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Résumé. Le λ-calcul est un modèle mathématique des langages de programmation fonc-
tionnels, avec un accent sur l’application de fonctions. Il est intéressant de considérer des
variants du λ-calcul pour modéliser des comportements calculatoires spécifiques.

Le λ-calcul atomique et les λ-calculs avec applications généralisées sont deux variants (in-
dépendants) du λ-calcul provenant d’interprétations calculatoires de la théorie de la démons-
tration. Alors que les langages de programmation sont basés sur des stratégies d’évaluation
déterministes spécifiques, la littérature existante sur le λ-calcul atomique et les applications
généralisées ne s’étendent que sur la théorie générale des calculs. En particulier, la réduction
des termes n’est pas restreinte, et seulement analysée qualitativement. Cela induit un écart
entre la théorie et la pratique, que nous cherchons à diminuer dans cette thèse.

À partir du λ-calcul atomique, nous isolons la notion la plus saillante de sa sémantique
opérationnelle, que nous appelons réplication par nœuds. C’est une procédure de substitu-
tion particulière, qui duplique les termes finement, un nœud de l’arbre syntaxique à la fois.
Nous poursuivons avec les λ-calculs à applications généralisées. Ceux-ci utilisent une appli-
cation ternaire qui ajoute une continuation à l’application binaire habituelle. Dans ce travail,
nous développons les théories opérationnelles basées sur la réplication par nœuds et les ap-
plications généralisées séparément. Pour les deux : À un niveau opérationnel, nous donnons
plusieurs stratégies d’évaluation, toutes observationnellement équivalentes aux stratégies
correspondantes du λ-calcul. À un niveau logique, notre approche est guidée par les types
quantitatifs. Nous définissons différents systèmes de types qui caractérisent des propriétés
sémantiques par induction, mais donnent aussi des bornes quantitatives sur la longueur de
réduction et la taille des formes normales.

Plus précisément, dans la première partie de cette thèse, nous implémentons la réplica-
tion par nœuds au moyen d’un calcul à substitutions explicites. Nous montrons en particulier
comment la réplication par nœuds peut être utilisée pour implémenter la pleine paresse, une
stratégie d’évaluation bien connue de langages de programmations comme Haskell. Nous
montrons des propriétés d’équivalence observationnelle reliant la sémantique pleinement pa-
resseuse aux sémantiques usuelles. Dans la deuxième partie de cette thèse, nous commençons
par une caractérisation opérationnelle et logique de la solvabilité dans les λ-calculs à appli-
cations généralisées. Nous montrons comment ce cadre donne naissance à une remarquable
sémantique opérationnelle de l’appel-par-valeur. La caractérisation en appel-par-nom s’ap-
puie sur un nouveau calcul à applications généralisées. Nous prouvons dans les deux cas que
les sémantiques opérationnelles sont compatibles avec un modèle quantitatif, au contraire
de celle du calcul en appel-par-nom originel. Nous prouvons ensuite des propriétés essen-
tielles de ce nouveau calcul en appel-par-nom, et montrons l’équivalence observationnelle
avec l’original.

Mots-clefs : λ-calcul, réécriture, réplication par nœuds, applications généralisées, types in-
tersection, substitutions explicites.



Abstract. The λ-calculus is a mathematical model of functional programming languages,
with an emphasis on function application. Variants of the calculus are of interest to model
specific computational behaviors.

The atomic λ-calculus and the λ-calculus with generalized applications are two (indepen-
dent) variants of the λ-calculus originating in computational interpretations of proof theory.
While programming languages are built from specific deterministic evaluation strategies, the
existing literature on the atomic λ-calculus and generalized applications only go over the gen-
eral theory of the calculi. In particular, reduction of terms is unrestricted, and only analyzed
qualitatively. This induces a gap between theory and practice, which we strive to diminish
in this thesis.

Starting from the atomic λ-calculus, we isolate the most salient concept of its operational
semantics, that we call node replication. This is a particular substitution procedure, which
duplicates terms finely, one node of the syntax tree at a time. We follow up with λ-calculi
with generalized applications. They use a ternary application constructor, adding a contin-
uation to the usual binary application. In this work, we develop the operational theories
built on node replication and generalized applications separately. For the two of them: On
an operational level, we give several evaluation strategies, all observationally equivalent to
the corresponding strategies in the λ-calculus. On a logical level, our approach is guided by
quantitative types. We provide different type systems that inductively characterize seman-
tic properties, but also give quantitative bounds on the length of reduction and the size of
normal forms.

More precisely, in the first part of this thesis, we implement node replication by means of
an explicit substitution calculus. We show in particular how node replication can be used to
implement full laziness, a well-known evaluation strategy for functional programming lan-
guages like Haskell. We prove observational equivalence properties relating the fully lazy
semantics with the standard ones. In the second part of the thesis, we start with an oper-
ational and logical characterization of solvability in λ-calculi with generalized applications.
We show how this framework gives rise to a remarkable operational theory of call-by-value.
The call-by-name characterization relies on an original calculus with generalized applica-
tions. We show in both cases that the operational semantics are compatible with a quanti-
tative model, unlike the one of the original call-by-name calculus. We then prove essential
properties of this new call-by-name calculus, and show observational equivalence with the
original one.

Keywords: λ-calculus, rewriting, node replication, generalized applications, intersection
types, explicit substitutions.
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CHAPITRE0
Résumé en français

Les langages de programmation fonctionnels sont des langages avec un haut niveau d’abs-
traction. Ces langages sont dits descriptifs, c’est-à-dire qu’un programme fonctionnel décrira
plutôt quel est le résultat que le ou la programmeuse veut obtenir, plutôt que comment l’or-
dinateur doit traiter les données pour obtenir le résultat souhaité.

Ce haut niveau d’abstraction a de nombreux avantages : les programmes sont succincts,
plus facile à déboguer, portables entre différentes machines. Les langages fonctionnels offrent
généralement de puissants mécanismes comme les fonctions d’ordre supérieur, le filtrage par
motifs ou des structures de données spécifiques.

Bien sûr, un haut niveau d’abstraction a un désavantage immédiat : plus le code s’éloigne
des instructions interne de la machine, plus il devient difficile de faire le lien entre les deux,
par la compilation ou l’interprétation directe du programme. Pour savoir quoi faire d’un
morceau de code écrit, il convient de lui donner un sens : une sémantique.

La recherche en sémantique des langages de programmation cherche à donner un sens
aux programmes. Un des buts principaux est de savoir quelles transformations peuvent être
appliquées aux programmes sans en modifier le sens. Ces transformations peuvent notam-
ment correspondre à une compilation, une interprétation ou une optimisation.

En ce qui nous concerne, au lieu de s’intéresser à un ou des langages en particulier, nous
allons adopter des modèles théoriques (mathématiques) du calcul et des langages. En effet,
les modèles abstraits représentent une grande classe de langages et programmes simulta-
nément. Par conséquent, une propriété dérivée pour un modèle sera vraie pour toute une
classe de langages. Par ailleurs, les modèles abstraient aussi de nombreuses difficultés liées à
des considérations plus pratiques, ce qui permet de concentrer l’attention sur des problèmes
spécifiques. Enfin, ces modèles mathématiques nous donnent accès à de nombreux outils de
raisonnement.

Deux types de sémantiques sous-tendent notre travail. La première est la sémantique
opérationnelle. Celle-ci est centrée sur la syntaxe, et définit le sens d’un programme comme
la façon dont les (sous-)expressions interagissent. Un programme est transformé par une
séquence d’étapes de réécriture, qui permettent d’aboutir à un résultat nommé forme normale,
atteint quand le programme ne peut plus être évalué par réduction. La forme du code est
importante, puisqu’elle détermine les transformations ultérieures.

La seconde est la sémantique dénotationnelle. Celle-ci est axée sur des propriétés glo-
bales de programmes qui sont invariantes au cours de l’évaluation. De telles propriétés sont
la terminaison (un programme s’arrête-t-il ?), ou l’équivalence observationnelle de deux pro-
grammes (ces programmes ont-ils le même comportement dans tous les contextes?). La sé-
mantique dénotationnelle peut aussi être utile pour vérifier qu’une sémantique opération-
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nelle conserve bien le sens des programmes.
Dans cette thèse, notre outil principal sera le λ-calcul, et surtout des dérivés pour lesquels

nous étudions et définissons des sémantiques opérationnelles. Des sémantiques dénotation-
nelles des programmes seront données sous la forme de systèmes de types intersection non
idempotents.

Le λ-calcul et ses variants. Le λ-calcul, créé à la fin des années 1920 par CHURCH [Chu32]
est un modèle de calcul qui peut être vu à la fois comme le premier langage de programmation
fonctionnel, et comme le noyau de tout langage fonctionnel. Nous l’utilisons comme modèle
mathématique de ces langages. Le λ-calcul est lui-même un langage très élémentaire, dont
les programmes, appelés termes, sont construits à l’aide de trois constructeurs seulement :

• des variables 𝑥, 𝑦, 𝑧, … ,

• des abstractions 𝜆𝑥.𝑡 entendues comme la fonction 𝑥 ↦ 𝑡 où le paramètre 𝑥 peut
apparaître dans le sous-terme 𝑡 ou pas,

• des applications 𝑡𝑢 d’un terme 𝑡 à un argument 𝑢.

Le λ-calcul possède en plus de la grammaire ci-dessus un aspect dynamique. Une seule
règle de réduction est nécessaire pour l’évaluation d’un λ-terme, la règle 𝛽 . Le terme à gauche
de la flèche est appelé un radical.

(𝜆𝑥.𝑡)𝑢 →𝛽 𝑡{𝑥/𝑢}

L’opération de substitution 𝑡{𝑥/𝑢} est définie comme le remplacement de toutes les occur-
rences de 𝑥 dans 𝑡 par le terme 𝑢. La règle 𝛽 réduit donc une fonction de paramètre 𝑥 appli-
quée à un argument 𝑢 en cette même fonction instanciée par le paramètre 𝑢. Il est important
de noter ici que la substitution est définie de manière externe, et pas directement par des
règles données dans le calcul.

Il existe de nombreuses extensions et variations du λ-calcul. Celles-ci ont de nombreux
buts, par exemple représenter explicitement certains comportements du calcul ou certaines
structures, ou rapprocher le λ-calcul d’autres théories mathématiques. Dans notre travail, les
calculs à substitutions explicites sont récurrents. Ces calculs intègrent l’opération de substitu-
tion afin d’offrir une plus grand maîtrise dessus qu’en λ-calcul simple.

Plus concrètement, les calculs à substitutions explicites possèdent un constructeur en
plus : une substitution explicite 𝑡[𝑥/𝑢], qui représente une substitution retardée. Ainsi, la
réduction 𝛽 est décomposée :

1. Une première étape →dB réduit un radical en introduisant une substitution explicite :
(𝜆𝑥.𝑡)𝑢 →dB 𝑡[𝑥/𝑢]. Dans le terme contracté, les occurrences de 𝑥 dans 𝑡 pointent toutes
vers le sous-terme 𝑢, qui est dit partagé.

2. Une deuxième série d’étapes peut manipuler la substitution de la manière souhaitée.
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Dans la première partie de cette thèse (chapitre 2), nous voyons comment implémenter ce
que nous appelons «réplication par nœuds » à l’aide d’un nouveau calcul à substitutions ex-
plicites nommé 𝜆𝑅, qui est inspiré du λ-calcul atomique de GUNDERSEN , HEIJLTJES et PARIGOT 
[GHP13b].

Un calcul pour la réplication par nœuds. La réplication par nœuds est une décomposition
de la substitution, où les termes sont substitués constructeur par constructeur, ou nœud par
nœud en voyant les termes comme des arbres de syntaxe.

La réplication par nœuds est un outil d’optimisation important : elle apparaît dans la ré-
duction optimale par les graphes de partage [Lam90], et, comme montré par GUNDERSEN ,
HEIJLTJES et PARIGOT [GHP13b], permet d’implémenter la pleine paresse, qui évite de nom-
breuse duplications de calculs lors de la substitution.

Notre calcul est une réinterprétation du λ-calcul atomique qui est lui-même une inter-
prétation calculatoire d’un système logique de la déduction ouverte [GGP10]. GUNDERSEN ,
HEIJLTJES et PARIGOT [GHP13b] s’attachent à garder une correspondance directe entre la
déduction ouverte et le λ-calcul atomique. Ainsi, en plus de la réplication par nœuds, les
variables de leur calcul sont linéaires. Par exemple, le terme correspondant à 𝜆𝑥.𝑥𝑥 dans la
grammaire du λ-calcul atomique est 𝜆𝑥.(𝑥1𝑥2)[𝑥1, 𝑥2 ← 𝑥]. Il y a donc dans ce calcul une
notion de partage ressemblant aux substitutions explicites.

Dans notre travail, nous ne conservons que la réplication par nœuds. La suppression de
la contrainte de linéarité nous permet de formuler la sémantique de la réplication par nœuds
en termes de substitutions explicites. Nous obtenons une formulation originale et concise
de la réplication par nœuds, qui est suffisamment simple pour modéliser différents langages
de programmation. L’étude des propriétés de la réplication par nœuds est mise en avant et
facilitée par ce nouveau calcul.

Applications généralisées. Dans la deuxième partie de la thèse (chapitres 3 et 4), nous nous
intéressons à un second variant du λ-calcul : le λ-calcul à applications généralisées, introduit
par JOACHIMSKI et MATTHES [JM00], puis ESPÍRITO SANTO [Esp20] dans une version en appel-
par-valeur (voir plus loin).

La différence syntaxique avec le λ-calcul est le constructeur d’application. L’application
binaire 𝑡𝑢 devient 𝑡(𝑢, 𝑥.𝑟). Dans le sous-terme supplémentaire 𝑟 , des occurrences de la va-
riable 𝑥 peuvent apparaître. L’application 𝑡𝑢 est donc partagée par toutes les occurrences de
𝑥 . Il y a une notion de partage, telle que toutes les applications sont partagées, mais seule-
ment elles. C’est là une différence avec les calculs à substitutions explicites où tous les types
de constructeurs sont partageables.

La dynamique des calculs à applications généralisées est donnée par une règle 𝛽 utilisant
une opération de substitution externe, ainsi qu’une règle de permutation 𝜋 permettant de
convertir les termes à une forme normale entière (full normal form). De par ces particularités,
ces calculs présentent une sémantique opérationnelle très intéressante.

La correspondance de Curry-Howard. La réplication par nœud (au sein du λ-calcul ato-
mique) ainsi que les calculs à applications généralisées ont tous deux une origine commune.
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Ces deux formalismes sont tous les deux le fruit d’une interprétation de systèmes de la théorie
de la démonstration à travers la correspondance de Curry-Howard.

La théorie de la démonstration [Gir00] est une branche de la logique mathématique et
une métamathématique dont les objets sont des représentations formelles du raisonnement,
appelées preuves ou démonstrations. La correspondance de Curry-Howard [How80] met en
relation les systèmes de cette théorie avec les systèmes de la théorie des langages de program-
mation. Par exemple le λ-calcul avec (le fragment implicatif de) la logique intuitionniste en
déduction naturelle de [Gen35a ; Gen35b]. C’est à la fois une correspondance statique : les
types correspondent aux formules logiques, les programmes typés aux preuves de ces for-
mules. Mais aussi une correspondance dynamique : la réduction d’un programme correspond
à la normalisation d’une preuve. Cette correspondance révèle donc le caractère calculatoire
de la théorie de la démonstration.

Le lien entre calculs et démonstrations est fondamental. Par conséquent, des résultats ou
des idées dans un domaine peuvent influencer des avancées dans l’autre. C’est ainsi que des
avancées en théorie de la démonstration (inférence profonde [Gug15] et déduction ouverte,
déduction naturelle avec règles d’élimination généralisées [vPla01]) ont mené à l’introduc-
tion des formalismes que nous considérons.

Cependant, ces calculs ont été étudiés de manière générale, du point de vue de la théorie
de la preuve. Dans la littérature, les résultats portent presque exclusivement sur la normali-
sation forte, qui correspond à une évaluation non restreinte et non déterministe, au contraire
de l’évaluation dans les langages de programmation (voir le paragraphe suivant). De même,
des propriétés sémantiques importantes, comme la résolubilité, sont capturées par des no-
tions de réduction plus fines absentes de la littérature. D’autres travaux, en particulier sur
les calculs à applications généralisées, les considèrent comme un outil pour la théorie de la
preuve [Esp09 ; EFP18].

Nous suivons une approche orienté vers les langages de programmation et étendons
l’étude des sémantiques opérationnelles des formalismes de réplication par nœuds et appli-
cations généralisées, en nous intéressant à diverses notions de réduction et de normalisa-
tion. Dans cette même perspective, nous menons une analyse quantitative de la réduction,
c’est-à-dire sensible au nombre d’étapes de réduction ou à la taille des formes normales, par
l’intermédiaire des types intersection non idempotents.

Différentes notions de normalisation. La grande majorité des calculs existant sont non
déterministes : un unique terme est souvent réductible de différentes manières. C’est le cas
pour le λ-calcul atomique, et pour les calculs à applications généralisées. Ce non détermi-
nisme n’est pas trivial, il arrive qu’un chemin de réduction ne termine jamais, alors qu’un
résultat était à portée de main en empruntant un autre chemin. Heureusement, les calculs
cités sont confluents : tout chemin de réduction partant d’un terme et qui termine arrive tou-
jours sur un unique résultat. Il convient dès lors d’étudier avec attention la question de la
réduction : quel chemin prendre pour être sûr d’arriver au résultat, ou même pour minimiser
le nombre d’étape.

La construction d’une évaluation déterministe dans le λ-calcul se fait en trois étapes.

1. Choisir une modalité de passage des paramètres (appel par nom, valeur ou nécessité).
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2. Définir le type de résultats souhaités et restreindre l’évaluation en conséquence.

3. Rendre la réduction déterministe en donnant un ordre sur les radicaux.

Le troisième point étant plus étroitement lié à la syntaxe du calcul, nous nous concentrons
sur les deux premiers points dans ce résumé, que nous détaillons maintenant un peu.

La question du passage de paramètres est essentielle à la fois du point de vue du nombre
d’étapes de réduction et de la normalisation. Le λ-calcul de CHURCH est dit en appel-par-
nom : l’opération de 𝛽-réduction (𝜆𝑥.𝑡)𝑢 s’applique sur n’importe quel terme de cette forme,
quelle que soit la forme de 𝑢. Ceci est généralement source d’inefficacité : le terme 𝑢 peut
lui même être un radical. Si la variable 𝑥 intervient plusieurs fois dans 𝑡 , le calcul à effectuer
pour réduire 𝑢 sera dupliqué en même temps que 𝑢.

Le λ-calcul en appel-par-valeur de PLOTKIN [Plo75] est un calcul différent qui ajoute la
restriction que le terme 𝑢 doit être une valeur, c’est-à-dire une variable ou une abstraction.
Il faudra donc réduire le terme 𝑢 d’abord si nécessaire, ce qui évite de dupliquer le travail à
effectuer. L’appel-par-valeur est à la base de nombreux langages fonctionnels comme OCaml
ou Lisp.

Ce calcul a un inconvénient par rapport à l’appel-par-nom : il y a des termes qui norma-
lisent en appel-par-nom mais pas en appel-par-valeur. Cela arrive si la réduction de 𝑢 ne ter-
mine jamais, alors même que 𝑥 n’apparaît pas dans 𝑡 . En appel-par-nom, 𝑢 sera simplement
effacé par l’opération de substitution. L’appel-par-valeur n’a donc pas le même comporte-
ment que l’appel-par-nom, même à un niveau sémantique. Cette différence est très impor-
tante et reviendra dans la partie de la thèse sur les applications généralisées où des calculs
en appel-par-nom et des calculs en appel-par-valeur seront considérés.

L’appel-par-nécessité [CF12] prend le meilleur des deux : l’argument 𝑢 du radical (𝜆𝑥.𝑡)𝑢
est seulement réduit s’il est nécessaire dans le corps 𝑡 de la fonction 𝜆𝑥.𝑡 , mais la réduc-
tion de 𝑢 n’est effectuée qu’une seule fois, quel que soit le nombre d’occurrences de 𝑥 dans
𝑡 . L’appel-par-nécessité est généralement implémenté avec une substitution linéaire : seule
une occurrence de 𝑥 est remplacée à la fois. L’inconvénient de l’appel-par-nécessité est qu’il
est plus difficile à implémenter, nécessitant des systèmes de partages de termes comme les
substitutions explicites.

Cependant, même cette méthode peut être source de duplication de calculs. C’est le cas
quand une abstraction est dupliquée mais que son corps contient des radicaux. Une optimi-
sation nommée pleine paresse [Wad71] permet d’éviter certaines de ces duplications. L’appel-
par-nécessité pleinement paresseux a été prouvé optimal pour l’évaluation faible confluente
(voir la thèse de BALABONSKI [Bal12b]). L’appel-par-nécessité pleinement paresseux est à la
base du langage Haskell. Néanmoins, la pleine paresse est habituellement implémentée par
des opérations externes au calcul. Nous donnons dans le chapitre 2 une implémentation de
l’appel-par-nécessité pleinement paresseux au sein d’un calcul à substitution explicites utili-
sant la réplication par nœuds.

Une fois une modalité de passage de paramètres choisie, nous pouvons nous interroger
sur le type de résultat voulu, qui n’est pas universel. On peut considérer comme résultat les
formes normales qui ne peuvent plus réduire. Ce n’est pas l’approche prise par les langages
de programmation généralistes : dans ceux-ci, un terme qui peut seulement être réduit sous
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les abstractions (c’est-à-dire dans le corps des fonctions) est un résultat (on parle de forme
normale faible). De même l’évaluation peut être restreinte à la tête du terme, grosso modo le
radical le plus à gauche. Ces différentes notions d’évaluation capturent différentes propriétés
sémantiques : la réduction de tête par exemple capture la résolubilité en appel-par-nom, et
la réduction faible la valuation potentielle en appel-par-valeur. De par leur simplicité, les λ-
calculs sont un outil de choix pour étudier les différentes réductions possibles.

Types intersection. Pour capturer ces différentes notions de normalisation et les propriétés
sémantiques associées, nous utilisons des systèmes de types intersection.

De manière générale, les types servent de garantie pour les programmes : un programme
typé respecte certaines propriétés. Les types simples, qui sont le standard pour le λ-calcul,
garantissent la terminaison : toutes les réductions à partir d’un terme simplement typé ter-
minent.

Cependant, il existe des termes qui sont normalisables, voire en forme normale, mais ne
sont pas simplement typables. C’est le cas par exemple du terme 𝜆𝑥.𝑥𝑥 où il faudrait donner
deux types différents à la variable 𝑥 . Dans les systèmes de types intersection [CD80], il est
possible de donner plusieurs types à la même variable ou au même terme sous forme d’une
intersection de types. Le terme 𝜆𝑥.𝑥𝑥 est donc typable. Plus généralement, exactement tous
les termes normalisables sont typables. Autrement dit, les systèmes de types intersection
capturent la normalisation. La propriété « 𝑡 est normalisable» peut être exprimée de manière
équivalente par « 𝑡 est typable», sans avoir à réduire le terme 𝑡 pour le vérifier.

Cette caractérisation est très utile pour prouver des propriétés sur la normalisation. Nous
nous en servons pour valider nos stratégies d’évaluation en vérifiant qu’elles correspondent
bien à la notion de normalisation souhaitée. Nous pouvons facilement comparer la normalisa-
tion de différentes stratégies ou calculs, pour lier nos formalismes aux formalismes existants.

Nous utilisons des systèmes de types intersection qui sont non idempotents [Gar94], aus-
si connus comme types quantitatifs. Les types intersection en général, que l’intersection
soit idempotente ou non, donnent un modèle qualitatif du calcul, répondant à des questions
comme : Ce terme normalise-t-il ? Deux termes sont-ils observationnellement équivalents ?

Les types intersection non idempotents raffinent cette analyse en une analyse quantita-
tive, par exemple : Combien d’étapes de réduction faut-il pour réduire ce terme à une forme
normale? La réduction de ces deux termes est-elle de même longueur? Ce type d’analyse
est particulièrement intéressante quand on s’intéresse aux λ-calculs comme fondation des
langages de programmation car c’est une première étape vers des analyses de complexité.
Les types quantitatifs permettent aussi des preuves de normalisation des termes typés très
simples car combinatoires, où la taille des dérivations de type décroît à chaque étape de ré-
duction.

Contributions
Nous énonçons la problématique de cette thèse comme suit :



0 Résumé en français 7

Quelles contributions la réplication par nœuds et les applications généralisées,
analysées quantitativement, apportent-elles à la théorie des langages de program-
mation?

Plus précisément, nos contributions sont doubles. D’une part, nous donnons des séman-
tiques opérationnelles détaillées de calculs avec réplication par nœuds ou applications géné-
ralisées. Cela consiste notamment en la définition de relations de réduction correspondant
à différentes notions d’évaluation et de normalisation, pertinentes pour la sémantique des
langages de programmation. D’autre part, nous assignons des systèmes de types quantitatifs
à ces relations. Nous les utilisons comme une inspiration pour raffiner les calculs, comme ou-
til technique pour simplifier les preuves de normalisation et comme outil sémantique pour
prouver l’équivalence de propriétés sémantiques entre différents calculs.

L’une des manières par laquelle le modèle quantitatif influence la définition des λ-calculs
est l’utilisation de la distance [AK10 ; ABM14], afin de mettre l’accent sur la computation.
Dans les calculs à substitutions explicites, ou à applications généralisées, des règles de per-
mutation sont nécessaires pour débloquer certains radicaux. Prenons par exemple le terme
(𝜆𝑥.𝑡)[𝑦/𝑟]𝑢. Le terme 𝑢 est l’argument de l’abstraction 𝜆𝑥.𝑡 , mais on n’a pas encore un radi-
cal, puisqu’une substitution explicite sépare 𝜆𝑥.𝑡 et 𝑢. Nous pouvons cependant permuter la
substitution explicite et faire émerger le radical :

(𝜆𝑥.𝑡)[𝑦/𝑟]𝑢 →𝜎1 ((𝜆𝑥.𝑡)𝑢)[𝑦/𝑟] →B 𝑡[𝑥/𝑢][𝑦/𝑟]

Les deux termes à gauche et à droite de la permutation 𝜎1 sont sémantiquement équivalent.
Ils ont la même représentation dans de nombreuse représentations graphiques des termes.
Dans celles-ci, l’étape de calcul serait exécutée en une unique étape.

La réduction à distance s’inspire de formalismes graphiques et rassemble les règles de
calcul et les règles de permutation dans une unique étape de réduction. De cette façon, la
sémantique opérationnelle des représentations séquentielles de termes se rapproche de celle
des représentations graphiques, avec souvent une correspondance étape-par-étape [KL07 ;
Acc18b ; Kes22].

Le choix de la distance reflète également mieux les modèles logiques : les types quanti-
tatifs sont principalement insensibles aux règles de permutation. En effet, ces dernières ne
sont pertinentes que d’un point de vue structurel, tandis que la quantitativité est unique-
ment liée aux règles de calcul. Avec la distance, chaque étape représente une étape de calcul
significative.

La notion de distance introduite, nous pouvons donner précisément les calculs étudiés et
définis dans cette thèse :

• Dans la première partie, un calcul original à substitutions explicites implémentant la
réplication par nœuds et utilisant une sémantique à distance.

• Dans la deuxième partie, les calculs à applications généralisées en appel-par-nom et
appel-par-valeur ainsi que des variantes originales utilisant une sémantique à distance.
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Réplication par nœuds
L’objectif principal de la première partie de la thèse (chapitre 2) est d’introduire la théo-

rie et la pratique de la réplication par nœuds, dans le cadre du λ-calcul. Nous utilisons un
nouveau calcul à substitutions explicites 𝜆𝑅, que nous introduisons en section 2.1. Ce calcul
est une réinterprétation du λ-calcul atomique et utilise la distance pour mettre en évidence
les mécanismes de la réplication par nœuds.

La perspective change par rapport au λ-calcul atomique. Alors que GUNDERSEN , HEIJLTJES 
et PARIGOT [GHP13b] donnent une interprétation calculatoire de la déduction ouverte, nous
voulons donner une analyse fine de la substitution dans le λ-calcul et les langages de pro-
grammation en général en ajoutant la possibilité de substitution nœud par nœud.

Nous donnons quelques propriétés générales du calcul 𝜆𝑅 dans la section 2.2 : terminaison
de la procédure de substitution avec réplication par nœuds, confluence et simulations avec
le λ-calcul.

Le calcul est ensuite affiné en deux stratégies d’évaluation déterministes. La première
en appel-par-nom ne prend pas avantage des optimisations apportées par la réplication par
nœuds (section 2.3.1). Cette relation de réduction simule la réduction de tête faible du λ-calcul.
Elle sert de lien entre le λ-calcul et des stratégies plus élaborées utilisant la réplication de
nœuds.

La deuxième stratégie implémente l’appel-par-nécessité pleinement paresseux faible (sec-
tion 2.3.2). Plusieurs implémentations de la pleine paresse existent dans la littérature (voir
section 2.6), à commencer par la première par Wadsworth [Wad71]. Mais dans celles-ci, le
point crucial de la séparation du squelette et des expressions libres maximales est un calcul
externe. Au contraire, [GHP13b] montre comment une extraction entièrement paresseuse
peut être effectuée dans le λ-calcul atomique. Nous nous basons sur ces résultats et inté-
grons l’extraction du squelette dans une stratégie d’appel-par-nécessité pour construire une
stratégie pleinement paresseuse. Dans cette stratégie, les étapes menant à l’extraction sont
décrites au sein du calcul. Par conséquent, l’opération est autonome et décrite de manière
totalement opérationnelle.

Nous donnons deux types de sémantique pour la séparation du squelette des expres-
sions libres. La première est une sémantique à grands pas [Kah87] et reformule la preuve
de [GHP13b] que l’extraction du squelette peut être implémentée par le λ-calcul atomique.
La seconde est une sémantique à petits pas qui détaille comment extraire un squelette pas
à pas en utilisant les règles du calcul 𝜆𝑅. Nous montrons que ces deux sémantiques corres-
pondent à deux définitions différentes mais équivalentes d’un squelette.

ARIOLA et FELLEISEN [AF97] ont démontré que l’appel-par-nom et l’appel-par-nécessité,
utilisant des substitutions respectivement complètes et linéaires, sont équivalents du point
de vue de l’observation. La même propriété s’applique-t-elle dans notre cas avec la réplica-
tion par nœuds ? Une de nos contributions est une preuve de résultat utilisant un système
de type quantitatif, en section 2.5. Cette technique de preuve [Kes16] simplifie considéra-
blement d’autres approches basées sur des outils syntaxiques [AF97 ; MOW98]. En outre,
l’utilisation de types intersection a une autre conséquence importante : les appel-par-nom et
appel-par-nécessité usuels s’avèrent être équivalents, du point de vue de l’observation, aux
appel-par-nom et appel-par-nécessité avec réplication par nœud, ainsi qu’à la notion plus
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sémantique de needeedness [KRV18]. Il s’agit à notre connaissance de la première caractéri-
sation quantitative de la normalisation pleinement paresseuse.

Applications généralisée
Qu’apportent les applications généralisées à la théorie des langages de programmation?

Nous affirmons qu’elles offrent un niveau d’abstraction différent des formalismes existants.
Elles sont caractérisées par deux éléments : une notion de partage restreinte aux applications,
et une gestion interne simple de la recherche d’un radical.

Le partage est autorisé par le constructeur d’application généralisé 𝑡(𝑢, 𝑦.𝑟), où le terme
𝑡𝑢 est partagé par les occurrences de 𝑦 dans 𝑟 . Ce partage est utile pour éviter de dupliquer
certains calculs. Puisque les 𝛽-radicaux sont des applications, ils sont tous partagés par défaut.
Cependant, le partage n’est pas aussi général que dans les calculs avec constructeurs let,
où chaque type de terme peut être partagé, et comme celui des calculs avec substitutions
explicites, qui possèdent également un traitement interne de la substitution. Les applications
généralisées maintiennent la substitution à un niveau externe. En conséquence, le calcul est
toujours effectué en une seule étape (une étape 𝛽 généralisée présentée ci-dessous), plutôt
qu’en deux phases, comme avec les substitutions explicites. La sémantique opérationnelle du
calcul est donc plus simple :

(𝜆𝑥.𝑡)(𝑢, 𝑦.𝑟) →𝛽 𝑟 {𝑦/𝑡{𝑥/𝑢}}
Le partage des applications est particulièrement utile pour l’appel-par-valeur. Contraire-

ment à la plupart des calculs en appel-par-valeur [AG16], le calcul Λ𝐽𝑣 (ou notre nouvelle ver-
sion à distance) n’impose aucune restriction sur les radicaux. Cela signifie que chaque applica-
tion d’une fonction à un argument est un radical qui peut être déclenché. Des inconvénients
des formalismes en appel-par-valeur sont ainsi évités. Plus encore : la réduction en appel-par-
valeur est effectué au moyen d’une règle presque identique à l’appel-par-nom, en s’appuyant
uniquement sur une notion différente de substitution (définie dans la section 3.1.1) :

(𝜆𝑥.𝑡)(𝑢, 𝑦.𝑟) →𝛽 𝑟 {𝑦\\𝑡{𝑥\\𝑢}}
Avoir les mêmes radicaux (𝜆𝑥.𝑡)(𝑢, 𝑦.𝑟) en appel-par-nom et appel-par-valeur signifie éga-

lement que pour toute notion de normalisation, définir une évaluation d’appel-par-valeur est
simple. La définition des formes normale est la même, et pour de nombreuses stratégies in-
téressantes, les même règles de réduction inductives peuvent être choisies. C’est le cas par
exemple des formes normales fortes, définies dans les sections 3.7 et 4.2, et de la stratégie
normalisante « leftmost-outermost ».

La recherche d’un radical dans le calcul est assurée par la règle de permutation nommée
𝜋 , qui est l’une des permutations cachées révélées par von PLATO [vPla01] :

𝑡(𝑢, 𝑥.𝑟)(𝑢′, 𝑦.𝑟 ′) →𝜋 𝑡(𝑢, 𝑥.𝑟(𝑢′, 𝑦.𝑟 ′))
Concrètement, cette permutation déplace le radical le plus à gauche sur le dessus, comme
dans l’exemple suivant.
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Example 0.1. La réduction suivante est représentée dans la figure 0.1 sous forme graphique,
de manière à faire apparaître la façon dont le radical à gauche remonte en haut de l’arbre.

(𝜆𝑥.𝑡)(𝑢1, 𝑦1.𝑦1)(𝑢2, 𝑦2.𝑦2)(𝑢3, 𝑦3.𝑦3) →𝜋 (𝜆𝑥.𝑡)(𝑢1, 𝑦1.𝑦1)(𝑢2, 𝑦2.𝑦2(𝑢3, 𝑦3.𝑦3))
→𝜋 (𝜆𝑥.𝑡)(𝑢1, 𝑦1.𝑦1(𝑢2, 𝑦2.𝑦2(𝑢3, 𝑦3.𝑦3)))

Dans le cadre fermé (sans variables libres) et faible de tête, qui est celui des langages
de programmation généralistes, la permutation 𝜋 permet au calcul d’atteindre une forme
normale sans rentrer dans le terme.

@

@

@

(𝜆𝑥.𝑡) 𝑢1 𝑦1
𝑦1

𝑢2 𝑦2
𝑦2

𝑢3 𝑦3
𝑦3

→𝜋

@

@

𝜆𝑥.𝑡 𝑢1 𝑦1
𝑦1

𝑢2 @

𝑦2 𝑢3 𝑦3
𝑦3

𝑦2

→𝜋

@

𝜆𝑥.𝑡 𝑢1 @

𝑦1 𝑢2 @

𝑦2 𝑢3 𝑦3
𝑦3

𝑦2

𝑦1

FIG. 0.1 : La permutation 𝜋 illustrée sur un arbre de syntaxe.

Ce dernier exemple est une traduction d’un λ-terme (𝜆𝑥.𝑡′)𝑢′1𝑢′2𝑢′3, dans lequel 𝑡′ est tra-
duit en 𝑡 , et 𝑢′𝑖 en 𝑢𝑖 pour 1 ≤ 𝑖 ≤ 3. Dans une machine abstraite comme celle de KRIVINE 
[Kri07], les termes de 𝑢1 à 𝑢3 seraient successivement déplacés dans la pile. Les applications
généralisées fournissent une représentation de la pile directement à l’intérieur du terme, et
l’étape de réduction de la machine abstraite déplaçant l’élément de droite des applications à
l’intérieur de celui-ci est remplacé par une permutation 𝜋 . L’idée est similaire avec le style par
passage de continuations (CPS) et les formes normales administratives (ANF) qui donnent
un nom à chaque calcul intermédiaire pour encoder la pile.

L’utilisation de la distance permet de gagner en abstraction. En intégrant la permutation
dans la règle 𝛽 , il n’y a plus d’étape explicite révélant le radical le plus à gauche, mais seule-
ment une règle de calcul. Ainsi, le calcul avec des applications généralisées se rapproche du
λ-calcul, la seule différence étant que les applications sont nommées et partagées. Les appli-
cations généralisées avec distance peuvent alors aussi être considérées comme des versions
plus abstraites et plus simples des calculs avec partage. Dans notre travail, nous donnons la
priorité aux variations à distance des calculs à applications généralisées en appel-par-valeur
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et appel-par-nom, pour rester aussi proche que possible du λ-calcul et du modèle donné par
les types quantitatifs.

λ-calcul

Substitutions explicites

GA avec distance

GA avec permutation 𝜋

Partage de termes +
substitution interne

Partage des applications

Recherche du radical

FIG. 0.2 : Plusieurs niveaux d’abstraction.

Malgré les aspects pratiques des applications généralisées, la littérature manque d’études
détaillées de leur sémantique opérationnelle. Les travaux d’ESPÍRITO SANTO [Esp09] ainsi que
ESPÍRITO SANTO , FRADE et PINTO [EFP18] considèrent les applications généralisées comme
un outil pour la théorie de la démonstration. Les travaux de JOACHIMSKI et MATTHES [JM00 ;
JM03] sur Λ𝐽 , et d’ESPÍRITO SANTO [Esp20] sur Λ𝐽𝑣 introduisent le calcul, montrent la nor-
malisation forte du calcul typé, ainsi que la confluence et la standardisation dans le premier
cas. Cette approche centrée sur la normalisation forte est à nouveau orientée du point de vue
de la théorie de la démonstration.

Nous adoptons une approche différente, inspirée de la sémantique des langages de pro-
grammation. Nous examinons la résolubilité pour les calculs à applications généralisées en
appel-par-nom et appel-par-valeur, d’abord pour les versions distantes 𝜆𝐽𝑛 et 𝜆𝐽𝑣 , puis en
transposant les résultats aux versions originales Λ𝐽 et Λ𝐽𝑣 . La résolubilité est une notion
cruciale sur le plan dénotationnel et opérationnel, et implique des stratégies d’évaluation
spécifiques, centrées sur l’évaluation de tête.

Le calcul à distance 𝜆𝐽𝑛 est le résultat d’une analyse de Λ𝐽 à travers le prisme de l’uti-
lisation des ressources, et diffère substantiellement de l’original. Sa construction est décrite
dans une deuxième partie.

Résolubilité des applications généralisées. La résolubilité est une notion sémantique qui
identifie les termes significatifs, c’est-à-dire les termes qui contribuent au résultat final. Dans
un modèle sémantique du λ-calcul, les termes non significatifs peuvent être égalisés, ce qui
signifie qu’ils peuvent être librement intervertis sans affecter le résultat du calcul. Une pre-
mière intuition nous dicterait de considérer tous les termes non normalisables comme non
significatifs. Cependant, égaliser tous ces termes s’avère être incohérent, car les modèles
construits ainsi s’effondrent.

La notion de termes significatifs est en fait donnée par l’ensemble des termes solubles,
qui est strictement plus grand que l’ensemble des termes normalisables : la réduction de
certains termes ne termine pas, mais peut cependant contribuer au résultat de la réduction
globale. Tous les termes solubles dévoilent progressivement une structure stable tout au long
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du processus de réduction : cela donne un résultat partiel progressif qui est plus tard intégré
dans la structure finale de la forme normale. Au contraire, si un terme contenant un sous-
terme insoluble 𝑢 converge vers un résultat, alors 𝑢 peut être remplacé par n’importe quel
autre terme, donnant toujours le même résultat et justifiant ainsi l’appellation d’insoluble
comme non significatif (lemme de généricité [Bar84]).

𝜆-terms

Soluble

Normalizable

FIG. 0.3 : Il y a strictement plus de termes solubles que fortement normalisables.

Tout en étant une propriété sémantique importante, la résolubilité possède également
une théorie opérationnelle très élégante. Un terme soluble peut se réduire à tout autre terme
lorsque fermé par des abstractions et appliqué à une séquence d’arguments appropriée. Dans
le λ-calcul en appel-par-nom, un terme 𝑡 est soluble si et seulement si 𝑡 a une forme normale
de tête si et seulement si 𝑡 normalise par l’évaluation de tête [Wad76].

La résolubilité peut être définie dans l’appel-par-nom, ainsi que dans l’appel-par-valeur.
Mais en raison des comportements de normalisation différents, les notions correspondantes
de résolubilité ne coïncident pas parfaitement [PR99].

L’étude de la résolubilité en appel-par-valeur est considérablement plus complexe, notam-
ment à cause de l’absence de formalismes d’appel-par-valeur satisfaisants. En effet, une pre-
mière caractérisation opérationnelle de la résolubilité par PAOLINI et RONCHI DELLA ROCCA 
[PR99] utilise la réduction 𝛽 , plutôt que 𝛽v de l’appel-par-valeur. Une caractérisation de la
résolubilité en appel-par-valeur utilisant une notion de réduction en appel-par-valeur direc-
tement n’a été obtenue que récemment [AP12 ; CG14].

Le λ-calcul en appel-par-valeur de Plotkin est défectueux : certains termes qui sont inso-
lubles d’un point de vue sémantique sont des formes normales précoces. Par exemple, dans un
modèle sémantique des termes, le terme (𝜆𝑦.𝜆𝑥.𝑥𝑥)(𝑧𝑧)(𝜆𝑥.𝑥𝑥) se comporte comme le terme
Ω = (𝜆𝑥.𝑥𝑥)(𝜆𝑥.𝑥𝑥) qui boucle et est insoluble. Pourtant, le premier terme ne se réduit pas
car l’argument 𝑧𝑧 n’est pas une valeur, de sorte que la réduction 𝛽v ne se déclenche pas.

Dans le λ-calcul, la solution pour obtenir un calcul correct dans lequel la résolubilité peut
être exprimée de manière opérationnelle est d’étendre le calcul de Plotkin. Une possibilité
est d’étendre le calcul avec deux règles de permutation, dans l’esprit des règles 𝜎 de REGNIER 
[Reg94], qui permettent de débloquer les formes normales prématurées. Cette solution est
donnée par CARRARO et GUERRIERI [CG14].

(𝜆𝑦.𝜆𝑥.𝑥𝑥)(𝑧𝑧)(𝜆𝑥.𝑥𝑥) →𝜎1 (𝜆𝑦.Ω)(𝑧𝑧) →𝛽v (𝜆𝑦.Ω)(𝑧𝑧) →𝛽v …
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Une autre solution, d’ACCATTOLI et PAOLINI [AP12] est d’utiliser un calcul à substitutions
explicites, où chaque application d’une fonction à un argument est éliminée et où la distance
peut être utilisée.

(𝜆𝑦.𝜆𝑥.𝑥𝑥)(𝑧𝑧)(𝜆𝑥.𝑥𝑥) →dB (𝜆𝑥.𝑥𝑥)[𝑦/𝑧𝑧](𝜆𝑥.𝑥𝑥) →dB Ω[𝑦/𝑧𝑧] →dB Ω[𝑦/𝑧𝑧] →dB …

Ainsi, la résolubilité est un bon critère pour juger un calcul (en appel-par-valeur), puisque
sa caractérisation en tant que relation de réduction est suffisamment complexe pour mettre
en évidence certains problèmes potentiels.

Pour le λ-calcul en appel-par-nom à applications généralisées, nous étendons les défini-
tions et les techniques du λ-calcul dans la section 3.3.1 pour obtenir une relation résolvante
capturant la résolubilité et étendant la réduction de tête du λ-calcul. Bien que le formalisme
soit plus général, l’extension de la théorie est naturelle. La caractérisation est valable pour le
variant à distance ainsi que que pour le calcul originel, pour lequel nous donnons une preuve
directe dans la section 3.5.1. La résolubilité en appel-par-nom introduit des notions utiles à
l’analyse plus complexe de la résolubilité en appel-par-valeur.

Pour l’appel-par-valeur, nous donnons une caractérisation opérationnelle interne de la
résolubilité dans la section 3.4.2. Elle consiste en une relation de réduction qui ne possède
pas les mêmes contextes d’évaluation et formes normales que son pendant en appel-par-nom.
Ceci est dû au fait que les notions de normalisation ne sont pas les mêmes : la résolubilité en
appel-par-nom est capturée par la normalisation de tête, alors que la résolubilité en appel-
par-valeur correspond à la normalisation de tête plus l’évaluation faible sur tous les sous-
termes effaçables. La similarité entre les sémantiques opérationnelles en appel-par-nom et
par valeur dans les applications généralisées met en évidence les différences cruciales entre
les deux notions de résolubilité, sur le plan opérationnel et syntaxique.

Par rapport au λ-calcul par valeur avec permutations, la relation résolvante présente
l’avantage de ne pas impliquer de règles de permutation, de sorte que les transformations
structurelles et calculatoires ne sont pas entrelacées. Les formes normales dans le calcul avec
permutations sont plutôt complexes, en raison de la présence de radicaux bloqués. Ceux-ci
contiennent en effet des applications d’abstractions telles que (𝜆𝑥.𝑥)(𝑦𝑦). Au lieu de cela,
nos formes normales sont simples et similaires à celles de la version en appel-par-nom et du
λ-calcul : elles sont de la forme 𝜆𝑥1…𝜆𝑥𝑛.𝑦(𝑢1, 𝑧1.𝑟1) … (𝑢𝑚, 𝑧𝑚.𝑟𝑚) (avec même 𝑚 = 1 quand
la permutation 𝜋 est utilisée indépendamment).

La caractérisation de la résolubilité dans les applications généralisées montre qu’il n’est
pas nécessaire d’aller jusqu’aux substitutions explicites pour obtenir un bon formalisme pour
l’appel par valeur. L’approche plus abstraite, où seules les applications sont partagées et où
la réduction est effectué dans une règle unique, simplifie certains aspects de la théorie par
rapport à celle décrite dans [AG22]. Avec l’application généralisée, il est également possible
d’utiliser 𝜋 comme une règle séparée, pour avoir des formes normales plus simples. En effet,
une relation résolvante pour le calcul originel sans distance est donnée dans la section 3.5.1.

Nos deux notions de résolubilité en appel-par-nom et par valeur, caractérisées opération-
nellement, correspondent-elles à la notion habituelle de résolubilité dans le λ-calcul ? Puisque
la résolubilité est caractérisée en termes de normalisation, des systèmes de types intersection
peuvent être donnés, où :
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Typabilité ⟺ normalisation ⟺ résolubilité.

Nous donnons de tels systèmes de types dans la section 3.3.2 (appel-par-nom) et la sec-
tion 3.4.3 (appel-par-valeur). Avec eux, nous identifions les nouvelles notions de résolubilité
pour applications généralisées avec celles existantes (section 3.5.2). Cette notion sémantique
de résolubilité en appel-par-valeur, caractérisée par des permutations, des substitutions expli-
cites ou des applications généralisées correspond également à celle du calcul de PLOTKIN, bien
qu’elle n’y soit pas directement exprimable. L’étude de la résolubilité en appel-par-valeur re-
pose sur celle de la valuation potentielle, moins restrictive, et que nous capturons également
de manière opérationnelle et logique.

Nous utilisons les caractérisations en appel-par-valeur pour deux autres résultats : la re-
lation de résolution termine (propriété 3.67), et différentes définitions de la résolubilité sont
équivalentes, ce qui est le cas en appel-par-nom mais pas toujours en appel-par-valeur [GN16].

Les types intersection non idempotents apportent aussi des preuves combinatoires courtes
de la terminaison, ainsi que des limites sur la longueur de la réduction et la taille des formes
normales.

À la fin du chapitre 3, nous comparons les réductions de 𝜆𝐽𝑣 et 𝜆vsub opérationnellement
par des simulations. Nous donnons également une bisimulation forte sur les termes avec ap-
plications généralisées et comparons les théories équationnelles de ces calculs avec l’addition
des équivalences structurelles. Nous terminons en montrant une simple réduction normali-
sante pour l’évaluation forte dans l’appel-par-valeur avec des applications généralisées. De
telles stratégies sont généralement beaucoup plus complexes dans d’autres calculs, tels que
𝜆vsub [Leb21].

Un calcul à application généralisées en appel-par-nom quantitatif. Les modèles donnés
par les types quantitatifs ont les avantages des modèles qualitatifs donnés par les types inter-
section idempotents. En particulier, ils aident à comparer les propriétés de normalisation de
différents formalismes. Mais ils permettent aussi de mesurer la différence du nombre d’étapes
d’exécution entre différentes relations de réduction, et sont ainsi une première étape vers une
analyse de complexité. Grâce à eux, nous pouvons associer des calculs à des systèmes sen-
sibles à l’utilisation de ressources comme la logique linéaire.

Pourtant, le calcul en appel-par-nom originel Λ𝐽 n’est pas compatible avec une séman-
tique quantitative. En effet, des propriétés cruciales du typage dans un système de types quan-
titatifs pour l’appel-par-nom échouent dans Λ𝐽 (voir section 4.4.3). Cela se produit parce que
𝜋 n’a pas un comportement adéquat quantitativement en appel-par-nom. Cette permutation
a une nature appel-par-valeur qui affecte la durée d’exécution lorsqu’elle est utilisée dans
un calcul en appel-par-nom. Cette permutation est acceptée par un système de type pour
l’appel-par-valeur, mais pas par un système de type pour l’appel-par-nom. Il est intéressant
de noter que [Mat00] a donné un système de type intersections idempotents pour Λ𝐽 . Son
système, qui n’est pas sensible au nombre d’étapes de réduction jusqu’à la forme normale,
valide 𝜋 , contrairement à notre système de types système de type quantitatif plus fin.

Nous ne pouvons pas nous passer complètement des permutations, car elles sont néces-
saires pour débloquer certains radicaux bloquées. Nous introduisons donc une autre permu-
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tation p2, qui n’affecte pas la longueur de la réduction dans une système en appel-par-nom :

𝑡(𝑢, 𝑦.𝜆𝑥.𝑟) →p2 𝜆𝑥.𝑡(𝑢, 𝑦.𝑟)
Nous intégrons cette permutation dans la règle 𝛽 , selon le paradigme de la distance. La règle
distante résultante ainsi que la syntaxe des applications généralisées donnent le nouveau
calcul à distance en appel-par-nom 𝜆𝐽𝑛. Ce calcul est confluent (section 4.2) et les termes
simplement typés terminent (section 4.2, théorème 4.4).

Nous montrons que 𝜆𝐽𝑛 est compatible avec le modèle quantitatif dans la section 4.4.
Pour la preuve de complétude (normalisable implique typable), nous donnons une définition
inductive de la normalisation forte, qui est une contribution non triviale de ce travail.

Pour notre règle 𝛽 à distance, nous nous inspirons des calculs à substitutions explicites, en
ayant à l’esprit la traduction habituelle 𝑡(𝑢, 𝑦.𝑟)⭒ vers la substitution explicite 𝑟[𝑦/𝑡𝑢]. Nous
nous attendons à ce que le comportement dynamique de notre calcul soit fidèle aux substitu-
tions explicites.

Une telle traduction, cependant, ne préserve pas en général la normalisation forte. En
effet, dans un radical (𝜆𝑥.𝑡)(𝑢, 𝑦.𝑟), l’interaction de 𝜆𝑥.𝑡 avec l’argument 𝑢 est matérialisée par
la substitution interne dans le terme contracté 𝑟{𝑦/𝑡{𝑥/𝑢}}, comme mentionné précédemment.
Mais une telle interaction est seulement apparente : si 𝑦 n’est pas libre dans 𝑟 , la réduction
𝛽 effacera simplement l’abstraction 𝜆𝑥.𝑡 et son argument 𝑢. Au contraire, (𝜆𝑥.𝑡⭒)𝑢⭒ peut se
réduire dans le contexte de la substitution explicite 𝑟⭒[𝑦/(𝜆𝑥.𝑡⭒)𝑢⭒].

La différence d’interaction entre l’abstraction et son argument dans les deux modèles
de calcul mentionnés a des conséquences importantes. Par exemple, soit 𝛿 ≔ 𝜆𝑥.𝑥(𝑥, 𝑧.𝑧) le
codage de 𝜆𝑥.𝑥𝑥 comme un terme à applications généralisées. Soit aussi 𝑟 un terme normal
sans occurrences libres libres de 𝑦 , comme 𝑟 = 𝜆𝑥.𝑥 . La seule réduction possible à partir de
𝛿(𝛿, 𝑦.𝑟) est vers 𝑟 = 𝜆𝑥.𝑥 , qui est une forme normale, alors que 𝛿⭒𝛿⭒ peut se réduire à l’infini
dans le contexte de la substitution explicite 𝑟⭒[𝑦/𝛿⭒𝛿⭒] →+ 𝑟⭒[𝑦/𝛿⭒𝛿⭒].

C’est pourquoi nous proposons un nouvel encodage, préservant le type, des termes avec
applications généralisées en termes avec substitutions explicites dans la section 4.5. En utili-
sant ce nouvel encodage et le système de types quantitatifs, nous montrons que la normalisa-
tion forte du terme source avec applications généralisées est équivalente à la normalisation
forte du terme cible avec substitutions explicites, et donc aussi à celle du λ-calcul.

En guise de contribution finale, nous montrons la normalisation forte de 𝜆𝐽𝑛 équivalente
à celle du calcul originel Λ𝐽 en section 4.6. En effet, nous souhaitons donner un calcul à ap-
plications généralisées quantitativement compatible avec un modèle pour l’appel-par-nom,
mais sans perdre les propriétés sémantiques du calcul original. Nous extrayons de nouveaux
résultats pour ce dernier, comme une traduction fidèle aux substitutions explicites et une nou-
velle stratégie de normalisation. De plus, nous obtenons une caractérisation quantitative de
la normalisation forte de Λ𝐽 , où la taille des dérivations de types donne une borne supérieure
au nombre de réductions 𝛽 , mais pas 𝜋 .





CHAPTER1
Introduction

1.1 General Introduction
Imperative and declarative programming languages are often opposed, as they offer rather
different styles of programming: machine versus specification-oriented.

Imperative programs are organized as a sequence of commands for manipulating the state
of the environment where they run: storage access, input/output, jumps... using pointers,
scan/print directives, exceptions... The execution of a program consists in the guided trans-
formation of the state of the machine. Famous imperative languages include C, or the object-
oriented C++ and Java.

On the other hand, declarative programs can be seen as a sequence of mathematical ex-
pressions not acting on the environment or execution flow. They take a high-level approach,
so that a program resembles more to the specification of a problem in mathematical style.
Control flow is left implicit: the programmer trusts the compiler or interpreter to execute
the program on the machine in a reasonable way. The execution of a program consists in the
evaluation of the expressions through their transformations to a result. Popular declarative
languages are OCaml, Haskell or Coq (functional) and Prolog (logic).

1 int factorial (int n) {
2 int factn = 1;
3 while (n >= 1) {
4 factn = factn * n;
5 n--;
6 }
7 return factn;
8 }

1 let rec factorial n =
2 if (n = 1) then 1
3 else n * factorial (n-1)

Figure 1.1: Imperative and declarative styles.

In this work, we focus on functional languages. Compared to imperative programs, func-
tional ones are less error-prone thanks to their higher-level approach and powerful type
systems, are easier to parallelize and prove correct. Functional languages produce smaller
programs thanks to the use of first-class functions, pattern matching... They are actively de-
veloped, stimulated in part by the increasing demand for safety-critical applications. Mean-
while, modern imperative languages integrate more and more functional features and styles
[vRos09; Hol16; KN19, §13].



18 1 Introduction

1.1.1 Programming Language Semantics
A functional program is very far from a sequence of assembly instructions aimed at the pro-
cessor. Focus is put on “what” rather than “how”. But then, how do we make the transition
to the machine, for which only the “how” matters? How do we specify the order of compu-
tation? What about potential optimizations? Parallelization? From the same program, two
different compilers could give very different executions, sometimes with different results.

Researchers on programming language semantics are concerned with this kind of ques-
tions. Two important ones, that will also be apparent along this work, are:

1. Which transformations should we apply to programs, for evaluation, compilation, and
optimizations?

2. How do we make sure that these transformations preserve the meaning of the original
programs?

The word “semantics” in the term “semantics of programming languages” refers to mean-
ing. The meaning of a program must be understood as what we want the program to do:
light up a screen, loop forever, compute a result in less than ten seconds... Various kinds
of semantics offer complementary point of views on programs. Two of them underlie our
work.

Operational semantics is centered around syntax, and defines the meaning of programs as
the way the expressions are to be computed, with syntactical rules, to obtain a result (called
a normal form). It uses rewriting relations on programs, which model the transformations of
the functional expressions of the program. The form of the code matters, since it determines
further transformations.

Denotational semantics is concerned with properties on programs that are invariant along
evaluation, such as termination (does a program eventually stop) or observational equiva-
lence of two different programs (whether they have the same behavior). Checking that a
transformation process conserves denotational properties is important. The study of denota-
tional semantics is rooted in mathematics, as it interprets programs into an algebraic theory,
abstract from the syntax. This interpretation should be the same for all correct transforma-
tions of the program.

The approach followed in this thesis is foundational and theoretical and follows ideas
coming from operational semantics as well as denotational semantics. The first interest of
modeling programs and languages in a mathematical language is to abstract over the neces-
sary pragmatic details, which obstruct the peculiarities of the systems. A second interest is
to appropriate the many tools of mathematics to prove correctness of program transforma-
tions, of programs themselves, or the efficiency of an implementation choice. Finally, this
abstract model also offers the advantage that the results obtained are mathematically true,
and will stay so, for many programs and languages at once.

Hence, rather than focusing on the implementation of a specific language, our work is
centered around a pen-and-paper functional language: the λ-calculus.
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The λ-calculus, a minimal functional language. The λ-calculus was created in the end of
the 1920s by Church, and first published in 1932 [Chu32].1 It was originally designed as a
logical foundation of mathematics centered on functions, putting the emphasis on function
application and the substitution process. It can be considered as the first functional pro-
gramming language. This calculus provides both a mathematical theory of programs and
computation, and an abstract model for (functional) programming languages. In this very
elementary language, programs, named terms, are built out of only three constructors. We
use the letters 𝑡 , 𝑢, 𝑟 and 𝑠 to denote terms.

Variables such as 𝑥, 𝑦, 𝑧, … which range over terms.

Abstractions 𝜆𝑥.𝑡 , which can be understood as 𝑥 ↦ 𝑡 : an anonymous function with param-
eter 𝑥 and whose body is the term 𝑡 . The occurrences of the variable 𝑥 in the term 𝑡
are said to be bound by the abstraction.

Applications 𝑡𝑢, where the term 𝑡 is applied to an argument 𝑢.

Programs of the λ-calculus are built inductively by nesting constructors on top of others.
Examples are the term I ≔ 𝜆𝑥.𝑥 which is the identity function, (𝜆𝑥.𝑥)(𝜆𝑥.𝑥) which is the
identity function applied to itself, self-application 𝛿 ≔ 𝜆𝑥.𝑥𝑥 and self-applied self-application
Ω ≔ 𝛿𝛿 = (𝜆𝑥.𝑥𝑥)(𝜆𝑥.𝑥𝑥). The terms I and Ω will be used in this introduction.

In this model, the focus is put on the major component of computation in a functional
program: the application of a function to an argument. Yet, this minimal language has as
much computational power as any other programming language: every program and data
can be encoded as a λ-term (although often tediously). For instance, the integer 3 can be
encoded as 𝜆𝑓 .𝜆𝑥.𝑓 (𝑓 (𝑓 𝑥)). In following examples, we use an extended syntax with integers
and arithmetic operations, for the sake of illustration.

The λ-calculus has a syntactic part that we just described. But also a dynamic one, de-
termined by the interaction of the different constructors. Computation in the λ-calculus is
modeled as a rewriting sequence: steps in which the starting term is changed according to
some predefined reduction rules. Rewriting models the evaluation of a functional program.
Concretely, it is reminiscent of the way a simple arithmetic calculus is carried out, like:

5 × 3 + 8 = 15 + 8 = 23. (1.1)

In the first step of this computation, the subterm 5 × 3 gets rewritten to 15, according to the
rule that 5 × 3 = 15. In the second step, the term is rewritten again according to another rule
for addition. A result is reached when no more rules apply, upon the term 23 here.

Rewriting in the λ-calculus follows this scheme, with the difference that we use an arrow
symbol → instead of an equality, to emphasize the directed nature of rewriting. An example
in the λ-calculus is the following one:

(𝜆𝑥.𝑥 + 8)(5 × 3) → 5 × 3 + 8 → 15 + 8 → 23. (1.2)

1A detailed history of the λ-calculus and combinatory logic is in [CH09].
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The starting term is made of a function 𝜆𝑥.𝑥 + 8 with parameter 𝑥 , applied to an argument
5×3. To evaluate it, we simply pass the argument as a parameter to the function by replacing
the variable 𝑥 by 5 × 3: we substitute 5 × 3 for 𝑥 in 𝑥 + 8. This first step is an example of the
reduction rule of the λ-calculus. In the second step, our program is now 5×3+8. It is rewritten
to 15 + 8, then 23, using the encoding of natural numbers, addition and multiplication.

The dynamics of the λ-calculus are defined by a single reduction rule 𝛽 :

(𝜆𝑥.𝑡)𝑢 →𝛽 𝑡{𝑥/𝑢}.
The term on the left is called a redex, for reducible expression. A redex is an abstraction
applied to one argument. This kind of term is not a definite result, and we can reduce it
by substituting the argument 𝑢 for 𝑥 in 𝑡 : this is denoted by 𝑡{𝑥/𝑢}, meaning that every
occurrence of the variable 𝑥 in 𝑡 will be textually replaced by the term 𝑢. For instance:

(𝜆𝑥.𝑥𝑥)(𝜆𝑦.𝑦) →𝛽 (𝑥𝑥){𝑥/𝜆𝑦.𝑦} = (𝜆𝑦.𝑦)(𝜆𝑦.𝑦).
Here, = denotes syntactical equality, since the substitution is a meta-level operation defined
outside the calculus.

In the same way that the rule 5 × 3 = 15 was applied left of the addition in (1.1) and (1.2),
reduction 𝛽 can itself be applied anywhere inside a term. Take for instance the following,
where the underlined redex occurs inside the body of the abstraction 𝜆𝑦 .

𝜆𝑦.(𝜆𝑥.𝑥𝑥)𝑦 →𝛽 𝜆𝑦.(𝑥𝑥){𝑥/𝑦} = 𝜆𝑦.𝑦𝑦

Extensions of the λ-calculus. The λ-calculus can be seen as a kernel of functional lan-
guages. However, concrete languages include many other constructors and data types, such
as integers and recursion [Plo77], pattern matching [KvOdV08; AKV20] and monads [Mog91],
among others. Each of these programming features can be considered in isolation inside min-
imal syntax for an extended λ-calculus. This enables one to focus on and study particular
behaviors of the programming language by giving general results on them.

Abstract machines lie on an intermediate level of abstraction between the λ-calculus and
concrete implementations. In particular, they provide an internal treatment of substitution
and a mechanism for searching for a redex. Both of these mechanisms are specified by trans-
formations that are executed stepwise at a local level, rather than on the whole term.

The λ-calculi with ESs (explicit substitutions) (see a survey in [Kes09]) are less concrete,
as they only give an internal treatment of substitution. Their terms contain an additional
constructor 𝑡[𝑥/𝑢], the explicit substitution. This is a more compact notation for a let-binding
let 𝑥 = 𝑢 in 𝑡 : the occurrences of 𝑥 in 𝑡 are bound to the term 𝑢.

The 𝛽-step is divided into two phases. A first one is the application of a B-rule which
creates a new explicit substitution.

(𝜆𝑥.𝑡)𝑢 ↦B 𝑡[𝑥/𝑢]
This creates a sharing of the term, that is useful to avoid duplicating computations or grow
the size of a term too much. The second phase consists in applying different reduction rules
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to evaluate the previously fired substitution. The concrete evaluation steps in play vary
according to the implementation of substitution considered.

Explicit substitutions give greater control over the substitution process. They enable the
study of different flavors of substitution, like linear substitution which acts on one occurrence
of a variable at a time, or, as we will see in the first part of this thesis, of node replication.

In the second part of the thesis, we investigate another extension of the λ-calculus. Gen-
eralized applications combine applications and ESs in one constructor. Both node replication
and generalized applications arise from mathematical logic, by the Curry-Howard correspon-
dence, a foundational link between logic and type systems of programming languages. One
motivation of this work is to see in which way these features can be useful in a foundation
of (functional) programming languages based on the λ-calculus.

Towards evaluation. When modeling programming languages with an abstract calculus, a
difficulty is in finding a correct and interesting evaluation of the terms. Indeed, the λ-terms
are descriptive programs that do not specify anything about the flow of execution. This is
echoed by the nondeterminism of reduction: from a single starting term, several reductions
are often possible. The example (𝜆𝑥.I(𝑥𝑥))I can be reduced either to I(II) by reducing the
outer redex or to (𝜆𝑥.𝑥𝑥)I by reducing under the left abstraction.

(𝜆𝑥.I(𝑥𝑥))I
(𝜆𝑥.𝑥𝑥)I

I(II)
II I

Fortunately, each term always reduces to at most one result: the λ-calculus is confluent.
Yet, choosing one execution path or the other has important implications.

First, while some reductions can lead to the unique result, some others may never reach
it and reduce infinitely. For instance, take the following possible reduction paths, where
Ω = 𝜆𝑥.𝑥𝑥 is a term that reduces to itself: (𝜆𝑥.𝑥𝑥)(𝜆𝑥.𝑥𝑥) →𝛽 (𝜆𝑥.𝑥𝑥)(𝜆𝑥.𝑥𝑥).

(𝜆𝑧.𝑥)Ω
𝑥

(𝜆𝑧.𝑥)Ω (𝜆𝑧.𝑥)Ω …

Second, take two terminating reduction paths. They can have arbitrarily different lengths:
one could find the result in one step, and the other one in a million. In the illustration below,
the loop on the starting term can be as long as we want, until we decide to reduce it to the
normal form.

(𝜆𝑧.𝑥)Ω 𝑥

On the contrary, the evaluation of a program must be deterministic, as the compiler or
interpreter must be able to find out what the next step is. Inside the λ-calculus, various
deterministic evaluation strategies can be encoded by restricting evaluation. Including such
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restrictions in the calculus is a crucial step in the modeling of programming languages. The
minimal syntax of the λ-calculus makes it a tool of choice to inspect the various possibilities
and relate them qualitatively or quantitatively.

The construction of a deterministic evaluation in the λ-calculus is done in three steps.

1. Choosing a parameter-passing policy (among call-by-name/value/need).

2. Defining the shape of the desired results and restricting evaluation accordingly.

3. Making reduction deterministic by giving an order on the redexes.

We will concentrate in the following on the first and second items, as the third is more closely
related to the syntax of the calculus under consideration, and often straightforward.

Call-by-name, call-by-value and call-by-need. We consider three parameter-passing poli-
cies: CbN (call-by-name), CbV (call-by-value) and CbNeed (call-by-need). These three poli-
cies define three different λ-calculi.

Church’s original λ-calculus implements call-by-name evaluation. Within the 𝛽-rule
(𝜆𝑥.𝑡)𝑢 →𝛽 𝑡{𝑥/𝑢}, the arguments of functions are first copied, then evaluated. This is fre-
quently expensive, as in the term 𝑡 = (𝜆𝑥.𝑥𝑥)(II). The normal order (from left to right) CbN
reduction sequence is the following, where the redex is underlined at each step. Remember
that II →𝛽 I.

𝑡 = (𝜆𝑥.𝑥𝑥)(II) →𝛽 (𝑥𝑥){𝑥/II} = (II)(II) →𝛽 I(II) →𝛽 II →𝛽 I

This happens because the argument II is itself a redex. Since there are several occurrences of
𝑥 in the body of 𝜆𝑥.𝑥𝑥 , the redex in the argument is copied naively, leading to a superfluous
reduction step. In general, there are as many duplications of the argument as there are
occurrences of the bound variable in the term. This can lead to an explosion of the number
of steps, as well as of the size of the term.

This situation may be improved by call-by-value, in which arguments are evaluated first,
then consumed. A CbV reduction from 𝑡 contains one less reduction step.

𝑡 = (𝜆𝑥.𝑥𝑥)(II) →𝛽v (𝜆𝑥.𝑥𝑥)I →𝛽v (𝑥𝑥){𝑥/I} = II →𝛽v I

The CbV λ-calculus uses a reduction rule 𝛽v, different to Church’s original 𝛽 .

(𝜆𝑥.𝑡)𝑣 ↦𝛽v 𝑡{𝑥/𝑣}
In this rule, the letter 𝑣 denotes values: variables or abstractions 𝜆𝑥.𝑡 . This explains why
the first step of reduction in the previous CbN reduction sequence is forbidden in CbV: the
argument II is not a value. Call-by-value avoids many duplications of computation caused
by the general 𝛽 rule and is generally more efficient than CbN.

When talking about efficiency here, we are talking about the number of 𝛽/𝛽v-steps. It
should not be confused with a precise measure of complexity, as some of those steps could be
costly to implement. We give an overview about cost models of the λ-calculus in section 2.6.
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The CbV λ-calculus was introduced by Plotkin [Plo75] and underlies evaluation of lan-
guages like OCaml or Scheme. Like the CbN one, the CbV calculus is non-deterministic, and
evaluation strategies need to be defined to implement a programming language.

Call-by-value is not always the best solution, though, because evaluating erasable argu-
ments is useless. Compare for instance:

CbN (𝜆𝑥.𝑧)(II) →𝛽 𝑧, to:

CbV (𝜆𝑥.𝑧)(II) →𝛽v (𝜆𝑥.𝑧)I →𝛽v 𝑧.

This time, the CbV reduction takes one more step reducing an argument that is going to be
erased anyway.

Crucially, some terms which normalize in CbN do not in CbV. Take again the term (𝜆𝑥.𝑧)Ω.
Now, compare:

CbN (𝜆𝑥.𝑧)Ω →𝛽 𝑧 to

CbV (𝜆𝑥.𝑧)Ω →𝛽v (𝜆𝑥.𝑧)Ω →𝛽v … .

We could see that the semantics of CbN and CbV are rather different. The CbV calculus in
particular poses technical difficulties, and is still not as well understood as CbN. There is for
instance no canonical well-behaved CbV λ-calculus (see section 1.2.2.1).

A third possibility is call-by-need, which takes the best of CbN and CbV: as in CbN,
erasable arguments are not evaluated at all, and as in CbV, reduction of arguments occurs
at most once. Precisely, CbNeed implements a demand-driven evaluation, in which erasable
arguments are never needed (so they are not evaluated), and non-erasable arguments are
evaluated only the first time they are needed, and the result of this evaluation is memoized
for later uses. Call-by-need can intuitively be seen as CbN with memoization. Indeed, Cb-
Need evaluation finds the same results as CbN, and the set of normalizing terms is the same
in both formalisms [Kes16].

Call-by-need is used in Haskell, under the name laziness. Besides efficiency in the num-
ber of 𝛽-steps, another possibility offered by lazy evaluation is the use of infinite data struc-
tures like streams. In eager languages, a special construction lazy must be added to delay
evaluation of a subterm. However, semantical analysis of CbNeed is more complicated to
carry out: knowing how long a program will run is difficult, due to the delays in the evalu-
ation. Moreover, delay becomes problematic when introducing side-effects, since the order
in which changes will be made on the state of the machine is less clear.

In the λ-calculus, some mechanism is needed to keep a unique shared copy of the ar-
gument after the 𝛽-reduction. The first instance of such a CbNeed reduction, devised by
Wadsworth [Wad71], uses a representation of terms as directed acyclic graphs. A CbNeed
reduction from the graph representation of 𝑡 = (𝜆𝑥.𝑥𝑥)(II) is represented in figure 1.2 (with
application nodes denoted by @).

The reduction is done at the level of the outermost redex, like in CbN, but thanks to the
graphical representation, keeping a single instance of II shared over the occurrences of 𝑥 is
easy. In the next step, 𝑥 is considered needed because it is located at the head of the term,
in a position where a potential redex can be created. Therefore, we first reduce II to the
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@

𝜆𝑥

@

𝑥 𝑥

@

I I →𝛽

@

𝑥 𝑥
@

I I

→𝛽

@

𝑥 𝑥
I

→𝛽 I

Figure 1.2: Graph reduction.

value I before replacing it. We only replace the occurrence of 𝑥 that is needed: this is a
linear substitution. After the second reduction, we have again a needed occurrence of 𝑥 , so
we replace it by the value I which was memoized.

A common way to implement CbNeed in the λ-calculus is to use explicit substitutions
𝑡[𝑥/𝑢]. Since in the term 𝑡 , all occurrences of 𝑥 are bound to the term 𝑢, this one only needs
to appear once. The 𝛽-rule is decomposed in two: the rule creating an explicit substitution
B, and another one linearly substituting values which we call sub.

(𝜆𝑥.𝑥𝑥)𝑦 →B (𝑥𝑥)[𝑥/𝑦] →sub (𝑦𝑥)[𝑥/𝑦]

In a CbNeed reduction, the second possible B-step in the previous reduction is not fired,
since the variable 𝑦 is considered not needed. The graph reduction given above can be im-
plemented with explicit substitutions, and only three B-rules will be necessary, as for CbV,
which is one less than CbN.

However, CbNeed conserves the same notion of normalization as CbN, as the following
example demonstrates.

𝑡 ≔ (𝜆𝑥.𝑧)Ω →B 𝑥[𝑧/Ω] ↛
The term 𝑥[𝑧/Ω] is a normal form because 𝑧 does not occur at the head of the term, so that
the term Ω in the ES (explicit substitution) is not considered needed. In this way, CbNeed
avoids the pitfall of CbV: the term 𝑡 is strongly normalizing.

Even this wise evaluation scheme does not prevent unnecessary copies of redexes: while
only values are duplicated, they may contain redexes as subterms, like 𝜆𝑧.𝑧(II) in which the
subterm II is a redex. Duplicating this value will duplicate this inner redex (in color), as
shown in figure 1.3.

Alas, keeping all values shared forever is impossible, typically when they potentially
contribute to the creation of a future 𝛽-reduction step. The key idea to gain efficiency is
then to keep the subterm II as a shared redex. For this, the value 𝜆𝑧.𝑧(II) to be copied is
split into two separate parts. The first one, called skeleton, is 𝜆𝑧.𝑧◊, where ◊ is a placeholder.
The skeleton contains the path from the top abstraction to all the occurrences of the bound
variable 𝑧. It is highlighted in blue in the figure 1.4. The expression II is called a MFE
(maximal free expression), and is the biggest expression that can stay shared without losing
the scope of the abstraction. In general, there can be several separate MFEs for one term.
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Figure 1.3: Redex duplication in CbNeed.

This optimization is called fully lazy sharing and is also due to Wadsworth [Wad71]. A
fully lazy CbNeed reduction of the term 𝑡 = (𝜆𝑥.𝑥𝑥)(𝜆𝑧.𝑧(II)) is shown in figure 1.4. Only
the skeleton is copied, while the problematic redex II remains shared. When the subterm II
is needed ahead, it is first reduced, as usual in CbNeed, thus avoiding to compute the redex
twice.
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𝑧 𝑧′
𝑧′

@

I I

Figure 1.4: Fully lazy duplication.

Call-by-name and call-by-value evaluation will appear through this work. As for full
laziness, one of our results is its implementation in a λ-calculus with ESs.

Shaping results. Reducing a term to a full normal form (i.e. to a term that contains no
redexes at all, at any position) is not always desired. Thus, once a parameter-passing policy
is chosen, reduction can be refined, according to the shape of the results wanted.

A first possibility is to consider an abstraction, even with redexes inside, as a result. In-
deed, in general-purpose programming languages, a function is a first-class element that can
be used for instance as the argument of another function. There might be some computa-
tional steps left in the body of the function, but they are considered internal details that do
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not appear in the interface of the function. The paradigm where reduction steps inside func-
tions or abstractions are forbidden is called weak reduction. For instance, the term 𝜆𝑥.I(𝑥𝑥)
is a normal form for weak reduction.

The unrestricted paradigm resulting in fully normalized results and where reduction is
allowed also under abstractions, is known as strong reduction. In strong reduction, the weak
normal form 𝜆𝑥.I(𝑥𝑥) reduces to 𝜆𝑥.𝑥𝑥 . Strong reduction is crucial in the theory of the λ-
calculus itself to get fully reduced results, but also for denotational studies, related in partic-
ular to solvability, which is the subject of chapter 3. Beyond theory, strong reduction, while
more difficult to specify, has important use-cases in practice, notably the implementation of
proof assistants,2 and partial evaluation [JGS93]. In practice, strong reduction is generally
implemented using the leftmost-outermost strategy, which reaches the normal form of a term
every time there is one.

𝜆𝑥.I(𝑥𝑥)
𝑥𝑥 (strong reduction)

(weak reduction)/

Weak and strong reduction can be combined with other guidelines on normal forms. An
important one is restricting the calculus to head reduction to get head normal forms. An in-
tuition is given by the following. Although I𝑥 is a redex, should the term 𝑥(I𝑥) be a result?
This redex is only an argument of the variable 𝑥 . We can wait until 𝑥 is replaced by an ab-
straction, rather than dealing with the arguments. Head reduction never reduces arguments.
When combined with the constraint of weakness, we are talking about weak-head reduc-
tion, which is the one adopted (in a deterministic form) by general-purpose programming
languages.

In the first part of this thesis, we consider an explicit order on the execution of redexes to
obtain deterministic strategies that define a programming language. But in the second part,
we instead consider reduction relations following principles like head or weak reduction,
that are not deterministic. This enables a more general analysis of reduction, from which
strategies can be easily derived, and the results hold for different implementations that follow
the constraints.

One of the contributions of our work is the refinement of the calculi under study to reduc-
tion relations and strategies, aimed at the operational semantics of programming languages.
Another one is to give them a particular kind of type systems rooted in denotational seman-
tics. We now formally introduce type systems for the λ-calculus, and give an overview of
their relation to logic.

1.1.2 Types
Typing is a guarantee. Types come up in most real-world programming languages, where
they offer guarantees of well-behavior of programs. In these languages, every expression

2More precisely, of languages with dependent types, mainly proof assistants, in which type checking im-
poses to check syntactic 𝛽𝜂-equality between terms [CH88; GL02].
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has a type, that identifies the kind of data it represents: integers, characters, functions from
integers to strings...

For the programmer, types offer a static guarantee: many bugs can be detected at com-
pile time already, without needing to run the program. Therefore, the number of errors at
execution is greatly lessened, and so is the debugging effort. For safety-critical programs,
having a reliable static verification is mandatory, and types are an important part of it.

Types also offer an interface which guides the programmer. For functions, the type dec-
laration tells them immediately what kind of datatype is needed as argument, and what kind
of item the function will return. A few languages are dynamically typed: the correctness
of instantiations, functions applications and forth, are only checked at execution time. But
even there, statically typed variants, like TypeScript for JavaScript, are popular alternatives
[Zap22].

Types are an essential element of the programming language semantics for at least three
reasons. First, since many languages are typed, it is natural that a theoretical foundation
of programming languages also consider types. Second, types are a tool to avoid bugs, by
checking the correctness of written programs. One of the main goals of theoretical computer
science is to distinguish correct from defective programs. Type systems can be formally
inspected, ameliorated, or new ones can be proposed, sometimes for specific programming
languages, other times for abstract models such as the λ-calculus and related systems. Thus,
several type systems can exist for the same language.

The last reason is that types arise from the theory: decades before typed programming
languages, types were devised as a logical tool for the foundation of mathematics by Russell
and Whitehead [WR10]. They use types to restrict a too general foundational system that
entails paradoxes. The principal role of types has not changed much: they forbid certain
terms/programs which are syntactically constructible, but deemed semantically incorrect.
So, type systems are objects of both mathematical logic and computer science, which is why
they are at the core of the interface of these two disciplines with the Curry-Howard corre-
spondence.

In the 1930s, both Church [Chu40] and Curry [Cur34] defined a simple type system for
the λ-calculus, to reject certain terms expressing a logical paradox.

Simple types guarantee termination of λ-terms. In practical programming languages, the
guarantees given by the type system can be manifold: using the correct methods on some
data, not accessing an unallocated part of memory, testing all possible cases... The λ-calculus
is a minimalist system, with no side-effects in particular. What behaviors can we consider
unsound?

A first distinction between correct and incorrect programs is determined by the only
observation we can make:3 does a program terminate or not? Simple types offer a guarantee
on strong normalization: every reduction of a typed program terminates. In other words
every typed program can be eventually converted to a result. Yet, not every term whose
reduction terminates is typable. Not every normal term is typable even: this is for example
the case of 𝜆𝑥.𝑥𝑥 which is normal and untypable.

3Apart from confluence, valid for all terms.
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The set of programs we would wish to type and the set of programs that are indeed
accepted by a system commonly differ. There is a trade-off between:

1. the expressiveness of a type system: the amount of correct programs it recognizes and
the flexibility and precision the programmer has, and

2. the computational cost of the associated typing algorithms: in particular type checking,
i.e. verifying that the type annotations are valid for a program, and type inference, i.e.
deducing the correct typing for a program.

Type systems in which all and only typable λ-terms are normalizable are seldom in practice,
because of their undecidability [Urz99] and computational complexity [NM04], but present
great theoretical advantages, as we will see in section 1.1.4 about intersection types.

Technically, type systems are defined as systems of formal proofs of mathematical logic.
We thus introduce proof theory before discussing the simple type system for the λ-calculus
and the underlying Curry-Howard correspondence.

Proof theory. Hilbert’s 1901 program was a stepping stone in the search for a new founda-
tion of mathematics. The logician wished to obtain a foundation of mathematics that would
be:

Axiomatic, so that every theorem can be derived from a minimal amount of shared assump-
tions (axioms);

Complete, so that every statement can be proved or refuted;

Consistent, so that the same statement cannot be true and false; and

Computable, so that there is an algorithm deciding if a statement is provable or not.

Such a foundation should use a precise mathematical language. This means having non-
ambiguous symbols for connectives such as ∨ (or), ⊃ (implies) or ¬ (not). For the computable
part, there needed to be a mathematical description of algorithms and computation. This was
given by the λ-calculus and Turing machines [Tur37] in particular. But these systems also
allowed Church [Chu36] and [Tur37] to prove that Hilbert’s deciding algorithm cannot exist.
A previous objection to Hilbert’s program is due to Gödel’s incompleteness theorems [Göd31]
stating that no system containing arithmetics can be proven complete and consistent. An
important element of these metamathematics is the theory of formal proofs.

Proof theory is the line of research where the objects considered are syntactical represen-
tations of mathematical proofs. It is a tool to understand their logic and structure. Mathemat-
ical reasoning becomes itself an object of mathematics, conceptualized as a series of logical
inferences. Every statement and hypothesis is represented as a formula. Proofs are (origi-
nally and in this work) finite and inductive, which means that they are built by assembling
base elements together, in the same way that a program is constructed by assembling expres-
sions and constructors. Many proof formalisms coexist, for different logics, with different
inference rules.
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In proof theory, the abstract notion of “truth” of a proof becomes an algorithmic notion
of provability: given a proof system and a statement, can we prove this statement using the
rules and axioms of that system? Proofs can be verified by computational methods: retracing
the construction of the proof and checking if every step is well applied.

The existence of a formal theory of proofs makes possible computer-checked proofs, more
reliable than human-checked proofs. Proofs can be either written by the user, or automat-
ically generated. Proof assistants are in charge of verifying the “code” of the proof, while
automated theorem provers can generate a correct proof of a statement. Proof generation
is also used in logic programming, a descriptive programming paradigm notably present in
Prolog [Mil21].

1.1.3 The Curry-Howard Correspondence
We will introduce the simple type system of the λ-calculus through its correspondence to
natural deduction under the Curry-Howard correspondence.

Natural deduction and the λ-calculus. Natural deduction is a proof formalism, introduced
by Gentzen [Gen35a; Gen35b]. In this system, proofs are represented as trees called deriva-
tions, with the leaves on top. The nodes of the tree are inference rules.

Within this formalism, different logics can be expressed. Of interest to us is the system
for the implicational fragment of propositional logic, also called minimal logic, comprising
only one connective: the implication ⊃. The inference rules of that system are shown below.

Γ, 𝐴 ⊢ 𝐴
Γ, 𝐴 ⊢ 𝐵
Γ ⊢ 𝐴 ⊃ 𝐵

Γ ⊢ 𝐴 ⊃ 𝐵 Γ ⊢ 𝐴
Γ ⊢ 𝐵

The variables𝐴 and 𝐵 denote formulas of the minimal logic, which are built inductively using
the connective ⊃ from a set of arbitrary atoms 𝑎, 𝑏, 𝑐, … . The basic atoms are left arbitrary, so
that the focus is put on the steps of deduction, and is therefore also very generic.

The inference rules are represented using a horizontal bar separating premises from the
conclusion. This bar means that if we can prove the premises inside the system, then we
can prove the conclusion. The first rule comports no premise. Axioms serve as leafs of the
derivation tree.

𝐴 ⊃ 𝐵, 𝐴 ⊢ 𝐴 ⊃ 𝐵 𝐴 ⊃ 𝐵, 𝐴 ⊢ 𝐴
𝐴 ⊃ 𝐵, 𝐴 ⊢ 𝐵
𝐴 ⊃ 𝐵 ⊢ 𝐴 ⊃ 𝐵

⊢ (𝐴 ⊃ 𝐵) ⊃ 𝐴 ⊃ 𝐵
The relevance of this system for us is evident when considering the simple type system

of the λ-calculus below.

Γ, 𝑥 ∶ 𝐴 ⊢ 𝑥 ∶ 𝐴
Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ∶ 𝐵
Γ ⊢ 𝜆𝑥.𝑡 ∶ 𝐴 → 𝐵

Γ ⊢ 𝑡 ∶ 𝐴 → 𝐵 Γ ⊢ 𝑢 ∶ 𝐴
Γ ⊢ 𝑡𝑢 ∶ 𝐵
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The type system faithfully corresponds to the system of natural deduction. The only no-
table difference is that the type system can be seen as a version that is labeled with terms.
Apart from this, the changes are mostly lexical: instead of formulas, we have types, the sym-
bol for implication ⊃ becomes a symbol for functionality →, and proof derivations become
type derivations. What we derive is a typing for the term labeling the conclusion, based on
the typings given for the terms in the premises.

𝑓 ∶ 𝐴 → 𝐵, 𝑥 ∶ 𝐴 ⊢ 𝑓 ∶ 𝐴 → 𝐵 𝑓 ∶ 𝐴 → 𝐵, 𝑥 ∶ 𝐴 ⊢ 𝑥 ∶ 𝐴
𝑓 ∶ 𝐴 → 𝐵, 𝑥 ∶ 𝐴 ⊢ 𝑓 𝑥 ∶ 𝐵
𝑓 ∶ 𝐴 → 𝐵 ⊢ 𝜆𝑥.𝑓 𝑥 ∶ 𝐴 → 𝐵

⊢ 𝜆𝑓 .𝜆𝑥.𝑓 𝑥 ∶ (𝐴 → 𝐵) → 𝐴 → 𝐵
In the proof above, notice that the parameter 𝑓 of the abstraction has a functional type 𝐴 →
𝐵. The term 𝜆𝑓 .𝜆𝑥.𝑓 𝑥 is an example of an higher-order function, characteristic of functional
programs.

Lambda-terms act as compact representations of the proofs: each constructor of a term
reflects one inference in the tree, since at each inference a constructor is removed from the
term. This means that from a sequent Γ ⊢ 𝑡 ∶ 𝐴 that is derivable in the simply typed system,
we can reconstruct the full derivation, and obtain the natural deduction proof simply by re-
moving the term and variable labels in the tree. A term seen as such a compact representation
of a proof will be called proof term.

The connection between logic on one side and computer science on the other side with
type systems, that is, theCurry-Howard correspondence [How80; SU06] is here rendered trans-
parent by the presentation of both systems. Yet, it took several years for it to be worked out.

The Curry-Howard correspondence also lives at a dynamic level. In natural deduction,
an introduction rule followed directly by an elimination acting on the same constructor is
called a detour.

Γ, 𝐴 ⊢ 𝐵
Γ ⊢ 𝐴 ⊃ 𝐵 Γ ⊢ 𝐴

Γ ⊢ 𝐵

Γ, 𝑥 ∶ 𝐴 ⊢ 𝑡 ∶ 𝐵
Γ ⊢ 𝜆𝑥.𝑡 ∶ 𝐴 ⊃ 𝐵 Γ ⊢ 𝑢 ∶ 𝐴

Γ ⊢ (𝜆𝑥.𝑡)𝑢 ∶ 𝐵
All detours can be eliminated by detour conversion, a process which reflects 𝛽-reduction of
the λ-calculus.

In intuitionistic logic, detour conversion terminates, exactly like how reduction of simply
typed λ-terms does. The Curry-Howard correspondence exhibits here the computational con-
tent of proofs: they are a static objects asserting a theorem as well as models of computation,
related to the typed λ-calculus and similar systems.

Other correspondences. The connection between logic and computer science goes far be-
yond the λ-calculus and natural deduction. Indeed, many other systems than the simply
typed λ-calculus and minimal logic have been brought in correspondence. Two examples
are second-order logic (where quantifiers also act on formulas) and the System F of Girard
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[Gir89] and Reynolds [Rey74], as well as linear logic and session types for the π-calculus, a
calculus for concurrency [CPT14].

Thanks to the Curry-Howard correspondence, logical systems can be analyzed using the
semantical tools of rewriting theory. The Curry-Howard correspondence is so ubiquitous
that several important features of programming languages have been analyzed in logical
terms. Likewise, recent or established logical systems have been used as an inspiration to
devise new calculi. This has both a logical motivation, which is understanding the compu-
tational content of proofs, and a motivation in computer science, which is rooting program-
ming ideas in the theory.

An example of a calculus extracted from some logic is the 𝜆𝜇-calculus of Parigot [Par92],
which reveals that axioms of classical logic such as the excluded middle (either 𝐴 is true,
or ¬𝐴 is) correspond to the control operators of programming, such as call/cc. Another
example is the 𝜆̄𝜇𝜇̃-calculus [CH00], which is an interpretation of the presentation of classical
logic in the sequent calculus.

The sequent calculus is the other most important system of proofs, beyond natural de-
duction, and was also introduced by Gentzen [Gen35a; Gen35b]. As in the case of natural
deduction, derivations are also trees with sequents for nodes, as in our presentation of nat-
ural deduction,4 but inference rules are different, and can act either on the left or the right
of the sequents. The dynamics of the 𝜆̄𝜇𝜇̃-calculus reflect the reduction of proofs by cut-
elimination in the sequent calculus, in a similar way that the 𝛽-reduction simulates detour
conversion in natural deduction.

After Gentzen’s systems, alternative proof formalisms have been proposed, mainly to ex-
press different logics (like modal or multi-valued logics), but also to overcome syntactical
limitations of existing systems. Geometrical formalisms like proof nets for linear logic repre-
sent proofs as graphs.

The construction of proofs as graphs has an advantage: it avoids some of the bureau-
cracy involved in sequential presentations of proofs, notably the sequent calculus. Indeed, it
often happens that several proofs (even normal) are completely equivalent from a logical, se-
mantical and dynamic point of view. Graphs offer a more flexible structure, which does not
reflect the order of application of inference rules, and in which links can be drawn precisely
between the relevant structures.

In sequential proof systems as well as in term calculi, some bureaucracy can be tamed
with the addition of permutation rules enabling to rewrite one proof into an equivalent one,
by moving inference rules or term constructors around. For the λ-calculus, permutations
called 𝜎-rules were given by Regnier [Reg94], inspired from linear logic proof nets. Another
example is given by explicit substitutions. The two terms 𝑥[𝑥/𝑧]𝑦 and (𝑥𝑦)[𝑥/𝑧], where the
variable 𝑧 is shared over 𝑥 , are represented by the same graph, with a direct link between 𝑥
and 𝑧.

4We indeed presented natural deduction in a sequent-style, rather than the original presentation without
sequents by Gentzen.
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When 𝑥 does not appear in 𝑡2, a general equivalence on terms can be defined: 𝑡1[𝑥/𝑢]𝑡2 ∼
(𝑡1𝑡2)[𝑥/𝑢].

We now detail the two classes of languages we consider. They both have their origin in
a Curry-Howard correspondence on two different proof systems for minimal logic.

Deep inference and node replication. The first calculus that we consider is a new calculus
𝜆𝑅 with ESs implementing what we call node replication. Node replication is a refinement of
substitution, where terms are substituted constructor-by-constructor, or node-by-node if we
see terms as trees.

Let us compare different mechanism to implement substitution of all the free occurrences
of 𝑥 by the term 𝑢 = 𝑦 ⋅𝑧 (the multiplication dot denotes the application constructor): full
(1.3), linear (1.4) and with node replication (1.5). The variable substituted at each reduction
step is highlighted. Full substitution is the one of the λ-calculus, while linear substitution is
the common model in well-known abstract machines for CbN and CbV.

( 𝑥 ⋅ 𝑥 )[𝑥/𝑢] → 𝑢⋅𝑢 (1.3)
( 𝑥 ⋅𝑥)[𝑥/𝑢] → (𝑢⋅ 𝑥 )[𝑥/𝑢] → 𝑢⋅𝑢 (1.4)

( 𝑥 ⋅ 𝑥 )[𝑥/𝑦 ⋅𝑧] → (( 𝑥1 ⋅𝑥2)⋅( 𝑥1 ⋅𝑥2))[𝑥1/𝑦][𝑥2/𝑧] → ((𝑦 ⋅ 𝑥2 )⋅(𝑦 ⋅ 𝑥2 ))[𝑥2/𝑧] → 𝑢⋅𝑢 (1.5)

Node replication offers the possibility to substitute only some part of the term, while keep-
ing some subterms shared. In 𝜆𝑅, the smallest part of the term that needs to be substituted is
its skeleton. Using node replication, we will thus be able to define a fully lazy CbNeed evalu-
ation strategy for the λ-calculus, with an operational semantics internal to the 𝜆𝑅-calculus,
whereas in the literature, full laziness is defined as an external function on terms.

Node replication seems to be a crucial element for optimality, in the sense of Lévy [Lév80].
A reduction is called optimal if for any term, it reaches a normal form in a number of steps
equal to the length of the shortest of all reduction paths in the λ-calculus. In the (confluent)
setting of the weak λ-calculus [LM99], the fully lazy optimization is optimal. This means that
the fully lazy CbNeed strategy reaches the weak normal form in the same number of B-steps
as the shortest possible weak reduction sequence in the usual λ-calculus without sharing.

Thus, fully lazy sharing turns out to be a decidable optimal strategy, in contrast to other
weak evaluation strategies in the λ-calculus without sharing, which are also optimal but not
decidable [Bal13], so for which it is mathematically impossible to give a specification. Node
replication is also used in the graph reduction of Lamping [Lam90], which implements Lévy’s
optimal reduction [Lév80], optimal with respect to the full 𝛽-reduction. Again, being optimal
does not mean that this strategy is the most cost-effective complexity-wise (see section 2.6).

Our calculus 𝜆𝑅 for node replication is a reinterpretation of the atomic λ-calculus 𝜆𝑎 of
Gundersen, Heijltjes, and Parigot [GHP13b]. This calculus is itself a faithful Curry-Howard
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(𝑎 ∧ 𝑏 ∧ 𝑐) ∨ (𝑎 ∧ 𝑏 ∧ 𝑐)
(𝑎 ∧ 𝑏) ∨ (𝑎 ∧ 𝑏)
𝑎 ∨ 𝑎𝑎 ∧ 𝑏 ∨ 𝑏𝑏

∧ 𝑐 ∨ 𝑐𝑐

Figure 1.5: An open-deduction proof.

interpretation of the open-deduction proof system for minimal logic, a proof system relying
on deep inference [Gug07].

The intuition behind deep inference is rather simple. In Gentzen’s systems, we are only
able to apply inference rules for the outermost connectives. Deep inference permits the
application of these inferences inside a context, so that they can act on deeper connectives.
This paradigm is particularly useful to express modal logics [Brü10], or multiplicative linear
logic with a sequential operator, which is not expressible with Gentzen’s systems [Tiu06].

Open deduction is a proof formalism with a geometrical flavor, which avoids some bu-
reaucracy imposed by the arbitrary order of applications of unrelated rules. It achieves this
by allowing logical connectives to operate not only on formulas, but also on subproofs. An
illustration of an open-deduction proof is given in figure 1.5 (𝑎, 𝑏, 𝑐 are atomic formulas). This
example is taken from Guglielmi, Gundersen, and Parigot [GGP10], it is a derivation of 𝑎∧𝑏∧𝑐
from the assumption (𝑎 ∧ 𝑏 ∧ 𝑐) ∨ (𝑎 ∧ 𝑏 ∧ 𝑐).

The atomic λ-calculus was created as an interpretation of minimal logic formulated in
open deduction. As a computational interpretation of a deep-inference system, the atomic λ-
calculus has two main characteristics. The first one is of course node replication. The second
is linearity of the variables: every variable appears exactly once in the term. For example,
the term 𝜆𝑥.𝑥𝑥 is not valid, its translation in the atomic λ-calculus is: 𝜆𝑥.(𝑥1𝑥2)[𝑥1, 𝑥2 ← 𝑥].
This term is reminiscent of calculi with ESs: indeed, in the atomic λ-calculus the constructor
𝑡[𝑥1, … , 𝑥𝑛 ← 𝑢] shares 𝑢 over the occurrences of 𝑥1, … , 𝑥𝑛. Hence, a natural form of sharing
appears in this calculus.

In our work, we only keep node replication, and reject linearity of variables. Removing
the constraint on linearity enables us to formulate the semantics of node replication in terms
of the well-known formalism of ESs, and to make connections to calculi using other forms of
substitution. We obtain an original concise formulation of node replication which is simple
enough to model different programming languages based on reduction strategies. In partic-
ular, full laziness can be implemented internally with the rules of the calculus, while in the
literature this is realized with an ad-hoc meta-level operation on terms.

Generalized eliminations and applications. In the second part of this thesis, we consider
calculi with generalized applications. The original calculus with generalized applications Λ𝐽
was introduced by Joachimski and Matthes [JM03; JM00] as a Curry-Howard interpretation
of the implicational fragment of von Plato’s natural deduction with generalized elimination
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rules [vPla01]. The difference with natural deduction lies in the implication elimination rule:

Γ ⊢ 𝐴 → 𝐵 Γ ⊢ 𝐴
Γ ⊢ 𝐵

Γ ⊢ 𝐴 → 𝐵 Γ ⊢ 𝐴 Γ, 𝐵 ⊢ 𝐶
Γ ⊢ 𝐶

The generalized rule on the right has one more premise. Instead of the usual modus ponens
“from 𝐴 implies 𝐵 and 𝐴, we obtain 𝐵”, in the generalized rule we derive a third formula 𝐶
from a derivation in which 𝐵 is assumed. Philosophically, the rule can be seen as a strict
application of Prawitz’s inversion principle [as given in NvP01]:

Whatever follows from the direct grounds for deriving a proposition must follow
from that proposition.

The idea of generalizing elimination in natural deduction starts before von Plato, notably
with Schroeder-Heister [Sch84a], Prawitz [Pra79] and Tennant [Ten92]. In practice, gener-
alized eliminations have several advantages. Proofs are in closer correspondence to sequent
calculus ones, even non-normal (see [vPla01]). Furthermore, the rules unveil new permuta-
tion conversions, which enable the reduction of proofs to a so-called full normal form, that are
in bijective correspondence with cut-free sequent calculus derivations, and where the main
premise of each elimination is a leaf of the derivation tree. In the case of the implication this
is:

Γ, 𝐴 → 𝐵 ⊢ 𝐴 → 𝐵
⋮

Γ ⊢ 𝐴
⋮

Γ, 𝐵 ⊢ 𝐶
Γ ⊢ 𝐶

Interpreting generalized elimination in term syntax gives a λ-calculus with a generalized
application constructor. Instead of 𝑡𝑢, we have 𝑡(𝑢, 𝑦.𝑟), which is typed with the following:

Γ ⊢ 𝑡 ∶ 𝐴 → 𝐵 Γ ⊢ 𝑢 ∶ 𝐴 Γ, 𝑦 ∶ 𝐵 ⊢ 𝑟 ∶ 𝐶
Γ ⊢ 𝑡(𝑢, 𝑦.𝑟) ∶ 𝐶

Intuitively, this construction is to be understood as a let-binding let 𝑦 = 𝑡𝑢 in 𝑟 , or equivalently
as an ES 𝑟[𝑦/𝑡𝑢]. The application of 𝑡 to 𝑢 is bound to the variable 𝑦 and shared over the
occurrences of 𝑦 in 𝑟 .

Computationally, this calculus is interesting because it has a natural notion of sharing
with its roots in proof theory. Sharing is useful or even necessary, in implementing CbV,
CbNeed, or different kinds of optimizations. Espírito Santo [Esp20] indeed devised a CbV
version of Λ𝐽 (Λ𝐽𝑣 ), with an interesting operational semantics.

Unlike in calculi with ESs, only applications can be shared in Λ𝐽 and Λ𝐽𝑣 . In cases like
CbV, this renders the syntax and semantics of the calculus less redundant than calculi with ES.
Generalized applications present a slightly higher level of abstraction, closer in spirit to the λ-
calculus, with a single 𝛽 (or 𝛽v) rule for computation. Although Λ𝐽 and Λ𝐽𝑣 do not explicate
the substitution process like calculi with ES, they can also be seen as an intermediate between
the λ-calculus and abstract machines. They indeed posses a permutation rule, coming from
proof theory, which implements the search for the leftmost redex.
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Additionally, the natural deduction calculus Λ𝐽 is a fragment of the calculus Λ𝐽𝑚 [EFP18],
an interpretation of a fragment of the intuitionistic sequent calculus. Insights on generalized
applications could be useful to understand the intricate computational behavior of the se-
quent calculus. Espírito Santo [Esp09; Esp13] also use generalizations of Λ𝐽 to study possible
isomorphisms between natural deduction and the sequent calculus.

Finally, generalized applications have a flavor of ANFs [Fla+93] or CPS (continuation-
passing style) [App91], both of which are important tools for the compilation of programs.

For generalized applications as well as node replication, our approach is guided by a quan-
titative model given by non-idempotent intersection types. We will finish this introduction by
giving an overview of intersection types.

1.1.4 Intersection Types
Very concretely, intersection types systems [BDS09; vBak11] (introduced by Coppo and
Dezani-Ciancaglini [CD80]) implement a simple idea: a term can be assigned several types
simultaneously. In this way, more terms are covered by the system than with simple types.
For instance, the normal form 𝜆𝑥.𝑥𝑥 is not simply typable. Indeed, suppose that we assign
a type 𝜏 to the second 𝑥 . Then the first one should be assigned a type 𝜏 → 𝜎 , for some
𝜎 . Then, 𝑥 needs to be typed with the two types 𝜏 and 𝜏 → 𝜎 , which is not possible with
a simple type system. In an intersection type system, the term 𝜆𝑥.𝑥𝑥 can instead be typed
with 𝜏 ∧ (𝜏 → 𝜎).5 Intersection types represent a kind of ad hoc polymorphism [Str00].

What we can see from this example is that intersection type systems validate more terms
than the original simple-type one. In fact, the crucial property of intersection type systems,
and what often motivates their use, is that being normalizable corresponds to being typable.
More precisely, if we are considering the reduction ℛ (that can be strong, head, weak-head...)
of some calculus, then we are looking for an intersection type system ℐ such that:

For any term 𝑡 , 𝑡 is typable in ℐ if and only if 𝑡 is ℛ-normalizable.

For head and strong reduction in the λ-calculus, such a property was first given by Coppo,
Dezani-Ciancaglini, and Venneri [CDV81]. In other words, intersection type systems provide
logical models of terms [PPR17].

Intersection types characterize semantical properties of terms: normalization, but also
solvability, or observational equivalence. They are indeed syntactical representations of de-
notational models known as filter models [BCD83]. This makes them a simple tool to study
properties of these models in a more syntactical way. Dually, semantical properties can be
proved much more easily by going through typability instead of working directly on terms.

Intersection types can also be specified categorically, unveiling strong connections with
models of linear logic [dCar17; GO21]. Mazza, Pellissier, and Vial [MPV18] give a general
categorical approach to intersection types, from which type systems can be built, and nor-
malization is proved for a class of systems in an abstract (extensional) way.

5Beware that the symbol ∧ here does not denote conjunction, and the intersection and conjunction connec-
tives are different connectives [Hin84].
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In this work, we use the characterizations that we obtain for the different notions of
normalization and the different calculi intensively. With it, we prove the correctness of our
evaluation procedures (do we obtain a result of the desired shape?), and the equivalence
between various notions of evaluation, such as CbN/CbNeed, and between the original calculi
and the λ-calculus.

The expressiveness of intersection types, being able to type every normalizing term, has
a drawback: type inference, as well as the dual problem of inhabitation (given any type, find
a term that can be assigned this type) are undecidable [Urz99]. No algorithm can generate a
solution for any input of these problems. This is an important drawback concerning practical
matters, but is natural since the problem of normalization itself is undecidable. Still, types
with intersection are used in some modern programming languages like TypeScript [Mic22],
in conjunction with union types [BDD95; Cas21], where they are used to combine several
object types together. The types considered in that case are of course restricted to a decidable
fragment.

Non-idempotent intersections. The properties characterized by the idempotent intersec-
tion type systems are qualitative. They are yes/no questions such as: Does a term terminate?
Are two terms observationally equivalent? We go further and use non-idempotent intersec-
tion types. Removing idempotence means that the type 𝜏 ∧ 𝜏 is not equivalent to the type 𝜏 .
Non-idempotent type systems were first defined by Gardner [Gar94], then used by Kfoury
[Kfo00] and Neergaard and Mairson [NM04], and have since then been applied to a range
of calculi [PR10; KV14; KV15; Dal+19; AKV20; RDF20] and to different formalisms such as
call-by-value [Ehr12], call-by-need [Kes16; AGL19], call-by-push-value [Buc+20; KP22] and
classical logic [KV20]. A survey is in [BKV17].

Each type in the intersection roughly tracks one “use” of the term it types along reduction.
From there, a quantitative analysis arises. Besides asserting that a program terminates, non-
idempotent intersection types also give a bound on the number of steps to normal form and
on the size of the normal form [dCar07; dCar17]. For this reason, these type systems are
also known as quantitative type systems, which is the name that we will mostly use in the
following.

The choice of refining the qualitative model of (idempotent) intersection types into a
quantitative one is consistent with our approach oriented toward programming languages,
where the question of time and space complexity matters as much as bare termination. Hav-
ing a logical model giving a bound on measures of the execution is indeed a first step toward
precise complexity analysis of evaluation [Acc18a].

Another interesting feature of quantitative types is their sensitivity to quantitative prop-
erties: for instance, some permutations that have a CbV behavior might be rejected by a CbN
type system, as in section 4.4.3. Moreover, the property of inhabitation becomes decidable.
On a technical level, non-idempotence greatly simplifies proofs of normalization, generally
automatic since type derivation decreases at each step of computation. Quantitative types
are also a representation of denotational models, namely the relational models [dCar07].

The quantitative flavor of non-idempotent types will guide us into focusing the reduc-
tions we consider on computation, as well as being cautious with the permutations used. The
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combinatorial nature of normalization proofs will also help diminish the amount of technical
content.

1.2 Contributions
This thesis gathers and expands three articles (each in different a chapter). Chapter 2 is
written in collaboration with Delia Kesner and Daniel Ventura, and is based on [KPV22],
a submitted journal article following [KPV21]. Chapter 3 is based on [KP22], written in
collaboration with Delia Kesner. Sections 3.6 and 3.7 are original to this thesis. Chapter 4 is
based on [EKP22], written in collaboration with Delia Kesner and José Espírito Santo. The
proof of confluence for the calculus (section 4.2) is original.

These different works originate from a quantitative analysis of recent calculi originating
in proof theory (the atomic λ-calculus and generalized applications). We develop an oper-
ational and a quantitative theory influenced by an approach aimed towards the theory of
programming languages.

We state the main research question of this thesis as follows:

What contributions do node replication and generalized applications, analyzed
quantitatively, provide to the theory of programming languages?

More precisely, our contributions are twofold. On one hand, we give detailed operational
semantics of calculi with node replication and generalized applications. This consists in par-
ticular of the definition of reduction relations corresponding to different notions of evalu-
ation and normalization, that are of interest for programming language semantics. On the
other hand, we give quantitative type systems for these reductions relations. We use them as
an inspiration to refine the calculi, as a technical tool to simplify proofs of normalization and
as a semantical tool to prove equivalence of semantical properties among different calculi.

One way in which the quantitative model influences the definition of the calculi is through
the use of distance [AK10; ABM14] to focus on computation. In calculi with ES, generalized
applications or other sequential term calculi, permutation rules are necessary to unblock
some expected redexes. Take for instance the term (𝜆𝑥.𝑡)[𝑦/𝑟]𝑢. The term 𝑢 is the argument
of the abstraction 𝜆𝑥.𝑡 , but we do not have yet a B-redex, since an explicit substitution sepa-
rates 𝜆𝑥.𝑡 and 𝑢. We use a directed version of the equivalence of terms with ES defined before,
to permute the explicit substitution and make the redex emerge.

(𝜆𝑥.𝑡)[𝑦/𝑟]𝑢 →𝜎1 ((𝜆𝑥.𝑡)𝑢)[𝑦/𝑟] →B 𝑡[𝑥/𝑢][𝑦/𝑟]
The two terms to the left and to the right side of the permutation 𝜎1 indeed have the same
graph representation. In the graph, reduction can be done straightaway in a unique compu-
tational step.

Inspired from this formalism, the distant paradigm gathers meaningful and permutation
rules in only one reduction step. In this way, the semantics of sequential representations of
terms is brought closer to the graphical ones, with often a one-to-one correspondence [KL07;
Acc18b; Kes22].
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In calculi with explicit substitutions, the two steps are replaced by a single dB-step. Over-
all, only the permutations that are necessary to unblock meaningful reductions are fired.

(𝜆𝑥.𝑡)[𝑦/𝑟]𝑢 →dB 𝑡[𝑥/𝑢][𝑦/𝑟]

The choice of distance also reflects the logical models in a better way: quantitative types
are mostly neutral to permutation rules which are only relevant from a structural point of
view. Indeed, quantitativity is only related to the computational rules. With distance, every
step now represents a meaningful computational step.

Now that distance is introduced, we can precisely name the calculi analyzed and intro-
duced in this thesis:

• In the first part, an original calculus with ES implementing node replication and using
a semantics at a distance.

• In the second part, the CbN and CbV calculi with generalized applications, and original
variants using a semantics at a distance.

1.2.1 Node Replication
The main objective of the first part of the thesis (chapter 2) is to introduce the theory and
practice of node replication, inside the framework of the λ-calculus. We use a novel calculus
with explicit substitutions 𝜆𝑅, which we introduce in section 2.1. This calculus is a reinter-
pretation of the atomic λ-calculus, and uses distance to highlight the mechanisms of node
replication.

Compared to the atomic λ-calculus, the perspective changes. While Gundersen, Heijltjes,
and Parigot [GHP13b] give a computational interpretation of open deduction, we want to
give a fine analysis of substitution in the λ-calculus and programming languages in general
by adding the possibility of substituting node by node.

We give some general properties of the calculus 𝜆𝑅 in section 2.2: termination of the
process of substitution with node replication, confluence and simulations with the λ-calculus.

The calculus is then refined to two deterministic evaluation strategies. The first one is
CbN (section 2.3.1), and does not make use of the optimizations brought by node replication.
As an implementation of the CbN (weak-head) reduction of the λ-calculus, it serves as a link
between the λ-calculus and more elaborate strategies using node replication.

The second strategy implements (weak) fully lazy CbNeed (section 2.3.2). Several imple-
mentations of full laziness exist in the literature (see section 2.6), starting with the original
one by Wadsworth [Wad71]. But in them, the crucial point of the extraction of the maximal
free expressions is done at meta-level, and relies on external definitions of the skeleton. On
the contrary, Gundersen, Heijltjes, and Parigot [GHP13b] show how a fully lazy extraction
can be performed within the atomic λ-calculus. We build on these results, and integrate skele-
ton extraction in a call-by-need strategy to construct a fully-lazy call-by-need strategy. This
strategy formalizes an operational semantics in which the steps leading to this construction
are internal. Therefore, the computation is self-contained and described fully operationally.
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We give two kinds of semantics for the splitting of the skeleton and free expressions: the
first one is a big-steps semantics [Kah87], that reformulates the proof of Gundersen, Heijltjes,
and Parigot [GHP13b] that skeleton extraction can be implemented by the atomic λ-calculus.
The second is a small-step semantics, that details how to extract a skeleton step-by-step using
the rules of the calculus 𝜆𝑅. We show that these two semantics correspond to two different
but equivalent definitions of a skeleton.

While it has been shown that call-by-name and call-by-need specified by means of full
and linear substitution (respectively) are observationally equivalent [AF97], it was not clear
at first whether the same property would hold in our case. A further contribution is a proof
of this result using a quantitative type system in section 2.5. This proof technique [Kes16]
considerably simplifies other approaches [AF97; MOW98] based on syntactical tools. More-
over, the use of intersection types has another important consequence: standard CbN and
CbNeed turn out to be observationally equivalent to CbN and CbNeed with node replication,
as well as to the more semantical notion of neededness [KRV18]. This is to our knowledge
the first quantitative characterization of fully lazy normalization.

1.2.2 Generalized Applications
What do generalized applications bring to the theory of programming languages? We argue
that they offer a different level of abstraction compared to existing formalisms. They are
characterized by two features: a notion of sharing restricted to applications, and a simple
internal management of the search for a redex.

Sharing is permitted by the generalized application constructor 𝑡(𝑢, 𝑦.𝑟), where the term
𝑡𝑢 is shared over the occurrences of 𝑦 in 𝑟 . This sharing is useful to avoid duplicating some
computations. Since 𝛽-redexes are applications, they are all shared by default. Yet, sharing
is not as general as in calculi with let-bindings, where every kind of term can be shared,
and as the one of calculi with ES, which also posses an internal treatment of substitution.
Generalized applications keep substitution at a meta-level. In consequence, the computation
is still done in one unique step (a generalized 𝛽-step shown below), rather than in two phases,
as with explicit substitutions. The operational semantics of the computation is thus simpler:

(𝜆𝑥.𝑡)(𝑢, 𝑦.𝑟) →𝛽 𝑟{𝑦/𝑡{𝑥/𝑢}}

Sharing applications is particularly useful for CbV. Unlike most CbV calculi [AG16], the
calculus Λ𝐽𝑣 (or our new distant version) does not impose any restriction on the redexes.
This means that every function application is a redex that can be fired. Some shortcomings of
CbV formalisms are thus avoided. More: CbV computation is done by means of a rule almost
identical to CbN, only relying on a different notion of (meta-level) substitution (defined in
section 3.1.1):

(𝜆𝑥.𝑡)(𝑢, 𝑦.𝑟) →𝛽 𝑟 {𝑦\\𝑡{𝑥\\𝑢}}
Having the same redexes (𝜆𝑥.𝑡)(𝑢, 𝑦.𝑟) in CbN and CbV means also that for any notion

of normalization, defining a CbV strategy is simple: the definition of normal forms is the
same, and for many interesting strategies, the same inductive reduction rules can be chosen.
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This is the case for instance of strong normal forms, defined in section 3.7 and section 4.2,
and of the leftmost-outermost CbV strategy, which uses the same inductive rules that a CbN
strategy would.

The “search for a redex” is provided by the permutation rule of the calculus, named 𝜋 ,
which is one of the hidden permutations revealed by von Plato [vPla01]:

𝑡(𝑢, 𝑥.𝑟)(𝑢′, 𝑦.𝑟 ′) →𝜋 𝑡(𝑢, 𝑥.𝑟(𝑢′, 𝑦.𝑟 ′))

Concretely, this permutation moves the leftmost redex on top, as in the following example.

Example 1.1. The following reduction is represented in figure 1.6 graphically, to make ap-
parent how the leftmost redex is brought on top of the term.

(𝜆𝑥.𝑡)(𝑢1, 𝑦1.𝑦1)(𝑢2, 𝑦2.𝑦2)(𝑢3, 𝑦3.𝑦3) →𝜋 (𝜆𝑥.𝑡)(𝑢1, 𝑦1.𝑦1)(𝑢2, 𝑦2.𝑦2(𝑢3, 𝑦3.𝑦3))
→𝜋 (𝜆𝑥.𝑡)(𝑢1, 𝑦1.𝑦1(𝑢2, 𝑦2.𝑦2(𝑢3, 𝑦3.𝑦3)))

In the closed (no free variables) and weak-head setting which is the one general-purpose
programming languages, permutation 𝜋 enables computation to reach a normal form without
diving inside the term.

@

@

@

(𝜆𝑥.𝑡) 𝑢1 𝑦1
𝑦1

𝑢2 𝑦2
𝑦2

𝑢3 𝑦3
𝑦3

→𝜋

@

@

𝜆𝑥.𝑡 𝑢1 𝑦1
𝑦1

𝑢2 @

𝑦2 𝑢3 𝑦3
𝑦3

𝑦2

→𝜋

@

𝜆𝑥.𝑡 𝑢1 @

𝑦1 𝑢2 @

𝑦2 𝑢3 𝑦3
𝑦3

𝑦2

𝑦1

Figure 1.6: Permutation 𝜋 illustrated on the syntax tree.

Interestingly, this last example is a translation of some λ-term (𝜆𝑥.𝑡′)𝑢′1𝑢′2𝑢′3, in which
𝑡′ is translated to 𝑡 , and 𝑢′𝑖 to 𝑢𝑖 for 1 ≤ 𝑖 ≤ 3. Inside an abstract machine like the one of
Krivine [Kri07], the terms 𝑢1 to 𝑢3 would successively be moved into the stack. Generalized
applications provide a representation of the stack directly inside the term, and the reduction
step of the abstract machine moving the right element of applications inside it is replaced by
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a permutation 𝜋 . The philosophy is similar with CPS and ANF (administrative normal form),
which give a name to every intermediate computation to encode the stack internally.

Using distance enables to gain in abstraction. By integrating permutation into the rule 𝛽 ,
there is no more an explicit step revealing the leftmost redex, but only a single computational
rule. Thus, the calculus with generalized applications is made closer to the λ-calculus, with
the only different feature being that applications are named and shared. Generalized applica-
tions with distance can then also be seen as more abstract and simple versions of calculi with
sharing. In this work, we prioritize distant variants of the original CbN and CbV calculi, to
stay as close to the λ-calculus and to the resource-aware model given by quantitative types
as possible.

λ-calculus

Explicit substitutions

GA with distance

GA with permutation 𝜋

Sharing of terms +
internal substitution

Sharing of applications

Search for redex

Figure 1.7: Different paths toward implementation.

Despite the practical aspects of generalized applications, detailed studies of their oper-
ational semantics lack in the literature. The works of [Esp09; EFP18] look at generalized
applications as a tool for proof theory. The works of Joachimski and Matthes on Λ𝐽 , and by
Espírito Santo on Λ𝐽𝑣 introduce the calculus, give strong normalization of the typed calculus,
as well as confluence and standardization in the first case. This approach centered around
strong normalization is again oriented from the point of view of proof theory.

We take a different approach, inspired by programming language semantics. We look at
the notion of solvability for CbN and CbV calculi with generalized applications, first for the
distant versions 𝜆𝐽𝑛 and 𝜆𝐽𝑣 , and then transpose the results to the original Λ𝐽 and Λ𝐽𝑣 . Solv-
ability is crucial denotationally and operationally, and involves specific evaluation strategies,
centered around head evaluation.

The distant calculus 𝜆𝐽𝑛 is the result of an analysis of Λ𝐽 through the lens of computation
and resource usage, and differs substantially from the original. Its construction is described
in a second part.

1.2.2.1 Solvability for Generalized Applications

Solvability is used to identify meaningful terms, that is, terms which contribute to the final
result. In a semantical model of the λ-calculus, meaningless terms should be equated, mean-
ing that they could be freely swapped without affecting the result of the computation. A first
approach would consist in equating all strongly non-normalizing terms and deeming them
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as meaningless. However, equating all non-normalizable terms turns out to be inconsistent,
as the model would collapse.

The actual notion of meaningful terms is given by the set of solvable terms, which is
strictly bigger than the set of normalizing terms: reduction of some terms do not terminate,
but can still contribute to the result of the computation. All solvable terms progressively
unveil a stable structure along the reduction process: this gives a step-by-step partial result
that is later integrated into the definitive structure of the fully normalized term. On the
contrary, if a term containing an unsolvable subterm 𝑢 converges to a result, then 𝑢 can be
replaced by any other term, still giving the same result and thus justifying the designation
of unsolvable as meaningless (Genericity Lemma [Bar84]).

𝜆-terms

Solvable

Normalizable

Figure 1.8: There are strictly more solvable than strongly normalizable terms.

Whilst being an important semantical property, solvability also has a very elegant oper-
ational theory. A solvable term may reduce to any other term when closed by abstractions
and applied to a suitable sequence of arguments. In the CbN λ-calculus, a term 𝑡 is solvable
iff 𝑡 has a head normal form iff 𝑡 head-normalizes [Wad76].

Solvability can be defined in CbN as well as in CbV. But because of the different normal-
ization behaviors of CbN and CbV, their corresponding notions of solvability do not perfectly
coincide [PR99]. The study of CbV solvability is considerably more complex, due in part to
the lack of satisfying CbV calculi for a long time. In fact, a first operational characterization
of solvability by Paolini and Ronchi Della Rocca [PR99] uses 𝛽 , rather than 𝛽v, reduction. A
characterization of CbV solvability making use of some proper notion of CbV reduction was
only achieved recently [AP12; CG14].

Plotkin’s original CbV λ-calculus is defective: some terms which are unsolvable from a
semantical point of view are premature normal forms. For instance, in a semantical analysis
of terms, the term (𝜆𝑦.𝜆𝑥.𝑥𝑥)(𝑧𝑧)(𝜆𝑥.𝑥𝑥) behaves like the looping and unsolvable term Ω =
(𝜆𝑥.𝑥𝑥)(𝜆𝑥.𝑥𝑥). Yet, the first term does not reduce because the argument 𝑧𝑧 is not a value,
so that 𝛽v-reduction does not apply.

In the λ-calculus, the solution to obtain a correct calculus where solvability can be ex-
pressed operationally is to extend Plotkin’s calculus. One possibility is to extend the calcu-
lus with two permutation rules, in the spirit of Regnier’s 𝜎-rules, which enable to unblock
premature normal forms [CG14].

(𝜆𝑦.𝜆𝑥.𝑥𝑥)(𝑧𝑧)(𝜆𝑥.𝑥𝑥) →𝜎1 (𝜆𝑦.Ω)(𝑧𝑧) →𝛽v (𝜆𝑦.Ω)(𝑧𝑧) →𝛽v …
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Another solution is to use a calculus with ES [AP12], where every function application is
eliminated and distance can be used.

(𝜆𝑦.𝜆𝑥.𝑥𝑥)(𝑧𝑧)(𝜆𝑥.𝑥𝑥) →dB (𝜆𝑥.𝑥𝑥)[𝑦/𝑧𝑧](𝜆𝑥.𝑥𝑥) →dB Ω[𝑦/𝑧𝑧] →dB Ω[𝑦/𝑧𝑧] →dB …
Thus, solvability is a good criterion to judge a (CbV) calculus, since its characterization

as a reduction relation is complex enough to highlight some potential problems.
For the CbN λ-calculus with generalized applications, we extend the definitions and tech-

niques from the λ-calculus in section 3.3.1 to obtain a solving relation characterizing solvabil-
ity, extending the head reduction of the λ-calculus. Although the formalism is more general,
the extension of the theory is natural. The characterization is valid for the distant as well
as the original calculus, for which we give a direct proof in section 3.5.1. Call-by-name
solvability introduces notions that are useful for the more complex analysis of call-by-value
solvability.

