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Pour finir, je remercie toute ma famille pour le soutien au quotidien. In Machine Learning (ML), we aim at learning the best possible model for a given task from a training set of data. The data can have different structures, from point clouds to images or graphs, and can lie on different spaces. A convenient way to model the data is to assume they follow an underlying unknown probability distribution. Thus it is important to develop tools to cope with probability distributions such as metrics to be able to compare them, or algorithms to learn them, as well as developing efficient ways to model them. Moreover, considering the amount of data available and their potential high dimensionality, these methods need to be able to scale well with the number of samples in the data and with the dimension.

For instance, generative modeling is a popular task in ML, which has received a lot of attention lately through Large Language Models (LLMs) which aim at generating text [START_REF] Brown | Language Models are Few-shot Learners[END_REF][START_REF] Touvron | Open and Efficient Foundation Language Models[END_REF][START_REF] Openai | [END_REF], or through diffusion models which aim at generating images [START_REF] Rombach | High-Resolution Image Synthesis with Latent Diffusion Models[END_REF][START_REF] Ramesh | Hierarchical Text-Conditional Image Generation with CLIP Latents[END_REF][START_REF] Saharia | Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding[END_REF]. Typically, the objective of these tasks is to learn the unknown distribution of the data in order to be able to sample new examples. This amounts to minimizing a well chosen discrepancy between probability distributions. To model the unknown probability distribution, practitioners leverage Deep Learning using neural networks. Popular frameworks include Generative Adversarial Networks (GANs) [START_REF] Goodfellow | Generative Adversarial Nets[END_REF], Variational Autoencoders (VAEs) [START_REF] Kingma | Auto-Encoding Variational Bayes[END_REF], Normalizing Flows (NFs) [START_REF] Papamakarios | Normalizing Flows for Probabilistic Modeling and Inference[END_REF] or more recently Score-Based generative models [START_REF] Sohl-Dickstein | Deep Unsupervised Learning using Nonequilibrium Thermodynamics[END_REF][START_REF] Song | Generative Modeling by Estimating Gradients of the Data Distribution[END_REF].

A typical loss to minimize in order to learn a probability distribution is the Kullback-Leibler divergence (KL), which is tightly related with the Maximum Likelihood learning task widely used in statistics to find a good estimator of the data. For example, Normalizing Flows leverage invertible neural networks and the change-of-variable formula to minimize the KL. VAEs instead use arbitrary architectures and are trained by minimizing a lower bound on the KL. GANs are a popular alternative, which use adversarial training, and minimize the Jensen-Shannon divergence. Score-based models also indirectly minimize the KL by learning the score of the data and then performing a diffusion scheme which minimizes the KL. Many alternatives to the KL divergence have been considered such as more general f -divergences [START_REF] Nowozin | f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization[END_REF] or Maximum Mean Discrepancies (MMDs) [START_REF] Li | MMD GAN: Towards Deeper Understanding of Moment Matching Network[END_REF][START_REF] Bińkowski | Demystifying MMD GANs[END_REF][START_REF] Mroueh | On the Convergence of Gradient Descent in GANs: MMD GAN as a Gradient Flow[END_REF].

However, these different objective discrepancies usually require both distributions to have densities, to share the same support or/and do not necessarily respect well the geometry of the data (Arjovsky et al., 2017). A popular alternative for handling probability distributions while respecting the geometry of the data through a specified ground cost and for being able to compare distributions which do not necessarily have the same support is Optimal Transport (OT) [START_REF] Villani | Optimal Transport: Old and New[END_REF], which allows comparing distributions by finding the cheapest way to move mass from one distribution to another. Thus, OT losses have been used for generative modeling as another alternative to the KL through e.g. the Wasserstein GANs (Arjovsky et al., 2017) or the Wasserstein Autoencoders [START_REF] Tolstikhin | Wasserstein Auto-Encoders[END_REF].

Yet, in its original formulation, OT suffers from a computational bottleneck and from the curse of dimensionality, which can hinder its usability in ML applications, in particular for large scale problems. Thus, this thesis will focus on the development and analysis of efficient OT methods with the objective to apply them on Machine Learning problems.

Optimal Transport for Machine Learning

Optimal Transport [START_REF] Villani | Optimal Transport: Old and New[END_REF] provides a principled way to compare probability distributions while taking into account their underlying geometry. This problem, first introduced by Monge (1781), originally consists of finding the best way to move a probability distribution to another with respect to some cost function. This provides two quantities of interest. The first one is the Optimal Transport map (and more generally the OT plan), which allows to push a source distribution onto a target distribution, and the second one is the optimal value of the underlying problem, which quantifies how close two probability distributions are and actually defines a distance between them usually called the Wasserstein distance (when using a well chosen cost).

Keeping in mind these two items, the Optimal Transport problem has received a lot of attention in the last few years. On the one hand, the OT map, also called the Monge map, can be used effectively in many practical problems such as domain adaptation [START_REF] Courty | Optimal Transport for Domain Adaptation[END_REF], where we aim at classifying the data from a target probability distribution from which we do not have training examples through another dataset which we use as training set. Thus, the OT map helps to align the source dataset towards the target dataset, which then allows to use a classifier learned on the source dataset. It has also been useful for text alignment, such as translation, where we want to align two embeddings of different languages [START_REF] Grave | Unsupervised Alignment of Embeddings with Wasserstein Procrustes[END_REF], in computational biology [START_REF] Schiebinger | Optimal-Transport Analysis of Single-cell Gene Expression identifies Developmental Trajectories in Reprogramming[END_REF][START_REF] Bunne | Learning Single-cell Perturbation Responses using Neural Optimal Transport[END_REF]2022a), in computer vision [START_REF] Makkuva | Optimal Transport mapping via Input Convex Neural Networks[END_REF] or in physics applications such as cosmology [START_REF] Nikakhtar | Optimal Transport Reconstruction of Baryon Acoustic Oscillations[END_REF][START_REF] Panda | Semi-supervised Learning of Pushforwards For Domain Translation & Adaptation[END_REF]. However, finding this map can be challenging [START_REF] Perrot | Mapping Estimation for Discrete Optimal Transport[END_REF]. A recent line of works models the Monge map with neural networks [START_REF] Seguy | Large Scale Optimal Transport and Mapping Estimation[END_REF][START_REF] Makkuva | Optimal Transport mapping via Input Convex Neural Networks[END_REF]Korotin et al., 2021a;[START_REF] Rout | Generative Modeling with Optimal Transport Maps[END_REF]Fan et al., 2022a;[START_REF] Uscidda | The Monge Gap: A Regularizer to Learn All Transport Maps[END_REF][START_REF] Morel | Turning Normalizing Flows into Monge Maps with Geodesic Gaussian Preserving Flows[END_REF]. This allows to link arbitrary samples of two distributions which can be interesting in some situations (Bunne et al., 2022a;[START_REF] Panda | Semi-supervised Learning of Pushforwards For Domain Translation & Adaptation[END_REF] or to be used for generative modeling tasks where we aim at sampling from some complicated target distribution (for example a distribution of images) given samples from a tractable standard distribution [START_REF] Makkuva | Optimal Transport mapping via Input Convex Neural Networks[END_REF]Huang et al., 2021a).

In this thesis, we will mostly be interested in the distance properties of the OT problem. As it provides a principled way to compare probability distributions, it has been used e.g. to classify documents which can be seen as probability distributions over words [START_REF] Kusner | From Word Embeddings to Document Distances[END_REF][START_REF] Huang | Supervised Word Mover's Distance[END_REF], to perform dimensionality reductions for datasets of histograms or more generally of probability distributions using Principal Component Analysis (PCA) [START_REF] Seguy | Principal Geodesic Analysis for Probability Measures under the Optimal Transport Metric[END_REF][START_REF] Bigot | Geodesic PCA in the Wasserstein space by Convex PCA[END_REF][START_REF] Cazelles | Geodesic PCA versus Log-PCA of Histograms in the Wasserstein Space[END_REF] or Dictionary Learning [START_REF] Rolet | Fast Dictionary Learning with a Smoothed Wasserstein Loss[END_REF][START_REF] Schmitz | Wasserstein Dictionary Learning: Optimal Transport-based Unsupervised Nonlinear Dictionary Learning[END_REF][START_REF] Mueller | Geometric Sparse Coding in Wasserstein Space[END_REF], or to perform clustering [START_REF] Cuturi | Fast Computation of Wasserstein Barycenters[END_REF] with e.g. Wasserstein K-Means [START_REF] Domazakis | Clustering Measure-valued Data with Wasserstein Barycenters[END_REF][START_REF] Zhuang | Wasserstein k-means for Clustering Probability Distributions[END_REF]. It also provides effective losses for supervised learning problems [START_REF] Frogner | Learning with a Wasserstein Loss[END_REF] or generative modeling tasks with Wasserstein GANs (Arjovsky et al., 2017;[START_REF] Gulrajani | Improved Training of Wasserstein GANs[END_REF][START_REF] Genevay | GAN and VAE from an Optimal Transport Point of View[END_REF] or Wasserstein Autoencoders [START_REF] Tolstikhin | Wasserstein Auto-Encoders[END_REF]. The OT cost has also been used in order to obtain straighter trajectories of flows leading to faster and better inference [START_REF] Finlay | How to train your neural ODE: the World of Jacobian and Kinetic Regularization[END_REF][START_REF] Onken | OT-Flow: Fast and Accurate Continuous Normalizing Flows via Optimal Transport[END_REF][START_REF] Tong | Conditional Flow Matching: Simulation-free Dynamic Optimal Transport[END_REF]. Furthermore, the space of probability measures endowed with the Wasserstein distance has a geodesic structure [START_REF] Otto | The Geometry of Dissipative Evolution Equations: the Porous Medium Equation[END_REF], which allows to derive a complete theory of gradient flows [START_REF] Ambrosio | Gradient Flows: in Metric Spaces and in the Space of Probability Measures[END_REF]. It led to the derivation of many algorithms which provide meaningful ways to minimize functionals on the space of probability measures [START_REF] Arbel | Maximum Mean Discrepancy Gradient Flow[END_REF][START_REF] Salim | The Wasserstein Proximal Gradient Algorithm[END_REF][START_REF] Glaser | KALE Flow: A Relaxed KL Gradient Flow for Probabilities with Disjoint Support[END_REF][START_REF] Altekrüger | Neural Wasserstein Gradient Flows for Maximum Mean Discrepancies with Riesz Kernels[END_REF] and which are linked with sampling algorithms derived for example in the Markov chain Monte-Carlo (MCMC) community [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF][START_REF] Wibisono | Sampling as Optimization in the Space of Measures: The Langevin Dynamics as a Composite Optimization Problem[END_REF].

Motivations

In practical Machine Learning, we may have to deal with large scale problems, where large amounts of data are at hand. In this case, one of the main bottleneck of OT is the computational complexity w.r.t. the number of samples to compute the OT distance. To alleviate this computational burden, different solutions have been proposed in the last decade, which made OT very popular in ML.

Alternatives to the original OT problem. [START_REF] Cuturi | Sinkhorn Distances: Lightspeed Computation of Optimal Transport[END_REF] proposed to add an entropic regularization to the classical OT problem, which led to a tractable algorithm with a better computational complexity and usable on GPUs [START_REF] Feydy | Geometric Data Analysis, beyond Convolutions[END_REF], hence significantly popularizing OT in the ML community [START_REF] Torres | A survey on Optimal Transport for Machine Learning: Theory and Applications[END_REF]. This objective has notably been used for generative modeling using autodifferentiation [START_REF] Genevay | Learning Generative Models with Sinkhorn Divergences[END_REF]. For learning problems, where we aim at learning implicitly the distribution of the data, another popular alternative widely used in Deep Learning is the minibatch approach [START_REF] Genevay | Stochastic Optimization for Large-Scale Optimal Transport[END_REF][START_REF] Fatras | Learning with Minibatch Wasserstein: Asymptotic and Gradient Properties[END_REF]2021b) which only uses at each step a small portion of the data. Another family of approaches uses alternatives to the classical OT problem by considering projections on subspaces. These approaches can be motivated on one hand on the fact that high-dimensional distributions are often assumed to be supported on a lower dimensional subspace, or that two distributions on such space only differ on a lower dimensional subspace (Niles- [START_REF] Niles-Weed | Estimation of Wasserstein Distances in the Spiked Transport Model[END_REF]. On the other hand, these approaches can be computed more efficiently than the classical OT problem while keeping many interesting properties of Optimal Transport and often having better statistical properties in high dimensional settings. In this thesis, we will mostly be interested in methods which rely on projections on subspaces.

Sliced-Wasserstein.

In order to take advantage of appealing forms of OT on low dimensional spaces, these methods project the measures on subspaces. The main example of such method is the Sliced-Wasserstein distance (SW) [START_REF] Rabin | Wasserstein Barycenter and its Application to Texture Mixing[END_REF][START_REF] Bonnotte | Unidimensional and Evolution Methods for Optimal Transportation[END_REF][START_REF] Bonneel | Sliced and Radon Wasserstein Barycenters of Measures[END_REF], which is defined as the average of the Wasserstein distance between one dimensional projections of the measures over all directions. This distance enjoys many nice properties, and among others, has a low computational complexity. It has proven to be a suitable alternative to the classical Wasserstein distance or to the entropic regularized OT discrepancy. As it is a differentiable loss, it was used in many learning problems such as generative modeling by learning the latent space of autoencoders with Sliced-Wasserstein Autoencoders (Kolouri et al., 2019b), by learning generators with Sliced-Wasserstein generators [START_REF] Deshpande | Generative Modeling using the Sliced Wasserstein Distance[END_REF][START_REF] Wu | Sliced wasserstein Generative Models[END_REF][START_REF] Lezama | Run-Sort-ReRun: Escaping Batch Size Limitations in Sliced Wasserstein Generative Models[END_REF], by training Normalizing Flows (Coeurdoux et al., 2022;2023), for Variational Inference (Yi and Liu, 2023), or as an objective for non-parametric algorithms [START_REF] Liutkus | Sliced-Wasserstein Flows: Nonparametric Generative Modeling via Optimal Transport and Diffusions[END_REF][START_REF] Dai | Sliced Iterative Normalizing Flows[END_REF][START_REF] Du | Nonparametric Generative Modeling with Conditional and Locally-Connected Sliced-Wasserstein Flows[END_REF]. It has also been used in wide different applications such as texture synthesis [START_REF] Tartavel | Wasserstein Loss for Image Synthesis and Restoration[END_REF][START_REF] Heitz | A Sliced Wasserstein Loss for Neural Texture Synthesis[END_REF], domain adaptation [START_REF] Lee | Sliced Wasserstein Discrepancy for Unsupervised Domain Adaptation[END_REF][START_REF] Rakotomamonjy | Statistical and Topological Properties of Gaussian Smoothed Sliced Probability Divergences[END_REF][START_REF] Xu | Unsupervised Manifold Learning with Polynomial Mapping on Symmetric Positive Definite Matrices[END_REF], approximate bayesian computation (Nadjahi et al., 2020a), point-cloud reconstructions (Nguyen et al., 2023a), two-sample tests (Wang et al., 2021a;b;[START_REF] Xu | Central Limit Theorem for the Sliced 1-Wasserstein Distance and the Max-Sliced 1-Wasserstein Distance[END_REF] or to evaluate the performance of GANs [START_REF] Karras | Progressive Growing of GANs for Improved Quality, Stability, and Variation[END_REF]. Besides, it is a Hilbertian distance and hence can be used to define kernels between probability distributions which can then be plugged in kernel methods [START_REF] Hofmann | KernelMmethods in Machine Learning[END_REF], which has been done e.g. for kernel K-Means, PCA, SVM [START_REF] Kolouri | Sliced Wasserstein Kernels for Probability Distributions[END_REF] or for regression [START_REF] Meunier | Distribution Regression with Sliced Wasserstein Kernels[END_REF].

Since SW became very popular, many variants were designed, either to deal with specific data (Nguyen and Ho, 2022b) or to improve its discriminative power by sampling more carefully the directions of the projections [START_REF] Deshpande | Max-Sliced Wasserstein Distance and its use for GANs[END_REF][START_REF] Rowland | Orthogonal Estimation of Wasserstein Distances[END_REF]Nguyen et al., 2021a;b;[START_REF] Dai | Sliced Iterative Normalizing Flows[END_REF]Nguyen et al., 2023b;Nguyen and Ho, 2023b;[START_REF] Ohana | Shedding a PAC-Bayesian Light on Adaptive Sliced-Wasserstein Distances[END_REF], changing the way to project (Kolouri et al., 2019a;[START_REF] Chen | Augmented Sliced Wasserstein Distances[END_REF][START_REF] Nguyen | Hierarchical Sliced Wasserstein Distance[END_REF] or the subspaces on which to project [START_REF] Paty | Subspace robust Wasserstein distances[END_REF][START_REF] Lin | On Projection Robust Optimal Transport: Sample Complexity and Model Misspecification[END_REF][START_REF] Li | Hilbert Curve Projection Distance for Distribution Comparison[END_REF]. Other works proposed estimators of the SW distance, either to reduce the variance (Nguyen and Ho, 2023a) or to alleviate the curse of dimensionality with respect to the projections [START_REF] Nadjahi | Fast Approximation of the Sliced-Wasserstein Distance using Concentration of Random Projections[END_REF].

The slicing process has also received much attention for other types of discrepancies. Nadjahi et al. (2020b) studied properties of sliced probability divergences, covering for example the Sliced-Wasserstein distance, the Sliced-Sinkhorn divergence or the Sliced-Maximum Mean Discrepancy. It was used e.g. to provide a tree sliced variant of the Wasserstein distance [START_REF] Le | Tree-Sliced Variants of Wasserstein Distances[END_REF], to generalize divergences which are only well defined between one dimensional distributions to higher dimensional distributions such as the Cramér distance [START_REF] Kolouri | Sliced Cramer Synaptic Consolidation for Preserving Deeply Learned Representations[END_REF] or to alleviate the curse of dimensionality of the kernelized Stein discrepancy [START_REF] Gong | Sliced Kernelized Stein Discrepancy[END_REF], of the mutual information [START_REF] Goldfeld | Sliced Mutual Information: A Scalable Measure of Statistical Dependence[END_REF]Goldfeld et al., 2022a) or of the Total Variation and the Kolmogorov-Smirnov distances to compare MCMC chains [START_REF] Grenioux | On Sampling with Approximate Transport Maps[END_REF]. It can also be used for score matching tasks [START_REF] Song | Sliced Score Matching: A Scalable Approach to Density and Score Estimation[END_REF] which was recently put under the spotlight through the diffusion and score-based generative models. It was also extended for many OT based problems such as the multi-marginal problems (Cohen et al., 2021b) or the partial OT problem [START_REF] Figalli | The Optimal Partial Transport Problem[END_REF] in [START_REF] Bonneel | SPOT: Sliced Partial Optimal Transport[END_REF][START_REF] Bai | pour le transport optimal partiel[END_REF] which can deal with measures of different mass and which is a particular case of Unbalanced Optimal Transport problems [START_REF] Benamou | Numerical Resolution of an "Unbalanced" Mass Transport Problem[END_REF].

These previous lines of works focused mainly on Euclidean spaces. However, many data have a known structure which does not suit Euclidean spaces. Indeed, by the manifold hypothesis, it is widely accepted that the data usually lie on a lower dimensional manifold [START_REF] Chen | Nonlinear Manifold Representations for Functional Data[END_REF][START_REF] Bengio | Representation Learning: A Review and new Perspectives[END_REF][START_REF] Fefferman | Testing the Manifold Hypothesis[END_REF][START_REF] Pope | The Intrinsic Dimension of Images and Its Impact on Learning[END_REF] or a union of lower dimensional manifolds [START_REF] Brown | Verifying the Union of Manifolds Hypothesis for Image Data[END_REF]. In some cases, it is possible to know exactly the Riemannian structure of the data. For example, earth data lie on a sphere or hierarchical data can be efficiently embedded in Hyperbolic spaces [START_REF] Nickel | Poincaré Embeddings for Learning Hierarchical Representations[END_REF]. Fortunately, OT is well defined on such spaces [START_REF] Villani | Optimal Transport: Old and New[END_REF]. Hence, in ML, OT has recently received attention for data lying on Riemannian manifolds (Alvarez-Melis et al., 2020;[START_REF] Hoyos-Idrobo | Aligning Hyperbolic Representations: an Optimal Transport-based Approach[END_REF]. But the focus has been on using the Wasserstein distance or the entropic regularized OT problem, instead of methods relying on projections on subspaces. In order to bridge this gap, one of the main objectives of the thesis will be to develop Sliced-Wasserstein distances on Riemannian manifolds.

One of the limitations of SW is the lack of OT plan, which can be very useful in many applications such as domain adaptation [START_REF] Courty | Optimal Transport for Domain Adaptation[END_REF], word embedding alignments with Wasserstein Procrustes [START_REF] Grave | Unsupervised Alignment of Embeddings with Wasserstein Procrustes[END_REF][START_REF] Ramírez | On a Novel Application of Wasserstein-Procrustes for Unsupervised Cross-Lingual Learning[END_REF], single cell alignment (Demetci et al., 2022b) or cross-domain retrieval [START_REF] Chuang | InfoOT: Information Maximizing Optimal Transport[END_REF]. To overcome this, one might resort to barycentric projection, which however might not give a good plan as many projections are not meaningful. Finding an OT plan requires us to solve the OT problem, which can be intractable in practice for large scale settings. [START_REF] Muzellec | Subspace Detours: Building Transport Plans that are Optimal on Subspace Projections[END_REF] proposed to project the distributions on a subspace, and then to rely on the disintegration of measures to recover an OT plan. In another line of work, [START_REF] Bernton | Approximate Bayesian Computation with the Wasserstein Distance[END_REF]; [START_REF] Li | Hilbert Curve Projection Distance for Distribution Comparison[END_REF] instead use the possibly suboptimal OT plan obtained between projections on Hilbert curves.

OT between incomparable data. When dealing with incomparable data, i.e. data which can not be represented in the same space or which cannot be meaningfully compared between them with distances, for example because of invariances between the data which are not taken into account by the distance, the classical OT problem is not applicable anymore, or at least not successful. While it has been proposed to simultaneously learn latent global transformations along computing the OT distance [START_REF] Alvarez-Melis | Towards Optimal Transport with Global Invariances[END_REF] or to embed both distributions in a common Euclidean space [START_REF] Alaya | Heterogeneous Wasserstein Discrepancy for Incomparable Distributions[END_REF]2022), a popular framework which directly takes into account these invariances while allowing to compare distributions lying on different spaces is the Gromov-Wasserstein distance [START_REF] Mémoli | Gromov-Wasserstein Distances and the Metric Approach to Object Matching[END_REF]. This distance has recently attracted considerable interests in ML, for example to compare genomics data (Demetci et al., 2022b) or graphs [START_REF] Xu | Scalable Gromov-Wasserstein Learning for Graph Partitioning and Matching[END_REF]Chowdhury and Needham, 2021). However, it suffers from an even bigger computational cost compared to the original OT problem [START_REF] Peyré | Gromov-Wasserstein Averaging of Kernel and Distance Matrices[END_REF], and hence can hardly be used in large scale contexts. While it does not always have a closed-form in one dimension [START_REF] Dumont | On the Existence of Monge Maps for the Gromov-Wasserstein Distance[END_REF][START_REF] Beinert | On Assignment Problems Related to Gromov-Wasserstein Distances on the Real Line[END_REF], in some particular cases, a closed-form is available (Vayer, 2020) and a sliced version has been proposed (Vayer et al., 2019b).

Objectives. Here, we sum up some of the objectives of the thesis before describing in the next section more precisely the contributions.

• First, as many data have a Riemannian structure, we will aim at defining new Sliced-Wasserstein distances on Riemannian manifolds in order to be able to deal efficiently with such data.

• As SW provides an efficient distance between probability distributions which shares many properties with the Wasserstein distance, a natural question is to study the properties of the underlying gradient flows compared to the Wasserstein gradient flows.

• Motivated by the robustness properties of the Unbalanced Optimal Transport and the recently pro-posed Sliced Partial OT methods, we will explore how to extend the slicing process to Unbalanced Optimal Transport in order to be able to compare positive measures.

• Another objective of the thesis will be to provide new tools to project on subspaces of the space of probability measures, aiming to deal with datasets composed of probability distributions.

• As a limitation of SW is to not provide an OT plan, we will explore how to compute efficiently OT plans between incomparable spaces using the Gromov-Wasserstein problem.

Outline of the Thesis and Contributions

The focus of this thesis is on OT distances which are based on projections on subspaces. Chapter 2 provides the general background on Optimal Transport required to understand the rest of the thesis as well as an overview of the related literature.

Then, Part I introduces Sliced-Wasserstein distances on Riemannian manifolds and applies it to different Machine Learning problems and on different manifolds. Part II covers either applications of Optimal Transport based on the Wasserstein distance, or variants of Optimal Transport which are based on projections on subspaces. We detail now in more depth the content and contributions of each chapter. We additionally mention collaborators outside the author's hosting laboratories.

Part I: Sliced-Wasserstein on Riemannian Manifolds

In Part I, we study the extension of the Sliced-Wasserstein distance, originally well defined on Euclidean spaces, to Riemannian manifolds. More precisely, we introduce first in Chapter 3 a way to construct Sliced-Wasserstein distances on (Cartan-)Hadamard manifolds and introduce some of its properties. Then, we leverage in Chapter 4 and Chapter 5 this general construction to build Sliced-Wasserstein distances on specific Hadamard manifolds: Hyperbolic spaces and the space of Symmetric Positive Definite (SPD) matrices. Finally, in Chapter 6, we study the case of the sphere, which does not enter the previous framework as it is not a Hadamard manifold.

Chapter 3: Sliced-Wasserstein on Cartan-Hadamard Manifolds

In this chapter, by seeing R d as a particular case of Riemannian manifold, we derive the tools to extend Sliced-Wasserstein distances on geodesically complete Riemannian manifolds. More precisely, we identify lines as geodesics, and propose to project measures on geodesics of manifolds.

We focus here on geodesically complete Riemannian manifolds of non-positive curvature, which have the appealing property that their geodesics are isometric to R. This allows projecting the measures on the real line where the Wasserstein distance can be easily computed. Moreover, we propose to use two different ways to project on the real line. Both ways are natural extensions of the projection in the Euclidean case. The first one is the geodesic projection, which projects by following the shortest paths, and which allows to define the Geodesic Cartan-Hadamard Sliced-Wasserstein distance (GCHSW). The second one is the horospherical projection, which projects along horospheres using the level sets of the Busemann function, and which allows to define the Horospherical Cartan-Hadamard Sliced-Wasserstein distance (HCHSW).

Then, we analyze theoretically these two constructions and show that many important properties of the Euclidean Sliced-Wasserstein distance still hold on Hadamard manifolds. More precisely, we discuss their distance properties, derive their first variations and show that they can be embedded in Hilbert spaces. Then, we derive their projection complexity as well as their sample complexity, which similarly as in the Euclidean case, are independent of the dimension.

Chapter 4: Hyperbolic Sliced-Wasserstein

In this chapter, we leverage the general constructions derived in Chapter 3 and apply it to Hyperbolic spaces, which are particular cases of Hadamard manifolds, as they are of (constant) negative curvature.

Since there are different (equivalent) parameterizations of Hyperbolic spaces, we study the case of the Lorentz model and of the Poincaré ball, and derive the closed-form formulas to define and compute efficiently the Geodesic Hyperbolic Sliced-Wasserstein distance (GHSW) and Horospherical Hyperbolic Sliced-Wasserstein distance (HHSW). We also show that these two formulations can be used equivalently in both the Poincaré ball and the Lorentz model.

Then, we compare the behavior of GHSW, HHSW and the Euclidean Sliced-Wasserstein distance on the Poincaré ball and on the Lorentz model on different tasks such as gradient descent or classification problems with deep neural networks.

This chapter is based on (Bonet et al., 2023b) and has been presented at the workshop on Topology, Algebra and Geometry in Machine Learning (TAG-ML) of the International Conference of Machine Learning (ICML 2023). The code is open sourced at https://github.com/clbonet/Hyperbolic_ Sliced-Wasserstein_via_Geodesic_and_Horospherical_Projections.

Chapter 5: Sliced-Wasserstein on Symmetric Positive Definite Matrices

In this chapter, we introduce Sliced-Wasserstein distances on the space of Symmetric Positive Definite matrices (SPD). Endowed with specific metrics, the space of SPDs is of non-positive curvature and hence a Hadamard manifold. Thus, we can also use the theory introduced in Chapter 3 to define Sliced-Wasserstein distances.

We study the space of SPDs endowed with two specific metrics: the Affine-Invariant metric and the Log-Euclidean metric. With the Affine-Invariant metric, the space of SPDs is of non-positive and variable curvature. As deriving a closed-form of the geodesic projection is challenging, we first focus on the Busemann projection and introduce the Horospherical SPD Sliced-Wasserstein distance (HSPDSW). However, HSPDSW is computationally costly to compute in practice. Thus, it motivates to use the Log-Euclidean metric, which can be seen as a first-order approximation of the Affine-Invariant metric [START_REF] Arsigny | Fast and Simple Computations on Tensors with Log-Euclidean Metrics[END_REF][START_REF] Pennec | Manifold-valued Image Processing with SPD Matrices[END_REF] and which is easier to compute in practice. Endowed with this metric, the space of SPDs is of null curvature and we can derive the counterpart SPD Sliced-Wasserstein distance SPDSW.

We derive some complementary properties for SPDSW. And then, we apply this distance to problems of Magnetoencephalography and of Electroencephalography (M/EEG) such as brain-age prediction or domain adaptation for Brain Computer Interface applications.

This chapter is based on [START_REF] Bonet | Sliced-Wasserstein on Symmetric Positive Definite Matrices for M/EEG Signals[END_REF] and has been accepted at the International Conference of Machine Learning (ICML 2023). The code is in open source and can be accessed at https://github. com/clbonet/SPDSW. This work was made in collaboration with Benoît Malézieux (Inria).

Chapter 6: Spherical Sliced-Wasserstein

We study in this chapter a way to define a Sliced-Wasserstein distance on the sphere. Contrary to the previous chapters, the sphere is of positive curvature and hence is not a Hadamard manifold. Thus, we cannot leverage directly the framework introduced in Chapter 3.

Taking into account the particularities of the sphere, we introduce a Spherical Sliced-Wasserstein distance (SSW) by projecting the measures on any great circle, which are the geodesics of the sphere. For the practical implementation, we derive a closed-form of the geodesic projection, and we use the algorithm of [START_REF] Delon | Fast Transport Optimization for Monge Costs on the Circle[END_REF] to compute the Wasserstein distance on the circle. Moreover, we also introduce a closed-form to compute the Wasserstein distance on the circle between an arbitrary measure and the uniform distribution on S 1 . On the theoretical side, we study some connections with a spherical Radon transform, known as the semicircle transform on S 2 , allowing us to investigate its distance properties.

Then, we illustrate the use of this discrepancy on Machine Learning tasks such as sampling, density estimation and generative modeling.

This chapter is based on (Bonet et al., 2023a) and has been accepted at the International Conference of Learning Representations (ICLR 2023). The code has been released at https://github.com/clbonet/ Spherical_Sliced-Wasserstein. Moreover, we implemented it in the open-source library Python Optimal Transport (POT) [START_REF] Flamary | POT: Python Optimal Transport[END_REF].

Part II: Optimal Transport and Variants through Projections

In Part II, we study different problems which involve projections on subspaces and Optimal Transport. Firstly, in Chapter 7, we investigate gradient flows in the space of probability measures endowed with the Sliced-Wasserstein distance compared with when endowed with the Wasserstein distance. Then, in Chapter 8, we develop a framework to compare positive measures with Sliced Optimal Transport methods. In Chapter 9, we investigate the Busemann function in the space of probability measures endowed with the Wasserstein distance. And finally, in Chapter 10, we develop a subspace detour based approach for the Gromov-Wasserstein problem.

Chapter 7: Gradient Flows in Sliced-Wasserstein Space

A way to minimize functionals on the space of probability measures is to use Wasserstein gradient flows, which can be approximated through the backward Euler scheme, also called the Jordan-Kinderlehrer-Otto (JKO) scheme. However, this can be computationally costly to compute in practice. Hence, in this chapter, we propose to replace the Wasserstein distance in the backward Euler scheme by the Sliced-Wasserstein distance to alleviate the computational burden. This amounts to computing gradient flows in the space of probability measures endowed with the Sliced-Wasserstein distance. Modeling probability distributions through neural networks, we propose to approximate the trajectory of the Sliced-Wasserstein gradient flows of particular functionals, and to compare their trajectory with their Wasserstein gradient flows.

We study different types of functionals. First, we study the Kullback-Leibler divergence which requires to use invertible neural networks -called Normalizing Flows -in order to be able to approximate it in practice. With a Gaussian target, we know exactly its Wasserstein gradient flow, and we therefore compare its trajectory with the approximated Sliced-Wasserstein gradient flow. Then, we also study the capacity of our method to approximate the target measure on real data in a setting of Bayesian logistic regression. Furthermore, we study the minimization of the Sliced-Wasserstein distance to learn high-dimensional target measure such as distribution of images.

This chapter is based on [START_REF] Bonet | Efficient Gradient Flows in Sliced-Wasserstein Space[END_REF] and has been published in the journal Transactions on Machine Learning Research (TMLR). The code is available online at https://github.com/clbonet/ Sliced-Wasserstein_Gradient_Flows.

Chapter 8: Unbalanced Optimal Transport Meets Sliced-Wasserstein

In some cases, it can be beneficial to compare positive measures instead of probability distributions. This led to the development of the Unbalanced Optimal Transport (UOT) problem which relaxes the OT cost to be able to deal with positive measures.

We study in this chapter how to efficiently slice these methods in two ways. First, we naively propose to average the UOT problem between the projected measures, hence extending [START_REF] Bonneel | SPOT: Sliced Partial Optimal Transport[END_REF][START_REF] Bai | pour le transport optimal partiel[END_REF] to more general UOT problems and denoted SUOT. As one of the main feature of UOT is to remove outliers of the original marginals, we also introduce the Unbalanced Sliced-Wasserstein distance (USW), which performs the regularization on the original marginals. The practical implementation is made using the Frank-Wolfe algorithm building upon (Séjourné et al., 2022b).

This chapter is based on a paper under review [START_REF] Séjourné | Unbalanced Optimal Transport Meets Sliced Wasserstein[END_REF], and is a collaborative effort with Thibault Séjourné (EPFL), Kimia Nadjahi (MIT), Kilian Fatras (Mila) and Nicolas Courty. The main contribution of the author of the thesis is on the experiment side, where we show on a document classification task the benefits of using USW instead of SUOT. The algorithm is also flexible enough to deal with any sliced OT problem, and we illustrate it by computing the Unbalanced Hyperbolic Sliced-Wasserstein distance which builds upon Chapter 4.

Chapter 9: Busemann Function in Wasserstein Space

The Busemann function, associated to well chosen geodesics, provides (in some sense) a natural generalization of the inner product on manifolds. Thus, its level sets can be seen as a natural counterpart of hyperplanes. It has been recently extensively used on Hadamard manifolds such as Hyperbolic spaces in order to perform PCA or classification tasks [START_REF] Chami | HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projections[END_REF][START_REF] Ghadimi Atigh | Hyperbolic Busemann Learning with Ideal Prototypes[END_REF].

To deal with datasets composed of probability measures, this chapter studies the Busemann function on the space of probability measures endowed with the Wasserstein distance (Wasserstein space). In the Wasserstein space, it is not defined for every geodesic. Hence, we first identify for which geodesics this function is well defined. Then, we provide closed-form formulas in particular cases: probability measures on the real line and Gaussian distributions. We also illustrate the use of this function on a Principal Component Analysis application on one dimensional distributions.

This work is done in collaboration with Elsa Cazelles (IRIT).

Chapter 10: Subspace Detours Meet Gromov-Wasserstein

In this chapter, we are interested in alleviating the computational cost of the Gromov-Wasserstein problem, while still being able to compute an OT plan between the original measures. Thus, we proposed to extend the subspace detour approach, originally introduced by [START_REF] Muzellec | Subspace Detours: Building Transport Plans that are Optimal on Subspace Projections[END_REF] for the OT problem, to the Gromov-Wasserstein problem. As the Gromov-Wasserstein problem requires only to compute distances in each space, we propose to project on a different subspace the source and the target, which can allow to better conserve the true OT plan. We derive some theoretical properties of the problem, and notably a closed-form formula for the coupling based on the subspace detour approach when both measures are Gaussians and the problem is restricted to Gaussian couplings. Then, we illustrate this approach on a shape matching problem.

In a second part, we introduce a new OT cost, which shares the property of the original OT problem to be formally connected to the Knothe-Rosenblatt coupling under a degenerated cost.

This chapter is based on [START_REF] Bonet | Subspace Detours Meet Gromov-Wasserstein[END_REF] and has been presented at the Neurips workshop OTML2021 and published in the journal Algorithms. It was made in collaboration with Titouan Vayer (Inria). In this chapter, we provide some background knowledge on Optimal Transport, which is required to motivate and understand the contributions in the next chapters. More precisely, in Section 2.1, we will start with a general description of the OT problem, from the Monge problem to the Kantorovich problem, with some of its variants such as the Gromov-Wasserstein problem. Then, in Section 2.2, we will discuss how we can solve the problem in practice by presenting different possibilities to model probability distributions, along the computational methods and variants. Last but not least, in Section 2.3, we will introduce the Sliced-Wasserstein distance, another alternative to the classical OT problem which will be of most interest in the rest of the thesis.

For more details about Optimal Transport, we refer to the books of [START_REF] Villani | Topics in Optimal Transportation[END_REF]2009) or of [START_REF] Santambrogio | Optimal Transport for Applied Mathematicians[END_REF]. For the computational aspect, we refer to [START_REF] Peyré | Computational Optimal Transport: With Applications to Data Science[END_REF].

General Optimal Transport Problem

Optimal Transport Problem

Monge and Kantorovich problem. Optimal transport is a problem which consists originally of moving a source probability distribution towards a target probability distribution in an optimal way. This was first introduced by [START_REF] Monge | Mémoire sur la théorie des déblais et des remblais[END_REF] and is known nowadays as the Monge problem. Let µ, ν ∈ P(R d ) be two probability distributions, then moving the source µ towards the target ν can be formalized as finding a transport map T : R d → R d such as T # µ = ν where # is the push-forward operator, defined as, h T (x) dµ(x) = h(y) d(T # µ)(y), (2.1) for all continuous maps h. Equivalently, it can be characterized through measurable sets as

∀A ∈ B(R d ), ν(A) = µ T -1 (A) , ( 2.2) 
where B(R d ) is the set of all Borelians. Now that we know how to formally push measures, we can find the optimal way to move measures using the Monge problem defined as

M c (µ, ν) = inf T # µ=ν
c x, T (x) dµ(x), (2.3) where c : R d × R d → R denotes some cost, which will characterize in which way the transformation is optimal. Various cost functions give different OT costs. Typically, in this manuscript, the OT cost will be chosen as a distance. Unfortunately, this problem might not always have a solution. For example, in the simple case where µ = δ x and ν = 1 2 δ y1 + 1 2 δ y2 with y 1 = y 2 and where δ denotes the Dirac measure, there is no transformation T such that T # µ = ν and thus the cost is infinite. A solution to this issue was introduced by [START_REF] Kantorovich | On the Translocation of Masses[END_REF], and consists of relaxing the problem by looking for an optimal coupling instead of an optimal map, and hence allowing to split the mass. This defines the Kantorovich problem W c (µ, ν) = inf γ∈Π (µ,ν) c(x, y) dγ(x, y), (2.4) where Π(µ, ν) = {γ ∈ P(R d × R d ), π 1 # γ = µ, π 2 # γ = ν} denotes the set of couplings between µ and ν, and with π 1 : (x, y) → x and π 2 : (x, y) → y the projections on the marginals. As Π(µ, ν) always contains at least the independent coupling µ⊗ν (defined as µ⊗ν(A×B) = µ(A)ν(B) for all Borelians A, B ∈ B(R d )), the set of constraints is never empty. Under assumptions on the cost c, there is always a solution to this problem (Santambrogio, 2015, Theorem 1.7).

Furthermore, when the solution is of the form (Id, T ) # µ, the solutions of the Monge problem and of the Kantorovich problem coincide. It is also easy to see that the Kantorovich problem gives a lower bound of the Monge problem as the set of measures {(Id, T ) # µ, T # µ = ν} is included in the set of couplings Π(µ, ν). Many works have been devoted to characterizing when both solutions coincide. An important theorem of [START_REF] Brenier | Polar Factorization and Monotone Rearrangement of Vector-Valued Functions[END_REF] states that it is e.g. the case when c(x, y) = 1 2 x -y 2 2 and µ is absolutely continuous with respect to the Lebesgue measure. Furthermore, he characterizes the solution as the gradient of a convex function.

Theorem 2.1 (Brenier's Theorem). Let µ, ν ∈ P 2 (R d ) and c(x, y) = 1 2 x -y 2 2 . Suppose that µ is absolutely continuous with respect to the Lebesgue measure. Then, there exists a unique optimal coupling γ * solution of (2.4) of the form γ * = (Id, T * ) # µ where T * is the unique solution (µ-almost everywhere) of (2.3). Furthermore, T * is of the form T * = ∇ϕ where ϕ : R d → R is a convex function.

Such a convex function ϕ is called a Brenier potential. This result can further be extended under conditions on the cost such as being strictly convex [START_REF] Santambrogio | Optimal Transport for Applied Mathematicians[END_REF].

Wasserstein distance.

For now, we have only been interested in the optimal solution. However, the value of the problem can also prove itself interesting as such value characterizes how far the distributions are from one another. In particular, in the case where the cost is chosen as c(x, y) = x -y p 2 for p ≥ 1, then it defines a finite distance on P p (R d ) = {µ ∈ P(R d ),

x p 2 dµ(x) < ∞}, the space of probability measures with moments of order p, called the Wasserstein distance. Definition 2.1 (Wasserstein distance). Let p ≥ 1 and µ, ν ∈ P p (R d ). The p-Wasserstein distance between µ and ν is defined as

W p (µ, ν) = inf γ∈Π(µ,ν)
x -y p 2 dγ(x, y) In particular, this distance has many interesting properties which make it very useful to compare probability distributions. For instance, contrary to usual divergences used in ML such as the KL divergence, it can compare probability distributions which do not share the same support. It also provides a geodesic space structure [START_REF] Otto | The Geometry of Dissipative Evolution Equations: the Porous Medium Equation[END_REF], which can be interesting e.g. to interpolate between measures [START_REF] Mccann | A Convexity Principle for Interacting Gases[END_REF]. More precisely, a geodesic curve between µ 0 and µ 1 ∈ P p (R d ) is of the form µ t = ((1-t)π 1 +tπ 2 ) # γ for t ∈ [0, 1] where γ ∈ Π(µ 0 , µ 1 ) is an optimal coupling. This curve is also called McCann's interpolation and satisfies for all s, t ∈ [0, 1], W p (µ s , µ t ) = |t -s|W p (µ 0 , µ 1 ).

1 p . ( 2 
Note also that there are other equivalent formulations of the Wasserstein distance, such as the Benamou-Brenier dynamic formulation [START_REF] Benamou | A Computational Fluid Mechanics Solution to the Monge-Kantorovich Mass Transfer Problem[END_REF], or the dual formulation. ψ dµ + φ dν, (2.6) where C = {(ψ, φ) ∈ L 1 (µ) × L 1 (ν), ψ(x) + φ(y) ≤ x -y p 2 for µ ⊗ ν-almost every (x, y)}.

ψ and φ are known as Kantorovich potentials. Note also that they can be related with the optimal coupling as, for example for p = 2 and (x, y) ∈ supp(γ * ), ∇ψ(x) = x-y (Santambrogio, 2015, Section 1.3). In the particular case where there is a Monge map T , we have for µ-almost every x, T (x) = x -∇ψ(x) = ∇ϕ(x) where ϕ(x) = Other OT problems. Changing the cost, we can obtain very different OT problems. We can also change the whole objective to deal either with more general problems, or with specific problems which cannot be handled by the original formulation. To provide some examples, let us first define the disintegration of a measure. Definition 2.2 (Disintegration of a measure). Let (Y, Y) and (Z, Z) be measurable spaces, and (X, X ) = (Y × Z, Y ⊗ Z) the product measurable space. Then, for µ ∈ P(X), we denote the marginals as µ Y = π Y # µ and µ Z = π Z # µ, where π Y (respectively π Z ) is the projection on Y (respectively Z). Then, a family K(y, •) y∈Y is a disintegration of µ if for all y ∈ Y , K(y, •) is a measure on Z, for all A ∈ Z, K(•, A) is measurable and:

∀g ∈ C(X), Y ×Z g(y, z) dµ(y, z) = Y Z g(y, z)K(y, dz) dµ Y (y),
where C(X) is the set of continuous functions on X. We can note µ = µ Y ⊗ K. K is a probability kernel if for all y ∈ Y , K(y, Z) = 1.

The disintegration of a measure actually corresponds to conditional laws in the context of probabilities. In the case where X = R d , we have existence and uniqueness of the disintegration (see (Santambrogio, 2015, Box 2.2) or (Ambrosio et al., 2008, Chapter 5) for the more general case).

Then, disintegrating γ ∈ Π(µ, ν) ⊂ P(R d × R d ) as γ = µ ⊗ K where K is a probability kernel, we can write the OT problem as W c (µ, ν) = inf γ∈Π (µ,ν) c(x, y) K(x, dy) dµ(x).

(2.7)

Then, noting C x, K(x, •) = c(x, y)K(x, dy), W c writes as

W c (µ, ν) = inf γ∈Π(µ,ν) C x, K(x, •) dµ(x), (2.8) 
and changing C, we can obtain very different OT cost. This formulation is called the weak OT formulation [START_REF] Gozlan | Kantorovich Duality for General Transport Costs and Applications[END_REF]. An example of cost is the barycentric weak OT [START_REF] Backhoff-Veraguas | Existence, Duality, and Cyclical Monotonicity for Weak Transport Costs[END_REF][START_REF] Cazelles | A Novel Notion of Barycenter for Probability Distributions based on Optimal Weak Mass Transport[END_REF] defined with the following ground cost:

C x, K(x, •) = x -y K(x, dy) 2 2 
.

(2.9)

Another OT problem which allows to deal with incomparable data is the Gromov-Wasserstein problem [START_REF] Mémoli | Gromov-Wasserstein Distances and the Metric Approach to Object Matching[END_REF][START_REF] Sturm | The Space of Spaces: Curvature Bounds and Gradient Flows on the Space of Metric Measure Spaces[END_REF], which can be seen as an extension of the Gromov-Hausdorff distance between spaces [START_REF] Mémoli | The Gromov-Wasserstein Distance: A Brief Overview[END_REF], and which is defined as

GW c (µ, ν) = inf γ∈Π(µ,ν)
L c(x, x ), c(y, y ) dγ(x, y)dγ(x , y ), (2.10) where L : R × R → R is some loss function. As it only involves a cost metric computed in each space, it can be used to compare distributions lying in different spaces. Even more generally, we can define the general OT problem [START_REF] Asadulaev | Neural Optimal Transport with General Cost Functionals[END_REF] as minimizing a functional F : P(X × Y ) → R, where X and Y are some spaces, as inf γ∈Π (µ,ν) F(γ).

(2.11)

Particular Cases with Closed-Forms

In general, we need to solve the infimum problem over the set of couplings, which is not possible between arbitrary measures. However, there are some particular cases in which we know how to solve the problem in closed-form.

One dimensional case. First, let us define the cumulative distribution function F µ of a measure µ ∈ P(R) as ∀t ∈ R, F µ (t) = µ ] -∞, t] = 1 ]-∞,t] (x) dµ(x).

(2.12)

It is well known that F µ is a càdlàg function, i.e. "continue à droite, limite à gauche" (right continuous with left limits). While not always invertible, we can define its pseudo-inverse F -1 µ , also called the quantile function, as

∀u ∈ [0, 1], F -1 µ (u) = inf{x ∈ R, F µ (x) ≥ u}.
(2.13)

Then, we have the following closed-form for the p-Wasserstein distance (Santambrogio, 2015, Proposition 2.17).

Proposition 2.2. Let p ≥ 1, µ, ν ∈ P p (R). Then,

W p p (µ, ν) = 1 0 |F -1 µ (u) -F -1 ν (u)| p du. (2.14)
If µ is atomless, as (F µ ) # µ = Unif([0, 1]) (Santambrogio, 2015, Lemma 2.4), using the change of variable formula, we know that we have

W p p (µ, ν) = x -F -1 ν F µ (x) p dµ(x).
(2.15)

Hence, from this equality, we recognize that the Monge map between µ (atomless) and ν ∈ P p (R) is of the form T (x) = F -1 ν F µ (x) . This function is also known as the increasing rearrangement map. Furthermore, we see also that the derivative of the Kantorovich potential is of the form ψ (x) = x -T (x) = x -F -1 ν F µ (x) . More generally, for arbitrary µ, the OT plan is given by (F -1 µ , F -1 ν ) # Unif([0, 1]) (Santambrogio, 2015, Theorem 2.9).

In the light of these closed-forms, the one dimensional case is particularly attractive. Moreover, we observe that the p-Wasserstein distance is actually the L p norm between the quantile functions, and hence a Hilbertian metric. In particular, for p = 2, the space P 2 (R) endowed with W 2 is a Hilbert space. This is actually not the case in higher dimensions, as the Wasserstein space is in general of positive curvature (in the sense of Alexandrov) (Ambrosio et al., 2008, Section 7.3). And it is known that it cannot be embedded in Hilbert spaces in higher dimensions (Peyré et al., 2019, Section 8.3).

Gaussian case.

Another particularly interesting case where we have closed-forms is when both measures are Gaussians [START_REF] Givens | A Class of Wasserstein Metrics for Probability Distributions[END_REF][START_REF] Gelbrich | On a Formula for the L2 Wasserstein Metric between Measures on Euclidean and Hilbert Spaces[END_REF][START_REF] Takatsu | On Wasserstein Geometry of the Space of Gaussian Measures[END_REF].

Proposition 2.3. Let µ = N (m µ , Σ µ ) and ν = N (m ν , Σ ν ) with m µ , m ν ∈ R d and Σ µ , Σ ν ∈ S + d (R) positive semi-definite matrices. Then, W 2 2 (µ, ν) = m µ -m ν 2 2 + Tr Σ µ + Σ ν -2(Σ 1 2 µ Σ ν Σ 1 2 µ ) 1 2 
.

(2.16)

Furthermore, the Monge map is of the form T : x → m ν + A(x -m µ ) where

A = Σ -1 2 µ (Σ 1 2 µ Σ ν Σ 1 2 µ ) 1 2 Σ -1 2 µ .
(2.17)

The second part of (2.16) actually defines a distance between positive semi-definite matrices known in the literature of quantum information as the Bures distance [START_REF] Bhatia | On the Bures-Wasserstein Distance between Positive Definite Matrices[END_REF]. Thus, we often call the Wasserstein distance between Gaussians the Bures-Wasserstein distance.

These results are also true when considering elliptical distributions [START_REF] Gelbrich | On a Formula for the L2 Wasserstein Metric between Measures on Euclidean and Hilbert Spaces[END_REF][START_REF] Muzellec | Generalizing Point Embeddings using the Wasserstein Space of Elliptical Distributions[END_REF] or restricting to the Linear Monge problem [START_REF] Flamary | Concentration Bounds for Linear monge Mapping Estimation and Optimal Transport Domain Adaptation[END_REF]. Note also that (2.16) is always a lower bound of the Wasserstein distance [START_REF] Gelbrich | On a Formula for the L2 Wasserstein Metric between Measures on Euclidean and Hilbert Spaces[END_REF].

Restricting the space to Gaussian measures endowed with the Wasserstein distance, we obtain the Bures-Wasserstein space BW (R d ) [START_REF] Bhatia | On the Bures-Wasserstein Distance between Positive Definite Matrices[END_REF], which is a Riemannian manifold (contrary to the Wasserstein space which has only a Riemannian structure [START_REF] Otto | The Geometry of Dissipative Evolution Equations: the Porous Medium Equation[END_REF]) and has received many attention recently [START_REF] Lambert | Variational Inference via Wasserstein Gradient Flows[END_REF][START_REF] Diao | Forward-backward Gaussian variational inference via JKO in the Bures-Wasserstein Space[END_REF][START_REF] Bréchet | Critical Points and Convergence Analysis of Generative Deep Linear Networks Trained with Bures-Wasserstein Loss[END_REF].

Tree metrics. For particular choices of metrics, the computation of the Wasserstein distance can be alleviated. An example is the one of tree metrics for which all elements where the metric is defined are included in the nodes of a tree and the distance between two points is the length of the path between two nodes [START_REF] Le | Tree-Sliced Variants of Wasserstein Distances[END_REF][START_REF] Takezawa | Fixed Support Tree-Sliced Wasserstein Barycenter[END_REF]. Formally, let T = (V, E) be a tree with v 0 as root. For any v ∈ V \ {v 0 }, denote w v the length of the edge between v and its parent node and denote by d T : V × V → R + the tree metric. Then, denoting Γ(v) the set of nodes contained in the subtree rooted at v, the 1-Wasserstein distance with cost d T between µ, ν ∈ P(V ) is given by [START_REF] Evans | The Phylogenetic Kantorovich-Rubinstein Metric for Environmental Sequence Samples[END_REF][START_REF] Le | Tree-Sliced Variants of Wasserstein Distances[END_REF], Proposition 1)

W d T (µ, ν) = v∈V w v µ Γ(v) -ν Γ(v) .
(2.18)

Computational Optimal Transport

In this section, we discuss how to approximate the Wasserstein distance in practice. The first step is to approximate the probability distributions as we generally do not have access to its real form in general. Then, one must see how to obtain the Wasserstein distance numerically. For a more thorough overview of the computational methods to solve the OT problem, we refer to [START_REF] Peyré | Computational Optimal Transport: With Applications to Data Science[END_REF].

Modeling Probability Distributions

Model data as probability distributions. In general, we have only access to samples x 1 , . . . , x n ∈ R d and we need to approximate the probability distributions, generally unknown, followed by these samples in order to use the Optimal Transport framework.

A first way to approximate the OT distance between samples could be to first approximate their mean and covariance matrix as (2.19) and then approximate the underlying distribution µ by μ = N ( mn , Σn ). This can be a good approximation for high-dimensional datasets for example [START_REF] Bonneel | A survey of Optimal Transport for Computer Graphics and Computer Vision[END_REF]. Then, leveraging Proposition 2.3, we can easily compute the OT map with complexity O(nd 2 + d 3 ). It has been used for example for color transfer [START_REF] Pitié | The Linear Monge-Kantorovitch Linear Colour Mapping for Example-based Colour Transfer[END_REF], but also as a quantifier of the quality of generated images, called the Fréchet Inception distance (FID), by comparing the features of Inception models [START_REF] Heusel | GANs trained by a two timescale Update Rule Converge to a local Nash Equilibrium[END_REF], or to compare graphs [START_REF] Petric Maretic | GOT: an Optimal Transport Framework for Graph Comparison[END_REF] or datasets [START_REF] Alvarez-Melis | Geometric Dataset Distances via Optimal Transport[END_REF]. However, this approximation only uses the two first moments, and can be costly to compute in high dimensional scenarios.

mn = 1 n n i=1 δ xi , Σn = 1 n -1 n i=1 (x i -mn )(x i -mn ) T ,
Other approaches directly use the discrete samples to approximate the distribution µ. First, using an Eulerian representation, one can discretize the space with a grid. Then, the approximated distribution is μN = N i=1 α i δ xi where (x i ) N i=1 represents a regular grid of the space, and α i represents the number of samples x j which closest point on the grid is xi . Note that to have probability distributions, the (α i ) N i=1 are normalized such that N i=1 α i = 1. While these methods can approximate fairly well distributions in low dimensional spaces, they do not scale well with the dimension since the size of the grid augments exponentially with it. Instead, one can use the Lagrangian representation, which maps each point x i to a Dirac δ xi and approximates the distribution as μn = 1 n n i=1 δ xi . This is maybe the most straightforward way to approximate the underlying distribution.

Estimating the Wasserstein Distance

As we saw in the previous section, we are often required in practice to approximate the probability distributions with discrete distributions. When approximating µ and ν by their sample counterparts μn = 1 n n i=1 δ xi and νn = 1 n n i=1 δ yi where x 1 , . . . , x n ∼ µ and y 1 , . . . , y n ∼ ν, it is common practice to approximate the Wasserstein distance W p (µ, ν) by the plug-in estimator W p (μ n , νn ) [START_REF] Manole | Plugin Estimation of Smooth Optimal Transport Maps[END_REF]. Thus, we discuss in this section how to compute the Wasserstein distance between discrete samples.

Wasserstein distance as a linear program

. Let µ = n i=1 α i δ xi and ν = m j=1 β j δ yj where for all i, j, x i , y j ∈ R d and α = (α 1 , . . . , α n ) ∈ Σ n , β = (β 1 , . . . , β m ) ∈ Σ m with Σ n = {α ∈ R n + , n i=1 α i = 1} the probability simplex. Let's note C ∈ R n×m the matrix such that for any i, j, C i,j = x i -y j p 2 .
The Wasserstein distance then can be written as

W p p (µ, ν) = inf P ∈Π(α,β)
C, P , (2.20) where Π(α, β) = {P ∈ R n×m + , P 1 m = α, P T 1 n = β} is the set of couplings between α and β. Under this form, the Optimal Transport problem is a linear program [START_REF] Dantzig | Linear Programming[END_REF] and classical algorithms can be used (see e.g. (Peyré et al., 2019, Section 3)). However, the main bottleneck is that the computational complexity is in general super-cubic O(n 3 log n) with respect to the number of samples n [START_REF] Pele | Fast and Robust Earth Mover's Distances[END_REF]. This prevents the computation of the Wasserstein distance in large scale problems. Furthermore, approximating the Wasserstein distance by the plug-in estimator suffers from the curse of dimensionality as [START_REF] Boissard | On the Mean Speed of Convergence of Empirical and Occupation Measures in Wasserstein Distance[END_REF][START_REF] Niles-Weed | Estimation of Wasserstein Distances in the Spiked Transport Model[END_REF]. This result means that the number of samples required to have an approximation of the same order when augmenting the dimension must increase exponentially. These different drawbacks motivated several approximations which we describe now.

W p p (μ n , νn ) converges toward W p p (µ, ν) in O(n -1 d )
Entropic regularized Optimal Transport. To alleviate the computational cost of computing the Wasserstein distance, it is possible to regularize the problem. Several such regularizations are possible [START_REF] Flamary | Optimal Transport with Laplacian Regularization[END_REF][START_REF] Blondel | Smooth and Sparse Optimal Transport[END_REF][START_REF] Liu | Sparsity-Constrained Optimal Transport[END_REF][START_REF] Lindbäck | Bringing Regularized Optimal Transport to Lightspeed: a Splitting Method Adapted for GPUs[END_REF], and give different properties. Here, we discuss the most popular which uses the entropic regularization [START_REF] Cuturi | Sinkhorn Distances: Lightspeed Computation of Optimal Transport[END_REF]. Let > 0, µ, ν ∈ P(R d ), then the entropic regularized OT problem is defined as (2.21) where KL denotes the Kullback-Leibler divergence (or relative entropy) and is defined as

W (µ, ν) = inf γ∈Π(µ,ν) c(x, y) dγ(x, y) + KL(π||µ ⊗ ν),
KL(π||µ ⊗ ν) = log dπ(x,y) dµ(x)dν(y) dπ(x, y) if π µ ⊗ ν +∞ otherwise. (2.22)
The parameter quantifies how much the problem is regularized by the KL divergence. One important feature of this problem is that it can be solved in O(n 2 ) using the Sinkhorn algorithm [START_REF] Cuturi | Sinkhorn Distances: Lightspeed Computation of Optimal Transport[END_REF], which can be implemented efficiently on GPUs. Moreover it converges to the OT problem when → 0 [START_REF] Carlier | Convergence of Entropic Schemes for Optimal Transport and Gradient Flows[END_REF] and it is differentiable (Luise et al., 2018, Theorem 2) contrary to the Wasserstein distance. However, it is known that transport plans are more blurred than the true OT plan [START_REF] Blondel | Smooth and Sparse Optimal Transport[END_REF]. One major bottleneck is that this quantity is not a distance nor a divergence as it is biased (W (µ, µ) = 0) [START_REF] Feydy | Interpolating between Optimal Transport and MMD using Sinkhorn Divergences[END_REF]. This motivated to introduce a correction term and to define the Sinkhorn divergence [START_REF] Ramdas | On Wasserstein Two-Sample Testing and Related Families of Nonparametric Tests[END_REF][START_REF] Genevay | Learning Generative Models with Sinkhorn Divergences[END_REF] as .23) This divergence actually interpolates between W c (µ, ν) (as → 0) and MMD(µ, ν) for a particular kernel (as → ∞), and is a convex, smooth divergence metrizing the weak convergence [START_REF] Feydy | Interpolating between Optimal Transport and MMD using Sinkhorn Divergences[END_REF]. It was also shown to be useful as an estimator of the squared Wasserstein distance [START_REF] Chizat | Faster Wasserstein Distance Estimation with the Sinkhorn Divergence[END_REF].

S (µ, ν) = W (µ, ν) - 1 2 W (µ, µ) - 1 2 W (ν, ν). ( 2 

Minibatch Optimal Transport.

In Deep Learning applications, loading the whole data on GPUs is typically intractable and practitioners rely on batches of data to optimize the neural networks through stochastic gradient descent. It has naturally been used with OT objectives [START_REF] Genevay | Learning Generative Models with Sinkhorn Divergences[END_REF][START_REF] Damodaran | DeepJDOT: Deep Joint Distribution Optimal Transport for Unsupervised Domain Adaptation[END_REF]. [START_REF] Fatras | Learning with Minibatch Wasserstein: Asymptotic and Gradient Properties[END_REF] formalized the minibatch OT problem as Low-rank OT. Some recent works proposed to restrain the set of couplings to the ones having lowrank constraints [START_REF] Forrow | Statistical Optimal Transport via Factored Couplings[END_REF][START_REF] Scetbon | Low-Rank Sinkhorn Factorization[END_REF]Scetbon and Cuturi, 2022)

M W p (µ, ν) = E X1,...,Xm∼µ,Y1,...,Ym∼ν   W p   1 m m i=1 δ Xi , 1 m m j=1 δ Yj     . ( 2 
. For r ≥ 1, denote Π r (µ, ν) = {γ ∈ Π(µ, ν), ∃(µ i ) r i=1 , (ν i ) r i=1 ∈ P p (R d ) r , λ ∈ Σ * r , such that γ = r i=1 λ i (µ i ⊗ ν i )} the set of rank-r coupling, with Σ *
r the subset of the simplex with positive vectors of R d + . Then, the low rank OT cost between µ, ν ∈ P(R d ) is defined as

LROT c,r (µ, ν) = inf γ∈Πr(µ,ν) c(x, y) dγ(x, y).
(2.25) [START_REF] Scetbon | Low-Rank Sinkhorn Factorization[END_REF] showed that using a mirror-descent scheme, this can be solved in O(nrd) and Scetbon and Cuturi (2022) studied some of its statistical properties.

Tree variants. As we saw earlier, computing the 1-Wasserstein distance with a tree metric can be done efficiently as we have access to a closed-form. Thus, by approximating the Euclidean metric by a tree metric (see e.g. [START_REF]On Approximating Arbitrary Metrices by Tree Metrics[END_REF]), it is possible to approximate the Wasserstein distance efficiently [START_REF] Backurs | Scalable Nearest Neighbor Search for Optimal Transport[END_REF]. Additionally, using a partition-based tree metric d H T of depth H, it can be shown that [START_REF] Le | Tree-Sliced Variants of Wasserstein Distances[END_REF]) (2.26) with β the side of hypercubes.

W 2 (μ n , νn ) ≤ 1 2 W d H T (μ n , νn ) + β √ d 2 H ,
Neural estimators for continuous solvers. While previous methods focus on computing or approximating the OT problem between discrete distributions, some works proposed instead to approximate it directly between continuous distributions. For example, [START_REF] Makkuva | Optimal Transport mapping via Input Convex Neural Networks[END_REF]; Korotin et al. (2021a); [START_REF] Rout | Generative Modeling with Optimal Transport Maps[END_REF] leverage the dual formulation and model potential with neural networks before solving an underlying minimax problem. More recently, [START_REF] Uscidda | The Monge Gap: A Regularizer to Learn All Transport Maps[END_REF] proposed to use the Monge gap defined as M µ (T ) = c x, T (x) dµ(x) -M c (µ, T # µ) as a regularizer to enforce the optimality which can be more efficient to solve and which extends to general costs. These different solvers require neural networks to approximate the Wasserstein distance and are thus more computationally intensive. Moreover, the objective being to compute the Wasserstein distance between general distributions while computing the OT map, the objectives are different from the ones considered in this thesis.

Sliced-Wasserstein Distance

Another alternative to the original Wasserstein problem is to consider proxy distances which have similar behaviors while being efficient to compute and having better scalability with respect to the number of samples and with the dimension. We introduce here the Sliced-Wasserstein distance and discuss some of its properties and variants.

Directions

Definition and Computation

Definition. The Sliced-Wasserstein distance, first introduced in [START_REF] Rabin | Wasserstein Barycenter and its Application to Texture Mixing[END_REF] to approximate barycenters, and then studied in [START_REF] Bonnotte | Unidimensional and Evolution Methods for Optimal Transportation[END_REF][START_REF] Bonneel | Sliced and Radon Wasserstein Barycenters of Measures[END_REF], leverages the one dimensional formulation of the Wasserstein distance (2.14) by computing the average of the Wasserstein distance between measures projected in one dimensional spaces in all possible directions. We illustrate the projection process of 2D densities in Figure 2.1.

Definition 2.3 (Sliced-Wasserstein). Let p ≥ 1, µ, ν ∈ P p (R d ).
Then, the Sliced-Wasserstein distance is defined as

SW p p (µ, ν) = S d-1 W p p (P θ # µ, P θ # ν) dλ(θ), (2.27)
where λ is the uniform measure on the hypersphere . Hence, it amounts at projecting each point with the orthogonal projection on the line span(θ) and getting the corresponding coordinate. We illustrate this in Figure 2.2a. Then, we need to compute the one dimensional Wasserstein distance between P θ # μn and P θ # νm , as

S d-1 = {x ∈ R d , x 2 2 = 1} and P θ : x → x,
W p p (P θ # μn , P θ # νm ) = 1 0 |F -1 P θ # μn (u) -F -1 P θ # νm (u)| p du.
(2.28) This integral can be easily approximated using e.g. a rectangle method or a Monte-Carlo approximation.

Note that in the particular case of n = m with uniform weights,

W p p (P θ # μn , P θ # νn ) = 1 n n i=1 θ, x σ θ (i) -y τ θ (i) p , ( 2.29) 
where σ θ (respectively τ θ ) is the permutation sorting θ, x i i (respectively θ,

y i i ), i.e. θ, x σ θ (1) ≤ • • • ≤ θ, x σ θ (n) (respectively θ, y τ θ (1) ≤ • • • ≤ θ, y τ θ (n)
). Thus, we only need to sort the projections of each measure in order to get the order statistics and to compute SW.

To approximate the outer integral with respect to λ, we use a Monte-Carlo approximation by first sampling L directions θ 1 , . . . , θ L ∼ λ, which can be done using the stochastic representation of λ = Unif(S d-1 ) [START_REF] Fang | Symmetric Multivariate and related Distributions[END_REF]) and amounts at first sampling Z ∼ N (0, I d ) and then defining θ = Z/ Z 2 ∼ λ for ∈ {1, . . . , L}. Finally, the Sliced-Wasserstein distance between µ and ν is approximated by

SW p p (μ n , νm ) = 1 L L =1 W p p (P θ # μn , P θ # νm ). (2.30)
We sum up the procedure in Algorithm 2.1. The overall complexity is in O Ln(d+log n) (Lnd operations for the projections and Ln log n for the sorting operations).

Differentiability. Independently from the low computational complexity, it is also differentiable with respect to the position of the particles which justifies its use in many learning tasks, and to perform gradient descent over particles. This property relies on the fact that the 1D Wasserstein distance is differentiable almost everywhere (Feydy, 2020, Section 3.2.4), which is justified as the sort operation is differentiable almost everywhere [START_REF] Blondel | Fast Differentiable Sorting and Ranking[END_REF], and in particular well differentiable when all the values are different.

Algorithm 2.1 Computing SW

Input:

(x i ) n i=1 ∼ µ, (y j ) n j=1 ∼ ν, (α i ) n i=1 , (β j ) n j=1 ∈ ∆ n , L the number of projections, p the order for = 1 to L do Draw θ ∈ S d-1 ∀i, j, x i = θ, x i , ŷ j = θ, y j Compute W p p ( n i=1 α i δ x i , n j=1 β j δ ŷ j ) end for Return 1 L L =1 W p p ( n i=1 α i δ x i , n j=1 β j δ ŷ j )

Properties

In this Section, we discuss and sum up important properties of the Sliced-Wasserstein distance, which motivate its use as a proxy of the Wasserstein distance.

Distance. First, the SW distance is indeed a distance, which justifies its use to compare probability distributions regardless of its connections with the Wasserstein distance.

Proposition 2.4 (Distance). Let p ≥ 1, SW p is a finite distance on P p (R d ).
Proof. See (Bonnotte, 2013, Proposition 5.1.2).

The pseudo-distance properties (symmetry and triangular inequality) rely on the slicing process. For the indiscernible property, it is possible to use the injectivity of the Fourier transform F to demonstrate it as, for µ, ν ∈ P p (R d ), SW p (µ, ν) = 0 implies that for λ-almost every θ ∈ S d-1 , P θ # µ = P θ # ν. Then, using that for all s ∈ R, F(P θ # µ)(s) = Fµ(sθ), we get the result. Another way of seeing it is to link SW with the Radon transform [START_REF] Bonneel | Sliced and Radon Wasserstein Barycenters of Measures[END_REF]. This transform was introduced by [START_REF] Radon | Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten[END_REF] and has been very popular e.g. in tomography [START_REF] Helgason | Integral Geometry and Radon Transforms[END_REF].

Definition 2.4 (Radon transform).

The Radon transform operator

R : L 1 (R d ) → L 1 (R × S d-1 ) is defined as, for all f ∈ L 1 (R d ), ∀t ∈ R, θ ∈ S d-1 , Rf (t, θ) = f (x)1 { x,θ =t} dx.
(2.31)

The back-projection operator (dual transform) R

* : C 0 (R × S d-1 ) → C 0 (R d )
, where C 0 denotes the set of continuous functions that vanish at infinity, is defined as, for all

g ∈ C 0 (R × S d-1 ), ∀x ∈ R d , R * g(x) = S d-1 g( x, θ , θ) dλ(θ).
(2.32)

The Radon transform on the set of measures

R : M(R d ) → M(R×S d-1 ) is defined, for µ ∈ M(R d ),
as the measure Rµ which satisfies, for all g ∈ C 0 (R × S d-1 ),

R×S d-1 g(t, θ) d(Rµ)(t, θ) = R d R * g(x) dµ(x). (2.33)
As the Radon transform of a measure is a measure on R × S d-1 , we can use the disintegration (Definition 2.2) with respect to λ. Thus, we have Rµ = λ ⊗ K, where K is a probability kernel on S d-1 × B(R). This kernel is actually exactly the orthogonal projection of µ, i.e. for λ-almost every θ ∈ S d-1 , K(θ, •) = P θ # µ (Bonneel et al., 2015, Proposition 6). Thus, the SW distance can be written using the Radon transform. For clarity, we will write K(θ, •) = (Rµ) θ . Proposition 2.5 (Relation with Radon transform). Let p ≥ 1. For any µ, ν

∈ P p (R d ), SW p p (µ, ν) = S d-1 W p p (Rµ) θ , (Rν) θ dλ(θ). (2.34)
Using the injectivity of the Radon transform on the set of measures (see e.g. [START_REF] Boman | Support Theorems for the Radon Transform and Cramér-Wold Theorems[END_REF], Theorem A)), we can also conclude that SW is a distance.

Topological Properties. Besides being a distance, we can also link its topological properties with the ones of the Wasserstein distance. This motivates further its use as a proxy since it has a relatively similar behavior. First, [START_REF] Bonnotte | Unidimensional and Evolution Methods for Optimal Transportation[END_REF] showed that the two distances are actually weakly equivalent on distributions supported on compact sets.

Proposition 2.6 (Equivalence with Wasserstein

). Let p ≥ 1 and denote B(0, r) = {x ∈ R d , x 2 <
r} the open ball centered in 0 and of radius r > 0. Then, for µ, ν ∈ P p B(0, r) , there exist constants

0 < c d,p ≤ 1 and C d,p > 0 such that SW p p (µ, ν) ≤ c p d,p W p p (µ, ν) ≤ C p d,p r p-1/(d+1) SW p (µ, ν) 1/(d+1) , (2.35) with c p d,p = 1 d S d-1 θ p p dλ(θ).
Proof. See (Bonnotte, 2013, Theorem 5.1.5). Bayraktar and Guoï (2021, Theorem 2.1) showed that for d ≥ 2 and p = 1, SW 1 and the Wasserstein distance are not strongly equivalent, i.e. we cannot find a constant c for which the Wasserstein distance is upperbounded by c • SW 1 .

The fact that the Wasserstein distance metrizes the weak convergence is well-known (see e.g. (Villani, 2009, Theorem 6.8)). This last proposition shows that SW also metrizes the weak convergence for compactly supported measures. [START_REF] Kolouri | Generalized Sliced Wasserstein Distances[END_REF] showed that it holds on the general domain. Hence both metrics are topologically equivalent. We recall that a sequence of probability measures (µ k ) k∈N converges weakly to µ if, for any continuous and bounded function f ,

lim k→∞ f dµ k = f dµ.
(2.36)

In this case, we note

µ k L ----→ k→∞ µ.
Proposition 2.7 (Weak convergence). Let p ≥ 1, and (µ k ) k∈N be a sequence of probability measures in

P p (R d ).
Then, µ k converges weakly to µ if and only if lim k→∞ SW p (µ k , µ) = 0.

Proof. See (Nadjahi et al., 2019, Theorem 1).

Statistical Properties.

Besides being more computationally efficient than the Wasserstein distance, the Sliced-Wasserstein distance also happens to have a better behavior in high dimensional settings when approximated with the plug-in estimator. This has been studied in (Nadjahi et al., 2020b), in which the sample complexity has been investigated by providing the convergence rate of SW p (μ n , νn ) towards SW p (µ, ν). Nadjahi et al. (2020b) showed that thanks to the slicing process and contrary to the Wasserstein distance, the sample complexity is independent of the dimension. Thus, to have the same approximation, we do not need more samples in higher dimensions. This is a major property which also motivates to use the Sliced-Wasserstein distance for generative modeling, where the data can typically be of very high dimension and where, because of the limited memory of GPUs, small batches need to be used.

Proposition 2.8 (Sample complexity). Let p ≥ 1, q > p, µ, ν ∈ P p (R d ). Let x 1 , . . . , x n ∼ µ and y 1 , . . . , y n ∼ ν, and denote μn = 1 n n i=1 δ xi , νn = 1 n n i=1 δ yi . Let M q (µ) =
x q 2 dµ(x) the moments of order q. Then, there exists a constant C p,q depending only on p and q such that

E |SW p (μ n , νn ) -SW p (µ, ν)| ≤ C 1/p p,q M 1/q q (µ) + M 1/q q (ν)      n -1/(2p) if q > 2p, n -1/(2p) log(n) 1/p if q = 2p, n -(q-p)/(pq) if q ∈ (p, 2p).
(2.37)

Proof. See (Nadjahi et al., 2020b, Corollary 2).

However, there is a second approximation done in practice as the integral w.r.t the uniform distribution on S d-1 is intractable. Thus, we also perform a Monte-Carlo approximation to approximate this integral and use (2.30). Nadjahi et al. (2020b) provided a bound to quantify this error which depends on the number of projections used for the Monte-Carlo approximation as well as the variance, which depends implicitly on the dimension. This can hinder the approximation in high dimensional settings. Proposition 2.9 (Projection complexity). Let p ≥ 1, µ, ν ∈ P p (R d ). Then,

E θ | SW p p,L (µ, ν) -SW p p (µ, ν)| 2 ≤ 1 L Var θ W p p (P θ # µ, P θ # ν) . (2.38)
Proof. See (Nadjahi et al., 2020b, Theorem 6).

We also mention (Nietert et al., 2022b, Proposition 5) which provided an explicit convergence rate by bounding the variance in terms of the parameters of the problem.

Xu and Huang (2022, Proposition 4) further showed a concentration result allowing to quantify the number of projections needed to have a small enough Monte-Carlo error. Proposition 2.10. Let p ≥ 1, > 0, δ > 0 and µ, ν ∈ P p (R d ). When the number of projections L satisfies

L ≥ 2K 2 (d-1) 2 log(2/δ) with K = pW p-1 p (µ, ν) M p (µ) + M p (ν)
with M p the moments of order p, then .39) Proof. See (Xu and Huang, 2022, Proposition 4). [START_REF] Manole | Minimax Confidence Intervals for the Sliced Wasserstein Distance[END_REF] also derived confidence intervals while Goldfeld et al. (2022b); [START_REF] Xu | Central Limit Theorem for the Sliced 1-Wasserstein Distance and the Max-Sliced 1-Wasserstein Distance[END_REF]; Xi and Niles-Weed (2022) derived central limit theorems for SW. For generative model tasks, [START_REF] Kolouri | Generalized Sliced Wasserstein Distances[END_REF] provided asymptotic guarantees for using SW. For these types of problems, it was noted that using a small amount of projections was enough, which might be connected to the stochastic approximations process [START_REF] Delyon | Stochastic Approximation with Decreasing Gain: Convergence and Asymptotic Theory[END_REF]. More recently, Tanguy et al. (2023a;b); [START_REF] Tanguy | Convergence of SGD for Training Neural Networks with Sliced Wasserstein Losses[END_REF] analyzed in more depth properties of the empirical Sliced-Wasserstein distance between discrete measures and studied the convergence of stochastic gradient descent with SW as objective.

P | SW p p,L (µ, ν) -SW p p (µ, ν)| ≥ ≤ δ. ( 2 
Geodesics in Sliced-Wasserstein Space. It is well-known that the Wasserstein space is a geodesic space [START_REF] Otto | The Geometry of Dissipative Evolution Equations: the Porous Medium Equation[END_REF]. Thus, a natural question is whether or not we have similar properties when endowing the space of probability measures with SW. This was studied by Candau-Tilh (2020), who showed that, surprisingly, it is not a geodesic space, but rather a pseudo-geodesic space whose geodesics are related to the Wasserstein distance.

We recall here first some notions in metric spaces. Let (X, d) be some metric space. In our case, we will have X = P 2 (Ω) with Ω a bounded, open convex set and d = SW 2 . We first need to define an absolutely continuous curve.

Definition 2.5 (Absolutely continuous curve). A curve w

: [0, 1] → X is said to be absolutely continuous if there exists g ∈ L 1 ([0, 1]) such that ∀t 0 < t 1 , d w(t 0 ), w(t 1 ) ≤ t1 t0 g(s)ds.
(2.40)

We denote by AC(X, d) the set of absolutely continuous measures and by AC x,y (X, d) the set of curves in AC(X, d) starting at x and ending at y. Then, we can define the length of an absolutely continuous curve w ∈ AC(X, d) as

L d (w) = sup n-1 k=0 d w(t k ), w(t k+1 ) , n ≥ 1, 0 = t 0 < t 1 < • • • < t n = 1 .
(2.41)

Then, we say that a space X is a geodesic space if for any x, y ∈ X,

d(x, y) = min {L d (w), w ∈ AC(X, d), w(0) = x, w(1) = y} . (2.42)
Candau-Tilh (2020) showed in Theorem 2.4 that (P 2 (Ω), SW 2 ) is not a geodesic space but rather a pseudo-geodesic space since for µ, ν

∈ P 2 (Ω), inf L SW2 (w), w ∈ AC µ,ν (P 2 (Ω), SW 2 ) = c d,2 W 2 (µ, ν).
(2.43)

We see that the infimum of the length in the SW space is the Wasserstein distance. Hence, it suggests that the geodesics in SW space are related to the ones in Wasserstein space, which are well-known since they correspond to the McCann interpolation (see e.g. (Santambrogio, 2015, Theorem 5.27)).

Variants

While the Sliced-Wasserstein distance is an appealing proxy of the Wasserstein distance which can scale to large problems and has many nice properties, it suffers from some drawbacks. Hence, a whole line of works consists of developing variants of the Sliced-Wasserstein distance. We provide a (non exhaustive) introduction to some of these variants.

With different slicing distributions. As the SW distance integrates over all possible directions, it also takes into account directions which are not relevant to discriminate the two distributions (see for example the direction θ = 40°in Figure 2.1b). This point is exacerbated in practice as we use a Monte-Carlo approximation to approximate the integral. Hence, many directions, for which the Wasserstein distance between the projected distributions is almost null, are actually irrelevant [START_REF] Deshpande | Max-Sliced Wasserstein Distance and its use for GANs[END_REF]. A solution to this issue is to use a slicing distribution which will mainly draw relevant directions where the two distributions can be well discriminated. [START_REF] Deshpande | Max-Sliced Wasserstein Distance and its use for GANs[END_REF] first proposed to only sample the direction which is the most discriminative, which motivated the max-SW distance max-SW p p (µ, ν) = max .44) This comes back at choosing for slicing distribution σ = δ θ * where θ * ∈ argmax θ∈S d-1 W p p (P θ # µ, P θ # ν). However, choosing only the most important direction can miss some potentially relevant directions. Thus, [START_REF] Dai | Sliced Iterative Normalizing Flows[END_REF] proposed to sample the K most informative directions as

θ∈S d-1 W p p (P θ # µ, P θ # ν). ( 2 
max-K-SW p p (µ, ν) = max θ1,...,θ K orthonormal 1 K K k=1 W p p (P θ k # µ, P θ k # ν), (2.45)
while Nguyen et al. (2023b) proposed to sample θ 1 , . . . , θ K as samples from a Markov chain defined on S d-1 with well chosen Markov kernel to specify the transitions. Nguyen et al. (2021a) proposed instead to learn a distribution on S d-1 (parameterized in practice with a neural network) and defined the Distributional SW distance as

DSW p p (µ, ν) = sup σ∈M C S d-1 W p p (P θ # µ, P θ # ν) dσ(θ), (2.46) 
where

M C = {σ ∈ P(S d-1 ), E θ,θ ∼σ [| θ, θ |] ≤ C} for C ≥ 0.
As the distribution is approximated by a neural network, this is a parametric model. Some other parametric model specified the distribution such as in (Nguyen et al., 2021b) where it is chosen as a von Mises-Fisher distribution or a mixture of von Mises-Fisher distributions. [START_REF] Ohana | Shedding a PAC-Bayesian Light on Adaptive Sliced-Wasserstein Distances[END_REF] proposed to find the best distribution among von Mises-Fisher distributions by optimizing a PAC-Bayes bound. More recently, Nguyen and Ho (2023b) proposed a parameter-free slicing distribution by choosing an energy-based slicing distribution

σ µ,ν (θ, f ) ∝ f W p p (P θ # µ, P θ # ν)
with f a monotonically increasing function. [START_REF] Ohana | Shedding a PAC-Bayesian Light on Adaptive Sliced-Wasserstein Distances[END_REF] named these methods "Adaptative Sliced-Wasserstein distances". In order to alleviate the computational cost required by solving a min-max problem when using these losses into generative models, Nguyen and Ho (2022a) further proposed to use amortized optimization.

With different projections.

Another bottleneck of the SW distance is that it uses linear projections, which can provide a low projection efficiency, especially in high dimensional settings where the data often lie on manifolds. To reduce the number of projections needed, nonlinear projections were proposed by Kolouri et al. (2019a). Using the relation with the Radon transform (see Proposition 2.5), they proposed to replace the Radon transform with generalized Radon transforms [START_REF] Ehrenpreis | The Universality of the Radon Transform[END_REF][START_REF] Homan | Injectivity and Stability for a Generic Class of Generalized Radon Transforms[END_REF], which integrate along hypersurfaces instead of hyperplanes. Formally, generalized Radon transforms are defined for (2.47) where g : Kolouri et al. (2019a) also proposed to use a circular projection with g(x, θ) = x -rθ 2 for r > 0 (which we illustrate in Figure 2.2b). Kolouri et al. (2019a) observed that the resulting SW discrepancy is a distance if and only if the corresponding Radon transform is injective. This is for example the case for the polynomial version [START_REF] Rouvière | Nonlinear Radon and Fourier Transforms[END_REF] or for the circular Radon transform [START_REF] Kuchment | Generalized Transforms of Radon type and their Applications[END_REF], but not necessarily with the neural network version. [START_REF] Chen | Augmented Sliced Wasserstein Distances[END_REF] further observed that using an invertible neural network f and projections of the form g(x, θ) = θ, f (x) allows to satisfy the distance property. Note that for projections of this form, we can see it as embedding the data in another space where they can be better discriminated, in a similar fashion as e.g. kernel methods [START_REF] Hofmann | KernelMmethods in Machine Learning[END_REF].

f ∈ L 1 (R d ) as ∀t ∈ R, θ ∈ S d-1 , Gf (t, θ) = f (x)1 {g(x,θ)=t} dx,
X × (R d \ {0}) → R, with X ⊂ R d ,
Changing the projections can also allow better handling of data structures. For instance, Nguyen and Ho (2022b) introduced convolution projections on images to better capture the spatial structure of images compared to naively vectorizing them.

