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The Boltzmann equation introduced by Ludwig Boltzmann in 1872, is a practical tool for investigating the properties of dilute gases in the kinetic approach. Kinetic models present a powerful tool for describing systems out of equilibrium and can be viewed as a bridge between macroscopic and microscopic descriptions.

This thesis presents a study of collisional operators of polyatomic gases from the kinetic theory viewpoint. The theory advances from the kinetic theory of monatomic gases, with an extra level of complexity. This complexity is due to the additional internal energy modes such as rotational and vibrational energy, beyond just translational kinetic energy. These internal energy modes are assumed to be continuous and presented by a positive continuous parameter. This study has significant applications in fields such as atmospheric science, combustion, and materials science.

The main objective of this research is to investigate and solve some problems pertaining to the polyatomic Boltzmann equation. In Chapter 2, we present some results obtained for the linearized Boltzmann operator. In particular, we show in increasing level of complexity that the linearized Boltzmann operator is a Fredholm operator. This operator plays a significant role in deriving the hydrodynamic limits of the Boltzmann equation. We therefore present a derivation of the incompressible Navier-Stokes equations starting from the Boltzmann equation for polyatomic gases in Chapter 3. In Chapter 4, we prove the existence and uniqueness results of the stationary Boltzmann equation for a single polyatomic gas in a slab supposed to be sufficiently small, using fixed point arguments.

Cette thèse présente une étude d'opérateurs collisionels des gaz polyatomiques du point de vue de la théorie cinétique. La théorie s'appuie sur la théorie cinétique des gaz monoatomiques, avec un niveau supplémentaire de complexité. Cette complexité est due aux modes d'énergie internes supplémentaires tels que l'énergie de rotation et de vibration, au-delà de la simple énergie cinétique de translation. Ces modes d'énergies internes sont supposés continus et représentés par un paramétre continu positif. Cette étude possède des applications importantes dans des domaines telles que la science de l'atmosphére, la combustion, et la science des matériaux. L'objectif principal de cette thèse est d'étudier et de résoudre certains problèmes relatifs à l'équation de Boltzmann polyatomique. Dans le chapitre 2 nous présentons des résultats obtenus pour l'opérateur de Boltzmann linéarisé. En particulier, nous montrons avec un niveau de complexité croissant que l'opérateur de Boltzmann linéarisé est un opérateur de type Fredholm. Cet opérateur joue un rôle important pour dériver les limites hydrodynamiques de l'équation de Boltzmann. Nous présentons ensuite une dérivation des équations de Navier-Stokes incompressibles à partir de l'équation de Boltzmann pour les gaz polyatomiques au Chapitre 3. Dans le Chapitre 4, nous prouvons l'existence et l'unicité des solutions de l'équation de Boltzmann stationnaire pour la géométrie du slab supposé suffisamment petit en utilisant des arguments de point fixe.
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Introduction

L'étude mathématique et la modélisation des gaz polyatomiques ont suscité beaucoup d'attention au cours des dernières années en raison de leur large gamme d'applications, notamment les vols spatiaux [START_REF] Anderson | Hypersonic and High-Temperature Gas Dynamics[END_REF], la physique des plasmas [START_REF] Orlac'h | Kinetic theory of two-temperature polyatomic plasmas[END_REF], les processus de combustion et les réacteurs chimiques [START_REF] Jones | Combustion physic[END_REF]. Une compréhension physique plus approfondie du processus peut être obtenue grâce aux équations gouvernant le niveau cinétique [START_REF] Kogan | Rarefied Gas Dynamics[END_REF][START_REF] Cercignani | The Mathematical Theory of Dilute Gases[END_REF][START_REF] Bellomo | Mathematical Topics in Nonlinear Kinetic Theories[END_REF][START_REF] Giovangigli | Multicomponent Flow Modeling[END_REF].

La dynamique des gaz polyatomiques dilués avec une énergie interne continue est bien décrite par l'équation de Boltzmann, qui décrit l'évolution de la fonction de distribution f définie dans l'espace des phases comprenant le temps t ∈ R+, la position x ∈ R 3 , la vitesse v ∈ R 3 et l'énergie interne I ∈ R + . La fonction de distribution f est définie de telle sorte que f (t, x, v, I)dxdvdI représente la probabilité de trouver une particule dans l'intervalle (x, x + dx), ayant une vitesse dans l'intervalle (v, v + dv) et une énergie interne dans (I, I + dI) à un instant t.

L'équation de Boltzmann polyatomique prend en compte le nombre de degrés de liberté D dus à la translation, à la rotation, et éventuellement à la vibration du gaz dans l'opérateur de collision. En particulier, un paramètre α lié à D apparaît dans l'intégrale de collision. Plus précisément, α est en relation avec D comme suit :

α = D -5 2 . (1) 
Considérons le cas des molécules non vibrantes. Si la molécule est linéaire, alors D = 5, tandis que si la molécule est non linéaire D = 6. Pour une molécule vibrante d'atomes N , le nombre de degrés de liberté D = 3N .

Dans ce qui suit, nous résumons les résultats obtenus dans la thèse.

Chapitre 1 : Littérature générale Dans le Chapitre 1, nous résumons quelques éléments qui servent à une meilleure compréhension des résultats de la thèse. Nous présentons quelques modèles existants décrivant un gaz polyatomique mono-espèce [START_REF] Bourgat | Microreversible collisions for polyatomic gases and boltzmann's theorem[END_REF] et un mélange de gaz polyatomiques que nous considérons dans les chapitres qui suivent. Ce modèle est basé sur la procédure de Borgnakke-Larsen [START_REF] Borgnakke | Statistical collision model for Monte Carlo simulation of polyatomic gas mixture[END_REF] de paramétrisation des équations de conservation du moment et de 

v ′ = v + v * 2 + √ RE σ, v ′ * = v + v * 2 - √ RE σ, et I ′ = r(1 -R)E, I ′ * = (1 -r)(1 -R)E,
avec E = 1 4 |v -v * | 2 + I + I * étant l'énergie totale. L'équation de Boltzmann pour un gaz polyatomique est la suivante:

∂ t f + v • ∇ x f = Q(f, f ), (2) 
où l'opérateur de collision Q(f, f ) est donné par

Q(f, f )(v, I) = (0,1) 2 ×S 2 ×R + ×R 3 f ′ f ′ * (I ′ I ′ * ) α - f f * (II * ) α × B × (r(1 -r)) α (1 -R) 2α × I α I α * (1 -R)R 1/2 dRdrdσdI * dv * , (3) 
où B est la fonction de transition, et α défini dans l'équation [START_REF] Anderson | Hypersonic and High-Temperature Gas Dynamics[END_REF].

Pour un mélange de n espèces de gaz polyatomiques, nous désignons par m i la masse de particule de la i-ème espèce. Pour deux particules arbitraires des espèces i et j respectivement, les variables post-collisionnelles peuvent être exprimées en termes des variables pré-collisionnelles via la paramétrisation de Borgnakke-Larsen [START_REF] Borgnakke | Statistical collision model for Monte Carlo simulation of polyatomic gas mixture[END_REF] v

′ = m i v + m j v * m i + m j + m j m i + m j 2RE µ ij σ, v ′ * = m i v + m j v * m i + m j - m i m i + m j 2RE µ ij σ, et I ′ = r(1 -R)E, I ′ * = (1 -r)(1 -R)E. L'énergie totale E est donnée par E = µ ij 2 |v -v * | 2 + I + I * , où µ ij = m i m j
m i +m j représente la masse réduite. L'équation de Boltzmann décrivant la fonction de distribution f i de la i-ème espèce est donnée par

∂ t f i + v.∇ x f i = n j=1 Q ij (f i , f j ), 1 ≤ i ≤ n,
et l'opérateur quadratique de Boltzmann Q ij représentant la collision entre les espèces i et j s'écrit

Q ij (f i , f j )(v, I) = (0,1) 2 ×S 2 ×R + ×R 3 f ′ i f ′ j * I ′α i I ′α j * - f i f j * I α i I
L'opérateur de Boltzmann linéarisé L peut être formulé comme L = K -ν Id, où ν représente la fréquence de collision.

La fonction ν vérifie l'estimation suivante ν(v, I) ≥ c(|v| γ +I γ/2 + 1),

où γ est un paramètre apparaissant dans les hypothèses de bornes sur B. Dans l'approche que nous suivons pour prouver la compacité de K, nous écrivons K comme la somme de trois opérateurs de Hilbert-Schmidt que nous appelons K 1 , K 2 et K 3 . Le noyau intégral de K 1 est directement extrait, et donc la démonstration de la propriété de Hilbert-Schmidt de K 1 est effectuée grâce à certaines conditions sur la fonction de transition B. Cependant, extraire les noyaux intégraux des opérateurs K 2 et K 3 est l'un des points clés de la preuve.

Dans les lignes qui suivent, nous présentons l'idée de la preuve effectuée pour K 2 , en raison de la similarité avec K 3 . En effet, l'expression explicite de K 2 est donnée comme suit

K 2 g(v, I) = ∆ e -I * 2 -1 2 r(1-R) (v-v * ) 2 4 +I+I * -1 4 v 2 * -1 4 v+v * 2 + √ R( 1 4 (v-v * ) 2 +I+I * ) σ 2 × g v + v * 2 -R( 1 4 (v -v * ) 2 + I + I * )σ, (1 -R)(1 -r) 1 4 (v -v * ) 2 + I + I * 1 (2π) 3 2 
(1 -R)R

1 2 BdrdRdσdI * dv * .

En fait, en plus des paramètres r, R et σ, l'intégrale dans [START_REF] Aoki | Gas flows caused by evaporation and condensation on two parallel condensed phases and the negative temperature gradient: Numerical analysis by using a nonlinear kinetic equation[END_REF] est effectuée par rapport à v * et I * , tandis que g est une fonction de v ′ * et I ′ * . Par conséquent, pour extraire le noyau de K 2 , le changement de variable que nous effectuons est (v * , I * ) → (v ′ * , I ′ * ). Pour éviter les confusions avec les paramètres, nous désignerons par (x, y) ∈ R 3 × R + les variables finales (v ′ * , I ′ * ). En particulier, 

x = v + v * 2 -R( 1 4 (v -v * ) 2 + I + I * )σ, y = (1 -R)(1 -r) 1 
J = ∂v * ∂I * ∂x∂y = 8 (1 -r)(1 -R) . (7) 
On remarquera que le fait que le Jacobien J dépende uniquement de r et R, au lieu d'une dépendance supplémentaire de v, I et σ, réduit les complications dans la preuve de l'intégrabilité en L 2 du noyau de K 2 . En appliquant ce changement de variable dans l'expression intégrale de K 2 , nous obtenons la forme intégrale de K 2 . Pour prouver l'intégrabilité du noyau en L 2 , nous appliquons l'inégalité de Cauchy-Schwarz et une série de changements de variables.

Pour un gaz polyatomique général, avec un nombre de degrés de liberté ne correspondant pas nécessairement à 5, nous répétons la même procédure précédente, où la différence réside dans la présence de α dans l'opérateur de collision (3) et la fonction maxwellienne qui est donnée comme suit

M (v, I) = M 1,0,1 (v, I) = 1 (2π) 3/2 Γ(α + 1)
I α e -1 2 |v| 2 -I , et K 2 est exprimé par

K 2 g = I -α/2 ∆ g ′ * (I ′ * ) α/2 M 1/2 * I α/2 * (v ′ , I ′ * ) comme suit x = m i v + m j v * m i + m j - m i (m i + m j ) 2R µ ij µ ij 2 (v -v * ) 2 + I + I * σ, y = (1 -R)(1 -r) µ ij 2 (v -v * ) 2 + I + I * .
où v, I, r, R et σ sont fixes. De manière similaire au cas de gaz mono-espèce, le changement de variable est inversible de son domaine à son image, et le Jacobien est donné comme

J ij = ∂v * ∂I * ∂x∂y = m i + m j m j 3 1 (1 -r)(1 -R)
.

Remarquez qu'avec des masses similaires m i = m j , nous obtenons l'expression obtenue [START_REF] Aoki | Gas flows caused by evaporation and condensation on two parallel condensed phases and the negative temperature gradient: Numerical analysis by using a nonlinear kinetic equation[END_REF] de J pour un gaz polyatomique et mono-espèce. L'extraction du noyau et la preuve de son appartenance à l'espace L 2 (R 3 × R + × R 3 × R + ) suivent de manière similaire le cas de gaz mono-espèce. Ce chapitre est l'une des applications de la propriété de Fredholm de l'opérateur linéarisé de Boltzmann. En suivant la même approche que celle présentée dans [START_REF] Bardos | Fluid dynamic limits of kinetic equations ii convergence proofs for the boltzmann equation[END_REF] pour les gaz monoatomiques, nous dérivons l'une des limites hydrodynamiques de l'équation de Boltzmann polyatomique : les équations de Navier-Stokes incompressibles qui s'écrivent comme suit

∂ t u + (u • ∇ x )u + ∇ x p = ν * ∆u, ∂ t θ + u • ∇ x θ = κ * ∆θ, ∇ x • u = 0, ∇ x (ρ + θ) = 0.
où n, u et θ représentent respectivement la densité du gaz, la vitesse macroscopique et la température. Les coefficients de viscosité ν * et de conductivité κ * seront exprimés grâce à l'invariance galiléenne de l'opérateur de Boltzmann linéarisé. L'équation de Boltzmann est mise à l'échelle comme suit

ε∂ t f ε + v.∇ x f ε = 1 ε Q(f ε , f ε ),
où ε est proportionnel au nombre de Knudsen et au nombre de Strouhal. 

f (0, v, I) = f L (0, v, I), (v 1 > 0), f (1, v, I) = f R (1, v, I), (v 1 < 0)
admet une solution unique dans l'espace 

A = {f : φf ∈ L 1 (R 3 × R + ), f ≥ 0, ∥f ∥ 0 ≤ a 1 , ∥L(f )∥ 0 ≥ a 2 , ∥f ∥ 1-γ ≤ a 3 , ∥f ∥ P ≤ a 4 },
∥f ∥ k = sup ω R 3 v R + φ(v, I) 1 |v -ω| k ∥f (., v, I)∥ L ∞ dvdI, (k ∈ {0, 1 -γ})
∥f ∥ P = sup

P P R + φ(v, I)∥f (., v, I)∥ L ∞ (0,1) dσ(v)dI.
Un argument de point fixe a été utilisé par Maslova [77] pour un gaz monoatomique et mono-espèce avec des interactions de type sphère dure. Dans le Chapitre 4, nous considérons les molécules polyatomiques avec des fonctions de transition de type potentiel dur étendues à partir de celles des molécules monoatomiques. L'extension au potentiel dur impose certaines complexités dans la preuve, et par conséquent, la norme ∥ • ∥ 1-γ doit être introduite. En fait, dans [77,[START_REF] Ghomeshi | Existence and uniqueness of solutions for the couette problem[END_REF], γ = 1, et donc, la norme ∥ • ∥ 1-γ sera relâchée en ∥ • ∥ 0 dans ce cas particulier. De plus, dans l'approche de Maslova, l'hypothèse que ∥ • ∥ -1 est bornée était nécessaire, ce que nous avons pu éviter dans notre preuve en utilisant certains arguments techniques.

Introduction

Mathematical study and modeling of polyatomic gases have gained considerable attention in the last few years due to their wide range of applications, including spacecraft flights [START_REF] Anderson | Hypersonic and High-Temperature Gas Dynamics[END_REF], plasma physics [START_REF] Orlac'h | Kinetic theory of two-temperature polyatomic plasmas[END_REF], thermal sciences [START_REF] Ern | Thermal conduction and thermal diffusion in dilute polyatomic gas mixtures[END_REF][START_REF] Tantos | Effect of vibrational degrees of freedom on the heat transfer in polyatomic gases confined between parallel plates[END_REF], combustion processes, and chemical reactors [START_REF] Jones | Combustion physic[END_REF]. A deeper physical understanding of the process may be attained thanks to the governing equations at the kinetic level [START_REF] Kogan | Rarefied Gas Dynamics[END_REF][START_REF] Cercignani | The Mathematical Theory of Dilute Gases[END_REF][START_REF] Bellomo | Mathematical Topics in Nonlinear Kinetic Theories[END_REF][START_REF] Giovangigli | Multicomponent Flow Modeling[END_REF]. The dynamics of dilute polyatomic gases with continuous internal energy are well-described by the Boltzmann equation describing the evolution of the distribution function f defined on the phase space that consists of time t ∈ R + , position x ∈ R 3 , velocity v ∈ R 3 , and internal energy I ∈ R + . The distribution function f is defined such that f (t, x, v, I)dxdvdI is the probability of finding a particle within (x, x + dx), possessing a velocity in the range (v, v + dv) and internal energy in (I, I + dI) at a time t. For modeling the Boltzmann equation of polyatomic gases, the number of degrees of freedom D due to the translation, rotation, and possibly vibration of the gas is considered in the collision operator. In particular, a parameter α related to D appears in the collision integral. α is related to

D as α = D -5 2 . (8) 
The number of degrees of freedom D depends on the state of the molecule. If the gas is not vibrating, D is affected by the alignment of the atoms in the molecule, while if the gas is vibrating, D is related to the number of atoms N of the given gas molecule. More explicitly, we explain the values of D considering the following cases of molecules [START_REF] Pathria | The Theory of Simple Gases[END_REF] 1. Non-vibrating molecules In this case, we distinguish between linear and nonlinear molecules. Regarding the fact that vibrations are not occurring, a linear (respectively non-linear) molecule will always remain linear (respectively non-linear) even after collisions. In this case, the number of degrees of freedom D will be the sum of the rotational and translational degrees of freedom in R 3 , and will not depend on the number of atoms in the gas molecule.

• Linear molecules:

-translational degrees of freedom: 3 -rotational degrees of freedom: 2 and therefore D = 5 and α = 0.

• Non-linear molecules:

-translational degrees of freedom: 3 -rotational degrees of freedom: 3 and therefore D = 6 and α = 1/2.

Vibrating molecules

In this case, the total number of degrees of freedom depends on N . Consider a molecule of N atoms in R 3 , then as long as the molecule's shape is deformable due to vibrations, the position of each atom will be determined freely by 3 degrees of freedom. Thus, the total number of degrees of freedom of the molecule of N atoms will equal 3N . Hence, D = 3N and

α = 3N -5 2 . ( 9 
)
We notice that in this case, the fact that the molecule is linear or non-linear doesn't have an impact on D and α. D and α are rather impacted by the number of atoms

N only.
In what follows, we give a brief explanation of the problems studied and the results obtained in the thesis.

Chapter 1: General Literature

In Chapter 1, we present some existing models describing a single polyatomic gas and a mixture of polyatomic gases and we present the link between them. We also summarize some existing results concerning the compressible hydrodynamic limits of the multi-component polyatomic Boltzmann equation, and we present the stationary Boltzmann model with various boundary conditions.

For obtaining the results of the thesis, the collision operator derived by Bourgat, Desvillettes, Le Tallec, and Perthame [START_REF] Bourgat | Microreversible collisions for polyatomic gases and boltzmann's theorem[END_REF] is considered. This model is based on the Borgnakke-Larsen procedure [START_REF] Borgnakke | Statistical collision model for Monte Carlo simulation of polyatomic gas mixture[END_REF] of parameterizing the conservation equations on momentum and total energy, in order to express the post-collisional velocity and internal energy pairs in terms of the pre-collisional pairs. For two particles of unit mass colliding with initial velocities v, v * and internal energies I, I * , we can express the final velocities v ′ , v ′ * and internal energies I ′ , I ′ * using certain parameters r ∈ [0, 1], R ∈ [0, 1], and σ ∈ S 2 as follows

v ′ = v + v * 2 + √ RE σ, v ′ * = v + v * 2 - √ RE σ,
and

I ′ = r(1 -R)E, I ′ * = (1 -r)(1 -R)E, with E = 1 4 |v -v * | 2 + I + I *
being the total energy. The Boltzmann equation [START_REF] Bourgat | Microreversible collisions for polyatomic gases and boltzmann's theorem[END_REF] for a general polyatomic gas is

∂ t f + v • ∇ x f = Q(f, f ), (10) 
where the collision operator Q(f, f ) is given by

Q(f, f )(v, I) = (0,1) 2 ×S 2 ×R + ×R 3 f ′ f ′ * (I ′ I ′ * ) α - f f * (II * ) α × B × (r(1 -r)) α (1 -R) 2α × I α I α * (1 -R)R 1/2 dRdrdσdI * dv * , (11) 
with B being the transition rate function, and α defined in [START_REF] Aoki | Gas flows caused by evaporation and condensation on two parallel condensed phases and the negative temperature gradient: Numerical analysis by using a nonlinear kinetic equation[END_REF].

For a mixture of n species of polyatomic gases, we denote by m i the particle mass of the i-th species. For two arbitrary particles of species i and j respectively, the post-collisional variables can be expressed in terms of the pre-collisional variables via the Borgnakke-

Larsen parameterization [START_REF] Borgnakke | Statistical collision model for Monte Carlo simulation of polyatomic gas mixture[END_REF] v

′ = m i v + m j v * m i + m j + m j m i + m j 2RE µ ij σ, v ′ * = m i v + m j v * m i + m j - m i m i + m j 2RE µ ij σ,
and

I ′ = r(1 -R)E, I ′ * = (1 -r)(1 -R)E.
The total energy E is given by E =

µ ij 2 |v -v * | 2 + I + I * , where µ ij = m i m j
m i +m j is the reduced mass. The Boltzmann equation describing the distribution function f i assigned to the i -th species is given as

∂ t f i + v.∇ x f i = n j=1 Q ij (f i , f j ), 1 ≤ i ≤ n, (12) 
and the quadratic Boltzmann operator Q ij representing the collision between i -th and j -th species is

Q ij (f i , f j )(v, I) = (0,1) 2 ×S 2 ×R + ×R 3 f ′ i f ′ j * I ′α i I ′α j * - f i f j * I α i I α j * B ij × r α i (1 -r) α j (1 -R) α i +α j × I α i I α j * (1 -R)R 1/2 dRdrdσdI * dv * , (13) 
with B ij being the transition rate function, and α i defined in [START_REF] Aoki | Gas flows caused by evaporation and condensation on two parallel condensed phases and the negative temperature gradient: Numerical analysis by using a nonlinear kinetic equation[END_REF] attributed for the i -th species.

Chapter 2: Fredholm Property of the Linearized Boltzmann Operator

In Chapter 2, we prove the Fredholm property of the linearized Boltzmann operator by writing it as a sum of a compact operator K and a coercive multiplication operator.

For the case of monatomic gases, the compactness of K was proved by Grad [START_REF] Grad | Asymptotic theory of the Boltzmann equation II[END_REF] using the Hilbert-Schmidt argument for a certain class of cut-off potentials non-including soft potentials. Drange [START_REF] Drange | The linearized boltzmann collision operator for cut-off potentials[END_REF] then proved the compactness of K for a wider class of cut-off potentials that include soft potentials. For a mixture of monatomic gases, K was proved to be compact by writing it as a uniform limit of compact operators [START_REF] Gamba | On the Cauchy problem for Boltzmann equation modeling a polyatomic gas[END_REF][START_REF] Boudin | Diffusion asymptotics of a kinetic model for gaseous mixtures[END_REF]. Recently, the compactness property of K was proved in [START_REF] Bernhoff | Linearized Boltzmann collision operator: I. Polyatomic molecules modeled by a discrete internal energy variable and multicomponent mixtures[END_REF] in the case of a single polyatomic gas with discrete internal energy, where the mixture of monatomic gases was altered as well. In [START_REF] Bernhoff | Linearized Boltzmann collision operator: II. Polyatomic molecules modeled by a continuous internal energy variable[END_REF],

Bernhoff extended the proof for a single polyatomic gas with continuous internal energy and then to the mixture case in [START_REF] Bernhoff | Compactness property of the linearized boltzmann collision operator for a multicomponent polyatomic gas[END_REF]. The approach used by Bernhoff relies on writing K as a sum of a Hilbert-Schmidt operator and a uniform limit of a compact operator. In fact, the approach we follow to prove the compactness part is based on finding the collision kernel of K and proving the kernel to be L 2 integrable. Using Theorem 2 (Chapter 1, Section 1.1), K is therefore a Hilbert-Schmidt operator, and thus compact. The proof is constructed by the increasing level of complexity. That is, we consider first the case of a single non-vibrating linear gas, which possesses 5 degrees of freedom, yielding α to vanish.

As a result, the Boltzmann operator in this case can be reduced to

Q(f, f )(v, I) = R 3 ×R + ×S 2 ×(0,1) 2 (f ′ f ′ * -f f * )B(1 -R)R 1/2 dRdrdωdI * dv * . (14) 
The linearized Boltzmann operator is obtained from a perturbation of f around the global Maxwellian function

M (v, I) = 1 (2π) 3 2 e -1 2 v 2 -I .
In particular, we insert f with the expression

f (v, I) = M (v, I) + M 1 2 (v, I)g(v, I) (15) 
in the Boltzmann equation [START_REF] Aoki | Kinetic theory analysis of gas flows condensing on a plane condensed phase: Case of a mixture of a vapor and a noncondensable gas[END_REF], and get an equation in g, with the linearized Boltzmann operator L defined as

Lg = M -1 2 [Q(M, M 1 2 g) + Q(M 1 2 g, M )],
appearing on the right-hand side of the equation. The linearized Boltzmann operator L can be formulated as

L = K -ν Id,
where ν is called the collision frequency function. Our goal in this chapter is to prove that L is a Fredholm operator, by proving that under certain suitable conditions on B, the function ν is coercive and the perturbation operator K is compact. The coercivity bound of ν is easily computed as

ν(v, I) ≥ c(|v| γ +I γ/2 + 1), (16) 
where γ is a parameter appearing in the bound assumptions on B. The challenging part of the proof is proving the compactness of K. In the approach we follow, we write K as a sum of three Hilbert-Schmidt operators which we call K 1 , K 2 , and K 3 . The integral kernel of K 1 is obvious, and therefore proving the Hilbert-Schmidt property of K 1 is carried without much complications. However, extracting the integral kernels of the operators K 2 and K 3 is the key point of the proof. We present here the idea of proof carried for K 2 only, due to the noticeable similarity with that of K 3 . Indeed, the explicit expression of K 2 is given as

K 2 g(v, I) = ∆ e -I * 2 -1 2 r(1-R) (v-v * ) 2 4 +I+I * -1 4 v 2 * -1 4 v+v * 2 + √ R( 1 4 (v-v * ) 2 +I+I * ) σ 2 × g v + v * 2 -R( 1 4 (v -v * ) 2 + I + I * )σ, (1 -R)(1 -r) 1 4 (v -v * ) 2 + I + I * 1 (2π) 3 2 (1 -R)R 1 2 BdrdRdσdI * dv * , (17) 
where the integral kernel is not obvious. In fact, besides the parameters r, R, and σ, the integral in ( 17) is carried against v * and I * while g is a function of v ′ * and I ′ * . Therefore, for extracting the kernel of K 2 , the change of variable we perform is (v * , I * ) → (v ′ * , I ′ * ) where for avoiding confusions in parameters we will denote by (x, y) ∈ R 3 × R + the final variables (v ′ * , I ′ * ). In particular,

x = v + v * 2 -R( 1 4 (v -v * ) 2 + I + I * )σ, y = (1 -R)(1 -r) 1 4 (v -v * ) 2 + I + I * . (18) 
The change of variable map is then

h : R 3 × R + -→ h(R 3 × R + ) ⊂ R 3 × R + (v * , I * ) -→ (x, y) = v + v * 2 -R( 1 4 (v -v * ) 2 + I + I * )σ, (1 -R)(1 -r) 1 4 (v -v * ) 2 + I + I * ,
with v,I,r,R, and σ being fixed. The function h is invertible over its range which is

H v,I R,r,σ = {(x, y) ∈ R 3 × R + : x ∈ B v- √ Rayσ ( ay -I) and y ∈ ((1 -r)(1 -R)I, +∞)},
and the Jacobian of h -1 is computed as

J = ∂v * ∂I * ∂x∂y = 8 (1 -r)(1 -R) . ( 19 
)
Noticing that the Jacobian J depends on r and R only, instead of an additional dependence on v, I and σ yields less complications in the proof of the L 2 integrability of the kernel of K 2 . Applying this change of variable in the integral expression of K 2 , we get the expression

K 2 g = 1 (2π) 3 2 (0,1) 2 ×S 2 H v,I R,r,σ (1 -R)R 1 2 J Bg(x, y)× e -ay-I-(x-v+ √ Rayσ) 2 2 -r 2(1-r) y-1 4 (2x+2 √ Rayσ-v) 2 -1 4 (x+2 √ Rayσ) 2 dydxdσdrdR. (20) 
Applying Fubini's Theorem on [START_REF] Arkeryd | On a taylor-couette type bifurcation for the stationary nonlinear boltzmann equation[END_REF], we explicitly write the kernel form of K 2 as

K 2 g(v, I) = 1 (2π) 3 2 R 3 ×R + H v,I x,y g(x, y) (1 -R)R 1 2 J B× e -ay-I-(x-v+ √ Rayσ) 2 2 -r 2(1-r) y-1 4 (2x+2 √ Rayσ-v) 2 -1 4 (x+2 √ Rayσ) 2 dσdrdR dydx, (21) 
where the space H v,I x,y is defined such that

H v,I x,y × R 3 × R + = (0, 1) × (0, 1) × S 2 × H v,I R,r,σ .
We prove then that the integral kernel inside the brackets of (21) belongs to the space

L 2 ( R 3 ×R + ×R 3 ×R + ).
For a general polyatomic gas, with a number of degrees of freedom not necessarily equal to 5, we repeat the same preceding procedure, where the difference lies in the presence of α in the collision operator [START_REF] Aoki | Vapor flows caused by evaporation and condensation on two parallel plane surfaces: Effect of the presence of a noncondensable gas[END_REF] and the Maxwellian function which is given as

M (v, I) = M 1,0,1 (v, I) = 1 (2π) 3/2 Γ(α + 1) I α e -1 2 |v| 2 -I , (22) 
and K 2 is expressed as

K 2 g = I -α/2 ∆ g ′ * (I ′ * ) α/2 M 1/2 * I α/2 * (M ′ ) 1/2 (I ′ ) α/2 (r(1 -r)) α (1 -R) 2α+1 R 1/2 I α I α * B drdRdσdI * dv * . (23) 
The lower bound on ν in this case remains the same as [START_REF] Arkeryd | L1 solutions to the stationary boltzmann equation in a slab[END_REF].

For the mixture of polyatomic gases, where the collision operator is given in [START_REF] Aoki | Cylindrical couette flow of a vapor-gas mixture: Ghost effect and bifurcation in the continuum limit[END_REF],

the Maxwellian equilibrium function for the i -th species of the gas is

M i (v, I) = 1 (2π) 3 2 Γ(α i + 1)
I α i e -m i 2 v 2 -I , (24) 
and the coercivity bound of the collision frequency ν ij is

ν ij (v, I) ≥ c(|v| γ ij + I γ ij /2 + 1), i = 1, . . . , n,
for γ ij ≥ 0 being a parameter appearing in the bound assumptions of B ij . The operator

[K 2 •] i is given as [K 2 g] i (v, I) = n j=1 (m i m j ) 3 4 
Γ(α i + 1) 1/2 Γ(α j + 1) 1/2 (2π)

3 2 ∆ e -I * 2 -1 2 r(1-R) µ ij 2 (v-v * ) 2 +I+I * - m j 4 v 2 * × e - m i 4 
m i v+m j v * m i +m j + m j (m i +m j ) 2R µ ij ( µ ij 2 (v-v * ) 2 +I+I * )σ 2 × g j m i v + m j v * m i + m j - m i (m i + m j ) 2R µ ij µ ij 2 (v -v * ) 2 + I + I * σ, (1 -R)(1 -r) µ ij 2 (v -v * ) 2 + I + I * × r α i (1 -r) α j (1 -R) α i +α j +1 R 1/2 (I ′ * ) -α j /2 I α i /2 I α j * B ij drdRdσdI * dv * , (25) 
where

g = (g 1 , • • • , g n ).
Here, the necessary change of variable in order to extract the

integral kernel of [K 2 •] i is (v * , I * ) → (v ′ * , I ′ * ) since g depends on (v ′ * , I ′ * ) instead of a direct dependence on (v * , I * ).
Similarly to the single gas case, we denote by (x, y) the variables

(v ′ * , I ′ * ) as x = m i v + m j v * m i + m j - m i (m i + m j ) 2R µ ij µ ij 2 (v -v * ) 2 + I + I * σ, y = (1 -R)(1 -r) µ ij 2 (v -v * ) 2 + I + I * . (26) 
The change of variable map h is

h : R 3 × R + -→ h(R 3 × R + ) ⊂ R 3 × R + (v * , I * ) -→ (x, y) = m i v + m j v * m i + m j - m i (m i + m j ) 2R µ ij µ ij 2 (v -v * ) 2 + I + I * σ, (1 -R)(1 -r) µ ij 2 (v -v * ) 2 + I + I * ,
where v,I,r,R, and σ are fixed. Similar to the single gas case, h is invertible from its domain to its range, and the Jacobian of h -1 is given as

J ij = ∂v * ∂I * ∂x∂y = m i + m j m j 3 1 (1 -r)(1 -R) .
Notice that assuming similar masses m i = m j , we get the obtained expression [START_REF] Arkeryd | A large data existence result for stationary boltzmann equation in a cylindrical geometry[END_REF] of J for a single polyatomic gas. The extraction of the kernel and the proof of belonging to

the space L 2 (R 3 × R + × R 3 × R + )
follows similarly to the single gas case.

Chapter 3: The Incompressible Navier-Stokes Equations Derived from the

Polyatomic Boltzmann Equation

This chapter is one of the applications of the Fredholm property of the linearized Boltzmann operator. Following the same approach of [START_REF] Bardos | Fluid dynamic limits of kinetic equations ii convergence proofs for the boltzmann equation[END_REF] done for monatomic gases, we derive one of the hydrodynamic limits of the polyatomic Boltzmann equation: the Incompressible Navier-Stokes equations. At the macroscopic level, these equations describe the motion of viscous fluid substances and gases when the Knudsen number is sufficiently small. The incompressible Navier-Stokes equations write

∂ t u + (u • ∇ x )u + ∇ x p = ν * ∆u, ∂ t θ + u • ∇ x θ = κ * ∆θ, ∇ x • u = 0, ∇ x (ρ + θ) = 0. ( 27 
)
where n, u, and θ represent the gas density, macroscopic speed, and temperature respectively. The viscosity ν * and conductivity κ * coefficients will be expressed thanks to the Galilean invariance of the linearized Boltzmann operator. The Boltzmann equation is scaled as

ε∂ t f ε + v.∇ x f ε = 1 ε Q(f ε , f ε ), ( 28 
)
where ε is proportional to the Knudsen and Strouhal numbers.