For CbV, we give an internal operational characterization of solvability in section 3.4.2.
It consists of a reduction relation which does not possess the same evaluation contexts and
normal forms as its CbN counterpart. This is because the notions of normalization corre-
sponding to CbN and CbV solvability are not the same: CbN solvability is captured by head
normalization, while CbV solvability corresponds to head normalization plus weak evalua-
tion on all the erasable subterms. The similarity between the CbN and CbV reductions in
generalized applications highlights the crucial differences between the two notions of solv-
ability, on operational and syntactical levels.

Compared to the CbV λ-calculus with permutations, the solving relation has the advan-
tage that no permutation rules are involved, so that structural and computational transforma-
tions are not interleaved. Normal forms in the calculus with permutations are rather intricate,
due to the presence of stuck redexes. They contain function applications such as (𝜆𝑥.𝑥)(𝑦𝑦).
Instead, solving normal forms are simple and similar to those of the previous CbN reduction
and of the λ-calculus: they are of the shape 𝜆𝑥1…𝜆𝑥𝑛.𝑦(𝑢1, 𝑧1.𝑟1) … (𝑢𝑚, 𝑧𝑚.𝑟𝑚) (with even
𝑚 = 1 when using 𝜋 independently).

The characterization of solvability in generalized applications shows that going as far
as explicit substitutions is not necessary to obtain a good formalism for call-by-value. The
more abstract approach, where only applications can be shared and computation is done in
a unique rule, simplifies some aspects of the theory with respect to the one described in
[AG22]. With generalized application, it is also possible to use 𝜋 as a separate rule, to have
simpler normal forms. Indeed, a solving relation for the original calculus without distance
is given in section 3.5.1.

We have two notions of CbN and CbV solvability with an operational characterization,
but do they correspond to the usual notion of solvability in the λ-calculus? Since solvability
is characterized in terms of normalization, intersection types systems can be given, where

Typability ⟺ normalization ⟺ solvability.

We give such type systems in section 3.3.2 (CbN) and section 3.4.3 (CbV). With them, we
relate the new notions of solvability for generalized applications with the existing ones in
section 3.5.2. This semantical notion of solvability in CbV, characterized with permutations,
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explicit substitutions or generalized applications also corresponds to the one of Plotkin, de-
spite it not being expressible in his original calculus. The study of CbV solvability relies on
the one of potential valuability, less restrictive, and which we also capture operationally and
logically.

We use the CbV characterizations for two more results: the solving relation is normalizing
(property 3.67), and different definitions of solvability are equivalent, which is the case in
CbN but not always in CbV [GN16].

Using non-idempotent intersection types here also brings of short combinatorial proofs
of termination, as well as bounds on the length of reduction and size of normal forms.

In the end of chapter 3, we compare the CbV reductions of 𝜆𝐽𝑣 and 𝜆vsub operationally
through simulations. We also give a strong bisimulation on T𝐽 and compare the equational
theories of these calculi augmented with structural equivalences. We finish by showing a sim-
ple normalizing reduction for strong evaluation in the CbV calculi with generalized applica-
tions. Such strategies are usually much more involved in other calculi, such as 𝜆vsub [ACS21].

1.2.2.2 A Resource-Aware CbN Calculus with Generalized Applications

The models given by quantitative types have the advantages of the qualitative models of
idempotent intersection types. In particular, they help in comparing normalization proper-
ties of different formalisms. But they also make short combinatorial proofs of normalization
possible. They allow to measure the difference of the number of execution steps between dif-
ferent reduction relations, and are thus a first step toward complexity analysis. With them,
we can relate calculi to resource-aware systems like linear logic.

Yet, the original CbN calculus Λ𝐽 is not compatible with a resource-aware semantics.
Indeed, crucial properties relating typing in a quantitative type system for CbN strong nor-
malization and reduction inΛ𝐽 fail (see section 4.4.3). This happens because 𝜋 is not quantita-
tively well-behaved. This permutation has a CbV nature that affects the length of execution
when used in a CbN calculus. This permutation is accepted by a CbV type system, but not
a CbN one. Interestingly, Matthes [Mat00] gave an idempotent intersection type system for
Λ𝐽 . His system, which is not sensitive to the number of reduction steps to normal forms,
validates 𝜋 , unlike our finer quantitative type system.

We cannot dispense from permutations altogether, because they are necessary to unblock
some stuck redexes. We introduce a different permutation p2, which does not affect the
length of reduction in a CbN system.

𝑡(𝑢, 𝑦.𝜆𝑥.𝑟) →p2 𝜆𝑥.𝑡(𝑢, 𝑦.𝑟)
But we integrate this permutation inside the primary 𝛽 rule, following the distance paradigm.
The resulting distant rule together with the syntax of generalized applications gives the new
distant calculus CbN calculus 𝜆𝐽𝑛. This calculus is confluent (section 4.2) and simply-typed
terms terminate (section 4.2, theorem 4.4).

We show that 𝜆𝐽𝑛 is compatible with the quantitative model in section 4.4. For the com-
pleteness proof (normalizable implies typable), we give an inductive definition of strong nor-
malization, which is a non-trivial contribution of this work.



1.3 Technical Preliminaries 45

We draw inspiration for our distant 𝛽 rule from calculi with explicit substitutions, having
in mind the usual translation 𝑡(𝑢, 𝑦.𝑟)⭒ to the explicit substitution 𝑟[𝑦/𝑡𝑢]. We expect the
dynamic behavior of our calculus to be faithful to explicit substitutions.

Such translation, however, does not in general preserve strong normalization. Indeed, in
a 𝛽-redex (𝜆𝑥.𝑡)(𝑢, 𝑦.𝑟), the interaction of 𝜆𝑥.𝑡 with the argument 𝑢 is materialized by the in-
ternal substitution in the contractum term 𝑟 {𝑦/𝑡{𝑥/𝑢}}, as mentioned before. But such interac-
tion is elusive: if the external substitution is vacuous (that is, if 𝑦 is not free in 𝑟 ), 𝛽-reduction
will simply throw away the λ-abstraction 𝜆𝑥.𝑡 and its argument 𝑢, whereas (𝜆𝑥.𝑡⭒)𝑢⭒ may
reduce in the context of the explicit substitution 𝑟⭒[𝑦/(𝜆𝑥.𝑡⭒)𝑢⭒].

The different interaction between the abstraction and its argument in the two mentioned
models of computation has important consequences. For instance, let 𝛿 ≔ 𝜆𝑥.𝑥(𝑥, 𝑧.𝑧) be the
encoding of 𝜆𝑥.𝑥𝑥 as a Λ𝐽 -term. Then, let 𝑟 be a normal term with no free occurrences of
𝑦 , say 𝑟 = 𝜆𝑥.𝑥 . The only possible reduction from 𝛿(𝛿, 𝑦.𝑟) is to 𝑟 = 𝜆𝑥.𝑥 , which is a normal
form, whereas 𝛿⭒𝛿⭒ may reduce forever in the context of the vacuous explicit substitution
𝑟⭒[𝑦/𝛿⭒𝛿⭒] →+ 𝑟⭒[𝑦/𝛿⭒𝛿⭒].

That is why we propose a new, type-preserving, encoding of terms with generalized ap-
plications into terms with explicit substitutions in section 4.5. Using this new encoding and
quantitative types, we show that strong normalization of the source term with generalized
applications is equivalent to the strong normalization of the target term with explicit substi-
tutions, and hence also of the CbN λ-calculus.

As a final contribution, we compare 𝜆𝐽𝑛-strong normalization to that of the original Λ𝐽
in section 4.6. Indeed, we wish to give a quantitatively compatible calculus with generalized
applications, but without losing semantical properties of the original calculus. We extract
new results for the latter, as a faithful translation to ES, and a new normalizing strategy.
Moreover, we obtain a quantitative characterization of Λ𝐽 -strong normalization, where the
size of type derivations bound the number of 𝛽-steps, but not 𝜋-steps.

1.3 Technical Preliminaries

We finish this introduction by giving first some standard definitions and the notations we
use concerning the λ-calculus, explicit substitutions and rewriting. A formal introduction
to quantitative type systems follows, where we detail the proof method that will be used
recurrently in this work.

1.3.1 Calculi

Syntax. The syntax of the λ-calculus is defined inductively by the following grammar. The
set of terms of the λ-calculus is named TΛ. From now on, we use uppercase letters for λ-
terms to distinguish them from the terms of the calculi with node replication or generalized
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applications. The set 𝒱 is a countably infinite set of variables 𝑥, 𝑦, 𝑧, …

(Terms) 𝑀,𝑁 , 𝑃, 𝑄 ⩴ 𝑉 ∣ 𝑀𝑁
(Values) 𝑉 ⩴ 𝑥 ∈ 𝒱 ∣ 𝜆𝑥.𝑀

The syntax of the λ-calculus with explicit substitution extends TΛ with one constructor
for explicit substitutions [𝑥/𝑁 ]. The set of terms is called T𝐸𝑆 .

(Terms) 𝑀,𝑁 , 𝑃, 𝑄 ⩴ … ∣ 𝑀[𝑥/𝑁 ]

Free and bound variables fv(𝑀)/bv(𝑀) of a term 𝑀 are defined as follows. A term 𝑀 is
closed if fv(𝑀) = ∅.

fv(𝑥) = {𝑥} bv(𝑥) = ∅
fv(𝜆𝑥.𝑀) = fv(𝑀) ⧵ 𝑥 bv(𝜆𝑥.𝑀) = bv(𝑀) ∪ {𝑥}
fv(𝑀𝑁) = fv(𝑀) ∪ fv(𝑁 ) bv(𝑀𝑁) = bv(𝑀) ∪ bv(𝑁 )

fv(𝑀[𝑥/𝑁 ]) = (fv(𝑀) ⧵ 𝑥) ∪ fv(𝑁 ) bv(𝑀[𝑥/𝑁 ]) = bv(𝑀) ∪ {𝑥} ∪ bv(𝑁 )

Terms are implicitly equated by 𝛼-conversion =𝛼 :

𝜆𝑥.𝑀 =𝛼 𝜆𝑦.𝑀{𝑥/𝑦} (𝑦 ∉ fv(𝑀))
𝑀[𝑥/𝑁 ] =𝛼 𝑀{𝑥/𝑦}[𝑦/𝑁 ] (𝑦 ∉ fv(𝑀))

We use Barendregt’s convention [Bar84], that the names of bound and free variables are
assumed different. The capture-avoiding meta-level substitution 𝑀{𝑥/𝑁 } is defined by in-
duction on terms and always defined, using 𝛼-conversion when necessary.

𝑥{𝑥/𝑁 } = 𝑁
𝑦{𝑥/𝑁 } = 𝑦 (𝑥 ≠ 𝑦)

(𝜆𝑦.𝑀){𝑥/𝑁 } = 𝜆𝑦.𝑀{𝑥/𝑁 } (𝑥 ≠ 𝑦 and 𝑦 ∉ fv(𝑁 ))
(𝑀𝑃){𝑥/𝑁 } = 𝑀{𝑥/𝑁 }𝑃{𝑥/𝑁 }

𝑀[𝑦/𝑃]{𝑥/𝑁 } = 𝑀{𝑥/𝑁 }[𝑦/𝑃{𝑥/𝑁 }] (𝑥 ≠ 𝑦 and 𝑦 ∉ 𝑓 𝑣𝑁 )

Notice in particular that (𝜆𝑥.𝑀){𝑥/𝑁 } = 𝜆𝑥.𝑀 and 𝑀[𝑥/𝑃]{𝑥/𝑁 } = 𝑀[𝑥/𝑃{𝑥/𝑁 }].
We define the size |𝑀| of a term 𝑀 as

|𝑥 | = 1 |𝜆𝑥.𝑀| = 1 + |𝑀| |𝑀𝑁 | = 1 + |𝑀| + |𝑁 | |𝑀[𝑥/𝑁 ]| = 1 + |𝑀| + |𝑁 |

The number of free occurrences |𝑀|𝑥 of a variable 𝑥 in a term 𝑀 is defined as follows. In the
second, third and last cases, we suppose 𝑥 ≠ 𝑦 .

|𝑥|𝑥 = 1 |𝑦|𝑥 = 0 |𝜆𝑦.𝑀|𝑥 = |𝑀|𝑥 |𝑀𝑁 |𝑥 = |𝑀|𝑥 + |𝑁 |𝑥 |𝑀[𝑦/𝑁 ]|𝑥 = |𝑀|𝑥 + |𝑁 |𝑥
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(Full contexts) C ⩴ ◊ ∣ 𝜆𝑥.C ∣ C𝑁 ∣ 𝑀C
(Head contexts) H ⩴ ◊ ∣ 𝜆𝑥.H ∣ H𝑁

(Weak-head contexts) W ⩴ ◊ ∣ W𝑁

Figure 1.9: Contexts for the λ-calculus.

Semantics. We denote a reduction rule r from terms to terms with ↦r. Reduction rela-
tions ℛ are denoted with →ℛ . The reflexive-transitive closure of a reduction is denoted
→∗ℛ , the transitive closure →+ℛ . If a term 𝑀 reduces to 𝑁 in 𝑛 steps, we write 𝑀 →𝑛ℛ 𝑁 . If
𝑀 is strongly normalizing, we write ||𝑀||ℛ for the length of the longest reduction sequence
starting at 𝑀 . We write SN(ℛ) the set of strongly normalizing terms on ℛ.

Reduction relations can be generated from a set of reduction rules in two ways. The first
option is to use contexts. A context is is a special term with one hole ◊.6 The application
of a context to a term C⟨𝑀⟩ denotes the syntactic replacement of the hole of C by the term
𝑀 . Note that capture of variables may occur, for instance: (𝜆𝑥.◊)⟨𝑥⟩ = 𝜆𝑥.𝑥 . We use the
notation C⟨⟨𝑀⟩⟩ to indicate that no variable is captured. In that case, we may need to use
𝛼-equivalence. For example, (𝜆𝑥.◊)⟨⟨𝑥⟩⟩ =𝛼 (𝜆𝑦.◊)⟨⟨𝑥⟩⟩ = 𝜆𝑦.𝑥 .

For the λ-calculus, the general reduction relation 𝛽 is defined as the closure of ↦𝛽 under
all (full) contexts C, given in figure 1.9. For a given reduction rule r, the reduction relation
→r is defined as the closure of ↦r under all contexts. Specific reductions have their own
name. For instance, the head reduction relation →h is defined as the closure of ↦𝛽 under
contexts H, and the weak-head relation →whr as the closure under contexts W, also defined
in figure 1.9.

Example 1.2. Let 𝑀 = (𝜆𝑥.I𝑥)I𝑁 . Then the reduction 𝑀 →𝛽 II𝑁 is a valid weak-head
reduction because W = ◊𝑁 is a weak-head context, so that the redex (𝜆𝑥.I𝑥)I is directly
surrounded by a weak-head context. On the contrary, the reduction 𝑀 →𝛽 (𝜆𝑥.𝑥)I𝑁 is not
a weak-head one because H = (𝜆𝑥.◊)I𝑁 is only a head context.

The second way to detail a reduction relation is to use inference rules. This gives more
flexibility and is useful in particular to give deterministic strategies. For instance, a deter-
ministic head reduction for the λ-calculus can be given as follows.

𝑀 ↦𝛽 𝑁
𝑀 →h 𝑁

𝑀 →h 𝑁
𝜆𝑥.𝑀 →h 𝜆𝑥.𝑁

𝑀 →h 𝑀′ 𝑀 ≠ 𝜆𝑥.𝑃
𝑀𝑁 →h 𝑀′𝑁

The set of normal forms of a reduction relation ℛ is denoted NFℛ . It often builds on
a set of neutral normal forms (sometimes shortened to neutral forms) denoted NEℛ . The
neutrals are normal forms that cannot create a redex when put at the left of a term. For
instance, the strong 𝛽-normal forms are defined below.

(Normal forms) NF𝛽 ⩴ NE𝛽 ∣ 𝜆𝑥.NF𝛽
(Neutral normal forms) NE𝛽 ⩴ 𝑥 ∣ NE𝛽 NF𝛽

6Contexts with several holes are only considered in section 2.3.2 for the formal definition of a skeleton.
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In the next subsection, we present the quantitative type systems using a simple CbN
calculus with explicit substitutions called 𝜆𝐸𝑆. Its operational semantics are based on two
rules.

L⟨𝜆𝑥.𝑀⟩𝑁 ↦dB L⟨𝑀[𝑥/𝑁 ]⟩
𝑀[𝑥/𝑁 ] ↦sub 𝑀{𝑥/𝑁 }

The first rule dB uses distance, expressed with a notion of list contexts L.

(List contexts) L ⩴ ◊ ∣ L[𝑥/𝑁 ]
A list context simply represents a series of ES [𝑥1/𝑁1] … [𝑥𝑁 /𝑁𝑛]. In a verbose way, dB can
be written as:

(𝜆𝑥.𝑀)[𝑥1/𝑁1] … [𝑥𝑛/𝑁𝑛]𝑁 →dB 𝑀[𝑥/𝑁 ][𝑥1/𝑁1] … [𝑥𝑛/𝑁𝑛]
We define the domain of a list context L = [𝑥1/𝑁1] … [𝑥1/𝑁𝑛] as dom(L) = {𝑥1, … , 𝑥𝑛}.

1.3.2 Quantitative Types
The simple type system of the λ-calculus is the unique interpretation of minimal intuitionistic
logic as types. On the contrary, intersection type systems are multiple. As they strive for the
equivalence between normalization and typability, there are indeed as many type systems as
there are (equivalent) notions of normalization.

In the next three sections, although only the calculus 𝜆𝐸𝑆 is used, we define three quanti-
tative type systems. They correspond in order to CbN head, weak and strong normalization.

Each time, we will start by recalling the definition of the reduction we consider (that can
be found in the literature), then give the type system and finally prove and discuss conse-
quences. In the rest of the thesis, we will relate the type systems introduced to these ones.
The considered notions of normalization in ES are equivalent to the corresponding ones in
the λ-calculus. Therefore, choosing to equate normalization in our calculi to normalization
in calculi with ES or the λ-calculus is equivalent.

Each of these notions correspond to the ones of the λ-calculus, so that equating normal-
ization of our calculi to normalization in calculi with ES also equates it to normalization in
the λ-calculus.

The grammar of types and multiset types is common to all the CbN systems (with only
an added type constant for the weak systems), and reads as follows.

Definition 1.3 (Type grammar). Let an infinite set 𝐵𝑇𝑉 of base type variables 𝑎, 𝑏, 𝑐 …
(Types) 𝜎, 𝜏 , 𝜌 ⩴ 𝑎 ∈ 𝐵𝑇𝑉 ∣ ℳ → 𝜎

(Multiset types) ℳ,𝒩 ⩴ [𝜎𝑖]𝑖∈𝐼 where 𝐼 is a finite set

Multiset types will also be called multitypes. The empty multiset is a valid multitype
and is denoted [ ]. The number of elements of a multitype ℳ is given by |ℳ|. The union of



1.3 Technical Preliminaries 49

multitypes ℳ and 𝒩 is denoted ℳ⊔𝒩 . Typing environments Γ, Δ, Λ, Π are functions from
variables to multiset types assigning the empty multiset to all but a finite set of variables. The
domain of Γ is given by dom(Γ) ≔ {𝑥 ∣ Γ(𝑥) ≠ [ ]}. The union of environments, written Γ⊎Δ,
is defined by (Γ⊎Δ)(𝑥) ≔ Γ(𝑥)⊔Δ(𝑥), where ⊔ denotes multiset union. This notion is extended
to several environments as expected, so that ⊎𝑖∈𝐼Γ𝑖 denotes a finite union of environments
(⊎𝑖∈𝐼Γ𝑖 is to be understood as the empty environment ∅ when 𝐼 = ∅). We write Γ ⧵ 𝑥 for the
environment such that (Γ ⧵ 𝑥)(𝑦) = Γ(𝑦) if 𝑦 ≠ 𝑥 and (Γ ⧵ 𝑥)(𝑥) = [ ]. We write Γ; Δ for Γ ⊎ Δ
when dom(Γ) ∩ dom(Δ) = ∅. The typing of a term in a sequent is a pair (environment, type).

1.3.2.1 Head Normalization

Head reduction. Starting with the head type system is natural: it is the simplest and old-
est [CDV81] form of intersection type systems, upon which the others are built by slight
alterations.

The formulation of head reduction for 𝜆𝐸𝑆 is taken from Bucciarelli, Kesner, Ríos, and
Viso [Buc+20]. It uses a definition of head contexts H generalized to explicit substitutions.

Definition 1.4 (Head contexts for 𝜆𝐸𝑆). H ⩴ ◊ ∣ 𝜆𝑥.H ∣ H𝑁 ∣ H[𝑥/𝑁 ]
The relation →hes is defined as the closure of rules dB and sub under contexts H. The

reductions modeled by quantitative types do not need to be deterministic, since quantitative
types are a semantical tool, as long as reduction is confluent.

Normal forms are crucial in the completeness part of the proof (typable implies normal-
izable), which relies on their typability. They are the same head normal forms as in the
λ-calculus.

Definition 1.5 (hes-normal forms).

(Neutral normal forms) NEhes ⩴ 𝑥 ∣ NEhes 𝑁
(Normal forms) NFhes ⩴ NEhes ∣ 𝜆𝑥.NFhes

The type system. We introduce a type systemℋ , adapted from the original system [Gar94]
by Kesner and Ventura [KV14]. Our presentation differs a little bit, because we take (MANY)
as a separate rule, but this is only a stylistic matter.

Definition 1.6 (Head quantitative type system ℋ for 𝜆𝐸𝑆).

𝑥 ∶ [𝜎] ⊢ 𝑥 ∶ 𝜎 (AX)
(Γ𝑖 ⊢ 𝑀 ∶ 𝜎𝑖)

⊎𝑖∈𝐼Γ𝑖 ⊢ 𝑀 ∶ [𝜎𝑖]𝑖∈𝐼
(MANY)

Γ; 𝑥 ∶ ℳ ⊢ 𝑀 ∶ 𝜎
Γ ⊢ 𝜆𝑥.𝑀 ∶ ℳ → 𝜎 (→𝑖)

Γ ⊢ 𝑀 ∶ ℳ → 𝜎 Δ ⊢ 𝑁 ∶ ℳ
Γ ⊎ Δ ⊢ 𝑀𝑁 ∶ 𝜎 (→𝑒)

Γ; 𝑥 ∶ ℳ ⊢ 𝑀 ∶ 𝜎 Δ ⊢ 𝑁 ∶ ℳ
Γ ⊎ Δ ⊢ [𝑁 /𝑥]𝑀 ∶ 𝜎 (ES)

Type derivations are named Φ or Ψ. For each system, we define a notion of size of a
proof sz(Φ). A derivation of the sequent Γ ⊢ 𝑀 ∶ 𝜏 of size 𝑛 in a system 𝒮 is denoted
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Γ ⊩𝑛ℋ 𝑀 ∶ 𝜎 . We sometimes omit the size when not relevant, or the type system when clear
from the context and write Γ ⊩ 𝑡 ∶ 𝜏 a derivation of the sequent.

In this system, we have five rules: one for each constructor, and an auxiliary one called
(MANY). Every rule apart from (MANY) infers a type 𝜎 . However, multi-types can appear
inside derivations from the right premises of the inference rules for application (→𝑒) and
explicit substitutions (ES), which is where (MANY) is necessary. It would be equivalent to
define a system with (MANY) embedded in these rules.

Although we can derive multitypes, a term 𝑀 ∈ T𝐸𝑆 is said to be typable if and only if
there is a derivation Γ ⊩ 𝑀 ∶ 𝜎 . Indeed, all terms are typable with the empty multitype in a
CbN quantitative type system, so that a definition of typability considering both types and
multitypes would be degenerate. This definition of typability will be valid for all kinds of
CbN type systems, for all the calculi.

Example 1.7. The term 𝜆𝑥.𝑥𝑥 can be typed with the following derivation.

𝑥 ∶ [[𝜎] → 𝜎] ⊢ 𝑥 ∶ [𝜎] → 𝜎 (AX)
𝑥 ∶ [𝜎] ⊢ 𝑥 ∶ 𝜎 (AX)

𝑥 ∶ [𝜎] ⊢ 𝑥 ∶ [𝜎] (MANY)

𝑥 ∶ [[𝜎] → 𝜎, 𝜎] ⊢ 𝑥𝑥 ∶ 𝜎
∅ ⊢ 𝜆𝑥.𝑥𝑥 ∶ [[𝜎] → 𝜎, 𝜎] → 𝜎 (→𝑖)

(→𝑒)

Since the set of simply typed terms is strictly contained in the set of normalizable terms,
some terms can be typed with intersection types but not simple types. An example is given by
the previous derivation. The term 𝛿 = 𝜆𝑥.𝑥𝑥 is a normal form and thus trivially normalizing,
but not simply typable. However, the looping term Ω = 𝛿𝛿 cannot be intersection-typed.

Terms typed with a multitype are the ones that can be duplicated or erased. Morally, each
type of the multiset corresponds to one “use” of the term. Then, some subterms that can be
erased along reduction may be left untyped, that is, typed with an empty intersection. The
following derivation is possible because the subterm Ω is typed with an empty multitype.

𝑥 ∶ [𝜎] ⊢ 𝑥 ∶ 𝜎 (AX)

𝑥 ∶ [𝜎] ⊢ 𝜆𝑧.𝑥 ∶ [ ] → 𝜎 (→𝑖) ∅ ⊢ Ω ∶ [ ] (MANY)

𝑥 ∶ [𝜎] ⊢ (𝜆𝑧.𝑥)Ω ∶ 𝜎 (→𝑒)

Notice that in the axiom rule, the environment contains only the type of the variable. The
system, and all those that we consider, is indeed relevant.

Property 1.8. Let Γ ⊩ 𝑀 ∶ 𝜎 . Then dom(Γ) ⊆ fv(𝑀).

Characterization. We now detail the lemmas necessary to prove correctness of the system.
The general method transports to the different relations and calculi, with subtleties. The
theorem that we want to prove is the following.

Theorem 1.9. Let 𝑀 ∈ T𝐸𝑆 . 𝑀 is typable in ℋ ⟺ 𝑀 is hes-normalizable.
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This theorem relies on two key lemmas, one for each direction of the implication.

1. Weighted subject reduction. Subject reduction states that the typing of a term is pre-
served along reduction, as is usual. This is often seen as a sanity property of type
systems: changes in the type of subterms of a program are likely to cause incoher-
ences, and thus bugs. The particularity of weighted subject reduction is that the size
of a typing derivation reduces at each step. This gives normalization of typable terms
as a direct corollary.

2. Subject expansion is the opposite of subject reduction: if 𝑀 reduces to a typable term
𝑀′ and 𝑀′ is typable, then 𝑀 is also typable with the same typing as 𝑀′. Attaching
quantitative information to the subject expansion lemma is also possible, proving that
the size of the reduced term is smaller than the one of the reducible one, but we do not
do it.

Subject reduction and expansion themselves rely on two dual lemmas: substitution and
anti-substitution. The first one builds a derivation for a meta-level substitution, while the
second one dissociates two derivations entangled by a substitution.

Lemma 1.10 (Substitution for ℋ ). If Γ; 𝑥 ∶ ℳ ⊩𝑛ℋ 𝑀 ∶ 𝜎 and Δ ⊩𝑚ℋ 𝑁 ∶ ℳ, then there exists
Γ ⊎ Δ ⊩𝑚+𝑛ℋ 𝑀{𝑥/𝑁 } ∶ 𝜎 .
Lemma 1.11 (Anti-substitution for ℋ ). If Γ ⊩ 𝑀{𝑥/𝑁 } ∶ 𝜎 , then there exists Γ𝑀 , Γ𝑁 and ℳ
such that Γ𝑀 ; 𝑥 ∶ ℳ ⊩ 𝑀 ∶ 𝜎 , Γ𝑁 ⊩ 𝑁 ∶ ℳ and Γ = Γ𝑀 ⊎ Γ𝑁 .

Both proofs are by induction on 𝑀 .

Lemma 1.12 (Weighted subject reduction for ℋ ). If Γ ⊩𝑛1ℋ 𝑀1 ∶ 𝜎 and 𝑀1 →hes 𝑀2, then
Γ ⊩𝑛2ℋ 𝑀2 ∶ 𝜎 with 𝑛1 > 𝑛2.

We do not give a proof of this statement, but an example of the decreasing of the size of
a proof.

Example 1.13. The first proof Φ1 has size 3, since the applications of (MANY) are not counted.
In the reduction, the rules (→𝑖) and (→𝑒) are erased, and replaced by a single rule (ES), so
that sz(Φ2) = 2. Finally, the rule (ES) is erased in the last step, so that sz(Φ3) = 1.

Φ1 =

𝑥 ∶ [𝜎] ⊢ 𝑥 ∶ 𝜎 (AX)

𝑥 ∶ [𝜎] ⊢ 𝜆𝑧.𝑥 ∶ [ ] → 𝜎 (→𝑖) ∅ ⊢ 𝑦 ∶ [ ] (MANY)

𝑥 ∶ [𝜎] ⊢ (𝜆𝑧.𝑥)𝑦 ∶ 𝜎 (→𝑒)

→dB Φ2 =
𝑥 ∶ [𝜎] ⊢ 𝑥 ∶ 𝜎 (AX) ∅ ⊢ 𝑦 ∶ [ ] (MANY)

𝑥 ∶ [𝜎] ⊢ 𝑥[𝑧/𝑦] ∶ 𝜎 (ES) →dB Φ3 = 𝑥 ∶ [𝜎] ⊢ 𝑥 ∶ 𝜎 (AX)
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Type derivations become smaller along reduction. Then, the size of reduction from a
typed term 𝑀 itself cannot be bigger than the size of its smallest proof derivation. There-
fore, all typable terms normalize: they have a finite reduction length bounded by the size of
type derivations. This method of proving normalization only adds a small amount of effort
to subject reduction, and avoids more involved techniques such as Tait’s reducibility candi-
dates ([Tai67]). Such combinatorial proofs are not available with idempotent intersection
types, where usual methods are used.

Lemma 1.14 (Subject expansion for ℋ ). If Γ ⊩ℋ 𝑀2 ∶ 𝜎 and𝑀1 →hes 𝑀2, then Γ ⊩ℋ 𝑀1 ∶ 𝜎 .
Subject expansion is not a usual property of type systems. Indeed, one generally con-

siders typing as a guarantee of good behavior of programs along reduction only.7 In the
framework of intersection types however, we want completeness of the type system because
we consider typings of terms as their model, which should be the same for two convertible
terms.

Example 1.15. Subject expansion holds for the derivation (𝜆𝑧.𝑥)𝑦 →dB 𝑥[𝑧/𝑦] →dB 𝑥 . From
the derivation Φ3 of example 1.13, we can derive Φ2, with the same typing (𝑥 ∶ [𝜎], 𝜎), and
then Φ3, still with the same typing.

However, in the simply typed system, a derivation for 𝑥[𝑧/𝑦] or (𝜆𝑥.𝑧)𝑦 must contain a
type for the variable 𝑦 in the environment:

𝑥 ∶ 𝐴, 𝑦 ∶ 𝐵 ⊢ 𝑥 ∶ 𝐴 (AX) 𝑥 ∶ 𝐴, 𝑦 ∶ 𝐵 ⊢ 𝑦 ∶ 𝐵 (AX)

𝑥 ∶ 𝐴, 𝑦 ∶ 𝐵 ⊢ 𝑥[𝑧/𝑦] ∶ 𝐴 (ES)

Starting from a derivation of 𝑥 with typing (𝑥 ∶ 𝐴, 𝐴), we cannot find a derivation of 𝑥[𝑧/𝑦]
with the same typing, so that subject expansion fails. Still, subject reduction does hold,
thanks to weakening: the derivation 𝑥 ∶ 𝐴, 𝑦 ∶ 𝐵 ⊢ 𝑥 ∶ 𝐴 is valid.

To conclude the proof of completeness, we need to prove that hes-normal forms are ty-
pable. The proof is by induction on NEhes, then on NFhes.

Lemma 1.16 (Typing hes-nfs). Let 𝑀 ∈ NFhes. Then there exists Γ, 𝜎 such that Γ ⊩ℋ 𝑀 ∶ 𝜎 .
As we know that all normal forms are typable, we know by an arbitrary finite number of

applications of subject expansion that all terms having a normal form are typable.
Putting everything together, theorem 1.9 follows from subject reduction in one direction

and subject expansion and typability of normal forms in the other direction. This theorem
relates normalization and typability in a qualitative manner. But thanks to non-idempotence,
it can be extended with a quantitative property already evoked.

Theorem 1.17. Let𝑀 ∈ T𝐸𝑆 . 𝑀 is typable inℋ with a derivation of size 𝑛 ⟺ the size of the
longest hes reduction sequence starting at 𝑀 is bounded by 𝑛.

7Expansion of terms is sometimes used during compilation; in this case, conservation of typing is checked
ad hoc for the expansions considered.
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The size of type derivations is also an upper bound on the size of normal forms, for an
appropriate notion of size, depending on the reduction considered. The size of head nor-
mal forms for instance, does not include the size of arguments, so that 𝑥𝑥 and 𝑥(𝑥𝑥𝑥) are
considered of the same size.

From the type system, we can build a relational model of the terms, that is, a model in the
category of sets and relations of terms [BEM07]. The interpretation of a term is given by its
set of possible typings (type environment, type).

1.3.2.2 Weak-head Normalization

We now detail weak-head reduction. This reduction is of particular interest to us because
we are interested in λ-calculi as foundations of programming languages.

Weak-head reduction →whes is defined as the reduction of dB and sub under weak-head
contexts W. The difference with head contexts is the absence of abstractions.

(Weak-head contexts) W ⩴ ◊ ∣ W𝑁 ∣ W[𝑥/𝑁 ]
Definition 1.18. Normal forms are characterized by the following grammar.

(Neutral normal forms) NEhes ⩴ 𝑥 ∣ NEwhes 𝑁
(Normal forms) NFhes ⩴ NEwhes 𝑁 ∣ 𝜆𝑥.𝑀

A type system for weak-head reduction in CbN 𝜆𝐸𝑆 appears in [Kes16]. We first need to
extend types with a constant a (for answer).

(Weak-head types) 𝜎, 𝜏 , 𝛿 , 𝜌 ⩴ 𝑎 ∈ 𝐵𝑇𝑉 ∣ ℳ → 𝜎 ∣ a

The constant a types abstractions whose body will not be affected by reduction, that is, ab-
stractions which will not be used on the left of a weak-head dB-redex. The following type
system 𝒲 is the same as ℋ , with one added rule to type any abstraction as an answer.

Definition 1.19 (Weak-head quantitative type system 𝒲 for 𝜆𝐸𝑆).

𝑥 ∶ [𝜎] ⊢ 𝑥 ∶ 𝜎 (AX)
(Γ𝑖 ⊢ 𝑀 ∶ 𝜎𝑖)

⊎𝑖∈𝐼Γ𝑖 ⊢ 𝑀 ∶ [𝜎𝑖]𝑖∈𝐼
(MANY)

∅ ⊢ 𝜆𝑥.𝑀 ∶ a
(ANS)

Γ; 𝑥 ∶ ℳ ⊢ 𝑀 ∶ 𝜎
Γ ⊢ 𝜆𝑥.𝑀 ∶ ℳ → 𝜎 (→𝑖)

Γ ⊢ 𝑀 ∶ ℳ → 𝜎 Δ ⊢ 𝑁 ∶ ℳ
Γ ⊎ Δ ⊢ 𝑀𝑁 ∶ 𝜎 (→𝑒)

Γ; 𝑥 ∶ ℳ ⊢ 𝑀 ∶ 𝜎 Δ ⊢ 𝑁 ∶ ℳ
Γ ⊎ Δ ⊢ [𝑁 /𝑥]𝑀 ∶ 𝜎 (ES)

The possibility of typing every abstraction with a constant means that every abstraction
is normalizable. Indeed, in the weak paradigm, every abstraction is considered a result, and
thus a normal form.
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Example 1.20. The term 𝜆𝑥.Ω is weak-head, but not head normalizable, and typable in 𝒲
but not ℋ . Indeed, in ℋ , the content of an abstraction must be typable. In 𝒲 instead, the
whole abstraction can be typed with a.

∅ ⊢ 𝜆𝑥.Ω ∶ a
(ANS)

The system is again relevant: in any sequent Γ ⊢ 𝑀 ∶ 𝜎 , we have dom(Γ) ⊆ fv(𝑀).
To prove that the type system is sound and complete for the relation →whes, we adapt the
lemmas of section 1.3.2.1 to the type system ℋ and reduction →whes: (anti-)substitution,
weighted subject reduction, subject expansion and typability of whes-nfs.

Theorem 1.21. Let 𝑀 ∈ T𝐸𝑆 . 𝑀 is typable in 𝒲 with a derivation of size 𝑛 ⟺ 𝑀 whes-
normalizes in less than 𝑛 steps.

1.3.2.3 Strong Normalization

The last type system of the section characterizes strong normalization [BL13; BR13]. In
other words, we must now make sure that every subterm normalizes. For instance, the term
(𝜆𝑧.𝑥)Ω is not strongly normalizable, since we can keep reducing Ω forever, even though we
can also erase it.

We write →es the full reduction in 𝜆𝐸𝑆. The choice of reducing everything before it can
be erased corresponds to the perpetual strategy, which is an operational characterization of
strong normalization: for a term to normalize in the perpetual strategy, it must be strongly
normalizable, that is having no infinite reduction sequence.

The fact that every subterm must be normalizable is specific to strong normalization. For
instance, the head normalizable term (𝜆𝑧.𝑥)Ω was typed in system ℋ by assigning the empty
multitype to Ω. In the strong type system, we can still assign the empty multitype to a term,
but must in addition show that this terms is typable. To do this, we use a choice function on
multitypes, as in [KV20].

#(ℳ) = {ℳ, if ℳ ≠ [ ]
[𝜎], otherwise, for an arbitrary 𝜎 .

We use this choice operator in the rules where a premise must derive a multitype. The
condition that 𝐼 ≠ ∅ in rule many is not necessary, but we add it to emphasize the idea that
we cannot type subterms with the empty multiset.

Definition 1.22 (Strong quantitative type system ∩𝐸𝑆 for 𝜆𝐸𝑆).

𝑥 ∶ [𝜎] ⊢ 𝑥 ∶ 𝜎 (AX)
(Γ𝑖 ⊢ 𝑀 ∶ 𝜎𝑖) 𝐼 ≠ ∅
⊎𝑖∈𝐼Γ𝑖 ⊢ 𝑀 ∶ [𝜎𝑖]𝑖∈𝐼

(MANY)
Γ; 𝑥 ∶ ℳ ⊢ 𝑀 ∶ 𝜎
Γ ⊢ 𝜆𝑥.𝑀 ∶ ℳ → 𝜎 (→𝑖)

Γ ⊢ 𝑀 ∶ ℳ → 𝜎 Δ ⊢ 𝑁 ∶ #(ℳ)
Γ ⊎ Δ ⊢ 𝑀𝑁 ∶ 𝜎 (→𝑒)

Γ; 𝑥 ∶ ℳ ⊢ 𝑀 ∶ 𝜎 Δ ⊢ 𝑁 ∶ #(ℳ)
Γ ⊎ Δ ⊢ [𝑁 /𝑥]𝑀 ∶ 𝜎 (ES)
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Examples 1.23. The following terms show how an erasable argument can induce a difference
in typing.

• (𝜆𝑧.𝑥)Ω cannot be typed, since we cannot provide a witness derivation for Ω as a
premise of rule .

• A type derivation is given for the term (𝜆𝑧.𝑥)𝑦 by providing a witness 𝜏 for 𝑦 .

𝑥 ∶ [𝜎] ⊢ 𝑥 ∶ 𝜎 (AX)

𝑥 ∶ [𝜎] ⊢ 𝜆𝑧.𝑥 ∶ [ ] → 𝜎 (→𝑒)
𝑦 ∶ [𝜏] ⊢ 𝑦 ∶ 𝜏 (AX)

𝑦 ∶ [𝜏] ⊢ 𝑦 ∶ [𝜏] (MANY)

𝑥 ∶ [𝜎], 𝑦 ∶ [𝜏 ] ⊢ (𝜆𝑧.𝑥)𝑦 ∶ 𝜎

Relevance in the head and weak-head type systems were given by dom(Γ) ⊆ fv(𝑀) for a
derivation Γ ⊩ 𝑀 ∶ 𝜎 . Interestingly, since all subterms are typed, here we have an equality.

Property 1.24 (Relevance). Let Γ ⊩ 𝑀 ∶ 𝜎 . Then dom(Γ) = fv(𝑀).
Naturally, the expected characterization of strong normalization holds, albeit more dif-

ficult to show. Here is why: weighted subject reduction and subject expansion hold only
partially. The last example demonstrates a failure case. The free variable 𝑦 is present in the
typing environment with a non-empty multiset type. Reducing this terms to 𝑥[𝑧/𝑦] then 𝑥
deletes 𝑦 , which should not appear anymore in the environment, following the relevance
property. Subject reduction is thus not satisfied since typing can be modified (in fact only by
removal) by so-called erasing steps.

Definition 1.25 (Erasing step). An erasing step in 𝜆𝐸𝑆 is a sub-step 𝑀[𝑥/𝑁 ] →sub 𝑀 , where
𝑥 ∉ fv(𝑀).

The substitution and anti-substitution lemmas still hold, but with the condition that 𝑥 ∈
fv(𝑀).
Lemma 1.26. Let 𝑀,𝑁 ∈ T𝐸𝑆 .

Substitution Lemma If Γ; 𝑥 ∶ ℳ ⊩𝑛∩𝐸𝑆 𝑀 ∶ 𝜎 with 𝑥 ∈ fv(𝑀) and Δ ⊩𝑚∩𝐸𝑆 𝑁 ∶ ℳ, then there
exists Γ ⊎ Δ ⊩𝑚+𝑛∩𝐸𝑆 𝑀{𝑥/𝑁 } ∶ 𝜎 .

Anti-substitution Lemma If Γ ⊩ 𝑀{𝑥/𝑁 } ∶ 𝜎 with 𝑥 ∈ fv(𝑀), then there exists Γ𝑀 , Γ𝑁 and
ℳ such that Γ𝑀 ; 𝑥 ∶ ℳ ⊩ 𝑀 ∶ 𝜎 , Γ𝑁 ⊩ 𝑁 ∶ ℳ and Γ = Γ𝑀 ⊎ Γ𝑁 .

We can prove weighted subject reduction and expansion for non-erasing steps.

Lemma 1.27. Let 𝑀1, 𝑀2 ∈ T𝐸𝑆 and 𝑀1 →es 𝑀2 be a non-erasing step.

Weighted Subject Reduction for non-erasing steps If Γ ⊩𝑛1∩𝐸𝑆 𝑀1 ∶ 𝜎 , then Γ ⊩𝑛2∩𝐸𝑆 𝑀2 ∶ 𝜎
with 𝑛1 > 𝑛2.

Subject Expansion for non-erasing steps If Γ ⊩∩𝐸𝑆 𝑀2 ∶ 𝜎 , then Γ ⊩∩𝐸𝑆 𝑀1 ∶ 𝜎 .
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A possible variation is to abandon relevance, so that we can prove subject reduction
for every step, even the erasing ones. Weakening is added to the system by changing the
conclusion of the axiom rule to Γ ⊎ 𝑥 ∶ [𝜎] ⊩ 𝑥 ∶ 𝜎 . But doing so, we do not retrieve subject
expansion.

The property that full normal forms are typable is valid. As all subterms are typed, the
size of the type derivation is a bound on the size of the term, as defined in section 1.3.

Lemma 1.28 (Typing es-nfs). Let𝑀 ∈ NFes. Then there exists Γ, 𝜎 and 𝑛 such that Γ ⊩𝑛∩𝐸𝑆 𝑀 ∶ 𝜎
and |𝑀| ≤ 𝑛.

The proof of the characterization theorem must be completed by some inductive reason-
ing on type derivations. A proof for the strong quantitative type system ∩𝐽 for the CbN
calculus with generalized applications is in section 4.4. The size of the type derivation de-
creases at each step, even erasing ones, and the characterization theorem is still quantitative.
So, while subject reduction and expansion do not hold for every step, the crucial characteri-
zation still holds.

Theorem 1.29. Let 𝑀 ∈ T𝐸𝑆 . 𝑀 is typable in ∩𝐸𝑆 with a derivation of size 𝑛 ⟺ the size of
the longest es reduction sequence starting at𝑀 plus the size of the (unique) es-nf is bounded by
𝑛.



CHAPTER2
Node replication

In this chapter, we introduce the theory of node replication through the calculus 𝜆𝑅. The
first section describes the syntax (section 2.1.1) and operational semantics (section 2.1.2) of
the calculus. It ends with the definition of the notion of levels (section 2.1.3), a crucial notion
to prove termination of the substitution rules and to give a decreasing measure on type
derivations.

Section 2.2 gives some general properties of the calculus: termination of substitution
(section 2.2), a simulation between 𝜆𝑅 and the λ-calculus (section 2.2) –from which an indirect
simulation to and from the atomic λ-calculus follows–, and finally confluence (section 2.2).

Section 2.3 introduces the CbN (section 2.3.1) and CbNeed (section 2.3.2) strategies, imple-
menting full and fully lazy substitution respectively. The section starts with the definition of
restricted syntax of terms. To simplify the presentation, we indeed implement substitutions
on λ-terms rather than on the full syntax with explicit substitutions. We give two implemen-
tations of full laziness, as a big-steps (section 2.3.2) and a small-steps (section 2.3.2) semantics.
The section ends with the fully lazy call-by-need strategy (section 2.3.2).

The final technical section (section 2.4) introduces a quantitative type system ∩𝑅 for the
CbN and fully lazy CbNeed strategies. We prove that the type system captures both CbN and
CbNeed normalization in section 2.5. From this result, we deduce the equivalence of usual
and fully lazy substitution (theorem 2.64).

2.1 A Calculus for Node Replication
We present the 𝜆𝑅-calculus (as in Replication). From a syntactical point of view, we add two
new constructors to the λ-calculus: explicit substitution and explicit distributors. From an
operational point of view, we provide a rewriting system on 𝜆𝑅-terms together with a notion
of levels which will play a key role in the next sections.

2.1.1 Syntax
Given a countably infinite set of variables 𝑥, 𝑦, 𝑧, ..., we consider the following grammars.

(Terms) 𝑡 , 𝑢, 𝑟 , 𝑠 ⩴ 𝑥 ∣ 𝜆𝑥.𝑡 ∣ 𝑡𝑢 ∣ 𝑡[𝑥/𝑢] ∣ 𝑡[𝑥//𝜆𝑦.𝑢]
(Pure Terms) 𝑝, 𝑞 ⩴ 𝑥 ∣ 𝜆𝑥.𝑝 ∣ 𝑝𝑞
(Term Contexts) C ⩴ ◊ ∣ 𝜆𝑥.C ∣ C𝑡 ∣ 𝑡C ∣ C[𝑥/𝑡] ∣ C[𝑥//𝜆𝑦.𝑢] ∣ 𝑡[𝑥/C] ∣ 𝑡[𝑥//𝜆𝑦.C]
(List Contexts) L ⩴ ◊ ∣ L[𝑥/𝑢] ∣ L[𝑥//𝜆𝑦.𝑢]
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The set of terms is denoted by T𝑅 and the subset of pure terms is denoted by T𝑃 . This set is
isomorphic to the set of λ-terms TΛ, but we use lowercase 𝑝 and 𝑞 because it is a subset of
T𝑅 .

The construction [𝑥/𝑢] is an explicit substitution. The second construction [𝑥//𝜆𝑦.𝑢] is
an explicit distributor (or simply distributor), which is used specifically in the duplication of
abstractions.

An explicit cut is written [𝑥 ◁ 𝑢], which is either [𝑥/𝑢], or [𝑥//𝑢] when 𝑢 is 𝜆𝑦.𝑢′, typically
to factorize some definitions and proofs where ES and distributors behave similarly. A char-
acterization function es([𝑥 ◁ 𝑢]) on explicit cuts distinguishes these two cases: es([𝑥 ◁ 𝑢]) = 1
if [𝑥 ◁ 𝑢] = [𝑥/𝑢], and 0 otherwise. Free and bound variables, as well as 𝛼-conversion and
meta-level substitution is extended to distributors in the same way as ESs.

Two notions of contexts are used. Term contexts C extend those of the λ-calculus to
explicit cuts. List contexts L denote an arbitrary list of explicit cuts. They will be used in
particular to implement reduction at a distance.

2.1.2 Operational Semantics

The atomic λ-calculus of Gundersen, Heijltjes, and Parigot [GHP13b] uses separate permuta-
tion rules to permute explicit substitutions and unblock reductions. Our calculus 𝜆𝑅 instead
relies on a semantics at a distance, integrating permutations into meaningful reduction steps
in order to put the focus on node replication mechanisms. The said permutations are the
following:

𝜆𝑦.𝑡[𝑥 ◁ 𝑢] ↦𝜌 (𝜆𝑦.𝑡)[𝑥 ◁ 𝑢] if 𝑦 ∉ fv(𝑢)
𝑡[𝑥 ◁ 𝑢]𝑠 ↦𝜌 (𝑡𝑠)[𝑥 ◁ 𝑢] if 𝑥 ∉ fv(𝑠)
𝑡𝑠[𝑥 ◁ 𝑢] ↦𝜌 (𝑡𝑠)[𝑥 ◁ 𝑢] if 𝑥 ∉ fv(𝑡)

𝑡[𝑥 ◁ 𝑢[𝑦 ◁ 𝑠]] ↦𝜌 𝑡[𝑥 ◁ 𝑢][𝑦 ◁ 𝑠] if 𝑦 ∉ fv(𝑡)

The reduction relation →𝜌 is defined as the closure of the four rules ↦𝜌 under all contexts.

Example 2.1. In this reduction, both inner explicit cuts [𝑧1//I] and [𝑧2/𝑧3] are pushed outside
the main ES, which results in a pure term followed by a list of explicit cuts.

𝑥[𝑥/𝑤[𝑧1//I](𝜆𝑦.𝑦[𝑧2/𝑧3])] →𝜌 𝑥[𝑥/𝑤[𝑧1//I](𝜆𝑦.𝑦)[𝑧2/𝑧3]]
→𝜌 𝑥[𝑥/(𝑤[𝑧1//I](𝜆𝑦.𝑦))[𝑧2/𝑧3]]
→𝜌 𝑥[𝑥/𝑤[𝑧1//I](𝜆𝑦.𝑦)][𝑧2/𝑧3]
→𝜌 𝑥[𝑥/(𝑤(𝜆𝑦.𝑦))[𝑧1//I]][𝑧2/𝑧3]
→𝜌 𝑥[𝑥/𝑤(𝜆𝑦.𝑦)][𝑧1//I][𝑧2/𝑧3]
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The distant reduction relation →R, is given by the closure under all contexts of the
following rules.

L⟨𝜆𝑥.𝑡⟩𝑢 ↦dB L⟨𝑡[𝑥/𝑢]⟩
𝑡[𝑥/L⟨𝑢𝑠⟩] ↦app L⟨𝑡{𝑥/𝑦𝑧}[𝑦/𝑢][𝑧/𝑠]⟩ where 𝑦 and 𝑧 are fresh

𝑡[𝑥/L⟨𝜆𝑦.𝑢⟩] ↦dist L⟨𝑡[𝑥//𝜆𝑦.𝑧[𝑧/𝑢]]⟩ where 𝑧 is fresh
𝑡[𝑥//𝜆𝑦.𝑢] ↦abs L⟨𝑡{𝑥/𝜆𝑦.𝑝}⟩ where 𝑢 →∗𝜌 L⟨𝑝⟩ and 𝑦 ∉ fv(L)
𝑡[𝑥/L⟨𝑦⟩] ↦var L⟨𝑡{𝑥/𝑦}⟩

The 𝜆𝑅-calculus is defined by the set of terms T𝑅 equipped with this reduction relation.
In the five rules just above, a list context L is pushed outside the term. We assume in all

these cases that there is no capture of variables caused by this transformation, e.g. in rule
dB this means that dom(L) ∩ fv(𝑢) = ∅. Apart from the distant Beta rule dB used to fire 𝛽-
reduction, there are four substitution rules used to copy nodes of pure terms while pushing
outside all the cuts surrounding the node to be copied. Rule app copies one application
node, while rule var copies one variable node. Notice that the (meta-level and capture-free)
substitution is full, in the sense that it is performed simultaneously on all occurrences of the
free variable 𝑥 at the same time.

Example 2.2. This example illustrates the use of rules app and var to replicate application
and variables nodes, as well as rule dB to fire reduction. No distance is involved in this
example.

(𝜆𝑥.𝑥𝑥)(𝑦𝑧) →dB (𝑥𝑥)[𝑥/𝑦𝑧]
→app ((𝑥1𝑥2)(𝑥1𝑥2))[𝑥1/𝑦][𝑥2/𝑧]
→var (𝑦𝑥2)(𝑦𝑥2)[𝑥2/𝑧]
→var (𝑦𝑧)(𝑦𝑧)

Example 2.3. Replication of abstractions is more involved, as illustrated below. Distance is
highlighted in green .

(𝜆𝑥.𝑥𝑥)(𝜆𝑦.(𝑤𝑤)𝑦) →dB (𝑥𝑥)[𝑥/𝜆𝑦.(𝑤𝑤)𝑦] (2.1)
→dist (𝑥𝑥)[𝑥//𝜆𝑦.𝑧[𝑧/(𝑤𝑤)𝑦]] (2.2)
→app (𝑥𝑥)[𝑥//𝜆𝑦.(𝑧1𝑧2)[𝑧1/𝑤𝑤][𝑧2/𝑦]] (2.3)

→var (𝑥𝑥)[𝑥//𝜆𝑦.(𝑧1𝑦)[𝑧1/𝑤𝑤]] (2.4)

→app (𝑥𝑥)[𝑥//𝜆𝑦.((𝑧3𝑧2)𝑦) [𝑧3/𝑤][𝑧2/𝑤] ] (2.5)

→abs ((𝜆𝑦.(𝑧3𝑧2)𝑦)(𝜆𝑦.(𝑧3𝑧2)𝑦))[𝑧3/𝑤][𝑧2/𝑤] (2.6)
→var ((𝜆𝑦.(𝑤𝑧2)𝑦)(𝜆𝑦.(𝑤𝑧2)𝑦))[𝑧2/𝑤] (2.7)
→var (𝜆𝑦.(𝑤𝑤)𝑦)(𝜆𝑦.(𝑤𝑤)𝑦) (2.8)

The specificity in copying an abstraction 𝜆𝑦.𝑢 is due to the (binding) relation between the
binder 𝜆𝑦 and all the free occurrences of 𝑦 in its body 𝑢. Abstractions are thus copied in two
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stages. The first one is implemented by the rule dist, which creates a distributor in which
a potentially replicable abstraction is placed, while moving its body inside a new ES. Thus,
in line (2.2), we create a distributor over the abstraction 𝜆𝑦 , while (𝑤𝑤)𝑦 is placed inside an
ES [𝑧/(𝑤𝑤)𝑦]. Notice that this substitution is in the scope of abstraction 𝜆𝑦 . The distributor
is marking the fact that the abstraction needs to be further duplicated. There are then two
kinds of potentially replicable nodes shared in the body of the corresponding abstraction.

1. All free occurrences of the variable bound by the main abstraction (here 𝜆𝑦) must be
replicated by means of the rule var (2.4), so as to keep the correct binding structure.
This means that all the nodes leading to these occurrences must also be duplicated:
this is why rule app is first used in (2.3).

2. All nodes which are neither a free occurrence of the bound variable nor in the path to
such a node can be arbitrarily copied inside the distributor (e.g. the internal application
node in line (2.5)), or replicated later (e.g. the two variable nodes 𝑤 in (2.7) and (2.8)).

Components which are not replicated inside the distributor form a list of explicit cuts, which
can occur at different depths inside this distributor. Indeed, in (2.5), there are two ESs [𝑧3/𝑤]
and [𝑧2/𝑤]. The cuts can be gathered together into a list context, called L in the definition of
rule abs, which is pushed outside by using permutation rules, before performing the substi-
tution of the pure body containing all the bound occurrences of 𝑦 (here 𝜆𝑦.(𝑧1𝑧2)𝑦). This op-
eration is in general hard to specify using only distance since the cuts can appear at arbitrary
depth in the distributor, and this is one of the reasons to introduce the use of permutation
rules in rule abs.

On a technical note, notice that the nodes inside a distributor are not replicated yet, but
rather moved in the main body of the distributor. The nodes will be replicated only when
applying rule dist. This is a difference with the atomic λ-calculus, whose grammar has a
tuple ⟨𝑡1, … , 𝑡𝑛⟩ containing replicated occurrences of the body of the abstraction inside the
distributor. However, Gundersen, Heijltjes, and Parigot do not make use of that possibility
to handle these replicated bodies differently while they are present in the distributor.

Other choices are possible, such as replicating all the nodes, or only the uppermost ap-
plication and the node 𝑦 (corresponding to fully lazy duplication), as long as at least all free
occurrences of 𝑦 are duplicated.

The substitution relation →sub (resp. distant Beta relation →dB) is defined as the closure
of ↦app ∪ ↦dist ∪ ↦abs ∪ ↦var (resp. ↦dB) under all contexts, and the reduction relation
→R is the union of →sub and →dB.

Example 2.4. This last example showcases different reduction steps with distance, high-
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lighted in green .

(𝜆𝑥.𝑥) [𝑧4/𝑧5] (𝑤[𝑧1//I](𝜆𝑦.𝑦[𝑧2/𝑧3])) →dB 𝑥[𝑥/𝑤[𝑧1//I](𝜆𝑦.𝑦[𝑧2/𝑧3])][𝑧4/𝑧5]
→app (𝑥1𝑥2)[𝑥1/𝑤 [𝑧1//I] ][𝑥2/𝜆𝑦.𝑦[𝑧2/𝑧3]][𝑧4/𝑧5]
→var (𝑤𝑥2)[𝑧1//I][𝑥2/𝜆𝑦.𝑦[𝑧2/𝑧3]][𝑧4/𝑧5]
→dist (𝑤𝑥2)[𝑧1//I][𝑥2//𝜆𝑦.𝑥[𝑥/𝑦 [𝑧2/𝑧3] ]][𝑧4/𝑧5]
→var (𝑤𝑥2)[𝑧1//I][𝑥2//𝜆𝑦.𝑦 [𝑧2/𝑧3] ][𝑧4/𝑧5]
→abs (𝑤(𝜆𝑦.𝑦))[𝑧1//I][𝑧2/𝑧3][𝑧4/𝑧5]

Notice that an R-step can be decomposed into some 𝜌-steps followed by a simpler step
not involving any list context. Indeed, 𝑡 →R 𝑢 could be simulated by 𝑡 →∗𝜌 𝑡′ →R′ 𝑢, where
→R′ is the closure under all contexts of the following set of rewriting rules:

(𝜆𝑥.𝑡)𝑢 ↦dB′ 𝑡[𝑥/𝑢]
𝑡[𝑥/𝑢𝑠] ↦app′ 𝑡{𝑥/𝑦𝑧}[𝑦/𝑢][𝑧/𝑠]
𝑡[𝑥/𝜆𝑦.𝑢] ↦dist′ 𝑡[𝑥//𝜆𝑦.𝑧[𝑧/𝑢]]
𝑡[𝑥//𝜆𝑦.𝑝] ↦abs′ 𝑡{𝑥/𝜆𝑦.𝑝}
𝑡[𝑥/𝑦] ↦var′ 𝑡{𝑥/𝑦}

For instance, step (2.6) in example 2.3 can be decomposed as follows, where 𝑟 = 𝜆𝑦.(𝑧3𝑧2)𝑦:

(𝑥𝑥)[𝑥//𝑟[𝑧3/𝑤][𝑧2/𝑤]] →∗𝜋 (𝑥𝑥)[𝑥//𝑟][𝑧3/𝑤][𝑧2/𝑤] →abs′ (𝑟 𝑟)[𝑧3/𝑤][𝑧2/𝑤].
This decomposition will be useful in some of our proofs, but we prefer to integrate distance
inside the rules, as initially defined on page 59, to highlight the computational behavior and
execute permutations only when strictly necessary.

2.1.3 Levels
This subsection introduces the syntactical notion of level and its associated properties. Intu-
itively, the level of a variable in a term indicates the maximal depth (only w.r.t. ESs and not
w.r.t. explicit distributors) of its free occurrences. However, in order to be sound with respect
to the permutation rules, levels do not consider depth in the usual sense only, but also across
linked chains of ES. For instance, the level of 𝑧 in both (𝑥𝑥)[𝑥/𝑦[𝑦/𝑧]] and (𝑥𝑥)[𝑥/𝑦][𝑦/𝑧] is
the same. Levels will play a key role in the next sections: they will be the combinatorial
witnesses of the progress of sub-substitution steps, necessary to prove termination of the
sub-relation. They will also be helpful to define a decreasing measure on typing derivations
in section 2.4. The level lv𝑧(𝑡) of a variable 𝑧 in a term 𝑡 is defined by induction:

lv𝑧(𝑥) ≔ 0
lv𝑧(𝑡1𝑡2) ≔ max(lv𝑧(𝑡1), lv𝑧(𝑡2))

lv𝑧(𝜆𝑥.𝑡) ≔ lv𝑧(𝑡)

lv𝑧(𝑡[𝑥 ◁ 𝑢]) ≔ {lv𝑧(𝑡) if 𝑧 ∉ fv(𝑢)
max(lv𝑧(𝑡), lv𝑥(𝑡) + lv𝑧(𝑢) + es([𝑥 ◁ 𝑢])) otherwise
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In the last two cases, we can always suppose 𝑧 ≠ 𝑥 , because we work modulo 𝛼-conversion.
Notice that lv𝑧(𝑡) = 0 whenever 𝑧 ∉ fv(𝑡) or 𝑡 is pure.

We illustrate the concept of level by an example. Consider 𝑡 = 𝑥[𝑥/𝑧[𝑦/𝑤]][𝑤/𝑤′], then
lv𝑧(𝑡) = 1, lv𝑤′(𝑡) = 3 and lv𝑦(𝑡) = 0 because 𝑦 ∉ fv(𝑡).

This notion is also extended to contexts as expected, i.e. lv◊(C) = lv𝑧(C⟨𝑧⟩), where 𝑧
is a fresh variable. Remark that for any variable 𝑥 , lv◊(C) ≤ lv𝑥(C⟨⟨𝑥⟩⟩) and lv𝑥(C⟨⟨𝑝⟩⟩) ≤
lv𝑥(C⟨⟨𝑥⟩⟩) for any 𝑝 ∈ T𝑃 .

Lemma 2.5. Let 𝑥 ≠ 𝑧, 𝑡 ∈ T𝑅 and 𝑝 ∈ T𝑃 :

(i) If 𝑧 ∉ fv(𝑝), then lv𝑧(𝑡{𝑥/𝑝}) = lv𝑧(𝑡).
(ii) If 𝑧 ∈ fv(𝑝), then lv𝑧(𝑡{𝑥/𝑝}) = max(lv𝑧(𝑡), lv𝑥(𝑡)).

Proof. If 𝑥 ∉ fv(𝑡), then 𝑡{𝑥/𝑝} = 𝑡 and the property holds in both cases since lv𝑥(𝑡) = 0.
Let 𝑥 ∈ fv(𝑡).

The first item where 𝑧 ∉ fv(𝑝) is by induction on 𝑡 . We detail the case where 𝑡 =
𝑡′[𝑦 ◁ 𝑢] and 𝑧 ∈ fv(𝑢{𝑥/𝑝}). We have:

lv𝑧(𝑡′{𝑥/𝑝}[𝑦 ◁ 𝑢{𝑥/𝑝}]) = max(lv𝑧(𝑡′{𝑥/𝑝}), lv𝑦(𝑡′{𝑥/𝑝}) + lv𝑧(𝑢{𝑥/𝑝}) + es([𝑦 ◁ 𝑢]))
=i.h. max(lv𝑧(𝑡′), lv𝑦(𝑡′) + lv𝑧(𝑢) + es([𝑦 ◁ 𝑢]))
= lv𝑧(𝑡′[𝑦 ◁ 𝑢])

The second case where 𝑧 ∈ fv(𝑝) is also by induction on 𝑡 . We detail the case where
𝑡 = 𝑡1[𝑦 ◁ 𝑡2].

Then, 𝑡{𝑥/𝑝} = 𝑡1{𝑥/𝑝}[𝑦 ◁ 𝑡2{𝑥/𝑝}]. By 𝛼-conversion we can assume 𝑦 ∉ fv(𝑝). By i.h.
we have lv𝑧(𝑡𝑖{𝑥/𝑝}) = max(lv𝑧(𝑡𝑖), lv𝑥(𝑡𝑖)) for 𝑖 ∈ {1, 2}, if 𝑥 ∈ fv(𝑡𝑖), lv𝑧(𝑡𝑖{𝑥/𝑝}) = lv𝑧(𝑡𝑖)
otherwise. There are two cases.

Case 𝑧 ∉ fv(𝑡2{𝑥/𝑝}). Then 𝑧 ∉ fv(𝑡2) and necessarily 𝑥 ∉ fv(𝑡2) since 𝑧 ∈ fv(𝑝). Then,

lv𝑧(𝑡{𝑥/𝑝}) = lv𝑧(𝑡1{𝑥/𝑝}) =i.h. max(lv𝑧(𝑡1), lv𝑥(𝑡1)) = max(lv𝑧(𝑡1[𝑦 ◁ 𝑡2]), lv𝑥(𝑡1[𝑦 ◁ 𝑡2]))

Case 𝑧 ∈ fv(𝑡2{𝑥/𝑝}). There are three cases.
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Subcase 𝑥 ∉ fv(𝑡1). Then 𝑥 ∈ fv(𝑡2).
lv𝑧(𝑡{𝑥/𝑝}) = max(lv𝑧(𝑡1{𝑥/𝑝}), lv𝑦(𝑡1{𝑥/𝑝}) + lv𝑧(𝑡2{𝑥/𝑝}) + es([𝑦 ◁ 𝑡2]))

=(i) max(lv𝑧(𝑡1), lv𝑦(𝑡1) + lv𝑧(𝑡2{𝑥/𝑝}) + es([𝑦 ◁ 𝑡2]))
=i.h. max(lv𝑧(𝑡1), lv𝑦(𝑡1) + max(lv𝑧(𝑡2), lv𝑥(𝑡2)) + es([𝑦 ◁ 𝑡2]))
= max(lv𝑧(𝑡1), lv𝑦(𝑡1) + lv𝑧(𝑡2) + es([𝑦 ◁ 𝑡2]),

lv𝑦(𝑡1) + lv𝑥(𝑡2) + es([𝑦 ◁ 𝑡2]))

=
⎧
⎨
⎩

max(max(lv𝑧(𝑡1), lv𝑦(𝑡1) + lv𝑧(𝑡2) + es([𝑦 ◁ 𝑡2])),
lv𝑦(𝑡1) + lv𝑥(𝑡2) + es([𝑦 ◁ 𝑡2])) 𝑧 ∈ fv(𝑡2)

max(lv𝑧(𝑡1), lv𝑦(𝑡1) + lv𝑥(𝑡2) + es([𝑦 ◁ 𝑡2])) 𝑧 ∉ fv(𝑡2)
= max(lv𝑧(𝑡1[𝑦 ◁ 𝑡2]), lv𝑥(𝑡1[𝑦 ◁ 𝑡2]))

Subcase 𝑥 ∉ fv(𝑡2). Then 𝑥 ∈ fv(𝑡1) and 𝑧 ∈ fv(𝑡2):
lv𝑧(𝑡{𝑥/𝑝}) = max(lv𝑧(𝑡1{𝑥/𝑝}), lv𝑦(𝑡1{𝑥/𝑝}) + lv𝑧(𝑡2{𝑥/𝑝}) + es([𝑦 ◁ 𝑡2]))

=i.h.+(i) max(lv𝑧(𝑡1), lv𝑥(𝑡1), lv𝑦(𝑡1) + lv𝑧(𝑡2) + es([𝑦 ◁ 𝑡2]))
= max(max(lv𝑧(𝑡1), lv𝑦(𝑡1) + lv𝑧(𝑡2) + es([𝑦 ◁ 𝑡2])), lv𝑥(𝑡1[𝑦 ◁ 𝑡2]))
= max(lv𝑧(𝑡1[𝑦 ◁ 𝑡2]), lv𝑥(𝑡1[𝑦 ◁ 𝑡2]))

Subcase 𝑥 ∈ fv(𝑡1) ∩ fv(𝑡2).
lv𝑧(𝑡{𝑥/𝑝}) = max(lv𝑧(𝑡1{𝑥/𝑝}), lv𝑦(𝑡1{𝑥/𝑝}) + lv𝑧(𝑡2{𝑥/𝑝}) + es([𝑦 ◁ 𝑡2]))

=i.h. max(max(lv𝑧(𝑡1), lv𝑥(𝑡1)),
lv𝑦(𝑡1) + max(lv𝑧(𝑡2), lv𝑥(𝑡2)) + es([𝑦 ◁ 𝑡2]))

= max(lv𝑧(𝑡1), lv𝑥(𝑡1), lv𝑦(𝑡1) + lv𝑧(𝑡2) + es([𝑦 ◁ 𝑡2]),
lv𝑦(𝑡1) + lv𝑥(𝑡2) + es([𝑦 ◁ 𝑡2]))

=
⎧
⎨
⎩

max(lv𝑧(𝑡1), lv𝑦(𝑡1) + lv𝑧(𝑡2) + es([𝑦 ◁ 𝑡2]),
lv𝑥(𝑡1), lv𝑦(𝑡1) + lv𝑥(𝑡2) + es([𝑦 ◁ 𝑡2])) 𝑧 ∈ fv(𝑡2)

max(lv𝑧(𝑡1), lv𝑥(𝑡1), lv𝑦(𝑡1) + lv𝑥(𝑡2) + es([𝑦 ◁ 𝑡2])) 𝑧 ∉ fv(𝑡2)
= max(lv𝑧(𝑡1[𝑦 ◁ 𝑡2]), lv𝑥(𝑡1[𝑦 ◁ 𝑡2]))

Lemma 2.6. Let 𝑡 ∈ T𝑅 and 𝑤 be any variable.

(i) If 𝑡0 →𝜌 𝑡1, then lv𝑤(𝑡0) ≥ lv𝑤(𝑡1).
(ii) If 𝑡0 →sub 𝑡1, then lv𝑤(𝑡0) ≥ lv𝑤(𝑡1).

Proof. We start with item (i). Let 𝑡0 = C⟨𝑜⟩ and 𝑡1 = C⟨𝑜′⟩, where 𝑜 →𝜌 𝑜′ is a root step.
We reason by induction on C. First we consider the base cases, where C = ◊. We detail
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two cases, where 𝑤 ∈ fv(𝑢).
Case 𝑡0 = 𝑡[𝑥 ◁ 𝑢]𝑠 →𝜌 (𝑡𝑠)[𝑥 ◁ 𝑢] = 𝑡1, where 𝑥 ∉ fv(𝑠).

lv𝑤(𝑡[𝑥 ◁ 𝑢]𝑠)
= max(lv𝑤(𝑡[𝑥 ◁ 𝑢]), lv𝑤(𝑠))
= max(lv𝑤(𝑡), lv𝑥(𝑡) + lv𝑤(𝑢) + es([𝑥 ◁ 𝑢]), lv𝑤(𝑠))
= max(lv𝑤(𝑡), lv𝑤(𝑠), lv𝑥(𝑡) + lv𝑤(𝑢) + es([𝑥 ◁ 𝑢]))
= max(lv𝑤(𝑡), lv𝑤(𝑠),max(lv𝑥(𝑡), 0) + lv𝑤(𝑢) + es([𝑥 ◁ 𝑢])) (𝑥 ∉ fv(𝑠))
= max(lv𝑤(𝑡), lv𝑤(𝑠),max(lv𝑥(𝑡), lv𝑥(𝑠)) + lv𝑤(𝑢) + es([𝑥 ◁ 𝑢]))
= max(lv𝑤(𝑡𝑠), lv𝑥(𝑡𝑠) + lv𝑤(𝑢) + es([𝑥 ◁ 𝑢]))
= lv𝑤((𝑡𝑠)[𝑥 ◁ 𝑢])

Case 𝑡0 = 𝑡[𝑦 ◁ 𝑠[𝑥 ◁ 𝑢]] →𝜌 𝑡[𝑦 ◁ 𝑠][𝑥 ◁ 𝑢] = 𝑡1, where 𝑥 ∉ fv(𝑡). We only detail the case
where 𝑤 ∈ fv(𝑠).

lv𝑤(𝑡[𝑦 ◁ 𝑠[𝑥 ◁ 𝑢]]) = max(lv𝑤(𝑡), lv𝑦(𝑡) + lv𝑤(𝑠[𝑥 ◁ 𝑢]) + es([𝑦 ◁ 𝑠]))
= max(lv𝑤(𝑡), lv𝑦(𝑡)

+ max(lv𝑤(𝑠), lv𝑥(𝑠) + lv𝑤(𝑢) + es([𝑥 ◁ 𝑢])) + es([𝑦 ◁ 𝑠]))
= max(lv𝑤(𝑡), lv𝑦(𝑡) + lv𝑤(𝑠) + es([𝑦 ◁ 𝑠]),

lv𝑦(𝑡) + lv𝑥(𝑠) + lv𝑤(𝑢) + es([𝑥 ◁ 𝑢]) + es([𝑦 ◁ 𝑠]))
= max(max(lv𝑤(𝑡), lv𝑦(𝑡) + lv𝑤(𝑠) + es([𝑦 ◁ 𝑠])),

max(lv𝑥(𝑡), lv𝑦(𝑡) + lv𝑥(𝑠) + es([𝑦 ◁ 𝑠])) + lv𝑤(𝑢) + es([𝑥 ◁ 𝑢]))
≥ max(lv𝑤(𝑡[𝑦 ◁ 𝑠]), lv𝑥(𝑡[𝑦 ◁ 𝑠]) + lv𝑤(𝑢) + es([𝑥 ◁ 𝑢]))
= lv𝑤(𝑡[𝑦 ◁ 𝑠][𝑥 ◁ 𝑢])

The inductive cases are the following:

Case C = 𝜆𝑥.C′, where 𝑥 ≠ 𝑤. Then

lv𝑤(𝜆𝑥.C′⟨𝑜⟩) = lv𝑤(C′⟨𝑜⟩) ≥i.h. lv𝑤(C′⟨𝑜′⟩) = lv𝑤(C⟨𝑜′⟩)

Case C = C′𝑢. Then

lv𝑤(C′⟨𝑜⟩𝑢) = max(lv𝑤(C′⟨𝑜⟩), lv𝑤(𝑢)) ≥i.h. max(lv𝑤(C′⟨𝑜′⟩), lv𝑤(𝑢)) = lv𝑤(C⟨𝑜′⟩)

Case C = 𝑢C′. Then

lv𝑤(𝑢C′⟨𝑜⟩) = max(lv𝑤(𝑢), lv𝑤(C′⟨𝑜⟩)) ≥i.h. max(lv𝑤(𝑢), lv𝑤(C′⟨𝑜′⟩)) = lv𝑤(C⟨𝑜′⟩)
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Case C = C′[𝑥 ◁ 𝑢]. Then

Subcase 𝑤 ∉ fv(𝑢). lv𝑤(C′⟨𝑜⟩[𝑥 ◁ 𝑢]) = lv𝑤(C′⟨𝑜⟩) ≥i.h. lv𝑤(C′⟨𝑜′⟩) = lv𝑤(C⟨𝑜′⟩).
Subcase 𝑤 ∈ fv(𝑢). Then

lv𝑤(C′⟨𝑜⟩[𝑥 ◁ 𝑢]) = max(lv𝑤(C′⟨𝑜⟩), lv𝑥(C′⟨𝑜⟩) + lv𝑤(𝑢) + es([𝑥 ◁ 𝑢]))
≥i.h. max(lv𝑤(C′⟨𝑜′⟩), lv𝑥(C′⟨𝑜′⟩) + lv𝑤(𝑢) + es([𝑥 ◁ 𝑢]))
= lv𝑤(C′⟨𝑜′⟩[𝑥 ◁ 𝑢])
= lv𝑤(C⟨𝑜′⟩)

Case C = 𝑢[𝑥 ◁ C′]. Then

Subcase 𝑤 ∉ fv(C′⟨𝑜⟩). Then lv𝑤(𝑢[𝑥 ◁ C′⟨𝑜⟩]) = lv𝑤(𝑢) = lv𝑤(𝑢[𝑥 ◁ C′⟨𝑜′⟩]) =
lv𝑤(C⟨𝑜′⟩).

Subcase 𝑤 ∈ fv(C′⟨𝑜⟩). Then lv𝑤(𝑢[𝑥 ◁ C′⟨𝑜⟩]) = max(lv𝑤(𝑢), lv𝑥(𝑢) + lv𝑤(C′⟨𝑜⟩) +
es([𝑥◁C′⟨𝑜⟩])) ≥i.h. max(lv𝑤(𝑢), lv𝑥(𝑢)+lv𝑤(C′⟨𝑜′⟩)+es([𝑥◁C′⟨𝑜⟩])) = lv𝑤(𝑢[𝑥◁
C′⟨𝑜′⟩]) = lv𝑤(C⟨𝑜′⟩).

Now, we consider item (ii). We reason by induction on the reduction relation, i.e.
by induction on the context C where the root reduction takes place. We detail the base
case which is C = ◊. In all such cases we use point (i) to push L outside, i.e. we can
write 𝑡0 →sub 𝑡1 as 𝑡0 →𝜌 L⟨𝑡′0⟩ →sub′ L⟨𝑡′1⟩ = 𝑡1, where 𝑡′0 →sub′ 𝑡′1 does not push any
list context outside. We then show the property for steps 𝑡′0 →sub′ 𝑡′1 not pushing any
substitution outside and we conclude by lv𝑤(𝑡0) ≥(i) lv𝑤(L⟨𝑡′0⟩) ≥ lv𝑤(L⟨𝑡′1⟩) = lv𝑤(𝑡1).
The inductive cases for C are treated as in point (i).

Case 𝑡′0 = 𝑡[𝑥/𝑢𝑠] →app 𝑡{𝑥/𝑦𝑧}[𝑦/𝑢][𝑧/𝑠] = 𝑡′1, where 𝑦 and 𝑧 are fresh variables. We de-
tail the case where 𝑤 ∈ fv(𝑢) ∩ fv(𝑠) and 𝑥 ∈ fv(𝑡).
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lv𝑤(𝑡[𝑥/𝑢𝑠])
= max(lv𝑤(𝑡), lv𝑥(𝑡) + lv𝑤(𝑢𝑠) + 1)
= max(lv𝑤(𝑡), lv𝑥(𝑡) + lv𝑤(𝑢) + 1, lv𝑥(𝑡) + lv𝑤(𝑠) + 1)
= max(lv𝑤(𝑡), lv𝑥(𝑡) + lv𝑤(𝑢) + 1,max(0, lv𝑥(𝑡) + 0) + lv𝑤(𝑠) + 1)
= max(lv𝑤(𝑡), lv𝑥(𝑡) + lv𝑤(𝑢) + 1,max(lv𝑧(𝑡), lv𝑥(𝑡) + lv𝑧(𝑦𝑧)) + lv𝑤(𝑠) + 1)
=2.5(ii) max(lv𝑤(𝑡), lv𝑥(𝑡) + lv𝑤(𝑢) + 1, lv𝑧(𝑡{𝑥/𝑦𝑧}) + lv𝑤(𝑠) + 1)
= max(lv𝑤(𝑡),max(0, lv𝑥(𝑡) + 0) + lv𝑤(𝑢) + 1, lv𝑧(𝑡{𝑥/𝑦𝑧}) + lv𝑤(𝑠) + 1)
= max(lv𝑤(𝑡),max(lv𝑦(𝑡), lv𝑥(𝑡) + lv𝑦(𝑦𝑧)) + lv𝑤(𝑢) + 1, lv𝑧(𝑡{𝑥/𝑦𝑧}) + lv𝑤(𝑠) + 1)
=2.5(ii) max(lv𝑤(𝑡), lv𝑦(𝑡{𝑥/𝑦𝑧}) + lv𝑤(𝑢) + 1, lv𝑧(𝑡{𝑥/𝑦𝑧}) + lv𝑤(𝑠) + 1)
= max(lv𝑤(𝑡{𝑥/𝑦𝑧}), lv𝑦(𝑡{𝑥/𝑦𝑧}) + lv𝑤(𝑢) + 1, lv𝑧(𝑡{𝑥/𝑦𝑧}) + lv𝑤(𝑠) + 1)
= max(lv𝑤(𝑡{𝑥/𝑦𝑧}[𝑦/𝑢]), lv𝑧(𝑡{𝑥/𝑦𝑧}) + lv𝑤(𝑠) + 1)
= max(lv𝑤(𝑡{𝑥/𝑦𝑧}[𝑦/𝑢]), lv𝑧(𝑡{𝑥/𝑦𝑧}[𝑦/𝑢]) + lv𝑤(𝑠) + 1)
= lv𝑤(𝑡{𝑥/𝑦𝑧}[𝑦/𝑢][𝑧/𝑠])

Case 𝑡′0 = 𝑡[𝑥/𝜆𝑦.𝑢] →dist 𝑡[𝑥//𝜆𝑦.𝑧[𝑧/𝑢]] = 𝑡′1. There are two cases.

Subcase 𝑤 ∉ fv(𝜆𝑦.𝑢). lv𝑤(𝑡[𝑥/𝜆𝑦.𝑢]) = lv𝑤(𝑡) = lv𝑤(𝑡[𝑥//𝜆𝑦.𝑧[𝑧/𝑢]])
Subcase 𝑤 ∈ fv(𝜆𝑦.𝑢) (i.e. 𝑤 ∈ fv(𝑢) and 𝑤 ≠ 𝑦).

lv𝑤(𝑡[𝑥/𝜆𝑦.𝑢]) = max(lv𝑤(𝑡), lv𝑥(𝑡) + lv𝑤(𝜆𝑦.𝑢) + 1)
= max(lv𝑤(𝑡), lv𝑥(𝑡) + lv𝑤(𝑢) + 1)
= max(lv𝑤(𝑡), lv𝑥(𝑡) + max(0, 0 + lv𝑤(𝑢) + 1))
= max(lv𝑤(𝑡), lv𝑥(𝑡) + max(lv𝑤(𝑧), lv𝑧(𝑧) + lv𝑤(𝑢) + 1))
= max(lv𝑤(𝑡), lv𝑥(𝑡) + lv𝑤(𝑧[𝑧/𝑢]))
= max(lv𝑤(𝑡), lv𝑥(𝑡) + lv𝑤(𝜆𝑦.𝑧[𝑧/𝑢]))
= lv𝑤(𝑡[𝑥//𝜆𝑦.𝑧[𝑧/𝑢]])

Case 𝑡′0 = 𝑡[𝑥//𝜆𝑦.𝑢] →abs 𝑡{𝑥/𝜆𝑦.𝑢} = 𝑡′1, where 𝑢 is pure. There are two cases:

Subcase 𝑤 ∉ fv(𝜆𝑦.𝑢) or 𝑥 ∉ fv(𝑡).
lv𝑤(𝑡[𝑥//𝜆𝑦.𝑢]) = lv𝑤(𝑡) =2.5(i) lv𝑤(𝑡{𝑥/𝜆𝑦.𝑢′}) = lv𝑤(L⟨𝑡{𝑥/𝜆𝑦.𝑢′}⟩)

Subcase 𝑤 ∈ fv(𝜆𝑦.𝑢) and 𝑥 ∈ fv(𝑡).
lv𝑤(𝑡[𝑥//𝜆𝑦.𝑢]) = max(lv𝑤(𝑡), lv𝑥(𝑡)) =2.5(ii) lv𝑤(𝑡{𝑥/𝜆𝑦.𝑢})

Case 𝑡′0 = 𝑡[𝑥/𝑦] →var 𝑡{𝑥/𝑦} = 𝑡′1. There are three subcases.
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Subcase 𝑤 ≠ 𝑦. lv𝑤(𝑡[𝑥/𝑦]) = lv𝑤(𝑡) =2.5(i) lv𝑤(𝑡{𝑥/𝑦})
Subcase 𝑤 = 𝑦 and 𝑥 ∉ fv(𝑡).

lv𝑤(𝑡[𝑥/𝑦]) = max(lv𝑤(𝑡), lv𝑥(𝑡) + lv𝑤(𝑦) + 1)
= max(lv𝑤(𝑡), 1) ≥ lv𝑤(𝑡) =2.5(i) lv𝑤(𝑡{𝑥/𝑦})

Subcase 𝑤 = 𝑦 and 𝑥 ∈ fv(𝑡).
lv𝑤(𝑡[𝑥/𝑦]) = max(lv𝑤(𝑡), lv𝑥(𝑡) + lv𝑤(𝑦) + 1)

≥ max(lv𝑤(𝑡), lv𝑥(𝑡)) =2.5(ii) lv𝑤(𝑡{𝑥/𝑦})

Notice that there are two cases when the level of a variable in a term may decrease:

• Moving an explicit cut out of another one with a permutation rule when the first
cut is a void cut, i.e. its domain does not bind any other variable. Thus e.g. if 𝑡 =
𝑥[𝑥/𝑧[𝑦/𝑤]][𝑤/𝑤′] →𝜌 𝑥[𝑥/𝑧][𝑦/𝑤][𝑤/𝑤′] = 𝑢, then lv𝑤′(𝑡) = 3 > 2 = lv𝑤′(𝑢).

• Using rule ↦var. Thus e.g. if 𝑡 = (𝑥𝑥)[𝑥/𝑦][𝑦/𝑧] →var (𝑦𝑦)[𝑦/𝑧] = 𝑢, then lv𝑧(𝑡) = 2 >
1 = lv𝑧(𝑢).

Hence, levels alone are not enough to prove termination of →sub. We thus define a
decreasing measure for →sub in which not only variables are indexed by a level, but also
constructors. For instance, in the term 𝑡[𝑥/𝜆𝑦.𝑦𝑧], we can consider that the level of all the
constructors of 𝜆𝑦.𝑦𝑧, including the abstraction and the application, have level lv𝑥(𝑡). This
will ensure that the level of an abstraction will decrease when applying rule dist, as well as
the level of an application when applying rule app.

2.2 Operational Properties
We now prove three key properties of the 𝜆𝑅-calculus: termination of the reduction system
→sub, relation between 𝜆𝑅 and the λ-calculus, and confluence of the reduction system →R.

Termination of→sub. Some (rather informal) arguments are provided in [GHP13b] to jus-
tify termination of the substitution subrelation of their calculus. We expand these ideas into
an alternative full formal proof adapted to our case, which is based on a measure being strictly
decreasing w.r.t. →sub.

We consider a set 𝒪 of objects of the form a(𝑘, 𝑛) or b(𝑘) (𝑘, 𝑛 ∈ ℕ), which is equipped
with the following ordering >𝒪 (≥𝒪 denotes its reflexive closure):

a(𝑘, 𝑛) >𝒪 a(𝑘′, 𝑛) if 𝑘 > 𝑘′, or (𝑘 = 𝑘′ and 𝑛 > 𝑛′) b(𝑘) >𝒪 a(𝑘′, 𝑛) if 𝑘 ≥ 𝑘′
a(𝑘, 𝑛) >𝒪 b(𝑘′) if 𝑘 > 𝑘′ b(𝑘) >𝒪 b(𝑘′) if 𝑘 > 𝑘′

Lemma 2.7. The order >𝒪 on the set 𝒪 is well-founded.
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Proof. Let us consider the setℕ equipped with the standard order >ℕ on natural numbers.
Let us also consider the set ℕ∞ ≔ ℕ ⊎ {∞} equipped with the order >∞≔>ℕ ∪{⟨∞, 𝑛⟩ ∣
𝑛 ∈ ℕ}. Since >ℕ and >∞ are both well-founded, then the lexicographic order induced by
⟨>ℕ, >∞⟩ onℕ×ℕ∞, written >LEX, is also well-founded. We show that >𝒪 is well-founded
by projecting it into the well-founded order >LEX, i.e. we define a projection function P
such that 𝑠 >𝒪 𝑠′ implies P(𝑠) >LEX P(𝑠′), for any 𝑠, 𝑠′ ∈ 𝒪 . Let us define P(𝑠) = ⟨𝕃(𝑠), 𝕊(𝑠)⟩,
where 𝕃(a(𝑘, 𝑛)) ≔ 𝑘 and 𝕃(b(𝑘)) ≔ 𝑘 while 𝕊(a(𝑘, 𝑛)) ≔ 𝑛 and 𝕊(b(𝑘)) ≔ ∞. We reason
by cases.

Case 𝑠0 = a(𝑘, 𝑛)>𝒪 a(𝑘′, 𝑛′) = 𝑠1.Then ⟨𝕃(𝑠0), 𝕊(𝑠0)⟩ = ⟨𝑘, 𝑛⟩ >LEX ⟨𝑘′, 𝑛′⟩ = ⟨𝕃(𝑠1), 𝕊(𝑠1)⟩
holds by definition since either 𝑘 > 𝑘′ or 𝑘 = 𝑘′ and 𝑛 > 𝑛′.

Case 𝑠0 = b(𝑘) >𝒪 b(𝑘′) = 𝑠1. Then ⟨𝕃(𝑠0), 𝕊(𝑠0)⟩ = ⟨𝑘, ∞⟩ >LEX ⟨𝑘′, ∞⟩ = ⟨𝕃(𝑠1), 𝕊(𝑠1)⟩
holds by definition since 𝑘 > 𝑘′.

Case 𝑠0 = a(𝑘, 𝑛) >𝒪 b(𝑘′) = 𝑠1. Then ⟨𝕃(𝑠0), 𝕊(𝑠0)⟩ = ⟨𝑘, 𝑛⟩ >LEX ⟨𝑘′, ∞⟩ = ⟨𝕃(𝑠1), 𝕊(𝑠1)⟩
holds by definition since 𝑘 > 𝑘′.

Case 𝑠0 = b(𝑘) >𝒪 a(𝑘′, 𝑛′) = 𝑠1. Then ⟨𝕃(𝑠0), 𝕊(𝑠0)⟩ = ⟨𝑘, ∞⟩ >LEX ⟨𝑘′, 𝑛′⟩ = ⟨𝕃(𝑠1), 𝕊(𝑠1)⟩
holds by definition since either 𝑘 > 𝑘′ or 𝑘 = 𝑘′ and ∞ > 𝑛.

We write >𝒪MUL for the multiset extension of the order >𝒪 on 𝒪 , which turns out to be
well-founded [BN98] by lemma 2.7. Some operations on multisets are needed to build the
measure C (_) on terms. Indeed, let 𝑀 be a multiset of objects in 𝒪 . Multiset union is denoted
⊔. Furthermore:

1. The a-elements (resp. b-elements) of the multiset 𝑀 are all the objects of the form
a(𝑘, 𝑛) (resp. b(𝑘)) in 𝑀 . We then may write 𝑀 as 𝑀a ⊔ 𝑀b, where 𝑀a (resp. 𝑀b)
contains all the a-elements (resp b-elements) of 𝑀 .

2. Given 𝐾 ∈ ℕ, we write 𝑀≤𝐾 (resp. 𝑀>𝐾 ) for the multiset containing all 𝑜 ∈ 𝑀 such
that the first element of 𝑜 is less than 𝐾 (resp. strictly greater than 𝐾 ). We write 𝑀>𝐾

a
for 𝑀>𝐾 ⊓ 𝑀a.

3. 𝑀 can thus be decomposed in three disjoint multisets 𝑀b, 𝑀≤𝐾
a and 𝑀>𝐾

a , for every
𝐾 ∈ ℕ.

4. We also define the following operation on 𝑀 :

𝑝 ⋅ 𝑀 ≔ [a(𝑝 + 𝑘, 𝑛) ∣ a(𝑘, 𝑛) ∈ 𝑀] ⊔ [b(𝑝 + 𝑘) ∣ b(𝑘) ∈ 𝑀]

We are now ready to (inductively) define our cuts level measure C (⋅) on terms.

C (𝑥) ≔ [ ] C (𝜆𝑥.𝑡) ≔ C (𝑡) C (𝑡𝑢) ≔ C (𝑡) ⊔ C (𝑢)
C (𝑡[𝑥/𝑢]) ≔ C (𝑡) ⊔ (lv𝑥(𝑡) + 1) ⋅ C (𝑢) ⊔ [a(lv𝑥(𝑡) + 1, |𝑢|)]
C (𝑡[𝑥//𝑢]) ≔ C (𝑡) ⊔ lv𝑥(𝑡) ⋅ C (𝑢) ⊔ [b(lv𝑥(𝑡))]
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Intuitively, the integer 𝑘 in a(𝑘, 𝑛) and b(𝑘) counts the level of variables bound by explicit
substitutions, while 𝑛 counts the size of terms to be substituted by an ES. Remark that for
every pure term 𝑝 we have C (𝑝) = [ ].
Example 2.8. Consider the following reduction sequence:

𝑡0 ≔ (𝑦𝑦)[𝑦/(𝜆𝑧.𝑥)𝑤] →app (𝑦1𝑦2)(𝑦1𝑦2)[𝑦1/𝜆𝑧.𝑥][𝑦2/𝑤] ≔ 𝑡1
→var (𝑦1𝑤)(𝑦1𝑤)[𝑦1/𝜆𝑧.𝑥] ≔ 𝑡2
→dist (𝑦1𝑤)(𝑦1𝑤)[𝑦1//𝜆𝑧.𝑥′[𝑥′/𝑥]] ≔ 𝑡3
→abs ((𝜆𝑧.𝑥′)𝑤)((𝜆𝑧.𝑥′)𝑤)[𝑥′/𝑥] ≔ 𝑡4
→var ((𝜆𝑧.𝑥)𝑤)((𝜆𝑧.𝑥)𝑤) ≔ 𝑡5

We have C (𝑡0) = [a(1, 4)], C (𝑡1) = [a(1, 1), a(1, 2)], C (𝑡2) = [a(1, 2)], C (𝑡3) = [a(1, 1), b(0)],
C (𝑡4) = [a(1, 1)] and C (𝑡5) = [ ].
Fact 2.9. Some properties on multisets are straightforward:

(i) If 𝑀1 >𝒪MUL 𝑀2, then 𝑀1 ⊔ 𝑀 >𝒪MUL 𝑀2 ⊔ 𝑀 .

(ii) If 𝑀1 >𝒪MUL 𝑀2, then 𝑘 ⋅ 𝑀1 >𝒪MUL 𝑘 ⋅ 𝑀2 for any 𝑘 ∈ ℕ.

(iii) 𝑘1 ⋅ 𝑘2 ⋅ 𝑀 = (𝑘1 + 𝑘2) ⋅ 𝑀 .

Lemma 2.10. If C (𝑡) >𝒪MUL C (𝑢) and lv𝑥(𝑡) ≥ lv𝑥(𝑢) holds for every 𝑥 ∈ dom(L), then
C (L⟨𝑡⟩) >𝒪MUL C (L⟨𝑢⟩).

Proof. By induction on L. The property is straightforward.

Lemma 2.11. Let 𝑡 be a term, 𝑥 a variable and 𝑝 a pure term. Let 𝐾 = lv𝑥(𝑡). Then C (𝑡{𝑥/𝑝}) ⊑
C (𝑡)b ⊔ C (𝑡)>𝐾a ⊔ [a(𝑘, 𝑛) ∣ 𝑘 ≤ 𝐾 and 𝑛 ∈ ℕ].

Proof. By induction on 𝑡 . In this proof, fst(𝑜) denotes the first element of an object 𝑜 ∈ 𝒪 :
fst(a(𝑘, 𝑛)) = 𝑘 and fst(b(𝑘)) = 𝑘.

Case 𝑡 = 𝑦. Then C (𝑦) = C (𝑦{𝑥/𝑝}) = [ ] so the property is straightforward.

Case 𝑡 = 𝜆𝑦.𝑢. Then C (𝑡{𝑥/𝑝}) = C (𝑢{𝑥/𝑝}) and lv𝑥(𝑡) = lv𝑥(𝑢). The property trivially
holds by the i.h.

Case 𝑡 = 𝑢1𝑢2. Then we have C (𝑡{𝑥/𝑝}) = C (𝑢1{𝑥/𝑝}) ⊔ C (𝑢2{𝑥/𝑝}) and lv𝑥(𝑢1𝑢2) =
max(lv𝑥(𝑢1), lv𝑥(𝑢2)). Let 𝑜 ∈ C (𝑡{𝑥/𝑝}) thus 𝑜 ∈ C (𝑢1{𝑥/𝑝}) ⊔ C (𝑢2{𝑥/𝑝}). Sup-
pose w.l.o.g. that 𝑜 ∈ C (𝑢1{𝑥/𝑝}). Let 𝐾1 = lv𝑥(𝑢1) ≤ 𝐾 . By the i.h. we have either
(1) 𝑜 ∈ C (𝑢1)b, (2) 𝑜 ∈ C (𝑢1)>𝐾1

a , or (3) 𝑜 = a(𝑘, 𝑛) where 𝑘 ≤ 𝐾1. If (1) holds, then
𝑜 ∈ C (𝑡)b and we are done. Otherwise, 𝑜 = a(𝑘, 𝑛), and we consider two cases.
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1. 𝑘 > 𝐾 . Then (2) implies 𝑜 ∈ C (𝑢1)>𝐾a which implies 𝑜 ∈ C (𝑡)>𝐾a while (3)
implies 𝑘 ≤ 𝐾 which leads to a contradiction.

2. 𝑘 ≤ 𝐾 . We are done.

Case 𝑡 = 𝑢1[𝑦/𝑢2]. Then we can assume by 𝛼-conversion that 𝑦 ∉ fv(𝑝). Therefore,

C (𝑡) = C (𝑢1) ⊔ (lv𝑦(𝑢1) + 1) ⋅ C (𝑢2) ⊔ [a(lv𝑦(𝑢1) + 1, |𝑢2|)] and

C (𝑡{𝑥/𝑝}) = C (𝑢1{𝑥/𝑝}) ⊔ (lv𝑦(𝑢1{𝑥/𝑝}) + 1) ⋅ C (𝑢2{𝑥/𝑝})
⊔ [a(lv𝑦(𝑢1{𝑥/𝑝}) + 1, |𝑢2{𝑥/𝑝}|)]
=2.5(i) C (𝑢1{𝑥/𝑝}) ⊔ (lv𝑦(𝑢1) + 1) ⋅ C (𝑢2{𝑥/𝑝}) ⊔ [a(lv𝑦(𝑢1) + 1, |𝑢2{𝑥/𝑝}|)]

There are two cases:

Subcase 𝑥 ∉ fv(𝑢2). Then lv𝑥(𝑡) = lv𝑥(𝑢1). Moreover, C (𝑢2{𝑥/𝑝}) = C (𝑢2) and
|𝑢2{𝑥/𝑝}| = |𝑢2|. Let 𝑜 ∈ C (𝑡{𝑥/𝑝}).
Subsubcase 𝑜 ∈ C (𝑢1{𝑥/𝑝}). Then let 𝐾1 = lv𝑥(𝑢1) = lv𝑥(𝑡) = 𝐾 , so that the

i.h. gives either (1) 𝑜 ∈ C (𝑢1)b, (2) 𝑜 ∈ C (𝑢1)>𝐾1
a , or (3) 𝑜 = a(𝑘, 𝑛) where

𝑘 ≤ 𝐾1. If (1) holds, then 𝑜 ∈ C (𝑡)b and we are done. If (2) holds, then
𝑜 ∈ C (𝑢1)>𝐾a since 𝐾1 = 𝐾 , which implies 𝑜 ∈ C (𝑡)>𝐾a and we are done.
Otherwise, (3) holds and 𝑘 ≤ 𝐾1 = 𝐾 as required.

Subsubcase 𝑜 ∈ (lv𝑦(𝑢1) + 1) ⋅ C (𝑢2{𝑥/𝑝}) = (lv𝑦(𝑢1) + 1) ⋅ C (𝑢2). We have 𝑜 ∈
C (𝑡) = C (𝑡)b ⊔C (𝑡)>𝐾a ⊔C (𝑡)≤𝐾a , which particularly implies in the last case
that 𝑜 = a(𝑘, 𝑛) and 𝑘 ≤ 𝐾 .

Subsubcase 𝑜 = a(lv𝑦(𝑢1) + 1, |𝑢2{𝑥/𝑝}|) = a(lv𝑦(𝑢1) + 1, |𝑢2|). 𝑜 ∈ C (𝑡), thus ei-

ther 𝑜 ∈ C (𝑡)>𝐾 or 𝑜 ∈ C (𝑡)≤𝐾 , which particularly implies in the last case
that fst(𝑜) ≤ 𝐾 .

Subcase 𝑥 ∈ fv(𝑢2). Then lv𝑥(𝑡) = max(lv𝑥(𝑢1), lv𝑦(𝑢1) + lv𝑥(𝑢2) + 1). Let 𝑜 be an
object of C (𝑡{𝑥/𝑝}).
Subsubcase 𝑜 ∈ C (𝑢1{𝑥/𝑝}). Let𝐾1 = lv𝑥(𝑢1) = lv𝑥(𝑡) ≤ 𝐾 , so that the i.h. gives

either (1) 𝑜 ∈ C (𝑢1)b, (2) 𝑜 ∈ C (𝑢1)>𝐾1
a , or (3) 𝑜 = a(𝑘, 𝑛) where 𝑘 ≤ 𝐾1. If

(1) holds, then 𝑜 ∈ C (𝑡)b and we are done. Otherwise 𝑜 = a(𝑘, 𝑛) and we
consider two cases.
1. 𝑘 > 𝐾 . Then (2) implies 𝑜 ∈ C (𝑢1)>𝐾a , and thus 𝑜 ∈ C (𝑡)>𝐾a , while (3)

implies 𝑘 ≤ 𝐾 which leads to a contradiction.
2. 𝑘 ≤ 𝐾 . We are done.

Subsubcase 𝑜 ∈ (lv𝑦(𝑢1) + 1) ⋅ C (𝑢2{𝑥/𝑝}). There is 𝑜′ ∈ C (𝑢2{𝑥/𝑝}) such that
fst(𝑜) = fst(𝑜′) + (lv𝑦(𝑢1) + 1). Let 𝐾2 = lv𝑥(𝑢2), so that the i.h. gives either

(1) 𝑜′ ∈ C (𝑢2)b, (2) 𝑜′ ∈ C (𝑢2)>𝐾2
a , or (3) 𝑜′ = a(𝑘, 𝑛) where 𝑘 ≤ 𝐾2. If (1)

holds, then 𝑜 ∈ (lv𝑦(𝑢1)+1) ⋅C (𝑢2)b, thus 𝑜 ∈ C (𝑡)b and we are done. If (2)
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holds, then 𝑜 ∈ (lv𝑦(𝑢1) + 1) ⋅C (𝑢2)>𝐾2
a and thus fst(𝑜) > 𝐾2 + (lv𝑦(𝑢1) + 1).

We consider two cases.
1. fst(𝑜) > 𝐾 ≥ 𝐾2 + lv𝑦(𝑢1) + 1. Then (2) implies 𝑜 ∈ C (𝑡)>𝐾a while (3)

leads to a contradiction.
2. fst(𝑜) ≤ 𝐾 . We are done.

Subsubcase 𝑜 = a(lv𝑦(𝑢1) + 1, |𝑢2{𝑥/𝑝}|). Then fst(𝑜) = lv𝑦(𝑢1) + 1 ≤ 𝐾 .

Case 𝑡 = 𝑢1[𝑦//𝑢2]. The analysis is similar.

Lemma 2.12. Let 𝑡 ∈ T𝑅 . Then 𝑡 →𝜌 𝑡′ implies C (𝑡) >𝒪MUL C (𝑡′).

Proof. Let 𝑡 = C⟨𝑡0⟩ →𝜌 C⟨𝑡1⟩ = 𝑡′, where 𝑡0 →𝜌 𝑡1 is a reduction step at the root position.
We proceed by induction on C. We detail the base case where C = ◊, by inspecting the
cases where the explicit cuts are explicit substitutions, as the remaining cases for explicit
distributors are similar.

Case 𝑡0 = 𝜆𝑦.𝑡[𝑥/𝑢] →𝜌 (𝜆𝑦.𝑡)[𝑥/𝑢] = 𝑡1, where 𝑦 ∉ fv(𝑢).

C (𝑡0) = C (𝑡[𝑥/𝑢])
= C (𝑡) ⊔ (lv𝑥(𝑡) + 1) ⋅ C (𝑢) ⊔ [a(lv𝑥(𝑡) + 1, |𝑢|)]
= C (𝜆𝑦.𝑡) ⊔ (lv𝑥(𝜆𝑦.𝑡) + 1) ⋅ C (𝑢) ⊔ [a(lv𝑥(𝜆𝑦.𝑡) + 1, |𝑢|)]
= C (𝑡1)

Case 𝑡0 = 𝑡[𝑥/𝑢]𝑠 →𝜌 (𝑡𝑠)[𝑥/𝑢] = 𝑡1, where 𝑥 ∉ fv(𝑠).

C (𝑡0) = C (𝑡[𝑥/𝑢]) ⊔ C (𝑠)
= C (𝑡) ⊔ (lv𝑥(𝑡) + 1) ⋅ C (𝑢) ⊔ C (𝑠)
= C (𝑡𝑠) ⊔ (lv𝑥(𝑡𝑠) + 1) ⋅ C (𝑢) ⊔ [a(lv𝑥(𝑡𝑠) + 1, |𝑢|)]
= C (𝑡1)

Case 𝑡0 = 𝑡𝑠[𝑥/𝑢] →𝜌 (𝑡𝑠)[𝑥/𝑢] = 𝑡1, where 𝑥 ∉ fv(𝑡).

C (𝑡0) = C (𝑡) ⊔ C (𝑠[𝑥/𝑢])
= C (𝑡) ⊔ C (𝑠) ⊔ (lv𝑥(𝑠) + 1) ⋅ C (𝑢) ⊔ [a(lv𝑥(𝑠) + 1, |𝑢|)]
= C (𝑡𝑠) ⊔ (lv𝑥(𝑡𝑠) + 1) ⋅ C (𝑢) ⊔ [a(lv𝑥(𝑡𝑠) + 1, |𝑢|)]
= C (𝑡1)
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Case 𝑡0 = 𝑡[𝑦/𝑠[𝑥/𝑢]] →𝜌 𝑡[𝑦/𝑠][𝑥/𝑢] = 𝑡1, where 𝑥 ∉ fv(𝑡).

C (𝑡0) = C (𝑡) ⊔ (lv𝑦(𝑡) + 1) ⋅ C (𝑠[𝑥/𝑢]) ⊔ [a(lv𝑦(𝑡) + 1, |𝑠[𝑥/𝑢]|)]
= C (𝑡) ⊔ (lv𝑦(𝑡) + 1) ⋅ (C (𝑠) ⊔ (lv𝑥(𝑠) + 1) ⋅ C (𝑢) ⊔ [a(lv𝑥(𝑠) + 1, |𝑢|)])
⊔ [a(lv𝑦(𝑡) + 1, |𝑠[𝑥/𝑢]|)]

= C (𝑡) ⊔ (lv𝑦(𝑡) + 1) ⋅ C (𝑠) ⊔ (lv𝑦(𝑡) + lv𝑥(𝑠) + 2) ⋅ C (𝑢)
⊔ [a(lv𝑦(𝑡) + lv𝑥(𝑠) + 2, |𝑢|), a(lv𝑦(𝑡) + 1, |𝑠[𝑥/𝑢]|)]

= (C (𝑡) ⊔ (lv𝑦(𝑡) + 1) ⋅ C (𝑠) ⊔ [a(lv𝑦(𝑡) + 1, |𝑠[𝑥/𝑢]|)])
⊔ (lv𝑦(𝑡) + lv𝑥(𝑠) + 2) ⋅ C (𝑢) ⊔ [a(lv𝑦(𝑡) + lv𝑥(𝑠) + 2, |𝑢|)]

>𝒪MUL (C (𝑡) ⊔ (lv𝑦(𝑡) + 1) ⋅ C (𝑠) ⊔ [a(lv𝑦(𝑡) + 1, |𝑠|)])
⊔ (lv𝑥(𝑡[𝑦/𝑠]) + 1) ⋅ C (𝑢) ⊔ [a(lv𝑥(𝑡[𝑦/𝑠]) + 1, |𝑢|)]

= C (𝑡1)

The >𝒪MUL inequality is justified by the following facts:

1. |𝑠[𝑥/𝑢]| > |𝑠|.
2. lv𝑦(𝑡) + lv𝑥(𝑠) + 2 = max(0, lv𝑦(𝑡) + lv𝑥(𝑠) + 1) + 1 = lv𝑥(𝑡[𝑦/𝑠]) + 1.

The inductive cases are straightforward.

Lemma 2.13. Let 𝑡 ∈ T𝑅 . Then 𝑡 →sub 𝑡′ implies C (𝑡) >𝒪MUL C (𝑡′).

Proof. Let 𝑡 = C⟨𝑡0⟩ →sub C⟨𝑡1⟩ = 𝑡′, where 𝑡0 →sub 𝑡1 is a reduction step at the root
position. We proceed by induction on C. We detail the base case which is C = ◊. In all
such cases we use lemma 2.12 to push L outside, i.e. we can write 𝑡0 →sub 𝑡1 as 𝑡0 →𝜋
L⟨𝑡′0⟩ →sub′ L⟨𝑡′1⟩ = 𝑡1, where 𝑡′0 →sub′ 𝑡′1 is a root step which does not push any list
context outside. We then show the property for root steps 𝑡′0 →sub′ 𝑡′1, and we conclude
with lemma 2.12 then lemma 2.10 by C (𝑡0) >𝒪MUL C (L⟨𝑡′0⟩) >𝒪MUL C (L⟨𝑡′1⟩) = C (𝑡1) since
lv𝑥(𝑡′0) ≥ lv𝑥(𝑡′1) holds for every 𝑥 ∈ dom(L) by lemma 2.6. Let us analyze all the cases
𝑡′0 →sub′ 𝑡′1.

Case 𝑡′0 = 𝑡[𝑥/𝑢𝑠] →app 𝑡{𝑥/𝑦𝑧}[𝑦/𝑢][𝑧/𝑠] = 𝑡′1, where 𝑦 and 𝑧 are fresh variables. Then

C (𝑡′0) = C (𝑡) ⊔ (lv𝑥(𝑡) + 1) ⋅ C (𝑢𝑠) ⊔ [a(lv𝑥(𝑡) + 1, |𝑢𝑠|)] and
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C (𝑡′1) = C (𝑡{𝑥/𝑦𝑧}[𝑦/𝑢]) ⊔ (lv𝑧(𝑡{𝑥/𝑦𝑧}[𝑦/𝑢]) + 1) ⋅ C (𝑠)
⊔ [a(lv𝑧(𝑡{𝑥/𝑦𝑧}[𝑦/𝑢]) + 1, |𝑠|)]

= (C (𝑡{𝑥/𝑦𝑧}) ⊔ (lv𝑦(𝑡{𝑥/𝑦𝑧}) + 1) ⋅ C (𝑢) ⊔ [a(lv𝑦(𝑡{𝑥/𝑦𝑧}) + 1, |𝑢|)])
⊔ (lv𝑧(𝑡{𝑥/𝑦𝑧}[𝑦/𝑢]) + 1) ⋅ C (𝑠) ⊔ [a(lv𝑧(𝑡{𝑥/𝑦𝑧}[𝑦/𝑢]) + 1, |𝑠|)]

= (C (𝑡{𝑥/𝑦𝑧}) ⊔ (lv𝑥(𝑡) + 1) ⋅ C (𝑢) ⊔ [a(lv𝑥(𝑡) + 1, |𝑢|)])
⊔ (lv𝑥(𝑡) + 1) ⋅ C (𝑠) ⊔ [a(lv𝑥(𝑡) + 1, |𝑠|)]

= C (𝑡{𝑥/𝑦𝑧}) ⊔ (lv𝑥(𝑡) + 1) ⋅ C (𝑢𝑠) ⊔ [a(lv𝑥(𝑡) + 1, |𝑢|), a(lv𝑥(𝑡) + 1, |𝑠|)]

By lemma 2.11, C (𝑡{𝑥/𝑦𝑧}) ⊑ C (𝑡)b ⊔ C (𝑡)>lv𝑥 (𝑡)
a ⊔ [a(𝑘, 𝑛) ∣ 𝑘 ≤ lv𝑥(𝑡)]. We also have

[a(lv𝑥(𝑡) + 1, |𝑢𝑠|)] >𝒪MUL [a(lv𝑥(𝑡) + 1, |𝑢|), a(lv𝑥(𝑡) + 1, |𝑠|)] >𝒪MUL [a(𝑘, 𝑛) ∣ 𝑘 ≤ lv𝑥(𝑡)].
Moreover, C (𝑡) ⊒ C (𝑡)b ⊔C (𝑡)>lv𝑥 (𝑡)

a and [a(lv𝑥(𝑡) +1, |𝑢𝑠|)] >𝒪MUL [a(𝑘, 𝑛) ∣ 𝑘 ≤ lv𝑥(𝑡)].
Thus we conclude C (𝑡′0) >𝒪MUL C (𝑡′1).

Case 𝑡′0 = 𝑡[𝑥/𝜆𝑦.𝑢] →dist 𝑡[𝑥//𝜆𝑦.𝑧[𝑧/𝑢]] = 𝑡′1. Then

C (𝑡′0) = C (𝑡) ⊔ (lv𝑥(𝑡) + 1) ⋅ C (𝑢) ⊔ [a(lv𝑥(𝑡) + 1, |𝑢| + 1)] and

C (𝑡′1) = C (𝑡) ⊔ lv𝑥(𝑡) ⋅ C (𝜆𝑦.𝑧[𝑧/𝑢]) ⊔ [b(lv𝑥(𝑡))]
= C (𝑡) ⊔ lv𝑥(𝑡) ⋅ C (𝑧[𝑧/𝑢]) ⊔ [b(lv𝑥(𝑡))]
= C (𝑡) ⊔ lv𝑥(𝑡) ⋅ (C (𝑧) ⊔ (lv𝑧(𝑧) + 1) ⋅ C (𝑢) ⊔ [a(lv𝑧(𝑧) + 1, |𝑢|)]) ⊔ [b(lv𝑥(𝑡))]
= C (𝑡) ⊔ lv𝑥(𝑡) ⋅ (1 ⋅ C (𝑢) ⊔ [a(1, |𝑢|)]) ⊔ [b(lv𝑥(𝑡))]
= C (𝑡) ⊔ (lv𝑥(𝑡) + 1) ⋅ C (𝑢) ⊔ [a(lv𝑥(𝑡) + 1, |𝑢|), b(lv𝑥(𝑡))]

C (𝑡′0) >𝒪MUL C (𝑡′1) because the multisets are the same except for a(lv𝑥(𝑡) + 1, |𝑢|) and
b(lv𝑥(𝑡)) on the right which are smaller than a(lv𝑥(𝑡) + 1, |𝑢| + 1) on the left.

Case 𝑡′0 = 𝑡[𝑥//𝜆𝑦.𝑢] →abs 𝑡{𝑥/𝜆𝑦.𝑢} = 𝑡′1. Then we have C (𝑡′0) = C (𝑡) ⊔ [b(lv𝑥(𝑡))]. By

lemma 2.11, C (𝑡′1) ⊑ C (𝑡)b ⊔ C (𝑡)>lv𝑥 (𝑡) ⊔ [a(𝑘, 𝑛) ∣ 𝑘 ≤ lv𝑥(𝑡)]. Since [b(lv𝑥(𝑡))] >𝒪MUL
[a(𝑘, 𝑛) ∣ 𝑘 ≤ lv𝑥(𝑡)] and C (𝑡) ⊒ C (𝑡)b ⊔ C (𝑡)>lv𝑥 (𝑡), then we conclude C (𝑡′0) >𝒪MUL
C (𝑡′1).

Case 𝑡′0 = 𝑡[𝑥/𝑦] →var 𝑡{𝑥/𝑦} = 𝑡′1. Then, C (𝑡′0) = C (𝑡) ⊔ [a(lv𝑥(𝑡) + 1, 1)]. By lemma 2.11,

C (𝑡′1) ⊑ C (𝑡)b⊔C (𝑡)>lv𝑥 (𝑡)
a ⊔[a(𝑘, 𝑛) ∣ 𝑘 ≤ lv𝑥(𝑡)]. Since [a(lv𝑥(𝑡)+1, 1)] >𝒪MUL [a(𝑘, 𝑛) ∣

𝑘 ≤ lv𝑥(𝑡)] and C (𝑡) ⊒ C (𝑡)b ⊔ C (𝑡)>lv𝑥 (𝑡), we conclude C (𝑡′0) >𝒪MUL C (𝑡′1)

The sequence of example 2.8 illustrates this phenomenon: indeed, C (𝑡𝑖) >𝒪MUL C (𝑡𝑖+1) for
0 ≤ 𝑖 < 5.

Corollary 2.14. The reduction relation→sub is terminating.
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Simulations. We show the relation between 𝜆𝑅 and 𝜆, as well as the atomic λ-calculus
𝜆𝑎. For that, we introduce a projection from T𝑅 to T𝑃 implementing the unfolding of all the
explicit cuts:

𝑥↓ ≔ 𝑥 (𝜆𝑥.𝑡)↓ ≔ 𝜆𝑥.𝑡↓ (𝑡𝑢)↓ ≔ 𝑡↓𝑢↓ (𝑡[𝑥 ◁ 𝑢])↓ ≔ 𝑡↓{𝑥/𝑢↓}.

Thus e.g. 𝑥[𝑥/𝑧[𝑦/𝑤]][𝑤/𝑤′]↓ = 𝑥{𝑥/𝑧{𝑦/𝑤}}{𝑤/𝑤′} = 𝑧. The previous projection can be ex-
tended from list contexts to substitutions as follows: ◊↓ ≔ {} and (L[𝑥 ◁ 𝑢])↓ ≔ L↓ ∘ {𝑥/𝑢↓},
where ∘ denotes standard composition of substitutions.

Lemma 2.15. Let 𝑡 ∈ T𝑅 . If 𝑡 →R 𝑡′, then 𝑡↓ →∗𝛽 𝑡′↓. In particular, if either 𝑡 →𝜌 𝑡′ or
𝑡 →sub 𝑡′, then 𝑡↓ = 𝑡′↓.

Proof. The proofs of the corresponding stated relations are by induction on them.

Case 𝑡 →𝜌 𝑡′. Then 𝑡 = C⟨𝑡0⟩ →𝜌 C⟨𝑡1⟩ = 𝑡′, where 𝑡0 →𝜌 𝑡1 is a root step. If C = ◊ we
have the following cases:

• (𝜆𝑦.𝑡[𝑥 ◁ 𝑢])↓ = 𝜆𝑦.𝑡↓{𝑥/𝑢↓} = (𝜆𝑦.𝑡↓){𝑥/𝑢↓} = ((𝜆𝑦.𝑡)[𝑥 ◁ 𝑢])↓
• (𝑡[𝑥 ◁ 𝑢]𝑣)↓ = 𝑡↓{𝑥/𝑢↓}𝑣↓ = (𝑡↓𝑣↓){𝑥/𝑢↓} = ((𝑡𝑣)[𝑥 ◁ 𝑢])↓
• (𝑡𝑣[𝑥 ◁ 𝑢])↓ = 𝑡↓𝑣↓{𝑥/𝑢↓} = (𝑡↓𝑣↓){𝑥/𝑢↓} = ((𝑡𝑣)[𝑥 ◁ 𝑢])↓
• (𝑡[𝑦 ◁ 𝑣[𝑥 ◁ 𝑢])]↓ = 𝑡↓{𝑦/𝑣↓{𝑥/𝑢↓}} = 𝑡↓{𝑦/𝑣↓}{𝑥/𝑢↓} = (𝑡[𝑦 ◁ 𝑣][𝑥 ◁ 𝑢])↓

For the inductive cases, we reason as follows.

• If C = 𝜆𝑥.C′, then (𝜆𝑥.C′⟨𝑡0⟩)↓ = 𝜆𝑥.(C′⟨𝑡0⟩)↓ =i.h. 𝜆𝑥.(C′⟨𝑡1⟩)↓ = (𝜆𝑥.C′⟨𝑡1⟩)↓.
• If C = C′𝑢, then (C′⟨𝑡0⟩𝑢)↓ = (C′⟨𝑡0⟩)↓𝑢↓ =i.h. (C′⟨𝑡1⟩)↓𝑢↓ = (C′⟨𝑡1⟩𝑢)↓.
• If C = 𝑢C′, then (𝑢C′⟨𝑡0⟩)↓ = 𝑢↓(C′⟨𝑡0⟩)↓ =i.h. 𝑢↓(C′⟨𝑡1⟩)↓ = (𝑢C′⟨𝑡1⟩)↓.
• If C = C′[𝑥 ◁ 𝑢], then (C′⟨𝑡0⟩[𝑥 ◁ 𝑢])↓ = (C′⟨𝑡0⟩)↓{𝑥/𝑢↓} =i.h. (C′⟨𝑡1⟩)↓{𝑥/𝑢↓} =
(C′⟨𝑡1⟩[𝑥 ◁ 𝑢])↓.

• If C = 𝑢[𝑥 ◁ C′], then (𝑢[𝑥 ◁ C′⟨𝑡0⟩])↓ = 𝑢↓{𝑥/(C′)⟨𝑡0⟩↓} =i.h. 𝑢↓{𝑥/(C′⟨𝑡1⟩)↓} =
(𝑢[𝑥 ◁ C′⟨𝑡1⟩])↓.

Case 𝑡 →sub 𝑡′. Then 𝑡 = C⟨𝑡0⟩ →sub C⟨𝑡1⟩ = 𝑡′, where 𝑡0 →sub 𝑡1 is a root step. We first
consider C = ◊. Let us call 𝜎L the substitution resulting from translating the list
context L. We use the last point on 𝜌 to push out list contexts in these equations.

Subcase 𝑡0 = 𝑡[𝑥/L⟨𝑢𝑣⟩] → L⟨𝑡{𝑥/𝑦𝑧}[𝑦/𝑢][𝑧/𝑣]⟩ = 𝑡1. Then,

(𝑡[𝑥/L⟨𝑢𝑣⟩])↓ = (L⟨𝑡[𝑥/𝑢𝑣]⟩)↓ = 𝜎L(𝑡↓{𝑥/𝑢↓𝑣↓}) = 𝜎L(𝑡↓{𝑥/𝑦𝑧}{𝑦/𝑢↓}{𝑧/𝑣↓})
= 𝜎L((𝑡{𝑥/𝑦𝑧}[𝑦/𝑢][𝑧/𝑣])↓) = (L⟨𝑡{𝑥/𝑦𝑧}[𝑦/𝑢][𝑧/𝑣]⟩)↓
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Subcase 𝑡0 = 𝑡[𝑥/L⟨𝜆𝑦.𝑢⟩] → L⟨𝑡[𝑥//𝜆𝑦.𝑧[𝑧/𝑢]]⟩ = 𝑡1. Then,

(𝑡[𝑥/L⟨𝜆𝑦.𝑢⟩])↓ = (L⟨𝑡[𝑥/𝜆𝑦.𝑢]⟩)↓ = 𝜎L(𝑡↓{𝑥/𝜆𝑦.𝑢↓}) = 𝜎L(𝑡↓{𝑥/𝜆𝑦.𝑧{𝑧/𝑢↓}})
= 𝜎L((𝑡[𝑥//𝜆𝑦.𝑧[𝑧/𝑢]])↓) = (L⟨𝑡[𝑥//𝜆𝑦.𝑧[𝑧/𝑢]]⟩)↓

Subcase 𝑡0 = 𝑡[𝑥//𝜆𝑦.𝑢] → L⟨𝑡{𝑥/𝜆𝑦.𝑢′}⟩ = 𝑡1, where 𝑢 →𝜌 L⟨𝑢′⟩ and 𝑢′ pure. Then

(𝑡[𝑥//𝜆𝑦.𝑢])↓ = (𝑡[𝑥//L⟨𝜆𝑦.𝑢′⟩])↓ = (L⟨𝑡[𝑥//𝜆𝑦.𝑢′]⟩)↓ = 𝜎L(𝑡↓{𝑥/𝜆𝑦.𝑢′↓})
= 𝜎L((𝑡{𝑥/𝜆𝑦.𝑢′})↓) = (L⟨𝑡{𝑥/𝜆𝑦.𝑢′}⟩)↓

Subcase 𝑡0 = 𝑡[𝑥/L⟨𝑦⟩] → L⟨𝑡{𝑥/𝑦}⟩ = 𝑡1. Then

(𝑡[𝑥/L⟨𝑦⟩])↓ = (L⟨𝑡[𝑥/𝑦]⟩)↓ = 𝜎L((𝑡[𝑥/𝑦])↓) = 𝜎L(𝑡↓{𝑥/𝑦})
= 𝜎L((𝑡{𝑥/𝑦})↓) = (L⟨𝑡{𝑥/𝑦}⟩)↓

The proof of the inductive cases is similar to the previous case.

