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Notations

• lowercase characters a, x, λ denote scalars,

• boldface lowercase characters a, x, λ denote vectors (tensors of order one),

• boldface uppercase characters A, X, Λ denote matrices (tensors of order two),

• boldface Euler script letters A, X denote higher-order tensors,

• [n] denotes the index set {1, . . . , n},

• the lowercase letter p denotes a number of variables,

• the lowercase letter d denotes the order of a tensor,

• the lowercase letter m denotes a mode index from a tensor,

• X ∈ R p 1 ו••×p d denotes a tensor with d modes, the dimension of the m th mode of X being p m ,

• the subscript i denotes observation or first mode index : x i , y i ,

• the subscript j denotes second mode index : a j , x j ,

• the subscript j m denotes m th mode index,

• x j 1 ...j d denotes the element (j 1 , . . . , j d ) of a tensor X,

• Vec denotes the vectorization operator,

• X (m) denotes the mode-m matricization of a tensor X,

• x (m) denotes the mode-m vectorization of a tensor X,

• ⊤ denotes the transpose operator : a ⊤ , X ⊤ , • • denotes the outer product or the composition operator depending on the context,

• ⊗ denotes the Kronecker product,

• ⊙ denotes the Khatri-Rao product,

• * denotes the Hadamard product,

• × m denotes the mode-m product between a tensor and a matrix : X × m A,

• × m 2 m 1 denotes the inner product between two tensors along modes m 1 and m 2 :

X 1 × m 2 m 1 X 2 , • ⟨•, •⟩ denotes a scalar product,
• ∥ • ∥ denotes the norm of an object,

• [[λ; A 1 , . . . , A d ]] and [[A 1 , . . . , A d ]] denote a rank-R Canonical Polyadic Decomposition (CPD). The first notation assumes that rank-1 factors have unit norms and λ weighs the rank-1 factors,

• † denotes the Moore-Penrose pseudoinverse,

• the subscripts k and l denote block numbers : a l , X k ,

• the superscripts (r) and (s) denote index of a rank-1 factor : a (r) , λ (s) ,

• the superscript [h] denotes the index of a component : a [h] , X [h] ,

• {a t } t∈N denotes a sequence,

• LR SVD (X) denotes the product UV ⊤ , where UΣV ⊤ is the Singular Value Decomposition (SVD) of the matrix X,

• λ max (S) denotes the highest eigenvalue of the positive semi-definite matrix S,

• diag(M) denotes the vector composed of the diagonal elements of the square matrix M,

• diag □ (x) denotes the diagonal matrix in which diagonal elements are the elements of the vector x. diag □ (M) denotes the diagonal matrix, which diagonal elements are the diagonal elements of the square matrix M,

• |x| + denotes the vector in which element j is max(0, x j ) for j ∈ [p] with x ∈ R p .

Introduction Context and motivations

Observing the same phenomenon across different modalities or with multiple views is becoming increasingly common. This kind of data can be encountered in many fields, including biology, chemistry, sensor analysis, and marketing. We will illustrate the benefit of collecting different modalities with an example motivated by our close collaboration with the Paris Brain Institute. Indeed, we take the case of a man suffering from primary progressive Multiple Sclerosis (MS). At the onset of the disease, the patient feels nothing specific. Within a few months or years, our patient experiences fatigue in his limbs and starts noticing limitations in his ability to walk long distances. Therefore, he decides to go to a doctor and tell him his story. The doctor may have the intuition that our patient suffers from MS. However, only the identification of plaques on a Magnetic Resonance Imaging (MRI) brain or spinal cord scan can confirm the diagnosis. On the other hand, an MRI scan is not automatically prescribed. The man's symptoms made the doctor think that an MRI scan could be useful and helped him look for relevant information in the MRI scan. Imagine now that there were many more modalities collected for that man. The symptoms also help to know which modality is relevant for the diagnosis. Therefore, considering the various facets of a given phenomenon can help to see the big picture. The statistical analysis of such data is often referred to as multiblock data analysis, data integration, data fusion, or multiset analysis. This field aims to develop methods to consider the data's multi-modality structure to produce models with better properties than the ones obtained by analyzing the different modalities independently. Such models can reach higher accuracy or be more robust to noise. Once a good model has been obtained, it can be interesting to go back to the different modalities to understand which ones contain the relevant information and under which form. For instance, a plaque on the brain MRI scan and fatigue among our patient's symptoms. Thus, synthesizing and displaying the information may be crucial to understanding the mechanisms at stake in the phenomenon of interest. Consequently, these methods should be implemented in easy-to-use software equipped with meaningful visualization tools to have a practical impact.

The multiblock methods should also be aware of the structure of each block. In this manuscript, we will be interested in data with a higher-order tensor structure. If we want to understand how the disease spreads for our patient, we will make multiple MRI scans to follow the evolution over time. That way, we have variables (the voxels of the MRI scans) across time for one patient. We can represent such data as a two-dimensional object (i.e., a matrix). If we want to assess the evolution of MS as a disease and not only the development of the disease for a single person, we will collect data from different patients. Doing so allows us to represent our data as a three-dimensional object (patients × voxels × time). This kind of structure is called a third-order tensor. We could even say that MRI scans are already three-dimensional objects and would have a fifth-order tensor. In both cases, having dedicated methods considering the data structure helps avoid losing information and get more interpretable results. Such methods are known as multiway or tensor methods. They often rely on low-rank factorization approaches that significantly reduce the models' degrees of freedom. This is particularly interesting when there are more variables than observations, which is typically the case for MS studies where MRI scans have many voxels while cohorts have a limited number of patients. This manuscript proposes multiblock data analysis methods with blocks having higherorder tensor structures. The presented methods are implemented in freely available software. They also come with visualization tools to ease the interpretation of the results.

Patients and healthy controls have been recruited at the Paris Brain Institute to study MS and leukodystrophies. In this manuscript, we work with the Paris Brain Institute to use the developed methods to study these diseases. We identify differences between patients and healthy controls and between groups of patients across different modalities. Learning more about these diseases is crucial to mitigate the symptoms of the patients, propose treatments, and, in the future, cure them.

neously. We compare these procedures to a recently proposed one and to the sequential approach on simulations and a real dataset.

Chapter 5 : Application to Multiple Sclerosis and Leukodystrophy This last Chapter describes two diseases : multiple sclerosis and leukodystrophy. We then use univariate tests to identify differences between patients and healthy controls and between groups of patients. We show that applying the developed methods with an adapted bootstrap procedure allows us to identify more differences than univariate tests. We conclude by showing how the proposed methods can help biologists and clinicians learn more about the two diseases.
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Résumé en français

L'étude d'un phénomène à travers plusieurs modalités peut permettre de mieux en comprendre les mécanismes sous-jacents par rapport à l'étude indépendante des différentes modalités. Dans l'optique d'une telle étude, les données sont souvent acquises par différentes sources, donnant lieu à des jeux de données multimodaux/multi-sources/multiblocs. C'est le cas notamment de la sclérose en plaques (SEP) où l'on va commencer par regarder les symptômes cliniques du patient avant de lui prescrire une imagerie à résonance magnétique (IRM). Il y aura donc au moins deux modalités de données qui décriront un patient SEP. Un cadre statistique explicitement adapté pour l'analyse jointe de données multi-sources est l'Analyse Canonique des Corrélations Généralisée Régularisée (RGCCA). RGCCA extrait des vecteurs et composantes canoniques qui résument les différentes modalités et leurs interactions. Les contributions de cette thèse sont de quatre ordres.

Le premier axe vise à rendre plus accessible la méthode RGCCA par l'amélioration et l'enrichissement d'un package R. Le coeur du package a été modifié pour rendre plus facile l'ajout d'extensions de la méthode et faciliter l'entretien du package. Des procédures de validation, d'évaluation et de visualisation des résultats de la méthode ont été ajoutées pour aider l'utilisateur. Une attention particulière a été portée sur le fait de retrouver les résultats obtenus avec d'autres packages existants pour des méthodes qui sont des cas particuliers de RGCCA. La nouvelle version du package est disponible sur la liste officielle de packages R (CRAN) et a été commencée à être utiliser par d'autres personnes de la communauté.

Le second axe vise à étendre RGCCA pour mieux prendre en compte les données tensorielles. Lorsque des variables sont mesurées pour des individus dans différentes conditions, les données forment naturellement un objet à trois dimensions. Bien qu'il soit possible de représenter ces données en deux dimensions sous la forme d'une matrice, cette représentation ignore la structure intrinsèque des données. Il est donc préférable de considérer les données sous la forme d'un tenseur (à trois dimensions, ou plus) mais il faut pour cela des algorithmes adaptés. On propose dans cette thèse d'intégrer cette information en imposant une structure de tenseurs de rangs faibles aux vecteur canoniques recherchés par la méthode RGCCA. On introduit donc le nouveau problème d'optimisation correspondant à ce problème et proposons un algorithme pour le résoudre. Nous évaluons l'approche proposée sur des données simulées et des données réelles.

Le troisième axe concerne le développement d'approches simultanées de RGCCA pour obtenir toutes les composantes canoniques en résolvant un unique problème d'optimisation. Les approches actuelles sont basées sur une technique de déflation : on trouve les premières composantes canoniques, on modifie les données d'origine et on applique de nouveau la méthode sur les données modifiées pour obtenir les composantes suivantes. Cette approche présente plusieurs inconvénients : elle est gloutonne, i.e., il n'y a pas de garantie que la solution obtenue soit optimale ; et les nouveaux vecteurs canoniques ne sont pas exprimés dans l'espace de départ des données, pouvant lier à des résultats moins interprétables. On propose donc de nouveaux problèmes d'optimisation qui font intervenir toutes les composantes canoniques ainsi que des algorithmes pour les résoudre. Les résultats sont illustrés sur des données synthétiques et des données réelles. Les problèmes d'optimisation proposés ouvrent également la voie à de nouvelles extensions de RGCCA.

Enfin, le quatrième axe est d'utiliser les outils développés pour analyser les données récoltées à l'Institut du Cerveau sur la sclérose en plaques et certaines formes de leucodystrophie. On montre que les approches proposées permettent d'aller plus loin que les méthodes classiquement utilisées par les praticiens, tout en restant interprétables. Elles permettent notamment d'identifier des biomarqueurs capables de différencier les patients des témoins sains, et de trouver des différences entre groupes de patients.

-Theoretical Context

. An introductory example

We open this Chapter with a widely known example : the Principal Component Analysis (PCA, [START_REF] Pearson | Liii. on lines and planes of closest fit to systems of points in space[END_REF][START_REF] Hotelling | Analysis of a complex of statistical variables into principal components[END_REF]. The aim here is to highlight some properties of the PCA that we will try to retrieve in other contexts.

Let x ∈ R p be a random vector of size p and X ∈ R n×p be a matrix with n rows and p columns, containing n observations of the random vector x. In this example and in the rest of the manuscript, we will assume that each column of X is centered (i.e. has a zero mean). PCA is a linear dimensionality reduction technique aiming to find a set of weight vectors a [h] , for h ∈ {1, . . . , H} with H < p, such that the random variables y [h] = x ⊤ a [h] have maximum variances. Indeed, a [1] is obtained to maximize the empirical variance of y [1] :

a [1] = argmax a,∥a∥ 2 =1 y ⊤ y, = argmax a,∥a∥ 2 =1 a ⊤ 1 n X ⊤ X a.
The solution to this problem is obtained by taking the eigenvector of 1 n X ⊤ X associated with its highest eigenvalue. Therefore, a [1] is the direction of maximal variance of the data. The vectors y [h] = Xa [h] are called the principal components.

A deflation procedure can be applied to get the next weight vector and the next principal component. We define X [1] = Xy [1] a [1] ⊤ and look for

a [2] = argmax a,∥a∥ 2 =1 a ⊤ 1 n X [1] ⊤ X [1] a.
Hence, the second principal component y [2] = X [1] a [2] explains as much variance as possible of what has not been explained by the first principal component. In fact, by comparing the eigenvectors of X [1] ⊤ X [1] and X ⊤ X, it is easy to show that a [2] is the eigenvector of X ⊤ X associated with its second highest eigenvalue. Since X ⊤ X is a positive semi-definite matrix, PCA yields orthogonal weight vectors.

Another way to reach the same conclusion is to get a closer look at the deflation procedure :

y [1] a [1] ⊤ = Xa [1] a [1] ⊤ , = Xa [1] a [1] ⊤ a [1] -1 a [1] ⊤ , = XP a [1] .
We recognize here P a [1] , the orthogonal projector on Span(a [1] ). Thus, since a [2] is in Span(X [1] ⊤ X [1] ), there exists u ∈ R p such that a [2] = X [1] ⊤ X [1] u, so we have

a [2] ⊤ a [1] = u ⊤ X [1] ⊤ X [1] a [1] , = u ⊤ X [1] ⊤ X (I p -P a [1] ) a [1] ,
= 0.

To summarize, this deflation procedure leads to orthogonal weight vectors if the next one is obtained as linear constructions of X [1] , i.e., the deflated matrix.

Interestingly, PCA also yields orthogonal principal components. There are different ways to see this, we choose here to rewrite once again the deflation formula :

y [1] a [1] ⊤ = Xa [1] a [1] ⊤ a [1] -1 a [1] ⊤ , = Xa [1] λ [1] a [1] ⊤ a [1] -1 λ [1] a [1] ⊤ , = Xa [1] a [1] ⊤ X ⊤ Xa [1] -1 a [1] ⊤ X ⊤ X, = y [1] y [1] ⊤ y [1] -1 y [1] ⊤ X, = P y [1] X.
We used the fact that X ⊤ Xa [1] = λ [1] a [1] with λ [1] the first eigenvalue of X ⊤ X, and recognize here P y [1] , the orthogonal projector on Span(y [1] ). Since y [2] = X [1] a [2] , we get y [2] ⊤ y [1] = X ⊤ (I n -P y [1] )y [2] = 0.

Moreover, the Eckart-Young theorem [START_REF] Eckart | The approximation of one matrix by another of lower rank[END_REF] states that the sequential procedure presented here is optimal : finding a procedure that would account for more variance of the original data matrix X with the same number of principal components is impossible. As a consequence, there is no need for a simultaneous strategy that would find the H principal components at once, and, if two PCAs are performed with H 1 and H 1 + H 2 components, the first H 1 components will be identical between the two decompositions.

Finally, the projection of an observation i ∈ {1, . . . , n} on the set of principal components is

y i = y [1] i . . . y [H] i
and is called the score of observation i. Very often, H = 2 is chosen to be able to visualize the scores. Let us consider the (compact) Singular Value Decomposition (SVD) of X : X = UΣV ⊤ where U = u [1] . . . u [r] ∈ R n×r , Σ ∈ R r×r , V ∈ R p×r , and r is the rank of X. U and V are semi-orthogonal matrices (U ⊤ U = V ⊤ V = I r ), while Σ is a diagonal matrix which diagonal elements (σ [1] , . . . σ [r] ) are positive and ranged in decreasing order : σ [1] ≥ • • • ≥ σ [r] > 0. Using the SVD of X, we can write X ⊤ X = VΣ 2 V ⊤ . Therefore, V is a basis of eigenvectors of X ⊤ X, sorted in the right order, so the weight vectors obtained with the PCA can also be obtained using the SVD, and V = A if H and r coincide. Moreover, in this case, y [h] = Xa [h] = UΣA ⊤ a [h] = σ [h] u [h] . Hence, the principal components are the left singular vectors up to a scalar factor, the associated singular value. The SVD will often come back in this manuscript and is considered by some as a workhorse of machine learning.

To conclude, the PCA enables summarizing a data matrix by maximizing the variance of its lower rank H decomposition. This procedure yields a set of orthogonal weight vectors, associated with Table 1.1 -Evaluation of eight port wines by two assessors from [START_REF] Williams | The use of free-choice profiling for the evaluation of commercial ports[END_REF].

Assessors Variables w1 w2 w3 w4 w5 w6 w7 w8 orthogonal principal components. It is possible to quantify the variance captured by each principal component through the eigenvalues of the covariance matrix.

An equivalent way of writing the PCA optimization problem is the following :

(A, Y) = argmin A,Y,A ⊤ A=I H ∥X -YA ⊤ ∥ 2 F ,
where A = a [1] . . . a [H] , Y = y [1] . . . y [H] , and ∥ • ∥ F denotes the Frobenius norm. Many extensions of PCA exist by building on either of these two formulations [START_REF] Paatero | Positive matrix factorization : A non-negative factor model with optimal utilization of error estimates of data values[END_REF][START_REF] Zou | Sparse principal component analysis[END_REF][START_REF] Lee | Sparse logistic principal components analysis for binary data[END_REF].

In the remainder of this Chapter, we will often encounter methods that are close to PCA, but some choices will have to be made between the different properties (orthogonal weight vectors or orthogonal principal components, for instance).

. Multiblock Methods

Having multiple views of an object generally helps better understand it. Imagine you want to buy new furniture. If you have a single picture of it, ensuring it will fit into the specific place you destine it to may be challenging. On the contrary, if you have several pictures, you can probably infer its dimensions and base your decision on that. The information may still be there with only one picture, but harder to extract and more sensitive to noise. Multiblock data analysis aims to leverage the synergies between multiple blocks of data to do better than we would by analyzing the blocks individually. It can mean higher estimation accuracy or greater robustness to noise. Several names coexist for multiblock data analysis, among which are data integration, data fusion, or multiset analysis, to cite a few.

Multiblock data appear naturally in numerous fields like chemometrics [START_REF] Smilde | Fusion of mass spectrometry-based metabolomics data[END_REF][START_REF] Borràs | Data fusion methodologies for food and beverage authentication and quality assessment -a review[END_REF], bioinformatics [START_REF] Philippe | Multiblock analysis of omics and imaging data with variable selection[END_REF][START_REF] Lee | Single-cell multiomics : technologies and data analysis methods[END_REF], or sensor analysis [START_REF] Floudas | High level sensor data fusion approaches for object recognition in road environment[END_REF][START_REF] Khaleghi | Multisensor data fusion : A review of the state-of-the-art[END_REF]. A classical example (Example 1.3 from [START_REF] Mitchell | Data Fusion : Concepts and Ideas[END_REF] comes from medical imaging. Combining images obtained through Magnetic Resonance Imagery (MRI), Computed Tomography (CT), and Positron Emission Tomography (PET), a surgeon can gain valuable information about a patient's anatomy before surgery. Indeed, he can view "soft tissue" information on MRI scans in the context of "skeleton" or "bone" information (CT), or in the context of "functional" or "physiological" information (PET). Therefore, there is an important need for efficient multiblock methods.

A significant part of multiblock methods is component-based. For such methods, the idea is to learn low-dimensional representations of the blocks through linear projections, and eventually com-Figure 1.1 -Biplots of the first two scores and loadings obtained for PCA (left) and CCA (right) for the first block of the port wine dataset from [START_REF] Williams | The use of free-choice profiling for the evaluation of commercial ports[END_REF]. bine these obtained representations for a downstream task (classification, regression, clustering, etc...). These methods search for a compromise between summarizing the information present in each block and accounting for the information shared among the blocks. PCA lies at one end of the spectrum : each low-dimensional representation is learned independently of the other blocks. On the other end, in the two block case, there is Canonical Correlation Analysis (CCA, [START_REF] Hotelling | Relation Between Two Sets of Variates[END_REF]. CCA searches for the pair of canonical vectors such that the obtained linear projections of the two blocks are maximally correlated. In other words, if the obtained correlation is maximal (equal to 1), the lowdimensional representation is shared across the two blocks. [START_REF] Williams | The use of free-choice profiling for the evaluation of commercial ports[END_REF] proposes a dataset with two blocks composed of port wines evaluated by two assessors. The data is described in Table 1.1. Figure 1.1 shows the scores and loadings obtained with PCA and CCA for the first block on this dataset. The two methods do not capture the same information.

In the next Sections, we describe Regularized Generalized Canonical Correlation (RGCCA, Tenenhaus and Tenenhaus, 2014;[START_REF] Tenenhaus | Regularized generalized canonical correlation analysis : A framework for sequential multiblock component methods[END_REF] and show how it generalizes many existing component methods. In Section 1.1.7, we discuss a few multiblock methods which do not fit into this framework.

. RGCCA optimization background

This section presents the optimization framework under which all the algorithms proposed in the RGCCA framework were designed. The RGCCA framework gathers several methods already presented in [START_REF] Tenenhaus | La régression PLS : théorie et pratique[END_REF]Tenenhaus (2011, 2014); [START_REF] Tenenhaus | Kernel generalized canonical correlation analysis[END_REF][START_REF] Tenenhaus | Regularized generalized canonical correlation analysis : A framework for sequential multiblock component methods[END_REF]. It is recalled here for a broader class of constraints.

The RGCCA framework relies on a master algorithm for maximizing a continuously differentiable multi-convex function f (a 1 , . . . , a L ) : R p 1 × . . . × R p L -→ R (i.e., for each l, f is a convex function of a l while all the other a k are fixed) under the constraint that each a l belongs to a compact set Ω l ⊂ R p l . To ease notations, we introduce the shorthand [n] to denote the index set {1, . . . , n}. This general optimization problem can be formulated as follows :

max a 1 ,...,a L f (a 1 , . . . , a L ) s.t. a l ∈ Ω l , l ∈ [L]. (1.1)
To ease notations, we will denote a = (a 1 , . . . , a L ). Hence, the notations f (a 1 , . . . , a L ) and f (a) will be equivalent. a can be seen as the column vector of size p = L l=1 p l such that a

= a ⊤ 1 . . . a ⊤ L ⊤ .
A simple, monotonically, and globally convergent algorithm is presented for solving optimization problem (1.1). The maximization of the function f defined over different parameter vectors (a 1 , . . . , a L ) is approached by updating each of the parameter vectors in turn, keeping the others fixed. This update rule was recommended in De [START_REF] De Leeuw | Block relaxation algorithms in statistics[END_REF] and is called Block Relaxation or cyclic Block Coordinate Ascent (BCA).

Let ∇ l f (a) be the partial gradient of f (a) with respect to a l . We assume ∇ l f (a) ̸ = 0 in this manuscript. This assumption is not too binding as ∇ l f (a) = 0 characterizes the global minimum of f (a 1 , . . . , a L ) with respect to a l when the other vectors a 1 , . . . , a l-1 , a l+1 , . . . , a L are fixed.

We want to find an update âl ∈ Ω l such that f (a) ≤ f (a 1 , ..., a l-1 , âl , a l+1 , ..., a L ). As f is a continuously differentiable multi-convex function and considering that a convex function lies above its linear approximation at a l for any ãl ∈ Ω l , the following inequality holds :

f (a 1 , ..., a l-1 , ãl , a l+1 , . . . , a L ) ≥ f (a) + ∇ l f (a) ⊤ (ã l -a l ).
(1.2)

On the right-hand side of the inequality (1.2), only the term ∇ l f (a) ⊤ ãl is relevant to ãl and the solution that maximizes the minorizing function over ãl ∈ Ω l is obtained by considering the following optimization problem :

âl = argmax ãl ∈Ω l ∇ l f (a) ⊤ ãl := ϕ l (a). (1.3)
The entire algorithm is subsumed in Algorithm 1.

Algorithm 1 Algorithm for the maximization of a continuously differentiable multi-convex function 1: Result : a t 1 , . . . , a t L (approximate solution of (1.1))

2: Input :

ε 3: Initialize : a 0 l ∈ Ω l , l ∈ [L] ; 4: t = 0 ; 5: repeat 6: for l = 1 to L do 7: a t+1 l = ϕ l a t+1 1 , . . . , a t+1 l-1 , a t l , . . . , a t L ; 8:
end for 9:

t = t + 1 ; 10: until f (a t+1 1 , . . . , a t+1 L ) -f (a t 1 , . . . , a t L ) < ε
We need to introduce some extra notations to present the convergence properties of Algorithm

1.1 : Ω = Ω 1 × . . . × Ω L , a = (a 1 , . . . , a L ) ∈ Ω, Φ l : Ω → Ω is an operator defined as Φ l (a) = (a 1 , . . . , a l-1 , ϕ l (a), a l+1 , . . . , a L ) with ϕ l (a) introduced in equation (1.3) and Φ : Ω → Ω is defined as Φ = Φ L • Φ L-1 • ... • Φ 1
, where • stands for the composition operator. Using the operator Φ, the «for loop» inside Algorithm 1.1 can be replaced by the following recurrence relation : a t+1 = Φ(a t ). The convergence properties of Algorithm 1.1 are summarized in the following proposition :

Proposition 1.1.1. Let a t ∞ t=0 be any sequence generated by the recurrence relation a t+1 = Φ(a t ) with a 0 ∈ Ω. Then, the following properties hold :

(a) The sequence f (a t ) is monotonically increasing and therefore convergent as f is bounded on Ω.

This result implies the monotonic convergence of Algorithm 1.

(b) If the infinite sequence f (a t ) involves a finite number of distinct terms, then the last distinct point satisfies Φ(a t ) = a t and therefore is a stationary point of problem 1.

(c) lim s-→∞ f (a t ) = f (a)
, where a is a fixed point of Φ.

(d) The limit of any convergent subsequence of a t is a fixed point of Φ.

(e) The sequence a t is asymptotically regular : lim t-→∞ L l=1 ∥a t+1 l -a t l ∥ = 0. This result implies that if the threshold ε for the stopping criterion in Algorithm 1 is made sufficiently small, the output of Algorithm 1 will be as close as wanted to a stationary point of 1.1.

(f) If the equation a = Φ(a) has a finite number of solutions, then the sequence a t converges to one of them.

Proposition 1.1.1 gathers all the convergence properties of Algorithm 1. The three first points of Proposition 1.1.1 concern the behavior of the sequence values f (a t ) of the objective function, whereas the three last points are about the behavior of the sequence a t . The full proof of these properties is given in [START_REF] Tenenhaus | Regularized generalized canonical correlation analysis : A framework for sequential multiblock component methods[END_REF].

. The RGCCA framework

We summarize the theoretical foundations of the RGCCA framework, previously published in Tenenhaus and [START_REF] Tenenhaus | Regularized Generalized Canonical Correlation Analysis[END_REF]Tenenhaus ( , 2014)); [START_REF] Tenenhaus | Kernel generalized canonical correlation analysis[END_REF][START_REF] Tenenhaus | Regularized generalized canonical correlation analysis : A framework for sequential multiblock component methods[END_REF].

A random column vector x of p variables is assumed to exist with finite moments of at least order two. The random vector x has zero mean and a covariance matrix Σ. The vector x is composed of L subvectors x l = (x l1 , . . . , x lp l ) ⊤ . The covariance matrix Σ is composed of L 2 submatrices Σ lk = E x l x ⊤ k . Let a l = (a l1 , . . . , a lp l ) ⊤ be a non-random p l -dimensional column vector. A composite variable y l is defined as the linear combination of the elements of x l : y l = a ⊤ l x l . Therefore the covariance between two composite variables is a ⊤ l Σ lk a k . The RGCCA framework aims to extract the information shared by the L random composite variables, taking into account an undirected graph of connections between them. The RGCCA framework is defined by the optimization problem (1.4). It consists in maximizing the sum of convex functions of the covariances between "connected" composites y l and y k subject to specific constraints on the weights a l for l ∈

[L]. max a 1 ,a 2 ,...,a L f (a 1 , . . . a L ) = L l,k=1 c lk g a ⊤ l Σ lk a k s.t. a l ∈ Ω l , l ∈ [L],
(1.4) where

• each Ω l is a compact set.

• the function g is any continuously differentiable convex function. Typical choices of g are the identity (horst scheme, leading to maximizing the sum of covariances between block compo-nents), the absolute value 1 (centroid scheme, yielding maximization of the sum of the absolute values of the covariances), the square function (factorial scheme, thereby maximizing the sum of squared covariances), or, more generally, for any even integer m, g(x) = x m (m-scheme, maximizing the power of m of the sum of covariances). The horst scheme penalizes negative structural correlation between block components, while the centroid scheme and the mscheme enable two components to be negatively correlated.

• the design matrix C = {c lk } is a symmetric L × L matrix of non-negative elements describing the network of connections between blocks that the user wants to take into account. Usually, c lk = 1 to two connected blocks and 0 otherwise.

When the diagonal of C is null, the convexity and the continuous differentiability of the function g imply that the objective function f itself is multi-convex continuously differentiable. When at least one element of the diagonal of C is different from 0, additional conditions have to be imposed on g to keep the desired property on f . For example, when g is twice differentiable, a sufficient condition is that ∀x ∈ R + , g ′ (x) ≥ 0. This condition guarantees that the second derivative of g a ⊤ l Σ ll a l is positive definite :

∂ 2 g a ⊤ l Σ ll a l ∂a l ∂a ⊤ l = 2 g ′ a ⊤ l Σ ll a l Σ ll + 2g ′′ a ⊤ l Σ ll a l Σ ll a l a ⊤ l Σ ll .
(1.5)

All functions g considered in this manuscript satisfy this condition. Consequently, the optimization problem (1.4) falls under the umbrella of the general optimization framework presented in Section 1.1.1.

Several instantiations of the RGCCA framework were proposed in [START_REF] Tenenhaus | Regularized Generalized Canonical Correlation Analysis[END_REF]; [START_REF] Tenenhaus | Kernel generalized canonical correlation analysis[END_REF][START_REF] Tenenhaus | Regularized generalized canonical correlation analysis : A framework for sequential multiblock component methods[END_REF] with Ω l = a l ∈ R p l ; a ⊤ l M l a l = 1 where M l is a symmetric positive definite matrix of order p l . The optimization problem (1.4) boils down to : maximize

a 1 ,...a L f (a 1 , . . . a L ) = L l,k=1 c lk g a ⊤ l Σ lk a k s.t. a ⊤ l M l a l = 1, l ∈ [L].
(1.6)

Algorithm 1 can be used to solve the optimization problem (1.6). This is done by updating each parameter vector, in turn, keeping the others fixed. Hence, we want to find an update âl ∈ Ω l = a l ∈ R p l ; a ⊤ l M l a l = 1 such that f (a) ≤ f (a 1 , . . . , a l-1 , âl , a l+1 , . . . , a L ). the RGCCA update is obtained by considering the following optimization problem :

âl = argmax ãl ∈Ω l ∇ l f (a) ⊤ ãl = M -1 l ∇ l f (a) ∥M -1/2 l ∇ l f (a)∥ := ϕ l (a), l ∈ [L],
(1.7)

where the partial gradient ∇ l f (a) of f (a) with respect to a l is a p l -dimensional column vector is given by :

∇ l f (a) = 2 L k=1 c lk g ′ a ⊤ l Σ lk a k Σ lk a k .
(1.8)

1. The scheme g(x) = |x| can be included in this class of functions because the case x = 0 never appears in practical applications.

In practice, we observe realizations of the random variable x. Therefore, it can be useful to consider a sample-based version of the population-based optimization problem (1.6). n observations of the random vector x ∈ R p can be arranged in the matrix X = [X 1 , . . . , X l , . . . , X L ] ∈ R n×p . Each n × p l data matrix X l is called a block and represents a set of p l variables observed on the n individuals.

The variables' number and nature may differ from one block to another, but the individuals must be the same across blocks. We assume that all variables are centered. The most recent formulation of RGCCA [START_REF] Tenenhaus | Regularized generalized canonical correlation analysis : A framework for sequential multiblock component methods[END_REF] subsumes fifty years of multiblock component methods. It provides improvements to the initial version of RGCCA [START_REF] Tenenhaus | Regularized Generalized Canonical Correlation Analysis[END_REF] and is defined as the following optimization problem : maximize

a 1 ,...,a L L l,k=1 c lk g a ⊤ l Σ lk a k s.t. a ⊤ l Σ ll a l = 1, l ∈ [L],
(1.9)

where

Σ lk = n -1 X ⊤ l X k is an estimate of the inter-block covariance matrix Σ lk = E[x l x ⊤ k ] and Σ ll is an estimate of the intra-block covariance matrix Σ ll = E[x l x ⊤ l ].
In cases involving multi-collinearity within blocks or in high dimensional settings, one way of obtaining an estimate for the true covariance matrix Σ ll is to consider the class of linear convex combinations of the identity matrix I and the sample covariance matrix S ll = n -1 X ⊤ l X l . We then consider a version of optimization problem (1.9) with Σ ll = τ l I + (1 -τ l )S ll with τ l ∈ [0, 1] (shrinkage estimator of Σ ll ). This plug-in approach leads to the RGCCA optimization problem [START_REF] Tenenhaus | Regularized Generalized Canonical Correlation Analysis[END_REF]. It is worth pointing out that for each block l, an appropriate shrinkage parameter τ l can be obtained using various analytical formulae (see [START_REF] Ledoit | A well conditioned estimator for large-dimensional covariance matrices[END_REF][START_REF] Schäfer | A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics[END_REF]Chen et al., 2011, for instance). As M l must be positive definite, τ l = 0 can only be selected for a full rank data matrix X l .

An equivalent formulation of optimization problem (1.9) is given hereafter and enables a better characterization of the objective of RGCCA. maximize

a 1 ,a 2 ,...,a L L l,k=1 c lk g(cov(X l a l , X k a k )) s.t. (1 -τ l )var(X l a l ) + τ l ∥a l ∥ 2 = 1, l ∈ [L].
(1.10) Hence, the objective of RGCCA is to find block components y l = X l a l , l ∈ [L] (where a l is a block weight vector of size p l ) summarizing the relevant information between and within the blocks. The τ l s are called shrinkage parameters ranging from 0 to 1 and interpolate smoothly between maximizing the covariance and maximizing the correlation. Setting τ l to 0 will force the block components to unit variance (var(X l a l ) = 1), in which case the covariance criterion boils down to the correlation. Setting τ l to 1 will normalize the block weight vectors (a ⊤ l a l = 1 ), which applies the covariance criterion. A value between 0 and 1 will lead to a compromise between the two first options and correspond to the following constraint (1-τ l )var(X l a l )+τ l ∥a l ∥ 2 = 1. We can discuss the choice of shrinkage parameters by providing interpretations on the properties of the resulting block components :

• τ l = 1 is recommended when the user wants a stable component (large variance) while simultaneously taking into account the correlations between blocks. The user must, however, be aware that variance dominates over correlation.

• τ l = 0 is recommended when the user wants to maximize correlations between connected components. This option can yield unstable solutions in case of multi-collinearity and cannot be used when a data block is rank deficient (e.g., n < p l ).

• 0 < τ l < 1 is a good compromise between variance and correlation : the block components are simultaneously stable and as well correlated as possible with their connected block components. This setting can be used when the data block is rank deficient.

From optimization problem (1.10), the term "generalized" in the acronym of RGCCA embraces at least four notions. The first one relates to the generalization of two-block methods -including Canonical Correlation Analysis [START_REF] Hotelling | Relation Between Two Sets of Variates[END_REF], Inter-battery Factor Analysis [START_REF] Tucker | An inter-battery method of factor analysis[END_REF], and Redundancy Analysis ( [START_REF] Van Den Wollenberg | Redudancy analysis : an alternative for canonical correlation analysis[END_REF] -to three or more sets of variables. The second one relates to the ability to take into account some hypotheses on between-block connections : the user decides which blocks are connected and which ones are not. The third one relies on the choices of the shrinkage parameters allowing to capture of both correlation or covariance-based criteria. The fourth one relates to the function g that enables considering different functions of the covariance. A triplet of parameters embodies this generalization : (g, τ l , C) and by the fact that an arbitrary number of blocks can be handled. This triplet of parameters offers flexibility and allows RGCCA to encompass a large number of multiblock component methods that have been published for fifty years. Table 1.2-1.4 gives the correspondences between the triplet (g, τ l , C) and the multiblock component methods. For a complete overview, see [START_REF] Tenenhaus | Regularized generalized canonical correlation analysis : A framework for sequential multiblock component methods[END_REF].

. Special cases of RGCCA

Two families of methods have come to the fore in the field of multiblock component data analysis. These methods rely on correlation-based or covariance-based criteria. Canonical correlation analysis [START_REF] Hotelling | Relation Between Two Sets of Variates[END_REF] is the seminal paper for the first family, and Tucker's inter-battery factor analysis [START_REF] Tucker | An inter-battery method of factor analysis[END_REF] for the second one. These two methods have been extended to more than two blocks in many ways :

• Main contributions for generalized canonical correlation analysis (GCCA) are found in [START_REF] Horst | Relations among m sets of variables[END_REF]; Carroll (1968a); [START_REF] Kettenring | Canonical analysis of several sets of variables[END_REF]; [START_REF] Wold | Soft Modeling : The Basic Design and Some Extensions[END_REF][START_REF] Wold | Partial Least Squares[END_REF]; [START_REF] Hanafi | PLS Path modelling : computation of latent variables with the estimation mode B[END_REF].

• Main contributions for extending Tucker's method to more than two blocks come from [START_REF] Carroll | Equations and tables for a generalization of canonical correlation analysis to three or more sets of variables[END_REF]; [START_REF] Chessel | Analyse de la co-inertie de K nuages de points[END_REF]; [START_REF] Hanafi | Analysis of K sets of data, with differential emphasis on agreement between and within sets[END_REF]; [START_REF] Hanafi | Shedding new light on hierarchical principal component analysis[END_REF][START_REF] Hanafi | Connections between multiple co-inertia analysis and consensus principal component analysis[END_REF]; [START_REF] Hanafi | Analysis of K sets of data, with differential emphasis on agreement between and within sets[END_REF]; [START_REF] Kramer | Analysis of high-dimensional data with partial least squares and boosting[END_REF]; [START_REF] Smilde | A framework for sequential multiblock component methods[END_REF]; ten [START_REF] Ten Berge | Generalized approaches to the maxbet problem and the maxdiff problem, with applications to canonical correlations[END_REF]; [START_REF] Van De Geer | Linear relations among k sets of variables[END_REF]; [START_REF] Westerhuis | Analysis of multiblock and hierarchical PCA and PLS models[END_REF]; [START_REF] Wold | Soft Modeling : The Basic Design and Some Extensions[END_REF][START_REF] Wold | Partial Least Squares[END_REF].

• [START_REF] Carroll | Equations and tables for a generalization of canonical correlation analysis to three or more sets of variables[END_REF] proposed the "mixed" correlation and covariance criterion. [START_REF] Van Den Wollenberg | Redudancy analysis : an alternative for canonical correlation analysis[END_REF] combined correlation and variance for the two-block situation (redundancy analysis). This method is extended to the multiblock situation in [START_REF] Tenenhaus | Regularized Generalized Canonical Correlation Analysis[END_REF]; [START_REF] Tenenhaus | Regularized generalized canonical correlation analysis : A framework for sequential multiblock component methods[END_REF].

