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Modélisation d’Évry)
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Résumé en français

Cette thèse de doctorat porte sur la modélisation et la simulation des interactions fluide-structure
entre un dirigeable souple, un écoulement externe et un gaz porteur interne. Du fait de leur grande
taille, les dirigeables évoluent dans des écoulements dont le nombre de Reynolds est très élevé, ce
qui permet de négliger les effets visqueux et ainsi considèrer que le fluide est potentiel. L’écoulement
potentiel est résolu sur un maillage de l’interface fluide-structure grâce à la Méthode des Éléments
de Frontière. Cette dernière est basée sur la représentation intégrale qui permet de calculer le po-
tentiel de vitesse à l’interface uniquement en fonction de variables définies à l’interface et non pas
dans tout le domaine fluide grâce à des fonctions adéquates appelées fonctions de Green. Ainsi, la
méthode des éléments de frontière s’appuie sur un maillage surfacique de l’interface fluide-structure.
Le travail des efforts de pression associé à l’écoulement est obtenu par la Méthode des Eléments Fi-
nis. Les équations du fluide sont exprimées dans un formalisme Arbitrairement Lagrangien-Eulérien
consistant dans cette étude à suivre les mouvements des points matériels de l’interface dans la de-
scription du problème fluide. Afin de se ramener à des calculs sur un maillage de référence invariant,
on considère de grands mouvements d’ensemble (rotations et translations) auxquels s’ajoutent de
petits mouvements de corps rigides et de petites déformations par rapport auxquels le problème flu-
ide est linéarisé. Cela conduit en pratique à différencier les opérateurs de la Méthode des Éléments
de Frontière pour caractériser la cinématique du fluide ainsi que les opérateurs de la Méthode des
Eléments Finis pour déterminer les efforts associés exercés sur l’interface fluide-structure, ceci afin
de prendre en compte les perturbations dans le domaine fluide liées aux mouvements de l’interface.
La linéarisation permet d’exprimer les efforts du fluide à l’aide d’opérateurs de masse, gyroscopique
et de raideur ajoutés, proportionnels respectivement à l’accélération, la vitesse et les déplacements
de l’interface. On montre que l’opérateur de masse ajoutée du fluide est indépendant des vitesse de
corps rigide de la structure à l’ordre zéro conformément à la littérature, tandis que les opérateurs
gyroscopiques et de raideur du fluide sont respectivement linéaires et quadratiques par rapport
aux mouvements de corps rigide à l’ordre zéro. Cette dernière propriété permet prédire presque
instantanément les fluctuations des opérateurs du fluide lorsque les mouvements de corps rigide à
l’ordre zéro varient plutôt que de devoir les recalculer. Un modèle simplifié d’ailerons basé sur la
théorie de Theodorsen quasi-statique est utilisé afin qe le modèle prenne en compte leur portance.

La partie structure du problème est modélisée à partir de la Méthode des Eléments Finis
appliquée à une membrane. Celle-ci est précontrainte par la pression statique du fluide interne et
de l’écoulement externe, dont les effets varient en fonction de la vitesse. Le modèle fluide-structure
ainsi obtenu est utilisé pour étudier la stabilité d’un tel système couplé fluide-structure sur un
cas test de dirigeable. Les opérateurs fluide-structure permettent d’obtenir les valeurs propres du
système pour diverses vitesses du dirigeable. Le problème fluide-structure est coûteux à résoudre
car les matrices de la Méthode des Éléments de Frontière sont pleines, et pour réduire la taille
du problème, celui-ci est projeté sur une base réduite des modes de la structure dans le vide.
On constate qu’en l’absence d’ailerons, le système fluide-structure est instable dès que la vitesse
d’écoulement n’est pas nulle à cause du moment de Munk conformément à la littérature. La
présence d’ailerons à la queue de l’appareil permet de le stabiliser jusqu’à une vitesse critique à
partir de laquelle advient une divergence par flottement.

Enfin, la masse ajoutée obtenue par le modèle d’écoulement potentiel est comparée avec des
résultats expérimentaux obtenus à partir d’une maquette rigide oscillant en rotation dans une cuve
de fluide au repos. En faisant varier la fréquence d’oscillation de la maquette, la densité et la
viscosité du fluide, on a pu caractériser, en fonction du nombre de Stokes, l’ordre de grandeur des
efforts visqueux relativement aux efforts inertiels du fluide prédits pour un fluide potentiel.
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Chapter I

Introduction
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I.1 Context of the study

Context

Airships are a mean of aerial locomotion for which the lift required to raise it into the air is provided
by an internal carrier gas lighter than air: hydrogen or helium. Thanks to this, the lift is done
at a lower energy cost than an airplane or helicopter whose lift is aerodynamic. Moreover, this
allows the airship to make hovering flights without using energy. However, this is at the expense
of controllability: large volumes of carrier gas are required, which makes the airships imposing
and low-profiled. Consequently, the maneuverability of airships is very tedious, hence the need for
accurate dynamic models to predict and improve their control.

Figure I.1: Hidenburg disaster, 1937.

Airships were the first flying structure in history. However, the Hidenburg disaster which took
place in 19371, consisting of the destruction of the airship during its docking as pictured in Figure
I.1, has led to a sharp decline in interest in these devices. Nonetheless, a recent resurgence of
demand is arising, with several contexts considered:

� Heavy load transport with projects such as the LCA-60T Flying Whales project2 (funded by
the Office National des Forets), forecasted to carry 60 ton loads. One can also mention the
NATAC shuttle project by Voliris3 and the Airlander 10 project by Hybrid Air Vehicles4, two
projects of airships slightly heavier than air but whose streamlined shape of the hull allows
to ensure the necessary lift.

� Passenger transport for tourism with the Dirisolar DS1500 project5.

� Stratospheric missions with the Stratobus project conducted by Thales Alenia Space6, which
will enable to perform missions of observation, telecommunication or others at an altitude of
around 20km above the ground.

Contrarily to airships such as the Hidenburg filled with Hydrogen, a highly flamable gas, most
recent airship project rely on helium as a lifting gas which is non-flammable. It is interesting to
mention as well that both HAV and Voliris airships are hybrid airships, which means that they

1Hidenburg disaster Wikipedia page: https://en.wikipedia.org/wiki/Hindenburg_disaster
2Flying Whales company website: https://www.flying-whales.com
3Voliris company website: https://voliris.com
4Hybrid Air Vehicles company website: https://www.hybridairvehicles.com
5Dirisolar company website: http://dirisolar.com/Projets
6Thales Alenia Space communications about the Stratobus project: https://www.thalesgroup.com/en/

taxonomy/term/7436
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Figure I.2: Overview of current flexible airship projects. Top left: heavy lift NATAC project by
Voliris, top right: heavy lift Airlander 10 project by Hybrid Air Vehicles, bottom: stratospheric
missions Stratobus project by Thales Alenia Space.

are slightly heavier than air, which is compensated by the profiled shape of the hull enabling to
generate lift (Manikandan and Pant, 2021), see Figure I.2.

There are three types of airships. Rigid airships consist of a rigid skeletonon on which the
envelope is attached, containing non-pressurized carrier gas balloons. Semi-rigid airships have a
rigid keel to support the airship envelope, but their shape is maintained by the internal pressure
of the carrier gas. Finally, flexible airships have no keel nor skeleton, and the integrity of the
membrane is ensured solely by the internal pressure. It is this solution which is retained for the
great majority of the projects of recent airships (Li et al., 2011).

As an example, the current projects of airships are based on the following archetypes: Flying
Whales and Dirisolar are rigid airships, while Stratobus, Airlander 10 and Voliris are flexible airship
(see Figure I.2).

Overall scientific bottleneck

Although the internal pressure ensures the geometric integrity of the hull of non-rigid airships, it is
necessary to ensure that the flexibility does not induce instabilities leading to the rupture or loss of
control of the airships. Moreover, one should keep in mind that airships have much less experienced
data than aircrafts which have been intensively studied over the past decades, and consequently
the associated dynamic models are not as advanced and trustworthy.

Under these circumstances, the design of airships taking into account their flexible behavior in
nominal or unfavorable flight conditions remains a scientific bottleneck for aeronautical engineers
(Li et al., 2011). This is due to the lack of accurate models taking into account the interaction
between the elastic membrane and the surrounding fluids, which justifies the research presented
through this manuscript, consisting of the implementation of a model of the internal lifting gas and

3



the external flow effects on the dynamic behavior of a flexible airship.

The rest of chapter I presents in section I.2 an overview of the state of the art in the field of
airship aerodynamics, rigid or flexible, stationary or dynamic. A key element of this work being the
Boundary Element Method (BEM), a brief presentation of the associated state of the art is then
presented, both concerning its application to potential flows, but also with respect to the works
on its geometric differentiation, which is a key point of this research. Following this rather global
overview of the literature, the section I.3 presents in more detail some classical results from the
literature. First, a reminder of the equations associated with incompressible potential flows in an
Eulerian formalism is given. Then, the integral representation associated with the velocity potential
is presented, which is a key element for the implementation of the BEM, allowing to ”condense”
the kinematic equations of the fluid at the fluid-structure interface.

In chapter II, the objective is to introduce an original model of the fluid forces based on a
Newtonian approach (contrary to the literature mainly focused on Lagrange equations). In order
to take into account the moving interface in a practical way, the integral representation of the fluid
velocity potential is expressed according to an Arbitrary Lagrangian-Eulerian (ALE) formalism,
drawing inspiration from studies such as (Pfister, 2019; Mavaleix-Marchessoux, 2020). The fluid
variables (velocity potential, pressure and virtual power), which depend on the large rigid body
motions of the interface (large translations and large rotations), are then linearized with respect
to the small elastic and rigid body displacements of the interface. The consideration of linearized
forces due to small deformations in the context of large rotations of the structure is an aspect that
is, to the author’s knowledge, an original contribution of the thesis and was cited as a scientific
lock in the work of (Li et al., 2009). The linearized forces can then be expressed in terms of fluid
mass, gyroscopic and stiffness operators, respectively linear with the acceleration, velocity and
displacements of the interface, in a similar fashion to (Li et al., 2009). It is shown in the manuscript
that these three operators are respectively independent, linear and quadratic with regard to the
six rigid body motions of the structure, allowing to decompose the calculation of these operators
associated to any rigid body motion depending on contributions from each translation and rotation.
Finally, it is shown that, contrary to the Newtonian approach introduced in this manuscript, the
prediction of linear fluctuations of the fluid forces on the interface using an approach via Lagrange’s
equations would require the computation of the second order fluctuations of the geometric variables
as well as of the velocity potential, thus justifying the use of the Newtonian approach in this study.

In Chapter III, the objective is to introduce and validate a numerical method to predict the
fluid operators put into equations in Chapter II. A numerical implementation of the linearized
BEM based on the theoretical model introduced in Chapter II is presented. The computation
of the linearized BEM operators taking into account the deformations of the structure is, to the
author’s knowledge, an originality of this work. In order to accelerate their numerical computation,
the Hierarchical Matrix Method has been implemented on the usual BEM operators, then adapted
to the case of the linearized BEM operators introduced in this study. The fluid forces can thus be
computed using a Finite Element Method (FEM)-BEM coupling. The classical BEM operators have
been validated by comparing the associated solution with analytical solutions linked to an ellipsoid.
The linearized FEM-BEM operators have been validated by comparing the linear fluctuation results
predicted by the model with the nonlinear fluctuation results obtained using the finite difference
method with mesh deformation. The numerical solution of the potential fluid associated with a
stationary flow around an airship is then qualitatively compared with a RANS simulation.

In Chapter IV, the effects of internal and external fluids on the flexibility of an airship are
studied. For this purpose, a dynamic model of the structure is presented, taking into account
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non-linear effects associated with the internal pressure as well as dynamic elastic deformations
around the prestressed state. The associated operators are calculated numerically using the FEM.
Thanks to the monolithic equation obtained by coupling the FEM operators of the structure and
the FEM-BEM operators of the fluid, the associated eigenvalues can be calculated as a function of
the flow velocity, which allows to predict the risks of instabilities of the airship by divergence or
flutting. The stabilizing effect of the fins are then introduced numerically and the new associated
eigenvalues are studied.

Finally, in Chapter V, the added mass results obtained from potential flow theory are compared
with experimental results acquired from rotating oscillations of an ellipsoidal model in a pool of
water at rest. First, a model allowing to obtain an order of magnitude of the viscous forces of
the fluid as a function of the frequency, density and viscosity of the fluid, or more generally as a
function of the Stokes number which takes into account these three parameters, is introduced. In
this section, the equation of the fluid stresses is dimensionless, enabling to put forward similarities
between flows with equivalent non-dimensional parameters. The experimental setup allows to
verify the relationship between the fluid forces and the Stokes number and to verify experimentally
whether or not the predicted similitude is observed.

Each chapter will be followed by a small conclusion as well as associated perspectives. Then, a
general conclusion of the thesis work will be presented, which will first put forward the scientific
bottlenecks unlocked thanks to this manuscript, then to what extent this approach concurs or
stands out from the state of the art, and then give possible perspectives in order to deepen the
modeling of the effects of the internal and external fluids on the dynamics of the flexible airships.
Following this are the appendices, and finally the list of sources cited throughout this manuscript.

I.2 State of the art

Before presenting in detail the model on which this study will be based, this section gives an
overview of the state of the art, first in the field of airships, whether rigid or flexible, in a stationary
or dynamic framework. Then, important works of the literature associated with potential flows
solved using an integral representation, as is the case for BEM, are presented.

I.2.1 Airships aerodynamics

This section is largely based on the comprehensive literary review compiled by (Li et al., 2011), to
which the reader may refer for more exhaustive information on the field, but it is also supplemented
by studies from the last decade.

Stationary rigid airships

Numerous studies were focused on the hovering of rigid airships, either experimentally in wind
tunnels (Jones and Bell, 1929; Freeman and Wheatley, 1932; Funk et al., 2003) or more recently
from CFD (Jakobi et al., 2000; Lutz et al., 2002; Kale et al., 2005) amongst other studies listed by
(Li et al., 2011). Lutz et al. (2002) based themselves on a coupling of the Panel Method and were
able to compare their results with wind tunnel experiments on the Lotte airship. More recently,
Carbone et al. (2020) compared Reynolds Averaged Navier-Stokes (RANS) simulations around
an ellipsoidal shape with wind tunnel measurements, showing a good agreement between the two
methods.
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Dynamics of rigid airships

The prediction of the unsteady forces of the flow around a rigid airship is critical because these
forces are involved in many situations: during maneuvers when the airship is rotating, taking off,
landing, or in the presence of gusts.

Unlike the field of aviation where the phenomenon of added mass is often negligible, the inertia
of the fluid surrounding airships is of the same order of magnitude as the inertia of the structure
itself due to the lightness of airships (Li et al., 2011).

The study of Thomasson and Woolsey (2013) based on Lagrange’s equations shows how the
6 × 6 rigid matrix of added mass associated with the effects of inertia according to rotations and
translations allows to calculate the effects of inertia of an inhomogeneous, unsteady flow on a rigid
structure in motion in the framework of potential flows. This added mass matrix depends only on
the properties of the geometry of the structure and the density of the fluid. The resulting forces
then depend on both the acceleration and velocity of the structure. The calculation of the rigid
added mass operator of airships can be done using the BEM, which is well mastered by the airship
scientific community (Li et al., 2011).

Carbone et al. (2019) predicted numerically the added mass of airships near obstacles. They
developed a BEM code to calculate the added mass. The structure as well as the obstacles are
meshed. This BEM code was applied to structures in an infinite fluid domain or near walls in
order to validate the numerical results. Then the influence of more complex obstacle shapes such
as mountains on the added mass was studied. The limitations of this study are that the model
does not take into account the fluid effects other than the added mass.

In order to predict the unsteady forces of the flow, Li and Nahon (2007) solved the nonlinear
forces of a perfect fluid flow around a rigid ellipsoid based on the works of Thomasson (2000). They
used Lagrange’s equations associated with the velocity potential of the fluid, solved analytically
around an approximation of the airship shape as an ellipsoid. The dynamic model thus takes into
account the potential forces of the fluid, to which are added in particular the effects of lift of the fins
and turbulence at the tail of the airship. These different forces are taken into account by distinct
models. They were thus able to simulate the behavior of an airship and compare these simulations
with experimental flight tests. The non-linear model was also linearized to study the stability of the
airship. This made it possible to validate their model by comparison with CFD calculations and
experimental results. The stability analysis showed that the flow almost always has a stabilizing
effect on a rigid airship. The limitations of this study are that the effects of potential flow and
the lift of the fins were taken into account by separate methods and not by a single homogeneous
model. Moreover flexibility is not considered in this study, but will be in a later published article
discussed below.

Airships are particularly sensitive to gusts because of their large size. Thus, Reynolds Average
Navier Stokes (RANS) simulations were used by Carbone et al. (2020) to predict gust forces on
a non-profiled ellispöıd body. (Carbone, 2020) also computed a slice model to predict gust forces
at lower cost than RANS simulations, and compared the RANS results with the slice model. This
allowed for the characterization of the lift and pitching moment forces generated by a gust, in
agreement with the results of Kanoria et al. (2015). This also validated the suitability of the slice-
based model to predict the efforts of a gust at a lower cost. The limitations of this study of gust
forces come from the fact that a non-profiled body was considered, in the absence of fins used for
airships.
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Flexible stationary airships

The deflection of airships under aerodynamic loads was already investigated in the eighties by Hunt
(1982). The approach consisted in coupling a FE model of a tethered aerostat with aerodynamic
loads of the external flow obtained by interpolating pressure data from wind tunnel tests. This
approach allowed for a rough prediction of the stress concentration zones to verify if the structural
elements appeared to be correctly dimensioned.

The development of more powerful computational tools helped to improve the accuracy of the
methods used to study the deflection of airships. Bessert and Frederich (2005) used the Panel
Method on a three-dimensional mesh to predict the deformations of an airship under the effect of
a stationary flow. The mesh includes the hull, the fins and a wake surface behind their trailing
edge. The Panel Method allows to obtain the fluid forces for a much lower cost compared to
RANS simulations for example. The counterpart is that the turbulent effects are not taken into
account. The non-linear deformations of the structure are calculated using FEM. The results are
compared to those obtained for linear deformations. This allowed the calculation of the nonlinear
deformations associated with the flow for various angles of attack. The associated lift coefficient
was also obtained. An extension of the model to dynamics was made by calculating the derivatives
of the forces according to the rigid body movements of the airship around the deformed position.
The study allowed to highlight the strongly non-linear character of the deformations due to the flow
by the important difference of lift between the linear and non-linear structure models. Finally, the
stability analysis allowed them to show that the flexibility effects tended to stabilize the structure.
The limitations of this study come from the fact that the dynamic effects are taken into account
only by deriving from the rigid body motions, and not from the elastic motions. Moreover, since
the Panel Method is based on potential flow theory, turbulence effects are not taken into account.

El Omari et al. (2004) used a different approach: they also assumed an inviscid flow, however
the fluid was solved using the Mixed Element Volume discretization, requiring to mesh a large
volume of fluid contrarily to the approach of Bessert and Frederich (2005). Consistently with
the literature (Amiryants et al., 2002; Bessert and Frederich, 2005), their study highlighted the
predominance of the first bending mode in the flexible behavior of the airship. The static flexible
solution was determined more precisely by Liu et al. (2010) and Wu et al. (2015) using Reynolds-
Averaged Navier-Stokes (RANS) methods. Moreover, Wu et al. (2015) were able to compare their
numerical results with a wind tunnel experiment, showing good comparison with respect to the
global deformations of the model.

However, the cost of RANS calculations is prohibitive for large dynamic fluid-structure coupled
problems such as airships (Li et al., 2011) (especially if the flexibility of the structure comes into
play) , hence the need for simplified approaches such as those presented in the following section.

Dynamics of flexible airships

In order to study the linear stability of a tethered aerostat, Lambert and Nahon (2003) used finite
differences to obtain the linear fluctuations of aerodynamic forces as a function of the aerostat
movements.

Airships altitude and pitch can be controlled through the inflation or deflation of internal
balloons containing gas called the ballonets. These inflated structure are not rigid, and therefore
have their own dynamical behaviour which has been studied by Maekawa and Saito (2004) using
a cylindrical tank analytical model to predict the influence of the ballonets on the dynamics of
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the airships, enabling to predict specific operating conditions where ballonet slosh may become
an important design issue. More complete coupling methods between elastic structures and free
surface liquids have been used for stability analysis in the litterature such as Ohayon (2004) but
have not been applied to airship ballonet dynamics yet.

Based on some simplification hypothesis, Destuynder and Santi (2006) derived an analytic
dynamic aeroelastic model of an airship in a flow, leading to a formulation of the fluid forces based
on aerodynamical mass, damping and stiffness operators.

In their study, Amiryants et al. (2002) predicted the effects of a flow on the stability of a flexible
airship. They have simplified the geometry into two surfaces obtained by projection of the volume
according to a horizontal and a vertical plane. These two surfaces were meshed and used to predict
the fluid forces using the Panel Method in order to take into account the effects of fluid circulation
around the hull and the fins. The dynamics of the structure were calculated using the FEM. An
equivalent beam model was compared to the full structure model. The response of the flexible
airship to the gust was studied, and a stability analysis was performed. Their study showed that
beam models can accurately capture the dynamics of the structure. The motions of the structure
were projected onto the rigid body motions and the first bending modes of the structure. This
allowed the authors to perform a stability analysis for various flow velocities. This study made it
possible to predict the appearance of a flutter instability at a critical speed. In particular, they
observed that the flutter involves the first bending mode. The limitations of this study come from
the fact that the internal fluid was not taken into account in the dynamics of the airship. In
addition, the movements of large rotation of the structure were not be taken into account. Finally,
the approximation of the shape of the structure by projection of the volume according to vertical
and horizontal surfaces is not very realistic for the hull which is not very profiled.

In their studies, Bennaceur et al. (2006); Bennaceur (2009) studied flexible airships in a perfect,
potential fluid. They considered rigid-body movements and bending modes by approximating
the fluid-structure interface as a cylinder deformed as a cosine function, and solved in cylindrical
coordinates the ideal fluid dynamical equations based on Lagrange’s equations. This approximated
model helped them to compute the trajectories of a flexible airship and compare it with rigid
airship results to estimate the effects of flexibility. Azouz et al. (2012); Chaabani (2014) carried on
these works: the potential flow solution around an airship with an unconventional shape was found
analytically using Lamé’s functions based on a sphero-conal approximation of the shape of the
airship. In this work, the coupling between the deformations of the airship and its large rotations
has been partially taken into account.

Li et al. (2009) extended their rigid airship model commented above to the case of flexible airship
motions. They projected the elastic motions according to the first bending modes of the airship
computed with a beam model: According to Amiryants et al. (2002), the airship deformations were
correctly predicted with this model. They calculated the linear fluctuations of the fluid forces by
combining the forces of the fins and the turbulent forces at the tail of the airship with the potential
forces of the flow. Those fluctuations were predicted using the linearized Lagrangian equations,
coupled with the thin profile approximation which consists in neglecting some three-dimensional
effects of the flow due to the elongation of the structure. The resulting model was then used to
characterize the gust response of flexible airships and determine the influence of the structure’s
flexibility on it. Finally, a stability analysis of the flexible airship was carried out. The stability
analysis done for various longitudinal flow velocities revealed a risk of flutter by coupling of the first
bending mode with the pitching mode of the structure, consistent with the results of Amiryants
et al. (2002). The limitations of this study come from the fact that the internal fluid and the
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associated prestressing effects were not taken into account. Moreover, the potential flow forces
were integrated around an ellipsoidal interface and not around a real airship shape. Contrary
to the study of Bessert and Frederich (2005), the prediction of the lift forces of the fins and the
potential forces around the airship were not taken into account from a single and unified model.
Moreover, the fluid forces were linearized around an order zero longitudinal translation speed: order
zero diving movements or large rotations could not be taken into account.

Now that the state of the art on airship aeroelasticity has been presented, the following section
will look at the coupling between structures and potential flows solved using an integral represen-
tation, as is the case with the BEM in the work presented later in this manuscript. Then, some
studies in the literature that have used geometric differentiation of the BEM in various contexts
are presented.

I.2.2 Boundary Element methods for potential flows

As presented in more detail in Chapter III, the BEM is a numerical calculation method based on an
integral representation, which has the advantage of solving a numerical problem whose unknowns
are localized only on an interface. Thus, in the case of an airship for example, the flow will be
solved using a surface mesh of the fluid-structure interface, and not from a volume mesh of the fluid
as is the case with methods such as Finite Volume Method. According to Morino and Gennaretti
(1992), Boundary Element Methods can be classified into two categories, ”direct methods” and
”indirect methods”. Indirect methods allow to compute a solution based on fundamental solutions
of the Laplace equation such as sources, doublets or vortices. Such methods have been used in
the airship literature, as for instance the study of Amiryants et al. (2002) based on the Doublet
Lattice Method to model unsteady potential flows around profiled bodies supposed to be infinitely
thin. Let us also mention the study of Bessert and Frederich (2005) based on the Panel Method
which takes into account the thickness of the profiles. The direct methods are based on the direct
resolution of the unknowns of the problem, such as the velocity potential, the acceleration potential
or the pressure distribution. As this work is based on these methods, the associated literature is
presented with more details in the following section.

Direct BEM for potential flows

The resolution of potential flows using the BEM has been used in recent problems of fluid-structure
interaction. For example, we can mention the work of Veron et al. (2016) who studied the dynamical
interaction of flexible pipes with an external fluid and an internal flow. More recently, the behavior
of submarines subjected to underwater explosions has been simulated by Mavaleix-Marchessoux
(2020). These last two studies have both used partitioned approaches: the fluid-structure problem
is separated into two sub-problems, one fluid and one structure. Each of these sub-problems is solved
in turn with as input the deformation or pressure field obtained by solving the complementary sub-
problem. The pressure or deformation field obtained is used as data to solve the other sub-problem
again, iterating until convergence.

In the work of Morino and Gennaretti (1992), the BEM is used in an aeronautical context, for
planes as well as helicopter rotors. Unlike Veron et al. (2016); Mavaleix-Marchessoux (2020), their
model includes a wake sheet that takes into account circulations generated by profiled bodies.

Now that we have presented works involving the BEM associated with potential flows to solve
fluid-structure interaction problems in different industrial contexts, illustrating the pertinence of
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the method in different fields of study, the following section will present, in a non-exhaustive way,
studies that have focused on the domain differentiation of the BEM.

Domain differentiation of boundary integral equations

As mentionned by Bonnet (1999), the first derivative of the integral representation on which the
BEM is based plays a crucial role in various physical problems. Amongst those, we might consider
the study of Potthast (1994) who used domain differentiation of the BEM operators in the domain
of acoustics, or Costabel and Le Louër (2012) in the field of electromagnetic scattering. Nishimura
and Kobayashi (1991) used this method in order to detect cracks and Mukherjee and Chandra
(1991) for design sensitivity purposes in nonlinear solid mechanics.

However, to the author’s knowledge, domain differentiation has not yet been introduced in the
framework of potential, incompressible flows as is done in this manuscript.
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I.3 Problem overview and general equations

With a view to predicting how the fluid affects the structure trajectory, we are seeking for an
explicit expression of its work with respect to the interface movements. The Euler equations for
an incompressible, irrotational flow are thus reminded to the reader in this section. The integral
representation is introduced so as to condense the kinematic equations of the flow at the interface,
enabling to reduce the dimension of the fluid unknowns, both for the external and internal fluid
cases. The combination of the Euler equations and the integral representation is a well posed
problem, making it possible to to obtain an implicit expression of the work of the fluid with respect
to the interface movements. The equations developed in section I.3.1 have already been intensively
studied in the litterature: see for example Lamb (1918), Newman (2018), and Katz and Plotkin
(2001) for the Euler equations of potential flows and Bonnet (1999), Posrikidis (2002) or Hackbusch
(1995) for integral equations. These equation are introduced as a preamble in this introductory
chapter.

I.3.1 Euler equations for inviscid, incompressible flows

The equations for an incompressible potential flow have been intensively studied in the litterature
(Katz and Plotkin, 2001; Newman, 2018; Nitikitpaiboon and Bathe, 1993; Morand and Ohayon,
1995; Li et al., 2009; Veron et al., 2016; Mavaleix-Marchessoux, 2020), and this section introduces
them with the aim of modeling the work of the fluid on the fluid-structure interface.

Ωf(t) = Ωint

n

Σ(t)

Ωf(t) = Ωext

(Pext):(Pint):

∂Ω∞

Ωint

Ωext

Σ(t)

n

g g

Figure I.3: Geometry of the internal fluid problem (Pint) and the external fluid problem (Pext).

In the following manuscript, the vectors will be in bold notation and the order 2 tensors will be
double-struck. Let us consider a fluid-structure interface Σ(t) that moves in a potential fluid at rest
in the domain Ωf(t), as sketched in figure I.3. In this section, two distinct problems will be dealt
with: the internal problem (Pint) where the fluid fills an enclosed domain Ωint which is associated
with the lifting gas for airship, and the external problem (Pext) where the fluid at rest is in the
unbounded domain Ωext. The unit normal n at the interface Σ(t) is arbitrarily set to be outward
the fluid domain, hence toward Ωext for (Pint) and toward Ωint for (Pext), enabling to apply the
divergence theorem consistently. The time is denoted t and the spatial coordinates are denoted x.
With a view to having a coherent coupling between the weak formulation of the structure model in
chapter III, the aim of this chapter is to calculate the virtual power of the fluid δPf (δv) associated
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with a virtual, infinitesimal displacement δv of the interface Σ(t) separating the solid and fluid
domain. The velocity v of a structural material point of position x at the interface is defined as:

v(x, t) =
∂x

∂t
, x ∈ Σ(t). (I.1)

We define the characteristic length L, velocity V and frequency Ω of the structure as well as their
dimensionless counterparts v∗, t∗ and x∗ such that:

v∗ =
v

V
∼ 1 on Σ(t) (I.2a)

∂v∗

∂t∗
=

1

V Ω

∂v

∂t
∼ 1 on Σ(t) (I.2b)

x∗ − y∗ =
x− y

L
∼ 1, ∀x,y ∈ Σ(t)

2, (I.2c)

where the notation a ∼ b means ”a has the same order of magnitude as b”. At the scale of airships,
the velocity of the structure is much lower than that of the sound in air c, and the Mach number
Ma verifies

Ma =
V

c
< 0.3. (I.3)

The flow can be hence be considered as incompressible:

∇ρf = 0 in Ωf(t). (I.4)

This property makes the conservation of mass equation equivalent to the conservation of volume
equation, which writes as a function of the velocity of the fluid u:

∇ · u = 0 in Ωf(t). (I.5)

Remark

In the very case of airships, the incompressibility of the flow is not verified during the ascent phase,
where the elevation of the structure in the sky causes the density of the atmosphere to vary. However,
the hypothesis is valid when considering maneuvers around a nominal operating altitude (Li and Nahon,
2007).

For the internal problem (Pint), one might note that the incompressibility condition of the fluid
implies a restriction on the flux at the boundaries which can be obtained using the divergence
theorem, recalling the Σ(t) encloses Ωf(t) = Ωint:

∇ · u = 0 on Ωf(t) ⇒
∫

Ωf(t)

∇ · u dΩ = 0

⇒
∫

Σ(t)

u · ndΣ(t) = 0 for (Pint).

(I.6)
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Equation (I.6) ensures that the net flux in the internal incompressible fluid domain is equal to zero.
However, this condition does not apply to the external problem (Pext), because a non nil net flux at
the interface Σ(t) can be compensated by fluid fluxes remotely on the unbounded fluid domain. The
thermal effects in the fluid region are neglected in this manuscript: the flow is considered adiabatic.
For an adiabatic flow with uniform and constant density, the relationship between the velocity of
the fluid u and the pressure p is given by the momentum equation for incompressible fluids as part
of the Navier-Stokes equations:

ρf

(
∂u

∂t
+ ▽∇uu

)
= −∇p+ ρfg + µf∆u in Ωf(t). (I.7)

In the above equation, µf is the dynamic viscosity of the fluid and g is the oriented acceleration of
gravity. Furthermore, the continuity of velocity at the fluid-structure interface reads:

u = v on Σ(t). (I.8)

In a fluid at rest, the velocity of the flow is imposed by the structure movements. Therefore, one
can deduce from equation (I.8) and its time derivative that the velocitiy and the acceleration of
the fluid and of the structure are of the same order of magnitude:

u∗ =
u

V
∼ 1 in Ωf(t) (I.9a)

∂u∗

∂t∗
=

1

V Ω

∂u

∂t
∼ 1 in Ωf(t). (I.9b)

The dimensionless pressure p∗ is introduced as well, even though no information enables to ensure
of its order of magnitude at this stage of the model development:

p∗ =
p

ρfV 2
in Ωf(t). (I.10)

Further considerations on the order of magnitude of p∗ are given later in equation (I.18), under the
assumption that the characteristic spatial variations of the flow are of the order of the structure
length L, one verifies:

▽∇∗u∗ =
L

V
▽∇u ∼ 1 in Ωf(t) (I.11a)

∆∗u∗ =
L2

V
∆u ∼ 1 in Ωf(t). (I.11b)

Finally, the Reynolds Re, Stokes St and Froude Fr numbers are introduced, noting g the amplitude
of gravity acceleration:

Re =
ρfV L

µf
(I.12a)

St =
ρfΩL

2

µf
(I.12b)

Fr =
√
ρfg

V
. (I.12c)
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The ratio between the advective acceleration ( ▽∇uu) and the viscous effects is quantified by Re,
St quantifies the ratio between the local acceleration (∂u/∂t) and the viscous effects, and Fr is a
ratio between inertial and gravity effects. By combining equations (I.7) and (I.12), the momentum
equation can be rewritten under the non-dimensional form:

St
∂u∗

∂t∗
+Re ▽∇∗u∗ u∗ = −Re∇∗p∗ +ReF−2

r eg +∆∗u∗ in Ωf(t). (I.13)

The unit vector eg = g/g is is the direction of the gravity acceleration. In this thesis, either the
Reynolds number or the Stokes number are supposed to be much larger than unit:

max(Re,St) ≫ 1, (I.14)

meaning that the viscous terms ∆∗u∗ plays a negligible role in the momentum equation (I.13)
compared to the inertial terms (either from the local acceleration ∂u/∂t for St ≫ 1 or from the
convective acceleration ▽∇uu for Re ≫ 1). Consequently, we consider the model of an inviscid fluid
(since the thermal effects are neglected as well, it might be referred to as an ideal fluid), leading to
the Euler equation for the conservation of momentum:

StR−1
e

∂u∗

∂t∗
+ ▽∇∗u∗ u∗ = −∇∗p∗ + F−2

r eg in Ωf(t). (I.15)

The reduced velocity Ur, commonly used in the field of aerodynamics (Katz and Plotkin, 2001), is
introduced as the ratio between the velocity of the structure and the characteristic velocity ΩL:

Ur =
V

ΩL
, (I.16)

From (I.15) and (I.16) can be deduced the magnitude of the pressure spatial variations, noting that
Ur = ReS−1

t :

∇∗p∗ ∼ max
(
1,U−1

r ,F−2
r

)
in Ωf(t). (I.17)

An expression with dimensions equivalent to the above equation can be obtained by multiplying it
by :

p(x)− p(y) ∼





ρfV
2 if Ur ≫ 1&F2

r ≫ 1
ρfΩV L if Ur ≪ 1&Ur ≪ F2

r

ρfgL if F2
r ≪ 1&F2

r ≪ Ur

∀x,y ∈ Σ(t). (I.18)

The two first line of equation (I.18) concern the case where gravity effects are negligible. The first
line traduces that the pressure effects of a stationary flow around a structure are of the order of
ρfV

2, referred to as dynamic pressure effects. When the structure undergoes large accelerations,
the pressure forces are of the order of ρfΩV as shown in the second line. The term ΩV is the
acceleration amplitude of the structure, and the resulting pressure will cause an added mass effect
because of the inertia of the fluid surrounding the structure (Lamb, 1918). The predominance
of aforementioned effects is given by the parameter Ur : for large reduced velocity, the dynamic
pressure effects will dominate while added mass effects dominate at small reduced velocity. For an
immobile structure, the pressure is of the order of ρfgL as is shown in the third line.

14



The Euler equation for the conservation of momentum (I.15) can be rewritten with dimensional
variables:

ρf

(
∂u

∂t
+ ▽∇uu

)
= −∇p+ ρfg in Ωf(t). (I.19)

For an inviscid fluid, the continuity of the velocity (I.8) is replaced by the continuity of the normal
velocity, the absence of strain forces enabling the fluid to freely slide tangentially to the interface:

u · n = v · n on Σ(t). (I.20)

By combining the no slip condition (I.20) with the incompressibility condition for the internal
problem (I.6), one gets the following restriction for the movements of the interface on the internal
problem:

∫

Σ(t)

v · ndΣ(t) = 0 for (Pint), (I.21)

which means that v must be part of the kinematically admissible KA
isoV fields(where isoV stands

for iso volume since the volume enclosed by the interface is conserved) for the internal problem :

v ∈ KA
isoV =

{
v ∈ C1

(
Σ(t),R3

) ∣∣∣
∫

Σ
v · ndΣ = 0

}
. (I.22)

where C1 is the space of continuous functions with continuous derivatives. Before using the
equations above to obtain the expression of the virtual pressure, the magnitude of viscous strains
at either large Reynolds or large Stokes are investigated in the following section.

On the inviscid fluid hypothesis

Σ(t)

ΣBL

n
x

δ

u(x+αn)− v(x)Ωf(t)

ΩBL

Figure I.4: Laminar boundary layer developing around an interface (in the case of a structure
moving toward the left of the figure). u(x+αn)−v(x) gives the velocity profile of the flow relative
to the interface velocity. The boundary layer ΩBL ⊂ Ωf(t) of thickness δ is enclosed between the
interface Σ(t) and its edge ΣBL.

It is important to mention that, close to the fluid-structure interface, there is a boundary layer
region ΩBL where the fluid velocity develops, with u = 0 at the interface Σ(t). This boundary layer
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is studied in the following paragraphs. First, the case of a stationnary flows boundary layer, hence
with Ur ≫ 1, is investigated since it is more documented than the case of unstationnary flows in
the literature. The normal velocity being almost constant in the boundary layer (Schobeiri, 2010;
Darrozès and François, 1982), one can deduce that the condition (I.20) is verified at the edge of
the boundary layer ΣBL, and not at the fluid-structure interface Σ(t). Moreover, in the region ΩBL,
the hypothesis on the order of magnitude ∆∗u∗ from equation (I.11) related to L is not verified
since the magnitude of the boundary layer thickness δ intervenes too. Hence, it would make more
sense to solve the velocity of the fluid with the boundary condition on ΣBL instead of Σ(t), and use
the Euler equation (I.19) only in the fluid domain Ωf(t)\ΩBL. However, if we consider a laminar,
attached boundary layer, the velocity of the fluid develops in this boundary layer of thickness δ
(the definition of the latter is arbitrary and can vary from one approach to another). As Schobeiri
(2010) explains with the help of a flat plate model, one can estimate the relative thickness δ/L of
the boundary layer as:

δ

L
∼ R− 1

2
e . (I.23)

Therefore, if we consider a large enough Reynolds number R2
e ≫ 1, the difference between

the geometry of the fluid domains Ωf(t) and ΩBL delimited by Σ(t) and ΣBL becomes negligible
relatively to the size of the structure. Consequently, using the boundary condition (I.20) on Σ(t)

instead of ΣBL and the momentum equation (I.19) on Ωf(t) instead of Ωf(t)\ΩBL is expected to
give accurate results for attached laminar boundary layers at high Reynolds. Solving this problem
means that the velocity can be obtained at the outer surface ΣBL of the boundary layer and not
at the fluid-structure interface, which means the pressure obtained with the Euler equation will
be known on ΣBL but not on Σ(t). However, in a laminar attached boundary layer, the normal
fluctuations of the pressure are negligible. Therefore, calculating the pressure p on the edge of the
boundary layer ΣBL will allow to predict with good precision the pressure at the fluid structure
interface Σ(t) (Darrozès and François, 1982). The viscous forces have been neglected as well in the
conservation of momentum equation (I.19), which also needs to be justified. The fluid stress tensor
writes as:

pσf = −p1+ pσµ, (I.24)

where pσµ is a skew-symmetric tensor accounting for the viscous stresses. According to (Schobeiri,
2010), the amplitude of pσµ can be estimated for an attached laminar boundary layer as:

pσµ ∼ ρfV
2R− 1

2
e . (I.25)

By combining the pressure and viscous stresses amplitudes from equations (I.10), (I.17) and (I.25),
we obtain the ratio between the viscous and the pressure stresses:

pσµ
p

∼ R− 1
2

e

max(1,Ur,F−2
r )

< R− 1
2

e , (I.26)

which means that viscous strain effects might be neglected for high Reynolds, stationary laminar
flows. As mentionned previously, equation (I.26) is valid for stationnary flows Ur ≫ 1. For unsteady
laminar flows, a similar result can be obtained by using the magnitude of the viscous effects of a
laminar flow on an flat plate oscillating tangentially, as shown by Doaré (2020):
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pσµ ∼ ρfΩL
2S− 1

2
t . (I.27)

More details can be found about the above equation in Chapter IV where the viscous effects on
oscillating structures are investigated experimentally. As a consequence, the ratio between viscous
and pressure stresses becomes

pσµ
p

=
S− 1

2
t

max(1,Ur,F−2
r )

< S− 1
2

t . (I.28)

As for steady viscous effects at large Reynolds laminar flows, the unsteady viscous strains at large
Stokes laminar flows can be neglected.

Since most of the boundary layer around airships is turbulent, similar results can be obtained
using Schlichting and Kestin (1961) results:

δ

L
∼ R− 1

5
e (I.29a)

pσµ ∼ ρfV
2R− 1

5
e . (I.29b)

The Euler equations for the fluid described in this section will allow a coherent mathematical
coupling between the fluid forces and the structure dynamics, expressed with a weak formulation
as well in chapter III. Because the viscous forces have been neglected, there is no tangential forces
applied by the fluid on the interface, only a normal pressure force. Now that the conservation of
mass (I.5), momentum (I.19) and continuity of normal velocity at the interface (I.20) have been
determined, we will focus on the particular case of irrotational flows. As a consequence the weak
form of the force exerted by an incompressible, inviscid flow associated with a virtual velocity δv
of the interface is given by:

δPf =

∫

Σ(t)

pn · δv dΣ, (I.30)

where the viscous strains pσµ have been neglected for reasons mentioned in the study of the boundary
layer.

Potential flow

Another assumption is made about the flow: it is supposed to be irrotational. According to the
Lagrange theorem, if a volume of ideal flow particles is irrotational at a given time, this volume
of fluid particles will remain irrotational at any time (Darrozès and François, 1982). However, the
hypothesis that the structure causes no vorticity in the fluid is quite strong. Regarding the case
of airships, Lutz et al. (2002) observed experimentally that important vorticity phenomena occur
around the fins, which is to be expected since they generate lift by creating a circulation on the
surrounding fluid. Therefore, we expect the results obtained with the irrotational hypothesis to be
inaccurate around the fins region, which is the reason why section IV.3 introduces the superposition
of circulation effects and irrotational effects. Moreover, Lutz et al. (2002) highlighted that, at non
zero angles of attack, turbulent phenomena are occurring at the rear of the airship, which will not
be captured either by the irrotational model. As Li and Nahon (2007) has mentioned and put into
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practice, it is possible to superimpose the circulation and turbulent effects at the fins and rear of
the airship on top of the irrotational solution. According to the Helmoltz-Hodge theorem (Shaw,
1922), any sufficiently smooth, rapidly decaying vector field in three dimensions can be expressed
as the superposition of an irrotational and a divergence free contributions. Therefore, the velocity
u can be resolved into the sum of a potential flow ∇ϕ and a rotational flow ∇ ∧ Γ:

u = ∇ϕ+∇ ∧ Γ in Ωf(t). (I.31)

The potential velocity ∇ϕ of the flow is irrotational by property of the curl: ∇ ∧ ∇ϕ = 0. The
rotational velocity associated to Γ is divergence free by property of the divergence: ∇.(∇∧Γ) = 0.
Because the velocity of the flow u depends on the spatial derivatives of the scalar potential ϕ and
the vector potential Γ, both of these are defined up to a spatial constant. This manuscript will not
venture into the introduction of corrections to take into account the rear turbulence. We suppose
that the flow is irrotational, that is:

∇ ∧ u = 0 in Ωf(t). (I.32)

Newman demonstrated that the rotational contribution ∇ ∧ Γ is nil for an irrotational flow in a
connex domain (Newman, 2018), hence we can write u as a potential flow:

u = ∇ϕ in Ωf(t). (I.33)

This means that the fluid problem can now be determined by solving a scalar field ϕ(x, t) ∈
C2(Ωf(t) × R+,R) (two times differentiable and continuous scalar function) instead of a vector
field u(x, t) ∈ C1(Ωf × R+,R) (differentiable and continuous vector function), thus reducing the
dimension of the fluid kinematic unkowns from three to one. We now want to rewrite the Euler
equations (I.5), (I.19) and (I.20) shown in previous section for a potential flow. The conservation
of mass (I.5) becomes combined with (I.33):

∆ϕ = 0 in Ωf(t), (I.34)

which means that the potential ϕ is the solution of a Laplace equation. The boundary no-slip
condition (I.20) becomes when combined with (I.33):

∂nϕ = v · n on Σ(t), (I.35)

where ∂n stands for the normal derivation n · ∇. Laplace’s equation is thus associated with a
Neumann condition for the flux at the interface. However, such problems does not have unique
solutions because they are defined only with derivatives of the potential. It is much more convenient
to impose the uniqueness of the solution (to ensure good conditioning of the numerical operators
amongst other advantages), by adding a new arbitrary equation ensuring the uniqueness of the
solution without affecting the physics of the fluid. The distance r is introduced as:

r = ∥x− y∥ , (I.36)

and the uniqueness condition writes

18



ϕ = o(1), r → ∞ ∀(x,y) in Σ(t) × Ωf(t) for (Pext) (I.37a)

ϕ(xref) = 0, xref ∈ Σ(t) for (Pint) (I.37b)

The artificial zero-value conditions (I.37a) and (I.37b) are not related to the physics of the fluid
problem, but are rather mathematical tricks to prevent the velocity potential to vary up to an
homogeneous constant, which wouldn’t affect the velocity which is defined with the gradient of the
velocity potential. The second line associated with the interior problem would also work with any
xref ∈ Ωf(t), but since the velocity potential will be condensed at the interface Σ(t) in section I.3.2,
it is much more convenient to manipulate a condition that is at the interface as well. It can
therefore be noticed that for a pure fluid problem the velocity of a potential flow has the advantage
of being resolvable without taking into account the pressure of the fluid. According to Folland
(2020), the exterior Laplace problem (Pext) with Neumann boundary condition associated with
equations (I.34), (I.35), (I.37a) and (I.37b) is well posed, and its unique solution can be written as
the sum of single layer and double layer potentials (associated respectively with the Green function
G and its normal derivative ∂nG (whose expressions are given later in the manuscript in I.3.2).
This means that the velocity potential, its temporal and its spatial derivatives verify remotely from
the structure:

for (Pext) :



ϕ = O
(
r−1
)

∇ϕ · n = O
(
r−2
)

∂ϕ
∂t = O

(
r−1
) ∀x ∈ Σ(t), y ∈ R3, r → ∞.

(I.38)

where a = O (b) means that a is of the same order as b at the neighborhood of a point (which might
be infinity, as is the case above). In order to calculate the forces of the fluid, the pressure can be
obtained as a function of the potential. To obtain the expression of the pressure, one might first
use the property obtained with vector calculus identity and the irrotationality of the flow (I.32):

▽∇uu =
1

2
∇u2 + (∇ ∧ u) ∧ u =

1

2
∇u2, (I.39)

enabling to get the convenient form of the momentum conservation by combining equations (I.19),
(I.33) and (I.39):

∂∇ϕ

∂t
+

1

2
∇(u2) = −∇p

ρf
+ g· (I.40)

The unsteady Bernoulli equation for potential flows (Newman, 2018) can be deduced from the
equation above with spatial integration, recalling the homogeneous density of the fluid (I.4):

p

ρf
+

1

2
u2 + ϕ̇− g · x =

π

ρf
, (I.41)

π being an homogeneous pressure appearing with the spatial integration. With a view to expressing
π for the external problem (Pext), the fixed reference point x̄c is introduced. The pressure of the
fluid at the altitude of x̄c but infinitely remote from the structure can be expressed, recalling the
decay of the potential and its gradient from (I.38),
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π

ρf
=

p

ρf
+

1

2
u2 + ϕ̇− g · x

=
p

ρf
+ g · x̄c for x → ∞, x · eg = x̄c.ez, (Pext).

(I.42)

We suppose that the pressure p at a given altitude x · eg = x̄c · eg is known remotely from the
structure:

p(x) = p∞c for x → ∞, x · eg = x̄c · eg, (Pext), (I.43)

enabling to obtain the expression of the pressure for the external problem:

π

ρf
= p∞c + gx̄c · ez for x → ∞

⇔ p

ρf
=
p∞c
ρf

− 1

2
u2 − ϕ̇+ g · (x− x̄c).

(I.44)

In order to lighten the equations, the following notation ψc is introduced:

ψc =

{
p∞c
ρf

for (Pext)
π
ρf

+ g · x̄c for (Pint)
(I.45)

Consequently, the Bernoulli equation for potential flows can be rewritten by combining equa-
tions (I.41) and (I.45):

p

ρf
= ψc − ϕ̇− 1

2
u2 + g · (x− x̄c) for (Pint)& (Pext). (I.46)

The term ψc is referred to as the homogeneous aerostatic pressure, the term involving g is the
aerostatic gradient of pressure, and the remaining terms are related to the dynamic pressure which
depends on the velocity and acceleration of the interface, see Figure I.5. By combining equa-
tions (I.30) and (I.46), we can therefore obtain the weak expression of the fluid forces on the
interface in an Eulerian framework:

δPf = ρf

∫

Σ(t)

(
ψc − ϕ̇− 1

2
u2 − g · (x− x̄c)

)
δv · ndΣ (I.47)

Regarding the work of the fluid for the internal problem (Pint), if we choose virtual displacements
δv compatible with the incompressibility condition (I.6), we obtain from equations (I.22) and (I.30):

∫

Σ(t)

ψcδv · ndΣ = ψc

∫

Σ(t)

δv · ndΣ = 0 for δv ∈ KA
isoV. (I.48)

Therefore the internal problem is independent of the constant ψc. Note: if we were to impose
the incompressibility condition for the exterior problem as well (e.g considering a thin shell with
displacements homogeneous through its thickness separating both fluid domain,), i.e for δv ∈
KA

isoV for (Pext)), then the term pc would vanish over the integral, which means the work of the
external fluid would become independent from the pressure conditions at infinity.
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Figure I.5: Examples of pressure acting on the interface projected on the normal direction. Top
right: aerostatic gradient of pressure caused by gravity on a structure at rest, top right: homo-
geneous aerostatic pressure acting on a structure at rest in a flow with negligible gravity effects,
bottom left: dynamic pressure acting on an ellipsoid with a stationnary longitudinal motion, bot-
tom right dynamic pressure acting on a structure at rest but with a longitudinal acceleration, at
the very time the structure starts accelerating, causing added mass effects.

Remark

For the internal problem, restraining the virtual velocity of the structure to kinematically admissible
movements is convenient here to simplify the expression of the virtual power in equation (I.48) while
enabling to explore with the virtual velocity all the movements the system can possibly evolve into
(Morand and Ohayon, 1995).

The equations for the fluid have been presented, with two distinct problems: a kinematic
problem (FK) associated with the velocity and velocity potential of the flow through the fluid
domain: equations (I.33) to (I.35), (I.37a) and (I.37b), and a dynamic problem associated with the
virtual work of the fluid on the fluid-structure interface (I.47). The latter one only depends on
fluid variables defined at the interface whereas the fluid kinematic problem is set in the whole fluid
domain.

I.3.2 Integral representation of the velocity potential

The calculation of ϕ could be achieved by introducing a weak formulation (Morand and Ohayon,
1992) associated to the local equations (I.34) and (I.35) in order to use the FEM. However this
approach would have inconveniences in this particular case. It would require to solve the potential at
every node of the fluid mesh, which is very costly. Moreover, because the domain is infinite, it would

21



have to be artificially truncated by meshing only a part of it, introducing artificial confinement
effects. Finally, the ALE formulation is convenient to manage the coupling of the structure with
the flow, but it requires the introduction of a mesh displacement within the fluid domain when
used with the FEM (Pfister et al., 2019), which is not the case with the BEM used in this work as
the mesh displacement at the interface is the same as the structure displacement. As a solution,
we will use here an integral equation.

For that purpose, the Green’s function G associated with Laplace’s equation (I.34) in a three-
dimension space (Bonnet, 1999) is defined as:

∀x,y ∈ R3× R3 :

G(x− y) = − 1

4π ∥x− y∥ , solution of : (I.49a)

∆xG(x− y) = δ(x− y), with the property : (I.49b)

∇xG(x− y) =
x− y

4π ∥x− y∥3
(I.49c)

where δ denotes the Dirac distribution. The integral representation will be obtained using Green’s
second identity on an arbitrary domain Ω and its enclosing boundary ∂Ω which will be specified
later to suit the internal or external problem (recalling that n is oriented outward the fluid domain):

∫

Ω
∆G (x− y)ϕ (x)−∆ϕ (x)G (x− y) dΩ =

∮

∂Ω
∂nG (x− y)ϕ (x)−∂nϕ (x− y)G (x− y) d∂Ω.

(I.50)
In the above equation, it is implicit that the spatial derivations, the normal and the small elements
of volume or area are relative to the coordinate x which is the integration variable. By combining
equations (I.34), (I.49) and (I.50) we obtain the following relation:

∫

Ω
δ (x− y)ϕ (x) dΩ =

∮

∂Ω
∂nG (x− y)ϕ (x)− ∂nϕ (x− y)G (x− y) d∂Ω, (I.51)

which is the main equation leading to the integral representation. Because of the term δ(x−y), the
integrand in the above equation is singular when x → y. In order to deal mathematically with this
singularity, the ball Ωε and its enclosing sphere Σε(y) of infinitesimal radius noted7ε and centered
around y ∈ R3 is introduced. The normal n on Σε is arbitrarily oriented toward the center of the
sphere. In this section, the internal and external problems will be dealt with separately since the
practical determination of the integral equation slightly differs for each case.

Internal problem

We first focus on the internal problem (Pint) where the fluid is enclosed by Σ(t) in the domain
Ωf(t) = Ωint. In order to deal with the singularity in x−y = 0, we take into consideration the fluid
domain without the ball Ωε around y:

7There is no risk of confusion with the dimensionless amplitude of the displacements noted ε too in section II.2
since the infinitesimal sphere is only referred to in this very section of the thesis.
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Figure I.6: Left: external and internal domains Ωext, Ωint and excluded domain Ωε enclosed by the
sphere Σε. The unit normal next on Σ(t) is oriented toward the external domain, and n is always
oriented towards the center of the sphere y on Σε. Right: sphere Σε split into an external and an
internal portions of sphere when y is on the interface Σ(t).

Ω = Ωint\Ωε for (Pint). (I.52)

The associated boundary is the sum of the interface Σ from which has been excluded the intersection
with Ωε and the internal portion of sphere Σεint = Σε ∩ Ωint (see figure I.6):

∂Ω = (Σ(t)\Ωε) ∪ Σεint for (Pint). (I.53)

For y ∈ Σ(t), Σε is a portion of sphere. For y ∈ Ωint\Σ(t) we consider that ε is taken sufficiently
small such that Ωε ⊂ Ωint and Σεint = Σε, and for y ∈ Ωext\Σ(t) we take ε sufficiently small such
that Ωε ∩Ωint = ∅ and Σεint = ∅. Equation (I.51) can be combined with equations (I.52) and (I.53)
for the internal problem:

∫

Ωint\Ωε

δ (x− y)ϕ (x) dΩ =

∮

(Σ(t)\Ωε)∪Σεint

∂nG (x− y)ϕ (x)− ∂nϕ (x− y)G (x− y) dΣ for (Pint).

(I.54)
Because we have chosen accordingly the integration domain Ω, we have the property:

δ(x− y) = 0 for x ∈ Ωint\Ωε. (I.55)

By combining equations (I.54) and (I.55) the dirac distribution vanishes, leading to the equation
below by splitting the integrals on Σ\Ωε and Σεint:

∫

Σ(t)\Ωε

∂nG (x− y)ϕ (x)− ∂nϕ (x)G (x− y) dΣ = ...

−
∫

Σεint

∂nG (x− y)ϕ (x)− ∂nϕ (x)G (x− y) dΣ for (Pint).

