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Résumé en français

L'objectif principal de cette thèse est d'étudier la stabilité asymptotique des équations

des ondes avec un terme d'amortissement localisé et des conditions aux limites de

Dirichlet. Nous considérons le cadre hilbertien standard ainsi que des cadres plus

généraux. Nous considérons également le problème non-linéaire ainsi que le problème

linéaire, en essayant de répondre à chaque fois, aux questions sur le bien posé et la

stabilité. Le problème général s'écrit comme suit
ztt −∆z = −a(x)g(zt) for (t, x) ∈ R+ × Ω,

z = 0 on R+ × ∂Ω,

z(0, ·) = z0 , zt(0, ·) = z1,

où z est l'inconnue du problème, (z0, z1) sont les conditions initiales appartenant à

l'espace fonctionnel Lp que l'on note Xp = W 1,p(Ω) × Lp(Ω) avec p ∈ [1,∞) qui sera

dé�ni plus tard avec plus de détails. Lorsque la dimension N ≥ 2 et p = 2, l'ensemble

Ω est un domaine borné C2 de RN et lorsque N = 1 et p ∈ (1,∞), Ω est simplement

un intervalle de R.

La fonction g : R −→ R est une fonction non décroissante de classe C1 véri�ant

xg(x) > 0 pour x ̸= 0. Le terme −a(x)g(zt) est appelé feedback, et il s'agit d'un

amortissement dans ce cas. D'autres hypothèses, en particulier des hypothèses de

croissance, sont généralement imposées sur g en fonction du contexte du problème.

La fonction a : Ω → R est une fonction continue non négative. Elle est appelée

fonction de localisation car elle dé�nit le sous-domaine de Ω où l'amortissement agit.

La fonction a est bornée inférieurement par une constante strictement positive a0 sur

un sous-ensemble ouvert non vide ω de Omega. On peut voir le sous-ensemble ω

comme la région du domaine où le terme d'amortissement est actif. Dans le cas où

4
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Ω \ ω a une mesure de Lebesgue strictement positive, l'amortissement est dit localisé

alors que lorsqu'il a une mesure nulle, c'est-à-dire que Ω = ω, l'amortissement est dit

global car il est actif sur tout le domaine Ω. La géométrie du domaine ainsi que la

localisation de l'amortissement sont très importantes pour les problèmes de stabili-

sation des ondes. Des conditions géométriques sont imposées sur le domaine lorsque

l'amortissement est localisé a�n d'obtenir des résultats de stabilisation.

Dans le cas où p = 2, qui est le cadre fonctionnel hilbertien standard, l'énergie du

système est dé�nie par la quantité :

E2(t) =
1

2

∫
Ω

(
|zt(t, x)|2 + |∇z(t, x)|2

)
dx.

Le problème a été largement étudié dans ce cadre. Le caractère bien posé a été établi

à plusieurs reprises (voir par exemple [4], [24], [25]). Dafermos [11] et Haraux [14] ont

prouvé la stabilisation forte dans le cas d'un g croissant, c'est à dire

lim
t→+∞

E2(t) = 0, (1)

la preuve est basée sur le principe d'invariance de Lasalle et nous pouvons nous référer

à [4] pour ses détails.

Puisque nous savons grâce à cette preuve que l'énergie des solutions tend vers 0 lorsque

t tend vers l'in�ni, on s'intéresse maintenant aux taux de décroissance, c'est-à-dire la

vitesse à laquelle l'énergie tend vers 0.

Di�érents taux de stabilité ont été obtenus au cours des années, selon le type de

problème (linéaire ou non-linéaire, localisé ou global) avec di�érentes hypothèses sur

la non-linéarité g. Les références aux travaux antérieurs dans le cas p = 2 et dans le

contexte de cette thèse sont données dans l'introduction du chapitre 2.

Le meilleur taux de décroissance que l'on puisse espérer est la décroissance expo-

nentielle. A�n d'obtenir ou du moins d'espérer une telle décroissance, des hypothèses

géométriques doivent être imposées sur le domaine d'amortissement ω. Ces hypothèses

ont été caractérisées pour la première fois dans les travaux pionniers [32] sur les équa-

tions des ondes semi-linéaires et leur extension dans [22] et [21], où les conditions

géométriques du multiplicateur (MGC) ont été caractérisées pour ω comme des con-

ditions su�santes pour atteindre la stabilité exponentielle. Cependant, des conditions

géométriques plus optimales (nécessaires et su�santes) sont obtenues pour les équa-
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tions des ondes linéaires, elles sont introduites et détaillées dans [6] et [9]. Selon

le type des conditions géométriques imposées, deux méthodes ont été développées

pour étudier la décroissance exponentielle pour l'équation d'onde localement amortie :

l'optique géométrique et la méthodes des multiplicateurs. Nous nous intéressons dans

cette thèse par la méthode des multiplicateurs.

Or, si le problème de la stabilisation des ondes lorsque p = 2 est très courant et a

été traité plusieurs fois sous di�érentes hypothèses, le même problème lorsque p ̸= 2

est beaucoup moins populaire et il y a très peu de travaux qui ont été faits dans ce

cadre fonctionnel. Nous devons une partie importante de nos résultats dans ce cadre

aux travaux pionniers de [16] et [10]. Toutes les références de ce cadre sont mention-

nées dans l'introduction du chapitre 3.

La motivation derrière l'étude des problèmes de stabilisation des ondes dans un tel

cadre général provient du domaine de l'automatique où l'on s'intéresse pas à l'énergie

mais à l'amplitude des ondes, ce qui représente mathématiquement la norme L∞ des

solutions. Stabiliser les équations d'ondes dans un cadre L∞ est donc très pratique

puisque cela revient à stabiliser l'amplitude des solutions. Cela nous amène immé-

diatement à se poser la question en mathématiques sur ce qui se passe lorsque nous

considérons un cadre général Lp avec 1 ≤ p ≤ ∞ et quel type de résultats de stabil-

isation pouvons-nous obtenir dans ce cas. Nous gardons également l'espoir d'obtenir

une stabilisation dans le cas où p = ∞ en passant par l'étude du problème pour tous

les p ≥ 1.

Il faut noter que l'étude d'un tel problème dans des cadres non-hilbertiens n'est pas

toujours possible en dimensions supérieures, elle n'est possible qu'en dimension un. La

raison en est que l'opérateur des ondes n'est pas toujours bien dé�ni dans des espaces

fonctionnels Lp pour des dimensions supérieures lorsque p ̸= 2.

Avant d'aborder les di�érents problèmes de stabilisation, la première question à traiter

dans un tel cadre est la question de la well-posedness. En e�et, les techniques habituelles

de preuve de bien-posé basées sur les espaces de Hilbert (opérateurs maximaux mono-

tones par exemple) ne sont plus valables dans un cadre non-hilbertien. Nous devons

faire preuve de créativité et utiliser de nouvelles techniques. Dans le cas linéaire, un

argument basé sur la formule de D'Alembert et la théorie de point �xe est utilisé

dans [10] et dans notre travail également pour prouver la well-posedness pour tous

les p > 1. Dans le cas non linéaire, [16] prouve l'existence et l'unicité des solutions

pour tous les p ≥ 2 en utilisant un argument basé sur l'existence et l'unicité des so-
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lutions dans le cadre hilbertien et une fonctionnelle d'énergie équivalente mais avec

l'hypothèse g(zt)
zt

∈ L∞
loc(R+, L

∞(Ω)) qui n'est pas toujours satisfaite pour les solutions

faibles. Nous proposons une preuve de l'existence des solutions faibles dans le cas où

p ≥ 2 ainsi qu'une preuve de l'existence des solutions fortes dans le cas 1 < p <∞.

Nous pouvons maintenant poser des questions sur la stabilité et les taux de décroissance

de l'énergie. La p-ième énergie Ep d'une solution a été introduite dans [14] comme une

généralisation de l'énergie hilbertienne standard E2. Il s'agit d'une énergie équivalente

à l'énergie naturelle et elle est dé�nie par :

Ep(t) =
1

p

∫
Ω

(|zx(t, x) + zt(t, x)|p + |zx(t, x)− zt(t, x)|p) dx.

Des estimées Lp ont également été prouvées dans [14], ce qui a conduit à prouver la

décroissance polynomiale de l'énergie dans le cas non linéaire, avec g une fonction

non décroissante de classe C1 se comportant comme ks|s|r, r, k > 0. Des résultats

dans [14] ont été utilisés dans [5,10] pour obtenir certains résultats de stabilité. Cette

dernière référence s'appuie sur des techniques de Lyapunov pour des systèmes linéaires

à variation temporelle pour prouver la stabilité exponentielle Lp pour p ≥ 2 du prob-

lème non-linéaire sous des hypothèses restrictives sur les données initiales (doivent

appartenir aux espaces fonctionnels L∞); d'autres résultats de stabilité ont été mon-

trés dans la même référence en particulier la stabilité L∞ mais toujours avec plus de

restrictions sur les données initiales. Nous obtenons une décroissance exponentielle du

problème linéaire pour tout 1 < p < +∞. Nous obtenons également une décroissance

exponentielle dans le problème non linéaire dans le cas p > 1 le long des solutions

fortes.

Pour résumer, cette thèse traite trois problèmes de stabilisation des équations des

ondes.

� Premier problème: Nous étudions la stabilité de l'équation des ondes avec

un amortissement non-linéaire et localisé dans un cadre hilbertien standard en

dimension deux. La preuve est basée sur les travaux de [25], auxquels nous rajou-

tons une localisation ainsi que des perturbations. Nous démontrons la stabilité

exponentielle le long des solutions fortes en l'absence de perturbation ainsi qu'une

sorte stabilité au sens Input-To-State par rapport aux perturbations considérées.

� Deuxième problème: Dans un deuxième travail, nous considérons un cadre

fonctionnel plus général non forcément hilbertien, c-à-d un cadre Lp avec p ∈
(1,∞). Nous étudions la stabilité Lp de l'équation des ondes avec un amor-

tissement linéaire et localisé. Cette étude n'est e�ectuée qu'en dimension un
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car il n'est pas toujours possible de dé�nir l'opérateur des ondes en dimensions

supérieures lorsque p ̸= 2. Nous démontrons la stabilité exponentielle du prob-

lème en généralisant les multiplicateurs du cadre hilbertien dans notre cadre plus

général, avec des preuves di�érentes suivant que 1 < p < 2 ou p ≥ 2. Nous dé-

montrons également dans le même problème mais avec des cas particuliers d'un

amortissement global et constant, une stabilité exponentielle dans le cas p = 1

et p = ∞.

� Troisième problème: Dans un troisième travail, nous considérons la version

non-linéaire du problème précédent: en nous basant sur une technique de linéari-

sation, nous nous ramenons à la preuve du problème linéaire pour démontrer la

stabilité exponentielle du non-linéaire le long des solutions fortes et pour tout

1 < p <∞.



Chapter 1
Introduction

1.1 General Introduction

The main work of this thesis revolves around the asymptotic stability of the wave

equation with a localized damping term and Dirichlet boundary conditions. We con-

sider the standard Hilbertian framework as well as more general frameworks. We also

consider the nonlinear problem as well as the linear problem, trying to answer each

time, questions about the well-posedness and the stability. The general problem is

written as follows
ztt −∆z = −a(x)g(zt) for (t, x) ∈ R+ × Ω,

z = 0 on R+ × ∂Ω,

z(0, ·) = z0 , zt(0, ·) = z1,

(1.1)

where z is the unknown of the problem, (z0, z1) are the initial conditions and the pair

belongs to an Lp-based functional space Xp = W 1,p(Ω) × Lp(Ω) with p ∈ [1,∞) that

will be de�ned later with more details. When the dimension N ≥ 2 and p = 2, the set

Ω is a C2 bounded domain of RN and when N = 1 and p ∈ (1,∞), then Ω is simply

an interval of R.

The function g : R −→ R is a C1 non-decreasing function verifying xg(x) > 0 for

x ̸= 0. The term −a(x)g(zt) is called a feedback, and it is a damping in this case.

More hypotheses, in particular growth hypotheses, are usually imposed on g depend-

ing on the context of the problem.

The function a : Ω → R is a continuous non-negative function. It is called a lo-

9



10 CHAPTER 1. INTRODUCTION

calization function because it de�nes where the damping is acting in the domain Ω

(when a is positive). More precisely, a is bounded from below by a positive constant

a0 on some non-empty open subset ω of Ω. One can see the subset ω as the region of

the domain where the damping term is active. In the case where Ω \ ω has a positive

Lebesgue measure, the damping is said to be localized whereas when it has a null

measure, meaning that Ω = ω, the damping is said to be global because it is active

on all the domain Ω. The geometry of the domain as well as the localization of the

damping are very important for wave stabilization problems. Geometrical conditions

are imposed on the domain when the damping is localized in order to achieve stability

results, more details about these conditions will follow in this introduction.

In the case where p = 2, which is the standard Hilbertian functional framework,

the energy of the system is de�ned by the quantity:

E2(t) =
1

2

∫
Ω

(
|zt(t, x)|2 + |∇z(t, x)|2

)
dx. (1.2)

Problem (1.1) has been widely studied in this framework. The well-posedness has been

established many times ( see for instance [4], [24], [25]). Dafermos [11] and Haraux [14]

proved the strong stabilization in the case of an increasing g, i.e.

lim
t→+∞

E2(t) = 0, (1.3)

the proof is based on Lasalle invariance principle and we can refer to [4] for its details.

Since we know that the energy of solutions goes to 0 as t goes to in�nity, the is-

sue to be addressed regards the decay rate; how fast the energy goes to 0. Di�erent

stability rates have been obtained over the years, depending on whether the problem

is non-linear with di�erent hypotheses on the non-linearity g or linear (g = Id), or

whether the damping is localized or global (a = 1). References to previous works

in the case p = 2 and in the context of this thesis are given in the introduction of

Chapter 2.

The best decay rate one can hope for is the exponential decay when g is C1. In

order to obtain or at least hope for such decay, geometrical assumptions must be im-

posed on the damping domain ω. These assumptions have been �rst put forward in the

pioneering work [32] on semi-linear wave equations and its extension in [22] and [21],

where the multiplier geometric conditions (MGC) have been characterized for ω as

su�cient conditions to achieve exponential stability. However, more optimal geomet-
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rical conditions (necessary and su�cient) are obtained for linear equations, they are

introduced and detailed in [6] and [9]. Depending on the type of the imposed geomet-

rical conditions, two methods have been developed to study exponential decay for the

locally damped wave equation:

The method of geometric optics: the one that gives necessary and su�cient geomet-

rical conditions on the damping domain ω for exponential stability, these conditions

are not explicit but they allow us to get energy decay estimates under very general

hypotheses. This method is based on microlocal analysis and it is adapted to linear

problems. We are not interested in this method in the context of this thesis since we

will be treating non-linear problems as well.

The multiplier method: the one that gives explicit su�cient geometric conditions on

ω. It is based on obtaining energy estimates and using Gronwall's inequalities. It

consists on taking the main equation of the problem and multiplying it by di�erent

quantities called multipliers (usually the solution or di�erent derivatives of the solu-

tion combined with localization functions when dealing with a localized damping).

Each one of these multipliers will play a speci�c important role and they will lead

when their results are combined together, to an energy estimate. This energy estimate

proves potential exponential stability or even weaker rates through Gronwall's inequal-

ities. There exists a generalization of this method, it is called the piecewise multiplier

method which requires weaker conditions on the damping domain, called piecewise

geometrical conditions (PMGC). They have the exact same concept as the multiplier

geometrical conditions (MGC) but they use multiple observation points instead of one

observation point in the classical (MGC). We will announce the geometrical conditions

when needed in this thesis.

Using the multipliers method it has been proven that the energy decay rate of the

locally damped linear problem is exponential (see [24]). It has also been shown that

the globally damped non-linear problem is also exponentially stable in dimension two

(see [25]) with growth hypothesis on g. We show in this thesis based on the precious

remarks of [25] that the latter problem remains exponentially stable when the damping

is localized.

Now as the stabilization problem of (1.1) when p = 2 is very common and has been

treated several times under di�erent hypotheses, the same problem when p ̸= 2 is way

less popular and there are very few studies and resources available in this research

theme. We owe an important part of our results in this framework to the pioneering
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work of [16] and [10]. All references of this framework relevant to the context of this

thesis are mentioned in the introduction of Chapter 3.

The motivation behind studying wave stabilization problems in such general frame-

work rises from the domain of automation where they are always interested in the

amplitude of the waves, which represents mathematically the L∞ norm of the solu-

tions. Stabilizing wave equations in an L∞ framework is then very practical since we

are stabilizing the amplitude of the solutions. This immediately makes us consider as

mathematicians the question of what happens when we consider a general framework

Lp with 1 ≤ p ≤ ∞ and what kind of stabilization results can we obtain in this case.

We also keep the hope of achieving stabilization in the case where p = ∞ by studying

the problem for all p ≥ 1.

One should note that the study of such a problem in non-hilbertian frameworks is

not possible in superior dimensions, it is only possible in one dimension. The reason

is that the wave operator is not always well de�ned in Lp functional spaces.

Before getting to stabilization problems, the �rst issue to address into such framework

is the question of the well-posedness. Since the usual well-posedness proof techniques

based on Hilbert Spaces (maximal monotone operators for instance) are no longer valid

in a non-hilbertian framework. We need to get creative and use new techniques. In

the linear case, an argument based on D'Alembert formula and �xed point theory is

used in [10] and in our work to prove the well-posedness for all p > 1. In the non-

linear case, [16] proves the well-posedness for all p ≥ 2 using an argument based on

the well-posedness in the Hilbertian framework and an equivalent energy functional

but with the hypothesis g(zt)
zt

∈ L∞
loc(R+, L

∞(Ω)) which is not always satis�ed for weak

solutions. We propose a well-posedness proof for weak solutions in the case p ≥ 2 and

for strong solutions in the case 1 < p < +∞.

Once the well-posedness is established, we ask questions about the stability and the

decay rate of the energy. The p-th energy Ep of a solution has been introduced in [14]

as a generalization of the standard Hilbertian energy E2. It is an equivalent energy to

the natural energy and is de�ned by:

Ep(t) =
1

p

∫
Ω

(|zx(t, x) + zt(t, x)|p + |zx(t, x)− zt(t, x)|p) dx. (1.4)

Very useful Lp estimates have also been proved in [14], which led to proving polynomial

decay of the energy in the non-linear case, with g a non-decreasing C1 function behav-
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ing like ks|s|r, r, k > 0 . Some of the results in [14] have been used in [5,10] to obtain

some stability results. The latter reference relies on Lyapunov techniques for linear

time varying systems to prove Lp exponential stability in the non-linear problem under

restrictive hypotheses on initial data (imposed to belong to L∞ functional spaces) and

for p ≥ 2; other stability results have been shown in the same reference in particular

L∞ stability but always with more conditions on initial data. We obtain an exponen-

tial decay in the linear problem for all 1 < p < +∞. We also obtain an exponential

decay in the non-linear problem in the case p ≥ 2 and in the case 1 < p < 2.

1.2 Introduction to stabilization

The stability of Problem (1.1) is studied around the unique equilibrium point of the

system which is ze = 0. The equilibrium ze is said to be Stable if whenever a solu-

tion starts out from initial data near the equilibrium point ze, it always stays near ze.

More strongly, the equilibrium is said to be asymptotically stable (Lyapunov stable)

if whenever a solution starts out from initial data near xe it converges to xe = 0 as

time progresses. If for all initial data in the state space, the solutions converge to the

equilibrium, it is said to be globally asymptotically stable.

The stabilization on the other hand is just forcing the solutions of a problem to be

stable by implementing some sort of control; an example would be stabilizing the usual

wave equation by adding a global linear damping term to it.

The stabilization problem: The stabilization problem of (1.1) consists on using

the feedback −a(x)g(zt) which is a localized non-linear damping that depends on the

solution z on any given time, to reduce the amplitude of the wave solutions over time

to be as small as possible (as close to zero as possible). This translates to driving the

energy of the solutions to 0 as time progresses. Our goal here is to obtain asymptotic

stability of the equilibrium 0. The asymptotic stability is tied to the decay of the

energy of the solutions toward 0. This decay to 0 is naturally wanted to be as fast as

possible so that the stabilization is achieved in the smallest time possible. We usually

aim to obtain an exponential decay but other slower decay rates can be obtained as

well when the exponential one is di�cult or impossible to obtain, for instance the

energy can be found to go to 0 polynomially. Another important challenge in the sta-

bilization problem is to impose as less hypotheses as possible on the feedback function

g in theory which leaves us with more choices when choosing the feedback g in practice.
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We assume next that well-posedness of solutions on R+ has been established for every

initial condition.

There are many types and notions of stability, we mainly focus in our work on

exponential stability. However, before studying any type of stability it is always useful

to prove �rst that the energy of a solution tends to 0 as time goes to in�nity, which is

known as strong stabilization.

De�nition 1.2.1. (Strong stabilization)

Problem (1.1) is said to be strongly stable, if, for every initial data (z0, z1) ∈ Xp, the

energy function t 7→ Ep(t) of the corresponding solution tends to zero as t tends to

in�nity, Here p ∈ [1,+∞) and Ep is de�ned by (1.4) when p ̸= 2 and by (1.2) when

p = 2.

We give next a general de�nition of what we mean by an exponentially stable

system.

De�nition 1.2.2. (Exponential stability)

Problem (1.1) is said to be uniformly exponentially stable, if there exist two constants

C, γ > 0 such that the energy Ep of all solutions with initial data (z0, z1) ∈ Xp satis�es:

Ep(t) ≤ CEp(0)e
−γt, ∀ t ≥ 0,

where C and γ are independent of initial data (z0, z1), p ∈ [1,+∞) and the energy Ep

is de�ned by (1.4) when p ̸= 2 and by (1.2) when p = 2.

Another important stability notion that is often used for nonlinear problems is

Input-To-State Stability (ISS), it has been �rst introduced in [30] and it is particu-

larly useful when there are external inputs in the system (such as disturbances from

Chapter 2). To de�ne this notion we start by de�ning some key sets.

We de�ne K the set of continuous increasing functions γ : R+ → R+ that vanish

at zero,

K = {γ ∈ C(R+), γ(0) = 0 and γ′(s) > 0 ∀ s > 0}, (1.5)

and L the set of continuous decreasing functions that tends to 0 around in�nity,

L = {γ ∈ C(R+), γ decreasing and lim
t→+∞

γ(t) = 0}. (1.6)
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We also de�ne K∞ as the subset of K of unbounded functions,

K∞ = {γ ∈ K, γ unbounded }. (1.7)

Finally we de�ne the set KL as

KL = {β ∈ C(R+ × R+,R+), β(·, t) ∈ K ∀ t ≥ 0, and β(r, ·) ∈ L ∀r > 0}. (1.8)

Now consider the general system that we assume well-posed as the function f satis�es

the necessary well-posedness hypotheses:

Zt(t) = f(Z(t), U(t)), Z(0) = Z0, (1.9)

where the solution Z and initial data Z0 ∈ X belong to the normed vector space X

which represents the state space, and U are some external inputs that belong to the

normed vector space U .

We can now give a simpli�ed de�nition of the ISS in our context, this de�nition is

fully inspired from De�nition 1.6 in [28].

De�nition 1.2.3. (Input-to-state stability)

System (1.9) is called input-to-state stable (ISS) if there exist functions γ ∈ K∞ and

β ∈ KL such that for all initial data Z0 ∈ X, for all inputs U ∈ U and all times t ≥ 0,

the solution Z ∈ X that starts in Z0 satis�es the following inequality

||Z(t)||X ≤ β(||Z0||X , t) + γ(||U ||U). (1.10)

The norm on X which is the norm in the functional space Xp; in our case it will be

taken to be (Ep)
1
p where Ep is de�ned by (1.4) when p ̸= 2 and by (1.2) when p = 2.

We can also notice that Z(t) in our problem is (z(t, ·), zt(t, ·)), and Z0 is (z0, z1), where

z is the solution of Problem (1.1).

Remark 1.2.1. All the stability notions de�ned above: strong stabilization, expo-

nential stability, input-to-state stability imply global asymptotic stability.

1.3 Outline

The manuscript is organized as follows:
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� In Chapter 2, we work in an L2 framework where we consider (1.1) in two dimen-

sions and we take in consideration all the possible disturbances in the system.

We prove in Section 2.3 the well-posedness of the problem using maximal mono-

tone operators theory. We prove in Section 2.4 a weak ISS-type estimate using

the multipliers method, the ISS assures exponential decay in the absence of dis-

turbances.

� In Chapter 3, we consider the Lp framework. We establish the well-posedness

for p > 1 in Section 3.4. We prove in Section 3.5 an Lp exponential decay of the

energy of the linear localized problem for p > 1 using a generalized multiplier

method. We also prove in Section 3.6 that the exponential decay remains valid

for p = ∞ and p = 1 in some cases of a global constant damping.

� In Chapter 4, we consider the non-linear problem of the problem treated in

Chapter 3. We prove the well-posedness in the space of strong solutions of the

problem in Section 4.3 for 1 ≤ p ≤ ∞ using a density argument combined with

the well-posedness already established in L∞. We also prove an exponential

decay in Section 4.4 of the energy based on the proof of the linear case.

1.4 Main contributions

We summarize in this section the work that has been done in this thesis; we list and

explain our main contributions.

The main goal of this thesis is to study wave equations stabilization problems. We

study three main problems:

First Problem:

We consider the general problem (1.1) in an L2 framework in two dimensions but

we take in consideration two disturbances. The problem is given by

(Pdis)


ztt −∆z = −a(x)g(zt + d)− e, in R+ × Ω,

z = 0, on R+ × ∂Ω,

z(0, .) = z0 , zt(0, .) = z1,
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where e and d are the possible disturbances in the system which represent respectively

the global disturbance that a�ects the whole dynamic and the damping disturbance.

The two disturbances depends on the time variable and the space variable as well. We

considered all the possible disturbances in the system, including disturbances in initial

conditions and the localization function but with a simple change of variables we will

always be studying the same problem given by (Pdis).

We work under multiple hypotheses on the non-linearity g and on the two distur-

bances e and d. We also impose the famous geometrical conditions on the damping

domain ω. We list below the hypotheses under which we obtained the �rst contribu-

tion.

Hypotheses on the non-linearity g:

� The function g : R −→ R is a C1 non-decreasing function such that g(0) =

0, g′(0) > 0, g(x)x > 0 for x ̸= 0 .

� We also impose a growth hypothesis on g by assuming that ∃ C > 0, ∃ 1 < q <

5, ∀ |x| ≥ 1, |g(x)| ≤ C|x|q.

� A growth hypothesis is also required on the derivative of g since we will be

manipulating strong solutions and therefore we will be di�erentiating Problem

(Pdis). We suppose that ∃ C > 0, ∃ 0 < m < 4, ∀|x| > 1, |g′(x)| ≤ C|x|m.

Hypotheses on the localization function a and the damping domain ω:

� The function a : Ω → R is a continuous function such that a ≥ 0 on Ω and ∃ a0 >
0, a ≥ a0 on ω.

� We impose what we called in the introduction the multiplier geometrical con-

ditions (MGC) which require the existence of an observation point x0 ∈ R2 for

which ω contains the intersection of Ω with an ϵ-neighborhood of Γ(x0) = {x ∈
∂Ω, (x−x0).ν(x) ≥ 0}, where ν is the unit outward normal vector for ∂Ω and an

ϵ-neighborhood of Γ(x0) is de�ned by Nϵ(Γ(x0)) = {x ∈ R2 : dist(x,Γ(x0)) ≤
ϵ}.

Hypotheses on disturbances e and d:
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� The disturbance function d : R+ × Ω −→ R belongs to L1(R+, L
2(Ω)) and

satis�es that d(t, ·) ∈ H1
0 (Ω) ∩ L2q(Ω), ∀t ∈ R+ and that t 7→

∫ t

0
∆d(s, ·) ds −

dt(t, ·) ∈ Lip (R+, H
1
0 (Ω)), where Lip denotes the space of Lipschitz continuous

functions. We also impose that the following quantities
∫∞
0

∫
Ω
(|d|2 + |d|2q) dx dt,∫∞

0

∫
Ω
|d|m (dt)

2 dx dt,
∫∞
0

∫
Ω
(dt)

2 dx dt, and
∫∞
0

(∫
Ω
|dt|2(

p
p−1) dx

)( p−1
p )

dt, are all

�nite, where p is a �xed real number so that, if 0 < m ≤ 2, then p > 2
m

and if

2 < m < 4, then p ∈ (1, m
m−2

).

� The disturbance function e : R+ × Ω −→ R belongs to W 1,1(R+, L
2(Ω)) and

satis�es that e ∈ Lip (R+, H
1
0 (Ω)), e(0, .) ∈ L2(Ω), and

∫∞
0

∫
Ω
e2 dx dt <∞.

We prove the main theorem that states that:

For all initial data (z0, z1) ∈ (H2(Ω) ∩ H1
0 (Ω)) × H1

0 (Ω), Problem (Pdis) has a

unique strong solution z.

Furthermore, the following energy estimate holds:

E2(t) ≤ (C + Cz)E2(0)e
− t−1

Cz+C + Cd,e(Cz + 1), (2.26)

where the positive constant Cz depends only on the initial data and is a K-
function of the norms of initial data and the positive constant Cd,e depends only

on the disturbances d and e and is K-function of the di�erent norms of e and d.

The theorem gives an ISS-type estimate but it fails to be a perfect one in the sense

of De�nition 1.2.3 since the estimated quantity E2 is the norm of a trajectory in the

space H1
0 (Ω) × L2(Ω) while the constant Cz depends on the initial condition by its

norm in the smaller space (H2(Ω) ∩ H1
0 (Ω)) × H1

0 (Ω) there is then a sort of norm

incompatibility which seems unavoidable when manipulating strong solutions. There

is also another imperfection in the obtained ISS above that makes it weaker, which is

the fact that the second term of the right hand side of the estimate is not a K-function
of the norms of the disturbances only but it involves initial data as well. However, we

can get such a result if we have an extra assumption on g, typically g of growth at most

linear at in�nity (i.e., q = 1) with bounded derivative (i.e., m = 0). In particular, this

covers the case of regular saturation functions (increasing bounded functions g with

bounded derivatives).

Although the obtained estimate is a weak ISS, it still assures the exponential decay in

the absence of the disturbances. Furthermore, in the case where the disturbances are

both zero (d ≡ 0 and e ≡ 0), Theorem 2.3.1 holds without the growth hypothesis on
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g′ and with no restrictions on q from the growth hypotheses on g. The latter can be

then weakened to the following hypothesis

∃ C > 0, ∃ q > 1, ∀ |x| ≥ 1, |g(x)| ≤ C|x|q.

It is clear that if g satis�es the last part of the condition above for 0 ≤ q ≤ 1, it would

still satisfy it for any q > 1.

The proof of the theorem treats the well-posedness �rst and then the energy esti-

mate.

We prove the well-posedness in (H2(Ω) ∩H1
0 (Ω))×H1

0 (Ω) by making a small change of

variable y(t, x) = z(t, x)+
∫ t

0
d(s, x) ds for all (t, x) ∈ R+×Ω, which leads to an equiv-

alent simpler problem in y with no feedback disturbance. We transform the problem

into an evolutionary problem and then we use maximal monotone operators theory to

prove the existence and the uniqueness of strong solutions in (H2(Ω) ∩H1
0 (Ω))×H1

0 (Ω).