Case 𝑡 →dB 𝑡′. Then 𝑡 = C⟨𝑡0⟩ →dB C⟨𝑡1⟩ = 𝑡′, where 𝑡0 →dB 𝑡1 is a root step. We first
consider C = ◊. As before, 𝜎L is the substitution resulting from translating the list
context L.
Then we have (L⟨𝜆𝑥.𝑡⟩𝑢)↓ = 𝜎L(((𝜆𝑥.𝑡)𝑢)↓) = 𝜎L((𝜆𝑥.𝑡↓)𝑢↓) →𝛽 𝜎L(𝑡↓{𝑥/𝑢↓}) =
𝜎L((𝑡[𝑥/𝑢])↓) = (L⟨𝑡[𝑥/𝑢]⟩)↓
For the inductive cases, we reason as follows.

• If C = 𝜆𝑥.C′, then (𝜆𝑥.C′⟨𝑡0⟩)↓ = 𝜆𝑥.(C′⟨𝑡0⟩)↓ →i.h. 𝜆𝑥.(C′⟨𝑡1⟩)↓ = (𝜆𝑥.C′⟨𝑡1⟩)↓.
• If C = C′𝑢, then (C′⟨𝑡0⟩𝑢)↓ = (C′⟨𝑡0⟩)↓𝑢↓ →i.h. (C′⟨𝑡1⟩)↓𝑢↓ = (C′⟨𝑡1⟩𝑢)↓.
• If C = 𝑢C′, then (𝑢C′⟨𝑡0⟩)↓ = 𝑢↓(C′⟨𝑡0⟩)↓ →i.h. 𝑢↓(C′⟨𝑡1⟩)↓ = (𝑢C′⟨𝑡1⟩)↓.
• If C = C′[𝑥 ◁ 𝑢], then (C′⟨𝑡0⟩[𝑥 ◁ 𝑢])↓ = (C′⟨𝑡0⟩)↓{𝑥/𝑢↓} →i.h. (C′⟨𝑡1⟩)↓{𝑥/𝑢↓} =
(C′⟨𝑡1⟩[𝑥 ◁ 𝑢])↓.

• If C = 𝑢[𝑥 ◁ C′], then:

– if 𝑥 ∉ fv(𝑢): (𝑢[𝑥 ◁ C′⟨𝑡0⟩])↓ = 𝑢↓{𝑥/C′⟨𝑡0⟩} = 𝑢↓ = (𝑢[𝑥 ◁ C′⟨𝑡1⟩])↓,
– otherwise: (𝑢[𝑥 ◁ C′⟨𝑡0⟩])↓ = 𝑢↓{𝑥/C′⟨𝑡0⟩} →i.h. 𝑢↓{𝑥/C′⟨𝑡1⟩} = (𝑢[𝑥 ◁

C′⟨𝑡1⟩])↓.
The relation →sub enjoys full composition on pure terms. Namely:

Lemma 2.16. For any 𝑝 ∈ T𝑃 , 𝑡[𝑥/𝑝] →+
sub 𝑡{𝑥/𝑝}.

Proof. By induction on 𝑝.

Case 𝑝 = 𝑦. Then 𝑡[𝑥/𝑦] →var 𝑡{𝑥/𝑦}.
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Case 𝑝 = 𝑝1𝑝2. Then

𝑡[𝑥/𝑝1𝑝2] →app 𝑡{𝑥/𝑦𝑧}[𝑦/𝑝1][𝑧/𝑝2]
→+

i.h. 𝑡{𝑥/𝑦𝑧}{𝑦/𝑝1}[𝑧/𝑝2] →+
i.h. 𝑡{𝑥/𝑦𝑧}{𝑦/𝑝1}{𝑧/𝑝2}

= 𝑡{𝑥/𝑝1𝑝2}

Case 𝑝 = 𝜆𝑦.𝑞. Then 𝑡[𝑥/𝜆𝑦.𝑞] →abs 𝑡[𝑥//𝜆𝑦.𝑧[𝑧/𝑞]] →+
i.h. 𝑡[𝑥//𝜆𝑦.𝑞] →dist 𝑡{𝑥/𝜆𝑦.𝑞}.

This property does not hold in general. Indeed, if 𝑡 = 𝑥𝑥 , then (𝑥𝑥)[𝑥/𝑦[𝑦/𝑧]] does not sub-
reduce to (𝑦[𝑦/𝑧])(𝑦[𝑦/𝑧]), but to (𝑦𝑦)[𝑦/𝑧]. However, full composition restricted to pure
terms is sufficient to prove simulation of the λ-calculus.

Lemma 2.17 (Simulation of the λ-calculus). Let 𝑝0 ∈ T𝑃 . If 𝑝0 →𝛽 𝑝1, then 𝑝0 →dB→+
sub 𝑝1.

Proof. Let 𝑝0 = C⟨𝑡0⟩ →𝛽 C⟨𝑡1⟩ = 𝑝1, where 𝑡0 = (𝜆𝑥.𝑞)𝑝 ↦𝛽 𝑞{𝑥/𝑝} = 𝑡1. By lemma 2.16,
𝑡0 →dB 𝑞[𝑥/𝑝] →+

sub 𝑡1. The inductive cases for C are straightforward.

The previous results have an important consequence relating the atomic λ-calculus and
the 𝜆𝑅-calculus. Indeed, it can be shown that reduction in the atomic λ-calculus is cap-
tured by 𝜆𝑎, and vice-versa. More precisely, the 𝜆𝑅-calculus can be simulated into the
atomic λ-calculus by lemma 2.15 and [GHP13b], while the converse holds by [GHP13b] and
lemma 2.17.

However, this indirect result is vague, as it erases the specificities of the atomic and node
replication calculi when going through the λ-calculus. We do not yet have a side-by-side
comparison between both calculi. To this end, a more structural correspondence between
𝜆𝑅 and 𝜆𝑎 could be established. Indeed, 𝜆𝑅 can be first refined into a (non-linear) calculus
without distance, let say 𝜆𝑅′, so that permutation rules are integrated in the intermediate
calculus as independent rules. Then a structural relation can be established between 𝜆𝑅 and
𝜆𝑅′ on one side, and 𝜆𝑅′ and the atomic λ-calculus on the other side (as for example done
in [KL07] for the λ-calculus).

Confluence. By corollary 2.14 the reduction relation →sub is terminating. It is then not
difficult to prove confluence of →sub by using the unfolding function ⋅↓.
Lemma 2.18. Let 𝑡 ∈ T𝑅 . Then 𝑡 is in sub-nf if and only if 𝑡 is pure.

Proof. It is obvious that a pure term is sub-normal. Let us show the left-to-right impli-
cation and consider a sub-normal term 𝑡 . We reason by induction on 𝑡 . Suppose that 𝑡
is not pure, so that 𝑡 = C⟨𝑡0[𝑥 ◁ 𝑢]⟩. If the explicit cut is an explicit substitution, then
one of the rules app, dist, var apply, which contradicts the hypothesis. Otherwise the
cut is a distributor, and 𝑢 is an abstraction 𝜆𝑦.𝑢′, where 𝑢′ is in particular a sub-normal
form. By the i.h. 𝑢′ is pure so that the rule abs applies, which contradicts the hypothesis
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again.

Corollary 2.19. Let 𝑡 ∈ T𝑅 . If 𝑡 is in sub-nf, then 𝑡↓ = 𝑡 .
Lemma 2.20. The reduction relation→sub is terminating and confluent.

Proof. Termination holds by corollary 2.14. For confluence, suppose 𝑡 →∗
sub 𝑡1 and

𝑡 →∗
sub 𝑡2. Let 𝑡1 →∗

sub 𝑡′1 and 𝑡2 →∗
sub 𝑡′2, where 𝑡′1 and 𝑡′2 are in sub-nf. Then by

corollary 2.19, (𝑡′𝑖 )↓ = 𝑡′𝑖 for both 𝑖 = 1, 2. By lemma 2.15, (𝑡′𝑖 )↓ = 𝑡↓𝑖 = 𝑡↓ so that 𝑡′1 = 𝑡′2,
closing the diagram.

By termination of →sub any 𝑡 ∈ T𝑅 has a sub-nf, and by confluence this sub-nf is unique.
By lemma 2.15 and corollary 2.19 one obtains:

Corollary 2.21. Let 𝑡 ∈ T𝑅 . Then the unique sub-nf of 𝑡 is 𝑡↓.
Theorem 2.22. The reduction relation→R is confluent.

Proof. Let 𝑡 ∈ T𝑅 such that 𝑡 →∗
R 𝑡1 and 𝑡 →∗

R 𝑡2. By simulation (lemma 2.15), we have

𝑡↓ →∗𝛽 𝑡↓1 and 𝑡↓ →∗𝛽 𝑡↓2 . By lemma 2.20, there exist 𝑡′1 (resp. 𝑡′2) the unique sub-nf of 𝑡1
(resp. 𝑡2). By corollary 2.21 we have 𝑡′1 = 𝑡↓1 and 𝑡′2 = 𝑡↓2 . Because →𝛽 is confluent, there

is 𝑢 such that 𝑡↓1 →∗𝛽 𝑢 and 𝑡↓2 →∗𝛽 𝑢, and by lemma 2.17, 𝑡↓1 →∗
R 𝑢 and 𝑡↓2 →∗

R 𝑢. The

diagram is then closed by 𝑡1 →∗
sub 𝑡′1 = 𝑡↓1 →∗

R 𝑢 and 𝑡2 →∗
sub 𝑡′2 = 𝑡↓2 →∗

R 𝑢. Graphically,

𝑡

𝑡1 𝑡↓ 𝑡2

𝑡′1 = 𝑡↓1 𝑡↓2 = 𝑡′2

𝑢

R RR

R
𝛽𝛽

R

R

𝛽 𝛽
R

2.3 Encoding Evaluation Strategies
Although the atomic λ-calculus was introduced as a technical tool to implement full laziness,
only its (non-deterministic) equational theory was studied. We bridge the gap between the
theoretical presentation of the atomic λ-calculus and concrete specifications of evaluation
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strategies. Indeed, we use the 𝜆𝑅-calculus to investigate two concrete cases: a call-by-name
strategy implementing weak head reduction, based on full substitution, and the call-by-need
fully lazy strategy, which uses linear substitution.

In this work, we choose to implement full laziness for pure terms, that is, for the usual
λ-calculus without cuts. Indeed, we see explicit cuts as a tool for a fully lazy implementation
of the λ-calculus. We thus keep in line with the definitions found in the literature. Defining
full laziness for terms with explicit cuts also brings technical difficulties, which might divert
from the main point: using node replication to implement a fully lazy strategy.

We then restrict the set of terms to a subset U, which simplifies the formal reasoning of
explicit cuts inside distributors. Indeed, distributors will all be of the shape [𝑥//𝜆𝑦.LL⟨𝑝⟩],
where 𝑝 is a pure term containing the constructors that have been (symbolically) shared in
the distributor, and LL is a commutative list (defined below). We argue that this restriction is
natural in a weak implementation of the λ-calculus: it is true on pure terms and is preserved
through evaluation. We consider the following grammars; recall that |𝑝|𝑥 is the number of
occurrences of 𝑥 in 𝑝.

(Linear Cut Values) T ⩴ 𝜆𝑥.LL⟨𝑝⟩ where 𝑦 ∈ dom(LL) ⟹ |𝑝|𝑦 = 1
(Commutative Lists) LL ⩴ ◊ ∣ LL[𝑥/𝑝] ∣ LL[𝑥//T], where in both cases|LL|𝑥 = 0
(Values) 𝑣 ⩴ 𝜆𝑥.𝑝
(Restricted Terms) U ⩴ 𝑥 ∣ 𝑣 ∣ UU ∣ U[𝑥/U] ∣ U[𝑥//T]

A term 𝑡 generated by any of the grammars 𝐺 defined above is written 𝑡 ∈ 𝐺. Thus e.g.
𝜆𝑥.(𝑦𝑧)[𝑦/I][𝑧/I] ∈ T but 𝜆𝑥.(𝑦𝑦)[𝑦/I] ∉ T, ◊[𝑥/𝑦𝑧][𝑥′/I] ∈ LL but ◊[𝑥/𝑦𝑧][𝑦/I] ∉ LL, and
(𝑦𝑧)[𝑦//I] ∈ U but (𝑦𝑧)[𝑦//𝜆𝑥.(𝑦𝑦)[𝑦/I]] ∉ U.

The set T is stable by the relation →sub (lemma 2.23), but U is clearly not stable under
the whole →R relation, where dB-reductions may occur under abstractions. For instance,
let 𝑡1 = (𝑦𝑧)[𝑦//𝜆𝑥.(𝜆𝑦.𝑦𝑦)I] →dB (𝑦𝑧)[𝑦//𝜆𝑥.(𝑦𝑦)[𝑦/I]] = 𝑡2. Then 𝑡1 ∈ U but 𝑡2 ∉ U, since
|𝑦𝑦|𝑦 = 2. However, U is stable under both weak strategies to be defined: call-by-name
and call-by-need. We factorize the proofs by proving stability for a more general relation
→R′ , defined as the relation →R with dB-reductions forbidden under abstractions and inside
distributors.

Lemma 2.23. If 𝑡 ∈ T and 𝑡 →sub 𝑡′, then 𝑡′ ∈ T.

Proof. We first show a more general statement, namely that 𝑡 = LL0⟨𝑝0⟩ with |𝑝0|𝑦 = 1
for every 𝑦 ∈ dom(LL0), and 𝑡 ↦sub 𝑡′ imply 𝑡′ = LL1⟨𝑝1⟩ with |𝑝1|𝑦 = 1 for every
𝑦 ∈ dom(LL1). In the following rules var, app and dist, there is no L context inside the
explicit substitutions because lists in LL only contain pure terms by definition.

Case 𝑡 = 𝑢[𝑥/𝑧] ↦var 𝑢{𝑥/𝑧} = 𝑡′. This is straightforward.

Case 𝑡 = LL⟨𝑝⟩[𝑥/𝑞1𝑞2] ↦app LL⟨𝑝{𝑥/𝑥1𝑥2}⟩[𝑥1/𝑞1][𝑥2/𝑞2] = 𝑡′. Freshness of both 𝑥1 and
𝑥2 implies |𝑝{𝑥/𝑥1𝑥2}|𝑥1 = |𝑝{𝑥/𝑥1𝑥2}|𝑥2 = |𝑝|𝑥 = 1, and |𝑞1|𝑥2 = 0.

Case 𝑡 = LL⟨𝑝⟩[𝑥/𝜆𝑧.𝑝′] ↦dist LL⟨𝑝⟩[𝑥//𝜆𝑧.𝑤[𝑤/𝑝′]] = 𝑡′. By hypothesis |𝑝|𝑥 = 1, |LL|𝑥 =
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0 and 𝜆𝑧.𝑝′ is pure. Then, 𝜆𝑧.𝑤[𝑤/𝑝′] ∈ T because 𝑝′ is pure and |𝑤|𝑤 = 1.

Case 𝑡 = LL⟨𝑝⟩[𝑥//𝜆𝑧.LL′⟨𝑝′⟩] ↦abs LL′⟨LL⟨𝑝⟩{𝑥/𝜆𝑧.𝑝′}⟩ = 𝑡′. By hypothesis, we have
that 𝜆𝑧.LL′⟨𝑝′⟩ ∈ T. Thus 𝜆𝑧.𝑝′ and 𝑝{𝑥/𝜆𝑧.𝑝′} are pure. We conclude since |LL|𝑥 = 0
by hypothesis.

Now we can lift the property to T by observing that we necessarily have 𝑡 = 𝜆𝑥.𝑢 →sub
𝜆𝑥.𝑢′, where 𝑢 →sub 𝑢′. Then we conclude by the previous point.

Lemma 2.24. If 𝑡 ∈ U and 𝑡 →R′ 𝑡′, then 𝑡′ ∈ U.

Proof. An easy induction proves that 𝑡 ∈ U implies 𝑡{𝑥/𝑝} ∈ U for any 𝑥 and pure term 𝑝.
We show that 𝑡′ ∈ U by induction on the reduction relation. First, the base cases.

Case 𝑡 = L⟨(𝜆𝑥.𝑝)⟩𝑡0 ↦dB L⟨𝑝[𝑥/𝑡0]⟩ = 𝑡′. Since 𝑝, 𝑡0 ∈ U, then 𝑡′ ∈ U.

Case 𝑡 = 𝑡0[𝑥/L⟨𝑦⟩] ↦var L⟨𝑡0{𝑥/𝑦}⟩ = 𝑡′. Since 𝑡0 ∈ U and 𝑦 is pure then 𝑡′ ∈ U.

Case 𝑡 = 𝑡0[𝑥/L⟨𝑡1𝑡2⟩] ↦app L⟨𝑡0{𝑥/𝑦𝑧}[𝑦/𝑡1][𝑧/𝑡2]⟩. Since 𝑡0 ∈ U and 𝑦𝑧 is pure then 𝑡′ ∈ U.

Case 𝑡 = 𝑡0[𝑥/L⟨𝜆𝑦.𝑝⟩] ↦dist L⟨𝑡0[𝑥//𝜆𝑦.𝑧[𝑧/𝑝]]⟩ = 𝑡′. Since 𝑡0 ∈ U and |𝑧|𝑧 = 1, then we
have 𝜆𝑦.𝑧[𝑧/𝑝] ∈ T and thus 𝑡′ ∈ U.

Case 𝑡 = 𝑡0[𝑥//𝜆𝑦.LL⟨𝑝⟩] ↦abs LL⟨𝑡0{𝑥/𝜆𝑦.𝑝}⟩ = 𝑡′. Since 𝑡0 ∈ U and 𝜆𝑦.𝑝 is pure then 𝑡′ ∈
U.

Then, the inductive cases.

Case 𝑡 = 𝜆𝑥.𝑢. Then 𝑡 ∈ U implies in particular that 𝑢 is pure, and then 𝑢 can only contain
dB-redexes, so that 𝑡 does not R′-reduce to any term 𝑡′.

Case 𝑡 = 𝑡0𝑢 or 𝑡 = 𝑢𝑡0 or 𝑡 = 𝑡0[𝑥 ◁ 𝑢] or 𝑡 = 𝑢[𝑥/𝑡0], where 𝑡0 →R′ 𝑡′0. We have 𝑡′ = 𝑡′0𝑢,
𝑡′ = 𝑢𝑡′0, 𝑡′ = 𝑡′0[𝑥/𝑢], or 𝑡′ = 𝑢[𝑥/𝑡′0] respectively. By hypothesis 𝑡0 ∈ U, so by
the i.h. 𝑡′0 ∈ U and therefore 𝑡′ ∈ U.

Case 𝑡 = 𝑢[𝑥//𝑡0] →R′ 𝑢[𝑥//𝑡′0] = 𝑡′, where 𝑡0 →sub 𝑡′0. By hypothesis, we have 𝑡0 ∈ T. By
lemma 2.23, 𝑡′0 ∈ T, so 𝑡′ ∈ U.

2.3.1 Call-by-Name
The call-by-name strategy →name (figure 2.1) is defined on the set of terms U as the union
of the following relations →ndB and →nsub. The strategy is weak as there is no reduction
under abstractions. It is also worth noticing (as a particular case of lemma 2.24) that 𝑡 ∈ U
and 𝑡 →name 𝑡′ implies 𝑡′ ∈ U.
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Example 2.25. This example follows a call-by-name evaluation. The name of the contextual
rule is written in the superscript of the arrow symbol, and the redex is underlined.

(𝜆𝑥1.I(𝑥1I))(𝜆𝑦.(II)𝑦) →DB (I(𝑥1I))[𝑥1/𝜆𝑦.(II)𝑦]
→S (I(𝑥1I))[𝑥1//𝜆𝑦.𝑧[𝑧/(II)𝑦]]
→SUBS (I(𝑥1I))[𝑥1//𝜆𝑦.(𝑧1𝑧2)[𝑧1/II][𝑧2/𝑦]]
→SUBS (I(𝑥1I))[𝑥1//𝜆𝑦.(𝑧1𝑦)[𝑧1/II]]
→S (I((𝜆𝑦.𝑧1𝑦)I))[𝑧1/II]
→SUBDB 𝑥2[𝑥2/(𝜆𝑦.𝑧1𝑦)I][𝑧1/II]
→+ ((𝜆𝑦.𝑧1𝑦)I)[𝑧1/II]
→+ 𝜆𝑦.(II)𝑦

The strategy →name does not impose duplication of all nodes in the body of an abstrac-
tion inside the distributor: only the skeleton of the abstraction 𝜆𝑦.(II)𝑦 is replicated. But the
strategy forbids dB-reductions inside explicit cuts, so that there is no benefit gained by keep-
ing shared terms such as II. Indeed, the main idea behind full laziness is that shared terms
are only reduced once. The CbN strategy, on the contrary, duplicates arguments before re-
ducing them. The absence of optimization is reflected by the fact that the strategy, although
not deterministic, enjoys the remarkable diamond property, guaranteeing in particular that
all reduction sequences starting from 𝑡 and ending in a normal form have the same length.

Property 2.26 (Diamond). The CbN strategy enjoys the diamond property, i.e. for any terms
𝑡 , 𝑢, 𝑠 ∈ U such that 𝑡 →name 𝑢, 𝑡 →name 𝑠 and 𝑢 ≠ 𝑠, there exists 𝑡′ such that 𝑢 →name 𝑡′ and
𝑠 →name 𝑡′.

Proof. We split the statement above in three different properties, each one proved by
induction on the involved relation relations.

1. If 𝑡 →ndB 𝑢 and 𝑡 →ndB 𝑠, then there exists 𝑡′ such that 𝑢 →ndB 𝑡′ and 𝑠 →ndB 𝑡′.
We consider the following cases:

Case ((APPDB), (APPDB)). We then have 𝑡 = 𝑡0𝑡1 such that 𝑡 →ndB 𝑢0𝑡1 = 𝑢 and
𝑡 →ndB 𝑠0𝑡1 = 𝑠, where 𝑡0 →ndB 𝑢0 and 𝑡0 →ndB 𝑠0. By the i.h. there is 𝑡′0 such

𝑡 ↦dB 𝑡′
𝑡 →ndB 𝑡′ (DB)

𝑡 →ndB 𝑡′
𝑡𝑢 →ndB 𝑡′𝑢 (APPDB)

𝑡 →ndB 𝑡′
𝑡[𝑥 ◁ 𝑢] →ndB 𝑡′[𝑥 ◁ 𝑢] (SUBDB)

𝑡 ↦sub 𝑡′
𝑡 →nsub 𝑡′ (S)

𝑡 →nsub 𝑡′
𝑡𝑢 →nsub 𝑡′𝑢 (APPS)

𝑡 →nsub 𝑡′
𝑢[𝑥//𝜆𝑦.𝑡] →nsub 𝑢[𝑥//𝜆𝑦.𝑡′] (SUBS)

Figure 2.1: call-by-name strategy.
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that 𝑠0 →ndB 𝑡′0 and 𝑢0 →ndB 𝑡′0. Therefore 𝑠 →ndB 𝑡′0𝑡1 = 𝑡′ and 𝑢 →ndB 𝑡′.
Case ((SUBDB), (SUBDB)). We then have 𝑡 = 𝑡0[𝑥 ◁𝑡1] such that 𝑡 →ndB 𝑢0[𝑥 ◁𝑡1] = 𝑢

and 𝑡 →ndB 𝑠0[𝑥 ◁ 𝑡1] = 𝑠, where 𝑡0 →ndB 𝑢0 and 𝑡0 →ndB 𝑠0. By the i.h. there
is 𝑡′0 such that 𝑠0 →ndB 𝑡′0 and 𝑢0 →ndB 𝑡′0. Therefore 𝑠 →ndB 𝑡′0[𝑥 ◁ 𝑡1] = 𝑡′
and 𝑢 →ndB 𝑡′.

Cases ((DB), (DB)); ((DB), (APPDB)); ((DB), (SUBDB)) and ((APPDB), (SUBDB)). They are
impossible cases.

2. If 𝑡 →nsub 𝑢 and 𝑡 →nsub 𝑠, then there exists 𝑡′ such that 𝑢 →nsub 𝑡′ and 𝑠 →nsub 𝑡′.
We consider the following cases:

Case ((S), (S)). Impossible since 𝑢 and 𝑠 are assumed to be different.

Case ((S), (SUBS)). We have 𝑡 ∈ U then 𝑡 = 𝑡0[𝑥//𝜆𝑦.LL⟨𝑝⟩[𝑧 ◁ 𝑡1]], where 𝑦 ∉ fv(LL)∪
fv(𝑡1) and such that 𝑡 ↦sub LL⟨𝑡0{𝑥/𝜆𝑦.𝑝}⟩[𝑧 ◁ 𝑡1] = 𝑢. There are three cases
for 𝑡 .
Subcases [𝑧 ◁ 𝑡1] = [𝑧/L⟨𝑤⟩] and [𝑧 ◁ 𝑡1] = [𝑧/L⟨𝑝1𝑝2⟩]. In each case, the only

possibility is (S) on term LL⟨𝑝⟩[𝑧/𝑡1]. We then have

𝑡 →nsub 𝑡0[𝑥//𝜆𝑦.L′⟨LL⟨𝑝⟩{𝑧/𝑞}⟩] = 𝑠
for some L′ and some pure term 𝑞. So 𝑢 →nsub L′⟨LL⟨𝑡0{𝑥/𝜆𝑦.𝑝}⟩{𝑧/𝑞}⟩ =
𝑢′ and 𝑠 →nsub L′⟨LL⟨𝑡0{𝑥/𝜆𝑦.𝑝{𝑧/𝑞}}⟩⟩ = 𝑠′. The equality 𝑢′ = 𝑠′ holds
because we can assume 𝑧 ≠ 𝑦 by 𝛼-equivalence, and 𝑧 ∉ fv(LL) by defi-
nition.

Subcase [𝑧 ◁ 𝑡1] = [𝑧/𝜆𝑤.𝑡′1]. The only possible case is (S) on LL⟨𝑝⟩[𝑧/𝜆𝑤.𝑡′1].
We then have

𝑡 = 𝑡0[𝑥//𝜆𝑦.LL⟨𝑝⟩[𝑧/𝜆𝑤.𝑡′1]] →nsub 𝑡0[𝑥//𝜆𝑦.LL⟨𝑝⟩[𝑧//𝜆𝑤.𝑤′[𝑤′/𝑡′1]]] = 𝑠
We close the diagram with 𝑢 →nsub LL⟨𝑡0{𝑥/𝜆𝑦.𝑝}⟩[𝑧//𝜆𝑤.𝑤′[𝑤′/𝑡′1]] = 𝑡′
and 𝑠 →nsub 𝑡′.

Subcase [𝑧 ◁ 𝑡1] = [𝑧//𝜆𝑤.𝑡′1]. We have two different cases:

a) If the reduction happens inside 𝑡′1, then

𝑡 = 𝑡0[𝑥//𝜆𝑦.LL⟨𝑝⟩[𝑧//𝜆𝑤.𝑡′1]] →nsub 𝑡0[𝑥//𝜆𝑦.LL⟨𝑝⟩[𝑧//𝜆𝑤.𝑠1]] = 𝑠
where 𝑡′1 →nsub 𝑠1. We close by 𝑢 →nsub LL⟨𝑡0{𝑥/𝜆𝑦.𝑝}⟩[𝑧//𝜆𝑤.𝑠1] =
𝑡′ and 𝑠 →nsub 𝑡′.

b) Otherwise, the (S) case for LL⟨𝑝⟩[𝑧//𝜆𝑤.𝑡′1] gives

𝑡 →nsub 𝑡0[𝑥//𝜆𝑦.L⟨LL⟨𝑝⟩{𝑧/𝑣}⟩] = 𝑠
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for some L and some value 𝑣 . So 𝑢 →nsub L⟨LL⟨𝑡0{𝑥/𝜆𝑦.𝑝}⟩{𝑧/𝑣}⟩ =
𝑢′ and 𝑠 →nsub L⟨LL⟨𝑡0{𝑥/𝜆𝑦.𝑝{𝑧/𝑣}}⟩⟩ = 𝑠′. The equality 𝑢′ = 𝑠′
holds because we can assume 𝑦 ∉ fv(𝑣) ∪ {𝑧} by 𝛼-equivalence, and
𝑧 ∉ fv(LL) by definition.

Case ((APPS), (APPS)). We then have 𝑡 = 𝑡0𝑡1 such that 𝑡 →nsub 𝑢0𝑡1 = 𝑢 and 𝑡 →nsub
𝑠0𝑡1 = 𝑠, where 𝑡0 →nsub 𝑢0 and 𝑡0 →nsub 𝑠0. By the i.h. 𝑠0 →nsub 𝑡′0 and
𝑢0 →nsub 𝑡′0. Therefore 𝑢 →nsub 𝑡′0𝑡1 = 𝑡′ and 𝑠 →nsub 𝑡′.

Case ((SUBS), (SUBS)). We have 𝑡 = 𝑡0[𝑥//𝜆𝑦.𝑡1] such that 𝑡 →nsub 𝑡0[𝑥//𝜆𝑦.𝑢1] = 𝑢
and 𝑡 →nsub 𝑡0[𝑥//𝜆𝑦.𝑠1] = 𝑠, where 𝑡1 →nsub 𝑢1 and 𝑡1 →nsub 𝑠1. By the
i.h. 𝑠1 →nsub 𝑡′1 and 𝑢1 →nsub 𝑡′1. Therefore 𝑢 →nsub 𝑡0[𝑥//𝜆𝑦.𝑡′1] = 𝑡′ and
𝑠 →nsub 𝑡′.

Cases ((S), (APPS)) and ((SUBS), (APPS)). These are impossible cases.

3. If 𝑡 →ndB 𝑢 and 𝑡 →nsub 𝑠, then there exists 𝑡′ such that 𝑢 →nsub 𝑡′ and 𝑠 →ndB 𝑡′.
We consider the following cases:

Case ((DB), (APPS)). We have 𝑡 = L⟨𝜆𝑥.𝑡0⟩[𝑦 ◁ 𝑡2]𝑡1 such that 𝑡 →ndB L⟨𝑡0[𝑥/𝑡1]⟩[𝑦 ◁
𝑡2] = 𝑢. There are three cases for 𝑡 →nsub 𝑠.
Case 𝑡 = L⟨𝜆𝑥.𝑡0⟩[𝑦//𝜆𝑧.𝑡′2]𝑡1 →nsub L⟨𝜆𝑥.𝑡0⟩[𝑦//𝜆𝑧.𝑡′3]𝑡1 = 𝑠, where 𝑡2 = 𝜆𝑧.𝑡′2

and 𝑡′2 →nsub 𝑡′3. Then 𝑢 →nsub L⟨𝑡0[𝑥/𝑡1]⟩[𝑦//𝜆𝑧.𝑡′3] = 𝑡′ and 𝑠 →ndB 𝑡′.
Case 𝑡 = L⟨𝜆𝑥.𝑡0⟩[𝑦/𝜆𝑧.𝑡′2]𝑡1 →nsub L⟨𝜆𝑥.𝑡0⟩[𝑦//𝜆𝑧.𝑤[𝑤/𝑡′2]]𝑡1 = 𝑠, where 𝑡2 =

𝜆𝑧.𝑡′2. Then 𝑢 →nsub L⟨𝑡0[𝑥/𝑡1]⟩[𝑦//𝜆𝑧.𝑤[𝑤/𝑡′2]] = 𝑡′ and 𝑠 →ndB 𝑡′.
Otherwise we have 𝑡 →nsub L′⟨L⟨𝜆𝑥.𝑡0⟩{𝑦/𝑝}⟩𝑡1 = 𝑠, for some L′ and some

pure term 𝑝. Therefore, 𝑢 →nsub L′⟨L⟨𝑡0[𝑥/𝑡1]⟩{𝑦/𝑝}⟩ = 𝑡′ and 𝑠 →ndB 𝑡′
because 𝑦 ∉ fv(𝑡1). Note that 𝑦 may be free in L.

Case ((APPDB), (APPS)). We have 𝑡 = 𝑡0𝑡1 such that 𝑡 →ndB 𝑢0𝑡1 = 𝑢 and 𝑡 →nsub
𝑠0𝑡1 = 𝑠, where 𝑡0 →ndB 𝑢0 and 𝑡0 →nsub 𝑠0. By i.h. there exists 𝑡′0 such that
𝑠0 →ndB 𝑡′0 and 𝑢0 →nsub 𝑡′0. Therefore, 𝑢 →nsub 𝑡′0𝑡1 = 𝑡′ and 𝑠 →ndB 𝑡′.

Case ((SUBDB), (S)). We have 𝑡 = 𝑡0[𝑥 ◁ 𝑡1] such that 𝑡 →ndB 𝑢0[𝑥 ◁ 𝑡1] = 𝑢, where
𝑡0 →ndB 𝑢0. If 𝑡 = 𝑡0[𝑥/L⟨𝜆𝑦.𝑡2⟩] →nsub L⟨𝑡0[𝑥//𝜆𝑦.𝑧[𝑧/𝑡2]]⟩ = 𝑠, where 𝑡1 =
𝜆𝑦.𝑡2, then 𝑠 →ndB L⟨𝑢0[𝑥//𝜆𝑦.𝑧[𝑧/𝑡2]]⟩ = 𝑡′ and 𝑢 →nsub 𝑡′. Otherwise,
𝑡 →nsub L⟨𝑡0{𝑥/𝑝}⟩ = 𝑠 for some L and some pure term 𝑝. We show that
𝑡0{𝑥/𝑝} →ndB 𝑢0{𝑥/𝑝} by induction on 𝑡0 →ndB 𝑢0. From this, we can deduce
𝑠 →ndB L⟨𝑢0{𝑥/𝑝}⟩ = 𝑡′ and conclude because 𝑢 →nsub 𝑡′.
Subcase 𝑡0 = L′⟨𝜆𝑦.𝑞⟩𝑡2 →dB L′⟨𝑞[𝑦/𝑡2]⟩ = 𝑢0. Without loss of generality, we

can assume by 𝛼-conversion that 𝑦 ∉ fv(𝑝) ∪ {𝑥}. Then

𝑡0{𝑥/𝑝} = L′{𝑥/𝑝}⟨𝜆𝑦.𝑞{𝑥/𝑝}⟩𝑡2{𝑥/𝑝}
→ndB L′{𝑥/𝑝}⟨𝑞{𝑥/𝑝}[𝑦/𝑡2{𝑥/𝑝}]⟩ = 𝑢0{𝑥/𝑝}
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Subcase 𝑡0 = 𝑡′0𝑡2 →ndB 𝑢′0𝑡2 = 𝑢0 from 𝑡′0 →ndB 𝑢′0. Then by the induction hy-
pothesis and by rule (APPDB) we can conclude

𝑡0{𝑥/𝑝} = 𝑡′0{𝑥/𝑝}𝑡2{𝑥/𝑝} →ndB 𝑢′0{𝑥/𝑝}𝑡2{𝑥/𝑝} = 𝑢0{𝑥/𝑝}
Subcase 𝑡0 = 𝑡′0[𝑦 ◁ 𝑡2] →ndB 𝑢′0[𝑦 ◁ 𝑡2] = 𝑢0 from 𝑡′0 →ndB 𝑢′0. W.l.o.g. we as-

sume by 𝛼-conversion that 𝑥 ≠ 𝑦 , then by i.h. and rule ((SUBDB)) we con-
clude 𝑡0{𝑥/𝑝} = 𝑡′0{𝑥/𝑝}[𝑦 ◁ 𝑡2{𝑥/𝑝}] →ndB 𝑢′0{𝑥/𝑝}[𝑦 ◁ 𝑡2{𝑥/𝑝}] = 𝑢0{𝑥/𝑝}.

Case ((SUBDB), (SUBS)). We have 𝑡 = 𝑡0[𝑥//𝜆𝑦.𝑡1] such that 𝑡 →ndB 𝑢0[𝑥//𝜆𝑦.𝑡1] = 𝑢
and 𝑡 →nsub 𝑡0[𝑥//𝜆𝑦.𝑠1] = 𝑠, where 𝑡0 →ndB 𝑢0 and 𝑡1 →nsub 𝑠1. Therefore
𝑢 →nsub 𝑢0[𝑥//𝜆𝑦.𝑠1] = 𝑡′ and 𝑠 →ndB 𝑡′.

Cases ((DB), (S)); ((DB), (SUBS)); ((APPDB), (S)); ((APPDB),(SUBS)) and ((SUBDB),(APPS)).
These are impossible cases.

It is worth noticing that call-by-name in the λ-calculus can be simulated by call-by-name
in 𝜆𝑅. The former can be defined by weak-head reduction, denoted →whr, and generated by
the following rules:

𝑡 →𝛽 𝑡′
𝑡 →whr 𝑡′

𝑡 →whr 𝑡′
𝑡𝑢 →whr 𝑡′𝑢

There is in particular a one-to-one relation between 𝛽-steps and ndB-steps.

Lemma 2.27 (Relating call-by-name strategies).

(i) Let 𝑝0 ∈ T𝑃 . If 𝑝0 →whr 𝑝1, then 𝑝0 →ndB→+
nsub 𝑝1 (thus 𝑝0 →+

name 𝑝1).

(ii) Let 𝑡0 ∈ U. If 𝑡0 →ndB 𝑡1, then 𝑡↓0 →whr 𝑡↓1 . If 𝑡0 →nsub 𝑡1, then 𝑡↓0 = 𝑡↓1 .

Proof. The first item is by induction on →whr.

Case 𝑝0 = (𝜆𝑥.𝑝)𝑞 →𝛽 𝑝{𝑥/𝑞} = 𝑝1. Then (𝜆𝑥.𝑝)𝑞 →ndB 𝑝[𝑥/𝑞] and we need to verify
that 𝑝[𝑥/𝑞] →+

nsub 𝑝{𝑥/𝑞}. The proof of 𝑡[𝑥/𝑞] →+
nsub 𝑡{𝑥/𝑞} for any 𝑡 ∈ U and pure

term 𝑞 is by induction on 𝑞:

Subcase 𝑞 = 𝑦. Then 𝑡[𝑥/𝑦] →nsub 𝑡{𝑥/𝑦}.
Subcase 𝑞 = 𝑞0𝑞1. Then 𝑡[𝑥/𝑞] →nsub 𝑡{𝑥/𝑧0𝑧1}[𝑧0/𝑞0][𝑧1/𝑞1]. By the i.h. we have

𝑡{𝑥/𝑧0𝑧1}[𝑧0/𝑞0][𝑧1/𝑞1] →+
nsub (𝑡{𝑥/𝑧0𝑧1}[𝑧0/𝑞0]){𝑧1/𝑞1} = 𝑡{𝑥/𝑧0𝑞1}[𝑧0/𝑞0]

and 𝑡{𝑥/𝑧0𝑞1}[𝑧0/𝑞0] →+
nsub 𝑡{𝑥/𝑧0𝑞1}{𝑧0/𝑞0} = 𝑡{𝑥/𝑞0𝑞1}

Therefore, 𝑡[𝑥/𝑞0𝑞1] →+
nsub 𝑡{𝑥/𝑞0𝑞1}.

Subcase 𝑞 = 𝜆𝑦.𝑞′. Then 𝑡[𝑥/𝑞] →nsub 𝑡[𝑥//𝜆𝑦.𝑧[𝑧/𝑞′]]. By the i.h. we have that
𝑧[𝑧/𝑞′] →+

nsub 𝑧{𝑧/𝑞′} = 𝑞′ thus 𝑡[𝑥//𝜆𝑦.𝑧[𝑧/𝑞′]] →+
nsub 𝑡[𝑥//𝜆𝑦.𝑞′] →nsub

𝑡{𝑥/𝜆𝑦.𝑞′}. Therefore, 𝑡[𝑥/𝜆𝑦.𝑞′] →+
nsub 𝑡{𝑥/𝜆𝑦.𝑞′}.
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Case 𝑝0 = 𝑝𝑞 →whr 𝑝′𝑞 = 𝑝1 where 𝑝 →whr 𝑝′. By the i.h. we have that 𝑝 →+
name 𝑝′

then, by (APPDB) and (APPS), 𝑝0 = 𝑝𝑞 →+
name 𝑝′𝑞 = 𝑝1.

The second item is by case analysis on →name. If 𝑡0 →nsub 𝑡1 then 𝑡↓0 = 𝑡↓1 by
lemma 2.15. If 𝑡0 →ndB 𝑡1 then we prove the property by induction on →ndB.

Case 𝑡0 = (𝜆𝑥.𝑡)𝑢 →ndB 𝑡[𝑥/𝑢] = 𝑡1. Then 𝑡↓0 = (𝜆𝑥.𝑡↓)𝑢↓ →𝛽 𝑡↓{𝑥/𝑢↓} = 𝑡↓1 . Note that

both 𝑡↓ and 𝑢↓ are pure terms.

Case 𝑡0 = 𝑡𝑢 →ndB 𝑡′𝑢 = 𝑡1 where 𝑡 →ndB 𝑡′. Then 𝑡↓ →whr 𝑡′↓ by the i.h., thus 𝑡↓0 =
𝑡↓𝑢↓ →whr 𝑡′↓𝑢↓ = 𝑡↓1 .

Case 𝑡0 = 𝑡[𝑥 ◁ 𝑢] →ndB 𝑡′[𝑥 ◁ 𝑢] = 𝑡1 where 𝑡 →ndB 𝑡′. Then 𝑡↓ →whr 𝑡′↓ by the i.h.,
thus 𝑡↓0 = 𝑡↓{𝑥/𝑢↓} →whr 𝑡′↓{𝑥/𝑢↓} = 𝑡↓1 . Note that the result depends on the closure
of →whr by (implicit) substitutions, which has a straightforward proof by induction
on (pure) term 𝑡↓, using substitution composition.

The following grammar NFname intends to characterize normal forms with respect to the
strategy →name:

NFname ⩴ 𝜆𝑥.𝑝 ∣ NEname
NEname ⩴ 𝑥 ∣ NEname 𝑡

Notice that all normal forms are pure terms: we unfold all explicit substitutions with sub-
steps.

Lemma 2.28. Let 𝑡 ∈ U. Then 𝑡 ∈ NEname iff 𝑡 is in name-nf.

Proof. The left-to-right implication is straightforward. The right-to-left implication is
by induction on U.

Case 𝑡 = 𝑥 . By definition, 𝑡 ∈ NEname.

Case 𝑡 = 𝜆𝑥.𝑝. Then 𝑡 ∈ NEname by definition.

Case 𝑡 = 𝑡′𝑢, where 𝑡′, 𝑢 ∈ U. By definition of →name, 𝑡 in name-nf implies 𝑡′ is also in
name-nf and 𝑡′ is neither an explicit cut nor an abstraction. Thus 𝑡′ ∈ NEname by
the i.h. and we can conclude 𝑡 ∈ NEname.

Case 𝑡 = 𝑡′[𝑥/𝑢], where 𝑡′, 𝑢 ∈ U. This is not possible because there is always an applica-
ble structural rule which would contradict 𝑡 to be in name-nf.

Case 𝑡 = 𝑡′[𝑥//𝜆𝑦.𝑢], where 𝜆𝑦.𝑢 = 𝜆𝑦.LL⟨𝑝⟩ ∈ T. Then either we can apply a structural
rule on 𝑢, or 𝑢 is pure (i.e. LL = ◊) and we can apply rule →abs. In both cases we
would have a contradiction with 𝑡 in name-nf.
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2.3.2 Call-by-Need
We now specify a deterministic strategy flneed implementing demand-driven computations
and only linearly replicating nodes of values (i.e. pure abstractions). Given a value 𝜆𝑥.𝑝, only
the piece of structure containing the paths between the binder 𝜆𝑥 and all the free occurrences
of 𝑥 in 𝑝, named skeleton, will be copied. All the other components of the abstraction will
remain shared, thus avoiding some future duplications of redexes, as explained in the intro-
duction. By copying only the smallest possible substructure of the abstraction, the strategy
flneed implements an optimization of call-by-need called fully lazy sharing [Wad71]. First,
we formally define the key notions we are going to use.

A free expression [Pey87; Bal12b] of a pure term 𝑝 is a strict subterm 𝑞 of 𝑝 such that
every free occurrence of a variable in 𝑞 is also a free occurrence of the variable in 𝑝. A free
expression of 𝑝 is maximal if it is not a subterm of another free expression of 𝑝. From now
on, we will consider the (ordered) list of all MFEs of a term. Thus e.g. the MFEs of 𝜆𝑦.𝑝, where
𝑝 = (I𝑦)I(𝜆𝑧.𝑧𝑦𝑤), is given by the list [I; I; 𝑤].

An 𝑛-ary context (𝑛 ≥ 0) is a term with 𝑛 holes ◊. A skeleton is an 𝑛-ary pure con-
text where the maximal free expressions w.r.t. a variable set 𝜃 are replaced with holes. We
introduce two different yet equivalent definitions of skeleton: we argue that they entail re-
spectively a big-step and a small-step semantics. We thus a give operational perspectives to
these two classical definitions.

A first definition of skeleton. The first notion of skeleton runs as follows. Given any set of
variables 𝜃 , the 𝜃-skeleton {{𝑝}}𝜃 of a pure term 𝑝 is an n-ary pure (i.e. without explicit cuts)
context defined as {{𝑝}}𝜃 ≔ ◊ if 𝜃 ∩ fv(𝑝) = ∅; otherwise:

{{𝑥}}𝜃 ≔ 𝑥 {{𝜆𝑥.𝑝}}𝜃 ≔ 𝜆𝑥.{{𝑝}}𝜃∪{𝑥} {{𝑝1𝑝2}}𝜃 ≔ {{𝑝1}}𝜃 {{𝑝2}}𝜃

Thus e.g. if 𝑝 = (𝐼 𝑦)𝐼 (𝜆𝑧.𝑧𝑦𝑤) as above, then {{𝑝}}{𝑦} = (◊𝑦)◊(𝜆𝑧.𝑧𝑦◊).
Splitting a term into a skeleton and a multiset of MFEs is at the core of full laziness.

This can naturally be implemented in the node replication model, as observed in [GHP13b].
Here, we give two different (alternative) operational semantics to achieve it. The first one
(figure 2.2), written ⇓𝜃 , uses big-step semantics and implements the first definition of skeleton
introduced above.

𝑥 fresh

𝑝 ⇓𝜃 𝑥[𝑥/𝑝] when fv(𝑝) ∩ 𝜃 = ∅; otherwise:

𝑥 ⇓𝜃 𝑥
𝑝 ⇓𝜃∪{𝑥} L⟨𝑝′⟩

𝜆𝑥.𝑝 ⇓𝜃 L⟨𝜆𝑥.𝑝′⟩
𝑝 ⇓𝜃 L1⟨𝑝′⟩ 𝑞 ⇓𝜃 L2⟨𝑞′⟩

𝑝𝑞 ⇓𝜃 L2⟨L1⟨𝑝′𝑞′⟩⟩

Figure 2.2: Relation ⇓𝜃 : Splitting Skeleton and MFEs in Big-Step Semantics.
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The big-steps semantics can be seen as a reformulation of the proof that splitting the
skeleton can be done inside the atomic λ-calculus [GHP13b, lemma 30]. This proof proceeds
by induction, and the premises of the inferences of our big-steps rules reflect the use of an
induction hypothesis.

Each of the rules in figure 2.2 corresponds to a different case in the first definition of 𝜃-
skeleton. In the first rule, since there is no free variable of 𝑝 in 𝜃 , 𝑝 is thus an MFE kept shared
in an explicit substitution. The other three rules correspond to each possible constructor,
where all the explicit cuts created during the inductive cases are pushed out.

Example 2.29. Let 𝑦, 𝑧 ∉ fv(𝑡), so that 𝑡 is the MFE of 𝜆𝑦.𝑥[𝑥/𝜆𝑧.(𝑦𝑡)𝑧]. Then,

𝑦 ⇓{𝑦,𝑧} 𝑦 𝑡 ⇓{𝑦,𝑧} 𝑥[𝑥/𝑡]
𝑦𝑡 ⇓{𝑦,𝑧} (𝑦𝑥)[𝑥/𝑡] 𝑧 ⇓{𝑦,𝑧} 𝑧

(𝑦𝑡)𝑧 ⇓{𝑦,𝑧} ((𝑦𝑥)𝑧)[𝑥/𝑡]
𝜆𝑧.(𝑦𝑡)𝑧 ⇓{𝑦} (𝜆𝑧.(𝑦𝑥)𝑧)[𝑥/𝑡]

Lemma 2.30 (Correctness of ⇓𝜃 ). If 𝑝 ∈ T𝑃 , then ∃𝑛 ≥ 0 s.t. 𝑝 ⇓𝜃 {{𝑝}}𝜃 ⟨𝑥1, … , 𝑥𝑛⟩[𝑥𝑖/𝑡𝑖]𝑖≤𝑛,
where {{𝑝}}𝜃 ⟨𝑡1, … , 𝑡𝑛⟩ = 𝑝, and (𝑥𝑖)1≤𝑖≤𝑛 are fresh and pairwise distinct variables. Moreover,
fv(𝑡𝑖) ∩ 𝜃 = ∅ for all 1 ≤ 𝑖 ≤ 𝑛.

Proof. If fv(𝑝) ∩ 𝜃 = ∅, then 𝑝 ⇓𝜃 𝑥1[𝑥1/𝑝] and {{𝑝}}𝜃 = ◊, so that {{𝑝}}𝜃 ⟨𝑝⟩ = 𝑝 trivially
holds. Otherwise, we reason by induction on 𝑝:

Case 𝑝 = 𝑥 . Then {{𝑥}}𝜃 = 𝑥 , so the property holds for 𝑛 = 0 because 𝑥 ⇓𝜃 𝑥 .

Case 𝑝 = 𝑝1𝑝2. Then {{𝑝}}𝜃 = {{𝑝1}}𝜃 {{𝑝2}}𝜃 . By the i.h. we have

𝑝1 ⇓𝜃 {{𝑝1}}𝜃 ⟨𝑥1, … , 𝑥𝑘⟩[𝑥𝑖/𝑡𝑖]𝑖≤𝑘 and 𝑝2 ⇓𝜃 {{𝑝2}}𝜃 ⟨𝑥𝑘+1, … , 𝑥𝑛⟩[𝑥𝑖/𝑡𝑖]𝑘<𝑖≤𝑛, where

{{𝑝1}}𝜃 ⟨𝑡1, … , 𝑡𝑘⟩ = 𝑝1 and {{𝑝2}}𝜃 ⟨𝑡𝑘+1, … , 𝑡𝑛⟩ = 𝑝2.
Hence:

𝑝1𝑝2 ⇓𝜃 ({{𝑝1}}𝜃 ⟨𝑥1, … , 𝑥𝑘⟩{{𝑝2}}𝜃 ⟨𝑥𝑘+1, … , 𝑥𝑛⟩)[𝑥𝑖/𝑡𝑖]𝑖≤𝑘[𝑥𝑖/𝑡𝑖]𝑘<𝑖≤𝑛
= {{𝑝}}𝜃 ⟨𝑥1, … , 𝑥𝑛⟩[𝑥𝑖/𝑡𝑖]𝑖≤𝑛

Case 𝑝 = 𝜆𝑥.𝑝′. Then {{𝑝}}𝜃 = 𝜆𝑥.{{𝑝′}}𝜃∪{𝑥}. By the i.h. we have

𝑝′ ⇓𝜃∪{𝑥} {{𝑝′}}𝜃∪{𝑥}⟨𝑥1, … , 𝑥𝑛⟩[𝑥𝑖/𝑡𝑖]𝑖≤𝑛.
Moreover, 𝑥 ∉ ⋃𝑖≤𝑛 fv(𝑡𝑖) by definition of ⇓ and every 𝑥𝑖 is different from 𝑥 . Hence:

𝜆𝑥.𝑝′ ⇓𝜃 (𝜆𝑥.{{𝑝′}}𝜃∪{𝑥}⟨𝑥1, … , 𝑥𝑛⟩)[𝑥𝑖/𝑡𝑖]𝑖≤𝑛 = {{𝜆𝑥.𝑝′}}𝜃 ⟨𝑥1, … , 𝑥𝑛⟩[𝑥𝑖/𝑡𝑖]𝑖≤𝑛.

The correctness lemma states in particular that 𝑝 ⇓𝜃 L⟨𝑝′⟩ implies 𝑝′ is pure and fv(L)∩𝜃 = ∅.
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An alternative definition of skeleton. An alternative definition of 𝜃-skeleton can be given
by removing the maximal free expressions from a term. Indeed, the 𝜃-skeleton {{{𝑝}}}𝜃 of a pure
term 𝑝, where 𝜃 = {𝑥1…𝑥𝑛}, is the n-ary pure context {{{𝑝}}}𝜃 such that {{{𝑝}}}𝜃 ⟨𝑞1, … , 𝑞𝑛⟩ = 𝑝, for
[𝑞1; … ; 𝑞𝑛] the maximal free expressions of 𝜆𝑥1. … 𝜆𝑥𝑛.𝑝.1. It is easy to show that both notions
of skeleton are equivalent, i.e. {{𝑝}}𝜃 = {{{𝑝}}}𝜃 . Thus, for the same 𝑝 as before, 𝜆𝑦.{{{𝑝}}}{𝑦} =
𝜆𝑦.(◊𝑦)◊(𝜆𝑧.𝑧𝑦◊).

The second strategy to split a term into a skeleton and its MFEs is the small-step strategy
→st on the set of terms T (figure 2.3), which is indeed a subset of the reduction relation →R.
It implements the second definition of skeleton we have introduced. The relation →st makes
use of four basic rules which are parameterized by the variable 𝑦 upon which the skeleton is
built, written ↦𝑦 . There are also two contextual (inductive) rules.

This definition is more subtle than the big-steps one. Indeed, it is necessary to handle con-
texts explicitly (by the last two rules), to pass the variable upon which to build the skeleton
to a local level, and to encode determinism.

𝑡[𝑥/𝑦] ↦𝑦
var 𝑡{𝑥/𝑦}

𝑦 ∈ fv(𝑝1𝑝2)
𝑡[𝑥/𝑝1𝑝2] ↦𝑦

app 𝑡{𝑥/𝑥1𝑥2}[𝑥1/𝑝1][𝑥2/𝑝2]

𝑦 ∈ fv(𝜆𝑧.𝑝)
𝑡[𝑥/𝜆𝑧.𝑝] ↦𝑦

dist 𝑡[𝑥//𝜆𝑧.𝑤[𝑤/𝑝]]
𝑦 ∈ fv(𝜆𝑧.LL⟨𝑝⟩) 𝑧 ∉ fv(LL)
𝑡[𝑥//𝜆𝑧.LL⟨𝑝⟩] ↦𝑦

abs LL⟨𝑡{𝑥/𝜆𝑧.𝑝}⟩

𝑡 ↦𝑦 𝑡′ 𝑦 ∈ fv(𝑡) 𝑦 ∉ fv(LL)
𝜆𝑦.LL⟨𝑡⟩ →st 𝜆𝑦.LL⟨𝑡′⟩ (CTX1)

𝑡 →st 𝑡′ 𝑦 ∈ fv(𝑡) 𝑦 ∉ fv(LL)
𝜆𝑦.LL⟨𝑢[𝑥//𝑡]⟩ →st 𝜆𝑦.LL⟨𝑢[𝑥//𝑡′]⟩ (CTX2)

Figure 2.3: Relation →st: Splitting Skeleton and MFEs in Small-Step Semantics.

Example 2.31. Let 𝜆𝑦.𝑥[𝑥/𝜆𝑧.(𝑦𝑡)𝑧] be as in example 2.29. Distance is highlighted.

𝜆𝑦.𝑥[𝑥/𝜆𝑧.(𝑦𝑡)𝑧] →𝑦
dist 𝜆𝑦.𝑥[𝑥//𝜆𝑧.𝑤[𝑤/(𝑦𝑡)𝑧]] →𝑧

app 𝜆𝑦.𝑥[𝑥//𝜆𝑧.(𝑤1𝑤2)[𝑤1/𝑦𝑡][𝑤2/𝑧]]
→𝑧

var 𝜆𝑦.𝑥[𝑥//𝜆𝑧.(𝑤1𝑧) [𝑤1/𝑦𝑡] ] →𝑦
abs 𝜆𝑦.(𝜆𝑧.𝑤1𝑧)[𝑤1/𝑦𝑡]

→𝑦
app 𝜆𝑦.(𝜆𝑧.(𝑥1𝑥2)𝑧)[𝑥1/𝑦][𝑥2/𝑡] →𝑦

var 𝜆𝑦.(𝜆𝑧.(𝑦𝑥2)𝑧)[𝑥2/𝑡]

Notice that the focused variable changes from 𝑦 to 𝑧, then back to 𝑦. This is because →st
constructs the innermost skeletons first. The small-step approach allows to parametrize the
reduction relation by only one variable at a time, instead of a set.

Lemma 2.32. If 𝑡 ∈ T and 𝑡 →st 𝑡′, then 𝑡′ ∈ T.

1The order of the abstractions is irrelevant.
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Proof. For the root ↦𝑦 rules, we first show that if 𝑡 = LL0⟨𝑝0⟩ with |𝑝0|𝑧 = 1 for all
𝑧 ∈ dom(LL0), and 𝑡 ↦𝑦 𝑡′, then 𝑡′ = LL1⟨𝑝1⟩ with |𝑝1|𝑧 = 1 for all 𝑧 ∈ dom(LL1).
Case 𝑡 ↦𝑦

var 𝑡′. This is straightforward.

Case 𝑡 = LL⟨𝑝⟩[𝑥/𝑞1𝑞2]↦𝑦
app LL⟨𝑝⟩{𝑥/𝑥1𝑥2}[𝑥1/𝑞1][𝑥2/𝑞2] = 𝑡′. Since 𝑥 ∉ fv(LL), we have

LL{𝑥/𝑥1𝑥2} = LL. Moreover, freshness of 𝑥1, 𝑥2 implies |LL⟨𝑝′⟩|𝑥1 = |LL⟨𝑝′⟩|𝑥2 =
|LL⟨𝑝⟩|𝑥 = 1, where 𝑝′ = 𝑝{𝑥/𝑥1𝑥2}, and |𝑞1|𝑥2 = 0.

Case 𝑡 = 𝑢[𝑥/𝜆𝑥′.𝑝] ↦𝑦
dist 𝑢[𝑥//𝜆𝑥′.𝑤[𝑤/𝑝]] = 𝑡′. This is true by hypothesis, where in

particular |𝑢|𝑥 = 1, and 𝜆𝑥′.𝑤[𝑤/𝑝] ∈ T because 𝑝 is pure and |𝑤|𝑤 = 1.

Case 𝑡 = LL1⟨𝑝1⟩[𝑥//𝜆𝑧.LL2⟨𝑝2⟩] ↦𝑦
abs LL2⟨LL1⟨𝑝1⟩{𝑥/𝜆𝑧.𝑝2}⟩ = 𝑡′. By hypothesis |𝑝1|𝑥 =

1 and |LL1|𝑥 = 0, so that 𝑡′ = LL2⟨LL1⟨𝑝1{𝑥/𝜆𝑧.𝑝2}⟩⟩ = LL′1⟨𝑝′⟩, since for all 𝑧1 ∈
dom(LL1) and all 𝑧2 ∈ dom(LL2), |𝑝1|𝑧1 = |𝑝2|𝑧2 = 1 and, by 𝛼-conversion, |𝑝1|𝑧2 =
|𝑝2|𝑧1 = 0 so that |𝑝1{𝑥/𝜆𝑧.𝑝2}|𝑧′ = 1 for any 𝑧′ ∈ dom(LL′).

Then, for the contextual rules, we show by induction on 𝑡 →sub 𝑡′: if 𝑡 ∈ T and 𝑡 →sub 𝑡′,
then 𝑡′ ∈ T.

Case (CTX1). We have 𝑡 = 𝜆𝑦.LL⟨𝑡0⟩ →sub 𝜆𝑦.LL⟨𝑡1⟩. By the hypothesis that 𝑡 ∈ T follows
𝑡0 = LL0⟨𝑝0⟩. By the previous case analysis, 𝑡1 = LL1⟨𝑝1⟩. Therefore 𝑡′ ∈ T.

Case (CTX2). We have 𝑡 = 𝜆𝑦.LL⟨𝑢[𝑥//𝑡0]⟩ →sub 𝜆𝑦.LL⟨𝑢[𝑥//𝑡1]⟩. By the hypothesis that
𝑡 ∈ T follows 𝑡0 ∈ T. By induction hypothesis, 𝑡1 ∈ T. Therefore 𝑡′ ∈ T.

Lemma 2.33. The reduction relation→st is confluent and terminating.

Proof. To show termination it is sufficient to notice that 𝑡 →st 𝑡′ implies 𝑡 →sub 𝑡′.
Since →sub is terminating (corollary 2.14) then we conclude termination of →st. Next,
we show that →st is confluent by observing that it is deterministic. Indeed,

• The base rules ↦𝑦 only reduce the outermost cut and they are all distinct: there
is one rule for an outermost distributor, and three rules for outermost explicit sub-
stitutions, one for each possible form (variable, application, abstraction).

• Because of the condition 𝑦 ∉ fv(LL) in rules (CTX1) and (CTX2) the base rules are
always applied from right to left inside an abstraction.

• Moreover, rule (CTX2) does not overlap with any other rule, in particular with
↦𝑦

abs. Indeed, for a term 𝑢[𝑥//𝜆𝑧.𝑧LL⟨𝑝⟩], there are only two possibilities. Either 𝑧
is a free variable of LL, and we cannot apply ↦𝑦

abs, or 𝑧 is not a free variable of LL,
and we can apply ↦𝑦

abs. In the latter, there is in particular no cut of LL for which 𝑧
is free. Therefore, we cannot apply any base-rule recursively inside the distributor.
So, we cannot apply rule (CTX2).
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Since rule application is deterministic, then there is no possible diverging diagram, and
thus confluence is trivial.

Thus, from now on, we denote by ⇓st the function relating a term of T to its unique st-nf.
For instance, from example 2.31 we deduce 𝜆𝑦.𝑥[𝑥/𝜆𝑧.(𝑦𝑡)𝑧] ⇓st 𝜆𝑦.(𝜆𝑧.(𝑦𝑥2)𝑧)[𝑥2/𝑡].
Lemma 2.34. If 𝑝 is a pure term and LL a (commutative) list context where 𝑦 ∉ fv(LL), then
there exists 𝑛 and an n-ary pure context 𝑐 such that

𝜆𝑦.LL⟨𝑡[𝑧/𝑝]⟩ →∗
st 𝜆𝑦.LL⟨𝑡{𝑧/𝑐⟨𝑥1, … , 𝑥𝑛⟩}[𝑥𝑖/𝑞𝑖]1≤𝑖≤𝑛⟩

where the variables 𝑥1, … , 𝑥𝑛 are fresh and pairwise distinct and [𝑞1; … ; 𝑞𝑛] are the MFE of 𝜆𝑦.𝑝
such that 𝑐⟨𝑞1, … , 𝑞𝑛⟩ = 𝑝.

Proof. If 𝑦 ∉ fv(𝑝), then 𝑝 is the MFE of 𝜆𝑦.𝑝 and the property is satisfied by the empty
reduction, with 𝑛 = 1, 𝑐 = ◊, and 𝑞1 = 𝑝. Otherwise, we reason by induction on 𝑝.

Case 𝑝 = 𝑦. Then 𝜆𝑦.𝑝 has no MFE and 𝜆𝑦.LL⟨𝑡[𝑧/𝑦]⟩ →𝑦
var 𝜆𝑦.LL⟨𝑡{𝑧/𝑦}⟩. Then the

property holds for 𝑛 = 0 and the nullary context 𝑦.

Case 𝑝 = 𝑝1𝑝2. Then by the i.h. on 𝑝2 and on 𝑝1 we have:

𝜆𝑦.LL⟨𝑡[𝑧/𝑝1𝑝2]⟩ →𝑦
app 𝜆𝑦.LL⟨𝑡{𝑧/𝑧1𝑧2}[𝑧1/𝑝1][𝑧2/𝑝2]⟩

→∗
st 𝜆𝑦.LL⟨𝑡{𝑧/𝑧1𝑐2⟨𝑥𝑘+1, … , 𝑥𝑛⟩}[𝑧1/𝑝1][𝑥𝑖/𝑞𝑖]𝑘<𝑖≤𝑛⟩

→∗
st 𝜆𝑦.LL⟨𝑡{𝑧/𝑐1⟨𝑥1, … , 𝑥𝑘⟩𝑐2⟨𝑥𝑘+1, … , 𝑥𝑛⟩}[𝑥𝑖/𝑞𝑖]1≤𝑖≤𝑘[𝑥𝑖/𝑞𝑖]𝑘<𝑖≤𝑛⟩

= 𝜆𝑦.LL⟨𝑡{𝑧/𝑐⟨𝑥1, … , 𝑥𝑛⟩}[𝑥𝑖/𝑞𝑖]1≤𝑖≤𝑛⟩
where 𝑐⟨𝑥1, … , 𝑥𝑛⟩ = 𝑐1⟨𝑥1, … , 𝑥𝑘⟩𝑐2⟨𝑥𝑘+1, … , 𝑥𝑛⟩, and the variables 𝑥1, … , 𝑥𝑛 are cho-
sen to be pairwise distinct. To apply the i.h. on 𝑝1, we take LL to be LL⟨◊[𝑥𝑖/𝑞𝑖]𝑘<𝑖≤𝑛⟩,
which verifies the hypothesis of the statement since by definition of the MFEs, 𝑦 ∉
∪𝑘<𝑖≤𝑛 fv(𝑞𝑖). We can conclude since the maximal free expressions of 𝜆𝑦.𝑝1𝑝2 can be
computed by considering the MFEs of 𝜆𝑦.𝑝1 and 𝜆𝑦.𝑝2 respectively, i.e. [𝑞1; … ; 𝑞𝑛].

Case 𝑝 = 𝜆𝑥.𝑝′. Then by the i.h. on 𝑝′ we have:

𝜆𝑥.𝑧′[𝑧′/𝑝′] →∗
st 𝜆𝑥.𝑐′⟨𝑥1, … , 𝑥𝑛⟩[𝑥𝑖/𝑞𝑖]1≤𝑖≤𝑛

where the terms [𝑞1; … ; 𝑞𝑛] are the MFEs of 𝜆𝑥.𝑝′, so in particular 𝑥 ∉ ∪1≤𝑖≤𝑛 fv(𝑞𝑖).
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We can then apply the i.h. on 𝑞𝑛, … , 𝑞1, thus for 𝑡0 = 𝜆𝑦.LL⟨𝑡[𝑧/𝜆𝑥.𝑝′]⟩ we have:

𝑡0 →𝑦
dist 𝜆𝑦.LL⟨𝑡[𝑧//𝜆𝑥.𝑧′[𝑧′/𝑝′]]⟩

→∗
st 𝜆𝑦.LL⟨𝑡[𝑧//𝜆𝑥.𝑐′⟨𝑥1, … , 𝑥𝑛⟩[𝑥𝑖/𝑞𝑖]1≤𝑖≤𝑛]⟩

→𝑦
abs 𝜆𝑦.LL⟨𝑡{𝑧/𝜆𝑥.𝑐′⟨𝑥1, … , 𝑥𝑛⟩}[𝑥𝑖/𝑞𝑖]1≤𝑖≤𝑛⟩

→∗
st 𝜆𝑦.LL⟨𝑡{𝑧/𝜆𝑥.𝑐′⟨𝑥1, … , 𝑥𝑛−1, 𝑐𝑛⟨𝑥1𝑛 , … , 𝑥𝑚𝑛𝑛 ⟩⟩}[𝑥𝑖/𝑞𝑖]1≤𝑖<𝑛[𝑥𝑗𝑛 /𝑞𝑗𝑛]1≤𝑗≤𝑚𝑛⟩

→∗
st 𝜆𝑦.LL⟨𝑡{𝑧/𝜆𝑥.𝑐′⟨𝑐1⟨𝑥11 , … , 𝑥𝑚11 ⟩, … , 𝑐𝑛⟨𝑥1𝑛 , … , 𝑥𝑚𝑛𝑛 ⟩⟩}[𝑥𝑗𝑖 /𝑞𝑗𝑛]1≤𝑗≤𝑚𝑖 ,1≤𝑖≤𝑛⟩

= 𝜆𝑦.LL⟨𝑡{𝑧/𝑐⟨𝑥11 , … , 𝑥𝑚𝑛𝑛 ⟩}[𝑥𝑗𝑖 /𝑞𝑗𝑛]1≤𝑗≤𝑚𝑖 ,1≤𝑖≤𝑛⟩

where 𝑐⟨𝑥11 , … , 𝑥𝑚𝑛𝑛 ⟩ = 𝜆𝑥.𝑐′⟨𝑐1⟨𝑥11 , … , 𝑥𝑚11 ⟩, … , 𝑐𝑛⟨𝑥1𝑛 , … , 𝑥𝑚𝑛𝑛 ⟩⟩ and the variables 𝑥11
to 𝑥𝑚𝑛𝑛 are taken pairwise distinct. To apply the i.h. on 𝑞𝑘 (1 ≤ 𝑘 ≤ 𝑛), we take
the linear context to be LL⟨◊[𝑥𝑗𝑖 /𝑞𝑗𝑖 ]1≤𝑗≤𝑚𝑖 ,𝑘<𝑖≤𝑛⟩, which verifies the hypothesis of

the statement since by definition of the MFEs, 𝑦 ∉ ∪1≤𝑗≤𝑚𝑖 ,𝑘<𝑖≤𝑛 fv(𝑞𝑗𝑖 ). By the i.h.
[𝑞1𝑖 ; … ; 𝑞𝑚𝑖𝑖 ] are the MFEs of 𝜆𝑦.𝑞𝑖 for each 𝑖. Therefore, since [𝑞1; … ; 𝑞𝑛] are the
MFEs of 𝜆𝑥.𝑝′, the terms [𝑞11 ; … ; 𝑞𝑚𝑛𝑛 ] are also the MFEs of 𝜆𝑦.𝜆𝑥.𝑝′.

Corollary 2.35 (Correctness of →st). Let 𝑝 ∈ T𝑃 and [𝑞1; … ; 𝑞𝑛] be the MFEs of 𝜆𝑦.𝑝. Then
𝜆𝑦.𝑧[𝑧/𝑝] ⇓st 𝜆𝑦.{{{𝑝}}}{𝑦}⟨𝑥1, … , 𝑥𝑛⟩[𝑥𝑖/𝑞𝑖]𝑖≤𝑛 where the variables 𝑥1, … , 𝑥𝑛 are fresh and pairwise
distinct.

Proof. By lemma 2.34, there is an n-ary pure context 𝑐 such that 𝜆𝑦.𝑧[𝑧/𝑝] →∗
nsub 𝑡 =

𝜆𝑦.𝑐⟨𝑥1, … , 𝑥𝑛⟩[𝑥𝑖/𝑞𝑖]1≤𝑖≤𝑛, where [𝑞1; … ; 𝑞𝑛] are the MFEs of 𝜆𝑦.𝑝. Thus, by the alternative
definition of skeleton, 𝑐 is {{{𝑝}}}{𝑦}. Moreover, 𝑡 is the nsub-nf of 𝜆𝑦.𝑧[𝑧/𝑝] because no
more base ↦𝑦-reduction steps can be applied to the list of explicit substitutions since 𝑦
is not free in 𝑞1, … , 𝑞𝑛 by definition of MFE.

From the fact that the two definitions of skeleton are equivalent, and from both proofs
of correctness (lemma 2.30 and corollary 2.35), we infer the equivalence between the small-
step and the big-step splitting semantics (figure 2.3 and figure 2.2 respectively). Since the
small-step semantics is contained in 𝜆𝑅, we use it to build our call-by-need strategy using
node replication.

Another interesting question concerns the splitting semantics for terms with explicit cuts.
It is not always clear what the maximal free expressions are, as this notion depends on the
position of the explicit cuts in the term. For instance, take the term 𝑡 = 𝜆𝑦.𝑧1[𝑤/𝑥𝑦]𝑧2. What
should be the MFEs of 𝑡? It could be [𝑧1; 𝑥; 𝑧2], or [𝑧1𝑧2; 𝑥], or even [(𝑧1𝑧2)[𝑤/𝑥]]. Similarly for
the skeleton, should it be respectively (1) 𝜆𝑦.◊[𝑤/𝑥◊]◊, (2) 𝜆𝑦.◊◊ or (3) 𝜆𝑦.◊? Solution (1)
proposes to keep explicit substitutions in the skeleton. This is not coherent with the seman-
tics of 𝜆𝑅 and 𝜆𝑎, which only substitute pure terms. Solution (2) consists in unfolding the
explicit cuts, so that the skeleton is pure. This can easily be obtained by adding the following
rule to the definition.

{{𝑡[𝑥/𝑢]}}𝜃 ≔ {{{𝑡}}
𝜃∪{𝑥}{𝑥/{{𝑢}}𝜃 }, if 𝜃 ∪ fv(𝑢) ≠ ∅

{{𝑡}}𝜃 , otherwise
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Indeed, this is the definition of skeleton adopted for the atomic λ-calculus in [GHP13a], where
the authors prove that the skeleton of a term with explicit substitutions (but without explicit
distributors) can be split from the MFEs.

In cases involving explicit cuts binding no variable, like [𝑤/𝑥𝑦] in the term 𝑡 above, this
definition is a cause of inefficiency: we would prefer solution (3), which avoids duplication
of the application node. More generally, many nodes can be duplicated inside a term to reach
a bound variable that will finally be erased. For instance, in the term 𝜆𝑦.𝑥1[𝑤/𝑦]𝑥2𝑥3…𝑥𝑛,
𝑛 − 1 applications nodes will need to be duplicated, and the skeleton would be considered
𝜆𝑦.◊◊◊…◊ (𝑛 times) following (2), and simply 𝜆𝑦.◊ following (3). As another example,
the skeleton of 𝜆𝑦.(𝜆𝑧.𝑧[𝑤/𝑦])𝑥 would be considered 𝜆𝑦.(𝜆𝑧.𝑧)◊ following (2) and 𝜆𝑦.◊ fol-
lowing (3). Unfortunately, this definition is hard to specify inductively (and therefore in a
big-step semantics) without modifying the term first by permuting the cuts. Interestingly
though, giving a small-step semantics for is possible by allowing →st-reduction deep inside
the distributors. This is one advantage of the small-steps semantics, that is more flexible.

The call-by-need strategy. We have shown how to implement skeleton extraction. A call-
by-need strategy depend on other elements: memoization (given by the explicit cuts), a no-
tion of needed variables and need contexts, and linear substitution.

The call-by-need strategy →flneed (figure 2.4) is defined on the set of terms U, by using
closure under the need contexts, given by the grammar

N ⩴ ◊ ∣ N𝑡 ∣ N[𝑥 ◁ 𝑡] ∣ N⟨⟨𝑥⟩⟩[𝑥/N]
where N⟨⟨_⟩⟩ denotes capture-free application of contexts (section 2.1.1). Like call-by-name
(section 2.3.1), the call-by-need strategy is weak, because no meaningful reduction steps are
performed under abstractions.

L⟨𝜆𝑥.𝑝⟩𝑢 ↦dB L⟨𝑝[𝑥/𝑢]⟩
N⟨⟨𝑥⟩⟩[𝑥/L⟨𝜆𝑦.𝑝⟩] →spl L⟨LL⟨N⟨⟨𝑥⟩⟩[𝑥//𝜆𝑦.𝑝′]⟩⟩ if 𝜆𝑦.𝑧[𝑧/𝑝] ⇓st 𝜆𝑦.LL⟨𝑝′⟩
N⟨⟨𝑥⟩⟩[𝑥//𝑣] →sub N⟨⟨𝑣⟩⟩[𝑥//𝑣]

Figure 2.4: call-by-need strategy.

Rule ↦dB is the same one used to define →name. Rule ↦spl only uses node replication
operations to compute the skeleton of the abstraction, while rule ↦sub implements one-shot
linear substitution. There is no rule to substitute a variable, as it is usually done in call-by-
need for closed terms [AF97].

Linear substitution as implemented in rule sub is out of scope of the calculus 𝜆𝑅. This
shows a limitation of 𝜆𝑅 and 𝜆𝑎, both using full substitution to implement fully lazy sharing.
Yet, the demand-driven philosophy of call-by-need is generally understood as replacing only
some desired instance of one variable [AF97]. This corresponds in particular to the behavior
of abstract machines, which make explicit some of the implementation features.

In this work, we have chosen to focus on node replication, and implement it in a generic
explicit substitution calculus. A linear calculus for node replication could be considered. A
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naive version of the calculus would however be very space-inefficient, as reduction would
create a lot of explicit substitutions. Nonetheless, remark that the substitution used in the
small-step semantics →st is linear, thanks to the restriction on terms. This facilitates the
design of →flneed as a strategy of a linear calculus.

Notice that as a particular case of lemma 2.24, 𝑡 ∈ U and 𝑡 →flneed 𝑡′ implies 𝑡′ ∈ U.
Another interesting property is that 𝑡 →sub 𝑡′ implies lv𝑧(𝑡) ≥ lv𝑧(𝑡′). Moreover, →flneed is
deterministic.

Lemma 2.36 (Determinism). The strategy→flneed is deterministic.

Proof. The left hand sides of the rules dB, dist and sub are disjoint. On the other hand,
the reduction relation →st is confluent and terminating by lemma 2.33 so that ⇓st defines
a function, thus the relation →flneed is deterministic.

Example 2.37. Let 𝑡0 = (𝜆𝑥.(I(I𝑥)))(𝜆𝑦.𝑦I). Needed variable occurrences are highlighted in
orange .

𝑡0 →dB (I(I𝑥))[𝑥/𝜆𝑦.𝑦I] →dB 𝑥1 [𝑥1/I𝑥][𝑥/𝜆𝑦.𝑦I]
→dB 𝑥1[𝑥1/𝑥2[𝑥2/ 𝑥 ]][𝑥/𝜆𝑦.𝑦I] →spl 𝑥1[𝑥1/𝑥2[𝑥2/ 𝑥 ]][𝑥//𝜆𝑦.𝑦𝑧1][𝑧1/I]
→sub 𝑥1[𝑥1/ 𝑥2 [𝑥2/𝜆𝑦.𝑦𝑧1]][𝑥//𝜆𝑦.𝑦𝑧1][𝑧1/I]
→spl 𝑥1[𝑥1/ 𝑥2 [𝑥2//𝜆𝑦.𝑦𝑧2][𝑧2/𝑧1]][𝑥//𝜆𝑦.𝑦𝑧1][𝑧1/I]
→sub 𝑥1 [𝑥1/(𝜆𝑦.𝑦𝑧2) [𝑥2//𝜆𝑦.𝑦𝑧2][𝑧2/𝑧1] ][𝑥//𝜆𝑦.𝑦𝑧1][𝑧1/I]
→spl 𝑥1 [𝑥1//𝜆𝑦.𝑦𝑧3][𝑧3/𝑧2][𝑥2//𝜆𝑦.𝑦𝑧2][𝑧2/𝑧1][𝑥//𝜆𝑦.𝑦𝑧1][𝑧1/I]
→sub (𝜆𝑦.𝑦𝑧3)[𝑥1//𝜆𝑦.𝑦𝑧3][𝑧3/𝑧2][𝑥2//𝜆𝑦.𝑦𝑧2][𝑧2/𝑧1][𝑥//𝜆𝑦.𝑦𝑧1][𝑧1/I]

In order to characterize flneed-nfs, we use the notion of needed free variables ndv(𝑡) of
a term 𝑡 , defined as:

ndv(𝑥) ≔ {𝑥} ndv(𝑡[𝑦/𝑢]) ≔ {ndv(𝑢) if 𝑦 ∈ ndv(𝑡)
ndv(𝑡) if 𝑦 ∉ ndv(𝑡)

ndv(𝑡𝑢) ≔ ndv(𝑡) ndv(𝑡[𝑥//𝑢]) ≔ ndv(𝑡)
ndv(𝜆𝑥.𝑡) ≔ ∅

Notice that ndv(𝑡) is always either a singleton or the empty set. Thus e.g. ndv(𝑥[𝑦//I]I) = {𝑥}
and ndv((𝑥𝑦1)[𝑥/𝑧𝑦2]) = {𝑧}. In particular, 𝑥 ∈ ndv(𝑡) implies 𝑥 ∈ fv(𝑡).
Lemma 2.38. Let 𝑡 ∈ U. Then 𝑥 ∈ ndv(𝑡) iff there exists a context N such that 𝑡 = N⟨⟨𝑥⟩⟩.

Proof. We start with the left-to-right implication. Let 𝑥 ∈ ndv(𝑡). By induction on 𝑡 .
Case 𝑡 = 𝑥 . We take N = ◊.

Case 𝑡 = 𝑡′𝑢. By the i.h. there exists N′ such that 𝑡′ = N′⟨⟨𝑥⟩⟩. We then take N = N′𝑢.

Case 𝑡 = 𝑡′[𝑦/𝑢]. By 𝛼-conversion we can assume 𝑥 ≠ 𝑦 . Either 𝑥 ∈ ndv(𝑡′) or (𝑥 ∈
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ndv(𝑢) and 𝑦 ∈ ndv(𝑡′)). In the first case, there exists by the i.h. on 𝑡′ a context N′
such that 𝑡′ = N′⟨⟨𝑥⟩⟩. We then take N = N′[𝑦/𝑢]. In the second case, there exists by
the i.h. on 𝑡′ a context N1 such that 𝑡′ = N1⟨⟨𝑦⟩⟩. By the i.h. on 𝑢 we have 𝑢 = N2⟨⟨𝑥⟩⟩.
We then take N = N1⟨⟨𝑦⟩⟩[𝑦/N2].

Case 𝑡 = 𝑡′[𝑥//𝑢]. By the i.h. there exists N′ such that 𝑡′ = N′⟨⟨𝑥⟩⟩. We then take N =
N′[𝑥//𝑢].

We continue with the right-to-left implication. Let 𝑡 = N⟨⟨𝑥⟩⟩. By induction on N.

Case N = ◊. Then 𝑡 = 𝑥 and ndv(𝑡) = {𝑥}.
Case N = N′𝑢. Then 𝑡 = 𝑡′𝑢 and by the i.h. 𝑥 ∈ ndv(𝑡′), so 𝑥 ∈ ndv(𝑡) by definition.

Case N = N′[𝑥 ◁ 𝑢]. Then 𝑡 = 𝑡′[𝑥 ◁ 𝑢] and by the i.h. 𝑥 ∈ ndv(𝑡′), so 𝑥 ∈ ndv(𝑡) by
definition.

Case N = N1⟨⟨𝑦⟩⟩[𝑦/N2]. Then 𝑡 = 𝑡′[𝑦/𝑢], where 𝑦 ∈ fv(𝑡′). By the i.h. 𝑥 ∈ ndv(𝑢), so
𝑥 ∈ ndv(𝑡).

Terms of U in flneed-nf can be characterized by the grammar NFflneed, defined upon the
grammar of neutral terms NEflneed. Notice that name-nfs are also flneed-nfs.

NFflneed ⩴ L⟨𝜆𝑥.𝑡⟩ ∣ NEflneed

NEflneed ⩴ 𝑥 ∣ NEflneed 𝑡 ∣ NEflneed[𝑥 ◁ 𝑢] where 𝑥 ∉ ndv(NEflneed)
∣ NEflneed[𝑥/NE′flneed] where 𝑥 ∈ ndv(NEflneed)

Lemma 2.39. Let 𝑡 ∈ U. Then 𝑡 ∈ NFflneed iff 𝑡 is in flneed-nf.

Proof. We first show that 𝑡 ∈ NEflneed iff 𝑡 is in flneed-nf and 𝑡 is not an answer. The
left-to-right implication is by induction on 𝑡 ∈ NEflneed.

Case 𝑡 = 𝑥 . This case is straightforward.

Case 𝑡 = 𝑡′𝑢 where 𝑡′ ∈ NEflneed. By the i.h. 𝑡′ is in flneed-nf and is not an answer, so it
is not possible to apply any dB-reduction at the root. Then 𝑡 is in flneed-nf, and
since it is an application it is not an answer.

Case 𝑡 = 𝑡′[𝑥 ◁ 𝑢] where 𝑡′ ∈ NEflneed and 𝑥 ∉ ndv(𝑡′). By the i.h. 𝑡′ is in flneed-nf and
it is not an answer. Moreover, we cannot apply rules →spl nor →sub because by
lemma 2.38 there is no context N surrounding 𝑥 . Then 𝑡 is in flneed-nf and is not an
answer.

Case 𝑡 = 𝑡′[𝑥/𝑢] where 𝑡′, 𝑢 ∈ NEflneed and 𝑥 ∈ ndv(𝑡′). By the i.h. 𝑡′ and 𝑢 are in flneed-
nf and are not answers. We cannot apply rule →spl because 𝑢 is not an answer.
Then 𝑡 is in flneed-nf and is not an answer.
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The right-to-left implication is by induction on 𝑡 .
Case 𝑡 = 𝑥 . Immediate.

Case 𝑡 = 𝑡′𝑢. Then 𝑡′ is in flneed-nf and is not an answer (otherwise dB would be appli-
cable). By the i.h. 𝑡′ ∈ NEflneed and thus 𝑡 ∈ NEflneed.

Case 𝑡 = 𝑡′[𝑥/𝑢]. Then 𝑡′ is in flneed-nf and is not an answer. By the i.h. 𝑡′ ∈ NEflneed.
There are two cases. If 𝑥 ∉ ndv(𝑡′), then 𝑡 ∈ NEflneed by definition and we are done.
Otherwise 𝑥 ∈ ndv(𝑡′), and we get 𝑡′ = N⟨⟨𝑥⟩⟩ by lemma 2.38. Thus 𝑢 cannot be an
answer because →spl would apply. Moreover, 𝑢 is in flneed-nf because otherwise 𝑡
would not be in flneed-nf. Thus, 𝑢 ∈ NEflneed by the i.h. and we get 𝑡 ∈ NEflneed by
definition.

Case 𝑡 = 𝑡′[𝑥//𝑢]. We have 𝑥 ∉ ndv(𝑡′), because →sub does not apply. By the i.h. 𝑡′ ∈
NEflneed, so that 𝑡 ∈ NEflneed.

Neutral terms are also normal. Answers are normal because the calculus is weak and
they belong to the grammar NFflneed.

2.4 A Type System for 𝜆𝑅
This section introduces a quantitative type system ∩𝑅 for 𝜆𝑅. Non-idempotent intersec-
tion [Gar94] has one main advantage over the idempotent model [BDS09]: it gives quantita-
tive information about the length of reduction sequences to normal forms [dCar07]. Indeed,
not only typability and normalization can be proved to be equivalent, but a measure based on
type derivations provides an upper bound to normalizing reduction sequences. This was ex-
tensively investigated in different logical/computational frameworks [AGL19; Buc+20; CG14;
Ehr12; Kes16; KV20]. However, no quantitative result based on types exists in the literature
for the node replication model, even in the formulation of (non-idempotent) intersection
types for open deduction [GHP21]. The typing rules of our system are in themselves not
surprising (see [KV14]), but they provide a handy quantitative characterization of fully lazy
normalization (section 2.5).

The type system is called ∩𝑅 and presented in figure 2.5. The grammar of types is the
same as in section 1.3.2.2, with in particular a special type constant a used to type terms
reducing to normal abstractions. The only difference with the systems for ES introduced
in section 1.3.2.2 is that the rule (CUT) is generalized to explicit cuts. The size of a type
derivation sz(Φ) is defined as the number of its rules (ABS), (APP) and (ANS).

As usual, the typing system is relevant:

Property 2.40 (Relevance). If Φ = Γ ⊩ 𝑡 ∶ 𝜎 , then dom(Γ) ⊆ fv(𝑡).

Proof. Straightforward by induction on the typing derivation.
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𝑥 ∶ [𝜎] ⊢ 𝑥 ∶ 𝜎 (AX)
Γ; 𝑥 ∶ ℳ ⊢ 𝑡 ∶ 𝜎
Γ ⊢ 𝜆𝑥.𝑡 ∶ ℳ → 𝜎 (ABS) ∅ ⊢ 𝜆𝑥.𝑡 ∶ a

(ANS)

Γ ⊢ 𝑡 ∶ ℳ → 𝜎 Δ ⊢ 𝑢 ∶ ℳ
Γ ⊎ Δ ⊢ 𝑡𝑢 ∶ 𝜎 (APP)

Γ; 𝑥 ∶ ℳ ⊢ 𝑡 ∶ 𝜎 Δ ⊢ 𝑢 ∶ ℳ
Γ ⊎ Δ ⊢ 𝑡[𝑥 ◁ 𝑢] ∶ 𝜎 (CUT)

(Γ𝑖 ⊢ 𝑡 ∶ 𝜎𝑖)𝑖∈𝐼
⊎𝑖∈𝐼Γ𝑖 ⊢ 𝑡 ∶ [𝜎𝑖]𝑖∈𝐼

(MANY)

Figure 2.5: Typing System ∩𝑅.

Example 2.41. The following tree is a type derivation (called Φ𝑢) in system ∩𝑅 for the term
𝑢 = 𝑥[𝑥/𝑦𝑧].

𝑥 ∶ [𝜏] ⊢ 𝑥 ∶ 𝜏 (AX)

𝑦 ∶ [[𝜏 ] → 𝜏] ⊢ 𝑦 ∶ [𝜏] → 𝜏 (AX)
𝑧 ∶ [𝜏 ] ⊢ 𝑧 ∶ 𝜏 (AX)

𝑧 ∶ [𝜏 ] ⊢ 𝑧 ∶ [𝜏] (MANY)

𝑦 ∶ [[𝜏 ] → 𝜏], 𝑧 ∶ [𝜏 ] ⊢ 𝑦𝑧 ∶ 𝜏
𝑦 ∶ [[𝜏 ] → 𝜏], 𝑧 ∶ [𝜏 ] ⊢ 𝑦𝑧 ∶ [𝜏] (MANY)

(APP)

𝑦 ∶ [[𝜏 ] → 𝜏], 𝑧 ∶ [𝜏 ] ⊢ 𝑥[𝑥/𝑦𝑧] ∶ 𝜏 (CUT)

Type derivations can be measured by triples. We use a + operation on triples as pointwise
addition: (𝑛1, 𝑛2, 𝑛3) + (𝑚1, 𝑚2, 𝑚3) = (𝑛1 + 𝑚1, 𝑛2 + 𝑚2, 𝑛3 + 𝑚3). These triples are computed
by a weighted derivation level function defined on typing derivations as D (Φ) ≔ M (Φ, 1),
where M (Φ, ⋅) is inductively defined below. In the cases (ABS), (APP) and (CUT), we let Φ𝑡
(resp. Φ𝑢) be the subderivation of the type of 𝑡 (resp. Φ𝑢) and in (MANY) we let Φ𝑖𝑡 be the 𝑖-th
derivation of the type of 𝑡 for each 𝑖 ∈ 𝐼 .
Case (AX). M (Φ𝑥 , 𝑚) = (0, 0, 1),
Case (ABS). M (Φ𝜆𝑥.𝑡 , 𝑚) = M (Φ𝑡 , 𝑚) + (1, 𝑚, 0).
Case (ANS). M (Φ𝜆𝑥.𝑡 , 𝑚) = (1, 𝑚, 0).
Case (APP). M (Φ𝑡𝑢 , 𝑚) = M (Φ𝑡 , 𝑚) + M (Φ𝑢 , 𝑚) + (1, 𝑚, 0).
Case (CUT). M (Φ𝑡[𝑥◁𝑢], 𝑚) = M (Φ𝑡 , 𝑚) + M (Φ𝑢 , 𝑚 + lv𝑥(𝑡) + es([𝑥 ◁ 𝑢])).
Case (MANY). M (Φ𝑡 , 𝑚) = ∑𝑖∈𝐼 M (Φ𝑖𝑡 , 𝑚).

Intuitively, the first component of the triple M (Φ, 𝑚) counts the number of application
and abstraction rules in the typing derivation. This is simply the size sz(Φ) of the derivation,
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does not depend on 𝑚 and decreases at each dB-step. The second component also counts the
number of application and abstractions rules, but weighted by the level of the constructor.
This component decreases with →abs and →app reductions. The third component counts
the number of axiom rules, and does not depend on 𝑚. It decreases with substitutions that
occur in →var and →dist-steps.

Example 2.42. Take the derivation Φ𝑢 from example 2.41. Its measure is D (Φ𝑢) = (1, 2, 3).
Moreover, for 𝑥[𝑥/𝑦𝑧] →app (𝑥1𝑥2)[𝑥1/𝑦][𝑥2/𝑧] we have

Φ𝑢′ = 𝑦 ∶ [𝜎], 𝑧 ∶ [𝜏 ] ⊩ (𝑥1𝑥2)[𝑥1/𝑦][𝑥2/𝑧] ∶ 𝜏
and D (Φ𝑢′) = (1, 1, 4).
Lemma 2.43. For all derivation Φ and all 𝑚, 𝑛 ∈ ℕ with 𝑚 > 𝑛, M (Φ, 𝑚) = M (Φ, 𝑛) + (0, (𝑚 −
𝑛) ∗ sz(Φ), 0).

Proof. By induction on Φ.

Case Φ = 𝑥 ∶ [𝜎] ⊢ 𝑥 ∶ 𝜎 . Then, M (Φ, 𝑚) = (0, 0, 1) = (0, 0, 1) + (0, 0 + (𝑚 − 𝑛) ∗ 0, 0).

Case Φ = Φ𝑡 = Γ; 𝑦 ∶ ℳ ⊩ 𝑡 ∶ 𝜏
Γ ⊢ 𝜆𝑦.𝑡 ∶ ℳ → 𝜏 . Then

M (Φ, 𝑚) = M (Φ𝑡 , 𝑚) + (1, 𝑚, 0)
=i.h. M (Φ𝑡 , 𝑛) + (0, (𝑚 − 𝑛) ∗ sz(Φ𝑡), 0) + (1, 𝑛, 0) + (0, 𝑚 − 𝑛, 0)
= M (Φ, 𝑛) + (0, (𝑚 − 𝑛) ∗ sz(Φ𝑡), 0) + (0, 𝑚 − 𝑛, 0)
= M (Φ, 𝑛) + (0, (𝑚 − 𝑛) ∗ (sz(Φ𝑡) + 1), 0)
= M (Φ, 𝑛) + (0, (𝑚 − 𝑛) ∗ sz(Φ), 0)

Case Φ = ⊢ 𝜆𝑥.𝑡 ∶ a
. Then, M (Φ, 𝑚) = (1, 𝑚, 0) = M (Φ, 𝑛) + (0, (𝑚 − 𝑛) ∗ sz(Φ), 0).

Case Φ = Φ𝑡 = Γ ⊩ 𝑡 ∶ ℳ → 𝜏 Φ𝑢 = Δ ⊩ 𝑢 ∶ ℳ
Γ ⊎ Δ ⊢ 𝑡𝑢 ∶ 𝜏 . Then

M (Φ, 𝑚) = M (Φ𝑡 , 𝑚) + M (Φ𝑢 , 𝑚) + (1, 𝑚, 0)
=i.h. M (Φ𝑡 , 𝑛) + (0, (𝑚 − 𝑛) ∗ sz(Φ𝑡), 0)
+ M (Φ𝑢 , 𝑛) + (0, (𝑚 − 𝑛) ∗ sz(Φ𝑢), 0) + (1, 𝑛, 0) + (0, 𝑚 − 𝑛, 0)

= M (Φ, 𝑛) + (0, (𝑚 − 𝑛) ∗ (sz(Φ𝑡) + sz(Φ𝑢) + 1), 0)
= M (Φ, 𝑛) + (0, (𝑚 − 𝑛) ∗ sz(Φ), 0)
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Case Φ = Φ𝑡 = Γ; 𝑥 ∶ ℳ ⊩ 𝑡 ∶ 𝜎 Φ𝑢 = Δ ⊩ 𝑢 ∶ ℳ
Γ ⊎ Δ ⊢ 𝑡[𝑥 ◁ 𝑢] ∶ 𝜏 . Then

M (Φ, 𝑚) = M (Φ𝑡 , 𝑚) + M (Φ𝑢 , 𝑚 + lv𝑥(𝑡) + es([𝑥 ◁ 𝑢]))
=i.h. M (Φ𝑡 , 𝑛) + (0, (𝑚 − 𝑛) ∗ sz(Φ𝑡), 0) + M (Φ𝑢 , 𝑛 + lv𝑥(𝑡) + es([𝑥 ◁ 𝑢]))

+ (0, (𝑚 − 𝑛) ∗ sz(Φ𝑢), 0)
= M (Φ, 𝑛) + (0, (𝑚 − 𝑛) ∗ (sz(Φ𝑡) + sz(Φ𝑢)), 0)
= M (Φ, 𝑛) + (0, (𝑚 − 𝑛) ∗ sz(Φ), 0)

Lemma 2.44 (Split). Let Φ = Δ ⊩ 𝑢 ∶ ℳ such that ℳ = ⊔𝑖∈𝐼ℳ𝑖 for 𝐼 ≠ ∅. Then there are
derivations Φ𝑖 = Δ𝑖 ⊩ 𝑢 ∶ ℳ𝑖 such that Δ = +𝑖∈𝐼Δ𝑖 and M (Φ, 𝑚) = ∑𝑖∈𝐼 M (Φ𝑖 , 𝑚).

Proof. Straightforward.

2.5 Observational Equivalence
The type system ∩𝑅 characterizes normalization of both name and flneed strategies as fol-
lows: every typable term normalizes and every normalizable term is typable. In this sense,
system ∩𝑅 can be seen as a (quantitative) model [BE01] of our call-by-name and call-by-need
strategies. We prove these results by studying the appropriate lemmas, notably weighted sub-
ject reduction and weighted subject expansion. We then deduce observational equivalence
between the name and the flneed strategies from the fact that their associated normalization
properties are both fully characterized by the same typing system.

Soundness. Soundness of system ∩𝑅 w.r.t. both →name and →flneed is investigated in this
section. More precisely, we show that typable terms are normalizing for both strategies. In
contrast to reducibility techniques needed to show this kind of result for simple [GHP13a]
or idempotent intersection types, soundness is achieved here by relatively simple combina-
torial arguments based again on decreasing measures. We start by studying the interaction
between system ∩𝑅 and linear as well as full substitution.

Lemma 2.45 (Partial substitution). Let Φ = Γ; 𝑥 ∶ ℳ ⊩ C⟨⟨𝑥⟩⟩ ∶ 𝜎 and ⊑ denote multiset
inclusion. Then, there exists𝒩 ⊑ ℳ such that for every Φ𝑢 = Δ ⊩ 𝑢 ∶ 𝒩 we haveΨ = Γ⊎Δ; 𝑥 ∶
ℳ⧵𝒩 ⊩ C⟨⟨𝑢⟩⟩ ∶ 𝜎 and, for every 𝑚 ∈ ℕ, M (Ψ, 𝑚) = M (Φ, 𝑚)+M (Φ𝑢 , 𝑚 + lv◊(C))−(0, 0, |𝒩 |).

Proof. By induction on Φ.

Case (AX). ThenΦ = 𝑥 ∶ [𝜎] ⊢ 𝑥 ∶ 𝜎 , 𝒩 = [𝜎] andΨ = Φ𝑢 = Δ ⊩ 𝑢 ∶ [𝜎]. So, M (Ψ, 𝑚) =
M (Φ𝑢 , 𝑚) = (0, 0, 1) + M (Φ𝑢 , 𝑚 + 0) − (0, 0, 1) = M (Φ, 𝑚) + M (Φ𝑢 , 𝑚 + lv◊(𝐶)) −
(0, 0, |𝒩 |).
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Case (ABS). Then Φ = Φ′ = Γ; 𝑥 ∶ ℳ; 𝑦 ∶ ℳ𝑦 ⊩ C′⟨⟨𝑥⟩⟩ ∶ 𝜏
Γ; 𝑥 ∶ ℳ ⊢ 𝜆𝑦.C′⟨⟨𝑥⟩⟩ ∶ ℳ𝑦 → 𝜏 . By 𝛼-conversion, we can

assume that 𝑦 ∉ dom(Δ) so that (Γ; 𝑦 ∶ ℳ𝑦) ⊎ Δ = Γ ⊎ Δ; 𝑦 ∶ ℳ𝑦 . By using the i.h.

we can then construct Ψ = Ψ′ = Γ ⊎ Δ; 𝑥 ∶ ℳ ⧵ 𝒩 ; 𝑦 ∶ ℳ𝑦 ⊩ C′⟨⟨𝑢⟩⟩ ∶ 𝜏
Γ ⊎ Δ; 𝑥 ∶ ℳ ⧵ 𝒩 ⊢ 𝜆𝑦.C′⟨⟨𝑢⟩⟩ ∶ ℳ𝑦 → 𝜏 . Then,

M (Ψ, 𝑚) = M (Ψ′, 𝑚) + (1, 𝑚, 0)
=i.h. M (Φ′, 𝑚) + M (Φ𝑢 , 𝑚 + lv◊(C′)) − (0, 0, |𝒩 |) + (1, 𝑚, 0)
= M (Φ, 𝑚) + M (Φ𝑢 , 𝑚 + lv◊(𝜆𝑦.C′)) − (0, 0, |𝒩 |)

Case (ANS). Then Φ = ∅ ⊢ 𝜆𝑦.C′⟨⟨𝑥⟩⟩ ∶ a
. We can build Ψ = ∅ ⊢ 𝜆𝑦.C′⟨⟨𝑢⟩⟩ ∶ a

. In

particular, we have ℳ = 𝒩 = [ ], and thus Φ𝑢 comes from the application of the
(MANY) rule to 0 premises, so that M (Φ𝑢 , 𝑚 + lv◊(C)) = (0, 0, 0). We have M (Φ, 𝑚) =
M (Ψ, 𝑚) = M (Ψ, 𝑚) + (0, 0, 0) − (0, 0, 0).

Case (APP) left. Then

Φ = Φ1 = Γ1; 𝑥 ∶ ℳ1 ⊩ C′⟨⟨𝑥⟩⟩ ∶ ℳ′ → 𝜎 Φ2 = Γ2; 𝑥 ∶ ℳ2 ⊩ 𝑡 ∶ ℳ′

Γ1 ⊎ Γ2; 𝑥 ∶ ℳ ⊢ C′⟨⟨𝑥⟩⟩𝑡 ∶ 𝜎
By i.h. there is 𝒩 ⊑ ℳ1 such that we can construct

Ψ = Ψ1 = Γ1 ⊎ Δ; 𝑥 ∶ ℳ1 ⧵ 𝒩 ⊩ C′⟨⟨𝑢⟩⟩ ∶ ℳ′ → 𝜎 Φ2 = Γ2; 𝑥 ∶ ℳ2 ⊩ 𝑡 ∶ ℳ′

Γ1 ⊎ Γ2 ⊎ Δ; 𝑥 ∶ ℳ ⧵ 𝒩 ⊢ C′⟨⟨𝑢⟩⟩𝑡 ∶ 𝜎
because ℳ ⧵𝒩 = ℳ1 ⧵ 𝒩 ⊔ℳ2. We have

M (Ψ, 𝑚) = M (Ψ1, 𝑚) + M (Φ2, 𝑚) + (1, 𝑚, 0)
=i.h. M (Φ1, 𝑚) + M (Φ𝑢 , 𝑚 + lv◊(C′)) − (0, 0, |𝒩 |) + M (Φ2, 𝑚) + (1, 𝑚, 0)
= M (Φ, 𝑚) + M (Φ𝑢 , 𝑚 + lv◊(C′𝑡)) − (0, 0, |𝒩 |)

Case (APP) right. Then

Φ =
Φ1 = Γ1; 𝑥 ∶ ℳ1 ⊩ 𝑡 ∶ [𝜏𝑖]𝑖∈𝐼 → 𝜎 (Φ𝑖2 = Γ𝑖2; 𝑥 ∶ ℳ𝑖2 ⊩ C′⟨⟨𝑥⟩⟩ ∶ 𝜏𝑖)𝑖∈𝐼

Γ2; 𝑥 ∶ ℳ2 ⊢ C′⟨⟨𝑥⟩⟩ ∶ [𝜏𝑖]𝑖∈𝐼
Γ1 ⊎ Γ2; 𝑥 ∶ ℳ ⊢ 𝑡C′⟨⟨𝑥⟩⟩ ∶ 𝜎

where ℳ2 = ⊔𝑖∈𝐼ℳ𝑖2 and Γ2 = ⊎𝑖∈𝐼Γ𝑖2. lemma 2.44 gives Φ𝑖𝑢 = Δ𝑖 ⊩ 𝑢 ∶ 𝒩 𝑖 such that
𝒩 𝑖 ⊑ ℳ 𝑖2 for all 𝑖 ∈ 𝐼 and 𝒩 = ⊔𝑖∈𝐼𝒩 𝑖 . Moreover, M (Φ𝑢 , 𝑚) = ∑𝑖∈𝐼 M (Φ𝑖𝑢 , 𝑚). Using
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the i.h. we can construct Ψ below:

Φ1 = Γ1; 𝑥 ∶ ℳ1 ⊩ 𝑡 ∶ [𝜏𝑖]𝑖∈𝐼 → 𝜎 (Ψ𝑖2 = Γ𝑖2 ⊎ Δ𝑖 ; 𝑥 ∶ ℳ𝑖2 ⧵ 𝒩 𝑖 ⊩ C′⟨⟨𝑢⟩⟩ ∶ 𝜏𝑖)𝑖∈𝐼
Γ2 ⊎ Δ; 𝑥 ∶ ℳ2 ⧵ 𝒩 ⊢ C′⟨⟨𝑢⟩⟩ ∶ [𝜏𝑖]𝑖∈𝐼

Γ1 ⊎ Γ2 ⊎ Δ; 𝑥 ∶ ℳ ⧵ 𝒩 ⊢ 𝑡C′⟨⟨𝑢⟩⟩ ∶ 𝜎
where ℳ ⧵𝒩 = ℳ1 ⊔ℳ2 ⧵ 𝒩 . We have

M (Ψ, 𝑚) = M (Φ1, 𝑚) +∑
𝑖∈𝐼

M (Ψ𝑖2, 𝑚) + (1, 𝑚, 0)

=i.h. M (Φ1, 𝑚) +∑
𝑖∈𝐼

(M (Φ𝑖2, 𝑚) + M (Φ𝑖𝑢 , 𝑚 + lv◊(C′)) − (0, 0, |𝒩 𝑖 |)) + (1, 𝑚, 0)

= M (Φ, 𝑚) + M (Φ𝑢 , 𝑚 + lv◊(𝑡C′)) − (0, 0, |𝒩 |)

Case (CUT) left. Then

Φ = Φ1 = Γ1; 𝑥 ∶ ℳ1; 𝑦 ∶ ℳ𝑦 ⊩ C′⟨⟨𝑥⟩⟩ ∶ 𝜎 Φ2 = Γ2; 𝑥 ∶ ℳ2 ⊩ 𝑡 ∶ ℳ𝑦
Γ1 ⊎ Γ2; 𝑥 ∶ ℳ ⊢ C′⟨⟨𝑥⟩⟩[𝑦 ◁ 𝑡] ∶ 𝜎

We can assume by 𝛼-conversion that 𝑥 ∉ fv(𝑢) and 𝑦 ∉ fv(𝑢) thus, by the Relevance
property 2.40, 𝑦 ∉ dom(Δ) so that in particular (Γ1; 𝑦 ∶ ℳ𝑦) ⊎ Δ = Γ1 ⊎ Δ; 𝑦 ∶ ℳ𝑦 .
By using the i.h. we can then construct

Ψ = Ψ1 = Γ1 ⊎ Δ; 𝑥 ∶ ℳ1 ⧵ 𝒩 ; 𝑦 ∶ ℳ𝑦 ⊩ C′⟨⟨𝑢⟩⟩ ∶ 𝜎 Φ2 = Γ2; 𝑥 ∶ ℳ2 ⊩ 𝑡 ∶ ℳ𝑦
Γ1 ⊎ Γ2 ⊎ Δ; 𝑥 ∶ ℳ ⧵ 𝒩 ⊢ C′⟨⟨𝑢⟩⟩[𝑦 ◁ 𝑡] ∶ 𝜎

because ℳ ⧵𝒩 = ℳ1 ⧵ 𝒩 ⊔ℳ2. We have:

M (Ψ, 𝑚) = M (Ψ1, 𝑚) + M (Φ2, 𝑚 + lv𝑦(C′⟨⟨𝑢⟩⟩) + es([𝑦 ◁ 𝑡]))
=i.h. M (Φ1, 𝑚) + M (Φ𝑢 , 𝑚 + lv◊(C′)) − (0, 0, |𝒩 |)

+ M (Φ2, 𝑚 + lv𝑦(C′⟨𝑥⟩)) + es([𝑦 ◁ 𝑡])
= M (Φ, 𝑚) + M (Φ𝑢 , 𝑚 + lv◊(C′[𝑦 ◁ 𝑡])) − (0, 0, |𝒩 |)

Case (CUT) right. Then

Φ =
Φ1 = Γ1; 𝑥 ∶ ℳ1; 𝑦 ∶ [𝜏𝑖]𝑖∈𝐼 ⊩ 𝑡 ∶ 𝜎 (Φ𝑖2 = Γ𝑖2; 𝑥 ∶ ℳ𝑖2 ⊩ C′⟨⟨𝑥⟩⟩ ∶ 𝜏𝑖)𝑖∈𝐼

Γ2; 𝑥 ∶ ℳ2 ⊢ C′⟨⟨𝑥⟩⟩ ∶ [𝜏𝑖]𝑖∈𝐼
Γ1 ⊎ Γ2; 𝑥 ∶ ℳ ⊢ 𝑡[𝑦 ◁ C′⟨⟨𝑥⟩⟩] ∶ 𝜎

where ℳ = ℳ1 ⊔ ℳ2, ℳ2 = ⊔𝑖∈𝐼ℳ𝑖2 and Γ2 = ⊎𝑖∈𝐼Γ𝑖2. lemma 2.44 gives Φ𝑖𝑢 = Δ𝑖 ⊩
𝑢 ∶ 𝒩 𝑖 for all 𝑖 ∈ 𝐼 . Moreover, M (Φ𝑢 , 𝑚) = ∑𝑖∈𝐼 M (Φ𝑖𝑢 , 𝑚). By using the i.h. we can
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construct Ψ below:

Φ1 = Γ1; 𝑥 ∶ ℳ1; 𝑦 ∶ [𝜏𝑖]𝑖∈𝐼 ⊩ 𝑡 ∶ 𝜎 (Ψ𝑖2 = Γ𝑖2 ⊎ Δ𝑖 ; 𝑥 ∶ ℳ𝑖2 ⧵ 𝒩 𝑖 ⊩ C′⟨⟨𝑢⟩⟩ ∶ 𝜏𝑖)𝑖∈𝐼
Γ2 ⊎ Δ; 𝑥 ∶ ℳ2 ⧵ 𝒩 ⊢ C′⟨⟨𝑢⟩⟩ ∶ [𝜏𝑖]𝑖∈𝐼

Γ1 ⊎ Γ2 ⊎ Δ; 𝑥 ∶ ℳ ⧵ 𝒩 ⊢ 𝑡[𝑦 ◁ C′⟨⟨𝑢⟩⟩] ∶ 𝜎

because ℳ ⧵𝒩 = ℳ1 ⊔ℳ2 ⧵ 𝒩 , where 𝒩 = ⊔𝑖∈𝐼𝒩 𝑖 . We have

M (Ψ, 𝑚) = M (Φ1, 𝑚) +∑
𝑖∈𝐼

M (Ψ𝑖2, 𝑚 + lv𝑦(𝑡) + es([𝑦 ◁ C′⟨⟨𝑢⟩⟩]))

=i.h. M (Φ1, 𝑚) +∑
𝑖∈𝐼

(M (Φ𝑖2, 𝑚 + lv𝑦(𝑡) + es([𝑦 ◁ C′⟨⟨𝑢⟩⟩]))

+ M (Φ𝑖𝑢 , 𝑚 + lv𝑦(𝑡) + es([𝑦 ◁ C′⟨⟨𝑢⟩⟩]) + lv◊(C′)) − (0, 0, |𝒩 𝑖 |))
= M (Φ, 𝑚) + M (Φ𝑢 , 𝑚 + lv◊(𝑡[𝑦 ◁ C′])) − (0, 0, |𝒩 |)

Notice that a special case is when 𝑦 ∉ fv(𝑡). Then, 𝐼 = ∅, Γ = Γ1, 𝒩 = [ ] and
Φ𝑢 = ∅ ⊩ 𝑢 ∶ [ ] is made only of a nullary (MANY) rule. Hence, Φ = Φ1 = Ψ.

Corollary 2.46 (Substitution). If Φ𝑡 = Γ; 𝑥 ∶ ℳ ⊩ 𝑡 ∶ 𝜎 and Φ𝑢 = Δ ⊩ 𝑢 ∶ ℳ, then
Φ = Γ ⊎ Δ ⊩ 𝑡{𝑥/𝑢} ∶ 𝜎 , and for all 𝑚 ∈ ℕ we have M (Φ, 𝑚) ≤ M (Φ𝑡 , 𝑚) + M (Φ𝑢 , 𝑚 + lv𝑥(𝑡)).
Moreover, |ℳ| > 0 iff the inequality is strict.

Proof. The proof is by induction on |𝑡 |𝑥 .
If |𝑡 |𝑥 = 0, then by the relevance property 2.40 ℳ = [ ], so that Φ𝑢 necessarily comes

from a (MANY) rule without any premise and thus Φ = Φ𝑡 . We have M (Φ, 𝑚) = M (Φ𝑡 , 𝑚)+
M (Φ𝑢 , 𝑚 + lv𝑥(𝑡)) because M (Φ𝑢 , 𝑚 + lv𝑥(𝑡)) = (0, 0, 0).

Otherwise, |𝑡 |𝑥 > 0 and we can write 𝑡 as C⟨⟨𝑥⟩⟩. By the partial substitution lemma 2.45,
there exists 𝒩 ⊑ ℳ such that for all Φ0𝑢 = Δ0 ⊩ 𝑢 ∶ 𝒩 , there is Φ′ = Γ ⊎ Δ0; 𝑥 ∶
ℳ ⧵𝒩 ⊩ C⟨⟨𝑢⟩⟩ ∶ 𝜎 . By the split lemma 2.44, there are derivations Φ1𝑢 = Δ1 ⊩ 𝑢 ∶ 𝒩 and
Φ2𝑢 = Δ2 ⊩ 𝑢 ∶ ℳ ⧵ 𝒩 , where Δ = Δ1 ⊎ Δ2 so that we can apply the partial substitution
Lemma to Φ𝑡 and Φ1𝑢 , and we obtain Φ′ = Γ ⊎ Δ1; 𝑥 ∶ ℳ ⧵ 𝒩 ⊩ C⟨⟨𝑢⟩⟩ ∶ 𝜎 .

Since lv◊(C) ≤ lv𝑥(𝑡), then M (Φ′, 𝑚) = M (Φ𝑡 , 𝑚)+M (Φ1𝑢 , 𝑚 + lv◊(C))−(0, 0, |𝒩 |) ≤2.43
M (Φ𝑡 , 𝑚) + M (Φ1𝑢 , 𝑚 + lv𝑥(𝑡)) − (0, 0, |𝒩 |) ≤ M (Φ𝑡 , 𝑚) + M (Φ1𝑢 , 𝑚 + lv𝑥(𝑡)). Because 𝑥 ∉
fv(𝑢), |C⟨⟨𝑢⟩⟩|𝑥 = |𝑡|𝑥 − 1. We conclude by applying the i.h. on Φ′ and Φ2𝑢 . We get Φ =
Γ ⊎ Δ1 ⊎ Δ2 ⊩ C⟨⟨𝑢⟩⟩{𝑥/𝑢} ∶ 𝜎 = Γ ⊎ Δ ⊢ 𝑡{𝑥/𝑢} ∶ 𝜎 .

For the measure, we use lv𝑥(C⟨⟨𝑢⟩⟩) ≤ lv𝑥(𝑡) in order to get M (Φ, 𝑚) ≤ M (Φ′, 𝑚) +
M (Φ2𝑢 , 𝑚 + lv𝑥(C⟨⟨𝑢⟩⟩)) ≤ M (Φ𝑡 , 𝑚)+M (Φ1𝑢 , 𝑚 + lv𝑥(𝑡))+M (Φ2𝑢 , 𝑚 + lv𝑥(𝑡))=2.44 M (Φ𝑡 , 𝑚)+
M (Φ𝑢 , 𝑚 + lv𝑥(𝑡)). If ℳ ≠ [ ], then either 𝒩 or ℳ ⧵ 𝒩 is non-empty, so at least one of
the two previous inequalities is strict.

The key idea to show soundness is that the measure D (⋅) decreases w.r.t. the reduction
relations →name and →flneed:



2.5 Observational Equivalence 101

Lemma 2.47 (Weighted subject reduction for →𝜌). Let Φ𝑡0 = Γ ⊩ 𝑡0 ∶ 𝜎 and 𝑡0 →𝜌 𝑡1. Then
there exists Φ𝑡1 = Γ ⊩ 𝑡1 ∶ 𝜎 such that M (Φ𝑡0 , 𝑚) = M (Φ𝑡1 , 𝑚) for every 𝑚 ∈ ℕ.

Proof. Let 𝑡0 = C⟨𝑡′0⟩ and 𝑡1 = C⟨𝑡′1⟩, where 𝑡′0 →𝜌 𝑡′1 is a root step. We reason by induction
on C. We first consider the base cases where C = ◊.

Case 𝑡′0 = 𝜆𝑦.𝑡[𝑥 ◁ 𝑢] ↦𝜌 (𝜆𝑦.𝑡)[𝑥 ◁ 𝑢] = 𝑡′1, where 𝑦 ∉ fv(𝑢). There are two possible typ-
ing derivations.

1. The typing derivation Φ is equal to

Φ𝑡 = Γ′; 𝑦 ∶ 𝒩 ; 𝑥 ∶ ℳ ⊩ 𝑡 ∶ 𝜏 Φ𝑢 = Δ𝑢 ⊩ 𝑢 ∶ ℳ
Γ′ ⊎ Δ𝑢; 𝑦 ∶ 𝒩 ⊢ 𝑡[𝑥 ◁ 𝑢] ∶ 𝜏
Γ′ ⊎ Δ𝑢 ⊢ 𝜆𝑦.𝑡[𝑥 ◁ 𝑢] ∶ 𝒩 → 𝜏 (ABS)

(CUT)

We construct the following derivation Ψ.

Φ𝑡 = Γ′; 𝑦 ∶ 𝒩 ; 𝑥 ∶ ℳ ⊩ 𝑡 ∶ 𝜏
Γ′; 𝑥 ∶ ℳ ⊢ 𝜆𝑦.𝑡 ∶ 𝒩 → 𝜏 (ABS) Φ𝑢 = Δ𝑢 ⊩ 𝑢 ∶ ℳ

Γ′ ⊎ Δ𝑢 ⊢ (𝜆𝑦.𝑡)[𝑥 ◁ 𝑢] ∶ 𝒩 → 𝜏 (CUT)

Moreover,

M (Φ, 𝑚) = M (Φ𝑡 , 𝑚) + M (Φ𝑢 , 𝑚 + lv𝑥(𝑡) + es([𝑥 ◁ 𝑢])) + (1, 𝑚, 0)
= M (Φ𝑡 , 𝑚) + (1, 𝑚, 0) + M (Φ𝑢 , 𝑚 + lv𝑥(𝜆𝑦.𝑡) + es([𝑥 ◁ 𝑢]))
= M (Ψ, 𝑚) .

2. The typing derivation is of the form

Φ = ⊢ 𝜆𝑦.𝑡[𝑥 ◁ 𝑢] ∶ a
(ANS)

We construct the following derivation that has the same measure.

Ψ = ⊢ 𝜆𝑦.𝑡 ∶ a
(ANS) ⊢ 𝑢 ∶ [ ] (MANY)

⊢ (𝜆𝑦.𝑡)[𝑥 ◁ 𝑢] ∶ a
(CUT)

Case 𝑡′0 = 𝑡[𝑥 ◁ 𝑢]𝑠 ↦𝜌 (𝑡𝑠)[𝑥 ◁ 𝑢] = 𝑡′1, where 𝑥 ∉ fv(𝑠). The typing derivationΦ is equal
to:

Φ𝑡 = Γ′; 𝑥 ∶ ℳ ⊩ 𝑡 ∶ 𝒩 → 𝜎 Φ𝑢 = Δ𝑢 ⊩ 𝑢 ∶ ℳ
Γ′ ⊎ Δ𝑢 ⊢ 𝑡[𝑥 ◁ 𝑢] ∶ 𝒩 → 𝜎 (CUT) Φ𝑠 = Δ𝑠 ⊩ 𝑠 ∶ 𝒩

Γ′ ⊎ Δ𝑢 ⊎ Δ𝑠 ⊢ 𝑡[𝑥 ◁ 𝑢]𝑠 ∶ 𝜎 (APP)
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We construct the following derivation Ψ.

Φ𝑡 = Γ′; 𝑥 ∶ ℳ ⊩ 𝑡 ∶ 𝒩 → 𝜎 Φ𝑠 = Δ𝑠 ⊩ 𝑠 ∶ 𝒩
Γ′ ⊎ Δ𝑠 ; 𝑥 ∶ ℳ ⊢ 𝑡𝑠 ∶ 𝜎 (APP) Φ𝑢 = Δ𝑢 ⊩ 𝑢 ∶ ℳ

Γ′ ⊎ Δ𝑢 ⊎ Δ𝑠(𝑡𝑠)[𝑥 ◁ 𝑢] ∶ 𝜎 (CUT)

Moreover, since lv𝑥(𝑡) = lv𝑥(𝑡𝑠),
M (Φ, 𝑚) = M (Φ𝑡 , 𝑚) + M (Φ𝑠 , 𝑚) + (1, 𝑚, 0) + M (Φ𝑢 , 𝑚 + lv𝑥(𝑡𝑠) + es([𝑥 ◁ 𝑢]))

= M (Ψ, 𝑚)

Case 𝑡′0 = 𝑡𝑠[𝑥 ◁ 𝑢] ↦𝜌 (𝑡𝑠)[𝑥 ◁ 𝑢] = 𝑡′1, where 𝑥 ∉ fv(𝑡). Let

Φ𝑠[𝑥◁𝑢] =

⎛
⎜
⎜
⎜
⎜
⎝

Φ𝑖𝑠 = Δ𝑖𝑠 ; 𝑥 ∶ ℳ𝑖 ⊩ 𝑠 ∶ 𝜌𝑖
(Φ𝑖,𝑗𝑢 = Δ𝑖,𝑗𝑢 ⊩ 𝑢 ∶ 𝜏𝑗)𝑗∈𝐽𝑖

Δ𝑖𝑢 ⊢ 𝑢 ∶ ℳ𝑖
(MANY)

Δ𝑖𝑢 ⊎ Δ𝑖𝑠 ⊢ 𝑠[𝑥 ◁ 𝑢] ∶ 𝜌𝑖
(CUT)

⎞
⎟
⎟
⎟
⎟
⎠𝑖∈𝐼

Δ𝑢 ⊎ Δ𝑠 ⊢ 𝑠[𝑥 ◁ 𝑢] ∶ 𝒩 (MANY)

The typing derivation Φ is of the form

Φ𝑡 = Γ′ ⊩ 𝑡 ∶ 𝒩 → 𝜎 Φ𝑠[𝑥◁𝑢] = Δ𝑢 ⊎ Δ𝑠 ⊩ 𝑠[𝑥 ◁ 𝑢] ∶ 𝒩
Γ′ ⊎ Δ𝑢 ⊎ Δ𝑠 ⊢ 𝑡𝑠[𝑥 ◁ 𝑢] ∶ 𝜎 (APP)

where ℳ𝑖 = [𝜏𝑗]𝑗∈𝐽𝑖 , 𝒩 = [𝜌𝑖]𝑖∈𝐼 , Δ𝑖𝑢 = ⊎𝑗∈𝐽𝑖Δ
𝑖,𝑗𝑢 , Δ𝑢 = ⊎𝑖∈𝐼Δ𝑖𝑢 , and Δ𝑠 = ⊎𝑖∈𝐼Δ𝑖𝑠 .

Now, let

Φ𝑠 =

(Φ𝑖𝑠 = Δ𝑖𝑠 ; 𝑥 ∶ ℳ𝑖 ⊩ 𝑠 ∶ 𝜌𝑖)𝑖∈𝐼
Δ𝑠 ; 𝑥 ∶ ℳ ⊢ 𝑠 ∶ 𝒩 (MANY)

Γ′ ⊎ Δ𝑠 ; 𝑥 ∶ ℳ ⊢ 𝑡𝑠 ∶ 𝜎 (APP) Φ𝑢 =
(Φ𝑖,𝑗𝑢 = Δ𝑖,𝑗𝑢 ⊩ 𝑢 ∶ 𝜏𝑗)𝑗∈𝐽𝑖 ,𝑖∈𝐼

Δ𝑢 ⊢ 𝑢 ∶ ℳ (MANY)

We construct the following derivation Ψ.

