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Titre : Un environnement numérique pour des écoulements géophysiques sur grilles logarith-

miques

Mots clés : Turbulence, Géophysique, Grilles logarithmiques, Simulation numérique, Convection

de Rayleigh-Bénard

Résumé : Cette thèse explore la possibilité

d’utiliser des grilles logarithmiques, un nouvel

outil mathématique, pour simuler des flux géo-

physiques et des équations de dynamique des

fluides sur des grilles de Fourier clairsemées.

Nous présentons d’abord les grilles logarith-

miques, étudions leur interprétabilité et pré-

sentons un nouveau cadre numérique (implé-

menté en Python et en C) conçu pour exploi-

ter efficacement leurs capacités. Nous appli-

quons ensuite ce cadre à des simulations de

plusieurs équations physiques, avec un accent

particulier sur trois sujets importants d’intérêt

géophysique : l’équation de Rayleigh-Bénard, la

formation de jets zonaux dans la turbulence

quasi-géostrophique en 2D, et la turbulence ro-

tative forcée. Dans une deuxième partie, nous

présentons des contributions supplémentaires

sur trois sujets distincts. Tout d’abord, le déve-

loppement du blowup auto-similaire dans les

équations d’Euler et de Navier-Stokes. Deuxiè-

mement, les propriétés de l’équation deNavier-

Stokes Réversible. Enfin, l’équation de Rayleigh-

Bénard en rotation dans des conditions atmo-

sphériques. Les résultats de cette recherche

contribuent à l’avancement des simulations nu-

mériques sur des grilles logarithmiques, dé-

bloquant des applications potentielles dans di-

vers domaines, y compris la modélisation cli-

matique, la physique atmosphérique et l’océa-

nographie.

Title : A numerical framework for geophysical flows on logarithmic lattices

Keywords : Turbulence, Geophysics, Logarithmic grids, Numerical simulation, Rayleigh-Bénard

convection

Abstract : This thesis explores the possibility

of using logarithmic grids, a new mathematical

tool, to simulate geophysical flows and fluid dy-

namics equations on sparse Fourier grids. We

first introduce logarithmic grids, study their in-

terpretability and present a new numerical fra-

mework (implemented in Python and C) desi-

gned to efficiently exploit their capabilities. We

then apply this framework to simulations of

several physical equations, with particular em-

phasis on three important topics of geophysi-

cal interest : the Rayleigh-Bénard equation, the

formation of zonal jets in 2D quasi-geostrophic

turbulence, and forced rotating turbulence. In

the second part, we present additional contri-

butions on three separate topics. First, the de-

velopment of the self-similar blowup in the

Euler and Navier-Stokes equations. Second,

the properties of the Reversible Navier-Stokes

equation. Finally, the rotating Rayleigh-Bénard

equation under atmospheric conditions. The

results of this research contribute to the advan-

cement of numerical simulations on logarith-

mic grids, unlocking potential applications in di-

verse fields, including climatemodeling, atmos-

pheric physics and oceanography.

2



Contents
I Introduction 5

0.1 Log-lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
0.1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
0.1.2 Construction of a log-lattice . . . . . . . . . . . . . . . . . . . . . . . 6
0.1.3 Equations on a log-lattice . . . . . . . . . . . . . . . . . . . . . . . . . 8
0.1.4 Singularities of Euler Flow . . . . . . . . . . . . . . . . . . . . . . . . 10
0.1.5 Navier-Stokes equations . . . . . . . . . . . . . . . . . . . . . . . . . 10
0.1.6 Boundaries and log-lattices . . . . . . . . . . . . . . . . . . . . . . . . 10
0.1.7 Existing numerical framework . . . . . . . . . . . . . . . . . . . . . . 11
0.1.8 Log-lattices for geophysical flows . . . . . . . . . . . . . . . . . . . . 12

0.2 Objectives and scope of the PhD . . . . . . . . . . . . . . . . . . . . . . . . . 12
0.2.1 Development of a comprehensive numerical framework . . . . . . . . . 13
0.2.2 Application to specific turbulence scenarios . . . . . . . . . . . . . . . 13
0.2.3 Identifying advantages and limitations of log-lattices . . . . . . . . . . 13

II The framework 14

1 Mathematical framework 15
1.1 Log-lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.1.2 Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.1.3 Against using 𝜆 = 2 for divergence-free equations . . . . . . . . . . . . 16

1.2 On Fourier Lattices: Towards a Physical Interpretation . . . . . . . . . . . . . 17
1.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
1.2.2 Generic Fourier lattices . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.2.3 Complete, orthogonal and fully orthogonal Fourier lattices . . . . . . . 19
1.2.4 Sparse Fourier lattices . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2 Numerical framework 30
2.1 Key features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.2 Example code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2.2 Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

III The physics 35

3 Asymptotic Ultimate Regime of Homogeneous Rayleigh-Bénard 36
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Numerical simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3



3.2.2 Adaptation on log-lattices: HRB with friction . . . . . . . . . . . . . . 39
3.2.3 Numerical details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.1 One and two-dimensional cases . . . . . . . . . . . . . . . . . . . . . 45
3.3.2 In 3D . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Going further: new regimes at very high Ra . . . . . . . . . . . . . . . . . . . 49
3.4.1 Stable and intermittent regimes . . . . . . . . . . . . . . . . . . . . . . 50
3.4.2 Instabilities in the intermittent regimes . . . . . . . . . . . . . . . . . . 50
3.4.3 Adding an edge friction . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4 Rotating fluids 55
4.1 2D beta-plane flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.1.2 Issues with 2-layer flows on log-lattices . . . . . . . . . . . . . . . . . 56
4.1.3 1-layer flows: the case of zonal jets . . . . . . . . . . . . . . . . . . . . 57

4.2 Rotating homogeneous turbulence . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2.2 Equations and parameters . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5 Other contributions 68
5.1 Log-lattices for atmospheric flows . . . . . . . . . . . . . . . . . . . . . . . . 68
5.2 Tracking complex singularities of fluids on log-lattices . . . . . . . . . . . . . 88
5.3 Reversible Navier-Stokes equation on logarithmic lattices . . . . . . . . . . . . 110

IV Conclusions and perspectives 134
5.4 Overview of findings and objectives . . . . . . . . . . . . . . . . . . . . . . . 135

5.4.1 Development of a comprehensive numerical framework . . . . . . . . . 135
5.4.2 Application to specific geophysical turbulence scenarios . . . . . . . . 135
5.4.3 Identifying advantages and limitations . . . . . . . . . . . . . . . . . . 135

5.5 Future prospects and research directions . . . . . . . . . . . . . . . . . . . . . 136
5.6 Final remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

V Appendix 138

A Technical details on the numerical Framework 139
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0.1 Log-lattices

0.1.1 Context
In 2019, Campolina [Mar19] introduced a new mathematical framework called “log-lattices” or
“logarithmic lattices” in their master’s thesis, later supplemented by [CM21] and the PhD thesis
[Mar22]. This innovative approach is designed to simulate and explore the equations of fluid
dynamics, using a reduced number of modes.

The behavior of simple fluids can be accurately described by the incompressible Navier-
Stokes equations (NSE), given as follows:

𝜕𝑡u + u ·∇u = −∇𝑝 + 1
Re

𝚫u,∇ · u = 0. (1)

Here, u represents the fluid’s velocity and 𝑝 denotes its pressure field. The Reynolds number
Re ≡ 𝑈𝐿

𝜈
depends on the characteristic velocity 𝑈, length scale 𝐿, and kinematic viscosity 𝜈 of

the fluid. Campolina’s original motivation was to investigate the potential blowup of the Euler
equations, corresponding to the scenario of ideal turbulence where Re → ∞. This limit holds
significant importance in turbulence, and is linked to anomalous dissipation, which states that
the energy dissipation 𝜖 ≡ 𝜈 |∇u|2 does not vanish as Re → ∞, which is at first surprising
since smooth solutions of the Euler equations conserve energy. This discrepancy is thought to
stem from singular solutions of the Euler equations [Ons49; ES06]. Numerical simulations are
indispensable for exploring such claims since analytical solutions are difficult to attain due to the
complexity and nonlinearity of the equations, especially in three dimensions.

In the context of the 3D Euler equations, the singularity necessarily manifests itself by a
blow-up of vorticity (possibly in finite time), starting from regular initial conditions. However,
classical simulations (Direct Numerical Simulations, DNS) become prohibitively expensive as
Re → ∞ due to the substantial size requirements of the numerical domain. Earlier DNS
studies [Gib08; GMG98; Ker93; PS92; Gra+08; HL07; Hou09] could not definitively establish
or refute the existence of the blowup due to limited resolution (𝑘max/𝑘min ≈ 4 × 103 in Fourier
space (figure 1a). To overcome those numerical challenges, previous works have used simplified
models[UE97; Mai12], such as shell models. However, those one-dimentional models are
too simple and fail to recover the basic features of the Euler blowup. Hence the need for an
intermediate complexity model that combines the low degrees of freedom of shell models with
the multidimensionality of DNS, without losing the properties of the original equation. This is
where Campolina’s log-lattice construction comes into play.

0.1.2 Construction of a log-lattice
Conceptually, log-lattices fit into the more general framework of REduced Wavenumber set
Approximation (REWA) [Gro+94]) or fractal decimated models [Fri+12; Lan+15]. The spirit of
these methods is to use a reduced subset of modes obeying a well-defined hierarchy, to stick closer
to the observed organized nature of turbulence. In the original REWA models [Gro+94], non-
linear-interactions are progressively decreased, either randomly or such that they are distributed
over a fractal set [Fri+12; Lan+15]. In log-lattice models, the mode reduction is achieved by
keeping modes following a geometric progression, thereby allowing to reach very small scales
with a very small number of modes.

The log-lattice construction is based on a discrete grid in Fourier space. We write the
wavevectors k = (𝑘1, . . . , 𝑘𝐷) in a 𝐷-dimensional space. In contrast to the regular grid used

6



(a) (b)

Figure 1: (figure 1a) Growth of maximum vorticity for different numerical schemes in 3D Euler. No DNS
can reasonably conclude on the blowup of the Euler equations. (adapted from figure 1 in [Gra+08]) (fig-
ure 1b) Chaotic attractor in the 3D Euler blowup on log-lattices in function of two positive wavenumbers,
in log scale. The color indicates the third component of renormalized vorticity, increasing from blue to
red. The red box bounds the square region |𝑘1,2 | ≤ 4096, which would be accessible for the high-accuracy
DNS with resolution 81923. (adapted from figure 6.2 in [Mar19])

in DNS, where grid points are defined as 𝑘𝑖 = 𝑘min𝜆𝑛 for some integer 𝑛 and a constant 𝜆 > 0,
log-lattice employs exponentially spaced grid points defined as 𝑘𝑖 = ±𝑘min𝜆

𝑛 for integers 𝑛 and
a scaling factor 𝜆 > 1 (see figure 2). This arrangement leads to points being regularly spaced in
log-space, hence the name “log-lattice”.1 This construction possesses two significant properties:
sparsity, which helps to maintain a low number of degrees of freedom (to a regular discrete
Fourier lattice containing 𝑁𝐷 points corresponds a log-lattice with ∼ (log𝜆 𝑁)𝐷 points), and
scale-invariance, a fundamental statistical property of turbulence. However, is it not closed
under addition, making triadic interactions 𝑘 = 𝑝 + 𝑞 require special consideration. In particular,
for almost any grid spacing 𝜆 > 1, the set of interacting points {𝑝, 𝑞 | 𝑘 = 𝑝 + 𝑞} in the
log-lattice is empty for all 𝑘 . We therefore restrict our attention to values of 𝜆 which admit
triadic interactions. Moreover, we are not interested in reducible lattices, i.e. lattices that can
be decomposed into two disconnected (non mutually interacting) lattices. This leads to three
families of admissible values for 𝜆 in log-lattices, two of which are singular.

Writing 𝑧 as the number of triadic interactions for each point in one dimension (leading to 𝑧𝐷

interactions in 𝐷 dimensions), the admissible values of 𝜆 that result in interacting, irreducible
lattices are as follows:

• 𝜆 = 2, corresponding to 𝑧 = 3 triadic interactions,

• 𝜆 such that∃𝑏, 𝑎 ∈ N∗, 𝜆𝑏−𝜆𝑎 = 1 where 𝑏 > 𝑎, gcd(𝑎, 𝑏) = 1 and (𝑎, 𝑏) ∉ {(1, 3), (4, 5)},
corresponding to 𝑧 = 6 triadic interactions, and

1Note that unlike shell models, log-lattices are truly multidimensional, and unlike the original REWA model,
the decimation does not have a fixed number of points per shell.
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Figure 2: A two-dimensional logarithmic lattice with spacing 𝜆, shown for 𝑘1,2 > 0 (adapted from figure
2.2 in [Mar19])

• 𝜆 satisfying 𝜆3 −𝜆1 = 1 (the “plastic number”, also denoted as 𝜎 ≈ 1.3), leading to 𝑧 = 12.
Note that this solution also satisfies 𝜆5 − 𝜆4 = 1.

The second family of 𝜆 values has its greatest value when 𝑎 = 1, 𝑏 = 2, resulting in the golden
number 𝜆 = 𝜙 ≈ 1.6. This particular value is especially interesting as it spans the largest range
of wavenumbers for a given number of grid points2. For practical usage, it is useful to remember
log-lattices as having three possible configurations: 𝜆 = 2, 𝜆 = 𝜙, 𝜆 = 𝜎 (figure 3), written in
order of increasing complexity. This complexity stems from both the refinement of grid spacing
(coarse for 𝜆 = 2, fine for 𝜆 = 𝜎) and the number of interactions 𝑧.

In [Mar22], generalized lattices add the 𝑘𝑖 = 0 modes to log-lattices.

0.1.3 Equations on a log-lattice
In DNS, translating equations from their continuous form onto the regular numerical grid goes
through a discretization process. On regular grids, we can define a maximum grid spacing
𝜖 ≡ inf𝑖, 𝑗 neighbours 𝑥𝑖 − 𝑥 𝑗 , and then define discrete operators (e.g. through finite elements) that
converge to the continuous operators as 𝜖 → 0. For instance, in 1D, we can define 𝜕𝐷𝑁𝑆

𝑘 𝑢 =

𝑢(𝑘 + 𝜖) − 𝑢(𝑘)
𝜖

→𝜖→0 𝜕𝑘𝑢. In the case of log-lattices, the discretization sets a unique challenge
because they do not have a well-defined “maximum grid spacing” due to the logarithmic spacing
of grid points. The distance between two successive points 𝜆𝑛, 𝜆𝑛+1 is 𝜆𝑛 (𝜆 − 1), which is
unbounded for 𝑛 ∈ Z. Consequently, there is no straightforward way to translate equations onto
log-lattices.

Dealing with linear operators is relatively simple: defining 𝜕𝑥𝑢 ≡ i𝑘𝑥𝑢 is straightforward3.
The complexity arises when dealing with non-linear operators, particularly convolution, which
represents products in real space. One could take inspiration from shell models, and simply
construct a bilinear operator that conserves a given quantity such as energy, but this method

2Another more technical reason has to do with the minimum spread of the triadic interactions, which roughly
scales as 𝜆𝑏, and is therefore minimal for 𝜆 = 𝜙.

3though non canonical: why 𝑖𝑘𝑥 rather than 𝑖𝑘𝑥 (1 + 𝜆/2) for instance ?
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Figure 3: Triad interactions on two-dimensional logarithmic lattices for different spacing factors: (left)
𝜆 = 2; (middle) 𝜆 = 𝜙, the golden mean; (c) 𝜆 = 𝜎, the plastic number. The red node 𝑘 can be decomposed
into sums 𝑘 = 𝑝 + 𝑞 where all possible nodes 𝑝 and 𝑞 are indicated by the green lines. All figures are
given in the same scale. From left to right, both the density of nodes and the number of triads per each
node increase. (adapted from figure 2.2 in [Mar22])

often involves adjusting free parameters, leading to debates about their physical interpretation.
In contract, log-lattices chose a different approach: rather than constructing an operator that
conserves a quantity of interest, they build an operator that conserves the mathematical properties
of the continuous operator4. Note that the symmetries naturally conserved by this process imply
that quantities conserved in the original equations, such as energy, are also conserved on log-
lattices.

The two operators introduced this way in [Mar19] are the inner (scalar) product

( 𝑓 , 𝑔) =
∑︁
𝑘

|𝑘 |𝛼 𝑓 (𝑘)𝑔(𝑘), (2)

and the convolution
( 𝑓 ∗ 𝑔) (𝑘) =

∑︁
𝑘

|𝑘 |𝛼𝑐 𝑝

𝑘
,
𝑞

𝑘
𝑓 (𝑝)𝑔(𝑞), (3)

where the scaling exponent 𝛼 is linked to the measure of the log-lattice space, and where the 𝑐𝑖, 𝑗
are coefficients of known value.

Later in their PhD [Mar22], Campolina expanded this construction to

( 𝑓 , 𝑔) =
∑︁
𝑘

|𝑘 |𝛼 𝑓 (𝑘)𝑔(𝑘), (4)

( 𝑓 ∗ 𝑔) (𝑘) = |𝑘 |𝛽
∑︁
𝑘

��� 𝑝𝑞
𝑘2

��� 𝛼+𝛽3
𝑓 (𝑝)𝑔(𝑞), (5)

where |𝑘 | acts as the “volume of a lattice cell”, and 𝛼, 𝛽 “can be manipulated to change dimen-
sionality and the scaling of terms”5.

Having established how to express linear operators, scalar products, and convolutions on
log-lattices is enough to simulate a wide range of equations.

4Obviously, not all the symmetries can be perfectly conserved (e.g. continuous translation)
5Those definitions are copied as-is from [Mar22] chapter 4, as they are provided with very little explanation, and

can be interpreted in different ways.
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0.1.4 Singularities of Euler Flow
Using those log-lattices, [Mar19] investigated the blowup of the Euler equations. They started
by examining the 1D Euler and Navier-Stokes (Burgers) equations, where rigorous mathematical
results are available. Additionally, in 1D, well-known shell models like the Sabra and DN shell
models correspond to special cases within the log-lattice framework for specific parameters.
Campolina et al. observed a finite-time blowup with a power law |𝑢 | (𝑘) ∼ |𝑘 |−𝜉 , 𝜉 = 1.19, close
to the expected 𝜉 = 4/3 theoretical blowup asymptotics. By introducing a small viscosity for
regularization, the blowup disappeared, and the power law transitioned towards 𝜉 = 1, indicating
a shock solution.

Next, Campolina simulated the 3D Euler equation and observed a finite-time chaotic blowup
with diverging maximum of the vorticity, linked to a chaotic traveling attractor on the Fourier
grid (figure 1b). Around the blowup time 𝑡𝑏, the scaling of the location 𝑘max of the maximum
vorticity was found to be 𝑘max ∼ (𝑡𝑏 − 𝑡)−𝛾, 𝛾 = 2.70, corresponding to an energy spectrum
𝐸 (𝑘) ∼ 𝑘−𝜉 , 𝜉 = 3 − 2/𝛾 ≈ 2.26.

The blowup of the 3D Euler equations serves as a compelling demonstration of the inherent
advantage of log-lattices over DNS. The chaotic attractor spans approximately six decades of
wavenumbers (figure 1b), where state-of-the-art DNS struggle to simulate five. Only at scales
significantly beyond the reach of DNS, do we observe the more-than-double-exponential growth
of vorticity, a critical feature of the blowup and a topic of much debate in DNS results.

In a subsequent work [CM21], they reinforced their findings by testing additional grid spacing
(𝜆 = 𝜙, 𝜎) and conducting larger simulations (up to 𝑘max/𝑘min = 1014). While the blowup times
and prefactors of the scaling laws varied, the exponents of the blowup remained consistent, and
the chaotic attractors showed remarkable similarity despite the different resolutions.

0.1.5 Navier-Stokes equations
Following their investigation of the Euler equations, Campolina delved into the study of the
Navier-Stokes equations (NSE) in [CM21], focusing on anomalous dissipation within the con-
text of log-lattices. In large Reynolds number Re flows, where energy is injected at large scales,
a characteristic feature of this anomaly is the emergence of a significant inertial zone or, equiva-
lently, a substantial region of constant mean energy flux from large to small scales. By varying
the viscosity from 𝜈 = 10−13 to 10−16 (which are ranges widely unreachable using DNS !), they
observe that the energy flux converged to a well-defined value, and its range expanded as the
viscosity decreased, indicating the development of a dissipation anomaly.

To explore the statistics further, they examined the probability distribution functions (PDFs)
of 𝑢1(𝑘) for several values of 𝑘 , and surprisingly, they found the statistics to be Gaussian. This
finding stands in contrast to other simplified models that often exhibit intermittency, reflected
in non-Gaussian statistics. Campolina et al. suggested a possible explanation for this difference,
hypothesizing that the relatively large number of triad interactions in log-lattices might weaken
intermittency. However, reaching a definitive conclusion proved elusive, and they hinted at
the need to develop appropriate tools, like structure functions on log-lattices, to thoroughly
investigate intermittency in this framework.

0.1.6 Boundaries and log-lattices
Closely related to anomalous dissipation is the possible convergence of NSE solutions to Euler
solutions as Re → ∞. In this context, the addition of boundaries introduces a significant change.
Indeed, the boundary conditions are different for the two equations: no-slip u = 0 for NSE,
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and no penetration u · n = 0 for Euler, making the convergence between the two impossible
without forming a singularity. The logical continuation of the work presented above is therefore
to add boundaries to log-lattices[Mar22]. In particular, this work focuses on the discontinuous
formulation of the Navier-Stokes equations [GHS93].

In simple form, the discontinuous NSE write

𝜕𝑡u + u ·∇u = −∇𝑝 + 𝜈𝚫u + [σ · n] 𝛿S ,∇ · u = 0, (6)

where [σ · n] 𝛿S represents the jump of the stress tensor σ across the surface S.
By reflecting the flow across the surface to obtain a flow field in the whole 3D space, this

reduces to

𝜕𝑡u + u ·∇u = −∇𝑝 + 𝜈𝚫u − 𝜈J (𝑥, 𝑧, 𝑡)𝛿(𝑦),∇ · u = 0, (7)

for 𝑦 ≠ 0 and assuming that the surface is defined by 𝑦 = 0, where the shear action exerted by
the surface on the fluid J writes

𝐽𝑥 =
[
𝜕𝑦𝑢𝑥

]
, 𝐽𝑦 = 0, 𝐽𝑧 =

[
𝜕𝑦𝑢𝑧

]
. (8)

In order to compute J , a new method is proposed, which consists in approximating 𝛿𝑦 in
equation (7) by 𝛿𝜖 (𝑦) ≡ 1

𝜖
√
𝜋
𝑒−𝑦

2/𝜖2 , which yields

J 𝜖 (𝑥, 𝑧, 𝑡) = 1
𝜈(𝛿𝜖 , 𝛿𝜖 )𝑦

(−u ·∇u −∇𝑝 + 𝜈Δu, 𝛿𝜖 )𝑦, (9)

where ( 𝑓 , 𝑔)𝑦 ≡
∫

𝑓 𝑔 d𝑦. An analogous approximation in Fourier space gives an equivalent
formulation for the jump J on log-lattices.

Using this formula, [Mar22] investigate a Couette flow and a decaying shear flow. In
both cases, they observe in the velocity spectra a plateau (corresponding to the inertial range
in homogeneous turbulence) followed by a 𝑘−2 tail (corresponding to the dissipative range in
HT), which grows towards small wavelengths as time progresses. Comparing the results of
the decaying shear flow with a corresponding DNS shows qualitatively similar features, with in
particular a very good agreement in the behavior of |𝐽 | (𝑡). This result is a first step towards
applying log-lattices to flows with boundaries.

0.1.7 Existing numerical framework
The numerical framework used in [Mar19; CM21; Mar22] is detailed in [Cam20]. This frame-
work is written for Matlab, and although it provides a set of functions to perform some simulations
on logarithmic lattices, it remains fairly simple. In particular, the following aspects are missing
or lacking, in no particular order:

• proper support for 𝑘𝑖 = 0 modes,

• multithreading, and optimized single-threaded performance,

• support for long simulations, which may be interrupted and resumed,

• long-term result storage,

• visualization and treatment tools for fields on log-lattices,

11



• access to the inner workings of the solver.

Moreover, the reliance on a proprietary software (Matlab) makes the wide diffusion of this
framework difficult. There is therefore a need for a numerical framework that is adapted to Open
Science requirements.

0.1.8 Log-lattices for geophysical flows
When I started my PhD, the only applications of log-lattices were therefore about academic
problems in fluid dynamics, mainly connected to singularities and their consequences. There is
however a completely different and more practical field of application of log-lattices, connected
to geophysical flows. Indeed, geophysical flows are characterized by high Reynolds numbers,
that are out of reach of classical DNS. For example, a rough order of magnitude of a DNS
simulation of oceans on Earth (radius 𝑅 ≈ 6 · 103𝑘𝑚, dissipative scale 𝜂 ≈ 1𝑚𝑚) requires

𝑁 ≈
(
𝑅
𝜂

)3
= (6 · 109)3 ≈ 1029 degrees of freedom.

Current numerical simulations of geophysical flows, for instance in weather forecasting and
climate change research, therefore rely on simplified models, such as Large Eddy Simulations
(LES) and Reynolds-averaged Navier-Stokes (RANS), which aim to capture the dominant large-
scale turbulent structures while modeling the smaller, unresolved scales. However, the accuracy
of such methods heavily relies on the underlying turbulence model and the chosen closure
assumptions that often require free adjustable parameters. There is however an alternative way
to deal with this closure problem, linked with downscaling procedures, in which one injects in
the large scale equations the characteristic transport laws derived by DNS or experiments. This
procedure is popular in internal geophysics, where it is used to deduce conditions for dynamo
onset, or for the intensity of heat transfers. The disadvantage of this procedure is that the
derivation of the general scaling laws is often done in a range of parameter space that is far from
real conditions, and some extrapolation is needed to obtain values relevant for Earth or other

planets. Log-lattices could offer a cheap way (𝑁𝑙𝑜𝑔𝑙𝑎𝑡𝑡 ≈
(
log1.6

𝑅
𝜂

)3
≈ 473 ≈ 105) to investigate

relevant scaling laws at an affordable numerical cost. Given the log-lattice approximation, there
is no hope to obtain exactly the correct scaling laws. However, since log-lattices respect the
symmetries and conservation laws of the initial equations, we could be in a favorable situation
where the exponents of the scaling laws are correct, and only the prefactors are wrong. In this
case, it would take only one experiment or DNS to calibrate this constant, and we could get an
efficient and reliable downscaling at a cheap cost.

To check this possibility, one needs to use log-lattices in conditions appropriate for geophysical
applications, i.e. consider all sorts of additional forces such as rotation and stratification, compute
the scaling laws of the corresponding transport quantities, and compare with some existing
numerical or experimental data, to check both the exponent and the prefactors of the law. This
thesis presents the first step towards such procedure.

0.2 Objectives and scope of the PhD
The central aim of this PhD research is to create a comprehensive suite of numerical tools
that enable the efficient utilization of log-lattices across various scenarios. These tools are
then applied to investigate several geophysical equations of interest using log-lattices. As our
understanding of the practical capabilities and limitations of log-lattices was at the time very
limited, this was by nature a fairly exploratory endeavor.
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0.2.1 Development of a comprehensive numerical framework
The primary goal is to create an all-encompassing numerical framework for log-lattices. This
involves the development of code for simulating equations on log-lattices and analyzing the
simulation results. The framework should be user-friendly for physicists, optimized for speed,
thoroughly documented, and built from open-source software.

0.2.2 Application to specific turbulence scenarios
The focus of the research will be on applying log-lattices to investigate geophysical turbulence
scenarios of interest. Building on the existing Navier-Stokes results of Campolina, we investigate
the influence of temperature and rotation on the flow. By exploring these scenarios, we aim to
ascertain the applicability of log-lattices in geophysical contexts.

0.2.3 Identifying advantages and limitations of log-lattices
Log-lattices are a very young field of research. One lesser objective of this PhD is to gather
information on the extent to which turbulence characteristics can be effectively captured on log-
lattices. The research will also address potential limitations and challenges that must be tackled
for broader adoption of log-lattice methods. Another crucial point is to understand the physical
meaning of the log-lattice fields, particularly for performing Inverse Fourier Transforms.
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Part II

The framework

14



Chapter 1

Mathematical framework

Generic notation
We use ≡ in place of = to define new quantities: “Let 𝑎 ≡ . . . ” means “We define 𝑎 as being
. . . ”.

𝛿𝑥 ≡ 𝛿(𝑥) denotes the Dirac delta distribution.
𝛿𝑝,𝑞 denotes the Kronecker delta function, equal to 1 if 𝑝 = 𝑞 and 0 otherwise.
The complex conjugate of 𝑧 ∈ C is 𝑧.
Since we mostly work with functions in Fourier space, we write them without a hat 𝑓 ≡ 𝑓 .

Functions in real space are therefore written with a double hat: TF−1 𝑓 (𝑘) ≡ ˆ̂𝑓 (𝑥).
We use Einstein summation conventions 𝑎𝑛𝑏𝑛 ≡ ∑

𝑛 𝑎𝑛𝑏𝑛 whenever the set over which the
sum is performed is clear from the context.

The complex number i ≡
√
−1 is always in bold, as opposed to the index 𝑖. In any other case,

bold mathematical elements represent vectors: x = (𝑥1, . . . , 𝑥𝑛).

1.1 Log-lattices

Takeaways
Logarithmic lattices, also known as “log-lattices”, present a novel mathematical framework
for examining equations on a spatial grid that is highly decimated and exponentially spaced.
This framework proves to be highly advantageous when investigating scenarios where tradi-
tional simulations cannot handle the computational burden effectively. Log-lattices possess
true multidimensionality, unlike shell models, and retain most of the symmetries found in
the original equations without any additional parameters.

The spacing parameter 𝜆 can take three main values 𝜆 = 2, 𝜆 = 𝜙 ≈ 1.6 and 𝜆 = 𝜎 ≈ 1.3.
These values are listed in ascending order of the number of interactions.

We advise against using 𝜆 = 2 for incompressible simulations.

1.1.1 Definition
The construction of log-lattices is detailed in section 0.1.2, then section 0.1.3 details how to write
equations on log-lattices.
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1.1.2 Remarks
There are some mathematical drawbacks to the log-lattice construction. Since log-lattices are
nowhere associative, the convolution product also cannot be associative. Instead, it verifies a
weaker property of associativity in average ( 𝑓 ∗𝑔, ℎ) = ( 𝑓 , 𝑔 ∗ ℎ) where (·, ·) is the inner (scalar)
product. In particular, this only works for three functions, but is not defined for four. While this
is not a problem for writing most fluid dynamics equations, it becomes an issue when thinking,
for instance, about structure functions.

The second main drawback of this very “mathematical” formulation is that there is no
canonical way (no way at all for now, actually) to go back to direct space, as discussed in
section 1.2. This is an obvious obstacle when trying to compare log-lattice results and DNS
results.

Nevertheless, log-lattices in their current form are already very capable. [CM21] show that
it retain classical and basic properties of the Navier-Stokes equation, such as constancy of energy
flux in the inertial range, over an unprecedented wide range of scales. They are used to track the
blowup of the Euler equation [Mar19] or the hypoviscous Navier-Stokes equations [Pik+23], a
well-known theoretical problem that DNS have not been able to provide an answer to.

Another interesting feature of log-lattices is that in 1D, they encompass classical shell models
of turbulence for special values of the log-lattice spacing [CM21], such as the Sabra shell model
and the Desnyansky-Novikov (dyadic) model of turbulence [Glo+85; Bif03].

1.1.3 Against using 𝜆 = 2 for divergence-free equations
This subsection explains why the log-lattice parameter𝜆 = 2 is ill-suited to simulating divergence-
free equations. This issue was first raised in our article [BD23].

𝜆 = 2 is the biggest grid parameter that can be accommodated on a log-lattice. For a fixed
grid size 𝑁 in dimension 𝐷, it is therefore very tempting to use 𝜆 = 2, since among all the
𝜆s it spans the greatest range of wavenumbers (the convolution complexity rises as O(𝑁𝐷)).
However, 𝜆 = 2 misrepresents the convection term 𝑢 𝑗𝜕𝑗𝑢𝑖.

The heart of the problem is easily understood through a simple 2D example. Consider
the convection term 𝑢𝑥𝜕𝑥𝜔 + 𝑢𝑦𝜕𝑦𝜔 of a divergence-free flow, with a large-scale initialization
𝑢(𝑘 > 𝑘0) = 𝜔(𝑘 > 𝑘0) = 0 for some 𝑘0. From a physical point of view, we expect convection
to populate the 𝑘 ≥ 𝑘0 region as time advances. However, with 𝜆 = 2, this does not happen, as
is demonstrated below.

In a divergence-free flow, 𝑢𝑥 ∗ 𝜕𝑥𝜔 = −i
(
𝜔𝑘𝑦

𝑘2 ∗ 𝑘𝑥𝜔
)
, 𝑢𝑦 ∗ 𝜕𝑦𝜔 = i

(
𝜔𝑘𝑥

𝑘2 ∗ 𝑘𝑦𝜔
)

where

∗ denotes a convolution. In a 𝜆 = 2 log-lattice, convolutions are defined as1 𝑓 ∗ 𝑔(𝜆𝑛, 𝜆𝑚) =

𝑓 (𝜆𝑛−1, 𝜆𝑚−1) · 𝑔(𝜆𝑛−1, 𝜆𝑚−1). Due to the initial conditions, this yields:(
𝑢𝑥 ∗ 𝜕𝑥𝜔 + 𝑢𝑦 ∗ 𝜕𝑦𝜔

)
(𝑘 ≈ 𝑘0) = 0

.
There is no forward convection at all, therefore there can be no forward cascade in such case.
This does not happen for other values of 𝜆, for which the convolution is evaluated at asym-

metric positions. We therefore advise against using 𝜆 = 2 in divergence-free fluids, and suggest
to rather use 𝜆 = 𝜙 (the second-biggest grid parameter).

Note that this issue does not arise in REWA systems, where the lack of symmetry in the
interactions enables a net flux of momentum.

1excluding the 𝑘 = 0 mode, which is not used in this paper
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Note: the same conclusion was reached independently and around the same time by Cam-
polina, as written in [CM21] section 5.3: “We remark that the spacing factor 𝜆 = 2 does not
provide a reliable model for the blowup study in the Euler equations. Indeed, the product on this
lattice does not couple large to small scales except through diagonals, but the latter is prohibited
by incompressibility.”

1.2 On Fourier Lattices: Towards a Physical Interpretation
Special thanks to Germain Poullot for discussions on the constraints of 𝜁 in the sparse case.

Takeaways
There is no canonical interpretation of the fields that live on a log-lattice. Several
decompositions on Fourier lattices yield a mathematical structure that can be compared to
that of log-lattices, each with their own approximations and hypothesis. Among those are
Multiresolution Analysis (or wavelet decomposition), Littlewood-Paley decomposition and
sparse decompositions.

Sparse decomposition (i.e. the idea that “log-lattices are a projection of the equations onto
a grid of diracs”) may seem like a simple idea, but it hides several non-trivial mathematical
constrains.

The “best” candidates among sparse decompositions seem to be those in which we can
decouple the true data ( �̃� (𝑘) ∝ 𝑓 (𝑘)) from the “intrinsic scaling” ( �̃� (𝑘)/ 𝑓 (𝑘) ∝ 𝑘𝑎) such
that there is a 𝑘-independant proportionality (up to projection approximations) between �̃� 2

and ( �̃� )2.
Understanding this subject is crucial for developing techniques to connect direct space and

log-lattices, performing inverse Fourier transforms of log-lattice fields, computing structure
functions, etc.

1.2.1 Introduction
In [Mar19], operators on log-lattices are introduced with a |𝑘 |𝛼 prefactor (equations (2) and (3)),
where 𝛼 ∈ {0, 1} is a “scaling exponent”. This exponent is related to an “interpretation” of fields
on log-lattices

𝑓 (𝑘) ≈ 1
|𝜆𝑘 − 𝑘 |𝛼

∫ 𝜆𝑘

𝑘

𝐹 (𝑘′) d𝑘′, (1.1)

where 𝐹 represents the continuous Fourier transform of some variable and 𝑓 is the discrete
value on the log-lattice. Later works [CM21] however do not mention this exponent at all, and
all equations are done as if 𝛼 = 0. Only in a small section2 of [Mar22] does it come back
as equations (4) and (5), where |𝑘 | acts as the “volume of a lattice cell”, and 𝛼, 𝛽 “can be
manipulated to change dimensionality and the scaling of terms”. Note that this formulation is
very vague, and unlike equation (1.1) does not give a concrete link between log-lattice fields and
physical fields. Indeed, equation (1.1) is inherently flawed. In this representation, 𝑓 ∼ 𝑘1−𝛼 but
𝑓 ∗ 𝑔 ∼ 𝑘 which only leaves 𝛼 = 1/2 ∉ {0, 1} as a possible value.

There is therefore a lack of interpretability of the physical meaning of fields on log-lattices,
i.e. the relation between 𝑓 and 𝐹, and as presented thus far, log-lattices exist as a purely

2this generalized version is not explicitly used anywhere in the PhD of Campolina
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mathematical construct. Although this is not necessarily an issue for many simulations where
we look at aggregated observables such as energy, it is crucial for processes like performing an
inverse Fourier transform on log-lattices.

In this chapter, we explore several ways to make sense of those quantities. Although none of
those ways give a definitive answer, they offer some useful insight. The generic line of thought
is to investigate several formulas for 𝑓 by decomposing and projecting 𝐹 along different basis,
and comparing the resulting operators to those of log-lattices. We first investigate standard basis
(sections 1.2.2 and 1.2.3), and in a second time turn our attention to projections on a family of
distributions (section 1.2.4).

1.2.2 Generic Fourier lattices
We start by looking at the problem with an angle much broader than that of log-lattices. Given a
generic Fourier lattice, we want to be able to project any function on this lattice, while retaining
a mathematically consistent picture in the projected space.

Let Λ be a discrete lattice3 of points in Fourier space in 𝐷 dimensions. Let F ≡ CR𝐷 be the
space of functions from R𝐷 to C. Let

F ≡
{
𝑓 ∈ F | ∀𝑘 ∈ F, 𝑓 (−𝑘) = 𝑓 (𝑘)

}
, (1.2)

be the space of Fourier functions. Let (𝜓𝑘 )𝑘∈Λ be a family of real functions of F.
We endow F with its canonical scalar product ( 𝑓 , 𝑔) ≡

∫
d𝑘 𝑓 (𝑘)𝑔(𝑘) and define the matrix

𝐺𝑚,𝑛 ≡ (𝜓𝑚, 𝜓𝑛), (1.3)

which we assume is invertible.
Let 𝑝 be the projector from F to the space generated by the 𝜓𝑚, defined by4

𝑝( 𝑓 ) ≡ �̃� ≡
∑︁
𝑚∈Λ

𝜓𝑚 �̃�𝑚, (1.4)

�̃�𝑚 ≡
∑︁
𝑛∈Λ

𝐺−1
𝑚,𝑛 (𝜓𝑛, 𝑓 ). (1.5)

Using Einstein summation conventions, it is straightforward to show that 𝑝 is indeed a
projector:

𝑝2 = 𝜓𝑚𝐺
−1
𝑚,𝑛 (𝜓𝑛, 𝜓𝑘𝐺

−1
𝑘,𝑞 (𝜓𝑞, ·)),

= 𝜓𝑚 (𝐺−1𝐺𝐺−1)𝑚,𝑞 (𝜓𝑞, ·),
= 𝑝.