Chapter 4: Existence and Uniqueness Result for the Stationary Boltzmann Equation

In this chapter, we prove the existence and uniqueness of a solution to the stationary Boltzmann equation modeling a single polyatomic gas, with the following transition model

B (v, v * , I, I * , r, R, σ) = 1 4 (v -v * ) 2 + I + I * γ/2
, where 0 ≤ γ ≤ 1. Namely, we prove that the stationary Boltzmann equation

v 1 ∂f ∂x = εQ(f, f ), x ∈ (0, 1), (29) 
subject to the inflow boundary conditions

f (0, v, I) = f L (0, v, I), (v 1 > 0), f (1, v, I) = f R (1, v, I), (v 1 < 0) (30) 
admits a unique mild solution in the space

A = {f : φf ∈ L 1 (R 3 × R + ), f ≥ 0, ∥f ∥ 0 ≤ a 1 , ∥L(f )∥ 0 ≥ a 2 , ∥f ∥ 1-γ ≤ a 3 , ∥f ∥ P ≤ a 4 }, (31) 
if ε ≤ a 5 for some a 5 > 0 using the Banach fixed point theorem argument. The function φ is the weight function given by

φ(v) = e 1 2 |v| 2 +I ,
and the norms are defined as

∥f ∥ k = sup ω R 3 v R + φ(v, I) 1 |v -ω| k ∥f (., v, I)∥ L ∞ dvdI, (k ∈ {0, 1 -γ})
∥f ∥ P = sup

P P R + φ(v, I)∥f (., v, I)∥ L ∞ (0,1) dσ(v)dI.
The fixed point argument has been used by Maslova [77] for a single monatomic gas with hard-sphere interactions. In Chapter 4, we alter polyatomic molecules with hard potential cross-sections extended from that of monatomic molecules. The extension to hard potential cross-section imposes some technicalities in the proof, and therefore, the norm ∥ • ∥ 1-γ has to be introduced. In fact, in [77,[START_REF] Ghomeshi | Existence and uniqueness of solutions for the couette problem[END_REF] γ = 1, and therefore, the norm ∥ • ∥ 1-γ will be relaxed to ∥ • ∥ 0 in this particular case. Moreover, in the approach of Maslova, the assumption that ∥ • ∥ -1 is bounded was needed, which we were able to avoid in our proof using some technical arguments.

Chapter 1

General literature

In this chapter, we present some already obtained results which are useful for understanding the results of the thesis.

Main theorems Used in the Thesis

In this subsection, we recall some theorems used in the thesis. The first two theorems are used in Chapter 2 and respectively give the necessary conditions for an operator to be a Fredholm or a Hilbert-Schmidt operator. In fact, we will use the first theorem to prove that the linearized Boltzmann operator for polyatomic gases is Fredholm, where we will write it as a sum of a Fredholm and a compact operator. Proving the compactness part will be carried out using the Hilbert-Schmidt argument, which is Theorem 

L 2 (R n ) → L 2 (R n ) be an operator defined by T g(x) = R n t(x, y)g(y)dy for x ∈ R n and g ∈ L 2 (R n ). If t ∈ L 2 (R n ×R n ), then T is called a Hilbert-Schmidt operator
and T is compact.

Theorem 3. [ [START_REF] Banach | Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales[END_REF], P.330 Theorem 6] Let (X, d) be a non-empty complete metric space with a contraction mapping T : X → X. Then T admits a unique fixed point x * ∈ X.

Monatomic Gases

In this section, we briefly recall the modeling of a mixture of n ≥ 2 species of monatomic gases. This modeling will be considered in the last section 2.6 of Chapter 2. In fact, in Chapter 2 we prove the Fredholm property of the linearized Boltzmann operator for polyatomic gases using compactness arguments and then adapt the compactness method for a mixture of monatomic gases. Although the approach used for polyatomic gases works in the monatomic case, yet under a constraint on the collision cross-section which may not be physical.

Consider two colliding molecules of species A i and A j , 1 ≤ i, j ≤ n with respective masses m i and m j . Denote by v,v * their pre-collisional velocities and by v ′ and v ′ * their postcollisional velocities. The conservation of momentum and kinetic energy equations are

m i v ′ + m j v ′ * = m i v + m j v * m i 2 |v ′ | 2 + m j 2 |v ′ * | 2 = m i 2 |v| 2 + m j 2 |v * | 2 . Defining σ ∈ S 2 to be σ = v ′ -v ′ * |v ′ -v ′ * |
, we can parameterize the above system and express v ′ and v ′ * in terms of v, v * , and σ as:

v ′ = m i v + m j v * m i + m j + m j m i + m j |v -v * | 2 σ, v ′ * = m i v + m j v * m i + m j - m i m i + m j |v -v * | 2 σ.
(1.1)

We associate the distribution function f i with species A i,1≤i≤n of the mixture. In the case of monatomic gases, the distribution function f i depends on time t ∈ R + , and the position

x ∈ R 3 and the velocity v ∈ R 3 of the molecule. f i (t, x, v)dxdv is the probability of finding a particle of the species A i within (x, x + dx), possessing a velocity in the range (v, v + dv) at a time t. Each distribution function f i satisfies the Boltzmann equation

∂ t f i + v • ∇ x f i = s j=1 Q ij (f i , f j ) , ∀i = 1, . . . , n, (1.2) 
where the operator Q ij describing the collisions of molecules of species A i and A j is defined by

Q ij (f i , f j )(v) = R 3 ×S 2 [f i (v ′ ) f j (v ′ * ) -f i (v)f j (v * )] B ij (|v -v * |, σ) dσdv * . (1.
3)

The cross-section B ij (|v -v * |, σ) depends only on |v -v * | and σ. The collisions are also supposed to be microreversible in space and order of time, that is

B ij (|v -v * |, σ) = B ji (|v -v * |, σ) , and B ij (|v -v * |, σ) = B ji (|v ′ -v ′ * |, σ ′ ) ,
where

σ ′ = v-v * |v-v * | . A hard potential model of B ij is B ij (v, v * , σ) = b ij σ. v -v * |v -v * | |v -v * | γ ij
where γ ij ∈ (0, 1], and for any 0 ≤ θ ≤ π, b ij (cosθ) is a bounded function which linearly approaches 0 when θ tends to π/2. The case γ ij = 0 refers to the case of Maxwellian gas, in which molecules repel each other with a force inversely proportional to the fifth power of their distance. In this case, B ij (v, v * , σ) is given by

B ij (v, v * , σ) = b ij σ. v -v * |v -v * | . (1.4)
Remark 4 (The ω-representation). In some references, the conservation equations of momentum and total energy are parameterized by a unit vector ω (see [START_REF] Cercignani | The Boltzmann Equation and Its Applications[END_REF][START_REF] Grad | Asymptotic theory of the Boltzmann equation II[END_REF] for monatomic gases, [START_REF] Bourgat | Microreversible collisions for polyatomic gases and boltzmann's theorem[END_REF][START_REF] Ruggeri | Rational Extended Thermodynamics beyond the Monatomic Gas[END_REF] for polyatomic gases, and [START_REF] Gamba | On the Cauchy problem for Boltzmann equation modeling a polyatomic gas[END_REF] for a detailed description).

More precisely, the post-collisional velocities in a mixture of polyatomic gases are written as

v ′ = v + 2m i m i + m j (v -v * ) • ωω and v ′ = v * - 2m j m i + m j (v -v * ) • ωω. (1.5)
We note that the expressions (1.5) and (1.1) of post-collisional velocities are linked by the map stated in the following lemma. When expressing the collision operator (1.3) in the σ representation, the Jacobian of the change of variable map from ω to σ has to be taken into consideration in the collision integral.

In this lemma, we give the Jacobian of the change of variable ω → σ.

Lemma 5. Let σ = v -v * |v -v * | -2 v -v * |v -v * | • ωω, (1.6) 
then the Jacobian of the ω -σ transformation is given as

dω = dσ 2 σ -v-v * |v-v * |
.

(1.7)

Proof. It's enough to assume that ω is not collinear to

v-v * |v-v * | . The differential map for (1.6) is dσ ω : R 3 -→ R 3 ⃗ ω -→ ⃗ σ = -2 v -v * |v -v * | , ⃗ ω ω -2 v -v * |v -v * | , ω ⃗ ω.
Let T 1 be the tangent plane to ω, and T 2 be the plane determined by ω and v-v * |v-v * | , i.e.

T 2 = span ω, v-v * |v-v * | . Choose an orthonormal basis {⃗ ω 1 , ⃗ ω 2 } ⊂ T 1 such that ⃗ ω 1 ∈ T 2 and ⃗ ω 2 ⊥ T 2 , and let ( ⃗ σ 1 , ⃗ σ 2 ) = (dσ ω (⃗ ω 1 ), dσ ω (⃗ ω 2 )). Then, ⃗ σ 1 ∈ T 2 and ⃗ σ 2 ⊥ T 2 . The Gram determinant is given by Gram = |⃗ σ 1 | 2 |⃗ σ 2 | 2 -⟨⃗ σ 1 , ⃗ σ 2 ⟩ 2 ,
where

|⃗ σ 1 | 2 = 4 v -v * |v -v * | , ⃗ ω 1 2 + v -v * |v -v * | , ω 2 = 4 v -v * |v -v * | 2 = 4, |⃗ σ 2 | 2 = 4 v -v * |v -v * | , ⃗ ω 2 2 + v -v * |v -v * | , ω 2 = 4 v -v * |v -v * | , ω 2 ,
and

⟨σ 1 , σ 2 ⟩ = 0.
As a result,

Gram = 16 v -v * |v -v * | , ω 2 = 4 σ - v -v * |v -v * | 2 .
We remark that

σ - v -v * |v -v * | = v -v * |v -v * | .ω = cos(v -v * , ω).
Therefore, when expressing the collision operators [START_REF] Aoki | Vapor flows caused by evaporation and condensation on two parallel plane surfaces: Effect of the presence of a noncondensable gas[END_REF], and (1.11) in the σ representation, the Jacobian (1.7) is canceled with the cosine term appearing in the transition function while written in the ω-notation.

Models Describing Polyatomic Rarefied Gases

In this section, we present the models describing a single and a mixture of polyatomic gases. For these models, we assume that the internal energy is a continuous parameter.

We note that the authors in [START_REF] Borsoni | A general framework for the kinetic modelling of polyatomic gases[END_REF] introduced a general framework that may describe discrete or continuous internal energy.

Borgnakke-Larsen Based Model

This model was introduced by [START_REF] Bourgat | Microreversible collisions for polyatomic gases and boltzmann's theorem[END_REF] for a single polyatomic gas with continuous internal energy based on the Borgnakke-Larsen procedure. We present this model in the following subsection, followed by an extension to the mixture case in the subsequent section.

Single Polyatomic Gas

We start with physical conservation equations which will be parameterized based on the Borgnakke-Larsen procedure. Without loss of generality, we first assume that the molecular mass equals unity, and we denote as usual by (v, v * ), (I, I * ) and (v ′ , v ′ * ), (I ′ , I ′ * ) the pre-collisional and post-collisional velocity and energy pairs respectively. The following conservation of momentum and total energy equations hold:

v + v * = v ′ + v ′ * (1.8) 1 2 |v| 2 + 1 2 |v * | 2 + I + I * = 1 2 |v ′ | 2 + 1 2 |v ′ * | 2 + I ′ + I ′ * .
(1.9)

From the above equations, we can deduce the following equation representing the conservation of total energy in the center of mass reference frame:

1 4 |v -v * | 2 + I + I * = 1 4 (v ′ -v ′ * ) 2 + I ′ + I ′ * = E,
with E denoting the total energy. We introduce in addition the parameter R ∈ [0, 1]

which represents the portion allocated to the post-kinetic energy out of the total energy, and the parameter r ∈ [0, 1] which represents the distribution of the post-internal energy among the two interacting molecules. Namely,

1 4 (v ′ -v ′ * ) 2 = RE, I ′ + I ′ * = (1 -R)E, and 
I ′ = r(1 -R)E, I ′ * = (1 -r)(1 -R)E.
Using the above equations, we can express the post-collisional velocities in terms of the other quantities by the following

v ′ ≡ v ′ (v, v * , I, I * , σ, R) = v + v * 2 + √ RE σ, v ′ * ≡ v ′ * (v, v * , I, I * , σ, R) = v + v * 2 - √ RE σ, (1.10) 
where

σ = v ′ -v ′ * |v ′ -v ′ * | ∈ S 2
is regarded as a parameter. In addition, we define the parameters r ′ and R ′ ∈ [0, 1] for the pre-collisional terms in the same manner as r and R. Namely,

1 4 |v -v * | 2 = R ′ E, I + I * = (1 -R ′ )E, and 
I = r ′ (1 -R ′ )E, I * = (1 -r ′ )(1 -R ′ )E.
Finally, the post-collisional energies can be given in terms of the pre-collisional energies by the following relation

I ′ = r(1 -R) r ′ (1 -R ′ ) I, I ′ * = (1 -r)(1 -R) (1 -r ′ )(1 -R ′ ) I * .
The Boltzmann equation for an interacting single polyatomic gas reads

∂ t f + v • ∇ x f = Q(f, f ), where f = f (t, x, v, I) ≥ 0 is the distribution function, with t ≥ 0, x ∈ R 3 , v ∈ R 3 , and 
I ≥ 0. The operator Q(f, f
) is the quadratic Boltzmann operator [START_REF] Bourgat | Microreversible collisions for polyatomic gases and boltzmann's theorem[END_REF] given as

Q(f, f )(v, I) = (0,1) 2 ×S 2 ×R + ×R 3 f ′ f ′ * (I ′ I ′ * ) α - f f * (II * ) α × B × (r(1 -r)) α (1 -R) 2α × I α I α * (1 -R)R 1/2 dRdrdσdI * dv * , (1.11) 
where α ≥ 0 is defined in (8) (in the introduction of the thesis), and we use the standard

notations f * = f (v * , I * ), f ′ = f (v ′ , I ′ ), and f ′ * = f (v ′ * , I ′ * )
. The function B is the transition function, a function of (v, v * , I, I * , r, R, σ), assumed to be an almost everywhere positive function satisfying the following microreversibility con-

ditions B(v, v * , I, I * , r, R, σ) = B(v * , v, I * , I, 1 -r, R, -σ), B(v, v * , I, I * , r, R, σ) = B(v ′ , v ′ * , I ′ , I ′ * , r ′ , R ′ , σ ′ ), (1.12) 
where

σ ′ = v-v * |v-v * | .
Remark 6 (Recognition: The Case of Non-Vibrating Linear Molecules). Based on (8), the parameter α for non-vibrating linear molecules vanishes, and therefore, the collision operator (1.11) is simplified to

Q(f, f )(v, I) = R 3 ×R + ×S 2 ×(0,1) 2 (f ′ f ′ * -f f * )B(1 -R)R 1/2 dRdrdσdI * dv * . (1.13)
Remark 7. In some references (cf. [START_REF] Desvillettes | A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions[END_REF][START_REF] Desvillettes | Sur un modèle de type Borgnakke-Larsen conduisant à des lois d'énergie non linéaires en température pour les gaz parfaits polyatomiques[END_REF]), the collision operator Q(f, f ) of the Boltzmann equation [START_REF] Aoki | Kinetic theory analysis of gas flows condensing on a plane condensed phase: Case of a mixture of a vapor and a noncondensable gas[END_REF] is expressed as

Q(f, f )(v, I) = R 3 ×R + ×S 2 ×(0,1) 2 (f ′ f ′ * -f f * )B(1 -R)R 1/2 1 φ(I) dRdrdσdI * dv * , (1.14)
with the weight φ ≥ 0. In fact, (1.14) can be written as

Q(f, f )(v, I) = R 3 ×R + ×S 2 ×(0,1) 2 φ(I)φ(I * ) φ(I ′ )φ(I ′ * ) φ(I ′ )f ′ φ(I ′ * )f ′ * -φ(I)f φ(I * )f * × B φ(I)φ(I * ) (1 -R)R 1/2 1 φ(I) dRdrdσdI * dv * .
(1.15)

Denoting by f = φf, and

B = B φ(I)φ(I * ) , the operator Q in (1.15) is expressed Q( f , f )(v, I) = R 3 ×R + ×S 2 ×(0,1) 2 φ(I)φ(I * ) φ(I ′ )φ(I ′ * ) f ′ f ′ * -f f * × B(1 -R)R 1/2 1 φ(I) dRdrdσdI * dv * .
(1.16)

The Boltzmann equation describing a single polyatomic gas becomes

∂ t f + v • ∇ x f = R 3 ×R + ×S 2 ×(0,1) 2 φ(I)φ(I * ) φ(I ′ )φ(I ′ * ) f ′ f ′ * -f f * B(1 -R)R 1/2 dRdrdσdI * dv * .
The goal of introducing φ is to derive a certain energy law. In particular, φ is usually chosen to be I α for the caloric equation of state to hold [START_REF] Pavić | Mathematical modelling and analysis of polyatomic gases and mixtures in the context of kinetic theory of gases and fluid mechanics[END_REF]. For the choice φ(I) = I α , models (1.14) and (1.11) are equivalent.

Mixture of Polyatomic Gases

The Borgnakke-Larsen-based model may be extended to describe a mixture of n species of polyatomic gases. We still denote by (v, v * ), (I, I * ) and (v ′ , v ′ conservation of momentum and total energy equations hold:

m i v + m j v * = m i v ′ + m j v ′ * m i 2 v 2 + m j 2 v 2 * + I + I * = m i 2 v ′2 + m j 2 v ′2 * + I ′ + I ′ * , (1.17) 
where m i and m j are the respective particle mass of species A i and A j . From the above equations, we can deduce the following equation representing the conservation of total energy in the center of mass reference frame:

µ ij 2 |v -v * | 2 + I + I * = µ ij 2 |v ′ -v ′ * | 2 + I ′ + I ′ * = E,
with E denoting the total energy, and µ ij = m i m j m i +m j is the reduced mass. We apply the same Borgnakke-Larsen parameterization, but this time for mixtures. We introduce in addition the parameter R ∈ [0, 1] which represents the portion allocated to the kinetic energy after collision out of the total energy, and the parameter r ∈ [0, 1] which represents the distribution of the post internal energy among the two colliding molecules. That is,

µ ij 2 (v ′ -v ′ * ) 2 = RE, I ′ + I ′ * = (1 -R)E,
and

I ′ = r(1 -R)E, I ′ * = (1 -r)(1 -R)E.
(1.18)

Using the above equations, we can express the post-collisional velocities in terms of the other quantities by the following relations

v ′ ≡ v ′ (v, v * , I, I * , σ, R) = m i v + m j v * m i + m j + m j m i + m j 2RE µ ij σ, v ′ * ≡ v ′ * (v, v * , I, I * , σ, R) = m i v + m j v * m i + m j - m i m i + m j 2RE µ ij σ, (1.19) 
where

σ = v ′ -v ′ * |v ′ -v ′ * | ∈ S 2
is a parameter. Notice that when the masses m i = m j = 1 we recover the post-collisional velocities (1.10) in the single polyatomic gas case. In addition, we define the parameter r ′ ∈ [0, 1] and R ′ ∈ [0, 1] for the pre-collisional terms in the same manner as r and R. In particular

µ ij 2 (v -v * ) 2 = R ′ E, I + I * = (1 -R ′ )E, and 
I = r ′ (1 -R ′ )E, I * = (1 -r ′ )(1 -R ′ )E.
The Boltzmann equation for a mixture of n species of polyatomic gases is

∂ t f i + v.∇ x f i = n j=1 Q ij (f i , f j ), 1 ≤ i ≤ n,
where 3 , and I ≥ 0. The operator Q ij is the quadratic Boltzmann operator that describes the collisions between particles of species i and j and is given as

f i = f i (t, x, v, I) ≥ 0 is the distribution function of the species A i , with t ≥ 0, x ∈ R 3 , v ∈ R
Q ij (f i , f j )(v, I) = (0,1) 2 ×S 2 ×R + ×R 3 f ′ i f ′ j * I ′α i I ′α j * - f i f j * I α i I α j * × B ij × r α i (1 -r) α j (1 -R) α i +α j × I α i I α j * (1 -R)R 1/2 dRdrdσdI * dv * , (1.20) 
where we use the standard notations

f j * = f j (v * , I * ), f ′ i = f i (v ′ , I ′ ), and f ′ j * = f j (v ′ * , I ′ * ), and α k > -1 for k = 1, • • • , n
is the parameter related to the number of degrees of freedom of the k -th species as

α k = D k -5 2 , 1 ≤ i ≤ n,
where D k is the number of degrees of freedom of a particle of species A k . The function

B ij = B ij (v, v * , I, I * , r, R, σ)
is the transition function. In the following, we give some assumptions on B ij . In general, B ij is assumed to be an almost everywhere positive function satisfying the following microreversibility conditions:

B ij (v, v * , I, I * , r, R, σ) = B ji (v * , v, I * , I, 1 -r, R, σ) B ij (v, v * , I, I * , r, R, σ) = B ij (v ′ , v ′ * , I ′ , I ′ * , r ′ , R ′ , σ ′ ),
where

σ ′ = v-v * |v-v * | . Assumption (1.3.1.2) clearly implies that Bij = r α i (1 -r) α j (1 -R) α i +α j I α i I α j * B ij , is also microreversible Bij (v, v * , I, I * , r, R, σ) = Bji (v * , v, I * , I, 1 -r, R, σ) Bij (v, v * , I, I * , r, R, σ) = Bij (v ′ , v ′ * , I ′ , I ′ * , r ′ , R ′ , σ ′ ).

Preserved Quantities Model

We present now a model highlighting the preserved quantities for a single gas, and then for a mixture of gases.

Single Gas

We display the equivalence of the collision operator form (1.11) to the form (1.22), where in the latter, the preserved quantities E and G appear in the Lebesgue measure. The derivation of this formulation is a result of subsequent changes of variables described by (1.3.2.1). The final sought result is the Jacobian of the following map:

T : R 6 × R 2 + × (0, 1) 2 × S 2 → R 6 × R 2 + × R 3 × R + (v, v * , I, I * , r, R, σ) → (v, G, E, I, v ′ , I ′ ) , where g = v -v * and G = v+v * 2 .
For this transformation, the following Jacobians are elementary: 

J (v,v * I,I * ,r,R,σ) →(g,G,I,I * ,r,R,σ) = 1,
λ = √ RE, µ = r(1 -R),
which induces the Jacobian

J (g,G,I,E,r,R,σ) →(g,G,I,E,λ,µ,σ) = 1 2 (1 -R) √ R √ E.
Thus the final sub-transformation is

(g, G, I, E, λ, µ, σ) → (v, G, I, E, v ′ , I ′ ), where specif- ically, v ′ = G + λσ, and I ′ = µE.
It's clear that

J (g,G,I,E,λ,µ,σ) →(g,G,I,E,λ,I ′ ,σ) = E
and for v ′ we have

J (g,G,I,E,λ,I ′ ,σ) →(g,G,I,E,v ′ ,I ′ ) = λ 2 = RE, since (λ, σ) is the spherical representation of v ′ -G. As v = 1 2 g + G, then the Jacobian J (g,G,I,E,v ′ ,I ′ ) →(v,G,I,E,v ′ ,I ′ ) = 1 8 .
Finally, combining the preceding transformations, the Jacobian of T is

J T = 1 16 R 1 2 (1 -R)E 5 2 .
In other words,

dvdGdIdEdv ′ dI ′ = 1 16 R 1 2 (1 -R)E 5 2 dvdv * dIdI * drdRdσ.
The equivalent model of (1.11), based on the above computations is therefore

Q(f, f )(v, I) = (R 3 ×R + ) 2 f ′ f ′ * (I ′ I ′ * ) α - f f * (II * ) α W (v, I, v ′ , I ′ , G, E) dGdE dv ′ dI ′ , (1.22)
where

W (v, I, v ′ , I ′ , G, E) = 16(I ′ I ′ * II * ) α × E -5 2 -2α × B(v, v * , I, I * , r, R, σ), (1.23) 
where

I * = I * (v, I, G, E), I ′ * = I ′ * (v ′ , I ′ , G, E), v ′ * = v ′ * (G, v ′ ), v * = v * (G, v), σ = σ(v ′ , G), R = R(v ′ , E, G), and r = r(I ′ , v ′ , E, G).
Moreover, W in (1.23) is clearly microreversible, and the measure dEdGdvdIdv ′ dI ′ is invariant if time is reversed.

Mixture of Gases

In this section, we aim to write the collision operator (1.11) in an equivalent form. The derivation of the latter is a result of subsequent changes of variables, see (1.24). The final result sought is the Jacobian of the following map:

T : R 6 × R 2 + × (0, 1) 2 × S 2 → R 6 × R 2 + × R 3 × R + (v, v * , I, I * , r, R, σ) → (v, G, E, I, v ′ , I ′ ) , (1.24)
where g = v -v * and G = m i v+m j v * m i +m j . For this transformation, the following Jacobians are elementary: 

J (v,v * I,I * ,r,R,σ) →(g,G,I,I * ,r,R,σ) = 1,
λ = m j m i + m j 2RE µ ij , µ = r(1 -R),
which induces the Jacobian

J (g,G,I,E,r,R,σ) →(g,G,I,E,λ,µ,σ) = 1 2 m j m i + m j (1 -R) √ R 2E µ ij .
Thus the final sub-transformation is

(g, G, I, E, λ, µ, σ) → (v, G, I, E, v ′ , I ′ ), where specif- ically, v ′ = G + λσ, and I ′ = µE.
It's clear that

J (g,G,I,E,λ,µ,σ) →(g,G,I,E,λ,I ′ ,σ) = E
and for v ′ we have

J (g,G,I,E,λ,I ′ ,σ) →(g,G,I,E,v ′ ,I ′ ) = λ 2 = m j m i + m j 2 2RE µ ij , since (λ, σ) is the spherical representation of v ′ -G. As v = m j m i +m j g +G, then the Jacobian J (g,G,I,E,v ′ ,I ′ ) →(v,G,I,E,v ′ ,I ′ ) = m j m i + m j 3 .
Finally, combining the preceding transformations, the Jacobian of T is

J T = √ 2 µ 3 2 ij m j m i + m j 6 R 1 2 (1 -R)E 5 2 .
In other words,

dvdGdIdEdv ′ dI ′ = √ 2 µ 3 2 ij m j m i + m j 6 R 1 2 (1 -R)E 5 2 dvdv * dIdI * drdRdσ.
The equivalent model of (1.20), based on the above computations is therefore

Q ij (f, f )(v, I) = (R 3 ×R + ) 2 f ′ i f ′ j * I ′α i I ′α j * - f i f j * I α i I 1.

Hydrodynamic limits of the Boltzmann Equation for a Mixture of Polyatomic Gases

In this section, we give an overview of the kinetic derivation of the compressible Euler and Navier-Stokes equations for a mixture of polyatomic gases. The compressible Euler equations were obtained in [START_REF] Desvillettes | Sur un modèle de type Borgnakke-Larsen conduisant à des lois d'énergie non linéaires en température pour les gaz parfaits polyatomiques[END_REF] for a single polyatomic gas, then in [START_REF] Desvillettes | A kinetic model allowing to obtain the energy law of polytropic gases in the presence of chemical reactions[END_REF] for a reactive mixture of polyatomic gases, and in [START_REF] Baranger | On the Chapman-Enskog asymptotics for a mixture of monoatomic and polyatomic rarefied gases[END_REF] for a mixture of monatomic and polyatomic molecules. However, in this summary, we restrict ourselves to the case of n ≥ 1 species of polyatomic gases. The starting point is the scaled Boltzmann equation

∂ t f i,ε + v.∇ x f i,ε = n j=1 1 ε Q ij (f i,ε , f j,ε ), (1.27) 
where ε represents the Knudsen number. We consider the mixture version of the model (1.14), where the collision operator Q ij is given by

Q ij (f, g)(v, I) = R 3 ×R + ×S 2 ×(0,1) 2 (f ′ g ′ * -f g * )B ij (1 -R)R 1/2 1 φ i (I) dRdrdσdI * dv * ,
and φ i (I) is the weight associated to the i -th species of the gas, and we recall that the post-collisional velocities and internal energies are given in (1.18) and (1.19) respectively.

Moreover, B ij is the transition function satisfying (1.3.1.2).

The Maxwellian function representing the equilibrium state of the i -th species of the gas (see Section 2.65) is denoted by M i (v, I), and given by

M i,ε (v, I) = m 3 2 i n i,ε (2πκT ε ) 3 2 q i (T ε ) φ i (I)e -1 κTε ( m i 2 (v-uε) 2 +I) , (1.28) 
where κ is the Boltzmann constant, q i is given by

q i (T ε ) = R + φ i (I)e -I/(κTε) dI,
and n i,ε , u ε , and T ε are the number of molecules per unit volume, the hydrodynamic velocity, and the temperature respectively. In fact, one can write n i,ε , u ε , and T ε in terms of the moments of M i,ε as follows

m i n i,ε = ⟨m i M i,ε ⟩ , m i n i,ε u ε = ⟨vm i M i,ε ⟩ , m i n i,ε u εp u εq + n i,ε T ε δ pq = ⟨v p v q m i M i,ε ⟩ , m i n i,ε |u ε | 2 2 + n i,ε 3 2 κT ε + η i (T ε ) q i (T ε ) = m i v 2 2 + I M i,ε .
where

η i (T ε ) = R + Iφ i (I)e -I/(κTε) dI.
We introduce the function g i,ε as

f i,ε (v, I) = M i,ε (v, I) + εM i,ε (v, I)g i,ε (v, I), (1.29) 
and insert (1.29) in the Boltzmann equation (1.27), we get the following linearized Boltzmann equation

∂ t M i,ε + v.∇ x M i,ε + εM i,ε (∂ t g i,ε + v.∇ x g i,ε ) = n j=1 Q ij (M i,ε g i,ε , g j,ε ) + Q ij (g i,ε , M j,ε g j,ε )+ ε n j=1 Q ij (g i,ε M i,ε , M j,ε g j,ε ), (1.30) 
The i -th component of the linearized Boltzmann operator

L(g) = ([L(g)] 1 , • • • , [L(g)] n ),
is given as

[L(g)] i = M -1 i,ε n j=1 Q ij (M i,ε g i,ε , g j,ε ) + Q ij (g i,ε , M j,ε g j,ε ), where g = (g 1 , • • • , g n ). The approximated system in g i,ε is M -1 i,ε (∂ t M i,ε + v.∇ x M i,ε ) = [L(g)] i . (1.31)
At this level, we can derive the compressible Euler and Navier-Stokes equations.

Compressible Euler Equations

The derivation of the compressible Euler equations is straightforward. In fact, taking the moments of (1.30) with respect to m i , m i v k (k = 1, 2, 3), and m i v 2

2 +I we get the following equations at order zero of ε 1. Mass conservation equation

∂ t ⟨m i M i,ε ⟩ + ∇ x • ⟨m i vM i,ε ⟩ = 0, (1.32) 2. Momentum conservation Equation n i=1 ∂ t ⟨vm i M i,ε ⟩ + n i=1 v • ∇ x ⟨vm i M i,ε ⟩ = 0, (1.33) 

Total energy conservation Equation

n i=1 ∂ t m i v 2 2 + I M i,ε + n i=1 ∇ x • m i v 2 2 + I vM i,ε = 0. (1.34)
Substituting the expressions of system (1.4) in (1.32)-(1.34), we get the following system of Euler equations for mixtures

∂ t m i n i,ε + ∇ x • (m i n i,ε u) = 0, (1.35) 
for k = 1, 2, 3 n i=1 ∂ t (m i n i,ε u k ) + n i=1 3 l=1 ∂ l m i n i,ε u k u l + n i T ε δ kl = 0 (1.36) n i=1 m i n i,ε |u| 2 2 + n i,ε 3 2 T + η i (T ) q i (T ) + n i=1 u•∇ x m i n i,ε |u| 2 2 + n i,ε 5 2 T + η i (T ) q i (T ) = 0
(1.37)

Compressible Navier-Stokes Equations

We derive now the compressible Navier-Stokes equations describing a mixture of polyatomic gases [START_REF] Baranger | On the Chapman-Enskog asymptotics for a mixture of monoatomic and polyatomic rarefied gases[END_REF]. Denote

V ε = v -u √ T ε , and 
J ε = I T ε .
From the expression of M i,ε , we have the following formulas

∂ n i,ε M i,ε = 1 n i,ε M i,ε , ∂ uε M i,ε = m i κ √ T ε V ε M i,ε (1.38) 
and

∂ Tε M i,ε = m i κ √ T ε V ε M i,ε . (1.39)
The derivation of the compressible Navier-Stokes equations is mainly carried through 2 steps. First, using orthogonality properties and the Galilean invariance of L, we can characterize the form of g i,ε . Next, we use system (1.32)-(1.34) to obtain the Navier-Stokes system, where the diffusion coefficients will depend on the characterized form of g i,ε obtained in the first step. With further calculations which we do not present here, the Soret and Dufour effects can be expressed [START_REF] Baranger | On the Chapman-Enskog asymptotics for a mixture of monoatomic and polyatomic rarefied gases[END_REF].

Step 1. Investigating the form of g i,ε

Thorough calculations using (1.38) and (1.39) yields an explicit expression of the term

(M i,ε ) -1 [∂ t M i,ε + v • ∇ x M i,ε ] ,
appearing in (1.31) as

(M i,ε ) -1 [∂ t M i,ε + v • ∇ x M i,ε ] = V ε • s (i) √ T + A (i) (V ε ) : ∇ x u ε + ∇ x u T ε 2 + C (i) (V ε )∇ x • u ε + B (i) (V ε , J ε ) • ∇ x T ε √ T ε ,
where

s (i) = ∇ x n i,ε n i,ε - m i n j=1 ∇ x n j,ε n j=1 m j n j,ε + 1 - m i n j=1 n j,ε n j=1 m j n j,ε ∇ x T ε T ε satisfies s (1) n 1,ε + s (2) n 2,ε + • • • + s (n) n n,ε = 0.
Moreover,

A (i) = m i v ⊗ v - 1 3 v 2 I , B (i) (V ε , J ε ) = m i 2 V 2 ε + J ε - 5 2 + T ε q ′ i (T ε ) q i (T ε ) V ε , and 
C (i) (V ε ) = m i V 2 ε 1 3 -Λ(T ε ) -2J ε Λ(T ε ) + 2 3 2 + T ε q ′ i (T ε ) q i (T ε ) Λ(T ε ) -1 .
The term Λ is

Λ(T ε ) = n i=1 n i,ε 3 n i=1 n i,ε + 2 n i=1 (η i /q i ) ′ (T ε )
.

