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Proximal sensing and neural network processes to assist in diagnosis of multi-

symptom grapevine diseases 

 

Abstract: 
Grapevine is a plant susceptible to numerous diseases. Some of these diseases can lead to 

significant yield losses and the death of the infected grapevine. Among these diseases, some present 
symptoms of different nature on various organs of the same vine. Their diagnosis, typically performed 
by experts, is even more complex as many confounding factors are present. This research focuses on 
the development of methodologies for acquiring, annotating, and processing data related to multi-
symptom grapevine diseases to study their automated diagnosis. Two groups of diseases are targeted: 
grapevine yellows such as Flavescence dorée (FD) and grapevine trunk diseases (GTDs) with Eutypa 
and Botryosphaeria diebacks as specific diseases. 

RGB image acquisitions were conducted directly in grapevine rows to build datasets for each 
disease type. The dataset for FD covers five different grape varieties and takes into account many 
diseases that have symptoms similar to FD, referred to as confounding diseases. The GTDs dataset 
includes images of a single grape variety and no confounding disease. Three methods for the automatic 
diagnosis of these diseases are proposed, compared, and discussed. The first method, inspired by 
state-of-the-art techniques, uses a convolutional neural network-based classifier applied to raw 
images (method A). The results show that this methodology delivers good results on datasets 
containing very few confounding diseases. Precision (p) and recall (r) of (p=0.94, r=0.92) are achieved 
for classifying images of grapevines affected by GTDs, while they are (p=0.87, r=0.84) for classifying 
images of vines affected by FD in a dataset containing 16% of confounding disease images. 

To improve these results, two methods were developed, both consisting of two steps: (1) 
individual symptom detection using a detection algorithm composed of neural convolutional layers 
and a neural segmentation algorithm; (2) diagnosis based on the association of detected symptoms, 
either using a Random Forest classifier (method B) or a graph neural network (method C). The results 
of these two methodologies on the dataset containing 16% of confounding disease images for FD are 
(p=0.86, r=0.90) for method B and (p=0.90, r=0.96) for method C. These results demonstrate the better 
effectiveness of two-step methodologies in distinguishing confounding diseases from targeted 
diseases. They also highlight the relevance of embedded RGB imaging combined with artificial 
intelligence approaches for diagnosing these diseases. 

Finally, these three methods are tested on whole-block acquisitions to establish their validity 
in real-world use cases. The results highlight the advantages of the two-step methodology based on 
symptom association by graph, the significant contribution of considering the surrounding vines and 
both sides of the vines during their automated diagnosis, and emphasize the challenges of real-world 
application of these methodologies. 

Keywords: proximal sensing, computer vision, deep learning, graph neural networks, image 
processing, grapevine diseases. 
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Proxidétection et approches neuronales pour l’aide au diagnostic de maladies 

multi-symptômes de la vigne 

 

Résumé : 
La vigne est une plante sujette à de très nombreuses maladies. Certaines de ces maladies peuvent 
entraîner d'importantes pertes de rendement et la mort du pied de vigne infecté. Parmi ces maladies, 
certaines présentent des symptômes de nature différente, sur plusieurs organes de la même vigne. 
Leur diagnostic, réalisé en pratique par des experts, est d’autant plus complexe qu’elles présentent de 
nombreux facteurs confondants. Cette recherche se concentre sur le développement de 
méthodologies pour l'acquisition, l'annotation et le traitement des données liées aux maladies de la 
vigne multi-symptômes afin d'étudier leur diagnostic automatique. Deux groupes de maladies sont 
ciblés : les jaunisses de la vigne telles que la Flavescence dorée (FD) ou le bois noir, et les maladies du 
bois de la vigne (GTDs) avec l'Eutypiose et le Botryosphaeria comme maladies ciblées. 

Des acquisitions d'images RGB, directement dans les rangs de vigne, ont été réalisées pour 
construire des ensembles de données pour chaque type de maladie. Le jeu de données pour la FD 
couvre cinq cépages différents et tient compte de nombreuses maladies présentant des symptômes 
similaires à ceux de la FD, appelées maladies confondantes. L'ensemble de données pour les GTDs 
comprend des images d'une seule variété de vigne et aucune maladie confondante. Trois méthodes 
de diagnostic automatique de ces maladies sont proposées, comparées et discutées. La première 
méthode, inspirée de l’état de l’art, utilise un classifieur basé sur un réseau neuronal convolutif 
appliqué aux images brutes (méthode A). Les résultats montrent que cette méthodologie délivre de 
bons résultats sur les ensembles de données contenant très peu de maladies confondantes. Une 
précision (p) et un rappel (r) de (p=0,94 ; r=0,92) sont obtenus pour la classification des images de vigne 
affectées par les GTDs, tandis qu'ils sont de (p=0,87 ; r=0,84) pour la classification des images de vignes 
affectées par la FD sur un ensemble de données contenant 16% d'images de maladies confondantes. 

Dans le but d’améliorer ces résultats, deux méthodes ont été développées, toutes deux 
comportant deux étapes : (1) la détection individuelle des symptômes à l'aide d'un algorithme de 
détection constitué de couches de neurones convolutives et d'un algorithme neuronal de 
segmentation ; (2) le diagnostic basé sur l’association des symptômes détectés, soit à l'aide d'un 
classificateur de type forêt d’arbres décisionnels ou Random Forest (méthode B), soit à l'aide d'un 
réseau neuronal sur graphe (méthode C). Les résultats de ces deux méthodologies sur l'ensemble de 
données contenant 16% d'images de maladies confondantes à la FD sont de (p=0,86 ; r=0,90) pour la 
méthode B et de (p=0,90 ; r=0,96) pour la méthode C. Ces résultats démontrent une meilleure 
efficacité des méthodologies en deux étapes pour distinguer les maladies confondantes des maladies 
ciblées. Ils démontrent également la pertinence de l’imagerie RGB embarquée associée aux approches 
neuronales d’intelligence artificielle pour le diagnostic de ces maladies.  

Enfin, ces trois méthodes sont testées sur des acquisitions à l'échelle de parcelles entières afin 
d’établir leur validité dans des cas d'utilisation concret. Les résultats mettent en évidence les avantages 
de la méthodologie en deux étapes basée sur l’association des symptômes par graphe, la contribution 
significative des vignes environnantes et des deux faces des vignes lors de leur diagnostic automatique 
et soulignent les défis de l’application réelle de ces méthodologies. 

Mots-clés : proxidétection, vision par ordinateur, apprentissage profond, réseaux de neurones 
sur graphes, traitement d’image, maladies de la vigne. 
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Introduction générale 
 
Les vignes sont sensibles à divers ravageurs et maladies pouvant avoir un impact significatif sur leur 
croissance, leur productivité et leur santé globale. Ces maladies peuvent provoquer une diminution de 
la qualité et du rendement, et potentiellement conduire à la mort de la vigne atteinte. La sensibilité 
des vignes à ces ravageurs et maladies dépend de divers facteurs, tels que la variété de vigne, les 
conditions environnementales, les pratiques culturales et la présence de ravageurs ou de maladies 
spécifiques dans une région donnée. Les maladies de la vigne peuvent être transmises par différents 
vecteurs ou agents causaux, notamment des champignons, des bactéries et des insectes. 

En raison de cette pression liée aux maladies et aux ravageurs, la viticulture fait l'objet de 
nombreuses critiques, en particulier en ce qui concerne son impact sur l'environnement. En 2003, les 
vignobles représentaient 3 % des terres cultivées en Europe, mais étaient responsables de l'application 
de 13 % (en masse) de tous les pesticides synthétiques en Europe (Muthmann & Nadin, 2007). Bien 
que la viticulture ne représente que 3 % des terres agricoles en France, le secteur utilise 20 % des 
fongicides du pays (Robert, 2019).  

La viticulture est confrontée à des défis majeurs. Cependant, grâce à l'adoption de pratiques 
durables et à la recherche continue, l'industrie vinicole s'efforce de s'adapter à ces défis afin de garantir 
sa durabilité. Face à l'obligation de réduire l'utilisation de pesticides nocifs pour l'environnement et 
notre santé, il existe un réel besoin d'adapter les mesures actuelles de protection de la vigne. La 
détection efficace et ciblée des problèmes phytosanitaires est cruciale pour le contrôle efficace des 
ravageurs et des maladies dans les vignobles. L’inspection des vignobles contribue à une viticulture 
durable en minimisant la nécessité de pulvérisations préventives systématiques aux profits 
d’interventions ciblées. La réalisation d'inspections fréquentes dans tous les vignobles tout au long de 
l'année représente un défi important pour les experts en maladies de la vigne. Pour résoudre ce 
problème, le développement de dispositifs de détection numérique, combinés à des outils de prise de 
décision, pourrait s'avérer d’une grande aide pour organiser les surveillances. De tels outils 
faciliteraient la priorisation des parcelles nécessitant une attention particulière, permettant ainsi aux 
experts de se concentrer sur ces zones et d'inspecter uniquement une partie des parcelles où les vignes 
sont potentiellement affectées par les maladies. En rationalisant le processus d'inspection, ces outils 
permettraient d'économiser du temps aux experts de manière considérable et leur permettraient de 
réaliser plusieurs surveillances consécutives dans un plus grand nombre de vignobles. 

Les avancées technologiques récentes, notamment l'amélioration des dispositifs d’acquisition 
données, la disponibilité d’ordinateurs embarqués toujours plus puissants, les progrès sans précédent 
de l'intelligence artificielle et l'utilisation généralisée de drones, ont considérablement impulsé la 
recherche scientifique dans ce domaine. Notamment, plusieurs études ont démontré l'efficacité du 
processus de détection automatique des maladies de la vigne présentant des symptômes distinctifs 
(Bendel et al., 2020 ; Boulent et al., 2019 ; Kerkech et al., 2018 ; Nguyen et al., 2021). Cependant, des 
vides critiques existent en ce qui concerne la détection automatique des maladies manifestant 
plusieurs types de symptômes de manière simultanée et la prise en compte des facteurs confondants.  

L'association des symptômes est souvent essentielle pour établir un diagnostic précis des 
maladies multi-symptômes de la vigne car de nombreuses maladies peuvent présenter des symptômes 
similaires. Par exemple, le diagnostic de la Flavescence dorée (FD) repose sur l'observation de la 
présence simultanée de symptômes sur feuilles, rameaux et grappes de la même vigne. Le diagnostic 
de l'Eutypiose (ED) et du dépérissement à Botryosphaeria (BD) est basé sur l'examen du tronc et du 
feuillage de la vigne. Actuellement, il y a peu de considération et de compréhension de ces cas 
complexes. Améliorer le diagnostic des maladies multi-symptômes de la vigne, en particulier en tenant 
compte des défis posés par les changements de variétés de vigne et la présence de maladies aux 
symptômes similaires, est une préoccupation cruciale. 

L'objectif général de cette étude est d'identifier, de développer et d'évaluer des méthodologies 
automatiques pour le diagnostic des maladies multi-symptômes de la vigne. Deux types de maladies 
multi-symptômes distinctes sont étudiés : les jaunisses de la vigne, en mettant l'accent sur la 
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Flavescence dorée et le Bois noir (Tessitori et al., 2018) comme cas d’études, et les maladies du bois 
de la vigne, avec le dépérissement à Botryosphaeria et l'Eutypiose comme maladies sélectionnées. 
Cette étude comporte quatre objectifs spécifiques : 

1. Proposer un protocole complet intégrant l'imagerie RGB (Rouge-Vert-Bleu), la collecte de 
données de référence sur le terrain et la réalisation de divers types d'annotations à l'échelle 
de la plante et à l'échelle des symptômes. 

2. Développer des chaînes innovantes d'algorithmes d'intelligence artificielle pour l'analyse 
automatisée des données liées aux maladies multi-symptômes. 

