝚷q (𝝉q)𝝉q

)T + T̃
(
𝚷q (𝝉q)

)T

=
[
T̃, 1

] [ (𝝉q), g(𝝉q) −  (𝝉q)𝝉q
]T𝚷T

q ,
= TJT

q𝚷T
q , (10)
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where 1 is an N-dimensional column vector of all 1’s, T̃ =
[𝝉1, … , 𝝉N]T ∈ CN×D consists of the global coordinates of
the manifold, and T ∈ CN×(D+1) and Jq ∈ CMQ×(D+1) are
the augmented global coordinate and Jacobian matrix,
respectively, as defined in Equation (10). Comparing
Equation (10) with Equation (9) and leveraging the fact
that𝚽q consists of orthogonal bases, yields

𝚯q = TJT
q𝚷T

q𝚽q

= TLq, (11)

where and Lq ∈ C(D+1)×Cq denotes a linear transform
matrix for the alignment of local coordinates. Intuitively,
Equation (11) leads to a low-rank representation of the
Casorati matrix formed by the local coordinates, as illus-
trated in Figure 1C.

Substituting Equation (11) to Equation (9) yields the
following LTSA model of the metabolite signal:

Pq = TLq𝚽T
q , (12)

where q = 1, … ,Q. Assuming Cq = D + 1 for ∀q and the
temporal bases predetermined, the subspace model in
Equation (9) requires the estimation of the local coordi-
nates {𝚯q}Q

q=1, resulting in a total number of unknowns
of N × (D + 1) × Q. In comparison, the LTSA model in
Equation (11) requires the estimation of the global coordi-
nates T and a set of small matrices {Lq}Q

q=1, resulting in a
total number of unknowns of N × (D + 1) + (D + 1) × (D +
1) × Q. Therefore, the proposed LTSA model significantly
reduces the number of unknowns in spectral quantifica-
tion compared to the subspace model.

2.3 LTSA-based spectral quantification

Assuming the temporal basis matrices {𝚽q}Q
q=1 are pre-

determined, the proposed spectral quantification is per-
formed by solving the following constrained least-square
optimization problem:

arg min
{Lq},T

‖‖‖S −
Q∑

q=1
TLq𝚽T

q
‖‖‖

2

F
+ 𝜇

Q∑
q=1

||vec{Lq}||1

+ 𝜆||WDT||2F, (13)

where S denotes the Casorati matrix formed by the mea-
sured data, || ⋅ ||F denotes the Frobenius norm of a matrix,
𝜇 and 𝜆 are regularization parameters. The first term of
Equation (13) is a data fidelity term; the second penalizes
the sparsity of the linear transform matrices, leading to
a sparse representation of the local coordinates that can
further improve the performance of the proposed method;
and the last penalizes the spatial smoothness of the global

coordinates T, where D is a finite difference operator in the
space domain and W denotes edge weights derived from
an anatomical reference image.40,41

We propose an Alternating Direction Methods of
Multipliers- (ADMM)42 based algorithm to solve the opti-
mization problem in Equation (13), which solves the fol-
lowing sub-problems in an alternative fashion:

T(k+1) = arg min
T

‖‖‖S −
Q∑

q=1
TL(k)q 𝚽T

q
‖‖‖

2

F
+ 𝜆||WDT||2F, (14)

{
L(k+1)

q

}Q

q=1
= arg min

{Lq}

‖‖‖S −
Q∑

q=1
T(k+1)Lq𝚽T

q
‖‖‖

2

F

+ 𝛽
2

Q∑
q=1

||Lq − G(k)
q + 𝜼(k)q ||2F, (15)

G(k+1)
q = arg min

Gq

𝜇||vec{Gq}||1

+ 𝛽
2
|||
|||L
(k+1)
q − G(k)

q + 𝜼(k)q
|||
|||
2

F
, (16)

𝜼(k+1)
q = 𝜼(k)q +L(k+1)

q − G(k+1)
q , (17)

where Gq is the augmented Lagrangian split variable,
𝜼q is the dual variable, and 𝛽 is a relaxation parameter.
Equations (14) and (15) are convex optimization problems,
which are solved using the conjugate gradient method.
Equation (16) is solved using soft thresholding. The
convergence analysis of the algorithm can be found in
Reference 43.

The optimization problem in Equation (13) is noncon-
vex because of the bilinearity of the LTSA model. Proper
initialization is required to solve Equation (13) using the
ADMM algorithm. In our implementation, we initialize
the algorithm based on the subspace-based method.27

More specifically, the local coordinates are estimated by
solving the following optimization problem:

{
�̂�q

}Q

q=1
= arg min

{𝚯q}

‖‖‖S −
Q∑

q=1
𝚯q𝚽T

q
‖‖‖

2

F
+ 𝜆

Q∑
q=1

||WD𝚯q||2F,
(18)

and then grouped into a Casorati matrix �̂� =
[�̂�1, · · · , �̂�Q]. Performing SVD on this Casorati matrix
yields the initial guess of T and {Lq}Q

q=1. Gq and 𝜼q are
initialized as zero matrices.

3 METHODS

We performed numerical simulation studies and in vivo
proton MRSI (1H-MRSI) experiments to validate the
performance of the proposed method. Four healthy
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volunteers (one for Section 3.2 and three for Section 3.3,
two males and two females, 46 ± 12 years) were recruited
under a study protocol approved by our local institutional
review board. Written informed consent was obtained
from all subjects. Imaging experiments were performed
using a 3T MR scanner (Prisma, Siemens Healthcare)
equipped with a 20-channel headcoil for reception.