As for the ISS-type estimate, we use the multipliers method inspired from [4] and [24]

and we treat the nonlinear terms using the techniques introduced in [25].

We start by proving three technical lemmas. The �rst gives an expression of the

energy derivative along strong solutions states that the energy of a strong solution

satis�es

E2(T ) ≤ E2(S) + Cd,e, ∀0 ≤ S ≤ T,

where Cd,e is a constant that depends on the disturbances and is K-function of the

di�erent norms of e and d. One can immediately notice that in the absence of distur-

bances we recover from the latter inequality that the energy is non-increasing. The

second lemma states that for all time t ≥ 0,

∥ −∆z(t, ·) + a(·)g(zt(t, ·) + d(t, ·)) + e(t, ·)∥2L2(Ω) + ∥zt(t, ·)∥2H1
0 (Ω) ≤ Cz + Cd,e.

This immediately give an upper bound of the H1
0 (Ω) norm of zt(t, ·) that is uniform

with respect to time and that only depends on initial data and the disturbances (on

initial data only in the absence of disturbances). We obtain such an important uniform

bound by di�erentiating the main problem with respect to time and we consider the

new problem of the unknown w = zt. We prove an energy estimate for the solution

w which leads to the inequality given by this second lemma. The third lemma gives

an estimate of the Lq(Ω) norm of zt(t, ·) for all t ≥ 0 and for all q ≥ 2. We use the
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estimate of H1
0 (Ω) norm of zt(t, ·) from the previous lemma and we combine it with

Gagliardo-Nirenberg theorem, we obtain an estimation of any Lq(Ω) norm of zt(t, ·).
This estimation is given by ∥zt(t, ·)∥qLq(Ω) ≤ (Cz + Cd,e)E2(t). The lemmas can be

seen as a generalization of the lemmas introduced in [25] that give similar results but

without the disturbances.

We use these key lemmas along side with the multiplier method to prove that the

energy E2 of a strong solution z of the disturbed problem satis�es:∫ T

S

E2(t) dt ≤ (Cz + C)E2(S) + (1 + Cz)Cd,e, ∀0 ≤ S ≤ T.

We use several multipliers to achieve such an energy estimate, each multiplier will

take us a step closer to obtain the right estimate. To de�ne the multipliers we de�ne

three localization functions ψ, ϕ and β. These functions are de�ned using the subsets

Qi = Nϵi [Γ(x0)] for i = 0, 1, 2, where x0 ∈ R2 is an observation point, ϵ is the same

de�ned in the geometrical conditions and ϵ0, ϵ1 and ϵ2 are three positive real constants

such that ϵ0 < ϵ1 < ϵ2 < ϵ. Thanks to how Qi are de�ned we are allowed to de�ne the

three localization smooth functions with compact supports.
0 ≤ ψ ≤ 1,

ψ = 0 on Q0,

ψ = 1 on Ω̄ \Q1,


0 ≤ ϕ ≤ 1,

ϕ = 1 on Q1,

ϕ = 0 on R2 \Q2,


0 ≤ β ≤ 1,

β = 1 on Q2 ∩ Ω,

β = 0 on Ω \ ω.

We can now list the multipliers used in this problem:

� First multiplier: M(z) := k∇z + z
2
, where k is a C1 vector �eld de�ned by

k(x) := ψ(x)(x− x0).

� Second multiplier: ϕz.

� Third multiplier: v, where v is the solution of the following elliptic problem:{
∆v = βz in Ω,

v = 0 on ∂Ω.

Multiplying each time the problem by the multipliers de�ned above, integrating on

Ω×R, applying di�erent manipulations, and then combining the results obtained using

the three multipliers, we prove the required energy estimate. Finally, the ISS type-

estimate is obtained as a direct result of an easily proved generalized Gronwall lemma.
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Second Problem:

We consider next the Lp framework, which is a very recent framework and not much

work is published about it. We consider the wave equation with a localized damping

term and Dirichlet boundary conditions which is the linear case of the general problem

(1.1) in one dimension. The problem is written as follows

(Plin)


ztt − zxx + a(x)zt = 0 for (t, x) ∈ R+ × (0, 1),

z(t, 0) = z(t, 1) = 0 t ≥ 0,

z(0, ·) = z0 , zt(0, ·) = z1,

where this time initial data (z0, z1) belong to the phase space Xp de�ned for p ∈
[1,∞) by Xp := W 1,p

0 (0, 1) × Lp(0, 1) and is equipped with the norm ∥(u, v)∥Xp :=(
1
p

∫ 1

0
(|u′ + v|p + |u′ − v|p) dx

) 1
p
, which is an equivalent norm to the natural norm

that we usually take in such functional space. We also de�ne the phase space for

strong solutions Yp de�ned by Yp :=
(
W 2,p(0, 1) ∩W 1,p

0 (0, 1)
)
×W 1,p

0 (0, 1), equipped

with the norm ∥(u, v)∥Yp :=
(

1
p

∫ 1

0
(|u′′ + v′|p + |u′′ − v′|p) dx

) 1
p
.

We work under very general hypotheses, they're listed as follows:

Hypotheses on the localization function a and the damping domain ω:

� The function a is continuous and non-negative on [0, 1] and satis�es that ∃ a0 >
0, a ≥ a0 on ω =]c, d[⊂ [0, 1].

� the subset ω is a non empty interval such that c = 0 or d = 1, i.e., ω̄ contains a

neighborhood of 0 or 1. There is no loss of generality in assuming d = 1, taking

0 as an observation point.

We actually do not need the second hypothesis on ω (the geometrical condition) to

prove the well-posedness or the stability. We only use it to simplify the work but the

results still hold if the assumption that c = 0 or d = 1 is removed. The only thing that

changes in this case is that we will be using a piecewise multiplier method instead of

a simple one, i.e., we use both 0 and 1 as observation points (instead of simply 0 here)

to obtain the required energy estimate.

We prove two main theorems under the above hypotheses. The �rst one concerns

the well-posedness of Problem (Plin) and it states that
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Let p ∈ [1,∞). For any initial data (z0, z1) ∈ Xp (resp. Yp), there exists a unique

weak (resp. strong) solution z such that

z ∈ L∞(R+,W
1,p
0 (0, 1)) ∩W 1,∞(R+, L

p(0, 1)),

(resp. z ∈ L∞(R+,W
2,p(0, 1) ∩W 1,p

0 (0, 1)) ∩W 1,∞(R+,W
1,p
0 (0, 1)).)

Moreover, in both cases, the energy function t 7→ Ep(t) associated with a solution

is non-increasing.

The second theorem concerns the exponential stability and it states that

For all p ∈ (1,∞), the C0-semigroup (Sp(t))t≥0 de�ning weak solutions of Prob-

lem (Plin) is exponentially stable.

For the well-posedness, we prove for p > 1 the existence and the uniqueness of so-

lutions in Xp (weak solutions) as well as in Yp (strong solutions). We use D'Alembert

formula to transform the well-posedness problem into a �xed point problem. We prove

the existence of solutions on some interval [0, T ] and then we reproduce the reasoning

on [T, 2T ] and so on to establish the well-posedness for all t ≥ 0.

As for the stability theorem, We start by rewriting the problem using the Riemann

invariants ρ(t, x) = zx(t, x) + zt(t, x) and ξ(t, x) = zx(t, x) − zt(t, x). We obtain an

equivalent problem to (Plin) along strong solutions. The new problem is given by
ρt − ρx = −1

2
a(x)(ρ− ξ) in R+ × (0, 1),

ξt + ξx = 1
2
a(x)(ρ− ξ) in R+ × (0, 1),

ρ(t, 0)− ξ(t, 0) = ρ(t, 1)− ξ(t, 1) = 0 ∀t ∈ R+,

ρ0 := ρ(0, .) = z′0 + z1 , ξ0 := ξ(0, .) = z′0 − z1.

The energy Ep of a strong solution is then given for all t ≥ 0 in terms of ρ and ξ by

Ep(t) =
1

p

∫ 1

0

(|ρ|p + |ξ|p) dx.
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We prove using the new form of the problem that the energy of a strong solution is

non-increasing and we give an explicit expression of its derivative, given by

E ′
p(t) = −1

2

∫ 1

0

a(x)(ρ− ξ)
(
⌊ρ⌉p−1 − ⌊ξ⌉p−1

)
dx,

where ⌊x⌉p−1 := sgn(x)|x|p−1, ∀x ∈ R.

We prove strong stability in Xp using the energy functional Ep with a similar LaSalle

type argument to the one that was used in the Hilbertian framework in [11].

To prove exponential stability, we generalize the multiplier method used in the L2

framework to the Lp framework where we use to obtain energy estimates, sets of

multipliers instead of individual multipliers only. We use di�erent multipliers and ap-

proaches when p ≥ 2 and 1 < p < 2. In both cases we will be using to de�ne the

multipliers the functions ψ, ϕ and β which are smooth with compact support and are

de�ned as follows:
0 ≤ ψ ≤ 1,

ψ = 0 on Q0,

ψ = 1 on (0, 1) \Q1,


0 ≤ ϕ ≤ 1,

ϕ = 1 on Q1,

ϕ = 0 on (0, 1) \Q2,


0 ≤ β ≤ 1,

β = 1 on Q2 ∩ (0, 1),

β = 0 on R \ ω.

In the case p ≥ 2:

We de�ne the two functions

f(y) = (p− 1)

∫ y

0

|s|p−2 ds = ⌊y⌉p−1, ∀ y ∈ R,

F (y) =

∫ y

0

f(s) ds =
|y|
p
, ∀ y ∈ R,

which allows to express the energy in terms of F by Ep(t) =
∫ 1

0
(F (ρ) + F (ξ)) dx.

We prove the following energy estimate for every (z0, z1) ∈ Yp

∀ 0 ≤ S ≤ T ,

∫ T

S

Ep(t) dt ≤ C CpEp(S),

using the following three sets of multipliers:

� First set of multipliers: x 7→ xψ(x)f(ρ(t, x)) and x 7→ xψ(x)f(ξ(t, x)) for
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every t ≥ 0.

� Second set of multipliers: x 7→ ϕ(x)f ′(ρ(t, x))z(t, x) and x 7→ ϕ(x)f ′(ξ(t, x))z(t, x)

for every t ≥ 0, where f ′(s) = (p− 1)|s|p−2.

� Third multiplier: x 7→ v(t, x) for every t ≥ 0, where v is the solution of the

following elliptic problem de�ned for every t ≥ 0:{
vxx = βf(z) x ∈ (0, 1),

v(0) = v(1) = 0,

We multiply the problem expressed in Riemann invariants by the multipliers above.

For the sets of multipliers, we multiply the problem by the two multipliers of each set

and we sum them up to obtain the result that the set provides. We obtain in the end

after combining the results of the three multipliers (two sets and one individual) the

energy estimate that will immediately lead to the exponential stability using Gronwall

lemma. Then, we use a density argument to extend the proof from strong to weak

solutions since the constants obtained in the energy estimate do not depend on the Yp

norm of initial data.

In the case 1 < p < 2:

We cannot use the same multipliers because the second set given by x 7→ ϕ(x)f ′(ρ(t, x))

z(t, x) and x 7→ ϕ(x)f ′(ξ(t, x))z(t, x) for every t ≥ 0, where f ′(s) = (p− 1)|s|p−2 is no

longer well-de�ned since the power p − 2 is negative for 1 < p < 2. This a�ects the

whole process since the multipliers are logically connected and complete each other's

results. Changing all the multipliers is then required. To do so, we kind of disturb the

function f ′ that was used to de�ne the second set of multipliers in the case p ≥ 2 with

a positive number 1. We obtain the new key functions h and H for p ∈ (1, 2), which

are de�ned on R by:

h(y) = (p− 1)

∫ y

0

(|s|+ 1)p−2 ds = sgn(y)
[
(|y|+ 1)p−1 − 1

]
,

H(y) =

∫ y

0

h(s) ds =
1

p
[(|y|+ 1)p − 1]− |y|.

One can see the functions h and H as sort of a perturbation of f and F to assure that

the the multipliers are well de�ned around zero when p ∈ (1, 2).

We also modify the energy Ep by sort of a perturbed energy Ep such that for every
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t ∈ R+ and every solution of (Plin), Ep is de�ned by

Ep(t) =
∫ 1

0

(H(ρ) +H(ξ)) dx.

The same way as for Ep we prove that t 7→ Ep(t) is non-increasing along strong solu-

tions. We succeed to prove under the hypotheses of Problem (Plin) for a �xed p ∈ (1, 2)

that there exist positive constants C and Cp such that, for every (z0, z1) ∈ Yp Ep(0) ≤ 1,

we have the following energy estimate:

∀ 0 ≤ S ≤ T,

∫ T

S

Ep(t) dt ≤ C CpEp(S).

The latter (perturbed) energy estimate is proved using the following sets of multi-

pliers:

� First set of multipliers x 7→ xψ(x)h(ρ(t, x)) and x 7→ xψ(x)h(ξ(t, x)) for

every t ≥ 0;

� Second set of multipliers x 7→ ϕ(x)h′(ρ(t, x))z(t, x) and x 7→ ϕ(x)h′(ξ(t, x))z(t, x)

for every t ≥ 0;

� Third multiplier x 7→ v(t, x) for every t ≥ 0, where v is the solution of the

following elliptic problem de�ned for every t ≥ 0:{
vxx = βh(z) x ∈ (0, 1),

v(0) = v(1) = 0,

It is important to note that using the multipliers above, we face di�erent di�culties to

obtain certain estimates. These di�culties require a generalization of Young inequality

since this last inequality has been widely used in the case p ≥ 2 but can no longer be

used in the case 1 < p < 2 (at least for the second set of multipliers). To do so, we

use Fenchel's inequality along with other estimates that we prove and that involve the

functions h, H and the Legendre transform of H denoted by H to prove in the end

that for all η > 0, for all a, x ∈ R we have the following key inequalities for 1 < p < 2

only:
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|a x| ≤ Cp

η2
H(a) + Cp η

pH(x),

|a x| ≤ Cpη
pH(a) +

Cp

η2
H(x),

|a h(x)| ≤ Cp

ηp
H(a) + Cp η

2H(x).

This generalization along with other intermediate results, allows us to prove with

the new multipliers, the required (perturbed) energy estimate. The proof clearly does

not end here. Gronwall lemma only imply an exponential decay of the new 'perturbed'

energy, which implies the existence of a constant γp > 0 such that Ep(t) ≤ e1−γpt for

all t ≥ 0 and for solutions of (Plin) satisfying Ep(0) ≤ 1.

We deduce the exponential decay of the original energy by an argument based on

picking initial conditions such that Ep(0) = 1 and using the exponential decay in-

equality that has been proved for Ep(t) to prove that Ep(t) ≤ 1
2
for all time t greater or

equal to a certain time tp that depends on γp. This proves immediately when combined

with the fact that t 7→ (Ep(t))
1
p is a norm that ||Sp(tp)||Xp < 1. This proves when

combined with semigroups properties the exponential stability of the C0-semigroup

that de�nes the solutions of (Plin).

The ultimate goal of studying Lp-stability is actually to achieve the case p = ∞
where the ∞−energy of a solution coincide with the altitude of the wave. We were

not able to achieve that for the linear case with a non-constant localized damping.

This is due to the fact that the constants obtained in the energy estimates in the case

1 < p < 2 and p ≥ 2 do not converge when letting p goes to one or in�nity respectively.

However, we are able to achieve that in a particular case, the case of a global constant

damping a(x) = 2α we prove the following proposition

For p = 1 or p = ∞, the semi-group (S(t))t≥0 is exponentially stable for a global

constant damping if α ∈ (0, 2).

The proof is based on considering p ∈ (1,∞) and making the change of variable

z(t, x) = e−αtv(t, x) ∀x ∈ (0, 1), t ≥ 0 to obtain the equivalent problem
vtt − vxx = α2v in R+ × (0, 1),

v(t, 0) = v(t, 1) = 0 t ≥ 0,

v(0, ·) = z0 , vt(0, ·) = z1 + αz0.
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We easily prove a relationship between Ep and Vp energy , where Vp denotes the pth-

energies associated with v. We obtain an explicit expression of V ′
p the same way we

obtained an explicit expression of E ′
p. We use this expression with other previously es-

tablished results to prove an energy estimate for V to which we use Gronwall's lemma

to obtain an exponential decay for V . Due to the relationship between Ep and Vp, we

obtain an exponential decay for Ep(t) with explicit constants. We conclude by letting

p tend either to one or ∞ and using an obvious density argument.

Third problem:

We study next the non-linear case of the second problem. The problem is given

by

(Pnl)


ztt − zxx + a(x)g(zt) = 0 for (t, x) ∈ R+ × (0, 1),

z(t, 0) = z(t, 1) = 0 for t ≥ 0,

z(0, ·) = z0 , zt(0, ·) = z1 on (0, 1),

We work under the following hypotheses

Hypotheses on the localization function a and the damping domain ω:

(same as the second problem)

� The function a is continuous and non-negative on [0, 1] and satis�es that ∃ a0 >
0, a ≥ a0 on ω =]c, d[⊂ [0, 1].

� The subset ω is a non empty interval such that c = 0 or d = 1, i.e., ω̄ contains a

neighborhood of 0 or 1. There is no loss of generality in assuming d = 1, taking

0 as an observation point.

Just like in the second problem, we do not need the second hypothesis on ω. We only

use it to simplify computations. The results still hold if the geometric assumption is

removed.

Hypotheses on the nonlinearity g:

g : R 7→ R a C1 non-decreasing function such that g(0) = 0, g′(0) > 0, and

g(x)x ≥ 0 ∀x ∈ R.

We prove under these hypotheses the well-posedness theorem that states that
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Suppose Hypotheses (H1) and (H2) are satis�ed, then for all initial conditions

(z0, z1) ∈ Xp with 2 ≤ p ≤ ∞, we have the existence of a unique weak solution

z such that

z ∈ L∞(R+,W
1,p
0 (0, 1)) and zt ∈ L∞(R+, L

p(0, 1)).

Moreover, if (z0, z1) ∈ Yp with 1 ≤ p ≤ ∞ then we have the existence of a unique

strong solution z such that

z ∈ L∞(R+,W
2,p(0, 1) ∩W 1,p

0 (0, 1)) and zt ∈ L∞(R+,W
1,p
0 (0, 1)).

We also prove the following stability theorem

For 1 < p < ∞. Given, (z0, z1) ∈ Yp, there exists a constant Cp(z0, z1) > 0 that

depends on the norm of initial conditions in Yp such that for all t ∈ R+

Ep(t) ≤ Ep(0)e
1−Cp(z0,z1)t.

For the well-posedness theorem, the result for strong and weak solutions for p = ∞
has been proved in [10]. We prove the existence of weak solutions for 2 ≤ p < ∞ by

constructing a proof based on the known existence of solutions in X∞, combined with a

density argument. Then we prove the existence of strong solutions for all 1 ≤ p <∞ by

relying on the existence of solutions in X∞ again and then proving an extra regularity

of strong solutions in Lp by using techniques that were used in the L2 framework in [25].

As for the exponential decay of the energy along strong solutions, we combine some

techniques used to study the �rst problem with the theory used to treat the second

problem. The proof is based on using the work that has been already done in the linear

case using the multipliers method to obtain a stabilization result for the non-linear

problem. Indeed, we start by considering an intermediate problem:
ytt − yxx + a(x)θ(t, x)yt = 0 for (t, x) ∈ R+ × (0, 1),

y(t, 0) = y(t, 1) = 0 t ≥ 0,

y(0, ·) = y0 , yt(0, ·) = y1,

where a satis�es the same hypothesis as earlier and θ : R+ × [0, 1] → R is a non-

negative continuous function such that

∃ θ1, θ2 > 0, θ1 ≤ θ(t, x) ≤ θ2 ∀ (t, x) ∈ R+ × [0, 1].



1.4. MAIN CONTRIBUTIONS 29

The well-posedness of the intermediate problem can be treated the same way as the

linear problem, which means that it is actually well-posed for all p > 1.

By following the exact same multiplier method used in the linear case, with very slight

di�erences where we treat the occurrences of θ using the hypothesis θ1 ≤ θ(t, x) ≤ θ2;

we prove that for every (y0, y1) ∈ Xp, the energy along solutions in Xp of the interme-

diate problem decays exponentially to zero.

Then, to prove the exponential stability of the non-linear problem (Pnl), we start

by proving that the W 1,p(0, 1) norm of zt(t, ·) is bounded by a constant that depends

on the Yp norm of initial data only which is a uniform bound with respect to time.

This means that zt(t, ·) is uniformly bounded in L∞(0, 1) and therefore the function

g satis�es for some two positive constants θ1 and θ2 that θ1 ≤ g(zt(t,x))
zt

≤ θ2, for all

t ≥ 0, x ∈ (0, 1). We denote ν(zt) =
g(zt(t,x))

zt
and we consider the problem


ytt − yxx + a(x)ν(zt)yt = 0 for (t, x) ∈ R+ × (0, 1),

y(t, 0) = y(t, 1) = 0 t ≥ 0,

y(0, ·) = y0 , yt(0, ·) = y1,

which is nothing else but the intermediate problem with θ(t, x) = ν(zt) since ν(zt) is

seen as a function of t and x bounded uniformly from above and below by two positive

constants. The exponential stability is known for this problem and it leads to the

exponential stability of strong solutions for the non-linear (Pnl) by considering the

particular solutions with initial data (y0, y1) = (z0, z1).

Finally, we summarize the main contributions of the three problems in the follow-

ing list:

� Studying the disturbed non-linear wave equation with localized damping in a

Hilbertian framework in two dimensions

◦ Proving the well-posedness (Theorem 2.3.1).

◦ Proving a weak ISS-type estimate for strong solutions that includes an

exponential decay in the absence of disturbances (Theorem 2.3.1).

� Studying the linear wave equation with localized damping in a non-Hilbertian

Lp framework in one dimension

◦ Establishing the well-posedness for p > 1 (Theorem 3.4.1).
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◦ Proving an exponential decay of the pth−energy for all p > 1 (Theorem

3.5.1).

◦ Proving an exponential decay of the pth−energy for p = 1 and p = ∞ in

some cases of a constant global damping (Proposition 3.6.1).

� Studying the non-linear wave equation with localized damping in a non-Hilbertian

Lp framework in one dimension

◦ Proving the well-posedness for weak solutions for all p ≥ 2 and for strong

solutions for all 1 ≤ p ≤ ∞ (Theorem 4.3.1).

◦ Proving an exponential decay of the pth−energy along strong solutions for

all 1 < p <∞ (Theorem 4.4.1).



Chapter 2
Weak input-to-state stability of the damped

wave equation with localized and non-linear

damping in two dimensions

The work of this chapter has been published in the scienti�c paper [18].

2.1 Introduction

Consider Problem (1.1) in two dimensions with added disturbances that we will de�ne

later on. The problem in this case is given by
ztt −∆z = −a(x)g(zt + d)− e, in R+ × Ω,

z = 0, on R+ × ∂Ω,

z(0, .) = z0 , zt(0, .) = z1,

(2.1)

where Ω is a C2 bounded domain of R2, d and e stand for a damping disturbance

and a globally distributed disturbance for the wave dynamics respectively. The term

−a(x)g(zt + d) stands for the (perturbed) damping term, where g : R −→ R is a C1

non-decreasing function verifying ξg(ξ) > 0 for ξ ̸= 0 while a : Ω → R is a continuous

non negative function which is bounded below by a positive constant a0 on some non-

empty open subset ω of Ω. Here, ω is the region of the domain where the damping term

is active, more precisely, the region where the localization function a is bounded from

below by a0. As for the initial condition (z0, z1), it belongs to the standard Hilbert

space X2 = H1
0 (Ω)× L2(Ω).

31
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In this chapter, our aim is to obtain input-to-state (ISS) type of results for Problem

(2.1), i.e., estimates of the norm of the state u which, at once, show that trajectories

tend to zero in the absence of disturbances and remain bounded by a function of the

norms of the disturbances otherwise. One can refer to [30] for a thorough review of

ISS results and techniques for �nite dimension systems and to the recent survey [28]

for in�nite dimensional dynamical systems. In the case of the undisturbed dynamics,

i.e., (2.1) with (d, e) ≡ (0, 0), there is a vast literature regarding the stability of the

corresponding system with respect to the origin, which is the unique equilibrium state

of the problem. This in turn amounts to have appropriate assumptions on a and g,

cf. [4] for extensive references. We will however point out the main ones that we

need in order to provide the context of our work. To do so, we start by considering

the energy of the system given by (1.2), which de�nes a natural norm on the space

X2 = H1
0 (Ω)× L2(Ω) given by

|| · ||X2 = (E2)
1/2 =

(
1

2

∫
Ω

(
|zt(t, x)|2 + |∇z(t, x)|2

)
dx

) 1
2

. (2.2)

Strong stabilization has been established in the early works [11] and [14], i.e., it is

proved with an argument based on the Lasalle invariance principle that limt→+∞E2(t) =

0 for every initial condition in H1
0 (Ω)×L2(Ω). However, no decay rate of convergence

for E2 is established since it requires in particular extra assumptions on g and ω.

As a �rst working hypothesis, we will assume that g′(0) > 0, classifying the present

work in those that aimed at establishing results of exponential convergence for strong

solutions. We refer to [4] for the line of work where g is assumed to be super-linear in a

neighborhood of the origin (typically of polynomial type). Note that, in most of these

works (except for the linear case) the rate of exponential decay of E2 depends on the

initial conditions. That latter fact in turn relies on growth conditions on g at in�nity.

Regarding the damping domain ω, it satis�es the geometrical condition (MGC) that

has been introduced in the general introduction and will be reminded later on when

properly stating the problem.

In this chapter, our objective is to obtain results for non-linear damping terms and

one should think of the nonlinearity g not only as a mean to provide more general

asymptotic behavior at in�nity than a linear one but also as modeling an uncertainty

of the shape of the damping term. Dealing with nonlinearities justi�es why microlocal

techniques are not suited here and we will be using the multiplier method as presented

e.g. in [21]. Many results have been established in the case where g′(0) = 0, for

instance, decay rates for the energy are provided in [24] in the localized case but the

non-linearity is to have a linear growth for large values of its arguments. Note that the
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estimates as presented in [24] are not optimal in general, as for instance in the case

of a power-like growth. For general optimal energy decay estimates and for general

abstract PDEs, we refer the reader to [2] for a general formula for explicit energy decay

estimates and to [3] for an equivalent simpli�ed energy decay estimate with optimality

results in the �nite dimensional case. However, when it comes to working under the

hypothesis g′(0) > 0, few general results are available. One can �nd a rather complete

presentation of the available results in [25]. In particular, the proof of exponential

stability along strong solutions has only been given for general nonlinearities g, in di-

mension two and in the special case of a non-localized damping with no disturbances

requiring only one multiplier coupled with a judicious use of Gagliardo-Nirenberg's

inequality. Our results generalize this �nding in the absence of disturbances (even

though it has been mentioned in [25] with no proof that this is the case). It has

also to be noted that similar results are provided in [24] in the localized case but the

nonlinearity is lower bounded by a linear function for large values of its arguments.

That simpli�es considerably some computations. Recall also that the purpose of [24]

is instead to address issues when g′(0) = 0 and to obtain accurate decay rates for E.

Hence a possible interest of the present chapter is the fact that it handles nonlin-

earities g so that g(v)/v tends to zero as |v| tends to in�nity with a linear behavior in

a neighborhood of the origin.

As for ISS purposes, this chapter can be seen as an extension to the in�nite dimen-

sional context of [23] where the nonlinearity is of the saturation type. Moreover, the

present work extends to the dimension two the works [26] and [27], where this type of

issues have been addressed by building appropriate Lyapunov functions and by provid-

ing results in dimension one. Here, we are not able to construct Lyapunov functions

and we rely instead on energy estimates based on the multiplier method, showing how

these estimates change when adding the two disturbances d and e. To develop that

strategy, we must impose additional assumptions on g′, still handling saturation func-

tions. As a �nal remark, we must recall that [25] contains other stability results in two

directions. On one hand, g′ can simply admit a (possibly) negative lower bound and

on the other hand, the space dimension N can be larger than 2, at the price of more

restrictive assumptions on g, in particular, by assuming quasi-linear lower bounds for

its asymptotic behavior at in�nity. One can readily extend the results of the present

chapter in both directions by eventually adding growth conditions on g.
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2.2 Preliminaries

Lemma 2.2.1 ( [17]). (Young's inequality)

Let p > 1 and q = p
p−1

its conjugate exponent. Then, for every A,B ∈ R and η > 0,

Young's inequality reads

|AB| ≤ ηp
|A|p
p

+
|B|q
qηq

. (2.3)

Theorem 2.2.1. (Gronwall integral lemma)

Let E : R+ → R+ satisfy for some C0, T > 0:∫ +∞

t

E(s)ds ≤ TE(t) + C0, ∀ t ≥ 0. (2.4)

Then, the following estimate hold true∫ +∞

t

E(s)ds ≤ TE(0)e−
t
T + C0, ∀ t ≥ 0. (2.5)

If in addition, t 7→ E(t) is non-increasing, one has

E(t) ≤ E(0)e1−
t
T +

C0

T
, ∀ t ≥ 0. (2.6)

The proof is classical, cf. for instance [4].

Theorem 2.2.2. (Generalized Gronwall lemma)

Let F, h1 and h2 non negative functions de�ned on R+ satisfying

∥h1∥1 :=
∫ ∞

0

h1(t)dt <∞, ∥h2∥1 :=
∫ ∞

0

h2(t)dt <∞,

and

F (T ) ≤ F (S) + C3 + C1

∫ T

S

h1(s)F
α1(s)ds+ C2

∫ T

S

h2(s)F
α2(s)ds, ∀ S ≤ T, (2.7)

where C1, C2, C3 are positive constants and 0 ≤ α1, α2 < 1. Then, F satis�es the

following bound

sup
t∈[S,T ]

F (t) ≤ max
(
2(F (S) + C3), (2C̃)

1
1−α

)
, with C̃ := C1∥h1∥1 + C2∥h2∥1, (2.8)

where α := max(α1, α2) if 2C̃ ≥ 1 or α := min(α1, α2) if 2C̃ < 1.
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Proof of Theorem 2.2.2: Fix T ≥ S ≥ 0. For t ∈ [S, T ] set Y (t) for the

right-hand side of (2.7) applied at the pair of times S ≤ t. It de�nes a non decreasing

absolutely continuous function. Since F (t) ≤ Y (t) ≤ Y (T ) for t ∈ [S, T ], one deduces

that FS,T := supt∈[S,T ] F (t) is �nite for every t ∈ [S, T ]. One gets from (2.7) that

FS,T ≤ F (S) + C3 + C̃max(Fα1
S,T , F

α2
S,T ),

with the notations of (2.8). The latter follows at once by considering whether F (S) +

C3 > C̃max(Fα1
S,T , F

α2
S,T ) or not.

■

Theorem 2.2.3. (Gagliardo�Nirenberg interpolation inequality)

Let Ω ⊂ RN be a bounded Lipschitz domain, N ≥ 1, 1 ≤ r < p ≤ ∞, 1 ≤ q ≤ p and

m ≥ 0. Then the inequality

∥v∥p ≤ C∥v∥θm,q∥v∥1−θ
r for v ∈ Wm,q(Ω) ∩ Lr(Ω) (2.9)

holds for some constant C > 0 and

θ =

(
1

r
− 1

p

)(
m

N
+

1

r
− 1

q

)−1

, (2.10)

where 0 < θ ≤ 1 (0 < θ < 1 if p = ∞ and mq = N) and ∥.∥p denotes the usual Lp(Ω)

norm and ∥.∥m,q the norm in Wm,q(Ω).