3. Effectuer une évaluation de ces méthodologies en utilisant des données reflétant fidèlement 
les conditions des vignobles, garantissant ainsi leur applicabilité dans des scénarios 
d'application réels. Ces évaluations comprendront des tests sur diverses variétés de vignes, 
prendront en compte les symptômes confondants et évalueront la viabilité des méthodologies 
développées pour le diagnostic de parcelles entières. 

4. Fournir une solution pour identifier les zones à haut risque de présence de ces maladies afin 
d'aider les efforts de prospection. 
 

Le chapitre I présentera une introduction étendue du sujet de recherche. Le chapitre II fournira 
une revue des méthodologies existantes pour le diagnostic automatique des maladies de la vigne 
trouvées dans la littérature. L'identification des méthodologies prometteuses et la mise en lumière de 
lacunes dans les précédentes études permettront pour la sélection des approches et des bases de 
données proposées dans les chapitres suivants. Dans le chapitre III, les maladies étudiées ainsi que les 
données utilisées pour le développement, les tests et la comparaison des différentes méthodologies 
pour le diagnostic automatique de ces maladies seront présentées. Une explication du système et du 
protocole d'acquisition et d’annotation des données y sera présentée. Les trois chapitres suivants se 
concentreront sur le développement, l'évaluation et la comparaison des algorithmes de diagnostic 
automatique des maladies de la vigne. Tout d'abord, dans le chapitre IV, l'évaluation de la 
méthodologie standard en une étape basée sur les réseaux de neurones convolutifs (CNNs) sera 
effectuée sur un ensemble de données complet, mettant en évidence ses limitations et la nécessité de 
détecter précisément les différents symptômes. Dans le chapitre V, des algorithmes de détection de 
symptômes seront ainsi proposés et évalués. Les résultats mettront en évidence les défis liés à la tâche 
et la nécessité de les associer, comme le font les experts en maladies de la vigne sur le terrain, afin de 
délivrer le bon diagnostic. Deux méthodologies pour l'association des détections de symptômes seront 
présentées, évaluées et comparées dans le chapitre VI. La première méthodologie repose sur une 
approche d'apprentissage automatique plutôt classique, tandis que la seconde est une méthode 
d'apprentissage profond utilisant des données représentées sous forme de graphes, largement utilisée 
dans de nombreux domaines mais jamais adaptée à la détection de maladies sur cultures. Dans le 
chapitre VII, une évaluation des méthodes développées sera effectuée à l'échelle de sites entiers, 
simulant une mise en pratique de ces méthodes dans des cas d'utilisation réels pour le diagnostic 
automatique des maladies multi-symptômes de la vigne. 
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Résumé étendu 
 
Le travail de recherche présenté dans ce mémoire propose de répondre à la problématique suivante : 
comment diagnostiquer efficacement les maladies de la vigne multi-symptômes par imagerie 
numériques en tenant compte des conditions réelles rencontrées au sein des vignobles ? 
 
Quatre hypothèses guidant cette recherche 
Une revue de littérature des précédentes études sur ce sujet a permis de formuler quatre hypothèses 
qui ont guidé ce travail. 

1. La proxidétection semble être la méthode d'acquisition de données optimale pour identifier 
les différents symptômes exprimés par les vignes malades. De plus, il semble que l'imagerie 
RVB soit appropriée pour visualiser correctement les symptômes, pouvant être distingués par 
leurs couleurs et leurs formes. 

2. Les techniques d'apprentissage profond semblent adaptées et prometteuses pour le 
traitement automatique des images et le diagnostic à l'échelle de la vigne. 

3. L'approche traditionnelle utilisée dans les recherches précédentes sur ce sujet, fournissant un 
diagnostic en une seule passe sur les images, ne semble pas en mesure d’appréhender toute 
la complexité des maladies multi-symptômes, notamment en présence de maladies 
confondantes. Les approches en deux étapes, consistant en une première étape dédiée à la 
détection et à la distinction des symptômes unitaires, suivie d'une deuxième étape dédiée à la 
combinaison de ces détections, devraient permettre un diagnostic plus fiable des maladies 
multi-symptômes à l’échelle du pied de vigne. 

4. Lors du diagnostic de l’état phytosanitaire d’une vigne par imagerie embarquée, tirer parti de 
la redondance d’information entre positions voisines (sur le rang) ou opposées (de part et 
d’autre du rang) permettrait d’améliorer le diagnostic à l'échelle de la vigne ciblée. 

 
Maladies ciblées 
Pour traiter ce sujet de recherche et évaluer ces quatre hypothèses, deux types de maladies multi-
symptômes de la vigne ont été ciblés, au cœur de deux projets distincts auxquels cette recherche a 
contribué. Premièrement, la Flavescence dorée (FD), appartenant à la catégorie des maladies de 
jaunisse de la vigne, est au cœur du projet français ProspectFD qui vise à proposer des outils d'aide à 
la décision pour la prospection de la FD. Cette maladie a un impact significatif en Europe et présente 
des symptômes à la fois sur les feuilles, rameaux et grappes. La présence simultanée de ces symptômes 
est nécessaire pour différencier la FD de ses maladies confondantes sur le terrain. Cette maladie se 
caractérise par une décoloration des feuilles (vers le rouge pour les variétés de vigne rouge et vers le 
jaune pour les variétés de vigne blanche), la non-lignification des rameaux et le dessèchement des 
grappes. Un deuxième type de maladie multi-symptômes a été étudié : les maladies du bois de la vigne 
(GTDs), en relation directe avec le programme Vineyard Ecosystems se déroulant en Nouvelle-Zélande, 
au laboratoire Plant and Food Research du centre de recherche de Marlborough. Les dépérissements 
par Botryosphaeria et Eutypiose ont été les maladies ciblées. Ces deux maladies présentent trois 
symptômes différents, cependant, contrairement à la FD, leur présence simultanée n'est pas 
essentielle pour le diagnostic. La croissance entravée des rameaux (nommée « short shoot »), la 
croissance de la végétation d'un seul côté du tronc (nommée « half head ») et les chancres sont les 
symptômes de ces maladies. 
 
Acquisition des données 
L'établissement de bases de données spécifiques à ces deux types de maladies a été la première étape 
de ces travaux. En ce qui concerne l’étude de la FD, 1483 images ont été acquises à l'échelle de la vigne, 
englobant 5 variétés de vigne différentes (Cabernet sauvignon, Cabernet franc et Merlot pour les 
variétés rouges, Ugni blanc et Sauvignon blanc pour les variétés blanches). Parmi ces images, 754 
présentaient des vignes atteintes par la FD, tandis que les autres présentaient des vignes avec des 
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symptômes pouvant être confondus avec ceux de la FD, en particulier des symptômes foliaires. Ces 
derniers ont été classés en trois catégories différentes : 'Esca' pour les vignes affectées par l'Esca, 
'CONF' pour les vignes présentant des feuilles visuellement différentes des feuilles saines, et 'CONF+' 
pour les vignes présentant des symptômes foliaires presque identiques à ceux de la FD. 

En ce qui concerne l’étude des GTDs, un total de 10 305 images ont été acquises. Parmi celles-
ci, 2 830 images présentent des vignes affectées par les GTDs, et 7 475 présentent des vignes saines. 
Malheureusement, les parcelles étudiées lors de la collecte de données ne présentaient pas de 
maladies confondantes avec les GTDs. De plus, les vignes photographiées sont uniquement de la 
variété Sauvignon Blanc, la variété prédominante dans la région d'acquisition. Cette seconde base de 
données ne permet donc pas l’étude de l'impact des maladies confondantes, ni celle de la variation de 
l'expression des symptômes en fonction de la variété de vigne, sur le diagnostic automatique. 
Cependant, elle permet de comparer les résultats entre une base de données contenant des maladies 
confondantes et plusieurs cépages (celle liée à la FD) et une base de données sans maladies 
confondantes et ne contenant qu’un seul cépage (celle liée aux GTDs). 
 
 
Diagnostic en 1 étape utilisant les réseaux de neurones convolutifs 
Les résultats initiaux du diagnostic à l'échelle de la vigne ont été obtenus grâce à des réseaux de 
neurones convolutifs (CNNs). Cette méthode en une étape, classifiant directement l'image brute, est 
l'approche la plus couramment utilisée dans les recherches sur le diagnostic automatique des maladies 
de la vigne (Boulent et al., 2020 ; Ji et al., 2020 ; B. Liu et al., 2020). Le test de cette méthodologie sur 
les ensembles de données d'images des deux types de maladies avait deux objectifs principaux : i) 
obtenir de premiers résultats de diagnostic automatique des maladies ciblée et ii) confirmer ou réfuter 
l'hypothèse selon laquelle cette méthodologie ne permet pas une distinction efficace de maladies 
présentant des symptômes similaires. Trois architectures de CNN différentes, parmi les plus 
rependues, ont été testées (MobileNetV3-large, ResNet50 et EfficientNetB5), ainsi que différents pré-
traitements des images d'entrée pour ces réseaux. Au cours de l’étude pour le diagnostic automatique 
de la FD, des tests ont été effectués en regroupant les différents cépages rouges d'un côté et les 
cépages blancs de l'autre. Le premier ensemble contenait des images de Cabernet Sauvignon acquises 
en 2020 et 2021, de Cabernet franc et de Merlot acquises en 2021, avec 16 % des images de la classe 
'CONF+'. En comparaison, l'ensemble de données de cépages blancs ne contenait que 3 % des images 
de la classe 'CONF+' et comprenait des images de cépages Ugni Blanc acquises en 2020 et 2021, et de 
Sauvignon Blanc acquises en 2021. Les meilleurs résultats pour la classification des images de la classe 
'FD' pour les cépages rouges sont, en précision (p) et rappel (r), de (p=0,87 ; r=0,84), tandis que ceux 
pour les variétés de vigne blanche sont de (p=0,97 ; r=0,96). Ces résultats semblent démontrer les 
moins bonnes performances des CNNs dans la distinction entre la FD et ses maladies très 
confondantes. Ils semblent également confirmer leurs efficacités affirmées dans la littérature pour le 
diagnostic de la FD en l'absence de maladies confondantes ainsi que leur capacité à considérer 
efficacement les symptômes de la FD sur des vignes de différents cépages. 

L'étude des CNNs pour le diagnostic automatique des GTDs a également été réalisée. 
L'ensemble de données testé comprenait 4 128 images, dont 2 212 montraient des vignes affectées 
par GTDs. Le CNN ResNet50 obtient les meilleurs résultats, à savoir (p=0,94 ; r=0,92) pour la 
classification des images de vignes affectées par les GTDs. Ce résultat confirme avec un autre type de 
maladie que les CNNs fournissent d'excellents résultats pour le diagnostic automatique des maladies 
de la vigne lorsque des maladies confondantes ne sont pas prises en compte. 