For comparison, we implemented the QUEST
method11 by solving the optimization problem in
Equation (3) without the regularization term and the
subspace method27 by solving the optimization problem
in Equation (17). The time-domain basis functions of
the three compared methods were obtained by quantum
mechanical simulations using GAVA.44

3.1 Performance evaluation using a
numerical simulation phantom

We performed numerical simulation studies to evalu-
ate the accuracy of the proposed spectral quantifica-
tion method and compared it with the QUEST and the
subspace methods. A two-dimensional (2D) numerical
metabolite phantom was built for this purpose. MPRAGE
images acquired from a healthy subject (Subject 2 in
Section 3.3) were used to create the anatomical refer-
ence image and generate the probability maps of gray
matter, white matter, and CSF using the SPM software.45

GAVA44 was used to simulate metabolite spectra of an
FID-based 1H-MRSI acquisition at 3T, including NAA,
Cho, Cr, mIns, GABA, Glu, and Gln. The simulated spec-
tra were assigned to gray matter and white matter based
on the metabolite concentrations and T2 relaxation times
of the two tissues reported in the literature.46 Random
frequency shift uniformly distributed spatially between
[−5, 5] Hz was introduced in the numerical phantom to
mimic the effect of inaccurate knowledge of the spec-
tral position of each metabolite, which is typically caused
by the residual B_0 inhomogeneity after B0 inhomo-
geneity correction and field drift compensation in prac-
tical MRSI experiments. T′2 time variations uniformly
distributed between [60,100] ms were also added to the
phantom.

The numerical phantom was used to simulate 2D MRSI
data with 72 × 72 spatial encodings, 512 spectral encod-
ings, and a sampling bandwidth of 2200 Hz. Gaussian
noise was added to produce spectra with different SNRs.
Metabolite concentration was calculated by integrating the
magnitude of the separated metabolite spectrum in all the
compared methods. The accuracy of the compared spec-
tral quantification methods was measured by calculating
the normalized root mean square error (NRMSE) of the
estimated metabolite concentration maps.

In the subspace method, the dimension of the
subspace of each metabolite signal (i.e., the rank of
𝚽q, q = 1, … , 7 in Equation (17) was 5, which was chosen
based on the singular value decay of the Casorati matrix
formed by the simulated metabolite signals.27 The regu-
larization parameter 𝜆 in Equation (17) that produced the
smallest NRMSE was selected. In the proposed method,
the dimension of the subspace of each metabolite sig-
nal was also 5. The dimension of the global coordinates
(i.e., the rank of T in Equation (12) was 7. This was chosen
based on the singular value decay of the Casorati matrix
�̂� = [�̂�1, · · · , �̂�Q], which was formed using the local
coordinates obtained by the subspace method. The regu-
larization parameter 𝜆 in Equation (13) that produced the
smallest NRMSE was selected. The regularization param-
eter 𝜇 was selected empirically, noting that the proposed
method was not sensitive to the choice of 𝜇 in our experi-
ence. The typical computation time for spectral quantifica-
tion using the QUEST, subspace, and LTSA methods was
400, 20, and 70 seconds, respectively, using 10 cores of an
Intel Xeon Gold 6148 2.4 GHz CPU on a workstation.

3.2 Performance evaluation using
in vivo MRSI-based simulation

We further evaluated the performance of the proposed
spectral quantification method using in vivo MRSI data
acquired from a healthy volunteer. Because of the lim-
ited SNR at 3T, it is difficult to obtain high-resolution,
high-SNR, 1H-MRSI data using the conventional MRSI
methods even with a large number of averages. To address
this issue, we used the SPICE (SPectroscopic Imaging by
exploiting spatiospectral CorrElation) method41,47 to cre-
ate reference MRSI data for comparison purposes.

More specifically, in the data acquisition of SPICE,
high-resolution 1H-MRSI (k, t)-space data were acquired
using an FID, echo-planar-spectroscopic-imaging (EPSI)
sequence with the following imaging parameters: field of
view= 240 × 240 mm2, slice thickness= 10 mm, pulse rep-
etition time= 360 ms, echo time= 3.6 ms, flip angle= 45◦,
spatial encoding matrix= 64 × 64, spectral encoding
size= 300, echo time= 0.8 ms (bipolar acquisition), sam-
pling bandwidth= 100 kHz, and number of averages= 60.
The EPSI acquisition was performed with WET pulses
for water signal suppression but without lipid suppres-
sion. Low-resolution 1H-MRSI (k, t)-space data were
also acquired using an FID, phase encoding-based MRSI
sequence to estimate the subspace basis functions in the
SPICE image reconstruction.41 The imaging parameters
of the low-resolution MRSI data were the same as those
of the high-resolution data except that spatial encoding
matrix= 32 × 32 (elliptical sampling), spectral encoding
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size= 460, sampling bandwidth= 2000 Hz, and eight
outer volume suppression pulses for lipid suppression.
Additional MPRAGE images were acquired as anatomical
reference images for the SPICE image reconstruction.

In the data processing of SPICE, Fourier-transformed
image reconstruction of the (k, t)-space data was first per-
formed to measure and correct B0 field inhomogeneities
for each measurement using the residual water signals.
Coil combination was performed using the SVD-based
method in Reference 48. The B0 inhomogeneity cor-
rected, coil combined, MRSI data were then averaged and
transformed back to the (k, t)-space. We followed the
union-of-subspaces method in References 49,50 to remove
the nuisance water and lipid signals as well as the base-
line macromolecular signals from the averaged (k, t)-space
data. The reference MRSI data were reconstructed using
the SPICE method from the nuisance signal removed data.