On different subspaces. While the SW distance is computationally efficient as it leverages the 1D closed-form of the Wasserstein distance, one can wonder whether one could obtain better discriminative power by projecting on higher dimensional subspaces and hence extracting more geometric information [START_REF] Lin | On Projection Robust Optimal Transport: Sample Complexity and Model Misspecification[END_REF]. This line of work was first introduced by [START_REF] Paty | Subspace robust Wasserstein distances[END_REF] with the Projection Robust Wasserstein (PRW) distance .48) where

PRW p p (µ, ν) = max E∈G d,k W p p (P E # µ, P E # ν), ( 2 
G d,k = {E ⊂ R d , dim(E) = k} is the Grassmannian and P E the orthogonal projection on E ∈ G d,k .
This formulation can also alleviate the curse of dimensionality as it has a better sample complexity [START_REF] Lin | On Projection Robust Optimal Transport: Sample Complexity and Model Misspecification[END_REF][START_REF] Niles-Weed | Estimation of Wasserstein Distances in the Spiked Transport Model[END_REF]. Riemannian optimization onto the Stiefel manifolds were proposed in [START_REF] Lin | Projection Robust Wasserstein Distance and Riemannian Optimization[END_REF]Huang et al., 2021b;[START_REF] Jiang | A Riemannian Exponential Augmented Lagrangian Method for Computing the Projection Robust Wasserstein Distance[END_REF] to compute this problem more efficiently as it is more intricate to compute since it is a max-min problem. For k = 1, it coincides with the max-SW distance. [START_REF] Lin | On Projection Robust Optimal Transport: Sample Complexity and Model Misspecification[END_REF] also studied an integral version w.r.t the uniform distribution on the Stiefel manifold analogue to the Sliced-Wasserstein distance.

To obtain better estimation. As the SW distance is approximated using a Monte-Carlo approximation, it is possible to leverage the literature of Monte-Carlo to reduce the variance of the estimators. Hence, Nguyen and Ho (2023a); [START_REF] Leluc | Speeding up Monte Carlo Integration: Control Neighbors for Optimal Convergence[END_REF] used control variates to obtain a better estimation of the SW distance with less variance. The Monte-Carlo approximation has an expected error bound in O(L -d/2 ) [START_REF] Portier | Lecture notes on Monte Carlo methods[END_REF] and requires a sufficient number of projections to have a reasonably small error. Hence, in high dimensional settings, and typically when n d (e.g. in Deep Learning settings when the limited memory of GPUs constrains the use of mini-batches), the main bottleneck of the computation of SW is the projection step which has a complexity in O(Ldn) (as log n d). A solution was recently provided by [START_REF] Nguyen | Hierarchical Sliced Wasserstein Distance[END_REF] by decomposing the projection process in a hierarchical way with fewer projections on the original space. Another solution in high dimensional settings is to approximate the measure by gaussians using the concentration of measures [START_REF] Nadjahi | Fast Approximation of the Sliced-Wasserstein Distance using Concentration of Random Projections[END_REF]. This provides the following approximation of SW: .49) where

SW 2 2 (µ, ν) = m 2 (μ) 1 2 -m 2 (ν) 1 2 2 + m µ -m ν 2 2 d , ( 2 
m µ = x dµ(x), μ = (T mµ ) # µ with T mµ : x → x -m µ is the centered distribution and m 2 (µ) = E X∼µ [ X 2 2 ]
. This type of results was also extended to some of the Generalized Sliced-Wasserstein distances in [START_REF] Le | Fast Approximation of the Generalized Sliced-Wasserstein Distance[END_REF]. This solution is particularly appealing as it removes the need to choose the number of projections. However, it is only a good approximation in very high dimensional scenarios.

Projected Wasserstein distance.

Finally, let us describe another alternative inspired from SW. [START_REF] Rowland | Orthogonal Estimation of Wasserstein Distances[END_REF] introduced the projected Wasserstein distance (PWD), which leverages the one dimensional coupling obtained between the projected measures and plug it between the original points, i.e.

PWD p p (μ n , νn ) = S d-1 1 n n i=1 x σ θ (i) -y τ θ (i) p 2 dλ(θ), (2.50) 
with σ θ (respectively τ θ ) the permutation sorting the samples of P θ # μn (respectively P θ # νn ). As each coupling is not at all optimal, it is clear that it is an upper bound of the Wasserstein distance. Furthermore, some permutations can be highly irrelevant leading to an overestimation of the Wasserstein distance. Choosing only an optimal direction in the same spirit of max-SW has been studied in [START_REF] Mahey | Fast Optimal Transport through Sliced Generalized Wasserstein Geodesics[END_REF].

Hilbert Curves. We also mention the work of [START_REF] Bernton | Approximate Bayesian Computation with the Wasserstein Distance[END_REF]; [START_REF] Li | Hilbert Curve Projection Distance for Distribution Comparison[END_REF] in which distributions are projected on space filling curves such as Hilbert curves, such curves having the appealing property to be locally preserving and hence to better respect the distance between the original points once projected. By defining a cumulative distribution function and the related quantile function on the Hilbert curve, [START_REF] Li | Hilbert Curve Projection Distance for Distribution Comparison[END_REF] leverage this to obtain a coupling and then compute the distance between the distributions in the original space. Thus, it is another efficient to compute upper-bound of the Wasserstein distance. As it suffers also from the curse of dimensionality, the authors also proposed a sliced version to alleviate it. This chapter aims at providing a general recipe to construct intrinsic extensions of the Sliced-Wasserstein distance on Riemannian manifolds. While many Machine Learning methods were developed or transposed on Riemannian manifolds to tackle data with known non Euclidean geometry, Optimal Transport methods on such spaces have not received much attention. The main OT tools on these spaces are the Wasserstein distance and its entropic regularization with geodesic ground cost, but with the same bottleneck as in the Euclidean space. Hence, it is of much interest to develop new OT distances on such spaces, which allow to alleviate the computational burden. This chapter introduces a general construction and will be followed by three chapters covering specific cases of Riemannian manifolds with Machine Learning applications. Namely, we will study the particular case of Hyperbolic spaces, of the space of Symmetric Positive Definite matrices and of the Sphere.

Part I

Sliced-Wasserstein on Riemannian

Manifolds

Introduction

Working directly on Riemannian manifolds has received a lot of attention in recent years. On the one hand, it is well-known that data have an underlying structure on a low dimensional manifold [START_REF] Bengio | Representation Learning: A Review and new Perspectives[END_REF]. However, it can be intricate to work directly on such manifolds. Therefore, most works only focus on the Euclidean space and do not take advantage of this representation. In some cases though, the data naturally lies on a manifold, or can be embedded on some known manifolds allowing one to take into account its intrinsic structure. In such cases, it has been shown to be beneficial to exploit such structures by working directly on the manifold. To name a few examples, directional or earth data -data for which only the direction provides information -naturally lie on the sphere [START_REF] Mardia | Directional Statistics[END_REF] and hence their structure can be exploited by using methods suited to the sphere. Another popular example is given by data having a known hierarchical structure. Then, such data benefit from being embedded into Hyperbolic spaces [START_REF] Nickel | Poincaré Embeddings for Learning Hierarchical Representations[END_REF].

Motivated by these examples, many works proposed new tools to handle data lying on Riemannian manifolds. To cite a few, [START_REF] Fletcher | Principal Geodesic Analysis for the Study of Nonlinear Statistics of Shape[END_REF]; [START_REF] Huckemann | Principal Component Analysis for Riemannian Manifolds, with an Application to Triangular Shape Spaces[END_REF] developed PCA to perform dimension reduction on manifolds while [START_REF] Brigant | Approximation of Densities on Riemannian Manifolds[END_REF] studied density approximation, [START_REF] Feragen | Geodesic Exponential Kernels: When Curvature and Linearity Conflict[END_REF]; [START_REF] Jayasumana | Kernel methods on Riemannian Manifolds with Gaussian RBF Kernels[END_REF]; [START_REF] Fang | Kernel Methods in Hyperbolic Spaces[END_REF] studied kernel methods and [START_REF] Azangulov | Stationary Kernels and Gaussian Processes on Lie Groups and their Homogeneous Spaces I: the Compact Case[END_REF]2023) developed Gaussian processes on (homogeneous) manifolds. More recently, there has been many interests into developing new neural networks with architectures taking into account the geometry of the ambient manifold [START_REF] Bronstein | Geometric Deep Learning: going beyond Euclidean Data[END_REF] such as Residual Neural Networks [START_REF] Katsman | Riemannian Residual Networks[END_REF], discrete Normalizing Flows [START_REF] Rezende | Normalizing Flows on Tori and Spheres[END_REF][START_REF] Rezende | Implicit Riemannian Concave Potential Maps[END_REF] or Continuous Normalizing Flows [START_REF] Mathieu | Riemannian Continuous Normalizing Flows[END_REF][START_REF] Lou | Neural Manifold Ordinary Differential Equations[END_REF][START_REF] Rozen | Moser Flow: Divergence-based Generative Modeling on Manifolds[END_REF][START_REF] Yataka | Grassmann Manifold Flow[END_REF]. In the generative model literature, we can also cite the recent [START_REF] Chen | Riemannian Flow Matching on General Geometries[END_REF] which extended the flow matching training of Continuous Normalizing Flows to Riemannian manifolds, or [START_REF] Bortoli | Riemannian Score-Based Generative Modelling[END_REF] who performed score based generative modeling and [START_REF] Thornton | Riemannian Diffusion Schrödinger Bridge[END_REF] who studied Schrödinger bridges on manifolds.

To compare probability distributions or perform generative modeling tasks, one usually needs suitable discrepancies or distances. In Machine Learning, classical divergences used are for example the Kullback-Leibler divergence or the Maximum Mean Discrepancy. While these distances are well defined for distributions lying on Riemannian manifolds, taking an extra care for the choice of the kernel in MMD, see e.g. [START_REF] Feragen | Geodesic Exponential Kernels: When Curvature and Linearity Conflict[END_REF], other possible distances which take more into account the geometry of the underlying space are Optimal Transport based distances. While the Wasserstein distance can be well defined on manifolds, and has been studied in many works theoretically, see e.g. [START_REF] Mccann | Polar Factorization of Maps on Riemannian Manifolds[END_REF][START_REF] Villani | Optimal Transport: Old and New[END_REF], it suffers from computational burden as in the Euclidean case (see Section 2.2.2). While on Euclidean cases, the Sliced-Wasserstein distance is a tractable alternative allowing to work in large scale settings, extending this construction on manifolds has not yet received much attention. Hence, as underlined in the conclusion of the thesis of [START_REF] Nadjahi | Sliced-Wasserstein Distance for Large-Scale Machine Learning: Theory, Methodology and Extensions[END_REF], deriving new SW based distance on manifolds could be of much interest.

In this chapter, we start by providing some background on Riemannian manifolds. Then, we introduce different ways to construct intrinsically Sliced-Wasserstein discrepancies on geodesically complete Riemannian manifolds with non-positive curvatures. Then, we derive some theoretical properties common to any sliced discrepancy on these Riemannian manifolds.

Background on Riemannian Manifolds

Background on Riemannian Manifolds

In this Section, we introduce some backgrounds on Riemannian manifolds. We refer to [START_REF] Gallot | Riemannian Geometry[END_REF][START_REF] Lee | Riemannian Manifolds: an Introduction to Curvature[END_REF]2012) for more details.

Riemannian Manifolds

Definition. A Riemannian manifold (M, g) of dimension d is a space that behaves locally as a linear space diffeomorphic to R d , called a tangent space. To any x ∈ M, one can associate a tangent space T x M endowed with a inner product •, • x : T x M × T x M → R which varies smoothly with x. This inner product is defined by the metric g x associated to the Riemannian manifold as

g x (u, v) = u, v x for any x ∈ M, u, v ∈ T x M. We note G(x) the matrix representation of g x defined such that ∀u, v ∈ T x M, u, v x = g x (u, v) = u T G(x)v. (3.1)
For some spaces, different metrics can give very different geometries. We call tangent bundle the disjoint union of all tangent spaces T M = {(x, v), x ∈ M and v ∈ T x M}, and we call a vector field a map

V : M → T M such that V (x) ∈ T x M for all x ∈ M.
Geodesics. A generalization of straight lines in Euclidean spaces to Riemannian manifolds can be geodesics, which are smooth curves connecting two points with the minimal length, i.e. curves γ : [0, 1] → R which minimize the length L defined as

L(γ) = 1 0 γ (t) γ(t) dt, (3.2)
where γ (t) γ(t) = γ (t), γ (t) γ(t) . In this work, we will focus on geodesically complete Riemannian manifolds, in which case there is always a geodesic between two points x, y ∈ M. Furthermore, all geodesics are actually geodesic lines, i.e. can be extended to R. Let x, y ∈ M, γ : [0, 1] → R a geodesic between x and y such that γ(0) = x and γ(1) = y, then the value of the length defines actually a distance (x, y) → d(x, y) between x and y, which we call the geodesic distance:

d(x, y) = inf γ L(γ). (3.3)
Note that for a geodesic γ between x and y, we have for any s, t

∈ [0, 1], d γ(t), γ(s) = |t -s|d(x, y).
And it is true for s, t ∈ R for geodesic lines.

Exponential map. Let x ∈ M, then for any v ∈ T x M, there exists a unique geodesic γ (x,v) starting from x with velocity v, i.e. such that γ (x,v) (0) = x and γ (x,v) (0) = v [START_REF] Sommer | Introduction to Differential and Riemannian Geometry[END_REF]. Now, we can define the exponential map as exp : T M → M which for any x ∈ M, maps tangent vectors v ∈ T x M back to the manifold at the point reached by the geodesic γ (x,v) at time 1: For negative curvatures (k < 0), the sum of angles is lower than π, and for positive curvature (k > 0), the sum of angles is greater than π.

∀(x, v) ∈ T M, exp x (v) = γ (x,v) (1) 
On geodesically complete manifolds, the exponential map is defined on the entire tangent space, but is not necessarily a bijection. When it is one, we note log x the inverse of exp x , which can allow to map elements from the manifold to the tangent space.

Sectional curvature. A notion which allows studying the geometry as well as the topology of a given Riemannian manifold is the sectional curvature. Let x ∈ M, and u, v ∈ T x M two linearly independent vectors. Then, the sectional curvature κ x (u, v) is defined geometrically as the Gaussian curvature of the plane E = span(u, v) [START_REF] Zhang | Riemannian SVRG: Fast Stochastic Optimization on Riemannian Manifolds[END_REF], i.e.

κ x (u, v) = R(u, v)u, v x u, u x v, v x -u, v 2 x , (3.5)
where R is the Riemannian curvature tensor. We refer to [START_REF] Lee | Riemannian Manifolds: an Introduction to Curvature[END_REF] for more details. The behavior of geodesics changes given the curvature of the manifold. For instance, they usually diverge on manifolds of negative sectional curvature and converge on manifolds of positive sectional curvature [START_REF] Hu | On Riemannian Projection-free Online Learning[END_REF]. Important examples of Riemannian manifolds are Euclidean spaces which are of constant null curvature, the sphere which is of positive constant curvature and Hyperbolic spaces which are of negative constant curvature (i.e. have the same value at any point x ∈ M and for any 2-planes E). We can also cite the torus which have some points of positive curvature, some points of negative curvature and some points of null curvature [START_REF] De Ocáriz Borde | Latent Graph Inference using Product Manifolds[END_REF]. In this chapter, we will mostly focus on Cartan-Hadamard manifolds which are complete connected Riemannian manifolds of non-positive sectional curvature.

CAT(0) space. Let us also introduce the more general notion of CAT(0) space (Bridson and Haefliger, 2013, Part II, Section 1.1). Let (X, d) be a geodesic complete metric space. A geodesic triangle ∆(x, y, z) with vertices x, y, z ∈ X is the union of three geodesic segments [x, y], [y, z] and [z, x]. Then, we call a comparison triangle ∆(x, ȳ, z) for ∆(x, y, z) a triangle in R 2 such that x, ȳ, z ∈ R 2 and d(x, y) = |x -ȳ|,

d(y, z) = |ȳ -z| and d(x, z) = |x -z|. Similarly, w ∈ [x, ȳ] is a comparison point for w ∈ [x, y] if d(x, w) = |x -w|.
Then, the geodesic metric space (X, d) is a CAT(0) space if for every geodesic triangle ∆(x, y, z) and for any p, q ∈ [x, y] and comparison points p, q ∈ [x, ȳ], d(p, q) ≤ |p -q|. Note that we can extend the definition to CAT(k) spaces for k ∈ R by changing R 2 by the sphere S 2 for k > 0 and the hyperbolic space H 2 for k < 0 (using the right geodesic distance instead of the absolute distance).

We illustrate the triangles for different values of k in Figure 3.1. This is actually a more general notion of curvature than the sectional curvature, see (Bridson and Haefliger, 2013, Part II, Appendix of Chapter 1). In particular, CAT(0) spaces are called Hadamard spaces and encompass for example Cartan-Hadamard manifolds.

Optimization on Riemannian Manifolds

We are often interested in solving optimization problems for variables which lie on manifolds. Common examples include Principal Component Analysis where we optimize over the Stiefel manifold, Procruste problems optimizing on rotations or maximum likelihood for densities such as Gaussians. In our context, we are often interested in learning distributions on some manifold. This can be done by either learning a set of particles directly lying on the manifold, or using neural networks well suited to the manifold, which often involve parameters also on the manifold (Ganea et al., 2018a;[START_REF] Shimizu | Hyperbolic Neural Networks++[END_REF][START_REF] Fei | A Survey of Geometric Optimization for Deep Learning: From Euclidean Space to Riemannian Manifold[END_REF]. Hence, for many reasons, we need to be able to optimize directly over manifolds. We refer to the books of [START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF] or [START_REF]An Introduction to Optimization on Smooth Manifolds[END_REF] for more details.

Fortunately, similarly as in the Euclidean case, one can use first order optimization methods such as gradient descents. As the analog of straight lines are geodesics, we will follow the geodesic in the direction which minimizes the functional as fast as possible. Let f : M → R be a functional, which we suppose (geodesically) convex, i.e. for any geodesic curve γ linking

x ∈ M to y ∈ M, f satisfies ∀t ∈ [0, 1], f γ(t) ≤ (1 -t)f (x) + tf (y).
(3.6) Furthermore, we will suppose that the functional is differentiable. Then, let us define the Riemannian gradient of f . Definition 3.1 (Gradient). We define the Riemannian gradient of f as the unique vector field grad M f :

M → T M satisfying ∀(x, v) ∈ T M, d dt f exp x (tv) t=0 = v, grad M f (x) x . (3.7)
As the gradient belongs to the tangent space, we can use the exponential map to project it back to the manifold. Therefore, the gradient descent algorithm reads as, starting from x 0 ∈ M and with gradient step τ > 0,

∀k ≥ 0, x k+1 = exp x k -τ grad M f (x k ) . (3.8)
Note that in the Euclidean case, since exp x (y) = x + y and gradf (x) = ∇f (x), it reads as x k+1 =

x k -τ ∇f (x k ) which coincides well with the regular gradient descent algorithm. In some cases, the exponential map can be intractable or hard to compute. Then, it is possible to use instead a retraction, which is a smooth map R : T M → M such that each curve c(t) = R x (tv) satisfies c(0) = x and c (0) = v (Boumal, 2023, Section 3.6). Similar variants as in the Euclidean space can be derived and used. For instance, one can use the stochastic version [START_REF] Bonnabel | Stochastic Gradient Descent on Riemannian Manifolds[END_REF], backward versions [START_REF] Ferreira | Proximal Point Algorithm on Riemannian Manifolds[END_REF][START_REF] Bento | Iteration-Complexity of Gradient, Subgradient and Proximal Point Methods on Riemannian Manifolds[END_REF], Nesterov accelerated methods [START_REF] Kim | Nesterov Acceleration for Riemannian Optimization[END_REF], or adaptative moment methods such as Riemannian Adam [START_REF] Becigneul | Riemannian Adaptive Optimization Methods[END_REF]. A recent line of work also studies optimization algorithms which do not use any retractions as they can be computationally expensive [START_REF] Bibliography | La contribution principale de l'auteur de la thèse est sur la partie expérimentale, où nous montrons sur une tâche de classification de document les bénéfices d'utiliser USW à la place de SUOT. L'algorithme est aussi assez[END_REF][START_REF] Gao | Optimization Flows Landing on the Stiefel Manifold[END_REF][START_REF] Ablin | Infeasible Deterministic, Stochastic, and Variance-Reduction Algorithms for Optimization under Orthogonality Constraints[END_REF].

Probability Distributions on Riemannian Manifolds

Probability distribution. Let (M, g) be a Riemannian manifold. For x ∈ M, G(x) induces an infinitesimal change of volume on the tangent space T x M, and thus a measure on the manifold,

dVol(x) = |G(x)| dx.
(3.9)

Here, we denote by dx the Lebesgue measure. We refer to [START_REF] Pennec | Intrinsic Statistics on Riemannian Manifolds: Basic Tools for Geometric Measurements[END_REF] for more details on distributions on manifolds. Now, we discuss some possible distributions on Riemannian manifolds, which can be seen as generalizations of Gaussian distributions.

The first way of naturally generalizing Gaussian distributions to Riemannian manifolds is to use the geodesic distance in the density, which becomes

f (x) ∝ exp - 1 2σ 2 d(x, µ) 2 , (3.10)
for µ ∈ M, σ ∈ R. This was first introduced in [START_REF] Pennec | Intrinsic Statistics on Riemannian Manifolds: Basic Tools for Geometric Measurements[END_REF] and then further considered and theoretically studied on particular Riemannian manifolds in (Said et al., 2017a;b). Notably, an important property required to use such a density is that the normalization factor must not depend on the mean parameter µ, which might not always be the case. In particular, it holds on Riemannian symmetric spaces (Said et al., 2017a). However, it is not straightforward to sample from such a distribution. More convenient distributions, on which we can use the reparameterization trick, are wrapped distributions [START_REF] Chevallier | Wrapped Statistical Models on Manifolds: Motivations, the case SE(n), and Generalization to Symmetric Spaces[END_REF][START_REF] Chevallier | Exponential-Wrapped Distributions on Symmetric Spaces[END_REF][START_REF] Galaz-Garcia | Wrapped Distributions on Homogeneous Riemannian Manifolds[END_REF]. The idea is to push-forward a distribution µ ∈ P(T x M) onto P(M). A natural function to use is the exponential map when it is invertible over the whole tangent space. This has received much attention e.g. on hyperbolic spaces with the wrapped normal distribution [START_REF] Nagano | A Wrapped Normal Distribution on Hyperbolic Space for Gradient-based Learning[END_REF][START_REF] Cho | A Rotated Hyperbolic Wrapped Normal Distribution for Hierarchical Representation Learning[END_REF], which samples from a Gaussian in the tangent space, as it gives a very convenient way to sample on the manifold, while all transformations are differentiable, and can hence be used in variational autoencoders for instance.

Another solution to sample on a manifold is to condition the samples to belong to the manifold. When restricting an isotropic distribution to lie on the unit sphere, this gives for example the well-known von Mises-Fisher distribution [START_REF] Hauberg | Directional Statistics with the Spherical Normal Distribution[END_REF].

Optimal Transport. Optimal Transport is also well defined on Riemannian manifolds using appropriate ground costs into the problem. Using the geodesic distance at the power p ≥ 1, we recover the p-Wasserstein distance

W p p (µ, ν) = inf γ∈Π(µ,ν) M×M d(x, y) p dγ(x, y), (3.11)
where µ, ν ∈ P p (M) = {µ ∈ P(M), M d(x, o) p dµ(x) < ∞}, with o ∈ M some origin which can be arbitrarily chosen (because of the triangular inequality).

This problem has received much attention, see e.g. [START_REF] Villani | Optimal Transport: Old and New[END_REF][START_REF] Bianchini | Optimal Transport and Curvature[END_REF]. In particular, Brenier's theorem was extended by [START_REF] Mccann | Polar Factorization of Maps on Riemannian Manifolds[END_REF] on Riemannian manifolds. For µ, ν ∈ P 2 (M) when the source measure µ is absolutely continuous w.r.t the volume measure on M, then there exists a unique OT map T such that T # µ = ν and T is given by, for µ-almost every x ∈ M, T (x) = exp x -grad M ψ(x) with ψ a c-concave map.

Intrinsic Riemannian Sliced-Wasserstein

In this Section, we propose natural generalizations of the Sliced-Wasserstein distance on probability distributions supported on Riemannian manifolds by using tools intrinsically defined on them. To do that, we will first consider the Euclidean space as a Riemannian manifold. Doing so, we will be able to generalize it naturally to other geodesically complete Riemannian manifolds. We will first focus on manifolds of non-positive curvatures. Then, we will discuss some challenges inherent to Riemannian manifolds with positive curvatures.

Euclidean Sliced-Wasserstein as a Riemannian Sliced-Wasserstein Distance

It is well known that the Euclidean space can be viewed as a Riemannian manifold of null constant curvature [START_REF] Lee | Riemannian Manifolds: an Introduction to Curvature[END_REF]. From that point of view, we can translate the elements used to build the Sliced-Wasserstein distance as Riemannian elements, and identify how to generalize it to more general Riemannian manifolds.

First, let us recall that the p-Sliced-Wasserstein distance for p ≥ 1 between µ, ν (3.12) where P θ (x) = x, θ and λ is the uniform distribution S d-1 . Geometrically, we saw in Section 2.3 that it amounts to project the distributions on every possible line going through the origin 0. Hence, we see that we need first to generalize lines passing through the origin, while being still able to compute the Wasserstein distance on these subsets. Furthermore, we also need to generalize the projection.

∈ P p (R d ) is defined as SW p p (µ, ν) = S d-1 W p p (P θ # µ, P θ # ν) dλ(θ),
Lines. From a Riemannian manifold point of view, straight lines can be seen as geodesics, which are, as we saw in Section 3.2.1, curves minimizing the distance between any two points on it. For any direction θ ∈ S d-1 , the geodesic passing through 0 in direction θ is described by the curve γ θ : R → R d defined as γ θ (t) = tθ = exp 0 (tθ) for any t ∈ R, and the geodesic is G θ = span(θ). Hence, when it makes sense, a natural generalization to straight lines would be to project on geodesics passing through an origin.

Projections. The projection P θ (x) of x ∈ R d can be seen as the coordinate of the orthogonal projection on the geodesic G θ . Indeed, the orthogonal projection P is formally defined as

P θ (x) = argmin y∈G θ x -y 2 = x, θ θ. (3.13)
From this formulation, we see that P θ is a metric projection, which can also be called a geodesic projection on Riemannian manifolds as the metric is a geodesic distance. Then, we see that its coordinate on G θ is t = x, θ = P θ (x), which can be also obtained by first giving a direction to the geodesic, and then computing the distance between P θ (x) and the origin 0, as

P θ (x) = sign( x, θ ) x, θ θ -0 2 = x, θ . (3.14)
Note that this can also be recovered by solving

P θ (x) = argmin t∈R exp 0 (tθ) -x 2 . (3.15)
This formulation will be useful to generalize it to more general manifolds by replacing the Euclidean distance by the right geodesic distance. Note also that the geodesic projection can be seen as a projection along hyperplanes, i.e. the level sets of the projection function g(x, θ) = x, θ are (affine) hyperplanes. This observation will come useful in generalizing SW to manifolds of non-positive curvature.

Wasserstein distance. The Wasserstein distance between measures lying on the real line has a closedform which can be computed very easily (see Section 2.1.2). On more general Riemannian manifolds, as the geodesics will not necessarily be lines, we will need to check how to compute the Wasserstein distance between the projected measures.

On Manifolds of Non-Positive Curvature

In this part, we focus on complete connected Riemannian manifolds of non-positive curvature, which can also be called Hadamard manifolds or Cartan-Hadamard manifolds [START_REF] Lee | Riemannian Manifolds: an Introduction to Curvature[END_REF][START_REF] Robbin | Introduction to Differential Geometry[END_REF][START_REF] Lang | Fundamentals of Differential Geometry[END_REF]. These spaces actually include Euclidean spaces, but also spaces with constant negative curvature such as Hyperbolic spaces, or with variable non-positive curvatures such as the space of Symmetric Positive Definite matrices and product of manifolds with constant negative curvature (Gu et al., 2019, Lemma 1). We refer to [START_REF] Ballmann | Manifolds of Non Positive Curvature[END_REF] or [START_REF] Bridson | Metric Spaces of Non-Positive Curvature[END_REF] for more details. These spaces share many properties with Euclidean spaces [START_REF] Bertrand | A Geometric Study of Wasserstein Spaces: Hadamard Spaces[END_REF] which make it possible to extend the Sliced-Wasserstein distance on them. We will denote (M, g) a Hadamard manifold in the following. The particular cases of Hyperbolic spaces and the spaces of Symmetric Positive Definite matrices will be further studied respectively in Chapter 4 and Chapter 5.

Properties of Hadamard Manifolds. First, as a Hadamard manifold is a complete connected Riemannian manifold, then by the Hopf-Rinow theorem (Lee, 2006, Theorem 6.13), it is also geodesically complete. Therefore, any geodesic curve γ : [0, 1] → M connecting x ∈ M to y ∈ M can be extended on R as a geodesic line. Furthermore, by Cartan-Hadamard theorem (Lee, 2006, Theorem 11.5), Hadamard manifolds are diffeomorphic to the Euclidean space R d , and the exponential map at any x ∈ M from T x M to M is bijective with the logarithm map as inverse. Moreover, their injectivity radius is infinite and thus, its geodesics are aperiodic, and can be mapped to the real line, which will allow to find coordinates on the real line, and hence to compute the Wasserstein distance between the projected measures efficiently. The SW discrepancy on such spaces is therefore very analogous to the Euclidean case. Note that Hadamard manifolds belong to the more general class of CAT(0) metric spaces, and hence inherit their properties described in [START_REF] Bridson | Metric Spaces of Non-Positive Curvature[END_REF]. Now, let us discuss two different possible projections, which both generalize the Euclidean orthogonal projection.

Geodesic Projections. As we saw in Section 3.3.1, a natural projection on geodesics is the geodesic projection. Let's note G a geodesic passing through an origin point o ∈ M. Such origin will often be taken naturally on the space, and corresponds to the analog of the 0 in R d . Then, the geodesic projection on G is obtained naturally as ∀x ∈ M, P G (x) = argmin y∈G d(x, y).

(3.16)

From the projection, we can get a coordinate on the geodesic by first giving it a direction and then computing the distance to the origin. By noting v ∈ T o M a vector in the tangent space at the origin, such that G = G v = {exp o (tv), t ∈ R}, we can give a direction to the geodesic by computing the sign of the inner product in the tangent space of o between v and the log of P G . Analogously to the Euclidean space, we can restrict v to be of unit norm, i.e. v o = 1. Now, we will use v in index of P and P instead of G. Hence, we obtain the coordinates using

P v (x) = sign log o P v (x) , v o d P v (x), o . (3.17)
We show in the next Proposition that the map Note that to get directly the coordinate from x ∈ M, we can also solve directly the following problem:

t v : G v → R defined as ∀x ∈ G v , t v (x) = sign log o (x), v o d(x,
P v (x) = argmin t∈R d exp o (tv), x . (3.19)
Using that Hadamard manifolds belong to the more general class of CAT(0) metric spaces, by [START_REF] Bridson | Metric Spaces of Non-Positive Curvature[END_REF], II. Proposition 2.2), the geodesic distance is geodesically convex. Hence, t → d exp o (tv), x is a coercive convex problem, and hence admits a unique solution. Therefore, (3.19) is well defined. Moreover, we have the following characterization for the optimum: Proposition 3.2. Let (M, g) be a Hadamard manifold with origin o. Let v ∈ T o M, and note γ(t) = Figure 3.2 -On Euclidean spaces, the distance between the projections of two points belonging to a geodesic with the same direction is conserved. This might not be the case on more general Riemannian manifolds.

exp o (tv) for all t ∈ R. Then, for any x ∈ M,

P v (x) = argmin t∈R d(γ(t), x) ⇐⇒ γ P v (x) , log γ P v (x) (x) γ P v (x) = 0.
(3.20)

Proof. See Section 12.1.2.

In the Euclidean case R d , as geodesics are of the form γ(t) = tθ for any t ∈ R and for a direction θ ∈ S d-1 , and as log x (y) = y -x for x, y ∈ R d , we recover the projection formula:

γ P θ (x) , log γ P θ (x) (x) γ P θ (x)
= 0 ⇐⇒ θ, x -P θ (x)θ = 0 ⇐⇒ P θ (x) = θ, x .

(3.21)

Busemann Projections. The level sets of previous projections are geodesic subspaces. It has been shown that projecting along geodesics is not always the best solution as it might not preserve distances well between the original points [START_REF] Chami | HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projections[END_REF]. Indeed, on Euclidean spaces, as mentioned earlier, the projections are actually along hyperplanes, which tends to preserve the distance between points belonging to another geodesic with the same direction better (see Figure 3.2). On Hadamard manifolds, there are analogs of hyperplanes, which can be obtained through the level sets of the Busemann function which we introduce now.

Let γ be a geodesic line, then the Busemann function associated to γ is defined as (Bridson and Haefliger, 2013, II. Definition 8.17)

∀x ∈ M, B γ (x) = lim t→∞ d x, γ(t) -t . (3.22)
On Hadamard manifolds, and more generally on CAT(0) spaces with γ a geodesic ray, the limit does exist (Bridson and Haefliger, 2013, II. Lemma 8.18). This function returns a coordinate on the geodesic γ, which can be understood as a normalized distance to infinity towards the direction given by γ [START_REF] Chami | HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projections[END_REF]. The level sets of this function are called horospheres. On spaces of constant curvature (i.e. Euclidean or Hyperbolic spaces), horospheres are of constant null curvature and hence very similar to hyperplanes. We illustrate horospheres in Hyperbolic spaces in For example, in the Euclidean case, we can show that the Busemann function associated to G θ = span(θ) is given by

∀x ∈ R d , B θ (x) = -x, θ .
(3.23)

It actually coincides with the inner product, which can be seen as a coordinate on the geodesic G θ . Moreover, its level sets in this case are (affine) hyperplanes orthogonal to θ. Hence, the Busemann function gives a principled way to project measures on a Hadamard manifold to the real line provided that we can compute its closed-form. To find the projection on the geodesic γ, we can solve the equation in s ∈ R, B γ (x) = B γ γ(s) = -s, and we find that the projection on γ is Bγ

(x) = exp o -B γ (x)v if γ(t) = exp o (tv).
Wasserstein Distance on Geodesics. We saw that we can obtain projections on R. Hence, it is analogous to the Euclidean case as we can use the one dimensional Wasserstein distance on the real line to compute it. In the next proposition, as a sanity check, we verify that the Wasserstein distance between the coordinates is as expected equal to the Wasserstein distance between the measures projected on geodesics. This relies on the isometry property of t v derived in Proposition 3.1.

Proposition 3.3. Let (M, g) a Hadamard manifold, p ≥ 1 and µ, ν ∈ P p (M). Let v ∈ T o M and G v = {exp o (tv), t ∈ R}
the geodesic on which the measures are projected. Then,

W p p ( P v # µ, P v # ν) = W p p (P v # µ, P v # ν). (3.24)
Proof. See Section 12.1.2.

Observing that t v • Bv = -B v , we obtain a similar result for the Busemann projection. 

W p p ( Bv # µ, Bv # ν) = W p p (B v # µ, B v # ν). (3.25)
Proof. See Section 12.1.2.

From these properties, we can work equivalently in R and on the geodesics when using the Busemann projection (also called horospherical projection) or the geodesic projection of measures.

Sliced-Wasserstein on Hadamard Manifolds. We are ready to define the Sliced-Wasserstein distance on Hadamard manifolds. For directions, we will sample from the uniform measure on {v ∈ T o M, v o = 1}. Note that other distributions might be used such as a Dirac in the maximum direction similarly as max-SW [START_REF] Deshpande | Max-Sliced Wasserstein Distance and its use for GANs[END_REF] for example or any variant using different slicing distributions described in Section 2.3.3. But to define a strict generalization of SW, we choose the uniform one in this work. p-Geodesic Cartan-Hadamard Sliced-Wasserstein distance between µ, ν ∈ P p (M) as

GCHSW p p (µ, ν) = So W p p (P v # µ, P v # ν) dλ(v). (3.26)
Likewise, we define the p-Horospherical Cartan-Hadamard Sliced-Wasserstein distance between µ, ν ∈ P p (M) as

HCHSW p p (µ, ν) = So W p p (B v # µ, B v # ν) dλ(v).
(3.27)

In the following, when we want to mention both GCHSW and HCHSW, for example for properties satisfied by both, we will use the term Cartan-Hadamard Sliced-Wasserstein abbreviated as CHSW. Then, we will write without loss of generality

CHSW p p (µ, ν) = So W p p (P v # µ, P v # ν) dλ(v), (3.28) 
with P v either denoting the geodesic or the horospherical projection. We illustrate the projection process on Figure 3.3.

On Manifolds with Non-Negative Curvature

It is more challenging to develop a unifying theory for manifolds of non-negative curvatures as their geometry can be very different. For example, by Bonnet's theorem (Lee, 2006, Theorem 11.7), spaces whose sectional curvature is bounded below by a positive constant, and which are hence of positive curvature, are compact. It is known that on any compact Riemannian manifold M, there is at least one geodesic which is periodic [START_REF] Gromoll | Periodic Geodesics on Compact Riemannian Manifolds[END_REF].

In Chapter 6, we will study the case of the hypersphere, which has constant positive curvature and for which all geodesics are periodic. We can use several constructions to define a sliced method. For example, similarly as for Hadamard manifolds, one might fix an origin, e.g. the north pole, and integrate over all geodesics passing through it, by sampling the directions in the tangent space. As the origin on the sphere is arbitrary, we can also choose to integrate over all geodesics which we will do in Chapter 6. We leave for future works extending such constructions to other spaces with non-negative curvature, such as the Stiefel manifold [START_REF] Chakraborty | Statistics on the (compact) Stiefel Manifold: Theory and Applications[END_REF], the Grassmannian manifold [START_REF] Wang | Online Optimization over Riemannian Manifolds[END_REF] or projectives spaces [START_REF] Ziller | Examples of Riemannian Manifolds with Non-Negative Sectional Curvature[END_REF].

Related Works

Intrinsic Sliced-Wasserstein. To the best of our knowledge, the only attempt to define a generalization of the Sliced-Wasserstein distance on Riemannian manifolds was made by [START_REF] Rustamov | Intrinsic Sliced Wasserstein Distances for Comparing Collections of Probability Distributions on Manifolds and Graphs[END_REF]. In this work, they restricted their analysis to compact spaces and proposed to use the eigendecomposition of the Laplace-Beltrami operator (see (Gallot et al., 1990, Definition 4.7)). Let (M, g) be a compact Riemannian manifold. For ∈ N, denote λ the eigenvalues and φ the eigenfunctions of the Laplace-Beltrami operator sorted by increasing eigenvalues. Then, we can define spectral distances as

∀x, y ∈ M, d α (x, y) = ≥0 α(λ ) φ (x) -φ (y) 2 , ( 3.29) 
where α : R + → R + is a monotonically decreasing function. Then, they define the Intrinsic Sliced-Wasserstein (ISW) distance between µ, ν ∈ P 2 (M) as

ISW 2 2 (µ, ν) = ≥0 α(λ )W 2 2 (φ ) # µ, (φ ) # ν . (3.30)
The eigenfunctions are used to map the measures to the real line, which make it very efficient to compute in practice. The eigenvalues are sorted in increasing order, and the series is often truncated by keeping only the L smallest eigenvalues. This distance cannot be applied on Hadamard manifolds as these spaces are not compact. On compact spaces such as the sphere, this provides an alternate sliced distance. In Chapter 6, we will define the sliced distance by integrating and projecting over all geodesics as we choose to work on the sphere endowed by the geodesic distance with the same tools as in the Euclidean space. We note that ISW is more in the spirit of a max-K Sliced-Wasserstein distance [START_REF] Dai | Sliced Iterative Normalizing Flows[END_REF], which projects over the K maximal directions, than the Sliced-Wasserstein distance.

However, on general geometries, the geodesic distance and the geodesic projection can be difficult to compute efficiently, as we may not always have closed-forms. In these situations, using the spectral distance can be beneficial as being more practical to compute but also more robust to noise and geometry aware [START_REF] Lipman | Biharmonic Distance[END_REF][START_REF] Chen | Riemannian Flow Matching on General Geometries[END_REF]. Nonetheless, we note that the computation of this spectrum is often impossible [START_REF] Gallot | Riemannian Geometry[END_REF][START_REF] Pennec | Intrinsic Statistics on Riemannian Manifolds: Basic Tools for Geometric Measurements[END_REF], and that in particular cases where it is possible such as the sphere, computing the eigenfunctions can become numerically unstable in dimension d ≥ 10 (Dutordoir et al., 2020, Appendix A).

Generalized Sliced-Wasserstein. A very related distance is the Generalized Sliced-Wasserstein distance (Kolouri et al., 2019a) that we introduced in Section 2.3.3. First, the main difference lies in the fact that GSW focuses on probability distributions lying in Euclidean space by projecting the measures along nonlinear hypersurfaces. That said, adapting the definition of GSW to handle probability measures on Riemannian manifolds, and the properties that need to be satisfied by the defining function g such as the homogeneity, then we can write the CHSW in the framework of GSW using g : (x, v) → P v (x). We will discuss in the next Section with more details the relations with the Radon transforms.

Properties

In this Section, we derive theoretical properties of the Cartan-Hyperbolic Sliced-Wasserstein distance. First, we will study its topology and the conditions required to have that CHSW is a true distance. Then, we will study some of its statistical properties.

Topology

Distance Property. First, we are interested in the distance properties of CHSW. From the properties of the Wasserstein distance and of the slicing process, we can show that it is a pseudo-distance, i.e. that it satisfies the positivity, the positive definiteness, the symmetry and the triangular inequality. Proposition 3.5. Let p ≥ 1, then CHSW p is a finite pseudo-distance on P p (M).

Proof. See Section 12.1.3.

For now, the lacking property is the one of indiscernibility, i.e. that CHSW p (µ, ν) = 0 implies that µ = ν. We conjecture that it holds but we were not able to show it yet. In the following, we derive a sufficient condition on a related Radon transform to have this property to hold.

Let f ∈ L 1 (M), and let us define, analogously to the Euclidean Radon transform, the Cartan-Hadamard Radon transform CHR :

L 1 (M) → L 1 (R × S o ) as ∀t ∈ R, ∀v ∈ S o , CHRf (t, v) = M f (x)1 {t=P v (x)} dVol(x).
(3.31)

Then, we can also define its dual operator CHR * :

C 0 (R × S o ) → C b (M) for g ∈ C 0 (R × S o )
where

C 0 (R × S o
) is the space of continuous functions on R × S o that vanish at infinity, as 

∀x ∈ M, CHR * g(x) = So g(P v (x), v) dλ(v). ( 3 
(R × S o ) to C 0 (M). Proposition 3.7. Let g ∈ C 0 (R × S o ), then CHR * g ∈ C 0 (M).
Proof. See Section 12.1.3.

Using the dual operator, we can define the Radon transform of a measure µ in M as the measure CHRµ satisfying 

∀g ∈ C 0 (R × S 0 ), R×So g(t, v) d(CHRµ)(t, v) = M CHR * g(x) dµ(x). ( 3 
(µ, ν) = 0 implies that for λ-almost every v ∈ S o , P v # µ = P v # ν.
Showing that the Radon transform is injective would allow to conclude that µ = ν.

Actually, here we derived two different Cartan-Hadamard Radon transforms. Using P v as the geodesic projection, the Radon transform integrates over geodesic subspaces of dimension dim(M)-1. Such spaces are totally geodesic subspaces, and are related to the more general geodesic Radon transform [START_REF] Rubin | Notes on Radon Transforms in Integral Geometry[END_REF]. In the case where the geodesic subspace is of dimension one, i.e. it integrates only over geodesics, this coincides with the X-ray transform, and it has been studied e.g. in [START_REF] Lehtonen | Tensor Tomography on Cartan-Hadamard Manifolds[END_REF]. Here, we are interested in the case of dimension dim(M) -1, which, to the best of our knowledge, has only been studied in [START_REF] Lehtonen | The Geodesic Ray Transform on Two-Dimensional Cartan-Hadamard Manifolds[END_REF] in the case where dim(M) = 2 and hence when the geodesic Radon transform and the X-ray transform coincide. However, no results on the injectivity over the sets of measures is yet available. In the case where P v is the Busemann projection, the set of integration is a horosphere. General horospherical Radon transforms on Cartan-Hadamard manifolds have not yet been studied to the best of our knowledge.

Link with the Wasserstein Distance. An important property of the Sliced-Wasserstein distance on Euclidean spaces is that it is topologically equivalent to the Wasserstein distance, i.e. it metrizes the weak convergence. Such results rely on properties of the Fourier transform which do not translate straightforwardly to manifolds. Hence, deriving such results will require further investigation. We note that a possible lead for the horospherical case is the connection between the Busemann function and the Fourier-Helgason transform [START_REF] Biswas | The Fourier Transform on Negatively Curved Harmonic Manifolds[END_REF][START_REF] Sonoda | Fully-Connected Network on Noncompact Symmetric Space and Ridgelet Transform based on Helgason-Fourier Analysis[END_REF]. Using that the projections are Lipschitz functions, we can still show that CHSW is a lower bound of the geodesic Wasserstein distance. Proposition 3.9. Let µ, ν ∈ P p (M), then

CHSW p p (µ, ν) ≤ W p p (µ, ν). (3.35)
Proof. See Section 12.1.3.

This property means that it induces a weaker topology compared to the Wasserstein distance, which can be computationally beneficial but which also comes with less discriminative powers (Nadjahi et al., 2020b).

First Variations. Being discrepancies on Hadamard manifolds, CHSWs can be used to learn distributions by minimizing it. An elegant solution could be to use Wasserstein gradient flows of

F(µ) = 1 2 CHSW 2 2 (µ, ν)
where ν is some target distribution. As we will see in Chapter 7, there are many possibilities to solve such a problem. For example, using a JKO-ICNN scheme, we could solve it with well chosen neural networks. Another elegant solution to get samples from ν is to use the forward Euler scheme, as done previously in [START_REF] Liutkus | Sliced-Wasserstein Flows: Nonparametric Generative Modeling via Optimal Transport and Diffusions[END_REF], which requires to compute its first variation. The first variation can also be used to analyze theoretically the convergence of the Wasserstein gradient flow. As a first step towards computing Wasserstein gradient flows of CHSW on Hadamard spaces, and analyzing them, we derive in Proposition 3.10 the first variation of F.

Proposition 3.10. Let K be a compact subset of M, µ, ν ∈ P 2 (K) with µ Vol. Let v ∈ S o , denote ψ v the Kantorovich potential between P v # µ and P v # ν for the cost c(x, y) = 1 2 d(x, y) 2 .
Let ξ be a diffeomorphic vector field on K and denote for all ≥ 0, T : K → M defined as T (x) = exp x ξ(x) for all x ∈ K. Then,

lim →0 + CHSW 2 2 (T ) # µ, ν -CHSW 2 2 (µ, ν) 2 = So M ψ v P v (x) grad M P v (x), ξ(x) x dµ(x) dλ(v).
(3.36)

Proof. See Section 12.1.3.

In the Euclidean case, we recover well the first variation formula for SW first derived in (Bonnotte, 2013, Proposition 5.1.7) as in this case, for x ∈ R d , T (x) = x + ξ(x), and for θ ∈ S d-1 , P θ (x) = x, θ and thus gradP θ (x) = ∇P θ (x) = θ, and we recover lim

→0 + SW 2 2 (Id + ξ) # µ, ν -SW 2 2 (µ, ν) 2 = S d-1 R d ψ θ P θ (x) θ, ξ(x) dµ(x) dλ(θ). (3.37)
Hilbert Embedding. CHSW also comes with the interesting properties that it can be embedded in Hilbert spaces. This is in contrast with the Wasserstein distance which is known to not be Hilbertian (Peyré et al., 2019, Section 8.3) except in one dimension where it coincides with its sliced counterpart.

Proposition 3.11. Let p ≥ 1 and

H = L p ([0, 1] × S o , Leb ⊗ λ).
We define Φ as

Φ : P p (M) → H µ → (q, v) → F -1 P v # µ (q) , (3.38)
where F -1

P v
# µ is the quantile function of P v # µ. Then CHSW p is Hilbertian and for all µ, ν ∈ P p (M),

CHSW p p (µ, ν) = Φ(µ) -Φ(ν) p H . (3.39)
Proof. See Section 12.1.3. This is a nice property which allows to define a valid positive definite kernel for measures such as the Gaussian kernel (Jayasumana et al., 2015, Theorem 6.1), and hence to use kernel methods [START_REF] Hofmann | KernelMmethods in Machine Learning[END_REF]. This can allow for example to perform distribution clustering, classification [START_REF] Kolouri | Sliced Wasserstein Kernels for Probability Distributions[END_REF][START_REF] Carriere | Sliced Wasserstein Kernel for Persistence Diagrams[END_REF] or regression [START_REF] Meunier | Distribution Regression with Sliced Wasserstein Kernels[END_REF]. Proposition 3.12. Define the kernel K :

P 2 (M) × P 2 (M) → R as K(µ, ν) = exp -γCHSW 2 2 (µ, ν) for γ > 0. Then K is a positive definite kernel.
Proof. Apply (Jayasumana et al., 2015, Theorem 6.1).

Note that to show that the Gaussian kernel is universal, i.e. that the resulting Reproducing Kernel Hilbert Space (RKHS) is powerful enough to approximate any continuous function [START_REF] Meunier | Distribution Regression with Sliced Wasserstein Kernels[END_REF], we would need additional results such as that it metrizes the weak convergence and that CHSW 2 is a distance, as shown in (Meunier et al., 2022, Proposition 7).

Statistical Properties

Sample Complexity. In practical settings, we usually cannot directly compute the closed-form between µ, ν ∈ P p (M), but we have access to samples x 1 , . . . , x n ∼ µ and y 1 , . . . , y n ∼ ν. Then, it is common practice to estimate the discrepancy with the plug-in estimator CHSW(μ n , νn ) [START_REF] Manole | Plugin Estimation of Smooth Optimal Transport Maps[END_REF]2022;[START_REF] Niles-Weed | Estimation of Wasserstein Distances in the Spiked Transport Model[END_REF] where μn = 1 n n i=1 δ xi and νn = 1 n n i=1 δ yi are empirical estimations of the measures. We are interested in characterizing the speed of convergence of the plug-in estimator towards the true distance. Relying on the proof of Nadjahi et al. (2020b), we derive in Proposition 3.13 the sample complexity of CHSW. As in the Euclidean case, we find that the sample complexity does not depend on the dimension, which is an important and appealing property of sliced divergences (Nadjahi et al., 2020b) compared to the Wasserstein distance, which has a sample complexity in O(n -1/d ) (Niles- [START_REF] Niles-Weed | Estimation of Wasserstein Distances in the Spiked Transport Model[END_REF]. Proposition 3.13. Let p ≥ 1, q > p and µ, ν ∈ P p (M). Denote μn and νn their counterpart empirical measures and M q (µ) = M d(x, o) q dµ(x) their moments of order q. Then, there exists C p,q a constant depending only on p and q such that

E |CHSW p (μ n , νn )-CHSW p (µ, ν)| ≤ 2C 1/p p,q M q (µ) 1/q +M q (ν) 1/q      n -1/(2p) if q > 2p, n -1/(2p) log(n) 1/p if q = 2p, n -(q-p)/(pq) if q ∈ (p, 2p). (3.40)
Proof. See Section 12.1.3.

This property is very appealing in practical settings as it allows to use the same number of samples while having the same convergence rate in any dimension. In practice though, we cannot compute exactly CHSW p (μ n , νn ) as the integral on S o w.r.t. the uniform measure λ is intractable.

Projection Complexity. Thus, to compute it in practice, we usually rely on a Monte-Carlo approximation, by drawing L ≥ 1 projections v 1 , . . . , v L and approximating the distance by CHSW p,L defined between µ, ν ∈ P p (M) as

CHSW p p,L (µ, ν) = 1 L L =1 W p p (P v # µ, P v # ν).
(3.41)

In the following proposition, we derive the Monte-Carlo error of this approximation, and we show that we recover the classical rate of O(1/ √ L).

Proposition 3.14. Let p ≥ 1, µ, ν ∈ P p (M). Then, the error made by the Monte-Carlo estimate of CHSW p with L projections can be bounded as follows

E v | CHSW p p,L (µ, ν) -CHSW p p (µ, ν)| 2 ≤ 1 L Var v W p p (P v # µ, P v # ν) . (3.42)
Proof. See Section 12.1.3.

We note that here the dimension actually intervenes in the term of variance Var v W p p (P v # µ, P v # ν) .

Computational Complexity. As we project on the real line, the complexity of computing the Wasserstein distances between each projected sample is in O(Ln log n). Then, we add the complexity of computing the projections, which will depend on the spaces and whether or not we have access to a closed-form.

Future Works and Discussions

In this chapter, we introduced formally a way to generalize the Sliced-Wasserstein distance on Riemannian manifolds of non-positive curvature. In the next two chapters, we will study these constructions in two particular cases of such manifolds: Hyperbolic spaces and the space of Symmetric Positive-Definite matrices. Further works might include constructing SW type distances on geodesically complete Riemannian manifolds of non-negative curvature. Such spaces have more complicated geometries which makes it harder to build a general construction. Hence, we will focus in Chapter 6 on the particular case of the hypersphere, which is a space of positive constant curvature.

Besides constructing SW distances on Riemannian manifolds, one could also be interested in extending the constructions on more general metric spaces. A particular class of such space with appealing properties, and which encloses Hadamard manifolds, are CAT(0) spaces [START_REF] Bridson | Metric Spaces of Non-Positive Curvature[END_REF]. Optimal transport on these classes of metric spaces have recently received some attention [START_REF] Bërdëllima | Existence and Uniqueness of Optimal Transport Maps in locally Compact CAT (0) Spaces[END_REF]. We could also study generalization of Riemannian manifolds such as Finsler manifolds [START_REF] Shen | Lectures on Finsler geometry[END_REF] which have recently received some attention in Machine Learning (López et al., 2021a;[START_REF] Pouplin | Identifying latent distances with Finslerian geometry[END_REF].

For the projections, we study two natural generalizations of the projection used in Euclidean spaces. We could also study other projections which do not follow geodesics subspaces or horospheres, but are well suited to Riemannian manifolds, in the same spirit of the Generalized Sliced-Wasserstein. Other subspaces could also be used, such as Hilbert curves [START_REF] Li | Hilbert Curve Projection Distance for Distribution Comparison[END_REF] adapted to manifolds, or higher dimensional subspaces [START_REF] Paty | Subspace robust Wasserstein distances[END_REF][START_REF] Chami | HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projections[END_REF]. Finally, we could also define other variations of CHSW such as max-CHSW for instance and more generally adapt many of the variants described in Section 2.3.3 to the case of Riemannian manifolds. Note also that the Busemann function is an example of a more broad class of functions called horofunctions. On Hadamard manifolds, horofunctions are necessarily Busemann functions, but it might not be the case on more general metric spaces.

On the theoretical side, we still need to show that these Sliced-Wasserstein discrepancies are proper distances by showing the indiscernible property. It might also be interesting to study whether statistical properties for the Euclidean SW distance derived in e.g. (Nietert et al., 2022b;[START_REF] Manole | Minimax Confidence Intervals for the Sliced Wasserstein Distance[END_REF]Goldfeld et al., 2022b;[START_REF] Xu | Central Limit Theorem for the Sliced 1-Wasserstein Distance and the Max-Sliced 1-Wasserstein Distance[END_REF][START_REF] Xi | Distributional Convergence of the Sliced Wasserstein Process[END_REF] In this chapter, based on (Bonet et al., 2023b), we study the Sliced-Wasserstein distance on a particular case of Hadamard manifold: Hyperbolic spaces. Hyperbolic space embeddings have been shown beneficial for many learning tasks where data have an underlying hierarchical structure. Consequently, many machine learning tools were extended to such spaces, but only few discrepancies exist to compare probability distributions defined over those spaces. Among the possible candidates, Optimal Transport distances are well defined on such Riemannian manifolds and enjoy strong theoretical properties, but suffer from high computational cost. On Euclidean spaces, Sliced-Wasserstein distances, which leverage a closed-form solution of the Wasserstein distance in one dimension, are more computationally efficient, but are not readily available on Hyperbolic spaces. In this work, we propose to derive novel Hyperbolic Sliced-Wasserstein discrepancies. These constructions use projections on the underlying geodesics either along horospheres or geodesics. We study and compare them on different tasks where hyperbolic representations are relevant, such as sampling or image classification.

Introduction

In recent years, Hyperbolic spaces have received a lot of attention in machine learning (ML) as they allow to efficiently process data that present a hierarchical structure [START_REF] Nickel | Poincaré Embeddings for Learning Hierarchical Representations[END_REF]2018). This encompasses data such as graphs [START_REF] Gupte | Finding Hierarchy in Directed Online Social Networks[END_REF], words [START_REF] Tifrea | Poincare Glove: Hyperbolic Word Embeddings[END_REF] or images [START_REF] Khrulkov | Hyperbolic Image Embeddings[END_REF]. Embedding in Hyperbolic spaces has been proposed for various applications such as drug embedding [START_REF] Yu | Semi-Supervised Hierarchical Drug Embedding in Hyperbolic Space[END_REF], image clustering [START_REF] Park | Unsupervised Hyperbolic Representation Learning via Message Passing Auto-encoders[END_REF][START_REF] Ghadimi Atigh | Hyperbolic Busemann Learning with Ideal Prototypes[END_REF], zero-shot recognition [START_REF] Liu | Hyperbolic Visual Embedding Learning for Zero-Shot Recognition[END_REF], remote sensing [START_REF] Hamzaoui | Hyperbolic Variational Auto-Encoder for Remote Sensing Scene Classification[END_REF] or reinforcement learning [START_REF] Cetin | Hyperbolic Deep Reinforcement Learning[END_REF]. Hence, many works proposed to develop tools to be used on such spaces, such as generalization of Gaussian distributions [START_REF] Nagano | A Wrapped Normal Distribution on Hyperbolic Space for Gradient-based Learning[END_REF][START_REF] Cho | A Rotated Hyperbolic Wrapped Normal Distribution for Hierarchical Representation Learning[END_REF][START_REF] Galaz-Garcia | Wrapped Distributions on Homogeneous Riemannian Manifolds[END_REF], neural networks (Ganea et al., 2018a;[START_REF] Liu | Hyperbolic Graph Neural Networks[END_REF] or Normalizing Flows [START_REF] Lou | Neural Manifold Ordinary Differential Equations[END_REF][START_REF] Bose | Latent Variable Modelling with Hyperbolic Normalizing Flows[END_REF].

As we saw in Chapter 3, the theoretical study of the Wasserstein distance on Riemannian manifolds is well developed [START_REF] Mccann | Polar Factorization of Maps on Riemannian Manifolds[END_REF][START_REF] Villani | Optimal Transport: Old and New[END_REF]. When it comes to Hyperbolic spaces, some Optimal Transport attempts aimed at aligning distributions of data which have been embedded in a Hyperbolic space (Alvarez-Melis et al., 2020;[START_REF] Hoyos-Idrobo | Aligning Hyperbolic Representations: an Optimal Transport-based Approach[END_REF]. To the best of our knowledge, the SW distance has not been extended yet to Hyperbolic spaces. Hence, in this chapter, we leverage the general theory derived in Chapter 3 and apply it in this particular case.

Contributions. We extend Sliced-Wasserstein to data living in Hyperbolic spaces. Analogously to Euclidean SW, we project the distributions on geodesics passing through the origin. Interestingly enough, different projections can be considered, leading to several new SW constructions that exhibit different theoretical properties and empirical benefits. We make connections with Radon transforms already defined in the literature and we show that Hyperbolic SW are (pseudo-) distances. We provide the algorithmic procedure and discuss its complexity. We illustrate the benefits of these new Hyperbolic SW distances on several tasks such as sampling or image classification.

Background on Hyperbolic Spaces

Hyperbolic spaces are Riemannian manifolds of negative constant curvature [START_REF] Lee | Riemannian Manifolds: an Introduction to Curvature[END_REF] and are particular cases of Hadamard manifolds studied in Chapter 3. They have recently received a surge of interest in machine learning as they allow embedding data with a hierarchical structure efficiently [START_REF] Nickel | Poincaré Embeddings for Learning Hierarchical Representations[END_REF]2018). A thorough review of the recent use of hyperbolic spaces in machine learning can be found in (Peng et al., 2021b) and in [START_REF] Mettes | Hyperbolic Deep Learning in Computer Vision: A Survey[END_REF].

There are five usual parameterizations of a hyperbolic manifold (Peng et al., 2021b). They are equivalent (isometric) and one can easily switch from one formulation to the other. Hence, in practice, we use the one which is the most convenient, either given the formulae to derive or the numerical properties. In machine learning, the two most used models are the Poincaré ball and the Lorentz model (also known as the hyperboloid model). Each of these models has its own advantages compared to the other. For example, the Lorentz model has a distance which behaves better w.r.t. numerical issues compared to the distance of the Poincaré ball. However, the Lorentz model is unbounded, contrary to the Poincaré ball. We introduce in the following these two models as we will use both of them in our work.

Lorentz Model

First, we introduce the Lorentz model L d ⊂ R d+1 of a d-dimensional hyperbolic space. It can be defined as

L d = (x 0 , . . . , x d ) ∈ R d+1 , x, x L = -1, x 0 > 0 (4.1)
where

∀x, y ∈ R d+1 , x, y L = -x 0 y 0 + d i=1 x i y i (4.2)
is the Minkowski pseudo inner-product (Boumal, 2023, Chapter 7). The Lorentz model can be seen as the upper sheet of a two-sheet hyperboloid. In the following, we will denote x 0 = (1, 0, . . . , 0) ∈ L d the origin of the hyperboloid. The geodesic distance in this manifold, which denotes the length of the shortest path between two points, can be defined as

∀x, y ∈ L d , d L (x, y) = arccosh -x, y L . (4.3)
At any point x ∈ L d , we can associate a subspace of R d+1 orthogonal in the sense of the Minkowski inner product. These spaces are called tangent spaces and are described formally as T x L d = {v ∈ R d+1 , v, x L = 0}. Note that on tangent spaces, the Minkowski inner-product is a real inner product. In particular, on T x 0 L d , it is the usual Euclidean inner product, i.e. for u, v ∈ T

x 0 L d , u, v L = u, v . Moreover, for all v ∈ T x 0 L d , v 0 = 0.
We can draw a connection with the sphere. Indeed, by endowing R d+1 with •, • L , we obtain R 1,d the so-called Minkowski space. Then, L d is the analog in the Minkowski space of the sphere S d in the regular Euclidean space [START_REF] Bridson | Metric Spaces of Non-Positive Curvature[END_REF].

Poincaré Ball

The second model of hyperbolic space we will be interested in is the Poincaré ball B d ⊂ R d . This space can be obtained as the stereographic projection of each point x ∈ L d onto the hyperplane {x ∈ R d+1 , x 0 = 0}. More precisely, the Poincaré ball is defined as

B d = {x ∈ R d , x 2 < 1}, (4.4)
with geodesic distance, for all x, y ∈ B d ,

d B (x, y) = arccosh 1 + 2 x -y 2 2 (1 -x 2 2 )(1 -y 2 2 ) . (4.5)
We see in this formulation that the distance can be subject to numerical instabilities when one of the points is too close to the boundary of the ball. We can switch from Lorentz to Poincaré using the following isometric projection [START_REF] Nickel | Learning Continuous Hierarchies in the Lorentz Model of Hyperbolic Geometry[END_REF]:

∀x ∈ L d , P L→B (x) = 1 1 + x 0 (x 1 , . . . , x d ) (4.6)
and from Poincaré to Lorentz by 

∀x ∈ B d , P B→L (x) = 1 1 -x 2 2 (1 + x 2 2 , 2x 1 , . . . , 2x d ). ( 4 

Hyperbolic Sliced-Wasserstein Distances

In this section, we aim at introducing Sliced-Wasserstein type of distances on Hyperbolic spaces. Interestingly enough, several constructions can be performed, depending on the projections that are involved. The first solution we consider is the extension of Euclidean SW between distributions whose support lies on Hyperbolic spaces. Then, we consider variants involving the geodesic distance, and derived as particular cases of CHSW on hyperbolic spaces. The different projection processes are illustrated in Figure 4.1.

Euclidean Sliced-Wasserstein on Hyperbolic Spaces

The support of distributions lying on Hyperbolic space are included in the ambient spaces R d (Poincaré ball) or R d+1 (Lorentz model). As such, Euclidean SW can be used for such data. On the Poincaré ball, the projections lie onto the manifold as geodesics passing through the origin are straight lines (see Section 4.3.2), but the initial geometry of the data might not be fully taken care of as the orthogonal projection does not respect the Poincaré geodesics. On the Lorentz model though, the projections lie out of the manifold. We will denote SWp and SWl the Poincaré ball and Lorentz model version. These formulations allow inheriting from the properties of SW, such as being a distance.

Hyperbolic Sliced-Wasserstein

As Hyperbolic spaces are particular cases of Hadamard manifolds, we leverage the constructions proposed in Chapter 3. We saw in this chapter two different constructions of sliced distances on such spaces. Both of them involve projecting the measures on geodesics passing through an origin, and differ with which projection is used. First, we describe the geodesics in these spaces. Then, we derive the closed-form for the geodesic projection and for the horospherical projection for both models.

Geodesics in the Lorentz model. In the Lorentz model, geodesics passing through the origin x 0 can be obtained by taking the intersection between L d and a 2-dimensional plane containing x 0 (Lee, 2006, Proposition 5.14). Any such plane can be obtained as span(x 0 , v) where v ∈ T x 0 L d ∩ S d = {v ∈ S d , v 0 = 0}. The corresponding geodesic can be described by a geodesic line (Bridson and Haefliger, 2013, Corollary 2.8), i.e. a map γ : R → L d satisfying for all t, s ∈ R, d L (γ(s), γ(t)) = |t -s|, of the form ∀t ∈ R, γ(t) = cosh(t)x 0 + sinh(t)v.

(4.8)

Geodesics in the Poincaré ball. On the Poincaré ball, geodesics are circular arcs perpendicular to the boundary S d-1 (Lee, 2006, Proposition 5.14). In particular, geodesics passing through the origin are straight lines. Hence, they can be characterized by a point ṽ on the border S d-1 . Such points will be called ideal points. Formally, they can be described as ∀t ∈ R, γ(t) = exp 0 (tṽ) = tanh t 2 ṽ. (4.9)

Geodesic projections in Hyperbolic spaces. Now, let us derive the geodesic projections. We provide the different formulas for both the Lorentz model and the Poincaré ball. First, let us recall that geodesic projections are defined as

∀x ∈ L d , P G (x) = argmin y∈G d L (x, y), (4.10)
for a geodesic G.

Proposition 4.1 (Geodesic projection).

1. Let G v = span(x 0 , v) ∩ L d where v ∈ T x 0 L d ∩ S d . Then, the geodesic projection P v on G v of x ∈ L d is P v (x) = 1 x, x 0 2 L -x, v 2 L -x, x 0 L x 0 + x, v L v = P span(x 0 ,v) (x)
-P span(x 0 ,v) (x), P span(x 0 ,v) (x) L , (4.11)

where P span(x 0 ,v 0 ) is the linear orthogonal projection on the subspace span(x 0 , v).

2. Let ṽ ∈ S d-1 be an in ideal point. Then, the geodesic projection P ṽ on the geodesic characterized by ṽ of x ∈ B d is P ṽ (x) = s(x)ṽ, (4.12)

where

s(x) =    1+ x 2 2 - √ (1+ x 2 2 ) 2 -4 x,ṽ 2 2 x,ṽ if x, ṽ = 0 0 if x, ṽ = 0. (4.13)
Proof. See Section 12.2.1.

We observe that on the Lorentz model, the projection on the geodesic can be done by first projecting on the subspace span(x 0 , v) and then by projecting on the hyperboloid by normalizing. This is analogous to the spherical case studied later in Chapter 6. Note that while it is analogous, the constructions have some differences since the sphere is not a Hadamard manifold.

For practical implementations, we can also derive in closed-form the coordinate on a geodesic.

Proposition 4.2 (Coordinate of the geodesic projection).

1. Let G v = span(x 0 , v) ∩ L d where v ∈ T x 0 L d ∩ S d . Then, the coordinate P v of the geodesic projection on G v of x ∈ L d is P v (x) = arctanh - x, v L x, x 0 L . (4.14)
2. Let ṽ ∈ S d-1 be an ideal point. Then, the coordinate P ṽ of the geodesic projection on the geodesic characterized by ṽ of x ∈ B d is

P ṽ (x) = 2 arctanh s(x) , (4.15)
where s is defined as in Proposition 4.1.

Proof. See Section 12.2.1. Now, following the construction of the Geodesic Cartan-Hadamard Sliced-Wasserstein distance, we have all the tools in closed-form to define the Geodesic Hyperbolic Sliced-Wasserstein distance (GHSW) between µ, ν ∈ P p (L d ) as, for p ≥ 1,

GHSW p p (µ, ν) = T x 0 L d ∩S d W p p (P v # µ, P v # ν) dλ(v). (4.16) Note that T x 0 L d ∩ S d ∼ = S d-1
and that v can be drawn by first sampling ṽ ∼ Unif(S d-1 ) and then adding a 0 in the first coordinate, i.e. v = (0, ṽ) with ṽ ∈ S d-1 . Similarly, we can define GHSW between µ, ν ∈ P(B d ) as

GHSW p p (µ, ν) = S d-1
W p p (P ṽ # µ, P ṽ # ν) dλ(ṽ). (4.17)

Horospherical projections in Hyperbolic spaces. Now, we derive horospherical projections by the mean of the Busemann function. We recall that Busemann functions are defined as

B γ (x) = lim t→∞ d(x, γ(t)) -t , (4.18)
for γ a geodesic ray, and that they can be seen as a generalization of the inner product on manifolds. Moreover, its level sets are horospheres, which can be seen as generalization of hyperplanes or also as spheres of infinite radius [START_REF] Izumiya | Horospherical Geometry in the Hyperbolic Space[END_REF], and along which we will project the measures in this part. Now, let us state the closed-form of the Busemann function in the Lorentz model and in the Poincaré ball.

Proposition 4.3 (Busemann function on hyperbolic space).

1. On L d , for any direction v ∈ T x 0 L d ∩ S d , ∀x ∈ L d , B v (x) = log -x, x 0 + v L . (4.19) 2. On B d , for any ideal point ṽ ∈ S d-1 , ∀x ∈ B d , B ṽ (x) = log ṽ -x 2 2 1 -x 2 2 .
(4.20)

Proof. See Section 12.2.1.

To conserve Busemann coordinates on Hyperbolic spaces, it has been proposed by [START_REF] Chami | HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projections[END_REF] to project points on a subset following its level sets which are horospheres. In the Poincaré ball, a horosphere is a Euclidean sphere tangent to an ideal point. [START_REF] Chami | HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projections[END_REF] argued that this projection is beneficial against the geodesic projection as it tends to better preserve the distances. This motivates us to project on geodesics following the level sets of the Busemann function in order to conserve the Busemann coordinates, i.e. we want to have B ṽ (x) = B ṽ P ṽ (x) (resp.

B v (x) = B v P v (x) ) on the Poincaré ball (resp. Lorentz model) where ṽ ∈ S d-1 (resp. v ∈ T x 0 L d ∩ S d
) is characterizing the geodesic. In the next Proposition, we derive for completeness a closed-form for the projection in both the Poincaré ball and Lorentz model. Note that for a practical implementation, we will use the Busemann coordinates directly.

Proposition 4.4 (Horospherical projection).

1. Let v ∈ T x 0 L d ∩ S d be a direction and G v = span(x 0 , v) ∩ L d the corresponding geodesic passing through x 0 .
Then, for any x ∈ L d , the projection on G v along the horosphere is given by

Bv (x) = 1 + u 2 1 -u 2 x 0 + 2u 1 -u 2 v, (4.21)
where u = 1+ x,x 0 +v L 1x,x 0 +v L . 2. Let ṽ ∈ S d-1 be an ideal point. Then, for all x ∈ B d ,

Bṽ (x) = 1 -x 2 2 -ṽ -x 2 2 1 -x 2 2 + ṽ -x 2 2 ṽ. (4.22)
Proof. See Section 12.2.1. Now, we have also all the tools to construct, similarly as the Horospherical Cartan-Hadamard Sliced-Wasserstein, the Horospherical Hyperbolic Sliced-Wasserstein distance (HHSW) between µ, ν ∈ P p (L d ) as, for p ≥ 1,

HHSW p p (µ, ν) = T x 0 L d ∩S d W p p (B v # µ, B v # ν) dλ(v). (4.23)
We also provide a formulation on the Poincaré ball between µ, ν ∈ P p (B d ) as

HHSW p p (µ, ν) = S d-1 W p p (B ṽ # µ, B ṽ # ν) dλ(ṽ). (4.24)
Using that the projections formula between L d and B d are isometries, we show in the next proposition that the two formulations are equivalent. Hence, we choose in practice the formulation which is the more suitable, either from the nature of data or from a numerical stability viewpoint. Proposition 4.5. For p ≥ 1, let µ, ν ∈ P p (B d ) and denote μ = (P B→L ) # µ, ν = (P B→L ) # ν. Then,

HHSW p p (µ, ν) = HHSW p p (μ, ν), (4.25) GHSW p p (µ, ν) = GHSW p p (μ, ν). (4.26)
Proof. See Section 12.2.1.

Properties

As particular cases of the Cartan-Hadamard Sliced-Wasserstein discrepancies, Hyperbolic Sliced-Wasserstein (HSW) discrepancies satisfy all the properties derived in Section 3.4. In particular, they are pseudo distances. Here, we discuss the connection in the literature with known Radon transforms.

Geodesic Hyperbolic Sliced-Wasserstein. First, we can connect GHSW with a Radon transform, defined as in Section 3.4, as

∀t ∈ R, v ∈ T x 0 L d ∩ S d , Rf (t, v) = L d f (x)1 {P v (x)=t} dVol(x), (4.27) where f ∈ L 1 (L d ).
Then, defining it on measures through its dual, and disintegrating w.r.t λ, we can also show that

∀µ, ν ∈ P p (L d ), GHSW p p (µ, ν) = T x 0 L d ∩S d W p p (Rµ) v , (Rν) v dλ(v). (4.28)
Now, let us precise the set of integration of this Radon transform.

Proposition 4.6 (Set of integration). Let t ∈ R, v ∈ T x 0 L d ∩ S d , and z ∈ span(x 0 , v) ∩ L d the unique point on the geodesic span(x 0 , v) ∩ L d such that t v (z) = t where t v is the isometry defined in (3.18). Then, the integration set of R is,

{x ∈ L d , P v (x) = t} = span(v z ) ⊥ ∩ L d , (4.29)
where v z = R z v with R z a rotation matrix in the plan span(v, x 0 ) such that v z , z = 0.

Proof. See Section 12.2.1.

From the previous proposition, in the Lorentz model, we see that the Radon transform R integrates over hyperplanes intersected with L d , which are totally geodesic submanifolds. This is illustrated in the case d = 2 in Figure 4.1e. This corresponds actually to the hyperbolic Radon transform first introduced by [START_REF] Helgason | Differential Operators on Homogeneous Spaces[END_REF] and studied more recently for example in [START_REF] Berenstein | Radon Transform of Lp-Functions on the Lobachevsky Space and Hyperbolic Wavelet Transforms[END_REF][START_REF] Rubin | Radon, Cosine and Sine Transforms on real Hyperbolic Space[END_REF][START_REF] Berenstein | Totally Geodesic Radon Transform of L p-Functions on real Hyperbolic Space[END_REF]. However, to the best of our knowledge, its injectivity over the set of measures has not been studied yet.

Radon transform for HHSW. We can derive a Radon transform associated to HHSW in the same way. Moreover, the integration set can be intuitively derived as the level set of the Busemann function, since we project on the only point on the geodesic which has the same Busemann coordinate. Since the level sets of the Busemann functions correspond to horospheres, the associate Radon transform is the Algorithm 4.1 Guideline of GHSW

Input: (x i ) n i=1 ∼ µ, (y j ) n j=1 ∼ ν, (α i ) n i=1 , (β j ) n j=1 ∈ ∆ n , L the number of projections, p the order for = 1 to L do Draw ṽ ∼ Unif(S d-1 ), let v = [0, ṽ] ∀i, j, x i = P v (x i ), ŷ j = P v (y j ) Compute W p p ( n i=1 α i δ x i , n j=1 β j δ ŷ j ) end for Return 1 L L =1 W p p ( n i=1 α i δ x i , n j=1 β j δ ŷ j )
horospherical Radon transform. It has been for example studied by [START_REF] Bray | Inversion of the Horocycle Transform on real Hyperbolic Spaces via a Waveletlike Transform[END_REF]2019) on the Lorentz model, and by Casadio Tarabusi and Picardello (2021) on the Poincaré ball. Note that it is also known as the Gelfand-Graev transform [START_REF] Gelfand | Generalized Functions-Volume 5. Integral Geometry and Representation Theory[END_REF]. 

Implementation

α i ) i and (β i ) i belong to the simplex ∆ n = {α ∈ [0, 1] n , n i=1 α i = 1}.
We approximate the integral by a Monte-Carlo approximation by drawing a finite number L of projection directions (v ) L =1 in S d-1 . Then, computing GHSW and HHSW amount at first getting the coordinates on R by using the corresponding projections, and computing the 1D Wasserstein distance between them. We summarize the procedure in Algorithm 4.1 for GHSW.

Complexity. For both GHSW and HHSW, the projection procedure has a complexity of O(nd).

Hence, for L projections, the complexity is in O Ln(d+log n) which is the same as for SW. In Figure 4.2, we compare the runtime between GHSW, HHSW, SW, Wasserstein and Sinkhorn with geodesic distances in L 2 for n ∈ {10 2 , 10 3 , 10 4 , 5 • 10 4 , 10 5 } samples which are drawn from wrapped normal distributions [START_REF] Nagano | A Wrapped Normal Distribution on Hyperbolic Space for Gradient-based Learning[END_REF], and L = 200 projections. We used the POT library [START_REF] Flamary | POT: Python Optimal Transport[END_REF] to compute SW, Wasserstein and Sinkhorn. We observe the quasi-linearity complexity of GHSW and HHSW. When we only have a few samples, the cost of the projection is higher than computing the 1D Wasserstein distance, and SW is the fastest. 10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10 

Application

Application

In this Section, we perform several experiments which aim at comparing GHSW, HHSW, SWp and SWl. First, we study the evolution of the different distances between wrapped normal distributions which move along geodesics. Then, we illustrate the ability to fit distributions on L 2 using gradient flows. Finally, we use HHSW and GHSW for an image classification problem where they are used to fit a prior in the embedding space. We add more information about distributions and optimization in hyperbolic spaces in Appendix 12.2.2. Complete details of the experimental settings are reported in Appendix 12.2.3.

Comparisons of the Different Hyperbolical SW Discrepancies

On Figure 4.3, we compare the evolutions of GHSW, HHSW, SW and Wasserstein with the geodesic distance between Wrapped Normal Distributions (WNDs), where one is centered and the other moves along a geodesic. More precisely, by denoting G(µ, Σ) a WND, we plot the evolution of the distances between G(x 0 , I 2 ) and G(x t , I 2 ) where x t = cosh(t)x 0 + sinh(t)v for t ∈ [-10, 10] and v ∈ T x 0 L 2 ∩ S 2 . We observe first that SW on the Lorentz model explodes when the two distributions are getting far from each other. Then, we observe that HHSW 2 has values with a scale similar to W 2 . We argue that it comes from the observation of [START_REF] Chami | HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projections[END_REF] which stated that the horospherical projection better preserves the distance between points compared to the geodesic projection. As SWp operates on the unit ball using Euclidean distances, the distances are very small, even for distributions close to the border. Interestingly, as geodesic projections tend to project points close to the origin, GHSW tends also to squeeze the distance between distributions far from the origin. This might reduce numerical instabilities when getting far from the origin, especially in the Lorentz model. This experiment also allows to observe that, at least for WNDs, the indiscernible property is observed in practice as we only obtain one minimum when both measures coincide. Hence, it would suggest that GHSW and HHSW are proper distances. 

Target distributions

Gradient Flows

We now assess the ability to learn distributions by minimizing the Hyperbolic SW discrepancies (HSW). We suppose that we have a target distribution ν from which we have access to samples (x i ) n i=1 . Therefore, we aim at learning ν by solving the following optimization problem: min µ HSW µ,

1 n n i=1 δ xi .
We model µ as a set of n = 500 particles and propose to perform a Riemannian gradient descent [START_REF]An Introduction to Optimization on Smooth Manifolds[END_REF] to learn the distribution.

To compare the dynamics of the different discrepancies, we plot on Figure 4.4 the evolution of the exact log 2-Wasserstein distance, with geodesic distance as ground cost, between the learned distribution at each iteration and the target, with the same learning rate. We use as targets wrapped normal distributions and mixtures of WNDs. For each type of target, we consider two settings, one in which the distribution is close to the origin and another in which the distribution lies closer to the border. We observe different behaviors in the two settings. When the target is lying close to the origin, SWl and HHSW, which present the biggest magnitude, are the fastest to converge. As for distant distributions however, GHSW converges the fastest. Moreover, SWl suffers from many numerical instabilities, as the projections of the gradients do not necessarily lie on the tangent space when points are too far off the origin. This requires to lower the learning rate, and hence to slow down the convergence. Interestingly, SWp is the slowest to converge in both settings.

Deep Classification with Prototypes

We now turn to a classification use case with real world data. Let {(x i , y i ) n i=1 } be a training set where x i ∈ R m and y i ∈ {1, . . . , C} denotes a label. Ghadimi Atigh et al. ( 2021) perform classification on the Poincaré ball by assigning to each class c ∈ {1, . . . , C} a prototype p c ∈ S d-1 , and then by learning an embedding on the hyperbolic space using a neural network f θ followed by the exponential map. Then, by denoting by z = exp 0 f θ (x) the output, the loss to be minimized is, for a regularization parameter

s ≥ 0, (θ) = 1 n n i=1 B py i z i -sd • log 1 -z i 2 2
.

(4.30) The first term is the Busemann function which will draw the representations of x i towards the prototype assigned to the class y i , while the second term penalizes the overconfidence and pulls back the representation towards the origin. Ghadimi Atigh et al. ( 2021) showed that the second term can be decisive to improve the accuracy. Then, the classification of an input is done by solving y * = argmax c z z , p c . We propose to replace the second term by a global prior on the distribution of the representations. More precisely, we add a discrepancy D between the distribution (exp 0 •f θ ) # p X , where p X denotes the distribution of the training set, and a mixture of C WNDs where the centers are chosen as (αp c ) C c=1 , with (p c ) c the prototypes and 0 < α < 1. In practice, we use

D = GHSW 2 2 , D = HHSW 2 2 , D = SWl 2 2 and D = SWp 2
2 to assess their usability on a real problem. We also compare the results when using

D = W 2 2
or D = M M D where the MMD is taken with Laplacian kernel [START_REF] Feragen | Geodesic Exponential Kernels: When Curvature and Linearity Conflict[END_REF]. Let (w i ) n i=1 be a batch of points drawn from this mixture, then the loss we minimize is

(θ) = 1 n n i=1 B p (z i ) + λD 1 n n i=1 δ zi , 1 n n i=1 δ wi . (4.31)
On Table 4.1, we report the classification accuracy on the test set for CIFAR10 and CIFAR100 [START_REF] Krizhevsky | Learning Multiple Layers of Features from Tiny Images[END_REF], using the exact same setting as [START_REF] Ghadimi Atigh | Hyperbolic Busemann Learning with Ideal Prototypes[END_REF]. We rerun their method, called PeBuse here and we report results averaged over 3 runs. We observe that the proposed penalization outperforms the original method for all the different dimensions.

Conclusion and Discussion

In this work, we propose different Sliced-Wasserstein discrepancies between distributions lying in Hyperbolic spaces. In particular, we introduce two new SW discrepancies which are intrinsically defined on Hyperbolic spaces. They are built by first identifying a closed-form for the Wasserstein distance on geodesics, and then by using different projections on the geodesics. We compare these metrics on multiple tasks such as sampling and image classification. We observe that, while Euclidean SW in the ambient space still works, it suffers from either slow convergence on the Poincaré ball or numerical instabilities on the Lorentz model when distributions are lying far from the origin. On the other hand, geodesic versions exhibit the same complexity and converge generally better for gradient flows. Further works will look into other tasks where hyperbolic embeddings and distributions have been shown to be beneficial, such as persistent diagrams [START_REF] Carriere | Sliced Wasserstein Kernel for Persistence Diagrams[END_REF][START_REF] Kyriakis | Learning Hyperbolic Representations of Topological Features[END_REF]. Besides further applications, proving that these discrepancies are indeed distances, and deriving statistical results are interesting directions of work. One might also consider different subspaces on which to project, such as horocycles which are circles of infinite radius and which can be seen as another analog object to lines in Hyperbolic spaces [START_REF] Tarabusi | Radon Transforms in Hyperbolic Spaces and their Discrete Counterparts[END_REF]. Another direction of research could be to define sliced distances on generalizations of hyperbolic spaces such as pseudo-Riemannian spaces known as ultrahyperbolic spaces [START_REF] Law | Ultrahyperbolic Neural Networks[END_REF] or Finsler manifolds such as the Siegel space (López et al., 2021a) or the Hilbert simplex [START_REF] Nielsen | Non-linear Embeddings in Hilbert Simplex Geometry[END_REF]. This chapter is based on [START_REF] Bonet | Sliced-Wasserstein on Symmetric Positive Definite Matrices for M/EEG Signals[END_REF] and studies particular cases of Hadamard manifolds of Symmetric Positive Definite matrices applied to magneto and encephalogram (M/EEG) signals. Indeed, when dealing with electro or magnetoencephalography records, many supervised prediction tasks are solved by working with covariance matrices to summarize the signals. Learning with these matrices requires using Riemanian geometry to account for their structure. We propose a new method to deal with distributions of covariance matrices and demonstrate its computational efficiency on M/EEG multivariate time series. More specifically, we define a Sliced-Wasserstein distance between measures of Symmetric Positive Definite matrices that comes with strong theoretical guarantees. For the numerical computation, we propose a simple way for uniform sampling of the unit-norm SDP matrix set and the projection along geodesics. Then, we take advantage of its properties and kernel methods to apply this distance to brain-age prediction from MEG data and compare it to state-of-the-art algorithms based on Riemannian geometry. Finally, we show that it is an efficient surrogate to the Wasserstein distance in domain adaptation for Brain Computer Interface applications.