The result is classical and has been taken from [25].

2.3 Statement of the problem and main result

In this section, we provide assumptions on the data needed to precisely de�ne (2.1).

We henceforth refer to (2.1) as the disturbed problem. Next, we state and comment

the main results of this work and discuss possible extensions.

Throughout the chapter, the domain Ω is a bounded open subset of R2 of class C2,

the assumptions on g are the following.

(H1): The function g : R −→ R is a C1 non-decreasing function such that

g(0) = 0, g′(0) > 0, g(x)x > 0 for x ̸= 0, (2.11)
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∃ C > 0, ∃ 1 < q < 5, ∀ |x| ≥ 1, |g(x)| ≤ C|x|q, (2.12)

∃ C > 0, ∃ 0 < m < 4, ∀|x| > 1, |g′(x)| ≤ C|x|m. (2.13)

(H2): The localization function a : Ω → R is a continuous function such that

a ≥ 0 on Ω and ∃ a0 > 0, a ≥ a0 on ω. (2.14)

In order to prove the stability of solutions, we impose a multiplier geometrical condi-

tion (MGC) on ω. It is given by the following hypothesis.

(H3): There exists an observation point x0 ∈ R2 for which ω contains the intersection

of Ω with an ϵ-neighborhood of

Γ(x0) = {x ∈ ∂Ω, (x− x0).ν(x) ≥ 0}, (2.15)

where ν is the unit outward normal vector for ∂Ω and an ϵ-neighborhood of Γ(x0) is

de�ned by

Nϵ(Γ(x0)) = {x ∈ R2 : dist(x,Γ(x0)) ≤ ϵ}. (2.16)

Regarding the disturbances d and e, we make the following assumptions.

(H4): the disturbance function d : R+ × Ω −→ R belongs to L1(R+, L
2(Ω)) and

satis�es the following:

d(t, ·) ∈ H1
0 (Ω) ∩ L2q(Ω),

∀t ∈ R+, t 7→
∫ t

0

∆d(s, ·) ds− dt(t, ·) ∈ Lip
(
R+, H

1
0 (Ω)

)
, (2.17)

where Lip denotes the space of Lipschitz continuous functions. We also impose that

the following quantities

C1(d) =

∫ ∞

0

∫
Ω

(|d|2 + |d|2q) dx dt, C2(d) =

∫ ∞

0

∫
Ω

|d|m (dt)
2 dx dt,

C3(d) =

∫ ∞

0

∫
Ω

(dt)
2 dx dt, C4(d) =

∫ ∞

0

(∫
Ω

|dt|2(
p

p−1) dx

)( p−1
p )

dt, (2.18)

are all �nite, where p is a �xed real number so that, if 0 < m ≤ 2, then p > 2
m

and if

2 < m < 4, then p ∈ (1, m
m−2

).
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Remark 2.3.1. The fact that d belongs to L1(R+, L
2(Ω)) means that the following

quantity is �nite

C5(d) =

∫ ∞

0

||d||L2(Ω) dt, (2.19)

which implies that the following quantity is also �nite

C6(d) =

∫ ∞

0

∫
Ω

|d| dx dt. (2.20)

(H5): The disturbance function e : R+ ×Ω −→ R belongs to W 1,1(R+, L
2(Ω)) and

satis�es the following

e ∈ Lip
(
R+, H

1
0 (Ω)

)
, e(0, .) ∈ L2(Ω), C̄1(e) =

∫ ∞

0

∫
Ω

e2 dx dt <∞. (2.21)

Remark 2.3.2. The fact that e belongs to W 1,1(R+, L
2(Ω)) means that the following

quantities are �nite

C̄2(e) =

∫ ∞

0

||e(t, ·)||L2(Ω) dt, C̄3(e) =

∫ ∞

0

||et(t, ·)||L2(Ω) dt. (2.22)

Remark 2.3.3. In the rest of the chapter, we will use various symbols C, Cz and

Cd,e which are constants independent of the time t. However, it is important to stress

that these symbols have speci�c dependence on other parameters of the problem.

More precisely, the symbol C will be used to denote positive constants independent of

initial conditions and disturbances, i.e., only depending on the domains Ω, ω and the

functions a and g. The symbol Cz denotes a generic K-function of the norms of the

initial condition (z0, z1) and similarly the symbol Cd,e denotes a generic K-function of

the several quantities Ci(d) and C̄i(e). Here K denotes the set of continuous increasing

functions γ : R+ → R+ with γ(0) = 0, it has been de�ned in the introduction chapter

of this thesis (see also [28]).

Moreover, in the course of intermediate computations, we will try to keep all the

previous constants as explicit as possible in terms of the norms of the initial condition

and the Ci(d) and C̄i(e) in order to keep track of the nature of generic constants. We

will use the latter generic mainly in the statements of the results.

Before we state the main results, we de�ne the notion of a strong solution of Prob-

lem (2.1). To do so, we start by giving an equivalent form of Problem (2.1) :

De�ne for every (t, x) ∈ R+ × Ω, d̄(t, x) =
∫ t

0
d(s, x)ds. We translate z in Prob-
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lem (2.1) as y = z + d̄, it is immediate to see that Problem (2.1) is equivalent to the

following problem: 
ytt −∆y + a(x)g(yt) = ẽ, in R+ × Ω,

y = 0, on R+ × ∂Ω,

y(0, .) = y0, yt(0, .) = y1,

(2.23)

where ẽ = dt −∆d̄− e, y0 = z0 and y
1 = z1 + d(0, .).

De�ne the unbounded operator

A : H = H1
0 (Ω)× L2(Ω) −→ H,

(x1, x2) 7−→ (x2,−∆x1 + ag(x2)), (2.24)

with domain

D(A) =
(
H2(Ω) ∩H1

0 (Ω)
)
×H1

0 (Ω).

For t ≥ 0, set

Z(t) =

(
z(t, ·)
zt(t, ·)

)
, Y (t) =

(
y(t, ·)
yt(t, ·)

)
, D(t) =

(
d̄(t, ·)
d(t, ·)

)
, G(t) =

(
0

ẽ

)
.

Notice that G ∈ Lip(R+, L
2(Ω)×H1

0 (Ω)). Then Problem (2.23) can be written as

Yt(t) = AY (t) +G(t), Y (0) = Y0 =

(
y0

y1

)
. (2.25)

A strong solution of (2.25) in the sens of [7] is a function Y ∈ C(R+, H), absolutely

continuous in every compact of R+, satisfying Y (t) ∈ D(A),∀t ∈ R+ and satisfying

(2.25) almost everywhere in R+. On the other hand, the hypotheses satis�ed by d

imply that D(t) ∈ D(A) for every t ∈ R+. Since Z = Y − D, we can now give the

following de�nition for a strong solution of Problem (2.1).

De�nition 2.3.1. (Strong solution of Problem (2.1).)

A strong solution z of Problem (2.1) is a function z ∈ C1(R+, L
2(Ω))∩C(R+, H

1
0 (Ω))

such that t 7→ zt(t, ·) is absolutely continous in every compact of R+. For all t ∈ R+,

(z(t, ·), zt(t, ·)) ∈ D(A) and z(t, ·) satis�es Problem (2.1) for almost all t ∈ R+.

We gather our �ndings in the following theorem regarding the disturbed system Prob-

lem (2.1).



2.3. STATEMENT OF THE PROBLEM AND MAIN RESULT 39

Theorem 2.3.1. Suppose that Hypotheses (H1) to (H5) are satis�ed. Then, given

(z0, z1) ∈ (H2(Ω) ∩ H1
0 (Ω)) × H1

0 (Ω), Problem (2.1) has a unique strong solution z.

Furthermore, the following energy estimate holds:

E2(t) ≤ (C + Cz)E2(0)e
− t−1

Cz+C + Cd,e(Cz + 1), (2.26)

where the positive constant Cz depends only on the initial conditions and the positive

constant Cd,e depends only on the disturbances d and e.

Remark 2.3.4. (Comments and extensions)

� Theorem 2.3.1 holds true if the Lipschitz assumptions in (2.17) and (2.21) are

replaced by bounded variation ones.

� In the case where the disturbances are both zero (d ≡ 0 and e ≡ 0), Theo-

rem 2.3.1 holds without the hypothesis on g′ given by (2.13) (i.e. no restriction

on q in (2.12)) and the hypothesis given by (2.12) can be then weakened to the

following one

∃ C > 0, ∃ q > 1, ∀ |x| ≥ 1, |g(x)| ≤ C|x|q.

It is clear that if g satis�es the last part of the condition above for 0 ≤ q ≤ 1, it

would still satisfy it for any q > 1.

� The geometrical condition MGC imposed in (H3) can be readily reduced to the

weaker and more general MGC introduced in [22] and called piecewise MGC

in [4].

Remark 2.3.5. Note that (2.26) is an ISS-type estimate but it fails to be a strict one

( in the sense of De�nition 1.2.3 ) for two facts. First of all, the estimated quantity E2

is the norm of a trajectory in the space H1
0 (Ω)×L2(Ω) while the constant Cz depends

on the initial condition by its norm in the smaller space (H2(Ω) ∩ H1
0 (Ω)) × H1

0 (Ω).

This di�erence seems unavoidable since in the undisturbed case exponential decay can

be proved only for strong solutions as soon as the nonlinearity g is not assumed to

be bounded below at in�nity by a linear function. As a matter of fact, it would be

interesting to prove that strong stability is the best convergence result one could get

for weak solutions, let say with damping functions g of saturation type functions and

in dimension at least two.

The second di�erence lies in the second term in (2.26), namely it is not just a K-
function of the norms of the disturbances. We can get such a result if we have an

extra assumption on g, typically g of growth at most linear at in�nity (i.e., q = 1)
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with bounded derivative (i.e., m = 0). In particular, this covers the case of regular

saturation functions (increasing bounded functions g with bounded derivatives).

We give now the proof of the well-posedness part of Theorem (2.3.1).

Proof of the well-posedness: The argument is standard since −A, where A is

de�ned in (2.24), is a maximal monotone operator on H1
0 (Ω) × L2(Ω) (cf. for in-

stance [15] for a proof). We can apply Theorem 3.4 combined with Propositions 3.2

and Propositions 3.3 in [7] to (2.25), which immediately proves the results of the well-

posedness part.

■

Remark 2.3.6. In [25], the domain of the operator has been chosen as

{(u, v) ∈ H1
0 (Ω)×H1

0 (Ω) : −∆u+ g(v) ∈ L2(Ω)}.

However, in dimension two, taking the domain of A in the case where d = e = 0 as

{(u, v) ∈ H1
0 (Ω)×H1

0 (Ω) : −∆u+a(x)g(v) ∈ L2(Ω)} or as (H2(Ω)∩H1
0 (Ω))×H1

0 (Ω) is

equivalent. Indeed, using the hypothesis given by (2.12), we have that |g(v)| ≤ C|v|q
for |v| < 1, which means when combining it with the fact that g(0) = 0 that |g(v)| ≤
C|v|q + C|v| for all v. From Gagliardo-Nirenberg theorem (see in Appendix) we have

for v ∈ H1
0 (Ω) that

∥v∥2qL2q(Ω) ≤ C∥v∥2q−2

H1
0 (Ω)

∥v∥2L2(Ω),

which means that

∥g(v)∥2L2(Ω) =

∫
Ω

|g(v)|2dx ≤ C

∫
Ω

(|v|q + |v|)2 dx ≤ C∥v∥2qL2q(Ω) + C∥v∥2L2(Ω)

≤ ∥v∥2q−2

H1
0 (Ω)

∥v∥2L2(Ω) + C∥v∥2L2(Ω) < +∞ (since v ∈ H1
0 (Ω)),

i.e., g(v) ∈ L2(Ω). Then, by using Lemma 2.4.2 (with (d, e) ≡ (0, 0)), we have that

−∆u+ ag(v) ∈ L2(Ω), which means that ∆u ∈ L2(Ω). On the other hand, ∥∆u∥L2(Ω)

is an equivalent norm to the norm of H2(Ω) ∩H1
0 (Ω) and Ω is of class C2 (the proof

is a direct result of Theorem 4 of Section 6.3 in [12]). We can �nally conclude that

{(u, v) ∈ H1
0 (Ω) × H1

0 (Ω) : −∆u + a(x)g(v) ∈ L2(Ω)} is nothing else but (H2(Ω) ∩
H1

0 (Ω))×H1
0 (Ω).
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2.4 Proof of the energy estimate

To prove the energy estimate given by (2.26), we are going to use the multiplier method

combined with a Gronwall lemma and other technical lemmas given in this section.

We will be referring to [24] and [25] in several computations since our problem is a

generalization of their strategy to the case where the disturbances (d, e) are present.

We start with the following lemma stating that the energy E2 is bounded along tra-

jectories of Problem (2.1).

Lemma 2.4.1. Under the hypotheses of Theorem 2.3.1, the energy of a strong solution

of Problem (2.1), satis�es

E ′
2(t) = −

∫
Ω

aztg(zt + d) dx−
∫
Ω

zte dx, ∀t ≥ 0. (2.27)

Furthermore, there exist positive constants C and Cd,e such that

E2(T ) ≤ CE2(S) + Cd,e, ∀ 0 ≤ S ≤ T. (2.28)

Proof of Lemma 2.4.1: Equation (2.27) follows after multiplying the �rst equation

of (2.1) by zt and performing standard computations. Notice that we do not have the

dissipation of E2 since the sign of E ′
2 is not necessarily constant. To achieve (2.28),

we �rst write

−
∫
Ω

aztg(zt + d) dx = −
∫
|zt|≤|d|

aztg(zt + d) dx−
∫
|zt|>|d|

aztg(zt + d) dx. (2.29)

On one hand, from (2.11) and the fact that (zt + d) and zt have the same sign if

|zt| > |d|, we deduce that

−
∫
|zt|>|d|

aztg(zt + d) dx ≤ 0. (2.30)

On the other hand, since g is non-decreasing, has linear growth in a neighborhood of
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zero by (2.11), and satis�es (2.12), it follows that

−
∫
|zt|≤|d|

aztg(zt + d) dx ≤ C

∫
|zt|≤|d|

|d||g(|2d|)| dx ≤ C

∫
Ω

|d||g(|2d|)| dx

≤ C

∫
|d|<1

|d||g(2d)|dx+ C

∫
|d|≥1

|d||g(2d)|dx

≤ C

∫
|d|<1

|d|2dx+ C

∫
|d|≥1

|d|q+1dx

≤ C

∫
Ω

(|d|2 + |d|2q) dx. (2.31)

Combining (2.29), (2.30), (2.31) and (2.27), we obtain that

E ′
2 ≤ C

∫
Ω

(|d|2 + |d|2q) dx−
∫
Ω

zte dx dt. (2.32)

Using Cauchy-Schwarz inequality,

E ′
2 ≤ C

∫
Ω

(|d|2 + |d|2q) dx+
(∫

Ω

|e|2 dx dt
) 1

2
(∫

Ω

|zt|2 dx
) 1

2

≤ C

∫
Ω

(|d|2 + |d|2q) dx+ C∥e∥L2(Ω)

√
E2,

then integrating between two arbitrary non negative times S ≤ T , we get

E2(T ) ≤ E2(S) + CC1(d) + C

∫ T

S

∥e∥L2(Ω)

√
E2dt,

which allows us to apply Theorem 2.2.2 and conclude that

E2(T ) ≤ CE2(S) + CC1(d) + CC̄2(e)
2 = CE2(S) + Cd,e.

Hence, the proof of Lemma 2.4.1 is completed.

■

Remark 2.4.1. In the absence of disturbances, in other words when d = e = 0 we

have that:

E ′
2(t) = −

∫
Ω

aztg(zt) dx, ∀t ≥ 0, (2.33)

and thus the energy E2 is non increasing by using (2.11). That latter fact simpli�es

the proof of exponential decrease in this case.

We provide now an extension of Lemma 2 in [25] to the context of Problem (2.1).
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Lemma 2.4.2. Under the hypotheses of Theorem 2.3.1, for every solution of Problem

Problem (2.1) with initial conditions (z0, z1) ∈ (H2(Ω) ∩H1
0 (Ω))×H1

0 (Ω), there exist

explicit positive constants Cz and Cd,e such that

∀t ≥ 0, ∥−∆z(t, ·)+a(·)g(zt(t, ·)+d(t, ·))+ e(t, ·)∥2L2(Ω)+∥zt(t, ·)∥2H1
0 (Ω) ≤ Cz +Cd,e.

(2.34)

Proof of Lemma 2.4.2: We set w := zt, where u is the strong solution of Problem

(2.1). We know that w(t) ∈ H1
0 (Ω) for every t ≥ 0. Moreover, it is standard to show

that w(t) satis�es in the distributional sense the following problem:
wtt −∆w + ag′(w + d)(wt + dt) + et = 0, in Ω× R+,

w = 0, on ∂Ω× R+,

w(0) = z1, wt(0) = ∆z0 − g(z1 + d(0))− e(0).

(2.35)

Set E2,w(t) to be the energy of w for all t ≥ 0. It is given by

E2,w(t) =
1

2

∫
Ω

(w2
t (t, x) + |∇w(t, x)|2) dx.

Using wt as a test function in (2.35), then performing standard computations, we

derive

E2,w(t)− E2,w(0) =−
∫ t

0

∫
Ω

(ag′(w + d)(dt + wt)wt + etwt) dxdτ. (2.36)

Let I :=
∫ t

0

∫
Ω
a(.)g′(w + d)(dt + wt)wt dxdτ . We split the domain Ω in I according

to whether |dt| ≤ |wt| or not. Clearly the part corresponding to |dt| ≤ |wt| is non

negative since g′ ≥ 0, a ≥ 0 and (dt + wt) and wt have the same sign. From (2.13),

one has the immediate estimate

g′(a+ b) ≤ C(1 + |a+ b|m) ≤ C(1 + |a|m + |b|m), ∀a, b ∈ R.

Using the above, we can rewrite (2.36) as

E2,w(t)− E2,w(0)

≤
∫ t

0

∫
|dt|>|wt|

ag′(w + d)(dt + wt)wt dxdτ +

∫ t

0

∫
Ω

|et||wt| dxdτ

≤ C

∫ t

0

∫
Ω

g′(w + d)d2t dxdτ + C

∫ t

0

||et||L2(Ω)

√
E2,wdτ

≤ C

∫ t

0

∫
Ω

(1 + |w|m + |d|m)d2t dxdτ + C

∫ t

0

∥et∥L2(Ω)

√
E2,wdτ. (2.37)
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Using Hölder's inequality,

∫ t

0

∫
Ω

|w|md2t dxdτ ≤
∫ t

0

(∫
Ω

|w|pm dx
) 1

p
(∫

Ω

|dt|2p
′
dx

) 1
p′

dτ, (2.38)

with p de�ned in (2.18) and p′ > 1 is its conjugate exponent given by 1
p
+ 1

p′
= 1.

Thanks to the assumptions on p, one can use Gagliardo-Nirenberg's inequality for w

to get

(∫
Ω

|w(t, x)|pm dx
) 1

p

≤ CE2,w(t)
mθ
2 E(t)

(1−θ)m
2 , t ≥ 0, (2.39)

where θ = 1− 2
mp

. Combining (2.39), (2.38) and (2.37), it follows that

E2,w(t)− E2,w(0) ≤ C

∫ t

0

E
mθ
2

2,wE
(1−θ)m

2

∫
Ω

(
|dt|2p

′
dx
) 1

p′
dτ

+

∫ t

0

∫
Ω

(1 + |d|m)d2t dxdτ + C

∫ t

0

||et||L2(Ω)

√
E2,wdτ. (2.40)

Note that mθ
2
< 1. Setting h1(t) =

∫
Ω

(
|dt|2p′ dx

) 1
p′ , h2(t) = ||et||L2(Ω) and using (2.28),

(2.40) becomes

E2,w(t) ≤ E2,w(0) + C2(d) + C3(d) + (Cz + Cd,e)

∫ t

0

E
mθ
2

2,wh1(s)ds

+ C

∫ t

0

h2(s)
√
E2,wds. (2.41)

We know that ∫ ∞

0

h1(t) dt = C4(d) <∞,

∫ ∞

0

h2(t) dt = C̄3(e) <∞. (2.42)

We can now apply Theorem 2.2.2 on (2.41) with

S = 0, T = t, α1 =
mθ

2
, α1 =

1

2
, F (·) = E2,w(·), C3 = C2(d) + C3(d),

C1 = Cz + Cd,e, C2 = C.

We obtain the following bound for E2,w(·):

E2,w(t) ≤ max
(
2(E2,w(0) + C2(d) + C3(d)), (2C̃)

1
1−α

)
, (2.43)

where C̃ := C1∥h1∥1 +C2∥h2∥1 and α := max(α1, α2) if 2C̃ ≥ 1 or α := min(α1, α2) if

2C̃ < 1.
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It is clear that C̃ = (Cz + Cd,e)C4(d) + CC̄3(e) ≤ Cz + Cd,e. One then rewrites

(2.43) as

E2,w(t) ≤ 2(E2,w(0) + C2(d) + C3(d)) + (Cz + Cd,e)
1

1−α . (2.44)

Note that for t ≥ 0 one obviously has that

E2,w(t) =
1

2

∫
Ω

(w2
t (t, x) + |∇w(t, x)|2) dx

=
1

2

(
||ztt(t, ·)||2L2(Ω) + ∥zt(t, ·)∥2H1

0 (Ω)

)
= ∥ −∆z(t, ·) + a(·)g(zt(t, ·) + d(t, ·)) + e(t, ·)∥2L2(Ω) + ∥zt(t, ·)∥2H1

0 (Ω).

The conclusion of the lemma follows since, by taking into account (2.12), it is clear

that E2,w(0) ≤ Cz + Cd,e.

■

We next provide the following important estimate based on Gagliardo-Nirenberg the-

orem:

Lemma 2.4.3. For all q > 2, a strong solution u of Problem (2.1) satis�es

∥zt(t, ·)∥qLq(Ω) ≤ (Cz + Cd,e)E2(t), t ≥ 0. (2.45)

Proof of Lemma 2.4.3: We derive immediately from (2.34) that ∥zt∥H1
0 (Ω) ≤

Cz +Cd,e. Then, using Gagliardo-Nirenberg's theorem, it follows that, for every t ≥ 0,

∥zt(t, ·)∥qLq(Ω) ≤ C∥zt(t, ·)∥q−2

H1
0 (Ω)

∥zt(t, ·)∥2L2(Ω) ≤ (Cz + Cd,e)E2(t). (2.46)

■

We have all the tools now to start the proof of the second part of Theorem 2.3.1. The

stability result will be achieved as a direct consequence of the following proposition:

Proposition 2.4.1. Suppose that the hypotheses of Theorem (2.3.1) are satis�ed,

then the energy E2 of the strong solution z of Problem (2.1) with (z0, z1) ∈ (H2(Ω) ∩
H1

0 (Ω))×H1
0 (Ω)), satis�es the following estimate:∫ T

S

E2(t) dt ≤ (Cz + C)E2(S) + (1 + Cz)Cd,e, (2.47)



46 CHAPTER 2. WEAK ISS OF THE NON-LINEAR DISTURBED PROBLEM

where the positive constant Cz depends only on the initial condition, the positive

constant Cd,e depends only on the disturbances d and e respectively and C is a positive

real constant.

Proof of Proposition 2.4.1

We now embark on an argument for Proposition 2.4.1. It is based on the use of several

multipliers that we will apply to the partial di�erential equation of (2.1). For that

purpose, we need to de�ne several functions associated with Ω.

Let (z0, z1) ∈ (H2(Ω) ∩H1
0 (Ω))×H1

0 (Ω), S ≤ T two non negative times and x0 ∈ R2

an observation point. De�ne ϵ0, ϵ1 and ϵ2 three positive real constants such that

ϵ0 < ϵ1 < ϵ2 < ϵ where ϵ is the same as de�ned in (2.16). Using ϵi, we de�ne Qi for

i = 0, 1, 2 as Qi = Nϵi [Γ(x0)].

Since (Ω \Q1) ∩Q0 = ∅, we are allowed to de�ne a function ψ ∈ C∞
0 (R2) such that

0 ≤ ψ ≤ 1,

ψ = 1 on Ω̄ \Q1,

ψ = 0 on Q0.

(2.48)

We also de�ne the C1 vector �eld k on Ω by

k(x) := ψ(x)(x− x0). (2.49)

When the context is clear, we will omit the arguments of k.

We use the multiplier M(z) := k∇z + z
2
to deduce the following �rst estimate:

Lemma 2.4.4. Under the hypotheses of Proposition 2.4.1, we have the following
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inequality:

∫ T

S

E2 dt ≤
∣∣∣∣∣
[∫

Ω

ztM(z) dx

]T
S

∣∣∣∣∣︸ ︷︷ ︸
T1

+C

∫ T

S

∫
Ω∩Q1

|∇z|2 dx dt︸ ︷︷ ︸
T2

+

∣∣∣∣∫ T

S

∫
Ω

ag(zt + d)M(z) dx dt

∣∣∣∣︸ ︷︷ ︸
T3

+

∣∣∣∣∫ T

S

∫
Ω

eM(z) dx dt

∣∣∣∣︸ ︷︷ ︸
T4

+C

∫ T

S

∫
ω

z2t dx dt︸ ︷︷ ︸
T5

, (2.50)

where k is de�ned in (2.49) and M(z) is the multiplier given by k.∇z + z
2
.

Proof of Lemma 2.4.4. The proof is based on multiplying Problem (2.1) by the

multiplier M(z) and integrating on [S, T ] × Ω. Then, we follow the steps that led to

the proof of equation (3.15) in [24] except that we take σ = 0 and ϕ(t) = t in the

beginning and we replace ρ(x, zt) by a(x)g(zt + d) + e.

■

Remark 2.4.2. From now on, whenever we refer to a proof in [24], we refer to the

steps of the proof with the change of σ = 0 and ϕ(t) = t as well as replacing ρ(x, zt)

by a(x)g(zt + d) + e.

The goal now is to estimate the terms T1 to T5.

Lemma 2.4.5. Under the hypotheses of Proposition 2.4.1, there exists a positive

constant C such that

T1 ≤ CE(S) + Cd,e. (2.51)

Proof of Lemma 2.4.5: Exactly as the proof of equation (5.14) in [24] except

that we use (2.28) in the very last step since we do not have the non-increasing of the

energy here. We obtain (2.51).

■

The estimation of T2 requires more work and it is given in the following lemma:
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Lemma 2.4.6. Under the hypotheses of Proposition 2.4.1, T2 is estimated by

T2 ≤Cη0
∫ T

S

E2 dt+
C

η0

∫ T

S

∫
ω

z2t dx dt+
1

η0
(C + Cz + Cd,e)E2(S)

+
1

η50
(Cd,eCz + Cd,e) , (2.52)

where 0 < η0 < 1 is an arbitrary real positive number to be chosen later.

Proof of Lemma 2.4.6: The argument requires a new multiplier, namely ϕz,

where the function ϕ ∈ C∞
0 (R2) is de�ned by

0 ≤ ϕ ≤ 1,

ϕ = 1 on Q1,

ϕ = 0 on R2 \Q2.

(2.53)

Such a function ϕ exists since R2 \Q2∩Q1 = ∅. Using the multiplier ϕz and following

the steps in the proof of Lemma 9 in [24], yields the following identity:

∫ T

S

∫
Ω
ϕ|∇z|2 dx dt =

∫ T

S

∫
Ω
ϕ|zt|2 dx dt+

1

2

∫ T

S

∫
Ω
∆ϕz2 dx dt−

[∫
Ω
ϕzzt dx

]T
S

−
∫ T

S

∫
Ω
ϕz [a(x)g(zt + d) + e] dx dt. (2.54)

Combining the fact that ∆ϕ is bounded and the de�nition of ϕ, we derive from (2.54)

that

T2 ≤
∫ T

S

∫
Ω∩Q2

|zt|2 dx dt+
∣∣∣∣∣
[∫

Ω∩Q2

zzt dx

]T
S

∣∣∣∣∣︸ ︷︷ ︸
S1

+C

∫ T

S

∫
Ω∩Q2

z2 dx dt︸ ︷︷ ︸
S2

+

∫ T

S

∫
Ω

|zag(zt + d)| dx dt︸ ︷︷ ︸
S3

+

∫ T

S

∫
Ω

|ze| dx dt︸ ︷︷ ︸
S4

. (2.55)

First, note that the �rst term of (2.55) is upper bounded by
∫ T

S

∫
ω
|zt|2 dx dt since

Ω ∩ Q2 ⊂ ω. Left to estimate the other terms in the right-hand side of (2.55). We

start by treating S1. We easily get the following estimate by using Young and Poincaré

inequalities: ∫
Ω∩Q2

|zzt| dx ≤ 1

2

∫
Ω∩Q2

|z|2 dx+ 1

2

∫
Ω∩Q2

|zt|2 dx ≤ CE2. (2.56)



2.4. PROOF OF THE ENERGY ESTIMATE 49

Using (2.28) with (2.56) we obtain the estimation of S1 given by

S1 ≤ CE2(S) + Cd,e. (2.57)

To estimate S2, we introduce the last multiplier in what follows:

Since (Ω \ ω) ∩ (Q2 ∩ Ω) = ∅, there exists a function β ∈ C∞
0 (R2) such that

0 ≤ β ≤ 1,

β = 1 on Q2 ∩ Ω,

β = 0 on Ω \ ω.
(2.58)

For every t ≥ 0, let v be the solution of the following elliptic problem:{
∆v = βz in Ω,

v = 0 on ∂Ω.
(2.59)

One can prove the following lemma:

Lemma 2.4.7. Under the hypotheses of Proposition 2.4.1 with v as de�ned in (2.59),

it holds that

||v||L2(Ω) ≤ C||z||L2(Ω), ||vt||2L2(Ω) ≤ C

∫
ω

|zt|2 dx, ∥∇v∥L2(Ω) ≤ C||∇z||L2(Ω), (2.60)

∀S ≤ T ∈ R+,

∫ T

S

∫
Ω

βz2 dx dt =

[∫
Ω

vzt dx

]T
S

+

∫ T

S

∫
Ω

(−vtzt + v [ag(zt + d) + e]) dx dt. (2.61)

Proof of Lemma 2.4.7: Equation 2.60 gathers standard elliptic estimates from

the de�nition of v as a solution of (2.59) while (2.61) is obtained by using v as a

multiplier for Problem (2.1). Steps of the proof are similar to the ones that led to

equations (5.22), (5.25) and (5.26) in [24].