(1.6)

We want 𝑝 to also be a projector on F , which restricts the function space of 𝜓𝑘 to F𝜓 , defined
as

F𝜓 ≡
{
𝜓 ∈ F | ∀𝑘 ∈ F, 𝜓𝑝 (−𝑘) = 𝜓−𝑝 (𝑘)

}
. (1.7)

Indeed,

�̃� (𝑘) = 𝜓𝑚 (𝑘) �̃�𝑚 = 𝜓−𝑚 (𝑘) �̃�−𝑚,

�̃�−𝑚 = 𝐺−1
−𝑚,𝑛 (𝜓𝑚, 𝑓 ) = 𝐺−1

−𝑚,−𝑛 (𝜓−𝑚 (𝑘), 𝑓 (−𝑘)),
𝐺−1

−𝑚,−𝑛 = (𝜓−𝑚, 𝜓−𝑛),

(1.8)

3i.e. a countable ensemble
4In later sections, we may without justification generalize a result from 1D to higher dimensions, for instance by

chosing 𝜓𝑚 ≡ ∏𝑑
𝑖=1 𝜓𝑚𝑖

where 𝑚 = (𝑚1, . . . , 𝑚𝐷) ∈ R𝐷 .
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and thus �̃� (𝑘) = �̃� (−𝑘) iff equation (1.7) holds.
Note that in general F𝜓 ≠ F : 𝜓𝑘 is not a Fourier function, e.g. it can be localized around

𝑘0 > 0 while being zero on 𝑘 < 0.

1.2.2.1 Scalar product, product and convolution

The scalar product of two projected functions �̃� , �̃� writes

( �̃� , �̃�) = �̃�𝑝 �̃�𝑞𝐺 𝑝,𝑞 . (1.9)

For a given bilinear form 𝐵( 𝑓 , 𝑔), the partially-projected form 𝐵( �̃� , �̃�) = �̃�𝑘 �̃�𝑞𝐵(𝜓𝑘 , 𝜓𝑞) is
in general not in the image of 𝑝, and thus we introduce the projected bilinear form

𝐵( �̃� , �̃�) ≡ �
𝐵( �̃� , �̃�) = 𝜓𝑘 �̃�𝑝 �̃�𝑞𝐺

−1
𝑘,𝑛 (𝜓𝑛, 𝐵(𝜓𝑝, 𝜓𝑞)). (1.10)

In particular for the product we write

(˜̃𝑓 �̃�)𝑘 = �̃�𝑝 �̃�𝑞𝐺
−1
𝑘,𝑛 (𝜓𝑛, 𝜓𝑝𝜓𝑞), (1.11)

and for the convolution

( �̃� ∗̃�̃�)𝑘 = �̃�𝑝 �̃�𝑞Γ
𝑘
𝑝,𝑞, (1.12)

Γ𝑘
𝑝,𝑞 ≡ 𝐺−1

𝑘,𝑛 (𝜓𝑛, 𝜓𝑝 ∗ 𝜓𝑞). (1.13)

Note that using equation (1.7) we have associativity in average

∀ 𝑓 , 𝑔, ℎ ∈ F , ( �̃� ∗̃�̃�, ℎ̃) = ( �̃� , �̃�∗̃ℎ̃). (1.14)

This is due to the property ∀𝜓𝑝, 𝜓𝑛, 𝜓𝑞 ∈ F𝜓 , (𝜓𝑝, 𝜓𝑛 ∗ 𝜓𝑞) = (𝜓𝑛, 𝜓𝑝 ∗ 𝜓−𝑞), which is not the
same as ∀ 𝑓 , 𝑔, ℎ ∈ F , ( 𝑓 , 𝑔 ∗ ℎ) = (𝑔, 𝑓 ∗ ℎ).

1.2.3 Complete, orthogonal and fully orthogonal Fourier lattices
So far, we have made almost no assumption on the 𝜓𝑝, which only verify equation (1.7) and
det𝐺𝑚,𝑛 ≠ 0. In this section, we gradually add more constrains to go towards cases that are more
practical, and we illustrate with some concrete examples.

1.2.3.1 Complete Fourier lattices

We call the lattice complete5 when the 𝜓𝑝 form a basis of F𝜓 , i.e.
∑

𝑝∈Λ 𝜓𝑝 = 1.

5We use a slight abuse of language where we associate the lattice Λ and the family of functions 𝜓𝑝 . A more
rigorous approach would be to consider (Λ, 𝜓𝑝,𝑝∈Λ).
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1.2.3.2 Complete orthogonal Fourier lattices: the case of Multi-Scale Resolution

Definition We call the lattice orthogonal when 𝐺𝑚,𝑛 = 𝛿𝑚,𝑛𝐺𝑚,𝑚. In an orthogonal lattice
𝐺−1

𝑚,𝑛 =
𝛿𝑚,𝑛

𝐺𝑚,𝑛
, and therefore generic equations take a simplified form:

�̃� =
∑︁
𝑚∈Λ

𝜓𝑚

(𝜓𝑚, 𝑓 )
𝐺𝑚,𝑚

, (1.15)

( �̃� , �̃�) =
∑︁
𝑝∈Λ

�̃�𝑝 �̃�𝑝𝐺 𝑝,𝑝, (1.16)

𝐵( �̃� , �̃�) =
∑︁
𝑘∈Λ

𝜓𝑘 �̃�𝑝 �̃�𝑞
(𝜓𝑘 , 𝐵(𝜓𝑝, 𝜓𝑞))

𝐺𝑘,𝑘

. (1.17)

Multiresolution Analysis Multiresolution analysis (MRA) is a powerful tool for analyzing
signals at different scales and resolutions, and was introduced by Stéphane Mallat‘[Mal89] in
the early 1990s. The basic idea behind multi-resolution analysis is to decompose a signal into
multiple subbands of increasing frequency using a wavelet transform, allowing us to analyze the
signal structure at different scales. Our goal here is not to go into the details of MRA, but to
sketch a mathematical correspondence with the framework we have described so far.

Starting from a function ˆ̂𝑓 : [0, 1] → C, one can decompose it as

ˆ̂𝑓 (𝑥) = ˆ̂𝑓0 ˆ̂𝜙0(𝑥) +
𝑁−1∑︁
𝑗=1

2 𝑗−1∑︁
𝑖=0

( ˆ̂𝑓 ∗ ˆ̂𝜓 𝑗 ) (𝑏 ( 𝑗)𝑖
) ˆ̂𝜓 𝑗 (𝑥 − 𝑏

( 𝑗)
𝑖

), (1.18)

where 𝑁 ∈ N, 𝑏 ( 𝑗)
𝑖

≡ 𝑖2− 𝑗 and ˆ̂𝜓 𝑗 is a localizing function around 𝑘 = 2 𝑗 (i.e. “at scale 2− 𝑗”).
Taking the Fourier transform and using a slight approximation6 𝜓 𝑗 (𝑘) ∝ 𝛿𝑘,2 𝑗 , we get

�̃� (𝑘 = 2 𝑗 ) =
2 𝑗−1∑︁
𝑖=0

( ˆ̂𝑓 ∗ ˆ̂
𝜓 𝑗 ) (𝑏 ( 𝑗)𝑖

)𝑒i2 𝑗𝑏
( 𝑗 )
𝑖 = 𝑇𝐹2 𝑗

(
ˆ̂𝑓 ∗ ˆ̂

𝜓 𝑗

)
, (1.19)

where 𝑇𝐹𝑠 represents the Fourier transform “at scale 𝑠”.
By construction, the wavelet decomposition is a complete lattice, and by design the 𝜓 𝑗 (𝑘)

form an orthonormal basis, and therefore this describes a complete orthogonal Fourier lattices.
There is however no easy way to simplify equations (1.15)–(1.17) with this formalism, which

only leads to more complicated formulas when expanded using equation (1.18). Although
we did not find the time to do it, to properly compare MRA and log-lattices, one then needs
to compute (numerically if necessary) 𝐺 𝑝,𝑞 and Γ𝑘

𝑝,𝑞, and compare them to the log-lattice
formulas (equations (2) and (3)), as we do in the following section with the Littlewood-Paley
decomposition.

1.2.3.3 Complete fully orthogonal Fourier Lattices: the case of the Littlewood-Paley
decomposition

Definition We call the lattice fully orthogonal when 𝜓𝑝𝜓𝑞 = 𝛿𝑝,𝑞𝜓
2
𝑝. If the lattice is also

complete, it follows that 𝜓𝑝 (𝑘) ∈ {0, 1}. In other words, the 𝜓𝑝 pave the space R𝐷 into disjoint

6This corresponds to the projection 𝑓 → �̃�
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(a) (b)

Figure 1.1: (1.1a) A possible shape for 𝜙(𝑘) given 𝜆 = 1+
√

5
2 and an arbitrary choice of 𝑎, 𝑏. (1.1b) 𝜓[𝜆𝑛 ]

with 𝑛 = 5 for the same parameters as 1.1a.

intervals. In a complete fully orthogonal lattice, orthogonal equations take a simplified form:

�̃� (𝑘) = 1𝑘∈𝐼𝑝 ⟨ 𝑓 ⟩𝐼𝑝 , (1.20)
𝐺 𝑝,𝑞 = |𝐼𝑝 |𝛿𝑝,𝑞, (1.21)

( �̃� , �̃�) = |𝐼𝑝 | ⟨ 𝑓 ⟩𝐼𝑝 ⟨𝑔⟩𝐼𝑝 , (1.22)˜̃
𝑓 �̃� = 1𝑘∈𝐼𝑝 ⟨ 𝑓 ⟩𝐼𝑝 ⟨𝑔⟩𝐼𝑝 , (1.23)

Γ𝑛
𝑝,𝑞 =

〈
1𝑘∈𝐼𝑝 ∗ 1𝑘∈𝐼𝑞

〉
𝐼𝑛
, (1.24)

where 𝐼𝑝 ≡
{
𝑘 ∈ R𝐷 |𝜓𝑝 (𝑘) ≠ 0

}
is the interval covered by 𝜓𝑝, ⟨ 𝑓 ⟩𝐼𝑝 ≡ 1

|𝐼𝑝 |
∫
𝐼𝑝

d𝑘 𝑓 (𝑘) is the
average value of 𝑓 over 𝐼𝑝 and |𝐼𝑝 | ≡

∫
𝐼𝑝

d𝑘 is the length of 𝐼𝑝.

The Littlewood-Paley decomposition

Introduction Traditional Littlewood-Paley theory introduces a partition of Fourier space
into “dyadic” blocs of exponentially increasing width 2 𝑗 , 𝑗 ∈ Z. It is very well described
in [Bah17] (in French; see [Bah19] for a shorter English version), and is widely used in mathe-
matics to characterize regularity properties through the behavior of the dyadic blocs.

We hereafter use a slightly more generic approach, where the grid step 𝜆 can be different
from 𝜆 = 2. We introduce the basics in 1D, and then generalize to higher dimensions.

The partition is defined as follows. Let 𝜆 > 1 and Λ ≡ 𝜆Z. Let 𝜙(𝑘) : Λ → R+ be a
non-negative, non-increasing function such that 𝜙(0 ≤ 𝑘 ≤ 𝑎) = 1 and 𝜙(𝑥 < 0|𝑥 ≥ 𝑏) = 0
where 𝑎, 𝑏 ∈ R+ verify 𝑎 < 𝑏 < 1 < 𝜆𝑎 (figure 1.1a). We then introduce 𝜓𝑘0 as

𝜓𝑘0 (𝑘) ≡ 𝜙

(
𝑘

𝜆𝑘0

)
− 𝜙

(
𝑘

𝑘0

)
, 𝑘0 ∈ Λ, (1.25)

and write 𝜓 ≡ 𝜓1. By definition 𝜓𝑘0 is non-negative, equals one on the interval 𝑘 ∈ [𝑘0𝑏, 𝑘0𝜆𝑎],
and vanishes to 0 outside (figure 1.1b); it “localizes” information around 𝑘 = 𝑘0.

By construction, 𝜙 and 𝜓 form a partition of unity (figure 1.2)

∀𝑘0 ∈ Λ, 𝜙

(
|𝑘 |
𝑘0

)
+

∞∑︁
𝑝∈Λ,|𝑝 |> |𝑘0 |

𝜓𝑝 (𝑘) = 1, (1.26)
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Figure 1.2: 𝜙 and 𝜓 partition the space in the Littlewood-Paley decomposition.

which is quasi-orthogonal

∀𝑝, 𝑞 ∈ Λ, 𝜓𝑝 (𝑞) = 𝛿𝑝,𝑞,

𝜓𝑝𝜓𝑞 = 0 if | log𝜆 (𝑝) − log𝜆 (𝑞) | > 1 or sign(𝑝) ≠ sign(𝑞).
(1.27)

In the context of log-lattices, we would rather have 𝜙 represent only the 𝑘 = 0 mode, and 𝜓

all the other modes. We can therefore rewrite (1.26) as

𝜙 (0) 𝛿0 +
∑︁
𝑘∈Λ∗

𝜓𝑘 = 1. (1.28)

which further simplifies to ∑︁
𝑘∈Λ

𝜓𝑘 = 1, (1.29)

by taking the notation 𝜓0 ≡ 𝛿0.
We now make a “localization approximation”:

𝑓 (𝑘) =
∑︁
𝑝∈Λ

𝜓𝑝 (𝑘) 𝑓 (𝑘) ≈
∑︁
𝑝∈Λ

𝜓𝑝 (𝑘) 𝑓𝑝 ≡ 𝑓 loc(𝑘), (1.30)

where 𝑓𝑝 ≡ ⟨ 𝑓 ⟩𝐼𝑝 .
Note that thus far, we have not created a Fourier lattice as defined in the above sections.

Indeed, 𝑓 loc ≠ �̃� =
∑

𝑝∈Λ 𝜓𝑝𝐺
−1
𝑝,𝑞 (𝜓𝑞, 𝑓 ). However, in the limit 𝑎 = 𝑏 which we will explore

later, the lattice becomes fully orthogonal, and we recover 𝑓 loc = �̃� .

Operations on localized functions We have ( 𝑓 loc, 𝑔loc) = 𝑓𝑝𝑔𝑞𝐺 𝑝,𝑞 where

𝐺 𝑝,𝑞 =

∫
𝑑𝑘𝜓𝑝 (𝑘)𝜓𝑞 (𝑘) = |𝑝 |

∫
d𝑘𝜓(𝑘)𝜓( 𝑘 𝑝

𝑞
). (1.31)

Likewise,

( 𝑓 loc ∗ 𝑔loc)loc(𝑘) = 𝜓𝑘 𝑓𝑝𝑔𝑞Γ
𝑘
𝑝,𝑞, (1.32)

Γ𝑘
𝑝,𝑞 =

〈
|𝑝 |

∫
d𝑥𝜓(𝑥)𝜓( 𝑘

′ − 𝑝𝑥

𝑞
)
〉
𝐼𝑘

. (1.33)
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Figure 1.3: Absolute value of Γ𝑘
𝑘−𝑖,𝑘− 𝑗

in the Littlewood-Paley decomposition for different choices of
parameters 𝑎, 𝑏 for 𝑘 = 6, 𝜆 = 2. The log-lattice behavior corresponds to Γ5,5 ≠ 0 as the only nonzero
value, which is closest to the top-left picture corresponding to 𝑎 = 𝑏. The apparent lack of symmetry is
due to floating point errors.

Correspondence with log-lattices In order to recover formulas coherent with log-lattices,
we want that

𝐺 𝑝,𝑞 ∝ 𝛿𝑝,𝑞, (1.34)
Γ𝑘
𝑝,𝑞 ∝ 𝛿𝑝+𝑞,𝑘 . (1.35)

As illustrated7 in figures 1.3 and 1.4, the closest approximation we can get happens in the limit
𝑎 = 𝑏 (which trivially satisfies equation (1.34)). This limit corresponds to a fully orthogonal
(complete) lattice.

However, even in that limit, there remain irreducible differences, which by construction
indicate a loss of symmetry in the projection’s operators compared to those of the log-lattice,
and thus in the next subsection we look at a different kind of decomposition.

1.2.4 Sparse Fourier lattices
Up to now, we have investigated the case where we project our physical quantities onto a
mathematically “simple” basis, where the 𝜓𝑝 have been defined as “standard” functions. How-

7The python script used to compute those results can be found in the additional resources, in
Examples/LittlewoodPaley
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Figure 1.4: Absolute value of Γ𝑘
𝑘−𝑖,𝑘− 𝑗

in the Littlewood-Paley decomposition for different choices of
parameters 𝑎, 𝑏 for 𝑘 = 6, 𝜆 = 𝜙. The log-lattice behavior corresponds to Γ4,5 = Γ5,4 ≠ 0 as the only
nonzero values, which is closest to the top-left picture corresponding to 𝑎 = 𝑏. The apparent lack of
symmetry is due to floating point errors.
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ever, one way to make a correspondence between log-lattices and continuous space is to in-
stead assume that log-lattices represent a sparse sampling of continuous space, i.e. for instance
𝜓𝑝 (𝑘 ≠ 𝑝) = 0,

𝜓𝑝


2 > 0, which naturally brings us into a realm other than that of functions.

This new representation is not a mere extension of section 1.2.3, but another kind of decomposi-
tion altogether, and the examples outlined above (MRA, Littlewood-Paley) cannot be expressed
in this new formalism.

In this section, we consider generalized functions8 𝜓𝑝 ≡ lim
𝜖→0

𝜓𝜖
𝑝 that are the “limit” of

functions 𝜓𝜖
𝑝 each supported on an interval of size O(𝜖), i.e.

{𝑘 |𝜓𝜖
𝑝 (𝑘) > 0}


1 = O(𝜖). In other

words, they are nonzero only at one point [𝑝]: 𝜓𝑝 (𝑘 ≠ [𝑝]) = 0. Up to a reordering of the 𝜓𝑝,
we chose [𝑝] = 𝑝.

This means that any property or expression 𝑃( 𝑓 ∈ F) defined on functions can be used as
𝑃(𝜓𝑚) ≡ lim

𝜖→0
𝑃(𝜓𝜖

𝑚), and likewise if several such objects appear, we have 𝑃(𝜓𝑚, . . . , 𝜓𝑛) ≡
lim
𝜖→0

𝑃(𝜓𝜖
𝑚, . . . , 𝜓

𝜖
𝑛).9

1.2.4.1 Why we need a new formalism

The transition from “standard” functions to 𝜓𝑝-like objects requires some changes in the formal-
ism used in Generic Fourier lattices. This is due to elementary metric issues.

Indeed, from the Cauchy-Schwarz inequality one gets𝜓𝜖
𝑝


1 ≤

𝜓𝜖
𝑝


2 O(𝜖), (1.36)

which implies that for
𝜓𝑝


2 < ∞ we need

𝜓𝑝


1 = 0. Since the 𝜓𝑝 are sparse, we can assume

without loss of generality10 that they are fully orthogonal, and using equation (1.15) we get
�̃�𝑚 ∝ ∥𝜓𝑚∥1

∥𝜓𝑚∥2
= 0: the projector is always zero.

Another way to look at the same issue is to realize that “projector” ·̃ now exists in a space
different from F and F𝜓 , since the 𝜓𝑝 are not functions, and therefore is not a projector anymore
on F .

1.2.4.2 Generic sparse Fourier lattices

We now expand part of the formalism developed in earlier sections to sparse Fourier lattices.
Let F̃ be the space of countable sums of 𝜓-like11 objects with zero 1-norm and nonzero

2-norm. For sparse Fourier lattices, we define the projector ·̃ in two ways:

∀ 𝑓 ∈ F , �̃� ≡ 𝜓𝑚

(𝜓𝑚, 𝑓 )
(𝜓𝑚, 1)

≡ 𝜓𝑚 𝑓 ( [𝑚]), (1.37)

∀ 𝑓 ∈ F̃ , �̃� ≡ 𝜓𝑚

(𝜓𝑚, 𝑓 )
𝐺𝑚,𝑚

, (1.38)

where 𝑓[𝑚] ≡ 𝑓 ( [𝑚]) = 𝑓 (𝑥) |𝜓𝑚 (𝑥)≠0.
This new projector on F ∪ F̃ projects functions onto F̃ .

8There might be a prettier way to do the same thing with a distribution formalism, but I am unsure it would
clarify anything.

9Note that this requires a certain care in writing expressions, as we cannot freely move limits around. For
instance, if ∥𝜓𝑚∥2 > 0, we can have both ∥𝜓𝑚∥1 = 0 and ∥𝜓𝑚∥1 /∥𝜓𝑚∥1 = 1 !

10up to collinear members
11i.e. the limit of a sequence of functions, as defined above, but without the 𝜖 constraint
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For two functions 𝑓 , 𝑔 ∈ F , we then have

( �̃� , �̃�) = 𝑓[𝑝]𝑔[𝑝]
𝜓𝑝

2
2 , (1.39)

𝐵( �̃� , �̃�) = 𝜓𝑝 𝑓[𝑚]𝑔[𝑛]𝐵(𝜓𝑚, 𝜓𝑛)[𝑝] , (1.40)˜̃
𝑓 �̃� = 𝜓𝑝 𝑓[𝑝]𝑔[𝑝]

𝜓𝑝

2
2 , (1.41)

Γ𝑘
𝑝,𝑞 = (𝜓𝑝, 𝜓𝑞)[𝑘] = 𝛿[𝑘],[𝑝]+[𝑞]

∫
d𝑥𝜓𝑚 (𝑥)𝜓𝑛 ( [𝑝] − 𝑥). (1.42)

1.2.4.3 Constraining 𝜓

The 𝛼 = 𝛽 = 1 case We are searching for functions 𝜓𝑝 such that equations (1.39) and (1.42)
correspond to their formulation on generalized log-lattices (equations (4) and (5)) for 𝛼 = 𝛽 = 1:

( �̃� , �̃�) = 𝑓[𝑝]𝑔[𝑝] |𝑝 |, (1.43)

Γ𝑘
𝑝,𝑞 = |𝑘 | | 𝑝𝑞

𝑘2 |
2/3. (1.44)

We also want the 𝜓 to be scale-invariant, such that

𝜓𝑝 (𝑘) = 𝜓1(𝑘/𝑝) ≡ 𝜓(𝑘/𝑝). (1.45)

From equations (1.43)–(1.45) we deduce

∥𝜓∥2 = 1, (1.46)

Γ
𝑝+𝑞
𝑝,𝑞 = |𝑝 |

∫
d𝑥𝜁 (𝑥)𝜁

(
− 𝑝

𝑞
𝑥

)
, (1.47)

where 𝜁 (𝑥) ≡ 𝜓(1 + 𝑥).
Looking at a few special cases, we see several kinds of behaviors.12 If 𝜁 is a rectangle

𝜁 𝜖 ( |𝑘 | < 𝜖) =
√

2𝜖 we get Γ𝑝+𝑞
𝑝,𝑞 = min(𝑝, 𝑞). If 𝜁 is exponential 𝜁 𝜖 ( |𝑘 | < 𝜖) ∝ exp(−𝑘2𝑛/(2𝜖4𝑛))

then Γ
𝑝+𝑞
𝑝,𝑞 =

𝑛
√

2|𝑝𝑞 |
𝑛
√
|𝑝 |𝑛+|𝑞 |𝑛

. However, most of those functions are not interesting choices, because
they do not allow associativity in average for the convolution.

Associativity in average In sparse Fourier lattices, associativity in average (equation (1.14))
is no longer guaranteed. After some computation, one can rewrite equation (1.14) as

∀𝑎 ∈ R, Γ̊𝑎 = Γ̊−𝑎−1, (1.48)

where Γ̊𝑝/𝑞 ≡ Γ
𝑝+𝑞
𝑝,𝑞

|𝑝 | =
∫

d𝑥𝜁 (𝑥)𝜁
(
− 𝑝

𝑞
𝑥

)
. The existence of solutions 𝜓 to equation (1.48) is

nontrivial. However, we can make a few simple observations that show that if such solutions
exist, they are very constrained.

Differentiating with respect to 𝑎, we obtain

∀𝑖 ≥ 3,
∫

d𝑥𝑥𝑖𝜁 (𝑥)𝜁 (𝑖) (−𝑎𝑥) = 0, (1.49)

12The Mathematica notebook used to derive those results for arbitrary functions can be found in the additional
resources, in Examples/LittlewoodPaley
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where 𝜁 (𝑖) is the 𝑖-th derivative of 𝜁 .
A natural space of solutions to consider is Γ̊𝑎 = 𝐺 (𝑎(1 + 𝑎)) for some function 𝐺, which

always satisfies equation (1.48).
Under this assumption, however, 𝜁 cannot be even. If it were, then Γ̊𝑎 = Γ̊−1−𝑎 = Γ̊1+𝑎 =

· · · = Γ̊1+𝑛𝑎, 𝑛 ∈ Z which is incompatible with the compact support hypothesis on 𝜓𝜖 .
Moreover, under this same assumption, we can write

∫
d𝑥𝜁 (𝑥) (𝜁 ((1 + 𝑎)𝑥) − 𝜁 (−𝑎𝑥)) = 0

which after setting 𝑎 ≡ ℎ − 1/2 and taking the limit ℎ → 0 yields∫
d𝑥𝜁 (𝑥)𝜁 (1) ( 𝑥

2
) = 0. (1.50)

The 𝛼 ≠ 1 case We assume that we have found solutions to equations (1.43) and (1.44) for
𝛼 = 𝛽 = 1.

By introducing 𝑓 (𝛼) ≡ |𝑘 | (1−𝛼)/2 𝑓 we can establish a correspondence with log-lattice formulas
for 𝛼 ≠ 1. Indeed,

( 𝑓 , 𝑔) = |𝑘 |𝛼 𝑓 (𝛼)
𝑘

𝑔
(𝛼)
𝑘

, (1.51)

( 𝑓 ∗ 𝑔) (𝛼) (𝑘) =
∑︁
𝑝+𝑞=𝑘

��� 𝑝𝑞
𝑘

���(1−𝛼)/2
𝑓
(𝛼)
𝑝 𝑔

(𝛼)
𝑞 |𝑘 |

��� 𝑝𝑞
𝑘2

���2/3
(1.52)

which we can rewrite

( 𝑓 ∗ 𝑔) (𝛼) (𝑘) = |𝑘 |𝛽
∑︁
𝑝+𝑞=𝑘

𝑓
(𝛼)
𝑝 𝑔

(𝛼)
𝑞

��� 𝑝𝑞
𝑘

���(𝛼+𝛽)/3
, (1.53)

where 𝛽 = (𝛼 + 1)/2.

General case Starting from solutions to equations (1.43) and (1.44) for given 𝛼, 𝛽 and defining
𝑓 (𝛼

′,𝛼) ≡ |𝑘 | (𝛼−𝛼′)/2 𝑓 , we can likewise write

( 𝑓 , 𝑔) = |𝑘 |𝛼′
𝑓
(𝛼′,𝛼)
𝑘

𝑔
(𝛼′,𝛼)
𝑘

, (1.54)

( 𝑓 ∗ 𝑔) (𝛼′,𝛼) (𝑘) = |𝑘 |𝛽′
∑︁
𝑝+𝑞=𝑘

𝑓
(𝛼′,𝛼)
𝑝 𝑔

(𝛼′,𝛼)
𝑞

��� 𝑝𝑞
𝑘2

���(𝛼′+𝛽′)/3
, (1.55)

where 𝛽′ = 𝛽 + (𝛼′ − 𝛼)/2.

1.2.5 Discussion
In the previous section, we have introduced several ways of projecting Fourier functions onto
different kinds of lattices, with concrete examples. Each of the examples studied give an insight
onto a possible interpretation of log-lattices from a physical point of view.

1.2.5.1 Non-sparse lattices

In non-sparse lattices, and in particular complete orthogonal lattices, we never recover the exact
formalism used in log-lattices. However, we can interpret log-lattices as an approximation of
each example in the 𝛼 = 0 case. This parallel is particularly easy to see in the Littlewood-Paley
case, where the scaling of the convolution operator is easy to derive.
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Table 1.1: Correspondence between log-lattices and sparse lattices for 𝛽′ = 𝛽 + (𝛼′ − 𝛼)/2. As outlined
in the text, this correspondence is ill-suited for practical applications.

Log-lattice Sparse Fourier lattice
( 𝑓 , 𝑔) ( 𝑓 , 𝑔)
𝑓 ∗ 𝑔 ( 𝑓 ∗ 𝑔) (𝛼′,𝛼)

𝑓𝑘 𝑓 (𝛼
′,𝛼) ≡ |𝑘 | (𝛼−𝛼′)/2 𝑓

One interesting difference between MRA and Littlewood-Paley lies in the inverse Fourier
process. To perform an inverse Fourier transform (IFT) in the Littlewood-Paley case, we first
create a regular Fourier grid at the smallest resolution 𝑘min available on the lattice, fill it with the
lattice’s data, then we apply the IFT to this grid

𝐼𝐹𝑇 (𝑢) (𝑥) =
∑︁
𝑘

𝑢𝑘𝑒
i𝑘𝑥 . (1.56)

In MRA however, the wavelet decomposition implies another behavior. Indeed, each point 𝑘 of
the grid is associated with an operator at scale 𝑆𝑘 . To perform an IFT, instead of performing a
“regular” IFT on a grid filled with data at the smallest scale 𝑆𝑘min , we perform the IFT at scale
𝑆𝑘 for each 𝑘:

𝐼𝐹𝑇 (𝑢) (𝑥) =
∑︁
𝑆𝑘

∑︁
𝑘 ′ |𝑆′

𝑘
=𝑆𝑘

𝑢𝑘 ′𝑒
i𝑘 ′𝑥 . (1.57)

1.2.5.2 Sparse lattices

In sparse lattices, the exact form of the convolution operator greatly depends on the shape of the
basis. However, assuming that one basis exists such that we match the 𝛼, 𝛽 case, we find that we
can find a meaning to any 𝛼′, 𝛽′ case, provided that 𝛽′ = 𝛽 + (𝛼′ − 𝛼)/2.

We then have the correspondence outlined in table 1.1.
Note however that setting 𝛼′ = 0 imposes 𝛽′ = 1/2, which does not correspond to 𝛼′ = 𝛽′ = 0

which we have taken so far in our simulations ! Indeed, this interpretation has a major flaw.
When rescaling 𝑢(𝛼) = |𝑘 | (1−𝛼)/2𝑢, we get 𝑢(𝛼)2

= |𝑘 |1−𝛼𝑢2 ≠ 𝑢2 (𝛼) ! This is not an acceptable
behavior, since we deal with nonlinear terms all the time. The only case that escapes this issue
is, without surprise, the 𝛼 = 𝛽 = 0 case.

1.2.5.3 Leveraging equipartition in the log-lattice 𝛼 = 𝛽 = 0 case

In the log-lattice 𝛼 = 𝛽 = 0 case, for an energy 𝐸 ≡ (𝑢, 𝑢), equipartition trivially yields
𝑢(𝑘) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 (i.e. 𝐸 (𝑘) ∝ 1/𝑘). This is indeed what we observe by doing truncated Euler
simulations (figure 1.5).

This simple observation gives us some additional clues to think about log-lattices. For
instance, equations (3.4) and (3.5) of [Mar19] suggest an interpretation of functions on log-
lattices. However, for 𝛼 = 𝛽 = 013, this interpretation �̃�(𝑘) ≈

∫
𝑘≤𝑘<𝜆𝑘 d𝑘′𝑢(𝑘′) is not coherent

with a �̃�(𝑘) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 equipartition on log-lattices14.
One interpretation that is coherent with equipartition is a REWA-like projection. REWA [EG91;

GL92; GL94] consists in taking a regular Fourier grid, pruning some components at random
around 𝑘min, and replicating that random pattern by a scaling argument for greater wavenumbers.

13The 𝛽 had not been introduced yet in this paper, see (4.2) in [Mar22].
14Likewise, the 𝛼 = 𝛽 = 1 case suffers from the same issue.
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Figure 1.5: Energy spectrum for the Euler equations on a fixed size grid. The blue dashed line fits a 1/𝑘
slope.

In the same spirit, given the smallest scale of the grid 𝑘min, one can interpret a log-lattice as a
simulation on a regular grid whose only active15 modes are pixels of size 𝑘min centered around
𝑘 ∈ Λ. Note that this process corresponds to a non-complete fully orthogonal lattice. Under this
hypothesis, it is clear that the simulation is extremely sparse. This interpretation however not
fully satisfying, as it relies on 𝑘min, which may be redefined as the grid size evolves. This issue
can be solved by transitioning from a basis of constant size 𝑘min to a sparse Fourier lattice, as
outlined in the previous sections.

15meaning that all other modes are set to 0
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Chapter 2

Numerical framework

Special thanks to Hadrien for helping optimize the convolution code.
A significant portion of the time of this PhD was spent on building a numerical framework

to efficiently perform simulations on log-lattices. This framework went through many iterations
and experimentation, most of which are documented in the code’s changelog. The goal of this
section is not to go through the minute details of the framework, but rather to concisely
expose to physicists the main driving ideas of its development, its generic characteristics, and a
minimal working example. Some technical details, such as precise numerical optimizations, are
discussed in the appendix (appendix A). Many additional pieces of documentation can be found
in the source code itself.

The code is available on Github, and on Pypi via pip install pyloggrid. A documen-
tation is hosted here.

2.1 Key features
Open-source The entire numerical framework is built from scratch using Python 3.11 for the
most part, with two optimized sections in Cython and C. Unlike the original Matlab framework
of [Cam20], the code is thus open-source and non-proprietary1.

Designed for physicists The framework provides an intuitive and user-friendly interface for
simulating and analyzing complex systems, to minimize the time spent coding rather than
researching. A minimal example of such code is given in section 2.2. The two main aspects
of this feature are the readability of the written equations in the code, and the vast number of
tools to easily analyze results on log-lattices. Having worked with this framework for over three
years, and having collected the feedback of my collaborators and colleagues, many quality-of-life
features and tweaks have been added.

Adaptive grids Highly intermittent flows may require punctually high grid sizes. To optimize
numerical resources, the grid size can be automatically adapted using a user-based criterion,
such as the fraction of the energy in the outer shells.

1The current license is CC BY-NC-SA 4.0
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Documented, typed and tested The code is inline-documented and extensively tested using a
battery of unitary and functional automated tests. An online documentation is also available2,
but is still incomplete. Taking advantage of recent Python updates, the code is also typed.

Flexibility and high performance The framework combines the ease of use and readability
of Python with the speed and performance of compiled C. As Python is a very user-friendly
programming language, the code can easily be modified to accommodate any specific needs,
such as custom solvers in RNS (section 5.3). Moreover, the code is by nature modular, and
allows new components to be added without changing the existing structure. Performance-wise,
two processes have been specifically optimized: the computation of the interaction kernel at
the start of the simulation, in Cython, and the convolution itself, in C. Those optimizations,
coupled with intelligent multithreading, provide a very significant speed boost compared to a
naı̈ve implementation (and a noticeable speed boost compared to [Cam20]).

Adapted to batches and remote sessions Given the low computational cost of log-lattice
simulations, it is common to launch several dozens at once, for extended periods of time. This
requires simulations to be fail-safe, interruptible and resumable, and aware of their maximum
CPU usage.

New log-lattice features Several physical features, such as the 𝑘𝑖 = 0 modes and rectified
spectra, have been implemented.

Easy to install Automated installation scripts, coupled with virtualization, ensured that the
installation process requires no technical knowledge and does not clash with existing frameworks.
In particular, this allows one to use several different versions of the framework on a single
computer, for instance to work on older simulations.

2.2 Example code

2.2.1 Simulation
Below is a simplified code to simulate the 3D Navier-Stokes equations on log-lattices with our
framework using an adaptive grid. For readability, we have removed imports, typing, and some
minor functions. The full code can be found in Simulations/NS3D.py.

For numerical reasons, the equation is split into a linear part (in which goes the viscous
term) and nonlinear part. Notice how the code doesn’t explicitly use many features specific to
log-lattices (those are handled transparently by functions such as grid.physics.energy or
grid.maths.laplacian), and how the equations are easily readable.

"""3D Navier Stokes"""

def equation_nonlinear(_t, grid, _simu_params):
M = grid.maths

ux, uy, uz = grid.field("ux", "uy", "uz")

# Forcing

fx, fy, fz = get_forcing(grid)

2See the README
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# Pre-compute terms

uxdxux, uydyux, uxdxuy, uydyuy, uzdzux, uzdzuy, uxdxuz, uydyuz, uzdzuz = \

M.convolve_batch((

(ux, M.dx * ux), (uy, M.dy * ux), (ux, M.dx * uy), (uy, M.dy * uy),

(uz, M.dz * ux), (uz, M.dz * uy), (ux, M.dx * uz), (uy, M.dy * uz),

(uz, M.dz * uz),

))

# Evolution w/o pressure

dux_dt = -uxdxux - uydyux - uzdzux + fx

duy_dt = -uxdxuy - uydyuy - uzdzuy + fy

duz_dt = -uxdxuz - uydyuz - uzdzuz + fz

# Add pressure

dux_dt, duy_dt, duz_dt = grid.maths.P_projector([dux_dt, duy_dt, duz_dt])

return {"ux": dux_dt, "uy": duy_dt, "uz": duz_dt}

def equation_linear(_t, grid, simu_params):
nu = np.sqrt(f0) * grid.L**1.5 / Re_F

visc = grid.maths.laplacian * nu

return {"ux": visc, "uy": visc, "uz": visc}

def initial_conditions(fields, grid, _simu_params):
grid = grid.to_new_size_empty(N_points)

u = get_forcing(grid)

fields["ux"] = u[0]

fields["uy"] = u[1]

fields["uz"] = u[2]

return fields

def update_gridsize(grid):
"""update the grid size based on the fraction of energy

contained in the outermost layers"""

E = grid.physics.energy()

ux, uy, uz = grid.field("ux", "uy", "uz")

mask = grid.ks_modulus > grid.k_min * grid.l ** (grid.N_points - 1)

# grid

comp = np.max(np.abs(ux[mask]) + np.abs(uy[mask]) + np.abs(uz[mask]))

if comp / np.sqrt(E) > 1e-100:
return grid.N_points + 1

if comp / np.sqrt(E) < 1e-170 and grid.N_points > 5:
return grid.N_points - 1
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# Simulation's parameters
fields = ["ux", "uy", "uz"] # the scalar fields to simulate

D = 3 # the dimension of the space

l_params = {"plastic": False, "a": 1, "b": 2} # the grid spacing's parameters
Re_F = 1e3

simu_params = {"Re_F": Re_F} # scalar parameter passed to the equation

rtol = 1e-4 # relative tolerance of the solver

n_threads_convolution = 4 # parallelization

N_points = 6 # initial size of the grid

save_path = f"results/save_3D_f0{f0:.2e}_ReF{Re_F:.2e}" # save path

end_simulation = {"t": 2000, "ode_step": 1e10} # when to end the simulation

save_one_in = 50 # save one step every N real steps

# Launching the simulation

Solver(simulation_parameters).solve()

2.2.2 Treatment
The above simulation can then be analyzed using the following simplified code, inspired by
Simulations/treat 3D.py.