Afin d'obtenir un meilleur diagnostic automatique des maladies et d'améliorer leur 
différenciation par rapport aux maladies confondantes, l'hypothèse émise était qu'une approche en 
deux étapes, avec une première étape dédiée uniquement à la détection des symptômes et une 
deuxième étape dédiée à leur association, serait bénéfique. L'étude menée après celle sur les CNNs 
s'est alors concentrée sur la détection automatique des symptômes des maladies ciblées. 
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Détections des symptômes unitaires 
Afin de détecter automatiquement les symptômes, certaines des images de FD et de GTDs ont été 
annotées à l'échelle des symptômes. Deux types d'annotations, correspondant au mieux aux 
propriétés des symptômes étudiés, ont été réalisés. Concernant la FD, les feuilles symptomatiques de 
FD (classe 'feuille FD'), d'Esca (classe 'feuille Esca'), celles visuellement différentes des feuilles saines 
et similaires à celles de la FD (classe 'feuille CONF') ont été annotées avec des boîtes englobantes sur 
744 images. Ces annotations ont donné lieu à 11 279 feuilles de la classe 'feuille FD', 2 467 de la classe 
'feuille Esca' et 22 421 de la classe 'feuille CONF'. Les rameaux et les grappes symptomatiques de FD 
ont été annotées à l'aide de masques de segmentation. 128 masques de segmentation ont été créés, 
englobant 833 rameaux symptomatiques et 468 grappes symptomatiques. De plus, 660 grappes saines 
ont également été annotées sur ces masques de segmentation, leur présence en grand nombre sur 
une image pouvant être une preuve de l'absence de la maladie. Pour les GTDs, 505 images ont été 
annotées par boîtes englobantes. Parmi celles-ci, 268 symptômes de type 'Half-head', 1 480 
symptômes de type 'Short shoot' et 139 symptômes de type 'Chancre' ont été annotés de cette 
manière. Des masques de segmentation ont également été créés pour les GTDs, mettant en évidence 
la distinction entre le tronc de la vigne étudiée (classe 'Tronc'), son feuillage (classe 'Feuillage') et le 
reste (classe 'Arrière-plan'). L'objectif était d'extraire des informations potentiellement 
caractéristiques de cette segmentation, telles que la différence de taille et de feuillage de certaines 
pousses (caractéristique du symptôme « short shoot ») ou de feuillage en contact avec un seul côté du 
tronc (caractéristique du symptôme « half head »). À cet égard, 113 images de GTDs ont été annotées 
avec des masques de segmentation comprenant ces trois classes. 

La détection des feuilles symptomatiques de FD a obtenu ses meilleurs résultats avec 
l'algorithme de détection YOLOv8m, avec (p=0,78 ; r=0,61) pour les cépages rouges et (p=0,70 ; r=0,48) 
pour les cépages blancs. Les détections des rameaux et des grappes symptomatiques de FD ont obtenu 
de meilleurs résultats avec l’algorithme ResUNet, à savoir (p=0,81 ; r=0,67) pour les rameaux et 
(p=0,84 ; r=0,69) pour les grappes. En ce qui concerne la détection des symptômes des GTDs, le modèle 
YOLOv8m a obtenu les meilleurs résultats, avec (p=0,58 ; r=0,58) pour la classe 'Short shoot', (p=0,85 ; 
r=0,85) pour la classe 'Half head' et aucune détection pour la classe 'Chancre'. La segmentation entre 
le tronc, le feuillage et le reste de d’image a obtenu comme meilleurs résultats (p=0.86 ; r=0.95) pour 
la classe ‘Tronc’, (p=0.93 ; r=0.92) pour la classe ‘Feuillage’ et (p=0.97 ; r=0.97) pour la classe ‘Arrière-
plan’.  

Ces résultats, bien que pouvant être espérés meilleurs, doivent être considérés à la lumière de 
la complexité de la tâche. Cependant, ces résultats ont pu servir de base pour le développement de la 
deuxième étape de la méthodologie, qui a concentré une grande partie des efforts de cette recherche, 
à savoir l'association de ces détections afin de délivrer le diagnostic final à l’échelle de la vigne. Ces 
méthodologies d'association de détections ont été exclusivement développées et testées pour la 
maladie FD, pour laquelle le nombre de symptômes détectés par image et le nombre d'images de la 
classe 'CONF+' étaient substantiels. Cet ensemble de données s’est révélé essentiel pour déterminer 
si les méthodologies en deux étapes permettaient d'obtenir de meilleurs résultats dans la distinction 
entre les vignes affectées par la maladie ciblée de celles affectées par des maladies présentant des 
symptômes très confondants. 
 
Méthodologies d’association des symptômes détectés 
Deux méthodologies différentes d'association de symptômes ont été testées : la première utilise un 
vecteur d'informations de taille fixe pour chaque image, basé sur les symptômes détectés, et le classe 
avec un classifieur de type Random Forest (RF). La deuxième approche représente les détections de 
symptômes de chaque image sous la forme d’un graphe, classé par la suite par un réseau neuronal sur 
graphe (GNN). Pour l'ensemble de données de cépages rouges, contenant 16 % d'images de la classe 
'CONF+' et sur lequel les CNNs ont montré des performances perfectibles (p=0,87 ; r=0,84), les 
méthodologies RF et GNN ont permis d’améliorer de façon significative les résultats de classification 
avec respectivement (p=0,86 ; r=0,90) et (p=0,9 ; r=0,96). Pour l'ensemble de données des cépages 
blancs, contenant 3 % d'images de la classe 'CONF+' et sur lequel les CNNs ont obtenu leurs meilleures 
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performances avec (p=0,97 ; r=0,96), les méthodologie RF et GNN ont obtenus des résultats 
équivalents voire en léger retrait avec respectivement (p=1 ; r=0,94) et (p=0,97 ; r=0,90). Par 
conséquent, les méthodes d'association de symptômes ont donné de meilleurs résultats sur 
l'ensemble de données lorsque la proportion d'images de la classe 'CONF+' était substantielle 
(ensemble de données des cépages rouges). Lorsque cette proportion était très faible (cépages blancs), 
les résultats n'étaient pas meilleurs que ceux obtenus par les CNNs. Ces résultats de classification 
d'images, à la vue des résultats de détection de symptômes sur lesquels reposent les méthodes de 
classification, sont très prometteurs. Ils semblent indiquer que le choix d'acquérir des données par 
proxidétéction en utilisant l’imagerie RGB, détecter puis associer les symptômes à l'aide d'algorithmes 
d'apprentissage profond, sont des choix pertinents pour le diagnostic automatique des maladies multi-
symptômes de la vigne. 
 
 
Diagnostic à l’échelle de sites entiers 
Enfin, l'efficacité des CNNs et des méthodologies en deux étapes a été évaluée lors du diagnostic à 
l'échelle d'un site entier (i.e. acquisition continue des deux faces de chaque rang de chaque parcelle), 
simulant un cas d'utilisation concret. Des acquisitions ont été menées sur trois sites distincts, chaque 
site ayant des caractéristiques particulières. Le site 'Neuffons' présente des vignes de cépage Merlot, 
et la plupart des vignes affectées par la FD présentent très peu de symptômes. Le site 'Cognac' présente 
des vignes de cépage Ugni Blanc et un grand nombre de vignes atteintes des jaunisses de la vigne sans 
être atteintes par la FD. Le site 'Couture', composé de vignes de cépage Cabernet Sauvignon, contient 
de nombreuses vignes atteintes par la FD exprimant de manière visible les symptômes de la maladie. 
Les méthodes CNN, RF et GNN ayant obtenu les meilleurs résultats mentionnés ci-dessus ont été testés 
pour classifier chaque image acquise sur ces sites. La méthodologie GNN a obtenu les meilleurs 
résultats sur les trois sites, bien que ces résultats ne soient pas toujours satisfaisants. Ils étaient de 
(p=0,25 ; r=0,26) pour le site 'Neuffons', (p=0 ; r=1) pour le site 'Cognac', et (p=0,96 ; r=0,22) pour le 
site 'Couture'.  

Dans le but d'obtenir de meilleurs résultats, des méthodes RF et GNN utilisant les détections 
de symptômes effectuées sur les images à gauche et à droite de l'image à classifier (méthode des 3 
voisins) ainsi que sur les trois images acquises sur l’autre face du rang (méthode des 6 voisins) ont été 
développées. Ces méthodologies avaient pour objectif de tirer au mieux parti des acquisitions denses 
réalisées à l’échelle de sites entiers. Ces méthodologies procèdent soit en créant un vecteur 
d’information à partir de toutes ces détections (méthodes RF 3 et 6 voisins), soit en créant un graphe 
composé de ces mêmes détections (méthodes GNN 3 et 6 voisins). La prise en compte des symptômes 
détectés sur l’autre face du rang (méthode des 6 voisins) permet : i) de contourner le cas pour lequel 
les symptômes d’une vigne ne seraient visibles que sur une seule face de celle-ci, et ii) de profiter de 
la redondance des détections dans le cas où les symptômes seraient visibles sur les 2 faces. 

 Des validations croisées intra-site ont été effectuées pour les CNNs et les méthodes RF et GNN. 
Ces tests visaient à déterminer la méthode la plus adaptée pour le diagnostic à l'échelle d’un site entier. 
La méthodologie GNN 6 voisins a obtenu les meilleurs résultats dans le diagnostic automatique de la 
FD pour chacun des trois sites. Ces résultats pour la classe ‘FD’ sont de (p=0,76 ; r=0,71) pour le site 
'Neuffons', (p=0,36 ; r=0,93) pour le site 'Cognac', et (p=0,94 ; r=0,98) pour le site 'Couture'. Ces 
résultats mettent en évidence que la prise en compte des vignes environnantes ainsi que des deux 
faces d’une même vigne conduit à un meilleur diagnostic. Enfin, la méthodologie GNN 6 voisins a été 
testée sur chaque site en étant entrainée sur les images de l'un ou des deux autres sites, afin d'établir 
son efficacité dans un scénario réaliste où le modèle n'aurait jamais rencontré les images du site ciblé. 
Lors du test sur le site 'Neuffons', dont les vignes atteintes de FD présentent très peu de symptômes, 
le modèle, entrainé sur des vignes présentant de nombreux symptômes, n'a détecté aucun cas de FD. 
Le test sur le site 'Cognac' a donné comme meilleur résultats (p=0,08 ; r=0,18). La méthodologie 
n’arrive pas à différencier les pieds atteints de FD de ceux atteints de maladies confondantes en étant 
entrainée sur des sites contenant peu de maladies confondantes. Enfin, le test sur le site 'Couture', 
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dont les très nombreux pieds atteints de FD expriment bien les symptômes, a conduit à de très bons 
résultats (p=0,88 ; r=0,93).  

Malgré la construction d’une base de données pluri-annuelles et multi-cépages, comportant 
de nombreuses expressions de symptômes différentes et la présence de symptômes confondants, les 
modèles entrainés sur cette base peinent à obtenir des résultats convaincants lors de leurs applications 
sur de nouveaux sites. Ces difficultés soulignent combien la constitution d’une base de données 
d’apprentissage consistante, embrassant une multiplicité de situations et de conditions d’acquisition, 
reste primordiale dans la perspective d’un passage à l’échelle. Les résultats obtenus dans des situations 
mieux maîtrisées car déjà rencontrés lors de la mise au point des modèles restent cependant 
prometteurs sur la capacité des approches à être appliquées en situation professionnelle.  
 
Réponse à la problématique 
Cette recherche s’est proposée de répondre à la question : "Comment diagnostiquer efficacement les 
maladies multi-symptômes de la vigne par des moyens numériques en tenant compte des conditions 
réelles rencontrées au sein des vignobles ?". La réponse, selon cette recherche, réside dans la création 
de la base de données la plus complète possible en termes d'expression des symptômes des maladies 
étudiées et de leurs maladies confondantes, la détection précise des symptômes et l'association 
intelligente de ces détections de symptômes. Tenir compte des symptômes détectés des deux côtés 
de la même vigne ainsi que sur les vignes voisines semble apporter un avantage significatif. Cependant, 
en plongeant dans la réalité complexe des vignobles, il devient évident que ce problème est très 
compliqué à résoudre. Créer une base de données et obtenir de bons résultats sur celle-ci est une 
chose, mais appliquer le modèle développé à un site jamais étudié auparavant en est une autre. 
Chaque vignoble semble avoir sa propre spécificité, sa propre expression des symptômes des maladies 
ciblées et des maladies confondantes, rendant le diagnostic sur des sites autres que ceux sur lesquels 
les algorithmes ont été entrainés compliqué. Malgré les efforts déployés pour construire une base de 
données solide et très diversifiée, avoir développé des méthodologies innovantes obtenant de très 
bons résultats sur cette base de données, les résultats obtenus lors de la mise en pratique de ces 
méthodologies sont décevants. Cela semble indiquer qu’un manque persiste dans la variété 
d’expression de symptômes de la maladie ciblée et de ses maladies confondantes considéré lors de 
l’entrainement des méthodes développées. 
 