■

Since the non negative β is equal to 1 on Q2 and 0 on R2 \ ω, it follows from (2.61)

that

S2 ≤
[∫

Ω

vzt dx

]T
S︸ ︷︷ ︸

U1

−
∫ T

S

∫
Ω

vtzt dx dt︸ ︷︷ ︸
U2

+

∫ T

S

∫
Ω

v(ag(zt + d) + e) dx dt︸ ︷︷ ︸
U3

. (2.62)
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We estimate U1, U2 and U3. We start by handling U1. One has from Cauchy-Schwarz

inequality, then (2.60) and Poincaré inequality that∣∣∣∣∫
Ω

vzt dx

∣∣∣∣ ≤ ||v||L2(Ω)||zt||L2(Ω) ≤ C||∇z||L2(Ω)||zt||L2(Ω) ≤ CE2(t). (2.63)

Using (2.63) and the fact that E is non-increasing, it is then immediate to derive that

|U1| =
∣∣∣∣(∫

Ω

vzt dx

)
(T )−

(∫
Ω

vzt dx

)
(S)

∣∣∣∣ ≤ C(E2(T ) + E2(S)). (2.64)

Finally, using (2.28) in (2.64), we obtain that

U1 ≤ CE2(S) + Cd,e. (2.65)

As for U2, the use of Young inequality with an arbitrary real number 0 < η0 < 1 yields

|U2| ≤
∫ T

S

∫
Ω

1

2η0
|vt|2 dx dt+

∫ T

S

∫
Ω

η0
2
|zt|2 dx dt.

Then, we use (2.60) and the fact that 0 ≤ β ≤ 1 to conclude the following estimate:

U2 ≤
C

η0

∫ T

S

∫
ω

u2t dx dt+ Cη0

∫ T

S

E2 dx dt, (2.66)

where η0 is a positive real number to be chosen later.

Left to estimate U3. We can rewrite it as the following:

U3 =

∫ T

S

∫
|ut+d|≤1

a(x)vg(zt + d)dxdt︸ ︷︷ ︸
V1

+

∫ T

S

∫
|zt+d|>1

a(x)vg(zt + d)dxdt︸ ︷︷ ︸
V2

+

∫ T

S

∫
Ω

a(x)zedxdt︸ ︷︷ ︸
V3

. (2.67)

We estimate the three terms V1, V2 and V3. We start by estimating V1. We have using

Young inequality that

V1 ≤ Cη0

∫ T

S

E2 dt+
1

η0

∫ T

S

∫
|zt+d|≤1

|ag(zt + d)|2 dx dt. (2.68)

The fact that g(0) = 0 implies the existence of a constant C > 0 such that |g(x)| ≤ C|x|
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for all |x| ≤ 1. Combining it with the fact that g(x)x ≥ 0, ∀ x ∈ R, it follows that∫ T

S

∫
|zt+d|≤1

|ag(zt + d)|2 dx dt ≤
∫ T

S

∫
|zt+d|≤1

a(.)(zt + d)g(zt + d) dx dt

≤
∫ T

S

∫
Ω

a(.)(zt + d)g(zt + d) dx dt. (2.69)

Using (2.27) and Young inequality with 0 < η1 < 1,∫ T

S

∫
Ω

a(.)(zt + d)g(zt + d) dx dt

=

∫ T

S

∫
Ω

aztg(zt + d) dx dt+

∫ T

S

∫
Ω

adg(zt + d) dx dt

≤
∫ T

S

∫
Ω

aztg(zt + d) dx dt+

∫ T

S

∫
Ω

zte dx dt−
∫ T

S

∫
Ω

zte dx dt

+ C

∫ T

S

∫
Ω

|d||g(zt + d)| dx dt

≤
∫ T

S

(−E ′
2)dt+

∫ T

S

∫
Ω

|zt||e| dx dt+ C

∫ T

S

∫
Ω

|d||g(zt + d)| dx dt

≤ E2(S) + Cη1

∫ T

S

E2 dt+
C

η1

∫ T

S

∫
Ω

|e|2 dx dt

+ C

∫ T

S

∫
Ω

|d||g(zt + d)| dx dt

≤ E2(S) + Cη1

∫ T

S

E2 dt+
C

η1
C̄1(e) + C

∫ T

S

∫
Ω

|d||g(zt + d)| dx dt. (2.70)

Left to estimate
∫ T

S

∫
Ω
|d||g(zt + d)| dx dt, we proceed as the following:∫ T

S

∫
Ω

|d||g(zt + d)| dx dt

=

∫ T

S

∫
|zt+d|≤1

|d||g(zt + d)| dx dt+
∫ T

S

∫
|zt+d|>1

|d||g(zt + d)| dx dt

≤ C

∫ T

S

∫
|zt+d|≤1

|d| dx dt+ C

η′1

∫ T

S

∫
|zt+d|>1

|d|2 dx dt

+ η′1

∫ T

S

∫
|zt+d|>1

|g(zt + d)|2 dx dt

≤ CC6(d) +
C

η′1
C1(d) + Cη′1

∫ T

S

∫
|zt+d|>1

|zt + d|2q dx dt

≤ CC6(d) +
C

η′1
C1(d) + Cη′1

∫ T

S

∫
Ω

|zt|2q + Cη′1

∫ T

S

∫
Ω

|d|2q dx dt, (2.71)
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where 0 < η′1 < 1. Then, using (2.45),∫ T

S

∫
Ω

|d||g(zt + d)| dx dt

≤ CC6(d) +
C

η′1
C1(d) + η′1(Cz + Cd,e)

∫ T

S

E2(t) dt+ Cη′1C1(d)

≤ 1

η′1
Cd,e + η′1(Cz + Cd,e)

∫ T

S

E2(t) dt. (2.72)

Combining (2.70) and (2.72),∫ T

S

∫
Ω

a(.)(zt + d)g(zt + d) dx dt

≤ E2(S) + (η1 + η′1(Cz + Cd,e))

∫ T

S

E2 dt+
1

η1η′1
Cd,e. (2.73)

Combining now (2.73), (2.70) and (2.68), we obtain that

V1 ≤ C

(
η0 +

η′1
η0
(Cz + Cd,e) +

η1
η0

)∫ T

S

E2 dt+
C

η0
E2(S) +

1

η1η0η′1
Cd,e.

We take η1 = η20 and η
′
1 =

η20
Cz+Cd,e

if Cz+Cd,e > 0. In that case, V1 would be estimated

by

V1 ≤ Cη0

∫ T

S

E2 dt+
C

η0
E2(S) +

1

η50
Cd,e(Cz + Cd,e). (2.74)

If Cz = Cd,e = 0, the above equation holds true trivially.

Remark 2.4.3. With such a choice of η1 and η
′
1, we have the following useful estimate

obtained from (2.73):∫ T

S

∫
Ω

a(.)(zt + d)g(zt + d) dx dt ≤ E2(S) + Cη20

∫ T

S

E2 dt+
1

η40
(Cd,eCz + Cd,e).

(2.75)

To estimate V2, �rst notice that from Rellich-Kondrachov's theorem in dimension

two (cf. [8]) that H1(Ω) ⊂ Lq+1(Ω), which means that ∃ C > 0 such that ∥v∥Lq+1(Ω) ≤
C∥v∥H1(Ω), adding to that the fact that v ∈ H1

0 (Ω) and (2.60), it holds that

∥v∥Lq+1(Ω) ≤ C
√
E2. (2.76)
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Then, using Hölder inequality yields

V2 ≤
∫ T

S

(∫
|zt+d|>1

(a|g(zt + d)|)
q+1
q dx

) q
q+1
(∫

|zt+d|>1

|v|q+1 dx

) 1
q+1

dt. (2.77)

Combining (2.77) with the hypothesis given by (2.12), we get that

V2 ≤ C

∫ T

S

(∫
|zt+d|>1

a|zt + d||g(zt + d)| dx
) q

q+1
(∫

|zt+d|>1

|v|q+1 dx

) 1
q+1

dt.

Using Young inequality for an arbitrary 0 < η2 < 1,

V2 ≤ C

∫ T

S

 1

η
q+1
q

2

∫
|zt+d|>1

a(x)(zt + d)g(zt + d) dx+ ηq+1
2

∫
Ω

|v|q+1 dx

 dt

≤ C

∫ T

S

 1

η
q+1
q

2

∫
Ω

a(x)(zt + d)g(zt + d) dx+ ηq+1
2

∫
Ω

|v|q+1 dx

 dt

≤ C

∫ T

S

 1

η
q+1
q

2

∫
Ω

a(x)ztg(zt + d) dx+
C

η
q+1
q

2

∫
Ω

|d||g(zt + d)| dx

 dt

+ Cηq+1
2

∫ T

S

∫
Ω

|v|q+1 dxdt. (2.78)

The previous inequality combined with (2.27) and (2.76) implies that

V2 ≤ C

∫ T

S

 1

η
q+1
q

2

(−E ′
2)−

1

η
q+1
q

2

∫
Ω

zte dx+
C

η
q+1
q

2

∫
Ω

|d||g(zt + d)| dx+ ηq+1
2 E

q+1
2

2

 dt.

Then, using (2.28), E2 satis�es∫ T

S

E
q+1
2

2 dt =

∫ T

S

E
q−1
2

2 E2 dt

≤ (CE2(0) + Cd,e)
q−1
2

∫ T

S

E2 dt

≤ (Cz + Cd,e)

∫ T

S

E2 dt, (2.79)
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which gives that

V2 ≤
C

η
q+1
q

2

E2(S) + ηq+1
2 (Cz + Cd,e)

∫ T

S

E2dt

+
C

η
q+1
q

2

∫ T

S

(
−
∫
Ω

zte dx+

∫
Ω

|d||g(zt + d)| dx
)
dt.

We �x η2 =
(

η0
(Cz+Cd,e)

) 1
q+1

. It follows that

ηq+1
2 (Cz + Cd,e) = η0,

C

η
q+1
q

2

= C
(Cz + Cd,e)

1
q

η
1
q

0

≤ C

η0
(C

1
q
z + C

1
q

d,e) =
1

η
1
q

0

(Cz + Cd,e) ,

which leads to

V2 ≤
1

η
1
q

0

(Cz + Cd,e)E2(S) + η0

∫ T

S

E2dt

+
1

η
1
q

0

(Cz + Cd,e)

∫ T

S

(
−
∫
Ω

zte dx+

∫
Ω

|d||g(zt + d)| dx
)
dt. (2.80)

To �nish the estimation of V2, we still have to handle the last two integral terms in

(2.80).

On one hand, we have already estimated the term
∫ T

S

∫
Ω
|d||g(zt + d)| dx dt in (2.72).

We have immediately for some 0 < η3 < 1 that

(Cz + Cd,e)

∫ T

S

∫
Ω

|d||g(zt + d)| dx dt

≤ η3(Cz + Cd,e)

∫ T

S

E2 dt+
1

η3
(Cd,eCz + Cd,e). (2.81)

Choosing η3 to be equal to
η
q+1
q

0

(Cz+Cd,e)
implies that

η3(Cz + Cd,e) = η
q+1
q

0 ,

1

η3
(Cd,eCz + Cd,e) ≤

1

η
q+1
q

0

(Cd,eCz + Cd,e),
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which gives that

(Cz + Cd,e)

∫ T

S

∫
Ω

|d||g(zt + d)| dx dt ≤ η
q+1
q

0

∫ T

S

E2 dt+
1

η
q+1
q

0

(Cd,eCz + Cd,e) .

(2.82)

On the other hand, we have for 0 < η4 < 1 that

(Cz + Cd,e)

∫ T

S

∫
Ω

zte dx dt ≤ η4(Cz + Cd,e)

∫ T

S

E2 dt+
1

η4
(Cd,eCz + Cd,e).

Using the same concept as before, we �x η4 =
η
q+1
q

0

Cz+Cd,e
, we obtain that

(Cz + Cd,e)

∫ T

S

∫
Ω

zte dx dt ≤ η
q+1
q

0

∫ T

S

E2 dt+
1

η
q+1
q

0

(Cd,eCz + Cd,e) , (2.83)

Combining (2.80), (2.82) and (2.83), we conclude that the estimation of V2 is given by

V2 ≤
1

η
1
q

0

(Cz + Cd,e)E2(S) + η0

∫ T

S

E2dt+
1

η
q+2
q

0

(Cd,eCz + Cd,e) . (2.84)

As for V3, we simply have when using (2.60) and Young inequality with η0 that

V3 ≤ Cη0

∫ T

S

E2 dt+
C

η0
C̄1(e),

which means that

V3 ≤ Cη0

∫ T

S

E2 dt+
1

η0
Cd,e. (2.85)

To achieve an estimation of S2, we just combine (2.65),(2.66) (2.74), (2.84) and (2.85)

to get

S2 ≤ Cη0

∫ T

S

E2 dt+
C

η0

∫ T

S

∫
ω

z2t dx dt+

C +
C

η0
+

1

η
1
q

0

(Cz + Cd,e)

E2(S)

+

 1

η50
+

1

η
q+2
q

0

 (Cd,eCz + Cd,e) +

(
1

η0
+ 1

)
Cd,e. (2.86)

We can simplify the previous estimate by using the fact that 0 < η0 < 1. As a result,
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(2.86) becomes

S2 ≤ Cη0

∫ T

S

E2 dt+
C

η0

∫ T

S

∫
ω

z2t dx dt+
1

η0
(C + Cz + Cd,e)E2(S)

+
1

η50
(Cd,eCz + Cd,e) . (2.87)

Regarding S3, we follow the same steps we followed to get V1 + V2. It is possible

because z satis�es the same result (2.76) as v from before. Hence, we obtain that

S3 ≤ Cη0

∫ T

S

E2 dt+
1

η0
(C + Cz + Cd,e)E2(S) +

1

η50
(Cd,eCz + Cd,e) . (2.88)

Finally, to estimate S4, we simply have when using young inequality that

S4 ≤ η0

∫ T

S

E2 dt+
1

η0
Cd,e. (2.89)

We complete the estimate of T2 in (2.55) by combining the estimations of S1, S2, S3

and S4. Hence the proof of Lemma 2.4.6 is completed.

■

An estimate of T3 is provided in the next lemma:

Lemma 2.4.8. Under the hypotheses of Proposition 2.4.1, we have the following

estimate:

T3 ≤Cη0
∫ T

S

E2 dt+
1

η0
[C + (1 + Cη0)(Cz + Cd,e)]E2(S)

+
1

η50

(
C3

η0
+ 1
)
(Cd,eCz + Cd,e) , (2.90)

where 0 < η0 < 1 is a positive arbitrary real number to be chosen later and Cη0 is an

implicit positive constant that depends on η0 only.

Proof of Lemma 2.4.8: First, note that

T3 ≤
1

2
S3 +

∫ T

S

∫
Ω

|ag(zt + d)∇z.k| dx dt︸ ︷︷ ︸
X

. (2.91)

We have already estimated S3 in (2.88). It remains to deal with X. Using Young
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inequality implies that

X ≤ C

η0

∫ T

S

∫
Ω

(a|g(zt + d)|)2 dx dt+ Cη0

∫ T

S

∫
Ω

|∇z|2 dx dt

≤ C

η0

∫ T

S

∫
Ω

a|g(zt + d)|2 dx dt+ Cη0

∫ T

S

E2 dt. (2.92)

Now, set R1 > 1 to be chosen later. We can rewrite the term
∫ T

S

∫
Ω
a|g(ut + d)|2 dx dt

as ∫ T

S

∫
Ω

a|g(zt + d)|2 dx dt =
∫ T

S

∫
|zt+d|≤R1

a|g(zt + d)|2 dx dt︸ ︷︷ ︸
Y1

+

∫ T

S

∫
|zt+d|>R1

a|g(zt + d)|2 dx dt︸ ︷︷ ︸
Y2

. (2.93)

Since g(0) = 0, it holds that |g(x)| ≤ CR1 |x| for some constant CR1 and for |x| < R1.

Combine it with (2.75), it follows that Y1 satis�es for some 0 < η5 < 1

Y1 ≤ CR1

∫ T

S

∫
|zt+d|≤R1

|ag(zt + d)||zt + d| dx dt

≤ CR1

∫ T

S

∫
Ω

|ag(zt + d)||zt + d| dx dt

≤ CR1E2(S) + CCR1η
2
5

∫ T

S

E2 dt+
CR1

η45
(Cd,eCz + Cd,e). (2.94)

Taking η5 =
η0√
CCR1

leads to

Y1 ≤ CR1E2(S) + η20

∫ T

S

E2 dt+
C3

R1

η40
(Cd,eCz + Cd,e) (2.95)
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As for Y2, we use (2.12) to obtain that

Y2 ≤ C

∫ T

S

∫
|zt+d|>R1

|zt + d|2q dx dt

≤ C

∫ T

S

∫
|zt+d|>R1

|zt|2q dx dt+ C

∫ T

S

∫
|zt+d|>R1

|d|2q dx

≤ C

∫ T

S

∫
|zt+d|>R1

|zt + d|
R1

|zt|2q dx dt+ C

∫ T

S

∫
Ω

|d|2q dx dt

≤ C

∫ T

S

∫
Ω

|zt|
R1

|zt|2q dx dt+ C

∫ T

S

∫
Ω

|d|
R1

|zt|2q dx dt+ CC1(d)

≤ C

R1

∫ T

S

∫
Ω

|zt|2q+1 dx dt+
C

R2
1

∫ T

S

∫
Ω

|zt|4q dx dt+ Cd,e.

Then, we use Lemma 2.4.3 as well as the fact that R1 > 1 to conclude that Y2 satis�es

Y2 ≤
1

R1

(Cz + Cd,e)

∫ T

S

E2 dt+ Cd,e.

We take R1 =
(Cz+Cd,e)

η20
, we get the simpli�ed estimate

Y2 ≤ η20

∫ T

S

E2 dt+ Cd,e. (2.96)

Remark 2.4.4. For such a choice of R1, and based on how CR1 is de�ned, we can

assume that CR1 in (2.95) is a constant of the type Cη0(Cz + Cd,e), where Cη0 is a

positive constant that depends on η0 only.

Combining (2.92), (2.93), (2.95) and (2.96) implies that

X ≤ Cη0

∫ T

S

E2 dt+
Cη0

η0
(Cd,e + Cz)E2(S) +

C3
η0

η50
(Cd,eCz + Cd,e) +

Cd,e

η0
. (2.97)

Finally, we combine (2.91) and (2.97) with the estimation of S3, we obtain (2.90).

■

We next seek to prove the upper bound of T4 that is given by the following lemma

Lemma 2.4.9. Under the hypotheses of Proposition 2.4.1, the following estimate

holds:

T4 ≤ Cη0

∫ T

S

E2 dt+
C

η0
Cd,e, (2.98)



2.4. PROOF OF THE ENERGY ESTIMATE 59

where 0 < η0 < 1 is a positive constant to be chosen later.

Proof of Lemma 2.4.9: We have that

T4 ≤
1

2

∫ T

S

∫
Ω

|ez| dx dt+
∫ T

S

∫
Ω

|e∇z.k| dx dt. (2.99)

On one hand, using Young inequality gives that∫ T

S

∫
Ω

|ez| dx dt ≤ η0

∫ T

S

E2 dt+
C

η0
Cd,e. (2.100)

On the other hand, it gives that∫ T

S

∫
Ω

|e∇z.k| dx dt ≤ η0

∫ T

S

E2 dt+
C

η0
Cd,e (2.101)

Combining (2.99), (2.100) and (2.101), we prove (2.98).

■

It remains to handle the last term T5.

Lemma 2.4.10. Under the hypotheses of Proposition 2.4.1, we have the following

estimation:

T5 ≤ η0

∫ T

S

E2 dt+ C̄η0(Cz + Cd,e)E2(S) +
C̄3

η0

η20
(Cd,eCz + Cd,e) + Cd,e, (2.102)

where 0 < η0 < 1 is a positive constant to be chosen later and and C̄η0 is an implicit

positive constant that depends on η0 only.

Proof of Lemma 2.4.10: For every R2 > 1, we have that

T5

≤ 1

a0

∫ T

S

∫
ω

a(x)z2t dx dt ≤ C

∫ T

S

∫
Ω

a(x)(zt + d)2 dx dt+ C

∫ T

S

∫
Ω

a(x)d2 dx dt

≤ C

∫ T

S

∫
|zt+d|≤R2

a(x)(zt + d)2 dx dt︸ ︷︷ ︸
Z1

+C

∫ T

S

∫
|zt+d|>R2

a(x)(zt + d)2 dx dt︸ ︷︷ ︸
Z2

+CC1(d).

(2.103)

On one hand, since g′(0) > 0, there exists αR2 > 0 such that |g(x)| ≥ αR2 |x| for
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|x| ≤ R2. Combining that with (2.75) yields for some 0 < η6 < 1

Z1 ≤
∫ T

S

∫
|zt+d|≤R2

a(x)(zt + d)g(zt + d)
(zt + d)

g(zt + d)
dx dt

≤ 1

αR2

∫ T

S

∫
|zt+d|≤R2

a(x)(zt + d)g(zt + d) dx dt

≤ 1

αR2

∫ T

S

∫
Ω

a(x)(zt + d)g(zt + d) dx dt

≤ 1

αR2

E2(S) + C
1

αR2

η26

∫ T

S

E2 dt+
1

αR2

1

η46
(Cd,eCz + Cd,e).

We choose η6 =
√

αR2

C
η0, we obtain that

Z1 ≤
1

αR2

E2(S) + η0

∫ T

S

E2 dt+
1

α3
R2
η20

(Cd,eCz + Cd,e).

As for Z2, we have that

Z2 ≤ C

∫ T

S

∫
|zt+d|>R2

|zt|2 dx dt+ C

∫ T

S

∫
|zt+d|>R2

|d|2 dx dt

≤ C

∫ T

S

∫
|zt+d|>R2

|zt + d|
R2

|zt|2 dx dt+ CC1(d)

≤ C

∫ T

S

∫
|zt+d|>R2

|zt|3
R2

dx dt+ C

∫ T

S

∫
|zt+d|>R2

|zt|2|d|
R2

dx dt+ CC1(d)

≤ C

R2

∫ T

S

∫
|zt+d|>R2

|zt|3 dx dt+
C

R2
2

∫ T

S

∫
|zt+d|>R2

|zt|4 dx dt+ CC1(d). (2.104)

We use Lemma 2.4.3 and the fact that R2 > 1, we derive the following:

C

R2

∫ T

S

∫
|zt+d|>R2

|zt|3 dx dt+
C

R2
2

∫ T

S

∫
|zt+d|>R2

|zt|4 dx dt

≤
(
Cz + Cd,e

R2

)∫ T

S

E2 dt. (2.105)

We choose R2 =
(Cz+Cd,e)

η0
and we combine (2.104) and (2.105) we have that

Z2 ≤ η0

∫ T

S

E2 dt+ Cd,e. (2.106)

Remark 2.4.5. For such a choice of R2, and based on how αR2 is de�ned, we can

assume that 1
αR2

is also a constant of the type C̄η0 (Cz + Cd,e), where C̄η0 is a constant
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that depends on η0 only. As a result, Z1 is estimated by

Z1 ≤ η0

∫ T

S

E2 dt+ C̄η0(Cz + Cd,e)E2(S) +
C̄3

η0

η20
(Cd,eCz + Cd,e) . (2.107)

Combining (2.103), (2.106) and (2.107) and using (2.18) and (2.21), it follows that

T5 ≤ η0

∫ T

S

E2 dt+ C̄η0(Cz + Cd,e)E2(S) +
C̄3

η0

η20
(Cd,eCz + Cd,e) + Cd,e,

which proves Lemma 2.4.10.

■

The estimation of T5 gives a direct estimation of the term C
η0

∫ T

S

∫
ω
z2t dx dt left in the

estimation of T2. We can easily manage to have that

1

η0

∫ T

S

∫
ω

z2t dx dt ≤η0
∫ T

S

E2 dt+
1

η0
C̄η20

(Cz + Cd,e)E2(S)

+
1

η0

C̄3
η20

η40
(Cd,eCz + Cd,e) + Cd,e. (2.108)

It is obtained by following the same steps that led to the estimation of T5 with replacing

η0 by η
2
0.

We can �nally �nish the proof of Proposition 2.4.1: we combine the estimations of

Ti, i = 1, 2, 3, 4, 5, which are given by (2.51), (2.52), (2.90), (2.98) and (2.102) with

(2.50), then we choose η0 such that Cη0 < 1, which means that the term Cη0
∫ T

S
E2(t) dt

gets absorbed by
∫ T

S
E2(t) dt. Then we use the fact that Cd,eE2(S) ≤ Cd,e(E2(0) +

Cd,e) = Cd,eCz +Cd,e and the fact that the choice of η0 will be a constant C, we obtain

(2.47).

■

Proof of the energy estimate of Theorem 2.3.1: Using the key result given by

(2.47), we get at once from Theorem 2.2.1 that (2.5) holds true with T = C +Cz and

C0 = (1+Cz)Cd,e. Using (2.28) for t ≥ 1 with T = t and S ∈ [t− 1, t] and integrating

it over [t− 1, t], one gets that

E2(t) ≤ C

∫ t

t−1

E2(s) ds+ Cd,e ≤ C

∫ ∞

t−1

E2(s) ds+ Cd,e.



62 CHAPTER 2. WEAK ISS OF THE NON-LINEAR DISTURBED PROBLEM

Combining the above with (2.4) yields (2.26) for t ≥ 1. In turn, (2.28) with T ∈ [0, 1]

and S = 0 provides (2.26) for t ≤ 1. The proof of Theorem 2.3.1 is then completed.

■



Chapter 3
Lp-Asymptotic stability of 1D damped

wave equations with localized and linear

damping

The work of this chapter has been published in the scienti�c paper [19].

3.1 Introduction

This chapter is concerned with the asymptotic stability of the one dimensional wave

equation with a localized damping term and Dirichlet boundary conditions. It is the

linear case of the general problem (1.1) in one dimension. The problem is written as

follows 
ztt − zxx + a(x)zt = 0 for (t, x) ∈ R+ × (0, 1),

z(t, 0) = z(t, 1) = 0 t ≥ 0,

z(0, ·) = z0 , zt(0, ·) = z1,

(3.1)

where z is the solution of the problem, (z0, z1) are the initial conditions and they all

belong to an Lp-based functional space that will be de�ned later. The function a is a

continuous non-negative function on [0, 1], bounded from below by a positive constant

on some non-empty open interval ω of (0, 1), which represents the region of the domain

where the damping term is active.

Problem (3.1) has been widely studied in the case p = 2 whether with a linear or a

non-linear damping. Stability results are proved under a geometric condition imposed

on the damping domain ω: it is properly introduced in the early work [32] where the

63
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semi-linear problem is considered even in higher dimension and the geometric condi-

tion is extended and characterized in [22]. Moreover, for linear problems there exist

necessary and su�cient geometrical conditions for stabilization based on geometric op-

tics methods (cf. the seminal work [6]). Strong stabilization, i.e., energy decay to zero

for each trajectory, has been established in [11] and [14] with a LaSalle's invariance

argument. For the linear localized damping case in higher dimensions, exponential

stability has been established several times using di�erent tools, in particular using

the multiplier method which is the relevant method to our chapter context. We refer

the reader to [21] for a complete presentation of the method as well as the tools asso-

ciated to it. As for the stability results obtained by this method in this case, we refer

for instance to [4] and [24] for detailed proofs and extended references. The non-linear

problem on the other hand has been studied (for instance) in [25] with no localization

and in [18] for a localized damping. We refer the reader to the excellent survey [4] for

more references in the Hilbertian framework i.e. when p = 2.

As for more general functional frameworks, in particular Lp-based spaces with

p ̸= 2, few results exist and one reason is probably due to the fact that, in such

non-Hilbertian framework, the semi-group associated with the d'Alembertian (i.e., the

linear operator de�ning the wave equation) is not de�ned in general as soon as the

space dimension is larger than or equal to two, see e.g., [29]). This is why most of

the existing results focus on several stabilization issues only in one spatial dimension.

Well-posedness results as well as important Lp estimates have been shown in [14], in

particular the introduction of a p-th energy of a solution as a generalization of the

standard E2(t) =
∫ 1

0

z2x+z2t
2

. Some of these results have been used in [5, 10] recently.

The latter reference relies on Lyapunov techniques for linear time varying systems

to prove Lp exponential stability in the nonlinear problem under the hypothesis that

initial data live in L∞ functional spaces and with p ≥ 2 only; other stability results

have been shown in the same reference in particular L∞ stability but always with more

conditions on initial data which creates a di�erence between the norms of trajectories

and the norms of initial data used in their decay estimates.

In this chapter we extend the results existing in the case p = 2 to the case p ∈ (1,∞)

by adapting the multiplier method to that issue. We �rst start by stating the problem

and de�ning the appropriate Lp functional framework as well as the notion of solutions.

We prove the well-posedness of the corresponding C0 semi-group of solutions using

an argument inspired by [16] and [10]. As for stability issue, we prove that these

semi-groups are indeed exponentially stable. Even though the argument depends on

whether p ≥ 2 or p ∈ (1, 2), it is another instance of the multiplier method, where the

multipliers are expressed in terms of the Riemann invariant coordinates ρ = zx + zt
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and ξ = zx − zt. In particular, one of the multipliers in the case p = 2 is equal to

ϕ(x)z with ϕ a non negative function which is used to localize estimates inside ω. If

p ≥ 2, this multiplier is replaced by the pair of functions ϕ(x)z|ρ|p−2 and ϕ(x)z|ξ|p−2.

Clearly, such multipliers cannot be used directly if p ∈ (1, 2) and must be modi�ed,

which yields to a more delicate treatment. In both cases, energy integral estimates are

established following the standard strategy of the multiplier method and exponential

stability is proved. For the two extremes cases p = 1 and p = ∞, we are able to prove

that the corresponding semi-groups are exponentially stable only for particular cases

of global constant damping. However, we conjecture that such a fact should be true

in case of any localized damping.

The chapter is divided into four sections, the �rst one being the introduction and

the second one devoted to provide the main notations used throughout the chapter.

Section 3 deals with the well-posedness issue and Section 4 contains the main result of

the chapter, i.e. exponential stability of the C0 semi-group of solutions for p ∈ (1,∞)

as well as the partial result for p = 1 and p = ∞. We gather in an appendix several

technical results.

Acknowledgment: We would like to thank Dario Prandi, Cyprien Tamekue and

Nicolas Lerner for helpful discussions in this chapter.

3.2 Preliminaries

Lemma 3.2.1. Let p ∈ (1,∞). Then, for every v ∈ W 1,p
0 (0, 1), it holds the following

Poincaré inequality ∫ 1

0

|v(x)|p dx ≤ 1

p2p

∫ 1

0

|v′(x)|p dx. (3.2)

Proof. For x ∈ [0, 1
2
], we have after using Hölder inequality that

|v(x)|p =
(∣∣∣∣∫ x

0

v′(s) ds

∣∣∣∣)p

≤ x
p
q

∫ 1
2

0

|v′(x)|p dx. (3.3)

After integrating the previous between 0 and 1
2
, one gets

∫ 1
2

0

|v(x)|p dx ≤ 1

p2p

∫ 1
2

0

|v′(x)|p dx. (3.4)
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For x ∈ [1
2
, 1], we start from |v(x)| =

∣∣∫ x

1
v′(s) ds

∣∣ and get∫ 1

1
2

|v(x)|p dx ≤ 1

p2p

∫ 1

1
2

|v′(x)|p dx, (3.5)

and �nally deduce (3.2) by adding (3.4) and (3.5).

■

The next lemma states a technical result used several times in the thesis. But before

we state it, we need to de�ne some notations and functions that will be used all along

the the next chapters.