One can verify that (s (1) 

•V ε , • • • , S (n) •V ε ), A = (A (1) , • • • , A (n) ), B = (B (1) , • • • , B (n) ) and C = (C (1) , • • • , C (n)
) are orthogonal to the kernel (2.71), and therefore, by the Fredholm property of L proved in Chapter 2, we deduce that in the space orthogonal to the kernel (2.71), there exists a unique pre-image for each (s (1) 

• V ε , • • • , S (n) • V ε ), A, B and C.
Assuming that the pre-images of (s (1) 

• V ε , • • • , s (n) • V ε ), A, B
and C are be orthogonal to the kernel of L, we define the pre-images as

L(S (1) , • • • , S (n) ) = (s (1) • V ε , • • • , S (n) • V ε ) and L( Ã) = A, L( B) = B, and 
L( C) = C.
Now using the Galilean invariance property of L [START_REF] Desvillettes | A remark concerning the chapman-enskog asymptotics[END_REF] (which has been proved in the appendix for the single polyatomic case), the functions Ã(i) , B(i) , and C(i) can be expressed in terms of A (i) , B (i) , and C (i) by means of some functions a i , b (i) , and c (i) as

Ã(i) (V ε , J ε ) = a (i) (|V ε |, J ε )A (i) (V ε ), B(i) (V ε , J ε ) = b (i) (|V ε |, J ε )B (i) (V ε , J ε ), and 
C(i) (V ε , J ε ) = c (i) (|V ε |, J ε ).
As a result, from (1.31), the function g i,ε is given as

g i,ε = T ε S (i) + a (i) (|V ε |, J ε ) Ã(i) (V ε ) : ∇ x u ε + ∇ x u T ε 2 + c (i) (V ε , J ε )∇ x • u ε + b (i) (|V ε |, J ε ) B(i) (V ε , J ε ) • ∇ x T ε √ T ε (1.40)
Step 2. Obtention of the Navier-Stokes equations and diffusion coefficients

Taking the moments of (1.30) with respect to m i , m i v k (k = 1, 2, 3), and m i v 2

2 + I we get the following equations

∂ t m i n i,ε + ∇ x • (m i n i,ε u) = -ε∇ x • D i , for k = 1, 2, 3 n i=1 ∂ t (m i n i,ε u k ) + n i=1 3 l=1 ∂ l m i n i,ε u k u l + n i T ε δ kl = -ε∇ x • F k n i=1 m i n i,ε |u| 2 2 + n i,ε 3 2 T + η i (T ) q i (T ) + n i=1 u • ∇ x m i n i,ε |u| 2 2 + n i,ε 5 2 T + η i (T ) q i (T ) = -ε∇ x • G,
where

D (i) = M i,ε g i,ε m i vdvdI, F k = n i=1 M i,ε g i,ε m i v k vdvdI, and 
G = n i=1 M i,ε g i,ε m i v 2 2 + I dvdI.
Inserting the expression of g i,ε obtained in (1.40) in the definitions of the above coefficients, one can obtain by thorough calculations the Dufour effect being a part of G, and the Soret effect being a part of D (i) .

Stationary Boltzmann Equation

In Chapter 4, we study the existence and uniqueness of a solution to the stationary Boltzmann equation given as

v 1 ∂f ∂x = Q(f, f ), x ∈ (0, ε), (1.41) 
with inflow boundary conditions. The expression of the collision operator Q for a single polyatomic gas is described in (1.11). The existence result depends on the smallness of ε, and is based on the Banach fixed point argument. This equation refers to the physical situation of a gas confined between two parallel planes of condensed phase kept at a fixed temperature, where ε is a small parameter representing the distance between these planes. The model is supposed to be space homogeneous in the directions of the parallel planes, where we consider the space variable x ∈ (0, ε). That is, for f being the distribution function over the phase space: time

t ∈ R + , position x ∈ R, velocity v ∈ R 3 ,
and internal energy

I ∈ R + , we assume that f (x, a, b) = f (x, c, d) for a fixed x ∈ (0, ε) and (a, b) ∈ R 2 , (c, d) ∈ R 2 .
With the scaling x → εx, the stationary problem reads

v 1 ∂f ∂x = εQ(f, f ), x ∈ (0, 1).
We present now the various physical boundary conditions that have been studied in the literature. The different mathematical translations of these boundary conditions are given in the following section.

Boundary Conditions

We present in this section the boundary conditions set to describe the physical behavior of the gas at the boundaries of a slab. Yet, for a general geometric domain one can refer to [START_REF] Cercignani | The Mathematical Theory of Dilute Gases[END_REF] for a detailed explanation. The mathematical boundary conditions are referred to as given in data, diffusive, specular, and Maxwell boundary conditions. Given in data means that the gas can condense or evaporate. Specular boundary conditions refer to the situation where when hitting the boundary, the gas particles take a symmetrical pathway with respect to the normal vector of the boundary. When a gas is non-condensable, and molecules accommodate until they get the temperature of the plane, diffuse boundary conditions have to be used. Maxwell boundary conditions are a combination of specular and diffusive conditions.

Inflow Boundary Conditions

The inflow boundary condition describes the possibility of gas condensation and evaporation on the two planes. In particular, the inflow boundary value problem is

v 1 ∂f ∂x = εQ(f, f ), x ∈ (0, 1), f (0, v, I) = f L (0, v, I), v 1 > 0, f (1, v, I) = f R (1, v, I), v 1 < 0 (1.42)
where f L and f R are the prescribed conditions on the left and right plane respectively.

Diffusive Boundary Conditions

When there is neither condensation nor evaporation of the gas, and the gas accommodates at the boundary planes, the diffuse boundary conditions are

f (0, v, I) = M (0, v, I) v 1 <0 |v 1 |f (0, v, I)dvdI, f (1, v, I) = M (1, v, I) v 1 >0 |v 1 |f (1, v, I)dvdI 1.5.1.

Specular Boundary Conditions

The specular boundary condition studies the reflective behavior of a gas when hitting the planes [START_REF] Cercignani | The Mathematical Theory of Dilute Gases[END_REF]. In particular, if a gas particle hits a boundary, then it bounces back with the opposite normal velocity and the same tangential velocity

f (t, x, v, I) = f (t, x, v -2(n.v)n), x = 0, 1,
n being the normal vector to the parallel planes directed outwards. That is, in this case where the spatial domain is a slab, n = (±1, 0, 0).

Maxwell Boundary Conditions

The stationary Boltzmann equation subject to Maxwell Boundary conditions describes the behavior of a gas with a convex combination of the specular and the diffusive boundary conditions, where the combination parameter, called the accommodation coefficient, α ∈ [0, 1]. The distribution function f on the boundary is given as

f (0, v, I) =αM (0, v, I) v 1 <0 |v 1 |f (0, v, I)dvdI + (1 -α)f (t, 0, v -2(n.v)n) f (1, v, I) =αM (1, v, I) v 1 >0 |v 1 |f (1, v, I)dvdI + (1 -α)f (t, 1, v -2(n.v)n)
where again, n is the unit normal to the parallel planes, directed outwards the domain.

Chapter 2

Fredholm Property of the Linearized

Boltzmann Operator

The sections of this chapter represent the results of the following papers respectively : [46] Stéphane Brull, Marwa Shahine, and Philippe Thieullen. Fredholm property of the linearized Boltzmann operator for a mixture of polyatomic gases, preprint.

Noticing that the title of the first paper is restricted to diatomic gases, we remark that the result of the first paper covers all non-vibrating linear gases as well, where for both cases α = 0. In addition, the results of [START_REF] Brull | Fredholm property of the linearized boltzmann operator for a mixture of polyatomic gases[END_REF] have been presented in HYP2022 and RGD conferences and submitted as proceedings.

History of the Problem

The Fredholm property of the linearized Boltzmann operator is useful for deriving the hydrodynamic limits of the Boltzmann equation [START_REF] Bardos | Fluid dynamic limits of kinetic equations ii convergence proofs for the boltzmann equation[END_REF][START_REF] Baranger | On the Chapman-Enskog asymptotics for a mixture of monoatomic and polyatomic rarefied gases[END_REF][START_REF] Bisi | Formal passage from kinetic theory to incompressible Navier-Stokes equations for a mixture of gases[END_REF][START_REF] Bisi | Incompressible navier-stokes equations from boltzmann equations for reacting mixtures[END_REF] and for obtaining existence results [START_REF] Guo | The vlasov-maxwell-boltzmann system near maxwellians[END_REF][START_REF] Liu | Energy method for boltzmann equation[END_REF][START_REF] Duan | Global bounded solutions to the boltzmann equation for a polyatomic gas[END_REF]. The approach of proving the Fredholm property is by writing the linearized Boltzmann operator as a compact perturbation of the collision frequency multiplication operator, and proving the latter to be coercive. In the literature, different arguments and characterizations were used to prove the compactness part based on the nature of the gas. In this section, we present an overview of the arguments used for a single monatomic gas, a mixture of monatomic gases, and polyatomic gases. For a single monatomic gas with angular cut-off, Grad [START_REF] Grad | Asymptotic theory of the Boltzmann equation II[END_REF] proved that the perturbation operator K is compact by proving it a Hilbert-Schmidt operator. For obtaining the kernel form of K, he used the Carleman representation. He then proved that the 4-th iterated integral kernel is L 2 integrable, which implies that the kernel of K itself is L 2 integrable. The definition of the iterated kernel of an operator is the following Definition 8. Let Ω 1 and Ω 2 be two connected subsets of R n , n ≥ 1 and let A be an integral operator with integral kernel A, written as

Aφ(x) = Ω 1 A(x, t)φ(t)dt where (x, t) ∈ Ω 1 × Ω 2 .
The m -th iterated kernel (or repeated kernel) is defined as

A m (x, s) A 1 (x, s) = A(x, s), A m (x, t) = Ω 1 A m-1 (x, t)A(t, s)dt.
Grad [START_REF] Grad | Asymptotic theory of the Boltzmann equation II[END_REF] proved the L 2 integrability of the 4-th iterate of the perturbation operator K, which implies the Hilbert-Schmidt property of K by the following proposition Proposition 9. ( [START_REF] Smirnov | A course of higher mathematics[END_REF][START_REF] Mikhlin | Linear integral equations[END_REF]) Let A be as in the previous definition. If one iterate of A is continuous or square-integrable, then all the iterates are continuous, respectively, squareintegrable.

In [START_REF] Drange | The linearized boltzmann collision operator for cut-off potentials[END_REF][START_REF] Glassey | Differential Equations and Dynamical Systems[END_REF], the result of Grad [START_REF] Grad | Asymptotic theory of the Boltzmann equation II[END_REF] was generalized to cover soft potentials as well, where the operator K was also written in the Carleman representation so that the integral kernel is inspected. Recently K was proved to be compact for a single polyatomic gas in [START_REF] Bernhoff | Linearized Boltzmann collision operator: II. Polyatomic molecules modeled by a continuous internal energy variable[END_REF], where hard potential with cut-off models were considered, and in [START_REF] Bernhoff | Linearized Boltzmann collision operator: I. Polyatomic molecules modeled by a discrete internal energy variable and multicomponent mixtures[END_REF] for a single polyatomic gas with discrete internal energy and a mixture of monatomic gases, and [START_REF] Bernhoff | Compactness property of the linearized boltzmann collision operator for a multicomponent polyatomic gas[END_REF] for a mixture of polyatomic gases with discrete internal energy. The argument used by [START_REF] Bernhoff | Linearized Boltzmann collision operator: II. Polyatomic molecules modeled by a continuous internal energy variable[END_REF][START_REF] Bernhoff | Linearized Boltzmann collision operator: I. Polyatomic molecules modeled by a discrete internal energy variable and multicomponent mixtures[END_REF][START_REF] Bernhoff | Compactness property of the linearized boltzmann collision operator for a multicomponent polyatomic gas[END_REF][START_REF] Drange | The linearized boltzmann collision operator for cut-off potentials[END_REF][START_REF] Glassey | Differential Equations and Dynamical Systems[END_REF] is explicitly expressed in the following proposition.

Proposition 10. Let f ∈ L 2 (R 3 ), and let K and K (n) be two operators defined by Kf (x) = k(x, y)f (y)dy, and

K (n) f (x) = k (n) (x, y)f (y)dy,
where n ∈ N, k (n) = χ Ωn k with χ Ωn the characteristic function of Ω n , and Ω n being a sequence of measurable subsets R 6 . If

1. k(x, y)dx is bounded in y, 2. k ∈ L 2 (Ω n
) for all n, and 3. sup

(v,ω) lim n→∞ k -k (n) dy = 0,
then K is a compact operator.

In fact, if the three conditions of the above proposition hold, then K is the norm limit of K (n) which is a compact operator (see the proof in [START_REF] Glassey | Differential Equations and Dynamical Systems[END_REF]). This implies that K itself is compact. In fact, the chosen Ω n in [START_REF] Glassey | Differential Equations and Dynamical Systems[END_REF][START_REF] Drange | The linearized boltzmann collision operator for cut-off potentials[END_REF] was

Ω n = {(x, y) : |x -y| ≥ 1 n and |y| ≤ n}.
For a mixture of monatomic gases, the compactness problem has been studied in [START_REF] Boudin | Diffusion asymptotics of a kinetic model for gaseous mixtures[END_REF][START_REF] Pavić | Mathematical modelling and analysis of polyatomic gases and mixtures in the context of kinetic theory of gases and fluid mechanics[END_REF][START_REF] Bernhoff | Linearized Boltzmann collision operator: I. Polyatomic molecules modeled by a discrete internal energy variable and multicomponent mixtures[END_REF]. When molecular masses of species are equal, the proof follows using the approach of Grad [START_REF] Grad | Asymptotic theory of the Boltzmann equation II[END_REF][START_REF] Grad | Asymptotic theory of the boltzmann equation[END_REF]. However, a new approach for molecules with different masses has been introduced in [START_REF] Boudin | Diffusion asymptotics of a kinetic model for gaseous mixtures[END_REF][START_REF] Pavić | Mathematical modelling and analysis of polyatomic gases and mixtures in the context of kinetic theory of gases and fluid mechanics[END_REF]. The approach is based on a new way of performing the change of variable in velocity. In addition, the compactness property was investigated for a single polyatomic gas, whose molecules undergo resonance, where each of the kinetic energy and internal energy is conserved in [START_REF] Borsoni | Compactness property of the linearized boltzmann operator for a polyatomic gas undergoing resonant collisions[END_REF]. In both cases, a mixture of monatomic (except [START_REF] Bernhoff | Linearized Boltzmann collision operator: I. Polyatomic molecules modeled by a discrete internal energy variable and multicomponent mixtures[END_REF] where the previous argument of compactness was used), and a single polyatomic resonant model, the following characterization of compact operators was used.

Proposition 11 ([39], corollary 4.27). Let K be a bounded subset of L 2 (R 3 ). If the two following properties hold for every u ∈ K

1. R 3 |u(x + y) -u(x)| 2 dx → 0 uniformly in u as y → 0 2. (B 0 (R)) c |u(x)|dx → 0 uniformly as R → ∞,
then K is relatively compact.

Case of Polyatomic Non-Vibrating Linear Gases

Non-vibrating linear polyatomic gases have 5 degrees of freedom, and therefore the parameter α defined in the introduction of the thesis (8) vanishes. The Boltzmann collision operator then takes the form (1.13). Without loss of generality, we will assume in the sequel that the molecular mass m = 1.

Main Assumptions on the Transition Function

Together with the assumption (1.12), we assume the following boundedness assumptions on B. In particular, for a given γ ≥ 0 we assume

γ ≥ 0, Φ γ (r, R) |v -v * | γ + I γ 2 + I γ 2 * ≤ B(v, v * , I, I * , r, R, σ), (2.1) 
and

γ ≥ 0, B(v, v * , I, I * , r, R, σ) ≤ Ψ γ (r, R) |v -v * | γ + I γ 2 + I γ 2 * , (2.2) 
where we assume that Φ γ are positive functions such that

Φ γ ≤ Ψ γ ,
and

Φ γ (r, R) = Φ γ (1 -r, R), Ψ γ (r, R) = Ψ γ (1 -r, R). (2.3)
In fact, for -1 < γ < 0, we will prove that K remains compact under the following upper bound assumption (soft potential like models when inequality is replaced with equality)

on B -2 < γ < 0, B(v, v * , I, I * , r, R, σ) ≤ Ψ γ (r, R) E γ/2 , (2.4) 
with assumptions (2.3), and(2.5) on Ψ γ . In addition to the above assumptions, we need the following integrability condition on Ψ γ (whether -2 < γ < 0 or γ ≥ 0 ) in order to prove the compactness part in Theorem 12.

Ψ 2 γ (r, R)(1 -r) -1-γ r -1 R(1 -R) -γ ∈ L 1 ((0, 1) 2 ). (2.5)
Due to the symmetry of Ψ γ in r (2.3), we notice that (2.5) is equivalent to say

Ψ 2 γ (r, R)r -1-γ (1 -r) -1 R(1 -R) -γ ∈ L 1 ((0, 1) 2 ). (2.6)

The Linearized Boltzmann Operator

The local Maxwellian function that represents the equilibrium state of a non-vibrating linear polyatomic gas and is denoted by M n,u,T (v, I), and given by

M n,u,T (v, I) = n (2πκT ) 3 2 kT e -1 κT ( 1 2 (v-u) 2 +I) , (2.7) 
where n, u, and T in (2.7) are the number of atoms per unit volume, the hydrodynamic velocity, and the temperature respectively. In particular,

n = R 3 R + f dIdv, nu = R 3 R + vf dIdv, 5 2 nT = R 3 R + (v -u) 2 2 + I f dIdv.
Without loss of generality, we will consider in the sequel the global version M 1,0,1 of M n,u,T , by assuming κT = n = 1 and u = 0. For the sake of simplicity, the index will be dropped.

In particular,

M (v, I) = M 1,0,1 (v, I) = 1 (2π) 3 2 e -1 2 v 2 -I . (2.8)
We consider the linearization of the Boltzmann equation of polyatomic gases around the Maxwellian function (2.8), where we look for a solution f around M having the form

f (v, I) = M (v, I) + M 1 2 (v, I)g(v, I).
(2.9)

The linearization of the Boltzmann operator (1.13) around M (2.9) leads to introduce the linearized Boltzmann operator L given as

Lg = M -1 2 [Q(M, M 1 2 g) + Q(M 1 2 g, M )],
In particular, L writes

Lg = M -1 2 ∆ M ′ M ′ 1 2 B(1 -R)R 1/2 drdRdσdI * dv * .
Thanks to the conservation of total energy (1.9) we have M M * = M ′ M ′ * , and so L has the explicit form:

L(g) = - ∆ BM 1 2 M 1 2 * g * (1 -R)R 1/2 drdRdσdI * dv * - ∆ BM * g(1 -R)R 1/2 drdRdσdI * dv * + ∆ BM 1 2 * M ′ 1 2 g ′ * (1 -R)R 1/2 drdRdσdI * dv * + ∆ BM 1 2 * M ′ 1 2 * g ′ (1 -R)R 1/2 drdRdσdI * dv * .
Here, ∆ refers to the open set R 3 × R + × S 2 × (0, 1) 2 . In addition, L can be written in the form

L = K -ν Id, where Kg = ∆ BM 1 2 * M ′ 1 2 g ′ * (1 -R)R 1/2 drdRdσdI * dv * + ∆ BM 1 2 * M ′ 1 2 * g ′ (1 -R)R 1/2 drdRdσdI * dv * - ∆ BM 1 2 M 1 2 * g * (1 -R)R 1/2 drdRdσdI * dv * , (2.10) 
and

ν(v, I) = ∆ BM * (1 -R)R 1/2 drdRdσdI * dv * , (2.11) 
which represents the collision frequency. We write also K as

K = K 3 + K 2 -K 1 with K 1 = ∆ BM 1 2 M 1 2 * g * (1 -R)R 1/2 drdRdσdI * dv * , (2.12 
)

K 2 = ∆ BM 1 2 * M ′ 1 2 g ′ * (1 -R)R 1/2 drdRdσdI * dv * , (2.13) 
and

K 3 = ∆ BM 1 2 * M ′ 1 2 * g ′ (1 -R)R 1/2 drdRdσdI * dv * . (2.14) 
The linearized operator L is a symmetric operator, with kernel

ker L = M 1/2 span {1, v i , 1 2 v 2 + I} i = 1, • • • , 3.
Since L is symmetric and ν Id is self-adjoint on

Dom(ν Id) = {g ∈ L 2 (R 3 × R + ) : νg ∈ L 2 (R 3 × R + )},
then K is symmetric. In the following section, we prove that K is a bounded compact

operator on L 2 (R 3 × R + ). Hence, L is a self adjoint operator on Dom (L) = Dom(ν Id).
In section 2.2.4 we prove that ν is coercive, and therefore by Theorem 1, L is a Fredholm

operator on L 2 (R 3 × R + ).

Main Result

We give now the main result on the linearized Boltzmann operator based on assumptions (2.1),(2.2),(2.3), (2.5), and (2.4) on the transition function B. In particular, using (2.1)

for γ ≥ 0 we prove that the multiplication operator by ν Id is coercive and using (2.2),

(2.3), and (2.5), we prove that K is Hilbert-Schmidt. This leads to the Fredholm property of L on L 2 (R 3 × R + ). Moreover for -1 < γ < 0, under assumptions (2.4),(2.3), and (2.5),

K is a compact operator from L 2 (R 3 × R + ) to L 2 (R 3 × R + ).
The following theorem is the main result of this chapter. The compactness of K is due to Theorem 2.

Theorem 12. Based on the range of γ, we have the following results

1. For γ ≥ 0, under assumptions (2.2), (2.3), and (2.5), the operator K of nonvibrating linear polyatomic gases defined in (2.10) is a Hilbert-Schmidt operator from

L 2 (R 3 × R + ) to L 2 (R 3 × R + )
, and the multiplication operator by ν is coercive. As a result, the linearized Boltzmann operator L is an unbounded self adjoint Fredholm

operator from Dom(L) =Dom(ν Id) ⊂ L 2 (R 3 × R + ) to L 2 (R 3 × R + ).
2. For -1 < γ < 0, under assumptions (2.4),(2.3), and

(2.5), K is a compact operator from L 2 (R 3 × R + ) to L 2 (R 3 × R + ).
We remark that we carry out the proof of the coercivity of ν Id in section 2.2.4, and we dedicate the following proof for the compactness of K.

Proof. Throughout the proof, we prove the compactness of each

K i with i = 1, • • • , 3
separately.

Compactness of K 1 . The compactness of K 1 is straightforward as K 1 already possesses a kernel form. Thus, we can inspect the operator kernel of K 1 (2.12) to be

k 1 (v, I, v * , I * ) = 1 (2π) 3 2 S 2 ×(0,1) 2 Be -1 4 v 2 * -1 4 v 2 -1 2 I * -1 2 I (1 -R)R 1/2 drdRdσ,
and therefore

K 1 g(v, I) = R 3 ×R + g (v * , I * ) k 1 (v, I, v * , I * ) dI * dv * ∀(v, I) ∈ R 3 × R + .
If B is constant in |v -v * |, I, and I * (the case of Maxwell-type molecules), then K 1 is a rank one operator and thus compact. However, in general, we give the following lemma that yields the compactness of K 1 .

Lemma 13. Using assumption (2.2) for γ ≥ 0 and (2.4) for -1 < γ < 0 on B, together with (2.5), the function

k 1 ∈ L 2 (R 3 × R + × R 3 × R + ).
Proof. Applying Cauchy-Schwarz we get

||k 1 || 2 L 2 ≤ c R 3 R + R 3 R + (I γ + I γ * + |v -v * | 2γ )e -1 2 v 2 * -1 2 v 2 -I * -I dIdvdI * dv *
For γ ≥ 0 we use assumptions (2.2) and (2.5) to get

≤ c 0 + c R 3 e -1 2 v 2 * |v-v * |≤1 e -1 2 v 2 dv + |v-v * |≥1 |v -v * | ⌈2γ⌉ e -1 2 v 2 dv dv * ≤ c 0 + c R 3 e -1 2 v 2 *   |v-v * |≥1 ⌈2γ⌉ k=0 |v| k |v * | ⌈2γ⌉-k e -1 2 v 2 dv   dv * ≤ c 0 + c ⌈2γ⌉ k=0 R 3 |v * | ⌈2γ⌉-k e -1 2 v 2 * R 3 |v| k e -1 2 v 2 dv dv * < ∞,
where ⌈2γ⌉ is the ceiling of 2γ, and c, c 0 > 0 are generic constants. For -1 < γ < 0, we use assumptions (2.4) and (2.5) to obtain

||k 1 || 2 L 2 ≤ c (R + ×R 3 ) 2 (I + I * + |v -v * |) γ e -1 2 |v * | 2 -1 2 |v| 2 -I * -I dIdvdI * dv * .
As γ < 0, the inequality

(I + I * + |v -v * |) γ ≤ I γ/2 I γ/2 *
holds. Therefore we get

||k 1 || 2 L 2 ≤ c (R + ) 2 I γ/2 I γ/2 * e -I * -I dIdI * < ∞.
This implies that K 1 is a Hilbert-Schmidt operator, and thus compact. We prove now the compactness of K 2 , similarly by proving it to be a Hilbert-Schmidt operator.

Compactness of K 2 . Additional work is required to inspect the kernel form of K 2 , since the kernel is not obvious.

We thus write K 2 as

K 2 g(v, I) = ∆ e -I * 2 -1 2 r(1-R) (v-v * ) 2 4 +I+I * -1 4 v 2 * -1 4 v+v * 2 + √ R( 1 4 (v-v * ) 2 +I+I * ) σ 2 × g v + v * 2 -R( 1 4 (v -v * ) 2 + I + I * )σ, (1 -R)(1 -r) 1 4 (v -v * ) 2 + I + I * 1 (2π) 3 2 (1 -R)R 1 2 B drdRdσdI * dv * .
(2.15)

We seek first to write K 2 in its kernel form. For this, we define h v,I,r,R,σ ; where for simplicity the index will be omitted; as

h : R 3 × R + -→ h(R 3 × R + ) ⊂ R 3 × R + (v * , I * ) -→ (x, y) = v + v * 2 -R( 1 4 (v -v * ) 2 + I + I * )σ, (1 -R)(1 -r) 1 4 (v -v * ) 2 + I + I * ,
for fixed v,I,r,R, and σ. The function h is invertible, and (v * , I * , v ′ , I ′ ) can be expressed in terms of (x, y) as

v * = 2x + 2 Rayσ -v, I * = ay -I -(x -v + Rayσ) 2 ,
and v ′ = x + 2 Rayσ, I ′ = r 1 -r y,
where a =

1 (1-r)(1-R) . The Jacobian of h -1 is computed as J = ∂v * ∂I * ∂x∂y = 8 (1 -r)(1 -R) ,
and the positivity of I * restricts the variation of the variables (x, y) in integral (2.15) over the space

H v,I R,r,σ = h(R 3 × R + ) = {(x, y) ∈ R 3 × R + : ay -I -(x -v + Rayσ) 2 > 0}. (2.16)
In fact, H v,I R,r,σ can be explicitly expressed as

H v,I R,r,σ = {(x, y) ∈ R 3 × R + : x ∈ B v- √ Rayσ ( ay -I) and y ∈ ((1 -r)(1 -R)I, +∞)}.
Therefore, equation (2.15) becomes

K 2 g = 1 (2π) 3 2 (0,1) 2 ×S 2 H v,I R,r,σ (1 -R)R 1 2 J Bg(x, y)× e -ay-I-(x-v+ √ Rayσ) 2 2 -r 2(1-r) y-1 4 (2x+2 √ Rayσ-v) 2 -1 4 (x+2 √ Rayσ) 2
dydxdσdrdR.

(2.17)

We now point out the kernel form of K 2 and prove after by the help of assumption

(2.2) that the kernel of K 2 is in L 2 (R 3 ×R + ×R 3 ×R + )
. Indeed, we recall the definition of ∆, with ∆ := R 3 × R + × S 2 × (0, 1) × (0, 1), and we define H v,I to be

H v,I := {(y, x, σ, r, R) ∈ ∆ : R ∈ (0, 1), r ∈ (0, 1), σ ∈ S 2 , x ∈ B v- √ Rayσ ( ay -I), and y ∈ ((1 -r)(1 -R)I, +∞)}.
We remark that H v,I R,r,σ is a slice of H v,I , and we define the slice H v,I x,y ⊂ (0, 1) × (0, 1) × S 2 such that

H v,I = H v,I x,y × R 3 × R + which is equivalent to H v,I = (0, 1) × (0, 1) × S 2 × H v,I R,r,σ .
In other words,

H v,I x,y = {(r, R, σ) ∈ (0, 1) × (0, 1) × S 2 : (y, x, σ, r, R) ∈ H v,I }.
Then by Fubini theorem, we have

K 2 g(v, I) = 1 (2π) 3 2 H v,I (1 -R)R 1 2 J Bg(x, y)× e -ay-I-(x-v+ √ Rayσ) 2 2 -r 2(1-r) y-1 4 (2x+2 √ Rayσ-v) 2 -1 4 (x+2 √ Rayσ) 2 dydxdσdrdR = 1 (2π) 3 2 R 3 ×R + H v,I x,y (1 -R)R 1 2 J Bg(x, y)× e -ay-I-(x-v+ √ Rayσ) 2 2 -r 2(1-r) y-1 4 (2x+2 √ Rayσ-v) 2 -1 4 (x+2 √ Rayσ) 2 dσdrdRdydx.
The kernel of K 2 is thus inspected and written explicitly in the following lemma.

Lemma 14. With the assumption (2.2) on B, the kernel of K 2 given by

k 2 (v, I, x, y) = 1 (2π) 3 2 H v,I x,y (1 -R)R 1 2 J B× e -ay-I-(x-v+ √ Rayσ) 2 2 -r 2(1-r) y-1 4 (2x+2 √ Rayσ-v) 2 -1 4 (x+2 √ Rayσ) 2 dσdrdR is in L 2 ( R 3 ×R + ×R 3 ×R + ).
Proof. Applying Cauchy-Schwarz inequality we get

∥k 2 ∥ 2 L 2 ≤ c R 3 R + R 3 R + H v,I x,y (1 -R) 2 RJ 2 B 2 × e -[ay-I-(x-v+ √ Rayσ) 2 ]-r (1-r) y-1 2 (2x+2 √ Rayσ-v) 2 -1 2 (x+2 √ Rayσ) 2 drdRdσdydxdIdv.
By means of h -1 we have then

∥k 2 ∥ 2 L 2 ≤ c (R + ×R 3 ) 2 (0,1) 2 ×S 2 e -I * -1 2 v 2 * -r(1-R) |v-v * | 2 4 +I+I * -1 2 v+v * 2 + √ R( 1 4 |v-v * | 2 +I+I * )σ 2 × R(1 -R) 2 JB 2 drdRdσdI * dv * dIdv.
If γ ≥ 0, we use assumption (2.2) on B together with the inequality

|v -v * | 2γ + I γ + I γ * ≤ cE γ , (2.18) 
and if -1 < γ < 0, we use assumption (2.4). In both cases we get

∥k 2 ∥ 2 L 2 ≤ c (0,1) 2 ×S 2 (R + ×R 3 ) 2 e -I * -1 2 |v * | 2 -r(1-R) |v-v * | 2 4 +I+I * -1 2 v+v * 2 + √ R( 1 4 |v-v * | 2 +I+I * )σ 2 × Ψ 2 γ (r, R)E γ R(1 -R) 2 JRdIdvdI * dv * drdRdσ. (2.19)
Perform now the change of variable

I -→ E = I + I * + 1 4 |v -v * | 2 , then as dI = dE, (2.19) becomes ∥k 2 ∥ 2 L 2 ≤ c (0,1) 2 ×S 2 (R + ×R 3 ) 2 e -I * -1 2 |v * | 2 -r(1-R)E-1 2 v+v * 2 + √ REσ 2 × Ψ 2 γ (r, R)(1 -r) -1 (1 -R)RE γ dEdvdI * dv * drdRdσ = c (0,1) 2 R 3 (R + ) 2 e -I * -1 2 |v * | 2 -r(1-R)E S 2 R 3 e -1 2 v+v * 2 + √ REσ 2 dvdσ × Ψ 2 γ (r, R)(1 -r) -1 (1 -R)RE γ dEdI * dv * drdR. Let Ṽ = v 2 + v * 2 + √ REσ.
Performing this change of variable in v, we get

∥k 2 ∥ 2 L 2 ≤ c (0,1) 2 R 3 (R + ) 2 e -I * -1 2 |v * | 2 -r(1-R)E R 3 S 2 e -1 2 | Ṽ | 2 d Ṽ dσ × Ψ 2 γ (r, R)(1 -r) -1 (1 -R)RE γ dEdI * dv * drdR.
(2.20)

Therefore the integral in (2.20) becomes

∥k 2 ∥ 2 L 2 ≤ (0,1) 2 R + E γ e -r(1-R)E dE Ψ 2 γ (r, R)(1 -r) -1 (1 -R)RdrdR ≤ c (0,1) 2 Ψ 2 γ (r, R)r -1-γ (1 -r) -1 R(1 -R) -γ drdR.
(2.21)

The last term in (2.21) is finite thanks to (2.5).

We give the following remark for more details on the above computations.

Remark 15. For any a, b, c ∈ {0, γ, 2γ}, by using the spherical coordinates of (v -v * ) we have

R 3 R + R 3 R + I a I b * |v -v * | c e -I * -1 2 v 2 * -r(1-R) (v-v * ) 2 4 -r(1-R)I dIdvdI * dv * = R + I b * e -I * dI * R + I a e -r(1-R)I dI R 3 R 3 |v -v * | c e -r(1-R) (v-v * ) 2 4 dv e -1 2 v 2 * dv * ≤ C[r(1 -R)] -a-1 [r(1 -R)] -c+3 2 ,
for some C > 0.

The lemma is thus proved, which implies that K 2 is a Hilbert-Schmidt operator.

Compactness of K 3 . The proof of the compactness of K 3 (2.14) is very similar to that of K 2 . The operator K 3 which has the explicit form

K 3 g(v, I) = ∆ e -I * 2 -1 2 (1-r)(1-R) (v-v * ) 2 4 +I+I * e -1 4 v 2 * -1 4 v+v * 2 - √ R( 1 4 (v-v * ) 2 +I+I * ) σ 2 g v + v * 2 + R( 1 4 (v -v * ) 2 + I + I * )σ, r(1 -R) 1 4 (v -v * ) 2 + I + I * 1 (2π) 3 2 R 1 2 (1 -R)B drdRdσdI * dv * ,
inherits the same form as K 2 , with a remark that the Jacobian of the transformation

h : R 3 × R + -→ R 3 × R + (v * , I * ) -→ (x, y) = v + v * 2 + R( 1 4 (v -v * ) 2 + I + I * )σ, r(1 -R) 1 4 (v -v * ) 2 + I + I * , is calculated to be J = 8 r(1 -R) .
The final requirement for the kernel of K 3 to be L 2 integrable is

Ψ 2 γ (r, R)(1 -r) -1-γ r -1 R(1 -R) -γ < ∞,
which holds by (2.6).

To this extent, the perturbation operator K is proved to be Hilbert-Schmidt, and thus K is a bounded compact operator. As a result, the linearized operator L is a self-adjoint operator.