In the two block case, with g being the identity function, optimization problem (1.10) reduces to : maximize

a 1 ,a 2 cov (X 1 a 1 , X 2 a 2 ) s.t. τ l ∥a l ∥ 2 + (1 -τ l )var(X l a l ) = 1, l = 1, 2.
(1.11)

This problem has been introduced under the name of Regularized Canonical Correlation Analysis [START_REF] Vinod | Canonical ridge and econometrics of joint production[END_REF][START_REF] Leurgans | Canonical correlation analysis when the data are curves[END_REF][START_REF] Shawe-Taylor | Kernel Methods for Pattern Analysis[END_REF]. For various extreme cases τ 1 = 0 or 1 and τ 2 = 0 or 1, optimization problem (1.11) covers a situation which goes from Canonical Correlation Analysis [START_REF] Hotelling | Analysis of a complex of statistical variables into principal components[END_REF]) to Tucker's inter-battery factor analysis [START_REF] Tucker | An inter-battery method of factor analysis[END_REF], while passing through redundancy analysis [START_REF] Van Den Wollenberg | Redudancy analysis : an alternative for canonical correlation analysis[END_REF]. This framework corresponds exactly to the one proposed by [START_REF] Borga | A Unified Approach to PCA, PLS[END_REF] and [START_REF] Burnham | Frameworks for latent variable multivariate regression[END_REF] and is reported in Table 1.2. Table 1.2 -Two-block component methods.

Methods

g(x)

τ l C

Canonical Correlation Analysis [START_REF] Hotelling | Relation Between Two Sets of Variates[END_REF] x

τ 1 = τ 2 = 0 C 1 = 0 1 1 0
Inter-battery Factor Analysis [START_REF] Tucker | An inter-battery method of factor analysis[END_REF] or PLS Regression [START_REF] Wold | The multivariate calibration problem in chemistry solved by the PLS method[END_REF] x

τ 1 = τ 2 = 1 C 1
Redundancy Analysis (Van den Wollenberg, 1977)

x τ 1 = 1 ; τ 2 = 0 C 1

Regularized Redundancy

Analysis [START_REF] Takane | Regularized linear and kernel redundancy analysis[END_REF][START_REF] Bougeard | Continuum redundancy-PLS regression : a simple continuum approach[END_REF][START_REF] Qannari | A simple continuum regression approach[END_REF])

x 0 ≤ τ 1 ≤ 1 ; τ 2 = 0 C 1

Regularized Canonical

Correlation Analysis [START_REF] Vinod | Canonical ridge and econometrics of joint production[END_REF][START_REF] Leurgans | Canonical correlation analysis when the data are curves[END_REF][START_REF] Shawe-Taylor | Kernel Methods for Pattern Analysis[END_REF])

x 0 ≤ τ 1 ≤ 1 ; 0 ≤ τ 2 ≤ 1 C 1
In the multiblock data analysis literature, all blocks X l , l ∈ [L] are assumed to be connected, and many criteria were proposed to find block components satisfying some covariance or correlationbased optimality. Most of them are special cases of optimization problem (1.10). These multiblock component methods are listed in Table 1.3. PLS path modeling is also mentioned in this table. The great flexibility of PLS path modeling lies in the possibility of taking into account hypotheses on connections between blocks : the researcher decides which blocks are connected and which are not.

Table 1.3 -Multiblock component methods as special cases of RGCCA.

Methods

g(x)

τ l C SUMCOR [START_REF] Horst | Relations among m sets of variables[END_REF])

x τ l = 0, l ∈ [L] C 2 =       1 1 • • • 1 1 1 . . . . . . . . . . . . . . . 1 1 • • • 1 1      
SSQCOR [START_REF] Kettenring | Canonical analysis of several sets of variables[END_REF])

x 2 τ l = 0, l ∈ [L] C 2
SABSCOR [START_REF] Hanafi | PLS Path modelling : computation of latent variables with the estimation mode B[END_REF] |x|

τ l = 0, l ∈ [L] C 2
SUMCOV-1 (Van de Geer, 1984)

x τ l = 1, l ∈ [L] C 2 Methods g(x)
τ l C

SSQCOV-1 [START_REF] Hanafi | Analysis of K sets of data, with differential emphasis on agreement between and within sets[END_REF])

x 2 τ l = 1, l ∈ [L] C 2
SABSCOV-1 [START_REF] Tenenhaus | Regularized Generalized Canonical Correlation Analysis[END_REF][START_REF] Kramer | Analysis of high-dimensional data with partial least squares and boosting[END_REF] |x|

τ l = 1, l ∈ [L] C 2
SUMCOV-2 (Van de Geer, 1984)

x τ l = 1, l ∈ [L] C 3 =       0 1 • • • 1 1 0 . . . . . . . . . . . . . . . 1 1 • • • 1 0      
SSQCOV-2 [START_REF] Hanafi | Analysis of K sets of data, with differential emphasis on agreement between and within sets[END_REF])

x 2 τ l = 1, l ∈ [L] C 3
PLS path modeling -mode B [START_REF] Wold | Soft Modeling : The Basic Design and Some Extensions[END_REF][START_REF] Tenenhaus | Pls path modeling[END_REF] |x| τ l = 0, l ∈ [L] c lk = 1 for two connected block and c lk = 0 otherwise Many multiblock component methods aim to find block components and a global component simultaneously. For that purpose, we consider L blocks, X 1 , . . . , X L connected to a (L + 1)th block defined as the concatenation of the blocks,

X L+1 = [X 1 , X 2 , . . . , X L ].
We will refer to this additional block as the "superblock". Several criteria were introduced in the literature, and many are listed below.

Table 1.4 -Multiblock component methods in a situation of L blocks : X 1 , . . . , X L , connected to a (L + 1)th block defined as the concatenation of the blocks :

X L+1 = [X 1 , X 2 , . . . , X L ].

Methods

g(x)

τ l C

Generalized CCA (Carroll, 1968a)

x 2 τ l = 0, l ∈ [L + 1] C 4 =      0 • • • 0 1 . . . . . . . . . . . . 0 • • • 0 1 1 • • • 1 0     
Generalized CCA [START_REF] Carroll | Equations and tables for a generalization of canonical correlation analysis to three or more sets of variables[END_REF])

x 2 τ l = 0, l = 1, . . . , L 1 ; τ l = 1, l = L 1 + 1, . . . , L C 4
Hierarchical PCA [START_REF] Wold | Hierarchical multiblock PLS and PC models for easier model interpretation and as an alternative to variable selection[END_REF])

x 4 τ l = 1, l ∈ [L] ; τ L+1 = 0 C 4
Multiple Co-Inertia Analysis [START_REF] Chessel | Analyse de la co-inertie de K nuages de points[END_REF][START_REF] Westerhuis | Analysis of multiblock and hierarchical PCA and PLS models[END_REF][START_REF] Smilde | A framework for sequential multiblock component methods[END_REF])

x 2 τ l = 1, l ∈ [L] ; τ L+1 = 0 C 4
Multiple Factor Analysis [START_REF] Escofier | Multiple factor analysis (afmult package)[END_REF])

x 2 τ l = 1, l ∈ [L + 1] C 4
It is quite remarkable that the single optimization problem (1.10) offers a framework for all the multiblock component methods referenced in Table 1.2-1.4. From these perspectives, RGCCA provides a general framework for exploratory data analysis of multiblock datasets with immediate practical consequences for a unified statistical analysis and implementation strategy. The straightforward gradient-based Algorithm 1 is monotonically convergent and hits at convergence a stationary point. Two numerically equivalent approaches for solving the RGCCA optimization problem are available.

A primal formulation described in [START_REF] Tenenhaus | Regularized Generalized Canonical Correlation Analysis[END_REF]; [START_REF] Tenenhaus | Regularized generalized canonical correlation analysis : A framework for sequential multiblock component methods[END_REF] requires the handling of matrices of dimension p l × p l . A dual formulation described in [START_REF] Tenenhaus | Kernel generalized canonical correlation analysis[END_REF] requires handling matrices of dimension n × n . Therefore, the primal formulation of the RGCCA algorithm will be preferred when n > p l , and the dual form will be used when n ≤ p l .

. Sparse Generalized Canonical Correlation Analysis (SGCCA)

RGCCA is a component-based approach that aims to study the relationships between several sets of variables. The quality and interpretability of the RGCCA block components y l = X l a l , l ∈ [L] are likely to be affected by the usefulness and relevance of the variables in each block. Therefore, it is important to identify within each block which subsets of significant variables are active in the relationships between blocks. For instance, biomedical data are known to be measurements of intrinsically parsimonious processes. SGCCA extends RGCCA to address this issue of variable selection (Tenenhaus et al., 2014). The SGCCA optimization problem is defined as follows :

maximize

a 1 ,a 2 ,...,a L L l,k=1 c lk g(cov(X l a l , X k a k )) s.t. ∥a l ∥ 2 ≤ 1 and ∥a l ∥ 1 ≤ s l , l ∈ [L],
(1.12)

where s l is a user-defined positive constant that determines the amount of sparsity for a l , l ∈ [L]. The smaller the s l , the larger the degree of sparsity for a l . The sparsity parameter s l is usually set by cross-validation or permutation procedures. Alternatively, values of s l can be chosen to result in desired amounts of sparsity.

SGCCA offers a sparse counterpart for all the covariance-based methods cited above. The optimization problem (1.12) falls into the RGCCA framework with

Ω l = {a l ∈ R p l ; ∥a l ∥ 2 ≤ 1; ∥a l ∥ 1 ≤ s l }. Ω l
is defined as the intersection between the ℓ 2 -ball of radius 1 and the ℓ 1 -ball of radius s l ∈ R ⋆ + which are two compact sets. Hence, Ω l is a compact set. Therefore, we can consider the following update for SGCCA :

âl = argmax ∥ã l ∥ 2 ≤1;∥ã l ∥ 1 ≤s l ∇ l f (a) ⊤ ãl := r l (a).
(1.13)

According to [START_REF] Witten | A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis[END_REF], the solution of (1.13) satisfies :

r l (a) = âl = S(∇ l f (a), λ l ) ∥S(∇ l f (a), λ l )∥ 2
, where λ l = 0 if

∥∇ l f (a)∥ 1 ∥∇ l f (a)∥ 2 ≤ s l find λ l such that ∥â l ∥ 1 = s l , (1.14)
where function S(., λ) is the soft-thresholding operator. When applied on a vector x ∈ R p , this operator is defined as :

u = S(x, λ) ⇔ u l = sign(x l )(|x l | -λ), if |x l | > λ 0, if |x l | ≤ λ , l = 1, . . . , p.
(1.15)

We made the assumption that the ℓ 2 -ball of radius 1 is not included in the ℓ 1 -ball of radius s l and the other way round. Otherwise, systematically, only one of the two constraints is active. This assumption is true when the corresponding spheres intersect. This assumption can be translated into conditions on s l . The norm equivalence between ∥.∥ 1 and ∥.∥ 2 can be formulated as the following inequality :

∀x ∈ R p l , ∥x∥ 2 ≤ ∥x∥ 1 ≤ √ p l ∥x∥ 2 .
(1.16)

This can be converted into a condition on s l : 1 ≤ s l ≤ √ p l . When such a condition is fulfilled, the ℓ 2 -sphere of radius 1 and the ℓ 1 -sphere of radius s l necessarily intersect.

Several strategies, such as Binary Search or the Projection On Convex Set algorithm (POCS), also known as the alternating projection method [START_REF] Boyd | Alternating projections[END_REF], can be used to determine the optimal λ l verifying the ℓ 1 -norm constraint. [START_REF] Gloaguen | An efficient algorithm to satisfy l1 and l2 constraints[END_REF] proposed a much faster approach to compute λ and perform the projection.

The SGCCA algorithm is similar to the RGCCA algorithm and keeps the same convergence properties. Empirically, we note that the S/RGCCA algorithm is found to be not sensitive to the starting point and usually reaches convergence within a few iterations.

. Higher level RGCCA algorithm

In many applications, several components per block need to be identified. The traditional approach consists of incorporating the single-unit RGCCA algorithm in a deflation scheme and sequentially computing the desired number of components. More precisely, the RGCCA optimization problem returns a set of L optimal block-weight vectors. denoted here a

[1] l , l ∈ [L]. Let y [1] l = X l a [1] l , l ∈ [L]
be the corresponding block components. Two strategies to determine higher-level weight vectors are presented. The first yields orthogonal block components, and the second yields orthogonal weight vectors. Deflation is the most straightforward way to add orthogonality constraints. This deflation procedure is sequential and consists in replacing within the RGCCA optimization problem the data matrix X l by X

[1] l its projection onto either : (i) the orthogonal subspace of y

[1] l if orthogonal compo- nents are desired : X [1] l = X l -y [1] l y [1] l ⊤ y [1] l -1 y [1] l ⊤ X l , or (ii) the orthogonal subspace of a [1] l for orthogonal weight vectors X [1] l = X l -X l a [1] l a [1] l ⊤ a [1] l -1 a [1] l ⊤ .
The second level RGCCA optimization problem boils down to :

max a 1 ,...,a L L l,k=1 c lk g n -1 a ⊤ l X [1] l ⊤ X [1] k a k s.t. a l ∈ Ω l .
(1.17)

The optimization problem (1.17) is solved using Algorithm 1 and returns a set of optimal blockweight vectors a

[2]

l and block components y

[2] l = X [1] l a [2] l , for l ∈ [L]. For orthogonal block weight vectors, y [2] l = X [1] l a [2] l = X l a [2]
l naturally expresses as a linear combination of the original variables. For orthogonal block components, as y

[1] l = X l a [1] l , the range space of X [1]
l is included in the range space of X l . Therefore any block component y l can also be expressed in terms of the original block X l : that is, it exists a ⋆ l [2] such that [2] . It implies that the block components can always be expressed in terms of the original data matrix, whatever the deflation mode.

y [2] l = X [1] l a [2] l = X l a ⋆ l
This deflation procedure can be iterated in a very flexible way. For instance, it is not necessary to keep all the blocks in the procedure at all stages : the number of components per block can vary from one block to another. This might be interesting in a supervised setting where we want to predict a univariate block from other blocks. In that case, the deflation procedure applies to all blocks except the one to predict.

To conclude this section, when the superblock option is used, various deflation strategies (what to deflate and how) have been proposed in the literature. We propose, as the default option, to deflate only the superblock with respect to its global components :

X (1) L+1 = I -y (1) L+1 y (1) L+1 ⊤ y (1) L+1 -1 y (1) L+1 ⊤ X L+1 = X (1) 1 , . . . , X (1) L .

The individual blocks X

(1) l s are then retrieved from the deflated superblock. This strategy enables recovering Multiple Factor Analysis [START_REF] Escofier | Multiple factor analysis (afmult package)[END_REF]. Note that, in this case, block components do not belong to their block space and are correlated. On the contrary, we follow the deflation strategy described in [START_REF] Chessel | Analyse de la co-inertie de K nuages de points[END_REF] for Multiple Co-inertia Analysis, which is one of the most popular and established methods of the multiblock literature.

. Average Variance Explained

In this section, using the idea of average variance explained (AVE), the following indicators of model quality are defined :

• The AVE for a given block component y l can be computed using the following formula :

AVE(X l ) = 1 ∥X l ∥ 2 p l h=1 var(x lh ) × cor 2 (x lh , y l ).
(1.18)

• A global indicator of model quality can be obtained by considering a weighted sum of these individual AVEs. This outer AVE is defined as :

AVE(outermodel) = 1/ L l=1 ∥X l ∥ 2 L l=1 ∥X l ∥ 2 AVE(X l ).
(1.19) However, the previous quantities do not take into account the correlations between blocks. Therefore, another indicator of model quality is the inner AVE, defined as follows :

AVE(innermodel) =     1/ L k,l=1 k<l c lk     L k,l=1 k<l c lk cor 2 (y l , y k ).
(1.20) All these quantities vary between 0 and 1 and reflect important properties of the model. Once again, the AVE(outermodel) is higher for models that capture a high proportion of the variance for each block, while AVE(innermodel) is higher for models that capture joint information across blocks. In the two-block case, AVE(outermodel) will be maximum for PCA and AVE(innermodel) will be maximum for CCA. In the example of the port wines, the AVE(innermodel) is 0.79 for the first component of PCA, while it is 0.99 for CCA. The block AVE is reported in parenthesis in Figure 1.1 and is higher for PCA compared to CCA (0.67 vs 0.54).

Equation (1.18) is defined for a specific block component. The cumulative AVE is obtained by summing these individual AVEs over the different components. However, this sum applies only to orthogonal block components. For correlated components, the QR-orthogonalization procedure described in [START_REF] Zou | Sparse principal component analysis[END_REF] can be used to consider only the increase of AVE due to adding the new components.

. Other multiblock methods

While the previously presented methods are interested in the properties of the matrices Y l = X l A l , another important part of the literature considers models of the form X l = U l V ⊤ l +E l . For such models, E l represents the noise, and the matrices U l and V l represent the structured information in the data, they are of rank H. By imposing different constraints on U l and V l , different methods with different properties are obtained. [START_REF] Kiers | Alternating least squares algorithms for simultaneous components analysis with equal component weight matrices in two or more populations[END_REF]; ten [START_REF] Ten Berge | Simultaneous components analysis[END_REF] propose Simultaneous Component Analysis (SCA) by imposing 

U 1 = • • • = U L := U.
X l = U 0 V ⊤ l0 + U l V ⊤ l + E l where U 0 is shared across blocks and V l0 U ⊤ 0 U l V ⊤ l = 0 for l ∈ [L]
. With this new model, it is possible to account for shared and individual scores. However, JIVE still lacks some flexibility as it does not allow for partially shared scores. That is why [START_REF] Gaynanova | Structural learning and integrative decomposition of multi-view data[END_REF] propose SLIDE. In the SLIDE model, there are individual matrices U l and a shared matrix U 0 , but there are also matrices for the combinations of 2 to L -1 blocks. For example, if L = 3, there will be U 12 , U 13 , and U 23 to model the partially shared scores between respectively blocks 1 and 2, 1 and 3, and 2 and 3. At the same time, each V l matrix has a fixed number of columns, and its columns are partitioned across the corresponding U matrices for the block l. Therefore, SLIDE tries to learn this partition, which corresponds to finding the rank of each shared, partially shared and individual score. To be identifiable, the individual scores and partially shared scores must be orthogonal in SLIDE. To overcome this issue, [START_REF] Yi | Hierarchical nuclear norm penalization for multi-view data integration[END_REF] propose the Hierarchical Nuclear Norm penalization (HNN) method. In this method, they solve : minimize

M 1 ,...,M L L l=1 ∥X l -M l ∥ 2 F + ϕ(M 1 , . . . , M L ).
(1.21)

The function ϕ penalizes the ranks of the shared, partially shared and individual components. In the

L = 3 case, ϕ(M 1 , M 2 , M 3 ) = 3 l=1 λ l ∥M l ∥ * + 3 k,l=1, k<l λ kl ∥ M k M l ∥ * + λ 123 ∥ M 1 M 2 M 3 ∥ * .
(1.22)

where ∥M l ∥ * is the nuclear norm of M l . The nuclear norm of a matrix is the sum of its singular values. [START_REF] Fazel | A rank minimization heuristic with application to minimum order system approximation[END_REF] have shown that regularizing a least squares problem with the nuclear norm leads to a low-rank solution as some singular values cancel out. Therefore, the HNN method tries to find low-rank representations for the shared, partially shared and individual components. With a different approach, [START_REF] Shu | D-GCCA : Decomposition-based Generalized Canonical Correlation Analysis for Multi-view High-dimensional Data[END_REF] model the blocks as random variables and look for shared and individual components using a procedure based on GCCA. They brand their method Decomposition-based GCCA (D-GCCA). Interestingly, they impose orthogonality in the space of random variables with zero mean and finite variance endowed with the covariance operator as the inner product instead of R n endowed with the classical scalar product. Using their model, they are also able to provide variance explained by an individual variable.

While all the previously mentioned methods assume the blocks contain continuous data, [START_REF] Zhu | Generalized integrative principal component analysis for multitype data with block-wise missing structure[END_REF] specifically consider heterogeneous data types like continuous, binary, and count-valued data. Building on [START_REF] Li | A General Framework for Association Analysis of Heterogeneous Data[END_REF], they assume an exponential family distribution generates the data from each block and impose a JIVE model on the parameters of the distributions. They also refine this model to account for block-wise missing data.

To conclude this Section, many multiblock methods exist, and we covered only a tiny part of them. We advise the reader who wants to learn more about the taxonomy of multiblock methods to read the excellent book from [START_REF] Smilde | Multiblock Data Fusion in Statistics and Machine Learning -Applications in the Natural and Life Sciences[END_REF]. In this manuscript, we focus on the RGCCA framework as it generalizes many existing methods.

. Tensor Decomposition Methods

Most signal processing and machine learning methods deal with matrices consisting of observations in rows and variables in columns. However, variables may contain an intrinsic structure. That is, for example, the case with electroencephalography (EEG) data [START_REF] Cong | Tensor decomposition of eeg signals : A brief review[END_REF]. In EEG, measurements are collected for participants across time through electrode channels. Therefore, the collected data is naturally a three-dimensional tensor with three axes (participants, channels, time). In EEG studies, augmenting the data with time-frequency representations is common. Doing so can enrich the previous tensor and make it a four-dimensional tensor with the axes (participants, channels, time, frequency). See Figure 1.2 for an illustration of such a tensor for a single participant. To finish on EEG data, experiments may be repeated for the same participants (trials), and different conditions may be tested. This design adds extra structure to the data, and we could represent such EEG data into a six-dimension tensor with axes (participants, channels, time, frequency, trials, conditions). There are many other examples of such tensor data like social network (nodes × nodes × time, [START_REF] Fernandes | Tensor decomposition for analysing time-evolving social networks : an overview[END_REF], process analysis (batches × monitored variables × samples, [START_REF] Hu | Batch process monitoring with tensor factorization[END_REF], multivariate probabilities (a mode per variable, [START_REF] Amiridi | Low-rank characteristic tensor density estimation part i : Foundations[END_REF], or excitation-emission spectroscopy (mixtures × emission wavelengths × excitation wavelengths, Acar et al., 2014b), to cite a few.

Of course, we have the same elements in the tensor and matrix representations of the data. Thus, we need specific algorithms to exploit the tensor structure of the data. This is the goal of tensor, or multiway, analysis. Having dedicated algorithms can improve the interpretation of the results, increase robustness to noise, and decrease time and spatial complexities. See [START_REF] Cichocki | Tensor decompositions for signal processing applications : From two-way to multiway component analysis[END_REF] for an extensive discussion on tensor data and the potential of tensor methods to handle it. We review some notations that we will be using in this manuscript in the next Section. In the remaining Sections of this chapter, we introduce some tensor decomposition methods.

. Notations and operators

Formally, a d th -order tensor is an element of the tensor product of d vector spaces. Choosing a basis for each vector space, a tensor can be represented by a d-way array. In this manuscript, we will consider real vector spaces and identify tensors to their array representations.

We follow the notations of [START_REF] Kolda | Tensor decompositions and applications[END_REF]. From what precedes, the order of a tensor corresponds to its number of dimensions, also called ways or modes. Hence, vectors are 1 st -order tensors. We denote them a, x, or λ using boldface lowercase characters. Matrices are 2 nd -order tensors. We denote them A, X, or Λ using boldface uppercase characters. We use boldface Euler script letters for higher-order tensors : A or X.

Let X be a tensor of order d, it means there exists {p 1 , . . . , p d } ∈ N d such that X ∈ R p 1 ו••×p d . Phrasing it differently, X has d modes, where the m th mode is of dimension p m . Each element of the tensor X can be accessed using a d-tuple (j 1 , . . . , j d ) where j m ∈ [p m ] for m ∈ [d]. We denote such an element x j 1 ...j d . Our example tensor X contains d m=1 p m elements. Therefore, there are links between this d-way representation and matrix or vector representations containing the same number of elements. To show this, we first introduce tensor fibers. Tensor fibers are the extension of matrix rows and columns : mode-m fibers are column vectors of p m elements obtained by fixing all indices except the m th one, leading to x j 1 ...j m-1 .j m+1 ...j d . When fixing all but two indices, we get matrices, referred to as slices. Mode-m fibers are illustrated in Figure 1.3.

A d th -order tensor can be seen as an object folded into d dimensions. Therefore it can be unfolded in fewer dimensions. The more common unfolding operations unfold tensors to matrices or vectors. Of course, it is possible to choose which modes are preserved and which modes are concatenated.

When keeping one mode m and concatenating all the others, we talk about the mode-m matricization. The mode-m matricization of a tensor

X ∈ R p 1 ו••×p d is denoted X (m)
and is of dimension p m × q̸ =m p q . This operation arranges the mode-m fibers of X in a matrix. If we want to unfold the tensor completely, we can vectorize its mode-m matricization. Given a matrix A = a 1 . . . Therefore, the mode-m vectorization of X is x (m) = Vec(X (m) ).

We illustrate the previous concepts on a simple example of a 3 rd -order tensor X ∈ R 2×3×2 . Since the dimension of the 3 rd mode of X is 2, X has two slices obtained by fixing only the index on the last mode. His slices are :

X ..1 = 1 3 5 2 4 6
and X ..2 = 7 9 11 8 10 12 .

The mode-m matricizations are given by the following matrices : We can recognize the mode-m fibers as the columns of the matricized matrices.

X (1) = 1 3
We now introduce some useful operators. The outer product of d vectors

x 1 ∈ R p 1 , . . . , x d ∈ R p d is X = x 1 • • • • • x d ∈ R p 1 ו••×p d .
Each element of X is then the product of elements of the d vectors :

x j 1 ...j d = x 1,j 1 . . . x d,j d for all j m ∈ [p m ] for m ∈ [d].
Hence the outer product increases the dimension by creating all possible combinations of its terms.

The Kronecker product between two vectors a ∈ R pa and b ∈ R p b is

a ⊗ b =    a 1 b . . . a pa b    ∈ R pap b .
The Kronecker product is also defined for two matrices A ∈ R na×pa and B ∈ R n b ×p b :

A ⊗ B =    a 11 B . . . a 1pa B . . . . . . . . . a na1 B . . . a napa B    = a 1 ⊗ b 1 . . . a 1 ⊗ b p b . . . a pa ⊗ b 1 . . . a pa ⊗ b p b ∈ R nan b ×pap b .
Interestingly, the Kronecker product increases the size while preserving the number of modes by creating all possible combinations of its terms. Therefore, there is a direct link between the outer and the Kronecker products. Given d vectors x 1 , . . . , x d , we have Vec(

x 1 • • • • • x d ) = x d ⊗ • • • ⊗ x 1 .
The Khatri-Rao product between two matrices sharing the same number of columns, A ∈ R na×p and B ∈ R n b ×p , is the column-wise Kronecker product :

A ⊙ B = a 1 ⊗ b 1 . . . a p ⊗ b p ∈ R nan b ×p .
Some authors use another definition of the Khatri-Rao product, but the idea is always to apply Kronecker products on a partition [START_REF] De Lathauwer | Decompositions of a higher-order tensor in block terms-part ii : Definitions and uniqueness[END_REF].

The Hadamard product is the element-wise product between two matrices of the same size. Given two matrices A, B ∈ R n×p , the Hadamard product between A and B is

A * B =    a 11 b 11 . . . a 1p b 1p . . . . . . . . . a n1 b n1 . . . a np b np    ∈ R n×p .
We recall here some useful properties of these different products. Let A, B, C, and D be four matrices with appropriate dimensions :

(A ⊗ B)(C ⊗ D) = AC ⊗ BD,
(1.23)

(A ⊗ B) † = A † ⊗ B † , (1.24) A ⊙ B ⊙ C = (A ⊙ B) ⊙ C = A ⊙ (B ⊙ C);
(1.25)

(A ⊙ B) ⊤ (A ⊙ B) = A ⊤ A * B ⊤ B,
(1.26)

(A ⊙ B) † = ((A ⊤ A) * (B ⊤ B)) † (A ⊙ B) ⊤ , (1.27) Vec(ABC) = (C ⊤ ⊗ A)Vec(B).
(1.28)

See [START_REF] Loan | The ubiquitous kronecker product[END_REF] for other properties and proofs.

The last type of product we are interested in is the m-mode product between a tensor and a matrix or a vector. We consider

X ∈ R p 1 ו••×p d and A ∈ R pm×pa where m ∈ [d]. The m-mode product between X and A is X × m A ∈ R p 1 ו••×p m-1 ×pa×p m+1 ו••×p d .
The m-mode product works like multiplying the matrix A against the m th mode of X. Indeed, we have

Y = X × m A ⇔ Y (m) = A ⊤ X (m) .
In the next subsections, we investigate classical tensor decomposition methods.

. The Canonical Polyadic Decomposition

The rank has a unique definition for a matrix : its column rank and row rank are equal. They correspond to the dimensions of the vector spaces generated by either the matrix's columns or rows.

Let X ∈ R p 1 ×p 2 be a matrix of rank R, another interpretation of the matrix rank is that there exists R couples of vectors {(a

(r) 1 , a (r) 2 ) ∈ R p 1 ×p 2 } R r=1 such that X = R r=1 a (r) 1 a (r) 2 ⊤ = R r=1 a (r) 1 • a (r)
2 . Extending the previous definitions for tensors leads to distinct quantities. We start by introducing the tensor rank. When referring to the rank of a tensor in the rest of the manuscript, we will be referring to its tensor rank. A tensor

X ∈ R p 1 ו••×p d is said to be of rank one if there exists d vectors a 1 , . . . , a d ∈ R p 1 ו••×p d of unit norm and a scalar λ such that X = λ a 1 • • • • • a d .
As for matrices, we can talk about rank-R tensors if they cannot be expressed as the sums of less than R rank-one tensors :

X = R r=1 λ (r) a (r) 1 •• • ••a (r) d .
A decomposition of a tensor in a sum of rank-one factors is referred to as a polyadic decomposition. When it is comprised of only R terms, with R being the rank of the tensor, this decomposition is called the Canonical Polyadic Decomposition (CPD). It has been independently discovered by [START_REF] Carroll | Analysis of individual differences in multidimensional scaling via an n-way generalization of "eckart-young" decomposition[END_REF] under the name Canonical Decomposition (CANDECOMP) in psychometrics and by [START_REF] Harshman | Foundations of the parafac procedure : models and conditions for an "explanatory" multimodal factor analysis[END_REF] under the name Parallel Factor Model (PARAFAC) in linguistics.

Alternatively, the acronym CPD may refer to CANDECOMP/PARAFAC Decomposition. We talk about orthogonal rank when the factors a (r) are orthogonal. If the factors a (r)

m are orthogonal for every

m ∈ [d],
we then talk about completely orthogonal rank [START_REF] Kolda | Orthogonal tensor decompositions[END_REF].

The CPD is usually denoted :

X = [[λ; A 1 , . . . , A d ]] where A m = a (1) m . . . a (R) m ∈ R pm×R for m ∈ [d],
and λ = λ (1) . . . λ (R) ⊤ . It is also possible to relax the unit-norm constraint on the rank- one terms. In this case, there is no need for λ anymore, and the CPD can be written 

X = [[A 1 , . . . , A d ]]. Let C ∈ R Rו••×R be
X = C × 1 A 1 • • • × d A d .
(1.29)

The tensor C is called a core tensor. Therefore, the CPD can be seen as a tensor decomposition with a diagonal core tensor. See Figure 1.4 for a graphical illustration of the CPD in the case of a 3 rd -order tensor. The CPD is unique under mild conditions up to sign and rank-one terms order indeterminacies.

Let r m be the rank of the matrix A m for m ∈ [d]. According to a result from [START_REF] Kruskal | Three-way arrays : rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics[END_REF], a sufficient condition for the uniqueness of the CPD of a 3 rd -order tensor is r 1 + r 2 + r 3 ≥ 2R + 2. [START_REF] Sidiropoulos | On the uniqueness of multilinear decomposition of n-way arrays[END_REF] generalize this result to tensors of order d. The new sufficient condition is :

d m=1 r m ≥ 2R + d -1.
(1.30)

PCA gives the best rank-R approximation for a matrix, with the nice property that the first k factors of the rank-R decomposition are exactly the factors of the rank-k decomposition for k ≤ R. This property no longer holds for CPD. Even worse, the best rank-R approximation may not even make sense. Indeed, the set of tensors with rank at most R is not closed. This means that it is possible to have a sequence of rank-2 tensors converging to a rank-3 tensor. Such a tensor is called a degenerate tensor. See [START_REF] Paatero | Construction and analysis of degenerate parafac models[END_REF]; [START_REF] De Silva | Tensor rank and the ill-posedness of the best low-rank approximation problem[END_REF] for examples and further discussion on the matter. 

A (-m) = A d ⊙ • • • ⊙ A m+1 ⊙ A m-1 ⊙ • • • ⊙ A 1 ; 7: A m = X (m) A (-m) (A ⊤ d A d * • • • * A ⊤ m+1 A m+1 * A ⊤ m-1 A m-1 * • • • * A ⊤ 1 A 1 ) † ; 8:
Store the column-norms of A m in λ;

9:

Normalize the columns of A m ;

10:

end for 11: until Some stopping criterion is met.

Different algorithms have been proposed to find a good rank-R CPD of a tensor

X ∈ R p 1 ו••×p d .
The simplest and oldest is based on Alternating Least Squares (ALS). ALS is very easy to implement (see Algorithm 2). ALS solves the following optimization problem :

minimize λA 1 ,...,A d ∥X -[[λ; A 1 , . . . , A d ]]∥ 2 F .
(1.31)

Its strategy is to initialize the matrices A m ∈ R pm×R for m ∈ [d] randomly and update one of the A m matrices while keeping the other fixed. Each update reduces to a classical least squares problem.

Indeed, if A = [[λ; A 1 , . . . , A d ]],
we have the following result : (1.32) where Λ = diag □ (λ) ∈ R R×R is the diagonal matrix which diagonal is λ. To update A m and λ, we have to solve :

A (m) = A m Λ(A d ⊙ • • • ⊙ A m+1 ⊙ A m-1 ⊙ • • • ⊙ A 1 ) ⊤ ,
min Am,λ ∥X -[[λ; A 1 , . . . , A d ]]∥ 2 F = min Ãm ∥X (m) -Ãm (A d ⊙ • • • ⊙ A m+1 ⊙ A m-1 ⊙ • • • ⊙ A 1 ) ⊤ ∥ 2 F , (1.33)
where Ãm = A m diag □ (λ) is an unconstrained matrix. Therefore, using the properties of the Khatri-Rao product, the solution is given by :

Âm = X (m) (A d ⊙• • •⊙A m+1 ⊙A m-1 ⊙• • •⊙A 1 )(A ⊤ d A d * • • • * A ⊤ m+1 A m+1 * A ⊤ m-1 A m-1 * • • • * A ⊤ 1 A 1 ) † .
(1.34)

Finally, the column norms of Âm give λ, and its normalized columns give A m . Each ALS update requires inverting a R × R matrix. The classical termination criteria of the ALS algorithm are :

• no significant decrease in the reconstruction error after a full round of updates,

• no significant changes of the factors after a full round of updates,

• or a predefined maximum number of iterations is reached.

While the ALS algorithm is simple to implement, it may not converge to the global minimum nor even to a stationary point. It can be slow to converge and may depend on the initialization point's choice. [START_REF] Navasca | Swamp reducing technique for tensor decomposition[END_REF] propose to use a BSUM type of algorithm [START_REF] Hong | A unified algorithmic framework for blockstructured optimization involving big data : With applications in machine learning and signal processing[END_REF] by adding a proximal term to regularize the ALS problem. They show that this new approach gets rid of the "swamp" issue of ALS : the objective function remains almost constant for many iterations before starting to decrease again. P. da [START_REF] Silva | An iterative deflation algorithm for exact cp tensor decomposition[END_REF] propose an alternative method which iteratively looks for rank-1 tensors until convergence of these rank-1 factors. Other approaches use methods like nonlinear conjugate gradients, quasi-Newton, or nonlinear least squares to find the CPD (see for example [START_REF] Sorber | Optimization-based algorithms for tensor decompositions : Canonical polyadic decomposition, decomposition in rank-$(l_r,l_r,1)$ terms, and a new generalization[END_REF]. These methods can perform better than ALS but often come at a higher cost per iteration.

All the previously mentioned algorithms try to find a good rank-R CPD of the target tensor, but an important remaining question is the choice of the rank R. [START_REF] Bro | A new efficient method for determining the number of components in parafac models[END_REF] propose CORCONDIA, a procedure to estimate the rank based on the data and how "appropriate" a rank-R CPD model is.

In general, data is noisy, so the higher the rank, the more noise is modeled. Therefore, the choice of R is a compromise between goodness of fit and degrees of freedom. If there is a downstream task, the rank can be chosen in order to perform best in this task.

. The Tucker model

Extending the matrix rank to the tensor rank spawns an important tensor decomposition method : the CPD. Interestingly, the extension of the matrix rank seen as the column-rank (or row-rank) strongly connects with another important tensor decomposition method : the Tucker model [START_REF] Tucker | Implications of factor analysis of three-way matrices for measurement of change[END_REF][START_REF] Tucker | The extension of factor analysis to three-dimensional matrices[END_REF]. The parallel of matrix columns for tensors is fibers. For a tensor X of order d, there are d sets of fibers (one for each mode). Therefore, the parallel of the matrix column-rank for the mode m is the column-rank of the matrix composed of the mode-m fibers, i.e., X (m) . We note this rank r m . Each mode's ranks may differ, so this yields a d-tuple (r 1 , . . . , r d ) known as the multilinear rank.

As opposed to the tensor rank, the multilinear rank of a tensor can be assessed using the SVD on each tensor mode. In fact, it is even possible to get a compressed representation of the tensor using multiple SVDs. This is the principle of the Higher-Order SVD (HOSVD, De Lathauwer et al., 2000). Let

X ∈ R p 1 ו••×p d be a given tensor, U m Σ m V ⊤ m be the SVD of X (m) for m ∈ [d],
and (r 1 , . . . , r d ) be the multilinear rank of X. Consider the tensor C ∈ R r 1 ו••×r d defined as :

C = X × 1 U ⊤ 1 • • • × d U ⊤ d .
(1.35)

Figure 1.5 -Tucker model of a 3 rd -order tensor. The core tensor C is not necessarily super diagonal here.

Since the U m matrices are orthonormal, we have :

C × 1 U 1 • • • × d U d = X × 1 U ⊤ 1 U 1 • • • × d U ⊤ d U d = X.
(1.36)

This result means that X can be written as the mode-products with a tensor core. It can be compactly written as

X = [[C; U 1 , . . . , U d ]]
. This is the definition of a Tucker model. Figure 1.5 shows a graphical representation of a Tucker model for a 3 rd -order tensor. For a general Tucker model, there are no constraints on the factor matrices involved in the decomposition. In the case of HOSVD, it is not necessary that the core tensor dimensions match the multilinear rank. By using truncated SVDs for each mode, the procedure also yields a valid Tucker model. However, the reconstruction of the tensor will no longer be exact and may not be optimal in the sense of the Frobenius norm.