Position par rapport aux recherches antérieures 
Cette recherche confirme les conclusions d'études antérieures sur ce sujet, à savoir que l'utilisation de 
CNNs permet d'obtenir de très bons résultats dans le diagnostic automatique des maladies de la vigne 
lorsqu'on ne considère que les vignes affectées par la maladie ciblée et les vignes saines (Boulent et 
al., 2020 ; Ji et al., 2020 ; B. Liu et al., 2020). Cependant, elle se distingue de ces études précédentes 
en tenant également compte des maladies aux symptômes confondants lors du développement de 
modèles de diagnostic automatique. Lors de la considération de ces maladies confondantes, les CNNs 
ne sont plus les meilleurs modèles pour le diagnostic automatique, et les méthodologies innovante en 
deux étapes proposées dans cette étude délivrent de meilleurs résultats. Enfin, même en tenant 
compte de ces maladies très confondantes lors de l’entrainement des modèles, cette étude confirme 
la conclusion de Al Saddik (2019) et Albetis et al. (2018) selon laquelle, lors de l'application des modèles 
dans des cas d'utilisation réels, il est très difficile de distinguer les maladies multi-symptômes de la 
vigne de leurs maladies confondantes. 
 
Limites de la recherche 
En ce qui concerne les limites de cette recherche, davantage d'acquisitions à l'échelle de site entier 
auraient pu améliorer les modèles par graphe combinant des images multiples, qui ont montré les 
meilleurs résultats pour le diagnostic automatique de la FD. Bien que différentes architectures de CNN 
aient été testées comme méthodologie en une étape, les vision transformers (S. Khan et al., 2022), 
offrant une approche nouvelle et prometteuse pour le traitement des données visuelles différente des 
CNN traditionnels, auraient pu être testés. Une plus grande diversité d'images avec des symptômes 
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annotés et une étude plus approfondie des algorithmes de détection des symptômes auraient pu être 
menées pour obtenir de meilleurs résultats lors de leur association. En ce qui concerne les GTDs, des 
méthodes d'association des détections de symptômes auraient pu être développées pour comparer 
les résultats à ceux obtenus lors de l'étude de la FD. Une étude plus approfondie sur les maladies 
pouvant être confondues avec les GTDs, la prise en compte de plusieurs variétés de vigne et des 
acquisitions à l'échelle de sites entiers auraient pu être menées pour fournir une étude plus complète 
du diagnostic automatique des GTDs. Une étude plus approfondie des paramètres choisis concernant 
les méthodes RF (paramètres des vecteurs) et GNN (type de graphe, paramètres des nœuds) aurait pu 
être réalisée. 
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Conclusion générale 
 
Le but principal de cette recherche était le développement et la comparaison de méthodes pour le 
diagnostic automatique des maladies multi-symptômes de la vigne. Afin de diagnostiquer au mieux ces 
maladies, cette recherche préconise tout d’abord une approche novatrice concernant les protocoles 
d’acquisitions de données et de la vérité terrain. Cette approche comprend l'intégration des maladies 
confondantes à la maladie ciblée dans les jeux de données, ainsi que des annotations à l’échelle des 
images et des symptômes des maladies ciblées et confondantes. Les données ont été collectées par 
imagerie RGB, directement dans les rangs de vignes, afin d'avoir la vue la plus précise possible des 
différents symptômes. La méthodologie de diagnostic automatique très largement répandue dans la 
littérature a été testée et a donné des résultats très satisfaisants dans la plupart des cas. Cependant, 
lorsque les jeux de données contenaient une grande proportion de vignes présentant des symptômes 
confondants à ceux de la maladie ciblée, les résultats de cette méthode devenaient moins bons. Dans 
le but d'améliorer les performances de différenciation entre maladie ciblée et maladies aux 
symptômes confondants, des méthodologies en 2 étapes ont été développées. La première étape se 
focalisant sur la détection des symptômes unitaires, réalisée par deux algorithmes neuronaux, un de 
segmentation et un de détection. La deuxième étape est dédiée à l'association de ces détections de 
symptômes. Leurs représentations sous la forme de graphes et leur traitement par graph neural 
network ont été, entre autres, proposés. Cette méthodologie innovante a permis d'améliorer la 
distinction entre maladie ciblée et maladies aux symptômes confondants. Les méthodologies 
développées ont par la suite été testée sur trois acquisitions réalisées à l'échelle de vignobles entiers. 
Cette recherche a pu démontrer l’efficacité supérieure d’approche prenant en compte les détections 
de symptômes obtenues sur un ensemble de vignes environnantes et leurs représentations par graphe 
pour le diagnostic de maladies à l'échelle de l'ensemble d’un vignoble. Ces innovations 
méthodologiques semblent avoir un potentiel très prometteur par leur capacité à tirer parti de la 
redondance de l’information dans les parcelles. Cependant, si pour un vignoble, les résultats sont très 
satisfaisants, ils sont décevants pour les 2 autres. Ces résultats soulignent toute la difficulté de la mise 
en pratique généralisée des méthodes de diagnostic automatique de maladies de la vigne. Chaque 
vignoble semble présenter des caractéristiques qui lui sont propre. Afin de couvrir toutes les 
spécificités pouvant être rencontrées, un changement d'échelle concernant le nombre d'acquisition et 
d'annotation des données d'entrainements des modèles semble nécessaire. Les méthodologies 
innovantes développées dans cette recherche, délivrant un diagnostic vigne par vigne uniquement à 
partir d'images, semblent constituer un premier pas dans l'amélioration de la détection des maladies 
dans les vignobles. Cependant, pour une meilleure identification des zones à haut risque de présence 
de maladies au sein des vignobles, il semble essentiel de développer un outil complet d'aide à la 
décision, prenant en compte des caractéristiques telles que l'historique des symptômes et 
l'environnement du vignoble, et adaptant des critères de diagnostic en conséquence. 
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A. Viticulture: a dynamic but threatened sector 
 

 Viticulture: a look ahead 
 
Today, grapevine cultivation and winemaking are practiced in numerous countries across the globe. 
Famous wine-producing regions include France, Italy, Spain, the United States, Argentina, Australia, 
and South Africa, among many others. Each region has its own unique climate, soil, grape varieties, 
and winemaking traditions, resulting in a diverse range of wines (Charters, 2006; Leeuwen & Darriet, 
2016).  

In 2022, the global vineyard area was estimated to be around 7.3 million hectares 
(International Organisation of Grapevine and Wine, 2023), indicating the widespread cultivation of 
grapes for wine production and table grapes. Notably, Spain, France, China and Italy emerged as the 
countries with the most substantial vineyard surface areas, reinforcing their prominence in the wine 
industry. 

The wine trade stands as a significant global enterprise, with exports amounting to several 
billion dollars annually. The worldwide wine consumption for 2022 reached an impressive 232 million 
hectolitres, highlighting the widespread appreciation of wine as a popular beverage choice. 

The wine industry encompasses a range of activities, including grape cultivation, winemaking, 
marketing, distribution, and wine tourism, which collectively create employment opportunities 
worldwide. Wine tourism, in particular, has gained significant popularity, attracting travellers to 
explore iconic wine regions like Napa Valley in California, Tuscany in Italy, and Bordeaux in France 

However, viticulture faces challenging times due to the impact of climate change. The 
undeniable reality of global warming, largely driven by human activities and greenhouse gas emissions, 
presents one of the most significant environmental hurdles humanity must address (IPCC, 2022). Rising 
temperatures have profound implications for grapevine life cycles, affecting key phenological stages 
such as bud burst, flowering, veraison, and maturity (Parker et al., 2013). Consequently, the quality 
and reputation of renowned wine-growing regions may be influenced by these temperature changes 
(Gutiérrez-Gamboa et al., 2021). 

Moreover, the anticipated increase in extreme weather events, including heatwaves, frost 
events, storms, and hailstorms, can cause potential reductions in yield and degradation of wine quality, 
adding to the industry's challenges (Droulia & Charalampopoulos, 2021). As a result, viticulturists must 
adapt to shifting environmental conditions and reconsider their approaches to cultivating and 
preserving grapevines (Droulia & Charalampopoulos, 2022). 
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One notable consequence of rising temperatures is the potential emergence of new diseases 
and pests that affect grapevines. Known diseases may also undergo shifts in distribution due to 
changing climate conditions, affecting regions previously considered too cold or too warm for certain 
pathogens. Fungal pathogens like powdery mildew (Gadoury et al., 2012) and downy mildew (Caffi et 
al., 2013), which thrive in warm and humid environments, may become more prevalent as 
temperatures increase, further complicating grapevine management. 

High temperatures and prolonged heat stress can weaken the defence mechanisms of 
grapevines, making them more vulnerable to disease. Heat stress can compromise the plant's ability 
to produce defence compounds and activate defence responses (Berry & Bjorkman, 1980), leaving it 
more susceptible to infections. 

Additionally, insects that act as disease vectors (Reineke & Thiéry, 2016) can be affected by 
climate change, impacting disease dynamics and possibly leading to the emergence of new grapevine 
pests and diseases (Bocca et al., 2020; Deutsch et al., 2018). Changes in the phenology of grapevine 
disease vectors over the past three decades have already been observed, further highlighting the 
importance of understanding and managing these risks. 

In conclusion, while viticulture plays a crucial role in the economy and culture of many 
countries worldwide, it faces significant challenges. The changing temperatures and their subsequent 
effects on grapevines as well as the sensitivity of grapevine to diseases and pests necessitate 
innovative and adaptive approaches to sustainably manage vineyards and preserve the wine industry 
for future generations. 

 
 

 Grapevine sensitivity to pests and diseases 
 
Grapevines are sensitive to a variety of pests and diseases, which can significantly impact their growth, 
productivity, and overall health. These diseases cause a decrease in quality and yield, and can 
eventually lead to the death of the grapevine. The sensitivity of grapevines to these pests and diseases 
depends on various factors, including grapevine cultivar, environmental conditions and cultural 
practices. Grapevine diseases can be caused by fungi, viruses or bacteria that can be transmitted 
through different vectors like insects, birds, machinery and rain splatter.  

Fungal diseases such as powdery mildew and downy mildew are common grapevine diseases. 
Powdery mildew is spread through airborne spores, while downy mildew is primarily transmitted by 
spores carried by water droplets from splashing water. Prevalence for both diseases is strongly 
favoured by high humidity. Downy Mildew is causing damage all over the world (Fontaine et al., 2021).  

Trunk diseases are a growing concern for grape growers worldwide, as, contrarily to mildews, 
the pathogens are difficult to control by means of pesticides (wounds can still be protected with them 
to stop infection). Many wine production regions around the world reported trunk diseases as major 
issues (Bois et al., 2017). There are four major grapevine trunk diseases caused by different fungi. 
These diseases are called Esca (Larignon & Dubos, 1997) Eutypa dieback (ED) (Carter, 1991), 
Botryosphaeria dieback (BD) (Slippers & Wingfield, 2007) and Phomopsis dieback (Úrbez-Torres et al., 
2013). According to Fontaine et al. (2016), Spain had an estimated vineyard trunk diseases incidence 
of 10.5% in 2007. In France, about 13% of vineyards were unproductive due to trunk diseases, resulting 
in an estimated loss of €1 billion in 2014. Trunk diseases have caused in California losses of at least US 
$260 million annually. Esca infections represent a loss of about 2.000-3.000$ per hectare per year in 
California. A national survey of symptomatic material from 43 vineyards showed that 88% had some 
degree of infection by Botryosphaeriaceous species in New Zealand. 