"""Analyze NS3D results"""

# Spectrum and Energy

def get_spectrum_and_energy(grid, _t, _simu_params):
"""LHS: spectrum vs ks

RHS: energy vs time

slider: time"""

def spectrum_kinetic(fields, k):
"""Kinetic energy"""

ux, uy, uz = fields["ux"], fields["uy"], fields["uz"]

return np.real(ux[k] * np.conj(ux[k]) + uy[k] * np.conj(uy[k]) + \
uz[k] * np.conj(uz[k]))

return {"E_k": grid.physics.spectrum(spectrum_kinetic),
"E": grid.physics.energy(), "ks": grid.ks_1D}

def plot_spectrum_and_energy(drawables):
"""Plot spectra and energy"""

ts, E_k, E_kx, E_ky, E_kz, E, ks = drawables("t", "E_k", "E_kx",

"E_ky", "E_kz", "E", "ks")

_ = interactive_spectrum(ts, ks, {"$E_k$": E_k, "$E_{kx}$": E_kx,
"$E_{ky}$": E_ky, "$E_{kz}$": E_kz}, {"$E$": E})

pltshowm(legend=False, compact=False)

# Analysis parameters
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draw_funcs = {

"spectrum_and_energy": {"get": get_spectrum_and_energy,

"plot": plot_spectrum_and_energy},

}

f0 = 1

Re_F = 1e3

save_path = f"results/save_3D_f0{f0:.2e}_ReF{Re_F:.2e}"
N_points = 500 # how many time points max to load

n_jobs = 3 # parallelization

loadfromsave = False # load already computed results

# Launch analysis

DataExplorer(analysis_parameters).display()
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Part III

The physics
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Chapter 3

Asymptotic Ultimate Regime of
Homogeneous Rayleigh-Bénard

In this chapter, we investigate the so-called “Asymptotic Ultimate regime of Rayleigh-Bénard
convection” using log-lattices.

Most, but not all, of the content in this chapter comes from our article [BD23].

Takeaways
We investigate the Homogeneous Rayleigh-Bénard equations on log-lattices.

By adding a large-scale friction, we alleviate the runaway exponential instabilities that
otherwise plague the simulations, even in DNS.

We recover scalings for Nu,Re and dissipation as a function of Ra, Pr predicted by
Grossman & Lohse.

At very high Re, we observe a transition from a “stable” regime to an “intermittent”
regime with ill-defined statistics.

3.1 Introduction
Convection is a dynamical process that governs heat transport and mixing in a variety of systems,
ranging from planetary and astrophysical flows to industrial devices. In that respect, a crucial
question is how the heat flux in the system is connected with the temperature gradient. Near
equilibrium, where both quantities are small, Fourier laws apply, and the heat flux is simply
proportional to the temperature gradient. For larger values, the system enters a non-linear then
turbulent regime, where thermal energy in converted into mechanical energy, and the relation
becomes nonlinear. The deviations from linearity are quantified by the relation between the
Nusselt number, Nu, the ratio between the heat flux and its laminar value, and the Rayleigh
number Ra, the non-dimensional temperature gradient.

In fluid mechanics, the paradigmatic system describing convection is a fluid enclosed in a
volume, in which thermal energy is injected at the bottom via imposed heat flux or temperature
gradient (figure 3.1). Its dynamics is described by the Rayleigh-Bénard (RB) equations. Despite
decades of theoretical, experimental and numerical developments, the scaling of the heat transfer
in RB remains a subject of discussion and active research. In bounded domains at low Ra, a simple
argument by [MC54] based on the criticality of the thermal boundary layer gives Nu ∼ Ra1/3,
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Figure 3.1: Figure 1.2 from [For15], illustrating turbulent thermal convection within different geometries.
This represents a classical Rayleigh-Bénard setup.

Table 3.1: Scaling predictions for HRB observables in the turbulent regime with and without friction.
The observables are given by table 3.2. DNS stands for Direct Numerical Simulation using regular Fourier
modes [Cal+05] while LL refers to simulations using Fourier modes on a log-lattice. 𝑈2

𝑙𝑠
and Θ2

𝑙𝑠
are large

scale kinetic and thermal energy. Exponents are computed by fitting over Ra > 107 (resp. 1 < Pr < 50)
for varying Ra (resp. Pr). Errors represent std of fit parameters.

GL Theory 𝑓 = 0 DNS 𝑓 = 0 LL 𝑓 = 1

Nu ∼
√

Ra Pr Pr0.43 Ra0.50 Pr0.51±0.01 Ra0.53±0.03

Re ∼
√︁

Ra/Pr Pr−0.55 Ra0.5 Pr−0.54±0.01 Ra0.54±0.01

𝜖𝜃 ∼ 𝑐1
√︁

Re/Ra + 𝑐2 Re
√︁

Pr/Ra (Re Pr)−0.17 Re𝑥 Pr𝑥−0.5/
√

Ra, 1 ⪅ 𝑥 ⪅ 1.2
𝜖𝑢 ∼ Re3(Pr/Ra)3/2 Re2.77(Pr/Ra)3/2 Re2.88±0.03(Pr0.95±0.01/Ra)3/2

observed in many experiments (see [AGL09] for review). As we increase Ra → ∞, viscous
processes (and their associated boundary layers) are believed to become irrelevant, resulting in
an “ultimate regime of convection”, where Nu ∼ Ra1/2 (hereafter called “asymptotic ultimate
regime”) [Spi63; GL00], with possible logarithmic corrections [Kra62; GL11] (hereafter called
“ultimate regime”). Experimental or numerical observations of the (asymptotic) ultimate regime
prove to be very difficult, and no final consensus has been reached so far about its existence in a
pure RB setting [Cha+97; Urb+19; DC96; Zhu+18; Zhu+19b; Roc20] (see [AGL09] for a less
recent but more synthetic review). When the gravity is artificially increased using centrifugal
force, one can indeed observe hints of an ultimate regime [Jia+22]. On the other hand, various
modifications of the RB geometry aiming at modifying the influence of the boundary layers result
in experimental observation of a regime where Nu ∼ Ra1/2: using highly elongated cells [Gib+06;
Cas+17; PA16], using rough [CL99; Rus+18; Zhu+19a; Kaw+21] or porous [ZY21; MKS22]
boundaries, or radiatively heating the flow [LAG18; Bou+19].

From a numerical point of view, a simple way to remove boundary layers is to consider a triply
periodic geometry, and heat the flow via an applied temperature gradient. This setting was first
explored by [BO97; GL00; GL01; LT03; Cal+05; CLT07] and called Homogeneous Rayleigh-
Bénard (HRB) convection. The corresponding scalings and predictions are summarized in
table 3.1. Although the results of those simulations are consistent with the predictions of [GL00]
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(hereafter called “GL theory”), they are undermined by several drawbacks: statistics polluted
by the growth of uncontrolled exponential instabilities [Cal+06] of unclear physical relevance, a
small Ra and Pr range, sparse data points due to difficulties in running numerically challenging
simulations. Indeed, pushing the Rayleigh number to large values increases the numerical burden
beyond the capacity of present computers, as the number of grid points needed to describe the
flow usually scales like Re3 with Re ∼ Ra1/2.

1D shell models of turbulence were used previously in the context of HRB [CK08] in an
effort to increase the Ra and Pr range of results. They successfully display the asymptotic
ultimate regime of convection, at the price of tuning several parameters of the model to get
rid of the uncontrolled exponential instabilities. This, combined with the 1D nature of the
model, renders the informative and conclusive nature of the observations questionable. The
goal of the present chapter is therefore to re-explore the HRB equation using the log-lattice
framework, that allows both the exploration of a wide range of parameters on a large array of
wavenumbers, and a flexibility of dimensionality from 1D to 3D, at low numerical cost, and
without additional empirical parameters. Given that they preserve all main conservation laws
and symmetry of the original HRB equation, many features of the original equation are still
valid, like the exact conservation laws of table 3.1. Whether the GL theory still applies, and what
are the modifications of the asymptotic ultimate regime implied by the log-lattice geometry, are
interesting open questions that we investigate here. In that respect, the present paper offers an
exploration of the analogy and differences between log-lattices and classical fluid dynamics in a
more complex case (HRB) than previous examples [CM18; CM21].

3.2 Numerical simulations

3.2.1 Generalities
The dynamics of a homogeneous fluid, with coefficient of thermal dilation 𝛼, viscosity 𝜈 and
diffusivity 𝜅, subject to a temperature gradient Δ𝑇 over a length 𝐻 and vertical gravity 𝑔 is given
by the HRB set of equations [LT03; Cal+05; Cal+06; CLT07],

𝜕𝑡𝑢 + 𝑢 · ∇𝑢 + 1
𝜌0

∇𝑝 = 𝜈∇2𝑢 + 𝛼𝑔𝜃®𝑧,

𝜕𝑡𝜃 + 𝑢 · ∇𝜃 = 𝜅∇2𝜃 + 𝑢𝑧
Δ𝑇

𝐻
,

∇ · 𝑢 = 0,

(3.1)

where 𝑢 is the velocity, 𝜃 the temperature fluctuation, 𝜌0 is the (constant) reference density and
𝑝 is the pressure. Here, the mean temperature gradient Δ𝑇 acts as a forcing term. This gradient
is non-dimensionalized into the Rayleigh number Ra = 𝛼𝑔𝐻3Δ𝑇/(𝜈𝜅). The Prandtl number
Pr = 𝜈/𝜅 is the ratio of the fluid viscosity to its thermal diffusivity. The mean total heat flux is
the 𝑧 direction is 𝐽 = ⟨𝑢𝑧𝜃⟩ − 𝜅Δ𝑇 which is adimensionalized into Nu = 𝐽𝐻/𝜅Δ𝑇 .

Taking global space and time average of equation (3.1), one can derive [LT03; Cal+05] two
exact relation for the volume averaged kinetic and thermal dissipation, which respectively scale
as

𝜈
〈
(𝜕𝑖𝑢 𝑗 )2〉

𝑉
= 𝜈3𝐻−4 Nu Ra Pr−2, (3.2)

𝜅
〈
(𝜕𝑖𝜃)2〉

𝑉
= 𝜅𝐻−2(Δ𝑇)2 Nu . (3.3)

Additionally, to get rid of the pressure term, we take the rotational of the above equation
(𝜔 = rot𝑢 = 𝑖𝑘 × 𝑢).
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Figure 3.2: Absolute value of the rate of growth of instability 𝜎 = 𝑑 log 𝑋/𝑑 log 𝑡 where 𝑋 = ⟨𝑢𝜃⟩
without large-scale friction ( 𝑓 = 0), vs. Rayleigh number. The green dashed line is the theoretical growth
rate for 𝑘 = 𝑘𝑐 = 2𝜋

√
3, corresponding to equation (3.4). The interval 𝑘 < 𝑘𝑐 corresponds to negative

values of 𝜎.

3.2.2 Adaptation on log-lattices: HRB with friction

3.2.2.1 Exponential instabilities in HRB

As first shown by [Cal+06], HRB equations are prone to exponential instabilities, due to the
conservation of the total energy. In the absence of large-scale friction, we also observe those
instabilities in our log-lattice simulations (figure 3.3a). As shown in figure 3.2, the growth rate of
the instability in the log-lattice simulations matches the theoretical growth rate given by [Cal+06;
Sch+12]:

𝜎
√

Ra Pr =
1
2

[√︃(
(Pr+1)𝑘2)2 + 4 Pr(Ra−𝑘4) − (Pr+1)𝑘2

]
∼
√

Ra, (3.4)

for 𝜃, 𝑢 ∼ 𝑒𝜎𝑡+𝑖
®𝑘 ·®𝑥 . This expression yields unstable solutions for Ra > Ra𝑐 = 𝑘4

min where 𝑘min is
the modulus of the smallest mode on the grid, which is 2𝜋

√
3 in our case.

However, the non-linear behavior of the instability in the log-lattice case is quite different
from the one reported by Calzavarini: instabilities tend to extend significantly further and for
longer times. Our interpretation is that in our log-lattice model, the modes are not coupled
enough to develop the nonlinear saturation. The instabilities widely interfere with the statistical
stability of observables and need to be removed for a meaningful analysis. Physically, these
exponential ramps originate for a lack of energy sink to absorb the constant energy injection in
the bulk by the (fixed) temperature gradient. Previous works on 1D simulations [CK08] have
shown that without a large-scale sink to counteract this source, energy diverges at large scales and
scaling laws become incorrect. Therefore, to get rid of the exponential instabilities, we include
a large-scale friction 𝑓 on both 𝑢 and 𝜃. By doing so, the instability saturates, and we achieve a
statistically stationary state for the heat transfer, as displayed in figure 3.3. Note however that the
fluctuations of Nu around the stationary value are very broad, and extend over one or two orders
of magnitudes. The same phenomenon was observed in the DNS of HRB [Cal+05; Cal+06] and
mentioned to be a source of difficulty to achieve reliable results [BO97]. For this reason, very
long simulations are necessary to get steady averages [PS95; Cal+06]. In DNS, this cannot be
achieved without cutting down the resolution, which may impact the reliability of dissipation
estimates [YSP18]. In the log-lattice framework, we do not have this problem, and we performed
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(a) (b)

Figure 3.3: Influence of the large-scale friction on the time behavior of the Nusselt number Nu in 3D
HRB. (figure 3.3a) Without friction: we observe the growth of an exponential instability. (figure 3.3b)
With friction: the instability saturates and the dynamics become statistically convergent. Parameters:

Ra = 106, Pr = 1, 𝑁 = 13.

high resolution very long time averages on the log of Nu, and represent all quantities in log-log
variables.

3.2.2.2 Equations

To investigate the ultimate regime, it is natural to adimensionalize the equation in terms of
“inertial quantities”, i.e. using the vertical width 𝐻 as a unit of length, the free fall velocity
𝑈ff = 𝛼𝑔Δ𝑇𝐻 as a unit of velocity, and Δ𝑇 as a unit of temperature. table 3.2 indicates the
form taken by observables after rescaling as indicated. The equations including the temperature
gradient and the friction can then be written in terms of velocity as (with the Einstein convention
on summed repeated indices):

𝜕𝑡𝑢𝑖 = P

[
−𝑢 𝑗𝜕𝑗𝑢𝑖 + 𝜃𝛿𝑖=𝑧 +

√︂
Pr
Ra

∇2𝑢𝑖 − 𝑓 𝑢𝑖𝛿𝑘≈𝑘𝑚𝑖𝑛

]
𝑖

,

𝜕𝑡𝜃 = −𝑢𝑖𝜕𝑖𝜃 + 𝑢𝑧 +
∇2𝜃

√
Ra Pr

− 𝑓 𝜃𝛿𝑘≈𝑘𝑚𝑖𝑛
,

(3.5)

where the Dirac 𝛿𝑘≈𝑘min filters out the small scales, and the projector, given in the Fourier space

by P(𝐴) = 𝐴− 𝑘𝑖

𝑘2 𝑘 𝑗 𝐴 𝑗 , accounts for the pressure term under the divergence-free condition. We
also looked at those equations expressed in terms of the vorticity 𝜔 = ∇ × 𝑢:

𝜕𝑡𝜔𝑖 = −𝜔 𝑗𝜕𝑗𝑢𝑖 − 𝑢 𝑗𝜕𝑗𝜔𝑖 + 𝜃 [∇ × 𝑧]𝑖 +
√︂

Pr
Ra

∇2𝜔𝑖 − 𝑓 𝜔𝑖𝛿𝑘≈𝑘𝑚𝑖𝑛
,

𝜕𝑡𝜃 = −𝑢𝑖𝜕𝑖𝜃 + 𝑢𝑧 +
∇2𝜃

√
Ra Pr

− 𝑓 𝜃𝛿𝑘≈𝑘𝑚𝑖𝑛
.

(3.6)

Adding a large-scale friction to damp the inverse cascade is a classical trick-it is e.g. routinely
used in numerical simulations of 2D turbulence to avoid Bose condensation at 𝑘 = 0 and enable
stationarity [SGC99]. The present case is 3D, but we interpret the formation of exponential ramps
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Table 3.2: Physical quantities expressed as a function of the non-dimensional variables of equation (3.5)
. ⟨·⟩ denotes the temporal and spatial average.

Nu =
𝐽𝐻

𝜅Δ𝑇
− 1 →

√
Ra Pr · ⟨𝑢𝑧𝜃⟩ − 1

Re =

√︁
⟨𝑈𝑖𝑈𝑖⟩𝐻

𝜈
→

√︂
Ra
Pr

·
√︁
⟨𝑢𝑖𝑢𝑖⟩

𝜖𝜃 = 𝜅
〈
(𝜕𝑖Θ)2〉 → 〈

(𝜕𝑖𝜃)2〉
√

Ra Pr

𝜖𝑢 = 𝜈
〈
(𝜕𝑖𝑈 𝑗 )2〉 → √︂

Pr
Ra

·
〈
(𝜕𝑖𝑢 𝑗 )2〉

as a signature of back-scattering of energy, a feature that was already mentioned previously in
shell models of Rayleigh-Bénard convection [CK08]. The addition of the friction is therefore a
convenient way to damp the large-scale modes that are generated by the large-scale instability.
Such friction is also added in many models of climate, as a subgrid model to account for the
friction at the boundary layer that cannot be resolved in the stratified case. The hand waving
argument is that, within boundary layers, a shear profile develops, with extraction of energy
at the boundaries, which is proportional to the square of the shear. Assuming the shear to be
constant in the boundary layer, we can then estimate it by the difference between the velocity
at the top of the layer, minus the velocity at the boundary which is zero. In total, the energy
pumped by friction is proportional to the square of the velocity, which is exactly the law we have
implemented. Such friction is termed Rayleigh friction in the climate community [Ste+02] and
can actually be seen as a way to take into account the boundary conditions that we have removed
in the HRB setting.

3.2.2.3 Conservation laws for HRB with and without friction

In the absence of friction, the conservation laws for HRB are given by equations (3.2) and (3.3).
The presence of the friction just adds a supplementary term proportional to 𝑓 in each equation.
The result can be made non-dimensional using 𝑈ff , 𝐻 and Δ𝑇 as units of velocity, length and
temperature, resulting in :

𝑓
〈
𝑢2𝛿𝑘≈𝑘𝑚𝑖𝑛

〉
+ 𝜖𝑢 =

Nu+1
√

Ra Pr
, (3.7)

𝑓
〈
𝜃2𝛿𝑘≈𝑘𝑚𝑖𝑛

〉
+ 𝜖𝜃 =

Nu+1
√

Ra Pr
, (3.8)

From now on, we define 𝑈2
𝑙𝑠
=
〈
𝑢2𝛿𝑘≈𝑘min

〉
and Θ2

𝑙𝑠
=
〈
𝜃2𝛿𝑘≈𝑘min

〉
.
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(a) (b)

Figure 3.4: Exact conservation laws for 𝜖𝜃 in 3D results. Black points correspond to varying Ra, gray
points correspond to varying Pr. (figure 3.4a) 𝜖𝜃 + 𝑓Θ2

𝑙𝑠
vs (Nu+1)/

√
Ra Pr. (figure 3.4b) Compensated

plot (𝜖𝜃 + 𝑓Θ2
𝑙𝑠
)/
(
(Nu+1)/

√
Ra Pr

)
vs (Nu+1)/

√
Ra Pr.

3.2.3 Numerical details

3.2.3.1 Configuration

We perform all our simulations with 𝜆 = 𝜙 (see in section 1.1.3 why we do not chose 𝜆 = 2),
which is the second-biggest value of 𝜆, and has the second least number of interactions per
grid point. The minimum wave vector of the grid is set to 𝑘min = 2𝜋 to match a simulation
on a box of size �̃� = 1. The grid size 𝑁 is then set to reach the dissipative scale both for
velocity and temperature. We alternate between several initial condition (IC) choices for our
simulations: large-scale initialization, Kolmogorov spectrum, flat-spectrum. All those choices
are modulated by a weak multiplicative complex noise. We find no significant influence of those
initial conditions on the scaling laws. As Ra or Pr increase, the simulations become slower and
slower. This sets the upper bound on the range of parameters we can integrate while retaining
statistically relevant observables in a reasonable simulation time (one CPU days at most). In 3D,
this yields Ramax ≈ 1010 for Pr = 1 and Prmax ≈ 5 · 104 for Ra = 108. The lower bound is set by
the value of the Nusselt number, which must obey Nu ≫ 1, the value Nu ≈ 1 corresponding to
the laminar regime with trivial scaling laws. Finally, integrating equations on log-lattices yields
interesting and new numerical challenges. We built our own ODE integrator to solve them, as
detailed in Supplementary Materials. Once we have run a simulation for a long enough time, we
compute Nu, 𝜖𝜃 , 𝜖𝑢 by taking long time and space averages (with ⟨𝑎𝑏⟩ = 1

𝑇

∫
𝑡

dt(𝑎, 𝑏)) according
to table 3.2. The accuracy of our results is controlled by checking that we recover the exact laws
of HRB convection equations (3.7) and (3.8). This is shown in figures 3.4 and 3.5, for all 3D
data sets used in the present paper (see table 3.3). Furthermore, the ratio between the friction
term and the dissipation is shown in figure 3.6.

3.2.3.2 Simulation sets

The results we obtained come from seven types of simulation that are described in the table 3.3.
For comparison, we also included in some graphs the results by [Cal+05], obtained using DNS
of the same equations, but at 𝑓 = 0.
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(a) (b)

Figure 3.5: Exact conservation laws for 𝜖𝑢 in 3D results. Black points correspond to varying Ra, gray
points correspond to varying Pr. (figure 3.5a) 𝜖𝑢 + 𝑓𝑈2

𝑙𝑠
vs (Nu+1)/

√
Ra Pr. (figure 3.5b) Compensated

plot (𝜖𝑢 + 𝑓𝑈2
𝑙𝑠
)/
(
(Nu+1)/

√
Ra Pr

)
vs (Nu+1)/

√
Ra Pr.

(a) (b)

Figure 3.6: Ratio between friction 𝑓𝑥 = 𝑓 𝑋2
𝑙𝑠

and dissipation 𝜖𝑥 for 𝑥 = 𝑢, 𝜃 (figure 3.6a) versus Ra at
Pr = 1 and (figure 3.6b) versus Pr at Ra = 108.
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Table 3.3: Parameters of the data sets used in the present paper. 𝐷 is the dimension. The “velocity”
datasets are obtained by integration of equation (3.5), while the “vorticity” datasets are obtained by
integration of equation (3.6). 𝐷𝑁𝑆 refers to direct simulations of [Cal+05], using a classical spectral
Fourier code (on a regular grid). The ++ label refers to an integration using an improved integrator, using a
reshuffling of variable matrices that allows faster simulations. The Ra and Pr column provides the Rayleigh
and Prandtl number range of the simulations. 𝑓 is the large scale friction, 𝑁 = 1+ log 𝑘max/log(𝜙), where
𝑘max is the maximal wavenumber of the simulation and 𝜙, the golden mean, is a measure of the spatial
resolution. For log-lattices, it corresponds to the number of modes in each direction. 𝑁𝑎𝑣 is the length of
the simulation, divided by the large eddy turnover time. It provides the number of decorrelated frames
that can be used to estimate statistical averages. The tolerance refers to the absolute and relative tolerances
that are fixed equal in all the simulations.

Name D Type Ra Pr 𝑓 𝑁 𝑁𝑎𝑣 Tolerance Symbol
(I) 1D Velocity [105, 1050] 1 1 120 - 10−3

(II) 2D Vorticity [105, 1050] 1 1 20 - 10−3

(III) 3D Velocity [1, 1010] 1 1 13 > 480 10−6

(IV) 3D Vorticity [1, 1010] 1 1 13 > 480 10−6

(V) 3D Velocity 108 [5 · 10−4, 102] 1 13 > 50 10−6

(VI) 3D Vorticity 108 [5 · 10−4, 102] 1 13 > 50 10−6

(VII) 3D ++Velocity {109, 1010, 1011} [5 · 10−4, 102] 1 13 > 80 10−6 -
(VIII) 3D Velocity [106, 1010] 1 1 13 > 50 10−6

Calzavarini 3D DNS [105, 108] [10−1, 10] 0 - > 64 -

Historically, we performed first vorticity simulations, then velocity simulations, improving
the integrator scheme in between to be able to better handle various numerical challenges raised
by simulating wavenumbers as high as 𝑘 ∼ 105 in 3D. For transparency reasons, we decided to
include all datasets we had at our disposal, but we believe that the velocity simulations are the
more faithful ones, in the sense that they deal better with the small scales at large Rayleigh or
Reynolds number. This sensitivity to small scale modeling (and resolution) is also a well-known
feature of direct numerical simulations, especially when it comes to statistics of gradients or
energy dissipation [YSP18].

We have verified that the size of the grid for 3D simulations (𝑁 = 13) does not affect the
mean value of the observables Nu,Re, . . . , which is already converged for grids of size 𝑁 ≥ 6.
However, the tail of the pdfs does depend on 𝑁 . Another 3D simulation set at 𝑁 = 20 (not shown
here, both vs Ra and Pr) displays the same scaling laws as the 𝑁 = 13 case, confirming this
analysis.

3.2.3.3 Zero-divergence problem in 1D

In the 1D case, we cannot impose the zero-divergence condition, so that quantities like 𝑢𝑥𝜕𝑥𝜃

and 𝜕𝑥 (𝑢𝑥𝜃) are not equivalent. Here, we have followed the same choice as [CK08], and wrote
the equation as:

𝜕𝑡𝑢 = −𝑢𝜕𝑥𝑢 + 𝜃 +
√︂

Pr
Ra

∇2𝑢 − 𝑓 𝑢𝛿𝑘≈𝑘𝑚𝑖𝑛
,

𝜕𝑡𝜃 = −𝑢𝜕𝑥𝜃 + 𝑢 + ∇2𝜃
√

Ra Pr
− 𝑓 𝜃𝛿𝑘≈𝑘𝑚𝑖𝑛

.

(3.9)
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(a) (b)

Figure 3.7: Non-dimensional heat transfer Nu vs Rayleigh number Ra in 1D and 2D. Correspondence
between symbols and datasets are given in table 3.3. (figure 3.7a) Nu vs Ra. The gray dashed line
corresponds to Nu ∼

√
Ra, corresponding to ultimate regime scaling. (figure 3.7b) Compensated plot

𝐴Nu/
√

Ra vs Ra., where 𝐴 is adjusted to collapse the 1D and 2D data in the ultimate regime.

3.3 Results and Discussion

3.3.1 One and two-dimensional cases
Figure 3.7 presents the Nu vs Ra scaling in 1D and 2D. The 1D Nu scaling law extends over
50 orders of magnitude in Ra (figure 3.7a), and follows closely the law Nu ∼ Ra1/2, as can be
checked by the compensated plot in Fig. (figure 3.7b), in agreement with [CK08]. In 2D, the
scaling also extends approximately over 30 orders of magnitudes for Ra > 1023. Moreover, the
compensated plot highlights small fluctuations around this law, see figure 3.7b, due to statistical
noise.

3.3.2 In 3D
In 3D, the simulations get significantly more turbulent and results are subject to more statistical
fluctuations. Another source of fluctuations comes from a physical phenomenon, associated
with the existence of friction. To showcase this effect, we plot in figures 3.6a and 3.6b the ratio
between the energy dissipated by friction and the energy dissipated by viscosity or diffusivity for
both the kinetic energy and the thermal energy.

Fixing Pr = 1 and varying Ra between 103 and 108, we observe in figure 3.6a that both
𝑓𝑢 = 𝑓𝑈2

𝑙𝑠
/𝜖𝑢 or 𝑓𝜃 = 𝑓Θ2

𝑙𝑠
/𝜖𝜃 behave in the same way as a function of Ra at low Ra, the

dissipation due to friction is small, and gradually increases towards reaching a plateau around
Ra ∼ 107, where energy dissipated by frictions reach about 90% of the energy dissipated by
viscosity or diffusivity. We can thus define a “non-universal” regime where 𝑓 /𝜖 depends on
Ra, Pr and a “universal” regime where 𝑓 /𝜖 does not depend on Ra, Pr.

The critical Rayleigh number where the plateau occurs is likely to depend on the Prandtl
number. To check this; we now fix Ra = 108 and vary Pr from several order of magnitude.
In figure 3.6b, we then observe an interesting symmetrical behavior, with respect to Pr = 1:
decreasing Pr, we observe that the energy dissipated by the velocity friction remains of the
same order of magnitude than the dissipation by viscosity, while the energy dissipated by
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(a) (b)

Figure 3.8: Non-dimensional heat transfer Nu vs Rayleigh number Ra in 3D for Pr = 1. Correspondence
between symbols and datasets are given in table 3.3. The gray dashed line separates the non-universal (left)
and the universal (right) friction dominated regimes for data corresponding to figure 3.6. (figure 3.8a) Nu
vs Ra. The black dashed line corresponds to Nu ∼

√
Ra, corresponding to asymptotic ultimate regime

scaling. (figure 3.8b) Compensated plot Nu/
√

Ra vs Ra.

thermal friction strongly decays and become negligible. As Pr shifts away from 1, we observe
the symmetrical behavior, with velocity friction becoming negligible, while thermal friction
remains of the same order of magnitude than the thermal energy dissipation. As we will see, this
will have an impact on the thermal transport. Note that at small (resp. large) Pr, all the thermal
(resp. velocity) modes become concentrated at large scale, where the friction occurs. Therefore,
in the large Pr regime, the kinetic friction and viscous dissipation compete, while at small Pr the
same remark holds for the thermal friction and diffusive dissipation. This may then explain the
vanishing of the friction in those regimes.

We now focus on the regimes where the ratio of friction to dissipation is approximately
constant. These regimes are friction dominated, but, as we will see, are characterized by
interesting universal scaling regimes.

Figures 3.8 and 3.9 presents the 3D Nu vs Ra, Pr scalings. Figures 3.10 and 3.11 presents the
3D Re vs Ra, Pr scalings. Scaling are always displayed both directly and in compensated form.

At low Ra, we first observe a transition from a laminar regime, where Nu = 1 up to a turbulent
regime starting around Ra ∼ 107 at Pr = 1. In this transition regime, the Nusselt number varies
approximately like Nu ∼ Ra2/3, while the Reynolds number remains less than 104, but follows
approximates laws Re ∼ Ra1/2. In this regime, the friction is negligible, as we saw, so that it
corresponds to a laminar, frictionless regime.

After this laminar regime, we obtain a turbulent regime around 107 < Ra for Pr = 1 in which
Nu ∼ Ra1/2 and Re ∼ Ra1/2, like GL theory. The exact value of the exponent is provided in
table 3.1. In this regime, the friction is non-negligible, so that it is a “turbulent friction dominated
regime” However, as both ratio 𝑓𝑢 = 𝑓𝑈2

𝑙𝑠
/𝜖𝑢 or 𝑓𝜃 = 𝑓Θ2

𝑙𝑠
/𝜖𝜃 remain independent of Ra, they

do not change the scaling of the total kinetic and thermal energy dissipation. Therefore, the
argument developed by GL theory should still apply in this situation, as is indeed observed, with
minor corrections due to the small variations of the ratios.

In that respect, it is not surprising that the extent of this regime varies with Pr, as is shown in
figure 3.12 for various Ra. At 𝑅𝑎 = 108, the “universal GL” regime stops for Pr <∼ 10−1. In this
range of parameters, Re is still large, so that the flow is turbulent. However, Nu drops quicker
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(a) (b)

Figure 3.9: Scaling of non-dimensional heat transfer Nu as a function of Prandtl number Pr in 3D for Ra =

108. Correspondence between symbols and datasets are given in table 3.3. The gray dashed line separates
the non-universal (left) and the universal (right) friction dominated regimes for data corresponding to
figure 3.6. (figure 3.9a) Nu vs Pr. The black dashed line corresponds to Nu ∼

√
Pr, corresponding to

asymptotic ultimate regime scaling. (figure 3.9b) Compensated plot Nu/
√

Pr vs Pr.

(a) (b)

Figure 3.10: Scaling of Reynolds number Re as a function of Rayleigh number Ra in 3D for Pr = 1.
Correspondence between symbols and datasets are given in table 3.3. The gray dashed line separates
the non-universal (left) and the universal (right) friction dominated regimes for data corresponding to
figure 3.6. (figure 3.10a) Re vs Ra. The black dashed line corresponds to Re ∼

√
Ra, corresponding to

asymptotic ultimate regime scaling. (figure 3.10b) Compensated plot Re/
√

Ra vs Ra.
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(a) (b)

Figure 3.11: Scaling of Reynolds number Re as a function of Prandtl number Pr in 3D for Ra = 108.
Correspondence between symbols and datasets are given in table 3.3. The gray dashed line separates
the non-universal (left) and the universal (right) friction dominated regimes for data corresponding to
figure 3.6. (figure 3.11a) Re vs Pr. The black dashed line corresponds to Re ∼ 1/

√
Pr, corresponding to

ultimate regime scaling. (figure 3.11b) Compensated plot Re/
(
1/
√

Pr
)

vs Pr.

(a) (b)

Figure 3.12: Scaling of heat transfer Nu as a function of Prandtl number Pr in 3D results at fixed Ra,
dataset VII (table 3.3) (figure 3.12a) Nu/

√
Pr vs Pr for various Ra. (figure 3.12b) Re/

(
1/
√

Pr
)

vs Pr for
various Ra.
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(a) (b)

Figure 3.13: Scaling of thermal dissipation rate 𝜖𝜃 compared to the GL prediction Re
√︁

Pr/Ra in 3D results.
Correspondence between symbols and datasets are given in table 3.3). The gray dashed line separates
the non-universal (left) and the universal (right) friction dominated regimes for data corresponding to
figure 3.6. (figure 3.13a) 𝜖𝜃

√
Ra Pr vs Re Pr. The black dashed line corresponds to the GL prediction

𝜖𝜃 ∼ Re(Pr/Ra)1/2. (figure 3.13b) Compensated plot 𝜖𝜃
√

Ra Pr/
√

Re Pr vs
√

Re Pr.

with decreasing Pr than in the universal GL regime, as can be seen from the filled data points in
figure 3.9, in parallel with a similar drop for the thermal friction observed in figure 3.6b. This
regime seems therefore dependent on the variation on the friction, and is non-universal. In this
regime, the Reynolds number variation with Pr is milder than in the universal regime, as can be
seen in figure 3.11.

As the Rayleigh number increases, we nevertheless observe in figure 3.12 that the extent
of the universal turbulent regime extends towards smaller and smaller values of Pr, so that the
universal scaling regime corresponds to an “asymptotic scaling regime” at low value of Pr < 1,
valid in the limit of infinite Ra.

Figures 3.13 and 3.14 plot the kinetic and thermal dissipation rates 𝜖𝑢, 𝜖𝜃 against GL predic-
tions. In agreement with what has been observed previously, we observe agreement with GL
theory in the range of parameters where the friction ratios are approximately constant with the
parameters, i.e. at large values of Re Pr. Overall, it is interesting to note that even when the
friction is dominant, we can recover the ultimate regime scaling, as long as the velocity friction
ratio remain relatively constant as a function of the parameters and neither there is not too big
an asymmetry between the two frictions. In regimes where the asymmetry prevails, there are no
clear scaling laws that emerge, meaning that the scalings are probably not universal in Ra and Pr
only, and that friction-dependent corrections need to be implemented.

3.4 Going further: new regimes at very high Ra

So far we have focused on the Ra ≤ 1010 range, for two reasons. The initial reason is that as
Ra increases, the time step of the simulations decrease, leading to increasingly long simulations.
The more complex reason, as we will see in this section, is that at Ra ≳ 1011, a transition occurs
towards an ill-behaved regime. We put this section separate from the previous results, as it is
more exploratory in nature and not as in-depth. We set Pr = 1 for this whole section.
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(a) (b)

Figure 3.14: Scaling of kinetic dissipation rate 𝜖𝑢 compared to the GL prediction Re3(Pr/Ra)3/2 in 3D
results. Correspondence between symbols and datasets are given in table 3.3). The gray dashed line sep-
arates the non-universal (left) and the universal (right) friction dominated regimes for data corresponding
to figure 3.6. (figure 3.14a) 𝜖𝑢

√︁
Ra3 Pr vs Re3 Pr2. The black dashed line corresponds to the GL prediction

𝜖𝑢 ∼ Re3(Pr/Ra)3/2. (figure 3.14b) Compensated plot 𝜖𝑢
√︁

Ra3 Pr/Re3 Pr2 vs Re3 Pr2.

3.4.1 Stable and intermittent regimes

Figure 3.15 exhibits the compensated Nu vs Ra scaling for a very large range of Ra up to 1020. We
observe three separate behaviors. At “low” Ra up to Ra ≈ 1011, we recover our usual asymptotic
ultimate regime, as in the previous sections. At Ra ≈ 1011, we observe a very abrupt transition
towards a new highly-fluctuating regime, which still exhibits a Nu ∼ Ra0.5 scaling. At very high
Ra, the simulations become too slow and temporally under-resolved, and the results become
irrelevant.

This new highly fluctuating regime, which we will refer to as the “intermittent” regime (as
opposed to the “stable” regime), is a lot less stable numerically, and thus requires significantly
longer simulations.

3.4.2 Instabilities in the intermittent regimes
Looking at Nu as a function of time in this regime in figure 3.16, we observe that the simulation
first follows a rather long evolution along the stable regime, before suddenly transitioning towards
the intermittent regime as an instability develops, increasing its energy by several orders of
magnitude in the process.

A first insight into what is happening comes from looking at the energy spectra. Before the
instability develops (figure 3.17a), we have standard stable regime spectra with 𝐸 (𝑘) ∼ 𝑘−5/3.
In the intermittent regime, we observe a very singular point in the spectrum that peaks above the
others (figure 3.17b). This behavior, and the location of the singular point, do not depend on the
relative tolerance nor on the adaptive cutoff of the solver.

We track the location 𝑘peak of this point with respect to Ra in figure 3.18, and observes that
𝑘peak ∝ Ra1/4. This corresponds to the scaling of the critical wavenumber 𝑘𝑐 above which the
instability growth rate 𝜎 defined in section 3.2.2.1 becomes positive.

We do not have a clear explanation for this instability. Although it seems linked to equa-
tion (3.4), its evolution is counterintuitive. We can qualitatively explain why an instability of
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Figure 3.15: Nu/
√

Ra vs Ra on a very big range of Ra. Grey lines represent the standard deviation of Nu.
Up to Ra ≈ 1011 (dashed black line) we observe an asymptotic ultimate regime with low fluctuations. At
Ra ≈ 1011 there is a very abrupt change of regime into a much more volatile behavior, which still exhibits
ultimate regime scalings. Simulations at Ra ≳ 1017 (dashed blue line) are under-resolved in time and are
far from statistical equilibrium.

Figure 3.16: Nu vs time for Ra = 3.46 · 1011. The first half of the simulation follows the stable regime,
before transitioning onto the intermittent regime.
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(a) (b)

Figure 3.17: Energy spectra 𝐸 (𝑘) before and after the instability for Ra = 3.46 · 1011, zoomed in on
the inertial regime. The insert shows the full spectrum, with a red border indicating the zoomed region.
(figure 3.17a) Before the instability, in the stable regime, we observe a standard 𝐸 (𝑘) ∝ 𝑘−5/3 spectrum.
(figure 3.17b) After the instability, in the intermittent regime, we observe a very singular peak around
𝑘 = 300.