For r ≥ 0, we introduce the following notation

⌊x⌉r := sgn(x)|x|r, ∀x ∈ R, (3.6)

where sgn(x) = x
|x| for nonzero x ∈ R and sgn(0) = [−1, 1]. We have the following

obvious formulas which will be repeatedly used later on:

d

dx
(⌊x⌉r) = r|x|r−1, ∀r ≥ 1, x ∈ R, (3.7)

d

dx
(|x|r) = r⌊x⌉r−1, ∀r > 1, x ∈ R. (3.8)

We also introduce the function f by

f(s) = ⌊s⌉p−1, ∀ s ∈ R. (3.9)

and the function F (s) =
∫ s

0
f(τ)dτ , we have that

F (s) =
|s|p
p
, F ′ = f, f ′(s) = (p− 1)|s|p−2. (3.10)

Lemma 3.2.2. For p > 1, there exists a positive constant Cp such that, for every real

numbers a, b and µ ∈ (0, 1) subject to |a− b| ≥ max(|a|, |b|)µ, one has

F (a− b) ≤ Cp

µ2−p
(a− b) (f(a)− f(b)) . (3.11)

Proof. With no loss of generality, we can assume that max(|a|, |b|) = |a| = R > |b|
and have same sign. Indeed, if ab ≤ 0, then |a− b|p ≤ 2pRp and (a− b)(f(a)− f(b)) ≥
Rp, hence (3.11) is satis�ed with Cp ≥ 2p). Set then ϵ = 1− b

a
and ϵ ∈ (0, 1). Proving
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(3.11) amounts to show that there exists Cp such that for every ϵ, µ ∈ (0, 1) with ϵ ≥ µ,

it holds

ϵp−1 ≤ Cp

µ2−p

∣∣1− (1− ϵ)p−1
∣∣ . (3.12)

Clearly the inequality holds for ϵ �far away� from zero for any Cp large enough (w.r.t.

one) and hence it is enough to establish it for ϵ close to zero. By linearizing (1− ϵ)p−1,

one must �nd Cp so that ϵp−2 ≤ Cp

µ2−p which indeed holds true.

■

We remind the reader of the following classical result that is very useful to obtain

important estimations.

Lemma 3.2.3 ( [17]). (Fenchel's inequality)

Let a, b be two real numbers, and f any function then it holds that

|a b| ≤ f(|a|) + f ∗(|b|), (3.13)

where f ∗ is the convex conjugate of f de�ned by the Legendre transform as follows

f ∗(b) = supx∈R{b.x− f(x)}, b ∈ R. (3.14)

Moreover, if f is of class C2, the derivative of f ∗ is given by

[f ∗]′ (y) = [f ′]
−1

(y), y ∈ R. (3.15)

Note that Young's inequality is a particular case of Fenchel's inequality, corresponding

to the function f(a) = |a|p
p

for p > 1.

To be able to achieve some important estimations we consider, for p ∈ (1, 2), the

functions h and H de�ned on R, by

h(y) = (p− 1)

∫ y

0

(|s|+ 1)p−2 ds = sgn(y)
[
(|y|+ 1)p−1 − 1

]
, (3.16)

H(y) =

∫ y

0

h(s) ds =
1

p
[(|y|+ 1)p − 1]− |y|. (3.17)

One can see the functions h and H as sort of a perturbation of f and F , this pertur-

bation is assuring that the new functions are well de�ned around zero when p ∈ (1, 2).
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It will also allow us to generalize the multipliers of the case p ≥ 0 to the case p ∈ (1, 2).

Consider the convex conjugate (cf. [17]) of H which we denote from now on by H,

it is de�ned as the Legendre transform of H, i.e.,

H(s) := sup
y∈R

{sy −H(y)}, s ∈ R. (3.18)

Since H is of class C2 with invertible �rst derivative h, one has that

H(h(x)) =

∫ h(x)

0

h−1(s)ds =

∫ x

0

vh′(v)dv, (3.19)

and

xh(x) = H(x) +H(h(x)), x ∈ R. (3.20)

The second equality in (3.19) is obtained using the change of variable v = h−1(s) and

(3.20) follows (for instance) by integration by part of the right-hand side of (3.20).

We are ready now and have all the tools to state some crucial lemmas for our subse-

quent work.

Lemma 3.2.4. For every p ∈ (1, 2),

� the function h is an odd increasing bijection from R to R with a continuous �rst

derivative;

� the function H is even, of class C2 and strictly convex.

Proof. One has that, for every x ∈ R,

H ′′(x) = h′(x) = (p− 1)(|x|+ 1)p−2 > 0. (3.21)

It is clear that H ′′ is continuous and positive, which proves the strict convexity. Also,

h′ being positive means that h is increasing on R which gives the bijection.

■

Lemma 3.2.5. Let p ∈ (1, 2). Then, the function h,H and H de�ned in (3.16), (3.17)

and (3.18) satisfy the following relations:
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(i) for every x ∈ R, one has

xh(x) = H(x) +H(h(x)). (3.22)

(ii) for every x ∈ R, it holds that

1

2
xh(x) ≤ H(x) ≤ xh(x). (3.23)

(iii) There exists a positive constant Cp only depending on p such that, for every

x ∈ R, one has

Cp xh(x) ≤ H(h(x)) ≤ Cpxh(x). (3.24)

CpH(x) ≤ H(h(x)) ≤ CpH(x). (3.25)

Proof: Thanks to the parity properties of h and H, it is enough to establish the

several relations only for x ≥ 0.

Item (i) is already proved in (3.20). As for Item (ii), the right inequality (3.23) is

immediate since h is increasing. On the other hand, since p < 2, we have for all

0 ≤ s ≤ x that

h′(x) = (p− 1)(x+ 1)p−2 ≤ (p− 1)(s+ 1)p−2. (3.26)

Integrating between 0 and x, it follows that xh′(x) ≤ h(x), and then (xh)′(x) ≤ 2h(x),

which yields the left inequality (3.23) after an integration between 0 and x.

As for the proof of Item (iii), it is clear that (3.25) follows from combining (3.23)

and (3.24) and moreover, the right inequality in (3.24) is an immediate consequence

of (3.22) since h(x) ≥ 0 for x ≥ 0. The proof for the left inequality in (3.24) is divided

in two cases and can be deduced at once from the following estimates.

(a) For every M > 0 and real number x so that |x| ≤M , it holds

(p− 1)(M + 1)p−2x
2

2
≤ H(h(x)) ≤ (p− 1)

x2

2
.

(p− 1)(M + 1)p−2x2 ≤ xh(x) ≤ (p− 1)x2.

(p− 1)(M + 1)p−2x
2

2
≤ H(x) ≤ (p− 1)

x2

2
; (3.27)
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(b) for every M > 0 such that
(
1 + 1

M

)p
< p, there exists a positive constant Cp only

depending on p and M so that, for every real x verifying |x| > M , one has((
1 +

1

M

)p−1

−
(

1

M

)p−1
)
|x|p ≤ xh(x) ≤ |x|p,

1

2

((
1 +

1

M

)p−1

−
(

1

M

)p−1
)
|x|p ≤ H(x) ≤ |x|p,(

1− 1

p

(
1 +

1

M

)p)
|x|p ≤ H(h(x)) ≤

(
1 +

1

M

)p−1

|x|p. (3.28)

Remark 3.2.1. Note that the condition
(
1 + 1

M

)p
< p is only needed to get the third

inequality of (3.28) only. Hence, the lower and upper bounds of xh(x) and H in (3.28)

are valid for all M > 0.

In turn, the set of inequalities in Item (a) simply follows from the inequality

(M + 1)p−2 ≤ (s+ 1)p−2 ≤ 1, 0 ≤ s ≤ x ≤M,

and, after integrating between 0 and x, by the use of the equations (3.16), (3.17) and

(3.19).

As for the set of inequalities in Item (b), one �rst uses the explicit expressions of xh(x)

and H(x) given in (3.16), (3.17) to deduce that, for every x ≥ 0,

xh(x) = xp

[(
1 +

1

x

)p−1

−
(
1

x

)p−1
]
,

H(x) = xp

(
1

p

[(
1 +

1

x

)p

−
(
1

x

)p]
−
(
1

x

)p−1
)
.

Since p < 2, the function s 7→ (1+s)p−1−sp−1 is decreasing on [0, 1
M
] and then one gets

the required bounds for xh(x) in (3.28). The upper and the lower bounds for H(x)

in (3.28) are immediate and follow from combining the upper and the lower bounds

of (3.23) and the bounds just established on xh(x). Then the bounds for H(h(x))

in (3.28) are simply obtained by combining the previous estimates with the relation

H(h(x)) = xh(x)−H(x).

■

The next lemma is a particular instance of Fenchel's inequality which is used repeatedly

in the chapter.
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Lemma 3.2.6. For p ∈ (1, 2), there exist positive constants Cp such that, for every

a, x ∈ R, it holds that

|a x| ≤ Cp

η2
H(a) + Cp η

pH(x), (3.29)

|a x| ≤ Cpη
pH(a) +

Cp

η2
H(x), (3.30)

and

|a h(x)| ≤ Cp

ηp
H(a) + Cp η

2H(x). (3.31)

Proof: Before proving the required inequalities, let us notice that one deduces from

(3.27) and (3.28) that there exists constants Cp only depending on p ∈ (1, 2) such that

if |x| ≤ Cp, then Cp
x2

2
≤ H(x) ≤ Cp

x2

2
,

if |x| > Cp, then Cp|x|p ≤ H(x) ≤ |x|p. (3.32)

and that

if |x| ≤ Cp, then Cpx
2 ≤ H(x) ≤ Cpx

2,

if |x| > Cp, then Cp|x|p ≤ H(x) ≤ Cp|x|p. (3.33)

Since h is convex, we apply Fenchel's inequality given in (3.13) with a
η
and ηx to

obtain

|a x| ≤ H

(
a

η

)
+H(ηx). (3.34)

Since both H and H are even functions, we assume with no loss of generality that

both a and x are non negative.

Using the estimates for H and H given in (3.32) and (3.33), we deduce that there

exists a positive constant Cp only depending on p ∈ (1, 2) so that for every a ≥ 0 and

η ∈ (0, 1),

H

(
a

η

)
≤ Cpmax

(
1

η2
,
1

ηp

)
H(a) ≤ Cp

η2
H(a),

H(ηx) ≤ Cpmax(η2, ηp)H(x) ≤ Cpη
pH(x), (3.35)

and one immediately gets (3.29) from (3.34) and (3.35).
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Using the following Fenchel's inequality insetad of (3.34),

|a x| ≤ H (ηa) +H
(
x

η

)
, (3.36)

with the same steps that led to (3.29), we obtain (3.30).

On the other hand, (3.31) follows from (3.29) when setting x = h(y) so that we

obtain

|a h(y)| ≤ Cp

η2
H(a) + Cp η

pH(h(y)). (3.37)

then we use (3.25) that states that H(h(y)) ≤ CpH(y).

■

As a corollary of the previous lemma, we have the following Poincaré-type of result.

Corollary 3.2.1. Let p ∈ (1, 2). Then there exists a positive constant Cp such that,

for every absolutely continuous function z : [0, 1] → R so that z(0) = 0, one has∫ 1

0

H(z(s))ds ≤ Cp

∫ 1

0

H(z′(s))ds. (3.38)

Proof. With no loss of generality, we can assume that the right-hand side of (3.38)

is �nite. One has for every x ∈ [0, 1]

H(z(x)) =

∫ x

0

z′(s)h(z(s))ds. (3.39)

By applying (3.31), one gets that for every x ∈ [0, 1]

H(z(x)) ≤ Cp

ηp

∫ 1

0

h(z′(s))ds+ Cp η

∫ 1

0

h(z(s))ds, (3.40)

for every η > 0 and positive constants Cp only depending on p. By integrating between

0 and 1 and then choosing appropriately η one concludes.

■

The following lemma is a useful extension of Lemma 3.2.2 with f, F replaced by h,H.
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Lemma 3.2.7. For p > 1, there exists a positive constant Cp such that, for every real

numbers a, b and µ ∈ (0, 1) subject to |a− b| ≥ max(|a|, |b|)µ, one has

H(a− b) ≤ Cp

µ2−p
(a− b) (h(a)− h(b)) (3.41)

Proof. Thanks to (3.23), it i s enough to prove the existence of Cp > 0 so that

|h(a− b)| ≤ Cp

µ2−p
|h(a)− h(b)|, (3.42)

for every a ≥ b, µ ∈ (0, 1) such that |a − b| ≥ µR where R = max(|a|, |b|). Assume

�rst that ab ≤ 0. Then the left-hand side of (3.42) is smaller than h(2R) while

|h(a) − h(b)| ≥ h(R). Clearly h(2R) ≤ 2h(R) since h is concave and hence (3.42)

holds true in that case for any Cp ≥ 2.

We next assume that a ≥ b ≥ 0 and we consider c = a−b instead of b. The assumption

on a, b reads c ≥ µa. Equation (3.42) becomes

h(c) ≤ Cp

µ2−p
(h(a)− h(a− c)) . (3.43)

Note that the right-hand side of the above equation de�nes a decreasing function of a,

once the other parameters are �xed. It is therefore enough to consider the case a = c
µ
.

By replacing c by c
µ
in the explicit expression of h, we are led to prove the existence

of Cp > 0 so that

(µc+ 1)p−1 − 1 ≤ Cp

µ2−p

[
(c+ 1)p−1 − ((1− µ)c+ 1)p−1] , (3.44)

for every c > 0 and µ ∈ (0, 1). By applying the mean value theorem to both sides of

the above equation and reordering the terms, (3.44) reads(
µ+ µη2
η1 + 1

)2−p

≤ Cp, (3.45)

for some η1 ∈ (0, µc) and η2 ∈ ((1 − µ)c, c) both depending on c > 0 and µ. Assume

�rst that µc ≤ 1. Then clearly (3.44) holds true for any Cp ≥ 22−p according to (3.45).

If now µc > 1, then c > 1 and since the left-hand side of (3.44) is smaller than (µc)p−1,

we are left to �nd Cp > 0 such that(
µ+ µη2
µc

)2−p

≤ Cp. (3.46)
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The left-hand side of the above equation is again smaller than 22−p and one concludes.

■

3.3 Statement and main notations of the problem

Consider Problem (3.1) where we assume that the following hypothesis are satis�ed:

(H6) a : [0, 1] → R is a non-negative continuous function such that

∃ a0 > 0, a ≥ a0 on ω =]c, d[⊂ [0, 1], (3.47)

where ω is a non empty interval such that c = 0 or d = 1, i.e., ω̄ contains a neigh-

borhood of 0 or 1. There is no loss of generality in assuming d = 1, taking 0 as an

observation point.

Remark 3.3.1. The results of this chapter still hold if the assumption that c = 0

or d = 1 is removed by using a piecewise multiplier method, i.e., we can use both 0

and 1 as observation points (instead of simply 0 here) to obtain the required energy

estimate.

For p ∈ [1,∞), consider the functional spaces

Xp := W 1,p
0 (0, 1)× Lp(0, 1), (3.48)

Yp :=
(
W 2,p(0, 1) ∩W 1,p

0 (0, 1)
)
×W 1,p

0 (0, 1), (3.49)

where Xp is equipped with the norm

∥(u, v)∥Xp :=

(
1

p

∫ 1

0

(|u′ + v|p + |u′ − v|p) dx
) 1

p

, (3.50)

and the space Yp is equipped with the norm

∥(u, v)∥Yp :=

(
1

p

∫ 1

0

(|u′′ + v′|p + |u′′ − v′|p) dx
) 1

p

. (3.51)

Initial conditions (z0, z1) for weak (resp. strong) solutions of (3.1) are taken inXp (resp.

in Yp), where the two concepts of solutions are precisely de�ned later in De�nition 3.4.1.
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For all (t, x) ∈ R+ × (0, 1), de�ne the Riemann invariants

ρ(t, x) = zx(t, x) + zt(t, x), (3.52)

ξ(t, x) = zx(t, x)− zt(t, x). (3.53)

Along strong solutions of (3.1), we deduce that
ρt − ρx = −1

2
a(x)(ρ− ξ) in R+ × (0, 1),

ξt + ξx = 1
2
a(x)(ρ− ξ) in R+ × (0, 1),

ρ(t, 0)− ξ(t, 0) = ρ(t, 1)− ξ(t, 1) = 0 ∀t ∈ R+,

ρ0 := ρ(0, .) = z′0 + z1 , ξ0 := ξ(0, .) = z′0 − z1,

(3.54)

with (ρ0, ξ0) ∈ W 1,p(0, 1)×W 1,p(0, 1).

We de�ne for all t ≥ 0 the pth-energy of a (weak) solution of (3.1) Ep that has

already been de�ned in the introduction Chapter but is reminded of here:

Ep(t) =
1

p

∫ 1

0

(|zx + zt|p + |zx − zt|p) dx. (3.55)

The energy Ep can be expressed in terms of ξ and ρ as

Ep(t) =
1

p

∫ 1

0

(|ρ|p + |ξ|p)dx. (3.56)

Before we state our results, we provide the following proposition (essentially inspired

from [16]).

Proposition 3.3.1. Let p ∈ (1,∞) and suppose that a strong solution z of (3.54)

is de�ned on a non trivial interval I ⊂ R+ containing 0, for some initial conditions

(z0, z1) ∈ Yp. For t ∈ I, de�ne

Φ(t) :=

∫ 1

0

[F(ρ) + F(ξ)]dx, (3.57)

where F is a C1 convex function. Then Φ is well de�ned for t ∈ I and satis�es

d

dt
Φ(t) = −1

2

∫ 1

0

a(x)(ρ− ξ)(F ′(ρ)−F ′(ξ))dx ≤ 0. (3.58)

Proof. By the regularity assumptions, ρ(t, .) and ξ(t, .) are absolutely continuous

functions. Formal di�erentiation, easy to justify a posteriori by the regularity of the
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data, yields

d

dt

∫ 1

0

[F(ρ) + F(ξ)]dx =

∫ 1

0

[ρtF ′(ρ) + ξtF ′(ξ)]dx. (3.59)

Using (3.54), one obtains that

d

dt

∫ 1

0

(F(ρ) + F(ξ))dx

=

∫ 1

0

(ρx −
1

2
a(x)(ρ− ξ))F ′(ρ) + (−ξx +

1

2
a(x)(ρ− ξ))F ′(ξ))dx,

=

∫ 1

0

[F(ρ)−F(ξ)]x dx−
1

2

∫ 1

0

a(x)(ρ− ξ)(F ′(ρ)−F ′(ξ))dx,

= −1

2

∫ 1

0

a(x)(ρ− ξ)(F ′(ρ)−F ′(ξ))dx. (3.60)

Since F is convex, F ′ is non-decreasing, implying that (ρ − ξ)(F ′(ρ) − F ′(ξ)) ≥ 0

which gives the conclusion when combining it with (3.60).

■

Corollary 3.3.1. For (z0, z1) ∈ Yp, p ∈ [1,∞), suppose that the solution z of (3.1)

exists on R+. Then the energy t 7−→ Ep(t) is non-increasing and, for t ≥ 0,

E ′
p(t) = −1

2

∫ 1

0

a(x)(ρ− ξ)
(
⌊ρ⌉p−1 − ⌊ξ⌉p−1

)
dx. (3.61)

Proof. For (z0, z1) ∈ Yp and p > 1, we apply Proposition 3.3.1 with F (s) = |s|p
p
,

which proves (3.61). The case p = 1 is obtained by letting p tend to one.

■

3.4 Well-posedness

We start by recalling the classical representation formula for regular solutions of (3.1)

given by the d'Alembert formula, cf. [31, Equation 8, page 36].

Proposition 3.4.1. Consider the following problem with an arbitrary source term

g ∈ C2(R+ × R,R) and initial data z0 ∈ C2(R) and z1 ∈ C1(R),{
ztt(t, x)− zxx(t, x) + g(t, x) = 0 for (t, x) ∈ R+ × R,
z(0, .) = z0 , zt(0, .) = z1.

(3.62)
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Then the unique solution z of this problem is in C2(R+ × R,R) and is given for all

(t, x) ∈ R+ × R by d'Alembert formula

z(t, x) =
1

2
[z0(x+ t) + z0(x− t)] +

1

2

∫ x+t

x−t

z1(s)ds+
1

2

∫ t

0

∫ x+(t−s)

x−(t−s)

g(s, τ) dτ ds.

(3.63)

In order to apply the above proposition to (3.1), we extend by a standard procedure

(cf. [13, Exercise 4, section 4.3]) the following partial di�erential equation de�ned on

R+ × (0, 1) 
ztt − zxx + g(t, x) = 0 for (t, x) ∈ R+ × (0, 1),

z(t, 0) = z(t, 1) = 0 ∀t ∈ R+,

z(0, .) = z0 , zt(0, .) = z1,

(3.64)

to an equivalent partial di�erential system de�ned on R+ × R. We �rst extend the

data of the problem by considering z̃0, z̃1 and g̃ the 2-periodic extensions to R of the

odd extensions of z0, z1 and g to [−1, 1].

Using (3.63), we obtain then the expression of the solution z for the problem on

R+ × (0, 1), which is the following

z(t, x) =
1

2
[z̃0(x+ t) + z̃0(x− t)] +

1

2

∫ x+t

x−t

z̃1(s)ds+
1

2

∫ t

0

∫ x+(t−s)

x−(t−s)

g̃(s, τ) dτ ds,

(3.65)

which clearly provides, for every t ≥ 0, a 2-periodic odd function z(t, ·) on R. We also

have the expression of the derivatives

zx(t, x) =
1

2
[z̃′0(x+ t) + z̃′0(x− t)] +

1

2
[z̃1(x+ t)− z̃1(x− t)]

+
1

2

∫ t

0

[g̃(s, x+ (t− s))− g̃(s, x− (t− s))] ds, (3.66)

and

zt(t, x) =
1

2
[z̃′0(x+ t)− z̃′0(x− t)] +

1

2
[z̃1(x+ t) + z̃1(x− t)]

+
1

2

∫ t

0

[g̃(s, x+ (t− s)) + g̃(s, x− (t− s))] ds. (3.67)

Before we proceed to the well-posedness of (3.1) in Xp (resp. Yp), we need to de�ne

the notion of its weak and strong solutions.
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De�nition 3.4.1. For (z0, z1) in Xp (resp. Yp), we say that (3.1) has a weak (resp.

strong) solution z ∈ L∞(R+,W
1,p
0 (0, 1)) ∩W 1,∞(R+, L

p(0, 1))

(resp. z ∈ L∞(R+,W
2,p(0, 1) ∩W 1,p

0 (0, 1)) ∩W 1,∞(R+,W
1,p
0 (0, 1))) given by the ex-

pression (3.65) in Xp (resp. Yp), if the source term g from (3.62) is given by g(t, x) =

−a(x)zt(t, x).

Theorem 3.4.1 (Well-posedness). Let p ∈ [1,∞). For any initial data (z0, z1) ∈ Xp

(resp. Yp), there exists a unique weak (resp. strong) solution z such that

z ∈ L∞(R+,W
1,p
0 (0, 1)) ∩W 1,∞(R+, L

p(0, 1)), (3.68)

(resp. z ∈ L∞(R+,W
2,p(0, 1) ∩W 1,p

0 (0, 1)) ∩W 1,∞(R+,W
1,p
0 (0, 1)).) (3.69)

Moreover, in both cases, the energy function t 7→ Ep(t) associated with a solution is

non-increasing.

Proof. The arguments for both items is adapted from that of [10, Theorem 1]. We

prove the existence of an appropriate solution y of (3.67) by a standard �xed point

argument. We proceed on some interval [0, T ] for T > 0 small enough independent on

the initial condition. We can then reproduce the reasoning on [T, 2T ] starting from

the solution at t = T and so on to establish well-posedness for all t ≥ 0.

Since g̃ is 2-periodic function in space, it is natural to work in a space of functions

that have the same features. Hence we denote by BT the space of functions that are

de�ned on [0, T ] × R, odd on [−1, 1] and 2-periodic in space and p-integrable. The

space BT is equipped with the norm

∥y∥BT
= sup

t∈[0,T ]

∥y(t, .)∥Lp(0,1), (3.70)

which makes it a Banach Space. We de�ne the mapping

FT : BT −→ BT

y 7−→ FT (y),

such that, for all (t, x) ∈ [0, T ]× R, we have

FT (y)(t, x) =
1

2
[z̃0

′(x+ t)− z̃0
′(x− t)] +

1

2
[z̃1(x+ t) + z̃1(x− t)]

+
1

2

∫ t

0

[ã(x+ (t− s))y(s, x+ (t− s)) + ã(x− (t− s))y(s, x− (t− s))] ds. (3.71)
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Since a is bounded, it is clear that FT is a contraction on BT for T > 0 small enough,

hence the existence of a �xed point to FT , which is a (weak) solution of (3.1). It is

also clear that T does not depend on the initial condition (z0, z1) ∈ Xp. As explained

previously, this enables one to prove well-posedness in Xp.

As for the part regarding Yp, the argument is similar to the previous one, after

replacing BT by the space DT consisting of the functions de�ned on [0, T ] × R which

are odd on [−1, 1] and 2-periodic in space with p-integrable derivative with respect to

x, equipped with the norm given by

∥y∥DT
= sup

t∈[0,T ]

∥y(t, .)∥W 1,p
0 (0,1). (3.72)

For (z0, z1) ∈ Xp, p > 1, we get that t 7→ Ep(t) is non increasing by the fact that Yp

is dense in Xp. For p = 1, we use the facts that Xp is dense in X1 for p > 1 and the

map p 7→ Ep(t), for a �xed trajectory and a �xed positive time t, is right-continuous.

■

Remark 3.4.1. Since (3.1) is linear and t 7→ Ep(t) is non-increasing, the �ow of

its weak solutions de�nes a C0-semigroup (Sp(t))t≥0 of contractions of Xp, for every

p ∈ [1,∞).

3.5 Exponential stability

In this section, we aim to establish exponential stability for the C0-semigroup (Sp(t))t≥0

de�ning the weak solutions of (3.1) for every p ∈ (1,∞). The argument relies on

the multiplier method and is slightly di�erent whether p ≥ 2 or not. Indeed, two

multipliers involve the exponent p − 2, which becomes negative if p ∈ (1, 2). In the

latter case, one must modify all the multipliers to handle that situation.

Before starting describing such results, we have the following weaker general sta-

bility result for p ∈ [1,∞).

Proposition 3.5.1 (Strong stability). Fix p ∈ [1,∞) and suppose that Hypothesis

(H1) is satis�ed. Then, for every (z0, z1) ∈ Xp, the solution z(t, ·) of (3.1) starting at

(z0, z1) tends to zero as t tends to in�nity (in the sens that Ep(t) tends to 0 as t tends

to in�nity).

Proof. We follow the proof provided in the case p = 2 in [11]: by a standard

density argument, it is enough to establish the result for strong solutions of (3.1). The
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latter is obtained by a LaSalle type argument using the energy function Ep and the

fact that the set {z(t, ·), t ≥ 0} is relatively compact in W 1,p
0 (0, 1), which is itself

obtained by noticing that zt is a weak solution of (3.1) with bounded energy Ep.

■

We introduce next some functions and notations which are common to the handling

of both cases. Recalling that we have chosen x0 = 0 as an observation point, we

consider for 0 < ϵ0 < ϵ1 < ϵ2, the sets Qi = (1 − εi, 1 + εi), i = 0, 1, 2, as well as the

three smooth functions ψ, ϕ and β already used in Chapter 2 in two dimensions. We

rede�ne them in one dimension according to the next �gure.

More precisely, the functions ψ, ϕ and β are smooth with compact support and de�ned

as follows:
0 ≤ ψ ≤ 1,

ψ = 0 on Q0,

ψ = 1 on (0, 1) \Q1,


0 ≤ ϕ ≤ 1,

ϕ = 1 on Q1,

ϕ = 0 on (0, 1) \Q2,


0 ≤ β ≤ 1,

β = 1 on Q2 ∩ (0, 1),

β = 0 on R \ ω.
(3.73)

Remark 3.5.1. In the sequel, we will denote by Cp positive constants only depending

on p and by C positive constants depending on a(·) (typically through its upper bound

A on [0, 1] and its lower bound a0 on ω), and on ψ, ϕ and β (through bounds of their

�rst derivatives over their supports).

Our main result is the following theorem:

Theorem 3.5.1. (Exponential stability) Fix p ∈ (1,∞) and suppose that Hypoth-

esis (H1) is satis�ed. Then the C0-semigroup (Sp(t))t≥0 is exponentially stable.
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3.5.1 Case where p ≥ 2

As usual, it is enough to prove Theorem 3.5.1 for strong solutions and then extend the

result for weak solutions by a density argument. In turn, the theorem for strong solu-

tions classically follows from the next proposition, cf. [4, Theorem 1.4.2] for instance.

Proposition 3.5.2. Fix p ∈ [2,∞) and suppose that Hypothesis (H1) is satis�ed.

Then there exist positive constants C and Cp such that, for every (z0, z1) ∈ Yp, it

holds the following energy estimate:

∀ 0 ≤ S ≤ T ,

∫ T

S

Ep(t) dt ≤ C CpEp(S), (3.74)

where Ep(·) denotes the energy of the solution of (3.1) starting at (z0, z1).

The proof will be divided into four steps in subsections 3.5.1�3.5.1. We �x an

arbitrary pair of times 0 ≤ S ≤ T and a strong solution z(·, ·) of (3.1) starting at

(z0, z1) ∈ Yp, and we consider three sets of multipliers:

(m1) x 7→ xψ(x)f(ρ(t, x)) and x 7→ xψ(x)f(ξ(t, x)) for every t ≥ 0;

(m2) x 7→ ϕ(x)f ′(ρ(t, x))z(t, x) and x 7→ ϕ(x)f ′(ξ(t, x))z(t, x) for every t ≥ 0;

(m3) x 7→ v(t, x) for every t ≥ 0, where v is the solution of the following elliptic

problem de�ned for every t ≥ 0:{
vxx = βf(z) x ∈ (0, 1),

v(0) = v(1) = 0,
(3.75)

where the function f is de�ned (3.9).

Note that we use the usual notation q = p
p−1

for the conjugate exponent of p.

Remark 3.5.2. In the Hilbertian case p = 2, the classical multipliers as given in [4]

are xψ(x)zx(t, x), xϕ(x)z(t, x) and v associated with p = 2 (i.e. vxx = βz). Then,

while clearly our third multiplier v is a straightforward extension of the Hilbertian

case to any p ∈ [1,∞), the two sets of multipliers given in Items (m1) and (m2) seem

to be new, even if those of Item (m2) are identical when p = 2.
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First set of multipliers

The �rst step toward an energy estimate consists in obtaining an inequality that

contains the expression of the energy Ep and, for this purpose, we use the �rst set of

multipliers of Item (m1). We obtain the following lemma.

Lemma 3.5.1. Under the hypotheses of Proposition 3.5.2, we have the following

estimate∫ T

S

Ep(t)dt ≤ CCpEp(S) + C

∫ T

S

∫
Q1∩(0,1)

(F (ρ) + F (ξ)) dx dt︸ ︷︷ ︸
S4

, (3.76)

where Cp denotes constants that depend on p only.