Apart from fungi, grapevines worldwide are also impacted by bacterial diseases, three of which 
are significant: bacterial blight (Xylophilus ampelinus) (Prunier et al., 1970), Pierce's disease (Xylella 
fastidiosa) (Davis et al., 1978), and crown gall (Agrobacterium vitis) (Burr & Otten, 1999). These 
bacteria thrive within the vascular system of the grapevine, allowing them to invade and inhabit the 
entire plant. The presence of latent infections in propagating material is thought to play a significant 
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role in the spread of these diseases (Szegedi & Civerolo, 2011). In Europe, Flavescence dorée (FD) (Lefol 
et al., 1993) was classified as a quarantine disease in 1993 (European Directive 2000/29/EC) and is 
subject to mandatory reporting. It is caused by a phytoplasma, a type of bacteria-like organism, and is 
transmitted by leafhoppers Scaphoideus titanus Ball (Cicadellidae). The disease causes a decline in 
grape quality and yield. FD is a significant concern for grape growers and winemakers, as it can lead to 
severe economic losses and the destruction of vineyards if not properly managed through strict control 
measures and quarantine protocols. In 2018 in France, 75% of vineyards (i.e. 568,507 ha) is within the 
compulsory control perimeters defined in the prefectural decrees (Barthellet et al., 2018). Oliveira et 
al. (2020) showed that infected plants showed reduction in the yield between 51% and 92%.  

In addition to fungi and bacteria, viruses also pose a threat to grapevines. Nearly 70 different 
viruses have been identified in grapevines. They are characterized by a wide array of symptoms, e.g. 
malformations of leaves and twigs, foliar discolourations (reddening, yellowing, chlorotic or bright 
yellow mottling, ringspots, and line patterns), grooving and/or pitting of the woody cylinder, delayed 
bud break, stunting and dieback (Martelli, 2017). Grapevine leafroll-associated virus 3 (GLRaV3) (Naidu 
et al., 2014) is primarily spread through propagation material and certain insects like mealy bugs 
(Pseudococcidae spp). Atallah et al. (2011) estimated that the economic impact of grapevine leafroll 
disease ranges from $25,000 to $40,000 per hectare over the 25-year lifespan of the studied vineyards 
in the USA.  

It is important for grape growers to monitor their vineyards regularly, employ integrated pest 
management strategies, and take appropriate preventive measures to minimize the damage caused 
by pests and diseases. Local agricultural extension services or viticulture experts can provide region-
specific information and recommendations for managing pest and disease issues in grapevines. 
 
 

 Environmental impact 
 
Because of this disease pressure, viticulture is subject to a lot of criticisms, particularly with regard to 
its impact on the environment due to the high quantities of phytosanitary products being used. 
Since 1850, pest and diseases and have spread like never before. The globalization of world trade, the 
expansion of the international market of seeds and crops and the increase of monoculture being the 
main causes. Grapevines are a very sensitive to pests and diseases, and the introduction of new 
pesticides during the second half of the 20th century have enabled pest and disease control and a 
significant increase in yield. The use of these chemical agents became a necessity for winegrower in 
order to meet yield and quality targets. In 2003, vineyards covered 3% of the European cropland, but 
were involved in the application of 13% (in mass) of all pesticides in Europe (Muthmann & Nadin, 
2007). Although viticulture represents 3% of France’s agricultural land, the sector uses 20% of the 
country’s fungicides (Robert, 2019). 

The advantages for the winegrowers are obvious. However, there is now overwhelming 
evidence that their intensive use has resulted in serious health implications to humans and their  
environment (Van der Werf, 1996). For example, copper-based fungicides, widely used against downy 
mildew, (even in organic vineyards) are responsible for the reduction of soil fertility and reduce the 
soils ability to filter contaminants (Keesstra et al., 2012). As copper is highly persistent in soils 
(Babcsányi et al., 2016; Fernández-Calviño et al., 2009), it can seep into groundwater and affect the 
water quality and with it, aquatic organisms (Fernández-Calviño et al., 2010; Mackie et al., 2012). 
Secondly, the impact of any pesticides on human health is real. Vineyard workers are obviously the 
first in danger while spraying pesticides. Studies have demonstrated the effect on mental health 
(Fuhrimann et al., 2022; N. Khan et al., 2019) and an elevated sensitivity to illness and certain forms of 
cancer (Curl et al., 2020) for people directly exposed to pesticides. However, these people are not the 
only one exposed to the pesticides. All wine consumers are exposed too. A study of 40 bottles coming 
from different countries in the world demonstrated that all the bottles coming from conventional 
blocks contained pesticides residues (Pesticide Action Network, 2008).  
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 Adapting grapevine protection for a sustainable future 
 
Viticulture is facing major challenges. However, through the adoption of sustainable practices and 
ongoing research, the wine industry is striving to adapt to these challenges and ensure its 
sustainability. Faced with this vision of the future of viticulture and the obligation to reduce the use of 
pesticides harmful to the environment and our health, there is a real need to adapt the current 
protection measures of the grapevine.   

Many vineyards are adopting integrated pest management (IPM) strategies (Isaacs et al., 2012; 
Perria et al., 2022; Wilson & Daane, 2017). IPM involves using a combination of techniques such as 
biological control, cultural practices, and targeted pesticide application to minimize reliance on 
pesticides and reduce their negative impacts on the environment and human health. Sustainable 
viticulture practices aim to strike a balance between effective pest management and minimizing the 
use of pesticides, promoting the long-term health of both the vineyard and the surrounding ecosystem. 
In IPM, monitoring of the vineyard and correct pest identification assist in deciding whether control of 
the pest or disease is needed. Correctly identifying the pest and diseases is key to knowing whether a 
pest is likely to become a problem and determining the best management strategy. However, despite 
these measures, residues of pesticides in grapes that are equal or higher than the maximum residues 
levels, still can be found (Baša Česnik et al., 2008). Breeding can also be part of a solution for the control 
of the current and future pests and diseases. Combining grapevine resistant to diseases with 
grapevines with great grape quality is an option (Bavaresco, 2019). Researches to identify resistant 
genotype to major diseases, as for example powdery and downy mildew (Buonassisi et al., 2017; 
Merdinoglu et al., 2018; Nardi et al., 2019), are in progress. Organic farming may be a way to reduce 
the use of phytosanitary products. However, here again, it implies a very efficient monitoring of the 
blocks in order to prevent diseases from spreading (Merot et al., 2020), which may turn catastrophic.  
 
 

B. Effective vineyard inspections for sustainable viticulture 
 
Efficient and targeted detection of phytosanitary problems is crucial for effective pest and disease 
control in vineyards. To achieve this, vineyard inspections play a vital role in promoting sustainable 
viticulture by minimizing the need for systematic preventive spraying and instead enabling precise 
interventions. While winegrowers themselves can contribute to inspections, certain diseases require 
inspection by experts. Grapevines are vulnerable simultaneously to various biotic and abiotic stresses, 
exhibiting diverse symptoms that can be very challenging to detect or differentiate. Furthermore, 
disease symptoms can vary based on the grapevine variety, phenological stage and even exhibit a 
random pattern of disappearance and reappearance from one year to another. Accurate diagnosis 
often necessitates meticulous inspection, association of symptoms across grapevine organs and DNA 
analysis (Hren et al., 2007; Úrbez-Torres et al., 2006). Early-stage disease symptoms, such as subtle 
discolouration (Christen et al., 2007) and small leaf spots (Gessler et al., 2011), are particularly elusive, 
underscoring the importance of precise and consistent inspections by experts to contain their spread 
promptly. 

Conducting frequent inspections across all vineyards throughout the year poses a significant 
challenge for grapevine disease experts. To address this issue, the development of digital detection 
devices combined with decision support tools could prove invaluable in organizing surveys. Such tools 
would facilitate the prioritization of blocks that require attention, allowing experts to focus on those 
areas and inspect only a portion of the blocks where grapevines have been found to likely be affected 
by diseases. By streamlining the inspection process, these tools would save experts considerable time 
and enable them to conduct multiple consecutive surveys across more vineyards.  

Recent technological advancements, including improved acquisition devices, powerful 
embedded computers, artificial intelligence, and the widespread use of drones or unmanned aerial 
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vehicles (UAVs), have significantly propelled scientific research in this field. Notably, several studies 
have demonstrated the effectiveness of automated detection process for grapevine diseases that 
exhibit distinctive symptoms (Bendel et al., 2020; Boulent et al., 2019; Kerkech et al., 2018; Nguyen et 
al., 2021). However, a critical gap exists when it comes to diseases that manifest multiple symptoms.  
The association of these symptoms is essential to establish an accurate diagnosis, as numerous 
diseases can display similar symptoms. For example, the diagnosis of FD relies on the observation of 
the simultaneous presence of symptoms on leaves, shoots and bunches on the same grapevine. The 
diagnosis of ED and BD is based on the examination of the grapevine's trunk and foliage. Currently, 
there is limited consideration and understanding of such complex cases. Improving the diagnosis of 
multi-symptom diseases in grapevines, especially considering the challenges posed by changes in grape 
varieties and the presence of similar diseases, is a crucial concern. 

How to effectively diagnose grapevine multi-symptom diseases by digital means considering real 
vineyard conditions? 
 
 

C. Objectives of the study 
 
The general objective of this study is to identify, develop and evaluate automated methodologies for 
multi-symptoms grapevine diseases diagnosis. Two types of distinct multi-symptomatic diseases will 
be investigated: grapevine yellows, focusing on Flavesence dorée and Bois noir (Tessitori et al., 2018) 
as case studies, and grapevine trunk diseases, with Botryosphaeria and Eutypa diebacks as the selected 
diseases studies. There are three specific objectives to this study:    

• Propose a comprehensive protocol that integrates RGB imaging (Red-Green-Blue imaging. In 
this technique, each pixel of an image is represented by a combination of intensity values for 
these three colours), ground truth dataset collections and various types of annotations at both 
the plant and symptom scales. 

• Develop innovative chains of artificial intelligence algorithms for the automated analysis of 
data related to multi-symptom diseases. 

• Conduct an evaluation of these methodologies using data that accurately reflect the vineyard 
conditions, thus ensuring their applicability in real-world application scenarios. This evaluation 
will encompass testing on various grapevine varieties, include the consideration of 
confounding symptoms and assess their usefulness for the diagnosis of whole blocks. 
 
 

D. Flow of the manuscript 
 
Chapter II will provide a comprehensive review of existing methodologies for automated diagnosis of 
grapevine diseases found in the literature. The identification of promising methodologies and 
knowledge gaps in considering certain aspects will be used for the selection of approaches and 
databases proposed and developed in subsequent chapters. In Chapter III, the studied diseases as well 
as the data used for the development, testing, and comparison of the different methodologies for the 
automated diagnosis of the studied diseases will be presented. This will include an explanation of the 
data acquisition system and protocol as well as the annotated data (and annotation protocols). The 
subsequent three chapters will focus on the development, evaluation and comparison of the 
automated grapevine diseases diagnosis algorithms. Firstly, in Chapter IV, the evaluation of the 
standard CNN-based 1-step mainstream methodology will be conducted on a complete dataset, 
highlighting its limitations and the need of accurately detecting the symptoms. Subsequently, in 
Chapter V, symptom detection algorithms will be proposed and evaluated. Results will emphasize the 
challenges involved in the task and the need for the symptom detections association, as grapevine 
diseases expert are doing in the field to deliver the right diagnosis. Two methodologies for the 
association of symptom detections will be presented, evaluated and compared in Chapter VI. The first 
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methodology is based on a rather classical machine learning approach, whereas the second one is a 
deep learning method using data represented as graphs, widely used in many domains but never 
adapted to crop diseases detection. In Chapter VII, a comparison of the developed methods will be 
carried out on vineyard scale, simulating a practical implementation of these methods in real-use cases 
for the automated diagnosis of multi-symptom grapevine diseases. 
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II. Building up a strategy to address multi-symptom disease diagnosis 
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A. Literature review on grapevine diseases automated detection  
 
The in-situ characterization of crops using digital tools has resulted in an extensive body of literature 
that is challenging, and perhaps not entirely necessary, to synthesize within this thesis. This literature 
covers a wide array of crops (such as cereals (Pujari et al., 2015), open-field/greenhouse vegetables 
(Cubero et al., 2011), fruit trees, and horticulture (Usha & Singh, 2013)), various topics of interest 
(including phenology (Yalcin, 2017), health status (Fuentes et al., 2018; Johannes et al., 2017), and 
yield (Van Klompenburg et al., 2020)), and a diverse range of technologies (involving the selection of 
carriers, sensors, and processing methods). While it is valuable to explore all available technological 
options, the focus was chosen to narrow to the specific issue of disease detection in perennial crops, 
with a particular emphasis on viticulture. This field poses unique questions and challenges, making it a 
compelling area for investigation. In fact, detecting grapevine diseases in field conditions, rather than 
controlled environments, presents significant challenges. In the field, grapevines are arranged in rows 
and can grow to significant heights, which poses limitations on data acquisition and data capture. 
Capturing high-quality data becomes more challenging due to the overlapping and intertwined nature 
of grapevine foliage. Additionally, variations in lighting, background clutter, and environmental 
conditions further complicate the accurate identification and differentiation of disease symptoms on 
grapevines. These factors emphasize the need for robust and adaptable techniques specifically 
designed to handle the unique challenges of grapevine disease detection in real-world field settings. 
Therefore, grapevine disease detection methods necessitate the development of grapevine-specific 
approaches to overcome these inherent complexities and ensure reliable and precise disease 
identification. 