Introduction

Magnetoencephalography and electroencephalography (M/EEG) are non-invasive techniques for recording the electrical activity of the brain [START_REF] Hämäläinen | Magnetoencephalography-Theory, Instrumentation, and Applications to Noninvasive Studies of the Working Human Brain[END_REF]. The data consist of multivariate time series output by sensors placed around the head, which capture the intensity of the magnetic or electric field with high temporal resolution. Those measurements provide information on cognitive processes as well as the biological state of a subject.

Successful Machine Learning (ML) techniques that deal with M/EEG data often rely on covariance matrices estimated from band-passed filtered signals in several frequency bands [START_REF] Blankertz | Optimizing Spatial Filters for Robust EEG Single-Trial Analysis[END_REF]. The main difficulty that arises when processing such covariance matrices is that the set of Symmetric Positive Definite (SPD) matrices is not a linear space, but a Riemannian manifold [START_REF] Bhatia | Positive Definite Matrices[END_REF][START_REF] Bridson | Metric Spaces of Non-Positive Curvature[END_REF]. Therefore, specific algorithms have to be designed to take into account the non Euclidean structure of the data. The usage of Riemannian geometry on SPD matrices has become increasingly popular in the ML community [START_REF] Huang | A Riemannian Network for SPD Matrix Learning[END_REF][START_REF] Chevallier | Kernel Density Estimation on Spaces of Gaussian Distributions and Symmetric Positive Definite Matrices[END_REF][START_REF] Ilea | Covariance Matrices Encoding based on the Log-Euclidean and Affine Invariant Riemannian Metrics[END_REF][START_REF] Brooks | Riemannian Batch Normalization for SPD Neural Networks[END_REF]. In particular, these tools have proven to be very effective on prediction tasks with M/EEG data in Brain Computer Interface (BCI) applications [START_REF] Barachant | Multiclass Brain-Computer Interface Classification by Riemannian Geometry[END_REF]2013;[START_REF] Gaur | A Multi-Class EEG-based BCI Classification using Multivariate Empirical Mode Decomposition based Filtering and Riemannian Geometry[END_REF] or more recently in brain-age prediction [START_REF] Sabbagh | Manifold-Regression to Predict from MEG/EEG Brain Signals without Source Modeling[END_REF]2020;[START_REF] Engemann | A Reusable Benchmark of Brain-Age Prediction from M/EEG Resting-State Signals[END_REF]. As covariance matrices sets from M/EEG data are often modeled as samples from a probability distribution -for instance in domain adaptation for BCI [START_REF] Yair | Domain Adaptation with Optimal Transport on the Manifold of SPD matrices[END_REF] -it is of great interest to develop efficient tools that work directly on those distributions.

Optimal transport (OT) [START_REF] Villani | Optimal Transport: Old and New[END_REF][START_REF] Peyré | Computational Optimal Transport: With Applications to Data Science[END_REF] provides a powerful theoretical framework and computational toolbox to compare probability distributions while respecting the geometry of the underlying space. It is well defined on Riemannian manifolds [START_REF] Mccann | Polar Factorization of Maps on Riemannian Manifolds[END_REF][START_REF] Cui | Spherical Optimal Transportation[END_REF]Alvarez-Melis et al., 2020) and in particular on the space of SPD matrices that is considered in M/EEG learning tasks [START_REF] Brigant | Optimal Riemannian Quantization with an Application to Air Traffic Analysis[END_REF][START_REF] Yair | Domain Adaptation with Optimal Transport on the Manifold of SPD matrices[END_REF][START_REF] Ju | Deep Optimal Transport on SPD Manifolds for Domain Adaptation[END_REF]. To alleviate the computational burden of the original OT problem, we propose to leverage the constructions of Sliced-Wasserstein distances proposed in Chapter 3 in the particular case of Symmetric Positive Definite matrices.

Contributions.

In order to benefit from the advantages of SW in the context of M/EEG, we propose new SW distances on the manifold of SPD matrices endowed by two different metrics. First, we study the case of the Affine-Invariant metric. Then, we study in more detail the case of the Log-Euclidean metric and introduce SPDSW. We derive theoretical results, including topological, statistical, and computational properties. In particular, we prove that SPDSW is a distance topologically equivalent to the Wasserstein distance in this context. We extend the distribution regression with SW kernels to the case of SPD matrices, apply it to brain-age regression with MEG data, and show that it performs better than other methods based on Riemannian geometry. Finally, we show that SPDSW is an efficient surrogate to the Wasserstein distance in domain adaptation for BCI.

Background on SPD matrices

Let S d (R) be the set of symmetric matrices of R d×d , and

S ++ d (R) be the set of SPD matrices of R d×d , i.e. matrices M ∈ S d (R) satisfying ∀x ∈ R d \ {0}, x T M x > 0.
(5.1)

Background on SPD matrices

S ++ d (R) is a Riemannian manifold [START_REF] Bhatia | Positive Definite Matrices[END_REF], meaning that it behaves locally as a linear space, called a tangent space. Each point M ∈ S ++ d (R) defines a tangent space T M S ++ d (R), which can be given an inner product

•, • M : T M S ++ d (R) × T M S ++ d (R) → R,
and thus a norm. The choice of this inner-product induces different geometry on the manifold. One example is the geometric and Affine-Invariant (AI) metric [START_REF] Pennec | A Riemannian Framework for Tensor Computing[END_REF], where the inner product is defined as

∀M ∈ S ++ d (R), A, B ∈ T M S ++ d (R), A, B M = Tr(M -1 AM -1 B). (5.2)
Denoting by Tr the Trace operator, the corresponding geodesic distance

d AI (•, •) is given by ∀X, Y ∈ S ++ d (R), d AI (X, Y ) = Tr log(X -1 Y ) 2 .
(5.3)

An interesting property justifying the use of the Affine-Invariant metric is that d AI satisfies the affineinvariant property: for any g ∈ GL d (R), where

GL d (R) denotes the set of invertible matrices in R d×d , ∀X, Y ∈ S ++ d (R), d AI (g • X, g • Y ) = d AI (X, Y ), (5.4) where g • X = gXg T .
Another example is the Log-Euclidean (LE) metric [START_REF] Arsigny | Fast and Simple Computations on Tensors with Log-Euclidean Metrics[END_REF]2006) for which,

∀M ∈ S ++ d (R), A, B ∈ T M S ++ d (R), A, B M = D M log A, D M log B , ( 5.5) 
with log the matrix logarithm and D M log A the directional derivative of the log at M along A [START_REF] Huang | Log-Euclidean Metric Learning on Symmetric Positive Definite Manifold with Application to Image Set Classification[END_REF]. This definition provides another geodesic distance [START_REF] Arsigny | Log-Euclidean Metrics for Fast and Simple Calculus on Diffusion Tensors[END_REF]) (Arsigny et al., 2005, Theorem 3). For the AI metric, geodesic lines passing through X and Y ∈ S ++ d (R) are of the form

∀X, Y ∈ S ++ d (R), d LE (X, Y ) = log X -log Y F , (5.6) which is simply an Euclidean distance in S d (R) as log is a diffeomorphism from S ++ d (R) to S d (R), whose inverse is exp. For S ++ d (R), note that T M S ++ d (R) is diffeormorphic with S d (R)
∀t ∈ R, γ(t) = X 1 2 exp t log(X -1 2 Y X -1 2 ) X 1 2 .
(5.7)

For the LE metric, they are of the form

∀t ∈ R, γ(t) = exp (1 -t) log X + t log Y .
(5.8)

S ++ d (R) endowed with the Affine-Invariant metric is a Riemannian manifold of non-constant and nonpositive curvature [START_REF] Bhatia | Positive Definite Matrices[END_REF][START_REF] Bridson | Metric Spaces of Non-Positive Curvature[END_REF] while S ++ d (R) with the Log-Euclidean metric is of constant null curvature [START_REF] Pennec | Manifold-valued Image Processing with SPD Matrices[END_REF]. In particular, The Log-Euclidean distance is actually a lower bound of the Affine-Invariant distance, and they coincide when the matrices commute. The Log-Euclidean metric can actually be seen as a good first order approximation of the Affine-Invariant metric [START_REF] Arsigny | Fast and Simple Computations on Tensors with Log-Euclidean Metrics[END_REF][START_REF] Pennec | Manifold-valued Image Processing with SPD Matrices[END_REF] which motivated the proposal of this metric. Notably, they share the same geodesics passing through the identity (Pennec, 2020, Section 3.6.1), which are of the form t → exp(tA) for A ∈ S d (R). To span all such geodesics, we can restrict to A with unit Frobenius norm, i.e. A F = 1.

Sliced-Wasserstein on SPD Matrices

In this Section, we introduce SW discrepancies on SPD matrices and provide a theoretical analysis of their properties and behavior. Following the general framework introduced in Chapter 3, we first discuss how to project on geodesics passing through the origin I d with the different metrics. Then we define the different Sliced-Wasserstein distances, and present the additional theoretical properties which are not deduced from the general framework.

Projections on Geodesics

As origin, we choose the identity I d and we aim to project on geodesics passing through I d which are of the form G A = {exp(tA), t ∈ R} where A ∈ S d (R). We derive the different projections in closed-form first when S ++ d (R) is endowed with the Log-Euclidean metric, and then when it is endowed with the Affine-Invariant metric.

With Log-Euclidean Metric. First, we derive in Proposition 5.1 the closed-form of the geodesic projection on G A , which we recall is defined as

∀M ∈ S ++ d (R), P G A (M ) = argmin X∈G A d LE (X, M ).
(5.9)

Proposition 5.1. Let A ∈ S d (R) with A F = 1
, and let G A be the associated geodesic line. Then, for any M ∈ S ++ d (R), the geodesic projection on G A is

P G A (M ) = exp Tr(A log M )A .
(5.10)

Proof. See Section 12.3.1.

Then, we also provide the coordinate on the geodesic G A , which we recall is obtained by giving an orientation to G A and computing the distance between P G A (M ) and the origin I d , as follows

∀M ∈ S ++ d (R), P A (M ) = sign( log P G A (M ), A F )d LE ( P G A (M ), I d ).
(5.11)

The closed-form expression is given by Proposition 5.2.

Proposition 5.2. Let A ∈ S d (R) with A F = 1, and let G A be the associated geodesic line. Then, for any M ∈ S ++ d (R), the geodesic coordinate on G A is

P A (M ) = A, log M F = Tr(A log M ).
(5.12)

Proof. See Section 12.3.1. These two properties give a closed-form expression for the Riemannian equivalent of one-dimensional projection in a Euclidean space. Note that coordinates on the geodesic might also be found using Busemann coordinates, and that they actually coincide here (up to a sign) as shown in the following proposition. This is due to the null curvature of the space, in which case horospheres and hyperplanes coincide.

Proposition 5.3 (Busemann coordinates). Let

A ∈ S d (R) such that A F = 1,
and let G A be the associated geodesic line. Then, the Busemann function associated to G A is defined as

∀M ∈ S ++ d (R), B A (M ) = -Tr(A log M ).
(5.13)

Proof. See Section 12.3.1.

In Figure 5.1, we illustrate the projections of matrices

M ∈ S ++ 2 (R) embedded as vectors (m 11 , m 22 , m 12 ) ∈ R 3 . S ++ 2 (R
) is an open cone and we plot the projections of random SPD matrices on geodesics passing through I 2 .

With Affine-Invariant Metric. For the Affine-Invariant case, to the best of our knowledge, there is no closed-form for the geodesic projection on G A , the difficulty being that the matrices do not necessarily commute. Hence, we will discuss here the horospherical projection which can be obtained with the Busemann function. For A ∈ S d (R) such that A F = 1, denoting γ A : t → exp(tA) the geodesic line passing through I d with direction A, the Busemann function B A associated to γ A writes as

∀M ∈ S ++ d (R), B A (M ) = lim t→∞ d AI exp(tA), M -t .
(5.14)

Contrary to the Log-Euclidean case, we cannot directly compute this quantity by expanding the distance since exp(-tA) and M are not necessarily commuting. The main idea to solve this issue is to first find a group G ⊂ GL d (R) which will leave the Busemann function invariant. Then, we can find an element of this group which will project M on the space of matrices commuting with exp(A). This part of the space is of null curvature, i.e. it is isometric to an Euclidean space. In this case, we can compute the Busemann function as in Proposition 5.3 as the matrices are commuting. Hence, the Busemann function is of the form (5.15) where π A is a projection on the space of commuting matrices. In the next paragraph, we detail how we can proceed to obtain π A .

B A (M ) = -A, log π A (M ) F ,
When A is diagonal with sorted values such that A 11 > • • • > A dd , then the group leaving the Busemann function invariant is the set of upper triangular matrices with ones on the diagonal (Bridson and Haefliger, 2013, II. Proposition 10.66), i.e. for such matrix g, B A (M ) = B A (gM g T ). If the points are sorted in increasing order, then the group is the set of lower triangular matrices. Let's note G U the set of upper triangular matrices with ones on the diagonal. For a general A ∈ S d (R), we can first find an appropriate diagonalization A = P ÃP T , where à is diagonal sorted, and apply the change of basis M = P T M P [START_REF] Fletcher | Computing Hulls and Centerpoints in Positive Definite Space[END_REF]. We suppose that all the eigenvalues of A have an order of multiplicity of one, which is a reasonable hypothesis as we will see in Lemma 5.1. By the affine-invariance property, the distances do not change, i.e. d AI (exp(tA), M ) = d AI (exp(t Ã), M ) and hence, using the definition of the Busemann function, we have that B A (M ) = B Ã( M ). Then, we need to project M on the space of matrices commuting with exp( Ã) which we denote F (A). By Bridson and Haefliger (2013, II. Proposition 10.67), this space corresponds to the diagonal matrices. Moreover, by Bridson and Haefliger (2013, II. Proposition 10.69), there is a unique pair (g, D) ∈ G U ×F (A) such that M = gDg T , and therefore, we can note π A ( M ) = D. This decomposition actually corresponds to a UDU decomposition. If the eigenvalues of A are sorted in increasing order, this would correspond to a LDL decomposition.

For more details about the Busemann function on the Affine-invariant space, we refer to Bridson and Haefliger (2013, Section II.10) and [START_REF] Fletcher | Computing Hulls and Centerpoints in Positive Definite Space[END_REF]2011).

Definitions of Sliced-Wasserstein Distances

We are now ready to define Sliced-Wasserstein distances on both the Log-Euclidean space and the Affine-Invariant space.

SPDSW. We start by defining an SW distance on the space of measures

P p S ++ d (R) = {µ ∈ P S ++ d (R) , d LE (X, M 0 ) p dµ(X) < ∞, M 0 ∈ S ++ d (R)} which we call SPDSW. Definition 5.1. Let λ S be the uniform distribution on {A ∈ S d (R), A F = 1}. Let p ≥ 1 and µ, ν ∈ P p S ++ d (R)
, then the SPDSW discrepancy is defined as

SPDSW p p (µ, ν) = S d (R) W p p (P A # µ, P A # ν) dλ S (A).
(5.16)

The coordinate of the projection on the geodesic G A is provided by P A (•) = Tr(A log •) defined in Proposition 5.2. The Wasserstein distance is easily computed using order statistics, and this leads to a natural extension of the SW distance in S ++ d (R). There exists a strong link between SW on distributions in R d×d and SPDSW. Indeed, Proposition 5.4 shows that SPDSW is equal to a variant of SW where projection parameters are sampled from unit norm matrices in S d (R) instead of the unit sphere, and where the distributions are pushed forward by the log operator.

Proposition 5.4. Let μ, ν ∈ P p (S d (R)), and t A (B) = Tr(A T B) for A, B ∈ S d (R). We define

SymSW p p (μ, ν) = S d (R) W p p (t A # μ, t A # ν) dλ S (A).
(5.17)

Then, for µ, ν ∈ P p (S ++ d (R)), SPDSW p p (µ, ν) = SymSW p p (log # µ, log # ν).
(5.18)

Proof. See Section 12.3.1.

Thus, it seems natural to compare the results obtained with SPDSW to the Euclidean counterpart LogSW = SW(log # •, log # •) where the distributions are made of projections in the log space and where the sampling is done with the uniform distribution on the sphere. This variant will provide an ablation over the integration set.

HSPDSW. Similarly, using the horospherical projection introduced in the last Section, we can define a horospherical Sliced-Wasserstein distance on the space of measures on S ++ d (R) endowed by the Affine-Invariant metric, i.e. 

P AI p S ++ d (R) = µ ∈ P S ++ d (R) , d AI (X, M 0 ) p dµ(X) < ∞, M 0 ∈ S ++ d (R) .
HSPDSW p p (µ, ν) = S d (R) W p p (B A # µ, B A # ν) dλ S (A), (5.19) where B A (M ) = -Tr A log(π A (M )) with π A the projection derived in Section 5.3.1.
Sampling from λ S . As shown by the definitions, being able to sample from λ S is one of the cornerstones of the computation of SPDSW. In Lemma 5.1, we propose a practical way of uniformly sampling a symmetric matrix A. More specifically, we sample an orthogonal matrix P and a diagonal matrix D of unit norm and compute A = P DP T which is a symmetric matrix of unit norm. This is equivalent to sampling from λ S as the measures are equal up to a normalization factor d! which represents the number of possible permutations of the columns of P and D for which P DP T = A.

Lemma 5.1. Let λ O be the uniform distribution on O d = {P ∈ R d×d , P T P = P P T = I} (Haar distribution), and λ be the uniform distribution on

S d-1 = {θ ∈ R d , θ 2 = 1}. Then λ S ∈ P(S d (R)), defined such that ∀ A = P diag(θ)P T ∈ S d (R), dλ S (A) = d! dλ O (P )dλ(θ), is the uniform distribution on {A ∈ S d (R), A F = 1}.
Proof. See Section 12.3.1.

Note that since we sample the eigenvalues from the uniform distribution on S d-1 , the values are all different almost surely. Hence, the hypothesis made in Section 5.3.1 that all eigenvalues have an order of multiplicity of 1 is justified.

Properties of SPDSW

As both constructions follow the framework of Chapter 3, they satisfy the same properties derived in this chapter and we do not restate them. Notably, they are both pseudo-distances which can be embedded in Hilbert spaces, have a sample complexity independent of the dimension and a projection complexity with the same rate of Monte-Carlo estimators. In this Section, we add theoretical results obtained for SPDSW which rely on the null curvature of the Log-Euclidean space, and which notably allows to show well known results of the Euclidean SW distance: distance properties and metrization of the weak convergence.

Topology. Following usual arguments which are valid for any sliced divergence with any projection, we can show that both SPDSW and HSPDSW are pseudo-distances. However, S ++ d (R) with the Log-Euclidean metric is of null sectional curvature [START_REF] Arsigny | Fast and Simple Computations on Tensors with Log-Euclidean Metrics[END_REF][START_REF] Xu | Unsupervised Manifold Learning with Polynomial Mapping on Symmetric Positive Definite Matrices[END_REF] and we have access to a diffeomorphism to a Euclidean space -the log operator. This allows us to show that SPDSW is a distance in Theorem 5.1.

Theorem 5.1. Let p ≥ 1, then SPDSW p is a finite distance on P p S ++ d (R) .
Proof. See Section 12.3.1.

For HSPDSW, as the projection log •π A is not a diffeomorphism, whether the indiscernible property holds or not remains an open question and could be studied via the related Radon transform.

An important property which justifies the use of the SW distance in place of the Wasserstein distance in the Euclidean case is that they both metrize the weak convergence [START_REF] Bonnotte | Unidimensional and Evolution Methods for Optimal Transportation[END_REF]. We show in Theorem 5.2 that this is also the case with SPDSW in P p S ++ d (R) .

Theorem 5.2. For p ≥ 1, SPDSW p metrizes the weak convergence, i.e. for µ ∈ P p S ++ d (R) and a sequence

(µ k ) k in P p S ++ d (R) , lim k→∞ SPDSW p (µ k , µ) = 0 if and only if (µ k ) k converges weakly to µ.
Proof. See Section 12.3.1.

Moreover, SPDSW p and W p -the p-Wasserstein distance with Log-Euclidean ground cost -are also weakly equivalent on compactly supported measures of P p S ++ d (R) , as demonstrated in Theorem 5.3.

Theorem 5.3. Let p ≥ 1, let µ, ν ∈ P p S ++ d (R) . Then SPDSW p p (µ, ν) ≤ c p d,p W p p (µ, ν), (5.20) where c p d,p = 1 d θ p p dλ(θ). Let R > 0 and B(I, R) = {M ∈ S ++ d (R), d LE (M, I d ) = log M F ≤ R} be a closed ball. Then there exists a constant C d,p,R such that for all µ, ν ∈ P p B(I, R) , W p p (µ, ν) ≤ C d,p,R SPDSW p (µ, ν) 2 d(d+1)+2 . (5.21) Algorithm 5.1 Computation of SPDSW Input: (X i ) n i=1 ∼ µ, (Y j ) m j=1 ∼ ν, L the number of projections, p the order for = 1 to L do Draw θ ∼ Unif(S d-1 ) = λ Draw P ∼ Unif(O d (R)) = λ O A = P diag(θ)P T ∀i, j, X i = P A (X i ), Ŷ j = P A (Y j ) Compute W p p ( 1 n n i=1 δ X i , 1 m m j=1 δ Ŷ j ) end for Return 1 L L =1 W p p ( 1 n n i=1 δ X i , 1 m m j=1 δ Ŷ j ) Algorithm 5.2 Computation of HSPDSW Input: (X i ) n i=1 ∼ µ, (Y j ) m j=1 ∼ ν, L the number of projections, p the order for = 1 to L do Draw θ ∼ Unif(S d-1 ) = λ Draw P ∼ Unif(O d (R)) = λ O Get Q the permutation matrix such that θ = Qθ is sorted in decreasing order Set A = diag( θ), P = P Q T ∀i, j, X i = P T X i P , Ỹ j = P T Y j P ∀i, j, D i = U DU ( X i ), ∆ j = U DU ( Ỹ j ) ∀i, j, X i = P A (D i ), Ŷ j = P A (∆ j ) Compute W p p ( 1 n n i=1 δ X i , 1 m m j=1 δ Ŷ j ) end for Return 1 L L =1 W p p ( 1 n n i=1 δ X i , 1 m m j=1 δ Ŷ j )
Proof. See Section 12.3.1.

The theorems above highlight that SPDSW p behaves similarly to W p on P p S ++ d (R) . Thus, it is justified to use SPDSW p as a surrogate of Wasserstein and to take advantage of the statistical and computational benefits that we present in the next Section.

We note that we recover the same constant c p d,p in the upper bound as for the Euclidean SW distance [START_REF] Bonnotte | Unidimensional and Evolution Methods for Optimal Transportation[END_REF][START_REF] Candau-Tilh | Wasserstein and Sliced-Wasserstein Distances[END_REF]. In particular, for p = 2, we have

SPDSW 2 2 (µ, ν) ≤ 1 d W 2 2 (µ, ν). (5.22)
Moreover, denoting by Wp the p-Wasserstein distance with Affine-Invariant ground cost, we have

SPDSW p p (µ, ν) ≤ c p d,p W p p (µ, ν) ≤ c p d,p W p p (µ, ν), (5.23)
since the Log-Euclidean geodesic distance is a lower bound of the Affine-Invariant one (Bhatia, 2009, Theorem 6.14).

Computational Complexity and Implementation

. Let µ, ν ∈ P p S ++ d (R) and (X i ) n i=1 (resp. (Y j ) m j=1
) samples from µ (resp. from ν). We approximate SPDSW p p (µ, ν) by SPDSW [START_REF] Mezzadri | How to Generate Random Matrices from the Classical Compact Groups[END_REF], which needs O(d 3 ) operations (Golub and Van Loan, 2013, Section 5.2). Then, computing n matrix logarithms takes O(nd 3 ) operations. Given L projections, the inner-products require O(Lnd 2 ) operations, and the computation of the one-dimensional Wasserstein distances is done

in O(Ln log n) operations. Therefore, the complexity of SPDSW is O Ln(log n + d 2 ) + (L + n)d 3 .
The procedure is detailed in Algorithm 5.1. In practice, when it is required to call SPDSW several times in optimization procedures, the computational complexity can be reduced by drawing projections only once at the beginning.

For HSPDSW, it requires an additional projection step with a UDU decomposition for each sample and projection. Hence the overall complexity becomes O Ln(log n + d 3 ) where the O(Lnd 3 ) comes from the UDU decomposition. In practice, it takes more time than SPDSW for results which are quite similar. We detail the procedure to compute HSPDSW in Algorithm 5.2.

Note that it is possible to draw symmetric matrices with complexity O(d 2 ) by taking A = Z+Z T Z+Z T F . Although this is a great advantage from the point of view of computation time, we leave it as an open question to know whether this breaks the bounds in Theorem 5.3.

We illustrate the computational complexity w.r.t samples in Figure 5.2. The computations have been performed on a GPU NVIDIA Tesla V100-DGXS 32GB using PyTorch (Paszke et al., 2019) 1 . We compare the runtime to the Wasserstein distance with Affine-Invariant (AIW) and Log-Euclidean (LEW) metrics, and to Sinkhorn algorithm (LES) which is a classical alternative to Wasserstein to reduce the computational cost. When enough samples are available, then computing the Wasserstein distance takes more time than computing the cost matrix, and SPDSW is faster to compute. The computational burden of the UDU decomposition for HSPDSW is huge and it takes even more time than computing the Wasserstein distance. Hence, in the following, we will focus on SPDSW which we show is a computationally efficient alternative to Wasserstein on P S ++ d (R) as it is topologically equivalent while having a better computational complexity and being better conditioned for regression of distributions.
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From Brain Data to Distributions in S ++ d (R)

M/EEG data consists of multivariate time series X ∈ R N C ×T , with N C channels, and T time samples. A widely adopted model assumes that the measurements X are linear combinations of N S sources S ∈ R N S ×T degraded by noise N ∈ R N C ×T . This leads to X = AS + N , where A ∈ R N C ×N S is the forward linear operator [START_REF] Hämäläinen | Magnetoencephalography-Theory, Instrumentation, and Applications to Noninvasive Studies of the Working Human Brain[END_REF]. A common practice in statistical learning on M/EEG data is to consider that the target is a function of the power of the sources, i.e. E[SS T ] ( [START_REF] Blankertz | Optimizing Spatial Filters for Robust EEG Single-Trial Analysis[END_REF][START_REF] Dähne | SPoC: a novel Framework for Relating the Amplitude of Neuronal Oscillations to behaviorally relevant Parameters[END_REF][START_REF] Sabbagh | Manifold-Regression to Predict from MEG/EEG Brain Signals without Source Modeling[END_REF]. In particular, a broad range of methods rely on second-order statistics of the measurements, i.e. covariance matrices of the form C = XX T T , which are less costly and uncertain than solving the inverse problem to recover S before training the model. After proper rank reduction to turn the covariance estimates into SPD matrices [START_REF] Harandi | Dimensionality Reduction on SPD Manifolds: The Emergence of Geometry-aware Methods[END_REF], and appropriate band-pass filtering to stick to specific physiological patterns [START_REF] Blankertz | Optimizing Spatial Filters for Robust EEG Single-Trial Analysis[END_REF], Riemannian geometry becomes an appropriate tool to deal with such data.

In this section, we propose two applications of SPDSW to prediction tasks from M/EEG data. More specifically, we introduce a new method to perform brain-age regression, building on the work of [START_REF] Sabbagh | Manifold-Regression to Predict from MEG/EEG Brain Signals without Source Modeling[END_REF] and [START_REF] Meunier | Distribution Regression with Sliced Wasserstein Kernels[END_REF], and another for domain adaptation in BCI.

Distributions Regression for Brain-age Prediction

Learning to predict brain age from population-level neuroimaging data-sets can help characterize biological aging and disease severity [START_REF] Spiegelhalter | How Old Are You, Really? Communicating Chronic Risk through 'Effective Age'of your Body and Organs[END_REF][START_REF] Cole | Predicting Age using Neuroimaging: Innovative Brain Ageing Biomarkers[END_REF][START_REF] Cole | Brain Age Predicts Mortality[END_REF]. Thus, this task has encountered more and more interest in the neuroscience community in recent years [START_REF] Xifra-Porxas | Estimating Brain Age from Structural MRI and MEG Data: Insights from Dimensionality Reduction Techniques[END_REF]Peng et al., 2021a;[START_REF] Engemann | A Reusable Benchmark of Brain-Age Prediction from M/EEG Resting-State Signals[END_REF]. In particular, [START_REF] Sabbagh | Manifold-Regression to Predict from MEG/EEG Brain Signals without Source Modeling[END_REF] take advantage of Riemannian geometry for feature engineering and prediction with the following steps. First, one covariance estimate is computed per frequency band from each subject recording. Then these covariance matrices are projected onto a lower dimensional space to make them full rank, for instance with a PCA. Each newly obtained SPD matrix is projected onto the log space to obtain a feature after vectorization and aggregation among frequency bands. Finally, a Ridge regression model predicts brain age. This white-box method achieves state-of-the-art brain age prediction scores on MEG datasets like Cam-CAN [START_REF] Taylor | The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) Data Repository: Structural and Functional MRI, MEG, and Cognitive Data from a Cross-sectional Adult Lifespan Sample[END_REF].

MEG recordings as distributions of covariance matrices.

Instead of modeling each frequency band by a unique covariance matrix, we propose to use a distribution of covariance matrices estimated from small time frames. Concretely, given a time series X ∈ R N C ×T and a time-frame length t < T , a covariance matrix is estimated from each one of the n = T t chunks of signal available. This process models each subject by as many empirical distributions of covariance estimates (C i ) n i=1 as there are frequency bands. Then, all samples are projected on a lower dimensional space with a PCA, as done in [START_REF] Sabbagh | Manifold-Regression to Predict from MEG/EEG Brain Signals without Source Modeling[END_REF]. Here, we study whether modeling a subject by such distributions provides additional information compared to feature engineering based on a unique covariance matrix. In order to perform brain age prediction from these distributions, we extend recent results on distribution regression with SW kernels [START_REF] Kolouri | Sliced Wasserstein Kernels for Probability Distributions[END_REF][START_REF] Meunier | Distribution Regression with Sliced Wasserstein Kernels[END_REF] to SPD matrices, and show that SPDSW performs well on this prediction task while being easy to implement.

From Brain Data to Distributions in S

++ d (R)
SPDSW kernels for distributions regression. As shown in Section 5.3.3, SPDSW is a well-defined distance on distributions in S ++ d (R). The most straightforward way to build a kernel from this distance is to resort to well-known Gaussian kernels, i.e. K(µ ,ν) . However, this is not sufficient to make it a proper positive kernel. Indeed, we need SPDSW to be a Hilbertian distance [START_REF] Hein | Hilbertian Metrics and Positive Definite Kernels on Probability Measures[END_REF]. A pseudo-distance d on X is Hilbertian if there exists a Hilbert space H and a feature map Φ : X → H such that ∀x, y ∈ X , d(x, y) = Φ(x) -Φ(y) H . We now extend (Meunier et al., 2022, Proposition 5) to the case of SPDSW in Proposition 5.5.

Proposition 5.5. Let m be the Lebesgue measure and let

H = L 2 ([0, 1] × S d (R), m ⊗ λ S ). We define Φ as Φ : P 2 (S ++ d (R)) → H µ → (q, A) → F -1 P A # µ (q) , (5.24)
where F -1

P A # µ is the quantile function of P A # µ. Then, SPDSW 2 is Hilbertian and for all µ, ν ∈ P 2 (S ++ d (R)), SPDSW 2 2 (µ, ν) = Φ(µ) -Φ(ν) 2 H .
(5.25)

Proof. This is a particular case of Proposition 3.11.

The proof is similar to the one of [START_REF] Meunier | Distribution Regression with Sliced Wasserstein Kernels[END_REF] for SW in Euclidean spaces and highlights two key results. The first one is that SPDSW extensions of Gaussian kernels are valid positive definite kernels, as opposed to what we would get with the Wasserstein distance (Peyré et al., 2019, Section 8.3). The second one is that we have access to an explicit and easy-to-compute feature map that preserves SPDSW, making it possible to avoid inefficient quadratic algorithms on empirical distributions from very large data. In practice, we rely on the finite-dimensional approximation of projected distributions quantile functions proposed in [START_REF] Meunier | Distribution Regression with Sliced Wasserstein Kernels[END_REF] to compute the kernels more efficiently with the 2 -norm. Then, we leverage Kernel Ridge regression for prediction [START_REF] Murphy | Machine Learning: a Probabilistic Perspective[END_REF]

. Let 0 < q 1 < • • • < q M < 1, and (A 1 , . . . , A L ) ∈ S d (R) L .
The approximate feature map has a closed-form expression in the case of empirical distributions and is defined as

Φ(µ) = 1 √ M L F -1 t A i # µ (q j ) 1≤j≤M,1≤i≤L
.

(5.26)

Regarding brain-age prediction, we model each couple of subject s and frequency band f as an

empirical distribution µ s,f n of covariance estimates (C i ) n i=1 . Hence, our data-set consists of the set of distributions in S ++ d (R) µ s,f n = 1 n n i=1 δ Ci s,f
.

(5.27)

First, we compute the associated features Φ(µ s,f n ) s,f by loading the data and band-pass filtering the signal once per subject. Then, as we are interested in comparing each subject in specific frequency bands, we compute one approximate kernel matrix per frequency f , as follows

K f i,j = e -1 2σ 2 Φ(µ i,f n )-Φ(µ j,f n ) 2 2 .
(5.28) Finally, the kernel matrix obtained as a sum over frequency bands, i.e. K = f K f , is plugged into the Kernel Ridge regression of scikit-learn (Pedregosa et al., 2011b).

Numerical results. We demonstrate the ability of our algorithm to perform well on brain-age prediction on the largest publicly available MEG data-set Cam-CAN [START_REF] Taylor | The Cambridge Centre for Ageing and Neuroscience (Cam-CAN) Data Repository: Structural and Functional MRI, MEG, and Cognitive Data from a Cross-sectional Adult Lifespan Sample[END_REF], which contains recordings from 646 subjects at rest. We take advantage of the benchmark provided by Engemann et al. ( 2022) -available online2 and described in Section 12.3.3 -to replicate the same pre-processing and prediction steps from the data, and thus produce a meaningful and fair comparison.

For each one of the seven frequency bands, we divide every subject time series into frames of fixed length. We estimate covariance matrices from each timeframe with OAS [START_REF] Chen | Shrinkage Algorithms for MMSE Covariance Estimation[END_REF] and apply PCA for rank-reduction, as in [START_REF] Sabbagh | Manifold-Regression to Predict from MEG/EEG Brain Signals without Source Modeling[END_REF], to obtain SPD matrices of size 53 × 53. This leads to distributions of 275 points per subject and per frequency band. In [START_REF] Sabbagh | Manifold-Regression to Predict from MEG/EEG Brain Signals without Source Modeling[END_REF], the authors rely on Ridge regression on vectorized projections of SPD matrices on the tangent space. We also provide a comparison to Kernel Ridge regression based on a kernel with the Log-Euclidean metric, i.e.

K log i,j = e -1 2σ 2 log Ci-log Cj 2
F . Figure 5.3 shows that SPDSW and LogSW (1000 projections, time-frames of 2s) perform best in average on 10-folds cross-validation for 10 random seeds, compared to the baseline with Ridge regression [START_REF] Sabbagh | Manifold-Regression to Predict from MEG/EEG Brain Signals without Source Modeling[END_REF] and to Kernel Ridge regression based on the Log-Euclidean metric, with identical pre-processing. We provide more details on scores for each fold on a single random seed in Figure 12.1. In particular, it seems that evaluating the distance between distributions of covariance estimates instead of just the average covariance brings more information to the model in this brain-age prediction task, and allows to improve the score. Moreover, while SPDSW gives the best results, LogSW actually performs well compared to baseline methods. Thus, both methods seem to be usable in practice, even though sampling symmetric matrices and taking into account the Riemannian geometry improves the performances compared to LogSW. Also note that Log-Euclidean Kernel Ridge regression works better than the baseline method based on Ridge regression [START_REF] Sabbagh | Manifold-Regression to Predict from MEG/EEG Brain Signals without Source Modeling[END_REF]. Then, Figure 12.2 in the appendix shows that SPDSW does not suffer from variance with more than 500 projections in this use case with matrices of size 53 × 53. Finally, Figure 12.3 shows that there is a trade-off to find between smaller time-frames for more samples per distribution and larger time-frames for less noise in the covariance estimates and that this is an important hyper-parameter of the model.
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Domain Adaptation for Brain Computer Interface

BCI consists in establishing a communication interface between the brain and an external device, in order to assist or repair sensory-motor functions [START_REF] Daly | Brain-Computer Interfaces in Neurological Rehabilitation[END_REF][START_REF] Nicolas-Alonso | Brain Computer Interfaces[END_REF][START_REF] Wolpaw | Brain-Computer Interfaces[END_REF]. The interface should be able to correctly interpret M/EEG signals and link them to actions that the subject would like to perform. One challenge of BCI is that ML methods are generally not robust to the change of data domain, which means that an algorithm trained on a particular subject will not be able to generalize to other subjects. Domain adaptation (DA) [START_REF] Ben-David | Analysis of Representations for Domain Adaptation[END_REF] offers a solution to this problem by taking into account the distributional shift between source and target domains. Classical DA techniques employed in BCI involve projecting target data on source data or vice versa, or learning a common embedding that erases the shift, sometimes with the help of Optimal Transport [START_REF] Courty | Optimal Transport for Domain Adaptation[END_REF]. As Riemannian geometry works well on BCI [START_REF] Barachant | Classification of Covariance Matrices using a Riemannian-based Kernel for BCI Applications[END_REF], DA tools have been developed for SPD matrices [START_REF] Yair | Domain Adaptation with Optimal Transport on the Manifold of SPD matrices[END_REF][START_REF] Ju | Deep Optimal Transport on SPD Manifolds for Domain Adaptation[END_REF].

SPDSW for domain adaptation on SPD matrices. We study two training frameworks on data from P S ++ d (R) . In the first case, a push forward operator f θ is trained to change a distribution µ S in the source domain into a distribution µ T in the target domain by minimizing a loss of the form

L(θ) = L (f θ ) # µ S , µ T , where L is a transport cost like Wasserstein on P S ++ d (R) or SPDSW. The model f θ is a sequence of simple transformations in S ++ d (R) (Rodrigues et al., 2018), i.e. T W (C) = W T CW for W ∈ S ++ d (R) (translations) or W ∈ SO d (R) (rotations)
, potentially combined to specific non-linearities [START_REF] Huang | A Riemannian Network for SPD Matrix Learning[END_REF]. The advantage of such models is that they provide a high level of structure with a small number of parameters.

In the second case, we directly align the source on the target by minimizing L with a Riemannian gradient descent directly over the particles [START_REF]An Introduction to Optimization on Smooth Manifolds[END_REF], i.e. by denoting µ S (x i )

|X S | i=1 = 1 |X S | |X S | i=1 δ xi with X S = {x S i } i the samples of the source, we initialize at (x S i ) |X S | i=1 and minimize L (x i ) |X S | i=1 = L µ S (x i ) |X S |
i=1 , µ T . We use Geoopt [START_REF] Kochurov | Geoopt: Riemannian Optimization in Pytorch[END_REF] and Pytorch [START_REF] Paszke | Automatic Differentiation in Pytorch[END_REF] to optimize on manifolds. Then, an SVM is trained on the vectorized projections of X S in the log space, i.e. from couples vect(log

x S i ), y i |X S |
i=1 , and we evaluate the model on the target distribution.

Numerical results. In Table 5.1, we focus on cross-session classification for the BCI IV 2.a Competition dataset [START_REF] Brunner | BCI Competition 2008-Graz data set A. Institute for Knowledge Discovery[END_REF] [START_REF] Flamary | POT: Python Optimal Transport[END_REF]. Note that we did not tune hyper-parameters on each particular subject and discrepancy, but only used a grid search to train the SVM on the source data-set, and optimized each loss until convergence, i.e. without early stopping.

We compare this approach to the naive one without DA, and to the barycentric OTDA [START_REF] Courty | Optimal Transport for Domain Adaptation[END_REF] with Affine-Invariant metric reported from [START_REF] Yair | Domain Adaptation with Optimal Transport on the Manifold of SPD matrices[END_REF]. We provide further comparisons on cross-subject in Section 12.3.2. Our results show that all discrepancies give equivalent accuracies. As expected, SPDSW has an advantage in terms of computation time compared to other transport losses. Moreover, transformations in S ++ d (R) and descent over the particles work almost equally well in the case of SPDSW. We illustrate the alignment we obtain by minimizing SPDSW in Figure 5.4, with a PCA for visualization purposes. Additionally, Figure 5.4 shows that SPDSW does not need too many projections to reach optimal performance. We provide more experimental details in Section 12.3.3.

Conclusion

We introduced in this Chapter two new discrepancies between distributions of SPD matrices. The first, HSPDSW, is defined using the Affine-Invariant metric but is computationally heavy to compute. The second, SPDSW, uses the Log-Euclidean metric and has appealing properties such as being a distance and metrizing the weak convergence. Being a Hilbertian metric, it can be plugged as is into Kernel methods, as we demonstrate for brain age prediction from MEG data. Moreover, it is usable in loss functions dealing with distributions of SPD matrices, for instance in domain adaptation for BCI, with less computational complexity than its counterparts. Beyond M/EEG data, our discrepancy is of interest for any learning problem that involves distributions of SPD matrices, and we expect to see other applications of SPDSW in the future.

One might also be interested in using other metrics on positive definite or semi-definite matrices such as the Bures-Wasserstein metric, with the additional challenges that this space is positively curved and not geodesically complete [START_REF] Thanwerdas | O(n)-Invariant Riemannian Metrics on SPD Matrices[END_REF]. In particular, the Log-Euclidean metric belongs to the family of pullback metrics (Chen et al., 2023b, Theorem 3.1). Thus, it would be of interest to compare the results on different tasks using other pullback metrics such as the Log-Cholesky metric [START_REF] Lin | Riemannian Geometry of Symmetric Positive Definite Matrices via Cholesky Decomposition[END_REF] or the Adaptative metric introduced in (Chen et al., 2023b) which could be learned given the data. Moreover, the Affine-Invariant metric can be derived as a particular instance of vector-valued distances (López et al., 2021b) which also encompass the symmetric Stein divergence [START_REF] Cherian | Efficient Similarity Search for Covariance Matrices via the Jensen-Bregman LogDet Divergence[END_REF][START_REF] Sra | A new Metric on the Manifold of Kernel Matrices with Application to Matrix Geometric Means[END_REF]2016) and Finsler distances, and which could be of interests to study.

Further works could also be done to improve the design of the kernel used in the brain-age regression task, as they are taken as the sum over all frequencies. A natural lead forward would be to perform a non uniform linear combination of each frequency by learning weights, for example using the Multiple Kernel Learning framework [START_REF] Rakotomamonjy | SimpleMKL[END_REF]. This chapter is based on (Bonet et al., 2023a) and aims at defining a new Sliced-Wasserstein discrepancy on the sphere. The sphere seen as a Riemannian manifold is of unit curvature, and hence does not enter into the general framework on manifolds of non-positive curvature developed in Chapter 3, which poses additional challenges. Hence, we define a novel SW discrepancy, which we call Spherical Sliced-Wasserstein, for probability distributions lying on the sphere. Our construction is notably based on closed-form solutions of the Wasserstein distance on the circle, together with a spherical Radon transform. Along with efficient algorithms and the corresponding implementations, we illustrate its properties in several Machine Learning use cases where spherical representations of data are at stake: sampling on the sphere, density estimation on real earth data or hyperspherical auto-encoders.

Introduction

Although embedded in larger dimensional Euclidean spaces, data generally lie in practice on manifolds [START_REF] Fefferman | Testing the Manifold Hypothesis[END_REF]. A simple manifold, but with lots of practical applications, is the hypersphere S d-1 . Several types of data are by essence spherical: a good example is found in directional data [START_REF] Mardia | Directional Statistics[END_REF][START_REF] Pewsey | Recent Advances in Directional Statistics[END_REF] for which dedicated Machine Learning solutions are being developed [START_REF] Sra | Directional Statistics in Machine Learning: a Brief Review[END_REF], but other applications concern for instance geophysical data [START_REF] Di Marzio | Nonparametric Regression for Spherical Data[END_REF], meteorology [START_REF] Besombes | Producing Realistic Climate Data with Generative Adversarial Networks[END_REF], cosmology [START_REF] Perraudin | Deepsphere: Efficient Spherical Convolutional Neural Network with Healpix Sampling for Cosmological Applications[END_REF] or extreme value theory for the estimation of spectral measures [START_REF] Guillou | A Folding Methodology for Multivariate Extremes: Estimation of the Spectral Probability Measure and Actuarial Applications[END_REF]. Remarkably, in a more abstract setting, considering hyperspherical latent representations of data is becoming more and more common, see e.g. [START_REF] Liu | SphereFace: Deep Hypersphere Embedding for Face Recognition[END_REF][START_REF] Xu | Spherical Latent Spaces for Stable Variational Autoencoders[END_REF][START_REF] Davidson | Hyperspherical Variational Auto-Encoders[END_REF]. For example, in the context of Variational Autoencoders [START_REF] Kingma | Auto-Encoding Variational Bayes[END_REF], using priors on the sphere has been demonstrated to be beneficial [START_REF] Davidson | Hyperspherical Variational Auto-Encoders[END_REF]. Also, in the context of Self-Supervised Learning (SSL), where one wants to learn discriminative representations in an unsupervised way, the hypersphere is usually considered for the latent representation [START_REF] Wu | Unsupervised Feature Learning via Non-Parametric Instance Discrimination[END_REF][START_REF] Chen | A Simple Framework for Contrastive Learning of Visual Representations[END_REF][START_REF] Wang | Understanding Contrastive Representation Learning through Alignment and Uniformity on the Hypersphere[END_REF][START_REF] Grill | Bootstrap your own Latent-a new Approach to Self-Supervised Learning[END_REF][START_REF] Caron | Unsupervised Learning of Visual Features by Contrasting Cluster Assignments[END_REF]. It is thus of primary importance to develop Machine Learning tools that accommodate well with this specific geometry.

The OT theory on manifolds is well developed [START_REF] Mccann | Polar Factorization of Maps on Riemannian Manifolds[END_REF][START_REF] Villani | Optimal Transport: Old and New[END_REF][START_REF] Figalli | Optimal Transport and Curvature[END_REF] and several works started to use it in practice, with a focus mainly on the approximation of OT maps. For example, Cohen et al. (2021a); [START_REF] Rezende | Implicit Riemannian Concave Potential Maps[END_REF] approximate the OT map to define Normalizing Flows on the sphere and [START_REF] Cui | Spherical Optimal Transportation[END_REF]; [START_REF] Hamfeldt | A Convergent Finite Difference Method for Optimal Transport on the Sphere[END_REF]2022) derive algorithms to approximate the OT map on the sphere. However, the computational bottleneck to compute the Wasserstein distance on such spaces remains. Notably, [START_REF] Rustamov | Intrinsic Sliced Wasserstein Distances for Comparing Collections of Probability Distributions on Manifolds and Graphs[END_REF] proposed a variant of SW, based on the spectral decomposition of the Laplace-Beltrami operator, which generalizes to manifolds given the availability of the eigenvalues and eigenfunctions. However, it is not directly related to the original SW on Euclidean spaces.

Contributions. Therefore, by leveraging properties of the Wasserstein distance on the circle (Rabin et al., 2011), we define the first, to the best of our knowledge, natural generalization of the original SW discrepancy on the sphere S d-1 , and hence we make a first step towards defining SW distances on Riemannian manifolds of positive curvature. We make connections with a new spherical Radon transform and analyze some of its properties. We discuss the underlying algorithmic procedure, and notably provide an efficient implementation when computing the discrepancy against the uniform distribution. Then, we show that we can use this discrepancy on different tasks such as sampling, density estimation or generative modeling.

A Sliced-Wasserstein Discrepancy on the Sphere

Our goal here is to define a Sliced-Wasserstein distance on the sphere S d-1 = {x ∈ R d , x 2 = 1}. To that aim, we proceed analogously to the classical Euclidean space. However, contrary to Euclidean spaces or Cartan-Hadamard manifolds, geodesics are actually great circles, i.e. circles with the same diameter as the sphere, and there is no clear origin. Hence, we propose to integrate over all possible great circles, which play the role of the real line for the hypersphere, instead of all great circles passing through some origin. Then, we propose to project distributions lying on the sphere to great circles, and we rely on the nice properties of the Wasserstein distance on the circle (Rabin et al., 2011). In this section, we first describe the OT problem on the circle before defining a new Sliced-Wasserstein discrepancy on the sphere.

Optimal Transport on the Circle

On the circle S 1 = R/Z equipped with the geodesic distance d S 1 , an appealing formulation of the Wasserstein distance is available [START_REF] Delon | Fast Transport Optimization for Monge Costs on the Circle[END_REF]. First, let us parametrize S 1 by [0, 1[, then the geodesic distance can be written as, for all x, y ∈ [0, 1[, d S 1 (x, y) = min(|x -y|, 1 -|x -y|) (Rabin et al., 2011). Then, for the cost function c(x, y) = h d S 1 (x, y) with h : R → R + an increasing convex function, the Wasserstein distance between µ ∈ P(S 1 ) and ν ∈ P(S 1 ) can be written as

W c (µ, ν) = inf α∈R 1 0 h |F -1 µ (t) -(F ν -α) -1 (t)| dt, (6.1)
where

F µ : [0, 1[→ [0, 1] denotes the cumulative distribution function (cdf) of µ, F -1
µ its quantile function and α is a shift parameter. The optimization problem over the shifted cdf F ν -α can be seen as looking for the best "cut" (or origin) of the circle in order to wrap it into the real line because of the 1-periodicity. Indeed, the proof of this result for discrete distributions in (Rabin et al., 2011) consists in cutting the circle at the optimal point and wrapping it around the real line, for which the Optimal Transport map is the increasing rearrangement F -1 ν • F µ which can be obtained for discrete distributions by sorting the points [START_REF] Peyré | Computational Optimal Transport: With Applications to Data Science[END_REF]. Rabin et al. (2011) showed that the minimization problem is convex and coercive in the shift parameter and [START_REF] Delon | Fast Transport Optimization for Monge Costs on the Circle[END_REF] derived a binary search algorithm to find it. For the particular case of h = Id, it can further be shown [START_REF] Werman | A Distance Metric for Multidimensional Histograms[END_REF][START_REF] Cabrelli | The Kantorovich Metric for Probability Measures on the Circle[END_REF] that

W 1 (µ, ν) = inf α∈R 1 0 |F µ (t) -F ν (t) -α| dt. (6.2)
In this case, we know exactly the minimum which is attained at the level median [START_REF] Hundrieser | The Statistics of Circular Optimal Transport[END_REF], defined as, for f : [0, 1[→ R,

LevMed(f ) = min argmin α∈R 1 0 |f (t) -α|dt = inf t ∈ R, β {x ∈ [0, 1[, f (x) ≤ t} ≥ 1 2 , (6.3)
where β is the Lebesgue measure. Therefore, we also have

W 1 (µ, ν) = 1 0 |F µ (t) -F ν (t) -LevMed(F µ -F ν )| dt. (6.4)
Since we know the minimum, we do not need the binary search and we can approximate the integral very efficiently as we only need to sort the samples to compute the level median and the cdfs. Another interesting setting in practice is to compute W 2 , i.e. with h(x) = x 2 , w.r.t. the uniform distribution ν on the circle. We derive here the optimal shift α for the Wasserstein distance between µ an arbitrary distribution on S 1 and ν. We also provide a closed-form when µ is a discrete distribution. Proposition 6.1. Let µ ∈ P 2 (S 1 ) and ν = Unif(S 1 ). Then,

W 2 2 (µ, ν) = 1 0 |F -1 µ (t) -t -α| 2 dt with α = x dµ(x) - 1 2 .
(6.5)

A Sliced-Wasserstein Discrepancy on the Sphere

In particular, if

x 1 < • • • < x n and µ n = 1 n n i=1 δ xi , then W 2 2 (µ n , ν) = 1 n n i=1 x 2 i - 1 n n i=1 x i 2 + 1 n 2 n i=1 (n + 1 -2i)x i + 1 12 . (6.6)
Proof. See Section 12.4.1.

This proposition offers an intuitive interpretation: the optimal cut point between an empirical and the uniform distribution is the antipodal point of the circular mean of the discrete samples. Moreover, a very efficient algorithm can be derived from this property, as it solely requires a sorting operation to compute the order statistics of the samples. In green the projections and in blue the trajectories.

Definition of SW on the Sphere

On the hypersphere, the counterpart of straight lines are the great circles, which are circles with the same diameter as the sphere, and which correspond to the geodesics. Moreover, we can compute the Wasserstein distance on the circle fairly efficiently. Hence, to define a Sliced-Wasserstein discrepancy on this manifold, we propose, analogously to the classical SW distance, to project measures on great circles. The most natural way to project points from S d-1 to a great circle C is to use the geodesic projection [START_REF] Fletcher | Principal Geodesic Analysis for the Study of Nonlinear Statistics of Shape[END_REF][START_REF] Jung | Geodesic Projection of the Von Mises-Fisher Distribution for Projection Pursuit of Directional Data[END_REF] Great circles can be obtained by intersecting S d-1 with a 2-dimensional plane [START_REF] Jung | Analysis of Principal Nested Spheres[END_REF]. Therefore, to average over all great circles, we propose to integrate over the Grassmann manifold [START_REF] Absil | Riemannian Geometry of Grassmann Manifolds with a View on Algorithmic Computation[END_REF][START_REF] Bendokat | A Grassmann Manifold Handbook: Basic Geometry and Computational Aspects[END_REF] and then to project the distribution onto the intersection with the hypersphere. Since the Grassmannian is not very practical, we consider the identification using the set of rank 2 projectors:

G d,2 = {E ⊂ R d , dim(E) = 2}
G d,2 = {P ∈ R d×d , P T = P, P 2 = P, Tr(P ) = 2} = {U U T , U ∈ V d,2 }, (6.8)
where [START_REF] Bendokat | A Grassmann Manifold Handbook: Basic Geometry and Computational Aspects[END_REF].

V d,2 = {U ∈ R d×2 , U T U = I 2 } is the Stiefel manifold
Finally, we can define the Spherical Sliced-Wasserstein distance (SSW) for p ≥ 1 between locally absolutely continuous measures w.r.t. the Lebesgue measure µ, ν ∈ P p,ac (S d-1 ) as

SSW p p (µ, ν) = V d,2 W p p (P U # µ, P U # ν) dσ(U ), (6.9)
where σ is the uniform distribution over the Stiefel manifold V d,2 , P U is the geodesic projection on the great circle generated by U and then projected on S 1 , i.e.

∀U ∈ V d,2 , ∀x ∈ S d-1 , P U (x) = U T argmin y∈span(U U T )∩S d-1 d S d-1 (x, y) = argmin z∈S 1 d S d-1 (x, U z), (6.10)
and the Wasserstein distance is defined with the geodesic distance d S 1 . Moreover, we can derive a closed form expression which will be very useful in practice:

Lemma 6.1. Let U ∈ V d,2 then for a.e. x ∈ S d-1 , P U (x) = U T x U T x 2 . (6.11)
Proof. See Section 12.4.1.

Hence, we notice from this expression of the projection that we recover almost the same formula as [START_REF] Lin | Projection Robust Wasserstein Distance and Riemannian Optimization[END_REF] but with an additional 2 normalization which projects the data on the circle. As in [START_REF] Lin | Projection Robust Wasserstein Distance and Riemannian Optimization[END_REF], we could project on a higher dimensional subsphere by integrating over V d,k with k ≥ 2. However, we would lose the computational efficiency provided by the properties of the Wasserstein distance on the circle.

A Spherical Radon Transform

In this section, we investigate the distance properties of SSW through a related spherical Radon transform that we introduce. Similarly as for the Cartan-Hadamard Sliced-Wasserstein that we studied in Section 3.4, we can show easily that SSW is a pseudo distance using integration properties as well as properties of the Wasserstein distance. Proposition 6.2. Let p ≥ 1, SSW p is a pseudo-distance on P p,ac (S d-1 ).

Proof. See Section 12.4.2.

To show that it is a distance, we require to show that it satisfies the indiscernible property. One way of doing that is to study the injectivity of related Radon transforms.

Spherical Radon Transforms

Let us introduce a Spherical Radon transform related to SSW. As for the classical SW distance, we can derive a second formulation using a Radon transform by integrating over the set of points on the sphere which are projected on z ∈ S 1 : {x ∈ S d-1 , P U (x) = z}. Let us first identify formally the set of integration. Figure 6.2 -Set of integration of the spherical Radon transform (6.18). The great circle is in black and the point U z ∈ span(U U T ) ∩ S d-1 on which we aim to project is in blue. Then, all the points on the semi-circle in blue are projected on U z and this semi-circle corresponds to the set of integration of (6.18).

Set of integration.

While the classical Radon transform integrates over hyperplanes of R d , the generalized Radon transform over hypersurfaces (Kolouri et al., 2019a) and the Minkowski-Funk transform over (d -2)-dimensional subsphere, i.e. the intersection between a hyperplane and S d-1 [START_REF] Rubin | Notes on Radon Transforms in Integral Geometry[END_REF], we show in Proposition 6.3 that the set of integration is a half of a (d -2)-subsphere. We illustrate the set of integration on S 2 in Figure 6.2. In this case, the intersection between a hyperplane and S 2 is a great circle, and hence it coincides with a (d -2)-subsphere. (6.12) where

Proposition 6.3. Let U ∈ V d,2 , z ∈ S 1 . The set of integration of the Radon transform (6.18) is {x ∈ S d-1 , P U (x) = z} = {x ∈ F ∩ S d-1 , x, U z > 0},
F = span(U U T ) ⊥ ⊕ span(U z).
Proof. See Section 12.4.2.

Radon transform. Let f ∈ L 1 (S d-1
), we want to define a spherical Radon transform R :

L 1 (S d-1 ) → L 1 (S 1 × V d,2
) which integrates the function f over the set of integration described in the last Proposition. However, as communicated to us by Michael Quellmalz and presented in [START_REF] Quellmalz | Sliced Optimal Transport on the Sphere[END_REF] on S 2 , we cannot just integrate with respect to the volume measure as it would not project probability densities on probability densities. Thus, we need to integrate w.r.t the right measure.

To define properly such transform, let us first recall that the volume measure on S d-1 is defined for any f ∈ L 1 (S d-1 ) by (6.13) where for

S d-1 f (x) dVol(x) = 2π 0 [0,π] d-2 f ϕ(θ 1 , . . . , θ d-2 , θ d-1 ) d-2 i=1 sin(θ i ) d-1-i dθ 1 . . . dθ d-2 dθ d-1 ,
θ d-1 ∈ [0, 2π[ and θ i ∈ [0, π] for i ∈ {1, . . . , d -2}, ϕ(θ 1 , . . . , θ d-1 ) =          cos(θ 1 ) sin(θ 1 ) cos(θ 2 ) . . . sin(θ 1 ) . . . sin(θ d-2 ) cos(θ d-1 ) sin(θ 1 ) . . . sin(θ d-1 )          . (6.14) Let U 0 be such that span(U 0 U T 0 ) = span(e d-1 , e d )
with (e 1 , . . . , e d ) the canonical basis, and define the measure σ z d for z ∈ S 1 such that for any f ∈ C b (S d-1 ),

S d-1 f (x) dσ z d (x) = 2π 0 [0,π] d-2 f ϕ(θ 1 , . . . , θ d-2 , θ d-1 ) d-2 i=1 sin(θ i ) d-1-i dθ 1 . . . dθ d-2 δ ang(U0z) (dθ d-1
).

(6.15) Here, ang(U 0 z) denotes the angle of U 0 z on the circle span(U 0 U T 0 )∩S d-1 which can be obtained using the atan2 function. Note that by integrating the last equation w.r.t z ∈ S 1 , we obtain by using the definition of the surface measure on S d-1 ,

S 1 S d-1 f (x) dσ z d (x) dVol(z) = 2π 0 [0,π] d-2 f ϕ(θ 1 , . . . , θ d-2 , θ d-1 ) d-2 i=1 sin(θ i ) d-1-i dθ 1 . . . dθ d-2 dθ d-1 = S d-1 f (x) dVol(x).
(6.16)

In this case, if f is a density with respect to the measure Vol, then we obtain well that it integrates to 1. Thus, we define the spherical Radon transform for U 0 as

∀z ∈ S 1 , Rf (z, U 0 ) = S d-1 f (x) dσ z d (x). (6.17) For arbitrary U ∈ V d,2 , denote O U ∈ SO(d) the rotation such that for all z ∈ S 1 , O U U z ∈ span(e d-1 , e d ).
Applying the change-of-variable x = O T U y, and defining σz

d = (O T U ) # σ z d , we can define ∀z ∈ S 1 , U ∈ V d,2 , Rf (z, U ) = S d-1 f (x) dσ z d (x) = S d-1 f (O T U y) dσ z d (y). (6.18)
Then, analogously to the classical Radon transform, we can define the back-projection operator R * :

C b (S 1 × V d,2 ) → C b (S d-1 ), C b (S d-1
) being the space of continuous bounded functions, for g

∈ C b (S 1 × V d,2 ) as for a.e. x ∈ S d-1 , R * g(x) = V d,2 g P U (x), U dσ(U ). (6.19) Proposition 6.4. R * is the dual operator of R, i.e. for all f ∈ L 1 (S d-1 ), g ∈ C b (S 1 × V d,2 ), Rf, g S 1 ×V d,2 = f, R * g S d-1 . (6.20)
Proof. See Section 12.4.2.

Now that we have a dual operator, we can also define the Radon transform of an absolutely continuous measure µ ∈ M ac (S d-1 ) by duality [START_REF] Boman | Support Theorems for the Radon Transform and Cramér-Wold Theorems[END_REF][START_REF] Bonneel | Sliced and Radon Wasserstein Barycenters of Measures[END_REF] as the measure Rµ satisfying

∀g ∈ C b (S 1 × V d,2 ), S 1 ×V d,2 g(z, U ) d( Rµ)(z, U ) = S d-1 R * g(x) dµ(x). (6.21)
Since Rµ is a measure on the product space S 1 × V d,2 , Rµ can be disintegrated (Ambrosio et al., 2008, Theorem 5.3.1) 

w.r.t. σ as Rµ = σ ⊗ K where K is a probability kernel on V d,2 × S 1 with S 1 the Borel σ-field of S 1 . We will denote for σ-almost every U ∈ V d,2 , ( Rµ) U = K(U, •) the conditional probability. Proposition 6.5. Let µ ∈ M ac (S d-1 ), then for σ-almost every U ∈ V d,2 , ( Rµ) U = P U # µ.
Proof. See Section 12.4.2.

Finally, we can write SSW (6.9) using this Radon transform:

∀µ, ν ∈ P p,ac (S d-1 ), SSW p p (µ, ν) = V d,2
W p p ( Rµ) U , ( Rν) U dσ(U ). (6.22)

Properties of the Spherical Radon Transform

As observed by Kolouri et al. (2019a) for the Generalized SW distances (GSW), studying the injectivity of the related Radon transforms allows to study the set on which SW is actually a distance.

Link with Hemispherical transform. Since the intersection between a hyperplane and S d-1 is isometric to S d-2 [START_REF] Jung | Analysis of Principal Nested Spheres[END_REF], we can relate R to the hemispherical transform H [START_REF] Rubin | Notes on Radon Transforms in Integral Geometry[END_REF] on S d-2 . First, the hemispherical transform of a function f ∈ L 1 (S d-1 ) is defined as

∀x ∈ S d-1 , H d-1 f (x) = S d-1 f (y)1 { x,y >0} dVol(y).
(6.23)

From Proposition 6.3, we can write the spherical Radon transform (6.18) as a hemispherical transform on S d-2 .

Proposition 6.6.

Let f ∈ L 1 (S d-1 ), U ∈ V d,2 and z ∈ S 1 , then Rf (z, U ) = S d-2 fU (x)1 { x, Ũ z >0} dVol(x) = H d-2 f ( Ũ z), (6.24)
where for all 1) where (e 1 , . . . , e d ) denotes the canonical basis, and

x ∈ S d-2 , fU (x) = f (O T U Jx) with O U ∈ SO(d) the rotation matrix such that for all x ∈ F = span(U U T ) ⊥ ⊕ span(U z), O U x ∈ span(e 1 , . . . , e d-
J = I d-1 0 1,d-1 , and Ũ = J T O U U ∈ R (d-1)×2 .
Proof. See Section 12.4.2.

Kernel of R. By exploiting the formulation involving the hemispherical transform of Proposition 6.6, for which the kernel was computed in (Rubin, 1999, Lemma 2.3), we can derive the kernel of R as the set of even measures which are null over all hyperplanes intersected with S d-1 .

Proposition 6.7.

ker( R) = {µ ∈ M even (S d-1 ), ∀H ∈ G d,d-1 , µ(H ∩ S d-1 ) = 0} where µ ∈ M even if for all f ∈ C(S d-1 ), µ, f = µ, f + with f + (x) = f (x) + f (-x) /2 for all x.
Proof. See Section 12.4.2.

We leave for future works checking whether this set is null or not. Hence, we conclude here that SSW is a pseudo-distance, but a distance on the sets of injectivity of R [START_REF] Agranovskyt | Injectivity of the Spherical Mean Operator and related Problems[END_REF].

Spherical Radon Transforms from the Literature

Note that a natural way to define SW distances can be through already known Radon transforms using the formulation (6.22). It is for example what was done in (Kolouri et al., 2019a) using generalized Radon transforms [START_REF] Ehrenpreis | The Universality of the Radon Transform[END_REF][START_REF] Homan | Injectivity and Stability for a Generic Class of Generalized Radon Transforms[END_REF] to define generalized SW distances, or in [START_REF] Chen | Augmented Sliced Wasserstein Distances[END_REF] with the spatial Radon transform.

In this work, we choose to extend the Sliced-Wasserstein distance by using analogous objects defined intrinsically on the sphere, such as great circles as counterparts of geodesics, and the geodesic projection. Constructing SSW like this, we obtained a spherical Radon transform R related to it. The transform R was actually first introduced on S 2 by [START_REF] Backus | Geographical Interpretation of Measurements of Average Phase Velocities of Surface Waves over great Circular and great Semi-circular Paths[END_REF] and has already been further studied in the literature [START_REF] Groemer | On a Spherical Integral Transformation and Sections of Star Bodies[END_REF][START_REF] Rubin | On The Determination of Star Bodies from their Half-Sections[END_REF][START_REF] Hielscher | An SVD in Spherical Surface Wave Tomography[END_REF]. In particular, Groemer (1998) noted the link with the hemispherical transform. More recently, building on (Bonet et al., 2023a), [START_REF] Quellmalz | Sliced Optimal Transport on the Sphere[END_REF] studied it on S 2 and notably showed that the counterpart Spherical Sliced-Wasserstein distance, which they call the Semi-circle Sliced-Wasserstein distance as R integrates over semi circles (see Figure 6.2), is well a distance. However, we could also take the point of view of using a different spherical Radon transform already known in the literature, which we discuss now. The spherical Radon transform which is maybe the most natural is the Minkowski-Funk transform [START_REF] Dann | On the Minkowski-Funk Transform[END_REF]

, defined for θ ∈ S d-1 and f ∈ L 1 (S d-1 ) as M f (θ) = S d-1 f (x)1 { x,θ =0} dVol(x).
(6.25)

The Minkowki-Funk transform integrates over span(θ) ⊥ ∩ S d-1 , which is the intersection between the hyperplane span(θ) ⊥ and S d-1 , and is thus a (d -2)-subsphere. (d -2)-subspheres are actually totally geodesic submanifolds of dimension d -2, and hence can be seen as counterparts of hyperplanes from Euclidean spaces (Helgason et al., 2011, Chapter 3). Hence, from that point of view, the Minkowski-Funk transform can be seen as a strict generalization of the usual Euclidean Radon transform. Contrary to our spherical Radon transform which integrates over a half (d -2)-subsphere, the Minkowski-Funk transform integrates over full (d-2)-subspheres. Therefore, using these sets for a projection is not well defined when projecting on a geodesic, as there would be several possible projections. A possible way around would be to project on half great circles instead of great circles.

A second interesting transform on the sphere is the spherical slice transform, studied e.g. in [START_REF] Quellmalz | A Generalization of the Funk-Radon Transform[END_REF]2020;Rubin, 2019a;2022), which integrates over affine hyperplanes passing through some point a ∈ R d and intersected with S d-1 . In the particular case where a = 0, this actually coincides with the Minkowski-Funk transform. Interestingly, it has different properties given a ∈ S d-1 or a / ∈ S d-1 and in particular, if a ∈ S d-1 , it is injective [START_REF] Rubin | On the Spherical Slice Transform[END_REF]. Thus, it might be of interest to derive projections from these Radon transforms in order to inherit from these properties. Recently, [START_REF] Quellmalz | Sliced Optimal Transport on the Sphere[END_REF] proposed to use the vertical slice transform [START_REF] Hielscher | Reconstructing a Function on the Sphere from its Means along Vertical Slices[END_REF]Rubin, 2019b), which corresponds to the limiting case a = ∞ when all cross-sections are parallel [START_REF] Rubin | On the Spherical Slice Transform[END_REF], in order to define a Vertical Sliced-Wasserstein discrepancy, which is however only injective on the set of even measures.

Properties and Implementation

In this Section, we first provide some properties verified by SSW and which are similar with those expected for sliced divergences. Then, we detail the implementation in practice of SSW.

Properties

Convergence. We begin by showing that SSW respects the weak convergence, which is straightforward from the properties of the Wasserstein distance. Showing the converse, i.e. that the convergence w.r.t SSW implies the weak convergence, is more intricate and is left for future works.

Proposition 6.8. Let (µ k ), µ ∈ P p (S d-1 ) such that µ k ----→ k→∞ µ, then SSW p (µ k , µ) ----→ k→∞ 0.
(6.26)

Proof. See Section 12.4.3

Sample Complexity. We show here that the sample complexity is independent of the dimension. Actually, this is a well known property of sliced-based distances and it was studied first in (Nadjahi et al., 2020b). To the best of our knowledge, the sample complexity of the Wasserstein distance on the circle has not been derived yet. We suppose in the next proposition that it is known as we mainly want to show that the sample complexity of SSW does not depend on the dimension. Proposition 6.9. Let p ≥ 1. Suppose that for µ, ν ∈ P(S 1 ), with empirical measures μn =

1 n n i=1 δ xi and νn = 1 n n i=1 δ yi , where (x i ) i ∼ µ, (y i ) i ∼ ν are independent samples, we have E[|W p p (μ n , νn ) -W p p (µ, ν)|] ≤ β(p, n). (6.27)
Then, for any µ, ν ∈ P p,ac (S d-1 ) with empirical measures μn and νn , we have

E[|SSW p p (μ n , νn ) -SSW p p (µ, ν)|] ≤ β(p, n). (6.28)
Proof. See Section 12.4.3.

Projection Complexity. We derive in the next proposition the projection complexity, which refers to the convergence rate of the Monte Carlo approximate w.r.t of the number of projections L towards the true integral. Note that we find the typical rate of Monte Carlo estimates, and that it has already been derived for sliced-based distances in (Nadjahi et al., 2020b).

Proposition 6.10. Let p ≥ 1, µ, ν ∈ P p,ac (S d-1 ). Then, the error made with the Monte Carlo estimate of SSW p can be bounded as

E U | SSW p p,L (µ, ν) -SSW p p (µ, ν)| 2 ≤ 1 L V d,2 W p p (P U # µ, P U # ν) -SSW p p (µ, ν) 2 dσ(U ) = 1 L Var U W p p (P U # µ, P U # ν) , (6.29)
where

SSW p p,L (µ, ν) = 1 L L i=1 W p p (P Ui # µ, P U i # ν) with (U i ) L i=1 ∼ σ independent samples.
Proof. See Section 12.4.3.

Implementation

In practice, we approximate the distributions with empirical approximations and, as for the classical SW distance, we rely on the Monte-Carlo approximation of the integral on V d,2 . We first need to sample from the uniform distribution σ ∈ P(V d,2 ). This can be done by first constructing Z ∈ R d×2 by drawing each of its component from the standard normal distribution N (0, 1) and then applying the QR decomposition [START_REF] Lin | On Projection Robust Optimal Transport: Sample Complexity and Model Misspecification[END_REF]. Once we have (U ) L =1 ∼ σ, we project the samples on the circle S 1 by applying Lemma 6.1 and we compute the coordinates on the circle using the atan2 function. Finally, we can compute the Wasserstein distance on the circle by either applying the binary search algorithm of [START_REF] Delon | Fast Transport Optimization for Monge Costs on the Circle[END_REF] or the level median formulation (6.4) for SSW 1 . In the particular case in which we want to compute SSW 2 between a measure µ and the uniform measure on the sphere ν = Unif(S d-1 ), we can use the appealing fact that the projection of ν on the circle is uniform, i.e. P U # ν = Unif(S 1 ) (particular case of Theorem 3.1 in [START_REF] Jung | Geodesic Projection of the Von Mises-Fisher Distribution for Projection Pursuit of Directional Data[END_REF], see Section 12.4.4). Hence, we can use the Proposition 6.1 to compute W 2 , which allows a very efficient implementation either by the closed-form (6.6) or approximation by rectangle method of (6.5). This will be of particular interest for applications in Section 6.5 such as autoencoders. We sum up the procedure in Algorithm 6.1.

Complexity.

Let us note n (resp. m) the number of samples of µ (resp. ν), and L the number of projections. First, we need to compute the QR factorization of L matrices of size d × 2. This can be done in O(Ld) by using e.g. Householder reflections (Golub and Van Loan, 2013, Chapter 5.2) or the Scharwz-Rutishauser algorithm [START_REF] Gander | Algorithms for the QR Decomposition[END_REF]. Projecting the points on S 1 by Lemma 6.1 is in O (n + m)dL since we need to compute L(n + m) products between U T ∈ R 2×d and x ∈ R d . For the binary search or particular case formula (6.4) and (6.6), we need first to sort the points. But the binary search also adds a cost of O (n + m) log( 1) to approximate the solution with precision [START_REF] Delon | Fast Transport Optimization for Monge Costs on the Circle[END_REF] and the computation of the level median requires to sort (n + m) points. Hence, for the general SSW p , the Algorithm 6.1 SSW Input: (x i ) n i=1 ∼ µ, (y j ) m j=1 ∼ ν, L the number of projections, p the order for = 1 to L do Draw a random matrix Z ∈ R d×2 with for all i, j, Z i,j ∼ N (0, 1) U = QR(Z) ∼ σ Project on S 1 the points: ∀i, j,

x i = U T xi U T xi 2 , ŷ j = U T yj U T yj 2
Compute the coordinates on the circle S 1 : ∀i, j, [START_REF] Delon | Fast Transport Optimization for Monge Costs on the Circle[END_REF] and used it with = 10 -6 . We also implemented SSW 1 using the level median formula (6.4) and SSW 2 against the uniform measure (6.5). All experiments are conducted on GPU.

x i = (π + atan2(-x i,2 , -x i,1 ))/(2π), ỹ j = (π + atan2(-y j,2 , -y j,1 ))/(2π) Compute W p p ( 1 n n i=1 δ x i , 1 m m j=1 δ ỹ j ) by binary search or (6.4) for p = 1 end for Return SSW p p (µ, ν) ≈ 1 L L =1 W p p ( 1 n n i=1 δ x i , 1 m m j=1 δ ỹ j ) complexity is O L(n+m)(d+log(
On Figure 6.3, we compare the runtime between two distributions on S 2 between SSW, SW, the Wasserstein distance and the entropic approximation using the Sinkhorn algorithm [START_REF] Cuturi | Sinkhorn Distances: Lightspeed Computation of Optimal Transport[END_REF] with the geodesic distance as cost function. The distributions were approximated using n ∈ {10 2 , 10 3 , 10 4 , 5 • 10 4 , 10 5 , 5 • 10 5 } samples of each distribution and we report the mean over 20 computations. We use the Python Optimal Transport (POT) library [START_REF] Flamary | POT: Python Optimal Transport[END_REF] to compute the Wasserstein distance and the entropic approximation. For large enough batches, we observe that SSW is much faster than its Wasserstein counterpart, and it also scales better in terms of memory because of the need to store the n × n cost matrix. For small batches, the computation of SSW actually takes longer because of the computation of the QR factorizations, of the projections and of the binary search. For bigger batches, it is bounded by the sorting operation and we recover the quasi-linear slope. Furthermore, as expected, the fastest algorithms are SSW 1 with the level median and SSW 2 against a uniform as they have a quasilinear complexity. 

Experiments

Apart from showing that SSW is an effective discrepancy for learning problems defined over the sphere, the objective of this experimental Section is to show that it behaves better than using the more immediate SW in the embedding space. We first illustrate the ability to approximate different distributions by minimizing SSW w.r.t. some target distributions on S 2 and by performing density estimation experiments on real earth data. Then, we apply SSW for generative modeling tasks using the framework of Sliced-Wasserstein Autoencoder and we show that we obtain competitive results with other Wasserstein Autoencoder based methods using a prior on higher dimensional hyperspheres. Complete details about the experimental settings and optimization strategies are given in Section 12.4.5. The code is available online1 .

SSW as a Loss

Gradient flow on toy data. We verify on the first experiments that we can learn some target distribution ν ∈ P(S d-1 ) by minimizing SSW, i.e. we consider the minimization problem argmin µ SSW p p (µ, ν). We suppose that we have access to the target distribution ν through samples, i.e. through νm = 1 m m j=1 δ yj where (y j ) m j=1 are i.i.d samples of ν. As target distribution, we choose a mixture of 6 well separated von Mises-Fisher distributions [START_REF] Mardia | Statistics of Directional Data[END_REF]. This is a fairly challenging distribution since there are 6 modes which are not connected. We show on Figure 6.4 the Mollweide projection of the density approximated by a kernel density estimator for a distribution with 500 particles. To optimize directly over particles, we perform a Riemannian gradient descent on the sphere [START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF]. Density estimation on earth data. We perform density estimation on datasets first gathered by [START_REF] Mathieu | Riemannian Continuous Normalizing Flows[END_REF] which contain locations of wildfires (EOSDIS, 2020), floods [START_REF] Brakenridge | Global active archive of large flood events[END_REF] or earthquakes (NOAA, 2022). We use exponential map Normalizing Flows introduced in (Rezende et al., 2020) (see Section 12.4.4) which are invertible transformations mapping the data to some prior that we need to enforce. Here, we choose as prior the uniform distribution on S 2 and we learn the model using SSW. These transformations allow to evaluate exactly the density at any point. More precisely, let T be such transformation, let p Z be a prior distribution on S 2 and µ (6.30) where we used the change of variable formula. We show on Figure 6.6 the density of test data learned. We observe on this figure that the Normalizing Flows (NFs) put mass where most data points lie, and hence are able to somewhat recover the principle modes of the data. We also compare on Table 6.1 the negative test log likelihood, averaged over 5 trainings with different split of the data, between different OT metrics, namely SSW, SW and the stereographic projection model [START_REF] Gemici | Normalizing Flows on Riemannian Manifolds[END_REF] which first projects the data on R 2 and use a regular NF in the projected space. We observe that SSW allows to better fit the data compared to the other OT based methods which are less suited to the sphere.

∀x ∈ S 2 , f µ (x) = p Z T (x) | det J T (x)|,

SSW Autoencoders

In this section, we use SSW to learn the latent space of Autoencoders (AE). We rely on the SWAE framework introduced by Kolouri et al. (2019b). Let f be some encoder and g be some decoder, denote p Z a prior distribution, then the loss minimized in SWAE is

L(f, g) = c x, g(f (x)) dµ(x) + λSW 2 2 (f # µ, p Z ), (6.31)
where µ is the distribution of the data for which we have access to samples. While VAEs [START_REF] Kingma | Auto-Encoding Variational Bayes[END_REF] rely on Variational Inference which necessitates a simple reference distribution, Sliced-Wasserstein Autoencoders, and more generally Wasserstein Autoencoders [START_REF] Tolstikhin | Wasserstein Auto-Encoders[END_REF], can take any reference prior as no parametrization trick is needed.

In several concomitant works, it was shown that using a prior on the hypersphere can improve the results [START_REF] Davidson | Hyperspherical Variational Auto-Encoders[END_REF][START_REF] Xu | Spherical Latent Spaces for Stable Variational Autoencoders[END_REF]. Hence, we propose in the same fashion as (Kolouri et al., 2019b;a;[START_REF] Patrini | Sinkhorn Autoencoders[END_REF] to replace SW by SSW, which we denote SSWAE, and to enforce a prior on the sphere. In the following, we use the MNIST (LeCun and Cortes, 2010), FashionMNIST [START_REF] Xiao | Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms[END_REF] and CIFAR10 [START_REF] Krizhevsky | Learning Multiple Layers of Features from Tiny Images[END_REF] datasets, and we put an 2 normalization at the output of the encoder. As a prior, we use the uniform distribution on S 10 for MNIST and FashionMNIST, and on S 64 for CIFAR10. We compare in Table 6.2 the Fréchet Inception Distance (FID) [START_REF] Heusel | GANs trained by a two timescale Update Rule Converge to a local Nash Equilibrium[END_REF], for 10000 samples and averaged over 5 trainings, obtained with the Wasserstein Autoencoder (WAE) [START_REF] Tolstikhin | Wasserstein Auto-Encoders[END_REF], the classical SWAE (Kolouri et al., 2019b), the Sinkhorn Autoencoder (SAE) [START_REF] Patrini | Sinkhorn Autoencoders[END_REF] and circular GSWAE (Kolouri et al., 2019a). We observe that we obtain fairly competitive results on the different datasets. We add on Figure 6.5 the latent space obtained with a uniform prior on S 2 on MNIST. We notably observe a better separation between classes for SSWAE.

Conclusion and Discussion

In this chapter, we derive a new Sliced-Wasserstein discrepancy on the hypersphere, that comes with practical advantages when computing Optimal Transport distances on hyperspherical data. We notably showed that it is competitive or even sometimes better than other metrics defined directly on R d on a variety of Machine Learning tasks, including density estimation or generative models. This work is the first, up to our knowledge, to adapt the classical Sliced-Wasserstein framework to non-trivial manifolds. The three main ingredients are: i) a closed-form for Wasserstein on the circle, ii) a closed-form solution to the projection onto great circles, and iii) a Radon transform on the Sphere. An immediate follow-up of this work would be to examine asymptotic properties as well as statistical and topological aspects. While we postulate that results comparable to the Euclidean case might be reached, the fact that the manifold is closed might bring interesting differences and justify further use of this type of discrepancies rather than their Euclidean counterparts. This chapter is based on [START_REF] Bonet | Efficient Gradient Flows in Sliced-Wasserstein Space[END_REF]) and aims at minimizing functionals in the space of probability measures. Such a task can traditionally be done with Wasserstein gradient flows. To solve them numerically, a possible approach is to rely on the Jordan-Kinderlehrer-Otto (JKO) scheme which is analogous to the proximal scheme in Euclidean spaces. However, it requires solving a nested optimization problem at each iteration, and is known for its computational challenges, especially in high dimension. To alleviate it, recent works propose to approximate the JKO scheme leveraging Brenier's theorem, and using gradients of Input Convex Neural Networks to parameterize the density (JKO-ICNN). However, this method comes with a high computational cost and stability issues. Instead, this work proposes to use gradient flows in the space of probability measures endowed with the Sliced-Wasserstein distance. We argue that this method is more flexible than JKO-ICNN, since SW enjoys a closed-form approximation. Thus, the density at each step can be parameterized by any generative model which alleviates the computational burden and makes it tractable in higher dimensions.

Introduction

Minimizing functionals with respect to probability measures is a ubiquitous problem in Machine Learning. Important examples are generative models such as Generative Adversarial Networks (GANs) [START_REF] Goodfellow | Generative Adversarial Nets[END_REF]Arjovsky et al., 2017), Variational Autoencoders (VAEs) [START_REF] Kingma | Auto-Encoding Variational Bayes[END_REF] or Normalizing Flows (NFs) [START_REF] Papamakarios | Normalizing Flows for Probabilistic Modeling and Inference[END_REF].

To that aim, one can rely on Wasserstein gradient flows (WGF) [START_REF] Ambrosio | Gradient Flows: in Metric Spaces and in the Space of Probability Measures[END_REF] which are curves decreasing the functional as fast as possible [START_REF] Santambrogio | {Euclidean, Metric, and Wasserstein} Gradient Flows: an Overview[END_REF]. For particular functionals, these curves are known to be characterized by the solution of some partial differential equation (PDE) [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF]. Hence, to solve Wasserstein gradient flows numerically, we can solve the related PDE when it is available. However, solving a PDE can be a difficult and computationally costly task, especially in high dimensions [START_REF] Han | Solving High-Dimensional Partial Differential Equations using Deep Learning[END_REF]. Fortunately, several alternatives exist in the literature. For example, one can approximate instead a counterpart stochastic differential equation (SDE) related to the PDE followed by the gradient flow. For the Kullback-Leibler divergence, it comes back to the so called unadjusted Langevin algorithm (ULA) [START_REF] Roberts | Exponential Convergence of Langevin Distributions and their Discrete Approximations[END_REF][START_REF] Wibisono | Sampling as Optimization in the Space of Measures: The Langevin Dynamics as a Composite Optimization Problem[END_REF], but it has also been proposed for other functionals such as the Sliced-Wasserstein distance with an entropic regularization [START_REF] Liutkus | Sliced-Wasserstein Flows: Nonparametric Generative Modeling via Optimal Transport and Diffusions[END_REF].