(I.56)

23



One should note that, for ε > 0, both integrands of the above equation are well-defined contrarily
to (I.51). However, the associated solution is not convenient to obtain because ϕ and its gradient
are unknown on Σε. To overcome this issue, we use ε→ 0, so that an alternative expression of the
right integral can be obtained. First, one should note the property on Σε:

y = x+ εn for x ∈ Σε ⇒
{
G = − 1

4πε
∂nG = − 1

4πε2
.

for x ∈ Σε. (I.57)

Moreover, the following Taylor expansions will come in handy for later developments, recalling that
ϕ ∈ C2(Ωf(t) × R+,R) is twice differentiable:

ϕ(y) = ϕ(x+ εn) = ϕ(x) + ε∂nϕ(y) +O
(
ε2
)

(I.58a)

∂nϕ(x) = ∂nϕ(y − εn) = ∂nϕ(y) +O (ε) . (I.58b)

We first show how the right integrand on Σεint from equation (I.56) is negligible for ε→ 0, recalling
that the small element of surface on Σεint verifies dΣ = O

(
ε2
)
:

∫

Σεint

∂nϕ (x)G (x− y) = − 1

4πε

∫
(∂nϕ (y) +O (ε)) dΣ = O

(
ε−1ε2

)
= O (ε) for (Pint). (I.59)

The second left integrand on Σεint from equation (I.56) can be simplified as well thanks to the
following formula:

for (Pint) :∫

Σεint

∂nG (x− y)ϕ (x) dΣ =

∫

Σεint

∂nG (x− y)ϕ (y) dΣ +

∫

Σεint

∂nG (x− y) (ϕ (x)− ϕ (y)) dΣ

=

∫

Σεint

∂nG (x− y)ϕ (y) dΣ +

∫

Σεint

∂nG (x− y) (−ε∂nϕ(y)) dΣ

=

∫

Σεint

∂nG (x− y)ϕ (y) dΣ +O (ε)

= −ϕ(y)
4πε2

∫

Σεint

dΣ +O (ε) .

(I.60)
Therefore, by noting the area of Σεint

∥Σεint∥ :=

∫

Σεint

dΣ, (I.61)

we obtain the following relation by combining equations (I.56), (I.59) and (I.60) and noting that
ε→ 0 ⇒ Σ(t)\Ωε → Σ(t):

∫

Σ(t)

∂nG (x− y)ϕ (x)− ∂nϕ (x)G (x− y) dΣ =
ϕ(y)

4πε2
∥Σεint∥ for (Pint), ε→ 0. (I.62)
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The integral above, though it is strongly singular because of the term ∇G · n, is defined in the
sense of the Cauchy principal value (Hackbusch, 1995). In order to obtain the aforementioned area,
one can inject the arbitrary homogeneous solution of the problem ϕ(x) = 1 into (I.62), leading to
the relation:

∫

Σ(t)

∂nG (x− y) dΣ =
1

4πε2
∥Σεint∥ for (Pint), ε→ 0. (I.63)

Considering the above equation, the area of Σεint can be calculated as:

∥Σεint∥ = 4πε2
∫

Σ(t)

∂nG (x− y) dΣ for (Pint). (I.64)

In order to calculate the potential associated with the external problem, the above equation comes
in handy. Moreover, it is convenient for later when dealing with (Pext) to express ∥Σεint∥ in a way
that is common for both problems (Pint) and (Pext), which is done by using the external normal
next (see figure I.6), noting that n = next for (Pint) :

∥Σεint∥ = 4πε2
∫

Σ(t)

∂G (x− y)

∂next
dΣ for (Pint) & (Pext), (I.65)

where ∂/∂next is the spatial derivation in the direction of next. By combining (I.62) and (I.64), we
obtain the integral representation, where the ε→ 0 contributions vanish:

∫

Σ(t)

∂nG (x− y)ϕ (x)− ∂nϕ (x)G (x− y) dΣ = ϕ(y)

∫

Σ(t)

∂nG (x− y) dΣ for (Pint). (I.66)

It is more convenient to group the integrands of the above equation as follows:

∫

Σ(t)

∂nG (x− y) (ϕ (x)− ϕ (y)) dΣ =

∫

Σ(t)

∂nϕ (x)G (x− y) dΣ for (Pint). (I.67)

Finally, by replacing the normal derivative of ϕ at the interface using the boundary condition (I.35),
the above equation becomes:

∫

Σ(t)

∂nG (x− y) (ϕ (x)− ϕ (y)) dΣ =

∫

Σ(t)

G (x− y)v · ndΣ for (Pint). (I.68)

This equation is the integral representation of the potential ϕ for the internal problem (Pint). It
enables to calculate the potential ϕ at any point in space knowing its value and normal derivative
on the interface Σ. To solve the potential at the interface as a function of the interface normal
velocity using the BEM, the integral equation is obtained by expressing the integral representation
for any y ∈ Σ(t) .

Remark

The solid angle ϑ for the internal fluid is defined as
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ϑ = lim
ε→0

∥Σεint∥
4πε2

. (I.69)

It is proportional to the fluid volume enclosed by an infinitesimal sphere centered around a point y, as
shown on a few examples in Figure III.1. It is common practice in the literature (Mavaleix-Marchessoux,
2020; Veron et al., 2016; Carbone et al., 2019) to set its value to

ϑ =
1

2
. (I.70)

It is actually the case for locally smooth surfaces, but it is however inaccurate at the nodes of a mesh
which constitute a geometry singularity or when the geometry of the interface is singular as presented
on examples in Figure III.1. In this thesis, the choice to use the relation (I.64) instead of (I.70) is
justified by two main reasons. First, as just mentioned, it enables to take into account the singularities
of the geometry and the mesh. Secondly, it also enables to regularize the double layer term ∂nG from
equation (I.62), which becomes less singular in equation (I.68) since the term ϕ(x)−ϕ(y) tends to 0 for
x → y, thus reducing by an order the singularity of the integrand. The advantages of this method are
quantified in Chapter II, see Figure III.2.

External problem

We now focus on obtaining the integral representation of the potential associated with the external
problem. For this purpose, we choose:





Ω = Ωext\Ωε

Σεext = Σε ∪ Ωext = Σε\Σεint

∂Ω = (Σ\Ωε) ∪ Σεext ∪ ∂Ω∞
for (Pext). (I.71)

The main difference between the above equation and the one associated with (Pint) comes from the
fact that the supposedly infinite fluid domain Ωf(t) is artificially bounded by a border ∂Ω∞ (see
figure I.3) which is however supposed to be infinitely remote from the structure. By combining
equations (I.51) and (I.71), we obtain:

∫

Ωext\Ωε

δ (x− y)ϕ (x) dΩ =

∫

(Σ\Ωε)∪Σεext∪∂Ω∞
∂nG (x− y)ϕ (x)−∂nϕ (x)G (x− y) d∂Ω. (I.72)

First, let us consider the left term of the integrand at the right of equation (I.72), on the infinitely
remote boundary ∂Ω∞. We know that a small element of area scales as dΣ(t) = O

(
r2
)
on ∂Ω∞.

Moreover, one can deduce from equations (I.49a) and (I.49c) that ∂nG = O
(
r−2
)

on ∂Ω∞ and
G = O

(
r−1
)

on ∂Ω∞. The order of magnitude of ϕ remotely from the structure is known as well
from (I.38). Consequently, one can obtain the order of magnitude of the integrand on ∂Ω∞:

∂nG(x− y)ϕ(x) dΣ = O
(
r−2r−1r2

)
= O

(
r−1
)

∂nϕ(x)G(x− y) dΣ = O
(
r−2r−1r2

)
= O

(
r−1
) on ∂Ω∞ for (Pext). (I.73)

Therefore, when considering an infinitely remote boundary ∂Ω∞ with r → ∞, the integral terms
on ∂Ω∞ from equation (I.72) vanish, leading to the equation:

∫

Ωext\Ωε

δ (x− y)ϕ (x) dΩ =

∫

(Σ\Ωε)∪Σεext

∂nG (x− y)ϕ (x)− ∂nϕ (x)G (x− y) d∂Ω. (I.74)
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With developments analogous to those done for the internal problem (Pint) in equations (I.54 -
I.62), equation (I.74) becomes:

∫

Σ(t)

∂nG (x− y)ϕ (x)− ∂nϕ (x)G (x− y) dΣ =
ϕ(y)

4πε2
∥Σεext∥ . (I.75)

In order to obtain the area ∥Σεext∥, we might use (I.65), which gives combined to the properties
∥Σεext∥+ ∥Σεint∥ = ∥Σε∥ and ∥Σε∥ = 4πε2:

∥Σεext∥ = 4πε2

(
1−

∫

Σ(t)

∂G (x− y)

∂next
dΣ

)
for (Pint) & (Pext)

= 4πε2

(
1 +

∫

Σ(t)

∂nG (x− y) dΣ

)
for (Pext).

(I.76)

The last line of the above equation is obtained recalling that, for the external problem, the normal
of the interface pointing outward the fluid domain verifies: n = −next for (Pext). Consequently,
one gets by combining equations (I.75) and (I.76) the integral representation:

−ϕ(y) +
∫

Σ(t)

∂nG (x− y) (ϕ (x)− ϕ (y)) dΣ =

∫

Σ(t)

∂nϕ (x)G (x− y) dΣ for (Pext). (I.77)

The integral equation for the external problem can therefore be obtained by taking y ∈ Σ(t) and
using the boundary condition (I.35):

−ϕ(y) +
∫

Σ(t)

∂nG (x− y) (ϕ (x)− ϕ (y)) dΣ =

∫

Σ(t)

G (x− y)v · ndΣ ∀y ∈ Σ(t) for (Pext).

(I.78)
For a more condensed form, and with a view to highlighting the linearity of the equations, we
introduce the operators H and G associated respectively with the single and double layer terms:

H : C2(Ωf(t),R)× Σ(t) × R+ −→ R

ϕ,y, t 7−→ κϕ(y) +

∫

Σ(t)

∂nG (x− y) (ϕ (x)− ϕ (y)) dΣ, κ =

{
−1 for (Pext)
0 for (Pint)

(I.79a)

G : C1(Σ(t),R2)× Σ(t) × R+ −→ R

v,y, t 7−→
∫

Σ(t)

G (x− y)v (x) · ndΣ
(I.79b)

Operators H and G are linear with ϕ and v respectively. By combining equations (I.68), (I.75)
and (I.79) the integral equation writes for both (Pint) and (Pext):

H(ϕ,y, t) = G(v,y, t) ∀{y, t} ∈ Σ(t) × R+. (I.80)
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A way to obtain the velocity potential ϕ at the interface is thus to solve the integral equation (I.80).
Then, the value of the velocity potential might be found anywhere outside of the boundary using
either (I.68) or (I.77).

The most relevant equations introduced in sections I.3.1 and I.3.2 are summarized below, thus
showing in a concise set of equation the equations involved in the calculation of the fluid forces.

Overview of the kinematic and dynamic potential flow equations in an Eulerian framework.

The fluid problem can be split into kinematic and dynamic equations. The kinematic
equation of the fluid (FK) (equation (I.34)) associated with the incompressibility and the
kinematic interface condition (IK) (equation (I.35)) associated with the continuity of the normal
velocity lead to the integral equation (I.80) allowing to solve the flow potential ϕ depending on
its value and normal derivative at the interface:

(FK) : ∆ϕ = 0 in Ωf(t)

(IK) : ∂nϕ = v · n on Σ(t)

}
H(ϕ) = G(v) on Ωf(t)

The restriction of the latter equation on Σ(t), called integral equation, enables to solve the
potential ϕ at the interface as a function of its velocity v. The potential solution ϕ enables
to obtain the virtual power δPf of the fluid on the interface through (FD) the fluid dynamic
equation (I.47):

(FD) : δPf =

∫

Σ(t)

pn · δv dΣ(t), δv ∈ KA

Once these have been obtained, the coupling of the interface dynamic condition (ID) with a
structure weak equation (S) enabling to link the virtual power δPs of the structure to the
displacement field v:

(ID) : δPs = δPf
(S) : δPs = f(δv).

The structure equation (S) will be dealt with later in this thesis, in Chapter III. It cannot be
separated into a kinematic and a dynamic equation since both are interdependent.

In this section, the fluid problem as been modeled by superimposing a kinematic problem, which
only involves fluid variables at the fluid-structure interface thanks to the integral representation,
and a dynamic transmission condition set on the interface as well.

The integral equation (I.80) can be solved with a numerical approximation using the BEM,
and the dynamic transmission condition can be conveniently approached using the FEM, both of
these method being introduced in the next chapter. However, the Eulerian description used for
these equations implies to express the variables relatively to a fixed point of space, which is hardly
consistent with the movements of the boundaries of the fluid problem.

These fluid equations having been introduced, it is important to recall what are the scientific
obstacles and what are those that this thesis aims to overcome. These obstacles are resumed below
through the lens of two studies on flexible airships fluid-structure interaction:

Li and Nahon (2007); Li et al. (2009)

� Pros:
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– Monolithic equation.

– Dynamic effects taken into account through added mass, gyroscopic and stiffness fluid
loads.

–

� Remaining obstacles

– Order zero quasi-steady movements can only take into account translation velocity but
not rotation velocity.

– Calculation of the fluid operators using slender body theory approximation valid for
very elongated structures, and only taking into account ”cantilever” movements of the
structure (curvilinear model from the fluid and structure point of view).

– Fluid operators integrated over an interface approximated as an ellipsoid.

– Flow around the fins calculated independently from the flow around the hull which might
not capture some coupling between both.

– As demonstrated in Chapter II, second order derivatives are required to derive the whole
linear potential forces.

– no mention made of pre-stress effects

Bessert and Frederich (2005):

� Pros:

– Potential flow around the hull and the fin calculated simultaneously, taking into account
the vortex sheet behing the trailing edge

– Non linear coupling between the flow and the structure deformations

– Flow and structure modeled with surface elements (no curvilinear assumption), adapt-
able to any shape of the airship

� Cons:

– Iterative, partitioned approach.

– Stationnary calculations.

– Rotation speed of the airship not taken into account.

Mavaleix-Marchessoux (2020) (flexible submarine):

� Pros:

– Potential flow around hull and fin calculated simultaneously

– Flow and structure modeled with surface elements (no curvilinear assumption), adapt-
able to any shape of the interface

– Dynamic calculations with unsteady, non-homogeneous ambient flow

� Cons:

– Iterative, partitioned approach
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– Circulation effects induced by the fins not taken into account

The list above highlights the pros and cons of two approaches from the literature. Bessert and
Frederich (2005) models the non-linear deformations of an airship induced by the flow around it by
taking into account both the hull, the fins and the circulation effects they induce. However their
approach only enables to tackle stationary problems. In order to study time-dependent maneuvers,
their approach would require to be extended to dynamic effects. Moreover, even though partitioned
approach are efficient for solving non-linear problems, they are not best suited for performing
stability analysis as the derivative of the forces with respect to the interface movements does not
arise naturally. Mavaleix-Marchessoux (2020) has extended a very similar method for the study
of submarines subjected to underwater explosions, however his model didn’t include circulation
effects from the fin, which play a crucial role on the stability of airships and are therefore a critical
part of airship dynamics modeling. On the other hand, Li et al. (2009) have been able to solve the
dynamic fluid-structure effects of flexible airships using less accurate models than Bessert as listed
above but he has been able to predict the linear fluctuations of the efforts which is convenient for
carrying stability analysis. However, neither Bessert nor Li have modeled maneuvers of airships
with rotations. Given the statement above, this thesis aims to overcome some of the scientific
obstacles that still prevent a good tackling of flexible airships behavior:

� A formulation of the linearized flow efforts (under the form of added mass, gyroscopic and
stiffness effects) on the airship has been introduced in chapters II with an associated numerical
resolution in Chapter II similarly to what has been done by Li et al. (2009), but with the
following advantages:

– Order zero steady maneuvers of the airship can be considered including rotation effects.

– They model allows to solve the problem using any associated mesh, enabling not to use
slender body assumption nor integrate over an approximated hull as an ellipsoid.

– Contrarily to Lagrange’s equations, the Newton approach enables to predict the whole
linear potential forces fluctuations without having to calculate second order derivatives
which are very costly.

� The following obstacles are not tackled in this manuscript:

– As done by Li et al. (2009), the effects of the fin have been calculated separatedly from
the hull aerodynamic effects. The method of Bessert and Frederich (2005) tackling
both circulation around the fins and hull effects at the same times seems much more
physically correct to the author. However, the new method that is introduced in chapters
II and III seem promising and in adequation with a possible extension to introduce a
vortex sheet behind the fins as done by Bessert and Frederich (2005). Such a future
developpement would therefore enable to predict harmoniously the dynamic fluctuations
of the aerodynamics effects linked both to the hull and the circulation around the fins.

– Unlike what Mavaleix-Marchessoux (2020) has done, this thesis doesn’t venture into
the effects of unsteady or inhomogeneous flows on airship aerodynamics. However, the
method introduced in this manuscript is quite adapted for future extension taking into
account those external effects. Such an extension could be possible with the following
procedure: first, extend the method presented in appendix ... to unsteady, inhomoge-
neous flows. Once this has been done, it might be coupled to the great motions of an
elastic airship introduced in Chapter II.
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Chapter II

Derivation of the integral equation for a
potential flow around a free elastic
structure on a fixed reference domain

Introduction

I
n view of the important role of fluid forces on airships trajectories (Cook et al., 2000), it
is of high importance to predict those efforts for various flight conditions airships might

evolve in. Li et al. (2011) mentioned that we still lack a formalism to take into account the
coupling of large structure rotations and small elastic deformations with the surrounding fluids.
This chapter introduces a linearized integral equation of the velocity potential depending on
the structure large rigid body motions coupled with small elastic deformations in a fluid at
rest, which is an original contribution with regards to the literature. It will be used to find a
numerical approximation of the fluid velocity field with the BEM in chapter III. A weak formu-
lation of the fluid forces is introduced as a function of the velocity potential interface position,
velocity and acceleration. The associated operators are solved numerically in chapter III as
well, allowing to couple the fluid behavior with the structure dynamics in chapter IV.

II.1 Modeling the fluid coherently with moving boundaries using
the Arbitrary-Lagrangian-Eulerian (ALE) description

The fluid model introduced in the previous section has two drawbacks. First, it is based on an
Eulerian framework. It is hence inconvenient to implement for an interaction problem whose
boundaries are in motion, and it is tricky to couple with the structure model since the latter is
described with a Lagrangian description. Secondly, it involves time-dependent domains, which
means that the numerical solution will be based on a variable mesh, implying recalculations on
an updated mesh at each time step. The ALE description of the fluid equations presented in this
section overcomes those two drawbacks. It consists in observing the fluid behavior from the point
of view of the moving interface material points, enabling to introduce a time-independent reference
interface suited for a coherent coupling with the Lagrangian description of the structure. The ALE
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formalism has been used for a long time to deal with fluid-structure interaction problems (e.g.
(Nitikitpaiboon and Bathe, 1993)) and does not constitute in itself an originality of this study.
However, this thesis differs from other works in the literature in the use of ALE to compute the
linear fluctuations of the potential fluid operators associated with an integral equation (and thus
with the BEM). For example, Mavaleix-Marchessoux (2020) used ALE to compute the nonlinear
fluctuations of the fluid forces using a partitioned BEM approach, while Pfister et al. (2019) used
ALE to compute the linear fluctuations of the weak form of the fluid equations discretized with the
FEM.

II.1.1 Comparison of Eulerian, Lagrangian and ALE frameworks for fluid prob-
lems with mobile boundaries

With a view to finding out which description is better suited for the present fluid-structure interac-
tion problem, the Eulerian, Lagrangian and ALE descriptions are exhibited and compared in this
section.

In this manuscript, three different kinds of descriptions are used: Lagrangian, Eulerian and
Arbitrary-Lagrangian-Eulerian frameworks. Each one corresponds to a particular way of looking
at the material particles, either with a fix or mobile point of view. Before developing the fluid and
structure equations, a brief explanation on the pros and cons of these descriptions is given. Which
description is used will determine how the spatial coordinates evolve with time when studying fluid
or solid matter.

� In a Lagrangian framework, the spatial coordinates used to study the matter behavior follow
the material point to which it is associated. Hence, the Lagrangian formalism is associated
to a reference state with an initial material repartition. When the material points undergo
displacements, it is however still referred to with spatial coordinate on the reference configu-
ration. This formalism is widely used in the domain of structural mechanics, for which it is
very convenient to follow each particle movement, which remains most of the time of limited
amplitude. However, many fluid problems are impractical to study with such a formalism
because, most of the time, fluid particles are not constrained spatially, which means they are
likely to flow far away from the interest zone, making it hard and inconvenient to follow them
during their travel, though some exceptions exist (Bennett et al., 2006).

� In an Eulerian framework, the matter is studied through fixed spatial coordinates. It means
that, even though the material point move, the point of view associated with a spatial coor-
dinate does not change. Hence, instead of following the particle through its displacement like
a Lagrangian formalism, the flux of material points is observed on a fixed spatial coordinates,
and the particles observed at two distinct times at a given spatial coordinate are almost
never the same. When studying a fluid in a time dependent domain, Eulerian framework has
a disadvantage: if an interface is moving, then some points of space that are part of the fluid
domain at one time might be outside of the fluid domain at another time, which means it will
be inconsistent to calculate the fluid solution. Moreover, one should note that there exists
a method to study the linear fluctuations of the fluid loads based on an Eulerian framework
(Fernández and Le Tallec, 2003), based on a reference interface. However, the author of the
present manuscript could not adapt this linearized formulation to the case of potential flows.
Therefore, another solution would be to use an observation point that is able to move in order
to remain in the fluid domain when the boundaries are deformed, without having to follow
the large movements of the fluid particles, which is the case with an ALE description.
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� Finally, in an Arbitrary-Lagrangian-Eulerian framework, the material zone associated with
a spatial coordinate is neither the exact same geometric zone where material particles are
observed flowing, nor the coordinates of the material point after it moved from the reference
configuration. Instead, it consists in observing the flow of material particles through a zone
whose position varies with time, but not necessarily following the movement of the particles
observed. For examples of studies based on the ALE, see (Nitikitpaiboon and Bathe, 1993;
Pfister et al., 2019; Mavaleix-Marchessoux, 2020). The next section will give more in details
on how the Arbitrary-Lagrangian-Eulerian framework is used in the very case studied in this
manuscript.

Given that the ALE description is well suited for modeling the fluid-structure interaction, the
following sections will introduce the model associated with such a description.

II.1.2 Kinematics of the structure on a reference domain

The ALE description is based on a point of view following the movements of a solid material par-
ticle at the interface. With this in mind, this section will give a more complete description of the
interface motion based on a decomposition comprised of rigid body movements and elastic defor-
mations, before introducing the ALE description in the following section. This decomposition of
the movements introduces the fictitious domains associated with the undeformed and the undis-
placed interfaces, which are not mandatory for the ALE description (Mavaleix-Marchessoux, 2020)
but will come in handy for the linearization in section II.2. The different domains are sketched in
Figure II.1.

n̄
ñ (t)

Σ

x̃

ξ̄x̄

x̄c

ēj = ẽj

êj = ej = Rēj

xc

x

ξ

nΣ(t)

Σ̂ (t)

x̂
Σ̃ (t)

Figure II.1: Different mathematical domains used in the study: the physical domain Σ(t), the

fictitous undeformed domain with rigid body motion Σ̂ (t), the fictitous reference, time independent
domain Σ and the fictitious deformed domain with no rigid body motions Σ̃. The two first are in
a frame rotated by the rotation matrix R relatively to the reference frame.

A reference point xc associated with the structure is introduced around which the rotations
of the interface are expressed. In this manuscript, xc has been arbitrarily fixed as the center of
volume enclosed by the interface:

xc =

∫
Ωint

xdΩ

V(Ωint)
, V(Ωint) =

∫

Ωint

dΩ. (II.1)
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A reference domain associated with a fixed reference interface Σ, whose spatial coordinates are
noted x̄ and associated with a reference point x̄c, is introduced:

Σ =
{
x̄
}
. (II.2)

The vectors from the reference domain are referred to using a bar notation. The reference point x̄c

is introduced with respect to the internal domain Ω̄int bounded by Σ:

x̄c =

∫
Ω̄int

x̄dΩ

V(Ω̄int)
, V(Ω̄int) =

∫

Ω̄int

dΩ. (II.3)

The deformations ξ̄ of the reference interface Σ are introduced as well as the fictitious deformed
interface Σ̃:

Σ̃ (t) =
{
x̃ | x̃ = x̄+ ξ̄(x̄, t), x̄ ∈ Σ

}
. (II.4)

The physical domain Σ(t) associated with a reference point xc is obtained by applying a combination

of deformations and rigid body motions to the reference interface Σ, or equivalently by applying
rigid body motions to the deformed interface Σ̃ (t). The rigid body motions are defined with the
translation of the reference point d̄c and with the rotation operator R, a 3 × 3 orthogonal direct
matrix, verifying the following property:

R−1 = RT, (II.5)

as shown by Shabana (2003). The rotation R ∈ SO(3) from the reference to the physical interface
verifies:

∀x ∈ Σ(t), ∃ x̄ ∈ Σ, x− xc = R(x̄+ ξ̄ − x̄c). (II.6)

Complementary, the translation dc verifies:

xc = x̄c + dc. (II.7)

The physical interface can consequently be defined by combining (II.4), (II.6) and (II.7):

Σ(t) =
{
x | x = x̄c +R(d̄c(t) + x̄+ ξ̄(x̄, t)− x̄c), x̄ ∈ Σ

}
. (II.8)

The boundary condition (I.35) requires to determine the interface velocity, which is obtained
by temporal derivation, combining equations (II.6) to (II.8):

v = ẋ =
∂

∂t

(
x̄c + dc(t) +R(x̄+ ξ̄(x̄, t)− x̄c)

)

= ḋc + Ṙ
(
x̄+ ξ̄(x̄, t)− x̄c

)
+R ˙̄ξ = ḋc + ṘR

−1 (x− xc) +R
˙̄ξ.

(II.9)

The translation velocity vc and the rotation velocity ω of the structure are introduced:
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x̄− x̄c

x̃− x̃cx̂− x̂c

x− xc

x̄c = x̃c

R

R−1

+ξ̂

−ξ

−ξ̃

+ξ̄

R−1

R

x̂c = xc

−dc Rd̄c

Figure II.2: Linear relationship between each domain: reference domain Σ, undeformed domain
Σ̂ (t), deformed domain without rigid body motions Σ̃ (t) and physical domain Σ(t). As an example,
the relation between x̄c and xc reads xc = x̄c + dc and the relation between x̂ − x̂c and x̄ − x̄c

reads x̂− x̂c = R(x̄− x̄c)

vc := ḋc (II.10a)

ω∧ := ṘR−1, (II.10b)

where the notation a∧ stands for the operator associated with the cross product:

a∧b = a ∧ b ∀a, b ∈ R3. (II.11)

With a view to ensuring the existence of ω as it has been defined in equation (II.10b), one might
notice the skew-symmetry1 of the term ṘR−1. By combining equations (II.9) and (II.10a) we
obtain:

v = vc + ω ∧ (x− xc) +R
˙̄ξ. (II.12)

The translation velocity and the rotation velocity are more convenient to manipulate on the refer-
ence interface, since they are the velocities relative to the pilot’s point of view:

v̄c = R−1vc (II.13a)

ω̄ = R−1ω. (II.13b)

By property of the rotation applied to a cross product

(Ra) ∧ (Rb) = R(a ∧ b) ∀a, b ∈ R3, (II.14)

1RRT = RR−1 = 1 ⇔ ∂RRT

∂t
= 0 ⇔ ṘRT +RṘT = 0 ⇔ ṘRT = −

(
ṘRT

)T

⇔ ṘR−1 = −
(
ṘR−1

)T

which

demonstrates the skew-symmetry mentioned. Writing the non nil coefficients of ω∧ such that ω∧a = ω∧a shows that
any skew-symmetric matrix can be associated with the cross product of a unique vector, hence proving the existence
of ω as defined in (II.10b).
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the term in ω from equation (II.12) can be expressed by combining with equation (II.8):

ω ∧ (x− xc) = (Rω̄) ∧
(
R(x̄+ ξ̄ − x̄c)

)
= R

(
ω ∧ (x̄+ ξ̄ − x̄c)

)
(II.15)

leading to the expression of the interface velocity on the reference configuration by combining
equations (II.12), (II.13) and (II.15):

v = R
(
v̄c + ω̄ ∧ (x̄+ ξ̄ − x̄c) +

˙̄ξ
)
. (II.16)

For control and guidance purposes, it is convenient to decompose the rigid body movements (com-
posed of translations and rotations) and their time derivative from the reference interface (hence
from the pilot’s point of view), while the position is convenient to manipulate on the earth referential
(hence using dc). Such decomposition can be obtained by introducing the rigid body movements
distributor Q and the associated general coordinates of the rigid body velocity ν̄ on the reference
interface as:

v = R
(
Qν̄ + ω̄ ∧ ξ̄ + ˙̄ξ

)
(II.17a)

ν̄ := (v̄ · ēx, .., v̄ · ēz, ω̄ · ēx, .., ω̄ · ēz)T (II.17b)

Q : = [Qv,Qω] (II.17c)

Qv = [Q1,Q2,Q3] := [ēx, ēy, ēz] (II.17d)

Qω = [Q4,Q5,Q6] := [ēx ∧ (x̄− x̄c) , ēy ∧ (x̄− x̄c) , ēz ∧ (x̄− x̄c)] . (II.17e)

x̄c might be associated with any point of space, however some choices are more judicious than
others.

The movements of the structure have been described in the above section. Among the resulting
fictitious domains presented, the reference time independent domain is of great importance: the
ALE formulation introduced in the section below is based on it.

II.1.3 Integral equation on a fixed reference domain

With the help of description of the interface kinematics, the ALE formulation of the fluid equations
based on the reference interface is presented in this section. The equations lead to an expression
of the fluid variables based on a time-independent domain.

The mapping function Z is introduced, conveniently connecting both physical and reference
interfaces:

Z : Σ× R+ −→ Σ(t) × R+

x̄, t 7−→ x, t
(II.18)

In order to obtain a formulation based on a fixed interface, the fluid variables on Σ are introduced
as:
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ϕ̄ : Σ× R+ −→ R
x̄, t 7−→ ϕ(Z(x̄, t))

(II.19a)

ū : Σ× R+ −→ R
x̄, t 7−→ R−1u(Z(x̄, t))

(II.19b)

p̄ : Σ× R+ −→ R
x̄, t 7−→ p(Z(x̄, t))

(II.19c)

Since the scalars are not affected by the rotations of the domain, ϕ̄ and p̄ are equal to their counter-
parts on the physical interface, whereas ū undergoes a rotation to match its physical counterpart.
Because the integral equation has reduced the solution space dimension by one, those three vari-
ables do not need to be defined outside of the reference interface. With a view to expressing the
integral equation (I.80) on a fixed interface, one needs to determine the value of n based on variables
defined on Σ. This is achieved by first introducing the gradient ∇ on the reference interface:

∇a :=
∂a

∂x
∀a ∈ C(Σ,R), (II.20)

as well as ∇t its tangent counterpart:

∇t := (1− n̄⊗ n̄)∇. (II.21)

With the help of the tangent gradient on the reference interface above, one can introduce the
tangent gradient tensor ▽∇t on the reference interface as:

▽∇T
t := (1− n̄⊗ n̄) ▽∇T

. (II.22)

The surface deformation gradient Ft and the surface deformation operator Φ̄I t are finally defined as:

Ft : Σ× R+ −→ R3 ⊗ R3

x̄, t 7−→ 1+ ▽∇tξ̄(x̄, t)
. (II.23)

Φ̄I t : Σ× R+ −→ R3 ⊗ R3

x̄, t 7−→ det
(
Ft(x̄, t)

)
Ft

−T
(x̄, t)

. (II.24)

Nanson’s formula (Holmes, 2009), demonstrated in section A.1, gives an expression of the normal
fluctuation:

ñdΣ̃ (t) = Φ̄I T
t n̄dΣ (II.25)

The value of the normal n on the physical domain can be deduced from ñ by applying the rotation
operator:

ndΣ = R
(
Φ̄I T
t n̄
)
dΣ (II.26)
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One might notice the nuance between ū which is obtained by rotating u with the operator R−1,
whereas n̄ is not equal to n rotated by R−1: the rotation linking n̄ to n is the sum of the global rigid
body rotation and the local rotation of the interface normal due to its elastic deformation. Keeping
in mind the objective to express the integral equation on the reference interface, the counterparts
of the Green function and its spatial derivative are defined as:

∂nG(x̄, ȳ, ξ̄) := ∂nG(x− y)

Gn(x̄, ȳ, ξ̄) := G(x− y)n(x).
(II.27)

As shown in equation (A.26d), the expressions of ∂nG andGn do not vary with either the translation
dc or the rotation R of the interface. This is due to the fact that the fluid domain is invariant by
rotation or translation in the very case of this thesis, because the fluid domain is supposed to be
unbounded (on the contrary to the example displayed in Figure II.3).

dc

R

Ωf(t)

Σedge

Figure II.3: Case of a fluid domain not invariant with either the rotation R or the rigid displacement
dc of an interface because of the edge Σedge of the fluid domain at the bottom. The two structures
show configurations of the interface at different times.

Remark

In practice, there are cases where airships evolve in environments where the fluid domain cannot be
considered invariant by translation or rotation. For example, when studying the landing or take-off of
airships, the relative distance and orientation between the airship and the ground indeed does affect the
fluid domain. Another example is the case of airships evolving close to hills as studied by Carbone et al.
(2019). As a consequence, when studying the dynamics of airships evolving in bounded fluid domains,
extra care must be put into taking into account the boundaries of the fluid domain. For example, this
can be done by meshing a finite part of the boundaries of the fluid domain that is large enough with
respect to the airship dimensions in order to avoid important domain truncature effects. This method
increases greatly the size of the BEM problems manipulated (Carbone et al., 2019). The image method
allows to simulate the proximity of an infinite pane wall next to an airship by virtually removing the
plane wall and adding a virtual frontier of the fluid domain defined as the reflection of the interface
with respect to the plane wall (Carbone et al., 2019). Finally, a special Green function G (that depends
on the position and orientation of the interface relatively to the fluid domain boundaries) verifying the
no-slip boundary conditions at the edge of the fluid domains might be calculated and then used for the
integral equation to naturally take into account the border effects on the fluid (Mavaleix-Marchessoux,
2020).

The single and double layer operators are defined on Σ as
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H : C2(Σ× R+,R)× Σ −→ R

ϕ̄, ȳ 7−→ κϕ̄(ȳ) +

∫

Σ
∂nG(x̄, ȳ)

(
ϕ̄ (ȳ)− ϕ̄ (x̄)

)
dΣ(x̄), κ =

{
1 for (Pext)
0 for (Pint)

(II.28a)

G : C1(Σ× R+,R+)× Σ −→ R

v̄, ȳ 7−→
∫

Σ
Gn(x̄, ȳ).v̄ dΣ(x̄)

(II.28b)

recalling that κ is either equal to 1 for the external problem (Pext) or to 0 for the internal problem
(Pint) as defined in equation (I.79). The operators verify

H(ϕ̄, ȳ, ξ̄) = H(ϕ,y) (II.29a)

G(v̄, ȳ, ξ̄) = G(v,y). (II.29b)

H and G are linear with the velocity potential ϕ̄ and the structure velocity v̄ respectively. The
integral representation (I.80) can therefore be rewritten on the reference interface:

H(ϕ̄, ȳ) = G(v̄, ȳ) ∀ȳ ∈ Σ. (II.30)

It can be seen that the expression above is independent of the relative position dc and the angular
position R due to the invariance of the fluid by translation and rotation, which shows that the
kinematic problem is invariant as well by translation and rotation. The velocity associated to the
solution ϕ̄ of the equation above can be obtained as:

ū = R−1 (∇ϕ) =
(
1+ ▽∇ξ̄

)−T∇ϕ̄, (II.31)

which will be useful to obtain an expression of the pressure on the reference interface in the following
section.

Now that the definition of the Green’s function and its derivative on the surface of the reference
configuration made it possible to write the integral equation on this fixed surface independent of
the deformations and rigid body motions(provided that H and G now depend on the deformations
ξ̄), the next section will focus on the expression of the pressure and virtual power on the reference
interface.

II.1.4 Formulation of the fluid work on a reference interface

The objective in this section is to express all the terms from equation (I.30) on the reference
interface to calculate the virtual power of fluid δPf .

The time derivative of ϕ needs to be rewritten with respect to the reference interface. With this
in mind, by applying the chain rule and recalling that x̄ is defined on a time-independent interface
we obtain:
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dϕ̄

dt
=
∂ϕ̄

∂t
+
∂ϕ̄

∂x̄
· ∂x̄
∂t

= ˙̄ϕ (II.32a)

dϕ

dt
=
∂ϕ

∂t
+
∂ϕ

∂x
· ∂x
∂t

= ϕ̇+∇ϕ · v = ϕ̇+ v · u, (II.32b)

where the last line is obtained recalling that the velocity v of the interface Σ(t) writes as ∂x
∂t = v

for x ∈ Σ(t). Since by definition ϕ = ϕ̄, the total fluctuation with time for both must be equal:

dϕ

dt
=

dϕ̄

dt
, (II.33)

which gives combined with equations (II.32a) and (II.32b):

ϕ̇+ v · u = ˙̄ϕ. (II.34)

Using the conservation of the scalar product with rotations property

(Ra) · (Rb) = a · b ∀a, b ∈ R3, (II.35)

the partial time derivative of the potential on the physical domain can be expressed with respect
to the reference interface as

ϕ̇(x) = ˙̄ϕ− v̄ · ū for x ∈ Σ(t). (II.36)

Using equation (II.35), the quadratic velocity term involved in the pressure equation (I.46) becomes

u2 = ū2. (II.37)

The aerostatic terms of pressure depend on the relative position x− x̄c which is expressed on the
reference interface thanks to equation (II.8):

x− x̄c = R(x̄+ ξ̄ − x̄c) + dc. (II.38)

Therefore, by using equation (II.26) the pressure at the interface can be expressed on the reference
interface as

p̄

ρf
= ψc − ˙̄ϕ+ v̄ · ū− 1

2
ū2 − g ·R(x̄− x̄c + ξ̄ + d̄c). (II.39)

In order to calculate the virtual power of the fluid, we introduce the virtual velocity δv̄ = R−1δv
of the interface that will be used to calculate the virtual power later in section II.1.4. Similarly to
the physical velocity, the virtual velocity can be decomposed as a unique sum of rigid body and
elastic motion as:

δv = δvc + δω ∧ (x− xc) + δξ̇. (II.40)

The equivalent virtual velocity is obtained on the reference interface with a rotation:

δv̄ = R−1δv = δv̄c + δω̄ ∧ (x̄− x̄c) + δω̄ ∧ ξ̄ + δ ˙̄ξ. (II.41)
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In the expression above, the virtual terms δ ˙̄ξ, δv̄ and δω̄ enable to respectively to obtain the elastic
generalized forces, the forces and the moments exerted by the fluid on the structure. The normal
component of the virtual velocity can be expressed on the reference interface as:

δv · ndΣ = (Rδv̄) · (R(Φ̄I T
t n̄)) dΣ

= δv̄ · (Φ̄I T
t n̄) dΣ.

Finally, one can thus write the virtual power of the fluid on the interface by combining equa-
tions (I.30), (II.36), (II.37) and (II.42):

δPf = ρf

∫

Σ

[
ψc − ˙̄ϕ+ v̄ · ū− 1

2
ū2 + g ·

(
R(x̄− x̄c + ξ̄) + dc

)]
δv̄ · (Φ̄I T

t n̄) dΣ. (II.42)

In this section, the ALE framework led to equations conveniently linking the force of the flow
on a moving structure which was not the case with the Eulerian framework from section I.3.1. The
main equations giving the force of the flow are summarized in the following paragraph.

Overview of the kinematic and dynamic potential flow equations in an ALE framework.

The movements of the structure can be split into rigid body motions described through
translation dc and rotation R with equation (II.8) connecting the reference and time dependent
interfaces Σ and Σ(t):

x = dc +R(x̄+ ξ̄ − x̄c).

The kinematics of the structure are described in equation (II.16) with a decomposition into
rigid body and elastic movements:

v̄ = v̄c + ω̄ ∧ (x̄+ ξ̄ − x̄c) +
˙̄ξ

= Qν̄ + ω̄ ∧ ξ̄ + ˙̄ξ.

The fluid problem can be split into kinematic and dynamic equations. The equation of the fluid
(FK) and the kinematic interface condition (IK) lead to the integral equation (II.30) allowing
to solve the flow potential ϕ depending on its value and normal derivative at the reference
interface:

(FK) : ∆ϕ = 0 in Ωf(t)

(IK) : ∂nϕ = v · n on Σ(t)

}
H(ϕ̄, ȳ) = G(v̄, ȳ) ∀{ȳ, t} ∈ Σ× R+.

The latter equation on Σ is the integral equation on the reference domain and enables to solve
the potential ϕ̄ at the interface as a function of its velocity v̄. The potential solution ϕ̄ enables
to obtain the virtual power δPf of the fluid on the interface through (FD), the fluid dynamic
equation (II.42):

(FD) : δPf =

∫

Σ
p̄(Φ̄I T

t n̄).δv̄ dΣ.
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One can show that the virtual movements δv̄ kinematically admissible can be decomposed
similarly to the movements of the structure as in equation (II.41):

δv̄ = Qδν̄ + δω̄ ∧ ξ̄ + δ ˙̄ξ.

Once these have been obtained, the coupling of the interface dynamic condition (ID) with a
structure weak equation (S) links the virtual power δPs of the structure with the help of the
structure stiffness and mass operators detailed in Chapter III.

The ALE description introduced in this section leads to a new model where the fluid variables
are expressed on a time-independent reference domain. However, the expression of the operators
from equation (I.79) has a nonlinear dependence with the displacements of the interface, which
results in the necessity to recalculate them at each deformation step of the structure as done by
Mavaleix-Marchessoux (2020); Veron et al. (2016). This is a costly procedure. To avoid such
recalculations, the next section introduces an original linearization method to perform calculations
based on reference, time-independent operators in the case of small perturbations of the system.

II.2 Introduction of the linearized ALE integral equation for a
potential flow around a flexible structure

The objective of this section is to introduce a fluid model whose operators does not have to be
recalculated when the interface moves. It is obtained by calculating the linear perturbation of the
fluid solution for small movements of the structure around a zero order solution.

II.2.1 Linearization of the flow perturbations for small elastic movements of
the structure

In the context of flexible airships dynamics, it is usual to assume that the deformations of the
interface are small with respect to the structure size (Li et al., 2009; Azouz et al., 2012; Li et al.,
2011), which is the case as well for submarines or bubbles as an examples (Mavaleix-Marchessoux,
2020; Miloh and Galper, 1993). In agreement with this hypothesis, the linear perturbations of
the virtual power of the flow induced by small movements of the structure are addressed in this
section. This approach will enable both stability analysis by linearizing all the kinematics of the
structure (hence with both order zero and one rigid body movements as well), and guidance or
trajectories determination by linearizing only the elastic deformations while keeping only the rigid
body movements at order zero. For the first application, the order zero rigid body movements are
a given of the problem, around which the deformations and rigid body small perturbations are
studied. In the second case, both rigid body movements and elastic are unknown and need to be
solved.

The small perturbations hypothesis is satisfied under the conditions

ε = max
(x̄∈Σ,t∈R+)

(∥ξ∥
L
, ▽∇tξ̄,

1

V

∥∥∥ ˙̄ξ
∥∥∥
)

≪ 1 (II.43)

and (II.43) enables to write the order of magnitude recalling the structure characteristic length
L and velocity V introduced in Chapter I:
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ξ̄ ∼ εL (II.44a)

▽∇tξ̄ ∼ ε (II.44b)

˙̄ξ ∼ εV. (II.44c)

The above expressions encourage us to introduce a new variable ξ̄′ with the same order of magnitude
as L such that:

ξ̄ = εξ̄′,
ξ̄′

L
∼ ▽∇tξ̄

′ ∼ 1 (II.45a)

˙̄ξ = ε ˙̄ξ′,
1

V
˙̄ξ′ ∼ 1. (II.45b)

Thanks to this new deformation variable ξ̄′, the small perturbations of the velocity potential, the
pressure and finally the virtual power of the fluid on the structure will be calculated. However,
the variables aforementioned depend on other kinematics variables than the deformations ξ̄, ∂ξ̄/∂t,
which is why these other kinematic variables are linearized first. But before doing so, it is convenient
to have in mind their characteristic amplitude. As rotation does not modify the magnitude:

R ∼ 1, (II.46)

one can deduce from equation (II.12) that

v̄

V
∼ 1 (II.47a)

L

V
ω̄ ∼ 1 (II.47b)

Finally, we arbitrarily impose that the order of magnitude of the structure translations is compa-
rable to the characteristic size of the structure

d̄c

L
∼ 1. (II.48)

In view of the orders of magnitude of the parameters aforementioned, the small perturbations R′,
d̄′
c, v̄

′
c and ω̄′ of these kinematic parameters is introduced as

R = Ro +R′, Ro ∼ R′ ∼ 1 (II.49a)

dc = do
c + εd′

c,
do
c

L
∼ d′

c

L
∼ 1 (II.49b)

v̄c = v̄o
c + εv̄′

c,
v̄o
c

V
∼ v̄′

c

V
∼ 1 (II.49c)

ω̄ = ω̄o + εω̄′,
L

V
ω̄o ∼ L

V
ω̄′ ∼ 1. (II.49d)
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The operatorR′ is the small perturbation of the rotation operatorR, but it is not itself a rotation
operator. It is a 3 × 3 matrix. However, it is shown in A.4 that the operator R′RoT is a skew-
symmetric matrix, and can consequently be described with only three independent perturbation
coefficients. As mentioned before, any skew symmetric 3 × 3 matrix is associated with a unique
cross product operator, which enables to introduce the vector θ′:

θ′
∧ := R′RoT (II.50)

Since using a rotation vector θ′ is less cumbersome than a rotation operator R′, the small angular
perturbations will be expressed with respect to the former in the equations to come. Introducing
small perturbations of rigid body motions d′

c, θ′,v̄′
c and ω̄′ can be useful for stability analysis.

However, in order to compute the trajectory of a structure from temporal simulations, these per-
turbations of rigid body motions can be imposed as nil, since the zero-order solution becomes an
unknown of the problem and no longer a given.

Linearized kinematics

Now that the perturbations of the interface kinematics of the structure have been introduced, we
are interested in the consequences of these perturbations on the velocity potential, which is the
first step toward obtaining the perturbations of the virtual power of the fluid. We expect the small
movements of the structure defined by equation (II.43) to produce fluctuations on the velocity
potential described at first order as

ϕ̄ = ϕ̄o + εϕ̄′ +O
(
ε2
)
,

ϕ̄o

V L
∼ ϕ̄′

V L
∼ 1. (II.51)

The fluctuations of ϕ̄ can be obtained with the integral equation on the reference interface, which
thus need to be linearized first. The latter involves the normal fluctuations which are obtained using
the linearized Nanson formula thanks to the small strains hypothesis ▽∇tξ̄ ≪ 1 from equation (II.43)
(Bonnet, 1999). Its calculation, whose details are given in section A.1, leads to the expression

Φ̄I T
t n̄dΣ = n̄+ ετ̄ ′ dΣ. (II.52)

As mentioned in section A.1, the variable τ̄ ′ we have introduced is linear with respect to the
structure deformations ξ̄′, and contains information both on the normal rotation and the surface
dilatation at first order. The Green function and its spatial derivative are obtained using a first
order Taylor expansion (see section A.2 for details on the calculation and their expression), which
leads to

Gn = Gn
o
(x̄, ȳ) + εGn

′(x̄, ȳ; ξ̄′) +O
(
ε2
)
, (II.53a)

∂nG = ∂nG
o
(x̄, ȳ) + ε∂nG

′(x̄, ȳ; ξ̄′) +O
(
ε2
)
. (II.53b)

The zero and first order of the operatorsH and G can consequently be obtained as follow, reminding
the definition of κ from equation (I.79):

44



Ho
: C2(Σ× R+,R)× Σ −→ R

ϕ̄, ȳ 7−→ κϕ̄(ȳ) +

∫

Σ
∂nG

o
(x̄, ȳ)

(
ϕ̄ (ȳ)− ϕ̄ (x̄)

)
dΣ(x̄)

(II.54a)

H′
: C2(Σ× R+,R)× Σ× C(Σ× R+,R3) −→ R

ϕ̄, ȳ; ξ̄ 7−→ κϕ̄(ȳ) +

∫

Σ
∂nG

′
(x̄, ȳ; ξ̄)

(
ϕ̄ (ȳ)− ϕ̄ (x̄)

)
dΣ(x̄)

,

(II.54b)

Go
: C1(Σ× R+,R3)× Σ −→ R

v̄, ȳ 7−→
∫

Σ
Gn

o
(x̄, ȳ).v̄ dΣ(x̄)

, (II.54c)

G′
: C1(Σ× R+,R3)× Σ× C(Σ× R+,R3) −→ R

v̄, ȳ; ξ̄ 7−→
∫

Σ
Gn

′
(x̄, ȳ; ξ̄).v̄ dΣ(x̄)

, (II.54d)

By combining equations (I.79), (II.52) and (II.53), one can obtain the first order development of
the single and double layer operators

H(ϕ̄, ȳ) = Ho
(ϕ̄, ȳ) + εH′

(ϕ̄, ȳ; ξ̄′) +O
(
ε2
)

(II.55a)

G(ū, ȳ) = Go
(ū, ȳ) + εG′

(ū, ȳ; ξ̄′) +O
(
ε2
)

(II.55b)

Because of the linear properties of H and G with respect to variables ϕ̄ and ū, we have the same
linearity properties for Ho, Go, H′ and G′. The integral equation (II.30) takes the interface velocity
as an argument, which therefore needs to be expanded at first order as:

v̄ = v̄o + v̄′ (II.56a)

with v̄o = v̄o
c + ω̄o ∧ (x̄− x̄c) = Qν̄o (II.56b)

(II.56c)

and v̄′ = v̄′
c + ω̄′ ∧ (x̄− x̄c) + ω̄o ∧ ξ̄′ + ˙̄ξ′ = Qν̄ ′ + ωo ∧ ξ̄′ + ˙̄ξ′. (II.56d)

Combining equations (II.51), (II.55) and (II.56) enables to obtain the integral equation associated
with the zero order and first order perturbations of the velocity potential

Ho(ϕ̄o, ȳ) + εH′(ϕ̄o, ȳ) + εHo(ϕ̄′, ȳ) +O
(
ε2
)
= Go(v̄o, ȳ) + εG′(v̄o, ȳ) + εGo(v̄′, ȳ) +O

(
ε2
)
,

which leads to the following equations:

Ho
(ϕ̄o, ȳ) = Go

(v̄o, ȳ) (II.57a)

Ho
(ϕ̄′, ȳ) = Go

(v̄′, ȳ) + G′
(v̄o, ȳ; ξ̄′)−H′

(ϕ̄o, ȳ; ξ̄′). (II.57b)
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Noting how the first order integral equation involves the linear fluctuations of both the displacement
ξ̄′ of the interface and its velocity, given by (II.56d), the velocity potential functions Φv and Φd

associated with the velocity and displacement boundary conditions are respectively:

Φv : C(Σ× R+,R3) −→ C(Σ× R+,R)
ū 7−→ ϕ̄ |

{
Ho

(ϕ̄, ȳ) = Go
(ū, ȳ) ∀ȳ ∈ Σ

} (II.58a)

Φd : R6 × C(Σ× R+,R3) −→ C(Σ× R+,R)

ν̄; ξ̄ 7−→ ϕ̄ |
{

Ho(ϕ̄, ȳ) = Go
([O,1]ν̄ ∧ ξ̄, ȳ) + G′

(Qν̄, ȳ; ξ̄)...

−H′
(Φv(Qν̄), ȳ; ξ̄)) ∀ȳ ∈ Σ

}

(II.58b)

By combining equations (II.55), (II.58a) and (II.58b) comes the linearity of Φv and Φv. The
expression of the velocity potential at orders zero and one becomes:

ϕ̄o = Φv(v̄
o) (II.59a)

ϕ̄′ = Φv

(
Qν̄ ′ + ˙̄ξ′

)
+Φd(ν̄

o; ξ̄′). (II.59b)

The above equation enables to understand what causes the velocity potential to fluctuate. First,
the term Φv (v̄

′) shows how the velocity of the interface is transmitted to the surrounding fluid.
Φd(ν̄

o, ξ̄′) relates to the linear fluctuations of the velocity potential due to the variations of the
domain geometry. As the interface shape changes, the flow has to reconfigurate around it, which
is taken into account by the terms expression equation (II.58b). Moreover, because the interface is
rotating, the deformation of the interface might influence its velocity by making the material points
closer or farther from the rotation axis, which is taken into account by the term Go

([O,1]ν̄ ∧ ξ̄, ȳ)
from equation (II.58b). With a view to condensing the equations, making it more comfortable
to manipulate them, the potential vectors, sometimes referred to as Kirchhoff potentials in the
literature, are introduced (Thomasson and Woolsey, 2013):

Ψ̄(x̄) =

(
φ̄(x̄)
χ̄(x̄)

)
, (II.60a)

with φ̄(x̄) =



Φv(Q1)

Φv(Q2)

Φv(Q3)


 (II.60b)

and χ̄(x̄) =



Φv(Q4)

Φv(Q5)

Φv(Q6)


 (II.60c)

(II.60d)

where Qi is the i
h component of Q as shown in equation (II.17). We then obtain a condensed expres-

sion of the potential and its fluctuations, conveniently highlighting the space and time dependence
of each term:

ϕ̄o(x̄, t) = φ̄(x̄) · v̄o
c(t) + χ̄(x̄) · ω̄o(t) = Ψ̄(x̄) · ν̄o(t) (II.61a)

ϕ̄′(x̄, t) = Ψ̄(x̄) · ν̄ ′(t) + Φv

(
˙̄ξ′(x̄, t)

)
+Φd(ν̄

o(t); ξ̄′(x̄, t)) (II.61b)
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Now that the fluid velocity potential is determined, we can obtain the fluid velocity ū with

ū = ūo + εū′,
ūo

V
∼ ū′

V
∼ 1. (II.62)

Using the gradient ∇ϕ̄ is tricky since ϕ̄ is only calculated at the interface, making it inconvenient
to calculate its normal derivative. However, it is still possible to calculate u only using the surface
gradient of the velocity potential. For that purpose, the normal and tangential components of a
vector at the interface are introduced:

ān := (n̄⊗ n̄)ā (II.63a)

āt := ā− ān. (II.63b)

where ⊗ is the tensor product2. The order zero and one velocity calculations are detailed in equation
A.31, leading to the following expression at order zero where the perturbations are neglected:

ūo = ūo
t + ūo

n (II.64a)

ūo
n = v̄o

n (II.64b)

ūo
t = (∇ϕ̄o)t = ∇tϕ̄

o. (II.64c)

The equivalent expression at first order is:

ū′ = ū′
t + ū′

n (II.65a)

ū′
n = v̄′

n + (v̄o − ūo) ·
(
▽∇T
t ξ̄′ n̄

)
n̄ (II.65b)

ū′
t = ∇tϕ̄

′ − ▽∇T
t ξ̄

′ ūo. (II.65c)

The expressions above enable to calculate the velocity at order zero and its first order perturbations
with only spatial derivations of the velocity potential ϕ̄ tangential to the reference interface, which
are convenient to calculate, contrarily to the normal derivative. This decomposition will come in
handy for the numerical implementation. In a similar way to the velocity potential perturbations,
the velocity perturbations can be seen as the linear fluctuations with respect to both deformations
amplitude and velocity at the interface. This decomposition is denoted with the following functions:

Uv : C
1(Σ× R+,R2) −→ C1(Σ× R+,R2)

v̄ 7−→ ∇tΦv(v̄) + n̄⊗ n̄ v̄
(II.66a)

Ud : R6 × C2(Σ× R+,R) −→ C1(Σ× R+,R2)

ν̄; ξ̄ 7−→ ∇tΦd(ν̄; ξ̄)− ▽∇tξ̄ Uv(Qν̄) +
(
Qν̄ − Uv(Qν̄)

)
·
(
▽∇T
t ξ̄ n̄

)
n̄

(II.66b)

One should note the linearity of the functions above with respect to v̄, ν̄ and ξ̄. With a view to
obtaining an expression highlighting the linearity of the velocity field with respect to the order zero
solution, a new formulation of the velocity is obtained by combining equations (II.64) to (II.66):

2The tensor product is defined as (a⊗ b)c = a(b · c) ∀a, b, c ∈ R3
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ūo = Uv(v̄
o) = Uv(Qν̄

o) (II.67a)

ū′ = Uv(v̄
′) + Ud(ν̄

o; ξ̄′) = Uv(Qν̄
′ + ˙̄ξ′) + Ud(ν̄

o, ξ̄′). (II.67b)

Similarly to the potential fluctuations expressed with fixed vector potentials in (II.61), the fluid
velocity fluctuations can be obtained with time-independent reference velocity fluctuations using
the linear properties of the operators:

ū′ = Uv

(
˙̄ξ′
)
+
[
Uv(Q1), ..,Uv(Q6)

]
ν̄ ′(t) +

[
Ud(Q1; ξ̄

′), ..,Ud(Q6; ξ̄
′)
]
· ν̄o(t). (II.68)

Now that the velocity perturbations of the flow have been characterized, we can move on to the
determination of the force done by the fluid perturbations.