Capturing close-up images of leaves, either in the field or in a controlled laboratory, using 
standard or multispectral cameras provides a promising avenue for obtaining detailed information 
about grapevine diseases. By examining leaves at such a close range, it becomes possible to detect and 
analyze disease leaf symptoms with greater precision and accuracy. This approach has been widely 
adopted in numerous studies to not only detect diseases but also differentiate between them. 

In an insightful study conducted by Al Saddik (2019), a combination of spectral and textural 
analyses was employed to differentiate between healthy and diseased leaves. The results were correct, 
with an accuracy exceeding 0.85 for distinguishing between healthy and diseased leaves. Moreover, 
the degree of infection and the distinction between specific diseases such as FD, Bois noir, and Esca 
could be determined with accuracies surpassing 0.74. This demonstrates the potential of utilizing 
spectral and textural features to precisely characterize different diseases in grapevine leaves. Another 
effective approach, as demonstrated by Pantazi et al. (2016), involves analysing proximal sensing 
images by leveraging techniques such as colour space transformations, texture operator applications, 
and parameter extractions. A classifier achieved an impressive accuracy of over 0.93 in classifying 
leaves exhibiting symptoms of three specific diseases: powdery mildew, downy mildew, and black rot. 
This highlights the efficacy of advanced image analysis and machine learning methods in accurately 
identifying and classifying diseases affecting grapevine leaves. However, the most notable 
advancements in classifying symptomatic leaves captured in close-up have been driven by the 
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application of deep learning techniques, particularly Convolutional Neural Networks (CNNs). Ji et al. 
(2020) achieved remarkable results, surpassing 0.99 accuracy, when classifying leaves into four distinct 
classes: healthy leaves, black rot, Esca, and Phomopsis leaf spots. The use of CNNs also demonstrated 
an outstanding accuracy of 0.97 when classifying grapevine leaves into six classes: anthracnose, brown 
spot, moth damage, black rot, downy mildew, and leaf blight (Liu et al., 2020). These impressive 
outcomes underscore the power of deep learning and CNNs in accurately differentiating between a 
wide range of disease types affecting grapevine leaves. A comparative study conducted by Rançon 
(2019) evaluated two approaches, namely Scale-Invariant Feature Transform (SIFT) and transfer 
learning, for the classification of Esca symptomatic leaves. Both methods exhibited excellent 
performance, with approximately 0.99 accuracy in predicting advanced-stage Esca leaves using either 
approach. Pérez-Roncal et al. (2022) aimed to evaluate the effectiveness of near-infrared 
hyperspectral imaging for detecting Esca disease in grapevine leaves before visible symptoms appear. 
The researchers collected 72 leaves from 6 different grapevines classified in 3 classes: ‘Healthy’, 
‘Asymptomatic’ (from grapevine showing symptoms of Esca) and ‘Symptomatic’. Researchers 
employed advanced image processing techniques and multivariate statistical analysis. Partial least 
squares discriminant analysis, along with different pre-processing techniques, were used for 
classification. The classification rates ranged from 83% to 97% in validation datasets for both three-
class (healthy, asymptomatic, and symptomatic) and two-class (healthy versus asymptomatic) 
classifiers. In the study performed by Morellos et al. (2022), an RGB camera sensor was used to capture 
images from vineyard. The objective was to develop disease identification classifiers using images of 
healthy leaves and leaves infected with a fungal disease. Several CNNs were trained on the public 
plantvillage dataset, which consisted of close-up leaf images on a uniform background. The classes 
included 'healthy', 'Black rot', 'Leaf blight spot', and 'Esca'. Subsequently, fine-tuning and testing were 
performed on their dataset, which comprised groups of leaves in close-up under field conditions with 
the classes 'Esca', 'Powdery mildew', and 'healthy'. The results obtained were highly promising. 
However, it is important to note that their test set was limited, consisting of only 10 'healthy', 11 
'Powdery Mildew' and 10 'Esca' samples, although these diseases present really different symptoms. 
It calls for further validation and testing on larger and more diverse datasets. Nonetheless, the use of 
deep learning and transfer learning in this study shows great potential for accurately identifying and 
classifying vineyard diseases based on leaf RGB images. 

The findings from these studies show great promise for diagnosing grapevine diseases. 
However, the methodology relies on capturing close-up images of leaves, which presents certain 
limitations. Automating the process of capturing and focusing sensors on symptomatic grapevine 
leaves is challenging and may not be compatible with full automation. Additionally, this approach may 
not be suitable for diagnosing grapevine diseases that exhibit multiple symptoms across different 
organs, and not only the leaves. Consequently, this data acquisition method does not align with the 
objectives of this research. However, the algorithms employed for accurate leaf classification have the 
potential to inform the selection of future methods. 

The widespread adoption of drones or UAVs (Unmanned Aerial Vehicles) has revolutionized 
the acquisition of data in various fields, including viticulture (Sassu et al., 2021; Singh et al., 2022). 
Drones offer a practical and efficient solution for capturing images of vineyard blocks due to their 
speed and manoeuvrability. Multiple studies have highlighted the benefits of using drones for image 
acquisition, enabling accurate estimation of crucial crop parameters such as biomass, canopy 
temperatures and size (Holman et al., 2016; Ludovisi et al., 2017; Madec et al., 2017). Building upon 
these successes, researchers have explored the potential of using drones for diagnosing grapevine 
diseases. For instance, in certain studies (Kerkech et al., 2020b, 2020a), a segmentation approach was 
employed to classify each pixel into one of four categories: soil pixel, shadow pixel, healthy grapevine 
or diseased grapevine. The results of these studies have been promising, with the first study achieving 
an accuracy rate of 0.92 for identifying diseased grapevines. Additionally, vegetation indices, such as 
Excess Green (ExG) and Green-Red Vegetation Index (GRVI), can be calculated from UAV images to 
detect areas of diseased vineyards (Kerkech et al., 2018). The patch classification, involving the 
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grouping of pixels into 16*16, 32*32 or 64*64 pixel clusters, even reached an impressive accuracy of 
0.95 by the conclusion of the study.  

The studies mentioned above have shown highly encouraging results in the context of 
diagnosing grapevine diseases using drone imaging. However, these positive outcomes are limited to 
the discrimination between healthy and diseased grapevines, rather than the identification of specific 
diseases or the differentiation between diseases. This may contribute to the favourable results 
observed in those studies. 
 Bendel et al. (2020) introduced ground-based hyperspectral and airborne multispectral 
approaches for detecting foliar Esca symptoms. The study compared models developed using field data 
and manually annotated data (symptomatic leaves annotated on images). A segmentation model 
utilizing SWIR (Short Wave InfraRed) and VNIR (Visible and Near-InfraRed) spectral ranges was 
employed. Hyperspectral disease detection models have been developed using either original field 
data or annotated data. Both sensor systems demonstrated suitability for in-field disease detection. 
These models were subsequently applied at the plant scale. Initial findings indicate the potential for 
pre-symptomatic detection of external symptoms, but further evaluations are required. MacDonald et 
al. (2016) employed a spectral unmixing approach with a spatial resolution of approximately 0.25 to 
0.50 meters per pixel to detect grapevine leafroll-associated virus 3 (GLRaV-3) in Cabernet sauvignon 
vineyards. Reflectance signatures of diseased and healthy grapevines were compared to 
measurements acquired by a hyperspectral camera from the air, specifically targeting GLRaV-3 
reflectance spectra. The resulting continuous image represented the relative probability of a pixel 
containing the GLRaV-3 signature. A customized Geographic Information System (GIS) methodology 
was developed to compare visual symptoms to hyperspectral imaging results. On average, the 
detection sensitivity was 94.1%, varying between 88% and almost 100% per vineyard. The study 
demonstrates the usefulness and cost-effectiveness of remote hyperspectral imaging for mapping 
GLRaV-3 infected Cabernet Sauvignon vineyards. However, only five blocks were studied and further 
research is needed to explore its application in detecting GLRaV-3 on other grape varieties and 
identifying other grapevine pathogens. In work conducted by Albetis et al. (2017), the employment of 
both univariate and multivariate classification approaches, to categorize grapevines as either affected 
by FD or healthy, is studied. To accomplish this, they utilized 20 variables derived from UAV images, 
including spectral bands, vegetation indices, and biophysical parameters. The researchers found that 
the classification results were promising for red varieties, severely infected by FD. The characteristics 
captured by the UAV images provided useful information for distinguishing between healthy and FD-
affected grapevines. However, when it came to white varieties, the results were not as convincing. This 
discrepancy could potentially be attributed to variations in the expression of the disease in different 
grape varieties, highlighting the complexity of disease detection using drone imaging. In another study 
by Albetis et al. (2018), the researchers aimed to differentiate between FD and trunk diseases, 
specifically black dead arm and Esca. They expanded their analysis to include 24 variables comprising 
spectral bands, vegetation indices, and biophysical parameters. The study involved photographing 
seven vineyards, encompassing five different red grape varieties, using drone imagery. The obtained 
results were promising for distinguishing between grapevines affected by FD and healthy grapevines. 
However, the discrimination between FD and trunk diseases did not yield satisfactory outcomes. This 
indicates that the visual cues captured by the drone imagery might not be sufficiently distinct to 
identify and differentiate between these specific diseases accurately. 

A novel automated method using 3D point cloud data has been developed, enabling the 
detection of individual grapevine trunks, posts, and missing plants (Jurado et al., 2020). Extensive 
testing in different vineyards demonstrated its high performance, particularly when applied to 3D 
point clouds during phases with less dense foliage (because there is less overlap between the 
grapevine rows in the images). This methodology could enable the detection of certain grapevine trunk 
symptoms in future developments. 

Despite the potential advantages offered by drone imaging for data collection in the vineyard, 
several limitations hinder the accurate diagnosis of grapevine diseases. One prominent limitation is 
the inability of drone imagery to capture the lower parts of the grapevines, including the bunches and 
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shoots. Consequently, the analysis is restricted to the upper leaves, which may not provide a 
comprehensive representation of the overall health and condition of the grapevines. Additionally, the 
resolution of drone images, with each pixel equivalent to several millimetres, poses challenges in 
detecting subtle symptoms, such as small spots on leaves. These limitations of the drone imaging 
acquisition method may explain the difficulties encountered in achieving satisfactory results for 
disease discrimination. Particularly, the challenge lies in achieving good results for both red and white 
grape varieties while considering a wide range of data (various varieties and years) and confounding 
diseases. These findings underscore the need for more detailed information and a higher level of 
precision to effectively differentiate between various diseases affecting vineyards. 