Figure 3.18: Location 𝑘peak of the peak in the 𝐸 (𝑘) spectrum versus Ra. We observe that 𝑘peak ∝
𝑘𝑐 ∝ Ra1/4 where 𝑘𝑐 is the wavevector at which the instability growth rate 𝜎 (defined in section 3.2.2.1)
becomes positive for a given Ra.
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(a) (b) (c)

Figure 3.19: Evolution of the points with an energy 𝐸 (𝑘) ≥ max 𝐸 (𝑘)/5 during the growth of the
instability. Axis ticks represent the indice 𝑛 of the point 𝑘𝑛 = 𝑘min𝜆

𝑛. Color represents the value of the
energy (normalized per frame), increasing from blue (𝐸 (𝑘) = max 𝐸 (𝑘)/5) to red (𝐸 (𝑘) = max 𝐸 (𝑘)).
Figure 3.19a is during the stable regime, figure 3.19b is during the transition and figure 3.19c is during the
intermittent regime. We see that the instability is already very visible in the stable regime, and eventually
becomes the main component of the simulation, while remaining extremely singular.

the sort develops after a certain Ra. We have added a large-scale friction to counteract the
instabilities. However, this friction only acts on a portion of the spectrum, and as Ra increases
and the spectrum subsequently becomes bigger and bigger, it is only expected that far enough
from the large-scale friction we eventually see the instabilities develop again. Nevertheless,
𝜎(𝑘) is a decreasing function 𝑘 , and by this logic we would thus expect 𝑘peak to remain roughly
constant, not increase. The second intriguing part concerns the extremely localized nature of the
instability. The spectra indicate that it is localized on a single shell, but looking at individual
points (figure 3.19) reveals that it is localized on a single point ! Moreover, this point is not
even in a corner of the grid. Figure 3.19a also tells us that although the transition between the
regimes happens late in the simulation, its traces are already visible much earlier on. The last
characteristic is that it always happens at an (inner) edge of the grid.

3.4.3 Adding an edge friction
In the same way we have added a large-scale friction to counteract instabilities at small |𝑘 |,
we can add an “edge friction” to counteract instabilities at the inner edges of the grid, i.e. at
small |𝑘𝑥,𝑦,𝑧 |. However, although this edge friction counteracts the instability for some time,
it eventually resurfaces at slightly higher wavenumbers. As seen in figure 3.20, the qualitative
behavior of Nu vs Ra is the same as in the common case, with a stable and an intermittent
regime. However, as expected, the fluctuations of the intermittent regime are lower (compared
to the stable baseline) when we add the edge friction.

3.5 Conclusion
In this chapter, we investigated scaling laws in the Homogeneous Rayleigh Bénard (HRB)
equations using log-lattices, which enables us to explore a range of parameters and wave-numbers
way beyond what is accessible in direct numerical simulations of the equations. By adding a
large-scale friction to the HRB equations, we are able to solve the issue of exponentially diverging
solutions in a bounded range of Ra. This large scale friction become non-negligible when the
fluid become turbulent enough, so that total energy balance depart from the energy balance
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Figure 3.20: Nu/
√

Ra vs Ra with an edge friction equal to 10−3 ∗ 𝑓 . Grey lines represent the standard
deviation of Nu. We observe the same qualitative behavior as in figure 3.15.

considered in GL theory, where no friction is present. Despite this, we still observe scaling
law for Nu and Pr that are very close to the universal turbulent predictions of Grossmann-Lohse
(GL) theory: Nu ∼ Ra1/2 Pr1/2, Re ∼ Ra1/2 Pr−1/2, 𝜖𝜃 ∼ Re(Pr/Ra)1/2, 𝜖𝑢 ∼ Re3(Pr/Ra)3/2

for an important range of parameters, corresponding to situations where the thermal friction is
non-negligible and the kinetic friction does not vary significantly as a function of the parameters.
This is obtained at large enough Ra and for Pr depending on the value of Ra.

In addition to this regime, we also observe another turbulent, friction dominated regime at
Pr ≪ 1. This regime has no simple and universal dependence with the parameter, and depends
on the variations of the kinetic friction with the parameters.

Our observation show that the inclusion of friction, which is necessary to obtain well-behaved
stationary regimes in the HRB framework, complexifies the phase space but nevertheless allows
for the existence of a universal turbulent regime, where scaling laws are very close to the
GL friction-less theoretical laws. In some geophysical or astrophysical situations, large scale
friction arises due to rotation (Ekman friction), stratification (Rayleigh friction) or magnetic field
(Hartman friction), and the two scaling regimes we find (one universal, and one non-universal)
may be relevant and could be explored within the log-lattice framework.

It is not yet clear how the decimation of nonlinear interaction that takes place in log-lattice
influences the prefactors of the scaling law. The comparison with DNS data shown on figure 3.8a
for example, indicate that the log-lattice model with friction is more efficient to transport heat
than the DNS without friction. Whether this difference is due to friction, or to the decimation is
still an open question, and the topic of ongoing work.
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Chapter 4

Rotating fluids

Our long-term vision is to employ log-lattices in the study of concrete geophysical flows.
In the preceding chapter, we examined a fundamental aspect of geophysical flows, namely,
temperature variations within the flow In this chapter, we delve into another significant component
of geophysical flows, rotation. We first employ log-lattices to investigate simple 2D beta-plane
flows, and subsequently transition to studying fully rotating 3D turbulence.

Takeaways
We have not succeeded in reproducing the dynamics of quasi-geostrophic beta-plane (QGBP)
flows on log-lattices.

The raw 2-layer QGBP equations pose mathematical challenges when treated on Fourier
grids.

The 1-layer QGBP do not pose such issues. However, the emergence of zonal jets, despite
the apparent satisfactory behavior of Rossby waves, is not visible.

This could be due to the impossibility to observe exact Rossby wave resonance on
log-lattices due to geometrical constrains. Further investigations are required to determine
whether this could also be due to problems with the inverse cascade in 2D log-lattices, the
absence of nonlocal interactions, the sparse nature of local interactions, or the mathematical
implementation of the 𝑘𝑖 = 0 modes.

We then simulate the 3D rotating NSE, without 𝑘𝑖 = 0 modes, which prevents condensa-
tion to a quasi2D flow. We recover the same scaling laws as in DNS [Ale15] for all regimes
that do not involve condensation.

4.1 2D beta-plane flows
Most of the endeavors in this section ended up in failure. However, there is much to learn from
those attempts. Those simulations are the first in-depth 2D simulations on log-lattices, and the
first to use the 𝑘𝑖 = 0 |𝑖=𝑥,𝑦,𝑧 modes.

4.1.1 Introduction
When simulating fluid dynamics in the Earth’s rotating frame of reference, a new force due to the
Earth’s rotation intervenes, called the Coriolis force 𝐹 = −2𝑚Ω×𝑢 (responsible for the “Coriolis
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effect”). The corresponding parameter 𝑓 = 2Ω sin 𝜙 depends on the latitude 𝜙, and therefore
varies at the surface of the globe. A number of common approximations can be made to simplify
those equations. Due to the small aspect ratio of the considered geometry, it is standard to consider
the flow quasi-2D. The quasi-geostrophic (QG) approximation assumes a near-balance between
the Coriolis force and the pressure forces. On top of the 2D QG approximation, the “beta-plane”
model consists in working around a fixed 𝜙 = 𝜙0 and doing a first-order Taylor expansion, leading
to 𝑓 = 𝑓0 + 𝛽𝑦 where 𝑦 is the meridional distance from 𝜙0. This approximation greatly simplifies
the dynamics of the system, while retaining interesting features such as Rossby waves. For those
reasons, this model is widely used as a toy model in geophysical fluid dynamics [Ped13].

4.1.2 Issues with 2-layer flows on log-lattices
A common setting for the 2D QG beta-plane (simply referred to as “beta-plane” hereafter)
equations is a 2-layer flow with an “upper” and a “lower” layer. Our original goal was to
replicate on log-lattices some features of this model observed in DNS, such as the growth of a
linear baroclinic wave, the crossing of a baroclinic jet by a vortex, the variability of a forced
zonally uniform zonal jet, based on DNS code by Sebastien Fromang https://github.com/
sfromang/QGbeta. Unfortunately, the 2-layer nature of the equation poses a critical difficulty
on log-lattices.

4.1.2.1 2D quasi-geostrophic beta-plane equations

Let the subscript 1 represent the upper layer, and 2 represent the lower layer. The zonal velocity
𝑢 and the meridional velocity 𝑣 can then be expressed by their streamfunction

𝑢𝑖 (𝑥, 𝑦) = −𝜕𝑦𝜓𝑖,

𝑣𝑖 (𝑥, 𝑦) = 𝜕𝑥𝜓𝑖,
(4.1)

where 𝑥 (resp. 𝑦) represents the zonal (resp. meridional) position.
The potential vorticity 𝑞 is then defined as

𝑞𝑖 (𝑥, 𝑦) = 𝜕2
𝑥𝑥𝜓𝑖 + 𝜕2

𝑦𝑦𝜓𝑖 +
𝜓 𝑗 − 𝜓𝑖

𝜆𝑅

, (4.2)

where 𝑗 = 𝛿𝑖,2 + 2𝛿𝑖,1 and 𝜆𝑅 is the Rossby deformation radius. It follows that

𝜕𝑡𝑞𝑖 + 𝜕𝑥 (𝑢𝑖𝑞𝑖) + 𝜕𝑦 (𝑣𝑖𝑞𝑖) + 𝛽𝑣𝑖 = 0. (4.3)

4.1.2.2 Linear instabilities in the Eady model

A simple feature of this system is the growth of a linear baroclinic instability when 𝛽 = 0 (“Eady
model”1), whose growth rate can be exactly computed. This happens with the following initial
conditions:

𝑢1(𝑥, 𝑦) = 𝑈,

𝑢2(𝑥, 𝑦) = 0,
(4.4)

1The Eady model also includes some additional hypothesis, among which the Boussinesq approximation and a
constant static stability parameter
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Figure 4.1: Extract of figure 2 from [SRB21]: Hovmöller diagrams of the vorticity 𝜔 for different 𝛽 (the
color represents the value of the zonally averaged vorticity as a function of time and latitude). We observe
that the number of jets increases with 𝛽.

where we have decomposed the fields into a time-independent “background” flow · and a “per-
turbed” flow ·′:

𝑢𝑖 (𝑥, 𝑦, 𝑡) = 𝑢𝑖 (𝑥, 𝑦) + 𝑢′𝑖 (𝑥, 𝑦, 𝑡). (4.5)

Plugging this back into equation (4.2) requires computing 𝜓𝑖. This is trivial in direct space.
However, in Fourier space, 𝜓1(𝑥, 𝑦) = −𝑈𝑦 is not a periodic function, and in particular in very
sparse spaces such as log-lattices it cannot be represented at all !

Note that this incompatibility is only raised by the layer interaction term 𝜓𝑖−𝜓 𝑗

𝜆𝑅
, which is the

very reason why we cannot practically work directly with 𝑢, 𝑣 instead of 𝜓.

4.1.3 1-layer flows: the case of zonal jets
The easiest way to overcome the mathematical issue raised in the previous paragraph is to work
with a single layer of fluid. Despite its simplicity, this model still exhibits numerous physical
phenomena and bifurcations [LB15].

4.1.3.1 A simple model of zonal jets

In order to compare log-lattice and DNS results, we focus on a simple application of 2D QG
beta-plane 1-layer flows, in which we look at the formation of zonal jets, following [SRB21]
(figure 4.1). Mid-latitude zonal jets naturally form in the atmosphere of many planets. In their
paper, Simmonet et al. investigate spontaneous transitions between different numbers of jets
under random forcing.

The non-dimentional equation describing our 2D QG beta-plane flow is the following2

𝜕𝑡𝜔 + 𝑢 · ∇𝜔 + 𝛽𝑢𝑦 = −𝛼𝜔 − 𝜈Δ𝜔 +
√

2𝛼𝜂, (4.6)

2Note that since we use log-lattices, we do not need to use hyperviscosity as in the original paper
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(a) (b)

Figure 4.2: Energy spectra at different times for a 2D QG beta-plane 1-layer forced flow. (figure 4.2a) In
the transient state, (figure 4.2b) in the stationary state. The dashed red line indicates the scale 𝑘 𝑓 at which
the energy is injected, and the dotted black line in figure 4.2b indicates the approximates Rhines scale 𝑘𝑅.
We observe no noticeable peak around the Rhines scale.

where 𝜔 is the non-dimentional vorticity, 𝑢 is the non-dimentional non-divergent velocity, 𝛽 is
the non-dimentional gradient of the Coriolis parameter, 𝛼 is the ratio of the shear timescale over
the dissipative timescale, 𝜈 is the non-dimentional viscosity, and 𝜂 is a random noise, white in
time and space, confined around a given wavenumber 𝑘 𝑓 .

In this setting, it is believed that the number of zonal jets 𝑁 𝑗 scales as 𝑁 𝑗 ∼ 𝛽1/2. A slightly
more complex version of this equation shows great agreement with experimental results [LFB21].

4.1.3.2 Results

Our original goal was to observe the evolution of 𝑁 𝑗 with 𝛽 on log-lattices. However, we never
managed to observe zonal jets on log-lattices. In this section, we explain the results we obtained,
the steps we took to better understand what went wrong, and our conclusions.

Expectations Counting the number of zonal jets in DNS (Direct Numerical Simulation) can be
a straightforward task. A commonly employed approach involves looking at temporal averages of
the zonally averaged vorticity as a function of latitude. By examining the number of sign changes
in the magnitudes of order 1, one can determine the count of zonal jets. However, in Fourier
space, this simple technique cannot be applied. Instead, a possible indication of the formation
of zonal jets is observed as a bump in the energy spectrum at a wavenumber that corresponds
to the periodicity of the jets in space. Unfortunately, employing this method in DNS [Che+96;
DG02; SDG07] has yielded relatively weak results, as the peaks in the energy spectrum are not
very pronounced.

To get a hint of the rough wavenumber at which we expect to see the peak, one can look
around the Rhines scale 𝐿𝑅 and its associated wavenumber 𝑘𝑅 ≈

√︃
𝛽

2𝑈 [SDG07], where 𝑈 is the
RMS of 𝑢.

We expect to see a strong energy condensation around large scales in our simulations due to
the inverse cascade. In order to decouple the condensation scale and the Rhines scale, we chose
a low 𝑘min.

Energy spectra Figure 4.2 shows the energy spectra in the transient and stationary state.
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Figure 4.3: Figure 3a from [SDG07]: total energy spectra at different times of unsteady DNS simulations
of two-dimensional turbulent flows on the surface of a rotating sphere. Note the marked injection peak
around 𝑘 ≈ 80. The spectra are marked by the total energy (×105) accumulated in the flow field from the
beginning of simulations. Black dots show the location of the energy front. Dashed blue lines mark the
−5 and −5/3 slopes.

We observe no noticeable peaks around the Rhines scale in figure 4.2b. Although there are
other peaks present in the spectrum at larger scales, we believe those to be artifacts of the initial
conditions, and totally unrelated to hypothetical zonal jets.

Looking at the difference between the transient and the stationary state, and comparing the
stationary state to DNS results of figure 4.3, we observe a striking difference.

Although the injection scale 𝑘 𝑓 corresponds to a clear injection peak in the transient state
(figure 4.2a, 𝑘 ≈ 14), energy accumulation eventually smooths out this peak in the stationary
state, (figure 4.2b) where no injection peak is visible. In contrast, DNS results show a very sharp
injection peak that remains throughout the simulation (figure 4.3, around 𝑘 = 80). The absence
of a marked injection peak in log-lattice is not a feature specific to beta-plane flows, and has been
observed in our other simulations. It is, however, hard to quantify the extent of its impacts on
the dynamics of the system.

Rossby waves in the formation of zonal jets To explain the absence of zonal jets on log-
lattices, one must first understand how zonal jets are formed. The exact process is very complex,
and involves a combination of fast and slow, small-scale and large-scale processes, characterized
by nonlinear and nonlocal interactions. However, a very simplified but still informative picture
can be drawn.

When starting from a state of rest, the application of a random forcing at scales smaller than
the Rhines scale leads to the development of a 2D inverse energy cascade during an initial phase.
However, this cascade is halted at a scale comparable to the Rhines scale, where the influence of
Rossby waves becomes crucial and restricts energy transfer. It is widely acknowledged that this
barrier has an anisotropic nature and promotes the formation of zonal structures. As a result,
zonal jets emerge, exhibiting a typical width on the order of the Rhines scale.

Based on this simplified understanding, a hypothesis can be put forward, suggesting that the
absence of zonal jets on log-lattices comes from a defect related to Rossby waves.

Section 4.1.3.2 shows the 2D observed maxima of the temporal Fourier peaks against the
theoretical dispersion relation of Rossby waves. We observe a perfect agreement between the
two, without any adjustable parameter.

This indicates that a priori, the lack of zonal jets on log-lattices cannot be attributed to the
presence not to the temporal dynamics of Rossby waves.
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(a) (b)

Figure 4.4: Temporal Fourier peaks 𝜔(𝑘𝑥 , 𝑘𝑦) and theoretical dispersion relation of Rossby waves
(figure 4.4a) for 𝜔 > 0 and (figure 4.4b) for 𝜔 < 0. The green surface represents the theoretical dispersion
relation of Rossby waves. The blue and red points represent the peaks of the temporal Fourier transform
of 𝜔 for each point (𝑘𝑥 , 𝑘𝑦). In the 𝜔 > 0 figure only, the red points indicate extremal points where we
likely do not have enough sampling to compute the peaks accurately. All axes are in log scale from an
arbitrary reference, such that 𝑘𝑥 = 2 indicates 𝑘𝑥 = 𝑘0 · 102 and 𝑓 = 0.5 indicates 𝑓 = 𝑓0 · 100.5. We
observe a very good agreement, without adjustable parameters.

Energy transfers The next aspect to look at is energy transfers in the inverse energy cascade.
Indeed, the spectral energy transfer in DNS [SDG07] shows clear anisotropic peaks conducting
energy from high wavenumbers to low wavenumbers. However, we do not observe those
behaviors in our log-lattice simulations. We can think of several reasons why this could be the
case, but did not have enough time to extensively test any of them.

Firstly, we have no clear analysis of 2D-NSE on log-lattices. Therefore, it is possible that
the inverse cascade itself manifests in an unexpected way even without beta-plane equations.
Second, some key process of the formation of zonal jets involve nonlocal interactions, which
should be noticeably weakened on log-lattices due to the mathematical form of the convolution.
Third, the anisotropic transfers that lead to the formation of zonal jets occur on a restricted range
of scales, and involve precise local triadic interactions, which might be absent or not enough
represented on our sparse grids. Finally, as expanded below, the log-lattice structure hinders the
resonance of Rossby waves.

Rossby wave resonance on log-lattices By construction, log-lattices are intrinsically con-
strained, as only some values of 𝜆 allow triadic interactions 𝑘 = 𝑘1 + 𝑘2. However, the resonance
of two waves 𝑢1(𝑘1, 𝜔1), 𝑢2(𝑘2, 𝜔2) into 𝑢(𝑘, 𝜔) requires both the wavevector and the pulsation
to match:

𝑘 = 𝑘1 + 𝑘2, (4.7)
𝜔 = 𝜔1 + 𝜔2. (4.8)

It is therefore non-trivial that despite existing on the log-lattice, the Rossby waves can enter into
resonance with one another.

The dispersion relation for Rossby waves with zero background flow is

𝜔 = −𝛽 𝑘𝑥
𝑘2 . (4.9)
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Let’s consider a generic 2D log-lattice, in which 𝑘1 = 𝑘𝑥𝜆
𝑎 + 𝑘𝑦𝜆

𝑐, 𝑘2 = 𝜎𝑥𝑘𝑥𝜆
𝑏 + 𝜎𝑦𝑘𝑦𝜆

𝑑

where 𝑎, 𝑏, 𝑐, 𝑑 ∈ Z and 𝜎𝑥,𝑦 = ±1.
The resonance condition then writes

𝜔1 + 𝜔2
𝜔

= 1 =
𝑘2𝜆𝑎

𝜆2𝑎𝑘2
𝑥 + 𝜆2𝑐𝑘2

𝑦

+ 𝜎𝑥

𝑘2𝜆𝑏

𝜆2𝑏𝑘2
𝑥 + 𝜆2𝑑𝑘2

𝑦

. (4.10)

This can easily be solved for 𝑘2
𝑥 , 𝑘

2
𝑦, and upon removing trivial solutions, there remains a unique

possibility

𝑘2
𝑦 = 𝐻2𝑘2

𝑥 , (4.11)

𝐻2 =
𝜆𝑏+𝑎

𝜆𝑎+2𝑑 − 𝜆𝑏+2𝑐 , (4.12)

𝜎𝑥 = −1. (4.13)

Equation (4.11) only works on a log-lattice if log𝜆 𝐻 ∈ Z, which admits no solutions3.
Therefore, there can be no strict resonance of Rossby waves on log-lattices, which in itself

could explain the absence of zonal jets.

Other potential sources of divergence There is a final, more technical source of divergence
between our results and DNS outputs, which is due to the implementation of the 𝑘𝑖 = 0 modes.
This chapter is the only one in which we have used them, and as such we have a weak understanding
of the quantitative changes they bring to the log-lattice dynamics. Moreover, several questions,
such as the influence of the prefactors of the 𝑘𝑖 = 0 modes in the convolution, remain open.

4.2 Rotating homogeneous turbulence
As written in the previous section, a difficulty in evaluating the failures of the 2D QG beta-plane
model is the lack of perspective and hindsight on generic 2D log-lattice simulations, such as 2D
NSE. However, we have accumulated more experience in the 3D case [CM18; Mar19; CM21;
Mar22; BD23; Pik+23] where we recover many known properties of the original equations. It is
therefore natural to look at rotating turbulence through a new angle, in 3D.

4.2.1 Introduction
The inclusion of uniaxial rotation in the Navier-Stokes Equations (referred to as “rotating tur-
bulence”) introduces a wide range of fascinating characteristics that are absent in the original
equations. Among these, two prominent mechanisms emerge: the emergence of inertial waves,
and the transition to quasi-2D flow as the rotation rate intensifies, causing the gradual disap-
pearance of vertical velocity gradients. These two features interact in intriguing and complex
ways, leading to a diverse set of phenomena. Although the quasi-2D behavior is theoretically
well understood, the transition from the 3D and the quasi-2D flows, which involves nonlinear
processes, is more elusive.

Rotating turbulence is characterized by two control parameters in a system of length 𝐿,
rotation rate Ω, velocity𝑈 and kinematic viscosity 𝜈. The first one, as in non-rotating turbulence,
is the usual Reynolds number Re ≡ 𝑈𝑙

𝜈
. The second one, the Rossby number, quantifies the ratio

3For 𝜆 = 2 this is trivial. For 𝜆 ≠ 𝜎 ≈ 1.3 we have 𝑎−𝑏 > 2(𝑐−𝑑) from 𝐻2 > 0, which implies 𝑎 = 𝑐−𝑑, 𝑏 = −𝑑,
and the condition becomes log𝜆 (𝜆𝑑 − 𝜆𝑐−𝑑) ∈ 2Z, QED. For 𝜆 = 𝜎 a similar argument can be drawn.
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between linear and nonlinear time scales 𝑅𝑜 ≡ 𝑈
2Ω𝐿

. In the limit of low rotation (Ro ≫ 1), the
flow essentially follows the characteristics of homogeneous isotropic turbulence (HIT). When
Ro ≈ 1, cyclonic vortices manifest themselves on large scales, resulting in a quasi-2D flow.
Further increasing the rotation (Ro ≪ 1) introduces both cyclonic and anticyclonic vortices,
leading to a nearly complete two-dimensionalization of the flow fields. Moreover, rotation has
a major impact on viscous dissipation, with inertial waves giving rise to [Gal03; CRG04] an
anisotropic energy spectrum 𝐸 (𝑘) ∼ 𝑘

−7/2
⊥ 𝑘

−1/2
∥ in the fast rotating limit, where ⊥, ∥ are relative

to the rotation axis. As a result, the viscous dissipation is reduced by a factor equal to Rossby
𝜖𝑟𝑜𝑡 ∼ Ro 𝜖Ω=0.

Because the Coriolis force does not do any work and therefore does not alter the energy
budget, it is necessary to add an external forcing to counteract the viscous dissipation in order
to reach a statistical steady state. However, the details of this forcing, as well as the choice of
control parameters, greatly influence the resulting regime of the simulation or experiment. This
very large parameter space has led to difficulties in comparing results across publications.

Additionally, from a numerical perspective, thoroughly investigating a broad range of the
Ro,Re parameter space is difficult. The combination of low viscosity values and high rota-
tion rates necessitates simulations with high resolution, while reaching steady states demands
extended integration times.

Recent numerical work by Alexakis [Ale15] attempts to alleviate most of those hurdles and
investigate forced turbulence on a wide range of Ro,Re using many pseudo-spectral DNS. Each
simulation is forced with a normalized Taylor-Green (TG) vortex.

This paper is particularly well suited to serve as a reference to compare log-lattice results:
it covers a wide range of control parameters, requires many simulations, uses equations that
translate well to Fourier space, and investigates scaling laws of aggregated observables such as
dissipation.

While [Ale15] does not specifically examine the anisotropic distribution of velocity, a sub-
sequent study by Yokoyama and Takaoka [YT17] addresses this aspect. They observe hysteresis
in the anisotropy tensor 𝑏𝑧𝑧 ≡ 1/3 −

〈
𝑢2
𝑧

〉
/
〈
|𝑢 |2

〉
.

4.2.2 Equations and parameters
We restrict ourselves to rotating homogeneous turbulence, in periodic space without boundaries,
of size 𝐿.

The rotating NSE then write

𝜕𝑡𝑢 + 𝑢 · ∇𝑢 + 2Ω𝑒𝑧 × 𝑢 = −∇𝑃 + 𝜈Δ𝑢 + 𝐹0 𝑓 , (4.14)

where 𝑃 is the pressure, 𝑒𝑧 is the rotation axis, and 𝐹0 𝑓 is the forcing.
The forcing is taken as a TG vortex localized around a scale 𝑘 𝑓 :

𝑓𝑥 = 𝐴 sin(𝑘 𝑓 𝑥) cos(𝑘 𝑓 𝑦) sin(𝑘 𝑓 𝑧),
𝑓𝑦 = 𝐴 cos(𝑘 𝑓 𝑥) sin(𝑘 𝑓 𝑦) sin(𝑘 𝑓 𝑧),
𝑓𝑧 = 0,

(4.15)

where 𝐴 is chosen such that4
〈
𝑓 2〉1/2

= 1.

4In a DNS we can choose a single 𝑘 𝑓 and set 𝐴 = 1/2. On log-lattices however, we need to force on several
neighboring 𝑘 𝑓 because of the convolution’s width, which also changes 𝐴 after normalization.
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The fields are initialized from a random vorticity field, and the size of the grid is dynamically
adjusted by looking at the energy fraction in the outermost layers5.

Two control parameters Re𝐹 ,Ro𝐹 are derived based on the forcing amplitude as in [Ale15]:

Re𝐹 ≡
√
𝐹0𝐿

𝜈
,

Ro𝐹 ≡ 𝐹0

2Ω
√
𝐿
.

(4.16)

By non-dimensionalizing with respect to the RMS velocity 𝑈, we obtain another useful set
of computed (a posteriori) parameters:

Re𝑈 ≡ Re𝐹 𝑈,

Ro𝑈 ≡ Ro𝐹 𝑈.
(4.17)

Lack of a 𝑘𝑖 = 0 mode In appendix A, we acknowledge our limited understanding of the
impact of enabling the 𝑘𝑖 = 0 modes on log-lattices, which may be connected to the failures
observed in previous sections. To address this, we opt to simulate using a “classical” log-lattice
configuration that excludes the 𝑘𝑖 = 0 modes.

However, this choice is far from being transparent. Indeed, one of the major features of highly
rotating turbulence is a quasi-2D behavior, which entails a condensation towards 𝑘𝑧 = 0 modes.
By using a classical log-lattice, we by design block this condensation. Therefore, this section
should not be seen as an attempt to simulate true rotating homogeneous turbulence (RHT) on
log-lattices, but rather as a first step in this direction, in which we investigate which features
of RHT can be recovered in this setting, and which widely differ. In particular, there are two
different ways in which a flow can become “quasi-2D”. From a mathematical perspective, the
Taylor-Proudman theorem only states that the vertical gradient of velocity in a highly rotating
body of fluid tends to zero (nor observable on a classical log-lattice). This, in itself, does not have
any implication on the anisotropy of the flow, which is free to have arbitrarily large (constant)
vertical velocity. However, numerical experiments [YT17] indicate that the anisotropy tensor
𝑏𝑧𝑧 goes to 1/3 as rotation increases, indicating that not only 𝜕𝑧𝑢 but also 𝑢𝑧/𝑢𝑅𝑀𝑆 go to zero.
To our knowledge, no study has explored the evolution of anisotropy in a flow where transfers
towards 𝑘𝑖 = 0 modes are impeded, and there are no theoretical predictions available regarding
its progression.

4.2.3 Results
Figure 4.5 shows the two major regimes observed in our simulations: a laminar regime (fig-
ure 4.5a) and a turbulent, weakly rotating regime (figure 4.5b).

Figure 4.6 show the square of the RMS velocity 𝑈2 as a function of Re𝐹 ,Ro𝐹 for 64
simulations spanning a large range of Re𝐹 ,Ro𝐹 (figure 4.6a), and the corresponding DNS results
from [Ale15] (figure 4.6b). The log-lattice results display a 𝑅𝑜2

𝐹
slope up to Ro𝐹 ≈ 50, followed

by a plateau for Ro𝐹 ⪆ 50.
Figure 4.7 show the viscous dissipation 𝜖 as a function of Re𝐹 ,Ro𝐹 for those same simulations

(figure 4.7a), the corresponding DNS results from [Ale15] (figure 4.7b), and figure 4.7c shows
the same data as figure 4.7a but rescaled by Re𝐹 . In figure 4.7a, we observe a Re𝐹-dependent

5We increase the grid size whenever 𝑢𝑟𝑚𝑠,𝑜𝑢𝑡𝑒𝑟/𝑢𝑟𝑚𝑠 > 10−200.
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(a) (b)

Figure 4.5: Energy as a function of time for (figure 4.5a) Re𝐹 = 3.73 · 103,Ro𝐹 = 3.6 · 10−3 and
(figure 4.5b) Re𝐹 = 3.73 · 103,Ro𝐹 = 2.55. We observe two main regimes in our simulations, either
(figure 4.5a) laminar or (figure 4.5b) turbulent and weakly rotating.

(a) (b)

Figure 4.6: Square of the velocityRMS𝑈2 as a function of Ro𝐹 . (figure 4.6a) Our log-lattice results. Dot
sizes (from small to big) represent increasing Re𝐹 (from 101 to 107 , in log scale). Empty dots indicate
simulations that are have not reached a statistical steady state and should be disregarded. The black box
indicates the range of parameters obtained in [Ale15]. The orange line draws a Ro2

𝐹 power law, and the
gray line draws a Ro0

𝐹
power law. (figure 4.6b) Figure 14a from [Ale15] showing corresponding DNS

results. We recover the same scaling law for the laminar and weakly rotating regimes.
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(a) (b) (c)

Figure 4.7: Viscous dissipation 𝜖 as a function of Ro𝐹 . (figure 4.7a) Our log-lattice results. Dot sizes and
filling are the same as in figure 4.6. The black box indicates the range of parameters obtained in [Ale15].
The orange line draws a Ro3

𝐹
power law, and the gray line draws a Ro0

𝐹
power law. (figure 4.7b) Figure 14b

from [Ale15] showing corresponding DNS results. (figure 4.7c) Same as figure 4.7a but plotting 𝜖 · Re𝐹
instead of 𝜖 . The black dashed line draws a Ro2

𝐹 power law. Comparing figures 4.7a and 4.7b shows that,
as expected, we do not recover the scalings of the quasi-2D condensates and the intermittent bursts. Due
to numerical choices (see section 4.2.4), it is not relevant to compare the Ro3

𝐹
law in those two figures;

the corresponding law in our simulations is 𝜖 Re𝐹 ∼ Ro2
𝐹 , which we observe in figure 4.7b.

slope, and then a plateau for Ro𝐹 ⪆ 50. By rescaling in figure 4.7c, we observe a corresponding
well-defined Ro2

𝐹
slope, followed by a plateau.

Figure 4.8 shows the results of later simulations, which combine the 64-points parameter space
previously studied with an additional 64 simulations around the parameter space of [Ale15] but
focuses on the anisotropy tensor 𝑏𝑧𝑧 (figure 4.8a), and related results from [YT17] (figure 4.8b).
We observe that 𝑏𝑧𝑧 decreases from 𝑏𝑧𝑧 > 0 to 𝑏𝑧𝑧 < 0 as 𝑅𝑜𝐹 decreases.

Finally, figure 4.9 shows the viscous dissipation 𝜖 versus Re𝐹 ,Ro𝐹 for a new set of simulations
(figure 4.9a), as well as its rescaled counterpart 𝜖𝑈 as a function of Re𝑈 ,Ro𝑈 (figure 4.9b), and
the corresponding DNS results from [Ale15] (figure 4.9c). Although the non-rescaled log-lattice
results seem to exhibit a rich evolution with several bifurcations depending on both Re𝐹 and
Ro𝐹 , which we did not have time to study in detail, the rescaled results nicely collapse onto two
branches, one following 𝜖𝑈 ∼ Re−1

𝑈
, and the other seemingly reaching a plateau at high Re𝑈 .

4.2.4 Discussion
[Ale15] identifies four major behaviors6 in its simulations, represented by different symbols
in figures 4.6b, 4.7b and 4.9c: laminar flows (squares) for small Ro𝐹 along Ro𝐹 ∼ Re−1

𝐹
,

intermittent bursts (triangles) at high Re𝐹 and low Ro𝐹 , quasi-2D condensates (circles) at high
Re𝐹 and moderate Ro𝐹 , and weakly rotating flows (diamonds) at high Re𝐹 and high Ro𝐹 .

As shown in figure 4.5, we only observe the laminar and weakly rotating regimes on log-
lattices. This is expected, as the two other regimes [Ale15] exhibit properties of a 2D3C flow,
which is by construction not possible without the 𝑘𝑖 = 0 modes.

Overall, the lack of a perfect agreement between DNS and log-lattice results is not surprising,
as previous log-lattice experience suggests that scaling laws differ in their prefactors. What we
are rather looking for is a qualitative matching, and relevant scaling laws.

In figure 4.6, we recover the same scaling laws as in DNS for the intermittent and weakly
rotating regimes: a 𝑈2 ∼ Ro2

𝐹
slope followed by a saturation at high Ro𝐹 . The saturation at high

Ro𝐹 is fairly trivial, as the effects of the rotation become negligible. The 𝑈2 ∼ Ro2
𝐹

slope is a

6This is a simplified picture, see figure 1 in [Ale15].
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(a) (b)

Figure 4.8: Anisotropy tensor 𝑏𝑧𝑧 as a function of Re𝐹 ,Ro𝐹 . (figure 4.8a) Our log-lattice results. The
black box indicates the range of parameters used in [Ale15]. The gray points at low Ro𝐹 are likely
not converged. (figure 4.8b) Figure 1 from [YT17] showing 𝑏𝑧𝑧 versus Ω for Re𝐹 ≈ 200, in DNS.
Surprisingly, we observe the inverse behavior of DNS, namely that 𝑏𝑧𝑧 decreases with increased rotation
on log-lattices.

(a) (b) (c)

Figure 4.9: (figure 4.9a) Viscous dissipation 𝜖 as a function of Re𝐹 , color-coded by Ro𝐹 . The colorbar
is in log scale, i.e. “2” corresponds to Ro𝐹 = 102. Visible gaps indicate non-converged points that were
removed. (figure 4.9b) Rescaled viscous dissipation 𝜖𝑈 as a function of rescaled Reynolds number Re𝑈 ,
color-coded by Ro𝐹 as in the previous figure. The orange dashed line corresponds to Re−1

𝑈 . (figure 4.9c)
Figure 15a from [Ale15] showing 𝜖𝑈 as a function of Re𝑈 in DNS.
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signature of the laminar regime for non-negligible rotations. Indeed, balancing the forcing and
the Coriolis force in equation (4.14) yields 𝑢 ∼ 𝐹0

Ω
and thus 𝑈 ∼ Ro𝐹 . The branches in Ro−2

𝐹
,

which correspond to the “quasi-2D condensates” and “intermittent bursts”, are as expected not
found on log-lattices.

Likewise, in figure 4.7, we do not recover the Ro0
𝐹

branches of those two regimes. In the
laminar regime, it would not make sense to observe the 𝜖 ∼ Ro3

𝐹
observed in DNS in our log-

lattice results. Indeed, from𝑈 ∼ Re𝐹 we deduce 𝜖 ∼ 𝑈3/Re𝑈 ∼ Ro2
𝐹
/Re𝐹 . However, in [Ale15],

for technical numerical reasons, the laminar simulations are located along Re𝐹 ∼ Ro−1
𝐹

, giving
rise to an apparent 𝜖 ∼ Ro−3

𝐹
scaling. In our case, since our Re𝐹 ,Ro𝐹 are uniformly (in log space)

distributed, we have no reason to observe this specific scaling. In figure 4.7c we plot 𝜖 Re𝐹 as a
function of Ro𝐹 , in which we recover the Ro2

𝐹
law predicted by the laminar balance.

The DNS results from [YT17] (figure 4.8b) indicate that 𝑏𝑧𝑧 ≈ 0 at high Ro𝐹 and 𝑏𝑧𝑧 ≈ 1/3
at low Ro𝐹 , with 𝑏𝑧𝑧 never taking significant negative values during the transition. However, we
find the opposite in our log-lattice simulations: as Ro𝐹 decreases, 𝑏𝑧𝑧 decrease to approximately
−1/3. This corresponds to a flow whose energy is mainly contained in the vertical components.
This difference is most likely the result of the lack of 𝑘𝑖 = 0 modes, which hinders condensation.

Figure 4.9a displays a rich evolution with several bifurcations depending on both Re𝐹 and
Ro𝐹 , which we did not have time to study in detail. Rescaling 𝜖 and Re𝐹 through 𝜖𝑈 ≡ 𝜖𝐿/𝑈3

and Re𝑈 , we obtain in figure 4.9b a much simpler picture, which we can compare to DNS results
in figure 4.9c. We recover the same quantitative behavior, with a branch following Re−1

𝑈
and a

branch seemingly7 reaching a state in which dissipation decay is very slow at high Re𝑈 .
Overall, we therefore have a strong agreement between log-lattice scaling laws and DNS

results, except for the regimes that we do not observe due to the lack of 𝑘𝑖 = 0 modes.

7Further analysis is necessary to determine whether we eventually reach a true plateau, or whether log-lattices
exhibit a dissipation decaying very slowly (logarithmically) with Re𝑈 . This behavior is not specific to rotating
turbulence.
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Chapter 5

Other contributions

In the previous chapters, I discussed the research endeavors that primarily centered around my
own work. However, science is a collaborative pursuit that thrives on the collective efforts
and insights of researchers from diverse backgrounds. In this new chapter, I shift the focus to
scientific articles in which I have contributed as a collaborator, but not as the primary author.

The articles presented in this section are the result of collaborative work with fellow PhD
students who joined our log-lattice research group one or two years after I started my own research.
Although I did not take on the role of the primary author, I actively participated in shaping the
research direction, enhancing the numerical framework to suit their specific requirements, and
engaging in intellectual discussions within the respective research groups.

The first article, “Log-lattices for atmospheric flows”, combines chapter 3 and section 4.2 to
investigate flows under both rotation and temperature gradients.

The second article, titled “Tracking complex singularities of fluids on log-lattices”, builds
upon the work of [CM21]. It investigates signatures of singularities in 1D viscous and non-
viscous Burgers, 3D Euler and 3D Navier-Stokes equations, with hyper-, normal, and hypo-
viscosity, using the singularity strip method.