Linearized dynamics

With a view to expressing the linearized fluid forces, the order zero and one pressure expressions
are determined from equations (II.39), (II.51) and (II.62):

p̄o

ρ
= ψc − ˙̄ϕo + v̄o · ūo − 1

2
(ūo)2 − g · [Ro(x̄− x̄c) + do

c] (II.69a)

p̄′

ρf
=− ϕ̇′ + (v̄o − ūo) · ū′ + ūo · v̄′ − g · [R′ (x̄− x̄c) +R

oξ̄′ + d′
c]. (II.69b)

By multiplying equation (II.50) by Ro at the right one gets the expression of the angular array
θ′ as a function of the rotation operators:

R′ = θ′
∧R

o, (II.70)

leading to a new expression of the pressure perturbations:

p̄′

ρf
= − ˙̄ϕ′ + (v̄o − ūo) · ū′ + ūo · v̄′ + g ·

[
θ′ ∧ (Ro (x̄− x̄c)) +R

oξ̄′ + d′
c

]
(II.71)

The pressure expression above can be split into contribution of various physical nature. The terms
quadratic in velocity (both velocities of the fluid and the interface) are referred to as dynamic
pressure. It is worth noticing that d’Alembert’s paradox (Newman, 2018) ensures that the dynamic
pressure of an external fluid does not exert any force on a closed interface. The terms with a factor
g are linked to gravity forces, and the terms proportional to ϕ̇ generate a phenomenon called the
added mass, which is due to the inertia of the fluid accelerated via the fluid structure interface.
This decomposition can be shown introducing the functions

P
o
v : R6 × R6 −→ C1(Σ× R+,R)

ν̄a, ν̄b 7−→
(
Qν̄a −

1

2
Uv(Qν̄a)

)
· Uv(Qν̄b)

(II.72a)

P
o
g : SO(3)× R3 −→ C1(Σ× R+,R)

R,dc 7−→ g · (R(x̄− x̄c) + dc)
(II.72b)
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with Pv a bilinear function with respect to ν̄a and ν̄b. One obtains by combining equations (II.69a)
and (II.72) the condensed expression of the pressure at order zero, recalling from equation (II.56c)
that v̄o = Qν̄o :

p̄o

ρf
= ψc + P

o
v(ν̄

o, ν̄o)− Ψ̄. ˙̄νo + P
o
g (R

o,do
c) . (II.73)

The above equations highlight the previously mentioned quadratic dependence of the dynamic
pressure with respect to the structure velocity, and the linear dependence of the added mass effects
with the acceleration of the structure. In a similar way, one can group the pressure perturbations
with various contributions

P
′
v;ξ : R6 × R6 × C(Σ× R+,R3) −→ C1(Σ× R+,R)

ν̄a, ν̄b; ξ̄
′ 7−→

(
Qν̄a − Uv

(
Qν̄a

))
· Ud(ν̄b; ξ̄

′) + Uv(Qν̄a) · [O,1]ν̄b ∧ ξ̄′

(II.74a)

P
′
v;v : R6 × R6 × C(Σ× R+,R3) −→ C1(Σ× R+,R)

ν̄o,

(
ν̄ ′
˙̄ξ′

)
7−→ P

′
v;v

(
ν̄o,

(
ν̄ ′
˙̄ξ′

))

P
′
v;v

(
ν̄o,

(
ν̄ ′
˙̄ξ′

))
= −Φd(ν̄

o; ˙̄ξ′) +
(
Qν̄o − Uv

(
Qν̄o

))
· Uv(Qν̄

′ + ˙̄ξ′) + Uv(Qν̄
o) ·
(
Qν̄ ′ + ˙̄ξ′

)
,

(II.74b)

P
′
v̇;ξ : R6 × C(Σ× R+,R3 −→ C1(Σ× R+,R)

˙̄ν, ξ̄′ 7−→ −Φd( ˙̄ν, ξ̄
′)

(II.74c)

P
′
g : SO(3)× R6 × C1(Σ× R+,R3 −→ C1(Σ× R+,R)

Ro,



dc

θ
ξ̄


 7−→ g ·

[
θ ∧Ro (x̄− x̄c) +R

oξ̄ + dc

], (II.74d)

where P
′
v;ξ is a trilinear operator and P

′
v;v and P

′
v̇;ξ are bilinear operators. However one should note

that p′g is not linear with respect to the rotation Ro. The expression for the pressure perturbations
becomes:

p̄′

ρf
= P

′
v;ξ(ν̄

o, ν̄o, ξ̄′) + P
′
v;v

(
ν̄o,

(
ν̄ ′
˙̄ξ′

))
+ P

′
v̇,ξ

(
˙̄νo, ξ̄′

)
− Φv

(
˙̄v′)− Φd

(
ν̄o; ˙̄ξ′

)
+ P

′
g


Ro,



d′
c

θ′

ξ̄′






(II.75)
In the above equations, the terms P

′
v;ξ is associated with the dynamic pressure perturbations due

to interface geometry deformations. As the geometry of the interface changes, the fluid has to
reconfigure, therefore perturbing the flow velocity as well as the dynamic pressure. The term P

′
v;v

is associated with the perturbations of the dynamic pressure occurring when the interface velocity
incurs changes in the the velocity of the surrounding flow, thus perturbing the dynamic pressure.
The term P

′
v̇ dictates how the added mass effects associated with the acceleration of the structure

at order zero vary with respect to the interface geometry. The added mass associated with the small
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accelerations of the interface is described with Φv, whereas the changes in direction and amplitude
of the aerostatic pressure due to the elevation and rotations of the interface are described by P

′
g.

Because of the invariance of the kinematic problem by translation and rotation, the pressure term

P
′
v,ξ does not depend on the variables d′

c, θ̄
′. On the other hand, as the gravitational force is

oriented, the term P
′
g is dependent on these two variables. In order to calculate the virtual power

associated with the pressure of the fluid, the linearization of the virtual displacements is developed
as:

δv̄ = δv̄o + εδv̄′, δv̄o ∼ δv̄′ (II.76a)

δv̄o = δv̄c + δω̄ ∧ (x̄− x̄c) + δ ˙̄ξ (II.76b)

δv̄′ = δω̄ ∧ ξ̄′. (II.76c)

One should note that the first order perturbations of the virtual velocity field play an important
role in order to obtain the correct value of the moment exerted by the fluid on the interface, since
the deformation of the interface can influence the lever arm associated with the moment exerted
by the pressure forces. As a consequence, the virtual power of the fluid can be expressed at order
zero as

δPo
f = ρf

∫

Σ
p̄oδv̄o · n̄dΣ, (II.77)

and its perturbations are expressed as

δP ′
f = ρf

∫

Σ
p̄o(δv̄o · τ̄ ′ + δv̄′ · n̄) + p̄′δv̄o · n̄dΣ. (II.78)

Now that an explicit expression of the perturbation of the fluid forces has been obtained with
equation (II.78), we are interested in an expression of these perturbations under the form of mass,
gyroscopic and stiffness loads from the flow, with a view to carrying out stability analysis in
chapter IV.

II.2.2 Expression of the fluid forces on the interface acting as mass, gyroscopic
and stiffness loads

This section introduces, under specific hypothesis which are detailed below, an expression of the
fluid action as mass, gyroscopic and stiffness loads of the fluid on the interface. Furthermore, the
zeroth, first or second order properties of these operators with the order zero kinematic parameters
introduced in (II.49) are studied.

The translation vector, the rotation vector and the elastic deformations are grouped within a
single global variable:

X =



d′
c

θ′

ξ̄′


 , X ∈ R6 × C(Σ,R3). (II.79)

The global perturbations of position X can be derived one or two times with respect to time, giving
the following expressions:
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V =

(
ν̄ ′
˙̄ξ′

)
(II.80a)

V̇ =

(
˙̄ν ′
¨̄ξ′

)
(II.80b)

The virtual movements of the interface can be expressed with respect to the virtual global pertur-
bations referred to as δV:

δV =



δv̄c
δω̄

δ ˙̄ξ


 . (II.81)

The added mass operator is introduced:

Mf
(
V̇, δV

)
=

∫

Σ
Φv( ˙̄v

′) n̄ · δv̄o dΣ. (II.82)

Similarly to the added mass, the gyroscopic operator is introduced, name associated with velocity-
dependent conservative loads (by analogy with the gyroscopic effects of rotating structures) accord-
ing to the load zoology established by Ziegler (1977):

Gf (ν̄o,V, δV) = −
∫

Σ

(
p′v;v(ν̄

o, v̄′)− Φd(ν̄
o, ˙̄ξ′)

)
n̄ · δv̄o dΣ. (II.83)

The demonstration of the conservative aspect of the above loads is shown in Appendix D.2 and
follows from the antisymmetry of the Gf operator demonstrated in section B via the Lagrange
equations. Finally, the added stiffness operator is introduced:

Kf
v

(
ν̄o, ν̄o,X, δV

)
= −

∫

Σ

[
P
o
v(ν̄, ν̄)

(
τ̄ ′(ξ̄′) · δv̄o + n̄ · δv̄′)+ P

′
v;ξ(ν̄, ν̄, ξ̄

′)n̄ · δv̄o dΣ (II.84a)

Kf
,v̇

(
˙̄νo,X, δV

)
= −

∫

Σ
−Ψ̄ · ˙̄νo,

(
τ̄ ′(ξ̄′) · δv̄o + n̄ · δv̄′)+ P

′
v̇( ˙̄ν

o, ξ̄′)n̄ · δv̄o dΣ (II.84b)

Kf
,g

(
Ro,do

c,X, δV
)
=

∫

Σ
P
o
g(R

o,do
c)
(
τ̄ ′(ξ̄′) · δv̄o + n̄ · δv̄′)+ P

′
g(R

o,X)n̄ · δv̄o dΣ. (II.84c)

Kf
,h(X, δV) =

∫

Σ
ψc

(
τ̄ ′ · δv̄o + n̄ · δv̄′) dΣ (II.84d)

Remark

The stiffness operator associated with the dynamic pressure contains the follower force stiffness:

Kf
,fol =

∫

Σ
Po

vτ̄
′.δv̄o. (II.85)

It is referred to as a follower force since the efforts applied by the pressure at order zero follow the
fluctuating direction of the interface normal. This follower force is associated with a constant order
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zero pressure because of the linearization that decouples pressure fluctuations and normal fluctuations
at first order. In practice, the pressure efforts follow the interface normal but vary in amplitude at the
same time because of the fluid reconfiguration leading to dynamic pressure variations. The follower
force stiffness is not conservative by itself, but the overall stiffness of the fluid is conservative because
of the fluid hypotheses of a potential flow without vortex shedding.

−
δP ′

f

ρf
=Mf

(
V̇, δV

)
+Gf

(
ν̄o,V, δV

)
+Kf

v

(
ν̄o, ν̄o,X, δV

)
+Kf

,v̇

(
˙̄νo,X, δV

)
...

+Kf
,g

(
Ro,do

c,X, δV
)
+Kf

,h

(
X, δV

)
.

(II.86)

Because of the linear properties of the operators, it is possible to decompose them as follows:

Kf
v

(
ν̄o, ν̄o,X, δV

)
= (ν̄o ⊗ ν̄o) : Kf

v
∗ (ξ̄′, δV

)
ν̄o

Kf
,v̇

(
˙̄νo,X, δV

)
= K∗

f,v̇

(
ξ̄′, δV

)
· ˙̄νo

Gf
(
ν̄o,V, δV

)
= Gf ∗ (V, δV

)
· νo

with
(
Kf

v
∗ (ξ̄′, δξ̄

))
i,j

= Kf
v

(
Qi,Qj ,

(
ν̄ = 0
ξ̄′

)
, δV

)

(
K∗

f,v̇

(
V, δV

))
i
= Kf

,v̇

(
Qi,V, δV

)
(
Gf ∗ (V, δV

))
i
= Gf

(
Qi,V, δV

)

(II.87)

The results above highlight how the gyroscopic operator associated with a given order zero rigid
body velocity of an interface can in fact be calculated as the sum of six elementary operators,
each being associated with a given rigid body motion of space. The same goes for the stiffness
operator, except that because of the quadratic dependence, it is the sum of thirty-six elementary
operators. The interest of this result can be illustrated with the example of a structure that is
considered to move with any translation in a plane ex, ey. As a consequence, any velocity v̄o

c on
that plane will result in operators that can be calculated based on two elementary operators for the
gyroscopic effects, and four elementary operators for the stiffness effects. As a consequence, instead
of calculating new operators for each v̄o

c , a better strategy might be to calculate the elementary
operators of the plane once, enabling to obtain the operators associated with any v̄o

c with a simple
projection.

II.2.3 Simplification of terms for isochoric problems

The study of an incompressible fluid enclosed by a boundary leads to specific properties, some of
which are detailed in this section, in particular the fact that a fluid internal to a membrane without
rotations is associated with zero gyroscopic and stiffness operators.

The equivalent of the incompressibility condition (I.6) at orders zero and one can be obtained
by developing the terms:

for (Pint) :∫

Σ
v̄o · n̄dΣ = 0 (II.88a)

∫

Σ
v̄′ · n̄+ v̄o · τ̄ ′ dΣ = 0. (II.88b)
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If we chose a virtual power compatible with the constraints of the problem, i.e that meets a condition
equivalent to (II.88).

for (Pint) :∫

Σ
δv̄o · n̄dΣ = 0 (II.89a)

∫

Σ
δv̄′ · n̄+ δv̄o · τ̄ ′ dΣ = 0. (II.89b)

For the internal problem , the velocity of an interface in translation vc is transmitted homo-
geneously to the contained fluid no matter its shape, consequently the variations of velocity and
dynamic pressure with respect to the interface deformations ξ̄ are nil:

for (Pint) : Ud

((
v̄o
c

0

)
, ξ̄′
)

= 0 (II.90a)

P
′
v;ξ

((
v̄o
c

0

)
,

(
v̄o
c

0

)
, ξ̄′
)

= 0 (II.90b)

Moreover, without rotations the dynamic pressure at order zero is homogeneous, and therefore:

∫

Σ
P
o
v

(
τ̄ ′.δv̄o + n̄.δv̄′) dΣ = P

o
v

∫

Σ

(
τ̄ ′.δv̄o + n̄.δv̄′) dΣ. (II.91)

By combining equations (II.89) and (II.91), the above expression becomes nil, since an homogeneous
pressure does not work on movements compatible with the incomprehensibility condition:

∫

Σ
P
o
v

(
τ̄ ′.δv̄o + n̄.δv̄′) dΣ = 0. (II.92)

As a consequence of equations (II.90) and (II.92), the stiffness operator associated with the dynamic
pressure for the internal problem with no rotation at order zero is nil:

Kf
v

((
v̄o
c

0

)
,

(
v̄o
c

0

)
,X, δV

)
= 0 for (Pint). (II.93)
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II.3 Summary of the kinematic and dynamic linearized potential
flow equations

II.3.1 Rigid body motions coupled with elastic deformations fluid loads

(S) + (ID)
FEM

displacements X
in Ωs(t)

(FK) + (IK)
BEM

potential ϕ̄′

on Σ

fluid work δP ′
f

(FD)
FEM

structure

fluid

Figure II.4: Fluid-structure interaction diagram.

As described in Figure II.4, the equations are split into a fluid kinematic behaviour (FK), a
fluid dynamic relation (FD), conditions of kinematic and dynamic compatibility at the interface
(IK) and (ID) respectively, and a solid equation (S) (which cannot be split into kinematic and
dynamic independent relations since both are intricately linked). The main associated equations
are summarized below.

Summary of the main equations

The movements of the structure can be split into rigid body motions described through
translation dc and rotation R and elastic motions at order zero and one, as described by
equations (II.45b) and (II.49):

x = do
c + d′

c +R
o(x̄+ ξ̄′ − x̄c) +R

′(x̄− x̄c) +O
(
ε2
)
.

The kinematics of the structure are described with a decomposition into rigid body and elastic
movements by equation (II.49):

v̄o = Qν̄o

v̄′ = Qν̄ ′ + ω̄o ∧ ξ̄′ + ˙̄ξ′

The fluid problem can be split into kinematic and dynamic equations. The kinematic equation
of the flow (FK) and the kinematic interface condition (IK) lead to the integral equations
(II.57a) and (II.57b) allowing to solve the flow potential ϕ̄o and ϕ̄′ depending on the interface
velocity and time-independent integral operators:
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(FK)
o + (IK)o : Ho(ϕ̄o, ȳ) = Go(v̄o, ȳ)

(FK)
′ + (IK)′ : Ho(ϕ̄′, ȳ) = Go(v̄′, ȳ) + G′(v̄o, ȳ; ξ̄′)−H′(ϕ̄o, ȳ; ξ̄′).

As a consequence, the potential at order zero and one can be expressed introducing the oper-
ators Φv and Φd as well as the Kirchhoff potential Ψ̄, see equation (II.59):

(FK)
o + (IK)o : ϕ̄o = Φv(v̄

o) = Ψ̄ · ν̄o

(FK)
′ + (IK)′ : ϕ̄′ = Φv(v̄

′) + Φd(ν̄
o; ξ̄′) = Ψ̄ · ν̄ ′ +Φv

(
˙̄ξ′
)
+Φd(ν̄

o; ξ̄′)

The potential solution ϕ̄ enables to obtain the pressure p̄ at both orders zero and one, from
which the virtual power δPf of the fluid on the interface at orders zero and one can be calculated
through (FD) the fluid dynamic equations (II.77) and (II.78):

(FD)
o : δPo

f =

∫

Σ
p̄on̄.δv̄o dΣ, δv̄o = Qδν̄o + δ ˙̄ξ

(FD)
′ : δP ′

f =

∫

Σ
p̄′n̄.δv̄o + p̄o(τ̄ ′.δv̄o + n̄.δv̄′) dΣ, δv̄′ = δω̄ ∧ ξ̄′.

It is convenient to encompass the small perturbations of the the rigid-body and elastic move-
ments of the structure in a generalized coordinates vectors X and V defined in (II.79):

X =



d′
c

θ′

ξ̄′


 , V =

(
ν̄ ′
˙̄ξ′

)
.

Equations (II.86) and (II.82) to (II.84a) show that the virtual power of the flow can be expressed
linearly to the generalized coordinates and their time derivatives through added stiffness, gy-
roscopic and mass operators as:

−
δP ′

f

ρf
=Mf

(
V̇, δV

)
+Gf

(
ν̄o,X, δV

)
+Kf

v

(
ν̄o ⊗ ν̄o,X, δV

)
...

+Kf
,v̇

(
˙̄νo,X, δV

)
+Kf

,g

(
Ro, d̄o

c,R
′,X, δV

)
+Kf

,h.

In the case where there are no accelerations at order zero and the gravity terms are neglected,
the formulation becomes independent of the relative position dc, θ of the interface:

−
δP ′

f

ρf
= Mf

(
V̇, δV

)
+Gf

(
ν̄o,X, δV

)
+Kf

v

(
ν̄o ⊗ ν̄o,X, δV

)

Once these have been obtained, the coupling of the interface dynamic condition (ID) with a
structure weak equation (S) enables to link the virtual power δPs of the structure with the
help of the structure stiffness and mass operators detailed in Chapter III.

The results presented above describe the main lines of the analytical developments developed
during this chapter, which is focused on the mathematical aspects of the model introduced in this
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manuscript. An implementation of this theory on a simplified case will be implemented in Chapter
IV in order to study the stability of a membrane structure in a potential flow.

II.3.2 Elastic fluid loads

In chapters III and IV, the loads of the fluids associated with and projected on the elastic movements
in the absence of gravity forces and order zero accelerations will be used, hence the perturbations
of the rigid body movements will be considered as nil. Consequently, we present in this section the
associated fluid loads perturbations as:

δP ′
f

ρf
(ν̄ ′ = 0, ξ̄, δx̄ = δξ̄) = −Mf

ξξ(
¨̄ξ′, δ ˙̄ξ)−Gf

ξξ(ν̄
o, ˙̄ξ′, δ ˙̄ξ)−Kf

v,ξξ(ν̄
o, ν̄o, ξ̄′, δ ˙̄ξ)

= −Mf
ξξ(

¨̄ξ′, δ ˙̄ξ)− ν̄o ·Gf
ξξ

∗( ˙̄ξ′, δ ˙̄ξ)− ν̄o ⊗ ν̄o : Kf
v
∗
,ξξ
(ξ̄′, δ ˙̄ξ). (II.94)

In the equation above, the operators with an index ξξ describe the elastic loads projected on the

virtual elastic velocity field δ ˙̄ξ as a function of the elastic movements ξ̄′ and its time derivatives.
Because the fluid is potential and there is no vortex shedding, the fluid loads are conservative,
which means that the stiffness and mass operators are symmetric and the gyroscopic operator is
skew-symmetric. It is demonstrated in Appendix D.2 how symmetric added mass and stiffness loads
derive from a potential, and how the virtual power of skew-symmetric gyroscopic loads is always
nil. However, the Newtonian approach used in this manuscript is not convenient to demonstrate
the (skew-)symmetry of these operators, even though the symmetry of the added mass operator
is demonstrated by Rangette (1990) based on a Newtonian approach. The Lagrange equations
presented later in section II.4 allows us to demonstrate the (skew-)symmetry properties of the
operators at the price of manipulating second order derivatives. However, as illustrated with the
example of rigid-body motions in Appendix D.5, the operators can lose the aforementioned (skew-
)symmetry properties when rotations are involved, thus making the reference frame non-Galilean.

II.3.3 Loads of an ambient flow on a structure without large displacements

The results developed previously can be used to calculate the fluid loads associated with a structure
with large rigid body motions and small elastic deformations in a potential fluid at rest. However,
this thesis work started by studying the loads associated with an interface with small elastic de-
formations and rigid body motions set to zero, immersed in an homogeneous, stationary ambient
flow field u∞. The associated equations are not presented in this manuscript to avoid cumbersome
calculations, however the detailed expressions associated can be found in Le Mestre et al. (2022)
(this paper has been included in Appendix F of this manuscript). The associated results are how-
ever very similar. In particular, we find an added mass independent of the ambient flow u∞, a

linear gyroscopic operator in u∞ and in ˙̄ξ, and a stiffness operator quadratic in u∞ and linear in
ξ̄. This shows the similar roles between the ambient flow u∞ from Le Mestre et al. (2022) and the
translational velocity v̄o of this manuscript. It is the model associated with an ambient flow that
will be used for the stability analysis in Chapter IV. Moreover, this approach opens the perspective
to study the impact of gusts (instationary flows u∞(t)) on the airship stability.

Figure II.5 presents a non-exhaustive list of loads that arise in structural dynamics3. Instation-
ary loads are not dealt with in this manuscript. In the case of airship, they would however arise

3 dW = δPf (δ ˙̄ξ = dξ̄), see equation (D.17a), and dV = ∂V
∂ξ̄

dξ̄
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Loads

Instationary

F (ξ, ξ̇, t)

Stationary

F (ξ, ξ̇)

Velocity-independent

F (ξ)

Velocity-dependent

F (ξ, ξ̇)

Gyroscopic
dW = 0

Dissipative
dW < 0

Noncirculatory

dW = −dV

Circulatory

dW ̸= −dV

Figure II.5: Loads classification adapted from Ziegler (1977). The loads F are characterized based
on the associated work W and possibly its relation to a force potential V

when airship are facing wind gusts for instance, which could be taking into account the ambient flow
model with instationary flow u∞(t). Added mass loads are applied through the operator Mf . As
mentionned by Morand and Ohayon (1992), the added mass operator is positive. It is not strictly

positive since tangential accelerations of the interface such that ¨̄ξ.n̄ = 0 don’t generate any acceler-
ation of the surrounding flow, and are therefore associated with a nil added mass. Gyroscopic loads
are applied to the structure by the full-potential flow through the operator Gf and are conserva-
tive. Since Gf is skew-symmetric, it is not definite nor positive with respect to real vectors. As
explained by Ziegler (1977), gyroscopic effects tend to stabilize the structure. Noncirculatory loads
are applied as well through the operator Kf and are conservative as well. The stiffness operator
Kf is not necessarily positive: due to the translational invariance of the problem, the fluid stiffness
associated with translational movements is zero, and it was found that the fluid stiffness associated
with an ellipsoidal membrane in its first bending mode is negative. Nongyroscopic terms are applied
through the damping operator of the fins Dfins. These can be either dissipative or non-dissipative,
which can destabilize the system. Circulatory forces are applied through the stiffness operator of
the fins, which stabilize the system.

II.4 Comparison of the present model with different approaches
from the literature

In this section, we compare the expression of the added stiffness, gyroscopic and mass operators
of the flow obtained in this thesis thanks to a linearization of the ALE action of the flow on the
interface obtained with a Newtonian approach, with the expression obtained by Li et al. (2009)
obtained by linearization of the Lagrange equations derived from the kinetic energy of the fluid. It
means that instead of using the forces of the fluid, their approach is rather based on the derivation
of the energy with respect to the interface movements.

The expression of the fluid operators detailed in Appendix B, equation (B.24) which is rewritten
below for the convenience of the reader, and is valid with no rotations ωo = 0 and for small elastic
perturbations:
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Kf,v(ξ̄
′, δ ˙̄ξ) = −δ ˙̄ξT(Lk + L

T
k )ξ̄

′

Gf ( ˙̄ξ′, δ ˙̄ξ) = δ ˙̄ξT(LT
g − Lg)

˙̄ξ′

Mf (¨̄ξ′, δ ˙̄ξ) = δ ˙̄ξT(Lm + LT
m)¨̄ξ′.

Even though the operators above have been obtained using a different approach than the Newtonian
approach used in this thesis, they describe the same physics and are consequently expected to
be the same operators. One can see the Lagrangian mechanics have the advantage of putting
forward the symmetry of the mass and stiffness elastic operators associated with an order zero
translation velocity, as well as the skew-symmetry of the elastic gyroscopic operator (for an order
zero translation velocity). It should be noted that Rangette (1990) has been able to demonstrate
the symmetry of the added mass operator via the Newtonian approach, but from the point of
view of the author of this manuscript a similar demonstration for the gyroscopic and stiffness
operators would likely be difficult and tedious. However, as already mentioned in Appendix B,
the computation of the stiffness and gyroscopic operators from the Lagrange equation requires the
determination of the second order derivative of the oriented surface and of the velocity potential,
which is prohibitively expansive to calculate. Furthermore, as will be shown in Chapter IV, the
second order derivatives involved in the added stiffness play a non-negligible role in the fluid-
structure interaction of flexible airships. The Newtonian approach represents this effect without
requiring the computation of the second order derivatives. This shows that the Newtonian approach
is better suited for the computation of small perturbations of the forces of a potential flow associated
with elastic deformations than the Lagrange equations used by Li et al. (2009) for example.

II.5 Conclusion

During the course of this chapter, the following work has been done:

1. The Eulerian description of the fluid equations presented in Chapter I is not adapted
to interfaces in motion. For this reason, we have introduced a formulation of the inte-
gral equations of the potential fluid consistent with the interface motions thanks to an
Arbitrary-Lagrangian-Eulerian approach.

2. From the ALE expression of the fluid equations, a linearization has been performed in
order to express the forces at the fluid-structure interface on a time independent reference
interface, despite the rotations and elastic deformations of the structure. In particular,
an expression of the fluid velocity potential was obtained from a linear integral equation
based on a reference domain, which in the context of incompressible potential flows is an
originality of this study to the author’s knowledge.

3. An expression of linearized fluid forces involving mass, stiffness and gyroscopic operators
of the fluid has been shown, similar to the studies of Destuynder and Santi (2006) or
Li et al. (2011) for example, although having a different expression due to the different
approaches chosen. It has been demonstrated that the gyroscopic operator is linear with
the translational and rotational velocities of the structure at zero order. Similarly, the
fluid stiffness operator has been shown to be quadratic with the rigid body motions at
zero order, which allows the expression of these operators to be decomposed according to
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the basis of the six rigid body motions.

4. The expression of the linearized fluid forces from Lagrange equations used by Li et al.
(2011); Chaabani (2014) has the advantage of showing the symmetry properties of the
fluid operators associated with the conservative aspect of the non-viscous irrotational
flows, unlike the Newtonian approach introduced in this work. However, an originality
of this study, to the best of the author’s knowledge, was to demonstrate in Appendix B
that the expression of the linear fluctuations of the fluid forces requires to compute the
fluctuations of the geometry and of the velocity potential at order two, contrary to the
Newtonian approach used in this manuscript. This demonstration thus highlights the
interest of the Newtonian approach.

Thus, now that an expression for the linear fluctuations of the fluid forces has been obtained
based on a time independent reference interface, we will want to determine the forces of the
fluid on the interface as a function of the movements of the latter. Thus, obtaining a numerical
approximation of the mass, stiffness and gyroscopic operators of the fluid from a reference mesh
is the objective of the next chapter.

II.6 Perspectives

The model presented in this chapter is based on strong hypothesis, including potential flow. In
order to improve the accurracy, one could:

1. Take into account a surface of discontinuity of the potential behind the wake to model
the vortex sheet associated with the Kutta condition at the trailing edge (Morino and
Gennaretti, 1992).

2. Add corrections at the rear of the airship where turbulence is not negligible (Lutz et al.,
2002) with models like those presented by Li and Nahon (2007).

Moreover, the range of flight conditions could be more complete:

3. By considering unsteady and inhomogeneous ambient flow effects from the results of
Le Mestre et al. (2022) to study how turbulence, gusts and other specific winds that
might affects the airship trajectory

4. By taking into account the coupling between an ambient flow with structure large rigid
body motions and small deformations

5. By taking into account obstacles (ground, montains), it is possible to use the image
method (meshing of a mirror structure) like in (Carbone et al., 2019), to mesh the ground
like in (Carbone et al., 2019) or even use an adapted Green function allowing to use only
the structure mesh: the information of the obstacles is contained in the Green function.
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Chapter III

Coupled FEM-BEM implementation of the
linearized potential flow operators on a

fixed reference mesh

Introduction

I
n this chapter, the linearized potential flow operators from chapter II are approximated
numerically using both BEM and FEM methods, allowing a coherent coupling of the fluid

effects with the structure dynamic operators based on FEM and which will be introduced in the
next chapter. Once the numerical implementation is done, the results obtained are compared
with various test case taken from the literature to validate the method and quantify its limits.

Based on the integral equation over the reference interface, the BEM is used to calculate
the quasi-steady velocity potential around a given interface as well as its perturbations for
small movements of the interface in section III.1. Since, to the knowledge of the author, the
calculation of the spatial derivatives of the BEM operators associated with a potential flow con-
stitute an original contribution, its implementation is documented with particular attention.
The linear fluctuations of the fluid forces over the interface are then approximated in section
III.2 with the help of FEM. In the aim of validating the numerical operators, section III.3
quantifies the error associated with the numerical and linear approximations based on two test
cases. Finally, the results obtained with the present method are compared with other numer-
ical or experimental approaches from the literature, enabling to compare the implementation
complexity and the accuracy of those methods.

III.1 Numerical approximation of the quasi-steady and perturbed
potential flows with the Boundary Element Method (BEM)

In order to obtain the FEM-BEM operators for fluid forces, it is first necessary to calculate the
BEM operators enabling to get the velocity potential linear fluctuations at the interface, which is
the aim of this section. The condensed form of the velocity potential integral equation introduced
in the previous chapter and given by equations (II.57a) and (II.57b) is suited for implementing the
BEM which will enable to find a numerical solution of the velocity potential on the mesh of the
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fluid-structure interface.

III.1.1 Presentation of the BEM and its application for the steady-state velocity
potential

With the aim of determining the linear fluctuations of the velocity potential, a prerequisite is to
calculate an order zero solution. In order to do so, the BEM is introduced, similarly to (Bonnet,
1999; Veron et al., 2016; Mavaleix-Marchessoux, 2020). It is then applied to the case of the quasi-
steady solution fluid operators.

In this section, the reference interface Σ is discretized as a mesh ΣN made up of planar triangle
elements whose vertices are associated with nodes. For example, an arbitrary vector {ā} associated
with a continuous field ā is defined as:

{ā} =





ā(x̄1)
...

ā(x̄N )





∈ RN ∀ā ∈ C(Σ× R+,R) (III.1a)

{ā} =





{ā.ē1}
{ā.ē2}
{ā.ē3}



 ∈ R3N ∀ā ∈ C(Σ× R+,R3) (III.1b)

(III.1c)

The values of the variables in the mesh elements are obtained via a linear interpolation from their
values at nodes. The linear interpolation matrix [N(x̄)] of size 3 × N enables to obtain the value
of ā at any point of the reference interface mesh as a function of its discrete counterpart {ā}:

ā(x̄) = [N(x̄)] {ā}, x̄ ∈ ΣN . (III.2)

This work only used triangular meshes because it is the most convenient elements to implement,
however the method can be expanded to quadrangular elements (Bonnet, 1999). In order to obtain
an approximation of the potential ϕ̄o, our objective is to solve a discrete equivalent of the integral
equation at order zero (II.57a). Thus, the BEM operators [H] and [G] of respective sizes N×N and
N × 3N are computed using the collocation method such that they approximate the continuous
operators at order zero, Go and Ho, of the integral equation (III.3):

Go(v̄, ȳi, t) ≃
∑

j

[G]ij {v̄}j ≃
∫

ΣN

Gn
o
(x̄, ȳi) · v̄ dΣ(x̄) (III.3a)

Ho(ϕ̄, ȳi, t) ≃
∑

j

[H]ij
{
ϕ̄
}
j
≃
∫

ΣN

∂nG
o
(x̄, ȳi)(ϕ̄ (x̄)− ϕ̄ (ȳi)) dΣ(x̄). (III.3b)

The collocation method consists in writing the integral equation at each node ȳi of the interface ΣN

to obtain a square matrix system whose unknowns are the values of the function at the interface
nodes. The integration is then calculated using Gaussian weights, the value of x̄, v̄ and ϕ̄(x̄) being
obtained on each of the three Gauss points using the linear interpolation matrix [N(x̄)]. Because
of the non-linearity of the terms Gn

o
and ∂nG

o
, the integration with Gaussian weigths is not exact,

hence the ≃ sign in equations (III.3). The finer the mesh, the better the discrete equation (III.3)
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approximates its continuous counterparts, since the triangles become more coincident with the real
surface that has been meshed, and the linear interpolations over the small triangles can approximate
more closely non linear fluctuations of the physical variables. However, when x̄ is located in the
same triangle as ȳi, the norm ∥x− yi∥ is nil at x̄ = ȳi, which means the integral over the triangle
is improper and its value has to be calculated carefully. For the double layer term

∂nG
o =

(x̄− ȳi) · n̄
∥x̄− ȳi∥3

,

the planar shape of the triangles implies that any vector connecting two points of a same triangle is
included in the triangle (see Figure III.3), and is consequently perpendicular to the triangle normal,
hence:

(x̄− ȳi) · n̄ = 0 for x̄, ȳi in the same triangle. (III.4)

Consequently, the term ∂nG
o is trivial to integrate in that case. Though equation (III.4) simplifies

the implementation of the BEM by preventing the calculation of highly singular terms, Posrikidis
(2002) mentions that this triangle mesh approximation causes a discretization error of the order of
δκ/4π, where δ is the perimeter of the triangle and κ the mean curvature of the real surface Σ. On
the contrary, the termGn

o does not cancel for x̄ → ȳi and the integral has to be calculated carefully:
its implementation was done using a Lachat-Watson transformation as detailed by Fischnaller and
Thöbin (2009).

Once [G] and [H] have been calculated, the order zero integral equation can be approximated
numerically as:

[H]
{
ϕ̄o
}
= [G] {v̄o} . (III.5)

Remark

It is possible to reduce the calculation and storage cost of the operator [G] by an order of three by
applying this operator directly to the normal velocity {v̄ · n̄}, hence using the new definition:

∑

j

[G]ij {v̄ · n̄}j =
∫

Σ

Gn
o
(x̄− ȳi)v̄(x̄) · n̄dΣ(x̄),

as done by Veron et al. (2016); Mavaleix-Marchessoux (2020). However, since the normal of the surface
is well defined on the triangles but not at the nodes of the mesh, this would imply to use an interpolated
value of n̄ at the nodes. Therefore, the advantage of less expansive calculation would be at the price of
lower accuracy. This storage reduction method could be considered for fine mesh calculations, which is
not the case in this thesis, leading to the choice of a larger to store but more precise BEM operator. An
equivalent implementation using the reducing storage method mentioned here is nonetheless presented
in Appendix E in case this approach is of interest to the reader.

By inverting the linear system (III.5), the value of the potential at the nodes ϕo is obtained:

{
ϕ̄o
}
= [H]−1 [G] {v̄o} . (III.6)

One should be cautious with the equation above, as it is valid only if [H] is invertible. For the
external problem, the existence and uniqueness of the solution mentionned in Chapter I ensures the
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Figure III.1: Value of the solid angle ϑ associated with the mesh of surfaces with various geometry
regularity. The mesh of a plane surface is smooth, the mesh of a regular convex surface (here a
sphere) is slightly singular at the node, while the mesh of a profile is strongly singular at the trailing
edge. The symbol ≲ stands for ”slightly less than”. For a regular concave surface, one would get
ϑ(yi) ≳ 2π.

invertibility of [H], which is however not the case for the internal problem. The source of singularity
of the double layer operator [H] is the non uniqueness of the associated solution. One might recall
that the uniqueness of the potential has been ensured mathematically thanks to equation (I.37a).
For the external case, this relation ϕ → 0 at infinity is automatically taken into account by the
BEM for the integral at infinity has been set to zero. However, for the internal case, the condition
ϕ̄(x̄ref) has to be set manually. In practice, this can be done by arbitrarily setting the velocity on
the first node to be nil (arbitrarily, because the value could as well be set as nil at any node of the
mesh):

ϕ̄o(x̄1) = 0 for (Pint), (III.7)

thus ensuring the uniqueness of the solution. As a consequence, the BEM linear equation can be
written as follows:

[
[H11] [H12]
[H21] [H22]

]{
0{
ϕ̄o2
}
}

=

[
[G1·]
[G2·]

]
{v̄o} , (III.8)

where the index [H]11 is the top left coefficient of the operator [H], [H12] contains the first row of the
matrix and all its columns except the first and so on for [H12] and [H22].The vector

{
ϕ̄o2
}
contains

all the elements of the array excepted the first, and finally [G1·] is the first row of the operator while
[G2·] is complementary to the latter. The linear set of equations from (III.8) is ill-posed because
there is one more equation than there are unknowns. Consequently, its first row might be removed,
enabling to solve the problem with the following equation:

{
ϕ̄o
}
=

{
0

[H22]
−1 [G2·] {v̄o}

}
for (Pint). (III.9)

One might notice that the non-singularity of the equation above is ensured by the fact that the
rigid body motions are compatible with the incompressible condition for the internal fluid (I.21).
As mentioned in section II.2, the order zero velocity depends on 6 independent parameters, that are
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the three translations and rotations in space. This can be put forward by introducing the discrete
equivalent

[
Q
]
of the distributor Q from equation (II.17) such that:

[
Q
]
{ν̄o} = {v̄o} . (III.10)

Therefore, the order zero solution becomes:

{
ϕ̄o
}
=





[H]−1 [G]
[
Q
]
{ν̄o} for (Pext)

{
0

[H22]
−1 [G2·]

[
Q
]
{ν̄o}

}
for (Pint).

(III.11)

This expression can be simplified by introducing the matrix [Φv], the discrete equivalent of the
function Φv from equation (II.58a):

[Φv] =





[H]−1 [G] for (Pext)[
0 . . . 0

[H22]
−1 [G]2·

]
for (Pint)

{
ϕ̄o
}
= [Φv]

[
Q
]
{ν̄o} .

(III.12)

Calculating the matrix operator [Φv] is costly because of the matrix inversion required, even more so
recalling that the BEM matrix [H] is full. Thus, the matrix [Φv] will rarely be calculated explicitly
in practice (except for coarse meshes) and the solving of equation (III.11) will be carried out using
a GMRes algorithm described by Saad and Schultz (1986).

In order to validate the implementation of the BEM procedure at order zero, a simple test case
is presented. It consists of an ellipsoid of revolution (also referred to as spheroid). Its semi-axes
are of length L and L/Ar respectively, Ar being the aspect ratio of the ellipsoid. For this test-case,
an aspect ratio of Ar = 3 has been used. Since all the physical parameters of the problem have
been reduced, a unitary length L = 1 has been used for the mesh. The ellipsoid has a uniform
longitudinal translation velocity of amplitude V . An analytic expression of the resulting potential
at the interface can be obtained from (Lamb, 1932), leading to the following expression:

ϕ̄∗(x̄) = −k1x̄∗ for x̄ ∈ Σ, (III.13)

where x̄∗ is a reduced longitudinal coordinate x̄∗ = x̄.ēx/L and k1 is a non dimensional geometric
parameter function of the aspect ratio which expression (C.2a) can be found in Appendix C.

In order to validate the quasi-steady BEM procedure, the analytic potential solution is compared
to numerical results. The vector

{
ϕ̄∗BEM

}
has been obtained with the BEM for various mesh fineness

in order to study the convergence of the method. The numerical results are presented in Figure
III.2, where the error has been defined relatively to the exact solution ϕ̄∗ with the L2(ΣN ) error:

err
(
ϕ̄∗BEM

)
=

∥∥ϕ̄∗BEM − ϕ̄∗
∥∥
L2(ΣN )∥∥ϕ̄∗

∥∥
L2(ΣN )

, (III.14)

where the L2(ΣN ) norm of an arbitrary scalar vector a is defined as:

∥a∥L2(ΣN ) =

√∫

ΣN

a(x̄)2 dΣ, with a(x̄) = [N(x̄)] {a} . (III.15)
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Figure III.2: Top: Side view of a spheroid of aspect ratio Ar = 3, with the the potential solution
ϕ̄ associated with a reduced longitudinal velocity v̄∗

c = ēx. Bottom left: relative error of the
numerical solution

{
ϕ̄∗BEM

}
compared to its theoretical value as a function of the number of nodes.

The orange markers with a slope of O
(
N−1/2

)
are associated with the non regularized double layer

matrix [H] from equation (III.16) whereas the blue markers with a slope of O
(
N−1

)
are obtained

using the regularized double layer matrix from equation (III.3b). Bottom right: CPU time tCPU

used to calculate the BEM operator [H] depending on the number of nodes N .
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Moreover, with a view to highlight the interest of the regularization of the matrix operator [H] rather
than using the simplified expression (I.70) leading to the simplified, non regularized operator

[
H1/2

]

∑

j

[
H1/2

]
ij

{
ϕ̄
}
j
≃ 1

2
ϕ̄(ȳi)−

∫

ΣN

∂nG
o
(x̄, ȳi)ϕ̄(ȳi) dΣ(x̄), (III.16)

both results with and without regularization are displayed in Figure III.2 right. The regularized
method converges significantly faster in O

(
N−1

)
versus O

(
N−1/2

)
for the non regularized method.

The convergence of the BEM when refining the mesh seems therefore to have been verified.

Now that the order zero fluid operators have been implemented, the coupling with the fluid
operator from section III.2.1 and the pre-stress solid operators from section IV.1.1 will enable to
obtain an order zero solution in section IV.2.1.

III.1.2 Numerical calculation of the velocity potential perturbations

With the aim of solving the fluid-structure linear fluctuations, one needs to characterize the fluid
force fluctuations, which requires first to get the linear fluctuations of the velocity potential. This
section introduces the linearized operators which enable to predict the linear fluctuations of the
quasi-steady BEM operators from section III.1.1. The latter helps obtaining the numerical operator
connecting the velocity potential perturbations with the structure displacements and velocity, re-
calling that the order one equation of the fluid and the associated BEM linearized operators enable
to overcome the time dependency of the BEM operators for non-linear problems.

With a view to calculating the potential perturbations
{
ϕ̄′
}
, we are looking for a numerical

approximation of equation (II.57b). This is done by introducing a discrete equivalent of the involved
operators similarly to the order zero numerical procedure:

G′(v̄, ȳi; ξ̄
′) ≃

∑

j

[
G′(v̄)

]
ij

{
ξ̄′
}
j
≃
∫

ΣN

Gn
′
(x̄, ȳi; ξ̄

′).v̄ dΣ(x̄) ≃ (III.17a)

H′(ϕ̄o, ȳi; ξ̄
′) ≃

∑

j

[
H′(ϕ̄o)

]
ij

{
ξ̄′
}
j
≃
∫

ΣN

∂nG
′
(x̄, ȳi; ξ̄

′)
(
ϕ̄o(x̄)− ϕ̄o(ȳi)

)
dΣ(x̄) ≃ . (III.17b)

As shown in equation (A.26d), the double layer linearized term is strongly singular for x̄ → ȳ, and
as a consequence one might expect that difficulties could arise integrating it. However, for the same
reason that the scalar product (x̄− ȳ) · n̄ is nil at order zero, the term ∂nG

′
vanishes when x̄ and

ȳ are in the same triangle: the rotated normal associated with the deformed triangle will remain
perpendicular to the deformed vector x̄+ ξ̄′(x̄)− (ȳ + ξ̄′(ȳ)) as demonstrated in section A.5 (see

Figure III.3). This ensures that the double layer term at order one ∂nG
′
vanishes when both x̄ and

ȳ are on the same triangle. Consequently, the order one integral equation becomes, by combining
equations (II.57b) and (III.17):

[H]
{
ϕ̄′
}
= [G]

{
v̄′}+

([
G′(v̄o)

]
−
[
H′(ϕ̄o)

]) {
ξ̄′
}
. (III.18)

Since the BEM operators are affected by the displacements of the interface in the three directions
of space

{
ξ̄
}
, their size is of N × 3N . In practice, the two perturbation matrices H′ and G′ in

the right parenthesis of the above equations are calculated at once and stored as a unique matrix,
enabling to optimize the computation time and only requiring half of the storage. Similarly to the
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ȳ

x̃− ỹ

x̄− ȳ

n̄dΣ
ñdΣ̃ = (n̄+ τ̄ ′) dΣ

ξ̄′(ȳ)

Figure III.3: Reference triangle (blue) and linear perturbation of its geometry (orange) with linear
interpolation of the displacements.

order zero solution associated with the internal problem, the order one solution for the internal
problem has to be treated with extra care to take into account the singularity of the problem:

{
ϕ̄′
}
= [H]−1

(
[G]
{
v̄′}+

([
G′(v̄o)

]
−
[
H′(ϕ̄o)

]) {
ξ̄′
})

for (Pext) (III.19a)

{
ϕ̄′
}
=

{
0

[H22]
−1
(
[G2·] {v̄′}+

(
[G′

2·(v̄
o)]−

[
H′

2·(ϕ̄
o)
]) {

ξ̄′
})

}
for (Pint) (III.19b)

Keeping in mind that the velocity fluctuations v̄′ are not only due to the elastic and rigid body
velocities, but as well to the coupling between the order zero rotation speed and the elastic dis-
placements, the vector product matrix [ω̄o

∧] is introduced such that:

{
v̄′} =

{
˙̄ξ′
}
+
[
Q
] {

ν̄ ′}+ [ω̄o
∧]
{
ξ̄′
}

(III.20a)

with [ω̄o
∧]
{
ξ̄′
}
=
{
ω̄o ∧ ξ̄′

}
. (III.20b)

The discrete integral equation (III.18) can be rewritten by introducing the matrix operator [Φd],
counterpart of the continuous operator Φd defined in equation (II.58b), associated with the potential
perturbations induced by the interface geometry fluctuations:

[Φd] =





[H]−1 ([G′(ūo)]−
[
H′(ϕ̄o)

]
+ [G] [ω̄o

∧]
)

for (Pext)[
0 . . . 0

[H22]
−1 ([G′

2·(ū
o)]−

[
H′

2·(ϕ̄
o)
]
+ [G]2· [ω̄

o
∧]
)
]

for (Pint)
(III.21)

As a consequence, the fluctuations of the potential can be expressed linearly with the velocity and
displacements of the structure as:

{
ϕ̄′
}
= [Φv]

({
˙̄ξ′
}
+
[
Q
] {

ν̄ ′})+ [Φd]
{
ξ̄′
}

(III.22)

The operator equivalent for the Kirchoff potential [Ψ] can be introduced as
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[Ψ] = [Φv]
[
Q
]
, (III.23)

enabling to obtain an equation consistent with (II.61b):

{
ϕ̄′
}
= [Φv]

{
˙̄ξ′
}
+ [Ψ]

{
ν̄ ′}+ [Φd]

{
ξ̄′
}
. (III.24)

Despite the BEM operators can now be calculated to approximate the integral equation, their
O
(
N2
)
complexity constitutes a limitation in practice (Bonnet, 1999). The time of calculation

and the storage increases rapidly as the mesh gets finer, making it hard to solve problems with
N ≳ 104. A more efficient way of calculating and storing those operators would enable to solve
problems with finer meshes in an effort to get more accurate results, which is the aim of the next
section.

III.1.3 Storage and computing time optimization of the BEM with H-matrices

The BEM operators implemented in the above sections are not only costly to calculate, but to store
as well. The H-matrix approximation enables to store only the coefficients of the BEM operators
containing the most information relatively to a given criterion explained later, while the rest of the
matrix associated with more marginal contributions will be stored using low rank approximations.
This method is well suited to improve both calculation time and storage costs for BEM problems
with many degrees of freedom, and it enables to perform parallel computing unlike the classical
BEM method. The implementation of H-matrices is detailed in this section.

Because of their N2 non nil coefficients, the BEM matrices implemented in the above sections
are not only time consuming to compute, but also expensive to store. Thus, the computational
costs quicly become prohibitive in the case of calculations on refined meshes. In order to overcome
this drawback of the BEM, acceleration methods have been developed in the literature to speed
up the computation and reduce the storage costs. The Fast Multipole Method (FMM) allows
to approximate a BEM matrix-vector product using multipole expansions. Although this process
reduces the computational costs for single matrix-vector products, it does not stores the BEM
operators, making it necessary to calculate new approximations for each matrix-vector product of
a same matrix. In this thesis, we have chosen to compute the BEM operators as well as their
derivative based on a reference mesh, in order to reuse them in the current configuration. It is
therefore convenient to store these operators to be able to apply them to multiple vectors, which is
referred to as multiple right-hand side problems (Simoncini and Gallopoulos, 1995). As an example,
in the case studied in Chapter IV, where a modal projection is used, the BEM operators have to
be applied to each vector constituting the reduced basis. A method well adapted to speed up the
BEM while allowing to store the associated matrices is the Hierarchical matrix (H-matrix) method
(Chaillat et al., 2017).

In order to reduce the cost of computation and storage, the H-matrix method has been imple-
mented and specifically extended for the very case of the linearized single and double layer BEM
matrices

[
H′(ϕ̄o)

]
and [G′(ūo)].

The method first consists in clustering the interface, before decomposing the BEM matrix into
full rank blocks and low rank approximated blocks, enabling to reduce its computing cost. The
clustering of the interface is done by first subdividing it into two sub-regions of equivalent size (see
domains (1.1) and (1.2) in Figure III.4). The two sub-regions obtained are each subdivided into
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(3.3), (3.4) (3.7, 3.8)

(3.5), (3.6)

Figure III.4: Successive subdivisions of an ellipsoidal interface for the H-mat implementation.

two sub-regions again (domains (2.1) to (2.4)), and so on until each sub-region reaches a given
size. The regions are no longer subdivided when their number of nodes is less than a criterion
nleaf called ”leaf number”. Once the clustering has been done (hence when the smallest regions
have reached leaf level), the BEM matrix is decomposed into full blocks and low-rank blocks:
depending on how close or far apart they are from each other, based on an arbitrary criterion
called the admissibility condition, the sub-regions are classified separately. If two sub-regions are
close to each other, then the interface motions in the former region will have a strong impact on
the fluid behavior in the latter region. As a consequence, these interactions are too important and
cannot be approximated in the BEM matrix. The coefficients of the latter associated with these
sub-regions will have to be computed in the classical way (full block), which is costly in terms of
storage as mentioned previously. On the other hand, if two regions are considered to be far apart,
then interface movements in one will have a limited influence on the fluid behavior in the second.
For example, local displacements at the nose of the airship are likely to have little effects on the
flow at its tail. The interactions between these two distant regions in the BEM operator can then
be approximated using a low rank approximation (low rank block). The calculation of low rank
blocks implemented in our code by S. Chaillat (Chaillat et al., 2017) is based on the Adaptative
Cross Approximation (ACA) Bebendorf and Rjasanow (2003). This algorithm allows to compute
the approximation [Mk] (of rank k) of a matrix [M] written as the sum of products of vectors:

[Mk] =

k∑

i=1

aib
T
i , with ai, bi ∈ Rm, (III.25)

where m is the size of [M]. The value of the rank k depends on an admissibility criterion εACA such
that:

∥[Mk]− [M]∥fro
∥[M]∥fro

≤ εACA, (III.26)

where ∥∥fro is the Frobenius norm1 of a matrix. As equation (III.25) shows, the storage cost of
the approximation block is in [Mk] = O (2km) instead of the initial cost [M] = O

(
m2
)
. As a

1The Frobenius norm of a matrix A ∈ Rn ⊗ Rn with n ∈ N is defined as ∥A∥fro =
√

trace(AAT)
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consequence, the ACA algorithm enables to compress the matrix [M] when its rank is lower than
the size N of the matrix. Further explanations on the clustering and the low rank approximations
can be found in either (Chaillat et al., 2017; Mavaleix-Marchessoux, 2020). Moreover, the H-matrix
method is well suited for parallel computing, since each block can be computed independently from
the others, unlike the classical BEM method which requires to compute the whole operator at
once. As a consequence, by splitting the calculation of the operators with the H-matrix method to
different cores, a significant gain of time has been obtained.

In the framework of this thesis, the implementation of the clustering in the code as been done
by Stéphanie Chaillat (Chaillat et al., 2017), as well as the approximation of the matrix [H] using
low rank blocks, which was then adapted to the operator [G]. One of the challenges of the current
work has therefore been to extend the H-matrix method and code to the linearized BEM operators
[G′] and [H′] that were introduced in this thesis.

H-mat representation

N ≃ 40.000

nleaf = 300

Mesh associated

low rank blocks

full blocks

Figure III.5: On the left: H-matrix representation with low rank blocks (blue) and full blocks (red).
Left: associated interface mesh. The full and low rank regions on the mesh are associated with the
interactions with the node marked with a star, at the node of the structure. The dashed orange
lines link the coefficients of the column associated with the node marked with a star, and their
counterpart on the physical mesh.

An example is given in Figure III.5. On the left, one can see the hierarchical representation
associated with the matrix, where each red square is associated with a full block and each blue
square stands for a low-rank approximation. One might notice that the degrees of freedom have
been rearranged by sub-regions. The proximity of the matrix diagonal is very dense with full
matrices: this is due to the fact that the associated lines and columns in this zone are much more
likely to be spatially close to each other since the nodes have been rearranged by sub-regions. On
the contrary, as one gets farther from the diagonal, the coefficients associated with the lines and
columns become much more likely to be remote from each other. Consequently, their interaction
tends to be accurately enough approximated using low rank blocks. The relatively small size of the
full rank blocks is due to the high ratio between the number of nodes of the mesh N and the size of
the full blocks nleaf. The gain of space is illustrated in Figure III.6, showing at the left the already
mentioned quadratic cost of storage of the full BEM operators, compared to a the storage cost of
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Figure III.6: Left: storage size of the full BEM and Hmat operators for varying number of nodes.
Right: the compression rate τcomp is the ratio between the storage cost of the full BEM operator
and its H-matrix counterpart. Results obtained for nleaf/N = cte.

the H-matrix with the trend N log(N) predicted theoretically by Chaillat et al. (2017).

ū∗o − v̄∗o

x∗

z
∗

y∗

Figure III.7: Order zero relative flow velocity around an airship with a translation at an angle of
attack of α = 10◦. ū∗o and v̄∗o are respectively the flow and interface velocity normalized by the
characteristic structure speed. The structure has a forward motion v̄∗o = ex. The coordinates
x∗,y∗ and z∗ are normalized by the characteristic length L. The black curves are associated with
the streamlines, with the arrowheads denoting the direction of the relative flow.

The relative flow velocity ū − v̄ being tangential to the interface to meet the non penetration
of the fluid condition, the velocity associated with the potential at order zero can be obtained by
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calculating the surface gradient of the potential ϕ̄o on the reference mesh, which is done in practice
using the surface gradient of the interpolation matrix [N(x̄)]. The relative velocity obtained on
a representative airship geometry with N ∼ 104 in a translation with a angle of attack of 10◦

relatively to the longitudinal axis is plotted in Figure III.7. The streamlines were obtained by
seeding around the stagnation point. As expected, there is a stagnation point slightly below the
nose of the airship due to the angle of attack, and the flow is accelerated to compensate for the
obstacle that is the structure in the regions where ∥ū∗o − v̄∗o∥ > 1, helping to have confidence in
the physical sense of the BEM solution.

The H-matrix method coupled with the BEM operators associated with the quasi-steady and
the perturbation problems enabled to obtain a numerical explicit relation between the discretized
velocity potential and the displacements and velocity at the nodes of the mesh. As a consequence,
it is now possible to use this expression of the velocity potential and its time derivative to obtain
an explicit expression of the virtual power of the fluid with respect to the mesh movements. Next
section aims at calculating the operator connecting the virtual power of the fluid with the velocity
potential and the velocity of the structure.

III.2 Integration of the fluid loads on the interface

Once the discrete operators for the velocity potential have been calculated, the next step toward a
monolithic fluid-structure coupled model is to calculate the virtual power of the fluid loads. The
FEM enables to do so conveniently.

III.2.1 Implementation of the FEM operators associated with the fluid loads
on the interface

In order to integrate the virtual power of the fluid pressure on the interface as a function of the
velocity potential, the interface displacements and their time derivatives, this section introduces
the required FEM operators.