One effective method to capture detailed information of entire grapevines is by directly 
collecting data within the rows. This is called Proximal sensing (Oerke et al., 2014). Only a limited 
number of studies have utilized grapevine images captured from distances ranging from 50 to 200 cm 
for the purpose of diagnosing grapevine diseases. One such study conducted by Bourgeon (2015) 
assessed the efficacy of a vehicle-mounted device in characterizing grapevine foliage. However, this 
study only focused on calculating vegetation indices and did not explore further disease diagnosis. In 
another study by Abdelghafour et al. (2019), a computer vision approach was employed to analyse 
images captured in the field. This approach utilized joint colour and texture analysis with extended 
structure tensors to differentiate various grapevine organs. Building upon this, a subsequent 
evaluation was conducted by Abdelghafour et al. (2020) to assess the potential of high-resolution 
embedded imagery for epidemiological monitoring, using Downy Mildew as a case study. The results 
obtained in this second step were promising, demonstrating the feasibility of estimating the overall 
health status of a block of grapevines without requiring a decision for each individual grapevine. This 
approach offers the advantage of providing block-level information for disease monitoring. In the 
detection of Esca symptomatic leaves, Rancon (2019) explored the use of a detection network called 
RetinaNet (Lin et al., 2018). Additionally, a comparison was made between RGB and hyperspectral 
images to identify early stages of Esca. However, the results indicated that hyperspectral imaging did 
not yield superior outcomes compared to RGB imaging for the detection of Esca at its early stages. 
Proximal hyperspectral sensing was utilized in (Wang et al., 2023) to detect virus infection on two 
grapevine varieties, Pinot Noir and Chardonnay. Leaf spectral reflectance data were collected using a 
portable hand-held spectroradiometer. The measurement distance was approximately 50cm from the 
canopy, which represented a 20 cm diameter circle on the canopy. Spectral data were collected at six 
time points during the grape growing season for each cultivar. The presence or absence of Grapevine 
Leafroll Disease was predicted using Partial Least Squares-Discriminant Analysis. The temporal changes 
in canopy spectral reflectance revealed that the harvest time point provided the most accurate 
predictions. Pinot Noir achieved a prediction accuracy of 96%, while Chardonnay achieved 76%. 
Nguyen et al. (2021) used hyperspectral imagery at the plant scale to detect and classify grapevines 
infected with grapevine vein-clearing virus during the early asymptomatic stages. Images were 
captured using a hyperspectral sensor, and statistical analysis and vegetation indices were employed 
for classification. The study identified discriminative wavelength regions and important indices for 
accurate classification. A comparison of machine learning techniques, including support vector 
machine (SVM) and random forest (RF), and 2D and 3D CNNs was performed for classification. The 
results showed promising performance of the automated 3D convolutional neural network (3D-CNN) 
in learning features from limited sample hyperspectral data cubes. The results were promising but the 
small size of the set of images used in the study (40 images, only of Chardonnay grapes) does not allow 
to draw wide-ranging conclusions from this study. Daglio et al. (2022) conducted experiments to detect 
FD and Esca diseases using data captured directly in the field. The detection system involved a quad-
bike, a mobile PC, GIS software, and RTK-GNSS. Two sensors were mounted on a structure in front of 
the quad-bike to gather canopy data. The sensors recorded reflectance at specific wavelengths, which 
were then used to calculate various vegetation indices such as NDVI, NDRE, and VIS/NIR. Initially, a 
statistical analysis was performed on these indices using a one-way ANOVA followed by a post-hoc 
test. The goal was to determine threshold values that could effectively distinguish between healthy 
and diseased grapevines. However, it proved challenging to establish an absolute threshold for the 
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vegetation indices that could reliably differentiate between grapevines affected by FD and Esca, and 
those that were healthy. As an alternative approach, a second methodology was tested, which involved 
not only considering the indices of the target grapevine individually but also taking into account the 
indices of nearby grapevines. The first step was the calculation of the differences between the target 
grapevine's indices and the means of the vegetation indices for the surrounding grapevines. The 
second step consisted of computing ratios from these differences and means. This method successfully 
identified thresholds that effectively discriminated between diseased and healthy grapevines. 
However, it was still not possible to differentiate between FD and Esca using this methodology. In a 
study conducted by Boulent et al. (2020), deep learning methods, specifically CNNs and FCNs, were 
employed to classify images of grapevines affected by FD. These images were captured by a camera 
positioned at a distance of approximately 100 cm. The study achieved a notable true positive rate of 
0.98, indicating the efficacy of neural networks in detecting grapevine diseases without solely relying 
on close-up images of leaves. However, it is crucial to consider specific nuances associated with these 
findings. While the overall true positive rate of 0.98 was achieved, it is important to recognize that the 
results varied depending on the grapevine variety. Specifically, the true positive rate for the 
Chardonnay grape variety reached 0.98, while it significantly dropped to 0.08 for the Ugni blanc grape 
variety. This disparity suggests that the pronounced variations in symptom expression between 
different grape varieties play a vital role in the accurate detection of grapevine diseases. Furthermore, 
it is worth noting that this study solely utilized symptoms present on the leaves to provide the 
diagnosis, without considering other parts of the grapevine. The findings from Boulent's study 
underscore the potential of deep learning techniques in detecting FD beyond the scope of close-up 
leaf images. However, the variation in detection performance across different grape varieties 
highlights the importance of accounting for varietal-specific symptom expression patterns when 
developing disease detection models. Additionally, it is essential to expand the analysis beyond leaves 
and consider the possibility of incorporating symptoms from other parts of the grapevine to enhance 
diagnostic accuracy. 

Overall, the utilization of grapevine images captured from distances of 50 to 200 cm for disease 
diagnosis has been limited. It may be due to the challenges associated with navigating through the 
blocks. Capturing images from moving vehicles presents multiple difficulties (no industrial solution 
available, equipment robustness and control over image capture). The recent development of 
dedicated onboard imaging solutions, coupled with the emergence of robotic means for blocks 
navigation, now allows for considering alternative methods of vineyard observation in close proximity. 
While some studies have focused on characterizing grapevine foliage and differentiating grapevine 
organs, few have delved into the specific task of disease diagnosis. As technology continues to evolve, 
there is immense potential for further advancements in proximal sensing and image analysis 
techniques. The integration of more sophisticated sensors and the exploration of novel algorithm 
architectures hold great promise for even higher levels of accuracy and specificity in the diagnosis of 
grapevine diseases. These advancements will undoubtedly contribute to the sustainability and 
productivity of vineyards, ensuring the production of high-quality grapes and wines. 

 
 

B. Proximal sensing, visible imagery and IA: the most promising technologies for 
disease symptom detection? 

 
Recently developed vectors and sensors enabling massive data acquisition, coupled with advanced 
image analysis and deep learning methodologies, have made significant strides in the field of grapevine 
disease diagnosis. These approaches offer a non-destructive and efficient means of assessing the 
health of grapevine leaves and may facilitate timely disease management strategies. 

There are three questions to address: the choice of the acquisition tool (machine/robot vs. 
drone), the selection of the imaging sensor (visible/multispectral/hyperspectral), and the algorithms 
to be used. The aim is to find a combination of these different options that will allow the diagnosis of 
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diseases in the field (for real-world applications). These diseases can manifest themselves through 
various symptoms, affect different organs, and vary significantly depending on the context and grape 
variety. Moreover, the symptoms can be mistaken for the effects of various other biotic or abiotic 
factors. 

Let's take the example of FD. The visibility of all grapevine organs is required as prospectors rely 
on a combination of symptoms to accurately diagnose this multi-symptom disease and differentiate it 
from confounding diseases. Discussions with groups of experts in FD diagnosis, such as GDON1 des 
Bordeaux and BNIC2, have revealed that during their surveys, the initial indicator leading them to 
identify diseased grapevines is the discolouration of the leaves. This symptom is the most prominent 
and can be observed from a distance. Their subsequent step involves approaching the grapevines 
closely to examine other symptoms present on various organs. If these symptoms are observed and 
align with the characteristic patterns associated with the disease (for example, symptomatic leaves 
connected to symptomatic shoots), the diagnosis can be made with a high level of confidence. When 
it comes to grapevine trunk diseases like Eutypa or Botryosphaeria diebacks, symptoms on the 
grapevine trunk or shoots may not occur simultaneously if a grapevine is affected. However, when 
symptoms manifest on both organs, it ensures a definitive diagnosis of the disease. For these diseases, 
drones could potentially aid in detection, particularly during early grapevine growth stages, although 
challenges remain. FD expresses symptoms on leaves, shoots and bunches, predominantly close to 
harvest, with significant foliage obscuring the view of bunches and shoots when using drones. The use 
of this acquisition tool seems therefore not suitable for a unified diagnostic methodology of multi-
symptom grapevine diseases. 

In addition, if automated detection is desired, solely acquire and diagnose each symptom in 
close-up (which yields the best results according to the literature review) seems not suitable to a real-
world application.  

The necessity for visibility of different organs, located at various heights and depths within the 
canopy, suggests that capturing images facing the trellising plane, is necessary. The size of the 
symptoms and the existence of potentially confounding factors demand the use of a high enough 
resolution that allows characterizing the geometry and texture of the symptoms. Lastly, the multiplicity 
and co-occurrence of symptoms call for algorithmic approaches with a certain versatility/plasticity and 
a good capacity for generalization. 

The literature review thus confirms the choice made at the IMS laboratory (Abdelghafour et al., 
2020; Rançon et al., 2023) to prioritize the use of visible-light cameras, embedded in the grapevine 
rows. Multispectral or hyperspectral imaging is often employed to calculate indices or identify 
characteristic wavelengths associated with specific diseases. Some studies have shown very promising 
results for the automated diagnosis of diseased leaves. However, in the case of multi-symptom 
diseases, where symptoms are diverse and dependent on grape varieties, and various diseases can be 
very confounding, multispectral imaging does not seem to provide more information than RGB 
imaging. The acquisition setup will be presented in Chapter III Section B. 

The main focus of this thesis is the use of algorithmic approaches for the determination of 
disease presence. The assumption is that AI/Deep learning approaches, as evidenced by the 
community's enthusiasm, have the potential to enable symptom detection (Garcia-Garcia et al., 2017; 
Kaur & Singh, 2023). However, the need to identify the right methods, optimize their use, and, most 
importantly, propose innovative solutions to achieve complex diagnoses in the presence of multiple 
confounding factors are part of this research. 
 
 
 

 
1 Groupement de Défense contre les Organismes Nuisibles (Pest Control Group) 
2 Bureau National Interprofessionnel du Cognac (National Interprofessional Bureau of Cognac)  
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C. Four hypotheses guiding this research 
 

Based on a comprehensive literature review, the selected data acquisition approach, and with the aim 
to emulate the diagnostic methods employed by field experts, several intermediate hypotheses have 
been formulated. These hypotheses will serve as foundations for further investigation and exploration 
in the subsequent stages of this study. 

• Hypothesis 1 - Opting for RGB image acquisition through proximal sensing is a suitable 
approach for the detection and diagnosis of multi-symptom grapevine diseases. 
The use of RGB imaging in proximal sensing allows for a comprehensive view of the entire 
grapevine, providing a detailed assessment of the symptoms present. The RGB images 
effectively capture the visible spectrum of light, enabling the detection and discrimination of 
various grapevine diseases. By analysing the colour and texture patterns exhibited by the 
grapevines and their organs, such as leaves, shoots and bunches, significant insights can be 
gained regarding the health status of the vineyard. 