The third article, “Reversible Navier-Stokes equation on logarithmic lattices”, focuses on
phase transitions within the Reversible Navier-Stokes equation and attempts to clarify an old
conjecture by G. Galavotti.

Those articles are very good examples of numerically very intensive DNS that highly benefit
from the log-lattice approach.

As they are self-contained, further introduction is unnecessary, and I present them in their
original format1 below.

5.1 Log-lattices for atmospheric flows

1“Tracking complex singularities of fluids on log-lattices” [Pik+23] is about to be submitted to Nonlinearity,
while “Reversible Navier-Stokes equation on logarithmic lattices” [CBD23] has been accepted in PRE. “Log-lattices
for atmospheric flows” is in a fairly advanced draft state.
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Article

Log-lattices for atmospheric flows
Quentin Pikeroen 1, Amaury Barral 1, Guillaume Costa 1 and Bérengère Dubrulle1*

1 University Paris-Saclay, CEA, CNRS, SPEC, 91191, Gif-sur-Yvette, France
* Correspondence: berengere.dubrulle@cea.fr

Abstract: We discuss how projection of geophysical equations of motion onto an exponential grid 1

allows to achieve realistic values of parameters, at a moderate cost. This allows to perform many 2

simulations over a wide range of parameters, thereby leading to general scaling laws of transport 3

efficiency that can then be used to parametrize the turbulent transport in general climate models for 4

Earth or other planets. We illustrate this process using the equation describing the heat transport in a 5

dry atmosphere, to obtain the scaling laws for onset of convection as a function of rotation. We confirm 6

the theoretical scaling of the critical Rayleigh number Rac ∼ E−4/3 over a wide range of parameter. 7

We have also demonstrate the existence of two regimes of convection, one laminar extending near 8

the convection onset, and one turbulent, occurring as soon as the vertical Reynolds number reaches 9

a value of 104. We derive general scaling laws for these two regimes, both for transport of heat, 10

dissipation of kinetic energy, and value of the anisotropy and temperature fluctuations. 11

Keywords: keyword 1; keyword 2; keyword 3 (List three to ten pertinent keywords specific to the 12

article; yet reasonably common within the subject discipline.) 13

1. Forewords by B. Dubrulle 14

I met Jack in 1999, when I came to the MMM division of NCAR for a one-year 15

sabbatical. I had been attracted there by Jack’s reputation, from conversation with Annick 16

Pouquet, Uriel Frisch and Maurice Meneguzzi. Being a theoretician of turbulence, interested 17

in geophysical application, I then knew that I would find in Jack a very good interlocutor, 18

and benefit greatly of his physical insight, his broad knowledge about turbulence and 19

geophysical flows, and his open mind. I met Jack regularly during my stay, and we spoke 20

of all sorts of topics. It was after a discussion with him that I started to investigate Rayleigh 21

Bénard flows and heat transfer properties-I published two papers on that topic that year. 22

About Jack, I keep the memory of a true "gentleman of science", very kind to junior scientist 23

(as I still was at that time), with a great sense of humor and an immense knowledge that 24

he was keen to share. It is certainly thanks to Jack that I jumped into the modeling of 25

geophysical flows, and I will always be grateful to him for this. 26

2. Introduction 27

Ultra-high Reynolds number flows are ubiquitous in geosciences, due to small vis- 28

cosity, large dimensions or velocity. They are described by the Navier-Stokes Equations 29

(NSE). A natural control parameter of NSE is the Reynolds number Re = LU/ν built using 30

the viscosity ν and characteristic length L and velocity U. Classical turbulent flows are 31

thought to be described by NSE, with Re � 1. In 1941, Kolmogorov [K41] used such 32

equations to predict the shape of the energy spectrum E(k) derived from the Fourier trans- 33

form of the velocity correlation function for isotropic and homogeneous turbulence stirred 34

at a constant rate ε. He found that it should scale like E(k) ∼ ε2/3k−5/3 in the range 35

1/L � k � ν−3/4ε1/4 where k is the wave-number. This prediction was verified in 1962 36

on data from a turbulent flow in Seymour Narrows [1] and appears to be one of the most 37

robust laws of turbulence [2,3] being independent of the boundaries or on the stirring 38

process. At large wave-numbers, viscous processes take over, and the spectrum decays 39

Version September 22, 2023 submitted to Atmosphere https://www.mdpi.com/journal/atmosphere
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very fast, so that the energy contained in wave-numbers greater than kd = ν−3/4ε1/4 is 40

negligible. The overall behavior of E(k) can be used to infer the typical number of dynami- 41

cally active modes as N = (kdL)3. In geophysical flows such number can be quite large: 42

for example, the atmosphere has L = 103km (the size of the large typhoons or cyclones), 43

while k−1
d is smaller than 10 mm, resulting in kdL > 108. Direct numerical simulations of 44

the Navier-Stokes equations for such flows are thus impossible, as the total computational 45

cost of reading-in/writing-out and coupling all these modes exceeds by many orders of 46

magnitude the capability of the present most powerful computers. 47

If one wishes to simulate ultra-large Reynolds numbers like the atmosphere, one 48

has no other way out than to empirically decimate modes via a clever selection of grid 49

points or modes. Simulating viscous flows with just as many scales as needed to “get the 50

physics right” has been and still is the holy grail of all researchers in the computational 51

fluid community. If a well-established theory of turbulence were available, including a 52

deep understanding of all interactions between scales, the quest would probably be over 53

by now. In the absence of such complete theory, we need empirical yet clever strategies 54

for mode number reduction. Jack Herring worked many years on such issue, using e.g. 55

two-point closure (see e.g. [4]). 56

Nowadays, the most popular approach is to use a Large Eddy simulation strategy, 57

in which only the large scales are simulated: present climate models have a grid size of 58

10 km, allowing to handle the data volume in 2 CPU seconds per time step. However, 59

there is no free lunch: the price to pay for such a mode reduction is the addition of a 60

(sometime very large) damping, to avoid accumulation of energy at the smallest simulated 61

scale. In LES type climate simulations, the damping is the same as if the atmosphere were 62

made of peanut butter and the ocean of honey, so that no fluctuations can develop. This 63

is problematic to capture possible bifurcations, such as those observed in von Karman 64

flows [5]. 65

In this paper, we consider another class of model in which the modes reduction is 66

achieved by keeping modes following a geometric progression. Such approximation leaves 67

out a lot of possible interactions, as we shall see. However, it allows reaching very small 68

scales with a very small number of modes. In the atmosphere, for example, only 27 modes 69

are necessary to go from k0 = 1/L to 108/L by a geometrical progression of step 2 (38 70

with a step being the golden number). This means, that we can perform a “resolved” 3D 71

simulation of an atmospheric flow with less than 2× 104 modes (resp. less than 6× 104), 72

corresponding to the number of modes involved in a LES simulation at a resolution of 37km. 73

The corresponding models correspond to Fluid dynamics on Log-Lattices, the properties 74

of which were detailed in [6]. For example, they respect classical and basic properties of 75

Navier-Stokes equation, such as constancy of energy flux in the inertial range. Given the 76

potential of such models to describe ultra-high Reynolds number flow at a cheap prize, 77

we investigate here further properties of such models with respect to one important open 78

problems of atmospheric flows, which was dear to Jack, namely the influence of rotation 79

on convection. 80

3. Log-Lattices framework 81

Consider a velocity field that obeys Navier-Stokes equation (NSE), with viscosity ν
and forcing. Its Fourier transform, noted u(t, k) is a complex field that obeys the equation:

ik juj = 0,

∂tui + ik jui ∗ uj = −iki p− νk2ui + fi,

u(k, t) = u∗(−k, t).

(1)

where ∗ denotes the traditional convolution product, that involves for each k, coupling 82

of modes u(t, p) and u(t, q), such that ki = pi + qi for any ith component. The (constant) 83

density has been set to 1 for convenience, and thus disappears in front of the pressure term 84

in Eq. (1). 85
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In traditional spectral simulation of NSE, the wave-numbers are discretized on a linear 86

grid, and can be written as k = (m1, . . . m3) with mi ∈ Z3}. The convolution being ensured 87

by the condition m = n + q for any (m, n, q) ∈ Z3, it allows a lot of interactions between 88

Fourier modes. 89

In the log-lattice framework, we now impose that the wave-numbers follow a geomet- 90

ric progression as 91

k = (λm
1 , . . . λm

3 ), (2)

with mi ∈ Z3}, where λ is a parameter yet to be defined. It is imposed by the condition that 92

the convolution product appearing in Eq. (1) has some non-zero solution, which is only 93

possible if the equation: 94

λm = λp + λq, (3)

has some solutions for any m, p, q ∈ Z3. As discussed by [6], Eq. (3) can only be achieved 95

provided λ takes some specific values, among which λ = 2, λ ≡ φ = (1 +
√

5)/2 ≈ 1.618, 96

the golden mean and λ ≡ σ =≈ 1.325 , the plastic number1. Different values of λ 97

correspond to different number of coupling between modes: they become more and more 98

numerous and less and less local as λ → 1 [6]. In this sense, log-lattices can be seen 99

as a special case of the REWA model [7] or fractal decimated models [8,9], in which the 100

non-linear interactions of NSE is projectively decreased randomly or in a scale invariant 101

manner. 102

3.1. Energy spectra 103

It is possible to write the mean energy, that measures the scaling properties of the 104

mode at k = λn as: 105

Em(n) =< ||u(k[M])||2 >Sn , (4)

where the average is taken over wave numbers in the shell delimited by spheres with radii 106

λn−1 and λn. Specifically: 107

< ||u(k[M])||2 >Sn ,=
1

Nk
∑

λn−1≤||k[M] ||<λn

d

∑
α=1
|uα(k[M])|2, (5)

where d is the space dimension and Nk ∼ (log(k))d−1 is the number of wave-numbers in 108

the shell Sn. 109

From this quantity, one can define a pseudo-energy spectrum as: 110

E(k) =
λ−n

λ− 1
< ||u(k[M])||2 >Sn , (6)

Examples of such spectrum in d = 3 are shown in fig. 1 for λ = 2. One sees that it is self- 111

similar and display a very clear k−5/3 law. This spectrum has been obtained by simulating 112

eq. (1) with 203 modes, which can easily be done on a PC. Due to the exponential spacing, 113

it enables to reach resolutions and inertial range even larger than what is achieved by 114

oceanic measurements, a performance which is out-of-reach of DNS simulations of NSE. 115

This shows the interest of FDLL in geophysics. 116

3.2. Generalizations 117

The equations (1), (2) and (3) define Navier-Stokes equation on log-lattice. By exten- 118

sion, any equation of fluid dynamics on log-lattice can be defined by performing the two 119

steps [6]: (i) write the equation in the Fourier-space. (ii) replace any convolution product 120

by the convolution on log-lattice. This construction guarantees that the resulting equation 121

obeys all the conservation laws and symmetries of the original equations [6]. 122

1 σ is defined as the common real root to σ3 − σ− 1 = 0 and σ5 − σ4 − 1 = 0
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Figure 1. Renormalized energy spectrum E(k)/ε2/3η5/3 as a function of renormalized wavenumber
kη for a simulation of Navier-Stokes on a 203 log-lattice (black dotted line) and for a turbulent flow in
Seymour Narrows (Ocean) [1] (blue squares).

Due to the spectral nature of the construction, it may appear that the log-lattice 123

framework is only appropriate for homogeneous flows, i.e. far from boundaries. In a recent 124

work, [10] have however shown that the extension to flow with boundaries is possible, 125

via lattice symmetrization around the boundary and careful treatment of the resulting 126

discontinuity. Despite the high relevance of this situation for geophysical flow, we here 127

concentrate on the simpler case of homogenous flow. 128

4. Homogeneous rotating convection on log-lattices 129

4.1. Definitions 130

We now consider a rotating homogeneous fluid, with coefficient of thermal dilation
α, viscosity ν and diffusivity κ, subject to a temperature gradient ∆T over a length H and
vertical gravity g. Its dynamic is given by the HRB set of equations [11–14],

∂tu + u · ∇u +
1
ρ0

∇p + 2Ω× u =ν∇2u + αgθ~z− f u, (7)

∂tθ + u ·∇θ =κ∇2θ + uz
∆T
H
− f θ, (8)

∇ · u =0, (9)

where u is the velocity, θ the temperature deviation from the equilibrium profile T = 131

−∆Tz/H + θ, Ω the rotation vector, ρ0 is the (constant) reference density, p is the pressure 132

and f is a (Rayleigh) friction term, accounting for the friction at the boundary layer that 133

cannot be resolved by the present framework. In the sequel, we will assume that this 134

friction is concentrated only on large scale. As proved in [14], this term is mandatory 135

to allow the system to reach well-defined stationary states. This set of equation has to 136

be completed with boundary conditions. In this paper, we consider periodic boundary 137

conditions and focus on the case when rotation is aligned with the z-axis, Ω = Ωez. 138
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4.2. Non-dimensional numbers 139

We can build 5 independent non-dimensional numbers to characterize the system: 140

the Rayleigh number Ra = αgH3∆T/(νκ), that characterizes the forcing by the tem- 141

perature gradient. 142

the Prandtl number Pr = ν/κ, which is the ratio of the fluid viscosity to its thermal 143

diffusivity. 144

the Nusselt number Nu = JH/κ∆T. that characterizes the mean total heat flux is the 145

z direction is J = ∂z < uzθ > −κ∆T. 146

the Ekman number E = ν/(2ΩH2), measuring the importance of the rotation with 147

respect to diffusive process. 148

the Rossby number Ro =
√

αg∆T/(2Ω
√

H), measuring the importance of the rotation 149

with respect to buoyancy. In terms of other variables, we have Ro = E
√

Ra/(
√

Pr). 150

the friction coefficient F = f
√

H/
√

αg∆T, that provides the intensity of the Rayleigh 151

damping. 152

4.3. Equations on log-lattice 153

The regimes we want to explore are very turbulent regimes where the viscosity and 154

diffusivity do not play any role anymore. Therefore, it is natural to adimensionalize the 155

equation in terms of “inertial quantities”, i.e. using the vertical width H as a unit of length, 156

the free fall velocity U =
√

αg∆TH as a unit of velocity, and ∆T as a unit of temperature. 157

Then, to define the Rotating Homogeneous Rayleigh-Benard (RHRB) equations on
log-lattice, we take the Fourier transform of Eq. (7) that can be written in non-dimensional
form as (with the Einstein convention on summed repeated indices):

ik juj = 0, (10)

∂tui + ik jui ∗ uj = − iki p + θδi3 − Fuiδk≈kmin

−
√

Pr
Ra

k2ui −
1

Ro
εi3kuk

(11)

∂tθ + ik jθ ∗ uj = uz −
k2θ√
Ra Pr

− Fθδk≈kmin
, (12)

u(k, t) = u∗(−k, t), (13)

θ(k, t) = θ∗(−k, t). (14)

where the Dirac δk≈kmin filters out the small scales. 158

In these equations, the convolution product is taken over the log-lattice, see Eq. 3. 159

4.4. Convection onset 160

Convection is an instability, so it sets-up at a certain critical value of the parameter Rac.
To estimate the convection threshold, we set F = 0 (it only acts at k = kmin) and assume that
we are very near the threshold, so that deviations from the “equilibrium state” u = θ = 0
are small. This will allow us to neglect all non-linear terms in the equations 14. Then, we
look for solutions behaving like:

u(k, t) = (u(k), v(k), w(k))eσt,

p(k, t) = p(k)eσt,

θ(k, t) = θ(k)eσt,

(15)

73



Version September 22, 2023 submitted to Atmosphere 6 of 19

where σ is the growth rate of the instability: if σ has a negative real part, then all pertur-
bation decay, while the instability develop when the real part of σ > 0. Plugging this
decomposition into eq. (14) and neglecting non-linear terms, we get:

ikxu + ikyv + ikzw = 0,

σu− v
Ro

= −ikx p−
√

Pr
Ra

k2u,

σv +
u

Ro
= −iky p−

√
Pr
Ra

k2v,

σw = −ikz p−
√

Pr
Ra

k2w + θ,

σθ = w− 1√
Ra Pr

k2θ.

(16)

This represents a linear, homogeneous system of equations in the variable (u, v, w, p, θ). 161

If we want this system to have other solutions than (0, 0, 0, 0, 0), we must impose the 162

determinant of the system to be zero, which provides us with an expression linking σ, k 163

and the parameters of the system. Taking Pr = 1 for simplicity 2, we get: 164

σ2 + 2k2 Ra−1/2 σ +
k4

Ra
+ (1 + µ2)−1(

µ2

Ro2 − 1) = 0, (17)

where µ2 = k2
z/(k2

x + k2
y). This is a second order equation for σ, there are therefore two 165

solutions. Since the prefactor of σ is positive, it means that the sum of the two solution is 166

negative. To ensure that there exist at least one solution with a positive real part, we must 167

then ensure that the product of the solution, given by term independent of σ is negative. To 168

study the consequences of this condition, we consider two limiting cases. 169

4.4.1. Onset at zero rotation 170

We first consider the case with no rotation, Ro→ ∞. Then, the condition for instability 171

is: (1+µ2)k4

Ra − 1 < 0. Since (1 + µ2)k4 is minimum when k = (kmin, kmin, kmin), where kmin 172

is the minimal wavenumber, this is achieved whenever Ra > 3
2 k4

min. In our simulations, 173

kmin ∼ 2π
√

3, this gives Rac ∼ 2.1 104. 174

4.5. Onset at large rotation 175

In the limit of large rotation, Ro → 0 and the condition for instability now reads: 176

µ2

Ro2 − 1 < 0. The minimal value of µ2 is obtained when kz takes its smallest possible value 177

kz = 2π, while k2
x + k2

y takes its largest possible value, i.e. k2
x + k2

y ∼
√

Ra (above that, all is 178

dissipated by viscosity, which means that k4/Ra becomes non negligible in the equation 179

17.). Taking into account that Ro2 ∼ Ra E2 /2 we then get Ra3/2 > 16π2 E−2, giving a 180

critical Rayleigh number 181

Rac = 12 E−4/3 . (18)

This means that the larger the rotation (the smaller E), the more difficult it is to get convec- 182

tion: rotation stabilizes the flow. 183

4.6. Phenomenology when F = 0 184

In the case F = 0, there are a number of simple physical argument that provide scaling 185

laws relation between the non-dimensional numbers. 186

2 The general case leads to the same conclusions
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4.6.1. Non-rotating case 187

We first consider the non-rotating case, E = ∞. In this case, the phenomenology of 188

homogeneous convection distinguishes 3 regimes for the behavior of the heat flux, as a 189

function of the forcing [11,14]: 190

(I): when Ra ≤ Rac, we are in the laminar case. The fluid is at rest, < uzθ >= 0 and 191

the heat flux is only piloted by the Fourier law, so that J = κ∆T/H and Nu = 1. 192

(II) : above the critical threshold for instability, when Ra >∼ Rac, convection sets in, 193

< uzθ > starts becoming positive, and we have Nu ∼ (Ra−Rac)χ, where χ is an exponent 194

characterizing the (super)-critical transition to convection. 195

(III) : when Ra� Rac, the turbulence become fully developed, and we are entering 196

an “ultimate” regime (also called Spiegel regime), in which the heat flux does not depend 197

anymore on the viscosity or the diffusivity. In that case, we have Nu ∼ (Ra Pr)1/2 [15–17]. 198

This regime is very difficult to observe in DNS, because of the need for high resolutions, 199

to be able to cope with Ra � Rac. In the atmosphere Ra is typically of the order of 200

Ra ∼ 1018−22 so we expect the atmosphere to be in this ultimate regime. 201

Note that in the case where boundaries are present, there is the possibility of an inter- 202

mediate regime (the Malkus regime), where the heat flux is piloted by the boundary layers 203

and Nu ∼ Raγ, γ ∼ 1/3. This regime is frequently observed in laboratory experiments, but 204

it does not apply to homogeneous turbulence, because of the absence of boundaries. 205

4.6.2. Rotating case 206

Let us consider the case with rotation. As shown by many studies, the rotation has a 207

stabilizing influence on the flow, so that the threshold for instability now increases with 208

increasing rotation. Detailed studies show that Rac ∼ E−4/3 [18]. In addition, the rotation 209

modifies the structure of the convective cells, that become aligned with the vertical axis in 210

the case of strong rotation. This changes profoundly the heat transfer. To account for this 211

effect, [19] suggest performing the same phenomenology as in the non-rotating case, using 212

Ra E4/3 instead of Ra. The two turbulent regimes in the presence of rotation are now: 213

(R1) in the presence of boundaries, a rotating Malkus regime, where the heat flux is 214

independent of the height of the cell, and in which Nu ∼ Ra3 E4. This regime cannot be 215

present in HRB. 216

(R2) at Reynolds number larger than the threshold for onset of turbulence in the 217

boundary layers, or when boundaries do not limit the heat flux, like in HRB, a rotating 218

ultimate regime, also called Quasi-Geostrophic (QG) regime. This regime is then found by 219

stating that the relation between Nu and Ra E4/3 and Pr should be such that the energy 220

flux J is independent of κ and ν, resulting in [19]. 221

Nu ∼ Ra3/2 E2 Pr−1/2 . (19)

An interesting property of the geostrophic turbulent regime is that it can be expressed as a
universal law, independent of the rotation and the Prandtl number, using the “turbulent”
coordinates [19]:

Nu∗ =
Nu E

Pr
,

Ra∗ =
Ra E2

Pr
.

(20)

In that case, the relation (19) becomes: 222

Nu∗ ∼ Ra3/2
∗ . (21)

4.6.3. Log-lattice simulation details 223

To simulate these equations, we can perform log-lattice simulations. The minimum 224

wave vector of the grid is set to kmin = 2π to match a simulation on a box of size L̃ = 1. 225
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The grid size N is then set to reach the dissipative scale for both velocity and temperature. 226

We have verified that the size of the grid for 3D simulations (N ≥ 13) does not affect the 227

mean value of the observables Nu, Re, . . . , which are already converged for grids of size 228

N ≥ 6. However, the tail of the pdfs does depend on N. Another 3D simulation set at 229

N = 20 (not shown here, both vs Ra and Pr) displays the same scaling laws as the N = 13 230

case, confirming this analysis. 231

5. Results 232

5.1. Non-rotating case 233

As reference, we have performed simulations without rotation, for various Ra up 234

to 1025 at Pr = 1 and Pr = 0.7. Note that present direct numerical simulation for these 235

Prandtl number are limited to Ra ≈ 1015 [20]. The resulting heat transfer Nu as a function 236

of Rayleigh-number Ra is shown in fig. 2. As predicted by the linear theory, the convection 237

starts as Rac = 104, with a near onset regime Nu ∼ (Ra−Rac)3/2, then turning into an 238

asymptotic regime where Nu ∼
√
(Ra). This regime itself splits in two distinct regimes, 239

characterized by the same scaling law Nu ∼ Ra1/2, but with very different amplitude: (i) a 240

laminar regime, characterized by low fluctuations of the heat transfer. This laminar regime 241

is well-fitted by an empirical law 242

Nu = A(Ra−Rac)
3/2/(Ra / Rat +1), (22)

where A = 7, Rac = 104 is the critical number for convection onset and Rat = 5× 106
243

is the transition number from near-onset to asymptotic regime. This laminar regime is 244

followed by (ii) a turbulent regime, with much larger fluctuations. Typical time behavior of 245

the heat transfer in the two regimes is displayed in fig. 3 which showcases both regimes. 246

The laminar regime is stable up to Ra ≈ 1012, and unstable above: if we wait long enough, 247

the solution jumps from the laminar regime to the turbulent regime, as illustrated in fig. 3. 248

Looking at Nu as a function of time in this regime in fig. 3, we observe that the simulation 249

first follows a rather long evolution along the laminar regime, before suddenly transitioning 250

towards the turbulent regime as an instability develops, increasing its energy by several 251

orders of magnitude in the process. 252

5.2. Rotating case 253

5.2.1. Parameter space and critical Rayleigh number 254

We turn now to the case with rotation. Figure 4 shows the parameter space we have 255

explored, with E ranging from 10−9 to 10−1 and Ra up to 1014. In this range of parameters, 256

we observe typically three types of behaviors: (i) conductive behaviors, where both velocity 257

and temperature fluctuations are zero, and Nu = 1. These cases are reported as white 258

symbols on fig. 4; (ii) transitional regimes, where velocity and temperature fluctuations 259

are decaying very slowly but steadily, along with Nu over the time of simulation, so that 260

asymptotically, they are likely to converge to the conductive limit. The typical timescale to 261

reach this limit increases as E decays, and Ra increases. To save computational time, we 262

have stopped the simulation before reaching the limit for E ≥ 10−6, but have reported this 263

points as yellow points on fig. 4; (iii) convective regimes, where both velocity and RMS 264

velocities reach a stationary state; these points are reported as black points in fig. 4. This 265

representation allows seeing clearly the stabilizing influence of rotation on the convection 266

threshold. In the asymptotic regime of large rotation, E� 1, such influence is very-well 267

described by the prediction of the linear theory Eq. 18, which is reported as a red line on 268

the diagram. 269

5.2.2. Laminar vs turbulent regime 270

Figure 5 reports the heat transport Nu as a function of Rayleigh Ra and Ekman number 271

E. One sees that larger Ekman numbers correspond to smaller heat transport, at a given Ra. 272

However, the rotation does not suppress the existence of the laminar to turbulent transition, 273
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Figure 2. Non-dimensional heat transfer Nu vs Rayleigh number Ra in 3D for Pr = 0.7
(circle) and Pr = 1 (squares). The dotted line corresponds to the empirical law: Nu =

7(Ra−Rac)3/2/(Ra / Rat +1), with Rac = 104 and Rat = 5× 106 that connects the near-convection
onset regime to the asymptotic law Nu ∼ 20

√
Ra for large Ra, corresponding to asymptotic non-

rotating ultimate regime scaling. This regime is itself split into a laminar regime (open symbols) and
a turbulent regime (filled symbols).

Figure 3. Non-dimensional heat transfer Nu versus time t for Ra = 3.46 · 1011. The flow starts in a
laminar regime, then abruptly transitions to a turbulent regime.
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Figure 4. Parameter space covered by our log-lattices simulations at Pr = 0.7. The color of the
symbols codes the 3 possible regimes: conductive (white), transitional (yellow) and convective
(black). The red line is the theoretical asymptotic prediction given by Eq. (18). The magenta line is the
theoretical convection threshold in the absence of rotation Ra = 2.1× 104. The green line has equation
Ra = 0.03E−2 and delineates regions of the parameter space where turbulent is influenced by rotation
(below the line) or not influenced by rotation (above the line), as diagnosed by the behavior of the
kinetic energy dissipation, see fig. 7. The quasi-geostrophic regime is observed in between the red
and the green-line.
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Figure 5. Non-dimensional heat transfer Nu vs Rayleigh number Ra in 3D for Pr = 0.7 for simulations
of rotating HRB simulations on log-lattice. The symbols are colored according to their Ekman number
E. The stars traces the conductive regime. The open symbols trace the laminar regime, while the
filled symbol trace the turbulent regime. The rotation dominated regimes are tagged by a black
(resp. white) square for the laminar (resp. turbulent) regime. The black dashed line is Nu = 20

√
Ra,

corresponding to asymptotic non-rotating ultimate regime scaling. The red dotted line is Nu ∼ Ra3/2

corresponding to the QG regime, see fig. 12 for an exact representation of the corresponding scaling
law.

already present in the non-rotating case. Like in the non-rotating case, it is happening when 274

the vertical Reynolds number exceeds urms
z L/ν = Rec = 104, corresponding to Ra ∼ 1012, 275

with a bi-stability occurring around Ra = 1011, see fig. 6. 276

5.2.3. Influence of rotation and onset of rotation dominated regimes 277

The influence of rotation onto the turbulence is well documented (see e.g. [21,22]), and 278

is characterized by a decrease of the efficiency of the transport properties with respect to 279

the non-rotating case. For the case of the heat transport, this is already clear from fig. 2, as 280

already discussed. In the case of the turbulent kinetic energy dissipation ν < (∇u)2 >, it is 281

known that the decrease is proportional to the vertical Rossby number, Roz = uz/2HΩ [22]. 282

We indeed observe this effect in our simulations, as illustrated in fig. 7, where the non- 283

dimensional turbulent kinetic energy dissipation εu = ν < (∇u)2 > H/U3 is shown, as 284

a function of the vertical Rossby number. We see that in both the laminar and turbulent 285

regime, the energy dissipation indeed decreases for sufficiently low-vertical Rossby number. 286

In the turbulent regime, the decrease is indeed proportional to Roz, indicated by the black 287

dotted line. In the laminar regime, however, the decrease is milder, going like Ro1/2
z . In the 288

turbulent case, the rotation dominated regime starts below Roz ∼ 0.1, while in the laminar 289

case, it starts at Roz ∼ 0.03. We can use this change of regime to tag the simulations that 290

are or are not influenced by the rotation. In the sequel, we denote them by a white dot 291

inside the filled symbol, for the turbulent regime, and a black dot inside an open symbol, 292

for the laminar regime. Reporting this on figs. 5 and 6, we see that this regime corresponds 293

to lower heat transport, and smaller Reynolds number, in agreement with the general 294
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Figure 6. Vertical Reynolds number Re =
√
< u2

z >H/ν as a function of Rayleigh number Ra in 3D
for Pr = 0.7 for simulations of rotating HRB simulations on log-lattice. The symbols are colored
according to their Ekman number E. The open symbols trace the laminar regime, while the filled
symbol trace the turbulent regime. The rotation dominated regimes are tagged by a black (resp.
white) square for the laminar (resp. turbulent) regime.

findings that rotation impedes heat transport and vertical velocities. Note that the vertical 295

Rossby number scales like the global Rossby number, following Roz ∼ (Ra E)1/2 in both 296

the laminar and the turbulent regime, see fig. 8. 297

5.2.4. Temperature fluctuation and anisotropy 298

Another interesting indicator of the influence of rotation on convection is given by the 299

behavior of the temperature fluctuations, displayed in fig. 9. In the laminar case, they are 300

plateauing at a low value (less than 0.01) as Ra increases, showing that the dynamic is indeed 301

laminar. The rotation tends to even decrease the size of the fluctuations. In the laminar case, 302

the temperature fluctuations are increasing with Ra, showing that convection is more and 303

more vigorous, even so large rotation tends to somehow impede the development of too 304

large fluctuations. The rotation also influences the anisotropy of the turbulence, as seen in 305

fig. 10. Both in the laminar and turbulent case, the anisotropy is well above the value 1/2, 306

that would correspond to a situation where kinetic energy is split evenly between motions 307

along and perpendicular to the rotation axis. Due to the special nature of our projection, 308

we cannot get a meaningful representation of what this result means in the physical space. 309

It might however be interpreted as the influence of strong up (resp. down)-drafts that are 310

observed in direct numerical simulations to carry the heat from bottom to top (resp. the cold 311

fluid from top to bottom). The values we obtain here for the anisotropy are much larger to 312

what is usually observed in simulation or experiment of RB convection with boundaries, 313

but they are compatible with observation of radiative convection [23] or convection with 314

no-slip boundary conditions [19], that observe the formation of very extended plumes 315

extending towards the whole bulk of the flow. The decrease of anisotropy observed at 316

decreasing E can be connected with the stabilizing influence of rotation, that impedes 317

vertical fluctuations [21]. 318
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Figure 7. Non-dimensional energy dissipation εu = ν < (∇u)2 > H/U3 = Ra Nu Pr−2 /(Ra Pr)3/2

vs vertical Rossby number Roz in 3D for Pr = 0.7 for simulations of rotating HRB simulations on
log-lattice. The symbols are colored according to their Ekman number E. The open symbols trace the
laminar regime, while the filled symbol trace the turbulent regime. The rotation dominated regimes
are tagged by a black (resp. white) square for the laminar (resp. turbulent) regime. . The black (resp.
red) dotted line corresponds to εu ∼ Roz (resp. εu ∼ Ro1/2

z ), while the black (resp. red) dashed line
correspond to εu = 3.7 (resp. εu = 1).

81



Version September 22, 2023 submitted to Atmosphere 14 of 19

-5 0 5 10 15

-6

-4

-2

0

2

4

6

8

-9

-8

-7

-6

-5

-4

-3

-2

-1

Figure 8. Vertical Rossby number Roz vs "turbulent" Rayleigh number Ra E2 in 3D for Pr = 0.7 for
simulations of rotating HRB simulations on log-lattice. The symbols are colored according to their
Ekman number E. The open symbols trace the laminar regime, while the filled symbol trace the
turbulent regime. The rotation dominated regimes are tagged by a black (resp. white) square for
the laminar (resp. turbulent) regime. The black (resp. red) dashed line follows 0.4 Ra1/2 E (resp.
0.04 Ra1/2 E).
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Figure 9. Temperature fluctuations θrms =
√
< θ2 > vs Rayleigh number Ra in 3D for Pr = 0.7 for

simulations of rotating HRB simulations on log-lattice. The symbols are colored according to their
Ekman number E. The open symbols trace the laminar regime, while the filled symbol trace the
turbulent regime. The rotation dominated regimes are tagged by a black (resp. white) square for the
laminar (resp. turbulent) regime.

5.2.5. Laminar and turbulent scaling laws and QG regimes 319

The laminar regime starts from the convection onset. It is therefore likely that it 320

is influenced by near onset dynamics. A natural idea is then to try to see whether it 321

also follows the near-onset scaling law of the non-rotating case, Eq. (22), albeit with Rac 322

being replaced by its rotating value 30 E−4/3 and Rat being replaced by B E−4/3, where the 323

constant B needs to be determined. With this hypothesis, we then find that in the laminar 324

regime, Nu E2/3 should be a function of Ra E4/3, where the function satisfies Eq. (22), with 325

A = 7, Rac = 30 and Rat = 5× 102, see fig. 11. The turbulent regime corresponds to large 326

Reynolds number, in which viscosity and diffusivity should not play a role anymore. It 327

is then natural to represent it in the turbulent variable Nu E and Ra E2, which is done in 328

fig. 12. This representation indeed collapses the data on two different scaling laws: one 329

with exponent 3/2 for regimes influenced by rotation -this is the QG regime- and one with 330

exponent 1/2 corresponding to the turbulent regime not influenced by rotation. The precise 331

location in parameter space where the QG regime occurs can be computed using the fit of 332

the vertical Rossby number as a function of Ra E, see fig. 8. The condition Roz < 0.1 then 333

translates into the condition Ra ≤ 1/(16E2), which is the green line reported on fig. 4. The 334

QG regime is then to be found in-between the blue and the green line, which is the region 335

where we concentrate additional numerical simulations. 336

6. Discussion 337

We have shown that projection of geophysical equations of motion allow achieving 338

realistic values of parameters, at a moderate cost. This allows to perform many simulations 339

over a wide range of parameters, thereby leading to general scaling laws of transport 340

efficiency that can then be used to parametrize the turbulent transport in general climate 341

models for Earth or other planets. We have illustrated this process using the equation 342
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Figure 10. Velocity anisotropy
√
< u2

z >/
√
< u2 > vs Rayleigh number Ra in 3D for Pr = 0.7 for

simulations of rotating HRB simulations on log-lattice. The symbols are colored according to their
Ekman number E. The open symbols trace the laminar regime, while the filled symbol trace the
turbulent regime. The rotation dominated regimes are tagged by a black (resp. white) square for the
laminar (resp. turbulent) regime.

describing the heat transport in a dry atmosphere, to obtain the scaling laws for onset of 343

convection as a function of rotation, and confirmed the theoretical results Rac ∼ E−4/3 over 344

a wide range of parameters. We have also demonstrated the existence of two regimes of 345

convection, one laminar extending near the convection onset, and one turbulent, occurring 346

as soon as the vertical Reynolds number reaches a value of 104. We have derived general 347

scaling laws for these two regimes, both for transport of heat, dissipation of kinetic energy, 348

and value of the anisotropy and temperature fluctuations. The set-up we have used here 349

is far from reproducing the full complexity of the atmosphere, as it models the friction at 350

the bottom with a simple law, and ignores the moist dynamics. We plan to include these 351

features in a future work. Finally, it is not clear how the projection of the dynamics on 352

log-lattice influences the results we are deriving. It is quite remarkable that the procedure 353

is able to capture the scaling laws, since we recover here some results already obtained 354

in experiments [23] numerical simulations [19] of convection without boundary layers, 355

albeit with different prefactors. This of course has some important implications when 356

translating these scaling laws as parametrization in models. However, if we believe that the 357

scaling laws themselves are robust, it only takes comparison with a few direct numerical 358

simulation to recalibrate the constants and turn our laws into useful parametrization. 359
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Figure 11. Universal law governing the heat transfer in the laminar regime Nu E2/3 as a function of
Ra E4/3 in 3D for Pr = 0.7 for simulations of rotating HRB simulations on log-lattice. The symbols
are colored according to their Ekman number E. The open symbols tagged by a black square trace the
rotation dominated regime, while the open symbols trace the rotation independent regime. The red
dotted line follows Eq. 22, whith A = 7, Rac = 30 and Rat = 5× 102.
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Abstract. In 1981, Frisch and Morf [1] postulated the existence of complex

singularities in solutions of Navier-Stokes equations. Present progress on this

conjecture is hindered by the computational burden involved in simulations of the Euler

equation or the Navier-Stokes equations at high Reynolds numbers. We investigate this

conjecture in the case of fluid dynamics on log-lattices, where the computational burden

is logarithmic concerning ordinary fluid simulations. We analyze properties of potential

complex singularities in both 1D and 3D for lattices of different spacings. Dominant

complex singularities are tracked using the singularity strip method to obtain new

scalings regarding the approach to the real axis and the influence of normal, hypo and

hyper dissipation.
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1. Introduction

Viscous fluids dissipate mechanical energy into heat due to the first law of

thermodynamics. Observations and numerical simulations reveal that this dissipation

is not homogeneous within the flow but occurs via spatially or temporally intermittent

bursts, a phenomenon classically referred to as intermittency. Moreover, after spatial

and temporal averaging, the mean energy dissipation becomes independent of the

viscosity in the inviscid limit, according to the empirical “zeroth law of turbulence”.

Onsager explained these observations in 1949 [2], conjecturing that strong enough

singularities in the fluid could provide a non-viscous dissipation. While this conjecture

has been proven mathematically [3], its application to fluids obeying the Navier-Stokes

equation is still debated, as the existence and development of singularities for these

equations is still an unsolved problem belonging to the 6th Millennium problems of the

Clay foundation. This debate concerns the existence of singularities in real space. In

1981, Frisch and Morf [1] paved the way to another possibility based on the existence

of complex singularities. They proved on a simple one-dimensional non-linear Langevin

system that the dynamics of such complex singularities could be directly connected to

intermittency, as dissipation bursts occur whenever a complex singularity approaches

the real axis.

Since then, this scenario was also confirmed in the 1-dimensional Burgers equation

– a 1D surrogate of the Navier-Stokes equation. In this system, real singularities can be

observed in the inviscid limit and manifest as shocks, i.e. finite jump in the velocity. The

shocks dissipate energy in agreement with the Onsager conjecture [4]. They correspond

to the collapse of two complex conjugate singularities onto the real axis [5, 6]. When a

viscosity ν is added, the singularities are repelled from the real axis, the closest one being

constantly at a distance greater than O(ν3/4) to the real axis. The complex singularities

follow Calogero-Moser (CM) dynamics [7], with long-range interactions (decaying in

1/r). There is an exact mapping between such CM dynamics and the solution of the

PDE, which can be described exactly via pole decomposition coupled to the integration

of the CM equations [6].