Properties of the Collision Frequency

We give in this section some properties of ν. The first is the coercivity property, which implies that L is a Fredholm operator, and we prove the monotony of ν which depends on the choice of the transition function B. The latter property is used for locating the essential spectrum of L. 

ν(v, I) = ∆ Be -I * -1 2 v 2 * drdRdσdI * dv * ,
where, by (2.1) we get

ν(v, I) ≥ c S 2 R 3 |v -v * | γ +I γ/2 e -1 2 v 2 * dσdv * ≥ c I γ/2 + R 3 ||v| -|v * || γ e -1 2 v 2 * dv * ,
where c is a generic constant. We consider the two cases, |v| ≥ 1 and |v| ≤ 1.

If |v| ≥ 1 we have ν(v, I) ≥ c I γ/2 + |v * |≤ 1 2 |v| (|v| -|v * |) γ e -1 2 v 2 * dv * ≥ c I γ/2 + |v| γ |v * |≤ 1 2 e -1 2 v 2 * dv * ≥ c(|v| γ + I γ/2 + 1). For |v| ≤ 1, ν(v, I) ≥ c I γ/2 + |v * |≥2 (|v * | -|v|) γ e -1 2 v 2 * dv * ≥ c I γ/2 + |v * |≥2 e -1 2 v 2 * dv * ≥ c(1 + I γ/2 + |v| γ ).
The result is thus proved. We give now the following proposition, which is a generalization of the work of Grad [START_REF] Grad | Asymptotic theory of the Boltzmann equation II[END_REF], in which he proved that the collision frequency of monoatomic single gases is monotonic based on the choice of the transition function B.

The Single Gas Case In General

We extend now the results of the previous section, to the case of any polyatomic gas where α defined in (8) may not necessarily vanish.

Main Assumptions on the Transition Function

In order to prove the Fredholm property of the linearized Boltzmann operator for a single polyatomic gas, we assume together with (1.12) the following boundedness assumptions on the transition function B. In particular, for γ ≥ 0 we assume

γ ≥ 0, Φ γ (r, R) |v -v * | γ + I γ 2 + I γ 2 * ≤ B(v, v * , I, I * , r, R, σ), (2.22) 
and

γ ≥ 0, B(v, v * , I, I * , r, R, σ) ≤ Ψ γ (r, R) |v -v * | γ + I γ 2 + I γ 2 * . (2.23) 
For -1 < γ < 0, we prove that K remains compact under the following upper bound assumption on B (representing soft potential like models when inequality is replaced with an equality)

-1 < γ < 0, B(v, v * , I, I * , r, R, σ) ≤ Ψ γ (r, R) E γ/2 , (2.24) 
For both cases of γ (γ ≥ 0 or -1 < γ < 0), we assume that Φ γ and Ψ γ are positive functions such that

Φ γ ≤ Ψ γ , and 
Φ γ (r, R) = Φ γ (1 -r, R), Ψ γ (r, R) = Ψ γ (1 -r, R). (2.25)
In addition, Ψ γ satisfies the following

Ψ 2 γ (r, R)(1 -r) 2α-1-γ r α-1 R(1 -R) 3α-γ ∈ L 1 ((0, 1) 2 ). (2.26)
In fact, though assumption (2.26) seems to be strict, it covers several physical models.

In addition, one may notice that for bigger values of α or smaller values of γ, condition (2.26) covers a wider class of functions Ψ γ .

Examples

In [START_REF] Gamba | On the Cauchy problem for Boltzmann equation modeling a polyatomic gas[END_REF], for γ ∈ (0, 2], and an angular function b(cos(θ)) ∈ L 1 ([0, π]) the following transition function model was suggested

B (v, v * , I, I * , r, R, σ) = b σ • v -v * |v -v * | (|v -v * | γ + I γ/2 + I γ/2 * ), (2.27) 
which is equivalent to the model

B (v, v * , I, I * , r, R, σ) = b σ • v -v * |v -v * | E γ/2 .
In addition, the following models were suggested

B (v, v * , I, I * , r, R, σ) = b σ • v -v * |v -v * | R γ 2 |v -v * | γ + (1 -R) γ 2 (I + I * ) γ 2
(2.28)

and

B (v, v * , I, I * , r, R, σ) = b σ• v -v * |v -v * | R γ 2 |v -v * | γ + (r(1 -R)I) γ 2 +((1 -r)(1 -R)I * ) γ 2 .
(2.29)

The above models satisfy assumptions (2. 

Φ γ (r, R) = Ψ γ (r, R) = 1,
for model (2.28)

Φ γ (r, R) = min{R, (1 -R)} γ 2 , and Ψ γ (r, R) = max{R γ 2 , (r(1 -R)) γ 2 },
and for model (2.29)

Φ γ (r, R) = min{R, (1 -R)} γ 2 min{r, (1 -r)} γ 2 , and Ψ γ (r, R) = max{R γ 2 , (r(1 -R)) γ 2 }.
In [START_REF] Djordjić | Polytropic gas modelling at kinetic and macroscopic levels[END_REF], the authors considered the class of transition functions having the expression

B = b σ • v -v * |v -v * | R γ 2 |v -v * | γ + (r(1 -R)I) γ 2 + ((1 -r)(1 -R)I * ) γ 2 , (2.30) 
where b(cos θ) was assumed to be L 1 integrable while establishing the first six fields equations, whereas b was assumed constant for the fourteen moments model.

Remark 17. In comparison to the result of [START_REF] Bernhoff | Linearized Boltzmann collision operator: II. Polyatomic molecules modeled by a continuous internal energy variable[END_REF], the compactness of K was proved to be valid in [START_REF] Bernhoff | Linearized Boltzmann collision operator: II. Polyatomic molecules modeled by a continuous internal energy variable[END_REF] without such restrictions on γ, and under an assumption on B that governs the above models suggested in [START_REF] Gamba | On the Cauchy problem for Boltzmann equation modeling a polyatomic gas[END_REF]. Yet for proving the Hilbert-Schmidt property of K, the restriction α > 1 4 is needed. In our approach, the assumption α > γ 2 is rather needed.

The Linearized Boltzmann Operator

We state first the H-theorem for polyatomic gases which was initially established in [START_REF] Bourgat | Microreversible collisions for polyatomic gases and boltzmann's theorem[END_REF].

In particular, the entropy production functional

D(f ) = R 3 R + Q(f, f ) log f dIdv ≤ 0,
and the following are equivalent 1. The collision operator Q(f, f ) vanishes, i.e. Q(f, f )(v, I) = 0 for every v ∈ R 3 and

I ≥ 0.
2. The entropy production vanishes, i.e. D(f ) = 0.

3. There exists T > 0, n > 0, and u ∈ R 3 such that

f (v, I) = n (2π) 3 2 Γ(α + 1)(κT ) α+ 5 2 I α e -1 kT ( 1 2 |v-u| 2 +I) , (2.31) 
where κ in (2.31) is the Boltzmann constant. The linearization of the Boltzmann equation of polyatomic gases could be taken around the local Maxwellian function, which represents the equilibrium state of a gas and is denoted by M n,u,T (v, I), and given by

M n,u,T (v, I) = n (2π) 3 2 Γ(α + 1)(κT ) α+ 5 2 I α e -1 κT ( 1 2 |v-u| 2 +I) , (2.32) 
where n, u, and T in (2.32) are the number of molecules per unit volume, the hydrodynamic velocity, and the temperature respectively. In particular,

n = R 3 R + f dIdv, nu = R 3 R + vf dIdv, α + 5 2 nκT = R 3 R + |v -u| 2 2 +I f dIdv.
Without loss of generality, we will consider in the sequel a normalized version M 1,0,1 , by assuming κT = n = 1 and u = 0. For the sake of simplicity, the index will be dropped.

In particular,

M (v, I) = M 1,0,1 (v, I) = 1 (2π) 3 2 Γ(α + 1) I α e -1 2 |v| 2 -I . (2.33)
We look for a solution f around M defined in (2.33) having the form

f (v, I) = M (v, I) + M 1 2 (v, I)g(v, I).
The linearization of the Boltzmann operator (1.11) around M leads to introduce the linearized Boltzmann operator L given as

Lg = M -1 2 [Q(M, M 1 2 g) + Q(M 1 2 g, M )].
More explicitly, L writes

Lg = M -1 2 ∆ M ′ M ′ * 1 2 (I ′ * ) α (I ′ ) α g ′ * (I ′ * ) α - M M 1 2 * I α I α * g * I α * + M ′ * M ′ 1 2 (I ′ * ) α (I ′ ) α g ′ (I ′ ) α - M * M 1 2 I α * √ I α g √ I α × (r(1 -r)) α (1 -R) 2α+1 R 1/2 I α I α * B drdRdσdI * dv * .
Thanks to the conservation of total energy (1.9) we have

M I α M * I α * = M ′ (I ′ ) α M ′ * (I ′ * ) α
, and so L has the following form:

L(g) = -I -α 2 ∆ g * I α 2 * M 1 2 I α 2 M 1 2 * I α 2 * (r(1 -r)) α (1 -R) 2α+1 R 1/2 I α I α * B drdRdσdI * dv * -I -α ∆ g M * I α * (r(1 -r)) α (1 -R) 2α+1 R 1/2 I α I α * B drdRdσdI * dv * + I -α 2 ∆ g ′ * (I ′ * ) α 2 M 1 2 * I α 2 * M ′ 1 2 (I ′ ) α 2 (r(1 -r)) α (1 -R) 2α+1 R 1/2 I α I α * B drdRdσdI * dv * + I -α 2 ∆ g ′ (I ′ ) α 2 M 1 2 * I α 2 * M ′ 1 2 * (I ′ * ) α 2 (r(1 -r)) α (1 -R) 2α+1 R 1/2 I α I α * B drdRdσdI * dv * .
Here, ∆ refers to the open set (0, 1) 2 × S 2 × R + × R 3 . The operator L can be written in the form

L = K -ν Id, where ν(v, I) = I -α ∆ M * I α * (r(1 -r)) α (1 -R) 2α+1 R 1/2 I α I α * B drdRdσdI * dv * , (2.34) 
represents the collision frequency. We write also K as

K = K 3 + K 2 -K 1 with K 1 g = I -α 2 ∆ g * I α 2 * M 1 2 I α 2 M 1 2 * I α 2 * (r(1 -r)) α (1 -R) 2α+1 R 1/2 I α I α * B drdRdσdI * dv * , (2.35) 
K 2 g = I -α 2 ∆ g ′ * (I ′ * ) α 2 M 1 2 * I α 2 * M ′ 1 2 (I ′ ) α 2 (r(1 -r)) α (1 -R) 2α+1 R 1/2 I α I α * B drdRdσdI * dv * , (2.36) 
and

K 3 g = I -α 2 ∆ g ′ (I ′ ) α 2 M 1 2 * I α 2 * M ′ 1 2 * (I ′ * ) α 2 (r(1 -r)) α (1 -R) 2α+1 R 1/2 I α I α * B drdRdσdI * dv * . (2.37)
The linearized operator L is a symmetric operator, with kernel

ker L = M 1/2 span{1, v i , 1 2 |v| 2 + I} i = 1, 2, 3. (2.38) 
Since L is symmetric and ν Id is self-adjoint on

Dom(ν Id) = {g ∈ L 2 (R 3 × R + ) : νg ∈ L 2 (R 3 × R + )},
then K is symmetric. In the following section, we prove that K is a bounded compact operator on L 2 (R 3 ×R + ). Hence, L is a self-adjoint operator on Dom (L) = Dom(ν Id). In section 2.3.4 we prove that ν is coercive, and therefore, the coercivity of ν and the boundedness of the symmetric operator K, imply that L is a Fredholm operator on L 2 (R 3 × R + ).

Main Result

We state the following theorem, which is the main result of this section. 

(L) = Dom (ν Id) ⊂ L 2 (R 3 × R + ) to L 2 (R 3 × R + ).
2. For -1 < γ < 0, under assumptions (2.24),(2.25), and (2.26), K is a compact

operator from L 2 (R 3 × R + ) to L 2 (R 3 × R + ).
Proof. We give the proof of compactness of K for both cases of γ (γ ≥ 0 and -1 < γ < 0) right after the following corollary. In addition, we prove that ν is coercive for γ ≥ 0 in Section 5. As a result, by Theorem 4. under assumption (2.22) ν is coercive, we can deduce the following corollary (see [START_REF] Golse | The boltzmann equation and its hydrodynamic limits[END_REF] in the monatomic case).

Corollary 19. For γ ≥ 0, there exists C > 0 such that, for each ϕ ∈ L 2 (νdvdI), the following coercivity estimate holds

R 3 ×R + ϕL(ϕ)dvdI ≥ C R 3 ×R + (ϕ -Pϕ) 2 ν(v, I)dvdI,
where P is the orthogonal projection on ker L given in (2.38).

The proof of the corollary is similar to that in the monatomic case [START_REF] Golse | The boltzmann equation and its hydrodynamic limits[END_REF]. Therefore, we only give the proof of Theorem 1. We carry out the proof of the coercivity of ν Id in section 2.3.4, and we dedicate the rest of this section to the proof of the compactness of K.

Proof of compactness of K We will prove the compactness of each K i , with i = 1, 2, 3, separately.

Compactness of K 1 . The compactness of K 1 is straightforward as K 1 already possesses a kernel form. Thus, we can inspect the operator kernel of K 1 (2.35) to be

k 1 (v, I, v * , I * ) = 1 Γ(α + 1)(2π) 3 2 (0,1) 2 ×S 2 (r(1 -r)) α (1 -R) 2α+1 R 1/2 I α 2 I α 2 * × Be -1 4 |v * | 2 -1 4 |v| 2 -1 2 I * -1 2 I drdRdσ,
and therefore

K 1 g(v, I) = R 3 ×R + g (v * , I * ) k 1 (v, I, v * , I * ) dv * dI * ∀(v, I) ∈ R 3 × R + .
We give the following lemma that yields the compactness of K 1 .

Lemma 20. With the assumption (2.23) on B, the function

k 1 ∈ L 2 (R 3 × R + × R 3 × R + ).
Proof. Applying Cauchy-Schwarz inequality we get

||k 1 || 2 L 2 ≤ c R 3 R + R 3 R + I α I α * (r(1 -r)) 2α (1 -R) 4α+2 RB 2 e -1 2 |v * | 2 -1 2 |v| 2 -I * -I dIdvdI * dv * .
For γ ≥ 0 we use assumption (2.23) to get

||k 1 || 2 L 2 ≤ c R 3 R + R 3 R + I α I α * (I γ + I γ * + |v -v * | 2γ )e -1 2 |v * | 2 -1 2 |v| 2 -I * -I dIdvdI * dv * ≤ c R 3 e -1 2 |v * | 2 |v-v * |≤1 e -1 2 |v| 2 dv + |v-v * |≥1 |v -v * | ⌈2γ⌉ e -1 2 |v| 2 dv dv * ≤ c R 3 e -1 2 |v * | 2   |v-v * |≥1 ⌈2γ⌉ k=0 |v| k |v * | ⌈2γ⌉-k e -1 2 |v| 2 dv   dv * ≤ c ⌈2γ⌉ k=0 R 3 |v * | ⌈2γ⌉-k e -1 2 |v * | 2 R 3 |v| k e -1 2 |v| 2 dv dv * < ∞,
where ⌈2γ⌉ is the ceiling of 2γ.

For -1 < γ < 0, we use assumption (2.24) to obtain

||k 1 || 2 L 2 ≤ c R 3 R + R 3 R + I α I α * (I + I * + |v -v * |) γ e -1 2 |v * | 2 -1 2 |v| 2 -I * -I dIdvdI * dv * ,
and using the inequality (because γ < 0)

(I + I * + |v -v * |) γ ≤ I γ/2 I γ/2 *
we get,

||k 1 || 2 L 2 ≤ c R + R + I α+γ/2 I α+γ/2 * e -I * -I dIdI * < ∞,
This implies that K 1 is a Hilbert-Schmidt operator, and thus compact.

We prove now the compactness of K 2 , similarly by proving it to be a Hilbert-Schmidt Operator.

Compactness of K 2 . Additional work is required to inspect the kernel form of K 2 , since the kernel is not obvious as K 2 is given explicitly as

K 2 g(v, I) = ∆ I ′-α 2 * e -I * 2 -1 2 r(1-R) |v-v * | 2 4 +I+I * -1 4 v 2 * -1 4 v+v * 2 + √ R( 1 4 |v-v * | 2 +I+I * ) σ 2 × g v + v * 2 -R( 1 4 |v -v * | 2 + I + I * )σ, (1 -R)(1 -r) 1 4 |v -v * | 2 + I + I * 1 Γ(α + 1)(2π) 3 2 (r(1 -r)) α (1 -R) 2α+1 R 1/2 I α 2 I α * B drdRdσdI * dv * . (2.39)
Therefore, for extracting the kernel of K 2 , the change of variable we perform is

(v * , I * ) → (v ′ * , I ′ * )
where for avoiding confusions in parameters we will denote by (x, y) ∈ R 3 × R + the final variables (v ′ * , I ′ * ). In particular,

x = v + v * 2 -R( 1 4 (v -v * ) 2 + I + I * )σ, y = (1 -R)(1 -r) 1 4 (v -v * ) 2 + I + I * .
Therefore, we define the change of variable map h v,I,r,R,σ ; where for simplicity the index will be omitted; as

h : R 3 × R + -→ h(R 3 × R + ) ⊂ R 3 × R + (v * , I * ) -→ (x, y) = v + v * 2 -R( 1 4 (v -v * ) 2 + I + I * )σ, (1 -R)(1 -r) 1 4 (v -v * ) 2 + I + I * , (2.40) 
with v,I,r,R, and σ being fixed. The function h is invertible, and (v * , I * , v ′ , I ′ ) can be expressed in terms of (x, y) as

v * = 2x + 2 Rayσ -v, I * = ay -I -(x -v + Rayσ) 2 ,
and

v ′ = x + 2 Rayσ, I ′ = r 1 -r y,
where a =

1 (1-r)(1-R) .
Lemma 21. The Jacobian of h (2.40) is

J = ∂v * ∂I * ∂x∂y = 1 8 (1 -r)(1 -R). (2.41) 
Proof. For computing the Jacobian of h, we pass by the intermediate change of variable

(v * , I * ) → (v * , E) → (x, y).
The Jacobian of the first map is unity as we recall that E is given in terms of I * as

E = 1 4 (v -v * ) 2 + I + I * .
For the second map, we shall write (x, y) in terms of (v * , E) as

x = v + v * 2 - √ REσ, y = (1 -R)(1 -r)E. J = ∂x∂y ∂v * ∂E = ∂x 1 ∂v * 1 ∂x 1 ∂v * 2 ∂x 1 ∂v * 3 ∂x 1 ∂E ∂x 2 ∂v * 1 ∂x 2 ∂v * 2 ∂x 2 ∂v * 3 ∂x 2 ∂E ∂x 3 ∂v * 1 ∂x 3 ∂v * 2 ∂x 3 ∂v * 3 ∂x 3 ∂E ∂y ∂v * 1 ∂y ∂v * 2 ∂y ∂v * 3 ∂y ∂E = 1 2 0 0 - √ R 2 √ E σ 1 0 1 2 0 - √ R 2 √ E σ 2 0 0 1 2 - √ R 2 √ E σ 3 0 0 0 (1 -r)(1 -R) = 1 8 (1 -r)(1 -R).
since the latter matrix is upper triangular.

Noticing that the Jacobian J depends on r and R only, instead of an additional dependence on v, I and σ yields less complications in the proof of the L 2 integrability of the kernel of K 2 . The positivity of I * restricts the variation of the variables (x, y) in integral (2.39) over the space

H v,I R,r,σ = h(R 3 × R + ) = {(x, y) ∈ R 3 × R + : ay -I -(x -v + Rayσ) 2 > 0}. (2.42)
In fact, H v,I R,r,σ can be explicitly expressed as

H v,I R,r,σ = {(x, y) ∈ R 3 × R + : x ∈ B v- √ Rayσ ( ay -I) and y ∈ ((1 -r)(1 -R)I, +∞)}.
Therefore, equation (2.39) becomes

K 2 g = 1 Γ(α + 1)(2π) 3 2 (0,1) 2 ×S 2 H v,I R,r,σ y -α 2 (r(1 -r)) α (1 -R) 2α+1 R 1/2 I α 2 I α * BJ g(x, y)e -ay-I-(x-v+ √ Rayσ) 2 2 -r 2(1-r) y-1 4 (2x+2 √ Rayσ-v) 2 -1 4 (x+2 √ Rayσ) 2
dydxdσdrdR.

(2.43)

Now we point out the kernel form of K 2 and prove after by the help of assumption (2.23) that the kernel of K 2 is in L 2 (R 3 ×R + ×R 3 ×R + ). Indeed, we recall the definition of ∆, with 3 , and we define H v,I to be

∆ := (0, 1) 2 × S 2 × R + × R
H v,I := {(R, r, σ, x, y) ∈ ∆ : R ∈ (0, 1), r ∈ (0, 1), σ ∈ S 2 , x ∈ B v- √ Rayσ ( ay -I), and y ∈ ((1 -r)(1 -R)I, +∞)}.
We remark that H v,I R,r,σ is a slice of H v,I , and we define the slice H v,I x,y ⊂ (0, 1) × (0, 1) × S 2 such that H v,I = H v,I

x,y × R 3 × R + . In particular, H v,I x,y = {(r, R, σ) ∈ (0, 1) × (0, 1) × S 2 : (y, x, σ, r, R) ∈ H v,I }.

Then by Fubini theorem, the following holds

K 2 g(v, I) = 1 Γ(α + 1)(2π) 3 2 H v,I y -α 2 (r(1 -r)) α (1 -R) 2α+1 R 1/2 I α 2 I α * BJg(x, y)× e -ay-I-(x-v+ √ Rayσ) 2 2 -r 2(1-r) y-1 4 (2x+2 √ Rayσ-v) 2 -1 4 (x+2 √ Rayσ) 2 drdRdσdxdy = 1 Γ(α + 1)(2π) 3 2 R 3 ×R + H v,I x,y y -α 2 (r(1 -r)) α (1 -R) 2α+1 R 1/2 I α 2 I α * BJ g(x, y)e -ay-I-(x-v+ √ Rayσ) 2 2 -r 2(1-r) y-1 4 (2x+2 √ Rayσ-v) 2 -1 4 (x+2 √ Rayσ) 2
drdRdσdydx.

The kernel of K 2 is thus inspected and written explicitly in the following lemma.

Lemma 22. With the assumption (2.23) on B, the kernel of K 2 given by

k 2 (v, I, x, y) = 1 Γ(α + 1)(2π) 3 2 H v,I x,y y -α 2 (r(1 -r)) α (1 -R) 2α+1 R 1/2 I α 2 I α * BJ e -ay-I-(x-v+ √ Rayσ) 2 2 -r 2(1-r) y-1 4 (2x+2 √ Rayσ-v) 2 -1 4 (x+2 √ Rayσ) 2 drdRdσ is in L 2 ( R 3 ×R + ×R 3 ×R + ).
Proof. Applying Cauchy-Schwarz inequality we get

∥k 2 ∥ 2 L 2 ≤ c R 3 R + R 3 R + H v,I x,y y -α (r(1 -r)) 2α (1 -R) 4α+2 RI α I 2α * J 2 B 2 e -[ay-I-(x-v+ √ Rayσ) 2 ]-r (1-r) y-1 2 (2x+2 √ Rayσ-v) 2 -1 2 (x+2 √ Rayσ) 2 drdRdσdydxdIdv.
By means of h -1 we have then

∥k 2 ∥ 2 L 2 ≤ c R 3 R + R 3 R + (0,1) 2 ×S 2 E -α e -I * -1 2 |v * | 2 -r(1-R) |v-v * | 2 4 +I+I * I α I 2α * JB 2 × e -1 2 v+v * 2 + √ R( 1 4 |v-v * | 2 +I+I * )σ 2 × r 2α (1 -r) α (1 -R) 3α+2 RdrdRdσdI * dv * dIdv. (2.44)
Using the inequality

I α ≤ 1 4 |v -v * | 2 + I + I * α = E α , (2.45) 
we eliminate E -α and I α from the above integral. Furthermore, if γ ≥ 0, we use assumption (2.23) on B together with the inequality

(v -v * ) 2γ + I γ + I γ * ≤ cE γ , (2.46) 
and if -1 < γ < 0, we use assumption (2.24). In both cases we get

∥k 2 ∥ 2 L 2 ≤ c (0,1) 2 ×S 2 R 3 R + R 3 R + e -I * -1 2 |v * | 2 -r(1-R) |v-v * | 2 4 +I+I * × e -1 2 v+v * 2 + √ R( 1 4 |v-v * | 2 +I+I * )σ 2 Ψ 2 γ (r, R)E γ × r 2α (1 -r) α (1 -R) 3α+2 JRI 2α
* dIdvdI * dv * drdRdσ.

(2.47)

We remark that choosing α to be the power of the measure of integral (1.11), is essential for eliminating I α from (2.44), which is not integrable. This elimination is possible thanks to (2.45). Perform now the change of variable

I -→ E = I + I * + 1 4 |v -v * | 2 , then as dI = dE, (2.47) becomes ∥k 2 ∥ 2 L 2 ≤ c (0,1) 2 ×S 2 R 3 R + R 3 R + e -I * -1 2 |v * | 2 -r(1-R)E-1 2 v+v * 2 + √ REσ 2 Ψ 2 γ (r, R)r 2α (1 -r) α-1 (1 -R) 3α+1 RI 2α * E γ dEdvdI * dv * drdRdσ = c (0,1) 2 R 3 R + R + e -I * -1 2 |v * | 2 -r(1-R)E S 2 R 3 e -1 2 v+v * 2 + √ REσ 2 dvdσ Ψ 2 γ (r, R)r 2α (1 -r) α-1 (1 -R) 3α+1 RI 2α * E γ dEdI * dv * drdR. Let Ṽ = v 2 + v * 2 + √ REσ, then ∥k 2 ∥ 2 L 2 ≤ c (0,1) 2 R 3 R + R + e -I * -1 2 |v * | 2 -r(1-R)E R 3 S 2 e -1 2 | Ṽ | 2 d Ṽ dσ Ψ 2 γ (r, R)r 2α (1 -r) α-1 (1 -R) 3α+1 RI 2α * E γ dEdI * dv * drdR.
(2.48)

Therefore the integral in (2.48) becomes

∥k 2 ∥ 2 L 2 ≤ (0,1) 2 R + E γ e -r(1-R)E dE Ψ 2 γ (r, R)r 2α (1 -r) α-1 (1 -R) 3α+1 RdrdR ≤ c (0,1) 2 Ψ 2 γ (r, R)r 2α-1-γ (1 -r) α-1 R(1 -R) 3α-γ drdR.
By (2.26), the integral

(0,1) 2 Ψ 2 γ (r, R)r 2α-1-γ (1 -r) α-1 R(1 -R) 3α-γ drdR < ∞. (2.49)
This implies that K 2 is a Hilbert-Schmidt operator.

Compactness of K 3 . The proof of the compactness of K 3 (2.37) is similar to that of K 2 .

The operator K 3 which has the explicit form

K 3 g(v, I) = ∆ e -I * 2 -1 2 (1-r)(1-R) |v-v * | 2 4 +I+I * e -1 4 |v * | 2 -1 4 v+v * 2 - √ R( 1 4 |v-v * | 2 +I+I * ) σ 2 I ′-α g v + v * 2 + R( 1 4 |v -v * | 2 + I + I * )σ, r(1 -R) 1 4 |v -v * | 2 + I + I * 1 Γ(α + 1)(2π) 3 2 (r(1 -r)) α (1 -R) 2α+1 R 1/2 I α 2 I α * B drdRdσdI * dv * ,
inherits the same form as K 2 , with a remark that the Jacobian of the needed transformation

h : R 3 × R + -→ R 3 × R + (v * , I * ) -→ (x, y) = v + v * 2 + R( 1 4 |v -v * | 2 + I + I * )σ, r(1 -R) 1 4 |v -v * | 2 + I + I * , is calculated to be J = 8 r(1 -R) .
For the kernel of K 3 to be L 2 integrable, the final computations require

Ψ 2 γ (r, R)(1 -r) 2α-1-γ r α-1 R(1 -R) 3α-γ ∈ L 1 ((0, 1) 2 ).
(2.50)

Applying the change of variable r → 1 -r, and using the symmetry assumption (2.25) of Ψ γ , (2.50) is satisfied by (2.26).

To this extent, the perturbation operator K is proved to be Hilbert-Schmidt, and thus K is a bounded compact operator.

Properties of the Collision Frequency

In this section, we give some properties of ν. The first is the coercivity property, which implies that L is a Fredholm operator, and we prove the monotony of ν which depends on the choice of the transition function B. The latter property is usually used in the monatomic case for locating the essential spectrum of L (see [START_REF] Cercignani | The Boltzmann Equation and Its Applications[END_REF] Chapter 4). for any γ ≥ 0. As a result, the multiplication operator ν Id is coercive.

Proof. The collision frequency (2.34) is

ν(v, I) = 1 Γ(α + 1)(2π) 3 2 ∆ BI α * (r(1 -r)) α (1 -R) 2α+1 R 1/2 e -I * -1 2 |v * | 2 drdRdσdI * dv * ,
where, by (2.22) we get

ν(v, I) ≥ c α R 3 |v -v * | γ + I γ/2 e -1 2 |v * | 2 dv * ≥ c α I γ/2 + R 3 ||v| -|v * || γ e -1 2 |v * | 2 dv * ,
where c is a generic constant. We consider the two cases, |v| ≥ 1 and |v| ≤ 1.

If |v| ≥ 1 we have ν(v, I) ≥ c α I γ/2 + |v * |≤ 1 2 |v| (|v| -|v * |) γ e -1 2 |v * | 2 dv * ≥ c α I γ/2 + |v| γ |v * |≤ 1 2 e -1 2 |v * | 2 dv * ≥ c α (|v| γ + I γ/2 + 1). For |v| ≤ 1, ν(v, I) ≥ c α I γ/2 + |v * |≥2 (|v * | -|v|) γ e -1 2 |v * | 2 dv * ≥ c α I γ/2 + |v * |≥2 e -1 2 |v * | 2 dv * ≥ c α (1 + I γ/2 + |v| γ ).
As a result of Theorem 1 and Proposition 4, L is a Fredholm operator for γ ≥ 0 under assumptions (2.22),(2.23), (2.25), and (2.26). We now give the following proposition, which is a generalization of the work of Grad [START_REF] Grad | Asymptotic theory of the Boltzmann equation II[END_REF], in which he proved that the collision frequency of monatomic single gases is monotonic based on the choice of the transition function B.

Proposition 24 (monotony of ν). Under the assumption that In particular, for Maxwell molecules, where B is constant in |V | and I, ν is constant. On the other hand, for transition functions of the form

(0,1) 2 ×S 2 (r(1 -r)) α (1 -R) 2α+1 R 1/2 B(|V |, I, I * , r, R, σ)drdRdσ (2.
B(v, v * , I, I * , r, R, σ) = Φ γ (r, R) |v -v * | γ + I γ 2 + I γ 2 * , integral (2.51
) is increasing, and thus ν is increasing, where C > 0, γ ≥ 0, and Φ γ is a positive function such that

Φ γ (r, R) = Φ γ (1 -r, R),
and

Φ γ (r, R)(r(1 -r)) α R 1 2 (1 -R) 2α+1 ∈ L 1 ((0, 1) 2 ).
In fact, if Φ γ for instance satisfies

Φ 2 γ (r, R)r α-1 (1 -r) 2α-1-γ R(1 -R) 3α-γ ∈ L 1 ((0, 1) 2 )
then this transition function satisfies our main assumptions (2.22)-(2.26).

Proof. We remark first that ν is a radial function in |v| and I. In fact, we perform the change of variable V = v -v * in the integral (2.34), where the expression of ν becomes

ν(|v|, I) = 1 Γ(α + 1)(2π) 3 2 ∆ B(|V |, I, I * , r, R, σ)I α * (r(1 -r)) α (1 -R) 2α+1 R 1/2 e -1 2 |v-V | 2 -I * drdRdσdI * dV, (2.52) 
where ∆ = R 3 × R + × S 2 × (0, 1) 2 . The integration in V in the above integral (2.52) is carried in the spherical coordinates of V , with fixing one of the axes of the reference frame along v, and therefore, the above integral will be a function of |v| and I. The partial derivative of ν in the v i direction is

∂ν ∂v i = I α * (r(1 -r)) α (1 -R) 2α+1 R 1/2 Γ(α + 1)(2π) 3 2 v i -v * i |v -v * | ∂B ∂|v -v * | (|v -v * |, I, I * , r, R, σ)× e -1 2 |v * | 2 -I * drdRdσdI * dv * .
(2.53)

Perform the change of variable V = v -v * in (2.53), then

∂ν ∂v i = I α * (r(1-r)) α (1-R) 2α+1 R 1/2 Γ(α + 1)(2π) 3 2 V i |V | ∂B ∂|V | (|V |, I, I * , r, R, σ)e -1 2 |v-V | 2 -I * drdRdσdI * dV,
and thus,

3 i=1 v i ∂ν ∂v i = I α * (r(1 -r)) α (1 -R) 2α+1 R 1/2 Γ(α + 1)(2π) 3 2 v.V |V | ∂B ∂|V | (|V |, I, I * , r, R, σ)× e -1 2 |v-V | 2 -I * drdRdσdI * dV.
(2.54) Applying Fubini's theorem, we write (2.54) as

3 i=1 v i ∂ν ∂v i = (r(1 -r)) α (1 -R) 2α+1 R 1/2 ∂B ∂|V | (|V |, I, I * , r, R, σ)drdRdσ I α * Γ(α + 1)(2π) 3 2 v • V |V | e -1 2 |v-V | 2 -I * dI * dV.
The partial derivative of ν along I is

∂ν ∂I = I α * (r(1 -r)) α (1 -R) 2α+1 R 1/2 Γ(α + 1)(2π) 3 2 ∂B ∂I (|V |, I, I * , r, R, σ)e -1 2 |v-V | 2 -I * drdRdσdI * dV = I α * Γ(α + 1)(2π) 3 2 (r(1 -r)) α (1 -R) 2α+1 R 1/2 ∂B ∂I (|V |, I, I * , r, R, σ)drdRdσ × e -1 2 |v-V | 2 -I * dI * dV. (2.55) 
When v • V > 0, the exponential in integral (2.54) is greater than when v • V < 0, and so the term v • V doesn't affect the sign of the partial derivatives of ν. Therefore, the sign of the partial derivative of ν along |v| has the same sign as

(r(1 -r)) α (1 -R) 2α+1 R 1/2 ∂B ∂|V | (|V |, I, I * , r, R, σ)drdRdσ.
It's clear as well that the partial derivative of ν with respect to I (2.55) has the same sign as

(r(1 -r)) α (1 -R) 2α+1 R 1/2 ∂B ∂I (|V |, I, I * , r, R, σ)drdRdσ.
As a result, for a transition function B satisfying the condition that the integral

(0,1) 2 ×S 2 (r(1 -r)) α (1 -R) 2α+1 R 1/2 B(|V |, I, I * , r, R, σ)drdRdσ
is increasing (respectively decreasing) in |V | and I, the collision frequency is increasing (respectively decreasing).

and

Φ ij (r, R) = Φ ji (1 -r, R), Ψ ij (r, R) = Ψ ji (1 -r, R).
(2.59)

In addition, Ψ ij we assume the following conditions

Ψ 2 ij (r, R)r α i +α j -1-γ ij (1 -r) α j -1 (1 -R) α i +2α j -γ ij R ∈ L 1 ((0, 1) 2 ), (2.60) 
and 

Ψ 2 ij (r, R)r α i -1 (1 -r) 2α j -γ ij -1 (1 -R) α i +2α j -γ ij R ∈ L 1 ((0, 1) 2 ). ( 2 

Models of the transition function B ij

Suppose that γ ij < α i + α j , and α j > 0, then the following models for mixtures, extended from the single gas models suggested in [START_REF] Gamba | On the Cauchy problem for Boltzmann equation modeling a polyatomic gas[END_REF] 

B ij (v, v * , I, I * , r, R, σ) = c µ ij 2 |v -v * | γ ij + I γ ij /2 + I γ ij /2 * , (2.62) 
B ij (v, v * , I, I * , r, R, σ) = R γ ij /2 |v -v * | γ ij + (1 -R) γ ij /2 (I + I * ) γ ij /2 , (2.63) 
and

B ij (v, v * , I, I * , r, R, σ) = c µ ij 2 R γ ij /2 |v-v * | γ ij + (r(1-R)I) γ ij /2 + ((1-r)(1-R)I * ) γ ij /2
(2.64) satisfy (2.57) by taking for model (2.62)

Φ ij (r, R) = Ψ ij (r, R) = Ψ ij (r, R) = 1,
for model (2.63)

Φ γ ij (r, R) = min{R, (1 -R)} γ ij /2 , and Ψ γ ij (r, R) = max{R, (1 -R)} γ ij /2 ,
and for model (2.64)

Φ ij (r, R) = min{R, 1 -R} γ ij /2 min{r, 1 -r} γ ij /2 , and Ψ ij (r, R) = max{R, 1 -R} γ ij /2 .