The reference concentration maps of NAA, Cho, Cr,
mIns, and Glx (Gln+Glu), were generated by perform-
ing spectral quantification on the reference MRSI data
using the proposed method. This was because the metabo-
lite concentration maps obtained by the proposed method
showed fewer visible artifacts compared to the QUEST
and the subspace methods (see Sections 4 and 5 for more
details). Gaussian noise was then added to the reference
MRSI data to create MRSI data with lower SNRs for eval-
uating the performance of the proposed method and the
comparisons with the QUEST and the subspace methods.
The metabolite concentration was calculated by integrat-
ing the magnitude of the separated metabolite spectrum as
in the simulation study. In the subspace and the proposed
methods, the dimension of the subspace of each metabo-
lite signal was 5. The dimension of the global coordinates
was 10. These parameters and the other regularization
parameters were selected the same way as described in
Section 3.1.

3.3 Application to spectral
quantification of SPICE reconstruction

Sections 3.1 and 3.2 aim at evaluating the performance
of the proposed method in quantifying MRSI data recon-
structed by the conventional Fourier transform-based
methods, where the noise of the MRSI data is considered as
Gaussian noise uniformly distributed in the x − t domain.
SPICE is an emerging technique for high-resolution MRSI
but has noise characteristics different from the conven-
tional Fourier transform-based reconstruction methods
due to the low-rank based image reconstruction.50 More
specifically, the spectrum reconstructed by SPICE has high
SNR because the spectral basis of the low-rank model
that determines the SNR of the reconstructed spectrum is

estimated from high-SNR training data. The noise of the
measured (k, t)-space data mainly contribute to the spa-
tial variations of the MRSI data reconstructed by SPICE. In
this Section, in vivo 1H-MRSI experimental studies were
performed to demonstrate the usefulness of the proposed
method in quantifying high-resolution MRSI data recon-
structed by the SPICE method.

To this end, three healthy volunteers were recruited.
The imaging protocol included five consecutive EPSI
scans, each acquiring high-resolution 1H-MRSI (k,
t)-space data with the same imaging parameters as
described in Section 3.2 except that the spectral encod-
ing size was 320 and the number of averages was 24.
Low-resolution 1H-MRSI (k, t)-space data and anatomi-
cal reference images were also acquired as described in
Section 3.2.

The reference MRSI data were created from the B0
inhomogeneity corrected, coil combined, nuisance signal
removed (k, t)-space data averaged out of all the 120 mea-
surements following the procedure in Section 3.2. The
reference concentration maps of NAA, Cho, Cr, mIns,
and Glx (Gln+Glu) were generated by performing spec-
tral quantification on the reference MRSI data using the
proposed method. Four independent MRSI (k,t)-space
datasets were created by selecting and averaging out 6 of
the 24 measurements from each of the five EPSI scans
(i.e., 6 × 5 = 30 averages in total) and were then used to
reconstruct MRSI data at lower SNRs using SPICE. Lastly,
spectral quantification was performed on the SPICE recon-
structed MRSI data using the three compared spectral
quantification methods. In the subspace and the proposed
methods, the dimension of the subspace of each metabo-
lite signal was 5. The dimension of the global coordi-
nates was 10. These parameters and the other regulariza-
tion parameters were selected the same way as described
in Section 3.1.

4 RESULTS

4.1 Numerical simulation results

MRSI spectral quantification results obtained using
the numerical phantom described in Section 3.1 are
shown in Figures 2 and 3, where the average SNR
of the NAA peak was set to be 10. At the individual
voxel level, the three compared methods achieved sim-
ilar quantification accuracy, as shown in the residual
signal plots in Figure 3. However, the metabolite con-
centration maps estimated by the voxel-wise QUEST
method showed larger spatial variations than the
joint spectral quantification methods, that is, the
subspace and the proposed methods, as shown in
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F I G U R E 2 Spectral quantification
results obtained using the numerical
phantom: Comparison of the metabolite
concentration maps estimated by the
QUEST, the subspace, and the proposed
methods. The corresponding normalized
root mean square errors (in percentage) are
listed in the bottom right corner of each
subfigure.

F I G U R E 3 Spectral quantification results obtained using the numerical phantom: Spectral fitting results for representative spectra
from voxels in the gray matter (GM) and white matter (WM), respectively. The color coding is as follows. Black-dashed line: the real part of
the noisy spectrum; red-solid line: the sum of the fitted spectra; blue-, magenta-, and green-solid line: the fitted spectrum of the NAA, Cho,
and Cr, respectively. A plot of the difference between the sum of the fitted spectra and the ground truth is shown under each spectrum plot in
black color.

Figure 2. This comparison highlighted the advantages
of incorporating spatial constraints into MRSI spectral
quantification. Compared to the subspace method, the
proposed method further improved quantification accu-
racy qualitatively as shown in Figure 2 and quantitatively
as measured by the NRMSEs of the estimated metabolite

concentration maps. Supporting Information Figures S1
and S2 show the quantification results and the corre-
sponding linear transform matrices with and without
a sparsity constraint on the linear transform matrices,
demonstrating the benefits of promoting the sparsity of Lq
in Equation (13).
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4.2 In vivo MRSI-based simulation
results

MRSI spectral quantification results obtained using the
in vivo MRSI data described in Section 3.2 are shown
in Figures 4 and 5, where the average SNR of the NAA
peak was set to be 10. Consistent with the simula-
tion study results, the three compared methods achieved
similar quantification accuracy at the individual voxel

level, as shown in Figure 5. Compared to the reference
metabolite maps, the metabolite maps estimated by the
QUEST method (the second row of Figure 4) showed
large spatial variations, most noticeably in the estimated
mIns and Glx maps. There were also noticeable biases
in the estimated Cho and Cr maps. In comparison, the
subspace method (the third row of Figure 4) reduced the
spatial variations in the estimated metabolite concentra-
tion maps. However, the concentration maps obtained

F I G U R E 4 Spectral quantification
results obtained using the in vivo MR
spectroscopic imaging data: Comparison of
the metabolite concentration maps
estimated by the QUEST, the subspace, and
the proposed methods. The corresponding
normalized root mean square errors (in
percentage) are listed in the bottom right
corner of each subfigure.