Another way to solve Wasserstein gradient flows numerically is to approximate the curve in discrete time. By using the well-known forward Euler scheme, particle schemes have been derived for diverse functionals such as the Kullback-Leibler (KL) divergence [START_REF] Feng | Relative Entropy Gradient Sampler for Unnormalized Distributions[END_REF]Wang et al., 2022b;c), the Maximum Mean Discrepancy (MMD) [START_REF] Arbel | Maximum Mean Discrepancy Gradient Flow[END_REF], the kernel Stein discrepancy [START_REF] Korba | Kernel Stein Discrepancy Descent[END_REF] or lower bounds of the KL [START_REF] Glaser | KALE Flow: A Relaxed KL Gradient Flow for Probabilities with Disjoint Support[END_REF]. [START_REF] Salim | The Wasserstein Proximal Gradient Algorithm[END_REF] propose instead a forwardbackward discretization scheme analogously to the proximal gradient algorithm [START_REF] Bauschke | Convex Analysis and Monotone Operator Theory in Hilbert Spaces[END_REF]). Yet, these methods only provide samples approximately following the gradient flow, but without any information about the underlying density.

Another time discretization possible is the so-called JKO scheme introduced by Jordan et al. (1998), which is analogous in probability space to the well-known proximal operator [START_REF] Parikh | Proximal Algorithms[END_REF] in Hilbertian space and which corresponds to the backward Euler scheme. However, as a nested minimization problem, it is a difficult problem to handle numerically. Some works use a discretization in space (e.g. a grid) and the entropic regularization of the Wasserstein distance [START_REF] Peyré | Entropic Approximation of Wasserstein Gradient Flows[END_REF][START_REF] Carlier | Convergence of Entropic Schemes for Optimal Transport and Gradient Flows[END_REF], which benefits from specific resolution strategies. However, those approaches do not scale to high dimensions, as the discretization of the space scales exponentially with the dimension. Very recently, it was proposed in several concomitant works [START_REF] Mokrov | Large-Scale Wasserstein Gradient Flows[END_REF]Bunne et al., 2022b;[START_REF] Alvarez-Melis | Optimizing Functionals on the Space of Probabilities with Input Convex Neural Networks[END_REF] to take advantage of Brenier's theorem [START_REF] Brenier | Polar Factorization and Monotone Rearrangement of Vector-Valued Functions[END_REF] and model the Optimal Transport map (Monge map) as the gradient of a convex function with Input Convex Neural Networks (ICNN) [START_REF] Amos | Input Convex Neural Networks[END_REF]. By solving the JKO scheme with this parameterization, these models, called JKO-ICNN, handle higher dimension problems well. Yet, a drawback of JKO-ICNN is the training time due to a number of evaluations of the gradient of each ICNN that is quadratic in the number of JKO iterations. It also requires to backpropagate through the gradient which is challenging in high dimensions, even though stochastic methods were proposed in (Huang et al., 2021a) to alleviate it. Moreover, it has also been observed in several works that ICNNs have a poor expressiveness (Korotin et al., 2021a;b;[START_REF] Rout | Generative Modeling with Optimal Transport Maps[END_REF] and that we should rather directly estimate the gradient of convex functions by neural networks [START_REF] Saremi | On Approximating ∇f with Neural Networks[END_REF][START_REF] Richter-Powell | Input Convex Gradient Networks[END_REF][START_REF] Chaudhari | Learning Gradients of Convex Functions with Monotone Gradient Networks[END_REF]. Other recent works proposed to use the JKO scheme by either exploiting variational formulations of functionals in order to avoid the evaluation of densities and allowing to use more general neural networks in [START_REF] Fan | Variational Wasserstein Gradient Flow[END_REF], or by learning directly the density in [START_REF] Park | The Deep Minimizing Movement Scheme[END_REF].

In parallel, it was proposed to endow the space of probability measures with other distances than Wasserstein. For example, Gallouët and Monsaingeon (2017) study a JKO scheme in the space endowed by the Kantorovich-Fisher-Rao distance. However, this still requires a costly JKO step. Several particle schemes were derived as gradient flows into this space [START_REF] Lu | Accelerating Langevin Sampling with Birth-Death[END_REF][START_REF] Zhang | DPVI: A Dynamic-Weight Particle-Based Variational Inference Framework[END_REF]. We can also cite Kalman-Wasserstein gradient flows [START_REF] Garbuno-Inigo | Interacting Langevin Diffusions: Gradient Structure and Ensemble Kalman Sampler[END_REF] or the Stein variational gradient descent [START_REF] Liu | Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm[END_REF][START_REF] Liu | Stein Variational Gradient Descent as Gradient Flow[END_REF][START_REF] Duncan | On the Geometry of Stein Variational Gradient Descent[END_REF] which can be seen as gradient flows in the space of probabilities endowed by a generalization of the Wasserstein distance. However, the JKO schemes of these different metrics are not easily tractable in practice.

Contributions.

In the following, we propose to study the JKO scheme in the space of probability distributions endowed with the Sliced-Wasserstein (SW) distance [START_REF] Rabin | Wasserstein Barycenter and its Application to Texture Mixing[END_REF]. This novel and simple modification of the original problem comes with several benefits, mostly linked to the fact that this distance is easily differentiable and computationally more tractable than the Wasserstein distance. We first derive some properties of this new class of flows and discuss links with Wasserstein gradient flows. Notably, we observe empirically for both gradient flows the same dynamic, up to a time dilation of parameter the dimension of the space. Then, we show that it is possible to minimize functionals and learn the stationary distributions in high dimensions, on toy datasets as well as real image datasets, using e.g. neural networks. In particular, we propose to use Normalizing Flows for functionals which involve the density, such as the negative entropy. Finally, we exhibit several examples for which our strategy performs better than JKO-ICNN, either w.r.t. to computation times and/or w.r.t. the quality of the final solutions.

Background on Gradient Flows

In this chapter, we are interested in finding a numerical solution to gradient flows in probability spaces. Such problems generally arise when minimizing a functional F defined on P(R d ):

min µ∈P(R d ) F(µ), (7.1) 
but they can also be defined implicitly through their dynamics, expressed as partial differential equations. JKO schemes are implicit optimization methods that operate on particular discretizations of these problems and consider the natural metric of P(R d ) to be the Wasserstein distance. Recalling our goal is to study similar schemes with an alternative, computationally friendly metric (SW), we start by formally defining the notion of gradient flows in Euclidean spaces, before switching to probability spaces. We finally give a rapid overview of existing numerical schemes.

Gradient Flows in Euclidean Spaces

Let F : R d → R be a functional. A gradient flow of F is a curve (i.e. a continuous function from R + to R d ) which decreases F as much as possible along it. If F is differentiable, then a gradient flow x : [0, T ] → R d solves the following Cauchy problem [START_REF] Santambrogio | {Euclidean, Metric, and Wasserstein} Gradient Flows: an Overview[END_REF])

   dx(t) dt = -∇F (x(t)), x(0) = x 0 . (7.2)
Under conditions on F (e.g. ∇F Lipschitz continuous, F convex or semi-convex), this problem admits a unique solution which can be approximated using numerical schemes for ordinary differential equations such as the explicit or the implicit Euler scheme. For the former, we recover the regular gradient descent, and for the latter, we recover the proximal point algorithm [START_REF] Parikh | Proximal Algorithms[END_REF]: let τ > 0,

x τ k+1 ∈ argmin x x -x τ k 2 2 2τ + F (x) = prox τ F (x τ k ). (7.3)
This formulation does not use any gradient, and can therefore be used in any metric space by replacing

x -x τ k 2 2 = d(x, x τ k ) 2
with the right squared distance.

Gradient Flows in Probability Spaces

To define gradient flows in the space of probability measures, we first need a metric. We restrict our analysis to probability measures with finite moments of order 2:

P 2 (R d ) = {µ ∈ P(R d ),
x 2 dµ(x) < +∞}. Then, a possible distance on P 2 (R d ) is the Wasserstein distance. Now, by endowing the space of measures with W 2 , we can define the Wasserstein gradient flow of a functional F : P 2 (R d ) → R by plugging W 2 in (7.3) which becomes

µ τ k+1 ∈ argmin µ∈P2(R d ) W 2 2 (µ, µ τ k ) 2τ + F(µ). (7.4)
The gradient flow is then the limit of the sequence of minimizers when τ → 0. This scheme was introduced in the seminal work of Jordan, Kinderlehrer and Otto [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF] and is therefore referred to as the JKO scheme. In this work, the authors showed that gradient flows are linked to PDEs, and in particular with the Fokker-Planck equation when the functional F is of the form

F(µ) = V dµ + H(µ) (7.5)
where V is some potential function and H is the negative entropy: let σ denote the Lebesgue measure,

H(µ) = log ρ(x) ρ(x) dx if dµ = ρdσ +∞ otherwise. (7.6)
Then, the limit of (µ τ ) τ when τ → 0 is a curve t → µ t such that for all t > 0, µ t has a density ρ t . The curve ρ satisfies (weakly) the Fokker-Planck PDE ∂ρ ∂t = div(ρ∇V ) + ∆ρ. (7.7)

By satisfying weakly the PDE, we mean that for all test functions ξ ∈

C ∞ c (]0, +∞[×R d ) (smooth with compact support), +∞ 0 R d ∂ξ ∂t (t, x) + ∇V (x), ∇ x ξ(t, x) -∆ξ(t, x) dρ t (x)dt = -ξ(0, x) dρ 0 (x). (7.8)
Note that many other functional can be plugged in (7.4), defining different PDEs. We introduce here the Fokker-Planck PDE as a classical example, since the functional is connected to the Kullback-Leibler (KL) divergence, as taking a target distribution ν with a density q(x) ∝ e -V (x) ,

KL(µ||ν) = E µ log ρ(X) q(X) = log ρ(x) ρ(x) dx -log q(x) dµ(x) = H(µ) + V (x) dµ(x) + cst, (7.9)
and its Wasserstein gradient flow is connected to many classical algorithms such as the unadjusted Langevin algorithm (ULA) [START_REF] Wibisono | Sampling as Optimization in the Space of Measures: The Langevin Dynamics as a Composite Optimization Problem[END_REF]. But we will also use other functionals in Section 7.5 such as SW or the interaction functional, defined for regular enough W as

W(µ) = 1 2
W (x -y) dµ(x)dµ(y), (7.10) which admits as Wasserstein gradient flow the aggregation equation (Santambrogio, 2015, Chapter 8)

∂ρ ∂t = div ρ(∇W * ρ) (7.11)
where * denotes the convolution operation.

Numerical Methods to solve the JKO Scheme

Being composed of two nested optimization problems, solving Equation (7.4) is not simple as it requires solving an Optimal Transport problem as each step.

Several strategies have been used to tackle this difficulty. For example, Laborde (2016) rewrites (7.4) as a convex minimization problem using the Benamou-Brenier dynamic formulation of the Wasserstein distance [START_REF] Benamou | A Computational Fluid Mechanics Solution to the Monge-Kantorovich Mass Transfer Problem[END_REF]. [START_REF] Peyré | Entropic Approximation of Wasserstein Gradient Flows[END_REF] approximates the JKO scheme by using the entropic regularization and rewriting the problem with respect to the Kullback-Leibler proximal operator. The problem becomes easier to solve using Dykstra's algorithm [START_REF] Dykstra | An Iterative Procedure for Obtaining I-Projections onto the Intersection of Convex Sets[END_REF]. This scheme was proved to converge to the right PDE in [START_REF] Carlier | Convergence of Entropic Schemes for Optimal Transport and Gradient Flows[END_REF]. Note that one might also consider using the Sinkhorn divergence [START_REF] Ramdas | On Wasserstein Two-Sample Testing and Related Families of Nonparametric Tests[END_REF][START_REF] Feydy | Interpolating between Optimal Transport and MMD using Sinkhorn Divergences[END_REF] with e.g. neural networks to parameterize the distri-butions as it is differentiable, and it was shown to be a good approximation of the Wasserstein distance [START_REF] Chizat | Faster Wasserstein Distance Estimation with the Sinkhorn Divergence[END_REF]. It was proposed to use the dual formulation in other works such as [START_REF] Caluya | Proximal Recursion for Solving the Fokker-Planck Equation[END_REF] or [START_REF] Frogner | Approximate Inference with Wasserstein Gradient Flows[END_REF]. [START_REF] Cancès | A Variational Finite Volume Scheme for Wasserstein Gradient Flows[END_REF] proposed to linearize the Wasserstein distance using the weighted Sobolev approximation [START_REF] Villani | Topics in Optimal Transportation[END_REF][START_REF] Peyre | Comparison between W 2 Distance and Ḣ-1 Norm, and Localization of Wasserstein Distance[END_REF].

More recently, [START_REF] Mokrov | Large-Scale Wasserstein Gradient Flows[END_REF] and Alvarez-Melis et al. ( 2022), following [START_REF] Benamou | Discretization of Functionals Involving the Monge-Ampère Operator[END_REF], have proposed to exploit Brenier's theorem by rewriting the JKO scheme as

u τ k+1 ∈ argmin u convex 1 2τ ∇u(x) -x 2 2 dµ τ k (x) + F (∇u) # µ τ k (7.12)
and by modeling the probability measures as µ τ k+1 = (∇u τ k+1 ) # µ τ k . Then, to solve it numerically, they model convex functions using ICNNs [START_REF] Amos | Input Convex Neural Networks[END_REF]:

θ τ k+1 ∈ argmin θ∈{θ,u θ ∈ICNN} 1 2τ ∇ x u θ (x) -x 2 2 dµ τ k (x) + F (∇ x u θ ) # µ τ k . (7.13)
In the remainder, this method is denoted as JKO-ICNN. Bunne et al. (2022b) also proposed to use ICNNs into the JKO scheme, but with a different objective of learning the functional from samples trajectories along the timesteps. Lastly, [START_REF] Fan | Variational Wasserstein Gradient Flow[END_REF] proposed to learn directly the Monge map T by solving at each step the following problem:

T τ k+1 ∈ argmin T 1 2τ T (x) -x 2 2 dµ τ k (x) + F(T # µ τ k ) (7.14)
and by using variational formulations for functionals involving the density. This formulation requires only to use samples from the measure. However, it needs to be derived for each functional, and involves minimax optimization problems which are notoriously hard to train (Arjovsky and Bottou, 2017;[START_REF] Bond-Taylor | Deep Generative Modelling: A Comparative Review of VAEs, GANs, Normalizing Flows, Energy-Based and Autoregressive Models[END_REF].

More General Background on Wasserstein Gradient Flows

Before diving into Sliced-Wasserstein gradient flows, let us introduce other ways to compute Wasserstein gradient flows in practice. This Section is not necessary to understand our contributions in the remainder of the chapter, but will present some methods, different from JKO-ICNN, which we will use as baselines. First, we will introduce formally the Wasserstein gradient flows, and notably the Wasserstein gradient which we will use to present the forward Euler scheme.

Gradient Flows in Wasserstein Space. First, let us formalize the characterization of gradient flows in Wasserstein space. We mentioned earlier that the limit τ → 0 of the JKO scheme satisfies a PDE. This PDE is called a continuity equation. More precisely, let T > 0 and µ : [0, T ] → P 2 (R d ) a curve, then it satisfies a continuity equation if there exists a velocity field (v t ) t∈[0,T ] , such that v t ∈ L 2 (µ t ) and satisfies weakly (in the distributional sense) (7.16) This equation describes the evolution of the density along time. This is equivalent in the Lagrangian formulation as seeing that the particles x t ∼ µ t are driven by the velocity vector field v t , i.e. they satisfy the following ODE dxt dt = v t (x t ) (Ambrosio et al., 2008, Proposition 8.1.8). We refer to (Santambrogio, 2015, Chapter 5.3) for more details such as the existence of such a velocity field. In particular, when we aim at minimizing a functional F, a suitable velocity field is the Wasserstein gradient which we introduce now.

∂µ t ∂t + div(µ t v t ) = 0, (7.15) i.e. for all ξ ∈ C ∞ c ([0, T [×R d ), T 0 R d ∂ξ ∂t (t, x) -v t (x), ∇ x ξ(t, x) dµ t (x)dt = 0.
For a functional F, we call δF δµ (µ) the first variation of F (Santambrogio, 2015, Definition 7.12), if it exists, the unique function (up to additive constants) such that (7.17) where for μ ∈ P 2 (R d ), χ = μ -µ is a perturbation around µ which satisfies dχ = 0. Then, we define the Wasserstein gradient of F, which we denote ∇ W2 F, as ∇ W2 F(µ) = ∇ δF δµ (µ). Now, we say that µ : [0, T ] → P 2 (R d ) is a Wasserstein gradient flow of F if it satisfies distributionally the following continuity equation:

dF dt (µ + tχ) t=0 = lim t→0 F(µ + tχ) -F(µ) t = δF δµ (µ) dχ,
∂µ t ∂t -div µ t ∇ W2 F(µ) = 0. (7.18)
For more details on gradient flows in Wasserstein space, we refer to (Ambrosio et al., 2008, Chapter 10) and in particular to Lemma 10.4.1 for the Wasserstein gradient. Note that the Wasserstein gradient is different from the gradient in Wasserstein space, which is defined using its Riemannian structure [START_REF] Otto | The Geometry of Dissipative Evolution Equations: the Porous Medium Equation[END_REF].

Particle Scheme. Now that we know how to find the PDE, let us discuss some methods to sample from its solution in practice. On one hand, we saw that using a backward Euler scheme, we can use the so-called JKO scheme. The other natural counterpart is to use the forward Euler scheme, which translates as

∀k ≥ 0, µ τ k+1 = Id -τ ∇ W2 F(µ τ k ) # µ τ k . (7.19)
Using a Lagrangian approximation with particles with μk+1 =

1 n n i=1 δ x (k) i
, then we obtain the following update rule ∀i ∈ {1, . . . , n}, x

(k+1) i = x (k) i -τ ∇ W2 F( μk )(x (k) i ).
(7.20)

Now, let us provide two examples which will be of much interest in the experiment section. First, we will study F(µ) = KL(µ||ν) where ν has a density q ∝ e -V . Let's note p the density of µ. Then, the Wasserstein gradient of F is (see e.g. [START_REF] Feng | Relative Entropy Gradient Sampler for Unnormalized Distributions[END_REF])

∇ W2 F(µ) = ∇ log p q = ∇(log p + V ). (7.21)
Hence, using the Forward-Euler scheme, we obtain for the update equation ∀i, x

(k+1) i = x (k) i -τ ∇ log p(x (k) i ) + ∇V (x (k) i ) . (7.22)
However, the density p k of μk is usually not available. Hence, several works propose to approximate it, either using kernel density estimators (Wang et al., 2022b) or by approximating the log density ratios with neural networks [START_REF] Feng | Relative Entropy Gradient Sampler for Unnormalized Distributions[END_REF][START_REF] Ansari | Refining Deep Generative Models via Discriminator Gradient Flow[END_REF]Wang et al., 2022c;[START_REF] Heng | Generative Modeling with Flow-Guided Density Ratio Learning[END_REF]Yi et al., 2023). There are other possible approximations. For example, restricting the velocity field to be in a Reproducing Kernel Hilbert Space (RKHS), we obtain the Stein Variational Gradient Descent [START_REF] Liu | Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm[END_REF] with the advantage that it does not involve evaluating the density.

Another solution to avoid evaluating unknown densities is to use that Fokker-Planck type PDEs have a counterpart SDE [START_REF] Bogachev | Fokker-Planck-Kolmogorov Equations[END_REF][START_REF] Liutkus | Sliced-Wasserstein Flows: Nonparametric Generative Modeling via Optimal Transport and Diffusions[END_REF], which solutions follow the same dynamic. For example, for the KL divergence, we saw earlier that the Wasserstein gradient flow follows a Fokker-Planck equation, which admits as counterpart PDE the Langevin equation [START_REF] Mackey | Time's Arrow: The Origins of Thermodynamic Behavior[END_REF][START_REF] Wibisono | Sampling as Optimization in the Space of Measures: The Langevin Dynamics as a Composite Optimization Problem[END_REF] dX

t = -∇V (X t )dt + √ 2dW t , (7.23)
where W t is a standard Brownian motion. Using the Euler-Maruyama scheme, we can simulate from this SDE with the following particle scheme ∀i, x

(k+1) i = x (k) i -τ ∇V (x (k) i ) + √ 2τ Z i , ( 7.24) 
where Z ∼ N (0, I d ). This particle scheme is also well known as the Unadjusted Langevin Algorithm (ULA), which has been extensively studied in the Markov chain Monte-Carlo (MCMC) community [START_REF] Roberts | Exponential Convergence of Langevin Distributions and their Discrete Approximations[END_REF][START_REF] Durmus | Nonasymptotic Convergence Analysis for the Unadjusted Langevin Algorithm[END_REF][START_REF] Dalalyan | Theoretical Guarantees for Approximate Sampling from Smooth and Log-Concave Densities[END_REF][START_REF] Altschuler | Resolving the Mixing Time of the Langevin Algorithm to its Stationary Distribution for Log-Concave Sampling[END_REF]. Notably, the Wasserstein gradient flow point of view helped to derive new convergence rates [START_REF] Cheng | Convergence of Langevin MCMC in KL-divergence[END_REF][START_REF] Durmus | Analysis of Langevin Monte Carlo via Convex Optimization[END_REF][START_REF] Balasubramanian | Towards a Theory of Non-Log-Concave Sampling: First-Order Stationarity Guarantees for Langevin Monte Carlo[END_REF].

Here, we focused on the (reverse) Kullback-Leibler divergence as a discrepancy to minimize with respect to a target measure which we aim to learn. Actually, there are many different discrepancies which can be used instead of the KL. For example, one might consider more generally f-divergences [START_REF] Gao | Deep Generative Learning via Variational Gradient Flow[END_REF]. But these functionals can only be used when we have access to the density of the target distribution up to a constant. When we have access to samples from the target, we can use other functionals such as the MMD or the Sliced-Wasserstein distance, on which we will focus now, and that we introduced in Section 2.3. Let [START_REF] Bonnotte | Unidimensional and Evolution Methods for Optimal Transportation[END_REF] first studied its Wasserstein gradient flow and found the continuity equation it follows. [START_REF] Liutkus | Sliced-Wasserstein Flows: Nonparametric Generative Modeling via Optimal Transport and Diffusions[END_REF] extended the result to

F(µ) = 1 2 SW 2 2 (µ, ν),
F(µ) = 1 2 SW 2 2 (µ, ν) + λH(µ)
, where they additionally added the negative entropy as regularization in order to introduce the noise inherent to generative models. Then, under mild conditions, they showed that the Wasserstein gradient flow ρ of F satisfies the following continuity equation: (7.25) where and approximated it with the Euler-Maruyama scheme. The final particle scheme approximating the Wasserstein gradient flow of F can then be obtained by ∀i, x (7.28) where Z ∼ N (0, I d ), and the velocity field is approximated by

∂ρ t ∂t + div(ρ t v t ) = ∆ρ t ,
v t (x) = - S d-1 ψ t,
(k+1) i = x (k) i + τ vk (x (k) i ) + √ 2λτ Z i ,
vk (x) = - 1 L L =1 ψ k,θ θ , x θ , (7.29)
with ψ k,θ the Kantorovich potential between P θ # µ k and P θ # ν. In the following, we will call this scheme the Sliced-Wasserstein flows (SWF).

While these previous methods work in practice, they also suffer from some drawbacks. First of all, a scheme needs to be derived individually for each functional. Second, if we want new samples, we must run the whole scheme again or learn an amortized representation [START_REF] Wang | Learning to Draw Samples: With Application to Amortized MLE for Generative Adversarial Learning[END_REF]. Moreover, the Euler-Maruyama discretization of SDEs does not necessarily converge to the right stationary measure as it is a biased algorithm [START_REF] Roberts | Exponential Convergence of Langevin Distributions and their Discrete Approximations[END_REF][START_REF] Durmus | Efficient Bayesian Computation by Proximal Markov Chain Monte Carlo: When Langevin meets Moreau[END_REF], often requiring an additional correction step such as a Metropolis-Hasting step [START_REF] Metropolis | Equation of State Calculations by Fast Computing Machines[END_REF][START_REF] Hastings | Monte Carlo Sampling Methods using Markov Chains and their Applications[END_REF]. Therefore, in this chapter, we advocate using the Backward Euler scheme.

Sliced-Wasserstein Gradient Flows

As seen in the previous section, solving numerically (7.4) is a challenging problem. To tackle highdimensional settings, one could benefit from neural networks, such as generative models, that are known to model high-dimensional distributions accurately. The problem being not directly differentiable, previous works relied on Brenier's theorem and modeled convex functions through ICNNs, which results in JKO-ICNN. However, this method is very costly to train. For a JKO scheme of k steps, it requires O(k 2 ) evaluations of gradients [START_REF] Mokrov | Large-Scale Wasserstein Gradient Flows[END_REF] which can be a huge price to pay when the dynamic is very long. Moreover, it requires to backpropagate through gradients, and to compute the determinant of the Jacobian when we need to evaluate the likelihood (assuming the ICNN is strictly convex). The method of [START_REF] Fan | Variational Wasserstein Gradient Flow[END_REF], while not using ICNNs, also requires O(k 2 ) evaluations of neural networks, as well as to solve a minimax optimization problem at each step.

Here, we propose instead to use the space of probability measures endowed with the Sliced-Wasserstein (SW) distance by modifying adequately the JKO scheme. Surprisingly enough, this class of gradient flows, which are very easy to compute, has never been considered numerically in the literature.

In this Section, we first recall some motivations to use SW as a proxy of the Wasserstein distance for the gradient flow problem. We then study some properties of the scheme and discuss links with Wasserstein gradient flows. Since this metric is known in closed-form, the JKO scheme is more tractable numerically and can be approximated in several ways that we describe in Section 7.3.3.

Motivations

Computational Properties. Firstly, SW 2 is very easy to compute by a Monte-Carlo approximation (see Section 2.3). It is also differentiable, and hence using e.g. the Python Optimal Transport (POT) library [START_REF] Flamary | POT: Python Optimal Transport[END_REF], we can backpropagate w.r.t. parameters or weights parameterizing the distributions (see Section 7.3.3). Note that some libraries allow to directly backpropagate through Wasserstein. However, theoretically, we only have access to a subgradient in that case (Cuturi and Doucet, 2014, Proposition 1), and the computational complexity is bigger (O(n 3 log n) versus O(n log n) for SW with n the number of samples). Besides, libraries such as POT first compute the optimal plan and then differentiate, and hence cannot use the GPU. Moreover, contrary to W 2 , the sample complexity of SW does not depend on the dimension (Nadjahi et al., 2020b) which is important to overcome the curse of dimensionality. However, it is known to be hard to approximate in high-dimension [START_REF] Deshpande | Max-Sliced Wasserstein Distance and its use for GANs[END_REF] since the error of the Monte-Carlo estimates is impacted by the number of projections in practice (Nadjahi et al., 2020b). Nevertheless, several variants could also be used. Moreover, a deterministic approach using a concentration of measure phenomenon (and hence being more accurate in high dimension) was recently proposed by [START_REF] Nadjahi | Fast Approximation of the Sliced-Wasserstein Distance using Concentration of Random Projections[END_REF] to approximate SW 2 .

Link with Wasserstein. The Sliced-Wasserstein distance also has many properties related to the Wasserstein distance. First, they actually induce the same topology [START_REF] Kolouri | Generalized Sliced Wasserstein Distances[END_REF][START_REF] Bayraktar | Strong Equivalence between Metrics of Wasserstein Type[END_REF] which might justify using SW as a proxy of Wasserstein. Moreover, as showed in Chapter 5 of [START_REF] Bonnotte | Unidimensional and Evolution Methods for Optimal Transportation[END_REF], they can be related on compact sets by the following inequalities, let R > 0, for all µ, ν ∈ P(B(0, R)),

SW 2 2 (µ, ν) ≤ c 2 d W 2 2 (µ, ν) ≤ C 2 d SW 1 d+1 2 (µ, ν), (7.30)
with c 2 d =1 d and C d some constant. Hence, from these properties, we can wonder whether their gradient flows are related or not, or even better, whether they are the same or not. This property was initially conjectured by Filippo Santambrogio 1 . Some previous works started to gather some hints on this question. For example, Candau-Tilh (2020) showed that, while (P 2 (R d ), SW 2 ) is not a geodesic space, the minimal length (in metric space, Definition 2.4 in [START_REF] Santambrogio | {Euclidean, Metric, and Wasserstein} Gradient Flows: an Overview[END_REF]) connecting two measures is W 2 up to a constant (which is actually c d ). We refer to Section 2.3.2 for more details about these results.

Definition and Properties of Sliced-Wasserstein Gradient Flows

Instead of solving the regular JKO scheme (7.4), we propose to introduce a SW-JKO scheme, let

µ 0 ∈ P 2 (R d ), ∀k ≥ 0, µ τ k+1 ∈ argmin µ∈P2(R d ) SW 2 2 (µ, µ τ k ) 2τ + F(µ) (7.31)
in which we replaced the Wasserstein distance by SW 2 .

To study gradient flows and show that they are well defined, we first have to check that discrete solutions of the problem (7.31) indeed exist. Then, we have to check that we can pass to the limit τ → 0 and that the limit satisfies gradient flows properties. These limit curves will be called Sliced-Wasserstein gradient flows (SWGFs).

In the following, we restrain ourselves to measures on P 2 (K) where K ⊂ R d is a compact set. We report some properties of the scheme (7.31) such as the existence and uniqueness of the minimizer.

Proposition 7.1. Let F : P 2 (K) → R be a lower semi continuous functional, then the scheme (7.31) admits a minimizer. Moreover, it is unique if µ τ k is absolutely continuous and F convex or if F is strictly convex.

Proof. See Section 12.5.1.

This proposition shows that the problem is well defined for convex lower semi continuous functionals since we can find at least a minimizer at each step. The assumptions on F are fairly standard and will apply for diverse functionals such as for example (7.5) or (7.10) for V and W regular enough.

Proposition 7.2. The functional F is non increasing along the sequence of minimizers (µ τ k ) k .

Proof. Proof of Section 12.5.1.

As the ultimate goal is to find the minimizer of the functional, this proposition assures us that the solution will decrease F along it at each step. If F is bounded below, then the sequence F(µ τ k ) k will converge (since it is non increasing).

More generally, by defining the piecewise constant interpolation as µ τ (0) = µ 0 and for all k ≥ 0,

t ∈]kτ, (k + 1)τ ], µ τ (t) = µ τ k+1 , we can show that for all t < s, SW 2 µ τ (t), µ τ (s) ≤ C |t -s| 1 2 + τ 1 2
. Following [START_REF] Santambrogio | {Euclidean, Metric, and Wasserstein} Gradient Flows: an Overview[END_REF], we can apply the Ascoli-Arzelà theorem (Santambrogio, 2015, Box 1.7) and extract a converging subsequence. However, the limit when τ → 0 is possibly not unique and has no a priori relation with F. Since (P 2 (R d ), SW 2 ) is not a geodesic space, but rather a "pseudo-geodesic" space whose true geodesics are c d W 2 (Candau-Tilh, 2020) (see Section 2.3.2), we cannot directly apply the theory introduced in [START_REF] Ambrosio | Gradient Flows: in Metric Spaces and in the Space of Probability Measures[END_REF]. We leave for future work the study of the theoretical properties of the limit. Nevertheless, we conjecture that in the limit t → ∞, SWGFs converge toward the same measure as for WGFs. We will study it empirically in Section 7.5 by showing that we are able to find as good minima as WGFs for different functionals.

Limit PDE. Here, we discuss some possible links between SWGFs and WGFs. [START_REF] Candau-Tilh | Wasserstein and Sliced-Wasserstein Distances[END_REF] shows that the Euler-Lagrange equation of the functional (7.5) has a similar form (up to the first variation 123 of the distance) for the JKO and the SW-JKO schemes, i.e. µ τ k+1 the optimal solution of (7.4) satisfies log(ρ τ k+1 ) + V + ψ τ = constant a.e., (7.32) where ρ τ k+1 is the density of µ τ k+1 and ψ is the Kantorovich potential from µ τ k+1 to µ τ k , while μτ k+1 the optimal solution of (7.31) satisfies (7.33) where for θ ∈ S d-1 , ψ θ is the Kantorovich potential form P θ # µ τ k+1 to P θ # µ τ k . Hence, he conjectures that there is a correlation between the two gradient flows. We identify here some cases for which we can relate the Sliced-Wasserstein gradient flows to the Wasserstein gradient flows.

log(ρ τ k+1 ) + V + 1 τ S d-1 ψ θ • P θ dλ(θ) = constant a.e.,
We first notice that for one dimensional supported measures, W 2 and SW 2 are the same up to a constant √ d, i.e. let µ, ν ∈ P 2 (R d ) be supported on the same line, then SW 2 2 (µ, ν) = W 2 2 (µ, ν)/d. Interestingly enough, this is the same constant as between geodesics. This property is actually still true in any dimension for Gaussians with a covariance matrix of the form cI d with c > 0. Therefore, we argue that for these classes of measures, provided that the minimum at each step stays in the same class, we would have a dilation of factor d between the WGF and the SWGF. For example, for the Fokker-Planck functional, the PDE followed by the SWGF would become ∂ρ ∂t = d div(ρ∇V ) + ∆ρ . And, by correcting the SW-JKO scheme as

µ τ k+1 ∈ argmin µ∈P2(R d ) d 2τ SW 2 2 (µ, µ τ k ) + F(µ), (7.34) 
we would have the same dynamic. For more general measures, it is not the case anymore. But, by rewriting SW 2 2 and W 2 2 w.r.t. the means m µ = x dµ(x) and m ν = x dν(x) and the centered measures μ and ν, obtained as μ = (T mµ ) # µ and ν = (T mν ) # ν where T mµ : x → x -m µ , we have:

W 2 2 (µ, ν) = m µ -m ν 2 2 + W 2 2 (μ, ν), SW 2 2 (µ, ν) = m µ -m ν 2 2 d + SW 2 2 (μ, ν). (7.35)
Hence, for measures characterized by their mean and variance (e.g. Gaussians), there will be a constant d between the optimal mean of the SWGF and of the WGF. However, such a direct relation is not available between variances, even on simple cases like Gaussians. We report in Appendix 12.5.2 the details of the calculations.

Solving the SW-JKO Scheme in Practice

As a Monte-Carlo approximation of SW can be computed in closed-form, (7.31) is not a nested minimization problem anymore and is differentiable. We present here a few possible parameterizations of probability distributions which we can use in practice through SW-JKO to approximate the gradient flow. We further state, as an example, how to approximate the Fokker-Planck functional (7.5). Indeed, classical other functionals can be approximated using the same method since they often only require to approximate an integral w.r.t. the measure of interests and to evaluate its density as for (7.5). Then, from these parameterizations, we can apply gradient-based optimization algorithms by using backpropagation over the loss at each step. Discretized Grid. A first proposition is to model the distribution on a regular fixed grid, as it is done e.g. in [START_REF] Peyré | Entropic Approximation of Wasserstein Gradient Flows[END_REF]. If we approximate the distribution by a discrete distribution with a fixed grid on which the different samples are located, then we only have to learn the weights. Let us denote

µ τ k = N i=1 ρ (k)
i δ xi where we use N samples located at (x i ) N i=1 , and

N i=1 ρ i = 1.
Let Σ N denote the simplex, then the optimization problem (7.31) becomes: min

(ρi)i∈Σ N SW 2 2 N i=1 ρ i δ xi , µ τ k 2τ + F N i=1 ρ i δ xi . (7.36)
The entropy is only defined for absolutely continuous distributions. However, following [START_REF] Peyré | Entropic Approximation of Wasserstein Gradient Flows[END_REF][START_REF] Carlier | Convergence of Entropic Schemes for Optimal Transport and Gradient Flows[END_REF], we can approximate the Lebesgue measure as: L = l N i=1 δ xi where l represents a volume of each grid point (we assume that each grid point represents a volume element of uniform size). In that case, the Lebesgue density can be approximated by ( ρi l ) i . Hence, for the Fokker-Planck (7.5) example, we approximate the potential and internal energies as

V(µ) = V (x)ρ(x) dx ≈ N i=1 V (x i )ρ i , H(µ) = log ρ(x) ρ(x) dx ≈ N i=1 log ρ i l ρ i . (7.37)
To stay on the simplex, we use a projected gradient descent [START_REF] Condat | Fast Projection onto the Simplex and the l1 Ball[END_REF]. A drawback of discretizing the grid is that it becomes intractable in high dimensions.

With Particles. We can also optimize over the position of a set of particles, assigning them uniform weights:

µ τ k = 1 n n i=1 δ x (k) i
. The problem (7.31) becomes:

min (xi)i SW 2 2 1 n n i=1 δ xi , µ τ k 2τ + F 1 n n i=1 δ xi . (7.38)
In that case however, we do not have access to the density and cannot directly approximate H (or more generally internal energies). A workaround is to use non-parametric estimators [START_REF] Beirlant | Nonparametric Entropy Estimation: An Overview[END_REF], which is however impractical in high dimensions.

Additionally, using such a scheme requires to run the whole scheme at each time we want new samples which is not very practical. Using particles is more interesting when relying on the forward Euler scheme, in which case we do not need the extra minimization step performed by gradient descent.

Generative Models. To overcome these limitations, an interesting method is to use neural networks to model probability distributions, which have the advantage that we can obtain as many new samples as we want once it is trained, without needing to run it through the JKO scheme again. Moreover, it can also deal with high dimensional data and is known to generalize well.

Let us denote g θ : Z → X a generative model, with Z a latent space, θ the parameters of the model that will be learned, and let p Z be a simple distribution (e.g. Gaussian). Then, we will denote 

(k) j , z (k+1) j ∼ p Z i.i.d x (k) j = g k θ (z (k) j ), x (k+1) j = g k+1 θ (z (k+1) j ) // Denote μτ k = 1 n n j=1 δ x (k) j , μτ k+1 = 1 n n j=1 δ x (k+1) j J(μ τ k+1 ) = 1 2τ SW 2 2 (μ τ k , μτ k+1 ) + F(μ τ k+1 ) Backpropagate through J w.r.t
) # p Z , µ τ k 2τ + F (g k+1 θ ) # p Z . (7.39)
To approximate the negative entropy, we have to be able to evaluate the density. A straightforward choice that we use in our experiments is to use invertible neural networks with a tractable density such as Normalizing Flows [START_REF] Papamakarios | Normalizing Flows for Probabilistic Modeling and Inference[END_REF][START_REF] Kobyzev | Normalizing Flows: An Introduction and Review of current Methods[END_REF]. Another solution could be to use the variational formulation as in [START_REF] Fan | Variational Wasserstein Gradient Flow[END_REF] as we only need samples in that case, but at the cost of solving a minimax problem.

To perform the optimization, we can sample points of the different distributions at each step and use a Monte-Carlo approximation in order to approximate the integrals. Let

z i ∼ p Z i.i.d, then g θ (z i ) ∼ (g θ ) # p Z = µ and V(µ) ≈ 1 N N i=1 V g θ (z i ) , H(µ) ≈ 1 N N i=1 log(p Z (z i )) -log | det(J g θ (z i ))| . (7.40)
using the change of variable formula in H.

We sum up the procedure when modeling distributions with generative models in Algorithm 7.1. We provide the algorithms for the discretized grid and for the particles in Appendix 12.5.3.

Complexity.

Denoting by d the dimension, K the number of outer iterations, N e the number of inner optimization step, N the batch size and L the number of projections to approximate SW, SW-JKO has a complexity of O(KN e LN log N ) versus O KN e ((K + d)N + d 3 ) for JKO-ICNN [START_REF] Mokrov | Large-Scale Wasserstein Gradient Flows[END_REF] and O(K 2 N e N N m ) for the variational formulation of [START_REF] Fan | Variational Wasserstein Gradient Flow[END_REF] where N m denotes the number of maximization iteration. Hence, we see that the SW-JKO scheme is more appealing for problems which will require very long dynamics. Direct Minimization. A straightforward way to minimize a functional µ → F(µ) would be to parameterize the distributions as described in this section and then to perform a direct minimization of the functional by performing a gradient descent on the weights, i.e. for instance with a generative model, solving min θ F (g θ ) # p z . While it is a viable solution, we noted that this is not much discussed in related papers implementing Wasserstein gradient flows with neural networks via the JKO scheme. This problem is theoretically not well defined as a gradient flow on the space of probability measures. And hence, it has less theoretical guarantees of convergence than Wasserstein gradient flows. In our experiments, we noted that the direct minimization suffers from more numerical instabilities in high dimensions, while SW acts as a regularizer. For simpler problems however, the performances can be quite similar.

Empirical Dynamic of the Sliced-Wasserstein Gradient Flows

In this Section, we compare empirically the trajectory of Sliced-Wasserstein Gradient Flows and of Wasserstein Gradient Flows on several examples in order to verify some of the hypotheses derived previously. More specifically, we start by drawing the trajectories of particles for an aggregation equation. Then, we focus on the Fokker-Planck equation with Gaussians measures, in which case we actually know exactly the Wasserstein gradient flow.

Minimization of the Interaction Functional and of the Wasserstein Distance

To compare the trajectory of particles following the WGFs and the SWGFs, we propose to compare with two different functionals. For the first, we choose a discrete target distribution 1 n n i=1 δ xi with x i ∈ R 2 , which we aim to learn. To do so, we propose to use as functional the Wasserstein distance w.r.t. this distribution, i.e.

F(µ) = W 2 2 (µ, 1 n n i=1 δ xi ).
In this case, the target is a discrete measure with uniform weights and, using the same number of particles in the approximation μn , and performing gradient descent on the particles as explained in Section 7.3.3, we expect the Wasserstein gradient flow
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Figure 7.2 -Evolution of the functional (7.5) along the WGF µ t , the learned SWGF μt , and the stationary measure µ * . We observe a dilation of parameter 2 between the WGF and the SWGF. to push each particle on the closest target particle. This is indeed what we observe on Figure 7.1a.

For the second distribution, we use the interaction functional (7.10) which we recall:

W(µ) = W (x -y) dµ(x)dµ(y), (7.41) with W (x) = x 4 2 4 - x 2 2 
2 . In this case, we know that the stationary distribution is a Dirac ring [START_REF] Carrillo | Primal Dual Methods for Wasserstein Gradient Flows[END_REF], as further explained in Section 7.5.2. We draw on Figure 7.1b the trajectories of some particles initially sampled from N (0, 0.005I 2 ) of the SWGF and WGF.

In both cases, by using a dilation parameter of d, we observe almost the same trajectories between the Sliced-Wasserstein gradient flows and the Wasserstein gradient flows, which is an additional support of the conjecture that the trajectories of the gradient flows in both spaces are alike.

Ornstein-Uhlenbeck Process

Now, let us focus on a case for which we know exactly the Wasserstein gradient flow. Here, we will use the Fokker-Planck functional (7.5) which we recall is defined as

F(µ) = V dµ + H(µ). (7.42) For V (x) = 1 2 (x -m) T A(x -m), (7.43)
with A symmetric and positive definite, we obtain an Ornstein-Uhlenbeck process (Le Gall, 2016, Chapter 8). If we choose µ 0 as a Gaussian N (m 0 , Σ 0 ), then we know the Wasserstein gradient flow µ t in closed form [START_REF] Wibisono | Sampling as Optimization in the Space of Measures: The Langevin Dynamics as a Composite Optimization Problem[END_REF][START_REF] Vatiwutipong | Alternative Way to Derive the Distribution of the Multivariate Ornstein-Uhlenbeck Process[END_REF], for all t > 0,

µ t = N (m t , Σ t ) with    m t = m + e -tA (m 0 -m) Σ t = e -tA Σ 0 (e -tA ) T + A -1 2 (I -e -2tA )(A -1 2 ) T .
(7.44)

As we know exactly the trajectory of the Wasserstein gradient flow, we propose to compare it with the We observe some differences between WGF and SWGF.

trajectory of a Sliced-Wasserstein gradient flow learned using the SW-JKO scheme (7.31). It will allow us to visualize the influence of the dilation parameter on the value of the functional, and to monitor the evolution of the Sliced-Wasserstein gradient flow compared to the true distribution. Here, we do not make an extra hypothesis that the results are necessarily Gaussians, but we use Normalizing Flows to model implicitly the distributions, as discussed in Section 7.3.3. More precisely, for this experiment, we model the density using RealNVPs [START_REF] Dinh | Density Estimation using Real NVP[END_REF] with 5 affine coupling layers, using fully connected neural networks (FCNN) for the scaling and shifting networks with 100 hidden units and 5 layers. We start the scheme with µ 0 = N (0, I d ) and take L = 500 projections to approximate the Sliced-Wasserstein distance. We randomly generate a target Gaussian (using "make_spd_matrix" from scikit-learn (Pedregosa et al., 2011a) to generate a random covariance with 42 as seed). We report all the results averaged over 5 trainings, with 95% confidence intervals.

We look at the evolution of the distributions learned between t = 0 and t = 4 with a time step of τ = 0.1. We compare it with the true Wasserstein gradient flow. On Figure 7.2, we plot the values of the functional along the flow and we observe that when taking into account the dilation factor, the two curves are matching. Furthermore, we observed the same behavior in higher dimensions. Even though we cannot conclude on the PDE followed by SWGFs, this reinforces the conjecture that the SWGF obtained with a step size of τ d (i.e. using the scheme (7.34)) is very close to the WGF obtained with a step size of τ . We also report the evolution of the empirical mean (Fig. 7.3) and empirical covariance (Fig. 7.4) estimated with 10 4 samples and averaged over 5 trainings. For the mean, it follows as expected the same diffusion. For the variance, it is less clear but it is hard to conclude since there are potentially optimization errors.

Minimizing Functionals with Sliced-Wasserstein Gradient

Flows

In this section, we show that by approximating Sliced-Wasserstein gradient flows using the SW-JKO scheme (7.31), we are able to minimize functionals as well as Wasserstein gradient flows approximated by the JKO-ICNN scheme and with a better computational complexity. We first evaluate the ability to learn the stationary density for the Fokker-Planck equation (7.7) in the Gaussian case, and in the context of Bayesian Logistic Regression. Then, we evaluate it on an Aggregation equation. Finally, we use SW as a functional with image datasets as target, and compare the results with Sliced-Wasserstein flows introduced in [START_REF] Liutkus | Sliced-Wasserstein Flows: Nonparametric Generative Modeling via Optimal Transport and Diffusions[END_REF].

For these experiments, we mainly use generative models. When it is required to evaluate the density (e.g. to estimate H), we use Real Non Volume Preserving (RealNVP) Normalizing Flows [START_REF] Dinh | Density Estimation using Real NVP[END_REF]. Our experiments were conducted using PyTorch (Paszke et al., 2019).

Convergence to Stationary Distribution for the Fokker-Planck Equation

We first focus on the functional (7.5). Its Wasserstein gradient flow is the solution of a PDE of the form of (7.7). In this case, it is well known that the solution converges as t → ∞ towards a unique stationary measure µ * ∝ e -V [START_REF] Risken | The Fokker-Planck Equation[END_REF]. Hence, we focus here on learning this target distribution. First, we will choose a Gaussian as target, and then in a second experiment, we will learn a posterior distribution in a Bayesian Logistic Regression setting.

Gaussian Case. Taking V of the form V (x) = 1 2 (x -m) T A(x -b) for all x ∈ R d , with A a symmetric positive definite matrix and m ∈ R d , then the stationary distribution is µ * = N (m, A -1 ). We plot in Figure 7.5 the symmetric Kullback-Leibler (SymKL) divergence over dimensions between approximated distributions and the true stationary distribution. We choose τ = 0.1 and performed 80 SW-JKO steps. We take the mean over 15 random gaussians for dimensions d ∈ {2, . . . , 12} for randomly generated positive semi-definite matrices A using "make_spd_matrix" from scikit-learn (Pedregosa et al., 2011a). Moreover, we use RealNVPs in SW-JKO. We compare the results with the Unadjusted Langevin Algorithm (ULA) [START_REF] Roberts | Exponential Convergence of Langevin Distributions and their Discrete Approximations[END_REF], called Euler-Maruyama (EM) since it is the EM approximation of the Langevin equation, which corresponds to the counterpart SDE of the PDE (7.7). We see that, in dimension higher than 2, the results of the SWGF with RealNVP are better than with this particle scheme obtained with a step size of 10 -3 and with either 10 3 , 10 4 or 5 • 10 4 particles. We do not plot the results for JKO-ICNN as we observe many instabilities (right plot in Figure 7.5). Moreover, we notice a very long training time for JKO-ICNN. We add more details in Section 12.5.4. We further note that SW acts here as a regularizer. Indeed, by training Normalizing Flows with the reverse KL (which is equal to (7.5) up to a constant), we obtain similar results, but with much more instabilities in high dimensions.

Curse of Dimensionality.

Even though the Sliced-Wasserstein distance sample complexity does not suffer from the curse of dimensionality, it appears through the Monte-Carlo approximation (Nadjahi et al., 2020b). Here, since SW plays a regularizer role, the objective is not necessarily to approximate it well but rather to minimize the given functional. Nevertheless, the number of projections can still have an impact on the minimization, and we report on Figure 7.6 the evolution of the found minima w.r.t. the number of projections, averaged over 15 random Gaussians. We observe that we do not need many projections to have fairly good results, even in higher dimensions. Indeed, with more than 200 projections, the performances stay relatively stable. N (w; 0, α -1 ) and with p 0 (α) = Γ(α; 1, 0.01). In that case, we use V (x) = -log p(x|D) to learn p(x|D). We refer to Section 12.5.4 for more details on the experiments, as well as hyperparameters. We report in Table 7.1 the accuracy results obtained on different datasets with SWGFs and compared with JKO-ICNN. We also report the training time and see that SWGFs allow to obtain results as good as with JKO-ICNN for most of the datasets but for shorter training times which underlines the better complexity of our scheme. From left to right, we plot it for the discretized grid, for the FCNN, for particles and for JKO-ICNN. We observe that JKO-ICNN does not recover the ring correctly as the particles are not evenly distributed on it.

Convergence to Stationary Distribution for an Aggregation Equation

We also show the possibility to find the stationary solution of different PDEs than Fokker-Planck. For example, using an interaction functional of the form

W(µ) = 1 2 W (x -y) dµ(x)dµ(y). (7.45)
We notice here that we do not need to evaluate the density. Therefore, we can apply any neural network. For example, in the following, we will use a simple fully connected neural network (FCNN) and compare the results obtained with JKO-ICNN. We also show the results when learning directly over the particles and when learning weights over a regular grid. [START_REF] Carrillo | Primal Dual Methods for Wasserstein Gradient Flows[END_REF] use a repulsive-attractive interaction potential W (x) =

x 4 2 4 - x 2 2 
2 . In this case, they showed empirically that the solution is a Dirac ring with radius 0.5 and centered at the origin when starting from µ 0 = N (0, 0.25 2 I 2 ). With τ = 0.05, we show on Figure 7.7 that we recover this result with SWGFs for different parameterizations of the probabilities. More precisely, we first use a discretized grid of 50 × 50 samples of [-1, 1] 2 . Then, we show the results when directly learning the particles and when using a FCNN. We also compare them with the results obtained with JKO-ICNN. The densities reported for the last three methods are obtained through a kernel density estimator (KDE) with a bandwidth manually chosen since we either do not have access to the density, or we observed for JKO-ICNN that the likelihood exploded. It may be due to the fact that the stationary solution does not admit a density with respect to the Lebesgue measure. For JKO-ICNN, we observe that the ring shape is recovered, but the samples are not evenly distributed on it.

We report the solution at time t = 10, and use τ = 0.05 for SW-JKO and τ = 0.1 for JKO-ICNN. As JKO-ICNN requires O(k 2 ) evaluations of gradients of ICNNs, the training is very long for such a dynamic. Here, the training took around 5 hours on a RTX 2080 TI (for 100 steps), versus 20 minutes for the FCNN and 10 minutes for 1000 particles (for 200 steps).

This underlines again the better training complexity of SW-JKO compared to JKO-ICNN, which is especially appealing when we are only interested in learning the optimal distribution. One such task is generative modeling in which we are interested in learning a target distribution ν which we have access to through samples. 

Application on Real Data

In what follows, we show that the SW-JKO scheme can generate real data, and perform better than the associated particle scheme obtained by the associated SDE (see Section 7.2.4). To perform generative modeling, we can use different functionals. For example, GANs use the Jensen-Shannon divergence [START_REF] Goodfellow | Generative Adversarial Nets[END_REF] and WGANs the Wasserstein-1 distance (Arjovsky et al., 2017). To compare with an associated particle scheme, we focus here on the regularized SW distance as functional, defined as

F(µ) = 1 2 SW 2 2 (µ, ν) + λH(µ), (7.46)
where ν is some target distribution, for which we should have access to samples. The Wasserstein gradient flow of this functional was first introduced and studied by [START_REF] Bonnotte | Unidimensional and Evolution Methods for Optimal Transportation[END_REF] for λ = 0, and by [START_REF] Liutkus | Sliced-Wasserstein Flows: Nonparametric Generative Modeling via Optimal Transport and Diffusions[END_REF] with the negative entropy term. [START_REF] Liutkus | Sliced-Wasserstein Flows: Nonparametric Generative Modeling via Optimal Transport and Diffusions[END_REF] showcased a particle scheme called SWF (Sliced Wasserstein Flow) to approximate the WGF of (7.46). Applied on images such as MNIST (LeCun and Cortes, 2010), FashionMNIST [START_REF] Xiao | Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms[END_REF] or CelebA [START_REF] Liu | Deep Learning Face Attributes in the Wild[END_REF], SWFs need a very long convergence due to the curse of dimensionality and the trouble approximating SW. Hence, they used instead a pretrained autoencoder (AE) and applied the particle scheme in the latent space. Likewise, we use the AE proposed by [START_REF] Liutkus | Sliced-Wasserstein Flows: Nonparametric Generative Modeling via Optimal Transport and Diffusions[END_REF] with a latent space of dimension d = 48, and we perform SW-JKO steps on those images. We report on Figure 7.8 samples obtained with RealNVPs and on Table 7.2 the Fréchet Inception distance (FID) [START_REF] Heusel | GANs trained by a two timescale Update Rule Converge to a local Nash Equilibrium[END_REF] obtained between 10 4 samples. We denote "golden score" the FID obtained with the pretrained autoencoder. Hence, we cannot obtain better results than this. We compared the results in the latent and in the ambient space with SWFs and see that we obtain fairly better results using generative models within the SW-JKO scheme, especially in the ambient space, although the results are not really competitive with state-of-the-art methods. This may be due more to the curse of dimensionality in approximating the objective SW than in approximating the regularizer SW. Note that in a more recent work [START_REF] Du | Nonparametric Generative Modeling with Conditional and Locally-Connected Sliced-Wasserstein Flows[END_REF], it was shown that changing the projections to take into account the specificities of images, e.g. translation invariance, with convolutions, allowed to obtain very nice results with SWFs, even in the space of images.

To sum up, an advantage of the SW-JKO scheme is to be able to use easier, yet powerful enough, architectures to learn the dynamic. This is cheaper in training time and less memory costly. Furthermore, we can tune the architecture with respect to the characteristics of the problem and add inductive biases (e.g. using CNN for images) or learn directly over the particles for low dimensional problems.

Conclusion and Discussion

In this chapter, we derive a new class of gradient flows in the space of probability measures endowed with the Sliced-Wasserstein metric, and the corresponding algorithms. To the best of our knowledge, and despite its simplicity, this is the first time that this class of flows is proposed in a Machine Learning context. We showed that it has several advantages over state-of-the-art approaches such as the recent JKO-ICNN. Aside from being less computationally intensive, it is more versatile w.r.t. the different practical solutions for modeling probability distributions, such as Normalizing Flows, generative models or sets of evolving particles.

Regarding the theoretical aspects, several challenges remain ahead: First, its connections with Wasserstein gradient flows are still unclear. Second, one needs to understand if, regarding the optimization task, convergence speeds or guarantees are changed with this novel formulation, revealing potentially interesting practical properties. Lastly, it is natural to study if popular variants of the Sliced-Wasserstein distance such as Max-sliced [START_REF] Deshpande | Max-Sliced Wasserstein Distance and its use for GANs[END_REF], Distributional Sliced (Nguyen et al., 2021a), Subspace robust [START_REF] Paty | Subspace robust Wasserstein distances[END_REF], generalized Sliced (Kolouri et al., 2019a) or projection Wasserstein distances [START_REF] Rowland | Orthogonal Estimation of Wasserstein Distances[END_REF] can also be used in similar gradient flow schemes. The study of higher-order approximation schemes such as BDF2 [START_REF] Plazotta | A BDF2-Approach for the Non-Linear Fokker-Planck Equation[END_REF][START_REF] Matthes | A Variational Formulation of the BDF2 Method for Metric Gradient Flows[END_REF][START_REF] Natale | From Geodesic Extrapolation to a Variational BDF2 Scheme for Wasserstein Gradient Flows[END_REF] could also be of interest. Optimal Transport (OT) has emerged as a powerful framework to compare probability measures, a fundamental task in many statistical and Machine Learning problems. Substantial advances have been made over the last decade in designing OT variants which are either computationally and statistically more efficient, or more robust to the measures/datasets to compare. Among them, Sliced-Wasserstein distances have been extensively used to mitigate Optimal Transport's cubic algorithmic complexity and curse of dimensionality. In parallel, unbalanced OT was designed to allow comparisons of more general positive measures, while being more robust to outliers. In this chapter, based on [START_REF] Séjourné | Unbalanced Optimal Transport Meets Sliced Wasserstein[END_REF], we propose to combine these two concepts, namely slicing and unbalanced OT, to develop a general framework for efficiently comparing positive measures. We propose two new loss functions based on the idea of slicing unbalanced OT, and study their induced topology and statistical properties. We then develop a fast Frank-Wolfe-type algorithm to compute these loss functions, and show that the resulting methodology is modular as it encompasses and extends prior related work. We finally conduct an empirical analysis of our loss functions and methodology on both synthetic and real datasets, to illustrate their relevance and applicability.

Introduction

Positive measures are ubiquitous in various fields, including data sciences and Machine Learning (ML) where they commonly serve as data representations. A common example is the density fitting task, which arises in generative modeling (Arjovsky et al., 2017;[START_REF] Bortoli | Diffusion Schrödinger Bridge with Applications to Score-based Generative Modeling[END_REF]: the observed samples can be represented as a discrete positive measure ν and the goal is to find a parametric measure µ η which fits the best ν. This can be achieved by training a model that minimizes a loss function over η, usually defined as a distance between ν and µ η . Therefore, it is important to choose a meaningful discrepancy with desirable statistical, robustness and computational properties. In particular, some settings require comparing arbitrary positive measures, i.e. measures whose total mass can have an arbitrary value, as opposed to probability distributions, whose total mass is equal to 1. In cell biology [START_REF] Schiebinger | Optimal-Transport Analysis of Single-cell Gene Expression identifies Developmental Trajectories in Reprogramming[END_REF], for example, measures are used to represent and compare gene expressions of cell populations, and the total mass represents the population size.

(Unbalanced) Optimal Transport. Optimal Transport has been chosen as a loss function in various ML applications. OT defines a distance between two positive measures of same mass µ and ν (i.e. m(µ) = m(ν)) by moving the mass of µ toward the mass of ν with least possible effort. The mass equality can nevertheless be hindered by imposing a normalization of µ and ν to enforce m(µ) = m(ν), which is potentially spurious and makes the problem less interpretable. In recent years, OT has then been extended to settings where measures have different masses, leading to the unbalanced OT (UOT) framework [START_REF] Kondratyev | A Fitness-Driven Cross-Diffusion System from Population Dynamics as a Gradient Flow[END_REF]Chizat et al., 2018b;[START_REF] Liero | Optimal Entropy-Transport Problems and a new Hellinger-Kantorovich Distance between Positive Measures[END_REF]. An appealing outcome of this new OT variant is its robustness to outliers which is achieved by discarding them before transporting µ to ν. UOT has been useful for many theoretical and practical applications, e.g. theory of deep learning [START_REF] Chizat | On the Global Convergence of Gradient Descent for Over-Parameterized Models using Optimal Transport[END_REF][START_REF] Rotskoff | Global Convergence of Neuron Birth-Death Dynamics[END_REF], biology [START_REF] Schiebinger | Optimal-Transport Analysis of Single-cell Gene Expression identifies Developmental Trajectories in Reprogramming[END_REF]Demetci et al., 2022a) and domain adaptation (Fatras et al., 2021a). We refer to (Séjourné et al., 2022a) for an extensive survey of UOT. Computing OT requires solving a linear program whose complexity is cubical in the number n of samples (O(n 3 log n)). Besides, accurately estimating OT distances through empirical distributions is challenging as OT suffers from the curse of dimensionality [START_REF] Dudley | The Speed of Mean Glivenko-Cantelli Convergence[END_REF]. A common workaround is to rely on OT variants with lower complexities and better statistical properties. Among the most popular, we can list entropic OT [START_REF] Cuturi | Sinkhorn Distances: Lightspeed Computation of Optimal Transport[END_REF], minibatch OT (Fatras et al., 2021b) and Sliced-Wasserstein (Rabin et al., 2011;[START_REF] Bonneel | Sliced and Radon Wasserstein Barycenters of Measures[END_REF].

When it comes to slicing unbalanced OT, it has been applied to partial OT [START_REF] Bonneel | SPOT: Sliced Partial Optimal Transport[END_REF][START_REF] Sato | Fast Unbalanced Optimal Transport on a Tree[END_REF][START_REF] Bai | pour le transport optimal partiel[END_REF], a particular case of UOT, in order to speed up comparisons of unnormalized measures at large scale. However, while (sliced) partial OT allows to compare measures with different masses, it assumes that each input measure is discrete and supported on points that all share the same mass (typically 1). In contrast, the Gaussian-Hellinger-Kantorovich (GHK) distance [START_REF] Liero | Optimal Entropy-Transport Problems and a new Hellinger-Kantorovich Distance between Positive Measures[END_REF] (also known as the Wasserstein-Fisher-Rao distance (Chizat et al., 2018a)), another popular formulation of UOT, allows to compare measures with different masses and supported on points with varying masses, and has not been studied jointly with slicing.

Contributions.

In this chapter, we present the first general framework combining UOT and slicing. Our main contribution is the introduction of two novel sliced variants of UOT, respectively called Sliced UOT (SUOT) and Unbalanced Sliced-Wasserstein (USW). SUOT and USW both leverage one-dimensional projections and the newly-proposed implementation of UOT in 1D (Séjourné et al., 2022b), but differ in the penalization used to relax the constraint on the equality of masses: USW essentially performs a global reweighting of the inputs measures (µ, ν), while SUOT reweights each projection of (µ, ν). Our work builds upon the Frank-Wolfe-type method [START_REF] Frank | An Algorithm for Quadratic Programming[END_REF]) recently proposed in (Séjourné et al., 2022b) to efficiently compute GHK between univariate measures, an instance of UOT which has not yet been combined with slicing. We derive the associated theoretical properties, along with the corresponding fast and GPU-friendly algorithms. We demonstrate its versatility and efficiency on challenging experiments, where slicing is considered on a non-Euclidean hyperbolic manifold, as a similarity measure for document classification, or for computing barycenters of geoclimatic data.

Background on Unbalanced Optimal Transport

We denote by M + (R d ) the set of all positive Radon measures on R d . For any µ ∈ M + (R d ), supp(µ) is the support of µ and m(µ) = R d dµ(x) the mass of µ. We recall the standard formulation of unbalanced OT [START_REF] Liero | Optimal Entropy-Transport Problems and a new Hellinger-Kantorovich Distance between Positive Measures[END_REF]. Here, we focus for the regularization on the Kullback-Leibler divergence, defined between µ, ν ∈ M + (R d ) as

KL(µ||ν) = R d log dµ dν (x) dµ(x) + R d dν(x) -R d dµ(x) if µ ν +∞ otherwise, (8.1)
and on a cost of the form c(x, y) = x -y p 2 for p ≥ 1. This corresponds to the GHK setting [START_REF] Liero | Optimal Entropy-Transport Problems and a new Hellinger-Kantorovich Distance between Positive Measures[END_REF]. The framework and some results can be generalized to more general ϕ-divergences, and we refer to [START_REF] Séjourné | Unbalanced Optimal Transport Meets Sliced Wasserstein[END_REF] for more details. In particular, when choosing the Total Variation distance, we recover the partial Optimal Transport problem [START_REF] Figalli | The Optimal Partial Transport Problem[END_REF]. 

UOT(µ, ν) = inf γ∈M+(R d ×R d ) c(x, y) dγ(x, y) + ρ 1 KL(π 1 # γ||µ) + ρ 2 KL(π 2 # γ||ν), (8.2)
with π 1 : (x, y) → x and π 2 : (x, y) → y.

We note that we recover the regular OT problem W c (2.4) when ρ 1 → ∞ and ρ 2 → ∞ as in this case, the marginals are fully enforced.

The UOT problem has been shown to admit an equivalent formulation obtained by deriving the dual of (8.2) and proving strong duality. Based on Proposition 8.1, computing UOT(µ, ν) consists in optimizing a pair of continuous functions (f, g). Proposition 8.1 (Corollary 4.12 in [START_REF] Liero | Optimal Entropy-Transport Problems and a new Hellinger-Kantorovich Distance between Positive Measures[END_REF]). The UOT problem (8.2) can equivalently be written as

UOT(µ, ν) = sup f ⊕g≤c ϕ • 1 f (x) dµ(x) + ϕ • 2 g(y) dν(y), (8.3)
where for i ∈ {1, 2}, ϕ • i (x) = ρ i (1 -e -x/ρi ), and f ⊕ g ≤ c means that for (x, y) ∼ µ ⊗ ν, f (x) + g(y) ≤ c(x, y).

UOT(µ, ν) is known to be computationally intensive [START_REF] Pham | On Unbalanced Optimal Transport: An Analysis of Sinkhorn Algorithm[END_REF], thus motivating the development of methods that can scale to dimensions and sample sizes encountered in ML applications. Therefore, it is appealing to develop sliced workarounds to overcome the computational bottleneck.

SW p (µ, ν) is defined in terms of the Kantorovich formulation of OT, hence inherits the following drawbacks: SW p (µ, ν) < +∞ only when m(µ) = m(ν), and may not provide meaningful comparisons in presence of outliers. To overcome such limitations, prior works have proposed sliced versions of partial OT [START_REF] Bonneel | SPOT: Sliced Partial Optimal Transport[END_REF][START_REF] Bai | pour le transport optimal partiel[END_REF], a particular instance of UOT. However, their contributions only apply to measures whose samples have constant mass. In the next section, we generalize their line of work and propose a new way of combining sliced OT and unbalanced OT.

Sliced Unbalanced OT and Unbalanced Sliced OT

Definition

We propose two strategies to make unbalanced OT scalable, by leveraging sliced OT. We formulate two loss functions (Definition 8.2), then study their theoretical properties and discuss their implications. Definition 8.2. Let µ, ν ∈ M + (R d ) and p ≥ 1. The Sliced Unbalanced OT loss (SUOT) and the Unbalanced Sliced-Wasserstein loss (USW) between µ and ν are defined as,

SUOT(µ, ν) = S d-1 UOT(P θ # µ, P θ # ν) dλ(θ), (8.4) USW p p (µ, ν) = inf (π1,π2)∈M+(R d )×M+(R d ) SW p p (π 1 , π 2 ) + ρ 1 KL(π 1 ||µ) + ρ 2 KL(π 2 ||β), (8.5) 
where P θ (x) = x, θ and λ is the uniform measure on S d-1 .

SUOT(µ, ν) compares µ and ν by solving the UOT problem between P θ # µ and P θ # ν for θ ∼ λ. Note that when using the Total Variation distance instead of the KL divergence, SUOT becomes the sliced partial OT problem [START_REF] Bonneel | SPOT: Sliced Partial Optimal Transport[END_REF][START_REF] Bai | pour le transport optimal partiel[END_REF]. On the other hand, USW is a completely novel approach and stems from the following property on UOT (Liero et al., 2018, Equations (4.21)

): UOT(µ, ν) = inf (π1,π2)∈M+(R d )×M+(R d ) W c (π 1 , π 2 ) + ρ 1 KL(π 1 ||µ) + ρ 2 KL(π 2 ||ν). (8.6)
SUOT vs. USW. As outlined in Definition 8.2, SUOT and USW differ in how the transportation problem is penalized: SUOT(µ, ν) regularizes the marginals of γ θ for θ ∼ λ where γ θ denotes the solution of UOT(P θ # µ, P θ # ν), while USW(µ, ν) operates a geometric normalization directly on (µ, ν). We illustrate this difference in the following practical setting: we consider µ, ν ∈ M + (R 2 ) where µ is polluted with some outliers, and we compute SUOT(µ, ν) and USW(µ, ν). We plot the input measures and the sampled projections {θ k } k (Figure 8.1, left), the marginals of γ θ k for SUOT and the marginals P θ k # µ and P θ k # ν for USW (Figure 8.1,right). As expected, SUOT marginals change for each θ k . We also observe that the source outliers have successfully been removed for any θ when using USW, while they may still appear with SUOT (e.g. for θ = 120 • ): this is a direct consequence of the penalization terms KL in USW, which operate on (µ, ν) rather than on their projections. 

Directions Source data Target data

Theoretical Properties

In this section, we report a set of theoretical properties of SUOT and USW. All proofs are provided in [START_REF] Séjourné | Unbalanced Optimal Transport Meets Sliced Wasserstein[END_REF]. First, the infimum is attained in UOT(P θ # µ, P θ # ν) for θ ∈ S d-1 and in USW(µ, ν), see (Séjourné et al., 2023, Proposition A.1). We also show that these optimization problems are convex, both SUOT and USW are jointly convex w.r.t. their input measures, and that strong duality holds (Theorem 8.4).

Next, we prove that both SUOT and USW preserve some topological properties of UOT, starting with the metric axioms as stated in the next proposition.

Proposition 8.2 (Metric properties).

1. Suppose UOT is non-negative, symmetric and/or definite on M + (R) × M + (R). Then, SUOT is respectively non-negative, symmetric and/or definite on

M + (R d ) × M + (R d ). If there exists p ∈ [1, +∞) s.t. for any (µ, ν, γ) ∈ M + (R), UOT 1/p (µ, ν) ≤ UOT 1/p (µ, γ) + UOT 1/p (γ, ν), then SUOT 1/p (µ, ν) ≤ SUOT 1/p (µ, γ) + SUOT 1/p (γ, ν).
2. For any µ, ν ∈ M + (R d ) and p ≥ 1, USW p p (µ, ν) ≥ 0, USW p p is symmetric and is definite.

Proof. See (Séjourné et al., 2023, Proposition 3.2).

By Proposition 8.2 1., establishing the metric axioms of UOT between univariate measures (e.g., as detailed in (Séjourné et al., 2022a, Section 3.3.1)) suffices to prove the metric axioms of SUOT between multivariate measures. Since e.g. GHK (Liero et al., 2018, Theorem 7.25) is a metric for p = 2, then so is the associated SUOT.

In our next theorem, we show that SUOT, USW and UOT are equivalent, under certain assumptions on input measures (µ, ν). Proof. See (Séjourné et al., 2023, Theorem 3.3).

The equivalence of SUOT, USW and UOT is useful to prove that SUOT and USW metrize the weak convergence when UOT does, e.g. in the GHK setting (Liero et al., 2018, Theorem 7.25).

Theorem 8.2 (Weak metrization). Let p ∈ [1, +∞) and consider c(x, y) = x -y p 2 . Let (µ n ) be a sequence of measures in M + (X) and µ ∈ M + (X), where X ⊂ R d is compact with radius R > 0. Then, SUOT and USW metrize the weak convergence, i.e.

µ n L ----→ n→∞ µ ⇐⇒ lim n→∞ SUOT(µ n , µ) = 0 ⇐⇒ lim n→∞ USW p p (µ n , µ) = 0. (8.8)
Proof. See (Séjourné et al., 2023, Theorem 3.4).

The metrization of weak convergence is an important property when comparing measures. For instance, it can be leveraged to justify the well-posedness of approximating an unbalanced Wasserstein gradient flow [START_REF] Ambrosio | Gradient Flows: in Metric Spaces and in the Space of Probability Measures[END_REF] using SUOT, as done in (Candau-Tilh, 2020) and in Chapter 7 for SW. Unbalanced Wasserstein gradient flows have been a key tool in deep learning theory, e.g. to prove global convergence of 1-hidden layer neural networks [START_REF] Chizat | On the Global Convergence of Gradient Descent for Over-Parameterized Models using Optimal Transport[END_REF][START_REF] Rotskoff | Global Convergence of Neuron Birth-Death Dynamics[END_REF].

We move on to the statistical properties and prove that SUOT offers important statistical benefits, as it lifts the sample complexity of UOT from one-dimensional setting to multi-dimensional ones. In what follows, for any µ ∈ M + (R d ), we use μn to denote the empirical approximation of µ over n ≥ 1 i.i.d. samples, i.e. μn = 1 n n i=1 δ Zi , Z i ∼ µ for i = 1, . . . , n.

Theorem 8.3 (Sample complexity).

If for

α, β ∈ M + (R), E |UOT(α, β) -UOT(α n , βn )| ≤ κ(n), then for µ, ν ∈ M + (R d ), E |SUOT(µ, ν) -SUOT(μ n , νn )| ≤ κ(n).
(8.9)

2. If for α, β ∈ M + (R), E |UOT(α, βn )| ≤ ξ(n), then for µ, ν ∈ M + (R d ), E |SUOT(µ, μn )| ≤ ξ(n). (8.10)
Proof. See (Séjourné et al., 2023, Theorem 3.6).

Theorem 8.3 means that SUOT enjoys a dimension-free sample complexity, even when comparing multivariate measures: this advantage is recurrent of sliced divergences (Nadjahi et al., 2020b) and further motivates their use on high-dimensional settings. The sample complexity rates κ(n) or ξ(n) can be deduced from the literature on UOT for univariate measures, for example we refer to [START_REF] Vacher | Stability of Semi-Dual Unbalanced Optimal Transport: Fast Statistical Rates and Convergent Algorithm[END_REF] for the GHK setting. Establishing the statistical properties of USW may require extending the analysis in (Nietert et al., 2022a): we leave this question for future work.

We conclude this section by deriving the dual formulations of SUOT, USW and proving that strong duality holds. We will consider that λ is approximated with λK = 1 K K k=1 δ θ k , θ k ∼ λ. This corresponds to the routine case in practice, as practitioners usually resort to a Monte Carlo approximation to estimate the expectation w.r.t. λ defining SW.

Theorem 8.4 (Strong duality). Define

E = {∀θ ∈ supp(λ K ), f θ ⊕ g θ ≤ c}. Let f avg = S d-1 f θ d λK (θ), g avg = S d-1 g θ d λK (θ).
Then, SUOT (8.4) and USW (8.5) can be equivalently written for µ, ν

∈ M + (R d ) as, SUOT(µ, ν) = sup (f θ ),(g θ )∈E S d-1 ϕ • 1 f θ • P θ (x) dµ(x) + ϕ • 2 g θ • P θ (y) dν(y) d λK (θ) (8.11) USW p p (µ, ν) = sup (f θ ),(g θ )∈E ϕ • 1 f avg • P θ (x) dµ(x) + ϕ • 2 g avg • P θ (y) dν(y), (8.12)
with ϕ i defined as in Proposition 8.1 for i ∈ {1, 2}.

Proof. See (Séjourné et al., 2023, Theorem 5).

We conjecture that strong duality also holds for λ Lebesgue over S d-1 . Theorem 8.4 has important practical implications, since it justifies the Frank-Wolfe-type algorithms that we develop in Section 8.4 to compute SUOT and USW in practice.

Computing SUOT and USW with Frank-Wolfe algorithms

In this section, we explain how to implement SUOT and USW. We propose two algorithms by leveraging our strong duality result (Theorem 8.4) along with a Frank-Wolfe algorithm (FW) [START_REF] Frank | An Algorithm for Quadratic Programming[END_REF] introduced in (Séjourné et al., 2022b) to optimize the UOT dual 8.3. We refer to [START_REF] Séjourné | Unbalanced Optimal Transport Meets Sliced Wasserstein[END_REF] for more details on the technical implementation and theoretical justification of our methodology.

FW is an iterative procedure which aims at maximizing a functional H over a compact convex set E, by maximizing a linear approximation ∇H: given iterate x t , FW solves the linear oracle r t+1 ∈ argmax r∈E ∇H(x t ), r and performs a convex update x t+1 = (1 -γ t+1 )x t + γ t+1 r t+1 , with γ t+1 typically chosen as γ t+1 = 2/(2 + t + 1). We call this step FWStep in our pseudo-code. When applied in (Séjourné et al., 2022b) to compute UOT(µ, ν) dual (8.3), FWStep updates (f t , g t ) s.t. f t ⊕ g t ≤ c, and the linear oracle is the balanced dual of W c (µ t , ν t ) where (µ t , ν t ) are normalized versions of (µ, ν). Updating (µ t , ν t ) involves (f t , g t ) and ρ = (ρ 1 , ρ 2 ): we refer to this routine as Norm(µ, ν, f t , g t , ρ) and the closed-form updates are reported in (Séjourné et al., 2023, Appendix B). In other words, computing UOT amounts to solving a sequence of W c problems, which can efficiently be done for univariate measures (Séjourné et al., 2022b). Analogously to UOT, and by Theorem 8.4, we propose to compute SUOT(µ, ν) and USW(µ, ν) based on their dual forms. FW iterates consists in solving a sequence of sliced OT problems. We derive the Algorithm 8.1 -SUOT updates for the FWStep tailored for SUOT and USW in (Séjourné et al., 2023, Appendix B), and re-use the aforementioned Norm routine. For USW, we implement an additional routine called AvgPot (f θ ) to compute f θ d λK (θ) given the sliced potentials (f θ ).

Input: µ, ν, F , (θ k ) K k=1 , ρ = (ρ1, ρ2) Output: SUOT(µ, ν), (f θ , g θ ) (f θ , g θ ) ← (0, 0) for t = 0, 1, . . . , F -1, for θ ∈ (θ k ) K k=1 do (µ θ , ν θ ) ← Norm(P θ # µ, P θ # ν, f θ , g θ , ρ) (r θ , s θ ) ← SlicedDual(µ θ , ν θ ) (f θ , g θ ) ← FWStep(f θ , g θ , r θ , s θ , γt) end for Return SUOT(µ, ν), (f θ , g θ ) as in (8.11) Algorithm 8.2 -USW Input: µ, ν, F , (θ k ) K k=1 , ρ = (ρ1, ρ2), p Output: USW(µ, ν), (favg, gavg) (f θ , g θ , favg, gavg) ← (0, 0, 0, 0) for t = 0, 1, . . . , F -1, for θ ∈ (θ k ) K k=1 do (π1, π2) ← Norm(µ, ν, favg, gavg, ρ) (r θ , s θ ) ← SlicedDual(P θ # π1, P θ # π2) ravg, savg ← AvgPot(r θ ), AvgPot(s θ ) (favg,
A crucial difference is the need of SW dual potentials (r θ , s θ ) to call Norm. However, past implementations only return the loss SW(µ, ν) for e.g. training models [START_REF] Deshpande | Max-Sliced Wasserstein Distance and its use for GANs[END_REF]Nguyen et al., 2021a). Thus we designed two novel (GPU) implementations in PyTorch (Paszke et al., 2019) which return them. The first one leverages that the gradient of W c (µ, ν) w.r.t. (µ, ν) are optimal (f, g), which allows to backpropagate W c (P θ # µ, P θ # ν) w.r.t. (µ, ν) to obtain (r θ , s θ ). The second implementation computes them in parallel on GPUs using their closed form, which to the best of our knowledge is a new sliced algorithm. We call SlicedDual(P θ # µ, P θ # ν) the step returning optimal (r θ , s θ ) solving W c (P θ # µ, P θ # ν) for all θ. Both routines preserve the O(N log N ) per slice time complexity and can be adapted to any sliced Optimal Transport variant. Thus, our FW approach is modular in that one can reuse the SW literature. We illustrate this by computing the Unbalanced GHSW between distributions in the hyperbolic Poincaré disk (Figure 8.2).

Algorithmic complexity. FW algorithms and its variants have been widely studied theoretically.

Computing SlicedDual has a complexity O(KN log N ), where N is the number of samples, and K the number of projections of λK . The overall complexity of SUOT and USW is thus O(F KN log N ), where F is the number of FW iterations needed to reach convergence. Our setting falls under the assumptions of (Lacoste-Julien and Jaggi, 2015, Theorem 8), thus ensuring fast convergence of our methods. We plot in (Séjourné et al., 2023, Appendix B) empirical evidence that a few iterations of FW (F ≤ 20) suffice to reach numerical precision.

Outputing marginals of SUOT and USW. The optimal primal marginals of UOT (and a fortiori SUOT and USW) are geometric normalizations of inputs (µ, ν) with discarded outliers. Their computation involves the Norm routine, using optimal dual potentials. This is how we compute marginals in Figures (8. 1, 8.2, 8.6). We refer to (Séjourné et al., 2023, Appendix B) for more details and formulas.

Stochastic USW. In practice, the measure λK = (π 1 , π 2 ) are closer to each other, but do not exactly correspond to those of (µ, ν). Second, note that such plot cannot be made with SUOT, since the optimal marginals depend on the projection direction (see Figure 8.1). Third, we emphasize that we are indeed able to reuse any variant of SW existing in the literature.

Document Classification

To show the benefits of our proposed losses over SW, we consider a document classification problem [START_REF] Kusner | From Word Embeddings to Document Distances[END_REF]. Documents are represented as distributions of words embedded with word2vec [START_REF] Mikolov | Distributed Representations of Words and Phrases and their Compositionality[END_REF] 

in dimension d = 300. Let D k be the k-th document and x k 1 , . . . , x k n k ∈ R d be the set of words in D k . Then, D k = n k i=1 w k i δ x k i where w k i is the frequency of x k i in D k normalized s.t. n k i=1 w k i = 1.
Given a loss function L, the document classification task is solved by computing the matrix L(D k , D ) k, , then using a k-nearest neighbor classifier. Since a word typically appears several times in a document, the measures are not uniform and sliced partial OT [START_REF] Bonneel | SPOT: Sliced Partial Optimal Transport[END_REF][START_REF] Bai | pour le transport optimal partiel[END_REF] cannot be used in this setting. The aim of this experiment is to show that by discarding possible outliers using a well chosen parameter ρ, USW 2 is able to outperform SW 2 and SUOT on this task while scaling better for large-scale documents compared to W 2 and UOT. We consider three different datasets, BBCSport [START_REF] Kusner | From Word Embeddings to Document Distances[END_REF], Movies reviews [START_REF] Pang | Thumbs Up? Sentiment Classification Using Machine Learning Techniques[END_REF] and the Goodreads dataset [START_REF] Maharjan | A Multi-task Approach to Predict Likability of Books[END_REF]. For the latter, we perform two classification tasks by predicting the genre (8 classes) as well as the likability (2 classes) which is defined as in [START_REF] Maharjan | A Multi-task Approach to Predict Likability of Books[END_REF]. The two first datasets are not composed of large documents, and hence there is no real computational benefit compared to computing the Wasserstein distance, but we report them in order to illustrate the benefits of using USW over SW or W . The Goodreads dataset is composed of parts of books, and contains 1491 words on average. In this setting, there is indeed a computational benefit. We report in Section 12.6.1 more details on the experiment and on the datasets.

We report in Table 8.1 the accuracy of SUOT, USW 2 2 and the stochastic USW 2 2 (SUSW 2 2 ) compared with SW 2 2 , W 2 2 and UOT computed with the majorization minimization algorithm [START_REF] Chapel | Unbalanced Optimal Transport through Non-Negative Penalized Linear Regression[END_REF] or approximated with the Sinkhorn algorithm [START_REF] Pham | On Unbalanced Optimal Transport: An Analysis of Sinkhorn Algorithm[END_REF]. All results reported are the mean over 5 different train/test set. All the benchmark methods are computed using the POT library [START_REF] Flamary | POT: Python Optimal Transport[END_REF]. For sliced methods (SW, SUOT, USW and SUSW), we average over 3 computations of the loss matrix and report the standard deviation in Table 8.1. The number of neighbors was selected via cross validation. The results in Table 8.1 are reported for ρ yielding the best accuracy, and we display an ablation of this parameter on the BBCSport dataset in Figure 8.3. We observe that when ρ is tuned, USW outperforms SOT, just as UOT outperforms OT. Runtime. We report in Figure 8.4 the runtime of computing the different discrepancies between each pair of documents. On the BBCSport dataset, the documents have 116 words on average, thus the main bottleneck is the projection step for sliced OT methods. Hence, we observe that W runs slightly faster than SW and the sliced unbalanced counterparts. Goodreads is a dataset with larger documents, with on average 1491 words per document. Therefore, as OT scales cubically with the number of samples, we observe here that all sliced methods run faster than OT, which confirms that sliced methods scale better w.r.t. the number of samples. In particular, computing the OT matrix entirely took 3 times longer than computing the USW matrix on GPU. In this setting, we were not able to compute UOT with the POT implementation in a reasonable time. Computations have been performed with a NVIDIA A100 GPU.