The Linearized Boltzmann Operator

The Maxwellian function which represents the equilibrium state of the i -th species of the gas and is denoted by M i (v, I), and given by

M i (v, I) = n i (m i ) 3 2 
(2π)

3 2 Γ(α i + 1) 1 (κT ) α i + 5 2 I α i e -1 κT ( m i 2 (v-u) 2 +I) , (2.65) 
where κ is the Boltzmann constant, and n i , u, and T are the number of molecules per unit volume, the hydrodynamic velocity, and the temperature respectively. Without loss of generality, we will consider in the sequel a normalized version of M i , by assuming κT = n i = 1 and u = 0. In particular, we will linearize the Boltzmann equation around the following global Maxwellian function

M i (v, I) = (m i ) 3 2 (2π) 3 2 
Γ(α i + 1)

I α i e -m i 2 v 2 -I . (2.66) 
We look for a solution f i around M i (2.66) having the form

f i (t, x, v, I) = M i (v, I) + M 1/2 i (v, I)g i (t, x, v, I).
The linearization of the Boltzmann operator around M i leads to introduce the linearized Boltzmann operator L applied on g = (g

1 , • • • , g n ), with Lg = ([Lg] 1 , • • • , [Lg] n ),
where

[Lg] i = n j=1 M -1 2 i [Q ij (M i , M 1 2 j g j ) + Q ij (M 1/2 i g i , M j )].
In particular, [Lg] i writes

[Lg] i = n j=1 M -1 2 i ∆ M ′ i (M ′ j * ) 1 2 I ′α i I ′α j * g ′ j * I ′α j * - M i M 1 2 j * I α i I α j * g j * I α j * + M ′ j * (M i ′ ) 1 2 I ′α j * √ I ′α i g ′ i √ I ′α i - M j * M 1/2 i I α j * √ I α i g i √ I α i r α i (1 -r) α j (1 -R) α i +α j +1 R 1/2 I α i I α j * B ij drdRdσdI * dv * .
Thanks to the conservation of total energy (1.17) we have M i

I α i M j * I α j * = M ′ i I ′α i M ′ j * I ′α j *
, and so [Lg] i has the following form

[Lg] i = - n j=1 ∆ I -α i 2 g j * I α j /2 * M 1/2 i I α i /2 M 1/2 j * I α j /2 * r α i (1 -r) α j (1 -R) α i +α j +1 R 1/2 I α i I α j * B ij drdRdσdI * dv * -I -α i g i M j * I α j * r α i (1 -r) α j (1 -R) α i +α j +1 R 1/2 I α i I α j * B ij drdRdσdI * dv * + I -α i 2 g ′ j * (I ′ * ) α j /2 M 1/2 j * I α j /2 * (M ′ i ) 1/2 (I ′ ) α i /2 r α i (1 -r) α j (1 -R) α i +α j +1 R 1/2 I α i I α j * B ij drdRdσdI * dv * + I -α i 2 g ′ i I ′α i /2 M 1/2 j * I α j /2 * (M ′ j * ) 1/2 (I ′ * ) α j /2 r α i (1 -r) α j (1 -R) α i +α j +1 R 1/2 I α i I α j * B ij drdRdσdI * dv * .
Here, ∆ refers to the open set (0, 1) 2 × S 2 × R + × R 3 . In addition, L can be written in the form

L = K -ν Id,
where the i-th component of ν is

ν i = n j=1 I -α i ∆ M j * I α j * r α i (1 -r) α j (1 -R) α i +α j +1 R 1/2 I α i I α j * B ij drdRdσdI * dv * , (2.67)
which represents the collision frequency of the i-th species. We write also the i-th com-

ponent of Kg as [K] i as [K] i = [K 3 ] i + [K 2 ] i -[K 1 ] i with [K 1 g] i = n j=1 I -α i 2 ∆ g j * I α j /2 * M 1/2 i I α i /2 M 1/2 j * I α j /2 * r α i (1-r) α j (1-R) α i +α j +1 R 1/2 I α i I α j * B ij drdRdσdI * dv * , (2.68) [K 2 g] i = n j=1 I -α i 2 ∆ g ′ j * (I ′ * ) α j /2 M 1/2 j * I α j /2 * (M ′ i ) 1/2 (I ′ ) α i /2 r α i (1 -r) α j (1 -R) α i +α j +1 R 1/2 I α i I α j * × B ij drdRdσdI * dv * , (2.69) 
and

[K 3 g] i = n j=1 I -α i 2 ∆ g ′ i (I ′ ) α i /2 M 1/2 j * I α j /2 * (M ′ j * ) 1/2 (I ′ * ) α j /2 r α i (1 -r) α j (1 -R) α i +α j +1 R 1/2 I α i I α j * × B ij drdRdσdI * dv * .
(2.70)

The i-th operator [L] i of the linearized operator L is a symmetric operator having kernel

ker [L] = {e k , mv 1 , mv 2 , mv 3 , m 2 v 2 + I}, k = 1, • • • , n, (2.71) 
where

e k = (δ ik ) i=1,••• ,n , m = (m 1 , • • • , m n ), and I = (I, • • • , I) ∈ R n + . Since L is symmet- ric and ν Id is self-adjoint on Dom(ν Id) = {g ∈ L 2 (R 3 × R + ) n : νg ∈ L 2 (R 3 × R + ) n },
then K is symmetric. In the following section, we prove that K is a compact operator on

L 2 (R 3 × R + ) n .
Hence, L is a self adjoint operator on Dom (L) = Dom(ν Id). In section 2.5.4 we prove that ν is coercive. Therefore, L is a compact perturbation of the Fredholm operator νId, and thus L is a Fredholm operator on L 2 (R 3 × R + ) n .

Main Result

We state the following theorem, which is the main result of this section. 

(R 3 × R + ) n to L 2 (R 3 × R + ) n ,
and the multiplication operator by ν is coercive. As a result, the linearized Boltzmann operator L is an unbounded self adjoint Fredholm operator from

Dom(L) =Dom(ν Id) ⊂ L 2 (R 3 × R + ) n to L 2 (R 3 × R + ) n .
2. For -1 < γ ij < 0, under assumptions (2.58),(2.59), (2.60), and

(2.61), K is a compact operator from L 2 (R 3 × R + ) n to L 2 (R 3 × R + ) n .
Proof. We give the proof of compactness of K for both cases of γ ij (γ ij ≥ 0 and -1 < γ ij < 0) right after the following corollary. In addition, we prove that ν is coercive for Corollary 27. For γ ij ≥ 0, and for every i ∈ {1, • • • , n}, there exists C > 0 such that, for each ϕ ∈ L 2 (ν i dvdI), the following coercivity estimate holds

γ ij ≥ 0 in
R 3 ×R + ϕ[L(ϕ)] i dvdI ≥ C R 3 ×R + (ϕ -P i ϕ) 2 ν i (v, I)dvdI,
where P is the orthogonal projection on ker [L] i .

The proof of the corollary is similar to that in the monatomic case [START_REF] Golse | The boltzmann equation and its hydrodynamic limits[END_REF]. Therefore, we only give the proof of Theorem 1. We carry out the proof of the coercivity of ν Id in Section 2.5.4, and we dedicate the rest of this section to the proof of the compactness of K.

Proof of compactness of K Throughout the proof, we prove the compactness of each

K l with l = 1, • • • , 3 separately.
Compactness of K 1 . The compactness of K 1 is straightforward as K 1 already possesses a kernel form. Thus, we can inspect the operator kernel of [K 1 ] i (2.68) to be

k ij 1 (v, I, v * , I * ) = (m i m j ) 3 4 Γ(α i + 1) 1/2 Γ(α j + 1) 1/2 (2π) 3 2 × (0,1) 2 ×S 2 r α i (1 -r) α j (1 -R) α i +α j +1 R 1/2 I α i /2 I α j /2 * × B ij e -m j 4 v 2 * - m i 4 v 2 -1 2 I * -1 2 I drdRdσ,
and therefore

[K 1 g] i (v, I) = n j=1 R 3 ×R + g j (v * , I * ) k ij 1 (v, I, v * , I * ) dI * dv * ∀(v, I) ∈ R 3 × R + .
We give the following lemma that yields the compactness of K 1 .

Lemma 28. Using assumptions (2.57), (2.58), (2.60), and (2.61) on B ij , the function

k ij 1 ∈ L 2 (R 3 × R + × R 3 × R + ).
Proof. Applying Cauchy-Schwarz inequality, we get

||k ij 1 || 2 L 2 ≤ c R 3 ×R + ∆ I α i I α j * B 2 ij e -m j 2 v 2 * - m i 2 v 2 -I * -I dIdvdrdRdσdI * dv *
For γ ij ≥ 0 we use assumptions (2.57) and either (2.60) or (2.61) to get

||k ij 1 || 2 L 2 ≤ c 0 +c (R 3 ×R + ) 2 I α i I α j * |v -v * | 2γ ij + I γ ij + I γ ij * e -m j 2 v 2 * - m i 2 v 2 -I * -I dIdvdI * dv * ≤ c 0 + c R 3 e -m j 2 v 2 * |v-v * |≤1 e -m i 2 v 2 dv + |v-v * |≥1 |v -v * | ⌈2γ ij ⌉ e -m i 2 v 2 dv dv * ≤ c 0 + c R 3 e -m j 2 v 2 *   |v-v * |≥1 ⌈2γ ij ⌉ k=0 |v| k |v * | ⌈2γ ij ⌉-k e -m i 2 v 2 dv   dv * ≤ c 0 + c ⌈2γ ij ⌉ k=0 R 3 |v * | ⌈2γ ij ⌉-k e -m j 2 v 2 * R 3 |v| k e -m i 2 v 2 dv dv * < ∞,
where ⌈2γ ij ⌉ is the ceiling of 2γ ij , and c 0 is such that

c (R + ×R 3 ) 2 I α i I α j * (I γ ij + I γ ij * )e -m j 2 |v * | 2 - m i 2 |v| 2 -I * -I dIdvdI * dv * ≤ c 0 .
On the other hand, for -1 < γ ij < 0, we use assumption (2.58) to obtain

||k 1 || 2 L 2 ≤ c R 3 R + R 3 R + I α i I α j * (I + I * + |v -v * |) γ ij e -1 2 |v * | 2 -1 2 |v| 2 -I * -I dIdvdI * dv * ,
and using the inequality (since γ ij < 0)

(I + I * + |v -v * |) γ ij ≤ I γ ij /2 I γ ij /2 *
we get,

||k 1 || 2 L 2 ≤ c R + R + I α i +γ ij /2 I α j +γ ij /2 * e -1 2 |v * | 2 -1 2 |v| 2 -I * -I dIdI * < ∞,
This implies that [K 1 ] i is a Hilbert-Schmidt operator, and thus compact. We prove now the compactness of [K 2 ] i , by proving it to be a Hilbert-Schmidt operator as well.

Compactness of [K 2 ] i . Additional work is required to inspect the kernel form of K 2 , since the kernel is not obvious. [K 2 ] i is written explicitly as

[K 2 g] i (v, I) = n j=1 (m i m j ) 3 4 Γ(α i + 1) 1/2 Γ(α j + 1) 1/2 (2π) 3 2 ∆ e -I * 2 -1 2 r(1-R) µ ij 2 (v-v * ) 2 +I+I * - m j 4 v 2 * × e - m i 4 
m i v+m j v * m i +m j + m j (m i +m j ) 2R µ ij ( µ ij 2 (v-v * ) 2 +I+I * )σ 2 × g j m i v + m j v * m i + m j - m i (m i + m j ) 2R µ ij µ ij 2 (v -v * ) 2 + I + I * σ, (1 -R)(1 -r) µ ij 2 (v -v * ) 2 + I + I * × r α i (1 -r) α j (1 -R) α i +α j +1 R 1/2 (I ′ * ) -α j /2 I α i /2 I α j * B ij drdRdσdI * dv * . (2.72)
We seek first to write [K 2 g] i in its kernel form. We notice that g is a direct function of

(v ′ * , I ′ *
), yet the integral is carried with respect to v * and I * . For extracting the kernel of K 2 , the change of variable we perform is (v * , I * ) → (v ′ * , I ′ * ). For avoiding confusions in parameters, we will denote by (x, y) ∈ R 3 × R + the final variables (v ′ * , I ′ * ). In particular,

x = m i v + m j v * m i + m j - m i (m i + m j ) 2R µ ij µ ij 2 (v -v * ) 2 + I + I * σ y = (1 -R)(1 -r) µ ij 2 (v -v * ) 2 + I + I * .
For this, we define h ij v,I,r,R,σ ; where for simplicity the index will be omitted; as

h : R 3 × R + -→ h(R 3 × R + ) ⊂ R 3 × R + (v * , I * ) -→ (x, y) = m i v + m j v * m i + m j - m i (m i + m j ) 2R µ ij µ ij 2 (v -v * ) 2 + I + I * σ, (1 -R)(1 -r) µ ij 2 (v -v * ) 2 + I + I * ,
for fixed v,I,r,R, and σ. The function h is invertible, and (v * , I * , v ′ , I ′ ) can be expressed in terms of (x, y) as

v * = m i + m j m j x + m i m j √ µ ij 2Rayσ - m i m j v, v ′ = x + 2 µ ij Rayσ,
and

I * = ay -I - µ ij 2 m i + m j m j x - m i m j + 1 v + m i m j √ µ ij 2Rayσ 2 , I ′ = r 1 -r y, where a = 1 (1-r)(1-R) .
Lemma 29. The Jacobian of h (2.40) is

J ij = ∂v * ∂I * ∂x∂y = m j m i + m j 3 (1 -r)(1 -R).
(2.73)

Proof. The proof is similar to that of Lemma 21. We pass by the intermediate change of variable

(v * , I * ) → (v * , E) → (x, y).
The Jacobian of the first map is unity, as we recall that E is given in terms of I * as

E = µ ij 2 (v -v * ) 2 + I + I * .
For the second map, we shall write (x, y) in terms of (v * , E) as

x = m i v + m j v * m i + m j - m i (m i + m j ) 2R µ ij E σ, y = (1 -R)(1 -r)E.
The Jacobian J ij is given by

J ij = ∂x∂y ∂v * ∂E = ∂x 1 ∂v * 1 ∂x 1 ∂v * 2 ∂x 1 ∂v * 3 ∂x 1 ∂E ∂x 2 ∂v * 1 ∂x 2 ∂v * 2 ∂x 2 ∂v * 3 ∂x 2 ∂E ∂x 3 ∂v * 1 ∂x 3 ∂v * 2 ∂x 3 ∂v * 3 ∂x 3 ∂E ∂y ∂v * 1 ∂y ∂v * 2 ∂y ∂v * 3 ∂y ∂E = m j m i +m j 0 0 -m i (m i +m j ) R 2µ ij E σ 1 0 m j m i +m j 0 -m i (m i +m j ) R 2µ ij E σ 2 0 0 m j m i +m j -m i (m i +m j ) R 2µ ij E σ 3 0 0 0 (1 -r)(1 -R) = m j m i + m j 3 (1 -r)(1 -R).
since the latter matrix is upper triangular.

Noticing that the Jacobian J depends on r and R only, instead of an additional dependence on v, I and σ. This yields less complications in the proof of the L 2 integrability of the kernel of K 2 .

We investigate now the image set of the map h. The positivity of I * restricts the variation of the variables (x, y) in integral (2.72) to the space

H v,I R,r,σ = h(R 3 × R + ) = (x, y) ∈ R 3 × R + : ay -I - µ ij 2 m i + m j m j x - m i m j + 1 v + m i m j √ µ ij 2Rayσ 2 > 0 .
In fact, H v,I R,r,σ can be explicitly expressed as

H v,I R,r,σ = (x, y) ∈ R 3 × R + : x ∈ B v- m i (m i +m j ) √ µ ij √ 2Rayσ m j (m i + m j ) 2(ay -I) µ ij and y ∈ ((1 -r)(1 -R)I, +∞) .
Therefore, equation (2.72) becomes

[K 2 g] i = n j=1 (m i m j ) 3 4 
(2π)

3 2 Γ(α i + 1) 1/2 Γ(α j + 1) 1/2 (0,1) 2 ×S 2 H v,I R,r,σ J ij B ij × e -ay-I 2 + µ ij 4 m i +m j m j
x-

m i m j +1 v+ m i m j √ µ ij √ 2Rayσ 2 -r 2(1-r) y- m j 4 m i +m j m j x+ m i m j √ µ ij √ 2Rayσ- m i m j v 2 e -1 4 x+ 2Ray µ ij σ 2 r α i (1 -r) α j (1 -R) α i +α j +1 R 1/2 y -α j /2 I α i /2 I α j * g j (x, y)dxdydrdRdσ.
We now point out the kernel form of [K 2 ] i and prove after by the help of assumption

(2.57) that the kernel of [K 2 ] i is in L 2 (R 3 ×R + ×R 3 ×R + )
. Indeed, we recall the definition of ∆, with ∆ := (0, 1) 2 × S 2 × R + × R 3 , and we define H v,I to be

H v,I := (R, r, σ, x, y) ∈ ∆ : R ∈ (0, 1), r ∈ (0, 1), σ ∈ S 2 , x ∈ B v- m i (m i +m j ) √ µ ij √ 2Rayσ m j (m i + m j ) 2(ay -I) µ ij
, and y ∈ ((1 -r)(1 -R)I, +∞) .

We remark that H v,I R,r,σ is a slice of H v,I , and we define the slice H v,I x,y ⊂ (0, 1) × (0, 1) × S 2 such that

H v,I = H v,I x,y × R 3 × R + which is equivalent to H v,I = (0, 1) × (0, 1) × S 2 × H v,I R,r,σ .
In other words,

H v,I x,y = {(r, R, σ) ∈ (0, 1) × (0, 1) × S 2 : (y, x, σ, r, R) ∈ H v,I }.
Then by Fubini theorem,

[K 2 g] i (v, I) = n j=1 (m i m j ) 3 4 (2π) 3 2 Γ(α i + 1) 1/2 Γ(α j + 1) 1/2 H v,I J ij B ij e -ay-I 2 + µ ij 4 m i +m j m j
x-

m i m j +1 v+ m i m j √ µ ij √ 2Rayσ 2 -r 2(1-r) y e - m i 4 x+ 2Ray µ ij σ 2 - m j 4 m i +m j m j x+ m i m j √ µ ij √ 2Rayσ- m i m j v 2 r α i (1 -r) α j (1 -R) α i +α j +1 R 1/2 y -α j /2 I α i /2 I α j * g j (x, y)drdRdσdxdy = n j=1 (m i m j ) 3 4 
(2π)

3 2 Γ(α i + 1) 1/2 Γ(α j + 1) 1/2 R 3 ×R + H v,I
x,y

J ij B ij e -ay-I 2 + µ ij 4 m i +m j m j
x-

m i m j +1 v+ m i m j √ µ ij √ 2Rayσ 2 -r 2(1-r) y e - m i 4 x+ 2Ray µ ij σ 2 - m j 4 m i +m j m j x+ m i m j √ µ ij √ 2Rayσ- m i m j v 2 r α i (1 -r) α j (1 -R) α i +α j +1 R 1/2 y -α j /2 I α i /2 I α j * g j (x, y)drdRdσdxdy
The kernel of [K 2 ] i is thus inspected and written explicitly in the following lemma.

Lemma 30. Using assumptions (2.57), (2.58), and (2.60) on B ij , the kernel of

[K 2 ] i
given by

k ij 2 (v, I, x, y) = (m i m j ) 3 4 
(2π)

3 2 Γ(α i + 1) 1/2 Γ(α j + 1) 1/2 H v,I
x,y

J ij B ij e -ay-I 2 + µ ij 4 m i +m j m j
x-

m i m j +1 v+ m i m j √ µ ij √ 2Rayσ 2 -r 2(1-r) y e - m i 4 x+ 2Ray µ ij σ 2 - m j 4 m i +m j m j x+ m i m j √ µ ij √ 2Rayσ- m i m j v 2 r α i (1 -r) α j (1 -R) α i +α j +1 R 1/2 y -α j /2 I α i /2 I α j * drdRdσ is in L 2 ( R 3 ×R + ×R 3 ×R + ).
Proof. Applying Cauchy-Schwarz inequality, we get

||k ij 2 || 2 L 2 ≤ c R 3 R + R 3 R + H v,I
x,y

J 2 ij B 2 ij e -ay-I- µ ij 2 m i +m j m j
x-

m i m j +1 v+ m i m j √ µ ij √ 2Rayσ 2 -r (1-r) y e - m j 2 
m i +m j m j x+ m i m j √ µ ij √ 2Rayσ- m i m j v 2 - m i 2 x+ 2Ray µ ij σ 2 r 2α i (1 -r) 2α j (1 -R) 2α i +2α j +2 Ry -α j I α i I 2α j * dσdrdRdydxdIdv.
By means of h -1 , we get

||k ij 2 || 2 L 2 ≤ c R 3 R + R 3 R + (0,1) 2 ×S 2 E -α j e -I * -r(1-R) µ ij 2 (v-v * ) 2 +I+I * - m j 2 v 2 * e -1 m i m i v+m j v * m i +m j + m j (m i +m j ) 2R µ ij ( µ ij 2 (v-v * ) 2 +I+I * )σ 2 r 2α i (1 -r) α j (1 -R) 2α i +α j +2 RI α i I 2α j * J ij B 2 ij (v, v * , I, I * , r, R, σ)dσdrdRdI * dv * dIdv.
Furthermore, if γ ij ≥ 0, we use assumption (2.57) on B ij together with the inequality

(v -v * ) 2γ ij + I γ ij + I γ ij * ≤ cE γ ij ,
and if -1 < γ ij < 0, we use assumption (2.58). In both cases, using the inequality

I α i ≤ µ ij 2 (v -v * ) 2 + I + I * α i = E α i ,
we get 

||k ij 2 || 2 L 2 ≤ c R 3 R + R 3 R + (0,1) 2 ×S 2 Ψ 2 ij (r, R)E α i -α j +γ ij e -I * -r(1-R) µ ij 2 (v-v * ) 2 +I+I * - m j 2 v 2 * e - m i 2 
m i v+m j v * m i +m j + m j (m i +m j ) 2R µ ij ( µ ij 2 (v-v * ) 2 +I+I * )σ 2 r 2α i (1 -r) α j (1 -R) 2α i +α j +2 RJ ij I 2α j * dσdrdRdI * dv * dIdv. ( 2 
||k ij 2 || 2 L 2 ≤ c (0,1) 2 ×S 2 R 3 R + R 3 R + Ψ 2 ij (r, R)E α i -α j +γ ij × e -I * - m j 2 v 2 * -r(1-R)E- m i 2 m i v+m j v * m i +m j + m j (m i +m j ) 2R µ ij Eσ 2 × r 2α i (1 -r) α j (1 -R) 2α i +α j +2 RJ ij I 2α j * dIdvdI * dv * drdRdσ = c (0,1) 2 R 3 R + R + Ψ 2 ij (r, R)E α i -α j +γ ij e -I * -m j 2 v 2 * -r(1-R)E × S 2 R 3 e - m i 2 
m i v+m j v * m i +m j + m j (m i +m j ) 2R µ ij Eσ 2 dvdσ × r 2α i (1 -r) α j -1 (1 -R) 2α i +α j +1 RI 2α j * dEdI * dv * drdR. Let Ṽ = m i v+m j v * m i +m j + m j (m i +m j ) 2R µ ij Eσ, then ||k ij 2 || 2 L 2 ≤ c (0,1) 2 R 3 R + R + Ψ 2 ij (r, R)E α i -α j +γ ij e -I * -m j 2 v 2 * -r(1-R)E S 2 R 3 e -m i 2 Ṽ 2 d Ṽ dσ r 2α i (1 -r) α j -1 (1 -R) 2α i +α j +1 RI 2α j * dEdI * dv * drdR.
Therefore,

||k ij 2 || 2 L 2 ≤ c (0,1) 2 Ψ 2 ij (r, R) R + E α i -α j +γ ij e -r(1-R)E dE r 2α i (1 -r) α j -1 (1 -R) 2α i +α j +1 RdrdR ≤ c (0,1) 2 Ψ 2 ij (r, R)r α i +α j -1-γ ij (1 -r) α j -1 (1 -R) α i +2α j -γ ij RdrdR,
with c > 0. The lemma is thus proved.

Theorem 2 and Lemma 30 imply that K 2 is a Hilbert-Schmidt operator and thus compact.

Compactness of [K 3 ] i . The proof of the compactness of [K 3 ] i (2.70) is very similar to that of [K 2 ] i .
We write it here in details for readers' convenience. The operator [K 3 ] i which has the explicit form

[K 3 g] i (v, I) = n j=1 (m i m j ) 3 4 
Γ(α i + 1) 1/2 Γ(α j + 1) 1/2 (2π)

3 2 × ∆ g j m i v + m j v * m i + m j + m j (m i + m j ) 2R µ ij µ ij 2 (v -v * ) 2 + I + I * σ, r(1 -R) µ ij 2 (v -v * ) 2 + I + I * e -I * 2 -1 2 (1-r)(1-R) µ ij 2 (v-v * ) 2 +I+I * × e - m j 4 v 2 * - m j 4 m i v+m j v * m i +m j - m i (m i +m j ) 2R µ ij ( µ ij 2 (v-v * ) 2 +I+I * ) σ 2 × r α i (1 -r) α j (1 -R) α i +α j +1 R 1/2 I α i /2 I α j * (I ′ ) -α i /2 B ij drdRdσdI * dv * .
(2.75) inherits the same form as [K 2 ] i , with a remark that the Jacobian of the necessary transformation

h : R 3 × R + -→ h(R 3 × R + ) ⊂ R 3 × R + (v * , I * ) -→ (x, y) = m i v + m j v * m i + m j + m j (m i + m j ) 2R µ ij µ ij 2 (v -v * ) 2 + I + I * σ, r(1 -R) µ ij 2 (v -v * ) 2 + I + I * , (2.76) 
is calculated similarly to Lemma 29 to be

Jij = m j m i + m j 3 r(1 -R).
To write explicitly the set h(R 3 × R + ), the only restriction we have is due to the positivity of I * . The variation of the variables (x, y) in (2.76) implies

h(R 3 × R + ) = H v,I R,r,σ = (x, y) ∈ R 3 × R + : ay -I - µ ij 2 m i + m j m j x - m i m j + 1 v - 1 √ µ ij 2Rayσ 2 > 0 ,
where a = 1 r(1-R) . In fact, H v,I R,r,σ can be explicitly expressed as

H v,I R,r,σ = (x, y) ∈ R 3 × R + : x ∈ B v- m j (m i +m j ) √ µ ij √ 2Rayσ m j (m i + m j ) 2(ay -I) µ ij and y ∈ (r(1 -R)I, +∞) .
Therefore, expression (2.75) becomes

[K 3 g] i = n j=1 (m i m j ) 3 4 
(2π)

3 2 Γ(α i + 1) 1/2 Γ(α j + 1) 1/2 (0,1) 2 ×S 2 H v,I R,r,σ J ij B ij × e -ay-I 2 + µ ij 4 m i +m j m j
x-

m i m j +1 v-1 √ µ ij √ 2Rayσ 2 - (1-r) 2r y- m j 4 m i +m j m j x-1 √ µ ij √ 2Rayσ- m i m j v 2 e - m j 4 
x-2Ray

µ ij σ 2 r α i (1 -r) α j (1 -R) α i +α j +1 R 1/2 y -α i /2 I α i /2 I α j * g j (x, y)dxdydrdRdσ.
We now point out the kernel form of [K 3 ] i and prove that the kernel of

[K 3 ] i is in L 2 (R 3 ×
R + ×R 3 ×R + ) using assumptions (2.57) and (2.59). We define H v,I to be

H v,I := (R, r, σ, x, y) ∈ ∆ : R ∈ (0, 1), r ∈ (0, 1), σ ∈ S 2 , x ∈ B v- m j (m i +m j ) √ µ ij √ 2Rayσ m j (m i + m j ) 2(ay -I) µ ij , and y ∈ (r(1 -R)I, +∞) .
As for the case of [K 2 ] i , we remark that H v,I R,r,σ is a slice of H v,I , and we define the slice H v,I

x,y ⊂ (0, 1) × (0, 1) × S 2 such that

H v,I = H v,I x,y × R 3 × R + which is equivalent to H v,I = (0, 1) × (0, 1) × S 2 × H v,I R,r,σ .
In other words,

H v,I x,y = {(r, R, σ) ∈ (0, 1) × (0, 1) × S 2 : (y, x, σ, r, R) ∈ H v,I }.
Then by Fubini theorem,

[K 3 g] i (v, I) = n j=1 (m i m j ) 3 4 
(2π)

3 2 Γ(α i + 1) 1/2 Γ(α j + 1) 1/2 H v,I Jij B ij e -ay-I 2 + µ ij 4 m i +m j m j
x-

m i m j +1 v-1 √ µ ij √ 2Rayσ 2 - (1-r) 2r y e - m j 4 
x-2Ray

µ ij σ 2 - m j 4 m i +m j m j x-1 √ µ ij √ 2Rayσ- m i m j v 2 r α i (1 -r) α j (1 -R) α i +α j +1 R 1/2 y -α i /2 I α i /2 I α j * g j (x, y)drdRdσdxdy = n j=1 (m i m j ) 3 4 
(2π)

3 2 Γ(α i + 1) 1/2 Γ(α j + 1) 1/2 R 3 ×R + H v,I x,y Jij B ij e -ay-I 2 + µ ij 4 m i +m j m j
x-

m i m j +1 v-1 √ µ ij √ 2Rayσ 2 - (1-r) 2r y e - m j 4 x-2Ray µ ij σ 2 - m j 4 m i +m j m j x-1 √ µ ij √ 2Rayσ- m i m j v 2 r α i (1 -r) α j (1 -R) α i +α j +1 R 1/2 y -α i /2 I α i /2 I α j * g j (x, y)drdRdσdxdy
The kernel of [K 3 ] i is thus inspected and written explicitly in the following lemma.

Lemma 31. Using assumptions (2.57), (2.58), (2.59), and (2.61) on B ij , the kernel of

[K 3 ] i given by k ij 3 (v, I, x, y) = (m i m j ) 3 4 
(2π)

3 2 Γ(α i + 1) 1/2 Γ(α j + 1) 1/2 H v,I x,y Jij B ij e -ay-I 2 + µ ij 4 m i +m j m j
x-

m i m j +1 v-1 √ µ ij √ 2Rayσ 2 - (1-r) 2r y e - m j 4 
x-2Ray

µ ij σ 2 - m j 4 m i +m j m j x-1 √ µ ij √ 2Rayσ- m i m j v 2 r α i (1 -r) α j (1 -R) α i +α j +1 R 1/2 y -α i /2 I α i /2 I α j * g j (x, y)drdRdσdxdy is in L 2 ( R 3 ×R + ×R 3 ×R + ).
Proof. Applying Cauchy-Schwarz inequality, we get

||k ij 3 || 2 L 2 ≤ c R 3 R + R 3 R + H v,I x,y J2 ij B 2 ij e -ay-I- µ ij 2 m i +m j m j
x-

m i m j +1 v-1 √ µ ij √ 2Rayσ 2 - (1-r) r y e - m j 2 
m i +m j m j x-1 √ µ ij √ 2Rayσ- m i m j v 2 - m j 2 x-2Ray µ ij σ 2 r 2α i (1 -r) 2α j (1 -R) 2α i +2α j +2 Ry -α i I α i I 2α j * dσdrdRdydxdIdv.
By means of h -1 , we get

||k ij 3 || 2 L 2 ≤ c R 3 R + R 3 R + (0,1) 2 ×S 2 E -α i e -I * -(1-r)(1-R) µ ij 2 (v-v * ) 2 +I+I * - m j 2 v 2 * e - m j 2 
m i v+m j v * m i +m j - m i (m i +m j ) 2R µ ij ( µ ij 2 (v-v * ) 2 +I+I * )σ 2 r α i (1 -r) 2α j (1 -R) α i +2α j +2 RI α i I 2α j * Jij B 2 ij (v, v * , I, I * , r, R, σ)dσdrdRdI * dv * dIdv.
Furthermore, if γ ij ≥ 0, we use assumption (2.57) on B ij together with the inequality

(v -v * ) 2γ ij + I γ ij + I γ ij * ≤ cE γ ij ,
and if -1 < γ ij < 0, we use assumption (2.58). In both cases, using the inequality

I α i ≤ µ ij 2 (v -v * ) 2 + I + I * α i = E α i ,
we get

||k ij 3 || 2 L 2 ≤ c R 3 R + R 3 R + (0,1) 2 ×S 2 Ψ 2 ij (r, R)E γ ij e -I * -(1-r)(1-R) µ ij 2 (v-v * ) 2 +I+I * - m j 2 v 2 * e - m j 2 
m i v+m j v * m i +m j - m i (m i +m j ) 2R µ ij ( µ ij 2 (v-v * ) 2 +I+I * )σ 2 r α i (1 -r) 2α j (1 -R) α i +2α j +2 R Jij I 2α j * dσdrdRdI * dv * dIdv.
(2.77)

Perform the change of variable

I -→ E = I + I * + µ ij 2 |v -v * | 2 , then as dI = dE, (2.77) 
becomes

||k ij 3 || 2 L 2 ≤ c (0,1) 2 ×S 2 R 3 R + R 3 R + Ψ 2 ij (r, R)E γ ij × e -I * - m j 2 v 2 * -(1-r)(1-R)E- m j 2 m i v+m j v * m i +m j - m i (m i +m j ) 2R µ ij Eσ 2 × r α i (1 -r) 2α j (1 -R) α i +2α j +2 R Jij I 2α j * dIdvdI * dv * drdRdσ = c (0,1) 2 R 3 R + R + Ψ 2 ij (r, R)E γ ij e -I * -m j 2 v 2 * -(1-r)(1-R)E × S 2 R 3 e - m j 2 
m i v+m j v * m i +m j - m i (m i +m j ) 2R µ ij Eσ 2 dvdσ × r α i -1 (1 -r) 2α j (1 -R) α i +2α j +1 RI 2α j * dEdI * dv * drdR. Let Ṽ = m i v+m j v * m i +m j -m i (m i +m j ) 2R µ ij Eσ, then ||k ij 3 || 2 L 2 ≤ c (0,1) 2 R 3 R + R + Ψ 2 ij (r, R)E γ ij e -I * -m j 2 v 2 * -(1-r)(1-R)E S 2 R 3 e -m j 2 Ṽ 2 d Ṽ dσ r α i -1 (1 -r) 2α j (1 -R) α i +2α j +1 RI 2α j * dEdI * dv * drdR.
Therefore,

||k ij 3 || 2 L 2 ≤ c (0,1) 2 Ψ 2 ij (r, R) R + E γ ij e -(1-r)(1-R)E dE r α i -1 (1 -r) 2α j (1 -R) α i +2α j +1 RdrdR ≤ c (0,1) 2 Ψ 2 ij (r, R)r α i -1 (1 -r) 2α j -γ ij -1 (1 -R) α i +2α j -γ ij RdrdR,
with c > 0. The lemma is thus proved.