F I G U R E 5 Spectral quantification results obtained using the in vivo MR spectroscopic imaging data: Spectral fitting results for
representative spectra from voxels in the gray matter (GM) and white matter (WM), respectively. The color coding is as follows. Black-dashed
line: the real part of the noisy spectrum; red-solid line: the sum of the fitted spectra; blue-, magenta-, green-, cyan-, and black-solid line: the
fitted spectrum of the NAA, Cho, Cr, mIn, and Glx, respectively. A plot of the difference between the sum of the fitted spectra and the ground
truth is shown under each spectrum plot in black color.
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by the subspace method showed spatial blurring artifacts
most noticeably in the estimated Cho map. Among the
three compared methods, the proposed method achieved
the best quantification accuracy as measured by the NRM-
SEs of the estimated metabolite concentration maps.

Monte Carlo simulations were performed using the in
vivo MRSI data described in Section 3.2 to investigate the
bias and standard deviation (SD) of the metabolite concen-
tration maps estimated by the compared methods. Spectral
quantification by different methods was repeated with 100
noise realizations in the simulation. The results are shown
in Figure 6, where the results of Cr were similar to those
of Cho and were thus not shown for better readability of
the figure. As can be seen, the proposed method achieved
the smallest SDs in the estimated metabolite concentration
maps among the compared methods, which was consistent
with the observations from Figure 4. Since the reference
maps were created using the proposed method, comparing
the bias maps favored the proposed method as expected.
However, the bias by the subspace and the proposed

methods were overall at a similar level. The QUEST
method led to significantly larger bias and SDs than the
subspace and the proposed methods (note the difference
in the color-bar scales). The bias of the QUEST method
might be caused by the mismatch between the metabolite
basis functions and the in vivo spectra. We performed the
same Monte Carlo simulation study using the numerical
phantom described in Section 3.1. The results are shown
in Supporting Information Figure S3. As expected, the bias
of the QUEST method was much smaller than that of the
in vivo data-based study because there was no mismatch
between the metabolite basis functions and the simulated
spectra. The proposed method achieved superior perfor-
mance over the compared methods as shown in the maps
of bias and SDs in Supporting Information Figure S3,
which was consistent with the observations from Figure 6.

Figure 7 and Suppporting Information Figure
S4 show the averaged bias and SD of the compared
methods obtained by Monte Carlo simulations at
three SNR levels (i.e., SNR= 5, 10, and 15) using

F I G U R E 6 Monte Carlo simulation results obtained using the in vivo MR spectroscopic imaging data: Bias and SD maps of the
metabolite concentration maps obtained by the QUEST, the subspace, and the proposed method, respectively. The average signal-to-noise
ratio of the NAA peak was fixed to 10 for this simulation.

F I G U R E 7 Monte Carlo simulation results obtained using the in vivo MR spectroscopic imaging data: Averaged bias and standard
deviation achieved by the QUEST, the subspace, and the proposed method, respectively, at three signal-to-noise ratio levels. Note that the
error-bars of the bias and SD of the QUEST method were off the charts and thus omitted.
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the in vivo MRSI data and the numerical phantom,
respectively. The proposed method reduced the bias and
SDs in all the investigated cases compared to the QUEST
and the subspace methods.

4.3 Spectral quantification of SPICE
reconstruction

Figures 8 and 9 show the in vivo results of spectral
quantification for SPICE from one healthy subject

(Subject 2). Figure 8 shows the metabolite concentration
maps estimated by the compared methods. The sub-
space and the proposed methods significantly improved
the accuracy of spectral quantification for the SPICE
reconstructed MRSI data compared to the QUEST method.
The metabolite concentration maps estimated by the
subspace method showed blurring artifacts, most notice-
ably in the Cho and mIn maps. The proposed method
achieved the best performance in spectral quantification
for SPICE. As a side note, the loss of metabolite signal
near the skull at the bottom of the image was likely due

F I G U R E 8 Spectral quantification for SPICE
(Subject 2): Comparison of the metabolite
concentration maps estimated by the QUEST, the
subspace, and the proposed methods. The
corresponding normalized root mean square errors
(in percentage) are listed in the bottom right corner of
each subfigure.

F I G U R E 9 Spectral quantification for SPICE (Subject 2): Spectral fitting results for representative spectra from voxels in the gray
matter (GM) and white matter (WM), respectively. The color coding is as follows. Black-dashed line: the real part of the SPICE reconstructed
spectrum; red-solid line: the sum of the fitted spectra; blue-, magenta-, green-, cyan-, and black-solid line: the fitted spectrum of the NAA,
Cho, Cr, mIn, and Glx, respectively. A plot of the difference between the sum of the fitted spectra and the ground truth is shown under each
spectrum plot in black color.
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F I G U R E 10 Spectral quantification
for SPICE (Subject 3): Comparison of the
metabolite concentration maps estimated by
the QUEST, the subspace, and the proposed
methods. The corresponding normalized
root mean square errors (in percentage) are
listed in the bottom right corner of each
subfigure.

to overly aggressive nuisance signal removal. Figure 9
shows spectral fitting results for representative spectra
from voxels in the gray matter and white matter, respec-
tively. Figure 10 shows the metabolite concentration maps
estimated by the compared methods from another healthy
subject (Subject 3). Similar to the results in Figure 8, the
proposed method achieved the best performance in spec-
tral quantification among the compared methods. Note
that besides the spatial blurring artifacts, the subspace
method also showed noticeable artifacts in the
estimated Glx map. Supporting Information
Figure S5 shows the NRMSEs of the estimated
metabolite concentration maps achieved by the
compared methods among the three recruited healthy
volunteers. The proposed method achieved the most
accurate spectral quantification for all the subjects. The
improvement offered by the proposed method over the
QUEST and the subspace methods were most significant
in the estimated metabolite concentration maps of Cr,
Cho, and Glx.