The generalization of these findings to 3D is challenging. The computational burden

to resolve the Navier-Stokes equation for a fluid with typical velocity U and length

L scales like Re3, where Re ∼ UL/ν is the Reynolds number. Most of the earlier

attempts to track complex singularities in the inviscid limit were performed using the

“singularity strip” method, which is based on the observation that the behaviour of the

energy spectrum at large wavenumber k is dominated by the position of the singularity

closest to the real axis, and decays like exp(−2δk), where δ is the imaginary part of

corresponding singularity. Fitting the large wavenumber tail of the energy spectrum as

a function of time, one then gets an estimate of δ(t), and a real singularity occurs when

δ(t) = 0. So far, studies have only identified exponentially decaying regimes for δ(t) [8]

which suggests the absence of finite time blow-up. However, we cannot guarantee that

this extrapolation is correct due to numerical limitations.
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New perspectives on these issues were opened recently by Campolina and

Mailybaev [9], exploring fluid dynamics on log-lattices. This technique may be viewed

as a generalization of the so-called “shell models” [10, 11] and solves the equations of

motion in Fourier space using a sparse basis of Fourier modes. The modes are evenly

spaced points in log space (“logarithmic lattices”). They interact via nonlinear equations

derived from the fluid equations by substituting for the convolution product a new

operator, which can be seen as a convolution on the log-lattice, while preserving most

symmetries of the original equation. The model is valid for all dimensions. In 1D,

it was shown to encompass [9] the Sabra shell model of turbulence [10, 11]. In 3D,

its solutions have the same behaviour as the Navier-Stokes equation in Fourier space

(energy spectrum, energy transfers), over an unprecedented wide range of scales [9].

In the inviscid limit, a self-similar finite time blow-up is observed [12] in connection

with a stochastic attractor that propagates at a finite velocity in Fourier space like a

wave. However, Campolina and Mailybaev did not attempt to track possible complex

singularities in connection with such a blow-up.

This is the purpose of the present paper. In the first part, we validate the close

connection between fluid dynamics on log-lattice and real fluid dynamics by focusing on

the 1D Burgers equation, where dominant complex singularities are tracked using the

singularity strip method. In the second part, we extend this technique to 3D to obtain

new scalings regarding the approach to the real axis and the influence of normal, hypo

and hyper dissipation.

2. Log-lattice framework

2.1. Definitions and notations

We consider a d-dimensional complex vector fields u(t, k) = (u1, . . . , ud) depending on

time t ∈ R and on the wave vector k = (k1, . . . , kd). We shall interpret u as the

Fourier components of the velocity field. For this reason, we require them to satisfy

the Hermitian symmetry u(t,−k) = u(t, k) with respect to k, which is the Fourier

property of a real-valued function in physical space. The wave vector k is embedded

on a logarithmic lattice (in short, log-lattice), which means that its components follow

geometric progressions k = k0(±λm1 , . . . ,±λmd) for integers m1, . . . ,md, where k0 is a

fixed‡ positive reference scale, and λ is the spacing factor of the lattice. The dependence

of u on t and k is henceforth implicit and specified only when ambiguity prevails.

Fluid dynamics on log-lattice [9] is the set of vector fields u which are solutions of

‡ By default k0 = 2π
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the equations

ikβuβ = 0, (1a)

∂tuα + ikβ(uα ∗ uβ) = −ikαp− νk2γuα + fα, (1b)

(uα ∗ uβ)(k) =
∑

q+r=k

uα(q)uβ(r), (1c)

where p is a complex field that enforces incompressibility (1a), f is a vectorial forcing,

and ν is a non-negative viscosity parameter. When ν > 0, the exponent γ measures

the dissipation degree: we say the flow has viscous (or usual) dissipation if γ = 1, it

has hypo-dissipation if γ < 1, and it has hyper-dissipation if γ > 1. Similarly to the

dynamics of continuous media, system (1) is the incompressible Navier-Stokes equations

on the log-lattice. When ν = 0, the flow is inviscid, and the system reduces to the

incompressible Euler equations on the log-lattice.

The convolution in eq. (1c) defines triadic interactions on the logarithmic lattice,

which are nontrivial only if the equation λm = ±λq±λr has integer solutions m, q, r. As

shown in [9], this is possible only for particular values of λ, which determine the number

of possible interactions on the grid. In this paper, we consider the following three values:

λ = 2, with 3 interactions per direction; λ = φ ≈ 1.618 (the golden number), with 6

interactions per direction; and λ = σ ≈ 1.325 (the plastic number), with 12 interactions

per direction. As λ decreases from 2 to σ, the density of nodes and the number of

interactions on the grid increase. We recall, however, that the interactions for these

log-lattices are all local.

2.2. Global quantities

By analogy with the Fourier representation of classical fluid flows, we define the global

quantities representing the total energy E and the helicity H as

E =
∑

k

|u|2, (2)

H =
∑

k

uαωα, (3)

where ωα = εαβγikβuγ is the vorticity field; here, εαβγ is the Levi-Civita symbol. Regular

solutions of the unforced three-dimensional inviscid system (1) conserve these quantities

in time [9].

Moreover, we define the energy spectrum E(k) as

E(k) = k−1〈|u|2〉Sk , (4)

where the average 〈 · 〉Sk is taken over the wave vectors in the shell Sk delimited by

spheres of radii k and λk. More explicitly,

〈|u|2〉Sk =
1

Nk(λk − k)

∑

k≤|q|<λk
|u(q)|2, (5)

where Nk ∼ (log(k))d−1 is the number of wave vectors in the shell Sk.
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2.3. Regularity

The solutions of fluid dynamics equations on log-lattices (1) share some regularity

properties with the original models. The main mathematical results are for the inviscid

Euler equations [9]. For this system, the local-in-time existence of strong solutions

and a Beale-Kato-Majda blow-up criterion was proved. One can extend regularity

properties to this setting by exploiting the conservation of enstrophy in two dimensions.

In the three-dimensional case, high-resolution numerical log-lattice simulations disclosed

a finite-time blow-up, characterized by a chaotic wave travelling with constant average

speed along a renormalized set of variables [12]. Such blow-up scenarios were confirmed

for λ = φ and λ = σ, presenting the same asymptotic blow-up scalings [9]. In the

viscous case, numerical simulations suggest the expected global regularity of solutions.

2.4. Singularity strip method for log-lattices

If a potential singularity is due to an imaginary pole crossing the real axis, one can track

its distance to the real axis via the singularity strip method [13]. This method considers

the analytic continuation u(z) of the physical-space velocity field and is based on the

following property: if

u(z) ∼ 1/(z − z∗)ξ, for z → z∗ (6)

in a neighborhood of the complex singularity z∗ = a+ iδ, then its Fourier transform ûk
satisfies

ûk ∼ k−d−ξeikae−δk, as k →∞. (7)

Asymptotics of (7) provide the corresponding exponential decay E(k) ∼ e−2δk for the

energy spectrum over a typical length 2δ. Therefore, one can measure the distance of

the dominant pole to the real axis by monitoring the decay of the energy spectrum in

Fourier space. A finite-time singularity at instant tb would occur if δ → 0 as t→ tb.

Extension of this notion to the log-lattice framework is natural. It relies on the

observation that if a flow (1) on log-lattice satisfies u(k) ∼ k−d−ξe−δk, then its inverse

Fourier transform obeys a relation similar to (6). Therefore, we can generalize the

singularity strip method to log-lattices, where 2δ is estimated from the slope of logE(k)

as a function of k.

2.5. Numerical methods

Equations (1) are integrated using an implicit 4th order Runge-Kutta with adaptive

time-step. Starting from initial conditions u(t), we first solve the inviscid equation

∂tuα = Pαβ (−ikσuσ ∗ uβ + fα) , (8)

where Pαβ = δαβ − kαkβ
k2

accounts for the pressure term under hypothesis (1a), which

yields u(t+dt)ν=0. The viscosity is then taken into account using a technique analogous

to viscous splitting leading to u(t+dt) = u(t+dt)ν=0e
−νrk2γdt where dt is the time-step.
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3. 1D Burgers equation

Before going to the full three-dimensional Navier-Stokes system on log-lattices, we take

an intermediate step by studying the more straightforward one-dimensional Burgers

equation. For this system, several exact mathematical results are available. This allows

us to probe the singularity strip method on log-lattices, by comparing our numerical

computations with the exact expected results.

The one-dimensional Burgers equation on log-lattices is obtained from system (1)

as follows. We consider a compressible pressureless flow on a one-dimensional log-lattice.

Mathematically, this translates into setting p = 0 and dropping eq. (1a) from the system,

which reduces to

∂tu+ (u ∗ ∂xu) = −νk2γu+ f, (9a)

(u ∗ ∂xu)(k) =
∑

q+r=k

u(q)(ir)u(r). (9b)

It was shown [14] that, if we change the coefficient in front of the convolution (9b),

the Burgers equation on log-lattices is equivalent to well-known shell models of

turbulence for specific choices of parameters. Particularly, when λ = 2, system (9)

(but with a factor 2 added in the convolution and restricting to imaginary solutions) is

the dyadic model [15], while for λ = φ (but with a factor −φ2 added in the convolution)

it is the Sabra model [16] in a three-dimensional parameter regime (second invariant

is not sign defined). Because of this relation with shell models of turbulence, the

Burgers equation on the one-dimensional log-lattice inherits several results concerning

the regularity of its solutions, which we briefly review now.

For the dyadic model (λ = 2) with ν > 0, there are theorems [17] for global

existence of weak solutions (satisfying the energy inequality at almost all time), local

regularity when γ > 1/3, global regularity when γ ≥ 1/2, and finite-time blow-up

when γ < 1/3. We remark that there are no rigorous statements about the parameter

range 1/3 ≤ γ < 1/2. This means that the mathematical techniques used in the

currently available theorems are not sharp enough to separate the finite-time blow-up

and the global regularity regimes. The finite-time singularity in the inviscid case was

also rigorously established [18].

For the viscous Sabra model (λ = φ) with usual dissipation γ = 1, there are

proofs [19] of global regularity of strong solutions. Like the Navier-Stokes equations,

the dynamics of the Sabra model are developed within finite degrees of freedom. Indeed,

the finite dimensionality of the global attractor and the existence of a finite-dimensional

inertial manifold were proved [19]. On the other hand, the inviscid model has [20]

global-in-time existence of weak solutions with finite energy, local-in-time regularity,

and a Beale-Kato-Majda-like blow-up criterion. Despite the absence of rigorous proofs,

it is well-known [21] that Sabra (in the three-dimensional parameter regime) develops

a self-similar finite-time blow-up, characterized as a travelling wave in a renormalized

system of variables (cf. [22]). Following the dynamical systems approach, such blow-up
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Table 1: Exponents of the inviscid scalings of various quantities measured for the 1D Burgers and

the 3D Euler equations within different values of the grid spacing λ. The scalings are with respect to

τ = 1−t/tb where tb is the blow-up time. By definition, the energy spectrum scales like E(k) ∼ k−1−2α,

the maximum value of the vorticity scales like ωmax ∼ τ−β , and the width of the singularity strip scales

like δ ∼ τµ. The (0) superscript indicates a simulation performed with no forcing. The ∗ superscript

indicates a simulation made with a different initial condition.

λ tb α β µ

1D Burgers

2 0.3898 0.37 1 1.55

φ 0.5193 0.37 1 1.55

σ 0.4300 0.37 1 1.55

2(0) 0.2687 0.37 1 1.55

φ(0) 0.1460 0.37 1 1.55

3D Euler

2 0.8481 0.67 1 2.81

φ 5.8005 0.67 1 2.83

φ∗ 0.1542 0.67 1 2.82

σ∗ 0.8430 0.67 1 2.67

can be seen as a fixed-point attractor of the associated Poincar map [23].

To our knowledge, there are no systematic results about the development of

singularities in Sabra with general dissipation exponents γ, nor in the case of our third

lattice parameter λ = σ.

3.1. Inviscid flow

We start with the inviscid (ν = 0) Burgers equation without and with forcing. When

forcing, initial conditions are equal to zero, and the forcing is equal to the imaginary

unit j on the first mode (k0) for λ = 2, the first two modes when λ = φ, and the

first three modes when λ = σ. Without forcing, initial conditions are taken such that

total energy E = 1, and first mode, two first modes or three first modes have positive

uniform real value, depending on λ = 2, φ or σ, while initial smaller scales are nil. We

observe finite-time blow-up for all three values of λ in the two cases. Numerical results

are plotted in fig. 1, and scaling exponents are summarized in table 1.

The maximum of the gradient ωmax(t) = maxk |ku(k)| blows up in finite time,

following the self-similar law

tbωmax ∼
1

τ
, τ = 1− t

tb
, (10)

displayed in fig. 1b. While the blow-up time depends on the forcing and the value of

λ, the self-similar law (10) is independent of these variables. This law also holds for

the original continuous model. Indeed, differentiating the classical Burgers equation

∂tu + u∂xu = 0 with respect to x, we get that the space derivative ω = −∂xu obeys

dω/dt = ω2, whose solution is exactly eq. (10) with tb = 1/ω(t = 0).
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Figure 1: Inviscid blow-up for Burgers (1D) case for λ = 2 (yellow), λ = φ (red) and λ = σ (blue).

Continuous lines and filled symbols indicate simulations with constant forcing, while dotted lines and

open symbols indicate simulations without forcing. (1a) Spectra at different renormalized relative time

τ = 1 − t/tb. The black dotted line has a slope of −1.733. (1b) Maximum value of the derivative

1/tbωmax as a function of τ ; The black dotted line is the theoretical value from eq. (10). (1c) Width

of the analyticity strip δ as a function of τ . The black dotted line has a slope given in table 1. (1d)

Renormalized width kmaxδ as a function of τ . The black dotted line has a slope of 0.

We also check that the energy spectrum’s blow-up evolution is universal in that

it only depends on τ . This is illustrated in fig. 1a, where spectra at different λ but

similar τ are shown to overlap. As τ approaches zero, the energy spectrum gradually

widens towards larger values of k, developing a power-law spectrum E(k) ∼ k−2α−1 with

1 + 2α = 1.733, which corresponds to the scaling law u(k) ∼ k−α with α = 0.367. Such

asymptotics agrees with exact results from the renormalization group formalism applied

to the Sabra shell model [24].
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Finally, we compute the analyticity strip width δ as the solutions approach the

blow-up. This is done using the formula (7) with ξ + 1 = α. The result is shown in

fig. 1c. We verify that δ decays to zero in finite time, following a power law δ ∼ τµ,

with µ = 1.546. This decay is also universal and does not depend on the value of λ or

the forcing. The width of the analyticity strip is closely associated with kmax, defined

as the wavenumber at which ω attains its maximum value. Indeed, we see in fig. 1d

that kmaxδ is approximately constant in time. This is in agreement with the asymptotic

eq. (7), which implies that ωmax is achieved at kmax ∼ 1/δ.

The self-similar law (10) is valid for all λ in average only. The figures show that the

blow-up looks truly self-similar only for the values λ = 2 and λ = φ. The oscillations in

the case λ = σ suggest a different blow-up scenario (e.g. quasi-periodic or chaotic). A

detailed analysis of this is left for future work.

3.2. Viscous dissipation

We now introduce viscous dissipation (γ = 1) and study how the dynamical behaviour

depends upon the viscosity parameter ν. This section restricts the analysis to the value

λ = 2. We introduce a force at the large scale, whose amplitude is adapted dynamically

so that the total power input is constant in time (fk=k0 = Puk=k0/|u|2k=k0 , where P = 1).

In this setup, the dissipative term is strong enough to prevent the blow-up, and

the solution reaches stationarity. The energy spectrum develops a power law in the

intermediate scales (called the inertial range) followed by an exponential decay at larger

k – see fig. 2a. In the inertial range, E(k) ∝ k−5/3, corresponding to u(k) ∝ k−1/3.

The maximum value of the derivative ωmax is inversely proportional to the viscosity,

following the power law ωmax ∼ ν−β with β = 0.5, as shown in fig. 2b. This scaling law

can be derived when assuming a viscosity-independent anomalous dissipation ε > 0 in

the inviscid limit ν → 0. Under this assumption, we have the balance νω2 ∼ ε, which

provides ω ∼ (ε/ν)1/2.

Accordingly, the width of the analyticity strip does not decline to zero. However,

it stabilizes at a finite value that depends on the viscosity – see fig. 2c – and follows the

power-law scaling δ ∼ νµ, with exponent µ = 0.7067. This is smaller than expected from

a dimensional argument “a la Kolmogorov”, in which ε = νu2/δ2, with u ∼ δ1/3, would

instead predict δ ∼ ν3/4. The strip width follows approximately the scaling δ ∼ 1/kmax,

as shown in fig. 2d.

3.3. Hyper- and hypo-dissipation

We have also studied the influence of the dissipation degree γ on the various scaling

laws. This is summarized in fig. 2 and table 3. The slope of the spectrum is insensitive

to γ and displays a E(k) ∼ k−5/3 law with no intermittency correction. On the other

hand, the slopes of both the inverse of the maximum gradient and the singularity width

increase in absolute value as γ is decreased towards 1/3. We defer the discussion about

those results to section 5.1.
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Figure 2: Influence of the type of viscosity on the stationary dynamics for viscous Burgers (1D) case

for λ = 2 and γ = 0.5 (hypo-viscous case, blue circle), γ = 1 (viscous case, red squares) and γ = 2

(hyperviscous case, yellow diamond). (2a) Energy spectrum. The black dotted line has a slope −5/3;

(2b) Maximum value of the derivative 1/ωmax as a function of viscosity. The black dotted line has a

slope given in table 3 for each case. (2c) Width of the analyticity strip δ as a function of viscosity.

The black dotted line has a slope given in table 3 for each case. (2d) Renormalized width kmaxδ as a

function of viscosity.

3.4. Critical dissipation degree γ = 1/3

According to [25], there are finite time blow-up solutions for the Burgers equation (9)

with λ = 2 whenever γ < 1/3. However, the theorems say nothing about the limit case

γ = 1/3. For this reason, we call this value as being the critical dissipation degree. It is

natural to ask whether the blow-up might or might not occur in this specific situation.

Here we consider not only λ = 2, but also extend this question to the other two lattice

parameters.
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Table 2: Exponents in the critical case γ = 1/3 of various quantities measured for different values

of the grid spacing λ and dimension d. The scalings are with respect to τ = 1 − t/tb in the inviscid

case, where tb is the blow-up time. By definition, the energy spectrum scales like E(k) ∼ k−1−2α, the

maximum value of the vorticity scales like ωmax ∼ τ−β and the width of the analyticity strip scales like

δ ∼ τµ.

1D Burgers 3D Navier-Stokes

λ tb α β µ tb α β µ

2 0.8497 0.37 1 1.55 7.8194 2/3 1 2.81

φ 0.5193 0.37 1 1.55 6.51 2/3 1 2.83

σ 0.4546 0.37 1 1.84 − − − −

We initialized the flow with the same data as in the inviscid case and set the small

viscosity ν = 10−7. We observed a finite time blow-up for all three λ, illustrated in

fig. 3. The blow-up time is larger than in the inviscid case, but the scaling laws are the

same – both the prefactor and the scaling exponents – than in the inviscid case. The

exponents are summarized in table 2. The only exception is for the scaling law of δ in

the case λ = σ. This might be due to the oscillations in the energy spectrum, making

it harder to fit the exponential decreasing, see fig. 3a.

In this small-viscosity run, viscosity only delays the blow-up but does not influence

the development of the singularity. However, we observed a surprising behaviour change

when increasing the viscosity to larger values. There is a transition between a small-

viscosity regime, where finite time blow-up occurs, and a large-viscosity regime, where

the blow-up disappears, and the width of the analyticity strip saturates to a finite value

– see insert of fig. 3c. The amplitude of δ seems to follow a critical mean-field behaviour,

as it varies like δ ∼ √ν − νc, with νc ∼ 0.4. A similar transition is observed at a lower

value of γ, with νc increasing as γ decreases.

This transition is in contradiction with mathematical results by [25]. We have no

explanation of the discrepancy so far, but we suspect it might be linked to a numerical

non-linear viscosity—see [26] for a discussion. But, for ν > νc, the energy spectrum

becomes clearly stationary and has a small inertial range, while for a blowup the inertial

range becomes very large. And changing the value of the tolerance in the Runge-Kutta

step doesn’t change much the size of the inertial range.

4. 3D Euler and Navier-Stokes equations

4.1. Inviscid flow – Euler equations

We now turn to the full three-dimensional incompressible fluid dynamics on log-lattices,

starting with the inviscid Euler equations. We consider here the three lattice spacings λ.

In order to test universality, we ran the case λ = φ with two different initial conditions.
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Figure 3: Blow-up for critical Burgers (1D) case, with γ = 1/3, ν = 10−7 and for λ = 2 (yellow),

λ = φ (red) and λ = σ (blue). (3a) Spectra at different renormalized relative time τ = 1 − t/tb; (3b)

Maximum value of the derivative 1/tbωmax as a function of τ (3c) Width of the analyticity strip δ as

a function of τ . The insert shows the behaviour of the width of the analyticity strip at t = ∞ when

the viscosity is increased, for γ = 1/3 (blue data points) (resp. γ = 1/4 (red data points)). The dotted

lines are fits of the type
√
ν − νc, with νc = 0.4 (resp. ν = 0.9. (3d) Renormalized width kmaxδ as a

function of τ . The dotted line has the same scaling and prefactor as in the inviscid blow-up case, see

fig. 1
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Default initial conditions are complex random initial conditions at large scale |k| < 3k0,

and the other (denoted by a star ∗) are complex random initial conditions along

two dimensions (the third one being determined by incompressibility), at large scale

|k| < k0λ
3. We observed a finite-time blow-up in all set-ups, in agreement with previous

results documented in [12, 9]. Here, we observe that while the blow-up time depends

on the initial conditions, the dynamics become universal when plotted in relevant non-

dimensional variables, as illustrated in fig. 4. The spectra for distinct values of λ overlap

when plotted at the same non-dimensional times τ = 1 − t/tb, as evidenced in fig. 4a.

The slope of the power law in the inertial range is steeper than in 1D Burgers, with a

value very close to −7/3. This is the slope expected for a helicity cascade. Our exponent

is slightly smaller than those found in some direct numerical simulations of the Euler

equations, where a E(k) ∼ k−3 spectrum is observed [27, 28], but comparable to the

value 2.33 obtained in more recent simulations [29].

The maximum value of the vorticity ωmax diverges during the blow-up, as shown

in fig. 4b. Its asymptotic scaling is the same as for the maximum gradient in the 1D

Burgers equation, given by eq. (10). However, contrarily to the 1D case, the constant

in front of the power law varies as a function of λ and is not simply given by 1/tb. This

is not too surprising given the 3D nature of the flow, which prevents the application of

the simple blow-up argument used for 1D Burgers. However, as λ is decreased towards

1, the non-dimensional curve becomes closer to the exact asymptotic law.

Approaching the blow-up, the width of the analyticity strip decays to zero with

a power law δ ∼ τµ with exponent µ ≈ 2.81 – see fig. 4c. This is larger than in 1D

Burgers. This decay is also universal, as it does not depend on λ. However, it does not

show a simple dependence with kmax as seen in fig. 4d. This might be related to the

chaotic nature of the blow-up attractor [9].

4.2. Viscous dissipation – Navier-Stokes equations

We now add the viscous term with γ = 1 and a constant-power forcing. The solutions

achieve a statistically stationary state in this framework, whose average scalings are

depicted in fig. 5. Like in 1D Burgers, the energy spectra display a power law until

the solution reaches the viscous scale, with an inertial range widening as ν decreases.

The slope of the energy spectrum is slightly steeper than Kolmogorov’s −5/3, with

an intermittency correction of around 0.13. Accordingly, the scaling exponent α for

u(k) ∼ k−α is α = 0.40, slightly larger than 1/3. The maximum vorticity ωmax increases

with decreasing viscosity, following the power law ωmax ∼ ν−β with an exponent β = 0.39

lower than Kolmogorov’s 1/2.

The width of the analyticity strip decays with viscosity as δ ∼ νµ with an exponent

µ = 0.65 – see fig. 5c. Such decay is less intense than in the 1D Burgers equation.

Nevertheless, the dependence of δ on 1/kmax in the Navier-Stokes case is sharper, as one

verifies by comparing fig. 5d with fig. 2d.
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Figure 4: Inviscid blow-up for the Euler (3D) case for λ = 2 (yellow), λ = φ (red) and λ = σ (blue).

(4a) Spectra at different renormalized relative time τ = 1 − t/tb, from 0.2542 to 0.00001 from left to

right. Spectra with continuous lines and dotted lines correspond to different initial conditions. The

black dotted line has a slope of −7/3; (4b) Maximum value of derivative 1/tbωmax as a function of τ .

The black dotted line has a slope of 1; (4c) Width of analyticity strip δ as a function of τ ; The black

dotted line has a slope 2.805. (4d) Renormalized width kmaxδ as a function of τ . In panels 4b, 4c

and 4d, we used different symbols for different initial conditions: circles, and squares.

4.3. Hyperviscous dissipation

We now consider what happens in the hyperviscous case γ > 1. We keep the constant-

power forcing to reach stationary states.

For γ = 2, we still observe a power-law energy spectrum followed by an exponential

cut-off at the viscous scales – see fig. 5a. The inertial range keeps widening as ν is

decreased. The slope of the energy spectrum is very close to −5/3, being slightly

steeper with an intermittency correction around 0.07, corresponding to α = 0.37. The
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Figure 5: Stationary dynamics for the Navier-Stokes (3D, viscous) case for λ = 2 and γ = 0.5

(hypo-viscous case, blue circle), γ = 1 (viscous case, red squares) and γ = 2 (hyperviscous case, yellow

diamond ). (5a) Energy spectrum. The black dotted line has a slope −5/3; (5b) Maximum value of

the derivative 1/ωmax as a function of viscosity. The black dotted line has a slope given in table 3 for

each case. (5c) Width of the analyticity strip δ as a function of viscosity. The black dotted line has a

slope given in table 3 for each case. (5d) Renormalized width kmaxδ as a function of viscosity.

maximum vorticity ωmax increases with decreasing viscosity like a power law, with an

exponent β = 0.19 lower than usual (γ = 1) viscous case. The width of the analyticity

strip decays with viscosity with an exponent µ = 0.26. Like in the viscous case, δ

appears to scale simply like 1/kmax, as seen on fig. 5d.

The above results suggest that the intermittency corrections in the energy spectra

are smaller for hyperdissipation. We checked that for the stronger degree γ = 8, they

vanish completely, and the dependence of ωmax and δ on ν become very weak. This is

explained by the very sharp viscous cut-off due to the hyperviscous dissipation. Indeed,
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Table 3: Exponents of the scaling of various quantities as a function of γ measured for the grid spacing

λ = 2 and various dimensions d. The scalings are with respect to the viscosity ν. By definition, the

energy spectrum scales like E(k) ∼−1−2α, the maximum value of the vorticity scales like ωmax ∼ ν−β

and the width of the analyticity strip scales like δ ∼ νµ.

1D Burgers 3D Navier-Stokes

γ α β µ α β µ

1/3 − − − 2/3 1 2.81

1/2 1/3 1.80 2.78 0.5 0.78 1.53

1 1/3 0.50 0.71 0.40 0.39 0.65

2 1/3 0.20 0.28 0.37 0.19 0.27

8 1/3 0.045 0.06 1/3 0.05 0.06

the equivalent of the Kolmogorov scale kd in the hyperviscous case relates to ν as

kd ∼ ν1/(1/3+2γ−1), becoming independent of viscosity in the limit γ → ∞. For γ = 2

the dependence is δ ∼ ν0.3, close to what is observed for the scaling of the singularity

strip width.

4.4. Hypoviscous dissipation

The case with hypoviscous dissipation 1/3 < γ < 1 is qualitatively similar to the viscous

and hypervisous cases – see fig. 5. Exponents, however, are steeper. The corresponding

values are reported in table 3. The energy spectrum develops a slope corresponding to

the exponent α = 0.5, which is steeper than Kolmogorov’s 1/3 but milder than Euler’s

2/3 on log-lattices. The singularity width appears again to be controlled by the wave

number corresponding to the maximum vorticity – see fig. 5d. On the other hand, the

maximum vorticity grows much more rapidly than in the viscous case, with an exponent

twice as big, as shown in fig. 5b. This may indicate that we are approaching a critical

dissipation degree, below which finite-time blow-up will occur.

4.5. Critical dissipation degree γ = 1/3

The asymptotics of Kolmogorov’s length scale for a flow with a general dissipation degree

predicts the breakdown of the viscous cut-off when γ approaches the critical value 1/3.

Indeed, the dissipation scale kd is obtained from the dimensional balance between the

convective and the dissipative terms kdu
2
d ∼ νk2γd ud. On the other hand, Kolmogorov’s

theory states that ud ∼ ε1/3k
−1/3
d for the energy dissipation rate ε, which has a finite

positive value in the inviscid limit. Together, these expressions yield

kd ∼ ε
1

6(γ−1/3)ν
1

2(1/3−γ) , (11)

which, for sufficiently small ν, provides kd → +∞ when γ ↘ 1/3. For this reason,

we call γ = 1/3 the critical dissipation exponent, the value at which we expect that
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the dissipative term is no longer strong enough to prevent a finite-time singularity. We

recall this was the case for the 1D Burgers equation on log-lattices.

Motivated by the above arguments, we investigate the critical hypo-diffusive degree

in the full 3D system on log-lattices. The following analysis considers the spacings λ = 2

and λ = φ. The initial data is the same as we used in the inviscid simulations, and

viscosity is the same ν = 10−7.

In this regime, we observed a finite time blow-up for the two values of λ, illustrated

in fig. 6. Like in 1D Burgers, the blow-up time is larger than in the inviscid case, but

the scaling laws are the same. This is summarized in table 2. The slope of the energy

spectrum remains −7/3. For λ = 2 and ν = 10−3, the dynamics becomes stationary,

meaning there is as in 1D a phase transition, but between ν = 10−3 and 10−7, smaller

than νc ∼ 0.4 in 1D.

5. Discussion

5.1. Scaling laws

The variations of the scaling exponents with respect to the diffusion exponent γ are

shown in fig. 7.

Predictions for the scaling laws are possible using simple dimensional arguments if

we impose δ ∼ 1/kmax, as empirically observed. Indeed, from u ∼ k−α and ω ∼ ku, we

get ωmax ∼ k1−αmax ∼ δα−1 so that we get:

β = µ(1− α). (12)

This fixes a link between the 3 exponents that is well satisfied – see fig. 7b. On the other

hand, one can connect µ and α by extending the argument fixing the Kolmogorov scale

to hypo and hyper-viscous cases: we impose that kmax is fixed by the condition that the

viscous term balances the non-linear term νk2γmaxumax ∼ kmaxu
2
max. Using umax ∼ k−αmax

and δ ∼ 1/kmax we then get:

µ = − 1

1− α− 2γ
, (13)

This prediction is tested in fig. 7c and is well satisfied. The only free parameter is (wlog)

α(γ). In the limit γ → 1/3, we can fix it by imposing that β = 1, which is the scaling

corresponding to conservation of the circulation of u [30]. From eqs. (12) and (13), we

then get α = 1 − γ = 2/3, corresponding to a helicity cascade. In all other cases, we

have no clear theories to predict the variations of α with γ. Notably, when γ →∞, we

recover α = 1/3 corresponding to an energy cascade.

5.2. Interest of the critical case

The critical case γ = 1/3 is more than purely academic: renormalization group (RNG)

analysis of NSE in Fourier space [31] indeed shows that the fixed point of the equations

corresponds to a Navier-Stokes equation with turbulent viscosity scaling like Aε1/3k−4/3,

105



10
0

10
5

10
10

10
15

10
-30

10
-20

10
-10

10
0

(a)

10
-6

10
-4

10
-2

10
0

10
-8

10
-6

10
-4

10
-2

10
0

(b)

10
-6

10
-4

10
-2

10
0

10
-20

10
-10

10
0

(c)

10
-6

10
-4

10
-2

10
0

10
-1

10
0

10
1

(d)

Figure 6: Blow-up for the critical 3D case, with γ = 1/3 and for λ = 2 (yellow) and λ = φ (red).

(6a) Spectra at different renormalized relative time τ = 1− t/tb; (6b) Maximum value of the derivative

1/tbωmax as a function of τ (6c) Width of the analyticity strip δ as a function of τ (6d) Renormalized

width kmaxδ as a function of τ . The dotted line has the same scaling and prefactor as in the inviscid

blow-up case, see fig. 4

where A is a constant with value A = 0.1447 in 1D and A = 0.4926 in 3D. This

corresponds exactly to eq. (1), with γ = 1/3 and ν = Aε1/3. This model is sometimes

used as a subgrid model of turbulence [32]. In that respect, it is interesting that the

transition viscosity found in sections 3.4 and 4.5 (at constant injected power, i.e. ε = 1)

is very close to the RNG value in 1D. On the one hand, this guarantees that the size

of the inertial range is very wide, in agreement with the RNG picture of scale invariant

solutions. On the other hand, this means that the solution is very close to a blow-up,

which could have implications regarding the stability of this subgrid scheme.
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Figure 7: Variation of the scaling exponents as a function of the diffusive exponent γ in d = 1 (blue

circle) and d = 3 (red square) for λ = 2. (7a) For the scaling of the velocity u ∼ k−α. (7b) for the

scaling of the maximum vorticity ωmax ∼ ν−β . The data points are reported from tables 2 and 3, while

the dotted lines correspond to eq. (12); (7c) for the scaling of the singularity strip δ ∼ νµ. The data

points are reported from tables 2 and 3. while the dotted lines correspond to eq. (13).

5.3. Implications for real Euler or Navier-Stokes?

The log-lattices simulations we performed cannot be seen as an exact model of the

Euler or Navier-Stokes equations because they remove by construction many non-linear

interactions of the original equations, especially the non-local one. Nevertheless, because

they obey the same conservation laws and symmetries, they may capture some scaling

laws of the original equation more accurately. Comparing our findings with the few

results on the topic is engaging.

Regarding the Euler equation, recent high-resolution numerical simulation in the

axisymmetric case by [33] explored the scaling of the singularity strip in the blowing

situation proposed by [34]. They found an exponent µ = 2.6± 0.5, which is compatible

with the value 2.8±0.1 that we get from table 3. Unfortunately, they do not provide an

estimate of the slope of the energy spectrum. Previous older results in the Taylor-Green

vortex [35, 28] found a steeper spectrum corresponding α ∼ 1. However, spectra with

exponent matching our −7/3 value were observed in the early stage of recent simulations

at larger resolution [29]. Therefore, the main characteristics of blow-up in log-lattices

simulations agree with the most recent results observed in the traditional DNS of the

Euler equation.

Regarding the Navier-Stokes equations, we can look at two recent results. The

first one by [36] finds a value of µ = 0.89 using recent DNS of NSE. This value

is larger than the value we found in the present paper, corresponding to µ = 0.65.

Another recent result [37] estimates β in 3D NSE. They indeed found that the tail of

the PDF of enstrophy scales like ν0.77τ−2K , where τK ∼ ν1/2 is the Kolmogorov time.

Identifying such extreme events of enstrophy with ω2
max, we thus get βDNS ∼ 0.88,

which is also much larger than the value we observe in log-lattices βLL ∼ 0.39. Note,

however, that both DNS values are compatible with eqs. (12) and (13), provided we

choose α ∼ 0, hinting at the presence of multifractality. Log-lattices simulations
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are generally much less intermittent than DNS [9], with one dominating exponent

(monofractal behaviour). Some time ago, [32] linked the intermittency properties of

NSE with non-local interactions, which is coherent with this observation. Therefore, the

difference between log-lattices simulations and DNS could be explained by differences

in the amount of non-local interactions.
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[31] Victor Yakhot and Steven A. Orszag. Renormalization-group analysis of turbulence. Phys. Rev.

Lett., 57:1722–1724, Oct 1986.

[32] J-P. Laval, B. Dubrulle, and S. Nazarenko. Nonlocality and intermittency in three-dimensional

turbulence. Physics of Fluids, 13(7):1995–2012, 2001.

[33] Sai Swetha Venkata Kolluru, Puneet Sharma, and Rahul Pandit. Insights from a pseudospectral

study of a potentially singular solution of the three-dimensional axisymmetric incompressible

euler equation. Phys. Rev. E, 105:065107, Jun 2022.

[34] Guo Luo and Thomas Y. Hou. Potentially singular solutions of the 3d axisymmetric euler

equations. Proceedings of the National Academy of Sciences, 111(36):12968–12973, 2014.

[35] M. E. Brachet, M. Meneguzzi, A. Vincent, H. Politano, and P. L. Sulem. Numerical evidence of

smooth self?similar dynamics and possibility of subsequent collapse for three?dimensional ideal

flows. Physics of Fluids A: Fluid Dynamics, 4(12):2845–2854, 1992.
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The three-dimensional Reversible Navier-Stokes (RNS) equations are a modification of the dissi-
pative Navier-Stokes (NS) equations, first introduced by [1], in which the energy or the enstrophy
is kept constant by adjusting the viscosity over time. Spectral direct numerical simulations of this
model were performed by [2, 3]. Here we consider a new non-linear, forced reversible system ob-
tained by projecting RNS equations on a log-lattice rather than on a linearly spaced grid in Fourier
space, as is done in regular spectral numerical simulations. We perform numerical simulations of the
system at extremely large resolutions, allowing us to explore regimes of parameters that were out of
reach of the direct numerical simulations of [2]. Using the non-dimensionalized forcing as a control
parameter, and the square root of enstrophy as the order parameter, we confirm the existence of a
second order phase transition well described by a mean field Landau theory. The log-lattice projec-
tion allows us to probe the impact of the resolution, highlighting an imperfect transition at small
resolutions with exponents differing from the mean field predictions. Our findings are in qualitative
agreement with predictions of a 1D non-linear diffusive model, the reversible Leith model of turbu-
lence. We then compare the statistics of the solutions of RNS and NS, in order to shed light on
an adaptation of the Gallavotti conjecture, in which there is equivalence of statistics between the
reversible and irreversible models, [1] to the case where our reversible model conserves either the
enstrophy or the energy. We deduce the conditions in which the two are equivalent. Our results
support the validity of the conjecture and represent an instance of non-equilibrium system where
ensemble equivalence holds for mean quantities.

I. INTRODUCTION

In an out-of-equilibrium statistical mechanical system, achieving a steady state requires a balance between energy
injection and energy dissipation. One practical example of such a system can be found in fluid mechanics, where
a large-scale forcing drives a system out of equilibrium. To attain a steady state, the system must dissipate the
excess energy. Such dissipation is ensured by a viscous term acting as a thermostat. This system is described by the
Navier-Stokes equations (NSE), which are symmetric by time-reversal in the unforced, inviscid limit. However, the
presence of the viscous term breaks this time-reversal symmetry of the NS equations . When the fluid is laminar,
the resulting energy dissipation is proportional to the viscosity. In the turbulent case, however, the mean dissipation
becomes independent of the viscosity [4–6] suggesting a spontaneous breaking of the time-reversal symmetry. To
study the validity of such an assumption, one can restore time-reversal symmetry by transforming the usual viscosity,
ν, into a quantity that is odd under time reversal. There are numerous ways to do this, but the most interesting
procedure is due to [1], who suggested to monitor ν so as to conserve at each time a macroscopic observable G (such
as enstrophy [1, 3] or kinetic energy [2]). Besides spontaneous symmetry breaking, this procedure allows investigation
of two important questions in the context of out-of-equilibrium physics: (i) to which extent can a reversible model
describe the irreversible dynamics? (ii) does the statistics of the reversible model depend on the conserved quantity?
This last question refers to the possible generalization of the notion of ”ensemble equivalence in equilibrium statistical
mechanics”, by which a system is equivalently described by micro-canonical (conserved energy) or canonical (conserved
temperature) ensembles. In the present case, the system is out-of-equilibrium due to the combination of forcing and
dissipation. The equivalence between both constant energy and constant enstrophy ensemble would then be a natural
generalization of ensemble equivalence in equilibrium statistical mechanics.