For the rest of the chapter, gravity effects as well as order zero accelerations effects (term ˙̄νo)
are not considered. Unlike the kinematic problem which required to take into account the whole
fluid domain (which one might recall is the reason why the BEM was used, enabling to reduce
the unknowns dimension by one, from the fluid volume to the interface), the virtual power of the
fluid only involves fluid variables at the interface: it is therefore already a problem based at the
interface. Consequently, the FEM allows to integrate those efforts conveniently. With a view to
approximate the virtual power of the fluid as a function of ϕ̄, ξ̄, v̄ and their time derivatives, the
following discretized bilinear operators are introduced:
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{δv̄}T [Pa]
{
˙̄ϕ′
}
≃
∫

ΣN

˙̄ϕ′n̄ · δv̄ dΣ,

{δv̄}T [Pb(ū
o)]
{
ϕ̄′
}
≃
∫

ΣN

ūo ·∇tϕ̄
′ n̄ · δv̄ dΣ,

{δv̄}T [Pc(ū
o)]
{
˙̄ξ′
}
≃
∫

ΣN

− ˙̄ξ′ · ūo n̄ · δv̄ dΣ.

{δv̄}T [Pd(ū
o − v̄o, ūo)]

{
ξ̄′
}
≃
∫

ΣN

−(ūo − v̄o) ·
([

▽∇T
t ξ̄

′
]
ūo
)
n̄ · δv̄ dΣ,

{δv̄}T
[
Pe(p̄

o
dyn)

] {
ξ̄′
}
≃
∫

ΣN

p̄odynτ̄
′(ξ̄′) · δv̄,

{δv̄}T [Pf(ū
o, ω̄o)]

{
ξ̄′
}
≃
∫

ΣN

−ūo · (ω̄o ∧ ξ̄′)δv̄,

{δν̄}T
[
Pg(p̄

o
dyn)

] {
ξ̄′
}
≃
∫

ΣN

p̄odynn̄ · (δω̄ ∧ ξ̄′) dΣ.

(III.27)

In the equation above, the variables ϕ̄′, ξ̄′ and their time derivatives and δv̄ on ΣN are obtained
using the interpolation matrix. The velocity ūo is obtained on each element using ϕ̄o and the
surface gradient of the interpolation matrix [N(x̄] As will be shown in section III.3, the operator
[Pg] associated with the linear fluctuations of the virtual rotations δω̄ plays a crucial role for the
prediction of the moment. As the virtual displacements of the interface can be expressed as

{δv̄o} =
[ [
Q
]
, [1]

] {
δV
}
. (III.28)

Therefore, the virtual power associated with the dynamic pressure can be expressed by combining
equations (II.75), (II.78) and (III.27):

δP ′
f =−

{
δV
}T [[

Q
]
, [1]

]T [
[Pa]

{
˙̄ϕ′
}
+ [Pb(ū

o)]
{
ϕ̄′
}
...

+ [Pc(ū
o)]
([
Q
] {

ν̄ ′}+
{
˙̄ξ′
}
+ [ω̄o

∧]
{
ξ̄′
})

...

+
(
[Pd(ū

o − v̄o, ūo)] +
[
Pe(p̄

o
dyn)

]
+ [Pf(ū

o, ω̄o)]
) {

ξ̄′
} ]

− {δν̄}T
[
Pg(p̄

o
dyn)

] {
ξ̄′
}

(III.29)

III.2.2 Resulting mixed FEM-BEM fluid operators

In this section, further considerations about the properties of the fluid operators are given.

Elastic movements only

We first focus on the case where only elastic perturbations are involved and rigid body perturbations
are nil, since the associated operators will have an important role in Chapter IV. The elastic fluid
forces can be written as follows for v̄′ = 0 and ω̄′ = 0, from (III.29) with ν̄ ′ = 0:
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δP ′
f (δ

˙̄ξ) =
{
δ ˙̄ξ
}T ([

Mf
ξξ

] {
¨̄ξ′
}
+
[
Gf

ξξ

]{
˙̄ξ′
}
+
[
Kf

ξξ

] {
ξ̄′
})

, (III.30)
[
Mf

ξξ

]
= [Pa] [Φv] (III.31)

[
Gf

ξξ

]
= [Pa] [Φd(ū

o)] + [Pb(ū
o)] [Φv] + [Pc(ū

o)] (III.32)
[
Kf

ξξ

]
= [Pb(ū

o)] [Φd(ū
o)] + [Pc(ū

o)] [ω̄o
∧] + [Pd(ū

o − v̄o, ūo)] +
[
Pe(p̄

o
dyn)

]
+ [Pf(ū

o, ω̄o)]

(III.33)

As mentioned in Chapter II, we expect the mass and stiffness operators
[
Mf
]
and

[
Kf
]
to be

symmetric and the gyroscopic operator
[
Gf
]
to be skew-symmetric. However, because of the New-

tonian formulation used, the expressions obtained are not obviously symmetric and this property is
not necessarily verified exactly by the matrices obtained after discretization. The numerical error
on this theoretical property of (skew-)symmetry has been observed in Appendix D.2 with relations
(D.22), showing good agreement with the expected properties with relatively low errors. On the
other hand, the operators expressed using Lagrange’s equations, which are presented later in section
III.4.2, naturally verify these properties. However, Rangette (1990) demonstrated that a posteriori

symmetrization of the added mass operator
[
Mf

ξξ

]
minimizes the maximum prediction error of the

added mass efforts. This demonstration is presented in Appendix D.1.

Remark

The symmetrized Newtonian operator
[
Mf
]
is equal to the added mass operator’s expression based

on Lagrange’s equation, as shown by equation (B.27).

One can then naturally extend this result to the added stiffness operator
[
Kf

ξξ

]
, whose a posteriori

symmetrization thus allows to minimize the maximum error on the prediction of the associated
loads. As part of this work, the demonstration has also been extended to the antisymmetrization

of the gyroscopic operator
[
Gf

ξξ

]
in Appendix D.1, which had not yet been proved in the literature

to the author’s knowledge.

Let us remark that it is possible as well to implement the BEM based on a variational formulation
of the integral representation (Rangette, 1990): this approach would ensure the symmetry of the
added mass matrix at the expense of more integrations. For this reason, the collocation method
used to implement the BEM in this article seems to be an acceptable compromise between accuracy
and numerical effort. However, the (skew-)symmetry of the fluid operators has been numerically
evaluated in section III.2.2.

Elastic movements coupled with rigid body perturbations

In this section, we investigate how the rigid body perturbations affect the fluid operators.

[
Mf
]
=
[[
Q
]
, [1]

]T
[Pa] [Φv]

[[
Q
]
, [1]

]
(III.34)

The added mass operator above is symmetric just like the purely elastic added mass operator
[
Mf

ξξ

]
.

The gyroscopic operator writes as:
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[
Gf
]
=



[
Q
]T [

Gf
ξν

] [
Gf

ξν

]

[
Q
]T [

Gf
ξξ

] [
Gf

ξξ

]



[
Gf

ξν

]
= [Pb(ū

o)] [Φv] + [Pc(ū
o)]

[
Gf

ξξ

]
= [Pa] [Φd(ū

o)] +
[
Gf

ξν

]

(III.35)

One should note that
[
Gf
]
loses its skew-symmetry, since:

[
Gf

ξν

]
̸=
[
Gf

ξξ

] [
Q
]
, (III.36)

and consequently: [
Gf

ξν

]
̸= −

[
Gf

νξ

]T
, (III.37)

The fluid stiffness associated with the dynamic pressure can be computed as:

[
Kf
]
=
[[
Q
]
, [1]

]T (
[Pb(ū

o] [Φd] + [Pc(ū
o)] [ω̄o

∧] + [Pd(ū
o − v̄o, ūo)] +

[
Pe(p̄

o
dyn)

]
+ [Pg(ū

o, ω̄o)]
)
−
[
[O] ,

[
Qω

]
, [O]

]T [
Pf(p̄

o
dyn)

]
,

(III.38)
which can be rewritten under the condensed form:

[
Kf
]
=



[O] [O] [O]

[O] [O]
[
Kf

ωξ

]

[O] [O]
[
Kf

,ξξ

]




[
Kf

ωξ

]
=
[
Qω

]T [
Pg(p̄

o
dyn)

]
[
Kf

ξξ

]
= [Pb(ū

o] [Φd] + [Pc(ū
o)] [ω̄o

∧] + [Pd(ū
o − v̄o, ūo)] + [Pe(ū

o, ω̄o)] +
[
Pf(p̄

o
dyn)

]

(III.39)

Therefore, the stiffness operator Kf
v loses its symmetry when rigid body perturbations are con-

sidered. Let us remark that both the gyroscopic and stiffness fluid operators lose their (skew-
)symmetry properties because of the introduction of rotations.

Having calculated the added mass, gyroscopic and stiffness matrices of the fluid enables to
predict the linear fluctuations of the fluid virtual power on the interface. We now want to validate
the model, which is the sake of the following section.

III.2.3 Validation of the mixed FEM-BEM approach

In order to validate the mixed FEM-BEM approach enabling to determine the loads of the fluid,
two test cases are looked at.

III.2.4 Longitudinal added mass test case

The first one is the prediction of the longitudinal added mass Mf
xx. The longitudinal added mass

is defined as the longitudinal force of the fluid caused by an unit longitudinal acceleration of the
structure, resulting in a virtual inertia added by the surrounding fluid on the structure. With the
definition just mentioned, Mf

xx can be computed from equation (III.24) as:
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Mf
xx = {ex}T

[
Mf

ξξ

]
{ex} (III.40)

The results of Mf
xx can be compared to its analytical expression given by Lamb (1932) in the case

of a revolution ellipsoid of major axis ex and presented in equation (C.6a) of this manuscript.

The second test case compares the numerical value of the computed Munk’s moment with its
analytical expression found in Lamb (1932) as well and in equation (C.8). The Munk moment,
known for its destabilizing effects on airships (Li et al., 2011), results from a potential flow around
an ellipsoid translating in a direction distinct from its symmetry axis. The Munk moment is directed
perpendicularly to the translation velocity and the symmetry axis of the ellipsoid. The reduced
Munk moment is calculated as:

M∗
Munk =

MMunk

ρfL3V 2
. (III.41)

For an ellipsoid translating with an angle of attack α as pictured in figure III.8, its expression
becomes:

M∗
Munk = sin(2α)g(Ar), (III.42)

with g(Ar) a function of the aspect ratio of the ellipsoid which expression is given in equation (C.8).
It is positive when the longitudinal axis is longer than the radial axis of the revolution ellipsoid,
causing the Munk moment to destabilize elongated ellipsoids, at all angles of attack different from
either α = nπ, n ∈ N (translation aligned with the major axis) which is an unsteady equilibrium
position or from α = nπ + π/2, n ∈ N (translation normal to the major axis) which is a stable
equilibrium position. In the case of a sphere (hence Ar = 1), g(Ar = 1) = 0 because a potential
flow does not exert any moment on a sphere. The Munk moment is determined numerically by
integrating the order zero pressure over the mesh, projected onto the rotation movement among ey
(see figure III.8), recalling the rotation distributor Q5 = ēy ∧ (x̄− x̄c):

MMunk =

∫

ΣN

p̄oezQ5 · n̄dΣ. (III.43)

The comparison between the numerical and theoretical longitudinal added mass is presented at the
left of Figure III.8. The error associated with the mixed FEM-BEM procedure is roughly 2.5 times
larger than the error associated with the FEM integration based on the exact potential solution,
no matter the fineness of the mesh. This means that, for added mass calculations, the numerical
error induced by the BEM and by the FEM is of the same orders. Coherently with Figure III.2 and
Figure III.9, the global error evolves in N−1 for the mixed FEM-BEM procedure. The error on the
Munk moment plotted at the bottom right of Figure III.8 shows that the error is in O

(
N−1

)
for

either FEM-BEM and FEM-analytic approaches.

Let us remark that unlike the BEM operators which increases in O
(
N2
)
(see Figure III.2), the

time required to compute FEM does not vary much in comparison, which means that, due to their
sparse structure, the FEM operators calculation time is going to be negligible compared to the time
required for the BEM operators. The sparsity of the FEM also means that their storage cost is in
O (N) against a cost in O

(
N2
)
for the BEM problem, which means that the BEM is much more

limiting than the FEM for the storage as well.
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∂t(ū− v̄c)

F = −Mf
xx

∂v̄c
∂t ex

ey

mixed FEM/analytic

mixed FEM/BEM

N

er
r(
M

f
x
x

)
[%

]

1

1

er
r(
M

M
u
n
k
(π
/1
2)
)
[%

]

N

1

1

Figure III.8: Top left: Structure with longitudinal acceleration in a potential flow. The streamlines
are associated with the acceleration of the flow relative to the structure and the red vector is
associated with the added mass force of the fluid, opposed to the acceleration of the structure. Top
right: Munk moment MMunk(α) exerted by a steady external flow around a revolution ellipsoid
with an angle of attack α. The streamlines are associated with the velocity of the flow relative
to the structure. Bottom left: convergence of the numerically predicted longitudinal added mass
Mf

xx. The orange diamond markers are associated with the mixed FEM-BEM, while the blue
circles were obtained by integrating the analytic expression of the potential instead of calculating
it with the BEM for comparison. Bottom right: convergence of the numerically predicted Munk
moment associated with an angle of attack α = π/12, using either a mixed FEM-BEM solution or
integrating the virtual power with FEM from the analytic expression of ϕ.
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Figure III.9: FEM error on the numerical longitudinal translation added mass coefficient
{ēx}T

[
Mf
]
{ēx} compared with the analytical predicted value at the left. At the right, CPU

time required to compute the FEM operator [Pa] required to determine
[
Mf
]
.

Once both the velocity potential and the virtual power of the fluid have been calculated, their
coupling enables to obtain an explicit expression of the fluid forces in the form of added mass,
gyroscopic and stiffness matrices.
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III.3 Validation of the model linearization

In this section, the error associated with the present linearization method is quantified, investigating
the consequences of the asymptotic detailed in section II.2. In order to do so, the perturbations
of the forces obtained with the linear model are compared with the force perturbations obtained
using finite differences with non linear calculations for various small amplitudes of deformation
or velocity. In order to validate the linearization, the relative error between the linear and the
non-linear perturbation must be in O

(
ε2
)
, meaning that all the linear terms in O (ε) are well

captured.

The results are obtained on a mesh with N ∼ 3000 of an arbitrary ellipsoid of semi axis 0.5,
0.2 and 0.1. The deformation perturbations imposed are arbitrarily set as:

ξ̄′∗ = ˙̄ξ′∗ =





cos 2πx∗

x∗y∗

z∗2



 . (III.44)

The complex expression of ξ̄′ and its time derivative as well as the different semi axis of the
ellipsoidal mesh enable to ensure that the couplings involve all the fluid BEM and FEM operators.
The same results where obtained for each possible coupling of order zero non nil movements (either
v̄o
c or ω̄o) with small perturbations in position, velocity or acceleration for the external problem,

as reported in table III.1. For the sake of clarity, the operators concerned have been included:
stiffness Kf associated with deformations, Gf associated with velocities and Mf associated with
accelerations. In this table, the columns associated with acceleration terms are not associated
with order zero velocities v̄o or ω̄o since added mass loads are independent of the velocity of the
structure at order zero. Two examples of the convergence are given in Figure III.10: the one on
the left validates the fluctuations of the fluid forces for a structure with large rotation and small
deformations, and the one on the right validates the fluid forces perturbations for the coupling
between large and small rotations. One should note that the linearization of the virtual velocity
field δv̄′ = δω̄o∧ξ̄′ is required to obtain a good prediction of the associated moment: without coding
it, the prediction is not in O

(
ε2
)
anymore. Due to time constraints, the stiffness and gyroscopic

internal fluid operators have not yet been validated. Even though their analytic expression was
double checked, it has not been test proofed like the external problem operators and should be

implemented with particular care if used in future studies. The small perturbations in ˙̄ξ′ where
computed using the order zero dynamic pressure associated with large displacement velocities,
which was not introduced in Chapter II for conciseness purposes, but whose expression is given
here to enable the validation of the linear perturbations of the dynamic pressure:

podyn(x̄) = − ˙̄ϕo − 1

2
(ūo)2 + v̄o · ūo. (III.45)

When there is an order zero velocity, the time derivative of ϕ̄o has a much more complicated
expression that can be found by deriving equation (II.57a) with respect to time:

d

dt
Ho(ϕ̄o) =

d

dt
Go(v̄o). (III.46)

The expression above can be developed using the chain rule as:

∂Ho

∂ξ̄o

(
ϕ̄o,

∂ξ̄o

∂t

)
+Ho

(
∂ϕ̄o

∂t

)
=
∂Go

∂ξ̄o

(
v̄o,

∂ξ̄o

∂t

)
+ Go

(
∂v̄o

∂t

)
. (III.47)
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order zero v̄o ω̄o −
Movements

perturbations ξ̄′ v̄′ ω̄′ ˙̄ξ′ ξ̄′ v̄′ ω̄′ ˙̄ξ′ ∂2ξ̄′

∂t2
, ∂v̄

′
∂t ,

∂ω̄′
∂t

Operator
Kf Gf Kf Gf Mf

(Pext) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Problem

(Pint) ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

Table III.1: Validation of the virtual power fluctuations and the associated matrices
[
Kf
]
,
[
Gf
]

and
[
Mf
]
.

The expression of the temporal fluctuations of the operators above can conveniently be obtained
using the expression of their perturbation:

Ho

(
∂ϕ̄o

∂t

)
= Go

(
∂v̄o

∂t

)
+ G′

(
v̄o;

∂ξ̄o

∂t

)
−H′

(
ϕ̄o;

∂ξ̄o

∂t

)
(III.48)

The order zero time derivative of the potential associated with large deformation velocity can
therefore be determined numerically as:

{
∂ϕ̄o

∂t

}
= [H]−1

(
[G]

{
∂v̄o

∂t

}
+
([
G′(v̄o)

]
−
[
H′(ϕ̄o)

]){∂ξ̄o
∂t

})
. (III.49)

With the expression above, the linear perturbations of the fluid efforts with respect to the defor-
mation velocity could therefore be validated by comparing them with the non linear perturbations
for small amplitude velocities (ε≪ 1).

v̄o
c = 0,ω̄o = [1, 1, 1]

d̄′
c = 0, θ̄′ = 0, ξ̄′ ̸= 0

v̄o
c = 0,ω̄o = [1, 1, 1]

v̄′
c = 0, ω̄′ = [1, 2, 1], ∂ξ̄

′
∂t = 0

Figure III.10: Error of the linear perturbations of virtual power prediction compared to non linear
perturbations. The forces f , F andM are associated with the elastic deformations, the translations
and the rotations respectively.
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Now that the convergence of the model with respect to the linear and numerical approximations
has been verified, it is of great interest to study how the present method compares with existing
methods from the literature, both in terms of implementation and accuracy.

III.4 Comparison of the present method with methods from the
literature

The aim of this section is to gain insight on the advantages and drawbacks of the present method
and its hypotheses by comparing its results with models inspired by the literature.

III.4.1 Comparison of the steady BEM solution with RANS simulations

In order to further verify if the results obtained for a potential flow solved with the BEM enable to
capture well the fluid forces around an interface, this section compares results obtained from the
quasi-steady order zero solution presented in this article with RANS simulations.

In this section, the pressure obtained with the BEM is compared to the results obtained on
the same problem solved with a RANS simulation, which allows to take into account the effects of
turbulence on the contrary to the potential flow model which the BEM is based on. The comparison
of the dynamic pressure repartition between the BEM and the RANS method is presented in
Figure III.11 on a vertical slice y = 0 of the interface including both the symmetry axis of the
structure and the velocity vector of the ambient flow u∞. The BEM is calculated on a N = 5713
surface mesh. The RANS method was obtained for a compressible flow with a Spalart-Allmaras
turbulence model at Re = 2, 2.106. For visualization purposes, the pressure, which is supposed to
be constant over the elements, has been interpolated linearly for both methods, hence the relative
smoothness of both curves. For a quasi-steady case, the dynamic pressure is defined as:

pdyn = −1

2
ū2 + v̄ · ū. (III.50)

Because the static pressure is straightforward to obtain, its value has been removed to compare only
the dynamic pressure which is much more challenging to predict. Since the RANS mesh is singular
on the symmetry axis of the mesh, the fluid perceives the front and rear of the interface as a hole
very locally, hence the pressure local spikes of the RANS results at an altitude z = 0 associated
with the axis of symmetry. Except for this artifact, one can see that the BEM and RANS pressure
repartition are similar on most of the interface slice presented here, exception made of two zones.
On the top rear of the interface, the BEM dynamic pressure is overpredicted (recalling that with
the projection of pdyn in Figure III.11, a curve closer to the interface means a higher pressure).
This means that the RANS predicted pressure will create a suction force on the top of the interface
which is not captured by the BEM. It is due to the fact that, because of the angle of attack, the
flow past the interface creates a lift (caused by the suction on the top of the interface) toward
z > 0. Because of the d’Alembert paradox, the potential model used for the BEM cannot predict
any lift on the structure as mentioned by Li et al. (2011), hence this first divergence between the
two methods. The second difference between these methods is that the BEM predicts a stationary
point at the rear of the structure (a nil dynamic pressure associated with a nil velocity), whereas
the RANS calculation does not predict a stationary point. This is due to turbulent effects causing
the fluid to stall locally at the rear of the structure. Because turbulence effects cannot taken into
account with the potential flow hypothesis, BEM is not able to predict the stall phenomenon. Apart
from these two regions, both method give very similar pressure predictions. Let us also remark
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Figure III.11: Dynamic pressure associated with the steady ambient flow around a generic airship
shape with a symmetry axis. The structure translation velocity has an angle of attack α of 10◦

relatively to the longitudinal axis. Top: non-dimensional dynamic pressure field p∗dyn repartition
obtained with the BEM. The black curves show the streamlines associated with the velocity of the
fluid relative to the structure’s. The arrows show the relative flow direction. The orange plane
y = 0 is used to visualize the pressure repartition on the bottom graph on a slice shown with orange
dots on the upper figure. Bottom: comparison of the pressure amplitude obtained with RANS and
BEM, projected among a radial direction represented by the light grey lines. When the pressure
curve is coincident with the interface, it signifies that there is no dynamic pressure at this point. If
the pressure curve is outside the airship domain, it signifies the the dynamic pressure is negative.
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that the fluctuation spikes of pressure that appear on the blue curves appart from the symmetry
axis ([x, z] ≃ {[−20, 5], [−15,−3], [16, 1], [16,−1]} are artifacts due to the linear interpolation of
the pressure field between different mesh zones and therefore do not describe with fidelity the
RANS numerical results. Further comparisons between potential flow theory and experimental
measurements can be found in (Clarke, 2009). In that study, the pressure repartition around a
non-axisymetric ellipsoid of aspect ratio Ar = 3.5 obtained with an analytic potential method is
compared with both RANS simulations at Re ∼ 5.107 and experimental measurements at Re ∼ 106.
This study leads to similar comparisons: the potential pressure repartition compares well exception
made of the rear of the body where stall occurs. Because the interface from Figure III.11 is more
profiled than the Ar = 3.5 ellipsoid, the associated stall region is less important in the results
presented in this section than in (Clarke, 2009), leading to a better prediction of the pressure by
the potential at the rear than in the case of 4.2:2:1 ellipsoid.

The results presented in this section confirms statements that had been made in the literature
(Li et al., 2011): at sufficiently low angles of attack, the potential flow hypothesis enables to capture
quite well the pressure fluctuations of the flow, even thought it cannot capture the lift caused by
the circulation induced on the flow in practice, and it is not able to predict turbulent effects at
the rear of the body. Moreover, as the RANS simulations are associated with a compressible fluid,
these results tend to validate the hypothesis that the compressibility of the fluid plays a negligible
role at the scale of airships, as one would expect for a Mach number of 0.1.

III.4.2 Quantification of the numerical errors with Lagrangian mechanics

We now want to study how Lagrange’s equations, used by Li et al. (2009); Azouz et al. (2012),
affect the results compared to a Newtonian approach as in the present study.

Lagrangian mechanics, a distinct framework from Newtonian mechanics presented in II.4, has
the advantage, among others, to naturally display the symmetry or skew-symmetry properties of the
fluid mass, gyroscopic and stiffness operators. However, it comes at the price of having to calculate
second order derivatives with respect to the structure movements for the added stiffness. This
section investigates how numerical results with Newtonian and Lagrangian mechanics compare,
and to what extent the second order derivatives contribute to the added stiffness of the fluid.

The aim of this section is to quantify and compare the error associated with linearized models
based on Newton and Lagrange dynamical equations. Due to time constraints, only the quasi-
steady fluctuations have been investigated in this manuscript: as a consequence, the gyroscopic
and added mass effects from both approaches were not compared, and only the added stiffness
effects were investigated. The error associated with linear perturbations has to be associated with
a criterion. In this section, two criteria are used to investigate the accuracy of the methods. The
first criterion relates to the virtual power fluctuation associated either with the Newton approach
or its equivalent Lagrangian approach. The second criterion compares the fluctuations of the fluid
kinetic energy. In order to quantify the accuracy of each method, the methodology is the following:
the criterion (either virtual power or energy) is first calculated on a reference mesh. Then, the first
order fluctuations of the fluid efforts associated with a reference arbitrary movement are determined.
Finally, the reference mesh undergoes a displacement associated with the reference movement, with
a sufficiently small amplitude in order to ensure quadratic and other higher order terms to have
negligible effects. A new quasi-steady solution (and the associated criterion perturbation) can
therefore be calculated on this new mesh. As a consequence, the exact perturbation calculated
with finite difference based on the reference mesh and the deformed mesh can be compared with
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the first order prediction.

The first criterion studied is the virtual power of the flow associated with a virtual velocity δ ˙̄ξ.
The linear perturbations of the normal and the velocity potential associated with the perturbation

δ ˙̄ξ are noted τ̄ ′(δ ˙̄ξ) and ϕ̄′(δ ˙̄ξ) are obtained using equations (A.13) and (II.61b) applied to a
quasi-steady virtual motion:

τ̄ ′(δ ˙̄ξ) = (∇t · δ ˙̄ξ − ▽∇T
t δ

˙̄ξ)n̄ (III.51a)

ϕ̄′(δ ˙̄ξ) = Φd(ν̄
o; δ ˙̄ξ). (III.51b)

One can express the order zero virtual force associated with the virtual velocity field δ ˙̄ξ using
either equation (II.77) or (B.21) for the Newtonian and Lagrangian expression of the virtual force
respectively:

δPo
f,New(δ

˙̄ξ) =

∫

Σ
p̄on̄ · δ ˙̄ξ dΣ (III.52)

δPo
f,Lag(δ

˙̄ξ) =
1

2

∫

Σ
v̄o ·

(
ϕ̄oτ̄ (δ ˙̄ξ) + ϕ̄′(δ ˙̄ξ)n̄

)
dΣ, (III.53)

where the indexes New and Lag stand for the Newtonian and Lagrangian approaches respectively.
This expression will be used to determine numerically the quasi-steady virtual force on the reference
mesh and on the deformed mesh. The expression of the force fluctuations for both approaches is
given by equation (II.78) and the added stiffness expression from equation (B.24) (the expression
of Lk can be found in equation (B.14)):

δP ′
f,New(ξ̄

′, δ ˙̄ξ) =
∫

Σ

(
p̄oτ̄ ′(ξ̄′) + p̄′n̄

)
· δ ˙̄ξ dΣ (III.54a)

δP ′
f,Lag(ξ̄

′, δ ˙̄ξ) =
1

2
δ ˙̄ξT(Lk + L

T
k )ξ̄

′, (III.54b)

where the expression of the efforts with Lagrange’s equation was obtained neglecting the gyroscopic
and added mass terms because of the quasi-steady hypothesis, and the velocity fluctuations from
equation (II.78) have been neglected for the same reason.

In order to further compare the accuracy of both models, it is possible as well to compare
the fluctuations of energy associated with the small, quasi-steady elastic perturbations. For this
purpose, the quasi-steady energy can be calculated as in equation (B.3):

L =
1

2

∫

Σ
ϕ̄v̄ · ndΣ. (III.55)

Because the force is equal to the derivative of the energy with respect to the quasi-steady move-
ments, the force perturbations can be calculated as the second derivative of the energy. This
enables to calculate the force fluctuations with a different approach based on the energy (similar
to Lagrange equations) and not on virtual power (like the Newton approach). The second order
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derivative is calculated using finite differences. For this purpose, the energy is calculated on the ref-
erence mesh, and then on two deformed mesh with different displacement amplitudes. The energy
fluctuation can therefore be approximated with finite differences:

δP ′
f =

∂2L
∂q2j

=
L(−ε) + L(ε)− 2Lo

ε2
. (III.56)

where L(ε) and L(−ε) are obtained by applying small elastic deformations to the mesh with two
opposite amplitudes, and Lo is calculated on the reference mesh. Comparing the force fluctuations
with those two different methods (either the first derivative of the force from the variational equation
or the second derivative of the kinetic energy) enables eventual bias (hence comparing the force
fluctuations predicted by the Newton and Lagrange approaches with the force fluctuations from
the variational approach calculated with finite differences might advantage the Newton approach
while comparing with the second derivative of the energy might advantage Lagrange’s approach).

The results obtained from both approaches are compared on the mesh of a 3.5:1 aspect ratio
prolate ellipsoid. The calculations are based on the movement ξ̄′ of the first bending mode of an
homogeneous equivalent cantilever beam (banana-shaped mode), see Figure III.12, left. The virtual
velocity used for this test case is the same as the deformations. The results obtained numerically
are summarized in table III.2. The values of the virtual forces have been non-dimensionalized by
the structure characteristic parameters. Each line is associated on a different method to calculate
the force perturbations. The first line has been calculated with the Newton method δPf,New as
described in this thesis, the second line has been calculated using Lagrange’s equations as described
in Appendix B. It is important to note that latter expression has the disadvantage of depending
on the second order derivative of the normal and of the velocity potential with respect to the
structure deformations. These two values have been approximated using finite differences method.
Finally, the last line is based on a Lagrange’s equations approximated by neglecting the second
order deformations aforementioned (where the index f.o stands for ”first order”), as done by Li
et al. (2009) for example. Considering the results displayed in table III.2, one can see that the
second order derivatives terms in Lagrange’s linearized equations play an important role (at least
for the arbitrary bending mode considered here), as neglecting those second order derivatives leads
to an underestimation of the force fluctuations of more than 20%. On the contrary, one can see
that the prediction using the complete Lagrange equations (including the second order derivatives)
seem to converge well, as it predicts the force fluctuations with an error of less than 1% when
compared either with the Newtonian force derivative or with the kinetic energy second derivative.
However, one should note that this convergence comes at a high price as already mentioned earlier:
the second order derivatives of the normal and more especially of the potential with respect to the
interface deformation are very costly to calculate. Regarding the Newtonian approach, one can see
that it predicts with very good accuracy the force fluctuations with an error almost equal to zero,
whereas the relative error, when comparing with the second order derivative of the kinetic energy,
is a little lower than 2%.

The results presented in this section enabled to further validate the approach developed in this
manuscript and how it enables to predict the linear fluctuations of the forces of the fluid. But more
importantly, it has highlighted how the linearized Lagrange equations require to take into account
the second order derivatives of the geometry and the velocity potential in order to predict well
the load fluctuations. As these second order derivatives are very costly to calculate relatively to
the first order derivatives, this section puts forward how the Newton approach seem better suited
than Lagrange’s equation for the prediction of the linear perturbations of the fluid forces on the
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value [-] err
(
∂2L
∂q2

)
err
(
∂δPo

f

∂q

)

δPf,New 2.82 1.73% 3× 10−7%
δPf,Lag 2.85 0.88% −0.87%
δP f.o

f,Lag 3.48 −21.2% −23.3%

Table III.2: Error associated with the prediction of the fluid efforts fluctuations based on a New-
tonian approach, Lagrange’s equations or Lagrange’s equations without second order derivatives.

interface.

III.4.3 Comparison with results obtained from the slender body theory

The perturbations of the velocity potential can be calculated with different approaches. Li et al.
(2009) have used the slender body approximation which simplifies the calculation of the velocity
potential perturbations associated with transverse flexible movements of slender structures. In this
section, we show how the simplifying hypothesis of the slender body theory causes a less accurate
prediction of the perturbations than the approach proposed here.

1

1

1

2

Figure III.12: Left: shape of the deformed ellipsoidal fluid-structure interface for ε = 0.1. Right:
error of the linear models for the prediction of the fluid force perturbations, associated with velocity
potential perturbations using the ALE method introduced in this manuscript (red dots) or using
the slender body approximation (blue dots), as a function of the deformation amplitude.

In order to compare both velocity potential calculation approaches (the ALE approach presented
in this manuscript and the slender body theory detailed in (Paidoussis, 1998)), an ellipsoidal mesh
has been deformed among the first mode of a free-free cantilever as in the section above, and the
results obtained from both linearized models have been compared with non linear perturbations
based on finite differences by deforming the mesh. The error associated with both models can be
seen in Figure III.12. It shows how the prediction of the perturbations of the velocity potential
based on the ALE enable to obtain a prediction of the fluid loads perturbations with an order of
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O
(
ε2
)
hence quadratic with the deformations amplitude. It means that the linear perturbations

are well predicted, whereas higher order terms in O
(
ε2
)
are not predicted as expected for a linear

approach. On the other hand, even though the slender body theory enables to predict reasonably
the fluid forces perturbations (error below 1%), it appears that the error associated is in O (ε)
which signifies that part of the linear perturbations are not well predicted.

III.5 Conclusion

Through this chapter, the following works have been presented:

1. A BEM code has been implemented. It includes the classical operators of the method, but
also their derivative with respect to the geometry of the structure, allowing to compute
the velocity potential at zero order as well as at the first order based on a mesh of the
reference interface. Moreover, the FEM operators allow to calculate the fluctuations of
the fluid forces based on the velocity potential. Thus, the mixed FEM-BEM made it
possible to calculate the mass, stiffness and gyroscopic operators of the fluid.

2. Results from Rangette (1990) demonstrating the better prediction of the fluid forces by
the symmetric part of the mass operator than by the complete numerical operator, were
naturally extended to the fluid stiffness operator because of its symmetry, but also to
the better prediction of the fluid forces using the skew-symmetric part of the numerical
gyroscopic operator.

3. The H-matrix method, which allows to reduce the storage cost and the computation
time linked to the BEM and enables parrallel computing, has been implemented on the
classical operators similarly to Chaillat et al. (2017). It was then adapted to linearized
BEM operators as well.

4. The BEM and FEM operators have been validated by comparison with analytical results
linked to stationary flow or to the added mass associated with an ellipsoid. The potential
flow hypothesis was critically studied by comparison with RANS simulations around
airship bodies without fins. This confirmed the ability of the potential flow model to
capture the fluid pressure forces, except for the effects of lift and separation at the tail of
the airship, consistent with the literature (Clarke, 2009).

5. The linear prediction of the potential flow forces has been validated by comparison with
non-linear results obtained through finite differences via mesh deformation. The same
method was used to highlight how both the slender body theory and the use of Lagrange’s
equations without second order derivatives as used by Li et al. (2009) are not able to
predict the entirety of the first order fluctuations of the fluid forces.

Now that the fluid forces can be obtained via the fluid operators computed using a mixed
FEM-BEM approach. The next chapter will thus introduce the numerical computation of the
dynamic operators of the structure in order to be able to couple them to the fluid operators
and thus characterize the dynamics of the fluid-structure interaction problem.
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III.6 Perspectives

In order to go deeper into the work presented in this chapter, the perspectives outlined below
provide interesting avenues to explore:

� The computation and the numerical implementation of the gradient of the integral rep-
resentation associated with the velocity potential has not been implemented because it
would have introduced hypersingular operators. However, this approach would allow to
compute directly the velocity u at the nodes of the mesh rather than to obtain it by
means of a spatial derivative of the velocity potential ϕ, this numerical gradient being
constant on the elements of the mesh and not defined at the nodes .

� Little information on the performance of the codes is given in the manuscript because it
would not be relevant since they were developed in a non-compiled language (Matlab),
but in order to apply them to industrial cases with fast response times (the method
having been thought to be efficient: fixed mesh, projection on the modes, etc.), it would
be necessary to develop this method on a compiled code.

� It would be interesting to extend the numerical method to unsteady and inhomogeneous
ambient flows based on the extension of the theoretical model proposed in the perspectives
in section II.6.

� In this chapter, numerical calculations have been compared with analytical results of
perfect fluid flows as well as with RANS simulations of turbulent fluid in the framework
of a finless hull. However, the comparison of these results with experimental results or
flight tests for example would be a further validation of the method.
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Chapter IV

Fluid-structure stability analysis of a
free flexible airship

Introduction

T
he aim of this chapter is to study the stability of flexible airships immersed in flows. It
is achieved by coupling the structure dynamical operators, which are introduced in this

chapter, with the fluid operators presented in chapter III. A parametric exploration enables
to characterize the stability of the airship for various structural properties and under multiple
flight conditions.

The chapter is organized as follows. In section IV.1, the weak form of the structure dy-
namical equation is presented, associated with large rigid body motion and small elastic defor-
mations. The pre-stressing effects of the internal gas are presented as well, and the linearized
FEM numerical operators are shown. In section IV.2, the monolithic equation resulting from
the coupling of the fluid and structure operators is studied. The associated eigenvalue equa-
tion is also obtained and the method to solve it is shown. The stabilizing effects of the fins are
introduced in section IV.3. The stability is studied for various forward flight velocities.

IV.1 FEM computation of the dynamics of a free elastic structure
under external loads

IV.1.1 Computation of the structure dynamic operators with FEM

In this section, we introduce the mass and stiffness operators of the membrane prestressed by an
internal pressure and the dynamic pressure due to an external flow, in order to couple them with the
fluid operators. Due to time constraints, we consider here only the case with order zero translation
velocity (no rotations of order zero), and only elastic perturbations of order one (rotations or
translations of order one are not considered).

In this section, four configurations are considered: natural •̀, inflated by the internal overpres-
sure with no external flow Σ̆, steady deformed by the external flow •̄ and the current configuration
Σ(t), see Figure IV.1. . The stress tensor pσ is linked to the displacement ξ of the structure by the
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Figure IV.1: Stress-free membrane Σ̀, inflated interface Σ̆ by internal and external static pressure
and steady deformed interface Σ by the external dynamic pressure. The instantaneous interface
Σ(t) results from small deformations of the steady deformed interface Σ as described in details in
Chapter II.

structure equation (S):

∇ · pσ = ρsξ̈ on Ωs(t), (IV.1)

and to the fluid stress tensor pσf with the dynamic condition at the interface (ID) for an ideal fluid:

pσn = pσfn on Σ(t). (IV.2)

By combining equations (IV.1) and (IV.2), one can obtain the weak form of the structure equation
using the Green identity:

∫

Ωs(t)

pσ : ▽∇δξ dΩ +

∫

Ωs(t)

ρsξ̈ · δξ dΩ =

∫

Σ(t)

( pσfn) · δξ dΣ ∀δξ. (IV.3)

The equation above is written on the instantaneous, time-dependent solid domain Ωf(t). It is
more convenient to use a formulation based on a time-independent domain in order to perform
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calculations based on a single, time-independent mesh. In order to obtain such a formulation,
the calculations are based on a reference configuration called the stress-free domain, which is the
spatial shape of the solid domain when no external forces are applied on it as shown with the
orange interface in the top left of Figure IV.1. In order to transfer the calculations from the time-
dependent domain to the stress-free domain, we introduce the first Piola-Kirchoff stress tensor
P, pε the symmetrical part of the gradient of the displacements and pεQ a quadratic expression of
the gradient of the displacements (both symmetric), S the second Piola stress tensor (which is
symmetric), F the deformation gradient, E the Green-Lagrange strain tensor (which is symmetric
as well) and C the elasticity tensor (see (Bonet and Wood, 1997)):

P̀ = F̀S̀ (IV.4)

F̀ = 1+ ▽̀∇ξ̀ (IV.5)

S̀ = CÈ (IV.6)

È =
1

2

(
F̀TF̀− 1

)
= p̀ε(ξ̀) + p̀εQ(ξ̀, ξ̀) (IV.7)

p̀ε(ξ̀) =
1

2

(
▽̀∇ξ̀ + ▽̀∇T

ξ̀
)

(IV.8)

p̀εQ(ξ̀a, ξ̀b) =
1

4

(
▽̀∇T
ξ̀a ▽̀∇ξ̀b + ▽̀∇ξ̀b ▽̀∇T

ξ̀a
)

(IV.9)

The tensors introduced above enable to express the integrands from the weak equation of the
structure (IV.3) on the stress-free domain:

pσ : ▽∇δξ dΩ = P̀ : ▽̀∇δξ dῺ (IV.10)

ρs dΩ = ρ̀s dῺ (IV.11)

pσfndΣ = −p̀ Φ̀I T
t ǹdΣ̀ (IV.12)

Which gives the following non-linear equation:

∫

Ὼs

P̀(ξ̀) : ▽̀∇(δξ) dῺ +

∫

Ὼs

ρ̀s
῭
ξ · δξ dῺ = −

∫

Σ̀
p̀
(
ξ̀,

˙̀
ξ,

῭
ξ
)(

Φ̀I T
t (ξ̀) ǹ

)
· δξ dΣ̀ ∀δξ. (IV.13)

The equation above gives the non-linear dynamical equation of a structure coupled with a
surrounding fluid. However, the objective for this study is to analyze the perturbations induced by
the flow, which is why the dynamical equation will be developed at orders zero and one in the next
section.

IV.1.2 Linearization of the structure equations

The objective of this section is to study the linearized dynamic equation associated with the small
perturbations ξ̄′ around the reference interface Σ, similarly to the fluid equation developed in
Chapter II. To do this, we first calculate the inflation of the membrane due to the internal fluid
overpressure leading from the natural Σ̀ state to the prestressed no-flow Σ̆ state (see Figure IV.1).
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Then we will study the linear perturbations of the membrane due to the external stationary flow
at zero order leading to the shape of the Σ interface, and to what extent these perturbations can
be considered as small. Finally we will focus on the linearized dynamics of the structure around
this state.

In this section, we only consider translations for rigid-body motions at order zero which don’t
affect the internal pressure. Actually, the internal pressure depends on order zero rotations but
not on order zero translations. If one were to develop the same equations generalized to take into
account order zero rotations, this would be possible by considering internal pressure varying with
the order zero solution. The dynamical, non-linear structure problem described in equation (IV.13)
is very hard to solve. However, with the help of simplifying hypothesis, it will become possible to
split this problem into simpler sub-problems. First, the static, non-linear problem associated with
the inflation of the membrane by the internal and external static pressures. Second, the linearized
problem associated with the stationary order zero flow around the membrane. Third, the linear,
dynamic perturbations problem associated with small movements of the membrane.

The first step is the inflation of the membrane thanks to the homogeneous steady pressure of
the internal gas pintstat and the external gas pextstat in the absence of movements translation velocity
of the structure as described in Figure IV.1 (top left). When the structure with no translation
velocity is inflated by the internal pressure, it results in a large displacement ξ̌stat from the natural
configuration Σ̀ to the inflate at rest membrane Σ̌. This can be written as

x̌ = x̀+ ξ̀stat, x̀ ∈ Σ̀, x̌ ∈ Σ̌, (IV.14)

with ξ̀stat ∼ L. The displacements ξ̀stat are solved with equation (IV.13) from which the dynamic
terms depending on the acceleration and the pressure terms associated with the fluid flow have
been removed:

∫

Ὼs

P̀(ξ̀stat) : ▽̀∇(δξ) dῺ = −
∫

Σ̀int∩σ̀ext

pstat

(
Φ̀I T
t (ξ̀) ǹ

)
· δξ dΣ̀ ∀δξ. (IV.15)

In the equation above, Σint and Σext are the interfaces of the structure with the internal and the
external flow respectively. Once the inflated membrane at rest Σ̌ has been solved, the next step
is to determine how the stationary flow associated with the order zero translation velocity of the
structure will affect the shape of the membrane. When the structure undergoes a transnational
velocity vo

c , this results in a stationary flow of the fluid particles resulting in a pressure pflow on the
external fluid-structure interface. As mentioned previously, the internal pressure of the membrane
is not affected by a stationary translation velocity of the structure.

To calculate the structure deformations, the method consists in first calculating the steady-
deformed large deformations of the structure and then calculate the small time-dependent pertur-
bations around this state. The non-linear equations associated with the steady deformed displace-
ments ξ̀o are:

ξ̀(x̀, t) = ξ̀o(x̀) + εξ̀′(x̀, t). (IV.16)

Hence the equation at order zero becomes
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∫

Ὼs

P̀(ξ̀o) : p̀ε(δξ) dῺ +

∫

Σ̀
p̀(ξ̀o)

(
Φ̀I T
t (ξ̀

o) ǹ
)
· δξ dΣ̀ = 0 ∀δξ. (IV.17)

We have the following property, since x̄ = x̀+ ξ̀o :

∫

Σ̀
p̀(ξ̀o)

(
Φ̀I T
t (ξ̀

o) ǹ
)
· δξ dΣ̀ =

∫

Σ
p̄o(ξ̄o)n̄ · δξ̄ dΣ = δPo

f (δξ̄). (IV.18)

Therefore, the order zero equation becomes

∫

Ὼs

P̀(ξ̀o) : ▽̀∇δξ dῺ = δPo
f (δξ̄) ∀δξ. (IV.19)

By developing the structure terms in the equation above, we obtain the following order zero equa-
tion:

∫

Ὼs

(
1+ ▽̀∇T

ξ̀o
)
C
(
p̀ε(ξ̀o) + p̀εQ(ξ̀o, ξ̀o)

)
: ▽̀∇δξ dῺ = δPo

f (δξ̄) ∀δξ. (IV.20)

By keeping only the first order terms of the dynamic equation, we get:

∫

Ὼs

P̀′ (ξ̄o; ξ̄′
)
: ▽̀∇δξ dῺ +

∫

Ὼs

ρ̀s
῭
ξ′ · δξ dῺ = δP ′

f (δξ) ∀δξ, (IV.21)

where

P′ (ξ̄o; ξ̄′
)
= ▽̀∇ξ̀′S̀o

(
ξ̀o
)
+CE′ (ξ̄o; ξ̄′

)
(IV.22)

E′ (ξ̄o; ξ̄′
)
=

1

2

(
▽̀∇T

ξ̀o ▽̀∇ξ̀′ + ▽̀∇T
ξ̀′ ▽̀∇ξ̀o + ▽̀∇T

ξ̀′ + ▽̀∇ξ̀′
)

(IV.23)

= p̀ε
(
ξ̀′
)
+ 2 p̀εQ

(
ξ̀o, ξ̀′

)
. (IV.24)

Hence the first order equation becomes:

∫

Ὼs

(
▽̀∇ξ̀′S̀o +C

(
p̀ε(ξ̀′) + 2 p̀εQ(ξ̀o, ξ̀′)

))
: ▽̀∇δξ dῺ +

∫

Ὼs

ρ̀s
῭
ξ′ · δξ dῺ = δP ′

f (δξ) ∀δξ. (IV.25)

The following structure operators are introduced:

Ks
el(ξ̀

′, δξ) =
∫

Ὼs

C p̀ε(ξ̀′) : ▽̀∇δξ dῺ (IV.26)

Ks
geo(ξ̀

o, ξ̀′, δξ) =
∫

Ὼs

▽̀∇ξ̀′S̀o : ▽̀∇δξ dῺ (IV.27)

Ks
Q,L(ξ̀

o, ξ̀′, δξ) =
∫

Ὼs

2C p̀εQ(ξ̀o, ξ̀′) : ▽̀∇δξ dῺ (IV.28)

Ms
(
῭
ξ′, δξ

)
=

∫

Ὼs

ρ̀s
῭
ξ′ · δξ dῺ, (IV.29)
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and we get the fluid-structure equation:

Ms
(
῭
ξ′, δξ

)
+Ks

el(ξ̀
′, δξ) +

(
Ks

geo +Ks
Q,L

)
(ξ̀o, ξ̀′, δξ) = δP ′

f (δξ). (IV.30)

Equation (IV.30) enables to calculate the structure mass and stiffness, which enables to obtain
the linear fluid-structure dynamical equation when completed by the fluid mass, gyroscopic and
stiffness operators introduced in Chapter II. As a consequence, the linearized dynamical behaviour
of the fluid-structure problem can be obtained based on the resolution of the problem at order zero
that has to be previously solved. In the case of inflated membranes, most of the time the elastic
stiffness operator Ks

el plays a negligible role since the pre-stress effects from the internal overpressure
are dominant. A bottleneck of this method comes from the fact that the order zero solution varies
with the order zero velocity of the structure, which means that for each value of the order zero
velocity of the structure that has to be explored, a new order zero solution has to be computed
which is very costly and time consuming. As a consequence, the parametric space exploration,
which consists in studying the dynamic behavior for a velocity amplitude V with varying values,
becomes much harder and longer to perform. In order to avoid this constraint, a linearization of
the order zero solution has been performed based on the hypothesis that the quasi-steady order
zero dynamic pressure po is very small relatively to the static internal and external pressures pintstat

and pextstat. For the sake of simplicity, we suppose that the internal and the external pressures have
the same order of magnitude. The associated hypothesis is introduced using a small parameter δ
defined as:

ϵ =
ρfV

2

pintstat

≪ 1. (IV.31)

As a consequence, the order zero pressure can be linearized as:

po = pstat + ϵp′dyn (IV.32)

pstat
pint

∼
p′dyn
pint

∼ 1. (IV.33)

As a consequence, the structure equation (IV.19) can be rewritten as:

∫

Ὼs

P̀(ξ̀o) : ▽̀∇δξ dῺ =

∫

Σ̀
p̀stat

(
Φ̀I T
t

(
ξ̀o
)
ǹ
)
· δξ dΣ̀ + ϵ

∫

Σ̀
p̀′dyn

(
Φ̀I T
t

(
ξ̀o
)
ǹ
)
· δξ dΣ̀ ∀δξ. (IV.34)

From the expression above, it seems natural for infinitesimal values of ϵ to linearize the order zero
displacements as:

ξ̀o = ξ̀stat + ϵξ̀′dyn (IV.35a)

ξ̀stat
L

∼
ξ̀′dyn
L

∼ 1. (IV.35b)
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As a consequence, the fluid operators can be expanded with respect to the small parameter ϵ using
calculations that are not included in this manuscript due to time constraints:

Ks
geo

(
ξ̀o, ξ̀′, δξ

)
= Ks

geo

(
ξ̀stat, ξ̀

′, δξ
)
+ ϵδKs

geo

(
p′dyn, ξ̀

′, δξ
)
+O

(
ϵ2
)

(IV.36)

Ks
Q,L

(
ξ̀o, ξ̀′, δξ

)
= Ks

Q,L

(
ξ̀stat, ξ̀

′, δξ
)
+ ϵδKs

Q,L

(
p′dyn, ξ̀

′, δξ
)
+O

(
ϵ2
)

(IV.37)

δKs
geo

pintstat

∼
δKs

Q,L

pintstat

∼ 1. (IV.38)

The analytic expression of the fluctuations δKs
geo

(
p′dyn, ξ̀

′, δξ
)
are not detailed here, however they

will be calculated using the finite differences based on a variation of V in section IV.2. Similarly,
the fluid operators can be written as:

Kf (ξ̄′, δv̄) = ϵKf ∗(ξ̀stat, ξ̄′, δv̄) +O
(
ϵ2
)

(IV.39)

Gf ( ˙̄ξ′, δv̄) = U−1
r (ϵGf ∗(ξ̀stat, ˙̄ξ′, δv̄) +O

(
ϵ2
)
) (IV.40)

Mf (¨̄ξ′, δv̄) = Mf (ξ̀stat,
¨̄ξ′, δv̄) + ϵδMf ∗(ξ̀stat, p′dyn, δv̄) +O

(
ϵ2
)
) (IV.41)

Kf ∗(ξ̀stat, ξ̄′, δv̄)
pstatint L

2
∼ Gf ∗(ξ̀stat, ˙̄ξ′, δv̄)

pstatint L
2

∼ Mf (ξ̀stat,
¨̄ξ′, δv̄)

ρfΩ2L4
∼ δMf ∗(ξ̀stat, ¨̄ξ′, δv̄)

ρfΩ2L4
∼ 1. (IV.42)

The expression of the operators Kf ∗(ξ̀stat, ξ̄′, δv̄), Gf ∗(ξ̀stat, ˙̄ξ′, δv̄) and Mf (ξ̀stat,
¨̄ξ′, δv̄) is the same

as detailed in Chapter II. One can see from the equation above that for ϵ ≪ 1, the fluctuations
of the fluid stiffness and gyroscopic operators due to the change of shape ξ′dyn (associated with

the fluctuations of the dynamic pressure ρfV
2) are negligible, whereas the added mass operator

fluctuates at order ϵ due to these change of shape.

Remark

In the cases studied in this thesis, the prestress stiffness of the inflated membrane is much more
important than the elastic stiffness: the internal pressure is what gives the structural rigidity of the
structure whereas the elastic efforts are negligible because of the thinness of the membrane. As a
consequence, the internal parameter pint dictates the membrane rigidity (similarly to the Young modulus
dictating the rigidity of an elastic solid in the absence of prestresses). As a consequence, it appears
that the small parameter ϵ is the ratio between a dynamic pressure and a stiffness parameter: it
is consequently a Cauchy number (De Langre, 2008). Actually, as shown in equation (IV.35a), the
displacements caused by the structure can be considered negligible when ϵ is small, and can be considered
important when ϵ ∼ 1.

Remark

In the literature, the stiffness term Ks
Q,L is sometimes neglected, as in (Combescure, 2000). In this

thesis, the implementation of this elastic term couldn’t be implemented due to time constraints. As a
consequence, it would be interesting to check how such contributions would affect the inflated structure
behavior.

IV.1.3 Discretization of the incompressibility condition

Though the rigid body movements naturally respect the fluid incomprehensibility condition, one
has to ensure that the elastic deformations are isovolume. The incompressibility condition can be
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discretized as follows:
{1}T [Pa]

T {ξ̄′
}
= 0, (IV.43)

where {1} is a discretized scalar field which value is 1 at each node. Therefore, the incompressibility
condition can be imposed by using the homogeneous pressure π from equations (I.45) and (I.46) as
an additional unknown, thus adding an equation and an unknown to the initial system:

[
[Ms] +

[
Mf
]

0
0 0

]{ {
¨̄ξ′
}

π

}
+

[
[Ks] [Pa] {1}

{1}T [Pa]
T 0

]{ {
ξ̄′
}

π

}
= δPo

f (IV.44)

We then see that π plays the role of a Lagrange multiplier.
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IV.2 Stability analysis of a free elastic structure coupled to an
irrotational flow

IV.2.1 Determination of the quasi-steady fluid-structure solution

L (ellipsoid major axis) 10 m
D (ellipsoid minor axis) 2 m
e (membrane thickness) 1 mm
ρs (solid density) 8000 kgm−3

ν (Poisson’s ratio) 0.25
E (Young’s modulus) 2× 109Pa
∆p (internal overpressure) 7000Pa
β (internal fluid compressibility) 0
N (number of mesh nodes) 3037
g (gravity acceleration) 0 ms−2

Table IV.1: Parameters used for the description of the structure and its internal fluid.

In this section, the method presented above is implemented as a test case, consisting of an
ellipsoidal inflated membrane in a uniform flow, whose eigenvalues and eigenmodes are computed.
Due to time constraints, this section has been implemented using the method from Le Mestre et al.
(2022) which can be found in Appendix F based on a structure with small elastic movements in a
homogeneous ambient flow rather than the one detailed in Chapter II with a structure with great
rigid body motions coupled to small rigid body motions and elastic displacements in a fluid at rest.
The results are expected to be similar, however the projection of the movements differs from both
methods as a small rotation in the ambient flow method doesn’t impact the kinematics of other
variables since they are expressed in the earth referential, whereas a small rotation impacts the
structure movements with the method introduced in this thesis as the kinematic variables have
been expressed mostly in the structure rotated referential. The prolate ellipsoid has an aspect ratio
of 5 : 1, characterized by the aspect ratio number Ar:

Ar =
L

D
= 5. (IV.45)

It is also referred to as slenderness number by De Langre (2008). In order to characterize the struc-
ture, operators [Ks] and [Ms] from equation (II.94) are calculated using the Finite Element analysis
program NASTRAN. For that purpose, a membrane finite element linear model has been used,
inflated by an incompressible fluid. Its parameters are described in table IV.1. The fluid operators[
Kf
]
,
[
Gf
]
and

[
Mf
]
are calculated using the method presented in Chapter III. Since they are

theoretically expected to be (skew-)symmetric, the fluid operators have been (skew-)symmetrized
manually once calculated to ensure the physical properties associated with the potential flow. Both
fluid and solid operators are calculated on the same conforming surface mesh as shown in Figure
IV.2. In the case of a thin shell, as shown in figure IV.2 (b), the movements of the structure are
considered homogeneous through its thickness. Moreover, both internal and external fluid-structure
interfaces coincide with the mean surface of the shell. As a consequence, the incompressibility con-
dition of the internal fluid on the internal fluid-structure interface constrains the displacements of
the external fluid-structure interface as well.

We suppose that the reference interface coincides with the fluid-structure quasi steady solution.
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Ωf

Ωs

struct. nodes

struct. and fluid nodes

Σ

Ωf

Ωs

Σ
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struct. and fluid nodes

Ωf ,ext

Ωs = Σ

Ωf ,int
Ωf ,ext

Ωs = Σ

Ωf ,int

Figure IV.2: Planar view of conformal meshing strategies for a) a tridimensional structure domain
and its fluid-structure interface, and b) a thin shell interacting with both external and internal
fluids. The red dots denote structure nodes,red and blue dots denote nodes belonging to both fluid
and structure, grey lines depict the borders of the mesh elements. The orange line is the reference
fluid-structure interface. In the case of a thin shell, the structure domain is associated to its mean
plane, which is also approximated as the fluid-structure interface for the thickness is supposed to
be negligible.