5 DISCUSSIONS

5.1 Comparison with the QUEST
and subspace methods

This work presents a novel manifold learning-based
method for MRSI spectral quantification. The MRSI
signals reside in an intrinsically low dimensional mani-
fold, which can be justified by the parametric model in
Equation (2) that employs a small amount of nonlinear
parameters to represent the metabolite signals over the

entire FID. However, using this nonlinear parametric
model for joint spectral quantification leads to a
large-scale, nonlinear, nonconvex optimization problem
that is difficult to solve efficiently.26 The subspace
method27 addresses this issue by representing signals of
each metabolite as a subspace, resulting in a convex opti-
mization problem that can be solved efficiently with a
global minimum. However, since the subspace of each
metabolite is modeled independently, the number of
unknowns of the subspace method increases quickly as the
number of metabolites of interest increases, which is often
the case in in vivo proton MRSI. Compared to the subspace
method, the proposed method introduces a bi-linear LTSA
model of metabolite signals that aligns the local coordi-
nates of each subspace to the global coordinates of the
underlying manifold via linear transforms represented by
small-size matrices. As a result, the number of unknowns
of the proposed method remains roughly independent
of the number of metabolites. The significantly reduced
amount of unknowns in the proposed method leads to
more accurate spectral quantification than the subspace
method, as can be seen in the results of the numerical
simulation studies and the in vivo 1H-MRSI experiments
in Section 4.

5.2 Nonideal spectral lineshapes

Although a less severe problem in high-resolution MRSI,
intra-voxel field inhomogeneities introduce lineshape dis-
tortions to spectral signals. The proposed method is not
limited to the Lorentzian spectral model. More specifically,
in the first step of the proposed method, each metabolite’s
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signal is separated from the noise corrupted measure-
ment using the proposed LTSA model by solving the
optimization problem in Equation (13). Although the
temporal basis of the LTSA model is estimated from a
Casorati matrix formed by spectral signals with Lorentzian
shapes, the subspace spanned by the estimated basis
functions can represent spectral signals with
non-Lorentzian shapes. In the second step, spectral
parameters are estimated voxel-by-voxel from the sepa-
rated spectrum by solving the optimization problem in
Equation (5). When needed, Equation (5) can be general-
ized to a mixture of Lorentzian and Gaussian models to
account for lineshape distortions. In the current work, we
focused on solving the spectral signal separation problem
in the first step using the proposed LTSA model. Exploring
how to properly handle the non-ideal spectral lineshapes
in the voxel-wise spectral parameter estimation problem
of the second step is beyond the scope of the current work.

To illustrate that the subspace model of spectral
signals can represent Lorentzian and non-Lorentzian
spectral signals, a set of six temporal basis functions were
estimated from a Casorati matrix formed by Cr signals
with Lorentzian lineshapes as described in Section 2.2.
The estimated temporal basis functions were then used
to approximate a signal with a Lorentzian lineshape
in the form of sL(t) = e−t∕T2−t∕T2,p

∑2
q=1e−i2𝜋fqt, where

T2 = 200 ms and T2,p = 50 ms, and a signal with a mix-
ture of Lorentzian and Gaussian lineshape (i.e., the Voigt
model38) in the form of sV (t) = e−t∕T2−t2∕g∑2

q=1e−i2𝜋fqt,
where g = 5000 ms2. The time- and frequency-domain
signals of the Lorentzian and non-Lorentzian signals
are shown in Supporting Information Figure S6A,B
and Figure S6D,E, respectively. The corresponding
approximation errors are shown as the insert at
the bottom of each subfigure. Finally, Supporting
Information Figure S6C,F plots the NRMSEs in per-
centage when the temporal basis functions were used
to approximate the Lorentzian signals with T2,p in
the range of [50,150] ms and the non-Lorentzian
signals with g in the range of [5000, 15000] ms2,
respectively. As can be seen, the subspace model can accu-
rately (i.e., NRMSEs < 1 %) represent spectral signals with
Lorentzian or non-Lorentzian lineshapes and with a large
range of linewidths.

5.3 Residual nuisance signals

Nuisance signal removal is often done in the MRSI
data preprocessing step and/or image reconstruction
step.41,49,51 Residual nuisance signals in the MRSI data can
affect the accuracy of the proposed LTSA-based spectral
quantification method because the spectra of residual
nuisance signals are not orthogonal to the subspaces of

the metabolites. In this case, the proposed method can
be extended with additional subspaces to account for the
residual nuisance signals in the MRSI data.

More specifically, we write the Casorati matrix formed
by the MRSI data in the presence of nuisance signals as
following:

P = Pmeta + Pnuisance

=
Q∑

q=1
TLq𝚽T

q +𝚯ns𝚽T
ns, (19)

where the nuisance signals are represented as a sub-
space model (i.e., Pnuisance = 𝚯ns𝚽T

ns) as in Reference 49,
𝚽ns denotes the temporal basis of the nuisance signals,
and 𝚯ns denotes the corresponding spatial coefficients. In
Equation (19), the nuisance signals are modeled by a sep-
arate subspace because the spatiotemporal distribution of
the nuisance signals can be affected by the suppression
techniques used the MRSI data acquisition and thus may
not belong to the underlying manifold of the metabolite
signals.