Φ𝑡 = Γ′ ⊩ 𝑡 ∶ 𝒩 → 𝜎 Φ𝑠 = Γ′ ⊎ Δ𝑠 ; 𝑥 ∶ ℳ ⊩ 𝑡𝑠 ∶ 𝜎 Φ𝑢 = Δ𝑢 ⊩ 𝑢 ∶ ℳ
Γ′ ⊎ Δ𝑢 ⊎ Δ𝑠 ⊢ (𝑡𝑠)[𝑥 ◁ 𝑢] ∶ 𝜎
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where ℳ = ⊔𝑖∈𝐼ℳ𝑖 , so that ℳ = [𝜏𝑗]𝑗∈𝐽𝑖 ,𝑖∈𝐼 . Moreover, because lv𝑥(𝑠) = lv𝑥(𝑡𝑠),

M (Φ, 𝑚) = M (Φ𝑡 , 𝑚) + (1, 𝑚, 0)

+∑
𝑖∈𝐼

(M (Φ𝑖𝑠 , 𝑚) +∑
𝑗∈𝐽𝑖

M (Φ𝑖,𝑗𝑢 , 𝑚 + lv𝑥(𝑠) + es([𝑥 ◁ 𝑢])))

= M (Ψ, 𝑚)

Case 𝑡′0 = 𝑡[𝑥 ◁ 𝑢[𝑦 ◁ 𝑠]] ↦𝜌 𝑡[𝑥 ◁ 𝑢][𝑦 ◁ 𝑠] = 𝑡′1, where 𝑦 ∉ fv(𝑡). Let

Φ𝑢[𝑦◁𝑠] =

⎛
⎜
⎜
⎜
⎜
⎝

Φ𝑖𝑢 = Δ𝑖𝑢; 𝑦 ∶ 𝒩𝑖 ⊩ 𝑢 ∶ 𝜌𝑖
(Φ𝑖,𝑗𝑠 = Δ𝑖,𝑗𝑠 ⊩ 𝑠 ∶ 𝜏𝑗)𝑗∈𝐽𝑖

Δ𝑖𝑠 ⊢ 𝑠 ∶ 𝒩𝑖
(MANY)

Δ𝑖𝑢 ⊎ Δ𝑖𝑠 ⊢ 𝑢[𝑦 ◁ 𝑠] ∶ 𝜌𝑖
(CUT)

⎞
⎟
⎟
⎟
⎟
⎠𝑖∈𝐼

Δ𝑢 ⊎ Δ𝑠 ⊢ 𝑢[𝑦 ◁ 𝑠] ∶ ℳ (MANY)

The typing derivation Φ is of the form

Φ𝑡 = Γ′; 𝑥 ∶ ℳ ⊩ 𝑡 ∶ 𝜎 Φ𝑢[𝑦◁𝑠] = Δ𝑢 ⊎ Δ𝑠 ⊩ 𝑢[𝑦 ◁ 𝑠] ∶ ℳ
Γ′ ⊎ Δ𝑢 ⊎ Δ𝑠 ⊢ 𝑡[𝑥 ◁ 𝑢[𝑦 ◁ 𝑠]] ∶ 𝜎 (CUT)

where ℳ = [𝜌𝑖]𝑖∈𝐼 , 𝒩𝑖 = [𝜏𝑗]𝑗∈𝐽𝑖 , Δ𝑢 = ⊎𝑖∈𝐼Δ𝑖𝑢 , Δ𝑖𝑠 = ⊎𝑗∈𝐽𝑖Δ
𝑖,𝑗𝑠 , and Δ𝑠 = ⊎𝑖∈𝐼Δ𝑖𝑠 .

Now, let

Φ𝑡[𝑥◁𝑢] =
Φ𝑡 = Γ′; 𝑥 ∶ ℳ ⊩ 𝑡 ∶ 𝜎 (Φ𝑖𝑢 = Δ𝑖𝑢; 𝑦 ∶ 𝒩𝑖 ⊩ 𝑢 ∶ 𝜌𝑖)𝑖∈𝐼

Δ𝑢; 𝑦 ∶ 𝒩 ⊢ 𝑢 ∶ ℳ (MANY)

Γ′ ⊎ Δ𝑢; 𝑦 ∶ 𝒩 ⊢ 𝑡[𝑥 ◁ 𝑢] ∶ 𝜎 (CUT)

We then construct the following derivation Ψ.

Φ𝑡[𝑥◁𝑢] = Γ′ ⊎ Δ𝑢; 𝑦 ∶ 𝒩 ⊩ 𝑡[𝑥 ◁ 𝑢] ∶ 𝜎
(Φ𝑖,𝑗𝑠 = Δ𝑖,𝑗𝑠 ⊩ 𝑠 ∶ 𝜏𝑗)𝑗∈𝐽𝑖 ,𝑖∈𝐼

Δ𝑠 ⊢ 𝑠 ∶ 𝒩 (MANY)

Γ′ ⊎ Δ𝑢 ⊎ Δ𝑠 ⊢ 𝑡[𝑥 ◁ 𝑢][𝑦 ◁ 𝑠] ∶ 𝜎 (CUT)

where 𝒩 = ⊔𝑖∈𝐼𝒩𝑖 , so that 𝒩 = [𝜏𝑗]𝑗∈𝐽𝑖 ,𝑖∈𝐼 . Moreover, because 𝑦 ∉ fv(𝑡), we have
that lv𝑦(𝑡[𝑥 ◁ 𝑢]) = lv𝑥(𝑡) + lv𝑦(𝑢) + es([𝑥 ◁ 𝑢]) if 𝑦 ∈ fv(𝑢), and lv𝑦(𝑡[𝑥 ◁ 𝑢]) = 0 oth-

erwise. Now, we show that M (Φ𝑖,𝑗𝑠 , 𝑚 + lv𝑥(𝑡) + es([𝑥 ◁ 𝑢]) + lv𝑦(𝑢) + es([𝑦 ◁ 𝑠])) =
M (Φ𝑖,𝑗𝑠 , 𝑚 + lv𝑦(𝑡[𝑥 ◁ 𝑢]) + es([𝑦 ◁ 𝑠])). If 𝑦 ∈ fv(𝑢), this is immediate. Otherwise,
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by the relevance property 2.40 we have 𝐽𝑖 = [ ] for any 𝑖 thus 𝑠 is not typed, so that
both measures are equal to (0,0,0). Then,

M (Φ, 𝑚) = M (Φ𝑡 , 𝑚) +∑
𝑖∈𝐼

M (Φ𝑖𝑢 , 𝑚 + lv𝑥(𝑡) + es([𝑥 ◁ 𝑢]))

+∑
𝑖∈𝐼

∑
𝑗∈𝐽𝑖

M (Φ𝑖,𝑗𝑠 , 𝑚 + lv𝑥(𝑡) + es([𝑥 ◁ 𝑢]) + lv𝑦(𝑢) + es([𝑦 ◁ 𝑠]))

= M (Φ𝑡 , 𝑚) +∑
𝑖∈𝐼

M (Φ𝑖𝑢 , 𝑚 + lv𝑥(𝑡) + es([𝑥 ◁ 𝑢]))

+∑
𝑖∈𝐼

∑
𝑗∈𝐽𝑖

M (Φ𝑖,𝑗𝑠 , 𝑚 + lv𝑦(𝑡[𝑥 ◁ 𝑢]) + es([𝑦 ◁ 𝑠]))

= M (Ψ, 𝑚)

Now, we analyze all the inductive cases:

Case C = 𝜆𝑥.C′. We have 𝜎 = ℳ → 𝜏 and Φ′ = Γ; 𝑥 ∶ ℳ ⊩ C′⟨𝑜⟩ ∶ 𝜏 . By the i.h. there
is Ψ′ = Γ; 𝑥 ∶ ℳ ⊩ C′⟨𝑜′⟩ ∶ 𝜏 and therefore Ψ = Γ ⊩ 𝜆𝑥.C′⟨𝑜′⟩ ∶ 𝜏 . Moreover,
M (Φ, 𝑚) = M (Φ′, 𝑚) + (1, 𝑚, 0) =i.h. M (Ψ′, 𝑚) + (1, 𝑚, 0) = M (Ψ, 𝑚).

Case C = C′𝑢. We have Φ′ = Γ′ ⊩ C′⟨𝑜⟩ ∶ 𝒩 → 𝜎 and Φ𝑢 = Δ ⊩ 𝑢 ∶ 𝒩 . By the i.h. there
is Ψ′ = Γ′ ⊩ C′⟨𝑜′⟩ ∶ 𝒩 → 𝜎 , so Ψ = Γ′ ⊎ Δ ⊩ C′⟨𝑜′⟩𝑢 ∶ 𝜎 . Moreover, M (Φ, 𝑚) =
M (Φ′, 𝑚) + M (Φ𝑢 , 𝑚) + (1, 𝑚, 0) =i.h. M (Ψ′, 𝑚) + M (Φ𝑢 , 𝑚) + (1, 𝑚, 0) = M (Ψ, 𝑚).

Case C = 𝑢C′. The case is similar to the previous one.

Case C = C′[𝑥 ◁ 𝑢]. We have Φ′ = Γ′; 𝑥 ∶ ℳ ⊩ C′⟨𝑜⟩ ∶ 𝜎 and Φ𝑢 = Δ ⊩ 𝑢 ∶ ℳ. By
the i.h. there is Ψ′ = Γ′; 𝑥 ∶ ℳ ⊩ C′⟨𝑜′⟩ ∶ 𝜎 , so Ψ = Γ′ ⊎ Δ ⊩ C′⟨𝑜′⟩[𝑥 ◁ 𝑢] ∶ 𝜎 .
Moreover, M (Φ, 𝑚) = M (Φ′, 𝑚) + M (Φ𝑢 , 𝑚 + lv𝑥(𝑡) + es([𝑥 ◁ 𝑢])) =i.h. M (Ψ′, 𝑚) +
M (Φ𝑢 , 𝑚 + lv𝑥(𝑡) + es([𝑥 ◁ 𝑢])) = M (Ψ, 𝑚).

Case C = 𝑢[𝑥 ◁ C′]. We have Φ𝑢 = Δ; 𝑥 ∶ ℳ ⊩ 𝑢 ∶ 𝜎 and Φ′ = Γ′ ⊩ C′⟨𝑜⟩ ∶ ℳ.
By the i.h. there is Ψ′ = Γ′ ⊩ C′⟨𝑜′⟩ ∶ ℳ, so Ψ = Γ′ ⊎ Δ ⊩ 𝑢[𝑥 ◁ C′⟨𝑜′⟩] ∶ 𝜎 .
Moreover, M (Φ, 𝑚) = M (Φ𝑢 , 𝑚) + M (Φ′, 𝑚 + lv𝑥(𝑢) + es([𝑥 ◁ 𝑢])) =i.h. M (Φ𝑢 , 𝑚) +
M (Ψ′, 𝑚 + lv𝑥(𝑢) + es([𝑥 ◁ 𝑢])) = M (Ψ, 𝑚).

Lemma 2.48 (Weighted subject reduction for →sub). Let Φ𝑡0 = Γ ⊩ 𝑡0 ∶ 𝜎 . If 𝑡0 →sub 𝑡1, then
there exists Φ𝑡1 = Γ ⊩ 𝑡1 ∶ 𝜎 such that M (Φ𝑡0 , 𝑚) ≥ M (Φ𝑡1 , 𝑚) for every 𝑚 ∈ ℕ.

Proof. As remarked in section 2.1.2, 𝑡0 →sub 𝑡1 implies 𝑡0 →∗𝜌 𝑡′ →sub′ 𝑡1. By lemma 2.47,
weighted subject reduction holds for 𝑡0 →∗𝜌 𝑡′, so it is sufficient to show the statement
for the relation →sub′ . We reason by induction on this relation. We show the base
cases for ↦app′ and ↦dist′ , the cases ↦abs′ and ↦var′ are simply by the substitution
corollary 2.46, and the inductive cases are straightforward by the i.h.
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Case 𝑡0 = 𝑡[𝑥/𝑢𝑠] →app 𝑡{𝑥/𝑦𝑧}[𝑦/𝑢][𝑧/𝑠] = 𝑡1, where 𝑦 and 𝑧 are fresh variables. Let the
following derivations:

Φ𝑖 =
Φ𝑖𝑢 = Γ𝑖𝑢 ⊩ 𝑢 ∶ 𝒩𝑖 → 𝜌𝑖 Φ𝑖𝑠 = Γ𝑖𝑠 ⊩ 𝑠 ∶ 𝒩𝑖

Γ𝑖𝑢 ⊎ Γ𝑖𝑠 ⊢ 𝑢𝑠 ∶ 𝜌𝑖
(APP)

then the typing derivation Φ𝑡0 is of the form

Φ𝑡 = Γ′; 𝑥 ∶ ℳ ⊩ 𝑡 ∶ 𝜎
(Φ𝑖 = Γ𝑖𝑢 ⊎ Γ𝑖𝑠 ⊩ 𝑢𝑠 ∶ 𝜌𝑖)𝑖∈𝐼

Γ𝑢 ⊎ Γ𝑠 ⊢ 𝑢𝑠 ∶ ℳ (MANY)

Γ′ ⊎ Γ𝑢 ⊎ Γ𝑠 ⊢ 𝑡[𝑥/𝑢𝑠] ∶ 𝜎 (CUT)

where ℳ = [𝜌𝑖]𝑖∈𝐼 , Γ𝑢 = ⊎𝑖∈𝐼Γ𝑖𝑢 and Γ𝑠 = ⊎𝑖∈𝐼Γ𝑖𝑠 . We have

M (Φ𝑡0 , 𝑚) = M (Φ𝑡 , 𝑚) +∑
𝑖∈𝐼

(M (Φ𝑖𝑢 , 𝑚 + lv𝑥(𝑡) + 1) + M (Φ𝑖𝑠 , 𝑚 + lv𝑥(𝑡) + 1))

+ |𝐼 | × (1, 𝑚 + lv𝑥(𝑡) + 1, 0)

Let us consider Φ′ = Γ′; 𝑦 ∶ 𝒩𝑢; 𝑧 ∶ 𝒩𝑠 ⊩ 𝑡{𝑥/𝑦𝑧} ∶ 𝜎 , obtained by corollary 2.46
from Φ𝑡 and Φ𝑦𝑧 = 𝑦 ∶ 𝒩𝑢; 𝑧 ∶ 𝒩𝑠 ⊩ 𝑦𝑧 ∶ [𝜌𝑖]𝑖∈𝐼 , where 𝒩𝑢 = [𝒩𝑖 → 𝜌𝑖]𝑖∈𝐼 and
𝒩𝑠 = ⊔𝑖∈𝐼𝒩𝑖 . Let

Φ𝑢 =
(Φ𝑖𝑢 = Γ𝑖𝑢 ⊩ 𝑢 ∶ 𝒩𝑖 → 𝜌𝑖)𝑖∈𝐼

Γ𝑢 ⊢ 𝑢 ∶ 𝒩𝑢
(CUT) Φ𝑠 =

(Φ𝑖𝑠 = Γ𝑖𝑠 ⊩ 𝑠 ∶ 𝒩𝑖)𝑖∈𝐼
Γ𝑠 ⊢ 𝑠 ∶ 𝒩𝑠

(CUT)

We construct the following derivation Φ𝑡1 with two applications of rule (CUT).

Φ′ = Γ′; 𝑧 ∶ 𝒩𝑠 ; 𝑦 ∶ 𝒩𝑢 ⊩ 𝑡{𝑥/𝑦𝑧} ∶ 𝜎 Φ𝑢 = Γ𝑢 ⊩ 𝑢 ∶ 𝒩𝑢
(Γ′; 𝑧 ∶ 𝒩𝑠) ⊎ Γ𝑢 ⊢ 𝑡{𝑥/𝑦𝑧}[𝑦/𝑢] ∶ 𝜎 Φ𝑠 = Γ𝑠 ⊩ 𝑠 ∶ 𝒩𝑠

Γ′ ⊎ Γ𝑢 ⊎ Γ𝑠 ⊢ 𝑡{𝑥/𝑦𝑧}[𝑦/𝑢][𝑧/𝑠] ∶ 𝜎

We consider two cases to conclude:

Subcase ℳ = [ ]. Then

M (Φ𝑡1 , 𝑚) = M (Φ′, 𝑚) +∑
𝑖∈𝐼

M (Φ𝑖𝑢 , 𝑚 + lv𝑦(𝑡{𝑥/𝑦𝑧}) + 1)

+∑
𝑖∈𝐼

M (Φ𝑖𝑠 , 𝑚 + lv𝑧(𝑡{𝑥/𝑦𝑧}[𝑦/𝑢]) + 1)

= M (Φ′, 𝑚) =2.46 M (Φ𝑡 , 𝑚) = M (Φ𝑡0 , 𝑚)
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Subcaseℳ ≠ [ ]. Then

M (Φ𝑡1 , 𝑚) = M (Φ′, 𝑚) +∑
𝑖∈𝐼

M (Φ𝑖𝑢 , 𝑚 + lv𝑦(𝑡{𝑥/𝑦𝑧}) + 1)

+∑
𝑖∈𝐼

M (Φ𝑖𝑠 , 𝑚 + lv𝑧(𝑡{𝑥/𝑦𝑧}[𝑦/𝑢]) + 1)

= M (Φ′, 𝑚)
+∑

𝑖∈𝐼
M (Φ𝑖𝑢 , 𝑚 + lv𝑦(𝑡{𝑥/𝑦𝑧}) + 1) +∑

𝑖∈𝐼
M (Φ𝑖𝑠 , 𝑚 + lv𝑧(𝑡{𝑥/𝑦𝑧}) + 1)

=2.5(ii) M (Φ′, 𝑚) +∑
𝑖∈𝐼

(M (Φ𝑖𝑢 , 𝑚 + lv𝑥(𝑡) + 1) + M (Φ𝑖𝑠 , 𝑚 + lv𝑥(𝑡) + 1))

≤2.45 M (Φ𝑡 , 𝑚) + M (Φ𝑦𝑧 , 𝑚 + lv𝑥(𝑡))
+∑

𝑖∈𝐼
(M (Φ𝑖𝑢 , 𝑚 + lv𝑥(𝑡) + 1) + M (Φ𝑖𝑠 , 𝑚 + lv𝑥(𝑡) + 1))

= M (Φ𝑡 , 𝑚) + (1, 𝑚 + lv𝑥(𝑡), 2)
+∑

𝑖∈𝐼
(M (Φ𝑖𝑢 , 𝑚 + lv𝑥(𝑡) + 1) + M (Φ𝑖𝑠 , 𝑚 + lv𝑥(𝑡) + 1))

< M (Φ𝑡 , 𝑚) +∑
𝑖∈𝐼

(M (Φ𝑖𝑢 , 𝑚 + lv𝑥(𝑡) + 1) + M (Φ𝑖𝑠 , 𝑚 + lv𝑥(𝑡) + 1))

+ |𝐼 | × (1, 𝑚 + lv𝑥(𝑡), 2)
< M (Φ𝑡0 , 𝑚) .

Case 𝑡0 = 𝑡[𝑥/𝜆𝑦.𝑢] →dist 𝑡[𝑥//𝜆𝑦.𝑧[𝑧/𝑢]] = 𝑡1. The typing derivation is of the form

Φ𝑡0 =
Φ𝑡 = Γ′; 𝑥 ∶ ℳ ⊩ 𝑡 ∶ 𝜎 Φ𝜆𝑦.𝑢 = Γ𝜆𝑦.𝑢 ⊩ 𝜆𝑦.𝑢 ∶ ℳ

Γ′ ⊎ Γ𝜆𝑦.𝑢 ⊢ 𝑡[𝑥/𝜆𝑦.𝑢] ∶ 𝜎 (CUT)

where

Φ𝜆𝑦.𝑢 =
(
Φ𝑖 = Γ𝑖𝜆𝑦.𝑢 ; 𝑦 ∶ 𝒩𝑖 ⊩ 𝑢 ∶ 𝜌𝑖
Γ𝑖𝜆𝑦.𝑢 ⊢ 𝜆𝑦.𝑢 ∶ 𝒩𝑖 → 𝜌𝑖

(ABS) )
𝑖∈𝐼

(⊢ 𝜆𝑦.𝑢 ∶ a
(ANS) )

𝑘

Γ𝜆𝑦.𝑢 ⊢ 𝜆𝑦.𝑢 ∶ ℳ (MANY)

and ℳ = [𝒩𝑖 → 𝜌𝑖]𝑖∈𝐼 ⊔ [a, … , a⏟⏟⏟⏟⏟⏟⏟
𝑘

], with Γ𝜆𝑦.𝑢 = ⊎𝑖∈𝐼Γ𝑖𝜆𝑦.𝑢 . Moreover,

M (Φ𝑡0 , 𝑚) = M (Φ𝑡 , 𝑚) + 𝑘 ∗ (1, 𝑚 + lv𝑥(𝑡) + 1, 0)
+∑

𝑖∈𝐼
(M (Φ𝑖 , 𝑚 + lv𝑥(𝑡) + 1) + (1, 𝑚 + lv𝑥(𝑡) + 1, 0))
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We construct the following derivation

Φ𝑡1 =
Φ𝑡 = Γ′; 𝑥 ∶ ℳ ⊩ 𝑡 ∶ 𝜎 Φ𝜆 = Γ𝜆𝑦.𝑢 ⊩ 𝜆𝑦.𝑧[𝑧/𝑢] ∶ ℳ

Γ′ ⊎ Γ𝜆𝑦.𝑢 ⊢ 𝑡[𝑥//𝜆𝑦.𝑧[𝑧/𝑢]] ∶ 𝜎 (CUT)

where

Φ𝜆 =
(
Φ𝑖
𝜆 = Γ𝑖𝜆𝑦.𝑢; 𝑦 ∶ 𝒩𝑖 ⊩ 𝑧[𝑧/𝑢] ∶ 𝜌𝑖
Γ𝑖𝜆𝑦.𝑢 ⊢ 𝜆𝑦.𝑧[𝑧/𝑢] ∶ 𝒩𝑖 → 𝜌𝑖

(ABS) )
𝑖∈𝐼

(⊢ 𝜆𝑦.𝑧[𝑧/𝑢] ∶ a
(ANS) )

𝑘

Γ𝜆𝑦.𝑢 ⊢ 𝜆𝑦.𝑧[𝑧/𝑢] ∶ ℳ (MANY)

with Φ𝑖
𝜆 of the form

𝑧 ∶ [𝜌𝑖] ⊢ 𝑧 ∶ 𝜌𝑖
(AX) Φ𝑖 = Γ𝑖𝜆𝑦.𝑢; 𝑦 ∶ 𝒩𝑖 ⊩ 𝑢 ∶ 𝜌𝑖

Γ𝑖𝜆𝑦.𝑢; 𝑦 ∶ 𝒩𝑖 ⊢ 𝑧[𝑧/𝑢] ∶ 𝜌𝑖
(CUT)

We have

M (Φ𝑡1 , 𝑚) = M (Φ𝑡 , 𝑚) + 𝑘 ∗ (1, 𝑚 + lv𝑥(𝑡), 0)
+∑

𝑖∈𝐼
(M (Φ𝑖 , 𝑚 + lv𝑥(𝑡) + 1) + (0, 0, 1) + (1, 𝑚 + lv𝑥(𝑡), 0))

≤ M (Φ𝑡0 , 𝑚)

Lemma 2.49 (Weighted subject reduction for →ndB). Let Φ𝑡0 = Γ ⊩ 𝑡0 ∶ 𝜎 . If 𝑡0 →ndB 𝑡1, then
there exists Φ𝑡1 = Γ ⊩ 𝑡1 ∶ 𝜎 such that M (Φ𝑡0 , 𝑚) > M (Φ𝑡1 , 𝑚) for every 𝑚 ∈ ℕ.

Proof. We prove that M (Φ𝑡0 , 𝑚) > M (Φ𝑡1 , 𝑚) by showing in particular that it is the first
component of the 3-tuple that strictly decreases.

We reason by induction on the reduction relation →ndB.

Case 𝑡0 = L⟨𝜆𝑥.𝑡⟩𝑢 →dB L⟨𝑡[𝑥/𝑢]⟩ = 𝑡1. We reason by induction on L. The inductive step
follows from lemma 2.47, so we only show the base case L = ◊. The typing deriva-
tion Φ𝑡0 is of the form

Φ𝑡 = Γ′; 𝑥 ∶ ℳ ⊩ 𝑡 ∶ 𝜎
Γ′ ⊢ 𝜆𝑥.𝑡 ∶ ℳ → 𝜎 (ABS) Φ𝑢 = Γ𝑢 ⊩ 𝑢 ∶ ℳ

Γ′ ⊎ Γ𝑢 ⊢ (𝜆𝑥.𝑡)𝑢 ∶ 𝜎 (APP)

and M (Φ𝑡0 , 𝑚) = M (Φ𝑡 , 𝑚) + M (Φ𝑢 , 𝑚) + (2, 2 ∗ 𝑚, 0).
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We construct the following derivation.

Φ𝑡1 =
Φ𝑡 = Γ′; 𝑥 ∶ ℳ ⊩ 𝑡 ∶ 𝜎 Φ𝑢 = Γ𝑢 ⊩ 𝑢 ∶ ℳ

Γ′ ⊎ Γ𝑢 ⊢ 𝑡[𝑥/𝑢] ∶ 𝜎 (CUT)

We have

M (Φ𝑡1 , 𝑚) = M (Φ𝑡 , 𝑚) + M (Φ𝑢 , 𝑚 + lv𝑥(𝑡) + 1)
=2.43 M (Φ𝑡 , 𝑚) + M (Φ𝑢 , 𝑚) + (0, (lv𝑥(𝑡) + 1) ∗ sz(Φ𝑢), 0)
< M (Φ𝑡0 , 𝑚)

Notice that it is the first component of the first 3-tuple that strictly decreases by 2.

Case 𝑡0 = 𝑡𝑢 →ndB 𝑡′𝑢 = 𝑡1, where 𝑡 →ndB 𝑡′. Then the property trivially holds by the
i.h.

Case 𝑡0 = 𝑡[𝑥/𝑢] →ndB 𝑡′[𝑥/𝑢] = 𝑡1, where 𝑡 →ndB 𝑡′. Then Γ = Γ′⧵𝑥 ⊎Δ and Φ𝑡 = Γ′; 𝑥 ∶
ℳ ⊩ 𝑡 ∶ 𝜎 and Φ𝑢 = Δ ⊩ 𝑢 ∶ ℳ. Also, M (Φ𝑡0 , 𝑚) = M (Φ𝑡 , 𝑚)+M (Φ𝑢 , 𝑚 + lv𝑥(𝑡) + 1).
By the i.h. we have Φ𝑡′ = Γ′; 𝑥 ∶ ℳ ⊩ 𝑡′ ∶ 𝜎 and M (Φ𝑡 , 𝑚) >i.h. M (Φ𝑡′ , 𝑚), where in
particular it is the first component of the first 3-tuple that strictly decreases. Deriva-
tion Φ𝑡1 is then obtained by rule (CUT) from Φ𝑡′ and Φ𝑢 . We can conclude since:

M (Φ𝑡1 , 𝑚) = M (Φ𝑡′ , 𝑚) + M (Φ𝑢 , 𝑚 + lv𝑥(𝑡′) + 1)
=2.43 M (Φ𝑡′ , 𝑚) + M (Φ𝑢 , 𝑚) + (0, (lv𝑥(𝑡′) + 1) ∗ sz(Φ𝑢), 0)
<i.h. M (Φ𝑡 , 𝑚) + M (Φ𝑢 , 𝑚) + (0, (lv𝑥(𝑡) + 1) ∗ sz(Φ𝑢), 0)
=2.43 M (Φ𝑡 , 𝑚) + M (Φ𝑢 , 𝑚 + lv𝑥(𝑡) + 1)
= M (Φ𝑡0 , 𝑚)

Note that even when lv𝑥(𝑡′) > lv𝑥(𝑡), the inequality M (Φ𝑡1 , 𝑚) < M (Φ𝑡0 , 𝑚) is de-
termined by the strict relation between the first components of the 3-tuples, that is,
the unweighted number of abstraction and application rules.

Lemma 2.50. Let Φ = Γ ⊩ N⟨⟨𝑥⟩⟩ ∶ 𝜏 . Then there exists Γ′, 𝐼 ≠ ∅ and [𝜎𝑖]𝑖∈𝐼 such that Γ =
Γ′ ⊎ 𝑥 ∶ [𝜎𝑖]𝑖∈𝐼 and for any variable 𝑧 there is a proof Φ = Γ′ ⊎ 𝑧 ∶ [𝜎𝑖]𝑖∈𝐼 ⊩ N⟨⟨𝑧⟩⟩ ∶ 𝜏 . In
particular, if 𝑧 is fresh, then Γ′ ⊎ 𝑧 ∶ [𝜎𝑖]𝑖∈𝐼 = Γ′; 𝑧 ∶ [𝜎𝑖]𝑖∈𝐼 .

Proof. By induction on N.

Case N = ◊. This is straightforward by taking Γ′ = ∅ and [𝜎𝑖]𝑖∈𝐼 = [𝜏].
Cases N = N′𝑡 and N = N′[𝑥 ◁ 𝑡]. There is a derivation Φ′ = Γ1 ⊩ N′⟨⟨𝑥⟩⟩ ∶ 𝜏 ′, such that

Γ = Γ1 ⊎ Γ2 and 𝜏 ′ = ℳ → 𝜏 or 𝜏 = 𝜏 ′, respectively. By the i.h. Γ1 = Γ′1 ⊎ 𝑥 ∶ [𝜎𝑖]𝑖∈𝐼 ,
so that Γ′ = Γ′1 ⊎ Γ2.
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Case N = N1⟨⟨𝑦⟩⟩[𝑦/N2]. The derivation is as follows.

Γ1; 𝑦 ∶ [𝜌𝑗]𝑗∈𝐽 ⊢ N1⟨⟨𝑦⟩⟩ ∶ 𝜏
(Γ𝑗 ⊢ N2⟨⟨𝑥⟩⟩ ∶ 𝜌𝑗)𝑗∈𝐽

⊎𝑗∈𝐽Γ𝑗 ⊢ N2⟨⟨𝑥⟩⟩ ∶ [𝜌𝑗]𝑗∈𝐽
(MANY)

Γ ⊢ N1⟨⟨𝑦⟩⟩[𝑦/N2⟨⟨𝑥⟩⟩] ∶ 𝜏 (CUT)

Where Γ = Γ1⊎Γ2 and Γ2 = ⊎𝑗∈𝐽Γ𝑗 . By the i.h. on N1, Γ1; 𝑦 ∶ [𝜌𝑗]𝑗∈𝐽 = Γ′⊎𝑦 ∶ [𝜌𝑗]𝑗∈𝐽 ′
for some ∅ ≠ 𝐽 ′ ⊆ 𝐽 . Thus 𝐽 ≠ ∅. By the i.h. on N2, for every 𝑗 ∈ 𝐽 we have
Γ𝑗 = Γ′𝑗 ⊎ 𝑥 ∶ [𝜎𝑖]𝑖∈𝐼𝑗 , where 𝐼𝑗 ≠ ∅ and a proof Φ𝑗 = Γ′𝑗 ⊎ 𝑧 ∶ [𝜎𝑖]𝑖∈𝐼𝑗 ⊩ N2⟨⟨𝑧⟩⟩ ∶ 𝜌𝑗 for
a variable 𝑧. We then take 𝐼 = ∪𝑗∈𝐽 𝐼𝑗 and Γ′ = Γ1 ⊎𝑗∈𝐽 Γ′𝑗 .

Lemma 2.51 (Weighted subject reduction for flneed). Let Φ𝑡0 = Γ ⊩ 𝑡0 ∶ 𝜎 . If 𝑡0 →flneed 𝑡1,
then there exists Φ𝑡1 = Γ ⊩ 𝑡1 ∶ 𝜎 such that M (Φ𝑡0 , 𝑚) > M (Φ𝑡1 , 𝑚) for every 𝑚 ∈ ℕ.

Proof. We prove that M (Φ𝑡0 , 𝑚) > M (Φ𝑡1 , 𝑚) by showing in particular that the first com-
ponent of the first 3-tuple strictly decreases when the reduction is dB. We reason by
induction on the reduction relation, i.e. by induction on the context N where the root
reduction takes place. We first detail the base case when N = ◊.

Case 𝑡0 = L⟨𝜆𝑥.𝑡⟩𝑢 →dB L⟨𝑡[𝑥/𝑢]⟩ = 𝑡1. This case is the same as for name.

Case 𝑡0 = N⟨⟨𝑥⟩⟩[𝑥/𝜆𝑦.𝑝] →spl LL⟨N⟨⟨𝑥⟩⟩[𝑥//𝜆𝑦.𝑝′]⟩ = 𝑡1, where 𝜆𝑦.𝑧[𝑧/𝑝] ⇓st 𝜆𝑦.LL⟨𝑝′⟩.
The typing derivation Φ𝑡0 is of the form

Φ = Γ′; 𝑥 ∶ 𝒩 ⊩ N⟨⟨𝑥⟩⟩ ∶ 𝜎
(Φ𝑖

𝜆𝑦.𝑝 = Δ𝑖 ⊩ 𝜆𝑦.𝑝 ∶ 𝜎𝑖)𝑖∈𝐼
Δ ⊢ 𝜆𝑦.𝑝 ∶ 𝒩 (MANY)

Γ′ ⊎ Δ ⊢ N⟨⟨𝑥⟩⟩[𝑥/𝜆𝑦.𝑝] ∶ 𝜎 (CUT)

where 𝒩 = [𝜎𝑖]𝑖∈𝐼 , Δ = ⊎𝑖∈𝐼Δ𝑖 and Γ = Γ′ ⊎ Δ. Moreover, 𝐼 ≠ ∅ by lemma 2.50. For
each 𝜎𝑖 we build the following derivations Φ𝑖𝑝0 :

Subcase 𝜎𝑖 = ℳ𝑖 → 𝜏𝑖 . Then Φ𝑖𝑝0 is of the form

𝑧 ∶ [𝜏𝑖] ⊢ 𝑧 ∶ 𝜏𝑖
(AX) Φ𝑖𝑝 = Δ𝑖 ; 𝑦 ∶ ℳ𝑖 ⊩ 𝑝 ∶ 𝜏𝑖

Δ𝑖 ; 𝑦 ∶ ℳ𝑖 ⊢ 𝑧[𝑧/𝑝] ∶ 𝜏𝑖
Δ𝑖 ⊢ 𝜆𝑦.𝑧[𝑧/𝑝] ∶ ℳ𝑖 → 𝜏𝑖

(ABS)

(CUT)

where Φ𝑖𝑝 is obtained from Φ𝑖
𝜆𝑦.𝑝 by reversing the (ABS) rule.

Subcase 𝜎𝑖 = a. Then Φ𝑖𝑝0 = ⊢ 𝜆𝑦.𝑧[𝑧/𝑝] ∶ a
(ANS) .
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By hypothesis, 𝜆𝑦.𝑧[𝑧/𝑝] →∗
st 𝜆𝑦.LL⟨𝑝′⟩. Since →st is included in →sub, then we

know by lemma 2.48 that there are derivations Φ𝑖𝑝1 = Δ𝑖 ⊩ 𝜆𝑦.LL⟨𝑝′⟩ ∶ 𝜎𝑖 such that
M (Φ𝑖𝑝0 , 𝑚) ≥ M (Φ𝑖𝑝1 , 𝑚). Thus, we can build the following derivation.

Φ′𝑡1 =
Φ = Γ′; 𝑥 ∶ 𝒩 ⊩ N⟨⟨𝑥⟩⟩ ∶ 𝜎

(Φ𝑖𝑝1 = Δ𝑖 ⊩ 𝜆𝑦.LL⟨𝑝′⟩ ∶ 𝜎𝑖)𝑖∈𝐼
Δ ⊢ 𝜆𝑦.LL⟨𝑝′⟩ ∶ 𝒩 (MANY)

Γ′ ⊎ Δ ⊢ N⟨⟨𝑥⟩⟩[𝑥//𝜆𝑦.LL⟨𝑝′⟩] ∶ 𝜎 (CUT)

Let 𝑛 = lv𝑥(N⟨⟨𝑥⟩⟩). We begin showing that M (Φ𝑖
𝜆𝑦.𝑝 , 𝑚 + 𝑛 + 1) > M (Φ𝑖𝑝0 , 𝑚 + 𝑛) for

every 𝑖 ∈ 𝐼 . There are two cases.

Subcase 𝜎𝑖 = a. Then M (Φ𝑖
𝜆𝑦.𝑝 , 𝑚 + 𝑛 + 1) = (1, 𝑚 + 𝑛 + 1, 0), while M (Φ𝑖𝑝0 , 𝑚 + 𝑛) =

(1, 𝑚 + 𝑛, 0).
Subcase 𝜎𝑖 = ℳ𝑖 → 𝜏𝑖 . Then M (Φ𝑖

𝜆𝑦.𝑝 , 𝑚 + 𝑛 + 1) = (1, 𝑚+𝑛+1, 0)+M (Φ𝑖𝑝 , 𝑚 + 𝑛 + 1)
and

M (Φ𝑖𝑝0 , 𝑚 + 𝑛) = (1, 𝑚 + 𝑛, 0) + (0, 0, 1) + M (Φ𝑖𝑝 , 𝑚 + 𝑛 + lv𝑧(𝑧) + 1)
= (1, 𝑚 + 𝑛, 1) + M (Φ𝑖𝑝 , 𝑚 + 𝑛 + 1) .

So that M (Φ𝑖
𝜆𝑦.𝑝 , 𝑚 + 𝑛 + 1) > M (Φ𝑖𝑝0 , 𝑚 + 𝑛) since (1, 𝑚+𝑛+1, 0) > (1, 𝑚+𝑛, 1).

Finally, we have:

M (Φ′𝑡1 , 𝑚) = M (Φ, 𝑚) +∑
𝑖∈𝐼

M (Φ𝑖𝑝1 , 𝑚 + 𝑛)

≤2.48 M (Φ, 𝑚) +∑
𝑖∈𝐼

M (Φ𝑖𝑝0 , 𝑚 + 𝑛)

< M (Φ, 𝑚) +∑
𝑖∈𝐼

M (Φ𝑖
𝜆𝑦.𝑝 , 𝑚 + 𝑛 + 1)

= M (Φ𝑡0 , 𝑚)

By lemma 2.47, we can finally construct Φ𝑡1 = Γ′ ⊎ Δ ⊩ LL⟨N⟨⟨𝑥⟩⟩[𝑥//𝜆𝑦.𝑝′]⟩ ∶ 𝜎 ,
where M (Φ𝑡1 , 𝑚) = M (Φ′𝑡1 , 𝑚).

Case 𝑡0 = N⟨⟨𝑥⟩⟩[𝑥//𝑣] →sub N⟨⟨𝑣⟩⟩[𝑥//𝑣] = 𝑡1. The typing derivation Φ𝑡0 is of the form

Φ = Γ′; 𝑥 ∶ ℳ ⊩ N⟨⟨𝑥⟩⟩ ∶ 𝜎
(Φ𝑖𝑣 = Δ𝑖 ⊩ 𝑣 ∶ 𝜏𝑖)𝑖∈𝐼
Φ𝑣 = Δ ⊩ 𝑣 ∶ ℳ (MANY)

Γ′ ⊎ Δ ⊢ N⟨⟨𝑥⟩⟩[𝑥//𝑣] ∶ 𝜎 (CUT)
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where ℳ = [𝜏𝑖]𝑖∈𝐼 and Δ = ⊎𝑖∈𝐼Δ𝑖 . By lemma 2.50 we know that there is a non-empty
𝒩 ⊑ ℳ which types the variable 𝑥 in the hole of the context N. We can then write
ℳ as 𝒩 ⊔ 𝒩 ′. By lemma 2.44 there are two derivations Φ𝑣1 = Δ1 ⊩ 𝑣 ∶ 𝒩 and
Φ𝑣2 = Δ2 ⊩ 𝑣 ∶ 𝒩 ′ such that Δ = Δ1 ⊎ Δ2 and M (Φ𝑣 , 𝑚) = M (Φ𝑣1 , 𝑚) + M (Φ𝑣2 , 𝑚).
Using lemma 2.45, we can construct:

Φ𝑡1 =
Ψ = Γ′ ⊎ Δ1; 𝑥 ∶ 𝒩 ′ ⊩ N⟨⟨𝑣⟩⟩ ∶ 𝜎 Φ𝑣2 = Δ2 ⊩ 𝑣 ∶ 𝒩 ′

Γ′ ⊎ Δ; 𝑥 ∶ 𝒩 ′ ⊢ N⟨⟨𝑣⟩⟩[𝑥//𝑣] ∶ 𝜎 (CUT)

We clearly have lv◊(N) ≤ lv𝑥(N⟨⟨𝑥⟩⟩) and, because 𝑥 ∉ fv(𝑣), also have lv𝑥(N⟨⟨𝑣⟩⟩) ≤
lv𝑥(N⟨⟨𝑥⟩⟩). Then,

M (Φ𝑡1 , 𝑚) = M (Ψ, 𝑚) + M (Φ𝑣2 , 𝑚 + lv𝑥(N⟨⟨𝑣⟩⟩))
=2.45 M (Φ, 𝑚) + M (Φ𝑣1 , 𝑚 + lv◊(N)) − (0, 0, |𝒩 |) + M (Φ𝑣2 , 𝑚 + lv𝑥(N⟨⟨𝑣⟩⟩))
≤ M (Φ, 𝑚) + M (Φ𝑣1 , 𝑚 + lv𝑥(N⟨⟨𝑥⟩⟩)) − (0, 0, |𝒩 |) + M (Φ𝑣2 , 𝑚 + lv𝑥(N⟨⟨𝑥⟩⟩))
< M (Φ, 𝑚) + M (Φ𝑣1 , 𝑚 + lv𝑥(N⟨⟨𝑥⟩⟩)) + M (Φ𝑣2 , 𝑚 + lv𝑥(N⟨⟨𝑥⟩⟩))
= M (Φ𝑡0 , 𝑚)

Now, we analyze all the inductive cases of the form 𝑡0 = N⟨𝑡′0⟩ →flneed N⟨𝑡′1⟩ = 𝑡1,
where 𝑡′0 →flneed 𝑡′1.

Case N = N′𝑢. We have Φ𝑡′0 = Γ′ ⊩ N′⟨𝑡′0⟩ ∶ 𝒩 → 𝜎 and Φ𝑢 = Δ ⊩ 𝑢 ∶ 𝒩 . By the i.h.
there is Φ𝑡′1 = Γ′ ⊩ N′⟨𝑡′1⟩ ∶ 𝒩 → 𝜎 , so Φ𝑡1 = Γ′ ⊎ Δ ⊩ N′⟨𝑡′1⟩𝑢 ∶ 𝜎 . Moreover,
M (Φ𝑡0 , 𝑚) = M (Φ𝑡′0 , 𝑚) +M (Φ𝑢 , 𝑚) + (1, 𝑚, 0) >i.h. M (Φ𝑡′1 , 𝑚) +M (Φ𝑢 , 𝑚) + (1, 𝑚, 0) =
M (Φ𝑡1 , 𝑚).

Case N = N′[𝑥 ◁ 𝑢]. We have Φ𝑡′0 = Γ′; 𝑥 ∶ ℳ ⊩ N′⟨𝑡′0⟩ ∶ 𝜎 and Φ𝑢 = Δ ⊩ 𝑢 ∶ ℳ. By the
i.h. there is Φ𝑡′1 = Γ′; 𝑥 ∶ ℳ ⊩ N′⟨𝑡′1⟩ ∶ 𝜎 , so Φ𝑡1 = Γ′ ⊎ Δ ⊩ N′⟨𝑡′1⟩[𝑥 ◁ 𝑢] ∶ 𝜎 . We
distinguish three different cases:

Subcase 𝑡′0 →flneed 𝑡′1 is a dB-step. We know by the i.h. that M (Φ𝑡′0 , 𝑚) > M (Φ𝑡′1 , 𝑚)
strictly decreases the first component of the first 3-tuple. We then have

M (Φ𝑡1 , 𝑚) = M (Φ𝑡′1 , 𝑚) + M (Φ𝑢 , 𝑚 + lv𝑥(N′⟨𝑡′1⟩) + 1)
=2.43 M (Φ𝑡′1 , 𝑚) + M (Φ𝑢 , 𝑚) + (0, (lv𝑥(N′⟨𝑡′1⟩) + 1) ∗ sz(Φ𝑢), 0)
<i.h. M (Φ𝑡′0 , 𝑚) + M (Φ𝑢 , 𝑚) + (0, (lv𝑥(N′⟨𝑡′0⟩) + 1) ∗ sz(Φ𝑢), 0)
=2.43 M (Φ𝑡′0 , 𝑚) + M (Φ𝑢 , 𝑚 + lv𝑥(N′⟨𝑡′0⟩) + 1)
= M (Φ𝑡0 , 𝑚)
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Subcase 𝑡′0 →flneed 𝑡′1 is an spl-step. Then 𝑡′0 →∗
sub 𝑡′1, so that N′⟨𝑡′0⟩ →∗

sub N′⟨𝑡′1⟩,
and thus lv𝑥(N′⟨𝑡′0⟩) ≥ lv𝑥(N′⟨𝑡′1⟩) holds by lemma 2.6. We then conclude by:

M (Φ𝑡1 , 𝑚) = M (Φ𝑡′1 , 𝑚) + M (Φ𝑢 , 𝑚 + lv𝑥(N′⟨𝑡′1⟩) + 1)
<i.h. M (Φ𝑡′0 , 𝑚) + M (Φ𝑢 , 𝑚 + lv𝑥(N′⟨𝑡′1⟩) + 1)
≤ M (Φ𝑡′0 , 𝑚) + M (Φ𝑢 , 𝑚 + lv𝑥(N′⟨𝑡′0⟩) + 1)
= M (Φ𝑡0 , 𝑚)

Subcase 𝑡′0 →flneed 𝑡′1. is a sub-step. Then we know that N′⟨𝑡′0⟩ →flneed N′⟨𝑡′1⟩ also
holds, then lv𝑥(N′⟨𝑡′0⟩) ≥ lv𝑥(N′⟨𝑡′1⟩). We conclude as before.

Case N = N1⟨⟨𝑥⟩⟩[𝑥/N2]. Then we have Φ1 = Δ; 𝑥 ∶ ℳ ⊩ N1⟨⟨𝑥⟩⟩ ∶ 𝜎 and Φ𝑡′0 = Γ′ ⊩
N2⟨𝑡′0⟩ ∶ ℳ. By the i.h. there is Φ𝑡′1 = Γ′ ⊩ N2⟨𝑡′1⟩ ∶ ℳ, so Φ𝑡1 = Γ′ ⊎ Δ ⊩ N1⟨⟨𝑥⟩⟩[𝑥 ◁
N2⟨𝑡′1⟩] ∶ 𝜎 . Moreover,

M (Φ𝑡0 , 𝑚) = M (Φ1, 𝑚) + M (Φ𝑡′0 , 𝑚 + lv𝑥(N1⟨⟨𝑥⟩⟩) + es([𝑥 ◁ N2⟨𝑡′0⟩]))
>i.h. M (Φ1, 𝑚) + M (Φ𝑡′1 , 𝑚 + lv𝑥(N1⟨⟨𝑥⟩⟩) + es([𝑥 ◁ N2⟨𝑡′1⟩]))
= M (Φ𝑡1 , 𝑚)

Example 2.52. Consider the following reduction sequence:

(I(𝑥1I))[𝑥1/𝜆𝑦.I𝑦] →dB 𝑥2[𝑥2/𝑥1I][𝑥1/𝜆𝑦.I𝑦] →spl 𝑥2[𝑥2/𝑥1I][𝑥1//𝜆𝑦.𝑧𝑦][𝑧/I]
We have Φ1 = ∅ ⊩ (I(𝑥1I))[𝑥1/𝜆𝑦.I𝑦] ∶ a with Φ1 of the form

ΦI Φ𝑥1I
𝑥1 ∶ [[a] → a] ⊢ I(𝑥1I) ∶ a

(APP)

ΦI
𝑦 ∶ [a] ⊢ 𝑦 ∶ a

(AX)

𝑦 ∶ [a] ⊢ 𝑦 ∶ [a] (MANY)

𝑦 ∶ [a] ⊢ I𝑦 ∶ a
∅ ⊢ 𝜆𝑦.I𝑦 ∶ [a] → a
∅ ⊢ 𝜆𝑦.I𝑦 ∶ [[a] → a] (MANY)

(ABS)

(APP)

∅ ⊢ (I(𝑥1I))[𝑥1/𝜆𝑦.I𝑦] ∶ a
(CUT)

where

ΦI = 𝑥 ∶ [a] ⊢ 𝑥 ∶ a
(AX)

∅ ⊢ I ∶ [a] → a
(ABS)

and

Φ𝑥1I = 𝑥1 ⊢ [[a] → a] ∶ 𝑥1[a] → a
(AX)

∅ ⊢ I ∶ a
(ANS)

∅ ⊢ I ∶ [a] (MANY)

𝑥1 ∶ [[a] → a] ⊢ 𝑥1I ∶ a
𝑥1 ∶ [[a] → a] ⊢ 𝑥1I ∶ [a] (MANY)

(APP)
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We also have Φ2 = ∅ ⊩ 𝑥2[𝑥2/𝑥1I][𝑥1/𝜆𝑦.I𝑦] ∶ a with Φ2 of the form

𝑥2 ∶ [a] ⊢ 𝑥2 ∶ a
(AX) Φ𝑥1I

𝑥1 ∶ [[a] → a] ⊢ 𝑥2[𝑥2/𝑥1I] ∶ a
(CUT)

ΦI
𝑦 ∶ [a] ⊢ 𝑦 ∶ a

(AX)

𝑦 ∶ [a] ⊢ 𝑦 ∶ [a] (MANY)

𝑦 ∶ [a] ⊢ I𝑦 ∶ a
∅ ⊢ 𝜆𝑦.I𝑦 ∶ [a] → a
∅ ⊢ 𝜆𝑦.I𝑦 ∶ [[a] → a] (MANY)

(ABS)

(APP)

∅ ⊢ 𝑥2[𝑥2/𝑥1I][𝑥1/𝜆𝑦.I𝑦] ∶ a
(CUT)

Concerning the measures we have D (Φ1) = (7, 10, 4) > (5, 13, 4) = D (Φ2). The first ele-
ment of the 3-tuple decreases from 7 to 5 because we lost an abstraction and an applica-
tion constructors during dB-reduction. Note also that in Φ1 we have M (Φ𝑥1I, 1) = (2, 2, 1)
while in Φ2 we have M (Φ𝑥1I, 2) = (2, 4, 1) = M (Φ𝑥1I, 1) + (0, sz(Φ𝑥1I), 0). Besides, we have
Φ3 = ∅ ⊩ 𝑥2[𝑥2/𝑥1I][𝑥1//𝜆𝑦.𝑧𝑦][𝑧/I] ∶ a where Φ3 is of the form

𝑥2 ∶ [a] ⊢ 𝑥2 ∶ a
(AX) Φ𝑥1I

𝑥1 ∶ [[a] → a] ⊢ 𝑥2[𝑥2/𝑥1I] ∶ a
(CUT) Φ′3

𝑧 ∶ [[a] → a] ⊢ 𝑥2[𝑥2/𝑥1I][𝑥1//𝜆𝑦.𝑧𝑦] ∶ a
(CUT) ΦI

∅ ⊢ 𝑥2[𝑥2/𝑥1I][𝑥1//𝜆𝑦.𝑧𝑦][𝑧/I] ∶ a
(CUT)

where Φ′3 is

𝑧 ∶ [[a] → a] ⊢ 𝑧 ∶ [a] → a
(AX)

𝑦 ∶ [a] ⊢ 𝑦 ∶ a
(AX)

𝑦 ∶ [a] ⊢ 𝑦 ∶ [a] (MANY)

𝑧 ∶ [[a] → a]; 𝑦 ∶ [a] ⊢ 𝑧𝑦 ∶ a
𝑧 ∶ [[a] → a] ⊢ 𝜆𝑦.𝑧𝑦 ∶ [a] → a
𝑧 ∶ [[a] → a] ⊢ 𝜆𝑦.𝑧𝑦 ∶ [[a] → a] (MANY)

(ABS)

(APP)

Therefore D (Φ3) = (5, 11, 5) < (5, 13, 4) = D (Φ2), where the second element of the 3-tuple
has decreased from 13 to 11 because two nodes of the term 𝜆𝑦.I𝑦 , namely the binder and the
application, have moved from the explicit substitution of level 3 to the distributor of level 2.

Theorem 2.53 (Typability implies name-normalization). Let Φ𝑡 = Γ ⊩ 𝑡 ∶ 𝜎 . Then 𝑡 is name-
normalizing. Moreover, the first element of D (Φ𝑡) is an upper bound for the number of dB-steps
to name-nf.

Proof. Suppose 𝑡 is not name-normalizing. Since →sub is terminating by corollary 2.14,
then every infinite →name-reduction sequence starting at 𝑡 must necessarily have an
infinite number of dB-steps. Moreover, all terms in such an infinite sequence are typed by
lemma 2.49 and lemma 2.48. Therefore, these lemmas guarantee that all dB/sub reduction
steps involved in such →name-reduction sequence do not increase the measure D (⋅), and
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that, in particular, dB-steps strictly decrease it by decreasing the first element of the
triple. This leads to a contradiction because the order > on 3-tuples D (⋅) is well-founded.
Then 𝑡 is necessarily name-normalizing.

Theorem 2.54 (Typability implies flneed-normalization). Let Φ𝑡 = Γ ⊩ 𝑡 ∶ 𝜎 . Then 𝑡 is flneed-
normalizing. Moreover, the first element of D (Φ𝑡) is an upper bound for the number of dB-steps
to flneed-nf.

Proof. The property trivially holds by lemma 2.51 since the lexicographic order on 3-
tuples is well-founded.

Completeness. We address here completeness of system ∩𝑅 with respect to →name and
→flneed. More precisely, we show that normalizing terms in each strategy are typable. The
basic property in showing that consists in guaranteeing that normal forms are typable.

Lemma 2.55 (flneed-nfs are typable). Let 𝑡 be in flneed-nf. Then there exists a derivation
Φ = Γ ⊩ 𝑡 ∶ 𝜏 such that for any 𝑥 ∉ ndv(𝑡), Γ(𝑥) = [ ].

Proof. First, we show that if 𝑡 is an answer L⟨𝜆𝑥.𝑝⟩, we can type it with type a and Γ = ∅.
We reason by induction on L. If L = ◊, this is immediate. Otherwise, using the induction
hypothesis, we build:

∅ ⊢ L⟨𝜆𝑥.𝑝⟩ ∶ a ∅ ⊢ 𝑢 ∶ [ ] (MANY)

∅ ⊢ L⟨𝜆𝑥.𝑝⟩[𝑦 ◁ 𝑢] ∶ a
(CUT)

The statement is then trivial since Γ = ∅. For neutral terms, we use induction on NEflneed
with a stronger hypothesis: there exists a derivation for any given type 𝜏 .

Case 𝑡 = 𝑥 . We can build Φ = 𝑥 ∶ [𝜏] ⊩ 𝑥 ∶ 𝜏 . Note that 𝑥 ∈ ndv(𝑡).
Case 𝑡 = 𝑡′𝑢, where 𝑡′ ∈ NEflneed. By the i.h. there is a derivation Φ′ = Γ ⊩ 𝑡′ ∶ [ ] → 𝜏

verifying the statement. We then build:

Φ′ = Γ ⊩ 𝑡′ ∶ [ ] → 𝜏 ∅ ⊢ 𝑢 ∶ [ ] (MANY)

Γ ⊢ 𝑡′𝑢 ∶ 𝜏 (APP)

The statement holds by the i.h. because ndv(𝑡) = ndv(𝑡′).
Case 𝑡 = 𝑡′[𝑥 ◁ 𝑢], where 𝑡′ ∈ NEflneed. By the i.h. there is a derivation Φ′ = Γ𝑡′ ⊩ 𝑡′ ∶ 𝜏

verifying the statement. Let Γ𝑡′ = Γ′; 𝑥 ∶ [𝜎𝑖]𝑖∈𝐼 . There are two cases.
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Subcase 𝑥 ∉ ndv(𝑡′). By the i.h. 𝐼 = [ ]. We can then build the following derivation.

Φ′ = Γ′ ⊩ 𝑡′ ∶ 𝜏 ∶ ∅ ⊢ 𝑢 ∶ [ ] (MANY)

Γ′ ⊢ 𝑡′[𝑥 ◁ 𝑢] ∶ 𝜏 (CUT)

The property holds for Γ = Γ′ because ndv(𝑡) = ndv(𝑡′).
Subcase 𝑥 ∈ ndv(𝑡′). Then, 𝑡 = 𝑡′[𝑥/𝑢], and 𝑢 ∈ NEflneed. We apply the i.h. on 𝑢.

There are derivations Φ𝑖𝑢 = Δ𝑖 ⊩ 𝑢 ∶ 𝜎𝑖 . We take Γ = Γ𝑡′ ⊎𝑖∈𝐼 Δ𝑖 and we build:

Φ′ = Γ𝑡′ ⊩ 𝑡′ ∶ 𝜏
(Φ𝑖𝑢 = Δ𝑖 ⊩ 𝑢 ∶ 𝜎𝑖)
⊎𝑖∈𝐼Δ𝑖 ⊢ 𝑢 ∶ [𝜎𝑖]𝑖∈𝐼

(MANY)

Γ ⊢ 𝑡′[𝑥/𝑢] ∶ 𝜏 (CUT)

where Γ = Γ′ ⊎𝑖∈𝐼 Δ𝑖 . Moreover, ndv(𝑡) = ndv(𝑢) so the second property holds
on Γ by the two induction hypothesis.

Example 2.56. Remember that ndv((𝑥𝑦1)[𝑥/𝑧]𝑦1) = {𝑧} and note that ndv(𝑥𝑦1) = {𝑥}.

𝑥 ∶ [ ] → 𝜏 ⊢ 𝑥 ∶ [ ] → 𝜏 ∅ ⊢ 𝑦1 ∶ [ ]
𝑥 ∶ [ ] → 𝜏 ⊢ 𝑥𝑦1 ∶ 𝜏 Φ

𝑧 ∶ [ ] → [ ] → 𝜏 ⊢ (𝑥𝑦1)[𝑥/𝑧𝑦2] ∶ 𝜏
With

Φ = 𝑧 ∶ [ ] → [ ] → 𝜏 ⊢ 𝑧 ∶ [ ] → [ ] → 𝜏 ∅ ⊢ 𝑦2 ∶ [ ]
𝑧 ∶ [ ] → [ ] → 𝜏 ⊢ 𝑧𝑦2 ∶ [ ] → 𝜏

Because name-nfs are also flneed-nfs, we infer the following corollary for free.

Corollary 2.57 (name-nfs are typable). Let 𝑡 be in name-nf. Then there is a derivation Φ = Γ ⊩
𝑡 ∶ 𝜏 .

We need lemmas stating the behavior of partial and full (anti-)substitution w.r.t. typing.

Lemma 2.58 (Partial anti-substitution). Let C⟨⟨𝑥⟩⟩ and 𝑢 be terms s.t. 𝑥 ∉ fv(𝑢) and Φ = Γ ⊩
C⟨⟨𝑢⟩⟩ ∶ 𝜎 . Then ∃Γ′, ∃Δ, ∃ℳ, ∃Φ′, ∃Φ𝑢 s.t. Γ = Γ′ ⊎ Δ, Φ′ = Γ′ ⊎ 𝑥 ∶ ℳ ⊩ C⟨⟨𝑥⟩⟩ ∶ 𝜎 and
Φ𝑢 = Δ ⊩ 𝑢 ∶ ℳ.

Proof. By induction on the structure of C.

Case C = ◊. The property trivially holds taking Γ′ = ∅, Δ = Γ, ℳ = [𝜎], Φ′ = 𝑥 ∶ [𝜎] ⊩
𝑥 ∶ 𝜎 and Φ𝑢 = Φ.

Case C = 𝜆𝑦.C′. then 𝑦 ∉ fv(𝑢) and by 𝛼-conversion we can assume that 𝑥 ≠ 𝑦 . There
are two cases:
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Subcase Φ = Φ0 = Γ; 𝑦 ∶ ℳ𝑦 ⊩ C′⟨⟨𝑢⟩⟩ ∶ 𝜏
Γ ⊢ 𝜆𝑦.C′⟨⟨𝑢⟩⟩ ∶ ℳ𝑦 → 𝜏 . By the i.h. there are Γ′, Δ,ℳ, Φ′0 and Φ𝑢

such that Γ; 𝑦 ∶ ℳ𝑦 = Γ′0⊎Δ, Φ′0 = Γ′0⊎𝑥 ∶ ℳ ⊩ C′⟨⟨𝑥⟩⟩ ∶ 𝜏 andΦ𝑢 = Δ ⊩ 𝑢 ∶ ℳ.
By the relevance property 2.40 𝑦 ∉ dom(Δ) thus Γ′0 = Γ′; 𝑦 ∶ ℳ𝑦 . Therefore,
Γ′0 ⊎ 𝑥 ∶ ℳ = (Γ′ ⊎ 𝑥 ∶ ℳ); 𝑦 ∶ ℳ𝑦 and

Φ′ = Φ′0 = (Γ′ ⊎ 𝑥 ∶ ℳ); 𝑦 ∶ ℳ𝑦 ⊩ C′⟨⟨𝑥⟩⟩ ∶ 𝜏
Γ′ ⊎ 𝑥 ∶ ℳ ⊢ 𝜆𝑦.C′⟨⟨𝑥⟩⟩ ∶ ℳ𝑦 → 𝜏

Subcase Φ = ∅ ⊢ 𝜆𝑦.C′⟨⟨𝑢⟩⟩ ∶ a
. Taking Γ′, Δ = ∅, ℳ = [ ] and Φ𝑢 = ∅ ⊩ 𝑢 ∶ [ ] we

have
Φ′ = ∅ ⊢ 𝜆𝑦.C′⟨⟨𝑥⟩⟩ ∶ a

Case C = C′𝑡 . Then Φ = Φ1 = Γ1 ⊩ C′⟨⟨𝑢⟩⟩ ∶ ℳ′ → 𝜎 Φ2 = Γ2 ⊩ 𝑡 ∶ ℳ′

Γ1 ⊎ Γ2 ⊢ C′⟨⟨𝑢⟩⟩𝑡 ∶ 𝜎 , where Γ =
Γ1 ⊎ Γ2. By i.h. there are Γ′1, Δ,ℳ, Φ′1 and Φ𝑢 such that Γ1 = Γ′1 ⊎ Δ, Φ′1 = Γ′1 ⊎ 𝑥 ∶
ℳ ⊩ C′⟨⟨𝑥⟩⟩ ∶ ℳ′ → 𝜎 and Φ𝑢 = Δ ⊩ 𝑢 ∶ ℳ. Therefore, taking Γ′ = Γ′1 ⊎ Γ2 we
have

Φ′ = Φ′1 = Γ′1 ⊎ 𝑥 ∶ ℳ ⊩ C′⟨⟨𝑥⟩⟩ ∶ ℳ′ → 𝜎 Φ2 = Γ2 ⊩ 𝑡 ∶ ℳ′

(Γ′1 ⊎ 𝑥 ∶ ℳ) ⊎ Γ2 ⊢ C′⟨⟨𝑥⟩⟩𝑡 ∶ 𝜎
where (Γ′1 ⊎ 𝑥 ∶ ℳ) ⊎ Γ2 = Γ′ ⊎ 𝑥 ∶ ℳ.

Case C = 𝑡C′. Then Φ is of the form

Φ1 = Γ1 ⊩ 𝑡 ∶ [𝜏𝑖]𝑖∈𝐼 → 𝜎 (Φ𝑖 = Γ𝑖 ⊩ C′⟨⟨𝑢⟩⟩ ∶ 𝜏𝑖)𝑖∈𝐼
Γ2 ⊢ C′⟨⟨𝑢⟩⟩ ∶ [𝜏𝑖]𝑖∈𝐼 ∶

Γ1 ⊎ Γ2 ⊢ 𝑡C′⟨⟨𝑢⟩⟩ ∶ 𝜎
where Γ2 = ⊎𝑖∈𝐼Γ𝑖 and Γ = Γ1 ⊎ Γ2. There are two cases:

Subcase 𝐼 ≠ ∅. By i.h. ∃Γ′𝑖 , ∃Δ𝑖 , ∃ℳ𝑖 , ∃Φ′𝑖 , ∃Φ𝑖𝑢 s.t. Γ𝑖 = Γ′𝑖 ⊎ Δ𝑖 , Φ′𝑖 = Γ′𝑖 ⊎ 𝑥 ∶ ℳ𝑖 ⊩
C′⟨⟨𝑥⟩⟩ ∶ 𝜏𝑖 and Φ𝑖𝑢 = Δ𝑖 ⊩ 𝑢 ∶ ℳ𝑖 , for all 𝑖 ∈ 𝐼 . Let Δ = ⊎𝑖∈𝐼Δ𝑖 and ℳ =
⊔𝑖∈𝐼ℳ𝑖 then from split lemma 2.44 we have Φ𝑢 = (Φ𝑖𝑢 = Δ𝑖 ⊩ 𝑢 ∶ ℳ𝑖)𝑖∈𝐼

Δ ⊢ 𝑢 ∶ ℳ . Let

Γ′2 = ⊎𝑖∈𝐼Γ′𝑖 then Γ′2 ⊎ Δ = Γ2 and Φ′ is defined by

Φ1 = Γ1 ⊩ 𝑡 ∶ [𝜏𝑖]𝑖∈𝐼 → 𝜎 (Φ′𝑖 = Γ′𝑖 ⊎ 𝑥 ∶ ℳ𝑖 ⊩ C′⟨⟨𝑥⟩⟩ ∶ 𝜏𝑖)𝑖∈𝐼
Γ′2 ⊎ 𝑥 ∶ ℳ ⊢ C′⟨⟨𝑥⟩⟩ ∶ [𝜏𝑖]𝑖∈𝐼

(Γ1 ⊎ Γ′2) ⊎ 𝑥 ∶ ℳ ⊢ 𝑡C′⟨⟨𝑥⟩⟩ ∶ 𝜎
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where Γ′ = Γ1 ⊎ Γ′2.

Subcase 𝐼 = ∅. Then [𝜏𝑖]𝑖∈𝐼 = [ ], Γ2 = ∅ and Γ = Γ1. Therefore, taking Γ′ = Γ1,
Δ = ∅, ℳ = [ ], Φ𝑢 = ∅ ⊢ 𝑢 ∶ [ ], we have Γ1 = Γ1 ⊎ 𝑥 ∶ [ ] = Γ′ ⊎ 𝑥 ∶ [ ] and
Γ′ ⊎ Δ = Γ1 ⊎ ∅ = Γ. We take

Φ′ = Φ1 = Γ1 ⊩ 𝑡 ∶ [ ] → 𝜎 ∅ ⊢ C′⟨⟨𝑥⟩⟩ ∶ [ ]
Γ1 ⊢ 𝑡C′⟨⟨𝑥⟩⟩ ∶ 𝜎 .

Case C = C′[𝑦 ◁ 𝑡]. Then Φ = Φ1 = Γ1; 𝑦 ∶ ℳ𝑦 ⊩ C′⟨⟨𝑢⟩⟩ ∶ 𝜎 Φ2 = Γ2 ⊩ 𝑡 ∶ ℳ𝑦
Γ1 ⊎ Γ2 ⊢ C′⟨⟨𝑢⟩⟩[𝑦 ◁ 𝑡] ∶ 𝜎 where

Γ = Γ1 ⊎ Γ2. Moreover, 𝑦 ∉ fv(𝑢) and by 𝛼-conversion we can assume that 𝑥 ≠ 𝑦 . By
i.h. there are Γ′1, Δ,ℳ, Φ′1 and Φ𝑢 such that Γ1; 𝑦 ∶ ℳ𝑦 = Γ′1 ⊎ Δ, Φ′1 = Γ′1 ⊎ 𝑥 ∶ ℳ ⊩
C′⟨⟨𝑥⟩⟩ ∶ 𝜎 and Φ𝑢 = Δ ⊩ 𝑢 ∶ ℳ. By the relevance property 2.40 𝑦 ∉ dom(Δ) thus
Γ′1 = Γ″; 𝑦 ∶ ℳ𝑦 , Γ′1 ⊎ 𝑥 ∶ ℳ = (Γ″ ⊎ 𝑥 ∶ ℳ); 𝑦 ∶ ℳ𝑦 and Γ″ ⊎ Δ = Γ1. Therefore,
taking Γ′ = Γ″ ⊎ Γ2 we have

Φ′ = Φ′1 = (Γ″ ⊎ 𝑥 ∶ ℳ); 𝑦 ∶ ℳ𝑦 ⊩ C′⟨⟨𝑥⟩⟩ ∶ 𝜎 Φ2 = Γ2 ⊩ 𝑡 ∶ ℳ𝑦
(Γ″ ⊎ 𝑥 ∶ ℳ) ⊎ Γ2 ⊢ C′⟨⟨𝑥⟩⟩[𝑦 ◁ 𝑡] ∶ 𝜎

where (Γ″ ⊎ 𝑥 ∶ ℳ) ⊎ Γ2 = Γ′ ⊎ 𝑥 ∶ ℳ.

Case C = 𝑡[𝑦 ◁ C′]. Then Φ is of the form

Φ1 = Γ1; 𝑦 ∶ [𝜏𝑖]𝑖∈𝐼 ⊩ 𝑡 ∶ 𝜎 (Φ𝑖 = Γ𝑖 ⊩ C′⟨⟨𝑢⟩⟩ ∶ 𝜏𝑖)𝑖∈𝐼
Γ2 ⊢ C′⟨⟨𝑢⟩⟩ ∶ [𝜏𝑖]𝑖∈𝐼

Γ1 ⊎ Γ2 ⊢ 𝑡[𝑦 ◁ C′⟨⟨𝑢⟩⟩] ∶ 𝜎
where Γ2 = ⊎𝑖∈𝐼Γ𝑖 and Γ = Γ1 ⊎ Γ2. There are two cases:

Subcase 𝐼 ≠ ∅. By i.h. there are Γ′𝑖 , Δ𝑖 ,ℳ𝑖 , Φ′𝑖 and Φ𝑖𝑢 such that Γ𝑖 = Γ′𝑖 ⊎ Δ𝑖 , Φ′𝑖 =
Γ′𝑖 ⊎ 𝑥 ∶ ℳ𝑖 ⊩ C′⟨⟨𝑥⟩⟩ ∶ 𝜏𝑖 and Φ𝑖𝑢 = Δ𝑖 ⊩ 𝑢 ∶ ℳ𝑖 , for all 𝑖 ∈ 𝐼 . Let Δ = ⊎𝑖∈𝐼Δ𝑖 and

ℳ = ⊔𝑖∈𝐼ℳ𝑖 then from split lemma 2.44 we have Φ𝑢 = (Φ𝑖𝑢 = Δ𝑖 ⊩ 𝑢 ∶ ℳ𝑖)𝑖∈𝐼
Δ ⊢ 𝑢 ∶ ℳ .

Let Γ′2 = ⊎𝑖∈𝐼Γ′𝑖 then Γ′2 ⊎ Δ = Γ2 and Φ′ is defined by

Φ1 = Γ1; 𝑦 ∶ [𝜏𝑖]𝑖∈𝐼 ⊩ 𝑡 ∶ 𝜎 (Φ′𝑖 = Γ′𝑖 ⊎ 𝑥 ∶ ℳ𝑖 ⊩ C′⟨⟨𝑥⟩⟩ ∶ 𝜏𝑖)𝑖∈𝐼
Γ′2 ⊎ 𝑥 ∶ ℳ ⊢ C′⟨⟨𝑥⟩⟩ ∶ [𝜏𝑖]𝑖∈𝐼

(Γ1 ⊎ Γ′2) ⊎ 𝑥 ∶ ℳ ⊢ 𝑡[𝑦 ◁ C′⟨⟨𝑥⟩⟩] ∶ 𝜎
where Γ′ = Γ1 ⊎ Γ′2.
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Subcase 𝐼 = ∅. Then [𝜏𝑖]𝑖∈𝐼 = [ ], Γ2 = ∅ and Γ = Γ1. Moreover, 𝑦 ∉ dom(Γ1).
Therefore, taking Γ′ = Γ1, Δ = ∅, ℳ = [ ], Φ𝑢 = ∅ ⊢ 𝑢 ∶ [ ], we have Γ1 =
Γ1 ⊎ 𝑥 ∶ [ ] = Γ′ ⊎ 𝑥 ∶ [ ] and Γ′ ⊎ Δ = Γ1 ⊎ ∅ = Γ. We take

Φ′ = Φ1 = Γ1 ⊩ 𝑡 ∶ 𝜎 ∅ ⊢ C′⟨⟨𝑥⟩⟩ ∶ [ ]
Γ1 ⊢ 𝑡[𝑦 ◁ C′⟨⟨𝑥⟩⟩] ∶ 𝜎

Corollary 2.59 (Anti-substitution). Let 𝑢 be a term s.t. 𝑥 ∉ fv(𝑢) and Φ = Γ ⊩ 𝑡{𝑥/𝑢} ∶ 𝜎 . Then
∃Γ′, ∃Δ, ∃ℳ, ∃Φ′, ∃Φ𝑢 s.t. Γ = Γ′ ⊎ Δ, Φ′ = Γ′; 𝑥 ∶ ℳ ⊩ 𝑡 ∶ 𝜎 and Φ𝑢 = Δ ⊩ 𝑢 ∶ ℳ.

Proof. The proof is by induction on |𝑡 |𝑥 .

Case |𝑡 |𝑥 = 0. Then 𝑡{𝑥/𝑢} = 𝑡 and, by property 2.40, 𝑥 ∉ dom(Γ) then Γ = Γ; 𝑥 ∶ [ ].
Therefore, for Γ′ ≔ Γ, Δ ≔ ∅, ℳ = [ ], Φ′ ≔ Φ and Φ𝑢 ≔ ⊢ 𝑢 ∶ [ ] the result holds.

Case |𝑡 |𝑥 ≥ 1. Then let C⟨⟨𝑥⟩⟩ such that 𝑡{𝑥/𝑢} = C⟨⟨𝑢⟩⟩. For any fresh 𝑦 , we have that
𝑡{𝑥/𝑢} = C⟨⟨𝑦⟩⟩{𝑦/𝑢} where C⟨⟨𝑦⟩⟩ = 𝑡′{𝑥/𝑢} s.t. 𝑡 = 𝑡′{𝑦/𝑥}. Note that |𝑡′|𝑥 < |𝑡|𝑥 . Then
by lemma 2.58 ∃Γ″, ∃Δ′, ∃𝒩 , ∃Φ″, ∃Φ′𝑢 s.t. Γ = Γ″ ⊎ Δ′, Φ″ = Γ″ ⊎ 𝑦 ∶ 𝒩 ⊩ C⟨⟨𝑦⟩⟩ ∶ 𝜎
and Φ′𝑢 = Δ′ ⊩ 𝑢 ∶ 𝒩 where, by freshness of 𝑦 , Γ″ ⊎ 𝑦 ∶ 𝒩 = Γ″; 𝑦 ∶ 𝒩 .
Therefore, by the i.h. on Φ″ ∃Γ‴, ∃Δ″, ∃𝒩 ′, ∃Φ‴, ∃Φ″𝑢 s.t. Γ″; 𝑦 ∶ 𝒩 = Γ‴ ⊎ Δ″,
Φ‴ = Γ‴; 𝑥 ∶ 𝒩 ′ ⊩ 𝑡′ ∶ 𝜎 and Φ″𝑢 = Δ″ ⊩ 𝑢 ∶ 𝒩 ′. By freshness of 𝑦 and relevance,
we have 𝑦 ∉ dom(Δ″). Then Γ‴ = Γ𝑖𝑣 ; 𝑦 ∶ 𝒩 where Γ″ = Γ𝑖𝑣 ⊎ Δ″. From Φ‴
and lemma 2.45 we have Φ′ = (Γ𝑖𝑣 ; 𝑥 ∶ 𝒩 ′) ⊎ 𝑥 ∶ 𝒩 ⊩ 𝑡 ∶ 𝜎 while from Φ′𝑢 and
Φ″𝑢 we obtain Φ𝑢 = Δ′ ⊎ Δ″ ⊩ 𝑢 ∶ 𝒩 ⊔ 𝒩 ′. Finally, for Γ′ ≔ Γ𝑖𝑣 , Δ ≔ Δ′ ⊎ Δ″,
ℳ = 𝒩 ⊔ 𝒩 ′ the result holds, since (Γ𝑖𝑣 ; 𝑥 ∶ 𝒩 ′) ⊎ 𝑥 ∶ 𝒩 = Γ′; 𝑥 ∶ ℳ and
Γ′ ⊎ Δ = Γ𝑖𝑣 ⊎ Δ″ ⊎ Δ′ = Γ″ ⊎ Δ′ = Γ.

To achieve completeness, we show that typing is preserved by anti-reduction.

Lemma 2.60 (Subject expansion). Let Φ𝑡1 = Γ ⊩ 𝑡1 ∶ 𝜎 and r ∈ {𝜌, sub, ndB, flneed}. If 𝑡0 →r 𝑡1,
then there exists Φ𝑡0 = Γ ⊩ 𝑡0 ∶ 𝜎 .

Proof. The proof is by induction on →r and uses lemma 2.58 and corollary 2.59. We
detail some interesting cases of the proof. In all the cases shown, we suppose that the
list context L of the general rule is empty (L = ◊), since we can use subject expansion
for →𝜌 to manipulate it.

Case 𝑡0 = 𝑡[𝑥/𝑢𝑠] ↦sub 𝑡{𝑥/𝑦𝑧}[𝑦/𝑢][𝑧/𝑠] = 𝑡1. Then Φ𝑡1 is of the form

Φ = Γ′; 𝑧 ∶ 𝒩𝑠 ; 𝑦 ∶ 𝒩𝑢 ⊩ 𝑡{𝑥/𝑦𝑧} ∶ 𝜎 Φ𝑢 = Δ𝑢 ⊩ 𝑢 ∶ 𝒩𝑢
(Γ′ ⊎ Δ𝑢); 𝑧 ∶ 𝒩𝑠 ⊢ 𝑡{𝑥/𝑦𝑧}[𝑦/𝑢] ∶ 𝜎 Φ𝑠 = Δ𝑠 ⊩ 𝑠 ∶ 𝒩𝑠

Γ′ ⊎ Δ𝑢 ⊎ Δ𝑠 ⊢ 𝑡{𝑥/𝑦𝑧}[𝑦/𝑢][𝑧/𝑠] ∶ 𝜎
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where Γ = Γ′ ⊎ Δ𝑢 ⊎ Δ𝑠 . Also (Γ′; 𝑧 ∶ 𝒩𝑠) ⊎ Δ𝑢 = (Γ′ ⊎ Δ𝑢); 𝑧 ∶ 𝒩𝑠 since 𝑧 ∉
dom(Δ𝑢) by the relevance property 2.40. By corollary 2.59 ∃Γ″, ∃Δ, ∃ℳ, ∃Φ′, ∃Φ𝑦𝑧
s.t. Γ′; 𝑧 ∶ 𝒩𝑠 ; 𝑦 ∶ 𝒩𝑢 = Γ″ ⊎ Δ, Φ′ = Γ″; 𝑥 ∶ ℳ ⊩ 𝑡 ∶ 𝜎 and Φ𝑦𝑧 = Δ ⊩ 𝑦𝑧 ∶ ℳ.
By freshness of 𝑦, 𝑧 and property 2.40 we have that 𝑦, 𝑧 ∉ dom(Γ″) ∪ {𝑥}. Then
Γ″ = Γ′ and Δ = 𝑧 ∶ 𝒩𝑠 ; 𝑦 ∶ 𝒩𝑢 . From Φ𝑦𝑧 , Φ𝑢 , Φ𝑠 and lemma 2.45 we obtain
Φ𝑢𝑠 = Δ𝑢 ⊎ Δ𝑠 ⊩ 𝑢𝑠 ∶ ℳ and construct Φ𝑡0 as:

Φ𝑡0 =
Φ′ = Γ′; 𝑥 ∶ ℳ ⊩ 𝑡 ∶ 𝜎 Φ𝑢𝑠 = Δ𝑢 ⊎ Δ𝑠 ⊩ 𝑢𝑠 ∶ ℳ

Γ′ ⊎ Δ𝑢 ⊎ Δ𝑠 ⊢ 𝑡[𝑥/𝑢𝑠] ∶ 𝜎

Case 𝑡0 = (𝜆𝑥.𝑡)𝑢 →dB 𝑡[𝑥/𝑢] = 𝑡1. Then Φ𝑡1 is of the form

Φ𝑡 = Γ′; 𝑥 ∶ ℳ ⊩ 𝑡 ∶ 𝜎 Φ𝑢 = Γ𝑢 ⊩ 𝑢 ∶ ℳ
Γ′ ⊎ Γ𝑢 ⊢ 𝑡[𝑥/𝑢] ∶ 𝜎 (CUT)

Therefore, we construct Φ𝑡0 as follows:

Φ𝑡 = Γ′; 𝑥 ∶ ℳ ⊩ 𝑡 ∶ 𝜎
Γ′ ⊢ 𝜆𝑥.𝑡 ∶ ℳ → 𝜎 (ABS) Φ𝑢 = Γ𝑢 ⊩ 𝑢 ∶ ℳ

Γ′ ⊎ Γ𝑢 ⊢ (𝜆𝑥.𝑡)𝑢 ∶ 𝜎 (APP)

Case 𝑡0 = N⟨⟨𝑥⟩⟩[𝑥/𝜆𝑦.𝑝] →spl LL⟨N⟨⟨𝑥⟩⟩[𝑥//𝜆𝑦.𝑝′]⟩ = 𝑡1, where 𝜆𝑦.𝑧[𝑧/𝑝] ⇓st 𝜆𝑦.LL⟨𝑝′⟩.
By subject expansion for →𝜌 , there is Φ𝑡′1 = Γ ⊩ N⟨⟨𝑥⟩⟩[𝑥//𝜆𝑦.LL⟨𝑝′⟩] ∶ 𝜎 and it is of
the form

Φ = Γ′; 𝑥 ∶ 𝒩 ⊩ N⟨⟨𝑥⟩⟩ ∶ 𝜎
(Φ𝑖 = Δ𝑖 ⊩ 𝜆𝑦.LL⟨𝑝′⟩ ∶ 𝜎𝑖)𝑖∈𝐼

Δ ⊢ 𝜆𝑦.LL⟨𝑝′⟩ ∶ 𝒩 (MANY)

Γ′ ⊎ Δ ⊢ N⟨⟨𝑥⟩⟩[𝑥//𝜆𝑦.LL⟨𝑝′⟩] ∶ 𝜎 (CUT)

where Δ = ⊎𝑖∈𝐼Δ𝑖 and 𝒩 = [𝜎𝑖]𝑖∈𝐼 where, by lemma 2.50, 𝒩 ≠ [ ]. Then, for each
𝑖 ∈ 𝐼 we have by subject expansion for →sub (of which →st is a subrelation) that
Φ′𝑖 = Δ𝑖 ⊩ 𝜆𝑦.𝑧[𝑧/𝑝] ∶ 𝜎𝑖 which has two different shapes, depending on 𝜎𝑖 .
Subcase 𝜎𝑖 = ℳ𝑖 → 𝜏𝑖 . Then Φ′𝑖 is of the form

𝑧 ∶ [𝜏𝑖] ⊢ 𝑧 ∶ 𝜏𝑖
(AX) Φ𝑖𝑝 = Δ𝑖 ; 𝑦 ∶ ℳ𝑖 ⊩ 𝑝 ∶ 𝜏𝑖

Δ𝑖 ; 𝑦 ∶ ℳ𝑖 ⊢ 𝑧[𝑧/𝑝] ∶ 𝜏𝑖
(CUT)

Δ𝑖 ⊢ 𝜆𝑦.𝑧[𝑧/𝑝] ∶ ℳ𝑖 → 𝜏𝑖
(ABS)
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Therefore we have Ψ𝑖 of the form

Φ𝑖𝑝 = Δ𝑖 ; 𝑦 ∶ ℳ𝑖 ⊩ 𝑝 ∶ 𝜏𝑖
Δ𝑖 ⊢ 𝜆𝑦.𝑝 ∶ ℳ𝑖 → 𝜏𝑖

(ABS)

Subcase 𝜎𝑖 = a. Then Δ𝑖 = ∅ and we obtain Ψ𝑖 of the form ⊢ 𝜆𝑦.𝑝 ∶ a
(ANS) .

We can then construct Φ𝑡0 as follows

Φ = Γ′; 𝑥 ∶ 𝒩 ⊩ N⟨⟨𝑥⟩⟩ ∶ 𝜎
(Ψ𝑖 = Δ𝑖 ⊩ 𝜆𝑦.𝑝 ∶ 𝜎𝑖)𝑖∈𝐼

Δ ⊢ 𝜆𝑦.𝑝 ∶ 𝒩 (MANY)

Γ′ ⊎ Δ ⊢ N⟨⟨𝑥⟩⟩[𝑥/𝜆𝑦.𝑝] ∶ 𝜎 (CUT)

Case 𝑡0 = N⟨⟨𝑥⟩⟩[𝑥//𝑣] →sub N⟨⟨𝑣⟩⟩[𝑥//𝑣] = 𝑡1. Then Φ𝑡1 is of the form

Φ = Γ′; 𝑥 ∶ 𝒩 ′ ⊩ N⟨⟨𝑣⟩⟩ ∶ 𝜎 Φ′𝑣 = Δ′ ⊩ 𝑣 ∶ 𝒩 ′

Γ′ ⊎ Δ′ ⊢ N⟨⟨𝑣⟩⟩[𝑥//𝑣] ∶ 𝜎 (CUT)

By lemma 2.58 ∃Γ″, ∃Δ″, ∃𝒩 ″, ∃Φ′, ∃Φ″𝑣 s.t. Γ′; 𝑥 ∶ 𝒩 = Γ″ ⊎Δ′, Φ′ = Γ″ ⊎𝑥 ∶ 𝒩 ″ ⊩
N⟨⟨𝑥⟩⟩ ∶ 𝜎 and Φ″𝑣 = Δ″ ⊩ 𝑣 ∶ 𝒩 ″. From 𝑥 ∉ fv(𝑣) and the relevance property 2.40
we have that 𝑥 ∉ dom(Δ″). Thus Γ″ = Γ‴; 𝑥 ∶ 𝒩 ′ and then Γ″ ⊎ 𝑥 ∶ 𝒩 ′ = Γ‴; 𝑥 ∶
𝒩 where 𝒩 = 𝒩 ′ ⊔ 𝒩 ″. From Φ′𝑣 and Φ″𝑣 derivations we obtain Φ𝑣 = Δ ⊩ 𝑣 ∶ 𝒩 ,
where Δ = Δ′ ⊎ Δ″. Then Φ𝑡0 is of the form

Φ′ = Γ‴; 𝑥 ∶ 𝒩 ⊩ N⟨⟨𝑥⟩⟩ ∶ 𝜎 Φ𝑣 = Δ ⊩ 𝑣 ∶ 𝒩
Γ‴ ⊎ Δ ⊢ N⟨⟨𝑥⟩⟩[𝑥//𝑣] ∶ 𝜎 (CUT)

where Γ‴ ⊎ Δ = Γ′ ⊎ Δ′.

Property 2.61. Let 𝑡 ∈ T𝑅 . If 𝑡 is name-normalizing, then 𝑡 is ∩𝑅-typable.

Proof. Let 𝑡 be name-normalizing. Then 𝑡 →𝑛
name 𝑢 and 𝑢 is a name-nf. We reason by

induction on 𝑛. If 𝑛 = 0, then 𝑡 = 𝑢 is typable by corollary 2.57. Otherwise, we have
𝑡 →name 𝑡′ →𝑛−1

name 𝑢. By the i.h. 𝑡′ is typable and thus by lemma 2.60 (because →nsub is
included in →sub), 𝑡 turns out to be also typable.

Property 2.62. Let 𝑡 ∈ T𝑅 . If 𝑡 is flneed-normalizing, then 𝑡 is ∩𝑅-typable.

Proof. Similar to the previous proof but using lemma 2.55 instead of corollary 2.57.

Summing up, theorems 2.53 and 2.54 and properties 2.61 and 2.62 give:

Theorem 2.63. 𝑡 ∈ T𝑅 is name-normalizing iff 𝑡 is flneed-normalizing iff 𝑡 is ∩𝑅-typable.
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All the technical tools are now available to conclude observational equivalence between
our two evaluation strategies based on node replication. Let ℛ be any reduction notion on
T𝑅 . Then, two terms 𝑡 , 𝑢 ∈ T𝑅 are said to be ℛ-observationally equivalent, written 𝑡 ≡ 𝑢, if
for any context C, C⟨𝑡⟩ is ℛ-normalizing iff C⟨𝑢⟩ is ℛ-normalizing.

Theorem 2.64. For all terms 𝑡 , 𝑢 ∈ T𝑅 , 𝑡 and 𝑢 are name-observationally equivalent iff 𝑡 and 𝑢
are flneed-observationally equivalent.

Proof. By theorem 2.63, 𝑡 ≡name 𝑢 means that C⟨𝑡⟩ is ∩𝑅-typable iff C⟨𝑢⟩ is ∩𝑅-typable, for
all C. By the same theorem, this is also equivalent to say that C⟨𝑡⟩ is flneed-normalizing
iff C⟨𝑢⟩ is flneed-normalizing for any C, i.e. 𝑡 ≡flneed 𝑢.

2.6 Conclusion
Several calculi with ES bridge the gap between formal higher-order calculi and concrete im-
plementations of programming languages (see a survey in [Kes07]). The first of such calculi,
e.g. [Aba+91; BR95], were all based on structural substitution, in the sense that the ES op-
erator is syntactically propagated step-by-step through the term structure until a variable
is reached, when the substitution finally takes place. The correspondence between ES and
linear logic proof-nets [CKP00] led to the more recent notion of calculi at a distance [AK10;
ABM14; Acc18b], enlightening a natural and new application of the Curry-Howard interpre-
tation. These calculi implement linear/partial substitution at a distance, where the search
of variable occurrences is abstracted out with context-based rewriting rules, and thus no
ES propagation rules are necessary. A third model was introduced by the seminal work of
Gundersen, Heijltjes, and Parigot [GHP13b; GHP13a], introducing the atomic λ-calculus to
implement node replication.

Inspired by the last approach we introduced the calculus 𝜆𝑅, capturing the essence of
node replication. Unlike [GHP13b], we work with an implicit (structural) mechanism of
weakening and contraction, a design choice which aims at focusing and highlighting the
node replication model, which is the core of our calculus, so that we obtain a rather simple
and natural formalism used in particular to specify evaluation strategies. Indeed, besides the
proof of the main operational meta-level properties of our calculus (confluence, termination
of the substitution calculus, simulations), we use linear and non-linear versions of 𝜆𝑅 to
specify evaluation strategies based on node replication, namely call-by-name and call-by-
need evaluation strategies.

The first description of call-by-need was given by Wadsworth [Wad71], where reduction
is performed on graphs instead of terms. Weak call-by-need on terms was then introduced
by Ariola and Felleisen [AF97], and by Maraist, Odersky, and Wadler [MOW98] and Maraist,
Odersky, Turner, and Wadler [Mar+99]. Reformulations were introduced by Accattoli, Baren-
baum, and Mazza [ABM14] and by Chang and Felleisen [CF14]. Our call-by-need strategy
is inspired by the calculus in [ABM14], which uses the distance paradigm [AK10] to gather
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together meaningful and permutation rules, by clearly separating multiplicative from expo-
nential rules, in the sense of linear logic [Gir87].

Full laziness has been formalized in different ways. Pointer graphs [Wad71; SW10] are
DAGs allowing for an elegant representation of sharing. Labeled calculi [BLM05; BLM07]
implement pointer graphs by adding annotations to 𝜆-terms, which makes the syntax more
difficult to handle. Lambda-lifting [Hug83; Pey87] implements full laziness by resorting to
translations from 𝜆-terms to supercombinators. In contrast to all the previous formalisms,
our calculus is defined on standard 𝜆-terms with explicit cuts, without the use of any com-
plementary syntactical tool. So is Ariola and Felleisen’s call-by-need [AF97]; however, their
notion of full laziness relies on external (ad-hoc) meta-level operations used to extract the
skeleton. Our specification of call-by-need enjoys fully lazy sharing, where the skeleton ex-
traction operation is internally encoded in the term calculus operational semantics. Last but
not least, our calculus has strong links with proof-theory, notably deep inference.

Balabonski [Bal12a; Bal12b] relates many formalisms of full laziness and shows that they
are equivalent when considering the number of 𝛽-steps to a normal form. It would then be
interesting to understand if his unified approach, (abstractly) stated by means of the theory
of residuals [Lév78; Lév80], applies to our own strategy.

Balabonski shows that full laziness is optimal with respect to the confluent version of
the weak λ-calculus [BLM05; BLM05]. Yet, this does not mean that full laziness is necessar-
ily the most efficient way to implement weak evaluation. Indeed, the overhead due to the
process of skeleton extraction could be more significant than the gain in the number of 𝛽-
steps. To effectively compare efficiency of CbN, CbV or CbNeed to full laziness by looking
at the number of steps, we would need to show that fully lazy CbNeed is reasonable. This
mean that we should be able to give an implementation whose (time) complexity is polyno-
mially related to Turing machines. Accattoli and Dal Lago [AD16] and Accattoli, Condoluci,
and Sacerdoti Coen [ACS21] have shown that CbN and CbV are reasonable. They rely on a
particular implementation using an explicit substitution calculus, and differentiating useful
from useless substitutions. For a reasonable strategy, all steps can be considered as atomic
operations, which justifies that fewer steps mean more efficiency [Acc18a].

A Curry-Howard interpretation of the logical switch rule of deep inference is given as
an end-of-scope operator in [She19; She+20], thus introducing the spinal atomic λ-calculus.
The calculus implements a refined optimization of call-by-need, where only the spine of the
abstraction (tighter than the skeleton) is duplicated. It would be interesting to adapt 𝜆𝑅 to
spine duplication using an appropriate end-of-scope operator, such as the one in [HvO03].
Further optimizations might also be considered. Extending full laziness to classical logic
would be another interesting research direction, possibly taking preliminary ideas from He
[He18].

Finally, we only consider weak evaluation strategies, i.e. with reductions forbidden under
abstractions, but it would be interesting to extend our notions to full (strong) evaluations
too [GL02; Bal+17; BLM21].

We have also studied the calculus from a semantical point of view, by means of inter-
section types. Indeed, the type system can be seen as a model of our implementations of
call-by-name and call-by-need, in the sense that typability and normalization turn out to be
equivalent.
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Those characterizations provided by intersection type systems sometimes lead to obser-
vational equivalence results (e.g. [Kes16]). We succeed to prove observational equivalence re-
lated to a fully lazy implementation of weak call-by-need, a result which would be extremely
involved to prove by syntactical tools of rewriting, as done for weak call-by-need in [AF97].
Moreover, our result implies that our node replication implementation of full laziness is ob-
servationally equivalent to standard call-by-name and to weak call-by-need (see [Kes16]), as
well as to the more semantical notion of neededness (see [KRV18]).

While our type system provides upper bounds on the number of dB steps, we would also
like to investigate (quantitative) tight types for our fully lazy strategy, as done for weak call-
by-need by [AGL19]. Tight types [AGK20] provide exact bounds on the length of reduction
and the size of normal forms. However, this does not seem evident in our node replication
framework.

A quantitative type system formulated in open deduction has been defined by Guerrieri,
Heijltjes, and Paulus [GHP21], independently of this work. This framework is parametrized
by algebraic rules, allowing to encode, notably, idempotence or non-idempotence. Their
type system can be interpreted both as a simple type system for a resource calculus, or as a
quantitative type system for a calculus with linear substitution. However, none of these two
calculi use node replication. It would be interesting to understand if a quantitative system
can be derived for node replication inside the open-deduction formalism, to type the original
atomic λ-calculus, or our calculus 𝜆𝑅. An interesting exercise would be to capture our fully
lazy strategy, which relies both on linear substitution and on node replication.





CHAPTER3
Solvability for Generalized

Applications

The next two chapters of this thesis are centered around λ-calculi with generalized applica-
tion (often shortened to generalized applications). Chapter 3 describes a study of solvability
in these calculi, while chapter 4 details our quantitative approach to CbN in generalized ap-
plications.

This chapter starts with a formal introduction of the calculi with generalized applications:
the syntax and the original (section 3.1.1) and distant (section 3.1.2) semantics. The general
definitions of solvability in that context are given in section 3.2.

The next two sections are built in a symmetrical way, the first one (section 3.3) dealing
with CbN, and the second one (section 3.4) with CbV. We first present a solving reduction cap-
turing solvability (section 3.3.1 and section 3.4.2), then a quantitative type system as a logical
characterization (section 3.3.2 and section 3.4.3). Call-by-value solvability is built up on the
notion of potential valuability, presented and operationally characterized in section 3.4.1, and
for which a logical characterization is achieved with the same type system as CbV solvability.

We extend the tools and technique concerning solvability to the original calculi Λ𝐽 and
Λ𝐽𝑣 in section 3.5.1: we introduce appropriate reduction relations and normal forms, and
derive direct characterizations, thanks to modular proofs of the previous section. The equiv-
alence between the distant and non-distant notions of solvability follow from the logical
characterizations. Then, in section 3.5.2, we prove equivalence between the new notions of
CbN and CbV solvability for generalized applications and the one for the λ-calculus, using
the type systems.

In section 3.6, we compare the calculi 𝜆𝐽𝑣 and 𝜆vsub on an operational level with sim-
ulations. We also introduce a CbV strong bisimulation on T𝐽 , that give rise to a powerful
equational theory on terms.

Finally, we illustrate the versatility of the CbV calculi with generalized applications by
defining a normalizing strategy, akin to leftmost-outermost evaluation in the λ-calculus (sec-
tion 3.7). We capture the existence of a strong normal form operationally with this relation,
and logically with the CbV type system and a special restriction on types.
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3.1 The Calculi with Generalized Applications
The set of terms with generalized applications is called T𝐽 , and is generated by the following
grammar, given a countably infinite set 𝒱 of variables 𝑥, 𝑦, 𝑧 …

(Values) 𝑣 ⩴ 𝑥 ∈ 𝒱 ∣ 𝜆𝑥.𝑡
(Terms) 𝑡 , 𝑢, 𝑟 , 𝑠 ⩴ 𝑣 ∣ 𝑡(𝑢, 𝑥.𝑟)

The grammar for values is the same as in the λ-calculus. Indeed, values are interpreted
from the axiom and introduction of implication rules of natural deduction with generalized
elimination rules, which are the same as for usual natural deduction.

Γ; 𝑥 ∶ 𝐴 ⊢ 𝑥 ∶ 𝐴
Γ; 𝑥 ∶ 𝐴 ⊢ 𝑡 ∶ 𝐵
Γ ⊢ 𝜆𝑥.𝑡 ∶ 𝐴 → 𝐵

Generalized applications 𝑡(𝑢, 𝑥.𝑟), on the other hand, contain three subterms 𝑡 , 𝑢 and 𝑟 ,
corresponding to the three premises of the implication elimination rule in von Plato’s system.

Γ ⊢ 𝑡 ∶ 𝐴 → 𝐵 Γ ⊢ 𝑢 ∶ 𝐴 Γ; 𝑥 ∶ 𝐵 ⊢ 𝑟 ∶ 𝐶
Γ ⊢ 𝑡(𝑢, 𝑥.𝑟) ∶ 𝐶

We call the part 𝑥.𝑟 a continuation; note that it is not a subterm. The variable 𝑥 binds the
possible free occurrences of 𝑥 in 𝑟 . Indeed, a generalized application can be seen as a let-
binding under the (informal) translation of 𝑡(𝑢, 𝑥.𝑟) to let 𝑥 = 𝑡𝑢 in 𝑟 . The presence of sharing
of all and only applications in these calculi is one of their very specific features.

Definition 3.1. A formal translation (⋅)⭒ to explicit substitution can be given [Esp07]:

𝑥⭒ ≔ 𝑥 (𝜆𝑥.𝑡)⭒ ≔ 𝜆𝑥.𝑡⭒ 𝑡(𝑢, 𝑥.𝑟)⭒ ≔ 𝑟⭒[𝑥/𝑡⭒𝑢⭒]
We use this translation in this chapter, but detail how it does not scale to strong normalization
and propose a faithful one in chapter 4.

A translation (⋅)# to the λ-calculus will also be useful:

𝑥# ≔ 𝑥 (𝜆𝑥.𝑡)# ≔ 𝜆𝑥.𝑡# 𝑡(𝑢, 𝑥.𝑟)# ≔ (𝜆𝑦.𝑟#)(𝑡#𝑢#)
Free and bound variables of terms are defined as expected, in particular, fv(𝑡(𝑢, 𝑥.𝑟)) ≔

fv(𝑡) ∪ fv(𝑢) ∪ (fv(𝑟) ⧵ {𝑥}). A generalized application 𝑡(𝑢, 𝑥.𝑟) is said to be non-relevant if
𝑥 ∉ fv(𝑟).
Definition 3.2. We also define a translation (⋅)◦ from the λ-calculus with ES to generalized
applications, which consists in giving a “dummy” continuation 𝑧.𝑧. This translation extends
the one from the λ-calculus, for which we use the same notation.

𝑥◦ ≔ 𝑥 (𝜆𝑥.𝑀)◦ ≔ 𝜆𝑥.𝑀◦ (𝑀𝑁)◦ ≔ 𝑀◦(𝑁 ◦, 𝑧.𝑧) (𝑀[𝑥/𝑁 ])◦ ≔ I(𝑁 ◦, 𝑥.𝑀◦)
We reuse the names 𝛿 and Ω for the corresponding terms 𝛿 ≔ 𝜆𝑥.𝑥(𝑥, 𝑧.𝑧) and Ω ≔

𝛿(𝛿, 𝑧.𝑧). We also define a family of projection terms o𝑛 ≔ 𝜆𝑥𝑛 …𝜆𝑥0.𝑥0 parametrized by a
natural number 𝑛.

Contexts C are extended to generalized applications:

C ⩴ ◊ ∣ 𝜆𝑥.C ∣ C(𝑢, 𝑥.𝑟) ∣ 𝑡(C, 𝑥.𝑟) ∣ 𝑡(𝑢, 𝑥.C)
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3.1.1 The Original Semantics
The CbN operational semantics relies on a notion of right substitution, which is the expected
capture-free meta-level substitution on T𝐽 -terms:

𝑥{𝑥/𝑢} ≔ 𝑢 (𝜆𝑦.𝑡){𝑥/𝑢} ≔ 𝜆𝑦.𝑡{𝑥/𝑢}
(𝑥 ≠ 𝑦) 𝑦{𝑥/𝑢} ≔ 𝑦 (𝑡(𝑠, 𝑦.𝑟)){𝑥/𝑢} ≔ (𝑡{𝑥/𝑢})(𝑠{𝑥/𝑢}, 𝑦.𝑟{𝑥/𝑢})

Computation is done with the following rule 𝛽 :

(𝜆𝑥.𝑡)(𝑢, 𝑦.𝑟) ↦𝛽 𝑟{𝑦/𝑡{𝑥/𝑢}}

This rule is a generalization of the usual 𝛽 of the λ-calculus, as depicted below.

let 𝑦 = (𝜆𝑥.𝑡)𝑢 in 𝑟 → let 𝑦 = 𝑡{𝑥/𝑢} in 𝑟 → 𝑟{𝑦/𝑡{𝑥/𝑢}}

This gives an intuitive explanation of this rule through the previous informal translation
of generalized applications to let-bindings: (𝜆𝑥.𝑡)(𝑢, 𝑦.𝑟) corresponds to let 𝑦 = (𝜆𝑥.𝑡)𝑢 in 𝑟 .
In this first term, the computation in the foreground comes from the abstraction 𝜆𝑥.𝑡 and
its argument 𝑢. We get an intermediate result by substituting 𝑢 for 𝑥 in 𝑡 , thus obtaining
let 𝑦 = 𝑡{𝑥/𝑢} in 𝑟 . This intermediate result can then be fed to the continuation by unfold-
ing the let-binding, which means substituting it for 𝑦 in 𝑟 , thus obtaining the contractum
𝑟 {𝑦/𝑡{𝑥/𝑢}}. The term 𝑡{𝑥/𝑢} may be duplicated, or, on the contrary, may be simply erased, as
shown in the next examples.

Examples 3.3. The first example depicts erasure, and the second duplication.

• (𝜆𝑥.𝑥(I, 𝑦.𝑦))(I, 𝑧.𝑧′) →𝛽 𝑧′{𝑧/(𝑥(I, 𝑦.𝑦)){𝑥/I}} = 𝑧′{𝑧/I(I, 𝑦.𝑦)} = 𝑧′

• (𝜆𝑥.𝑥(I, 𝑦.𝑦))(I, 𝑧.𝑧(𝑧, 𝑧′.𝑧′)) →𝛽 (𝑧(𝑧, 𝑧′.𝑧′)){𝑧/I(I, 𝑦.𝑦)} = I(I, 𝑦.𝑦)(I(I, 𝑦.𝑦), 𝑧′.𝑧′)

As mentioned in the introduction, calculi Λ𝐽 and Λ𝐽𝑣 also use the permutation rule 𝜋 :

𝑡(𝑢, 𝑥.𝑟)(𝑢′, 𝑦.𝑟 ′) ↦𝜋 𝑡(𝑢, 𝑥.𝑟(𝑢′, 𝑦.𝑟 ′))

This rule brings the leftmost application of a term to the top of its syntax tree, while stacking
the list of arguments inside the continuation of the application. This particular feature brings
generalized applications closer to abstract machines, and is reminiscent of continuation-
passing style, as well as administrative normal forms [Fla+93], in which every intermediate
computation is named (see section 3.8).

Example 3.4. Recall the example from the introduction:

(𝜆𝑥.𝑡)(𝑢1, 𝑦1.𝑦1)(𝑢2, 𝑦2.𝑦2)(𝑢3, 𝑦3.𝑦3) →𝜋 (𝜆𝑥.𝑡)(𝑢1, 𝑦1.𝑦1)(𝑢2, 𝑦2.𝑦2(𝑢3, 𝑦3.𝑦3))
→𝜋 (𝜆𝑥.𝑡)(𝑢1, 𝑦1.𝑦1(𝑢2, 𝑦2.𝑦2(𝑢3, 𝑦3.𝑦3)))
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The reduction relation →jn of the original CbN calculus Λ𝐽 [JM00; JM03] is defined as
the closure under all contexts C of the two reduction rules 𝛽 and 𝜋 .

A concrete advantage of using generalized applications is the simplicity of normal forms,
which are usually either a value or an application in which the left element is a variable. For
instance, the jn-normal forms are given by the following inductive definition.

NFjn ⩴ 𝑥 ∣ 𝜆𝑥.NFjn ∣ 𝑥(NFjn, 𝑦.NFjn)

In the λ-calculus instead, inductive definitions of normal forms rely on mutually recursive
definitions of neutral normal and normal terms, since the element at the left of an application
is not necessarily a variable.

The CbV semantics is based on a notion of left substitution 𝑡{𝑥\\𝑢}:

𝑡{𝑥\\𝑣} ≔ 𝑡{𝑥/𝑣} 𝑡{𝑥\\𝑠(𝑢, 𝑦.𝑟)} ≔ 𝑠(𝑢, 𝑦.𝑡{𝑥\\𝑟})

Left substitution of a value invokes the right substitution, and left substitution of a general-
ized application performs a commutative/permutative conversion. This conversion prevents
duplication of the potential redex between 𝑠 and 𝑢. In other words, if the argument is an
application, a unique copy of it is kept, which corresponds to CbV, which neither duplicates
nor erases computations.

Examples 3.5. The first example demonstrates the left substitution of a value, the second of
an application. In the second example, the application I(I, 𝑦._) is not erased, and it is not
duplicated in the third example, as that would be the case with right substitution.

• (𝑥(I, 𝑦.𝑦)){𝑥\\I} = (𝑥(I, 𝑦.𝑦)){𝑥/I} = I(I, 𝑦.𝑦)
• 𝑧′{𝑧\\I(I, 𝑦.𝑦)} = I(I, 𝑦.𝑧′{𝑧\\𝑦}) = I(I, 𝑦.𝑧′{𝑧/𝑦}) = I(I, 𝑦.𝑧′)
• (𝑧(𝑧, 𝑧′.𝑧′)){𝑧\\I(I, 𝑦.𝑦)} = I(I, 𝑦.(𝑧(𝑧, 𝑧′.𝑧′)){𝑧\\𝑦}) = I(I, 𝑦.𝑦(𝑦, 𝑧′.𝑧′))
The reduction relation →jv of the original CbV calculus Λ𝐽𝑣 [Esp20] is defined as the

closure under all contexts C of the following rule 𝛽v and of 𝜋 .

(𝜆𝑥.𝑡)(𝑢, 𝑦.𝑟) ↦𝛽v 𝑟{𝑦\\𝑡{𝑥\\𝑢}}

Notice the strong similarity between CbN and CbV. The only difference is the substitution
used. This is unlike most CbV calculi, which put a restriction on the 𝛽 rule stating that the
argument must be a value. Here instead, values and applications are handled differently
inside the 𝛽v rule. In generalized applications, every function application is a redex that can
be fired. Some defects of call-by-value calculi, due to redexes stuck because of the condition
on the argument are avoided. Moreover, CbN and CbV reductions and normal forms look
very similar. We take advantage from this to highlight the significant differences between
CbN and CbV, notably in the context of solvability.

Let us compare Λ𝐽 and Λ𝐽𝑣 by CbV-reducing the terms from examples 3.3 (we use the
equations in examples 3.5).
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Examples 3.6. In the first term, the argument is not erased until a second reduction step:
CbV needs one more reduction step.

(𝜆𝑥.𝑥(I, 𝑦.𝑦))(I, 𝑧.𝑧′) →𝛽v 𝑧′{𝑧\\(𝑥(I, 𝑦.𝑦)){𝑥\\I}} = I(I, 𝑦.𝑧′)
→𝛽v 𝑧′{𝑦\\𝑥{𝑥\\I}} = 𝑧′{𝑦\\I} = 𝑧′

In the second term, the argument is not duplicated: we can reach the normal form in one
less reduction step than CbN, where the reduction of the argument must be done twice.

(𝜆𝑥.𝑥(I, 𝑦.𝑦))(I, 𝑧.𝑧(𝑧, 𝑧′.𝑧′)) →𝛽 (𝑧(𝑧, 𝑧′.𝑧′)){𝑧\\𝑥(I, 𝑦.𝑦){𝑥\\I}} = I(I, 𝑦.𝑦(𝑦, 𝑧′.𝑧′))
→𝛽v 𝑦{𝑦\\𝑥{𝑥\\I}}(𝑦(𝑦, 𝑧′.𝑧′)) = I(I, 𝑧′.𝑧′)

As usual, CbV does not duplicate computations (outside abstractions), but tries to reduce
every argument to a value, and this may create divergent computations. Take for instance
𝑡 = 𝛿(𝛿, 𝑧.𝑦), which translates to 𝑡⭒ = 𝑦[𝑧/𝛿]𝛿 . In CbN, 𝑡 normalizes to 𝑦 , while in CbV, 𝑡 loops
infinitely.

(CBN) 𝛿(𝛿, 𝑧.𝑦) ↦𝛽 𝑦{𝑧/(𝑥(𝑥, 𝑧.𝑧)){𝑥/𝛿}} = 𝑦{𝑧/𝛿(𝛿, 𝑧.𝑧)} = 𝑦
(CBV) 𝛿(𝛿, 𝑧.𝑦) ↦𝛽v 𝑦{𝑧\\(𝑥(𝑥, 𝑧.𝑧)){𝑥\\𝛿}} = 𝑦{𝑧\\𝛿(𝛿, 𝑧.𝑧)} = 𝛿(𝛿, 𝑧.𝑦{𝑧\\𝑧}) = 𝛿(𝛿, 𝑧.𝑦)

3.1.2 The Distant Semantics
In this work, we concentrate on distant variants 𝜆𝐽𝑛 and 𝜆𝐽𝑣 . Our approach is guided by
quantitative types as a resource-aware model, which is neutral with respect to quantitatively
correct permutations. The goal is to obtain a higher level of abstraction, closer to the λ-
calculus and reflecting the quantitative model, through a calculus with a single computational
rule.

A naive approach consisting in simply removing rule 𝜋 is not satisfactory. Indeed, some
expected computations can be stuck by the syntax until unblocked by a permutation.

Example 3.7. The following example does not 𝛽-reduce, because the application 𝑧(𝑢1, 𝑦1._)
around 𝜆𝑥.𝑥 prevents from applying 𝛽-reduction on 𝑢2. Rule 𝜋 moves this argument next to
the abstraction, from where computation can continue.

𝑧(𝑢1, 𝑦1.𝜆𝑥.𝑥)(𝑢2, 𝑦2.𝑦2) →𝜋 𝑧(𝑢1, 𝑦1.(𝜆𝑥.𝑥)(𝑢2, 𝑦2.𝑦2)) →𝛽 𝑧(𝑢1, 𝑦1.𝑢2)
Our solution is to use distance, relying on a new notion of distant contexts:

D ⩴ ◊ ∣ 𝑡(𝑢, 𝑥.D)
Distant contexts are reminiscent of list contexts of explicit substitutions: they represent a list
of shared terms, that can sometimes stand between an abstraction and its argument.

The CbN/CbV distant calculi 𝜆𝐽𝑛 and 𝜆𝐽𝑣 are based on the reduction relations →djn
and →djv respectively, generated by the closure of the following rules d𝛽 and d𝛽v under all
contexts.

(d𝛽) D⟨𝜆𝑥.𝑡⟩(𝑢, 𝑦.𝑟) ↦d𝛽 𝑟{𝑦/D⟨𝑡{𝑥/𝑢}⟩}
(d𝛽v) D⟨𝜆𝑥.𝑡⟩(𝑢, 𝑦.𝑟) ↦d𝛽v

D⟨𝑟{𝑦\\𝑡{𝑥\\𝑢}}⟩
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The distant CbV rule integrates 𝜋 inside the rule d𝛽v. However, the distant CbN one
integrates a different rule p2. Reasons for this are given at length in chapter 4.

𝑡(𝑢, 𝑦.𝜆𝑥.𝑟) ↦p2 𝜆𝑥.𝑡(𝑢, 𝑦.𝑟)

Remark that the distant context D appears in different places in the right side of the rules
d𝛽 and d𝛽v. Indeed, the distant context D should not be duplicated or erased in CbV, on the
contrary to CbN. However, by definition of left substitution, the equation D⟨𝑟{𝑦\\𝑡{𝑥\\𝑢}}⟩ =
𝑟{𝑦\\D⟨𝑡{𝑥\\𝑢}⟩} holds. Thus, the symmetry between the CbN and CbV rules is preserved.

The notion of distant context is prevalent in our analysis of generalized applications.
Notice in particular that every term can be (uniquely) decomposed into D⟨𝑣⟩, where D is a
distant context and 𝑣 a value. Thus for example, let 𝑡 ≔ 𝑥1(𝑢, 𝑦.𝑥2(𝑦, 𝑧.𝑧)). Then, there are
three possible decompositions of 𝑡 in terms of distance contexts: 𝑡 = D0⟨𝑥1(𝑢, 𝑦.𝑥2(𝑦, 𝑧.𝑧))⟩
with D0 = ◊, 𝑡 = D1⟨𝑥2(𝑦, 𝑧.𝑧)⟩ with D1 = 𝑥1(𝑢, 𝑦.◊) and 𝑡 = D2⟨𝑧⟩ with D2 = 𝑥1(𝑢, 𝑦.𝑥2(𝑦, 𝑧.◊)).
We say in particular that a term 𝑡 has an abstraction shape if 𝑡 = D⟨𝜆𝑥.𝑡′⟩.

This decomposition of any term 𝑢 into D⟨𝑣⟩ enables us to give an alternative definition of
left substitution: 𝑡{𝑥\\D⟨𝑣⟩} = D⟨𝑡{𝑥/𝑣}⟩. We can see clearly how left substitution pushes the
list of applications represented by the context D outside, before substituting only the value
contained at the core of the term, thus following CbV principles.

Example 3.8. Take again 𝑡 = 𝑥1(𝑢, 𝑦.𝑥2(𝑦, 𝑧.𝑧)) with the decomposition 𝑡 = D2⟨𝑧⟩, where
D2 = 𝑥1(𝑢, 𝑦.𝑥2(𝑦, 𝑧.◊)).

𝑤′{𝑤\\𝑥1(𝑢, 𝑦.𝑥2(𝑦, 𝑧.𝑧))} = 𝑤′{𝑤\\D2⟨𝑧⟩} = D2⟨𝑤′{𝑤/𝑧}⟩ = D2⟨𝑤′⟩ = 𝑥1(𝑢, 𝑦.𝑥2(𝑦, 𝑧.𝑤′))

Going further, we could replace the use of left substitution in 𝛽v (and d𝛽v) by a finer analysis
of the structure of the term. We also use the property that values are closed under substitu-
tion, and suppose that 𝑥 ∉ fv(𝑟) by 𝛼-conversion.

(𝜆𝑥.D1⟨𝑣1⟩)(D2⟨𝑣2⟩, 𝑦.𝑟) →𝛽v′ D2⟨D1⟨𝑟{𝑦/𝑣1}⟩{𝑥/𝑣2}⟩

3.2 Solvability of Generalized Applications
To begin our study of solvability, we start by giving the appropriate tools. Like in the λ-
calculus, solvability is defined thanks to a specific notion of context. We will here also call
them head contexts. There are two reasons:

1. Head contexts on terms in T𝐽 are a strict generalization of head contexts in 𝜆.

2. Their role is the same: they are used in the definition of solvability, entail the CbN
solving relation and are at the core of CbV solving contexts.
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In contrast to the λ-calculus, the syntax of generalized applications makes the identifica-
tion of the head of a term very subtle. In particular, whereas it is possible to use vectorial
meta-notations in the λ-calculus, we must use inductive definitions in this framework. Head
contexts H are given by the following grammar:

H ⩴ ◊ ∣ 𝜆𝑥.H ∣ H(𝑢, 𝑥.H′⟨⟨𝑥⟩⟩) ∣ 𝑡(𝑢, 𝑥.H)
While, in general, there are several possibilities to decompose a term into a head context
surrounding a subterm, there is a closely related notion of head variable hv(𝑡), which deter-
ministically distinguishes a particular variable in the term 𝑡 :

hv(𝑥) = 𝑥
hv(𝑡) = 𝑥

hv(𝜆𝑦.𝑡) = 𝑥
hv(𝑟) = 𝑦 hv(𝑡) = 𝑥

hv(𝑡(𝑢, 𝑦.𝑟)) = 𝑥
hv(𝑟) = 𝑥 𝑥 ≠ 𝑦

hv(𝑡(𝑢, 𝑦.𝑟)) = 𝑥
In the third rule we assume w.l.o.g. that 𝑦 is not bound in 𝑟 . Notice that the head variable
may be either free or bound, since 𝑦 can be equal to 𝑥 in the second rule. To understand
the last two rules, we use the previous analogy with let-bindings. To an application 𝑡(𝑢, 𝑦.𝑟)
corresponds a binding let 𝑦 = 𝑡𝑢 in 𝑟 , and to find the head variable of this term, we look inside
𝑟 . For instance, the head variable of let 𝑥 = 𝑧𝑧 in 𝑦, corresponding to 𝑧(𝑧, 𝑥.𝑦), is 𝑦. But if
we take let 𝑥 = 𝑧𝑧 in 𝑥 , corresponding to 𝑧(𝑧, 𝑥.𝑥), its head variable is 𝑧. Thus, the head
variable of a term with generalized applications is the head variable of the corresponding
term where all the let-binding have been unfolded. In the example, 𝑧 is the head variable of
𝑧(𝑧, 𝑥.𝑥) because 𝑥 is itself the head variable of the subterm 𝑥 inside the continuation.

Lemma 3.9. Let 𝑡 ∈ T𝐽 and hv(𝑡) = 𝑥 . There is a unique decomposition 𝑡 = H⟨𝑥⟩. Moreover, if
𝑥 ∈ fv(𝑡), then 𝑡 = H⟨⟨𝑥⟩⟩.

Proof. By induction on 𝑡 .
Case 𝑡 = 𝑥 . We take H = ◊.

Case 𝑡 = 𝜆𝑦.𝑢. By the i.h. on 𝑢, 𝑢 = H′⟨𝑥⟩. We take H = 𝜆𝑦.H′ so that 𝑡 = H⟨𝑥⟩. If 𝑥 ∈ fv(𝑡),
then 𝑥 ∈ fv(𝑢) and 𝑥 ≠ 𝑦 . We then have 𝑢 = H′⟨⟨𝑥⟩⟩ and thus 𝑡 = H⟨⟨𝑥⟩⟩.

Case 𝑡 = 𝑠(𝑢, 𝑦.𝑟). Let 𝑧 = hv(𝑟). By the i.h. 𝑟 = H1⟨𝑧⟩. There are two cases.

Subcase 𝑧 = 𝑦. Then 𝑧 ∈ fv(𝑟) and we have 𝑟 = H1⟨⟨𝑧⟩⟩. Therefore hv(𝑡) = hv(𝑠) = 𝑥 .
Thus by the i.h. 𝑠 = H2⟨𝑥⟩. We then take H = H2(𝑢, 𝑦.H1⟨⟨𝑦⟩⟩) so that 𝑡 = H⟨𝑥⟩. If
𝑥 ∈ fv(𝑡), then 𝑥 ∈ fv(𝑠), we conclude 𝑠 = H2⟨⟨𝑥⟩⟩ and thus 𝑡 = H⟨⟨𝑥⟩⟩.

Subcase 𝑧 ≠ 𝑦. Then hv(𝑡) = hv(𝑟) = 𝑧 = 𝑥 . We take H = 𝑠(𝑢, 𝑦.H1) so that 𝑡 = H⟨𝑥⟩.
If 𝑥 ∈ fv(𝑡), then 𝑥 ∈ fv(𝑟), we conclude 𝑠 = H1⟨⟨𝑥⟩⟩ and thus 𝑡 = H⟨⟨𝑥⟩⟩.

Thus for example, given 𝑡 ≔ 𝑧(𝑧, 𝑥.𝑦), we have hv(𝑡) = 𝑦 and 𝑡 = H⟨⟨𝑦⟩⟩ with H = 𝑧(𝑧, 𝑥.◊).
Given 𝑡′ ≔ 𝑧(𝑧, 𝑥.𝑥), we have hv(𝑡′) = 𝑧 as well as 𝑡′ = H′⟨⟨𝑧⟩⟩ with H′ = ◊(𝑧, 𝑥.H0⟨⟨𝑥⟩⟩) and
H0 = ◊. An example where the head variable is bound is hv(𝜆𝑦.𝑡) = 𝑦 , where 𝜆𝑦.𝑡 = H″⟨𝑦⟩
and H″ = 𝜆𝑦.𝑧(𝑧, 𝑥.◊).
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Definition 3.10 (Solvability). Let 𝑡 ∈ T𝐽 . Then,

𝑡 is CbN-solvable iff there is a head and a distant context H and D such that H⟨𝑡⟩ →∗
djn D⟨I⟩.

𝑡 is CbV-solvable iff there is a head context H such that H⟨𝑡⟩ →∗
djv I.

Notice that although the two definitions of CbN/CbV solvability are slightly different,
they both share the same notion of head context, which is independent from the calculus.

In the definition of CbN-solvability, the reduction yields an identity plugged inside a
distant context, and not just an identity alone. Take e.g. the term 𝑡 = Ω(𝑦, 𝑧.I) containing a
non-relevant continuation, as 𝑧 ∉ fv(I). In the λ-calculus, 𝑡 translates to (𝜆𝑧.I)(Ω𝑦), which
is solvable since (𝜆𝑧.I)(Ω𝑦) →𝛽 I. This suggests introducing a garbage collection-like rule
for generalized applications which reduces in this case Ω(𝑦, 𝑧.I) →gc I. This would be
consistent with different models of CbN, such as our quantitative type system. However, we
prefer to avoid such ad-hoc solution, which can be simply seen as an implementation detail,
as it does not change the operational and denotational behavior of terms.

Now, why does our notion of CbV solvability not use this distant context? Take again the
term 𝑡 = Ω(𝑦, 𝑧.I) and its translated λ-term (𝜆𝑧.I)(Ω𝑦). CbV reduction in the λ-calculus loops
on the argument Ω𝑦, that could only be erased if Ω𝑦 is reduced to a value. Therefore, having
a definition of solvability which reduces to D⟨I⟩ in CbV would be too liberal, and incoherent
with the λ-calculus and its associated models.