Ablations. We plot in Figure 8.5 accuracy as a function of the number of projections and the number of iterations of the Frank-Wolfe algorithm. We averaged the accuracy obtained with the same setting described in Section 12.6.1, with varying number of projections K ∈ {4, 10, 21, 46, 100, 215, 464, 1000} and number of FW iterations F ∈ {1, 2, 3, 4, 5, 10, 15, 20}. Regarding the hyperparameter ρ, we selected the one returning the best accuracy, i.e. ρ = 5 • 10 -4 for USW and ρ = 10 -2 for SUOT. 

Barycenter on Geophysical Data.

OT barycenters are an important topic of interest [START_REF] Le | On Robust Optimal Transport: Computational Complexity and Barycenter Computation[END_REF] for their ability to capture mass changes and spatial deformations over several reference measures. In order to compute barycenters under the USW geometry on a fixed grid, we employ a mirror-descent strategy similar to (Cuturi and Doucet, 2014, Algorithm (1)) and described more in depth in (Séjourné et al., 2023, Appendix C). We showcase unbalanced sliced OT barycenter using climate model data. Ensembles of multiple models are commonly employed to reduce biases and evaluate uncertainties in climate projections (e.g. [START_REF] Sanderson | A Representative Democracy to Reduce Interdependency in a Multimodel Ensemble[END_REF][START_REF] Thao | Combining Global Climate Models using Graph Cuts[END_REF]). The commonly used Multi-Model Mean approach assumes models are centered around true values and averages the ensemble with equal or varying weights. However, spatial averaging may fail in capturing specific characteristics of the physical system at stake. We propose to use the USW barycenter here instead. We use data from the ClimateNet dataset [START_REF] Kashinath | ClimateNet: an Expert-Labeled Open Dataset and Deep Learning Architecture for Enabling High-Precision Analyses of Extreme Weather[END_REF], and more specifically the TMQ (precipitable water) indicator. The ClimateNet dataset is a human-expert-labeled curated dataset that captures notably tropical cyclones (TCs). In order to simulate the output of several climate models, we take a specific instant (first date of 2011) and deform the data with the elastic deformation from TorchVision (Paszke et al., 2019), in an area located close to the eastern part of the United States of America. As a result, we obtain 4 different TCs, as shown in the first row of Figure 8.6. The classical L2 spatial mean is displayed on the second row of Figure 8.6 and, as can be expected, reveal 4 different TCs centers/modes, which is undesirable. As the total TMQ mass in the considered zone varies between the different models, a direct application of SW is impossible, or requires a normalization of the mass that has undesired effect as can be seen on the second picture of the second row. Finally, we show the result of the USW barycenter with ρ 1 = 1e1 (related to the data) and ρ 2 = 1e4 (related to the barycenter). As a result, the corresponding barycenter has only one apparent mode which is the expected behavior. The considered measures have a size of 100 × 200, and we run the barycenter algorithm for 500 iterations (with K = 64 projections), which takes 3 minutes on a commodity GPU. UOT barycenters for this size of problems are intractable, and to the best of our knowledge, this is the first time such large scale unbalanced OT barycenters can be computed. This experiment encourages an in-depth analysis of the relevance of this aggregation strategy for climate modeling and related problems, which we will investigate as future work.

Conclusion and Discussion

We proposed two losses merging unbalanced and sliced OT altogether, with theoretical guarantees and an efficient Frank-Wolfe algorithm which allows to reuse any sliced OT variant. We highlighted experimentally the performance improvement over SOT, and described novel applications of unbalanced OT barycenters of positive measures, with a new case study on geophysical data. These novel results and algorithms pave the way to numerous new applications of sliced variants of OT, and we believe that our contributions will motivate practitioners to further explore their use in general ML applications, without the requirements of manipulating probability measures.

On the limitations side, an immediate drawback arises from the induced additional computational cost w.r.t. SW. While the above experimental results show that SUOT and USW improve performance significantly over SW, and though the complexity is still sub-quadratic in number of samples, our FW approach uses SW as a subroutine, rendering it necessarily more expensive. Additionally, another practical burden comes from the introduction of extra parameters (ρ 1 , ρ 2 ) which requires cross-validation when possible. Therefore, a future direction would be to derive efficient strategies to tune (ρ 1 , ρ 2 ), maybe w.r.t. the applicative context, and further complement the possible interpretations of ρ as a "threshold" for the geometric information encoded by the costs.

On the theoretical side, while OT between univariate measures has been shown to define a reproducing kernel, and while sliced OT can take advantage of this property [START_REF] Kolouri | Sliced Wasserstein Kernels for Probability Distributions[END_REF][START_REF] Carriere | Sliced Wasserstein Kernel for Persistence Diagrams[END_REF], some of our numerical experiments suggest this property no longer holds for UOT (and therefore, for SUOT and USW). This negative result leaves as an open direction the design of OT-based kernel methods between arbitrary positive measures. This chapter is more prospective and studies the problem of defining the Busemann function on the space of probability measures endowed by the Wasserstein distance. This function has received recently much attention on Riemannian manifolds where all geodesics can be extended infinitely. On the Wasserstein space, this is not the case, and hence the Busemann function is only well defined with respect to specific geodesics which we investigate in this chapter. Then, we provide closed-forms in particular cases such as one dimensional probability distributions or Gaussians. Finally, we propose an application to the problem of Principal Component Analysis (PCA) in the space of one dimensional probability distributions.

Introduction

Many datasets are composed of probability distributions. For example, one can cite one dimensional histograms which can describe e.g. empirical return distributions financial assets or age distributions of countries among others [START_REF] Campbell | Efficient Convex PCA with Applications to Wasserstein Geodesic PCA and Ranked Data[END_REF], documents which can be modeled as distributions of words [START_REF] Kusner | From Word Embeddings to Document Distances[END_REF], cells as distributions of genes [START_REF] Bellazzi | The Gene Mover's Distance: Single-cell similarity via Optimal Transport[END_REF], images which can be seen as a distribution over a 2D grid [START_REF] Seguy | Principal Geodesic Analysis for Probability Measures under the Optimal Transport Metric[END_REF], or more broadly symbolic data [START_REF] Verde | Dimension Reduction Techniques for Distributional Symbolic Data[END_REF]. It has also been proposed in several works to embed data directly into probability spaces as they provide a rich geometry [START_REF] Xiong | Geometric Relational Embeddings: A Survey[END_REF]. For instance, [START_REF] Vilnis | Word Representations via Gaussian Embedding[END_REF] embedded words into Gaussians while Wang et al. (2022a) embedded knowledge graphs into Dirichlet distributions.

Probability distributions can be naturally dealt with using Optimal Transport by endowing the space with the Wasserstein distance. With this metric, this space, called the Wasserstein space, enjoys many theoretical properties which have been extensively studied [START_REF] Ambrosio | Gradient Flows: in Metric Spaces and in the Space of Probability Measures[END_REF][START_REF] Villani | Optimal Transport: Old and New[END_REF]. Leveraging these properties, it has been applied in Machine Learning in order to deal with data sets of probability distributions. For instance, [START_REF] Agueh | Barycenters in the Wasserstein Space[END_REF] investigated Wasserstein barycenters which provide a way to find an average of such datasets, [START_REF] Domazakis | Clustering Measure-valued Data with Wasserstein Barycenters[END_REF]; [START_REF] Zhuang | Wasserstein k-means for Clustering Probability Distributions[END_REF] used clustering of probability distributions by extending the K-Means algorithm and [START_REF] Schmitz | Wasserstein Dictionary Learning: Optimal Transport-based Unsupervised Nonlinear Dictionary Learning[END_REF] performed dictionary learning in order to sum up a dataset of distributions. Another line of works consists in extending Principal Component Analysis (PCA) to datasets of probability distributions in order to describe the main modes of variations by exploiting the geodesic structure of the Wasserstein space [START_REF] Seguy | Principal Geodesic Analysis for Probability Measures under the Optimal Transport Metric[END_REF][START_REF] Bigot | Geodesic PCA in the Wasserstein space by Convex PCA[END_REF][START_REF] Cazelles | Geodesic PCA versus Log-PCA of Histograms in the Wasserstein Space[END_REF][START_REF] Pegoraro | Projected Statistical Methods for Distributional Data on the Real Line with the Wasserstein Metric[END_REF][START_REF] Beraha | Wasserstein Principal Component Analysis for Circular Measures[END_REF].

In this chapter, motivated by the recent proposal to use the Busemann function in order to perform PCA in Hyperbolic spaces [START_REF] Chami | HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projections[END_REF], we propose to study this function in Wasserstein space. [START_REF] Zhu | Busemann Functions on the Wasserstein Space[END_REF] recently provided a theoretical analysis of its existence in this space but did not detail how to compute it in practice. In particular, the Busemann function is associated with geodesic rays. However, the Wasserstein space is not geodesically complete, and these geodesics need to be chosen carefully in practice. Thus, we propose to bridge this gap by first analyzing conditions to obtain geodesic rays in the Wasserstein space. Then, we provide closed-forms for the Busemann function for one dimensional probability distributions and for Gaussians, i.e. in the Bures-Wasserstein space. Finally, as an application, we perform PCA of 1D histograms.

Geodesic Rays in Wasserstein Space

Background on Wasserstein Space

We start by providing some background on Wasserstein spaces (P 2 (R d ), W 2 ). First, it is well known that the Wasserstein space has a Riemannian structure [START_REF] Otto | The Geometry of Dissipative Evolution Equations: the Porous Medium Equation[END_REF]. In particular, this is a geodesic space and between two measures µ 0 , µ 1 ∈ P 2 (R d ), the geodesic t → µ t is the displacement interpolation, introduced by McCann (1997) and defined as,

∀t ∈ [0, 1], µ t = (1 -t)π 1 + tπ 2 # γ, (9.1)
where γ ∈ Π(µ 0 , µ 1 ) is an optimal coupling, π 1 : (x, y) → x and π 2 : (x, y) → y. In the case where there is a Monge map between µ 0 and µ 1 , e.g. if µ 0 is absolutely continuous with respect to the Lebesgue measure by Brenier's theorem (see Theorem 2.1), then the geodesic curve can be further written as

∀t ∈ [0, 1], µ t = (1 -t)Id + tT # µ 0 , (9.2)
with T the Optimal Transport map between µ 0 and µ 1 . This geodesic is also a constant-speed geodesic (Santambrogio, 2015, Theorem 5.27), i.e. it satisfies

∀s, t ∈ [0, 1], W 2 (µ t , µ s ) = |t -s|W 2 (µ 0 , µ 1 ). (9.3)
We call κ µ = W 2 (µ 0 , µ 1 ) the speed of the geodesic. If the geodesic can be extended to any t ∈ R, it is called a geodesic line and a geodesic ray when it can be extended to any t ∈ R + [START_REF] Bridson | Metric Spaces of Non-Positive Curvature[END_REF]. [START_REF] Kloeckner | A Geometric Study of Wasserstein Spaces: Euclidean Spaces[END_REF] started to study under which conditions on the measures µ 0 and µ 1 the geodesics can be extended. For instance, in (Kloeckner, 2010, Proposition 3.6), it was shown that the geodesic curve t → µ t is a geodesic line if and only if there is a vector u ∈ R d such that µ 1 = T u # µ 0 where T u (x) = x -u for any x ∈ R d , i.e. the measures are translated. Geodesic rays, which will be of much interest in order to define Busemann functions, received some attention in [START_REF] Zhu | Busemann Functions on the Wasserstein Space[END_REF] in which it was shown that for any µ 0 ∈ P 2 (R d ), there exists at least one unit-speed geodesic ray originating from it.

Geodesic Rays

Now, let us discuss how to characterize geodesic rays in practice. First, we show that in the setting of Brenier's theorem, geodesic rays are obtained if the Monge map between µ 0 and µ 1 is the gradient of a 1-convex Brenier potential function u, i.e. such that x → u(x) -

x 2 2 2 is convex. Proposition 9.1. Let µ 0 , µ 1 ∈ P 2 (R d
) with µ 0 absolutely continuous with respect to the Lebesgue measure and consider c(x, y) = 1 2 x -y 2 2 . Then, the optimal transport map T between µ 0 and µ 1 is the gradient of a 1-convex function u if and only if µ t = (1 -t)Id + tT # µ 0 is a geodesic ray.

Proof. See Section 12.7.1.

This result is very connected with (Natale et al., 2022, Section 4) in which it is stated that a geodesic can be extended on a segment [0, α] 

for α ≥ 1 if and only if x → αu(x) -(α -1) x 2 2 2 is convex (if and only if x → u(x) -(1 -1 α ) x 2 2 2
is convex). Taking the limit α → ∞, we recover the result of Proposition 9.1. In Proposition 9.1, we restrict ourselves to absolutely continuous measures in order to be able to use Brenier's theorem to have access to an OT map. In the one dimensional case, we can obtain a result for a larger class of measures. In this case, the measures are fully characterized by their quantile functions and in particular, denoting F -1 0 the quantile of µ 0 ∈ P 2 (R), F -1 1 the quantile of µ 1 ∈ P 2 (R) and F -1 t the quantile of the geodesic between µ 0 and µ 1 at time t ∈ [0, 1], defined by ]) the optimal coupling between µ 0 and µ 1 , then it is well known (see e.g. (Ambrosio et al., 2008, Equation 7.2.8)

µ t = (1 -t)π 1 + tπ 2 # γ with γ = (F -1 0 , F -1 1 ) # Unif([0, 1 
) that ∀t ∈ [0, 1], F -1 t = (1 -t)F -1 0 + tF -1 1 . (9.4)
Then, as observed by [START_REF] Kloeckner | A Geometric Study of Wasserstein Spaces: Euclidean Spaces[END_REF], as non-decreasing left continuous functions are the inverse cumulative distribution function of a probability distribution, we can extend the geodesic as long as

F -1 t is non-decreasing. Proposition 9.2. Let µ 0 , µ 1 ∈ P 2 (R) and denote F -1 0 , F -1
1 their quantile functions. Denote for any ]) the optimal coupling between µ 0 and µ 1 . Then, t → µ t is a geodesic ray if and only if

t ∈ [0, 1], µ t = (1 -t)π 1 + tπ 2 # γ with γ = (F -1 0 , F -1 1 ) # Unif([0, 1 
F -1 1 -F -1 0 is non-decreasing.
Proof. See Section 12.7.1.

This result is actually equivalent with saying that µ 0 is smaller than µ 1 in the dispersive order (Shaked and Shanthikumar, 2007, Chapter 3.B). This is also equivalent with having the equality V (µ 0 |µ 1 ) = W 2 2 (µ 0 , µ 1 ) (Shu, 2020, Theorem 2.6) where V is the weak (barycentric) Optimal Transport defined as

V (µ 0 |µ 1 ) = inf γ∈Π(µ0,µ1)
x -y dγ x (y) 2 dµ 1 (x), (9.5) with γ disintegrated as γ = µ 1 ⊗ γ x . Shu (2020) also derived a condition for this equality to hold in higher dimensions, which is that the OT map is the gradient of a 1-convex function and satisfies an additional smoothness property on the Hessian. In 1D, this condition coincides with the OT map being the gradient of a 1-convex function, which is also equivalent with the difference of the quantiles being non-decreasing (Shu, 2020, Remark 3.6). [START_REF] Shu | From Hopf-Lax Formula to Optimal Weak Transfer Plan[END_REF] actually conjectures in Remark 3.6 that the result still holds without the smoothness assumption. In this case, it would exactly coincide with the conditions needed in Proposition 9.1 to have geodesic rays. Now, let us give some examples of measures µ 0 and µ 1 for which the resulting geodesic is a ray.

1D Gaussians. We start by studying the one dimensional Gaussian case. Let µ 0 = N (m 0 , σ 2 0 ) and

µ 1 = N (m 1 , σ 2 1 ) with m 0 , m 1 , σ 0 , σ 1 ∈ R. It is well known that for p ∈ [0, 1], F -1 0 (p) = m 0 + σ 0 φ -1 (p)
where φ -1 denotes the quantile function of the standard Gaussian distribution N (0, 1). In this case, for 0 < p < p < 1, we observe that

F -1 0 (p ) -F -1 0 (p) = σ 0 φ -1 (p ) -φ -1 (p) , (9.6)
and therefore

(F -1 1 -F -1 0 )(p ) -(F -1 1 -F -1 0 )(p) = F -1 1 (p ) -F -1 1 (p) -F -1 0 (p ) -F -1 0 (p) = (σ 1 -σ 0 ) φ -1 (p ) -φ -1 (p) . (9.7) Since φ -1 is non-decreasing, F -1 1 -F -1 0
is non-decreasing if and only if σ 0 ≤ σ 1 . Thus, by Proposition 9.2, σ 0 ≤ σ 1 is a sufficient condition to define a geodesic ray starting from µ 0 and passing through µ 1 . We note that if m 0 = m 1 , this condition is equivalent with saying that µ 0 is smaller than µ 1 in the convex order [START_REF] Müller | Stochastic Ordering of Multivariate Normal Distributions[END_REF], noted µ 0 cx µ 1 , and which means that for any convex function f ,

f dµ 0 ≤ f dµ 1 . (9.8)
In practice, we are often interested in unit-speed geodesic rays. Thus, we need to have the additional condition

W 2 2 (µ 0 , µ 1 ) = (m 0 -m 1 ) 2 + (σ 1 -σ 0 ) 2 = 1.
We can also recover the result using Proposition 9.1. Indeed, the Monge map between µ 0 and µ 1 is

∀x ∈ R, T (x) = σ 1 σ 0 (x -m 0 ) + m 1 = ∇u(x), (9.9) where u(x) = σ1 2σ0 x 2 +(m 1 -σ1 σ0 m 0 )x. Denote g(x) = u(x)-x 2 2 , then u is 1-convex if and only if g (x) ≥ 0, i.e. g (x) = σ 1 σ 0 -1 ≥ 0 ⇐⇒ σ 1 ≥ σ 0 .
(9.10) Empirical 1D Distributions. Let us take two finite distributions with the same number of particles n and uniform weights:

µ 0 = 1 n n i=1 δ xi ∈ P 2 (R) and µ 1 = 1 n n i=1 δ yi ∈ P 2 (R). We assume that x 1 < • • • < x n and y 1 < • • • < y n . Then, F -1 1 -F -1 0
is non-decreasing if and only if for all j > i, .11) This result also coincides with the condition to have equality between the weak Optimal Transport and the Wasserstein distance in the discrete one dimensional case (Shu, 2020, Theorem 2.22).

F -1 1 i n -F -1 1 j n = y i -y j ≤ x i -x j = F -1 0 i n -F -1 0 j n . ( 9 
Starting from a Dirac. Let µ 0 = δ x0 with x 0 ∈ R and µ 1 ∈ P 2 (R) an arbitrary distribution. Then, since F -1 0 (u) = x 0 for any u > 0 and is thus constant, necessarily,

F -1 1 -F -1 0
is non-decreasing and by Proposition 9.2, the geodesic between µ 0 and µ 1 is a geodesic ray. This was first observed by Kloeckner (2010, Proposition 3.2).

Gaussians. Let µ 0 = N (m 0 , Σ 0 ) and µ 1 = N (m 1 , Σ 1 ) with m 0 , m 1 ∈ R d and Σ 0 , Σ 1 symmetric positive definite matrices. The Monge map between µ 0 and µ 1 is (Peyré et al., 2019, Remark 2.31) (9.12) where

∀x ∈ R d , T (x) = A(x -m 0 ) + m 1 ,
A = Σ -1 2 0 Σ 1 2 0 Σ 1 Σ 1 2 0 1 2 Σ -1 2 0 . Let u : x → 1 2 Ax, x + m 1 -Am 0 , x = 1 2 A 1 2 x 2 2 + m 1 -Am 0 , x . Note that we have ∇u = T . Let us denote g : x → u(x) - x 2 2 2
. Then, u is 1-convex if and only if ∇ 2 g 0 (with the partial order, also called the Loewner order), i.e.

∇ 2 g(x) = A -I d 0 ⇐⇒ A I d ⇐⇒ Σ 1 2 0 Σ 1 Σ 1 2 0 1 2 Σ 0 .
(9.13) When Σ 0 and Σ 1 commute, the condition simplifies to Σ

1 2 1 Σ 1 2
0 . In the general case, by Furata inequality (Fujii, 2010, Theorem 1.3 in the particular case p = q = r = 2), we have that Σ

1 2 1 Σ 1 2 0 implies (Σ 1 2 0 Σ 1 Σ 1 2 0 ) 1 2
Σ 0 but it is not an equivalence. Furthermore, for completeness, we recall that the geodesic between the Gaussian distributions µ 0 and µ 1 is of the form t → N (m t , Σ t ) [START_REF] Altschuler | Averaging on the Bures-Wasserstein Manifold: Dimension-free Convergence of Gradient Descent[END_REF] where

   m t = (1 -t)m 0 + tm 1 Σ t = (1 -t)I d + tA Σ 0 (1 -t)I d + tA .
(9.14) More general case. In general, using Proposition 9.1, we can study whether or not a geodesic is a ray by studying the 1-convexity of the Brenier potential associated to the Monge map. However, we note that such a map between two distributions does not always exist. [START_REF] Paty | Regularity as Regularization: Smooth and Strongly Convex Brenier Potentials in Optimal Transport[END_REF] proposed to enforce this property by finding the best possible 1-convex map by solving f * ∈ argmin f 1-convex W 2 (∇f # µ, ν), called the nearest Brenier potential, which could be used to define nearest geodesic rays. For arbitrary measures, no characterization is yet available to the best of our knowledge.

Busemann Function

Background on Busemann Functions

On any geodesic metric space (X, d) which has geodesic rays, the Busemann function associated to a unit-speed geodesic ray γ can be defined as (Bridson and Haefliger, 2013, II.8.17)

∀x ∈ X, B γ (x) = lim t→∞ d(γ(t), x) -t .
(9.15)

This function has attracted interest on Riemannian manifolds as it provides a natural generalization of hyperplanes. Indeed, on Euclidean spaces, geodesic rays are of the form γ(t) = tθ for θ ∈ S d-1 , and thus we can show that

∀x ∈ R d , B γ (x) = -x, θ . (9.16)
Thus, it has recently received attentions on Hyperbolic spaces in order to perform Horospherical Principal Component Analysis [START_REF] Chami | HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projections[END_REF], but also to characterize directions and perform classifications with prototypes [START_REF] Ghadimi Atigh | Hyperbolic Busemann Learning with Ideal Prototypes[END_REF][START_REF] Durrant | HMSN: Hyperbolic Self-Supervised Learning by Clustering with Ideal Prototypes[END_REF] or to define decision boundaries for classification [START_REF] Fan | Horocycle Decision Boundaries for Large Margin Classification in Hyperbolic Space[END_REF]. It can also be used as a projection on a geodesic as we described in Chapter 3 and experimented in Chapter 4 and Chapter 5. Therefore, to deal with data represented as probability distributions, it is interesting to investigate the Busemann function on the Wasserstein space. As it is not a geodesically complete space, it is well defined only on geodesic rays. Fortunately, as shown in [START_REF] Zhu | Busemann Functions on the Wasserstein Space[END_REF], there is always a geodesic ray starting from some distribution µ 0 . Furthermore, as developed in the previous section, we know how to characterize them in some situations. Thus, in the next section, by leveraging closed-forms of the Wasserstein distance, we study closed-forms for the Busemann function.

Busemann Functions in Wasserstein Space

Let (µ t ) t≥0 be a unit-speed geodesic ray. Then, the Busemann function associated with (µ t ) t≥0 is naturally defined as

∀ν ∈ P 2 (R d ), B µ (ν) = lim t→∞ W 2 (µ t , ν) -t .
(9.17)

This was first studied by [START_REF] Zhu | Busemann Functions on the Wasserstein Space[END_REF] from a theoretical point of view, and in particular, they showed that the limit does exist. But no closed-form was proposed. Thus, we provide here some closed-forms in two particular cases: one dimensional probability distributions and Gaussian measures (and more generally elliptical distributions). Indeed, deriving a closed-form for the Busemann function heavily relies on closed-forms of the Wasserstein distance, and thus we restrict the analysis for now to these cases.

One dimensional case. On the real line, we have several appealing properties. In particular, we recall that in this case, the Wasserstein distance between µ, ν ∈ P 2 (R) can be computed in closed-form (Peyré et al., 2019, Remark 2.30) as (9.18) where F -1 µ and F -1 ν are the quantile functions of µ and ν.

W 2 2 (µ, ν) = 1 0 |F -1 µ (u) -F -1 ν (u)| 2 du,
Proposition 9.3 (Closed-from for the Busemann function on P 2 (R)). Let (µ t ) t≥0 be a unit-speed geodesic ray in P 2 (R), then

∀ν ∈ P 2 (R), B µ (ν) = - 1 0 F -1 µ1 (u) -F -1 µ0 (u) F -1 ν (u) -F -1 µ0 (u) du = -F -1 µ1 -F -1 µ0 , F -1 ν -F -1 µ0 L 2 ([0,1]) .
(9.19)

Proof. See Section 12.7.2.

We observe that it corresponds up to a sign to the L 2 ([0, 1]) inner product between F -1 µ1 -F -1 µ0 and F -1 ν -F -1 µ0 , which are the quantiles centered around F -1 µ0 . This comes from the Hilbert properties of the one dimensional Wasserstein space.

For one dimensional Gaussians µ 0 = N (m 0 , σ 2 0 ) and

µ 1 = N (m 1 , σ 2 1 ) such that σ 1 ≥ σ 0 and W 2 2 (µ 0 , µ 1 ) = 1, using that F -1 ν (u) = m + σφ -1 (u) for any ν = N (m, σ 2 ), 1 0 φ -1 (u) du = 0 and 1 0 φ -1 (u) 2 du = 1, we obtain for any ν = N (m, σ 2 ), B µ (ν) = -(m 1 -m 0 )(m -m 0 ) -(σ 1 -σ 0 )(σ -σ 0 ) = - m 1 -m 0 σ 1 -σ 0 , m -m 0 σ -σ 0 . (9.20)
Bures-Wasserstein case. When restricting the space of probability measures to Gaussians with positive definite covariance matrices and endowing it with the (Bures-)Wasserstein distance, we obtain a proper Riemannian manifold [START_REF] Bhatia | On the Bures-Wasserstein Distance between Positive Definite Matrices[END_REF]. Moreover, we know in closed-form the Wasserstein distance in this case (see Proposition 2.3) as well as the form of the geodesics. Thus, we can compute the closed-form of the Busemann function.

Proposition 9.4 (Closed-form for the Busemann function on BW (R d )). Let (µ t ) t≥0 be a unit-speed geodesic ray characterized by µ 0 = N (m 0 , Σ 0 ) and µ 1 = N (m 1 , Σ 1 ) ( i.e. such that (Σ

1 2 0 Σ 1 Σ 1 2 0 ) 1 2
Σ 0 by (9.13), and W 2 2 (µ 0 , µ 1 ) = 1). Then, for any ν = N (m, Σ),

B µ (ν) = -m 1 -m 0 , m -m 0 + Tr Σ 0 (A -I d ) -Tr (Σ 1 2 (Σ 0 -Σ 0 A -AΣ 0 + Σ 1 )Σ 1 2 ) 1 2 , (9.21) where A = Σ -1 2 0 (Σ 1 2 0 Σ 1 Σ 1 2 0 ) 1 2 Σ -1 2 0 .
Proof. See Section 12.7.2.

When all the covariance matrices commute, e.g. if they are all chosen as diagonal, (9.21) simplifies as

B µ (ν) = -m 1 -m 0 , m -m 0 -Tr (Σ 1 2 1 -Σ 1 2 0 )(Σ 1 2 -Σ 1 2 0 ) = -m 1 -m 0 , m -m 0 -Σ 1 2 1 -Σ 1 2 0 , Σ 1 2 -Σ 1 2 0 F . (9.22)
For commuting matrices, this is just the inner product in the product space R d × S d (R). Moreover, we recover (9.20) in one dimension.

We note that these results could be extended to elliptical distributions as we also have the closed-form for the Wasserstein distance in this case [START_REF] Gelbrich | On a Formula for the L2 Wasserstein Metric between Measures on Euclidean and Hilbert Spaces[END_REF][START_REF] Muzellec | Generalizing Point Embeddings using the Wasserstein Space of Elliptical Distributions[END_REF]. Finding closed-forms in a more general setting or for other distributions is for now an open direction of research as our results heavily rely on closed-forms of the Wasserstein distance and of the geodesics, which are often not available.

Applications to PCA

Principal Component Analysis (PCA) is a classical statistical method used to capture the main modes of variation of datasets in order e.g. to reduce their dimensionality. As the space of probability distributions is not an Euclidean space, extending PCA to such space is not straightforward, as it requires defining principal components and projections. In this section, we aim at using the Busemann function in order to perform PCA on Wasserstein space. First, we describe a framework which allows us to use the Busemann function on this space in order to use PCA on probability distributions. Then, we perform an empirical analysis on one dimensional distributions, first on datasets of 1D Gaussians distributions for which we provide a closed-form, and then on one dimensional histograms.

Busemann Wasserstein PCA

There are two popular formulations of PCA (Bishop, 2006, Section 12.1). The first aims at minimizing the reconstruction error while the second aims at maximizing the variance of the projected data onto the directions in order to choose the direction explaining most of the original data. In the following, we focus on the latter. Assuming the data x 1 , . . . , x n ∈ R d are centered, the Euclidean PCA problem to be solved is

∀i ≥ 1, θ i ∈ argmax θ∈S d-1 ∩span(θ1,...,θi-1) ⊥ 1 n n k=1 θ, x k 2 . (9.23)
More generally, without assuming that the data are centered and noting x the barycenter of the data, the problem can be written as

∀i ≥ 1, θ i ∈ argmax θ∈x+S d-1 ∩span(θ1,...,θi-1) ⊥ Var ( θ, x k ) k = Var B θ (x k ) k . (9.24)
We propose to extend this formulation to the Wasserstein space using geodesic rays for the directions and the right Busemann function as a way to get coordinates on geodesic rays. For the concept of orthogonality, we follow [START_REF] Seguy | Principal Geodesic Analysis for Probability Measures under the Optimal Transport Metric[END_REF] and use orthogonality of vector fields. Indeed, assuming that a Monge map T starting from µ 0 exists, we know that a geodesic in Wasserstein space is of the form

µ t = (1 -t)Id + tT # µ 0 = (Id + tv) # µ 0 where v = T -Id ∈ L 2 (µ 0 )
lies in the tangent space at µ 0 . Thus, fixing an origin distribution µ 0 , and noting ν 1 , . . . , ν n ∈ P 2 (R d ) the dataset, we aim at solving with respect to µ 1 , as a geodesic is fully characterized by two distributions on its path, the following problem: (9.25) where for each i, v i = T i -Id with T i the Monge map between µ 0 and µ (i)

∀i ≥ 1, µ (i) 1 ∈ argmax µ1 Var B µ (ν k ) k such that          W 2 2 (µ 0 , µ 1 ) = 1 t → µ t is a geodesic ray v ∈ span (v j ) 1≤j≤i-1 ⊥ ,
1 . The first two constraints impose t → µ t to be a unit-speed geodesic ray while the third constraint imposes the orthogonality of the geodesic rays. In the following, we will specify this problem in the case where all distributions are one dimensional Gaussian, and in the more general case where we deal with arbitrary one dimensional distributions.

To project an arbitrary distribution ν onto a principal direction t → µ t , we need to find the coordinate

t such that B µ (µ t ) = B µ (ν).
Denoting by γ * an optimal coupling between µ 0 and µ 1 , and as B µ (µ t ) = -t, the projection is given by

P µ (ν) = µ -B µ (ν) = (1 + B µ (ν))π 1 -B µ (ν)π 2 # γ * .
However, note that as the Wasserstein space is not geodesically complete, some distributions for which B µ (ν) > 0 may be projected out of the geodesic, and hence need to be dealt with carefully in practice. In the Gaussian one dimensional case, we will investigate this issue in more details (see Proposition 9.6).

Related works.

Extending PCA to other spaces has received a lot of attention over the years as there are several possible generalizations. [START_REF] Fletcher | Principal Geodesic Analysis for the Study of Nonlinear Statistics of Shape[END_REF] first proposed to generalize PCA on Riemannian manifolds using Principal Geodesic Analysis by projecting on subspaces using a geodesic projection. [START_REF] Huckemann | Principal Component Analysis for Riemannian Manifolds, with an Application to Triangular Shape Spaces[END_REF]; [START_REF] Huckemann | Intrinsic Shape Analysis: Geodesic PCA for Riemannian Manifolds modulo Isometric Lie Group Actions[END_REF] proposed a variant named Geodesic PCA by choosing principal geodesics orthogonally. [START_REF] Pennec | Barycentric Subspace Analysis on Manifolds[END_REF] instead proposed to project on barycentric subspaces. Then, some works focused on developing efficient PCA methods adapted to specific Riemannian manifolds such as the space of SPDs [START_REF] Horev | Geometry-Aware Principal Component Analysis for Symmetric Positive Definite Matrices[END_REF] or Hyperbolic spaces [START_REF] Chami | HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projections[END_REF]. In particular, [START_REF] Chami | HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projections[END_REF] proposed to project on geodesics submanifolds using the horospherical projection.

As the Wasserstein space possesses a weak Riemannian structure, PCA has been naturally extended to this space. We can split the different methods into two types, extrinsic and intrinsic ones. Intrinsic methods exploit the geodesic structure of the Wasserstein space and include for example the Geodesic PCA introduced by [START_REF] Bigot | Geodesic PCA in the Wasserstein space by Convex PCA[END_REF] on one dimensional distributions or the method of [START_REF] Seguy | Principal Geodesic Analysis for Probability Measures under the Optimal Transport Metric[END_REF] which extends to P 2 (R d ). Extrinsic methods rather exploit the linear structure of the tangent space on which the distribution are projected with the log map [START_REF] Cazelles | Geodesic PCA versus Log-PCA of Histograms in the Wasserstein Space[END_REF][START_REF] Pegoraro | Projected Statistical Methods for Distributional Data on the Real Line with the Wasserstein Metric[END_REF]. More recently, [START_REF] Pont | Principal Geodesic Analysis of Merge Trees (and Persistence Diagrams)[END_REF] adapted the framework to persistence diagrams endowed with the Wasserstein distance while [START_REF] Beraha | Wasserstein Principal Component Analysis for Circular Measures[END_REF] studied it for circular measures. We can also cite [START_REF] Masarotto | Transportation-based Functional ANOVA and PCA for Covariance Operators[END_REF] in which the focus is on the Bures-Wasserstein space, and [START_REF] Niculae | Two Derivations of Principal Component Analysis on Datasets of Distributions[END_REF] in which a method was proposed for distributions characterized by their first two moments.

One Dimensional Gaussians

Let m 0 , σ 0 ∈ R and µ 0 = N (m 0 , σ 2 0 ) be the origin distribution from which the geodesic rays will start. Typically, µ 0 will be chosen as the barycenter of the data. And let ν 1 = N (m 1 , σ 2 1 ), . . . , ν n = N (m n , σ 2 n ) the dataset of Gaussian distributions. We note that the barycenter of (ν i ) n k=1 is simply N ( m, σ2 ) where m = 1 = N (m (1) , σ 2(1) ) be a suitable distribution for which t → µ

(1) t is a unit-speed geodesic ray starting from µ 0 and passing through µ

(1) 1 at t = 1, i.e. which satisfies σ (1) ≥ σ 0 and W 2 2 (µ 0 , µ 1 ) = (m (1) -m 0 ) 2 +(σ (1) -σ 0 ) 2 = 1. We recall that the Busemann function evaluated at ν k for any k ∈ {1, . . . , n} can be obtained as

B µ (ν k ) = -(m (1) -m 0 )(m k -m 0 ) -(σ (1) -σ 0 )(σ k -σ 0 ) = - m (1) -m 0 σ (1) -σ 0 , m k -m 0 σ k -σ 0 . (9.26)
Moreover, if we denote µ (2) a second geodesic ray starting from µ 0 and passing through µ

(2) 1 = N (m (2) , σ 2 (2)
), and T 1 the OT map between µ 0 and µ [START_REF] Vayer | x ) → x x is a continuous map, therefore, L is less semi-continuous. Hence, by applying Lemma 2.2.1 of[END_REF] 1 as well as T 2 the OT map between µ 0 and µ

(2)
1 , then the orthogonality condition can be written as

T 1 -Id, T 2 -Id L 2 (µ0) = F -1 (1) -F -1 0 , F -1 (2) -F -1 0 L 2 ([0,1]) = (σ (1) -σ 0 )(σ (2) -σ 0 ) + (m (1) -m 0 )(m (2) -m 0 )
= 0, (9.27) using a change of variable and noting F -1

(1) and F -1

(2) the quantile functions of µ

(1)

1 and µ

(2)

1 respectively. Thus, to sum up, we need to solve the following optimization problem

∀i ≥ 1, (m (i) , σ (i) ) ∈ argmax m,σ Var (m -m 0 )(m k -m 0 ) + (σ -σ 0 )(σ k -σ 0 ) n k=1 subject to          (m -m 0 ) 2 + (σ -σ 0 ) 2 = 1 σ ≥ σ 0 ∀j ≤ i -1, (σ -σ 0 )(σ (j) -σ 0 ) + (m -m 0 )(m (j) -m 0 ) = 0.
(9.28)

In the next Proposition, we provide a closed-form formula for the first direction. As one dimensional Gaussians can be embedded into a 2D space R × R * + by representing each Gaussian N (m, σ 2 ) as (m, σ) [START_REF] Cho | Hyperbolic VAE via Latent Gaussian Distributions[END_REF], the set of constraint lies on the semi-circle {(m, σ) ∈ R × R + , σ ≥ σ 0 and (m -m 0 ) 2 + (σ -σ 0 ) 2 = 1}. Thus, the second direction is obtained as the only possible orthogonal projection. Proposition 9.5. Let µ 0 = N (m 0 , σ 2 0 ) and for all k ∈ {1, . . . , n},

ν k = N (m k , σ 2 k ). Denote for all k ∈ {1, . . . , n}, x k = m k -m 0 σ k -σ 0 and M = 1 n n k=1 x k x T k -1 n n k=1 x k 1 n n k=1 x k T .
Then, the first principal component obtained as the solution of (9.28) is given by µ

(1)

1 = N (m (1) , σ 2 (1) ) where    m (1) = m 0 + cos θ 2 σ (1) = σ 0 + sin θ 2 ,
(9.29)

with θ = arccos M11-M22 √ (M11-M22) 2 +4M 2 12
. By using the orthogonality condition between m (1) -m 0 σ (1) -σ 0 and

m (2) -m 0 σ (2) -σ 0 , the second component is obtained as µ (2) 1 = N (m (2) , σ 2 (2) ) where    m (2) = m 0 + cos θ-sign(θ-π)π 2 σ (2) = σ 0 + sin θ-sign(θ-π)π 2 .
(9.30)

Proof. See Section 12.7.3.

In the last Proposition, we reported the solutions in closed-form. We note that they could also be obtained as the eigenvectors of the matrix M which is an empirical covariance matrix, as it is, similarly as the Euclidean PCA, an eigenvalue problem with the extra care of the constraint σ -σ 0 ≥ 0. Before diving into some numerical applications, let us discuss some particular cases and analyze when the projections on the geodesic ray can be done. First, in the simple case where all distributions of the dataset have the same mean and only vary by their variance, i.e. for all k ≥ 1, m k = m 1 , then we notice that M 12 = M 11 = 0. Thus in this case, we obtain θ = π and m (1) = m 0 , σ (1) = σ 0 + 1. Only the variance is captured by the first component. In the opposite case where all the distributions have the same variance, i.e. for all k ≥ 1, σ k = σ 1 , then we have M 12 = M 22 = 0 and thus θ = 0, m (1) = m 0 + 1, σ (1) = σ 0 . Only the mean is captured by the first component. This is the intuitive behavior that we would expect. For the projections, we show in the next Proposition that we can extend 1D Gaussian geodesic rays for t < 0. Proposition 9.6. Let µ 0 = N (m 0 , σ 2 0 ) and µ 1 = N (m 1 , σ 2 1 ) two Gaussian defining a unit-speed geodesic ray starting from µ 0 and passing through µ 1 at t = 1, i.e. satisfying σ 1 ≥ σ 0 and (m 1 -m 0 ) 2 +(σ 1 -σ 0 ) 2 = 1. Then, the underlying geodesic ray t → µ t is well defined on [-σ0 σ1-σ0 , +∞[.

Proof. See Section 12.7.3.

This Proposition gives us a way to be sure that a Gaussian can be projected on the geodesic ray. For

ν = N (m, σ 2 ), if B µ (ν) > σ0 σ1-σ0
, then ν will possibly not be projected on the geodesic. We note the two limiting cases: σ 0 = σ 1 for which the geodesic ray is actually a line and can be extended to R which we recover here as -σ0 σ1-σ0 -----→ σ1→σ + 0 -∞, and σ 1 = 1 + σ 0 for which the ray can be extended to [-σ 0 , +∞[ and corresponds to a dilation. However, in this case, since σ 1 = 1 + σ 0 and m 1 = m 0 , we note that any distribution can be projected on the geodesic since, for any ν = N (m, σ 2 ), (9.31) and thus the projection coordinate is -B µ (ν) = σ -σ 0 < -σ 0 ⇐⇒ σ < 0, which is not possible.

B µ (ν) = -(m -m 0 )(m 1 -m 0 ) -(σ -σ 0 )(σ 1 -σ 0 ) = -(σ -σ 0 ),

Numerical Examples.

As an illustration to assess the interpretability of the principal components found, we use the first simulation setting of (Pegoraro and Beraha, 2022, Section 7.1). In this setting, we We plot in dashed lines the pdf of 20 evenly spaced measures N (m t , σ 2 t ) of the geodesic rays. The colors (from blue to red with black in the middle) encode the progression along the geodesic.

fix n = 100 and generate the data randomly for all k ≥ 1 as ([0.5, 2]).

   m k ∼ 1 2 N (0.3, 0.2 2 ) + 1 2 N (-0.3, 0.2 2 ) σ k ∼ Unif
(9.32)

We plot the densities of the data simulated on Figure 9.1. As the major variability is on the mean of the data, we expect the first component to capture the change in the shift and the second component to capture the change in variance. We start from µ 0 chosen as the barycenter and plot on Figure 9.2 the principal components for t ∈ [-2, 2] for the first component and for t ∈ [-0.5, 2] for the second one for the sake of visibility as the variance quickly vanishes towards 0 when t < -0.5. We also plot the projections on the two components on Figure 9.1. We did not observe any misspecified projection for the data which is justified by Proposition 9.6. Overall, the results are on par with what we expect and with previous PCA methods such as [START_REF] Pegoraro | Projected Statistical Methods for Distributional Data on the Real Line with the Wasserstein Metric[END_REF].

With data through samples. In the case where the data are in form of samples or histograms, and in which we want to find Gaussian geodesic rays as principal components, we cannot solve the problem in closed-form. Nonetheless, we can solve it numerically by parameterizing σ as σ = σ 0 + e s in order to ensure σ ≥ σ 0 and performing a projected gradient descent over (m, s) in order to find the first component. Then, the second component can be found using the orthogonality condition. In this case, noting F -1 k the quantile functions of the data distributions ν k , the closed-form for the Busemann function can be computed as (9.33) This formulation can be useful when we are only interested in the two first moments, but where each distribution is not necessarily Gaussian, and thus it would not be necessarily justified to approximate it as a Gaussian.

B µ (ν k ) = -(m 1 -m 0 ) 1 0 F -1 k (u) du -m 0 -(σ 1 -σ 0 ) 1 0 φ -1 (u)F -1 k (u) du -σ 0 = -(m 1 -m 0 ) (m(ν k ) -m 0 ) -(σ 1 -σ 0 ) φ -1 , F -1 k L 2 ([0,1]) -σ 0 .

One Dimensional Histograms

In this section, we propose to deal with the general one dimensional case, without assuming any form for the geodesic rays or for the data. Thus, it would allow to handle any one dimensional histogram of real data.

In this situation, denoting by

F -1 k the quantile of ν k ∈ P 2 (R), we want to solve ∀i ≥ 1, F -1 (i) ∈ argmax F -1 µ 1 Var B µ (ν k ) n k=1 subject to          W 2 2 (µ 0 , µ 1 ) = F -1 µ1 -F -1 µ0 2 L 2 ([0,1]) = 1 F -1 µ1 -F -1 µ0 non-decreasing ∀j < i, F -1 µ1 -F -1 µ0 , F -1 (j) -F -1 µ0 L 2 ([0,1]) = 0.
(9.34) To learn geodesic rays, a first solution could be to learn the quantiles by approximating them using e.g. splines such as in [START_REF] Pegoraro | Projected Statistical Methods for Distributional Data on the Real Line with the Wasserstein Metric[END_REF] at the expanse of solving a concave quadratic problem on the sphere, or monotone parametric transformations such as sum-of-squares polynomial flows [START_REF] Jaini | Sum-of-Squares Polynomial Flow[END_REF], unconstrained monotonic neural networks [START_REF] Wehenkel | Unconstrained Monotonic Neural Networks[END_REF] or monotone flows [START_REF] Ahn | Invertible Monotone Operators for Normalizing Flows[END_REF].

Instead, we propose to find µ 1 by learning directly the Monge map and leveraging Proposition 9.1 by modeling the map as the gradient of a 1-convex function and hence implicitely learning a geodesic ray. Modeling such functions with neural networks has recently received much attention and has been applied e.g. to define Normalizing Flows (Huang et al., 2021a) or to approximate the Monge map [START_REF] Makkuva | Optimal Transport mapping via Input Convex Neural Networks[END_REF][START_REF] Mokrov | Large-Scale Wasserstein Gradient Flows[END_REF][START_REF] Alvarez-Melis | Optimizing Functionals on the Space of Probabilities with Input Convex Neural Networks[END_REF]Bunne et al., 2022b). Early works computed the gradient of Input Convex Neural Networks [START_REF] Amos | Input Convex Neural Networks[END_REF], but it has been observed that they have poor expressiveness (see e.g. (Korotin et al., 2021a;b) or Chapter 7). Hence, it has been recently advocated to rather model the gradient of a convex function directly with a neural network [START_REF] Saremi | On Approximating ∇f with Neural Networks[END_REF][START_REF] Richter-Powell | Input Convex Gradient Networks[END_REF][START_REF] Chaudhari | Learning Gradients of Convex Functions with Monotone Gradient Networks[END_REF]. Thus, we model directly the Monge map between µ 0 and µ 1 using a Cascaded Monotone Gradient Network (CMGN) introduced by [START_REF] Chaudhari | Learning Gradients of Convex Functions with Monotone Gradient Networks[END_REF] and which is a neural network with positive semi-definite Jacobian and hence the gradient of a convex function. To ensure that it is the gradient of a 1-convex function, we add the identity to the output. In that case, the optimization problem we want to solve is ∀i,

T i ∈ argmax T =∇u, u 1-convex Var B µ (ν k ) n k=1 subject to    W 2 2 (µ 0 , T # µ 0 ) = x -T (x) 2 dµ 0 (x) = 1 ∀j < i, (T (x) -x)(T j (x) -x) dµ 0 (x) = 0. (9.
35) With such modelization, the 1-convexity is enforced into the architecture of the networks, and hence the optimization is done over geodesic rays. Nonetheless, the unit-speed constraint and orthogonal constraints need to be relaxed through the Lagrangian to be incorporated into the loss, and might be tricky to optimize. In practice, noting T θ a 1-convex CMGN, and α and (λ j ) j Lagrange multipliers, we minimize the following loss for the i-th component:

L(θ) = -Var B µ (ν k ) n k=1 + α 1 - x -T θ (x) 2 dµ 0 (x) 2 + i-1 j=1 λ j (T θ (x) -x)(T j (x) -x) dµ 0 (x) 2 .
(9.36)

Population Pyramid. We follow [START_REF] Cazelles | Geodesic PCA versus Log-PCA of Histograms in the Wasserstein Space[END_REF] and consider as real dataset the population pyramids of n = 217 countries in the year 2000. Each histogram of the dataset represents the normalized frequency by age of people living in the country. Each bin represents one year and all peoples aged of more than 85 years belong to the last interval.

As origin measure, we choose the barycenter of the dataset which can be found as Then, we pass in the neural network the support of the barycenter histogram to obtain µ 1 = (T θ ) # ν. On Figure 9.3, we plotted the histograms of the data of each country along their projection on the first and second components obtained. On Figure 9.4, we plotted the two first components interpolated for t ∈ [-5, 5]. We observe that the projections on the first component capture the difference between less developed countries, whose population is mostly young and more developed countries. We report on Figure 9.5 the results for some chosen countries which show clearly the differences between the projections obtained for developed and less developed countries. However, the second component does not seem to capture any additional useful information. We observe that the values of the projections are fairly low (around -19), and the projections do not seem to necessary lie on the geodesics ray, as we observe that the Busemann function evaluated on the projections can be different that the Busemann function of the original histograms. We also note that the optimization problem is relatively unstable. Thus, further work might be required to better optimize these problems or to better understand the behavior of the components learned.

F -1 ν = 1 n n k=1 F -1 ν k .

Conclusion and Discussion

In this chapter, we studied the Busemann function on the space of probability measures endowed by the Wasserstein distance by first identifying geodesics for which it is well defined and then by computing its closed-form in the one dimensional case and in the Gaussian case. As an application, we used this function in order to perform a principal component analysis and applied it on synthetic and real one dimensional datasets.

Future works will try to leverage the closed-form on the Bures-Wasserstein space in order to perform PCA. One might also be interested in finding closed-forms for the Busemann function for more general probability distributions such as mixtures using the distance introduced in [START_REF] Delon | A Wasserstein-type Distance in the Space of Gaussian Mixture Models[END_REF][START_REF] Dusson | A Wasserstein-type Metric for Generic Mixture Models, including Location-Scatter and Group Invariant Measures[END_REF] or even to positive measures with for instance the Wasserstein On Positive measures (WOP) distance introduced in [START_REF] Leblanc | Extending the Wasserstein Metric to Positive Measures[END_REF] or the unbalanced OT (Séjourné et al., 2022a).

However, deriving closed-forms for the Busemann function on the Wasserstein space is a relatively difficult problem and we have not yet found applications for which it would bring promising results. For PCA, several obstacles arise, hindering the use of the Busemann function: firstly, the projections might not always be projected on geodesic rays, which can be problematic in practice as it might skew the results. Furthermore, optimizing the objectives is a difficult task already in one dimension, and deriving an algorithm for Gaussian is not straightforward. Finding a task that could be solved with the Busemann function on the Wasserstein space is thus an important avenue of research. In the context of Optimal Transport (OT) methods, the subspace detour approach was recently proposed by [START_REF] Muzellec | Subspace Detours: Building Transport Plans that are Optimal on Subspace Projections[END_REF]. It consists of first finding an optimal plan between the measures projected on a wisely chosen subspace and then completing it in a nearly optimal transport plan on the whole space. The contribution of this chapter, based on [START_REF] Bonet | Subspace Detours Meet Gromov-Wasserstein[END_REF], is to extend this category of methods to the Gromov-Wasserstein problem, which is a particular type of OT distance involving the specific geometry of each distribution. After deriving the associated formalism and properties, we give an experimental illustration on a shape matching problem. We also discuss a specific cost for which we can show connections with the Knothe-Rosenblatt rearrangement.

Introduction

Classical Optimal Transport (OT) has received lots of attention recently, in particular in Machine Learning for tasks such as generative networks (Arjovsky et al., 2017) or domain adaptation [START_REF] Courty | Optimal Transport for Domain Adaptation[END_REF] to name a few. It generally relies on the Wasserstein distance, which builds an optimal coupling between distributions given a notion of distance between their samples. Yet, this metric cannot be used directly whenever the distributions lie in different metric spaces and lacks from potentially important properties, such as translation or rotation invariance of the supports of the distributions, which can be useful when comparing shapes or meshes [START_REF] Mémoli | Gromov-Wasserstein Distances and the Metric Approach to Object Matching[END_REF]Chowdhury et al., 2021). In order to alleviate those problems, custom solutions have been proposed, such as [START_REF] Alvarez-Melis | Towards Optimal Transport with Global Invariances[END_REF], in which invariances are enforced by optimizing over some class of transformations, or [START_REF] Cai | Distances between Probability Distributions of Different Dimensions[END_REF], in which distributions lying in different spaces are compared by optimizing over the Stiefel manifold to project or embed one of the measures.

Apart from these works, another meaningful OT distance to tackle these problems is the Gromov-Wasserstein (GW) distance, originally proposed in [START_REF] Mémoli | On the use of Gromov-Hausdorff Distances for Shape Comparison[END_REF]2011;[START_REF] Sturm | The Space of Spaces: Curvature Bounds and Gradient Flows on the Space of Metric Measure Spaces[END_REF]. It is a distance between metric spaces and has several appealing properties such as geodesics or invariances [START_REF] Sturm | The Space of Spaces: Curvature Bounds and Gradient Flows on the Space of Metric Measure Spaces[END_REF]). Yet, the price to be paid lies in its computational complexity, which requires solving a nonconvex quadratic optimization problem with linear constraints. A recent line of work tends to compute approximations or relaxations of the original problem in order to spread its use in more data-intensive Machine Learning applications. For example, [START_REF] Peyré | Gromov-Wasserstein Averaging of Kernel and Distance Matrices[END_REF] rely on entropic regularization and Sinkhorn iterations [START_REF] Cuturi | Sinkhorn Distances: Lightspeed Computation of Optimal Transport[END_REF], while recent methods impose coupling with low-rank constraints (Scetbon et al., 2022) or rely on a sliced approach (Vayer et al., 2019b) or on mini-batch estimators (Fatras et al., 2021b) to approximate the Gromov-Wasserstein distance. In (Chowdhury et al., 2021), the authors propose to partition the space and to solve the Optimal Transport problem between a subset of points before finding a coupling between all the points.

In this work, we study the subspace detour approach for Gromov-Wasserstein. This class of method was first proposed for the Wasserstein setting by [START_REF] Muzellec | Subspace Detours: Building Transport Plans that are Optimal on Subspace Projections[END_REF] and consists of (1) projecting the measures onto a wisely chosen subspace and finding an optimal coupling between them (2) and then constructing a nearly optimal plan of the measures on the whole space using disintegration (see Section 10.2.2). Our main contribution is to generalize the subspace detour approach on different subspaces and to apply it for the GW distance. We derive some useful properties as well as closed-form solutions of this transport plan between Gaussians distributions. From a practical side, we provide a novel closed-form expression of the one-dimensional GW problem that allows us to efficiently compute the subspace detours transport plan when the subspaces are one-dimensional. Illustrations of the method are given on a shape matching problem where we show good results with a cheaper computational cost compared to other GW-based methods. Interestingly enough, we also propose a separable quadratic cost for the GW problem that can be related with a triangular coupling [START_REF] Bogachev | Triangular Transformations of Measures[END_REF], hence bridging the gap with Knothe-Rosenblatt (KR) rearrangements [START_REF] Rosenblatt | Remarks on a Multivariate Transformation[END_REF][START_REF] Knothe | Contributions to the Theory of Convex Bodies[END_REF].

Background

In this section, we introduce all the necessary material to describe the subspace detours approach for classical Optimal Transport and relate it to the Knothe-Rosenblatt rearrangement. We show how to find couplings via the gluing lemma and measure disintegration. Then, we introduce the Gromov-Wasserstein problem for which we will derive the subspace detour in the next sections.

Classical Optimal Transport

We start by recalling some notions of classical transport problems introduced in Chapter 2. Let µ, ν ∈ P(R d ) be two probability measures. The set of couplings between µ and ν is defined as:

Π(µ, ν) = {γ ∈ P(R d × R d )| π 1 # γ = µ, π 2 # γ = ν} (10.1)
where π 1 and π 2 are the projections on the first and second coordinate (i.e., π 1 (x, y) = x), respectively.

Optimal coupling. There exists several types of coupling between probability measures for which a non-exhaustive list can be found in (Villani, 2009, Chapter 1). Among them, the so called optimal coupling is the minimizer of the Kantorovich problem (2.4) which we recall here:

inf γ∈Π(µ,ν) c(x, y) dγ(x, y) (10.2)
with c being some cost function.

In one dimension, with µ atomless, the solution to (2.4) when c(x, y) = |x -y| 2 is a deterministic coupling of the form (Id, T ) # µ (Santambrogio, 2015, Theorem 2.5) with:

T = F -1 ν • F µ (10.3)
where F µ is the cumulative distribution function of µ, and F -1 ν is the quantile function of ν. This map is also known as the increasing rearrangement map.

Knothe-Rosenblatt rearrangement. Another interesting coupling is the Knothe-Rosenblatt (KR) rearrangement, which takes advantage of the increasing rearrangement in one dimension by iterating over the dimension and using the disintegration of the measures. Concatenating all the increasing rearrangements between the conditional probabilities, the KR rearrangement produces a nondecreasing triangular map (i.e., T : R d → R d , for all x ∈ R d , T (x) = T 1 (x 1 ), . . . , T j (x 1 , . . . , x j ), . . . , T d (x) , and for all j, T j is nondecreasing with respect to x j ), and a deterministic coupling (i.e., T # µ = ν) [START_REF] Villani | Optimal Transport: Old and New[END_REF][START_REF] Santambrogio | Optimal Transport for Applied Mathematicians[END_REF][START_REF] Jaini | Sum-of-Squares Polynomial Flow[END_REF]. [START_REF] Carlier | From Knothe's Transport to Brenier's Map and a Continuation Method for Optimal Transport[END_REF] made a connection between this coupling and Optimal Transport by showing that it can be obtained as the limit of OT plans for a degenerated cost : (10.4) where for all i ∈ {1, . . . , d}, t > 0, λ i (t) > 0, and for all i ≥ 2, λi(t) λi-1(t) ---→ t→0 0. This cost can be recast as in [START_REF] Bonnotte | Unidimensional and Evolution Methods for Optimal Transportation[END_REF] as c t (x, y) = (x -y) T A t (x -y), where A t = diag λ 1 (t), . . . , λ d (t) . This formalizes into the following Theorem:

c t (x, y) = d i=1 λ i (t)(x i -y i ) 2 ,
Theorem 10.1. [START_REF] Carlier | From Knothe's Transport to Brenier's Map and a Continuation Method for Optimal Transport[END_REF][START_REF] Santambrogio | Optimal Transport for Applied Mathematicians[END_REF]. Let µ and ν be two absolutely continuous measures on R d , with compact supports. Let γ t be an Optimal Transport plan for the cost c t , let T K be the Knothe-Rosenblatt map between µ and ν, and γ K = (Id, T K ) # µ the associated transport plan. Then, we have γ t D ---→ t→0 γ K . Moreover, if γ t are induced by transport maps T t , then T t converges in L 2 (µ) when t tends to zero to the Knothe-Rosenblatt rearrangement T K . [START_REF] Muzellec | Subspace Detours: Building Transport Plans that are Optimal on Subspace Projections[END_REF] proposed another OT problem by optimizing over the couplings which share a measure on a subspace. More precisely, they defined subspace-optimal plans for which the shared measure is the OT plan between projected measures. Definition 10.1 (Subspace-Optimal Plans, Definition 1 in [START_REF] Muzellec | Subspace Detours: Building Transport Plans that are Optimal on Subspace Projections[END_REF]

Subspace Detours and Disintegration

). Let µ, ν ∈ P 2 (R d ) and let E ⊂ R d be a k-dimensional subspace. Let γ *
E be an OT plan for the Wasserstein distance between µ E = π E # µ and ν E = π E # ν (with π E as the orthogonal projection on E). Then, the set of E-optimal plans between µ and ν is defined as

Π E (µ, ν) = {γ ∈ Π(µ, ν)| (π E , π E ) # γ = γ * E }.
In other words, the subspace OT plans are the transport plans of µ, ν that agree on the subspace E with the optimal transport plan γ * E on this subspace. To construct such coupling γ ∈ Π(µ, ν), one can rely on the Gluing lemma [START_REF] Villani | Optimal Transport: Old and New[END_REF] or use the disintegration of the measure (see Definition 2.2).

Coupling on the whole space. Let us note µ E ⊥ |E and ν E ⊥ |E as the disintegrated measures on the orthogonal spaces (i.e., such that µ

= µ E ⊗µ E ⊥ |E and ν = ν E ⊗ν E ⊥ |E or if we have densities, p(x E , x E ⊥ ) = p E (x E )p E ⊥ |E (x E ⊥ |x E )).
Then, to obtain a transport plan between the two original measures on the whole space, we can look for another coupling between disintegrated measures µ E ⊥ |E and ν E ⊥ |E . In particular, two such couplings are proposed in [START_REF] Muzellec | Subspace Detours: Building Transport Plans that are Optimal on Subspace Projections[END_REF], the Monge-Independent (MI) plan:

π MI = γ * E ⊗ (µ E ⊥ |E ⊗ ν E ⊥ |E ) (10.5)
where we take the independent coupling between µ E ⊥ |E (x E , •) and ν E ⊥ |E (y E , •) for γ * E almost every (x E , y E ), and the Monge-Knothe (MK) plan: [START_REF] Muzellec | Subspace Detours: Building Transport Plans that are Optimal on Subspace Projections[END_REF] observed that MI is more adapted to noisy environments since it only computes the OT plan of the subspace while MK is more suited for applications where we want to prioritize some subspace but where all the directions still contain relevant information.

π MK = γ * E ⊗ γ * E ⊥ |E (10.6) where γ * E ⊥ |E (x E , y E ), • is an optimal plan between µ E ⊥ |E (x E , •) and ν E ⊥ |E (y E , •) for γ * E almost every (x E , y E ).
This subspace detour approach can be of much interest following the popular assumption that two distributions on R d differ only in a low-dimensional subspace as in the Spiked transport model (Niles- [START_REF] Niles-Weed | Estimation of Wasserstein Distances in the Spiked Transport Model[END_REF]. However, it is still required to find the adequate subspace. [START_REF] Muzellec | Subspace Detours: Building Transport Plans that are Optimal on Subspace Projections[END_REF] propose to either rely on a priori knowledge to select the subspace (by using, e.g., a reference dataset and a principal component analysis) or to optimize over the Stiefel manifold.

Gromov-Wasserstein

Formally, the Gromov-Wasserstein distance allows us to compare metric measure spaces (mm-space), triplets (X, d X , µ X ) and (Y, d Y , µ Y ), where (X, d X ) and (Y, d Y ) are complete separable metric spaces and µ X and µ Y are Borel probability measures on X and Y [START_REF] Sturm | The Space of Spaces: Curvature Bounds and Gradient Flows on the Space of Metric Measure Spaces[END_REF], respectively, by computing:

GW (X, Y ) = inf γ∈Π(µ X ,µ Y ) L d X (x, x ), d Y (y, y ) dγ(x, y)dγ(x , y ) (10.7)
where L is some loss on R. It has actually been extended to other spaces by replacing the distances by cost functions c X and c Y , as, e.g., in [START_REF] Chowdhury | The Gromov-Wasserstein Distance between Networks and stable Network Invariants[END_REF]. Furthermore, it has many appealing properties such as having invariances (which depend on the costs). Vayer (2020) notably studied this problem in the setting where X and Y are Euclidean spaces, with L(x, y) = (x -y) 2 and c(x, x ) = x, x or c(x, x ) = x -x 2 2 . In particular, let µ ∈ P(R p ) and ν ∈ P(R q ), and define the inner-GW problem as:

InnerGW(µ, ν) = inf γ∈Π(µ,ν)
x, x p -y, y q 2 dγ(x, y)dγ(x , y ). (10.8)

For this problem, a closed form in one dimension can be found when one of the distributions admits a density w.r.t. the Lebesgue measure:

Theorem 10.2 (Theorem 4.2.4 in (Vayer, 2020)). Let µ, ν ∈ P(R), with µ being absolutely continuous with respect to the Lebesgue measure. Let

F µ (x) := F µ (x) = µ(] -∞, x]) be the cumulative distri- bution function and F µ (x) = µ(] -x, +∞[) the anti-cumulative distribution function. Let T asc (x) = F -1 ν F µ (x) and T desc (x) = F -1 ν F µ (-x) .
Then, an optimal solution of (10.8) is achieved either by γ = (Id, T asc ) # µ or by γ = (Id, T desc ) # µ.

Subspace Detours for GW

In this section, we propose to extend subspace detours from [START_REF] Muzellec | Subspace Detours: Building Transport Plans that are Optimal on Subspace Projections[END_REF] with Gromov-Wasserstein costs. We show that we can even take subspaces of different dimensions and still obtain a coupling on the whole space using the Independent or the Monge-Knothe coupling. Then, we derive some properties analogously to [START_REF] Muzellec | Subspace Detours: Building Transport Plans that are Optimal on Subspace Projections[END_REF], as well as some closed-form solutions between Gaussians. We also provide a new closed-form expression of the inner-GW problem between one-dimensional discrete distributions and provide an illustration on a shape-matching problem.

Motivations

First, we adapt the definition of subspace optimal plans for different subspaces. Indeed, since the GW distance is adapted to distributions that have their own geometry, we argue that if we project on the same subspace, then it is likely that the resulting coupling would not be coherent with that of GW. To illustrate this point, we use as a source distribution µ one moon of the two moons dataset and obtain a target ν by rotating µ by an angle of π 2 (see Figure 10.1). As the GW with c(x, x ) = x -x 2 2 is invariant with respect to isometries, the optimal coupling is diagonal, as recovered on the left side of the figure. ; Data projected on the first axis; OT plan obtained between the projected measures; Data projected on their first PCA component; OT plan obtained between the the projected measures.

However, when choosing one subspace to project both the source and target distributions, we completely lose the optimal coupling between them. Nonetheless, by choosing one subspace for each measure more wisely (using here the first component of the principal component analysis (PCA) decomposition), we recover the diagonal coupling. This simple illustration underlines that the choice of both subspaces is important. A way of choosing the subspaces could be to project on the subspace containing the more information for each dataset using, e.g., PCA independently on each distribution. [START_REF] Muzellec | Subspace Detours: Building Transport Plans that are Optimal on Subspace Projections[END_REF] proposed to optimize the optimal transport cost with respect to an orthonormal matrix with a projected gradient descent, which could be extended to an optimization over two orthonormal matrices in our context.

By allowing for different subspaces, we obtain the following definition of subspace optimal plans: Definition 10.2. Let µ ∈ P 2 (R p ), ν ∈ P 2 (R q ), E be a k-dimensional subspace of R p and F a kdimensional subspace of R q . Let γ * E×F be an optimal transport plan for GW between µ E = π E # µ and ν F = π F # ν (with π E (resp. π F ) the orthogonal projection on E (resp. F )). Then, the set of (E, F )-optimal plans between µ and ν is defined as

Π E,F (µ, ν) = {γ ∈ Π(µ, ν)| (π E , π F ) # γ = γ * E×F }.
Analogously to Muzellec and Cuturi (2019) (Section 10.2.2), we can obtain from γ * E×F a coupling on the whole space by either defining the Monge-Independent plan

π MI = γ * E×F ⊗ (µ E ⊥ |E ⊗ ν F ⊥ |F ) or the Monge-Knothe plan π MK = γ * E×F ⊗γ * E ⊥ ×F ⊥ |E×F
where OT plans are taken with some OT cost, e.g. GW .

Properties

Let E ⊂ R p and F ⊂ R q and denote:

GW E,F (µ, ν) = inf γ∈Π E,F (µ,ν)
L(x, x , y, y ) dγ(x, y)dγ(x , y ) (10.9)

the Gromov-Wasserstein problem restricted to subspace optimal plans (Definition 10.2). In the following, we show that Monge-Knothe couplings are optimal plans of this problem, which is a direct transposition of Proposition 1 in [START_REF] Muzellec | Subspace Detours: Building Transport Plans that are Optimal on Subspace Projections[END_REF].

Proposition 10.1. Let µ ∈ P(R p ) and ν ∈ P(R q ), E ⊂ R p , F ⊂ R q , π MK = γ * E×F ⊗ γ * E ⊥ ×F ⊥ |E×F
, where γ * E×F is an optimal coupling between µ E and ν F , and for γ * E×F , almost every

(x E , y F ), γ * E ⊥ ×F ⊥ |E×F (x E , y F ), • is an optimal coupling between µ E ⊥ |E (x E , •) and ν F ⊥ |F (y F , •).
Then we have:

π MK ∈ argmin γ∈Π E,F (µ,ν)
L(x, x , y, y ) dγ(x, y)dγ(x , y ). (10.10)

Proof. See Section 12.8.1.

The key properties of GW that we would like to keep are its invariances. We show in two particular cases that we conserve them on the orthogonal spaces (since the measure on E × F is fixed).

Proposition 10.2. Let µ ∈ P(R p ), ν ∈ P(R q ), E ⊂ R p , F ⊂ R q . For L(x, x , y, y ) = x -x 2 2 -y - y 2 2 2 or L(x, x , y, y ) = x, x p -y, y q 2 , GW E,F (10.9) is invariant with respect to isometries of the form f = (Id E , f E ⊥ ) (resp. g = (Id F , g F ⊥ )) with f E ⊥ an isometry on E ⊥ (resp. g F ⊥ an isometry on F ⊥ ) with respect to the corresponding cost (c(x, x ) = x -x 2 2 or c(x, x ) = x, x p ).
Proof. We propose a sketch of the proof. The full proof can be found in Section 12.8.1. Let L(x, x , y, y ) =

x -x 2 2 -y -y 2 2 2 , let f E ⊥ be an isometry w.r.t. c(x E ⊥ , x E ⊥ ) = x E ⊥ -x E ⊥ 2 2
, and let f : R p → R p be defined as such for all

x ∈ R p , f (x) = (x E , f E ⊥ (x E ⊥ )).
By using Lemma 12.1, we show that Π

E,F (f # µ, ν) = {(f, Id) # γ, γ ∈ Π E,F (µ, ν)}. Hence, for all γ ∈ Π E,F (f # µ, ν), there exists γ ∈ Π E,F (µ, ν) such that γ = (f, Id) # γ.
By disintegrating γ with respect to γ * E×F and using the properties of the pushforward, we can show that:

x -x 2 2 -y -y 2 2 2 d(f, Id) # γ(x, y)d(f, Id) # γ(x , y ) = x -x 2 2 -y -y 2 2
2 dγ(x, y)dγ(x , y ). (10.11)

Finally, by taking the infimum with respect to γ ∈ Π E,F (µ, ν), we find:

GW E,F (f # µ, ν) = GW E,F (µ, ν).
(10.12)

Closed-Form between Gaussians

We can also derive explicit formulas between Gaussians in particular cases. Let q ≤ p, µ = N (m µ , Σ) ∈ P(R p ), ν = N (m ν , Λ) ∈ P(R q ) two Gaussian measures with Σ = P µ D µ P T µ and Λ = P ν D ν P T ν . As previously, let E ⊂ R p and F ⊂ R q be k and k dimensional subspaces, respectively. Following [START_REF] Muzellec | Subspace Detours: Building Transport Plans that are Optimal on Subspace Projections[END_REF], we represent Σ in an orthonormal basis of E ⊕ E ⊥ and Λ in an orthonormal basis of

F ⊕ F ⊥ , i.e. Σ = Σ E Σ EE ⊥ Σ E ⊥ E Σ E ⊥
. Now, let us denote the following:

Σ/Σ E = Σ E ⊥ -Σ T EE ⊥ Σ -1 E Σ EE ⊥ (10.13)
as the Schur complement of Σ with respect to Σ E . We know that the conditionals of Gaussians are Gaussians and that their covariances are the Schur complements (see, e.g. [START_REF] Mises | Mathematical Theory of Probability and Statistics[END_REF][START_REF] Rasmussen | Gaussian Processes in Machine Learning[END_REF]).

For L(x, x , y, y ) = x -x 2 2 -y -y 2 2 2 , we have for now no certainty that the optimal transport plan is Gaussian. Let N p+q denote the set of Gaussians in R p+q . By restricting the minimization problem to Gaussian couplings, i.e., by solving:

GGW(µ, ν) = inf γ∈Π(µ,ν)∩Np+q x -x 2 2 -y -y 2 2
2 dγ(x, y)dγ(x , y ), (10.14) [START_REF] Delon | Gromov-Wasserstein Distances between Gaussian Distributions[END_REF] showed that there is a solution

γ * = (Id, T ) # µ ∈ Π(µ, ν) with µ = N (m µ , Σ), ν = N (m ν , Λ) and ∀x ∈ R d , T (x) = m ν + P ν AP T µ (x -m µ ) (10.15)
where

A = Ĩq D 1 2 ν (D (q) µ ) -1 2 0 q,p-q ∈ R q×p ,
and Ĩq is of the form diag (±1) i≤q . By combining the results of [START_REF] Muzellec | Subspace Detours: Building Transport Plans that are Optimal on Subspace Projections[END_REF] and [START_REF] Delon | Gromov-Wasserstein Distances between Gaussian Distributions[END_REF], we obtain the following closed-form for Monge-Knothe couplings: Proposition 10.3. Suppose p ≥ q and k = k . For the 

, a Monge-Knothe transport map between µ = N (m µ , Σ) ∈ P(R p ) and ν = N (m ν , Λ) ∈ P(R q ) is, for all x ∈ R p , T MK (x) = m ν + B(x -m µ ) where: B = T E,F 0 C T E ⊥ ,F ⊥ |E,F (10.16) 
with T E,F being an optimal transport map between N (0 E , Σ E ) and N (0 F , Λ F ) (of the form (10.15)),

T E ⊥ ,F ⊥ |E,F
an optimal transport map between N (0 E ⊥ , Σ/Σ E ) and N (0 F ⊥ , Λ/Λ F ), and C satisfies:

C = Λ F ⊥ F (T T E,F ) -1 -T E ⊥ ,F ⊥ |E,F Σ E ⊥ E Σ -1 E .
(10.17)

Proof. See Section 12.8.1.

Suppose that k ≥ k , m µ = 0, and m ν = 0 and let T E,F be an optimal transport map between µ E and ν F (of the form (10.15)). We can derive a formula for the Monge-Independent coupling for the inner-GW problem and the Gaussian restricted GW problem.

Proposition 10.4.

π MI = N (0 p+q , Γ) where Γ = Σ C C T Λ with C = (V E Σ E + V E ⊥ Σ E ⊥ E )T T E,F (V T F + Λ -1 F Λ T F ⊥ F V T F ⊥ ) (10.18)
where T E,F is an optimal transport map, either for the inner-GW problem or the Gaussian restricted problem.

Proof. See Section 12.8.1.

Algorithm 10.1 North-West corner rule N W (a, b) a ∈ Σ n , b ∈ Σ m while i ≤ n, j ≤ m do γ ij = min{a i , b j } a i = a i -γ ij b j = b j -γ ij If a i = 0, i = i + 1, if b j = 0, j = j + 1 end while return γ ∈ Π(a, b)

Computation of Inner-GW between One-Dimensional Empirical Measures

In practice, computing the Gromov-Wasserstein distance from samples of the distributions is costly. From a computational point of view, the subspace detour approach provides an interesting method with better computational complexity when choosing 1D subspaces. Moreover, we have the intuition that the GW problem between measures lying on smaller dimensional subspaces has a better sample complexity than between the original measures, as it is the case for the Wasserstein distance [START_REF] Weed | Sharp Asymptotic and Finite-sample Rates of Convergence of Empirical Measures in Wasserstein Distance[END_REF][START_REF] Lin | On Projection Robust Optimal Transport: Sample Complexity and Model Misspecification[END_REF].

Below, we show that when both E and F are one-dimensional subspaces, then the resulting GW problem between the projected measures can be solved in linear time. This will rely on a new closedform expression of the GW problem in 1D. Vayer (2020) provided in Theorem 4.2.4 a closed-form for the inner-GW problem when one of the probability distributions is absolutely continuous with respect to the Lebesgue measure. However, we are interested here in computing inner-GW between discrete distributions. We provide in the next proposition a closed-form expression for the inner-GW problem between any unidimensional discrete probability distributions:

Proposition 10.5. Consider Σ n = {a ∈ R n + , n i=1 a i = 1}
the n probability simplex. For a vector a ∈ R n , we denote a -as the vector with values reversed, i.e. a -= (a n , . . . , a 1 ).

Let µ = n i=1 a i δ xi , ν = m j=1 b j δ yj ∈ P(R) with a ∈ Σ n , b ∈ Σ m . Suppose that x 1 ≤ • • • ≤ x n and y 1 ≤ • • • ≤ y m . Consider the problem: min γ∈Π(a,b) ijkl (x i x k -y j y l ) 2 γ ij γ kl (10.19)
Then, there exists γ ∈ {N W (a, b), N W (a -, b)} such that γ is an optimal solution of (10.19) where N W is the North-West corner rule defined in Algorithm 10.1. As a corollary, an optimal solution of (10.19) can be found in O(n + m).

Proof. See Section 12.8.1.

Theorem 10.2 is not directly applicable to this setting since it requires having absolutely regular distributions, which is not the case here. Both results are, however, related, as the solution obtained by using the NW corner rule on the sorted samples is the same as that obtained by considering the coupling obtained from the quantile functions. Note that the previous result could also be used to define tractable alternatives to GW in the same manner as the Sliced Gromov-Wasserstein (Vayer et al., 2019b).

Illustrations

We use the Python Optimal Transport (POT) library [START_REF] Flamary | POT: Python Optimal Transport[END_REF] to compute the different Optimal Transport problems involved in this illustration. We are interested here in solving a 3D mesh registration problem, which is a natural application of Gromov-Wasserstein [START_REF] Mémoli | Gromov-Wasserstein Distances and the Metric Approach to Object Matching[END_REF] since it enjoys invariances with respect to isometries such as permutations and can also naturally exploit the topology of the meshes. For this purpose, we selected two base meshes from the Faust dataset [START_REF] Bogo | FAUST: Dataset and Evaluation for 3D Mesh Registration[END_REF], which provides ground truth correspondences between shapes. The information available from those meshes are geometrical (6890 vertices positions) and topological (mesh connectivity). These two meshes are represented, along with the visual results of the registration, in Figure 10.2. In order to visually depict the quality of the assignment induced by the transport map, we propagate through it a color code of the source vertices toward their associated counterpart vertices in the target mesh. Both the original color-coded source and the associated target ground truth are available on the first line of the illustration. To compute our method, we simply use as a natural subspace for both meshes the algebraic connectivity of the mesh's topological information, also known as the Fiedler vector [START_REF] Fiedler | Algebraic Connectivity of Graphs[END_REF] (eigenvector associated to the second smallest eigenvalue of the un-normalized Laplacian matrix). Fiedler vectors are computed in practice using NetworkX [START_REF] Hagberg | Exploring Network Structure, Dynamics, and Function using NetworkX[END_REF] but could also be obtained by using power methods [START_REF] Wu | An Efficient and Accurate Method to Compute the Fiedler Vector based on Householder Deflation and Inverse Power Iteration[END_REF]. Reduced to a 1D Optimal Transport problem (10.19), we used the Proposition 10.5 to compute the optimal coupling in O(n + m). Consequently, the computation time is very low (∼ 5 secs. on a standard laptop), and the associated matching is very good, with more than 98% of correct assignments. We qualitatively compare this result to Gromov-Wasserstein mappings induced by different cost functions, in the second line of Figure 10.2: adjacency [START_REF] Xu | Scalable Gromov-Wasserstein Learning for Graph Partitioning and Matching[END_REF], weighted adjacency (weights are given by distances between vertices), heat kernel (derived from the un-normalized Laplacian) (Chowdhury and Needham, 2021), and, finally, geodesic distances over the meshes. On average, computing the Gromov-Wasserstein mapping using POT took around 10 minutes of time. Both methods based on adjacency fail to recover a meaningful mapping. Heat kernel allows us to map continuous areas of the source mesh but fails in recovering a global structure. Finally, the geodesic distance gives a much more coherent mapping but has inverted left and right of the human figure. Notably, a significant extra computation time was induced by the computation of the geodesic distances (∼ 1h/mesh using the NetworkX [START_REF] Hagberg | Exploring Network Structure, Dynamics, and Function using NetworkX[END_REF] shortest path procedure). As a conclusion, and despite the simplification of the original problem, our method performs best with a speed-up of two-orders of magnitude.

Triangular Coupling as Limit of Optimal Transport Plans for Quadratic Cost

Another interesting property derived in [START_REF] Muzellec | Subspace Detours: Building Transport Plans that are Optimal on Subspace Projections[END_REF] of the Monge-Knothe coupling is that it can be obtained as the limit of classic optimal transport plans, similar to Theorem 10.1, using a separable cost of the form:

c t (x, y) = (x -y) T P t (x -y) (10.20) with P t = V E V T E + tV E ⊥ V T E ⊥ and (V E , V E ⊥ ) as an orthonormal basis of R p .
Figure 10.2 -Three-dimensional mesh registration. (First row) source and target meshes, color code of the source, ground truth color code on the target, result of subspace detour using Fiedler vectors as subspace. (Second row) After recalling the expected ground truth for ease of comparison, we present results of different Gromov-Wasserstein mappings obtained with metrics based on adjacency, heat kernel, and geodesic distances.

However, this property is not valid for the classical Gromov-Wasserstein cost (e.g.,

L(x, x , y, y ) = d X (x, x ) 2 -d Y (y, y ) 2 2
or L(x, x , y, y ) = x, x p -y, y q 2 ) as the cost is not separable. Motivated by this question, we ask ourselves in the following if we can derive a quadratic optimal transport cost for which we would have this property. Formally, we derive a new quadratic optimal transport problem using the Hadamard product. We show that this problem is well-defined and that it has interesting properties such as invariance with respect to axes. We also show that it can be related to a triangular coupling in a similar fashion to the classical Optimal Transport problem with the Knothe-Rosenblatt rearrangement.

Construction of the Hadamard-Wasserstein Problem

In this part, we define the "Hadamard-Wasserstein" problem between µ ∈ P(R d ) and ν ∈ P(R d ) as:

HW 2 (µ, ν) = inf γ∈Π(µ,ν) x x -y y 2 2 dγ(x, y)dγ(x , y ), (10.21)
where is the Hadamard product (element-wise product). This problem is different than the Gromov-Wasserstein problem in the sense that we do not compare intradistance anymore bur rather the Hadamard products between vectors of the two spaces (in the same fashion as the classical Wasserstein distance). Hence, we need the two measures to belong in the same Euclidean space. Let us note L as the cost defined as:

∀x, x , y, y ∈ R d , L(x, x , y, y ) = d k=1 (x k x k -y k y k ) 2 = x x -y y 2 2 . ( 10.22) 
We observe that it coincides with the inner-GW (10.8) loss in one dimension. Therefore, by 10.2, we know that we have a closed-form solution in 1D.

Properties

First, we derive some useful properties of (10.21) which are usual for the regular Gromov-Wasserstein problem. Formally, we show that the problem is well defined and that it is a pseudometric with invariances with respect to axes. Proposition 10.6. Let µ, ν ∈ P(R d ).

1. The problem (10.21) always admits a minimizer.

2. HW is a pseudometric (i.e., it is symmetric, non-negative, HW(µ, µ) = 0, and it satisfies the triangle inequality).

3. HW is invariant to reflection with respect to axes.

Proof. See Section 12.8.2.

HW loses some properties compared to GW . Indeed, it is only invariant with respect to axes, and it can only compare measures lying in the same Euclidean space in order for the distance to be well defined. Nonetheless, we show in the following that we can derive some links with triangular couplings in the same way as the Wasserstein distance with KR. Indeed, the cost L (10.22) is separable and reduces to the inner-GW loss in 1D, for which we have a closed-form solution. We can therefore define a degenerated version of it:

∀x, x , y, y ∈ R d , L t (x, x , y, y ) = d k=1 k-1 i=1 λ (i) t (x k x k -y k y k ) 2 = (x x -y y ) T A t (x x -y y ) (10.23) with A t = diag(1, λ (1) t , λ (1) t λ (2) t , . . . , d-1 i=1 λ (i)
t ), such as for all t > 0, and for all i ∈ {1, . . . , d-1}, λ

(i) t > 0, and λ (i) t ---→ t→0 0.
We denote HW t the problem (10.21) with the degenerated cost (10.23). Therefore, we will be able to decompose the objective as:

L t (x, x , y, y ) dγ(x, y)dγ(x , y ) = (x 1 x 1 -y 1 y 1 ) 2 dγ(x, y)dγ(x , y ) + d k=2 k-1 i=1 λ (i) t (x k x k -y k y k ) 2 dγ(x, y)dγ(x , y ) (10.24)
and to use the same induction reasoning as [START_REF] Carlier | From Knothe's Transport to Brenier's Map and a Continuation Method for Optimal Transport[END_REF]. Then, we can define a triangular coupling different from the Knothe-Rosenblatt rearrangement in the sense that each map will not be nondecreasing. Indeed, following Theorem 10.2, the solution of each 1D problem:

argmin γ∈Π(µ,ν) (xx -yy ) 2 dγ(x, y)dγ(x , y ) (10.25)
is either (Id × T asc ) # µ or (Id × T desc ) # µ. Hence, at each step k ≥ 1, if we disintegrate the joint law of the k first variables as µ 1:k = µ 1:k-1 ⊗ µ k|1:k-1 , the optimal transport map T (•|x 1 , . . . , x k-1 ) will be the solution of:

argmin T ∈{Tasc,T desc } x k x k -T (x k )T (x k ) 2 µ k|1:k-1 (dx k | x 1:k-1 )µ k|1:k-1 (dx k | x 1:k-1
).

(10.26)

We now state the main theorem, where we show that the limit of the OT plans obtained with the degenerated cost will be the triangular coupling we just defined.

Theorem 10.3. Let µ and ν be two absolutely continuous measures on R d such that

x 4 2 µ(dx) < +∞, y 4 2 ν(dy) < +∞ and with compact support. Let γ t be an optimal transport plan for HW t , let T K be the alternate Knothe-Rosenblatt map between µ and ν as defined in the last paragraph, and let γ K = (Id × T K ) # µ be the associated transport plan. Then, we have

γ t D ---→ t→0 γ K . Moreover, if γ t are induced by transport maps T t , then T t L 2 (µ) ----→ t→0 T K .
Proof. See Section 12.8.2.