For the sake of simplicity, we calculate in this study the dynamics of the structure as an invariant
shape Σ assuming that the structure quasi-steady state with the value and direction of V doesn’t
drastically change. This hypothesis enables us to perform calculations based on the same reference
configuration. As a consequence, the structure operators are only computed once, and are associated
with a quasi steady state with no ambient flow (homogeneous external pressure field) used as the
reference configuration. The coupled model was obtained by grouping the fluid and solid operators
as described in equation (IV.30). After characterizing the fluid-structure operators, the objective
of this section is to calculate the associated eigenvalues. For this purpose, the displacement ξ is
looked for as the product of a function of space q and a function of time:

ξ(x, t) = q(x) exp(λt), (IV.46)

where λ can be complex. In the following, all the variables are written on the reference configuration
and the bar notation (•) is not used since there is no risk of confusion. The solution in the form of
equation (IV.46) is introduced in equation (IV.30), which gives:

[ (
[Ms] +

[
Mf
])
λ2 +

[
Gf
]
λ+ [Ks] +

[
Kf
] ]

q exp(λt) = 0. (IV.47)

However, because the fluid operators are dense (as a consequence of condensing the fluid equations
on the interface with the integral representation (Bonnet, 1999)), solving such a problem requires a
large amount of memory. To overcome this issue, the size of the problem is reduced by projecting
the unknown displacements ξ of the structure on a reduced basis. The basis chosen here contains
the six rigid body motions (three translations and three infinitesimal rotations), and is completed
with two structural modes obtained with a modal calculation from Nastran as well, one of which
can be seen on Figure III.12 left. The other one has not been plotted, but it has a similar shape
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oriented differently since these banana-shaped flexible modes are orthogonal. They have the same
in vacuo frequency and only differ by a rotation among the symmetry axis of their direction.
According to Li et al. (2009), these banana modes are expected to be the lowest frequency elastic
modes emerging for high aspect ratio flexible airships. The displacement field is therefore projected
on a reduced basis Qrb:

ξ(x, t) = Qrb(x)qrb exp(λt), (IV.48a)

qrb =




d
θ
qrb7
qrb8


 . (IV.48b)

The reduced basis projector Qrb is an eight-columns concatenation of the rigid body movement
matrix Q defined in (II.17) for the first six columns, and the mode shape functions of the banana
modes for the two last columns. The volume center displacement is given by d, the structure
rotation is given by θ and the amplitudes of the elastic modes are given by the modal coefficients
qrb7 and qrb8. The displacements are therefore characterized by the new generalized coordinates
vector qrb of the fluid-structure problem and the associated eigenvalue λ. Equation (IV.47) is
quadratic with respect to λ, however it is much more convenient to determine eigenvalues associated
with linear eigen equations. For that purpose, the equation is shifted into the state space, thus
reducing its order in λ from quadratic to linear, which gives by projecting on the Qrb basis:

[A] =

[
[Ks]rb +

[
Kf
]
rb

0

0 [Ms]rb +
[
Mf
]
rb

]
, (IV.49a)

[B] =

[ −
[
Gf
]
rb

−
(
[Ms]rb +

[
Mf
]
rb

)
(
[Ms]rb +

[
Mf
]
rb

)
0

]
, (IV.49b)

[•]rb = QT
rb [•]Qrb, (IV.49c)

[A]

(
qrb
λqrb

)
= λ [B]

(
qrb
λqrb

)
. (IV.49d)

Equation (IV.49d) consists of a system of sixteen equations since the dynamic equations have been
projected on the modal basis (of size eight) with the help of a left-multiplication by QT

rb. One
might note that, because of the symmetry of Ks,Ms,Kf and Mf and the skew-symmetry of Gf ,
the matrices [A] and [B] are symmetric and skew-symmetric respectively. This eigenvalue equation
is solved using Matlab for a flow velocity u∞ colinear to the structure axis.

Remark

It is possible to use symmetric and skew-symmetric alternative forms of [A] and [B]:
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Figure IV.3: Evolution of the real part of the modes (top) associated with the growth rate and
their imaginary part (bottom) associated with the circular frequency as a function of the reduced
velocity Ur. The mass ratio is Mf = 0.2. Each color stands for an identified mode using a Modal
Assurance Criterion. Only the modes with positive frequency, positive growth rate and strictly
positive absolute value have been plotted. The black horizontal dashed line shows the frequency of
the banana mode in the absence of fluid.

[A] =




[
Gf
]
rb

[
Mf
]
rb

+ [Ms]rb

−
[
Mf
]
rb

− [Ms]rb [O]




[B] =


[Ks]rb +

[
Kf
]
rb

[O]

[O]
[
Mf
]
rb

+ [Ms]rb


 .

However, when this form is used in Matlab, the eigenvalues algorithm doesn’t converge using the matrixes
introduced in this remark on the contrary to the form from equation (IV.49a).
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Remark

The quasi-steady linear fluctuations of the potential associated with the displacement for each mode
are calculated here by introducing the differentiation of the BEM equation as presented in chapters II
and III. However, those quasi-steady perturbations could be obtained as well using the finite differences
method. In practice, such a result would be obtained by solving, for each mode, the quasi-steady order
zero problem associated with a mesh deformed among the mode with an arbitrary infinitesimal amplitude
to ensure the fluctuations are linear. As a consequence, the linear, quasi-steady potential fluctuations
for each mode could be obtained by calculating the fluctuations of the potential between the undeformed
and the deformed mesh, divided by the displacement amplitude. In the example presented above, it
would mean calculating a new order zero solution associated with each mode instead of linearizing the
BEM operators and projecting them on each mode afterwards.

However, the finite differences method have some major drawbacks in practice:

� The necessity to calculate the fluctuations for several amplitude of each mode in order to ensure
that the associated perturbations are well approached linearly: if not, the amplitude of deforma-
tion need to be more adapted.

� According to Bonnet (1999) in chapter 12, the finite-difference estimation of gradients is mathe-
matically ill-posed, which leads to inaccuracies.

� Even though the calculation of the BEM operators perturbations is a costly process, once is has
been calculated it can be applied to any chosen deformation to obtain the associated perturbation
using matrix-vector products. With the finite-difference, each new deformation that has to be
considered requires the recalculation of new BEM operators on the deformed configuration which
is very costly when considering multiple modes of displacements.

Because of these three reasons, the choice to derive analytically the integral equation was preferred
over finite-difference estimations.

A range of fluid velocities V and densities ρf are investigated. The results are plotted with respect
to the reduced velocity Ur introduced in equation (I.16) and the mass ratio Mf defined as:

Mf =
ρf
ρs

e
D

. (IV.50)

The reduced velocity Ur determines the ratio between the flow velocity and the velocity required
for a fluid particle to travel across the structure during a characteristic period. The value of the
characteristic frequency Ω is chosen as the frequency in vacuo of the elastic modes. The mass ratio
compares the order of magnitude between the added mass of the fluid and the membrane mass, D
being the diameter of the ellipsoid (hence D = L/5 for a 5:1 prolate). The particular dependence
of the operators on V is taken advantage of: they are calculated at an arbitrary velocity, and their
value can be recalculated for each Ur with a scalar multiplication, recalling that the fluid mass
operator doesn’t vary with V , the fluid gyroscopic operator is linear with V and the fluid stiffness
operator is linear with V 2, as shown in Chapter II. Similarly, by looking at equation (I.47) one
can deduce that the fluid operators are linear with the fluid density ρf . The results are presented
in Figure IV.3 for a mass ratio of Mf = 0.2. The order zero solution is an unstable equilibrium
position as soon as there is a flow. Indeed, for Ur ∈]0, 1], the system has a mode with a nil frequency
ℑm(λ) = 0 and a positive growth rate ℜe(λ) > 0 (plotted in blue in Figure IV.3): it is a divergence
mode. At an arbitrary value Ur = 0.3 in this region, the modal decomposition of this unstable
mode qrb is shown in Figure IV.4 with blue bars. It appears that the generalized coordinates
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rotationstranslations elastic modes

Figure IV.4: Generalised coordinates of a static unsteady mode (blue) and a flutter mode (orange)
for two different values of Ur, with Mf = 0.2.

contributing to the instability are the rotations and translations perpendicular to the axis of u∞,
while translation and rotation in the axis of the structure and flexible deformations are not involved
in the instability. The latter is triggered by the mechanical moment displayed in figure III.8 top
right: a small variation of θ1 induces a moment in the same direction on the structure, leading to
an exponentially growing drift. The moment responsible for this drift is known by airship engineers
as the Munk moment. The contribution of the translations displayed in Figure IV.4 results from
the appearance of a force perpendicular to the ambient flow when the structure rotates. In the
region Ur ∈]0, 1] of Figure IV.3, the frequency of the elastic mode (dashed blue line) decreases with
the reduced velocity until it vanishes. If the flow velocity increases past this point, another static
unstable mode appears (yellow line), with a growth rate increasing with Ur. When the flow reaches
the critical velocity Ur ≃ 1.04, the growth rate of the two unstable modes become equal, and we
see the apparition of a mode associated to strictly positive frequency and growth rate, resulting in
exponentially growing oscillations of the structure. This instability is referred to as flutter (Pfister
et al., 2019). The orange bars from Figure IV.4 show the generalized coordinates of this flutter
mode. It appears that unlike the static unstable mode below the critical velocity (plotted with blue
bars in the same figure) this instability results from the coupling of rigid body movements with
elastic deformations of the structure. Around Ur = 1.53, the flutter mode splits into two static
unstable modes. We see as well that for a mass ratio of Mf =0.2 the added mass has a small
influence on the dynamics. Indeed, for Ur = 0 (hence when the fluid stiffness or gyroscopic loads
vanish), the frequency of the elastic mode (dashed blue line in Figure IV.3) is almost the same as
the frequency of the structure in vacuo (dashed horizontal black line). Figure IV.6 is inspired by
Paidoussis (1998) and shows how the flutter instability is triggered by coupling of two divergent
modes.

Figure IV.5 shows the evolution of the eigenvalues for a range of values of mass ratio Mf . As
expected, for larger values of the fluid density, the frequency of the immersed elastic mode in a
fluid at rest decreases. The second graph of Figure IV.5 displays the evolution of the eigenvalues
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Figure IV.5: Real part (growth rate, top) and imaginary part (frequency, bottom) of the eigenvalues
as a function of the reduced velocity Ur (left) and the Cauchy number Cy (right). Curves are for
Mf =0.1, 0.2, 0.5, 1, 2 and 5. The dashed horizontal line is the in vacuo frequency of the structure.

with respect to the Cauchy number Cy, defined as the ratio between the magnitude of the fluid load
and the solid flexible stiffness De Langre (2008):

Cy =
ρfV

2D

ρseLDΩ2
= MfU2

rAr. (IV.51)

The numerator quantifies the order of magnitude of the fluid force by multiplying the character-
istic dynamic pressure ρfV

2 with the characteristic surface of the structure LD. The denominator
quantifies the characteristic flexible stiffness of the structure, obtained by multiplying its charac-
teristic mass ρseL by the square of the characteristic flexible frequency Ω2. Figure IV.7 shows the
type of instability of the system (static divergence or flutter) as a function of the parameters Cy
and Mf . The dashed line represents the value of Cy at which the flexible mode frequency vanishes.
Hence when the dashed blue line from Figure IV.3 associated with the imaginary part reaches
the horizontal axis, which happens when the fluid and solid stiffness of the flexible mode cancel
each other at a constant Cy. If Mf becomes large enough (Mf ≃ 2) the dotted line reaches the
flutter zone (red), and for higher values of Mf the dotted line disappears. This can be observed on
Figure IV.5: for Mf = 5, the imaginary part of the flexible mode doesn’t vanish anymore when Cy
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Figure IV.6: Simplified Argand diagram of the mechanism of pitching divergence (blue squares) and
bending divergence (orange circles) coupling into a post-divergence (or Päıdoussis) coupled-mode
flutter. For the sake of visualization, the eigenvalues are not completely aligned with the real axis

even when they are nil. C(1)
y = 0 is the critical Cauchy number at which the pitching mode becomes

divergent. As the Cauchy number increases, the total stiffness associated with the bending mode

decreases which causes its pulsation to come closer to the real axis. At C(2)
y ∼ 1, the total stiffness

becomes nil, which triggers a divergence of the bending mode. At C(1+2)
y , the growth rate of the

pitching and bending modes becomes equal, triggering the post-divergence coupled-mode flutter.

increases. We can see as well that for Mf ≥ O
(
104
)
the Cy value at which flutter arises reaches a

plateau. The value Mf at which flutter occurs at high Cy reaches a plateau as well at Mlim
f ≃ 1.72,

which was observed by plotting the same map for higher values of Cy.

Important remark

As discussed in this section, the model introduced in this thesis predicts a risk of flutter around
Cy ∼ 1. However, one should recall that the results presented here are based on the hypothesis that the
quasi-steady order zero dynamic pressure induces small deformations of the membrane. However, noting
from equation (IV.31) that we have in fact ϵ ∼ Cy, at Cy ∼ 1 (where Cy is the ratio between the order
zero dynamic pressure and the structure stiffness), one might expect large deformations induced by the
dynamic pressure, which means that the linear fluctuations covered by the model might not be viable
any more. Therefore, an interesting perspective could be to verify how the dynamic pressure affects the
displacements of the structure around Cy ∼ 1, and whether or not the linear model still matches well
the non-linear results.
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Figure IV.7: Instability map predicted by the linear model: divergence (static) or flutter (dynamic),
for Mf ∈ [10−4, 106] and Cy ∈ [0, 4]. The dashed vertical line is associated with the Cy at which
the flexible mode frequency becomes nil and the dot line, and the horizontal dashed dotted line is
associated with the value Mlim

f = 1.72 for which no divergence occur for Cy ≫ 1.

IV.2.2 Comparison of the eigenvalues obtained with different methods

As already explained in Chapter II, the method introduced in this thesis differs from various
approaches from the literature. The objective of this section is to quantify the error linked with
various simplifications used in the literature.

For this purpose, let us recall that the slender body model consists of an approximation of the
normal rotations using the rotation of the center line of the hull. As a consequence, the potential
perturbations can be calculated by considering the fluctuations of the normal while neglecting
the rest of geometrical perturbations (e.g displacements or dilatation of the interface). Thus, the
perturbations of the potential can be calculated using two methods: ϕALE refers to the present
method taking into account the whole linearized geometry perturbations, whereas ϕslen only takes
into account the normal perturbations obtained with the slender body assumption. In practice, the
slender body theory is implemented by using the following approximations:

Slender body hypothesis : (IV.52)

∂nG
′ ≈ 0 (IV.53)

Gn
′ ≈ Gon′ (IV.54)

dΣ′ ≈ 0, (IV.55)

which means that the the fluctuations of the Green’s function and the dilatation of the interface
are not taken into account by the method: the only geometrical perturbations considered are the
normal rotations, which have to be calculated based on the approximated curvilinear movement of
the centerline of the hull for each mode as done by Li et al. (2009).
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Figure IV.8: Top: legend used to differentiate the methods used to calculate the potential ϕ and
the forces δPf . Bottom: Instabilities predicted by four different methods for calculating the added
stiffness operator. In blue, the ALE method is the one presented in this thesis. In orange, the
slender body method approximates the perturbations of the potential by considering the small
rotations of the hull’s centerline. In yellow, the slender body method is coupled to the stiffness
calculations associated with the Lagrange equations neglecting second order derivatives. In green,
the ALE method for predicting the velocity potential perturbations is coupled with the Lagrange
equations neglecting second order derivatives.Top and bottom left: real and imaginary parts of
the eigenvalues respectively, as a function of the reduced velocity Ur. Top right: evolution of the
eigenvalues in the real, imaginary plane. The eigenvalues goes from left to right of the graph as Ur

increases (see the increase of the real part with respect to Ur in the top left graph). Bottom right:
zoom on the flutter region.

Remark

In order to study the fluid-structure interaction of submarines with underwater explosions, Mavaleix-
Marchessoux (2020) used a partitioned approach coupling the FEM operators of the structure with a
BEM procedure for the fluid. Regarding the BEM procedure, an hypothesis used by him was that
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for small elastic deformations relatively to a small criterion ε, the fluctuations of the BEM operators
could be neglected, and therefore the only varying geometrical object under this hypothesis remained
the normal of the mesh, which is similar to the hypothesis described by equation (IV.52) excepted that
the fluctuation of the normal was taken into account naturally by refreshing the mesh at each time
step. As a consequence, the results presented in this section might help considering the interest of such
hypothesis used in the literature.

On top of those two different manners to calculate the potential fluctuations, two distinct approaches
to calculate the added stiffness can be used. The first approach used in this section is a calculation
based on the Newtonian formulation of the forces, leading to the expression of the added stiffness as
introduced in this thesis. The second approach is inspired by the works of Li et al. (2009). It consists
of calculating the added stiffness based on Lagrange’s equation and neglecting the second order
contributions from equation (B.24) as done by Li et al. (2009) since it is particularly inconvenient
to calculate. The approach based on Lagrange equation can be used with both predictions of the
potential ϕALE and ϕslen. The results are presented in Figure IV.8. The blue curve, associated with
a Newtonian ALE approach is the reference one based on the method introduced in this thesis,
while the other curves are based on approximations detailed above. One can see how the Newtonian
approach and the approximated Lagrangian approach yield very similar results, as shown by the
proximity of the blue and green curves and the similarity of the yellow and orange curves. In order
to quantify the relative error associated with the approximated Lagrangian approach compared
to the Newtonian approach, the critical velocity at which flutter appears are compared: it is
underestimated by 3% when using ϕALE. The slender body gives accurate results in the case of an
elongated Ar = 5 ellipsoid. Even though the curves associated with ϕALE and ϕSlen do not coincide
exactly, the critical velocity is over-predicted by only 2, 7% using the slender body theory with a
Newtonian approach (orange curve compared to blue curve).

Finally, since integrating over an ellipsoidal interface enables to solve more conveniently the
potential solution using appropriate analytic simplifications, Li et al. (2009) performed stability
analysis on an airship hull based on an equivalent ellipsoidal interface. In order to see if this
approximation yields good results, a calculation has been performed to compare the stability criteria
obtained by the method introduced in this thesis with the coupling of the slender body approach
with a simplified Lagrange formalism on an equivalent ellipsoid. The equivalent ellipsoid was set to
have the same length and the same volume (thus the same aerostatic lift generated by the internal
lifting gas) than the airship hull. The movements of the airship hull and the equivalent ellipsoidal
interface were set out to be equivalent about the centerline, see Figure IV.9. The center line modes of
deformations were arbitrarily set as the plane rigid body motion completed by the first elastic mode
of an equivalent curvilinear free-free homogeneous beam. The results obtained for both methods
are presented in Figure IV.9. One can see that both methods yield similar results, even though the
critical velocity is underestimated by 6.6% using the approximated calculations on an equivalent
ellipsoid. Moreover, one should note that some errors might compensate each other: the slender
body theory lead to an overestimation of the critical velocity as shown in Figure IV.8, whereas
the approximated Lagrange equations and the ellipsoidal approximation of the geometry seem to
underestimate the critical velocity as shown in Figures IV.8 and IV.9. Similar computations were
performed to compare the instability trigger for an airship hull and an ellipsoidal hull (both shown
in Figure IV.9) with equivalent internal volume, both computed with the method from this article.
It was found out that the critical velocity for the ellipsoid is 6.2% lower than that of the streamlined
hull, which means that with an equivalent volume, the streamlined body is more stable than the
bluff ellipsoidal body with respect to the flutter instability. As a consequence, one might expect
that the predictions made by Li et al. (2009) lead to accurate results but with an overprediction of
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the risk of unstability (associated with an underprediction of the critical velocity). The calculations
mentioned here were performed only by comparing different approaches in the calculation of the
stiffness, however the different approaches to calculate the gyroscopic operators where not compared
as only the Newtonian approach has been used due to time constraints. As already mentionned
in Chapter III, the added mass operator is the same based on the Lagrange’s equation or on the
Newton approach with a posteriori symetrization of the operator.

generic airship hull
associated ellipsoid

undeformed flexion mode(a) (b)

Figure IV.9: Left: (a): Cross-section of a characteristic axisymmetric membrane of an airship in
blue, and the ellipsoid with same length and volume in dashed orange line. Both have the same
center line displayed with a black dash-dot line. (b): same cross section showing the deformed
structure with respect to the flexible elastic mode. Right: stability analysis of both configurations,
with the real part of the eigenvalues at the top and the imaginary part at the bottom for a varying
reduced velocity Ur. The airship eigenvalues have been obtained with the method introduced in
this thesis, whereas the eigenvalues of the equivalent ellipsoid have been obtained using a method
similar to Li et al. (2009).
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IV.3 Effect of fins inclusion

IV.3.1 Quasi-steady efforts of a flow on a 2D fin

α

V

et

en

chord line

camber line

h(x)

δ(x)

x = 0 x = c

eD

eL

αeM

Figure IV.10: Two-dimensional fin at an angle of attack, chord and camber lines.

We consider an homogeneous ambient flow going past a thin fin with infinite length in the ey
direction as shown in Figure IV.10. The chord line is defined as the straight line going from the
leading edge to the trailing edge of the profile. For a straight fin, the camber line coincide with the
chord line. We suppose that the chord line is oriented among ex. The thickness of the foil among
the normal direction en is noted h and the vertical distance between the chord line and the camber
line is δ. The distance from the leading edge to the trailing edge is noted the chord length C, and
its direction is associated with the tangential vector et. The spanwidth of the fin is noted W . The
angle of attack is defined as the angle between the chord line and the ambient flow direction:

α = acos

(
V .et
V

)
with V = ∥V ∥ . (IV.56)

In practice, the ambient flow velocity will be taken equal to zero and the fin will have a non
zero velocity, which is however equivalent to the case presented in Figure IV.10 by a change of
Galilean referential (hence placing ourselves in a fixed referential relatively to the fin). In addition
to the relative flow velocity V , the fin can have a velocity along et and en, referred to as ż and
ẋ respectively. Moreover, the fin can have pitching motions around its quarter chord at x = c/4,
resulting in an angular velocity α̇ of the angle of attack. In this thesis, the loads on the fins are
predicted under a certain set of hypotheses, required to refer to the thin airfoil theory:
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- Small angle of attack : α≪ 1 (IV.57)

- Small relative plunging velocity :
ż

V
≪ 1 (IV.58)

- negligible longitudinal velocitiy :
ẋ

Cα
≪ 1 (IV.59)

- negligible pitching velocity :
cα̇

Cα
≪ 1 (IV.60)

- negligible thickness :
h

c
≪ 1 (IV.61)

- negligible camber :
δ

cα
≪ 1 (IV.62)

- Inviscid fluid : Rfin
e =

ρfV C

µ
≫ 1 (IV.63)

- rigid airfoil :
∂

∂t
{c, δ, h} = 0 (IV.64)

- high aspect ratio :
C

W
≪ 1 (IV.65)

- Kutta condition: the flow particles flowing on top and bottom of the foil separate from the
interface at the sharp trailing edge. On the opposite to Chapter I, this condition will induce a
circulation of the flow, which can however still be described by a velocity potential that will have
a discontinuity behind the trailing edge (Katz and Plotkin, 2001).

- Quasi-steady vortex sheet: the Kutta condition leads to the apparition of a vortex sheet behind
the airfoil trailing edge (Katz and Plotkin, 2001). In this thesis, we make the assumption that this
vortex sheet spreads infinitely in the same direction as V (see Figure IV.12 as an example). We
make the assumption that the fin movements are slow enough so that the vortex sheet remains
plane. In practice, oscillations of the fin might lead to change of shape of the vortex sheet, but
the oscillations of the fin are supposed to remain relatively small which justifies the fact that we
neglect the vortex sheet geometry perturbations.

- Quasi-steady circulatory effects: we suppose that the shed vortices result in in-phase loads
on the airfoil, which is valid for relatively low frequency oscillations of the airfoil compared to the
characteristic time required for the fluid particles to cross the chord length.

Finally, we will suppose that the camber line is a parabolic arc:

δ = 4δmax
x

C

(
1− x

C

)
. (IV.66)

The flow induces a force F and a moment M(x = 0) on the foil. Katz and Plotkin (2001) gives
an approximation of these efforts under the hypothesis abovementionned for a quasi steady flow
(α̇ = 0, ẋ = ż = 0), which can be described using the lift force FL, the drag force FD and the
leading edge pitching moment M0:
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(IV.67a)

F .eD = FD = 0 (IV.67b)

F .eL = FL = ρV 2πCW

(
α+ 2

δmax

C

)
(IV.67c)

M(x = 0).eM =M0 = ρV 2π
C2W

4

(
α+

4δmax

C

)
. (IV.67d)

Because of the negligible camber hypothesis, the lift and moment expressions become:

FL = ρV 2πCWα (IV.68)

M0 = ρV 2π
C2Wα

4
. (IV.69)

One can note that for an ideal flow where skin friction is neglected, no drag forces are predicted.
The lift force L is caused by the sharp trailing edge, which induces a circulation in the surrounding
fluid because of the Kutta condition. This circulation causes a lift. As we arbitrarily set the pitching
rotation movements of the foil to be around the quarter-chord x = c/4, the pitching moment from
equation (IV.68) is expressed at the quarter-chord as well using equations (IV.67):

M

(
x =

C

4

)
.ey =M1/4 =M0 + FL

C

4
= 0. (IV.70)

As one can see from the equation above, the advantage of describing pitching motions relatively
to the quarter chord comes from the fact that the flow past a non-cambered airfoil will create no
moment around the quarter-chord: the quarter-chord is consequently referred to as the aerodynamic
center of the airfoil.

By combining equations (IV.67c) and (IV.70), one gets the expression of the force and moment
acting on the airfoil:

FL = ρV 2πC

(
α− ż

V

)
(IV.71a)

M1/4 = 0. (IV.71b)

The force applied by the flow on a two-dimensional airfoil in plunging and slow pitching motion
in an ideal fluid has been given by equation (IV.71). In order to model the forces applied by
the flow on the three-dimensional fins of a structure, this thesis is based on additional simplifying
hypotheses for the convenience of modeling.

First, the three-dimensional effects of the flow around the fin are neglected. This means for
example that the wingtip vortices will be ignored in the model. A first step toward taking into
account three-dimensional effects could be done by using the lifting-line theory as explained in Katz
and Plotkin (2001), which could conveniently be implemented to enhance the model presented in
this thesis. Because three-dimensional effects tend to decrease the lift predicted by two-dimensional
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approximations, one should bear in mind that the two-dimensional flow hypothesis around the fins
will lead to an overestimation of the lift effects.

For the second hypothesis, the flow perturbations induced by the hull are ignored, which means
that we consider a relative velocity of the ambient flow around the foil to be equal to V = −v̄.

Finally, the fin will be arbitrary supposed to be attached to the hull at its quart-chord position
at a longitudinal position xfin (see Figure IV.11). In order to approximate the movements of the
fins caused by the displacements of the hull, the movements of the fins will be supposed to follow
the centerline of the hull (see Figure IV.11). First, the centerline transverse deformation associated
with each mode ξ̄′ is approximated as the polynomial expression of order n with respect to the
longitudinal coordinate x that best fits the transverse deformations (1−ex⊗ex)ξ̄

′ associated with
the mode. In practice, an order of n = 5 has been used since it allows us to capture well enough
the transverse displacements ξc.l

′ of the centerline for the reduced basis used in this thesis. Once
the centerline transverse displacements have been obtained, the plunging motion h′ of the airfoil
is defined as the transverse displacement at the fixation point of the fin, and the angle of attack
fluctuations are defined as the longitudinal derivative of the centerline transverse displacements at
the fixation point of the fin:

h′ = ξ′c.l(xfin) (IV.72a)

α′ =
∂ξc.l
∂x

. (IV.72b)

Once the angle of attack and plunging motion perturbations are known for each mode, the work of
the fluid associated with the fins can be determined as:

δPfin =Mδα+ FL(α, ḣ)δh, (IV.73)

where the virtual angle of attack and pluging motion δα and δh are deduced from δξ̄ in the same
way than α′ and h′ were obtained from ξ̄′. Since the moment remains nil according to equation
(IV.71), one gets the following expression of the virtual power of the fluid associated with the
circulation around the fin:

δPfin = πρ ∥v̄∥2 πCW
(
α− ż

∥v̄∥

)
. (IV.74)

The expression above can be written at order zero as:

δPfin = πρf ∥v̄o∥2 πCW
(
αo − żo

∥v̄∥

)
. (IV.75)

Because we made the small angle of attack assumption α≪ 1, one can consider that the order zero
velocity is mostly in the longitudinal direction:

v̄o = ex ⊗ exv̄
o +O (α)). (IV.76)

As a consequence, the norm of the velocity can be expressed as:

v̄2 = (v̄o)2 + 2v̄o.v̄′ +O
(
ε2
)
= (v̄o)2 + 2 ∥v̄o∥ ex.v̄′ +O (α) +O

(
ε2
)
. (IV.77)
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Figure IV.11: Displacement of an airship (the initial position being visualized with dashed line).

Because of the negligible longitudinal velocity of the fin hypothesis, the term ex.v̄
′ = O

(
α2
)
can

be neglected and therefore the expression becomes:

v̄2 = (v̄o)2 +O
(
ε2
)
+O

(
α2
)
∼ V 2. (IV.78)

The following expression of the virtual power can consequently be obtained at orders zero and one:

δPo
fin = πρfV

2CWαo (IV.79a)

δP ′
fin = πρfCW

(
V 2α′(ξ̄′)− V ḣ′

(
˙̄ξ′
))

. (IV.79b)

As one can see from the expression above, the modelisation of the circulation effects induced by
the fins leads to the emergence of additional stiffness and damping.

Remark

In the model presented in this section, the lift has been calculated only considering the circulation
effects of the two-dimensional flow around fins that has been isolated from the rest of the fluid-structure
interface. Therefore, both three dimensional effects at the tip of the fin and hull-fin flow interaction
effects aren’t taken into account. A better grasp of the physics associated with the aforementioned phe-
nomena could be obtained by using a vortex sheet Σwake as shown in FigureIV.12. The implementation
of the vortex sheet would first require to create an associated mesh. As a first approximation, a straight
vortex sheet propagated in the direction of the relative flow is commonly used (Bessert and Frederich,
2005; Katz and Plotkin, 2001). The vortex sheet separates locally the fluid domain into two zones
Σ+

wake and Σ−
wake (even though they still belong to the same global fluid domain). Each point of the

vortex sheet is therefore associated with two distinct velocity potential value: one ϕ+ above the sheet
(on Σ+

wake) and one ϕ− below (on Σ−
wake). The associated potential solution might then be obtained

by using an integral equation now based on Σ ∪ Σ+
wake ∪ Σ−

wake instead of just Σ. However, the asso-
ciated BEM should be implemented with extra care, as taking into consideration infinitely thin walls
requires adaptations of the method described in Chapter I, such as the introduction specific operators
as described by Gennaretti et al. (1997).

The fins are characterized by a chord of length C and a span of W . They relate to each other
with the fins aspect ratio Afin

r and to the structure characteristic surface with the surface ratio Sfin
r :
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ϕ | ∂nϕ = v · n ϕ+ | ∂nϕ+ = vwake · nwake

ϕ− | ∂nϕ− == vwake · nwake

n
nwake

vc

ΣN

Σwake

Figure IV.12: In blue: coarse mesh ΣN of a NACA0012 airfoil . In grey: generated mesh of a
vortex sheet Σwake extending from the trailing edge in the direction of the flow relative to the
structure. The potential field has a discontinuity at the vortex sheet, hence the two field ϕ+ and
ϕ− associated with the upper and lower part of the vortex sheet: each node of the vortex sheet
is associated with two distinct potential unknowns. The fluid can’t flow through the vortex sheet,
hence the associated normal gradient condition on the associated mesh.

Afin
r =

C

W
(IV.80)

Sfin
r =

CW

LD
. (IV.81)

Moreover, in order to take into account three dimensional effects, a correction coefficient was used
to roughly take into account the vortices at the tip of the fin. Using the Lifting Line theory based
on the approximation of a constant chord airfoil (Katz and Plotkin, 2001), the three dimensional
lift was calculated as:

F 3D
L = fF 2D

L (IV.82a)

f =
1

1 + 2Afin
r

. (IV.82b)

According to the expression above, the lower the aspect ratio of the airfoil Afin
r , the greater the

losses of lift due to three dimensional effects. As expected, the two dimensional model predicts
with more accuracy the lift of high aspect ratio airfoils since it is closer to the two-dimensional
case. According to equation (IV.79b), the higher the surface ratio Sfin

r , the greater the fin surface
CW , and consequently the greater the lift force predicted. Thus, greater stabilization effects from
the fins (enabling balance the instability associated with the Munk moment) are expected at higher
surface ratio Sfin

r . This can be observed in FigureIV.14. When the surface of the fins is negligible
relatively to the airship hull characteristic surface, the structure is unstable as if there were no fins.
When the surface of the fins increases, the flutter instability around Cy ≃ 1 eventually disappears.
A flutter instability then appears at low Cy. Finally, once the fins have reach a sufficient area, the
structure becomes stable at low speeds, but with a risk of flutter if a critical velocity is reached.
The higher the fins area, the higher the stability and the critical velocity associated with flutter.
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Figure IV.14: Left: Zones of instability of an ellipsoid as a function of the Cauchy number Cy and
the reduced fins area Sfin

r , for a mass number Mf = 1 and a fin aspect ratio of Afin
r = 0.25. As

the chord length is fixed by the parameter Afin
r , the variations of Sfin

r result in a variation of the
fins span W . Right: equivalent map with the reduced velocity Ur variable in place of the Cauchy
number Cy.
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The results presented in this section are based on a simplified model to take into account
the fins reaction. Though the accuracy of these results could be improved (see propositions in
the seciton above or a recap of the possible improvements in the perspectives section below), this
straightforward analysis enables to understand the physical phenomena involved in the stabilization
of the system.

IV.4 Conclusion

Through this chapter, the following work has been done:

1. A dynamic model of a hyperelastic structure prestressed by an internal fluid and subjected
to external forces has been presented. This part does not constitute an originality of the
thesis, one can find for instance a similar approach by Hoareau (2019). We note however
that the pre-stressing effects of the internal fluid on the dynamics of flexible airships has
not been done to the authors’ knowledge (except by Bessert2005, but their analysis uses a
flexible deformation at zero order and then focuses on the stability with respect to small
rigid body movements only).

2. A linear fluid-structure dynamic equation has been proposed by coupling the prestressed
hyperelastic structure with the external and internal fluid forces. The resulting formula-
tion involves external flow independent fluid and structure mass operators, a linear fluid
gyroscopic operator with zero-order structure rigid body motions ν̄o, and quadratic fluid
and structure stiffness operators with rigid body motions ν̄o ⊗ ν̄o.

3. The stability of an inflated ellipsoidal membrane in ambient flow has been studied as a
function of flow velocity, and the results have been compared to physical phenomena from
the literature. As expected, the absence of fins leads to an instability of the structure in
the flow whatever its non-zero velocity.

4. A very simple fin model has been introduced and the associated stabilizing effects have
been studied.

One of the main objectives of the manuscript was to obtain and study a complete dynamic
model of a pre-inflated airship in large rigid body motions and small deformations interact-
ing with an internal lifting gas and an external flow. During this chapter, a model allowing
to couple a structure in large translational movements with internal and external fluids was
introduced, with the perspective of adapting this model with rotational movements. Since the
fluid forces have been modeled in this study using the hypothesis of a potential flow, the po-
tential and viscous effects associated with the oscillations of a model in a fluid are investigated
experimentally in the next chapter to determine whether it is consistent to neglect the viscous
effects.

IV.5 Perspectives

� The developments from Chapters II and III give the required tools to take into account
the effects of the internal fluid on the dynamics of the structure. In this Chapter, due
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to time constraints, only the stationnary, pre-stressing effects of the internal fluid on the
stiffness of the membrane have been studied, and it would be an interesting perspective
to study how the added mass of the internal fluid affects the dynamics.

� It would be of high interest to calculate the structure trajectory and see the influence
of its flexibility on the trajectories without ambient flow, with an homogeneous ambient
flow or with unhomogeneous, unsteady ambient flow.

� Calculate the whole F/S modes without projecting on the structure in vacuo modes, see
if the resulting modes is close to in vacuo modal base by comparing the eigenvalues. Use
of the main fluid-structure modes obtained as a new reduced base to project the problem
onto.

� Studying the effects of the pre-stress stiffness Ks
Q,L on the dynamics of the fluid-structure

problem would be an interesting possibility to explore.

� Take into account the effects of the fins at zero and first orders using a vortex sheet mesh
as prescribed by (Gennaretti et al., 1997). The new mesh would originate at the trailing
edge and propagates in the direction of the flow as displayed in Figure IV.12.

� For more complex fluid models with Gf (Ω) and Kf (Ω) for example: nonlinear eigenvalue
equation, which would be costly to solve, hence making the parametric study much more
expansive. This drawback could be compensated by using better strategies for parametric
exploration, such as tracking the stability front in the Mf ,Ur space for example.

� The structure considered for the stability analysis consists of an ellipsöıdal membrane of
homogeneous properties (thickness, Young modulus,...). In order to get closer to nominal
airship conditions, an interesting perspective would be to use more complex airship models
with realistic geometry and materials.

� For practical reason, the non-linear calculation of the inflated displacements ξ̀stat of a
free-free structure has not yet been implemented, and the test prestress effects of the test
case have been calculated linearly for in the scope of this thesis. Consequently, it would
be an interesting perspective to study how the non-linear inflation of the membrane might
affect the results presented in this section.
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Chapter V

Experimental analysis of the fluid forces
exerted on an oscillating rigid ellipsoid

Introduction

T
he results presented in the previous chapters are obtained using potential flow theory,
which is based on strong hypothesis, as explained in section I.3.1. Consequently, the aim

of this chapter is to determine experimentally to which extent the potential model enables to
predict the fluid forces in the case of a structure vibrating in a fluid at rest. For this purpose,
the viscous effects which are not predicted by potential flows are investigated experimentally for
various relevant dimensionless flow numbers: the Stokes number and the relative displacement
amplitude.

In section V.1, the loads exerted on a plate vibrating transversely in a viscous flow are
studied, with a particular focus on their relationship with the Stokes number, and to what
extent those loads differ from those predicted by the potential theory of chapter I. In order
to verify these predictions, an experimental setup is presented in section V.2, consisting of an
oscillating rigid structure rotating in a fluid at rest. For parametric exploration purposes, the
frequency and amplitude of vibration can vary, as well as the dynamic viscosity and density
of the fluid. Damping and added mass coefficients are obtained experimentally from torque
and acceleration measurements. In section V.3, those coefficients are obtained for various
experimental parameters, enabling to study how viscous effects scale, and how it compares
to theoretical results. Finally, considerations are drawn on the orders of magnitude of fluid
viscous effects for airships, which associated Stokes number are higher than those explored
experimentally.

V.1 Modeling of the viscous laminar effects in a quiescent fluid

The aim of this chapter is to study dynamical boundary layer effects. More especially, we are
interested in how they scale with the relevant dimensionless numbers, and consequently in what
role they are expected to play at the scale of airship dynamics, to check to what extent the potential
flow hypothesis is valid. Stationary effects of the boundary layer have already been compared to
potential flow results in Chapter III by comparing with RANS simulations: in this chapter, the
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Figure V.1: Left: infinite plane plate with transverse harmonic vibrations in a laminar fluid at rest,
and the resulting velocity profile in the fluid domain. Right: three dimensional view of the solution,
the fluid velocity profile is displayed in orange and the boundary layer volume is displayed in blue.

boundary layer effects are studied experimentally in the case of unsteady movements of the interface.
The present study focuses on rigid body rotational movement, and the extension of the experimental
process to elastic movements would therefore be an interesting perspectives for carrying further this
work.

V.1.1 Laminar boundary layer effects on a solid vibrating in a fluid at rest

In the context of this chapter, gravity effects will be neglected. In this section, the viscous loads of
a laminar fluid at rest in contact with an infinite plate with transverse vibrations are studied. As
shown in Figure V.1, the plate is placed in the tangential plane {t1, t2} and vibrates along the t1
direction. The velocity obeys

v = v(t)t1 with v(t) = V cos(ωt). (V.1)

The induced flow is supposed to be laminar: turbulence effects are neglected. The boundary
condition verifies the continuity of velocity introduced in equation (I.8), and the velocity amplitude
of the fluid at rest has to vanish remotely from the wall:

u(z = 0, t) = v(t) (V.2a)

u(z → ∞, t) → 0. (V.2b)

The fluid behavior in the domain Ωf(t) is described by the Navier-Stokes equation (I.7). The
expression of the fluid velocity is based on the characteristic boundary layer thickness ηf defined
as (De Langre, 2001):
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u(z, t) = V exp

(
− z

2ηf

)
sin

(
Ωt− z

2ηf

)
in Ωf(t) (V.3a)

with ηf =

√
µf

2ρfΩ
. (V.3b)

The boundary layer thickness ηf may have various definitions, and accordingly different values
(Schobeiri, 2010), all with roughly the same order of magnitude: the boundary layer thickens when
the dynamic viscosity µf increases, and and gets thinner when the density ρf and the frequency Ω
increase, because of competition between viscous and inertial effects. The choice for the expression
(V.3b) of ηf enables here to be coherent with the equivalent volume of fluid accelerated in the
boundary layer as will appear later in the boundary layer added mass expression (V.8). For the rest
of this chapter, unless otherwise stated, we suppose that the characteristic length of the structure
studied is much larger than the characteristic length of the boundary layer:

ηf
L

∼ S− 1
2

t ≪ 1. (V.4)

The resulting stresses at the interface are expressed as (Doaré, 2020):

pσf · n = −pstatn−
(
ρf ηf v̇(t) +

µf
ηf
v(t)

)
t1 on Σ(t). (V.5)

In the expression above, there is no dependency on the dynamic pressure pflow because the move-
ments of the plate are tangential. Considering the expression above, the resistive viscous stresses
from the laminar flow include two contributions.

- The first contribution is proportional to the boundary layer thickness and to the acceleration
of the interface v̇. If these stresses are integrated over a characteristic surface of length L and width
D, the associated force can be seen as the inertia added by the fluid enclosed in the box of length
L, width D and thickness ηf as shown in Figure V.1 right.

- The second contribution, in phase and proportional with the interface velocity v, is related to
the shear inside the boundary layer. The rate of shear ∂nu is of the order of the ratio between the
interface velocity and the boundary layer thickness (see Figure V.1 right).

Based on the physical considerations introduced in this section for an infinite flat plate in trans-
verse oscillations, the next section will study how the problem can be expressed with dimensionless
parameters using the similitude principle. This will enable to check if the latter principle can be
verified experimentally.

V.1.2 Scaling of the inertia and damping effects of the fluid

In this section, we study how the added mass and damping coefficients evolve with the Stokes
number and the displacement number.

Let us first consider the pressure effects outside of the boundary layer. As described in Chap-
ter I, the dynamic pressure can be decomposed into an added mass contribution pv̇ and a velocity
convection contribution pv:
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pflow = pv̇(v̇) + pv(v). (V.6)

By using dimensional analysis, the added mass and convection contributions of the pressure can be
written as (cf Chapter I):

pflow = ρfΩLV p
∗
v̇(v̇

∗) + ρfV
2p∗v(v

∗), p∗v̇ ∼ p∗v ∼ 1. (V.7a)

v = V v∗, v∗ ∼ 1 (V.7b)

v̇ = ΩV v̇∗, v̇∗ ∼ 1 (V.7c)

Noting from equation (V.1) that v̇ ∼ ΩV , the shear stresses on an oscillating solid write as:

pσµ = ρfηfΩV
(
pσ∗
µ,v̇(v̇

∗) + pσ∗
µ,v(v

∗)
)
, pσ∗

µ,v̇ ∼ pσ∗
µ,v ∼ 1. (V.8)

In the equation above, the dimensionless unit viscous terms are respectively the added mass viscous
stress pσ∗

µ,am which is linear with the acceleration v̇∗ and the shear stress pσ∗
µ,shear linear with the

velocity v∗. Both added mass and added damping viscous terms have the same order of magnitude
but their phase differs by π/2 for harmonic motions. As a consequence, the fluid stresses can be
rewritten as:

pσ · n
ρfΩLV

= −(p∗v̇ + Urp
∗
v)n+ S− 1

2
t

(
pσ∗
µ,v̇(v̇

∗) + pσ∗
µ,v(v

∗)
)
n. (V.9)

As already mentioned previously, the predominance of the convective or added mass forces depends
on the relative velocity of the interface Ur. When the thin boundary layer hypothesis is met, one
expects the ratio between amplitude of the viscous effects and the fluid inertia effects to scale as

S−1/2
t . Recalling from Chapter I that for the case of stationary flows, the latter ratio is of the order

of R−1/2
e , to a certain extent the Stokes number is to oscillating flows what the Reynolds number

is to stationary flows.

As the experimental setup aims to study the fluid forces acting on an ellipsoid with harmonic
rotations around its diameter, the associated equations will be further developed for this very case.
The objective is to determine the moment exerted by the fluid on the rotation axis of the structure.
In order to do so, the angular amplitude Θ, the rotation speed ω and its dimensionless counterpart
ω∗ are introduced, and the virtual movements associated with an infinitesimal rotation δω among
the axis ez are considered:

ω = ΩΘω∗ (V.10a)

ω̇ = Ω2Θω̇∗ (V.10b)

δv = δωez ∧ x = Lδv∗ (V.10c)

ω∗ ∼ ω̇∗ ∼ δx∗ ∼ 1. (V.10d)

One should note that the angular amplitude scales as the dimensionless displacements ξ/L since
the order of magnitude of the displacements of the ellipsoid tip is ΘL. The characteristic velocity
of the fluid is of the order of the angular velocity multiplied by the characteristic structure length:
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V = ΩLΘ. (V.11)

As a consequence, the reduced velocity is here equal to the angular amplitude:

Ur =
V

ΩL
= Θ. (V.12)

As the experiment focuses on the fluid effects resulting from rotation of the interface, the mass and
added mass effects might be refered to as ”inertia” in the following sections. Because of the above
equation, the virtual power associated with the torque τf exerted on the axis writes as:

τf = δPf (ω, ω̇, δω = 1)

= ρfΩ
2L3Θ

∫

Σ

[
− (p∗v̇(ω̇) + Urp

∗
v(ω))n+ S− 1

2
t

(
pσ∗
µ,am(ω̇

∗) + pσ∗
µ,shear(ω

∗)
)
n
]
· δv∗ dΣ. (V.13)

In the equation above, the arguments of the pressure and viscous stress contributions have been
switched from v to ω (or their respective time-derivative). The rotation speed and the velocity are
related by the distance from the material point to the rotation axis. In order to non-dimensionalize
the latter equation, the stresses of the flow are integrated on the dimensionless interface Σ

∗
such

that:

for x̄ ∈ Σ, x̄∗ =
x̄

L
∈ Σ. (V.14)

As a consequence of the equation above, a small element of area meets the property dΣ
∗
= L2 dΣ,

enabling to write the dimensionless moment of the fluid τf
∗ as:

τf
∗ =

τf
ρfΩ2L5Θ

= τf
∗
p,v̇(Ar) + Urτf

∗
p,v(Ar) + S− 1

2
t τf

∗
µ(Ar) (V.15)

τf
∗
p,v̇(Ar) =

∫

Σ
∗
−p∗v̇(ω̇∗)n · δv∗ dΣ

∗
. (V.16)

τf
∗
p,v(Ar) =

∫

Σ
∗
−p∗v(ω∗)n · δv∗ dΣ

∗
. (V.17)

τf
∗
µ(Ar) =

∫

Σ
∗

(
pσ∗
µ,am(ω̇

∗) + pσ∗
µ,shear(ω

∗)
)
n · δv∗ dΣ

∗
(V.18)

τf
∗
p,v̇(Ar) ∼ τf

∗
p,v(Ar) ∼ τf

∗
µ(Ar) ∼ 1 (V.19)

The above equation enables us to solve the problem on a reference mesh. As the geometry of the
interface is set as an ellipsoid, the only geometry variable of the reference mesh Σ

∗
is its aspect

ratio Ar. As a consequence, the expression of the dimensionless moment above only depends on
two independent parameters with the exception of angular velocity and acceleration: the ellipsoid
aspect ratio Ar and the Stokes number St. The loads of a potential flow on a rotating ellipsoid can
be found in Lamb (1932):

τf
∗
p,v̇(Ar) = −I∗ρf (Ar)ω̇

∗ with I∗ρf ∼ 1 (V.20a)

τf
∗
p,v(Ar) = 0, (V.20b)

122



The analytic expression of I∗ρf (Ar) is given in equation (C.6c), with I∗ρf (Ar) = Iy/(ρfL
5). Since

the convective pressure forces τf
∗
p,v are nil, one expects the loads τf

∗ to be of the order of unity no

matter the reduced velocity Ur: τf
∗ ∼ 1 (see equation (V.15)). By judging the expression of the

solution for the case of a thin plate in transverse vibrations (V.5), we make the hypothesis that the
viscous forces of the boundary layer write as:

τf
∗
µ(Ar) = −I∗µf (Ar)ω̇

∗ −D∗
µf
(Ar)ω

∗. (V.21)

The expressions introduced above can be summarized according to the expression:

τf
∗(ω∗, δω) = −

(
I∗ρf (Ar) + S− 1

2
t I∗µf (Ar)

)
ω̇∗ − S− 1

2
t D∗

µf
(Ar)ω

∗, (V.22)

where the analytic expression of the inviscid fluid added inertia I∗ρf is known unlike the viscous
terms I∗µf and D∗

µf
, and all the terms in this equation with a ∗ index are of the order of unity. The

expression with dimensions of the equation above can be obtained by multiplying by ρfΩ
2L3Θ. In

the literature, similar developments were performed based on the laminar flow around a infinite
cylinder oscillating in a fluid at rest by Wang (1968). The analytic expression of the fluid forces on
the flow, referred to as Stokes-Wang solution (Rashid et al., 2011), writes as:

τf
∗ = −

(
M∗

ρf
+ S− 1

2
t M∗

µf1/2
+ S− 3

2
t M∗

µf3/2

)
v̇∗ +

(
S− 1

2
t Dµf1/2 + S−1

t Dµf1 + S− 3
2

t Dµf3/2

)
v∗,

(V.23)

where all the coefficients above with a star exponent ∗ are of the order of unity. Since the equation
above describes a cylinder with translation oscillations, the added mass and damping expressions
differ in the case of a rotating ellipsoid.

The experimental setup will aim to measure the fluid forces and compare the added mass and
damping with the small Stokes predictions derived above.

V.2 Experimental setup

In order to compare the model of the potential and boundary layer moments introduced in equation
(V.22) acting on an ellipsoid with rotational vibrations in a fluid with reality, an experiment is now
proposed. The main purpose is to find whether or not the analytic expression of the added mass
on a rotating ellipsoid is validated with experiments, and if the boundary layer added mass and

damping scale in S−1/2
t as predicted by the model.

Kinematics An arbitrary aspect ratio of Ar = 2 has been 3D-printed. It has been fixed on a
rotation axis using two bearings. The axis of the ellipsoid undergoes oscillating rotations thanks
to a crank-rod system as shown in Figure V.2. A first crank is driven at a constant rotation speed
by a motor. This crank drives the oscillating movement of a connecting rod, which in turn drives
a second larger crank. Thanks to this mechanism, the constant rotation of the motor causes the
second crank to undergo periodic angular oscillations. The angular amplitude of these oscillations
depends, among other geometrical parameters, on the length ratio between the two cranks. The
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Figure V.2: Schematic view of the experimental setup. The crank-rod system converting the
homogeneous rotations of the motor into oscilating rotations of the axis is shown with a kinematic
diagram. The dashed lines represent the circular path of the tip of motor crank and the arc-shaped
path of tip of the crank connected to the model axis.
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Figure V.3: Picture of the setup with highlights of the main elements.
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oscillations of the second crank are then transmitted to the axis of the ellipsoid 1. It is important to
note that such a mechanism has the disadvantage of creating non-harmonic movements of the second
crank. In order to have oscillations as close as possible to purely harmonic motion, the movements of
rotations have been predicted using a geometric closure to find a geometric configuration resulting
in a signal close to purely harmonic by adapting the distance between the axes of the motor and
the ellipsoid.

Measurements Keeping in mind that the objective is to verify if the torque exerted by the fluid
on the ellipsoid depends on the angular velocity and acceleration as predicted by equation (V.22),
we want to be able to determine the three aforementioned variables: torque of the fluid on the
ellipsoid, angular velocity and acceleration. In order to measure indirectly the torque exerted by
the fluid on the ellipsoid, a torque-meter has been fixed between two parts of the rotation axis. This
enables to get the torque exerted by the whole system composed of the bottom axis, the ellipsoid
and its surrounding fluid on the torque-meter. How the purely fluid torque can be isolated from the
torque measured (hence remove the forces of inertia from the ellipsoid and its axis) will be explained
later in this section. In order to measure the angular acceleration, an accelerometer is placed on
the crank of the ellipsoid axis. Because of its distance from the center of rotation, the measured
acceleration can be directly linked to the angular acceleration by dividing it by its distance from
the rotation axis. Either torque or acceleration measurements enable to obtain the frequency of the
signal oscillations thanks to a Fast Fourier Transform (FFT). By dividing the measured angular
acceleration amplitude by the frequency, one expects to obtain the angular velocity amplitude.

Now that the basic principles of the measurements have been exposed, the following parts will be
devoted to the methodology in more detail to analyze the measurements and extract the physical
quantities of interest for this study. First, the following time-constant variables are measured
without motion of the ellipsoid: the length of the ellipsoid L, its aspect ratio Ar

2 and the radius
R between the rotation axis and the accelerometer have been measured with a meter, and the
angular amplitude Θ using a protractor. The density of the fluid ρf has been measured using a
graduated test tube, a beaker and a balance. The viscosity of the fluid µf has been measured
using a viscometer. Once these have been measured, the motor can be started for the ellipsoid
to oscillate, and the torque τ and acceleration α signals are measured over time. In practice, the
temporal signal of the torque and acceleration is never used as is. It is more convenient to obtain
their amplitudes |τ | and |α| and the associated frequency Ω using an FFT of the signal:

α(Ω) = |α|ei(Ωt+ϕα) (V.24a)

τ(Ω) = |τ |ei(Ωt+ϕτ ) (V.24b)

Moreover, as will be explained later in this manuscript with further details, an interesting measure is
the transfer function H between the torque τ and the acceleration α. Since the angular acceleration
ω̇ is equal to the acceleration α divided by the accelerometer eccentricity R, the transfer function
can be defined as follows:

1See the followinglink to see a video of the experimental setup
2those two parameters have been measured to make sure the dimensions required to the 3D printer have been

respected
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H(Ω) =
τ

ω̇
=

|τ |
|ω̇|e

i(ϕτ−ϕω) =
|τ |R
|α| e

i(ϕτ−ϕα). (V.25)

This transfer function will enable to obtain the amplitude ratio |τ |/|α| between the two signals as
well as their phase shift ϕτ − ϕα, which will come in handy when needing to separate acceleration
and velocity related phenomena since both variables are out of phase by π/2. In order to use the
measurements listed above, the torque τ acting on the torquemeter is the sum of all the fluid forces
and the inertia forces due to all the solid parts below the torque sensor:

τ = τf + τs. (V.26)

The quantities of interest that have to be studied here are included in τf , while τs is equal to the
angular acceleration multiplied by the total rotating inertia Is:

τs = Is ω̇. (V.27)

Instead of performing a calculation of this inertia based on the moving components, we chose to
first perform measurements with the ellipsoid in a fluid of negligible density Mf ≪ 1, enabling to
have negligible fluid loads and isolate the structure loads:

Is = ℜe (H(Mf ≪ 1)) . (V.28)

In practice, when the ellipsoid is surrounded by air, one can consider that the fluid effects are
negligible, with an inertia ratio between the fluid and solid effects estimated around

If (Mf ≪ 1)

Is
∼ 10−3.