Spectral quantification using the extended model in
Equation (19) is performed by solving the following opti-
mization problem:

arg min
{Lq},T,𝚯ns

|||||
|||||
S −

( Q∑
q=1

TLq𝚽T
q +𝚯ns𝚽T

ns

)|||||
|||||

2

F

+ 𝜇
Q∑

q=1
||vec{Lq}||1 + 𝜆1||WDT||2F + 𝜆2||WD𝚯ns||2F.

(20)

The optimization problem in Equation (20) can be solved
using a strategy that alternates the following two steps:
(1) minimizing the cost function over Lq and T with 𝚯ns
fixed, which can be done through the algorithm described
in Equations (14)–(17); and (2) minimizing the cost func-
tion over 𝚯ns with Lq and T fixed, which leads to the
same least-square optimization problem as in the subspace
method.

A numerical simulation study was performed to
illustrate the effects of residual water signals on the
accuracy of spectral quantification using the proposed
LTSA method (i.e., solving the optimization problem in
Equation (13)) and the extended LTSA method (i.e., solv-
ing the optimization problem in Equation (20)). The
water signals were extracted from EPSI data using the
Hankel Singular Value Decomposition method,4 which
were acquired without water suppression in the same
imaging session where the MPRAGE images were col-
lected to create the numerical phantom in Section 3.1.
The extracted water signals were added to the numerical
phantom at different levels to evaluate the effects of
the water signals on spectral quantification using the
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proposed method. The temporal basis of the water
signals in the extended LTSA model was obtained in the
same way as the metabolite signals. The rank of the water
signals was 6.

The results are shown in Supporting Information
Figures S7–S11. As expected, the quantification error of
the LTSA method increased as the level of residual water
signals increased. The quantification accuracy of mIn
was most significantly affected by the residual water sig-
nals because mIn’s spectrum is closest to that of water.
The robustness to residual water signals was significantly
improved with the extended LTSA method that used an
additional subspace to account for the residual water sig-
nals. However, a full-fledged evaluation of the robustness
of the extended LTSA method to residual water and lipid
signals in in vivo experiments is beyond the scope of this
current work.

5.4 Limitation and other future work

One limitation of our current work is that the reference
metabolite concentration maps in Sections 3.2 and 3.3
were generated using the proposed method, which made
the comparisons among the three spectral quantification
methods favor the proposed method in terms of NRMSE
and bias. Ideally, the QUEST method should be used as
the reference method because it is unbiased when the
basis functions of metabolite signals match the experiment
setup. However, because of the limited SNR of 1H-MRSI at
3T, applying QUEST to high-resolution MRSI data resulted
in very noisy metabolite concentration maps as illustrated
in Figures 4, 8, and 10. Reducing resolution will not fun-
damentally address this issue and mitigate the merits of
joint spectral quantification, which has clear advantage
over the voxel-wise spectral quantification methods sup-
ported by the results in this work and the literature.23-26 On
the other hand, the metabolite concentration maps esti-
mated by the subspace method showed noticeable artifacts
as illustrated in Figures 4, 8, and 10. Nevertheless, in the in
vivo data-based Monte Carlo simulation study as described
in Section 3.2, the proposed method achieved significantly
reduced SD compared to the subspace method as shown
in Figures 6 and 7. The bias of the proposed method
was smaller than the subspace method as expected but
was overall at a similar level. In addition, when apply-
ing the proposed method to spectral quantification for
SPICE as described in Section 3.3, the resultant metabo-
lite concentration maps showed the least noticeable
artifacts.

There are two other future directions that war-
rant further investigations. First, the macromolecular
signals which were removed along with the residual
nuisance signals were not considered in our current work.

However, the macromolecular signals contain important
physiological and pathological information.52,53 The
proposed method can be extended to quantification of
macromolecular signals by including the temporal basis of
the macromolecular signals, which can be obtained using
in vivo experiments54-56 or using simulated macromolec-
ular components.57,58 Second, the proposed LTSA model
can enable direct estimation of metabolite concentration
maps from noise-corrupted and undersampled (k, t)-space
data by including Fourier transform and (k,t)-space sam-
pling operators to the data fidelity term of Equation (13).
This is an ongoing research and will be reported in a
future publication.

6 CONCLUSIONS

Joint spectral quantification using LTSA-based manifold
learning improves the accuracy of MRSI spectral quantifi-
cation.
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SUPPORTING INFORMATION
Additional supporting information may be found in the
online version of the article at the publisher’s website.
Figure S1. Spectral quantification results obtained using
the numerical phantom: Comparison of the metabolite
concentration maps estimated by the proposed methods
with and without a sparsity penalty on the linear trans-
form matrices in Equation (13. The corresponding NRM-
SEs (in percentage) are listed in the bottom right corner
of each sub-figure. As can be seen, promoting the spar-
sity of the linear transform matrices further improved the
quantification accuracy of the proposed method. The
corresponding linear transform matrices are shown in
Figure S2.
Figure S2. The linear transform matrices estimated with-
out (A) and with (B) a sparsity penalty.
Figure S3. Monte Carlo simulation results obtained using
the numerical phantom: Bias and standard deviation maps
of the metabolite concentration maps obtained by the
QUEST, the subspace, and the proposed method, respec-
tively. The average SNR of the NAA peak was fixed to 10
for this simulation.
Figure S4. Monte Carlos simulation results obtained using
the numerical phantom: Averaged bias and standard devi-
ation achieved by the QUEST, the subspace and the pro-
posed method, respectively, at three SNR levels.
Figure S5. Spectral quantification for SPICE: NRMSEs
of the estimated metabolite concentration maps achieved
by the QUEST, the subspace, and the proposed method,
respectively, among the recruited subjects. Note that the
error-bars of the bias and standard deviation of the QUEST
method were off the charts and thus omitted.
Figure S6. Representation of different lineshapes using
a subspace model. A set of 6 temporal basis functions
were estimated from a Casorati matrix formed by Cr sig-
nals with Lorentzian lineshapes as described in Section
2.2. The estimated temporal basis functions were used
to approximate a signal with a Lorentzian line shape
in the form of sL(t) = e−t∕T2−t∕T2,p