To some extent, the CPD and the HOSVD can be seen as two different extensions of PCA to higherorder tensors. Like PCA, both the CPD and the HOSVD seek a low-rank approximation of a target tensor but with different meanings of the ranks. There are some connections between the tensor rank and the multilinear rank since (1.30) gives a sufficient uniqueness condition if the sum of the multilinear rank is high enough compared to the tensor rank. On the other hand, the tensor rank R is equal to or greater than the maximum of the multilinear rank (de [START_REF] De Silva | Tensor rank and the ill-posedness of the best low-rank approximation problem[END_REF].

As opposed to the CPD, the core tensor does not necessarily have the same dimensions across modes and does not need to be diagonal. Therefore, the core tensor allows interactions between the columns of the factor matrices, while they do not interact in the CPD. The Tucker model is intrinsically not unique since the left multiplication of a factor matrix by a given nonsingular matrix can be canceled by the product between the core tensor and the inverse of the given matrix on the corresponding mode. Let C be the core tensor, A m the factor matrix for mode m and Q be a nonsingular matrix with appropriate dimensions,

C × m A m = (C × m Q -1 ) × m (QA m ).
(1.37)

As a consequence, it is generally easier to interpret the results of a CPD than a Tucker model. This is why we will base our extension of RGCCA to tensor data on the CPD rather than the Tucker model in Chapter 3.

. Other decompositions

The CPD and the Tucker model are not the only existing tensor decomposition methods. The Block Term Decomposition (BTD, De Lathauwer, 2008a,b;[START_REF] De Lathauwer | Decompositions of a higher-order tensor in block terms-part iii : Alternating least squares algorithms[END_REF] lies in between the CPD and the Tucker model. It decomposes a tensor into the sum of tensors with low multilinear rank. Thus, it is richer than a CPD with the same number of terms while being more constrained than a Tucker model with the same multilinear rank.

Another closely related decomposition to CPD is the PARAFAC2 model [START_REF] Harshman | Foundations of the parafac procedure : models and conditions for an "explanatory" multimodal factor analysis[END_REF][START_REF] Kiers | Parafac2-part i. a direct fitting algorithm for the parafac2 model[END_REF]. Let consider a 3 rd -order tensor X = [[A, B, C]] ∈ R I×J×K of rank R, we have :

x ijk = R r=1 a (r) i b (r) j c (r) k = a ⊤ i D k b j for i ∈ [I], j ∈ [J] and k ∈ [K],
(1.38)

where

D k = diag □ (c k ).
Therefore the 3 rd -mode slices X ..k can be written :

X ..k = AD k B ⊤ .
(1.39)

The PARAFAC2 model relaxes the constraint that the A factor is shared across the 3 rd -mode slices but imposes that the new factors A k have constant cross-products A ⊤ k A k for uniqueness under mild conditions. Imagine the third mode of the tensor has been obtained by stacking repetitions of an experiment. The relaxation of the constraint allows accounting for different scales in the repetitions or even different numbers of observations per repetition. This kind of model shows connections between multiblock analysis and tensor decompositions since repetitions could be stacked in a tensor or separated into blocks. PARAFAC2 can also be used for longitudinal data with a different number of measurements per variable. In Sort et al. (2023a), we propose a generalization of the CPD for longitudinal data with sparse and irregular measurements.

There are also methods that combine multiblock analysis and tensor decompositions. This is the case of Coupled Matrix and Tensor Factorizations (CMTF, [START_REF] Acar | A flexible modeling framework for coupled matrix and tensor factorizations[END_REF]Acar et al., , 2014b,a;,a;[START_REF] Schenker | A flexible optimization framework for regularized matrix-tensor factorizations with linear couplings[END_REF]. CMTF focuses on shared structure across matrix and tensor blocks and can be viewed as an extension of SCA in the case where some blocks are tensors. For the tensor blocks, CMTF looks for a factor per mode. For a tensor

X ∈ R p 1 ו••×p d and a matrix Y ∈ R p 1 ×q , the original CMTF criterion is : min A 1 ,...,A d ,V ∥X -[[A 1 , . . . , A d ]]∥ + ∥Y -A 1 V ⊤ ∥ 2 F .
(1.40)

CMTF has since been extended to account for more blocks, with more flexible couplings and a different number of components per block, even allowing for partially shared components. The initial idea at the core of CMTF is to impose a CPD decomposition on an existing method for tensor blocks. This is also the core idea behind the model we present in Chapter 3.

. Conclusion

In this Chapter, we presented RGCCA, a flexible multiblock component method that extends many existing methods, including PCA. The RGCCA algorithm finds a set of canonical components, and deflation is used to get the other sets of components. The two deflation strategies that were proposed correspond to two interpretations of the deflation strategy used in PCA. While they lead to the same outcome in PCA, they may differ for RGCCA. Similarly, tensor extensions of the matrix rank, at the core of PCA, lead to the CPD and the HOSVD. Therefore, focusing on a particular property or choosing to make a compromise can lead to quite different models. Across this manuscript, some choices have been made to develop the methods, often compromising between desirable properties.

Because RGCCA covers a lot of methods, it is essential to have reliable software implementing the RGCCA framework. We present such software in Chapter 2. Moreover, extending the RGCCA framework enables to extend all the covered methods at once. In Chapter 3, we propose an extension of RGCCA to tensor data building on MGCCA [START_REF] Gloaguen | Multiway generalized canonical correlation analysis[END_REF], where we impose a CPD on weights associated with tensor blocks. Since maximizing successive criteria may be seen as sub-optimal from an optimization point of view, a single-criterion strategy might be preferred. We propose simultaneous strategies in Chapter 4 and discuss the strategy proposed by [START_REF] Gloaguen | A statistical and computational framework for multiblock and multiway data analysis[END_REF]. At the heart of both Chapters lies the optimization framework for RGCCA presented in this Chapter. In Chapter 5, we apply the developed methods to study data collected at the Paris Brain Institute on multiple sclerosis and leukodystrophy. 43

-The RGCCA Package

. Introduction

For the statistical computing environment R R Core Team (2022), various R packages are available for multiblock data analysis. Four mainstream references are mixOmics [START_REF] Rohart | mixomics : An r package for 'omics feature selection and multiple data integration[END_REF], multiblock [START_REF] Liland | multiblock : Multiblock Data Fusion in Statistics and Machine Learning[END_REF], ade4 [START_REF] Dray | The ade4 package : implementing the duality diagram for ecologists[END_REF], and FactoMineR [START_REF] Lê | FactoMineR : A package for multivariate analysis[END_REF]. Each package uses its own way of specifying multiblock models and storing the results.

Since RGCCA is a unified statistical framework that subsumes, as special cases, an astonishingly large number of multiblock component methods, its single optimization problem has immediate practical consequences for a unified statistical analysis and implementation strategy.

In this chapter, we introduce an R package called RGCCA, which implements the RGCCA framework. Within the RGCCA package, all the implemented methods share the same function interface and a clear class structure. In addition, the RGCCA package relies on the single rgcca() function for specifying the multiblock models. It also provides several utility functions for data preprocessing and several plots for diagnostics or visualization of the results from multiblock analysis. The list of functions implemented in the package can be found in Table 2.1. Because RGCCA covers many existing methods, special care has been taken to ensure that our implementation gives the same results as the existing implementations when available. The list of pre-specified multiblock component methods than can be used within the RGCCA package are reported below :

R> RGCCA::available_methods()

[1] "rgcca" "sgcca" "pca" "spca" "pls" "spls" [7] "cca" "ifa" "ra" "gcca" "maxvar" "maxvar-b" [13] "maxvar-a" "mfa" "mcia" "mcoa" "cpca-1" "cpca-2" [19] "cpca-4" "hpca" "maxbet-b" "maxbet" "maxdiff-b" "maxdiff" [25] "sabscor" "ssqcor" "ssqcov-1" "ssqcov-2" "ssqcov" "sumcor" [31] "sumcov-1" "sumcov-2" "sumcov" "sabscov-1" "sabscov-2"

In addition, the package includes several built-in datasets and examples to help users get started quickly. The RGCCA package is available from the Comprehensive R Archive Network (CRAN), at https://CRAN.R-project.org/package=RGCCA and can be installed from the R console with the following command :

R> install.packages("RGCCA")

In the next Sections, we provide code examples to illustrate the package's usefulness and versatility on two datasets. We believe that our package provides a valuable contribution to the field of multiblock data analysis and will enable researchers to conduct more effective analyses and gain new insights into complex datasets. rgcca_stability Select the most stable variables of a R/SGCCA model using their VIPs.

print/plot

Print and plot methods for outputs of functions rgcca, rgcca_cv, rgcca_permutation, rgcca_bootstrap, and rgcca_stability.

. RGCCA for the Russett dataset.

In this section, we reproduce some of the results presented in Tenenhaus and Tenenhaus (2011) from the Russett data. The Russett dataset is available within the RGCCA package. The Russett dataset [START_REF] Russett | Inequality and Instability : The Relation of Land Tenure to Politics[END_REF] is studied in [START_REF] Gifi | Nonlinear multivariate analysis[END_REF]. Russett collected this data to study relationships between Agricultural Inequality, Industrial Development, and Political Instability.

R> library(RGCCA) R> data (Russett) R> colnames (Russett) [1] "gini" "farm" "rent" "gnpr" "labo" "inst" [7] "ecks" "death" "demostab" "demoinst" "dictator"

The first step of the analysis is to define the blocks. Three blocks of variables have been defined for 47 countries. The variables that compose each block have been defined according to the nature of the variables.

• The first block X 1 = [gini, farm, rent] is related to "Agricultural Inequality" :

• gini = Inequality of land distribution,

• farm = % farmers that own half of the land (> 50),

• rent = % farmers that rent all their land.

• The second block X 2 = [gnpr, labo] describes "Industrial Development" :

• gnpr = Gross national product per capita ($1955),

• labo = '% of labor force employed in agriculture.

• The third one X 3 = [inst, ecks, death] measures "Political Instability" :

• inst = Instability of executive (45-61),

• ecks = Number of violent internal war incidents (46-61),

• death = Number of people killed as a result of civic group violence (50-62).

• demo = Political regime : stable democracy, unstable democracy or dictatorship. Due to redundancy, the dummy variable "unstable democracy" has been left out.

The different blocks of variables X 1 , . . . , X L are arranged in the list format.

R> A <-list( + Agric = Russett[, c("gini", "farm", "rent")], + Ind = Russett[, c("gnpr", "labo")], + Polit = Russett[, c("inst", "ecks", "death", "demostab", "dictator")]) R> R> lab <-factor( + apply (Russett[,9:11], 1, which.max), + labels = c("demost", "demoinst", "dict") + )

Preprocessing. In general, and especially for the covariance-based criterion, the data blocks might be preprocessed to ensure comparability between variables and blocks. In order to ensure comparability between variables, standardization is applied (zero mean and unit variance). Such preprocessing is reached by setting the scale argument to TRUE (default value) in the rgcca() function. To make blocks comparable, a possible strategy is to standardize the variables and divide each block by the square root of its number of variables [START_REF] Westerhuis | Analysis of multiblock and hierarchical PCA and PLS models[END_REF]. This two-step procedure leads to Tr(X ⊤ l X l ) = n for each block (i.e. the sum of the eigenvalues of the covariance matrix of X l is equal to 1 whatever the block). Such a preprocessing is reached by setting the scale_block argument to TRUE or "inertia" (default value) in the rgcca() function. If scale_block = "lambda1", each block is divided by the square root of the highest eigenvalue of its empirical covariance matrix. If standardization is applied (scale = TRUE), the block scaling is applied on the result of the standardization.

Definition of the design matrix C. From Russett's hypotheses, it is difficult for a country to escape dictatorship when agricultural inequality is above average and industrial development is below average. These hypotheses on the relationships between blocks are encoded through the design matrix C. Usually c lk = 1 for two connected blocks and 0 otherwise. Therefore, we have decided to connect Agricultural Inequality to Political Instability (c 13 = 1), Industrial Development to Political Instability (c 23 = 1) and to not connect Agricultural Inequality to Industrial Development (c 12 = 0). The resulting design matrix C is :

R> #Define the design matrix C. R> C <-matrix(c(0, 0, 1, + 0, 0, 1, + 1, 1, 0), 3, 3) R> R> C [,1] [,2] [,3] [1,] 0 0 1 [2,] 0 0 1 [3,] 1 1 0
Choice of the scheme function g. Typical choices of scheme functions are g(x) = x, x 2 , or |x|.

According to [START_REF] Van De Geer | Linear relations among k sets of variables[END_REF], a fair model is a model where all blocks contribute equally to the solution in opposition to a model dominated by only a few of the L sets. If fairness is a major objective, the user must choose m = 1. m > 1 is preferable if the user wants to discriminate between blocks. In practice, m is equal to 1, 2 or 4. The higher the value of m, the more the method acts as block selector [START_REF] Tenenhaus | Regularized generalized canonical correlation analysis : A framework for sequential multiblock component methods[END_REF]. With m = 1, finding a compromise between all blocks has a better chance of yielding a higher criterion. Thus, it privileges the discovery of shared components. If m > 1, high correlations between a subset of the blocks may be preferred. In this case, it privileges the discovery of partially-shared components.

RGCCA using the pre-defined design matrix C, the factorial scheme (g(x) = x 2 ), τ = 1 for all blocks (full covariance criterion) and a number of (orthogonal) components equal to 2 for all blocks is obtained by specifying appropriately the arguments connection, scheme, tau, ncomp, comp_orth in rgcca(). verbose (default value = FALSE) indicates that the progress will be reported while computing and that a plot illustrating the convergence of the algorithm will be displayed.

R> fit <-rgcca(blocks

= A, connection = C, + tau = 1, ncomp = 2, + scheme = "factorial", + scale = TRUE, + scale_block = FALSE, + comp_orth = TRUE, + verbose = FALSE)
The summary() function allows summarizing the RGCCA analysis.

R> summary(fit)

Call: method='rgcca', superblock=FALSE, scale=TRUE, scale_block=FALSE, init='svd', bias=TRUE, tol=1e-08, NA_method='na.ignore', ncomp=c(2,2,2), response=NULL, comp_orth=TRUE There are J = 3 blocks. The design matrix is:

Agric Ind Polit Agric 0 0 1 Ind 0 0 1 Polit 1 1 0
The factorial scheme is used. Sum_{j,k} c_jk g(cov(X_j a_j, X_k a_k) = 7.9469

The regularization parameter used for Agric is: 1

The regularization parameter used for Ind is: 1

The regularization parameter used for Polit is: 1

The block-weight vectors solution of the optimization problem (1.10) are available as output of the rgcca() function in fit$a and correspond exactly to the weight vectors reported in Figure 5 of [START_REF] Tenenhaus | Regularized Generalized Canonical Correlation Analysis[END_REF]. The a

[h] l ⋆
, mentioned in Section 1.1.5, are available in fit$astar. It is possible to display specific block-weight or block-loading vectors using the generic plot() function by specifying type = "weights" or type = "loadings". The arguments block and comp are used to choose which vectors will be displayed. Countries aggregate together when they share similarities. It may be noted that the lower right quadrant concentrates on dictatorships. It is difficult for a country to escape dictatorship when its industrial development is below average, and its agricultural inequality is above average. It is worth pointing out that some unstable democracies located in this quadrant (or close to it) became dictatorships for a period of time after 1960 : Greece [START_REF] Zangwill | Non-linear programming via penalty functions[END_REF]( -1974( ), Brazil (1964[START_REF] Wold | Partial Least Squares[END_REF], Chili (1973-1990), and Argentina (1966-1973).

The AVEs of the different blocks are reported in the axes of Figure 2.2. All AVEs (defined in 1.18-1.20) are available as output of the rgcca() function in fit$AVE. These indicators of model quality can also be visualized using the generic plot() function.

R> plot(fit, type = "ave", cex = 2) The strength of the relations between each block component and each variable can be visualized using correlation circles or biplot representations. By default, all the variables are displayed on the correlation circle. However, it is possible to choose the block(s) to display (display_blocks) in the correlation_circle. Assessment of the reliability of parameter estimates. It is possible to use a bootstrap resampling method to assess the reliability of parameter estimates (block-weight/loading vectors) obtained using RGCCA. B = n_boot bootstrap samples of the same size as the original data are repeatedly sampled with replacements from the original data. RGCCA is then applied to each bootstrap sample to obtain the RGCCA estimates. We calculate the standard deviation of the estimates across the bootstrap samples, from which we derive bootstrap confidence intervals, t-ratio (defined as the ratio of the parameter estimate to its bootstrap estimate of the standard deviation), and p-value (the p-value is computed by assuming that the ratio of the parameter estimate to its standard deviation follows the standardized normal distribution), to indicate how reliably parameters were estimated. Since several p-values are constructed simultaneously, FDR correction can be applied to control the False Discovery Rate. This function is available using the rgcca_bootstrap() function of the RGCCA package.

R> boot_out <-rgcca_bootstrap(fit, n_boot = 500, n_cores = 1)

The bootstrap results are detailed using the summary() function, R> summary(boot_out, block = 1:3, ncomp = 1) Call: method='rgcca', superblock=FALSE, scale=TRUE, scale_block=FALSE, init='svd', bias=TRUE, tol=1e-08, NA_method='na.ignore', ncomp=c(2,2,2), response=NULL, comp_orth=TRUE There are J = 3 blocks. The design matrix is:

Agric Ind Polit Agric 0 0 1 Ind 0 0 1 Polit 1 1 0
The factorial scheme is used.

Extracted Each weight is shown along with its associated bootstrap confidence interval and stars reflecting the p-value of assigning a strictly positive or negative weight to this variable. The stars can be hidden by setting show_stars = FALSE.

When the superblock option is considered (superblock = TRUE or method set to a method that induces the use of superblock), global components can be derived. The space spanned by the global components can be viewed as a consensus space that integrates all the modalities and facilitates the visualization of the results and their interpretation. This is the case for Multiple Co-Inertia Analysis [START_REF] Chessel | Analyse de la co-inertie de K nuages de points[END_REF] (MCOA, also called MCIA in [START_REF] Cantini | Benchmarking joint multi-omics dimensionality reduction approaches for the study of cancer[END_REF] with 2 components per block.

R> fit.mcoa <-rgcca(blocks = A, method = "mcoa", ncomp = 2)

Interestingly, the summary() function reports the arguments that the software automatically specified to perform MCOA.

R> summary(fit.mcoa)

Call: method='mcoa', superblock=TRUE, scale=TRUE, scale_block='inertia', init='svd', bias=TRUE, tol=1e-08, NA_method='na.ignore', ncomp=c(2,2,2,2), response=NULL, comp_orth=FALSE There are J = 4 blocks. The design matrix is:

Agric Ind Polit superblock Agric 0 0 0 1 Ind 0 0 0 1 Polit 0 0 0 1 54 superblock 1 1 1 0
The factorial scheme is used. Sum_{j,k} c_jk g(cov(X_j a_j, X_k a_k) = 3.578

The regularization parameter used for Agric is: 1

The regularization parameter used for Ind is: 1

The regularization parameter used for Polit is: 1

The regularization parameter used for superblock is: 0

It is possible to display specific output as previously using the generic plot() function by specifying the argument type accordingly. MCOA enables individuals to be represented in the space spanned by the first global components. The biplot representation associated with this consensus space is given below. As previously, this model can be easily bootstrapped using the rgcca_bootstrap() function, and the bootstrap confidence intervals are available using the summary() and plot() functions.

Three fully automatic strategies are proposed to select the optimal shrinkage parameters :

The Schafer and Strimmer analytical formula. For each block l, an "optimal" shrinkage parameter τ l can be obtained using the Schafer and Strimmer analytical formula [START_REF] Schäfer | A shrinkage approach to large-scale covariance matrix estimation and implications for functional genomics[END_REF] by setting the tau argument of the rgcca() function to "optimal". R> fit <-rgcca(blocks = A, connection = C, + tau = "optimal", scheme = "factorial")

The optimal shrinkage parameters are given by :

R> fit$call$tau

[1] 0.08853216 0.02703256 0.08422566

This automatic estimation of the shrinkage parameters allows one to come closer to the correlation criterion, even in the case of high multicollinearity, or when the number of individuals is smaller than the number of variables.

As previously, the fitted RGCCA objects can be inspected using the generic functions summary(), plot(), and bootstrapped with the rgcca_bootstrap() function.

Permutation strategy. A permutation-based strategy very similar to the one proposed in [START_REF] Witten | A penalized matrix decomposition, with applications to sparse principal components and canonical correlation analysis[END_REF] has also been integrated within the RGCCA package through the rgcca_permutation() function. This function is used to select the regularization parameters for R/SGCCA automatically.

For each set of regularization parameters (generally, this will be a L-dimensional vector), the following steps are performed :

• S/RGCCA is run on the original data X 1 , . . . , X L , and we record the value of the objective function, denoted t.

• n_perm times, the rows of X 1 , . . . , X L are randomly permuted to obtained permuted data sets X * 1 , . . . , X * L . S/RGCCA is then run on these permuted data sets, and we record the value of the objective function, denoted t * .

• The resulting p-value is given by the fraction of permuted t * that exceeds the t obtained from the non-permuted blocks.

• The resulting zstat is defined as

t-mean(t * ) sd(t * )
.

The best set of tuning parameters is then the set that yields the highest zstat. This procedure is available through the rgcca_permutation function. By default, the rgcca_permutation function generates 10 sets of tuning parameters uniformly sampled between some minimal values (0 for RGCCA and 1/sqrt(p l ) for the block l with SGCCA) and 1. Results of the permutation procedure are summarized using the generic summary() function,

R> summary(perm_out)

Call: method='rgcca', superblock=FALSE, scale=TRUE, scale_block=TRUE, init='svd', bias=TRUE, tol=1e-08, NA_method='na.ignore', ncomp=c(1,1,1), response=NULL, comp_orth=TRUE There are J = 3 blocks. The design matrix is:

Agric Ind Polit Agric 0 0 1 Ind 0 0 1 Polit 1 1 0
The factorial scheme is used. Permutation scores (10 runs) Best parameters: 1.00/1.00/1.00 The fitted permutation object, perm_out, can be directly provided as the input of rgcca() and visualized/bootstrapped as usual.

R> fit <-rgcca(perm_out)

Of course, it is possible to define explicitly the combination of regularization parameters to be tested. In that case, a matrix of dimension K × L is required. Each row of this matrix corresponds to one set of tuning parameters. Alternatively, a numeric vector of length L indicating the maximum range values to be tested can be given. The set of parameters is then uniformly generated between the minimum values (0 for RGCCA and 1/sqrt(p l ) for block l with SGCCA) and the maximum values specified by the user with par_value.

Cross-validation strategy. Another procedure to tune the parameters is cross-validation. We will illustrate this in the next section in the context of SGCCA.

. High dimensional case study : Glioma Data

Biological problem. Brain tumors are children's most common solid tumors and have the highest mortality rate of all pediatric cancers. Despite advances in multimodality therapy, children with pHGG invariably have an overall survival of around 20% at 5 years. Depending on their location (e.g. brainstem, central nuclei, or supratentorial), pHGG present different characteristics in terms of radiological appearance, histology, and prognosis. Our hypothesis is that pHGG have different genetic origins and oncogenic pathways depending on their location. Thus, the biological processes involved in the development of the tumor may be different from one location to another, as has been frequently suggested.

Description of the data. Pretreatment frozen tumor samples were obtained from 53 children with newly diagnosed pHGG from Necker Enfants Malades (Paris, France, [START_REF] Puget | Mesenchymal transition and PDGFRA amplification/mutation are key distinct oncogenic events in pediatric diffuse intrinsic pontine gliomas[END_REF]. The 53 tumors are divided into 3 locations : supratentorial (HEMI), central nuclei (MIDL), and brain stem (DIPG). The final dataset is organized into 3 blocks of variables defined for the 53 tumors : the first block X 1 provides the expression of 15702 genes (GE). The second block X 2 contains the imbalances of 1229 segments (CGH) of chromosomes. X 3 is a block of dummy variables describing the categorical variable location. One dummy variable has been left out because of redundancy with the others.

The next lines of code can be run to download the dataset : We impose X 1 and X 2 to be connected to X 3 . This design is commonly used in many applications and is oriented toward predicting the location. The argument response = 3 of the rgcca() function encodes this design.

R> fit.rgcca <-rgcca(blocks = blocks, response = 3, ncomp = 2, verbose = FALSE)

When the response variable is qualitative, two steps are implicitly performed : (i) disjunctive coding and (ii) the associated shrinkage parameter is set to 0 regardless of the value specified by the user.

R> fit.rgcca$call$connection GE CGH y GE 0 0 1 CGH 0 0 1 y 1 1 0 R> fit.rgcca$call$tau [1] 1 1 0
From the dimension of each block (n > p or n ≤ p), rgcca() selects automatically the dual formulation for X 1 and X 2 and the primal one for X 3 . The formulation used for each block is returned using the following command :

R> fit.rgcca$primal_dual [1] "dual" "dual" "primal"
Thanks to the dual formulation, the RGCCA algorithm is highly efficient, even in a high-dimensional setting.

R> system.time( + rgcca(blocks = blocks, response = 3) + ) user system elapsed 1.124 0.016 1.140

RGCCA enables visual inspection of the spatial relationships between classes. This facilitates assessment of the quality of the classification and makes it possible to determine which components capture the discriminant information readily. For easier interpretation of the results, especially in high-dimensional settings, it is often appropriate to add penalties promoting sparsity within the RGCCA optimization problem. For that purpose, an ℓ 1 penalization on the weight vectors a 1 , . . . , a L is applied. The sparsity argument of rgcca() varies between 1/ √ p l and 1 (larger values of sparsity correspond to less penalization) and controls the amount of sparsity of the weight vector a l for l ∈ [L]. If sparsity is a vector, ℓ 1 -penalties are the same for all the weights corresponding to the same block but different components :

∀h, ∥a [h] l ∥ ℓ 1 ≤ sparsity l √ p l .
(2.1)

If sparsity is a matrix, row h of sparsity defines the constraints applied to the weights corresponding to component h :

∀h, ∥a [h] l ∥ ℓ 1 ≤ sparsity h,l √ p l .
(2.

2)

The algorithm associated with the optimization problem (1.12) is available through the function rgcca() with the argument method = "sgcca".

R> fit.sgcca <-rgcca(blocks = blocks, response = 3, ncomp = 2, + sparsity = c(0.0710, 0.2000, 1), + verbose = FALSE)

The summary() function allows summarizing the SGCCA analysis, R> summary(fit.sgcca)

Call: method='sgcca', superblock=FALSE, scale=TRUE, scale_block='inertia', init='svd', bias=TRUE, tol=1e-08, NA_method='na.ignore', ncomp=c(2,2,2), response=3, comp_orth=TRUE There are J = 3 blocks. The design matrix is:

GE CGH y GE 0 0 1 CGH 0 0 1 y 1 1 0
The factorial scheme is used. Sum_{j,k} c_jk g(cov(X_j a_j, X_k a_k) = 0.022

The sparsity parameter used for GE is: 0.071 (with 146, 145 variables selected)

The sparsity parameter used for CGH is: 0.2 (with 84, 76 variables selected)

The regularization parameter used for y is: 0 and the plot() returns the same graphical displays as RGCCA. We skip these representations for sake of brevity.

Of course, it is still possible to determine the optimal sparsity parameters by permutation. This is made possible by setting the par_type argument to "sparsity" (instead of "tau") within the rgcca_permutation() function. However, we will use another approach in this section.

Cross-validation strategy. The optimal tuning parameters can be determined by cross-validating different indicators of quality, namely :

• For classification : Accuracy, Kappa, F1, Sensitivity, Specificity, Pos_Pred_Value, Neg_Pred_Value, Precision, Recall, Detection_Rate, and Balanced_Accuracy.

• For regression : RMSE and MAE.

This cross-validation protocol is made available through the rgcca_cv function and is used here for predicting the location of the tumors.

In this situation, we maximize the cross-validated accuracy (metric = "Accuracy") in a model where we try to predict the response block from all the block components with a user-defined classifier (prediction_model = "lda"). Also, we decide to upper bound the sparsity parameters for X 1 and X 2 to 0.2 to achieve an attractive amount of sparsity. rgcca_cv() relies on the caret package. As a direct consequence, an astonishingly large number of models are made available (see caret::modelLookup()). Results of the cross-validation procedure are reported using the generic summary() function,

R> summary(cv_out)

Call: method='sgcca', superblock=FALSE, scale=TRUE, scale_block=TRUE, init='svd', bias=TRUE, tol=1e-08, NA_method='na.ignore', ncomp=c(1,1,1), response=3, comp_orth=TRUE There are J = 3 blocks. The design matrix is:

GE CGH y GE 0 0 1 CGH 0 0 1 y 1 1 0
The factorial scheme is used. As previously, the optimal sparsity parameters can be used to fit a new model, and the resulting optimal model can be visualized/bootstrapped.

R> fit <-rgcca(cv_out) R> summary(fit)

Call: method='sgcca', superblock=FALSE, scale=TRUE, scale_block=TRUE, init='svd', bias=TRUE, tol=1e-08, NA_method='na.ignore', ncomp=c(1,1,1), response=3, comp_orth=TRUE There are J = 3 blocks. The design matrix is:

GE CGH y GE 0 0 1 CGH 0 0 1 y 1 1 0
The factorial scheme is used. Sum_{j,k} c_jk g(cov(X_j a_j, X_k a_k) = 0.0363

The sparsity parameter used for GE is: 0.2 (with 1077 variables selected)

The sparsity parameter used for CGH is: 0.2 (with 77 variables selected)

The regularization parameter used for y is: 0

Note that the sparsity parameter associated with X 3 switches automatically to τ 3 = 0. This choice is justified by the fact that we were not looking for a block component y 3 that explained its own block well (since X 3 is a group coding matrix) but one that is correlated with its neighboring components.

At last, rgcca_predict() can be used for predicting new blocks, R> pred <-rgcca_predict(fit, blocks_test = testing, prediction_model = "lda") and a caret summary of the performances can be reported. Stability procedure. It is possible to stabilize the selected variables using the following procedure. [START_REF] Tenenhaus | La régression PLS : théorie et pratique[END_REF] defines the Variable Importance in Projection (VIP) score for the PLS method. This score is used for variable selection : the higher the score, the more important the variable. We use this idea to propose a procedure for evaluating the stability of the variable selection procedure of SGCCA. This procedure relies on the following score :

VIP(x lj ) = 1 K H h=1 a [h] lj 2 AVE X [h] l . (2.3)
SGCCA is run several times using a bootstrap resampling procedure. For each model, the VIPs are computed, and the variables with the higher VIPs averaged over the different models are kept. This procedure is available through the rgcca_stability function. Once the most stable variables have been found, a new model using these variables is automatically fitted. This last model can be visualized using the usual summary() and plot() functions. We can finally apply the bootstrap procedure on the most stable variables.

R> boot_out <-rgcca_bootstrap(fit_stab, n_boot = 500)

All the parameters were imported from the fitted rgcca_stability object.

Bootstrap samples sanity check...OK

The bootstrap results can be visualized using the generic plot() function. We use the n_mark parameter to display the top 50 variables of GE. 
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Figure 2.12 -Bootstrap confidence intervals for the block-weight vectors associated to block GE.

. Conclusion

The RGCCA framework gathers fifty years of multiblock component methods and offers a unified implementation strategy for these methods. The RGCCA package is available on the Comprehensive R Archive Network (CRAN) and GitHub. This release of the RGCCA package includes :

• Several strategies for determining the shrinkage parameters/level of sparsity automatically :

Schaffer & Strimmer's analytical formulae, cross-validation, or permutation strategy.

• A bootstrap resampling procedure for assessing the reliability of the parameter estimates of S/RGCCA.

• Dedicated functions for graphical displays of the output of RGCCA (sample plot, correlation circle, biplot, ...).

• Various deflation strategies for obtaining orthogonal block-components or orthogonal blockweight vectors.

• Strategies for handling missing data. Specifically, multiblock data faces two types of missing data structure : (i) if an observation i has missing values on a whole block l and (ii) if an observation i has some missing values on a block l (but not all). For these two situations, we exploit the algorithmic solution proposed for PLS path modeling to deal with missing data (see [START_REF] Tenenhaus | Pls path modeling[END_REF].

• Special attention has been paid to providing a bunch of "mathematical" unit tests that guarantee the implementation quality. Also, when appropriate, a particular focus was given to recovering the results of other R packages of the literature, including ade4 and FactoMineR.

We believe that the RGCCA package will be a valuable resource for researchers and practitioners who are interested in multiblock data analysis to gain new insights and improve decision-making.

The RGCCA framework is constantly evolving and extending. Indeed, we proposed RGCCA for multigroup data (Tenenhaus et al., 2014), RGCCA for multiway data [START_REF] Gloaguen | Multiway generalized canonical correlation analysis[END_REF], which we further extend in Chapter 3, and RGCCA for (sparse and irregular) functional data [START_REF] Sort | Functional generalized canonical correlation analysis for studying jointly several longitudinal responses[END_REF]. In addition, maximizing successive criteria may be seen as sub-optimal from an optimization point of view, where a single simultaneous criterion might be preferred. A simultaneous version of RGCCA [START_REF] Gloaguen | A statistical and computational framework for multiblock and multiway data analysis[END_REF], which allows simultaneously extracting several components per block (no deflation procedure required), has been proposed. We discuss it and propose new simultaneous approaches in Chapter 4. Also, it is possible to use RGCCA in structural equation modeling with latent and emergent variables for obtaining consistent and asymptotically normal estimators of the parameters [START_REF] Tenenhaus | Structural Equation Modeling with Latent/Emergent Variables : RGCCAc[END_REF]. At last, several alternatives for handling missing values are discussed in [START_REF] Peltier | Missing values in rgcca : Algorithms and comparisons[END_REF]. Work in progress includes the integration of all these novel approaches in the next release of the RGCCA package.

-Tensor Generalized Canonical Correlation Analysis

. Introduction

Tensor extensions of vector-valued methods have been developed for a wide variety of problems [START_REF] Acar | A flexible modeling framework for coupled matrix and tensor factorizations[END_REF][START_REF] Zhou | Tensor regression with applications in neuroimaging data analysis[END_REF][START_REF] Papalexakis | Tensors for data mining and data fusion[END_REF]. These methods usually perform tensor analysis by imposing a tensor factorization model on the estimated vectors associated with each variable. CCA is no exception since [START_REF] Kim | Canonical correlation analysis of video volume tensors for action categorization and detection[END_REF]; Lu ( 2013 Moreover, since the variables are supposed to bear a natural tensor structure, a central question for Tensor-based CCA methods is the resulting structure of the covariance matrices associated with each block. [START_REF] Min | Tensor canonical correlation analysis[END_REF] addressed this question by proposing a separable structure to the block covariance matrices.

A first attempt to propose a tensor version of RGCCA was made in [START_REF] Gloaguen | Multiway generalized canonical correlation analysis[END_REF] with Multiway GCCA (MGCCA), but limited to matrix-valued data at the population level (i.e., random matrices), and where canonical vectors are modeled with a rank-1 CPD, together with a separable structure for covariance matrices. In this Chapter, we propose Tensor Generalized Canonical Correlation Analysis (TGCCA), a new tensor version of RGCCA in the line of [START_REF] Gloaguen | Multiway generalized canonical correlation analysis[END_REF], by enforcing a rank-R CPD to the canonical vectors and relaxing the separable assumption. TGCCA can (i) handle an arbitrary number of blocks, (ii) handle tensor-valued data of any order, (iii) extract, from each block, canonical vectors modeled with a rank-R CPD, (iv) handle separable and non-separable covariance structure. To the extent of our knowledge, no tensor CCA method that gathers all these four properties has yet been proposed. Finally, algorithms designed to solve the TGCCA optimization problem with and without orthogonality constraints are provided with experimental validation. While TGCCA with orthogonality constraints enjoys theoretical convergence properties, TGCCA without orthogonality constraints benefits from the unicity properties of the CPD.

The remainder of the Chapter is organized as follows. Section 3.2 describes the most related works : RGCCA, MGCCA, and TCCA from [START_REF] Min | Tensor canonical correlation analysis[END_REF]. Section 3.3 presents the TGCCA optimization problem with and without orthogonality constraints and/or separable assumptions. The strategies for solving these variants of the TGCCA optimization problem rely on the same master algorithm but with different core updates. In Section 3.4, we conduct numerical experiments to illustrate the benefits of the proposed methods compared to existing ones. We further evaluate our methods on real data in Section 3.5. Finally, we discuss the limitations of our approach and perspectives in Section 3.6.

The code to reproduce the experiments of this Chapter is available on GitHub 1 .

. Related work

1. https://github.com/GFabien/TGCCA-supplementary-material

. RGCCA at the population level

We recall the RGCCA optimization problem here to compare it with the other methods. We consider L random vectors (i.e., first-order tensors) x 1 , . . . , x l , . . . , x L . We assume that each random vector x l ∈ R p l has a zero mean and a covariance matrix

Σ ll . Let Σ lk = E[x l x ⊤
k ] be the cross-covariance matrix between x l and x k . Let a l ∈ R p l be the non-random canonical vector associated with the block x l . RGCCA aims to find composite random variables y l = a ⊤ l x l associated with each block that summarizes the relevant information between and within the blocks. RGCCA at the population level is defined as the following optimization problem : maximize

a 1 ,...,a L L l,k=1 c lk g a ⊤ l Σ lk a k (3.1) s.t. a ⊤ l M l a l = 1, l ∈ [L].
• The function g is any continuously differentiable convex function. Its derivative is noted g ′ . If

c ll ̸ = 0 for some l, the constraint g ′ (x) ≥ 0 for x ≥ 0 must be added in order to guarantee the objective function to be multi-convex (i.e., convex with respect to each a l while holding all others fixed).

• The design matrix C = {c lk } is a symmetric L × L matrix of non-negative elements describing the network of connections between blocks that the user wants to consider. Usually, c lk = 1 between two connected blocks and 0 otherwise.

• Each block regularization matrix M l ∈ R p l ×p l is symmetric positive-definite.

In the following sections, we consider L random tensors X 1 , . . . , X l , . . . , X L . Each random tensor X l ∈ R p l,1 ×...×p l,d l is of order d l and the dimension of the m th mode of X l is equal to p l,m . We denote the mode-1 vectorization of X l by x l . We assume that the random vector x l has a zero mean and a covariance matrix

Σ ll . Let Σ lk = E[x l x ⊤
k ] be the cross-covariance matrix between x l and x k . We note a l an unknown non-random canonical vector of dimension p l = d l m=1 p l,m , and a = (a 1 , . . . , a L ). A sequence of objects a is denoted {a s }.