One should note that, in equation (V.2), both acceleration and torque signals are supposed to be
in phase when the fluid effects are negligible since there are no damping effects from the solid,
only inertia effects. Thus, either taking the real part or the amplitude of H would work since its
imaginary part is negligible. Before measuring experimentally the inertia of the ellipsoid and its
axis, the measurement chain had to be calibrated, especially at low frequencies (∼ 2Hz) where
the accelerometer and the torque meter where out of their nominal working conditions, inducing
some errors on the amplitude and phase of the signals. In order to calibrate the setup, the transfer
function between the raw signals of torque and accelerations Hraw has been measured for a model
with a known inertia Icals . The calibration model is a cylinder inertia whose inertia Icals has been
previously obtained by measuring its mass, length and diameter. The calibrated transfer function
H was then obtained by calculating, for various frequencies Ω, the complex correction C such that:

H(Ω) = C(Ω)Hraw(Ω) (V.29a)

C(Ω) = |C|(Ω) eiϕC(Ω). (V.29b)

For each frequency Ω, the phase correction ϕC is calculated such that the imaginary part of H
becomes zero as expected for a structure in a fluid with negligible density, and the amplitude
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correction |C[ is calculated such that the amplitude |H| of the transfer function matches the known
inertia Ms of the cylinder:

C(Ω) =
H(Ω)

Hraw(Ω)
=

Is
Hraw(Ω)

(V.30)

Once the solid inertia has been measured using the transfer function H for an ellipsoid without
fluid, its contribution can be removed from the transfer function H obtained with measurements
in dense flows to isolate the fluid contributions of the torque on the ellipsoid, which is the quantity
we are interested in:

τf = τ − Is ω̇. (V.31)

Now that we are able to extract the fluid contributions from the transfer function between the
torquemeter and accelerometer, we are interested in identifying the added inertia I∗ρf , I

∗
µf

and damp-
ing D∗

µf
coefficients expressed in equation (V.22). The fluid forces might be expressed as a function

of the dimensionless angular velocity and acceleration using equation (V.22). The angular velocity
is obtained by integrating the angular acceleration:

ω∗ =
ω̇∗

i
= −iω̇∗. (V.32)

Therefore, one gets by combining equations (V.22) and (V.32):

(
I∗ρf (Ar) + S− 1

2
t I∗µf (Ar)− iS− 1

2
t D∗

µf
(Ar)

)
ω̇∗ = −τf ∗. (V.33)

The above equation can be reformulated using quantities measurable by the experimental device:

I∗ρf (Ar) + S− 1
2

t I∗µf (Ar)− iS− 1
2

t D∗
µf
(Ar) = −τf

∗

ω̇∗ = − Ω2Θ

ρfL5Ω2Θ

τ − τf
ω̇

(V.34)

= −H − Is
ρfL5

. (V.35)

As expected, the dimensionless added mass expression is reduced by a quantity ρfL
5 that has the

dimension of an inertia. Since the added mass and damping coefficients are real numbers, one can
identify experimentally the following dimensionless coefficients:

Mf ∗(Ar,St) = I∗ρf (Ar) + S− 1
2

t I∗µf (Ar)

= −ℜe(H)−Ms

ρfL5
(V.36a)

I†µf (Ar,St) = S− 1
2

t I∗µf = I∗f − I∗ρf (V.36b)

D†
µf
(Ar,St) = S− 1

2
t D∗

µf
(Ar)

=
ℑm (H)

ρfL5
(V.36c)
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Figure V.4: a) Dimensions of the ellipsoid and the fluid domain. b) Sphere accelerating in a
spherical container filled with fluid.

The first line (V.36a) of the above equations enables us to identify experimentally the total added
mass of the fluid surrounding the ellipsoid, including the potential added mass and the added mass
of the boundary layer. The second line (V.36b) is used to determine the added mass due to boundary
layer effects. It is obtained by calculating the difference between the total measured added mass of
the fluid and the value of the potential added mass obtained via its analytic expression (V.20a) as a
function of its aspect ratio Ar. The third line (V.36c) enables to determine the damping due to the
shear stresses in the boundary layer. In order to check if the similitude principle is respected, the
three aforementioned coefficients (fluid added mass, boundary layer added mass and boundary layer
shear stress), are measured for different parameters. The parameters explored are the following:

- The frequency Ω of the motor can be controlled. In this study, it varies roughly from 2 to 6
Hz (or 13 to 35 rad/s, see Figure V.7).

- The angular amplitude Θ can vary by changing the length of the motor crank. In this thesis,
the explored range is ∆Θ ≃ [π/30;π/4] = [6o, 45o].

- The viscosity µf of the fluid can vary. The fluid used is a mixture of water and glucose syrup,
the viscosity of the latter being roughly two orders of magnitude higher than that of water. The
concentration of glucose syrup can vary from 0 to 1, thus increasing the viscosity of the mixture.

- The density ρf of the fluid varies slightly too with the concentration of glucose syrup, as the
latter is lighter than water.

As a result of the fluctuations of the four aforementioned parameters, the two dimensionless
parameters fluctuating are the Stokes number St and the angular amplitude Θ (or equivalently
the Stokes number St and the Reynolds number Re, as for a structure with harmonic angular
oscillations we have Re = ΘSt). The viscosity and the density of the fluid are obtained thanks to a
characterization of the latter prior to the experiments. Using a viscometer, the viscosity variations
were measured at different temperatures of the fluid and especially at different concentrations of
glucose syrup. Before starting each measurement, the concentration of glucose syrup is measured
with a graduated cylinder, a beaker and a balance, and a thermoresistance is immersed in the water
to measure its temperature.

Both torque and acceleration signals are amplified, then plugged to an analog low-pass filter
to cut out high frequency noise and and prevent aliasing. The filtered signals are then send to
an acquisition card controlled via Matlab. The sampling frequency is 40Hz which was deemed
sufficient since the largest oscillation frequency of the model is less than 6 Hz (≳ 7 samples per
period). For each measurement, the acquisition time was set to 10 seconds to capture between
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20 and 50 periods of the signal depending on the oscillation frequency. The resulting amplitude
and phase of the transfer functions is consequently an average over all the periods of the signal
performed by the FFT. One should recall that the model developed to obtain equation (V.22)
is based on the infinite fluid domain hypothesis. In practice, one has to restrain to finite length
water tanks for technical reasons. In the case of this experiment, the dimensions of the water
domain (length l, width w and height h) are [l, w, h] = [56, 39, 23] cm, which becomes reduced by
the ellipsoid characteristic length L: [l∗, w∗, h∗] = [5.6, 3.9, 2.3]. According to Doaré (2020), the
finite length of the domain increases the added mass effects predicted by the infinite fluid domain
hypothesis. The three-dimensional added mass correction factor associated with the ratio between
the added mass in the basin M∗

ρf
and the added mass M∗

f,∞ associated with an infinite domain is
defined as:

C3D(Ar, l
∗, w∗, h∗) =

I∗ρf (Ar)

I∗ρf ,∞(Ar)
− 1 > 0. (V.37)

The coefficient C3D is necessarily larger than zero because confinement effects constrain the move-
ments of the fluid particles, making the energy required to displace them more important.

However, an approximation of the order of magnitude of the confinements effects can be obtained
considering analogous systems. The confinements effects on the added mass of a sphere of radius r
in translation at the center of a spherical container of radius R are of (Lamb, 1932):

Csphere
3D

(
α =

r

R

)
= 3

α

1− α
. (V.38)

The associated confinement effects would be of Csphere
3D = 0.6%, 1.7% and 3.1% for confinement

ratios of α = D
w ,

L
l and D

h respectively. Consequently, the expected confinement effects are of
≃ 1%.

In addition to the confinement effects due to the finite dimensions of the water tank, it is
important to note that the fluid domain has a free surface. The latter could be eliminated by
using, for example, a perforated cover fixed at the water level that would let the rotation axis of
the model enter the fluid. The addition of such an improvement to the experimental device would
be an interesting prospect. In the absence of a cover, it is necessary to determine the natural
frequency of the tank sloshing frequency to ensure that the model’s rotations do not transmit a
significant amount of energy to the free surface modes, which could affect the fluid forces exerted on
the structure and render the infinite domain hypothesis and the expression (V.22) unrepresentative
of the phenomena at stakes in the fluid domain. According to Morand and Ohayon (1992), the
lowest sloshing frequency Ωslosh

min of a rectangular tank of length l filled with an ideal fluid of height
h can be expressed as:

Ωslosh
min = π

g

l
tanh

(
π
h

l

)
. (V.39)

In the case of the basin used for our experiments, the associated frequency is of Ωslosh
min = 47 rad/s,

which is 35% above the highest frequency of the model used (Ωmax ∼ 35 rad/s as shown in Figure
V.7). Therefore, the free surface is not expected to resonate in the range of frequencies explored for
the model. This was verified as well with naked eye throughout the experiments by observing the
movements of the free surface. At the highest frequencies Ω ∼ 35 [rad/s], surface waves localized
around the axis of rotation of the model were perceived, but their amplitude seemed negligible.
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Before moving toward the analysis of the experimental results, a summary of the experimental
process is presented below:

Recap of the experimental process

(i) Mechanism development:
Drives an ellipsoidal model in rotational vibrations in air or in a fluid, in a quasi-harmonic motion.

(ii) Implementation of the measurement chain:
Accelerometer and torquemeter are connected to an amplifier, then to a low pass filter. The resulting
signal is sent to an acquisition card whose temporal measurements will be exploited by Maltab.

(iii) Calibration:
In order to compensate for the deviation of the sensors whose nominal frequency is higher than that
of the measurements carried out, a correction of the amplitude and the phase of the transfer function
between torque and acceleration is obtained for each frequency with the help of a model whose inertia
in air is known. The inertia of the ellipsoid and its axis is then measured. The viscosity of the fluid is
measured for varying glucose syrup concentration and temperature to obtain abacuses.

The three steps listed above only have to be done once, on the contrary to the two following steps
which have to be repeated for each frequency Ω, angular amplitude Θ and glucose syrup concentration.

(1) Measurement of viscosity and density of the fluid:
The concentration of glucose syrup and the temperature of the fluid in which the model will vibrate
are measured. Thus, with the help of abacuses obtained prior to the data acquisition with the help of
a viscometer, one can determine its viscosity and its density.

(2) Measurement of quantities of interest:
The transfer function between torque and acceleration measured from the model vibrating in the fluid
is calculated. Its real part is used to obtain the added mass effects of the fluid at the structure and
boundary layer scales, and its imaginary part is used to obtain the added damping effects due to shear
effects in the boundary layer.

Once enough data has been collected with the two steps above, the next step is

(iv) Plotting of graphs and physical discussion:
The added mass and damping effects are studied for the varying dimensionless coefficients St and Θ.
See next section V.3.
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Figure V.5: Ratio between the measured added mass I∗f and its theoretical value I∗ρf based on
potential flow theory from equation (V.20a), with a linear or logarithmic scale of St for the left and
right graphs respectively. The dashed line is the theoretical value, and the dotted line shows the
1.05 value, hence a value 5% higher than the potential prediction.

V.3 Results of added mass and added damping

In this section, the results obtained after running the experimental process for an explored range
of parameters are presented. The graphs presented are accompanied by physical discussions about
the shape of the curves obtained and to what extent it is consistent with the model presented in
section V.1.

The measurements of the dimensionless added mass as a function of the Stokes number St are
presented in Figure V.5. At the left, the added mass is plotted against a linear scale of the Stokes
number, which squeezes the points together at low Stokes numbers St ∼ 103. For this reason, the
added mass is plotted against a logarithmic scale of St at the right. The added mass has been
divided by the theoretical value for a potential fluid toward which the added mass of the viscous
fluid is supposed to tend to for St → ∞). The measurements show that the added mass seems to
be underestimated theoretically relatively to the experimental results. This difference is probably
linked to an inaccuracy in the calibration of the measurement chain. However, as expected, the
lower the Stokes number, the thicker the boundary layer, and consequently the higher the associated
added mass. The uncertainties associated with the measurements from Figure V.6 are shown in
Figure G.2.

In the experiment, the Stokes number St = ΩL/νf varies with the frequency Ω and the kinematic
viscosity νf = µf/ρf . The variations of the viscous added mass and the viscous damping have been
plotted as a function of those two variables in Figure V.7. The experiment explores a range of
frequency between Ωmin = 13 rad/s and Ωmax ∼ 35 rad/s. Lower frequencies could not be reached
as the drift of the sensors was too high and the error induced could not be reasonably compensated
anymore using calibrations on a given solid inertia. Higher frequencies could have been reached
but would have resulted in higher risks of damage to the experimental setup. The kinematic
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Figure V.6: Boundary layer added mass I†µf (left) and added damping D†
µf

(right) plotted against
the Stokes number. Both axis are on a logarithmic scale.
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Figure V.7: Boundary layer added mass (left) and damping (right) as a function of the frequency.
The color scheme indicates the concentration of glucose syrup, from 0 (pure water) in blue to 1 (pure
glucose) in red. The kinematic viscosity νf = µf/ρf varies with the glucose syrup concentration
from 1.2 centiStokes (cSt) with water to 120 cSt with pure glucose syrup.
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Figure V.8: Evolution of the dimensionless transfer function between the measured torque and
angular acceleration in the complex plane, with the model either in air (black dots) or in a water-
glucose mixing. Results are plotted along orthonormal axes. The color of the latter indicates the
associated Stokes number. The orange crosses indicate both the measured dimensionless mass of
the ellipsoid and its axis and the theoretical value of the added mass predicted by the potential
theory (Lamb, 1932). Although the force measurements in air (black dots) do not contain any
information about the physical behavior of the fluid, they have been plotted to give an overview of
the dispersion of the acquisition chain measurements as the model frequency varies. The horizontal
and vertical double arrows going from the potential added mass I∗ρf to an arbitrary point of a

measured transfer function are associated with the dimensionless boundary layer added mass I†µf
and damping D†

µf
associated with the measure respectively. The orange dashed line with a 45o

angle is associated with the theoretical aspect of the curve from equation (V.22).
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viscosity of the glucose syrup being approximately 100 times that of water, the kinematic viscosity
is explored through two orders of magnitude. This gives a ratio of 270 between the maximum
and minimum explored values of the explored Stokes number. As shown in figure V.5, the Stokes
number varies roughly from St ∼ 3.103 to St ∼ 105. According to equation (V.3b), this means that
the ratio between the boundary layer thickness and the length of the model varies roughly from
ηf/L ∼ 1�(for St ∼ 105) to ηf/L ∼ 1% (for St ∼ 103). As for an ellipsoid of length L and aspect
ratio 2, the smallest radius of curvature is r = L/8 at the tip. As a consequence, the ratio between
the boundary layer thickness and the minimal radius of curvature is around ηf/r ∼ 1% for St ∼ 105

and ηf/r ∼ 10% for St ∼ 103. Hence, the thin boundary layer assumption is rather respected in
the whole range of measurements, except at the tip of the ellipsoid for St ≲ 104. As mentioned
in equation (V.3b), decreasing the frequency Ω and increasing the kinematic viscosity νf increases
the boundary layer thickness, which results in higher boundary layer added mass and damping as
verified in Figure V.7. In order to verify the predicted amplitude of the boundary layer added mass

and damping in S−1/2
t , these parameters have been plotted with respect to the Stokes number in

Figure V.6. The trend of both curves is in agreement with the predicted evolution of S−1/2
t . It

is interesting to notice how the measurements are much more dispersed at higher Stokes. This is
due to multiple factors. First, the fact that the boundary layer becomes much more smaller in this
region, and consequently the associated effects become more negligible in front of the added mass
effect, and are therefore harder to capture as their order of magnitude gets closer and closer to
the measurement noise. Second, as the Stokes number gets higher, turbulence effects become more
important, which might be a reason as well for the more chaotic results at high Stokes compared
to more laminar regions. One might note as well that for St ∼ 103, the added damping seems
to offset from the rest of the curve in the same way as for the added mass. In order to gain
insight on the orders of magnitude of the fluid and solid forces acting on the torquemeter in the
conducted experiments, the transfer function between the torque exerted by the fluid and solid
system on the torquemeter and the angular acceleration has been plotted in Figure V.8. On this
graph, the values on the real axis are in phase with the acceleration, which is the reason why the
measured solid mass I∗s and the analytical potential added mass I∗f are located on it. Looking at
the fluid forces plotted with color varying from blue to red when St increases, it appears clearly
that for high Stokes the added damping and the boundary layer added mass becomes negligible in
comparison with the inviscid added mass. The orange dashed line at 45o with the horizontal shows
the theoretical evolution of the fluid forces for varying Stokes as predicted by equation (V.22), since

both boundary layer added mass and added damping are supposed to evolve in S−1/2
t . Though the

measurement are in agreement with this prediction at high Stokes, it seems like the added damping
D†

µf
increases slightly faster than the boundary layer added mass I†µf when the Stokes number St

decreases. A possible explanation for this might come from the fact that, at higher orders, the

damping evolves in S−1
t whereas the added mass evolves in S−3/2

t like in the predictions of the
Stokes-Wang equation (V.23). Another possible explanation might come from a sensor drift not
well compensated by the calibrations. One should note that the measurements for the pure glucose
syrup, which were associated to an offset at St ∼ 103 (see Figure V.6) do not seem to have an
offset in the complex plane shown in Figure V.8. As a consequence, it probably means that the
added mass and damping coefficients I†µf and D†

µf
are well predicted since they are aligned with

the rest of the curve in Figure V.8. Therefore, the most convincing explanation regarding the
offset in Figure V.6 is that the Stokes number associated with pure glucose syrup has not been
well measured. Since the evolution with respect to the frequency Ω with the pure glucose syrup
(νf = 120 cSt) in Figure V.7 seems to have a coherent shape, the error in the Stokes number is
likely to come from the viscosity measurements. It is interesting to note as well that, for each
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Figure V.9: Dimensionless mass coefficient I∗µf (left) and damping coefficient D∗
µf

(right) of the
boundary layer as a function of the angular amplitude Θ. Each red dot is an individual measure-
ment. The blue squares and the error bar are associated respectively with the mean value and the
standard deviation of the measurements for each value of angular amplitude.

glucose syrup concentration, the Stokes number associated with the highest frequencies is of the
same order than Stokes number with lower glucose concentration (hence lower viscosity) and lower
frequency, and the resulting added mass and damping coefficients match, which tends to show how
various viscosity and frequencies might lead to similar added mass effects if the Stokes number
remains the same as predicted by the similitude principle.

So far, the angular amplitude of the model has been mentioned very little, and for good reason
since it is not supposed to influence the non dimensional boundary layer added mass and added
damping coefficients from equation (V.22). In order to check if this is consistent with the experi-
mental setup, the angular amplitude has been modified by changing the size of the motor crank.
In this series of experiments, the fluid forces were measured only in pure water, but with the same
frequency range as previously: Ω ∈ [13, 35] rad/s. The boundary layer added mass and damping
coefficients have been plotted in Figure V.9. For each angular amplitude Θ, the spread of the
points is due to variations in the Stokes number (or equivalently due to frequency fluctuations as
the length L and the viscosity νf are fixed here). As mentioned before, these variations are due
either to measurement noise which is quite high in the case of water (because of the relatively
small boundary layer effects we are trying to capture), or to variations in the fluid forces due to
turbulence (which is quite higher in water than in the glucose syrup because of higher Stokes num-
ber). Actually, equation (V.22) based on negligible turbulence predicts that the boundary layer
added mass coefficient M∗

µf
does not vary with the Stokes number. It can be seen on the graph on

the left that, as expected, the boundary layer does not vary significantly as the angular amplitude
varies. However, this is not the case for the added damping, which seems to increase as the angular
amplitude increases as well.
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V.3.1 Conclusion on viscous results at airship scale

Table V.1 gives the Stokes number associated with two airships, Ω being taken as the lowest elastic
natural frequency documented in (Inamoto et al., 2003) and (Li et al., 2009). It appears that the
Stokes number at the scale of airships St ∼ 107 is two orders higher than the highest Stokes reached
with the experimental setup St ∼ 105.

Skyship 500 (Li et al., 2009) Stratospheric platform airship (Inamoto et al., 2003)

L [m] 50 25

Ω [Hz] 0.04 0.1

St [-] 3× 107 2.4× 107

Table V.1: Stokes numbers associated with nominal use of two airships.

V.4 Conclusion

In this chapter, the following work has been done:

1. An experimental setup has been introduced, with the aim of measuring the fluid loads on
an ellipsoid with rotation oscillations. It enabled to compare the measurements of added
mass and damping from the fluid with theoretical predictions based on an infinite flat
plate in transverse oscillations model.

2. The prediction of the added mass effect based on the potential

3. The experimental campaign enabled to verify that, for large Stokes numbers, the fluid
forces other than the potential added mass are negligible. For lower Stokes number, the

boundary layer added mass and damping effects were measured with a trend in S−1/2
t

coherent with the theoretical model predictions.

4. As expected, it was found out that the angular amplitude didn’t affect the added mass
coefficients, which was not the case for the added damping however. However, for larger
angular amplitudes than those explored in this study, the vortex shedding might inter-
act with the structure as observed by Sarpkaya (1977), thus affecting the added mass
coefficient.

V.5 Perspectives

In order to further develop the study presented in this chapter, the following work could be
considered:

� According to Vashy-Buckingham, the viscous and potential coefficients of the fluid loads
I∗ρf , I∗µf and D∗

µf
on a rotation ellipsoid dépendent de the independent dimensionless

parameters Ar, St and Θ. Their dependence on the parameters St and Θ has been studied
during this chapter, but not the influence of the aspect ratio Ar. Thus, making new
measurements on model with more or less elongation would allow to better understand
the influence of this parameter on the fluid forces.
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� In order to approach the conditions of use of airships, the experiments should be repro-
duced for higher Stokes numbers. This could be done by either increasing the dimensions
L of the model (which would imply using a larger fluid basin as well), by increasing the
maximal frequency Ω studied. To the author’s knowledge, fluids with lower kinematic
viscosity νf compared to water (acetone, ammonia or mercury for instance) would be
impractical to use.

� In order to prevent sloshing, a cover could be added on the free surface.

� In view of predicting the effects of confinements induced by the finite length of the basin,
the BEM code developped in Chapter III could be used on the mesh of a rotating ellipsoid
and a basin.

� The use of better suited sensors would improve the quality of measurements and reduce
the noise, especially at low frequencies.

� To study cases closer to the nominal operating conditions of airships, the study of a model
oscillating in a wind tunnel would also be an interesting prospect.
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Chapter VI

Discussion, conclusion & perspectives

VI.1 Conclusion

VI.1.1 Synthesis of the argumentation

The objective of this thesis was to model the dynamic loads of the internal and external fluids on
a flexible airship.

For this purpose, chapter I has presented the potential fluid model, as well as the associated
integral representation which allowed to condense the fluid problem on the fluid-structure interface.
However, the equations presented in chapter I have some limitations. The Eulerian approach is
not well adapted to moving interfaces, and the deformations of the domain lead to the necessity of
remeshing when the problem is solved in time domain.

In chapter II, an original model of the fluid forces based on a Newtonian approach (contrary to
the literature mainly focused on Lagrange equations) has been introduced. In order to take into
account the moving interface in a practical way, the integral representation of the fluid velocity
potential has been expressed according to an ALE formalism, inspired by Pfister (2019); Mavaleix-
Marchessoux (2020). The fluid variables (velocity potential, pressure and virtual power) have then
been linearized with respect to the small elastic and rigid body displacements of the interface. It
includes the consideration of linearized forces due to small deformations in the context of large
rotations of the structure that was cited as a scientific lock in the work of Li et al. (2009). The
linearized forces have then been expressed in terms of fluid mass, gyroscopic and stiffness operators,
respectively linear with the acceleration, velocity and displacements of the interface, in a manner
similar to Li et al. (2009). It has been shown in the manuscript that these three operators are
respectively independent, linear and quadratic with regard to the six rigid body motions of the
structure, which allows to decompose the calculation of these operators associated to any rigid
body motion depending on contributions from each translation and rotation. Finally, it has been
shown that, contrary to the Newtonian approach introduced in this manuscript, the prediction of
linear fluctuations of the fluid forces on the interface using an approach via the Lagrange equations
requires the computation of the second order fluctuations of the geometric variables as well as of
the velocity potential, thus justifying the use of the Newtonian approach in this study.

In chapter III, a numerical method to predict the fluid operators put into equations in chapter
II has been introduced and validated. A numerical implementation of the linearized BEM based on
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the theoretical model presented in chapter II has been presented. The computation of the linearized
BEM operators takes into account the deformations of the structure. In order to accelerate their
numerical computation, the Hierarchical Matrix Method has been implemented on the usual BEM
operators, then adapted to the case of the linearized BEM operators introduced in this study.
The fluid forces can thus be computed using a BEM-FEM coupling. The classical BEM operators
have been validated by comparing the associated solution with analytical solutions linked to an
ellipsoid. The linearized BEM operators have been validated by comparing the linear fluctuation
results predicted by the model with the nonlinear fluctuation results obtained using the finite
difference method with mesh deformation. The numerical solution of the potential fluid associated
with a stationary flow around an airship has been compared with a RANS simulation, allowing
to highlight the good prediction of the pressure distribution except for the circulation effects and
the separation at the back of the hull, in coherence with the literature (Clarke, 2009). Finally,
it has been numerically verified that the second order perturbations of the geometry and velocity
potential play a non-negligible role in the prediction of the forces with the linearized Lagrangian
equations, thus justifying the consistency of the Newtonian approach used in this study.

In chapter IV, the effects of internal and external fluids on the flexibility of an airship have been
studied. For this purpose, a dynamic model of the structure has been presented, taking into account
non-linear effects associated with the internal pressure as well as dynamic elastic deformations
around the prestressed state. The associated operators have been calculated numerically using
FEM. Using the monolithic equation thus obtained by coupling the FEM operators of the structure
and BEM-FEM operators of the fluid, the associated eigenvalues have been obtained as a function
of the flow velocity, which predicted the risks of instabilities of the airship by divergence or flutter.
The stabilizing effects due to the fins have then been introduced numerically and the new associated
eigenvalues induced a better stability of the flexible airship.

Finally, in chapter V, the added mass results obtained from potential flow theory have been
compared with experimental results acquired from rotating oscillations of an ellipsoidal model in a
pool of water at rest. First, a model giving the expression of the magnitude of the viscous forces
of the fluid as a function of the frequency, density and viscosity of the fluid, or more generally as a
function of the Stokes number, has been introduced. The experimental setup has been used to study
the fluid forces as a function of the Stokes number. The experimental results gave trends consistent
with the modeling. Although the Stokes numbers reached experimentally are not comparable to
the nominal operating conditions of airships, the measurements obtained tended to confirm the
validity of the hypothesis of potential flow for the study of flexible airships.

VI.1.2 Putting the research into perspective

This paragraph puts the work presented in this manuscript in context by comparing it with the
literature associated with the subject.

First of all, the fluid forces have been taken into account in this work using a Newtonian
formalism (in a similar way to Mavaleix-Marchessoux (2020) for example) on the contrary to the
approaches commonly used to model the effects of potential flows on the dynamics of airships
(Li et al., 2009; Azouz et al., 2012; Azinheira José et al., 2002; Thomasson and Woolsey, 2013).
Indeed, it is shown in chapter II that the Newtonian approach allows to completely describe the
linear fluctuations of the fluid forces using the perturbations of the potential and the geometry at
order 1, while the Lagrange equations approach requires to compute the perturbations at order 2
(although the latter are not taken into account by Li et al. (2009); Azouz et al. (2012)), which has
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been demonstrated in this manuscript.

The method introduced in this manuscript is based on the BEM, itself based on the use of
a mesh of the fluid-structure interface. This method can take into account any type of interface
whatever its geometry, contrary to the approaches of Li et al. (2009) or Azouz et al. (2012) based
on analytical solutions obtained on simplified geometries, respectively an ellipsoid of revolution and
an ellipsoid cone.

Contrary to the work of Li et al. (2009); Azouz et al. (2012) which only considered transverse
elastic deformations of the interface, this work can be applied to any elastic deformation of the
interface, thus providing a more complete description of the interface movements. Unlike Li’s
approach based on the slender body theory which takes into account the rotation of the normal
due to transverse elastic deformations in the kinematic boundary condition of the fluid, but does
not take into account the dilatation of the interface nor the rotation of the normal in the dynamic
boundary condition of the fluid, the work presented in this manuscript takes into account the full
effects of the fluid due to variations in the geometry.

Contrary to the approach of Mavaleix-Marchessoux (2020) who considers the effects of geometry
fluctuations on the BEM operators only beyond a certain admissibility criterion based on the relative
amplitude of the deformations, the linearization of the BEM operators allows to naturally take into
account the above mentioned effects. In the work of Mavaleix-Marchessoux (2020), the effects of
rotation of the normal in the kinematic boundary condition are taken into account directly in the
second member data vector, which reduces the size of the associated BEM operator by a factor of
3, but leads to approximations because the normal is not naturally defined at the nodes of the mesh
and thus requires an interpolation. In this manuscript, the chosen approach differs and is based on
the values of the normal on the triangles where it is naturally defined via the BEM operator of the
second member. However, a methodology similar to the first mentioned method is also possible for
the approach introduced in this manuscript, as described in appendix E. Moreover, contrarily to
(Mavaleix-Marchessoux, 2020; Carbone et al., 2019), the BEM methods is based on a regularized
formulation of the integral equation, compatible with the geometrical singularities of the mesh.

Unlike (Li et al., 2009), the work introduced in this manuscript does not take into account the
turbulence effects at the back of the airship, nor the hull-fin interaction effects. However, it is
important to note that the approach introduced in this work offers the possibility to be extended
in a consistent way to a model including vortex shedding at the back of the fins in order to take
into account circulation effects, contrary to Li’s approach which requires to add the effects of lift of
the fins and of hull-fin interaction a posteriori based on the superposition of effects predicted from
several distinct models.

As mentioned by Li et al. (2011), the linearized fluid forces associated with large rotational
motions of an elastic interface constitute one of the scientific bottleneck in the field of airship
dynamic aeroelasticity. In this manuscript, a model taking into account linearized aeroelastic
dynamic forces in the framework of large rotations has been proposed in section II.2.

In the work of Li et al. (2009), the aeroelastic dynamic effects are predicted without taking
into account the pre-stressing effects due to the internal gas pressure, while Bessert and Frederich
(2005) took into account the pre-stressing effects but in the framework of a static model. In
this manuscript, an approach is proposed to take into account the membrane pre-stressing effects
associated with the dynamic aeroelasticity of airships in section IV.1.

The experimental set-up in chapter V was used to study the forces of the fluid on a model
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in rotary oscillations, contrary to Sarpkaya (1977); Otter (1990); Chaplin (2000) who focused on
the translational vibrations of a cylinder in a fluid. Moreover, contrary to the studies cited above
where the parameter space explored was constituted by the amplitude of motion and the frequency
of oscillation, this manuscript also explores the effects due to changes in the kinematic viscosity of
the fluid.

Now that the work of this manuscript has been put into perspective with respect to the state
of the art, the limitations associated with this study are summarized in the following section.

VI.1.3 Limitations of the research

Unlike the studies of Li et al. (2009); Chaabani (2014), the study of trajectory in response to
changes in flight conditions (fin deflection, gusts) has not been studied in this manuscript. Vortex
shedding effects have not yet been included in the model and numerical simulations. In addition,
the stability analysis of the airship associated with large rotation movements has not yet been
performed due to time constraints, although it is possible with the theoretical model of this thesis.

The potential flow model used in this manuscript is adapted to the small angles of incidence
of the wind with respect to the airship, which consitutes a limitation of the model. A comparison
with more realistic fluid simulations could determine up to which incidence angle the potential flow
model remains efficient.

The BEM method has been implemented numerically via MATLAB, which is an interpreted
language, less efficient than compiled languages.

Because of the density of the fluid operators as well as the complexity to solve eigenvalue
problems of free structures, the numerical approach did not allow to solve the global fluid-structure
modes, so the dynamics of the problem was solved after projection according to the airship modes
in vacuo. The convergence of the fluid-structure modes of the reduced model has not been studied
in this work due to time constraints.

It is difficult to know if the fluid-structure modes based on the reduced model are close to the
global fluid-structure modes.

For practical reasons, the studied Stokes numbers in chapter V did not reach the orders of
magnitude typical of airship operating conditions, not allowing to conclude frankly about the
viscous effects on dynamic aeroelasticity using the principle of similarities. Moreover, contrary to
the work of Sarpkaya (1977), the experiments performed did not explore the parameter space where
the structure interacts with the vortex releases.

VI.2 Perspectives and closing remark

The limitations of the study listed above naturally lead to consider the associated perspectives.
These perspectives are listed at the end of each chapter of the manuscript.

The work presented in this manuscript provides a new model to meet the demands of the lighter
than air aircraft engineers in terms of aerodynamic characterization of rigid and flexible airships.
This study constitutes a step towards less expensive realistic simulations for the growing airship
industry.
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Appendix A

Detailed calculation of the linearization

We detail here how the linearization was performed.

A.1 Linearized Nanson formula

dΣ(t)

ñdΣ̃(t)

dx1

dx2

Σ̃(t)

Figure A.1: Scheme of an oriented surface.

In this section, the index t will refer to the surface component of a vector, hence for an arbitrary
vector :

at = (1− n⊗ n)a. (A.1)

We define the oriented surface ñdΣ̃(t) (see figure A.1) by introducing two arbitrary non colinear
vectors dx1 and dx2 belonging to the local plane of the surface:

ñdΣ̃(t) = dx1 (t) ∧ dx2 (t) . (A.2)

Therefore, for any vector v ∈ R3:

ñdΣ̃(t) · v = [ dx1, dx2,v], (A.3)

the term on the right of the equal sign being a mixed product. It is possible to explain dx1 and
dx2 from the reference configuration with the deformation gradient F:
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ñdΣ̃(t) · v = [Fdx̄1,Fdx̄2,v]. (A.4)

Recalling the surface deformation gradient Ft definition from equation (II.23) and noting that dx̄1

is tangential to the interface, we have:

F dx̄1 = F dx̄1t

=


1+



(∇ξ̄ · ex)T
(∇ξ̄ · ey)T
(∇ξ̄ · ez)T




 dx̄1t

= dx̄1t +



(∇ξ̄ · ex) · dx̄1t

(∇ξ̄ · ey) · dx̄1t

(∇ξ̄ · ez) · dx̄1t




= dx̄1S +



(∇tξ̄ · ex) · dx̄1t

(∇tξ̄ · ey) · dx̄1t

(∇tξ̄ · ez) · dx̄1t




= Ft dx̄1,

(A.5)

and the same goes for

F dx̄2 = Ft dx̄2. (A.6)

Combining the above equations, we obtain that

ñdΣ̃(t) · v = [Ft dx̄1,Ft dx̄2,FtFt
−1

v]

= det(Ft)[ dx̄1, dx̄2,Ft
−1

v]

= det(Ft)n̄dΣ · (Ft−1
v)

= Φ̄I T
t n̄dΣ · v,

(A.7)

where

Φ̄I t = det(Ft)Ft
−1
, (A.8)

we can identify from equation (A.7) :

ñdΣ̃(t) = Φ̄I T
t n̄dΣ, (A.9)

This shows how the small deformations of the interface can be formulated depending solely on
the surface gradient of the infinitesimal displacements. Since for infinitesimal displacements, Ft is

invertible with the property FtFt
−1

= 1, one can get:

Ft
−T

= 1− ε∇tξ̄
′ +O

(
ε2
)
, (A.10)

The expression (A.9) can be developed at order 1 as follows:
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det(Ft) = det(1+ ▽∇tξ̄) = 1 + εtr
(
▽∇tξ̄

′)+O
(
ε2
)

(A.11)

ñdΣ̃(t) = (1+ ε
(
tr
(
▽∇tξ̄

′)− ▽∇T
t ξ̄

′
)
)n̄dΣ. (A.12)

It is therefore possible to calculate the linearized variation τ̄ ′ of an oriented surface:

ñdΣ̃(t) = (n̄+ ετ̄ ′) dΣ +O
(
ε2
)
, (A.13)

with τ̄ ′ =
(
tr
(
▽∇tξ̄

′)− ▽∇T
t ξ̄

′
)
n̄. (A.14)

For a further understanding of the above equation, one can isolate the elementary surface dilatation
effects. Since the norms of n and n̄ are supposed to be unitary:

dΣ̃(t) =
∥∥∥ñdΣ̃(t)

∥∥∥
=
∥∥(n̄+ ετ̄ ′) dΣ

∥∥+O
(
ε2
)

=
∥∥(n̄+ ετ̄ ′)

∥∥ dΣ +O
(
ε2
)

=

(
∥n̄∥+ ε

n̄ · τ̄ ′

∥n̄∥

)
dΣ +O

(
ε2
)

=
(
1 + εn̄ ·

(
tr
(
▽∇tξ̄

′)− ▽∇T
t ξ̄

′
)
n̄
)
dΣ +O

(
ε2
)
.

(A.15)

The term tr
(
▽∇tξ̄

′) is the surface divergence of the displacement ξ̄′. From the above equation, one
can identify the small surface variations

dΣ̃′
(t) = n̄ ·

(
tr
(
▽∇tξ̄

′)− ▽∇T
t ξ̄

′
)
n̄dΣ. (A.16)

Moreover, we obtain:

n̄ · tr
(
▽∇tξ̄

′) n̄ = tr
(
▽∇tξ̄

′) , (A.17)

and

▽∇T
t ξ̄

′n̄ =
(
∇t(ξ̄ · ex),∇t(ξ̄ · ey),∇t(ξ̄ · ez)

)
n̄

= n̄ · ex∇t(ξ̄ · ex) + n̄ · ey∇t(ξ̄ · ey) + n̄ · ez∇t(ξ̄ · ez).
(A.18)

From the equation above, since n̄ ·∇t(•) = 0, we deduce that

n̄ · ▽∇T
t ξ̄

′n̄ = 0, (A.19)

and the variations of the surface can be described only with the surface divergence tr
(
▽∇tξ̄
)
:

dΣ̃′
(t) = tr

(
▽∇tξ̄

′) dΣ. (A.20)

Furthermore, it is possible to isolate the normal rotations, by noting that
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ñ =
ndΣ(t)

dΣ(t)
=

(n̄+ ετ̄ ′) dΣ

dΣ + εdΣ̃′
(t)

+O
(
ε2
)
=

(n̄+ ετ̄ ′) dΣ

dΣ
− ε

n̄dΣ

dΣ
2 dΣ̃′

(t) +O
(
ε2
)
. (A.21)

We deduce the linearized normal variations from the equation above:

ñ′ = τ̄ ′ − n̄

dΣ
dΣ̃′

(t)

=
(
tr
(
▽∇tξ̄

′)− ▽∇T
t ξ̄

′
)
n̄− tr

(
▽∇tξ̄

′) n̄.
(A.22)

The surface divergence cancels out in the above equation, giving the order 1 rotation of the normal:

ñ′ = −
[
▽∇T
t ξ̄

′
]
n̄. (A.23)

It is noticeable that ▽∇T
t ξ̄

′n̄ ⊥ n̄ because of equation (A.19), which is an expected property for
the infinitesimal rotation of a unit vector. By doing the calculation of (n̄ + εñ′) · (n̄ + εñ′), it is
possible to demonstrate the property ∥n̄+ εñ′∥ = 1 +O

(
ε2
)
.

A.2 Linearized Green’s function

The order 1 Taylor expansion of the norm of a vector a at an arbitrary power n is:

∥∥ao + εa′∥∥n = ∥ao∥n + εao · a′ ∥ao∥n−2 +O
(
ε2
)
, (A.24)

allowing to calculate the following formula:

∥x− y∥n = ∥x̃− ỹ∥ = ∥x̄− ȳ∥n+n(x̄− ȳ) ·
(
ξ̄′(x̄)− ξ̄′(ȳ)

)
∥x̄− ȳ∥n−2+O

(
ε2
)

for x̄, ȳ on Σ.
(A.25)

The Green’s function given by (I.49) and its gradient becomes, when combined with the linearized
expression (A.25):

Gn
o = − 1

4π

n̄

∥x̄− ȳ∥ (A.26a)

Gn
′ =

1

4π

(
(x̄− ȳ) ·

(
ξ̄′(x̄)− ξ̄′(ȳ)

)
n̄

∥x̄− ȳ∥3
− τ̄ ′

∥x̄− ȳ∥

)
(A.26b)

∂nG
o =

1

4π

(x̄− ȳ) · n̄
∥x̄− ȳ∥3

(A.26c)

∂nG
′ =

1

4π

(
(x̄− ȳ) · τ̄ ′

∥x− y∥3
+

(
ξ̄′(x̄)− ξ̄′(ȳ)

)
· n̄

∥x̄− ȳ∥3
(A.26d)

− 3
(x̄− ȳ) ·

(
ξ̄′(x̄)− ξ̄′(ȳ)

)
(x̄− ȳ) · n̄

∥x̄− ȳ∥5

)
. (A.26e)
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A.3 Linearized flow velocity

In order to express the linear variations of the flow velocity at order ε on the interface, recalling
that

u = ∇ϕ =
∂ϕ

∂x
, (A.27)

one can express on the reference interface with the chain rule:

ū =
∂x̄

∂x

∂ϕ̄

∂x̄

=

(
∂x

∂x̄

)−T

∇ϕ̄

= (1+ ▽∇ξ̄)−T∇ϕ̄.

(A.28)

The linearized inversion of the terms in the parentheses of the above equation enables to write at
both orders of magnitude 1 and ε:

ū = ∇ϕ̄o + ε
(
∇ϕ̄′ −

[
▽∇T

ξ̄′
]
∇ϕ̄o

)
+O

(
ε2
)
. (A.29)

In order to obtain a formulation that depends on the surface gradient instead of the total gradient,
the surface and normal components of the velocity are expressed. For the order zero velocity, the
expression from (II.64) comes by using the boundary condition (I.35) at order zero on the reference
interface:

∇ϕ̄o · n̄ = v̄o.n̄, (A.30)

The expression of the surface velocity at order one is calculated as:

ū′
t = ∇tϕ̄

′ −
(
▽∇T

ξ̄′ūo
)
t

on Σ. (A.31)

By developing the term on the right of the above equation:

▽∇T
ξ̄′ūo =

(
∇(ξ̄′ · ex),∇(ξ̄′ · ey),∇(ξ̄′ · ez)

)
ūo

=
(∇(ξ̄′ · ex)

)
(ūo · ex) +

(∇(ξ̄′ · ey)
)
(ūo · ey) +

(∇(ξ̄′ · ez)
)
(ūo · ez).

(A.32)

From the above equation can be deduced

( ▽∇T
ξ̄′ūo)t =

(∇t(ξ̄
′ · ex)

)
(ūo · ex) +

(∇t(ξ̄
′ · ey)

)
(ūo · ey) +

(∇t(ξ̄
′ · ez)

)
(ūo · ez)

= ▽∇T
t ξ̄

′ūo on Σ.
(A.33)

By combining equations (A.31) and (A.33), one obtains the result from equation (II.65c). With a
view to express the normal veocity at order one, the boundary condition (I.20) is developped at
first order, recalling the expression from the normal fluctuations from (A.23):
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ū′ · n̄+ ūo · (− ▽∇T
t ξ̄

′)n̄ = v̄′ · n̄− v̄o · ( ▽∇T
t ξ̄

′)n̄. (A.34)

By rearraging the terms from the equation above, the normal velocity perturbations from equa-
tion (II.65b) are obtained.

A.4 Skew-symmetry of the rotation operator perturbations

In order to show the skew-symmetry of R′RoT, the property R−1 = RT of the operators is used.
The first order developpment of R−1 is:

R−1 = Ro−1 − εRo−1R′Ro−1 +O
(
ε2
)
, (A.35)

a property that can be verified by developing the product

(Ro−1 − εRo−1R′Ro−1)(Ro + εR′) = 1+O
(
ε2
)
.

Noting that, to the contrary of R′ which is the perturbation of a rotation operator, Ro is a rotation
operator, we have the property Ro−1 = RoT, hence:

R−1 = RoT − εRoTR′RoT +O
(
ε2
)
. (A.36)

Therefore, the property of the rotation operators leads to the condition:

R−1 = RT

⇔RoT − εRoTR′RoT +O
(
ε2
)
= RoT + εR′T

⇒−RoTR′RoT +O
(
ε2
)
= R′T

⇒R′RoT = −RoR′T

⇒R′RoT = −
(
R′RoT

)T
.

(A.37)

The last line of the equation above shows that the perturbation R′RoT is skew symmetric.

A.5 Linear perturbations of the double layer term on a triangle

This section aims to show how, for triangular elements, the double layer perturbations (see equation
(A.26d)) vanish for two points ȳ and ȳ in the same triangle:

∂nG
′ =

1

4π

(
(x̄− ȳ) · τ̄ ′

∥x− y∥3
+

(
ξ̄′(x̄)− ξ̄′(ȳ)

)
· n̄

∥x̄− ȳ∥3
− 3

(x̄− ȳ) ·
(
ξ̄′(x̄)− ξ̄′(ȳ)

)
(x̄− ȳ) · n̄

∥x̄− ȳ∥5

)
.

The most right term on the above equation vanishes since it has already been demonstrated that
(x̄ − ȳ) · n̄ = 0 for x̄ and ȳ in the same triangle. The term on the left of the right hand side can
be rewritten by combining with (A.23) and (A.13)

(x̄− ȳ) · τ̄ ′ = tr( ▽∇tξ̄
′)(x̄− ȳ) · n̄− (x̄− ȳ) · ( ▽∇T

t ξ̄
′n̄). (A.38)
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For the same reason mentioned just previously, the term (x̄− ȳ) · n̄ vanishes. Consequently, a first
simplified expression of the double layer perturbations is obtained:

∂nG
′ =

1

4π ∥x̄− ȳ∥3
(
−(x̄− ȳ) ·

(
▽∇T
t ξ̄

′n̄
)
+
(
ξ̄′(x̄)− ξ̄′(ȳ)

)
· n̄
)

for x̄, ȳ in the same triangle.

(A.39)
The deformation fluctuation ξ̄′(x̄)− ξ̄′(ȳ) can be expressed using the surface gradient of the defor-
mations, which is homogeneous over the triangle for linear deformations:

ξ̄′(x̄)− ξ̄′(ȳ) = ▽∇tξ̄
′(x̄− ȳ) for x̄, ȳ in the same triangle. (A.40)

The equality above is only verified because the deformations are linear over the triangle. The scalar
product has the following property:

Aa · b = a · (ATb) ∀a, b ∈ R3,A ∈ R3 ⊗ R3. (A.41)

As a consequence, the term on the right of equation (A.39) can be expressed under a new form by
combining equations (A.40) and (A.41):

(
ξ̄′(x̄)− ξ̄′(ȳ)

)
· n̄ = ▽∇tξ̄

′(x̄− ȳ) · n̄ = (x̄− ȳ) ·
(
▽∇T
t ξ̄

′n̄
)

for x̄, ȳ in the same triangle. (A.42)

Thus, by combining equations (A.39) and (A.42), the double layer term perturbations vanishes:

∂nG
′ = 0 for x̄, ȳ in the same triangle. (A.43)
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Appendix B

Linearized fluid loads using Lagrange’s
equations

In this section, we consider the case of a zero order translation of the structure v̄o
c with no rotations

ω̄o = 0. The surrounding flow is supposed to be potential as in chapter II. In order to focus on a
reasonably simple case study, gravity effects are neglected, and only the elastic perturbations ξ̄′: the
rigid-body perturbations are supposed to be nil v̄′ = 0 and ω̄′ = 0. Moreover, only the forces acting
on the elastic movements are considered. For an example of application of the Lagrange equations
to rigid-body motions and forces, see (Thomasson and Woolsey, 2013). Moreover, in order to keep
the study case simple, only the external problem (Pext) is considered, but the calculations could
be extended to the internal gas problem in order to demonstrate the symmetry properties of the
associated added mass operator.

In this section, the kinematic equations of the fluid (FK) are solved using the BEM as proposed
in this work, but could be based on any other method used to calculate the velocity potential ϕ
(e.g FEM or analytical). However, the efforts associated with the kinematic solution are obtained
using the Lagrange equations. Instead of calculating the fluid forces on the interface via the local
Euler equation for the conservation of momentum (I.19), the minimization of the global energy of
the fluid is used. First, we express the kinetic energy of the fluid (Darrozès and François, 1982)

L =
1

2

∫

Ωf(t)

u2 dΩ =
1

2

∫

Ωf(t)

∇ϕ ·∇ϕ dΩ. (B.1)

We use the following vector calculus identity, combined with the incompressibility condition (I.34):

∇ · (ϕ∇ϕ) = ∇ϕ ·∇ϕ+ ϕ∆ϕ = ∇ϕ ·∇ϕ. (B.2)

The integrand of the kinetic energy expression can therefore be expressed as the gradient of a scalar,
enabling to use the divergence theorem:

L =
1

2

∫

Ωf(t)

∇ · (ϕ∇ϕ) dΩ

=
1

2

∫

Σ(t)∪∂Ω∞
ϕ∇ϕ · ndΣ.

(B.3)
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Recalling how the potential and its gradient vanish at infinity in O (r−1) and O (r−2) respectively
(Folland, 2020), the terms at infinity in the expression above vanish. Consequently, the energy
above can be written by replacing the gradient of the velocity potential by the velocity:

L =
1

2

∫

Σ(t)

ϕv · ndΣ (B.4)

=
1

2

∫

Σ
ϕ̄v̄ · (Φ̄I T

t n̄) dΣ. (B.5)

As will become clear later, in order to linearize the Lagrangian equations it is necessary to predict
the energy fluctuations at the second order. In order to do so, the three terms in the integral above
have to be developed to zero, first and second order: ϕ̄, v̄ and Φ̄I T

t . The development of v̄ arises
naturally from the hypothesis of zero order translation velocity combined with elastic perturbations:

v̄ = v̄o + εξ̄′. (B.6)

There are no second order terms in the equation above because of how the zero and first order
contributions have been introduced in chapter II. The deformation operator is developed using a
Taylor expansion:

Φ̄I T
t n̄ = n̄+ ε

∂Φ̄I T
t n̄

∂ξ̄
ξ̄′ +

1

2
ε2ξ̄′T

∂2Φ̄I T
t n̄

∂ξ̄2
ξ̄′ +O

(
ε3
)
. (B.7)

Similarly, the velocity potential might be developed with respect to both the displacements and
the velocity:

ϕ̄ = ϕ̄o + ε

(
∂ϕ̄

∂ξ̄
ξ̄′ +

∂ϕ̄

∂ ˙̄ξ

˙̄ξ′
)

+
1

2
ε2

(
ξ̄′T

∂2ϕ̄

∂ξ̄2
ξ̄′ + ξ̄′T

∂2ϕ̄

∂ξ̄∂ ˙̄ξ

˙̄ξ′
)

+O
(
ε3
)
. (B.8)

In the equation above, there is no quadratic dependency of the potential ϕ̄ with respect to the

velocity ˙̄ξ′ since the velocity potential is linear with respect to the interface velocity.

Remark

Using the equations above at order one, we expect to obtain coherent results with chapter II:

(
∂Φ̄I T

t n̄

∂ξ̄
ξ̄′
)
n̄ = τ̄ ′

∂ϕ̄

∂ξ̄
ξ̄′ = Φd

(
ξ̄′
)

∂ϕ̄

∂ ˙̄ξ

˙̄ξ′ = Φd

(
˙̄ξ′
)
.

As a consequence, the kinetic energy can be developed as follows:
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L = Lo + εL′ +
1

2
ε2L′′ (B.9)

Lo =
1

2

∫

Σ
ϕ̄ov̄o · n̄dΣ (B.10)

L′ =
1

2

∫

Σ

(
∂ϕ̄

∂ξ̄
ξ̄′ +

∂ϕ̄

∂ ˙̄ξ

˙̄ξ′
)
v̄o · n̄+ ϕ̄o ˙̄ξ′ · n̄+ ϕ̄ov̄o · ∂Φ̄I

T
t n̄

∂ξ̄
ξ̄′ dΣ (B.11)

L′′ =
∫

Σ
ξ̄′T
(
∂2ϕ̄

∂ξ̄2
ξ̄′ +

∂2ϕ̄

∂ξ̄∂ ˙̄ξ

˙̄ξ′
)
v̄o · n̄... (B.12)

+

(
∂ϕ̄

∂ξ̄
ξ̄′ +

∂ϕ̄

∂ ˙̄ξ

˙̄ξ′
)(

v̄o · ∂Φ̄I
T
t n̄

∂ξ̄
ξ̄′ + ˙̄ξ′ · n̄

)
+ ϕ̄ov̄o · ξ̄′T∂

2Φ̄I T
t n̄

∂ξ̄2
ξ̄′ dΣ.

In order to simplify the expression of the second order fluctuations, the tensors Lk, Lg and Lm are
introduced, noting that v̄o · n̄ = v̄oTn̄:

L′′ = ξ̄′TLkξ̄
′ + ξ̄′TLg

˙̄ξ′ + ˙̄ξ′TLm
˙̄ξ′ (B.13)

Lk =
1

2

∫

Σ

∂2ϕ̄

∂ξ̄2
+

(
∂ϕ̄

∂ξ̄

)T

v̄oT∂Φ̄I tn̄

∂ξ̄
+ ϕ̄o

∂2

∂ξ̄2

(
Φ̄I T
t n̄ · v̄o

)
dΣ (B.14)

Lg =
1

2

∫

Σ

∂2ϕ̄

∂ξ̄∂ ˙̄ξ
v̄o · n̄+

∂ϕ̄

∂ξ̄

T

n̄T +
∂Φ̄I t

∂ξ̄
· v̄o∂ϕ̄

∂ ˙̄ξ
dΣ (B.15)

Lm =
1

2

∫

Σ
n̄
∂ϕ̄

∂ ˙̄ξ
dΣ. (B.16)

The Lagrange equation allows to find the force F associated with a given displacement and its time
derivatives with the following expression:

F = δPf (δ ˙̄ξ = ξ̄) =
∂L
∂ξ̄

− d

dt

∂L
∂ ˙̄ξ

=
1

ε

(
∂L
∂ξ̄′

− d

dt

∂L
∂ ˙̄ξ′

)
. (B.17)

Because of the factor ε−1 in front of the expression above, the need for second order derivatives of
the energy in order to calculate the first order fluctuations of the force arises: the force has one less
order of magnitude than the energy. This is a drawback of the linearized Lagrange equations as the
second order derivatives of the potential from equation (B.8) are much harder to obtain than the
first order derivatives which are required with the Newton formulation from chapter II. In order to
calculate the force at order zero, one need to calculate the following derivatives:

∂L′

∂ξ̄
=

1

2

∫

Σ

∂ϕ̄

∂ξ̄
v̄o · n̄+ ϕ̄ov̄o ·

(
n̄T∂Φ̄I t

∂ξ̄

)
dΣ (B.18)

∂L′

∂ ˙̄ξ
=

1

2

∫

Σ

∂ϕ̄

∂ ˙̄ξ
v̄o · n̄+ ϕ̄on̄T dΣ (B.19)

d

dt

∂L′

∂ ˙̄ξ
= 0 since

∂v̄o

∂t
= 0 and

∂ϕ̄o

∂t
= 0. (B.20)
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As a consequence, the zero order force can be written

F o =
1

2

∫

Σ

∂ϕ̄

∂ξ̄
v̄o · n̄+ ϕ̄ov̄o ·

(
n̄T∂Φ̄I t

∂ξ̄

)
dΣ. (B.21)

We are interested in the perturbations of the force as well. In order to obtain its expression, the
derivatives of the second order of the energy with respect to the interface elastic movements are
calculated:

∂L′′

∂ξ̄
= (Lk + L

T
k )ξ̄

′ + Lg
˙̄ξ (B.22)

∂L′′

∂ ˙̄ξ
= LT

g ξ̄
′ + (Lm + LT

m) ˙̄ξ′ ⇒ d

dt

∂L′′

∂ ˙̄ξ
= LT

g
˙̄ξ′ + (Lm + LT

m)¨̄ξ′, (B.23)

and the perturbation of the forces can be obtained through added stiffness, gyroscopic and mass
contributions by combining equations (B.17) and (B.22):

−F ′ = Kξ̄′ +D ˙̄ξ′ +M¨̄ξ′ (B.24)

Kf,dyn(ξ̄
′, δ ˙̄ξ) = −δ ˙̄ξT(Lk + L

T
k )ξ̄

′ (B.25)

Gf ( ˙̄ξ′, δ ˙̄ξ) = δ ˙̄ξT(LT
g − Lg)

˙̄ξ′ (B.26)

Mf (¨̄ξ′, δ ˙̄ξ) = δ ˙̄ξT(Lm + LT
m)¨̄ξ′. (B.27)

The symmetry of the added stiffness and mass and the skew-symmetry of the gyroscopic operator
arises naturally from the expressions above.
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Appendix C

Analytical solution of potential flows
around an ellipsoid

The aim of this section is to give the value of the added mass of an ellipsoid undergoing rigid-body
translation or rotation acceleration around its center of volume. The results presented here are
taken from (Lamb, 1932). The aspect ratio t (inverse of the aspect ratio Ar) and the eccentricity
e of a rotation ellipsoid of major semi-axis a = L/2 and minor semi-axis b = D/2 are

t =
1

Ar
=
D

L
(C.1a)

e =
√
1− t2. (C.1b)

The variable t is used here rather than Ar in order to be coherent with the literature. Moreover,
the following non-dimensional geometric coefficients are introduced:

α0 =
1− e2

e3

(
−2e+ log

(
1 + e

1− e

))
(C.2a)

β0 =
1

e2
− 1− e2

2e3
log

(
1 + e

1− e

)
(C.2b)

k1 =
α0

2− α0
(C.2c)

k2 =
β0

2− β0
(C.2d)

k3 =
(1− t2)2(β0 − α0)

2(1− t4)− (1 + t2)2(β0 − α0)
. (C.2e)

We consider that the major axis is along the ex direction. The velocity potential at the interface
of an ellipsoid with a velocity translation vc = vxex + vyey + vzez is

ϕ(x) = −k1vx x− k2 (vy y + vz z) for x ∈ Σ. (C.3)

According to (Thomasson and Woolsey, 2013), the force F and moment M exerted by a potential
flow at rest on a rigid structure in movement is:
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(
F
M

)
=
[
Mf

rig

]( v̇
ω̇

)
+

[
ω∧ (0)
v∧ ω∧

] [
Mf

rig

]( v̇
ω̇

)
. (C.4)

The rigid added mass operator Mf
rig writes as a diagonal matrix:

[
Mf

rig

]
=




Mxx

Myy (0)
Mzz = Myy

0
(0) Iyy

Izz = Iyy



. (C.5)

The extra-diagonal are all nil because the movements are considered around the center of volume of
the ellipsoid. Because of the symmetry axis along the major axis ex, we have Myy = Mzz, Ixx = 0
and Iyy = Izz. According to (Lamb, 1932), the added mass coefficients write as

Mxx =
4π

3
ρfab

2k1 (C.6a)

Myy =
4π

3
ρfab

2k2 (C.6b)

Iyy =
4π

15
ρfab

2(a2 + b2)k3. (C.6c)

Moreover, one can calculate the munk momentum associated with an ellipsoid with a steady
velocity V and an angle of attack α,combining the relations v̇ = 0, ω̇ = 0, ω = 0 and v =
V (cosαex + sinαez) with equations (C.4) and (C.5):

M = v∧
[
Mf

rig

]
v = V 2(Mxx −Mzz) cosα sinαey. (C.7)

By replacing the added mass terms in the equation above with their expression from equations
(C.2a) and (C.6) and using trigonometric relationships to simplify the cosα sinα product one gets:

M =
1

2
(Mxx −Mzz) sin(2α)V

2ey =
4π

3
ρfab

2(k1 − k2) sin(2α)V
2ey

=
π

6
ρf
L3

A2
r

α0 − β0
(2− α0)(2− β0)

sin(2α)V 2ey. (C.8)
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Appendix D

Properties of linear systems

D.1 Superiority of numerical (skew-)symmetrized operators

Because of the newtonian approach, the fluid operators calculated by the mixed FEM-BEM ap-
proach won’t be exactly (skew-)symmetric. It is however possible to prove how their (skew-
)symmetrization can lead to lower error on the estimation of the fluid loads, which is the aim
of this section.