∑2
q=1e−i2𝜋fqt, where T2 =

200 ms and T2,p = 50 ms and a signal with a mixture
of Lorentzian and Gaussian line shape (i.e., the Voigt
model) in the form of sV (t) = e−t∕T2−t2∕g∑2

q=1e−i2𝜋fqt, where
g = 5000 ms2. The time- and frequency-domain signals of
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the Lorentzian and non-Lorentzian signals are shown in
(A) & (B) and (D) & (E), respectively. The correspond-
ing approximation errors are shown as the insert at the
bottom of each subfigure. Finally, (C) and (F) plot the
NRMSE in percentage when the temporal basis functions
were used to approximate the Lorentzian signals with
T2,p in the range of [50,150] ms and non-Lorentzian sig-
nals with g in the range of [5000, 15000] ms2, respectively.
As can be seen, the subspace model can accurately (i.e.,
NRMSEs< 1 %) represent spectral signals with Lorentzian
or non-Lorentzian lineshapes and with a large range of
linewidths.
Figure S7. Spectral quantification results obtained by
the proposed LTSA method using the numerical phan-
tom with different level of residual water signals. The
water scale was defined as the ratio of the L2 norm
of the water signals over that of the metabolite signals.
The corresponding NRMSEs (in percentage) are listed in
the bottom right corner of each sub-figure. As expected
the quantification error increased as the level of resid-
ual water signals increased. The quantification accuracy
of mIn was most significantly affected by the residual
water signal because mIn’s spectrum is closest to that of
water. Representative spectral fitting results are shown
in Figure S8.
Figure S8. Representative spectral fitting results for the
simulation experiment in Figure S7. The color coding is as
follows. Black-dashed line: the real part of the noisy spec-
trum; red-solid line: the sum of the fitted spectra; blue-,
magenta-, and green-solid line: the fitted spectrum of the
NAA, mIn, and Cr, respectively. A plot of the difference
between the sum of the fitted spectra and the ground truth

is shown under each spectrum plot in black color. Note
the distortion of the mIn spectra due to the residual water
signal.
Figure S9. Spectral quantification results obtained by the
extended LTSA method using the numerical phantom
with different level of residual water signals. The simula-
tion experiment setup was the same as that in Figure S7.
The corresponding NRMSEs (in percentage) are listed in
the bottom right corner of each sub-figure. Compared to
the results in Figure S7, the robustness to residual water
signals was significantly improved with the extended LTSA
method that used an additional subspace to account for
the residual water signals. Representative spectral fitting
results are shown in Figure S10.
Figure S10. Representative spectral fitting results for the
simulation experiment in Figure S10. The color coding is
as follows. Black-dashed line: the real part of the noisy
spectrum; red-solid line: the sum of the fitted spectra;
blue-, magenta-, green-, and cyan-solid line: the fitted spec-
trum of the NAA, mIn, Cr, and water respectively.
Figure S11. Quantification errors of NAA and mIn by the
proposed LTSA and extended LTSA method, respectively,
with different level of residual water signals.
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Titre : Imagerie IRM Dynamique Accélérée Utilisant Des Modèles d’Apprentissage Automatique Linéaire Et Non-Linéaire
Pour La Reconstruction d’Images

Mots clés : IRM Dynamique, Reconstruction d’Image, Sous-espace, Variétés, Apprentissage Automatique, Respiration Libre

Résumé : L’imagerie par Résonance Magnétique (IRM) dynamique est
d’une grande valeur pour le diagnostic médical grâce à sa polyvalence en
termes de contraste, sa haute résolution spatiale, son rapport signal/bruit
élevé et permet l’obtention non invasives d’images multi-planaires. Elle peut
être utile pour l’imagerie du cerveau et du cœur entre autres, ainsi que
pour la détection d’anomalies. De plus, la disponibilité croissante de ma-
chines de Tomographie par Émission de Positrons (TEP) / IRM permet
l’acquisition simultanée de données de TEP et IRM pour des informations
complémentaires. Cependant, un défi majeur en IRM dynamique est la re-
construction d’images à partir de données d’espace-k échantillonnées en
dessous de la fréquence de Nyquist. De nombreuses méthodes ont été
proposées pour l’imagerie IRM sous-échantillonnée, notamment l’imagerie
parallèle et le compressed sensing. Le premier objectif de cette thèse est
de montrer le potentiel et l’utilité du modèle de sous-espace linéaire pour
l’imagerie IRM sous respiration libre. Ce modèle peut théoriquement captu-
rer des mouvements respiratoires et cardiaques réguliers. Cependant, des
mouvements irréguliers peuvent survenir, tels qu’une respiration erratique
ou un mouvement global causé par l’inconfort du patient. Une première
question se pose donc naturellement : un tel modèle peut-il capturer ces
types de mouvement et, si oui, peut-il reconstruire les images IRM sans ar-
tefacts ? Nous démontrons dans cette thèse comment le modèle de sous-
espace peut efficacement reconstruire des images à partir de données
d’espace-k fortement sous-échantillonnées. Une première application est
présentée où nous reconstruisons des images IRM dynamiques avec haute
résolution spatiale et temporelle et les utilisons pour corriger le mouvement
des données TEP. Une deuxième application sur la cartographie T1 car-
diaque est présentée. Des données sous-échantillonnées ont été acquises
à l’aide d’une séquence inversion-récupération sous respiration libre, et