Proof. Multiplying the �rst equation of (3.54) by xψ f(ρ) and integrating over

[S, T ]× [0, 1], we obtain that∫ T

S

∫ 1

0

xψ f(ρ)

(
ρt − ρx +

1

2
a(x)(ρ− ξ)

)
dx dt = 0. (3.77)

Starting with
∫ T

S

∫ 1

0
xψ f(ρ)ρt dx dt, one has∫ T

S

∫ 1

0

xψ f(ρ)ρt dx dt =

∫ 1

0

xψ

∫ T

S

(F (ρ))tdtdx =

∫ 1

0

xψ [F (ρ)]TS dx. (3.78)

Regarding −
∫ T

S

∫ 1

0
xψ f(ρ)ρx dx dt, we use an integration by part with respect to x

and we obtain

−
∫ T

S

∫ 1

0

xψ f(ρ)ρx dx dt = −
∫ T

S

∫ 1

0

xψ (F (ρ))x dx dt

=

∫ T

S

∫ 1

0

(xψ)xF (ρ) dx dt−
∫ T

S

[xψF (ρ)]10 =

∫ T

S

∫ 1

0

(xψ)xF (ρ) dx dt. (3.79)

By combining (3.78) and (3.79), we get∫ T

S

∫ 1

0

(xψ)xF (ρ) dx dt+

∫ 1

0

xψ [F (ρ)]TS dx = −1

2

∫ T

S

∫ 1

0

xψ(x)a(x)f(ρ)(ρ−ξ)) dx dt.
(3.80)

We proceed similarly by multiplying the second equation of (3.54) by xψ f(ξ) and,
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following the same steps that yielded (3.80), we obtain that∫ T

S

∫ 1

0

(xψ)xF (ξ) dx dt−
∫ 1

0

xψ [F (ξ)]TS dx = −1

2

∫ T

S

∫ 1

0

xψ(x)a(x)f(ξ)(ρ− ξ)) dx dt.

(3.81)

Summing up (3.80) and (3.81), we obtain∫ T

S

∫ 1

0

(xψ)x(F (ρ) + F (ξ)) dx dt =

∫ 1

0

xψ [F (ξ)]TS dx−
∫ 1

0

xψ [F (ρ)]TS dx

−1

2

∫ T

S

∫ 1

0

a(x)xψ(f(ξ) + f(ρ))(ρ− ξ)) dx dt. (3.82)

Using the de�nition of ψ, we obtain∫ T

S

∫
(0,1)\Q1

(F (ρ) + F (ξ)) dx dt

= −
∫ T

S

∫
Q1∩(0,1)

(xψ)x(F (ρ) + F (ξ)) dx dt+

∫ 1

0

xψ [F (ξ)]TS dx

−
∫ 1

0

xψ [F (ρ)]TS dx−
1

2

∫ T

S

∫ 1

0

a(x)xψ(f(ξ) + f(ρ))(ρ− ξ) dx dt. (3.83)

We now complete the expression of the energy Ep in the left-hand side of the previous

equality and, since
∫ 1

0
F (ξ) + F (ρ) dx = Ep, it follows that∫ T

S

Ep(t)dt ≤
∫ T

S

∫
Q1∩(0,1)

| (1− (xψ)x) | (F (ρ) + F (ξ)) dx dt︸ ︷︷ ︸
S1

+

∫ 1

0

|xψ|
∣∣∣[F (ρ)− F (ξ)]TS

∣∣∣ dx︸ ︷︷ ︸
S2

+
1

2

∫ T

S

∫ 1

0

|a(x)xψ| |(f(ρ) + f(ξ))| |ρ− ξ| dx dt︸ ︷︷ ︸
S3

.

(3.84)

We start by estimating S1. Since | (1− (xψ)x) | ≤ C, we get∫ T

S

∫
Q1∩(0,1)

|1− (xψ)x| (F (ρ) + F (ξ)) dx dt ≤ C

∫ T

S

∫
Q1∩(0,1)

(F (ρ) + F (ξ)) dx dt

≤ CS4, (3.85)

where S4 has been de�ned in (3.76).

As for S2, using the fact that |xψ| < 1 and the fact that t 7→ Ep(t) is non increasing,
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one gets the following upper bound for S2,

S2 ≤ Ep(S) + Ep(T ) ≤ 2Ep(S). (3.86)

We �nally estimate S3. Recall that q := p
p−1

denotes the conjugate exponent of p.

Using (2.3) in Lemma 2.2.1 with A = a(x) |ρ− ξ| , B = |f(ξ)| + |f(ρ)| and η = η1

where η1 > 0 an arbitrary constant, it follows that

S3 ≤ C

∫ T

S

∫ 1

0

a(x) |f(ρ) + f(ξ)| |ρ− ξ| dx dt

≤ CCpη
q
1

∫ T

S

∫ 1

0

(F (ρ) + F (ξ)) dx dt+
CCp

ηp1

∫ T

S

∫ 1

0

a(x)|ρ− ξ|p dx dt

≤ CCpη
q
1

∫ T

S

Ep(t)dt+
CCp

ηp1

∫ T

S

∫ 1

0

a(x)|ρ− ξ|p dx dt. (3.87)

Set R = max(|ρ|, |ξ|). Then, for every 0 < µ1 < 1, one has∫ T

S

∫ 1

0

a(x)|ρ− ξ|p dx dt =
∫ T

S

∫
|ρ−ξ|≥Rµ1

a(x)|ρ− ξ|p dx dt

+

∫ T

S

∫
|ρ−ξ|<Rµ1

a(x)|ρ− ξ|p dx dt. (3.88)

For the �rst integral term above, we have directly from Lemma 3.2.2 with a = ρ, b = ξ

that ∫ T

S

∫
|ρ−ξ|≥Rµ1

a(x)|ρ− ξ|p dx dt ≤ Cp

µ2−p
1

∫ T

S

(−E ′
p(t)) dt ≤

Cp

µ2−p
1

E(S). (3.89)

As for the second integral term in (3.88), we have that∫ T

S

∫
|ρ−ξ|<Rµ1

a(x)|ρ− ξ|p dx dt ≤ µp
1

∫ T

S

∫
|ρ−ξ|<Rµ1

a(x)Rp dx dt

≤ Cpµ
p
1

∫ T

S

∫ 1

0

(F (ρ) + F (ξ))dxdt

≤ Cpµ
p
1

∫ T

S

Ep(t)dt. (3.90)

Combining (3.88), (3.89) and (3.90), we obtain that∫ T

S

∫ 1

0

a(x)|ρ− ξ|p dx dt ≤ Cpµ
p
1

∫ T

S

Ep(t)dt+
Cp

µ2−p
1

Ep(S). (3.91)
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By combining (3.91) with (3.87), we obtain that

S3 ≤ CCp

(
µp
1

ηp1
+ ηq1

)∫ T

S

Ep(t)dt+ C
Cp

ηp1µ
2−p
1

Ep(S). (3.92)

Gathering (3.84), (3.85), (3.86) and (3.92), it follows that∫ T

S

E(t) dt ≤ C

∫ T

S

∫
Q1∩(0,1)

(F (ρ) + F (ξ)) dx dt

+ CCp

(
µp
1

ηp1
+ Cηq1

)∫ T

S

Ep(t)dt+

(
C

Cp

ηp1µ
2−p
1

+ 2

)
Ep(S). (3.93)

We can choose η1 > 0 and µ1 > 0 such that

CCp

(
µp
1

ηp1
+ ηq1

)
<

1

2
, (3.94)

which proves (3.76).

■

Second pair of multipliers

The second set of multipliers given in Item (m2) is used to handle the term S4 in

(3.76) and it will lead us to the following lemma.

Lemma 3.5.2. Under the hypotheses of Proposition 3.5.2 with ϕ as de�ned in (3.73),

we have the following estimate

S4 ≤ C
Cp

ηp2

∫ T

S

∫
Q2∩(0,1)

|z|p dx dt︸ ︷︷ ︸
T5

+CCpη
q
2

∫ T

S

Ep(t) dt+ CCpEp(S), (3.95)

where η2 is an arbitrary constant in (0, 1) and C and Cp are positive constants whose

dependence is speci�ed in Remark 3.5.1.

Proof. We multiply the �rst equation of (3.54) by ϕf ′(ρ)z, where z is the solution

of (3.1) and we integrate over [S, T ]× [0, 1] to obtain∫ T

S

∫ 1

0

ϕf ′(ρ)z(ρt − ρx +
1

2
a(x)(ρ− ξ)) dx dt = 0. (3.96)
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On one hand, we have that∫ T

S

∫ 1

0

ϕf ′(ρ)zρt dx dt =

∫ T

S

∫ 1

0

ϕ (f(ρ))t z dx dt

= −
∫ 1

0

∫ T

S

ϕf(ρ)ztdtdx+

∫ 1

0

ϕ [f(ρ)z]TS dx. (3.97)

On the other hand, an integration by part with respect to x yields

−
∫ T

S

∫ 1

0

ϕf ′(ρ)zρx dx dt = −
∫ T

S

∫ 1

0

ϕz (f(ρ))x dx dt =

∫ T

S

∫ 1

0

(ϕz)xf(ρ) dx dt,

(3.98)

and then∫ T

S

∫ 1

0

(ϕz)x f(ρ) dx dt =

∫ T

S

∫ 1

0

ϕxzf(ρ) dx dt+

∫ T

S

∫ 1

0

ϕzxf(ρ) dx dt. (3.99)

Putting together (3.96),(3.97), (3.98) and (3.99)

−
∫ T

S

∫ 1

0

ϕf(ρ)zt dx dt+

∫ 1

0

ϕ [f(ρ)z]TS dx+

∫ T

S

∫ 1

0

ϕxzf(ρ) dx dt

+

∫ T

S

∫ 1

0

ϕzxf(ρ) dx dt+
1

2

∫ T

S

∫ 1

0

ϕf ′(ρ)za(x)(ρ− ξ) dx dt = 0. (3.100)

Since ρ− 2zt = zx − zt, we have that∫ T

S

∫ 1

0

ϕzxf(ρ) dx dt−
∫ T

S

∫ 1

0

ϕf(ρ)zt dx dt

=

∫ T

S

∫ 1

0

ϕρf(ρ) dx dt− 2

∫ T

S

∫ 1

0

ϕztf(ρ) dx dt, (3.101)

it follows that∫ T

S

∫ 1

0

ϕρf(ρ) dx dt = 2

∫ T

S

∫ 1

0

ϕztf(ρ) dx dt−
∫ 1

0

ϕ [f(ρ)z]TS dx

−
∫ T

S

∫ 1

0

ϕxzf(ρ) dx dt−
1

2

∫ T

S

∫ 1

0

ϕf ′(ρ)z a(x)(ρ− ξ) dx dt. (3.102)

We proceed similarly after multiplying the second equation of (3.54) by ϕf ′(ξ)z and,
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following the same steps that led to (3.102), we obtain that∫ T

S

∫ 1

0

ϕξf(ξ) dx dt = −2

∫ T

S

∫ 1

0

ϕztf(ξ) dx dt+

∫ 1

0

ϕ [f(ξ)z dx]TS

−
∫ T

S

∫ 1

0

ϕxzf(ξ) dx dt−
1

2

∫ T

S

∫ 1

0

ϕf ′(ξ)z a(x)(ρ− ξ) dx dt. (3.103)

We take the sum of (3.102) and (3.103) and get∫ T

S

∫ 1

0

ϕ (ρf(ρ) + ξf(ξ)) dx dt = −
∫ T

S

∫ 1

0

ϕxz (f(ρ) + f(ξ)) dx dt

−
[∫ 1

0

ϕ (f(ρ)− f(ξ)) z dx

]T
S

− 1

2

∫ T

S

∫ 1

0

ϕ (f ′(ρ) + f ′(ξ)) z a(x)(ρ− ξ) dx dt

+ 2

∫ T

S

∫ 1

0

ϕzt (f(ρ)− f(ξ)) dx dt. (3.104)

Using the de�nition of ϕ in (3.73) and the fact that 2zt = ρ− ξ, we derive that

S4 ≤ C

∫ T

S

∫
Q2∩(0,1)

|z (f(ρ) + f(ξ))| dx dt︸ ︷︷ ︸
T1

+Cp

∣∣∣∣∣
[∫ 1

0

(f(ρ)− f(ξ)) z dx

]T
S

∣∣∣∣∣︸ ︷︷ ︸
T2

+ Cp

∫ T

S

∫
Q2∩(0,1)

| (f ′(ρ) + f ′(ξ)) z a(x)(ρ− ξ)| dx dt︸ ︷︷ ︸
T3

+ Cp

∫ T

S

∫ 1

0

|ϕ(ρ− ξ) (f(ρ)− f(ξ))| dx dt︸ ︷︷ ︸
T4

. (3.105)

We start by estimating T1. We have T1 ≤ T′
1 where

T′
1 :=

∫ T

S

∫
Q2∩(0,1)

|z|(|f(ρ)|+ |f(ξ)|) dx dt, (3.106)

which gives when using (2.3) in Lemma 2.2.1 with A = |z| and B ∈ {|f(ρ)|, |f(ξ)|},

T′
1 ≤ Cp

ηp2

∫ T

S

∫
Q2∩(0,1)

F (z) dx dt+ Cpη
q
2

∫ T

S

Ep(t)dt, (3.107)

where η2 > 0 is arbitrary.
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To estimate T2, we have by Young's inequality recalled in Lemma 2.2.1 that∣∣∣∣∫ 1

0

ϕ (f(ρ)− f(ξ)) zdx

∣∣∣∣ ≤ ∫ 1

0

|f(ρ)||z| dx+
∫ 1

0

|f(ξ)||z| dx

≤ Cp

∫ 1

0

(F (ρ) + F (ξ)) dx+ Cp

∫ 1

0

|z|pdx. (3.108)

Using Poincaré's inequality,∫ 1

0

|z|pdx ≤ C

∫ 1

0

|zx|pdx ≤ C

∫ 1

0

|ρ+ ξ|pdx

≤ CCp

∫ 1

0

(|ρ|p + |ξ|p) dx

≤ CCpEp(t). (3.109)

Combining (3.108) and (3.109) and the fact that t 7→ Ep(t) is non increasing, it follows

that

T2 ≤ CCpEp(S). (3.110)

As for T3, we �rst notice that for every (ρ, ξ) ∈ R2, one has

| (f ′(ρ) + f ′(ξ)) (ρ− ξ)| ≤ Cp (|f(ρ)|+ |f(ξ)|) . (3.111)

It follows that T3 ≤ CpT
′
1 which has been de�ned in (3.106) and which is upper

bounded in (3.107).

Regarding T4, we use the fact that ϕ(x) ≤ Ca(x) for x ∈ [0, 1] to get

T4 ≤ C

∫ T

S

∫
ω

a(x)(ρ− ξ) (f(ρ)− f(ξ)) dx dt ≤ C

∫ T

S

(−E ′
p(t))dt ≤ CEp(S).

(3.112)

Combining (3.105), (3.107), (3.110) and (3.112), the estimate (3.95) is proved.

■

Third multiplier

It remains to tackle the term T5 appearing in (3.95). To handle it, we consider the

multiplier introduced in Item (m3) and, in order to achieve future upper bounds, we

will be needing estimates of the Lq-norms of v and vt, where q = p
p−1

, given in the
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following lemma.

Lemma 3.5.3. For v as de�ned in (3.75), we have the following estimates:∫ 1

0

|v|q dx ≤ CCpEp(t). (3.113)∫ 1

0

|vt|q dx ≤ Cp

(
(p− 2)σEp(t) +

1

σp−2

∫ 1

0

β|zt|pdx
)
, (3.114)

where σ > 0 is an arbitrary positive constant and C and Cp are positive constants

whose dependence is speci�ed in Remark 3.5.1.

Proof. From the de�nition of v, one gets

v(t, x) = −x
∫ 1

x

(1− s)β f(z) ds− (1− x)

∫ x

0

sβ f(z) ds, x ∈ [0, 1]. (3.115)

One deduces that, by using Hölder's inequality,

|v(t, x)|q ≤ C

(∫ 1

0

|z|p−1 ds

)q

≤ C

∫ 1

0

|z|p ds, x ∈ [0, 1]. (3.116)

Poincaré's inequality yields
∫ 1

0
|z|p ds ≤ C

∫ 1

0
|zx|p ds and then (3.113) after integrating

over x ∈ [0, 1] and the de�nition of Ep(t).

Similarly, one has

vt(t, x) = −x
∫ 1

x

(1− s)β ztf
′(z) ds− (1− x)

∫ x

0

sβ ztf
′(z) ds, x ∈ [0, 1]. (3.117)

By using Hölder inequality and the fact that β is bounded by 1, one deduces that

|vt(t, x)|q ≤ Cp

(∫ 1

0

β|zt||z|p−2 ds

)q

≤ Cp

∫ 1

0

β|zt|q|z|q(p−2) ds, x ∈ [0, 1]. (3.118)

If p = 2, we have q = 2 and get (3.114) after integrating over x ∈ [0, 1]. For p > 2,

we apply Young's inequality with the pair of conjugate exponents (p − 1, p−1
p−2

) and

conclude as for (3.113).

■

The next lemma shows the use of the third multiplier v.
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Lemma 3.5.4. Under the hypotheses of Proposition 3.5.2, with v as de�ned in (3.75),

we have the following estimate,∫ T

S

∫
Q2∩(0,1)

|z|p dx dt︸ ︷︷ ︸
T5

≤ CCp

(
η

∫ T

S

Ep(t) dt+
1

ηr
Ep(S)

)
, (3.119)

where r = 2p2−p−2
p

, η is any real number in (0, 1) and C and Cp are positive constants

whose dependence is speci�ed in Remark 3.5.1.

Proof. We multiply the �rst equation of (3.54) by v∫ T

S

∫ 1

0

v(ρt − ρx +
1

2
a(x)(ρ− ξ)) dx dt = 0. (3.120)

First, an integration by part with respect to t gives

∫ 1

0

∫ T

S

vρt dtdx = −
∫ 1

0

∫ T

S

vtρ dtdx+

[∫ 1

0

vρdx

]T
S

. (3.121)

Then, an integration by part with respect to x yields

−
∫ 1

0

vρx dx =

∫ 1

0

vxρ dx =

∫ 1

0

vx(zx + zt) dx =

∫ 1

0

vxzx dx+

∫ 1

0

vxzt dx. (3.122)

We have that ∫ 1

0

vxzx dx = −
∫ 1

0

vxxz dx = −
∫ 1

0

β|z|p dx, (3.123)

which gives that

−
∫ T

S

∫ 1

0

vρx dx dt = −
∫ T

S

∫ 1

0

β|z|p dx dt+
∫ T

S

∫ 1

0

vxzt dx dt. (3.124)

Combining (3.120), (3.121) and (3.124), we obtain

∫ T

S

∫ 1

0

β|z|p dx dt =
∫ T

S

∫ 1

0

vxzt dx dt−
∫ 1

0

∫ T

S

vtρ dtdx+

[∫ 1

0

vρdx

]T
S

+
1

2

∫ T

S

∫ 1

0

va(x)(ρ− ξ) dx dt. (3.125)

We next multiply the second equation of (3.54) by v and, following the same steps
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that yielded (3.125), we get

∫ T

S

∫ 1

0

β|z|p dx dt = −
∫ T

S

∫ 1

0

vxzt dx dt+

∫ 1

0

∫ T

S

vtξ dtdx−
[∫ 1

0

vξdx

]T
S

+
1

2

∫ T

S

∫ 1

0

va(x)(ρ− ξ) dx dt. (3.126)

Now taking the sum of (3.125) and (3.126), we obtain

2

∫ T

S

∫ 1

0

β|z|p dx dt =
∫ 1

0

∫ T

S

vt(ξ − ρ) dtdx−
[∫ 1

0

v(ρ− ξ)dx

]T
S

+

∫ T

S

∫ 1

0

va(x)(ρ− ξ) dx dt. (3.127)

Using the de�nition of β, we obtain

2T5 ≤
∣∣∣∣∣
[∫ 1

0

v(ρ− ξ)dx

]T
S

∣∣∣∣∣︸ ︷︷ ︸
V1

+

∫ T

S

∫ 1

0

|vt||(ξ − ρ)| dx dt︸ ︷︷ ︸
V2

+

∫ T

S

∫ 1

0

|va(x)(ρ− ξ)| dx dt︸ ︷︷ ︸
V3

. (3.128)

We start by estimating V1. For �xed t ∈ [S, T ], we have, by using (3.113)∣∣∣∣∫ 1

0

v(ρ− ξ)dx

∣∣∣∣ ≤ ∫ 1

0

(|v||ρ|+ |v||ξ|) dx ≤ 2
p− 1

p

∫ 1

0

|v|qdx

+

∫ 1

0

(F (ρ) + F (ξ)) dx ≤ CCpEp(t), (3.129)

and hence, since Ep(T ) ≤ Ep(S), we get

V1 ≤
∣∣∣∣∣−
[∫ 1

0

v(ρ− ξ)dx

]T
S

∣∣∣∣∣ ≤ CCpEp(S). (3.130)

Using Young's inequality, we have for every η > 0

V2 ≤
∫ T

S

∫ 1

0

(|vt||ξ|+ |vt||ρ|) dx dt ≤ 2
p− 1

pη

∫ T

S

∫ 1

0

|vt|q dx dt

+ η

∫ T

S

∫ 1

0

(F (ρ) + F (ξ)) dx dt. (3.131)

From (3.114) and the fact that the de�nition of β implies β ≤ C a, we get for every
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σ > 0 that∫ T

S

∫ 1

0

|vt|q ≤ Cp

(
(p− 2)σ

∫ T

S

Ep(t)dt+
C

σp−2

∫ T

S

∫ 1

0

a(x)|ρ− ξ|pdx dt
)
. (3.132)

Using (3.91), we obtain for every σ, µ1 > 0∫ T

S

∫ 1

0

|vt|q ≤ CCp

[(
(p− 2)σ +

µp
1

σp−2

)∫ T

S

Ep(t)dt+
1

µ1σp−2
Ep(S)

]
. (3.133)

Combining (3.131) and (3.133), we obtain for every η, σ, µ1 > 0

V2 ≤ CCp

[(
(p− 2)

σ

η
+

µp
1

σp−2η
+ η

)∫ T

S

Ep(t)dt+
1

µ1σp−2η
Ep(S)

]
. (3.134)

Choosing σ = η2 and µ1 = η2
p−1
p , one gets, for every η > 0

V2 ≤ CCp

(
η

∫ T

S

Ep(t) dt+
1

ηr
Ep(S)

)
. (3.135)

Finally, we estimate V3 in (3.128). Using Young's inequality, we have, for every ν > 0,

V3 ≤ CCp

(
ν

∫ T

S

∫ 1

0

|v|q dx dt+ 1

ν

∫ T

S

∫ 1

0

a(x)|ρ− ξ|p dx dt
)
, (3.136)

which yields by using (3.113) and (3.91), that for every ν, µ > 0, one has

V3 ≤ CCp

(
(ν +

µp

ν
)

∫ T

S

Ep(t)dt+
1

νµ
Ep(S)

)
. (3.137)

Choosing µp = ν, one gets that for every η > 0

V3 ≤ CCp

(
ν

∫ T

S

Ep(t)dt+
1

ν1+
2
p

Ep(S)

)
. (3.138)

Combining (3.128), (3.130), (3.135) and (3.138) and taking ν = η < 1, we obtain

(3.119).

■
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End of the proof of Proposition 3.5.2

Collecting (3.76), (3.95) and (3.119), we obtain for every positive η2, η3 and η ∈ (0, 1)

that ∫ T

S

Ep(t)dt ≤ CCp

[(
ηq2 +

η

ηp2

)∫ T

S

Ep(t)dt+

(
1 +

1

ηp2η
r

)
Ep(S)

]
. (3.139)

Taking η = ηp+q
2 and �xing η2 so that 2CCpη

q
2 = 1

2
, we immediately get (3.74). It is

then standard to deduce that there exists γp > 0 such that, for every (z0, z1) ∈ Xp,

the energy Ep associated with of the solution z(t) of (3.1) starting at (z0, z1) satis�es

the following,

Ep(t) ≤ Ep(0)e
1−γpt, t ≥ 0. (3.140)

That concludes the proof of Proposition 3.5.2.

3.5.2 Case where 1 < p < 2

The main issue to prove Theorem 3.5.1 in the case p ∈ (1, 2) (when compared with

the case p ∈ [2,∞)) is the trivial fact that p− 2 < 0 and hence the weights f ′(ρ) and

f ′(ξ) used in the multipliers of Items (m2) and (m3) may not be de�ned on sets of

positive measure. As a consequence we cannot use these multipliers directly and we

have to modify the functions f and F . This is why, we consider, for p ∈ (1, 2), the

functions h and H de�ned on (3.16) and (3.17).

It is clear that one has that |h(y)| ≤ |f(y)| and |H(y)| ≤ |F (y)| for every y ∈ R.
Finally, using the function h, we also modify the energy Ep by considering, for every

t ∈ R+ and every solution of (3.1), the function Ep de�ned by

Ep(t) =
∫ 1

0

(H(ρ) +H(ξ)) dx. (3.141)

We start with an extension of Proposition 3.3.1.

Lemma 3.5.5. For every p ∈ (1, 2), the energy t 7→ Ep(t) is non-increasing on R+

along trajectories of (3.1).

Proof. This follows after using Proposition 3.3.1 with F = H
p
which admits a

continuous �rst derivative by what precedes.
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■

The proof of Theorem 3.5.1 in the case p ∈ (1, 2) relies on the following proposition

which gives an estimate of the modi�ed energy Ep of a strong solution and which is

similar to Proposition 3.5.2.

Proposition 3.5.3. Fix p ∈ (1, 2) and suppose that Hypothesis (H1) is satis�ed.

Then there exist positive constants C and Cp such that, for every (z0, z1) ∈ Yp verifying

Ep(0) ≤ 1, (3.142)

we have the following energy estimate:

∀ 0 ≤ S ≤ T,

∫ T

S

Ep(t) dt ≤ C CpEp(S). (3.143)

We next develop an argument for Proposition 3.5.3, which follows the lines of the

proof of Proposition 3.5.2. The main idea consists in replacing f, F by h,H and to

control all the constants Cp involved in these estimates in terms of p ∈ (1, 2). We also

provide a sketchy presentation where we only precise details speci�c to the present case.

We �x p ∈ (1, 2) and (z0, z1) ∈ Yp. We recall that we have chosen x0 = 0 as an obser-

vation point and let 0 < ϵ0 < ϵ1 < ϵ2 with the corresponding sets Qi =]1− ϵi, 1 + ϵi[,

i = 0, 1, 2 as before.

As a consequence of (3.142) and Corollary 3.3.1 and standard estimates (such as the

fact that Ep ≤ Ep), one deduces that

|z(t, x)|p + Ep(t) ≤ Cp, ∀t ≥ 0, x ∈ [0, 1], (3.144)

where Cp is a positive constant that depends on p only.

In the case p ≥ 2, we have used repeatedly Hölder's inequality for f, F , which is

not adapted when dealing with h,H for the case p ∈ (1, 2). Insteaed, one needs to

consider the convex conjugate of H de�ned in (3.18) and use more generalized inequal-

ities to handle this delicate case (see Section 3.2 for all the de�nitions and technical

results).
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First pair of multipliers

For the �rst pair of multipliers, we change the function f in Item (m1) by the function

h and hence use xψ h(ρ), x ψh(ξ), where ψ is de�ned in (3.73).

Lemma 3.5.6. Under the hypotheses of Proposition 3.5.3, we have the following

estimate∫ T

S

Ep(t)dt ≤ C CpEp(S) + C

∫ T

S

∫
Q1∩(0,1)

(H(ρ) +H(ξ)) dx dt︸ ︷︷ ︸
S4

. (3.145)

Proof. Estimate 3.145 is obtained by following the exact same steps as those

given to derive (3.76), with the di�erence that we use the function h instead of the

function f . By multiplying the �rst equation of (3.54) by xψ h(ρ) and the second one

by xψ h(ξ), we perform the integrations by parts described to obtain (3.83) with the

function f and, we are led to the similar equation∫ T

S

(H(ρ) +H(ξ)) dt =

∫ T

S

∫
Q1∩(0,1)

(1− (xψ)x) (H(ρ) +H(ξ)) dx dt

+

∫ 1

0

xψ [H(ξ)−H(ρ)]TS dx−
1

2

∫ T

S

∫ 1

0

a(x)xψ(h(ξ) + h(ρ))(ρ− ξ) dx dt, (3.146)

which yields that∫ T

S

Ep(t)dt ≤
∫ T

S

∫
Q1∩(0,1)

| (1− (xψ)x) | (H(ρ) +H(ξ)) dx dt︸ ︷︷ ︸
S1

+

∫ 1

0

|xψ|
∣∣∣[H(ξ)−H(ρ)]TS

∣∣∣ dx︸ ︷︷ ︸
S2

+
1

2

∫ T

S

∫ 1

0

|a(x)xψ| |h(ξ) + h(ρ)| |ρ− ξ| dx dt︸ ︷︷ ︸
S3

. (3.147)

Using the fact that ψx is bounded, we get at once that

S1 ≤ C

∫ T

S

∫
Q1∩(0,1)

(H(ρ) +H(ξ)) dx dt ≤ CS4, (3.148)

where S4 has been de�ned in (3.145). Using now the fact that |xψ| ≤ 1 and the fact
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that t 7→ Ep(t) is non increasing, it follows that

S2 ≤ Ep(T ) + Ep(S) ≤ 2Ep(S). (3.149)

As for S3, we proceed as for the estimate of S3 by �rst using (3.31) and Lemma 3.2.7

instead of Lemmas 2.2.1 and 3.2.2 respectively.

In particular, we have the following estimate, which extends (3.91) to the case p ∈ (1, 2)

and which holds for every µ1 ∈ (0, 1),∫ T

S

Ep(t) dt ≤ C Cpµ
p
1

∫ T

S

Ep(t)dt+ C
Cp

µ2−p
1

Ep(S), (3.150)

where Ep(t) is de�ned by

Ep(t) =

∫ 1

0

a(x)H(zt) dx. (3.151)

Second pair of multipliers

The goal of this subsection is to estimate S4. To do so, we change the function f in

Item (m2) by the function h and hence de�ne the pair of multipliers: ϕh′(ρ)z, ϕh′(ξ)z

where ϕ is de�ned in (3.73).

Lemma 3.5.7. Under the hypotheses of Proposition 3.5.3 and for 1 < p < 2 with ϕ

as de�ned in (3.73), we have the following estimate:

S4 ≤ C
Cp

ηp2

∫ T

S

∫
Q2∩(0,1)

H(z) dx dt︸ ︷︷ ︸
T5

+C Cpη
2
2

∫ T

S

Ep(t) dt+ C CpEp(S), (3.152)

where η2 is an arbitrary constant in (0, 1) and C and Cp are positive constants whose

dependence are speci�ed in Remark 3.5.1. on p.