As opposed to Section 1.2.2, we will use the notation x = [[λ; A 1 , . . . , A d ]] R to denote the vectorization of a tensor X admitting the following rank-R CPD :

X = [[λ; A 1 , . . . , A d ]]. Similarly, if X = [[A 1 , . . . , A d ]], Vec(X) = x = [[λ; A 1 , . . . , A d ]] R
. This notation will allow us to have a uniform writing of the criterion of the RGCCA objective function and the tensor extensions of CCA. We will also say that such vector x admits a rank-R CPD. Note also that the CPD implicitly defines the quantities a ) , and λ = λ (1) . . . λ (R) ⊤ , such that

(r) = a (r) d ⊗ • • • ⊗ a (r) 1 , A = a (1) . . . a (R
x = R r=1 λ (r) a (r) d ⊗ • • • ⊗ a (r) 1 = R r=1 λ (r) a (r) = Aλ.
(3.2)

. MGCCA optimization problem

As the proposed work extends MGCCA, we first introduce its optimization problem. In the case of MGCCA, ∀l ∈ [L], d l = 2. Hence, the following optimization problem from [START_REF] Gloaguen | Multiway generalized canonical correlation analysis[END_REF] :

maximize a 1 ,...,a L L l,k=1 c lk g a ⊤ l Σ lk a k (3.3) s.t. a ⊤ l M l a l = 1, and a l = a l,2 ⊗ a l,1 , l ∈ [L].
Gloaguen et al. ( 2020) make the additional assumption that the matrices M l ∈ R p l ×p l can be written as the Kronecker product of two matrices M l,1 ∈ R p l,1 ×p l,1 and M l,2 ∈ R p l,2 ×p l,2 :

M l = M l,2 ⊗ M l,1 .
We qualify matrices with such a structure as separable matrices. Therefore, the change of variables

b l = M 1 2
l a l leads to this new set of constraints for (3.3) :

b ⊤ l b l = 1 and b l = b l,2 ⊗ b l,1 , l ∈ [L].
(3.4) Thus, MGCCA aims to maximize the criterion of RGCCA under the assumption that the canonical vectors admit a CPD of rank one and that the regularization matrices M l are separable.

. TCCA optimization problem

Another closely related work is Tensor CCA (TCCA) from [START_REF] Min | Tensor canonical correlation analysis[END_REF]. As opposed to TCCA from [START_REF] Luo | Tensor canonical correlation analysis for multi-view dimension reduction[END_REF], they consider only two blocks, but each block is a tensor. Therefore, they solve the CCA optimization problem with the additional constraints that the canonical vectors admit rank-R l CPDs : maximize

a 1 ,a 2 a ⊤ 1 Σ 12 a 2 (3.5) s.t. a ⊤ l Σ ll a l = 1, a l = [[λ l ; A l,1 , . . . , A l,d ]] R l with A l,m ∈ R p l,m ×R l , l ∈ [2].
With such structures, canonical vectors can describe more complex interactions than those extracted with MGCCA while keeping a low degree of freedom (R l d l m=1 p l,m ) compared to RGCCA ( d l m=1 p l,m ).

. Method

. TGCCA optimization problem

We now introduce the TGCCA optimization problem. Like MGCCA, we want to maximize the flexible criterion of RGCCA. Like TCCA, we want the canonical vectors to admit rank-R l CPDs for blocks of any orders. Thus, the canonical vectors will be vectorized versions of low-rank tensors, allowing for richer interactions than rank-1 tensors, while still being more interpretable and constrained than the canonical vectors obtained with RGCCA. A natural optimization problem that generalizes both MGCCA and TCCA consists of solving : maximize

a 1 ,...,a L L l,k=1 c lk g a ⊤ l Σ lk a k (3.6) s.t. a ⊤ l M l a l = 1, a l = [[λ l ; A l,1 , . . . , A l,d ]] R l with A l,m ∈ R p l,m ×R l , l ∈ [L].
We plan to use the optimization framework presented in Section 1.1.1 to solve problem (3.6). However, the constraints on the vectors a l do not define compact sets since the set of tensors with rank at most R l is not closed for R l > 1. Therefore, we will propose a procedure to solve problem (3.6)

and study its properties, but we will also solve a more constrained version of problem (3.6) that fits into the optimization framework of Section 1.1.1. To obtain compact constraint sets, we impose orthogonality constraints on at least one mode of the CPD. Without loss of generality, we assume that the first mode bears the orthogonality and that no orthogonality is imposed on the other modes. With this additional constraint, the optimization problem becomes : maximize

a 1 ,...,a L L l,k=1 c lk g a ⊤ l Σ lk a k (3.7) s.t. a ⊤ l M l a l = 1, a l = [[λ l ; A l,1 , . . . , A l,d ]] R l with A l,m ∈ R p l,m ×R l , and A ⊤ l,1 K l A l,1 = I R l , l ∈ [L],
where K l ∈ R p l ×p l is a symmetric positive-definite matrix we must choose.

. Core TGCCA problem

Even if the constraint sets are not necessarily compact, the criterion is the same multi-convex continuously differentiable function as in Section 1.1.2. Therefore, we know that, if we fix all vectors but a l for a given l ∈ [L], the objective function lies above its linear approximation at a l . Therefore, the core problem for TGCCA is the following :

maximize ãl ∇ l f (a) ⊤ ãl s.t. ãl ∈ Ω l , (3.8)
where Ω l is the constraint set of either (3.6) or (3.7). In fact, the problem (3.8) is close to the CPD problem and boils down to the CPD problem when the matrices M l are separable. We start by considering this last case.

Separable TGCCA. If we assume that matrices M l are separable, it means there are matrices

M l,m ∈ R p lm ×p lm for m ∈ [d l ] such that M l = M l,d ⊗ . . . ⊗ M l,1 . Under this assumption, we can make a change of variables. Let B l,m = M 1 2 l,m A l,m ∈ R p l,m ×R l for m ∈ [d l ], we have b l = [[λ l ; B l,1 , . . . , B l,d l ]] = M 1 2
l a l . Indeed, thanks to the properties of the Kronecker product, we have :

M 1 2 l a l = (M l,d l ⊗ • • • ⊗ M l,1 ) 1 2 R l r=1 λ (r) a (r) l,d l ⊗ • • • ⊗ a (r) l,1 , = R r=1 λ (r) M 1 2 l,d l a (r) l,d l ⊗ • • • ⊗ M 1 2 l,1 a (r) l,1 , = R l r=1 λ (r) b (r) l,d l ⊗ • • • ⊗ b (r) l,1 = b l .
This means that, if the matrices M l are separable, we can virtually get rid of them with a change of variables while preserving the rank-R l CPD structure of the vectors. Naturally, maximizing (3.8) with respect to ãl , is then equivalent to maximize (M

-1 2 l ∇ l f (a)) ⊤
bl with respect to bl . Therefore, it remains the maximization of a scalar product, and it is formally equivalent to maximizing (3.8) in the case where M l = I p l . Thus, we will consider in what follows that M l = I p l under the separable assumption. In such conditions, the natural choice for K l is also the identity matrix if we want to impose orthogonality constraints.

Since a l = A l Λ l and A ⊤ l A l = I R l in the orthogonal case, we can impose, without loss of generality, that ∥a

(r) l,m ∥ 2 = 1 for r ∈ [R l ] and m ∈ [d l ]. Indeed, ∥a (r) l ∥ 2 = 1 and ∥a (r) l ∥ 2 = d l m=1 ∥a (r)
l,m ∥ 2 . Therefore, we will look, in the orthogonal case, for an orthonormal A l,1 and matrices A l,m for m > 1 with unit column-norms. Furthermore, the constraint imposes that λ l is also of unit norm.

Let

F ∈ R p 1 ו••×p d be the folded version of ∇ l f (a).
We will now show that the (orthogonal) solution of (3.8) in the separable case is the normalized (orthogonal) rank-R l CPD of F. Let âl be the solution of (3.8), we have â⊤ l âl = 1. Now let ȃl be the vectorized rank-R l approximation of F. We have ȃ⊤ l ȃl = c 2 with c, a scalar that we assume is strictly positive here. We note J(ã l ) = ∇ l f (a) ⊤ ãl . ȃl is the maximizer of J under the constraint that ã⊤ l ãl = c 2 . Therefore, we have :

J(ȃ l ) ≥ J(câ l ) = cJ(â l ) ≥ cJ( 1 c ȃl ) = J(ȃ l ).
(3.9)

Thus, if ȃl is the rank-R l CPD of F, then âl = ȃl ∥ȃ l ∥ is a solution of (3.8). However, (3.9) is valid only if we have found the global maximum, which may not even be reachable (see discussion in Section 1.2.2). A more practical way of solving (3.8) is to adapt CPD algorithms to impose the norm constraints at each iteration. We will illustrate this with the ALS algorithm in Section 3.3.3, but more sophisticated algorithms could also be used. Furthermore, we aim to solve (3.6) and (3.7) rather than (3.8) so we do not need to find the maximum at each iteration as long as we keep increasing the criterion.

Non-separable TGCCA. In the general case (i.e., no separability assumption on M l ), the ALS algorithm can also be used to solve (3.8). However, the updates will be more complicated than regular ALS updates for CPD. The non-separable case with orthogonality constraints requires further discussion, we leave this for Appendix A.1.

. Algorithms for TGCCA

Let assume that we have n observations of the L tensor blocks : (X 1,i , . . . , X L,i ) i∈ [n] . Our goal is to estimate a 1 , . . . , a L solution of (3.6) and (3.7) where the covariances Σ lk are replaced with their estimates : Σlk . As the matrices M l can be chosen to be the covariance matrices Σ ll , we also replace M l with Ml to emphasize that we may need to estimate them. In this Section, we present the proposed ALS algorithms to solve the TGCCA optimization problem in the separable case with and without orthogonality constraints and the general case without orthogonality constraints. We present the special case of matrix blocks (d l = 2) in Section 3.3.4 to make a connection with MGCCA. Appendix A.1 presents the non-separable case with orthogonality constraints. We discuss the properties of the algorithms at the end of the Section.

Separable TGCCA. As previously mentioned, we consider Ml = I p l . We recall equation (1.32) : for every

m ∈ [d l ], A l,(m) = A l,m Λ l (A l,d l ⊙ • • • ⊙ A l,m+1 ⊙ A l,m-1 ⊙ • • • ⊙ A l,1 ) ⊤ := A l,m Λ l A l,(-m) .
(3.10) Since the scalar product between two vectors equals the trace of the same objects folded into two matrices of appropriate shapes, we have :

∇ l f (a) ⊤ ãl = Tr(F ⊤ (m) Ãl,(m) ), (3.11) 
where F (m) is the mode-m matricization of the tensor

F ∈ R p 1 ו••×p d for which Vec(F) = ∇ l f (a).
Combining the two equations, the update of A l,1 in the orthogonal case boils down to solving the orthogonal Procrustes problem [START_REF] Everson | Orthogonal, but not orthonormal, procrustes problems[END_REF]. Let UΣV ⊤ be the SVD of a matrix X. We note LR SVD (X) = UV ⊤ . Therefore, in the orthogonal case,

ϕ A l,1 (a) = LR SVD (F (1)
Ãl,(-1) Λl ).

(3.12)

Since the SVD is not unique, ϕ A l,1 (a) may not be unique. However, this does not impact the convergence of TGCCA with orthogonality constraints (see Appendix A.2).

Still, in the orthogonal case, the updates for the mode m with m > 1 are obtained via :

ϕ A l,m (a) (r) = (F (m) Ãl,(-m) Λl ) (r) ∥(F (m) Ãl,(-m) Λl ) (r) ∥ 2 .
(3.13)

To finish with the orthogonal case, λ l must be updated and, since a l = A l λ l , according to the Cauchy-Schwarz inequality,

ϕ λ l (a) = argmax λl ,∥ λl ∥ 2 =1 ∇ l f (a) ⊤ Ãl λl = Ã⊤ l ∇ l f (a) ∥ Ã⊤ l ∇ l f (a)∥ 2 . (3.14)
Without orthogonality constraints, we merge A l,m and λ l , find the update of A l,m and normalize the obtained A l,m as in Algorithm 2 to get both final updates. The constraint a ⊤ l a l = 1 can be expressed as Vec(A l,(m) ) ⊤ Vec(A l,(m) ) = 1 so we want to solve : 

b ⊤ (( Ã⊤ l,(-m) Ãl,(-m) ) -1 2 ⊗ I pm )Vec(F (m) Ãl,(-m) ) s.t. b ⊤ b = 1.
(3.17)

The solution to this last problem is obtained using Cauchy-Schwarz :

b = (( Ã⊤ l,(-m) Ãl,(-m) ) -1 2 ⊗ I pm )Vec(F (m) Ãl,(-m) ) Vec(F (m) Ãl,(-m) ) ⊤ (( Ã⊤ l,(-m) Ãl,(-m) ) -1 ⊗ I pm )Vec(F (m) Ãl,(-m) )
.

(3.18)

Reverting the change of variables, we have :

Vec( Âl,m ) = (( Ã⊤ l,(-m) Ãl,(-m) ) -1 ⊗ I pm )Vec(F (m) Ãl,(-m) ) Vec(F (m) Ãl,(-m) ) ⊤ (( Ã⊤ l,(-m) Ãl,(-m) ) -1 ⊗ I pm )Vec(F (m) Ãl,(-m) )
.

(3.19)

We can apply the same property of the Kronecker product the other way around to simplify the result :

ϕ A l,m (a) = F (m) Ãl,(-m) ( Ã⊤ l,(-m) Ãl,(-m) ) -1 Tr( Ã⊤ l,(-m) F ⊤ (m) F (m) Ãl,(-m) ( Ã⊤ l,(-m) Ãl,(-m) ) -1 )
.

(3.20)

Looking at line 6 of Algorithm 2, we find the same update as in the classical ALS procedure for the CPD, with an additional normalization to respect the constraints.

Non-separable TGCCA. We now have Ml ̸ = I p l with not any known structure. Therefore, we want Ml ( Ãl,(-m) ⊗ I pm ). Since Ml is positive definite, M l,m is positive definite if Ãl,(-m) has full rank.

If it does not have full rank, it means that we can decrease the rank R l of the CPD. Therefore, we will assume that Ãl,(-m) has full rank. Hence, we want to solve

maximize b b ⊤ M -1 2 l,m Vec(F (m) Ãl,(-m) ) s.t. b ⊤ b = 1. (3.23)
The optimal b is given by Cauchy-Schwarz :

b = M -1 2 l,m Vec(F (m) Ãl,(-m) ) Vec(F (m) Ãl,(-m) ) ⊤ M -1 l,m Vec(F (m) Ãl,(-m) )
.

(3.24)

Finally, as opposed to the separable case, there is no particular structure in M l,m so the update of A l,m is given by :

Vec(ϕ A l,m (a)) = M -1 l,m Vec(F (m) Ãl,(-m) ) Vec(F (m) Ãl,(-m) ) ⊤ M -1 l,m Vec(F (m) Ãl,(-m) )
.

(3.25)

While the previous updates were clearly structured, the different variables of the problem are entangled in this last update. Now that we have derived the different updates needed to solve TGCCA. We can articulate them into Algorithm 3. The convergence properties of Algorithm 3 in the orthogonal case are summarized in Proposition 3.3.1. We leave its proof to Appendix A.2. Without orthogonality constraints, the proof of Theorem 3.1 from [START_REF] Meyer | Sufficient conditions for the convergence of monotonic mathematical programming algorithms[END_REF] shows that Algorithm 3 will converge since Ω l is included in a compact, but not necessarily to a point in Ω l . If the resulting point is in Ω l , its properties are inherited from Proposition 1.1.1. The Algorithm may benefit from the refinement of the ALS procedure to avoid classical ALS drawbacks like "swamps" and local extrema. 

a t+1 l = [[λ t+1 l ; A t+1 l,1 , . . . , A t+1 l,d l ]] R l ; 13:
end for 14:

t = t + 1 ; 15: until f (a t+1 1 , . . . , a t+1 L ) -f (a t 1 , . . . , a t L ) < ε Proposition 3.3.1.
Let Φ be the mapping associated with the outer for loop of Algorithm 3 and let a t ∞ t=0 be any sequence generated by the recurrence relation a t+1 = Φ(a t ) with a 0 ∈ Ω. Then, the limit of any convergent subsequence of a t is a stationary point of the TGCCA optimization problem with orthogonality constraints.

. Special case of matrix blocks at the population level

When d l = 2, the block l intrinsically has a matrix structure. In this scenario, equation (3.11) becomes :

∇ l f (a) ⊤ ãl = Tr( Λl Ã⊤ l,1 F (1) Ãl,2 ).
(3.26)

A closed-form solution cannot be found but applying one iteration of the tandem algorithm from [START_REF] Everson | Orthogonal, but not orthonormal, procrustes problems[END_REF] increases the criterion and gives

ϕ A l,1 (a) = U, ϕ A l,2 (a) = V and ϕ λ l (a) = σ ∥σ∥ 2 , where U diag □ (σ) V ⊤ is the rank-R l SVD of F (1)
. This is equivalent to alternate between (A l,1 , A l,2 ) and λ l . If R l = 1, there is no need to alternate, and we retrieve the update of MGCCA [START_REF] Gloaguen | Multiway generalized canonical correlation analysis[END_REF]. Since the rank and the orthogonal rank are the same for matrices, the reconstructed canonical vectors a l are the same with and without imposing orthogonality constraints.

. Numerical experiments

. Data model

To evaluate the quality of the estimates provided by TGCCA, we extend the probabilistic TCCA model described in [START_REF] Min | Tensor canonical correlation analysis[END_REF]. Let ρ lk for l, k ∈ [L] be the pairwise correlations between blocks and a l be given canonical vectors. We define : • the block covariance matrix Σ η ll as :

Σ η ll = S l + ∥S l ∥ F η∥E l ∥ F E l , with S l = a l a ⊤ l ∥a l ∥ 4 2 and E l = P l T l T ⊤ l P l , (3.27)
where T l is a p l × p l arbitrary matrix, enabling noising x l ; and P l = I p l -

a l a ⊤ l ∥a l ∥ 2 2
is the projector onto the orthogonal of span(a l ), ensuring that a ⊤ l Σ η ll a l = 1. The signal-to-noise ratio (SNR) is controlled by the parameter η.

• a linear transformation u

l = ρ l Σ η ll a l , where ρ l ∈ [-1, 1] with ρ lk = ρ l ρ k .
The simulated data is generated using the following latent factor model :

x l |z ∼ N (u l z, Σ η ll -u l u ⊤ l ) with z ∼ N (0, 1).
This allows the joint distribution of (x 1 , . . . , x L ) to be N (0, Σ η ) where Σ η = Σ η lk {l,k∈[L]} and Σ η lk = Σ η ll a l ρ lk a ⊤ k Σ η kk . Thanks to this model, the blocks are correlated through the linear transformation of the latent variable z.

. Data generation

In this section, we generate data with L = 2 blocks. Information about the different blocks can be found in Table 3.1. The folded shapes of the first 2 canonical vectors can be seen in Figure 3.1. 10 folds of data are generated with n = 1000 samples per fold. ρ l = √ 0.8 for l ∈ [L] so ρ 12 = 0.8. Noise is added using the model described in (A.17). For block l, E l = P l T l T ⊤ l P l , with T l an arbitrary matrix in R p l ×p l . In order for Σ η ll to be positive-definite, T l T ⊤ l has to be positive-definite. We choose T l such that

T l T ⊤ l = T u l T u ⊤ l + t s l t s ⊤
l , where the first term defines unstructured noise and the second, structured one. These terms are defined as follows : • Unstructured noise is generated by sampling independent random normal variables and organizing them in a lower triangular matrix T u l of size p l × p l . Therefore, using the Cholesky decomposition, the matrix T u l T u ⊤ l is a symmetric positive-definite matrix. • Structured noise is added using 2D shapes shown in Figure 3.2 and described in Table 3.1. To create noise from these shapes, we just vectorize them in vectors t s l . Unstructured and structured noise are added to every block. Both types of noises are normalized by their Frobenius norms before being added together. The results shown in this section were obtained with a SNR level of -20dB (η = 0.1).

. Methods

Our simulations aim to assess the ability of TGCCA and state-of-the-art approaches to recover the canonical vectors used to generate the data. The cosine between the true canonical vectors and the estimated ones is used as an indicator of quality :

α l = |a ⊤ l âl | ∥a l ∥ 2 ∥â l ∥ 2 .
In our comparisons, we include (MGCCA, [START_REF] Gloaguen | Multiway generalized canonical correlation analysis[END_REF], Tensor CCA (TCCA, [START_REF] Min | Tensor canonical correlation analysis[END_REF], and two-dimensional CCA (2DCCA, [START_REF] Chen | Tensor canonical correlation analysis with convergence and statistical guarantees[END_REF]. Finally, RGCCA and the per-block SVD (SVD run independently on each block) are considered baselines. If appropriate, the method's rank is added as a suffix and the separable assumption as a prefix with "sp". The symbol ⊥ will be added as a superscript to the method's name when orthogonality constraints are added to differentiate between the proposed methods. As shown in Section 3.3.4, spTGCCA1 is equivalent to MGCCA, so only MGCCA will be reported in the tables. Since [START_REF] Gloaguen | Multiway generalized canonical correlation analysis[END_REF] proposes a deflation strategy to find more than one set of canonical vectors, we include MGCCA3 (MGCCA extracting 3 sets of canonical vectors) to emphasize the difference between the rank and the number of sets of canonical vectors. RGCCA solves the original CCA problem in our simulations when there are only two blocks, so we will refer to it as CCA in the tables.

. Results

Table 3.2 reports the results of the compared methods. The median and quantiles (2.5% and 97.5%) on the different data folds of the cosines and computation times (in seconds) are reported. TCCA and TGCCA are run 5 times per fold, and the model with the best criterion is kept each time, while 2DCCA is run only once using a so-called "effective" strategy for choosing the starting point [START_REF] Chen | Tensor canonical correlation analysis with convergence and statistical guarantees[END_REF]. Figure 3.3 compares the estimations of the first canonical vectors using the different methods. The fold associated with the highest cosine is selected for each model.

Firstly, all algorithms solving the rank-1 TCCA problem appear to behave similarly. Only TGCCA takes advantage of the use of higher rank. Both TGCCA and TCCA seek canonical vectors with the 2DCCA3 and MGCCA3 aim to extract 3 sets of rank-1 canonical vectors. Both methods use a deflation strategy to ensure orthogonality either on the canonical components X l,(1) a l for the former, or directly on the canonical vectors for the latter. As 2DCCA3 and MGCCA3 are designed to find 3 distinct canonical components of rank 1 with the same weights, the reconstructed vectors

âl = R l r=1 â(r) l,d l ⊗ • • • ⊗ â(r)
l,1 do not correspond to the true canonical vectors, explaining the much lower results compared to the proposed methods.

We train additional spTGCCA ⊥ models and report the cosines obtained for (R 1 , R 2 ) ∈ [15] 2 in Figure 3.4. We observe that rank one is not enough to achieve the highest possible cosines, and, if the ranks are too high, we start getting poor results as the model earns enough flexibility to fit noise. Figure A.10 shows that if the signal-to-noise ratio is high enough, the decrease of performance with higher ranks gets attenuated.

Looking at the tables in Appendix A.5, it is worth noticing that CCA and SVD need a higher signalto-noise ratio (SNR) to perform equally well as TGCCA3 and spTGCCA3.

We perform an additional experiment with 3D canonical vectors. The conclusions are similar, except for CCA, which performs much better due to changes in the noise generation process. (see Table 3.3 and Appendix A.5.5). 2DCCA was excluded because we did not implement a higher-order version of the algorithm. In this setting, TGCCA seems to perform slightly better than TGCCA ⊥ when the covariance is not assumed to be separable. However, its computation time is extremely high, rendering it prohibitive in practice. Further work includes accelerating the method. 

. Evaluation on real data

In this section, we evaluate the performance of TGCCA on two real datasets. The available implementation for 2DCCA only deals with two 3rd-order tensors and does not apply to either of the two following datasets. TCCA solves a generalized eigenvalue problem using (regularized) estimates of the covariance matrices of the unfolded tensors. For both datasets, tensor blocks have too many variables to fit their covariance matrices in memory. Therefore, TCCA is not included in the following studies.

. Chemical mixtures dataset

In this subsection, we evaluate the ability of TGCCA to retrieve the signatures/patterns related to different chemicals in given mixtures from the JODA dataset publicly available on this website (Acar et al., 2014b). This dataset measured 28 mixtures with known chemical composition using different analytical techniques, i.e., NMR (Nuclear Magnetic Resonance) spectroscopy and LC-MS (Liquid Chromatography-Mass Spectrometry), resulting in two data blocks. The first is a third-order tensor of dimensions 28 × 13324 × 8, and the second is a matrix of dimensions 28 × 168. In this dataset, 4 of the chemicals can be identified in both blocks, while the last one does not appear in the matrix block (Acar et al., 2014b). We choose to extract 1 component of rank 2 and 3 components of rank 1 using the deflation strategy for orthogonal components presented in Section 1.1.5. We use g : x → x 2 and choose to take identity matrices for M l , so we use spTGCCA and spTGCCA ⊥ in this Section.

We compare our approach with CMTF and Advanced CMTF (ACMTF) methods [START_REF] Acar | A flexible modeling framework for coupled matrix and tensor factorizations[END_REF](Acar et al., , 2014b)). CMTF aims to solve the following optimization problem :

argmin A,B,C,V,λ,σ ∥X -[[λ; A, B, C]]∥ 2 F + ∥Y -AΣV ⊤ ∥ 2 F (3.28)
with Σ = diag(σ), A, B, C and V being matrices with R columns. Hence, CMTF looks for the best rank-R decompositions of both the tensor and matrix blocks, with the A matrix being shared between both blocks. ACMTF allows both shared and unshared components between blocks by adding penalties to enforce sparsity on the coefficients λ and σ. By doing so, the model becomes able to select different columns of the matrix A in each block. This is particularly interesting with this dataset since one of the chemicals does not appear in the matrix block. Implementations of CMTF and ACMTF were used from the MATLAB CMTF Toolbox v1.1, 2014. As in Acar et al. (2014b), blocks are divided by their Frobenius norms. An additional centering step is performed before applying TGCCA. We run each model 100 times with random initial points and report the cosines (mean and standard deviation) between the true concentrations of the chemicals in the mixture and the estimated ones in Table 3.4. The computation times (in seconds) are also reported.

It is known that the (A)CMTF algorithm is sensitive to initialization. Conversely, TGCCA seems stable in this experiment while being much faster than CMTF. We can also observe that, for TGCCA with orthogonality constraints, the cosines are very high for the first two extracted chemicals (Malto and Propanol). In contrast, the cosines decrease for the next ones. This is expected because the deflation strategy imposes that the vectors of concentrations of the different chemicals are orthogonal, which is not the case for this dataset. Hence, the next components cannot be recovered perfectly. As this limitation does not apply to CMTF and ACMTF, it is not surprising that the best model over the 100 runs for CMTF (reported in parenthesis in Table 3.4) reaches higher cosines than the best model for TGCCA for 3 of the 5 chemicals.

As expected, TGCCA performs similarly for the higher-level components with and without orthogonality constraints, but TGCCA does not manage to find the Propanol without orthogonality constraints. Indeed, since the chemical component Malto accounts for the major part of the variance in the dataset, the model without orthogonality constraints tries to fit it further and does not find the other chemical like the model with orthogonality constraints.

. The Multi-PIE Face dataset

To further evaluate our model, we perform an analysis similar to the one performed in [START_REF] Lu | Learning canonical correlations of paired tensor sets via tensor-to-vector projection[END_REF] using faces from the Multi-PIE Face dataset [START_REF] Gross | Multi-pie[END_REF]. We select images (of dimensions 64 × 64) from 100 subjects in two different views and 15 different illumination conditions and organize them in two 4 th -order tensor blocks of dimensions 100 × 64 × 64 × 15 corresponding to the two views. The goal is to learn a common latent subspace between the two blocks and then use this latent representation to match subjects across the two views. We use 100 new subjects to evaluate the matching performances. Each new subject comes with images in the two views, and we vary the number of illumination conditions from 1 to 15. Therefore, we want to pair tensors of dimensions 64 × 64 × i where i ∈ [15]. Since the latent subspace is learned using all illumination conditions, if i < 15, there are missing slices in the tensors. This problem can be overcome by imputing the missing slices to the means of the training subjects (see Appendix A.4 for a justification). The illumination conditions are randomly sampled, so they may differ across views for a given subject. We suppose that the illumination condition for each image is unknown. Therefore, we train a Linear Discriminant Analysis (LDA, [START_REF] Fisher | The use of multiple measurements in taxonomic problems[END_REF] classifier on the 100 × 15 × 2 = 3000 available images of the training set to predict the illumination condition of each image. These images were downsampled and vectorized to the dimension 16 × 16 = 256 to reduce the number of variables while keeping enough information to perform the classification task.

Once the illumination conditions have been predicted and the tensors completed with missing slices, they are projected on the learned subspace. Subjects are then paired across the views by solving Integer Linear Programming to find the assignment that maximizes the sum of cosines between paired projections. Finally, the metric of interest is the accuracy of the matching.

We compare four models here : RGCCA, rank-1 TGCCA, and rank-3 TGCCA with and without orthogonality constraints. As they are 64 × 64 × 15 = 61440 variables for 100 subjects, we do not try to estimate the covariance matrices but instead use the identity matrices as the regularization matrices M l . Results based on the number of available illumination conditions per subject are shown in Figure 3.5. As illumination conditions are randomly sampled, we repeat the experiments 100 times. Rank-3 TGCCA seems to perform slightly better than orthogonal rank-3 TGCCA, itself performing slightly better than rank-1 TGCCA. RGCCA arrives last. The matching accuracy increases with the number of available illumination conditions. Furthermore, it is important to note that RGCCA must estimate 61440 parameters while rank-1 TGCCA estimates (64 + 64 + 15) × 1 = 143 parameters and rank-3 TGCCA estimates (64 + 64 + 15) × 3 = 429 parameters per component and block. Figure A.6 shows the obtained canonical vectors with the three methods. While rank-1 and rank-3 TGCCA focus on capturing what varies between subjects, RGCCA produces canonical vectors that are much closer to actual faces. Therefore, RGCCA is probably more prone to overfitting than the TGCCA models, which may explain their better results here. Figure 3.5 also shows that by increasing the number of components, the matching accuracy increases more for TGCCA models than RGCCA.

. Conclusion and Discussion

We have proposed Tensor Generalized Canonical Correlation Analysis as a general framework for jointly analyzing several higher-order tensors and matrices. TGCCA relies on the RGCCA framework on which we imposed that a rank-R CPD models the canonical vectors. Both separable and non-separable TGCCA, with and without orthogonality constraints, give promising results. Separable versions of TGCCA seem faster. Convergence of our algorithms is guaranteed when orthogonality constraints are imposed.

However, if orthogonality constraints allow convincing results and are necessary to demonstrate the convergence of the algorithm, they may not coincide with the true underlying structure of the data. On the other hand, without orthogonality constraints, the decomposition inherits the uniqueness properties of the CPD. Furthermore, in the separable case, since the core problem is very close to the CPD problem, algorithms for CPD with special constraints can be used.

A remaining open question is the choice of the rank. Without noise, overestimating the rank would lead to having extra factors with zero weights. On real data, both the noise and the relevant information would be estimated by additional factors. Thus, a procedure to find the best rank would be attractive. Finally, to fully benefit from the L > 2 setting, an interesting research line would be incorporating higher-order correlations [START_REF] Luo | Tensor canonical correlation analysis for multi-view dimension reduction[END_REF][START_REF] Merker | On the construction of multivariate correlation coefficients[END_REF][START_REF] Wang | Measures of correlation for multiple variables[END_REF] in the criterion to optimize.

TGCCA extracts the canonical vector for each block sequentially. The next canonical vectors can be extracted using a deflation strategy (see Gloaguen et al., 2020, for details). This approach imposes the canonical components to be orthogonal, which is not the case in the real dataset we studied. Procedures that simultaneously extract all sets of canonical vectors is discussed in the next Chapter. 85

-Simultaneous Regularized Generalized Canonical Correlation Analysis

. Introduction

The RGCCA framework, as presented in this manuscript so far, is sequential. We define and solve an optimization problem to get a set of canonical vectors and components. If we want H > 1 sets of components, we use a deflation procedure and solve the same optimization problem again using the deflated blocks. This approach is very simple to implement but is not always desirable. Indeed, it is greedy : finding the solution that maximizes the optimization problem at each step does not always lead to a solution that maximizes the combined optimization problem. There may be a way to get better results by seeing the whole picture instead of looking at it piece by piece. In the context of CCA, [START_REF] Hardoon | Canonical Correlation Analysis : An Overview with Application to Learning Methods[END_REF] shows that the sequential approach is optimal. However, we will show in this chapter that this is no longer true in other contexts.

Besides its greedy aspect, the sequential approach can lead to more structural problems. In SGCCA (Tenenhaus et al., 2014), the sought canonical vectors must be sparse for each component. If the deflation procedure for orthogonal components introduced in Chapter 1 is used, the new canonical vectors are sparse in the space generated by the deflated blocks. They are no longer sparse when they are projected back to the original space. This hinders the interpretation of the results and can confuse the user. Therefore, an approach defining a single optimization problem involving all sets of canonical vectors would be appealing. We will refer to such procedures as "simultaneous", using the terminology of [START_REF] Smilde | Multiblock Data Fusion in Statistics and Machine Learning -Applications in the Natural and Life Sciences[END_REF]. [START_REF] Gloaguen | A statistical and computational framework for multiblock and multiway data analysis[END_REF] proposed the first version of a simultaneous procedure for RGCCA. We present it in the next Section. In the following Sections, we present three alternatives and discuss their strengths and limitations. Section 4.6.1 compares the proposed methods and sequential RGCCA on simulations and real data. We summarize the results in the conclusion. [START_REF] Gloaguen | A statistical and computational framework for multiblock and multiway data analysis[END_REF] presents global RGCCA, a simultaneous procedure for RGCCA to extract H sets of components, as follows : maximize

. Previous work : global RGCCA

A 1 ,...,A L L k,l=1 c kl Tr g(A ⊤ k X ⊤ k X l A l ) s.t. A ⊤ l M l A l = I H , l ∈ [L].
(4.1)

A l = a [1] l . . . a [H] l ∈ R p l ×H
is a matrix containing, in columns, the canonical vectors associated to the block l, and g is applied element-wise. (4.1) is a rather straightforward extension of RGCCA since the criterion to maximize is the sum of H RGCCA criteria with the additional constraint imposing orthogonality between a linear transformation of the canonical vectors. The norm constraint on each canonical vector is the same as in RGCCA. In this chapter, we will work with the objective function of (4.1) and refer to it as the simultaneous RGCCA criterion. We will denote it f (A), with A = (A 1 , . . . , A L ). [START_REF] Gloaguen | A statistical and computational framework for multiblock and multiway data analysis[END_REF] proposes a globally convergent algorithm to solve (4.1). The idea is to :

• Show that the proposed simultaneous RGCCA criterion remains a continuously differentiable multi-convex function.

• Find a minorizing function of Ãl → f (A 1 , . . . , A l-1 , Ãl , A l+1 , . . . , A L ), the objective function with all variables fixed except for block l.

• Apply a BCA strategy by selecting, in turn, the matrix A l that maximizes the associated minorizing function.

Our propositions will reuse these ideas, so we detail them below.

Let a l = Vec(A l ). We can express the simultaneous RGCCA criterion as a function of the vectors a l for l ∈ [L]. To see this, we first express a

[h] l as a function of a l . It is easy to see that a l can be obtained by selecting a block of size p l from a l at the right place. This translates into a

[h] l = (e [h] l ⊤ ⊗ I p l )a l ,

with e

[h] l ∈ R p l the vector such that all elements are null except the h th one which is equal to 1. Thus, it comes

Tr g(A ⊤ k X ⊤ k X l A l ) = H h=1 g(a [h] k ⊤ X ⊤ k X l a [h] l ) = H h=1 g a ⊤ k (e [h] k ⊗ I p k )X ⊤ k X l (e [h] l ⊤ ⊗ I p l )a l = H h=1 g a ⊤ k e [h] k e [h] l ⊤ ⊗ (X ⊤ k X l ) a l .
Therefore, the criterion remains a multi-convex function according to each vector a l .

As used in (1.2), we know that a convex function lies above its linear approximation, so we will try to solve the following problem :

âl = argmax ãl ∈Ω l ∇ l f (A) ⊤ ãl , (4.2) where ∇ l f (A) = 2 L k=1 c kl H h=1 g ′ a [h] k ⊤ X ⊤ k X l a [h] l e [h] l e [h] k ⊤ ⊗ (X ⊤ l X k ) a k
is the gradient of f with respect to a l . From a matrix point of view, (4.2) is equivalent to :

Âl = argmax Ãl ∈Ω l Tr(∇ A l f (A) ⊤ Ãl ), (4.3)
where ∇ A l f (A) is the gradient of f with respect to A l . It can be viewed as a folded version of ∇ l f (A),

its h th column is ∇ [h] l f (A) = 2 L k=1 c kl g ′ a [h] k ⊤ X ⊤ k X l a [h] l X ⊤ l X k a [h]
k , which is the derivative of f with respect to a

[h] l . In a more compact form, l Ãl , we are left with a problem of the form :

∇ A l f (A) = 2 L k=1 c kl X ⊤ l X k A k diag □ (g ′ (A ⊤ k X ⊤ k X l A l )).
Bl = argmax Bl , B⊤ l Bl =I H Tr(P ⊤ Bl ), (4.5) 
where

P = M -1 2 l ∇ A l f (A).
We recognize a familiar problem. The solution is given by Bl = LR SVD (P).

Finally, Âl = M -1 2 l LR SVD (M -1 2 l ∇ A l f (A)).
Algorithm 4 Global RGCCA for l = 1 to L do 7:

A t+1 l = M -1 2 l LR SVD (M -1 2 l ∇ l f (A t+1 1 , . . . , A t+1 l-1 , A t l , . . . , A t L )); 8:
end for 9:

t = t + 1 ; 10: until f (A t+1 1 , . . . , A t+1 L ) -f (A t 1 , . . . , A t L ) < ε
Global RGCCA updates, in turn, the matrices A l for l ∈ [L] until convergence. In practice, this algorithm works well and converges quickly to a solution. The procedure is summarized in Algorithm 4. However, [START_REF] Won | Orthogonal trace-sum maximization : Applications, local algorithms, and global optimality[END_REF] warn against the risk of generating oscillating iterates with such an algorithm in some pathological cases. They also give an easy fix : adding a proximal regularization term to prevent oscillations. In the context of global RGCCA, it would mean changing (4.3) to the following problem :

Âl = argmax Ãl ∈Ω l Tr(∇ A l f (A) ⊤ Ãl ) - 1 2ρ ∥M 1 2 l Ãl -M 1 2 l A l ∥ 2 F . (4.6)
ρ > 0 is a constant which ponders the penalty term. Given the problem constraints, we have to solve (4.5) again with

P = M -1 2 l ∇ A l f (A) + 1 ρ M 1 2 l A l .
Hence, the solution :

Âl = M -1 2 l LR SVD (M -1 2 l ∇ A l f (A) + 1 ρ M 1 2 l A l ).
(4.7)

Unfortunately, the orthogonality and norm constraints are entangled in global RGCCA through the constraints A ⊤ l M l A l = I H . Therefore, global RGCCA lacks some flexibility offered by the sequential procedure where the deflation allows disentangling both constraints. This is unfortunate for two reasons. First, it prevents global RGCCA from extending some special cases of RGCCA where the sum of the covariances is maximized but with orthogonal canonical components. Second, if M l is neither the identity matrix nor the covariance, the orthogonality induced by M l can be hard to interpret. We propose new simultaneous procedures to tackle this limitation in what follows. We will also see that these new procedures have another advantage : they allow considering extensions of the original RGCCA problem like SGCCA or TGCCA.