These questions have been previously investigated via direct numerical simulations (DNS) of the reversible Navier-
Stokes equations (RNS). In the case of conserved energy, Shukla et al. [2] showed that the system undergoes a second
order phase transition, with exponents in quantitative agreement with that of a Landau mean field theory [2]. Before
the transition, the system is in a warm phase, where the system is thermalized at small scale. After the transition,
the system is in a over-damped regime, where the system dynamics are dominated by viscous dissipation. At the
transition, the system is in a turbulent state, that bears many similarities with the stationary state of the irreversible

∗Electronic address: berengere.dubrulle@cea.fr

111



equation, hinting at a possible positive answer to question (i) in this case. Question (ii), which has never been
investigated before, will be addressed in this article.

However, there are a number of issues that could not be addressed due to the massive numerical costs of directly
simulating the NSE. For example, it was not possible to study the importance of the resolution on the transition or
the convergency of the equivalence of ensemble. In addition, some scaling properties of the dynamics at the transition
could not be investigated, as the inertial range was not wide enough due to the difficulty of accommodating very small
values of ν with DNS.

Motivated by these observations, we decided to extend the study of Shukla et al. [2] and Margazoglou [3] to
a case where the RNS equations are projected on a log-lattice rather than on a linearly spaced grid in Fourier
space. The resulting equations correspond to a new non-linear, forced reversible system that we name hereafter
Log-Lattice Reversible Navier-Stokes (LLRNS). We know from the work of Campolina & Mailybaev [7] that this
projection allows simulations with a large resolution, at a moderate numerical cost, while the corresponding model
displays most symmetries and conservation laws of the classical model on a linear grid (used for DNS with spectral
methods). Moreover, the log-lattice projection makes it possible to adapt the resolution to monitor very low values
of the viscosity, as already proved by [8] on the blow-up problem for the Euler equations.

The outline of the paper is as follow: we first introduce the RNS equations, followed by the projection on log-lattices
that we will be using to define our LLRNS model. We display our choice regarding the numerical procedure, and
briefly present the tools that will be useful to analyze our results, including the reversible Leith model, already used
in [2]. We then go through the results and discuss the presence of a second order transition in LLRNS and extract
critical exponents. In this section, we also study the ansatz of the structure functions of LLRNS, comparing them to
the case of LLNSE (Log-Lattice Navier-Stokes Equations), where the viscosity is kept constant. We then perform a
comparison between energy transfer in LLRNS and the reversible Leith model, based on a non-linear diffusion equation
in Fourier space. Finally, we study to what extent the equivalence conjectures postulated by Gallavotti ([1, 3]) for
RNS and NS equations hold in the framework of log-lattices for two conservation schemes: one energy conserving and
one enstrophy conserving.

II. FRAMEWORK: REVERSIBLE NAVIER-STOKES AND LOG-LATTICES PROJECTIONS

A. Reversible Navier-Stokes

The Navier-Stokes equations describing a fluid of viscosity ν, subject to a force f , are given by:

∂tu+ (u ·∇)u = −∇p+ ν∆u+ f , (1)

where u is the velocity, p is the pressure, and we have set the constant density equal to 1. Due to the presence of the
dissipative term ν∆u, the dynamics induced are clearly irreversible as (1) is not left-invariant under the time-reversal
symmetry:

T : t → −t;u → −u; p → p. (2)

This is true even in the presence of a force that is symmetric by time-reversal (which will be the case of every forcing
used in this paper).

Following the work of Shukla et al. [2], we introduce a reversible version of the NSE by defining a (time dependent)

reversible viscosity νr, which conserves the total kinetic energy E = 1
2

∫
D ∥u∥22 dx over our domain D. The expression

of νr can be derived from an energy budget under the constraint ∂tE = 0:

νr =

∫
D f · u dx

∫
D ∥∇× u∥22 dx

. (3)

It is also possible to define another framework, where the viscosity is still time-dependent, but adjusted to conserve
the total enstrophy ∂tΩ = 0, where Ω =

∫
D ∥∇ × u∥22 dx [1]. The corresponding expression of the viscosity is obtained

by taking the Fourier transform of (1), multiplying by k2 ¯̂ui and summing over k, leading to :

νr(u) =

∑
k ∥k∥

2
2 f̂k · û−k + Λ(û)

∑
k ∥k∥

4
2 ∥ûk∥22

, (4)
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where Λ(û) comes from the non-linear term of the Navier-Stokes equations. While it is yet unclear whether viscid
or inviscid Navier-Stokes equations with regular initial conditions and finite energy are subject to a finite-time blow-
up, it is known that controlling the enstrophy is sufficient to prevent a blow-up ([9]). Therefore, the enstrophy
conserving scheme is associated with more regular solutions than the energy conserving scheme. In particular, it rules
out a spontaneous breaking of the time-reversal symmetry mediated by dissipating singularities as conjectured by
Onsager [4]. Therefore, it is interesting to explore the properties of both conservation schemes.

In the first part of this paper, we mainly focus on the conserved energy scheme, where an interesting phase transition
takes place. In the second part, we analyze the Gallavotti conjecture using both conservation procedures.

Replacing the usual viscosity ν with its “reversible” counterpart νr in (1), we obtain the reversible Navier-Stokes
(RNS) equations:

∂tu+ (u ·∇)u = −∇p+ νr∆u+ f . (5)

Taking into account that f is invariant by the time-reversal symmetry, it is then easy to check that the whole equation
is also invariant by the symmetry (2), hence its name.

Since the viscosity is no longer a constant, the Reynolds number Re = LU
ν is no longer as a valid control parameter.

Therefore, in the fixed energy case we introduce the dimensionless control parameter Rr [2] given by:

Rr =
f0

E0kf
(6)

where f0 is the forcing amplitude, kf = 2π
Lf

the wavenumber at which the forcing occurs and E0 the constant, total

kinetic energy.

B. LLRNS model on log-lattices

Our LLRNS model is obtained by projecting the reversible equations (5) onto a discretized logarithmic grid,
composed of exponentially spaced modes (Fig. 1):

k = k0λ
n,

where λ is the log-lattice spacing parameter. This construction is detailed in Campolina & Mailybaev [7, 8]. We start
by taking the Fourier transform of Eq. 5, to get the RNS equations in spectral space:

∂tûi + ikj ûj ∗ ûi = −ikip̂− νrkjkj ûi + f̂i, (7)

where Einstein summation over repeated indices is used, i is the square root of −1, ki is the ith component of the
wavenumber k = (m,n, q)k0 , ĝ is the Fourier transform of g, and ∗ is the convolution product which couples modes
in triadic interactions such that k = p+ q.

We then project this equation onto the log-lattice. For this, we consider from now on that the velocity modes
ûi only depend on the wavevectors on the log-lattice. This projection is then valid provided that the convolution
operator is “well-defined”, i.e. that it respects the symmetries of a convolution operator and has a nonempty set of
triadic interactions. We thus require that

λm = λn + λq, (m,n,q) ∈ Z3 (8)

admits solutions, which restricts the values of λ to three families of solutions, each having z interactions in D
dimensions:

• λ = 2 (z = 3D).

• λ = σ ≈ 1.325, the plastic number (z = 12D)

• λ such that 1 = λb − λa for some integers 0 < a < b. (a, b) ̸= (1, 3), (4, 5) with gcd(a, b) = 1 (z = 6D).

Note that for the lowest possible values of a and b, which is (1, 2), λ is the golden number (ϕ ≈ 1.618). The 2D
geometry of such a lattice is shown in Fig. 1.

Besides the convolution product, log-lattices are also endowed with a scalar product given by:

(f, g) = ℜ
(∑

k

f(k)g(k)

)
. (9)

Our LLRNS model is then defined by the set of ODE’s (7), with viscosity being given by Eqs. (3) or (4), and by the
choice of λ among the possible values that follow from Eq. (8). Each configuration corresponds to a reversible non-
linear out-of-equilibrium model whose conservation laws and symmetries are very close to that of the RNS equations.
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FIG. 1: Geometry of the logarithmic lattices. Example of modes on a 2D log-lattice with a spacing parameter λ = ϕ ≈
1.618.

C. Quantities of interest

1. Generic quantities

In the fixed energy case, the enstrophy Ω and the reversible viscosity νr are good candidates for the order parameter,
while Rr (6) is a good control parameter.

Throughout our study, we can compute two large scale quantities of interest:

• The energy spectrum E(k, t) =
1

(λ− 1)kNk

∑

k≤|k′|<λk

∥û(k′, t)∥22, where Nk is the number of points in the shell

of radius k (proportional to log2(k)).

• The total enstrophy Ω(t) =
∑

k

k2E(k, t).

We also compute the mean energy transfer at scale k through:

Π(k) = ⟨−2ℑ(u,k · u ∗ u)⟩ , (10)

and an ansatz of the structure functions, using the following convention:

Fq(k) = ⟨∥û(k, t)∥q2⟩ , (11)

where ∥k∥2 = k and ⟨·⟩ refers to temporal averages over shells of radius k.

2. Leith model

The Leith model is a toy model based on a non-linear diffusive equation, which in its inviscid description [10],
approximates the dynamics of the energy spectrum of a Euler flow. it exhibits both an inertial domain with scaling
k−5/3 and a quasi-thermalization at small scales characterized by a Gibbsian equipartition with scaling E(k, t) ∝ k2.
Such model is described by a well-chosen second order diffusive operator:

∂tE(k, t) =− ∂kΠ(k, t)− νk2E(k, t)

Π(k, t) =− Ck11/2
√

E(k, t)∂k

(
E(k, t)

k2

)
.

Note that C is a dimensional constant that we set to 1 in this article.
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This model has been adapted by [2] to accommodate reversible viscosities by changing ν into νr, given by Eq. 3.
Its solutions confirm the existence of a mean field second order phase transition, albeit for an order parameter equal
to

√
Ω. Moreover, it showed that the resolution of the simulation could have a large impact on the nature of the

transition, the latter becoming imperfect as the resolution is decreased. In this article, we adopt the same convention
for the dimensionless number representing the influence of resolution, namely h = k0/kmax, where k0 and kmax are
respectively the minimum and maximum wave number in our simulation.

In our system, the thermalization is no longer associated with an energy spectrum following E(k, t) ∝ k2 but instead
to a k−1 behavior. It is then necessary to adapt the previous definition of the energy transfer to our system:

Π(k, t) =− Ck5/2
√
E(k, t)∂k (kE(k, t)).

Solving ∂kΠ(k, t) = 0, we obtain an energy spectrum of the form E(k, t) ∝ (Ak−5/2 + Bk−3/2)2/3, where (A,B) are
two constants taking into account boundary conditions and governing the scale at which the thermalization occurs.

D. Numerical framework

1. Integration scheme

We integrate (7) using a three-step method. Starting from the initial conditions û(t), we first solve the equation
without any viscosity using an explicit adaptive Runge-Kutta method of order 4–5 via the DOPRI5 solver from the
python library Scipy. The equation solved is

∂tûi = Pij

(
−ikqûq ∗ ûj + f̂j

)
, (12)

where Pij = δij − kikj

k2 accounts for the pressure term under zero divergence hypothesis. This gives us û(t + dt)νr=0

where dt is the time-step. To maintain a very high degree of accuracy for our conservation laws, we do not use the
expression for reversible viscosity given by Eq. 3 or 4, but instead compute in a second step the reversible viscosity
νr by numerically solving G(νr, t+ dt) = G0, where G stands for the conserved quantity. The final step is to apply the

chosen viscosity by a technique similar to viscous splitting: û(t+ dt) = û(t+ dt)νr=0e
−νrk

2dt.
We provide in Appendix A a comparison between this method and direct computation using the analytical expression

of νr Eq. 3 in the Runge-Kutta solver.

2. Numerical details

The minimum wavenumber of the grid is set to kmin = 2π. The maximum grid size N = 203 is chosen such the
hydrodynamic branch is well-enough resolved. We set a maximum time-step dt = 0.005, in order to avoid under-
resolving some very stiff moments when the viscositiy tends to zero. As a result, whenever the viscosity is not very
small, the time-step is a constant equal to dt.

The equation G(νr, t+ dt) = G0 is solved such that G is conserved with floating-point accuracy: | G(t+ dt)−G0 | <
10−14 G0.
We use the following initial conditions, taken from [2]:

ûx(k) = U(k),

ûy(k) = −ûx(k)
kx
ky

,

ûz(k) = 0.

(13)

where U is an initial field, with initial energy centered on the large scales.
The forcing term f is a constant field of norm f0, symmetric by time-reversal, with non-zero contributions for k

such that 15 < ∥k∥2 < 16:

f̂x(k) = f0 if 15 < ∥k∥2 < 16 else 0,

f̂y(k) = f0 if 15 < ∥k∥2 < 16 else 0,

f̂z(k) = 0.

(14)
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FIG. 2: Behaviors of order parameters using λ = ϕ. (2a) Time series of the normalized enstrophy
∼
Ω for different values

of the control parameter Rr, with N = 83. (2b) Time averaged reversible viscosity as a function of the control parameter Rr.
The dashed line represents a linear fitting in the warm regime, exhibiting a power-law behavior. The dimensionless time is
τ = ℓf/

√
E0, where ℓf is the scale at which the forcing occurs.

Unless written otherwise, the log-lattice spacing parameter is λ = ϕ. The range of parameters studied is chosen
such that it is possible to observe the two regimes previously observed by Shukla et al.

All the simulations ran on one core of a consumer-grade computer, for a few (< 4) CPU days at most.

III. RESULTS

All the results presented in this paper before section IIIG are obtained in the conserved energy case, i.e. for G = E.

A. Dynamics

Fig. 2a illustrates the time-evolution of the normalized enstrophy
∼
Ω (properly defined in Appendix. B) for many

modes N = 203. As in [2], different regimes are observed. At low values of the control parameter Rr, the solutions

converges to a constant mean value of
∼
Ω with little to no fluctuations. This regime is associated with a lower branch

of mean viscosity ⟨νr⟩ (Fig. 2b) that develops a power-law ⟨νr⟩ ∝ Rr
α, where α ≈ 2. This result was already obtained

in DNS [2], and can be justified using a Kubo fluctuation dissipation theorem, that also applies on log-lattices. As the
size of the grid increases, it becomes harder to reach the limit Rr → 0 as the low values of viscosity require smaller
time-steps. This limit is associated to a thermalized steady state, as it is characterized by a vanishing energy injection
and therefore, in order to conserve the energy, to a vanishing viscosity.

As Rr increases, the system fluctuations continually increase up to a certain value of Rr
∗ at which fluctuations

reach their maximum. Beyond this critical value, fluctuations slowly decrease to zero, towards a lower branch of
enstrophy (Fig. 2a). This branch corresponds to a branch of large viscosity (Fig. 2b). Before vanishing completely,
the enstrophy fluctuations appear as “bursts” of enstrophy.

Note that defined in such a way, Rr
∗ depends on the resolution N. Indeed, both the value of Rr at which the system

leaves the collapsed branch (Fig. 2b) and the location of maximum fluctuations (Fig. 3d) clearly depends on the
resolution. Also note that both definition of Rr

∗ (from fluctuations and the asymptote in Fig. 2b) and are equivalent
in the limit N → ∞ as the thermalized branch can never be reached.
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FIG. 3: Second order transition for λ = ϕ. Evolution of (3a) the renormalized mean enstrophy and (3b)
∼
µ as a function

of Rr. Variance of (3c) the renormalized enstrophy and of (3d)
∼
µ as a function of Rr. The dashed lines associated with the

equations corresponds to a Landau mean field formulation of the phase transition.

B. Phase transitions

In Shukla et al. [2], the various regimes of the enstrophy dynamics are associated with the existence of a second order

phase transition, described by a Landau mean field theory. Specifically, the time-averaged normalized enstrophy

〈∼
Ω

〉

exhibits a power-law

〈∼
Ω

〉
=

(
1− Rr

Rr
∗

)β

, with β ≃ 0.5, while the normalized standard deviation of the renormalized

enstrophy σ∼
Ω
presents a divergence aroundRr

∗, following a power-law σ∼
Ω
=

(
1− Rr

Rr
∗

)−γ

with γ ≃ 1. As it is possible

to observe different values of γ on each side of the transition, we define γl and γr where l and r stand for left and
right, respectively.

In our case, we also observe at N = 203 behaviors for the enstrophy that are reminiscent of a second-order phase
transition, albeit with exponents that do not correspond to the mean field description (Fig. 3a & 3c and Tab. I).
Indeed, we observe a power-law with exponent β ≃ 1, which is larger than its mean-field version (Fig. 3a). In the
case of the variance, we observe a divergence at Rr

∗ with a critical exponent corresponding to the mean field value
γl = 1, like in [2].

Our results show that, while the nature of the transition is unaffected by the details of the interactions between
modes, the value of the critical exponents depends on those details. One should see Tab. I for different values of λ,
and recall that on log-lattices, different values of λ correspond to different numbers of local interactions.

In that respect, it is interesting to see whether our result fits in the cruder description of the interactions provided
by the Leith model. In this model, the mean-field description is found by taking the square root of the enstrophy
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TABLE I: Critical exponents of
∼
Ω as a function of h. For λ = 2, values of γr were not extracted as the variance does not

vanish, but converges to a constant on a domain extending quite far away from Rr
∗.

λ N h β γr γl

83 7 · 10−3 - - -
2 123 4 · 10−4 ≃ 0.8 - 1.6

163 3 · 10−5 ≃ 1 - 1.0
83 3 · 10−2 - 1.0 2.2

ϕ 123 5 · 10−3 ≃ 0.5 1.0 1.8
203 1 · 10−4 ≃ 1 1.0 1.0

Shukla ([2]) 1283 2.4 · 10−2 ≃ 0.5 ≃ 1 ≃ 1

Landau Mean field - - 0.5 1 1

TABLE II: Critical exponents of
∼
µ as a function of h. Values of γr were not extracted as the variance does not vanish,

but converges to a constant on a domain extending quite far away from Rr
∗.

λ N h β γr γl

83 7 · 10−3 - - -
2 123 4 · 10−4 ≃ 0.4 - 1.6

163 3 · 10−5 ≃ 0.5 - 1.0
83 3 · 10−2 - 1.0 1.6

ϕ 123 5 · 10−3 ≃ 0.27 1.0 1.4
203 10−4 ≃ 0.5 1.0 1.0

as an order parameter. In our case, upon defining
∼
µ =

∼
Ω

1/2

, we indeed observe a mean field behavior for
〈∼
µ
〉

in

the limit of large grids kmax → ∞ (e.g. Fig. 3b & 3d). Its critical order parameters depend on the lattice spacing
λ as Rr

∗ ≈ 3.75 for λ = 2 and Rr
∗ ≈ 2.75 for λ = ϕ. The computed exponents associated with this model are

presented in Tab. II. Note however that the mean field description is not entirely valid in our model, as we do not
observe the peculiar link between pre- and post-transitions prefactors: A+ = 2A−. Still, it seems that as the number
of interactions grows (i.e. as λ decreases), we are getting closer and closer to this description.

Finally, we stress that as soon as Rr > Rr
∗, both the variance and the mean viscosity (Fig. 2b) become independent

of the grid size. Therefore, only β and γl depend on kmax.

C. Characterizing the various phases with spectra

As shown in [2], the nature of the different phases before and after the transition can be elucidated by looking at
energy spectra. Examples are provided in Fig. 4. Before the transition, we observe a spectrum that is characterized
by two slopes: one at low wavenumbers, with an exponent close to −5/3 and one at large wavenumbers, with an
exponent closer to −1. As already discussed in [7, 11], the −1 slope corresponds to thermalization on log-lattices,
characterized by equipartition of energy among the modes. The −5/3 regime corresponds to a classical spectrum
due to a positive flux of energy, as evidenced by the insert of Fig. 4b. We call this phase with a coexistence of two
cascades the “warm cascade” regime. As Rr decreases, the thermalized phase extends further towards lower k, and the
pseudo-Kolmogorov phase disappears. Conversely, as Rr increases, the thermalized phase progressively disappears,
to leave room for an increasingly laminar state as the reversible viscosity increases. Such state is shown in Fig. 4b.
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FIG. 4: Time averaged energy spectra vs Rr, λ = ϕ, N = 203 Modes. (4a) Warm regime, with coexistence of two
phases. The dotted line represents the slope of the two coexisting regime, a pseudo Kolmogorov regime at large scales and
a thermalized regime at small scales exhibiting a -1 slope. The inset shows a zoom in the crossover area, highlighting the
difference in slopes with respect to Rr associated to the contamination of the bigger scales by the thermalization. (4b) Laminar
state, with dominant dissipative range, and no thermalization. The inset shows the energy transfer Πk.

D. Structure functions

The nature of the various phases can be further characterized using higher orders of the velocity field, via the
structure functions (Eq. 11). In classical shell models, such structure functions are subject to intermittency, as they
exhibit scaling laws Fq(k) ∼ k−ξq that deviate from the monofractal behavior ξq = qξ1 [12–15].

In our case, it is difficult to measure the exponents of the structure functions for all phases: at large values of
Rr the viscosity rises quickly, and the inertial range becomes very small. At small values of Rr, the scaling laws are
polluted by the coexistence of the pseudo-Kolmogorov regime and the thermalized state, as illustrated in Fig. 4a. This
invalidates the classical method of computing exponents via extended self similarity [16] as the structure functions
can present multiple slopes at different scales. We extracted exponents via the following method: we first determine
the inertial range by computing the time-averaged energy transfer Πk through Eq. 10. Then, we define the inertial
range as the range of wavenumber where it is flat. If this range is large enough (at least a decade), we fit the scaling
exponents of the structure functions on this range only. This provides us with an unambiguous determination of ξq.
The extracted exponents are shown in Fig. 5a, for value of Rr in various regimes, as illustrated in Fig. 5b.

In the limit of low Rr, the ξq exponents appear to be significantly lower than the usual exponents (Fig. 5, blue,
green and orange curves). This phenomenon can be explained by the fact that, in such a limit, the system tends to
follow equipartition, associated with an energy spectrum of E(k) ∼ k−1 (Fig. 4). This is indeed what we observe: as
Rr gets closer to 0 a quasi-thermalized spectra appears, first at low scales, and then progresses towards the larger
scales, impacting the slope even at larger scales (as illustrated in Fig. 4a and the inset of Fig. 5a). There is no
intermittency in this regime, with all exponents aligning onto a perfect line. In the other limit, as Rr rises, the RNS
exponents increase (Fig. 5). However, there is still no intermittency in this regime. To check whether it was a feature
of the RNS system, we computed the same exponents from a simulation of NSE with fixed viscosity. The result is
also shown in Fig. 5a (brown curve). We see that the resulting exponents are very close to the exponents we observe
in RNS, reaching a quasi perfect agreement for both exponents and slope (Tab. III) located around the middle of the
transition area.

This absence of intermittency is not surprising, as log-lattice models only consider local interactions. Such phe-
nomenon was also observed in REWA models of turbulence, where intermittency decreases as the number of interac-
tions decreases [17–19]. In contrast, intermittency has already been observed in various shell models such as SABRA
or GOY models. In that case, it was observed (SABRA [20], GOY [21]) that the tuning of the free parameter con-
trolling additional conservation can bring the system from a situation where the only fixed point is the K41 scaling
(no intermittency) to a situation where the K41 scaling becomes unstable, leading to chaos and intermittency [21].
In our case, it is likely that with λ = ϕ we are in the first situation, with only one stable fixed point. It would be
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FIG. 5: Extracted exponents of the structure functions and localization in the transition for λ = ϕ, N = 203

Modes. Both figures share the same legend. (5a) Exponents of the structure function of order q for various RNS simulations and
comparison to a NS simulation. The inset presents the exponents, extracted at small scales, in the case of a quasi-thermalized
state. (5b) Color coded version of the νr vs Rr diagram, showing where the various results are located with respect to the
transition. The color of the data points are the same as those from panel (a).

TABLE III: Slopes of the exponents of the structure functions for both RNS and NS equations. Values were extracted
by fitting the structure functions in the inertial range, determined by the domain of constant energy transfer.

Equation RNS NS

Rr 1.11 1.78 2.23 2.78 2.9 -
Slopes 0.36 0.38 0.4 0.4 0.42 0.42

interesting to check whether decreasing the value of λ results in the loss of stability of the fixed point and appearance
of intermittency. This is however beyond the scope of this article, and left for future work.

Note finally that in the log-lattices simulations, the usual Kolmogorov prediction ξq ∝ q/3 does not hold. Indeed,
even for NS equation, the slope is roughly equal to 0.42 (Tab. III).

E. Universal and non universal laws

In previous sections, we described the dependence of ⟨ν⟩ τ/ℓ2f (or

〈∼
Ω

〉
) on Rr for LLRNS models with constant

energy. Surprisingly, such behavior extends to both LLRNS models with conserved enstrophy and to irreversible
LL-Navier-Stokes models (Fig. 6) upon defining Rr =

f0
⟨E⟩kf

. This property is interesting as it provides information

on the steady state of the system, and on whether the system is well resolved. Indeed, if the system is under-resolved
(i.e kmax ≪ kη, kη being the Kolmogorov scale), it is characterized by a thermalization of the small scales, and
corresponds to a state located before the transition at Rr < Rr

∗, on the linear part of Fig. 6a.
However, neither the LLRNS with conserved enstrophy, nor the LL-Navier-Stokes model display the divergence of

fluctuations observed in the LLRNS with fixed energy (see Fig. 3d). Indeed, the LL-Navier-Stokes model exhibits
bounded values of energy and enstrophy fluctuations, as shown in Fig. 6c & 6d. The LLRNS model with constant
enstrophy cannot, by construction, display any enstrophy fluctuations. However, it does not present diverging fluc-
tuations for the energy either (see Fig. 6d). This shows that the phase transition feature observed in the LLRNS
model with constant energy is non-trivial. We conjecture that these events are linked with the existence of events of
quasi-blow-up in the vorticity, that are naturally present in the inviscid blow-up [22, 23]. These quasi-blow-ups can
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propagate from low wavenumbers to large wavenumbers when the viscosity is low, provoking events of large vorticity.
In the case where the enstrophy is fixed, such quasi blow-ups cannot exist anymore. In addition, these events are
blocked by normal constant viscosity, but not by hypoviscosity [23]. A time-dependent viscosity like in the RNS case
could be viewed as a hypo-viscosity, leaving room for these events to develop, in contrast with LL-Navier-Stokes. This
therefore explains why we only observe these events in the LLRNS with constant energy.
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FIG. 6: Existence of a phase transition in the different systems for different order parameter.(6a) Renormalized
viscosity function of the previously introduced control parameter Rr. (6b) Renormalized enstrophy as a function of the control
parameter Rr. (6c) Rescaled variance of the normalized enstrophy as a function of Rr. (6d) Rescaled variance of the energy,
as a function of Rr, for the LLRNS conserved enstrophy case and LLNS. In all four figures, the empty gray symbols are the
data of Fig. 2b & 3a. Circles, squares and triangles are associated to N = 83, 123, 163, respectively. The conservation schemes
are coded by color, with light green to dark green being the irreversible LL-Navier-Stokes model, purple to dark blue LLRNS
model with conserved enstrophy, orange to brown LLRNS model with conserved energy. Note that in the non-conserved energy
case, we define Rr using the averaged kinetic energy. Also note that the difference between the grey and blue symbols lies
in the numerical details, both are associated to conserved energy case. But, grey symbols are obtained varying the forcing
amplitude f0 while blue symbols are associated to a fixed f0 and varying initial condition i.e varying E0. Fig. 6a & 6b show
that all mean viscosities and enstrophy collapse on an universal law. While Fig. 6c & 6d highlight the absence of transition
for LL-Navier-Stokes and LL-RNS with conserved enstrophy.

F. Comparison with Leith model predictions

1. Influence of the resolution

While performing simulations on log-lattices, it is possible to reach high resolutions (k > 1020) at a moderate
numerical cost, making it possible to analyze the effect of the resolution on the transition. Such a study could not be
done using DNS.
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TABLE IV: Values of various quantities around the transition area. R∗
r− defines the value at which the transition

area starts, defined by the quick rise in viscosity. ∆ν represents the difference in viscosity between the two asymptotic regimes
separated by the transition area. h = k0

kmax
is a parameter used to quantify the influence of the resolution and N is the number

of spectral modes.

λ N h ∆νr R∗
r− R∗

r

83 7 · 10−3 104 ≈ 4.3 ≈ 7
2 123 4 · 10−4 106 ≈ 3.6 ≈ 5

163 3 · 10−5 108 ≈ 3.1 ≈ 3.75
83 3 · 10−2 102 ≈ 4.4 ≈ 5

ϕ 123 5 · 10−3 104 ≈ 2.8 ≈ 4
203 10−4 108 ≈ 1.8 ≈ 2.75

Shukla ([2]) 1283 2.4 · 10−2 - ≃ 2.0 2.75

A first influence of resolution can be obtained on the value of the mean reversible viscosity, illustrated in Fig. 2b:
as kmax (or equivalently the number of modes, N) is increased, the viscosity decreases for a same value of Rr, as
there is more room for the cascade to operate. Therefore, the time-averaged viscosity gives us some insights on the
dependence of the system on the resolution. Indeed, before the transition, for Rr < R∗

r,− (being the lower-bound of
the transition) the viscosity exhibits a very large dependence on the size of the grid. As we reach the transition area,
that we locate at the beginning of the quick rise of viscosity, all the data then collapses on the same universal curve,
independent of kmax. Note that R∗

r,− shifts to lower values as the size of the grid increases (Tab. IV).
Another influence of the resolution is given by the nature of the transition, that shifts from a second-order transition

to an imperfect transition as the number of modes is decreased (see Fig. 3c & 3d). This effect was a prediction of
the Leith model introduced in [2], and we observe the same typical features found in this model.

Indeed, for N < 203, neither the mean enstrophy nor its square root follow a power-law. Such description is only
accurate upon reaching N = 203. In the case of the variance, we observe in Fig. 3d a scenario that resembles the
one predicted by the Leith model: at low resolution, the standard deviation exhibits a “bump” (Fig. 3d, circle and
triangle markers). In this case, extracting a γ exponent is questionable. Nevertheless, Tab. I gathers all the extracted
critical exponents. At larger resolution, the divergence of the variance becomes more visible, with a critical exponent
converging to the mean field value γl = 1. Note that even while using log-lattices, there are still finite size effects, as
the limit Rr → 0 exhibits truncated Euler dynamics, characterized by equipartition E(k) ∝ k−1 (Fig. 4).

2. Further comparison with the Leith model

It appears that, so far, our results and observations are in general agreement with the Reversible Leith model
proposed in [2]. It is then interesting to compare more quantitatively those two systems. The only quantity from the
RNS runs that can be compared to the Leith model is the energy transfer. Therefore, our comparison will rely on
computing the Leith-like energy transfers ΠLeith (see section IIC 2) from the RNS energy spectra and comparing it
to the RNS transfers ΠRNS.

The comparison between the two quantities is presented in Fig. 7. We see that the Leith-like transfer is able to
mimic the RNS transfer in the inertial domain, but drops more quickly in the dissipative domain. This effect is
probably caused by the Leith-like computation not taking into account the strong oscillations of the viscosity (and
therefore of the Kolmogorov length) naturally present in RNS. Such oscillations tend to straighten the transfer a bit
further outside the inertial range. Overall, it seems that the Leith models shares features with the RNS equations
without completely reproducing its dynamics.

G. Gallavotti conjecture

In this section, we now investigate how relevant the reversible models are to understand the dynamics of the
irreversible LL-Navier-Stokes model. This can be done via suitable adaptation of conjectures by Gallavotti.
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FIG. 7: Quantitative comparison of the energy transfers between RNS (dashed lines) and Leith-like transfers (full lines).
The main figures present the two energy transfers, while the insets show the fitted energy spectra. The two figures are obtained
for different values of Rr (7a) Rr ≈ 2.23 (7b) Rr ≈ 3.34.

1. Definitions and conjectures

Following [3], we introduce the collection EI,N of the stationary distributions µI,N
ν , where I characterizes the

irreversible equation (with time-independent viscosity i.e. LL-Navier-Stokes), with N modes. Similarly, we define the

collection ER,N of the stationary distributions µR,N
G , associated with the LLRNS model of N modes, where G is the

conserved quantity (total enstrophy, total kinetic energy. . . ). For any observable O, ⟨O⟩I,Nν and ⟨O⟩R,N
G denote the

averages over the distributions µI,N
ν and µR,N

G , respectively.
As in [3], a set of parameters ν, G and N will be said to be “in correspondence” if

⟨G(u)⟩I,Nν = G (15)

G is associated to a conserved, and therefore constant, quantity in the RNS model while G is its irreversible
counterpart in regular NS.

The adaptation of the two Gallavotti conjectures to our models can then be formulated as:
Conjecture 1: If ν, G and N are in correspondence, then for any local observable (i.e. depending on a limited

number of modes) O(u) one has

∀N, lim
ν→0

⟨O⟩R,N
G = lim

ν→0
⟨O⟩I,Nν (16)

Conjecture 2: Let O(u) be a local observable depending on u(k) for k < K, then if ν, G and N are in correspon-
dence one has

lim
N→∞

⟨O⟩R,N
G = lim

N→∞
⟨O⟩I,Nν (17)

∀ν and K < cνkη, cν −−−→
ν→0

c0 < ∞, where kη is the Kolmogorov scale.

Those two conjectures are associated to different regimes. Indeed, by fixing the resolution N and sending the
viscosity to 0, one reaches the warm regime, characterized by thermalization (Conjecture 1 ). In contrast, by sending
first the resolution N to infinity, then viscosity to 0, one prevents the thermalization from occurring (as it is associated
to under-resolved simulations). Therefore, Conjecture 2 is associated to hydrodynamical regimes, and better describes
turbulence in the limit of low viscosities.
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2. Numerical procedure

In order to investigate the equivalence of ensemble, we start by running a LL-Navier-Stokes simulation, with time
independent viscosity of ν = 10−4, 10−5, 5 ·10−6, 10−6, 10−7 for different values of N . After reaching a steady state for
a sufficient number of time-steps (to ensure the possibility of doing statistics), we use the LL-Navier-Stokes field as
an initial condition for the LLRNS equation, in both conservation case. We then let both reversible and irreversible
simulations run for 4.105 time-steps.

This procedure enables us to highlight any divergence of the reversible solution from the irreversible solution, while
allowing us to characterize the simulations by viscosity ν or equivalently by their Reynolds number (Re).

3. Using scores to compare PDFs

In the next sections, we need to compare PDFs. To quantify their similarity, we introduce a scalar parameter – a
score –, defined as:

S(O) = 1−
p∑

i=1

|O(i)
R −O(i)

I |
O(i)

I
B−i+1 (18)

where O(i) stands for the i-th moment of the local observable O, p for the number of moments we take into account
and B for a decomposition basis (B = 10, being a decimal basis in our case).

A score of one implies little errors between irreversible and reversible moments and leads to matching PDFs. We
will restrict the computation of the score to the first three moments because of large statistical errors in our kurtosis.
Therefore, the score should be roughly 1 whenever the 3 first moments coincide, i.e. whenever the distributions are
identical around the mean value. Thus, S appears as a good indicator to qualify to what extent the conjecture holds.

4. Statistics of the reversible viscosity

Because of its presence in the limits, the viscosity plays a special role in the conjectures. However it is a non-local
observable. There is therefore no reason that mean reversible viscosities should be equivalent to irreversible viscosities,
even when only small values are considered. However, there are several differences between the conservation schemes
that may temper this observation. First, the total kinetic energy is concentrated at the large scales whereas enstrophy
is a small scale quantity, resulting in completely different statistics of the viscosity. In fact, a major difference between
the two cases arises in the possible occurrence of negative viscosities. At low viscosities, there is almost no occurrence
of negative viscosities in the conserved energy case, even in systems presenting a quasi-thermalized spectrum (Fig. 8a).
This is no longer true for the conserved enstrophy case as we observe many occurrences of negative viscosities in well
thermalized regimes (Fig. 8b).

In addition, conserving the enstrophy is a strong constraint, that implies additional equivalence for the viscosity.
Indeed, if the first conjecture holds, we should observe conservation of the mean work of the forcing term W = ⟨f .u⟩,
because it is local at large scales (more details in section IIIH 1 and Tab. V & VI in section B). Using the energy
budget, this yields ⟨νr⟩ = ν in the constant enstrophy case ([3]), even though νr is not a local observable. The
property is not true for the conserved energy case, so that the Conjecture 1 should not hold a priori for the viscosity.

Our measurements are generally in agreement with these theoretical predictions, with some exceptions (Fig. 9a).
In the conserved enstrophy LLRNS model, we observe that the condition ⟨νr⟩ = ν holds for most values of ν, except
for very low viscosity. In the conserved energy case, the situation is opposite: the property does not hold a priori for
large enough values of viscosity. However, for small enough values of ν, we recover ⟨νr⟩ ≈ ν.

Note that since injection is a local observable, and since we are in a stationary state, where on average injection
equals dissipation, we expect that νrΩ obeys Conjecture 1 & 2. In the case of constant enstrophy, this condition is
equivalent to ⟨νr⟩ ≈ ν, as we just saw. However, in the conserved energy case, this is not true anymore. Indeed, as
we see in Fig. 9b, we have ⟨νrΩ⟩ ≈ ν ⟨Ω⟩ for the conserved energy case, even though the equivalence is not fulfilled
for the viscosity alone.

5. Energy and enstrophy

The first obvious quantities to investigate are energy E and enstrophy Ω. Results are reported in Tab. V & VI
(see section B), where we give the mean ratios between reversible and irreversible values at various ν and for the
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FIG. 8: PDF of the ratio νr / ν − 1 where νr stands for the reversible viscosity, for N = 83 (blue dots), 123 (green squares),
163 (orange diamonds), ν = 10−7. Fig. 8a shows the results associated to G = E, while Fig. 8b is associated to G = Ω. Colored
dashed lines represents the mean values of the PDF while the black dashed line is associated to ⟨νr⟩ = ν.
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FIG. 9: Equivalence between the viscosities. (9a) Ratio of the mean reversible viscosity over the standard NS viscosity.
(9b) Ratio of the mean dissipation νΩ. Both figures are obtained for N = 83, blue dots correspond to conserved energy while
green squares are associated with conserved enstrophy.

two conservation schemes. In all cases, the ratio of ⟨G⟩ /G is very close to 1, showing the validity of Eq. 15 for
both conservation schemes. It is interesting to note that the mean energy is well described even in the conserved
enstrophy case. On the other hand, in the conserved energy case the enstrophy is correctly reproduced only in the
quasi-thermalized state (Tab. V & Fig. 6a). In particular, at high resolution (N = 163), we observe enstrophy ratio
above 100%.

H. Analysis of Conjecture 1 - Warm regime

In this subsection, we focus on the Conjecture 1. We consider various local quantities, and analyze results at fixed
number of modes N = 83 and decreasing viscosity of ν = 10−4, 10−5, 5 · 10−6, 10−6 and 10−7.