3.3 Call-by-Name Solvability
This section is organized in two parts. We first give an operational characterization of solv-
ability with a reduction relation that we call solving, and then a quantitative type system
capturing solvability.

3.3.1 Operational Characterization of CbN Solvability
The CbN solving reduction relation is not based on the full d𝛽 rule. Take for instance the term
𝑡 = 𝛿(𝛿, 𝑦.I). This term is solvable, because 𝑡 →∗

djn D⟨I⟩ in zero steps, with D = 𝛿(𝛿, 𝑦.◊). Yet,
d𝛽-reduction at root loops on this term. Since we want all solvable terms to be normalizable
with the solving reduction, we do not want to execute any d𝛽-reduction, even at the root
of the term. In fact, we only want to d𝛽-reduce a term D⟨𝜆𝑥.𝑡⟩(𝑢, 𝑦.𝑟) when 𝑦 is the head
variable of 𝑟 . In 𝑡 , this is not the case.

Definition 3.11. The CbN solving reduction →sn is defined as the closure of the following
reduction rule d𝛽h under head contexts.

D⟨𝜆𝑥.𝑡⟩(𝑢, 𝑦.H⟨⟨𝑦⟩⟩) ↦d𝛽h H⟨⟨𝑦⟩⟩{𝑦/D⟨𝑡{𝑥/𝑢}⟩}
With this definition, the term 𝛿(𝛿, 𝑦.I) is sn-normal, while not djn-normal. The term

𝛿(𝛿, 𝑦.𝑦) is neither sn-normal nor djn-normal.
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Definition 3.12. The following grammar NFsn intends to capture sn-nfs.

(CbN Neutral Normal Contexts) G⩴◊ ∣ G(𝑢, 𝑥.G⟨⟨𝑥⟩⟩) ∣ 𝑡(𝑢, 𝑦.G)
(CbN Solving Normal Terms) NFsn ⩴ 𝑥 ∣ 𝜆𝑥.NFsn ∣ G⟨⟨𝑥⟩⟩(𝑢, 𝑦.NFsn)

∣ 𝑡(𝑢, 𝑥.NFsn) where 𝑥 ≠ hv(NFsn)
A (CbN) neutral normal term is a term G⟨⟨𝑥⟩⟩ for some G, 𝑥 . For example, the neutral normal
term I(I, 𝑤.𝑥(I, 𝑦.𝑦))(𝜆𝑦.𝑧, 𝑧.𝑧) is of the shape G⟨⟨𝑥⟩⟩ with G = I(I, 𝑤.◊).
Lemma 3.13. Let 𝑡 ∈ T𝐽 . Then 𝑡 ∈ NFsn iff 𝑡 ∈ sn-nf.

Proof. For the left-to-right implication, we show the following two stronger properties
by simultaneous induction on G,NFsn:

(i) 𝑡 neutral normal ⟹ 𝑡 does not have an abstraction shape and 𝑡 is in sn-nf.

(ii) 𝑡 ∈ NFsn ⟹ 𝑡 is in sn-nf.

Case 𝑡 = 𝑥 . Both (i) and (ii) are straightforward.

Case 𝑡 = 𝜆𝑦.𝑠, where 𝑠 ∈ NFsn. Then 𝑡 is not neutral normal. Item (i) does not apply,
and (ii) is straightforward by the i.h.

Case 𝑡 = G⟨⟨𝑥⟩⟩(𝑢, 𝑦.𝑟), where 𝑟 ∈ NFsn. By the i.h. (i) G⟨⟨𝑥⟩⟩ does not have an abstraction
shape and G⟨⟨𝑥⟩⟩, 𝑟 are in sn-nf. Then 𝑡 has no root sn-redex, and therefore 𝑡 is in
sn-nf. Moreover, if 𝑡 is neutral normal, then 𝑟 = G⟨⟨𝑦⟩⟩, and by the i.h. (i) 𝑟 does not
have an abstraction shape. Thus neither does 𝑡 .

Case 𝑡 = 𝑠(𝑢, 𝑦.𝑟), where 𝑟 ∈ NFsn and 𝑦 ≠ hv(𝑟). Therefore, the only possible reduction
would be inside 𝑟 . By the i.h. (ii), 𝑟 is sn-normal, so that 𝑡 is sn-normal too. Moreover,
if 𝑡 is neutral normal, then 𝑟 is neutral normal, and by the i.h. (i) 𝑟 does not have an
abstraction shape. Thus neither does 𝑡 .

For the right-to-left implication, we show the following two stronger properties by
simultaneous induction on 𝑡 :

(i) 𝑡 does not have an abstraction shape and 𝑡 is in sn-nf 𝑡 is neutral normal.

(ii) 𝑡 is in sn-nf ⟹ 𝑡 ∈ NFsn.

Case 𝑡 = 𝑥 . Both (i) and (ii) are straightforward since 𝑥 = ◊⟨⟨𝑥⟩⟩ is neutral normal and
𝑥 ∈ NFsn.

Case 𝑡 = 𝜆𝑦.𝑠. Then we only need to show (ii). Since 𝑠 is necessarily in sn-nf, then 𝑠 ∈
NFsn by the i.h. (ii), thus we conclude 𝑡 ∈ NFsn.
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Case 𝑡 = 𝑠(𝑢, 𝑥.H⟨⟨𝑥⟩⟩). Since 𝑡 is in sn-nf, then 𝑠 and H⟨⟨𝑥⟩⟩ are in sn-nf. Therefore, H⟨⟨𝑥⟩⟩ ∈
NFsn by the i.h. (ii). The subterm 𝑠 does not have an abstraction shape, otherwise 𝑡
would sn-reduce at the root position, thus 𝑠 is neutral normal (i.e. 𝑠 = G⟨⟨𝑦⟩⟩) by the
i.h. (i). We conclude 𝑡 ∈ NFsn. Moreover, if 𝑡 does not have an abstraction shape, the
same holds for H⟨⟨𝑥⟩⟩. By the i.h. (i) H⟨⟨𝑥⟩⟩ is neutral normal (i.e. of the form G′⟨⟨𝑥⟩⟩).
Then, 𝑡 is neutral normal too with G″ = G(𝑢, 𝑥.G′⟨⟨𝑥⟩⟩).

Case 𝑡 = 𝑠(𝑢, 𝑥.𝑟), where 𝑥 ≠ hv(𝑟). Since 𝑡 is sn-normal, then 𝑟 is also sn-normal. We
then have 𝑟 ∈ NFsn by the i.h. (ii) and thus 𝑡 ∈ NFsn. If 𝑡 does not have an abstraction
shape, then 𝑟 does not have an abstraction shape. By the i.h. (i) 𝑟 is neutral normal
(i.e. 𝑟 = G⟨⟨𝑦⟩⟩) and thus 𝑡 = G′⟨⟨𝑦⟩⟩, with G′ = 𝑠(𝑢, 𝑥.G). So that 𝑡 is neutral normal
too.

We now prove that sn-normalizable terms are solvable. The converse implication will
be given later with the help of the logical characterization. We use the following notation:
𝑡(𝑢1, 𝑢2, … , 𝑢𝑛, 𝑧.𝑧) for the term 𝑡(𝑢1, 𝑧.𝑧(𝑢2, 𝑧.𝑧(… (𝑢𝑛, 𝑧.𝑧)) … ). Notice that

D⟨𝜆𝑥.𝑡⟩(𝑢1, 𝑢2, … , 𝑢𝑛, 𝑧.𝑧) ↦dB D⟨𝑡{𝑥/𝑢1}(𝑢2, … , 𝑢𝑛, 𝑧.𝑧)⟩

We abbreviate as 𝑡(𝑢, 𝑧.𝑧)𝑛 the term 𝑡(𝑢, … , 𝑢⏟⏟⏟⏟⏟⏟⏟
𝑛

, 𝑧.𝑧).

The measure |𝑡 |@ below gives the number of hereditary head variables of the term 𝑡 . We
use it for several inductions on terms.

Definition 3.14.

|𝑥 |@ = 0 |𝜆𝑥.𝑡 |@ = |𝑡|@ |𝑡(𝑢, 𝑥.𝑟)|@ = {|𝑟 |@ + |𝑡|@ + 1, if 𝑥 = hv(𝑟)
|𝑟 |@, otherwise

This first lemma states that NFsn is stable by substitution of any variable which is not
the head variable. For instance, 𝑥(𝑦, 𝑧.𝑧){𝑦/𝑢} ∈ NFsn for any 𝑢 ∈ T𝐽 , but 𝑥(𝑦, 𝑧.𝑧){𝑥/I} =
I(𝑦, 𝑧.𝑧) ∉ NFsn.

Lemma 3.15. For any 𝑡 ∈ NFsn with 𝑥 = hv(𝑡), any term 𝑢 and variable 𝑦 ≠ 𝑥 , let 𝑡′ = 𝑡{𝑦/𝑢}.
Then 𝑡′ ∈ NFsn, hv(𝑡′) = 𝑥 and |𝑡′|@ = |𝑡|@. If moreover 𝑡 is neutral normal, then so is 𝑡′.

Proof. Straightforward by induction on NFsn.

Then comes the main technical lemma. There are many distant contexts involved in the
statement, but they are only here because of the absence of garbage collection. In partic-
ular, the context D0 is needed for the induction hypothesis. We will ignore them for this
explanation.

The goal is to show that a term 𝑡 = H⟨⟨𝑥⟩⟩ in sn-nf can be reduced to a value of the shape
𝜆𝑥𝑚 …𝜆𝑥1.o𝑛−|𝑡 |@ simply by replacing its head variable by a projection o𝑛. This is a crucial
step to reduce the term to the identity, in order to show that it is solvable.
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The abstractions 𝜆𝑥𝑚 to 𝜆𝑥1 are the abstractions already present in H between the root
of the term and the head variable 𝑥 . By taking 𝑛 = |𝑡 |@ (the generality of 𝑛 is needed for
the induction), we get 𝑡{𝑥/o𝑛} →∗𝛽 𝜆𝑥𝑚 …𝜆𝑥1.I. The dummy abstractions can then be erased
by applying 𝑚 arguments, say (I, 𝑧.𝑧) to the term, in order to obtain the identity. This will
be explained in more details in the construction of a head context in the proof of the main
property (property 3.19).

The idea is similar as in the λ-calculus, where the property is immediate: a head-normal
term whose head variable is free is of the shape 𝜆𝑥𝑚 …𝜆𝑥1.𝑥𝑁1…𝑁𝑛, where 𝑥 ∉ {𝑥1, … , 𝑥𝑚}.
Replacing 𝑥 by o𝑛 gives 𝜆𝑥𝑚 …𝜆𝑥1.o𝑛𝑁1…𝑁𝑛 →∗𝛽 𝜆𝑥𝑚 …𝜆𝑥1.o0 = 𝜆𝑥𝑚 …𝜆𝑥1.I. Here, be-
cause of the syntax of generalized applications and the shape of sn-nfs, we must do a careful
inductive proof.

Remark that this lemma uses 𝛽-reduction instead of d𝛽 . This way, we can use it to prove
the property modularly for the distant and the original versions of the calculus.

Lemma 3.16. For all 𝑡 = H⟨⟨𝑥⟩⟩ ∈ NFsn, integer 𝑛 ≥ |𝑡 |@ and distant context D0, there is an integer
𝑚 ≥ 0, there are variables 𝑥1, … , 𝑥𝑚 and distant contexts D, D1, … D𝑚 such that 𝑡{𝑥/D0⟨o𝑛⟩} →∗𝛽
D⟨𝜆𝑥𝑚.D𝑚⟨… 𝜆𝑥1.D1⟨o𝑛−|𝑡 |@⟩⟩⟩. In particular, if 𝑡 is neutral normal, then 𝑚 = 0.

Proof. By induction on ⟨|𝑡 |@, 𝑡⟩. We reason by cases on the form of the normal term 𝑡 .
Case 𝑡 = 𝑥 . So |𝑡 |@ = 0 and this is the base case of the induction. We let 𝑚 = 0, D = D0

and conclude since 𝑥{𝑥/D0⟨o𝑛⟩} = D⟨o𝑛⟩ = D⟨o𝑛−|𝑥|@⟩.
Case 𝑡 = 𝜆𝑦.𝑡′, where 𝑡′ = H′⟨⟨𝑥⟩⟩ with 𝑥 ≠ 𝑦. We suppose w.l.o.g that 𝑦 ∉ fv(D0⟨o𝑛⟩). Let

𝑛 ≥ |𝑡 |@ = |𝑡′|@. By the i.h. there are 𝑚′, 𝑥1, … , 𝑥𝑚′ and D′, D1, … , D𝑚′ such that
𝑡′{𝑥/D0⟨o𝑛⟩} →∗𝛽 D′⟨𝜆𝑥𝑚′ .D𝑚′⟨… 𝜆𝑥1.D1⟨o𝑛−|𝑡′|@⟩⟩⟩. Thus we obtain 𝑡{𝑥/D0⟨o𝑛⟩} →∗𝛽
𝜆𝑦.D′⟨𝜆𝑥𝑚′ .D𝑚′⟨… 𝜆𝑥1.D1⟨o𝑛−|𝑡′|@⟩⟩⟩ since |𝑡 |@ = |𝑡′|@. We conclude by taking 𝑚 =
𝑚′ + 1, 𝑥𝑚 = 𝑦 , D𝑚 = D′ and D = ◊.

Case 𝑡 = 𝑠(𝑢, 𝑦.𝑟), where 𝑟 = H′⟨⟨𝑦⟩⟩ (𝑦 ≠ 𝑥) and 𝑠 = G⟨⟨𝑥⟩⟩. We have |𝑡 |@ = |𝑠|@ + |𝑟 |@ + 1.
Let 𝑛 ≥ |𝑡 |@ > |𝑠|@. Applying the i.h. on the neutral normal term 𝑠, we know that
for any D0, there is D′ such that 𝑠{𝑥/D0⟨o𝑛⟩} →∗𝛽 D′⟨o𝑛−|𝑠|@⟩.
Let 𝑛′ = 𝑛 − |𝑠|@ − 1. Then 𝑛′ ≥ |𝑟 |@ and by lemma 3.15, 𝑟{𝑥/D0⟨o𝑛′+1⟩} ∈ NFsn and
|𝑟 {𝑥/D0⟨o𝑛′+1⟩}|@ = |𝑟 |@. Moreover, 𝑟{𝑥/D0⟨o𝑛′+1⟩} is of the form H″⟨⟨𝑦⟩⟩, for some H″.
We can then apply the i.h. on 𝑟{𝑥/D0⟨o𝑛′+1⟩}, so there are 𝑚′, 𝑥1, … , 𝑥𝑚′ , D, D1, … , D𝑚′
such that 𝑟 {𝑥/D0⟨o𝑛′+1⟩}{𝑦/D′⟨o𝑛′⟩} →∗𝛽 D⟨𝜆𝑥𝑚′ .D𝑚′⟨… 𝜆𝑥1.D1⟨o𝑛′−|𝑟 |@⟩⟩⟩. We take
𝑚 = 𝑚′. In the case where 𝑡 is neutral normal, we have 𝑚 = 0 as required. Since
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𝑛′ − |𝑟 |@ = 𝑛 − |𝑡 |@, we conclude as follows:

𝑡{𝑥/D0⟨o𝑛⟩} = 𝑠{𝑥/D0⟨o𝑛⟩}(𝑢{𝑥/D0⟨o𝑛⟩}, 𝑦.𝑟{𝑥/D0⟨o𝑛⟩})
→∗𝛽 D′⟨o𝑛′+1⟩(𝑢{𝑥/D0⟨o𝑛⟩}, 𝑦.𝑟{𝑥/D0⟨o𝑛⟩})
→𝛽 𝑟 {𝑥/D0⟨o𝑛⟩}{𝑦/D′⟨o𝑛′⟩}
→∗𝛽 D⟨𝜆𝑥𝑚.D𝑚⟨… 𝜆𝑥1.D1⟨o𝑛−|𝑡 |@⟩⟩⟩.

Case 𝑡 = 𝑠(𝑢, 𝑦.𝑡′), where 𝑦 ≠ hv(𝑡′). Let 𝑛 ≥ |𝑡 |@ = |𝑡′|@. By the i.h. on 𝑡′, for all D0 there
are 𝑚′, 𝑥1, … , 𝑥𝑚′ , D′, D1, … , D𝑚′ s.t. 𝑡′{𝑥/D0⟨o𝑛⟩}→∗𝛽 D′⟨𝜆𝑥𝑚′ .D𝑚′⟨… 𝜆𝑥1.D1⟨o𝑛−|𝑡′|@⟩⟩⟩.
In particular 𝑚′ = 0 if 𝑡′ is neutral normal. We set D = 𝑠{𝑥/D0⟨o𝑛⟩}(𝑢{𝑥/D0⟨o𝑛⟩}, 𝑦.D′)
and 𝑚 = 𝑚′. Since |𝑡′|@ = |𝑡|@, then 𝑡{𝑥/D0⟨o𝑛⟩} →∗𝛽 D⟨𝜆𝑥𝑚.D𝑚⟨… 𝜆𝑥1.D1⟨o𝑛−|𝑠|@⟩⟩⟩.

Example 3.17. Let 𝑡 = 𝑦1(I, 𝑧1.𝑥)(𝑦2(I, 𝑧2.𝑧2), 𝑧3.𝜆𝑦.𝑧3) ∈ NFsn. Notice that hv(𝑡) = 𝑥 . Then,

𝑡{𝑥/o1} = 𝑦1(I, 𝑧1.o1)(𝑦2(I, 𝑧2.𝑧2), 𝑧3.𝜆𝑦.𝑧3) →𝛽 𝜆𝑦.𝑦1(I, 𝑧1.o0) = 𝜆𝑦.𝑦1(I, 𝑧1.I)

We have a term of the desired shape, with 𝑚 = 1, D = ◊ and D1 = 𝑦1(I, 𝑧1.◊).

This next lemma states that every sn-normal term has a subterm of the shape H⟨⟨𝑥⟩⟩ po-
tentially surrounded by abstractions. Finding this subterm is important to use lemma 3.16.

Lemma 3.18. Let 𝑡 ∈ NFsn such that hv(𝑡) = 𝑥 . Then there is an integer 𝑙 ≥ 0, there are variables
𝑥1, … , 𝑥𝑙 , 𝑥 , distant contexts D1, … , D𝑙 and a head context H such that 𝑡 = D𝑙⟨𝜆𝑥𝑙 . … D1⟨𝜆𝑥1.H⟨⟨𝑥⟩⟩⟩⟩.
Moreover, if 𝑥 ∈ fv(𝑡), then 𝑙 = 0.

Proof. By induction on 𝑡 .
Case 𝑡 = 𝑥 . We take 𝑙 = 0 and H = ◊.

Case 𝑡 = 𝜆𝑦.𝑡′. By the i.h. 𝑡′ = D𝑙′⟨𝜆𝑥𝑙′ . … D1⟨𝜆𝑥1.H⟨⟨𝑥⟩⟩⟩⟩ with 𝑙′ ≥ 0. We take 𝑙 = 𝑙′ + 1,
D𝑙 = ◊ and 𝑥𝑙 = 𝑦 . The moreover part does not apply since 𝑡 is not neutral.

Case 𝑡 = 𝑠(𝑢, 𝑦.𝑡′). There are two possibilities.

Subcase hv(𝑡′) = 𝑦. Then hv(𝑡) = hv(𝑠) = 𝑥 . By lemma 3.9, 𝑡′ = H′⟨⟨𝑦⟩⟩ for some
H′. Moreover, by construction of solving normal terms we necessarily have
𝑠 = G⟨⟨𝑥⟩⟩ for some G, so that 𝑥 ∈ fv(𝑡). We thus take H = G(𝑢, 𝑦.H′⟨⟨𝑦⟩⟩) and
𝑙 = 0, thus 𝑡 = H⟨⟨𝑥⟩⟩ as required.

Subcase hv(𝑡′) ≠ 𝑦. The i.h. gives 𝑡′ = D′𝑙′⟨𝜆𝑥𝑙′ . … D1⟨𝜆𝑥1.H′⟨⟨𝑥⟩⟩⟩⟩. We conclude with
H = H′, 𝑙 = 𝑙′ and D𝑙 = 𝑠(𝑢, 𝑦.D′𝑙′). If 𝑥 ∈ fv(𝑡), then 𝑥 ∈ fv(𝑡′). The i.h. gives
𝑙′ = 0. We conclude with 𝑙 = 𝑙′ = 0 and H = 𝑠(𝑢, 𝑦.H′).
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Now comes the main property. The proof of this lemma consists in building an appropri-
ate head context for any sn-normalizable term.

Property 3.19. Let 𝑡 be an sn-normalizable term. Then 𝑡 is CbN solvable.

Proof. Since 𝑡 is sn-normalizable, then there is a solving normal term 𝑡′ ∈ NFsn such that
𝑡 →∗

sn 𝑡′ (and thus 𝑡 →∗
djn 𝑡′). Let hv(𝑡′) = 𝑥 . By lemma 3.18, 𝑡′ can take two shapes:

1. 𝑡′ = H′⟨⟨𝑥⟩⟩ if 𝑥 ∈ fv(𝑡′);
2. 𝑡′ = D𝑙⟨𝜆𝑥𝑙 . … 𝜆𝑥2.D1⟨𝜆𝑥1.H′⟨⟨𝑥⟩⟩⟩⟩ for 𝑥 ∈ {𝑥1, … , 𝑥𝑙}, if 𝑥 ∉ fv(𝑡′).

In both cases, we must give a head context H such that H⟨𝑡⟩ →∗
djn D⟨I⟩ for a distant

context D.
We start with the first case (𝑥 is free in 𝑡′). Let 𝑛 = |𝑡′|@. By lemma 3.16, there

are 𝑚 ≥ 0, variables 𝑦1, … , 𝑦𝑚 and distant contexts D′, D1, … , D𝑚 such that 𝑡′{𝑥/o𝑛} →∗𝛽
D′⟨𝜆𝑦𝑚.D𝑚⟨… 𝜆𝑦1.D1⟨I⟩⟩⟩, which is also a djn-step. We let H = (𝜆𝑥.◊)(o𝑛, 𝑧.𝑧)(I, 𝑧.𝑧)𝑚.
Then, we have:

H⟨𝑡⟩ →∗
djn H⟨𝑡′⟩

= (𝜆𝑥.𝑡′)(o𝑛, 𝑧.𝑧)(I, 𝑧.𝑧)𝑚

→djn 𝑡′{𝑥/o𝑛}(I, 𝑧.𝑧)𝑚

→∗
djn D′⟨𝜆𝑦𝑚.D𝑚⟨… 𝜆𝑦1.D1⟨I⟩⟩⟩(I, 𝑧.𝑧)

𝑚

→𝑚
djn D′⟨D𝑚⟨… D1⟨I⟩{𝑦1/I}⟩{𝑦𝑚/I}⟩

We conclude by taking D = D′⟨D𝑚⟨… D1{𝑦1/I}⟩{𝑦𝑚/I}⟩.
In the second case (𝑥 is not free in 𝑡′), let 1 ≤ 𝑖 ≤ 𝑙 such that 𝑥 = 𝑥𝑖 . Let us consider

the following reduction sequence:

𝑡′(I, 𝑧.𝑧)𝑙−𝑖 = D𝑙⟨𝜆𝑥𝑙 . … D1⟨𝜆𝑥1.H′⟨⟨𝑥⟩⟩⟩⟩(I, 𝑧.𝑧)
𝑙−𝑖 →𝑙−𝑖

djn D″⟨𝜆𝑥.H″⟨⟨𝑥⟩⟩⟩

where D″ = D𝑙⟨D𝑙−1⟨… D𝑖{𝑥𝑖+1/I}⟩{𝑥𝑙/I}⟩ and H″ = D𝑖−1⟨𝜆𝑥𝑖−1. … D1⟨𝜆𝑥1.H′⟩⟩{𝑥𝑗 𝑖<𝑗≤𝑙/I}. The
subterm H″⟨⟨𝑥⟩⟩ above is obtained by substituting a sn-normal term with variables dif-
ferent from the head variable. By lemma 3.15, this kind of substitution preserves the
property of being sn-normal, so that H″⟨⟨𝑥⟩⟩ is sn-normal.

Let 𝑛 = |H″⟨⟨𝑥⟩⟩|@. Then the lemma 3.16 applied to H″⟨⟨𝑥⟩⟩{𝑥/o𝑛} gives integers
𝑚, 𝑦1, … , 𝑦𝑚 and distant contexts D′, D′1, … , D′𝑚 such that (this is also a djn-step):

H″⟨⟨𝑥⟩⟩{𝑥/o𝑛} →∗𝛽 D′⟨𝜆𝑦𝑚.D′𝑚⟨… 𝜆𝑦1.D′1⟨I⟩⟩⟩.



138 3 Solvability for Generalized Applications

To conclude, we let H = ◊(I, 𝑧.𝑧)𝑙−𝑖(o𝑛, 𝑧.𝑧)(I, 𝑧.𝑧)𝑚, where 𝑚 and 𝑛 were obtained
before. The whole reduction from H⟨𝑡⟩ goes as follows:

H⟨𝑡⟩ →∗
djn H⟨𝑡′⟩

= 𝑡′(I, 𝑧.𝑧)𝑙−𝑖(o𝑛, 𝑧.𝑧)(I, 𝑧.𝑧)𝑚

= D𝑙⟨𝜆𝑥𝑙 . … D1⟨𝜆𝑥1.H′⟨⟨𝑥⟩⟩⟩⟩(I, 𝑧.𝑧)
𝑙−𝑖(o𝑛, 𝑧.𝑧)(I, 𝑧.𝑧)𝑚

→𝑙−𝑖
djn D″⟨𝜆𝑥.H″⟨⟨𝑥⟩⟩⟩(o𝑛, 𝑧.𝑧)(I, 𝑧.𝑧)𝑚

→djn D″⟨H″⟨⟨𝑥⟩⟩{𝑥/o𝑛}⟩(I, 𝑧.𝑧)𝑚

→∗
djn D″⟨D′⟨𝜆𝑦𝑚.D′𝑚⟨… 𝜆𝑦1.D′1⟨I⟩⟩⟩⟩(I, 𝑧.𝑧)

𝑚

→𝑚
djn D″⟨D′⟨D′𝑚⟨… D′1⟨I⟩{𝑦1/I}⟩{𝑦𝑚/I}⟩⟩

where D″ = D𝑙⟨D𝑙−1⟨… D𝑖{𝑥𝑖+1/I}⟩{𝑥𝑙/I}⟩ and H″ = D𝑖−1⟨𝜆𝑥𝑖−1. … D1⟨𝜆𝑥1.H′⟩⟩{𝑥𝑗 𝑖<𝑗≤𝑙/I}.
We conclude the proof by taking D = D″⟨D′⟨D′𝑚⟨… D′1{𝑦1/I}⟩{𝑦𝑚/I}⟩⟩ so that H⟨𝑡⟩ →∗

djn
D⟨I⟩.

Example 3.20. Take again 𝑡 = 𝑦1(I, 𝑧1.𝑥)(𝑦2(I, 𝑧2.𝑧2), 𝑧3.𝜆𝑦.𝑧3) ∈ NFsn from example 3.17. We
take H = (𝜆𝑥.◊)(o1, 𝑧.𝑧)(I, 𝑧.𝑧). Then,

H⟨𝑡⟩ = (𝜆𝑥.𝑦1(I, 𝑧1.𝑥)(𝑦2(I, 𝑧2.𝑧2), 𝑧3.𝜆𝑦.𝑧3))(o1, 𝑧.𝑧)(I, 𝑧.𝑧)
→djn 𝑦1(I, 𝑧1.o1)(𝑦2(I, 𝑧2.𝑧2), 𝑧3.𝜆𝑦.𝑧3)(I, 𝑧.𝑧)
→djn (𝜆𝑦.𝑦1(I, 𝑧1.I))(I, 𝑧.𝑧)
→djn 𝑦1(I, 𝑧1.I)

Taking D = 𝑦1(I, 𝑧1.◊), we get a term of the expected form D⟨I⟩.

3.3.2 Logical Characterization of CbN Solvability
We now give a type system, called ∩𝑁 , in which typability and normalization of solving reduc-
tion coincide, i.e. not only does typability imply normalization, but the converse implication
also holds.

Types, multiset types and type derivations are defined as in section 1.3.2. The quanti-
tative type system ∩𝑁 is defined in figure 3.1. This system is a natural extension of Gard-
ner’s [Gar94] and De Carvalho’s [dCar17] systems to generalized applications. Rule (MANY)
may assign the empty multiset to any term (case 𝐼 = ∅), so being typable with [ ] means in
fact being untyped. The interesting rule is (APP), where both 𝑡 and 𝑢 are assigned multiset
types, since 𝑥 is not necessarily linear in 𝑟 . Because 𝑢 is the argument of 𝑡 , it is assigned
all the types on the left of the arrow of 𝑡 . The size of derivations is given by the number
of rules (APP): we write Γ ⊩𝑛∩𝑁 𝑡 ∶ 𝜎 a derivation of size 𝑛 in the system. This derivation
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𝑥 ∶ [𝜎] ⊢ 𝑥 ∶ 𝜎 (VAR)
Γ; 𝑥 ∶ ℳ ⊢ 𝑡 ∶ 𝜎
Γ ⊢ 𝜆𝑥.𝑡 ∶ ℳ → 𝜎 (ABS)

(Γ𝑖 ⊢ 𝑡 ∶ 𝜎𝑖)𝑖∈𝐼
⊎𝑖∈𝐼Γ𝑖 ⊢ 𝑡 ∶ [𝜎𝑖]𝑖∈𝐼

(MANY)

Γ ⊢ 𝑡 ∶ [ℳ𝑖 → 𝜎𝑖]𝑖∈𝐼 Δ ⊢ 𝑢 ∶ ⊔𝑖∈𝐼ℳ𝑖 Λ; 𝑥 ∶ [𝜎𝑖]𝑖∈𝐼 ⊢ 𝑟 ∶ 𝜏
Γ ⊎ Δ ⊎ Λ ⊢ 𝑡(𝑢, 𝑥.𝑟) ∶ 𝜏 (APP)

Figure 3.1: System ∩𝑁 .

measure is sufficient to capture the fact that each sn-step deletes at least one (APP) rule (see
lemma 3.28).

The system is relevant, as there is no weakening.

Lemma 3.21 (Relevance). If Γ ⊩∩𝑁 𝑡 ∶ 𝜎 , then dom(Γ) ⊆ fv(𝑡).

Proof. Straightforward by induction on the derivation.

Example 3.22. Take 𝑡 = Ω(𝑦, 𝑧.I) (we expand I to 𝜆𝑥.𝑥 in the derivation). Although the
evaluation of the subterm Ω is not terminating (and thus Ω can only be typed with the empty
multiset), 𝑡 is typable:

∅ ⊢ Ω ∶ [ ] (MANY) ∅ ⊢ 𝑦 ∶ [ ] (MANY)
𝑥 ∶ [𝜎] ⊢ 𝑥 ∶ 𝜎 (VAR)

∅ ⊢ 𝜆𝑥.𝑥 ∶ [𝜎] → 𝜎 (ABS)

∅ ⊢ Ω(𝑦, 𝑧.𝜆𝑥.𝑥) ∶ [𝜎] → 𝜎 (APP)

Although not every subterm must be typed in a derivation of ∩𝑁 , any subterm that is at
the head of the term, and in particular the head variable, must be.

Lemma 3.23.

(i) For any context H and term 𝑡 , if Γ ⊩∩𝑁 H⟨𝑡⟩ ∶ 𝜎 , then there are Γ′, 𝜏 such that Γ′ ⊩∩𝑁 𝑡 ∶ 𝜏 .
(ii) If Γ ⊩∩𝑁 H⟨⟨𝑥⟩⟩ ∶ 𝜎 , then Γ = Δ; 𝑥 ∶ [𝜏𝑖]𝑖∈𝐼 and 𝐼 ≠ ∅.

Proof. Straightforward by induction on H.

The split lemma will be needed for the proof.

Lemma 3.24 (Split).

(i) If Γ ⊩∩𝑁𝑛 𝑡 ∶ ℳ, then for any decomposition ℳ = ⊔𝑖∈𝐼ℳ𝑖 , then we have Γ𝑖 ⊩𝑛𝑖∩𝑁 𝑡 ∶ ℳ𝑖
such that∑𝑖∈𝐼 𝑛𝑖 = 𝑛 and ⊎𝑖∈𝐼Γ𝑖 = Γ.
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(ii) If Γ𝑖 ⊩𝑛𝑖∩𝑁 𝑡 ∶ ℳ𝑖 for all 𝑖 ∈ 𝐼 , then Γ ⊩𝑛∩𝑁 𝑡 ∶ ℳ, where ℳ = ⊔𝑖∈𝐼ℳ𝑖 , 𝑛 = ∑𝑖∈𝐼 𝑛𝑖 and
Γ = ⊎𝑖∈𝐼Γ𝑖 .

Proof. Straightforward by induction on the derivation.

We now prove that terms typable in ∩𝑁 are exactly the ones that normalize with →sn.
The proof method is the same as in section 1.3.2.

Soundness

We first need to prove the substitution lemma, which also relates the sizes of the correspond-
ing derivations.

Lemma 3.25 (Substitution for ∩𝑁 ). If Γ; 𝑥 ∶ ℳ ⊩𝑛∩𝑁 𝑡 ∶ 𝜎 and Δ ⊩𝑚∩𝑁 𝑢 ∶ ℳ, then there is a
derivation Γ ⊎ Δ ⊩𝑚+𝑛∩𝑁 𝑡{𝑥/𝑢} ∶ 𝜎 .

Proof. By induction on 𝑡 .
Case 𝑡 = 𝑥 . By hypothesis, Γ = ∅, ℳ = [𝜎] and 𝑛 = 0. We can conclude with ∅ ⊎ Δ ⊩0+𝑚

𝑥{𝑥/𝑢} ∶ 𝜎 = Δ ⊩𝑚 𝑢 ∶ 𝜎 , which we have by hypothesis.

Case 𝑡 = 𝑦 ≠ 𝑥 . By hypothesis, ℳ = [ ], Γ = 𝑦 ∶ 𝜎 and 𝑛 = 0. We necessarily have
∅ ⊩0 𝑢 ∶ [ ] obtained by rule (MANY). We conclude with Γ ⊎∅ ⊩0+0 𝑦{𝑥/𝑢} ∶ 𝜎 = 𝑦 ∶
[𝜎] ⊩0 𝑦 ∶ 𝜎 , which holds by hypothesis.

Case 𝑡 = 𝜆𝑦.𝑠, where 𝑦 ≠ 𝑥 and 𝑦 ∉ fv(𝑢). By hypothesis we have 𝜎 = 𝒩 → 𝜏 and Γ; 𝑥 ∶
ℳ; 𝑦 ∶ 𝒩 ⊩𝑛 𝑠 ∶ 𝜏 . By the i.h. we obtain Γ ⊎ Δ; 𝑦 ∶ 𝒩 ⊩𝑛+𝑚 𝑠{𝑥/𝑢} ∶ 𝜏 because by
lemma 3.21 𝑦 ∉ dom(Δ). By rule (ABS) and because 𝑦 ≠ 𝑥 , we obtain Γ ⊎ Δ ⊩𝑚+𝑛
𝜆𝑦.𝑠{𝑥/𝑢} ∶ 𝒩 → 𝜏 . We can conclude because 𝜆𝑦.𝑠{𝑥/𝑢} = (𝜆𝑦.𝑠){𝑥/𝑢}.

Case 𝑡 = 𝑠(𝑢′, 𝑦.𝑟), where 𝑦 ≠ 𝑥 and 𝑦 ∉ fv(𝑢). By hypothesis, Γ1; 𝑥 ∶ ℳ1 ⊩𝑛1 𝑠 ∶ [𝒩𝑖 →
𝜏𝑖]𝑖∈𝐼 , Γ2; 𝑥 ∶ ℳ2 ⊩𝑛2 𝑢′ ∶ ⊔𝑖∈𝐼𝒩𝑖 and Γ3; 𝑥 ∶ ℳ3; 𝑦 ∶ [𝜏𝑖]𝑖∈𝐼 ⊩𝑛3 𝑟 ∶ 𝜎 where
Γ = Γ1 ⊎ Γ2 ⊎ Γ3, ℳ = ℳ1 + ℳ2 + ℳ3 and 𝑛 = 𝑛1 + 𝑛2 + 𝑛3 + 1. By lemma 3.24:1,
Δ𝑖 ⊩𝑚𝑖 𝑢 ∶ ℳ𝑖 (𝑖 = 1, 2, 3) where Δ = Δ1 + Δ2 + Δ3 and 𝑚 = 𝑚1 + 𝑚2 + 𝑚3. First,
notice that lemma 3.21 states that 𝑦 ∉ dom(Δ) as well as in particular 𝑦 ∉ dom(Δ3).
By the i.h., Γ1 ⊎ Δ1 ⊩𝑛1+𝑚1 𝑠{𝑥/𝑢} ∶ [𝒩𝑖 → 𝜏𝑖]𝑖∈𝐼 , Γ2 ⊎ Δ2 ⊩𝑛2+𝑚2 𝑢′{𝑥/𝑢} ∶ ⊔𝑖∈𝐼𝒩𝑖 ,
and Γ3 ⊎ Δ3; 𝑦 ∶ 𝒩 ′ ⊩𝑛3+𝑚3 𝑠{𝑥/𝑢} ∶ 𝜎 . We conclude using rule (APP), the fact that
(𝑠(𝑢′, 𝑦.𝑟)){𝑥/𝑢} = 𝑠{𝑥/𝑢}(𝑢′{𝑥/𝑢}, 𝑦.𝑟{𝑥/𝑢}) and 𝑛 + 𝑚 = 1 + ∑3

𝑖=1(𝑛𝑖 + 𝑚𝑖).

In order to keep the proofs of characterization of the distant calculus and the original
calculus modular, weighted subject reduction will be done in several steps. The first step is
to prove it for root reduction only, for p2 and two new reduction steps: 𝛽h (d𝛽h without
distance) and 𝜋h (a head variant of 𝜋 and p2).
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Definition 3.26. The following rules are the core of head reduction in the original Λ𝐽 .

(𝜆𝑥.𝑡)(𝑢, 𝑦.H⟨⟨𝑦⟩⟩) ↦𝛽h H⟨⟨𝑦⟩⟩{𝑦/𝑡{𝑥/𝑢}}
𝑡(𝑢, 𝑥.𝑟)(𝑢′, 𝑦.H⟨⟨𝑦⟩⟩) ↦𝜋h 𝑡(𝑢, 𝑥.𝑟(𝑢′, 𝑦.H⟨⟨𝑦⟩⟩))

Lemma 3.27. Let Γ ⊩𝑛∩𝑁 𝑡1 ∶ 𝜎 .
(i) If 𝑡1 ↦𝛽h 𝑡2, then Γ ⊩𝑛−1∩𝑁 𝑡2 ∶ 𝜎 .

(ii) If 𝑡1 ↦p2 𝑡2, then Γ ⊩𝑛∩𝑁 𝑡2 ∶ 𝜎 .
(iii) If 𝑡1 ↦𝜋h 𝑡2, then Γ ⊩𝑛′∩𝑁 𝑡2 ∶ 𝜎 with 𝑛′ ≤ 𝑛.

Proof. We prove each of the items successively.

Case 𝑡1 = (𝜆𝑥.𝑡)(𝑢, 𝑦.𝑟) ↦𝛽h 𝑟 {𝑦/𝑡{𝑥/𝑢}} = 𝑡2, where 𝑟 = H⟨⟨𝑦⟩⟩. We have the derivation
below, with Γ = ⊎𝑖∈𝐼 (Σ𝑖 ⊎ Δ𝑖) ⊎ Λ, 𝑛 = ∑𝑖∈𝐼 (𝑛𝑖𝑡 + 𝑛𝑖𝑢) + 𝑛𝑟 + 1. Notice that 𝐼 is never
empty because 𝑦 is the head variable of 𝑟 and is thus always typed, by lemma 3.23.

(Σ𝑖 ⊩𝑛𝑖𝑡 𝜆𝑥.𝑡 ∶ ℳ𝑖 → 𝜏𝑖)𝑖∈𝐼
⊎𝑖∈𝐼Σ𝑖 ⊢ 𝜆𝑥.𝑡 ∶ [ℳ𝑖 → 𝜏𝑖]𝑖∈𝐼

(Δ𝑖 ⊩𝑛𝑖𝑢 𝑢 ∶ ℳ𝑖)𝑖∈𝐼
⊎𝑖∈𝐼Δ𝑖 ⊢ 𝑢 ∶ ⊔𝑖∈𝐼ℳ𝑖
===================================

Λ; 𝑦 ∶ [𝜏𝑖]𝑖∈𝐼 ⊩𝑛𝑟 𝑟 ∶ 𝜎
⊎𝑖∈𝐼 (Σ𝑖 ⊎ Δ𝑖) ⊎ Λ ⊢ (𝜆𝑥.𝑡)(𝑢, 𝑦.𝑟) ∶ 𝜎

The substitution lemma 3.25 gives Σ𝑖 ⊎Δ𝑖 ⊩𝑛𝑖𝑡+𝑛𝑖𝑢 𝑡{𝑥/𝑢} ∶ 𝜏𝑖 , so that we have a deriva-
tion ⊎𝑖∈𝐼 (Σ𝑖 ⊎ Δ𝑖) ⊩+𝑖∈𝐼 (𝑛𝑖𝑡+𝑛𝑖𝑢) 𝑡{𝑥/𝑢} ∶ [𝜏𝑖]𝑖∈𝐼 . Applying the substitution lemma 3.25
again gives Γ ⊩𝑛−1 𝑡2 = 𝑟{𝑦/𝑡{𝑥/𝑢}} ∶ 𝜎 .

Case 𝑡1 = 𝑡(𝑢, 𝑦.𝜆𝑥.𝑟) ↦p2 𝜆𝑥.𝑡(𝑢, 𝑦.𝑟). Notice that 𝜎 is necessarily an arrow type 𝒩 →
𝜏 . We have the following derivation, with 𝑛 = 𝑛𝑡 + 𝑛𝑢 + 𝑛𝑟 + 1 and Γ = Σ ⊎ Δ ⊎ Λ.

Σ ⊩𝑛𝑡 𝑡 ∶ [ℳ𝑖 → 𝜏𝑖]𝑖∈𝐼 Δ ⊩𝑛𝑢 𝑢 ∶ ⊔𝑖∈𝐼ℳ𝑖
Λ; 𝑦 ∶ [𝜏𝑖]𝑖∈𝐼 ; 𝑥 ∶ 𝒩 ⊩𝑛𝑟 𝑟 ∶ 𝜏
Λ; 𝑦 ∶ [𝜏𝑖]𝑖∈𝐼 ⊢ 𝜆𝑥.𝑟 ∶ 𝒩 → 𝜏

Σ ⊎ Δ ⊎ Λ ⊢ 𝑡(𝑢, 𝑦.𝜆𝑥.𝑟) ∶ 𝜎

By 𝛼-conversion, 𝑥 ∉ fv(𝑡) ∪ fv(𝑢), so that 𝑥 ∉ dom(Σ ⊎ Δ) by lemma 3.21. We can
then build the following derivation of the same size:

Σ ⊩𝑛𝑡 𝑡 ∶ [ℳ𝑖 → 𝜏𝑖]𝑖∈𝐼 Δ ⊩𝑛𝑢 𝑢 ∶ ⊔𝑖∈𝐼ℳ𝑖 Λ; 𝑦 ⊩𝑛𝑟 [𝜏𝑖]𝑖∈𝐼 ; 𝑥 ∶ 𝒩 ∶ 𝑟 ∶ 𝜏
Σ ⊎ Δ ⊎ (Λ; 𝑥 ∶ 𝒩 ) ⊢ 𝑡(𝑢, 𝑦.𝑟) ∶ 𝜏
Σ ⊎ Δ ⊎ Λ ⊢ 𝜆𝑥.𝑡(𝑢, 𝑦.𝑟) ∶ 𝒩 → 𝜏
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Case 𝑡1 = 𝑡(𝑢, 𝑥.𝑟)(𝑢′, 𝑦.𝑟 ′) ↦𝜋h 𝑡(𝑢, 𝑥.𝑟(𝑢′, 𝑦.𝑟 ′)) = 𝑡2, where 𝑟 ′ = H⟨⟨𝑦⟩⟩. We have the
following derivation:

⎛
⎜⎜
⎝

Φ𝑖𝑡 Φ𝑖𝑢 Φ𝑖𝑟
Γ𝑖𝑡 ⊎ Γ𝑖𝑢 ⊎ Γ𝑖𝑟 ⊢ 𝑡(𝑢, 𝑥.𝑟) ∶ ℳ𝑖 → 𝜎𝑖

(APP) ⎞⎟⎟
⎠𝑖∈𝐼

⊎𝑖∈𝐼 (Γ𝑖𝑡 ⊎ Γ𝑖𝑢 ⊎ Γ𝑖𝑟 ) ⊢ 𝑡(𝑢, 𝑥.𝑟) ∶ [ℳ𝑖 → 𝜎𝑖]𝑖∈𝐼
(MANY) Φ𝑢′ Φ𝑟 ′

Γ ⊢ 𝑡(𝑢, 𝑥.𝑟)(𝑢′, 𝑦.𝑟 ′) ∶ 𝜎 (APP)

where Φ𝑢′ = Γ𝑢′ ⊩𝑛𝑢′ 𝑢′ ∶ ⊔𝑖∈𝐼ℳ𝑖 , Φ𝑟 ′ = Γ𝑟 ′ ; 𝑦 ∶ [𝜎𝑖]𝑖∈𝐼 ⊩𝑛𝑟′ 𝑟 ′ ∶ 𝜎 and for all
𝑖 ∈ 𝐼 : Φ𝑖𝑡 = Γ𝑖𝑡 ⊩𝑛𝑖𝑡 𝑡 ∶ [𝒩𝑗 → 𝜏𝑗]𝑗∈𝐽𝑖 , Φ𝑖𝑢 = Γ𝑖𝑢 ⊩𝑛𝑖𝑢 𝑢 ∶ ⊔𝑗∈𝐽𝑖𝒩𝑗 , Φ𝑖𝑟 = Γ𝑖𝑟 ; 𝑥 ∶
[𝜏𝑗]𝑗∈𝐽𝑖 ⊩𝑛𝑖𝑟 𝑟 ∶ ℳ𝑖 → 𝜎𝑖 , such that Γ = ⊎𝑖∈𝐼 (Γ𝑖𝑡 ⊎ Γ𝑖𝑢 ⊎ Γ𝑖𝑟 ) ⊎ Γ𝑢′ ⊎ Γ𝑟 ′ and 𝑛 =
∑𝑖∈𝐼 (𝑛𝑖𝑡 + 𝑛𝑖𝑢 + 𝑛𝑖𝑟 ) + 𝑛𝑢′ + 𝑛𝑟 ′ + |𝐼 | + 1. Notice that 𝐼 is again never empty because 𝑦 is
the head variable of 𝑟 and is thus always typed, by lemma 3.23.

Let 𝐽 = ⊎𝑖∈𝐼 𝐽𝑖 , 𝑛𝑡 = ∑𝑖∈𝐼 𝑛𝑖𝑡 , 𝑛𝑖𝑢 = ∑𝑖∈𝐼 𝑛𝑖𝑢 and 𝑛𝑟 = ∑𝑖∈𝐼 𝑛𝑖𝑟 . By rule (MANY), we have
derivations Φ𝑡 = ⊎𝑖∈𝐼Γ𝑖𝑡 ⊩𝑛𝑡 𝑡 ∶ [𝒩𝑗 → 𝜏𝑗]𝑗∈𝐽 , Φ𝑢 = ⊎𝑖∈𝐼Γ𝑖𝑢 ⊩𝑛𝑢 𝑢 ∶ ⊔𝑗∈𝐽𝒩𝑗 and
Φ𝑟 = ⊎𝑖∈𝐼Γ𝑖𝑟 ; 𝑥 ∶ [𝜏𝑗]𝑗∈𝐽 ⊩𝑛𝑟 𝑟 ∶ [ℳ𝑖 → 𝜎𝑖]𝑖∈𝐼 . Using the fact that 𝑥 ∉ fv(𝑢′) ∪ fv(𝑟 ′)
and the relevance lemma 3.21, we build the following derivation.

Φ𝑡 Φ𝑢
Φ𝑟 Φ𝑢′ Φ𝑟 ′

(⊎𝑖∈𝐼Γ𝑖𝑟 ; 𝑥 ∶ [𝜏𝑗]𝑗∈𝐽 ) ⊎ Γ𝑢′ ⊎ Γ𝑟 ′ ⊢ 𝑟(𝑢′, 𝑦.𝑟 ′) ∶ 𝜎 (APP)

Γ ⊢ 𝑡(𝑢, 𝑥.𝑟(𝑢′, 𝑦.𝑟 ′)) ∶ 𝜎 (APP)

The derivation is of size 𝑛′ = 𝑛𝑡 + 𝑛𝑢 + 𝑛𝑟 + 𝑛𝑢′ + 𝑛𝑟 ′ + 2 ≤ 𝑛 since |𝐼 | ≥ 1.

We prove weighted subject reduction for the full sn relation by induction on the reduc-
tion step. In the base case we use weighted subject reduction for p2 and for 𝛽h, since a
d𝛽h-step is made of a potentially empty series of p2-steps followed by a 𝛽h-steps: 𝑡1 =
D⟨𝜆𝑥.𝑡⟩(𝑢, 𝑦.H⟨⟨𝑦⟩⟩) ↦sn H⟨⟨𝑦⟩⟩{𝑦/D⟨𝑡{𝑥/𝑢}⟩} = 𝑡2 is decomposed into

𝑡1 ↦∗
p2 (𝜆𝑥.D⟨𝑡⟩)(𝑢, 𝑦.H⟨⟨𝑦⟩⟩) ↦𝛽h 𝑡2

Lemma 3.28 (Weighted subject reduction for ∩𝑁 ). If Γ ⊩𝑛1∩𝑁 𝑡1 ∶ 𝜎 and 𝑡1 →sn 𝑡2, then
Γ ⊩𝑛2∩𝑁 𝑡2 ∶ 𝜎 with 𝑛1 > 𝑛2.

Proof. By induction on 𝑡1 →sn 𝑡2. We can generalize the statement to multi-types as
follows: if Γ ⊩𝑛1∩𝑁 𝑡1 ∶ ℳ and 𝑡1 →sn 𝑡2, then Γ ⊩𝑛2∩𝑁 𝑡2 ∶ ℳ with 𝑛1 > 𝑛2. We show the
general statement by induction on →sn.

Case 𝑡1 = D⟨𝜆𝑥.𝑡⟩(𝑢, 𝑦.𝑟)↦d𝛽h 𝑟 {𝑦/D⟨𝑡{𝑥/𝑢}⟩} = 𝑡2 where 𝑟 = H⟨⟨𝑦⟩⟩. Let 𝑡3 = 𝜆𝑥.D⟨𝑡⟩(𝑢, 𝑦.𝑟).
We have 𝑡1 ↦∗

p2 𝑡3 ↦𝛽h 𝑟 {𝑦/{⟨𝑥⟩/𝑢}D𝑡} = 𝑡2. By lemma 3.27(ii) we have Γ ⊩𝑛1 𝑡3 ∶ 𝜎 .
By lemma 3.27(i) we have Γ ⊩𝑛2 𝑡2 ∶ 𝜎 where 𝑛2 = 𝑛1 − 1.
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Case 𝑡1 = 𝜆𝑥.𝑡 →sn 𝜆𝑥.𝑡′ = 𝑡2, where 𝑡 →sn 𝑡′. By hypothesis, we have 𝜎 = ℳ → 𝜏 and
Γ; 𝑥 ∶ ℳ ⊩𝑛1 𝑡 ∶ 𝜎 . By the i.h. we have Γ; 𝑥 ∶ ℳ ⊩𝑛2 𝑡′ ∶ 𝜏 with 𝑛1 > 𝑛2. We use
rule (ABS) to build a derivation of 𝑡2 of size 𝑛2.

Case 𝑡1 = 𝑡(𝑢, 𝑥.𝑟) and the reduction is internal. By hypothesis, we have the following
derivations:

Σ ⊩𝑛𝑡 𝑡 ∶ [ℳ𝑖 → 𝜏𝑖]𝑖∈𝐼 Δ ⊩𝑛𝑢 𝑢 ∶ ⊔𝑖∈𝐼ℳ𝑖 Λ; 𝑦 ∶ [𝜏𝑖]𝑖∈𝐼 ⊩𝑛𝑟 𝑟 ∶ 𝜎
Σ ⊎ Δ ⊎ Λ ⊢ 𝑡(𝑢, 𝑦.𝑟) ∶ 𝜎

where Γ = Γ ⊎ Δ ⊎ Λ and 𝑛1 = 𝑛𝑡 + 𝑛𝑢 + 𝑛𝑟 + 1. There are three possibilities:

Subcase 𝑡1 →sn 𝑡′(𝑢, 𝑥.𝑟) = 𝑡2, where 𝑡 →sn 𝑡′ and 𝑟 = H⟨⟨𝑥⟩⟩. By i.h. there is a
derivation Σ ⊩𝑛𝑡′ 𝑡′ ∶ [ℳ𝑖 → 𝜏𝑖]𝑖∈𝐼 such that 𝑛𝑡 ≥ 𝑛𝑡′ . Since 𝑥 is the head
variable of 𝑟 , we have 𝐼 ≠ ∅ by lemma 3.23, so that 𝑛𝑡 > 𝑛𝑡′ . We can build a
derivation of 𝑡2 of size 𝑛2 = 1 + 𝑛𝑡′ + 𝑛𝑢 + 𝑛𝑟 and we get 𝑛1 > 𝑛2.

Subcase 𝑡1 →sn 𝑡(𝑢, 𝑥.𝑟 ′) = 𝑡2 where 𝑟 →sn 𝑟 ′. By the i.h. there is a derivation
Λ; 𝑥 ⊩𝑛𝑟′ [𝜏𝑖]𝑖∈𝐼 ∶ 𝑟 ∶ 𝜎 such that 𝑛𝑟 > 𝑛𝑟 ′ . We can build a derivation of 𝑡2 of size
𝑛2 = 1 + 𝑛𝑡 + 𝑛𝑢 + 𝑛𝑟 ′ and we get 𝑛1 > 𝑛2.

The size of type derivations is a natural number decreasing at every step, so that sound-
ness is, as expected, a direct corollary.

Corollary 3.29 (Soundness for 𝜆𝐽𝑛). If Γ ⊩𝑛∩𝑁 𝑡 ∶ 𝜎 , then 𝑡 is sn-normalizable and the number
of sn-steps needed to normalize 𝑡 is bounded by 𝑛.

Completeness

To prove completeness of the typing, we first need to show the anti-substitution lemma.

Lemma 3.30 (Anti-substitution for ∩𝑁 ). If Γ ⊩ 𝑡{𝑥/𝑢} ∶ 𝜎 , then there exists Γ𝑡 , Γ𝑢 andℳ such
that Γ𝑡 ; 𝑥 ∶ ℳ ⊩ 𝑡 ∶ 𝜎 , Γ𝑢 ⊩ 𝑢 ∶ ℳ and Γ = Γ𝑡 ⊎ Γ𝑢 .

Proof. By induction on the derivation Γ ⊩ 𝑡{𝑥/𝑢} ∶ 𝜎 . We extend the statement to deriva-
tions ending with (MANY), for which the property is straightforward by the i.h.We reason
by cases on 𝑡 .
Case 𝑡 = 𝑥 . Then 𝑡{𝑥/𝑢} = 𝑢. We take Γ𝑡 = ∅, Γ𝑢 = Γ, ℳ = [𝜎], and we have 𝑥 ∶ [𝜎] ⊩ 𝑥 ∶

𝜎 by rule (VAR) and Γ ⊩ 𝑢 ∶ ℳ by rule (MANY) on the derivation of the hypothesis.

Case 𝑡 = 𝑦 ≠ 𝑥 . Then 𝑡{𝑥/𝑢} = 𝑦 . We then have Γ = 𝑦 ∶ [𝜎]. We take Γ𝑡 = Γ, Γ𝑢 = ∅,
ℳ = [ ], and then we have 𝑦 ∶ [𝜎]; 𝑥 ∶ [ ] ⊩ 𝑦 ∶ 𝜎 by hypothesis and ∅ ⊩ 𝑢 ∶ [ ] by
rule (MANY).

Case 𝑡 = 𝜆𝑦.𝑠 where 𝑦 ≠ 𝑥 and 𝑦 ∉ fv(𝑢) and 𝑥 ∈ fv(𝑠). Then 𝑡{𝑥/𝑢} = 𝜆𝑦.𝑠{𝑥/𝑢}. We have
𝜎 = 𝒩 → 𝜏 and Γ; 𝑦 ∶ 𝒩 ⊩ 𝑠{𝑥/𝑢} ∶ 𝜏 .
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By the i.h. there exists Γ′, Γ𝑢 ,ℳ such that Γ′; 𝑦 ∶ 𝒩 ; 𝑥 ∶ ℳ ⊩ 𝑠 ∶ 𝜏 , Γ𝑢 ⊩ 𝑢 ∶ ℳ,
and Γ; 𝑦 ∶ 𝒩 = (Γ′; 𝑦 ∶ 𝒩 ) ⊎ Γ𝑢 . Moreover, by 𝛼-conversion and lemma 3.21 we
know that 𝑦 ∉ dom(Γ𝑢) so that Γ = Γ′ ⊎ Γ𝑢 . We conclude by deriving Γ′; 𝑦 ∶ 𝒩 ⊩
𝜆𝑥.𝑠 ∶ 𝒩 → 𝜏 with rule (ABS). Indeed, by letting Γ𝑡 = Γ′ we have Γ = Γ𝑡 ⊎ Γ𝑢 as
required.

Case 𝑡 = 𝑠(𝑢′, 𝑦.𝑟) where 𝑦 ≠ 𝑥 and 𝑦 ∉ fv(𝑢). By construction, we have derivations Γ1 ⊩
𝑠{𝑥/𝑢} ∶ [𝒩𝑖 → 𝜏𝑖]𝑖∈𝐼 , Γ2 ⊩ 𝑢′{𝑥/𝑢} ∶ ⊔𝑖∈𝐼𝒩𝑖 and Γ3; 𝑦 ∶ [𝜏𝑖]𝑖∈𝐼 ⊩ 𝑟{𝑥/𝑢} ∶ 𝜎 , with
Γ = Γ1 ⊎ Γ2 ⊎ Γ3.

By the induction hypothesis there are environments Γ𝑠 , Γ𝑢′ , Γ𝑟 , Γ1𝑢 , Γ2𝑢 , Γ3𝑢 and mul-
tiset types ℳ1,ℳ2,ℳ3 such that Γ𝑠 ; 𝑥 ∶ ℳ1 ⊩ 𝑠 ∶ [𝒩𝑖 → 𝜏𝑖]𝑖∈𝐼 , Γ𝑢′ ; 𝑥 ∶ ℳ2 ⊩
𝑢′ ∶ ⊔𝑖∈𝐼𝒩𝑖 , Γ𝑟 ; 𝑥 ∶ ℳ3 ⊩ 𝑟 ∶ 𝜎 , Γ1𝑢 ⊩ 𝑢 ∶ ℳ1, Γ2𝑢 ⊩ 𝑢 ∶ ℳ2, Γ3𝑢 ⊩ 𝑢 ∶ ℳ3 and
Γ1 = Γ𝑠 ⊎ Γ1𝑢 , Γ2 = Γ𝑢′ ⊎ Γ2𝑢 , Γ3 = Γ𝑟 ⊎ Γ3𝑢 . Let Γ𝑡 = Γ𝑠 ⊎ Γ𝑢′ ⊎ Γ𝑟 , Γ𝑢 = Γ1𝑢 ⊎ Γ2𝑢 ⊎ Γ3𝑢
and ℳ = ℳ1 ⊔ ℳ2 ⊔ ℳ3. We can build a derivation Γ𝑡 ; 𝑥 ∶ ℳ ⊩ 𝑠(𝑢′, 𝑦.𝑟) ∶ 𝜎
with rule (APP) and a derivation Γ𝑢 ⊩ 𝑢 ∶ ℳ with lemma 3.24:2. We conclude since
Γ = Γ1 ⊎ Γ2 ⊎ Γ3 = Γ𝑠 ⊎ Γ1𝑢 ⊎ Γ𝑢′ ⊎ Γ2𝑢 ⊎ Γ𝑟 ⊎ Γ3𝑢 = Γ𝑡 ⊎ Γ𝑢 .

As for weighted subject reduction, we now prove subject expansion in several steps, the
first one consisting of the root reductions of 𝛽h, 𝜋h and p2.

Lemma 3.31. Let Γ ⊩∩𝑁 𝑡2 ∶ 𝜎 and 𝑡1 ↦{𝛽h,p2,𝜋h} 𝑡2. Then Γ ⊩∩𝑁 𝑡1 ∶ 𝜎 .

Proof. The three cases are shown successively.

Case 𝑡1 = (𝜆𝑥.𝑡)(𝑢, 𝑦.𝑟) ↦𝛽h 𝑟{𝑦/𝑡{𝑥/𝑢}} = 𝑡2 where 𝑟 = H⟨⟨𝑦⟩⟩. By lemma 3.30, there exist
Γ𝑟 , Γ𝑡{𝑥/𝑢} and 𝒩 such that Γ𝑟 ; 𝑦 ∶ 𝒩 ⊩ 𝑟 ∶ 𝜎 , Γ𝑡{𝑥/𝑢} ⊩ 𝑡{𝑥/𝑢} ∶ 𝒩 and Γ = Γ𝑡{𝑥/𝑢} ⊎Γ𝑟 .
By lemma 3.30 again, there exist Γ𝑡 , Γ𝑢 and ℳ such that Γ𝑡 ; 𝑥 ∶ ℳ ⊩ 𝑡 ∶ 𝒩 ,
Γ𝑢 ⊩ 𝑢 ∶ ℳ and Γ𝑡{𝑥/𝑢} = Γ𝑡 ⊎ Γ𝑢 . We thus have Γ = Γ𝑡 ⊎ Γ𝑢 ⊎ Γ𝑟 . Let 𝒩 = [𝜏𝑖]𝑖∈𝐼 . For
each 𝑖 ∈ 𝐼 there are derivations Γ𝑖𝑡 ; 𝑥 ∶ ℳ𝑖 ⊩ 𝑡 ∶ 𝜏𝑖 with ℳ = ⊔𝑖∈𝐼ℳ𝑖 and Γ𝑡 = ⊎𝑖∈𝐼Γ𝑖𝑡 .
We can build the following derivation:

⎛
⎜⎜
⎝

Γ𝑖𝑡 ; 𝑥 ∶ ℳ𝑖 ⊩ 𝑡 ∶ 𝜏𝑖
Γ𝑖𝑡 ⊢ 𝜆𝑥.𝑡 ∶ ℳ𝑖 → 𝜏𝑖

(ABS) ⎞⎟⎟
⎠𝑖∈𝐼

Γ𝑡 ⊢ 𝜆𝑥.𝑡 ∶ [ℳ𝑖 → 𝜏𝑖]𝑖∈𝐼
(MANY) Γ𝑢 ⊩ 𝑢 ∶ ℳ Γ𝑟 ; 𝑦 ∶ 𝒩 ⊩ 𝑟 ∶ 𝜎

Γ ⊢ (𝜆𝑥.𝑡)(𝑢, 𝑦.𝑟) ∶ 𝜎 (APP)

Case 𝑡1 = 𝑡(𝑢, 𝑦.𝜆𝑥.𝑟) ↦p2 𝜆𝑥.𝑡(𝑢, 𝑦.𝑟). Notice that 𝜎 is necessarily an arrow type 𝒩 →
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𝜏 . We have the following derivation, with Γ = Σ ⊎ Δ ⊎ Λ.

Σ ⊩ 𝑡 ∶ [ℳ𝑖 → 𝜏𝑖]𝑖∈𝐼 Δ ⊩ 𝑢 ∶ ⊔𝑖∈𝐼ℳ𝑖 Λ; 𝑦 ∶ [𝜏𝑖]𝑖∈𝐼 ; 𝑥 ∶ 𝒩 ⊩ 𝑟 ∶ 𝜏
Σ ⊎ Δ ⊎ Λ; 𝑥 ⊢ 𝒩 ∶ 𝑡(𝑢, 𝑦.𝑟) ∶ 𝜏
Σ ⊎ Δ ⊎ Λ ⊢ 𝜆𝑥.𝑡(𝑢, 𝑦.𝑟) ∶ 𝒩 → 𝜏 (APP)

(ABS)

By hypothesis, 𝑥 ∉ fv(𝑡) ∪ fv(𝑢), so that 𝑥 ∉ dom(Σ ⊎Δ) by lemma 3.21. We can then
build the following derivation:

Σ ⊩ 𝑡 ∶ [ℳ𝑖 → 𝜏𝑖]𝑖∈𝐼 Δ ⊩ 𝑢 ∶ ⊔𝑖∈𝐼ℳ𝑖
Λ; 𝑦 ∶ [𝜏𝑖]𝑖∈𝐼 ; 𝑥 ∶ 𝒩 ⊩ 𝑟 ∶ 𝜏

Λ; 𝑦 ∶ [𝜏𝑖]𝑖∈𝐼 ⊢ 𝜆𝑥.𝑟 ∶ 𝒩 → 𝜏 (ABS)

Σ ⊎ Δ ⊎ Λ ⊢ 𝑡(𝑢, 𝑦.𝜆𝑥.𝑟) ∶ 𝜎 (APP)

Case 𝑡1 = 𝑡(𝑢, 𝑥.𝑟)(𝑢′, 𝑦.𝑟 ′) ↦𝜋h 𝑡(𝑢, 𝑥.𝑟(𝑢′, 𝑦.𝑟 ′)) = 𝑡2 where 𝑟 ′ = H⟨⟨𝑦⟩⟩. We have the fol-
lowing derivation:

Φ𝑡 Φ𝑢
Φ𝑟 Φ𝑢′ Φ𝑟 ′

Γ𝑟 ⊎ Γ𝑢′ ⊎ Γ𝑟 ′ ; 𝑥 ∶ [𝜏𝑗]𝑗∈𝐽 ⊢ 𝑟(𝑢′, 𝑦.𝑟 ′) ∶ 𝜎 (APP)

Γ ⊢ 𝑡(𝑢, 𝑥.𝑟(𝑢′, 𝑦.𝑟 ′)) ∶ 𝜎 (APP)

where Φ𝑡 = Γ𝑡 ⊩ 𝑡 ∶ [𝒩𝑗 → 𝜏𝑗]𝑗∈𝐽 , Φ𝑢 = Γ𝑢 ⊩ 𝑢 ∶ ⊔𝑗∈𝐽𝒩𝑗 , Φ𝑟 = Γ𝑟 ; 𝑥 ∶ [𝜏𝑗]𝑗∈𝐽 ⊩
𝑟 ∶ [ℳ𝑖 → 𝜎𝑖]𝑖∈𝐼 , Φ𝑢′ = Γ𝑢′ ⊩ 𝑢′ ∶ ⊔𝑖∈𝐼ℳ𝑖 , Φ𝑟 ′ = Γ𝑟 ′ ; 𝑦 ∶ [𝜎𝑖]𝑖∈𝐼 ⊩ 𝑟 ′ ∶ 𝜎 and
Γ = Γ𝑡 ⊎ Γ𝑢 ⊎ Γ𝑟 ⊎ Γ𝑢′ ⊎ Γ𝑟 ′ .
By rule (MANY), there are derivations Φ𝑖𝑟 = Γ𝑖𝑟 ; 𝑥 ∶ [𝜏𝑗]𝑗∈𝐽𝑖 ⊩ 𝑟 ∶ ℳ𝑖 → 𝜎𝑖 , where
Γ𝑟 = ⊎𝑖∈𝐼Γ𝑖𝑟 and 𝐽 = ⊎𝑖∈𝐼 𝐽𝑖 . By lemma 3.24, there are derivations Φ𝑖𝑡 = Γ𝑖𝑡 ⊩ 𝑡 ∶ [𝒩𝑗 →
𝜏𝑗]𝑗∈𝐽𝑖 and Φ𝑖𝑢 = Γ𝑖𝑢 ⊩ 𝑢 ∶ ⊔𝑗∈𝐽𝑖𝒩𝑗 , where Γ𝑡 = ⊎𝑖∈𝐼Γ𝑖𝑡 and Γ𝑢 = ⊎𝑖∈𝐼Γ𝑖𝑢 , for each 𝑖 ∈ 𝐼 .
We can build the following derivation:

⎛
⎜⎜
⎝

Φ𝑖𝑡 Φ𝑖𝑢 Φ𝑖𝑟
Γ𝑖𝑡 ⊎ Γ𝑖𝑢 ⊎ Γ𝑖𝑟 ⊢ 𝑡(𝑢, 𝑥.𝑟) ∶ ℳ𝑖 → 𝜎𝑖

(APP) ⎞⎟⎟
⎠𝑖∈𝐼

Γ𝑡 ⊎ Γ𝑢 ⊎ Γ𝑟 ⊢ 𝑡(𝑢, 𝑥.𝑟) ∶ [ℳ𝑖 → 𝜎𝑖]𝑖∈𝐼
(MANY) Φ𝑢′ Φ𝑟 ′

Γ ⊢ 𝑡(𝑢, 𝑥.𝑟)(𝑢′, 𝑦.𝑟 ′) ∶ 𝜎 (APP)

We prove the subject expansion lemma by induction on the reduction step, using SE for
𝛽h and 𝜋h in the root case. Notice that the statement is about full djn reduction, which is
useful in the proof of forthcoming theorem 3.37.

Lemma 3.32 (Subject expansion for ∩𝑁 ). If Γ ⊩∩𝑁 𝑡2 ∶ 𝜎 and 𝑡1 →djn 𝑡2, then Γ ⊩∩𝑁 𝑡1 ∶ 𝜎 .
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Proof. By induction on 𝑡1 →djn 𝑡2.

Case 𝑡1 = D⟨𝜆𝑥.𝑡⟩(𝑢, 𝑦.𝑟) ↦dB 𝑟{𝑦/D⟨𝑡{𝑥/𝑢}⟩} = 𝑡2. Let 𝑡3 = 𝜆𝑥.D⟨𝑡⟩(𝑢, 𝑦.𝑟). We have that
𝑡1 ↦∗

p2 𝑡3 ↦𝛽h 𝑟{𝑦/{⟨𝑥⟩/𝑢}D𝑡} = 𝑡′. Notice that 𝑡′ = 𝑡2 since 𝑥 ∉ fv(D). By multiple
applications of lemma 3.31, we have Γ ⊩ 𝑡3 ∶ 𝜎 and then Γ ⊩ 𝑡1 ∶ 𝜎 .

Case 𝑡1 = 𝜆𝑥.𝑡 →djn 𝜆𝑥.𝑡′ = 𝑡2, where 𝑡 →djn 𝑡′. By hypothesis, we have 𝜎 = ℳ → 𝜏
and Γ; 𝑥 ∶ ℳ ⊩ 𝑡′ ∶ 𝜎 . By the i.h. we have Γ; 𝑥 ∶ ℳ ⊩ 𝑡 ∶ 𝜏 . We use rule (ABS) to
build a derivation of 𝑡1.

Case 𝑡1 = 𝑡(𝑢, 𝑦.𝑟) and the reduction is internal. The derivation of 𝑡2 ends with an (APP)-
rule with premises: Γ𝑡 ⊩ 𝑡 ∶ [ℳ𝑖 → 𝜏𝑖]𝑖∈𝐼 , Γ𝑢 ⊩ 𝑢 ∶ ⊔𝑖∈𝐼ℳ𝑖 and Γ𝑟 ; 𝑦 ∶ [𝜏𝑖]𝑖∈𝐼 ⊩ 𝑟 ∶ 𝜎 .
There are several cases:

Subcase 𝑡1 = 𝑡′(𝑢, 𝑦.𝑟) →djn 𝑡(𝑢, 𝑦.𝑟) = 𝑡2, where 𝑡′ →djn 𝑡 . By the i.h., Γ𝑡 ⊩ 𝑡′ ∶
[ℳ𝑖 → 𝜏𝑖]𝑖∈𝐼 .

Subcase 𝑡1 = 𝑡(𝑢′, 𝑦.𝑟) →djn 𝑡(𝑢, 𝑦.𝑟) = 𝑡2, where 𝑢′ →djn 𝑢. By the i.h., Γ𝑢 ⊩ 𝑢′ ∶
⊔𝑖∈𝐼ℳ𝑖 .

Subcase 𝑡1 = 𝑡(𝑢, 𝑦.𝑟 ′) →djn 𝑡(𝑢, 𝑦.𝑟) = 𝑡2, where 𝑟 ′ →djn 𝑟 . By the i.h., Γ𝑟 ; 𝑦 ∶
[𝜏𝑖]𝑖∈𝐼 ⊩ 𝑟 ′ ∶ 𝜎 .

The other component of the completeness proof is the fact that sn-nfs are typable. For
this, we define a notation for an arrow type made of only empty multitype, except for the
last one.

Definition 3.33. 𝜎𝑘 = {𝜎 if 𝑘 = 0
[ ] → 𝜎𝑘−1 otherwise.

We first show that neutral normal terms are typable, then general normal terms.

Lemma 3.34 (Typing neutral normal terms). For any neutral term G⟨⟨𝑥⟩⟩ and any type 𝜎 , there
exists 𝑘 ≥ 0 such that 𝑥 ∶ [𝜎𝑘] ⊩∩𝑁 G⟨⟨𝑥⟩⟩ ∶ 𝜎 .

Proof. By induction on G.

Case G = ◊. We get 𝑥 ∶ [𝜎0] ⊩ 𝑥 ∶ 𝜎 by rule (VAR).
Case G = G″(𝑢, 𝑦.G′⟨⟨𝑦⟩⟩). By the i.h. on G′ there are 𝑘𝑦 ≥ 0 and a derivation 𝑦 ∶ [𝜎𝑘𝑦 ] ⊩∩𝑁

G′⟨⟨𝑦⟩⟩ ∶ 𝜎 . By the i.h. on G″ and then rule (MANY), we also have 𝑘𝑥 ≥ 0 and a
derivation 𝑥 ∶ [(𝜎𝑘𝑦+1)𝑘𝑥 ] ⊩ G″⟨⟨𝑥⟩⟩ ∶ [𝜎𝑘𝑦+1]. We conclude by setting 𝑘 = 𝑘𝑥 +𝑘𝑦 +1
since (𝜎𝑘𝑦+1)𝑘𝑥 = 𝜎𝑘𝑥+𝑘𝑦+1.

𝑥 ∶ [𝜎𝑘] ⊩ G″⟨⟨𝑥⟩⟩ ∶ [𝜎𝑘𝑦+1] ∅ ⊢ 𝑢 ∶ [ ] 𝑦 ∶ [𝜎𝑘𝑦 ] ⊩ G′⟨⟨𝑦⟩⟩ ∶ 𝜎
𝑥 ∶ [𝜎𝑘] ⊢ G″⟨⟨𝑥⟩⟩(𝑢, 𝑦.G′⟨⟨𝑦⟩⟩) ∶ 𝜎 (APP)
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Case 𝑡 = 𝑡(𝑢, 𝑦.H′⟨⟨𝑥⟩⟩) (𝑥 ≠ 𝑦). By the i.h. there is 𝑘 ≥ 0 and a derivation 𝑥 ∶ [𝜎𝑘] ⊩
H′⟨⟨𝑥⟩⟩ ∶ 𝜎 . We conclude as follows.

∅ ⊢ 𝑡 ∶ [ ] ∅ ⊢ 𝑢 ∶ [ ] 𝑥 ∶ [𝜎𝑘] ⊩ H′⟨⟨𝑥⟩⟩ ∶ 𝜎
𝑥 ∶ [𝜎𝑘] ⊢ 𝑡(𝑢, 𝑦.H′⟨⟨𝑥⟩⟩) ∶ 𝜎 (APP)

Lemma 3.35 (Typing sn-nfs). Let 𝑡 ∈ NFsn. Then there exists 𝜎 such that

(i) If 𝑡 = H⟨⟨𝑥⟩⟩ for some 𝑥 , then there is 𝜏 such that 𝑥 ∶ [𝜏] ⊩ 𝑡 ∶ 𝜎 .

(ii) Otherwise, ∅ ⊩ 𝑡 ∶ 𝜎 .

Proof. By induction on 𝑡 ∈ NFsn.

Case 𝑡 = 𝑥 . Then 𝑡 = ◊⟨⟨𝑥⟩⟩. We get 𝑥 ∶ [𝜎] ⊩ 𝑥 ∶ 𝜎 by rule (VAR).
Case 𝑡 = 𝜆𝑦.𝑠 where 𝑠 ∈ NFsn. There are three possibilities.

Subcase 𝑠 = H′⟨⟨𝑥⟩⟩ and 𝑥 ≠ 𝑦 (so that 𝑡 = H⟨⟨𝑥⟩⟩ where H = 𝜆𝑦.H′). We need to prove
(1)). By the i.h. (1) on 𝑠 and 𝑥 , there is 𝜏 such that 𝑥 ∶ [𝜏] ⊩ 𝑠 ∶ 𝜎 ′. We then get
𝑥 ∶ [𝜏] ⊩ 𝜆𝑦.𝑠 ∶ [ ] → 𝜎 ′ by rule (ABS). We conclude with 𝜎 = [ ] → 𝜎 ′.

Subcase 𝑠 = H′⟨⟨𝑦⟩⟩. We need to prove (2). By the i.h. (1) on 𝑠 and 𝑦 , there is 𝜏 such
that 𝑦 ∶ [𝜏] ⊩ 𝑠 ∶ 𝜎 ′. We then get ∅ ⊩ 𝜆𝑦.𝑠 ∶ [𝜏 ] → 𝜎 ′ by rule (ABS). We
conclude with 𝜎 = [𝜏] → 𝜎 ′.

Subcase Otherwise. We need to prove (2). We apply i.h. (2) on 𝑠. We get a derivation
∅ ⊩ 𝑠 ∶ 𝜎 ′, and then ∅ ⊩ 𝜆𝑦.𝑠 ∶ [ ] → 𝜎 ′ by rule (ABS). We conclude with
𝜎 = [ ] → 𝜎 ′.

Case 𝑡 = G⟨⟨𝑥⟩⟩(𝑢, 𝑦.𝑟) where 𝑟 = H⟨⟨𝑦⟩⟩ ∈ NFsn. We need to prove (1). By the i.h. on 𝑟
there is a derivation 𝑦 ∶ [𝜏] ⊩ 𝑟 ∶ 𝜎 . Applying lemma 3.34 on G⟨⟨𝑥⟩⟩ for the type
[ ] → 𝜏 , and then rule (MANY), we have 𝑘 ≥ 0 such that 𝑥 ∶ [([ ] → 𝜏)𝑘] ⊢ G⟨⟨𝑥⟩⟩ ∶
[[ ] → 𝜏]. We conclude as follows.

𝑥 ∶ [([ ] → 𝜏)𝑘] ⊢ G⟨⟨𝑥⟩⟩ ∶ [[ ] → 𝜏] ⊢ 𝑢 ∶ [ ] 𝑦 ∶ [𝜏] ⊢ 𝑟 ∶ 𝜎
𝑥 ∶ [([ ] → 𝜏)𝑘] ⊢ G⟨⟨𝑥⟩⟩(𝑢, 𝑦.𝑟) ∶ 𝜎

Case 𝑡 = 𝑠(𝑢, 𝑦.𝑟), where 𝑟 ≠ H⟨⟨𝑦⟩⟩ and 𝑟 ∈ NFsn. Let ℳ = [𝜏] in case 1, and ℳ = [ ] in
case (2). By i.h. there is a derivation 𝑥 ∶ ℳ ⊢ 𝑟 ∶ 𝜎 . We conclude as follows.

∅ ⊢ 𝑠 ∶ [ ] ⊢ 𝑢 ∶ [ ] 𝑥 ∶ ℳ ⊢ 𝑟 ∶ 𝜎
𝑥 ∶ ℳ ⊢ 𝑡(𝑢, 𝑥.𝑟) ∶ 𝜎 (APP)
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Corollary 3.36 (Completeness for 𝜆𝐽𝑛). Let 𝑡 ∈ T𝐽 be sn-normalizable. Then 𝑡 is typable in
system ∩𝑁 .

Proof. By definition, the term 𝑡 is reducible to a sn-normal form 𝑡′. By lemma 3.35, 𝑡′ is
typable. Subject expansion gives typability of 𝑡 .

Characterization of CbN Solvability

We can now derive the main theorem of this section.

Theorem 3.37 (CbN characterization). Let 𝑡 ∈ T𝐽 . Then 𝑡 is CbN solvable iff 𝑡 is ∩𝑁 -typable iff
𝑡 is sn-normalizable.

Proof. Typable ⟹ normalizable holds by corollary 3.29. Normalizable ⟹ solvable
holds by property 3.19. For solvable ⟹ typable: take 𝑡 solvable, so that there are
contexts H, D such that H⟨𝑡⟩ →∗

djn D⟨I⟩. Since D⟨I⟩ is ∩𝑁 -typable by lemma 3.35, and
the system ∩𝑁 satisfies subject expansion (lemma 3.32), then H⟨𝑡⟩ is ∩𝑁 -typable, which
implies 𝑡 is ∩𝑁 -typable by lemma 3.23(i).

3.4 Call-by-Value Solvability
We first give an operational characterization of CbV solvability and then a quantitative type
system for it.

3.4.1 Potential Valuability
In CbN, a key element of the method to get the identity from a term plugged into a head con-
text is to successively erase all the arguments, by replacing the head variable by a projection
term o𝑛 = 𝜆𝑥𝑛 …𝑥0.𝑥0. But in CbV, arguments which are not values cannot be erased.

For instance, let 𝑡 = 𝑥(Ω, 𝑧.𝑧). In CbN, we can substitute 𝑥 by o1 to get

𝑡{𝑥/o1} = o1(Ω, 𝑧.𝑧) →d𝛽 𝑧.
In CbV, however, this is not possible since 𝑡{𝑥/o1} diverges.

o1(Ω, 𝑧.𝑧) = (𝜆𝑥1𝑥0.𝑥0)(𝛿(𝛿, 𝑦.𝑦), 𝑧.𝑧)
→d𝛽v

𝑧{𝑧\\(𝜆𝑥0.𝑥0){𝑥1\\𝛿(𝛿, 𝑦.𝑦)}} = 𝛿(𝛿, 𝑦.𝑧{𝑧/𝜆𝑥0.𝑥0{𝑥1/𝑦}}) = 𝛿(𝛿, 𝑦.𝜆𝑥0.𝑥0)
→d𝛽v

𝛿(𝛿, 𝑦.𝜆𝑥0.𝑥0) →d𝛽v
…

The term 𝑡 is only solvable in CbN. On the contrary, the term 𝑥(𝜆𝑦.Ω, 𝑧.𝑧) is solvable in both
CbN and CbV because the argument 𝜆𝑦.Ω can be erased.

o1(𝜆𝑦.Ω, 𝑧.𝑧) →d𝛽v
𝑧{𝑧\\𝜆𝑥0.𝑥0{𝑥1\\𝜆𝑦.Ω}} = 𝑧{𝑧\\𝜆𝑥0.𝑥0{𝑥1/𝜆𝑦.Ω}} = 𝑧{𝑧\\𝜆𝑥0.𝑥0} = 𝜆𝑥0.𝑥0
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We will consider the set of potentially valuable terms [PR99]: terms which can be d𝛽v-reduced
to a value under substitution, such as 𝜆𝑦.Ω and 𝑥(𝜆𝑦.Ω, 𝑧.𝑧). There are more potentially
valuable terms than solvable terms, for instance 𝜆𝑦.Ω is not solvable. The potentially valuable
terms are the terms that we will be able to erase when proving that a term is solvable.

Definition 3.38. A term 𝑡 is potentially valuable iff there exist a distant context D and a value
𝑣 such that D⟨𝑡⟩ →∗

djv 𝑣 .

To reflect the definition of solvability, we do not use a list of (meta-level) substitutions
here, but rather a distant context D. This can be seen as a list of pending substitutions, that are
fired with d𝛽v-steps. In particular, a substitution instance 𝑡{𝑥1/𝑢1} … {𝑥𝑛/𝑢𝑛} can be expressed
as I(𝑢𝑛, 𝑥𝑛. … I(𝑢1, 𝑥1.𝑡) … ).

Interestingly, there is a (non-deterministic) reduction relation →ev such that the normal-
izing terms for →ev are exactly the potentially valuable terms (see theorem 3.66). It is in fact
a weak reduction relation in which reduction can occur anywhere but below abstractions.
We detail this result before tackling the CbV solving reduction.

Definition 3.39. Evaluation→ev is defined by the following rules:

𝑡 ↦d𝛽v
𝑡′

𝑡 →ev 𝑡′
𝑡 →ev 𝑡′

𝑡(𝑢, 𝑦.𝑟) →ev 𝑡′(𝑢, 𝑦.𝑟)
𝑢 →ev 𝑢′

𝑡(𝑢, 𝑦.𝑟) →ev 𝑡(𝑢′, 𝑦.𝑟)
𝑟 →ev 𝑟 ′

𝑡(𝑢, 𝑦.𝑟) →ev 𝑡(𝑢, 𝑦.𝑟 ′)
Lemma 3.40. The following grammar characterizes ev-nfs: 𝑡 ∈ NFev iff 𝑡 is in ev-nf.

(Valuable Neutral Normal Terms) NEev ⩴ 𝑥 ∣ NEev(NFev, 𝑦.NEev)
(Valuable Normal Terms) NFev ⩴ 𝑥 ∣ NEev(NFev, 𝑦.NFev) ∣ 𝜆𝑥.𝑡

Proof. For the left-to-right implication, we show the following stronger property:

(i) If 𝑡 ∈ NEev, then 𝑡 does not have an abstraction shape and 𝑡 is in ev-nf.

(ii) If 𝑡 ∈ NFev, then 𝑡 is in ev-nf.

We proceed by induction on NEev and NFev.

Case 𝑡 = 𝑥 ∈ NFev. Both statements are straightforward.

Case 𝑡 = 𝜆𝑥.𝑡′ ∈ NFev. This is straightforward.

Case 𝑡 = 𝑠(𝑢, 𝑦.𝑟) ∈ NFev where 𝑠 ∈ NEev, 𝑢, 𝑟 ∈ NFev. By the i.h. (ii) 𝑠, 𝑢 and 𝑟 are in ev-nf
(so that the contextual rules do not apply) and 𝑠 does not have an abstraction shape
(so that root reduction does not apply). Moreover, if 𝑡 ∈ NEev, then in particular
𝑟 ∈ NEev and thus by the i.h. (i) 𝑟 does not have an abstraction shape, so that 𝑡 does
not have this shape either.

For the right-to-left implication, we show the following stronger property:

(i) If 𝑡 is in ev-nf and does not have an abstraction shape, then 𝑡 ∈ NEev.
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(ii) If 𝑡 is in ev-nf, then 𝑡 ∈ NFev.

We proceed by induction on 𝑡 .
Case 𝑡 = 𝑥 . Then 𝑡 ∈ NEev ⊆ NFev.

Case 𝑡 = 𝜆𝑥.𝑡′. Then 𝑡 ∈ NFev and the statement (i) does not apply.

Case 𝑡 = 𝑠(𝑢, 𝑦.𝑟). By hypothesis 𝑠, 𝑢 and 𝑟 are in ev-nf (otherwise the whole term would
reduce). By the i.h. (ii), 𝑢, 𝑟 ∈ NFev. Moreover, 𝑠 does not have an abstraction shape
(otherwise the whole term would ev-reduce at the root). By the i.h. (i), 𝑠 ∈ NEev and
thus 𝑡 ∈ NFev. Moreover, if 𝑡 does not have an abstraction shape, then in particular
𝑟 does not have an abstraction shape, so that by the i.h. (i) 𝑟 ∈ NEev and thus 𝑡 ∈
NEev.

We now show the main property: that ev-normalizable terms are potentially valuable.
The converse is obtained in theorem 3.66. The next lemma resembles lemma 3.16 for CbN.
We want to prove that a term 𝑡 ∈ ev-nf can be 𝛽v-reduced to a value with some well-chosen
substitutions: 𝑡{𝑥1/o𝑛1} … {𝑥𝑚/o𝑛𝑚} →∗𝛽v 𝑣 . Once again, this lemma is not on the general
djv relation, but only 𝛽v (without distance): this allows us to use in the characterizations of
potentially valuability for both the distant and the original calculus.

An important point to notice is that we do not only substitute one variable (the head
variable in CbN), but the whole set of free variables of 𝑛. Why is it necessary? Take for
instance 𝑡 = 𝑦1(𝑦2(I, 𝑥.𝑥), 𝑧.𝑧). In CbN, we would simply replace 𝑦1 by o1, which would erase
the argument 𝑦2(I, 𝑥.𝑥).

o1(𝑦2(I, 𝑥.𝑥), 𝑧.𝑧) →𝛽 𝑧{𝑧/(𝜆𝑥0.𝑥0){𝑥1/𝑦2(I, 𝑥.𝑥)}} = 𝜆𝑥0.𝑥0
In CbV though, the argument needs to be a value to be erased. If we do the same substitution,
we instead have:

o1(𝑦2(I, 𝑥.𝑥), 𝑧.𝑧) →𝛽v 𝑧{𝑧\\(𝜆𝑥0.𝑥0){𝑥1\\𝑦2(I, 𝑥.𝑥)}} = 𝑦2(I, 𝑥.𝜆𝑥0.𝑥0).
We need to substitute 𝑦2 also with a value such as o0. Then

o0(I, 𝑥.𝜆𝑥0.𝑥0) →𝛽v (𝜆𝑥0.𝑥0){𝑥\\𝑥0{𝑥0\\I}} = 𝜆𝑥0.𝑥0.
Lemma 3.41. For all 𝑡 ∈ NFev with fv(𝑡) ⊆ {𝑥1, … , 𝑥𝑚}, there exists ℎ ≥ |𝑡 |@ such that for all
𝑛1, … , 𝑛𝑚 ≥ ℎ there exists a value 𝑣 such that 𝑡{𝑥1/o𝑛1} … {𝑥𝑚/o𝑛𝑚} →∗𝛽v 𝑣 . If 𝑡 ∈ NEev with

hv(𝑡) = 𝑥𝑖 (necessarily free), then 𝑣 = o𝑛𝑖−|𝑡|@ .

Proof. By induction on 𝑡 ∈ NFev.

Case 𝑡 is a variable. Thus 𝑡 = 𝑥𝑖 ∈ {𝑥1, … , 𝑥𝑚}. We take ℎ = 0 = |𝑡 |@ and for any
𝑛1, … , 𝑛𝑚 ≥ 0 we have 𝑡{𝑥1/o𝑛1} … {𝑥𝑚/o𝑛𝑚} = o𝑛𝑖−|𝑥|@ = o𝑛𝑖 which is a value.

Case 𝑡 = 𝜆𝑥.𝑠. Notice that 𝑡 ∉ NEev. We suppose w.l.o.g that 𝑥 ∉ {𝑥1, … , 𝑥𝑚}. We take
ℎ = |𝑠|@ and for any 𝑛1, … , 𝑛𝑚 ≥ ℎ we conclude with an empty reduction since



3.4 Call-by-Value Solvability 151

𝑡{𝑥1/o𝑛1} … {𝑥𝑚/o𝑛𝑚} = 𝜆𝑥.𝑠{𝑥1/o𝑛1} … {𝑥𝑚/o𝑛𝑚} is a value.

Case 𝑡 = 𝑠(𝑢, 𝑦.𝑟), where 𝑢, 𝑟 ∈ NFev and 𝑠 ∈ NEev. We suppose without loss of general-
ity that 𝑦 ∉ {𝑥1, … , 𝑥𝑚}. Thus fv(𝑟) ⊆ {𝑦, 𝑥1, … , 𝑥𝑚}. Let 𝑥𝑗 = hv(𝑠) for some 1 ≤ 𝑗 ≤ 𝑚.
By the i.h.:

1. There is ℎ𝑠 ≥ |𝑠|@ s.t. for all 𝑛𝑠1, … , 𝑛𝑠𝑚 ≥ ℎ𝑠 we have 𝑠{𝑥1/o𝑛
𝑠1} … {𝑥𝑚/o𝑛𝑠𝑚} →∗𝛽v

o𝑛
𝑠𝑗−|𝑠|@ .

2. There is ℎ𝑢 ≥ |𝑢|@ such that for all 𝑛𝑢1 , … , 𝑛𝑢𝑚 ≥ ℎ𝑢 there is a value 𝑣′ such that
𝑢{𝑥1/o𝑛

𝑢1 } … {𝑥𝑚/o𝑛𝑢𝑚} →∗𝛽v 𝑣′.
3. There is ℎ𝑟 ≥ |𝑟 |@ such that for all 𝑛𝑦 , 𝑛𝑟1, … , 𝑛𝑟𝑚 ≥ ℎ𝑟 there is a value 𝑣 such that

𝑟{𝑥1/o𝑛
𝑟1} … {𝑥𝑚/o𝑛𝑟𝑚}{𝑦/o𝑛𝑦 } →∗𝛽v 𝑣 .

We take ℎ = max (ℎ𝑠 + ℎ𝑟 + 1, ℎ𝑢) ≥ |𝑡 |@ and we consider any 𝑛1, … , 𝑛𝑚 ≥ ℎ.

1. We have ℎ ≥ ℎ𝑠+ℎ𝑟+1 and thus 𝑛1, … , 𝑛𝑚 ≥ ℎ implies in particular 𝑛1, … , 𝑛𝑚 ≥ ℎ𝑠 .
This gives 𝑠{𝑥1/o𝑛1} … {𝑥𝑚/o𝑛𝑚} →∗𝛽v o𝑛𝑗−|𝑠|@ by the i.h. (1).

2. We have ℎ ≥ ℎ𝑢 and thus 𝑛1, … , 𝑛𝑚 ≥ ℎ implies in particular 𝑛1, … , 𝑛𝑚 ≥ ℎ𝑢 .
This gives 𝑢{𝑥1/o𝑛1} … {𝑥𝑚/o𝑛𝑚} →∗𝛽v 𝑣′ by the i.h. (2).

3. We have ℎ ≥ ℎ𝑟 +1 > ℎ𝑟 and thus 𝑛1, … , 𝑛𝑚 ≥ ℎ implies in particular 𝑛1, … , 𝑛𝑚 ≥
ℎ𝑟 + ℎ𝑠 + 1 ≥ ℎ𝑟 + |𝑠|@ + 1 > ℎ𝑟 . It gives 𝑟 {𝑥1/o𝑛1} … {𝑥𝑚/o𝑛𝑚}{𝑦/o𝑛𝑗−|𝑠|@−1} →∗𝛽v 𝑣
by the i.h. (3).

Using the i.h., we reduce as follows.

𝑡{𝑥1/o𝑛1} … {𝑥𝑚/o𝑛𝑚} →∗𝛽v o𝑛𝑗−|𝑠|@(𝑣′, 𝑦.𝑟 {𝑥1/o𝑛1} … {𝑥𝑚/o𝑛𝑚})
→𝛽v 𝑟 {𝑥1/o𝑛1} … {𝑥𝑚/o𝑛𝑚}{𝑦/o𝑛𝑗−|𝑠|@−1}
→∗𝛽v 𝑣

We consider the particular case where 𝑟 ∈ NEev. If hv(𝑟) = 𝑥𝑖 ≠ 𝑦 for some
1 ≤ 𝑖 ≤ 𝑚, then hv(𝑡) = 𝑥𝑖 and |𝑡 |@ = |𝑟 |@. We conclude by the i.h. (3) which
gives 𝑟 {𝑥1/o𝑛1} … {𝑥𝑚/o𝑛𝑚}{𝑦/o𝑛𝑗−|𝑠|@−1} →∗𝛽v o𝑛𝑖−|𝑟 |@ . Otherwise, we have hv(𝑟) = 𝑦 ,
hv(𝑡) = hv(𝑠) = 𝑥𝑗 for some 1 ≤ 𝑖 ≤ 𝑚 and |𝑡 |@ = |𝑠|@ + |𝑟 |@ + 1. The i.h. (3) gives
𝑟{𝑥1/o𝑛1} … {𝑥𝑚/o𝑛𝑚}{𝑦/o𝑛𝑗−|𝑠|@−1} →∗𝛽v o𝑛𝑗−|𝑠|@−1−|𝑟 |@ = o𝑛𝑗−|𝑡|@ .

Lemma 3.42. Let 𝑡 be an ev-normalizable term. Then 𝑡 is potentially valuable.

Proof. Since 𝑡 is ev-normalizable, then there is a ev-normal term 𝑡′ such that 𝑡 →∗
ev 𝑡′.

Therefore 𝑡′ ∈ NFev by lemma 3.40. Let fv(𝑡) = {𝑥1, … , 𝑥𝑚}, so that fv(𝑡′) ⊆ {𝑥1, … , 𝑥𝑚}.
By lemma 3.41, there is ℎ ≥ |𝑡′|@ such that 𝑡′{𝑥1/oℎ} … {𝑥𝑚/oℎ} →∗𝛽v 𝑣 for some value 𝑣 .
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Consider D = I(oℎ, 𝑥1.I(oℎ, 𝑥2. … I(oℎ, 𝑥𝑚.◊)… )). Then,

D⟨𝑡⟩ →∗
ev I(oℎ, 𝑥1. … I(oℎ, 𝑥𝑚.𝑡′))

→𝛽v I(oℎ, 𝑥2. … I(oℎ, 𝑥𝑚.𝑡{𝑥1/oℎ}′) … )
→∗𝛽v 𝑡′{𝑥1/oℎ} … {𝑥𝑚/oℎ}
→∗𝛽v 𝑣 (by lemma 3.41)

As a consequence, D⟨𝑡⟩ →∗
djv 𝑣 .

Example 3.43. Take again 𝑡 = 𝑦1(I, 𝑧1.𝑥)(𝑦2(I, 𝑧2.𝑧2), 𝑧3.𝜆𝑦.𝑧3) from example 3.17, which is
also in NFev. We take D = I(o1, 𝑦1.o1(I, 𝑥.o1(I, 𝑦.◊))).

D⟨𝑡⟩ →3
djv o1(I, 𝑧1.o1)(o1(I, 𝑧2.𝑧2), 𝑧3.𝜆𝑦.𝑧3)

→djv o1(o1(I, 𝑧2.𝑧2), 𝑧3.𝜆𝑦.𝑧3)
→djv o1(I, 𝑧2.𝜆𝑦.𝜆𝑥0.𝑥0)
→djv 𝜆𝑦.𝜆𝑥0.𝑥0

3.4.2 Operational Characterization of CbV Solvability
We are now ready to build the solving reduction on top of evaluation.

Definition 3.44. The CbV solving reduction relation→sv is defined as follows:

𝑡 ↦d𝛽v
𝑡′

𝑡 →sv 𝑡′
𝑡 →sv 𝑡′

𝜆𝑥.𝑡 →sv 𝜆𝑥.𝑡′

𝑡 →ev 𝑡′
𝑡(𝑢, 𝑥.𝑟) →sv 𝑡′(𝑢, 𝑥.𝑟)

𝑢 →ev 𝑢′
𝑡(𝑢, 𝑥.𝑟) →sv 𝑡(𝑢′, 𝑥.𝑟)

𝑟 →sv 𝑟 ′
𝑡(𝑢, 𝑥.𝑟) →sv 𝑡(𝑢, 𝑥.𝑟 ′)

An equivalent formulation can be given by a set of inductive rules identical to CbN head
reduction, but using evaluation →ev as a base case. Thus, the CbV solving relation is more
restrictive than the CbN one from the point of view of normalization, as it diverges on more
term than the CbN solving relation →sn.

To normalize, reduction must not only terminate under head contexts, but the subterms
𝑡 and 𝑢 in an application 𝑡(𝑢, 𝑥.𝑟) must be ev-normalizable too. Semantically, this reflects the
fact that for a term to be CbV solvable, the subterms 𝑡 and 𝑢 in the applications must be poten-
tially valuable. With these rules, we make sure that in an application 𝑡(𝑢, 𝑥.𝑟), the subterms
𝑡 and 𝑢 are ev-normalizable, and thus potentially valuable. In case there is a divergent term
in 𝑢 or 𝑡 , the solving reduction will diverge.

For instance, the term 𝑦(Ω, 𝑧.I) loops because Ω →ev Ω. However, the term 𝑦(𝜆𝑥.Ω, 𝑧.I)
does not reduce since 𝜆𝑥.Ω ↛ev. Finally, (𝜆𝑧1.𝜆𝑧2.Ω)(𝑥, 𝑦.I) →sv I.
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Lemma 3.45. Let us consider the following grammar:

(CbV Solving Normal Terms) NFsv ⩴ 𝑥 ∣ 𝜆𝑥.NFsv ∣ NEev(NFev, 𝑦.NFsv)
Then, 𝑡 ∈ NFsv iff 𝑡 is in sv-normal form. Notice that NFsv ⊂ NFev.

Proof. For the left-to-right implication, we proceed by induction on NFsv. We proceed
by induction on NFsv.

Case 𝑡 = 𝑥 ∈ NFsv. The statement is straightforward.

Case 𝑡 = 𝜆𝑥.𝑡′ ∈ NFsv. Then 𝑡′ ∈ NFsv, so that 𝑡′ is in sv-nf by the i.h., and thus 𝑡 is in
sv-nf by definition.

Case 𝑡 = 𝑠(𝑢, 𝑦.𝑟) ∈ NFsv. Then 𝑠 ∈ NEev, 𝑢 ∈ NFev and 𝑟 ∈ NFsv. Since 𝑠 is neutral
normal, it does not have an abstraction shape, so that there is no root redex. Using
the i.h. and lemma 3.40, we have 𝑡 is in sv-nf.

For the right-to-left implication, we proceed by induction on 𝑡 .
Case 𝑡 = 𝑥 . Then 𝑡 ∈ NFsv holds trivially.

Case 𝑡 = 𝜆𝑥.𝑡′. Then 𝑡′ is in sv-nf, which implies by the i.h. that 𝑡′ ∈ NFsv, thus 𝑡 ∈ NFsv.

Case 𝑡 = 𝑠(𝑢, 𝑦.𝑟). By hypothesis 𝑠 is ev-normal and not an abstraction because 𝑡 would
be a root d𝛽v-redex, so that 𝑠 ∈ NEev by lemma 3.40. By hypothesis again 𝑢 is in
ev-nf. lemma 3.40 then gives 𝑢 ∈ NFev. Finally, 𝑟 is in sv-nf. The i.h. then gives
𝑟 ∈ NFsv. We thus conclude 𝑡 ∈ NFsv.

As before, to prove the main property that sv-normalizable terms are solvable, we use
an intermediate lemma to reduce sv-nfs to values. Like in lemma 3.41, we want to assign a
value to every free variable of the term under consideration by substitution, as well as to the
variables bound by abstractions by applying a series of arguments to the term.

Lemma 3.46. For all 𝑡 ∈ NFsv with fv(𝑡) ⊆ {𝑥1, … , 𝑥𝑚}, there exist ℎ ≥ |𝑡 |@, 𝑘 ≥ 0 such that for
all 𝑛1, … , 𝑛𝑚+𝑘 ≥ ℎ there exists 𝑛 ≥ 0 such that

𝑡{𝑥1/o𝑛1} … {𝑥𝑚/o𝑛𝑚}(o𝑛𝑚+1 , … , o𝑛𝑚+𝑘 , 𝑧.𝑧) →∗𝛽v o𝑛.

Proof. By induction on 𝑡 ∈ NFsv.

Case 𝑡 is a variable, thus 𝑡 = 𝑥𝑖 . We take ℎ = 0 = |𝑥𝑖 |@, 𝑘 = 0 so that for all 𝑛1, … , 𝑛𝑚 ≥ 0
we have 𝑡{𝑥1/o𝑛1} … {𝑥𝑚/o𝑛𝑚} = o𝑛𝑖 . We let 𝑛 = 𝑛𝑖 ≥ 0 and we conclude.

Case 𝑡 = 𝜆𝑥.𝑠 with 𝑠 ∈ NFsv. We suppose w.l.o.g that 𝑥 ∉ {𝑥1, … , 𝑥𝑚}. Then, fv(𝑠) ⊆
{𝑥, 𝑥1, … , 𝑥𝑚}. By the i.h., there exist ℎ′ ≥ |𝑠|@ = |𝑡|@, 𝑘′ ≥ 0 such that for all
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𝑛′, 𝑛1, … , 𝑛𝑚+𝑘 ≥ ℎ′ there exists 𝑛 ≥ 0 such that

𝑠{𝑥1/o𝑛1} … {𝑥𝑚/o𝑛𝑚}{𝑥/o𝑛′}(o𝑛𝑚+1 , … , o𝑛𝑚+𝑘′ , 𝑧.𝑧) →∗𝛽v o𝑛.

Taking ℎ = ℎ′ and 𝑘 = 𝑘′ + 1 we have:

𝑡{𝑥1/o𝑛1} … {𝑥𝑚/o𝑛𝑚}(o𝑛′ , o𝑛𝑚+1 , … , o𝑛𝑚+𝑘′ , 𝑧.𝑧)
= 𝜆𝑥.𝑠{𝑥1/o𝑛1} … {𝑥𝑚/o𝑛𝑚}(o𝑛′ , o𝑛𝑚+1 , … , o𝑛𝑚+𝑘′ , 𝑧.𝑧)
→𝛽v 𝑠{𝑥1/o𝑛1} … {𝑥𝑚/o𝑛𝑚}{𝑥\\o𝑛′}(o𝑛𝑚+1 , … , o𝑛𝑚+𝑘′ , 𝑧.𝑧)
= 𝑠{𝑥1/o𝑛1} … {𝑥𝑚/o𝑛𝑚}{𝑥/o𝑛′}(o𝑛𝑚+1 , … , o𝑛𝑚+𝑘′ , 𝑧.𝑧) →∗𝛽v o𝑛 (by the i.h.)

Case 𝑡 = 𝑠(𝑢, 𝑦.𝑟) with 𝑠 ∈ NEev, 𝑢 ∈ NFev and 𝑟 ∈ NFsv. We suppose without loss of gen-
erality that 𝑦 ∉ {𝑥1, … , 𝑥𝑚}. Thus fv(𝑟) ⊆ {𝑦, 𝑥1, … , 𝑥𝑚}. Let 𝑥𝑗 = hv(𝑠) for some
1 ≤ 𝑗 ≤ 𝑚. By lemma 3.41 and the i.h. respectively:

1. There is ℎ𝑠 ≥ |𝑠|@ such that for all 𝑛𝑠1, … , 𝑛𝑠𝑚 ≥ ℎ𝑠 we have
𝑠{𝑥1/o𝑛

𝑠1} … {𝑥𝑚/o𝑛𝑠𝑚} →∗𝛽v o𝑛
𝑠𝑗−|𝑠|@ .

2. There is ℎ𝑢 ≥ |𝑢|@ such that for all 𝑛𝑢1 , … , 𝑛𝑢𝑚 ≥ ℎ𝑢 there is a value 𝑣 such that
𝑢{𝑥1/o𝑛1} … {𝑥𝑚/o𝑛𝑚} →∗𝛽v 𝑣 .

3. There are ℎ𝑟 ≥ |𝑟 |@, 𝑘′ ≥ 0 such that for all 𝑛𝑦 , 𝑛𝑟1, … , 𝑛𝑟𝑚+𝑘′ ≥ ℎ𝑟 there is 𝑛 ≥ 0
such that 𝑟 {𝑥1/o𝑛1} … {𝑥𝑚/o𝑛𝑚}{𝑦/o𝑛𝑦 }(o𝑛𝑚+1 , … , o𝑛𝑚+𝑘′ , 𝑧.𝑧) →∗𝛽v o𝑛.

We take ℎ = max (ℎ𝑠 + ℎ𝑟 + 1, ℎ𝑢) ≥ |𝑡 |@ and we consider any 𝑛1, … , 𝑛𝑚 ≥ ℎ.

1. We have ℎ ≥ ℎ𝑠+ℎ𝑟+1 and thus 𝑛1, … , 𝑛𝑚 ≥ ℎ implies in particular 𝑛1, … , 𝑛𝑚 ≥ ℎ𝑠 .
This gives 𝑠{𝑥1/o𝑛1} … {𝑥𝑚/o𝑛𝑚} →∗𝛽v o𝑛𝑗−|𝑠|@ by (1).

2. We have ℎ ≥ ℎ𝑢 and thus 𝑛1, … , 𝑛𝑚 ≥ ℎ implies in particular 𝑛1, … , 𝑛𝑚 ≥ ℎ𝑢 .
This gives 𝑢{𝑥1/o𝑛1} … {𝑥𝑚/o𝑛𝑚} →∗

ev 𝑣 by (2).

3. We have ℎ ≥ ℎ𝑟 +1 > ℎ𝑟 and thus 𝑛1, … , 𝑛𝑚 ≥ ℎ implies in particular 𝑛1, … , 𝑛𝑚 ≥
ℎ𝑟 + ℎ𝑠 + 1 ≥ ℎ𝑟 + |𝑠|@ + 1 > ℎ𝑟 . This gives 𝑛 ≥ 0 such that by the i.h. (3)
𝑟 {𝑥1/o𝑛1} … {𝑥𝑚/o𝑛𝑚}{𝑦/o𝑛𝑗−|𝑠|@−1}(o𝑛𝑚+1 , … , o𝑛𝑚+𝑘′ , 𝑧.𝑧) →∗𝛽v o𝑛.

In summary, we reduce as follows:

𝑡{𝑥1/o𝑛1} … {𝑥𝑚/o𝑛𝑚}(o𝑛𝑚+1 , … , o𝑛𝑚+𝑘 , 𝑧.𝑧)
→∗𝛽v o𝑛𝑗−|𝑠|@(𝑣, 𝑦.𝑟{𝑥1/o𝑛1} … {𝑥𝑚/o𝑛𝑚})(o𝑛𝑚+1 , … , o𝑛𝑚+𝑘 , 𝑧.𝑧)
→𝛽v 𝑟(o𝑛𝑚+1 , … , o𝑛𝑚+𝑘 , 𝑧.𝑧){𝑥1/o𝑛1} … {𝑥𝑚/o𝑛𝑚}{𝑦/o𝑛𝑗−|𝑠|@−1}
→∗𝛽v o𝑛 (by the i.h. (3))

Lemma 3.47. Let 𝑡 be an sv-normalizable term. Then 𝑡 is CbV solvable.
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Proof. Since 𝑡 is sv-normalizable, then there is a sv-normal term 𝑡′ such that 𝑡 →∗
sv 𝑡′.

Therefore 𝑡′ ∈ NFsv by lemma 3.45. Let fv(𝑡) = {𝑥1, … , 𝑥𝑚}, so that fv(𝑡′) ⊆ {𝑥1, … , 𝑥𝑚}.
By lemma 3.16, there are ℎ, 𝑘 ∈ ℕ such that for all 𝑛1, … , 𝑛𝑚+𝑘 ≥ ℎ there is 𝑛 ≥ 0 such
that 𝑡′{𝑥1/o𝑛1} … {𝑥𝑚/o𝑛𝑚}(o𝑛𝑚+1 , … , o𝑛𝑚+𝑘 , 𝑧.𝑧) →∗𝛽v o𝑛, which is also a djv-step. We take

𝑛1, … , 𝑛𝑚+𝑘 = ℎ. We can then write (oℎ, … , oℎ, 𝑧.𝑧) as (oℎ, 𝑧.𝑧)
𝑘
. Let

H = I(oℎ, 𝑥𝑚. … I(oℎ, 𝑥1.◊)… )(oℎ, 𝑧.𝑧)
𝑘
(I, 𝑧.𝑧)𝑛.

Then:

H⟨𝑡⟩ →∗
sv H⟨𝑡′⟩ →𝑚

𝛽v 𝑡′{𝑥1/oℎ} … {𝑥𝑚/oℎ}(oℎ, 𝑧.𝑧)
𝑘
(I, 𝑧.𝑧)𝑛 →∗𝛽v o𝑛(I, 𝑧.𝑧)𝑛 →𝑛

𝛽v I

As a consequence, H⟨𝑡⟩ →djv I.

Example 3.48. Take again the term 𝑡 = 𝑦1(I, 𝑧1.𝑥)(𝑦2(I, 𝑧2.𝑧2), 𝑧3.𝜆𝑦.𝑧3) from example 3.43.
We take H = D(I, 𝑧.𝑧), where D = I(o1, 𝑦1.o1(I, 𝑥.o1(I, 𝑦.◊))) is the context from that example.
Then,

H⟨𝑡⟩ →∗
djv (𝜆𝑦.𝜆𝑥0.𝑥0)(I, 𝑧.𝑧) →djv 𝜆𝑥0.𝑥0 = I.

3.4.3 Logical Characterization of CbV Solvability
We will now define a quantitative type system characterizing CbV solvability. The gram-
mar of types is different from section 3.3.2, as multiset types are considered as types and in
particular may also occur on the right hand-side of an arrow.

(Types) 𝜎, 𝜏 , 𝜌 ⩴ 𝑎 ∈ 𝐵𝑇𝑉 ∣ ℳ ∣ ℳ → 𝜎
(Multiset types) ℳ,𝒩 ⩴ [𝜎𝑖]𝑖∈𝐼 where 𝐼 is a finite set

𝑥 ∶ ℳ ⊢ 𝑥 ∶ ℳ (VAR)
(Γ𝑖 ; 𝑥 ∶ ℳ𝑖 ⊢ 𝑡 ∶ 𝜎𝑖)𝑖∈𝐼

⊎𝑖∈𝐼Γ𝑖 ⊢ 𝜆𝑥.𝑡 ∶ [ℳ𝑖 → 𝜎𝑖]𝑖∈𝐼
(ABS)

Γ ⊢ 𝑡 ∶ [ℳ → 𝒩 ] Δ ⊢ 𝑢 ∶ ℳ Λ; 𝑥 ∶ 𝒩 ⊢ 𝑟 ∶ 𝜎
Γ ⊎ Δ ⊎ Λ ⊢ 𝑡(𝑢, 𝑥.𝑟) ∶ 𝜎 (APP)

Figure 3.2: System ∩𝑉 .

We use a unique type system ∩𝑉 , defined in figure 3.2, to characterize both potential
valuability and solvability. The type system is inspired from the system of Bucciarelli, Kesner,
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Ríos, and Viso [Buc+20] for the bang calculus. Again, we write Γ ⊩𝑛∩𝑉 𝑡 ∶ 𝜎 if the sequent
Γ ⊢ 𝑡 ∶ 𝜎 is derivable in this system with a derivation of size 𝑛 (containing 𝑛 occurrences of
(APP)). This system is relevant.

Lemma 3.49 (Relevance). If Γ ⊩∩𝑉 𝑡 ∶ 𝜎 , then dom(Γ) ⊆ fv(𝑡).

Proof. By induction on the derivation.

Case the derivation ends with (VAR). Then 𝑡 = 𝑥 , 𝜎 = ℳ and Γ = 𝑥 ∶ ℳ and we have
𝑥 ∶ ℳ ⊩∩𝑉 𝑥 ∶ ℳ. We have dom(𝑥 ∶ ℳ) ⊆ {𝑥} = fv(𝑥).

Case the derivation ends with (ABS). Then 𝑡 = 𝜆𝑦.𝑢, Γ = ⊎𝑖∈𝐼Γ𝑖 , 𝜎 = [ℳ𝑖 → 𝜏𝑖]𝑖∈𝐼 and
the premises are of the form Δ𝑖 ⊩ 𝑢 ∶ 𝜏𝑖 , with Δ𝑖 = Γ𝑖 ; 𝑦 ∶ ℳ𝑖 . We have dom(Γ𝑖 ; 𝑦 ∶
ℳ𝑖) ⊆i.h. fv(𝑢). If dom(Γ𝑖 ; 𝑦 ∶ ℳ𝑖) = dom(Γ𝑖) ∪ {𝑦}, then we get dom(Γ𝑖) ⊆ fv(𝑢) ⧵
{𝑦} = fv(𝜆𝑦.𝑢). If dom(Γ𝑖 ; 𝑦 ∶ ℳ𝑖) = dom(Γ𝑖), then we get dom(Γ𝑖) ⊆ fv(𝑢) with
𝑦 ∉ dom(Γ𝑖) so that dom(Γ𝑖) ⊆ fv(𝑢) ⧵ {𝑦} = fv(𝜆𝑦.𝑢) also holds. Then dom(Γ) =
⋃𝑖∈𝐼 dom(Γ𝑖) ⊆ fv(𝜆𝑦.𝑢).

Case the derivation ends with (APP). then 𝑡 = 𝑠(𝑢, 𝑥.𝑟) and the premises are of the form
Γ𝑠 ⊩ 𝑠 ∶ [ℳ → 𝒩 ], Γ𝑢 ⊩ 𝑢 ∶ ℳ and Γ𝑟 ; 𝑥 ∶ 𝒩 ⊩ 𝑟 ∶ 𝜎 where Γ = Γ𝑠 ⊎ Γ𝑢 ⊎ Γ𝑟 .
The i.h. gives dom(Γ𝑠) ⊆ fv(𝑠), dom(Γ𝑢) ⊆ fv(𝑢), and dom(Γ𝑟 ; 𝑥 ∶ 𝒩 ) ⊆ fv(𝑟). If
dom(Γ𝑟 ; 𝑥 ∶ 𝒩 ) = dom(Γ𝑟 ) ∪ {𝑥}, then we get dom(Γ𝑟 ) ⊆ fv(𝑟) ⧵ {𝑦}, which implies
dom(Γ) = dom(Γ𝑠) ∪ dom(Γ𝑢) ∪ dom(Γ𝑟 ) ⊆ fv(𝑠) ∪ fv(𝑢) ∪ (fv(𝑟) ⧵ {𝑦}) = fv(𝑡). If
dom(Γ𝑟 ; 𝑥 ∶ 𝒩 ) = dom(Γ𝑟 ), then we get dom(Γ𝑟 ) ⊆ fv(𝑟) and 𝑦 ∉ dom(Γ𝑟 ) implies
dom(Γ𝑟 ) ⊆ fv(𝑟) ⧵ {𝑦} and thus dom(Γ) = dom(Γ𝑠) ∪ dom(Γ𝑢) ∪ dom(Γ𝑟 ) ⊆ fv(𝑠) ∪
fv(𝑢) ∪ (fv(𝑟) ⧵ {𝑦}) = fv(𝑡).

We will show that typability in ∩𝑉 is equivalent to normalization of evaluation. To logi-
cally characterize solvable terms, we constrain typability to a particular set of types, where
the empty multiset type cannot appear anymore on the right-hand sides of arrows. We take
this idea from Accattoli and Guerrieri [AG22], where these types are called solvable. This
restriction originates from [PR99], (using an idempotent intersection type system), where
the types are called proper.

Definition 3.50 (Solvable types). A solvable type 𝜎 s is not an empty multiset, and has no
empty multiset on the right of an arrow. Formally,

(Solvable types) 𝜎 s, 𝜏 s ⩴ 𝑎 ∈ 𝐵𝑇𝑉 ∣ ℳs ∣ ℳ → 𝜎 s

(Solvable multiset types) ℳs, 𝒩 s ⩴ [𝜎 s𝑖 ]𝑖∈𝐼 where 𝐼 is a non-empty finite set

Unlike CbN, where the empty multiset [ ] is used to mark untyped subterms, being typable
in CbV with [ ] is equivalent to being potentially valuable. The unsolvable term 𝜆𝑥.Ω, for
instance, can be typed with [ ] by rule (ABS) with 𝐼 empty. But it cannot be typed with any
other type. In particular not with a solvable one, as this would requireΩ to be typable. Notice
also that the terms 𝑡 and 𝑢 in rule (APP) must always be typed, at least with type [ ]. That is
why the term 𝑡 = Ω(𝑦, 𝑧.I) of example 3.22, typable in ∩𝑁 , is not typable in ∩𝑉 .
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Example 3.51. Take 𝑡 = (𝜆𝑥.𝑥)(𝑥, 𝑦.𝜆𝑧.Ω). Even when typing it with [ ], premises must be
given for rule (APP), that is, the subterms 𝑥 , 𝑥 and 𝜆𝑧.Ω must be typed.

⊢ 𝑥 ∶ [ ] (VAR)

⊢ 𝜆𝑥.𝑥 ∶ [[ ] → [ ]] (ABS) ⊢ 𝑥 ∶ [ ] (VAR) ⊢ 𝜆𝑧.Ω ∶ [ ] (ABS)

⊢ (𝜆𝑥.𝑥)(𝑥, 𝑦.𝜆𝑧.Ω) ∶ [ ] (APP)

Lemma 3.52 (Split for values). If Γ ⊩𝑛∩𝑉 𝑣 ∶ ℳ, then for any decomposition ℳ = +𝑖∈𝐼ℳ𝑖 we
have Γ𝑖 ⊩𝑛𝑖∩𝑉 𝑣 ∶ ℳ𝑖 such that∑𝑖∈𝐼 𝑛𝑖 = 𝑛 and ⊎𝑖∈𝐼Γ𝑖 = Γ.

Proof. Straightforward by induction on the derivation.

We now prove that terms typable in ∩𝑉 are exactly those that are normalizable for the
valuable reduction, and among them, those typable with a solvable type are the ones normal-
izing for the solvable reduction. The proof method is the same as for CbN (section 3.3.2), but
the statements cover both reduction relations at the same time, since both use the same type
system.

Soundness

Soundness follows the same scheme as used for CbN (no reducibility proof is needed): a
weighted subject reduction property is used to show that typability implies normalization.

Since two kinds of substitution are used in CbV, there are two corresponding substitution
lemmas, the one for left substitution relying on the first one for the usual right substitution.

Lemma 3.53 (Right substitution lemma). If Γ; 𝑥 ∶ ℳ ⊩𝑛∩𝑉 𝑡 ∶ 𝜎 and Δ ⊩𝑚∩𝑉 𝑣 ∶ ℳ, then
Γ ⊎ Δ ⊩𝑛+𝑚∩𝑉 𝑡{𝑥/𝑣} ∶ 𝜎 .

Proof. By induction on 𝑡 .
Case 𝑡 = 𝑥 . By hypothesis, Γ = ∅, 𝑛 = 0 and 𝜎 = ℳ. We conclude with ∅ ⊎ Δ ⊩0+𝑚

𝑥{𝑥/𝑣} ∶ 𝜎 = Δ ⊩𝑚 𝑣 ∶ ℳ.

Case 𝑡 = 𝑦 ≠ 𝑥 . By hypothesis, ℳ = [ ] and 𝑛 = 0. We necessarily have Δ ⊩0 𝑣 ∶ [ ].
Moreover, 𝑣 is either a variable or an abstraction, which implies Δ = ∅ by using
rule (VAR) or (ABS). We conclude with Γ ⊎ ∅ ⊩0+0 𝑦{𝑥/𝑣} ∶ 𝜎 = Γ; 𝑥 ∶ [ ] ⊩0 𝑦 ∶ 𝜎 .