. Relaxing the orthogonality constraints with PASS-RGCCA

Imagine we impose non-negativity on the canonical vectors. On the one hand, if we aim for orthogonal canonical vectors, the solution might be very sparse to satisfy both constraints since there cannot be more than one non-null element on each line of A l . On the other hand, if we aim for orthogonal canonical components, both constraints might be impossible to satisfy at the same time. Indeed, take for example the matrix

X =   1 1 0 -1 -1 0   .
The columns of the X matrix are centered, and the extra-diagonal elements of Y ⊤ Y with Y = XA are positive combinations of the elements of A. Thus, the only possibility for Y ⊤ Y to be diagonal is A = 0, but this would violate the norm constraint and is not an interesting solution. Therefore, imposing orthogonality can be too restrictive. In this context, it is interesting to relax the orthogonality constraints. However, if the orthogonality constraints are simply removed, problem (4.1) becomes equivalent to H independent RGCCA problems with the same solutions, yielding H times the same sets of canonical vectors. Obviously, this is not wanted either. To remedy this, our first proposition is to maximize f (A) -L l=1 α l 2 ϕ l (A l ) with ϕ l a penalty which is minimal for matrices respecting the orthogonality constraints and α l > 0 weighting the penalty. Consequently, we encourage orthogonal solutions while still allowing non-orthogonal ones.

We are interested in the penalties of the form :

ϕ l (A l ) = H h=1 a [h] l ⊤ O [h] l a [h] l .
(4.8)

O [h] l ∈ R p l ×p l can be either A [-h] l A [-h] l ⊤ or X ⊤ l X l A [-h] l A [-h] l ⊤ X ⊤ l X l . The matrix A [-h] l
is the matrix A l with the h th column being removed :

A [-h] l = a [1] l . . . a [h-1] l a [h+1] l . . . a [H] l
. In the former case, the penalty can be rewritten

ϕ l (A l ) = H h,k=1,k̸ =h a [h] l ⊤ a [k] l 2
. Thus, the penalty is the sum of all squared scalar products between canonical vectors of a given block. The only way to cancel out this penalty is to make all scalar products equal to zero, i.e., to have orthogonal canonical vectors. Similarly, in the latter case, we get the sum of squared scalar products between canonical components :

ϕ l (A l ) = H h,k=1,k̸ =h y [h] l ⊤ y [k] l 2
. Consequently, these two choices of matrices O

[h] l aim to get close to the orthogonality obtained with the two deflation schemes from the sequential approach. Therefore, we are interested in solving : maximize

A 1 ,...,A L L k,l=1 c kl Tr g(A ⊤ k X ⊤ k X l A l ) - L l=1 α l 2 H h=1 a [h] l ⊤ O [h] l a [h] l (4.9) s.t. a [h] l ⊤ M l a [h] l = 1, for h ∈ [H] and l ∈ [L].
The formulation of (4.8) is appealing since for any given canonical vector a

[h] l , O [h] l is independent from a [h]
l . Fixing a component index h ∈ [H] and looking at the scalar products involving the canonical vector or component of index h, it is easy to see that ϕ l (A l ) = 2a

[h] l ⊤ O [h] l a [h] l + c, where c is a quantity independent of a [h] l . Therefore, a [h]
l appears like the natural object on which to alternate to maximize our new criterion. Fixing all objects but a l and removing all parts of the criterion that are independent of a

[h] l , we aim to solve :

maximize ã[h] l L k=1 c kl g a [h]⊤ k X ⊤ k X l ã[h] l -α l ã[h]⊤ l O [h] l ã[h] l s.t. ã[h]⊤ l M l ã[h] l = 1.
(4.10) Problem (4.10) is known as a difference of convex programming. A well-known algorithm to solve it is the concave-convex procedure (CCCP, [START_REF] Yuille | The Concave-Convex Procedure[END_REF] and is based on the Minorization-Maximization (MM, [START_REF] Hunter | A tutorial on MM algorithms[END_REF] strategy. Its convergence has been shown by [START_REF] Lanckriet | On the Convergence of the Concave-Convex Procedure[END_REF]. Here, we will also use the MM strategy and maximize a lower bound, but we will approximate both parts of the criterion of (4.10) to get an optimization problem close to (1.7).

As always, a convex function lies above its linear approximation, so we substitute to (4.10) the following problem :

maximize ã[h] l ∇ [h] l f (A) ⊤ ã[h] l -α l ã[h]⊤ l O [h] l ã[h] l s.t. ã[h]⊤ l M l ã[h] l = 1. (4.11)
The objective function is now concave. We follow a strategy from [START_REF] Kiers | Majorization as a tool for optimizing a class of matrix functions[END_REF][START_REF] Kiers | Setting up alternating least squares and iterative majorization algorithms for solving various matrix optimization problems[END_REF] to find a new lower bound

. Let e = ã[h] l -a [h]
l and ψ be the objective function of (4.11). We have :

ψ(ã [h] l ) = ψ(e + a [h] l ), = ψ(a [h] l ) + 2µf ⊤ M l e -α l e ⊤ O [h] l e,
where µ > 0 and f =

1 2µ M -1 l (∇ [h] l f (A) -2α l O [h]
l a

[h] l ). Then, we can notice that :

α l e ⊤ O [h] l e ≤ α l λ max (O [h] l )e ⊤ e, = α l λ max (O [h] l )e ⊤ M 1 2 l M -1 l M 1 2 l e, ≤ α l λ max (O [h] l )λ max (M -1 l )∥M 1 2 l e∥ 2 2 := µ∥M 1 2 l e∥ 2 2 .
Putting everything together, we get :

ψ(ã [h] l ) ≥ ψ(a [h] l ) -µ(∥M 1 2 l f -M 1 2 l e∥ 2 2 -∥M 1 2 l f ∥ 2 2 ) = ψ(a [h] l ) -µ(∥M 1 2 l (f + a [h] l ) -M 1 2 l ã[h] l ∥ 2 2 -∥M 1 2 l f ∥ 2 2 ) := θ(ã [h] l ).
The function θ is our lower bound. It is easy to see that θ(a

[h] l ) = ψ(a [h]
l ) so maximizing θ will allow us to increase the value of ψ. Thus we get :

â[h] l = argmin ã[h] l ,ã [h]⊤ l M l ã[h] l =1 ∥M 1 2 l (f + a [h] l ) -M 1 2 l ã[h] l ∥ 2 2 .
(4.12)

Since for l = 1 to L do 7:

ã[h]⊤ l M l ã[h] l = 1, it is equivalent to maximize the scalar product ã[h]⊤ l M l (f + a [h] l ).
for h = 1 to H do 8:

Compute O

[h] l ;

9:

µ = α l λ max (O [h] l )λ max (M -1 l ); 10: f = 1 2µ M -1 l (∇ [h] l f (A) -2α l O [h] l a [h] l ); 11: a [h]t+1 l = argmax a [h] l ∈Ω [h] l a [h] l ⊤ M l (f + a [h]t l ); 12:
end for 13:

end for 14:

t = t + 1 ; 15: until f (A t+1 1 , . . . , A t+1 L ) -L l=1 α l ϕ(A t+1 l ) -f (A t 1 , . . . , A t L ) + L l=1 α l ϕ(A t l ) < ε
The idea of this penalty-based simultaneous RGCCA is to update, in turn, the vectors a ). We brand it Penalized Alternated Simultaneous with Separated constraints RGCCA (PASS-RGCCA) and its convergence is guaranteed by Proposition 4.3.1, its proof is available in Appendix B.2. The main update of PASS-RGCCA is the maximization of a scalar product, which is also the main update of the sequential RGCCA algorithm. Since all RGCCA extensions are based on this type of update, they can be directly extended with the presented framework. At first glance, PASS-RGCCA addresses the two limitations we identified from global RGCCA : the norm and orthogonality constraints are disentangled, and we can provide a simultaneous procedure for many more RGCCA extensions. However, PASS-RGCCA comes with several weaknesses. The first one is that we alternate between the canonical vectors for a given block. Therefore, it is easier for PASS-RGCCA to get stuck in a local maximum : once the penalty reaches a low value, changing drastically a canonical vector is no longer possible. Another weakness is the necessity to tune the penalty parameters α l . It is clear that setting a high value of α l will shift the solutions towards orthogonality, but it will also decrease the convergence speed of the algorithm. Balancing the two parts of the criterion seems reasonable. A heuristic procedure to do that is presented in the Appendix. Even with well-tuned parameters, PASS-RGCCA is slower compared to global RGCCA.

Proposition 4.3.1. The solution sequence produced by Algorithm 5 converges to a stationary point of Problem (4.9).

. SPOND-RGCCA : simultaneous RGCCA using the Penalty Dual Decomposition

In this section, we propose yet another simultaneous procedure for RGCCA. We start with the target optimization problem that we would like to solve : maximize

A 1 ,...,A L L k,l=1 c kl Tr(g(A ⊤ k X ⊤ k X l A l )) s.t. a [h] l ⊤ M l a [h] l = 1, for h ∈ [H], A ⊤ l X ⊤ l X l A l is diagonal. (4.13)
We retrieve the criterion of global RGCCA, but the norm and orthogonality constraints are disentangled. We are back to strict orthogonality constraints. We will discuss this point in the next section. We choose here to present the case of orthogonal canonical components, but everything can be easily adapted to deal with orthogonal canonical vectors. Without changing the optimization problem (4.13), we can introduce slack variables as follows :

maximize

A 1 ,...,A L ,Y 1 ,...,Y L L k,l=1 c kl Tr(g(A ⊤ k X ⊤ k Y l )) s.t.      a [h] l ⊤ M l a [h] l = 1, for h ∈ [H], Y ⊤ l Y l is diagonal, Y l = X l A l , for l ∈ [L].
(4.14)

A natural way to tackle a problem such as (4.14) is the Alternating Direction Method of Multipliers (ADMM, [START_REF] Boyd | [END_REF]. This method consists of relaxing the constraints Y l = X l A l and searching for a saddle point of the augmented Lagrangian of problem (4.14) :

L({A l , Y l , Λ l } L l=1 ) = L k,l=1 c kl Tr(g(A ⊤ k X ⊤ k Y l )) - 1 2ρ L l=1 ∥X l A l -Y l + ρΛ l ∥ 2 F .
(4.15)

The variables Λ l ∈ R n×H , for l ∈ [L] are the dual variables associated with the equality constraints Y l = X l A l , and ρ > 0 is the penalty parameter. Note that our Lagrangian is, in fact, the opposite of what is usually called the Lagrangian. We chose this formulation to be closer to the other sections of this chapter. Since the equality constraints have been relaxed and Y l appears in the objective function, a constraint on the norm of Y l must be added for the problem to be bounded and admit a solution. To find the right constraint to impose, we look for an upper bound on ∥y

[h] l ∥ if the constraint Y l = X l A l was satisfied : y [h] l ⊤ y [h] l = a [h] l ⊤ X ⊤ l X l a [h] l ≤ λ max (X ⊤ l X l )a [h] l ⊤ a [h] l = λ max (X ⊤ l X l )a [h] l ⊤ M 1 2 l M -1 l M 1 2 l a [h] l ≤ λ max (X ⊤ l X l )λ max (M -1 l )a [h] l ⊤ M l a [h] l = λ max (X ⊤ l X l )λ max (M -1 l )
Therefore, we add the constraint ∥y

[h] l ∥ 2 ≤ ν max l
to (4.15). As we will need it in the proof of convergence, we also add a lower bound constraint :

y [h] l ⊤ y [h] l = a [h] l ⊤ X ⊤ l X l a [h] l ≥ λ min (X ⊤ l X l )a [h] l ⊤ a [h] l = λ min (X ⊤ l X l )λ min (M -1 l )
where λ min (X) is the lowest nonzero eigenvalue of a given matrix X. The previous inequality is verified if a

[h] l ∈ Span(X ⊤ l ). This condition must be fulfilled at the optimum since only the elements in Span(X ⊤ l ) will have a nonzero contribution to the RGCCA criterion. As this will be needed to prove the convergence of the proposed algorithm, we relax the bounds by a small factor. Thus, the considered constraint is :

ν min l := λ min (X ⊤ l X l )λ min (M -1 l ) -ϵ ≤ y [h] l ⊤ y [h] l ≤ λ max (X ⊤ l X l )λ max (M -1 l ) + ϵ := ν max l , (4.16) where 0 < ϵ < λ min (X ⊤ l X l )λ min (M -1 l ).
Unfortunately, we are in a situation similar to the one presented in [START_REF] Kanatsoulis | Structured sumcor multiview canonical correlation analysis for large-scale data[END_REF] : since the original problem is nonconvex with a manifold constraint, the convergence of ADMM is not guaranteed. As in [START_REF] Kanatsoulis | Structured sumcor multiview canonical correlation analysis for large-scale data[END_REF], we will use the Penalty Dual Decomposition method (PDD, Shi andHong, 2017, 2020;Shi et al., 2020) to overcome this issue. The PDD method is a recent framework for constrained optimization that combines penalty method [START_REF] Zangwill | Non-linear programming via penalty functions[END_REF] and augmented Lagrangian method [START_REF] Boyd | [END_REF]. The idea behind PDD is very simple : maximize the Lagrangian with respect to the primal variables and, if the constraint is close to being satisfied, update the dual variable, otherwise decrease ρ, and repeat until convergence. In the former case, it is equivalent to the update of the dual variable in an augmented Lagrangian method. In the latter, it falls back to the update of the penalty coefficient in a penalty method. Algorithm 6 describes the general PDD algorithm.

The sequences {ε t } t∈N and {η t } t∈N introduced in Algorithm 6 must be positive sequences converging to zero. 

Algorithm 6 General PDD

(A t+1 , Y t+1 ) = Approximate maximizers of L({A l , Y l , Λ t l } L l=1
), stopping criterion determined by ε t ;

7: if ∥XA t+1 -Y t+1 ∥ ∞ ≤ η t then 8: Λ t+1 = Λ t + 1 ρ t (Y t+1 -XA t+1 ); 9: ρ t+1 = ρ t ; 10: else 11: Λ t+1 = Λ t ; 12: ρ t+1 = cρ t ; 13:
end if 14:

t = t + 1 ; 15: until ∥XA t -Y t ∥ ∞ < ε ∞
According to the PDD algorithm, we alternate between maximizing the Lagrangian with respect to the primal variables A l and Y l for l ∈ [L] and either updating the dual variables or decreasing the penalty parameter depending on how far we are from respecting the equality constraints. The latter is straightforward, so we will focus on the former. Note that, as opposed to all the previously presented algorithms for RGCCA, the introduction of the new variables Y l makes the problem separable : if the matrices Y l are fixed, all matrices A l can be simultaneously updated and vice versa.

To ease the notations, we will denote

f (A, Y) = L k,l=1 c kl Tr(g(A ⊤ k X ⊤ k Y l )
). We will need to consider the derivatives with respect to A l and Y l , respectively denoted ∇ A l f (A, Y) and ∇ Y l f (A, Y) :

∇ A l f (A, Y) = L k=1 c kl X ⊤ l Y k diag □ (g ′ (Y ⊤ k X l A l )),
(4.17)

∇ Y l f (A, Y) = L k=1 c kl X k A k diag □ (g ′ (A ⊤ k X ⊤ k Y l )).
(4.18)

. Maximize the Lagrangian with respect to A l

To maximize (4.15), we will start by updating the A l matrices with the Y l matrices being fixed. Maximizing L({A l , Y l , Λ l } L l=1 ) as a function of A l is similar to maximizing (4.10), but here we do not need to alternate between the columns of A l . Therefore, we will maximize a lower bound of the Lagrangian. Using our well-known lower bound of a convex function, we have to solve :

maximize Ãl 2Tr(P ⊤ Ãl ) -Tr( Ã⊤ l X ⊤ l X l Ãl ) s.t. ã[h]⊤ l M l ã[h] l = 1, h ∈ [H], (4.19) 
where

P = X ⊤ l Y l + ρ(∇ A l f (A, Y) -X ⊤ l Λ l ).
Let ψ be the objective function of (4.19). Using the same arguments as previously, we have :

ψ( Ãl ) ≥ ψ(A l ) -µ(∥M 1 2 l (F + A l ) -M 1 2 l Ãl ∥ 2 F -∥M 1 2 l F∥ 2 F ) := θ( Ãl ), with F = 1 µ M -1 l (P -X ⊤ l X l A l ), and µ ≥ λ max (X ⊤ l X l )λ max (M -1 l ).
Once again, θ is our lower bound and θ(A l ) = ψ(A l ) so maximizing θ will increase ψ. Thus, we get the following update :

Âl = argmin Ãl ,ã [h]⊤ l M l ã[h] l =1 ∥M 1 2 l (F + A l ) -M 1 2 l Ãl ∥ 2 F .
(4.20)

With our set of constraints, it boils down to solving H separate problems equivalent to the main update of PASS-RGCCA. As a consequence, it should be possible to consider extensions of RGCCA naturally with this new procedure. However, it remains to check that they fulfill the convergence requirements of the PDD algorithm. As opposed to PASS-RGCCA, we update here the columns of A l jointly.

. Maximize the Lagrangian with respect to Y l

Now that we know how to update the A l matrices, we need to deal with the Y l matrices. For a given l, the problem to solve is : minimize

Y l ∥Y l -P∥ 2 F s.t. Y ⊤ l Y l is diagonal, ν min l ≤ ∥y [h] l ∥ 2 ≤ ν max l , for h ∈ [H] and l ∈ [L], (4.21) where P = X l A l + ρ(Λ l + ∇ Y l f (A, Y)).
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To find an easy update for Y l , we express Y l as the product of two matrices. Since Y ⊤ l Y l is diagonal, using the QR decomposition of Y l , it is easy to show that Y l = Q∆, with Q ∈ R n×H having orthonormal columns, and ∆ = diag □ (δ) ∈ R H×H being diagonal. Therefore, to update Y l , we update, in turn, Q and ∆ :

Q = argmax Q,Q ⊤ Q=I H Tr(Q ⊤ P∆) = LR SVD (P∆), (4.22) ∆ = argmin ∆ diagonal ∥∆ -Q ⊤ P∥ 2 F = diag □ (Q ⊤ P), δ[h] =      ν max l if δ[h] > ν max l , ν min l if δ[h] < ν min l , δ[h] otherwise. (4.23)
Once the Lagrangian has been maximized with respect to the A l and Y l matrices, if X l A l is close enough to Y l , Λ l is updated :

Λl = Λ l + 1 ρ (Y l -X l A l ).
(4.24)

Otherwise, we decrease ρ. The inner loop of the algorithm can be found in Algorithm 7. We call this new approach Simultaneous PDD-based with Orthogonality and Norm constraints being Disentangled RGCCA (SPOND-RGCCA). Proposition 4.4.1 guarantees the procedure's convergence. The proof of the proposition can be found in Appendix B.1.

Proposition 4.4.1. Assume that ε t → 0, η t → 0 as t → ∞ and that the stopping criterion of Algorithm 7 is

max(∥ Âl -A l ∥ ∞ , ∥ Ŷl -Y l ∥ ∞ ) < ε t , ∀t.
(4.25)

Then, every limit point of the solution sequence produced by the proposed SPOND-RGCCA is a KKT point of Problem (4.14).

Like PASS-RGCCA, SPOND-RGCCA addresses the two limitations of global RGCCA. Unlike PASS-RGCCA, SPOND-RGCCA does not suffer from the issue of updating, in turn, the columns of the A l matrices. However, SPOND-RGCCA is no longer a monotonous algorithm. Lastly, SPOND-RGCCA imposes orthogonality constraints. As previously discussed, it can be too restrictive. The next section presents a last formulation inspired by SPOND-RGCCA to relax the orthogonality constraint.

. Relaxing the orthogonality constraints with ReSPOND-RGCCA

The idea is once again to replace the orthogonality constraints with a penalty term. We explore a penalty different from the one used in PASS-RGCCA and choose ϕ l (Y l ) = -∥Y l ∥ * , where ∥Y l ∥ * is the nuclear norm of Y l . The nuclear norm is the sum of the singular values of the matrix. Our objective is to solve the following problem : maximize

A 1 ,...,A L ,Y 1 ,...,Y L f (A, Y) + L l=1 α l ∥Y l ∥ * s.t.      a [h] l ⊤ M l a [h] l = 1, for h ∈ [H], ν min l ≤ ∥y [h] l ∥ 2 ≤ ν max l , for h ∈ [H], Y l = X l A l , for l ∈ [L].
(4.26) diagonal, and try to maximize ∥Q l ∥ * with ∥Q l ∥ 2 F ≤ H. This way, Q ⊤ l Q l will be close to the identity matrix, and ∆ l allows having column-norms different from 1. Using an abuse of notations, we write f (A, Y) as f (A, Q∆). The new problem can be written as follows :

maximize {A l ,Q l ,∆ l } L l=1 f (A, Q∆) + L l=1 α l ∥Q l ∥ * s.t.                a [h] l ⊤ M l a [h] l = 1, for h ∈ [H], ∥Q l ∥ 2 F ≤ H, ∆ l = diag □ (δ l ), ν min l ≤ δ [h] l ≤ ν max l , for h ∈ [H], Q l ∆ l = X l A l , for l ∈ [L]. (4.27)
To solve (4.27), we also use the PDD algorithm. Therefore, we must provide a way to maximize the augmented Lagrangian of Problem (4.27) :

L({A l , Q l , ∆ l , Λ l } L l=1 ) = f (A, Q∆) + L l=1 α l ∥Q l ∥ * - 1 2ρ L l=1 ∥X l A l -Q l ∆ l + ρΛ l ∥ 2 F .
(4.28)

We propose to update, in turn, the A l , Q l , and ∆ l matrices. The updates of each matrix A l will be the same as in SPOND-RGCCA. The differences lie in the updates of Q l and ∆ l . By setting

P = X l A l + ρ(Λ l + ∇ Q l ∆ l f (A, Q∆)), the part of the Lagrangian that depends on ∆ l is ∥Q l ∆ l -P∥ 2
F , we recognize a constrained least squares problem with respect to ∆ l . We have :

δl = argmin δ l δ ⊤ l diag □ (Q ⊤ l Q l )δ l -2δ ⊤ l diag(P ⊤ Q l ) = (diag □ (Q ⊤ l Q l )) -1 diag(P ⊤ Q l ), (4.29) 
δ[h] l =      ν max l if δ[h] > ν max l , ν min l if δ[h] < ν min l , δ[h] otherwise. (4.30)
To find the update of Q l , we write Q l = UΣV ⊤ using its SVD, and find updates of U, V, and Σ. The part of the Lagrangian that depends on U, V, and Σ is :

- 1 2ρ ∥UΣV ⊤ ∆ l -P∥ 2 F +α l ∥UΣV ⊤ ∥ * = - 1 2ρ Tr(∆ l VΣ 2 V ⊤ ∆ l )+ 1 ρ Tr(ΣU ⊤ P∆ l V)+α l Tr(Σ). (4.31)
There is only one term depending on U, hence :

Û = argmax U,U ⊤ U=I H Tr(U ⊤ P∆ l VΣ) = LR SVD (P∆ l VΣ).
(4.32)

Regarding V, we are in a situation similar to (4.19), with orthonormality constraints instead. To update V, we follow the same principle and maximize θ, a lower bound of the criterion ψ :

ψ( Ṽ) = -Tr(∆ l ṼΣ 2 Ṽ⊤ ∆ l ) + 2Tr(ΣU ⊤ P∆ l Ṽ), θ( Ṽ) = ψ(V) -µ(∥F + V -Ṽ∥ 2 F -∥F∥ 2 F ), F = 1 µ (∆ l P ⊤ UΣ -∆ 2 l VΣ 2 ), µ ≥ λ max (∆ 2 l )λ max (Σ 2 ).
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Therefore, the update of V is given by :

V = argmax Ṽ, Ṽ⊤ Ṽ=I H Tr( Ṽ⊤ (F + V)) = LR SVD (F + V).
(4.33)

The only thing left to update is Σ. Similarly to the update of ∆ l , we recognize a constrained least squares problem with respect to Σ. Let σ = diag(Σ), we want to solve :

minimize σ σ ⊤ diag □ (V ⊤ ∆ 2 V)σ -2σ ⊤ diag(U ⊤ P∆ l V) -2α l ρσ s.t. σ ≥ 0 σ ⊤ σ ≤ H. (4.34)
Searching for a saddle point of the Lagrangian associated with Problem (4.34), we get :

σ = (diag □ (V ⊤ ∆ 2 l V) + γI H ) -1 |α l ρ1 H + diag(U ⊤ P∆ l V)| + , (4.35) 
Σ = diag □ ( σ), (4.36) 
where γ is the value of the Lagrange multiplier at the saddle point, and |x| + is the vector in which element j is max(0, x j ) for j in [p] with x ∈ R p . γ = 0 corresponds to the case where σ⊤ σ < H. If γ > 0, σ⊤ σ = H, and its value is found using a line search. Let

z = |α l ρ1 H + diag(U ⊤ P∆ l V)| + , d = diag(V ⊤ ∆ 2 l V), and D = diag □ (d).
The constraint can be written :

H = z ⊤ (D + γI H ) -2 z, = H h=1 z 2 h (d h + γ) 2 .
The last term is a decreasing function of γ, so we have :

H h=1 z 2 h (d max + γ) 2 ≤ H h=1 z 2 h (d h + γ) 2 ≤ H h=1 z 2 h (d min + γ) 2 .
From these bounds, we get bounds on γ for our line search : Using all the updates above, we can define the Relaxed SPOND-RGCCA (ReSPOND-RGCCA) algorithm to solve (4.27). As previously, with matrices {(Q l , ∆ l )} L l=1 fixed, all the A l matrices can be updated independently and vice versa. Inside each group, we update in turn Q l and ∆ l . Once we reach a maximum of the Lagrangian, Λ l or ρ is updated following the PDD procedure. The inner loop of ReSPOND-RGCCA is summarized in Algorithm 8. The convergence of the Algorithm is discussed in Proposition 4.5.1. Its proof can be found in Appendix B.3. Proposition 4.5.1. Assume that ε t → 0, η t → 0 as t → ∞ and that the stopping criterion of Algorithm 8 is

γ min = z ⊤ z H -d max and γ max = z ⊤ z H - d min ,
max(∥ Âl -A l ∥ ∞ , ∥ Ŷl -Y l ∥ ∞ ) < ε t , ∀t.
(4.37)

Then, if the limit point of the solution sequence produced by the proposed ReSPOND-RGCCA satisfies Robinson's condition, it is a KKT point of Problem (4.27).

In the past sections, we presented 4 algorithms to address the simultaneous RGCCA problem. In this section, we compare them against each other and against sequential RGCCA on simulated and real data.

. Simulations

We first use simulated data to highlight the benefits of the simultaneous procedures. To do so, we investigate a 3-block configuration. We simulate data based on the probabilistic CCA model proposed by [START_REF] Bach | A probabilistic interpretation of canonical correlation analysis[END_REF]. We create three blocks. Each block is composed of three components. One is shared with another block, a second is shared with the remaining block, and the third is not shared with the other. In this partially shared and unshared configuration, we expect sequential RGCCA to have trouble accurately recovering partially shared components due to its greedy approach. Indeed, it will try to maximize the correlations between blocks, eventually leading to a compromise between two or more shared components. On the other hand, a simultaneous approach can play the long game and see that selecting one shared component will be more beneficial each time.

Let A 1 , . . . , A L be the matrices whose columns are the canonical vectors, and for (k, l)

∈ [L] 2 , ρ kl = ρ [1] kl . . . ρ [H] kl ⊤
be the vectors of correlations between blocks. We build a latent data model as follows :

z ∼ N (0, I H ), x l |Z = z ∼ N (P l z, Σ ll ),
where P l is a linear transformation such that, for any couple (k, l) with k ̸ = l, the joint distribution of (x k , x l ) is :

x k x l ∼ N 0, Σ kk Σ kl Σ ⊤ kk Σ ll , (4.38) 
where

Σ kl = Σ kk A k diag □ (ρ kl )A ⊤ l Σ ll for k ̸ = l. Let A l = Q l R l be the QR-decomposition of A l , we construct Σ ll such that A ⊤ l Σ ll A l = I H : Σ ll = Q l (R l R ⊤ l ) -1 Q ⊤ + (I p l -Q l Q ⊤ l )T l T ⊤ l (I p l -Q l Q ⊤ l ), (4.39) 
where T l ∈ R p l ×p l is an arbitrary matrix allowing to add noise to the model.

In our simulations, we use this latent data model with 3 blocks (L = 3) and 3 components (H = 3). We set ρ andρ [h] kl = 0 otherwise. This allows the simulation of the partially shared and unshared component scenario described above. We explore two settings, one with orthogonal canonical vectors and one without orthogonality.

[h] kl = 1 if h ̸ = k and h ̸ = l,
To mitigate the risk of compromise, we set g = x → x 2 . Doing so, a high correlation between two blocks yields a higher objective function value than medium correlations between the three blocks. To get a fair comparison with global RGCCA, we set M l = I p l and look for orthogonal canonical vectors. In such a configuration, the criterion of global RGCCA is exactly the sum of the sequential RGCCA criteria. Figure 4.1 shows a representation of the canonical vectors in the orthogonal setting. Their structure has been chosen for visualization convenience. Tables 4.1 and 4.2 show the cosines between the true and the estimated canonical vectors. A good model should be able to retrieve well (cosine close to 0.96 (0.72, 0.99) 0.99 (0.99, 0.99) 0.99 (0.99, 0.99) 0.99 (0.99, 0.99) 0.99 (0.99, 0.99) a

[1] 3 0.98 (0.78, 0.99) 0.99 (0.99, 0.99) 0.99 (0.99, 0.99) 0.99 (0.99, 0.99) 0.99 (0.99, 0.99) a

[2] 3 0.98 (0.96, 0.99) 0.99 (0.99, 0.99) 0.99 (0.99, 0.99) 0.99 (0.99, 0.99) 0.99 (0.99, 0.99) a

[3] 3 0.16 (0.03, 0.32) 0.17 (0.01, 0.32) 0.26 (0.03, 0.40) 0.17 (0.01, 0.32) 0.17 (0.01, 0.32) Computation time 5.78 (5.46, 6.26) 2.86 (2.73, 3.04) 6.28 (6.02, 7.25) 18.05 (14.62, 19.13) 136.63 (129.11, 144.54) 1) the canonical vectors that are involved in the partially shared components (i.e., all vectors but a

[1] 1 , a [2]
2 , and a (a) Looking at these tables, sequential and simultaneous procedures seem to perform similarly. In fact, compromising behavior can be witnessed in the orthogonal setting. If we look at the cosines between the estimated canonical vector and the true canonical vectors associated with the other components, the higher the cosines with the wrong ones, the more mixed the solution is. The results of this additional analysis can be seen in Table 4.3. According to this new table, simultaneous procedures yield purer canonical vectors. This phenomenon can also be seen in Figure 4.2, which shows the estimated canonical vectors using sequential RGCCA. Sub-figure 4.2f shows an extra grey vertical line, revealing that sequential RGCCA estimates a mix of two canonical vectors (a 2 ). On the contrary, simultaneous procedures do not exhibit such an issue : Figure 4.3 shows the estimated canonical vectors using global RGCCA. The other simultaneous procedures behave similarly (not shown).

[3] 3 ). (a) a [1] 1 (b) a [2] 1 (c) a [3] 1 (d) a [1] 2 (e) a [2] 2 (f) a [3] 2 (g) a [1] 3 (h) a [2] 3 (i) a [3]
a [1] 1 (b) a [2] 1 (c) a [3] 1 (d) a [1] 2 (e) a [2] 2 (f) a [3] 2 (g) a [1] 3 (h) a [2] 3 (i) a [3] 3 Figure 4.2 -Folded canonical vectors estimated with sequential RGCCA. (a) a [1] 1 (b) a [2] 1 (c) a [3] 1 (d) a [1] 2 (e) a [2] 2 (f) a [3] 2 (g) a [1] 3 (h) a [2] 3 (i) a [3]
These simulations show a small advantage in favor of simultaneous procedures to retrieve the true canonical vectors. All the presented methods perform similarly for our reconstruction task, but they show very different behaviors in terms of computation times. Global RGCCA is faster than sequential RGCCA, while ReSPOND-RGCCA is slower than SPOND-RGCCA, which is slower than PASS-RGCCA, which is itself slower than sequential RGCCA. An interesting direction to extend these simulations would be to evaluate how the different methods perform depending on the SNR.

Finally, we computed the sum of the sequential RGCCA criteria, or equivalently, the global RGCCA criterion, for all models. This quantity is consistently lower for sequential RGCCA compared to the simultaneous methods on the two settings. Thus, it confirms the suboptimality of the sequential procedure.

. Mixtures of chemicals

Here, we use again the JODA dataset presented in Section 3.5.1 from Acar et al. (2014a). First, we aim to evaluate the ability of our simultaneous procedures to cope with RGCCA extensions and to see if we can get better results than the sequential approach on the same setting as in Section 3.5.1. Second, we consider the third block available in the JODA dataset and show that it disturbs the sequential approach but helps the simultaneous ones. The third block contains EEM (Excitation Emission Matrix) data acquired using fluorescence spectroscopy and is organized in a tensor of dimensions 28 × 251 × 21. In this last block, only the first 3 chemicals can be identified. Since the variance associated with each chemical in each block is different, we will see that the addition of the third block can make it harder for some models to retrieve the chemicals.

In the comparison, we consider the following models :

• Sequential rank-1 MGCCA,

• Global MGCCA,

• PASS-RGCCA with constraints from rank-1 MGCCA,

• SPOND-RGCCA with constraints from rank-1 MGCCA,

• ReSPOND-RGCCA with constraints from rank-1 MGCCA.

Note that we do not try here to find the fifth chemical, which is only present in the first block. The preprocessing is the same as in Section 3.5.1. We take the identity matrices for M l , and the identity function for g to focus on what is shared between all blocks. We run each model 20 times with random initial points and report the computation times (in seconds) and cosines (mean and standard deviation) between the true and estimated concentrations of the chemicals. The results can be found in Table 4.4 for the two-block setting and Table 4.5 for the three-block setting. The cosines obtained by the best model over the 20 runs are reported in parentheses.

For each algorithm, the best model is selected as the model that yields the highest objective function value without penalty. Looking at Table 4.4, the "best" model is especially bad for PASS-RGCCA, SPOND-RGCCA, and ReSPOND-RGCCA. Table 4.6 presents the cosines of the best models selected in a supervised manner : we select the models that give the highest sums of cosines. This last In this chapter, we proposed and compared different simultaneous approaches for RGCCA and its extensions. All these extensions can be written in a dual version, allowing to get faster algorithms and develop kernel extensions. These proofs of concept show the potential of simultaneous procedures, but more work should be done to validate these new models. We think that by carefully tuning the parameters of SPOND-RGCCA and ReSPOND-RGCCA and taking advantage of the parallel updates, their computation times can be greatly reduced. We advise the user to choose the global RGCCA algorithm if it applies to its problem. If it does not, we advise SPOND-RGCCA if orthogonality constraints should be applied and ReSPOND-RGCCA otherwise. Moreover, SPOND-RGCCA and ReSPOND-RGCCA open the way to a new kind of RGCCA extensions since it becomes easy to add constraints on the full matrix A l (such as group lasso, for example). Another important direction of further research is to evaluate the ability of the different methods to retrieve shared, partially shared, and unshared components and compare them to state-of-the-art methods in the matter, such as SLIDE [START_REF] Gaynanova | Structural learning and integrative decomposition of multi-view data[END_REF], HNN [START_REF] Yi | Hierarchical nuclear norm penalization for multi-view data integration[END_REF], D-GCCA [START_REF] Shu | D-GCCA : Decomposition-based Generalized Canonical Correlation Analysis for Multi-view High-dimensional Data[END_REF], and JIVE and its extensions [START_REF] Lock | JOINT AND INDIVIDUAL VARIATION EXPLAINED (JIVE) FOR INTEGRATED ANALYSIS OF MULTIPLE DATA TYPES[END_REF][START_REF] Zhou | Group Component Analysis for Multiblock Data : Common and Individual Feature Extraction[END_REF][START_REF] Feng | Angle-based joint and individual variation explained[END_REF].

-Application to Multiple Sclerosis and Leukodystrophy

We next wanted to implement our approach on actual health data to assess its potential for enhancing our understanding of complex and multimodal datasets. In this chapter, we work on data collected at the Paris Brain Institute to learn more about two inflammatory demyelinating diseases : Multiple Sclerosis (MS) and X-linked adrenoleukodystrophy (X-ALD). In both studies, we use our developed methods to identify the differences between patients and controls and between categories of patients. In the case of MS, we also try to find correlations between the immune cells' behavior and the severity of the disease. We discuss MS in Section 5.1 and X-ALD in Section 5.2.

. Multiple Sclerosis

. Introduction

MS is an auto-immune disease. Immune cells present in the patient's blood invade the Central Nervous System (CNS) and attack the sheath surrounding the axons of the neurons : the myelin. The destruction of the myelin leads to latency in neuronal transmission and ultimately results in neurodegeneration. The inflamed zones are visible on MRI scans, appearing as plaques. Hence the name "sclérose en plaques" in French. The range of symptoms can greatly vary depending on which part of the CNS is affected. Patients may suffer from various disabilities like walking impairment, fatigue, and problems with thinking, learning, and planning, to cite only a few. Eighty-five percent of MS patients suffer from a form called relapsing-remitting MS with neurological symptoms episodes (relapses) followed by partial or complete remission. A majority of these patients (80%) convert into another form called secondary progressive MS, where remission no longer appears. Ten percent of MS patients suffer from primary progressive MS with a continuous appearance of symptoms and 5% from progressive relapsing MS. In the latter case, disability accumulates over time, but it is possible to witness relapses and partial remission.