Proof. Estimate (3.152) is obtained by following the same steps as those given

to derive (3.95), with h instead of f . By multiplying the �rst equation of (3.54) by

ϕh′(ρ)z and the second one by ϕh′(ξ)z, where z is the solution of (3.1), we perform

the integrations by parts described to obtain (3.104) with the function f and we are
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led to the equation∫ T

S

∫ 1

0

ϕ (h(ρ)ρ+ h(ξ)ξ) dx dt = −
∫ T

S

∫ 1

0

ϕx z (h(ρ) + h(ξ)) dx dt

+

[∫ 1

0

ϕ (h(ξ)− h(ρ)) zdx

]T
S

− 1

2

∫ T

S

∫ 1

0

ϕ(h′(ρ) + h′(ξ))za(x)(ρ− ξ) dx dt

+ 2

∫ T

S

∫ 1

0

ϕ (h(ρ)− h(ξ)) (ρ− ξ)dx dt. (3.153)

According to (3.23), one has

h(ρ)ρ+ h(ξ)ξ ≥ h(ρ) + h(ξ), ∀(ρ, ξ) ∈ R2. (3.154)

Hence, also using the de�nition of ϕ, it follows from (3.153) that

S4 ≤ C

∫ T

S

∫
Q2∩(0,1)

|z (h(ρ) + h(ξ)) | dx dt︸ ︷︷ ︸
T1

+

∣∣∣∣∣
[∫

Q2∩(0,1)
(h(ξ)− h(ρ)) zdx

]T
S

∣∣∣∣∣︸ ︷︷ ︸
T2

+
1

2

∫ T

S

∫
Q2∩(0,1)

(h′(ρ) + h′(ξ)) a(x)|z(ρ− ξ)| dx dt︸ ︷︷ ︸
T3

+ 2

∫ T

S

∫
Q2∩(0,1)

| (h(ρ)− h(ξ)) (ρ− ξ)|dx dt︸ ︷︷ ︸
T4

, (3.155)

for some positive constant C. The above equation must be put in parallel with (3.105)

where the term Tj, 1 ≤ j ≤ 4 in (3.155) corresponds to the term Tj in (3.105).

The term T1 is handled exactly as the term T1 while using (3.31) instead of

Lemma 2.2.1 in order to obtain

T1 ≤ Cp

ηp2

∫ T

S

∫
Q2∩(0,1)

H(z) dx dt+ Cpη
2
2

∫ T

S

Ep(t)dt, (3.156)

where η2 > 0 is arbitrary.

We proceed similarly for the term T2 by using (3.31) instead of Young's inequality

and Corollary 3.2.1 instead of the standard Poincaré inequality to obtain

T2 ≤ CpEp(S). (3.157)
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The term T4 can also be treated identically as the term T4 to obtain

T4 ≤ CEp(S). (3.158)

We now turn to an estimate of T3 which di�ers slightly from that of T3 because

of the appearance of the function h′. Using (3.144) and the second equation in (3.27),

one deduces that

(h′(ρ) + h′(ξ)) |z| ≤ Cp|h(z)|, t ∈ [S, T ], x ∈ [0, 1], (3.159)

where Cp is a positive constant only depending on p. One derives that

T3 ≤ Cp

∫ T

S

∫
Q2∩(0,1)

a(x)|h(z)|(|ρ|+ |ξ|) dx dt. (3.160)

Applying (3.31) to the above, we end up with an estimate of T3 by exactly the right-

hand side of (3.156) and one concludes.

■

Third multiplier

We �nally turn to an estimation of the term T5 and, relying on the multiplier de�ned

in Item (m3), we get after changing the function f by the function h the multiplier

(still denoted) v solution of the following elliptic problem de�ned at every t ≥ 0 by{
vxx = βh(z), x ∈ [0, 1],

v(0) = v(1) = 0,
(3.161)

where β is de�ned in (3.73).

We will be needing the following estimates of v and vt given in the next lemma.

Lemma 3.5.8. For v as de�ned in (3.161), we have the following estimates:∫ 1

0

H(v)dx ≤ CCpEp(t), (3.162)∫ 1

0

H(vt)dx ≤ CCpEp(t), (3.163)

where Ep(t) is de�ned in (3.151).
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Proof. From the de�nition of v, one gets

v(t, x) = −x
∫ 1

x

(1− s)β h(z) ds− (1− x)

∫ x

0

sβ h(z) ds, x ∈ [0, 1]. (3.164)

It immediately follows from the above that∫ 1

0

H(v)dx ≤ H
(
C

∫ 1

0

β|h(z)| ds
)

≤ CCpH
(∫ 1

0

β|h(z)| ds
)
, (3.165)

where we have used (3.27)whether Cp

∫ 1

0
β|h(z)| ds ≥ M or not. Since H is (strictly)

convex, one can apply Jensen's inequality to the right-hand side of the above equation

to get that ∫ 1

0

H(v)dx ≤ CCp

∫ 1

0

βH (h(z)) ds, (3.166)

and one derives (3.162) by using (3.27) together with (3.144). Similarly, one has that

vt(t, x) = −x
∫ 1

x

(1− s)β zth
′(z) ds− (1− x)

∫ x

0

sβ zth
′(z) ds, x ∈ [0, 1], (3.167)

Upper bounding |g′(z)| by 1, one deduces that∫ 1

0

H(vt)dx ≤ H(C

∫ 1

0

β|zt|) ≤ CCpH(

∫ 1

0

β|zt|) ≤ CCpH
(∫ 1

0

a(x)|zt| dx
)
,

(3.168)

where we used the fact that β(x) ≤ Ca(x) on [0, 1] and the convexity of H.

Since
∫ 1

0
a(x)|zt| dx =

∫
|zt|≤M

+
∫
|zt|>M

, we have according to (3.27), (3.28) and

Hölder's inequality that∫ 1

0

a(x)|zt| dx ≤ C Cp

(∫ 1

0

a(x)h(|zt|) dx+
∫ 1

0

a(x)h(|zt|)
1
p dx

)
≤ C Cp

(∫ 1

0

a(x)h(|zt|) dx+ E
1
p
p (t)

)
. (3.169)

By convexity of H, we obtain after plugging the previous equation into (3.168) and

using Jensen's inequality that∫ 1

0

H(vt)dx ≤ CCp

(∫ 1

0

a(x)H (h(|zt|)) dx+H(E
1
p
p (t))

)
. (3.170)

The �rst term in the right-hand side of the above inequality is clearly upper bounded
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by CCpEp(t) thanks to (3.24). As for the second term, one has that

H(E
1
p
p (t)) ≤ CCph(y∗), where y∗ is de�ned by h(y∗) = E

1
p
p (t). (3.171)

By using (3.144), it follows that h(y∗) ≤ CCp and elementary computations using

(3.27) and the fact that Ep ≤ CCpEp yield that y∗ ≤ CCp. Hence h(y∗) ≥ CCpy∗, i.e.,

y∗ ≤ CCpE
1
p
p (t). Since g is convex and increasing on R+, one gets after using (3.27)

that

H(E
1
p
p (t)) ≤ CCph

(
CpE

1
p
p (t)

)
≤ CCph

(
E

1
p
p (t)

)
≤ CCpE

2
p
p (t) ≤ CCpEp(t), (3.172)

where we have used repeatedly (3.144) and (3.27). This concludes the proof of (3.163).

■

We now use the multiplier v in (3.54) and we get the following result.

Lemma 3.5.9. Under the hypotheses of Proposition 3.5.3 with v as de�ned in (3.161),

we have the following estimate

T5 ≤ CCp

(
ηp
∫ T

S

Ep(t) dt+
1

ηs
Ep(S)

)
, (3.173)

where Cp is a positive number that depends on p only and η is any real number in

(0, 1).

Proof. Proceeding as in the proof of Lemma 3.5.4 to derive (3.128), we obtain

2

∫ T

S

∫
Q2∩(0,1)

zh(z) dx dt ≤
∣∣∣∣∣
[∫ 1

0

v(ρ− ξ)dx

]T
S

∣∣∣∣∣︸ ︷︷ ︸
V1

+

∫ T

S

∫ 1

0

|vt||(ξ − ρ)| dx dt︸ ︷︷ ︸
V2

+

∫ T

S

∫ 1

0

|va(x)(ρ− ξ)| dx dt︸ ︷︷ ︸
V3

. (3.174)

After using Fenchel's inequality (3.13) and (3.162), one gets the following estimate for

V1

V1 ≤ CCpEp(S). (3.175)

As for V2, we �rst apply (3.30) (corresponding to the adaptation to the case p ∈ (1, 2)
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of the use of Young's inequality in (3.131)) to get that

V2 ≤ C
Cp

ηq

∫ T

S

∫ 1

0

H(vt) + CCpη
p

∫ T

S

Ep(t)dt,

for every 0 < η < 1. To handle the �rst integral term in the right-hand side of the

above equation, we use (3.163) and (3.150) to get that

V2 ≤ C
Cp

ηqµ2−p
Ep(S) + CCp

(
µp

ηq
+ ηp

)∫ T

S

Ep(t)dt,

for every 0 < η, µ < 1. For V3, we apply Fenchel's inequality, (3.162) and (3.150) to

get that

V3 ≤ CCp

(
σ2 +

λp

σp

)∫ T

S

Ep(t)dt+ C
Cp

λ2−pσp
Ep(S),

for every 0 < λ, σ < 1. One chooses appropriately λ, µ and σ in terms of η to easily

conclude the proof of (3.173).

■

End of the proofs of Proposition 3.5.3 and Theorem 3.5.1 in the case p ∈
(1, 2) It is immediate to derive (3.143) by gathering (3.145), (3.152) and (3.173) with a

constant Cp only depending on p. One deduces exponential decay of Ep exactly of the

type (3.140) with a constant γp > 0 only depending on p for weak solutions verifying

(3.142) for their initial conditions. Pick now any (z0, z1) ∈ Xp such that Ep(0) = 1.

One deduces that for every t ≥ 0,

Ep(t) ≤ Ep(0)e1−γpt ≤ e1−γpt, (3.176)

since Ep ≤ Ep. Set

λp :=
(p
8

) 1
p
,

and let cp be a positive constant such that

H(x) > cpF (x), if |x| > λp. (3.177)

Note that such a constant cp > 0 exists according to the second equation in (3.28) and

can be taken equal to p−1
2
.

For every t ≥ 0 and x ∈ [0, 1], let R(t, x) = max(ρ(t, x), ξ(t, x)). It holds by
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elementary computations that∫
R≤λp

(F (ρ) + F (ξ)) dx ≤ 1

4
,∫

R>λp

(F (ρ) + F (ξ)) dx <
2

cp

∫
R>λp

(H(ρ) +H(ξ)) dx. (3.178)

One deduces at once that

Ep(t) <
1

4
+

2

cp
Ep(t), ∀t ≥ 0. (3.179)

Set

tp :=

(
1 + ln( 8

cp
)
)

γp
.

Then, using (3.176), it follows that Ep(t) ≤ 1
2
if t ≥ tp. Since t 7→ (Ep(t))

1
p is a norm

on Xp, it implies that

∥Sp(tp)∥Xp = sup
Ep(0)≤1

Ep(t)
1
p ≤

(
1

2

) 1
p

< 1,

i.e., that the C0-semi-group (Sp(t))t≥0 is exponentially stable for p ∈ (1, 2).

Remark 3.5.3. From the argument, it is not di�cult to see that γp is bounded above

and cp must tend to zero as p tends to one. That yields that our estimate for tp tends

to in�nity as p tends to one. Hence it is not obvious how to use our line of proof to

get exponential stability for p = 1.

3.6 Case of a global constant damping

Suppose now that we are dealing with a global constant damping, in other words

ω = (0, 1) and

a(x) ≡ 2α, ∀ x ∈ (0, 1), (3.180)

where α is a positive constant. We then prove the following proposition.

Proposition 3.6.1. For p = 1 or p = ∞, the semi-group (S(t))t≥0 is exponentially

stable for a global constant damping if α ∈ (0, 2).
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Proof. For every p ∈ (1,∞), we perform a change of unknown function, namely

z(t, x) = e−αtv(t, x), x ∈ (0, 1), t ≥ 0,

where z is any solution of (3.1) starting at (z0, z1) ∈ Xp. Clearly v is a solution of
vtt − vxx = α2v in R+ × (0, 1),

v(t, 0) = v(t, 1) = 0 t ≥ 0,

v(0, ·) = z0 , vt(0, ·) = z1 + αz0.

(3.181)

We use Ep and Vp to denote the pth-energies associated with z and v respectively.

Since zx = e−αtvx and zt = e−αt(vt − αv), we get, after using Lemma 3.2.1 and the

following inequality (cf. [1, Lemma 2.2])

|a+ b|p ≤ 2p−1(|a|p + |b|p), ∀(a, b) ∈ R2, (3.182)

that, for every t ≥ 0,

Ep(t) ≤ e−αpt

(
2p−1Vp(t) + 2pαp

∫ 1

0

|v(x)|p dx
)

≤ e−αpt

(
2p−1 +

αp

p2

)
Vp(t). (3.183)

On the other hand, for strong solutions of (3.181), one has after applying Corol-

lary 3.3.1 to v that, for every t ≥ 0,

V ′
p(t) = α2

∫ 1

0

v
(
⌊ρ⌉p−1 − ⌊ξ⌉p−1

)
dx,

which yields, by using Young's inequality, that

V ′
p(t) ≤ α2

(
2
ηp

p

∫ 1

0

|v|pdx+ p

qηq
Vp(t)

)
, (3.184)

for every η > 0. Using again Lemma 3.2.1 and the fact that vx = 1
2
(ρ + ξ) together

with (3.182), we obtain that, for every t ≥ 0,

V ′
p(t) ≤ α2

(
ηpKp +

p

qηq

)
Vp(t),

where we have set Kp :=
1

p2p
. The minimum with respect to η of ηpKp +

p
qηq

is equal

to pK
1
p
p , and one gets by using Gronwall's lemma that

Vp(t) ≤ Vp(0)e
α2pK

1
p
p t. (3.185)
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Combining (3.183) and (3.185), one gets that, for every t ≥ 0,

Ep(t)
1
p ≤ (2 + α)2eMα tEp(0)

1
p ,

where

Mα := −α + α2K
1
p
p = −α

(
1− α

2p
1
p

)
.

One concludes easily by letting p tend either to one or ∞ and using an obvious density

argument.

■



Chapter 4
Lp-asymptotic stability of 1D damped wave

equations with nonlinear damping

This work has been published in the scienti�c preprint [20].

4.1 Introduction

In this chapter we consider the damped one dimension wave equation with nonlinear

and localized damping and Dirichlet boundary conditions which yields the following

nonlinear problem:
ztt − zxx + a(x)g(zt) = 0 for (t, x) ∈ R+ × (0, 1),

z(t, 0) = z(t, 1) = 0 for t ≥ 0,

z(0, ·) = z0 , zt(0, ·) = z1 on (0, 1),

(4.1)

where initial data (z0, z1) belong to an Lp functional space to be de�ned later, where

p ∈ [1,∞). The function a is a continuous non-negative function on [0, 1], bounded

from below by a positive constant on some non-empty open interval ω of (0, 1), which

represents the region of the domain where the damping term is active. The nonlin-

earity g : R 7→ R is a C1 non-decreasing function such that g(0) = 0, g′(0) > 0, and

g(x)x ≥ 0 ∀x ∈ R.

The nonlinear problem (4.1) has already been studied several times in a hilbertian

framework, i.e., with p = 2. The well-posedness is a classical result and is a con-

sequence of the theory of maximal monotone operators (see for instance [25] for the

105
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non-localized case and [18] for the localized case). Exponential stability was treated

using the multiplier method that was generally presented in [21] and then used in

di�erent contexts of the linear problem, we refer to [4] and [24] for more details and

extensive references in the Hilbertian framework. The same method was adopted and

used in the nonlinear problem by [25] to prove the exponential stability in two dimen-

sions with no localization and with a growth hypothesis on the nonlinearity g. Then

the exponential stability for the localized case was established in [18] with the same

hypotheses.

However, when it comes to the non-hilbertian framework, fewer results exist since

it is still an unusual framework for the study of PDEs and has only been considered

recently. As a result, we have less tools and techniques available to work with in

such framework. The usual well-posedness proof techniques based on Hilbert Spaces

(maximal monotone operators for instance) are no longer usable in this framework.

Similarly, the multiplier method as known in the hilbertian framework to prove expo-

nential stability does not work and requires at least to be generalized of the multipliers

in order to achieve stability results.

The main results that exist and are relevant to our context are primarily gathered

in [10], [16] and [19]. The p-th energy Ep of a solution that has been used in the three

references has been introduced �rst in [16] as a generalization of the standard Hilber-

tian energy E2. It is an equivalent energy to the natural energy in the Lp framework

and is de�ned by:

Ep(t) =
1

p

∫
Ω

(|zx(t, x) + zt(t, x)|p + |zx(t, x)− zt(t, x)|p) dx. (4.2)

The reference [16] also provides some useful energy estimates that were used for in-

stance in [5], [10] and [19] to obtain stability results.

In the nonlinear case, [16] proves the well-posedness for all p ≥ 2 using an argument

based on the well-posedness in the Hilbertian framework and an equivalent energy

functional but with global growth conditions on g. Useful Lp estimates have also been

provided in [16], which led to proving polynomial decay of the energy in the nonlinear

case, with g a non-decreasing C1 function behaving like ks|s|r, r, k > 0. We extend in

this chapter the results of [16] by proposing a well-posedness proof for weak solutions

for all 2 ≤ p < ∞ and a proof for strong solutions for all 1 ≤ p < ∞. The proof is

based on a density argument combined with the well-posedness already established in

L∞ by [10]. We also extend the stability result by proving an exponential stability
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with no additional growth hypotheses on the nonlinearity g.

Always in the nonlinear case but with a linearly bounded damping, an argument

based on D'Alembert formula and �xed point theory is used in [10] to prove the

well-posedness for all p ≥ 2. The reference proves the existence of solutions in L∞

framework for any nonlinear g satisfying the hypotheses mentioned in the beginning of

the introduction. However, for the well-posedness in an Lp framework, the damping is

supposed to be (uniformly) linearly bounded to be able to use the �xed point argument

with D'Alembert formula. The latter reference relies on Lyapunov techniques for linear

time varying systems along with estimates inspired from [16] to prove Lp semi-global

exponential stability in the nonlinear problem under restrictive hypotheses on initial

data (imposed to belong to L∞ functional spaces) and for p ≥ 2; other stability results

have been shown in the same reference in particular L∞ stability but always with more

conditions on initial data. Still in [10], They another stability result is obtained when

the nonlinearity is (uniformly) linearly bounded using an interpolation for the initial

data: semi-global exponential stability for q satisfying 2 ≤ q < p with initial data be-

longing to both Lp spaces and L2 is established. We extend the well-posedness results

in L∞ of [10] to Lp frameworks for p ≥ 2 and also their well-posedness results in Lp

for p ≥ 2 by removing the assumption of a linearly bounded nonlinearity. The latter

well-posedness result is also stated in our work for 1 ≤ p < 2 for strong solutions.

Additionally, we extend the stability results of [10] by providing a semi-global expo-

nential stability result for strong solutions with no additional restrictions on initial

data or the nonlinearity g.

The results of this chapter can also be seen as an extension to the nonlinear case

for 1 < p <∞ of [18] where the well-posedness was established for the linear problem

for all p > 1 using the argument based on D'Alembert formula from [10] and an expo-

nential decay in the linear problem for all 1 < p < +∞ was proved using a generalized

multiplier method. The same reference also establishes an exponential stability when

p = ∞ and p = 1 in some cases of a constant global damping.

We use the work that has already been done in the linear case in [19] alongside with

some techniques from [25] and [10] to provide a proof for the exponential stability of

strong solutions in the nonlinear case. The proof is based on a linearizing principle to

reduce the study of the nonlinear problem to that of the linear problem.

The chapter is organized as follows: in Section 4.2 we properly state the problem with

the functional framework and the considered hypotheses, we also rewrite the problem
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using Riemann invariants and we prove that the p-th energy Ep is non-increasing. In

Section 4.3, we give the proof of the well-posedness of the problem for 1 ≤ p < ∞ by

proving the existence and the uniqueness of weak solutions for 2 ≤ p < ∞ and the

existence and the uniqueness of strong solutions for 1 ≤ p < ∞. In Section 4.4 we

prove the exponential decay of the energy by treating �rst an auxiliary linear problem

and then by concluding the result for the nonlinear case.

4.2 Statement of the problem

Consider Problem (4.1) where we assume the following hypotheses satis�ed:

(H1) a : [0, 1] → R is a non-negative continuous function such that

∃ a0 > 0, a ≥ a0 on ω = (b, c) ⊂ [0, 1], (4.3)

where ω is a non empty interval such that b = 0 or c = 1, i.e., ω̄ contains a neigh-

borhood of 0 or 1. There is no loss of generality in assuming c = 1, taking 0 as an

observation point.

Remark 4.2.1. Just like mentioned in Chapter 3, the hypothesis that ω̄ contains a

neighborhood of 0 or 1 can be removed. We impose it just for the sake of simplicity

of computations.

(H2) g : R → R a C1 non-decreasing function such that g(0) = 0, g′(0) > 0, and

g(x)x ≥ 0 ∀x ∈ R, (4.4)

We rede�ne now the functional framework. For p ∈ [1,∞], consider the function spaces

Xp := W 1,p
0 (0, 1)× Lp(0, 1), (4.5)

Yp :=
(
W 2,p(0, 1) ∩W 1,p

0 (0, 1)
)
×W 1,p

0 (0, 1), (4.6)

where Xp is equipped with the norm

∥(u, v)∥Xp : =

(
1

p

∫ 1

0

(|u′ + v|p + |u′ − v|p) dx
) 1

p

, if 1 ≤ p <∞. (4.7)

∥(u, v)∥X∞ : = ||u′ + v||∞ + ||u′ − v||∞, if p = ∞, (4.8)
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and the space Yp is equipped with the norm

∥(u, v)∥Yp : =

(
1

p

∫ 1

0

(|u′′ + v′|p + |u′′ − v′|p) dx
) 1

p

, if 1 ≤ p <∞. (4.9)

∥(u, v)∥Y∞ : = ||u′′ + v′||∞ + ||u′′ − v′||∞, if p = ∞. (4.10)

E∞(t) = ||zx(t, ·) + zt(t, ·)||∞ + ||zx(t, ·)− zt(t, ·)||∞ (4.11)

Initial conditions (z0, z1) for weak (resp. strong) solutions of (4.1) are taken in Xp

(resp. in Yp).

De�nition 4.2.1. The solutions of (4.1) are de�ned as follows.

(i) For all (z0, z1) ∈ Xp, the function

z ∈ L∞(R+,W
1,p
0 (0, 1)) ∩W 1,∞(R+, L

p(0, 1))

is said to be a weak solution of Problem (4.1) if it satis�es the problem in the

dual sense (meaning that the equalities are taken in the weak topology of Xp).

(ii) For all (z0, z1) ∈ Yp, the function

z ∈ L∞(R+,W
2,p(0, 1) ∩W 1,p

0 (0, 1)) ∩W 1,∞(R+,W
1,p
0 (0, 1))

is said to be a strong solution of Problem (4.1) if it satis�es the problem in the

classical sense.

We de�ne the Riemann invariants for all (t, x) ∈ R+ × (0, 1) by

ρ(t, x) = zx(t, x) + zt(t, x), (4.12)

ξ(t, x) = zx(t, x)− zt(t, x). (4.13)
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Along strong solutions of (4.1), we deduce that
ρt − ρx = −a(x)g

(
ρ−ξ
2

)
in R+ × (0, 1),

ξt + ξx = a(x)g
(
ρ−ξ
2

)
in R+ × (0, 1),

ρ(t, 0)− ξ(t, 0) = ρ(t, 1)− ξ(t, 1) = 0 ∀t ∈ R+,

ρ0 := ρ(0, .) = y′0 + y1 , ξ0 := ξ(0, .) = y′0 − y1,

(4.14)

with (ρ0, ξ0) ∈ W 1,p(0, 1)×W 1,p(0, 1).

The pth-energy Ep of a solution z de�ned can be written as

Ep(t) =
1

p

∫ 1

0

(|ρ|p + |ξ|p)dx. (4.15)

We prove the same proposition as Proposition 3.3.1 from Chapter 3.

Proposition 4.2.1. Let p ∈ [1,∞) and suppose that a strong solution y of (4.1)

exists and is de�ned on a non trivial interval I ⊂ R+ containing 0, for some initial

conditions (z0, z1) ∈ Yp. For t ∈ I, de�ne

Φ(t) :=

∫ 1

0

[F(ρ) + F(ξ)]dx, (4.16)

where ρ, ξ are de�ned in (4.12) and F is a C1 convex function. Then Φ is well de�ned

for t ∈ I and satis�es

d

dt
Φ(t) = −

∫ 1

0

a(x)g

(
ρ− ξ

2

)
(F ′(ρ)−F ′(ξ))dx ≤ 0. (4.17)

Proof. The proof is similar to the proof of Proposition 3.3.1 from Chapter 3. We

obtain by following the same steps that

d

dt

∫ 1

0

(F(ρ) + F(ξ))dx = −
∫ 1

0

a(x)g

(
ρ− ξ

2

)
(F ′(ρ)−F ′(ξ))dx. (4.18)

Thanks to the convexity of F and the hypothesis on g that states that g(x).x > 0 for

all x ̸= 0, we conclude that

−
∫ 1

0

a(x)g

(
ρ− ξ

2

)
(F ′(ρ)−F ′(ξ))dx ≤ 0, (4.19)

which concludes the proposition.

■
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Remark 4.2.2. The previous proposition has been �rst introduced in [14] and reused

in [10] to prove that the energy functional is non-increasing. Then it was improved

in [19] by omitting the hypothesis that function F should be even on top of being

convex.

Before we state the next result, we remind the reader of the following notation

∀r ≥ 0, ⌊x⌉r := sgn(x)|x|r, ∀x ∈ R, (4.20)

where sgn(x) = x
|x| for nonzero x ∈ R and sgn(0) = [−1, 1]. We have the following

obvious formulas which will be repeatedly used later on:

d

dx
(⌊x⌉r) = r|x|r−1, ∀r ≥ 1, x ∈ R, (4.21)

d

dx
(|x|r) = r⌊x⌉r−1, ∀r > 1, x ∈ R. (4.22)

Corollary 4.2.1. For (z0, z1) ∈ Yp, one has that along strong solutions and for t ≥ 0,

E ′
p(t) = −

∫ 1

0

a(x)g

(
ρ− ξ

2

)(
⌊ρ⌉p−1 − ⌊ξ⌉p−1

)
dx, (4.23)

where ρ and ξ are the Riemann invariants de�ned in (4.12). Moreover, for (z0, z1) ∈ Xp,

suppose that the solution z of (4.1) exists on R+. Then the energy t 7−→ Ep(t) is non-

increasing.

The �rst part of the corollary is an immediate application of Proposition 3.3.1

while the second part is obtained by a standard density argument.

4.3 Well-posedness

Before adressing stabilization issues, we start by studying the well-posedness of the

problem. One should note that our proof of the well-posedness in the linear problem

is no longer applicable to the nonlinear problem. The reason is that we would �nd

ourselves with a �xed-point problem for a map that does not necessarily map to itself.

Hence, the requirement of a new proof for the nonlinear case.

Theorem 4.3.1. Suppose Hypotheses (H1) and (H2) are satis�ed, then for all initial

conditions (z0, z1) ∈ Xp with 2 ≤ p ≤ ∞, we have the existence of a unique weak
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solution z such that

z ∈ L∞(R+,W
1,p
0 (0, 1)) and zt ∈ L∞(R+, L

p(0, 1)). (4.24)

Moreover, if (z0, z1) ∈ Yp with 1 ≤ p ≤ ∞ then we have the existence of a unique

strong solution z such that

z ∈ L∞(R+,W
2,p(0, 1) ∩W 1,p

0 (0, 1)) and zt ∈ L∞(R+,W
1,p
0 (0, 1)). (4.25)

Proof:

Weak solutions: For p = ∞ the well-posedness has already been proved in [10].

Fix 2 ≤ p < +∞ and let (z0, z1) ∈ Xp.

Since X∞ is dense in Xp for all 2 ≤ p < ∞ and Z0 = (z0, z1) ∈ Xp, there exists

a sequence {Zn
0 }n ⊂ X∞ such that Zn

0 → Z0 in Xp.

Since Zn
0 ∈ X∞, we have thanks to [10, Theorem 1] the existence of a unique so-

lution Zn = (zn, znt ) such that (zn, znt ) ∈ L∞(R+;W
1,∞
0 (0, 1)) ×W 1,∞(R+;L

∞(0, 1)).

Moreover we have that for all t ≥ 0

||(zn, znt )||X∞ ≤ 2max
(
||zn0 ′||L∞(0,1), ||zn1 ||L∞(0,1)

)
. (4.26)

We prove now that, for every t0 ≥ 0, the sequence {Zn(t0, ·)}n is a Cauchy sequence

in Xp. De�ne for all (t, x) ∈ R+ × (0, 1) the quantity en,m as

en,m = zn − zm, (4.27)

which is a solution of the following problem
en,mtt − en,mxx + a(x) (g(zn)− g(zm)) = 0 for (t, x) ∈ R+ × (0, 1),

en,m(t, 0) = en,m(t, 1) = 0 t ≥ 0,

en,m(0, ·) = zn0 − zm0 , en,mt (0, ·) = zn1 − zm1 .

(4.28)

The energy of en,m at time t is denoted by Ep(e
n,m)(t) and is non-increasing. Indeed,

if we use the Riemann invariants of Problem (4.28) denoted by ρ(en,m), ξ(en,m) given

by ρ(en,m) =
en,m
x +en,m

t

2
and ξ(en,m) =

en,m
x −en,m

t

2
and rewrite the problem like Problem

(4.14), then we follow the same steps in Proposition 4.2.1 and Corollary (4.2.1), we



4.3. WELL-POSEDNESS 113

obtain that along strong solutions of (4.28)

Ep(e
n,m)′(t) = −2

∫ 1

0

(g(znt )− g(zmt )) (F ′(ρ(en,m))−F ′(ξ(en,m))) dx, (4.29)

where F is taken to be the convex function | · |p. By simple manipulations, it follows

that

Ep(e
n,m)′(t)

= −2

∫ 1

0

(g(znt )− g(zmt ))

znt − zmt
(F ′(ρ(en,m))−F ′(ξ(en,m))) (ρ(en,m)− ξ(en,m))dx ≤ 0,

(4.30)

which con�rms using a density argument that Ep(e
n,m) is non-increasing along weak

solutions. It follows that

Ep(z
n − zm)(t) = Ep(e

n,m)(t) ≤ Ep(e
n,m)(0) = Ep(z

n
0 − zm0 ), (4.31)

which gives that for every t0 ≥ 0, {Zn(t0, ·)}n is a Cauchy sequence in Xp since {Zn
0 }n

is a Cauchy sequence in Xp. It follows then that {Zn(t0, ·)}n converges to a limit in

Xp that we denote by Z(t0, ·) = (z(t0, ·), zt(t0, ·)), in particular for t0 = 0 we have that

Z(0, ·) = Z0(·). Note also that the convergence is uniform with respect to t0 ≥ 0. We

de�ne the function (t, x) 7→ Z(t, x), where Z(t0, ·) is the limit of Zn(t0, ·) in Xp for

every t0 ≥ 0.