Case 𝑡 = 𝜆𝑦.𝑢 where 𝑦 ≠ 𝑥 and 𝑦 ∉ fv(𝑣). By hypothesis we have Γ𝑖 ; 𝑥 ∶ ℳ𝑖 ; 𝑦 ∶ 𝒩𝑖 ⊩𝑛𝑖
𝑢 ∶ 𝜏𝑖 for all 𝑖 ∈ 𝐼 , where 𝜎 = [𝒩𝑖 → 𝜏𝑖]𝑖∈𝐼 , Γ = ⊎𝑖∈𝐼Γ𝑖 , ℳ = +𝑖∈𝐼ℳ𝑖 and ∑𝑖∈𝐼 𝑛𝑖 = 𝑛.
By lemma 3.52 Δ𝑖 ⊩𝑚𝑖 𝑣 ∶ ℳ𝑖 where ∑𝑖∈𝐼 𝑚𝑖 = 𝑚 and Δ = ⊎𝑖∈𝐼Δ𝑖 . By the i.h.
Γ𝑖 ⊎Δ𝑖 ; 𝑦 ∶ 𝒩𝑖 ⊩𝑛𝑖+𝑚𝑖 𝑢{𝑥/𝑣} ∶ 𝜏𝑖 for 𝑖 ∈ 𝐼 . By rule (ABS) and because 𝑦 ≠ 𝑥 , we obtain
Γ ⊎ Δ ⊩𝑛+𝑚 𝜆𝑦.𝑢{𝑥/𝑣} ∶ [𝒩𝑖 → 𝜏𝑖]𝑖∈𝐼 . We conclude because 𝜆𝑦.𝑢{𝑥/𝑣} = (𝜆𝑦.𝑢){𝑥/𝑣}.
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Case 𝑡 = 𝑠(𝑢, 𝑦.𝑟) where 𝑦 ≠ 𝑥 and 𝑦 ∉ fv(𝑣). By hypothesis, Γ1; 𝑥 ∶ ℳ1 ⊩𝑛1 𝑠 ∶ [𝒩 →
𝒩 ′], Γ2; 𝑥 ∶ ℳ2 ⊩𝑛2 𝑢 ∶ 𝒩 and Γ3; 𝑥 ∶ ℳ3; 𝑦 ∶ 𝒩 ′ ⊩𝑛3 𝑟 ∶ 𝜎 where Γ = Γ1 ⊎ Γ2 ⊎ Γ3,
ℳ = ℳ1+ℳ2+ℳ3 and 𝑛 = 𝑛1+𝑛2+𝑛3+1. By lemma 3.52, Δ𝑖 ⊩𝑚𝑖 𝑣 ∶ ℳ𝑖 (𝑖 = 1, 2, 3)
where Δ = Δ1 + Δ2 + Δ3 and 𝑚 = 𝑚1 + 𝑚2 + 𝑚3. By the i.h., Γ1 ⊎ Δ1 ⊩𝑛1+𝑚1 𝑠{𝑥/𝑣} ∶
[𝒩 → 𝒩 ′], Γ2 ⊎ Δ2 ⊩𝑛2+𝑚2 𝑢{𝑥/𝑣} ∶ 𝒩 , and Γ3 ⊎ Δ3; 𝑦 ∶ 𝒩 ′ ⊩𝑛3+𝑚3 𝑠{𝑥/𝑣} ∶ 𝜎 . We
conclude using rule (APP), the fact that (𝑠(𝑢, 𝑦.𝑟)){𝑥/𝑣} = 𝑠{𝑥/𝑣}(𝑢{𝑥/𝑣}, 𝑦.𝑟{𝑥/𝑣}) and
1 + ∑3

𝑖=1(𝑛𝑖 + 𝑚𝑖) = 𝑚 + 𝑛.

Lemma 3.54 (Left substitution lemma). If Γ; 𝑥 ∶ ℳ ⊩𝑛∩𝑉 𝑡 ∶ 𝜎 and Δ ⊩𝑚∩𝑉 𝑢 ∶ ℳ, then
Γ ⊎ Δ ⊩𝑛+𝑚∩𝑉 𝑡{𝑥\\𝑢} ∶ 𝜎 .

Proof. By induction on 𝑢. If 𝑢 is a value, then 𝑡{𝑥\\𝑢} = 𝑡{𝑥/𝑢} and we use lemma 3.53.
Otherwise, 𝑢 = 𝑠(𝑢′, 𝑦.𝑟) so that by definition, 𝑡{𝑥\\𝑢} = 𝑠(𝑢′, 𝑦.𝑡{𝑥\\𝑟}). The typing deriva-
tion of 𝑢 ends with an (APP)-rule. We have Δ𝑠 ⊩𝑚1 𝑠 ∶ [𝒩 → 𝒩 ′], Δ𝑢′ ⊩𝑚2 𝑢′ ∶ 𝒩
and Δ𝑟 ; 𝑦 ∶ 𝒩 ′ ⊩𝑚3 𝑟 ∶ ℳ where Δ = Δ𝑠 ⊎ Δ𝑢′ ⊎ Δ𝑟 and 𝑚 = 𝑚1 + 𝑚2 + 𝑚3 + 1. By
the i.h., Γ ⊎ Δ𝑟 ; 𝑦 ∶ 𝒩 ′ ⊩𝑛+𝑚3 𝑡{𝑥\\𝑟} ∶ 𝜎 . We conclude with rule (APP) and the fact that
𝑛 + 𝑚 = 𝑛 + 𝑚1 + 𝑚2 + 𝑚3 + 1.

We separate the proof of subject reduction in the same way as in CbN, starting with the
base cases for 𝛽v and 𝜋 separately, so that this proof can be used for the original and the
distant calculus.

Lemma 3.55. Let Γ ⊩𝑛∩𝑉 𝑡1 ∶ 𝜎 .
(i) If 𝑡1 ↦𝛽v 𝑡2, then Γ ⊩𝑛−1∩𝑉 𝑡2 ∶ 𝜎 .

(ii) If 𝑡1 ↦𝜋 𝑡2, then Γ ⊩𝑛∩𝑉 𝑡2 ∶ 𝜎 .

Proof. The items are proved successively.

Case 𝑡1 = (𝜆𝑥.𝑡)(𝑢, 𝑦.𝑟) ↦𝛽v 𝑟{𝑦\\𝑡{𝑥\\𝑢}} = 𝑡2. We have the following derivation:

Γ𝑡 ; 𝑥 ∶ ℳ ⊩𝑛𝑡 𝑡 ∶ 𝒩
Γ𝑡 ⊢ 𝜆𝑥.𝑡 ∶ [ℳ → 𝒩 ] (ABS) Γ𝑢 ⊩𝑛𝑢 𝑢 ∶ ℳ Γ𝑟 ; 𝑦 ∶ 𝒩 ⊩𝑛𝑟 𝑟 ∶ 𝜎

Γ ⊢ (𝜆𝑥.𝑡)(𝑢, 𝑦.𝑟) ∶ 𝜎 (APP)

Where Γ = Γ𝑡 ⊎ Γ𝑢 ⊎ Γ𝑟 and 𝑛 = 𝑛𝑡 + 𝑛𝑢 + 𝑛𝑟 + 1. By two applications of lemma 3.54,
Γ ⊩𝑛−1 𝑟 {𝑦\\𝑡{𝑥\\𝑢}} ∶ 𝜎 .

Case 𝑡1 = 𝑡(𝑢, 𝑥.𝑟)(𝑢′, 𝑦.𝑟 ′) ↦𝜋 𝑡(𝑢, 𝑥.𝑟(𝑢′, 𝑦.𝑟 ′)) = 𝑡2. We have the following derivation:

Φ𝑡 Φ𝑢 Φ𝑟
Γ𝑡 ⊎ Γ𝑢 ⊎ Γ𝑟 ⊢ 𝑡(𝑢, 𝑥.𝑟) ∶ [ℳ → 𝒩 ] (APP) Φ𝑢′ Φ𝑟 ′

Γ ⊢ 𝑡(𝑢, 𝑥.𝑟)(𝑢′, 𝑦.𝑟 ′) ∶ 𝜎 (APP)
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and Φ𝑡 = Γ𝑡 ⊩𝑛𝑡 𝑡 ∶ [ℳ′ → 𝒩 ′], Φ𝑢 = Γ𝑢 ⊩𝑛𝑢 𝑢 ∶ ℳ′, Φ𝑟 = Γ𝑟 ; 𝑥 ∶ 𝒩 ′ ⊩𝑛𝑟 𝑟 ∶
[ℳ → 𝒩 ], Φ𝑢′ = Γ𝑢′ ⊩𝑛𝑢′ 𝑢′ ∶ ℳ and Φ𝑟 ′ = Γ𝑟 ′ ; 𝑦 ∶ 𝒩 ⊩𝑛𝑟′ 𝑟 ′ ∶ 𝜎 , such that
Γ = Γ𝑡 ⊎ Γ𝑢 ⊎ Γ𝑟 ⊎ Γ𝑢′ ⊎ Γ𝑟 ′ and 𝑛 = 𝑛𝑡 + 𝑛𝑢 + 𝑛𝑟 + 𝑛𝑢′ + 𝑛𝑟 ′ + 2. Using the fact that
𝑥 ∉ fv(𝑢′) ∪ fv(𝑟 ′) and the relevance lemma 3.49, we build the following derivation
of the same size.

Φ𝑡 Φ𝑢
Φ𝑟 Φ𝑢′ Φ𝑟 ′

(Γ𝑟 ; 𝑥 ∶ 𝒩 ′) ⊎ Γ𝑢′ ⊎ Γ𝑟 ′ ⊢ 𝑟(𝑢′, 𝑦.𝑟 ′) ∶ 𝜎 (APP)

Γ ⊢ 𝑡(𝑢, 𝑥.𝑟(𝑢′, 𝑦.𝑟 ′)) ∶ 𝜎 (APP)

Subject reduction holds for the whole reduction relation djv. In particular, the size of the
proof strictly decreases for evaluation and for the solving relation.

Lemma 3.56 (Weighted subject reduction for ∩𝑉 ). Let Γ ⊩𝑛1∩𝑉 𝑡1 ∶ 𝜎 and 𝑡1 →djv 𝑡2. Then
Γ ⊩𝑛2∩𝑉 𝑡2 ∶ 𝜎 with 𝑛1 ≥ 𝑛2. Moreover:

(i) If 𝑡1 →ev 𝑡2, then 𝑛1 > 𝑛2.
(ii) If 𝑡1 →sv 𝑡2 and 𝜎 is a solvable type, then 𝑛1 > 𝑛2.

Proof. By induction on 𝑡1 →djv 𝑡2 (resp. 𝑡1 →ev 𝑡2, 𝑡1 →sv 𝑡2).

Case 𝑡1 = D⟨𝜆𝑥.𝑡⟩(𝑢, 𝑦.𝑟) ↦d𝛽v
D⟨𝑟{𝑦\\𝑡{𝑥\\𝑢}}⟩ = 𝑡2. This is the base case. We have 𝑡1 ↦∗𝜋

D⟨(𝜆𝑥.𝑡)(𝑢, 𝑦.𝑟)⟩ = 𝑡3 (simple induction on D). Thus Γ ⊩𝑛1 𝑡3 ∶ 𝜎 by lemma 3.55(ii)
It is straightforward that Γ′ ⊩𝑛 (𝜆𝑥.𝑡)(𝑢, 𝑦.𝑟) ∶ 𝜎 for some Γ′ and some 𝑛 ≤ 𝑛1. By
lemma 3.55(i) Γ′ ⊩𝑛−1 𝑟{𝑦\\𝑡{𝑥\\𝑢}} ∶ 𝜎 . Thus, Γ ⊩𝑛2 𝑡2 ∶ 𝜎 , where 𝑛2 = 𝑛1 − 1.

Case 𝑡1 = 𝑡(𝑢, 𝑦.𝑟) and the reduction is internal. The derivation of 𝑡1 ends with an (APP)-
rule with premises: Γ𝑡 ⊩𝑛𝑡 𝑡 ∶ [ℳ → 𝒩 ], Γ𝑢 ⊩𝑛𝑢 𝑢 ∶ ℳ and Γ𝑟 ; 𝑥 ∶ 𝒩 ⊩𝑛𝑟 𝑟 ∶ 𝜎
such that 𝑛1 = 1 + 𝑛𝑡 + 𝑛𝑢 + 𝑛𝑟 . There are several subcases:

Subcase 𝑡1 = 𝑡(𝑢, 𝑦.𝑟) →djv 𝑡′(𝑢, 𝑦.𝑟) = 𝑡2 where 𝑡 →djv 𝑡′. By the i.h., Γ𝑡 ⊩𝑛𝑡′ 𝑡′ ∶
[ℳ → 𝒩 ] such that 𝑛𝑡 ≥ 𝑛𝑡′ . We can build a derivation of size 𝑛1 ≥ 1 + 𝑛𝑡′ +
𝑛𝑢 + 𝑛𝑟 = 𝑛2.

Subcase 𝑡1 = 𝑡(𝑢, 𝑦.𝑟) →djv 𝑡(𝑢′, 𝑦.𝑟) = 𝑡2, where 𝑢 →djv 𝑢′. By the i.h., Γ𝑢 ⊩𝑛𝑢′ 𝑢′ ∶
ℳ such that 𝑛𝑢 ≥ 𝑛𝑢′ , so that 𝑛1 ≥ 𝑛2.

Subcase 𝑡1 = 𝑡(𝑢, 𝑦.𝑟) →djv 𝑡(𝑢, 𝑦.𝑟 ′) = 𝑡2, where 𝑟 →djv 𝑟 ′. By the i.h., Γ𝑟 ; 𝑥 ∶
𝒩 ⊩𝑛𝑟′ 𝑟 ′ ∶ 𝜎 such that 𝑛𝑟 ≥ 𝑛𝑟 ′ , so that 𝑛1 ≥ 𝑛2.

For each of these subcases:

1. If 𝑡1 →ev 𝑡2 the i.h. (i) gives 𝑛𝑡 > 𝑛𝑡′ (resp. 𝑛𝑢 > 𝑛𝑢′ , 𝑛𝑟 > 𝑛𝑟 ′), so that we
conclude 𝑛1 > 𝑛2.
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2. If 𝑡1 →sv 𝑡2 and 𝜎 a solvable type, either we are in the case 𝑡 →ev 𝑡′ or
𝑢 →ev 𝑢′ and by the previous point 𝑛𝑡 > 𝑛𝑡′ (resp. 𝑛𝑢 > 𝑛𝑢′), or we are in the
case 𝑟 →sv 𝑟 ′ and by the i.h. (ii) 𝑛𝑟 > 𝑛𝑟 ′ . In both cases 𝑛1 > 𝑛2.

Case 𝑡1 = 𝜆𝑥.𝑡 →djv 𝜆𝑥.𝑡′ = 𝑡2. By hypothesis, we have 𝜎 = [ℳ𝑖 → 𝜎𝑖]𝑖∈𝐼 . If 𝐼 is empty,
then Γ = [ ], 𝑛1 = 0 and we have Γ ⊩0 𝜆𝑥.𝑡′ ∶ [ ] by using the (ABS) rule with no
premise, so that in particular 𝑛1 = 𝑛2.

Otherwise, we have Γ𝑖 ; 𝑥 ∶ ℳ𝑖 ⊩𝑛𝑖 𝑡 ∶ 𝜎𝑖 for 𝑖 ∈ 𝐼 , where Γ = ⊎𝑖∈𝐼Γ𝑖 and 𝑛1 = ∑𝑖∈𝐼 𝑛𝑖 .
By the i.h., we have Γ𝑖 ; 𝑥 ∶ ℳ𝑖 ⊩𝑛′𝑖 𝑡′ ∶ 𝜎𝑖 for 𝑖 ∈ 𝐼 such that 𝑛𝑖 ≥ 𝑛′𝑖 . We can build a
derivation of size 𝑛2 = ∑𝑖∈𝐼 𝑛′𝑖 ≤ ∑𝑖∈𝐼 𝑛𝑖 = 𝑛1. In particular,

1. This step is never an valuable step.

2. If 𝑡 →sv 𝑡′ and 𝜎 is a solvable type, by definition 𝐼 ≠ ∅ and every 𝜎𝑖 is also
solvable. Thus we can apply the i.h. (ii) to get 𝑛𝑖 > 𝑛′𝑖 for each 𝑖 ∈ 𝐼 so that
𝑛1 > 𝑛2.

Corollary 3.57 (Soundness for ∩𝑉 ). Let Γ ⊩𝑛∩𝑉 𝑡 ∶ 𝜎 . Then,
(i) The term 𝑡 is ev-normalizing and the number of ev-steps needed to normalize 𝑡 is bound

by 𝑛.
(ii) If 𝜎 is a solvable type, then 𝑡 is sv-normalizing and the number of sv-steps needed to

normalize 𝑡 is bound by 𝑛.

Completeness

For completeness we show that normal forms are typable, together with a subject expansion
property, based on a right and left anti-substitution lemma.

Lemma 3.58 (Right anti-substitution). If Γ ⊩∩𝑉 𝑡{𝑥/𝑣} ∶ 𝜎 , then there exist Γ𝑡 , Γ𝑣 and ℳ such
that Γ𝑡 ; 𝑥 ∶ ℳ ⊩∩𝑉 𝑡 ∶ 𝜎 , Γ𝑣 ⊩∩𝑉 𝑣 ∶ ℳ and Γ = Γ𝑡 ⊎ Γ𝑣 .

Proof. By induction on 𝑡 .
Case 𝑡 = 𝑧. If 𝑧 = 𝑥 , then 𝑡{𝑥/𝑢} = 𝑢. We take Γ𝑡 = ∅, Γ𝑣 = Γ, ℳ = 𝜎 and we have

𝑥 ∶ ℳ ⊩ 𝑥 ∶ ℳ by (VAR) and Γ ⊩ 𝑣 ∶ ℳ by hypothesis. Then 𝑡{𝑥/𝑣} = 𝑣 . We take
Γ𝑡 = ∅, Γ𝑣 = Γ, ℳ = 𝜎 and we have 𝑥 ∶ ℳ ⊩ 𝑥 ∶ ℳ by (VAR) and Γ ⊩ 𝑣 ∶ ℳ by
hypothesis.

Case 𝑡 = 𝑦 ≠ 𝑥 . Then 𝑡{𝑥/𝑣} = 𝑦 . We take Γ𝑣 = ∅, Γ𝑡 = 𝑦 ∶ 𝜎 , ℳ = [ ] and we have
𝑦 ∶ 𝜎 ⊩ 𝑦 ∶ 𝜎 by hypothesis and ∅ ⊩ 𝑣 ∶ [ ] by lemma 3.62.

Case 𝑡 = 𝜆𝑦.𝑠 where 𝑦 ≠ 𝑥 and 𝑦 ∉ fv(𝑣). Then 𝑡{𝑥/𝑣} = 𝜆𝑦.𝑠{𝑥/𝑣}. We have 𝜎 = [𝒩𝑖 →
𝜎𝑖]𝑖∈𝐼 and Γ𝑖 ; 𝑦 ∶ 𝒩𝑖 ⊩ 𝑠{𝑥/𝑣} ∶ 𝜎𝑖 for 𝑖 ∈ 𝐼 such that Γ = ⊎𝑖∈𝐼Γ𝑖 . By the i.h., there exists
Γ𝑖𝑠 , Γ𝑖𝑣 and ℳ𝑖 such that Γ𝑖𝑠 ; 𝑦 ∶ 𝒩𝑖 ; 𝑥 ∶ ℳ𝑖 ⊩ 𝑠 ∶ 𝜎𝑖 , Γ𝑖𝑣 ⊩ 𝑣 ∶ ℳ𝑖 and Γ𝑖 = Γ𝑖𝑠 ⊎ Γ𝑖𝑣 ,
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for each 𝑖 ∈ 𝐼 . We conclude with rule (ABS), taking Γ𝑡 = ⊎𝑖∈𝐼Γ𝑖𝑠 , Γ𝑣 = ⊎𝑖∈𝐼Γ𝑖𝑣 and
ℳ = +𝑖∈𝐼ℳ𝑖 .

Case 𝑡 = 𝑠(𝑢, 𝑦.𝑟) where 𝑦 ≠ 𝑥 and 𝑦 ∉ fv(𝑣). Then 𝑡{𝑥/𝑣} = 𝑠{𝑥/𝑣}(𝑢{𝑥/𝑣}, 𝑦.𝑟{𝑥/𝑣}). We
have Γ1 ⊩ 𝑠{𝑥/𝑣} ∶ [𝒩 → 𝒩 ′], Γ2 ⊩ 𝑢{𝑥/𝑣} ∶ 𝒩 , Γ3; 𝑦 ∶ 𝒩 ′ ⊩ 𝑟{𝑥/𝑣} ∶ 𝜎 , where
Γ = Γ1⊎Γ2⊎Γ3. By the i.h., there exist Γ𝑠 , Γ𝑢 , Γ𝑟 , Γ1𝑣 , Γ2𝑣 , Γ3𝑣 and ℳ1, ℳ2, ℳ3 such that
Γ𝑠 ; 𝑥 ∶ ℳ1 ⊩ 𝑠 ∶ [𝒩 → 𝒩 ′], Γ𝑢; 𝑥 ∶ ℳ2 ⊩ 𝑠 ∶ 𝒩 , Γ𝑟 ; 𝑦 ∶ 𝒩 ′; 𝑥 ∶ ℳ3 ⊩ 𝑠 ∶ 𝜎 and
Γ𝑖𝑣 ⊩ 𝑣 ∶ ℳ𝑖 for 𝑖 ∈ 𝐼 , where Γ1 = Γ𝑠 ⊎ Γ1𝑣 , Γ2 = Γ𝑢 ⊎ Γ2𝑣 and Γ3 = Γ𝑟 ⊎ Γ3𝑣 for 𝑖 ∈ 𝐼 . We
conclude with rule (APP), taking Γ𝑡 = Γ𝑠 ⊎ Γ𝑢 ⊎ Γ𝑟 , Γ𝑣 = ⊎𝑖∈𝐼Γ𝑖𝑣 and ℳ = +𝑖∈𝐼ℳ𝑖 .

Lemma 3.59 (Left anti-substitution). If Γ ⊩∩𝑉 𝑡{𝑥\\𝑢} ∶ 𝜎 , then there exist Γ𝑡 , Γ𝑢 and ℳ such
that Γ𝑡 ; 𝑥 ∶ ℳ ⊩∩𝑉 𝑡 ∶ 𝜎 , Γ𝑢 ⊩∩𝑉 𝑢 ∶ ℳ and Γ = Γ𝑡 ⊎ Γ𝑢 .

Proof. By induction on 𝑢. If 𝑢 is a value, then 𝑡{𝑥\\𝑢} = 𝑡{𝑥/𝑢} and we conclude by
lemma 3.58. Otherwise, 𝑢 = 𝑠(𝑢′, 𝑦.𝑟) so that by definition 𝑡{𝑥\\𝑢} = 𝑠(𝑢′, 𝑦.𝑡{𝑥\\𝑟}). The
typing derivation of 𝑢 ends with an (APP)-rule. We have Γ𝑠 ⊩ 𝑠 ∶ [𝒩 → 𝒩 ′], Γ𝑢′ ⊩ 𝑢′ ∶
𝒩 and Γ′; 𝑦 ∶ 𝒩 ′ ⊩ 𝑟{𝑥/𝑢} ∶ 𝜎 where Γ = Γ𝑠 ⊎ Γ𝑢′ ⊎ Γ′. By the i.h., there exists Γ𝑟 , Γ𝑢 and
ℳ such that Γ𝑟 ; 𝑦 ∶ 𝒩 ′; 𝑥 ∶ ℳ ⊩ 𝑟 ∶ 𝜎 , Γ𝑢 ⊩ 𝑢 ∶ ℳ, where Γ′ = Γ𝑟 ⊎ Γ𝑢 . We conclude
with rule (APP).

We begin with the base cases of subject expansion.

Lemma 3.60. Let Γ ⊩∩𝑉 𝑡2 ∶ 𝜎 and 𝑡1 ↦{𝛽v,𝜋} 𝑡2. Then Γ ⊩∩𝑉 𝑡1 ∶ 𝜎 .

Proof. The cases are shown successively.

Case 𝑡1 = (𝜆𝑥.𝑡)(𝑢, 𝑦.𝑟) ↦𝛽v 𝑟 {𝑦\\𝑡{𝑥\\𝑢}} = 𝑡2. By lemma 3.59, there exist Γ𝑟 , Γ𝑡{𝑥\\𝑢} and
𝒩 such that Γ𝑟 ; 𝑦 ∶ 𝒩 ⊩ 𝑟 ∶ 𝜎 , Γ𝑡{𝑥\\𝑢} ⊩ 𝑡{𝑥\\𝑢} ∶ 𝒩 and Γ = Γ𝑡{𝑥\\𝑢} ⊎ Γ𝑟 . By
lemma 3.59 again, there exist Γ𝑡 , Γ𝑢 and ℳ such that Γ𝑡 ; 𝑥 ∶ ℳ ⊩ 𝑡 ∶ 𝒩 , Γ𝑢 ⊩ 𝑢 ∶ ℳ
and Γ𝑡{𝑥\\𝑢} = Γ𝑡 ⊎ Γ𝑢 . We thus have Γ = Γ𝑡 ⊎ Γ𝑢 ⊎ Γ𝑟 . We can build the following
derivation:

Γ𝑡 ; 𝑥 ∶ ℳ ⊩ 𝑡 ∶ 𝒩
Γ𝑡 ⊢ 𝜆𝑥.𝑡 ∶ [ℳ → 𝒩 ] (ABS) Γ𝑢 ⊩ 𝑢 ∶ ℳ Γ𝑟 ; 𝑦 ∶ 𝒩 ⊩ 𝑟 ∶ 𝜎

Γ ⊢ (𝜆𝑥.𝑡)(𝑢, 𝑦.𝑟) ∶ 𝜎 (APP)

Case 𝑡1 = 𝑡(𝑢, 𝑥.𝑟)(𝑢′, 𝑦.𝑟 ′) ↦𝜋 𝑡(𝑢, 𝑥.𝑟(𝑢′, 𝑦.𝑟 ′)) = 𝑡2. We have the following derivation:

Φ𝑡 Φ𝑢
Φ𝑟 Φ𝑢′ Φ𝑟 ′

Γ𝑟 ′ ⊎ Γ𝑢′ ⊎ Γ𝑟 ′ ⊢ 𝑟(𝑢′, 𝑦.𝑟 ′) ∶ 𝜎 (APP)

Γ ⊢ 𝑡(𝑢, 𝑥.𝑟(𝑢′, 𝑦.𝑟 ′)) ∶ 𝜎 (APP)
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where Φ𝑡 = Γ𝑡 ⊩ 𝑡 ∶ [ℳ′ → 𝒩 ′], Φ𝑢 = Γ𝑢 ⊩ 𝑢 ∶ ℳ′, Φ𝑟 = Γ𝑟 ; 𝑥 ∶ 𝒩 ′ ⊩
𝑟 ∶ [ℳ → 𝒩 ], Φ𝑢′ = Γ𝑢′ ⊩ 𝑢′ ∶ ℳ and Φ𝑟 ′ = Γ𝑟 ′ ; 𝑦 ∶ 𝒩 ⊩ 𝑟 ′ ∶ 𝜎 such that
Γ = Γ𝑡 ⊎ Γ𝑢 ⊎ Γ𝑟 ⊎ Γ𝑢′ ⊎ Γ𝑟 ′ . We build the following derivation.

Φ𝑡 Φ𝑢 Φ𝑟
Γ𝑡 ⊎ Γ𝑢 ⊎ Γ𝑟 ⊢ 𝑡(𝑢, 𝑥.𝑟) ∶ [ℳ → 𝒩 ] (APP) Φ𝑢′ Φ𝑟 ′

Γ ⊢ 𝑡(𝑢, 𝑥.𝑟)(𝑢′, 𝑦.𝑟 ′) ∶ 𝜎 (APP)

Subject expansion is also true for the whole reduction relation. Evaluation and the solving
relation are special cases of the general statement for djv.

Lemma 3.61 (Subject expansion for ∩𝑉 ). Let Γ ⊩∩𝑉 𝑡2 ∶ 𝜎 and 𝑡1 →djv 𝑡2. Then Γ ⊩∩𝑉 𝑡1 ∶ 𝜎 .

Proof. By induction on 𝑡1 →djv 𝑡2.

Case 𝑡1 = D⟨𝜆𝑥.𝑡⟩(𝑢, 𝑦.𝑟) ↦d𝛽v
D⟨𝑟{𝑦\\𝑡{𝑥\\𝑢}}⟩ = 𝑡2. This is the base case. By a simple in-

duction on D, there is Γ′ ⊩ 𝑟{𝑦\\𝑡{𝑥\\𝑢}} ∶ 𝜎 . Then, by lemma 3.60 for 𝛽v, Γ′ ⊩
(𝜆𝑥.𝑡)(𝑢, 𝑦.𝑟) ∶ 𝜎 . Let 𝑡3 = D⟨(𝜆𝑥.𝑡)(𝑢, 𝑦.𝑟)⟩. We can easily show that Γ ⊩ 𝑡3 ∶ 𝜎 .
Besides, 𝑡1 ↦∗𝜋 𝑡3. We conclude by lemma 3.60 for 𝜋 .

Case 𝑡1 = 𝑡(𝑢, 𝑦.𝑟) and the reduction is internal. The derivation of 𝑡2 ends with an (APP)-
rule with premises: Γ𝑡 ⊩ 𝑡 ∶ [ℳ → 𝒩 ], Γ𝑢 ⊩ 𝑢 ∶ ℳ and Γ𝑟 ; 𝑥 ∶ 𝒩 ⊩ 𝑟 ∶ 𝜎 . There
are several cases:

Subcase 𝑡1 = 𝑡′(𝑢, 𝑦.𝑟) →djv 𝑡(𝑢, 𝑦.𝑟) = 𝑡2, where 𝑡′ →djv 𝑡 . By the i.h., Γ𝑡 ⊩ 𝑡′ ∶
[ℳ → 𝒩 ].

Subcase 𝑡1 = 𝑡(𝑢′, 𝑦.𝑟) →djv 𝑡(𝑢, 𝑦.𝑟) = 𝑡2, where 𝑢′ →djv 𝑢. By the i.h., Γ𝑢 ⊩ 𝑢′ ∶
ℳ.

Subcase 𝑡1 = 𝑡(𝑢, 𝑦.𝑟 ′) →djv 𝑡(𝑢, 𝑦.𝑟) = 𝑡2, where 𝑟 ′ →djv 𝑟 . By the i.h., Γ𝑟 ; 𝑥 ∶ 𝒩 ⊩
𝑟 ′ ∶ 𝜎 .

Case 𝑡1 = 𝜆𝑥.𝑡 →djv 𝜆𝑥.𝑡′ = 𝑡2. We have Γ𝑖 ; 𝑥 ∶ ℳ𝑖 ⊩ 𝑡′ ∶ 𝜎𝑖 for 𝑖 ∈ 𝐼 (𝐼 can be empty),

where Γ = ⊎𝑖∈𝐼Γ𝑖 . By the i.h., we have Γ𝑖 ; 𝑥 ∶ ℳ𝑖 ⊩𝑛
𝑖1 𝑡 ∶ 𝜎𝑖 for 𝑖 ∈ 𝐼 and we conclude

with rule (ABS).

The two following lemmas state that NFev and NFsv are typable in ∩𝑉 , with a solvable
type for NFsv.

Lemma 3.62.

(i) Let 𝑡 ∈ NEev and 𝑘 ≥ 0. Then there exists Γ such that Γ ⊩∩𝑉 𝑡 ∶ [ ]𝑘 and every 𝑥 ∈ dom(Γ)
has a type of the form [ ]𝑘𝑥 (𝑘𝑥 > 0).

(ii) Let 𝑡 ∈ NFev. Then there exists Γ such that Γ ⊩∩𝑉 𝑡 ∶ [ ] and every 𝑥 ∈ dom(Γ) has a type
of the form [ ]𝑘𝑥 (𝑘𝑥 > 0).
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Proof. By mutual induction on NFev and NEev. We start with the first item.

Case 𝑡 = 𝑥 . We get 𝑥 ∶ [ ]𝑘 ⊩ 𝑥 ∶ [ ]𝑘 by rule (VAR). If 𝑥 ∈ dom(Γ), then 𝑘 > 0 and the
statement holds for 𝑘𝑥 = 𝑘.

Case 𝑡 = 𝑠(𝑢, 𝑦.𝑟) where 𝑠, 𝑟 ∈ NEev and 𝑢 ∈ NFev. By the i.h. (2) we have Γ𝑟 ; 𝑦 ∶ [ ]𝑘𝑦 ⊩
𝑟 ∶ [ ]𝑘 , Γ𝑠 ⊩ 𝑠 ∶ [ ]𝑘𝑦+1, where [ ]𝑘𝑦+1 = [[ ] → [ ]𝑘𝑦 ], and by the i.h. (1) Γ𝑢 ⊩ 𝑢 ∶ [ ].
Notice that Γ𝑠 , Γ𝑟 , Γ𝑢 verify the statement by the i.h.We get Γ𝑠⊎Γ𝑢⊎Γ𝑟 ⊩ 𝑠(𝑢, 𝑦.𝑟) ∶ [ ]𝑘
by rule (APP).

Now, the second item.

Case 𝑡 = 𝑥 . We get ∅ ⊩ 𝑥 ∶ [ ] by rule (VAR).
Case 𝑡 = 𝜆𝑥.𝑠. We get ∅ ⊩ 𝜆𝑥.𝑠 ∶ [ ] by rule (ABS).
Case 𝑡 = 𝑠(𝑢, 𝑥.𝑟) where 𝑠 ∈ NEev, 𝑢 ∈ NFev and 𝑟 ∈ NFev. By the i.h. (2) Γ𝑢 ⊩ 𝑢 ∶ [ ] and

Γ𝑟 ; 𝑦 ∶ [ ]𝑘𝑦 ⊩ 𝑟 ∶ [ ]. Then the i.h. (1) gives Γ𝑠 ⊩ 𝑠 ∶ [ ]𝑘𝑦+1. Notice that Γ𝑠 , Γ𝑟 , Γ𝑢
verify the statement by the i.h.We get Γ𝑠 ⊎ Γ𝑢 ⊎ Γ𝑟 ⊩ 𝑠(𝑢, 𝑥.𝑟) ∶ [ ] by rule (APP).

Lemma 3.63. If 𝑡 is a sv-nf, then there exist Γ, 𝜎 s solvable and 𝑛 ≥ 0 such that Γ ⊩𝑛∩𝑉 𝑡 ∶ 𝜎 s,
where every 𝑥 ∈ dom(Γ) has a type of the form [ ]𝑘𝑥 (𝑘𝑥 > 0).

Proof. By lemma 3.45 we can reason by induction on the grammar NFsv.

Case 𝑡 = 𝑥 . Then 𝑥 ∶ ℳs ⊩∩𝑉 𝑥 ∶ ℳs with ℳs a solvable multiset type is derivable.

Case 𝑡 = 𝜆𝑥.𝑡′, with 𝑡′ ∈ NFsv. Then Γ′ ⊩∩𝑉 𝑡′ ∶ 𝜎 with 𝜎 s solvable holds by the i.h. so
that we can write Γ′ = Γ; 𝑥 ∶ ℳ. We obtain Γ ⊩∩𝑉 𝜆𝑥.𝑡′ ∶ [ℳ → 𝜎 s] by applying
rule (ABS). We conclude since ℳ → 𝜎 s is solvable because it is non-empty and 𝜎 s

is solvable. The domain is as expected by the i.h.

Case 𝑡 = 𝑠(𝑢, 𝑦.𝑟), where 𝑠 ∈ NEev, 𝑢 ∈ NFev and 𝑟 ∈ NFsv. By lemma 3.62(ii), Γ𝑢 ⊩∩𝑉 𝑢 ∶
[ ]. By the i.h. we have Γ𝑟 ; 𝑦 ∶ [ ]𝑘𝑦 ⊩∩𝑉 𝑟 ∶ 𝜎 s with 𝜎 s solvable and 𝑘𝑦 ≥ 0 (since
𝑦 may or not be in fv(𝑟)). Then by lemma 3.62(i) we have Γ𝑠 ⊩∩𝑉 𝑠 ∶ [ ]𝑘𝑦+1, where
[ ]𝑘𝑦+1 = [[ ] → [ ]𝑘𝑦 ]. We thus easily conclude as required, in particular, the domain
is as required because Γ𝑢 , Γ𝑟 and Γ𝑠 are as required by the i.h. and lemma 3.62.

Corollary 3.64 (Completeness for ∩𝑉 ). Let 𝑡 ∈ T𝐽 .
(i) If 𝑡 is ev-normalizing, then 𝑡 is typable in ∩𝑉 .

(ii) If 𝑡 is sv-normalizing, then 𝑡 is typable in ∩𝑉 with a solvable type.

Characterization of CbV Solvability

Before deriving the main theorem of this section, we introduce a last lemma.
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Lemma 3.65. Let Γ ⊩∩𝑉 H⟨𝑡⟩ ∶ 𝜎 s. Then 𝑡 is typable with a solvable type.

Proof. By induction on H. The base case H = ◊ is straightforward. In the other cases, we
show that there is a derivation of a solvable type for H′⟨𝑡⟩ and we conclude using the i.h.
Indeed:

Case H = 𝜆𝑥.H′. By hypothesis, we have derivations (Γ𝑖 ; 𝑥 ∶ ℳ𝑖 ⊩ H′⟨𝑡⟩ ∶ 𝜎 s𝑖 )𝑖∈𝐼 where
Γ = ⊎𝑖∈𝐼Γ𝑖 , 𝜎 s = [ℳ𝑖 → 𝜎 s𝑖 ]𝑖∈𝐼 and 𝐼 ≠ ∅.

Case H = H′(𝑢, 𝑥.H″⟨⟨𝑥⟩⟩). By hypothesis there are derivations Γ′ ⊩ H′⟨𝑡⟩ ∶ [ℳ → 𝒩 ]
and Γ″; 𝑥 ∶ 𝒩 ⊩ H″⟨⟨𝑥⟩⟩ ∶ 𝜎 s for some ℳ,𝒩 . We use the i.h. to show that 𝑥 is
typable with a solvable type, i.e. to show that 𝒩 is solvable. Thus, [ℳ → 𝒩 ] is
solvable and we can apply the i.h. on H′ to conclude.

Case H = 𝑠(𝑢, 𝑥.H′). By hypothesis there is a derivation Γ′; 𝑥 ∶ 𝒩 ⊩ H′⟨𝑡⟩ ∶ 𝜎 s for some
𝒩 .

Theorem 3.66 (Characterization). Let 𝑡 ∈ T𝐽 . Then,

(i) 𝑡 is potentially valuable iff 𝑡 is ∩𝑉 -typable iff 𝑡 is ev-normalizable, and

(ii) 𝑡 is CbV solvable iff 𝑡 is ∩𝑉 -typable with a solvable type iff 𝑡 is sv-normalizable.

Proof. Typable/Typable with a solvable type ⟹ ev/sv-normalizable: both hold by
corollary 3.57. ev/sv-normalizable ⟹ potentially valuable/CbV solvable hold respec-
tively by lemma 3.42/lemma 3.47.

For potentially valuable ⟹ typable: take 𝑡 potentially valuable, so that there is
a context D and a value 𝑣 such that D⟨𝑡⟩ →∗

djv 𝑣 . Since every value is ∩𝑉 -typable by
lemma 3.62, and the system ∩𝑉 satisfies subject expansion (lemma 3.61), then D⟨𝑡⟩ is
∩𝑉 -typable, which implies 𝑡 is ∩𝑉 -typable, by a straightforward induction on D.

For solvable ⟹ typable with a solvable type: take 𝑡 solvable, so that there is a
context H such that H⟨𝑡⟩ →∗

djv I. Since I is ∩𝑉 -typable by lemma 3.63, and the system
∩𝑉 satisfies subject expansion (lemma 3.61), then H⟨𝑡⟩ is ∩𝑉 -typable, which implies 𝑡 is
∩𝑉 -typable by lemma 3.65.

A direct consequence of this characterization is the important normalization property for
→sv. It states that if there is a reduction path from a term 𝑡 to a sv-normal form, then a reduc-
tion sv from 𝑡 necessarily reaches this (unique) sv-normal form. In other words, reduction
→sv implements evaluation to a sv-normal form without failure.

Property 3.67 (Normalization for →sv). Let 𝑡 →∗
djv 𝑢 and 𝑢 ∈ NFsv. Then there is 𝑠 ∈ NFsv

such that 𝑡 →∗
sv 𝑠.
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Proof. Since 𝑢 ∈ NFsv, by lemma 3.63, 𝑢 is typable with a solvable type. By lemma 3.61,
subject expansion holds for the whole relation →djv, so that 𝑡 is also typable with a
solvable type. Then by soundness (corollary 3.57), 𝑡 is sv-normalizing.

This elegant proof (available in [dCPT11, Corollary 22; MPV18]) is possible because subject
expansion holds for the whole →djv relation. In fact, a normalization property also holds for
evaluation, by a similar reasoning: →ev implements weak evaluation.

Equivalent definitions of solvability In the CbN λ-calculus, several equivalent definitions
of solvability for a λ-term 𝑀 coexist (where H are head contexts of the λ-calculus):

SOL-FA For all term 𝑁 , there is a head context H such that H⟨𝑀⟩ →∗𝛽 𝑁 .

SOL-ID There is a head context H such that H⟨𝑀⟩ →∗𝛽 I.

SOL-EX There is a 𝛽-normal term 𝑁 and a head context H such that H⟨𝑀⟩ →∗𝛽 𝑁 .

Notice that the implications of (SOL-ID) from (SOL-FA) and (SOL-EX) from (SOL-ID) are
trivial.

García-Pérez and Nogueira [GN16] observe that the three formulations are not equivalent
in Plotkin’s original CbV, where 𝛽 is replaced by 𝛽v in the definitions above. For instance,
the fact that (SOL-ID) implies (SOL-EX) is direct in CbN because for any term 𝑁 , we have
I𝑁 ↦𝛽 𝑁 . This is not the case in CbV as soon as 𝑁 is not a value.

In our CbV framework, this equation is retrieved: for any term 𝑢, I(𝑢, 𝑧.𝑧) ↦d𝛽v
𝑢. The

definitions (SOL-FA), (SOL-ID) and (SOL-EX) are obtained by textually replacing 𝛽 by djv
(or jv) and considering H as a head context in the grammar T𝐽 . These three definitions are
equivalent not only in the CbN calculus with generalized applications (where 𝛽 is replaced
by djn or jn), but also in the CbV version. We give a proof for CbV, as it is a particular feature
of generalized applications.

Lemma 3.68. The definitions (1) SOL-FA, (2) SOL-ID and (3) SOL-EX are equivalent.

Proof. The implications (1) ⟹ (2) ⟹ (3) are trivial. The implication (2) ⟹
(1) is simply using the fact that I(𝑢, 𝑧.𝑧) →d𝛽v

𝑢 (so I(𝑢, 𝑧.𝑧) →djv 𝑢) for any 𝑢. Only
implication (3) ⟹ (2) is left. Let H, 𝑡 and 𝑢 ∈ NFdjv such that H⟨𝑡⟩ →∗

djv 𝑢. Since
NFdjv ⊂ NFsv, by lemma 3.63 𝑢 is typable with a solvable type. By subject expansion
(lemma 3.61), H⟨𝑡⟩ is typable with a solvable type. By lemma 3.65, so is 𝑡 . By the logical
characterization (theorem 3.66), 𝑡 is solvable in the sense of (2).

Remark 3.69. The equivalence between the notions of solvability also holds in the calculus
with ESs of Accattoli and Guerrieri [AG22]. However, their calculus imposes the restriction
on reduction that the term inside an ES must be a value. Because of this, their proof of
SOL-ID ⟹ SOL-FA is not obvious. Given H⟨𝑡⟩ → I and any normal form 𝑢, they show
H𝑢⟨𝑡⟩ → 𝑢 with H𝑢 ≔ ((H)𝜆𝑥.𝑢)I. In our proof, H𝑢 is simply equal to H(𝑢, 𝑧.𝑧).
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3.5 Extension to Λ𝐽 , Λ𝐽𝑣 and the λ-calculus
We have argued in favor of endowing generalized applications with a distant operational
semantics: permutations are only used when they are necessary to unblock redexes, thus
putting the focus on the computational content on the calculus, and also bringing the oper-
ational semantics of the calculus closer to the quantitative model. Nonetheless, this choice
should not have an influence on overall properties such as strong normalization, solvability
or potential valuability. We also wish to be conservative with respect to the original CbN
and CbV calculi Λ𝐽 and Λ𝐽𝑣 .

We show this in this section. More precisely, we prove the equivalence of CbN/CbV solv-
ability with and without distance using the quantitative type systems introduced in previous
sections. We also show that our CbN/CbV notion of solvability is equivalent to the original
one for the λ-calculus, a result which is expected but not evident.

3.5.1 Solvability for Λ𝐽 and Λ𝐽𝑣
Remember that →jn (resp. →jv) is the reduction relation associated to the original CbN (resp.
CbV) calculus. In what follows we write local to mean non-distant.

Definition 3.70 (Local solvability). Let 𝑡 ∈ T𝐽 .

(Λ𝐽 ) 𝑡 is CbN local solvable iff there is a head context H and a distant context D such that
H⟨𝑡⟩ →∗

jn D⟨I⟩.
(Λ𝐽𝑣 ) 𝑡 is CbV local solvable iff there is a head context H such that H⟨𝑡⟩ →∗

jv I.

Notice that the terms 𝑡 = Ω(𝑦, 𝑧.I) and 𝑡 = 𝑥(Ω, 𝑧.I) are CbN but not CbV locally solvable.
The term 𝑡 = 𝑦1(I, 𝑧1.𝑥)(𝑦2(I, 𝑧2.𝑧2), 𝑧3.𝜆𝑦.𝑧3) is both CbN and CbV solvable.

Definition 3.71. The CbN local solving reduction →lsn is generated by the closure of the
rules 𝛽h and 𝜋h of definition 3.26 under head contexts. Local evaluation→lev and the CbV
local solving reduction →lsv are defined by the closure of rules 𝛽v and 𝜋 under the same
contexts used in their distant counterparts (definition 3.39 and definition 3.44 respectively).

Lemma 3.72 (Local normal forms). The following grammars generate local CbN solving,
valuable and CbV solving normal forms respectively. In the last case of NFlsn, we have
𝑦 ≠ hv(NFlsn).

NFlsn ⩴ 𝑥 ∣ 𝜆𝑥.NFlsn ∣ 𝑥(𝑢, 𝑦.NFlsn) ∣ 𝑡(𝑢, 𝑦.NFlsn)
NFlev ⩴ 𝑥 ∣ 𝜆𝑥.𝑡 ∣ 𝑥(NFlev, 𝑦.NFlev)
NFlsv ⩴ 𝑥 ∣ 𝜆𝑥.NFlsv ∣ 𝑥(NFlev, 𝑦.NFlsv)
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Proof. Let 𝑡 ∈ NFlsn ∪NFlev ∪NFlsv. It is immediate by induction on 𝑡 that 𝑡 does not
reduce.

Let 𝑡 be an lsn/lev/lsv-normal term. By induction on 𝑡 :
Cases 𝑡 = 𝑥 and 𝑡 = 𝜆𝑥.𝑡′. Then 𝑡 ∈ NFlsn /NFlev /NFlsv is straightforward.

Case 𝑡 = 𝑡′(𝑢, 𝑦.𝑟). Since 𝑡 does not 𝛽 or 𝜋-reduce, 𝑡′ is not an abstraction nor an appli-
cation. Then 𝑡 = 𝑥(𝑢, 𝑦.𝑟). We conclude by i.h.

Remark that all these reductions can be simplified a little by removing the closure rules
on the left of an application, of the shape:

𝑡 →lsn 𝑡′
𝑡(𝑢, 𝑦.H⟨⟨𝑦⟩⟩) →lsn 𝑡′(𝑢, 𝑦.H⟨⟨𝑦⟩⟩) (CbN) or

𝑡 →lev 𝑡′
𝑡(𝑢, 𝑦.𝑟) →lev/lsv 𝑡′(𝑢, 𝑦.𝑟) (CbV)

Indeed, all terms can be 𝜋-reduced to terms of the shape 𝑥(𝑢, 𝑦.𝑟) or (𝜆𝑥.𝑡)(𝑢, 𝑦.𝑟). In the first
case, we cannot reduce inside the first term which is a variable, and in the second case this
is not necessary since we can 𝛽h/𝛽v-reduce instead.

The proofs of operational and logical characterizations of local solvability are rather short,
since they rely on the same lemmas as the distant versions. In particular, the lemmas nor-
malizable implies solvable were stated for 𝛽/𝛽v-reduction, and in subject reduction and ex-
pansion the base cases for 𝛽/𝛽v and the permutations were separate. Finally, local normal
forms form a subset of the distant normal forms.

3.5.1.1 Solvability in Λ𝐽
Lemma 3.73. Let 𝑡 be a lsn-normalizable term. Then 𝑡 is solvable.

Proof. Since 𝑡 is lsn-normalizable, then there is a solving normal term NFlsn such that
𝑡 →∗

lsn NFlsn. We have NFlsn ∈ NFsn so we can apply lemma 3.16 and conclude as in
the proof of the corresponding property 3.19, because the last steps of the reduction are
𝛽-steps. We have H⟨𝑡⟩ →∗

lsn H⟨NFlsn⟩ →∗𝛽 D⟨I⟩ and thus H⟨𝑡⟩ →∗
jn D⟨I⟩.

Lemma 3.74 (Weighted subject reduction for lsn). Let Γ ⊩𝑛1∩𝑁 𝑡1 ∶ 𝜎 and 𝑡1 →lsn 𝑡2. Then
Γ ⊩𝑛2∩𝑁 𝑡2 ∶ 𝜎 with 𝑛1 ≥ 𝑛2. Moreover, if 𝑡1 →𝛽h 𝑡2, then 𝑛1 > 𝑛2.

Proof. By induction on 𝑡1 →lsn 𝑡2 (resp. 𝑡1 →𝛽h 𝑡2).

• The base cases are inside lemma 3.27.

• The inductive cases are similar to the proof of lemma 3.28.

Lemma 3.75 (Subject expansion for lsn). Let Γ ⊩∩𝑁 𝑡2 ∶ 𝜎 and 𝑡1 →lsn 𝑡2. Then Γ ⊩∩𝑁 𝑡1 ∶ 𝜎 .
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Proof. By induction on 𝑡1 →lsn 𝑡2.

• The base cases are inside lemma 3.31.

• The inductive cases are similar to the proof of lemma 3.32.

Lemma 3.76 (Characterization in Λ𝐽 ). Let 𝑡 ∈ T𝐽 . The following are equivalent:

(i) 𝑡 is CbN local solvable.

(ii) 𝑡 is ∩𝑁 -typable.

(iii) 𝑡 is lsn-normalizable.

Proof. Solvable ⟹ typable 𝑡 solvable means there is a head context H s.t. H⟨𝑡⟩ →∗
jn

D⟨I⟩. But D⟨I⟩ ∈ NFlsn ⊂ NFsn is ∩𝑁 -typable by lemma 3.35, and the system ∩𝑁
has subject expansion (lemma 3.75), so that H⟨𝑡⟩ is ∩𝑁 -typable which implies 𝑡 is
∩𝑁 -typable by lemma 3.23.

Typable ⟹ normalizable Holds by lemma 3.79 and the fact that 𝜋h terminates be-
cause 𝜋 terminates [see JM00].

Normalizable ⟹ solvable Holds by lemma 3.73.

Lemma 3.77. Let 𝑡 be a lev-normalizable term. Then 𝑡 is potentially valuable.

Proof. Since 𝑡 is lev-normalizable, then there is an lev-normal term 𝑡′ such that 𝑡 →∗
lev 𝑡′.

Therefore 𝑡′ ∈ NFlev by lemma 3.72. Moreover, 𝑡′ ∈ NFev since NFlev ⊂ NFev so that we
can apply lemma 3.41 and conclude as in the proof of the corresponding lemma 3.42. We
have D⟨𝑡⟩ →∗

lev H⟨𝑡′⟩ →∗𝛽v I and thus D⟨𝑡⟩ →∗
jv 𝑣 .

Lemma 3.78. Let 𝑡 be a lsv-normalizable term. Then 𝑡 is CbV solvable.

Proof. Since 𝑡 is lsv-normalizable, then there is a lsv-normal term 𝑡′ such that 𝑡 →∗
lsv 𝑡′.

Therefore 𝑡′ ∈ NFlsv by lemma 3.72. Moreover, 𝑡′ ∈ NFsv since NFlsv ⊂ NFsv so that we
can apply lemma 3.16 and conclude as in the proof of the corresponding lemma 3.47. We
have H⟨𝑡⟩ →∗

lsv H⟨𝑡′⟩ →∗𝛽v I and thus H⟨𝑡⟩ →∗
jv I.

Lemma 3.79 (Weighted subject reduction for jv). Let Γ ⊩𝑛1∩𝑉 𝑡1 ∶ 𝜎 and 𝑡1 →jv 𝑡2. Then
Γ ⊩𝑛2∩𝑉 𝑡2 ∶ 𝜎 with 𝑛1 ≥ 𝑛2. Moreover:

(i) If 𝑡1 →𝜋 𝑡2, then 𝑛1 = 𝑛2.
(ii) If 𝑡1 →𝛽v 𝑡2 is an valuable step, then 𝑛1 > 𝑛2.

(iii) If 𝑡1 →𝛽v 𝑡2 is a solving step and 𝜎 a solvable type, then 𝑛1 > 𝑛2.
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Proof. By induction on 𝑡1 →jv 𝑡2 (resp. 𝑡1 →𝜋 𝑡2, 𝑡1 →𝛽v 𝑡2).

• The base cases are inside lemma 3.55.

• The inductive cases are similar to the proof of lemma 3.56.

Lemma 3.80 (Subject expansion for jv). Let Γ ⊩∩𝑉 𝑡2 ∶ 𝜎 and 𝑡1 →jv 𝑡2. Then Γ ⊩∩𝑉 𝑡1 ∶ 𝜎 .

Proof. By induction on 𝑡1 →jv 𝑡2.

• The base cases are inside lemma 3.60.

• The inductive cases are similar to the proof of lemma 3.61.

Lemma 3.81 (Characterization in Λ𝐽𝑣 ). Let 𝑡 ∈ T𝐽 . Then:

(i) 𝑡 is local potentially valuable ⟺ 𝑡 is ∩𝑉 -typable ⟺ 𝑡 is lev-normalizable.

(ii) 𝑡 is CbV local solvable ⟺ 𝑡 is ∩𝑉 -typable with a solvable type ⟺ 𝑡 is lsv-normalizable.

Proof. The proof is similar to the one of theorem 3.66, but with its corresponding lemmas.

lev-normalizable ⟹ potentially valuable: holds by lemma 3.77.

lsv-normalizable ⟹ CbV solvable: holds by lemma 3.78.

Typable/typable with a solvable type ⟹ lev/lsv-normalizable: both properties hold
by lemma 3.79 and the fact that 𝜋 terminates.

Potentially valuable/CbV solvable ⟹ typable: uses lemma 3.80 and lemma 3.62.

Theorem 3.82 (Local characterizations). Let 𝑡 ∈ T𝐽 . Then,

CbN: 𝑡 is CbN local solvable iff 𝑡 is ∩𝑁 -typable iff 𝑡 is lsn-normalizable.

CbV: 𝑡 is CbV local potentially valuable iff 𝑡 is ∩𝑉 -typable iff 𝑡 is lev-normalizable, and
𝑡 is CbV local solvable iff 𝑡 is ∩𝑉 -typable with a solvable type iff 𝑡 is lsv-normalizable.

Since the same notion of typability is used in the distant and local characterizations, this
gives the following equivalences for free.

Corollary 3.83. CbN solvability is equivalent to CbN local solvability, and so are CbV solvability
and CbV local solvability.

Remark 3.84. Normalization properties also hold for →lev and →lsv, as well as the equiva-
lence between the different definitions of local solvability (as in lemma 3.68).
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3.5.2 Equivalence with Solvability in the λ-calculus
We also relate solvability of generalized applications to solvability in the λ-calculus. More
precisely, we consider λ-calculi with explicit substitutions, whose notion of solvability cor-
responds to the one of the λ-calculus [GPD17]. Remember that λ-terms with explicit sub-
stitutions are denoted with uppercase letters 𝑀,𝑁 , 𝑃 , and built with the following grammar
(see section 1.3):

𝑀,𝑁 , 𝑃 ⩴ 𝑥 ∣ 𝜆𝑥.𝑀 ∣ 𝑀𝑁 ∣ 𝑀[𝑥/𝑁 ].
We show that the standard translations given in definitions 3.1 and 3.2 preserve solvabil-

ity in both directions by comparing typability in type systems characterizing solvability of
explicit substitutions calculi to typability in our type systems for generalized applications.
Using this translation here is correct, as we do not consider strong normalization and coun-
terexamples such as in section 4.5 do not apply.

Call-by-name

Remember that the type system ℋ from section 1.3.2.1, originating from [KV14; Buc+20],
characterizes head normalization in 𝜆𝐸𝑆, and thus solvability.

Lemma 3.85. Let 𝑡 ∈ T𝐽 and 𝑀 ∈ T𝐸𝑆 .

(i) Γ ⊩∩𝑁 𝑡 ∶ 𝜏 implies Γ ⊩ℋ 𝑡⭒ ∶ 𝜏 .
(ii) Γ ⊩ℋ 𝑀 ∶ 𝜏 implies Γ ⊩∩𝑁 𝑀◦ ∶ 𝜏 .

Proof. Both statements are by induction on the type derivation. Note that we can extend
the i.h. to multiset types in the expected way, using rule (MANY) on both sides. The base
cases 𝑡 = 𝑥 or𝑀 = 𝑥 are straightforward. The cases of the abstraction are straightforward
by the i.h. The remaining cases are the following.

1. For (i), the derivation ends with rule (APP). Let 𝑡 = 𝑠(𝑢, 𝑥.𝑟), and Γ ⊩∩𝑁 𝑠(𝑢, 𝑥.𝑟) ∶ 𝜏 .
We have 𝑡⭒ = 𝑟⭒[𝑥/𝑠⭒𝑢⭒]. By hypothesis we have Γ = Γ′ ⊎ Δ ⊎ Λ and derivations
Γ′ ⊩∩𝑁 𝑠 ∶ [ℳ𝑖 → 𝜎𝑖]𝑖∈𝐼 , Δ ⊩∩𝑁 𝑢 ∶ ⊔𝑖∈𝐼ℳ𝑖 and Λ; 𝑥 ∶ [𝜎𝑖]𝑖∈𝐼 ⊩∩𝑁 𝑟 ∶ 𝜏 . By the
i.h. we obtain Γ′ ⊩ℋ 𝑠⭒ ∶ [ℳ𝑖 → 𝜎𝑖]𝑖∈𝐼 , Δ ⊩ℋ 𝑢⭒ ∶ ⊔𝑖∈𝐼ℳ𝑖 and Λ; 𝑥 ∶ [𝜎𝑖]𝑖∈𝐼 ⊩ℋ
𝑟⭒ ∶ 𝜏 . In particular, for each 𝑖 ∈ 𝐼 we have derivations Γ′𝑖 ⊩ℋ 𝑠⭒ ∶ ℳ𝑖 → 𝜎𝑖 ,
Δ𝑖 ⊩ℋ 𝑢⭒ ∶ ℳ𝑖 with Γ′ = ⊎𝑖∈𝐼Γ′𝑖 and Δ = ⊎𝑖∈𝐼Δ𝑖 . We build the following derivation
in ℋ :

Λ; 𝑥 ∶ [𝜎𝑖]𝑖∈𝐼 ⊩ 𝑟⭒ ∶ 𝜏

⎛
⎜⎜
⎝

Γ′𝑖 ⊩ 𝑠⭒ ∶ ℳ𝑖 → 𝜎𝑖 Δ𝑖 ⊩ 𝑢⭒ ∶ ℳ𝑖
Γ′𝑖 ⊎ Δ𝑖 ⊢ 𝑠⭒𝑢⭒ ∶ 𝜎𝑖

(→𝑒) ⎞⎟⎟
⎠𝑖∈𝐼

Γ′ ⊎ Δ ⊢ 𝑠⭒𝑢⭒ ∶ [𝜎𝑖]𝑖∈𝐼
(MANY)

Γ′ ⊎ Δ ⊎ Λ ⊢ 𝑟⭒[𝑥/𝑠⭒𝑢⭒] ∶ 𝜏 (ES)
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2. For (ii), there are two remaining cases.

Case (→𝑒). . We have 𝑀 = 𝑀1𝑀2, Γ = Γ1 ⊎ Γ2 and Γ1 ⊎ Γ2 ⊩ℋ 𝑀1𝑀2 ∶ 𝜏 . We have
𝑀◦ = 𝑀1◦(𝑀2◦, 𝑧.𝑧). By hypothesis we have derivations Γ1 ⊩ℋ 𝑀1 ∶ ℳ → 𝜏
and Γ2 ⊩ℋ 𝑀2 ∶ ℳ. By the i.h. we have Γ1 ⊩ℋ 𝑀1◦ ∶ ℳ → 𝜏 and
Γ2 ⊩ℋ 𝑀2◦ ∶ ℳ. We build the following derivation in ∩𝑁 :

Γ1 ⊩ 𝑀1◦ ∶ ℳ → 𝜏
Γ1 ⊢ 𝑀1◦ ∶ [ℳ → 𝜏] (MANY) Γ2 ⊩ 𝑀2◦ ∶ ℳ 𝑧 ∶ [𝜏] ⊢ 𝑧 ∶ 𝜏 (VAR)

Γ1 ⊎ Γ2 ⊢ 𝑀1◦(𝑀2◦, 𝑧.𝑧) ∶ 𝜏 (APP)

Case (ES). We have 𝑀 = 𝑀1[𝑥/𝑀2], Γ = Γ1 ⊎ Γ2 and Γ1 ⊎ Γ2 ⊩ℋ 𝑀1[𝑥/𝑀2] ∶ 𝜏
and thus 𝑀◦ = I(𝑀2◦, 𝑥.𝑀1). By hypothesis we have Γ1; 𝑥 ∶ ℳ ⊩ℋ 𝑀1 ∶ 𝜏
and Γ2 ⊩ℋ 𝑀2 ∶ ℳ. By the i.h. we have Γ1; 𝑥 ∶ ℳ ⊩∩𝑁 𝑀1◦ ∶ 𝜏 and
Γ2 ⊩∩𝑁 𝑀2◦ ∶ ℳ. Let ℳ = [𝜏𝑖]𝑖∈𝐼 . We build the following derivation in ∩𝑁 :

Φ Γ2 ⊩ 𝑀2◦ ∶ ℳ Γ1; 𝑥 ∶ ℳ ⊩ 𝑀1◦ ∶ 𝜏
Γ1 ⊎ Γ2 ⊢ I(𝑀2⭒, 𝑥.𝑀1⭒) ∶ 𝜏 (→𝑒)

With

Φ =
( 𝑦 ∶ [𝜏𝑖] ⊢ 𝑦 ∶ 𝜏𝑖

(AX)

∅ ⊢ 𝜆𝑦.𝑦 ∶ [𝜏𝑖] → 𝜏𝑖
(→𝑖) )

𝑖∈𝐼
∅ ⊢ 𝜆𝑦.𝑦 ∶ [[𝜏𝑖] → 𝜏𝑖]𝑖∈𝐼

(MANY)

Call-by-value

Despite the lack of operational characterization of CbV solvability in Plotkin’s 𝜆𝑣 calculus,
the notion is the same as in calculi with explicit substitutions or permutations.

In the literature, there is only one occurrence of a non-idempotent intersection type sys-
tem for CbV solvability,1 in [AG22]. This system 𝒱 ′ is presented in figure 3.3. This system
uses a different grammar of types than the one of our CbV type system. Let us call 𝒢1 our
grammar of types, defined in section 3.4.3. Types and multi-types of 𝒱 ′ are defined using the
following grammar 𝒢2, where the ground types 𝑎, 𝑏, 𝑐, … still belong to the set 𝐵𝑇𝑉 . Notice
that we use different letters for types and multi-types.

(Types) 𝐴 ⩴ 𝑎 ∈ 𝐵𝑇𝑉 ∣ 𝒫 → 𝒬
(Multi-types) 𝒫 ,𝒬 ⩴ [𝐴1, … , 𝐴𝑛] (𝑛 ∈ ℕ)

In order to show the equivalence of typability between the two systems, we will go through
an intermediate type system 𝒱 for explicit substitutions, which has rules similar to 𝒱 ′, but
uses the grammar 𝒢1, and has the same expressive power.

1An idempotent intersection type system was given already in [PR99].
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𝑥 ∶ [𝐴] ⊢ 𝑥 ∶ 𝐴 (VAR)
(Γ𝑖 ⊢ 𝑉 ∶ 𝐴𝑖)𝑖∈𝐼

⊎𝑖∈𝐼Γ𝑖 ⊢ 𝑉 ∶ [𝐴𝑖]𝑖∈𝐼
(VAL)

Γ; 𝑥 ∶ 𝒫 ⊢ 𝑀 ∶ 𝒬
Γ ⊢ 𝜆𝑥.𝑀 ∶ 𝒫 → 𝒬 (LAM)

Γ ⊢ 𝑀 ∶ [𝒫 → 𝒬] Δ ⊢ 𝑁 ∶ 𝒫
Γ ⊎ Δ ⊢ 𝑀𝑁 ∶ 𝒬 (@)

Γ; 𝑥 ∶ 𝒫 ⊢ 𝑀 ∶ 𝒬 Δ ⊢ 𝑁 ∶ 𝒫
Γ ⊎ Δ ⊢ 𝑀[𝑥/𝑁 ] ∶ 𝒬 (ES)

Figure 3.3: System 𝒱 ′.

We start by defining a function fl(⋅) (flatten) from types in 𝒢1 to multi-types in 𝒢2:

fl(𝑎) ≔ [𝑎]
fl(ℳ → 𝜎) ≔ [fl(ℳ) → fl(𝜎)]

fl([𝜎𝑖]𝑖∈𝐼 ) ≔ ⊔𝑖∈𝐼 fl(𝜎𝑖)
Notice that fl(ℳ1⊔ℳ2) = fl(ℳ1)⊔fl(ℳ2)We extend this function to environments pointwise,
by fl(𝑥1 ∶ ℳ1; … ; 𝑥𝑛 ∶ ℳ𝑛) = 𝑥1 ∶ fl(ℳ1); … ; 𝑥𝑛 ∶ fl(ℳ𝑛). Thus, fl(Γ1 ⊎ Γ2) = fl(Γ1) ⊎ fl(Γ2).

System 𝒱 is presented in figure 3.4. Compared to 𝒱 ′, rule (MANY) is removed and inte-
grated inside the rules (AX) and (𝜆).

𝑥 ∶ ℳ ⊢ 𝑥 ∶ ℳ (AX)
(Γ𝑖 ; 𝑥 ∶ ℳ𝑖 ⊢ 𝑀 ∶ 𝜎𝑖)𝑖∈𝐼

⊎𝑖∈𝐼Γ𝑖 ⊢ 𝜆𝑥.𝑀 ∶ [ℳ𝑖 → 𝜎𝑖]𝑖∈𝐼
(𝜆)

Γ ⊢ 𝑀 ∶ [ℳ → 𝒩 ] Δ ⊢ 𝑁 ∶ ℳ
Γ ⊎ Δ ⊢ 𝑀𝑁 ∶ 𝒩 (@)

Γ; 𝑥 ∶ ℳ ⊢ 𝑀 ∶ 𝜎 Δ ⊢ 𝑁 ∶ ℳ
Γ ⊎ Δ ⊢ 𝑀[𝑥/𝑁 ] ∶ 𝜎 (ES)

Figure 3.4: System 𝒱 .

Lemma 3.86. Let 𝑀 ∈ T𝐸𝑆 . 𝑀 is typable in 𝒱 iff 𝑀 is typable with a multiset type in 𝒱 ′.

Proof. For the right-to-left implication, we use the fact that 𝒢2 ⊊ 𝒢1. We show the
following statement: Γ ⊩𝒱 ′ 𝑀 ∶ 𝒫 ⟹ Γ ⊩𝒱 𝑀 ∶ 𝒫 . The proof is by induction on
the type derivation. If 𝑀 is a value, the type derivation necessarily ends with rule (VAL)
preceded by rule (VAR) or (LAM), to which corresponds a unique rule (AX) or (𝜆) in 𝒱 . If
𝑀 is not a value, it is either an application or an explicit substitution, then the property
holds by the i.h. since the inference rules are the same.

For the left-to-right implication, we prove the following statement: If Γ ⊩𝒱 𝑀 ∶ 𝜎 ,
then fl(Γ) ⊩𝒱 ′ 𝑀 ∶ fl(𝜎) (remember that fl(𝜎) is always a multiset). By induction on the
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derivation.

Case (AX). Then 𝑀 = 𝑥 , 𝜎 = ℳ, Γ = 𝑥 ∶ ℳ and 𝑥 ∶ ℳ ⊩ 𝑥 ∶ ℳ ends with rule (AX).
By definition, we have fl(ℳ) = [𝐴𝑖]𝑖∈𝐼 . We build the following derivation.

(𝑥 ∶ [𝐴𝑖] ⊢ 𝑥 ∶ 𝐴𝑖
(VAR) )

𝑖∈𝐼
𝑥 ∶ [𝐴𝑖]𝑖∈𝐼 ⊢ 𝑥 ∶ [𝐴𝑖]𝑖∈𝐼

(VAL)

Case (𝜆). Then 𝑀 = 𝜆𝑥.𝑀′, 𝜎 = [ℳ𝑖 → 𝜎𝑖]𝑖∈𝐼 , Γ = ⊎𝑖∈𝐼Γ𝑖 and ⊎𝑖∈𝐼Γ𝑖 ⊩ 𝜆𝑥.𝑀′ ∶ [ℳ𝑖 →
𝜎𝑖]𝑖∈𝐼 ends with rule (𝜆). We have Γ𝑖 ; 𝑥 ∶ ℳ𝑖 ⊩ 𝑀′ ∶ 𝜎𝑖 for each 𝑖 ∈ 𝐼 by hypothesis
and fl(ℳ𝑖 → 𝜎𝑖) = [fl(ℳ𝑖) → fl(𝜎𝑖)], so that fl(𝜎) = [fl(ℳ𝑖) → fl(𝜎𝑖)]𝑖∈𝐼 . By the i.h.
we have fl(Γ𝑖); 𝑥 ∶ fl(ℳ𝑖) ⊩ 𝑀′ ∶ fl(𝜎𝑖) for each 𝑖 ∈ 𝐼 . We conclude by rule (LAM)
for each 𝑖 ∈ 𝐼 followed by rule (MANY).

Case (@). Then 𝑀 = 𝑀1𝑀2, Γ = Γ1 ⊎ Γ2, 𝜎 = 𝒩 and Γ ⊩ 𝑀1𝑀2 ∶ 𝒩 ends with rule (@).
By hypothesis we have derivations Γ1 ⊩ 𝑀1 ∶ [ℳ → 𝒩 ] and Γ2 ⊩ 𝑀2 ∶ ℳ. By
the i.h. we have fl(Γ1) ⊩ 𝑀1 ∶ fl([ℳ → 𝒩 ]) and fl(Γ2) ⊩ 𝑀2 ∶ fl(ℳ). Since
fl([ℳ → 𝒩 ]) = [fl(ℳ) → fl(𝒩 )] and fl(Γ1 ⊎Γ2) = fl(Γ1) ⊎ fl(Γ2), we conclude with
rule (@).

Case (ES). Then 𝑀 = 𝑀1[𝑥/𝑀2], Γ = Γ1 ⊎ Γ2 and Γ1 ⊎ Γ2 ⊩ 𝑀1[𝑥/𝑀2] ∶ 𝜎 ends with
rule (ES). By hypothesis we have derivations Γ1; 𝑥 ∶ ℳ ⊩ 𝑀1 ∶ 𝜎 and Γ2 ⊩ 𝑀2 ∶ ℳ.
By i.h. we have fl(Γ1); 𝑥 ∶ fl(ℳ) ⊩ 𝑀1 ∶ fl(𝜎) and fl(Γ2) ⊩ 𝑀2 ∶ fl(ℳ). Since
fl(Γ1 ⊎ Γ2) = fl(Γ1) ⊎ fl(Γ2), we conclude with rule (ES).

In [AG22], CbV solvability is shown equivalent to being typable with a solvable multiset
type in 𝒱 ′. Moreover, solvable types in 𝒢2 are also solvable in 𝒢1, and if 𝜎 is a solvable type
in 𝒢1, then we can show by induction that fl(𝜎) is also a solvable type in 𝒢2. Then, we get
the following characterization.

Corollary 3.87. Let 𝑀 ∈ T𝐸𝑆 . Then 𝑀 is solvable iff 𝑀 is typable in 𝒱 with a solvable type.

We are now ready to relate CbV solvability of ES and of generalized applications using
the type system 𝒱 .

Lemma 3.88. Let 𝑡 ∈ T𝐽 and 𝑀 ∈ T𝐸𝑆 .

(i) Γ ⊩∩𝑉 𝑡 ∶ 𝜎 implies Γ ⊩𝒱 𝑡⭒ ∶ 𝜎
(ii) Γ ⊩𝒱 𝑀 ∶ 𝜎 implies Γ ⊩∩𝑉 𝑀◦ ∶ 𝜎 .

Proof. Both statements are by induction on the type derivation. The base cases 𝑡 = 𝑥 or
𝑀 = 𝑥 are straightforward. The cases of the abstraction are straightforward by the i.h.
The remaining cases are the following.
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1. For (i), when the derivation ends with rule (@). Let 𝑡 = 𝑠(𝑢, 𝑥.𝑟), and Γ ⊩∩𝑉
𝑠(𝑢, 𝑥.𝑟) ∶ 𝜎 . We have 𝑡⭒ = 𝑟⭒[𝑥/𝑠⭒𝑢⭒]. By hypothesis we have derivations
Γ′ ⊩𝒱 𝑠 ∶ [ℳ → 𝒩 ], Δ ⊩𝒱 𝑢 ∶ ℳ and Λ; 𝑥 ∶ 𝒩 ⊩𝒱 𝑟 ∶ 𝜎 with Γ = Γ′ ⊎Δ⊎Λ. By
the i.h. we obtain Γ′ ⊩𝒱 𝑠⭒ ∶ [ℳ → 𝒩 ], Δ ⊩𝒱 𝑢⭒ ∶ ℳ and Λ; 𝑥 ∶ 𝒩 ⊩𝒱 𝑟⭒ ∶ 𝜎 .
We build the following derivation in 𝒱 :

Γ′ ⊢ 𝑠⭒ ∶ [ℳ → 𝒩 ] Δ ⊢ 𝑢⭒ ∶ 𝒩
Γ′ ⊎ Δ ⊢ 𝑠⭒𝑢⭒ ∶ 𝒩 (@) Λ; 𝑥 ∶ 𝒩 ⊢ 𝑟 ∶ 𝜎

Γ′ ⊎ Δ ⊎ Λ ⊢ 𝑟⭒[𝑥/𝑠⭒𝑢⭒] ∶ 𝜎 (ES)

2. For (ii), there are two remaining cases.

Case (@). We have 𝑀 = 𝑀1𝑀2, 𝜎 = 𝒩 , Γ = Γ1 ⊎ Γ2, Γ1 ⊎ Γ2 ⊩𝒱 𝑀1𝑀2 ∶ 𝒩 and
𝑀◦ = 𝑀1◦(𝑀2◦, 𝑧.𝑧). By hypothesis we have derivations Γ1 ⊩𝒱 𝑀1 ∶ [ℳ →
𝒩 ] and Γ2 ⊩𝒱 𝑀2 ∶ ℳ. By the i.h. we have Γ1 ⊩∩𝑉 𝑀1◦ ∶ [ℳ → 𝒩 ] and
Γ2 ⊩∩𝑉 𝑀2◦ ∶ ℳ. We build the following derivation in ∩𝑉 :

Γ1 ⊩ 𝑀1◦ ∶ [ℳ → 𝒩 ] Γ2 ⊩ 𝑀2◦ ∶ ℳ 𝑧 ∶ 𝒩 ⊢ 𝑧 ∶ 𝒩 (VAR)

Γ1 ⊎ Γ2 ⊢ 𝑀1◦(𝑀2◦, 𝑧.𝑧) ∶ 𝒩 (APP)

Case (ES). We have 𝑀 = 𝑀1[𝑥/𝑀2], Γ = Γ1 ⊎ Γ2, Γ1 ⊎ Γ2 ⊩𝒱 𝑀1[𝑥/𝑀2] ∶ 𝜎
and 𝑀◦ = I(𝑀2◦, 𝑥.𝑀1◦). By hypothesis we have Γ1; 𝑥 ∶ ℳ ⊩𝒱 𝑀1 ∶ 𝜎
and Γ2 ⊩𝒱 𝑀2 ∶ ℳ. By the i.h. we have Γ1; 𝑥 ∶ ℳ ⊩∩𝑉 𝑀1◦ ∶ 𝜎 and
Γ2 ⊩∩𝑉 𝑀2◦ ∶ ℳ. We build the following derivation in ∩𝑉 :

𝑦 ∶ ℳ ⊢ 𝑦 ∶ ℳ (VAR)

⊢ 𝜆𝑦.𝑦 ∶ [ℳ → ℳ] (ABS) Γ2 ⊩ 𝑀2◦ ∶ ℳ Γ1; 𝑥 ∶ ℳ ⊩ 𝑀1◦ ∶ 𝜎
Γ1 ⊎ Γ2 ⊢ (𝜆𝑦.𝑦)(𝑀2◦, 𝑥.𝑀1◦) ∶ 𝜎 (APP)

As CbN/CbV solvability in the λ-calculus is equivalent to 𝒱 ′-typability/𝒱 -typability
with a solvable type, we get the final results:

Corollary 3.89. Let 𝑡 be a T𝐽 -term.

(i) 𝑡 is CbN solvable if and only if 𝑡# is CbN solvable in the λ-calculus.

(ii) 𝑡 is CbV solvable if and only if 𝑡# is CbV solvable in the λ-calculus.
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3.6 Comparison of the CbV Calculi with ES and

Generalized Applications
We have shown equivalence between solvability and potential valuability of 𝜆vsub and of
𝜆𝐽𝑣/Λ𝐽𝑣 . Our characterizations of solvability and potential valuability were given by inde-
pendent and semantic proofs. We now wish to compare both formalisms on an operational
level. For this, we give simulations between the reductions. Simulations hold in both ways
for the general reduction and weak evaluation, but not the solving reduction, because our
formulation, albeit equivalent, is a tad more restricted.

For the simulations, we introduce an equivalence on T𝐽 -terms. This equivalence is a
strong bisimulation, which gives a rich equational theory to T𝐽 and is the main contribution
of this section. We finally compare the equational theories of the calculi 𝜆vsub and 𝜆𝐽𝑣 .

3.6.1 Simulations
We start with a simulation of 𝜆𝐽𝑣 in 𝜆vsub. When doing a simulation from generalized ap-
plications to explicit substitution in CbN, we need to resort to the faithful translation (⋅)⋆
defined in section 4.5.1. In CbV instead, the original map (⋅)⭒ already preserves strong nor-
malization. Take for instance the counterexample of section 1.2.2.2, 𝑡 = 𝛿(𝛿, 𝑦.𝑟) where 𝑦 ∉ 𝑟 .
This term is strongly normalizing in the call-by-name 𝜆𝐽𝑛, but not in 𝜆𝐸𝑆. In CbV, 𝑡 = 𝛿(𝛿, 𝑦.𝑟)
is not strongly normalizing already in 𝜆𝐽𝑣 , and stays so with the translation.

For the calculus 𝜆vsub, we use the names of [AG22]: →vsub for the general reduction, →o
for weak (open) evaluation corresponding to potential valuability and →s for the solving
relation.

Lemma 3.90. Let 𝑡1 →djv 𝑡2. Then, 𝑡1⭒ →3
vsub 𝑡2⭒. In particular,

(i) If 𝑡1 →ev 𝑡2, then 𝑡1⭒ →3
o 𝑡2⭒.

(ii) If 𝑡1 →sv 𝑡2, then 𝑡1⭒ →3
s 𝑡2⭒.

Proof. The base case is 𝑡1 = D⟨𝜆𝑥.𝑡⟩(𝑢, 𝑦.𝑟) ↦d𝛽v
D⟨𝑟{𝑦\\𝑡{𝑥\\𝑢}}⟩. We decompose 𝑡 = D1⟨𝑣1⟩

and 𝑢 = D2⟨𝑣2⟩. Let D′1 = D1{𝑥/𝑣2}.
𝑡2 = D⟨𝑟{𝑦\\D1⟨𝑣1⟩{𝑥\\D2⟨𝑣2⟩}}⟩ = D⟨D2⟨𝑟{𝑦\\D1⟨𝑣1⟩{𝑥/𝑣2}}⟩⟩ = D⟨D2⟨D′1⟨𝑟{𝑦/𝑣1{𝑥/𝑣2}}⟩⟩⟩

For any D0, 𝑡0, a simple induction on D0 shows that D0⟨𝑡0⟩⭒ = L0⟨𝑡0⭒⟩ for some L0. Let
L, L1, L′1, L2 be the translations (extended to contexts) of D, D1, D′1, D2. Because the trans-
lation commutes with substitution, we have 𝑡2⭒ = L⟨L2⟨L′1⟨𝑟⭒{𝑦/𝑣1⭒{𝑥/𝑣2⭒}}⟩⟩⟩.
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𝑡1⭒ = 𝑟⭒[𝑦/L⟨(𝜆𝑥.L1⟨𝑣1⭒⟩)(L2⟨𝑣2⭒⟩)⟩]
→vsub 𝑟⭒[𝑦/L⟨(L1⟨𝑣1⭒⟩)[𝑥/L2⟨𝑣2⭒⟩]⟩]
→vsub 𝑟⭒[𝑦/L⟨L2⟨(L1⟨𝑣1⟩)⭒{𝑥/𝑣2⭒}⟩⟩]
= 𝑟⭒[𝑦/L⟨L2⟨L′1⟨𝑣1⭒{𝑥/𝑣2⭒}⟩⟩⟩]
→vsub L⟨L2⟨L′1⟨𝑟⭒{𝑦/𝑣1⭒{𝑥/𝑣2⭒}}⟩⟩⟩
= 𝑡2⭒

Notice that the rules applied are within the relation →o, so that (i) and (ii) are verified.
Now, the inductive cases.

Case 𝑡1 = 𝜆𝑥.𝑡 →djv 𝜆𝑥.𝑡′ = 𝑡2. This holds by i.h. This step is not an ev-step, but it is a
sv-step if 𝑡 →djv 𝑡′ is. In this case, the steps 𝑡1⭒ →+

vsub 𝑡2⭒ are s-steps.

Case 𝑡1 = 𝑡(𝑢, 𝑦.𝑟) →djv 𝑡′(𝑢′, 𝑦.𝑟 ′) = 𝑡2 where 𝑡 →djv 𝑡′ or 𝑢 →djv 𝑢′ or 𝑟 →djv 𝑟 ′. We have

𝑡1⭒ = 𝑟⭒[𝑦/𝑡⭒𝑢⭒] and 𝑡2⭒ = 𝑟 ′⭒[𝑦/𝑡′⭒𝑢′⭒]. We conclude by i.h. on 𝑡′, 𝑢′ or 𝑟 ′.
Suppose 𝑡1 →ev 𝑡2. Then 𝑡 →ev 𝑡′, 𝑢 →ev 𝑢′ or 𝑟 →ev 𝑟 ′. We prove item (i) by i.h.
because the terms 𝑡⭒, 𝑢⭒ and 𝑟⭒ are all in an open context of 𝜆vsub.

Suppose 𝑡1 →sv 𝑡2. There are two possibilities.

Case 𝑡 →ev 𝑡′ or 𝑢 →ev 𝑡′. As in the previous case, the 𝑡⭒ and 𝑢⭒ are in an open
context, so they are in a solving context of 𝜆vsub. We conclude (ii) by i.h.

Case 𝑟 →sv 𝑟 ′. In that case, 𝑟⭒ is in a solving context of 𝜆vsub. We conclude (ii) by
i.h.

To establish an exact simulation of 𝜆vsub in 𝜆𝐽𝑣 , we need two ingredients. The first one is
a new translation (⋅)•. Indeed, the original one (⋅)◦ from definition 3.1 induces a simulation
of each →sub-reduction step on 𝜆vsub into a →d𝛽v

-reduction step on T𝐽 , but cannot simulate
the creation of an ES by rule →dB. A solution is to refine the translation (⋅)◦ for applications,
yielding the following alternative (⋅)•:

𝑥• ≔ 𝑥 (𝜆𝑥.𝑀)• ≔ 𝜆𝑥.𝑀 •
(𝑀𝑁)• ≔ I(𝑁 •, 𝑦.𝑀 •(𝑦, 𝑧.𝑧)) 𝑀[𝑥/𝑁 ]• ≔ I(𝑁 •, 𝑥.𝑀 •)

Since the clause for ES is not changed, simulation of each sub-reduction step by a d𝛽v-
reduction step holds as before. The improvement lies in the simulation of each dB-reduction
step:

((𝜆𝑥.𝑀)𝑁 )• = I(𝑁 •, 𝑦.(𝜆𝑥.𝑀 •)(𝑦, 𝑧.𝑧)) →d𝛽v
I(𝑁 •, 𝑦.𝑀 •{𝑥/𝑦}) =𝛼 (𝑀[𝑥/𝑁 ])•

The second ingredient is the following equivalence, where we assume no capture of vari-
ables, and where 𝑧2 ∉ fv(𝑡1) ∪ fv(𝑢1):

𝑡2(𝑢2, 𝑧2.𝑡1(𝑢1, 𝑧1.𝑟 )) ∼com 𝑡1(𝑢1, 𝑧1.𝑡2(𝑢2, 𝑧2.𝑟 ))
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We write ≡com for the reflexive and transitive closure of ∼com. The congruence ≡com is a
strong bisimulation with respect to →djv, →ev and →sv. We give a definition and proper-
ties of strong bisimulations in the next section section 3.6.2, where we define a larger strong
bisimulation on T𝐽 , containing ≡com. Roughly, two bisimilar terms will have the same obser-
vational and operational behavior; they may be represented by the same object in a graphical
system. We write →djv/≡jv

for the reduction →djv modulo ≡jv, similarly for →djv/≡com
and

→ev/≡com
modulo ≡com. These relations are confluent, by the upcoming lemma 3.93 and con-

fluence of the original relations.

Lemma 3.91. Let 𝑀1 →vsub 𝑀2. Then, 𝑀1• →djv/≡com
𝑀2•. In particular, if 𝑀1 →o 𝑀2, then

𝑀1• →ev/≡com
𝑀2•.

Proof. There are two base cases.

Case 𝑀1 = L⟨𝜆𝑥.𝑀⟩𝑁 ↦dB L⟨𝑀[𝑥/𝑁 ]⟩. For any list context L0 and term𝑀0, it is straight-
forward that L0⟨𝑀0⟩• = D0⟨𝑀0•⟩ for some D0. Then, for some D:

𝑀1• = I(𝑁 •, 𝑦.D⟨𝜆𝑥.𝑀 •⟩(𝑦, 𝑧.𝑧))
→djv I(𝑁 •, 𝑦.D⟨𝑀 •⟩{𝑥/𝑦})
=𝛼 I(𝑁 •, 𝑥.D⟨𝑀 •⟩)
≡com D⟨I(𝑁 •, 𝑥.𝑀 •)⟩
= L⟨𝑀[𝑥/𝑁 ]⟩• = 𝑀2•

The rewrite step is done in a ev-context, so that the case of →ev/≡com
is verified.

Case 𝑀1 = 𝑀[𝑥/L⟨𝑉 ⟩] →sub L⟨𝑀{𝑥/𝑉 }⟩. Then, for some D, and because (⋅)• commutes
with substitution:

I(D⟨𝑉 •⟩, 𝑦.𝑀 •) →djv 𝑀 •{𝑦\\D⟨𝑉 •⟩}
= D⟨𝑀 •{𝑦/𝑉 •}⟩
= L⟨𝑀{𝑥/𝑉 }⟩•

The →djv-step is a root step, thus in particular an →ev-step.

We now consider the inductive cases.

Case 𝑀1 = 𝜆𝑥.𝑀 →vsub 𝜆𝑥.𝑀′ = 𝑀2. By i.h. Moreover, the step 𝑀 →vsub 𝑀′ is not an
open reduction.

Case 𝑀1 = 𝑀𝑁 →vsub 𝑀′𝑁 ′ where 𝑀 →vsub 𝑀′ or 𝑁 →vsub 𝑁 ′. Then we have that
𝑀1• = I(𝑁 •, 𝑦.𝑀 •(𝑦, 𝑧.𝑧)). We conclude by i.h. on 𝑀′ or 𝑁 ′. Suppose 𝑀1 →o 𝑀2.
𝑀 • and 𝑁 • are in an ev context so the case for →ev is verified.

Simulations hold between →djv and →vsub, as well as →ev and →o. However, simula-
tion of →s in →sv fails, which is why the previous lemma does not treat it. This is because
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in 𝜆vsub, it is possible to reduce inside an abstraction that is on the left of an application.
This is not the case in 𝜆𝐽𝑣 . The absence of that special case does not affect normalization,
since these abstractions can be destroyed by application of a d𝛽v-rule. It is possible to add
a contextual rule for this case to the relation →sv while keeping the operational and logical
characterizations:

𝑡 →sv 𝑡′
𝑡(𝑢, 𝑥.H⟨⟨𝑥⟩⟩) →sv 𝑡′(𝑢, 𝑥.H⟨⟨𝑥⟩⟩)

However, we prefer our formulation, in which it is never necessary to search for the head
variable nested inside the term. On the other hand, it seems possible to restrict the solving
reduction →s of 𝜆vsub to correspond to →sv, without losing properties.

The simulations show that it is possible to relate generalized applications and explicit
substitutions at a syntactic level. However, we can see that the relation is not straightforward,
as we must be careful in crafting the translations.

The simulations between →ev and →o are an important element to derive the result of
operational characterization of potential valuability by →ev as a consequence of that result
in [AG22]. The operational characterization of solvability could be derived from the one
in [AG22] in the same way, supposing the extended definition of sv using the rule defined
above.

3.6.2 Strong bisimulation for 𝜆𝐽𝑣
We now define a strong bisimulation ≡jv for 𝜆𝐽𝑣 . This is to our knowledge the first (strong)
bisimulation defined for generalized applications. A strong bisimulation is a congruence
on terms that equates terms having the same behavior. It is defined as follows: For ℛ ∈
{djv, ev, sv}, for any two terms in relation 𝑡1 ≡jv 𝑡2 and 𝑡1 →ℛ 𝑡′1, then there is 𝑡′2 such that
𝑡2 →ℛ 𝑡′2.

The relation ≡jv is computationally irrelevant: it commutes with reduction steps, and
can thus be postponed, does not change the number of steps in the reduction sequence, and
preserves confluence and normalization.

It is one further advantage of the distant paradigm to allow such strong bisimulations on
T𝐽 : since no reduction is stuck, permutations can be included in a second phase as a strong
bisimulation without effort since properties of the reduction are preserved. The generality
of the calculus with arbitrary and separate permutation steps is thus retrieved. Reasoning
can then also be done modulo bisimulation.

The equivalence ≡jv is defined by the reflexive, symmetric and transitive closure under
all contexts of the following rules, where we suppose no capture of variables:

𝑡1(𝑢1, 𝑧1.𝑡2)(𝑢2, 𝑧2.𝑟) ∼𝜋 𝑡1(𝑢1, 𝑧1.𝑡2(𝑢2, 𝑧2.𝑟 ))
𝑡2(𝑡1(𝑢1, 𝑧1.𝑢2), 𝑧2.𝑟) ∼arg 𝑡1(𝑢1, 𝑧1.𝑡2(𝑢2, 𝑧2.𝑟))
𝑡2(𝑢2, 𝑧2.𝑡1(𝑢1, 𝑧1.𝑟)) ∼com 𝑡1(𝑢1, 𝑧1.𝑡2(𝑢2, 𝑧2.𝑟 )) where 𝑧2 ∉ fv(𝑡1) ∪ fv(𝑢1)

We also write ≡1jv for the non-reflexive and non-transitive closure of ∼𝜋 ∪ ∼arg ∪ ∼com under
all contexts (similarly for ≡1𝜋 , ≡1arg and ≡1com).
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We now prove that ≡jv is a strong bisimulation. We will use the following auxiliary
lemma.

Lemma 3.92. Let 𝑡 , 𝑢, 𝑟 , 𝑠 ∈ T𝐽 .

(i) The following equations hold:

• 𝑡{𝑥\\𝑠}(𝑢, 𝑧.𝑟) ≡𝜋 𝑡(𝑢, 𝑧.𝑟){𝑥\\𝑠}, when 𝑥 ∉ fv(𝑢) ∪ fv(𝑟).
• 𝑡(𝑢{𝑥\\𝑠}, 𝑧.𝑟) ≡arg 𝑡(𝑢, 𝑧.𝑟){𝑥\\𝑠}, when 𝑥 ∉ fv(𝑡) ∪ fv(𝑟).
• 𝑡(𝑢, 𝑧.𝑟 {𝑥\\𝑠}) ≡com 𝑡(𝑢, 𝑧.𝑟){𝑥\\𝑠}, when 𝑥 ∉ fv(𝑡) ∪ fv(𝑢).

(ii) If 𝑡 ≡1jv 𝑡′, then 𝑡{𝑥\\𝑢} ≡1jv 𝑡′{𝑥\\𝑢}.
(iii) If 𝑢 ≡1jv 𝑢′, then 𝑡{𝑥\\𝑢} ≡jv 𝑡{𝑥\\𝑢′}.

Proof. (i) By induction on 𝑠. The cases where 𝑠 is a value are direct by the hypothesis.
Let 𝑠 = 𝑠1(𝑠2, 𝑦.𝑠3). We have 𝑡(𝑢, 𝑧.𝑟){𝑥\\𝑠} = 𝑠1(𝑠2, 𝑦.𝑡(𝑢, 𝑧.𝑟){𝑥\\𝑠3}). Then, using the
i.h. on the last step:

• 𝑡{𝑥\\𝑠}(𝑢, 𝑧.𝑟) = 𝑠1(𝑠2, 𝑦.𝑡{𝑥\\𝑠3})(𝑢, 𝑧.𝑟) ≡𝜋 𝑠1(𝑠2, 𝑦.𝑡{𝑥\\𝑠3}(𝑢, 𝑧.𝑟)) ≡𝜋 𝑡(𝑢, 𝑧.𝑟){𝑥\\𝑠}
• 𝑡(𝑢{𝑥\\𝑠}, 𝑧.𝑟) = 𝑡(𝑠1(𝑠2, 𝑦.𝑢{𝑥\\𝑠3}), 𝑧.𝑟) ≡arg 𝑠1(𝑠2, 𝑦.𝑡(𝑢{𝑥\\𝑠3}, 𝑧.𝑟)) ≡arg 𝑡(𝑢, 𝑧.𝑟){𝑥\\𝑠}
• 𝑡(𝑢, 𝑧.𝑟 {𝑥\\𝑠}) = 𝑡(𝑢, 𝑧.𝑠1(𝑠2, 𝑦.𝑟 {𝑥\\𝑠3})) ≡com 𝑠1(𝑠2, 𝑦.𝑡(𝑢, 𝑧.𝑟 {𝑥\\𝑠3})) ≡com 𝑡(𝑢, 𝑧.𝑟){𝑥\\𝑠}

(ii) By induction on 𝑢. In the base case where 𝑢 = 𝑣 is a value, by a nested induction
on 𝑡 ≡1jv 𝑡′. The base cases 𝑡 ∼𝜋 𝑡′, 𝑡 ∼arg 𝑡′ and 𝑡 ∼com 𝑡′ are straightforward by
definition of the substitution. The inductive cases are direct by i.h.

In the inductive case of the outer induction, let 𝑢 = 𝑠1(𝑠2, 𝑦.𝑠3). Then, by the i.h.
𝑡{𝑥\\𝑢} = 𝑠1(𝑠2, 𝑦.𝑡{𝑥\\𝑠3}) ≡1jv 𝑠1(𝑠2, 𝑦.𝑡′{𝑥\\𝑠3}) = 𝑡′{𝑥\\𝑢}.

(iii) By induction on 𝑢 ≡1jv 𝑢′. In all the base cases, let 𝑢′ = 𝑡1(𝑢1, 𝑧1.𝑡2(𝑢2, 𝑧2.𝑟 )), and
thus 𝑡{𝑥\\𝑢′} = 𝑡1(𝑢1, 𝑧1.𝑡2(𝑢2, 𝑧2.𝑡{𝑥\\𝑟})).
Case 𝑢 = 𝑡1(𝑢1, 𝑧1.𝑡2)(𝑢2, 𝑧2.𝑟 ) ∼𝜋 𝑢′. We have 𝑡{𝑥\\𝑢} = 𝑡1(𝑢1, 𝑧1.𝑡2)(𝑢2, 𝑧2.𝑡{𝑥\\𝑟}) ∼𝜋

𝑡{𝑥\\𝑢′}.
Case 𝑢 = 𝑡2(𝑡1(𝑢1, 𝑧1.𝑢2), 𝑧2.𝑟 ) ∼arg 𝑢′. We have 𝑡{𝑥\\𝑢} = 𝑡2(𝑡1(𝑢1, 𝑧1.𝑢2), 𝑧2.𝑡{𝑥\\𝑟}) ∼arg

𝑡{𝑥\\𝑢′}.
Case 𝑢 = 𝑡2(𝑢2, 𝑧2.𝑡1(𝑢1, 𝑧1.𝑟 )) ∼com 𝑢′. We have 𝑡{𝑥\\𝑢} = 𝑡2(𝑢2, 𝑧2.𝑡1(𝑢1, 𝑧1.𝑡{𝑥\\𝑟})) ∼com

𝑡{𝑥\\𝑢′}.
Case 𝑢 = 𝑢1(𝑢2, 𝑦.𝑢3) ≡1jv 𝑢′1(𝑢′2, 𝑦.𝑢′3). Where 𝑢𝑖 ≡1jv 𝑢′𝑖 holds for exactly one 1 ≤

𝑖 ≤ 3. We have 𝑡{𝑥\\𝑢} = 𝑢1(𝑢2, 𝑦.𝑡{𝑥\\𝑢3}) ≡jv 𝑢′1(𝑢′2, 𝑦.𝑡{𝑥\\𝑢′3}) = 𝑡{𝑥\\𝑢′}. If
𝑢1 ≡1jv 𝑢′1 or 𝑢2 ≡1jv 𝑢′2, this is by hypothesis, if 𝑢3 ≡1jv 𝑢3 by i.h.
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Case 𝑢 = 𝜆𝑦.𝑠 ≡1jv 𝜆𝑦.𝑠′ where 𝑠 ≡1jv 𝑠′. Then, 𝑡{𝑥\\𝑢} = 𝑡{𝑥/𝑢} and 𝑡{𝑥\\𝑢′} = 𝑡{𝑥/𝑢′}.
We can show by a straightforward induction that for any value 𝑣 such that
𝑣 ≡1jv 𝑣′ (necessarily an abstraction), we have 𝑡{𝑥/𝑣} ≡jv 𝑡{𝑥/𝑣′}.

Lemma 3.93. ≡jv is a strong bisimulation for →djv, →ev and →sv.

Proof. We show that if 𝑡1 →djv 𝑡2 and 𝑡1 ≡1jv 𝑡′1, then there is 𝑡′2 such that 𝑡′1 →djv 𝑡′2
and 𝑡2 ≡jv 𝑡′2. From there, the strong bisimulation for the reflexive and transitive closure
𝑡1 ≡jv 𝑡′1 is obtained by a simple induction.

For →ev and →sv, simply notice that every ev-step is mapped to a ev-step and sv-
step to a sv-step.

We reason by induction on 𝑡1 ≡1jv 𝑡′1. In each of the base cases, we do a case analysis
on 𝑡1 →djv 𝑡2.

Case 𝑡1 = 𝑠1(𝑢1, 𝑧1.𝑠2)(𝑢2, 𝑧2.𝑟) ∼𝜋 𝑠1(𝑢1, 𝑧1.𝑠2(𝑢2, 𝑧2.𝑟)). The cases where ≡1𝜋 is inside a sub-
term are straightforward. There are two other subcases.

Subcase 𝑡1 = D⟨𝜆𝑥.𝑡⟩(𝑢1, 𝑧1.𝑠2)(𝑢2, 𝑧2.𝑟) →djv D⟨𝑠2{𝑧1\\𝑡{𝑥\\𝑢1}}⟩(𝑢2, 𝑧2.𝑟) = 𝑡2. We have:

𝑡′1 = D⟨𝜆𝑥.𝑡⟩(𝑢1, 𝑧1.𝑠2(𝑢2, 𝑧2.𝑟 ))
→djv D⟨𝑠2(𝑢2, 𝑧2.𝑟 ){𝑧1\\𝑡{𝑥\\𝑢1}}⟩
≡𝜋 D⟨𝑠2{𝑧1\\𝑡{𝑥\\𝑢1}}(𝑢2, 𝑧2.𝑟)⟩ (by lemma 3.92(i))
≡𝜋 𝑡2

Subcase 𝑡1 = 𝑠1(𝑢1, 𝑧1.D⟨𝜆𝑥.𝑡⟩)(𝑢2, 𝑧2.𝑟) →djv 𝑠1(𝑢1, 𝑧1.D⟨𝑟{𝑧2\\𝑡{𝑥\\𝑢2}}⟩) = 𝑡2. We have:

𝑡′1 = 𝑠1(𝑢1, 𝑧1.D⟨𝜆𝑥.𝑡⟩(𝑢2, 𝑧2.𝑟)) →djv 𝑡2

Case 𝑡1 = 𝑠2(𝑠1(𝑢1, 𝑧1.𝑢2), 𝑧2.𝑟 ) ∼arg 𝑠1(𝑢1, 𝑧1.𝑠2(𝑢2, 𝑧2.𝑟)) = 𝑡2. The cases where ≡1arg is in-
side a subterm are straightforward. There are two other subcases.

Subcase 𝑡1 = D⟨𝜆𝑥.𝑡⟩(𝑠1(𝑢1, 𝑧1.𝑢2), 𝑧2.𝑟) →djv 𝑟{𝑧2\\𝑡{𝑥\\𝑠1(𝑢1, 𝑧1.𝑢2)}} = 𝑡2. We have:

𝑡′1 = 𝑠1(𝑢1, 𝑧1.D⟨𝜆𝑥.𝑡⟩(𝑢2, 𝑧2.𝑟 )) →djv 𝑠1(𝑢1, 𝑧1.𝑟 {𝑧2\\𝑡{𝑥\\𝑢2}}) = 𝑡2
Subcase 𝑡1 = 𝑠2(D⟨𝜆𝑥.𝑡⟩(𝑢1, 𝑧1.𝑢2), 𝑧2.𝑟) →djv 𝑠2(D⟨𝑢2{𝑧1\\𝑡{𝑥\\𝑢1}}⟩, 𝑧2.𝑟). We have:

𝑡′1 = D⟨𝜆𝑥.𝑡⟩(𝑢1, 𝑧1.𝑠2(𝑢2, 𝑧2.𝑟 ))
→djv D⟨𝑠2(𝑢2, 𝑧2.𝑟 ){𝑧1\\𝑡{𝑥\\𝑢1}}⟩
≡arg D⟨𝑠2(𝑢2{𝑧1\\𝑡{𝑥\\𝑢1}}, 𝑧2.𝑟)⟩ (by lemma 3.92(iii))

≡arg 𝑡2
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Case 𝑡1 = 𝑠2(𝑢2, 𝑧2.𝑠1(𝑢1, 𝑧1.𝑟 )) ∼com 𝑠1(𝑢1, 𝑧1.𝑠2(𝑢2, 𝑧2.𝑟 )) = 𝑡′1. The cases where ≡1com is in-
side a subterm are straightforward. There are two other subcases.

Subcase 𝑡1 = D⟨𝜆𝑥.𝑡⟩(𝑢2, 𝑧2.𝑠1(𝑢1, 𝑧1.𝑟 )) →djv D⟨𝑠1(𝑢1, 𝑧1.𝑟 ){𝑧2\\𝑡{𝑥\\𝑢2}}⟩ = 𝑡2. We have:

𝑡′1 = 𝑠1(𝑢1, 𝑧1.D⟨𝜆𝑥.𝑡⟩(𝑢2, 𝑧2.𝑟))
→djv 𝑠1(𝑢1, 𝑧1.D⟨𝑟{𝑧2\\𝑡{𝑥\\𝑢2}}⟩)
≡com D⟨𝑠1(𝑢1, 𝑧1.𝑟 {𝑧2\\𝑡{𝑥\\𝑢2}})⟩
≡com 𝑡2 (by lemma 3.92(i))

Subcase 𝑡2 = 𝑠2(𝑢2, 𝑧2.D⟨𝜆𝑥.𝑡⟩(𝑢1, 𝑧1.𝑟 )) →djv 𝑠2(𝑢2, 𝑧2.D⟨𝑟{𝑧1\\𝑡{𝑥\\𝑢1}}⟩) = 𝑡1. This case
is symmetric to the previous.

We now analyze the inductive cases of 𝑡1 ≡1jv 𝑡′1. We use a case analysis on 𝑡1 →djv 𝑡2.

Case 𝑡1 = 𝜆𝑥.𝑠1 →djv 𝜆𝑥.𝑠2 = 𝑡2. Straightforward by i.h.

Case 𝑡1 = 𝑠1(𝑢1, 𝑥.𝑟1) →djv 𝑠2(𝑢2, 𝑥.𝑟2) = 𝑡2, where 𝑠1 →djv 𝑠2, 𝑢1 →djv 𝑢2 or 𝑟1 →djv 𝑟2.
Straightforward by i.h.

Case 𝑡1 = D⟨𝜆𝑥.𝑡⟩(𝑢, 𝑦.𝑟) →djv 𝑟 {𝑦\\𝑡{𝑥\\𝑢}} = 𝑡2. There are four subcases.

Subcase 𝑡′1 = D⟨𝜆𝑥.𝑡′⟩(𝑢, 𝑦.𝑟). Then 𝑡′1 →djv D⟨𝑟{𝑦\\𝑡′{𝑥\\𝑢}}⟩ = 𝑡′2. By lemma 3.92(ii),
we have 𝑡′{𝑥\\𝑢} ≡jv 𝑡{𝑥\\𝑢}. By lemma 3.92(iii), we have 𝑡′2 ≡jv 𝑡2.

Subcase 𝑡′1 = D⟨𝜆𝑥.𝑡⟩(𝑢′, 𝑦.𝑟). Then 𝑡′1 →djv D⟨𝑟{𝑦\\𝑡{𝑥\\𝑢′}}⟩ = 𝑡′2. By two applica-
tions of lemma 3.92(iii), we have 𝑡′2 ≡jv 𝑡2.

Subcase 𝑡′1 = D⟨𝜆𝑥.𝑡⟩(𝑢, 𝑦.𝑟 ′). Then 𝑡′1 →djv D⟨𝑟 ′{𝑦\\𝑡{𝑥\\𝑢}}⟩ = 𝑡′2. By lemma 3.92(ii),
we have 𝑡′2 ≡jv 𝑡2.

Subcase 𝑡′1 = D′⟨𝜆𝑥.𝑡⟩(𝑢, 𝑦.𝑟). Then 𝑡′1 →djv D′⟨𝑟{𝑦\\𝑡{𝑥\\𝑢}}⟩ = 𝑡′2. We have 𝑡′2 ≡jv 𝑡2
directly.

In the bisimulation, notice that ≡𝜋 -equivalences are mapped to ≡𝜋 -equivalences, ≡arg-
equivalences to ≡arg-equivalences and ≡com-equivalences to ≡com-equivalences. This is what
allows us to define separate strong bisimulations for each of the equivalences, and in partic-
ular to consider →djv/≡com

in lemma 3.91.

Remark 3.94. The relation →djv/≡jv
allows us to simulate the calculus with permutations 𝜆𝜎v

in 𝜆𝐽𝑣 .

With the addition of the bisimulation to the calculus 𝜆𝐽𝑣 , we obtain a rich equational
theory for CbV generalized applications. An equational theory is the reflexive, symmetric,
transitive and contextual closure of a rewriting relation ℛ. We write =jv the equational
theory of 𝜆𝐽𝑣 with reduction →djv/≡jv

.
Accattoli and Guerrieri [AG22] also define an equational theory =vsub of 𝜆vsub modulo a

strong bisimulation ≡vsub on explicit substitutions. It is easy to prove that ≡jv simulates ≡vsub
and vice-versa. From this and the simulations given before, we can show the following:



182 3 Solvability for Generalized Applications

• There are no terms 𝑀,𝑁 ∈ T𝐸𝑆 such that 𝑀 =vsub 𝑁 and 𝑀 • ≠ 𝑁 •.

• There are no terms 𝑡 , 𝑢 ∈ T𝐽 such that 𝑡 =jv 𝑢 and 𝑀⭒ ≠ 𝑁⭒.

However, there are terms 𝑀,𝑁 ∈ T𝐸𝑆 such that 𝑀 ≠vsub 𝑁 but 𝑀 • =jv 𝑁 •.

Example 3.95. Let 𝑀 = 𝑥[𝑥/𝑦𝑦] and 𝑁 = 𝑦𝑦 . We have 𝑀 ≠vsub 𝑁 : indeed 𝑀 does not reduce
because 𝑦𝑦 is not a value. Yet, 𝑀 • = I(I(𝑦, 𝑧1.𝑦(𝑧1, 𝑧2.𝑧2)), 𝑥.𝑥) →djv I(𝑦(𝑦, 𝑧2.𝑧2), 𝑥.𝑥) →djv
𝑦(𝑦, 𝑥.𝑥) and 𝑁 • = I(𝑦, 𝑧1.𝑦(𝑧1, 𝑥.𝑥)) →djv 𝑦(𝑦, 𝑥.𝑥).

We also conjecture that the inverse is not true.

Conjecture 3.96. There are no two terms 𝑡 , 𝑢 ∈ T𝐽 such that 𝑡 ≠jv 𝑢 but 𝑡⭒ =vsub 𝑢⭒.

In general, Moggi’s identity rule 𝐼𝑁 → 𝑁 is not always respected in 𝜆vsub, despite its
apparent simplicity. This happens because of the blocking character of CbV reduction in
𝜆vsub. This equality always holds in 𝜆𝐽𝑣 , as mentioned on page 165: I(𝑢, 𝑧.𝑧) →djv 𝑢 for any
𝑢 ∈ T𝐽 .

By adopting a restricted syntax, compared to calculi with explicit substitutions (the terms
𝑥[𝑥/𝑦𝑦] and 𝑦𝑦 have a unique representation 𝑦(𝑦, 𝑥.𝑥)), as well as non-blocking CbV rules,
the calculus 𝜆𝐽𝑣 avoids some of the flaws of 𝜆vsub.

To repair Moggi’s identity in 𝜆vsub, Accattoli and Guerrieri [AG22] suggest to add a “glue”
rule O⟨⟨𝑥⟩⟩[𝑥/𝑁 ] → O⟨𝑁 ⟩ (where O is a weak open context). Semantically, this rule is natural,
and stays within the realm of CbV because it does not duplicate nor erase 𝑁 . However, the
addition of the glue rule is problematic: it breaks confluence of the relation →vsub. Accattoli
and Guerrieri claim that confluence is retrieved when adding the equivalence ≡vsub. Yet, they
do not give a proof, as proving confluence modulo equivalence is hard.

In 𝜆𝐽𝑣 , there is no need to add such a rule, since Moggi’s identity is already valid. The
semantics is kept simple, and confluence holds.

We conclude with the following conjectures.

Conjecture 3.97. Let =vsub+glue be the equational theory of 𝜆vsub equipped with ≡vsub and the
glue rule.

• There are no terms 𝑀,𝑁 ∈ T𝐸𝑆 such that 𝑀 ≠vsub+glue 𝑁 , but where 𝑀 • =jv 𝑁 •.

• There are no terms 𝑡 , 𝑢 ∈ T𝐽 such that 𝑡 ≠jv 𝑢 but where 𝑡⭒ =vsub+glue 𝑢⭒.

3.7 A Normalizing Strategy for Strong Evaluation
Accattoli, Guerrieri, and Leberle [AGL21] and Accattoli, Condoluci, and Sacerdoti Coen
[ACS21] define a normalizing strategy for the CbV calculus with ES, called external. This
strategy corresponds to the leftmost-outermost strategy of the λ-calculus, which reduces to
a strong normal form every term that possesses one, without looping on subterms that could
be erased.

However, their definition is complicated, as it resorts to two mutually recursive defini-
tions of contexts (rigid and external), and a specific grammar of “rigid” terms. A difficulty is
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that the only abstractions whose body must be reduced are the ones which are not applied.
Applied and non-applied abstractions are not evident to distinguish because some that are
inside explicit substitutions can be isolated from their argument.

We give new strategies for strong reductions for 𝜆𝐽𝑣 andΛ𝐽𝑣 . These strategies are remark-
ably simple, as they execute a transparent leftmost-outermost reduction. They constitute
straightforward extensions of weak evaluation, obtained by adding reduction under abstrac-
tions. Normalizing strategies for CbN strong evaluation would be defined in exactly the same
way, except for the base rules. Moreover, the grammars of strong normal forms are the same
in CbN and in CbV, and in the non-distant case represent the fully normal derivations of von
Plato. This shows again the advantages of generalized applications.

We prove the normalization property by characterizing the strategies in the quantitative
type system ∩𝑉 , with a special notion of types, taken from [AGL21].

Definition 3.98. The strong normal forms are defined as follows.

(Neutral normal forms) NEdjv ⩴ 𝑥 ∣ NEdjv(NFdjv, 𝑦.NEdjv)
(Normal forms) NFdjv ⩴ 𝑥 ∣ 𝜆𝑥.NFdjv ∣ NEdjv(NFdjv, 𝑦.NFdjv)

Definition 3.99. The distant leftmost-outermost value reduction →lov is defined by the
following rules.

𝑡 ↦d𝛽v
𝑡′

𝑡 →lov 𝑡′
𝑡 →lov 𝑡′

𝜆𝑥.𝑡 →lov 𝜆𝑥.𝑡′
𝑡 →lov 𝑡′ 𝑡 ≠ D⟨𝜆𝑥.𝑠⟩
𝑡(𝑢, 𝑦.𝑟) →lov 𝑡′(𝑢, 𝑦.𝑟)

𝑢 →lov 𝑢′ 𝑡 ∈ NEdjv

𝑡(𝑢, 𝑦.𝑟) →lov 𝑡(𝑢′, 𝑦.𝑟)

𝑟 →lov 𝑟 ′ 𝑡 ∈ NEdjv

𝑡(𝑢, 𝑦.𝑟) →lov 𝑡(𝑢, 𝑦.𝑟 ′)
Lemma 3.100. Let 𝑡 ∈ T𝐽 . Then 𝑡 ∈ NFdjv iff 𝑡 is in lov-nf.

Proof. We start with soundness: 𝑡 ∈ NFdjv ⟹ 𝑡 is in lov-nf. We show the following
two stronger properties:

(i) For all 𝑡 ∈ NEdjv, 𝑡 does not have an abstraction shape and 𝑡 is in lov-nf.

(ii) For all 𝑡 ∈ NFdjv, 𝑡 is in lov-nf.

The proof is by simultaneous induction on 𝑡 ∈ NEdjv and 𝑡 ∈ NFdjv.

Case 𝑡 = 𝑥 . Both statements are straightforward.

Case 𝑡 = 𝜆𝑥.𝑠 ∈ NFlov with 𝑠 ∈ NFdjv. By i.h. (ii), 𝑠 is in lov-nf. Hence so is 𝜆𝑥.𝑠.
Case 𝑡 = 𝑠(𝑢, 𝑦.𝑟) where 𝑠 ∈ NEdjv and 𝑢, 𝑟 ∈ NFdjv. By i.h. (i), 𝑠 is lov-normal and does

not have an abstraction shape. By i.h. (ii), 𝑢 and 𝑟 are lov-normal. Hence, 𝑡 is lov-
normal. Moreover, if 𝑡 ∈ NElov, then 𝑟 ∈ NElov and by i.h. (i), 𝑟 does not have an
abstraction shape, so that 𝑡 does not either.



184 3 Solvability for Generalized Applications

Now, completeness: 𝑡 is in lov-nf ⟹ 𝑡 ∈ NFdjv. We show a stronger property: For
all 𝑡 ,

(i) If 𝑡 does not have an abstraction shape and 𝑡 is in lov-nf, then 𝑡 ∈ NEdjv; and

(ii) If 𝑡 is in lov-nf, then 𝑡 ∈ NFdjv.

The proof is by induction on 𝑡 .
Case 𝑡 = 𝑥 . We have 𝑥 ∈ NEdjv and 𝑥 ∈ NFdjv.

Case 𝑡 = 𝜆𝑥.𝑠. Item (i) does not apply. Suppose 𝑡 is in djv-nf. Then so is 𝑠. By the i.h. (ii),
𝑠 ∈ NFdjv. Hence 𝜆𝑥.𝑠 ∈ NFdjv.

Case 𝑡 = 𝑠(𝑢, 𝑥.𝑟). Suppose 𝑡 is in djv-nf. Then 𝑠, 𝑢, 𝑟 are in djv-nf, hence 𝑢 ∈ NFlov and
𝑟 ∈ NFlov, by i.h. (i). The subterm 𝑠 does not have an abstraction shape, otherwise
𝑡 would be a d𝛽v-redex, thus 𝑠 ∈ NEdjv, by the i.h. (i). Therefore, 𝑡 ∈ NFdjv and (i)
is proved. Moreover, suppose 𝑡 does not have an abstraction shape. Then the same
holds for 𝑟 . By i.h. (i) 𝑟 ∈ NElov. Hence 𝑡 ∈ NEdjv and (i) is proved.

Property 3.101 (Diamond). The reduction→lov is diamond.

Proof. The only branching case is with a term 𝑡 = 𝑠(𝑢, 𝑦.𝑟), where 𝑠 ∈ NEdjv and 𝑢 →lov
𝑢′, 𝑟 →lov 𝑟 ′. Both terms 𝑠(𝑢′, 𝑦.𝑟) and 𝑠(𝑢, 𝑦.𝑟 ′) can be reduced in one lov-step to
𝑠(𝑢′, 𝑦.𝑟 ′).

The logical characterization of the leftmost-outermost value reduction is done again us-
ing the type system ∩𝑉 , with another restriction on types, as in the case of CbN [Kri02]. The
normalizing terms are the ones that can be assigned a shrinking type derivation. Once again,
this requirement can be verified locally on the last sequent of the derivation. The definition
is usually given using a polarity on the occurrences of types [AGK20], but a grammar of
types can be given directly, as done by Accattoli, Guerrieri, and Leberle [AGL21].

Definition 3.102 (Shrinking types). We distinguish left and right shrinking types 𝜎 l and 𝜎 r.

(Right shrinking types) 𝜎 r, 𝜏 r ⩴ 𝑎 ∈ 𝐵𝑇𝑉 ∣ ℳr ∣ ℳl → 𝜎 r

(Right shrinking multitypes) ℳr, 𝒩 r ⩴ [𝜎 r𝑖 ]𝑖∈𝐼 where 𝐼 is a non-empty finite set
(Left shrinking types) 𝜎 l, 𝜏 l ⩴ 𝑎 ∈ 𝐵𝑇𝑉 ∣ ℳl ∣ ℳr → 𝜎 l

(Left shrinking multitypes) ℳl, 𝒩 l ⩴ [𝜎 l𝑖 ]𝑖∈𝐼 where 𝐼 may be empty

A context Γ is left shrinking when for all 𝑥 ∶ ℳ ∈ Γ, ℳ is left shrinking.

Definition 3.103 (Shrinking derivation). A derivation Γ ⊩ 𝑡 ∶ 𝜎 is shrinking if Γ is left
shrinking and 𝜏 is a right shrinking type.

Subject reduction as well as expansion were shown earlier to hold for the full →djv rela-
tion. Thus, there are only two things we need to prove to achieve the characterization:
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1. A →lov-step diminishes the size of a shrinking derivation.

2. Terms in NFdjv are typable with a shrinking derivation.

First, we need a lemma on neutral normal forms.

Lemma 3.104. Let Γ ⊩ 𝑡 ∶ ℳ with Γ left shrinking and 𝑡 ∈ NEdjv. Then ℳ is left shrinking.

Proof. By induction on NEdjv.

Case 𝑡 = 𝑥 . Then the derivation is

𝑥 ∶ ℳ ⊢ 𝑥 ∶ ℳ
By definition, ℳ is left shrinking.

Case 𝑡 = 𝑠(𝑢, 𝑦.𝑟), where 𝑠 ∈ NEdjv and 𝑢, 𝑟 ∈ NFdjv. Then the derivation ends with

Γ𝑠 ⊩ 𝑠 ∶ [𝒩1 → 𝒩2] Γ𝑢 ⊩ 𝑢 ∶ 𝒩1 Γ𝑟 ; 𝑦 ∶ 𝒩2 ⊩ 𝑟 ∶ ℳ
Γ𝑠 ⊎ Γ𝑢 ⊎ Γ𝑟 ⊩ 𝑠(𝑢, 𝑦.𝑟) ∶ ℳ

By i.h. [𝒩1 → 𝒩2] is left shrinking so 𝒩2 is left shrinking. Then Γ𝑟 ; 𝑦 ∶ 𝒩2 is left
shrinking and we can use the i.h. on Γ𝑟 ; 𝑦 ∶ 𝒩2 ⊩ 𝑟 ∶ ℳ.

Lemma 3.105 (Weighted subject reduction). Let Γ ⊩𝑛1∩𝑉 𝑡1 ∶ 𝜎 with Γ left shrinking and, if
𝑡1 ≠ D⟨𝜆𝑥.𝑡⟩, 𝜎 right shrinking. Let 𝑡1 →djv 𝑡2. Then Γ ⊩𝑛2∩𝑉 𝑡2 ∶ 𝜎 with 𝑛1 > 𝑛2.

Proof. By induction on 𝑡1 →djv 𝑡2. The existence of the derivation of 𝑡2 is given by
lemma 3.56. We focus on showing that the stronger induction hypothesis where the size
of derivation decreases can be applied.

Case 𝑡1 ↦djv 𝑡2. By lemma 3.55, where the size of the derivation decreases for any typ-
ing.

Case 𝑡1 = 𝑡(𝑢, 𝑦.𝑟), and the reduction is internal. The derivation of 𝑡1 ends with an (APP)-
rule with premises: Γ𝑡 ⊩𝑛𝑡 𝑡 ∶ [ℳ → 𝒩 ], Γ𝑢 ⊩𝑛𝑢 𝑢 ∶ ℳ and Γ𝑟 ; 𝑥 ∶ 𝒩 ⊩𝑛𝑟 𝑟 ∶ 𝜎
such that 𝑛1 = 1+𝑛𝑡 +𝑛𝑢+𝑛𝑟 . Moreover, Γ𝑡 , Γ𝑢 and Γ𝑟 are left shrinking by hypothesis.
There are several subcases:

Subcase 𝑡1 = 𝑡(𝑢, 𝑦.𝑟) →djv 𝑡′(𝑢, 𝑦.𝑟) = 𝑡2, where 𝑡 →djv 𝑡′. Since 𝑡 ≠ D⟨𝜆𝑥.𝑠⟩, we
can apply the i.h. and obtain 𝑛𝑡 > 𝑛𝑡′ , so 𝑛1 > 𝑛2.

Subcase 𝑡1 = 𝑡(𝑢, 𝑦.𝑟) →djv 𝑡(𝑢′, 𝑦.𝑟) = 𝑡2, where 𝑢 →djv 𝑢′. Since 𝑡 ∈ NEdjv, by
lemma 3.104 [ℳ → 𝒩 ] is left shrinking so that ℳ is right shrinking. We can
apply the i.h. and obtain 𝑛𝑢 > 𝑛𝑢′ , so 𝑛1 > 𝑛2.
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Subcase 𝑡1 = 𝑡(𝑢, 𝑦.𝑟) →djv 𝑡(𝑢, 𝑦.𝑟 ′) = 𝑡2, where 𝑟 →djv 𝑟 ′. Since 𝑡 ≠ D⟨𝜆𝑥.𝑠⟩, by
hypothesis 𝜎 is right shrinking. Moreover, since 𝑡 ∈ NEdjv, by lemma 3.104
[ℳ → 𝒩 ] is left shrinking so that 𝒩 is left shrinking. Then Γ𝑟 ; 𝑦 ∶ 𝒩 is left
shrinking. We can apply the i.h. and obtain 𝑛𝑟 > 𝑛𝑟 ′ , so 𝑛1 > 𝑛2.

Case 𝑡1 = 𝜆𝑥.𝑡 →djv 𝜆𝑥.𝑡′ = 𝑡2. By hypothesis, we have 𝜎 = [ℳ𝑖 → 𝜎𝑖]𝑖∈𝐼 . Since 𝜎 is
right shrinking, 𝐼 is not empty. Thus, we have Γ𝑖 ; 𝑥 ∶ ℳ𝑖 ⊩𝑛𝑖 𝑡 ∶ 𝜎𝑖 for 𝑖 ∈ 𝐼 , where
Γ = ⊎𝑖∈𝐼Γ𝑖 and 𝑛1 = ∑𝑖∈𝐼 𝑛𝑖 . By definition, every Γ𝑖 and ℳ𝑖 are left shrinking, and
𝜎𝑖 is right shrinking. By the i.h., we have Γ𝑖 ; 𝑥 ∶ ℳ𝑖 ⊩𝑛′𝑖 𝑡′ ∶ 𝜎𝑖 for 𝑖 ∈ 𝐼 such that
𝑛𝑖 > 𝑛′𝑖 . We can build a derivation of size 𝑛2 = ∑𝑖∈𝐼 𝑛′𝑖 < ∑𝑖∈𝐼 𝑛𝑖 = 𝑛1.

Lemma 3.106. Let 𝑡 ∈ NFdjv. Then 𝑡 is typable in ∩𝑉 with a shrinking derivation.

Proof. We show the following statements by mutual induction on NFdjv and NEdjv.

(i) Let 𝑡 ∈ NEdjv. Then for all 𝜎 left shrinking, there is Γ left shrinking such that
Γ ⊩∩𝑉 𝑡 ∶ 𝜎 .