The causes of MS are still unknown. We observe that women are three times more likely to be affected than men for the relapsing form, while the odds are the same across genders for the primary progressive form. The mean age as onset is between 20 and 40. Some risk factors have been identified, like smoking, the lack of vitamin D or sunlight exposure, and, more recently, the Epstein-Barr virus [START_REF] Bjornevik | Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis[END_REF]. We still know relatively little regarding MS. While treatments and drugs exist to mitigate the relapses, there are no alternatives when the disease progresses. Therefore, every study that contributes to learning more about the disease is of high interest.

At the Paris Brain Institute, patients with relapsing-remitting MS were recruited to collect different types of data. All their symptoms were assessed using motor and cognitive tests, MRI brain imaging data was acquired, and blood samples were taken. Blood samples were also collected from healthy controls to assess the differences with MS patients. In our team, one central research question is to better characterize the behavior of MS patients' immune cells. It has been shown that macrophages differentiate into subpopulations : a pro-inflammatory one that causes inflammation and phagocytes myelin and a pro-regenerative one that recruits oligodendrocyte precursor cells (OPCs) and organizes Figure 5.1 -Graphical summary of the data extracted from blood samples. In all Figures, green will be associated with the homeostatic-like phenotype (GM-CSF), blue with the pro-inflammatory phenotype (IFNγ+LPS), and pink with the pro-regeneration phenotype (IL4). a self-repair process called remyelination. The proliferation and differentiation of OPCs into oligodendrocytes enable myelin regeneration. Thus, the team is particularly interested in understanding this phenomenon and identifying which patients show remyelination by differentiating the macrophages into these two subpopulations.

. Identifying differences between patients and controls, and between treated and untreated patients

We focus first on characterizing the differences in the behaviors of the immune cells between MS patients and healthy controls. The data acquisition started during Jennifer Fransson's Ph.D. thesis [START_REF] Fransson | Macrophage activation profiles of multiple sclerosis patients[END_REF]. Monocytes from the blood of MS patients and healthy controls were collected. They were then activated in vitro to obtain macrophages with three phenotypes by putting them in different chemical environments [START_REF] Mosser | Exploring the full spectrum of macrophage activation[END_REF]. A homeostatic-like phenotype was achieved using a granulocyte-macrophage colony-stimulating factor (GM-CSF). In contrast, a pro-inflammatory phenotype was achieved using interferon-γ and lipopolysaccharide (IFNγ+LPS), and finally, a proregenerative phenotype with interleukin-4 (IL4). Then, their myelin phagocytic capacity and surface molecule expression of CD14, CD16, and HLA-DR were evaluated using flow cytometry. The relative expressions of CD14 and CD16 are known to be characteristic of different phenotypes of the macrophages [START_REF] Wong | The three human monocyte subsets : implications for health and disease[END_REF]. The HLA-DR antigen can be considered as an indicator of the quantity of macrophages. The measurements of these quantities produced three 3 rd -order tensors :

• CD block : subjects × surface molecule expressions × activation states,

• MFI block : subjects × mean fluorescence intensity (MFI) × activation states,

• Phag block : subjects × phagocytic capacity × activation states. Moreover, Central Glia-4 (CG4) cells were also extracted from the blood samples. These cells can either develop into oligodendrocytes or astrocytes [START_REF] Louis | CG-4, A new bipotential glial cell line from rat brain, is capable of differentiating in vitro into either mature oligodendrocytes or type-2 astrocytes[END_REF]. We are interested in which population is favored depending on the chemical environments used to differentiate the monocytes. Therefore, the team measured, in these different environments, the surface molecule expressions of Glial Fibrillary Acidic Protein (GFAP), characteristic of the presence of astrocytes and oligodendrocyte markers O4 using flow cytometry. This yielded a new 3 rd -order tensor :

• CG4 block : subjects × surface molecule expressions × activation states.

A graphical summary of the data collected can be seen in Figure 5.1. Patients versus healthy controls. We start by performing univariate tests to see if some variables significantly differ between patients and controls in a given activation state. We use Wilcoxon-Mann-Whitney tests to evaluate whether the distributions differ in the two conditions. Since we perform a test per variable and activation state, we have to correct the p-values by the number of variables times the number of activation states. According to this procedure, we obtain significant differences for some variables in the CD and Phag blocks. The proportion of cells with moderated phagocytic capacity is consistently lower for patients than for controls across activation states. It may indicate that patients' macrophages present a dysregulated response to myelin. While almost no CD14-CD16+ and CD14-CD16-macrophage populations are present in the controls' macrophages, they are not negligible in patients' macrophages. On the other hand, CD14+CD16-macrophages are more present for controls than for patients. This switch of macrophage populations may explain the different phagocytic capacities. Figure 5.2 shows the boxplots associated with these three variables. Stars indicate significant differences.

We now go further and apply global MGCCA, introduced in Chapter 4, on the four blocks. We want to evaluate which variables are responsible for the differences between groups by applying a bootstrap procedure : we fit the global MGCCA model on a random sampling of the subjects with replacement and repeat this a high number of times. Therefore, we obtain a distribution of the weights of the global MGCCA model. We say that a variable helps make a difference between groups if it is nonzero, with a consistent sign, and with high probability. On the contrary, a variable that often changes signs cannot be a reliable indicator of whether a subject is a patient or a control. However, there is a problem with MGCCA : there is a sign indeterminacy on the vectors composing the rank-1 canonical vectors a lm for m ∈ {1, 2} and l ∈ [4]. We have a similar issue with RGCCA since swapping all canonical vector signs leads to the same results. In the RGCCA case, a realization of the model fitting is chosen, and its canonical vectors serve as a reference to correct the signs of the other canonical vectors. To know if we should change the sign of a canonical vector, we look at the sign of its correlation with the reference. Depending on the length of the canonical vectors, it can be more robust to look instead at the sign of the correlation between the obtained canonical components. Indeed, the correlation may not be meaningful if there are too few variables. Since we have only a small number of variables per mode in our study, we have to find another procedure to align the weights for MGCCA. We observe a bimodal distribution for some of the variables before changing their signs. This is typical of consistently selected variables, but for which both signs are valid because of the indeterminacy. Therefore, our procedure is to test vector distributions for unimodality and change their signs if they violate it. A developed test for unimodality for individual variables is the dip test, created by [START_REF] Hartigan | The Dip Test of Unimodality[END_REF]. It has been extended for the multivariate case by [START_REF] Hahn | Assessing the multimodality of a multivariate distribution using nonparametric techniques[END_REF]. The multivariate procedure boils down to applying PCA to the vector and testing the first principal direction for unimodality with the dip test. An example of a bimodal distribution before correcting for the signs of the factors can be seen in Figure 5.3. After changing the sign, the distribution becomes unimodal. We can see that most of the variables' values are negative after the correction, so they will have low associated p-values.

Since individual variables already capture the differences between patients and healthy controls on blocks CD and Phag, we expect these blocks to drive the global MGCCA model toward discriminating between patients and controls. We can see in Figure 5.4 that the projections on these two blocks really separate the two classes well. The separations are less clear with the two other blocks. However, the bootstrap procedure was able to identify significant differences between patients and controls in the CG4 and MFI blocks. Indeed, Figure 5.5 reports the estimated weights of the model for blocks CG4 and MFI, along with empirical confidence intervals and stars showing the significance levels. The three activation states are significantly selected for the MFI block, reflecting the fact that the patients seem to show higher fluorescence intensities across activation states. Moreover, the patients present a significantly higher variance in the number of astrocytes in the pro-inflammatory phenotype compared to controls and a higher quantity of oligodendrocytes in the homeostatic-like phenotype.

Treated versus untreated patients. When performing univariate tests between treated and untreated patients, one adjusted p-value is below the significance threshold for the CG4 block : the quantity of oligodendrocytes is significantly higher for untreated patients in the pro-inflammatory phenotype. The proportion of cells with the lowest phagocytic capacity is higher for treated patients in both the homeostatic-like and pro-regenerative phenotypes. This indicates that the treatments help We now perform the analysis using global MGCCA. Unlike the univariate case, we can identify significant differences between treated and untreated patients in all blocks. Indeed, the bootstrap procedure selected variables in every block associated with one or more activation states. See Figure 5.6 to find the scores of the patients associated with the different blocks. Global MGCCA seems to separate well between the two categories of patients. Figure 5.7 reports the estimated weights of the model for blocks CD and CG4, along with empirical confidence intervals and stars showing the significance levels. We can see that the previously made observation is confirmed : untreated patients have a higher quantity of oligodendrocytes than treated patients in the pro-inflammatory phenotype. However, we can also see that untreated patients show a lower quantity of astrocytes in this same phenotype. But we can also see significant differences between treated and untreated patients in macrophage populations. Treated patients are characterized by more important populations of CD14-CD16+, CD14-CD16-, and CD14+CD16-and lesser CD14+CD16+ macrophages in the homeostatic-like and pro-inflammatory phenotypes. See Figure C.2 for the estimated weights associated with the other blocks. The observation made on the phagocytic capacity is confirmed and strengthened, and some other differences appear on the MFI block.

To conclude this section, global MGCCA combined with our bootstrap procedure allows us to retrieve the differences between groups of patients captured by univariate tests and to find new differences. These newly discovered differences can now be presented to biologists to help them better understand the disease and the impact of the treatments.

. Finding correlations with the severity of the disease

Up to this point, the myelin regeneration was assessed post-mortem. Clinicians have now started to get some indications of myelin regeneration using PET scans. Unfortunately, we do not have access to this modality yet, so we are trying to find a proxy. We know that remyelination correlates with [START_REF] Motl | Validity of the timed 25-foot walk as an ambulatory performance outcome measure for multiple sclerosis[END_REF]. The PASAT (Paced Auditory Serial Addition Test) evaluates attention and speed of information processing using mental calculus [START_REF] Gronwall | Paced auditory serial-addition task : A measure of recovery from concussion[END_REF]. The STROOP test evaluates mental flexibility and inhibitory processes. The patient must read the color in which words are written while the words are different color names themselves [START_REF] Denney | The impact of multiple sclerosis on patients' performance on the Stroop Test : processing speed versus interference[END_REF]. The 9HPT (9 Hole Peg test) evaluates the dexterity of the upper limbs. The patient must place nine pegs as fast as possible into nine holes [START_REF] Feys | The Nine-Hole Peg Test as a manual dexterity performance measure for multiple sclerosis[END_REF]. EDSS-V, EDSS-S, EDSS-BB, and EDSS-BS correspond to the functional scores in the EDSS related to Visual, Sensory, Bowel and Bladder, and Brain Stem functions. less severe symptoms. Hence, we try to evaluate the severity of the disease and look at correlations between this proxy and a quantity summarizing the activity of the macrophages.

The first step is thus to define the severity of the disease. However, this is not an easy task. Different scores have been proposed for MS : Expanded Disability Status Scale (EDSS, [START_REF] Kurtzke | Rating neurologic impairment in multiple sclerosis : An expanded disability status scale (EDSS)[END_REF], Multiple Sclerosis Severity Score (MSSS, [START_REF] Roxburgh | Multiple sclerosis severity score : Using disability and disease duration to rate disease severity[END_REF], Multiple Sclerosis Functional Composite (MSFC, Fischer et al., 1999), to cite only a few, but none of them seem to make consensus [START_REF] Meyer-Moock | Systematic literature review and validity evaluation of the expanded disability status scale (EDSS) and the multiple sclerosis functional composite (MSFC) in patients with multiple sclerosis[END_REF]. The EDSS is the most used score to evaluate the severity of the disease. It ranges from 0 (no disability) to 10 (death), and starting from the score of 4.5, all steps are described in terms of walking/standing abilities. Hence, the EDSS focuses on motor symptoms. Furthermore, the functional scores in the EDSS concerning cognitive symptoms are less precise than their motor counterparts. Therefore, the cognitive symptoms are not well considered in the EDSS. The MSSS is based on the EDSS, so the previous issues still apply. Consequently, we propose to create another score from the data collected at the Paris Brain Institute.

We take inspiration from the Clinical Outcome Assessment instrument evaluated in this report from the European Medicines Agency (European Medicines Agency, 2020). We define daily activities that can be limited by disability in MS and link them to body functions and existing tests to measure them. See Figure 5.8 to see which tests have been kept. We believe that symptoms cannot compensate and that the more symptoms, the more severe. Therefore, after normalizing the results of the tests, aligning them (the higher the score, the more severe), and correcting for the age of the patients and the duration of the disease, we use non-negative Principal Component Analysis (PCA) to create the final score. Applying non-negative PCA allows for weighing the different scores based on the available data without allowing scores to compensate for each other. We have then tried to exploit this new score, the EDSS, and the MSSS to find correlations with the macrophages' behaviors, unfortunately without success. As we could not show the benefit of our new score, we have not tried to evaluate it with clinicians further. This failure was predictable since many biological processes are at play between the macrophages' activity and the patients' symptoms, and we do not have a completely satisfying assessment of the disease severity. It will probably be easier when the PET modality will be available as there will be a more direct connection between the macrophages' activity and the measured amount of myelin regeneration.

. Leukodystrophy

. Introduction

Leukodystrophy is a family of rare genetic diseases affecting the white matter of the CNS. Different mutations can lead to different types of leukodystrophies. They all result in the abnormal development or destruction of the myelin. As MS, leukodystrophies are progressive, so they get worse over time. Even if the mutation is inherited and present from birth, the onset of the disease can happen later, when the child becomes a toddler or during adulthood. In our team, we are interested in better understanding the role of the immune cells present in the blood of the patients in the pathological destruction of myelin. Therefore, as for MS patients, blood samples were collected to assess the differences between controls and different types of leukodystrophy patients. We had blood samples for healthy children and children with adrenoleukodystrophy (ALD, Santosh Rai et al., 2013), and also from healthy adults and adults with adult cerebral ALD (ACALD) or adrenomyeloneuropathy (AMN) [START_REF] Engelen | X-linked adrenoleukodystrophy (X-ALD) : clinical presentation and guidelines for diagnosis, follow-up and management[END_REF]. These three different types of leukodystrophies are included in the X-ALD.

. Identifying differences between patients and controls, and between different types of patients

Children patients and controls. As for MS, monocytes were extracted from blood samples of both patients and healthy controls. Furthermore, the macrophages were divided into subpopulations according to their myelin phagocytic capacities. This resulted in 4 levels : high, low, and "negative" myelin phagocytic capacity and no myelin environment for samples that were not put in the presence of myelin. Therefore, we organized the measurements into the following blocks :

• CD block : subjects × surface molecule expressions × activation states × myelin levels,

• MFI block (only the MFI of HLA-DR was available) : subjects × activation states × myelin levels,

• Phag block : subjects × phagocytic capacity × activation states. We start with univariate tests. After correction of the tests, the proportion of CD14+CD16+ appears significantly higher for ALD patients than controls in the pro-inflammatory state without myelin in the environment and for cells with a low myelin phagocytic capacity. On the other hand, the proportion of CD14+CD16-is significantly higher for controls than ALD patients in the homeostatic-like state without myelin in the environment and for cells with a high myelin phagocytic capacity. When there is no myelin in the environment, the proportion of CD14+CD16-is also higher for controls in the proregenerative state.

When applying global MGCCA, the controls, and the patients are well separated (see Figure 5.9). According to the bootstrap procedure, the CD14-CD16-proportion is significantly lower for ALD patients than controls, considering all myelin levels and activation states. Considering all myelin levels and activation states, the MFI of the HLA-DR antigen is higher for patients than controls, indicating a higher quantity of macrophages. This higher number of macrophages is associated with a higher myelin phagocytic capacity for patients. All these elements indicate that ALD patients present a proinflammatory behavior leading to the destruction of the myelin. The univariate and the bootstrap results can be seen in Figures C.3 and C.4.

Adult patients and controls. In addition to the data collected for the children, CG4 cells were extracted from blood samples of both adult patients and healthy controls. As opposed to the data collected for MS, the differentiation of CG4 cells was further measured. Indeed, since both mature astrocytes and oligodendrocytes develop branches, the team also evaluated the area covered by both populations. Furthermore, the overall number of CG4 cells is evaluated by marking all cells with Hoechst stains (H+). The available blocks for the adults are the following :

• CD block : subjects × surface molecule expressions × activation states × myelin levels,

• MFI block (only the MFI of HLA-DR was available) : subjects × activation states × myelin levels,

• Phag block : subjects × phagocytic capacity × activation states,

• CG4 block : subjects × surface molecule expressions × activation states, We first perform univariate tests. After correction of the tests, no variables were found significant in any block. We now apply global MGCCA on all the blocks, connected to an additional block made of the categorical variable "being a control, an ACALD, or an AMN patient". Figure 5.10 shows that global MGCCA is able to separate well between controls and ALD patients on blocks CD and MFI. The first component seems to capture the differences between ACALD and AMN patients, while the second one captures the differences between controls and patients. It is most visible in the block Area in Figure 5.10.

Thanks to this procedure, we are able to find differences characterizing the different groups. For example, we can identify the proportion of CD14-CD16-macrophages as significantly higher for adult patients than controls across all activation states and all phagocytic capacities but the highest. The area covered by oligodendrocytes is significantly lower for AMN patients and is higher for controls. Furthermore, the proportion of cells with high myelin phagocytic capacities is more important in pa-tients, and the proportion of cells with very low myelin phagocytic capacities is smaller in the proinflammatory phenotype. It suggests that the patients exhibit a stronger pro-inflammatory response, causing more destruction of the myelin, associated with less mature oligodendrocytes, leading to poorer remyelination. Figure C.5 shows the results of the bootstrap procedure.

In this Chapter, we limited ourselves to rank-1 TGCCA (i.e., MGCCA) because the dimensions on each mode of the blocks were rather small, and because the vector methods were giving similar scores, a higher rank would have led to capture noise. However, if the scores were similar with vector methods, the number of variables was higher with vector methods, and there was more redundancy across variables. Hence, the p-values at the end of the bootstrap procedures were much higher. Therefore, global MGCCA helped identify significant variables where previous methods could not. The differences found were concordant with the univariate tests but were more numerous. This shows that our method revealed more subtle differences between groups. We believe this kind of approach can help biologists learn more about multiple sclerosis and leukodystrophies.

Conclusions and Perspectives

Multiblock data is becoming more and more common with the development of new sensors, the creation of novel acquisition modalities, and cheaper storage costs. To properly analyze this type of data, it is crucial to consider both the interactions between blocks and the individual structures of the blocks. In this thesis, we advanced in this direction. Indeed, we propose new ways to handle individual structures with low-rank tensor factorization and new methods to consider interactions with procedures to extract the canonical components simultaneously. Furthermore, the two types of propositions can be articulated together in a coherent framework. Therefore, both challenges were addressed at the same time.

Contributions

Our work relies heavily on the RGCCA framework. This framework has been extended in several ways. We summarize our contributions below :

• From rank-1 to rank-R tensors. RGCCA had already been extended to higher-order tensors, but only with rank-1 CPD constraints and separable regularization matrices [START_REF] Gloaguen | Multiway generalized canonical correlation analysis[END_REF]. We proposed algorithms to address the case of rank-R CPD constraints with and without separable regularization matrices. If we impose the CPD to be orthogonal, convergence guarantees are obtained. Otherwise, the algorithm may converge to a point that does not satisfy the rank-R constraints. A paper presenting TGCCA with orthogonal rank-R CPD constraints has been submitted to the Journal of Information Fusion.

• From sequential to simultaneous. Gloaguen (2020) also proposed a simultaneous version of RGCCA but entangling the norm and orthogonality constraints. We proposed new simultaneous procedures that do not suffer from this limitation. Furthermore, the proposed methods encompass all proposed extensions of RGCCA and pave the way to further extensions.

• From theory to implementation. The RGCCA R package has been redesigned to ensure we obtained the same results as other implementations for special RGCCA cases and to make extending it easier. Validation, evaluation, and visualization procedures have been added to the package. The latest methodological developments will be integrated into the next release. A companion paper to the package has been submitted to the Journal of Statistical Software.

We have shown the usefulness of the extended RGCCA framework in two applications on multiple sclerosis and leukodystrophy.

Perspectives

Rank choice in TGCCA. Choosing the rank of the CPD structure imposed on the canonical vectors in TGCCA may not always be simple. Therefore, a procedure for choosing the rank would be of great interest. A possible way to do it is to adapt the CORCONDIA procedure [START_REF] Bro | A new efficient method for determining the number of components in parafac models[END_REF] to our case. An RGCCA extension with a Tucker model structure imposed on the canonical vectors must be developed to do so. We believe the key to developing such a model is to exploit the core optimization problem (3.8).

TGCCA and connections with the CPD algorithms. The TGCCA algorithm has powerful connections with the CPD ALS algorithm. These connections could be exploited to propose new TGCCA algorithms that should be more robust to the "swamp" effect. Furthermore, CPD algorithms have been derived to deal with additional structure in the data (non-negativity, sparsity, etc.). Therefore, the connections between TGCCA and the CPD could be further exploited to develop extensions of TGCCA.

Simultaneous procedures. The proposed simultaneous methods show attractive properties : disentanglement of the norm and orthogonality constraints, possible relaxation of the orthogonality constraints, and applicability to RGCCA extensions. However, they can be very slow compared to the sequential approach and come with additional hyperparameters to tune. To make them more practical to use, some more work should be done to make them faster, with some heuristics to choose good hyperparameters. Moreover, while the proposed methods have been compared to sequential RGCCA, they should also be compared to other methods of the literature to assess their capacity to identify shared, partially shared, and individual components in the data. Work in progress includes the construction of a benchmark.

Finally, numerical certificates can be computed to guarantee the quality of the solutions produced by the algorithms for ReSPOND-RGCCA and simultaneous TGCCA. Some work is still needed to prove that the current algorithms produce solutions that always satisfy Robinson's condition.

RGCCA R package.

The RGCCA framework is evolving and extending, so the R package aims to follow. The methods proposed in this manuscript will be incorporated in the coming package releases. However, these are not the only planned additions to the package. Indeed, RGCCA for multigroup data (Tenenhaus and Tenenhaus, 2014) and RGCCA for (sparse and irregular) functional data [START_REF] Sort | Functional generalized canonical correlation analysis for studying jointly several longitudinal responses[END_REF] have been developed. Also, it is possible to use RGCCA in structural equation modeling with latent and emergent variables for obtaining consistent and asymptotically normal estimators of the parameters [START_REF] Tenenhaus | Structural Equation Modeling with Latent/Emergent Variables : RGCCAc[END_REF]. At last, several alternatives for handling missing values are discussed in [START_REF] Peltier | Missing values in rgcca : Algorithms and comparisons[END_REF]. Work in progress includes the integration of all these novel approaches in the RGCCA package.

Multiple Sclerosis. In our study of multiple sclerosis data, we failed to identify biomarkers characteristic of myelin regeneration. We believe that using PET scans will allow for assessing the myelin regeneration of the patients. Therefore, by combining this new modality with the data about the monocytes, specific populations of monocytes could be identified, differentiating between patients showing myelin regeneration and patients who do not.

Further extensions of RGCCA. The RGCCA framework has been extended in many directions over the last few years, but some important directions have not yet been explored. Indeed, RGCCA assumes all blocks contain continuous data. It could broaden its applicability if RGCCA were able to consider heterogeneous blocks. An idea could be to assume exponential family distributions generate the blocks and apply an RGCCA model on the parameters of the distributions as in [START_REF] Zhu | Generalized integrative principal component analysis for multitype data with block-wise missing structure[END_REF].

Furthermore, an additional model must be used if there is a downstream task (clustering, classification, regression). Integrating the downstream task in the extended RGCCA framework to perform both tasks simultaneously would be advantageous. The easiest way to do it would be to combine the RGCCA criterion with the criterion of the downstream task. A more subtle way of doing it for clustering and classification would be to find probabilities for each subject to belong to the different groups and maximize the RGCCA criterion inside each group.

A -Tensor Generalized Canonical Correlation Analysis

A.1 . Non-separable TGCCA

We detail in this Section the choice of the formulation of the non-separable TGCCA optimization problem with orthogonality constraints (3.7) and how we propose to tackle this problem.

A.1.1 . Formulation of non-separable TGCCA

As stated in Section 3.3, we seek to solve maximize

a 1 ,...,a L L l,k=1 c lk g a ⊤ l Σ lk a k (A.1) s.t. a ⊤ l M l a l = 1, a l = [[λ l ; A l,1 , . . . , A l,d ]] R l , A l,m ∈ R p l,m ×R l , and A ⊤ l K l A l = I R l , l ∈ [L].
The two natural choices for K l are K l = M l and K l = I p l . In the first case, a

⊤ l M l a l = λ ⊤ l A ⊤ l M l A l λ l = λ ⊤ l λ l .
Therefore, the constraint a ⊤ l M l a l = 1 becomes ∥λ∥ 2 = 1. According to (3.8), we have to find a l that allows increasing the value of the objective function. Using the same trick as in Section 3.3.3, we can observe that a

(r) l = A (r) l,(-m) a (r) l,m with A (r) l,(-m) = a (r) l,d l ⊗ • • • ⊗ a (r) l,m+1 ⊗ I p l,m ⊗ a (r) l,m-1 ⊗ • • • ⊗ a (r)
l,1 ∈ R p l ×p l,m and that :

∇ l f (a) ⊤ a l = R r=1 λ (r) l ∇ l f (a) ⊤ A (r) l,(-m) a (r) l,m = Tr(F ⊤ A l,m ), (A.2) with F = f (1) . . . f (R l ) and f (r) = λ (r) l A (r)⊤ l,(-m) ∇ l f (a) ∈ R p l,m .
We can traduce the orthogonality constraint into the following constraints :

a (r)⊤ l,m A (r)⊤ l,(-m) M l A (r) l,(-m) a (r) l,m = 1 a (r)⊤ l,m A (r)⊤ l,(-m) M l a (s) l = 0 for r ̸ = s.
Unfortunately, it is not possible to find a matrix M l,m which would allow writing

A ⊤ l,m M l,m A l,m = I R l .
Therefore, we cannot end up with a problem of the following kind :

argmax A l,m Tr(F ⊤ A l,m ) s.t. A ⊤ l,m M l,m A l,m = I R l .
In this case, we did not find a better solution than to solve for each a After the second update, the BCA algorithm is stuck and cannot move anymore, but the point is not a local maximum.

By writing the Lagrangian of (A.3), it is possible to find a closed-form solution. The issue is that the constraints are no longer separated between the different a (r) l,m , which leads the optimization scheme to get stuck in uninteresting points. See Figure A.1 for an illustration of this phenomenon in a toy case. This is why we looked for another choice of the matrix K l and decided to try with K l = I R l .

A.1.2 . Update for non-separable TGCCA

Choosing K l = I R l leads to the following optimization problem : maximize

a 1 ,...,a L L l,k=1 c lk g a ⊤ l Σ lk a k (A.4) s.t. a l = [[λ l ; A l,1 , . . . ,A l,d l ]] R l , A l,m ∈ R p l,m ×R l , A ⊤ l A l = I R l , ∥λ l ∥ 2 ≤ ∥M l ∥ -1 2 2 , l ∈ [L].
As the constraints are the same as in the separable case for the matrices A l,m , the updates a A l,m (a)

are the same as in Section 3.3.3.

The update of λ l is specific to this non-separable case. We will note u l = A ⊤ l ∇ l f (a) to simplify the notations. We could try to do it like before and search for

λ opt l = argmax λ l ,∥λ l ∥ 2 ≤∥M l ∥ -1 2 2 u ⊤ l λ l = u l ∥M l ∥ -1 2 2 ∥u l ∥ 2 .
However, this solution implies that we do not take into account the structure of M l in our optimization scheme. As our first goal was to solve (A.1), for a fixed A l , we consider :

λ ref l = argmax λ l ,λ ⊤ l A ⊤ l M l A l λ l =1 u ⊤ l λ l = A ⊤ l M l A l -1 u l u ⊤ l A ⊤ l M l A l -1 u l .
To ensure that λ ref⊤ l A ⊤ l M l A l λ ref l remains below 1 after the update of A l , we showed in Section 3.3 that we need to normalize

λ ref l so that ∥λ ref l ∥ 2 ≤ ∥M l ∥ -1
In the non-separable case, we have λ ⊤ l λ l ≤ α, but this does not change the proof.

To show the result, we introduce the following sets :

Ω norm = {a l ∈ R p l ; a ⊤ l a l = 1}, Ω kron = {a l ∈ R p l ; a l = a l,d l ⊗ • • • ⊗ a l,1 }, Ω mat = {A l ∈ R p l ×R l ; A l = a (1) l . . . a (R l ) l ; a (r) l ∈ Ω norm ∩ Ω kron }, Ω orth = {A l ∈ R p l ×R l ; A ⊤ l A l = I R l }, Λ l = {λ l ∈ R R l ; λ ⊤ l λ l = 1}
. Using these sets, a new way to express Ω l is derived :

Ω l = {a l ∈ R p l ; a l = A l λ l ; A l ∈ Ω mat ∩ Ω orth ; λ l ∈ Λ l }.
Therefore, Ω l is the image of the set Λ l × (Ω mat ∩ Ω orth ) by the continuous application f : (λ l , A l ) → A l λ l . The proof that Ω l is compact then reduces to prove that Λ l and Ω mat ∩ Ω orth are compact.

Λ l is compact as the norm-2 ball of radius α in R R l which is of finite dimension. In the case λ ⊤ l λ l = α, Λ l becomes the boundary of this ball which remains compact.

We will now show that Ω mat ∩ Ω orth is compact as the intersection of a compact set with a closed set.

• Ω norm is a compact set as the boundary of the norm-2 unit ball.

• Ω kron is a closed set. It is a standard result in geometric algebra and a specificity of the set of rank-1 tensors.

• Ω norm ∩ Ω kron is compact as the intersection of a closed and a compact set.

• Ω mat is the image of × R l (Ω norm ∩ Ω kron ) (the Cartesian product R l times) by the continuous operator that arranges vectors into a matrix. Hence, Ω mat is compact.

• Ω orth is the set of semi-orthogonal matrices. This set is closed (and even compact, but we only need it to be closed).

Consequently, Ω mat ∩ Ω orth is compact, and we have shown that Ω l is a compact set.

In the case where only one mode m bears the orthogonality, similar arguments can be derived to show that Ω l is indeed compact.

A.2.3 . The solution set Γ

We define the Lagrangian associated with problem 3.7. It is a function of every variable a A.12) where * stands for the Hadamard product (element-wise product). As a solution set Γ, we choose the points that satisfy the Karush-Kuhn-Tucker (KKT) conditions associated with problem 3.7, i.e., the points such that there exist Lagrange multipliers allowing to cancel the derivatives of (A.12). Note that with the definition of the Lagrangian in (A.12), points satisfying the KKT conditions also satisfy the constraint qualifications. Such points define stationary points of problem 3.7.

l λ l = 1 is α l ∈ R. ∆ l,1 ∈ R R l ×R l is used for the constraint A ⊤ l,1 A l,1 = I R l . Note that ∆ l,1 is a symmetric matrix. For the constraint a (r)⊤ l,m a (r) l,m = 1, δ (r) l,m ∈ R is used. Hence, the Lagrangian can be written L = -f (a) + L l=1   1 2 α l (λ ⊤ l λ l -1) + R l r=1,s>r (∆ l,1 * (A ⊤ l,1 A l,1 -I R l )) rs + 1 2 d l m=1 R l r=1 δ (r) l,m (a (r)⊤ l,m a (r) l,m -1) , ( 

A.2.4 . Strict monotonicity

If a / ∈ Γ, there exists x, where x = λ l or A l,m , such that ∂L ∂x ̸ = 0. We will show that, in this case, the update of x produces a strict increase of the criterion f (a) = L l,k=1 c lk g(a ⊤ l Σ lk a k ). We start with x = λ l . We compute the derivative of the Lagrangian using the chain rule and the fact that

a l = R l r=1 λ (r) l A (r) l,(-m) a (r) l,m = A l λ l : ∂L ∂λ l = -A ⊤ l ∇ l f (a) + α l λ l .
Using the Cauchy-Schwarz inequality,

|λ ⊤ l A ⊤ l ∇ l f (a)| ≤ ∥λ l ∥ 2 ∥A ⊤ l ∇ l f (a)∥ 2 = ∥A ⊤ l ∇ l f (a)∥ 2 .
The previous inequality is an equality if, and only if, λ l and

A ⊤ l ∇ l f (a) are collinear. Thus, if ∂L ∂λ l ̸ = 0, setting ϕ λ l (a) = A ⊤ l ∇ l f (a) ∥A ⊤ l ∇ l f (a)∥ 2
strictly increases the criterion.

We now investigate the case of A l,m , with m > 1 :

∂L ∂A l,m ..r = ∂L ∂a (r) l,m = -λ (r) l A (r)⊤ l,(-m) ∇ l f (a) + δ (r) l,m a (r) l,m .
Here again, the Cauchy-Schwarz inequality tells us that the maximum is uniquely reached by taking

ϕ A l,m (a) (r) = f (r) ∥f (r) ∥ 2 , with f (r) = A (r)⊤ l,(-m) ∇ l f (a)
. Therefore, the update produces a strict increase of the criterion if ∂L ∂A l,m ̸ = 0. Finally, the derivative of the Lagrangian with respect to A l,1 is :

∂L ∂A l,1 ..r = ∂L ∂a (r) l,1 = -λ (r) l A (r)⊤ l,(-1) ∇ l f (a) + R l s=1 δ (r,s) l,1 a (s) l,1 , (A.13) = -λ (r) l A (r)⊤ l,(-1) ∇ l f (a) + A l,1 δ (r) l,1 .
Introducing F = f (1) . . . f (R l ) , cancelling (A.13) for every r ∈ [R l ] leads to A l,1 ∆ l,1 = F. It means that if the derivative is not null, we cannot find a symmetric matrix ∆ l,1 such that A l,1 ∆ l,1 = F. On the other hand, we aim to maximize Tr(

A ⊤ l,1 F) s.t. A ⊤ l,1 A l,1 = I R l . A solution is ϕ A l,1 (a) = ST ⊤
, where S and T are respectively the left and right singular vectors of the rank-R l SVD of F = SDT ⊤ . Consider the symmetric matrix ∆ = TDT ⊤ . We have ST ⊤ ∆ = SDT ⊤ = F. Hence, if the derivative (A.13) is not null, A l,1 cannot be expressed using the singular vectors of F, so the update will strictly increase the criterion. In the study of the dataset from Acar et al. (2014b), we are interested in finding the concentrations of the five chemicals in the 28 available mixtures. This information is contained in the matrix A following the notation of (3.28). Nevertheless, we do not estimate this matrix using TGCCA. To avoid this problem, we suppose that, if B and C are well estimated, A can be deduced through the following optimisation problem : argmin A.14) where Λ = diag(λ). Hence we get

A.3 . Retrieving the chemicals

Propanol

A ∥X (1) -AΛ(B ⊙ C) ⊤ ∥ 2 F , ( 
A = X (1) Λ(B ⊙ C) Λ(B ⊙ C) ⊤ (B ⊙ C)Λ -1 . (A.15)
In the case of TGCCA of rank 2, we extract for the first block A 1,1 ∈ R 13324×2 and A 1,2 ∈ R 8×2 . We use these two matrices respectively as our matrices C and B. As we imposed orthogonality constraints on columns of B and C, equation (A.15) gives A = X (1) (B ⊙ C)Λ -1 . This gives us the first two columns of the matrix A. For the next ones, we deflate the X tensor and repeat the procedure. As the next extracted components are of rank 1, the next columns of A are computed as X

[k]

(1) a

[k+1] 1 for k ∈ [3]
where X

[k]

(1) is the mode-1 matricization of the tensor after its k th deflation, and a

[k+1] 1 is the associated canonical vector returned by TGCCA. 

A.3.1 . Extracting Propanol

According to Acar et al. (2014b), the concentration of Propanol cannot be inferred from the matrix block. Therefore, we do not expect to properly find it as a component extracted by TGCCA. Instead, we use the fact that overestimating the rank of the canonical vector leads to estimating factors that explain some extra variance of the block. This is why we look for a first component of rank 2 and expect to find Propanol as the second extracted factor. This is indeed the case, and we can see that λ

(2) 1 , the weight associated with the second factor of the first block, is really low (≈ 0.03). This means that TGCCA remains robust in estimating the correlated component, even when the rank is overestimated. Figure A.2 shows that TGCCA with only rank-1 factors (i.e., MGCCA) cannot accurately estimate the true concentration of Propanol. Interestingly, Propanol is partially found as the fifth component extracted by rank-1 TGCCA. A better way to retrieve the Propanol concentration would be to have a specific way to identify unshared factors between blocks.

A.3.2 . Comparing best models

As TGCCA, CMTF, and ACMTF are all unsupervised methods, we select the best model for each method by keeping the one with the best criterion. For CMTF and ACMTF, we choose the model that minimizes equation (3.28). For TGCCA, we sum the values obtained for criterion (3.3) for each component and keep the model with the highest sum. It is worth noting that, for both TGCCA and ACMTF, this best model does not correspond with the one that maximizes each of the cosines between the five estimated and real vectors of concentrations (see The Multi-Pie Face dataset [START_REF] Gross | Multi-pie[END_REF] consists of images of people's faces. For each person, pictures are taken under 20 illumination conditions, 15 views, and different facial expressions. We take cropped images used in [START_REF] Tian | Cr-gan : Learning complete representations for multi-view generation[END_REF], available on their GitHub repository. This extraction consists of color images of size 128 × 128 from 250 subjects in two facial expressions (neutral and smile). We select the first 100 subjects to form our training set and the next 100 for the testing set. We use grayscale versions of the images and downsample them to size 64 × 64 using linear interpolation with the R package imager (Barthelmé and Tschumperlé, 2019). We select two views corresponding to cameras 05_1 and 05_0, which are positioned at angles 0°and -15°around the subject. We arbitrarily select 15 illumination conditions (2 to 6 and 10 to 19) and the neutral facial expression. Figure A.5 shows the resulting images for the first subject. For each pose, we stack the images to make a tensor of dimensions 100 × 64 × 64 × 15.

A.4.2 . Pairing subjects

Our goal is to use CCA methods to learn a common latent subspace between the two tensor blocks and use this learned representation in a classification task : given new subjects in the two views, pair the subjects across the two views. We compare RGCCA and spTGCCA with ranks 1 and 3. As the number of variables is much greater than the number of subjects, we use the identity matrix as the regularization matrix M l in the RGCCA framework. The different canonical components are extracted using the deflation procedure for orthogonal components described in Section 1.1.5.

Once this subspace has been learned, it can be used to project new images. The projection is obtained by applying the preprocessing (centering and uniform scaling) used on the training set to the testing set and multiplying the image with the corresponding canonical vector. However, this last step is impossible since the canonical vectors have been learned using the 15 illumination conditions.