des images IRM 3D dynamiques du cœur entier ont été reconstruites. Le
deuxième objectif de cette thèse est de comprendre les limites du modèle
de sous-espace linéaire et de développer un nouveau modèle qui pallie
ces limitations. Le modèle de sous-espace suppose que les données de
haute dimension résident dans un sous-espace linéaire qui capture les
corrélations spatiotemporelles des images dynamiques. Ceci repose sur
un modèle de réduction de dimension linéaire et ne prend pas en compte
les caractéristiques intrinsèquement non linéaires du signal. Des modèles
basés sur l’apprentissage de variétés ont donc été explorés et visent à ap-
prendre la structure intrinsèque du signal en résolvant des problèmes de
réduction de dimensionnalité non linéaires. Nous présentons dans cette
thèse une stratégie alternative pour la reconstruction d’images IRM basée
sur l’apprentissage de variétés. La méthode proposée apprend la structure
des variétés via un alignement linéaire des espaces tangents (LTSA) et peut
être interprétée comme une généralisation non linéaire du modèle de sous-
espace. Des validations ont été effectuées sur des études de simulation
numérique ainsi que sur des expériences d’imagerie cardiaque 2D et 3D
in vivo, démontrant des performances améliorées par rapport à l’état-de-
l’art. Les deux premiers objectifs présentent respectivement des modèles
linéaires et non linéaires, mais ces méthodes utilisent des techniques d’opti-
misation linéaire conventionnelles pour résoudre le problème de reconstruc-
tion. L’utilisation de réseaux de neurones profonds pour l’optimisation peut
procurer une meilleure puissance de représentation non linéaire. Des pre-
miers résultats sur les approches basées sur l’apprentissage profond sont
présentés dans cette thèse et l’état-de-l’art est discuté. Le dernier chapitre
présente les conclusions, discute des contributions de l’auteur et détaille les
perspectives de recherche potentielles ouvertes par le travail effectué dans
cette thèse.

Title : Accelerated Dynamic MR Imaging Using Linear And Non-Linear Machine Learning-Based Image Reconstruction
Models

Keywords : Dynamic MRI, Image Reconstruction, Subspace, Manifold, Machine Learning, Free-breathing

Abstract : Dynamic Magnetic Resonance (MR) imaging is of high value
in medical diagnosis thanks to its contrast versatility, high spatial resolution,
high Signal-to-Noise Ratio (SNR), and allows for non-invasive multi-planar
images of the body. It can be particularly useful for imaging the brain, heart,
spine, and joints, as well as for detecting abnormalities. In addition, the in-
creasing availability of Positron Emission Tomography (PET)/MR machines
enables simultaneous acquisition of PET and MR data for better reconstruc-
tion and complementary information. However, a key challenge in dynamic
MRI is reconstructing high-dimensional images from sparse k-space data
sampled below the Nyquist sampling rate. Many methods have been pro-
posed for accelerated imaging with sparse sampling, including parallel ima-
ging and compressed sensing. The first objective of this thesis is to show
the potential and usefulness of the linear subspace model for free-breathing
MR imaging. Such a model can in principle capture regular respiratory and
cardiac motion. However, when dealing with lengthy scans, irregular mo-
tion patterns can occur, such as erratic breathing or bulk motion caused by
patient discomfort. A first question thus naturally arises: can such a mo-
del capture irregular types of motion and, if so, can it reconstruct images
from a dynamic MR scan presenting bulk motion and irregular respiratory
motion? We demonstrate in this thesis how the subspace model can effi-
ciently reconstruct artifact-free images from highly undersampled k-space
data with various motion patterns. A first application is presented where
we reconstruct high-resolution, high frame-rate dynamic MR images from
a PET/MR scanner and use them to correct motion in PET data, captu-
ring complex motion patterns such as irregular respiratory patterns and bulk
motion. A second application on cardiac T1 mapping is presented. Under-
sampled k-space data were acquired using a free-breathing, ECG-gated in-
version recovery sequence, and dynamic 3D MR images of the whole heart

were reconstructed leveraging the linear subspace model. The second ob-
jective of this thesis is to understand the limits of the linear subspace mo-
del and develop a novel dynamic MR reconstruction scheme that palliates
these limitations. More specifically, the subspace model assumes that high-
dimensional data reside in a low-dimensional linear subspace that captures
the spatiotemporal correlations of dynamic MR images. This model relies
on a linear dimensionality reduction model and does not account for intrin-
sic non-linear features of the signal, which may show its limits with higher
undersampling rates. Manifold learning-based models have therefore been
explored for image reconstruction in dynamic MRI and aim at learning the
intrinsic structure of the input data that are embedded in a high-dimensional
signal space by solving non-linear dimensionality reduction problems. We
present in this thesis an alternative strategy for manifold learning-based
MR image reconstruction. The proposed method learns the manifold struc-
ture via linear tangent space alignment (LTSA) and can be interpreted as
a non-linear generalization of the subspace model. Validation on numerical
simulation studies as well as in vivo 2D and 3D cardiac imaging experi-
ments were performed, demonstrating improved performances compared
to state-of-the-art techniques. The two first objectives present respectively
linear and non-linear models yet both methods use conventional linear opti-
mization techniques to solve the reconstruction problem. In contrast, using
deep neural networks for optimization may procure non-linear and better re-
presentation power. Early results on deep learning-based approaches are
presented in this thesis and state-of-the-art techniques are discussed. The
last chapter then presents conclusions, discusses the author’s contributions,
and considers the potential research perspectives that have been opened
up by the work presented in this thesis.
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