(ii) Let 𝑡 ∈ NFdjv. Then there are Γ left shrinking and 𝜎 right shrinking such that
Γ ⊩∩𝑉 𝑡 ∶ 𝜎 .

Case 𝑡 = 𝑥 . For all 𝜎 , there is a derivation

𝑥 ∶ [𝜎] ⊢ 𝑥 ∶ 𝜎
with 𝜎 left shrinking by hypothesis, which concludes item (i). Item (ii) holds by
taking 𝜎 different from [ ].

Case 𝑡 = 𝜆𝑥.𝑠, where 𝑠 ∈ NFdjv. Item (i) does not apply. By i.h. (ii), there are derivations
Γ𝑖 ; 𝑥 ∶ ℳ𝑖 ⊩ 𝑠 ∶ 𝜏𝑖 with all Γ𝑖 and ℳ𝑖 left shrinking and 𝜏𝑖 right shrinking. Then
there is a derivation Γ ⊩ 𝜆𝑥.𝑠 ∶ [ℳ𝑖 → 𝜏𝑖]𝑖∈𝐼 . We have 𝜎 = [ℳ𝑖 → 𝜏𝑖] right
shrinking.

Case 𝑡 = 𝑠(𝑢, 𝑦.𝑟), where 𝑠 ∈ NEdjv and 𝑢, 𝑟 ∈ NFdjv. By i.h. (ii), there are shrinking
derivation Γ𝑢 ⊩ 𝑢 ∶ 𝒩1 and Γ𝑟 ; 𝑦 ∶ 𝒩2 ⊩ 𝑟 ∶ 𝜎 . The type [𝒩1 → 𝒩2] is left shrinking
because 𝒩1 is right shrinking and 𝒩2 left shrinking. Thus, we can apply i.h. (i) and
get a derivation Γ𝑠 ⊩ 𝑠(𝑢, 𝑦.𝑟) ∶ 𝒩1 → 𝒩2. We conclude item (ii) by rule (APP). In
case (i), we have 𝑟 ∈ NEdjv, so that by i.h. for any ℳ we have Γ𝑟 ; 𝑦 ∶ 𝒩2 ⊩ 𝑟 ∶ ℳ,
and thus a derivation Γ𝑠 ⊎ Γ𝑢 ⊎ Γ𝑟 ⊩ 𝑠(𝑢, 𝑦.𝑟) ∶ ℳ.

Theorem 3.107 (Logical characterization of→lov-normalization). Let 𝑡 ∈ T𝐽 . Then 𝑡 is typable
iff 𝑡 is lov-normalizable.
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Proof. Soundness is by lemma 3.105, and the fact that the size of the derivation dimin-
ishes at each lov-steps. Completeness is by lemma 3.106 and the subject expansion
lemma 3.61.

Property 3.108 (Normalization for →lov). Let 𝑡 →∗
djv 𝑢 and 𝑢 ∈ NFdjv. Then 𝑡 →∗

lov 𝑢.

Proof. Similar as property 3.67. However, since the calculus is confluent, proving that 𝑡
necessarily lov-normalizes to the same term 𝑢.

A non-distant definition of the normalizing strategy is possible, and even simpler.

Definition 3.109. The local strong normal forms are as follows.

NFjv ⩴ 𝑥 ∣ 𝜆𝑥.NFjv ∣ 𝑥(NFjv, 𝑦.NFjv)

Definition 3.110. The local leftmost-outermost value reduction →llov is defined by the fol-
lowing rules.

𝑡 ↦{𝛽v,𝜋} 𝑡′
𝑡 →llov 𝑡′

𝑡 →llov 𝑡′
𝜆𝑥.𝑡 →llov 𝜆𝑥.𝑡′

𝑢 →llov 𝑢′
𝑥(𝑢, 𝑦.𝑟) →llov 𝑥(𝑢′, 𝑦.𝑟)

𝑟 →llov 𝑟 ′
𝑥(𝑢, 𝑦.𝑟) →llov 𝑥(𝑢, 𝑦.𝑟 ′)

This time, there is no side-condition on the first term of the application in the last two
rules, because it can only be a variable, thanks to 𝜋-reduction. There is also no rule to go left
of an application. This can be dispensed by applying permutations at root. A term 𝑡(𝑢, 𝑥.𝑟)
can always be reduced with 𝜋 to a term 𝑣(𝑢′, 𝑦.𝑟 ′). If 𝑣 is a variable we apply one of the two
inductive rules. If 𝑣 is an abstraction we simply apply 𝛽v.

Lemma 3.111. Let 𝑡 ∈ T𝐽 . Then 𝑡 ∈ NFjv iff 𝑡 is in llov-nf.

Proof. It is immediate by induction that a term of NFjv does not llov-reduce. Let 𝑡 be an
llov-normal term. By induction on 𝑡 :
Case 𝑡 = 𝑥 . Implies 𝑡 ∈ NFjv.

Case 𝑡 = 𝜆𝑥.𝑠. By i.h.

Case 𝑡 = 𝑠(𝑢, 𝑦.𝑟), where 𝑢 and 𝑟 are llov-normal. Since 𝑡 does not jv-reduce, 𝑠 is not an
abstraction nor an application. Then 𝑡 = 𝑥(𝑢, 𝑦.𝑟). We conclude since 𝑢, 𝑟 ∈ NFjv by
i.h.

The characterization and normalization theorems follow in a similar way as for the dis-
tant version.
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3.8 Conclusion

In this chapter, we have given a refined study of normalization of generalized applications
centered around the notion of solvability. We have first adapted existing definitions and prop-
erties to our CbN calculus. The study of CbN solvability prepares the one of CbV, notably
thanks to the similar reduction rules in both policies. This resemblance enables us to high-
light the differences between the characterizations of CbN and CbV solvability. We have
also extended the operational study of CbV generalized applications by defining a strong
bisimulation on T𝐽 -terms, as well as a normalizing strategy for strong reduction.

Call-by-value solvability Finding good operational formalisms for CbV is an active topic
of research (see [AG16]), with new insights from linear logic [Acc15; GPD17] and the sequent
calculus [HZ09]. The calculus 𝜆𝐽𝑣 holds a singular place, thanks to its natural way to deal
with stuck redexes and the non-blocking character of 𝛽v-reduction.

Call-by-value solvability is captured operationally in two other calculi: 𝜆𝜎v of Carraro and
Guerrieri [CG14], relying on permutation rules, and 𝜆vsub of Accattoli and Paolini [AP12].
Let us compare our characterization to these ones.

The solving relation has two principal advantages compared to 𝜆𝜎v . The first one is the
possibility to avoid independent permutation rules by adopting distance. This is useful since
permutation rules are not measured quantitatively by intersection types, and seems difficult
to implement in the calculus 𝜆𝜎v . Then, this calculus cannot be used for a quantitative analysis
of CbV. The second advantage is that generalized applications exhibit normal forms of the
shape 𝜆𝑥.𝑦(𝑢1, 𝑦1.𝑟1) … (𝑢𝑛, 𝑦𝑛.𝑟𝑛). This shape is the same as for CbN, and is reminiscent of
the shape of normal terms in 𝜆 (both with different conditions on the subterms). On the
contrary, normal forms of 𝜆𝜎v are made complex by constructs of the shape (𝜆𝑥.𝑡)(𝑦𝑢1…𝑢𝑛).
Yet, normal forms are a central notion when dealing with solvability in particular.

Normal forms in 𝜆vsub [AP12] do not contain function applications such as in 𝜆𝜎v above.
The solving normal forms in this calculus are similar to the ones of our distant solving re-
duction. However, an advantage of generalized applications is that 𝜋-permutation can be
used separately, to obtain very elementary normal forms, of the shape 𝜆𝑥.𝑦(𝑢, 𝑧.𝑟). The main
drawback of 𝜆vsub is its lower level of abstraction: 𝜆𝐽𝑣 andΛ𝐽𝑣 allow us to study foundational
concepts of CbV while keeping a level of abstraction close to the λ-calculus. Instead, 𝜆vsub
deals with an explicit treatment of substitution, and two computational rules. Some practical
matters blur the study of solvability, such as in [AG22], where some important properties do
not hold for the full semantics, but only when variables are not substituted.

Solvability in the 𝜆vsub-calculus has been captured logically by means of a quantitative
type system by Accattoli and Guerrieri [AG22], a characterization that we have adapted to
our setting. In the CbV type systems, solvability does not correspond to typability alone, but
to typability with a solvable type. Considering a λ-calculus with pattern matching, Buccia-
relli, Kesner, and Ronchi Della Rocca [BKR21] show that solvability in this calculus is cap-
tured by typability and inhabitation. We would like to know if this elegant solution extends
to CbV.
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Meaninglessness in CbV Now that CbV solvability is better understood, it appears that
this notion does not correspond to CbN solvability in spirit. In CbN, solvability identifies
meaningless terms, which can all be equated in a consistent theory of terms. The genericity
lemma makes this property formal by specifying that in any normalizing computation, we
can replace an unsolvable term by any other term.

Only a partial genericity lemma [GN16] can hold for CbV solvability, where the order (the
number of abstractions on top of a term) matters. Take for instance the normalizing reduction
(𝜆𝑧.𝑥)(𝜆𝑦.Ω, 𝑦.𝑦) →𝛽v 𝑥 . The term 𝜆𝑦.Ω is unsolvable, but replacing it with an unsolvable
of lesser order, such as Ω, gives rise to an infinite computation (𝜆𝑧.𝑥)(Ω, 𝑦.𝑦) →𝛽v 𝛿(𝛿, 𝑧.𝑦).

Meaninglessness in CbV is then still to be defined. Kennaway, van Oostrom, and de Vries
[KvOdV96] present three axioms for meaninglessness, from which genericity follows. These
axioms hold for potential valuability in 𝜆𝐽𝑣 and Λ𝐽𝑣 , but one of them fails for solvability.
However, it is not clear whether genericity can be deduced from these axioms for our setting.
In 𝜆vsub, the situation is the same, according to Accattoli and Guerrieri [AG22]. They also
prove that there are theories where potentially valuable terms can be consistently equated,
on the contrary to solvable terms.

This gives the impression that the correct notion of meaningfulness is given by potential
valuability (renamed scrutability by Accattoli and Guerrieri). To confirm this intuition, a
genericity lemma should be proved. A possibility is to adapt the proof of Kennaway, van
Oostrom, and de Vries [KvOdV96] to extensions of the λ-calculus. Another is to try to adapt
the simple proof of genericity for the CbN λ-calculus given by Takahashi [Tak94], or the one
of Kuper [Kup95] which takes advantage of the leftmost-outermost reduction.

A last argument in favor of potential valuability is the following. In CbN, the simplest
and original system of intersection types captures head normalization and solvability, and
other intersection type systems are derived by refinements. In CbV instead, the core type
system captures potential valuability, and some restrictions are needed for solvability.

While solvability turns out not to correspond to meaninglessness in CbV, the notion is
still interesting in its own right. It is a powerful property: a solvable term can be equated
to any other term, given a suitable context. Potential valuability instead is tied with weak
evaluation: a term is guaranteed to reduce to a value, but that value itself may diverge under
an abstraction when considering strong evaluation. On the operational level, the CbV solving
relation is an interesting intermediate between weak reduction and full reduction of terms,
like head reduction is in the CbN λ-calculus. The solving one does not force divergence,
while full reduction also reduces erasable subterms appearing as arguments of a variable.

A further open problem is to find a fully abstract model for the CbV λ-calculus. We would
like to see whether generalized applications help in this quest. In particular, it would be
interesting to understand CbV approximation for generalized applications, CbV Lévy-Longo
trees [DG01] based on weak evaluation, and possibly CbV Böhm trees [Bar84; KMP20] based
on the solvable reduction. We believe that the uncomplicated structure of jv-normal forms
makes generalized applications a tool of choice to define trees. We would then like to see if
one of those definitions helps in revisiting separability [Pao01] in the CbV setting.

Unlike our approach, which characterizes solvability in a calculus with an adequate se-
mantics, García-Pérez and Nogueira [GN16] are concerned with Plotkin’s original calculus.
They define CbV solvability from the operational viewpoint, thus changing the semantical
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model, and identify it to convertibility (as is usual) plus freezability. A partial genericity
lemma holds for this notion of solvability. They fail to give an operational characterization of
this new notion of CbV solvability, however, it might be easier to express inside generalized
applications. We can also wonder what a notion of solvability defined from the operational
semantics of Λ𝐽 or Λ𝐽𝑣 with 𝜋 would be.

Abstract machines and relation to ANF In the introduction, we discussed how calculi with
generalized applications equipped with permutation 𝜋 implement sharing of applications and
the search for a redex, making them an intermediate between the λ-calculus and abstract
machines.

How do we obtain an abstract machine from a calculus with generalized applications? Ev-
ery transition (reduction step) of a machine should be executed with elementary operations.
Substitution, in particular, is delayed and done one occurrence at a time, on the variable un-
der focus [ABM14]. Therefore, the principal missing ingredient to obtain an abstract machine
from a calculus with rule 𝜋 is an explicit treatment of substitutions that linearizes them.

The first concrete implementation of generalized applications to consider is weak-head
evaluation on closed terms, that is adopted by general-purpose functional languages. Non-
eager evaluation is implemented with CbNeed rather than CbN, to avoid code duplication.
Adapting generalized applications to CbNeed remains future work. Thus, let us consider
call-by-value.

In CbV (and CbNeed), rule 𝜋 is quantitatively sound. Yet another simplification of the
terms can be proposed, relying on the rule arg, defined as an equivalence in section 3.6.2.

𝑡2(𝑡1(𝑢1, 𝑥.𝑢2), 𝑦.𝑟) ↦arg 𝑡1(𝑢1, 𝑥.𝑡2(𝑢2, 𝑦.𝑟))
Why is this rule interesting? The (𝜋, arg)-normal forms give a simpler grammar of terms,
which is stable by 𝛽v-reduction. In that grammar, all applications are of the shape 𝑣1(𝑣2, 𝑥.𝑟).
Applications are always a value applied to a value and are named. This reveals the strong
link between generalized applications and administrative normal forms [SF93; Fla+93] (or
the closely related monadic languages [BKR98]). In ANF, the same restrictions on applica-
tions hold: all applications are made of a value applied to values, and are shared over a
let-binding. Generalized eliminations could be understood as a proof-theoretical foundation
of ANF, which were devised syntactically by simplifications of CPS.

Accattoli, Condoluci, Guerrieri, and Sacerdoti Coen [Acc+19] revisit ANF in a call-by-
value calculus with ES, to derive simple and complexity-efficient abstract machines. They
use a translation of terms with ES that they call crumbling to obtain the specific shape of
ANF. We expect a CbV abstract machine for generalized applications to be similar to the
crumbling machine of [Acc+19], with less overhead on the search for a redex.

In our case though, going from arbitrary terms with generalized applications to the re-
stricted ANF form is very natural: it corresponds to a preliminary (𝜋, arg)-full normalization.
This preprocessing is even useful in more abstract studies of CbV, as it does not influence
the qualitative and quantitative semantics of the reduction, but allow for a much simpler
grammar of terms and normal forms.

One difference between ANF/crumbles and our grammar of terms, is in tail calls. The
former languages accept tail calls, that are not named. In generalization applications, every
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application is named, and tail calls are represented with a dummy continuation 𝑧.𝑧. This
feature is important, as it enables all terms to be of the shape D⟨𝑣⟩. In other words, every
term can be assimilated to a value surrounded by an environment.

In the literature and in practice, ANFs is used as intermediate compiler representation,
alternative to CPS. ANFs adopt a direct style, rather than continuation-passing, which avoids
the long terms of CPS, as well as bureaucratic reductions. In response to the long-standing de-
bate between ANF and CPS [App91; Ken07] (see a summary in [Con+19]), Maurer, Downen,
Ariola, and Jones [Mau+17] suggested using a direct style representation with explicit join
points, while Cong, Osvald, Essertel, and Rompf [Con+19] propose a direct style representa-
tion with possibilities to perform CPS selectively. We would like to investigate generalized
applications as an intermediate representation, and see in particular how it fits into the above.
For this, extending the grammar of terms and the set of conversion rules to manage other
constructors is necessary.





CHAPTER4
AQuantitative Call-by-Name

Calculus with Generalized
Applications

In this chapter, we discuss the theory of the CbN variant ofΛ𝐽 called 𝜆𝐽𝑛, which uses distance
based on rule p2 instead of 𝜋 . Some properties of the calculus are given in section 4.2: ter-
mination of simply typed terms and normal forms, confluence and the subformula property.
An inductive definition of strong normalization is given in section 4.3.

The calculus Λ𝐽 is not quantitatively well-behaved, a concrete example of failure of sub-
ject reduction is given in section 4.4.3. We show that, on the contrary, it is the case for 𝜆𝐽𝑛
by giving a non-idempotent intersection type system for the calculus in section 4.4.

Qualitatively, we show that strong normalization is preserved with respect to the λ-
calculus (with explicit substitutions) in section 4.5. Yet, we need to define a different trans-
lation to explicit substitutions, as the usual one creates divergence. We also prove that the
choice of distance does not influence strong normalization, as it is equivalent to a calculus
with 𝛽 and p2 separate (section 4.6.2).

We finish by equating strong normalization of the new and the original CbN calculus
𝜆𝐽𝑛 and Λ𝐽 in section 4.6.3. Thus, the changes to the calculus justified by the quantitative
model do not affect qualitative properties. For this proof, we give a new inductive definition
of strong normalization for →jn.

4.1 Towards a Call-by-Name Operational Semantics
The syntax of T𝐽 can be equipped with different rewriting rules. We use the generic notation
T𝐽 [ℛ]to denote the calculus given by the syntax T𝐽 equipped with the reduction relation
→ℛ .

Now, if we consider 𝑡0 ≔ 𝑡(𝑢, 𝑦.𝜆𝑥.𝑠)(𝑢′, 𝑧.𝑟 ′) in the calculus T𝐽 [𝛽], we can see that the
term 𝑡0 is stuck since the subterm 𝜆𝑥.𝑠 is not close to 𝑢′. This is when rule 𝜋 , plays the role
of an unblocker of 𝛽-redexes:

𝑡0 →𝜋 𝑡(𝑢, 𝑦.(𝜆𝑥.𝑠)(𝑢′, 𝑧.𝑟 ′)) →𝛽 𝑡(𝑢, 𝑦.𝑟 ′{𝑧/𝑠{𝑥/𝑢′}})
More generally, given 𝑡 ≔ D⟨𝜆𝑥.𝑠⟩(𝑢, 𝑦.𝑟) with D ≠ ◊, a sequence of 𝜋-steps reduces the term
𝑡 above to D⟨(𝜆𝑥.𝑠)(𝑢, 𝑦.𝑟)⟩. A further 𝛽-step produces D⟨𝑟{𝑦/𝑠{𝑥/𝑢}}⟩. So, the original Λ𝐽 -
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calculus, which is exactly T𝐽 [𝛽, 𝜋], has a derived notion of distant 𝛽 rule, based on 𝜋 . This
rule d𝛽𝜋 is specified as follows.

D⟨𝜆𝑥.𝑠⟩(𝑢, 𝑦.𝑟) ↦d𝛽𝜋 D⟨𝑟{𝑦/𝑠{𝑥/𝑢}}⟩ (4.1)

Still, we will not reduce as in (4.1) because such rule, as well as 𝜋 itself, does not admit
a quantitative semantics (see section 4.4.3). We then choose to unblock 𝛽-redexes with rule
p2 given in section 3.1.2 instead:1

𝑡(𝑢, 𝑦.𝜆𝑥.𝑠) ↦p2 𝜆𝑥.𝑡(𝑢, 𝑦.𝑠)
We retrieve rule d𝛽 by integrating p2 inside 𝛽 :

D⟨𝜆𝑥.𝑡⟩(𝑢, 𝑦.𝑟) →d𝛽 𝑟 {𝑦/𝑡{𝑥/D⟨𝑢⟩}}
Note that since the free variables in 𝑢 cannot be captured by D, the right-hand term is equal
to 𝑟{𝑦/D⟨𝑡{𝑥/𝑢}⟩}.

Comparing the two rules d𝛽𝜋 and d𝛽 gives a first intuition on why the first one is not
quantitatively correct. In the rule d𝛽𝜋 , the distant context is put on the exterior of the two
substitutions: a unique copy is kept, which is independent from the number of occurrences
of 𝑦 in 𝑟 . This is a CbV behavior, that does not erase or duplicate computations. On the
contrary, the distant context may be erased or duplicated in rule d𝛽 , according to the number
of occurrence of 𝑦 in 𝑟 . This is the situation that was already described in section 3.1.

In summary, applying a permutation 𝜋 does not preserve the length of reduction to nor-
mal form in a CbN setting. Therefore, this semantics is not sound for a resource-aware model,
such as the one given by a quantitative type system. In practice, subject reduction does not
hold for (a rule relying on) 𝜋 , as is shown in section 4.4.3.

4.2 Some (Un)typed Properties of 𝜆𝐽𝑛
Lemma 4.1. The grammar NFdjn characterizes djn-normal forms. Notice that the grammar is
exactly the same as the one for NFdjv.

NFdjn ⩴ 𝑥 ∣ 𝜆𝑥.NFdjn ∣ NEdjn(NFdjn, 𝑥.NFdjn)
NEdjn ⩴ 𝑥 ∣ NEdjn(NFdjn, 𝑥.NEdjn)

Proof. We start with soundness: 𝑡 ∈ NFdjn ⟹ 𝑡 is in djn-nf. We show the following
two stronger properties:

(i) For all 𝑡 ∈ NEdjn, 𝑡 does not have an abstraction shape and 𝑡 is in djn-nf.

(ii) For all 𝑡 ∈ NFdjn, 𝑡 is in djn-nf.

The proof is by simultaneous induction on 𝑡 ∈ NEdjn and 𝑡 ∈ NFdjn.

1Rule p2 is used in [EP03; EFP06] along with two other permutation rules p1 and p3 to reduce T𝐽 -terms to
a fragment isomorphic to natural deduction.
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First, the cases relative to (i).

Case 𝑡 = 𝑥 . A variable 𝑥 does not have an abstraction shape and is in djn-nf.

Case 𝑡 = 𝑠(𝑢, 𝑥.𝑟), with 𝑠, 𝑟 ∈ NEdjn and 𝑢 ∈ NFdjn. The term 𝑡 does not have an abstrac-
tion shape (because 𝑟 does not have an abstraction shape, due to i.h. (i)). The term 𝑡
is in djn-nf because 𝑠, 𝑢, 𝑟 are in djn-nf (due to i.h. (i),(ii)) and because 𝑡 itself is not
a djn-redex (since 𝑠 does not have an abstraction shape, by i.h. (i)).

Next, the cases relative to (ii).

Case 𝑡 = 𝑥 . A variable 𝑥 is in djn-nf.

Case 𝑡 = 𝜆𝑥.𝑠, with 𝑠 ∈ NFdjn. By i.h. (ii), 𝑠 is in djn-nf. Hence so is 𝜆𝑥.𝑠.
Case 𝑡 = 𝑠(𝑢, 𝑥.𝑟), with 𝑠 ∈ NEdjn and 𝑢, 𝑟 ∈ NFdjn. The term 𝑡 is in djn-nf because 𝑠, 𝑢, 𝑟

are in djn-nf (due to i.h. (i),(ii)) and because 𝑡 itself is not a djn-redex (since 𝑠 does
not have an abstraction shape, by i.h. (i)).

Now, completeness: 𝑡 is in djn-nf ⟹ 𝑡 ∈ NFdjn. We show a stronger property: For
all 𝑡 ,

(i) If 𝑡 does not have an abstraction shape and 𝑡 is in djn-nf, then 𝑡 ∈ NEdjn; and

(ii) If 𝑡 is in djn-nf, then 𝑡 ∈ NFdjn.

The proof is by induction on 𝑡 .
Case 𝑡 = 𝑥 . We have 𝑥 ∈ NEdjn and 𝑥 ∈ NFdjn.

Case 𝑡 = 𝜆𝑥.𝑠. Part (i) is trivial. Suppose 𝑡 is in djn-nf. Then so is 𝑠. By the i.h. (i),
𝑠 ∈ NFdjn. Hence 𝜆𝑥.𝑠 ∈ NFdjn.

Case 𝑡 = 𝑠(𝑢, 𝑥.𝑟). Suppose 𝑡 is in djn-nf. Then 𝑠, 𝑢, 𝑟 are in djn-nf, hence 𝑢 ∈ NFdjn and
𝑟 ∈ NFdjn, by i.h. (i). The subterm 𝑠 does not have an abstraction shape, otherwise
𝑡 would be a d𝛽-redex, thus 𝑠 ∈ NEdjn, by the i.h. (i). Therefore, 𝑡 ∈ NFdjn and (i)
is proved. Moreover, suppose 𝑡 does not have an abstraction shape. Then the same
holds for 𝑟 . By i.h. (i) 𝑟 ∈ NEdjn. Hence 𝑡 ∈ NEdjn and (i) is proved.

We already saw that, once 𝛽 is generalized to d𝛽 , 𝜋 is not needed anymore to unblock
𝛽-redexes; the next lemma says that 𝜋 preserves djn-nfs, so it does not bring anything new
to djn-nfs either.

Lemma 4.2. If 𝑡 is a djn-nf, and 𝑡 →𝜋 𝑡′, then 𝑡′ is a djn-nf.

Proof. Given lemma 4.1, the proof proceeds by simultaneous induction on NFdjn and
NEdjn (for NEdjn one also proves that NEdjn does not have an abstraction shape).
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Let us now discuss two properties related to (simple) typability for generalized applica-
tions, using the original system of Joachimski and Matthes [JM00], which we call here 𝑆𝑇 .
Recall the following typing rules, where 𝐴, 𝐵, 𝐶 ⩴ 𝑎 ∣ 𝐴 → 𝐵, and 𝑎 belongs to a set of base
type variables:

Γ; 𝑥 ∶ 𝐴 ⊢ 𝑥 ∶ 𝐴
Γ; 𝑥 ∶ 𝐴 ⊢ 𝑡 ∶ 𝐵
Γ ⊢ 𝜆𝑥.𝑡 ∶ 𝐴 → 𝐵

Γ ⊢ 𝑡 ∶ 𝐴 → 𝐵 Γ ⊢ 𝑢 ∶ 𝐴 Γ; 𝑦 ∶ 𝐵 ⊢ 𝑟 ∶ 𝐶
Γ ⊢ 𝑡(𝑢, 𝑦.𝑟) ∶ 𝐶

Subformula property. The subformula property for normal forms is an important property
of proof systems, being useful notably for proof search. It holds for von Plato’s generalized
natural deduction, and therefore also for the original calculus Λ𝐽 . Despite the absence of full
normal forms and the minimal amount of permutations used, this property is still true in our
system.

Lemma 4.3 (Subformula property). IfΦ = Γ ⊩𝑆𝑇 NFdjn ∶ 𝜏 then every formula in the derivation
Φ is a subformula of 𝜏 or a subformula of some formula in Γ.

Proof. The lemma is proved together with another statement: If Ψ = Γ ⊩𝑆𝑇 NEdjn ∶ 𝜏
then every formula in Ψ is a subformula of some formula in Γ. The proof is by simulta-
neous induction of Φ and Ψ.

The subformula property confirms that executing only needed permutations still gives rise
to a reasonable notion of normal form.

Termination of simply-typed terms. The second property we show is the typical property
that simply typable terms are strongly normalizable. The proof is by the map into the 𝜆-
calculus which produces a simulation when the 𝜆-calculus is equipped with the following
𝜎-rules [Reg94]:

(𝜆𝑥.𝑀)𝑁𝑁 ′ ↦𝜎1 (𝜆𝑥.𝑀𝑁 ′)𝑁 (𝜆𝑥.𝜆𝑦.𝑀)𝑁 ↦𝜎2 𝜆𝑦.(𝜆𝑥.𝑀)𝑁

Theorem 4.4. If 𝑡 is simply typable, i.e. Γ ⊩𝑆𝑇 𝑡 ∶ 𝜎 , then 𝑡 ∈ SN(djn).

Proof. The proof uses the traditional map into the 𝜆-calculus given in definition 3.1. This
map produces the following simulation: if 𝑡1 →djn 𝑡2 then 𝑡#1 →+𝛽𝜎1 𝑡#2 . The proof of the
simulation result is by induction on 𝑡1 →djn 𝑡2. The base case needs two lemmas: the
first one states that map (_)# commutes with substitution; the other, proved by induction
on D, states that D⟨𝜆𝑥.𝑡⟩#𝑢# →+𝛽𝜎1 D⟨𝑡{𝑥/𝑢}⟩#.

Now, given simply typable 𝑡 ∈ T𝐽 , the λ-term 𝑡# is also simply typable in the λ-
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calculus. Hence, 𝑡# ∈ SN(𝛽). It is well known that this is equivalent [Reg94] to 𝑡# ∈
SN(𝛽, 𝜎1). By the simulation result, 𝑡 ∈ SN(djn) follows.

Confluence We now prove confluence of the calculus. For this, we adapt the proof of
Takahashi [Tak95]. The same proof method is used for Λ𝐽 by Joachimski and Matthes [JM00]
and by Espírito Santo [Esp20] for Λ𝐽𝑣 . We begin by defining the following parallel reduction
⇒:

𝑥 ⇒djn 𝑥 (VAR)
𝑡 ⇒djn 𝑡′

𝜆𝑥.𝑡 ⇒djn 𝜆𝑥.𝑡′ (ABS)

𝑡 ⇒djn 𝑡′ 𝑢 ⇒djn 𝑢′ 𝑟 ⇒djn 𝑟 ′
𝑡(𝑢, 𝑥.𝑟) ⇒djn 𝑡′(𝑢′, 𝑥.𝑟 ′) (APP)

D⟨𝑡⟩ ⇒djn 𝑡′ 𝑢 ⇒djn 𝑢′ 𝑟 ⇒djn 𝑟 ′
D⟨𝜆𝑥.𝑡⟩(𝑢, 𝑦.𝑟) ⇒djn 𝑟 ′{𝑦/𝑡′{𝑥/𝑢′}} (DB)

The particularity of our proof is the following lemma which deals with distance.

Lemma 4.5. Let 𝑡1 = D⟨𝑡⟩ ⇒djn 𝑡2. Then there are D′, 𝑡′ such that 𝑡2 = D′⟨𝑡′⟩ and D⟨𝜆𝑥.𝑡⟩ ⇒djn
D′⟨𝜆𝑥.𝑡′⟩.

Proof. By induction on D.

Case D = ◊. We take D′ = ◊, 𝑡′ = 𝑡2. We have 𝜆𝑥.𝑡1 ⇒djn 𝜆𝑥.𝑡2 by rule (ABS).

Case D = 𝑠(𝑢, 𝑦.D0) and 𝑡1 = 𝑠(𝑢, 𝑦.D0⟨𝑡⟩) ⇒djn 𝑠′(𝑢′, 𝑦.𝑟) = 𝑡2 by rule (APP). By hy-
pothesis, we have 𝑠 ⇒djn 𝑠′, 𝑢 ⇒djn 𝑢′ and D0⟨𝑡⟩ ⇒djn 𝑟 . By i.h. 𝑟 = D1⟨𝑡′⟩ and
D0⟨𝜆𝑥.𝑡⟩ ⇒djn D1⟨𝜆𝑥.𝑡′⟩. We conclude by taking D′ = 𝑠′(𝑢′, 𝑦.D1).

Case D = D0⟨𝜆𝑧.𝑠⟩(𝑢, 𝑦.D1) and 𝑡1 = D0⟨𝜆𝑧.𝑠⟩(𝑢, 𝑦.D1⟨𝑡⟩) ⇒djn 𝑟{𝑦/𝑠′{𝑥/𝑢′}} = 𝑡2 by (ABS).
By hypothesis, we have D0⟨𝜆𝑧.𝑠⟩ ⇒djn 𝑠′, 𝑢 ⇒djn 𝑢′ and D1⟨𝑡⟩ ⇒djn 𝑟 . By i.h.
𝑟 = D2⟨𝑡″⟩ and D1⟨𝜆𝑥.𝑡⟩ ⇒djn D2⟨𝜆𝑥.𝑡″⟩. We can assume by 𝛼-equivalence that
the free variables of 𝑢′ and 𝑠′ are not bound by D2. We take D′ = D2{𝑦/𝑠′{𝑧/𝑢′}}
and 𝑡′ = 𝑡″{𝑦/𝑠′{𝑧/𝑢′}}. Thus, we have D′⟨𝜆𝑥.𝑡′⟩ = D2⟨𝜆𝑥.𝑡″⟩{𝑦/𝑠′{𝑧/𝑢′}} and we can
conclude D⟨𝜆𝑥.𝑡⟩ = D0⟨𝜆𝑧.𝑠⟩(𝑢, 𝑦.D1⟨𝜆𝑥.𝑡⟩) ⇒djn D′⟨𝜆𝑥.𝑡′⟩ by i.h. and rule (ABS).

Lemma 4.6. Let 𝑦 ∉ fv(𝑢). Then 𝑡{𝑦/𝑟}{𝑥/𝑢} = 𝑡{𝑥/𝑢}{𝑦/𝑟{𝑥/𝑢}}.

Proof. Straightforward by induction on 𝑡 .

Lemma 4.7. Let 𝑡1, 𝑡2, 𝑢1, 𝑢2 ∈ T𝐽 . Then:

(i) If 𝑡1 →djn 𝑡2, then 𝑡1 ⇒djn 𝑡2.
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(ii) If 𝑡1 ⇒djn 𝑡2, then 𝑡1 →∗
djn 𝑡2.

(iii) If 𝑡1 ⇒djn 𝑡2 and 𝑢1 ⇒djn 𝑢2, then 𝑡1{𝑧/𝑢1} ⇒djn 𝑡2{𝑧/𝑢2}.

Proof. The proof of the first statement is by induction on 𝑡1 →djn 𝑡2. In the base case
𝑡1 = D⟨𝜆𝑥.𝑡⟩(𝑢, 𝑦.𝑟) →d𝛽 𝑟{𝑦/D⟨𝑡⟩{𝑥/𝑢}} = 𝑡2, we use rule (DB) with premises D⟨𝑡⟩ ⇒djn
D⟨𝑡⟩, 𝑢 ⇒djn 𝑢 and 𝑟 ⇒djn 𝑟 . The other cases are straightforward by i.h. and rules (ABS)
or (APP).

The proof of the second statement is by induction on 𝑡1 ⇒djn 𝑡2. The base case
(VAR) is by an empty reduction 𝑡1 = 𝑥 = 𝑡2. The cases (ABS) and (APP) are direct by i.h.
The case left is (DB), with 𝑡1 = D⟨𝜆𝑥.𝑡⟩(𝑢, 𝑦.𝑟) ⇒djn 𝑟 ′{𝑦/𝑡′{𝑥/𝑢′}} = 𝑡2 with hypothesis
D⟨𝑡⟩ ⇒djn 𝑡′, D⟨𝑢⟩ ⇒djn 𝑢′ and D⟨𝑟⟩ ⇒djn 𝑟 ′. By lemma 4.5, there are D′, 𝑡″ such
that D⟨𝜆𝑥.𝑡⟩ ⇒djn D′⟨𝜆𝑥.𝑡″⟩ and 𝑡′ = D′⟨𝑡″⟩. By i.h. we have D⟨𝜆𝑥.𝑡⟩ →∗

djn D′⟨𝜆𝑥.𝑡″⟩,
𝑢 →∗

djn 𝑢′ and 𝑟 →∗
djn 𝑟 ′. We have the following reduction:

𝑡1 →∗
djn D′⟨𝜆𝑥.𝑡″⟩(𝑢′, 𝑦.𝑟 ′) →djn 𝑟 ′{𝑦/D′⟨𝑡″⟩{𝑥/𝑢′}} = 𝑡2.

The proof of the third statement is also by induction on 𝑡1 ⇒djn 𝑡2.

Case (VAR). Then 𝑡1 is a variable. If 𝑡1 = 𝑧, we have 𝑡1{𝑧/𝑢1} = 𝑢1, 𝑡2{𝑧/𝑢2} = 𝑢2 and this
is direct by the second hypothesis. If 𝑡1 = 𝑦 ≠ 𝑧, we have 𝑡1{𝑧/𝑢1} = 𝑦 = 𝑡2{𝑧/𝑢2}, this
is direct by (VAR).

Case (ABS). Then 𝑡1 = 𝜆𝑥.𝑡 ⇒djn 𝜆𝑥.𝑡′ = 𝑡2, where w.l.o.g. 𝑥 ≠ 𝑧 and 𝑥 ∉ fv(𝑢1) ∪ fv(𝑢2)
and such that 𝑡 ⇒djn 𝑡′. By i.h. we have 𝑡1{𝑧/𝑢1} = 𝜆𝑥.𝑡{𝑧/𝑢1} ⇒djn 𝜆𝑥.𝑡′{𝑧/𝑢2} =
𝑡2{𝑧/𝑢2}.

Case (APP). Then 𝑡1 = 𝑡(𝑢, 𝑥.𝑟) ⇒djn 𝑡′(𝑢′, 𝑥.𝑟 ′) = 𝑡2, where w.l.o.g. 𝑥 ≠ 𝑧 and 𝑥 ∉
fv(𝑢1) ∪ fv(𝑢2) and such that 𝑡 ⇒djn 𝑡′, 𝑢 ⇒djn 𝑢′ and 𝑟 ⇒djn 𝑟 ′. By i.h. we have
𝑡1{𝑧/𝑢1} = 𝑡{𝑧/𝑢1}(𝑢{𝑧/𝑢1}, 𝑥.𝑟{𝑧/𝑢1}) ⇒djn 𝑡′{𝑧/𝑢1}(𝑢′{𝑧/𝑢1}, 𝑥.𝑟 ′{𝑧/𝑢1}) = 𝑡2{𝑧/𝑢1}.

Case (DB). Then 𝑡1 = D⟨𝜆𝑥.𝑡⟩(𝑢, 𝑦.𝑟) ⇒djn 𝑟{𝑦/𝑡′{𝑥/𝑢′}} = 𝑡2 where w.l.o.g 𝑥, 𝑦 ≠ 𝑧
and 𝑥, 𝑦 ∉ fv(𝑢1) ∪ fv(𝑢2), D does not capture free variables of 𝑢1, 𝑢2, and such that
D⟨𝑡⟩ ⇒djn 𝑡′, 𝑢 ⇒djn 𝑢′ and 𝑟 ⇒djn 𝑟 ′. By i.h. we have D⟨𝑡⟩{𝑧/𝑢1} ⇒djn 𝑡′{𝑧/𝑢2},
𝑢{𝑧/𝑢1} ⇒djn 𝑢′{𝑧/𝑢2} and 𝑟{𝑧/𝑢1} ⇒djn 𝑟 ′{𝑧/𝑢2}. Let D⟨𝑡⟩{𝑧/𝑢1} = D{𝑧/𝑢1}⟨𝑡{𝑧/𝑢1}⟩. By
rule (DB), we infer

𝑡{𝑧/𝑢1}1 = D{𝑧/𝑢1}⟨𝜆𝑥.𝑡{𝑧/𝑢1}⟩(𝑢{𝑧/𝑢1}, 𝑦.𝑟{𝑧/𝑢1})
⇒djn 𝑟{𝑧/𝑢2}{𝑦/𝑡′{𝑧/𝑢2}{𝑥/𝑢′{𝑧/𝑢2}}}
= 𝑡2{𝑧/𝑢2} (by lemma 4.6 twice)

Lemmas 4.7(i) and 4.7(ii) imply that →∗
djn is the transitive and reflexive closure of ⇒djn.

We now only need to prove the diamond property for ⇒djn to conclude. The difference
between Takahashi’s method and the more usual Tait and Martin-Löfs’s method [Bar84, §3.2]
is to replace the proof of diamond for the parallel reduction by a proof of the triangle property.
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Definition 4.8 (Triangle property). Let →ℛ be a reduction relation on T𝐽 and 𝑓 a function.
(→ℛ , 𝑓 ) satisfies the triangle property if, for any 𝑡 ∈ T𝐽 , 𝑡 →ℛ 𝑡′ implies 𝑡′ →ℛ 𝑓 (𝑡).

Definition 4.9 (Developments). The d𝛽-development (𝑡)d𝛽 of a T𝐽 -term 𝑡 is defined as follows.

(𝑥)d𝛽 = 𝑥 (𝑡(𝑢, 𝑦.𝑟))d𝛽 = {(𝑟)
d𝛽 {𝑦/(D⟨𝑡′⟩)d𝛽 {𝑥/(𝑢)d𝛽 }}, if 𝑡 = D⟨𝜆𝑥.𝑡′⟩

(𝑡)d𝛽((𝑢)d𝛽 , 𝑥.(𝑟)d𝛽), otherwise(𝜆𝑥.𝑡)d𝛽 = 𝜆𝑥.(𝑡)d𝛽

Lemma 4.10 (Triangle property of (⇒djn, (⋅)d𝛽)). Let 𝑡1 ⇒djn 𝑡2. Then 𝑡2 ⇒djn (𝑡1)d𝛽 .

Proof. By induction on 𝑡1.

Case 𝑡1 = 𝑥 . Then 𝑡1 = 𝑡2 = (𝑡1)d𝛽 and we conclude with rule (VAR).

Case 𝑡1 = 𝜆𝑥.𝑡 . Then 𝑡1 ⇒djn 𝑡2 = 𝜆𝑥.𝑡′ by rule (ABS). We have (𝑡1)d𝛽 = 𝜆𝑥.(𝑡)d𝛽 . By i.h.
𝑡′ ⇒djn (𝑡)d𝛽 . By (ABS), 𝜆𝑥.𝑡′ ⇒djn 𝜆𝑥.(𝑡)d𝛽 .

Case 𝑡1 = 𝑡(𝑢, 𝑦.𝑟), where 𝑡 ≠ D⟨𝜆𝑥.𝑡′⟩. Then 𝑡1 ⇒djn 𝑡2 = 𝑡′(𝑢′, 𝑦.𝑟 ′) by rule (APP). We
have (𝑡1)d𝛽 = (𝑡)d𝛽((𝑢)d𝛽 , 𝑦.(𝑟)d𝛽). By i.h. 𝑡′ ⇒djn (𝑡)d𝛽 , 𝑢′ ⇒djn (𝑢)d𝛽 and 𝑟 ′ ⇒djn

(𝑟)d𝛽 . By (APP), 𝑡′(𝑢′, 𝑦.𝑟 ′) ⇒djn (𝑡1)d𝛽 .

Case 𝑡1 = D⟨𝜆𝑥.𝑡⟩(𝑢, 𝑦.𝑟). Then (𝑡1)d𝛽 = (𝑟)d𝛽 {𝑦/(D⟨𝑡⟩)d𝛽 {𝑥/(𝑢)d𝛽 }}. There are two sub-
cases. In both cases we have 𝑢 ⇒djn 𝑢′ and 𝑟 ⇒djn 𝑟 ′ and thus by i.h. 𝑢′ ⇒djn (𝑢)d𝛽
and 𝑟 ⇒djn (𝑟)d𝛽 .

Subcase (APP). Then D⟨𝜆𝑥.𝑡⟩ ⇒djn 𝑡′. By a reasoning similar to lemma 4.5, we can
show that 𝑡′ = D′⟨𝜆𝑥.𝑡″⟩ and that D⟨𝑡⟩ ⇒djn D′⟨𝑡″⟩. Thus 𝑡2 = D′⟨𝜆𝑥.𝑡″⟩(𝑢′, 𝑦.𝑟 ′)
and by i.h. D′⟨𝑡″⟩ ⇒djn (D⟨𝑡⟩)d𝛽 . We use rule (DB) with the three i.h. as
premises to derive 𝑡2 ⇒djn (𝑟)d𝛽 {𝑦/(D⟨𝑡⟩)d𝛽 {𝑥/(𝑢)d𝛽 }} = (𝑡1)d𝛽 .

Subcase (DB). Then 𝑡2 = 𝑟 ′{𝑦/𝑡′{𝑥/𝑢′}} and D⟨𝑡⟩ ⇒djn 𝑡′. By i.h. 𝑡′ ⇒djn (D⟨𝑡⟩)d𝛽 .
By i.h. and two applications of lemma 4.7(iii), we have 𝑟 ′{𝑦/𝑡′{𝑥/𝑢′}} ⇒djn

(𝑟)d𝛽 {𝑦/(D⟨𝑡⟩)d𝛽 {𝑥/(𝑢)d𝛽 }} = (𝑡1)d𝛽 .

Property 4.11. →djn is confluent.

Proof. The triangle property of (⇒djn, (⋅)d𝛽) implies that ⇒djn is diamond, since for any
𝑡2 such that 𝑡1 ⇒djn 𝑡2, 𝑡2 ⇒djn (𝑡1)d𝛽 . This implies in turn that ⇒djn=→∗

djn is diamond
and thus that →djn is confluent.
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4.3 Inductive Characterization of Strong

Normalization
In this section we give an inductive characterization of strong normalization (ISN) for 𝜆𝐽𝑛 and
prove it correct. This characterization will be useful to show completeness of the type system
that we are going to present in section 4.4.1, as well as to compare strong normalization of
𝜆𝐽𝑛 to the ones of TΛ[𝛽, p2] and Λ𝐽 .

4.3.1 ISN in the λ-Calculus with Weak-Head Contexts
We write ISN(ℛ) the set of strongly normalizing terms under ℛ given by the inductive
definition. As an introduction, we first look at the case of ISN for the λ-calculus (ISN(𝛽)), on
which our forthcoming definition of ISN(djn) elaborates. A usual way to define ISN(𝛽) is by
the following rules [vRaa96], where the general notation 𝑀𝑃 abbreviates (… (𝑀𝑃1) … )𝑃𝑛 for
some 𝑛 ≥ 0.

𝑃1, … , 𝑃𝑛 ∈ ISN(𝛽)
𝑥𝑃 ∈ ISN(𝛽)

𝑀 ∈ ISN(𝛽)
𝜆𝑥.𝑀 ∈ ISN(𝛽)

𝑀{𝑥/𝑁 }𝑃, 𝑁 ∈ ISN(𝛽)
(𝜆𝑥.𝑀)𝑁𝑃 ∈ ISN(𝛽)

One then shows that 𝑀 ∈ SN(𝛽) if and only if 𝑀 ∈ ISN(𝛽).
Notice that this definition is deterministic. Indeed, a reduction strategy emerges from this

definition: weak-head reduction. The strategy is the following: reduce a term to a weak-head
normal form 𝑥𝑃 or 𝜆𝑥.𝑀 , and then iterate reduction inside arguments and under abstractions,
without any need to come back to the head of the term. Formally, weak-head normal forms
are of two kinds:

(Neutral terms) n ⩴ 𝑥 ∣ n𝑀
(Answers) a ⩴ 𝜆𝑥.𝑀

Neutral terms cannot produce any head 𝛽-redex. They are the terms of the shape 𝑥𝑃 . On
the contrary, answers can create a 𝛽-redex when given at least one argument. In the case of
the λ-calculus, these are only abstractions. If the term is not a weak-head term, a redex can
be located with a

(Weak-head context) W ⩴ ◊ ∣ W𝑡 .
These concepts give rise to a different definition of ISN(𝛽).

𝑥 ∈ ISN(𝛽)
n, 𝑀 ∈ ISN(𝛽)
n𝑀 ∈ ISN(𝛽)

𝑀 ∈ ISN(𝛽)
𝜆𝑥.𝑀 ∈ ISN(𝛽)

W⟨𝑀{𝑥/𝑁 }⟩, 𝑁 ∈ ISN(𝛽)
W⟨(𝜆𝑥.𝑀)𝑁 ⟩ ∈ ISN(𝛽)

Weak-head contexts are an alternative to the meta-syntactic notation 𝑟 of vectors of argu-
ments. Notice that there is one rule for each kind of neutral term, one rule for answers and
one rule for terms which are not weak-head normal forms.
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4.3.2 ISN for d𝛽
We define ISN(djn)with the same tools as in the last subsection. Hence, we first have to define
neutral terms, answers and a notion of contexts. We call the contexts left-right contexts (R),
and the underlying strategy the left-right strategy.

Definition 4.12. We consider the following grammars:

(Neutral terms) n ⩴ 𝑥 ∣ n(𝑢, 𝑥.n)
(Answers) a ⩴ 𝜆𝑥.𝑡 ∣ n(𝑢, 𝑥.a)

(Neutral distant contexts) Dn ⩴ ◊ ∣ n(𝑢, 𝑥.Dn)
(Left-right contexts) R ⩴ ◊ ∣ R(𝑢, 𝑥.𝑟) ∣ n(𝑢, 𝑥.R)

Notice that n and a are disjoint and stable by djn-reduction. Also Dn ⊊ R.

Example 4.13 (Decomposition). Let 𝑡 = 𝑥1(𝑥2, 𝑦1.𝐼 (𝐼 , 𝑧.𝐼 ))(𝑥3, 𝑦.𝐼 𝐼 ). Then, there are two de-
compositions of 𝑡 in terms of a redex 𝑟 and a left-right context R: either R = ◊ and 𝑟 = 𝑡 , or
R = 𝑥1(𝑥2, 𝑦1.◊)(𝑥3, 𝑦.𝐼 𝐼 ) and 𝑟 = 𝐼 (𝐼 , 𝑧.𝐼 ). In both cases 𝑡 = R⟨𝑟⟩. We will rule out the first
possibility by defining next a restriction of the 𝛽-rule, securing uniqueness of such kind of
decomposition in all cases.

The strategy underlying our definition of ISN(d𝛽) is the left-right strategy→lr, defined
as the closure under R of the following restricted 𝛽-rule:

Dn⟨𝜆𝑥.𝑡⟩(𝑢, 𝑦.𝑟) ↦ 𝑟{𝑦/Dn⟨𝑡{𝑦/𝑢}⟩}.
The restriction of D to a neutral distant context Dn is what allows determinism of our forth-
coming definition 4.17.

Remark that the strategy is not a weak-head strategy for generalized applications, given
by the grammar: W ⩴ ◊ ∣ W(𝑢, 𝑥.W′⟨⟨𝑥⟩⟩)𝑡(𝑢, 𝑥.W). This is because we ultimately need to
reduce all redexes, even the ones of the shape D⟨𝜆𝑥.𝑡⟩(𝑢, 𝑦.𝑟) where 𝑦 is not in 𝑟 .
Lemma 4.14. Let 𝑡 ∈ T𝐽 . Then 𝑡 is in lr-normal form iff 𝑡 ∈ n ∪ a.

Proof. First, we show that 𝑡 lr-normal implies 𝑡 ∈ n ∪ a, by induction on 𝑡 . If 𝑡 = 𝑥 , then
𝑡 ∈ n. If 𝑡 = 𝜆𝑥.𝑠, then 𝑡 ∈ a. Let 𝑡 = 𝑠(𝑢, 𝑥.𝑟) where 𝑠 and 𝑟 are lr-normal. Then 𝑠 ∉ a,
otherwise the term would lr-reduce at root. Thus by the i.h. 𝑠 ∈ n. By the i.h. again
𝑟 ∈ n ∪ a so that 𝑡 ∈ n ∪ a.

Second, we show that 𝑡 ∈ n ∪ a implies 𝑡 is lr-normal, by simultaneous induction on
n and a. The cases 𝑡 = 𝑥 (i.e. 𝑡 ∈ n) and 𝑡 = 𝜆𝑥.𝑠 (i.e. 𝑡 ∈ a) are straightforward. Let
𝑡 = 𝑠(𝑢, 𝑥.𝑟) where 𝑠 ∈ n and 𝑟 ∈ n ∪ a. Since 𝑟 , 𝑠 ∈ n ∪ a, by the i.h. 𝑡 does not lr-reduce in
𝑟 or 𝑠. Since 𝑠 ∈ n, 𝑡 does not lr-reduce at root either. Then, 𝑡 is lr-normal.

Lemma 4.15. The reduction →lr is deterministic.
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Proof. Let 𝑡 be a lr-reducible term. We reason by induction on 𝑡 . If 𝑡 is a variable or an
abstraction, then 𝑡 does not lr-reduce so that 𝑡 is necessarily an application 𝑡′(𝑢, 𝑦.𝑟). By
lemma 4.14 we have three possible cases for 𝑡′.
Case 𝑡 = 𝑡′(𝑢, 𝑦.𝑟) with 𝑡′ ∈ a. Then 𝑡 = Dn⟨𝜆𝑥.𝑠⟩(𝑢, 𝑦.𝑟), so 𝑡 reduces at the root. Since

𝑡′ ∈ a, then we know by lemma 4.14 that (1) 𝑡′ ∈ NFlr, (2) 𝑡′ ∉ n, so that 𝑡 does not
lr-reduce in 𝑡′ or 𝑟 .

Case 𝑡 = 𝑡′(𝑢, 𝑦.𝑟) with 𝑡′ ∈ n. Then 𝑡 does not lr-reduce at the root. By lemma 4.14, we
know that 𝑡′ ∈ NFlr and thus 𝑡 necessarily reduces in 𝑟 . By the i.h. this reduction is
deterministic.

Case 𝑡 = 𝑡′(𝑢, 𝑦.𝑟) with 𝑡′ ∉ NFlr. Then in particular by lemma 4.14 we know that (1) 𝑡′
does not have an abstraction shape so that 𝑡 does not reduce at the root, and (2)
𝑡′ ∉ n so that 𝑡 does not reduce in 𝑟 . Thus 𝑡 lr-reduces only in 𝑡′. By the i.h. this
reduction is deterministic.

Symmetrically to the λ-calculus, left-right normal forms are either neutral terms or an-
swers. This time, answers are not only abstractions, but also abstractions under a neutral
distant context. Because of distance, these terms can also create a d𝛽-redex when applied to
an argument, as seen in the next remark.

Remark 4.16. Consider again the term 𝑡 = 𝑥1(𝑥2, 𝑦1.𝐼 (𝐼 , 𝑧.𝐼 ))(𝑥3, 𝑦.𝐼 𝐼 ) of example 4.13. If
left-right contexts were taken to be a naive translation of the ones of the λ-calculus and
the form n(𝑢, 𝑥.R) of the grammar of R was disallowed, then it would not be possible to
write 𝑡 as R⟨𝑟⟩, with 𝑟 a restricted redex. In that case, the reduction strategy associated with
ISN(djn) would consider 𝑡 as a left-right normal form, and start reducing the subterms of 𝑡 ,
including 𝐼 (𝐼 , 𝑧.𝐼 ). Now, the latter would eventually reach 𝐼 and suddenly the whole term
𝑡′ = 𝑥1(𝑥2, 𝑦1.𝐼 )(𝑥3, 𝑦.𝑟 ′) would be a left-right redex again: the typical separation between an
initial external reduction phase and a later internal reduction phase, as it is the case in the
λ-calculus, would be lost in our framework. This is a subtle point due to the distant character
of rule d𝛽 which explains the complexity of definition 4.12.

Our inductive definition of strong normalization follows.

Definition 4.17 (Inductive strong normalization). We consider the following inductive pred-
icate:

𝑥 ∈ ISN(djn)(SNVAR) n, 𝑢, 𝑟 ∈ ISN(djn) 𝑟 ∈ NFlr

n(𝑢, 𝑥.𝑟) ∈ ISN(djn) (SNAPP) 𝑡 ∈ ISN(djn)
𝜆𝑥.𝑡 ∈ ISN(djn)(SNABS)

R⟨𝑟{𝑦/Dn⟨𝑡{𝑥/𝑢}⟩}⟩, Dn⟨𝑡⟩, 𝑢 ∈ ISN(djn)
R⟨Dn⟨𝜆𝑥.𝑡⟩(𝑢, 𝑦.𝑟)⟩ ∈ ISN(djn) (SNBETA)

Notice that every term can be written according to the conclusions of the previous rules,
so that the following grammar also defines the syntax T𝐽 .

𝑡 , 𝑢, 𝑟 ⩴ 𝑥 ∣ 𝜆𝑥.𝑡 ∣ n(𝑢, 𝑥.NFlr) ∣ R⟨Dn⟨𝜆𝑥.𝑡⟩(𝑢, 𝑦.𝑟)⟩ (4.2)



4.3 Inductive Characterization of Strong Normalization 203

Moreover, at most one rule in the previous definition applies to each term, i.e. the rules are
deterministic. An equivalent, but non-deterministic definition, can be given by removing
the side condition “𝑟 ∈ NFlr” in rule (SNAPP). Indeed, this (weaker) rule would overlap with
rule (SNBETA) for terms in which the left-right context lies in the last continuation, as for
instance in 𝑥(𝑢, 𝑦.𝑦)(𝑢′, 𝑦′.II). Notice the difference with the λ-calculus: the head of a term
with generalized applications can be either on the left of the term (as in the λ-calculus), or
recursively on the left in a continuation.

To show that our definition corresponds to strong normalization, we need a few interme-
diate statements.

Lemma 4.18. If 𝑡0 →djn 𝑡1, then
(i) 𝑡0{𝑥/𝑢} →djn 𝑡1{𝑥/𝑢}, and

(ii) 𝑢{𝑥/𝑡0} →∗
djn 𝑢{𝑥/𝑡1}.

Proof. In the base cases, we have 𝑡0 = D⟨𝜆𝑧.𝑡⟩(𝑠, 𝑦.𝑟) ↦d𝛽 𝑟{𝑦/D⟨𝑡⟩{𝑧/𝑠}} = 𝑡1. By 𝛼-
equivalence we can suppose that 𝑦, 𝑧 ∉ fv(𝑢) and 𝑥 ≠ 𝑦 , 𝑥 ≠ 𝑧. The inductive cases and
the base case for item (ii) are straightforward. We detail the base case of item (i).

𝑡0{𝑥/𝑢} = D⟨𝜆𝑧.𝑡⟩{𝑥/𝑢}(𝑠{𝑥/𝑢}, 𝑦.𝑟{𝑥/𝑢})
→djn 𝑟 {𝑥/𝑢}{𝑦/D⟨𝑡⟩{𝑥/𝑢}{𝑧/𝑠{𝑥/𝑢}}}
=4.6 𝑟{𝑥/𝑢}{𝑦/(D⟨𝑡⟩{𝑧/𝑠}){𝑥/𝑢}}
=4.6 𝑟{𝑦/D⟨𝑡⟩{𝑧/𝑠}}{𝑥/𝑢}
= 𝑡1{𝑥/𝑢}

Remark 4.19. For any T𝐽 -term D⟨𝜆𝑥.𝑡⟩ ∈ SN(djn) ⟺ D⟨𝑡⟩ ∈ SN(djn).
Lemma 4.20. Let 𝑡0 = R⟨𝑟{𝑦/D⟨𝑡⟩{𝑥/𝑢}}⟩, D⟨𝑡⟩, 𝑢 ∈ SN(djn). Then 𝑡′0 = R⟨D⟨𝜆𝑥.𝑡⟩(𝑢, 𝑦.𝑟)⟩ ∈
SN(djn).

Proof. In this proof we use a notion of reduction of contexts which is the expected one:
C → C′ iff the hole in C is outside the redex contracted in the reduction step. By hypoth-
esis we also have 𝑟 ∈ SN(djn). We use the lexicographic order to reason by induction on
⟨||𝑡0||djn, ||D⟨𝑡⟩||djn, ||𝑢||djn⟩. To show 𝑡′0 ∈ SN(djn) it is sufficient to show that all its reducts
are in SN(djn). We analyze all possible cases.

Case 𝑡′0 →djn 𝑡0. We conclude by the hypothesis.

Case 𝑡′0 →djn R⟨D⟨𝜆𝑥.𝑡′⟩(𝑢, 𝑦.𝑟)⟩ = 𝑡′1, where 𝑡 →djn 𝑡′. Thus also D⟨𝑡⟩ →djn D⟨𝑡′⟩. We
then have D⟨𝑡′⟩ ∈ SN(djn) and 𝑢 ∈ SN(djn) and by lemma 4.18(ii) we have 𝑡0 =
R⟨𝑟{𝑦/D⟨𝑡⟩{𝑥/𝑢}}⟩ →∗

djn R⟨𝑟{𝑦/D⟨𝑡′⟩{𝑥/𝑢}}⟩ = 𝑡1, so that also 𝑡1 ∈ SN(djn). We can con-
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clude that 𝑡′1 ∈ SN(djn) by the i.h. since ||𝑡1||djn ≤ ||𝑡0||djn and ||D⟨𝑡′⟩||djn < ||D⟨𝑡⟩||djn.

Case 𝑡′0 →djn R⟨D⟨𝜆𝑥.𝑡⟩(𝑢′, 𝑦.𝑟)⟩ = 𝑡′1, where 𝑢 →djn 𝑢′. We have D⟨𝑡⟩, 𝑢′ ∈ SN(djn) and
by lemma 4.18(ii) 𝑡0 = R⟨𝑟{𝑦/D⟨𝑡⟩{𝑥/𝑢}}⟩ →∗

djn R⟨𝑟{𝑦/D⟨𝑡⟩{𝑥/𝑢′}}⟩ = 𝑡1, so that also
𝑡1 ∈ SN(djn). We conclude 𝑡′1 ∈ SN(djn) by the i.h. since ||𝑡1||djn ≤ ||𝑡0||djn and
||𝑢′||djn < ||𝑢||djn.

Case 𝑡′0 →djn R⟨D⟨𝜆𝑥.𝑡⟩(𝑢, 𝑦.𝑟 ′)⟩ = 𝑡′1, where 𝑟 →djn 𝑟 ′. We have D⟨𝑡⟩, 𝑢 ∈ SN(djn) and by
lemma 4.18(i) 𝑡0 = R⟨𝑟{𝑦/D⟨𝑡⟩{𝑥/𝑢}}⟩ →djn R⟨𝑟 ′{𝑦/D⟨𝑡⟩{𝑥/𝑢}}⟩ = 𝑡1. We conclude
𝑡′1 ∈ SN(djn) by the i.h. since since ||𝑡1||djn < ||𝑡0||djn.

Case 𝑡′0 →djn R⟨D′⟨𝜆𝑥.𝑡⟩(𝑢, 𝑦.𝑟)⟩ = 𝑡′1, where D →djn D′. We have D′⟨𝑡⟩, 𝑢 ∈ SN(djn) and
by lemma 4.18 𝑡0 = R⟨𝑟{𝑦/D⟨𝑡⟩{𝑥/𝑢}}⟩ →∗

djn R⟨𝑟{𝑦/D′⟨𝑡⟩{𝑥/𝑢}}⟩ = 𝑡1, so that also
𝑡1 ∈ SN(djn). We conclude 𝑡′1 ∈ SN(djn) by the i.h. since ||𝑡1||djn ≤ ||𝑡0||djn and
||D′⟨𝑡⟩||djn < ||D⟨𝑡⟩||djn.

Case 𝑡′0 →djn R′⟨D⟨𝜆𝑥.𝑡⟩(𝑢, 𝑦.𝑟)⟩ = 𝑡′1, where R →djn R′. Thus 𝑡0 = R⟨𝑟{𝑦/D⟨𝑡⟩{𝑥/𝑢}}⟩ →djn
R′⟨𝑟{𝑦/D⟨𝑡⟩{𝑥/𝑢}}⟩ = 𝑡1. We have 𝑡1, D⟨𝑡⟩, 𝑢 ∈ SN(djn). We conclude that 𝑡′1 ∈ SN(djn)
by the i.h. since ||𝑡1||djn < ||𝑡0||djn.

Case R = R′⟨Dn(𝑢′, 𝑦′.𝑟 ′)⟩ and 𝑟 = D″⟨𝜆𝑥′.𝑡′⟩. This is the only case left. Indeed, there is
no redex in D⟨𝜆𝑥.𝑡⟩ other than in D or 𝜆𝑥.𝑡 . Then,

𝑡′0 = R′⟨Dn⟨D⟨𝜆𝑥.𝑡⟩(𝑢, 𝑦.D″⟨𝜆𝑥′.𝑡′⟩)⟩(𝑢′, 𝑦′.𝑟 ′)⟩
Let D′ = Dn⟨D⟨𝜆𝑥.𝑡⟩(𝑢, 𝑦.D″)⟩. The reduction we need to consider is:

𝑡′0 = R′⟨D′⟨𝜆𝑥′.𝑡′⟩(𝑢′, 𝑦′.𝑟 ′)⟩
→djn R′⟨𝑟 ′{𝑦′/D′⟨𝑡′⟩{𝑥′/𝑢′}}⟩
= R′⟨𝑟 ′{𝑦′/Dn⟨D⟨𝜆𝑥.𝑡⟩(𝑢, 𝑦.D″⟨𝑡′⟩)⟩{𝑥′/𝑢′}}⟩ = 𝑡′1

We will show that 𝑡′1 ∈ SN(djn).
For this we show that 𝑡1 = R′⟨𝑟 ′{𝑦′/Dn⟨D″⟨𝑡′⟩{𝑦/D⟨𝑡⟩{𝑥/𝑢}}⟩{𝑥′/𝑢′}}⟩ ∈ SN(djn), that
D′⟨𝑡′⟩ ∈ SN(djn) and that 𝑢′ ∈ SN(djn). We have 𝑡0 →+

djn 𝑡1 so that 𝑡1 ∈ SN(djn)
and ||𝑡1||djn < ||𝑡0||djn. 𝑢′ is a subterm of 𝑡0, which is in SN(djn), so that 𝑢′ ∈ SN(djn).
To show that D′⟨𝑡′⟩ ∈ SN(djn), we consider 𝑡2 = Dn⟨D″⟨𝜆𝑥′.𝑡′⟩{𝑦/D⟨𝑡⟩{𝑥/𝑢}}⟩. We
have 𝑡0 = R′⟨𝑡2(𝑢′, 𝑦′.𝑟 ′)⟩. We can show that ||𝑡2||djn < ||𝑡0||djn (so that 𝑡2 ∈ SN(djn)).
Indeed, ||R′⟨𝑡2(𝑢′, 𝑦′.𝑟 ′)⟩||djn ≥ ||𝑡2(𝑢′, 𝑦′.𝑟 ′)||djn ≥ ||𝑡2||djn + 1 > ||𝑡2||djn. The second
inequality holds since 𝑡2 has an abstraction shape, and abstraction shapes are stable
under substitution, and thus 𝑡2(𝑢′, 𝑦′.𝑟 ′) is also a redex. We can then conclude that
𝑡′2 = Dn⟨D⟨𝜆𝑥.𝑡⟩(𝑢, 𝑦.D″⟨𝜆𝑥′.𝑡′⟩)⟩ = D′⟨𝜆𝑥′.𝑡′⟩ ∈ SN(djn) by the i.h. since 𝑢, D⟨𝑡⟩ ∈
SN(djn). Thus, D′⟨𝑡′⟩ ∈ SN(djn) by remark 4.19.

We then have 𝑡1, D′⟨𝑡′⟩, 𝑢′ ∈ SN(djn) and we can conclude 𝑡′1 ∈ SN(djn) since ||𝑡1||djn <
||𝑡0||djn. We conclude 𝑡′1 ∈ SN(djn) as required.
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Theorem 4.21. SN(djn) = ISN(djn).

Proof. First, we show ISN(djn) ⊆ SN(djn). We proceed by induction on 𝑡 ∈ ISN(djn).
Case 𝑡 = 𝑥 . Straightforward.

Case 𝑡 = 𝜆𝑥.𝑠, where 𝑠 ∈ ISN(djn). By the i.h. 𝑠 ∈ SN(djn), so that 𝑡 ∈ SN(djn) trivially
holds.

Case 𝑡 = 𝑠(𝑢, 𝑥.𝑟) ∈ NFlr where 𝑠, 𝑢, 𝑟 ∈ ISN(djn). By lemma 4.14 we have 𝑠 ∈ n and thus
in particular 𝑠 can not djn-reduce to an answer. Therefore any kind of reduction
starting at 𝑡 only occurs in the subterms 𝑠, 𝑢 and 𝑟 . We conclude since by the i.h. we
have 𝑠, 𝑢, 𝑟 ∈ SN(djn).

Case 𝑡 = R⟨Dn⟨𝜆𝑥.𝑠⟩(𝑢, 𝑦.𝑟)⟩, where R⟨𝑟{𝑦/Dn⟨𝑠⟩{𝑥/𝑢}}⟩, Dn⟨𝑠⟩, 𝑢 ∈ ISN(djn). The i.h. gives
R⟨𝑟{𝑦/Dn⟨𝑠⟩{𝑥/𝑢}}⟩ ∈ SN(djn), Dn⟨𝑠⟩ ∈ SN(djn) and 𝑢 ∈ SN(djn) so that by lemma 4.20
𝑡 = R⟨Dn⟨𝜆𝑥.𝑠⟩(𝑢, 𝑦.𝑟)⟩ ∈ SN(djn) holds, with D = Dn.

Next, we show SN(djn) ⊆ ISN(djn). Let 𝑡 ∈ SN(djn). We reason by induction on
⟨||𝑡 ||djn, |𝑡 |⟩ w.r.t. the lexicographic order. If ⟨||𝑡 ||djn, |𝑡 |⟩ is minimal, i.e. ⟨0, 1⟩, then 𝑡 is
a variable and thus in ISN(djn) by rule (SNVAR). Otherwise we proceed by case analysis.

Case 𝑡 = 𝜆𝑥.𝑠. Since ||𝑠||djn ≤ ||𝑡 ||djn and |𝑠| < |𝑡 |, we conclude by the i.h. and rule (SNABS).
Case 𝑡 is an application. There are two cases.

Subcase 𝑡 ∈ NFlr. Then 𝑡 = 𝑠(𝑢, 𝑥.𝑟) with 𝑠, 𝑢, 𝑟 ∈ SN(djn) and 𝑠 ∈ n. We have
||𝑠||djn ≤ ||𝑡 ||djn, ||𝑢||djn ≤ ||𝑡 ||djn, ||𝑟 ||djn ≤ ||𝑡 ||djn, |𝑠| < |𝑡 |, |𝑢| < |𝑡 | and |𝑟 | < |𝑡 |. By
the i.h. 𝑠, 𝑢, 𝑟 ∈ ISN(djn) and thus we conclude by rule (SNAPP).

Subcase 𝑡 ∉ NFlr. By definition there is a context R s.t. 𝑡 = R⟨Dn⟨𝜆𝑥.𝑠⟩(𝑢, 𝑦.𝑟)⟩. More-
over, 𝑡 ∈ SN(djn) implies in particular R⟨𝑟{𝑦/Dn⟨𝑠⟩{𝑥/𝑢}}⟩, 𝑢 ∈ SN(djn), so that
they are in ISN(djn) by the i.h. Moreover, 𝑡 ∈ SN(djn) also implies Dn⟨𝜆𝑥.𝑠⟩ ∈
SN(djn). Since the abstraction 𝜆𝑥.𝑠 is never applied nor an argument, this is
equivalent to Dn⟨𝑠⟩ ∈ SN(djn), thus Dn⟨𝑠⟩ ∈ ISN(djn) by the i.h. We conclude
by rule (SNBETA).

4.4 Quantitative Types Capture Strong

Normalization
We proved that simply typable terms are strongly normalizing in section 4.2. In this section
we use non-idempotent intersection types to fully characterize strong normalization, so that
strongly normalizing terms are also typable. First we introduce the typing system, next we
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prove the characterization and finally we study the quantitative behavior of 𝜋 and give in
particular an example of failure.

4.4.1 The Typing System
We now define our quantitative type system ∩𝐽 for T𝐽 -terms and we show that strong nor-
malization in 𝜆𝐽𝑛 exactly corresponds to ∩𝐽 typability. As discussed in section 1.3.2.3, we
introduce a choice operator on multiset types: if ℳ ≠ [ ], then #(ℳ) = ℳ, otherwise
#([ ]) = [𝜎], where 𝜎 is an arbitrary type. This operator is used to guarantee that there is
always a typing witness for all the subterms of typed terms.

The type system ∩𝐽 is given by the following typing rules.

𝑥 ∶ [𝜎] ⊢ 𝑥 ∶ 𝜎 (VAR)
Γ; 𝑥 ∶ ℳ ⊢ 𝑡 ∶ 𝜎
Γ ⊢ 𝜆𝑥.𝑡 ∶ ℳ → 𝜎 (ABS)

(Γ𝑖 ⊢ 𝑡 ∶ 𝜎𝑖)𝑖∈𝐼 𝐼 ≠ ∅
⊎𝑖∈𝐼Γ𝑖 ⊢ 𝑡 ∶ [𝜎𝑖]𝑖∈𝐼 (MANY)

Γ ⊢ 𝑡 ∶ #([ℳ𝑖 → 𝜏𝑖]𝑖∈𝐼 ) Δ ⊢ 𝑢 ∶ #(⊔𝑖∈𝐼ℳ𝑖) Λ; 𝑥 ∶ [𝜏𝑖]𝑖∈𝐼 ⊢ 𝑟 ∶ 𝜎
Γ ⊎ Δ ⊎ Λ ⊢ 𝑡(𝑢, 𝑥.𝑟) ∶ 𝜎 (APP)

The use of the choice operator in rule (APP) is subtle. If 𝐼 is empty, then the multiset [ℳ𝑖 →
𝜏𝑖]𝑖∈𝐼 typing 𝑡 as well as the multiset ⊔𝑖∈𝐼ℳ𝑖 typing 𝑢 are both empty, so that the choice
operator must be used to type both terms. If 𝐼 is not empty, then the multiset typing 𝑡 is
non-empty as well. However, the multiset typing 𝑢 may or not be empty, e.g. if [[ ] → 𝛼]
types 𝑡 . As before, the size of a type derivation sz(Φ) is equal to the number of occurrences
rules in the set {(VAR), (ABS), (APP)}.

System ∩𝐽 lacks weakening: it is relevant. Unlike the other systems in the thesis, not de-
signed for strong normalization, the relevance property here uses an equality: this is because
every subterm, every variable in particular, must be typed.

Lemma 4.22 (Relevance). If Γ ⊩ 𝑡 ∶ 𝜎 , then fv(𝑡) = dom(Γ).
Notice that the typing rules (and the choice operator) force all the subterms of a typed

term to be also typed. Moreover, if 𝐼 = ∅ in rule (APP), then the types of 𝑡 and 𝑢 are not
necessarily related. Indeed, let 𝑡 ≔ 𝛿(𝛿, 𝑥.𝑧). Then 𝑡 is djn-strongly-normalizing so it must
be typed in system ∩𝐽 . However, since the set 𝐼 of 𝑥 ∶ [𝜏𝑖]𝑖∈𝐼 in the typing of 𝑟 = 𝑧 is
necessarily empty (see lemma 4.22), then the unrelated types #([ℳ𝑖 → 𝜏𝑖]𝑖∈𝐼 ) and #(⊔𝑖∈𝐼ℳ𝑖)
of the two occurrences of 𝛿 witness the fact that these subterms will never interact during
the reduction of 𝑡 . Indeed, the term 𝑡 can be typed as follows, where 𝜌𝑖 ≔ [[𝜎𝑖] → 𝜎𝑖 , 𝜎𝑖] → 𝜎𝑖
and 𝜏𝑖 ≔ [𝜎𝑖] → 𝜎𝑖 , for 𝑖 = 1, 2:

∅ ⊢ 𝛿 ∶ 𝜌1
∅ ⊢ 𝛿 ∶ [𝜌1]

(MANY)
∅ ⊢ 𝛿 ∶ 𝜌2
∅ ⊢ 𝛿 ∶ [𝜌2]

(MANY) 𝑧 ∶ [𝜏 ]; 𝑥 ∶ [ ] ⊢ 𝑧 ∶ 𝜏 (VAR)

𝑧 ∶ [𝜏 ] ⊢ 𝛿(𝛿, 𝑥.𝑧) ∶ 𝜏 (APP)



4.4 Quantitative Types Capture Strong Normalization 207

where 𝛿 is typed with 𝜌𝑖 as follows:

𝑦 ∶ [𝜏𝑖] ⊢ 𝑦 ∶ 𝜏𝑖
(VAR)

𝑦 ∶ [𝜏𝑖] ⊢ 𝑦 ∶ [𝜏𝑖]
(MANY)

𝑦 ∶ [𝜎𝑖] ⊢ 𝑦 ∶ 𝜎𝑖
(VAR)

𝑦 ∶ [𝜎𝑖] ⊢ 𝑦 ∶ [𝜎𝑖]
(MANY) 𝑤 ∶ [𝜎𝑖] ⊢ 𝑤 ∶ 𝜎𝑖

(VAR)

𝑦 ∶ [[𝜎𝑖] → 𝜎𝑖 , 𝜎𝑖] ⊢ 𝑦(𝑦, 𝑤.𝑤) ∶ 𝜎𝑖
∅ ⊢ 𝜆𝑦.𝑦(𝑦, 𝑤.𝑤) ∶ [[𝜎𝑖] → 𝜎𝑖 , 𝜎𝑖] → 𝜎𝑖

(ABS)

(APP)

Lemma 4.23 (Split).

(i) If Γ ⊩𝑛 𝑡 ∶ ℳ, then for any decomposition ℳ = ⊔𝑖∈𝐼ℳ𝑖 where ℳ𝑖 ≠ ∅ for all 𝑖 ∈ 𝐼 , then
we have Γ𝑖 ⊩𝑛𝑖 𝑡 ∶ ℳ𝑖 such that ∑𝑖∈𝐼 𝑛𝑖 = 𝑛 and ⊎𝑖∈𝐼Γ𝑖 = Γ.

(ii) If Γ𝑖 ⊩𝑛𝑖 𝑡 ∶ ℳ𝑖 for all 𝑖 ∈ 𝐼 and 𝐼 ≠ ∅, then Γ ⊩𝑛 𝑡 ∶ ℳ, where ℳ = ⊔𝑖∈𝐼ℳ𝑖 , 𝑛 = ∑𝑖∈𝐼 𝑛𝑖
and Γ = ⊎𝑖∈𝐼Γ𝑖 .

Proof. Straightforward by induction on the derivations.

From now on we use the following notation to indicate that we have used lemma 4.23(ii).

(Γ𝑖 ⊢ 𝑡 ∶ ℳ𝑖)𝑖∈𝐼
⊎𝑖∈𝐼Γ𝑖 ⊢ 𝑡 ∶ ⊔ℳ𝑖
=============================

4.4.2 The Characterization of Strong djn-Normalization
The soundness property 4.32 is based on lemma 4.28, based in turn on lemma 4.24.

Lemma 4.24 (Substitution lemma). Let 𝑡 , 𝑢 ∈ T𝐽 with 𝑥 ∈ fv(𝑡). If both Γ; 𝑥 ∶ ℳ ⊩𝑛 𝑡 ∶ 𝜎 and
Δ ⊩𝑚 𝑢 ∶ ℳ hold, then Γ ⊎ Δ ⊩𝑘 𝑡{𝑥/𝑢} ∶ 𝜎 where 𝑘 = 𝑛 + 𝑚 − |ℳ|.

Proof. By induction on the type derivation of 𝑡 . We extend the statement to derivations
ending with (MANY), for which the property is straightforward by the i.h.

Case 𝑡 = 𝑥 . Then 𝑛 = 1 and by hypothesis Γ = ∅ and ℳ = [𝜎] (so that |ℳ| = 1). More-
over, Δ ⊩𝑚∩𝐽 𝑢 ∶ ℳ necessarily comes from Δ ⊩𝑚∩𝐽 𝑢 ∶ 𝜎 by rule (MANY). Let 𝑘 = 𝑚,
then we conclude ∅ ⊎ Δ ⊩1+𝑚−1 𝑢 ∶ 𝜎 = Γ ⊎ Δ ⊩𝑘 𝑥{𝑥/𝑢} ∶ 𝜎 .

Case 𝑡 = 𝜆𝑦.𝑠 where 𝑦 ≠ 𝑥 and 𝑦 ∉ fv(𝑢). By definition we have 𝜎 = 𝒩 → 𝜏 and Γ; 𝑥 ∶
ℳ; 𝑦 ∶ 𝒩 ⊩𝑛−1 𝑠 ∶ 𝜏 .

By the i.h. (Γ; 𝑦 ∶ 𝒩 ) ⊎ Δ ⊩𝑘′ 𝑠{𝑥/𝑢} ∶ 𝜏 with 𝑘′ = 𝑛 − 1 + 𝑚 − |ℳ|. By the relevance
lemma 4.22 𝑦 ∉ dom(Δ) so that (Γ; 𝑦 ∶ 𝒩 ) ⊎ Δ = Γ ⊎ Δ; 𝑦 ∶ 𝒩 . By rule (ABS)
we obtain Γ ⊎ Δ ⊩𝑘′+1 𝜆𝑦.𝑠{𝑥/𝑢} ∶ 𝒩 → 𝜏 . Let 𝑘 = 𝑘′ + 1. We conclude because
𝜆𝑦.𝑠{𝑥/𝑢} = (𝜆𝑦.𝑠){𝑥/𝑢} and 𝑘 = 𝑘′ + 1 = 𝑛 + 𝑚 − |ℳ|.
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Case 𝑡 = 𝑠(𝑜, 𝑦.𝑟), where 𝑦 ≠ 𝑥 and 𝑦 ∉ fv(𝑢). We only detail the case where 𝑥 ∈ fv(𝑠) ∩
fv(𝑜) ∩ fv(𝑟), the other cases being similar. By definition we have Γ1; 𝑥 ∶ ℳ1 ⊩𝑛1 𝑠 ∶
#([𝒩𝑖 → 𝜏𝑖]𝑖∈𝐼 ), Γ2; 𝑥 ∶ ℳ2 ⊩𝑛2 𝑜 ∶ #(⊔𝑖∈𝐼𝒩𝑖) and Γ3; 𝑥 ∶ ℳ3; 𝑦 ∶ [𝜏𝑖]𝑖∈𝐼 ⊩𝑛3 𝑟 ∶ 𝜎
where Γ = Γ1 ⊎ Γ2 ⊎ Γ3, ℳ = ℳ1 ⊔ ℳ2 ⊔ ℳ3, and 𝑛 = 1 + 𝑛1 + 𝑛2 + 𝑛3. Moreover,
by lemma 4.23 we have Δ1 ⊩𝑚1 𝑢 ∶ ℳ1, Δ2 ⊩𝑚2 𝑢 ∶ ℳ2 and Δ3 ⊩𝑚3 𝑢 ∶ ℳ3
where Δ = Δ1 ⊎ Δ2 ⊎ Δ3 and 𝑚 = 𝑚1 + 𝑚2 + 𝑚3. The i.h. gives Γ1 ⊎ Δ1 ⊩𝑘1 𝑠{𝑥/𝑢} ∶
#([𝒩𝑖 → 𝜏𝑖]𝑖∈𝐼 ), Γ2 ⊎ Δ2 ⊩𝑘2 𝑜{𝑥/𝑢} ∶ #(⊔𝑖∈𝐼𝒩𝑖) and Γ3 ⊎ Δ3; 𝑦 ∶ [𝜏𝑖]𝑖∈𝐼 ⊩𝑘3 𝑟 {𝑥/𝑢} ∶ 𝜎 ,
where 𝑘𝑖 = 𝑛𝑖 + 𝑚𝑖 − |ℳ𝑖 | for 𝑖 = 1, 2, 3. Then we have a derivation Γ1 ⊎ Δ1 ⊎ Γ2 ⊎
Δ2 ⊎ Γ3 ⊎ Δ3 ⊩𝑘 𝑠{𝑥/𝑢}(𝑜{𝑥/𝑢}, 𝑦.𝑟{𝑥/𝑢}) ∶ 𝜎 where 𝑘 = 1 +𝑖=1,2,3 𝑘𝑖 . We conclude
since Γ ⊎ Δ = Γ1 ⊎ Δ1 ⊎ Γ2 ⊎ Δ2 ⊎ Γ3 ⊎ Δ3, 𝑠(𝑜, 𝑦.𝑟){𝑥/𝑢} = 𝑠{𝑥/𝑢}(𝑜{𝑥/𝑢}, 𝑦.𝑟{𝑥/𝑢}) and
𝑘 = 1 +𝑖=1,2,3 𝑘𝑖 = 1 +𝑖=1,2,3 (𝑛𝑖 + 𝑚𝑖 − |ℳ𝑖 |) = 𝑛 + 𝑚 − |ℳ|.

Lemma 4.25. Let 𝑡 ∈ T𝐽 , and D a list context. Then Γ ⊩𝑛∩𝐽 D⟨𝜆𝑥.𝑡⟩ ∶ 𝜎 if and only if Γ ⊩𝑛∩𝐽
𝜆𝑥.D⟨𝑡⟩ ∶ 𝜎 .

Proof. Both implications are proved by induction on D. The base case D = ◊ is trivial.
Notice that we always have 𝜎 = 𝒩 → 𝜌. Let consider the inductive case D = 𝑠(𝑢, 𝑦.D′).

We first consider the left-to-right implication. So that let Γ ⊩𝑛 D⟨𝜆𝑥.𝑡⟩ ∶ 𝜎 . We have
the following derivation, with 𝑛 = 𝑘 + 𝑙 + 𝑚 + 1.

Π ⊩𝑘 𝑠 ∶ #([ℳ𝑖 → 𝜏𝑖]𝑖∈𝐼 ) Δ ⊩𝑙 𝑢 ∶ #(⊔𝑖∈𝐼ℳ𝑖) Λ; 𝑦 ∶ [𝜏𝑖]𝑖∈𝐼 ⊩𝑚 D′⟨𝜆𝑥.𝑡⟩ ∶ 𝜎
Π ⊎ Δ ⊎ Λ ⊢ 𝑠(𝑢, 𝑦.D′⟨𝜆𝑥.𝑡⟩) ∶ 𝜎

The i.h. gives a derivation Λ; 𝑦 ∶ [𝜏𝑖]𝑖∈𝐼 ⊩𝑚 𝜆𝑥.D′⟨𝑡⟩ ∶ 𝜎 and thus a derivation Λ; 𝑦 ∶
[𝜏𝑖]𝑖∈𝐼 ; 𝑥 ∶ 𝒩 ⊩𝑚−1 D′⟨𝑡⟩ ∶ 𝜌. By 𝛼-conversion, 𝑦 ∉ fv(𝑠) ∪ fv(𝑢), so that 𝑦 ∉ dom(Π ⊎ Δ)
by lemma 4.22. We can then build the following derivation of the same size:

Π ⊩𝑘 𝑠 ∶ #([ℳ𝑖 → 𝜏𝑖]𝑖∈𝐼 ) Δ ⊩𝑙 𝑢 ∶ #(⊔𝑖∈𝐼ℳ𝑖) Λ; 𝑦 ∶ [𝜏𝑖]𝑖∈𝐼 ; 𝑥 ∶ 𝒩 ⊩𝑚 D′⟨𝑡⟩ ∶ 𝜌
Π ⊎ Δ ⊎ (Λ; 𝑥 ∶ 𝒩 ) ⊢ 𝑠(𝑢, 𝑦.D′⟨𝑡⟩) ∶ 𝜌

Π ⊎ Δ ⊎ Λ ⊢ 𝜆𝑥.𝑠(𝑢, 𝑦.D′⟨𝑡⟩) ∶ 𝜎
For the right-to-left implication, we build the first derivations from the second similarly
to the previous case.

By nature, subject reduction (or expansion) in the quantitative type system for strong
normalization does not hold. Indeed, all subterms are typed, even the ones that will be erased.
In most cases, these subterms have free variables, that are typed in the environment. When
the term is erased, some bits of the environment are lost which means that the typing is not
preserved by reduction steps.

Example 4.26. Let 𝑡 = 𝜆𝑥.I(𝑦, 𝑧.𝑧) →d𝛽 I. The term 𝑡 can be typed with the derivation
below, with environment 𝑦 ∶ [𝜎]. However, by relevance, the term I can only be typed with
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an empty environment since that term has no free variables.

𝑥 ∶ [𝜏] ⊢ 𝑥 ∶ 𝜏
⊢ I ∶ [𝜏] → 𝜏

⊢ 𝜆𝑥.I ∶ [ ] → [𝜏] → 𝜏
𝑦 ∶ [𝜎] ⊢ 𝑦 ∶ 𝜎
𝑦 ∶ [𝜎] ⊢ 𝑦 ∶ [ ] 𝑧 ∶ [[𝜏 ] → 𝜏] ⊢ 𝑧 ∶ [𝜏] → 𝜏

𝑦 ∶ [𝜎] ⊢ (𝜆𝑥.I)(𝑦, 𝑧.𝑧) ∶ [𝜏 ] → 𝜏
We thus prove subject reduction only for non-erasing steps.

Definition 4.27 (Erasing step). A reduction step 𝑡1 →djn 𝑡2 is said to be erasing iff the reduced
d𝛽-redex in 𝑡1 is of the form D⟨𝜆𝑥.𝑡⟩(𝑢, 𝑦.𝑟) with 𝑥 ∉ fv(𝑡) or 𝑦 ∉ fv(𝑟).
Lemma 4.28 (Non-erasing subject reduction). Let Γ ⊩𝑛1∩𝐽 𝑡1 ∶ 𝜎 . If 𝑡1 →djn 𝑡2 is a non-erasing
step, then Γ ⊩𝑛2∩𝐽 𝑡2 ∶ 𝜎 with 𝑛1 > 𝑛2.

Proof. By induction on 𝑡1 → 𝑡2.

Case 𝑡1 = Dn⟨𝜆𝑥.𝑡⟩(𝑢, 𝑦.𝑟) ↦𝛽 𝑟{𝑦/Dn⟨𝑡{𝑥/𝑢}⟩} = 𝑡2. Because the step is non-erasing, the
types of 𝑦 and 𝑥 are not empty by lemma 4.22, so that we have the following deriva-
tion, with Γ = ⊎𝑖∈𝐼Σ𝑖 ⊎𝑖∈𝐼 Δ𝑖 ⊎ Λ, 𝑛1 = ∑𝑖∈𝐼 (𝑛𝑖𝑡 + 1 + 𝑛𝑖𝑢) + 𝑛𝑟 + 1 and 𝐼 ≠ ∅.

(Σ𝑖 ⊩𝑛
𝑖
𝜆 Dn⟨𝜆𝑥.𝑡⟩ ∶ ℳ𝑖 → 𝜏𝑖)𝑖∈𝐼

⊎𝑖∈𝐼Σ𝑖 ⊢ Dn⟨𝜆𝑥.𝑡⟩ ∶ [ℳ𝑖 → 𝜏𝑖]𝑖∈𝐼
(Δ𝑖 ⊩𝑛𝑖𝑢 𝑢 ∶ ℳ𝑖)𝑖∈𝐼
⊎𝑖∈𝐼Δ𝑖 ⊢ 𝑢 ∶ ⊔𝑖∈𝐼ℳ𝑖
===================================

Λ; 𝑦 ∶ [𝜏𝑖]𝑖∈𝐼 ⊩𝑛𝑟 𝑟 ∶ 𝜎
⊎𝑖∈𝐼Σ𝑖 ⊎𝑖∈𝐼 Δ𝑖 ⊎ Λ ⊢ Dn⟨𝜆𝑥.𝑡⟩(𝑢, 𝑦.𝑟) ∶ 𝜎

For each 𝑖 ∈ 𝐼 , lemma 4.25 gives a derivation Σ𝑖 ⊩𝑛𝑖𝜆 𝜆𝑥.Dn⟨𝑡⟩ ∶ ℳ𝑖 → 𝜏𝑖 and
therefore we have a derivation Σ𝑖 ; 𝑥 ∶ ℳ𝑖 ⊩𝑛𝑖𝑡 Dn⟨𝑡⟩ ∶ 𝜏𝑖 where 𝑛𝑖𝑡 = 𝑛𝑖𝜆 −1. Moreover,
the substitution lemma 4.24 gives Σ𝑖 ⊎Δ𝑖 ⊩𝑘𝑖 Dn⟨𝑡⟩{𝑥/𝑢} ∶ 𝜏𝑖 , where 𝑘𝑖 = 𝑛𝑖𝑡 + 𝑛𝑖𝑢 − |ℳ𝑖 |,
so that we have a derivation ⊎𝑖∈𝐼Σ𝑖 ⊎𝑖∈𝐼 Δ𝑖 ⊩+𝑖∈𝐼 𝑘𝑖 Dn⟨𝑡⟩{𝑥/𝑢} ∶ [𝜏𝑖]𝑖∈𝐼 . Applying
the substitution lemma 4.24 again gives Γ ⊩𝑛2 𝑡2 = 𝑟{𝑦/Dn⟨𝑡⟩{𝑥/𝑢}} ∶ 𝜎 with 𝑛2 =
𝑛𝑟 +𝑖∈𝐼 𝑘𝑖 < 𝑛1.

Case 𝑡1 = 𝜆𝑥.𝑡 → 𝜆𝑥.𝑡′ = 𝑡2, where 𝑡 → 𝑡′. By hypothesis, we have 𝜎 = ℳ → 𝜏 and
Γ; 𝑥 ∶ ℳ ⊩𝑛1−1 𝑡 ∶ 𝜎 . By the i.h. we have Γ; 𝑥 ∶ ℳ ⊩𝑘 𝑡′ ∶ 𝜏 for 𝑛1 − 1 > 𝑘. We can
build a derivation of size 𝑛2 = 𝑘 + 1 and we get 𝑛1 > 𝑛2.

Case 𝑡1 = 𝑡(𝑢, 𝑥.𝑟) and the reduction is internal. By hypothesis, we have the derivations
Σ ⊩𝑛𝑡 𝑡 ∶ #([ℳ𝑖 → 𝜏𝑖]𝑖∈𝐼 ), Δ ⊩𝑛𝑢 𝑢 ∶ #(⊔𝑖∈𝐼ℳ𝑖) and Λ; 𝑥 ∶ [𝜏𝑖]𝑖∈𝐼 ⊩𝑛𝑟 𝑟 ∶ 𝜎 with
Γ = Σ ⊎ Δ ⊎ Λ and 𝑛1 = 1 + 𝑛𝑡 + 𝑛𝑢 + 𝑛𝑟 .
Subcase 𝑡1 → 𝑡′(𝑢, 𝑥.𝑟) = 𝑡2, where 𝑡 → 𝑡′. If 𝐼 ≠ ∅, we have Σ = ⊎𝑖∈𝐼Σ𝑖 , 𝑛𝑡 = ∑𝑖∈𝐼 𝑛𝑖𝑡

and derivations Σ𝑖 ⊩𝑛𝑖𝑡 𝑡 ∶ ℳ𝑖 → 𝜏𝑖 . If 𝐼 = ∅, we have #([ℳ𝑖 → 𝜏𝑖]𝑖∈𝐼 ) = [𝜏 ] and
a derivation Σ ⊩𝑛𝑡 𝑡 ∶ 𝜏 . In both cases, we apply the i.h. and derive Σ ⊩𝑘 𝑡′ ∶
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#([ℳ𝑖 → 𝜏𝑖]𝑖∈𝐼 ) with 𝑘 < 𝑛𝑡 . We can build a derivation of size 𝑛2 = 1+𝑘 +𝑛𝑢 +𝑛𝑟
and we get 𝑛1 > 𝑛2.

Subcase 𝑡1 → 𝑡(𝑢′, 𝑥.𝑟) = 𝑡2, where 𝑢 → 𝑢′. Let #(⊔𝑖∈𝐼ℳ𝑖) = [𝜌𝑗]𝑗∈𝐽 . In particular,

if ⊔𝑖∈𝐼ℳ𝑖 = [ ], then 𝐽 is a singleton. We have Δ = ⊎𝑗∈𝐽Δ𝑗 , 𝑛𝑢 = ∑𝑗∈𝐽 𝑛𝑗𝑢 and

derivations Δ𝑗 ⊩𝑛𝑗𝑢 𝑢 ∶ 𝜌𝑗 . We apply the i.h. and derive Δ ⊩𝑘 𝑢 ∶ #(⊔𝑖∈𝐼ℳ𝑖)
with 𝑘 < 𝑛𝑢 . We can build a derivation of size 𝑛2 = 1 + 𝑛𝑡 + 𝑘 + 𝑛𝑟 and we get
𝑛1 > 𝑛2.

Subcase 𝑡1 → 𝑡(𝑢, 𝑥.𝑟 ′) = 𝑡2, where 𝑟 → 𝑟 ′. By the i.h. we have Λ; 𝑥 ∶ [𝜏𝑖]𝑖∈𝐼 ⊩𝑘 𝑟 ∶
𝜎 with 𝑘 < 𝑛𝑟 . We can build a derivation of size 𝑛2 = 1 + 𝑛𝑡 + 𝑛𝑢 + 𝑘 and we get
𝑛1 > 𝑛2.

Although subject reduction does not always hold, the characterization of normalizable
terms as typable should. To prove this, we need a weaker form of subject reduction: the
fact that the right-hand term of an erasing reduction is still typed. This is the goal of the
following lemma. Notice that we do not consider any reduction, but one occurring inside a
weak context W. We will use the syntax of terms given in (4.2) on page 202 to conclude the
proof (lemma 4.31).

Lemma 4.29. Let 𝑡 = Dn⟨𝜆𝑥.𝑠⟩(𝑢, 𝑦.𝑟) and 𝑡′ = 𝑟{𝑦/Dn⟨𝑠{𝑥/𝑢}⟩} such that Γ ⊩𝑘∩𝐽 W⟨𝑡⟩ ∶ 𝜎 . Then,
(i) If 𝑦 ∉ fv(𝑟), then there are typing derivations for W⟨𝑡′⟩ = W⟨𝑟⟩, Dn⟨𝑠⟩ and 𝑢 havingmeasures

𝑘W⟨𝑡′⟩, 𝑘Dn⟨𝑠⟩ and 𝑘𝑢 resp. such that 𝑘 > 1 + 𝑘W⟨𝑡′⟩ + 𝑘Dn⟨𝑠⟩ + 𝑘𝑢 .
(ii) If 𝑦 ∈ fv(𝑟) and 𝑥 ∉ fv(𝑠), then there are typing derivations for W⟨𝑡′⟩ = W⟨𝑟{𝑦/Dn⟨𝑠⟩}⟩ and

𝑢 having measures 𝑘W⟨𝑡′⟩ and 𝑘𝑢 resp. such that 𝑘 > 1 + 𝑘W⟨𝑡′⟩ + 𝑘𝑢 .

Proof. We prove a stronger statement: the derivation for W⟨𝑡′⟩ is of the shape Γ′ ⊩𝑘W⟨𝑡′⟩
∩𝐽

W⟨𝑡′⟩ ∶ 𝜎 with the same 𝜎 but Γ′ ⊑ Γ. We proceed by induction on W:

Case W = ◊. (i) The derivation of 𝑡 has premises Γ𝜆 ⊩𝑘𝜆 Dn⟨𝜆𝑥.𝑠⟩ ∶ 𝜏 , Δ ⊩𝑘𝑢 𝑢 ∶ 𝜌
and Λ ⊩𝑘𝑡′ 𝑟 ∶ 𝜎 , for some appropriate 𝜏 and 𝜌, such that Γ = Γ𝜆 ⊎ Δ ⊎ Λ and
𝑘 = 𝑘𝜆 + 𝑘𝑢 + 𝑘𝑡′ + 1. By lemma 4.25, we have a derivation Γ𝜆 ⊩𝑘𝜆 𝜆𝑥.Dn⟨𝑠⟩ ∶ 𝜏 .
Then, 𝜏 = ℳ → 𝜏 ′ with ℳ potentially empty and we have a derivation
Γ𝜆; 𝑥 ∶ ℳ ⊩𝑘𝜆−1 Dn⟨𝑠⟩ ∶ 𝜏 ′. Let 𝑘Dn⟨𝑠⟩ = 𝑘𝜆 − 1. We have 𝑘 > 1 + 𝑘𝑡′ + 𝑘Dn⟨𝑠⟩ + 𝑘𝑢
and we let Γ′ = Λ since 𝑡′ = 𝑟 . We can conclude since Γ′ ⊑ Γ.

(ii) The derivation of 𝑡 has premises Γ𝜆 ⊩𝑘𝜆 Dn⟨𝜆𝑥.𝑠⟩ ∶ [[ ] → 𝜏𝑖]𝑖∈𝐼 , and thus
(Γ𝑖𝜆 ⊩𝑘 𝑖𝜆 Dn⟨𝜆𝑥.𝑠⟩ ∶ [ ] → 𝜏𝑖)𝑖∈𝐼 with Γ𝜆 = ⊎𝑖∈𝐼Γ𝑖𝜆 and 𝑘𝜆 = +𝑖∈𝐼 𝑘 𝑖𝜆, as well as Δ ⊩𝑘𝑢
𝑢 ∶ 𝜌 and Λ; [𝜏𝑖]𝑖∈𝐼 ⊩𝑘𝑟 𝑟 ∶ 𝜎 , where Γ = Γ𝜆 ⊎Δ⊎Λ and 𝑘 = 𝑘𝜆+𝑘𝑢 +𝑘𝑟 +1 = 𝑘 and
𝐼 ≠ ∅. By lemma 4.25, we have derivations (Γ𝑖𝜆 ⊩𝑘 𝑖𝜆 𝜆𝑥.Dn⟨𝑠⟩ ∶ [ ] → 𝜏𝑖)𝑖∈𝐼 and
thus derivations (Γ𝑖𝜆 ⊩𝑘 𝑖𝜆−1 Dn⟨𝑠⟩ ∶ 𝜏𝑖)𝑖∈𝐼 . By rule (MANY) we have a derivation
Γ𝜆 ⊩𝑘Dn⟨𝑠⟩ Dn⟨𝑠⟩ ∶ [𝜏𝑖]𝑖∈𝐼 where 𝑘Dn⟨𝑠⟩ = +𝑖∈𝐼 (𝑘 𝑖𝜆 − 1) = 𝑘𝜆 − |𝐼 |. Using the
substitution lemma 4.24 we construct a derivation Λ ⊎ Γ𝜆 ⊩𝑘𝑡′ 𝑟{𝑦/Dn⟨𝑠⟩} ∶ 𝜎
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with 𝑘𝑡′ = 𝑘𝑟 +𝑘Dn⟨𝑠⟩−|𝐼 |. We have 𝑘 = 𝑘Dn⟨𝑠⟩+|𝐼 |+𝑘𝑢 +𝑘𝑟 +1 = 1+𝑘𝑡′ +2×|𝐼 |+𝑘𝑢 >
1 + 𝑘𝑡′ + 𝑘𝑢 . We let Γ′ = Λ ⊎ Γ𝜆. We can then conclude since Γ′ ⊑ Γ.

Case W = W′(𝑢′, 𝑧.𝑟 ′). The derivation of W⟨𝑡⟩ has three premises of the form: Γ1 ⊩𝑘W′⟨𝑡⟩

W′⟨𝑡⟩ ∶ #([ℳ𝑖 → 𝜏𝑖]𝑖∈𝐼 ), Δ ⊩𝑘𝑢′ 𝑢′ ∶ #(⊔𝑖∈𝐼ℳ𝑖) and Λ; 𝑧 ∶ [𝜏𝑖]𝑖∈𝐼 ⊩𝑘𝑟′ 𝑟 ′ ∶ 𝜎 such that
𝑘 = 1 + 𝑘W′⟨𝑡⟩ + 𝑘𝑢′ + 𝑘𝑟 ′ and Γ = Γ1 ⊎ Δ ⊎ Λ. By i.h. we get from the first premise:

1. In cases (i) and (ii) a derivation Γ2 ⊩𝑘W′⟨𝑡′⟩ W′⟨𝑡′⟩ ∶ #([ℳ𝑖 → 𝜏𝑖]𝑖∈𝐼 ) such that
Γ2 ⊑ Γ1 and a typing derivation for 𝑢 of measure 𝑘𝑢 .

2. In case (i) a typing derivation for Dn⟨𝑠⟩ of measure 𝑘Dn⟨𝑠⟩ and the fact that
𝑘W′⟨𝑡⟩ > 1 + 𝑘W′⟨𝑡′⟩ + 𝑘Dn⟨𝑠⟩ + 𝑘𝑢 .

3. In case (ii) the fact that 𝑘W′⟨𝑡⟩ > 1 + 𝑘W′⟨𝑡′⟩ + 𝑘𝑢 .

Using the type derivations for W′⟨𝑡′⟩, 𝑢′ and 𝑟 ′ we can build a derivation Γ2 ⊎ Δ ⊎
Λ ⊩𝑘W⟨𝑡′⟩ W′⟨𝑡′⟩(𝑢′, 𝑧.𝑟 ′) ∶ 𝜎 , where 𝑘W⟨𝑡′⟩ = 1+𝑘𝑘W′⟨𝑡′⟩ +𝑘𝑢′ +𝑘𝑟 ′ . We have Γ2 ⊎Δ⊎Λ ⊑ Γ.
In case (i) we can conclude because 𝑘 = 1+𝑘W′⟨𝑡⟩+𝑘𝑢′ +𝑘𝑟 ′ >i.h. 1+(1+𝑘W′⟨𝑡′⟩+𝑘Dn⟨𝑠⟩+𝑘𝑢)+ 𝑘𝑢′ +𝑘𝑟 ′ = 1+𝑘W⟨𝑡′⟩ +𝑘Dn⟨𝑠⟩ +𝑘𝑢 . In case (ii) in the same way, but without adding
𝑘Dn⟨𝑠⟩ in the sum.

Case W = n(𝑢′, 𝑧.W′). The derivation of W⟨𝑡⟩ has premises: Γn ⊩𝑘n n ∶ #([ℳ𝑖 → 𝜏𝑖]𝑖∈𝐼 ),
Δ ⊩𝑘𝑢′ 𝑢′ ∶ #(⊔𝑖∈𝐼ℳ𝑖) and Λ1; 𝑧 ∶ [𝜏𝑖]𝑖∈𝐼 ⊩𝑘W′⟨𝑡⟩ W′⟨𝑡⟩ ∶ 𝜎 . We have Γ = Γn ⊎ Δ ⊎ Λ1
and 𝑘 = 1 + 𝑘n + 𝑘𝑢′ + 𝑘W′⟨𝑡⟩. By the i.h. we get from the third premise:

1. In cases (i) and (ii) a derivation Λ2; 𝑧 ∶ [𝜏𝑖]𝑖∈𝐼 ′ ⊩𝑘W′⟨𝑡′⟩ W′⟨𝑡′⟩ ∶ 𝜎 such that
Λ2 ⊑ Λ1, and 𝐼 ′ ⊆ 𝐼 (𝐼 ′ possibly empty), and a typing derivation for 𝑢 of
measure 𝑘𝑢 .

2. In case (i) a typing derivation for Dn⟨𝑠⟩ of measure 𝑘Dn⟨𝑠⟩ and the fact that
𝑘W′⟨𝑡⟩ > 1 + 𝑘W′⟨𝑡′⟩ + 𝑘Dn⟨𝑠⟩ + 𝑘𝑢 .

3. In case (ii) the fact that 𝑘W′⟨𝑡⟩ > 1 + 𝑘W′⟨𝑡′⟩ + 𝑘𝑢 .

To build a derivation for W⟨𝑡′⟩, we need in particular derivations of type #([ℳ𝑖 →
𝜏𝑖]𝑖∈𝐼 ′) for n and #(⊔𝑖∈𝐼 ′ℳ𝑖) for 𝑢′.
Subcase 𝐼 ′ ≠ ∅. Then #([ℳ𝑖 → 𝜏𝑖]𝑖∈𝐼 ′) = [ℳ𝑖 → 𝜏𝑖]𝑖∈𝐼 ′ and by lemma 4.23 it is

possible to construct a derivation Γ′n ⊩𝑘′n n ∶ [ℳ𝑖 → 𝜏𝑖]𝑖∈𝐼 ′ from the original
one for n verifying Γ′n ⊑ Γn and 𝑘′n ≤ 𝑘n. For 𝑢′ we build a derivation Δ′ ⊩𝑘′𝑢′
𝑢′ ∶ #(⊔𝑖∈𝐼 ′ℳ𝑖) verifying Δ′ ⊑ Δ and 𝑘′𝑢′ ≤ 𝑘𝑢′ . There are three cases:

Subsubcase (ℳ𝑖)𝑖∈𝐼 are all empty, and therefore (ℳ𝑖)𝑖∈𝐼 ′ are all empty. Then
we set #(⊔𝑖∈𝐼 ′ℳ𝑖) = #(⊔𝑖∈𝐼ℳ𝑖). We take the original derivation so that
Δ′ = Δ, 𝑘′𝑢′ = 𝑘𝑢′ .

Subsubcase (ℳ𝑖)𝑖∈𝐼 ′ are all empty but (ℳ𝑖)𝑖∈𝐼 are not all empty. As a conse-
quence, ⊔𝑖∈𝐼ℳ𝑖 ≠ ∅ and we take an arbitrary type 𝜌 of ⊔𝑖∈𝐼ℳ𝑖 as a witness
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for 𝑢′, so that, Δ𝜌 ⊩𝑘𝜌 𝑢′ ∶ 𝜌 holds by lemma 4.23. We have the expected
derivation with rule (MANY) taking Δ′ = Δ𝜌 , #(⊔𝑖∈𝐼 ′ℳ𝑖) = [𝜌] and 𝑘′𝑢′ = 𝑘𝜌 .

Subsubcase #(⊔𝑖∈𝐼 ′ℳ𝑖) = ⊔𝑖∈𝐼 ′ℳ𝑖 . By lemma 4.23 it is possible to construct
the expected derivation from the original ones for 𝑢′.

Finally, we conclude by the following derivation for W⟨𝑡′⟩:

Γ′n ⊩𝑘′n n ∶ [ℳ𝑖 → 𝜏𝑖]𝑖∈𝐼 ′ Δ′ ⊩𝑘′𝑢′ 𝑢′ ∶ #(⊔𝑖∈𝐼 ′ℳ𝑖) Φ
Γ′ ⊢ n(𝑢′, 𝑦.W′⟨𝑡′⟩) ∶ 𝜎

where Φ = Λ2; 𝑧 ∶ [𝜏𝑖]𝑖∈𝐼 ′ ⊩𝑘W′⟨𝑡′⟩ W′⟨𝑡′⟩ ∶ 𝜎 , where Γ′ = Γ′n ⊎ Δ′ ⊎ Λ2, and
the total measure of the derivation is 𝑘W⟨𝑡′⟩ = 1 + 𝑘′n + 𝑘′𝑢′ + 𝑘W′⟨𝑡′⟩. We have
𝑘 > 1+𝑘′n+𝑘′𝑢′+𝑘W′⟨𝑡⟩ >i.h. 1+𝑘′n+𝑘′𝑢′+1+𝑘W′⟨𝑡′⟩+𝑘Dn⟨𝑠⟩+𝑘𝑢 > 1+𝑘W⟨𝑡′⟩+𝑘Dn⟨𝑠⟩+𝑘𝑢 in
case (i). Similarly but without 𝑘Dn⟨𝑠⟩ in case (ii). We can conclude since Γ′ ⊑ Γ.

Case 𝐼 = 𝐼 ′ = ∅. We are done by taking the original derivations.

Case 𝐼 ≠ ∅ = 𝐼 ′. Let us take an arbitrary 𝑗 ∈ 𝐼 : the type [ℳ𝑗 → 𝜏𝑗] is set as a
witness for n, whose derivation Γ′ ⊩𝑘n′ n′ ∶ [ℳ𝑗 → 𝜏𝑗] is obtained from
the derivation Γn ⊩𝑘n n ∶ #([ℳ𝑖 → 𝜏𝑖]𝑖∈𝐼 ) by the split lemma 4.23. For 𝑢′,
we take as a witness an arbitrary 𝜌 ∈ #(⊔𝑖∈𝐼ℳ𝑖) and we set #(⊔𝑖∈𝐼 ′ℳ𝑖) = [𝜌].
If ⊔𝑖∈𝐼ℳ𝑖 = [ ], then 𝜌 is the original witness. Otherwise 𝜌 is a type of one
of the ℳ𝑖’s. In both cases we use the split lemma 4.23 to get a derivation
Δ′ ⊩𝑘′𝑢′ 𝑢′ ∶ [𝜌] where Δ′ ⊑ Δ and 𝑘′𝑢′ ≤ 𝑘𝑢′ . Using the type derivation given
by the i.h. for W′⟨𝑡′⟩, we conclude by the following derivation for W⟨𝑡′⟩:

Γ′n ⊩𝑘𝑛′ n′ ∶ [ℳ𝑗 → 𝜏𝑗] Δ′ ⊩𝑘′𝑢′ 𝑢′ ∶ [𝜌] Λ2; 𝑧 ∶ [𝜏𝑖]𝑖∈𝐼 ′ ⊩𝑘W′⟨𝑡′⟩ W′⟨𝑡′⟩ ∶ 𝜎
Γ′ ⊢ n(𝑢′, 𝑦.W′⟨𝑡′⟩) ∶ 𝜎

where Γ′n ⊑ Γn, Δ′ ⊑ Δ, 𝑘′n ≤ 𝑘n, 𝑘′𝑢′ ≤ 𝑘𝑢′ . We have Γ′ = Γ′n ⊎ Δ′ ⊎ Λ2 ⊑ Γ.
In case (i) we can conclude because 𝑘 = 1 + 𝑘n + 𝑘𝑢′ + 𝑘W′⟨𝑡⟩ > 1 + 𝑘′n + 𝑘′𝑢′ +
(1 + 𝑘W′⟨𝑡′⟩ + 𝑘Dn⟨𝑠⟩ + 𝑘𝑢) = 1 + 𝑘W⟨𝑡′⟩ + 𝑘Dn⟨𝑠⟩ + 𝑘𝑢 . Similarly but without 𝑘Dn⟨𝑠⟩ in
case (ii).

We now finish the proof of soundness by proving that all typable terms have a finite
reduction length, that is bounded by the maximum number of djn-steps until normal form.
This maximal length is written ||𝑡 ||djn for a term 𝑡 .
Lemma 4.30. The following equalities hold:

||𝑥 ||djn = 0
||𝜆𝑥.𝑡 ||djn = ||𝑡 ||djn
||n(𝑢, 𝑥.𝑟)||djn = ||n||djn + ||𝑢||djn + ||𝑟 ||djn

||W⟨Dn⟨𝜆𝑥.𝑠⟩(𝑢, 𝑦.𝑟)⟩||djn =
⎧
⎨
⎩

1 + ||W⟨𝑟{𝑦/Dn⟨𝑠{𝑥/𝑢}⟩}⟩||djn if 𝑥 ∈ fv(𝑠) and 𝑦 ∈ fv(𝑟)
1 + ||W⟨𝑟{𝑦/Dn⟨𝑠⟩}⟩||djn + ||𝑢||djn if 𝑥 ∉ fv(𝑠) and 𝑦 ∈ fv(𝑟)
1 + ||W⟨𝑟⟩||djn + ||Dn⟨𝑠⟩||djn + ||𝑢||djn if 𝑦 ∉ fv(𝑟)
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Proof. A consequence of definition 4.17 and theorem 4.21.

Lemma 4.31. If Γ ⊩𝑘∩𝐽 𝑡 ∶ 𝜎 , then ||𝑡 ||djn ≤ 𝑘.

Proof. We proceed by induction on 𝑘 and we reason by case analysis on 𝑡 according to
the alternative grammar ((4.2) on page 202).

Case 𝑡 = 𝑥 . The derivation is just an axiom and 𝑘 = 1, so that ||𝑥 ||djn = 0 < 1 = 𝑘.

Case 𝑡 = 𝜆𝑥.𝑢. There is a typing derivation for 𝑢 of size 𝑘 − 1 < 𝑘. The i.h. gives ||𝑢||djn ≤
𝑘 − 1, so that ||𝑡 ||djn = ||𝑢||djn ≤ 𝑘.

Case 𝑡 = n(𝑢, 𝑥.𝑟). There are typings of n, 𝑢 and 𝑟 with measures 𝑘n, 𝑘𝑢 and 𝑘𝑟 resp. such
that 𝑘 = 1+𝑘n+𝑘𝑢+𝑘𝑟 . We then get ||𝑡 ||djn = ||n||djn+||𝑢||djn+||𝑟 ||djn ≤i.h. 𝑘n+𝑘𝑢+𝑘𝑟 ≤ 𝑘.

Case 𝑡 = W⟨Dn⟨𝜆𝑥.𝑠⟩(𝑢, 𝑦.𝑟)⟩. There are three possible cases:

Subcase 𝑥 ∈ fv(𝑠) and 𝑦 ∈ fv(𝑟). Then 𝑡 →djn W⟨𝑟{𝑦/Dn⟨𝑠{𝑥/𝑢}⟩}⟩ = 𝑡0 and ||𝑡 ||djn =
1 + ||𝑡0||djn. Moreover, the subject reduction lemma 4.28 gives Γ ⊩𝑘′∩𝐽 𝑡0 ∶ 𝜎 with
𝑘′ < 𝑘. By the i.h. we have ||𝑡0||djn ≤ 𝑘′. Thus we conclude ||𝑡 ||djn = 1 + ||𝑡0||djn ≤
1 + 𝑘′ ≤ 𝑘.

Subcase 𝑦 ∉ fv(𝑟). Then 𝑡 →djn W⟨𝑟⟩ = 𝑡0 and ||𝑡 ||djn = 1+ ||𝑡0||djn+ ||Dn⟨𝑠⟩||djn+ ||𝑢||djn.
By subject reduction for erasing steps (lemma 4.29) there are typings of 𝑡0, Dn⟨𝑠⟩
and 𝑢 having measures 𝑘𝑡0 , 𝑘Dn⟨𝑠⟩ and 𝑘𝑢 resp. such that 𝑘 > 1 + 𝑘𝑡0 + 𝑘Dn⟨𝑠⟩ + 𝑘𝑢 .
Thus we conclude ||𝑡 ||djn = 1+||𝑡0||djn+||Dn⟨𝑠⟩||djn+||𝑢||djn ≤i.h. 2+𝑘𝑡0+𝑘Dn⟨𝑠⟩+𝑘𝑢 ≤𝑘.

Subcase 𝑥 ∉ fv(𝑠) and 𝑦 ∈ fv(𝑟). Then 𝑡 →djn W⟨𝑟{𝑦/Dn⟨𝑠⟩}⟩ = 𝑡0 and ||𝑡 ||djn = 1 +
||𝑡0||djn + ||𝑢||djn. By subject reduction for erasing steps (lemma 4.29) there are
typings of 𝑡0 and 𝑢 having measures 𝑘𝑡0 and 𝑘𝑢 resp. such that 𝑘 > 1 + 𝑘𝑡0 + 𝑘𝑢 .
Thus we conclude ||𝑡 ||djn = 1 + ||𝑡0||djn + ||𝑢||djn ≤i.h. 1 + 𝑘𝑡0 + 𝑘𝑢 < 𝑘.

As a corollary we obtain:

Property 4.32 (Soundness for 𝜆𝐽𝑛). If 𝑡 is ∩𝐽 -typable, then 𝑡 ∈ SN(djn).
The completeness lemma 4.36 is based on typability of normal forms (lemma 4.33) and

non-erasing subject expansion (lemma 4.35). This last one is based itself on anti-substitution
(lemma 4.34).

Lemma 4.33 (Typing normal forms).

(i) For all 𝑡 ∈ NFdjn, there exists Γ, 𝜎 such that Γ ⊩∩𝐽 𝑡 ∶ 𝜎 .
(ii) For all 𝑡 ∈ NEdjn, for all 𝜎 , there exists Γ such that Γ ⊩∩𝐽 𝑡 ∶ 𝜎 .
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Proof. By simultaneous induction on 𝑡 ∈ NFdjn and 𝑡 ∈ NEdjn.
First, the cases relative to statement (i).

Case 𝑡 = 𝑥 . Pick an arbitrary 𝜎 . We have 𝑥 ∶ [𝜎] ⊩ 𝑥 ∶ 𝜎 by rule (VAR).
Case 𝑡 = 𝜆𝑥.𝑠 where 𝑠 ∈ NFdjn. By i.h. on 𝑠 there exists Γ′ and 𝜏 such that Γ′ ⊩ 𝑠 ∶ 𝜏 . Let Γ

and 𝒩 be such that Γ′ = Γ; 𝑥 ∶ 𝒩 (𝒩 is possibly empty). We get Γ ⊩ 𝜆𝑥.𝑠 ∶ 𝒩 → 𝜏
by rule (ABS). We conclude by taking 𝜎 = 𝒩 → 𝜏 .

Case 𝑡 = 𝑠(𝑢, 𝑦.𝑟) where 𝑢, 𝑟 ∈ NFdjn and 𝑠 ∈ NEdjn. By the i.h. on 𝑟 there is a derivation
of Λ′ ⊩ 𝑟 ∶ 𝜎 . Let Λ and [𝜏𝑖]𝑖∈𝐼 be such that Λ′ = Λ; 𝑦 ∶ [𝜏𝑖]𝑖∈𝐼 . Now we construct a
derivation Π ⊩ 𝑠 ∶ #([[ ] → 𝜏𝑖]𝑖∈𝐼 ) as follows.

• If 𝐼 = ∅, then the i.h. on 𝑠 gives a derivation Π ⊩ 𝑠 ∶ 𝜏 and we use rule (MANY)
to get Π ⊩ 𝑠 ∶ [𝜏]. We conclude by setting #([[ ] → 𝜏𝑖]𝑖∈𝐼 ) = [𝜏 ].

• If 𝐼 ≠ ∅, then the i.h. on 𝑠 gives a derivation of Π𝑖 ⊩ 𝑠 ∶ [ ] → 𝜏𝑖 for each 𝑖 ∈ 𝐼 .
We take Π = ⊎𝑖∈𝐼Π𝑖 and we conclude with rule (MANY) since #([[ ] → 𝜏𝑖]𝑖∈𝐼 ) =
[[ ] → 𝜏𝑖]𝑖∈𝐼 .

Finally, the i.h. on 𝑢 gives a derivation Δ ⊩ 𝑢 ∶ 𝜌 from which we get Δ ⊩ 𝑢 ∶ [𝜌], by
choosing #(⊔𝑖∈𝐼 [ ]) = [𝜌]. We conclude with rule (APP) as follows:

Π ⊩ 𝑠 ∶ #([[ ] → 𝜏𝑖]𝑖∈𝐼 ) Δ ⊩ 𝑢 ∶ #(⊔𝑖∈𝐼 [ ]) Λ; 𝑦 ∶ [𝜏𝑖]𝑖∈𝐼 ⊩ 𝑟 ∶ 𝜎
Π ⊎ Δ ⊎ Λ ⊢ 𝑠(𝑢, 𝑦.𝑟) ∶ 𝜎

Next, the cases relative to statement (ii).

Case 𝑡 = 𝑥 . As seen above, given an arbitrary type 𝜎 , we can take Γ = [𝜎].
Case 𝑡 = 𝑠(𝑢, 𝑦.𝑟) where 𝑢 ∈ NFdjn and 𝑠, 𝑟 ∈ NEdjn. Pick an arbitrary 𝜎 . The proof pro-

ceeds ipsis verbis as in the case 𝑡 = 𝑠(𝑢, 𝑦.𝑟) above.

Lemma 4.34 (Anti-substitution). If Γ ⊩ 𝑡{𝑥/𝑢} ∶ 𝜎 where 𝑥 ∈ fv(𝑡), then there exist Γ𝑡 , Γ𝑢 and
ℳ ≠ [ ] such that Γ𝑡 ; 𝑥 ∶ ℳ ⊩ 𝑡 ∶ 𝜎 , Γ𝑢 ⊩ 𝑢 ∶ ℳ and Γ = Γ𝑡 ⊎ Γ𝑢 .

Proof. By induction on the derivation Γ ⊩ 𝑡{𝑥/𝑢} ∶ 𝜎 . We extend the statement to deriva-
tions ending with (MANY), for which the property is straightforward by the i.h.We reason
by cases on 𝑡 .
Case 𝑡 = 𝑥 . Then 𝑡{𝑥/𝑢} = 𝑢. We take Γ𝑡 = ∅, Γ𝑢 = Γ, ℳ = [𝜎], and we have 𝑥 ∶ [𝜎] ⊩ 𝑥 ∶

𝜎 by rule (VAR) and Γ ⊩ 𝑢 ∶ ℳ by rule (MANY) on the derivation of the hypothesis.

Case 𝑡 = 𝜆𝑦.𝑠 where 𝑦 ≠ 𝑥 and 𝑦 ∉ fv(𝑢) and 𝑥 ∈ fv(𝑠). Then 𝑡{𝑥/𝑢} = 𝜆𝑦.𝑠{𝑥/𝑢}. We have
𝜎 = 𝒩 → 𝜏 and Γ; 𝑦 ∶ 𝒩 ⊩ 𝑠{𝑥/𝑢} ∶ 𝜏 .
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By the i.h. there exists Γ′, Γ𝑢 ,ℳ ≠ [ ] such that Γ′; 𝑦 ∶ 𝒩 ; 𝑥 ∶ ℳ ⊩ 𝑠 ∶ 𝜏 , Γ𝑢 ⊩ 𝑢 ∶
ℳ, and Γ; 𝑦 ∶ 𝒩 = (Γ′; 𝑦 ∶ 𝒩 ) ⊎ Γ𝑢 . Moreover, by 𝛼-conversion and lemma 4.22
we know that 𝑦 ∉ dom(Γ𝑢) so that Γ = Γ′ ⊎Γ𝑢 . We conclude by deriving Γ′; 𝑦 ∶ 𝒩 ⊩
𝜆𝑥.𝑠 ∶ 𝒩 → 𝜏 with rule (ABS). Indeed, by letting Γ𝑡 = Γ′ we have Γ = Γ𝑡 ⊎ Γ𝑢 as
required.