Symmetrized added mass and stiffness operators

Following Rangette’s developments (Rangette, 1990), we first show how the symmetrized added
mass numerical operator enables to obtain lower error on the associated fluid loads because of the
symmetry of the added mass operator.

We consider a symmetric mass operator M and its numerical counterpart Mnum, which is not
symmetric because of numerical approximations. In order to quantify the error associated with the
numerical approximation of the added mass, the norm of a matrix is introduced as:

∥A∥ = sup
∥x∥=1

∥Ax∥ with ∥x∥ =
√
< x,x >, (D.1)

where <,> is the Hermitian inner product. The operators A and B are introduced as:

A = Mnum −M (D.2a)

B =
1

2
(Mnum +MT

num)−M, (D.2b)

where B is the symmetric part of A. Therefore, our objective is to show that ∥B∥ ≤ ∥A∥. By
property of symmetric matrices, we have (Rangette, 1990)

∥B∥ = sup
∥x∥=1

| < B,x > |. (D.3)
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We want express the right term of the expression above with A instead of B. For this purpose,
we have the below expression, recalling how the scalar product between an antisymmetric matrix
applied to a vector and the same vector is nil:

< Ax,x > =<
1

2
(A + AT)x,x > + <

1

2
(A−AT)x,x >=<

1

2
(A + AT)x,x > (D.4)

=< Bx,x > . (D.5)

By combining equations (D.3) and (D.4), we get:

∥B∥ = sup
∥x∥=1

| < Ax,x > |. (D.6)

The Cauchy-Schwartz inequality provides:

< Ax,x >≤ ∥Ax∥ ∥x∥ = ∥Ax∥ for ∥x∥ = 1. (D.7)

Therefore, we obtain by combining equations (D.6) and (D.7)

∥B∥ ≤ sup
∥x∥=1

∥Ax∥ = ∥A∥ . (D.8)

The equations above proves the property we wanted to show: the symmetrized numerical added
mass operator provides a lower maximum error associated with the prediction of the fluid loading
than the non-symmetrized numerical added mass operator. The same demonstration holds true for
the numerical stiffness operator because of the symmetry of the stiffness operator.

Skew-symmetrized gyroscopic operator

The objective of this section is to extend Rangette’s result for the symmetrization of operators sup-
posed to be symmetric to the skew-symmetrization of operators supposed to be skew-symmetric. To
the author’s knowledge, it constitutes an original result. We consider a skew-symmetric operator G
and its numerical counterpart Gnum. New operators A and B are introduced for this demonstration:

A = i(Gnum −G) (D.9a)

B = i

(
1

2

(
Gnum −GT

num

)
−G

)
. (D.9b)

Since we have B = 1
2(A+A∗), B is the Hermitian part of A. The following property holds true for

Hermitian operators (Add citation? ):

∥B∥ = sup
∥x∥=1

| < Bx,x > | if B is Hermitian. (D.10)

Because B is the Hermitian part of A, we have the following property as well:

< Bx,x >=
1

2
(< Ax,x > + < A∗x,x >) . (D.11)
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Using the properties of the Hermitian product, the last term can be expressed as

< A∗x,x >=< x,Ax >= < Ax,x >, (D.12)

where the overline • denotes here the complex conjugate of a number. Therefore, the expression
(D.11) becomes when combined with (D.12):

< Bx,x >=
1

2

(
< Ax,x > +< Ax,x >

)
= ℜe(< Ax,x >). (D.13)

We get by combining equations (D.10) and (D.13)

∥B∥ = sup
∥x∥=1

| < Bx,x > | = sup
∥x∥=1

|ℜe(< Ax,x >)|

≤ sup
∥x∥=1

| < Ax,x > |. (D.14)

Similarly to the previous demontration for the symmetric operators, we get thanks to the Cauchy-
Schwartz inequality that | < Ax,x > | ≤ ∥Ax∥ for ∥x∥ = 1, and consequently:

∥B∥ ≤ sup
∥x∥=1

∥Ax∥

⇔ ∥B∥ ≤ ∥A∥ . (D.15)

The above equation can be rewritten as

∥∥∥∥i
(
1

2
(Gnum −GT

num)− [G]

)∥∥∥∥ ≤ ∥i (Gnum − [G])∥

⇔
∥∥∥∥
1

2
(Gnum −GT

num)− [G]

∥∥∥∥ ≤ ∥Gnum − [G]∥ . (D.16)

The above equation shows how the skew-symmetrized numerical gyroscopic operator provides
a lower maximum error associated with the prediction of the fluid loads than the non-skew-
symmetrized numerical gyroscopic operator.

D.2 Gyroscopic conservative linear systems

The aim of this section is to demonstrate that, for systems with symmetric mass and stiffness oper-
ators and skew-symmetric velocity-dependent operators (or gyroscopic operators), the work of the
fluid can be derived from a potential, which demonstrates the conservative nature of such systems.
One should recall that the linearized work of the fluid in the case of small elastic deformations
writes as:

dW = δPf (δ ˙̄ξ = dξ̄), (D.17a)

hence
dW

dt
=

dδPf (δ ˙̄ξ = dξ̄)

dt
= δPf

(
δ ˙̄ξ = ˙̄ξ

)
. (D.17b)
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By combining equations (D.17b) and (II.94):

dW

dt
=

dξ̄

dt

T(
Mf d2ξ̄

dt2
+Gf dξ̄

dt
+Kf ξ̄

)
. (D.18)

By property of the skew-symmetry of the gyroscopic operator Gf :

(
dξ̄

dt

T

Gf dξ̄

dt

)T

=
dξ̄

dt

T

GfT dξ̄

dt
= − dξ̄

dt

T

Gf dξ̄

dt
(D.19a)

hence
dξ̄

dt

T

Gf dξ̄

dt
= 0. (D.19b)

Moreover, the symmetry of operators Kf and Mf enables to write the derivative of a kinetic energy
Lm,k as:

Lm,k =
1

2

(
dξ̄

dt

T

Mf dξ̄

dt
+ ξ̄TKf ξ̄

)
(D.20a)

dLm,k

dt
=

dL
dt

=
1

2

(
d2ξ̄

dt2

T

Mf dξ̄

dt
+

dξ̄

dt

T

Mf d2ξ̄

dt2
+

dξ̄

dt

T

Kf ξ̄ + ξ̄Kf dξ̄

dt

)

=
dξ̄

dt

T(
Mf d2ξ̄

dt2
+Kf ξ̄

)
. (D.20b)

Therefore, we get a new expression of the time fluctuations of the fluid’s work by combining
equations (D.17b), (D.19b) and (D.20b):

dW

dt
=

dLm,k

dt

(
ξ̄,

dξ̄

dt

)
. (D.21)

The above expression shows how the work of the fluid derives from a potential Lm,k.

D.3 Numerical error on the (skew-)symmetry of the fluid opera-
tors

In Chapter II is shown the symmetry of the added mass and stiffness operators and the skew-
symmetry of the gyroscopic operator using the Lagrange equations. This statement is investigated
with the numerical operators introduced in this study. In order to do so, the following errors using
the Frobenius norm1 have been determined based on a longitudinal order zero translation velocity
v̄o for the same mesh as in figure III.12. The operators have been projected on the arbitrary
projection basis Qrb consisting in the six rigid body movements of space completed by the first
flexible (banana shaped) mode of the airship, see Chapter IV for more details about the projection
basis:

1The Frobenius norm of a matrix A ∈ Rn ⊗ Rn with n ∈ N is defined as ∥A∥fro =
√

trace(AAT)
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∥∥∥
[
Kf

v

]
−
[
Kf

v

]T∥∥∥
fro∥∥[Kf

v

]∥∥
fro

= 0.12%

∥∥∥
[
Gf
]
+
[
Gf
]T∥∥∥

fro∥∥[Gf
]∥∥

fro

= 0.58%

∥∥∥
[
Mf
]
−
[
Mf
]T∥∥∥

fro∥∥[Mf
]∥∥

fro

= 0.02%.

(D.22)

D.4 Eigenvalues of gyroscopic conservative systems

D.4.1 Nature of the eigenvalues

The aim of this section is first to demonstrate that the eigenvalues of the dynamic system are
purely oscillatory when the stiffness operator is positive, and second that the loss of positivity of
the latter might lead to unstable solutions of the dynamic system, which can be oscillatory. The
discrete eigenvalue equation of the dynamic system is:

(λ2M+ λGf +K)q = 0 with M = Mf +Ms,K = Kf +Ks, (D.23)

where λ and q are the eigenvalue and the eigenvector respectively. In order to show the properties
mentioned above, the latter equation is multiplied by q∗, where the ∗ exponent is associated with
the transpose conjugate of a vector:

λ2q∗Mq + λq∗Gfq + q∗Kq = 0. (D.24)

For symmetric matrices, we have the following property:

(q∗Mq)∗ = q∗Mq ⇒ q∗Mq = m ∈ R∗+, (D.25)

and the same goes for the stiffness

q∗Kq = k ∈ R. (D.26)

The scalar m is strictly positive because the solid mass Ms is strictly positive and the fluid added
mass Mf is positive. The scalar k can be negative when the fluid stiffness Kf becomes negative.
Similarly, for skew-symmetric operators, we have the following property:

(q∗Gfq)∗ = −q∗Gfq ⇒ q∗Gfq = ig ∈ iR, (D.27)

where iR is the set of pure imaginary numbers. As a consequence, the eigenvalues λ are roots of
the equation

mλ2 + igλ+ k = 0. (D.28)

The roots of the quadratic equation above are:
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



λ =
−g±

√
g2+4km
2m i for k ≥ −g2

2m

λ =
±
√

g2+4km
2m − g

2m i for k < −g2

2m

(D.29)

One can deduce from the equation above that, when the rigidity parameter k becomes too negative,
the eigenvalue λ can have a positive real part associated with an instability. It appears as well that
the gyroscopic loads of the fluid can stabilize the system when the stiffness scalar parameter k
becomes negative, as mentioned by (Ziegler, 1977). Finally, it appears that for gyroscopic linear
systems, when the gyroscopic scalar isn’t nil g ̸= 0 , the unstable solutions are oscillatory (ℜe(λ) > 0
and ℑm(λ) ̸= 0), resulting in a flutter phenomenon such as the Paidoussis post-divergence flutter
of clamped pipes conveying fluid documented in (Paidoussis, 1998).

Remark

If one were to calculate the left eigenvalues Y such that

Y ∗A = µY ∗B, (D.30)

then because of the (skew)-symmetry properties of the operators A and B, one would get that the left
eigenmodes Y are equal to the right eigenmodes X but associated with an eigenvalue such that µ = −λ∗.

D.4.2 Properties of the eigenvalues

The aim of this section is to demonstrate how the eigenvalues of linear conservative gyroscopic
systems are associated four by four by symmetry around the real and the imaginary axis. First, in
the case of operators K,Gf and M with real coefficients, the conjugate of equation (D.23) is:

(
λ̄2M+ λ̄Gf +K

)
q̄ = 0. (D.31)

where the bar notation denotes here the conjugate. Consequently, the following property holds
true:

if λ, q are associated eigenvalue and eigenvector then {λ̄, q̄} are associated eigenvalue and eigen-
vector as well. We now consider the left eigenvalues and eigenvectors {µ,p} such that:

p∗
(
µ2M+ µGf +K

)
= 0. (D.32)

By taking the transpose of the above equation and noting that M, Gf and K have real coefficients,
we get:

(
µ2M+ µGf +K

)T
p̄ = 0, (D.33)

which implies by property of the eigenvalues that the following determinant is zero:

det

((
µ2M+ µGf +K

)T)
= 0. (D.34)

Since the transposition of a matrix doesn’t affect its determinant, the above equation is equivalent
to
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det
(
µ2M+ µGf +K

)
= 0 (D.35)

From the above equation, one can deduce that if {λ, q} is a right eigenvalue/eigenvector couple (as-
sociated with equation (D.32)), then there exists p such that {λ,p} is a left eigenvalue/eigenvector
couple (associated with equation (D.23)). Moreover, by calculating the transpose conjugate of the
left eigenequation (D.32) and using the λ notation instead of µ since left and right eigenvalues are
the same, we get using the symmetry properties of M and K and the skew-symmetry of Gf :

(
p∗
(
λ2M+ λGf +K

))
=
(
λ̄2M− λ̄Gf +K

)
p

=
(
(−λ̄)2M+ (−λ̄)Gf +K

)
p = 0 (D.36)

One can deduce from the above equation that {−λ̄,p} is a right eigenvalue/eigenvector couple.
Recalling that the conjugate of an eigenvalue/eigenvector couple is an eigenvalue/eigenvector couple
as well, we get by combining with equation (D.36) the following property: if λ is an eigenvalue and
p, q are left and right associated eigenvectors, then {λ, q}, {λ̄, q̄}, {−λ̄,p} and {−λ, p̄} are all right
eigenvalue/eigenvector couples.

D.5 Linearized rigid body gyroscopic operator

In this section, the gyroscopic operator associated with rigid body motions is developed analytically.
We consider here the forces of a potential fluid on a moving rigid interface given in equation (C.4).
It is assumed in this section that the added mass of the considered structure is diagonal and can
thus be written as the concatenation of blocks 3×3:

[
Mf

rig

]
=

(
Mf

vv (0)
(0) Mfωω.

)
(D.37)

The forces associated with the velocity in the equation (C.4) can be developed:

[
ω̄∧ (0)
v̄∧ ω̄∧

] [
Mf

rig

]( v̄
ω̄

)
=

(
ω̄∧Mf

vvv̄

v̄∧Mf
vvv̄ + ω̄∧Mf

ωωω̄

)
. (D.38)

By combining the above two equations with the equation (C.4) and retaining only the terms of
order one, we then obtain the fluctuation of the forces as a function of the velocity perturbations:

−
(

F ′

M ′

)
=
[
Mf

rig

]( ˙̄v′

˙̄ω′

)
+

(
ω̄o
∧M

f
vvv̄

′ + ω̄′
∧M

f
vvv̄

o

v̄o
∧M

f
vvv̄

′ + v̄′
∧M

f
vvv̄

o + ω̄o
∧M

f
ωωω̄

′ + ω̄′
∧M

f
ωωω̄

o

)

=
[
Mf

rig

]( ˙̄v′

˙̄ω′

)
+

(
ω̄o
∧M

f
vvv̄

′ −
(
Mf

vvv̄
o
)
∧ ω̄′

v̄o
∧M

f
vvv̄

′ −
(
Mf

vvv̄
o
)
∧ v̄′ + ω̄o

∧M
f
ωωω̄

′ −
(
Mf

ωωω̄
o
)
∧ ω̄′

)
.

(D.39)

One can identify the rigid body gyroscopic operator from the equation above:
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−
(

F ′

M ′

)
=
[
Mf

rig

]( ˙̄v′

˙̄ω′

)
+
[
Gf

rig

]( v̄′

ω̄′

)
(D.40)

[
Gf

rig

]
=

[
ω̄o
∧M

f
vv −

(
Mf

vvv̄
o
)
∧

v̄o
∧M

f
vv −

(
Mf

vvv̄
o
)
∧ ω̄o

∧M
f
ωω −

(
Mf

ωωω̄
o
)
∧

]
(D.41)

In order to determine the possible skew-symmetry properties of the operator, it can be compared
to the opposite of its transpose:

−
[
Gf

rig

]T
=

[
−Mf

vv
T (ω̄o

∧)
T ((

Mf
vvv̄

o
)
∧
)T −Mf

vvv̄
o
∧((

Mf
vvv̄

o
)
∧
)T ((

Mf
ωωω̄

o
)
∧
)T −Mf

ωω
T (ω̄o

∧)
T

]

=

[
Mf

vvω̄
o
∧ Mf

vvv̄
o
∧ −

(
Mf

vvv̄
o
)
∧

−
(
Mf

vvv̄
o
)
∧ Mf

ωωω̄
o
∧ −

(
Mf

ωωω̄
o
)
∧

]
, (D.42)

where the second line has been obtained by using the skew-symmetry properties of the cross-product
operator and the symmetry properties of the added mass operator. By comparing (D.41) and

(D.42), it appears that the gyroscopic operator Gf
rig is not skew-symmetric when it is associated

with rotations. The upper left block of the operator is not skew-symmetric contrarily to the
gyroscopic operator associated with non-rotating motions. One might note how the loss of skew-
symmetry is due to the coupling of ω̄o with v̄′ and ω̄′ and the coupling of ω̄′ with v̄o: therefore,
the loss of skew-symmetry is due to the rotating frame.
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Appendix E

Alternative simplified BEM formulation

There is also a last approach that I have implemented but which could not be compared to the
method of this manuscript due to lack of time. It is an approach allowing to reduce by a factor
of 3.5 the size of the BEM operators associated to the problem, limiting largely their computation
cost. As explained below, this is done at the cost of approximations on the geometry (computation
of a pseudonormal and its derivative with respect to the geometry at the nodes, and fluctuations
of the Green’s function and its gradient with respect to the neglected interface deformations, as
explained below).

This method is inspired by the solution of submarine problems by Stéphanie Chaillat and
Damien Mavaleix. Given the size of the problems they solve, they use two simplifying assumptions
to compute the BEM operators:

1) The computation of the single layer operator does not take into account the normal. In
this manuscript, we have computed the [G] operator of size N × 3N which allows to obtain the
single layer term thanks to a matrix-vector product of the type [G] {v̄}. Instead, it is possible to
extract the normal of the operator by computing a new operator [g] of size N which has 3 times
less coefficients than [G]. We then obtain the single layer term thanks to a calculation of the type
[g] {v̄.n̄}. The calculation seems simpler, however it hides behind a slight hitch: on the mesh, the
normal is naturally defined on the elements but does not exist at the nodes. It is thus necessary
to interpolate the normal n̄tri defined on the triangles at the level of the nodes n̄node. One of the
many possibilities to achieve that is to use an interpolation method using an error minimization
that can be computed in a practical way with the FEM. This will allow to compute in a similar way
the fluctuations of normal at the nodes by reusing the same FEM operators. Two FEM operators
are introduced to interpolate the normal at the nodes (as a reminder, [N(x̄)] is the FEM matrix
of linear interpolation according to the values at the nodes):

[Anode] telle que [Anode] {n̄node} =

∫

ΣN

[N(x̄)]{n̄node} dΣ de taille N × 3N

[Atri] telle que [Atri] {n̄tri} =

∫

ΣN

n̄tri(x̄) dΣ de taille N × 3Ntri.

with Ntri the number of triangles. We can see that the interpolated field n̄node is in fact associated
to a linear approximation of the normal on the whole mesh. I then define this linear approximation
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of the normal as the field minimizing the following square of the L2 norm:

{n̄node} = argmin{n̄}∈R3N

(∫

ΣN

([N(x̄)]{n̄} − n̄tri(x̄))
2 dΣ

)
.

This can be solved quite naturally via the FEM using the following matrix equation:

{n̄node} = [Anode]
−1 [Atri] {n̄tri}.

We can thus obtain the normal to the nodes from the normal to the triangles of the mesh, which
allows us to calculate the zero-order solution by solving the problem

[H] {ϕo} = [g] {v̄.n̄},
whose BEM operators require storing 2 coefficients, instead of the 4 coefficients needed to store to
invert the problem as in chapter IV:

[H] {ϕo} = [G] {v̄}.
The method thus allows a storage gain of half. Due to time constraints, the results obtained with
this simplified method could not be compared with the results obtained with the BEM presented in
chapter III. To obtain a matrix-vector product formulation of the velocities (similar to the results
of the chapter III), one can introduce the sparse matrix associated to the normal projection [nscal]:

[nscal] de taille N × 3N telle que {v̄} = {v̄.n̄}
[H] {ϕo} = ([g] [nscal]) {v̄o}.

2) In order to avoid costly recalculations of the BEM operators after each time iteration where
the structure takes a new shape, Mavaleix-Marchessoux (2020) considers that the fluctuation of the
BEM operators is negligible for small deformations (in practice, he uses a criterion of maximum
deformation from which he considers that it becomes necessary to recalculate the BEM operators).
Then, the only geometrical deformation taken into account in their model comes from the defor-
mation of the normal. We can proceed in a similar way in the case of our linearized approach,
but using the linearized fluctuations τ̄ ′ of the normal (τ̄ ′ also takes into account the dilations of
the surface in addition to the rotations of the normal, which constitutes a difference between this
approach and Mavaleix-Marchessoux (2020)’s):

[H] {ϕ̄′} = [g] [n̄] {v̄′}+ [g] {v̄o.τ̄ ′}. (E.1)

Using FEM, we can compute a sparse matrix [tau] of size 3Ntri× 3N which allows us to obtain the
fluctuations of normal τtri on each element of the mesh:

{τtri} = [τ ] {ξ̄′}. (E.2)

Note that the above method also works if we have several columns in the vector {barxip} (associated
with different modes for example): we then obtain several columns on {τtri} associated with the
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deformations of the normal according to each mode. However, we need the value of {τnode} at the
nodes for the scalar product {v̄o.τ̄ ′}, so we compute the interpolation of {τtri} at the nodes as
follows:

τnode = [Anode]
−1 [Atri] {τtri} = [Anode]

−1 [Atri] [τ ] {ξ̄′}. (E.3)

Finalement, on introduit la matrice associée au produit scalaire par la vitesse à l’ordre zéro telle
que

[voscal] {a} = {vo.a} ∀{a}, (E.4)

and we obtain the following first-order expression of the potential:

[H] {ϕ̄′} = ([g] [n̄]) {v̄′}+
(
[g] [voscal] [Anode]

−1 [Atri] [τ ]
)
{ξ̄′}. (E.5)

We notice in particular that for the computation of the fluctuations associated to the ξ̄′ deforma-
tions, it is not necessary with the above formulation to recompute a new linearized BEM operator:
we have simply reused the zero-order BEM operators to which are added sparse FEM operators
which are not very costly in terms of computation time and storage. Thus, we can evaluate that
the storage cost necessary for the resolution of the fluctuations with the above formalism is about
2N2, by reusing the zero-order operators. On the contrary, the method introduced in the chapter
III, although more rigorous mathematically (no interpolation of the normals and especially taking
into account the fluctuations of the green function and its gradient for the operators [H] and [G]
which makes it possible to predict the effects due to the change of geometry and not only to the
rotations of the normal), is much more expensive in storage:

[H] {ϕ̄′} = [G] {v̄′}+
[
J ′] {ξ̄′}. (E.6)

The above equation indeed has a storage cost of about 7N2: we always have the matrix [H] of
size N2, and the matrices [G] and [J ′] are both of size 3N2. Another limiting factor of the above
equation in terms of computation time comes from the fact that the zero-order operators [H] and
[G] can both be constructed at the same time (in the same ”for” loop) which is a significant gain in
computation time. However, as the derived operator [J ′] depends on the zero-order solution, it can
only be computed in a second time in a new ”for” loop, once the zero-order problem has been solved.
Thus, having to compute the BEM operators in two steps increases a lot the necessary computation
time. Finally, we can note that, if we wish to make a calculation based on a second velocity at
order zero, barvo changes and it is then necessary to recompute a new operator matJ ′ which is very
expensive. Using the approximate method, the calculation based on a second solution at order zero
only requires to recalculate a new hollow matrix [voscal] which is very cheap in computation time
and storage.
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Appendix F

Loads of an ambient flow on a flexible
sructure
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aIMSIA, ENSTA Paris, Institut Polytechnique de Paris, 828 Boulevard des Maréchaux, 91120, Palaiseau, France
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Abstract

Effects of fluid-structure coupling on the dynamic behavior of flexible airships can be modeled with a
potential, incompressible, inviscid flow. A new formalism to study the linear behavior of a fluid-structure
interface in a time-dependent ambient flow is introduced. The fluid equations are condensed at the interface
with the help of integral equations, which are expressed as a function of the structure variables defined on
a time-independent reference configuration with an Arbitrary Lagrangian-Eulerian (ALE) formalism. The
features of the Boundary Element Method (BEM) used to solve this problem numerically are exhibited.
The approximations of this method associated with both linearization and discretization are quantified to
validate the model. A simplified flexible airship test case model is studied to illustrate a practical application
of the method.
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1. Introduction

With the emergence of non-rigid airship projects such as stratospheric platforms, envelopes are getting
thinner and more flexible [1]. As a consequence, strong couplings between the structure deformations and
the surrounding flowing fluid occur. Research works in this domain aim to predict instabilities such as
flutter, that can appear at critical velocity. However, the unsteady coupling of the elastic structure with a
surrounding flow remains challenging to predict numerically or experimentally because of the large scale of
airships.
To tackle the complex problem of flexible airships fluid-structure interaction, Amiryants et al. [2] simplified
the volume geometry as surfaces projected on vertical and horizontal planes. The resulting geometry has
been modeled as a lifting surface with the panel method in order to take into account circulation effects of the
fluid around the hull and fins. This study showed the possible rise of flutter at high velocities, by coupling
of the first modes of the free airship with the flow. Bessert et al. [3] further carried a panel method based on
a volume mesh, calculating the static deflection of the airship. Their results showed the non-linear nature
of the quasi-steady deformations under certain wind conditions. The static flexible solution was determined
more precisely by Liu et al. [4] and Wu et al. [5] using Reynolds-Averaged Navier-Stokes (RANS) methods.
This numerical study has been validated with a flexible model in a wind tunnel. However, the cost of RANS
calculations is prohibitive for large dynamic fluid-structure coupled problems such as airships [1], hence the
need for simplified approaches. Li et al. and Azouz et al. [6, 7] derived analytically the added mass effects
associated with the important role of the inertia of the fluid surrounding the accelerated airship. These
analytic solutions were obtained by approximating the hull shape as a simpler, regular geometric shape.
Moreover, Li et al. calculated the linear interaction of a potential fluid with the structure by using the
slender body approximation, on which were superimposed turbulence effects at the fins and the tail of the
airship, predicting also a risk of flutter at high wind velocities.
The potential flow hypothesis relies on the fact that the rotational part of the fluid can be neglected (therefore
not taking into account viscous effects), enabling to express the velocity field as the gradient of a scalar
potential field. This hypothesis is met in practice for airships because of their great lengths [1]. However,
viscous phenomena are not negligible locally, at the tail and the fins of the airship for example. Despite the
drag forces and circulation phenomena are not captured by the potential approach, these contributions might
be taken into account afterwards, superimposing it to the potential solution as done by Li [6]. Potential
flows are however interesting to consider as they are easier to solve than viscous flows, especially thanks to
the Boundary Element Method (BEM). Riccardi & Bernardis [9] used this method to study the dynamics
of rising bubbles. Van Opstal & van Brummelen [10] investigated for their part the large displacements of
membranes enclosing fluids such as airbags. The level set approach, which enables to describe the boundary
of the domain as the set of roots of a function, has been coupled to the BEM resolution by Tan et al
and Garzon et al. [11, 12] to solve multiphase flows (respectively bubbles and waves): such methods are
particularly well suited for coupled problems involving large deformations of the interface. Véron et al. [13]
solved the interaction between submerged pipes with internal and external flows. All these applications
imply large displacements as well as partitioned approaches, meaning that the fluid and solid equations are
solved separately and on a new deformed mesh at each time step. This paper introduces a method enabling
us to solve the monolithic fluid-structure problem associated with the small movements of a membrane that
enables to model the strong coupling between flexible structure vibrations and a surrounding flow. It is
implemented numerically using a linearized BEM approach in an ALE framework, which is, to the author’s
knowledge, a novelty compared to the existing literature: actually, BEM had been used with ALE, but the
associated linearized formulation had not been developed, and the linearization of the BEM in the context
of potential flows is an original aspect of this work. As a linearized approach, it is particularly well suited
for studies in the frequency domain or for stability analysis.
The paper is organized as follows. The expression of the work of the fluid pressure on the structure depending
on its movements is derived in section 2. The integral representation of the flow in an Eulerian frame
is introduced in order to obtain a formulation condensed at the fluid-structure interface. These integral
equations are then expressed using an Arbitrary Lagrangian Eulerian (ALE) formulation, enabling to express
the pressure work of the flow with respect to time-independent spatial coordinates. The fluid loads are
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linearized for small movements around the steady state. In section 3, the linear work of the fluid is determined
numerically using the BEM. The aeroelastic model is then obtained by coupling those fluid loads with the
structure dynamical behavior. In section 4, the error associated with the numerical approximation, the
potential flow theory and the linear approximations is quantified by comparison with analytic results, more
accurate numerical simulations and a mesh deformation approach. The fluid-structure coupling method in
then applied to the case of an ellipsoidal inflated membrane in section 5. The aeroelastic equations are
projected on the in vacuo modes of the membrane to reduce the computation cost. The modes of the
immersed structure are then calculated, exhibiting an instability induced by the coupling of the flow with
the deformations of the structure. A conclusion is given in section 6 and the article is completed by some
calculation details in two appendices.

2. Derivation of the potential flow efforts on a moving interface with respect to reference
spatial coordinates

The aim of this section is to introduce the mathematical fluid model that will be solved numerically using
the method presented in the next section. In all the following mathematical derivations, the vectors will be
in bold notation and the tensors will be double-struck.

Ωf(t)

u

n

Σ(t)

u∞

Ωs(t)

∂Ω∞

Figure 1: Schematic view of a solid defined by the volume Ωs(t) that deforms in a flow defined by the volume Ωf(t). The
exterior boundary of the fluid, denoted Ω∞, is supposed to be at infinity. The ambient flow in absence of solid is supposed to
be a homogeneous flow u∞.

Let us consider a solid (Ωs(t) domain) that deforms in a potential flow (Ωf(t) domain), as sketched in
Figure 1. The time is denoted t, and the displacement field of the solid is denoted ξ. We suppose that
this elastic structure is characterized by a stiffness and a mass operator, respectively Ks and Ms. Using a
variational approach with δξ a virtual admissible displacement and fext the work of the external forces on
the structure, the weak form of the fluid-structure equation can be written in this form:

Ks(ξ, δξ) +Ms

(
∂2ξ

∂t2
, δξ

)
− fext(δξ) = 0. (1)

Under the hypothesis that both Reynolds and Stokes 1 numbers are large:

Re =
ρfU∞L

µ
� 1 and St =

ρfΩL2

µ
� 1, (2)

1ratio between inertia and viscosity effects of the fluid
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where L and Ω are respectively the characteristic length and circular frequency of the structure, ρf and µ
are respectively the density and the viscosity of the fluid, and U∞ = ‖u∞‖ is the characteristic velocity of
the ambient flow. Assumption (2) enables to neglect viscosity effects and to use an inviscid fluid model.
The forcing term fext applied by an inviscid fluid on the structure writes [14] :

fext(δξ) =

∫

Σ(t)

pn · δξ dΣ(t), (3)

p being the pressure and n the normal of the fluid-structure interface Σ(t) oriented inward the solid. In
order to calculate the dynamical solution of equations (1,3) with respect to the structure movements on a
reference, stationnary interface, the fluid’s and structure’s dynamics have to be linearized. The objective
of the next section is to obtain a set of linearized fluid equations using an Arbitrary Lagrangian Eulerian
(ALE) formulation.

2.1. Eulerian description of a potential flow

A classical approach when modeling fluid dynamics is to use an Eulerian framework in order to study the
velocity of particles through a fixed elementary volume contrarily to the Lagrangian framework, which is
focused on the material particles. The fluid equations will first be presented in an Eulerian frame for both
kinematic and dynamic equations of the potential flow. A fixed fluid domain Ω∞ is considered, bounded
by a closed surface ∂Ω∞ which is a sphere of radius r. The ambient flow u∞ is defined as the flow in the
absence of a structure (dashed streamlines of Figure 1). The latter is supposed to be irrotational, stationary
and homogeneous, enabling to express it with a potential φ∞ defined up to a spatial constant by

u∞ = ∇φ∞ in Ω∞. (4)

At the scale of airships, the flow velocity is much lower than that of the sound in air c, and the Mach number
Ma verifies

Ma =
U∞
c

< 0.3, (5)

which means the flow can be considered as incompressible. For a potential flow, the incompressibility
condition writes:

∆φ∞ = 0 in Ω∞. (6)

When a moving structure is introduced, the domain Ω∞ is divided into fluid and solid sub-domains Ωf(t)

and Ωs(t) separated by the fluid-structure interface Σ(t). The fluid evolves in a domain Ωf(t) bounded by
the fluid-structure interface Σ(t) and its exterior boundary ∂Ω∞. The effects of the turbulent boundary layer
are neglected and we consider the case where no circulation is induced by the interface on the supposedly
inviscid flow u (see hypothesis (2)), enabling to express it with a potential φ defined up to a spatial constant
by

u = ∇φ in Ωf(t) with φ = φ∞ + φp (7)

The flow u (continuous streamlines of Figure 1) in the fluid domain is decomposed into an ambient flow u∞
and a potential perturbed flow up = ∇φp such that:

u = ∇φ∞ + ∇φp in Ωf(t). (8)

The flow incompressibility combined with (6) and (8) provides

∆φp = 0 in Ωf(t). (9)
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Because of hypothesis (2), the fluid is considered inviscid, therefore the kinematic boundary condition is
introduced as

u · n =
∂ξ

∂t
· n on Σ(t), (10)

∂ξ
∂t being the velocity of the interface. When combined with (8), equation (10) becomes

∇φp · n =

(
∂ξ

∂t
− u∞

)
· n on Σ(t). (11)

Since φp is defined up to a constant, we arbitrarily impose

φp(x)→ 0 on ∂Ω∞ for r →∞, (12)

to ensure the uniqueness of the solution (r is the radius of the enclosing sphere ∂Ω∞). The exterior Laplace
equation (9) associated with the Neumann condition (11) and the uniqueness condition (12) is a well-posed
problem according to Folland [15], which ensures the existence and unicity of its solution φp. The latter
can be written as the sum of single and double layer terms [15], meaning that its rate of decrease at infinity
verifies:

φp(x) = O
(
r−1
)

on ∂Ω∞, (13a)

∇φp(x) · n = O
(
r−2
)

on ∂Ω∞, (13b)

∂φ(x∞)

∂t
= O

(
r−1
)

on ∂Ω∞ (13c)

r = ‖x‖ . (13d)

One might note that the potential solution φp might be referred to as a full potential flow as it is irrotational
everywhere on the fluid domain [27], unlike quasi-potential flows which are irrotational everywhere in the
fluid domain excepted on an infinitely thin vortex sheet generated behind the rear of the body [28]. Unlike
quasi-potential flows, stationary full-potential flows do not generate lift on the structure. In order to obtain
a well-defined fluid problem, it is necessary to add initial conditions associated with the movements of the
interface, such as the Cauchy condition below:

ξ(tini) = ξini (14a)

∂ξ

∂t
(tini) = vini. (14b)

The pressure p, needed to compute the virtual work fext of equation (3), is calculated as a function of the
kinematic variables of the fluid using the Bernoulli equation for potential flows:

p

ρf
+
∂φ

∂t
+

1

2
u2 + gz = C(t), (15)

C(t) being an homogeneous time-dependent parameter. The incompressibility of the fluid (5) ensures that
ρf is homogeneous. In order to determine the constant C(t), the far field condition of the ambient flow is
expressed introducing the energy per unit mass Ψ∞, far from the structure:

p

ρf
+

1

2
u2 + gz = Ψ∞ +

∂φ(x∞)

∂t
= Ψ∞ on ∂Ω∞. (16)

The above expression is valid at each point remote from the structure because of equations (15) and (13c).
By introducing Ψ∞ into the Bernoulli equation (15), one gets:
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p

ρf
+
∂φ

∂t
+

1

2
u2 + gz = Ψ∞ in Ωf(t). (17)

It is convenient, for the sake of understanding the underlying physics behind the model, to separate the
pressure in two different contributions. As with velocity potential and velocity, pressure is separated into
an ambient pressure p∞ (not to be confused with the pressure at infinity p(x∞)), which corresponds to the
pressure of the fluid in the absence of the structure, and the pressure perturbation pp induced by the moving
structure:

p = p∞ + pp with
p∞
ρf

= Ψ∞ −
∂φ∞
∂t
− 1

2
U2
∞ − gz (18a)

pp
ρf

= −1

2
u2
p − u∞ · up −

∂φp
∂t

. (18b)

The above expression of the pressure will be used in the numerical implementation to separate the ambient
and structure perturbation contributions. Thanks to the equations above, the pressure p, which allows to
determine the work of the fluid fext, can be deduced from the perturbation potential φp and its spatial
derivative up. It is therefore necessary to obtain the perturbation potential φp whose calculation with the
BEM necessitates to exhibit an integral formulation, which is the aim of the next section.

2.2. Arbitrary Lagrangian Eulerian formulation of the boundary integral equations

The calculation of φp could be achieved by introducing a weak formulation [16] associated to the local
equations (9) and (11) in order to use the Finite Element Method (FEM). However this approach would
have inconveniences in this particular case. It would require solving the velocity potential at every node of
the fluid mesh, which is very costly. Moreover, because the domain is infinite, it would have to be artificially
truncated (by meshing only a part of it in practice), introducing artificial confinement effects. Finally, the
ALE formulation is convenient to manage the coupling of the structure with the flow, but it requires the
introduction of an unknown fluid mesh deformation when used with the FEM [17]. It is not the case with
the BEM as the mesh displacement at the interface is the same as the structure displacement. Consequently,
a BEM is used here, and an integral equation involving the Green’s function is introduced for that purpose.
In the case of Laplace’s equation (9) in a three-dimension space [21], Green’s function G can be defined as

∀x,y ∈ Ω∞× Ω∞ : ∆xG(x,y) = δ(x− y) (19a)

∇xG(x,y) =
x− y

4π ‖x− y‖3
(19b)

G(x,y) = − 1

4π(x− y)
, (19c)

where δ denotes the Dirac distribution. Any function written as the sum of G and a field linear with x
would also be a fundamental solution of Laplace’s equation, but G has the advantage of decaying to zero at
infinity. Since ∂Ω∞ ∪ Σ(t) is an enclosing boundary of the fluid volume Ωf(t) and n is the outward normal
of Ωf(t), the Green identity can be applied as

∀y ∈ Ω∞,
∫

Ωf(t)

∆xG(x,y)φp(x) −∆φp(x)G(x,y)dΩ(x) = ...

∮

Σ(t)∪∂Ω∞

[∇xG(x,y) · n(x)φp(x) −∇φp(x) · n(x)G(x,y)

]
dΣ(x).

(20)

The rate of decay of the potential (13) and of the Green’s function (19b), (19c) at infinity enables us to
express the integral on border ∂Ω∞ from equation (20), recalling that infinitesimal sphere surfaces (with
radius r) dΣ(t) are of order O

(
r2
)
:
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∮

∂Ω∞

[
∇xG(x,y) · n(x)φp(x) −∇φp(x) · n(x)G(x,y)

]
dΣ(x)

=

∮

∂Ω∞

[
O
(
r−2
)
O
(
r−1
)

+O
(
r−1
)
O
(
r−2
) ]
O
(
r2
)

= O
(
r−1
)
→ 0

(21)

The above equation enables us to neglect the integral on the border ∂Ω∞ from equation (20). The following
property, taken from [23]:

∫

Ωf(t)

∆xG(x,y)φp(x)dΩ = φp(y)

(
1 +

∮

Σ(t)

∇xG(x,y) · n(x)dΣ(x)

)
∀y ∈ Σ(t), (22)

combined with equations (9) and (20), gives the regularized expression og the Boundary Integral equation

φp(y) =

∫

Σ(t)

∇xG(x,y) · n(x)

(
φp(x) − φp(y)

)
+G(x,y)

(
u∞ −

∂ξ(x)

∂t

)
· n(x)dΣ(x) ∀y ∈ Σ(t). (23)

The solution of this equation can be approximated using the BEM. However, since the interface Σ(t) is
time-dependent, solving such an equation would imply building a new mesh at each time step. In order
to calculate the integral representation of the fluid problem by the means of of time-independent space
coordinates, the ALE method expresses the parameters of the fluid with respect to a fixed reference interface.
The linearized equations will be derived relatively to a reference position Σ, arbitrarily set to be the fluid-
structure interface in the absence of deformations: Σ = Σ(ξ=0), see Figure 2. The physical variables evolving

on the time-dependent interface Σ(t) will then be expressed as a function of the reference interface Σ, as
detailed in [17] in the context of elastic structures interacting with viscous flows. The variables defined on
Σ are written with a bar (•). The displacement ξ̄ of the physical interface at x ∈ Σ(t) is thus decomposed
as

ξ̄(x̄, t) = x(x̄, t)− x̄ ∀x̄ ∈ Σ. (24)

It is the common definition of the displacement in solid mechanics written in a Lagrangian framework (hence
inherent to a moving material point). The surface vector gradient ∇S , the surface gradient tensor O∇S , the
surface deformation gradient FS and the surface deformation operator Φ̄IS are useful tools for the description
of the geometrical evolution of the interface, defined as:

∇S(•) = (1− n̄⊗ n̄)∇(•), (25a)

O∇T

S (•) = (1− n̄⊗ n̄) O∇T
(•), (25b)

FS(ξ̄) = 1+ O∇S ξ̄, (25c)

Φ̄IS(ξ̄) = det
(
FS
(
ξ̄
))
FS(ξ̄)−1. (25d)

One can express an oriented infinitesimal element of surface ndΣ through the surface deformation operator
using Nanson’s formula based on the interface deformations, as shown in [21, 19, 20]:

n(x)dΣ(x) = Φ̄IS(ξ̄)Tn̄(x̄)dΣ(x̄) ∀x̄ ∈ Σ, (26)

where n̄dΣ denotes an infinitesimal oriented area on the reference surface Σ and superscript (•)T denotes
the transpose of a tensor. Let us remark that we use here the surface deformation operator Φ̄IS which has
the advantage of using the surface gradient of the interface displacement [21], unlike the classical expression
of Nanson’s formula which requires to know the normal derivative of the interface displacements. The flow
velocity potential and velocity with respect to the reference interface are defined as well:
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ndΣ

Σ(t)

Σ

x̄

x

ξ̄

n̄dΣ

Figure 2: Reference and actual configuration of the problem.

φ̄p(x̄) ≡ φp(x), ūp(x̄) ≡ up(x) ∀x̄ ∈ Σ, (27)

where ≡ stands for ”is defined as”. The Green’s function and its normal derivative appearing in (23) are
defined similarly:

Gn(x̄,ȳ,ξ̄)dΣ(x̄) ≡ G(x,y)n(x)dΣ(x) ∀x̄, ȳ ∈ Σ, (28a)

∂nG(x̄,ȳ,ξ̄)dΣ(x̄) ≡∇xG(x,y) · n(x)dΣ(x) ∀x̄, ȳ ∈ Σ. (28b)

It is worth noticing that equations (24), (27) and (28) differ from (26) as the former ones define an equality
between the variables expressed on the physical and reference spaces whereas ndΣ undergoes a transforma-
tion relatively to the reference configuration n̄dΣ. The way φ̄p is defined is not inherent to a moving fluid
particle contrarily to a Lagrangian framework, but results from their observation on a point moving in space
which also differs from the Eulerian framework that observes particles properties on a fixed point of space.
This is the reason why this method is referred to as an Arbitrary Lagrangian Eulerian (ALE) approach [22].
By combining (11), (24), (26) and (27) (noting that, for an homogeneous ambient flow, the parameter u∞
does not vary when it is expressed in the time dependant or in the reference domain), we deduce:

G(x,y)∇φp(x) · n(x)dΣ(x) = Gn(x̄,ȳ,ξ̄).

(
∂ξ̄(x̄)

∂t
− u∞

)
dΣ ∀x̄, ȳ ∈ Σ. (29)

The integral representation (23) written on the reference configuration is then given by:

φ̄p(ȳ) =

∫

Σ

∂nG(x̄,ȳ,ξ̄)
(
φ̄p(x̄) − φ̄p(ȳ)

)
+Gn(x̄,ȳ,ξ̄).

(
u∞ −

∂ξ̄(x̄)

∂t

)
dΣ ∀ȳ ∈ Σ. (30)

Furthermore, we can introduce the time derivative of a scalar function expressed on a moving point of the
interface using the chain rule:

dφ̄(x̄, t)

dt
=

dφ(x, t)

dt
=
∂φ(x)

∂t
+
∂x

∂t
·∇φ(x) ∀x̄ ∈ Σ. (31)

By replacing the expression of ∂x
∂t = ∂ξ

∂t = ∂ξ̄
∂t and ∇φ = u(x) = ū(x̄), equation (31) becomes:

∂φ(x, t)

∂t
=

dφ̄(x̄, t)

dt
− ∂ξ̄(x̄, t)

∂t
· ū(x̄, t) ∀x ∈ Σ. (32)

We introduce the pressure p̄ with respect to the reference interface:

p̄(x̄) ≡ p(x) ∀x̄ ∈ Σ. (33)
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By combining equations (17), (32) and (33), we obtain the ALE formulation of the Bernoulli equation:

p̄

ρf
= Ψ∞ −

1

2
ū2 − dφ̄

dt
+
∂ξ̄

∂t
· ū− gez · (x̄+ ξ̄) on Σ. (34)

Finally, equation (34) can be used to express the virtual work of the pressure forces of equation (3) as:

fext(ξ, δξ) = ρf

∫

Σ

(
Ψ∞ −

1

2
ū2 − dφ̄

dt
+
∂ξ̄

∂t
· ū− gez · (x̄+ ξ̄)

)
(Φ̄I T
S n̄) · δξ dΣ (35)

In the above equation, the terms Ψ∞, ū2 and gez ·(x̄+ξ̄) come from the stationary expression of the Bernoulli
equation. The time derivative of the potential results from the local acceleration of the fluid, and the scalar
product between the structure and the fluid velocity is a convection term linked to the interface movement
in an ALE framework. The deformation operator Φ̄IS enables to take into account the fluctuations (rotation
and dilatation) of the oriented interface. A numerical approximation of the set of equations (30) and (35)
can be found, but requires to solve different operators at each time step, because of the time dependence of
∂nG and Gn. In order to solve this problem with time-independent operators, a linearized formulation of
the integral representation (30) under the assumption of small displacement of the fluid-structure interface
Σ(t) is introduced in the next subsection.

2.3. Linearized formulation

The linearization of the equations resulting from the combined ALE and BEM approaches is now addressed,
under the assumption that the following small perturbations hypotheses are satisfied:

ε =
max(‖ξ‖)

L
� 1 and ‖ O∇ξ‖ � 1. (36)

We then develop at order 1 the fluid equations with respect to the small coefficient ε. For conditions (2.3) to
be met, the reference configuration Σ used is the deformed state associated with the stationary flow allowing
us to study small perturbations around this equilibrium state, as explained by [17]. If the stress free interface
(in the absence of external fluid) was to be used as a reference interface Σ, one would have to check that
the steady state deformations induced are of small amplitude before performing the linearization, in order
to prevent geometric non-linearities which are not investigated in the present approach. The lack of terms
in O

(
ε2
)

to describe the fluid variables leads to an approximation of the solution (quantified in section 4),
but it enables to predict the apparition of instabilities [24, 25]. For the sake of conciseness, the terms in
O (ε) of the variables (also referred to as the order 1 variables) will be denoted with a (•)1 superscript. The
component in O

(
ε0
)

of the variables will be denoted either with a superscript (•)0, or with no superscript
when it is implicit because they do not fluctuate with the structure movements. The displacement of the
structure then writes:

ξ̄1(x̄) = x− x̄ ∀x̄ ∈ Σ. (37)

Because of the small perturbations hypotheses, it is implicit that ξ̄ is in O (ε), but the ξ̄1 notation with a
superscript is used here to help keeping in mind the condition of small displacements required for the linear
formulation. The linearized Nanson’s formula (26) can be expressed with τ̄ 1 which takes into account both
the linear rotation of the normal n1 and the dilatation of the interface [18, 21, 19, 20]:

n = n̄+ n1 +O
(
ε2
)

on Σ (38a)

with n1 = −
[
O∇T

S ξ̄
1
]
n̄. (38b)

ndΣ(t) =
(
n̄+ τ̄ 1

)
Σ +O

(
ε2
)

on Σ (38c)

with τ̄ 1 =
(

tr
(
O∇S ξ̄1

)
− O∇T

S ξ̄
1
)
n̄ (38d)
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The Green’s function (28), similarly to the method presented by [26], is decomposed in order 0 and 1 terms:

Gn = Gn
0

+Gn
1

+O
(
ε2
)

on Σ, (39a)

∂nG = ∂nG
0

+ ∂nG
1

+O
(
ε2
)

on Σ. (39b)

Detailed expressions of (38c) and (39) can be found in Appendix A. The assumption that the structure
velocity is small (relatively to the ambient flow U∞) is also used:

∂ξ̄1

∂t
= O (ε) . (40)

Consequently, in the following equations, the superscript (•)1 will not only information on the order 1
amplitude of a variable, but will as well imply its linearity to the displacements ξ̄1 or its time derivatives.
Hypothesis (40) is necessary to obtain a movement-independent order 0 solution φ̄0

p as it will appear in the
integral representation (42). Based on equations (30), (37), (39) and (40), a linearization of the potential
φ̄p is introduced such that

φ̄p(x̄) ≡ φp(x) = φ̄0
p(x̄) + φ̄1

p(x̄) +O
(
ε2
)

on Σ. (41)

By first keeping only the terms in O (1) from (30), we obtain the order 0 solution described in (42a).
Afterwards, the linearization methodology consists in subtracting the order 0 equation (42a) from (30), and
by neglecting the contributions in O

(
ε2
)
, the order 1 term is solution of (42b):

φ̄0
p(ȳ) =

∫

Σ

∂nG
0
(x̄,ȳ)

(
φ̄0
p(x̄) − φ̄0

p(ȳ)

)
+Gn

0
(x̄,ȳ) · u∞dΣ ∀ȳ ∈ Σ, (42a)

φ̄1
p(ȳ) =

∫

Σ

∂nG
0
(x̄,ȳ)

(
φ̄1
p(x̄) − φ̄1

p(ȳ)

)
+ ∂nG

1

(x̄,ȳ,ξ̄1)

(
φ̄0
p(x̄) − φ̄0

p(ȳ)

)
...

−Gn
0
(x̄,ȳ) ·

∂ξ̄1
(x̄)

∂t
+Gn

1

(x̄,ȳ,ξ̄1) · u∞dΣ ∀ȳ ∈ Σ. (42b)

The above equations express φp as a function of variables defined only on the reference configuration. The
differentiability of the BEM operators appearing in these equations has already been studied in the field of
acoustics [26]. It has been introduced here in the context of incompressible flows. In order to obtain the
total linearized velocity potential φ, we need to introduce the linearized variations of the ambient potential
φ̄∞ defined as

φ̄∞(x̄) ≡ φ∞(x) = φ∞(x̄+ ξ̄1) ∀x̄ on Σ. (43)

To do so, we use a Taylor expansion at the order 1, which is valid since φ∞ is defined on the whole domain
Ω∞:

φ̄0
∞(x̄) = φ∞(x̄) ∀x̄ on Σ, (44a)

φ̄1
∞(x̄) = ∇φ∞(x̄) · ξ1 = u∞ · ξ1 ∀x̄ on Σ. (44b)

The linear potential of the ambient flow perturbed by the vibrating solid can therefore be obtained from
equations (42) and (44) as

φ = φ̄0
p + φ̄1

p + φ̄0
∞ + φ̄1

∞ +O
(
ε2
)

on Σ(t). (45)

The velocity u at orders 0 and 1 is then calculated using the gradient and the potential from the reference
configuration (see Appendix A for details on the calculation):

ū0 = ∇φ̄0 on Σ, (46a)

ū1 = ∇φ̄1 −
[
O∇T
ξ̄1
]
ū0 on Σ. (46b)

10



In a similar fashion, the pressure given by (34) can be split into order 0 and 1 terms. Knowing that for a
constant ambient flow u∞ the order 0 potential φ̄0 does not vary with time (see equations (42a) and (44a)),
one obtains:

p̄0

ρf
= Ψ∞ −

1

2
(ū0)2 − gez · x̄, (47a)

p̄1

ρf
=
∂ξ̄1

∂t
· ū0 − ū1 · ū0 − dφ̄1

dt
− gez · ξ̄1. (47b)

This enables to determine the virtual work on the fluid-structure interface (35) at both orders 0 and 1:

f0
ext = ρf

∫

Σ

p̄0n̄ · δξ dΣ (48a)

f1
ext =

∫

Σ

[
p̄0τ̄ 1 + ρf

(
ū0 ·

(
∂ξ̄1

∂t
− ū1

)
− dφ̄1

dt
− gξ̄1 · ez

)
n̄

]
· δξ dΣ, (48b)

It is convenient to decompose the order 0 pressure into ambient and perturbed contributions in order to
isolate the different contributions of this work later (see below equation (59)):

p̄0
∞
ρf

= Ψ∞ −
1

2
U2
∞ − gx̄ · ez (49a)

p̄0
p

ρf
= −1

2
(ū0

p)
2 − ū0

p · ū∞. (49b)

The value of ū1 in the work expression (48) could be replaced by expression (46b). However, calculating the
whole spatial gradient of a scalar field φ knowing only its value at the interface is inconvenient. Hence the
necessity to redevelop the scalar product ū0.ū1 using equation (A.10) from Appendix A as well as equations
(48) and (49) enables to use only the surface gradient of φ̄ instead of its complete gradient in the expression
of the fluid forces perturbations:

f1
ext =

∫

Σ

[
(p̄0
p + p̄0

∞)τ̄ 1 + ρf

(
ū0 ·

(
∂ξ̄1

∂t
−∇Sφ̄1 + O∇T

S ξ̄
1ū0

)
− dφ̄1

dt
− gξ̄1 · ez

)
n̄

]
· δξ dΣ. (50)

It is possible to use the above expression for numerical calculation of the fluid loads on the flexible structure.
The work of the fluid above can be coupled with the structure dynamics through equation (1), which is the
aim of the next section.