However, we cannot extend this Theorem to the subspace detour approach. Indeed, by choosing

A t = V E V T E + tV E ⊥ V T E ⊥ with (V E , V E ⊥ ) an orthonormal basis of R d , then we project x x -y y on E (respectively on E ⊥ ), which is generally different from x E x E -y E y E (respectively x E ⊥ x E ⊥ - y E ⊥ y E ⊥ ).

Solving Hadamard-Wasserstein in the Discrete Setting

In this part, we derive formulas to solve numerically HW (10.21). Let x 1 , . . . , Hadamard Wasserstein problem (10.21) becomes in the discrete setting:

x n ∈ R d , y 1 , . . . , y m ∈ R d , α ∈ Σ n , β ∈ Σ m , p = n i=1 α i δ xi and q = m j=1 β j δ yj two discrete measures in R d . The
HW 2 (p, q) = inf γ∈Π(p,q) i,j k, x i x k -y j y 2 2 γ i,j γ k, = inf γ∈Π(p,q) E(γ) (10.27) with E(γ) = i,j k, x i x k -y j y 2 2 γ i,j γ k, .
As denoted in [START_REF] Peyré | Gromov-Wasserstein Averaging of Kernel and Distance Matrices[END_REF], if we note:

L i,j,k, = x i x k -y j y 2 2 ,
(10.28) then we have:

E(γ) = L ⊗ γ, γ , (10.29)
where ⊗ is defined as:

L ⊗ γ = k, L i,j,k, γ k, i,j ∈ R n×m . (10.30)
We show in the next proposition a decomposition of L ⊗ γ, which allows us to compute this tensor product more efficiently.

Proposition 10.7. Let γ ∈ Π(p, q) = {M ∈ (R + ) n×m , M 1 m = p, M T 1 n = q}, where 1 n = (1, . . . , 1) T ∈ R n . Let us note X = (x i x k ) i,k ∈ R n×n×d , Y = (y j y ) j, ∈ R m×m×d , X (2) = ( X i,k 2 2 ) i,k ∈ R n×n , Y (2) = ( Y j,l 2 
2 ) j,l ∈ R m×m , and ∀t ∈ {1, . . . , d}, X t = (X i,k,t ) i,k ∈ R n×n and Y t = (Y j, ,t ) j, ∈ R m×m . Then: (10.31) Proof. See Section 12.8.2.

L ⊗ γ = X (2) p1 T m + 1 n q T (Y (2) ) T -2 d t=1 X t γY T t .
From this decomposition, we can compute the tensor product L ⊗ γ with a complexity of O(d(n 2 m + m 2 n)) using only multiplications of matrices (instead of O(dn 2 m 2 ) for a naive computation).

Remark 1.

For the degenerated cost function (10.23), we just need to replace X and Y by Xt = A

1 2 t X and Ỹt = A 1 2
t Y in the previous proposition.

To solve this problem numerically, we can use the conditional gradient algorithm (Vayer et al., 2019a, Algorithm 2). This algorithm only requires to compute the gradient:

∇E(γ) = 2(A + B + C) = 2(L ⊗ γ) (10.32)
at each step and a classical OT problem. This algorithm is more efficient than solving the quadratic problem directly. Moreover, while it is a non-convex problem, it actually converges to a local stationary point (Lacoste-Julien, 2016).

Figure 10.3 -Degenerated coupling. On the first row, the points are projected on their first coordinate and we plot the optimal coupling. On the second row, we plot the optimal coupling between the original points.

On Figure 10.3, we generated 30 points of 2 Gaussian distributions, and computed the optimal coupling of HW t for several t. These points have the same uniform weight. We plot the couplings between the points on the second row, and between the projected points on their first coordinate on the first row. Note that for discrete points, the Knothe-Rosenblatt coupling amounts to sorting the points with respect to the first coordinate if there is no ambiguity (i.e., x

(1) 1 < • • • < x (1)
n ) as it comes back to perform the Optimal Transport in one dimension [START_REF] Peyré | Computational Optimal Transport: With Applications to Data Science[END_REF]) (Remark 2.28). For our cost, the optimal coupling in 1D can either be the increasing or the decreasing rearrangement. We observe on the first row of Figure 10.3 that the optimal coupling when t is close to 0 corresponds to the decreasing rearrangement, which corresponds well to the alternate Knothe-Rosenblatt map we defined in Section 10.4.2. It underlines the results provided in Theorem 10.3.

Discussion

We proposed in this work to extend the subspace detour approach to different subspaces, and to other Optimal Transport costs such as Gromov-Wasserstein. Being able to project on different subspaces can be useful when the data are not aligned and do not share the same axes of interest, as well as when we are working between different metric spaces as it is the case, for example, with graphs. However, a question that arises is how to choose these subspaces. Since the method is mostly interesting when we choose onedimensional subspaces, we proposed to use a PCA and to project on the first directions for data embedded in Euclidean spaces. For more complicated data such as graphs, we projected onto the Fiedler vector and obtained good results in an efficient way on a 3D mesh registration problem. More generally, [START_REF] Muzellec | Subspace Detours: Building Transport Plans that are Optimal on Subspace Projections[END_REF] proposed to perform a gradient descent on the loss with respect to orthonormal matrices. This approach is non-convex and is only guaranteed to converge to a local minimum. Designing such an algorithm, which would minimize alternatively between two transformations in the Stiefel manifold, is left for future works.

The subspace detour approach for transport problems is meaningful whenever one can identify subspaces that gather most of the information from the original distributions, while making the estimate more robust and with a better sample complexity as far as dimensions are lower. On the computational complexity side, and when we have only access to discrete data, the subspace detour approach brings better computational complexity solely when the subspaces are chosen as one dimensional. Indeed, otherwise, we have the same complexity for solving the subspace detour and solving the OT problem directly (since the complexity only depends on the number of samples). In this case, the 1D projection often gives distinct values for all the samples (for continuous valued data) and hence the Monge-Knothe coupling is exactly the coupling in 1D. As such, information is lost on the orthogonal spaces. It can be artificially recovered by quantizing the 1D values (as experimented in practice in [START_REF] Muzellec | Subspace Detours: Building Transport Plans that are Optimal on Subspace Projections[END_REF]), but the added value is not clear and deserves broader studies. Absolutely continuous distributions w.r.t. the Lebesgue measure being given, this limit however does not exist, but comes with the extra cost of being able to compute efficiently the projected measure onto the subspace, which might require discretization of the space and is therefore not practical in high dimensions.

We also proposed a new quadratic cost HW that we call Hadamard-Wasserstein, which allows us to define a degenerated cost for which the optimal transport plan converges to a triangular coupling. However, this cost loses many properties compared to W 2 or GW , for which we are inclined to use these problems. Indeed, while HW is a quadratic cost, it uses a Euclidean norm between the Hadamard product of vectors and requires the two spaces to be the same (in order to have the distance well defined). A work around in the case X = R p and Y = R q with p ≤ q would be to "lift" the vectors in R p into vectors in R q with padding as it is proposed in (Vayer et al., 2019b) or to project the vectors in R q on R p as in [START_REF] Cai | Distances between Probability Distributions of Different Dimensions[END_REF]). Yet, for some applications where only the distance/similarity matrices are available, a different strategy still needs to be found. Another concern is the limited invariance properties (only with respect to axial symmetry symmetry in our case). Nevertheless, we expect that such a cost can be of interest in cases where invariance to symmetry is a desired property, such as in [START_REF] Nagar | Detecting Approximate Reflection Symmetry in a Point Set using Optimization on Manifold[END_REF].

the popular conjecture that their trajectory is the same as Wasserstein gradient flows.

Besides studying the Sliced-Wasserstein distance, we have also been interested in the Busemann function which level sets provide generalizations of hyperplanes, and which has received much interest on certain Riemannian manifolds such as Hyperbolic spaces. Thus, it was fairly natural to study the Busemann function on the Wasserstein space. To do so, we first identified geodesics of the Wasserstein space for which the Busemann function is well defined when coupled with them. Then, we derived new closed-forms for the one dimensional case as well as the Gaussian case, making it possible to compute it in practice. As a proof of concept, we proposed to use it in order to perform Principal Component Analysis on 1D measures.

Finally, we also studied the Gromov-Wasserstein distance which can be used to compare probability measures lying on incomparable spaces. While its sliced counterpart has been previously proposed by Vayer et al. (2019b), a major bottleneck of sliced methods is that they do not provide a coupling. Thus, we proposed to extend the subspace detour approach, first introduced by [START_REF] Muzellec | Subspace Detours: Building Transport Plans that are Optimal on Subspace Projections[END_REF] for the classical OT problem, to the Gromov-Wasserstein problem, and applied it on a shape matching problem.

Perspectives

The work done during this thesis can lead to different perspectives and open questions. We describe some of them in the following.

Sliced-Wasserstein on General Spaces. Embedding data on Riemannian manifolds and then working directly on such space has become a prominent approach in Machine Learning. Thus, similarly as in the Euclidean space, we hope that the Sliced-Wasserstein distance on manifolds derived in this thesis will be used for ML tasks on such spaces, e.g. as loss for Riemannian neural networks. This might require improving the expressive power of these distances, e.g. by combining the original SW formulations with powerful ideas described in Section 2.3.3 to improve the Euclidean SW, for instance by changing the integration set, finding better estimators, projecting on higher-dimensional subspaces or on Hilbert curves adapted to Riemannian manifolds in a similar fashion as [START_REF] Li | Hilbert Curve Projection Distance for Distribution Comparison[END_REF].

We focused in this work on specific manifolds to construct SW distances. But many different Riemannian manifolds have already been considered in ML, either to improve the quality of embeddings or to represent specific data structures. Some of them are Cartan-Hadamard manifolds, for which constructing SW distances could be done by following the framework proposed in Chapter 3. For example, one might consider the space of SPDs with other metrics, such as more general pullback metrics (Chen et al., 2023b), for which, for

M ∈ S ++ d (R) and A, B ∈ S d (R), g φ M (A, B) = φ * ,M (A), φ * ,M (B) F where φ : S ++ d (R) → S d (R) is a diffeomorphism and φ * ,M the differential of φ at M ∈ S ++ d (R). In this case, geodesic distances are of the form ∀X, Y ∈ S ++ d (R), d φ (X, Y ) = φ(X) -φ(Y ) F . (11.1)
Similarly as in the Log-Euclidean case (where φ = log), the space is of constant null curvature, and geodesic projections can be obtained as

P A φ (M ) = A, φ(M ) F for A ∈ S d (R) and M ∈ S ++ d (R) (if
we assume that φ(I d ) = 0 and that the differential at I d is the identity). Besides the Log-Euclidean distance, this framework includes the Log-Cholesky distance [START_REF] Lin | Riemannian Geometry of Symmetric Positive Definite Matrices via Cholesky Decomposition[END_REF], the O(n)-invariant Log-Euclidean metrics (Chen et al., 2023a) or the Adaptative Riemannian metric (Chen et al., 2023b). Another recent line of works consists of studying products of Riemannian manifolds which might be more flexible to embed data [START_REF] Gu | Learning Mixed-Curvature Representations in Product Spaces[END_REF][START_REF] Skopek | Mixed-curvature Variational Autoencoders[END_REF][START_REF] De Ocáriz Borde | Latent Graph Inference using Product Manifolds[END_REF][START_REF] Lin | Hyperbolic Diffusion Embedding and Distance for Hierarchical Representation Learning[END_REF], as the resulting space is of non-constant curvature [START_REF] Gu | Learning Mixed-Curvature Representations in Product Spaces[END_REF]. In particular, products of manifolds of non-positive curvature are still of non-positive curvatures (Gu et al., 2019, Lemma 1), and hence products of Cartan-Hadamard manifolds are still Cartan-Hadamard manifolds. For M = M 1 × M 2 , Bridson and Haefliger (2013, Section II. 8.24) provided the closed-form for the Busemann function associated to a geodesic ray γ defined as γ(t) = γ 1 (cos(θ)t), γ 2 (sin(θ)t) for γ 1 and γ 2 geodesic rays on M 1 and M 2 respectively, and

θ ∈]0, π/2[, as ∀x ∈ M, B γ (x) = cos(θ)B γ1 (x 1 ) + sin(θ)B γ2 (x 2 ). (11.2)
This can be readily extended to

M = M 1 ו • •×M n , using (λ i ) n i=1 such that n i=1 λ 2 i = 1 and a geodesic ray of the form γ(t) = γ 1 (λ 1 t), . . . , γ n (λ n t) , as ∀x ∈ M, B γ (x) = n i=1 λ i B γi (x i ).
(11.3)

Another type of Riemannian manifolds with non-positive curvature are Siegel spaces [START_REF] Nielsen | The Siegel-Klein Disk: Hilbert Geometry of the Siegel Disk Domain[END_REF][START_REF] Cabanes | Classification in the Siegel Space for Vectorial Autoregressive Data[END_REF][START_REF] Cabanes | Apprentissage dans les disques de Poincaré et de Siegel de séries temporelles multidimensionnelles complexes suivant un modèle autorégressif gaussien stationnaire centré: application à la classification de données audio et de fouillis radar[END_REF], which have recently received attention in ML (López et al., 2021b) for their capacity to leverage different curvatures. It is also well known that one dimensional gaussians endowed with the Fisher information metric have a hyperbolic structure [START_REF] Costa | Fisher Information Distance: A Geometrical Reading[END_REF], and diagonal gaussians have the structure of a product of Hyperbolic spaces [START_REF] Cho | Hyperbolic VAE via Latent Gaussian Distributions[END_REF]. The space of parameters of Dirichlet distributions has also a Hadamard manifold structure [START_REF] Brigant | Fisher-Rao Geometry of Dirichlet Distributions[END_REF]. Thus, developing sliced methods on parametric families of distribution might be possible through this framework.

Studying more complicated Riemannian manifolds such as tori, which have sections of positive, negative and null curvatures, or even more general closed manifolds as done in [START_REF] Chen | Riemannian Flow Matching on General Geometries[END_REF] is also an important avenue of research in order to be able to deal with e.g. proteins [START_REF] Huang | Riemannian Diffusion Models[END_REF][START_REF] Chen | Riemannian Flow Matching on General Geometries[END_REF] or molecules [START_REF] Jing | Torsional Diffusion for Molecular Conformer Generation[END_REF]. Very recent works have also started to use more general spaces such as pseudo-Riemannian manifolds [START_REF] Law | Ultrahyperbolic Neural Networks[END_REF][START_REF] Xiong | Pseudo-Riemannian Graph Convolutional Networks[END_REF], Finsler manifolds [START_REF] Shen | Lectures on Finsler geometry[END_REF]López et al., 2021a) or more general metric spaces. For example, CAT(0) spaces are metric spaces with non-positive curvature which have a structure very similar with Hadamard manifolds [START_REF] Bridson | Metric Spaces of Non-Positive Curvature[END_REF] and which have recently received some attention in Optimal Transport [START_REF] Bërdëllima | Existence and Uniqueness of Optimal Transport Maps in locally Compact CAT (0) Spaces[END_REF]. López et al. (2021b) proposed to endow the space of SPD matrices with vector-valued distance function, generalizing the Affine-Invariant distance, and allowing the use of Finsler metrics which are better suited to data structures such as graphs. In the same line of work, López et al. (2021a) proposed to use Finsler metrics on the Siegel space and Nielsen and Sun (2023) studied the Hilbert simplex which is a particular Finsler manifold [START_REF] Troyanov | Funk and Hilbert Geometries from the Finslerian Viewpoint[END_REF]. Note that Finsler manifolds have also received attention in Optimal Transport [START_REF] Ohta | Optimal Transport and Ricci Curvature in Finsler Geometry[END_REF][START_REF] Ohta | Displacement Convexity of Generalized Relative Entropies[END_REF].

However, extending SW to these different spaces might raise several challenges such as finding a meaningful set of curves on which to project the distributions or deriving efficient ways to project the distributions on the subspaces. Besides, it is important to study more closely the distance properties of the different SW distances introduced in this work in order to better justify theoretically their usefulness.

Gradient Flows.

A lot of open questions regarding Sliced-Wasserstein gradient flows still need to be handled such as the theoretical questions of convergences, and showing the links with Wasserstein gradient flows. Besides, this framework could be extended to other Sliced-Wasserstein distances such as Generalized SW versions (Kolouri et al., 2019a), or Riemannian manifold versions derived in the first part of the thesis. Another direction would be to adapt the work of [START_REF] Liutkus | Sliced-Wasserstein Flows: Nonparametric Generative Modeling via Optimal Transport and Diffusions[END_REF] for Riemannian Sliced-Wasserstein distances in order to minimize these functionals using their Wasserstein gradient flows. A first step towards that direction has been made through Proposition 3.10 in which the first variation of Cartan-Hadamard SW has been derived. This can be useful in order to derive the continuity equation of the underlying gradient flows, as well as practical algorithms for learning probability distributions on Riemannian manifolds through particle schemes, which would provide alternatives to MCMC algorithms such as the Riemannian Langevin algorithm [START_REF] Girolami | Riemann Manifold Langevin and Hamiltonian Monte Carlo Methods[END_REF]Wang et al., 2020;[START_REF] Gatmiry | Convergence of the Riemannian Langevin Algorithm[END_REF].

Unbalanced Sliced-Wasserstein. In the thesis, we proposed two way of performing slicing with unbalanced OT. The first one consists of simply slicing the 1D UOT, and the second one consists of adding a regularization on the mass of the marginals. The second proposal has interesting properties as it allows to be more robust to outliers compared to the first one. However, [START_REF] Leblanc | Extending the Wasserstein Metric to Positive Measures[END_REF] recently proposed a new OT distance between positive measures, which extends the Wasserstein distance in a proper way in the sense that its restriction to probability measures coincides with the Wasserstein distance, and geodesics between probability measures are well probability measures, which is not the case for UOT. This new OT loss between positive measures inherits many of the Wasserstein distance properties, but also its computational complexity and its statistical properties. Thus, it would be an interesting direction to derive its sliced version and to compare its properties with USW and SUOT.

Another direction could be to study its gradient flows, either as a functional endowed with the Wasserstein-Fisher-Rao metric [START_REF] Gallouët | A JKO Splitting Scheme for Kantorovich-Fisher-Rao Gradient Flows[END_REF] or in a similar spirit of Chapter 7 by using the JKO scheme in the space of positive measures endowed by USW or SUOT.

Busemann on Wasserstein Space. In our work, we only used the Busemann function to perform Principal Component Analysis in the one dimensional case where the geometry is flat and hence where the projections on the geodesics actually coincide with the geodesic projections. Thus, a natural next step is to study it in the Bures-Wasserstein space for Gaussians of higher dimension as we already have the closed-form for the Busemann function.

An interesting direction would be to provide closed-forms in more general cases, or on the restriction on other classes of distributions, for example on Gaussian Mixture Models using the distance introduced by Delon and Desolneux (2020) or by [START_REF] Dusson | A Wasserstein-type Metric for Generic Mixture Models, including Location-Scatter and Group Invariant Measures[END_REF]. It would also be natural to study the case of positive measures using either the Wasserstein distance on positive measures presented in [START_REF] Leblanc | Extending the Wasserstein Metric to Positive Measures[END_REF] or Unbalanced OT distances (Séjourné et al., 2022a), e.g. relying on available closed-forms for Gaussians [START_REF] Janati | Entropic Optimal Transport between Unbalanced Gaussian Measures has a Closed Form[END_REF]. Another direction to have closed-forms for arbitrary probability distributions would be to develop and study a sliced version, where e.g. for t → µ t a geodesic ray in P 2 (R) and ν ∈ P 2 (R d ), the Sliced-Busemann function would be defined as

SB µ (ν) = S d-1 B µ (P θ # ν) dλ(θ). (11.4)
Then studying the properties of this object, and how it differs from the regular Busemann function would be a natural avenue of research. Nonetheless, we note that despite the interesting theoretical properties, using the Busemann function to perform PCA on Wasserstein space does not seem very promising as the projections can be potentially out of the geodesic. Thus, finding an application for which it would be well suited, might be important to justify further studies. 

|t v (x) -t v (y)| = |sign( log o (x), v o )d(x, o) -sign( log o (y), v o d(y, o)| = sign(s)d(exp o (sv), exp o (0)) -sign(t)d(exp o (tv), exp o (0)) = sign(s)|s| -sign(t)|t| = |s -t| = d(x, y).
(12.6)

Proof of Proposition 3.2

Proof of Proposition 3.2. We want to solve:

P v (x) = argmin t∈R d γ(t), x 2 , ( 12.7) 
where

γ(t) = exp o (tv). For t ∈ R, let g(t) = d γ(t), x 2 = f γ(t) where f (x) = d(x, y) 2 for x, y ∈ M.
Then, by Lemma 12.5, we have for any t ∈ R,

g (t) = 0 ⇐⇒ γ (t), grad M f γ(t) γ(t) = 0 ⇐⇒ γ (t), -2 log γ(t) (x) γ(t) = 0.
(12.8)

Proof of Proposition 3.3

Proof of Proposition 3.3. First, we note that P v = t v • P v . Then, by using Lemma 12.1 which states that Π

(f # µ, f # ν) = {(f ⊗ f ) # γ, γ ∈ Π(µ, ν)}
for any f measurable, as well as that by Proposition 3.1,

|t v (x) -t v (y)| = d(x,
y), we have:

W p p (P v # µ, P v # ν) = inf γ∈Π(P v # µ,P v # ν) R×R |x -y| p dγ(x, y) = inf γ∈Π(µ,ν) R×R |x -y| p d(P v ⊗ P v ) # γ(x, y) = inf γ∈Π(µ,ν) M×M |P v (x) -P v (y)| p dγ(x, y) = inf γ∈Π(µ,ν) M×M |t v ( P v (x)) -t v ( P v (y))| p dγ(x, y) = inf γ∈Π(µ,ν) M×M d P v (x), P v (y) p dγ(x, y) = inf γ∈Π(µ,ν) M×M d(x, y) p d( P v ⊗ P v ) # γ(x, y) = inf γ∈Π( P v # µ, P v # ν) G v ×G v d(x, y) p dγ(x, y) = W p p ( P v # µ, P v # ν).
(12.9)

Proof of Proposition 3.4

Proof of Proposition 3.4. First, let us compute t v • Bv :

∀x ∈ M, t v ( Bv (x)) = sign( log o ( Bv (x)), v o )d( Bv (x), o) = sign(-B γ (x) v 2 o )d(exp o (-B v (x)v), exp o (0)) = sign(-B γ (x))| -B v (x)| = -B v (x).
(12.10) Then, using the same computation as in the proof of Proposition 3.3, we get

W p p (B v # µ, B v # ν) = W p p ( Bv # µ, Bv # ν).
(12.11)

Proofs of Section 3.4

Proof of Proposition 3.5

Proof of Proposition 3.5. First, we will show that for any µ, ν ∈ P p (M), CHSW p (µ, ν) < ∞. Let µ, ν ∈ P p (M), and let γ ∈ Π(µ, ν) be an arbitrary coupling between them. Then by using first Lemma 12.1 followed by the 1-Lipschitzness of the projections Lemma 12.2 and Lemma 12.3, we obtain

W p p (P v # µ, P v # ν) = inf γ∈Π(µ,ν) |P v (x) -P v (y)| p dγ(x, y) ≤ |P v (x) -P v (y)| p dγ(x, y) ≤ d(x, y) p dγ(x, y) ≤ 2 p-1 d(x, o) p dµ(x) + d(o, y) p dν(y) < ∞.
(12.12)

Hence, we can conclude that CHSW p p (µ, ν) < ∞. Now, let us show that it is a pseudo-distance. First, it is straightforward to see that CHSW p (µ, ν) ≥ 0, that it is symmetric, i.e. CHSW p (µ, ν) = CHSW p (ν, µ), and that µ = ν implies that CHSW p (µ, ν) = 0 using that W p is well a distance.

For the triangular inequality, we can derive it using the triangular inequality for W p and the Minkowski inequality. Let µ, ν, α ∈ P p (M),

CHSW p (µ, ν) = So W p p (P v # µ, P v # ν) dλ(v) 1 p ≤ So W p (P v # µ, P v # α) + W p (P v # α, P v # ν) p dλ(v) 1 p ≤ So W p p (P v # µ, P v # α) dλ(v) 1 p + So W p p (P v # α, P v # ν) dλ(v) 1 p = CHSW p (µ, α) + CHSW p (α, ν).
(12.13)

Proof of Proposition 3.6

Proof of Proposition 3.6.

Let f ∈ L 1 (M), g ∈ C 0 (R × S o ), then by Fubini's theorem, CHRf, g R×So = So R CHRf (t, v)g(t, v) dtdλ(v) = So R M f (x)1 {t=P v (x)} g(t, v) dVol(x)dtdλ(v) = M f (x) So R g(t, v)1 {t=P v (x)} dtdλ(v)dVol(x) = M f (x) So g P v (x), v dλ(v)dVol(x) = M f (x)CHR * g(x) dVol(x) = f, CHR * g M .
(12.14)

Proof of Proposition 3.7

Proof of Proposition 3.7. We follow the proof of (Boman and Lindskog, 2009, Lemma 1). On one hand,

g ∈ C 0 (R × S o ), thus for all > 0, there exists M > 0 such that |t| ≥ M implies |g(t, v)| ≤ for all v ∈ S o .
Let > 0 and M > 0 which satisfies the previous property. Denote

E(x, M ) = {v ∈ S o , |P v (x)| < M }. Then, as d(x, o) > 0, we have E(x, M ) = {v ∈ S o , |P v (x)| < M } = v ∈ S p , P v (x) d(x, o) < M d(x, o) -------→ d(x,o)→∞ ∅. (12.15) Thus, λ E(x, M ) -------→ d(x,o)→∞ 0. Choose M such that d(x, o) > M implies that λ E(x, M ) < . Then, for x ∈ M such that |P v (x)| ≥ max(M, M ) (and thus d(x, o) ≥ M since |P v (x) ≤ d(x, o) as P v is Lipschitz, |CHR * g(x)| ≤ E(x,M ) g(P v (x), v) dλ(v) + E(x,M ) c g(P v (x), v) dλ(v) ≤ g ∞ λ E(x, M ) + λ E(x, M ) c ≤ g ∞ + .
(12.16) Thus, we showed that CHR * g(x) -------→ d(x,o)→∞ 0, and thus CHR * g ∈ C 0 (M).

Proof of Proposition 3.8

Proof of Proposition 3.8.

Let g ∈ C 0 (R × S o ), as CHRµ = λ ⊗ K, we have by definition So R g(t, v) K(v, •) # µ(dt) dλ(v) = R×So g(t, v) d(CHRµ)(t, v).
(12.17)

Hence, using the property of the dual, we have for all

g ∈ C o (R × S o ), So R g(t, v) K(v, •) # µ(dt) dλ(v) = R×So g(t, v) d(CHRµ)(t, v) = M CHR * g(x) dµ(x) = M So g(P v (x), v) dλ(v)dµ(x) = So M g(P v (x), v) dµ(x)dλ(v) = So R g(t, v) d(P v # µ)(t)dλ(v). (12.18) Hence, for λ-almost every v ∈ S o , K(v, •) # µ = P v # µ.
Proof of Proposition 3.9

Proof of Proposition 3.9. Using Lemma 12.1 and that the projections are 1-Lipschitz (Lemma 12.2), we can show that, for any µ, ν ∈ P p (M),

CHSW p p (µ, ν) = inf γ∈Π(µ,ν)
|P v (x) -P v (y)| p dγ(x, y). (12.19) Let γ * ∈ Π(µ, ν) being an optimal coupling for the Wasserstein distance with ground cost d, then,

CHSW p p (µ, ν) ≤ |P v (x) -P v (y)| p dγ * (x, y) ≤ d(x, y) p dγ * (x, y) = W p p (µ, ν).
(12.20)

Proof of Proposition 3.10

Proof of Proposition 3.10. This proof follows the proof in the Euclidean case derived in (Bonnotte, 2013, Proposition 5.1.7) or in (Candau-Tilh, 2020, Proposition 1.33).

As µ is absolutely continuous, P v # µ is also absolutely continuous and there is a Kantorovitch potential ψ v between P v # µ and P v # ν. Moreover, as the support is restricted to a compact, it is Lipschitz and thus differentiable almost everywhere.

First, using the duality formula, we obtain the following lower bound for all > 0,

CHSW 2 2 (T ) # µ, ν -CHSW 2 2 (µ, ν) 2 ≥ So M ψ v (P v (T (x))) -ψ v (P v (x)) dµ(x)dλ(v). (12.21)
Then, we know that the exponential map satisfies exp x (0) = x and d dt exp(tv)| t=0 = v. Taking the limit → 0, the right term is equal to d dt g(t)| t=0 with g(t) = ψ v (P v (T t (x))) and is equal to (12.22) Therefore, by the Lebesgue dominated convergence theorem (we have the convergence λ-almost surely and

d dt g(t)| t=0 = ψ v (P v (T 0 (x))) ∇P v (T 0 (x)), d dt T t (x)| t=0 x = ψ v (P v (x)) grad M P v (x), ξ(x) x .
|ψ v (P v (T (x))) -ψ v (P v (x))| ≤ using that ψ v and P v are Lipschitz and that d exp x ( ξ(x)), exp x (0) ≤ C ), lim inf →0 + CHSW 2 2 (T ) # µ, ν -CHSW 2 2 (µ, ν) 2 ≥ So M ψ v (P v (x)) grad M P v (x), ξ(x) dµ(x)dλ(v).
(12.23) For the upper bound, first, let π v ∈ Π(µ, ν) an optimal coupling. Then by Lemma 12.1, πv = (P v 

⊗ P v ) # π v ∈ Π(P v # µ, P v # ν
) is an optimal coupling for the regular quadratic cost and for πv -almost every (x, y), y = x -ψ v (x) and thus for π v -almost every (x, y), P v (y) = P v (x) -ψ v P v (x) . Therefore,

CHSW 2 2 (µ, ν) = So W 2 2 (P v # µ, P v # ν) dλ(v) = So R×R |x -y| 2 dπ v (x, y) dλ(v) = So M×M |P v (x) -P v (y)| 2 dπ(x, y) dλ(v).
(12.24)

On the other hand, (( (12.27) Finally, by the Lebesgue dominated convergence theorem, we obtain lim sup

P v • T ) ⊗ P v ) # π v ∈ Π(P v # (T ) # µ, P v # ν) and hence CHSW 2 2 (T ) # µ, ν = So W 2 2 (P v # (T ) # µ, P v # ν) dλ(v) ≤ So R×R |P v (T (x)) -P v (y)| 2 dπ v (x, y) dλ(v). (12.25) Therefore, CHSW 2 2 (T ) # µ, ν -CHSW 2 2 (µ, ν) 2 ≤ So R×R |P v (T (x)) -P v (y)| 2 -|P v (x) -P v (y)| 2 2 dπ v (x, y) dλ(v). (12.26) Note g( ) = P v (T (x)) -P v (y) 2 . Then, d d g( )| =0 = 2 P v (x) -P v (y) grad M P v (x), ξ(x) x . But, as for π v -almost every (x, y), P v (y) = P v (x) -ψ v (P v (x)), we have d d g( )| =0 = 2ψ v P v (x) grad M P v (x), ξ(x) x .
→0 + CHSW 2 2 (T ) # µ, ν -CHSW 2 2 (µ, ν) 2 ≤ So M ψ v (P v (x)) grad M P v (x), ξ(x) x dµ(x)dλ(v).
(12.28)

Proof of Proposition 3.11

Proof of Proposition 3.11. Let µ, ν ∈ P p (M), then

CHSW p p (µ, ν) = So W p p (P v # µ, P v # ν) dλ(v) = So F -1 P v # µ -F -1 P v # ν p L p ([0,1]) dλ(v) = So 1 0 F -1 P v # µ (q) -F -1 P v # ν (q) p dq dλ(v) = Φ(µ) -Φ(ν) p H .
(12.29) Thus, CHSW p is Hilbertian.

Proof of Proposition 3.13

Proof of Proposition 3.13. First, using the triangular inequality, the reverse triangular inequality and the Jensen inequality for x → x 1/p (which is concave since p ≥ 1), we have the following inequality .31) Then, by applying Lemma 12.4, we get that for q > p, there exists a constant C p,q such that,

E[|CHSW p (μ n , νn ) -CHSW p (µ, ν)|] = E[|CHSW p (μ n , νn ) -CHSW p (μ n , ν) + CHSW p (μ n , ν) -CHSW p (µ, ν)|] ≤ E[|CHSW p (μ n , νn ) -CHSW p (μ n , ν)|] + E[|CHSW p (μ n , ν) -CHSW p (µ, ν)|] ≤ E[CHSW p (ν, νn )] + E[CHSW p (µ, μn )] ≤ E[CHSW p p (ν, νn )]
E[CHSW p p (μ n , µ)] = E So W p p (P v # μn , µ) dλ(v) = So E[W p p (P v # μn , P v # µ)] dλ(v). ( 12 
E[W p p (P v # μn , P v # ν)] ≤ C p,q Mq (P v # µ) p/q n -1/2 1 {q>2p} + n -1/2 log(n)1 {q=2p} + n -(q-p)/q 1 {q∈(p,2p)} .
(12.32) Then, noting that necessarily, P v (o) = 0 (for both the horospherical and geodesic projection, since the geodesic is of the form exp o (tv)), and using that P v is 1-Lipschitz Lemma 12.2, we can bound the moments as

Mq (P v # µ) = R |x| q d(P v # µ)(x) = M |P v (x)| q dµ(x) = M |P v (x) -P v (o)| q dµ(x) ≤ M d(x, o) q dµ(x)
= M q (µ). (12.33) Therefore, we have (12.34) and similarly, Hence, we conclude that

E[CHSW p p (μ n , µ)] ≤ C p,q M q (µ) p/q n -1/2 1 {q>2p} + n -1/2 log(n)1 {q=2p} + n -(q-p)/q 1 {q∈(p,2p)} ,
E[CHSW p p (ν n , ν)] ≤ C p,q M q (ν) p/q n -1/2 1 {q>2p} + n -1/2 log(n)1 {q=2p} + n -(q-p)/q 1 {q∈(p,2p)} . ( 12 
E[|CHSW p (μ n , νn ) -CHSW p (µ, ν)|] ≤ 2C 1/p p,q M q (ν) 1/q          n -1/(2p) if q > 2p n -1/(2p) log(n) 1/p if q = 2p
n -(q-p)/(pq) if q ∈ (p, 2p). (12.36) Proof of Proposition 3.14

Proof of Proposition 3.14. Let (v ) L =1 be iid samples of λ. Then, by first using Jensen inequality and then remembering that

E v [W p p (P v # µ, P v # ν)] = CHSW p p (µ, ν), we have E v | CHSW p p,L (µ, ν) -CHSW p p (µ, ν)| 2 ≤ E v CHSW p p,L (µ, ν) -CHSW p p (µ, ν) 2 = E v   1 L L =1 W p p (P v # µ, P v # ν) -CHSW p p (µ, ν) 2   = 1 L 2 Var v L =1 W p p (P v # µ, P v # ν) = 1 L Var v W p p (P v # µ, P v # ν) = 1 L So W p p (P v # µ, P v # ν) -CHSW p p (µ, ν) 2 dλ(v).
(12.37) 1. Lorentz model. Any point y on the geodesic obtained by the intersection between E = span(x 0 , v) and L d can be written as y = cosh(t)x 0 + sinh(t)v, (12.38) where t ∈ R. Moreover, as arccosh is an increasing function, we have (12.39) This problem is equivalent with solving .41) Finally, using that 1-tanh 2 (t) = 1 cosh 2 (t) and cosh 2 (t)-sinh 2 (t) = 1, and observing that necessarily, x, x 0 L ≤ 0, we obtain .42) and 

P v (x) = argmin y∈E∩L d d L (x, y) = argmin y∈E∩L d -x, y L .
argmin t∈R -cosh(t) x, x 0 L -sinh(t) x, v L . (12.40) Let g(t) = -cosh(t) x, x 0 L -sinh(t) x, v L , then g (t) = 0 ⇐⇒ tanh(t) = - x, v L x, x 0 L . ( 12 
cosh(t) = 1 1 --x,v L x,x 0 L 2 = -x, x 0 L x, x 0 2 L -x, v 2 L , ( 12 
sinh(t) = -x,v L x,x 0 L 1 --x,v L x,x 0 L 2 = x, v L x, x 0 2 L -x, v 2 L . ( 12 
d B (x, y) = argmin tp arccosh 1 + 2 x -γ(t) 2 2 (1 -x 2 2 )(1 -γ(t) 2 2 ) = argmin tp log x -γ(t) 2 2 -log 1 -x 2 2 -log 1 -γ(t) 2 2 = argmin tp log x -tp 2 2 -log 1 -t 2 .
(12.44)

Let g(t) = log x -tp 2 2 -log 1 -t 2 . Then, (12.45) Finally, if p, x = 0, the solution is (12.46) Now, let us suppose that x, p > 0. Then, 

g (t) = 0 ⇐⇒ t 2 - 1+ x 2 2 x,p t + 1 = 0 if p, x = 0, t = 0 if p, x = 0.
t = 1 + x 2 2 2 x, p ± 1 + x 2 2 2 x, p 2 - 1. 
s(x) =        1+ x 2 2 2 x,p - 1+ x 2 2 2 x,p 2 -1 if x, p > 0 1+ x 2 2 2 x,p + 1+ x 2 2 2 x,p 2 -1 if x, p < 0. = 1 + x 2 2 2 x, p -sign( x, p ) 1 + x 2 2 2 x, p 2 -1 = 1 + x 2 2 2 x, p - sign( x, p ) 2sign( x, p ) x, p (1 + x 2 2 ) 2 -4 x, p 2 = 1 + x 2 2 -(1 + x 2 2 ) 2 -4 x,
∀x ∈ L d , d L (γ v (t), x) = arccosh(-cosh(t) x, x 0 L -sinh(t) x, v L ) = arccosh - e t + e -t 2 x, x 0 L - e t -e -t 2 x, v L = arccosh e t 2 (-1 -e -2t ) x, x 0 L + (-1 + e -2t ) x, v L = arccosh x(t) .
(12.56)

Then, on one hand, we have x(t) → t→∞ ±∞, and using that arccosh(x

) = log x + √ x 2 -1 , we have d L (γ v (t), x) -t = log x(t) + x(t) 2 -1 e -t
= log e -t x(t) + e -t x(t)

1 - 1 x(t) 2 = ∞ log e -t x(t) + e -t x(t) 1 - 1 2x(t) 2 + o 1 x(t) 2 .
(12.57)

Moreover, Note that this proof can be found e.g. in the Appendix of [START_REF] Ghadimi Atigh | Hyperbolic Busemann Learning with Ideal Prototypes[END_REF]. We report it for the sake of completeness.

e -t x(t) = 1 2 (-1 -e -2t ) x, x 0 L + 1 2 (-1 + e -2t ) x, v L → t→∞ - 1 2 x, x 0 + v L . ( 12 
Let p ∈ S d-1 , then the geodesic from 0 to p is of the form γ p (t) = exp 0 (tp) = tanh( t 2 )p. Moreover, recall that arccosh(x) = log(x + √ x 2 -1) and

d B (γ p (t), x) = arccosh 1 + 2 tanh( t 2 )p -x 2 2 (1 -tanh 2 ( t 2 ))(1 -x 2 2 )
= arccosh(1 + x(t)), (12.60) where (1 - First, a point on the geodesic γ v is of the form y(t) = cosh(t)x 0 + sinh(t)v, (12.65) with t ∈ R.

x(t) = 2 tanh( t 2 )p -x 2 2 (1 -tanh 2 ( t 2 ))(1 -x 2 2 ) . ( 12 
( e t -1 e t +1 ) 2 )(1 -x 2 2 ) = 2e -t e t p -p -e t x -x 2 2 4e t (1 -x 2 2 ) = 1 2 p -e -t p -x -e -t x 2 2 1 -x 2 2 → t→∞ 1 2 p -x 2 2 1 -x 2 2 . ( 12 
The projection along the horosphere amounts at following the level sets of the Busemann function B v . And we have (12.66) By noticing that cosh(t) =

B v (x) = B v (y(t)) ⇐⇒ log(-x, x 0 + v L ) = log(-cosh(t)x 0 + sinh(t)v, x 0 + v L ) ⇐⇒ log(-x, x 0 + v L ) = log(-cosh(t) x 0 2 L -sinh(t) v 2 L ) ⇐⇒ log(-x, x 0 + v L = log(cosh(t) -sinh(t)) ⇐⇒ x, x 0 + v L = sinh(t) -cosh(t).
1+tanh 2 ( t 2 ) 1-tanh 2 ( t 2 ) and sinh(t) = 2 tanh( t 2 ) 1-tanh 2 ( t 2 ) , let u = tanh( t 2
), then we have

B v (x) = B v (y(t)) ⇐⇒ x, x 0 + v L = 2u 1 -u 2 - 1 + u 2 1 -u 2 = -(u -1) 2 (1 -u)(1 + u) = u -1 u + 1 ⇐⇒ u = 1 + x, x 0 + v L 1 -x, x 0 + v L .
(12.67)

We can further continue the computation and obtain, by denoting c = x, x 0 + v L ,

Bv (x) = 1 + u 2 1 -u 2 x 0 + 2u 1 -u 2 v = 1 + 1+c 1-c 2 1 -1+c 1-c 2 x 0 + 2 1+c 1-c 1 -1+c 1-c 2 v = (1 -c) 2 + (1 + c) 2 (1 -c) 2 -(1 + c) 2 x 0 + 2 (1 + c)(1 -c) (1 -c) 2 -(1 + c) 2 v = - 1 + c 2 2c x 0 - 1 -c 2 2c v = - 1 2 x, x 0 + v L (1 + x, x 0 + v 2 L )x 0 + (1 -x, x 0 + v 2 L )v .
(12.68)

2. Poincaré ball.

Let p ∈ S d-1 . First, we notice that points on the geodesic generated by p and passing through 0 are of the form x(λ) = λp where λ ∈] -1, 1[. Moreover, there is a unique horosphere S(p, x) passing through x and starting from p. The points on this horosphere are of the form (12.69) where λ * characterizes the intersection between the geodesic and the horosphere.

y(θ) = p + x(λ * ) 2 + p -x(λ * ) 2 2 cos(θ)p + sin(θ) x -x, p p x -x, p p 2 = 1 + λ * 2 p + 1 -λ 2 2 cos(θ)p + sin(θ) x -x, p p x -x, p p 2 ,
Since the horosphere are the level sets of the Busemann function, we have B p (x) = B p (λ * p). Thus, we have

B p (x) = B p (λ * p) ⇐⇒ log p -x 2 2 1 -x 2 2 = log p -λ * p 2 2 1 -λ * p 2 2 ⇐⇒ p -x 2 2 1 -x 2 2 = (1 -λ * ) 2 1 -(λ * ) 2 ⇐⇒ p -x 2 2 1 -x 2 2 = 1 -λ * 1 + λ * ⇐⇒ λ * p -x 2 2 1 -x 2 2 + 1 = 1 - p -x 2 2 1 -x 2 2 ⇐⇒ λ * = 1 -x 2 2 -p -x 2 2 1 -x 2 2 + p -x 2 2 .
(12.70)

Proof of Proposition 4.5

First, we show some Lemma.

Lemma 12.6 (Commutation of projections.). Let v ∈ span(x 0 ) ⊥ ∩ S d of the form v = (0, ṽ) where ṽ ∈ S d-1 . Then, for all x ∈ B d , y ∈ L d , P B→L Bṽ (x) = Bv P B→L (x) , (12.71) Bṽ (P L→B (y)) = P L→B ( Bv (y)) (12.72) P B→L P ṽ (x) = P v P B→L (x) , (12.73) P ṽ (P L→B (y)) = P L→B ( P v (y)). (12.74) Proof. Proof of (12.71). We first show (12.71). Let's recall the formula of the different projections.

On one hand,

∀x ∈ B d , Bṽ (x) = 1 -x 2 2 -ṽ -x 2 2 1 -x 2 2 + ṽ -x 2 2
ṽ, (12.75) (12.76) and

∀x ∈ L d , Bv (x) = - 1 2 x, x 0 + v L (1 + x, x 0 + v 2 L )x 0 + (1 -x, x 0 + v 2 L )v ,
∀x ∈ B d , P B→L (x) = 1 1 -x 2 2 (1 + x 2 2 , 2x 1 , . . . , 2x d ). (12.77) Let x ∈ B d .
First, let's compute P B→L Bṽ (x) . We note that ṽ 2 2 = 1 and therefore

Bṽ (v) 2 2 = 1 -x 2 2 -ṽ -x 2 2 1 -x 2 2 + ṽ -x 2 2 2 .
(12.78)

Then,

P B→L Bṽ (x) = 1 1 - 1-x 2 2 -ṽ-x 2 2 1-x 2 2 + ṽ-x 2 2 2 1 + 1 -x 2 2 -ṽ -x 2 2 1 -x 2 2 + ṽ -x 2 2 2 , 2 1 -x 2 2 -ṽ -x 2 2 1 -x 2 2 + ṽ -x 2 2 ṽ = 1 1 - 1-x 2 2 -ṽ-x 2 2 1-x 2 2 + ṽ-x 2 2 2 1 + 1 -x 2 2 -ṽ -x 2 2 1 -x 2 2 + ṽ -x 2 2 2 x 0 + 2 1 -x 2 2 -ṽ -x 2 2 1 -x 2 2 + ṽ -x 2 2 v = 1 -x 2 2 + ṽ -x 2 2 2 4 ṽ -x 2 2 (1 -x 2 2 ) 2(1 -x 2 2 ) 2 + 2 ṽ -x 4 2 1 -x 2 2 + ṽ -x 2 2 2 x 0 + 2 1 -x 2 2 -ṽ -x 2 2 1 -x 2 2 + ṽ -x 2 2 v = 1 2 ṽ -x 2 2 (1 -x 2 2 ) (1 -x 2 2 ) 2 + ṽ -x 4 2 x 0 + (1 -x 2 2 -ṽ -x 2 2 )(1 -x 2 2 + ṽ -x 2 2 )v = 1 2 ṽ -x 2 2 (1 -x 2 2 ) (1 -x 2 2 ) 2 + ṽ -x 4 2 x 0 + (1 -x 2 2 ) 2 -ṽ -x 4 2 v .
(12.79) Now, let's compute Bv P B→L (x) . First, let's remark that for all y ∈ L d , y, x 0 + v L = -y 0 + y 1:d , ṽ .
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Therefore, for all x ∈ B d ,

P B→L (x), x 0 + v L = 1 1 -x 2 2 (1 + x 2 2 , 2x 1 , . . . , 2x d ), x 0 + v L = 1 1 -x 2 2 -1 -x 2 2 + 2 x, ṽ = - 1 1 -x 2 2
x -ṽ 2 2 .

(12.80)

Moreover,

P B→L (x), x 0 + v 2 L = 1 (1 -x 2 2 ) 2 ṽ -x 4 2 .
(12.81) Therefore, we have

Bv P B→L (x) = Bv 1 1 -x 2 2 (1 + x 2 2 , 2x 1 , . . . , 2x d ) = - 1 -x 2 2 2 (-1 -x 2 2 + 2 x, ṽ ) 1 + P B→L (x), x 0 + v 2 L x 0 + 1 -P B→L (x), x 0 + v 2 L v = 1 -x 2 2 2 x -ṽ 2 2 (1 -x 2 2 ) 2 + ṽ -x 4 (1 -x 2 2 ) 2 x 0 + (1 -x 2 2 ) 2 -ṽ -x 4 (1 -x 2 2 ) 2 v = 1 2 x -ṽ 2 2 (1 -x 2 2 ) (1 -x 2 2 ) 2 + ṽ -x 4 2 x 0 + (1 -x 2 2 ) 2 -ṽ -x 4 2 v
= P B→L Bṽ (x) .

(12.82)

Proof of (12.72). For (12.72), we use that P B→L and P L→B are inverse from each other. Hence, for all x ∈ B d , there exists y ∈ L d such that x = P L→B (y) ⇐⇒ y = P B→L (x), and we obtain the second equality by plugging it into (12.71).

Proof of (12.73) and (12.74). Now, let's show (12.73). The proof relies on the observation that {exp x 0 (tv), t ∈ R} = P B→L ({exp 0 (tṽ), t ∈ R}) (i. (12.83)

Similarly, we obtain (12.74).

Proof of Proposition 4.5. Let µ, ν ∈ P(B d ), μ = (P B→L ) # µ, ν = (P B→L ) # ν, ṽ ∈ S d-1 an ideal point and v = (0, ṽ) ∈ span(x 0 ) ⊥ . Then, using Proposition 3.4, Lemma 12. Proof of Proposition 4.6. We will prove this proposition directly by working on the geodesics. As t v is a isometry (Proposition 3.1), for all t ∈ R, there exists a unique z on the geodesic span(x 0 , v) ∩ L d such that t = t v (z), and we can rewrite the set of integration as (12.87) For the first inclusion, let x ∈ {x ∈ L d , P v (x) = z}. By Proposition 4.1 and hypothesis, we have that

{x ∈ L d , P v (x) = t} = {x ∈ L d , P v (x) = z}.
P v (x) = 1 x, x 0 2 L -x, v 2 L -x, x 0 L x 0 + x, v L v = z. (12.88)
Let's denote E = span(v, x 0 ) the plan generating the geodesic. Then, by denoting P E the orthogonal projection on E, we have (12.89) using that v 0 = 0 since x 0 , v = v 0 = 0, and hence x, v L = x, v , that x, x 0 = x 0 = -x, x 0 L and 205 (12.88). Then, since v z ∈ span(v, x 0 ) and z, v z = 0 (by construction of R z ), we have

P E (x) = x, v v + x, x 0 x 0 = x, v L v -x, x 0 L x 0 = x, x 0 2 L -x, v 2 L z,
x, v z = P E (x), v z = x, x 0 2 L -x, v 2 L z, v z = 0. (12.90) Thus, x ∈ span(v z ) ⊥ ∩ L d .
For the second inclusion, let x ∈ span(v z ) ⊥ ∩ L d . Since z ∈ span(v z ) ⊥ (by construction of R z ), we can decompose span(v z ) ⊥ as span(v z ) ⊥ = span(z) ⊕ (span(z) ⊥ \ span(v z )). Hence, there exists λ ∈ R such that x = λz + x ⊥ . Moreover, as z ∈ span(x 0 , v), we have x, x 0 L = λ z, x 0 L and x, v L = x, v = λ z, v = λ z, v L . Thus, the projection is

P v (x) = 1 x, x 0 2 L -x, v 2 L -x, x 0 L x 0 + x, v L v = λ |λ| 1 z, x 0 2 L -z, v 2 L -z, x 0 L x 0 + z, v L v = λ |λ| z = sign(λ)z. (12.91) But, -z / ∈ L d , hence necessarily, P v (x) = z. Finally, we can conclude that {x ∈ L d , P v (x) = z} = span(v z ) ⊥ ∩ L d .

Details on Hyperbolic Spaces

In this Section, we first recall different generalizations of the Gaussian distribution on Hyperbolic spaces, with a particular focus on Wrapped normal distributions. Then, we recall how to perform Riemannian gradient descent in the Lorentz model and in the Poincaré ball.

Distributions on Hyperbolic Spaces

Riemannian normal. The first way of naturally generalizing Gaussian distributions to Riemannian manifolds is to use the geodesic distance in the density, which becomes

f (x) ∝ exp - 1 2σ 2 d M (x, µ) 2 .
It is actually the distribution maximizing the entropy [START_REF] Pennec | Intrinsic Statistics on Riemannian Manifolds: Basic Tools for Geometric Measurements[END_REF][START_REF] Said | New Riemannian Priors on the Univariate Normal Model[END_REF]. However, it is not straightforward to sample from such a distribution. For example, Ovinnikov (2019) uses a rejection sampling algorithm.

Wrapped normal distribution.

A more convenient distribution, on which we can use the parameterization trick, is the Wrapped normal distribution [START_REF] Nagano | A Wrapped Normal Distribution on Hyperbolic Space for Gradient-based Learning[END_REF]. This distribution can be sampled from by first drawing v ∼ N (0, Σ) and then transforming it into v ∈ T x 0 L d by concatenating a 0 in the first coordinate. Then, we perform parallel transport to transport v from the tangent space of x 0 to the tangent space of µ ∈ L d . Finally, we can project the samples on the manifold using the exponential map.

We recall the formula of parallel transport form x to y: .92) Since it only involves differentiable operations, we can perform the parameterization trick and e.g. optimize directly over the mean and the variance. Moreover, by the change of variable formula, we can also derive the density [START_REF] Nagano | A Wrapped Normal Distribution on Hyperbolic Space for Gradient-based Learning[END_REF][START_REF] Bose | Latent Variable Modelling with Hyperbolic Normalizing Flows[END_REF]. Let z ∼ N (0, Σ), z = (0, z) ∈ T x 0 L d , u = PT x 0 →µ (z), then the density of x = exp µ (u) is: .93) In the paper, we write x ∼ G(µ, Σ).

∀v ∈ T x L d , PT x→y (v) = v + y, v L 1 -x, y L (x + y). ( 12 
log p(x) = log p(z) -(d -1) log sinh( u L ) u L . ( 12 

Optimization on Hyperbolic Spaces

For gradient descent on hyperbolic space, we refer to (Boumal, 2023, Section 7.6) and [START_REF] Wilson | Gradient Descent in Hyperbolic Space[END_REF].

In general, for a functional f : M → R, Riemannian gradient descent is performed, analogously to the Euclidean space, by following the geodesics. Hence, the gradient descent reads as [START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF][START_REF] Bonnabel | Stochastic Gradient Descent on Riemannian Manifolds[END_REF] ∀k ≥ 0, x k+1 = exp x k -γgradf (x k ) . (12.94) Note that the exponential map can be replaced more generally by a retraction. We describe in the following paragraphs the different formulae in the Lorentz model and in the Poincaré ball.

Lorentz model. Let f : L d → R, then its Riemannian gradient is (Boumal, 2023, Proposition 7.7) gradf (x) = Proj x (J∇f (x)), (12.95) where J = diag(-1, 1, . . . , 1) and Proj x (z) = z + x, z L x. Furthermore, the exponential map is 

∀v ∈ T x L d , exp x (v) = cosh( v L )x + sinh( v L ) v v L . ( 12 
gradf (x) = (1 -θ 2 2 ) 2 4
∇f (x). ( 12.97) [START_REF] Nickel | Poincaré Embeddings for Learning Hierarchical Representations[END_REF] propose to use as retraction R x (v) = x + v instead of the exponential map, and add a projection, to constrain the value to remain within the Poincaré ball, of the form

proj(x) =    x x 2 - if x ≥ 1
x otherwise, (12.98) 207 where = 10 -5 is a small constant ensuring numerical stability. Hence, the algorithm becomes

x k+1 = proj x k -γ k (1 -x k 2 2 ) 2 4
∇f (x k ) . (12.99)

A second solution is to compute directly the exponential map derived in (Ganea et al., 2018b, Corollary 1.1):

exp x (v) = λ x cosh(λ x v 2 ) + x, v v 2 sinh(λ x v 2 ) x + 1 v 2 sinh(λ x v 2 )v 1 + (λ x -1) cosh(λ x v 2 ) + λ x x, v v 2 sinh(λ x v 2 )
, (12.100) where

λ x = 2 1-x 2 2 .

Additional Details of Experiments

Gradient flows

Denoting ν the target distribution from which we have access to samples (y i ) m i=1 , we aim at learning ν by solving the following optimization problem:

µ = argmin µ HSW µ, 1 m m i=1 δ xi . (12.101)
As we cannot directly learn µ, we model it as μ = 1 n n i=1 δ xi , and then learn the sample locations (x i ) n i=1 using a Riemannian gradient descent which we described in Appendix 12.2.2. In practice, we take n = 500 and use batches of 500 target samples at each iteration. To compute the sliced discrepancies, we always use 1000 projections. On Figure 4.4, we plot the log 2-Wasserstein with geodesic cost between the model measure μk at each iteration k and ν. We average over 5 runs of each gradient descent. Now, we describe the specific setting for the different targets.

Wrapped normal distribution.

For the first experiment, we choose as target a wrapped normal distribution G(m, Σ). In the fist setting, we use m = (1.5, 1.25, 0) ∈ L 2 and Σ = 0.1I 2 . In the second, we use m = (8, √ 63, 0) ∈ L 2 and Σ = 0.1I 2 . The learning rate is fixed as 5 for the different discrepancies, except for SWl on the second WND which lies far from origin, and for which we exhibit numerical instabilities with a learning rate too high. Hence, we reduced it to 0.1. We observed the same issue for HHSW on the Lorentz model. Fortunately, the Poincaré version, which is equal to the Lorentz version, did not suffer from these issues. It underlines the benefit of having both formulations.

Mixture of wrapped normal distributions. For the second experiment, the target is a mixture of 5 WNDs. The covariance are all taken equal as 0.01I 2 . For the first setting, the outlying means are (on the Poincaré ball) m 1 = (0, -0.5), m 2 = (0, 0.5), m 3 = (0.5, 0), m 4 = (-0.5, 0) and the center mean is m 5 = (0, 0.1). In the second setting, the outlying means are m 1 = (0, -0.9), m 2 = (0, 0.9), m 3 = (0.9, 0) and m 4 = (-0.9, 0). We use the same m 5 . The learning rate in this experiment is fixed at 1 for all discrepancies.
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Classification of Images with Busemann

Denote {(x i , y i ) n i=1 } the training set where x i ∈ R m and y i ∈ {1, . . . , C} is a label. The embedding is performed by using a neural network f θ and the exponential map at the last layer, which projects the points on the Poincaré ball, i.e. for i ∈ {1, . . . , n}, the embedding of x i is z i = exp 0 f θ (z i ) , where exp 0 is given by (12.100), or more simply by

exp 0 (x) = tanh x 2 2 x x 2 . (12.102)
The experimental setting of this experiment is the same as [START_REF] Ghadimi Atigh | Hyperbolic Busemann Learning with Ideal Prototypes[END_REF]. That is, we use a Resnet-32 backbone and optimize it with Adam [START_REF] Kingma | Adam: A Method for Stochastic Optimization[END_REF], a learning rate of 5e-4, weight decay of 5e-5, batch size of 128 and without pre-training. The network is trained for all experiments for 1110 epochs with learning rate decay of 10 after 1000 and 1100 epochs. Moreover, the C prototypes are given by the algorithm of [START_REF] Mettes | Hyperspherical Prototype Networks[END_REF] and are uniform on the sphere S d-1 .

For the additional hyperparameters in the loss (4.31), we use by default λ = 1, and a mixture of 

C

Proof of Proposition 5.2

Proof of Proposition 5.2. First, we give an orientation to the geodesic. This can be done by taking the sign of the inner product between log( P G A (M )) and A.

P A (M ) = sign( A, log( P G A (M )) F )d P A (M ), I = sign( A, log( P G A (M )) F )d (exp (Tr(A log M )A) , I) = sign( A, A, log M F A F ) A log M F A -log I F = sign( A, log M F )| A, log M F | = A, log M F = Tr(A log M ).
(12.107)

Proof of Proposition 5.3

Proof of Proposition 5.3. First, following [START_REF] Bridson | Metric Spaces of Non-Positive Curvature[END_REF], we have for all M ∈ S ++ d (R), .108) denoting γ A : t → exp(tA) is the geodesic line associated to G A . Then, we get (12.109) using that A F = 1. Then, by passing to the limit t → ∞, we find (P, θ). (12.113) Proof of Theorem 5.1

B A (M ) = lim t→∞ d LE (γ A (t), M ) -t = lim t→∞ d LE (γ A (t), M ) 2 -t 2 2t , ( 12 
d LE (γ A (t), M ) 2 -t 2 2t = 1 2t log γ A (t) -log M 2 F -t 2 = 1 2t tA -log M 2 F -t 2 = 1 2t t 2 A 2 F + log M 2 F -2t A, log M F -t 2 = -A, log M F + 1 2t log M 2 F ,
B A (t) = -A, log M F = -Tr(A log M ). ( 12 
W p p (t A # log # µ, t A # log # ν) = inf γ∈Π(µ,ν) S ++ d (R)×S ++ d (R) |t A (log(X)) -t A (log(Y ))| p dγ(X, Y ) = inf γ∈Π(µ,ν) S ++ d (R)×S ++ d (R) |P A (X) -P A (Y )| p dγ(X, Y ) = W p p (P A # µ, P A # ν), ( 12 
(P d! , θ d! )) = n! i=1 d(λ O ⊗ λ)(P i , θ i ) = d! • d(λ O ⊗ λ)(P 1 , θ 1 ), allows to define a uniform distribution λ S on {A ∈ S d (R), A F = 1}. Let A = P diagθP T with (P, θ) ∈ O d × S d-1 , then dλ S (A) = d! d(λ O ⊗ λ)
Proof of Theorem 5.1. By Proposition 3.5, we know that SPDSW is a finite pseudo-distance on P p (S ++ d (R)). We need here to show indiscernible property.

Let µ, ν ∈ P p (S ++ d (R)) such that SPDSW p (µ, ν) = 0. Then, as for all A ∈ S d (R), W p p (P A # µ, P A # ν) ≥ 0, it implies that for λ S -almost every A, W p p (P A # µ, P A # ν) = 0 which implies P A # µ = P A # ν for λ S -almost every A since W p is a distance. By taking the Fourier transform, this implies that for all s ∈ R, P A # µ(s) = P A # ν(s). But, we have

P A # µ(s) = R e -2iπts d(P A # µ)(s) = S ++ d (R) e -2iπP A (M )s dµ(M ) = S ++ d (R) e -2iπ sA,log M F dµ(M ) = S d (R) e -2iπ sA,S F d(log # µ)(S)
= log # µ(sA).

(12.114)

Hence, we get that SPDSW p (µ, ν) = 0 implies that for λ S -almost every A, 

∀s ∈ R, log # µ(sA) = P A # µ(s) = P A # ν(s) = log # ν(sA). ( 12 
µ(C) = S ++ d (R) 1 C (X) dµ(X) = S d (R) 1 C (exp(S)) d(log # µ)(S) = S d (R) 1 C (exp(S)) d(log # ν)(S) = S ++ d (R) 1 C (Y ) dν(Y ) = ν(C).
(12.116)

Hence, we conclude that µ = ν and that SPDSW p is a distance.

Proof of Theorem 5.2

To prove Theorem 5.2, we will adapt the proof of Nadjahi et al. (2020b) to our projection. Proof. By Bogachev and Ruas (2007, Theorem 2.2.5), (12.117) implies that there exists a subsequence (µ ϕ(k) ) k such that for λ S -almost every A ∈ S d (R), (12.118) As the Wasserstein distance metrizes the weak convergence, this is equivalent to

lim k→∞ S d (R) W 1 (P A # µ k , P A # µ) dλ S (A) = 0
W 1 (P A # µ ϕ(k) , P A # µ) ----→ k→∞ 0.
P A # µ ϕ(k) L ----→ k→∞ P A # µ.
Then, by Levy's characterization theorem, this is equivalent with the pointwise convergence of the characterization function, i.e. for all t ∈ R, φ

P A # µ ϕ(k) (t) ----→ k→∞ φ P A # µ (t)
. Moreover, we have for all s ∈ R, Finally, let's show that it implies the weak convergence of (µ

φ P A # µ ϕ(k) (s) = R e -its d(P A # µ ϕ(k) )(t) = S ++ d (R) e -iP A (M )s dµ ϕ(k) (M ) = S ++ d (R) e -i sA,log M F dµ ϕ(k) (M ) = S d (R) e -i sA,S F d(log # µ ϕ(k) )(S) = φ log # µ ϕ(k) (sA) ----→ k→∞ φ log # µ (sA).
ϕ(k) ) k towards µ. Let f ∈ C b (S ++ d (R)), then S ++ d (R) f dµ ϕ(k) = S d (R) f • exp d(log # µ ϕ(k) ) ----→ k→∞ S d (R) f • exp d(log # µ) = S ++ d (R)
f dµ. On the other hand, suppose that SPDSW p (µ k , µ) ----→ k→∞ 0. We first adapt Lemma S1 of (Nadjahi et al., 2020b) in Lemma 12.7 and observe that by the Hölder inequality, SPDSW 1 (µ, ν) ≤ SPDSW p (µ, ν), (12.121) and hence SPDSW 1 (µ k , µ) ----→ k→∞ 0.

By the same contradiction argument as in Nadjahi et al. (2020b), let's suppose that (µ k ) k does not converge to µ. Then, by denoting d P the Lévy-Prokhorov metric, lim k→∞ d P (µ k , µ) = 0. Hence, there exists > 0 and a subsequence (µ ϕ(k) ) k such that d P (µ ϕ(k) , µ) > .

Then, we have first that lim k→∞ SPDSW 1 (µ ϕ(k) , µ) = 0. Thus, by Lemma 12.7, there exists a subse-

quence (µ ψ(ϕ(k)) ) k such that µ ψ(ϕ(k)) L ----→ k→∞
µ which is equivalent to lim k→∞ d P (µ ψ(ϕ(k)) , µ) = 0 which contradicts the hypothesis.

We conclude that (µ k ) k converges weakly to µ.

Proof of Theorem 5.3

For the proof of Theorem 5.3, we will first recall the following Theorem:

Theorem 12.1 [START_REF] Rivin | Surface Area and other Measures of Ellipsoids[END_REF], Theorem 3). Let f : R d → R a homogeneous function of degree p ( i.e. (12.122) where ∀i ∈ {1, ..., d}, X i ∼ N (0, 1 2 ) and (X i ) i are independent.

∀α ∈ R, f (αx) = α p f (x)). Then, Γ d + p 2 S d-1 f (x) λ(dx) = Γ d 2 E[f (X)] ,
Then, making extensive use of this theorem, we show the following lemma:

Lemma 12.8.

∀S ∈ S d (R), S d-1 | diag(θ), S F | p λ(dθ) = 1 d i S 2 ii p 2 S d-1
θ p p λ(dθ). (12.123) Proof. Let f : θ → θ p p = d i=1 θ p i , then we have f (αθ) = α p f (θ) and f is p-homogeneous. By applying Theorem 12.1, we have: (12.124) On the other hand, let f : θ → | diag(θ), S F | p , then f (αθ) = α p f (θ) and f is p-homogeneous. By applying Theorem 12.1, we have:

S d-1 θ p p λ(dθ) = Γ d 2 Γ d+p 2 E[ X p p ] with X i iid ∼ N (0, 1 2 ) = Γ d 2 Γ d+p 2 d E[|X 1 | p p ] = Γ d 2 Γ d+p 2 d |t| p 1 √ π e -t 2 dt.
S d-1 | diag(θ), S F | p λ(dθ) = Γ d 2 Γ d+p 2 E[| diag(X), S F | p ] with X i iid ∼ N (0, 1 2 ) = Γ d 2 Γ d+p 2 |t| p 1 i S 2 ii π e -t 2 i z 2
ii dt as diag(X),

S F = i S ii X i ∼ N 0, i S 2 ii 2 = Γ d 2 Γ d+p 2 i S 2 ii p 2 |u| p 1 i S 2 ii π e -u 2 i S 2 ii du by u = t i S 2 ii = Γ d 2 Γ d+p 2 i S 2 ii p 2 |u| p 1 √ π e -u 2 du.
(12.125) Hence, we deduce that

S d-1 | diag(θ), S F | p λ(dθ) = 1 d i S 2 ii p 2 S d-1
θ p p dλ(θ). (12.126) Proof of Theorem 5.3. First, we show the upper bound of SPDSW p . Let µ, ν ∈ P p (S ++ d (R) and γ ∈ Π(µ, ν) an optimal coupling. Then, following the proof of Bonnotte (2013, Proposition 5.1.3), and using Lemma 12.1 combined with the fact that (P A ⊗ P A ) # γ ∈ Π(P A # µ, P A # ν) for any A ∈ S d (R) such that A F = 1, we obtain

SPDSW p p (µ, ν) = S d (R) W p p (P A # µ, P A # ν) dλ S (A) ≤ S d (R) S ++ d (R)×S ++ d (R) |P A (X) -P A (Y )| p dγ(X, Y ) dλ S (A) = S d (R) S ++ d (R)×S ++ d (R) | A, log X -log Y F | p dγ(X, Y ) dλ S (A) = S d-1 O d S ++ d (R)×S ++ d (R) | P diag(θ)P T , log X -log Y F | p dγ(X, Y ) dλ O (P )dλ(θ) = S d-1 O d S ++ d (R)×S ++ d (R) | diag(θ), P T (log X -log Y )P F | p dγ(X, Y ) dλ O (P )dλ(θ).
(12.127) By Lemma 12.8, noting S = P T (log X -log Y )P , we have

S d-1 | diag(θ), S F | p dλ(θ) = 1 d i S 2 ii p 2 S d-1 θ p p dλ(θ) ≤ 1 d S p F S d-1
θ p p dλ(θ), (12.128) since

S 2 F = i,j S 2 ij ≥ i S 2
ii . Moreover, S F = P T (log X -log Y )P F = log X -log Y F . Hence, coming back to (12.127), we find

SPDSW p p (µ, ν) ≤ 1 d S d-1 θ p p dλ(θ) S ++ d (R)×S ++ d (R) log X -log Y p F dγ(X, Y ) = 1 d S d-1 θ p p dλ(θ) W p p (µ, ν) = c p d,p W p p (µ, ν).
(12.129) since γ is an optimal coupling between µ and ν for the Wasserstein distance with Log-Euclidean cost.

For the lower bound, let us first observe that (12.130) where we used Lemma 12.1. Here, note that W 1 must be understood with the groundcost metric which makes sense given the space, i.e. d LE for S ++ d (R) and • F for S d (R). Using Proposition 5.4, we have SymSW 1 (log # µ, log # ν) = SPDSW 1 (µ, ν). (12.131) Therefore, as S d (R) is an Euclidean space of dimension d(d+1)/2, we can use (Bonnotte, 2013, Lemma 5.1.4) and we obtain that

W 1 (µ, ν) = inf γ∈Π(µ,ν) S ++ d (R)×S ++ d (R) d LE (X, Y ) dγ(X, Y ) = inf γ∈Π(µ,ν) S ++ d (R)×S ++ d (R) log X -log Y F dγ(X, Y ) = inf γ∈Π(µ,ν) S d (R)×S d (R) U -V F d(log ⊗ log) # γ(U, V ) = inf γ∈Π(log # µ,log # ν) S d (R)×S d (R) U -V F dγ(U, V ) = W 1 (log # µ, log # ν),
W 1 (log # µ, log # ν) ≤ C d(d+1)/2 R d(d+1)/(d(d+1)+2) SymSW 1 (log # µ, log # ν) 2/(d(d+1)+2) .
(12.132)

Then, using that SymSW .133) Now, following the proof of Bonnotte (2013, Theorem 5.1.5), we use that on one hand, W p p (µ, ν) ≤ (2R) p-1 W 1 (µ, ν), and on the other hand, by Hölder, SPDSW 1 (µ, ν) ≤ SPDSW p (µ, ν). Hence, using inequalities (12.129) and (12.133), we get 2/(d(d+1)) SPDSW 1 (µ, ν) 2/(d(d+1)+2) .

1 (log # µ, log # ν) = SPDSW 1 (µ, ν) and W 1 (log # µ, log # ν) = W 1 (µ, ν), we ob- tain W 1 (µ, ν) ≤ C d(d+1)/2 R d(d+1)/(d(d+1)+2) SPDSW 1 (µ, ν) 2/(d(d+1)+2) . ( 12 
SPDSW p p (µ, ν) ≤ c p d,p W p p (µ, ν) ≤ (2R) p-1 W 1 (µ, ν) ≤ 2 p-1 C d(d+1)/2 R p-1+d(d+1)/(d(d+1)+2) SPDSW 1 (µ, ν) 2/(d(d+1)/2) = C d d,p R p-
(12.134) 

Domain Adaptation for BCI

Alignement. We plot on Figure 12.4 the classes of the target session (circles) and of the source session after alignment (crosses) on each subject. We observe that the classes seem to be well aligned, which explains why simple transformations work on this data-set. Hence, minimizing a discrepancy allows to align the classes even without taking them into account in the loss. More complicated data-sets might require taking into account the classes for the alignment.

Cross Subject Task. In Table 12.1, we add the results obtained on the cross subject task. On the column "subjects", we denote the source subject, and we report in the table the mean of the accuracies obtained over all other subjects as targets. The results for AISTODA are taken from Yair et al. (2019, Table 1.b, Alg.1 (u)). The preprocessing and hyperparameters might not be the same as in our setting.

We add on Table 12.2 the detailed accuracies between subjects (with on the rows the Table, and on the columns the targets) for SPDSW, LEW, and when applying the classifier on the source. L = 200 projections. For the Sinkhorn algorithm, we use a stopping threshold of 10 -10 with maximum 10 5 iterations and a regularization parameter of = 1.

Brain Age Prediction

We reuse the code for preprocessing steps and benchmarking procedure described in [START_REF] Engemann | A Reusable Benchmark of Brain-Age Prediction from M/EEG Resting-State Signals[END_REF] for the CamCAN data-set, and available at https://github.com/meeg-ml-benchmarks/ brain-age-benchmark-paper, which we recall here.

The data consist of measurements from 102 magnetometers and 204 gradiometers. First, we apply a band-pass filtering between 0.1Hz and 49Hz. Then, the signal is subsampled with a decimation factor of 5, leading to a sample frequency of 200Hz. Then, we apply the temporal signal-space-separation (tSSS). Default settings were applied for the harmonic decomposition (8 components of the internal sources, 3 for the external sources) on a 10-s sliding window. To discard segments for which inner and outer signal components were poorly distinguishable, we applied a correlation threshold of 98%.

For analysis, the band frequencies used are the following: (0.1Hz, 1Hz), (1Hz, 4Hz), (4Hz, 8Hz), (8Hz, 15Hz), (15Hz,26Hz),(26Hz,35Hz),(35Hz,49Hz). The rank of the covariance matrices obtained after OAS is reduced to 53 with a PCA, which leads to the best score on this problem as mentioned in [START_REF] Sabbagh | Predictive Regression Modeling with MEG/EEG: from Source Power to Signals and Cognitive States[END_REF].

The code for the MEG experiments is essentially based on the work by [START_REF] Engemann | A Reusable Benchmark of Brain-Age Prediction from M/EEG Resting-State Signals[END_REF], the class SPDSW available in the supplementary material, and the Kernel Ridge Regression of scikit-learn. The full version will be added later in order to respect anonymity.

Domain Adaptation for BCI

For both the optimization over particles and over transformations, we use geoopt [START_REF] Kochurov | Geoopt: Riemannian Optimization in Pytorch[END_REF] with the Riemannian gradient descent. We now detail the hyperparameters and the procedure.

First, the data from the BCI Competition IV 2a are preprocessed using the code from [START_REF] Hersche | Fast and Accurate Multiclass Inference for MI-BCIs using large Multiscale Temporal and Spectral Features[END_REF] available at https://github.com/MultiScale-BCI/IV-2a. We applied a band-pass filter between Proof of Proposition 6.1. Optimal α. Let µ ∈ P 2 (S 1 ), ν = Unif(S 1 ). Since ν is the uniform distribution on S 1 , its cdf is the identity on [0, 1] (where we identified S 1 and[0, 1]). We can extend the cdf F on the real line as in (Rabin et al., 2011) with the convention F (y + 1) = F (y) + 1. Therefore, F ν = Id on R. Moreover, we know that for all x ∈ S 1 , (

F ν -α) -1 (x) = F -1 ν (x + α) = x + α and W 2 2 (µ, ν) = inf α∈R 1 0 |F -1 µ (t) -(F ν -α) -1 (t)| 2 dt. (12.135) For all α ∈ R, let f (α) = 1 0 F -1 µ (t) -(F ν -α) -1 (t)
2 dt. Then, we have: (12.136) where we used that (

∀α ∈ R, f (α) = 1 0 F -1 µ (t) -t -α 2 dt = 1 0 F -1 µ (t) -t 2 dt + α 2 -2α 1 0 (F -1 µ (t) -t) dt = 1 0 F -1 µ (t) -t 2 dt + α 2 -2α 1 0 x dµ(x) - 1 2 , 
F -1 µ ) # Unif([0, 1]) = µ. Hence, f (α) = 0 ⇐⇒ α = 1 0 x dµ(x) -1 2 . Closed-form for empirical distributions. Let (x i ) n i=1 ∈ [0, 1[ n such that x 1 < • • • < x n and let µ n = 1 n n i=1 δ xi a discrete distribution.
To compute the closed-form of W 2 between µ n and ν = Unif(S 1 ), we first have that the optimal α is

α n = 1 n n i=1 x i -1
2 . Moreover, we also have:

W 2 2 (µ n , ν) = 1 0 F -1 µn (t) -(t + αn ) 2 dt = 1 0 F -1 µn (t) 2 dt -2 1 0 tF -1 µn (t)dt -2α n 1 0 F -1 µn (t)dt + 1 3 + αn + α2 n .
(12.137)

Then, by noticing that

F -1 µn (t) = x i for all t ∈ [F (x i ), F (x i+1 )[, we have 1 0 tF -1 µn (t)dt = n i=1 i n i-1 n tx i dt = 1 2n 2 n i=1
x i (2i -1), (12.138)

1 0 F -1 µ (t) 2 dt = 1 n n i=1 x 2 i , 1 0 F -1 µ (t)dt = 1 n n i=1
x i , (12.139) and we also have: .140) Then, by plugging these results into (12.137), we obtain

αn + α2 n = 1 n n i=1 x i - 1 2 + 1 n n i=1 x i 2 + 1 4 - 1 n n i=1 x i = 1 n n i=1 x i 2 - 1 4 . ( 12 
W 2 2 (µ n , ν) = 1 n n i=1 x 2 i - 1 n 2 n i=1 (2i -1)x i -2 1 n n i=1 x i 2 + 1 n n i=1 x i + 1 3 + 1 n n i=1 x i 2 - 1 4 = 1 n n i=1 x 2 i - 1 n n i=1 x i 2 + 1 n 2 n i=1 (n + 1 -2i)x i + 1 12 .
(12.141)

Proof of the closed-form (6.10)

Here, we show the equality derived in (6.10), which we recall:

∀U ∈ V d,2 , ∀x ∈ S d-1 , P U (x) = U T argmin y∈span(U U T )∩S d-1 d S d-1 (x, y) = argmin z∈S 1 d S d-1 (x, U z). (12.142) Proof. Let U ∈ V d,2 .
Then the great circle generated by U ∈ V d,2 is defined as the intersection between span(U U T ) and S d-1 . And we have the following characterization:

x ∈ span(U U T ) ∩ S d-1 ⇐⇒ ∃y ∈ R d , x = U U T y and x 2 2 = 1 ⇐⇒ ∃y ∈ R d , x = U U T y and U U T y 2 2 = y T U U T y = U T y 2 2 = 1 ⇐⇒ ∃z ∈ S 1 , x = U z.
And we deduce that

∀U ∈ V d,2 , x ∈ S d-1 , P U (x) = argmin z∈S 1 d S d-1 (x, U z).
(12.143)

Proof of Lemma 6.1

Proof of Lemma 6.1. (12.144) using that x = p E (x) + p E ⊥ (x).

Let U ∈ V d,2 and x ∈ S d-1 such that U T x = 0. Denote U = (u 1 u 2 ), i.e. the 2-plane E is E = span(U U T ) = span(u 1 , u 2 ) and (u 1 , u 2 ) is an orthonormal basis of E. Then, for all x ∈ S d-1 , the projection on E is p E (x) = u 1 , x u 1 + u 2 , x u 2 = U U T x. Now, let us compute the geodesic distance between x ∈ S d-1 and p E (x) p E (x) 2 ∈ E ∩ S d-1 : d S d-1 x, p E (x) p E (x) 2 = arccos x, p E (x) p E (x) 2 = arccos( p E (x) 2 ),
Let y ∈ E ∩ S d-1 another point on the great circle. By the Cauchy-Schwarz inequality, we have (12.145) Therefore, using that arccos is decreasing on (-1, 1), .147) Finally, by noticing that the projection is unique if and only if U T x = 0, and using (Bardelli and Mennucci, 2017, Proposition 4.2) which states that there is a unique projection for a.e. x, we deduce that {x ∈ S d-1 , U T x = 0} is of measure null and hence, for a.e. x ∈ S d-1 , we have the result.

x, y = p E (x), y ≤ p E (x) 2 y 2 = p E (x) 2 .
d S d-1 (x, y) = arccos( x, y ) ≥ arccos( p E (x) 2 ) = d S d-1 x, p E (x) p E (x) 2 . ( 12 
= p E (x) p E (x) 2 = U U T x U U T x 2 . Finally, using that U U T x 2 = x T U U T U U T x = x T U U T x = U T x 2 , we deduce that P U (x) = U T x U T x 2 . ( 12 

Proofs of Section 6.3

Proof of Proposition 6.2

Proof of Proposition 6.2. Let p ≥ 1. First, it is straightforward to see that for all µ, ν ∈ P p (S d-1 ), SSW p (µ, ν) ≥ 0, SSW p (µ, ν) = SSW p (ν, µ), µ = ν =⇒ SSW p (µ, ν) = 0 and that we have the triangular inequality since (12.148) using the triangular inequality for W p and the Minkowski inequality. Therefore, it is at least a pseudodistance.

∀µ, ν, α ∈ P p (S d-1 ), SSW p (µ, ν) = V d,2 W p p (P U # µ, P U # ν) dσ(U ) 1 p ≤ V d,2 W p (P U # µ, P U # α) + W p (P U # α, P U # ν) p dσ(U ) 1 p ≤ V d,2 W p p (P U # µ, P U # α) dσ(U ) 1 p + V d,2 W p p (P U # α, P U # ν) dσ(U ) 1 p = SSW p (µ, α) + SSW p (α, ν),
Also, note that P

U0 (O U x) = U T 0 O U x U T 0 O U x 2 = U T x U T x 2 = P U (x). Then, Rf, g S 1 ×V d,2 = S 1 V d,2 Rf (z, U )g(z, U ) dσ(U )dσ 1 (z) = S 1 V d,2 R fU (z, U 0 )g(z, U ) dσ(U )dσ 1 (z) = 2π 0 V d,2 R fU ((cos θ d-1 , sin θ d-1 ), U 0 )g((cos θ d-1 , sin θ d-1 ), U ) dσ(U )dθ d-1 = 2π 0 V d,2 [0,π] d-2 fU (ϕ(θ 1 , . . . , θ d-1 ))g((cos θ d-1 , sin θ d-1 ), U ) d-2 i=1 sin(θ i ) d-i-1 dθ 1 . . . dθ d-2 dσ(U )dθ d-1 = V d,2 S d-1 fU (y)g(P U0 (y), U ) dσ d (y)dσ(U ) using y = ϕ(θ 1 , . . . , θ d-1 ) = V d,2 S d-1 f (O T U y)g(P U0 (y), U ) dσ d (y)dσ(U ) = V d,2 S d-1 f (x)g(P U0 (O U x), U ) dσ d (x)dσ(U ) using x = O T U y and rotational invariance of σ d = V d,2 S d-1 f (x)g(P U (x), U ) dσ d (x)dσ(U ) using that U = O T U U 0 = S d-1 f (x) R * g(x) dσ d (x) = f, R * g S d-1 . (12.152)
Proof of Proposition 6.5

Proof of Proposition 6.5.