We need to prove now that the limit Z is a weak solution of (4.1). Fix T > 0 and denote

ψ a test function that belongs to C1([0, T ]× [0, 1]) also verifying ψ(T, ·) = ψ(0, ·) ≡ 0

and ψ(·, 0) = ψ(·, 1) ≡ 0. De�ne

An
T (ψ) =

∫ T

0

∫ 1

0

(zntt − znxx)ψ dxdt. (4.32)

We have that

An
T (ψ)− Am

T (ψ) =

∫ T

0

∫ 1

0

(zntt − znxx)ψ dxdt−
∫ T

0

∫ 1

0

(zmtt − zmxx)ψ dxdt, (4.33)

by integrating by part, it follows that

An
T (ψ)− Am

T (ψ) = −
∫ T

0

∫ 1

0

(znt − zmt )ψt dxdt+

∫ T

0

∫ 1

0

(zmx − znx )ψx dxdt.
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Using Holder's inequality,

|An
T (ψ)− Am

T (ψ)| ≤
(∫ T

0

∫ 1

0

|znt − zmt |pdxdt
) 1

p
(∫ T

0

∫ 1

0

|ψt|qdxdt
) 1

q

+

(∫ T

0

∫ 1

0

|znx − zmx |pdxdt
) 1

p
(∫ T

0

∫ 1

0

|ψx|qdxdt
) 1

q

, (4.34)

which means that

|An
T (ψ)− Am

T (ψ)| ≤ T
1
pEp(e

n,m)
1
p (0)

(
||ψt||Lq((0,T )×(0,1)) + ||ψx||Lq((0,T )×(0,1))

)
. (4.35)

By a density argument we obtain that for all ψ in the space

X T
q ={ψ : [0, T ]× [0, 1] 7→ R+ : (ψ, ψt) ∈ W 1,q((0, T )× (0, 1))× Lq((0, T )× (0, 1)),

ψ(T, ·) = ψ(0, ·) ≡ 0 and ψ(·, 0) = ψ(·, 1) ≡ 0}, (4.36)

where q is the conjugate exponent of p and is equal to p
p−1

for p ≥ 2 we have that

|An
T (ψ)− Am

T (ψ)| ≤ T
1
pEp(e

n,m)
1
p (0)

(
||ψt||Lq((0,T )×(0,1)) + ||ψx||Lq((0,T )×(0,1))

)
, (4.37)

and then

|An
T (ψ)− Am

T (ψ)| ≤ T
1
pEp(e

n,m)
1
p (0)||ψ||XT

q
, (4.38)

which gives that {An
T}n is a Cauchy sequence in (X T

q )
′, the dual of X T

q , since {Zn
0 }n is

in Xp. We conclude then that {An
T}n converges in (X T

q )
′, i.e., {zntt − znxx}n converges

to ztt − zxx as a linear functional on X T
q .

We also know that for all n ∈ N,

zntt − znxx = −g(znt ), on R+ × (0, 1), (4.39)

which means that, the sequence of linear functionals {−g(znt )}n de�ned on X T
q also

converges ztt(t, ·)− zxx(t, ·) in (X T
q )

′.

We use now the existence of weak solutions in L2 framework (see [25], [18]). For

(z0, z1) ∈ Xp with p ≥ 2, we have the existence of a unique weak solution z ∈
W 1,∞(R+, L

2(0, 1)) ∩ L∞(R+, H
1
0 (0, 1)). The solution z satis�es that for almost ev-
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ery t ∈ R+

ztt(t, ·)− zxx(t, ·) = −g(zt(t, ·) in H−1(0, 1). (4.40)

In particular, for every T > 0, ztt(t, ·) − zxx(t, ·) = −g(zt) belongs to (X T
2 )

′. Since

q ≤ 2, one has that (X T
q )

′ ⊂ (X T
2 )

′, yielding in particular that z is a weak solution of

System (4.1) in Xp.

Strong solutions: Take Z0 = (z0, z1) ∈ Yp for all 1 ≤ p < ∞, using Sobolev

embeddings classical results, we have that Z0 = (z0, z1) ∈ X∞.

We use [10, Theorem 1] to have the existence of a unique solution Zn = (z, zt) such

that

(z, zt) ∈ L∞(R+;W
1,∞
0 (0, 1))×W 1,∞(R+;L

∞(0, 1)).

Moreover we have the following inequality also proved in [10, Theorem 1] for all t ≥ 0

||(z, zt)||X∞ ≤ 2max
(
||z′0||L∞(0,1), ||z1||L∞(0,1)

)
. (4.41)

We are going to use Proposition 3.3.1 for w = zt, where z is a solution of Problem

(4.1). By di�erentiating (4.1) with respect to t, we obtain that w satis�es the following

problem 
wtt − wxx = −4wtg

′(w) in R+ × (0, 1),

w(t, 0) = w(t, 1) = 0 ∀t ∈ R+,

w(0, ·) = z1, wt(0, ·) = z′′0 − g(z1).

(4.42)

We de�ne for all (t, x) ∈ R+ × (0, 1) the Riemann invariants for (4.42),

u = wx + wt, (4.43)

v = wx − wt. (4.44)

Along strong solutions of (4.42), we have
ut − ux = −2(u− v)g′(w) in R+ × (0, 1),

vt + vx = 2(u− v)g′(w) in R+ × (0, 1),

u(t, 0)− v(t, 0) = u(t, 1)− v(t, 1) = 0 ∀t ∈ R+.

(4.45)
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We de�ne the p-th energy associated with w as

Ep(w)(t) =
1

p

∫ 1

0

(|u|p + |v|p) dx. (4.46)

By Corollary (4.2.1), Ep(w) is non-increasing along solutions w = zt, which implies

that

Ep(w)(t) ≤ Ep(w)(0), for a.e. t ≥ 0. (4.47)

Then, using the fact that Ep(w) is an equivalent energy to 1
p

∫ 1

0
(|wx|p + |wt|p) dx, it

follows that ∫ 1

0

|wx|p dx ≤ CpEp(w)(0), (4.48)

which means that

||zt||W 1,p(0,1) ≤ (CpEp(w)(0))
1
p . (4.49)

This implies that (z, zt) ∈ Yp for all t ≥ 0 which yields the required regularity for a

strong solution.

■

Remark 4.3.1. For strong solutions in the case p ≥ 2, we can easily use the results

that have been proved in [16] for p ≥ 2 to prove the well-posedness. Indeed, let

(z0, z1) ∈ Yp, with p ≥ 2 this implies that (z0, z1) ∈ (H2(0, 1) ∩H1
0 (0, 1)) × H1

0 (0, 1).

We have then the existence of a unique strong solution

z ∈ C(R+, H
1
0 (0, 1)) ∩ C1(R+, L

2(0, 1)),

such that

(z(t, ·), zt(t, ·)) ∈
(
H2(0, 1) ∩H1

0 (0, 1)
)
×H1

0 (0, 1), ∀t ∈ R+,

which means that zt(t, ·) ∈ L∞(0, 1) we can then use [16, Corollary 2.3, item (ii) ] that

implies in our context that if (z0, z1) ∈ Yp then the solution z ∈ L∞(R+,W
2,p(0, 1) ∩

W 1,p
0 (0, 1)) and zt ∈ L∞(R+,W

1,p
0 (0, 1)) which guarantees the well-posedness in Yp.

Remark 4.3.2. The reason why the argument based on D'Alembert formula and

�xed point theory that was used in [10] cannot be used in the nonlinear case without

imposing the extra assumption that g is linearly bounded, is that the �xed point
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argument cannot be used when we cannot prove that the nonlinearity maps the convex

compact on which we de�ne the �xed point formula to itself.

4.4 Exponential stability

In this section we are interested in the asymptotic stability of Problem (4.1). Our goal

is to prove that the energy along strong solutions of Problem (4.1) is exponentially

decreasing, with an exponential rate of decrease depending on the Yp-norm of the

initial data. (This property is usually referred as semi-global exponential stability in

the control literature.) To do so, we plan to use the work that has already been done

in the linear case to treat the nonlinear case. The main stability result that we achieve

is given by the following theorem.

Theorem 4.4.1. Assume (H1) and (H2) satis�ed and 1 < p <∞. Given (z0, z1) ∈ Yp,

there exists a constant Cp(z0, z1) > 0 that depends on the norm of initial conditions

in Yp such that for all t ∈ R+

Ep(t) ≤ Ep(0)e
1−Cp(z0,z1)t. (4.50)

Remark 4.4.1. The stability rate in Theorem 4.4.1 depends on initial conditions.

That is due to the fact that we are only manipulating strong solutions in the proof

and we need an estimate of the W 1,p(0, 1) norm of zt(t, ·).

4.4.1 Asymptotic stability of an auxiliary linear problem

To prove the exponential stability of Problem (4.1), we are going to start by considering

the following auxiliary problem inspired from [10]
ytt − yxx + a(x)θ(t, x)yt = 0 for (t, x) ∈ R+ × (0, 1),

y(t, 0) = y(t, 1) = 0 t ≥ 0,

y(0, ·) = y0 , yt(0, ·) = y1,

(4.51)

where a satis�es Hypothesis (H1) and θ satis�es:

(H3) θ : R+ × [0, 1] → R is a non-negative continuous function such that

∃ θ1, θ2 > 0, θ1 ≤ θ(t, x) ≤ θ2 ∀ (t, x) ∈ R+ × [0, 1]. (4.52)
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Remark 4.4.2. The well-posedness of Problem (4.51) can be treated the same way

as the linear problem was treated in [19].

We de�ne the Riemann invariants for all (t, x) ∈ R+ × (0, 1) by

ρ̄(t, x) = yx(t, x) + yt(t, x), (4.53)

ξ̄(t, x) = yx(t, x)− yt(t, x). (4.54)

Along strong solutions of (4.51), we deduce that
ρ̄t − ρ̄x = −1

2
a(x)θ(t, x)(ρ̄− ξ̄) in R+ × (0, 1),

ξ̄t + ξ̄x = 1
2
a(x)θ(t, x)(ρ̄− ξ̄) in R+ × (0, 1),

ρ̄(t, 0)− ξ̄(t, 0) = ρ̄(t, 1)− ξ̄(t, 1) = 0 ∀t ∈ R+,

ρ̄0 := ρ̄(0, .) = y′0 + y1 , ξ̄0 := ξ̄(0, .) = y′0 − y1,

(4.55)

with
(
ρ̄0, ξ̄0

)
∈ W 1,p(0, 1)×W 1,p(0, 1).

We consider the pth-energy Ep(y) of a solution y, de�ned on R+ by

Ep(y)(t) =
1

p

∫ 1

0

(|ρ̄|p + |ξ̄|p)dx. (4.56)

We deduce from Proposition 3.3.1 the following proposition.

Proposition 4.4.1. Let p ∈ [1,∞) and suppose that a strong solution y of (4.51)

exists and is de�ned on a non trivial interval I ⊂ R+ containing 0, for some initial

conditions (y0, y1) ∈ Yp. For t ∈ I, de�ne

Φ(t) :=

∫ 1

0

[F(ρ̄) + F(ξ̄)]dx, (4.57)

where ρ̄ and ξ̄ are de�ned in (3.52) and F is a C1 convex function. Then Φ is well

de�ned for t ∈ I and satis�es

d

dt
Φ(t) = −1

2

∫ 1

0

a(x)θ(t, x)(ρ̄− ξ̄)(F ′(ρ̄)−F ′(ξ̄))dx ≤ 0. (4.58)

Proof. The proof is the same as the proof of Proposition 3.3.1 where we replace

g(zt) by θzt.

■

Similarly to Corollary (4.2.1), we have the following.
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Corollary 4.4.1. If (y0, y1) ∈ Yp, then we have along strong solutions that for t ≥ 0,

Ep(y)
′(t) = −1

2

∫ 1

0

a(x)θ(t, x)(ρ̄− ξ̄)
(
⌊ρ̄⌉p−1 − ⌊ξ̄⌉p−1

)
dx, (4.59)

where ρ̄ and ξ̄ are de�ned in (4.53). Moreover, for (y0, y1) ∈ Xp, suppose that a weak

solution y of (4.51) exists on R+. Then the energy t 7−→ Ep(y)(t) is non-increasing.

The main result of this section is given below.

Theorem 4.4.2. Fix p ∈]1,∞) and suppose that Hypotheses (H1) and (H3) are

satis�ed. Then for every (y0, y1) ∈ Xp, the solution of (4.51) is exponentially stable.

To prove Theorem 4.4.2, we are going to follow the same steps of the proof of Theo-

rem 3.5.1, all the computations remains the same with the only di�erence that a(x)

is now replaced by a(x)θ(t, x). We have used three multipliers to treat the linear case

in Chapter 3. The multipliers were slightly di�erent in the case where 1 < p < 2

than the case where p ≥ 2 but in both cases we have the same potential occurrences of

a(x)θ(t, x). As a result, we will only give the sketch of the proof in the case where p ≥ 2

and the case where 1 < p < 2 will be treated similarly. The sketch of proof that we

provide lists the parts of the proof where θ(t, x) occurs and how they are easily handled.

It is important to note that just like in Theorem 3.5.1, it is enough to prove The-

orem 4.4.2 for strong solutions and then extend the result for weak solutions by a

density argument.

4.4.2 Case p ≥ 2

The theorem for strong solutions and for p ≥ 2 follows directly from the next propo-

sition by using Gronwall Lemma.

Proposition 4.4.2. Fix 2 ≤ p < +∞ and suppose that the hypotheses of Theorem

4.4.2 are satis�ed. Then there exist positive constants C and Cp such that, for every

(z0, z1) ∈ Yp, it holds the following energy estimate:

∀0 ≤ S ≤ T,

∫ T

S

Ep(t) dt ≤ CCpEp(S). (4.60)

To prove this key proposition, we divide the proof into steps, the result of each

step is given by a key lemma and is obtained by using a speci�c multiplier. Before we
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announce the lemmas, we remind the reader of the functions.

Let the function f de�ned by

f(s) = ⌊s⌉p−1, ∀ s ∈ R. (4.61)

and the function F (s) =
∫ s

0
f(τ)dτ , we have that

F (s) =
|s|p
p
, F ′ = f, f ′(s) = (p− 1)|s|p−2. (4.62)

The multipliers that were used in Chapter 3 in the case p ≥ 2 are the following:

(m1) x 7→ xψ(x)f(ρ̄(t, x)) and x 7→ xψ(x)f(ξ̄(t, x)) for every t ≥ 0;

(m2) x 7→ ϕ(x)f ′(ρ̄(t, x))y(t, x) and x 7→ ϕ(x)f ′(ξ̄(t, x))y(t, x) for every t ≥ 0;

(m3) x 7→ v(t, x) for every t ≥ 0, where v is the solution of the following elliptic

problem de�ned for every t ≥ 0:{
vxx = βf(y) x ∈ (0, 1),

v(0) = v(1) = 0,
(4.63)

where ψ, ϕ, β are the localization functions de�ned in (3.73) by
0 ≤ ψ ≤ 1,

ψ = 0 on Q0,

ψ = 1 on (0, 1) \Q1,


0 ≤ ϕ ≤ 1,

ϕ = 1 on Q1,

ϕ = 0 on (0, 1) \Q2,


0 ≤ β ≤ 1,

β = 1 on Q2 ∩ (0, 1),

β = 0 on R \ ω.

Lemma 4.4.1. (First set of multipliers)

Under the hypothesis of Proposition 4.4.2, we have for all 0 ≤ S ≤ T the following

estimate:∫ T

S

Ep(y)(t)dt ≤ CCpEp(y)(S) + C

∫ T

S

∫
Q1∩(0,1)

(F (ρ̄) + F (ξ̄)) dx dt︸ ︷︷ ︸
S4

. (4.64)

Proof: Multiplying the �rst equation of (4.55) by xψ f(ρ̄) and then by xψ f(ξ̄)

and integrating over [S, T ]× [0, 1], we obtain after doing the same manipulations that
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led to (3.84), but instead we obtain∫ T

S

Ep(y)(t)dt ≤
∫ T

S

∫
Q1∩(0,1)

| (1− (xψ)x) |
(
F (ρ̄) + F (ξ̄)

)
dx dt︸ ︷︷ ︸

S1

+

∫ 1

0

|xψ|
∣∣∣[F (ρ̄)− F (ξ̄)

]T
S

∣∣∣ dx︸ ︷︷ ︸
S2

+
1

2

∫ T

S

∫ 1

0

|a(x)θ(t, x)xψ|
∣∣(f(ρ̄) + f(ξ̄))

∣∣ |ρ̄− ξ̄| dx dt︸ ︷︷ ︸
S3

. (4.65)

The quantities S1 and S2 are denoted the same way as S1 and S2 from Lemma 3.5.1

and treated the same way to obtain (3.85) and (3.86). As for the estimation of S3,

also denoted as S3 from the proof of Lemma 3.5.1, nothing radically changes, we just

follow the same computations as the one that led to (3.92) with taking in consideration

θ(t, x), which gives the same estimation despite the presence of θ(t, x). This allows us

to combine the estimations of S1, S2 and S3 to obtain the same main result (3.76) of

the �rst set of multipliers, which is given in our case by (4.64).

■

To estimate S4, we use the second set of multipliers.

Lemma 4.4.2. (Second set of multipliers)

Under the hypotheses of Proposition 4.4.2, we have for all 0 ≤ S ≤ T the following

estimate:

S4 ≤ C
Cp

ηp

∫ T

S

∫
Q2∩(0,1)

|y|p dx dt︸ ︷︷ ︸
T5

+CCpη
q

∫ T

S

Ep(y)(t) dt+ CCpEp(y)(S), (4.66)

where η > 0 is arbitrary and q = p
p−1

.

Proof: Multiplying the �rst equation of (4.55) by ϕf ′(ρ̄)y and then by ϕf ′(ξ̄)y

and integrating over [S, T ]× [0, 1], we obtain after doing the same manipulations that
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led to (3.105), but instead we obtain

S4 ≤ C

∫ T

S

∫
Q2∩(0,1)

|y|
(
|f(ρ̄)|+ |f(ξ̄)|

)
dx dt︸ ︷︷ ︸

T1

+Cp

∣∣∣∣∣
[∫ 1

0

(
f(ρ̄)− f(ξ̄)

)
y dx

]T
S

∣∣∣∣∣︸ ︷︷ ︸
T2

+ Cp

∫ T

S

∫
Q2∩(0,1)

|
(
f ′(ρ̄) + f ′(ξ̄)

)
y a(x)θ(t, x)(ρ̄− ξ̄)| dx dt︸ ︷︷ ︸

T3

+ Cp

∫ T

S

∫ 1

0

∣∣ϕ(ρ̄− ξ̄)
(
f(ρ̄)− f(ξ̄)

)∣∣ dx dt︸ ︷︷ ︸
T4

. (4.67)

T1 and T2 are denoted the same way as T1 and T2 in the proof of Lemma 3.5.2

and treated the same way to obtain (3.107) and (3.110). As for estimating T3, also

denoted by T3 in the proof of Lemma 3.5.2, we just use the fact that θ1 ≤ θ(t, x) ≤ θ2

to obtain

|a(x)θ(t, x)
(
f ′(ρ̄) + f ′(ξ̄)

)
(ρ̄− ξ̄)| ≤ Cp

(
|f(ρ̄)|+ |f(ξ̄)|

)
, (4.68)

which implies that T3 ≤ T1 and hence it has the same estimation as T1.

Left to estimate T4 which is also denoted by T4 in the proof of Lemma 3.5.2. We

follow the same steps that led to (3.112) but we use the fact that |ϕ(x)| ≤ Ca(x)θ(t, x)

for all t ∈ R+ and x ∈ [0, 1]. We obtain the same estimation as (3.112).

We combine the estimations of T1, T2, T3 and T4, we obtain the main result of

the second set of multipliers, which is the same estimation (3.95) given in our case by

(4.66).

■

Left to estimate now T5. To do so, we use one last multiplier.

Lemma 4.4.3. (Third multiplier)

Under the hypotheses of Proposition 4.4.2, we have for all 0 ≤ S ≤ T the following

estimate:∫ T

S

∫
Q2∩(0,1)

|y|p dx dt︸ ︷︷ ︸
T5

≤ CCp

(
η

∫ T

S

Ep(y)(t) dt+
1

ηr
Ep(y)(S)

)
. (4.69)

Proof: First, one should note that Lemma 3.5.3 remains valid here and it gives
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an estimation of the Lq norms of v and vt, where v is de�ned in (4.63).

Multiplying the �rst equation of (4.55) by v and integrating over [S, T ] × [0, 1], we

obtain after doing the same manipulations that led to (3.128), but instead we obtain

2T5 ≤
∣∣∣∣∣
[∫ 1

0

v(ρ̄− ξ̄)dx

]T
S

∣∣∣∣∣︸ ︷︷ ︸
V1

+

∫ T

S

∫ 1

0

|vt||(ξ̄ − ρ̄)| dx dt︸ ︷︷ ︸
V2

+

∫ T

S

∫ 1

0

|va(x)θ(t, x)(ρ̄− ξ̄)| dx dt︸ ︷︷ ︸
V3

. (4.70)

The quantities V1, V2 and V3 are denoted the same way as V1, V2 and V3 from the

proof of Lemma 3.5.4. The quantity V1 is treated the same way as (3.130). As for V2,

we follow the same steps that led to (3.135) and we use the fact that β ≤ C a(x)θ(t, x)

in (3.132). Finally for V3, nothing changes and we obtain (3.138) despite the presence

of θ(t, x) in this term. We combine the three estimations to obtain the main result of

the third multiplier, which is the same estimation of T5 given by (3.119), given in our

case by (4.69).

■

Proof of Proposition 4.4.2:

Finally, as in [19, Section 4.1.4], by combining the results of the three multipliers

(4.64), (4.66) and (4.69) and choosing η properly, we obtain the energy estimate given

by (4.60).

■

4.4.3 Case 1 < p < 2

We remind the reader that due to the presence of the power p − 2 in the second set

of multipliers in the case p ≥ 2, it is not possible to use them directly in the case

1 < p < 2. Therefore, we have to modify the functions f and F just like it was done

in Chapter 3. We consider, for p ∈ (1, 2), the functions already considered in Chapter
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3, h and H de�ned on R, by

h(y) = (p− 1)

∫ y

0

(|s|+ 1)p−2 ds = sgn(y)
[
(|y|+ 1)p−1 − 1

]
, (4.71)

H(y) =

∫ y

0

h(s) ds =
1

p
[(|y|+ 1)p − 1]− |y|. (4.72)

We also consider the modi�ed energy Ep de�ned by

Ep(t) =
∫ 1

0

(H(ρ) +H(ξ)) dx. (4.73)

The proof of Theorem 4.4.2 is a result of the following proposition by using the same

argument from Section 3.5.2.

Proposition 4.4.3. Fix p ∈ (1, 2) and suppose that the hypotheses of Theorem

4.4.2 are satis�ed. Then there exist positive constants C and Cp such that, for every

(z0, z1) ∈ Yp verifying

Ep(0) ≤ 1, (4.74)

we have the following energy estimate:

∀0 ≤ S ≤ T,

∫ T

S

Ep dt ≤ CCpEp, (4.75)

where Ep is de�ned in (3.141).

Proof: Just like the case p ≥ 2, we follow the exact same steps in this case as the

case 1 < p < 2 from Chapter 3, by using the multipliers

(m̄1) x 7→ xψ(x)h(ρ̄(t, x)) and x 7→ xψ(x)h(ξ̄(t, x)) for every t ≥ 0;

(m̄2) x 7→ ϕ(x)h′(ρ̄(t, x))y(t, x) and x 7→ ϕ(x)h′(ξ̄(t, x))y(t, x) for every t ≥ 0;

(m̄3) x 7→ v(t, x) for every t ≥ 0, where v is the solution of the following elliptic

problem de�ned for every t ≥ 0:{
vxx = βh(y) x ∈ (0, 1),

v(0) = v(1) = 0,

where ψ, ϕ, β are the localization functions de�ned in (3.73) and g is the function

de�ned in (4.71).
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We take care of the presence of θ just like we did in the previous proof since we

have technically the same occurrences of θ in the cases p ≥ 2 and 1 < p < 2. We

obtain the exponential decay similarly.

■

Now that we know that Problem (4.51) is exponentially stable for all 1 < p < +∞,

we can now consider Problem (4.1).

4.4.4 Asymptotic stability of the nonlinear problem

We conclude in this section by using what precedes, the stability of the nonlinear

problem. However, to be able to �nally conclude we need to state and prove some key

lemmas �rst.

Lemma 4.4.4. De�ne the function the continuous function ν de�ned for all x ∈ R as{
ν(x) = g(x)

x
for x ∈ R∗,

ν(0) = g′(0),

where g is de�ned in Hypothesis (H2), then ν has the following properties:

� ν(x) > 0 for all x ̸= 0.

� ∀M > 0, ∃ν1(M), ν2(M) > 0 such that ∀|x| ≤M , ν1(M) ≤ ν(x) ≤ ν2(M).

Proof: The proof is standard and is a direct result of Hypothesis (H2). The �rst

item is a direct result of (4.4). The second item is a result of g being C1, g(0) = 0 and

g′(0) ̸= 0.

■

We next prove the following regularity lemma which is a generalization of [25, Lemma

2].

Lemma 4.4.5. Assume (H1) and (H2) satis�ed and (z0, z1) ∈ Yp with 1 < p < +∞,

then the following estimate holds true for all t ≥ 0 and for a constant Cp(z0, z1) > 0

that depends on the norm of initial conditions in Yp

||zt(t, ·)||W 1,p(0,1) ≤ Cp(z0, z1). (4.76)
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Proof: The norm estimate (4.76) is a direct result of (4.49). The lemma is then

concluded with Cp(z0, z1) = (CpEp(w)(0))
1
p , where w = zt.

■

Proof of Theorem 4.4.1:

Consider an arbitrary strong solution z of Problem (4.1). Using the result of Lemma 4.4.5

which is zt ∈ W 1,p(0, 1) with ||zt(t, ·)||pW 1,p(0,1) ≤ Cp(z0, z1) for all t ∈ R+ we deduce

using the continuous embedding W 1,p(0, 1) ⊂ L∞(0, 1), with a constant that does not

depend on t (see [8, Theorem VIII.7]) that

||zt(t, ·)||L∞(0,1) ≤ C||zt(t, ·)||W 1,p(0,1) ≤ Cp(z0, z1) ∀ t ∈ R+. (4.77)

Since g satis�es (H2) and zt satis�es (4.77), we deduce the existence of two constants

C1
p(z0, z1), C

2
p(z0, z1) > 0,

that depends on p and on the Yp-norm of the initial data only such that for all t ≥ 0,

and x ∈ (0, 1), it holds

C1
p(z0, z1) ≤ ν(zt) ≤ C2

p(z0, z1). (4.78)

We consider the time-varying linear problem given by
ytt − yxx + a(x)ν(zt)yt = 0 for (t, x) ∈ R+ × (0, 1),

y(t, 0) = y(t, 1) = 0 t ≥ 0,

y(0, ·) = y0 , yt(0, ·) = y1,

(4.79)

which is nothing else but the auxiliary problem (4.51) with θ(t, x) = ν(zt) since ν(zt)

is seen as a function of t and x. Moreover, ν(zt) satis�es Hypothesis (H3) with

θ1 = C1
p(z0, z1) and θ2 = C2

p(z0, z1).

By Theorem 4.4.2, the energy Ep(y) decays exponentially to zero along the solutions

of (4.79). The key and trivial remark is that the strong solution z of Problem (4.1)

considered at the beginning of the argument is the solution of (4.79) with initial data

(z0, z1). This concludes the proof of Theorem 4.4.1.

■



Chapter 5
Conclusion and perspectives

As a conclusion, we can say that we were able to treat and answer some of the ques-

tions in the domain of the stabilization of wave equations. However, there are many

more questions that are still open and it would be interesting to answer them using

maybe our work and the work of our fellow researchers before as a basis or even as a

simple inspiration.

In Chapter 2, we studied the disturbed non-linear wave equation with localized damp-

ing in a Hilbertian framework in two dimensions. We achieved a weak ISS-type esti-

mate for strong solutions. We believe it is possible to obtain a strong ISS (in the sense

of De�nition 1.2.3) for nonlinearities g of regular saturation type. It would be even

more interesting to achieve a strong ISS for more general nonlinearities and not just

saturation type.

It would also be interesting to prove an ISS-type estimate in higher dimensions; or

at least an exponential decay in the absence of disturbances. Such a problem has been

studied in [25] and an exponential decay in higher dimensions was proved but with a

lower logarithmic-type of bounds on the non-linearity g, which remains a bit restrictive.

We worked with strong solutions only and so did [24] to obtain an exponential de-

cay. One can also explore the di�erent decay rates that weak solutions might o�er or

maybe prove that the strong stabilization is the best rate possible for such solutions.

In Chapter 3, we studied the linear wave equation with localized damping in a non-

Hilbertian Lp framework in one dimension for all 1 < p < ∞. It would be interesting

to prove an Lp exponential decay in the case p = 1 and p = ∞. We gave a proof of the

127
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exponential decay in these two interesting cases but only in a very particular case of a

constant global damping with a constant in (0, 4) (see Section 3.6). We believe that we

can obtain an exponential stability for for any constant global damping and not just for

an interval of contants (0, 4). It would be interesting to give a proof for this conjecture.

We also believe that obtaining an exponential decay for a global non-constant damp-

ing is achievable but since the multipliers method is clearly limited for p = 1 and

p = ∞ when the damping is non-constant we recommend considering other methods,

in particular the method of microlocal analysis since it gives the sharpest results for

linear problems.

We also studied in Chapter 4 the non-linear case but in the case p ∈ (1,∞) and

gave a proof for the exponential decay along strong solutions only. We proved the

existence of strong solutions in this non-linear problem for all 1 ≤ p ≤ ∞; but when it

comes to weak solutions we only managed to prove the well-posedness for p ≥ 2 which

opens the question for the existence of weak solutions for 1 ≤ p < 2.

Just like in the linear problem, it would be very interesting to achieve an exponential

decay in the cases p = 1 and p = ∞ in the non-linear problem. It would also be

interesting to consider weak solutions (at least for p ≥ 2) and explore the best decay

rate that one can obtain.

Another interesting question that can be studied is trying to obtain ISS-type esti-

mates in the Lp framework for the non-linear case by considering all the possible

disturbances, just like we did with the same non-linear problem in the L2 framework

in Chapter 2.
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Résumé : Cette thèse traite trois problèmes liés
à la stabilisation des équations des ondes. Nous
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lisons des techniques de démonstration basées sur
la méthode des multiplicateurs. Tout d’abord, nous
étudions la stabilité de l’équation des ondes avec un
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tion ainsi que des perturbations. Nous démontrons
la stabilité exponentielle le long des solutions fortes
en l’absence de perturbation ainsi qu’une sorte sta-
bilité au sens Input-To-State par rapport aux pertur-
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Abstract : This thesis focuses on three problems in
the context of the stabilization of wave equations. We
consider different frameworks and we use techniques
based on the multipliers method. First, we study the
stability of the wave equation with non-linear localized
damping in a standard Hilbertian framework in two di-
mensions. The proof is based on the work Martinez
and Vancostenoble (2000) to which we add a locali-
zation as well as disturbances. We prove the expo-
nential stability of strong solutions in the absence of
disturbances and also a weak Input-To-State stability
property with respect to the considered disturbances.
We next consider a more general functional frame-
work, namely an Lp framework with p ∈ (1,∞). We
study the Lp stability of the wave equation with a li-

near and localized damping in one dimension since it
is not always possible to define the wave operator in
higher dimensions when p ̸= 2. We prove exponential
stability of the problem by generalizing the multipliers
of the Hilbertian framework in this new general frame-
work, with a different proof for 1 < p < 2 and p ≥ 2.
We also prove in the same problem but with particular
cases of a global constant damping, an exponential
stability in the case p = 1 and p = ∞. We consider
next the nonlinear case of the previous problem : re-
lying on a linearizing technique, we reduce that study
to that of the linear problem case in order to prove
exponential stability of the non-linear problem along
strong solutions and for all 1 < p < ∞.
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