3. Numerical calculation of the fluid mass, gyroscopic and stiffness contributions

The structure characteristics Ks and Ms are supposed to be known, and this article does not focus on
their calculation. Hence, in order to obtain the dynamical solution of equation (1) associated with the fluid
linearized efforts exerted on the structure, an approximation of the solution is derived through a numerical
procedure based on a triangular surface mesh of the fluid-structure interface. First, the potential of the
fluid will be solved using the BEM. Based on this potential solution, the resulting load of the fluid will be
determined using FEM operators, allowing us to couple the flow with the structure deformations. In order
to find a numerical approximation of the potential for a steady ambient flow, we used the BEM based on
the integral representation (42) which approximates the integral over the fluid-structure interface [21]. The
interface is discretized into triangular elements connected to NDOF nodes. The variables are interpolated
using linear basis functions attached to the mesh nodes. According to the collocation method [21], the
evaluation points yi are also located on the mesh nodes. BEM operators [G]n×3n, [G′]n×3n (single layer
operators) and [H]n×n, [H ′]n×3n (double layer operators) are introduced as:
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∑

j

[G]ij {ū}j '
∫

Σ

−Gn
0

(x̄,ȳi) · ū(x̄)dΣ(x̄), (51a)

∑

j

[
G′(u∞)

]
ij

{
ξ̄
}
j
'
∫

Σ

−Gn
1

(x̄,ȳi,ξ̄) · u∞dΣ(x̄), (51b)

∑

j

[H]ij
{
φ̄
}
j
'
{
φ̄
}
i
−
∫

Σ

∂nG
0

(x̄,ȳi)

(
φ̄(x̄) − φ̄(ȳi)

)
dΣ(x̄), (51c)

∑

j

[
H ′(φ̄)

]
ij

{
ξ̄
}
j
'
∫

Σ

∂nG
1

(x̄,ȳi,ξ̄)
(
φ̄(x̄) − φ̄(ȳi)

)
dΣ(x̄). (51d)

The brackets [•] denote matrices and {•} denote vectors whose jth component is the value of the variable

at the node ȳj . The reader might refer to Appendix A for the expressions of Gn
0
,Gn

1
,∂nG

0
and ∂nG

1
. The

collocation method consists in determining each row i of the BEM operators by associating it to a reference
point ȳi. The integration is then calculated using Gaussian weights, the value of x̄ and φ̄(x̄) being obtained
at each Gauss point from their values at the element nodes using a linear interpolation. The finer the mesh,
the better the discrete expression (51) approximates their continuous counterparts. However, when x̄ is
located in the same triangle as ȳi, the norm ‖x− yi‖ is nil at x̄ = ȳi, which means the integral over the
triangle is improper and its value has to be calculated carefully. For the double layer term

∂nG
0

=
(x̄− ȳi).n̄
‖x̄− ȳi‖3

,

the planar shape of the triangles implies that any vector connecting two points of a same triangle is included
in the triangle, and is consequently perpendicular to the triangle normal, hence:

(x̄− ȳi).n̄ = 0 ∀x̄, ȳi in the same triangle. (52)

Consequently, the term ∂nG
0

is trivial to integrate in that case. Though equation (52) simplifies the im-
plementation of the BEM by preventing the calculation of highly singular terms, [32] mentions that this
triangle mesh approximation causes a discretization error of the order of δκ/4π, where δ is the perimeter of
the triangle and κ the mean curvature of the real surface Σ. As shown in equation (A.3d), the double layer
linearized term is strongly singular for x̄→ ȳ, and, as a consequence, one might expect that difficulties could
arise integrating it. However, for the same reason that the scalar product (x̄ − ȳ) · n̄ is nil at order zero,

the term ∂nG
1

will vanish when x̄ and ȳ are in the same triangle: the rotated normal associated with the
deformed triangle will remain perpendicular to the deformed vector x̄+ ξ̄1(x̄)− (ȳ + ξ̄1(ȳ)). This ensures

that the double layer term at order one ∂nG
1

vanishes too when both x̄ and ȳ are on the same triangle. On

the contrary, the term Gn
0

does not cancel for x̄→ ȳi and the integral has to be calculated carefully. In this
article, their implementation was done using a Lachat-Watson transformation as detailed in [33]. Similarly,

the term Gn
1

has to be calculated carefully. Its singularity for x̄→ ȳ is of the same order than Gn
0
: more

particularly, one might notice how the term (x̄− ȳ).(ξ̄1(x̄)− ξ̄1(ȳ)/ ‖x̄− ȳ‖ in Gn
1

is in O (‖x̄− ȳ‖) since

ξ̄1(x̄) − ξ̄1(ȳ) is linear when x̄ and ȳ are in the same triangle, just like the term ‖x̄− ȳ‖ for Gn
0
. As

a consequence, the term Gn
1

has been implemented using the Lachat-Watson transformation, similarly to

Gn
0
.

Another difficulty with this approach is that the BEM operators are full. As a consequence, their storage cost
is in O

(
N2
DOF

)
. The latter could be reduced by using one of the BEM acceleration methods. As explained

by [41], the Hierarchical matrix method would be best suited here as it allows to calculate multiple matrix-
vector products based on a single compressed matrix calculations, on the contrary to the Fast Multipole
Method which would require to calculate a new approximation from scratch for each matrix-vector product.
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The implementation of an accelerated BEM is however not in the scope of this article. Let us remark that,
in order to reduce the required memory when computation is implemented, both linearized operators can
be calculated as one:

[J ] = [G′] +
[
H ′(φ̄0

p)

]
. (53)

Thanks to the linearization, BEM operators are calculated only once, at the cost of storing three matrix
operators instead of two, enabling to take into account the variations associated with any small mesh
deformation without recalculating the discretized BEM operators as done in previous studies on fluid-
structure interaction such as [9, 10, 11, 12, 13]. From equation (42), the order 0 and 1 solutions of the
potential can therefore be obtained by inverting the linear systems with a GMRes algorithm:

[H]
{
φ̄0
p

}
= [G] {−u∞} , (54a)

[H]
{
φ̄1
p

}
= [J ]

{
ξ̄1
}

+ [G]

{
∂ξ̄1

∂t

}
. (54b)

Because the expression of [J ] depends on the field φ̄0
p, this operator has to be computed once the order 0

system has been solved. The linear operators [A], [B] and [U∞] are introduced as well:

[A] = [H]
−1

[G] , (55a)

[B] = [H]
−1

[J ] + [U∞] with [U∞]{ξ̄} = {u∞.ξ̄} (55b)

By combining (54) and (55), the linear calculation of the potential approximation at mesh nodes writes for
an homogeneous ambient flow:

{
φ0
}

= {φ0
p}+ {φ0

∞} = [A] {−u∞}+ [U∞] {x̄}, (56a)

{
φ1
}

= {φ1
p}+ {φ1

∞} = [A]

{
∂ξ̄1

∂t

}
+ [B]

{
ξ̄1
}
. (56b)

The present approach is similar to the panel method because it is based on the same integral representation
of the solution of Laplace’s equation. The main difference is in the way the associated integral equation is
solved: we have adopted a direct resolution by looking for a polynomial field φp (linear in practice) whose
values at the nodes are the unknowns of the problem (Boundary Element Method), whereas the panel method
looks for φp in the form of a superposition of particular solutions associated with monopoles (source/well)
or dipoles (doublet/vortex) whose intensities are the unknowns of the problem [34]. The advantage of the
present approach is that one can obtain the dependence of the velocity potential solution on the movements
and deformations of the immersed structure by directly differentiating the BEM operators with respect
to a displacement variable of the interface. However, in the current implementation, the presence of the
singularity of the solution at the wake has been omitted for simplification purposes, which does not allow
imposing a Kutta condition at the trailing edge of the fins, in order to take into account the circulation effects
around the body. As a consequence, the obtained solution does not allow to represent the phenomena of lift
and pressure drag [34]. However, when considering the hull without fins, the pressure fluctuations seem to
be relatively close to more complete RANS type simulations as shown in Figure 5, which gives confidence
in the results of such a method in finless configurations. Concerning the fins, a simple aerodynamic model
might be added as done by [6], or the present approach might be extended to take into account vortex sheets
drawing inspiration from [3, 8, 28] as mentioned in the conclusion of this article.
Using equations (56), we can now compute the potential solution of the fluid at orders 0 and 1, and an
approximation of the dynamical fluid forcing for an homogeneous stationary ambient flow from equation
(50) can be computed using FEM operators. In order to do so, the following FEM bilinear operators are
introduced:

13



{δξ}T [C] {p} '
∫

Σ

p̄n̄ · δξ dΣ,

{δξ}T
[
D(ū0)

]
{φ} '

∫

Σ

ū0 ·∇Sφ̄ n̄ · δξ dΣ,

{δξ}T
[
E(ū0,ū0)

] {
ξ̄
}
'
∫

Σ

−ū0 ·
([

O∇TS ξ̄
]
ū0
)

n̄ · δξ dΣ,

{δξ}T
[
F(ū0)

] {
ξ̄
}
'
∫

Σ

−ξ̄ · ū0 n̄ · δξ dΣ,

{δξ}T
[
L(p̄0p)

] {
ξ̄
}
'
∫

Σ

−p̄0
p τ̄

1

(ξ̄) · δξ dΣ,

{δξ}T [Ks]
{
ξ̄
}
' Ks(ξ̄, δξ),

{δξ}T [Ms]

{
∂2ξ̄

∂t2

}
'Ms

(
∂2ξ̄

∂t2
, δξ

)
·

(57)

The operators [D], [E], [F ] and [G] are functions of the order 0 solutions ū0 and p̄0. Therefore, they should
be recalculated when the stationary state changes. The operators Ks and Ms were introduced in equation
(1): we consider here their FEM discretized counterparts [Ks] and [Ms]. The dynamical equation of the
fluid-structure coupled system (1) becomes:

([Ms] + ρf [C] [A])

{
∂2ξ̄

∂t2

}
+ ρf

(
[C] [B] +

[
D(ū0)

]
[A] +

[
F(ū0)

]){∂ξ̄
∂t

}
+ ...

(
[Ks] + ρf

[ [
D(ū0)

]
[B] +

[
E(ū0,ū0)

]
+
[
L(p̄p)

]
+
[
L(p̄∞)

]
+
[
F(−gez)

] ]) {
ξ̄
}

= 0.

(58)

One can identify from the above equation the mass [Mf ], gyroscopic [Gf ] and stiffness [Kf ] matrices induced
by the coupling with the flow:

[Mf ] = ρf [C] [A] , (59a)

[Gf ] = ρf
(
[C] [B] +

[
D(ū0)

]
[A] +

[
F(ū0)

])
, (59b)

[Kf ] = ρf

([
D(ū0)

]
[B] +

[
E(ū0,ū0)

]
+
[
L(p̄0p)

]
+
[
L(p̄∞)

]
+
[
F(−gez)

])
. (59c)

It is important to note that the term ”gyroscopic” used in this article and taken from [29] refers here to fluid
forces that are conservative and linear with the velocity of the structure (as mentioned below), not to be
confused with the torque associated with the rotation of a solid. By linearity of the operators in the above
equation, and noticing also that ū0 is linear with respect to u∞, one can show that the stiffness operator(
[Kf ]−

[
N(p̄∞)

])
is quadratic to the ambient flow velocity u∞, the gyroscopic operator [Gf ] is linear with

u∞, whereas the added mass operator [Mf ] does not vary upon u∞, which is coherent wit [6]. This is the
reason why the operator [Mf ] is often calculated in the case of a fluid at rest, even though it is used in the
dynamical equation with a flowing fluid, as in reference [6]. In their study [6], Li showed using the Lagrange
equations that the added mass and stiffness operators associated with elastic movements are symmetric
while the gyroscopic operator is skew-symmetric. It is important to note that these properties are verified
only with the irrotational flow hypotheses usually used for bluff bodies and are not valid for slender bodies
such as wings which induce vorticity in the flow. According to Ziegler [29], such properties of the operators
are expected for conservative systems, which is the case of the fluid: an incompressible, ideal, irrotational
flow does not lose energy and does not transfer energy to infinity either. With a Newtonian approach, these
(skew-)symmetry attributes do not appear as naturally as with the Lagrange equations, but [35] has shown
the symmetry properties of the added mass operator with the former approach. It is possible as well to
implement the BEM method based on a variational formulation of the integral representation [35]: this
approach would ensure the symmetry of the added mass matrix at the expense of more integrations. For
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this reason, the collocation method used to implement the BEM in this article seems to be an acceptable
compromise between accuracy and numerical effort. However, the (skew-)symmetry of the fluid operators
has been numerically evaluated in section 4.
Finally, the fluid-structure dynamical equation becomes

([Ms] + [Mf ])

{
∂2ξ̄

∂t2

}
+ [Gf ]

{
∂ξ̄

∂t

}
+ ([Ks] + [Kf ])

{
ξ̄
}

= 0. (60)

Equation (60) is a monolithic equation: because the fluid and the structure dynamics are contained in a
unique equation, it allows solving both simultaneously, contrary to partitioned approaches which require
an alternating resolution of the fluid and structure equations. Moreover, this monolithic equation has the
advantage of not depending explicitly on the fluid variables, since they have been eliminated in favor of
their expressions in ξ and its time derivatives. It is of particular interest to determine the appearance
of instabilities of the structure, as well as a better prediction of the structure behavior [6]. According to
Ziegler’s classification [29, 30], if the loads associated with the stiffness Ks of the structure are conservative
(or equivalently if Ks is symmetric), then the system described by (60) is a gyroscopic conservative linear
system, as it contains non-circulatory loads (as Ks, Kf and Mf are symmetric) and gyroscopic loads (as Gf
is skew-symmetric). Such systems present a risk of losing stability whenever the associated non-circulatory
forces become non-positive (which might be caused only by the non-positiveness of Kf since Mf is necessarily
positive), although in some cases the gyroscropic loads Gf are capable of preventing such instabilities [29].
More specifically post-divergence flutter by coupling of two divergent modes can also occur in such systems
according to Paidoussis [30]. However, common unstable aeroelastic phenomena such as flutter by frequency
crossing or wake flutter, caused respectively by the unsymmetry of the stiffness operator and the non-
positiveness of the damping operator [31, 25] are not predicted by this equation, but could arise for instance
with the addition of circulatory effects around the fins. The next section aims to quantify the errors
in the fluid loads from equation (60) associated with the numerical approximation and with the order 1
approximation.

4. Quantification of the error from numerical and linear approximations

In order to quantify the error of the fluid operators associated with the fluid-structure characterization
exhibited in equation (60), this section focuses on four test cases.
- With a view to validating the BEM procedure, the quasi-steady solution of a homogeneous longitudinal
ambient flow past a revolution ellipsoid is studied, comparing the velocity potential analytic solution with
the BEM approximation.
- The potential flow model solved with the BEM is compared with more accurate fluid simulation based on
RANS in a second test-case, enabling to see the regions where the potential flow model cannot capture all
the physics, but to validate as well the overall good capture of the pressure fluctuations over the interface
by the BEM.
- The third test case compares the linear approximation introduced in sections 2 and 3 with a numerical non-
linear solution, studying the associated error on the fluid stiffness operator in the case of elastic movements,
depending on a small parameter ε.
- Finally, the fourth test case quantifies the numerical error on the fluid mass and gyroscopic operators in
the case of rigid body movements of the structure, enabling to validate the FEM approach and to assess the
convergence of the mixed FEM-BEM approach introduced in this document.

4.1. BEM approximation

In order to validate the implementation of the BEM procedure at order zero, a simple test case is presented
below. It consists of a revolution ellipsoid (also referred to as a spheroid). Its semi axis are of length L (for
length) and D (for diameter) respectively. Its aspect ratio S is defined as

S =
L

D
. (61)
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φ̄

Σ

u∞
D

Figure 3: Left: Side view of a spheroid of aspect ratio S = 3, with the potential solution φ̄ associated with a longitudinal
ambient flow. Right: relative error of the numerical solution

{
φ̄BEM

}
compared to its theoretical value as a function of the

number of nodes. The triangle enables visualizing the O
(
N−1

DOF

)
slope.

For this test case, an aspect ratio of S = 3 is used. The ambient flow has a uniform longitudinal direction
of amplitude U∞. An analytic expression of the resulting potential at the interface can be obtained from
[36], leading to the following expression:

φ̄(x̄) = U∞x̄.exf(S), x̄ ∈ Σ, (62)

where f is a dimensionless analytic function of the aspect ratio (see figure 3 left for an outview).
In order to validate the quasi-steady BEM procedure, the analytic potential solution is compared to numerical
results. The discrete vector

{
φ̄BEM

}
has been obtained with the BEM for various mesh refinements in order

to study the convergence of the method. The numerical results are presented in figure 3, where the error
has been defined relatively to the exact solution φ̄ and is defined with the L2(Σ) error:

err
(
φ̄∗BEM

)
=

∥∥φ̄∗BEM − φ̄∗
∥∥
L2(Σ)∥∥φ̄∗

∥∥
L2(Σ)

with ‖a‖L2(Σ) =

√∫

Σ

a(x̄)2dΣ. (63)

The integral over Σ in the above equation is approximated using the values at the nodes and the FEM. As
shown in Figure 3, the BEM converges toward the analytic solution in O

(
N−1
DOF

)
.

4.2. Comparison of RANS method and BEM

In order to further verify if the results obtained for a potential flow solved with the BEM enable to capture
well the fluid forces around an interface, this section compares results of the quasi-steady order zero pressure
repartition solved using the BEM with results obtained with a RANS simulation, which allows to take
into account the effects of turbulence unlike the potential flow model the BEM is based on. The RANS
simulations are based on a Spalart-Allmaras turbulence model, and are obtained for a compressible flow
at Re = 2.2 × 106 using the code elsA from ONERA. The comparison of the dynamic pressure repartition
between the BEM and the RANS method is presented in Figure 5 on a vertical slice y = 0 of the interface
including both the symmetry axis of the structure and the velocity vector of the ambient flow u∞. Because
the static pressure is straightforward to obtain, its value has been removed in order to compare only the
dynamic pressure pdyn = − 1

2u
2. which is more challenging to predict. One can see that the BEM and RANS

pressure repartition are similar almost everywhere on the interface slice presented here, except for two areas.
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First, on the top rear of the interface, the BEM dynamic pressure is overestimated (reminding that with the
projection of pdyn in Figure 5, a curve closer to the interface means a higher pressure). This means that the
pressure predicted by the RANS will create a suction force on the top of the interface which is not captured
by the BEM. It is due to the fact that, because of the angle of attack, the flow around the interface creates
a lift toward z > 0. Because of the d’Alembert paradox, the potential model used for the BEM cannot
predict any lift on the structure as mentioned by [1], hence this first divergence between the two methods.
The second difference between these methods is that the BEM predicts a stationary point at the rear of the
structure (a nil dynamic pressure associated with a nil velocity), whereas the RANS calculation does not
predict a stationary point because of turbulence causing the fluid to stall locally at the rear of the structure.
As turbulence is not taken into account with the potential flow hypothesis, BEM is not able to predict the
stall phenomenon. Let us remark that the fluctuation spikes of pressure that appear on the blue curves
apart from the symmetry axis ([x, z] ' {[−20, 5], [−15,−3], [16, 1], [16,−1]} are only visualization artifacts
due to the linear interpolation of the pressure field between different mesh zones, and since the RANS mesh
is singular on the symmetry axis of the mesh, the fluid perceives the front and rear of the interface as a hole
very locally, hence the pressure local spikes of the RANS results at an altitude z = 0. Further comparisons
between potential flow theory and experimental measurements can be found in [38], where the pressure
repartition around a non-axisymetric ellipsoid of aspect ratio S = 3.5 obtained with an analytic potential
method is compared with both RANS simulations and experimental measurements at Re = O

(
106
)
. This

study leads to similar conclusions: the potential pressure repartition compares well except for the rear of
the body where stall occurs.
The results presented in this section confirms statements that had been made in the literature [1]: at
sufficiently low angles of attack, the potential flow hypothesis enables to predict the pressure fluctuations of
the flow, even thought it cannot capture the lift caused by the circulation induced on the flow in practice,
and it is not able to predict turbulent effects at the rear of the body. Moreover, as the RANS simulations are
associated with a compressible fluid, these results tend to validate the hypothesis that the compressibility
of the fluid plays a negligible role at the scale of airships.

Figure 4: Dynamic pressure repartition around a generic airship shape with a symmetry axis. The orange slice is the plane
y = 0 used to plot the pressure in Figure 5. The ambient flow has an angle of attack of 10o and an amplitude of 34 m/s (see
Figure 5 for a visualization of the ambient flow).
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Figure 5: Comparison of the dynamic pressure associated with the steady ambient flow on a generic airship shape shown in
Figure 4. The ambient flow has an angle of attack of 10o. The pressure amplitude is projected in a radial direction represented
by the light grey lines. When the pressure curve is coincident with the interface, it signifies that there is no dynamic pressure
at this point. If the pressure curve is outside the airship domain, it signifies that the dynamic pressure is negative. The BEM is
calculated on a NDOF = 5713 surface mesh. The RANS method was obtained for a compressible flow with a Spalart-Allmaras
turbulence model at Re = 2, 2.106. For visualization purposes, the pressure which is supposed to be constant over the elements
has been interpolated linearly for both methods, hence the relative smoothness of both curves.

4.3. First order approximation

1

2

Figure 6: Left: shape of the deformed ellipsoidal fluid-structure interface for ε = 0.1. Right: evolution of the error in %
associated with the linear prediction of the potential φ, the velocity u, the pressure p and the force fext for a displacement ξ
(as plotted on the left), as a function of ε. The triangle highlights the slope in O

(
ε2

)
of the error.

In order to quantify the error associated with the linear approximation of fluid forces, the test case below
compares both linear and non-linear fluid solutions with quasi-static approximation. The terms proportional
to displacement ξ̄ in equations (54) and (60) are referred to as quasi-static: they correspond to the solution
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found when deformations occur at a negligible velocity and acceleration. In order to see to which extent
the associated linearized fluctuations are valid or not, the results of the order 1 solution are compared with
the variations of the non-linear solution obtained by physically deforming the mesh, hence using a finite
difference method by calculating new BEM operators from scratch between consecutive mesh positions.
Effects of gravity are not taken into account for this test case. The generalized fluid forces fext are introduced
as:

fext = − [Mf ]

{
∂2ξ̄

∂t2

}
− [Gf ]

{
∂ξ̄

∂t

}
− [Kf ]

{
ξ̄
}
. (64a)

In order to validate the stiffness operator [Kf ], one can compare the linear predictions of φ, p, fext and u
(see Appendix A for the detailed calculation of u) with their non-linear counterpart. The linear prediction
for those four variables are obtained for an arbitrary displacement ξ forming a banana shape (see Figure 6)
representing the lowest frequency flexible modes of airship deformations according to [6]. More details about
this displacement mode are given in section 5. The errors on φ, u, p and fext are defined as:

err(a) =
max

(∥∥ā0(x̄) + ā1(x̄, ξ̄1)− a(x̄+ ξ̄1)
∥∥)

max (‖ā0(x̄)‖) , (65)

and are displayed in Figure 6. If the error is related to a scalar, the norm ‖•‖ in the equation above
consists of the absolute value of its argument, if it is a vector, the euclidean norm is used. Figure 6 shows
that the order 1 prediction of the fluid variables all tend to their respective non-linear value when ε → 0,
with an error in O

(
ε2
)
. This is in agreement with the fact that only terms of order 2 or more have been

neglected. Furthermore, this test case validates the numerical implementation of the stiffness operator [Kf ]
and quantifies the error associated with the linearization. In a similar way, it is expected that the error
prediction of the added mass and gyroscopic loads from the fluid scale as O

(
ε2
)
, which will be verified in

the next section.

4.4. Numerical approximation

In order to quantify the error associated with the numerical approximation of section 3, the fluid numerical
operators are compared with analytical values found in the literature. This analytic reference comes from the
non-linear fluid equations of a structure with rigid body movements in a perfect fluid with no gravity effects
[37]. We present a linearization of these equations in Appendix A. Using this linearization as an analytic
reference, the fluid operators obtained numerically with our method from equation (59) are compared with
those obtained from the linearized fluid equation from Thomasson [37]. For a prolate ellipsoid of aspect

ratio 5:1 (major axis length over minor axis length), the analytic value of [M rig
f ]ref can be found in [39]

(only the non nil coefficients are displayed below, with three significant digits):

[M rig
f ]ref11 =

0.0591

150
πρfL

3 (66a)

[M rig
f ]ref22 = [M rig

f ]ref33 =
0.894

150
πρfL

3 (66b)

[M rig
f ]ref55 = [M rig

f ]ref66 =
0.700

150

13

250
πρfL

5, (66c)

The superscript [•]ref stands for the terms obtained analytically. One can deduce the values of the rigid

body gyroscopic operator [Grig
f ]ref from the rigid body added mass operator (see Appendix A). Its non nil

coefficients for an ambient flow u∞ with an angle of attack π/6 relatively to the axis of revolution of the
ellipsoid are:
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[Grig
f ]ref15 = −[Grig

f ]ref51 = −0.350ρfL
2U∞ (67a)

[Grig
f ]ref26 = [Grig

f ]ref53 = −[Grig
f ]ref62 = −[Grig

f ]ref35 = 0.606ρfL
2U∞. (67b)

Since the stiffness operator has already been validated in the case of an elastic deformation in the previous
section, we do not consider this operator in this section. The fluid operators from equation (59) can be

projected on the rigid body movements of the structure to be compared with the operators [M rig
f ]ref and

[Drig
f ]ref . These rigid body movements can be described with the displacement d of the structure’s center

of volume and the rotation θ, which relate to the structure displacements with the operator Q:

ξ̄1 = Q

(
d̄1

θ̄1

)
, (68a)

Q = [1,−x̄×] . (68b)

The reduced fluid operators on rigid body modes are computed as:

[Mf ]num = QT[Mf ]Q, [Gf ]num = QT[Mf ]Q. (69)

The superscript [•]num stands for the terms obtained numerically. The comparison between the analytic
operators displayed in equations (66) and (67) with our model, for meshes with a varying number of nodes
NDOF , gives a relative error displayed in Figure 7, calculated with respect to the Frobenius norm:

err([•]) =

∥∥[•]num − [•]ref
∥∥

fro

‖[•]ref‖fro
. (70)

Figure 7: Numerical relative errors (in %) as a function of the number of nodes NDOF associated with the Frobenius norm of

the matrices [Mrig
f ] and [Grig

f ], revealing a decreasing error in O
(
N−1

DOF

)
.

Figure 7 shows a convergence in O
(
N−1
DOF

)
, and highlights the validity of the operators written in equations

(59). In order to compare with the calculations of Appendix A, the results presented in this section were
computed without taking into account the gravity effects (g = 0). However, if gravity was to be taken into
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L (ellipsoid major axis) 10 m
D (ellipsoid minor axis) 2 m
e (membrane thickness) 1 mm
ρf (solid density) 8000 kg.m−3

ν (Poisson’s ratio) 0.25
E (Young’s modulus) 2× 109 Pa
∆p (internal overpressure) 70000 Pa
β (internal fluid compressibility) 0
NDOF (number of mesh nodes) 3037
g (gravity acceleration) 0 ms−2

Table 1: Parameters used for the description of the structure and its internal fluid.

account for a structure with rigid body movements in a fluid of homogeneous density ρf , Archimedes’ force
amplitude and direction would remain constant since the volume of the structure does not change. Hence,
it would only add the work of Archimedes’ force at order 0, and the rigid body movements would not result
in any added stiffness. In order to verify this, the operator QT[N(p̄∞)]Q from equation (59) was computed
for the same ellipsoid by taking into account an aerostatic pressure p∞ = −ρfgz̄, and the non-dimensional
stiffness operator obtained verifies numerically:

∥∥QT[N(p̄∞)]Q
∥∥

fro

ρfgL
= O

(
10−4

)
, (71)

which seems sufficiently small. Finally, we can consider that the error associated with the numerical ap-
proximation of the fluid operators has been quantified and their convergence assessed at least in specific
cases. As mentioned in section 2, [6] has shown the symmetry of the added mass and stiffness operators and
the skew-symmetry of the gyroscopic operator using the Lagrange equations. This statement is investigated
with the operators introduced in this study. In order to do so, the following errors using the Froebenius
norm have been determined based on a longitudinal ambient flow u∞ for the same mesh as in figure 7.
The operators have been projected on the arbitrary projection basis Qs consisting in the six rigid body
movements of space completed by the first flexible (banana shaped) mode of the airship, see section 5 for
more details about the projection basis:

∥∥∥[Kf ]− [Kf ]
T
∥∥∥

fro

‖[Kf ]‖fro
= 0.12%

∥∥∥[Gf ] + [Gf ]
T
∥∥∥

fro

‖[Gf ]‖fro
= 0.58%

∥∥∥[Mf ]− [Mf ]
T
∥∥∥

fro

‖[Mf ]‖fro
= 0.02%.

The results above are in agreement with the expected (skew-)symmetry of the operators shown by [6].

5. Stability analysis of a free inflated ellipsoidal membrane

Equations (60) have been developped in time domain. In the test case presented in this section, we will
more specifically use the equations in the frequency domain in order to perform a stability analysis on a
simple test case, which does not exclude the possibility of application in time domain such as prediction
and control in the future [6]. The method introduced in this article is here applied to the particular case of
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an ellipsoidal inflated membrane in a uniform flow, whose eigenvalues and eigenmodes are computed. The
prolate ellipsoid has an aspect ratio of 5 : 1, characterized by the slenderness number S:

S =
L

D
= 5. (72)

In order to characterize the structure, operators [Ks] and [Ms] from equation (60) are calculated using the
Finite Element analysis program NASTRAN. For that purpose, a membrane finite element linear model has
been used, inflated by an incompressible fluid. Its parameters are described in table 1. The fluid operators
[Kf ], [Gf ] and [Mf ] are calculated using the method presented in section 3. Both fluid and solid operators
are calculated on the same conforming surface mesh. As mentioned in section 2, the reference interface
coincides with the fluid-structure quasi-steady solution. For the sake of simplicity, we calculate in this study
the dynamics of the structure as an invariant shape Σ assuming that the structure quasi-steady state does
not drastically change with the value of U∞. This hypothesis enables us to perform calculations based on
the same reference configuration. As a consequence, the structure operators are only computed once, and
are associated with a quasi-steady state with no ambient flow (homogeneous external pressure field) used
as the reference configuration. The coupled model was obtained by adding the fluid and solid operators as
described in equation (60). After characterizing the fluid-structure operators, the objective of this section
is to calculate the associated fluid-structure coupled eigenvalues. For this purpose, the displacement ξ is
looked for as the product of a function of space q and a function of time:

ξ(x, t) = q(x) exp(λt), (73)

where λ can be complex. In the following, all the variables are written on the reference configuration and
the bar notation (•) is not used since there is no risk of confusion. The solution in the form of equation (73)
is introduced in equation (60), which gives:

[
([Ms] + [Mf ])λ2 + [Gf ]λ+ [Ks] + [Kf ]

]
q exp(λt) = 0. (74)

However, because the fluid operators are full (as a consequence of condensing the fluid equations on the
interface with the integral representation [21]), solving such a problem requires a large amount of memory.
To overcome this issue, the size of the problem is reduced by projecting the unknown displacements ξ of the
structure on a reduced basis. The basis chosen here contains the six rigid body motions (three translations
and three infinitesimal rotations), completed by two structural elastic modes ξ7 and ξ8 (computed with
NASTRAN), one of which can be seen on Figure 6. These banana-shaped flexible modes are orthogonal.
Both have the same in vacuo frequency and only differ by a π/2 rotation of their direction around the
symmetry axis. According to Li et al. [6], these banana modes are expected to be the lowest frequency
elastic modes emerging for high aspect ratio flexible airships. The displacement field is therefore projected
on a reduced basis Qs:

ξ(x, t) = Qs(x)qs exp(λt) (75a)

with Qs = [Q, ξ7, ξ8], qs =




d
θ
qs7
qs8


 and [•]Qs

= QT
s [•]Qs. (75b)

The projection basis Qs is an eight-columns concatenation of the rigid body movements matrix Q defined
in (68a) for the first six columns, and the mode shape functions of the bending modes ξ7 and ξ8 for the
two last columns. The volume center displacement is given by d, the structure rotation is given by θ and
the amplitudes of the elastic modes are given by the modal coefficients qs7 and qs8. The displacements are
therefore characterized by the new generalized coordinates vector qs of the fluid-structure problem and the
associated eigenvalue λ. Equation (74) is quadratic with respect to λ, however it is much more convenient
to determine eigenvalues associated with linear eigen-equations. For that purpose, the equation is shifted
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Figure 8: Evolution of the real part of the modes (top) associated with the growth rate and their imaginary part (bottom)
associated with the circular frequency as a function of the reduced velocity UR. The mass ratio is M = 0.2. Each color stands
for an identified mode using a Modal Assurance Criterion. Only the modes with positive frequency, positive growth rate and
strictly positive absolute value have been plotted. The black horizontal dashed line shows the frequency of the banana mode
in the absence of fluid.

into the state space, thus reducing its order in λ from quadratic to linear, which gives by projecting on the
Qs basis:

[M1]

(
qs
λqs

)
= λ [M2]

(
qs
λqs

)
, (76a)

with [M1] =

[
0 1

[Ks]Qs
+ [Kf ]

Qs
[Gf ]

Qs

]
and [M2]s =

[
1 0

0 −
(

[Ms]Qs
+ [Mf ]

Qs

)
]

(76b)

Equation (76a) consists of a system of eight equations since the dynamic equations have been projected
on the modal basis with the help of a left-multiplication by QT

s . This eigenvalue equation is solved using
Matlab for a flow velocity u∞ colinear to the structure axis. A range of fluid velocities U∞ and densities
ρf are investigated. The results are plotted with respect to the reduced velocity UR and the mass ratio M
defined as:

UR =
U∞
ΩL

, (77a)

M =
ρf
ρs

e
D

. (77b)

The reduced velocity UR determines the ratio between the flow velocity and the velocity required for a fluid
particle to travel across the structure in the time of a characteristic period. The value of the characteristic
frequency Ω is chosen as the frequency in vacuo of the elastic modes. The mass ratio compares the order
of magnitude between the added mass of the fluid and the membrane mass, D being the diameter of the
ellipsoid (hence D = L/5 for a 5:1 prolate). The particular dependence of the operators on U∞ is taken
advantage of: they are calculated at an arbitrary velocity, and their value can be recalculated for each UR
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rotationstranslations elastic modes

Figure 9: Generalised coordinates of a static unsteady mode (blue) and a flutter mode (orange) for two different values of UR,
with M = 0.2.

with a scalar multiplication, recalling that the mass operator does not vary with U∞, the gyroscopic operator
is linear with U∞ and the stiffness operator is linear with U2

∞, as shown in section 3. Similarly, by looking
at equation (35) one can deduce that the fluid operators are linear with the fluid density ρf .

Figure 10: Real part (growth rate, top) and imaginary part (frequency, bottom) of the eigenvalues as a function of the reduced
velocity UR. Curves are for M = 0.1, 0.2, 0.5, 1, 2 and 5.

The results are presented Figure 8 for a mass ratio of M = 0.2. The order 0 solution is an unstable
equilibrium position as soon as there is a flow because of the absence of fins in this simple test case. Indeed,
for UR ∈]0, 1], the system has a mode with a nil frequency =m(λ) = 0 and a positive growth rate <e(λ) > 0
(plotted in blue in Figure 8): it is a divergence mode. At an arbitrary value UR = 0.3 in this region, the
modal decomposition of this unstable mode qs is shown in Figure 9 with blue bars. It appears that the
generalized coordinates contributing to the instability are the rotations and translations perpendicular to
the axis of u∞, while translation and rotation in the axis of the structure and flexible deformations are not
involved in the instability. The latter is triggered by the mechanical moment appearing in equation (A.30b):
a small variation of θ1 induces a moment in the same direction on the structure, leading to an exponentially
growing drift. The moment responsible for this drift is known by airship engineers as the Munk moment [1].
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Figure 11: Instability map predicted by the linear model: divergence (static) or flutter (dynamic), for M ∈ [10−4, 106] and
UR ∈ [10−2, 102].

The contribution of the translations displayed in Figure 9 results from the emergence of a force perpendicular
to the ambient flow when the structure rotates as predicted by equation (A.30a). In the region UR ∈]0, 1]
of Figure 8, the frequency of the elastic mode (dashed blue line) decreases with the reduced velocity until
it vanishes. If the flow velocity increases past this point, another static unstable mode appears (yellow
line), with a growth rate increasing with UR. When the flow reaches the critical velocity UR ' 1.04, the
growth rate of the two unstable modes becomes equal, and a coupled mode with a strictly positive frequency
and growth rate emerges, resulting in exponentially growing oscillations of the structure. This instability
is referred to as post-diverence (or Paidoussis) flutter [30], and is characteristic of conservative gyroscopic
systems. This flutter phenomenon is documented in detail in section 3.4 of [30] in the context of clamped
pipes conveying fluid. The orange bars from Figure 9 show the generalized coordinates of this flutter mode.
It appears that, unlike the static unstable mode below the critical velocity (plotted with blue bars in the
same figure), this instability results from the coupling of rigid body movements with elastic deformations of
the structure, partly due to the gyroscopic effects of the fluid. Around UR = 1.53, the flutter mode splits
into two static unstable modes. We see as well that for a mass ratio of M = 0.2 the added mass has a
low influence on the dynamics. Indeed, for UR = 0 (hence when fluid stiffness or gyroscopic effects vanish),
the frequency of the elastic mode (dashed blue line in Figure 8) is almost the same as the frequency of the
structure in vacuo (dashed horizontal black line). Figure 10 shows the evolution of the eigenvalues for a
range of values of mass ratio M. As expected, for larger values of the fluid density, the frequency of the
immersed elastic mode in a fluid at rest decreases.
Figure 11 shows the type of instability of the system (static divergence or flutter) as a function of the
parameters UR and M. It can be seen that the model presented here provides a quick way to carry out
stability studies as a function of flow or structural parameters. We observe that in the absence of fins, the
system is always unstable, hence the importance of adding at least a simplified model of the fins like Li [6]
to apply the method to real cases.

6. Conclusion

Drawing inspiration from the work of Li et al. [6] to characterize the dynamic aeroelasticity of flexible
airships, the method presented in this article aims both to enhance the precision of the prediction of the
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potential flow effects and to calculate it for various shapes of airships. The approach is based on a lin-
earization of the fluid boundary equation expressed in an ALE formalism, which leads to the numerical
calculation of new BEM operators associated to the spatial derivative of the classical BEM operators for a
flowing fluid with respect to the structure displacements. After quantifying the numerical and linearization
errors associated to the method through test cases, some preliminary results have been presented in section
5, showcasing the advantages of the method for stability analysis of such systems. It also highlighted the
high cost of the eigenvalue problem due to the density of the fluid matrices. Though the projection on the
dry modal basis helped to overcome this issue, an ongoing development is the use of hierarchical matri-
ces [41] to reduce storage space (currently in O

(
NDOF

2
)
) and to calculate matrix vector products faster.

For applications such as control of trajectory, regarding the rigid body motions, the small displacements
hypothesis is a limitation: in order to expand the model to wider flight conditions such as maneuvers, an
extension to large displacements coupled with small deformations would be of high interest, as done in works
of Thomasson & Woolsey [37] who deal with rigid body motions in currents for example. In order to be
able to represent the aspects of lift and drag with the model presented in this article, a solution could be
to impose the Kutta condition at the trailing edge of the fins, thus creating a circulation in the flow. For
this, it will be necessary to introduce in the integral representation a discontinuity surface (vortex sheet)
representing the wake of the airship (as it is done in the panel method, cf [3, 8] for steady flight conditions or
by [28] in the case of unsteady, compressible flows but without predicting the linear perturbations around a
reference solution). This surface will be discretized by the BEM as it is done for the fluid-structure interface
except that the associated operators are hyper-singular, as shown by [21], and their calculation requires more
complex mathematical methods such as the algorithm introduced in [42]. This work will be the subject of
a future article.
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Appendix A. Detailed calculation of the linearization

We detail here how the linearization was performed.

Linearized Green’s function

The order 1 Taylor expansion of the norm of a vector a at an arbitrary power n is:

‖a‖n =
∥∥a0

∥∥n + a0 · a1
∥∥a0

∥∥n−2
+O

(
ε2
)
, (A.1)

allowing to calculate the following formula:

‖x− y‖n = ‖x̄− ȳ‖n + n(x̄− ȳ) ·
(
ξ1

(x̄) − ξ1
(ȳ)

)
‖x̄− ȳ‖n−2

+O
(
ε2
)

on Σ. (A.2)

The Green’s function given by (19) and its gradient becomes, when combined with the linearized expression
(A.2):
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Gn
0

= − 1

4π

n̄

‖x̄− ȳ‖ (A.3a)

Gn
1

=
1

4π




(x̄− ȳ) ·
(
ξ1

(x̄) − ξ1
(ȳ)

)
n̄

‖x̄− ȳ‖3
− τ̄ 1

‖x̄− ȳ‖


 (A.3b)

∂nG
0

=
1

4π

(x̄− ȳ) · n̄
‖x− y‖3

(A.3c)

∂nG
1

=
1

4π

(
(x̄− ȳ) · τ̄ 1

‖x− y‖3
+

(
ξ1

(x̄) − ξ1
(ȳ)

)
· n̄

‖x̄− ȳ‖3
(A.3d)

− 3
(x̄− ȳ) ·

(
ξ1

(x̄) − ξ1
(ȳ)

)
(x̄− ȳ) · n̄

‖x̄− ȳ‖5

)
. (A.3e)

Linearized flow velocity

In order to express the linear variations of the flow velocity at order ε on the interface, recalling that

u = ∇φ =
∂φ

∂x
, (A.4)

one can express on the reference interface with the chain rule:

ū =
∂x̄

∂x

∂φ̄

∂x̄

=

(
∂x

∂x̄

)−T

∇φ̄

= (1+ O∇ξ̄)−T∇φ̄.

(A.5)

The linearized inversion of the terms in the parentheses of the above equation enables to write at both orders
of magnitude 0 and ε:

ū = ∇φ̄0 + ∇φ̄1 −
[
O∇T
ξ̄1
]
∇φ̄0 +O

(
ε2
)
, (A.6)

hence the demonstration of (46).

Linearized quadratic flow velocity

The linearized term ū0.ū1 is developed into a more useful formulation. Because of the non penetration
condition (10) at order 0:

ū0 · n̄ = 0 on Σ, (A.7)

by introducing the tangential and normal components of any arbitrary vector ā on Σ:

ān = (n̄⊗ n̄)ā

āS = ā− ān
ā = āS + ān,

(A.8)

we obtain:

ū0 = ū0
S on Σ. (A.9)
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The scalar product becomes

ū0 · ū1 = ū0
S · (ū1

S + ū1
n)

= ū0
S · ū1

S on Σ.
(A.10)

Using equation (46), we obtain:

ū1
S = (1− n̄⊗ n̄)

(
∇φ̄1 −

(
O∇T
ξ̄1ū0

))
= ∇Sφ̄1 − ( O∇T

S ξ̄
1)ū0 on Σ. (A.11)

By combining equations (A.10) and (A.11) we obtain:

ū0 · ū1 = ū0 ·
(
∇Sφ̄1 − O∇T

S ξ̄
1ū0
)

on Σ. (A.12)

Linearized velocity

It might be of interest, in order to validate the code for example, to be able to calculate the fluid velocity
at the interface. The velocity can be decomposed into a surface and a normal component, since the sur-
face gradient of the potential is calculated more conveniently than its total gradient since the potential is
calculated only at the interface with the BEM:

u = uS + (n⊗ n)u on Σ(t) (A.13)

where it is important to notice that uS = ∇Sφ is calculated with the surface gradient in the deformed
configuration:

∇Sφ = (1− n⊗ n)∇φ on Σ(t). (A.14)

By developing at order ε the above equation:

∇Sφ = (1− n̄⊗ n̄)∇φ̄0 − (n̄⊗ n1 + n1 ⊗ n̄)∇φ̄0 − O∇T

S ξ̄
1∇Sφ̄0 + ∇Sφ̄1 +O

(
ε2
)

on Σ(t). (A.15)

Therefore, we obtain the steady velocity at orders 0 and 1 by combining equations (38a) and (A.15):

ū0
S = (1− n̄⊗ n̄)∇φ̄0 = ∇Sφ̄0 on Σ,

ū1
S = ∇Sφ̄1 −

((
O∇T

S ξ̄
1n̄
)
⊗ n̄+ n̄⊗

(
O∇T

S ξ̄
1n̄
)
− O∇T

S ξ̄
1
)

O∇Sφ̄0 on Σ.
(A.16)

It has been noted that the first line had already been determined in equation (46) since the small dis-
placements of the structure only affect the order O (ε) of the solution. Because the surface gradient is
perpendicular to the normal, the expression at order 1 can be further simplified with:

ū1
S = ∇Sφ̄1 −

(
n̄⊗

(
O∇T

S ξ̄
1n̄
)
− O∇T

S ξ̄
1
)

O∇Sφ̄0 on Σ. (A.17)

By multiplying the boundary condition (10) with the normal, one gets:

(n⊗ n)u = (n⊗ n)
∂ξ

∂t
= (n̄⊗ n̄)

∂ξ̄1

∂t
+O

(
ε2
)

on Σ(t) (A.18)

By combining equations (A.13), (A.17) and (A.18), the order 1 fluctuations of the velocity are obtained:

u1 = ∇Sφ̄1 −
(
n̄⊗

(
O∇T

S ξ̄
1n̄
)
− O∇T

S ξ̄
1
)

O∇Sφ̄0 + (n̄⊗ n̄)
∂ξ̄1

∂t
on Σ. (A.19)
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Linearized rigid-body gyroscopic loads

In order to validate the linearized equations of our model, this appendix displays here the exact nonlinear
work from the pressure of an inviscid and irrotational fluid on a rigid structure. The efforts depending on
the 6 rigid body movements will then be linearized in order to introduce a formulation with a fluid stiffness,
damping and mass, allowing to compare the numerical results of section 4 with the analytical results displayed
here. In order to parameterize the rigid body movements of the structure, the displacements are decomposed
into a translation d and a rotation θ such that:

ξ̄1 = d̄1 + θ̄1
×x̄, (A.20)

where the subscript × on a vector denotes the 3× 3 matrix associated with the cross product × such that

θ̄×x̄ = θ̄ × x̄. (A.21)

The frame attached to the structure is noted Σ̃, which is equal to the reference frame Σ which has been rotated
by the rotation operator R defined in equation (A.22a). First, literature gives the analytic expression of the

6× 6 added mass matrix [M rig
f ] of a revolution ellipsoid for any major to minor axis aspect ratio. Secondly,

one can find the dynamical force and moment (F̃F/S and M̃F/S respectively) for a perfect stationary
homogeneous ambient flow on a structure in a rigid body motion described by a velocity ṽ at the center
of volume and a rate of rotation ω̃. The tilde notation ˜(•) is associated with the expression of an array in
the body frame, which is linked to the expression on the reference interface with the rotation operator R
associated with a rotation angle of the structure θ:

R = 1+ θ̄1
× +O

(
ε2
)
, (A.22a)

˜(•) = R−1 ¯(•). (A.22b)

The expression of the potential force and moment in the case of rigid body movements of a structure can
be found in [37]:

(
F̃F/S
M̃F/S

)
= −

[
M rig
f

]( dṽ
dt − (ũ∞)×ω̃

dω̃
dt

)
−
[

ω̃× (0)
(ṽ − ũ∞)× ω̃×

] [
M rig
f

]( ṽ − ũ∞
ω̃

)
. (A.23)

In the case of an ellipsoid, the added mass matrix
[
M rig
f

]
has only diagonal terms and can therefore be

rewritten on the form:

[
M rig
f

]
=

[
[Mf 1] (0)
(0) [Mf 2]

]
, (A.24)

enabling to develop the expression of the force and moment:

F̃F/S = − [Mf 1]

(
dṽ

dt
− (ũ∞)×ω̃

)
− ω̃× [Mf 1] (ṽ − ũ∞) (A.25a)

M̃F/S = − [Mf 2]
dω̃

dt
− (ṽ − ũ∞)× [Mf 1] (ṽ − ũ∞)− ω̃× [Mf 2] ω̃ (A.25b)

Since the structure has rotated, the relative direction of the ambient flow varies as follows:

ũ∞ = R−1ū∞ =
(
1− θ̄1

×
)
ū∞ +O

(
ε2
)
, (A.26)

and similarly for the other vectors associated with the kinematics, we have ω̃1 = ω̄1 + O
(
ε2
)
, ṽ1 =

v̄1 + O
(
ε2
)
, and the same goes for the time derivatives of ṽ1. The linearized expression of the force and

moment in the reference frame is:
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(
F̄F/S
M̄F/S

)
=
(
1+ θ̄1

×
)( F̃F/S

M̃F/S

)
+O

(
ε2
)
. (A.27)

we get the new expression of the fluid forces depending on the displacement of the structure and its time
derivatives on the reference domain:
Therefore, by combining equations (A.25), (A.26) and (Appendix A) we obtain the expression of the fluid
forces

F̄F/S =− [Mf 1]

(
dv̄1

dt
−
((
1− θ̄1

×
)
ū∞
)
× ω̄

1

)
− ω̄1

× [Mf 1]
(
v̄1 −

(
1− θ̄1

×
)
ū∞
)

+O
(
ε2
)
, (A.28a)

M̄F/S =− [Mf 2]

(
dω̄1

dt

)
− (1+ θ̄1

×)
(
v̄1 −

(
1− θ̄1

×
)
ū∞
)
× [Mf 1]

(
v̄1 −

(
1− θ̄1

×
)
ū∞
)

+ ...

ω̄1
× [Mf 1] ω̄1 +O

(
ε2
)
.

(A.28b)

which becomes by expanding the terms:

F̄F/S =− [Mf 1]

(
dv̄1

dt
− (ū∞)× ω̄

1

)
+ ω̄1

× [Mf 1] ū∞ (A.29a)

M̄F/S =− [Mf 2]

(
dω̄1

dt

)
+ v̄1
× [Mf 1] ū∞ + (ū∞)× [Mf 1] v̄1 +

(
θ̄1
×ū∞

)
× [Mf 1] ū∞ + ...

(ū∞)× [Mf 1]
(
θ̄1
×ū∞

)
− (ū∞)× [Mf 1] ū∞ − θ̄1

×(ū∞)× [Mf 1] ū∞.

(A.29b)

In order to get an expression in the form of stiffness, damping and mass operators appear, we switch the
position of the variables using the skew-symmetry properties of the cross product:

F̄F/S = − [Mf 1]

(
dv̄1

dt
− (ū∞)× ω̄

1

)
− ([Mf 1] ū∞)× ω̄

1 (A.30a)

M̄F/S = − [Mf 2]

(
dω̄1

dt

)
− ([Mf 1] ū∞)× v̄

1 + (ū∞)× [Mf 1] v̄1 + ([Mf 1] ū∞)× (ū∞)×θ̄
1 − ...

(ū∞)× [Mf 1] (ū∞)× θ̄
1 − (ū∞)× [Mf 1] ū∞ + ((ū∞)× [Mf 1] ū∞)× θ̄

1.

(A.30b)

By rearranging the terms in a suitable way, the above equation can be rewritten as

(
F̄F/S
M̄F/S

)0

= −
(

0
(ū∞)× [Mf 1] ū∞

)
(A.31a)

(
F̄F/S
M̄F/S

)1

= −
[
M rig
f

]( dv̄
dt

1

dω̄
dt

1

)
−
[
Grigf

](
v̄1

ω̄1

)
−
[
Krig
f

](
d̄1

θ̄1

)
, (A.31b)

[
Grigf

]
=

[
(0) ([Mf 1] ū∞)× − [Mf 1] (ū∞)×

([Mf 1] ū∞)× − (ū∞)× [Mf 1] (0)

]
, (A.31c)

[
Krig
f

]
=

[
(0) (0)
(0) (ū∞)× [Mf 1] (ū∞)× − ([Mf 1] ū∞)× (ū∞)× − ((ū∞)× [Mf 1] ū∞)×

]
, (A.31d)

where the displacement of the structure d̄1 has been artificially introduced in order to obtain arrays of
variables at order ε linked with a temporal derivatives, even though the displacement does not intervene in
the dynamics of the structure since the problem is invariant by translation, which is in agreement with the
factors of d̄1 being all nil in the above equation.
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Appendix G

Complementary experimental results

G.1 Measurement of the viscosity of glucose syrup

In this appendix, the viscosity measurements of the glucose syrup are presented. These measures
were obtained with a viscosimeter.

First, the viscosity µf has been measured for various concentrations of glucose syrup xsyrup,
where xsyrup = 0 is associated with pure water and xsyrup = 1 with pure glucose syrup. The results
are displayed in figure G.1. In order to interpolate the viscosity of the mixture for any syrup
concentration, the Lederer–Roegiers equation for a binary mixture (Zhmud, 2014) has been used,
with a coefficient α = 2 which seemed to offer a good approximation as shown in figure G.1:

ln(µ) =
xwater

xwater + αxwater
lnµsyrup +

αxsyrup
xwater + αxsyrup

lnµsyrup, (G.1)

with µwater and µsyrup the viscosities of water and flucose syrup respectively and xwater = 1−xsyrup
the water concentration.

Secondly, the viscosity of a water/syrup mixture with xsyrup has been measured for various
temperatures, as displayed in figure G.1. In order to interpolate the viscosity of the mixture at any
temperature, a linear regression as been used as shown with the dashed line.

G.2 Viscous added mass and damping uncertainties

Figure G.2 shows the same graphs as V.6 with D†
µf

and I†µf by it is completed with uncertainty bars
associated with the Stokes number and the damping and mass coefficients.
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Figure G.1: Left: the blue dots show measurements of the viscosity of a mixture of water and
glucose syrup for various syrup concentrations xsyrup. Dashed line: prediction of the viscosity using
the Lederer-Roegiers equation for binary mixtures G.1 with a coefficient α = 0.5. Right: the blue
dots show the viscosity measurements of a mixture with xsyrup at various temperatures, while the
dashed line shows the associated linear regression.

D
† µ f

St

I† µ f

St
Figure G.2: Boundary layer added mass I†µf (left) and added damping D†

µf
(right) plotted against

the Stokes number. Both axis are on a logarithmic scale.
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Titre: Modélisation des effets de fluides externes et internes sur le comportement dynamique des dirigeables
flexibles

Mots clés: masse ajoutée/vibration/aérodynamique/dirigeable

Résumé: Cette thèse de doctorat porte sur la modélisation
et la simulation des interactions fluide-structure entre un
dirigeable souple, un écoulement externe et un gaz porteur
interne. On considère que le fluide est potentiel du fait de
la grande taille des dirigeables. L’écoulement potentiel est
résolu sur un maillage de l’interface fluide-structure grâce
à la Méthode des Éléments de Frontière, et le travail des
efforts associés est obtenu par la Méthode des Eléments
Finis. Les équations du fluide sont exprimées dans un
formalisme Arbitrairement Lagrangien-Eulérien. Afin de
se ramener à des calculs sur un maillage de référence
invariant, on considère de grands mouvements d’ensemble
(rotations et translations) auxquels s’ajoutent de petits
mouvements de corps rigides et de petites déformations
par rapport auxquels le problème fluide est linéarisé.
Cela conduit en pratique à différencier les opérateurs de
la Méthode des Éléments de Frontière pour caractériser
la cinématique du fluide ainsi que les opérateurs de
la Méthode des Eléments Finis pour déterminer les
efforts associés exercés sur l’interface fluide-structure, ceci
afin de prendre en compte les perturbations dans le
domaine fluide liées aux mouvements de l’interface. La
linéarisation permet d’exprimer les efforts du fluide à l’aide
d’opérateurs de masse, gyroscopique et de raideur ajoutés,
proportionnels respectivement à l’accélération, la vitesse
et les déplacements de l’interface. De plus, un modèle

simplifié d’ailerons basé sur la théorie de Theodorsen est
utilisé afin d’ajouter leur portance au modèle. La partie
structure du problème est modélisée à partir de la Méthode
des Eléments Finis appliquée à une membrane. Celle-ci
est précontrainte par la pression statique du fluide interne
et de l’écoulement externe. Le modèle fluide-structure ainsi
obtenu est utilisé pour étudier la stabilité d’un tel système
couplé fluide-structure sur un cas test de dirigeable. Les
opérateurs fluide-structure permettent d’obtenir les valeurs
propres du système pour diverses vitesses du dirigeable.
Le problème fluide-structure est coûteux à résoudre car
matrices de la Méthode des Éléments de Frontière sont
pleines, et pour réduire la taille du problème, celui-ci est
projeté sur une base réduite des modes de la structure
dans le vide. Au-delà d’une vitesse critique, on constate
qu’un risque de divergence par flottement apparaı̂t. Enfin,
la masse ajoutée obtenue par le modèle d’écoulement
potentiel est comparée avec des résultats expérimentaux
obtenus à partir d’une maquette rigide oscillant en rotation
dans une cuve de fluide au repos. En faisant varier la
fréquence d’oscillation de la maquette, la densité et la
viscosité du fluide, on a pu caractériser, en fonction du
nombre de Stokes, l’ordre de grandeur des efforts visqueux
relativement aux efforts inertiels du fluide prédits pour un
fluide potentiel.

Title: Modeling of external and internal fluid effects on the dynamic behavior of a flexible airship

Keywords: added mass/ vibration/ aerodynamics/ airships

Abstract: This PhD thesis deals with the modeling and
simulation of fluid-structure interactions between a flexible
airship, an external flow and an internal lifting gas. The
fluid is considered as potential due to the large size of the
airships. The potential flow is solved on a mesh of the fluid-
structure interface using the Boundary Element Method,
and the work of the associated forces is obtained using the
Finite Element Method. The fluid equations are expressed
in an Arbitrary Lagrangian-Eulerian formalism. In order to
calculate on an invariant reference mesh, we consider large
rigid body motions (rotations and translations) to which are
added small rigid body motions and small deformations
with respect to which the fluid problem is linearized.
This leads in practice to differentiate the operators of the
Boundary Element Method to characterize the kinematics
of the fluid and the operators of the Finite Element Method
to determine the associated forces exerted on the fluid-
structure interface, in order to take into account the
perturbations in the fluid domain related to the movements
of the interface. The linearization allows to express the
fluid forces using added mass, gyroscopic and stiffness
operators, proportional respectively to the acceleration,
velocity and displacements of the interface. In addition, a

simplified fin model based on Theodorsen theory is used to
include their lift in the model.
The structural part of the problem is modeled using the
Finite Element Method for a membrane. The membrane is
prestressed by the static pressure of the internal fluid and
the external flow. The fluid-structure model thus obtained
is used to study the stability of such a coupled fluid-
structure system on an airship test case. The fluid-structure
operators are used to obtain the eigenvalues of the system
at various speeds of the airship. The fluid-structure problem
is expensive to solve since the matrices of the Boundary
Element Method are full and to reduce the size of the
problem, the latter is projected on a reduced basis of the
structure modes in vacuum. We observe that beyond a
critical velocity, a risk of divergence by flutter arises.
Finally, the added mass obtained by the potential flow model
is compared with experimental results obtained with a rigid
model oscillating rotationally in a fluid tank at rest. By
varying the oscillation frequency of the model, the density
and the viscosity of the fluid, it was possible to characterize
the order of magnitude of the viscous forces compared to
the inertial forces of the fluid predicted for a potential fluid
as a function of the Stokes number.
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