1. Work of the forcing term

We now consider the work W = ⟨f .u⟩. This quantity appears as a good candidate for Conjecture 1, as the forcing
term is localized around kf = 15 (see Eq. 14). Tab. V & VI (see section B) summarize the ratio of mean values
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FIG. 10: PDF of the work of the forcing term W. Simulations are performed with N = 83. (10a) ν = 10−4 (10b)
ν = 10−6. Dashed lines represent the mean values of the PDF. Both conservation schemes show good agreement for the mean
values. At higher viscosities, tails differ.
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FIG. 11: Ratios of the two first moments of W as a function of the viscosity ν. Simulations are performed with
N = 83. (11a) Ratio ⟨WR⟩ / ⟨WI⟩, (11b) Ratio σW

R /σW
I , where σ stands for the standard deviation. The gray shaded area

represents the 5% confidence interval.

between reversible and irreversible values, and show that almost all simulations fulfill correspondence conditions
Eq. 15, with either conserved energy or conserved enstrophy. A finer understanding of this correspondence can be
obtained by exploring the properties of its PDF in both the hydrodynamical case (ν = 10−4) and quasi-thermalized
(ν = 1 ·10−6). This is shown in Fig. 10. In both case and with both schemes, the PDF shows good agreement between
the reversible and irreversible case, except for the high viscosity case, where tails are different. This difference is due
to the difference in standard deviations. Nevertheless, in the quasi-thermalised regime (Fig. 10b), the PDF presents
quasi perfect agreement between irreversible and reversible cases, which is a signature that Conjecture 1 holds for the
local observable W.

To further support this claim, we analyze the ratio of the two first order moments ⟨WR⟩
⟨WI⟩ and

σW
R

σW
I
. Fig. 11 gathers

those results, obtained for N = 83. One observes that for any value of ν, the mean value of W corresponds to the
mean value of the reversible equations, within a 5% error margin (Fig. 11a). This property does not hold however for
the standard deviation, where the ratios lie outside the confidence interval in the hydrodynamical case (Fig. 11b). As
the viscosity decreases, both ratios enter the confidence interval, and thus both PDFs match in the inviscid limit.
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FIG. 12: Score S(E) of the energy in each shell Figures (12a) corresponds to the conserved energy case while (12b)
is associated to the conserved enstrophy case. The gray shaded areas show where the forcing term is localized. Figures are
obtained for N = 83. Blue dots, green squares, orange triangles, red diamonds and purple pentagons are respectively associated
to ν = 10−4, 10−5, 5 · 10−6, 10−6 and 10−7.

2. Energy spectra

We now consider the equivalence for the distribution of energy in the wavenumber space, through the instantaneous
energy spectra E(k). As time varies, and for each given k, E(k) fluctuates in time, and we can study its statistics
through our score function. Fig. 12 gathers the different scores S(E), obtained for different ν at various ks. In the
conserved energy case (Fig. 12a), Conjecture 1 holds quite well. Indeed, as ν → 0, the score is almost equal to one
(purple pentagons) over the whole space, highlighting good moments matching. For higher viscosities (blue dots,
green squares. . . ) the score starts to drop at smaller k, indicating that only the first shells display equivalence. Note
that the statistics around the first and last data points might be biased by side effect associated to the sampling
process. The conserved enstrophy case (Fig. 12b) shares some similar features, as the score indeed appears to grow
as ν decreases, progressively spanning the whole grid.

According to the score, one should observe PDF matching (outside the tails) for ν = 10−4 at big scales (ks ≈ 16.5)
and PDF differences at small scales (ks ≈ 182.6). This is indeed what we observe in Fig. 13a & Fig. 13b. In addition,
one expects near identical PDF in both conservation schemes, at all scales for ν = 10−7. This statement is confirmed
in Fig. 13c& Fig. 13d, where the PDFs are almost indistinguishable.

I. Analysis of Conjecture 2 - Hydrodynamical regime

In this section, we analyze the Conjecture 2, i.e. equivalence at fixed ν and varying N in the case of the hydrody-
namical regime, in the thermodynamic limit h → 0 (kmax → ∞).

In the analysis of this conjecture, there appears a strong difference between the conserved energy case, and the
conserved enstrophy case. Indeed, the former case presents a phase transition whose characteristics depend on N
(Fig. 6). This dependence complicates the analysis on the impact of kmax → ∞ (N → ∞) in Conjecture 2. Indeed,
for a given Rr, increasing N implies switching phase (Fig. 6a), going from quasi-thermalized regimes (Rr < R∗

r ,
in which Conjecture 1 holds) to hydrodynamical ones (Rr ≥ R∗

r). Therefore, one must be careful while comparing
similar Re for different resolutions as the validity of the conjecture is related to the position in the transition, as will
be highlighted later.

1. Energy spectra

We now focus on the statistics of the energy spectrum, at given values of ks. In the hydrodynamical regime,
Conjecture 2 implies that the score of E(k) should be equal to 1 in the thermodynamic limit h → 0 (kmax → ∞). In
practice, we shall see that this will be true only for a given range of wavenumber k < Kν ([3, 24]).
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FIG. 13: Energy PDF Results are obtained for different values of ks and ν, with N = 83. (13a & 13b) ν = 10−4, ks ≈ 16.5,
ks ≈ 182.6 ; (13c & 13d) ν = 10−7, ks ≈ 16.5, ks ≈ 182.6. Dashed lines represent the mean values of the PDF.

In the conserved enstrophy case the analysis is straightforward. We show in Fig. 14 the evolution of the score
SΩ(E) at various resolutions. At lower resolution, SΩ(E) drops quickly (Fig. 14, blue dots) highlighting the absence
of equivalence between the reversible and irreversible ensemble. By increasing N, we obtain scores closer to 1 on
intervals up to Kν , defined as the value of k such that ∀k > Kν ,SG(O) < 0.9. We also observe that for low values
of viscosity, the scores are similar for N = 123 and N = 163, supporting the second conjecture, in the conserved
enstrophy case. For k > Kν , scores start to “oscillate”, this is associated to the fact that the reversible moments
fluctuate around the irreversible ones and sometimes lies in confidence interval, leading to artificially higher scores.

In the conserved energy case, the analysis is complicated by the phase transition, as detailed below. According to
the Conjecture 2, one expects to observe scores SG(E) > 0.9 on bigger and bigger domains as ν → 0. Fig. 15 shows
the scores, in the case of conserved energy E, for various viscosities and N = 123 (Fig. 15a) or N = 163 (Fig. 15b).
Our results indeed highlight a dependency of Kν on ν (Fig. 14 & 15). Note that the red diamonds in Fig. 15a are
associated with a crossover regime where thermalization at small scales starts to occur, leading to results similar to
Conjecture 1 (Fig. 12a) but with a slight drop.

Fig. 16 shows the extracted thresholds divided by the Kolmogorov scale for both conservation schemes, at different
resolutions and different viscosities. Unlike in [3], cν is no longer a constant but depends on the value of ν and does
not grow as fast as the Kolmogorov scale kη (Fig. 16).

Note that for ν = 10−7, the N = 123 are under-resolved, leading to an upper-bound K = kmax for the threshold,
that can not grow anymore as ν decreases. Such phenomenon explains the difference between the two first points of
Fig. 16b.

In the thermodynamic limit of the conserved energy case, the equivalence is best achieved for Rr → Rr
∗(N). As

mentioned before, such properties make the comparison between resolutions difficult, as the value of Rr at which the
transition between warm and hydrodynamical regimes occurs also depends on N . Nevertheless, Fig. 16a gathers the
results for the conserved energy case, confirming the validity of Conjecture 2, on smaller domains with respect to
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FIG. 14: Score S(E) of the energy in each shell for G = Ω. (14a) ν = 5 · 10−6; (14b) ν = 10−5. Blue dots, green squares
and orange triangles correspond to N = 83, 123, 163, respectively. Black dashed lines correspond to a score of 0.9.
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FIG. 15: Score S(E) of the energy in each shell for G = E. (15a) N = 123; (15b) N = 163. Blue dots, green squares,
orange triangles, red diamonds, and purple pentagons correspond to ν = 10−4, ν = 10−5, 5 · 10−6, 10−6, 10−7, respectively.
Note that in (15a), the purple pentagons are associated with a quasi-thermalized state, being a crossover region between the
two conjectures. Black dashed lines correspond to a score of 0.9.

those observed in the conserved enstrophy case.

IV. CONCLUSION

We have shown that LLRNS models are able to reproduce features previously observed in DNS while allowing us
to better probe the transition by reaching scales much lower than usual DNS. We found that the LLRNS system with
conserved energy indeed exhibits a second order phase transition, with

√
Ω as an order parameter, sharing interesting

features with the Reversible Leith model; a simple non-linear diffusion model. The phase transition separates two
phases, the first characterized by the coexistence between a hydrodynamical regime and an equipartition of energy at
small scale (named “warm” phase), and the second characterized by an over-damped regime with very large viscosity
(named over-damped phase). In between, we have a turbulent hydrodynamical regime, with properties resembling
that of solutions of the Navier-Stokes equations.

We have not observed a divergence of fluctuations in the LLRNS model with enstrophy conservation, nor in models
with fixed viscosity. This may be due to the fact that the enstrophy conserving scheme is associated with more regular
solutions than the energy conserving scheme. In particular, it rules out a spontaneous reversal symmetry breaking
mediated by dissipating singularities as conjectured by Onsager [4]. More work is therefore needed to understand the
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FIG. 16: Ratio K/kν in the context of Conjecture 2 (16a) corresponds to conserved total kinetic energy while (16b)
corresponds to conserved enstrophy. The thresholds K were extracted directly from the score at the considered k. The
thresholds were not extracted for N = 83 since the resolution is insufficient as most simulations lie on the thermalized branch
(Fig. 6a, colored circles).

difference between the two conservation schemes from the point of view of the emergence of dissipative weak solutions.
This is the subject of an ongoing work.

We also studied the finite-size corrections of the scalings induced by the finite resolution and found good agreement
with tendencies predicted by the Leith model. Such a study would have been impossible to perform on present DNS.
Finally, we studied the influence of reversibility on scalings of the ansatz of the structure functions. They were found
to obey self-similar scaling in all phases, with an exponent ranging from 0.36 in the warm (reversible) phase, to 0.42
in the hydrodynamical (irreversible) phase. We did not find any intermittency corrections in either phase. It is an
open question whether choosing other step sizes on the logarithmic grid, for instance allowing more interactions, will
result in intermittency in either of the two phases.

We also tested the adaptation of two conjectures by Gallavotti ([1]), regarding the equivalence of the reversible
models and the irreversible model. We find that the properties of the quasi-thermalized regime of the reversible and
irreversible models are equivalent both for conserved enstrophy or conserved energy. This equivalence also holds in the
hydrodynamical regime for local observables located at k < Kν , both for conserved enstrophy and conserved energy.
This result is therefore an extension of the equivalence found by [3]) in DNS of RNS with conserved enstrophy. In
addition, we find that equivalence between irreversible LL-Navier-Stokes models and LLRNS models with conserved

energy, in fully developed turbulence (Conjecture 2 ) holds best in the limit N → ∞, Rr
>−→ R∗

r . This feature was
discussed but not proven by [2] in the DNS case. We showed that, unlike in DNS ([3]), the value of cν = K/kν is
not a constant but depends on ν. Altogether, our results show that ensemble equivalence holds for LLRNS models
in the average sense, since conserved enstrophy and conserved energy model display similar means for all observables
studied in this paper.

These results show the interest of the models based on projecting fluid dynamics on log-lattice. Being 3-dimensional,
and respecting most symmetries of the original equation, they may be used to explore fundamental issues of the original
system, albeit at a moderate computational cost and without any adjustable parameters. By construction, they of
course lack many interactions present in the original equations, and it is not clear how well many of the results
presented here can be extended to real fluids. Nonetheless, it will likely take some time before direct numerical
simulations can reach the parameter values explored here, so this interesting question is left for the future.
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Appendix A: Viscous splitting

In our study, we propose to first solve the inviscid Navier-Stokes equation (12), then we compute the reversible
viscosity, according to the quantity that must be conserved. Finally, we take into account the viscosity by rescaling
the velocity fields. One could wonder if this method gives proper results in the reversible case.
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FIG. 17: Evolution of the reversible viscosity νr at each step. Both simulations are performed for λ = ϕ ≈ 1.618,
N = 123, f0 = 0.27. The green curve is obtained using the viscous splitting method while the blue curve is obtained by directly
solving the RNS equation, where the reversible viscosity is computed using Eq. 3.

Both methods lead to similar behavior of the viscosity (Fig. 17), with mean values νr,Splitting ≈ 4.9 · 10−7 and
νr,Direct ≈ 5.9 · 10−7. It is expected to find a slight difference as the number of time step is still relatively small.
Moreover, the direct computation is performed using the analytical expression of the reversible viscosity and therefore
leads to deviation from E0.

Still, both methods give similar results (Fig. 17). However, the ”viscous splitting” method allows us to “perfectly”
(with floating-point accuracy) conserve a chosen quantity (here the total kinetic energy) without deviation.

Appendix B: Enstrophy renormalization

The case of Rr → 0, is associated to a vanishing energy injection and therefore, in order to keep the total energy
constant, to a vanishing viscosity. The system thus behaves as a truncated Euler equation and should exhibit an
equipartition of energy. In our model, this equipartition is characterized by an energy spectrum developing a power
law k−1 that we will be using in order to compute the total enstrophy Ωmax.

We start by assuming that the kinetic energy in a shell can be written as Ek = A
k , where A is a constant obtained

through the total kinetic energy E0:

E0 =
∑

k

E(k)∆µk = A
∑

k

1

k
(λk − k) = AN(λ− 1).

Where ∆µk is the measure of the space, which is (λk− k) for the 1D shells here. This leads to A = E0

N(λ−1) , where N

is the number of modes used on the grid.
We then compute the total enstrophy Ωmax.

Ωmax =
∑

k

k2E(k)(λk − k) =
E0

N

∑

k

k2,

=
E0k

2
0

N

N−1∑

p=0

λ2p ≃ E0λ
2k2max

N(λ2 − 1)
.
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We can now define the renormalized enstrophy:

∼
Ω =

Ω

Ωmax
. (B1)

TABLE V: Ratio of various quantities for constant energy. W stands for the work of the forcing term.

N ν ⟨ER⟩ / ⟨EI⟩ ⟨ΩR⟩ / ⟨ΩI⟩ ⟨WR⟩ / ⟨WI⟩

10−4 100.0% 125.6% 99.9%
10−5 100.0% 102.1% 99.7%

83 5.10−6 100.0% 98.2% 98.6%
10−6 100.0% 100.0% 99.9%
10−7 100.0% 100.0% 97.3%
10−4 100.0% 135.4% 99.6%
10−5 100.0% 160.0% 99.3%

123 5.10−6 100.0% 164.6% 99.1%
10−6 100.0% 132.3% 99.7%
10−7 100.0% 100.4% 99.8%
10−4 100.0% 142.9% 97.5%
10−5 100.0% 156.1% 98.4%

163 5.10−6 100.0% 145.1% 98.9%
10−6 100.0% 315.2% 98.8%
10−7 100.0% 313.4% 97.9%

TABLE VI: Ratio of various quantities for constant enstrophy. W stands for the work of the forcing term.

N ν ⟨ER⟩ / ⟨EI⟩ ⟨ΩR⟩ / ⟨ΩI⟩ ⟨WR⟩ / ⟨WI⟩

10−4 98.2% 100.0% 98.5%
10−5 99.8% 100.0% 99.9%

83 5.10−6 98.9% 100.0% 98.3%
10−6 99.8% 100.0% 99.4%
10−7 100.0% 100.0% 96.3%
10−4 98.5% 100.0% 98.1%
10−5 99.0% 100.0% 98.9%

123 5.10−6 98.8% 100.0% 98.6%
10−6 98.6% 100.0% 98.9%
10−7 100.0% 100.0% 99.7%
10−4 98.8% 100.0% 98.0%
10−5 99.6% 100.0% 99.3%

163 5.10−6 99.7% 100.0% 99.8 %
10−6 99.5% 100.0% 99.8%
10−7 98.7% 100.0% 98.5%
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5.4 Overview of findings and objectives

5.4.1 Development of a comprehensive numerical framework
The primary objective of this research was met through the development of a versatile numerical
framework for log-lattices. This framework serves two main purposes. Firstly, it caters to the
needs of physicists, providing an optimized and user-friendly environment for simulating equa-
tions on log-lattices. While a proof-of-concept numerical framework existed before [Cam20],
it was not suitable for long and numerous simulations using log-lattices. The new framework
significantly enhances the speed and ease of performing and analyzing numerical simulations.
Secondly, the development of this framework led to the introduction of several novel features,
both in terms of numerical techniques and physical representations. These enhancements include
more efficient and robust numerical solvers and schemes, the incorporation of 𝑘𝑖 = 0 modes, and
rectified representations of energy spectra.

This framework was successfully used with collaborators to investigate the Reversible Navier-
Stokes equation [CBD23], and singularities in 1D viscous and non-viscous Burgers, 3D Euler
and 3D Navier-Stokes equations [Pik+23].

5.4.2 Application to specific geophysical turbulence scenarios
Using this framework, we investigated geophysical turbulence scenarios of interest. Through
the homogeneous Rayleigh-Bénard equations, we studied the influence of temperature. We
recovered the asymptotic ultimate regime of homogeneous Rayleigh-Bénard convection predicted
by GL theory[GL00], and at very high Rayleigh numbers found a transition from a stable to an
intermittent regime. We then studied the influence of rotation, first through the 2D beta-plane
quasi-geostrophic equations, where we were unable to observe the formation of zonal jets. In 3D
homogeneous rotating turbulence, we recovered expected scaling laws from [Ale15].

5.4.3 Identifying advantages and limitations
We started this work knowing very little about the capabilities and practical weaknesses of log-
lattices. By simulating the different scenarios outlined above, we gained a better understanding of
their advantages and limitations, and on some directions of research that would be very beneficial
for their wider adoption.

5.4.3.1 Physical Perspective

Although the order of magnitude of the observables (such as Nu in the HRB case) can widely
differ from that of DNS, log-lattices have overall proved successful in recovering known or
expected scaling laws (up to prefactors) across a wide range of scales, as seen in buoyant and
rotating turbulence and in blowup scenarios. The RNS study further indicates that the global
behavior of the system, including phase transitions, is well described by log-lattice simulations.
This is coherent with the boundary flow results of [Mar22].

It is difficult to draw precise conclusions of the failure of our 2D QG simulations, owing
to the large number of possible explanations. The most telling cause is the lack of Rossby
wave resonance, owing to the strict geometric structure of the lattice. Investigating other causes
requires a better understanding of how log-lattice simulations behave in 2D and to which extent
the inverse cascade is recovered; how the inclusion of the 𝑘𝑖 = 0 modes, which add long-range
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global interactions, affects the flow; and to which extent the lack of fine resolution around the
Rhines scale is responsible for the missing zonal jets.

Part of the difficulty in interpreting log-lattice results is a lack of understanding “what the
fields on the log-lattice correspond to” from a physical point of view. This question is directly
linked to the ability to perform inverse Fourier transforms on log-lattices. We have made some
progress in establishing this correspondence, and have identified challenges using sparse and
non-sparse Fourier lattices as a representation, but further work is needed.

5.4.3.2 Numerical Perspective

Common numerical frameworks and theories are not well suited for log-lattice simulations.
Most state-of-the-art solvers use a mixture of absolute and relative precision to determine the
accuracy of a simulation, which assumes that the observables are all more-or-less of the same
order of magnitude. However, the sheer number of scales spanned by log-lattices imply widely
diverging orders of magnitude of the simulated fields, which can easily reach values comparable
to the lowest representable floating point number2. As a result, common criterions such as the
Courant–Friedrichs–Lewy condition are of no use on log-lattices, and it is very unclear how
“well-resolved” small scales are, even in a statistical sense. Luckily, using “DNS” solvers gives
(up to some tweaks) satisfying results, but as log-lattices are very recent, there is to date no
proper numerical study of what adapting those solvers and conditions to log-lattices would look
like, and as such there is an inherent numerical uncertainty on the log-lattice results. If log-
lattices are to be used in conjunction with DNS, it is crucial to investigate this further, and have
quantitative estimates on the numerical error and stability induced by the time-stepping scheme
on log-lattices.

5.5 Future prospects and research directions
This work started in 2019, shortly after the first log-lattice publication. Given how little we knew
at the time, and the lack of a proper tool to perform simulations, it focused on simple use cases.
The success of our log-lattice simulations has led us to expand our research team, which are
actively working in several directions: more complex geophysical flows (combined rotation and
temperature, humidity and rain, salinity), new ways of handling boundary conditions, enhanced
solvers (stochastic, non-diagonal linear terms, preconditioning). This work has identified several
other aspects where our lack of understanding hinders our progress: 2D turbulence, 𝑘𝑖 = 0
modes, a proper understanding of physical representation of log-lattices (linked to inverse Fourier
transforms on log-lattices), a proper numerical understanding of convergence on log-lattices.

Solving those questions would enable longer-term goals such as proper comparisons with
DNS results, and interfacing between DNS and log-lattice simulations. This could be especially
useful in climate simulations for LES, where dubious closure conditions could be replaced by
log-lattice results, and would most likely be a prerequisite for a greater adoption of log-lattice
methods by the scientific community.

5.6 Final remarks
This study demonstrates significant achievements in establishing log-lattices as a viable mathe-
matical method for numerical turbulence. The developed numerical framework, along with the

2while still making physical sense ! This is not numerical noise.
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insights gained from applying log-lattices to geophysical equations, lays a strong foundation for
further research and real-world applications.

However, it is important to note that log-lattices represent one among several possibilities in
the realm of turbulence modeling. While they demonstrate remarkable potential, they are not
intended to be the sole solution for all scenarios, nor to replace DNS. Rather, log-lattices are a
valuable addition to the repertoire of turbulence modeling techniques. As we move forward, it is
essential to bear in mind their context-specific strengths and limitations.
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Appendix A

Technical details on the numerical
Framework

The content of this chapter moved to the online documentation, available here.
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Appendix B

Synthèse en Français

L’école doctorale impose un résumé de 5 pages en Français pour les thèses rédigées en anglais.
Vous trouverez donc ci-dessous un résumé autogénéré et traduit par IA.

Introduction

En 2019, Campolina a présenté un nouveau cadre mathématique appelé ”log-lattices” pour
simuler et explorer les équations de la dynamique des fluides avec un nombre réduit de modes.
Ces équations, en particulier les équations de Navier-Stokes incompressibles, décrivent le com-
portement des fluides. La principale motivation de Campolina était d’étudier l’explosion poten-
tielle des équations d’Euler, un aspect clé de la turbulence. Dans cette limite, connue sous le
nom de dissipation anormale, la dissipation d’énergie ne s’évanouit pas lorsque le nombre de
Reynolds s’approche de l’infini. On pense que ce phénomène résulte de solutions singulières des
équations d’Euler.

Pour relever les défis de la simulation de ces scénarios, les grilles logarithmiques ont été
introduits comme une nouvelle approche. Ces log-lattices sont construits sur la base d’une grille
discrète dans l’espace de Fourier avec des points de grille espacés de façon exponentielle, ce
qui permet des simulations avec moins de degrés de liberté. Il existe trois familles de valeurs
admissibles pour le facteur d’espacement, chacune ayant un niveau de complexité différent :
𝜆 = 2, 𝜆 valeurs entraı̂nant des interactions triadiques de 𝑧 = 6, et 𝜆 = 𝜎 (le ”nombre plastique”)
entraı̂nant des interactions triadiques de 𝑧 = 12.

Les recherches menées par Campolina et ses collègues ont révélé que les grilles logarith-
miques peuvent simuler l’explosion des équations d’Euler en 3D, ce qui constitue un défi pour les
simulations traditionnelles. Ils ont observé un attracteur chaotique dans l’explosion des équations
d’Euler en 3D, ce qui donne des indications précieuses sur le comportement des turbulences.
Leurs résultats sont cohérents pour différentes tailles de grille.
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Framework

Mathématique

Les grilles logarithmiques, également connus sous le nom de log-grids, présentent un nouveau
cadre mathématique pour l’examen des équations sur une grille spatiale fortement décimée
et exponentiellement espacée. Ce cadre s’avère très avantageux lorsqu’il s’agit d’étudier des
scénarios pour lesquels les simulations traditionnelles ne peuvent pas gérer efficacement la
charge de calcul. Les grilles logarithmiques possèdent une véritable multidimensionnalité,
contrairement aux modèles à coquille, et conservent la plupart des symétries trouvées dans les
équations originales sans aucun paramètre supplémentaire.

Le paramètre d’espacement 𝜆 peut prendre trois valeurs principales 𝜆 = 2, 𝜆 = 𝜙 ≈ 1.6 et
𝜆 = 𝜎 ≈ 1.3. Ces valeurs sont classées par ordre croissant du nombre d’interactions.

Nous déconseillons l’utilisation de 𝜆 = 2 pour les simulations incompressibles.

Numérique

Ce travail de doctorat s’est concentré sur le développement d’un cadre numérique pour des
simulations efficaces sur des grilles logarithmiques. Le cadre, créé à partir de zéro en utilisant
Python 3.11 avec quelques sections optimisées en Cython et C, est open-source, contrairement au
cadre Matlab original. Il est conçu pour être convivial pour les physiciens, avec un code lisible et
divers outils pour l’analyse des grilles logarithmiques. Le cadre comporte un dimensionnement
adaptatif de la grille, ce qui le rend économe en ressources pour les flux intermittents. Il est bien
documenté, testé en profondeur et comprend une documentation en ligne, une documentation en
ligne (bien qu’incomplète) et des indications sur les types.

Le cadre combine la facilité d’utilisation de Python avec les performances et la rapidité du
langage C. Il est flexible, ce qui permet de personnaliser l’utilisation du cadre. Il est flexible,
permettant des modifications personnalisées et l’ajout de nouveaux composants sans altérer la
structure existante. Les principales optimisations de performance en Cython et en C améliorent
considérablement la vitesse de simulation. Le cadre est adapté au traitement par lots et aux
sessions à distance, garantissant la sécurité en cas d’échec, l’interruptibilité et la reprise tout en
gérant efficacement l’utilisation de l’unité centrale.

Plusieurs nouvelles fonctionnalités de la grille logarithmique, comme les modes avec 𝑘𝑖 = 0
et les spectres rectifiés, ont été ajoutées. L’installation est facilitée par des scripts automatisés
et la virtualisation, ce qui garantit une installation sans problème qui n’interfère pas avec les
cadres existants. Actuellement, le code est hébergé sur le GitLab du CEA, mais l’objectif est de
le rendre accessible à un public plus large dans un avenir proche.
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Rayleigh-Bénard Homogène

Dans ce chapitre, les auteurs étudient un phénomène appelé ”Asymptotic Ultimate regime of
Rayleigh-Bénard convection” en utilisant un cadre mathématique connu sous le nom de grilles
logarithmiques. Ils introduisent un terme de friction à grande échelle pour atténuer les instabilités
exponentielles qui peuvent affecter les simulations, même dans les simulations numériques di-
rectes (DNS). Ils retrouvent des relations d’échelle pour divers paramètres, notamment Nu
(nombre de Nusselt), Re (nombre de Reynolds) et la dissipation en fonction de Ra (nombre de
Rayleigh) et Pr (nombre de Prandtl), comme prévu par Grossman & Lohse. Ils observent une
transition d’un régime ”stable” à un régime ”intermittent” avec des statistiques mal définies à Re
très élevé. Dans l’ensemble, ce chapitre explore la convection, un processus qui influence le trans-
port de chaleur et le mélange dans divers systèmes, et étudie le comportement de la convection
de Rayleigh-Bénard dans différents régimes, en mettant en lumière ses lois d’échelle et sa sta-
bilité. Le système présente initialement un régime stable avec un comportement prévisible, mais
subit une transition abrupte vers un régime intermittent avec des fluctuations plus importantes
à 𝑅𝑎 ≈ 1011. Cette transition s’accompagne d’un comportement particulier dans les spectres
d’énergie, avec l’apparition d’un pic singulier. L’emplacement de ce pic s’échelonne avec Ra,
plus précisément 𝑘 𝑝𝑒𝑎𝑘 ∝ 𝑅𝑎1/4, ressemblant au nombre d’ondes critique 𝑘𝑐 pour une instabilité.
Cependant, la nature exacte de cette instabilité reste incertaine. Le régime intermittent est diffi-
cile à comprendre car il est associé à un point d’instabilité localisé dans le domaine de simulation,
et les raisons de cette localisation ne sont pas encore claires. Malgré cette transition, les simula-
tions continuent de présenter une échelle de régime ultime de 𝑁𝑢 ∼ 𝑅𝑎0,5, ce qui suggère que la
dynamique des fluides est toujours cohérente avec le comportement attendu. Ce développement
fournit une direction intrigante pour la recherche future, et des recherches supplémentaires sont
nécessaires pour comprendre la physique sous-jacente de ce nouveau régime et ses implications.

Ecoulements en rotation

Ecoulements beta-plans

Nous n’avons pas réussi à reproduire la dynamique des écoulements quasi-géostrophiques dans
le plan bêta (QGBP) sur des grilles logarithmiques. Les équations brutes du QGBP à 2 couches
posent des problèmes mathématiques lorsqu’elles sont traitées sur des grilles de Fourier. Les
QGBP à une couche ne posent pas de tels problèmes. Cependant, l’émergence de jets zonaux,
malgré le comportement apparemment satisfaisant des ondes de Rossby, n’est pas visible.

Cela pourrait être dû à l’impossibilité d’observer la résonance exacte des ondes de Rossby sur
les grilles logarithmiques en raison de contraintes géométriques. Des recherches supplémentaires
sont nécessaires pour déterminer si cela pourrait également être dû à des problèmes avec la
cascade inverse dans les grilles logarithmiques 2D, l’absence d’interactions non locales, la
nature éparse des interactions locales, ou l’implémentation mathématique des modes 𝑘𝑖 = 0.
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Turbulence homogène en rotation

Nous simulons ensuite le NSE en rotation 3D, sans modes 𝑘𝑖 = 0, ce qui empêche la condensation
vers un écoulement quasi2D. Nous retrouvons les mêmes lois d’échelle que dans DNS [Ale15]
pour tous les régimes qui n’impliquent pas de condensation.

Autres contributions

J’expose ici les articles scientifiques auxquels j’ai contribué en tant que collaborateur, mais pas
en tant qu’auteur principal.

Les articles présentés dans cette section sont le résultat d’un travail de collaboration avec
des étudiants en doctorat qui ont rejoint notre groupe de recherche sur la grille logarithmique un
ou deux ans après que j’ai commencé mes propres recherches. Bien que je n’aie pas assumé le
rôle d’auteur principal, j’ai participé activement à la définition de l’orientation de la recherche, à
l’amélioration du cadre numérique pour répondre à leurs besoins spécifiques et à l’engagement
dans des discussions intellectuelles au sein des groupes de recherche respectifs.

Le premier article, intitulé ”Grilles logarithmiques pour les écoulements atmosphériques”,
étudiee les écoulements soumis à des gradients de rotation et de température.

Le second article, intitulé “Tracking complex singularities of fluids on log-lattices”, s’appuie
sur les travaux de [CM21]. Il étudie les signatures des singularités dans les équations de Burgers
visqueuses et non visqueuses 1D, les équations d’Euler 3D et les équations de Navier-Stokes
3D, avec une hyper-, une normale et une hypo-viscosité, en utilisant la méthode de la bande de
singularité.

Le troisième article, intitulé ”Équation de Navier-Stokes réversible sur des grilles logarith-
miques”, se concentre sur les transitions de phase dans l’équation de Navier-Stokes réversible.

Conclusions

La recherche a atteint son objectif principal en créant un cadre numérique polyvalent pour les
grilles logarithmiques. Ce cadre profite aux physiciens en fournissant un environnement optimisé
et convivial pour simuler des équations sur des grilles logarithmiques. Le nouveau cadre améliore
la vitesse et l’efficacité des simulations numériques et introduit de nouvelles caractéristiques telles
que des solveurs numériques améliorés et l’incorporation des modes 𝑘𝑖 = 0. Il a également été
appliqué à l’étude de diverses équations, notamment l’équation de Navier-Stokes réversible et
des scénarios de turbulence 1D et 3D.

En utilisant le cadre numérique, la recherche s’est penchée sur des scénarios de turbulence
géophysique, y compris les équations de Rayleigh-Bénard, les équations quasi-géostrophiques
du plan bêta en 2D et la turbulence rotative homogène en 3D. L’étude a exploré l’influence de
facteurs tels que la température et la rotation dans ces scénarios, en retrouvant les lois d’échelle
attendues.
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La recherche a mis en évidence les avantages des grilles logarithmiques dans la récupération
des lois d’échelle connues à travers différentes échelles dans les simulations de turbulence.
Cependant, des défis et des limites ont également été identifiés, tels que les difficultés d’interprétation
des résultats, en particulier dans les simulations 2D, et la nécessité d’une meilleure compréhension
de la représentation physique des grilles logarithmiques.

Les solveurs numériques courants se sont révélés moins adaptés aux simulations de grilles
logarithmiques en raison de la vaste gamme d’échelles concernées. Il a été noté que des
recherches supplémentaires sont nécessaires pour adapter les solveurs aux grilles logarithmiques
et quantifier l’erreur numérique et la stabilité introduites par les schémas à pas de temps.

La recherche se termine par une discussion sur les orientations futures de la recherche, y
compris des écoulements géophysiques plus complexes, des conditions aux limites, des solveurs
améliorés, et une meilleure compréhension de la turbulence 2D, des modes 𝑘𝑖 = 0, et de la
convergence numérique sur les grilles logarithmiques. Ces avancées sont considérées comme
cruciales pour une adoption et une intégration plus larges des méthodes de grille logarithmique
dans les simulations scientifiques.

L’étude reconnaı̂t les progrès significatifs réalisés dans l’établissement des grilles logarith-
miques en tant que méthode viable pour la modélisation numérique de la turbulence. Elle
souligne que les grilles logarithmiques constituent un ajout précieux au répertoire des techniques
de modélisation de la turbulence, mais qu’elles ne sont pas destinées à remplacer les méthodes
traditionnelles telles que la simulation numérique directe (DNS). L’importance de comprendre
les forces et les limites des grilles logarithmiques en fonction du contexte est soulignée à mesure
que la recherche progresse.
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Stokes equation on logarithmic lattices”. In: Physical Review E (June 2023). doi:
10.1103/PhysRevE.107.065106.

[Cha+97] X. Chavanne et al. “Observation of the Ultimate Regime in Rayleigh-Bénard Con-
vection”. In: Phys. Rev. Lett. 79 (19 Nov. 1997), pp. 3648–3651. doi: 10.1103/
PhysRevLett.79.3648.

[Che+96] Alexei Chekhlov et al. “The effect of small-scale forcing on large-scale structures
in two-dimensional flows”. en. In: Physica D: Nonlinear Phenomena 98.2-4 (Nov.
1996), pp. 321–334. issn: 01672789. doi: 10.1016/0167-2789(96)00102-9.

[CK08] Emily S. C. Ching and T. C. Ko. “Ultimate-state scaling in a shell model for
homogeneous turbulent convection”. In: Phys. Rev. E 78 (3 Sept. 2008), p. 036309.
doi: 10.1103/PhysRevE.78.036309.

[CL99] S. Ciliberto and C. Laroche. “Random Roughness of Boundary Increases the Tur-
bulent Convection Scaling Exponent”. In: Phys. Rev. Lett. 82 (20 May 1999),
pp. 3998–4001. doi: 10.1103/PhysRevLett.82.3998.

[CLT07] E. Calzavarini, D. Lohse, and F. Toschi. “Homogeneous Rayleigh-Bénard Convec-
tion”. In: Progress in Turbulence II. Berlin, Heidelberg: Springer Berlin Heidelberg,
2007, pp. 181–184. isbn: 978-3-540-32603-8. doi: 10.1007/978-3-540-32603-
8.

[CM18] Ciro S. Campolina and Alexei A. Mailybaev. “Chaotic Blowup in the 3D Incom-
pressible Euler Equations on a Logarithmic Lattice”. In: Phys. Rev. Lett. 121 (6
Aug. 2018), p. 064501. doi: 10.1103/PhysRevLett.121.064501.

[CM21] Ciro S Campolina and Alexei A Mailybaev. “Fluid dynamics on logarithmic lat-
tices”. In: Nonlinearity 34.7 (June 2021), pp. 4684–4715. doi: 10.1088/1361-
6544/abef73.

[CRG04] C Cambon, R Rubinstein, and FS Godeferd. “Advances in wave turbulence: rapidly
rotating flows”. In: New Journal of Physics 6.1 (2004), p. 73. doi: 10.1088/1367-
2630/6/1/073.

[DC96] Charles R. Doering and Peter Constantin. “Variational bounds on energy dissipation
in incompressible flows. III. Convection”. In: Phys. Rev. E 53 (6 June 1996),
pp. 5957–5981. doi: 10.1103/PhysRevE.53.5957.

[DG02] Sergey Danilov and David Gurarie. “Rhines scale and spectra of the 𝛽-plane turbu-
lence with bottom drag”. en. In: Physical Review E 65.6 (June 2002), p. 067301.
issn: 1063-651X, 1095-3787. doi: 10.1103/PhysRevE.65.067301.

[EG91] Jens Eggers and Siegfried Grossman. “Anomalous turbulent velocity scaling from
the Navier-Stokes equation”. In: Physics Letters A 156.7-8 (1991), pp. 444–449.
doi: 10.1016/0375-9601(91)90725-N.

[ES06] Gregory L Eyink and Katepalli R Sreenivasan. “Onsager and the theory of hy-
drodynamic turbulence”. In: Reviews of modern physics 78.1 (2006), p. 87. doi:
10.1103/RevModPhys.78.87.

[For15] Najmeh Foroozani. “Numerical Study of Turbulent Rayleigh-Benard Convection
with Cubic confinement”. en. In: PhD thesis (2015). url: http://hdl.handle.
net/10077/11115.

146

https://doi.org/10.1103/PhysRevE.107.065106
https://doi.org/10.1103/PhysRevLett.79.3648
https://doi.org/10.1103/PhysRevLett.79.3648
https://doi.org/10.1016/0167-2789(96)00102-9
https://doi.org/10.1103/PhysRevE.78.036309
https://doi.org/10.1103/PhysRevLett.82.3998
https://doi.org/10.1007/978-3-540-32603-8
https://doi.org/10.1007/978-3-540-32603-8
https://doi.org/10.1103/PhysRevLett.121.064501
https://doi.org/10.1088/1361-6544/abef73
https://doi.org/10.1088/1361-6544/abef73
https://doi.org/10.1088/1367-2630/6/1/073
https://doi.org/10.1088/1367-2630/6/1/073
https://doi.org/10.1103/PhysRevE.53.5957
https://doi.org/10.1103/PhysRevE.65.067301
https://doi.org/10.1016/0375-9601(91)90725-N
https://doi.org/10.1103/RevModPhys.78.87
http://hdl.handle.net/10077/11115
http://hdl.handle.net/10077/11115


[Fri+12] Uriel Frisch et al. “Turbulence in Noninteger Dimensions by Fractal Fourier Dec-
imation”. In: Phys. Rev. Lett. 108 (7 Feb. 2012), p. 074501. doi: 10 . 1103 /
PhysRevLett.108.074501.
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