For the kernel of K 3 to be L 2 integrable, the final computations require

(0,1) 2 Ψ 2 ij (r, R)r α i -1 (1 -r) 2α j -γ ij -1 (1 -R) α j +2α i -γ ij RdrdR < ∞. (2.78) 
Applying the change of variable r → 1 -r, and using the symmetry assumption (2.59) of

Ψ γ ij , (2.78
) is satisfied by (2.61).

Properties of the Collision Frequency

We give in this section some properties of ν. The first is the coercivity property, which implies that L is a Fredholm operator, and we prove the monotonicity of

ν i (i = 1, • • • , n)
which depends on the choice of the transition function B ij . The latter property is used for locating the essential spectrum of L.

Proposition 32 (Coercivity of ν i Id). With the assumption (2.56), there exists c(α i , α j ) > 0 such that

ν i (v, I) ≥ n j=1 c(α i , α j )(|v| γ ij + I γ ij /2 + 1), i = 1, . . . , n,
for any γ ij ≥ 0. As a result, the multiplication operator ν i Id is coercive.

Proof. The collision frequency (2.67) is

ν i (v, I) = n j=1 m 3 2 j Γ(α j + 1)(2π) 3 2 ∆ B ij I α j * r α i (1 -r) α j (1 -R) α i +α j +1 R 1/2 × e -I * -1 2 v 2 * drdRdσdI * dv * ,
where, using (2.56) we get

ν i (v, I) ≥ n j=1 c(α i , α j ) S 2 R 3 |v -v * | γ ij + I γ ij /2 e -m j 2 v 2 * dv * ≥ n j=1 c(α i , α j ) I γ ij /2 + R 3 ||v| -|v * || γ ij e -m j 2 v 2 * dv * ,
where c is a generic constant. We consider the two cases, |v| ≥ 1 and |v| ≤ 1. If |v| ≥ 1

we have

ν i (v, I) ≥ n j=1 c(α i , α j ) I γ ij /2 + |v * |≤ 1 2 |v| (|v| -|v * |) γ ij e -m j 2 v 2 * dv * ≥ n j=1 c(α i , α j ) I γ ij /2 + |v| γ ij |v * |≤ 1 2 e -m j 2 v 2 * dv * ≥ n j=1 c(α i , α j )(|v| γ ij + I γ ij /2 + 1).
For |v| ≤ 1,

ν i (v, I) ≥ n j=1 c(α i , α j ) I γ ij /2 + |v * |≥2 (|v * | -|v|) γ ij e -m j 2 v 2 * dv * ≥ n j=1 c(α i , α j ) I γ ij /2 + |v * |≥2 e -m j 2 v 2 * dv * ≥ n j=1 c(α i , α j )(1 + I γ ij /2 + |v| γ ij ).
The result is thus proved. We give now the following proposition, which is a generalization of the work of Grad [START_REF] Grad | Asymptotic theory of the Boltzmann equation II[END_REF], where he proved that the collision frequency of monatomic single gases is monotonic based on the choice of the transition function B ij .

Proposition 33 (monotony of ν i ). Under the assumption that

n j=1 (0,1) 2 ×S 2 r α i (1 -r) α j (1 -R) α i +α j +1 R 1/2 B ij (|V |, I, I * , r, R, σ)drdRdσ (2.79)
is increasing (respectively decreasing) in |V | and I for every I * , the collision frequency of the i-th species ν i is increasing (respectively decreasing), where

|V | = |v -v * |.
In particular, for Maxwell molecules, where n j=1 B ij is constant in |V | and I, ν i is constant. On the other hand, for transition functions of the form

B ij (v, v * , I, I * , r, R, σ) = Φ ij (r, R) |v -v * | γ ij + I γ ij /2 + I γ ij /2 * , ,
the integral (2.79) is increasing, and thus ν i is increasing, where γ ij ≥ 0, and Φ ij is a positive function such that

Φ ij (r, R) = Φ ji (1 -r, R),
and

Φ ij (r, R)r α i (1 -r) α j (1 -R) α i +α j +1 R 1/2 ∈ L 1 ((0, 1) 2 ).
In fact, if Φ ij for instance satisfies

Φ 2 ij (r, R)r α i +α j -1-γ ij (1 -r) α j -1 (1 -R) α i +2α j +1 R ∈ L 1 ((0, 1) 2 )
then this transition function satisfies our main assumptions (2.56) and (2.57).

Proof. We remark first that ν i is a radial function in |v| and I. In fact, we perform the change of variable V = v -v * in the integral (2.67), where the expression of ν i becomes

ν i (|v|, I) = n j=1 m 3 2 j Γ(α j + 1) 1/2 (2π) 3 2 ∆ B ij (|V |, I, I * , r, R, σ)e -m j 2 (v-V ) 2 -I * I α j * r α i (1 -r) α j (1 -R) α i +α j +1 R 1/2 drdRdσdI * dV, (2.80) 
where ∆ = (0, 1) 2 × S 2 × R + × R 3 . The integration in V in the above integral (2.80) is carried out in the spherical coordinates of V , with fixing one of the axes of the reference frame along v, and therefore, the above integral will be a function of |v| and I.

The partial derivative of ν i in the v k direction, where k = 1, 2, 3, is

∂ν i ∂v k = n j=1 ∆ v k -v * k |v -v * | ∂B ij ∂|v -v * | (|v -v * |, I, I * , r, R, σ)e -m j 2 v 2 * -I * m 3 2 j I α j * r α i (1 -r) α j (1 -R) α i +α j +1 R 1/2 Γ(α j + 1) 1/2 (2π) 3 2 drdRdσdI * dv * (2.81)
Perform the change of variable V = v -v * in (2.81), then

∂ν i ∂v k = n j=1 ∆ V |V | ∂B ij ∂|V | (|V |, I, I * , r, R, σ)e -1 2 (v-V ) 2 * -I * m 3 2 j I α j * r α i (1 -r) α j (1 -R) α i +α j +1 R 1/2 Γ(α j + 1) 1/2 (2π) 3 2
drdRdσdI * dV and thus,

3 k=1 v k ∂ν i ∂v k = n j=1 ∆ v • V |V | ∂B ij ∂|V | (|V |, I, I * , r, R, σ)e -1 2 (v-V ) 2 * -I * m 3 2 j I α j * r α i (1 -r) α j (1 -R) α i +α j +1 R 1/2 Γ(α j + 1) 1/2 (2π) 3 2 drdRdσdI * dV (2.82) 
Applying Fubini's theorem, we write (2.82) as

3 k=1 v k ∂ν i ∂v i = n j=1 R + ×R 3 (0,1) 2 ×S 2 ∂B ij ∂|V | (|V |, I, I * , r, R, σ)drdRdσ × m 3 2 j I α j * r α i (1 -r) α j (1 -R) α i +α j +1 R 1/2 Γ(α j + 1) 1/2 (2π) 3 2 v • V |V | e -1 2 (v-V ) 2 -I * dI * dV.
The partial derivative of ν i along I is

∂ν i ∂I = n j=1 ∆ m 3 2 j I α j * r α i (1 -r) α j (1 -R) α i +α j +1 R 1/2 Γ(α j + 1) 1/2 (2π) 3 2 ∂B ij ∂I (|V |, I, I * , r, R, σ) e -m j 2 (v-V ) 2 -I * drdRdσdI * dV = n j=1 R 3 ×R + m 3 2 j I α j * r α i (1 -r) α j (1 -R) α i +α j +1 R 1/2 Γ(α j + 1) 1/2 (2π) 3 2 × (0,1) 2 ×S 2 ∂B ij ∂I (|V |, I, I * , r, R, σ)drdRdσ e -m j 2 (v-V ) 2 -I * dI * dV. (2.83) 
When v • V > 0, the exponential in the integral (2.82) is greater than when v • V < 0, and so the term v • V doesn't affect the sign of the partial derivatives of ν i . Therefore, the sign of the partial derivative of ν i along |v| has the same sign as

n j=1 (0,1) 2 ×S 2 m 3 2 j (1 -r) α j (1 -R) α j Γ(α j + 1) 1/2 ∂B ij ∂|V | (|V |, I, I * , r, R, σ)drdRdσ.
It's clear as well that the partial derivative of ν i with respect to I (2.83) has the same sign as

n j=1 (0,1) 2 ×S 2 m 3 2 j (1 -r) α j (1 -R) α j Γ(α j + 1) 1/2 ∂B ij ∂I (|V |, I, I * , r, R, σ)drdRdσ.
As a result, for a transition function B ij satisfying the condition that the integral

(0,1) 2 ×S 2 m 3 2 j (1 -r) α j (1 -R) α j Γ(α j + 1) 1/2 B ij (|V |, I, I * , r, R, σ)drdRdσ
is increasing (respectively decreasing) in |V | and I, the collision frequency is increasing (respectively decreasing).

Adaptation of the Method: Monatomic case

A natural question that arises is if the proof carried for polyatomic gases still holds in the case of monatomic gases, and under which assumptions. In this section, we adapt the same proof we carried out in the previous sections in order to prove the compactness of K for a mixture of monatomic gases. However, a further upper bound assumption on the collision cross-section should be taken into consideration (see (2.91)), which may not be physical. The global equilibrium distribution function, the Maxwellian function, is given as

M i (v) = m i 2π 3 2 e -m i 2 v 2 .
The linearized Boltzmann operator is obtained from a perturbation of f i around the global Maxwellian function. In particular, we insert f i with the expression

f i (v) = M i (v) + M 1 2 i (v)g i (v) (2.84)
in the Boltzmann equation (1.2), and get an equation in g i , with the linearized Boltzmann operator L applied on g = (g

1 , • • • , g n ), with Lg = ([Lg] 1 , • • • , [Lg] n ), as [Lg] i = - n j=1 M -1 2 i [Q ij (M i , M 1 2 j g j ) + Q ij (M 1/2 i g i , M j )].
The precise expression of L is

[Lg] i (g) = n j=1 M -1 2 i R 3 ×S 2 M ′ j * M ′ i 1/2 g i (v ′ ) + M ′ i M ′ j * 1/2 g (v ′ * ) -M j * M 1/2 i g i (v) -M i M 1/2 j * g j (v * ) × B ij (σ, v, v * ) dσdv * .
where using the identity M M * = M ′ M ′ * following from the conservation equations, we can re-write L in the following form

[Lg] i (g) = n j=1 R 3 ×S 2 M 1/2 j * M ′ j * 1/2 g i (v ′ ) + M ′ i 1/2 M j * 1/2 g j (v ′ * ) -M j * g i (v) -M 1/2 i M 1/2 j * g j (v * ) × B ij (σ, v, v * ) dσdv * .
We define the operator

[K•] i as [K•] i = -[K 1 •] i + [K 2 •] i + [K 3 •] i , where [K 1 g] i = n j=1 R 3 ×S 2 M 1/2 i M 1/2 j * g j (v * ) B ij (σ, v, v * ) dσdv * , (2.85) 
[K 2 g] i = n j=1 R 3 ×S 2 M ′ i 1/2 M j * 1/2 g j (v ′ * ) B ij (σ, v, v * ) dσdv * , (2.86) 
and

[K 3 g] i = n j=1 R 3 ×S 2 M j * 1/2 M ′ j * 1/2 g i (v ′ ) B ij (|v -v * |, σ) dσdv * . (2.87) 
Our goal is to prove the compactness of K following the method of the previous sections.

In particular, we aim to extract the integral kernel of K and prove it L 2 integrable, which yields that K is a Hilbert-Schmidt operator. The kernel of the operator

[K 1 •] i is obviously in L 2 (R 3 × R 3
) and given as

k ij 1 (v, v * ) = n j=1 S 2 M 1/2 i M 1/2 j * B ij (|v -v * |, σ) dσ.
For extracting the kernel of [K 2 •] i , we define the change of variable

h : R 3 → R 3 v * → x = m i v + m j v * m i + m j - m i m i + m j |v -v * | 2 σ (2.88)
for fixed σ and v. In fact, v ′ * is represented by the term x to avoid any confusion in the integral. We give in this lemma some useful properties of h. Lemma 34. An image in the range of the change of variable map (2.88) admits by most 2 pre-images in R 3 . Moreover, the Jacobian of (2.88) is given by

J ij = µ 2 j 1 - µ i 2 σ - v -v * |v -v * | 2 , (2.89) 
where

µ j = m j m i +m j and µ i = m i m i +m j . Note that µ i + µ j = 1.
Proof. We prove first the first statement of the lemma. Define the map H defined on R 3

as

H(x) = µ j x + µ i |x|σ. Then, h(v) = v -H(V ), where V = v -v * . Therefore, it is enough to consider H in the rest of the proof. Let x ∈ R 3 , y ∈ R 3 such that H(x) = H(y).
We decompose x and y in the direction of σ and the plane σ ⊥ as

x = ασ + x, y = βσ + ỹ. (2.90) 
As H(x) = H(y), we have

(µ j α -µ i |x|)σ + x = (µ j β -µ i |y|)σ + ỹ,
and therefore, x = ỹ. The last inequality then implies

µ j α + µ i √ α 2 + x2 = µ j β + µ i α 2 + ỹ2 .
It is enough to study now the sense of variation of the map x → g(x) = µ j x + µ i √ α 2 + x2 .

If the molecules have equal masses, and so µ i = µ j , then g is strictly increasing and so H is injective. However, if µ i ̸ = µ j , g ′ changes its sign once, and therefore each element of the image ofH may have either 1 or 2 pre-images.

The Jacobian (2.89) is computed through the differential map of H DH(V ).δV = m j δV

+ µ i ⟨ V |V | , δV ⟩σ.
Let us consider the basis V |V | , σ 1 , σ 2 , where σ 1 and σ 2 are two orthonormal vectors belonging to the plane V ⊥ . Hence, we can express σ in the orthonormal basis

V |V | , σ 1 , σ 2 as σ = ⟨σ, V |V | ⟩ V |V | + ⟨σ, σ 1 ⟩σ 1 + ⟨σ, σ 2 ⟩σ 2 .
Moreover,

DH(V ). V |V | = µ j V |V | + µ i ⟨σ, V |V | ⟩ V |V | + ⟨σ, σ 1 ⟩σ 1 + ⟨σ, σ 2 ⟩σ 2 ,
and

DH(V ).σ 1 = µ j σ 1 , DH(V ).σ 2 = µ j σ 2 .
As a result, the Jacobian of the triangular matrix formed in the above basis is

J = ∂H(V ) ∂V = µ 2 j µ j + µ i ⟨σ, V |V | ⟩ = µ 2 j 1 - µ i 2 σ - V |V | 2 .
After inspecting the kernel of [K 2 g] i given in (2.86), we shall need the following assumption on the collision cross-section to prove the L 2 -integrability of the kernel. Namely, we need to assume that

B 2 ij (|v -v * |, σ) 1 -µ i 2 σ -v-v * |v-v * | 2 (2.91) 
to be bounded, which may not be physically true.

For proving the compactness of [K 3 ] i , we remark that the corresponding change of variable map is injective with Jacobian

µ 2 j 1 + σ -V |V |

2

. As a result, we also need to impose the boundedness of the term

B 2 ij (|v -v * |, σ) 1 + σ -v-v * |v-v * | 2 .
(2.92)

Conclusion

In comparison with the monatomic case, when the ω-parameterization is used, K 2 and K 3 were written in the Carleman representation in order to extract the kernel of K.

However, the extracted kernels are not easily proved to be L 2 integrable (Grad took the 4-th iterated kernel [START_REF] Grad | Asymptotic theory of the Boltzmann equation II[END_REF]). Nevertheless, parameterizing by the σ-representation in the monatomic case, and considering the change of variable maps v * → v ′ * and v * → v ′ , the Hilbert-Schmidt property can be proved to be valid by the same approach we used for polyatomic gases, yet under strict, and not necessarily physical, assumptions on the collision cross-section (2.91), (2.92).

Chapter 3

The Incompressible Navier-Stokes Equations derived from the Polyatomic

Boltzmann Equation

In this chapter, we present one of the applications in which the Fredholm property result obtained Chapter 2, and the Galilean invariance presented in the appendix is needed.

In fact, one of the applications where the Fredholm property is used is for deriving the hydrodynamic limits of the Boltzmann equation. At the hydrodynamic level of a fluid, the macroscopic observable quantities such as bulk velocity, temperature, and density have been proved to satisfy the well-known Euler and Navier Stokes equations. These macroscopic equations originally derived from Newton's laws, can be also derived from the kinetic theory of a single gas under a suitable scaling of the Boltzmann equation [START_REF] Golse | The boltzmann equation and its hydrodynamic limits[END_REF][START_REF] Saint-Raymond | Hydrodynamic Limits of the Boltzmann Equation[END_REF][START_REF] Bardos | Fluid dynamic limits of kinetic equations ii convergence proofs for the boltzmann equation[END_REF][START_REF] Villani | Hydrodynamic limits of boltzmann's equation (following c. bardos, f. golse, c. d. levermore, p.-l. lions, n. masmoudi, l. saint-raymond)[END_REF]. From the Boltzmann equation of polyatomic gases modeled in [START_REF] Bourgat | Microreversible collisions for polyatomic gases and boltzmann's theorem[END_REF], we derive the incompressible Navier Stokes equations for a single gas

∂ t u + (u • ∇ x )u + ∇ x p = ν * ∆u, ∂ t θ + u • ∇ x θ = κ * ∆θ, ∇ x • u = 0, ∇ x (ρ + θ) = 0.
where ν * and k * are the viscosity and thermal conductivity respectively. In order to construct the connection between the kinetic regime characterized by the Boltzmann equation and the incompressible Navier Stokes equations at the hydrodynamic level, one starts by the following scaled Boltzmann equation

ε∂ t f ε + v.∇ x f ε = 1 ε Q(f ε , f ε ), (3.1) 
where the collision operator Q is defined in [START_REF] Aoki | Vapor flows caused by evaporation and condensation on two parallel plane surfaces: Effect of the presence of a noncondensable gas[END_REF], and the Knudsen and Strouhal numbers are of order ε. We present in the following section the linearized Boltzmann operator and then give the main result in Section 3.2.

The Linearized Boltzmann Operator

The derivation of the compressible Navier-Stokes system in Chapter 2, Section 1.4 was carried out with the local Maxwellian function (1.28). However, to obtain the incompressible Navier-Stokes equations, the linearization of the Boltzmann equation of polyatomic gases is taken around the global Maxwellian function

M (v, I) = M 1,0,1 (v, I) = 1 (2π) 3 
2 Γ(α + 1)

I α e -1 2 v 2 -I .
As in Section 1.4, we look for a solution f ε around M defined in (3.1) having the form

f ε (v, I) = M (v, I) + εM (v, I)g ε (v, I). (3.2) 
Inserting (3.2) in (3.1) gives

ε∂ t g ε + v.∇ x g ε = 1 ε L(g ε ) + Γ(g ε , g ε ), (3.3) 
where

L(g ε ) = 1 M [Q(M, M g ε ) + Q(M g ε , M )]
is the linearized Boltzmann operator, and

Γ(g ε , g ε ) = 1 M Q(M g ε , M g ε )
is the remaining term which is of order ε. The following lemma is useful in the next section.

Lemma 35. Let ψ ∈ ker L, then

Γ(ψ, ψ) = 1 2 L(ψ 2 ).
In the proof of the main result of this chapter, the Fredholm property and the Galilean invariance of L (see the Appendix) represent a key point. In particular, throughout the proof, we will encounter the functions A and B defined as

A = v ⊗ v - 1 3 v 2 I, and 
B(v, I) = v 1 2 |v| 2 + I - 7 2 -α .
The functions A and B are orthogonal to the kernel of L, and by the Fredholm property of L, A and B admit unique pre-images Ã, and B in the space orthogonal to the kernel of L.

We will assume that the pre-images lie in the space orthogonal to the kernel, and therefore we guarantee their uniqueness. Also, the Galilean invariance property of L presented in such that g ε converges almost everywhere to a function g in the sense of distribution as ε tends to zero. In addition, assume the convergence in the sense of distribution in t, and

x of the following moments

⟨vg ε ⟩ M → ⟨vg⟩ M , ⟨v ⊗ vg ε ⟩ M → ⟨v ⊗ vg⟩ M , ⟨(v 2 + I)g ε ⟩ M → ⟨(v 2 + I)g⟩ M ⟨L -1 A(v)Γ(g ε , g ε )⟩ M → ⟨L -1 A(v)Γ(g, g)⟩ M , ⟨L -1 A(v) ⊗ vg ε ⟩ M → ⟨L -1 A(v) ⊗ vg⟩ M , ⟨L -1 B(v, I)Γ(g ε , g ε )⟩ M → ⟨L -1 B(v, I)Γ(g, g)⟩ M , and 
⟨L -1 B(v, I) ⊗ vg ε ⟩ M → ⟨L -1 B(v, I) ⊗ vg⟩ M . (3.4)
Then, g has the form

g = ρ + u.v + θ( 1 2 v 2 + I -α - 7 2 ) 
, where ∇ x .u = 0, and ∇ x (ρ + θ) = 0,

and ρ, u, and θ are weak solutions of the following limiting momentum equation

∂ t u + u • ∇ x u + ∇ x p = ν * ∆u, (3.6) 
and the limiting temperature equation

∂ t θ + u • ∇ x θ = k * ∆θ, (3.7) 
where ν * and k * are the viscosity and thermal conductivity.

Proof. By multiplying (3.3) by ε we get

ε (ε∂ t ⟨g ε ⟩ M + ∇ x ⟨vg ε ⟩ M ) = ⟨L(g ε )⟩ M + ε ⟨Γ(g ε , g ε )⟩ M ,
letting ε go to zero, then in the sense of distribution we get

L(g) = 0,
that is g ∈ ker(L). Therefore, g is a linear combination of the 5-element basis of ker(L).

Thus,

g = ρ + v.u + 1 2 v 2 + I -α - 5 2 θ, (3.8) 
where ρ, u and θ are parameters related to g as

ρ = gM dvdI, u = vgM dvdI, (3.9) 
and

(α + 7/2)θ = 1 2 v 2 + I -α - 5 2 gM dvdI.
For the derivation of (3.5), we multiply (3.3) by M and M v successively and integrate it over (v, I) to get the following conservation of mass and momentum equations where the latter implies that ρ + θ = 0.

ε∂ t ⟨g ε ⟩ M + ∇ x ⟨vg ε ⟩ M = 0, ε∂ t ⟨vg ε ⟩ M + ∇ x ⟨v ⊗ vg ε ⟩ M = 0.
As a result, g can be written as

g = v.u + 1 2 v 2 + I -α - 7 2 θ, (3.12) 
The second equation is a result of the following values of the integrals:

1 2 v 2 v 2 i M (v, I)dvdI = 5 2 and v 2 i M (v, I)dvdI = 1.
In order to derive the limiting momentum and heat equations (3.6)-(3.7), we further multiply (3.3) by 1 2 v 2 + I and get the conservation law of energy

∂ t 1 2 |v| 2 + I g ε M + 1 ε ∇ x v 1 2 |v| 2 + I g ε M = 0. (3.13)
We rewrite the conservation of momentum equation in (3.10) as

∂ t ⟨vg ε ⟩ M + ∇ x 1 ε ⟨A(v)g ε ⟩ M + ∇ x P ε = 0, (3.14) 
and the pressure

P ε = ∇ x 1 ε 1 3 v 2 Ig ε M
Here, I represents the identity matrix. Consider subtracting ( 7 2 +α) times the conservation of mass equation in (3.10) from the energy equation (3.13)

∂ t 1 2 |v| 2 + I - 7 2 -α g ε M + ∇ x 1 ε ⟨B(v, I)g ε ⟩ M = 0. (3.15) 
The goal becomes to investigate the limit of the terms of equations (3.14) and (3.15) as ε → 0. The following limits are obvious

⟨vg ε ⟩ M → ⟨vg⟩ M = u (3.16)
using (3.4) and (3.9), and

1 2 |v| 2 + I - 7 2 -α g ε M → 1 2 |v| 2 + I - 7 2 -α g M = (α + 7 2 
)θ (3.17) using the expression (3.12) of g. Moreover, P ε → P in the limit ε → 0. It remains to investigate the limit of the terms

1 ε ⟨B(v, I)g ε ⟩ M , and 1 ε ⟨A(v)g ε ⟩ M . (3.18)
In fact, using (A.1) coming from the Fredholm property of L, the orthogonality of A and B to the kernel of L (2.38), together with the self-adjoint property of L we have

1 ε ⟨A(v)g ε ⟩ M = 1 ε L Ã(v, I)g ε M = 1 ε Ã(v, I)Lg ε M , (3.19) 
and

1 ε ⟨B(v, I)g ε ⟩ M = 1 ε L B(v, I)g ε M = 1 ε B(v, I)Lg ε M .
Using (3.3), we get

1 ε Ã(v, I)Lg ε M = Ã(v, I)Γ(g ε , g ε ) M -Ã(v, I) (ε∂ t g ε + v.∇ x g ε ) M , and 
1 ε B(v, I)Lg ε M = B(v, I)Γ(g ε , g ε ) M -B(v, I) (ε∂ t g ε + v.∇ x g ε ) M .
As a result, the limit of the terms of (3.18) is

lim ε→0 1 ε ⟨A(v)g ε ⟩ M = Ã(v, I)Γ(g, g) M -Ã(v, I)v.∇ x g M lim ε→0 1 ε ⟨B(v, I)g ε ⟩ M = B(v, I)Γ(g, g) M -B(v, I)v.∇ x g M .
(3.20)

The goal now is to characterize the four left-hand side terms of (3.20). In fact,

Ã(v, I)v.∇ x g M = 1 15 a(|v|, I)v 4 M dvdI ∇ x u + ∇ T x u - 2 3 div x uI ,
where we can introduce the viscosity as

ν * = 1 15 a(|v|, I)v 4 M dvdI .
Chapter 4

Stationary Boltzmann Equation:

Existence and Uniqueness Results

The results of this chapter are established in collaboration with Seok-Bae Yun and Ki-Nam Hong from Sungkyunkwan University.

In this chapter, we study the global existence problem for the stationary Boltzmann equation in a slab with inflow boundary conditions using the Banach fixed point theorem. We give first an overview of some results obtained in the context of the stationary Boltzmann equation.

Introduction

One of the main research fields of the kinetic theory of gases is the analysis of vapor flows caused by evaporation and/or condensation at the interface of the vapor and condensed phase [START_REF] Sone | Kinetic Theory and Fluid Dynamics[END_REF][START_REF] Sone | Molecular Gas Dynamics: Theory, Techniques, and Applications[END_REF][START_REF] Sone | Kinetic theory of evaporation and condensationhydrodynamic equation and slip boundary condition[END_REF]. At the kinetic level, the concept to deal with such systems is to take the Knudsen number to be close to 0, and write the distribution function as an asymptotic expansion in the Knudsen number plus a rest term. The rest term has been proved to be controlled in [START_REF] Caflisch | The fluid dynamic limit of the nonlinear boltzmann equation[END_REF] for the time dependant and space-periodic cases by decomposing it into low-velocity and high-velocity parts. The method has been generalized in [START_REF] Esposito | Hydrodynamic limit of the stationary boltzmann equation in a slab[END_REF][START_REF] Esposito | The navier-stokes limit of stationary solutions of the nonlinear boltzmann equation[END_REF] for the stationary Boltzmann equation.

This problem has been also studied in [START_REF] Aoki | Vapor flows caused by evaporation and condensation on two parallel plane surfaces: Effect of the presence of a noncondensable gas[END_REF][START_REF] Aoki | Gas flows caused by evaporation and condensation on two parallel condensed phases and the negative temperature gradient: Numerical analysis by using a nonlinear kinetic equation[END_REF][START_REF] Aoki | Gas flows caused by evaporation and condensation on two parallel condensed phases and the negative temperature gradient: Numerical analysis by using a nonlinear kinetic equation[END_REF] where according to the formal Hilbert expansion, the corrections to the leading order terms are given by a modified truncated Hilbert expansion with a remainder. It is necessary to introduce boundary layer terms to accommodate the expansion to the boundary conditions. Moreover, it was found that the density and temperature fields in the continuum limit are affected by the velocity field of the first order of the Knudsen number [START_REF] Sone | Inappropriateness of the heat-conduction equation for description of a temperature field of a stationary gas in the continuum limit: Examination by asymptotic analysis and numerical computation of the Boltzmann equation[END_REF][START_REF] Sone | Kinetic Theory and Fluid Dynamics[END_REF][START_REF] Aoki | Cylindrical couette flow of a vapor-gas mixture: Ghost effect and bifurcation in the continuum limit[END_REF][START_REF] Arkeryd | Ghost effect by curvature in planar couette flow[END_REF]. This paradoxical problem is described by the ghost effect.

Besides, the above studies were extended to the case where the domain contains another gas that neither evaporates nor condenses [START_REF] Aoki | The behaviour of a vapor-gas mixture in the continuum limit: Asymptotic analysis based on the boltzmann equation[END_REF][START_REF] Brull | Problem of evaporation-condensation for a two component gas in the slab[END_REF][START_REF] Takata | Behavior of a vapor-gas mixture between two parallel plane condensed phases in the continuum limit[END_REF][START_REF] Aoki | Vapor flows caused by evaporation and condensation on two parallel plane surfaces: Effect of the presence of a noncondensable gas[END_REF][START_REF] Takata | The ghost effect in the continuum limit for a vapor-gas mixture around condensed phases: Asymptotic analysis of the boltzmann equation[END_REF][START_REF] Kosuge | Shock-wave structure for a polyatomic gas with large bulk viscosity[END_REF][START_REF] Aoki | Poiseuille flow and thermal transpiration of a rarefied polyatomic gas through a circular tube with applications to microflows[END_REF][START_REF] Aoki | Fluid modeling for the knudsen compressor: Case of polyatomic gases[END_REF][START_REF] Brull | The Stationary Boltzmann equation for a two-component gas in the slab with different molecular masses[END_REF][START_REF] Aoki | Numerical analysis of steady flows of a gas condensing on or evaporating from its plane condensed phase on the basis of kinetic theory: Effect of gas motion along the condensed phase[END_REF], where the ghost effect has been also studied in [START_REF] Bouchut | Kinetic equations and asymptotic theory[END_REF][START_REF] Takata | The ghost effect in the continuum limit for a vapor-gas mixture around condensed phases: Asymptotic analysis of the boltzmann equation[END_REF][START_REF] Takata | Behavior of a vapor-gas mixture between two parallel plane condensed phases in the continuum limit[END_REF]. For a deep study of evaporation and condensation problems, one may refer to [START_REF] Aoki | Kinetic theory analysis of gas flows condensing on a plane condensed phase: Case of a mixture of a vapor and a noncondensable gas[END_REF][START_REF] Aoki | Shock-wave structure for a binary gas mixture: finite-difference analysis of the boltzmann equation for hard-sphere molecules[END_REF][START_REF] Sone | Steady gas flows past bodies at small knudsen numbers[END_REF][START_REF] Taguchi | Vapor flows condensing at incidence onto a plane condensed phase in the presence of a noncondensable gas. ii. supersonic condensation[END_REF][START_REF] Taguchi | Vapor flows along a plane condensed phase with weak condensation in the presence of a noncondensable gas[END_REF][START_REF] Aoki | Gas flows caused by evaporation and condensation on two parallel condensed phases and the negative temperature gradient: Numerical analysis by using a nonlinear kinetic equation[END_REF]. In the context of polyatomic gases, studies have been carried out in [START_REF] Kosuge | Shock wave structure in polyatomic gases: Numerical analysis using a model boltzmann equation[END_REF][START_REF] Hattori | Slip boundary conditions for the compressible navier-stokes equations for a polyatomic gas[END_REF][START_REF] Aoki | Gas flows caused by evaporation and condensation on two parallel condensed phases and the negative temperature gradient: Numerical analysis by using a nonlinear kinetic equation[END_REF], and to reactive mixtures of gases [START_REF] Groppi | Kinetic theory analysis of a binary mixture reacting on a surface[END_REF].