Case 𝑡 = 𝑡1(𝑡2, 𝑦.𝑟), where 𝑦 ≠ 𝑥 , 𝑦 ∉ fv(𝑢) and 𝑥 ∈ fv(𝑡1) ∪ fv(𝑡2) ∪ (fv(𝑟) ⧵ 𝑦). We detail
the case where 𝑥 ∈ fv(𝑡1) ∩ fv(𝑡2) ∩ fv(𝑟), the other cases are similar. By construction,
we have derivations Γ1 ⊩ 𝑡1{𝑥/𝑢} ∶ #([𝒩𝑖 → 𝜏𝑖]𝑖∈𝐼 ), Γ2 ⊩ 𝑡2{𝑥/𝑢} ∶ #(⊔𝑖∈𝐼𝒩𝑖) and
Γ3; 𝑦 ∶ [𝜏𝑖]𝑖∈𝐼 ⊩ 𝑟{𝑥/𝑢} ∶ 𝜎 , with Γ = Γ1 ⊎ Γ2 ⊎ Γ3.

By the i.h. there are environments Γ𝑡1 , Γ𝑡2 , Γ𝑟 , Γ1𝑢 , Γ2𝑢 , Γ3𝑢 and multitypes ℳ1,ℳ2,ℳ3
all different from [ ] such that Γ𝑡1 ; 𝑥 ∶ ℳ1 ⊩ 𝑡1 ∶ #([𝒩𝑖 → 𝜏𝑖]𝑖∈𝐼 ), Γ𝑡2 ; 𝑥 ∶ ℳ2 ⊩
𝑡2 ∶ #(⊔𝑖∈𝐼𝒩𝑖), Γ𝑟 ; 𝑥 ∶ ℳ3 ⊩ 𝑟 ∶ 𝜎 , Γ1𝑢 ⊩ 𝑢 ∶ ℳ1, Γ2𝑢 ⊩ 𝑢 ∶ ℳ2, Γ3𝑢 ⊩ 𝑢 ∶ ℳ3 and
Γ1 = Γ𝑡1 ⊎ Γ1𝑢 , Γ2 = Γ𝑡2 ⊎ Γ2𝑢 , Γ3 = Γ𝑟 ⊎ Γ3𝑢 . Let Γ𝑡 = Γ𝑡1 ⊎ Γ𝑡2 ⊎ Γ𝑟 , Γ𝑢 = Γ1𝑢 ⊎ Γ2𝑢 ⊎ Γ3𝑢
and ℳ = ℳ1 ⊔ ℳ2 ⊔ ℳ3. We can build a derivation Γ𝑡 ; 𝑥 ∶ ℳ ⊩ 𝑡1(𝑡2, 𝑦.𝑟) ∶ 𝜎
with rule (APP) and a derivation Γ𝑢 ⊩ 𝑢 ∶ ℳ with lemma 4.23. We conclude since
Γ = Γ1 ⊎ Γ2 ⊎ Γ3 = Γ𝑡1 ⊎ Γ1𝑢 ⊎ Γ𝑡2 ⊎ Γ2𝑢 ⊎ Γ𝑟 ⊎ Γ3𝑢 = Γ𝑡 ⊎ Γ𝑢 .

Lemma 4.35 (Non-erasing subject expansion). If Γ ⊩∩𝐽 𝑡2 ∶ 𝜎 and 𝑡1 →djn 𝑡2 is a non-erasing
step, then Γ ⊩∩𝐽 𝑡1 ∶ 𝜎 .

Proof. By induction on 𝑡1 →djn 𝑡2.

Case 𝑡1 = D⟨𝜆𝑥.𝑡⟩(𝑢, 𝑦.𝑟) ↦𝛽 𝑟{𝑦/D⟨𝑡{𝑥/𝑢}⟩} = 𝑡2. Since the reduction is non-erasing, we
have 𝑦 ∈ fv(𝑟) and 𝑥 ∈ fv(𝑡). By lemma 4.34, there exists Γ𝑟 , Γ′ and 𝒩 such that
Γ𝑟 ; 𝑦 ∶ 𝒩 ⊩ 𝑟 ∶ 𝜎 , Γ′ ⊩ D⟨𝑡{𝑥/𝑢}⟩ ∶ 𝒩 and Γ = Γ′ ⊎ Γ𝑟 . Let 𝒩 = [𝜏𝑖]𝑖∈𝐼 ≠ [ ] since
𝑦 ∈ fv(𝑟). By rule (MANY), we have a decomposition (Γ′𝑖 ⊩ D⟨𝑡{𝑥/𝑢}⟩ ∶ 𝜏𝑖)𝑖∈𝐼 with
Γ′ = ⊎𝑖∈𝐼Γ′𝑖 . Since D⟨𝑡{𝑥/𝑢}⟩ = D⟨𝑡⟩{𝑥/𝑢}, by lemma 4.34 again, for each 𝑖 ∈ 𝐼 there are
Γ𝑖𝑡 , Γ𝑖𝑢 and ℳ𝑖 ≠ [ ] such that Γ𝑖𝑡 ; 𝑥 ∶ ℳ𝑖 ⊩ D⟨𝑡⟩ ∶ 𝜏𝑖 , Γ𝑖𝑢 ⊩ 𝑢 ∶ ℳ𝑖 and Γ′𝑖 = Γ𝑖𝑡 ⊎ Γ𝑖𝑢 .
By rule (ABS) followed by (MANY), there are derivations Γ𝑡 ⊩ 𝜆𝑥.D⟨𝑡⟩ ∶ [ℳ𝑖 → 𝜏𝑖]𝑖∈𝐼
with Γ𝑡 = ⊎𝑖∈𝐼Γ𝑖𝑡 . By lemma 4.25, there is a derivation Γ𝑡 ⊩ D⟨𝜆𝑥.𝑡⟩ ∶ [ℳ𝑖 → 𝜏𝑖]𝑖∈𝐼 .
Finally, by lemma 4.23, there is a derivation Γ𝑢 ⊩ 𝑢 ∶ ⊔𝑖∈𝐼ℳ𝑖 with Γ𝑢 = ⊎𝑖∈𝐼Γ𝑖𝑢 . Since
neither 𝐼 nor the ℳ𝑖’s are empty, the choice operator is in both cases the identity
and we can build the following derivation using rule (APP):

Γ𝑡 ⊩ D⟨𝜆𝑥.𝑡⟩ ∶ [ℳ𝑖 → 𝜏𝑖]𝑖∈𝐼 Γ𝑢 ⊩ 𝑢 ∶ ⊔𝑖∈𝐼ℳ𝑖 Γ𝑟 ; 𝑦 ∶ [𝜏𝑖]𝑖∈𝐼 ⊩ 𝑟 ∶ 𝜎
Γ ⊢ D⟨𝜆𝑥.𝑡⟩(𝑢, 𝑦.𝑟) ∶ 𝜎

We verify Γ = Γ′ ⊎ Γ𝑟 = ⊎𝑖∈𝐼Γ′𝑖 ⊎ Γ𝑟 = ⊎𝑖∈𝐼 (Γ𝑖𝑡 ⊎ Γ𝑖𝑢) ⊎ Γ𝑟 = Γ𝑡 ⊎ Γ𝑢 ⊎ Γ𝑟 .
Case 𝑡1 = 𝜆𝑥.𝑡 and 𝑡1 = 𝑡(𝑢, 𝑥.𝑟) and the reduction is internal. These cases are direct by

the i.h.

We cannot conclude completeness straightaway, given that subject expansion was only
shown for non-erasing cases. Instead, we prove that from any term on the right of a reduction,
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we can build a derivation for the term on the left. We rely on the previous lemma for the non-
erasing steps, and construct derivations for erasing ones, in which the typing environment
grows with anti-reduction. We use the inductive characterization of strong normalization
ISN(djn) to recognize the left terms that are indeed strongly normalizing, which are the only
ones for which we can build a typing derivation.

Lemma 4.36 (Completeness for 𝜆𝐽𝑛). If 𝑡 ∈ SN(djn), then 𝑡 is ∩𝐽 -typable.

Proof. In the statement, we replace SN(djn) by ISN(djn), using theorem 4.21. We use
induction on ISN(djn) to show the following stronger property 𝒫 : If 𝑡 ∈ ISN(djn) then
there are Γ, 𝜎 such that Γ ⊩ 𝑡 ∶ 𝜎 , and if 𝑡 ∈ n, then the property holds for any 𝜎 .

Case 𝑡 = 𝑥 . We get 𝑥 ∶ [𝜎] ⊢ 𝑥 ∶ 𝜎 by rule (VAR), for any 𝜎 .

Case 𝑡 = 𝜆𝑥.𝑠, where 𝑠 ∈ ISN(djn). By the i.h. we have Δ ⊩ 𝑠 ∶ 𝜏 . Let us write Δ as
Γ; 𝑥 ∶ ℳ, whereℳ is possibly empty. Then we get Γ ⊩ 𝜆𝑥.𝑠 ∶ 𝜎 , where 𝜎 = ℳ → 𝜏 ,
by using rule (ABS) on the previous derivation.

Case 𝑡 = n(𝑢, 𝑥.𝑟), where n, 𝑢, 𝑟 ∈ ISN(djn) and 𝑟 ∈ NFlr. By the i.h. there are derivations
Δ ⊩ 𝑢 ∶ 𝜌 and Λ; 𝑥 ∶ [𝜏𝑖]𝑖∈𝐼 ⊩ 𝑟 ∶ 𝜎 with 𝐼 possibly empty. Moreover, Δ ⊩ 𝑢 ∶ [𝜌]
holds by rule (MANY). If 𝑟 ∈ n, we have a derivation for any type 𝜎 by the stronger
i.h.

We now construct a derivation Π ⊩ n ∶ #([[ ] → 𝜏𝑖]𝑖∈𝐼 ) as follows:

• If 𝐼 = ∅, then the i.h. gives Π ⊩ n ∶ 𝜏 for an arbitrary 𝜏 , and then we obtain
Π ⊩ n ∶ [𝜏] by rule (MANY). We conclude by setting #([[ ] → 𝜏𝑖]𝑖∈𝐼 ) = [𝜏 ].

• If 𝐼 ≠ ∅, then by the stronger i.h. we can derive Π𝑖 ⊩ n ∶ [ ] → 𝜏𝑖 for each 𝑖 ∈ 𝐼 .
We take Π = ⊎𝑖∈𝐼Π𝑖 and we conclude with rule (MANY) since #([[ ] → 𝜏𝑖]𝑖∈𝐼 ) =
[[ ] → 𝜏𝑖]𝑖∈𝐼 .

We conclude with rule (APP) as follows, by setting in particular #(⊔𝑖∈𝐼 [ ]) = [𝜌].
Π ⊩ n ∶ #([[ ] → 𝜏𝑖]𝑖∈𝐼 ) Δ ⊩ 𝑢 ∶ #(⊔𝑖∈𝐼 [ ]) Λ; 𝑦 ∶ [𝜏𝑖]𝑖∈𝐼 ⊩ 𝑟 ∶ 𝜎

Π ⊎ Δ ⊎ Λ ⊢ 𝑠(𝑢, 𝑦.𝑟) ∶ 𝜎

Case 𝑡 ∉ NFlr. That is, 𝑡 = W⟨Dn⟨𝜆𝑥.𝑠⟩(𝑢, 𝑦.𝑟)⟩, where 𝑡′ = W⟨𝑟{𝑦/Dn⟨𝑠⟩{𝑥/𝑢}}⟩ ∈ ISN(djn),
Dn⟨𝑠⟩ ∈ ISN(djn), and 𝑢 ∈ ISN(djn). Notice that 𝑡 ∉ n by lemma 4.14. By the i.h.
𝑡′, Dn⟨𝑠⟩ and 𝑢 are typable. We show by a second induction on W that Σ ⊩ 𝑡′ ∶ 𝜎
implies Γ ⊩ 𝑡 ∶ 𝜎 , for some Γ. For the base case W = ◊, there are three cases.

Subcase 𝑥 ∈ fv(𝑠) and 𝑦 ∈ fv(𝑟). Since 𝑡′ = 𝑟{𝑦/Dn⟨𝑠⟩{𝑥/𝑢}} is typable and 𝑡 →𝛽
𝑡′, then 𝑡 is also typable with Σ and 𝜎 by the non-erasing subject expansion
lemma 4.35. We conclude with Γ = Σ.
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Subcase 𝑥 ∉ fv(𝑠) and 𝑦 ∈ fv(𝑟). Then 𝑡′ = 𝑟{𝑦/Dn⟨𝑠⟩} and by i.h. there is a derivation
Σ ⊩ 𝑟{𝑦/Dn⟨𝑠⟩} ∶ 𝜎 . The anti-substitution lemma 4.34, gives Λ; 𝑦 ∶ 𝒩 ⊩ 𝑟 ∶
𝜎 , Π ⊩ Dn⟨𝑠⟩ ∶ 𝒩 with Σ = Λ ⊎ Π. Let 𝒩 = [𝜎𝑖]𝑖∈𝐼 . We have 𝐼 ≠ ∅ by
lemma 4.22 since 𝑦 ∈ fv(𝑟). By the Split lemma 4.23 there are derivations Π𝑖 ⊩
Dn⟨𝑠⟩ ∶ 𝜎𝑖 such that Π = ⊎𝑖∈𝐼Π𝑖 . Since 𝑢 ∈ ISN(djn), the i.h. gives a derivation
Δ ⊩ 𝑢 ∶ 𝜌 and by rule (MANY) we get Δ ⊩ 𝑢 ∶ [𝜌]. Moreover, lemma 4.22
implies that 𝑥 ∉ dom(Π𝑖) for each 𝑖 ∈ 𝐼 because 𝑥 ∉ fv(Dn⟨𝑠⟩), then we can
construct derivations (Π𝑖 ⊩ 𝜆𝑥.Dn⟨𝑠⟩ ∶ [ ] → 𝜎𝑖)𝑖∈𝐼 . By lemma 4.25 applied for
each 𝑖 ∈ 𝐼 , we retrieve (Π𝑖 ⊩ Dn⟨𝜆𝑥.𝑠⟩ ∶ [ ] → 𝜎𝑖)𝑖∈𝐼 . And by rule (MANY) we
get Π ⊩ Dn⟨𝜆𝑥.𝑠⟩ ∶ [[ ] → 𝜎𝑖]𝑖∈𝐼 . Finally, since #([[ ] → 𝜎𝑖]𝑖∈𝐼 ) = [[ ] → 𝜎𝑖]𝑖∈𝐼 ,
it is sufficient to set #(⊔𝑖∈𝐼 [ ]) = [𝜌] and we obtain the following derivation:

Π ⊩ Dn⟨𝜆𝑥.𝑠⟩ ∶ #([[ ] → 𝜎𝑖]𝑖∈𝐼 ) Δ ⊩ 𝑢 ∶ #(⊔[ ]) Λ; 𝑦 ∶ [ ] ⊩ 𝑟 ∶ 𝜎
Γ ⊢ Dn⟨𝜆𝑥.𝑠⟩(𝑢, 𝑦.𝑟) ∶ 𝜎

where Γ = Π ⊎ Δ ⊎ Λ. We then conclude.

Subcase 𝑦 ∉ fv(𝑟). Since 𝑡′ = 𝑟{𝑦/Dn⟨𝑠⟩{𝑥/𝑢}} is typable and 𝑡′ = 𝑟 , then there is a
derivation Λ ⊩ 𝑟 ∶ 𝜎 where 𝑦 ∉ dom(Λ) holds by relevance (so that Σ = Λ).
We can then write Λ; 𝑦 ∶ [ ] ⊩ 𝑟 ∶ 𝜎 . We construct a derivation of 𝑡 ending
with rule (APP). For this we need two witness derivations for 𝑢 and Dn⟨𝜆𝑥.𝑠⟩.
Since 𝑢 ∈ ISN(djn), the i.h. gives a derivation Δ ⊩ 𝑢 ∶ 𝜌, and then we get
Δ ⊩ 𝑢 ∶ [𝜌] by application of rule (MANY). Similarly, since Dn⟨𝑠⟩ ∈ ISN(djn),
the i.h. gives a derivation Π; 𝑥 ∶ ℳ ⊩ Dn⟨𝑠⟩ ∶ 𝜏 where ℳ can be empty. Thus
Π ⊩ 𝜆𝑥.Dn⟨𝑠⟩ ∶ ℳ → 𝜏 . By lemma 4.25, we get Π ⊩ Dn⟨𝜆𝑥.𝑠⟩ ∶ ℳ → 𝜏 , and
then we get Π ⊩ Dn⟨𝜆𝑥.𝑠⟩ ∶ [ℳ → 𝜏] by application of rule (MANY). Finally,
by setting #([ ]) = [ℳ → 𝜏] and #(⊔[ ]) = [𝜌] we construct the following
derivation:

Π ⊩ Dn⟨𝜆𝑥.𝑠⟩ ∶ #([ ]) Δ ⊩ 𝑢 ∶ #(⊔[ ]) Λ; 𝑦 ∶ [ ] ⊩ 𝑟 ∶ 𝜎
Γ ⊢ Dn⟨𝜆𝑥.𝑠⟩(𝑢, 𝑦.𝑟) ∶ 𝜎

where Γ = Π ⊎ Δ ⊎ Λ. We then conclude.

Then, there are two inductive cases. We extend the second i.h. to multi-types triv-
ially.

Subcase W = W′(𝑢′, 𝑧.𝑟 ′). Let consider the terms 𝑡0 = W′⟨Dn⟨𝜆𝑥.𝑠⟩(𝑢, 𝑦.𝑟)⟩ and 𝑡1 =
W′⟨𝑟{𝑦/Dn⟨𝑠⟩{𝑥/𝑢}}⟩ so that 𝑡 = 𝑡0(𝑢′, 𝑧.𝑟 ′) and 𝑡′ = 𝑡1(𝑢′, 𝑧.𝑟 ′). The type deriva-
tion of 𝑡′ ends with a rule (APP) with the premises: Σ1 ⊩ 𝑡1 ∶ #([ℳ𝑖 → 𝜏𝑖]𝑖∈𝐼 ),
Δ ⊩ 𝑢′ ∶ #(⊔𝑖∈𝐼ℳ𝑖) and 𝑧 ∶ [𝜏𝑖]𝑖∈𝐼 ; Λ ⊩ 𝑟 ′ ∶ 𝜎 , where Σ = Σ1 ⊎ Δ ⊎ Λ. By the
second i.h. we get a derivation Γ0 ⊩ 𝑡0 ∶ #([ℳ𝑖 → 𝜏𝑖]𝑖∈𝐼 ) for some Γ0. We build
a derivation for 𝑡 with type 𝜎 ending with rule (APP) and using the derivations
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for 𝑡0 and the ones for 𝑢′ and 𝑟 ′, so that the corresponding typing environment
is Γ = Γ0 ⊎ Δ ⊎ Λ. We then conclude.

Subcase W = n(𝑢′, 𝑧.W′). Let 𝑡0, 𝑡1 be the same as before so that 𝑡 = n(𝑢′, 𝑧.𝑡0) and
𝑡′ = n(𝑢′, 𝑧.𝑡1). We detail the case where 𝑧 ∈ fv(𝑡0) and 𝑧 ∉ fv(𝑡1), the other
ones being similar to case 1. The type derivation of 𝑡′ is as follows, with Σ =
Γn ⊎ Δ ⊎ Σ′.

Γn ⊩ n ∶ [𝜏] Δ ⊩ 𝑢′ ∶ [𝜌] Σ′ ⊩ 𝑡1 ∶ 𝜎
Γn ⊎ Δ ⊎ Σ′ ⊩ 𝑠′(𝑢′, 𝑧.𝑡1) ∶ 𝜎 (APP)

By the second i.h. we have a derivation 𝑧 ∶ [𝜏𝑖]𝑖∈𝐼 ; Γ′ ⊩ 𝑡0 ∶ 𝜎 for some Γ′.
Also by relevance lemma 4.22) we have 𝐼 ≠ ∅. By the i.h. on property 𝒫 , we
can build derivations Π𝑖 ⊩ n ∶ [ ] → 𝜏𝑖 for each 𝑖 ∈ 𝐼 and thus a derivation
Π ⊩ n ∶ [[ ] → 𝜏𝑖]𝑖∈𝐼 by rule (MANY) with Π = ⊎𝑖∈𝐼Π𝑖 . Setting #(⊔𝑖∈𝐼 [ ]) = [𝜌],
we then build the following derivation:

Π ⊩ n ∶ [[ ] → 𝜏𝑖]𝑖∈𝐼 Δ ⊩ 𝑢′ ∶ #(⊔𝑖∈𝐼 [ ]) 𝑧 ∶ [𝜏𝑖]𝑖∈𝐼 ; Γ′ ⊩ 𝑡0 ∶ 𝜎
Γ ⊢ n(𝑢′, 𝑧.𝑡0) ∶ 𝜎 (APP)

where Γ = Π ⊎ Δ ⊎ Γ′. We thus conclude.

We finally obtain:

Theorem 4.37 (Characterization). System ∩𝐽 characterizes strong normalization, i.e. 𝑡 is ∩𝐽 -
typable if and only if 𝑡 is →djn-normalizing. Moreover, if Γ ⊩𝑛 𝑡 ∶ 𝜎 then the number of
reduction steps in any reduction sequence from 𝑡 to normal form is bounded by 𝑛.

Proof. Soundness holds by property 4.32, while completeness holds by lemma 4.36. The
bound is given by lemma 4.31.

4.4.3 Quantitative Behavior of 𝜋
We have mentioned already that 𝜋 is rejected by the quantitative type systems ∩𝐽 for CbN.
Concretely, this happens in the critical case when 𝑥 ∉ fv(𝑟) and 𝑦 ∈ fv(𝑟 ′) in

𝑡0 = 𝑡(𝑢, 𝑥.𝑟)(𝑢′, 𝑦.𝑟 ′) →𝜋 𝑡(𝑢, 𝑥.𝑟(𝑢′, 𝑦.𝑟 ′)) = 𝑡1
Example 4.38. We take 𝑡1 = 𝑥(𝑦, 𝑎.𝑧)(𝑤, 𝑏.𝑏(𝑏, 𝑐.𝑐)) →𝜋 𝑥(𝑦, 𝑎.𝑧(𝑤, 𝑏.𝑏(𝑏, 𝑐.𝑐))) = 𝑡2. Let 𝜌1 =
[𝜎] → 𝜏 and 𝜌2 = [𝜎] → [𝜏] → 𝜏 . For each 𝑖 ∈ {1, 2} let Δ𝑖 = 𝑥 ∶ [𝜎1]; 𝑦 ∶ [𝜎2]; 𝑧 ∶ [𝜌𝑖].
Consider

Ψ =
𝑏 ∶ [[𝜏 ] → 𝜏] ⊩ 𝑏 ∶ [[𝜏 ] → 𝜏] 𝑏 ∶ [𝜏] ⊩ 𝑏 ∶ [𝜏] 𝑐 ∶ [𝜏 ] ⊢ 𝑐 ∶ 𝜏

𝑏 ∶ [[𝜏 ] → 𝜏, 𝜏 ] ⊢ 𝑏(𝑏, 𝑐.𝑐) ∶ 𝜏
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and the derivation Φ𝑖 for 𝑖 ∈ {1, 2}:

Φ𝑖 =
𝑥 ∶ [𝜎1] ⊩ 𝑥 ∶ [𝜎1] 𝑦 ∶ [𝜎2] ⊩ 𝑦 ∶ [𝜎2] 𝑧 ∶ [𝜌𝑖] ⊢ 𝑧 ∶ 𝜌𝑖

Δ𝑖 ⊢ 𝑥(𝑦, 𝑎.𝑧) ∶ 𝜌𝑖
Then, for the term 𝑡1, we have the following derivation:

Φ1 Φ2
Δ1 ⊎ Δ2 ⊢ 𝑥(𝑦, 𝑎.𝑧) ∶ [𝜌1, 𝜌2] 𝑤 ∶ [𝜎, 𝜎] ⊩ 𝑤 ∶ [𝜎, 𝜎] Ψ

Γ1 ⊢ 𝑥(𝑦, 𝑎.𝑧)(𝑤, 𝑏.𝑏(𝑏, 𝑐.𝑐)) ∶ 𝜏
where Γ1 = 𝑧 ∶ [𝜌1, 𝜌2]; 𝑤 ∶ [𝜎 , 𝜎]; 𝑥 ∶ [𝜎1, 𝜎1]; 𝑦 ∶ [𝜎2, 𝜎2].

While for the term 𝑡2, we have:

𝑥 ∶ [𝜎1] ⊩ 𝑥 ∶ [𝜎1] 𝑦 ∶ [𝜎2] ⊩ 𝑦 ∶ [𝜎2] Φ
Γ2 ⊢ 𝑥(𝑦, 𝑎.𝑧(𝑤, 𝑏.𝑏(𝑏, 𝑐.𝑐))) ∶ 𝜏

where

Φ = 𝑧 ∶ [𝜌1, 𝜌2] ⊩ 𝑧 ∶ [𝜌1, 𝜌2] 𝑤 ∶ [𝜎, 𝜎] ⊩ 𝑤 ∶ [𝜎, 𝜎] Ψ
Γ2 ⊢ 𝑧(𝑤, 𝑏.𝑏(𝑏, 𝑐.𝑐)) ∶ 𝜏

and Γ2 = 𝑧 ∶ [𝜌1, 𝜌2]; 𝑤 ∶ [𝜎 , 𝜎]; 𝑥 ∶ [𝜎1]; 𝑦 ∶ [𝜎2].
Thus, the multiset types of 𝑥 and 𝑦 in Γ1 and Γ2 resp. are not the same. Despite the

fact that the step 𝑡1 →𝜋 𝑡2 does not erase any subterm, the typing environment is losing
quantitative information.

Notice that by replacing non-idempotent types by idempotent ones, subject reduction
(and expansion) would work for 𝜋-reduction: by assigning sets to variables instead of multi-
sets, Γ1 and Γ2 would be equal.

Despite the fact that quantitative subject reduction fails for some 𝜋-steps, the following
weaker property is sufficient to recover (qualitative) soundness of our typing system ∩𝐽 w.r.t.
the reduction relation →jn. Soundness will be used later in section 4.6 to show equivalence
between SN(djn) and SN(jn).
Lemma 4.39 (Typing behavior of 𝜋-reduction). Let Γ ⊩𝑛1∩𝐽 𝑡1 ∶ 𝜎 . If 𝑡1 = 𝑡(𝑢, 𝑥.𝑟)(𝑢′, 𝑦.𝑟 ′) ↦𝜋
𝑡2 = 𝑡(𝑢, 𝑥.𝑟(𝑢′, 𝑦.𝑟 ′)), then there are 𝑛2 and Σ ⊑ Γ such that Σ ⊩𝑛2∩𝐽 𝑡2 ∶ 𝜎 with 𝑛1 ≥ 𝑛2.

Proof. The derivation of 𝑡1 ends with (APP), with Γ = Γ′⊎Δ𝑢′ ⊎Λ𝑟 ′ and 𝑛1 = 1+𝑛′+𝑛𝑢′ +𝑛𝑟 ′ .

Γ′ ⊩𝑛′ 𝑡(𝑢, 𝑥.𝑟) ∶ #([ℳ𝑖 → 𝜏𝑖]𝑖∈𝐼 ) Δ𝑢′ ⊩𝑛𝑢′ 𝑢′ ∶ #(⊔𝑖∈𝐼ℳ𝑖) Λ𝑟 ′ ; 𝑦 ∶ [𝜏𝑖]𝑖∈𝐼 ⊩𝑛𝑟′ 𝑟 ′ ∶ 𝜎
Γ ⊢ 𝑡(𝑢, 𝑥.𝑟)(𝑢′, 𝑦.𝑟 ′) ∶ 𝜎

There are two possibilities.

Case 𝐼 ≠ ∅. Then #([ℳ𝑖 → 𝜏𝑖]𝑖∈𝐼 ) = [ℳ𝑖 → 𝜏𝑖]𝑖∈𝐼 and for each 𝑖 ∈ 𝐼 there is one
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derivation of 𝑡(𝑢, 𝑥.𝑟) having the following form:

Γ𝑖𝑡 ⊩𝑛𝑖𝑡 𝑡 ∶ #([𝒩𝑗 → 𝜌𝑗]𝑗∈𝐽𝑖 ) Δ𝑖𝑢 ⊩𝑛𝑖𝑢 𝑢 ∶ #(⊔𝑗∈𝐽𝑖𝒩𝑗) Λ𝑖𝑟 ; 𝑥 ∶ [𝜌𝑗]𝑗∈𝐽𝑖 ⊩𝑛
𝑖𝑟 𝑟 ∶ ℳ𝑖 → 𝜏𝑖

Γ𝑖𝑡 ⊎ Δ𝑖𝑢 ⊎ Λ𝑖𝑟 ⊢ 𝑡(𝑢, 𝑥.𝑟) ∶ ℳ𝑖 → 𝜏𝑖
(APP)

where Γ′ = ⊎𝑖∈𝐼 (Γ𝑖𝑡 ⊎ Δ𝑖𝑢 ⊎ Λ𝑖𝑟 ) and 𝑛′ = ∑𝑖∈𝐼 𝑛𝑖𝑡 + 𝑛𝑖𝑢 + 𝑛𝑖𝑟 . From (Λ𝑖𝑟 ; 𝑥 ∶ [𝜌𝑗]𝑗∈𝐽𝑖 ⊩𝑛
𝑖𝑟

𝑟 ∶ ℳ𝑖 → 𝜏𝑖)𝑖∈𝐼 we can construct a derivation Φ𝑟 = ⊎𝑖∈𝐼Λ𝑖𝑟 ; 𝑥 ∶ [𝜌𝑗]𝑗∈𝐽 ⊩+𝑖∈𝐼 𝑛𝑖𝑟 𝑟 ∶
[ℳ𝑖 → 𝜏𝑖]𝑖∈𝐼 using rule (MANY), where 𝐽 = ⊎𝑖∈𝐼 𝐽𝑖 . We then construct the following
derivation:

Ψ =
Φ𝑟 Δ′𝑢 ⊩𝑛𝑢′ 𝑢′ ∶ #(⊔𝑖∈𝐼ℳ𝑖) Λ𝑟 ′ ; 𝑦 ∶ [𝜏𝑖]𝑖∈𝐼 ⊩𝑛𝑟′ 𝑟 ′ ∶ 𝜎

⊎𝑖∈𝐼Λ𝑖𝑟 ⊎ Δ𝑢′ ⊎ Λ𝑟 ′ ; 𝑥 ∶ [𝜌𝑗]𝑗∈𝐽 ⊢ 𝑟(𝑢′, 𝑦.𝑟 ′) ∶ 𝜎

We then build two derivations Γ𝑡 ⊩𝑛𝑡 𝑡 ∶ #([𝒩𝑗 → 𝜌𝑗]𝑗∈𝐽 ) with Γ𝑡 ⊑ ⊎𝑖∈𝐼Γ𝑖𝑡 and
𝑛𝑡 ≤ +𝑖∈𝐼 𝑛𝑖𝑡 and Δ𝑢 ⊩𝑛𝑢 𝑢 ∶ #(⊔𝑗∈𝐽𝒩𝑗) with Γ𝑢 ⊑ ⊎𝑖∈𝐼Γ𝑖𝑢 and 𝑛𝑢 ≤ +𝑖∈𝐼 𝑛𝑖𝑢 as follows:

• If 𝑥 ∈ fv(𝑟), then all the 𝐽𝑖’s, and thus also 𝐽 , are non-empty by relevance so
that #([𝒩𝑗 → 𝜌𝑗]𝑗∈𝐽𝑖 ) = [𝒩𝑗 → 𝜌𝑗]𝑗∈𝐽𝑖 . Also, #([𝒩𝑗 → 𝜌𝑗]𝑗∈𝐽 ) = [𝒩𝑗 →
𝜌𝑗]𝑗∈𝐽 . We obtain the expected derivation for 𝑡 by lemma 4.23, with Γ𝑡 = ⊎𝑖∈𝐼Γ𝑖𝑡 ,
𝑛𝑡 = +𝑖∈𝐼 𝑛𝑖𝑡 . Now for 𝑢, notice that for each 𝑖 ∈ 𝐼 we can have either #(⊔𝑗∈𝐽𝑖𝒩𝑗) =
⊔𝑗∈𝐽𝑖𝒩𝑗 or, if all the 𝒩𝑗 ’s are empty, #(⊔𝑗∈𝐽𝑖𝒩𝑗) = [𝜎𝑖] for some 𝜎𝑖 derived by

Δ𝑘𝑢 ⊩𝑛𝑘𝑢 𝑢 ∶ [𝜎𝑘]. Then, there are two possibilities.

1. If ⊔𝑗∈𝐽𝒩𝑗 = [ ], we take an arbitrary 𝑘 ∈ 𝐼 and let #(⊔𝑗∈𝐽𝒩𝑗) = [𝜎𝑘] so
that we can give a derivation Δ𝑢 ⊩𝑛𝑢 𝑢 ∶ [𝜎𝑘] with Δ𝑢 = Δ𝑘𝑢 ⊑ ⊎𝑖∈𝐼Δ𝑖𝑢 and
𝑛𝑢 = 𝑛𝑘𝑢 ≤ +𝑖∈𝐼 𝑛𝑖𝑢 .

2. Otherwise, we have #(⊔𝑗∈𝐽𝒩𝑗) = ⊔𝑗∈𝐽𝒩𝑗 . Let 𝐼 ′ be the subset of 𝐼 such
that for each 𝑖 ∈ 𝐼 ′ we have ⊔𝑗∈𝐽𝑖𝒩𝑗 ≠ [ ] and 𝐽 ′ = ⊎𝑖∈𝐼 ′𝐽𝑖 . By Lem. 30 we
build a derivation Δ𝑢 ⊩𝑛𝑢 𝑢 ∶ ⊔𝑗∈𝐽 ′𝒩𝑗 such that Δ𝑢 = ⊎𝑖∈𝐼 ′Δ𝑖𝑢 ⊑ ⊎𝑖∈𝐼Δ𝑖𝑢 and
𝑛𝑢 = +𝑖∈𝐼 ′𝑛𝑖𝑢 ≤ ⊎𝑖∈𝐼 𝑛𝑖𝑢 .

• If 𝑥 ∉ fv(𝑟), then all the 𝐽𝑖’s are empty by relevance. Therefore, for each 𝑖 ∈ 𝐼
there are a 𝜎𝑖 , 𝜎 ′𝑖 such that #([𝒩𝑗 → 𝜌𝑗]𝑗∈𝐽𝑖 ) = [𝜎𝑖] is derived by Γ𝑖𝑡 ⊩𝑛𝑖𝑡 𝑡 ∶ [𝜎𝑖]
and #(⊔𝑗∈𝐽𝑖𝒩𝑗) = [𝜎 ′𝑖 ] is derived by Γ𝑖𝑢 ⊩𝑛𝑖𝑢 𝑢 ∶ [𝜎 ′𝑖 ]. We take an arbitrary 𝑘 ∈ 𝐼
and we take #([𝒩𝑗 → 𝜏𝑗]𝑗∈𝐽 ) = [𝜎𝑘] and #(⊔𝑗∈𝐽𝒩𝑗) = [𝜎 ′𝑘]. We obtain the
expected derivation by taking Γ𝑡 = Γ𝑘𝑡 ⊑ ⊎𝑖∈𝐼Γ𝑖𝑡 , 𝑛𝑡 = 𝑛𝑘𝑡 ≤ +𝑖∈𝐼 𝑛𝑖𝑡 , Γ𝑢 = Γ𝑘𝑢 ⊑
⊎𝑖∈𝐼Γ𝑖𝑢 and 𝑛𝑢 = 𝑛𝑘𝑢 ≤ +𝑖∈𝐼 𝑛𝑖𝑢 .

Finally, we build the following derivation of size 𝑛2.

Γ𝑡 ⊩𝑛𝑡 𝑡 ∶ #([𝒩𝑗 → 𝜏𝑗]𝑗∈𝐽 ) Δ𝑢 ⊩𝑛𝑢 𝑢 ∶ #(⊔𝑗∈𝐽𝒩𝑗) Ψ
Σ ⊢ 𝑡(𝑢, 𝑥.𝑟(𝑢′, 𝑦.𝑟 ′)) ∶ 𝜎
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We have Σ = Γ𝑡 ⊎ Δ𝑢 ⊎𝑖∈𝐼 Λ𝑖𝑟 ⊎ Δ𝑢′ ⊎ Λ𝑟 ′ ⊑ Γ and 𝑛2 = 𝑛𝑡 + 𝑛𝑢 +𝑖∈𝐼 𝑛𝑖𝑟 + 𝑛𝑢′ + 𝑛𝑟 ′ ≤ 𝑛1.

Case 𝐼 = ∅. Then there is some 𝜏 such that #([ℳ𝑖 → 𝜏𝑖]𝑖∈𝐼 ) = [𝜏 ] and the derivation of
𝑡(𝑢, 𝑥.𝑟) ends as follows:

Γ𝑡 ⊩𝑛𝑡 𝑡 ∶ #([𝒩𝑗 → 𝜌𝑗]𝑗∈𝐽 ) Δ𝑢 ⊩𝑛𝑢 𝑢 ∶ #(⊔𝑗∈𝐽𝒩𝑗) Λ𝑟 ; 𝑥 ∶ [𝜌𝑗]𝑗∈𝐽 ⊩𝑛𝑟 𝑟 ∶ 𝜏
Γ𝑡 ⊎ Δ𝑢 ⊎ Λ𝑟 ⊢ 𝑡(𝑢, 𝑥.𝑟) ∶ 𝜏
Γ𝑡 ⊎ Δ𝑢 ⊎ Λ𝑟 ⊢ 𝑡(𝑢, 𝑥.𝑟) ∶ [𝜏 ] (MANY)

(APP)

with Γ′ = Γ𝑡 ⊎ Δ𝑢 ⊎ Λ𝑟 and 𝑛′ = 𝑛𝑡 + 𝑛𝑢 + 𝑛𝑟 .
We construct the following derivation of size 𝑛2:

Γ𝑡 ⊩𝑛𝑡 𝑡 ∶ #([𝒩𝑗 → 𝜌𝑗]𝑗∈𝐽 ) Δ𝑢 ⊩𝑛𝑢 𝑢 ∶ #(⊔𝑗∈𝐽𝒩𝑗) Ψ
Σ ⊢ 𝑡(𝑢, 𝑥.𝑟(𝑢′, 𝑦.𝑟 ′)) ∶ 𝜎

where

Ψ =
Λ𝑟 ; 𝑥 ∶ [𝜌𝑗]𝑗∈𝐽 ⊩𝑛𝑟 𝑟 ∶ [𝜏 ] Δ′𝑢 ⊩𝑛𝑢′ 𝑢′ ∶ #(⊔𝑖∈𝐼ℳ𝑖) Λ𝑟 ′ ⊩𝑛𝑟′ 𝑟 ′ ∶ 𝜎

Λ𝑟 ⊎ Δ𝑢′ ⊎ Λ𝑟 ′ ; 𝑥 ∶ [𝜌𝑗]𝑗∈𝐽 ⊢ 𝑟(𝑢′, 𝑦.𝑟 ′) ∶ 𝜎
We have Σ = Γ𝑡 ⊎ Δ𝑢 ⊎ Λ𝑟 ⊎ Δ𝑢′ ⊎ Λ𝑟 ′ = Γ and 𝑛2 = 𝑛𝑡 + 𝑛𝑢 + 𝑛𝑟 + 𝑛𝑢′ + 𝑛𝑟 ′ = 𝑛1.

We have proved that reducts of typed terms are also typed. To show that typed terms
terminate, we will show that the maximal length of reduction to normal form is bounded by
the size of the type derivation, so finite. This is similar to what we have done for →djn.

We recall that for each 𝑡 ∈ SN(jn), ||𝑡 ||jn represents the maximal length of a jn-reduction

sequence to jn-nf starting at 𝑡 . We also define ||𝑡 ||𝛽jn as the maximal number of 𝛽-steps in

jn-reduction sequences from 𝑡 to jn-normal form. Notice that, in general, ||𝑡 ||𝛽jn ≠ ||𝑡 ||𝛽 , simply
because 𝜋 creates 𝛽-redexes, as already discussed. Lemmas 4.40 to 4.44 serve to define ||𝑡 ||jn
inductively. We will write 𝜋(𝑡) for the (unique) 𝜋-normal form of 𝑡 .
Lemma 4.40. If 𝑡1 →𝛽 𝑡2 and 𝑡1 →𝜋 𝑡3, then there is 𝑡4 such that 𝑡3 →𝛽 𝑡4 and 𝑡2 →∗𝜋 𝑡4.

Proof. By case analysis of the possible overlaps of the two contracted redexes.

Lemma 4.41. If 𝑡1 →𝛽 𝑡2, then there is 𝑡3 such that 𝜋(𝑡1) →𝛽 𝑡3 and 𝑡2 →∗𝜋 𝑡3.

Proof. By induction on the reduction sequence from 𝑡1 to 𝜋(𝑡1) using lemma 4.40 for the
base case.

Lemma 4.42. If there is a jn-reduction sequence 𝜌 starting at 𝑡 and containing 𝑘 𝛽-steps, then
there is a jn-reduction sequence 𝜌′ starting at 𝜋(𝑡) and also containing 𝑘 𝛽-steps.
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Proof. By induction on the (necessarily finite) reduction sequence 𝜌. If the length of 𝜌
is 0, then 𝑘 = 0 and the property is trivial. If the length of 𝜌 is 1 + 𝑛, we analyze the two
possible cases:

1. If 𝜌 is 𝑡 →𝛽 𝑡′ followed by 𝜌0 of length 𝑛 and containing 𝑘0 = 𝑘 − 1 𝛽-steps,
then the property holds for 𝑡′ w.r.t. 𝜋(𝑡′). But lemma 4.41 gives a term 𝑡″ such
that 𝜋(𝑡) →𝛽 𝑡″ and 𝑡′ →∗𝜋 𝑡″. Then we construct the jn-reduction sequence
𝜋(𝑡) →𝛽 𝑡″ →∗𝜋 𝜋(𝑡″) = 𝜋(𝑡′) followed by the one obtained by the i.h. This new
sequence has 1 + 𝑘0 = 𝑘 𝛽-steps.

2. If 𝜌 is 𝑡 →𝜋 𝑡′ followed by 𝜌0 of length 𝑛 and containing 𝑘0 = 𝑘 𝛽-steps, then the
property holds for 𝑡′ w.r.t. 𝜋(𝑡′). Since 𝜋(𝑡) = 𝜋(𝑡′), we are done by the i.h.

Lemma 4.43. ||𝑡 ||𝛽jn = ||𝜋(𝑡)||𝛽jn.

Proof. First we prove ||𝑡 ||𝛽jn ≤ ||𝜋(𝑡)||𝛽jn. If there is a jn-reduction sequence starting at 𝑡
and containing 𝑘 𝛽-steps, then the same happens for 𝜋(𝑡) by lemma 4.42. Next we prove
||𝑡 ||𝛽jn ≥ ||𝜋(𝑡)||𝛽jn. If there is a jn-reduction sequence starting at 𝜋(𝑡) and containing 𝑘
𝛽-steps, then the same happens for 𝑡 because it is sufficient to prefix this sequence with
the steps 𝑡 →∗𝜋 𝜋(𝑡). We conclude ||𝑡 ||𝛽jn = ||𝜋(𝑡)||𝛽jn.

Lemma 4.44. If 𝑡 →𝜋 𝑡′, then ||𝑡 ||𝛽jn = ||𝑡′||𝛽jn.

Proof. We have ||𝑡 ||𝛽jn =4.43 ||𝜋(𝑡)||𝛽jn = ||𝜋(𝑡′)||𝛽jn =4.43 ||𝑡′||𝛽jn.

Lemma 4.45. The following equalities hold:

||𝑥||𝛽jn = 0
||𝜆𝑥.𝑡 ||𝛽jn = ||𝑡 ||𝛽jn
||𝑥(𝑢, 𝑦.𝑟)||𝛽jn = ||𝑢||𝛽jn + ||𝑟 ||𝛽jn

||(𝜆𝑥.𝑡)(𝑢, 𝑦.𝑟)||𝛽jn =
⎧⎪
⎨⎪⎩

1 + ||𝑟{𝑦/𝑡{𝑥/𝑢}}||𝛽jn if 𝑥 ∈ fv(𝑡) and 𝑦 ∈ fv(𝑟)
1 + ||𝑟 {𝑦/𝑡}||𝛽jn + ||𝑢||𝛽jn if 𝑥 ∉ fv(𝑡) and 𝑦 ∈ fv(𝑟)
1 + ||𝑟 ||𝛽jn + ||𝑡 ||𝛽jn + ||𝑢||𝛽jn if 𝑦 ∉ fv(𝑟)

||𝑡(𝑢, 𝑥.𝑟)(𝑢′, 𝑦.𝑟 ′)||𝛽jn = ||𝑡(𝑢, 𝑥.𝑟(𝑢′, 𝑦.𝑟 ′))||𝛽jn

Proof. The proof follows from the inductive definition ISN(jn) and lemma 4.44.

Lemma 4.46. If Γ ⊩𝑘∩𝐽 𝑡 ∶ 𝜎 , then ||𝑡 ||𝛽jn ≤ 𝑘.
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Proof. We define |𝑥|𝑙 = |𝜆𝑥.𝑡 |𝑙 = 0, |𝑡(𝑢, 𝑥.𝑟)|𝑙 = |𝑡|𝑙 +1. We proceed by induction on the pair
⟨𝑘, |𝑡 |𝑙⟩ with respect to the lexicographic order and we reason by case analysis on 𝑡 . The
proofs for cases 𝑡 = 𝑥 , 𝑡 = 𝜆𝑥.𝑢, 𝑡 = 𝑥(𝑢, 𝑦.𝑟) and 𝑡 = (𝜆𝑥.𝑠)(𝑢, 𝑦.𝑟) are similar to the ones
in lemma 4.31, only replacing ||𝑡 ||djn by ||𝑡 ||𝛽jn. We only show here the most interesting
case which is 𝑡 = 𝑠(𝑢, 𝑥.𝑟)(𝑢′, 𝑦.𝑟 ′).

Let 𝑡′ = 𝑠(𝑢, 𝑥.𝑟(𝑢′, 𝑦.𝑟 ′)). By lemma 4.39 there is a type derivation Δ ⊩∩𝐽𝑘′ 𝑡′ ∶ 𝜎 with

𝑘′ ≤ 𝑘 and Δ ⊑ Γ. Since ||𝑡 ||𝛽jn =4.45 ||𝑡′||𝛽jn and |𝑡 |𝑙 > |𝑡′|𝑙 we can use the i.h. and we get

||𝑡′||𝛽jn ≤ 𝑘′, and thus ||𝑡 ||𝛽jn ≤ 𝑘′ ≤ 𝑘.

As a corollary we obtain:

Lemma 4.47 (Soundness for Λ𝐽 ). If 𝑡 is ∩𝐽 -typable, then 𝑡 ∈ SN(jn).

Proof. By lemma 4.46, the number of 𝛽-reduction steps in any jn-reduction sequence
starting at 𝑡 is finite. So in any infinite jn-reduction sequence starting at 𝑡 , there is nec-
essarily a term 𝑢 from which there is an infinite amount of 𝜋-steps only. But this is
impossible since 𝜋 terminates, so we conclude by contradiction.

4.5 Faithfulness of the Translation
The natural translation of generalized applications into ES [see Esp07] is not conservative
with respect to strong normalization. This is also true for the natural translation to λ-terms
given by Joachimski and Matthes [JM03]. Indeed, recall the example from section 1.2.2.2,
given by 𝑡 = 𝛿(𝛿, 𝑦.𝑟) with 𝑦 ∉ fv(𝑟) and 𝛿 = 𝜆𝑥.𝑥(𝑥, 𝑧.𝑧). The term 𝑡 is a d𝛽-redex, whose
contraction throws away the two copies of 𝛿 . The naive translation of 𝑡 gives 𝑟⭒[𝑦/𝛿⭒𝛿⭒],
which diverges in 𝜆𝐸𝑆.

In this section we define an alternative encoding and prove it faithful: a term in T𝐽 is djn-
strongly normalizing iff its alternative encoding is strongly normalizing in the ES framework.
In a later subsection, we use this connection with ES to establish the equivalence between
strong normalization of djn and T𝐽 [𝛽, p2].

4.5.1 A New Translation
We relate 𝜆𝐽𝑛 to the simple calculus with ES, borrowed from Accattoli [Acc12], defined in
section 1.3. Let us consider the (naive) translation from T𝐽 to T𝐸𝑆 (section 3.1). According to
it, the notion of distance in 𝜆𝐸𝑆 corresponds to our notion of distance for 𝜆𝐽𝑛. For instance,
the application 𝑡(𝑢, 𝑥._) in the term 𝑡(𝑢, 𝑥.𝜆𝑦.𝑟)(𝑢′, 𝑧.𝑟 ′) can be seen as a substitution [𝑥/𝑡⭒𝑢⭒]
inserted between the abstraction 𝜆𝑦.𝑟 and the argument 𝑢′. But how can we now (informally)
relate 𝜋 to the notions of existing permutations for 𝜆𝐸𝑆? Using the previous translation, we



224 4 AQuantitative Call-by-Name Calculus with Generalized Applications

can see that 𝑡0 = 𝑡(𝑢, 𝑥.𝑟)(𝑢′, 𝑦.𝑟 ′) ↦𝜋 𝑡(𝑢, 𝑥.𝑟(𝑢′, 𝑦.𝑟 ′)) = 𝑡1 simulates as

𝑡0⭒ = 𝑟 ′⭒[𝑦/(𝑟⭒[𝑥/𝑡⭒𝑢⭒])𝑢′⭒] → 𝑟 ′⭒[𝑦/(𝑟⭒𝑢′⭒)[𝑥/𝑡⭒𝑢⭒]] → 𝑟 ′⭒[𝑦/𝑟⭒𝑢′⭒][𝑥/𝑡⭒𝑢⭒] = 𝑡1⭒
The first step is an instance of a rule in ES known as 𝜎1: (𝑡[𝑥/𝑢])𝑣 ↦ (𝑡𝑣)[𝑥/𝑢], and the

second one of a rule we call 𝜎4: 𝑣[𝑦/𝑡[𝑥/𝑢]] ↦ 𝑣[𝑦/𝑡][𝑥/𝑢]. Quantitative types for ES tell us
that only rule 𝜎1, but not rule 𝜎4, is valid for a call-by-name calculus. This is why it is not
surprising that 𝜋 is rejected by our type system, as detailed in section 4.4.3.

The alternative encoding we propose is as follows (noted (⋅)⋆) instead of (⋅)⭒):

Definition 4.48 (Translation from T𝐽 to T𝐸𝑆).

𝑥⋆ ≔ 𝑥 (𝜆𝑥.𝑡)⋆ ≔ 𝜆𝑥.𝑡⋆ 𝑡(𝑢, 𝑥.𝑟)⋆ ≔ 𝑟⋆{𝑥/𝑥 l𝑥r}[𝑥r/𝑢⋆][𝑥 l/𝑡⋆]
Notice the above 𝜋-reduction 𝑡0 → 𝑡1 is still simulated: 𝑡⋆0 →2𝜎4 𝑡⋆1 .
Consider again the counterexample 𝑡 = 𝛿(𝛿, 𝑦.𝑟) to faithfulness discussed above. The

alternative encoding of 𝑡 is 𝑟⋆{𝑦/𝑦 l𝑦r}[𝑦r/𝛿⋆][𝑦 l/𝛿⋆], which is just 𝑟⋆[𝑦r/𝛿⋆][𝑦 l/𝛿⋆], because
𝑦 ∉ fv(𝑟⋆). The only hope to have an interaction between the two copies of 𝛿⋆ in the previous
term is to execute the ES, but such executions will just throw away those two copies, because
𝑦 l, 𝑦r ∉ fv(𝑟⋆). This hopefully gives an intuitive idea of the faithfulness of our encoding.

4.5.2 Proof of Faithfulness
We need to prove the equivalence between two notions of strong normalization: the one of
a term in 𝜆𝐽𝑛 and the one of its encoding in 𝜆𝐸𝑆. While this proof can be a bit involved using
traditional methods, quantitative types will make it very straightforward.

For 𝜆𝐸𝑆, we will use the type system in section 1.3.2.3, for which we recall the character-
ization.

Theorem 4.49. Let 𝑀 ∈ T𝐸𝑆 . Then 𝑀 is typable in ∩𝐸𝑆 iff 𝑀 ∈ SN(dB, sub).
A simple induction on the type derivation shows that the encoding is sound.

Lemma 4.50. Let 𝑡 ∈ T𝐽 . Then Γ ⊩∩𝐽 𝑡 ∶ 𝜎 ⟹ Γ ⊩∩𝐸𝑆 𝑡⋆ ∶ 𝜎 .

Proof. By induction on the type derivation. Notice that the statement also applies by
straightforward i.h. for rule (MANY).
Case (VAR). Then 𝑡 = 𝑥 and we type 𝑡⋆ = 𝑥 with rule (VAR).
Case (ABS). Then 𝑡 = 𝜆𝑥.𝑠 and 𝑡⋆ = 𝜆𝑥.𝑠⋆. We conclude by i.h. using (→𝑖).
Case (APP). Then 𝑡 = 𝑠(𝑢, 𝑥.𝑟) and 𝑡⋆ = 𝑟⋆{𝑥/𝑥 l𝑥r}[𝑥r/𝑢⋆][𝑥 l/𝑠⋆]. By the i.h. we have

derivations Π ⊩∩𝐸𝑆 𝑠⋆ ∶ #([ℳ𝑖 → 𝜏𝑖]𝑖∈𝐼 ), Δ ⊩∩𝐸𝑆 𝑢⋆ ∶ #(⊔𝑖∈𝐼ℳ𝑖) and Λ; 𝑥 ∶
[𝜏𝑖]𝑖∈𝐼 ⊩∩𝐸𝑆 𝑟⋆ ∶ 𝜎 with Γ = Π ⊎ Δ ⊎ Λ.

If 𝐼 ≠ ∅, it is easy to construct a derivation 𝑥 l ∶ [ℳ𝑖 → 𝜏𝑖]𝑖∈𝐼 ; 𝑥r ∶ ⊔𝑖∈𝐼ℳ𝑖 ⊩∩𝐸𝑆
𝑥 l𝑥r ∶ [𝜏𝑖]𝑖∈𝐼 . By lemma 4.24, we get Φ = Λ; 𝑥 l ∶ [ℳ𝑖 → 𝜏𝑖]𝑖∈𝐼 ; 𝑥r ∶ ⊔𝑖∈𝐼ℳ𝑖 ⊩∩𝐸𝑆
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𝑟⋆{𝑥/𝑥 l𝑥r} ∶ 𝜎 . We conclude by building the following derivation.

Φ Δ ⊢ 𝑢⋆ ∶ #(⊔𝑖∈𝐼ℳ𝑖)
Λ ⊎ Δ; 𝑥 l ⊢ [ℳ𝑖 → 𝜏𝑖]𝑖∈𝐼 ∶ 𝑟⋆{𝑥/𝑥 l𝑥r}[𝑥r/𝑢⋆]𝜎 Π ⊩ 𝑠⋆ ∶ [ℳ𝑖 → 𝜏𝑖]𝑖∈𝐼

Π ⊎ Δ ⊎ Λ ⊢ 𝑟⋆{𝑥/𝑥 l𝑥r}[𝑥r/𝑢⋆][𝑥 l/𝑠⋆] ∶ 𝜎

If 𝐼 = ∅, then 𝑥 ∉ fv(𝑟) = fv(𝑟⋆) by relevance, so that 𝑡⋆ = 𝑟⋆[𝑥r/𝑢⋆][𝑥 l/𝑠⋆]. By the
i.h. we have derivations Π ⊩∩𝐸𝑆 𝑠⋆ ∶ [𝜏], Δ ⊩∩𝐸𝑆 𝑢⋆ ∶ [𝜌] and Λ ⊩∩𝐸𝑆 𝑟⋆ ∶ 𝜎 with
Γ = Π ⊎ Δ ⊎ Λ. We conclude by building the following derivation.

Λ; 𝑥 l ∶ [ ]; 𝑥r ∶ [ ] ⊩ 𝑟⋆ ∶ 𝜎 Δ ⊢ 𝑢⋆ ∶ [𝜌]
Λ ⊎ Δ; 𝑥 l ∶ [ ] ⊢ 𝑟⋆[𝑥r/𝑢⋆] ∶ 𝜎 Π ⊩ 𝑠⋆ ∶ [𝜏]

Λ ⊎ Π ⊎ Δ ⊢ 𝑟⋆{𝑥/𝑥 l𝑥r}[𝑥r/𝑢⋆][𝑥 l/𝑠⋆] ∶ 𝜎

We show completeness by a detour through the encoding of T𝐸𝑆 to T𝐽 (definition 3.2).
The two following lemmas, shown by induction on the type derivations, give in particular
that 𝑡⋆ typable implies 𝑡 typable.

Lemma 4.51. Let 𝑀 ∈ T𝐸𝑆 . Then Γ ⊩∩𝐸𝑆 𝑀 ∶ 𝜎 ⟹ Γ ⊩∩𝐽 𝑀◦ ∶ 𝜎 .

Proof. By induction on the derivation. The cases where the derivation ends with (VAR),
(ABS) or (MANY) (generalizing the statement) are straightforward.

Case (APP). Then 𝑀 = 𝑃𝑁 and 𝑀◦ = 𝑃◦(𝑁 ◦, 𝑧.𝑧). By the i.h. we have derivations
Λ ⊩∩𝐽 𝑃◦ ∶ ℳ → 𝜎 and Δ ⊩∩𝐽 𝑁 ◦ ∶ #(ℳ) with Γ = Λ ⊎ Δ. By application of rule
(MANY) we obtain Λ ⊩∩𝐽 𝑃◦ ∶ [ℳ → 𝜎]. We conclude by building the following
derivation.

Λ ⊩ 𝑃◦ ∶ [ℳ → 𝜎] Δ ⊩ 𝑁 ◦ ∶ #(ℳ) 𝑥 ∶ [𝜎] ⊢ 𝑥 ∶ 𝜎
Λ ⊎ Δ ⊢ 𝑃◦(𝑁 ◦, 𝑥.𝑥) ∶ 𝜎

Case (ES). Then𝑀 = 𝑃[𝑥/𝑁 ] and we have a translation of the form𝑀◦ = (𝜆𝑧.𝑧)(𝑁 ◦, 𝑥.𝑃◦).
By the i.h. we have derivations Λ; 𝑥 ∶ ℳ ⊩∩𝐽 𝑃◦ ∶ 𝜎 and Δ ⊩∩𝐽 𝑁 ◦ ∶ #(ℳ) with
Γ = Λ ⊎ Δ. Let ℳ = [𝜏𝑖]𝑖∈𝐼 .
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If 𝐼 ≠ ∅, We conclude by building the following derivation.

( 𝑧 ∶ [𝜏𝑖] ⊢ 𝑧 ∶ 𝜏𝑖
∅ ⊢ 𝜆𝑧.𝑧 ∶ [𝜏𝑖] → 𝜏𝑖

)
𝑖∈𝐼

∅ ⊢ 𝜆𝑧.𝑧 ∶ [[𝜏𝑖] → 𝜏𝑖]𝑖∈𝐼 Δ ⊩ 𝑁 ◦ ∶ #(ℳ) Λ; 𝑥 ∶ ℳ ⊩ 𝑃◦ ∶ 𝜎
Δ ⊎ Λ ⊢ (𝜆𝑧.𝑧)(𝑁 ◦, 𝑥.𝑃◦) ∶ 𝜎

If 𝐼 = ∅, We conclude by building the following derivation (where 𝜏 is arbitrary).

𝑧 ∶ [𝜏 ] ⊢ 𝑧 ∶ 𝜏
∅ ⊢ 𝜆𝑧.𝑧 ∶ [𝜏 ] → 𝜏
∅ ⊢ 𝜆𝑧.𝑧 ∶ [[𝜏 ] → 𝜏] Δ ⊩ 𝑁 ◦ ∶ #(ℳ) Λ; 𝑥 ∶ ℳ ⊩ 𝑃◦ ∶ 𝜎

Δ ⊎ Λ ⊢ (𝜆𝑧.𝑧)(𝑁 ◦, 𝑥.𝑃◦) ∶ 𝜎

Lemma 4.52. Let 𝑡 ∈ T𝐽 . Then Γ ⊩∩𝐽 𝑡⋆◦ ∶ 𝜎 ⟹ Γ ⊩∩𝐽 𝑡 ∶ 𝜎 .

Proof. By induction on 𝑡 . The cases where 𝑡 = 𝑥 or 𝑡 = 𝜆𝑥.𝑠 are straightforward by the
i.h. We reason by cases for the generalized application.

Case 𝑡 = 𝑠(𝑢, 𝑥.𝑟) where 𝑥 ∈ fv(𝑟). We have

𝑡⋆◦ = (𝑟⋆{𝑥/𝑥 l𝑥r}[𝑥r/𝑢⋆][𝑥 l/𝑠⋆])◦ = I(𝑠⋆◦, 𝑥 l.I(𝑢⋆◦, 𝑥r.𝑟⋆◦{𝑥/𝑥 l(𝑥r, 𝑧.𝑧)}))
By construction and also by the anti-substitution lemma 4.34 it is not difficult to see
that Γ = Γ𝑠 ⊎ Γ𝑢 ⊎ Γ𝑟 and there exist derivations having the following conclusions,
where 𝐼 ≠ ∅:

1. Γ𝑟 ; 𝑥 ∶ [𝜏𝑖]𝑖∈𝐼 ⊩∩𝐽 𝑟⋆◦ ∶ 𝜎
2. 𝑥 l ∶ [[𝜏𝑖] → 𝜏𝑖]𝑖∈𝐼 ⊩∩𝐽 𝑥 l ∶ [[𝜏𝑖] → 𝜏𝑖]𝑖∈𝐼
3. 𝑥r ∶ [𝜏𝑖]𝑖∈𝐼 ⊩∩𝐽 𝑥r ∶ [𝜏𝑖]𝑖∈𝐼
4. ∅ ⊩∩𝐽 I ∶ [[𝜏𝑖] → 𝜏𝑖]𝑖∈𝐼
5. Γ𝑢 ⊩∩𝐽 𝑢⋆◦ ∶ [𝜏𝑖]𝑖∈𝐼
6. ∅ ⊩∩𝐽 I ∶ [[[𝜏𝑖] → 𝜏𝑖] → [𝜏𝑖] → 𝜏𝑖]𝑖∈𝐼
7. Γ𝑠 ⊩∩𝐽 𝑠⋆◦ ∶ [[𝜏𝑖] → 𝜏𝑖]𝑖∈𝐼

The i.h. on points 1, 5 and 7 give Γ𝑟 ; 𝑥 ∶ [𝜏𝑖]𝑖∈𝐼 ⊩∩𝐽 𝑟 ∶ 𝜎 , Γ𝑢 ⊩∩𝐽 𝑢 ∶ [𝜏𝑖]𝑖∈𝐼 and
Γ𝑠 ⊩∩𝐽 𝑠 ∶ [[𝜏𝑖] → 𝜏𝑖]𝑖∈𝐼 resp., so that we conclude with the following derivation:
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Γ𝑠 ⊩ 𝑠 ∶ [[𝜏𝑖] → 𝜏𝑖]𝑖∈𝐼 Γ𝑢 ⊩ 𝑢 ∶ [𝜏𝑖]𝑖∈𝐼 Γ𝑟 ; 𝑥 ∶ [𝜏𝑖]𝑖∈𝐼 ⊩ 𝑟 ∶ 𝜎
Γ ⊢ 𝑠(𝑢, 𝑥.𝑟) ∶ 𝜎

Case 𝑡 = 𝑠(𝑢, 𝑥.𝑟) where 𝑥 ∉ fv(𝑟). Then we have

𝑡⋆◦ = (𝑟⋆[𝑥r/𝑢⋆][𝑥 l/𝑠⋆])◦ = I(𝑠⋆◦, 𝑥 l.I(𝑢⋆◦, 𝑥r.𝑟⋆◦))
We have the following derivation, where Γ = Γ𝑠 ⊎ Γ𝑟 ⊎ Γ𝑟 , [𝜏1] → 𝜏1, [𝜏2] → 𝜏2, 𝜌 and
𝜌′ are witness types.

⋮
∅ ⊢ I ∶ [[𝜏1] → 𝜏1] Γ𝑠 ⊩ 𝑠⋆◦ ∶ [𝜌] Φ
Γ𝑠 ⊎ Γ𝑢 ⊎ Γ𝑟 ⊢ I(𝑠⋆◦, 𝑥 l.I(𝑢⋆◦, 𝑥r.𝑟⋆◦)) ∶ 𝜎

Where

Φ =

⋮
∅ ⊢ I ∶ [[𝜏2] → 𝜏2]

Γ𝑢 ⊩ 𝑢⋆◦ ∶ [𝜌′] Γ𝑟 ⊩ 𝑟⋆◦ ∶ 𝜎

Γ𝑢 ⊎ Γ𝑟 ⊢ I(𝑢⋆◦, 𝑥r.𝑟⋆◦) ∶ 𝜎
By the i.h. we have derivations Γ𝑟 ⊩∩𝐽 𝑟 ∶ 𝜎 , Γ𝑠 ⊩∩𝐽 𝑠 ∶ [𝜌] and Γ𝑢 ⊩∩𝐽 𝑢 ∶ [𝜌′]. We
then derive Γ ⊩∩𝐽 𝑠(𝑢, 𝑥.𝑟) ∶ 𝜎 by rule (APP).

Putting everything together, we get this equivalence:

Corollary 4.53. Let 𝑡 ∈ T𝐽 . Then Γ ⊩∩𝐽 𝑡 ∶ 𝜎 ⟺ Γ ⊩∩𝐸𝑆 𝑡⋆ ∶ 𝜎 .
This corollary, together with the two characterization theorems 4.37 and 4.49, provides

the main result of this section:

Theorem 4.54 (Faithfulness). Let 𝑡 ∈ T𝐽 . Then 𝑡 ∈ SN(dB) ⟺ 𝑡⋆ ∈ SN(dB, sub).

4.6 Equivalent Notions of Strong Normalization
In the previous section, we related strong d𝛽-normalization with strong normalization of ES.
In this section we compare the various concepts of strong normalization that are induced
on T𝐽 by 𝛽 , d𝛽 , (𝛽, p2) and jn. This comparison makes use of several results obtained in the
previous sections. From it, we obtain new results about the original calculus Λ𝐽 .

4.6.1 𝛽-Normalization is not Enough
We have discussed the unblocking property of 𝜋 and p2 in section 4.1. From the point of
view of normalization, this means that T𝐽 [𝛽] has premature normal forms and that SN(𝛽) ⊊
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SN(d𝛽). To illustrate this purpose we give an example of a T𝐽 -term which normalizes when
only using rule 𝛽 , but diverges when adding permutation rules or distance. Let us take
𝑡 ≔ 𝑤(𝑢, 𝑤′.𝛿◦)(𝛿◦, 𝑥.𝑥). Although this term is normal in T𝐽 [𝛽], the second 𝛿◦ is actually an
argument for the first one, as we can see with a 𝜋 permutation:

𝑡 →𝜋 𝑤(𝑢, 𝑤′.𝛿◦(𝛿◦, 𝑥.𝑥)) = 𝑤(𝑢, 𝑤′.Ω) ≔ 𝑡′

Thus 𝑡 →𝜋 𝑡′ →𝛽 𝑡′ which implies 𝑡 ∉ SN(jn). We can also unblock the redex in 𝑡 by a
p2-permutation moving the inner 𝜆𝑥 up:

𝑡 →p2 (𝜆𝑦.𝑤(𝑢, 𝑤′.𝑦(𝑦, 𝑧.𝑧)))(𝛿◦, 𝑥.𝑥) →𝛽 𝑡′

Thus 𝑡 →p2→𝛽 𝑡′ →𝛽 𝑡′ and thus 𝑡 ∉ SN(𝛽, p2). We get the same thing in a unique d𝛽-step:
𝑡 →d𝛽 𝑡′.

In all the three cases, 𝛽-strong normalization is not preserved by the permutation rules,
as there is a term 𝑡 ∈ SN(𝛽) such that 𝑡 ∉ SN(jn), 𝑡 ∉ SN(𝛽, p2) and 𝑡 ∉ SN(d𝛽).

4.6.2 Comparison with 𝛽 + p2
We now formalize the fact that our calculus T𝐽 [d𝛽] is a version with distance of T𝐽 [𝛽, p2],
so that they are equivalent from a normalization point of view. For this, we will establish
the equivalence between strong normalization w.r.t. d𝛽 and (𝛽, p2), through a long chain of
equivalences. One of them is theorem 4.54, that we have proved in the previous section; the
other is a result about 𝜎-rules in the 𝜆-calculus – which is why we have to go through the
𝜆-calculus again.

Definition 4.55 (Translation (⋅)↓ from T𝐸𝑆 to TΛ).

𝑥↓ ≔ 𝑥 (𝜆𝑥.𝑀)↓ ≔ 𝜆𝑥.𝑀↓ (𝑀𝑁)↓ ≔ 𝑀↓𝑁 ↓ 𝑀𝑥𝑁 ↓ ≔ (𝜆𝑥.𝑀↓)𝑁 ↓

Lemma 4.56. Let 𝑀 ∈ T𝐸𝑆 . Then 𝑀 ∈ SN(dB, sub) ⟹ 𝑀↓ ∈ SN(𝛽).

Proof. For typability in the 𝜆-calculus, we use the type system 𝒮 ′𝜆 with choice operators
of Kesner and Vial [KV20]. It can be seen as a restriction of our system ∩𝐸𝑆 to 𝜆-terms.
Suppose 𝑀 ∈ SN(dB, sub). By theorem 4.49 𝑀 is typable in ∩𝐸𝑆, and it is straightforward
to show that 𝑀↓ is typable in 𝒮 ′𝜆 . Moreover, 𝑀↓ typable implies that 𝑀↓ ∈ SN(𝛽) [KV20],
which is what we want.

For 𝑡 ∈ T𝐽 , let 𝑡□ ≔ (𝑡↓)⋆. So, we are just composing the alternative encoding of gener-
alized application into ES with the map into 𝜆-calculus just introduced. The translation (⋅)□
may be given directly by recursion as follows:

𝑥□ = 𝑥 (𝜆𝑥.𝑡)□ = 𝜆𝑥.𝑡□ 𝑡(𝑢, 𝑦.𝑟)□ = (𝜆𝑦r.(𝜆𝑦 l.𝑟□{𝑦/𝑦 l𝑦r})𝑡□)𝑢□

Lemma 4.57. 𝑡□ ∈ SN(𝛽, 𝜎2) ⟹ 𝑡 ∈ SN(𝛽, p2).
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Proof. Because (⋅)□ produces a strict simulation from T𝐽 to TΛ. More precisely: (i) if
𝑡1 →𝛽 𝑡2 then 𝑡□1 →+𝛽 𝑡□2 ; (ii) if 𝑡1 →p2 𝑡2 then 𝑡□1 →2𝜎2 𝑡□2 .

Theorem 4.58. Let 𝑡 ∈ T𝐽 . Then 𝑡 ∈ SN(𝛽, p2) iff 𝑡 ∈ SN(d𝛽).

Proof. We prove that the following conditions are equivalent: 1) 𝑡 ∈ SN(𝛽, p2). 2) 𝑡 ∈
SN(d𝛽). 3) 𝑡⋆ ∈ SN(dB, sub). 4) 𝑡□ ∈ SN(𝛽). 5) 𝑡□ ∈ SN(𝛽, 𝜎2). Now, 1) ⟹ 2) is because
→d𝛽⊂→+𝛽,p2. 2) ⟹ 3) is by theorem 4.54. 3) ⟹ 4) is by lemma 4.56. 4) ⟹ 5) is
showed by Regnier [Reg94]. 5) ⟹ 1) is by lemma 4.57.

4.6.3 Comparison with 𝛽 + 𝜋
We now prove the equivalence between strong normalization for d𝛽 and for jn. One of the
implications already follows from the properties of the typing system.

Lemma 4.59. Let 𝑡 ∈ T𝐽 . If 𝑡 ∈ SN(d𝛽) then 𝑡 ∈ SN(jn).

Proof. Follows from the completeness of the typing system (lemma 4.36) and soundness
of ∩𝐽 for jn (lemma 4.47).

The proof of the other implication requires more work, organized in 4 parts: 1) A remark
about ES. 2) A remark about translations of ES into the Λ𝐽 -calculus. 3) Two new properties
of strong normalization for jn in Λ𝐽 . 4) Preservation of strong jn-normalization by a certain
map from the set T𝐽 into itself.

The remark about explicit substitutions is this:

Lemma 4.60. For all 𝑀 ∈ T𝐸𝑆 , 𝑀 ∈ SN(dB, sub) iff 𝑀 ∈ SN(B, sub).
As in section 3.6, we do not use the original translation (⋅)◦ from T𝐸𝑆 to T𝐽 , but rather the

new one (⋅)•, which allows simulation of dB and sub reductions. In that translation (defined
in section 3.6), the clause for applications changes:

(𝑀𝑁)• ≔ I(𝑁 •, 𝑦.𝑀 •(𝑦, 𝑧.𝑧))
This strict simulation gives immediately:

Lemma 4.61. For all 𝑀 ∈ T𝐸𝑆 , if 𝑀 • ∈ SN(𝛽) then 𝑀 ∈ SN(B, sub).
We now prove two properties of strong normalization for jn in Λ𝐽 . Following Matthes

[Mat00], SN(jn) admits an inductive characterization ISN(jn), given in figure 4.1, which uses
the following inductive generation for T𝐽 -terms:

𝑡 , 𝑢, 𝑟 ⩴ 𝑥𝑆 ∣ 𝜆𝑥.𝑡 ∣ (𝜆𝑥.𝑡)𝑆𝑆 𝑆 ⩴ (𝑢, 𝑦.𝑟)
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𝑥 ∈ ISN(jn) (VAR)
𝑢, 𝑟 ∈ ISN(jn)

𝑥(𝑢, 𝑧.𝑟) ∈ ISN(jn) (HVAR)
𝑡 ∈ ISN(jn)

𝜆𝑥.𝑡 ∈ ISN(jn) (LAMBDA)

𝑥(𝑢, 𝑦.𝑟𝑆)𝑆 ∈ ISN(jn)
𝑥(𝑢, 𝑦.𝑟)𝑆𝑆 ∈ ISN(jn)

(PI)
𝑟 {𝑦/𝑡{𝑥/𝑢}}𝑆 ∈ ISN(jn) 𝑡, 𝑢 ∈ ISN(jn)

(𝜆𝑥.𝑡)(𝑢, 𝑦.𝑟)𝑆 ∈ ISN(jn)
(BETA)

Figure 4.1: Inductive characterization of the strong jn-normalizing Λ𝐽 -terms.

Hence 𝑆 stands for a generalized argument, while 𝑆 denotes a possibly empty list of 𝑆’s. No-
tice that at most one rule applies to a given term, so the rules are deterministic (and thus
invertible).

A preliminary fact is the following:

Lemma 4.62. The set SN(jn) is closed under prefixing of arbitrary 𝜋-reduction steps:

𝑡 →𝜋 𝑡′ and 𝑡′ ∈ SN(jn)
𝑡 ∈ SN(jn)

Proof. We first consider the following three facts:

1. Every 𝑡 ∈ T𝐽 has a unique 𝜋-normal form 𝜋(𝑡).
2. The map 𝜋(⋅) preserves 𝛽-reduction steps, that is, 𝑡1 →𝛽 𝑡2 implies 𝜋(𝑡1) →𝛽 𝜋(𝑡2)

(lemma 4.41).

3. →𝜋 is terminating.

Now, suppose 𝑡 ∉ SN(jn), so that there is an infinite (jn)-reduction sequence starting at
𝑡 . Then by the previous facts it is possible to construct an infinite 𝛽-reduction sequence
starting at 𝜋(𝑡). But 𝜋(𝑡) = 𝜋(𝑡′) and 𝑡′ →∗𝜋 𝜋(𝑡′), so there is an infinite 𝛽𝜋-reduction
sequence starting at 𝑡′, which leads to a contradiction.

Given that SN(jn) = ISN(jn), the “rule” in lemma 4.62, when written with ISN(jn), is
admissible for the predicate ISN(jn). Now, consider:

𝑢, 𝑟 ∈ ISN(jn)
𝑟{𝑥/𝑦(𝑢, 𝑧.𝑧)} ∈ ISN(jn) (I)

𝑟{𝑥/𝑟{𝑧/𝑡{𝑦/𝑢}}} ∈ ISN(jn) 𝑡, 𝑢 ∈ ISN(jn) 𝑥 ∉ fv(𝑡, 𝑢, 𝑟)
𝑟{𝑥/(𝜆𝑦.𝑡)(𝑢, 𝑧.𝑟)} ∈ ISN(jn) (II)
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Notice rule (II) generalizes rule (BETA): just take 𝑟 = 𝑥𝑆, with 𝑥 ∉ 𝑆.
The two new properties of strong normalization for jn in Λ𝐽 are contained in the follow-

ing lemma.

Lemma 4.63. Rules (I) and (II) are admissible rules for the predicate ISN(jn).

Proof. Proof of (I). By induction on 𝑡 ∈ ISN(jn), we prove that 𝑡{𝑥/𝑦(𝑢, 𝑧.𝑧)} ∈ ISN(jn).
The most interesting case is (PI), which we spell out in detail. We will use a device
to shorten the writing: if 𝐸 is 𝑡 , or 𝑆, or 𝑆, then 𝐸 denotes 𝐸{𝑥/𝑦(𝑢, 𝑧.𝑧)}. Suppose
𝑡 = 𝑦′(𝑢′, 𝑧′.𝑡′)𝑆𝑆 ∈ ISN(jn) with 𝑦′(𝑢′, 𝑧′.𝑡′𝑆)𝑆 ∈ ISN(jn). We want 𝑡 ∈ ISN(jn). If
𝑦′ ≠ 𝑦 , then the thesis follows by the i.h. and one application of (PI). Otherwise, 𝑡 =
𝑦(𝑢, 𝑧.𝑧)(𝑢′, 𝑧′.𝑡′)𝑆𝑆. By the i.h.,

𝑦(𝑢, 𝑧.𝑧)(𝑢′, 𝑧′.𝑡′𝑆)𝑆 ∈ ISN(jn).
By inversion of (PI), we get

𝑦(𝑢, 𝑧.𝑧(𝑢′, 𝑧′.𝑡′𝑆))𝑆 ∈ ISN(jn).
From this, lemma 4.62 gives

𝑦(𝑢, 𝑧.𝑧(𝑢′, 𝑧′.𝑡′)𝑆)𝑆 ∈ ISN(jn).
Finally, two applications of (PI) yield 𝑡 ∈ ISN(jn).

Proof of (II). We prove the following: for all 𝑡1 ∈ ISN(jn), for all 𝑛 ≥ 0, if 𝑡1 has 𝑛
occurrences of the sub-term 𝑟{𝑧/𝑡{𝑦/𝑢}}, then, for any choice of 𝑛 such occurrences, 𝑡2 ∈
ISN(jn), where 𝑡2 is the term that results from 𝑡1 by replacing each of those 𝑛 occurrences
by (𝜆𝑦.𝑡)(𝑢, 𝑧.𝑟).

Notice the statement we are going to prove entails the admissibility of (II). Indeed,
given 𝑠, let 𝑛 be the number of free occurrences of 𝑥 in 𝑠. The term 𝑡1 = 𝑠{𝑥/𝑟{𝑧/𝑡{𝑦/𝑢}}}
has well determined 𝑛 occurrences of the sub-term 𝑟{𝑧/𝑡{𝑦/𝑢}} (it may have others), and
𝑠{𝑥/(𝜆𝑦.𝑡)(𝑢, 𝑧.𝑟)} is the term that results from 𝑡1 by replacing each of those 𝑛 occurrences
by (𝜆𝑦.𝑡)(𝑢, 𝑧.𝑟).

Suppose 𝑡1 ∈ ISN(jn) and consider 𝑛 occurrences of the sub-term 𝑟{𝑧/𝑡{𝑦/𝑢}} in 𝑡1. The
proof is by induction on 𝑡1 ∈ ISN(jn) and sub-induction on 𝑛. A term 𝑠 is determined,
with 𝑛 free occurrences of 𝑥 , such that 𝑥 ∉ 𝑡, 𝑢, 𝑟 and 𝑡1 = 𝑠{𝑥/𝑟{𝑧/𝑡{𝑦/𝑢}}}. We want to
prove that 𝑠{𝑥/(𝜆𝑦.𝑡)(𝑢, 𝑧.𝑟)} ∈ ISN(jn). We will use a device to shorten the writing: if 𝐸
is 𝑡 , or 𝑆, or 𝑆, then 𝐸 denotes 𝐸{𝑥/𝑟{𝑧/𝑡{𝑦/𝑢}}} and 𝐸 denotes 𝐸{𝑥/(𝜆𝑦.𝑡)(𝑢, 𝑧.𝑟)}. The proof
proceeds by case analysis on 𝑠.

We show the critical case 𝑠 = 𝑥𝑆, where use is made of the sub-induction hypothesis.
We are given 𝑠 = 𝑟{𝑧/𝑡{𝑦/𝑢}}𝑆 ∈ ISN(jn). We want to show 𝑠 = (𝜆𝑦.𝑡)(𝑢, 𝑧.𝑟)𝑆 ∈ ISN(jn).
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Given that 𝑡 , 𝑢 ∈ ISN(jn), it suffices

𝑟{𝑧/𝑡{𝑦/𝑢}}𝑆 ∈ ISN(jn) (4.3)

due to invertibility of (BETA). Let 𝑠′ ≔ 𝑟{𝑧/𝑡{𝑦/𝑢}}𝑆. Since 𝑥 ∉ 𝑡, 𝑢, 𝑟 , we have 𝑠′ =
𝑠 (whence 𝑠′ ∈ ISN(jn)), and the number of free occurrences of 𝑥 in 𝑠′ is 𝑛 − 1. By
sub-induction hypothesis, 𝑠′ ∈ ISN(jn). But 𝑠′ = 𝑟{𝑧/𝑡{𝑦/𝑢}}𝑆, again due to 𝑥 ∉ 𝑡, 𝑢, 𝑟 .
Therefore (4.3) holds.

We now move to the fourth part of the ongoing reasoning. Consider the map from T𝐽 to
itself obtained by composing (⋅)⋆ ∶ T𝐽 → T𝐸𝑆 with (⋅)• ∶ T𝐸𝑆 → T𝐽 . Let us write (⋅)† this
composition. A recursive definition is also possible, as follows:

𝑥† = 𝑥 𝜆𝑥.𝑡† = 𝜆𝑥.𝑡† 𝑡(𝑢, 𝑦.𝑟)† = I(𝑡†, 𝑦1.I(𝑢†, 𝑦2.𝑟†{𝑦/𝑦1(𝑦2, 𝑧.𝑧)}))
Lemma 4.64. If 𝑡 ∈ SN(jn) then 𝑡† ∈ SN(jn).

Proof. For 𝑡 ∈ SN(jn), ||𝑡 ||jn denotes the length of the longest jn-reduction sequence start-
ing at 𝑡 . We prove 𝑡† ∈ ISN(jn) by induction on the longest jn reduction sequence starting
at 𝑡 (||𝑡 ||jn), with sub-induction on the size of 𝑡 . We proceed by case analysis of 𝑡 .
Case 𝑡 = 𝑥 . We have 𝑥† = 𝑥 ∈ ISN(jn).
Case 𝑡 = 𝜆𝑥.𝑠. We have 𝑡† = 𝜆𝑥.𝑠†. The sub-inductive hypothesis gives 𝑠† ∈ ISN(𝛽𝜋).

By rule (LAMBDA), 𝜆𝑥.𝑠† ∈ ISN(jn).
Case 𝑡 = 𝑦(𝑢, 𝑥.𝑟). We have 𝑡† = I(𝑦, 𝑥1.I(𝑢†, 𝑥2.𝑟†{𝑥/𝑥1(𝑥2, 𝑧.𝑧)})). By the (sub)-i.h., 𝑢†, 𝑟† ∈

ISN(jn). Rule (I) yields 𝑟†{𝑥/𝑦(𝑢†, 𝑧.𝑧)} ∈ ISN(jn). Applying rule (BETA) twice, we
obtain 𝑡† ∈ ISN(jn).

Case 𝑡 = (𝜆𝑦.𝑠)(𝑢, 𝑥.𝑟). We have 𝑡† = I(𝜆𝑦.𝑠†, 𝑥1.I(𝑢†, 𝑥2.𝑟†{𝑥/𝑥1(𝑥2, 𝑧.𝑧)})). Notice that
||𝑡 ||jn is greater than ||𝑠||jn and ||𝑢||jn. By the induction hypothesis, 𝑠†, 𝑢† ∈ ISN(jn).
Also ||𝑡 ||jn > ||𝑟{𝑥/𝑠{𝑦/𝑢}}||jn. Hence (𝑟{𝑥/𝑠{𝑦/𝑢}})† ∈ ISN(jn), again by the i.h. Since
map (⋅)† commutes with substitution, 𝑟†{𝑥/𝑠†{𝑦/𝑢†}} ∈ ISN(jn). This, together with
𝑠†, 𝑢† ∈ ISN(jn), gives 𝑟†{𝑥/(𝜆𝑦.𝑠†)(𝑢†, 𝑧.𝑧)} ∈ ISN(jn), due to rule (II). Applying
rule (BETA) twice, we obtain 𝑡† ∈ ISN(jn).

Case 𝑡 = 𝑡0(𝑢1, 𝑥.𝑟1)(𝑢2, 𝑦.𝑟2). Let 𝑠 ≔ 𝑡0(𝑢1, 𝑥1.𝑟1(𝑢2, 𝑦.𝑟2)). Since 𝑡 →𝜋 𝑠, the i.h. gives
𝑠† ∈ ISN(jn). The induction hypothesis also gives 𝑡†0 , 𝑢†1 ∈ ISN(jn). The term 𝑠† is

I(𝑡†0 , 𝑥1.I(𝑢†1 , 𝑥2.I(𝑟†1 , 𝑦1.I(𝑢†2 , 𝑦2.𝑟†2 {𝑦/𝑦1(𝑦2, 𝑧.𝑧)})){𝑥/𝑥1(𝑥2, 𝑧.𝑧)}))
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From 𝑠† ∈ ISN(jn), by four applications of (BETA) we obtain

𝑟†2 {𝑦/(𝑟†1 {𝑥/𝑡†0 (𝑢†1 , 𝑧.𝑧)})(𝑢†2 , 𝑧.𝑧)} ∈ ISN(jn) (4.4)

We want 𝑡† ∈ ISN(jn), where 𝑡† is

I(I(𝑡†0 , 𝑥1.I(𝑢†1 , 𝑥2.𝑟†1 {𝑥/𝑥1(𝑥2, 𝑧.𝑧)})), 𝑦1.I(𝑢†2 , 𝑦2.𝑟†2 {𝑦/𝑦1(𝑦2, 𝑧.𝑧)}))

From (4.4) and 𝑢†1 ∈ ISN(jn), rule (II) obtains

𝑟†2 {𝑦/I(𝑢†1 , 𝑥2.𝑟†1 {𝑥/𝑡†0 (𝑥2, 𝑧.𝑧)}(𝑢†2 , 𝑧.𝑧))} ∈ ISN(jn)
From this, lemma 4.62 (prefixing of 𝜋-reduction steps) obtains

𝑟†2 {𝑦/I(𝑢†1 , 𝑥2.𝑟†1 {𝑥/𝑡†0 (𝑥2, 𝑧.𝑧)})(𝑢†2 , 𝑧.𝑧)} ∈ ISN(jn)

From this and 𝑡†0 ∈ ISN(jn), rule (II) obtains

𝑟†2 {𝑦/I(𝑡†0 , 𝑥1.I(𝑢†1 , 𝑥2.𝑟†1 {𝑥/𝑥1(𝑥2, 𝑧.𝑧)})(𝑢†2 , 𝑧.𝑧))} ∈ ISN(jn)
From this, lemma 4.62 (prefixing of 𝜋-reduction steps) obtains

𝑟†2 {𝑦/I(𝑡†0 , 𝑥1.I(𝑢†1 , 𝑥2.{†𝑥/𝑥1(𝑥2, 𝑧.𝑧)}𝑟1))(𝑢†2 , 𝑧.𝑧)} ∈ ISN(jn)
Finally, two applications of (BETA) obtain 𝑡† ∈ ISN(jn) = SN(jn).

All is in place to obtain the desired result:

Theorem 4.65. Let 𝑡 ∈ T𝐽 . 𝑡 ∈ SN(d𝛽) iff 𝑡 ∈ SN(jn).

Proof. The implication from left to right is lemma 4.59. For the converse, suppose 𝑡 ∈
SN(jn). By lemma 4.64, 𝑡† ∈ SN(jn). Trivially, 𝑡† ∈ SN(𝛽). Since 𝑡† = (𝑡⋆)•, lemma 4.61
gives 𝑡⋆ ∈ SN(B, sub). By lemma 4.60, 𝑡⋆ ∈ SN(dB, sub). By an equivalence in the proof
of theorem 4.58, 𝑡 ∈ SN(d𝛽).

4.6.4 Consequences for Λ𝐽
The comparison with 𝜆𝐽𝑛 gives new results about the original Λ𝐽 (a quantitative typing sys-
tem characterizing strong normalization, and a faithful translation into ES) as immediate
consequences of theorems 4.37, 4.54 and 4.65.

Theorem 4.66. Let 𝑡 ∈ T𝐽 .

Characterization 𝑡 ∈ SN(jn) iff 𝑡 is ∩𝐽 -typable.
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Faithfulness 𝑡 ∈ SN(jn) iff 𝑡⋆ ∈ SN(dB, sub).
Beyond strong normalization, Λ𝐽 gains a new normalizing strategy, which reuses the

notion of left-right normal form introduced in section 4.3.2. We take the definitions of neutral
terms, answer and left-right context R given there for 𝜆𝐽𝑛, in order to define a new left-right
strategy and a new predicate ISNj for Λ𝐽 . The strategy is defined as the closure under R of
rule 𝛽 and of the particular case of rule 𝜋 where the redex has the form n(𝑢, 𝑥.a)𝑆.2

Definition 4.67. Predicate ISNj is defined by the rules (SNVAR), (SNAPP), (SNABS) in defini-
tion 4.17, together with the following two rules (which replace rule (SNBETA)):

R⟨n(𝑢, 𝑦.a𝑆)⟩ ∈ ISNj

R⟨n(𝑢, 𝑦.a)𝑆⟩ ∈ ISNj
(SNREDEX1)

R⟨𝑟{𝑦/𝑡{𝑥/𝑢}}⟩, 𝑡 , 𝑢 ∈ ISNj

R⟨(𝜆𝑥.𝑡)(𝑢, 𝑦.𝑟)⟩ ∈ ISNj
(SNREDEX2)

The corresponding normalization strategy is organized as usual: an initial phase obtains
a left-right normal form, whose components are then reduced by internal reduction. Is this
new strategy any good? Theorem 4.70 answers positively with the equivalence between ISNj
and ISN(jn). Before proving it, we need a few intermediate lemmas.

Lemma 4.68. The following rule is admissible for the predicate ISNj:

𝑢, 𝑟 ∈ ISNj

𝑥(𝑢, 𝑦.𝑟) ∈ ISNj

Proof. The proof is by induction on 𝑟 ∈ ISNj. If 𝑟 is generated by rules (SNVAR), (SNAPP)
or (SNABS), then 𝑟 is a weak-head normal form and rule (SNAPP) applies. Otherwise 𝑟 =
R⟨𝑟𝑒𝑑𝑒𝑥⟩. By inversion of rules (SNREDEX1) and (SNREDEX2), one obtains R⟨𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑢𝑚⟩ ∈
ISNj, plus two other subterms of the redex also in ISNj in case of (SNREDEX1). Let R′ ≔
𝑥(𝑢, 𝑦.R). By the i.h. R′⟨𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑢𝑚⟩ ∈ ISNj. By one of the rules (SNREDEX1)/(SNREDEX2),
R′⟨𝑟𝑒𝑑𝑒𝑥⟩ ∈ ISNj, that is 𝑥(𝑢, 𝑦.𝑟) ∈ ISNj.

Lemma 4.69. The following rule is admissible for the predicate ISNj:

n(𝑢, 𝑦.𝑠𝑆)𝑆 ∈ ISNj

n(𝑢, 𝑦.𝑠)𝑆𝑆 ∈ ISNj

Proof. We prove by induction on 𝑟 ∈ ISNj, that, if 𝑟 = n(𝑢, 𝑦.𝑠𝑆)𝑆, then n(𝑢, 𝑦.𝑠)𝑆𝑆 ∈ ISNj.
We do case analysis of 𝑠.
Case 𝑠 = a. Follows by rule (SNREDEX1) by taking R = ◊𝑆.

Case 𝑠 = R⟨𝑟𝑒𝑑𝑒𝑥⟩. Let R1 ≔ n(𝑢, 𝑦.R𝑆)𝑆 and R2 ≔ n(𝑢, 𝑦.R)𝑆𝑆. Since 𝑟 = R1⟨𝑟𝑒𝑑𝑒𝑥⟩, inver-
sion of rule (SNREDEX1)/(SNREDEX2) gives R1⟨𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑢𝑚⟩ ∈ ISNj, plus two other sub-

2Notice how a redex has the two possible forms (𝜆𝑥.𝑡)𝑆 or n(𝑢, 𝑥.a)𝑆, that can be written as a𝑆, that is, the
form Dn⟨𝜆𝑥.𝑡⟩𝑆 of a left-right redex in 𝜆𝐽𝑛.
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terms of the redex also in ISNj in case of (SNREDEX2). By i.h. R2⟨𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑢𝑚⟩ ∈ ISNj.
A final application of (SNREDEX1)/(SNREDEX2) gives R2⟨𝑟𝑒𝑑𝑒𝑥⟩ ∈ ISNj, as required.

Case 𝑠 = n′. First, notice there are exactly four sub-cases:

Subcase n′𝑆 is a weak-head normal form and 𝑆 is empty. By inversion of (SNAPP),
we take 𝑠𝑆 apart, obtain its components in ISNj and, using (SNAPP), we recon-
struct the term n(𝑢, 𝑦.n′)𝑆 in ISNj.

Subcase 𝑆 has the form (𝑢′, 𝑦′.R⟨𝑟𝑒𝑑𝑒𝑥⟩) and 𝑆 is arbitrary. By inversion of the rule
(SNREDEX1)/(SNREDEX2), we have n(𝑢, 𝑦.n′(𝑢′, 𝑦′.R⟨𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑢𝑚⟩))𝑆 ∈ ISNj, plus
two other subterms of the redex also in ISNj in case of (SNREDEX2). By the i.h.,
we have that n(𝑢, 𝑦.n′)(𝑢′, 𝑦′.R⟨𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑢𝑚⟩)𝑆 ∈ ISNj. As required, we obtain
n(𝑢, 𝑦.n′)(𝑢′, 𝑦′.R⟨𝑟𝑒𝑑𝑒𝑥⟩)𝑆 ∈ ISNj by rule (SNREDEX1)/(SNREDEX2).

Subcase 𝑆 has the form (𝑢′, 𝑦′.a) and 𝑆 is non-empty. Let 𝑆 = 𝑅𝑅. By applying in-
version of (SNREDEX1) twice, we obtain n(𝑢, 𝑦.n′(𝑢′, 𝑦′.a𝑅))𝑅 ∈ ISNj. By the
i.h., n(𝑢, 𝑦.n′)(𝑢′, 𝑦′.a𝑅)𝑅 ∈ ISNj. By (SNREDEX1), n(𝑢, 𝑦.n′)(𝑢′, 𝑦′.a)𝑅𝑅 ∈ ISNj,
as required.

Subcase 𝑆 has the form (𝑢′, 𝑦′.n″) and 𝑆 is non-empty. We have to analyze 𝑆. For
that, we introduce some notation. 𝑅𝑛𝑙 (respectively 𝑅𝑎𝑛𝑠 , 𝑅𝑤ℎ𝑛𝑓 , 𝑅𝑟𝑑𝑥 ) will
denote a generalized argument of the form (𝑡, 𝑧.n) (resp. (𝑡, 𝑧.a), (𝑡, 𝑧.𝑤)ℎ𝑛𝑓 ,
(𝑡, 𝑧.R⟨𝑟𝑒𝑑𝑒𝑥⟩)).
Let n0 = n(𝑢, 𝑦.n′(𝑢′, 𝑦′.n″)) and n1 = n(𝑢, 𝑦.n′)(𝑢′, 𝑦′.n″). The non-empty 𝑆
has exactly 3 possible forms (in all cases 𝑚 ≥ 0).

Subsubcase 𝑅𝑛𝑙1 ⋯𝑅𝑛𝑙𝑚𝑅𝑤ℎ𝑛𝑓𝑚+1 . We apply the same kind of reasoning as in sub-
case 1.

Subsubcase 𝑅𝑛𝑙1 ⋯𝑅𝑛𝑙𝑚𝑅𝑟𝑑𝑥𝑅. Let 𝑅𝑟𝑑𝑥 = (𝑢″, 𝑦″.R″⟨𝑟𝑒𝑑𝑒𝑥⟩) and let

R0 = n0𝑅𝑛𝑙1 ⋯𝑅𝑛𝑙𝑚 (𝑢″, 𝑦″.R″)𝑅
R1 = n1𝑅𝑛𝑙1 ⋯𝑅𝑛𝑙𝑚 (𝑢″, 𝑦″.R″)𝑅

Inversion of rule (SNREDEX1)/(SNREDEX2) gives R0⟨𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑢𝑚⟩ ∈ ISNj,
plus two other subterms of the redex also in ISNj in case of (SNREDEX2). By
the i.h., we have that R1⟨𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡𝑢𝑚⟩ ∈ ISNj. We obtain R1⟨𝑟𝑒𝑑𝑒𝑥⟩ ∈ ISNj
by rule (SNREDEX1)/(SNREDEX2), as required.

Subsubcase 𝑅𝑛𝑙1 ⋯𝑅𝑛𝑙𝑚𝑅𝑎𝑛𝑠𝑚+1𝑅𝑚+2𝑅. Let 𝑅𝑎𝑛𝑠𝑚+1 = (𝑢″, 𝑦″.a) and let

n2 = n0𝑅𝑛𝑙1 ⋯𝑅𝑛𝑙𝑚
n3 = n1𝑅𝑛𝑙1 ⋯𝑅𝑛𝑙𝑚
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By inversion of (SNREDEX1), we obtain n2(𝑢″, 𝑦″.a𝑅𝑚+2)𝑅 ∈ ISNj. Next
i.h. gives n3(𝑢″, 𝑦″.a𝑅𝑚+2)𝑅 ∈ ISNj. By (SNREDEX1), n3(𝑢″, 𝑦″.a)𝑅𝑚+2𝑅 ∈
ISNj as required.

Theorem 4.70. Let 𝑡 ∈ T𝐽 . 𝑡 ∈ ISNj iff 𝑡 ∈ ISN(jn).

Proof. ⇒) We show that each rule defining ISNj is admissible for the predicate ISN(jn)
defined in figure 4.1. Cases (SNVAR) and (SNABS) are straightforward. Case (SNREDEX1)
is by the i.h. and lemma 4.62. Case (SNREDEX2) is by the i.h. and rule (II). Case (SNAPP)
is proved by a straightforward induction on n.

⇐) We show that each rule in figure 4.1 defining the predicate ISN(jn) is admissible
for the predicate ISNj. Cases (VAR) and (LAMBDA) are straightforward. Case (BETA) is by
rule (SNREDEX2) and the i.h., by just taking R = ◊𝑆. Case (HVAR) follows by lemma 4.68
and the i.h. Case (PI) is by lemma 4.69 and the i.h.

4.6.5 Alternative Proof of Equivalence
The last theorem can also be shown as a corollary of ISNj = SN(jn) and the fact that SN(jn) =
ISN(jn) proved by Joachimski and Matthes [JM03]. We will show the first equality ISNj =
SN(jn) in a similar way as for d𝛽 (theorem 4.21).

Lemma 4.71. If 𝑡0 →jn 𝑡1, then
(i) 𝑡0{𝑥/𝑢} →jn 𝑡1{𝑥/𝑢}, and

(ii) 𝑢{𝑥/𝑡0} →∗
jn 𝑢{𝑥/𝑡1}.

Proof. The first statement is proved by induction on 𝑡0 →jn 𝑡1 using lemma 4.6. The
second is proved by induction on 𝑢.

Lemma 4.72. The strategy introduced in section 4.6.4 is deterministic.

Proof. For every term there is a unique decomposition in terms of a R context and a redex.
Besides that, 𝛽 and 𝜋 redexes do not overlap.

Lemma 4.73. If 𝑡0 = R⟨𝑟{𝑦/𝑡{𝑥/𝑢}}⟩ ∈ SN(jn) and 𝑡 , 𝑢 ∈ SN(jn), then 𝑡′0 = R⟨(𝜆𝑥.𝑡)(𝑢, 𝑦.𝑟)⟩ ∈
SN(jn).

Proof. By hypothesis we also have 𝑟 ∈ SN(jn). We use the lexicographic order to reason
by induction on ⟨||𝑡0||jn, ||𝑡 ||jn, ||𝑢||jn, R⟩. To show 𝑡′0 ∈ SN(jn) it is sufficient to show that
all its reducts are in SN(jn). We analyze all possible cases.

Case 𝑡′0 →𝛽 𝑡0. We conclude by the hypothesis.
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Case 𝑡′0 →jn R⟨(𝜆𝑥.𝑡′)(𝑢, 𝑦.𝑟)⟩ = 𝑡′1, where 𝑡 →jn 𝑡′. We have 𝑡′, 𝑢 ∈ SN(jn) and by
lemma 4.71(ii) 𝑡0 = R⟨𝑟{𝑦/𝑡{𝑥/𝑢}}⟩ →∗

jn R⟨𝑟{𝑦/𝑡′{𝑥/𝑢}}⟩ = 𝑡1, so that also 𝑡1 ∈ SN(jn).
We conclude 𝑡′1 ∈ SN(jn) by the i.h. since ||𝑡1||jn ≤ ||𝑡0||jn and ||𝑡′||jn < ||𝑡 ||jn.

Case 𝑡′0 →jn R⟨(𝜆𝑥.𝑡)(𝑢′, 𝑦.𝑟)⟩ = 𝑡′1, where 𝑢 →jn 𝑢′. We have 𝑡 , 𝑢′ ∈ SN(jn) and by
lemma 4.71(ii) 𝑡0 = R⟨𝑟{𝑦/𝑡{𝑥/𝑢}}⟩ →∗

jn R⟨𝑟{𝑦/𝑡{𝑥/𝑢′}}⟩ = 𝑡1, so that also 𝑡1 ∈ SN(jn).
We conclude 𝑡′1 ∈ SN(jn) by the i.h. since ||𝑡1||jn ≤ ||𝑡0||jn and ||𝑢′||jn < ||𝑢||jn.

Case 𝑡′0 →jn R⟨(𝜆𝑥.𝑡)(𝑢, 𝑦.𝑟 ′)⟩ = 𝑡′1, where 𝑟 →jn 𝑟 ′. We have 𝑡 , 𝑢 ∈ SN(jn) and by
lemma 4.71(i) 𝑡0 = R⟨𝑟{𝑦/𝑡{𝑥/𝑢}}⟩ →jn R⟨𝑟 ′{𝑦/𝑡{𝑥/𝑢}}⟩ = 𝑡1, so that also 𝑡1 ∈ SN(jn).
We conclude 𝑡′1 ∈ SN(jn) by the i.h. since ||𝑡1||jn < ||𝑡0||jn.

Case 𝑡′0 →jn R′⟨(𝜆𝑥.𝑡)(𝑢, 𝑦.𝑟)⟩ = 𝑡′1, where R →jn R′. Thus we also have that 𝑡0 =
R⟨𝑟{𝑦/𝑡{𝑥/𝑢}}⟩ →jn R′⟨𝑟{𝑦/𝑡{𝑥/𝑢}}⟩ = 𝑡1. We have 𝑡1, 𝑡 , 𝑢 ∈ SN(jn). We conclude that
𝑡′1 ∈ SN(jn) by the i.h. since ||𝑡1||jn < ||𝑡0||jn.

Case R = R′⟨◊𝑆⟩ and 𝑡′0 = R′⟨(𝜆𝑥.𝑡)(𝑢, 𝑦.𝑟)𝑆⟩ →𝜋 R′⟨(𝜆𝑥.𝑡)(𝑢, 𝑦.𝑟𝑆)⟩ = 𝑡′1. This is the only
case left. We have 𝑡0 = R′⟨𝑟{𝑦/𝑡{𝑥/𝑢}}𝑆⟩ = R′⟨(𝑟𝑆){𝑦/𝑡{𝑥/𝑢}}⟩ = 𝑡1. We also have
𝑡 , 𝑢 ∈ SN(jn). We conclude 𝑡′1 ∈ SN(jn) by the i.h. on R since ⟨||𝑡1||jn, ||𝑡 ||jn, ||𝑢||jn⟩ =
⟨||𝑡0||jn, ||𝑡 ||jn, ||𝑢||jn⟩. Notice that when R = ◊, then 𝜋-reduction can only take place
in some subterm of 𝑡′0, already considered in the previous cases.

Lemma 4.74. If 𝑡0 = R⟨n(𝑢, 𝑦.a𝑆)⟩ ∈ SN(jn), then 𝑡′0 = R⟨n(𝑢, 𝑦.a)𝑆⟩ ∈ SN(jn).

Proof. We use the lexicographic order to reason by induction on ⟨||𝑡0||jn, n⟩. To show
𝑡′0 ∈ SN(jn) it is sufficient to show that all its reducts are in SN(jn). We analyze all
possible cases.

Case 𝑡′0 →𝜋 𝑡0. We conclude by the hypothesis.

Case 𝑡′0 →jn R⟨n′(𝑢, 𝑦.a)𝑆⟩ = 𝑡′1, where n →jn n′. We have 𝑡0 →jn R⟨n′(𝑢, 𝑦.a𝑆)⟩ = 𝑡1, so
that also 𝑡1 ∈ SN(jn). We conclude 𝑡′1 ∈ SN(jn) by the i.h. since ||𝑡1||jn < ||𝑡0||jn.

Case 𝑡′0 →jn R⟨n(𝑢′, 𝑦.a)𝑆⟩ = 𝑡′1, where 𝑢 →jn 𝑢′. We have 𝑡0 →jn R⟨n(𝑢′, 𝑦.a𝑆)⟩ = 𝑡1, so
that also 𝑡1 ∈ SN(jn). We conclude 𝑡′1 ∈ SN(jn) by the i.h. since ||𝑡1||jn < ||𝑡0||jn.

Case 𝑡′0 →jn R⟨n(𝑢, 𝑦.𝑎′)𝑆⟩ = 𝑡′1, where a →jn a′. We have 𝑡0 →jn R⟨n(𝑢, 𝑦.a′𝑆)⟩ = 𝑡1, so
that also 𝑡1 ∈ SN(jn). We conclude 𝑡′1 ∈ SN(jn) by the i.h. since ||𝑡1||jn < ||𝑡0||jn.

Case 𝑡′0 →jn R⟨n(𝑢, 𝑦.a)𝑆′⟩ = 𝑡′1, where 𝑆 →jn 𝑆′. We have 𝑡0 →jn R⟨n(𝑢, 𝑦.a𝑆′)⟩ = 𝑡1, so
that also 𝑡1 ∈ SN(jn). We conclude 𝑡′1 ∈ SN(jn) by the i.h. since ||𝑡1||jn < ||𝑡0||jn.

Case R = R′⟨◊𝑆′⟩. Thus, 𝑡′0 = R′⟨n(𝑢, 𝑦.a)(𝑢′, 𝑧.𝑟)𝑆′⟩ →𝜋 R′⟨n(𝑢, 𝑦.a)(𝑢′, 𝑧.𝑟𝑆′)⟩ = 𝑡′1,
where 𝑆 = (𝑢′, 𝑧.𝑟). Then, 𝑡0 = R′⟨n(𝑢, 𝑦.a(𝑢′, 𝑧.𝑟))𝑆′⟩ →2𝜋 R′⟨n(𝑢, 𝑦.a(𝑢′, 𝑧.𝑟𝑆′))⟩ =
𝑡1, so that also 𝑡1 ∈ SN(jn). We conclude 𝑡′1 ∈ SN(jn) by the i.h. since ||𝑡1||jn < ||𝑡0||jn.
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Case n = n″(𝑢′, 𝑧.n′). Thus 𝑡′0 = R⟨n″(𝑢′, 𝑧.n′)(𝑢, 𝑦.a)𝑆⟩ →2𝜋 R⟨n″(𝑢′, 𝑧.n′(𝑢, 𝑦.a)𝑆)⟩ = 𝑡′1.
We do a case analysis on all the one-step reducts of 𝑡′0 so we need to consider 𝑡′1 with
𝑆 outside. We have 𝑡0 →𝜋 R⟨n″(𝑢′, 𝑧.n′(𝑢, 𝑦.a𝑆))⟩ = 𝑡1, so that also 𝑡1 ∈ SN(jn). Let
R′ = R⟨n″(𝑢′, 𝑧.◊)⟩. We have ||𝑡1||jn < ||𝑡0||jn so by the i.h.R′⟨n′(𝑢, 𝑦.a)𝑆⟩ ∈ SN(jn).
Because n′(𝑢, 𝑦.a) is an answer we can apply the i.h. on n″ and we conclude 𝑡′1 ∈
SN(jn).

Lemma 4.75. ISNj = SN(jn).

Proof. First, we show ISNj ⊆ SN(jn). We proceed by induction on 𝑡 ∈ ISNj.

Case 𝑡 = 𝑥 . Straightforward.

Case 𝑡 = 𝜆𝑥.𝑠, where 𝑠 ∈ ISNj. By the i.h. 𝑠 ∈ SN(jn), so that 𝑡 ∈ SN(jn) trivially holds.

Case 𝑡 = n(𝑢, 𝑥.𝑟) where n, 𝑢, 𝑟 ∈ ISNj and 𝑟 ∈ NFlr. Since n is stable by reduction, n can-
not in particular reduce to an answer. Therefore any kind of reduction starting at 𝑡
only occurs in the subterms n, 𝑢 and 𝑟 . We conclude since n, 𝑢, 𝑟 ∈ SN(jn) hold by
the i.h.

Case 𝑡 = R⟨n(𝑢, 𝑦.a)𝑆⟩, where R⟨n(𝑢, 𝑦.a𝑆)⟩ ∈ ISNj. The i.h. gives R⟨n(𝑢, 𝑦.a𝑆)⟩ ∈ SN(jn),
so that 𝑡 ∈ SN(jn) holds by lemma 4.74.

Case 𝑡 = R⟨(𝜆𝑥.𝑠)(𝑢, 𝑦.𝑟)⟩, where R⟨𝑟{𝑦/𝑠{𝑥/𝑢}}⟩, 𝑠, 𝑢 ∈ ISNj. The i.h. gives R⟨𝑟{𝑦/𝑠{𝑥/𝑢}}⟩ ∈
SN(jn), 𝑠 ∈ SN(jn) and 𝑢 ∈ SN(jn) so that 𝑡 ∈ SN(jn) holds by lemma 4.73.

Next, we show SN(jn) ⊆ ISNj. Let 𝑡 ∈ SN(jn). We reason by induction on ⟨||𝑡 ||jn, |𝑡 |⟩
w.r.t. the lexicographic order. If ⟨||𝑡 ||jn, |𝑡 |⟩ is minimal, i.e. ⟨0, 1⟩, then 𝑡 is a variable and
thus in ISNj by rule (SNVAR). Otherwise we proceed by case analysis.

Case 𝑡 = 𝜆𝑥.𝑠. Since ||𝑠||jn = ||𝑡 ||jn and |𝑠| < |𝑡 |, we conclude by the i.h. and rule (SNABS).
Case 𝑡 is an application. There are three cases.

Subcase 𝑡 ∈ NFlr. Then 𝑡 = n(𝑢, 𝑥.𝑟) with n, 𝑢, 𝑟 ∈ SN(jn) and 𝑟 ∈ NFlr. We have
||n||𝛽 ≤ ||𝑡 ||jn, ||𝑢||jn ≤ ||𝑡 ||jn, ||𝑟 ||jn ≤ ||𝑡 ||jn, |n| < |𝑡 |, |𝑢| < |𝑡 | and |𝑟 | < |𝑡 |. By the i.h.
n, 𝑢, 𝑟 ∈ ISNj and thus we conclude by rule (SNAPP).

Subcase 𝑡 = R⟨(𝜆𝑥.𝑠)(𝑢, 𝑦.𝑟)⟩. 𝑡 ∈ SN(jn) implies in particular R⟨𝑟{𝑦/𝑠{𝑥/𝑢}}⟩, 𝑠, 𝑢 ∈
SN(jn), so that they are in ISNj by the i.h. We conclude that 𝑡 ∈ ISNj by
rule (SNREDEX2).

Subcase 𝑡 = R⟨n(𝑢, 𝑦.a)𝑆⟩. 𝑡 ∈ SN(jn) implies in particular R⟨n(𝑢, 𝑦.a𝑆)⟩ ∈ SN(jn), so
that this term is in ISNj by the i.h. We conclude 𝑡 ∈ ISNj by rule (SNREDEX1).
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4.7 Conclusion
Generalizing elimination rules of natural deduction is an old idea, occurring several times
in the literature, most notably by Schroeder-Heister [Sch84a; Sch84b] or Tennant [Ten92;
Ten02], before being coined in the version at the origin of Λ𝐽 by von Plato [vPla01]. The
generalization of implication elimination itself has come up independently along the years,
as pointed out by Schroeder-Heister [Sch14].

Concerning Λ𝐽 , some interesting results were given, motivated by a proof-theoretical
approach. In parallel to his works with Joachimski [JM00; JM03] introducing the calculus,
Matthes [Mat01] proves an interpolation theorem (with information on terms) for Λ𝐽 ex-
tended with pairs and sum datatypes. In his PhD thesis, Barral [Bar08] defines a set of con-
versions for Λ𝐽 beyond 𝛽 and 𝜋 . Some of these conversions where already given by Matthes
[Mat01], another one is an undirected version of p2.

Espírito Santo and his coauthors have used Λ𝐽 , and his multiary extension Λ𝐽𝑚 [EP03]
to compare the computational content of natural deduction and the sequent calculus [Esp09;
EFP18]. Our results on the λ-calculus with generalized applications might be extended to
Λ𝐽𝑚, a fragment of the sequent calculus, and give a new perspective on computational inter-
pretations of the sequent calculus. Extending generalized applications to the classical case,
in the spirit of the 𝜆𝜇-calculus could also be insightful.

When introducing operational semantics with distance, we have kept the homogeneity
between CbN and CbV: we have distant rules that only differ by the notion of substitution.
We would like to consider further unification between CbN and CbV with the help of gen-
eralized applications in the setting of the polarized lambda-calculus [Esp17] or call-by-push-
value [Lev06]. Both formalisms subsume CbN and CbV, by allowing to express them within
the same calculus.

An interesting line of works involving generalized applications is currently being devel-
oped, starting with Geuvers and Hurkens [GH16]. In these works, inference systems are de-
rived from truth table, with elimination rules having a generalized shape, akin to von Plato’s
system. They give definition of proof terms for derived systems (only intuitionistic) [GH18],
for which they prove strong normalization [GvdGH19; Abe21]. Interestingly, the standard
implication introduction rule is replaced in their system by two rules. It would be interesting
to look at the peculiarities of a λ-calculus using generalized applications and the two derived
forms of abstractions.

Finally, Díaz-Caro and Dowek [DD22] use generalized elimination rules in a calculus
for scalar addition and multiplication. However, they keep Gentzen’s original rule for the
application. We hope to have shown the interest of generalized applications in an abstract
programming languages with our work.

The works cited above give a qualitative, but not quantitative analysis of (strong) normal-
ization. Likewise, intersection type systems for Λ𝐽 have been given by Matthes [Mat00], and
by [EIL12] through an embedding in a more general calculus. However, their type systems
are idempotent. Switching to non-idempotence reveals the quantitative failure of the permu-
tative reduction 𝜋 . That failure leads us to devise a calculus 𝜆𝐽𝑛 compatible with quantitative
models, and give one such model as a type system. Several other calculi have been adapted to
enable quantitative analyzes: this is for instance the case of 𝜆𝜇 [KV20] or the Curry-Howard
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interpretation of the intuitionistic sequent calculus 𝜆̄ [KV15].
It would be interesting to see if the techniques developed for tightness [AGK20; KV22]

can be adapted to this framework. The precise measures on reduction length obtained would
enable us to precisely measure the quantitative relationship between the CbN λ-calculus and
𝜆𝐽𝑛. Such techniques could also be adopted for CbV, to sharpen the relation between 𝜆𝐽𝑣 and
CbV calculi.



CHAPTER5
Conclusion

Intermediate conclusions were given at the end of each chapter, as well as pointers to future
directions of work. We now give a global overview of our contributions. Let us recall the
question at the center of this work.

What contributions do node replication and generalized applications, analyzed
quantitatively, provide to the theory of programming languages?

Node replication. Node replication is an original implementation of substitution in the
λ-calculus. We have abstracted it from other features of the original atomic λ-calculus of
Gundersen, Heijltjes, and Parigot [GHP13b], and given an implementation in terms of ex-
plicit substitutions as a new calculus 𝜆𝑅. The essence of node replication is put forward, and
brought to the well-understood setting of calculi with explicit substitutions. The use of dis-
tance emphasizes the computational part of the calculus, each step either being an instance
of B-rule or replicating one node of a term.

Node replication allows a fine-grained substitution of terms, necessary for optimality in
weak and strong settings. Optimality relies on optimizations, such as full laziness in the weak
case, which are possible because only parts of terms can be duplicated. We have shown con-
cretely how node replication can be used for full laziness by giving an operational description
of the splitting operation between a skeleton and the MFEs, and a fully lazy CbNeed strategy.

The obtained formalism is relatively simple. Besides fully lazy call-by-need, node repli-
cation can be used to implement different strategies: we have given a call-by-name strategy;
a (fully lazy) call-by-value strategy could also be defined in this setting. Our splitting oper-
ation, crucial for CbNeed, can indeed be used modularly for different forms of evaluation.
Substitution by node replication can be combined with other kinds of substitutions as well,
as demonstrated by our CbNeed strategy, which also relies on linear substitution.

Generalized applications. Calculi with generalized applications add new conversions to
the λ-calculus. In particular, permutation 𝜋 puts the leftmost application on top of the term.
This can be thought of as implementing a search for a redex. Therefore, using 𝜋 simplifies
evaluation contexts of the calculus, and provides very simple inductive definitions of normal
form. This can be seen in our local versions of the strategies, in particular in a very natural
leftmost-outermost call-by-value strategy. To go further, generalized applications can be con-
verted, without affecting normalization, to 𝑣1(𝑣2, 𝑥.𝑟), a shape which closely resembles ANF
(administrative normal form) (see section 3.8).

Those conversions can alternatively be integrated directly into the computational rules,
thus giving a simple framework defined by means of distance, fit for quantitative measures
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and models. We have introduced two such distant calculi, for CbN and CbV. This formalism is
closer to the λ-calculus, as it does not carry out the search for a redex. However, applications
are still shared by the constructors in the grammar. Sharing only the applications, and all of
them, simplifies the semantics and syntax of the calculus compared to calculi with explicit
substitutions or let bindings. But, this is the most important: in CbV and CbNeed, values are
substituted, while applications representing a pending computation are kept shared to avoid
duplicating work.

A particular feature of calculi with generalized applications is indeed its elegant theory
of CbV. It relies on a reduction rule differing from CbN only in the meta-level substitution
(both for distant and local versions), keeping the same pattern of redexes.

Thus, CbV generalized applications are well-behaved and retain the good properties of
CbN. We have demonstrated it by giving an operational characterization of CbV solvability.
The characterization is given by a syntactical definition of normal forms, and of an opera-
tional reduction relation reducing terms to that kind of normal form. The characterization is
somewhat more complex than in CbN, because of the different behavior of CbV concerning
erasure. However, no ad-hoc techniques are necessary. Moreover, the difference between
the two kinds of solvability are visible in the reduction. The good behavior of CbV is also
demonstrated by the leftmost-outermost value reduction, which adopts the same inductive
rules as a potential one for CbN.

Quantitative types. Our approach was guided by quantitative type systems. Quantitative
types subsume idempotent intersection types, in that they offer the same qualitative charac-
terizations plus quantitative measures. We have captured semantical properties of different
systems, namely normalization, solvability and potential valuability. These characterizations
enable simple proofs of otherwise involved theorems like the normalization property and ob-
servational equivalence.

We have indeed used the characterizations to relate normalization of different formalisms.
In node replication, we have shown that fully lazy CbNeed is observationally equivalent to
the usual CbN with full substitution and to the semantical notion of neededness. For gener-
alized applications, we have shown that for strong normalization, solvability and potential
valuability, local and distant versions correspond. This holds even in CbN, where the distant
calculus does not rely on the same permutation rule as the original. This validates our choice
of using distance, better for quantitative analysis, without changing the qualitative semantics
of the calculus. We have extended these results to show equivalence of strong normalization,
solvability and potential valuability, respectively, between generalized applications and the
λ-calculus.

Quantitativity is a first step toward complexity analysis, giving in particular upper bounds
on the length of reduction and on the size of normal forms automatically from the size of
derivations. None of the calculi at the origin of our work had been previously analyzed
quantitatively. The type systems and logical characterizations we provide are all new.

These type systems have influenced the operational semantics of our new calculi. They
have lead us to use distance primarily. Also, the quantitative analysis of generalized applica-
tions has revealed that the behavior of 𝜋-conversions is not quantitatively appropriate for a
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CbN calculus. This lead us to consider another reduction rule, in order to stay quantitatively
coherent with the λ-calculus.

Non-idempotence also simplifies the proofs of soundness: a typable term is normalizing
simply because the size of the type derivation decreases at each step. Only for the strong
normalization did we have to complete the combinatorial proofs, which lead us to give an
original inductive definition of strong normalization for CbN generalized applications.

Final words. Only a first step in going “from proof-terms to programs” has been accom-
plished. To go the full path into programs and implementation, a full semantics based on
node replication or generalized applications should be devised.

The first step is to devise abstract machines for strategies using node replication (in par-
ticular fully lazy CbNeed) and generalized applications. Generalized applications seem to be
a good starting point for an abstract machine, as they can be transformed to a kind of ANF,
a representation giving access to optimizations in abstract machines [Acc+19].

Beyond abstract machines, ANFs are used in many concrete implementations as inter-
mediate representations for compilers. We would like to investigate whether generalized
applications and ANF differ substantially. The full syntax of generalized applications could
serve as a good first intermediate language between a language based on the λ-calculus and
an ANF representation.

Implementation should be guided by a complexity analysis. We aim at reasonable abstract
machines, implementing constant or polynomial operations. For full laziness, it is unclear
whether the splitting operation can be implemented in polynomial time. We conjecture that
generalized applications are reasonable, because such a result is achieved in [Acc+19] with
ANFs.

In parallel, the syntax of the calculus should be expanded with usual constructors and con-
stants. This asks to expand our operational semantics for node replication and the splitting
of a skeleton and MFEs to other constructors. Concerning the generalized applications, this
means adopting generalized forms for the elimination constructors, and see how our results
can be adapted. Some constructors such as the disjunction will have several continuations,
and we would have to be cautious to devise permutations that do not duplicate subterms.

The complexity analysis can also be refined in the quantitative model. For this, we could
adopt tight type systems, precise quantitative type systems from which we can extract exact
bounds on the length of reduction and the size of normal forms. Tight types could also enable
us to precisely compare our formalisms to the λ-calculus.

Finally, as the subtitle of the thesis suggests, we have been working in an intuitionistic
setting. All of our work could be expanded to the classical case, thus integrating control op-
erators to the calculi. For node replication, we could get inspiration from Fanny He’s [He18]
atomic 𝜆𝜇-calculus, which extends the atomic λ-calculus to the classical case. Integrating
λ-calculi with generalized eliminations to a classical setting is interesting because of their
links to proof theory, and to the sequent calculus, where classical logic is better understood
than in natural deduction.

To summarize, we have provided formalisms for node replication and generalized appli-
cations, that enjoy the main advantage of the λ-calculus: the emphasis on core components
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of computation. These systems can be used as a core for functional languages, or as a basis
for more theoretical studies of substitution, optimality, conversions or call-by-value.
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