Let g ∈ C b (S 1 × V d,2
),b y applying the Fubini theorem,

V d,2 S 1 g(z, U ) ( Rµ) U (dz) dσ(U ) = S 1 ×V d,2 g(z, U ) d( Rµ)(z, U ) = S d-1 R * g(x) dµ(x) = S d-1 V d,2 g(P U (x), U ) dσ(U )dµ(x) = V d,2 S d-1 g(P U (x), U ) dµ(x)dσ(U ) = V d,2 S 1 g(z, U ) d(P U # µ)(z)dσ(U ). (12.153) Hence, for σ-almost every U ∈ V d,2 , ( Rµ) U = P U # µ.
Proof of Proposition 6.6

Proof of Proposition 6.6. 1) , then for all y

Let f ∈ L 1 (S d-1 ), z ∈ S 1 , U ∈ V d,2 , then by Proposition 6.3, Rf (z, U ) = S d-1 ∩F f (x)1 { x,U z >0} dVol(x). ( 12 
(z, U ) = O(F ∩S d-1 ) f (O T y)1 { O T y,U z >0} dVol(y) = F ∩S d-1 f (O T y)1 { y,
= 0. Let J = I d-1 0 1,d-1 ∈ R d×(d-
∈ F ∩ S d-1 , y = J ỹ where ỹ ∈ S d-2 is composed of the d -1 first coordinates of y. Let's define, for all ỹ ∈ S d-2 , f (ỹ) = f (O T J ỹ), Ũ = J T OU . Then, since F ∩ S d-1 ∼ = S d-2 , we can write: Rf (z, U ) = S d-2 f (ỹ)1 { ỹ, Ũ z >0} dVol(ỹ) = H d-2 f ( Ũ z). ( 12 

.156)

Proof of Proposition 6.7

First, we recall Lemma 2.3 of [START_REF] Rubin | Inversion and Characterization of the Hemispherical Transform[END_REF] on S d-2 . In the following, we omit the indices for H which is always on S d-2 . Note that for µ ∈ P(S d-2 ), Hµ(x) = µ {x ∈ S d-2 , x, y ≥ 0} and for f ∈ L 1 (S d-2 ), Hµ, f = µ, Hf . Lemma 12.9 (Lemma 2.3 [START_REF] Rubin | Inversion and Characterization of the Hemispherical Transform[END_REF]). ker(H) = {µ ∈ M even (S d-2 ), µ(S d-2 ) = 0} where M even is the set of even measures, i.e. measures such that for all f

∈ C(S d-2 ), µ, f = µ, f -where f -(x) = f (-x) for all x ∈ S d-2 .
Proof of Proposition 6.7. Let µ ∈ M ac (S d-1 ). First, we notice that the density of Rµ w.r.

t. λ ⊗ σ is, for all z ∈ S 1 , U ∈ V d,2 , ( Rµ)(z, U ) = 1 2π S d-1 1 {P U (x)=z} dµ(x) = 1 2π F ∩S d-1 1 { x,U z >0} dµ(x). ( 12 
.157) Indeed, using Proposition 6.4, and Proposition 6.3, we have for all

g ∈ C b (S 1 × V d,2 ), Rµ, g S 1 ×V d,2 = µ, R * g S d-1 = S d-1 R * g(x) dµ(x) = S d-1 V d,2 g(P U (x), U ) dσ(U )dµ(x) = 1 2π S d-1 S 1 V d,2 g(z, U )1 {z=P U (x)} dσ(U )dVol(z)dµ(x) = 1 2π V d,2 ×S 1 g(z, U ) S d-1 1 {z=P U (x)} dµ(x) dVol(z)dσ(U ) = 1 2π V d,2 ×S 1 g(z, U ) F ∩S d-1 1 { x,U z >0} dµ(x) dVol(z)dσ(U ).
(12.158)

Hence, using Proposition 6.6, we can write ( Rµ)(z,

U ) = 1 2π (Hμ)( Ũ z) where μ = J T # O # µ. Now, let µ ∈ ker( R), then for all z ∈ S 1 , U ∈ V d,2 , Rµ(z, U ) = Hμ( Ũ z) = 0 and hence μ ∈ ker(H) = {μ ∈ M even (S d-2 ), μ(S d-2 ) = 0}.
First, let's show that µ ∈ M even (S d-1 ). Let f ∈ C(S d-1 ) and U ∈ V d,2 , then, by using the same notation as in Propositions 6.3 and 6.6, we have (12.159) using for the last line all the opposite transformations. Therefore, µ ∈ M even (S d-1 ). Now, we need to find on which set the measure is null. We have 

µ, f S d-1 = S d-1 f (x) dµ(x) = 1 2π S 1 S d-1 f (x)1 {z=P U (x)} dµ(x)dVol(z) = 1 2π S 1 F ∩S d-1 f (x)1 { x,U z >0} dµ(x)dVol(z) by Prop. 6.3 = 1 2π S 1 S d-2 f (y)1 { y, Ũ z >0} dμ(y)dVol(z) = 1 2π S 1 Hμ( Ũ z), f S d-2 dVol(z) = 1 2π S 1 μ, H f ( Ũ z) S d-2 dVol(z) = 1 2π S 1 μ, (H f ) -( Ũ z) S d-2 dVol(z) since μ ∈ M even = S d-1 f -(x) dµ(x) = µ, f - S d-1 ,
∀z ∈ S 1 , U ∈ V d,2 , μ(S d-2 ) = 0 ⇐⇒ ∀z ∈ S 1 , U ∈ V d,2 , µ(O -1 ((J T ) -1 (S d-2 ))) = µ(F ∩ S d-1 ) = 0. ( 12 
( R) = {µ ∈ M even (S d-1 ), ∀U ∈ V d,2 , ∀z ∈ S 1 , F = span(U U T ) ⊥ ∩ span(U z), µ(F ∩ S d-1 ) = 0}. (12.161) Moreover, we have that ∪ U,z F U,z ∩ S d-1 = {H ∩ S d-1 ⊂ R d , dim(H) = d -1}.
Indeed, on the one hand, let H an hyperplane, x ∈ H ∩ S d-1 , U ∈ V d,2 , and note z = P U (x). Then,

x ∈ F ∩ S d-1 by Proposition 6.3 and 

H ∩ S d-1 ⊂ ∪ U,z F U,z . On the other hand, let U ∈ V d,2 , z ∈ S 1 , F is a hyperplane since dim(F ) = d -1 and therefore F ∩ S d-1 ⊂ {H, dim(H) = d -1}. Finally, we deduce that ker( R) = µ ∈ M even (S d-1 ), ∀H ∈ G d,d-1 , µ(H ∩ S d-1 ) = 0 . ( 12 
(µ k , µ) ----→ k→∞ 0.
Proof of Proposition 6.9

Proof of Proposition 6.9. By using the triangle inequality, Fubini-Tonelli, and the hypothesis on the sample complexity of W p p on S 1 , we obtain:

E[|SSW p p (μ n , νn ) -SSW p p (µ, ν)|] = E V d,2 W p p (P U # μn , P U # νn ) -W p p (P U # µ, P U # ν) dσ(U ) ≤ E V d,2 W p p (P U # μn , P U # νn ) -W p p (P U # µ, P U # ν) dσ(U ) = V d,2 E W p p (P U # μn , P U # νn ) -W p p (P U # µ, P U # ν) dσ(U ) ≤ V d,2 β(p, n) dσ(U ) = β(p, n).
(12.163)

Proof of Proposition 6.10

Proof of Proposition 6.10. Let (U i ) L i=1 be iid samples of σ. Then, by first using Jensen inequality and then remembering that E U [W p p (P U # µ, P U # ν)] = SSW p p (µ, ν), we have

E U | SSW p p,L (µ, ν) -SSW p p (µ, ν)| 2 ≤ E U SSW p p,L (µ, ν) -SSW p p (µ, ν) 2 = E U   1 L L i=1 W p p (P Ui # µ, P Ui # ν) -SSW p p (µ, ν) 2   = 1 L 2 Var U L i=1 W p p (P Ui # µ, P Ui # ν) = 1 L Var U W p p (P U # µ, P U # ν) = 1 L V d,2 W p p (P U # µ, P U # ν) -SSW p p (µ, ν) 2 dσ(U ).
(12.164)

Background on the Sphere

Uniqueness of the Projection

Here, we discuss the uniqueness of the projection P U for almost every x. For that, we recall some results of [START_REF] Bardelli | Probability Measures on Infinite-Dimensional Stiefel Manifolds[END_REF].

Let M be a closed subset of a complete finite-dimensional Riemannian manifold N . Let d be the Riemannian distance on N . Then, the distance from the set M is defined as

d M (x) = inf y∈M d(x, y).
(12.165)

The infimum is a minimum since M is closed and N locally compact, but the minimum might not be unique. When it is unique, let's denote the point which attains the minimum as π(x), i.e. d(x, π(x)) = d M (x). From this Proposition, they further deduce that the measure π # γ is well defined on M with γ a locally absolutely continuous measure w.r.t. the Lebesgue measure.

In our setting, for all U ∈ V d,2 , we want to project a measure µ ∈ P(S d-1 ) on the great circle span(U U T )∩S -1 . Hence, we have N = S d-1 which is a complete finite-dimensional Riemannian manifold and M = span(U U T ) ∩ S d-1 a closed set in N . Therefore, we can apply Proposition 12.1 and the pushforward measures are well defined for absolutely continuous measures.

Optimization on the Sphere

Let F : S d-1 → R be some functional on the sphere. Then, we can perform a gradient descent on a Riemannian manifold by following the geodesics, which are the counterpart of straight lines in R d . Hence, the gradient descent algorithm [START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF][START_REF] Bonnabel | Stochastic Gradient Descent on Riemannian Manifolds[END_REF] reads as ∀k ≥ 0, x k+1 = exp x k -γgradf (x) , (12.166) where for all x ∈ S d-1 , exp x :

T x S d-1 → S d-1 is a map from the tangent space T x S d-1 = {v ∈ R d , x, v = 0} to S d-1 such that for all v ∈ T x S d-1 , exp x (v) = γ v (1)
with γ v the unique geodesic starting from x with speed v, i.e. γ(0) = x and γ (0) = v.

For S d-1 , the exponential map is known and is .167) Moreover, the Riemannian gradient on S d-1 is known as (Absil et al., 2009, Eq. 3.37) gradf For more details, we refer to [START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF][START_REF]An Introduction to Optimization on Smooth Manifolds[END_REF].

∀x ∈ S d-1 , ∀v ∈ T x S d-1 , exp x (v) = cos( v 2 )x + sin( v 2 ) v v 2 . ( 12 
(x) = Proj x (∇f (x)) = ∇f (x) -∇f (x), x x, ( 12 

Von Mises-Fisher Distribution

The von Mises-Fisher (vMF) distribution is a distribution on S d-1 characterized by a concentration parameter κ > 0 and a location parameter µ ∈ S d-1 through the density

∀θ ∈ S d-1 , f vMF (θ; µ, κ) = κ d/2-1 (2π) d/2 I d/2-1 (κ)
exp(κµ T θ), (12.169) where I ν (κ) = 1 2π π 0 exp(κ cos(θ)) cos(νθ)dθ is the modified Bessel function of the first kind. Several algorithms allow to sample from it, see e.g. [START_REF] Wood | Simulation of the Von Mises Fisher Distribution[END_REF][START_REF] Ulrich | Computer Generation of Distributions on the M-Sphere[END_REF] for algorithms using rejection sampling or [START_REF] Kurz | Stochastic Sampling of the Hyperspherical Von Mises-Fisher Distribution without Rejection Methods[END_REF] without rejection sampling.

For d = 1, the vMF coincides with the von Mises (vM) distribution, which has for density

∀θ ∈ [-π, π[, f vM (θ; µ, κ) = 1 I 0 (κ)
exp(κ cos(θ -µ)), (12.170) with µ ∈ [0, 2π[ the mean direction and κ > 0 its concentration parameter. We refer to (Mardia et al., 2000, Section 3.5 and Chapter 9) for more details on these distributions.

In particular, for κ = 0, the vMF (resp. vM) distribution coincides with the uniform distribution on the sphere (resp. the circle).

Jung (2021) studied the law of the projection of a vMF on a great circle. In particular, they showed that, while the vMF plays the role of the normal distributions for directional data, the projection actually does not follow a von Mises distribution. More precisely, they showed the following theorem: Theorem 12.2 (Theorem 3.1 in [START_REF] Jung | Geodesic Projection of the Von Mises-Fisher Distribution for Projection Pursuit of Directional Data[END_REF] [START_REF] Chowdhury | [END_REF] and T = P U (X) the projection on the great circle generated by U . Then, the density function of T is (12.171) where δ is the deviation of the great circle (geodesic) from µ and the mixing density is

). Let d ≥ 3, X ∼ vMF(µ, κ) ∈ S d-1 , U ∈ V d,
∀t ∈ [-π, π[, f (t) = 1 0 f R (r)f vM (t; 0, κ cos(δ)r) dr,
∀r ∈]0, 1[, f R (r) = 2 I * ν (κ) I 0 (κ cos(δ)r)r(1 -r 2 ) ν-1 I * ν-1 (κ sin(δ) 1 -r 2 ), (12.172 
)

with ν = (d -2)/2 and I * ν (z) = ( z 2 ) -ν I ν (z) for z > 0, I * ν (0) = 1/Γ(ν + 1).
Hence, as noticed by [START_REF] Jung | Geodesic Projection of the Von Mises-Fisher Distribution for Projection Pursuit of Directional Data[END_REF], in the particular case κ = 0, i.e. X ∼ Unif(S d-1 ), then .173) and hence T ∼ Unif(S 1 ).

f (t) = 1 0 f R (r)f vM (t; 0, 0) dr = f vM(t;0,0) 1 0 f R (r)dr = f vM (t; 0, 0), ( 12 

Normalizing Flows on the Sphere

Normalizing flows [START_REF] Papamakarios | Normalizing Flows for Probabilistic Modeling and Inference[END_REF]) are invertible transformations. There has been a recent interest in defining such transformations on manifolds, and in particular on the sphere [START_REF] Rezende | Normalizing Flows on Tori and Spheres[END_REF]Cohen et al., 2021a;[START_REF] Rezende | Implicit Riemannian Concave Potential Maps[END_REF].

Exponential map normalizing flows. Here, we implemented the Exponential map normalizing flows introduced in [START_REF] Rezende | Normalizing Flows on Tori and Spheres[END_REF]. The transformation T is ∀x ∈ S d-1 , z = T (x) = exp x Proj x (∇φ(x)) , (12.174) where φ

(x) = K i=1 αi βi e βi(x T µi-1) , α i ≥ 0, i α i ≤ 1, µ i ∈ S d-1
and β i > 0 for all i. (α i ) i , (β i ) i and (µ i ) i are the learnable parameters.

The density of z can be obtained as .175) where J f is the Jacobian in the embedded space and E(x) it the matrix whose columns form an orthonormal basis of T x S d-1 . The common way of training normalizing flows is to use either the reverse or forward KL divergence. Here, we use them with a different loss, namely SSW.

p Z (z) = p X (x) det E(x) T J T (x) T J T (x)E(x) -1 2 , ( 12 

Stereographic projection.

The stereographic projection ρ : S d-1 → R d-1 maps the sphere S d-1 to the Euclidean space. A strategy first introduced in [START_REF] Gemici | Normalizing Flows on Riemannian Manifolds[END_REF] is to use it before applying a normalizing flows in the Euclidean space in order to map some prior, and which allows to perform density estimation.

More precisely, the stereographic projection is defined as .176) and its inverse is .178) where we used the formula of [START_REF] Gemici | Normalizing Flows on Riemannian Manifolds[END_REF] for the change of variable formula of ρ, and where p Z is the density of some prior on R d-1 , typically of a standard Gaussian. We refer to [START_REF] Gemici | Normalizing Flows on Riemannian Manifolds[END_REF][START_REF] Mathieu | Riemannian Continuous Normalizing Flows[END_REF] for more details about these transformations.

∀x ∈ S d-1 , ρ(x) = x 2:d 1 + x 1 , ( 12 
∀u ∈ R d-1 , ρ -1 (u) = 2 u u 2 2 +1 1 -2 u 2 2 +1 . ( 12 
(x) = log p Z (z) + log | det J f (z)| - 1 2 log | det J T ρ -1 J ρ -1 (ρ(x))| = log p Z (z) + log | det J f (z)| -d log 2 ρ(x) 2 2 + 1 , ( 12 

Details of the Experiments

Gradient Flows on Mixture of von Mises-Fisher Distributions

For the experiment in Section 6.5.1, we use as target distribution a mixture of 6 vMF distributions from which we have access to samples. We refer to Section 12.4.4 for background on vMF distributions.

The 6 vMF distributions have weights 1/6, concentration parameter κ = 10 and location parameters µ 1 = (1, 0, 0), µ 2 = (0, 1, 0), µ 3 = (0, 0, 1), µ 4 = (-1, 0, 0), µ 5 = (0, -1, 0) and µ 6 = (0, 0, -1).

We approximate the distribution using the empirical distribution, i.e. μ = 1 n n i=1 δ xi and we optimize over the particles (x i ) n i=1 . To optimize over particles, we can either use a projected gradient descent:

   x (k+1) = x (k) -γ∇ x (k) SSW 2 2 (μ k , ν) x (k+1) = x (k+1)
x (k+1) 2 , (12.179) or a Riemannian gradient descent on the sphere [START_REF] Absil | Optimization Algorithms on Matrix Manifolds[END_REF] (see Section 12.4.4 for more details). Note that the projected gradient descent is a Riemannian gradient descent with retraction [START_REF]An Introduction to Optimization on Smooth Manifolds[END_REF].

Earth data estimation

Let T be a normalizing flow (NF). For a density estimation task, we have access to a distribution µ through samples (x i ) n i=1 , i.e. through the empirical measure μn = 1 n n i=1 δ xi . And the goal is to find an invertible transformation T such that T # µ = p Z , where p Z is a prior distribution for which we know the density. In that case, indeed, the density of µ, denoted as f µ can be obtained as ∀x, f µ (x) = p Z (T (x))| det J T (x)|. (12.180) For the invertible transform, we propose to use normalizing flows on the sphere (see Appendix 12.4.4). We use two different normalizing flows, exponential map normalizing flows [START_REF] Rezende | Normalizing Flows on Tori and Spheres[END_REF] and Real NVP [START_REF] Dinh | Density Estimation using Real NVP[END_REF] + stereographic projection [START_REF] Gemici | Normalizing Flows on Riemannian Manifolds[END_REF] which we call "Stereo" in Table 6.1.

To fit T # µ = p Z , we use either SSW, SW on the sphere, or SW on R d-1 for the stereographic projection based NF. For the exponential map normalizing flow, we compose 48 blocks, each one with 100 components. These transformations have 24000 parameters. For Real NVP, we compose 10 blocks of Real NVPs, with shifting and scaling as multilayer perceptrons, composed of 10 layers, 25 hidden units and with Leaky ReLU of parameters 0.2 for the activation function. The number of parameters of these networks is 27520.

For the training process, we perform 20000 epochs with full batch size. We use Adam as an optimizer with a learning rate of 10 -1 . For the stereographic NF, we use a learning rate of 10 -3 .

We report in Table 12.8 details of the datasets. 

Sliced-Wasserstein Autoencoder

We recall that in the WAE framework, we want to minimize Architecture and procedure. We first detail the hyperparameters and architectures of neural networks for MNIST and Fashion MNIST. For the encoder f and the decoder g, we use the same architecture as Kolouri et al. (2019b).

L(f, g) = c x, g(f (x)) dµ(x) + λD(f # µ, p Z ), ( 12 
For both the encoder and the decoder architecture, we use fully convolutional architectures with 3x3 convolutional filters. More precisely, the architecture of the encoder is

x ∈ R 28×28 → Conv2d 16 → LeakyReLU 0.2 → Conv2d 16 → LeakyReLU 0.2 → AvgPool 2 → Conv2d 32 → LeakyReLU 0.2 → Conv2d 32 → LeakyReLU 0.2 → AvgPool 2 → Conv2d 64 → LeakyReLU 0.2 → Conv2d 64 → LeakyReLU 0.2 → AvgPool 2 → Flatten → FC 128 → ReLU → FC d Z → 2 normalization
where d Z is the dimension of the latent space (either 11 for S 10 or 3 for S 2 ). The architecture of the decoder is

z ∈ R d Z → FC 128 → FC 1024 → ReLU → Reshape(64x4x4) → Upsample 2 → Conv 64 → LeakyReLU 0.2 → Conv 64 → LeakyReLU 0.2 → Upsample 2 → Conv 64 → LeakyReLU 0.2 → Conv 32 → LeakyReLU 0.2 → Upsample 2 → Conv 32 → LeakyReLU 0.2 → Conv 1 → Sigmoid
To compare the different autoencoders, we used as the reconstruction loss the binary cross entropy, λ = 10, Adam [START_REF] Kingma | Adam: A Method for Stochastic Optimization[END_REF] as optimizer with a learning rate of 10 -3 and Pytorch's default momentum parameters for 800 epochs with batch of size n = 500. Moreover, when using SW type of distance, we approximated it with L = 1000 projections.

For the experiment on CIFAR10, we use the same architecture as [START_REF] Tolstikhin | Wasserstein Auto-Encoders[END_REF]. More precisely, the architecture of the encoder is

x ∈ R 3×32×32 → Conv2d 128 → BatchNorm → ReLU → Conv2d 256 → BatchNorm → ReLU → Conv2d 512 → BatchNorm → ReLU → Conv2d 1024 → BatchNorm → ReLU → FC dz → 2 normalization
where d z = 65.

Proof of Proposition 7.2

Proof of Proposition 7.2. Let k ∈ N, then since µ τ k+1 is the minimizer of (7.31),

F(µ τ k+1 ) + SW 2 2 (µ τ k+1 , µ τ k ) 2τ ≤ F(µ τ k ) + SW 2 2 (µ τ k , µ τ k ) 2τ = F(µ τ k ). (12.184) Hence, as SW 2 2 (µ τ k+1 , µ τ k ) ≥ 0, F(µ τ k+1 ) ≤ F(µ τ k ). ( 12 
.185)

Relations between Sliced-Wasserstein and Wasserstein

Link for 1D supported measures. Let µ, ν ∈ P(R d ) supported on a line. For simplicity, we suppose that the measures are supported on an axis, i.e. µ(x) = µ 1 (x 1 ) .186) On the other hand, let θ ∈ S d-1 , then we have

d i=2 δ 0 (x i ) and ν(x) = ν 1 (x 1 ) d i=2 δ 0 (x i ). In this case, we have that W 2 2 (µ, ν) = W 2 2 (P e1 # µ, P e1 # ν) = 1 0 |F -1 P e 1 # µ (x) -F -1 P e 1 # ν (x)| 2 dx. ( 12 
∀y ∈ R, F P θ # µ (y) = R 1 ]-∞,y] (x) P θ # µ(dx) = R d 1 ]-∞,y] ( θ, x ) µ(dx) = R 1 ]-∞,y] (x 1 θ 1 ) µ 1 (dx 1 ) = R 1 ]-∞, y θ 1 ] (x 1 ) µ 1 (dx 1 ) = F P e 1 # µ y θ 1 .
(12.187) Therefore, F -1 .189) We start from µ 0 = N (0, I) and use a step size of τ = 0.1 for 80 iterations in order to match the stationary distribution. In this case, the functional is

P θ # µ (z) = θ 1 F -1 P e 1 # µ (z) and W 2 2 (P θ # µ, P θ # ν) = 1 0 |θ 1 F -1 P e 1 # µ (z) -θ 1 F -1 P e 1 # ν (z)| 2 dz = θ 2 1 1 0 |F -1 P e 1 # µ (z) -F -1 P e 1 # ν (z)| 2 dz = θ 2 1 W 2 2 (µ, ν). (12.188) Finally, using that S d-1 θθ T dλ(θ) = 1 d I d , we can conclude that SW 2 2 (µ, ν) = S d-1 θ 2 1 W 2 2 (µ, ν) dλ(θ) = W 2 2 (µ, ν) d . ( 12 
F(µ) = V (x)dµ(x) + H(µ) (12.195) with V (x) = -1 2 (x-b) T A(x-b),
and the stationary distribution is ρ * (x) ∝ e -V (x) , hence ρ * = N (b, A -1 ). This functional is approximated using (7.40). In Figure 7.5, we showed the results for d ∈ {2, . . . , 12} and the unstability of JKO-ICNN. We add the results for d ∈ {20, 30, 40, 50, 75, 100} in Figure 12.7.

Symmetric Kullback-Leibler divergence. To quantify the closeness between the learned distributions and the targets, we compute the symmetric Kullback-Leibler divergence between the ground truth of WGF µ * and the distribution μ approximated by the different schemes. The symmetric Kullback-Leibler divergence is obtained as SymKL(µ * , μ) = KL(µ * ||μ) + KL(μ||µ * ). (12.196) To approximate it, we generate 10 4 samples of each distribution and evaluate the density at those samples.

Normalizing flows. If we note g θ a normalizing flows, p Z the distribution in the latent space and ρ = (g θ ) # p Z , then we can evaluate the log density of ρ by using the change of variable formula. Let .197) We choose RealNVPs [START_REF] Dinh | Density Estimation using Real NVP[END_REF] for the simplicity of the transformations and the fact that we can compute efficiently the determinant of the Jacobian (since we have a closed-form). A RealNVP flow is a composition of transformations T of the form 12.198) where we write z = (z 1 , z 2 ) and with s and t some neural networks. To modify all the components, we use also swap transformations (i.e. (z 1 , z 2 ) → (z 2 , z 1 )). This transformation is invertible with log det J T (z) = i s(z 1 i ). In our experiments, we use RealNVPs with 5 affine coupling layers, using fully connected neural networks for the scaling and shifting networks with 100 hidden units and 5 layers.

x = g θ (z), then log(ρ(x)) = log(p Z (z)) -log | det J g θ (z)|. ( 12 
∀z ∈ R d , x = T (z) = z 1 , exp(s(z 1 )) z 2 + t(z 1 ) ( 
Optimization hyperparameters. We use 200 epochs of each inner optimization and an Adam optimizer [START_REF] Kingma | Adam: A Method for Stochastic Optimization[END_REF] with a learning rate of 5 • 10 -3 for the first iteration and 10 -3 for the rest. We also use a batch size of 1000 samples. To approximate SW, we always use L = 1000 projections.

Euler-Maruyama. For Euler-Maruyama, as in [START_REF] Mokrov | Large-Scale Wasserstein Gradient Flows[END_REF], we use kernel density estimation in order to approximate the density. We use the Scipy implementation [START_REF] Virtanen | SciPy 1.0 Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python[END_REF] "gaus-sian_kde" with the Scott's rule to choose the bandwidth. We run the different chains with a step size of 10 -3 . We observe that the results seem to improve with the number of projections until they reach a certain plateau. The plateau seems to be attained for a bigger number of dimensions in high dimensions.

in Figure 8.5. We report the results obtained with the best ρ for USW and SUOT computed among a grid ρ ∈ {10 -4 , 5 • 10 -4 , 10 -3 , 5 • 10 -3 , 10 -2 , 10 -1 , 1}. For USW, the best ρ is consistently 5 • 10 -3 for the Movies and Goodreads datasets, and 5 • 10 -4 for the BBCSport dataset. For SUOT, the best ρ obtained was 0.01 for the BBCSport dataset, 1.0 for the movies dataset and 0.5 for the goodreads dataset. For UOT, we used ρ = 1.0 on the BBCSport dataset. For the movies dataset, the best ρ obtained on a subset was 50, but it took an unreasonable amount of time to run on the full dataset as the runtime increases with ρ (see [START_REF] Chapel | Unbalanced Optimal Transport through Non-Negative Penalized Linear Regression[END_REF], Figure 3)). On the goodreads dataset, it took too much memory on the GPU. For Sinkhorn UOT, we used = 0.001 and ρ = 0.1 on the BBCSport and Goodreads datasets, and = 0.01 on the Movies dataset. For each method, the number of neighbors used for the k-NN method is obtained via cross-validation. Proof of Proposition 9.1. In the setting c(x, y) = 1 2 x -y 2 2 and µ 0 absolutely continuous with respect to the Lebesgue measure, we can apply Brenier's theorem (Theorem 2.1) and hence there is a unique OT map T between µ 0 and µ 1 , and T is the gradient of a convex function, i.e. T = ∇u with u convex.

First, let us suppose that the OT map T between µ 0 and µ 1 is the gradient of a 1-convex function u. .200) Indeed, let γ * ∈ Π(µ 0 , µ 1 ) be an optimal coupling. Then, necessarily, denoting π s (x, y) = (1 -s)x + sy, we have for any s, t ∈ R, (π s , π t ) # γ * ∈ Π(µ s , µ t ). Therefore, .201) Then, let α ≥ 1 and 0 ≤ s < t ≤ α. By the triangular inequality and the previous inequality, we have

Let µ : t → (1 -t)Id + tT ) # µ 0 = (1 -t)Id + t∇u # µ 0 . Then, on one hand, we have W 2 2 (µ s , µ t ) ≤ (t -s) 2 W 2 2 (µ 0 , µ 1 ). ( 12 
W 2 2 (µ s , µ t ) ≤ x -y 2 2 d(π s , π t ) # γ * (x, y) = (1 -s)x + sy -(1 -t)x -ty 2 2 dγ * (x, y) = (s -t) 2 W 2 2 (µ 0 , µ 1 ). ( 12 
W 2 (µ 0 , µ α ) ≤ W 2 (µ 0 , µ s ) + W 2 (µ s , µ t ) + W 2 (µ t , µ α ) = (s + α -t)W 2 (µ 0 , µ 1 ) + W 2 (µ s , µ t ). (12.202) If x → (1 -α) x 2 2 2 + αu(x) is convex (i.e. u is α-1 α -convex),
then its gradient which is equal to x → (1 -α)x + α∇u(x) is the Monge map between µ 0 and µ α as µ α = (1 -α)Id + α∇u # µ 0 , and thus

W 2 2 (µ 0 , µ α ) = α 2 W 2 (µ 0 , µ 1 ). Hence, we obtain W 2 (µ 0 , µ α ) = αW 2 (µ 0 , µ 1 ) ≤ (s + α -t)W 2 (µ 0 , µ 1 ) + W 2 (µ s , µ t ) ⇐⇒ (t -s)W 2 (µ 0 , µ 1 ) ≤ W 2 (µ s , µ t ). (12.203) It allows to conclude that W 2 (µ s , µ t ) = |t -s|W 2 (µ 0 , µ 1 ) for all s, t ∈ [0, α].
To extend it on R + , we need it to be true for all α ≥ 1, which is true as u is 1-convex. Thus, we can conclude that t → µ t is a geodesic ray.

For the opposite direction, suppose that µ t = (1 -t)Id + tT # µ 0 is a geodesic ray. Then, for all 

s ≥ 0, W 2 2 (µ s , µ 0 ) = s 2 W 2 2 (µ 0 , µ 1 ) = s(x -∇u(x)) 2 2 dµ 0 (x) = x -(1 -s)x -s∇u(x) 2 2 dµ 0 (x) = x -T s (x)
: x → (1 -s) x 2 2 2 + su(x) = x 2 2 2 + s u(x) - x 2 2 2
convex. Thus, for all s ≥ 0, .205) It is true for all s ≥ 0, hence taking the limit s → ∞, we obtain well ∇ 2 u -I 0, i.e. u is 1-convex.

I + s(∇ 2 u -I) 0 ⇐⇒ ∇ 2 u -I - 1 s I. ( 12 

Proof of Proposition 9.2

Proof of Proposition 9.2. By (Ambrosio et al., 2008, Equation 7.2.8), the quantile of

µ t is F -1 t = (1 - t)F -1 0 + tF -1 1 .
Then, we know that F -1 t is a quantile function if and only if it is non-decreasing and continuous. As a linear combination of continuous function, it is always continuous. We only need to find conditions for which it is non-decreasing for all t ≥ 0. Let 0 < m < m < 1, then (12.206) and hence, 

F -1 t (m) -F -1 t (m ) = F -1 0 (m) -F -1 0 (m ) + t F -1 1 (m) -F -1 0 (m) -F -1 1 (m ) + F -1 0 (m ) ,
∀t ≥ 0, m > m, F -1 t (m) -F -1 t (m ) ≤ 0 ⇐⇒ ∀m > m, F -1 1 (m) -F -1 0 (m) ≤ F -1 1 (m ) -F -1 0 (m ) ⇐⇒ F -1 1 -F -1 0 non-decreasing. ( 12 
(µ 0 , µ 1 ) = 1.
Then, we have, for any ν ∈ P 2 (R), t ≥ 0, = 1 (cf (Bridson and Haefliger, 2013, II. 8.24). Then we know that lim 12.210)

W 2 (ν, µ t ) -t = 1 0 F -1 ν (u) -F -1 µt (u) 2 du 1 2 -t = 1 0 F -1 ν (u) -(1 -t)F -1 µ0 (u) -tF -1 µ1 (u) 2 du 1 2 -t = 1 0 F -1 ν (u) -F -1 µ0 (u) + t(F -1 µ0 (u) -F -1 µ1 (u)) 2 du 1 2 -t = 1 0 F -1 ν (u) -F -1 µ0 (u) 2 du + 2t 1 0 F -1 ν (u) -F -1 µ0 (u) F -1 µ0 (u) -F -1 µ1 (u) du + t 2 1 0 F -1 µ0 (u) -F -1 µ1 (u) 2 du 1 2 -t = t 1 t 2 1 0 F -1 ν (u) -F -1 µ0 (u) 2 du + 2 t 1 0 F -1 ν (u) -F -1 µ0 (u) F -1 µ0 (u) -F -1 µ1 (u) du + W 2 2 (µ 0 , µ 1 ) 1 
2 -t = t→∞ t 1 + 1 t 1 0 F -1 ν (u) -F -1 µ0 (u) F -1 µ0 (u) -F -1 µ1 (u) du + o 1 t -t = 1 0 F -1 ν (u) -F -1 µ0 (u) F -1 µ0 (u) -F -1 µ1 (u) du. ( 12 
t→∞ d(x, γ(t)) 2 -t 2 2t = lim t→∞ d(x, γ(t)) -t , (12.209) since d(x, γ(t)) 2 -t 2 2t = (d(x, γ(t)) -t)(d(x, γ(t)) + t) 2t = d(x, γ(t)) -t d(x, γ(t)) + t 2t ---→ t→∞ B γ (x). (
In our case, we have for any t ≥ 0,

µ t = N (m t , Σ t ) where    m t = (1 -t)m 0 + tm 1 Σ t = (1 -t)I d + tA Σ 0 (1 -t)I d + tA , (12.211) with A = Σ -1 2 0 (Σ 1 2 0 Σ 1 Σ 1 2 0 ) 1 2 Σ -1 2 0
. Then, we have, using in particular that AΣ 0 A = Σ 1 , for any t ≥ 0, .214) Then, by remembering that (12.215) and using that Σ

m t -m 2 2 2t = t 2 m 1 -m 0 2 2 + m 1 -m 0 , m 0 -m + O 1 t , (12.212) Tr(Σ t ) 2t = t 2 Tr Σ 0 -2Σ 0 A + Σ 1 + Tr Σ 0 A -Σ 0 + O 1 t (12.213) Tr (Σ 1 2 Σ t Σ 1 2 ) 1 2 2t = 1 2 Tr Σ 1 2 (Σ 0 -Σ 0 A -AΣ 0 + Σ 1 )Σ 1 2 + O 1 t 1 2 . ( 12 
W 2 2 (µ 0 , µ 1 ) = m 1 -m 0 2 2 + Tr(Σ 0 + Σ 1 -2(Σ 1 2 0 Σ 1 Σ 1 2 0 ) 1 2 ) = 1,
0 A = Σ 1 2 0 (Σ 1 2 0 Σ 1 Σ 1 2 0 ) 1 2 Σ -1 2 0 (12.216)
and hence Tr(Σ 0 A) = Tr (Σ (12.217) we obtain:

1 2 0 Σ 1 Σ 1 2 0 ) 1 2 ,
W 2 2 (ν, µ t ) -t 2 2t = m t -m 2 2 + Tr Σ t + Σ -2(Σ 1 2 Σ t Σ 1 2 ) 1 2 -t 2 2t = t 2 m 1 -m 0 2 2 + Tr(Σ 0 + Σ 1 -2Σ 0 A) + m 1 -m 0 , m 0 -m + Tr Σ 0 A -Σ 0 -Tr Σ 1 2 (Σ 0 -Σ 0 A -AΣ 0 + Σ 1 )Σ 1 2 + O 1 t 1 2 - t 2 + O 1 t = t 2 W 2 2 (µ 0 , µ 1 ) + m 1 -m 0 , m 0 -m + Tr Σ 0 A -Σ 0 -Tr Σ 1 2 (Σ 0 -Σ 0 A -AΣ 0 + Σ 1 )Σ 1 2 + O 1 t 1 2 - t 2 + O 1 t = m 1 -m 0 , m 0 -m + Tr Σ 0 A -Σ 0 -Tr Σ 1 2 (Σ 0 -Σ 0 A -AΣ 0 + Σ 1 )Σ 1 2 + O 1 t 1 2 + O 1 t ---→ t→∞ m 1 -m 0 , m 0 -m + Tr Σ 0 (A -I d ) -Tr (Σ 1 2 (Σ 0 -Σ 0 A -AΣ 0 + Σ 1 )Σ 1 2 ) 1 2 .
(12.218)

Proofs of Section 9.4

Proof of Proposition 9.5

Proof of Proposition 9.5. First, let us find the first component. We want to solve:

max (m,σ) 1 n n i=1 (m -m 0 )(m i -m 0 ) + (σ -σ 0 )(σ i -σ 0 ) 2 - 1 n n i=1 (m -m 0 )(m i -m 0 ) + (σ -σ 0 )(σ i -σ 0 ) 2 subject to    (m -m 0 ) 2 + (σ -σ 0 ) 2 = 1 σ -σ 0 ≥ 0. (12.219) Let's note for all i, x i = m i -m 0 σ i -σ 0 and x = m -m 0 σ -σ 0 .
Then, the objective can be rewritten as max (12.220) This is a convex objective on a compact space. Let's encode the constraints by using a parametrization on the circle. Indeed, as

x 1 n x T n i=1 x i x T i x -x T 1 n n i=1 x i 1 n n i=1 x i T x subject to    x 2 2 = 1 [x] 2 ≥ 0.
x 2 2 = 1 and [x] 2 ≥ 0, there exists θ ∈ [0, π] such that x = x θ = cos θ sin θ . Now, let M = 1 n n i=1 x i x T i -1 n n i=1 x i 1 n n i=1
x i T and rewrite the objective as 

1 n x T θ n i=1 x i x T i x θ -x T θ 1 n n i=1 x i 1 n n i=1 x i T x θ = x T θ M x θ = cos
θ∈[0,2π[ M 11 -M 22 2 cos( θ) + M 12 sin( θ) = f ( θ). ( 12 
that x ψ = cos φ sin ψ = m -m 0 σ -σ 0 is the solution of max ψ∈[0,π] x T ψ M x ψ subject to x θ , x ψ = 0. (12.225) Then, x θ , x ψ = 0 ⇐⇒ cos(θ -ψ) = 0 ⇐⇒ ψ = θ ± π 2 . Since ψ ∈ [0, π[, if θ ≥ π 2 then ψ = θ -π 2 . If θ < π 2 , then ψ = θ + π 2 .
To conclude, the second component is obtained with 

   m (2) 1 = m 0 + cos θ-sign( θ-π)π 2 σ (2) 1 = σ 0 + sin θ-sign( θ-π)π 2 . ( 12 
= N (m 0 , σ 2 0 ) and µ 1 = N (m 1 , σ 2 1 ) such that (m 1 -m 0 ) 2 +(σ 1 -σ 0 ) 2 = 1 and σ 1 ≥ σ 0 .
Extending the geodesic between µ 0 and µ 1 on [1 -α, 0] for α ≥ 1 is equivalent to extending the geodesic between µ 1 and µ 0 on [0, α]. Thus, we first find a condition to extend the geodesic between µ 1 and µ 0 .

The Monge map T between µ 1 and µ 0 is defined for all x ∈ R as T

(x) = σ0 σ1 (x -m 1 ) + m 0 = h (x) with h : x → σ0 σ1 (x -m 1 ) 2 + m 0 x.
Then, by (Natale et al., 2022, Section 4), we know that we can extend the geodesic linking µ 1 to µ 0 on [0, α] for α ≥ 1 if and only if h is α-1 α -convex, i.e. if and only if .227) Therefore, we deduce that we can extend the geodesic ray starting from µ 0 and passing through µ 1 at t = 1 on [-(α -1), +∞[ if and only if α α-1 ≥ σ1 σ0 ≥ 1 (the last inequality comes from the condition to have a geodesic ray σ

h (x) - α -1 α ≥ 0 ⇐⇒ σ 0 σ 1 ≥ α -1 α ⇐⇒ σ 1 σ 0 ≤ α α -1 . ( 12 
1 ≥ σ 0 ). Since (m 1 -m 0 ) 2 + (σ 1 -σ 0 ) 2 = 1, it implies that necessarily, σ 1 -σ 0 ≤ 1 ⇐⇒ σ1 σ0 ≤ 1 σ0 + 1.
Thus, we find that the biggest possible α ≥ 1 satisfying the inequality (12.227) .228) and for α = σ1 σ1-σ0 , α α-1 = σ1 σ0 . In this case, 1 -α = -σ0 σ1-σ0 and hence the geodesic ray can be extended at least to [-σ0 σ1-σ0 , +∞[. Therefore, π MK is optimal for subspace optimal plans.

is σ1 σ1-σ0 as α α -1 ≥ σ 1 σ 0 ⇐⇒ α σ 0 -σ 1 σ 0 ≥ - σ 1 σ 0 ⇐⇒ α ≤ σ 1 σ 1 -σ 0 , ( 12 
= L(x, x , y, y )γ E ⊥ ×F ⊥ |E×F (x E , y F ), (dx E ⊥ , dy F ⊥ ) γ E ⊥ ×F ⊥ |E×F (x E , y F ), (dx E ⊥ , dy F ⊥ ) dγ * E×F (x E , y F )dγ * E×F (x E , y F ). ( 12 
), (x E , y F ), L(x, x , y, y )γ E ⊥ ×F ⊥ |E×F (x E , y F ), (dx E ⊥ , dy F ⊥ ) γ E ⊥ ×F ⊥ |E×F (x E , y F ), (dx E ⊥ , dy F ⊥ ) ≥ L(x, x , y, y )γ * E ⊥ ×F ⊥ |E×F (x E , y F ), (dx E ⊥ , dy F ⊥ ) γ * E ⊥ ×F ⊥ |E×F (x E , y F ), (dx E ⊥ , dy F ⊥ ) ( 12 

Proof of Proposition 10.2

Proof of Proposition 10.2. We first deal with L(x, x , y, y

) = x -x 2 2 -y -y 2 2 2 . Let f E ⊥ be an isometry w.r.t c(x E ⊥ , x E ⊥ ) = x E ⊥ -x E ⊥ 2 
2 , and let f : R p → R p be defined such as for all with K a probability kernel on (E × F, B(E ⊥ ) ⊗ B(F ⊥ )).

x ∈ R p , f (x) = (x E , f E ⊥ (x E ⊥ )). From Lemma 12.1, we know that Π(f # µ, ν) = {(f, Id) # γ| γ ∈ Π(µ, ν)}. We can rewrite: Π E,F (f # µ, ν) = {γ ∈ Π(f # µ, ν)|(π E , π F ) # γ = γ * E×F } = {(f, Id) # γ|γ ∈ Π(µ, ν), (π E , π F ) # (f, Id) # γ = γ * E×F } = {(f, Id) # γ|γ ∈ Π(µ, ν), (π E , π F ) # γ = γ * E×F } = {(f, Id) # γ|γ ∈ Π E,F (µ, ν)} (12.232) using f = (Id E , f E ⊥ ), π E • f = Id E and (π E , π F ) # (f, Id) # γ = (π E , π F ) # γ. Now, for all γ ∈ Π E,F (f # µ, ν), there exists γ ∈ Π E,F (µ, ν) such that γ = (f, Id) # γ,
For γ * E×F almost every (x E , y F ), (x E , y F ), we have:

x E -x E 2 2 + x E ⊥ -x E ⊥ 2 2 -y F -y F 2 2 -y F ⊥ -y F ⊥ 2 2 2 (f E ⊥ , Id) # K((x E , y F ), (dx E ⊥ , dy F ⊥ ))(f E ⊥ , Id) # K((x E , y F ), (dx E ⊥ , dy F ⊥ )) = x E -x E 2 2 + f E ⊥ (x E ⊥ ) -f E ⊥ (x E ⊥ ) 2 2 -y F -y F 2 2 -y F ⊥ -y F ⊥ 2 2 2 K((x E , y F ), (dx E ⊥ , dy F ⊥ ))K((x E , y F ), (dx E ⊥ , dy F ⊥ )) = x E -x E 2 2 + x E ⊥ -x E ⊥ 2 2 -y F -y F 2 2 -y F ⊥ -y F ⊥ 2 2 2 K((x E , y F ), (dx E ⊥ , dy F ⊥ ))K((x E , y F ), (dx E ⊥ , dy F ⊥ )) (12.234) using in the last line that f E ⊥ (x E ⊥ ) -f E ⊥ (x E ⊥ ) 2 = x E ⊥ -x E ⊥ 2 since f E ⊥ is an isometry.
By integrating with respect to γ * E×F , we obtain:

x -x 2 2 -y -y 2 2 2 (f E ⊥ , Id) # K((x E , y F ), (dx E ⊥ , dy F ⊥ ))(f E ⊥ , Id) # K((x E , y F ), (dx E ⊥ , dy F ⊥ )) dγ * E×F (x E , y F )dγ * E×F (x E , y F ) = x -x 2 2 -y -y 2 2 2 dγ(x, y)dγ(x , y ). (12.235) Now, we show that γ = (f, Id) # γ = γ * E×F ⊗(f E ⊥ , Id) # K. Let φ be some bounded measurable function on R p × R q : φ(x, y)dγ(x, y) = φ(x, y)d((f, Id) # γ(x, y)) = φ(f (x), y)dγ(x, y) = φ(f (x), y)K (x E , y F ), (dx E ⊥ , dy F ⊥ ) dγ * E×F (x E , y F ) = φ((x E , f E ⊥ (x E ⊥ )), y)K (x E , y F ), (dx E ⊥ , dy F ⊥ ) dγ * E×F (x E , y F ) = φ(x, y)(f E ⊥ , Id) # K (x E , y F ), (dx E ⊥ , dy F ⊥ ) dγ * E×F (x E , y F ).
(12.236)

Hence, we can rewrite (12.235) as:

x -x 2 2 -y -y 2 2 2 d(f, Id) # γ(x, y)d(f, Id) # γ(x , y ) = x -x 2 2 -y -y 2 2 
2 dγ(x, y)dγ(x , y ). (12.237) Now, by taking the infimum with respect to γ ∈ Π E,F (µ, ν), we find: .238) For the inner product case, we can do the same proof for linear isometries on E ⊥ .

GW E,F (f # µ, ν) = GW E,F (µ, ν). ( 12 

Proof of Proposition 10.3

For GW with c(x, x ) = x -x 2 2 , we have for now no guarantee that there exists an optimal coupling which is a transport map. [START_REF] Delon | Gromov-Wasserstein Distances between Gaussian Distributions[END_REF] proposed to restrict the problem to the set of Gaussian couplings π(µ, ν) ∩ N p+q where N p+q denotes the set of Gaussians in R p+q . In that case, the problem becomes:

GGW (µ, ν) = inf γ∈Π(µ,ν)∩Np+q x -x 2 2 -y -y 2 2 
2 dγ(x, y)dγ(x , y ). (12.239) In that case, they showed that an optimal solution is of the form T

(x) = m ν + P ν AP T µ (x -m µ ) with A = Ĩq D 1 2 ν (D (q) µ ) -1 2 0 q,p
-q and Ĩq of the form diag (±1) i≤q .

Proof of Proposition 10.3. Since the problem is translation invariant, we can always solve the problem between the centered measures.

In the following, we suppose that k = k . Let us denote T E,F as the optimal transport map for (12.239) between N (0, Σ E ) and N (0, Λ F ). According to Delon et al. (2022, Theorem 4.1), such a solution exists and is of the form (10.15). We also denote T E ⊥ ,F ⊥ as the optimal transport map between N (0, Σ/Σ E ) and N (0, Λ/Λ F ) (which is well defined since we assumed p ≥ q and hence p -k ≥ q -k since k = k ).

We know that the Monge-Knothe transport map will be a linear map T MK (x) = Bx with B a block triangular matrix of the form: (12.240) with C ∈ R (q-k )×k and such that BΣB T = Λ (to have well a transport map between µ and ν).

B = T E,F 0 k ,p-k C T E ⊥ ,F ⊥ ∈ R q×p ,
Actually,

BΣB T = T E,F Σ E T T E,F T E,F Σ E C T + T E,F Σ EE ⊥ T T E ⊥ ,F ⊥ (CΣ E + T E ⊥ ,F ⊥ Σ E ⊥ E )T T E,F (CΣ E + T E ⊥ ,F ⊥ Σ E ⊥ E )C T + (CΣ EE ⊥ + T E ⊥ ,F ⊥ Σ E ⊥ )T T E ⊥ ,F ⊥ . ( 12 
.241) First, we have well T E,F Σ E T T E,F = Λ F , as T E,F is a transport map between µ E and ν F . Then:

BΣB T = Λ ⇐⇒                T E,F Σ E T T E,F = Λ F T E,F Σ E C T + T E,F Σ EE ⊥ T T E ⊥ ,F ⊥ = Λ F F ⊥ (CΣ E + T E ⊥ ,F ⊥ Σ E ⊥ E )T T E,F = Λ F ⊥ F (CΣ E + T E ⊥ ,F ⊥ Σ E ⊥ E )C T + (CΣ EE ⊥ + T E ⊥ ,F ⊥ Σ E ⊥ )T T E ⊥ ,F ⊥ = Λ F ⊥ .
(12.242)

We have:

( 

CΣ E + T E ⊥ ,F ⊥ Σ E ⊥ E )T T E,F = Λ F ⊥ F ⇐⇒ CΣ E T T E,F = Λ F ⊥ F -T E ⊥ ,F ⊥ Σ E ⊥ E T T E,F . (12.243) As k = k , Σ E T T E,F ∈ R
P µ E A E,F P ν F with A E,F = Ĩk D 1 1 ν F D -1 2 µ E
with positive values on the diagonals. Hence, we have:

C = (Λ F ⊥ F (T T E,F ) -1 -T E ⊥ ,F ⊥ Σ E ⊥ E )Σ -1 E . (12.244)
Now, we still have to check the last two equations. First: .245) For the last equation:

T E,F Σ E C T + T E,F Σ EE ⊥ T T E ⊥ ,F ⊥ = T E,F Σ E Σ -1 E T -1 E,F Λ T F ⊥ F -T E,F Σ E Σ -1 E Σ T E ⊥ E T T E ⊥ ,F ⊥ + T E,F Σ EE ⊥ T T E ⊥ ,F ⊥ = Λ F F ⊥ . ( 12 
(

CΣ E + T E ⊥ ,F ⊥ Σ E ⊥ E )C T + (CΣ EE ⊥ + T E ⊥ ,F ⊥ Σ E ⊥ )T T E ⊥ ,F ⊥ = (Λ F ⊥ F (T T E,F ) -1 -T E ⊥ ,F ⊥ Σ E ⊥ E + T E ⊥ ,F ⊥ Σ E ⊥ E )Σ -1 E (T -1 E,F Λ T F ⊥ F -Σ T E ⊥ E T T E ⊥ ,F ⊥ ) + Λ F ⊥ F (T T E,F ) -1 Σ -1 E Σ EE ⊥ T T E ⊥ ,F ⊥ -T E ⊥ ,F ⊥ Σ E ⊥ E Σ -1 E Σ EE ⊥ T T E ⊥ ,F ⊥ + T E ⊥ ,F ⊥ Σ E ⊥ T T E ⊥ ,F ⊥ = Λ F ⊥ F (T T E,F ) -1 Σ -1 E T -1 E,F Λ T F ⊥ F -Λ F ⊥ F (T T E,F ) -1 Σ -1 E Σ T E ⊥ E T T E ⊥ ,F ⊥ -T E ⊥ ,F ⊥ Σ E ⊥ E Σ -1 E T -1 E,F Λ T F ⊥ F + T E ⊥ ,F ⊥ Σ E ⊥ E Σ -1 E Σ T E ⊥ E T T E ⊥ ,F ⊥ + T E ⊥ ,F ⊥ Σ E ⊥ E Σ -1 E T -1 E,F Λ T F ⊥ F -T E ⊥ ,F ⊥ Σ E ⊥ E Σ -1 E Σ T E ⊥ E T T E ⊥ F ⊥ + Λ F ⊥ F (T T E,F ) -1 Σ -1 E Σ EE ⊥ T T E ⊥ ,F ⊥ -T E ⊥ ,F ⊥ Σ E ⊥ E Σ -1 E Σ T E ⊥ E T T E ⊥ ,F ⊥ + T E ⊥ ,F ⊥ Σ E ⊥ T T E ⊥ ,F ⊥ = Λ F ⊥ F (T T E,F ) -1 Σ -1 E T -1 E,F Λ T F ⊥ F -T E ⊥ ,F ⊥ Σ E ⊥ E Σ -1 E Σ T E ⊥ E T T E ⊥ ,F ⊥ + T E ⊥ ,F ⊥ Σ E ⊥ T T E ⊥ ,F ⊥ (12.246) Now, using that (T T E,F ) -1 Σ -1 E T -1 E,F = (T E,F Σ E T T E,F ) -1 = Λ -1 F and Σ E ⊥ -Σ E ⊥ E Σ -1 E Σ T E ⊥ E = Σ/Σ E , we have: (CΣ E + T E ⊥ ,F ⊥ Σ E ⊥ E )C T + (CΣ EE ⊥ + T E ⊥ ,F ⊥ Σ E ⊥ )T T E ⊥ ,F ⊥ = Λ F ⊥ F Λ -1 F Λ T F ⊥ F + T E ⊥ ,F ⊥ (Σ E ⊥ -Σ E ⊥ E Σ -1 E Σ T E ⊥ E )T T E ⊥ ,F ⊥ = Λ F ⊥ F Λ -1 F Λ T F ⊥ F + Λ/Λ F = Λ F ⊥ (12.247)
Then, π MK is of the form (Id, T MK ) # µ with: Proof of Proposition 10.4. Suppose k ≥ k in order to be able to define the OT map between µ E and ν F . For the Monge-Independent plan,

T MK (x) = m ν + B(x -m µ ). ( 12 
π MI = γ * E×F ⊗ (µ E ⊥ |E ⊗ ν F ⊥ |F ), let (X, Y ) ∼ π MI .
We know that π MI is a degenerate Gaussian with a covariance of the form:

Cov(X, Y ) = Cov(X) C C T Cov(Y ) (12.249)
where Cov(X) = Σ and Cov(Y ) = Λ. Moreover, we know that C is of the form: .250) Let us assume that m µ = m ν = 0, then: .255) We also have:

Cov(X E , Y F ) Cov(X E , Y F ⊥ ) Cov(X E ⊥ , Y F ) Cov(X E ⊥ , Y F ⊥ ) . ( 12 
Cov(X E , Y F ) = Cov(X E , T E,F X E ) = E[X E X T E ]T T E,F = Σ E T T E,F , (12.251) Cov(X E , Y F ⊥ ) = E[X E Y T F ⊥ ] = E[E[X E Y T F ⊥ |X E , Y F ]] = E[X E E[Y T F ⊥ |Y F ]] (12.252) since Y F = T E,F X E , X E is σ(Y F )-
[Y F ⊥ |Y F ] = Λ F ⊥ F Λ -1 F Y F = Λ F ⊥ F Λ -1 F T E,F X E (12.253) and E[X E ⊥ |X E ] = Σ E ⊥ E Σ -1 E X E . (12.254) Hence: Cov(X E , Y F ⊥ ) = E[X E E[Y T F ⊥ |Y F ]] = E[X E X T E ]T T E,F Λ -1 F Λ T F ⊥ F = Σ E T T E,F Λ -1 F Λ T F ⊥ F . ( 12 
Cov(X E ⊥ , Y F ) = E[X E ⊥ X T E T T E,F ] = Σ E ⊥ E T T E,F , (12.256) and Cov(X E ⊥ , Y F ⊥ ) = E[X E ⊥ Y T F ⊥ ] = E[E[X E ⊥ Y T F ⊥ |X E , Y F ]] = E[E[X E ⊥ |X E ]E[Y T F ⊥ |Y F ]] by independence = E[Σ E ⊥ E Σ -1 E X E X T E T T E,F Λ -1 F Λ T F ⊥ F ] = Σ E ⊥ E T T E,F Λ -1 F Λ T F ⊥ F .
(12.257)

Finally, we find: .258) By taking orthogonal bases (V E , V E ⊥ ) and (V F , V F ⊥ ), we can put it in a more compact way, such as in Proposition 4 in [START_REF] Muzellec | Subspace Detours: Building Transport Plans that are Optimal on Subspace Projections[END_REF]: .259) To check it, just expand the terms and see that C

C = Σ E T T E,F Σ E T T E,F Λ -1 F Λ T F ⊥ F Σ E ⊥ E T T E,F Σ E ⊥ E T T E,F Λ -1 F Λ T F ⊥ F . ( 12 
C = (V E Σ E + V E ⊥ Σ E ⊥ E )T T E,F (V T F + Λ -1 F Λ T F ⊥ F V T F ⊥ ). ( 12 
E,F = V E CV T F .
Proof of Proposition 10.5

Proof of Proposition 10.5. Let γ ∈ Π(a, b). Then: x i y j γ ij (12.261) We have two cases to consider: If ±1 = 1, we have to solvemin γ∈Π(a,b) ij (-x i )y j γ ij . Since the points are sorted, the matrix c ij = -x i y j satisfies the Monge property [START_REF] Burkard | Perspectives of Monge Properties in Optimization[END_REF]:

ijkl (x i x k -y j y l ) 2 γ ij γ kl = ijkl (x i x k ) 2 γ ij γ kl + ijkl (y j y l ) 2 γ ij γ kl -2 ijkl x i x k y j y l γ ij γ kl (12.260) However, ijkl (x i x k ) 2 γ ij γ kl = ik (x i x k ) 2 a i a k , and ijkl (y j y l ) 2 γ ij γ kl = jl (y j y l ) 2 b j b l , so this does not depend on γ. Moreover 2 ijkl x i x k y j y l γ ij γ kl = 2( ij x i y j γ ij ) 2 .
∀(i, j) ∈ {1, . . . , n -1} × {1, . . . , m -1}, c i,j + c i+1,j+1 ≤ c i+1,j + c i,j+1 (12.262) 
To see this, check that: 12.263) In this case, the North-West corner rule N W (a, b) defined in Algorithm 10.1 is known to produce an optimal solution to the linear problem (12.261) [START_REF] Burkard | Perspectives of Monge Properties in Optimization[END_REF]. If ± = -1, then changing x i to -x i concludes.

(-x i )y j + (-x i+1 )y j+1 -(-x i+1 )y j -(-x i )y j+1 = (-x i )(y j -y j+1 ) + (-x i+1 )(y j+1 -y j ) = (y j -y j+1 )(x i+1 -x i ) ≤ 0 ( 
12.8.2 Proofs of Section 10.4

Proof of Proposition 10.6

Proof of Proposition 10.6. Let µ, ν ∈ P(R d ),

3. For invariances, we first look at the properties that must be satisfied by T in order to have:

∀x, x , f (x, x ) = f (T (x), T (x )) where f : (x, x ) → x x . We find that ∀x ∈ R d , ∀1 ≤ i ≤ d, |[T (x)] i | = |x i | because, denoting (e i ) d
i=1 as the canonical basis, we have:

x e i = T (x) T (e i ), (12.264) which implies that:

x i = [T (x)] i [T (e i )] i . (12.265) However, f (e i , e i ) = f (T (e i ), T (e i )) implies [T (e i )] 2 i = 1
, and therefore:

|[T (x)] i | = |x i |. ( 12 
.266)

If we take for T the reflection with respect to axes, then it satisfies f (x, x ) = f (T (x), T (x )) well. Moreover, it is a good equivalence relation, and therefore, we have a distance on the quotient space.

Proof of Theorem 10.3

We first recall a useful theorem. Proof of Theorem 10.3. The following proof is mainly inspired by the proof of Theorem 10.1 in (Carlier et al., 2010, Theorem 2.1), (Bonnotte, 2013, Theorem 3.1.6) and (Santambrogio, 2015, Theorem 2.23).

Let µ, ν ∈ P(R d ), absolutely continuous, with finite fourth moments and compact supports. We recall the problem HW t : First, let us denote γ t the optimal coupling for HW t for all t > 0. We want to show that γ t L ---→ t→0 γ K with γ K = (Id × T K ) # µ and T K our alternate Knothe-Rosenblatt rearrangement. Let γ ∈ Π(µ, ν) such that γ t L ---→ t→0 γ (true up to subsequence as {µ} and {ν} are tight in P(X) and P(Y ) if X and Y are polish space, therefore, by (Villani, 2009, Lemma 4.4), Π(µ, ν) is a tight set, and we can apply the Prokhorov theorem (Santambrogio, 2015, Box 1.4) on (γ t ) t and extract a subsequence)).

Part 1:

First, let us notice that: 2015), since we are on compact support, we can bound the cost (which is continuous) by its max), we obtain the following inequality (x 1 x 1 -y 1 y 1 ) 2 dγ(x, y)dγ(x , y ) ≤ (x 1 x 1 -y 1 y 1 ) 2 dγ K (x, y)dγ K (x , y ). (12.270) By denoting γ 1 and γ 1 K the marginals on the first variables, we can use the projection π 1 (x, y) = (x 1 , y 1 ), such as γ 1 = π 1 # γ and γ 1 K = π 1 # γ K . Hence, we get (x 1 x 1 -y 1 y 1 ) 2 dγ 1 (x 1 , y 1 )dγ 1 (x 1 , y 1 ) ≤ (x 1 x 1 -y 1 y 1 ) 2 dγ 1 K (x 1 , y 1 )dγ 1 K (x 1 , y 1 ). (12.271) However, γ 1 K was constructed in order to be the unique optimal map for this cost (either T asc or T desc according to theorem (Vayer, 2020, Theorem 4.2.4)). Thus, we can deduce that γ 1 = (Id × T 1 K ) # µ 1 = γ 1 K .

HW 2 t (µ, ν) = d k=1 k-1 i=1 λ (i) t (x k x k -y k y k )

Part 2:

We know that for any t > 0, γ t and γ K share the same marginals. Thus, as previously, π 1 # γ t should have a cost worse than π 1 # γ K , which translates to (x 1 x 1 -y 1 y 1 ) 2 dγ 1 K (x 1 , y 1 )dγ 1 K (x 1 , y 1 ) = (x 1 x 1 -y 1 y 1 ) 2 dγ 1 (x 1 , y 1 )dγ 1 (x 1 , y 1 ) ≤ (x 1 x 1 -y 1 y 1 ) 2 dγ 1 t (x 1 , y 1 )dγ and by taking the limit t → 0 as in the first part, we get (x 2 x 2 -y 2 y 2 ) 2 dγ(x, y)dγ(x , y ) ≤ (x 2 x 2 -y 2 y 2 ) 2 dγ K (x, y)dγ K (x , y ). (12.275) Now, the 2 terms depend only on (x 2 , y 2 ) and (x 2 , y 2 ). We will project on the two first coordinates, i.e., let π 1,2 (x, y) = ((x 1 , x 2 ), (y 1 , y 2 )) and γ 1,2 = π 1,2 # γ, γ 1,2 K = π 1,2 # γ K . Using the disintegration of measures, we know that there exist kernels γ 2|1 and γ 2|1 K such that γ 1,2 = γ 1 ⊗ γ 2|1 and γ 1,2 Now, we will assume at first that the marginals of γ 2|1 ((x 1 , y 1 ), •) are well µ 2|1 (x 1 , •) and ν 2|1 (y 1 , •). Then, by definition of γ 2|1 K , as it is optimal for the GW cost with inner products, we have for all (x 1 , y 1 ), (x 1 , y 1 ), (x 2 x 2 -y 2 y 2 ) 2 γ 2|1 K ((x 1 , y 1 ), (dx 2 , dy 2 ))γ 2|1 K ((x 1 , y 1 ), (dx 2 , dy 2 )) ≤ (x 2 x 2 -y 2 y 2 ) 2 γ 2|1 ((x 1 , y 1 ), (dx 2 , dy 2 ))γ 2|1 ((x 1 , y 1 ), (dx 2 , dy 2 )).

K = γ 1 K ⊗ γ 2|1 K , where ∀A ∈ B(X × Y ), µ ⊗ K(A) = 1 A (x,
(12.278)

Moreover, we know from the first part that γ 1 = γ 1 K , then by integrating with respect to (x 1 , y 1 ) and (x 1 , y 1 ), we have (x 2 x 2 -y 2 y 2 ) 2 γ 2|1 K ((x 1 , y 1 ), (dx 2 , dy 2 ))γ 2|1 K ((x 1 , y 1 ), (dx 2 , dy 2 )) dγ 1 (x 1 , y 1 )dγ From that, we can conclude as in the first part that γ 2|1 = γ 2|1 K (by unicity of the optimal map). And thus γ 1,2 = γ 1,2 K . Now, we still have to show that the marginals of γ 2|1 ((x 1 , y 1 ), •) and γ 2,1 K ((x 1 , y 1 ), •) are well the same, i.e., µ 2|1 (x 1 , •) and ν 2|1 (y 1 , •). Let φ and ψ be continuous functions, then we have to show that for γ 1 -a.e. (x 1 , y 1 ), we have    φ(x 2 )γ 2|1 ((x 1 , y 1 ), (dx 2 , dy 2 )) = φ(x 2 )µ 2|1 (x 1 , dx 2 ) ψ(y 2 )γ 2|1 ((x 1 , y 1 ), (dx 2 , dy 2 )) = ψ(y 2 )ν 2|1 (y 1 , dy 2 ).

(12.282)

As we want to prove it for γ 1 -a.e. (x 1 , y 1 ), it is sufficient to prove that for all continuous function ξ,

              
ξ(x 1 , y 1 )φ(x 2 )γ 2|1 ((x 1 , y 1 ), (dx 2 , dy 2 ))dγ 1 (x 1 , y 1 ) = ξ(x 1 , y 1 )φ(x 2 )µ 2|1 (x 1 , dx 2 )dγ 1 (x 1 , y 1 ) ξ(x 1 , y 1 )ψ(y 2 )γ 2|1 ((x 1 , y 1 ), (dx 2 , dy 2 ))dγ 1 (x 1 , y 1 ) = ξ(x 1 , y 1 )ψ(y 2 )ν 2|1 (y 1 , dy 2 )dγ 1 (x 1 , y 1 ).

(12.283)

First, we can use the projections π x (x, y) = x and π y (x, y) = y. Moreover, we know that γ 1 = (Id × T 1 K ) # µ 1 . The alternate Knothe-Rosenblatt rearrangement is, as the usual one, bijective (because µ and ν are absolutely continuous), and thus, as we suppose that ν satisfies the same hypothesis than µ, we also have γ 1 = ((T 1 K ) -1 , Id) # ν 1 . Let us note T 1 K = (T 1 K ) -1 . Then, the equalities that we want to show are:

               ξ(x 1 , T 1 K (x 1 ))φ(x 2 )γ 2|1 x ((x 1 , T 1 K (x 1
)), dx 2 )dµ 1 (x 1 ) = ξ(x 1 , T 1 K (x 1 ))φ(x 2 )µ 2|1 (x 1 , dx 2 )dµ 1 (x 1 ) ξ( T 1 K (y 1 ), y 1 )ψ(y 2 )γ 2|1 y (( T 1 K (y 1 ), y 1 ), dy 2 )dν 1 (y 1 ) = ξ( T 1 K (y 1 ), y 1 )ψ(y 2 )ν 2|1 (y 1 , dy 2 )dν 1 (y 1 ).

(12.284)

In addition, we have indeed ξ(x 1 , T 1 K (x 1 ))φ(x 2 )γ 2|1

x ((x 1 , T 1 K (x 1 )), dx 2 )dµ 1 (x 1 ) = ξ(x 1 , T 1 K (x 1 ))φ(x 2 )dγ 1,2 ((x 1 , x 2 ), (y 1 , y 2 )) = ξ(x 1 , T 1 K (x 1 ))φ(x 2 )dγ 1,2 x (x 1 , x 2 ) = ξ(x 1 , T 1 K (x 1 ))φ(x 2 )µ 2|1 (x 1 , dx 2 )dµ 1 (x 1 ). (12.285) We can do the same for the ν part by symmetry.

Part 3:

Now, we can proceed the same way by induction. Let ∈ {2, . . . , d} and suppose that the result is true in dimension -1 (i.e., γ 1: -1 = π 1: -1

# γ = γ 1: -1 K ).
For this part of the proof, we rely on (Santambrogio, 2015, Theorem 2.23). We can build a measure (12.286) where η t, is the optimal transport plan between µ = π 1: -1 # µ and ν = π 1: -1 # ν for the objective: between µ :d|1: -1 and ν :d|1: -1 . Thus, by taking γ T K = η t, ⊗ γ :d|1: -1 K , γ T K satisfies the conditions well (12.286). Hence, we have: (i)

γ t K ∈ P(R d × R d ) such that:          π x # γ t K = µ π y # γ t K = ν π 1: -1 # γ t K = η t,
-1 k=1 k-1 i=1 λ (i) t (x k x k -y k y k ) 2 dγ t K (x,
t and taking the limit, we obtain:

(x x -y y ) 2 dγ t (x, y)dγ t (x , y ) ≤ (x x -y y ) 2 dγ t K (x, y)dγ t K (x , y ). (12.291) For the right hand side, using that γ t K = η t, ⊗ γ . For the continuity, we can apply (Santambrogio, 2015, Lemma 1.8) (as in the (Santambrogio, 2015, Corollary 2.24) By taking the limit t → 0, we now obtain: (x x -y y ) 2 dγ(x, y)dγ(x , y ) ≤ (x x -y y ) 2 dγ K (x, y)dγ K (x , y ). (12.298) We can now disintegrate with respect to γ 1: -1 as before. We just need to prove that the marginals coincide, which is performed by taking for test functions:    ξ(x 1 , . . . , x -1 , y 1 , . . . , y -1 )φ(x ) ξ(x 1 , . . . , x -1 , y 1 , . . . , y -1 )ψ(y ) (12.299) and using the fact that the measures are concentrated on y k = T K (x k ).

Part 4:

Therefore, we have well γ t L ---→ t→0 γ K . Finally, for the L 2 convergence, we have: 2 2 µ(dx) = y -T K (x) 2 2 dγ t (x, y) → y -T K (x) 2 2 dγ K (x, y) = 0 (12.300)

T t (x) -T K (x)
as γ t = (Id × T t ) # µ and γ K = (Id × T K ) # µ. Hence, T t L 2 ---→ t→0 T K .
Proof of Proposition 10.7

Proof of Proposition 10.7. First, we can start by writing: (2) ] i,k + [Y (2) ] j, -2 X i,k , Y j, . (12.301) We cannot directly apply proposition 1 from [START_REF] Peyré | Gromov-Wasserstein Averaging of Kernel and Distance Matrices[END_REF] (as the third term is a scalar product), but by performing the same type of computation, we obtain: (12.302) with 2) γ1 m ] i,1 = [X (2) p] i,1 (12.303)

L i,j,k, = x i x k -y j y 2 2 = X i,k -Y j, 2 2 = X i,k 2 2 + Y j, 2 2 -2 X i,k , Y j, = [X
L ⊗ γ = A + B + C
A i,j = k, [X (2) ] i,k γ k, = k [X (2) ] i,k γ k, = k [X (2) ] i,k [γ1 m ] k,1 = [X ( 
B i,j = k,
[Y (2) ] j, γ k, = [Y (2) ] j, k γ k, = [Y (2) ] j, [γ T 1 n ] ,1 = [Y (2) γ T 1 n ] j,1 = [Y (2) q] j,1 (12.304) and

C i,j = -2 k, X i,k , Y j, γ k, = -2 k, d t=1 X i,k,t Y j, ,t γ k, = -2 d t=1 k [X t ] i,k [Y t ] j, γ T ,k = -2 d t=1 k [X t ] i,k [Y t γ T ] j,k = -2 d t=1
[X t (Y t γ T ) T ] i,j .

(12.305)

Finally, we have: En Machine Learning (ML), l'objectif est d'apprendre le meilleur modèle possible pour une tâche donnée à partir d'un ensemble de données d'entraînement. Les données peuvent avoir différentes structures, de nuages de points en passant par des images ou des graphes, et peuvent reposer dans différents espaces. Une manière pratique de modéliser les données est d'assumer qu'elles suivent une probabilité de distribution sous-jacente inconnue. Ainsi, il est important de développer des outils pour gérer des probabilités de distributions, comme des métriques pour les comparer ou des algorithmes pour les apprendre. De plus, étant donné le nombre de données disponible et leur potentielle grande dimensionnalité, ces méthodes ont besoin d'être capable de passer à l'échelle avec le nombre d'échantillons de données ainsi qu'avec la dimension.

L ⊗ γ = X (2) p1 T m + 1 n q T (Y (2) ) T -2 d t=1 X t γY T t . ( 12 
Par exemple, la modélisation générative est une tâche populaire en ML, qui a récemment reçu beaucoup d'attention via les "Large Language Models" (LLM) qui ont pour objectif de générer du texte [START_REF] Brown | Language Models are Few-shot Learners[END_REF][START_REF] Touvron | Open and Efficient Foundation Language Models[END_REF][START_REF] Openai | [END_REF], ou via les modèles de diffusion qui visent à générer des images [START_REF] Rombach | High-Resolution Image Synthesis with Latent Diffusion Models[END_REF][START_REF] Ramesh | Hierarchical Text-Conditional Image Generation with CLIP Latents[END_REF][START_REF] Saharia | Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding[END_REF]. Généralement, l'objectif de ces tâches est d'apprendre la distribution inconnue des données afin de pouvoir générer de nouveaux exemples. Cela revient à minimiser une divergence bien choisie entre des distributions de probabilité. Pour modéliser les distributions de probabilité inconnues, il est commun d'exploiter le Deep Learning en utilisant des réseaux de neurones. Des frameworks populaires incluent les réseaux antagonistes génératifs (GANs) [START_REF] Goodfellow | Generative Adversarial Nets[END_REF], les autoencodeurs variationnels (VAEs) [START_REF] Kingma | Auto-Encoding Variational Bayes[END_REF], les flots normalisants (NFs) [START_REF] Papamakarios | Normalizing Flows for Probabilistic Modeling and Inference[END_REF] ou plus récemment les modèles génératifs basés sur le score [START_REF] Sohl-Dickstein | Deep Unsupervised Learning using Nonequilibrium Thermodynamics[END_REF][START_REF] Song | Generative Modeling by Estimating Gradients of the Data Distribution[END_REF].

Des fonctions de perte typiques pour apprendre des distributions de probabilités sont les f -divergences [START_REF] Nowozin | f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization[END_REF] (incluant la divergence de Kullback-Leibler par exemple) ou la "Maximum Mean Discrepancy" (MMD) [START_REF] Li | MMD GAN: Towards Deeper Understanding of Moment Matching Network[END_REF][START_REF] Bińkowski | Demystifying MMD GANs[END_REF][START_REF] Mroueh | On the Convergence of Gradient Descent in GANs: MMD GAN as a Gradient Flow[END_REF]. Cependant, ces différents objectifs requièrent généralement que les distributions aient des densités, qu'elles partagent le même support et/ou elles ne respectent pas nécessairement bien la géométrie des données (Arjovsky et al., 2017). Une alternative populaire pour manipuler des distributions de probabilités tout en respectant la géométrie des données à travers un coût spécifié, et pour comparer des distributions qui ne partagent pas forcément le même support est le Transport Optimal (OT) [START_REF] Villani | Optimal Transport: Old and New[END_REF], qui permet de comparer des distributions en trouvant la façon la moins coûteuse de bouger la masse d'une distribution à l'autre. Ainsi, les fonctions de pertes d'OT ont été utilisées comme une autre alternative pour les modèles génératifs à travers par exemple les Wasserstein GANs (Arjovsky et al., 2017) ou les Wasserstein Autoencodeurs [START_REF] Tolstikhin | Wasserstein Auto-Encoders[END_REF].

Cependant, dans sa formulation originale, le Transport Optimal souffre d'un gros coût computationnel ainsi que de la malédiction de la dimension, ce qui peut réduire son utilité pour des applications de ML. Ainsi, cette thèse se concentre sur le développement et l'analyse de méthodes efficaces de Transport Optimal avec pour objectif de les appliquer sur des problèmes de ML.

Transport Optimal pour le Machine Learning

Le Transport Optimal [START_REF] Villani | Optimal Transport: Old and New[END_REF] fournit une façon de comparer des distributions de probabilités tout en prenant en compte leur géométrie sous-jacente. Ce problème, d'abord introduit par [START_REF] Monge | Mémoire sur la théorie des déblais et des remblais[END_REF], consiste originellement à trouver la meilleure façon de bouger une distribution de probabilité sur une autre par rapport à une certaine fonction de coût. Cela fournit deux quantités d'intérêt. La première est la fonction de transport optimal (et plus généralement le plan de transport optimal) qui permet de pousser une distribution sur une distribution cible. La seconde est la valeur optimale du problème sous-jacent, qui quantifie à quel point deux distributions de probabilités sont proches et définit une distance entre elles appelée généralement la distance de Wasserstein.

Le problème de Transport Optimal a reçu beaucoup d'attention récemment. La fonction de transport optimal, aussi appelée la fonction de Monge, peut être utilisée dans plusieurs problèmes comme l'adaptation de domaine [START_REF] Courty | Optimal Transport for Domain Adaptation[END_REF], où l'objectif est de classifier des données d'une distribution de probabilité cible pour laquelle nous n'avons pas accès à des exemples d'entraînement grâce à un autre jeu de données que l'on utilise comme ensemble d'entraînement. Ainsi, la fonction de transport optimal permet d'aligner le jeu de données source avec le jeu de données cible, ce qui permet ensuite d'utiliser un classifieur appris sur le jeu de données source. La fonction de transport a aussi été utile pour la traduction, où l'on veut aligner deux embeddings de différents langages [START_REF] Grave | Unsupervised Alignment of Embeddings with Wasserstein Procrustes[END_REF], pour la biologie computationnelle [START_REF] Schiebinger | Optimal-Transport Analysis of Single-cell Gene Expression identifies Developmental Trajectories in Reprogramming[END_REF], en vision par ordinateur [START_REF] Makkuva | Optimal Transport mapping via Input Convex Neural Networks[END_REF] ou pour des applications physiques comme la cosmologie [START_REF] Nikakhtar | Optimal Transport Reconstruction of Baryon Acoustic Oscillations[END_REF][START_REF] Panda | Semi-supervised Learning of Pushforwards For Domain Translation & Adaptation[END_REF].

Dans cette thèse, nous allons surtout être intéressés par les propriétés de distance du problème de Transport Optimal. Comme il fournit un bon moyen de comparer des distributions de probabilité, il a été utilisé, par exemple, pour classifier des documents qui peuvent être vus comme des distributions de probabilités sur des mots [START_REF] Kusner | From Word Embeddings to Document Distances[END_REF][START_REF] Huang | Supervised Word Mover's Distance[END_REF], pour faire de la réduction de dimension de jeux de données d'histogrammes ou plus généralement de distributions de probabilités en utilisant une analyse en composante principale (ACP) [START_REF] Seguy | Principal Geodesic Analysis for Probability Measures under the Optimal Transport Metric[END_REF][START_REF] Bigot | Geodesic PCA in the Wasserstein space by Convex PCA[END_REF][START_REF] Cazelles | Geodesic PCA versus Log-PCA of Histograms in the Wasserstein Space[END_REF] ou de l'apprentissage de dictionnaires [START_REF] Rolet | Fast Dictionary Learning with a Smoothed Wasserstein Loss[END_REF][START_REF] Schmitz | Wasserstein Dictionary Learning: Optimal Transport-based Unsupervised Nonlinear Dictionary Learning[END_REF][START_REF] Mueller | Geometric Sparse Coding in Wasserstein Space[END_REF], ou pour faire du clustering [START_REF] Cuturi | Fast Computation of Wasserstein Barycenters[END_REF] avec l'algorithme de Wasserstein K-Means [START_REF] Domazakis | Clustering Measure-valued Data with Wasserstein Barycenters[END_REF][START_REF] Zhuang | Wasserstein k-means for Clustering Probability Distributions[END_REF]. Il fournit aussi des fonctions de perte efficaces pour des problèmes d'apprentissage supervisés [START_REF] Frogner | Learning with a Wasserstein Loss[END_REF] ou pour des tâches de modèles génératifs avec les Wasserstein GANs (Arjovsky et al., 2017;[START_REF] Gulrajani | Improved Training of Wasserstein GANs[END_REF][START_REF] Genevay | GAN and VAE from an Optimal Transport Point of View[END_REF] ou les Wasserstein Autoencoders [START_REF] Tolstikhin | Wasserstein Auto-Encoders[END_REF]. Le coût de transport optimal a aussi été utilisé pour obtenir des trajectoires de flots plus droites, permettant de réaliser une meilleure inférence de manière plus rapide [START_REF] Finlay | How to train your neural ODE: the World of Jacobian and Kinetic Regularization[END_REF][START_REF] Onken | OT-Flow: Fast and Accurate Continuous Normalizing Flows via Optimal Transport[END_REF][START_REF] Tong | Conditional Flow Matching: Simulation-free Dynamic Optimal Transport[END_REF]. De plus, l'espace des probabilités de distribution muni de la distance de Wasserstein a une structure géodésique [START_REF] Otto | The Geometry of Dissipative Evolution Equations: the Porous Medium Equation[END_REF], qui permet de dériver une théorie complète de flots gradients [START_REF] Ambrosio | Gradient Flows: in Metric Spaces and in the Space of Probability Measures[END_REF]. Cela a mené à la dérivation de plusieurs algorithmes qui apportent des moyens efficaces de minimiser des fonctionnelles sur l'espace des mesures de probabilités [START_REF] Arbel | Maximum Mean Discrepancy Gradient Flow[END_REF][START_REF] Salim | The Wasserstein Proximal Gradient Algorithm[END_REF][START_REF] Glaser | KALE Flow: A Relaxed KL Gradient Flow for Probabilities with Disjoint Support[END_REF][START_REF] Altekrüger | Neural Wasserstein Gradient Flows for Maximum Mean Discrepancies with Riesz Kernels[END_REF] et qui sont reliés avec des algorithmes d'échantillonnage dérivés par exemple dans la communauté des Markov chain Monte-Carlo (MCMC) [START_REF] Jordan | The variational formulation of the Fokker-Planck equation[END_REF][START_REF] Wibisono | Sampling as Optimization in the Space of Measures: The Langevin Dynamics as a Composite Optimization Problem[END_REF].

Motivations

En Machine Learning, nous sommes souvent amenés à manipuler des problèmes avec de grandes quantités de données. Dans ce cas, un des inconvénients du problème de Transport Optimal est sa complexité computationnelle par rapport au nombre d'échantillons pour calculer la distance de transport optimal. Pour réduire ce coût computationnel, différentes solutions ont été proposées ces dernières années qui ont rendu le Transport Optimal très populaire en ML.

Alternatives au problème original de Transport Optimal. [START_REF] Cuturi | Sinkhorn Distances: Lightspeed Computation of Optimal Transport[END_REF] a proposé d'ajouter une régularisation entropique au problème de transport optimal, ce qui permet de dériver un algorithme avec une meilleure complexité computationnelle et qui peut être utilisé sur des GPUs [START_REF] Feydy | Geometric Data Analysis, beyond Convolutions[END_REF], ce qui a permis de populariser le transport optimal dans la communauté de ML [START_REF] Torres | A survey on Optimal Transport for Machine Learning: Theory and Applications[END_REF]. Cet objectif a notamment été utilisé pour la modélisation générative en utilisant l'auto-différentiation [START_REF] Genevay | Learning Generative Models with Sinkhorn Divergences[END_REF]. Pour des problèmes d'apprentissage où l'objectif est d'apprendre implicitement la distribution des données, une autre alternative beaucoup utilisée en Deep Learning est l'approche par minibatch [START_REF] Genevay | Stochastic Optimization for Large-Scale Optimal Transport[END_REF][START_REF] Fatras | Learning with Minibatch Wasserstein: Asymptotic and Gradient Properties[END_REF]2021b) qui n'utilise à chaque étape qu'une petite portion des données. Une autre famille d'approches utilise des alternatives à la formulation classique du problème de transport optimal en considérant des projections sur des sous-espaces. Ces approches peuvent être motivées d'une part par le fait que des distributions dans des espaces de grande dimension sont souvent supposées être supportées sur un sous-espace de faible dimension, ou que deux distributions ne diffèrent que sur sous-espace de faible dimension (Niles- [START_REF] Niles-Weed | Estimation of Wasserstein Distances in the Spiked Transport Model[END_REF]. D'autre part, ces approches peuvent être calculées plus efficacement que le problème de transport optimal classique tout en conservant certaines de ses propriétés et en offrant souvent de meilleures propriétés statistiques en grande dimension. Dans cette thèse, nous allons surtout nous intéresser à des méthodes qui reposent sur des projections sur des sous-espaces. Sliced-Wasserstein. L'exemple principal de ce genre de méthodes est la distance de Sliced-Wasserstein (SW) [START_REF] Rabin | Wasserstein Barycenter and its Application to Texture Mixing[END_REF][START_REF] Bonnotte | Unidimensional and Evolution Methods for Optimal Transportation[END_REF][START_REF] Bonneel | Sliced and Radon Wasserstein Barycenters of Measures[END_REF], qui est définie comme la moyenne de la distance de Wasserstein entre les projections unidimensionnelles des mesures sur toutes les directions. Cette distance a beaucoup de bonnes propriétés, notamment celle d'avoir un faible coût computationnel. Elle s'est avérée être une alternative appropriée à la distance de Wasserstein ou au problème de transport avec régularisation entropique. Comme il s'agit d'une fonction de perte différentiable, elle a été utilisée dans de nombreux problèmes d'apprentissage tels que la modélisation générative pour apprendre l'espace latent des autoencodeurs avec les autoencodeurs Sliced-Wasserstein (Kolouri et al., 2019b), pour apprendre des générateurs avec les générateurs Sliced-Wasserstein [START_REF] Deshpande | Generative Modeling using the Sliced Wasserstein Distance[END_REF][START_REF] Wu | Sliced wasserstein Generative Models[END_REF][START_REF] Lezama | Run-Sort-ReRun: Escaping Batch Size Limitations in Sliced Wasserstein Generative Models[END_REF], pour entraîner des flots normalisants (Coeurdoux et al., 2022;2023), pour de l'inférence variationnelle (Yi and Liu, 2023), ou comme un objectif pour des algorithmes non paramétriques [START_REF] Liutkus | Sliced-Wasserstein Flows: Nonparametric Generative Modeling via Optimal Transport and Diffusions[END_REF][START_REF] Dai | Sliced Iterative Normalizing Flows[END_REF][START_REF] Du | Nonparametric Generative Modeling with Conditional and Locally-Connected Sliced-Wasserstein Flows[END_REF]. Elle a aussi été utilisée dans de nombreuse applications telle que la texture de synthèse [START_REF] Tartavel | Wasserstein Loss for Image Synthesis and Restoration[END_REF][START_REF] Heitz | A Sliced Wasserstein Loss for Neural Texture Synthesis[END_REF], l'adaptation de domaine [START_REF] Lee | Sliced Wasserstein Discrepancy for Unsupervised Domain Adaptation[END_REF][START_REF] Rakotomamonjy | Statistical and Topological Properties of Gaussian Smoothed Sliced Probability Divergences[END_REF][START_REF] Xu | Unsupervised Manifold Learning with Polynomial Mapping on Symmetric Positive Definite Matrices[END_REF], la reconstruction de nuage de points (Nguyen et al., 2023a), des tests (Wang et al., 2021a;b;[START_REF] Xu | Central Limit Theorem for the Sliced 1-Wasserstein Distance and the Max-Sliced 1-Wasserstein Distance[END_REF] ou pour évaluer la performance de GANs [START_REF] Karras | Progressive Growing of GANs for Improved Quality, Stability, and Variation[END_REF]. En outre, c'est une distance hilbertienne qui peut ainsi être utilisée pour définir des noyaux entre distributions de probabilités, qui peuvent être utilisés dans des méthodes à noyaux [START_REF] Hofmann | KernelMmethods in Machine Learning[END_REF], par exemple pour le kernel K-Means, PCA, SVM [START_REF] Kolouri | Sliced Wasserstein Kernels for Probability Distributions[END_REF] ou pour faire de la régression [START_REF] Meunier | Distribution Regression with Sliced Wasserstein Kernels[END_REF].