Leveraging the structure of canonical vectors in TGCCA, we propose a workaround. Let X ∈ R 64×64×15 and A = a 1 • a 2 • a 3 ∈ R 64×64×15 , (A.16) where × m denotes the mode-m product. If only slice j is available on the third mode of X, only the product Vec (X × 1 a 1 × 2 a 2 ) j w 3,j can be computed. This creates a partial projection equivalent to the full projection if the other tensor slices are filled with zeros. As training images have been centered, this zero-imputation reduces to imputing the missing slices to the means of the training subjects. If more slices are available (i.e., images of the same subjects are given in more than one illumination condition), (A.16) shows that they can just be added to the tensor while setting missing slices to zero. This reasoning works as-is for a rank-R tensor W, so it can be applied even if the tensor rank is possibly high such as in the case of the folded version of a canonical vector obtained with RGCCA.

x ⊤ a = X × 1 a 1 × 2 a 2 × 3 a 3 = Vec (X × 1 a 1 × 2 a 2 ) ⊤ a 3 ,
For projecting and centering the testing images, it is necessary to know which illumination conditions the images are in. We assume these illumination conditions are unknown and must be inferred from the data using a Linear Discriminant Analysis (LDA) classifier. This classifier is trained on the 100 × 15 × 2 = 3000 images of the training set that were downsampled to size 16 × 16 using linear interpolation. This downsampling allows having more images than variables while leaving enough information to predict the illumination condition from the image. Cross-validation on the training set showed that gathering images from the two views was more interesting than training two classifiers.

As projections are partial when images are not present in all illumination conditions, we investigate the impact of the number of available illumination conditions by varying this number from 1 to 15. Therefore, we create 15 classification tasks where we aim to pair subjects across views. Each subject in each view is represented by a tensor of dimensions 64 × 64 × i with i ∈ [15]. The first step is to predict the illumination condition of each image by downsampling it and applying the LDA classifier. Then, the missing slices of the tensor are zero-imputed. Finally, the completed tensors are projected using the learned canonical vectors.

The pairing is then done based on the distances between the projections of the subjects in each view. As in [START_REF] Lu | Learning canonical correlations of paired tensor sets via tensor-to-vector projection[END_REF], we tried the ℓ 1 and ℓ 2 norms and the opposite of the cosine. Cross-validation on ∥y 1i ∥ 2 ∥y 2j ∥ 2 , and y li is the projection of subject i from view l. This problem can be efficiently solved using Integer Linear Programming. Finally, the accuracy of the matching can be measured and reported.

A.4.3 . Results

Since the illumination conditions are randomly sampled, we repeat the experiments 100 times to better understand the matching accuracy based on the latent subspaces learned by the different models. The results are shown in Figure 3.5. Rank-3 TGCCA seems to be the best-performing method, followed by rank-1 TGCCA and RGCCA. While RGCCA learns "eigenfaces", TGCCA models remain more abstract and focus on face locations with higher variations (see Figure A.6).

Figure 3.5 shows some dispersion even when the number of available illumination conditions is 15. This is explained by the fact that the classifier is applied to all test images at once without trying to predict 15 different illumination conditions for each subject. As a consequence, if an illumination condition is predicted twice, only one of the images will be used in the subject tensor, and the missing predictions will be set to zero. The variation is then due to the order in which the 15 illumination conditions are sampled. 

A.5 . Simulations

This section presents the data model used in the simulations presented in Section 3.4. We detail the parameters of the numerical experiments and give more results with different numbers of samples, different levels of signal-to-noise ratio (SNR), and different numbers of blocks.

A.5.1 . Data model

To evaluate the quality of the estimates provided by TGCCA, we extend the probabilistic TCCA model described in [START_REF] Min | Tensor canonical correlation analysis[END_REF]. Let ρ lk for l, k ∈ [L] be the pairwise correlations between blocks and a l be given canonical vectors. We define :

• the block covariance matrix Σ η ll as :

Σ η ll = S l + ∥S l ∥ F η∥E l ∥ F E l , with S l = a l a ⊤ l ∥a l ∥ 4
2 and E l = P l T l T ⊤ l P l , (A.17)

where T l is a p l × p l arbitrary matrix, enabling noising x l ; and P l = I p l -

a l a ⊤ l ∥a l ∥ 2 2
is the projector onto the orthogonal of span(a l ), ensuring that a ⊤ l Σ η ll a l = 1. The SNR is controlled by the parameter η.

• a linear transformation u l = ρ l Σ η ll a l , where ρ l ∈ [-1, 1] with ρ lk = ρ l ρ k .

The simulated data is generated using the following latent factor model :

x l |z ∼ N (u l z, Σ η ll -u l u ⊤ l ) with z ∼ N (0, 1).

This allows the joint distribution of (x 1 , . . . , x L ) to be N (0, Σ η ) where Σ η = Σ η lk {l,k∈[L]} and Σ η lk = Σ η ll a l ρ lk a ⊤ k Σ η kk . Thanks to this model, the blocks are correlated through the linear transformation of the latent variable z.

A.5.2 . Data generation

In our numerical study, we generate data with L = 5 blocks. Information about the different blocks can be found in Table A.1. The folded shapes of the first 4 canonical vectors can be seen in Figure A.7.

10 folds of data are generated with n = 1000 samples per fold. ρ l = √ 0.8 for l ∈ [L] so every ρ lk = 0.8. Noise is added using the model described in (A.17). For block l, E l = P l T l T ⊤ l P l , with T l an arbitrary matrix in R p l ×p l . In order for Σ η ll to be positive-definite, T l T ⊤ l has to be positive-definite. We choose T l such that T l T ⊤ l = T u l T u ⊤ l + t s l t s ⊤ l , where the first term defines unstructured noise and the second, structured one. These terms are defined as follows : A.1. To create noise from these shapes, we just vectorize them in vectors t s l . Unstructured noise is added to every block, but no structured noise is added to the last block ("Vector"). Both types of noises are normalized by their Frobenius norms before being added together. Data has been generated for 4 levels of SNR : -20dB, -10.5dB, -6dB, and 0dB (η equals respectively 0.1, 0.3, 0.5, and 1).

It is possible to split the folds from the 10 folds of n = 1000 samples each to generate different experiments. In this section, some results are given for • 10 folds with n = 1000 samples per fold,

• 20 folds with n = 500 samples per fold,

• 33 folds with n = 300 samples per fold,

• 50 folds with n = 200 samples per fold,

• 100 folds with n = 100 samples per fold.

Results in the main text are presented for n = 1000, an SNR level of -20dB, and a selection of 2 blocks ("Gas" and "Cross (small)") among the 5 that were created, resulting in L = 2.

A.5.3 . Methods

The models included in the comparison are, in the L = 2 settings, TGCCA, MGCCA [START_REF] Gloaguen | Multiway generalized canonical correlation analysis[END_REF], TCCA [START_REF] Min | Tensor canonical correlation analysis[END_REF], 2DCCA [START_REF] Chen | Tensor canonical correlation analysis with convergence and statistical guarantees[END_REF], RGCCA [START_REF] Tenenhaus | Regularized generalized canonical correlation analysis : A framework for sequential multiblock component methods[END_REF] and the per block SVD. In the L = 5 settings, only TGCCA, MGCCA, RGCCA, and the per-block SVD are included. If relevant, the method's rank is added as a suffix and the separable assumption as a prefix with the letters "sp". We apply small changes to the codes of [START_REF] Chen | Tensor canonical correlation analysis with convergence and statistical guarantees[END_REF] and [START_REF] Min | Tensor canonical correlation analysis[END_REF] to harmonize the experiments. We add the convergence criterion from the latter to the former to compare computation times, and we set the shrinkage parameter as a parameter of TCCA to have the same shrinkage parameter for all models. The shrinkage parameter τ is set to 0.001. As [START_REF] Chen | Tensor canonical correlation analysis with convergence and statistical guarantees[END_REF] proposes a so-called "effective" initialization strategy, we use it to run 2DCCA1. TGCCA, MGCCA, and TCCA are run with 5 different starts.

We use TGCCA and MGCCA in the CCA setting, i.e. :

• The function g is the identity function,

• The elements of the design matrix C are c lk = 1 -δ lk where δ is the Kronecker delta,

• For the constraint matrix M l , two cases are considered depending on the separable assumption made on these matrices (only the second case applies for MGCCA) :

• When M l is not assumed to be separable, Ml = Σll + τ l I p l which is a regularized version of the empirical covariance Σll . We choose τ l = 0.001 for l ∈ [L].

• When M l is assumed to be separable, a separable estimate of the covariance [START_REF] Hoff | Separable covariance arrays via the tucker product, with applications to multivariate relational data[END_REF][START_REF] Min | Tensor canonical correlation analysis[END_REF] is used. Without going into the details, this estimator can be written as √ τ l instead of τ l so that, when the Kronecker products are developed, the term in front of I p l is τ l , which is a way to have a similar level of regularization between the separable and non-separable cases. As before, for all blocks, τ l is set to 0.001.

Concerning the normalization procedure, for all the methods, variables of each block were centered and scaled by s l = p l n ∥X l ∥ F , where ∥.∥ F is the Frobenius norm.

A.5.4 . Results

All experiments were run on a personal computer using the R language (R Core Team, 2022). Results are given in Tables A.3A.12. Cosines (with median and 2.5% and 97.5% quantiles over the different folds) between the canonical vectors used to generate the data and the estimated ones are reported. The computation time (with median and 2.5% and 97.5% quantiles over the different folds) is reported in seconds. For models run with multiple starts (TCCA, MGCCA, and TGCCA), the computation time includes the 5 runs.

From Tables A.3 to A.7, results are shown for the L = 2 settings and compare 2DCCA, TCCA, MGCCA, TGCCA, RGCCA, and per-block SVD. From Tables A.8 to A.12, results are shown for the L = 5 settings and compare MGCCA, TGCCA, RGCCA, and per-block SVD. Each of the 10 tables is split into 4 smaller tables, one per SNR. Among one group of 5 tables (A.3-A.7 and A.8-A.12), the number of folds is increasing, and thus the number of samples per fold is decreasing.

Firstly, for all models but 2DCCA3, the accuracy increases with the SNR and the number of samples per fold. 2DCCA3 totally fails to retrieve the canonical vectors. We think that this is due to our experimental settings. Indeed, 2DCCA3 tries to find 3 canonical vectors of rank 1 such that the canonical components y l = a ⊤ l x l are uncorrelated while the data is simulated from only one canonical component per block with the associated canonical vectors of ranks greater than 1. This illustrates the differences between rank and number of components.

We can see that the accuracy is better with a much lower standard deviation when the SNR is greater than -20dB. When the SNR is low (-20dB), the different methods are more sensitive to the choice of the starting point. To highlight this last point, an additional experiment was held with an SNR of -20dB for MGCCA, TCCA, and TGCCA. This time, instead of keeping the results associated with the best random initialization only, we display the median and 2.5% and 97.5% quantiles for each block (L = 2) through 100 random starts on a given fold (results are reported in Table A.2). Even if the median coincides with the higher quantile, the lower quantile is extremely low. On the other hand, the "effective" strategy of 2DCCA1 does not always lead to a good initial point either (see, for example, the high standard deviation reported in Table A.3 for 2DCCA1). We do not provide guidelines for choosing a good initial point. Still, if possible, we advise running MGCCA, TCCA, and TGCCA multiple times with initial points chosen randomly and keeping the models with the highest correlation between blocks.

TGCCA3 and spTGCCA3 perform better than rank-1 models when the SNR is high. It is expected as the rank of the underlying canonical vectors is greater than 1 for every block except for the first block in the L = 5 settings. The opposite trend is observed for this block, even if TGCCA3 and spTGCCA3 remain very good. It can be explained by the fact that the weights of the different rank-1 factors are not null, but only one of them is far from zero (see Figure A.9). On the other hand, when the SNR is low, TGCCA3 and spTGCCA3 tend to perform worse than the rank-1 methods. It is also expected as rank-3 models have more degrees of freedom and are more flexible. Therefore, when the SNR is too low, rank-3 models can describe both the relevant information and the noise (see factors 2 and 3 for "Square" and factor 3 for "Cross" and "Cross (small)" on Figure A.9). These observations go into the same direction as the ones made from Figure 3.4. In Figure A.10, we report the cosines obtained with spTGCCA for (R 1 , R 2 ) ∈ [15] 2 with a SNR of 0dB. In this case, since the SNR is higher, the results are less degraded when the ranks get too high.

In the L = 5 settings, we see that the models take profit from the redundancy between blocks to estimate the canonical vectors more accurately. We can also point out that spTGCCA scales well with the number of blocks and remains fast when evaluated on the 5 blocks. To investigate the interest of analyzing more than 2 blocks jointly, we compared the same models both applied on 2 blocks and on 5 blocks (respectively denoted with suffixes "b2" and "b5"). It shows that having more correlated blocks acts like virtually increasing the SNR or the number of observations n. Hence the accuracy of the models applied on 5 blocks is much higher for SNR of -20dB and slightly better for higher SNR (compare Tables A.3-A.7 and A.8-A.12).

Finally, spTGCCA appears to be the fastest method (considering that reported computation times correspond to 5 runs). spTGCCA is faster because it needs only to work with much smaller matrices ( Ml,m ∈ R p l,m ×p l,m ), compute them once, make a change of variable and then work without regularization matrices. However, one must be cautious when comparing it to TCCA because the Matlab code of TCCA was called from R, leading to some slight overestimation of the reported computation time. 2DCCA is removed from these experiments since we did not find an available implementation for higher-order tensors. As "Gas 3D" is of high dimension, the regularization matrices M l are set to the identity matrices for RGCCA and TGCCA in the L = 5 settings. Therefore, only spTGCCA is used and is reported as TGCCA. Orthogonality is imposed on the first mode for TGCCA models. All models are run with 10 different starting points. Tables A.13-A.15 show the results for the L = 2 settings, and Tables A.16-A.18 show the results for the L = 5 settings.

A.5.5 . Additional experiments with 3D canonical vectors

Conclusions are similar to the previous experiments, but RGCCA performs much better than before. This is probably due to the unstructured noise being simpler in these new experiments.

A.5.6 . On the bootstrap procedure

The bootstrap procedure presented in Chapter 5 can also be evaluated on our simulations. We apply the bootstrap procedure with rank-1 and rank-3 spTGCCA ⊥ and report the variables that have a consistent sign according to the method on Figures A.12 and A.13. We use the configuration of the main text : n = 1000 and SNR of -20dB. We can see that the method tends to be conservative : a p-value is more likely to be greater than 0.1 if it should have a consistent sign than the other way around. When increasing the number of blocks and/or the SNR, the results of the method gets better (not shown). Table A.2 -Cosine between the true canonical vectors and the estimated ones for different models on block "Gas" and "Cross (little)" for SNR of -20dB for n = 1000, fold 1, with 100 random initial points. Median and quantiles (2.5% and 97.5%) are reported. The medians coincide with the higher quantile but the lower quantile is very low. 

Model

L 2 = f ⊤ a [h] l + α 2 (λ [h] l ⊤ λ [h] l -1) + R l r,s=1 s>r (∆ 1 * (A [h] l,1 ⊤ A [h] l,1 -I R l )) rs + 1 2 d l m=1 R l r=1 δ (r) m (a [h](r) l,m ⊤ a [h](r)
l,m -1).

(B.48)

Derivatives of L 1 . To express the derivatives of the Lagrangians, we will make use of the relations a l is :

∂L 1 ∂λ [h] l = -µA [h] l ⊤ f + αλ [h]
l .

(B.49)

The derivative with respect to a (B.51)

Cancelling the derivatives with respect to a

[h](r) l,1

for r ∈ [R l ] leads to :

A [h] l,1 ∆ 1 = Q 1 , (B.52)
where Q = q (1) . . . q (R l ) with q (r) = µλ l is :

∂L 2 ∂ λ[h] l = - Ã[h] l ⊤ (f + a [h] l ) + α λ[h] l .
(B.53)

The derivative with respect to 

Figure 1

 1 Figure 1.2 -Tensor representation of EEG data as channels × time × frequency, taken from Naskovska et al. (2020).

  a p , the vectorized version of A is a = Vec(A) = a ⊤ 1 . . . a ⊤ p ⊤ where ⊤ denotes the transpose operator.

  (a) Mode-1 fibers : x .j2j3 (b) Mode-2 fibers : x j1.j3(c) Mode-3 fibers : x j1j2.

Figure 1

 1 Figure 1.3 -Mode-m fibers of a 3 rd -order tensor X ∈ R p 1 ×p 2 ×p 3 .

  the super diagonal tensor of order d which diagonal is λ. It means that c j 1 ...j d = 0 if any j m ̸ = j n for (m, n) ∈ [d] 2 and c r...r = λ (r) for r ∈ [R]. The CPD of X can be seen as the result of the modes products between C and the matrices A m for m ∈ [d] :

Figure 1

 1 Figure 1.4 -CPD decomposition of a 3 rd -order tensor. The core tensor C is super diagonal.

Algorithm 2

 2 ALS algorithm to compute the CPD of a tensor X 1: Result : λ, A 1 , . . . , A d (approximate solution of (1.31)) 2: Input : R, X 3: Initialize A m for m ∈ [d] ;

Figure 2 Figure 2

 22 Figure 2.1 -Block-weight vectors of a fitted RGCCA model.

Figure 2

 2 Figure 2.3 -Average Variance Explained of the different blocks.

  R> plot(fit, type = "cor_circle", block = 1, comp = 1

Figure 2 . 4 -

 24 Figure 2.4 -Correlation circle associated with the first two components of the Agriculture block.

Figure 2

 2 Figure 2.5 -Biplot associated with the first two components of the Agriculture block.

Figure 2 . 6 -

 26 Figure 2.6 -Bootstrap confidence intervals for the block-weight vectors.

  R> plot(fit.mcoa, type = "biplot", + block = 4, comp = 1:2, + response = lab, + repel = TRUE, cex = 2)

Figure 2 . 7 -

 27 Figure 2.7 -Biplot of the countries obtained by crossing the two first components of the superblock. Individuals are colored according to their political regime and variables according to their block membership.

  R> set.seed(123) R> perm_out <-rgcca_permutation(blocks = A, connection = C

Figure 2

 2 Figure 2.8 -Values of the objective function of RGCCA against the sets of tuning parameters, triangles correspond to evaluations on non-permuted datasets.

Figure 2

 2 Figure2.9 -Graphical display of the tumors obtained by crossing the block components, and colored according to their location.

  R> set.seed(27) #my favorite number R> in_train <-caret::createDataPartition( + blocks[[3]], p = .75, list = FALSE + ) R> training <-lapply(blocks, function(x) as.matrix(x)[in_train, , drop = FALSE]) R> testing <-lapply(blocks, function(x) as.matrix(x)[-in_train, , drop = FALSE]) R> R> cv_out <-rgcca_cv(blocks = training, response = 3

Figure 2 .

 2 Figure 2.10 -Accuracies of the models on the different validation folds against the sets of tuning parameters.

Figure 2

 2 Figure 2.11 -Graphical display of the tumors obtained by crossing the components of GE1 and CGH1, and colored according to their location.

  );[START_REF] Gloaguen | Multiway generalized canonical correlation analysis[END_REF];[START_REF] Chen | Tensor canonical correlation analysis with convergence and statistical guarantees[END_REF] have proposed extensions of CCA where the canonical vectors are constrained to follow a CPD model of rank-1. This rank-1 constraint might lead to a too crude approximation of the canonical vectors, so[START_REF] Min | Tensor canonical correlation analysis[END_REF] impose a rank-R CPD instead.

  l,m F (m) Ãl,(-m) ) s.t. Vec( Ãl,m Ãl,(-m) ) ⊤ Vec( Ãl,m Ãl,(-m) ) = 1. (3.15) Using the property Vec(ABC) = (C ⊗ A)Vec(B), we can express the constraint as : Vec( Ãl,m ) ⊤ ( Ãl,(-m) ⊗ I pm ) ⊤ ( Ãl,(-m) ⊗ I pm )Vec( Ãl,m ) = 1. (3.16) Using the change of variable b = (( Ã⊤ l,(-m) Ãl,(-m) ) 1 2 ⊗ I pm )Vec( Ãl,m ), the new problem to solve is : maximize b

  l,m F (m) Ãl,(-m) ) s.t. Vec( Ãl,m Ãl,(-m) ) ⊤ Ml Vec( Ãl,m Ãl,(-m) ) = 1. (3.21) Using the property of the Kronecker product again, we can express the constraint as : Vec( Ãl,m ) ⊤ ( Ãl,(-m) ⊗ I pm ) ⊤ Ml ( Ãl,(-m) ⊗ I pm )Vec( Ãl,m ) = 1. (3.22) We can once again make a change of variable. Let b = M 1 2 l,m Vec( Ãl,m ) with M l,m = ( Ãl,(-m) ⊗ I pm ) ⊤

  Figure 3.1 -Folded canonical vectors used to generate the data.

  Figure 3.2 -Folded shapes used to generate the structured noise.

  Figure 3.3 -Folded true (a) and estimated (b to p) canonical vectors for the first block.

l

  } r∈[3] which are almost collinear. It would require further investigations to understand why their way of solving the TCCA optimization problem leads to these solutions.

  Figure 3.4 -Cosines between the true and estimated canonical vectors depending on the ranks imposed on the CPD for the two blocks with model spTGCCA ⊥ . The median over the 10 folds is reported.

Figure 3 . 5 -

 35 Figure 3.5 -Matching accuracy on the test set for different models and different numbers of components. Experiments are repeated 100 times. Ribbons contain 95% of the points around the median for each model.

  is more convenient since it involves the variable Ãl and we have the following matrix constraint : Ã⊤ l M l Ãl = I H . Making the change of variable Bl = M 1 2

  H] and l ∈ [L] until convergence (see Algorithm 5

  where d max = max(d) and d min = min(d).

  3

Figure 4 . 1 -

 41 Figure 4.1 -Folded canonical vectors used to generate the data.

3Figure 4

 4 Figure 4.3 -Folded canonical vectors estimated with global RGCCA.

Figure 5

 5 Figure 5.2 -Boxplots of the proportions of CD14-CD16+, CD14-CD16-, and CD14+CD16-macrophage populations for controls and MS patients. Stars show significant differences. Triangles represent controls and squares the patients.

Figure 5

 5 Figure 5.3 -Example of a bimodal distribution becoming unimodal after a sign change.

Figure 5

 5 Figure 5.4 -Scores of the patients obtained with global MGCCA for the different blocks. Controls are represented with triangles, and patients with squares.

Figure 5

 5 Figure 5.5 -Estimated weights of the global MGCCA model trained on patients and controls for the second mode of block MFI and the first mode of block CG4. Error bars represent empirical 95% confidence intervals, and stars represent the significance levels.

Figure 5 . 6 -

 56 Figure 5.6 -Scores of the patients obtained with global MGCCA for the different blocks. Triangles represent treated patients, and squares untreated patients.

Figure 5

 5 Figure 5.7 -Estimated weights of the global MGCCA model trained on patients for blocks CD and CG4. Error bars represent empirical 95% confidence intervals, and stars represent the significance levels.

Figure 5 . 8 -

 58 Figure 5.8 -Diagram illustrating the choice of tests used to compute our score. T25FW stands for Timed 25 Foot Walk is the average time for walking twice a distance of 25 feet[START_REF] Motl | Validity of the timed 25-foot walk as an ambulatory performance outcome measure for multiple sclerosis[END_REF]. The PASAT (Paced Auditory Serial Addition Test) evaluates attention and speed of information processing using mental calculus[START_REF] Gronwall | Paced auditory serial-addition task : A measure of recovery from concussion[END_REF]. The STROOP test evaluates mental flexibility and inhibitory processes. The patient must read the color in which words are written while the words are different color names themselves[START_REF] Denney | The impact of multiple sclerosis on patients' performance on the Stroop Test : processing speed versus interference[END_REF]. The 9HPT (9 Hole Peg test) evaluates the dexterity of the upper limbs. The patient must place nine pegs as fast as possible into nine holes[START_REF] Feys | The Nine-Hole Peg Test as a manual dexterity performance measure for multiple sclerosis[END_REF]. EDSS-V, EDSS-S, EDSS-BB, and EDSS-BS correspond to the functional scores in the EDSS related to Visual, Sensory, Bowel and Bladder, and Brain Stem functions.

Figure 5

 5 Figure 5.9 -Scores of the ALD patients and the controls obtained with global MGCCA for the different blocks. Triangles represent controls and squares ALD patients.

Figure 5 .

 5 Figure 5.10 -Scores of the controls, ACALD, and AMN patients obtained with global MGCCA for the different blocks. Triangles represent controls, squares ACALD patients, and circles AMN patients.

  Figure A.1 -Illustration of the BCA strategy to maximize a convex function under entangled constraints.The concentric curves represent the levels of the function, and the green triangle is the feasible set. After the second update, the BCA algorithm is stuck and cannot move anymore, but the point is not a local maximum.

  and λ l . The Lagrange multiplier associated with the constraint λ ⊤

  Figure A.2 -Normalized concentrations of the different chemicals for both rank-2 TGCCA and rank-1 TGCCA, we can see that rank-1 TGCCA does not capture Propanol as well as rank-2 TGCCA.

  Figure A.3 -Boxplots of the cosines between the true and estimated concentrations for TGCCA, CMTF, and ACMTF.

  Figure A.4 -Normalized concentrations of the different chemicals for TGCCA, CMTF, and ACMTF.

Figure A. 5 -p

 5 Figure A.5 -Images of the first subject in all illumination conditions. Each row corresponds to a different view.

6 -

 6 Figure A.6 -First 10 pairs of canonical vectors obtained with the three methods. Canonical vectors have been folded to shape 64 × 64 × 15 and averaged over the last mode. Each row corresponds to a different view.

  Figure A.7 -Folded canonical vectors used to generate the data.

  Figure A.8 -Folded shapes used to generate the structured noise.

  Σll = Σll,d l ⊗ • • • ⊗ Σll,1 .We propose here a regularized version of it, where Ml =Σll,d l + d l √ τ l I p l,d l ⊗ • • • ⊗ Σll,1 + d l √ τ l I p l,1 .Here, the regularization term is multiplied by d l

  Figure A.11 -Folded shapes used in the 4D settings.

  Figure A.12 -Estimated canonical vectors with uncorrected bootstrap p-values per variable for rank-1 spTGCCA. In grey, p-values greater than 0.1

  . The notations are the same as in Appendix A.2 with the extra superscript to indicate that we are working on the h th component. Hence, the derivative of L 1 with respect to λ [h]

2 .

 2 The derivative of L 2 with respect to λ[h] 

  Figure C.1 -Boxplots of the proportions of O4 and GFAP markers for treated and untreated MS patients. Stars show significant differences. Triangles represent treated patients, and squares untreated patients.

Figure C. 2 -

 2 Figure C.2 -Estimated weights of the global MGCCA model for blocks MFI and CG4 considering treated and untreated MS patients. Error bars represent empirical 95% confidence intervals, and stars represent the significance levels.

Figure C. 3 -

 3 Figure C.3 -Boxplots of the proportions of CD14+/CD16+ and CD14+/CD16-for controls and ALD patients. The first row corresponds to cells without myelin, while the bottom left and bottom right correspond to cells with respectively low and high myelin phagocytic capacities. Stars show significant differences.

  

  

Table 2 .

 2 1 -Functions implemented in the RGCCA package.

	Function	Description
	rgcca	Main entry point of the package, this function allows
		fitting a R/SGCCA model on a multiblock dataset.
	rgcca_transform	Use a fitted R/SGCCA model to compute the block
		components of unseen individuals.
	rgcca_predict	Train a caret model on the block components of a
		fitted R/SGCCA model and predict values for unseen
		individuals.
	rgcca_cv	Find the best set of parameters for a R/SGCCA model
		using cross-validation.

rgcca_permutation

Find the best set of parameters for a R/SGCCA model using a permutation strategy.

rgcca_bootstrap Evaluate the significance of the block-weight vectors produced by a R/SGCCA model using bootstrap.

  If, for a specific reason, only the block components are wanted for the test set, the function rgcca_transform can be used.

	R> pred$confusion$test	
	Confusion Matrix and Statistics
	Reference	
	Prediction cort dipg midl
	cort	4	0	0
	dipg	0	3	2
	midl	1	2	0
	Overall Statistics		
		Accuracy : 0.5833
		95% CI : (0.2767, 0.8483)
	No Information Rate : 0.4167
	P-Value [Acc > NIR] : 0.1893
			Kappa : 0.3548
	Mcnemar's Test P-Value : NA
	Statistics by Class:	
			Class: cort Class: dipg Class: midl
	Sensitivity			0.8000	0.6000	0.0000
	Specificity			1.0000	0.7143	0.7000
	Pos Pred Value		1.0000	0.6000	0.0000
	Neg Pred Value		0.8750	0.7143	0.7778
	Prevalence			0.4167	0.4167	0.1667
	Detection Rate		0.3333	0.2500	0.0000
	Detection Prevalence	0.3333	0.4167	0.2500
	Balanced Accuracy		0.9000	0.6571	0.3500

R> projection <-rgcca_transform(fit, blocks_test = testing)

Table 3 .

 3 1 -Description of the generated blocks.

	Block Name	Structure Folded shape Rank Noise name Noise rank
	2	Gas	matrix	45 × 38	12	Parking	11
	4	Cross (small) matrix	19 × 19	2	Cup	6
				77			

Table 3 .

 3 2 -Cosine between the true and the estimated canonical vectors as well as computation times. Median and quantiles (2.5% and 97.5%) are reported.

	Model	Gas	Cross (small)	Computation time
	2DCCA1	0.30 (0.01, 0.89) 0.43 (0.16, 0.85) 3.09 (2.76, 4.50)
	TCCA1	0.89 (0.22, 0.90) 0.85 (0.32, 0.86) 7.72 (7.38, 9.17)
	TGCCA1	0.89 (0.87, 0.90) 0.85 (0.83, 0.86) 8.70 (8.50, 10.26)
	spTCCA1	0.89 (0.22, 0.90) 0.85 (0.32, 0.86) 7.43 (7.24, 8.04)
	MGCCA	0.89 (0.87, 0.90) 0.86 (0.83, 0.86) 4.98 (4.66, 5.16)
	2DCCA3	0.04 (0.01, 0.21)	0.13 (0.05, 0.31) 1.50 (1.41, 3.09)
	TCCA3	0.89 (0.87, 0.90) 0.85 (0.83, 0.86) 7.93 (7.73, 8.92)
	TGCCA3	0.91 (0.83, 0.94) 0.93 (0.84, 0.96) 198.28 (150.75, 562.42)
	TGCCA3 ⊥	0.91 (0.78, 0.94) 0.92 (0.79, 0.96) 10.87 (10.11, 13.93)
	spTCCA3	0.89 (0.87, 0.90) 0.85 (0.83, 0.86) 7.32 (7.22, 7.51)
	spTGCCA3	0.92 (0.82, 0.94) 0.93 (0.83, 0.96) 16.45 (14.19, 24.81)
	spTGCCA3 ⊥ 0.92 (0.82, 0.94) 0.93 (0.83, 0.96) 5.62 (5.44, 6.31)
	RGCCA	0.17 (0.05, 0.26) 0.11 (0.06, 0.20)	13.12 (12.67, 14.07)
	SVD	0.00 (0.00, 0.01) 0.01 (0.00, 0.03) 5.78 (5.44, 6.07)

same underlying rank-R CPD structure. TCCA does not impose orthogonal rank-1 factors, and in our experiments, TCCA3 extracts canonical vectors {â

Table 3

 3 

	Model	Cross	Cross (small) 3D Computation time
	TCCA1	0.88 (0.87, 0.89) 0.88 (0.85, 0.88) 17.31 (16.74, 18.94)
	TGCCA1	0.88 (0.87, 0.89) 0.88 (0.85, 0.88) 14.29 (13.24, 21.84)
	spTCCA1	0.88 (0.87, 0.89) 0.88 (0.85, 0.88) 15.70 (15.32, 23.05)
	spTGCCA1	0.88 (0.87, 0.89) 0.87 (0.87, 0.88) 15.90 (15.10, 24.15)
	TCCA3	0.88 (0.87, 0.89) 0.88 (0.85, 0.88) 23.89 (19.64, 26.21)
	TGCCA3	0.99 (0.98, 1.00) 1.00 (0.98, 1.00)	9018.82 (2629.23, 24901.64)
	TGCCA3 ⊥	0.98 (0.96, 1.00) 0.88 (0.82, 0.88) 21.58 (20.46, 25.45)
	spTCCA3	0.88 (0.87, 0.89) 0.88 (0.85, 0.88) 17.96 (15.65, 20.41)
	spTGCCA3	0.98 (0.95, 0.99) 0.95 (0.93, 0.95) 147.82 (41.70, 305.99)
	spTGCCA3 ⊥ 0.98 (0.96, 0.99) 0.95 (0.93, 0.95) 48.91 (31.81, 72.62)
	RGCCA	0.97 (0.92, 0.98) 0.98 (0.84, 0.98) 115.32 (113.21, 116.23)
	SVD	0.01 (0.00, 0.03) 0.01 (0.00, 0.03) 1.62 (1.54, 1.73)

.3 -Cosine between the true and the estimated canonical vectors as well as computation times. Median and quantiles (2.5% and 97.5%) are reported (3D settings).

Table 3 .

 3 4 -Cosine between the true and the estimated concentrations with computation times (mean and standard deviation). The cosine for the best model over the 100 runs is reported between parentheses.

	Chemical	TGCCA ⊥	TGCCA	CMTF	ACMTF
	Val-Tyr-Val	0.96 ± 0.01 (0.96) 0.96 ± 0.00 (0.96) 0.63 ± 0.23 (1.00) 0.61 ± 0.20 (0.95)
	Trp-Gly	0.91 ± 0.03 (0.92) 0.92 ± 0.00 (0.92) 0.51 ± 0.26 (0.98) 0.54 ± 0.23 (0.95)
	Phe	0.83 ± 0.10 (0.87) 0.90 ± 0.00 (0.90) 0.56 ± 0.34 (0.98) 0.64 ± 0.30 (0.70)
	Malto	1.00 ± 0.00 (1.00)	1.00 ± 0.00 (1.00) 1.00 ± 0.00 (0.99) 1.00 ± 0.00 (0.99)
	Propanol	1.00 ± 0.000 (1.00) 0.30 ± 0.11 (0.23) 0.53 ± 0.32 (1.00) 0.52 ± 0.30 (0.99)
	Computation time 3.93 ± 0.21	9.76 ± 0.42	93.72 ± 43.6	111.78 ± 45.05

Table 4 .

 4 1 -Cosine between the true and the estimated canonical vectors with computation times. Median and quantiles (2.5% and 97.5%) are reported. The true estimated canonical vectors are orthogonal.

	Model	RGCCA	Global RGCCA	PASS-RGCCA	SPOND-RGCCA	ReSPOND-RGCCA
	a [1] 1	0.15 (0.04, 0.27) 0.16 (0.06, 0.24) 0.22 (0.04, 0.37) 0.16 (0.07, 0.24)	0.16 (0.06, 0.24)
	a [2] 1	0.98 (0.85, 0.99) 0.99 (0.99, 0.99) 0.99 (0.99, 0.99) 0.99 (0.99, 0.99)	0.99 (0.99, 0.99)
	a [3] 1	0.99 (0.81, 0.99) 0.99 (0.99, 0.99) 0.99 (0.99, 0.99) 0.99 (0.99, 0.99)	0.99 (0.99, 0.99)
	a [1] 2	0.95 (0.79, 0.99) 0.99 (0.99, 0.99) 0.99 (0.99, 0.99) 0.99 (0.99, 0.99)	0.99 (0.99, 0.99)
	a [2] 2	0.15 (0.06, 0.25) 0.16 (0.05, 0.27) 0.18 (0.09, 0.32) 0.16 (0.05, 0.27)	0.16 (0.05, 0.27)
	[3] a 2					

Table 4 .

 4 2 -Cosine between the true and the estimated canonical vectors with computation times. Median and quantiles (2.5% and 97.5%) are reported.

	Model	RGCCA	Global RGCCA	PASS-RGCCA	SPOND-RGCCA	ReSPOND-RGCCA
	a [1] 1	0.14 (0.00, 0.54) 0.29 (0.06, 0.42) 0.66 (0.47, 0.93)	0.28 (0.10, 0.42)	0.28 (0.06, 0.42)
	a [2] 1	0.90 (0.68, 0.93) 0.93 (0.90, 0.94) 0.93 (0.90, 0.94)	0.93 (0.90, 0.94)	0.93 (0.90, 0.94)
	a [3] 1	0.86 (0.81, 0.92) 0.88 (0.85, 0.92) 0.88 (0.85, 0.92)	0.88 (0.85, 0.92)	0.88 (0.86, 0.92)
	a [1] 2	0.69 (0.36, 0.80) 0.80 (0.76, 0.82) 0.80 (0.75, 0.83)	0.80 (0.76, 0.82)	0.80 (0.76, 0.82)
	a [2] 2	0.06 (0.01, 0.14) 0.07 (0.02, 0.13) 0.06 (0.01, 0.09)	0.07 (0.03, 0.13)	0.07 (0.01, 0.13)
	a [3] 2	0.99 (0.99, 0.99) 0.99 (0.99, 0.99) 0.99 (0.99, 0.99)	0.99 (0.99, 0.99)	0.99 (0.99, 0.99)
	a [1] 3	0.70 (0.14, 0.82) 0.86 (0.82, 0.90) 0.86 (0.82, 0.89)	0.87 (0.82, 0.90)	0.86 (0.82, 0.90)
	a [2] 3	0.71 (0.22, 0.82) 0.87 (0.84, 0.87) 0.87 (0.84, 0.87)	0.87 (0.84, 0.87)	0.87 (0.84, 0.87)
	a [3] 3	0.13 (0.02, 0.21)	0.14 (0.02, 0.24) 0.12 (0.02, 0.23)	0.14 (0.02, 0.24)	0.14 (0.02, 0.23)
	Computation time 8.08 (7.74, 8.27) 4.71 (4.22, 5.49) 10.78 (8.95, 13.31) 27.76 (21.14, 29.00) 168.49 (155.43, 177.77)

Table 4 .

 4 3 -Sum of the cosines between the estimated and the true, non-aligned, canonical vectors. Median and quantiles (2.5% and 97.5%) are reported. The true estimated canonical vectors are orthogonal.