In this chapter, we study the global existence problem for the steady Boltzmann equation describing a single polyatomic gas in a sufficiently small slab with inflow boundary conditions using the Banach fixed point theorem. Our result is a generalization of [77] which has been done for a monatomic gas with hard-sphere collisions. For the evolutionary Boltzmann equation, existence results have been proved by Diperna and Lions [START_REF] Diperna | On the cauchy problem for boltzmann equations: Global existence and weak stability[END_REF] for unbounded domains using compactness results for the velocity averages of solutions of linear transport equations [START_REF] Golse | Regularity of the moments of the solution of a transport equation[END_REF]. Proving the compactness results requires a control of mass and entropy, which is not straightforward in the stationary Boltzmann equation. In the stationary equation case, Arkeryd and Nouri proved the existence of a solution with both inflow and diffuse reflective boundary conditions based on weak compactness arguments of uniformly bounded measures [START_REF] Arkeryd | A compactness result related to the stationary boltzmann equation in a slab, with applications to the existence theory[END_REF]. A useful tool used in [START_REF] Arkeryd | A compactness result related to the stationary boltzmann equation in a slab, with applications to the existence theory[END_REF] is introducing truncations on the velocity near zero. In [START_REF] Arkeryd | The stationary boltzmann equation in the slab with given weighted mass for hard and soft forces[END_REF][START_REF] Arkeryd | L1 solutions to the stationary boltzmann equation in a slab[END_REF], the authors got rid of the small velocity truncations using the entropy dissipation term which provides the most useful control. For the case of v ∈ R n , Arkeryd and Nouri [START_REF] Arkeryd | The stationary boltzmann equation in rn with given indata[END_REF] proved the existence result for the given in data boundary condition using velocity truncations because avoiding the small velocity truncation for the stationary Boltzmann equation with large boundary data in more than one space

dimension was an open problem back then. The imposition of the velocity truncation was then solved in [START_REF] Arkeryd | A large data existence result for stationary boltzmann equation in a cylindrical geometry[END_REF] for the R 2 case where the domain considered is two coaxial rotating cylinders with given in data condition. The technique used was a generalization of the techniques from the slab case used in [START_REF] Arkeryd | The stationary boltzmann equation in the slab with given weighted mass for hard and soft forces[END_REF][START_REF] Arkeryd | L1 solutions to the stationary boltzmann equation in a slab[END_REF]. In [START_REF] Arkeryd | On a taylor-couette type bifurcation for the stationary nonlinear boltzmann equation[END_REF], the Taylor-Couette setting between two coaxial, rotating cylinders with given indata of Maxwellian type was considered.

We note that existence results of a mixture of two gases have been obtained in [START_REF] Brull | The stationary boltzmann equation for a two-component gas for soft forces in the slab[END_REF][START_REF] Brull | The stationary boltzmann equation for a two-component gas in the slab[END_REF][START_REF] Brull | Ghost effect for a vapor-vapor mixture[END_REF].

The organization of this chapter is as follows. We present first the setting of the problem and define the norms we use. In Section 4.3, we give the main result without presenting the proof. In fact, we give in advance some preliminary lemmas, mainly, lower and upper bound estimates of the collision frequency operator, and symmetry property of the collision operator which we present in Section 4.4. We prove then some norm estimates of the gain collision operator in Section 4.5. The proof of our main result, which is based on the Banach fixed point theorem is composed of two parts: invariance and contraction. First, we prove the invariance part in 4.6, and in 4.7 we prove the contraction part.

Setting of the Problem

The stationary Boltzmann equation with inflow boundary conditions is

v 1 ∂f ∂x = εQ(f, f ), x ∈ (0, 1), f (0, v, I) = f L (0, v, I), v 1 > 0, f (1, v, I) = f R (1, v, I), v 1 < 0, (4.1) 
where the collision operator Q is defined in (1.11). From the decomposition

Q(f, f ) = Q + (f, f ) -f L(f ),
where

Q + (f, f ) = (0,1) 2 ×S 2 ×R + ×R 3 f ′ f ′ * (I ′ I ′ * ) α B×(r(1-r)) α (1-R) 2α I α I α * (1-R)R 1/2 dRdrdσdI * dv * , and 
L(f ) = (0,1) 2 ×S 2 ×R + ×R 3 f * B × (r(1 -r)) α (1 -R) 2α+1 R 1/2 dRdrdσdI * dv * ,
the stationary Boltzmann equation in (4.1) can be written as

∂f (x, v, I) ∂x + ε v 1 f L(f )(x, v, I) = ε v 1 Q + (f, f )(x, v, I).
By fixing v and I, we treat the equation as an ordinary differential equation. In fact, multiplying by the integrating factor

exp εv -1 1 x y L(f )(z, v, I)dz ,
and applying the boundary conditions we convert the problem into the following form

f = Ψ(f ), (4.2) 
where

Ψ(f ) = Ψ + (f )1 {v 1 ≥0} + Ψ -(f )1 {v 1 <0} , such that Ψ + (f ) = exp - ε v 1 x 0 L(f )(y, v, I)dy f L (0, v, I)+ ε v 1 x 0 exp - ε v 1 x y L(f )(z, v, I)dz Q + (f, f )dy (4.3)
and

Ψ -(f ) = exp - ε v 1 x 1 L(f )(y, v, I)dy f R (1, v, I)+ ε v 1 x 1 exp - ε v 1 x y L(f )(z, v, I)dz Q + (f, f )dy.
Definition 37. The distribution function f is called a mild solution to (4.1) if it satisfies ∥f ∥ 0 + ∥f ∥ 1-γ + ∥f ∥ P < ∞ and has the following expression.

1. For v 1 > 0, f (x, v, I) = exp - ε v 1 x 0 L(f )(y, v, I)dy f L (0, v, I) + ε v 1 x 0 exp - ε v 1 x y L(f )(z, v, I)dz Q + (f, f )dy 2. For v 1 < 0, f (x, v, I) = exp - ε v 1 x 1 L(f )(y, v, I)dy f R (1, v, I) + ε v 1 x 1 exp - ε v 1 x y L(f )(z, v, I)dz Q + (f, f )dy.
Now, we introduce the norms we need in order to define an appropriate space where the Banach fixed point theorem holds.

Norms Defined

In this section, we define the norms needed for the Banach fixed point theorem to hold.

We introduce the weight function

φ(v) = e 1 2 |v| 2 +I , (4.4) 
with the weighted norms

∥f ∥ k = sup ω R 3 v R + φ(v, I) 1 |v -ω| k ∥f (., v, I)∥ L ∞ dvdI, ∥f ∥ P = sup P P R + φ(v, I)∥f (., v, I)∥ L ∞ (0,1) dσ(v)dI,
for k ∈ {0, 1 -γ}. We consider the Banach space

X • = f : φf ∈ L 1 R 3 v × R + , L ∞ (Ω)
endowed with the norm ∥.∥. Let a j (j = 1, 2, 3, 4) be some positive constants and consider sets A ⊂ X • defined by

A = {f ∈ X • : f ⩾ 0, ∥f ∥ 0 ⩽ a 1 , L(f ) ⩾ a 2 , ∥f ∥ 1-γ ⩽ a 3 , ∥f ∥ P ⩽ a 4 } .

Main Result

The main result of the chapter is given in the following theorem.

Theorem 38. Suppose that the inflow boundary functions f LR ≥ 0satisfies

∥f LR ∥ 0 + ∥f LR ∥ 1-γ + ∥f LR ∥ P < ∞.
Then, there exists a unique mild solution f to (4.1) on A defined as

A = {f : φf ∈ L 1 (R 3 × R + ), f ≥ 0, ∥f ∥ 0 ≤ a 1 , ∥L(f )∥ 0 ≥ a 2 , ∥f ∥ 1-γ ≤ a 3 , ∥f ∥ P ≤ a 3 }, (4.5) 
if ε ≤ a 5 for some a 5 > 0.

The goal of this chapter is to prove the existence of a solution for (4.1) using the Banach fixed point theorem on A. That is, we will show that Ψ(A) ⊂ A, and that Ψ is a contraction map on A. For this, we prove some useful lemmas in the following section and then give a series of norm estimates on Q + .

Preliminary Lemmas

In this section, we state and prove preliminary lemmas that will be crucially used in sections 4.6 and 4.7.

Lemma 39. For 0 ≤ γ ≤ 1, the following inequality holds

1 |v ′ + w| 1-γ dσ ≤ 4π (RE) 1-γ 2 , (4.6) 
where the post-collisional velocity v ′ is defined in (1.10) (Chapter 2).

Proof. In fact,

1 |v ′ + w| 1-γ dσ = 1 | v+v * 2 + √ REσ + w| 1-γ dσ = 1 (RE) 1-γ 2 1 |σ + c| 1-γ dσ, where c = v+v * 2 +ω √ RE . Setting c = (0, 0, |c|), we get |σ + c| 1-γ = |(sin ϕ cos θ, sin ϕ sin θ, cos ϕ + |c|)| 1-γ = (sin ϕ cos θ) 2 + (sin ϕ sin θ) 2 + (cos ϕ + |c|) 2 1-γ 2 = (1 + 2|c| cos ϕ + |c| 2 ) 1-γ 2 .
Then,

1 (RE) 1-γ 2 1 |σ + c| 1-γ dσ = 2π (RE) 1-γ 2 π 0 (1 + 2|c| cos ϕ + |c| 2 ) -1-γ 2 sin ϕdϕ = 2π (RE) 1-γ 2 1 -1 (1 + c|c|t + |c| 2 ) -1-γ 2 dt, where t = cos ϕ = π |c|(RE) 1-γ 2 (|c|+1) 2 (|c|-1) 2 p -1-γ 2 dp, where p = 1 + c|c|t + |c| 2 = π |c|(RE) 1-γ 2 (∥c| + 1| 1-γ -∥c| -1| 1-γ ) ≤ 4π (RE) 1-γ 2 , since for x ≥ 0, (x + 1) 1-γ -|x -1| 1-γ x ≤ 4 
for any γ such that 0 ≤ 1 -γ ≤ 2.

Lemma 40. For γ ≤ 1, the collision frequency L is bounded from above by the two following lower bounds

L(f )(v, I) ≤ √ 3e 1 + |v| + I 1/2 ∥f ∥ 0 (4.7)
and

L(f )(v, I) ≤ (1 + e) 1 + 1 2 |v| 2 + I ∥f ∥ 0 . (4.8) 
Proof. In fact, using the fact that γ ≤ 1, and using the inequality x ≤ e x for x ≥ 0, we have

L(f ) = (0,1) 2 ×S 2 ×R + ×R 3 f * E γ/2 × (r(1 -r)) α (1 -R) 2α+1 R 1/2 dRdrdσdI * dv * ≤ R + ×R 3 f * 1 4 |v -v * | 2 + I + I * γ/2 dI * dv * ≤ R + ×R 3 f * 1 2 |v| 2 + 1 2 |v * | 2 + I + I * γ/2 dI * dv * ≤ R + ×R 3 f * 1 2 |v| 2 + 1 2 |v * | 2 + I + I * + 1 γ/2 dI * dv * ≤ √ 3 1 2 |v| + I 1/2 + 1 R + ×R 3 e × e 1 2 |v * | 2 +I * f * dI * dv * ≤ √ 3e |v| + I 1/2 + 1 ∥f ∥ 0 .
For the obtention of the second upper bound estimate (4.8), we start as before, yet, we proceed as follows

L(f ) ≤ R + ×R 3 f * 1 2 |v| 2 + 1 2 |v * | 2 + I + I * + 1 dI * dv * ≤ 1 2 |v| 2 + I + 1 R + ×R 3 1 2 |v * | 2 + I * + 1 f * dI * dv * ≤ e 1 2 |v| 2 + I + 1 ∥f ∥ 0 ,
where we used the inequality 1 + x + y ≤ (1 + x)(1 + y) for x, y ≥ 0.

Lemma 41 (Lower Bound of the Collision Frequency). For f ∈ A, the collision frequency is bounded by below as

L(f )(v * , I * ) ≥ β 1 + I 1/2 * + |v * |)
Proof. Using Definition 37,

R 3 ×R + f (v, I)dvdI ≥ R 3 ×R + exp - ε v 1 x 0 L(f )(y, v, I)dy f L (0, v, I)dvdI
Recall from Lemma 40 the upper bound of L. Hence,

R 3 ×R + f (v, I)dvdI ≥ R 3 ×R + exp - ε v 1 (1 + e) 1 + 1 2 |v| 2 + I ∥f ∥ 0 f L (0, v, I)dvdI ≥ R 3 ×R + exp - ε v 1 (1 + e) 1 + 1 2 |v| 2 + I a 1 f L (0, v, I)dvdI = c 1 .

Properties of the Collision Operator

We give now a symmetry property of the Boltzmann gain operator, which will be used for the norm estimates of the gain operator in the following section.

Lemma 42. For φ defined in (4.4), the following property holds

φ(v, I)Q + (f, f )dvdI = φ (v ′ , I ′ ) f f * B(r(1 -r)) α (1 -R) 2α+1 R 1/2 dRdrdσdI * dv * dvdI.
(4.12)

Proof. The Jacobian of the change of variable

(v, v * , I, I * , r, R, σ) → (v ′ , v ′ * , I ′ , I ′ * , r ′ , R ′ , σ ′ ) is J = R 1/2 (1-R) R ′ 1/2 (1-R ′ )
, where the pre-collisional variables are given in terms of the postcollisional variables as

v = v ′ + v ′ * 2 + √ R ′ Eσ ′ , v * = v ′ + v ′ * 2 - √ R ′ Eσ ′ , I = r ′ (1 -R ′ )E, I * = (1 -r ′ )(1 -R ′ )E, r = I ′ I ′ + I ′ * , R = 1 4E |v ′ -v ′ * | 2 .
Perform the above change of variable on the integral

φ(v, I)Q + (f, f )dvdI = φ(v, I) f ′ f ′ * (I ′ I ′ * ) α B(r(1 -r)) α (1 -R) 2α+1 R 1/2 (II * ) α dRdrdσdI * dv * dvdI = φ v ′ + v ′ * 2 + √ R ′ Eσ ′ , r ′ (1 -R ′ )E f ′ f ′
By dropping the 'prime' everywhere we get

φ(v, I)Q + (f, f )dvdI = φ v + v * 2 + √ REσ, r(1 -R)E f (v, I)f (v * , I * )B (r(1 -r)) α (1 -R) 2α+1 R 1/2 dRdrdσdI * dv * dvdI = φ (v ′ , I ′ ) f f * B(r(1 -r)) α (1 -R) 2α+1 R 1/2
dRdrdσdI * dv * dvdI.

Norm Estimates

In this section, we give some estimates on the norms of the gain part Q + . These estimates are essential for proving in Section 4.6 the invariance of the set A given in (4.5) under the operator Ψ defined in (4.2), and to prove the contraction of Ψ in Section 4.7.

An Estimate on ∥Q

+ (f, f )∥ 0 Lemma 43. For 0 ≤ γ ≤ 2, the following inequality holds ∥Q + (f, f )∥ 0 ≤ 4π 3 ∥f ∥ 2 0 . (4.13) 
Proof. To prove (4.13), we consider the two cases E ≤ 1 and E > 1 separately.

1. for E ≤ 1:

∥Q + (f, f )∥ 0 = φ(v, I)∥Q + (f, f )∥ L ∞ (dx) dvdI = ∥f f * ∥ L ∞ (dx) φ(v ′ , I ′ )B(r(1 -r)) α (1 -R) 2α (1 -R)R 1/2 dRdrdσdI * dv * dvdI ≤ ∥f f * ∥ L ∞ (dx) φφ * dRdrdσdI * dv * dvdI ≤ ∥f ∥ 2 0 .
2. for E > 1: By (4.12), we have

∥Q + (f, f )∥ 0 = φ(v, I)∥Q + (f, f )∥ L ∞ (dx) dvdI = ∥f f * ∥ L ∞ (dx) φ(v ′ , I ′ )B(r(1 -r)) α (1 -R) 2α+1 R 1/2 dRdrdσdI * dv * dvdI ≤ ∥f f * ∥ L ∞ (dx) e 1 2 ( v+v * 2 + √ REσ) 2 +r(1-R)E B(1 -R) dRdrdσdI * dv * dvdI ≤ ∥f f * ∥ L ∞ (dx) e 1 2 ( |v+v * | 2 + √ RE) 2 +r(1-R)E E γ/2 (1 -R) dRdrdσdI * dv * dvdI ≤ ∥f f * ∥ L ∞ (dx) e |v+v * | 2 4 +RE+r(1-R)E E γ/2 (1 -R) dRdrdσdI * dv * dvdI.
Integrating in r, we obtain

∥Q + (f, f )∥ 0 ≤ ∥f f * ∥ L ∞ (dx) e |v+v * | 2 4 +RE+(1-R)E 1 E 1-γ/2 dRdσdI * dv * dvdI = ∥f f * ∥ L ∞ (dx) e |v+v * | 2 4 +E 1 E 1-γ/2 dRdσdI * dv * dvdI = 4π 3 ∥f f * ∥ L ∞ (dx) e |v+v * | 2 4 + |v-v * | 2 4 +I+I * 1 E 1-γ/2 dI * dv * dvdI ≤ 4π 3 ∥f ∥ L ∞ ∥f * ∥ L ∞ e |v| 2 2 + |v * | 2 2 +I+I * 1 E 1-γ/2 dI * dv * dvdI = 4π 3 ∥f ∥ L ∞ ∥f * ∥ L ∞ φ(v, I)φ(v * , I * ) 1 E 1-γ/2 dI * dv * dvdI. Since E > 1, we have 1 E 1-γ/2 ≤ 1,
and therefore we get the estimate

∥Q + (f, f )∥ 0 ≤ 4π 3 ∥f ∥ 2 0 .
We remark that distinguishing the cases when E < 1 and E ≥ 1 in the above proof, it was possible to obtain an upper bound of ∥Q + ∥ 0 depending only on ∥f ∥ 0 , and not ∥f ∥ 0 .

The upper bound obtained in [77] required the introduction of ∥ • ∥ -1 (for k = -1 in Section 4.2.1) which we are able to avoid.

Estimate on ∥Q + ∥ P

Let P be an arbitrary plane in R 3 having the equation av 1 + bv 2 + cv 3 + d = 0. For an arbitrary point q ∈ R 3 , we define d(q) = Dist(P, q). In order to bound ∥Q + ∥ P , we define v) . Indeed, the normal sequence α π 1/2 e -αd 2 (v) converges to the Dirac delta function concentrating on P in the sense of distribution when α goes to infinity. The following lemma holds Lemma 44. For 0 ≤ γ ≤ 1, the following inequality holds

φ α (v, I) = φ(v, I) α π 1/2 e -αd 2 ( 
∥Q + (f, g)∥ P ≤ C(∥f ∥ 0 • ∥g∥ 0 + ∥f ∥ 0 • ∥g∥ 1-γ ).
Proof.

φ α (v, I)Q + (f, g)dvdI = φ(v ′ , I ′ ) α π e -α av ′ 1 +bv ′ 2 +cv ′ 3 +d √ a 2 +b 2 +c 2 2 (f g * + f * g) B(1 -R) √ R(r(1 -r)) α (1 -R) 2α dvdv * dIdI * drdRdσ ≤ φ(v ′ , I ′ ) α π e -α (a,b,c)• v+v * 2 + √ RE(a,b,c)•σ+d √ a 2 +b 2 +c 2 2 (f g * + f * g)B(1 -R) √ R(r(1 -r)) α (1 -R) 2α dvdv * dIdI * drdRdσ ≤ φφ * (f g * + f * g) α π e -α 1 √ a 2 +b 2 +c 2 [a v 1 +v * 1 2 +b v 2 +v * 2 2 +c v 3 +v * 3 2 +d]+ √ RE cos ϕ 2 sin ϕdϕ √ RE γ/2 drdRdvdv * dIdI *
The angle ϕ is chosen to be with respect to the fixed vector (a, b, c). The value of the integral with respect to ϕ is bounded by

C 1 √ RE π α .
Therefore,

φ α (v, I)Q + (f, g)dvdI ≤ C φφ * (f g * + f * g) 1 E 1-γ 2 dvdv * dIdI * . (4.14) If E ≥ 1, then (4.14) yields φ α (v, I)Q + (f, g)dvdI ≤ C φφ * (f g * + f * g)dvdv * dIdI * ≤ C∥f ∥ 0 • ∥g∥ 0 ≤ C(∥f ∥ 0 • ∥g∥ 0 + ∥f ∥ 0 • ∥g∥ 1-γ ). (4.15) 
However, if E ≤ 1, we get from (4.14) the estimate

φ α (v, I)Q + (f, g)dvdI ≤ C sup ω φ * g * 1 |v * + ω| 1-γ dv * dI * φf dvdI+ sup ω φg 1 |v + ω| 1-γ dvdI φ * f * dv * dI * ≤ C∥f ∥ 0 • ∥g∥ 1-γ ≤ C(∥f ∥ 0 • ∥g∥ 0 + ∥f ∥ 0 • ∥g∥ 1-γ ). (4.16) 
Taking the limit α → ∞ of the following integral,

lim α→0 φ α (v, I)Q + (f, f )dvdI = δ(av 1 + bv 2 + cv 3 + d)φ(v, I)Q + (f, f )(v, I)dvdI = P ×R + φ(v, I)Q + (f, f )(v, I)dvdI (4.17) 
and combining the results of (4.15) and (4.16), and then taking the supremum over P we get the desired estimate of lemma 44.

Estimates on ∥Q

+ (f, f )∥ 1-γ
The introduction of the norm ∥ • ∥ 1-γ appears in the upper bound of ∥Q + (f, f )∥ P , and needs to be estimated for the sake of invariance properties in the next section (part 4).

Before we compute the upper bound estimate of ∥Q + (f, f )∥ 1-γ , we give the following lemma.

Lemma 45. The following inequalities hold:

1. If 0 ≤ γ ≤ 1/2, then ∥Q + (f, f )∥ 1-γ ≤ 2 4-γ γ + 1 ∥f ∥ 2 0 + ∥f ∥ 0 • ∥f ∥ 1-γ , 2. if 1/2 ≤ γ ≤ 1 then ∥Q + (f, f )∥ 1-γ ≤ 8π 1 + γ ∥f ∥ 2 0 .
Proof. Consider the two cases

1. 0 ≤ γ ≤ 1/2 ∥Q + (f, f )∥ 1-γ = 1 |v ′ + w| 1-γ φ(v ′ , I ′ )f f * B √ R(1 -R)(1 -R) 2α (r(1 -r)) α dvdv * dIdI * drdRdσ ≤ 1 |v ′ + w| 1-γ φφ * f f * E γ/2 √ Rdvdv * dIdI * drdRdσ.
By (4.6) we get

∥Q + (f, f )∥ 1-γ ≤ 4π R k-1 2 E k-γ 2 f f * φφ * dvdv * dIdI * , where k = 1 -γ ≤ 4 × 4 k-γ 2 π (R) 1-γ 2 1 |v -v * | 1-2γ f f * φφ * dRdvdv * dIdI * = 2 4-γ γ + 1 1 |v -v * | 1-2γ f f * φφ * dvdv * dIdI * = 2 4-γ γ + 1 |v-v * |≥1 1 |v -v * | 1-2γ f f * φφ * dvdI+ |v-v * |≤1 1 |v -v * | 1-2γ f f * φφ * dvdI dI * dv * ≤ 2 4-γ γ + 1 f * φ * |v-v * |≥1 f φdvdI+ f * φ * |v-v * |≤1 1 |v -v * | 1-γ f φdvdI dI * dv * ≤ 2 4-γ γ + 1 ∥f ∥ 2 0 + f * φ * sup ω∈R 3 1 |v + ω| 1-γ f φdvdI dI * dv * ≤ 2 4-γ γ + 1 ∥f ∥ 2 0 + ∥f ∥ 0 • ∥f ∥ 1-γ . 2. 1/2 ≤ γ ≤ 1 Here, 1 -γ ∈ [0, 1/2]. We treat the following cases separately (a) E ≤ 1 ∥Q + (f, f )∥ 1-γ = 1 |v ′ + w| 1-γ φ(v ′ , I ′ )f f * B √ R(1 -R)(1 -R) 2α (r(1 -r)) α dvdv * dIdI * drdRdσ ≤ 1 |v ′ + w| 1-γ φφ * f f * E γ/2 dvdv * dIdI * drdRdσ.
Therefore, by (4.6)

∥Q + (f, f )∥ 1-γ ≤ 4π φφ * f f * E (2γ-1)/2 1 R (1-γ)/2 dvdv * dIdI * dR.
As 2γ -1 ≥ 0, then we have E (2γ-1)/2 ≤ 1 since E ≤ 1. We, therefore, get the desired estimate

∥Q + (f, f )∥ 1-γ ≤ 8π 2 -k ∥f ∥ 2 0 . (b) E ≥ 1 ∥Q + (f, f )∥ 1-γ = 1 |v ′ + w| 1-γ φ(v ′ , I ′ )f f * B √ R(1 -R)(1 -R) 2α (r(1 -r)) α dvdv * dIdI * drdRdσ ≤ 1 |v ′ + w| 1-γ e 1 2 ( |v+v * | 2 + √ RE) 2 +r(1-R)E f f * E γ/2 (1 -R))
dvdv * dIdI * drdRdσ.

Again, using (4.6) , we get the following bound

∥Q + (f, f )∥ 1-γ = 1 |v ′ + w| 1-γ e 1 2 ( |v+v * | 2 + √ RE) 2 +r(1-R)E f f * B √ R(1 -R) dvdv * dIdI * drdRdσ ≤ 4π e 1 2 ( |v+v * | 2 + √ RE) 2 +r(1-R)E f f * E γ/2 E (1-γ)/2 (1 -R) R (1-γ)/2 dvdv * dIdI * drdR. Since E ≥ 1, we can get bound 1 E (1-γ)/2 ≤ 1. Now integrate in r, we get ∥Q + (f, f )∥ 1-γ ≤ 4π e 1 2 ( |v+v * | 2 + √ RE) 2 +(1-R)E f f * 1 E 1-γ/2 1 R k/2 dvdv * dIdI * dR ≤ 4π e |v+v * | 2 4 + √ RE 2 +(1-R)E f f * 1 E 1-γ/2 1 R k/2 dRdvdv * dIdI * ≤ 4π e |v+v * | 2 4 +RE+(1-R)E f f * 1 R k/2 dRdvdv * dIdI * ≤ 8π 1 + γ e |v+v * | 2 4 +E f f * 1 R k/2 dRdvdv * dIdI * ≤ 8π 1 + γ ∥f ∥ 2 0 .

Invariance of A under Ψ

The goal of this section is to prove that if f ∈ A, then ψ(f ) ∈ A. This is one of the conditions of the Banach fixed point theorem.

Lemma 46. Let f ∈ A. Then there exists some positive constants a

i (i = 1, 2, • • • , 5)
such that the following conditions hold for ε < a 5

1. ψ(f ) ≥ 0,

2. ∥ψ(f )∥ 0 ≤ a 1 , 3. L(ψ(f )) ≥ a 2 , 4. ∥ψ(f )∥ k ≤ a 3 , 5. ∥ψ(f )∥ P ≤ a 4 .
Proof. Throughout the proof, we will only consider ψ + (f ), as for ψ -(f ) the proof can be held in the same manner.

1. ψ + (f ) ≥ 0 : From the definition of ψ + (f ), we can see that every factor in ψ

+ (f ) is non-negative. Hence, ψ + (f ) ≥ 0 is obvious. 2. ∥ψ + (f )∥ 0 ≤ a 1 ∥ψ + (f )∥ 0 = φ(v, I)∥ψ + (f )∥ ∞ dvdI = φ(v, I) exp - ε |v 1 | x 0 L(f )dy f L (0, v, I)+ x 0 ε |v 1 | exp - ε |v 1 | x y L(f )dz Q + (f, f )dy ∞ dvdI ≤ φ(v, I) exp - ε |v 1 | x 0 L(f )dy f L (0, v, I) ∞ dvdI + φ(v, I) x 0 ε |v 1 | exp - ε |v 1 | x y L(f )dz Q + (f, f )dy ∞ dvdI ≤ φ(v, I) exp - ε |v 1 | xa 2 f L (0, v, I) ∞ dvdI + φ(v, I) x 0 ε |v 1 | exp - ε |v 1 | x y L(f )dz Q + (f, f )dy ∞ dvdI.
Here, let

W f L = exp - ε |v 1 | xa 2 f L (0, v, I), (4.18) 
and set a

1 = 2[∥W f L ∥ 0 + ∥W f L ∥ 1-γ + ∥W f L ∥ P ].
Then, the first part of the integral is bounded by a 1 2 . For the second part, we have φ(v, I)

x 0 ε |v 1 | exp - ε |v 1 | x y L(f )dz Q + (f, f )dy ∞ dvdI ≤ φ(v, I) x 0 ε |v 1 | exp - ε |v 1 | x y a 2 dz Q + (f, f )dy ∞ dvdI ≤ 1 a 2 φ(v, I) ε |v 1 | 1 0 exp -a 2 ε |v 1 | τ dτ ∥Q + (f, f )∥ ∞ dvdI,
where τ = x -y. Therefore, we can divide this integral into two parts

1 a 2 R 2 ×R + |v 1 |≤ 1 ε φ(v, I) ε |v 1 | 1 0 exp -a 2 ε |v 1 | τ dτ ∥Q + (f, f )∥ ∞ dv 1 dv 2 dv 3 dI + 1 a 2 R 2 ×R + |v 1 |> 1 ε φ(v, I) ε |v 1 | 1 0 exp -a 2 ε |v 1 | τ dτ ∥Q + (f, f )∥ ∞ dv 1 dv 2 dv 3 dI.
Estimating the first part :

1 a 2 R 2 ×R + |v 1 |≤ 1 ε ε |v 1 | φ(v, I) 1 0 exp -a 2 ε |v 1 | τ dτ ∥Q + (f, f )∥ ∞ dv 1 dv 2 dv 3 dI ≤ 1 a 2 |v 1 |≤ 1 ε 1 -e -a 2 ε v 1 R 2 ×R + φ(v, I)∥Q + (f, f )∥ ∞ dv 2 dv 3 dI dv 1 ≤ 1 a 2 ∥Q + (f, f )∥ P |v 1 |≤ 1 ε 1 -e -a 2 ε v 1 dv 1 ≤ 1 a 2 (ε + 2a 2 ε ln 1/ε) ∥Q + (f, f )∥ P ,
where the last estimate is due to

|v 1 |<ε -1 1 -e -a 2 ε v 1 dv 1 = ε 0 1 -e -a 2 ε v 1 dv 1 + 1/ε ε 1 -e -a 2 ε v 1 dv 1 ≤ ε + 1/ε ε ε v 1 dv 1 ≤ ε + a 2 ε ln 1/ε -a 2 ε ln ε = ε + 2a 2 ε ln 1/ε. (4.19)
We estimate the second part as follows

R 2 ×R + |v 1 |≥ 1 ε ε |v 1 | φ(v, I) 1 0 exp - ε |v 1 | τ dτ ∥Q + (f, f )∥ ∞ dv 1 dv 2 dv 3 dI ≤ R 2 ×R + |v 1 |> 1 ε ε |v 1 | φ(v, I)∥Q + (f, f )∥ ∞ dv 1 dv 2 dv 3 dI ≤ ε 2 R 3 ×R + φ(v, I)∥Q + (f, f )∥ ∞ dvdI = ε 2 ∥Q + (f, f )∥ 0 .
As a result

∥ψ + (f )∥ 0 ≤ a 1 2 + 1 a 2 ε + 2a 2 ε ln 1 ε ∥Q + (f, f )∥ P + ε 2 ∥Q + (f, f )∥ 0 ≤ a 1 2 + 1 a 2 ε + 2a 2 ε ln 1 ε (∥f ∥ 0 • ∥f ∥ 1-γ + ∥f ∥ 2 0 ) + ε 2 ∥f ∥ 2 0 .
Here, Since f ∈ A, f satisfies ∥f ∥ 0 ≤ a 1 and ∥f ∥ 1-γ ≤ a 3 . Thus, we can choose sufficiently small ε such that Setting a 2 to be as a 2 = 1 4 ν 0 , we get the desired lower bound of L(ψ + (f )). By the definition of a 1 , the first part of the above integral is bounded by a 1 2 . For the second part, Since f ∈ A, then L(f ) ≥ a 2 . Therefore,

1 a 2 2ε ln 1 ε + 2ε (∥f ∥ 0 • ∥f ∥ 1-γ + ∥f ∥ 2 0 ) + ε 2 ∥f ∥ 2 0 ≤ a 1 2 .
exp - ε |v 1 | x y L(f )dz ≤ exp - ε |v 1 | a 2 (x -y) .
Then by explicit calculation, the second part is bounded as

sup w 1 |v + w| 1-γ φ(v, I) ε |v 1 | x 0 exp - ε |v 1 | x y L(f )dz Q + (f, f )dy ∞ dvdI ≤ 1 a 2 sup w 1 |v + w| 1-γ φ(v, I)∥Q + (f, f )∥ ∞ dvdI = 1 a 2 ∥Q + (f, f )∥ 1-γ .
If 1/2 ≤ γ ≤ 1, we have

1 a 2 ∥Q + (f, f )∥ 1-γ ≤ 8π 1 + γ ∥f ∥ 2 0 ≤ 8π 1 + γ a 1 .
In this case, set a 3 = a 1 2 + 8π 1+γ a 1 .

However, if 0 ≤ γ ≤ 1/2, then

1 a 2 ∥Q + (f, f )∥ 1-γ ≤ 2π a 2 2 4-γ γ + 1 ∥f ∥ 2 0 + ∥f ∥ 0 • ∥f ∥ 1-γ ≤ 2 5 π a 2 (a 2 1 + a 1 a 3 ).
In order to get the desired result for this case (0 ≤ γ ≤ 1/2), it is enough to set the condition a 1 2 + 2 5 π a 2 (a 2 1 + a 1 a 3 ) ≤ a 3 .

Therefore, we shall impose the condition 2 5 πa 1 a 2 < 1, and choose By the definition of a 1 , the first part is bounded by a 1 2 . We estimate for the second part as 

a 3 =
sup P P φ(v, I) ε |v 1 | x 0 exp - ε |v 1 | x y L(f )dz Q + (f, f )dy ∞ dσ(v)dI ≤ sup P P φ(v, I) ε |v 1 | |v 1 | a 2 ε Q + (f,

Contraction Property of Ψ

In this section, we prove that Ψ + is a contraction map with ∥ • ∥ 0 for a suitable smallness condition on ε. In a similar way, the contraction property of Ψ -can be carried. In fact, the contraction of Ψ is essential for the Banach fixed point argument to hold on A. Let f, g ∈ A, with f L (x, v), g L (x, v, I), f R (x, v, I), and g R (x, v, I) be the respective boundary functions. This means that, f L (0, v, I) = g L (0, v, I) and f R (1, v, I) = g R (1, v, I). Thus, We estimate the last two-part integral by working on each part alone. Knowing that

∥Ψ + f -Ψ + g∥ 0 ≤ exp - ε v 1 
Q + (f, f ) -Q + (g, g) L ∞ = 2 Q + (f -g, f + g) + Q + (f + g, f -g) L ∞ = 4 Q + (f -g, f + g) L ∞ ,
we get for the first part ε

R 3 ×R + φ(v, I) 1 |v 1 | × x 0 Q + (f, f ) -Q + (g, g) e -ε v 1 a 2 (x-y) L ∞ dy dvdI ⩽ R 3 v ×R + φ(v, I) ε v 1 Q + (f -g, f + g) L ∞ 1 a 2 a 2 0 e -ε v 1 τ dτ dvdI, (4.22) 
where τ = a 2 (x -y). In addition,

a 2 0 e -ε v 1 τ dτ = |v 1 | ε 1 -e -a 2 ε v 1
.