Comme SW est très populaire, beaucoup de variantes ont été proposées afin de pouvoir être utilisées avec des structures de données spécifiques (Nguyen and Ho, 2022b) ou pour améliorer son pouvoir discriminatif en échantillonnant plus attentivement les directions des projections [START_REF] Deshpande | Max-Sliced Wasserstein Distance and its use for GANs[END_REF][START_REF] Rowland | Orthogonal Estimation of Wasserstein Distances[END_REF]Nguyen et al., 2021a;b;[START_REF] Dai | Sliced Iterative Normalizing Flows[END_REF]Nguyen et al., 2023b;Nguyen and Ho, 2023b;[START_REF] Ohana | Shedding a PAC-Bayesian Light on Adaptive Sliced-Wasserstein Distances[END_REF], en changeant la façon de projeter (Kolouri et al., 2019a;[START_REF] Chen | Augmented Sliced Wasserstein Distances[END_REF][START_REF] Nguyen | Hierarchical Sliced Wasserstein Distance[END_REF] ou les sous-espaces sur lesquels projeter [START_REF] Paty | Subspace robust Wasserstein distances[END_REF][START_REF] Lin | On Projection Robust Optimal Transport: Sample Complexity and Model Misspecification[END_REF][START_REF] Li | Hilbert Curve Projection Distance for Distribution Comparison[END_REF]. D'autres travaux proposent des estimateurs de SW, soit pour réduire la variance (Nguyen and Ho, 2023a), soit pour réduire la malédiction de la dimension par rapport aux projections [START_REF] Nadjahi | Fast Approximation of the Sliced-Wasserstein Distance using Concentration of Random Projections[END_REF].

Le processus de slicing a aussi reçu beaucoup d'attentions pour d'autres divergences. Nadjahi et al. (2020b) a étudié les propriétés de différentes divergences entre probabilités slicées, comprenant par exemple la distance de Sliced-Wasserstein, mais aussi la divergence de Sinkhorn slicée ou la Sliced-MMD. Cela a été aussi utilisé par exemple pour fournir une variante slicée de la distance "Tree-Wasserstein" [START_REF] Le | Tree-Sliced Variants of Wasserstein Distances[END_REF], pour généraliser des divergences qui ne sont originellement bien définies qu'entre distributions de probabilité unidimensionnelles à des distributions de plus grande dimension comme la distance de Cramér [START_REF] Kolouri | Sliced Cramer Synaptic Consolidation for Preserving Deeply Learned Representations[END_REF] ou pour alléger la malédiction de la dimension de la "Kernelized Stein discrepancy" [START_REF] Gong | Sliced Kernelized Stein Discrepancy[END_REF], de l'information mutuelle [START_REF] Goldfeld | Sliced Mutual Information: A Scalable Measure of Statistical Dependence[END_REF]Goldfeld et al., 2022a) ou de la variation totale et de la distance de Kolmogorov-Smirnov pour comparer des chaînes MCMC [START_REF] Grenioux | On Sampling with Approximate Transport Maps[END_REF]. Cela a aussi été utilisé pour la tâche de score matching [START_REF] Song | Sliced Score Matching: A Scalable Approach to Density and Score Estimation[END_REF] qui a récemment été mise en avant à travers les modèles de diffusion. Il a été aussi appliqué à différents problèmes de transport optimal comme le problème multi-marginal (Cohen et al., 2021b) ou le problème de transport optimal partiel [START_REF] Figalli | The Optimal Partial Transport Problem[END_REF] dans [START_REF] Bonneel | SPOT: Sliced Partial Optimal Transport[END_REF][START_REF] Bai | pour le transport optimal partiel[END_REF], qui peut être utilisé entre des mesures avec différentes masses, et qui est un cas particulier du problème de transport optimal non balancé [START_REF] Benamou | Numerical Resolution of an "Unbalanced" Mass Transport Problem[END_REF]Séjourné et al., 2022a).

Ces précédents travaux se sont focalisés principalement sur des espaces euclidiens. Cependant, beaucoup de données ont une structure connue qui n'est pas euclidienne. En effet, par la "manifold hypothesis", il est communément accepté que les données reposent sur une variété de plus faible dimension [START_REF] Chen | Nonlinear Manifold Representations for Functional Data[END_REF][START_REF] Bengio | Representation Learning: A Review and new Perspectives[END_REF][START_REF] Fefferman | Testing the Manifold Hypothesis[END_REF][START_REF] Pope | The Intrinsic Dimension of Images and Its Impact on Learning[END_REF]. Dans certains cas, il est possi-ble de connaître exactement la structure Riemannienne des données. Par exemple, les données terrestres sont sur une sphère, ou des données hiérarchiques peuvent être représentées efficacement sur des espaces hyperboliques [START_REF] Nickel | Poincaré Embeddings for Learning Hierarchical Representations[END_REF]. Le problème de transport optimal est bien défini sur ces espaces [START_REF] Villani | Optimal Transport: Old and New[END_REF]. Ainsi, en ML, le transport optimal a récemment été utilisé pour des données reposant dans des variétés riemanniennes (Alvarez-Melis et al., 2020;[START_REF] Hoyos-Idrobo | Aligning Hyperbolic Representations: an Optimal Transport-based Approach[END_REF]. Mais l'accent a été mis sur l'utilisation de la distance de Wasserstein ou du transport optimal avec régularisation entropique, au lieu de méthodes reposant sur des projections sur des sous-espaces. Afin de combler cette lacune, l'un des principaux objectifs de la thèse sera de développer des distances de Sliced-Wasserstein sur des variétés riemanniennes.

Une des limitations de SW est le manque de plan de transport optimal, qui peut être très utile pour des applications telles que l'adaptation de domaine [START_REF] Courty | Optimal Transport for Domain Adaptation[END_REF], d'alignements d'embeddings de mots avec le problème de Wasserstein Procrutes [START_REF] Grave | Unsupervised Alignment of Embeddings with Wasserstein Procrustes[END_REF][START_REF] Ramírez | On a Novel Application of Wasserstein-Procrustes for Unsupervised Cross-Lingual Learning[END_REF] ou l'alignement de cellules (Demetci et al., 2022b). Pour pallier à cela, on pourrait utiliser la projection barycentrique, mais qui ne donnerait pas forcément un bon plan de transport car beaucoup de projections ne sont pas vraiment significatives. Trouver un plan de transport optimal requiert donc de résoudre le problème de transport optimal, qui peut être insoluble en pratique pour des problèmes à grande échelle. [START_REF] Muzellec | Subspace Detours: Building Transport Plans that are Optimal on Subspace Projections[END_REF] ont proposé de projeter les distributions sur un sous-espace, puis de se reposer sur la désintégration de mesures pour retrouver le plan de transport optimal. Plus récemment, [START_REF] Li | Hilbert Curve Projection Distance for Distribution Comparison[END_REF] ont plutôt utilisé des plans possiblement sous-optimaux obtenus entre des projections sur des courbes de Hilbert.

Transport Optimal entre des Données Incomparables. Quand on a des données incomparables, par exemple des données qui ne peuvent pas être représentées dans le même espace ou qui ne peuvent pas être bien comparées entre elles avec des distances à cause d'invariances entre données qui ne sont pas prises en compte par la distance, le problème de transport optimal classique n'est plus applicable, ou en tout cas pas très performant. Alors qu'il a été proposé d'apprendre de manière simultanée des transformations latentes pour calculer la distance de transport optimal (Alvarez-Melis et al., 2019) ou de représenter les deux distributions dans un espace euclidien commun [START_REF] Alaya | Heterogeneous Wasserstein Discrepancy for Incomparable Distributions[END_REF]2022), une méthode populaire qui prend directement en compte les invariances tout en permettant de comparer des distributions sur des espaces différents est la distance de Gromov-Wasserstein [START_REF] Mémoli | Gromov-Wasserstein Distances and the Metric Approach to Object Matching[END_REF]. Cette distance a récemment reçu beaucoup d'intérêts en ML, par exemple pour comparer des données génomiques (Demetci et al., 2022b) ou des graphes [START_REF] Xu | Scalable Gromov-Wasserstein Learning for Graph Partitioning and Matching[END_REF]Chowdhury and Needham, 2021). Cependant, cette distance souffre d'un coût computationnel encore plus grand que le problème de transport original [START_REF] Peyré | Gromov-Wasserstein Averaging of Kernel and Distance Matrices[END_REF], et ne peut ainsi qu'être difficilement calculable dans un contexte de grande échelle. Alors que ce problème n'a pas toujours une forme close en une dimension [START_REF] Dumont | On the Existence of Monge Maps for the Gromov-Wasserstein Distance[END_REF][START_REF] Beinert | On Assignment Problems Related to Gromov-Wasserstein Distances on the Real Line[END_REF], une forme close est disponible dans certains cas particuliers (Vayer, 2020) et une version sliced a été précédemment proposée (Vayer et al., 2019b).

Objectifs. Ici, nous résumons les objectifs de la thèse avant de décrire plus en détail dans la prochaine section les contributions.

• Tout d'abord, comme beaucoup de données ont une structure riemannienne, nous aurons pour objectif de définir de nouvelles distances de Sliced-Wasserstein sur des variétés riemanniennes.

• Comme SW fournit une distance efficace entre des distributions de probabilités qui partage beaucoup de propriétés avec la distance de Wasserstein, une question naturelle est d'étudier les propriétés des flots gradients sous-jacents comparés aux flots gradients Wasserstein.

• Motivé par les propriétés de robustesse du transport optimal non balancé, et des récentes méthodes de Sliced Partial OT, nous explorerons comment étendre le processus de slicing au transport optimal non balancé dans le but de comparer des mesures positives.

• Un autre objectif de cette thèse sera de fournir de nouveaux outils pour projeter sur des sousespaces de l'espace des mesures de probabilités, dans l'objectif de l'appliquer à des jeux de données composés de distributions de probabilités.

• Comme une limitation de SW est de ne pas fournir de plan de transport, nous explorerons comment calculer efficacement des plans de transport entre des espaces incomparables en utilisant le problème de Gromov-Wasserstein.

Aperçu de la Thèse et Contributions

Cette thèse se concentre sur les distances de transport optimal basées sur des projections sur des sous-espaces. Le chapitre 2 fournit le contexte général sur le Transport Optimal requis pour comprendre le reste de la thèse, ainsi qu'un aperçu de la littérature.

Ensuite, la partie I introduit des distances de Sliced-Wasserstein sur des variétés riemanniennes et les applique à différents problèmes de Machine Learning ainsi qu'à différentes variétés. La partie II couvre soit des applications du Transport Optimal basées sur la distance de Wasserstein, ou des variantes de Transport Optimal basées sur des projections sur des sous-espaces. Nous détaillons maintenant plus en profondeur le contenu et les contributions de chaque chapitre. Nous mentionnons aussi les collaborateurs en dehors du laboratoire d'accueil de l'auteur de la thèse.

Partie I: Sliced-Wasserstein sur Variétés Riemanniennes

Dans la partie I, nous étudions l'extension de la distance de Sliced-Wasserstein, originellement définie sur des espaces euclidiens, à des variétés riemanniennes. Plus précisément, nous introduisons d'abord dans le chapitre 3 une façon de construire des distances de Sliced-Wasserstein sur des variétés de (Cartan)-Hadamard et nous introduisons certaines de leurs propriétés. Ensuite, nous prenons avantage de ces constructions dans les chapitres 4 et 5 afin de construire des distances de Sliced-Wasserstein sur des variétés de Hadamard spécifiques : les espaces hyperboliques et les espaces de matrice symétrique définies positives. Finalement, dans le chapitre 6, nous étudions le cas de la sphère, qui ne rentre pas dans le cadre précédent car ce n'est pas une variété de Hadamard.

Chapitre 3: Sliced-Wasserstein sur variétés de Cartan-Hadamard

Dans ce chapitre, en considérant R d comme un cas particulier d'une variété riemannienne, nous dérivons les outils pour étendre la distance de Sliced-Wasserstein sur des variétés Riemanniennes géodésiquement complètes. Plus précisément, nous identifions les lignes comme des géodésiques, et proposons de projeter les mesures sur les géodésiques de variétés.

Nous nous concentrons ici sur des variétés Riemanniennes géodésiquement complètes de courbure négative, qui ont pour particularité d'avoir leurs géodésiques isométriques à R. Cela permet de projeter les mesures sur la ligne réelle où la distance de Wasserstein peut être facilement calculée. De plus, nous proposons deux façons de projeter sur la ligne réelle. Ces deux manières de projeter sont des extensions naturelles de la projection dans le cas Euclidien. Tout d'abord, nous considérons la projection géodésique, qui consiste à projeter le long des chemins les plus courts, et qui permet de définir la distance Geodesic Cartan-Hadamard Sliced-Wasserstein (GCHSW). La seconde projection est la projection horosphérique, qui projette le long des horosphères en utilisant les lignes de niveau de la fonction de Busemann, et qui permet de définir la distance Horospherical Cartan-Hadamard Sliced-Wasserstein (HCHSW).

Ensuite, nous analysons théoriquement ces deux constructions et montrons que plusieurs propriétés importantes de la distance de Sliced-Wasserstein euclidienne sont encore valables sur des variétés de Hadamard. Plus précisément, nous discutons de leurs propriétés de distance, dérivons leurs premières variations et montrons qu'elles peuvent être représentées dans des espaces de Hilbert. Puis, nous dérivons leur complexité de projection ainsi que leur complexité par rapport aux échantillons, qui de manière similaire au cas euclidien, est indépendant de la dimension.

Chapitre 4: Hyperbolic Sliced-Wasserstein

Dans ce chapitre, nous prenons avantage de la construction dérivée dans le chapitre 3 et l'appliquons aux espaces hyperboliques, qui sont des cas particuliers de variété de Hadamard, caractérisés par une courbure (constante) strictement négative.

Puisqu'il y a plusieurs paramétrisations équivalentes des espaces hyperboliques, nous étudions le cas du modèle de Lorentz et de la boule de Poincaré, et dérivons des formes closes pour définir et calculer efficacement la distance Geodesic Hyperbolic Sliced-Wasserstein (GHSW) et Horospherical Hyperbolic Sliced-Wasserstein (HHSW). Nous montrons aussi que ces deux formulations peuvent être utilisées indifféremment sur la boule de Poincaré et le modèle de Lorentz.

Nous comparons ensuite les comportements de GHSW, HHSW et les distances de Sliced-Wasserstein euclidiennes sur la boule de Poincaré et le modèle de Lorentz sur différentes tâches comme la descente de gradient ou des problèmes de classification avec des réseaux de neurones.

Ce chapitre est basé sur (Bonet et al., 2023b) et a été présenté au workshop "Topology, Algebra and Geometry in Machine Learning" (TAG-ML) à la conférence ICML 2023. Le code est disponible à https:// github.com/clbonet/Hyperbolic_Sliced-Wasserstein_via_Geodesic_and_Horospherical_Projections.

Chapitre 5: Sliced-Wasserstein sur les Matrices Symétriques Définies Positives

Dans ce chapitre, nous introduisons des distances de Sliced-Wasserstein sur l'espace des matrices symétriques définies positives (SPD). Muni de métriques spécifiques, l'espace des SPDs est de courbure négative et donc une variété de Hadamard. Ainsi, nous pouvons aussi utiliser la théorie introduite dans le chapitre 3 afin de définir des distances de Sliced-Wasserstein.

Nous étudions l'espace des SPDs muni de deux métriques spécifiques : la métrique Affine-Invariante et la métrique Log-Euclidienne. Avec la métrique Affine-Invariante, l'espace des SPDs est de courbure variable négative. Comme dériver une forme close pour la projection géodésique est difficile, nous nous concentrons sur la projection de Busemann et introduisons la distance de Sliced-Wasserstein horosphérique HSPDSW. Cependant, HSPDSW est coûteux computationnellement. Ainsi, cela nous motive à utiliser la métrique Log-Euclidienne, qui peut être vue comme une approximation du premier ordre de la métrique Affine-Invariante [START_REF] Arsigny | Fast and Simple Computations on Tensors with Log-Euclidean Metrics[END_REF][START_REF] Pennec | Manifold-valued Image Processing with SPD Matrices[END_REF] et qui est plus facile à calculer en pratique. Muni de cette métrique, l'espace des SPDs est de courbure nulle et nous pouvons dériver la distance de Sliced-Wasserstein correspondante SPDSW.

Nous dérivons quelques propriétés complémentaires pour SPDSW. Puis, nous appliquons cette distances à des problèmes de Magnetoencéphalographie et de Electroencéphalographie (M/EEG) comme la prédiction de l'âge du cerveau ou l'adaptation de domaine appliqué à des problèmes d'interfaces neuronales directes.

Ce chapitre est basé sur [START_REF] Bonet | Sliced-Wasserstein on Symmetric Positive Definite Matrices for M/EEG Signals[END_REF] et a été accepté à ICML 2023. Le code est disponible à https://github.com/clbonet/SPDSW. Ce travail a été fait en collaboration avec Benoît Malézieux (Inria).

Chapitre 6: Spherical Sliced-Wasserstein

Nous étudions dans ce chapitre une manière de définir une distance de Sliced-Wasserstein sur la sphère. Contrairement aux chapitres précédents, la sphère est de courbure strictement positive, et n'est donc pas une variété de Hadamard. Ainsi, nous ne pouvons pas utiliser les constructions introduites dans le chapitre 3.

Prenant en compte les particularités de la sphère, nous introduisons une distance de Sliced-Wasserstein sphérique (SSW) en projetant les mesures sur des grands cercles, qui sont les géodésiques de la sphère. Pour l'implémentation pratique, nous dérivons une forme close de la projection géodésique, et utilisons l'algorithme de Delon et al. (2010) pour calculer la distance de Wasserstein sur le cercle. De plus, nous introduisons une forme close pour calculer la distance de Wasserstein sur le cercle entre une mesure de probabilité arbitraire et la distribution uniform sur S 1 . Concernant la partie théorique, nous étudions quelques connections avec une transformée de Radon sphérique permettant d'investiguer les propriétés de distance.

Ensuite, nous illustrons l'utilité de cette distance sur des tâches de Machine Learning comme l'échantillonnage, l'estimation de densité ou pour apprendre des modèles génératifs.

Ce chapitre est basé sur (Bonet et al., 2023a) et a été accepté à ICLR 2023. Le code est disponible à https://github.com/clbonet/Spherical_Sliced-Wasserstein. De plus, l'implémentation de SSW a été ajoutée à la librairie Python Optimal Transport (POT) [START_REF] Flamary | POT: Python Optimal Transport[END_REF].

Partie II: Transport Optimal et Variantes via des Projections

Dans la partie II, nous étudions différents problèmes qui impliquent des projections sur des sousespaces et du transport optimal. Dans le chapitre 7, nous investiguons les flots gradients dans l'espace des mesures de probabilités muni de la distance de Sliced-Wasserstein comparé avec l'espace des mesures de probabilité muni de la distance de Wasserstein. Ensuite, dans le chapitre 8, nous développons un framework pour comparer des mesures positives avec des méthodes de sliced. Dans le chapitre 9, nous investiguons la fonction de Busemann dans l'espace des mesures de probabilité muni de la distance de flexible pour être utilisé avec n'importe quelle variante de Sliced-Wasserstein, et nous illustrons cela en calculant la distance Unbalanced Hyperbolic Sliced-Wasserstein en s'appuyant sur le chapitre 4.

Chapitre 9: Busemann Function dans l'espace Wasserstein

La fonction de Busemann, associée à des géodésiques bien choisies, fournit une généralisation naturelle du produit scalaire sur des variétés. Ainsi, ses lignes de niveaux peuvent être vues comme des contreparties naturelles aux hyperplans. Cela a récemment été beaucoup utilisé sur des variétés de Hadamard comme les espaces hyperboliques afin de faire de l'analyse en composantes principales (ACP) ou pour des tâches de classification [START_REF] Chami | HoroPCA: Hyperbolic Dimensionality Reduction via Horospherical Projections[END_REF][START_REF] Ghadimi Atigh | Hyperbolic Busemann Learning with Ideal Prototypes[END_REF].

Afin de pouvoir analyser des jeux de données composés de mesures de probabilités, ce chapitre étudie la fonction de Busemann sur l'espace des mesures de probabilités munie de la distance de Wasserstein (espace de Wasserstein). Dans l'espace de Wasserstein, cette fonction n'est pas définie pour toutes les géodésiques. Ainsi, nous identifions d'abord pour quelles géodésiques cette fonction est bien définie. Ensuite, nous dérivons des formes closes dans les cas particuliers des mesures de probabilités sur la ligne réelle et des gaussiennes. Nous illustrons ensuite l'utilisation de cette fonction pour effectuer une analyse en composante principale de jeux de données de distributions unidimensionnelles.

Ce travail est effectué en collaboration avec Elsa Cazelles (IRIT).

Chapitre 10: Les détours par sous-espaces rencontrent Gromov-Wasserstein

Dans ce chapitre, nous sommes intéressés à la réduction du coût computationnel du problème de Gromov-Wasserstein en étant encore capable de calculer un plan de transport optimal entre les mesures originales. Ainsi, nous proposons d'étendre l'approche de détours par sous-espaces, originellement introduite par [START_REF] Muzellec | Subspace Detours: Building Transport Plans that are Optimal on Subspace Projections[END_REF] pour le problème de transport optimal, au problème de Gromov-Wasserstein. Comme le problème de Gromov-Wasserstein requiert seulement de calculer les distances dans chaque espace, nous proposons de projeter sur un sous-espace différent la source et la cible, ce qui peut permettre de mieux conserver le vrai plan de transport optimal. Nous dérivons quelques propriétés théoriques du problème, et notamment une forme close pour les couplings basés sur des détours par sousespaces quand les deux mesures sont gaussiennes et le problème est restreint à des couplings gaussiens. Ensuite, nous illustrons cette approche à un problème de matching de forme.

Dans une seconde partie, nous introduisons un nouveau coût de transport optimal, qui partage la propriété du problème de transport optimal original d'être connecté formellement au coupling de Knothe-Rosenblatt via un coût dégénéré.

Ce chapitre est basé sur [START_REF] Bonet | Subspace Detours Meet Gromov-Wasserstein[END_REF] Abstract: Optimal Transport has received much attention in Machine Learning as it allows to compare probability distributions by exploiting the geometry of the underlying space. However, in its original formulation, solving this problem suffers from a significant computational burden. Thus, a meaningful line of work consists at proposing alternatives to reduce this burden while still enjoying its properties. In this thesis, we focus on alternatives which use projections on subspaces. The main such alternative is the Sliced-Wasserstein distance, which we first propose to extend to Riemannian manifolds in order to use it in Machine Learning applications for which using such spaces has been shown to be beneficial in the recent years. We also study sliced distances between positive measures in the so-called unbalanced OT problem. Back to the original Euclidean Sliced-Wasserstein distance between probability measures, we study the dynamic of gradient flows when endowing the space with this distance in place of the usual Wasserstein distance. Then, we investigate the use of the Busemann function, a generalization of the inner product in metric spaces, in the space of probability measures. Finally, we extend the subspace detour approach to incomparable spaces using the Gromov-Wasserstein distance.
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 21 Dual formulation). Let p ≥ 1 and µ, ν ∈ P p (R d ), then W p p (µ, ν) = sup (ψ,φ)∈C

  .24) Furthermore,[START_REF] Fatras | Learning with Minibatch Wasserstein: Asymptotic and Gradient Properties[END_REF] studied the transport plan of the minibatchOT and Fatras et al. (2021b) developed the analysis for other OT problems. The computational complexity of solving this problem is in O(km 3 log m) with k the number of mini-batches sampled and m the size of the batches. Note that in Deep Learning applications, we typically choose k = 1.
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  θ is the coordinate projection on the line span(θ).Computation. In practice, when approximating the distributions µ and ν by their counterpart empirical distributions μn = 1 ,θ for any θ ∈ S d-1
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 22 Figure 2.2 -Projection of (red) points onto the (black) line. The projected points are in green. The level sets along which the points are projected are plotted in blue.
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 31 Figure3.1 -Triangles in different curvatures. For negative curvatures (k < 0), the sum of angles is lower than π, and for positive curvature (k > 0), the sum of angles is greater than π.
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 2 Cartan-Hadamard Sliced-Wasserstein). Let (M, g) a Hadamard manifold with o its origin. Denote λ the uniform distribution on S o = {v ∈ T o M, v o = 1}. Let p ≥ 1, then we define the
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 3 Figure 3.3 -Illustration of the projection process of measures on geodesics t → exp o (tv 1 ) and t → exp o (tv 2 ).
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 41 Figure 4.1 -Projection of (red) points on a geodesic (black line) in the Poincaré ball and in the Lorentz model along Euclidean lines, geodesics or horospheres (in blue). Projected points on the geodesic are shown in green.
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 42 Figure 4.2 -Runtime comparison in log-log scale between Wasserstein and Sinkhorn using the geodesic distance, SW 2 , GHSW 2 and HHSW 2 with 200 projections, including the computation time of the cost matrices.
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 4 Figure 4.3 -Comparison of the Wasserstein distance (with the geodesic distance as cost), GHSW, HHSW and SW between Wrapped Normal distributions. We gather the discrepancies together by scale of the values. SW on the Poincaré model has very small values as it operates on the unit ball, while on the Lorentz model, it can take very high values. GHSW returns small values as the geodesic projections tend to project the points close to the origin. HHSW has values which are closer to the geodesic Wasserstein distance as the horospherical projection tends to better keep the distance between points.
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 4 Figure 4.4 -Log 2-Wasserstein between a target and the gradient flow of GHSW, HHSW and SW (averaged over 5 runs).
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 5 Figure 5.1 -(Left) Random geodesics drawn in S ++ 2 (R). (Right) Projections (green points) of covariance matrices (depicted as red points) over one geodesic (in black) passing through I 2 along the Log-Euclidean geodesics (blue lines).
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 52 Figure 5.2 -Runtime of SPDSW, HSPDSW and LogSW (200 proj.) compared to alternatives based on Wasserstein between samples from a Wishart distribution in dimension d = 20. Sliced discrepancies can scale to larger distributions in S ++ d (R).
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 61 Figure 6.1 -Illustration of the geodesic projections on a great circle (in black). In red, random points sampled on the sphere. In green the projections and in blue the trajectories.

  defined as ∀x ∈ S d-1 , P C (x) = argmin y∈C d S d-1 (x, y), (6.7) where d S d-1 (x, y) = arccos( x, y ) is the geodesic distance. See Figure 6.1 for an illustration of the geodesic projection on a great circle. Note that the projection is unique for almost every x (see (Bardelli and Mennucci, 2017, Proposition 4.2) and Appendix 12.4.4) and hence the pushforward P C # µ of µ ∈ P p,ac (S d-1 ), where P p,ac (S d-1 ) denotes the set of absolutely continuous measures w.r.t. the Lebesgue measure and with moments of order p, is well defined.
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 6 Figure 6.4 -Minimization of SSW with respect to a mixture of vMF.
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 6 Figure 6.5 -Latent space of SWAE and SSWAE on MNIST for a uniform prior on S 2 .
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 6 Figure 6.6 -Density estimation of models trained on earth data. We plot the density on the test data.
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Algorithm 7. 1

 1 SW-JKO with Generative ModelsInput: µ 0 the initial distribution, K the number of SW-JKO steps, τ the step size, F the functional, N e the number of epochs to solve each SW-JKO step, n the batch size for k = 1 to K do Initialize a neural network g k+1 θ e.g. with g k θ for i = 1 to N e do Sample z
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 71 Figure 7.1 -Comparison of the trajectories of (dilated by d = 2) Sliced-Wasserstein gradient flows (SWGF) and Wasserstein gradient flows (WGF) of different functionals. (Left) The stationary solution is a uniform discrete distributions. (Right) The stationary solution is a Dirac ring of radius 0.5. Blue points represent the initial positions, red points the final positions, and green points the target particles.

Figure 7

 7 Figure 7.3 -Evolution of the mean. m denotes the true mean of WGF, m the mean obtained through SW-JKO (7.31) with τ = 0.1 and m * the mean of the stationary measure.
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 74 Figure7.4 -Evolution of the components of the covariance matrix taking into account the dilation parameter. Σ denotes the true covariance matrix of WGF, Σ the covariance matrix obtained through SW-JKO (7.31) with τ = 0.1 and Σ * the covariance matrix of the stationary distribution. We observe some differences between WGF and SWGF.

Figure 7

 7 Figure7.5 -(Left) SymKL divergence between solutions at time t = 8d (using τ = 0.1 and 80 steps in (7.31)) and stationary measure. (Right) SymKL between the true WGF µ t and the approximation with JKO-ICNN μt , run through 3 Gaussians with τ = 0.1. We observe instabilities at some point.

Figure 7

 7 Figure 7.6 -Impact of the number of projections for a fixed number of epochs.

Figure 7

 7 Figure 7.7 -Steady state of the aggregation equation for a = 4, b = 2.From left to right, we plot it for the discretized grid, for the FCNN, for particles and for JKO-ICNN. We observe that JKO-ICNN does not recover the ring correctly as the particles are not evenly distributed on it.

Figure 7

 7 Figure 7.8 -Generated sample obtained through a pretrained decoder + RealNVP.
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Definition 8. 1 (

 1 Unbalanced OT). Let µ, ν ∈ M + (R d ). Given ρ 1 , ρ 2 ≥ 0 and a cost c : R d × R d → R, the unbalanced OT problem between µ and ν reads

Figure 8 . 1 -

 81 Figure 8.1 -Toy illustration on the behaviors of SUOT and USW. (Left) Original 2D samples and slices used for illustration. KDE density estimations of the projected samples: grey, original distributions, colored, distributions reweighed by SUOT (Center), and reweighed by USW (Right).

Theorem 8. 1 (

 1 Equivalence of SUOT, USW, UOT). Let X be a compact subset of R d with radius R. Let p ∈ [1, +∞) and assume c(x, y) = x -y p 2 . Then, for any µ, ν ∈ M + (X),SUOT(µ, ν) ≤ USW p p (µ, ν) ≤ UOT(µ, ν) ≤ c(m(µ), m(ν), ρ, R)SUOT(µ, ν) 1/(d+1) , (8.7)where c(m(µ), m(ν), ρ, R) is a constant depending on m(µ), m(ν), ρ, R, which is non-decreasing in m(µ) and m(ν). Additionally, assume there exists M > 0 s.t. m(µ) ≤ M, m(ν) ≤ M .Then, c(m(µ), m(ν), ρ, R) no longer depends on m(µ), m(ν), which proves the equivalence of SUOT, USW and UOT.

Figure 8

 8 Figure 8.4 -Runtime on the BBCSport dataset (Left) and on the Goodreads dataset (Right).

Figure 8 . 5 -

 85 Figure 8.5 -Ablation on BBCSport of the number of projections (Left) and of the number of Frank-Wolfe iterations (Right).

Figure 8 . 6 -

 86 Figure 8.6 -Barycenter of geophysical data. (First row) Simulated output of 4 different climate models depicting different scenarios for the evolution of a tropical cyclone (Second row) Results of different averaging/aggregation strategies.
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Figure 9 . 1 -

 91 Figure 9.1 -Projections for the datasets of clustered Gaussians.

Figure 9 . 2 -

 92 Figure 9.2 -First and second principal components for the datasets of clustered Gaussians. (Left) 1st principal component for t ∈ [-2, 2]. (Center) 2nd principal component for t ∈ [-0.5, 2] (for visibility).We plot in dashed lines the pdf of 20 evenly spaced measures N (m t , σ 2 t ) of the geodesic rays. The colors (from blue to red with black in the middle) encode the progression along the geodesic.

Figure 9

 9 Figure 9.3 -Projections for the dataset of population pyramid.

Figure 9

 9 Figure 9.4 -First and second principal components for the dataset of population pyramid interpolated for t ∈ [-5, 5].

Figure 9

 9 Figure9.5 -Projections on the first component for the dataset of population pyramid with the value of the Busemann function for selected countries. Countries for which the population is mostly young (such as Uganda or Burundi) have a low Busemann coordinate while more developed countries (such as France, UK, US) have a bigger one. Countries with a population in the middle such as the Northern Mariana Islands are projected around the origin.
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Figure 10 . 1 -

 101 Figure 10.1 -From left to right: Data (moons); OT plan obtained with GW for c(x, x ) = x -x 2 2 ; Data projected on the first axis; OT plan obtained between the projected measures; Data projected on their first PCA component; OT plan obtained between the the projected measures.

1 .

 1 Let x, y ∈ G v . Then, there exists s, t ∈ R such that x = exp o (sv) and y = exp o (tv). By a simple calculation, we have on one hand that sign( log o (x), v o ) = sign( log o (exp o (sv)), v o ) o • exp o = Id. And similarly, sign( log o (y), v o ) = sign(t). Then, by noting that o = exp o (0), and recalling that d(x, y) = d(exp o (tv), exp o (sv)) = |t -s|,

  e. the images by P B→L of geodesics in the Poincaré ball are geodesics in the Lorentz model). Thus, P v (P B→L (x)) = argmin z∈{exp x 0 (tv), t∈R} d L (P B→L (x), z) = P B→L argmin z∈{exp 0 (tṽ), t∈R} d B (P L→L (x), P B→L (z)) = P B→L argmin z∈{exp 0 (tṽ), t∈R} d B (x, z) = P B→L P v (x) .

. 96 )

 96 Poincaré ball. On B d , the Riemannian gradient of f : B d → R can be obtained as(Nickel and Kiela, 2017, Section 3) 

2 F 2 F= t 2

 222 wrapped normal distributions with means αp c , where p c ∈ S d-1 is a prototype, c ∈ {1, . . . , C} and α = 0.75, and covariance matrix σI d with σ = 0.1. For CIFAR100, in dimension 50, we use λ = 1, σ = 0.01 and α = 0.1. Proof of Proposition 5.1. Let M ∈ S ++ d (R). We want to solve P G A (M ) = argmin X∈G A d LE (X, M ) 2 . (12.103) In the case of the Log-Euclidean metric, G A = {exp(tA), t ∈ R}. We have d LE (exp(tA), M ) 2 = log exp(tA) -log M = tA -log M Tr(A 2 ) + Tr(log(M ) 2 ) -2tTr(A log M ) = g(t).

  Proof of Proposition 5.4. Denoting t A (B) = B, A F for all B ∈ S d (R), we obtain usingLemma 12.1 

  .111) since t A (log X) = A, log X F = P A (X). Hence,SymSW p p (log # µ, log # ν) = SPDSW p p (µ, ν) .Proof of Lemma 5.1. A matrix in S d (R) has a unique decomposition P diag(θ)P T up to permutations of the columns of P ∈ O d and coefficients of θ ∈ S d-1 . Thus, there is a bijection between {A ∈S d (R), A F = 1} and the set S (O),S d-1 of d!-tuple {(P 1 , θ 1 ), . . . , (P d! , θ d! ) ∈ (O d × S d-1 ) d! } such that (P i , θ i) is a permutation of (P j , θ j ). Therefore, the uniform distribution λ S (O),S d-1 on S (O),S d-1 , defined as dλ S (O),S d-1 ((P 1 , θ 1 ), . . . ,

  .115) By injectivity of the Fourier transform on S d (R), we get log # µ = log # ν. Then, as log is a bijection from S ++ d (R) to S d (R), we have for all Borelian C ⊂ S ++ d (R),

  First, we start to adapt Nadjahi et al. (2020b, Lemma S1): Lemma 12.7 (Lemma S1 in Nadjahi et al. (2020b)). Let (µ k ) k ∈ P p (S ++ d (R)) and µ ∈ P p (S ++ d (R)) such that lim k→∞ SPDSW 1 (µ k , µ) = 0. Then, there exists ϕ : N → N non decreasing such that µ ϕ(k) L ----→ k→∞ µ.

  in S d (R) with the Frobenius norm, we can use the same proof ofNadjahi et al. (2020b) by using a convolution with a gaussian kernel and show that it implies that log # µ ϕ(k)

µ

  in P p (S d (R)). Then, by continuity, we have that for λ S almost every A ∈ S ++ d (R), P A # µ k ----→ k→∞ P A # µ. Moreover, as the Wasserstein distance on R metrizes the weak convergence, W p (P A # µ k , P A # µ) ----→ k→∞ 0. Finally, as W p is bounded and it converges for λ S -almost every A, we have by the Lebesgue convergence dominated theorem that SPDSW p p (µ k , µ) ----→ k→∞ 0.

Figure 12 .

 12 Figure 12.3 -Average MAE and R 2 score on brain age regression with different time-frame lengths for 10 random seeds The performance depends on the time-frame length, and there is a trade-off to find between number of samples and noise in the samples.

  Sample complexity of D = SPDSW and D = LEW for d = 2 and d = 50. Projection complexity of SPDSW and the LogSW for d = 2 and d = 20.

Figure 12 . 6 -

 126 Figure 12.6 -Sample and projection complexity. Experiments are replicated 100 times and we report the 95% confidence intervals. We note μn and μ n two different empirical distributions of µ. The sample complexity of SPDSW does not depend on the dimension contrary to Wasserstein. The projections complexity has a slope which decreases in O( 1 √ L ).

Proposition 12 . 1 (

 121 Proposition 4.2 in[START_REF] Bardelli | Probability Measures on Infinite-Dimensional Stiefel Manifolds[END_REF]). Let M be a closed set in a complete m-dimensional Riemannian manifold N . Then, for almost every x, there exists a unique point π(x) ∈ M that realizes the minimum of the distance from x.

  .168) Proj x denoting the orthogonal projection on T x S d-1 .

  .177)[START_REF] Gemici | Normalizing Flows on Riemannian Manifolds[END_REF] derived the change of variable formula for this transformation, which comes from the theory of probability between manifolds. If we have a transformation T = f • ρ, where f is a normalizing flows on R d-1 , e.g. a RealNVP[START_REF] Dinh | Density Estimation using Real NVP[END_REF], then the log density of the target distribution can be obtained as log p

  .181)where f is an encoder, g a decoder, p Z a prior distribution, c some cost function and D is a divergence in the latent space. Several D were proposed. For example,[START_REF] Tolstikhin | Wasserstein Auto-Encoders[END_REF] proposed to use the MMD,Kolouri et al. (2019b) used the SW distance, Patrini et al. (2020) used the Sinkhorn divergence, Kolouri et al. (2019a) used the generalized SW distance. Here, we use D = SSW 2 2 .

  Proof of Proposition 9.4. We will use here that for any geodesic ray γ, lim t→∞ d(x,γ(t))+t 2t

2 , 1 =

 21 b = M 12 , and posing φ such that cos φ = a √ a 2 +b 2 and sin φ = b √ a 2 +b 2 , we can rewrite f asf ( θ) = a 2 + b 2 cos φ cos θ + sin φ sin θ = a 2 + b 2 cos( θ -φ). σ 0 + sin θ 2 .(12.224)The second component is fully characterized by the orthogonal condition. Noting ψ ∈ [0, π[ the angle such

  x k -y k y k ) 2 dγ t (x, y)dγ t (x , y ),(12.267) with ∀t > 0, ∀i ∈ {1, . . . , d -1}, λ

1 #

 1 x k -y k y k ) 2 dγ(x, y)dγ(x , y ).(12.287) By induction hypothesis, we have η t, γ K . To build such a measure, we can first disintegrate µ and ν:   µ = µ 1: -1 ⊗ µ :d|1: -1 ν = ν 1: -1 ⊗ ν :d|1: -1 ,(12.288) then we pick the Knothe transport γ :d|1: -1 K

1 : 1 : 1 : 1 K)

 1111 -1 , y 1: -1 ), (dx :d , dy :d )) -1 , y 1: -1 ), (dx :d , dy :d ))dη t, (x 1: -1 , y 1: -1 )dη t, (x 1: -1 , y 1: -1 , y 1: -1 ), (dx , dy ))dη t, (x 1: -1 , y 1: -1 )dη t, (x 1: -1 , y 1: -1 ).(12.292) Let us note for η t, almost every (x 1: -1 , y 1: -1 ), (x 1: -1 , y 1: -1 )GW (µ |1: -1 , ν |1: -1 ) = (x x -y y ) 2 γ |1: -1 K ((x 1: -1 , y 1: -1 ), (dx , dy ))γ |1: -1 K ((x 1: -1 , y 1: -1 ), (dx , dy )), (12.293) then (x x -y y ) 2 dγ t K (x, y)dγ t K (x , y ) = GW (µ |1: -1 , ν |1: -1 )dη t, (x 1: -1 , y 1: -1 )dη t, (x 1: -1 , y 1: -1 ).(12.294) By Theorem 12.3, we have η t, ⊗ η t, the transport plans between µ 1: -1 and ν 1: -1 , we have(x x -y y ) 2 dγ t K (x, y)dγ t K (x , y ) ---→ t→0 GW (µ |1: -1 , ν |1: -1 )π 1: -1 # γ K (dx 1: -1 , dy 1: -1 )π 1: -1 # γ K (dx 1: -1 , dy 1: -1 ) (12.296)andGW (µ |1: -1 , ν |1: -1 )π 1: -1 # γ K (dx 1: -1 , dy 1: -1 )π 1: -1 # γ K (dx 1: -1 , dy 1: -1 ) = (x x -y y ) 2 dγ K (x, y)dγ K (x , y ) (12.297)by replacing the true expression of GW and using the disintegration γ K = (π 1: -

  with X = Y = R -1 × R -1 , X = Ỹ = P(Ω) with Ω ⊂ R d-+1 × R d-+1 and c(a, b) = GW (a, b), which can be bounded on compact supports by max |c|. Moreover, we use Theorem 12.3 and the fact that η t ⊗ η t L ---→ t→0 γ 1: -1 K ⊗ γ 1: -1 K .
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Titre:

  Tirer parti du transport optimal via des projections sur des sous-espaces pour des applications d'apprentissage automatique Mot clés : Transport Optimal, Sliced-Wasserstein, Variétés Riemanniennes, Flots Gradients Résumé : Le problème de transport optimal a reçu beaucoup d'attention en Machine Learning car il permet de comparer des distributions de probabilités en exploitant la géométrie de l'espace sous-jacent. Cependant, dans sa formulation originale, résoudre ce problème souffre d'un coût computationnel important. Ainsi, tout un champ de travail consiste à proposer des alternatives pour réduire ce coût tout en continuant de bénéficier de ses propriétés. Dans cette thèse, nous nous concentrons sur des alternatives qui utilisent des projections sur des sousespaces. L'alternative principale est la distance de Sliced-Wasserstein, que nous proposons d'étendre à des variétés Riemanniennes afin de l'utiliser dans des applications de Ma-chine Learning pour lesquelles ce genre d'espace a été prouvé bénéfique. Nous proposons aussi de nouvelles variantes de distance sliced entre des mesures positives dans le problème de transport non balancé. Pour revenir à la distance originale de Sliced-Wasserstein entre mesures de probabilités, nous étudions la dynamique de flots gradients quand cet espace est munis de cette distance à la place de la distance de Wasserstein. Ensuite, nous investiguons la fonction de Busemann, une généralisation du produit scalaire dans des espaces métriques, dans l'espace des mesures de probabilité. Finalement, nous étendons une approche basée sur des détours sur des sousespaces à des espaces incomparables en utilisant la distance de Gromov-Wasserstein. Title: Leveraging Optimal Transport via Projections on Subspaces for Machine Learning Applications Keywords: Optimal Transport, Sliced-Wasserstein, Riemannian Manifolds, Gradient Flows

  

  

  

  .5) Theorem 2.2 (Wasserstein distance). For any p ≥ 1, W p is a finite distance on P p (R d ), i.e. for all µ, ν ∈ P p (R d ), W p (µ, ν) < ∞ and 1. ∀µ, ν ∈ P p (R d ), W p (µ, ν) = W

p (ν, µ) (symmetry) 2. W p (µ, ν) = 0 ⇐⇒ µ = ν (indiscernible property) 3. ∀µ, ν, α ∈ P p (R d ), W p (µ, ν) ≤ W p (µ, α) + W p (α, ν) (triangular inequality)

  = |α|=m θ α x α and a neural network version. Besides, while not in the framework of generalized Radon transforms as not homogeneous w.r.t θ,

is a defining function which satisfies the following properties:

(i) g is C ∞ and (ii) 1-homogeneous in θ, i.e. g(x, λθ) = λg(x, θ) for all λ ∈ R, (iii) ∂g ∂x (x, θ) = 0 and (iv) det ( ∂ 2 g ∂xi∂θj ) ij > 0.

It includes the Radon transform for g(x, θ) = x, θ and Kolouri et al. (2019a) proposed a polynomial variant with g(x, θ)

Proposition 3.1. Let (M, g) be a Hadamard manifold with origin o. Let v ∈ T o M, then, the map t v defined in (3.18) is an isometry from G v = {exp o (tv), t ∈ R} to R.

  

	o),	(3.18)
	is an isometry.	
	Proof. See Section 12.1.2.	

  maps C 0 (R × S o ) to C b (M) because g is necessarily bounded as a continuous function which vanish at infinity. Note that CHR * actually maps C 0

	CHR	
		.32)
	Proposition 3.6. CHR * is the dual operator of CHR, i.e. for all f ∈ L 1 (M), g ∈ C 0 (R × S o ),	
	CHRf, g R×So = f, CHR * g M .	(3.33)
	Proof. See Section 12.1.3.	

* 

  .34) CHRµ being a measure on R×S o , we can disintegrate it w.r.t the uniform measure on S o as CHRµ = λ⊗K where K is a probability kernel on S o × B(R). In the following proposition, we show that for λ-almostevery v ∈ S o , K(v, •) # µ coincides with P v # µ.

	Proposition 3.8. Let µ be a measure on M, then for λ-almost every v ∈ S o , K(v, •) # µ = P v # µ.
	Proof. See Section 12.1.3.
	All these derivations allow to link the Cartan-Hadamard Sliced-Wasserstein distance with the corre-
	sponding Radon transform. Then, CHSW p
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Table 4 .

 4 1 -Test Accuracy on deep classification with prototypes (best performance in bold)

			CIFAR10			CIFAR100	
	Dimensions	2	3	4	5	3	5	10
	PeBuse	90.64±0.06	90.32±0.43	90.59±0.11	90.55±0.09	49.28±1.95	53.44±0.76	59.19±0.39
	GHSW	91.39±0.23	91.86±0.38	91.66±0.27	91.70±0.14	53.97±1.35	60.64±0.87	61.45±0.41
	HHSW	91.28±0.26	91.73±0.38	91.98±0.05 92.09±0.05	53.88±0.06	60.69±0.25 62.80±0.09
	SWp	91.84±0.31	91.74±0.05	91.68±0.10	91.43±0.40	53.25±3.27	59.77±0.81	60.36±1.26
	SWl	91.13±0.14	91.57±0.10	91.74±0.12	91.61±0.40	53.88±0.02	60.62±0.39	62.30±0.23
	W	91.67±0.18	91.82±0.19	91.83±0.21	91.43±0.40	50.07±4.58	57.49±0.94	58.82±1.66
	MMD	91.47±0.10	91.65±0.17	91.68±0.09	91.54±0.09	50.59±4.44	58.10±0.73	58.91±0.91

  Average MAE and R 2 score for 10 random seeds on the Cam-CAN data-set with time-frames of 2s and 1000 projections. Kernel Ridge regression based on SW kernels performs best. SPDSW and log SW are close to each other. Sampling from symmetric matrices offers a slight advantage but does not play a key role on performance. For information, Euclidean SW led to poor results on the task (MAE 9.7).

				5.4. From Brain Data to Distributions in S ++ d (R)
	Filterbank-riemann (Sabbagh et al. 2019) Filterbank-riemann kernel logSW kernel SPDSW kernel							
	6.4	6.6	6.8 Average MAE	7.0	7.2	0.74	0.76 Average R2 0.78	0.80
	Figure 5.3 -							

Table 5 .

 5 1 -Accuracy and Runtime for Cross Session.

	Subjects	Source	AISOTDA	SPDSW LogSW LEW	LES	SPDSW LogSW LEW	LES
			(Yair et al., 2019)	Transformations in S ++ d (R)	Descent over particles
	1	82.21	80.90	84.70	84.48	84.34 84.70	85.20	85.20	77.94 82.92
	3	79.85	87.86	85.57	84.10	85.71 86.08	87.11	86.37	82.42 81.47
	7	72.20	82.29	81.01	76.32	81.23 81.23	81.81	81.73	79.06 73.29
	8	79.34	83.25	83.54	81.03	82.29 83.03	84.13	83.32	80.07 85.02
	9	75.76	80.25	77.35	77.88	77.65 77.65	80.30	79.02	76.14 70.45
	Avg. acc.	77.87	82.93	82.43	80.76	82.24 82.54	83.71	83.12	79.13 78.63
	Avg. time (s)	-	-	4.34	4.32	11.41 12.04	3.68	3.67	8.50	11.43

  with 4 target classes and about 270 samples per subject and session. We Figure 5.4 -(Left) PCA on BCI data before and after alignment. Minimizing SPDSW with enough projections allows aligning sources on targets. (Right) Accuracy w.r.t num. of projections for the crosssession task with transformations. Here, there is no need for too many projections to converge.

	Source Target Aligned	0.80 0.85		
	Accuracy	0.55 0.60 0.65 0.70 0.75	0	Number of projections 250 500 750 1000 Subjects 1 3 7 8 9

compare accuracies and runtimes for several methods run on a GPU Tesla V100-DGXS-32GB. The distributions are aligned by minimizing different discrepancies, namely SPDSW, LogSW, Log-Euclidean Wasserstein (LEW) and Sinkhorn (LES), computed with POT (

Table 6 .

 6 1 -Negative test log likelihood.

		Earthquake	Flood	Fire
	SSW	0.84±0.07	1.26±0.05 0.23±0.18
	SW	0.94±0.02	1.36±0.04	0.54±0.37
	Stereo	1.91±0.1	2.00±0.07	1.27±0.09

Table 6 .

 6 2 -FID (Lower is better).

	Method / Dataset	MNIST	Fashion	CIFAR10
	SSWAE	14.91±0.32 43.94±0.81	98.57±035
	SWAE	15.18±0.32	44.78±1.07	98.5±0.45
	WAE-MMD IMQ	18.12±0.62	68.51±2.76	100.14±0.67
	WAE-MMD RBF	20.09±1.42	70.58±1.75	100.27±0.74
	SAE	19.39±0.56	56.75±1.7	99.34±0.96
	Circular GSWAE	15.01±0.26	44.65±1.2	98.8±0.68

Table 7 .

 7 

	1 -Accuracy and Training Time for Bayesian
	Logistic Regression over 5 runs		
		JKO-ICNN		SWGF+RealNVP
	Dataset	Acc	t	Acc	t
	covtype	0.755 ±5 • 10 -4	33702s	0.755 ±3 • 10 -3	103s
	german	0.679 ±5 • 10 -3	2123s	0.68 ±5 • 10 -3	82s
	diabetis	0.777 ±7 • 10 -3	4913s	0.778 ±2 • 10 -3 122s
	twonorm	0.981 ±2 • 10 -4	6551s	0.981 ±6 • 10 -4	301s
	ringnorm	0.736 ±10 -3	1228s	0.741 ±6 • 10 -4	82s
	banana	0.55 ±10 -2	1229s	0.559 ±10 -2	66s
	splice	0.847 ±2 • 10 -3	2290s	0.85 ±2 • 10 -3	113s
	waveform 0.782 ±8 • 10 -4	856s	0.776 ±8 • 10 -4	120s
	image	0.822 ±10 -3	1947s	0.821 ±3 • 10 -3	72s

Bayesian Logistic Regression. Following the experiment of

[START_REF] Mokrov | Large-Scale Wasserstein Gradient Flows[END_REF] 

in Section 4.3, we propose to tackle the Bayesian Logistic Regression problem using SWGFs. For this task, we want to sample from p(x|D) where D represent data and x = (w, log α) with w the regression weights on which we apply a Gaussian prior p 0 (w|α) =

Table 7 .

 7 2 -FID scores on some datasets (lower is better)

			Methods	MNIST Fashion CelebA
	Ambient	Space	SWF (Liutkus et al., 2019) SWGF + RealNVP SWGF + CNN	225.1 88.1 69.3	207.6 95.5 102.3	---
	Latent	Space	AE (golden score) SWGF + AE + RealNVP SWGF + AE + FCNN	15.55 17.8 18.3	31 40.6 41.7	77 90.9 88
			SWF	22.5	56.4	91.2

Table 8 .

 8 θi is fixed, and (f avg , g avg ) are computed w.r.t. λK . However, the process of sampling λK satisfies E θ k ∼λ [ λK ] = λ. Thus, assuming Theorem 8.4 142 1 -Accuracy on document classification

	1 K	K i δ

  .43) 2. Poincaré ball. A geodesic passing through the origin on the Poincaré ball is of the form γ(t) = tp for an ideal point p ∈ S d-1 and t ∈] -1, 1[. Using that arccosh is an increasing function, we find

	P p (x) = argmin
	y∈span(γ)

  1, that P B→L : B d → L d is an isometry and Lemma 12.6, we It is true for all ṽ ∈ S d-1 , and hence for λ-almost all ṽ ∈ S d-1 . Therefore, we have

	have:				
	W p p (B ṽ # µ, B ṽ # ν) = W p p ( Bṽ # µ, Bṽ # ν) by Proposition 3.4
	= inf γ∈Π(µ,ν)	B d ×B d	d B	Bṽ (x), Bṽ (y)	p dγ(x, y) by Lemma 12.1
	= inf γ∈Π(µ,ν)	B d ×B d	d L P B→L ( Bṽ (x)), P B→L ( Bṽ (y))	p dγ(x, y) using that P B→L is an isometry
	= inf γ∈Π(µ,ν)	B d ×B d	d L	Bv (P B→L (x)), Bv (P B→L (y))	p dγ(x, y) using Lemma 12.6
	=	inf γ∈Π( Bv # μ, Bv # ν)	L d ×L d	d L (x, y) p dγ(x, y) by Lemma 12.1
	= W p p ( Bv # μ, Bv # ν)	
	= W p p (B v # μ, B v # ν) by Proposition 3.4.
						(12.84)
				HHSW p p (µ, ν) = HHSW p p (μ, ν).	(12.85)
	Using the same proof with Proposition 3.3 instead of Proposition 3.4 and P v instead of B v , we obtain
				GHSW p p (µ, ν) = GHSW p p (μ, ν).	(12.86)
	Proof of Proposition 4.6			
						204

12.3.2 Complementary experiments Brain Age Prediction Performance of SPDSW-based brain age regression on 10-folds cross validation for one random seed.

  In Figure12.1, we display the Mean Absolute Error (MAE) and the R 2 coefficient on 10-folds cross validation with one random seed. SPDSW is run with time-frames of 2s and 1000 projections. Results of 10-folds cross validation on the Cam-CAN data-set for one random seed. We display the Mean Absolute Error (MAE) and the R 2 coefficient. SPDSW, with time-frames of 2s and 1000 projections, performs best. Note that Kernel Ridge regression based on the Log-Euclidean distance performs better than Ridge regression.

	Filterbank-riemann (Sabbagh et al. 2019)					
	Filterbank-riemann kernel					
	SPDSW kernel					
	5	6	7 MAE	8	9	0.70 0.74 0.78 0.82 0.86 R2
	Figure 12.1 -					

Performance of SPDSW-based brain age regression depending on number of projections.

  In Figure12.2, we display the MAE and R 2 score on brain age regression with different numbers of projections for 10 random seeds. In this example, the variance and scores are acceptable for 500 projections and more.

	Performance

of SPDSW-based brain age regression depending on timeframe length.

  In Figure12.3, we display the MAE and R 2 score on brain age regression with different time-frame lengths for 10 random seeds. The performance of SPDSW-kernel Ridge regression depends on a trade-off between the number of samples in each distribution (smaller time-frames for more samples), and the level of noise in the covariance estimate (larger time-frame for less noise). In this example, time-frames of 400 samples seems to be a good choice.Figure12.2 -Average results for 10 random seeds with 200, 500 and 1000 projections for SPDSW compared to average MAE and R 2 obtained with Ridge and Kernel Ridge regression on features from covariance estimates[START_REF] Sabbagh | Manifold-Regression to Predict from MEG/EEG Brain Signals without Source Modeling[END_REF]. With enough projections, SPDSW kernel does not suffer from variance and performs best.

	Filterbank-riemann (Sabbagh et al. 2019)							
	Filterbank-riemann kernel							
	SPDSW kernel 200 proj							
	SPDSW kernel 500 proj							
	SPDSW kernel 1000 proj							
	6.4	6.6	6.8 Average MAE 7.0	7.2	0.74	0.76 Average R2 0.78	0.80
	Filterbank-riemann (Sabbagh et al. 2019) Filterbank-riemann kernel SPDSW kernel timeframe 200 SPDSW kernel timeframe 300 SPDSW kernel timeframe 400 SPDSW kernel timeframe 500 SPDSW kernel timeframe 650 SPDSW kernel timeframe 1000 SPDSW kernel timeframe 2000							
	6.4	6.6	6.8 Average MAE	7.0	7.2	0.74	0.76 Average R2 0.78	0.80

  .146) Moreover, we have equality if and only if y = λp E (x). And since y ∈ S d-1 , |λ| = 1 p E (x) 2 . Using again that arccos is decreasing, we deduce that the minimum is well attained in y

  .154) F is a hyperplane. Let O ∈ R d×d be the rotation such that for all x ∈ F , Ox ∈ span(e 1 , . . . , e d-1 ) = F where (e 1 , . . . , e d ) is the canonical basis. By applying the change of variable Ox = y, and since the surface measure is rotationally invariant, we obtain Rf

  OU z >0} dVol(y). (12.155) Now, we have that OU ∈ V d,2 since (OU )

T (OU ) = I 2 , and since U z ∈ F , OU z ∈ F . For all y ∈ F , we have y, e d = y d

Table 12 .

 12 8 -Details of Earth datasets.

		Earthquake Flood	Fire
	Train set size	4284	3412	8966
	Test set size	1836	1463	3843
	Data size	6120	4875	12809

Table 12 .

 12 10 -Hyperparameters for SWGFs with RealNVPs. nl: number of coupling layers in RealNVP, nh: number of hidden units of conditioner neural networks, lr: learning rate using Adam, JKO steps: number of SW-JKO steps, Iters by step: number of epochs for each SW-JKO step, τ : the time step, batch size: number of samples taken to approximate the functional.

		covtype german diabetis twonorm ringnorm banana splice waveform image
	nl	2	2	2	2	2	2	5	5	2
	nh	512	512	512	512	512	512	128	128	512
	lr	2e -5	1e -4	5e -4	1e -4	5e -5	1e -4	5e -4	1e -4	5e -5
	JKO steps	5	5	10	20	5	5	5	5	5
	Iters by step	1000	500	500	500	1000	500	500	500	500
	τ	0.1	10 -6	5 • 10 -6	10 -8	10 -6	0.1	10 -6	10 -8	0.1
	batch size	1024	1024	1024	1024	1024	1024	1024	512	1024
	vary the number of projections and report the Symmetric Kullback-Leibler divergence on Figure 7.6.

  ) # µ 0 = µ s with T s : x → (1 -s)x + ∇u(x). By Brenier's theorem, since the OT map is unique and necessarily the gradient of a convex functions, T s = ∇u s with u s

	(12.204)
	2 2 dµ 0 (x),
	where (T s

.207) 12.7.2 Proof of Section 9.3 Proof of Proposition 9.3

  Proof of Proposition 9.3. (µ t ) t≥0 is a unit-speed ray. Therefore, W 2

  .226) 

	Proof of Proposition 9.6
	Proof of Proposition 9.6. Let µ 0

12.8 Appendix of Chapter 10 12.8.1 Proofs of Section 10.3 Proof of Proposition 10.1

  

	Proof of Proposition 10.1. Let γ ∈ Π E,F (µ, ν), then:
	L(x, x , y, y )dγ(x, y)dγ(x , y )

  .230) by definition of the Monge-Knothe coupling. By integrating with respect to γ

* E×F , we obtain:

L(x, x , y, y )dγ(x, y)dγ(x , y ) ≥ L(x, x , y, y )dπ MK (x, y)dπ MK (x , y ). (

12

.231) 

  Hence, the problem (10.19) is equivalent to max γ∈Π(a,b) ( ij x i y j γ ij ) 2 (in terms of the OT plan), which is also equivalent to solving max γ∈Π(a,b) | ij x i y j γ ij | or equivalently:

	max γ∈Π(a,b)	±1	ij

  2 dγ t (x, y)dγ t (x , y )= (x 1 x 1 -y 1 y 1 ) 2 dγ t (x, y)dγ t (x , y ) (x k x k -y k y k ) 2 dγ t (x, y)dγ t (x , y ).Moreover, as γ t is the optimal coupling between µ and ν, and γ K ∈ Π(µ, ν),(x k x k -y k y k ) 2 dγ K (x, y)dγ K (x , y ) = (x 1 x 1 -y 1 y 1 ) 2 dγ K (x, y)dγ K (x , y )

			(12.268)
	d	k-1	
	+	λ	(i) t
	k=2	i=1	
	d	k-1	
	HW 2 t (µ, ν) ≤	(i) λ t
	k=1	i=1	
	d	k-1	
	+	(i) λ t
	k=2	i=1	

(x k x k -y k y k ) 2 dγ K (x, y)dγ K (x , y ).

(12.269) In our case, we have γ t L ---→ t→0 γ, thus, by Theorem 12.3, we have γ t ⊗ γ t L ---→ t→0 γ ⊗ γ. Using the fact that ∀i, λ (i) t ---→ t→0 0 (and Lemma 1.8 of Santambrogio (

  1 t (x 1 , y 1 ).Therefore, we have the following inequality, (x 1 x 1 -y 1 y 1 ) 2 dγ 1 (x, y)dγ 1 (x , y )+ (x k x k -y k y k ) 2 dγ t (x, y)dγ t (x , y ) ≤ (x 1 x 1 -y 1 y 1 ) 2 dγ 1 (x, y)dγ 1 (x , y ) (x k x k -y k y k ) 2 dγ K (x, y)dγ K (x , y ). (x k x k -y k y k ) 2 dγ t (x,y)dγ t (x , y ) (x 2 x 2 -y 2 y 2 ) 2 dγ t (x, y)dγ t (x , y )

				d	k-1
				λ	(i) t
				k=2	i=1
	≤ HW 2 t (µ, ν)	
				(12.273)
	d	k-1	
	+	λ	(i) t
	k=2	i=1	
	We can substract the first term and factorize by λ	(1) t > 0,
				d	k-1
				λ	(i) t
				k=2	i=1
			= λ	(1) t
				d	k-1
			+	λ (i) t	(12.274)
				k=3	i=2
				d	k-1
				(i) λ t
				k=3	i=2
	(1) By dividing by λ t	
				(12.272)

(x k x k -y k y k ) 2 dγ t (x, y)dγ t (x , y ) ≤ λ (1) t (x 2 x 2 -y 2 y 2 ) 2 dγ K (x, y)dγ K (x , y ) + (x k x k -y k y k ) 2 dγ K (x, y)dγ K (x , y ) .

  y)K(x, dy)µ(dx).(12.276) We can rewrite the previous Equation(12.275) as(x 2 x 2 -y 2 y 2 ) 2 dγ(x, y)dγ(x , y ) = (x 2 x 2 -y 2 y 2 ) 2 γ 2|1 ((x 1 , y 1 ), (dx 2 , dy 2 ))γ 2|1 ((x 1 , y 1 ), (dx 2 , dy 2 )) dγ 1 (x 1 , y 1 )dγ 1 (x 1 , y 1 ) ≤ (x 2 x 2 -y 2 y 2 ) 2 γ 2|1 K ((x 1 , y 1 ), (dx 2 , dy 2 ))γ 2|1 K ((x 1 , y 1 ), (dx 2 , dy 2 ))dγ 1 K (x 1 , y 1 )dγ 1 K (x 1 , y 1 ).

	(12.277)

  1 (x 1 , y 1 ) ≤ (x 2 x 2 -y 2 y 2 ) 2 γ 2|1 ((x 1 , y 1 ), (dx 2 , dy 2 ))γ 2|1 ((x 1 , y 1 ), (dx 2 , dy 2 ))dγ 1 (x 1 , y 1 )dγ 1 (x 1 , y 1 ).By(12.277) and (12.279), we deduce that we have an equality and we get(x 2 x 2 -y 2 y 2 ) 2 γ 2|1 ((x 1 , y 1 ), (dx 2 , dy 2 ))γ 2|1 ((x 1 , y 1 ), (dx 2 , dy 2 )) -(x 2 x 2 -y 2 y 2 ) 2 γ 2|1 K ((x 1 , y 1 ), (dx 2 , dy 2 ))γ 2|1 K ((x 1 , y 1 ), (dx 2 , dy 2 )) dγ 1 (x 1 , y 1 )dγ 1 (x 1 , y 1 ) = 0.(12.280) However, we know by(12.278) that the middle part of (12.280) is nonnegative, thus we have for γ 1 -a.e. (x 1 , y 1 ), (x 1 , y 1 ),(x 2 x 2 -y 2 y 2 ) 2 γ 2|1 K ((x 1 , y 1 ), (dx 2 , dy 2 ))γ 2|1 K ((x 1 , y 1 ), (dx 2 , dy 2 )) = (x 2 x 2 -y 2 y 2 ) 2 γ 2|1 ((x 1 , y 1), (dx 2 , dy 2 ))γ 2|1 ((x 1 , y 1 ), (dx 2 , dy 2 )).

	(12.279)
	(12.281)

  (x k x k -y k y k ) 2 dγ t (x, y)dγ t (x , y )

					y)dγ t K (x , y )
	-1	k-1		
	=	λ	(i) t		(12.289)
	k=1	i=1		
	-1	k-1		
	≤	λ	(i) t	
	k=1	i=1		
	and therefore:		-1	k-1
					λ	(i) t
		k=1	i=1
			d		k-1
					λ	(i) t
			k=		i=1
		≤ HW 2 t (µ, ν)	(12.290)
			-1	k-1
		≤			λ	(i) t	(x k x k -y k y k ) 2 dγ t K (x, y)dγ t K (x , y )
			k=1	i=1
			d		k-1
		+			λ	(i) t	(x k x k -y k y k ) 2 dγ t K (x, y)dγ t K (x , y ).
			k=		i=1
	As before, by subtracting the first term, dividing by	-1 i=1 λ

(x k x k -y k y k ) 2 dη t, (x 1: -1 , y 1: -1 )dη t, (x 1: -1 , y 1: -1 ) (x k x k -y k y k ) 2 dγ t (x, y)dγ t (x , y ), (x k x k -y k y k ) 2 dγ t K (x, y)dγ t K (x , y ) +
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still holds for λ, it yields E θ k ∼λ [f avg (x)] = f θ P θ (x) dλ(θ) if we sample a new λK at each FW step.

We call this approach Stochastic USW. It outputs a more accurate estimate of the true USW w.r.t. λ.

It is more expensive, as we need to sort projected data w.r.t new projections at each iteration, More importantly, for balanced OT (ϕ • (x) = x), one has USW = SW and this idea remains valid for sliced OT. See Section 8.5 for applications.

Experiments

This section presents a set of numerical experiments, which illustrate the effectiveness, computational efficiency and versatility of SUOT and USW, as implemented by Algorithms 8.1 and 8.2. We first evaluate USW between measures supported on hyperbolic data leveraging the Geodesic Hyperbolic Sliced-Wasserstein distance defined in Chapter 4, and investigate the influence of the hyperparameters ρ 1 and ρ 2 . Then, we solve a document classification problem with SUOT and USW, and compare their performance (in terms of accuracy and computational complexity) against classical OT losses. Our last experiment is conducted on large-scale datasets from a real-life application: we deploy USW to compute barycenters of climate datasets in a robust and efficient manner.

Comparing Hyperbolic Datasets.

Inputs (µ, ν)

We display in Figure 8.2 the impact of the parameter ρ = ρ 1 = ρ 2 on the optimal marginals of USW. To illustrate the modularity of our FW algorithm, our inputs are synthetic mixtures of Wrapped Normal Distribution on the 2hyperbolic manifold B 2 [START_REF] Nagano | A Wrapped Normal Distribution on Hyperbolic Space for Gradient-based Learning[END_REF], so that the FW oracle is GHSW defined in (4.17) instead of SW.

We display the 2-hyperbolic manifold on the Poincaré disk. The measure µ (in red) is a mixture of 3 isotropic normal distributions, with a mode at the top of the disc playing the role of an outlier. The measure ν is a mixture of two anisotropic normal distributions, whose means are close to two modes of µ, but are slightly shifted at the disk's center.

We wish to illustrate several take-home messages, stated in Section 8.3. First, the optimal marginals (π 1 , π 2 ) are renormalisation of (µ, ν) accounting for their geometry, which are able to remove outliers for properly tuned ρ. When ρ is large, (π 1 , π 2 ) (µ, ν) and we retrieve SW. When ρ is too small, outliers are removed, but we see a shift of the modes, so that modes of In this final chapter, we describe an overview of the contributions and discuss some perspectives which ensue from them.

Contributions

This thesis has focused on deriving efficient Optimal Transport methods based on projections on subspaces. In the first part, observing that many datasets have a representation on Riemannian manifolds, we defined new OT discrepancies on Riemannian manifolds by adapting the construction of the Euclidean Sliced-Wasserstein distance on such spaces. We first focused on Cartan-Hadamard manifolds on which we introduced two different Sliced-Wasserstein distances differing from their projection process onto the geodesics, and we provided some theoretical analysis of their properties. Then, we leveraged these two constructions and applied them to specific manifolds which have much interest in Machine Learning: Hyperbolic spaces and the space of Symmetric Positive Definite matrices (SPDs). First we demonstrated the computational efficiency compared to using more classical OT distances. Then, on Hyperbolic spaces, we compared the behavior of the two constructions on different tasks such as gradient flows or classification. On the space of SPDs, we used these new discrepancies on M/EEG data and performed brain-age prediction as well as domain adaptation for Brain Computer Interface data. We also studied the case of the hypersphere which is not a Cartan-Hadamard manifold and hence required a different strategy in order to define a SW distance on it. On this manifold, we applied SW to Wasserstein Autoencoders as well as density estimation tasks in order to show its benefit compared to just using the Euclidean SW between measures on the sphere embedded in the Euclidean space.

As it can be beneficial for applications to use positive measures instead of probability measures, it motivated us to further define SW distances on positive measures. Thus, we introduced two new SW losses to compare efficiently positive measures and demonstrated their properties on document classification tasks as well as for computing barycenters of geoclimatic data.

From another perspective, as SW is a real distance on the space of probability measures, it is possible to define gradient flows on this space with this distance [START_REF] Ambrosio | Gradient Flows: in Metric Spaces and in the Space of Probability Measures[END_REF]. We showed that it is indeed of interest from a computational point of view as the SW gradient flows of functionals can be more efficiently computed than when using the Wasserstein distance, while enjoying good empiric convergence properties. Moreover, we investigated empirically the underlying trajectory of the SW gradient flows and We derive here some lemmas which will be useful for the proofs.

Lemma 12.1 (Lemma 6 in [START_REF] Paty | Subspace robust Wasserstein distances[END_REF]). Let M, N be two Riemannian manifolds. Let f : M → N be a measurable map and µ, ν ∈ P(M). Then,

Proof. This is a straightforward extension of (Paty and Cuturi, 2019, Lemma 6) [START_REF] Fournier | On the Rate of Convergence in Wasserstein Distance of the Empirical Measure[END_REF]). Let p ≥ 1 and η ∈ P p (R). Denote Mq (η) = |x| q dη(x) the moments of order q and assume that M q (η) < ∞ for some q > p. Then, there exists a constant C p,q depending only on p, q such that for all n ≥ 1,

For references about Lemma 12.5, see e.g. (Chewi et al., 2020, Appendix A) or [START_REF] Goto | Approximated Logarithmic Maps on Riemannian Manifolds and their Applications[END_REF]. Evolution of the accuracy w.r.t the number of projections. On Figure 5.4, we plot the evolution of the accuracy obtained by learning transformations on S ++ d (R) on the cross session task. We report on Figure 12.5 the plot for the other cases. We compared the results for L ∈ {10, 16, 27, 46, 77, 129, 215, 359, 599, 1000} projections, which are evenly spaced in log scale. Other parameters are the same as in Table 5. Figure 12.5 -Accuracy w.r.t the number of projections when optimizing over particles or transformations, and for the cross-session task and cross subject task. In all cases, the accuracy converges for 500 projections.

detailed in Section 12.3.3. The results were averaged over 10 runs, and we report the standard deviation.

Illustrations

Sample Complexity. We illustrate Proposition 3.13 in the particular case of SPDSW in We fix L * at 10000 which gives a good idea of the true value of SPDSW and we vary L between 1 and 10 3 evenly in log scale. We average the results over 100 runs and plot 95% confidence intervals. We observe that the Monte-Carlo error converges to 0 with a convergence rate of O( 1 √ L ).

Experimental details

Runtime

In Figure 5.2, we plot the runtime w.r.t the number of samples for different OT discrepancies. Namely, we compare SPDSW, HSPDSW, LogSW, the Wasserstein distance with Affine-Invariant ground cost, the Wasserstein distance with Log-Euclidean ground cost, and the Sinkhorn algorithm used to compute the entropic regularized OT problem with Log-Euclidean ground cost. The distance ground costs are computed with geoopt [START_REF] Kochurov | Geoopt: Riemannian Optimization in Pytorch[END_REF] while Wasserstein and Sinkhorn are computed with POT [START_REF] Flamary | POT: Python Optimal Transport[END_REF]. All computations are done on a A6000 GPU. We average the results over 20 runs and for n ∈ {100, 215, 464, 1000, 2154, 4641, 10000, 21544, 46415, 100000} samples, which are evenly spaced in log scale, from a Wishart distribution in dimension d = 20. For the sliced methods, we fix 12.3. Appendix of Chapter 5 8 and 30 Hz. With these hyper-parameters, we get one regularized covariance matrix per subject.

For all experiments, we report the results averaged over 5 runs. For the sliced discrepancies, we always use L = 500 projections which we draw only once a the beginning. When optimizing over particles, we used a learning rate of 1000 for the sliced methods and of 10 for Wasserstein and Sinkhorn. The number of epochs was fixed at 500 for the cross-session task and for the cross-subject tasks. For the basic transformations, we always use 500 epochs and we choose a learning rate of 1e -1 on cross session and 5e -1 on cross subject for sliced methods, and of 1e -2 for Wasserstein and Sinkhorn. For the Sinkhorn algorithm, we use = 10 with the default hyperparameters from the POT implementation. Moreover, we only use one translation and rotation for the transformation.

Furthermore, the results reported for AISOTDA in 1.a, column Alg.1 (u)). We note however that they may not have used the same preprocessing and hyperparameters to load the covariance matrices.

Proof of Proposition 6.3

Proof of Proposition 6.3. Let U ∈ V d,2 , z ∈ S 1 . Denote E = span(U U T ) the 2-plane generating the great circle, and E ⊥ its orthogonal complementary. Hence,

Now, for the first inclusion, let x ∈ {x ∈ S d-1 , P U (x) = z}. First, we show that x ∈ F ∩ S d-1 . By Lemma 6.1 and hypothesis, we know that P U (x) = U T x U T x 2 = z. By denoting by p E the projection on E, we have:

(12.149)

For the other inclusion, let x ∈ {F ∩ S d-1 , x, U z > 0}. Since x ∈ F , we have x = x E ⊥ + λU z, λ ∈ R. Hence, using Lemma 6.1,

Proof of Proposition 6.4

Proof of Proposition 6.4. The architecture of the decoder is

We use here a batch size of n = 128, λ = 0.1, the binary cross entropy as reconstruction loss and Adam as optimizer with a learning rate of 10 -3 .

We report in Table 6.2 the FID obtained using 10000 samples and we report the mean over 5 trainings.

For SSW, we used the formulation using the uniform distribution (6.5). To compute SW, we used the POT library [START_REF] Flamary | POT: Python Optimal Transport[END_REF]. To compute the Sinkhorn divergence, we used the GeomLoss package [START_REF] Feydy | Interpolating between Optimal Transport and MMD using Sinkhorn Divergences[END_REF].

Appendix of Chapter 7 12.5.1 Proofs

First, we recall some propositions about the continuity and convexity of the Sliced-Wasserstein distance as well as on the existence of the minimizer at each step of the SW-JKO scheme. These results were derived in (Candau-Tilh, 2020). In the following, we restrain ourselves to measures supported on a compact domain K. Proposition 12.4 (Proposition 3.7 in (Candau-Tilh, 2020)). Let τ > 0 and µ τ k ∈ P 2 (K). Then, there exists a unique solution µ τ k+1 ∈ P 2 (K) to the minimization problem

The solution is even absolutely continuous.

Proof of Proposition 7.1

Proof of Proposition 7.1.

According to Proposition 12.2, µ → SW 2 2 (µ, µ τ k ) is continuous with respect to the weak convergence. Indeed, let µ ∈ P 2 (K) and let (µ n ) n converging weakly to µ, i.e. µ n L ----→ n→∞ µ. Then, by the reverse triangular inequality, we have .183) Since the Wasserstein distance metrizes the weak convergence [START_REF] Villani | Optimal Transport: Old and New[END_REF], we have that W 2 (µ n , µ) → 0. And therefore, µ → SW 2 (µ, µ τ k ) is continuous w.r.t. the weak convergence. By hypothesis, F is lower semi continuous, hence µ → J(µ) is lower semi continuous. Moreover, P 2 (K) is compact for the weak convergence, thus we can apply the Weierstrass theorem (Box 1.1 in [START_REF] Santambrogio | Optimal Transport for Applied Mathematicians[END_REF]) and there exists a minimizer µ τ k+1 of J. By Proposition 12.3, µ → SW 2 2 (µ, ν) is convex and strictly convex whenever ν is absolutely continuous w.r.t. the Lebesgue measure. Hence, for the uniqueness, if F is strictly convex then µ → J(µ) is also strictly convex and the minimizer is unique. And if ρ τ k is absolutely continuous, then according to Proposition 12.3, µ → SW 2 2 (µ, µ τ k ) is strictly convex, and hence µ → J(µ) is also strictly convex since F was taken convex by hypothesis.

Algorithm 12.1 SW-JKO with Discrete Grid

Input: µ 0 the initial distribution with density ρ 0 , K the number of SW-JKO steps, τ the step size, F the functional, N e the number of epochs to solve each SW-JKO step, (x j ) N j=1 the grid

for k = 1 to K do Initialize the weights ρ (k+1) (with for example a copy of

Perform a gradient step Project on the simplex ρ (k+1) using the algorithm of [START_REF] Condat | Fast Projection onto the Simplex and the l1 Ball[END_REF] end for end for Closed-form between Gaussians. It is well known that there is a closed-form for the Wasserstein distance between Gaussians [START_REF] Givens | A Class of Wasserstein Metrics for Probability Distributions[END_REF]. If we take α = N (µ, Σ) and β = N (m, Λ) with m, µ ∈ R d and Σ, Λ ∈ R d×d two symmetric positive definite matrices, then (12.190)

Here, we have (12.191) On the other hand, [START_REF] Nadjahi | Fast Approximation of the Sliced-Wasserstein Distance using Concentration of Random Projections[END_REF] showed (Equation 73) that .192) In that case, the dilation of factor d between WGF and SWGF clearly appears.

Algorithms to solve the SW-JKO scheme

We provide here the algorithms used to solve the SW-JKO scheme (7.31) for the discrete grid and for the particles (Section 7.3.3).

Discrete grid.

We recall that in that case, we model the distributions as

i δ xi where we use N samples located at (x i ) N i=1 and (ρ

belongs to the simplex Σ n . Hence, the SW-JKO scheme at step k + 1 rewrites min ) N j=1 (with for example a copy of (x

) Backpropagate through J with respect to (x We report in Algorithm 12.1 the whole procedure.

Particle scheme. In this case, we model the distributions as empirical distributions and we try to optimize the positions of the particles. Hence, we have

and the problem (7.31) becomes min .194) In this case, we provide the procedure in Algorithm 12.2.

Experimental Details

Convergence to stationary distribution

Here, we want to demonstrate that, through the SW-JKO scheme, we are able to find good minima of functionals using simple generative models.

In this experiment, we generate 15 Gaussians for d between 2 and 12, and we quantify how well the SW-JKO scheme, using a Real NVP to approximate distributions, is able to learn the target Gaussians. 

Bayesian logistic regression

For the Bayesian logistic regression, we have access to covariates s 1 , . . . , s n ∈ R d with their associated labels y 1 , . . . , y n ∈ {-1, 1}. Following [START_REF] Liu | Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm[END_REF][START_REF] Mokrov | Large-Scale Wasserstein Gradient Flows[END_REF], we put as prior on the regression weights w, p 0 (w|α) = N (w; 0, 1 α ) with p 0 (α) = Γ(α; 1, 0.01). Therefore, we aim at learning the posterior p(w, α|y): p(w, α|y) ∝ p(y|w, α)p 0 (w|α)p 0 (α) = p 0 (α)p 0 (w|α) n i=1 p(y i |w, α) (12.199) where p(y i |w, α) = σ(w T s i )

with σ the sigmoid. To evaluate V(µ) = V (x) dµ(x), we resample data uniformly.

In our context, let V (x) = -log p 0 (α)p 0 (w|α)p(y|w, α) , then using F(µ) = V dµ + H(µ) as functional, we know that the limit of the stationary solution of Fokker-Planck is proportional to e -V = p(w, α|y).

Following [START_REF] Liu | Stein Variational Gradient Descent: A General Purpose Bayesian Inference Algorithm[END_REF]; [START_REF] Mokrov | Large-Scale Wasserstein Gradient Flows[END_REF], we use the 8 datasets of [START_REF] Mika | Fisher Discriminant Analysis with Kernels[END_REF] and the covertype dataset (https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.

html).

We report in Table 12.9 the characteristics of the different datasets. The datasets are loaded using the code of [START_REF] Mokrov | Large-Scale Wasserstein Gradient Flows[END_REF] (https://github.com/PetrMokrov/Large-Scale-Wasserstein-Gradient-Flows). We split the dataset between train set and test set with a 4:1 ratio.

We report in Table 12.10 the hyperparameters used for the results reported in Table 7.1. We also tuned the time step τ since for too big τ , we observed bad results, as the SW-JKO scheme should be a good approximation of the SWGF only for small enough τ .

Moreover, we reported in Table 7.1 the mean over 5 training. For the results obtained with JKO-ICNN, we used the same hyperparameters as [START_REF] Mokrov | Large-Scale Wasserstein Gradient Flows[END_REF].

Influence of the number of projections

It is well known that the approximation of Sliced-Wasserstein is subject to the curse of dimensionality through the Monte-Carlo approximation (Nadjahi et al., 2020b). We provide here some experiments to quantify this influence. However, first note that the goal is not to minimize the Sliced-Wasserstein distance, but rather the functional, SW playing mostly a regularizer role. Experiments on the influence of the number of experiments to approximate the SW have already been conducted (see e.g. Figure 2 in (Nadjahi et al., 2020b) or Figure 1 in [START_REF] Deshpande | Max-Sliced Wasserstein Distance and its use for GANs[END_REF]).

Here, we take the same setting of Section 7.5. We sum up the statistics of the different datasets in Table 12.11.

BBCSport. The BBCSport dataset contains articles between 2004 and 2005, and is composed of 5 classes. We average over the 5 same train/test split of [START_REF] Kusner | From Word Embeddings to Document Distances[END_REF]. The dataset can be found in https://github.com/mkusner/wmd/tree/master.

Movie Reviews. The movie reviews dataset is composed of 1000 positive and 1000 negative reviews. We take five different random 75/25 train/test split. The data can be found in http://www.cs.cornell.

edu/people/pabo/movie-review-data/.

Goodreads. This dataset, proposed in [START_REF] Maharjan | A Multi-task Approach to Predict Likability of Books[END_REF], and which can be found at https: //ritual.uh.edu/multi_task_book_success_2017/, is composed of 1003 books from 8 genres. A first possible classification task is to predict the genre. A second task is to predict the likability, which is a binary task where a book is said to have success if it has an average rating ≥ 3.5 on the website Goodreads (https://www.goodreads.com). The five train/test split are randomly drawn with 75/25 proportions.

Technical Details

All documents are embedded with the Word2Vec model [START_REF] Mikolov | Distributed Representations of Words and Phrases and their Compositionality[END_REF] in dimension d = 300. The embedding can be found in https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/ view?resourcekey=0-wjGZdNAUop6WykTtMip30g.

In this experiment, we report the results averaged over 5 random train/test split. For discrepancies which are approximated using random projections, we additionally average the results over 3 different computations, and we report this standard deviation in Table 8.1. Furthermore, we always use 500 projections to approximate the sliced discrepancies. For Frank-Wolfe based methods, we use 10 iterations, which we found to be enough to have a good accuracy. We added an ablation of these two hyperparameters