	Model RGCCA	Global RGCCA	PASS-RGCCA	SPOND-RGCCA ReSPOND-RGCCA
	a [1] 1	0.04 (0.01, 0.39) 0.02 (0.00, 0.04) 0.06 (0.02, 0.11)	0.02 (0.01, 0.04) 0.02 (0.01, 0.04)
	a [2] 1	0.11 (0.03, 0.50) 0.02 (0.00, 0.06) 0.05 (0.00, 0.08) 0.02 (0.00, 0.06) 0.03 (0.00, 0.07)
	a [3] 1	0.11 (0.05, 0.52) 0.03 (0.01, 0.06) 0.05 (0.02, 0.09) 0.03 (0.02, 0.07) 0.04 (0.02, 0.08)
	a [1] 2	0.12 (0.02, 0.35) 0.04 (0.00, 0.09) 0.05 (0.02, 0.11)	0.04 (0.01, 0.09) 0.04 (0.01, 0.09)
	a [2] 2	0.57 (0.13, 0.74) 0.02 (0.01, 0.03) 0.06 (0.02, 0.11)	0.02 (0.01, 0.03) 0.02 (0.02, 0.03)
	a [3] 2	0.15 (0.02, 0.35) 0.02 (0.01, 0.05) 0.03 (0.01, 0.07) 0.02 (0.01, 0.06) 0.02 (0.01, 0.05)
	a [1] 3	0.14 (0.05, 0.27) 0.02 (0.00, 0.08) 0.04 (0.02, 0.09) 0.03 (0.01, 0.08) 0.03 (0.01, 0.08)
	a [2] 3	0.09 (0.03, 0.28) 0.02 (0.01, 0.05) 0.04 (0.01, 0.07) 0.02 (0.01, 0.05) 0.02 (0.01, 0.06)
	a [3] 3	0.11 (0.04, 0.67) 0.02 (0.01, 0.05) 0.07 (0.03, 0.10) 0.02 (0.01, 0.05) 0.02 (0.01, 0.05)

Table shows

 shows 

Table 4 .

 4 6 -Cosine between the true and the estimated concentrations for the best models in the 2-block configuration. The best models were chosen in a supervised fashion to maximize the sum of the cosines.

	Model	MGCCA Global MGCCA PASS-RGCCA SPOND-RGCCA ReSPOND-RGCCA
	Val-Tyr-Val 0.96	0.98	0.94	0.98	0.99
	Trp-Gly	0.92	0.94	0.95	0.95	0.95
	Phe	0.89	0.99	0.89	0.96	0.98
	Malto	1.00	1.00	0.66	1.00	1.00
	Propanol	0.93	0.99	0.50	0.93	0.89

Table A .

 A 1 -Description of the generated blocks.

	Block Name	Structure Folded shape Rank Noise name Noise rank Used in L = 2 setting ?
	1	Square	matrix	30 × 35	1	Information 8	×
	2	Gas	matrix	45 × 38	12	Parking	11	✓
	3	Cross	matrix	38 × 38	2	Restaurant	9	×
	4	Cross (small) matrix	19 × 19	2	Cup	6	✓
	5	Vector	vector	100	NA	NA	NA	×

Table A .

 A 3 -Cosine between the true and the estimated canonical vectors as well as computation times. of Problem (B.45) are not satisfied either. This means that the proposed updates strictly increase the criterion outside the KKT points ofProblem (B.45).The Lagrangian associated with the new version of Problem (3.8) is :

			Gas	Cross (small)
	TCCA1	0.89 (0.00, 0.89) 0.86 (0.23, 0.86)
	TGCCA1	0.89 (0.00, 0.89) 0.86 (0.23, 0.86)
	spTCCA1	0.89 (0.00, 0.89) 0.86 (0.23, 0.86)
	MGCCA	0.89 (0.00, 0.89) 0.86 (0.23, 0.86)
	TCCA3	0.89 (0.00, 0.89) 0.86 (0.23, 0.86)
	TGCCA3	0.95 (0.01, 0.95) 0.96 (0.08, 0.96)
	spTCCA3	0.89 (0.00, 0.89) 0.86 (0.23, 0.87)
	spTGCCA3 0.94 (0.01, 0.94) 0.95 (0.07, 0.95)
	Model	Gas		Cross (small)	Computation time
	2DCCA1	0.30 (0.01, 0.89) 0.43 (0.16, 0.85) 3.09 (2.76, 4.50)
	TCCA1	0.89 (0.22, 0.90) 0.85 (0.32, 0.86) 7.72 (7.38, 9.17)
	TGCCA1	0.89 (0.87, 0.90) 0.85 (0.83, 0.86) 8.70 (8.50, 10.26)
	spTCCA1	0.89 (0.22, 0.90) 0.85 (0.32, 0.86) 7.43 (7.24, 8.04)
	MGCCA	0.89 (0.87, 0.90) 0.86 (0.83, 0.86) 4.98 (4.66, 5.16)
	2DCCA3	0.04 (0.01, 0.21)	0.13 (0.05, 0.31) 1.50 (1.41, 3.09)
	TCCA3	0.89 (0.87, 0.90) 0.85 (0.83, 0.86) 7.93 (7.73, 8.92)
	TGCCA3	0.91 (0.83, 0.94) 0.93 (0.84, 0.96) 198.28 (150.75, 562.42)
	TGCCA3 ⊥	0.91 (0.78, 0.94) 0.92 (0.79, 0.96) 10.87 (10.11, 13.93)
	spTCCA3	0.89 (0.87, 0.90) 0.85 (0.83, 0.86) 7.32 (7.22, 7.51)
	spTGCCA3	0.92 (0.82, 0.94) 0.93 (0.83, 0.96) 16.45 (14.19, 24.81)
	spTGCCA3 ⊥ 0.92 (0.82, 0.94) 0.93 (0.83, 0.96) 5.62 (5.44, 6.31)
	RGCCA	0.17 (0.05, 0.26) 0.11 (0.06, 0.20)	13.12 (12.67, 14.07)
	SVD	0.00 (0.00, 0.01) 0.01 (0.00, 0.03) 5.78 (5.44, 6.07)

conditions

. Unfortunately, there is no guarantee that this new point would still allow for an increase in the value of the objective function.

Remerciements

Algorithm 7 Lagrangian maximization in SPOND-RGCCA 1: Result : {(A t l , Y t l )} L l=1 (approximate maximizers of (4.15))

2: Input : H, {(A 0 l , Y 0 l , X l , M l , Λ l )} L l=1 , ρ, ε ; 3: t = 0 ; 4: repeat 5:

for l = 1 to L do 6: µ = λ max (X ⊤ l X l )λ max (M -1 l );

end for 10:

for l = 1 to L do 11:

13: Q = LR SVD (P∆);

14:

δ = diag(Q ⊤ P);

15: [h] otherwise; 

Indeed, we want to maximize the nuclear norm of Y l . This is highly unusual. In many applications [START_REF] Fazel | A rank minimization heuristic with application to minimum order system approximation[END_REF][START_REF] Negahban | Estimation of (near) Low-Rank Matrices with Noise and High-Dimensional Scaling[END_REF][START_REF] Yi | Hierarchical nuclear norm penalization for multi-view data integration[END_REF], the nuclear norm is added as a penalty to be minimized to get a low-rank solution. Since singular values are positive, minimizing their sums is equivalent to minimizing the ℓ 1 -norm of the vector of singular values. It is well-known [START_REF] Tibshirani | Regression Shrinkage and Selection via the Lasso[END_REF][START_REF] Zou | Regularization and Variable Selection Via the Elastic Net[END_REF][START_REF] Jenatton | Structured variable selection with sparsity-inducing norms[END_REF] that minimizing the ℓ 1 -norm induces sparse solutions, so minimizing the nuclear norm will cancel out the smaller singular values, yielding a low-rank solution. Our objective is exactly the opposite : by setting a number of components, we set a maximum rank for our matrices and want our matrices to reach this rank. Therefore, our idea is to maximize the nuclear norm. Under a Frobenius norm constraint, the nuclear norm becomes maximum when Y ⊤ l Y l is proportional to the identity matrix. The reason is the following : consider the SVD decomposition Y l = Udiag □ (σ)V ⊤ , we aim to maximize the sum of the elements of σ under a constraint on the sum of the squared element of σ. The solution is then to take σ proportional to the vector 1 H . Hence, Y ⊤ l Y l is proportional to VV ⊤ = I H since H must be smaller than the number of observations. This is interesting but may not be wanted in our case since we do not necessarily control the norm of the columns of Y l . If a

l there is no guarantee, in the general case, that all column-norms ∥y

[h] l ∥ 2 are equal. The solution here is to go back to writing Y l = Q l ∆ l , with ∆ l Algorithm 8 Lagrangian maximization in ReSPOND-RGCCA 1: Result : {(A t l , Q t l , ∆ t l )} L l=1 (approximate maximizers of the Lagrangian of (4.27))

2: Input : H, {(A 0 l , Q 0 l , ∆ 0 l , X l , M l , Λ l , α l )} L l=1 , ρ, ε ; 3: t = 0 ; 4: repeat 5:

for l = 1 to L do 6: µ = λ max (X ⊤ l X l )λ max (M -1 l );

end for 10:

for l = 1 to L do 11:

13: [h] otherwise; 14:

Obtain U, V, and Σ using the SVD of Q t l : Q t l = UΣV ⊤ ;

16:

U = LR SVD (P∆ t+1 l VΣ);

17:

µ = λ max (∆ t+1 l ) 2 λ max (Σ) 2 ;

18:

F = 1 µ (∆ t+1 l P ⊤ UΣ -(∆ t+1 l ) ⊤ VΣ 2 );

19:

V = LR SVD (F + V); 20:

Find γ using a line search ;

21:

σ = (diag □ (V ⊤ (∆ t+1 l ) 2 V) + γI H ) -1 |α l ρ1 H + diag(U ⊤ P∆ t+1 l V)| + ;

22:

Σ = diag □ (σ);

23:

end for 25:

ReSPOND-RGCCA manages to address the limitations of global RGCCA, to update the columns of A l jointly, and to not impose orthogonality constraints. However, the update of Y l is more complex.

Finally, as in PASS-RGCCA, a penalty parameter must be tuned. The greater the parameter is, the more orthogonal the solutions are. Compared to PASS-RGCCA, moving from a penalty to a constraint is relatively straightforward. Doing so allows having a more intuitive control of the parameter, but if it is set too high, we can go back to a situation where constraints are antagonists, breaking the algorithm's convergence.

. Comparisons of RGCCA methods

Table 4.4 -Cosine between the true and the estimated concentrations with computation times (mean and standard deviation) in the 2-block configuration. The cosine for the best model over the 20 runs is reported between parentheses.

Model MGCCA Global MGCCA PASS-RGCCA SPOND-RGCCA ReSPOND-RGCCA Val-Tyr-Val 0.96 ± 0.00 (0.96) 0.98 ± 0.00 (0.98) 0.59 ± 0.30 (0.12) 0.97 ± 0.02 (0.95) 0.94 ± 0.07 (0.66)

Trp-Gly 0.92 ± 0.00 (0.92) 0.94 ± 0.00 (0.94) 0.51 ± 0.30 (0.87) 0.92 ± 0.05 (0.77) 0.86 ± 0.13 (0.80) Phe 0.89 ± 0.00 (0.89) 0.99 ± 0.00 (0.99) 0.52 ± 0.30 (0.19) 0.72 ± 0.31 (0.69) 0.80 ± 0.23 (0.90) Malto 1.00 ± 0.00 (1.00) 1.00 ± 0.00 (1.00) 0.92 ± 0.08 (0.96) 1.00 ± 0.00 (1.00) 1.00 ± 0.00 (1.00) Propanol 0.93 ± 0.00 (0.93) 0.99 ± 0.00 (0.99) 0.54 ± 0.24 (0.26) 0.86 ± 0.05 (0.85) 0.73 ± 0.25 (0.78) Table 4.5 -Cosine between the true and the estimated concentrations with computation times (mean and standard deviation) in the 3-block configuration. The cosine for the best model over the 20 runs is reported between parentheses.

Model MGCCA Global MGCCA PASS-RGCCA SPOND-RGCCA ReSPOND-RGCCA Val-Tyr-Val 0.44 ± 0.48 (0.95) 0.99 ± 0.00 (0.99) 0.59 ± 0.30 (0.60) 0.99 ± 0.00 (0.99) 0.89 ± 0.21 (0.98)

Trp-Gly 0.62 ± 0.21 (0.84) 0.98 ± 0.00 (0.98) 0.51 ± 0.30 (0.66) 0.99 ± 0.00 (0.99) 0.90 ± 0.14 (0.98) Phe 0.56 ± 0.34 (0.20) 0.96 ± 0.00 (0.96) 0.52 ± 0.30 (0.82) 0.99 ± 0.00 (0.99) 0.96 ± 0.06 (0.98) Malto 0.98 ± 0.00 (0.97) 1.00 ± 0.00 (1.00) 0.92 ± 0.08 (0.95) 1.00 ± 0.00 (1.00) 0.99 ± 0.03 (1.00) Propanol 0.95 ± 0.04 (0.91) 0.99 ± 0.00 (0.99) 0.54 ± 0.24 (0.73) 0.91 ± 0.00 (0.91) 0.86 ± 0.07 (0.90) that the naive way of selecting the best model for PASS-RGCCA, SPOND-RGCCA, and ReSPOND-RGCCA must be refined to get the most out of these algorithms.

We can make a few comments by comparing Tables 4.4 and 4.5. First, adding the third block is detrimental to MGCCA, while it is neutral to PASS-RGCCA and beneficial to global MGCCA, SPOND-RGCCA, and ReSPOND-RGCCA. This can be easily explained by the fact that the covariance of the 3 rd chemical is preponderant in the third block, whereas the covariance of the 4 th chemical dominates in the first block. Therefore, the cross-covariance is higher by selecting this pair of chemicals from the two blocks. If we were to pick a single set of canonical vectors, we would pick the set that leads to this selection. This is exactly what MGCCA does with its greedy approach. On the other hand, global MGCCA, SPOND-RGCCA, and ReSPOND-RGCCA are able to use the complementary information of the third block to better recover the chemicals without mixing them. As for PASS-RGCCA, we are not sure why it performs equally well in the two settings. SPOND-RGCCA is stable on the 3-block setting, with extremely high cosines. This makes us believe the presented algorithm is relatively robust to initialization and local minima. Unfortunately, the previous remark regarding computation times remains true in this new example, with several minutes required by SPOND-RGCCA and ReSPOND-RGCCA to converge.

. Conclusion

Appendices

Let λ prev l be the value of λ l before the update. We define the following ball and hyperplane :

We can aim for a compromise between λ ref l and λ opt l by projecting λ ref l on the intersection of the ball

.

From the definitions of λ prev l and λ opt l

we are sure that ϵ ≥ 0.

Once we have computed λ ref l , two cases arise : either

In the first case, we can take

In the second case, we have to find the projection λ ref l on the intersection of the frontiers of B α and H ϵ . This is equivalent to solve argmin

The Lagrangian associated with optimization problem (A.6) is

where µ, ν ∈ R are the Lagrange multipliers. Canceling the derivative of the Lagrangian function with respect to λ l yields the following stationary equation :

We can already notice that, if (1 + μ) = 0, λ ref l is collinear with u l , so

Thus, the optimal point we seek is λl = λ opt l . We suppose now that

Left multiplying (A.7) by λ⊤ l , we get
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We observe that (1 + μ) satisfies a binomial equation and that

where P u ⊥ l is the projector on the hyperplane orthogonal to span(u l ). For every

we define P u l the orthogonal projector on span(u l ), we get

= 0 so we fall back to the case where λ ref l is collinear with u l .

Otherwise, we get

Finally, if λ ref l is not collinear with u l , using equations (A.7), (A.8) and (A.9), we find

where the sign is determined by looking for the solution that minimizes (A.6). Thanks to this formulation, we found an update for λ l that considers the structure of M l through the contribution of λ ref l .

A.2 . Proof of Proposition 3.3.1

A.2.1 . Outline of the proof

We will use the Global Convergence Theorem (Global Convergence Theorem in chapter 7.7 of [START_REF] Luenberger | Linear and Nonlinear Programming[END_REF] based on the work of [START_REF] Zangwill | Nonlinear programming : a unified approach[END_REF] to show that the separable TGCCA algorithm converges to a stationary point. The proof can be adapted for the non-separable case.

Without loss of generality, we will assume here that M l = I p l and that the first mode bears the orthogonality :

We first recall the definition of a closed mapping and the Global Convergence Theorem for ascent algorithms :

Definition A.2.1. Let Φ be a point-to-set mapping from X to Y , x be a point in X, y be a point in Y , {x t } be a sequence of points in X, {y t } be a sequence of points in Y , with

Φ is said to be closed at x if y ∈ Φ(x).

Theorem A.2.2. Let Φ be an algorithm on X, and suppose that, given x 0 , the sequence {x t } ∞ t=0 is generated satisfying

Let a solution set Γ ⊂ X be given, and suppose

• the mapping Φ is closed at points outside Γ.

Then the limit of any convergent subsequence of {x t } is a solution.

Since the algorithm produces a sequence of points satisfying the constraints and increasing the criterion, we need to :

• Show that the constraint set Ω is compact.

• Identify an interesting solution set Γ,

• Show the strict monotonicity of f outside of Γ,

• Show that Φ is a closed mapping.

A.2.2 . Compactness of the feasible set

The feasible set Ω l associated with problem (3.7) can be defined as :

(A.11)

A.2.5 . Closed mapping

The only thing left to show is that Φ defines a closed mapping. To do so, we first define the following mappings :

The function that maps λ l and the A l,m for m ∈ [d l ] to a l is a point-to-point continuous, hence, closed mapping. Since the composition of closed mappings on a compact set is closed (see Corollary 1 in chapter 7.7 of [START_REF] Luenberger | Linear and Nonlinear Programming[END_REF], we only need to show that the mappings ϕ λ l and ϕ A l,m are closed. As f is continuously differentiable, ϕ λ l , and ϕ A l,m for m > 1, are point-to-point continuous mappings, thus they are closed.

We will now show that ϕ A l,1 is a closed mapping. Since the SVD is not unique, ϕ A l,1 is a point-to-set mapping. We define the following function to help us :

ψ l is a continuous function of both a and Y, defined on a compact set as the cartesian product of two compact sets. Therefore, we consider

We aim to show that Y ∈ ϕ A l,1 (a), i.e., max

ψ l (a t , Z). Therefore, we conclude by using the continuity of ϕ l that a A l,1 is a closed mapping on all points of Ω and so on the points outside of Γ too.

Combining all the previous elements, we can apply the Global Convergence Theorem to the TGCCA algorithm to show that it converges to a stationary point. We can observe that the extra factors are canceling out for the low-rank canonical vectors when the SNR increases.

Cross

Gas

Cross (little) spTGCCA3 0.94 (0.91,0.95) 0.96 (0.94,0.97) 1.08 (1.00,1 spTGCCA3 0.86 (0.79,0.90) 0.90 (0.87,0.92) 0.67 (0.60,0 1.00 (1.00, 1.00) 1.00 (0.99, 1.00) 1.00 (0.99, 1.00) 1.00 (0.99, 1.00) 1.00 (1.00, 1.00) 50.88 (49.51, 51.21) SVD 1.00 (1.00, 1.00) 1.00 (0.99, 1.00) 1.00 (0.99, 1.00) 1.00 (0.99, 1.00) 1.00 (1.00, 1.00) 7.32 (6.64, 7.51) Table A.17 -Cosine between the true and the estimated canonical vectors for different models on blocks "Square", "Gas 3D", "Cross", "Cross (small) 3D" and "Vector", for levels of SNR -20dB, -10dB, -6dB, and 0dB from top to bottom, and computation times, for n = 500 and 20 folds. Median and quantiles (2.5% and 97.5%) are reported (3D settings). 05 (44.25, 48.98) TGCCA3 1.00 (1.00, 1.00) 0.97 (0.97, 0.98) 1.00 (0.99, 1.00) 1.00 (1.00, 1.00) 1.00 (1.00, 1.00) 225.44 (160.94, 370.20) RGCCA 1.00 (0.99, 1.00) 1.00 (0.99, 1.00) 1.00 (0.99, 1.00) 1.00 (0.99, 1.00) 1.00 (1.00, 1.00) 28.28 (27.72, 29.33) SVD 1.00 (0.99, 1.00) 1.00 (0.98, 1.00) 1.00 (0.99, 1.00) 1.00 (0.99, 1.00) 1.00 (1.00, 1.00) 3. 24 (3.19, 3.39) Table A.18 -Cosine between the true and the estimated canonical vectors for different models on blocks "Square", "Gas 3D", "Cross", "Cross (small) 3D" and "Vector", for levels of SNR -20dB, -10dB, -6dB, and 0dB from top to bottom, and computation times, for n = 100 and 100 folds. Median and quantiles (2.5% and 97.5%) are reported (3D settings). 

B.1.2 . Proof of Lemma B.1.1

The proof of the convergence of Algorithm 7 is similar to the proof in Appendix A.2. In this Section, we write

Therefore, Algorithm 7 aims to solve the following Problem : maximize

For convenience, we introduce ∇ ∆ l f (A, Q∆) and ∇ Q l f (A, Q∆) the gradients of f with respect to ∆ l and Q l , using the notations of Section 4.5 :

, the KKT conditions associated with Problem (B.1) impose :

where µ max ≥ 0 and µ min ≥ 0 are the Lagrange multipliers associated with the norm constraints on δ l . Using the expressions of P and ∇ ∆ l f (A, Q∆), we have :

This corresponds with the update proposed in (4.23). Furthermore, the problem solved in (4.23) is the minimization of a convex function with convex constraints. Furthermore, the Slater conditions are verified since ν max l > ν min l . Hence, the previous KKT conditions are sufficient for δ l to be a minimum of (4.23). Saying it differently, if δ l does not already satisfy the KKT conditions, the proposed update will increase the criterion of Problem (B.1).

Update of

with Problem (B.1) give :

where S ∈ R H×H is a symmetric matrix composed of the Lagrange multipliers associated with the matrix constraint

As previously, we can simplify this condition using the expressions of P and

, there exists a symmetric matrix S such that the previous equation is satisfied. Therefore, if the KKT conditions are not already satisfied for Q l , Q l cannot be expressed using the SVD of P∆ l and the proposed update will increase the criterion of Problem (B.1).

Update of A

= 1, so the feasible set of A l is the cartesian product of H compact sets and is consequently compact.

, the KKT conditions associated with Problem (4.20) impose :

D is a diagonal matrix composed of the Lagrange multipliers associated with the norm constraints.

Let

The columns of the solution of (4.20) are :

According to the Cauchy-Schwarz inequality, the maximum is obtained when both elements of the scalar product are collinear. Such collinearity can be expressed as follows :

with D a diagonal matrix. Therefore, if the KKT conditions are not already satisfied, the update of A l leads to an increase of the criterion of Problem (4.20), which itself leads to an increase of Problem (B.1)'s criterion. Furthermore, for the KKT conditions to be already satisfied before the update, we must have :

where D ′ = D + µI H is still a diagonal matrix. This last condition is, in fact, one of the KKT conditions associated with Problem (B.1). Therefore, if this condition is not already satisfied for A l , the proposed update increases the criterion of Problem (B.1).

To conclude, we have shown the strict monotonicity of the criterion of Problem (B.1) outside of the KKT points. Using the same arguments as in Appendix A.2, an iteration of Algorithm 7 defines a closed mapping. Therefore, the Global Convergence Theorem guarantees that the solution sequence produced by Algorithm 7 converges to the set of KKT points of Problem (B.1).

B.1.3 . Proof of Lemma B.1.2

Robinson's condition. We recall here Robinson's condition as stated in Shi and Hong (2020). Consider the problem minf (z)

with Z a closed convex set and continuously differentiable functions f : R n → R, g : R n → R m , and h : R n → R p . Let z 0 a feasible point of Problem (B.12) and define the set of active inequality constraints :

Robinson's condition is :

T X (z 0 ) is the tangent cone of the set Z at z 0 . In our case, the optimization variable is the concatenation of all vectorized variables of Problem (B.1) :

with q = H( L l=1 p l + (n + 1)L). Since Z = R q , whatever the choice of z 0 , T X (z 0 ) = Z. Constraints. For each block l, we have different sets of constraints. We note h A l : R q → R H the function such that :

is the function such that h Q l (z) is the vector composed of the elements from the upper triangular part of the matrix

Finally, for each block, there are 2H inequality constraints defined by g δ l : R q → R 2H with

. However, we only need to check that Robinson's condition is satisfied for points generated by the algorithm. For such point, we have X l A l = Q l ∆ l . Therefore, we have

-ϵ so the set of active inequality constraints is empty. This means that we only need to check the linear independence of the equality constraint gradients to verify Robinson's condition.

We gather all the equality constraints in a single function θ : R q → R LH(n+ H+1 2 +1) . We have :

. . .

We will show that under mild conditions, the matrix Θ containing in columns the gradients of θ(z) has full column rank for any point z produced by Algorithm 6 relying on Algorithm 7. Under these conditions, Robinson's condition at z is satisfied.

Derivatives of the constraints. To assess the column rank of ∇θ(z), we first express the relevant derivatives of the constraints. The first set of constraints involves only the matrix A l . The associated gradients form the columns of the following matrix :

The H columns of Φ l are linearly independent as long as there is not any couple (l, h) such that a

[h] l = 0. This condition is never met since every iteration of Algorithm 7 produces points that satisfy the norm constraint, and M l is not singular.

The second set of constraints involves the matrix Q l , and the gradients of the constraint are the columns of the following matrix : 

(B.17) 180

For the columns of the Ω l matrix to be linearly independent, we must have n ≥ H+1

2 . Moreover, we can show that each group of columns between brackets is linearly independent and that the groups are linearly independent of each other as long as no column of Q l is null. Since the points produced by Algorithm 7 satisfy the constraint Q ⊤ l Q l = I H , no column of Q l can be null. If we look at the group of the first H columns, we can see that all but the first columns are linearly independent since they contain a non-zero vector at a unique place. The first column is linearly independent of the others because its only non-zero element is the first one, while all the others have a non-zero element elsewhere. The same reasoning can be applied to all the groups of columns. Furthermore, the next H -1 column group contains a first row filled with zeros, rendering it linearly independent from the first group. Finally, adding any new group of columns preserves the linear independence.

The third set of constraints involves A l , Q l and δ l . The associated gradients form the columns of the three following matrices :

(B.20) Ψ A l does not have full column rank since the columns of X l are centered using the empirical mean. However, Ψ Q l has full column rank since no element of δ l is null. Consider the matrix Θ l gathering the gradients for the block l :

2 ) .

(B.21)

The first necessary condition to have full column rank is that Θ l has more rows than columns. This translates into the condition p l ≥ H+1 2 . Since H ≤ p l is already necessary to perform RGCCA, this new condition is not constraining. If this condition is met, the condition "Θ l has full column-rank" is equivalent to the condition "Θ ⊤ l Θ l is not singular". We will show that this last condition is verified for a point produced by Algorithm 6 relying on Algorithm 7. Using the previous notations, we have :

We will show that U 1 is diagonal with strictly positive elements on the diagonal. Therefore, det(Θ ⊤ l Θ l ) = det(U 1 )det(U 4 -U 3 U -1 1 U 2 ). Furthermore, we will see that the matrix U 4 -U 3 U -1 1 U 2 is the sum of 181 three semi-definite matrices which kernels' intersection is {0}. Thus, we will conclude that Θ ⊤ l Θ l is not singular.

We first compute Φ ⊤ l Φ l :

The computation of Ω ⊤ l Ω l gives : 

We have indeed that U 1 is diagonal with strictly positive elements on the diagonal. Therefore, we can compute

(B.25) We now compute the right terms of (B.25). We have :

The first observation we can make is that each v [h] must be a linear combination of the columns of

Otherwise, this element has a strictly positive contribution and v ⊤ V 2 v > 0. Therefore, we assume that

k ∈ R is the weight of the k th -column of Q l for v [h] . Since v ⊤ V 3 v = 0, we have α

[h] h = 0 using the orthogonality of the columns of Q l . Finally, on the one hand,

On the other hand, at convergence of the algorithm, X l a

l . Therefore, there exists β [h] ∈ R such that :

l .

(B.29)

Left-multiplying the last equation by a

[h] l

⊤

, we obtain that β [h] = 0, using again the orthogonality of the columns of Q l , and the fact that a

2 and n ≥ H+1 2 . Moreover, as constraints are independent across blocks, if each Θ l has full column rank, Robinson's condition is satisfied. Therefore, any set of points {A l , Q l , ∆ l } L l=1 produced by Algorithm 6 relying on Algorithm 7 satisfies Robinson's condition as long as min(n, p l ) ≥ H+1 2 .

B.2 . Proof of convergence of PASS-RGCCA

In this Section, we prove Proposition 4.3.1, which enunciates the convergence properties of Algorithm 5. Once again, we rely on the Global Convergence Theorem. All the necessary arguments have already been shown in the proof of Lemma B.1.1. Indeed, the feasible set for A l is compact, and the criterion of Problem (4.9) is strictly increasing as long as A l does not already satisfy the KKT conditions of Problem (4.12). Otherwise, A l meets the KKT conditions of Problem (4.9).

The KKT conditions associated with problem (4.12) are :

where d ∈ R is the Lagrange multiplier associated with the norm constraint. As for Problem (B.9), the Cauchy-Schwarz inequality states that the solution of Problem (4.12) is obtained when there exists

Therefore, the criterion is strictly increasing if the A l is not already satisfying the KKT conditions. Furthermore, the constraints are qualified, so KKT points define stationary points of Problem (4.9). Finally, the updates define a closed mapping, so we can conclude using the Global Convergence Theorem. 

B.3 . Proof of convergence of

Regarding A l , the situation is the same as before, so the update of A l is a closed mapping that strictly increases the criterion of the objective function if A l does not already satisfy the KKT conditions. To discuss the updates of U l , V l , and Σ l , we introduce the corresponding gradients of f :

We will also reuse the notation P = X l A l + ρ(∇ Y l f (A, Y) + Λ l ) to simplify the equations.

Update of U l . The feasible set of U l is compact and the KKT conditions associated with Problem (B.32) give :

where S ∈ R H×H is a symmetric matrix composed of the Lagrange multipliers associated with the matrix constraint U ⊤ l U l = I H . The expression simplifies to :

(B.37) Therefore, we can conclude using the same arguments as for the update of Q l in Section B.1.2.

Update of Σ l . The feasible set of σ l is compact, and the KKT conditions give :

γ ≥ 0 is the Lagrange multiplier associated with the constraint σ ⊤ l σ l ≤ H and µ ≥ 0 ∈ R H is the vector of Lagrange multipliers associated with the constraints σ l ≥ 0. The condition simplifies to :

We recognize here the KKT condition of Problem (4.34). Since it is a convex problem with the Slater condition verified, the KKT conditions are necessary and sufficient for a local extremum. Therefore, the proposed update for Σ l strictly increases the criterion if the KKT conditions are not already satisfied.

Update of V l . The feasible set of V l is also compact, and the KKT conditions impose :

where S ∈ R H×H is a symmetric matrix composed of the Lagrange multipliers associated with the matrix constraint V ⊤ l V l = I H . We can simplify this expression to :

On the other hand, the KKT associated with Problem (4.33) are :

where S ′ ∈ R H×H is also a symmetric matrix composed of Lagrange multipliers. Each update of V l strictly increases the criterion of Problem (4.33) if the KKT conditions are not already satisfied (Procrustes problem). If the KKT conditions are already satisfied, it means that the KKT conditions associated with Problem (B.32) are already satisfied. Therefore, if the KKT conditions are not already satisfied, the update of V l strictly increases the objective function.

Update of ∆ l . The update of ∆ l is essentially the same as the update for SPOND-RGCCA, with the same properties so if the KKT conditions are not already satisfied, the update of ∆ l strictly increases the criterion of Problem (B.32).

To wrap up, we have shown the strict monotonicity of the criterion of Problem (B.32) outside of the KKT points. Since an iteration of Algorithm 8 defines a closed mapping, the Global Convergence Theorem guarantees that the solution sequence produced by Algorithm 8 converges to the set of KKT points of Problem (B.32).

B.3.3 . Proof of Lemma B.3.2

This time, the optimization variable is of size q = H( L l=1 p l +L(n+H+2)) and is the concatenation of all the vectorized variables of Problem (B.32).

Constraints. The constraints on the norm of the a [h]

l vectors are the same as before, so we use again the h A l function from Section B.1.3. h U l : R q → R H(H+1) 2

and h V l : R q → R H(H+1) 2

are the functions such that h U l (z) and h V l (z) are the vectors composed of the elements from the upper triangular parts of the matrices U ⊤ l U l -I H and V ⊤ l V l -I H . We note h l : R q → R nH such that h l (z) = Vec(X l A l -U l Σ l V ⊤ l ∆ l ). Regarding the inequality constraints, there are the previously 2H inequality constraints involving δ l . Therefore, we reuse the function g δ l . Finally, there are H + 1 additional inequality constraints. H constraints are defined by g σ l : R q → R H with g σ l (z) = -σ l . The last constraint is defined by g l : R q → R and g l (z) = 1 2 (σ ⊤ l σ l -H). We gather all these constraints in a single function θ : R q → R L(1+H(n+H+5)) .

We will show that under mild conditions, a numeric certificate can be found to assess that the matrix Θ containing in columns the gradients of θ(z) has full column rank for a point z produced by Algorithm 6 relying on Algorithm 8. Under these conditions, Robinson's condition at z is satisfied.

Derivatives of the constraints. The situation is the same as before regarding A l so ∇

The constraints on U l and V l are the same as the previous constraints on Q l , so the associated gradients will be similar. We note them

Since Ω U l and Ω l have the same dimensions, we must still have n ≥ H+1 2 for the columns of Ω U l to be independent. On the other hand, H ≥ H+1 2 is always true for H ≥ 1, so Ω V l has always full column rank.

The last set of equality constraints also involves the variables U l , V l , σ l and δ l . We note them Ψ V l , Ψ Σ l and Ψ ∆ l .

Let Θ = l be the matrix gathering the equality constraints depending on A l , U l and V l , and δ l . We have : n+H+2) .

(B.43)

The inequality constraints involving δ l are the same as before. Therefore, we can use the same trick and say that they are not saturated at convergence of the Algorithm. The inequality constraints involving σ l cannot be all saturated simultaneously. Indeed, if would mean that σ l = 0 and σ ⊤ l σ l = H, which is impossible. The gradients associated with the first H constraints form the matrix ∇ σ l g σ l (z) = I H . The gradient associated with the other constraint is ∇ σ l g l (z) = σ l . Therefore, the worst-case scenario is achieved when there exists h ∈

In this case, the H gradients form an independent family since H -1 columns are different columns extracted from the identity matrix, and the last column is the only one with a nonzero element on row h. We denote the matrix containing these gradients Υ l . The case σ l = 0 would be suboptimal since we try to maximize the nuclear norm of Σ l .

Finally, we gather all the previous gradients in the matrix Θ l :

Since Υ l has full column rank, and its columns can generate the columns of Ψ σ l , the necessary and sufficient condition for Θ l to have full column rank is that Θ = l has full column rank. Furthermore, constraints are independent across blocks, so the full matrix Θ has full column rank if each Θ l has full column rank. Therefore, any set of points {A l , U l , V l , Σ l , ∆ l } L l=1 produced by Algorithm 6 relying on Algorithm 8 satisfies Robinson's condition as long as min(n, p l -1) ≥ H+1 2 and the matrices Θ = l ⊤ Θ = l are not singular. This last condition can be verified numerically once the Algorithm has converged.

B.4 . Convergence of simultaneous TGCCA with orthogonality constraints

As opposed to global RGCCA, PASS-RGCCA, SPOND-RGCCA, and ReSPOND-RGCCA can be extended to propose a simultaneous version of TGCCA with orthogonality constraints. We show in this Section that these extensions yield convergent algorithms. We will prove that the proposed updates strictly increase the criteria of the optimization problems and that the conditions to satisfy Robinson's condition for points generated by Algorithms SPOND-RGCCA or ReSPOND-RGCCA with TGCCA constraints are similar to the case with RGCCA constraints.

B.4.1 . Strict monotonicity

For the three optimization problems, the part of the criteria depending on a

[h] l can be written as : (B.45) where q ∈ R p l is a vector and S ∈ R p l ×p l is a symmetric matrix. The Lagrangian associated with Problem (B.45) is : We proposed in Chapter 4 a lower bound for ψ given by : B.47) where f = 1 µ (∇

l ) and µ ≥ λ max (S). The proposed approach for simultaneous TGCCA is then to use the updates found in Chapter 3 with f instead of ∇ l f (a) in equation (3.8). From the proof in Appendix A.2, we know that the TGCCA updates yield a strict increase of the criterion of Problem (3.8) if the KKT conditions are not already satisfied. In this case, we need to show that the KKT where Q1 = q(1)

⊤ f and Q2 = q(1)

l . Forgetting about the tildes, we can see that the derivatives of the two Lagrangians are the same up to a scaling factor µ and an additional factor involving a l . Indeed, we have :

l .

(B.57) Thus, the condition on λ l,1 ∆ 1 = Q 1 for both problems. Therefore, we have shown that if the KKT conditions of Problem (B.45) are not already satisfied, the proposed updates will strictly increase the value of the criterion. Since the simultaneous procedure has not impacted the other conditions of the Global Convergence Theorem, we can use it to finish the proof.

B.4.2 . Robinson's condition

The part regarding Y l remains unchanged compared to Sections B.1.3 and B.3.3, so we will not detail its specific structure and simply use Y l in the constraints. In the optimization variable z, we now find the vector λ The second constraint is similar to the constraint on Q l for SPOND-RGCCA, and on U l and V l for ReSPOND-RGCCA, we note the matrix containing the associated gradients Ω A [h] l ∈ R R l p l,1 ×R l R l +1 2 . We know that this matrix has full column rank if p l,1 ≥ R l +1 2 . This one may not always be satisfied as opposed to the previous conditions, so it imposes a condition on the choice of the rank R l . Therefore, the mode with the highest number of variables can be chosen to relax this condition.

The gradients associated with the third constraint form the full column rank matrix : 

(B.66)

The gradients of the four constraints with respect to the variables of interest can be gathered in the matrix Θ A [h] l : The last column block of the matrix Θ A [h] l does not have full column rank. However, if no column of this block can be generated by the columns of the other blocks of the matrix, the complete matrix Θ l still has full column rank. By comparing the columns of Φ A [h] l,m and Ψ A [h] l,m , we can obtain a condition similar to the one obtained by comparing Φ l and Ψ A l in the case of SPOND-RGCCA. However, as per our 190 previous discussion, we did not find a condition to prevent to have a column of Φ A [h] l,m to be collinear to a column of Ψ A [h] l,m . Completing Θ = l by combining together Θ A [h] l and the gradients involving the constraints on Q l in the case of SPOND-RGCCA or U l , V l and Σ l in the case of ReSPOND-RGCCA, a numerical condition for Θ l to have full column rank is again that the determinant of Θ = l ⊤ Θ = l is not null.

Finally, we can conclude that Robinson's condition can be assessed with a numerical certificate for the simultaneous versions of orthogonal TGCCA relying on SPOND-RGCCA and ReSPOND-RGCCA if p l,1 ≥ R l +1 2 . If Robinson's condition is satisfied the Algorithm converges to a stationnary point of the problem.
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For completeness, we add here the Figures not included in Chapter 5.