We split the final right-hand side integral in (4.22) into two parts

1 a 2 |v 1 |≤ 1 ε 1 -e -a 2 ε v 1 × R R R + φ(v) Q + (f -g, f + g) L ∞ dv 2 dv 3 dI dv 1 + 2ε 2 |v 1 |>ε -1 R R R + φ(v) Q + (f -g, f + g) L ∞ dIdv 2 dv 3 dv 1 ⩽ |v 1 |<ε -1
1 -e -ε|v 1 | -1 dv 1 × sup

P P R + φ(v) Q + (f -g, f + g) L ∞ dIdµ(v) + 2ε 2 R R R R + φ(v) Q + (f -g, f + g) L ∞ dIdv 1 dv 2 dv 3 ⩽ ε a 2 + 2ε ln 1/ε ∥Q + ∥ P + 2ε 2 Q + 0 .
The goal now is to find the appropriate lower bound estimates of the second part of (4. 

L ∞ x dy Q + (g, g) L ∞ dvdI ≤ √ 3e ∥f -g∥ 0 R 3 ×R + φ(v, I) ε 2 v 2 1 1 + |v| + I 1/2 x 0 τ exp - ε v 1 τ β 1 + |v| + I 1/2 dτ Q + (g, g) L ∞ dvdI ≤ √ 3e ∥f -g∥ 0 v 1 ≤ 1 ε R 2 ×R + φ(v, I) ε 2 v 2 1 |v| + I 1/2 + 1 x 0 τ exp - ε v 1 τ β 1 + |v| + I 1/2 dτ × Q + (g, g) L ∞ dv 2 dv 3 dI dv 1 + v 1 ≥ 1 ε R 2 ×R + φ(v, I) ε 2 v 2 1 |v| + I 1/2 + 1 x 0 τ exp - ε v 1 τ β 1 + |v| + I 1/2 dτ Q + (g, g) L ∞ dv 2 dv 3 dI dv 1 .
We label the two preceding integrals as B1 and B2, where

B1 = v 1 ≤ 1 ε R 2 ×R + φ(v, I) ε 2 v 2 1 |v| + I 1/2 + 1 x 0 τ exp - ε v 1 τ β 1 + |v| + I 1/2 dτ × Q + (g, g) L ∞ dv 2 dv 3 dI dv 1 , and 
B2 = v 1 ≥ 1 ε R 2 ×R + φ(v, I) ε 2 v 2 1 |v| + I 1/2 + 1 x 0 τ exp - ε v 1 τ β 1 + |v| + I 1/2 dτ × Q + (g, g) L ∞ dv 2 dv 3 dI dv 1 .
For B1 we have

B1 ≤ √ 3 β ∥f -g∥ 0 Q + (g, g) P v 1 ≤ 1 ε ε v 1 1 0 exp - ε 2v 1 β 1 + |v| + I 1/2 dτ dv 1 ≤ √ 3 β ∥f -g∥ 0 Q + (g, g) P v 1 ≤ 1 ε ε |v 1 | 1 0 exp - ε 2v 1 τ β 1 + |v| + I 1/2 dτ dv 1 ≤ √ 3 β ∥f -g∥ 0 Q + (g, g) P v 1 ≤ 1 ε ε |v 1 | 1 0 exp - ε 2v 1 τ β dτ dv 1 ≤ √ 3 β ∥f -g∥ 0 Q + (g, g) P v 1 ≤ 1 ε 1 -exp - ε 2v 1 β dv 1 .
Using (4.19), we get

B1 ≤ √ 3 β (ε + 2a 2 ε ln 1/ε) ∥f -g∥ 0 Q + (g, g) P .
For B2, we use the fact that 1 v 1 ≤ ε to get

B2 ≤ε 2 ∥f -g∥ 0 × v 1 ≥ 1 ε R 2 ×R + ε v 1 φ(v, I) |v| + I 1/2 + 1 × 1 0 exp - ε v 1 τ β 1 + |v| + I 1/2 dτ Q + (g, g) L ∞ dv 2 dv 3 dIdv 1 ≤ 1 β ε 2 ∥f -g∥ 0 R R 2 ×R + φ(v, I)× 1 -exp - ε v 1 β 1 + |v| + I 1/2 Q + (g, g) L ∞ dv 2 dv 3 dIdv 1 ≤ 1 β ε 2 ∥f -g∥ 0 R R 2 ×R + φ(v, I) Q + (g, g) L ∞ dv 2 dv 3 dI dv 1 = 1 β ε 2 ∥f -g∥ 0 Q + (g, g) 0 .
Ignoring the second order of ε, and using the estimate on ∥Q + ∥ P we get we conclude that Ψ + is a contraction map.

∥Ψ + f -Ψ + g∥ 0 ⩽ ε • e 2 m∥f
Then, L • T Φ = T Φ • L.

Proof.

[(L • T Φ ) f ] (v, I) = (L (T Φ f )) (v, I) we present some results obtained for the linearized Boltzmann operator. In particular, we show that the linearized Boltzmann operator is a Fredholm operator. This operator plays a significant role in deriving the hydrodynamic limits of the Boltzmann equation.

= f Φ v + v * 2 + √ REσ , r(1 -R)E + f Φ v + v * 2 
We therefore present a derivation of the incompressible Navier-Stokes equations starting from the Boltzmann equation for polyatomic gases in Chapter 3. In Chapter 4, we prove the existence and uniqueness results of the stationary Boltzmann equation for a single polyatomic gas in a slab supposed to be sufficiently small, using fixed point arguments.

Keywords : kinetic theory, polyatomic gases, linearized Boltzmann operator, stationary Boltzmann equation

  Titre : Étude Mathématique et Applications des Modèles de Collision Décrivant les Gaz Polyatomiques Resumé L'équation de Boltzmann, introduite par Ludwig Boltzmann en 1872, est un outil fondamental pour étudier les propriétés des gaz dilués par une approche cinétique. Les modèles cinétiques constituent en effet un outil puissant pour décrire les systèmes hors équilibre et peuvent être considérés comme un pont entre les descriptions macroscopiques et microscopiques.

  l'énergie totale, afin d'exprimer les paires de vitesse et d'énergie interne après la collision en fonction des paires avant la collision. Pour deux particules de masse unitaire entrant en collision, de vitesses initiales respectives v, v * et d'énergies internes respectives I, I * , nous pouvons exprimer les vitesses finales v ′ , v ′ * et les énergies internes I ′ , I ′ * explicitement en utilisant certains paramètres r ∈ [0, 1], R ∈ [0, 1], et σ ∈ S 2 comme suit:

4 (v

 4 -v * ) 2 + I + I * , avec v, I, r, R et σ étant fixes. La fonction de changement de variable est inversible sur son image, qui est H v,I R,r,σ = {(x, y) ∈ R 3 × R + : x ∈ B v- √ Rayσ ( ay -I) and y ∈ ((1 -r)(1 -R)I, +∞)}, et le Jacobien est calculé comme :

Chapitre 3 :

 3 Les Équations de Navier-Stokes Incompressibles Obtenues à Partir de l' Équation de Boltzmann Polyatomique

Chapitre 4 : 2 , oú 0 ≤ γ ≤ 1 .

 421 Résultat d'Existence et d'Unicité pour l'Equation de Boltzmann Stationnaire Dans ce chapitre, nous démontrons l'existence et l'unicité d'une solution à l'équation de Boltzmann stationnaire modélisant un seul gaz polyatomique, avec le modèle de transition suivant B (v, v * , I, I * , r, R, σ) = 1 4 (v -v * ) 2 + I + I * γ/Nous démontrons que l'équation de Boltzmann stationnaire v 1 ∂f ∂x = εQ(f, f ), x ∈ (0, 1), avec les conditions aux bord de type données aux bords d'entrée

si ε ≤ a 5 1 2

 51 pour un certain a 5 > 0 en utilisant les arguments du point fixe. La fonction φ est la fonction de poids donnée par φ(v) = e |v| 2 +I , et les normes sont définies comme suit

andJ

  (g,G,I,I * ,r,R,σ) →(g,G,I,E,r,R,σ) = 1. (1.21) Equation (1.21) is obtained because only E is a function of I * . What remains in deducing the Jacobian of T is calculating the Jacobian of the transformation (g, G, I, E, r, R, σ) → (v, G, I, E, v ′ , I ′ ). As an intermediate step we define

andJ

  (g,G,I,I * ,r,R,σ) →(g,G,I,E,r,R,σ) = 1. (1.25) Equation (1.25) is obtained because E is a function of I * . What remains in deducing the Jacobian of T is calculating the Jacobian of the transformation (g, G, I, E, r, R, σ) → (v, G, I, E, v ′ , I ′ ). As an intermediate step we define

[ 45 ]

 45 Stéphane Brull, Marwa Shahine, and Philippe Thieullen. Compactness property of the linearized Boltzmann operator for a diatomic single gas model. Networks and Heterogeneous Media, 17(6):847-861, 2022. [47] Stéphane Brull, Marwa Shahine, and Philippe Thieullen. Fredholm property of the linearized Boltzmann operator for a polyatomic single gas model. to appear in Kinetic and Related Models, 2023.

Proposition 16 (

 16 Coercivity of ν Id). With the assumption (2.1), there exists c > 0 such that ν(v, I) ≥ c(|v| γ +I γ/2 + 1), for any γ ≥ 0. As a result, the multiplication operator ν Id is coercive. Proof. The collision frequency (2.11) is

Proposition 23 (

 23 Coercivity of ν Id). With the assumption (2.22), there exists a generic constant c α > 0 such that ν(v, I) ≥ c α (|v| γ + I γ 2 + 1),

51 )

 51 is increasing (respectively decreasing) in |V | and I for every I * , the collision frequency ν is increasing (respectively decreasing), where |V | = |v -v * |. Remark 25. If B is increasing (respectively decreasing) in |V | and I, then (2.51) is increasing (respectively decreasing) in |V | and I.

. 74 )

 74 Perform the change of variable I -→ E = I + I * + µ ij 2 |v -v * | 2 , then as dI = dE, (2.74) becomes

the

  Appendix yields the existence of two functions a(|v|, I) and b(|v|, I) such that Ã(|v|, I) = a(|v|, I)A(|v|), and B(|v|, I) = b(|v|, I)B(|v|, I)3.2 Main ResultIn this section, we announce the kinetic derivation of the Navier-Stokes equations for a single polyatomic gas. We define the moment of f weighed by M as⟨f ⟩ M = f M dvdI,and we give the following theorem Theorem 36. Let f ε written as in (3.2) be a sequence of nonnegative solutions to (3.1)

(3. 10 )

 10 Let ε tend to zero in the sense of distribution, then (3.10) becomes∇ x ⟨vg⟩ M = 0, and ∇ x ⟨v ⊗ vg⟩ M = 0,(3.11)Considering the expression of g given in (3.8), equations of (3.11) become ∇ x u = 0, and ∇ x (ρ + θ) = 0,

3 . 1 x 0 L 2 + 2 + 2 ,

 310222 L(ψ + (f )) ≥ a 2Using expression (4.3) of Ψ + , and further Lemma 6, we haveL(ψ + (f )) ≥ exp -ε v (f )(y, v, I)dy f L (0, v, I)B× (r(1 -r)) α (1 -R) 2α+1 R 1/2 dRdrdσdI * dv * I + 1 ∥f ∥ 0 dy × f L (0, v, I)B(r(1 -r)) α (1 -R) 2α+1 R 1/2 dRdrdσdI * dv * I + 1 ∥f ∥ 0 × f L (0, v, I)B(r(1 -r)) α (1 -R) 2α+1 R 1/2 dRdrdσdI * dv * .For any b ≥ 1, let the set S be defined as followsS = {(v, I) ∈ R 3 × R + : e 1 2 |v| 2 + I + 1 ≤ b 2 and 1 |v 1 | ≤ b}. L(ψ + (f )) ≥ S exp -εb 1 + b 2 ∥f ∥ 0 × f L (0, v, I)B(r(1 -r)) α (1 -R) 2α+1 R 1/2 dRdrdσdI * dv * ≥ exp -εb 1 + b 2 a 1 × S f L (0, v, I)B(r(1 -r)) α (1 -R) 2α+1 R 1/2 dRdrdσdI * dv * . Choose b such that inf v,I S f L (0, v, I)B(r(1 -r)) α (1 -R) 2α+1 R 1/2 dRdrdσdI * dv * ≥ 1 2 ν 0 ,we getL(ψ + (f )) ≥ exp -εb 1 + b 2 a 1 1 2 ν 0 .Now choose ε small enough such that exp -εb 1 + b 2 ≥ 1 the lower bound of L becomes L(ψ + (f ))

4 .| 1 0L| 1 0L

 411 ∥ψ + (f )∥ 1-γ ≤ a 3 ∥ψ + (f )∥ 1-γ = sup w 1 |v + w| 1-γ φ(v, I)∥ψ + (f )∥ ∞ dvdI = sup w 1 |v + w| 1-γ φ(v, I) exp -ε |v 1 (f )dy f L (0, v, I))dz Q + (f, f )dy ∞ dvdI ≤ sup w 1 |v + w| 1-γ φ(v, I) exp -ε |v 1 (f )dy f L (0, v, I) )dz Q + (f, f )dy ∞ dvdI.

2 1 -2 5 πa 1 a 2 . 5 .

 225 ∥ψ + (f )∥ P ≤ a 4 ∥ψ + (f )∥ P = sup P φ(v, I) ψ + (f ) ∞ dσ(v)dI )dz Q + (f, f )dy ∞ dσ(v)dI

ε v 1 xy.( 4 . 20 ) 1 x 0 L 1 x 0 L≤ ε v 1 R 3 | 2 +≤ ε v 1 R 3 1 2≤ ε • e 1 v 1 e 1 2Hence, we further have to assume that 1 v 1 e 1 2 |v| 2 v 1 e 1 2 |v| 2 ε v 1 xy≤R 3 0 Q 0 Q

 14201010132131112121300 f )(z,v,I)dz Q + (f, f ) -e -L(g)(z,v,I)dz Q + (g, g)dy 1 v 1 ≥0 0For the first norm in the right-hand side of the above inequality, we use the mean value theorem, which implies that there exists 0 ≤ θ ≤ 1 such thatexp -ε v (f )(y, v, I)dy -exp -ε v (g)(y, v, I)dy f L (0, v, I)1 v 1 ≥0 f )(y, v, I) -L(g)(y, v, I)) dy exp -)(y, v, I) + (1 -θ)L(f )(y, v, I)dy f L (0, v, I) f )(y, v, I) -L(g)(y, v, I)) dy f L (0, v, I) 0 ×R + ∥f -g∥ ∞ E γ/2 dv * dI * f L (0, v, I) I + I * dv * dI * f L (0, v, I) 0 ×R + ∥f -g∥ ∞ e |v * | 2 +I * • e 1+ 1 2 |v| 2 +I dv * dI * f L (0, v, I) 0 |v| 2 +I f L (0, v, I) 0 • ∥f -g∥ 0 . +I f L (0, v, I) 0 ≤ mfor some constant m. Similarly, for Ψ -, we will have to assume that1 +I f R (1, v, I) 0 ≤ nfor a constant n. The second right-hand side norm of (4.20)is estimated asf )(z,v,I)dz Q + (f, f ) -e -L(g)(z,v,I)dz Q + (g, g)dy 1 v 1 ≥0 0 + (f, f ) -Q + (g,g) e g)(z,v,I)dz Q + (g, g)dy + (f, f ) -Q + (g, g) e g)(z,v,I)dz Q + (g, g)(y)dy L ∞ dy dvdI.

  g)(z,v,I)dz Q + (g, g)(y)dy L ∞ dydvdI, (4.23)we use the lower bound of L (4.8) together with the upper bound in Lemma 41. Indeed, g)(z,v,I)dz Q + (g, g)dy )(z, v, I) -L(g)(z, v, I) dz exp -

- √ REσ , ( 1 - 2 fLemma 48 . 1 (A. 6 ) 8 )Finally 8 ) 1 ) 3 I

 1248168813 r)(1 -R)E -f (Φv, I)-f (Φv * , I * ) e -|v * | 2 2 -I * 1 φ(I) |v -v * | 2 + I + I * γ drdRdσdv * dI * = e -|Φv * | 2 Φv Φv * | 2 + I + I * Φσ, r(1 -R) 1 4 |Φv -Φv * | 2 + I + I * + Φv * | 2 + I + I * Φσ, (1 -r)(1 -R) 1 4 |Φv -Φv * | 2 + I + I * -f (Φv, I) -f (Φv * , I * ) 1 φ(I) |Φv -Φv * | 2 + I + I * γ drdRdσdv * dI * .Performing the change of variables σ = Φσ, and v * = Φv * , which are of unit Jacobian, we simply get[(L • T Φ ) f ] (v, I) = Lf (Φv, I) = [(T Φ • L) f ] (v, I). Let s : R 3 × R + -→ R 3 × R + be a function such that s • Φ = Φ • s (A.2)for all isometries Φ on R 3 . Then, there exists t :R + × R + -→ R such that ∀ (v, I) ∈ R 3 × R + , s(v, I) = t(|v|, I)v. (A.3)Proof. Using (A.2), we have|s| • Φ = |s • Φ| = |Φ • s| = |s|.Therefore, |s| is a radial function in v, i.e. |s| is a function of |v| and I only. Therefore, there exists a function w such that |s(v, I)| = w(|v|, I). Consequently, there exists a function u : R 3 → S 2 such that s(v, I) = w(|v|, I)u(v, I),where u still satisfiesu • Φ = Φ • u. (A.4)Let v ∈ R3 , and P I be the plane containing 0, v, and u(v, I), and let C, C ′ be the circles defined as C = P I ∩ B(0, |v|), and C ′ = P I ∩ B(0, 1). We denote by R the set of all rotations whose axis is orthogonal to P. We prove now that u(C, I) = C ′ . Let w ∈ C, then there exists an isometry Φ ∈ R such that w = Φ(v). Therefore,u(w, I) = u( Φ(v), I) = Φ • u(v, I) ∈ P I .As a result, u(w, I)∈ P I ∩ S 2 = C. Since P I is isomorphic toC and C is isomorphic to the set of complex numbers of modulus 1, then there exists a function ϕ : R + -→ R such that u re iθ , I = e i{θ+ϕ(r,I)} . Since (A.2) holds for any Φ, we can choose Φ to be the symmetry with the real axis, we get u • Φ re iθ , I = u re -iθ , I = e i{-θ+ϕ(r,I)} = Φ • u re iθ , I = e i{-θ-ϕ(r,I)} Hence, ϕ(r, I) = 0 or π, Letting t(|v|, I) = ± w(|v|,I) |v| , we obtain (A.3). Lemma 49. The matrix function à defined in (A.1) is a symmetric tensor with zero ṽ ∈ R\0 satisfying |v| = |ṽ|. Hence Ã(v, I) = Ã(Φ 1 ṽ, I) = Φ 1 Ã(ṽ, I)Φ -1We now investigate the term Ã(ṽ, I). In fact,Ã(ṽ, I) = (a ij ) i,j=1,2,3 such that a ij = a ji . , I) = Ã(Φṽ, I) = Φ Ã(ṽ, I)Φ -1 . (A.8)As a result, a 12 = a 23 = 0. Choose now Φ to be also holds and implies that a 32 = 0. Hence, (A.7) is a diagonal matrix. still holds, we get that a 22 = a 33 . As a result, since (A.8) is traceless, then a 11 = -2a 22 , implying Ã(ṽ, I) = a 11 (v, I) 3a 11 (v, I)(e 1 ⊗ e 1 -Back to (A.6), we haveÃ(v, I) = Φ 1 -3a 11 (v, I)(e 1 ⊗ e 1a 11 (v, I) Φ 1 ṽ ⊗ (Φ -1 a 11 (v, I) v ⊗ v -v 2By defining a(v, I) := -3 ṽ2 a 11 (v, I), the lemma is proved.Conclusion ofLemmas: The previous lemmas imply that there exist two functions a and b such that Ã(v, I) = a(|v|, I)A(v), and B(v, I) = b(v, I)B(v, I). Titre : Étude Mathématique et Applications des Modèles de Collision Décrivant les Gaz Polyatomiques Resumé Cette thèse présente une étude d'opérateurs collisionels des gaz polyatomiques du point de vue de la théorie cinétique. La théorie s'appuie sur la théorie cinétique des gaz monoatomiques, avec un niveau de complexité supplémentaire en raison de modes d'énergie internes supplémentaires supposés continus. L'objectif principal de cette thèse est d'étudier et de résoudre certains problèmes relatifs à l'équation de Boltzmann polyatomique. Dans le chapitre 2 nous présentons des résultats obtenus pour l'opérateur de Boltzmann linéarisé. En particulier, nous montrons que l'opérateur de Boltzmann linéarisé est un opérateur de type Fredholm. Nous présentons ensuite une dérivation des équations de Navier-Stokes incompressibles à partir de l'équation de Boltzmann pour les gaz polyatomiques au Chapitre 3. Dans le Chapitre 4, nous prouvons l'existence et l'unicité des solutions de l'équation de Boltzmann stationnaire pour la géométrie du slab supposé suffisamment petit en utilisant des arguments de point fixe. Mots clés : théorie cinétique, gaz polyatomiques, opérateur de Boltzmann linéarisé, équation de Boltzmann stationnaire Title : Mathematical Study and Applications of Collisisional Models Describing Polyatomic Gases Abstract This thesis presents a study of collisional operators of polyatomic gases from the kinetic theory viewpoint. The theory advances from the kinetic theory of monatomic gases, with an extra level of complexity due to additional internal energy modes that are assumed to be continuous. The main objective of this research is to investigate and solve some problems pertaining to the polyatomic Boltzmann equation. In Chapter 2,

Table 2 .

 2 1: Range of α and Possible range of γ based on the degrees of freedom Models (2.29), (2.28), and (2.27) are obtained by taking for model (2.27)

	Molecule state	Range of α	γ
	vibrating	α ≥ 1/2	γ < 2α
	not vibrating, non-linear	α = 1/2	γ < 1

[START_REF] Baranger | Explicit spectral gap estimates for the linearized Boltzmann and Landau operators with hard potentials[END_REF]

,

(2.25)

, and (2.26) for a constant angular function b, for α > 0, and γ < 2α. Under these constraints, the parameters α and γ range according to the molecule state as described in the following table.

  Theorem 18. 1. For γ ≥ 0, and under assumptions (2.23),(2.25), and (2.26), the operator K defined by (2.35)-(2.37) for a single polyatomic gas is a compact operator from L 2 (R 3 × R + ) to L 2 (R 3 × R + ), and by assumption (2.22) the multiplication operator by ν is coercive. As a result, under assumptions (2.22),(2.23), (2.25), and (2.26) the linearized Boltzmann operator L is an unbounded self-adjoint Fredholm operator from Dom

  3 in[START_REF] Gohberg | Unbounded Fredholm Operators and Perturbation Theorems[END_REF], L is a Fredholm operator for γ ≥ 0 and under assumptions (2.22),(2.23),(2.25), and (2.26).

	For γ ≥ 0, where under assumptions (2.23),(2.25), and (2.26) K is compact, and

  .[START_REF] Gamba | On the Cauchy problem for Boltzmann equation modeling a polyatomic gas[END_REF] In fact, though assumptions (2.60) and (2.61) seem to be strict, yet they cover several physical models. In addition, one may notice that as the value of α i or α j increases, conditions (2.60) and (2.61) cover a wider class of functions Ψ ij . We give now models for B ij that satisfy conditions (2.60) and (2.61).

  Section 5. As a result, by Theorem 4.3 in [65], L is a Fredholm operator for γ

ij ≥ 0 and under assumptions (2.56),(2.57), (2.59), and (2.60).

  Thus, we can get the desired result by setting a 4 = a 1 2 + C

	Therefore,				
	∥ψ + (f )∥ P ≤	a 1 2	+	1 a 2	sup
	≤	a 1 2	+	1 a 2	∥Q + (f, f )∥ P
	≤	a 1 2	+ C	∥f ∥ 2 0 a 2
	≤	a 1 2	+ C	a 2 1 a 2	.
						a 2 1 a 2 .

f )dy ∞ dσ(v)dI. P P φ(v, I)∥Q + (f, f )∥ ∞ dσ(v)dI

  (∥f -g∥ 0 • ∥f + g∥ 0 + ∥f -g∥ 0 • ∥f + g∥ 1-γ ) . Since f, g ∈ A, we have ∥f ∥ 0 ≤ a 1 , ∥g∥ 0 ≤ a 1 , ∥f ∥ 1-γ ≤ a 2 , and ∥g∥ 1-γ ≤ a 2 . Hence ∥Ψ + f -Ψ + g∥ 0 ⩽ ε • e 2 m + 2(a 1 + a 2 )

		-g∥ 0 +	ε a 2	+ 2ε ln 1/ε +	√ 3 β	(ε + 2a 2 ε ln 1/ε) ×
				ε a 2	+ 2ε ln 1/ε +	√ 3 β	(ε + 2a 2 ε ln 1/ε)	∥f -g∥ 0 .
	Taking ε small enough such that				
	ε • e 2 m + 2(a 1 + a 2 )	ε a 2	+ 2ε ln 1/ε +	√ β 3	(ε + 2a 2 ε ln 1ε) < 1,

Conclusion

With what proceeds, we conclude that for γ > 0, and under assumptions (2.57), (2.59), and (2.60), the operator K for a single polyatomic gas is a compact operator, and by assumption (2.56) the multiplication operator by ν is coercive. As a result, the linearized Boltzmann operator L is an unbounded self-adjoint Fredholm operator. For soft potential like model -1 < γ < 0 (when the transition function is equal to the upper bound), under assumptions (2.58), (2.59), and (2.60), we conclude that K remains a compact operator.

Here, the change of variable maps (v * , I * ) → (v ′ * , I ′ * ) and (v * , I * ) → (v ′ , I ′ ) are both invertible with Jacobians 1 8 (1 -r)(1 -R) and 1 8 r(1 -R) respectively (see (2.41)). In order to prove the L 2 compactness of the kernel, the singularities coming from these Jacobians should be overcome by imposing further constraints on the transition function B. From the expressions of these Jacobians, the constraints should be obviously set on the generic function Ψ γ (r, R), which is in the upper bound of B. In particular, the assumptions needed are (2.59) and (2.60).

Mixture of Gases

Main Assumptions on the transition function

Together with the above assumption (1.3.1.2), we assume the following boundedness assumptions on the transition function B ij . In fact, we assume two classes of assumptions for a given γ ij ≥ 0 and for -1 < γ ij < 0. For γ ij ≥ 0, we assume

and

On the other hand, for -1 < γ ij < 0, we prove that the i -th component of K remains compact under the following upper bound assumption on

where Φ ij and Ψ ij are positive functions such that

where k * is the thermal conductivity defined as

Using Lemma 35 for the terms containing Γ, we have

Substituting (3.16) and (3.19) in (3.14), and bearing in mind the divergence free equation of u, we can recover the limiting momentum equation as

Substituting (3.20) and (3.17) in (3.15) we get the limiting temperature equation

Let c α be defined as

We have

Therefore, (4.10) and (4.9) imply

.11)

Let A 1 , A 2 > 0. Therefore, combining (4.11) and the lower bound of L (Lf ≥ a 2 ), we have

Consequently,

The lemma is therefore proved.

Appendix A

Properties of the Linearized Boltzmann Operator

We give some essential properties of the linearized Boltzmann operator related to the Galilean invariance, which are essential for deriving the macroscopic equations. These properties were proved by [START_REF] Desvillettes | A remark concerning the chapman-enskog asymptotics[END_REF] for a single monatomic gas. We generalize in this appendix the proof in the case of a single polyatomic gas, which is analogous to [START_REF] Desvillettes | A remark concerning the chapman-enskog asymptotics[END_REF] and is not a new result by itself. The linearized Boltzmann operator for a single polyatomic gas is shown to satisfy the Fredholm property [START_REF] Brull | Compactness property of the linearized Boltzmann operator for a diatomic single gas model[END_REF]. As a result, since

there exist à ∈ ker L ⊥ and B ∈ ker L ⊥ defined uniquely as

We aim further to investigate the terms à and B. For this, we prove the following lemmas yielding the Galilean invariance property of L. We consider the linearized operator obtained by the perturbation f = M + M g inserted in model (1.14) for the simplicity of the proof.

Lemma 47. Let Φ be an isometry on R 3 , and let T Φ be defined as

trace, and For all isometry Φ ∈ O (R 3 ),

Proof. To prove that à is symmetric, we will prove that Ã-ÃT = 0. For this, it is enough to prove that à -ÃT ∈ ker(L) ∩ ker ⊥ (L) = {0}. In fact,

To prove that à is traceless, we similarly prove that tr à ∈ ker(L) ∩ ker ⊥ (L) = {0}. We have L(tr( Ã)) = tr(L Ã) = tr(A) = 0, since à itself is traceless, and for every h ∈ ker(L) ⟨tr( Ã), h⟩ = tr(⟨ Ã, h⟩) = 0 since à ∈ ker ⊥ (L). To prove (A.5), we have

and therefore, T Φ Ã -Φ ÃΦ -1 ∈ ker(L). Now let h ∈ ker(L), then

Lemma 50. Let à be a symmetric tensor with zero trace satisfying (A.5). Then, there exists a : R

, then there exists an isometry Φ 1 such that v = Φ 1 ṽ, where

Perspectives

In this thesis, we have obtained some mathematical results concerning a single polyatomic and a mixture of polyatomic gases. The result of Chapter 2 concerns specifically the linearized Boltzmann operator which we proved to be Fredholm. This result raises further questions such as an estimate of the length of the spectral gap of the linearized Boltzmann operator. In the third chapter, we derived the incompressible Navier-Stokes equations starting from the Boltzmann equation modeling a single polyatomic gas. We aim to generalize this result for a mixture of monatomic and polyatomic gases. In Chapter 4, we proved the existence of a solution for the stationary Boltzmann equation of a single gas in a slab. Though for the monatomic case, the result has been proved

for hard spheres only, we generalized the result for the hard potentials with further improvements on the norms used. One of our interests is to obtain the existence and uniqueness result for the 3D case, where the spatial domain ω ∈ R 3 is convex. We give more precisions below.

Fredholm Property of the Linearized Boltzmann Operator

As detailed in Chapter 2, for the compactness result of K to hold, we need some integrability constraints on the upper bound generic functions. In particular, we assumed (2.5)

for a single non-vibrating linear gas, (2.26) for a general polyatomic gas, and (2.60) and

(2.61) for a mixture of polyatomic gases. We notice from these conditions that for choosing the generic function to be a constant, some constraint has to be set on the degrees of freedom of the gas. Therefore, for the compactness result to hold with the transition function models suggested in [START_REF] Gamba | On the Cauchy problem for Boltzmann equation modeling a polyatomic gas[END_REF] a fewer class of polyatomic gases are included. We look for either improving these assumptions using some further technicalities or proving that these conditions are sufficient. In addition to this, a problem that interests us is when the gas consists of monatomic and polyatomic molecules. A collision operator describing the collisions between monatomic and polyatomic particles has been introduced in [START_REF] Baranger | On the Chapman-Enskog asymptotics for a mixture of monoatomic and polyatomic rarefied gases[END_REF].

Spectral Gap Estimates of the Linearized Boltzmann Operator

The Fredholm property of the linearized Boltzmann operator yields a better understanding of the form of its spectrum. In fact, choosing the transition function to be one of the models (2.27),(2.28), and (2.29) for a single polyatomic gas and (2.62),(2.63), and

(2.64) for a mixture of gases, we deduce from Propositions 2.51 and 23 (respectively 2.79 and 32 for mixtures) that the continuous spectrum of the linearized Boltzmann operator is (-∞, ν(0, 0)). In the interval (-ν(0, 0), 0], we will prove the existence of a discrete spectrum of the linearized Boltzmann operator, and find some estimates of the length of the interval between 0 and the biggest negative discrete eigenvalue.

The latter length is referred to as the spectral gap of the linearized operator and gives information on the speed of convergence toward equilibrium. Investigations on the length of the spectral gap have been obtained for monatomic gases by [START_REF] Bobylev | The theory of the nonlinear spatially uniform boltzmann equation for maxwell molecules[END_REF] for Maxwell molecules, then by [START_REF] Baranger | Explicit spectral gap estimates for the linearized Boltzmann and Landau operators with hard potentials[END_REF] for hard potentials, and [START_REF] Mouhot | Spectral gap and coercivity estimates for linearized boltzmann collision operators without angular cutoff[END_REF] for gases without angular cut-off. A further perspective that interests us is to investigate the stability of the spectral gap for polyatomic gases, which has been studied in [START_REF] Bondesan | Stability of the spectral gap for the boltzmann multi-species operator linearized around non-equilibrium maxwell distributions[END_REF] for monatomic gases.

Incompressible Navier-Stokes Equations Derived From the Boltzmann Equation of a Mixture of Polyatomic Gases

In the context of the hydrodynamic limits of the Boltzmann equation modeling a mixture of monatomic and polyatomic gases, we look forward to extending the result of Chapter 3 of deriving the incompressible Navier-Stokes equations for a single polyatomic gas to a mixture of polyatomic and monatomic gases. In general, the idea of our future work will be based on the approach of [START_REF] Bisi | Formal passage from kinetic theory to incompressible Navier-Stokes equations for a mixture of gases[END_REF] and the approach of Chapter 3, which is itself based on [START_REF] Bardos | Fluid dynamic limits of kinetic equations ii convergence proofs for the boltzmann equation[END_REF]. As noticed from Chapter 3, the viscosity and thermal conductivity terms depend on the degrees of freedom of a gas. In addition, from results obtained in [START_REF] Bisi | Formal passage from kinetic theory to incompressible Navier-Stokes equations for a mixture of gases[END_REF] for a mixture of non-reacting monatomic gases and in [START_REF] Bisi | Incompressible navier-stokes equations from boltzmann equations for reacting mixtures[END_REF] for a mixture of reacting monatomic gases, the difference of masses of different species of the gas affects the expressions of viscosity and thermal conductivity terms. Therefore, upon dealing with a mixture of monatomic and polyatomic gases, we will express the dependence of the conductivity and viscosity on the masses of the species from one side, and their degrees of freedom from another side.

Stationary Boltzmann Equation Modeling Polyatomic Gases

In future work, we aim to extend the existence and uniqueness result of the stationary Boltzmann equation we proved in Chapter 4 with inflow boundary condition, to alter the Maxwell boundary data. Besides, we also aim to obtain existence results of the stationary Boltzmann equation in a 3D convex set given as

where Ω is assumed to be a convex set in R 3 , and ε represents the smallness of Ω. The boundary conditions that we attribute to the above equation are the given in data and the Maxwell boundary conditions. Moreover, the class of hard potential-like transition functions is to be considered. The proof is planned to be carried out using the argument of