• Hypothesis 2 - Deep learning-based approaches are highly suitable for addressing the specific 
challenges of this research. 
It seems imperative to thoroughly test and explore deep learning approaches in this research. 
The field of deep learning has gained significant momentum in recent years and offers 
immense potential in solving complex problems across diverse domains (Kamilaris & 
Prenafeta-Boldú, 2018; LeCun et al., 2015; Shinde & Shah, 2018). Its ability to automatically 
learn and extract meaningful patterns from large datasets makes it particularly well-suited for 
tackling the challenges associated with grapevine disease detection. Furthermore, the 
flexibility of deep learning algorithms allows them to adapt well to different grapevine disease 
scenarios. By gathering more data and refining the models, the deep learning approaches can 
evolve and improve, continuously enhancing the accuracy and robustness of the disease 
detection system. 

• Hypothesis 3 - Detecting and associating all the symptoms of individual vines, enables a more 
reliable diagnosis for multi-symptom diseases. 
The believe is that the conventional approach found in the literature (Boulent et al., 2020; Ji 
et al., 2020; B. Liu et al., 2020), being the widespread use of CNNs, is not well-suited for 
diagnosing multi-symptom diseases. A single-step approach cannot fully capture the 
complexity of the task, which involves identifying symptoms of various forms on different 
organs, varying according to grape variety, and understanding the significance of their 
concurrent presence in the diagnostic process. To address this, a two-step approach appears 
to be more appropriate: a first step focused solely on detecting individual symptoms, allowing 
the algorithms to grasp the complexity of the symptoms. This first step is followed by a second 
step of associating these detections to distinguish diseases of interest from confounding 
diseases. 

• Hypothesis 4 - Considering not only an image taken on an individual grapevine but also 
images of neighbouring grapevines enhances the reliability of the diagnosis. 
Analysing images on an individual basis can potentially result in incomplete information and 
limited insights. The presence of neighbouring grapevines can play a crucial role in refining the 
diagnostic process. Erroneous detections on one grapevine may be rectified by accurate 
detections on adjacent grapevines. Uncertain predictions can be further validated by the 
presence of other nearby detections. This may lead to a more reliable overall diagnosis. 
Furthermore, taking into account both sides of a grapevine can provide valuable insights. It is 
not uncommon for symptoms to manifest predominantly on one side, making it critical to 
capture images from multiple angles to ensure comprehensive symptom detection.  
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D. Methodological options 
 
By combining RGB imaging and proximal sensing, the aim is to leverage the strengths of these 
techniques to enhance the performance of deep learning algorithms in accurately identifying and 
classifying different grapevine disease symptoms as well as produce an automated decision at the 
grapevine scale. The intention is to comprehensively outline the methodologies available in order to 
effectively accomplish the objectives of this research. Carefully examining and documenting the range 
of approaches available ensure a well-informed decision-making process and a strategic path towards 
achieving the objectives of this research. 

However, computer vision approaches, including deep learning methods, constitute a wide 
range of approaches offering numerous options for image processing. Concerning the recognition of 
diseases in images, three main categories of approaches are of significant interest: classification 
networks to classify an entire image, detection networks to find occurrences of one or multiple sought-
after classes within an image, and segmentation networks to delineate groups of pixels of the same 
class within an image. 

It should be noted that while neural approaches are now mainstream, other more traditional 
methods could be considered. These approaches generally operate in two steps: feature extraction, 
carefully designed following expert analysis of the relevant images, and a decision-making step based 
on a machine learning algorithm. However, the generalization ability of neural approaches, linked to 
their "learnability" property, has led the computer vision community to widely adopt these techniques. 

In more detail, the 3 categories of neural approaches that appear to be of particular interest 
regarding disease recognition in images are: 

• Classification - When it comes to automatically classifying images without pre-processing, 
deep learning algorithms, particularly CNNs, are the most commonly used approaches (Albawi 
et al., 2017). CNNs have the ability to learn and extract relevant features directly from raw 
image data, eliminating the need for extensive pre-processing. By leveraging the hierarchical 
architecture of CNNs, these algorithms can automatically learn and identify discriminative 
patterns and features from the images. The basic building blocks of a CNN are convolutional 
layers, pooling layers, and fully connected layers. The input to a CNN is an image represented 
as a grid of pixels. The convolutional layers consist of filters (also called kernels) that convolve 
over the input image. Each filter extracts features by performing element-wise multiplications 
and summations at each location of the image. This process generates a feature map, which 
represents the presence of certain visual patterns or features in the input image. Pooling layers 
downsample the feature maps, reducing the spatial dimensions and the number of parameters 
in the network. Common pooling operations include “max pooling”, which selects the 
maximum value within a pooling window, or “average pooling”, which takes the average value. 
The final feature maps are flattened and passed through fully connected layers. These layers 
resemble a traditional artificial neural network, where each neuron is connected to every 
neuron in the previous layer. The fully connected layers learn to classify the image based on 
the extracted features. Some popular CNN architectures for image classification include 
AlexNet (Krizhevsky et al., 2012), VGGNet (Simonyan & Zisserman, 2015), GoogLeNet (Szegedy 
et al., 2015), ResNet (He et al., 2015), EfficientNet (Tan & Le, 2019). 

Transformers are a type of deep learning architecture that has recently revolutionized 
the field of artificial intelligence, particularly in natural language processing (NLP) tasks. They 
were introduced by Vaswani et al. (2017). They have been adapted and applied to image 
processing tasks with great success. The application of transformers in image processing is 
known as Vision Transformers or ViTs (S. Khan et al., 2022). In CNNs, information is processed 
locally by looking at small receptive fields within the input image and gradually build up 
hierarchical representations of the image. On the other hand, transformers excel at capturing 
global dependencies and relationships between image patches. This mechanism is known as 
"self-attention" or "scaled dot-product attention". ViTs have demonstrated good performance 
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in image classification tasks, sometimes surpassing traditional CNN-based approaches when 
trained on large-scale datasets.  

• Detection - If the aim is to surpass mere image classification and delve into individual symptom 
detection, object detection techniques, such as template matching (Duda & Hart, 1974), Haar 
classifiers (Viola & Jones, 2001), Histogram of Oriented Gradients (HOG) (Dalal & Triggs, 2005), 
and advanced deep learning-based algorithms like Fast R-CNN (Girshick, 2015), YOLO (Redmon 
et al., 2016), and SSD (W. Liu et al., 2016), allow for the identification and localization of objects 
within images. These methods have revolutionized fields like autonomous driving, surveillance 
systems, and object recognition in real-time scenarios.  

• Segmentation - Object segmentation approaches take the detection a step further by 
providing precise boundaries for objects within an image. Semantic segmentation assigns class 
labels to every pixel in an image, allowing for detailed understanding of the scene (Garcia-
Garcia et al., 2017). Instance segmentation goes even further by differentiating individual 
instances of objects, enabling accurate object counting, tracking, and analysis. The advent of 
advanced architectures like Mask R-CNN (He et al., 2017) has propelled instance segmentation 
to new heights, enabling pixel-level object masks and precise delineation of objects even in 
complex scenes.  

 
Choosing either a naïve or an “expert-like” algorithmic strategy 
Regarding to the subject of this research, which is the automated identification of diseases in images, 
different strategies could be adopted. 

The first approach would involve submitting an entire image to an algorithm that would 
determine the presence or absence of the disease (without necessarily localizing the symptoms). In 
this case, the use of a classification neural network would be a viable option. This is, in fact, the 
approach chosen by Boulent et al. (2020). This methodology will be explored in Chapter IV. 

On the other hand, the second option would be to identify the symptoms first and then 
associate and diagnose the disease, as implied by hypothesis 3 (see Chapter II Section C). The 
identification of individual symptoms can be done either through detection algorithms or 
segmentation algorithms: these approaches will be explored in Chapter V. 

It is worth noting that once the symptoms are detected, it is necessary to consider how to 
associate them in order to reach a diagnosis at the grapevine scale. When it comes to providing 
classification based on feature extraction, a diverse range of techniques is commonly employed. 
Support Vector Machines (SVM) (Cortes & Vapnik, 1995) and k-Nearest Neighbours (k-NN) (Cover & 
Hart, 1967) are popular machine learning algorithms that leverage extracted features to assign class 
labels. SVMs find an optimal hyperplane to separate classes, while k-NN assigns labels based on the 
nearest neighbours in the feature space. Decision trees and ensemble methods like Random Forests 
(Ho, 1995) and Gradient Boosting (Friedman, 2002) also utilize extracted features for classification, 
enabling accurate and interpretable results. Additionally, Naive Bayes classifiers (Rish, 2001) leverage 
probabilistic assumptions for efficient classification. An emerging technique in this field is the Graph 
Neural Network (GNN), which excels in classification tasks involving graph-structured data (Wu et al., 
2021; Xia et al., 2021). GNNs capture relationships and dependencies between data points modelled 
as graphs, making them ideal for scenarios like social network analysis, recommendation systems, or 
molecule classification. GNNs allow for the incorporation of node features and graph structure to learn 
meaningful representations and make accurate predictions. The use of GNNs has shown promising 
results in various domains, where the data can be naturally represented as a graph (Zhou et al., 2019). 
These approaches of symptom combination will be explored in Chapter VI. 
 
Building a comprehensive database for training and validation purposes 
In order to validate and assess the effectiveness of some of these methods, it becomes essential to 
build a substantial and diverse image database. This database will serve as the foundation for training 
and evaluating the developed models. Regardless of the approach considered, a crucial and essential 
first step is the creation of a qualified database: from image acquisition and ground truth data to the 



16 
 

annotation of symptoms in the images. The literature review demonstrates how critical this step is, as 
it determines both the successful learning of decision-making algorithms and their robustness to the 
variability in the acquisition process and plant material. 

To initiate the research and provide a point of comparison for more innovative methodologies, 
the initial phase of the research was focused on the exploration of the straightforward approach 
offered by CNNs, enabling direct classification of the images. To accomplish this, there was a necessity 
to establish a robust and reliable image acquisition protocol that ensures accurate ground truthing for 
each photographed grapevine. This involves carefully documenting the characteristics and conditions 
of each grapevine, including disease presence or absence, as well as the specific symptoms observed. 
To achieve accurate symptom detection, it is crucial to ensure precise labelling of the symptoms in the 
images. This may require the involvement of experts or skilled annotators who can carefully identify 
and mark the specific symptoms present on the grapevines. The accuracy and consistency of symptom 
labelling are crucial to train the deep learning models effectively and enable them to distinguish 
between different diseases and healthy vines accurately. 

Furthermore, for comprehensive diagnosis at both the individual grapevine and plot scale, it is 
necessary to capture automated and geolocated acquisitions. This enables the collection of data from 
multiple vines in close proximity and obtain a holistic view of the vineyard. Automated acquisitions 
provide efficiency and scalability, allowing to cover larger areas and monitor multiple vines 
simultaneously. Geolocation information enhanced the contextual understanding of the vineyard, 
facilitating spatial analysis and correlation of disease patterns with environmental factors. 

To ensure the robustness and generalizability of the developed methodologies in real-world 
applications, it is imperative to acquire images representing various grapevine cultivars and 
encompassing diseases that may exhibit similar symptoms. This diversity in the dataset will enable the 
developed models to learn and differentiate between different diseases accurately, even when faced 
with challenging scenarios and potential confusion between similar symptoms. 

In the upcoming chapter, the protocol for acquiring and annotating the dataset will be 
presented. The systematic approach employed to capture high-quality images, establish ground truth 
labels, and ensure comprehensive coverage of grapevine varieties and diseases will be outlined. 
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This study revolves around two distinct projects. The first one is the French project ProspectFD, which 
aims to create a comprehensive decision support tool for Flavescence dorée prospecting. This decision 
support system takes into account the plot's historical data, its environment, and the results of disease 
detection algorithms in order to provide relevant choices of areas for inspection to prospectors. A 
prospector, in this context, refers to someone who explores or scouts the vineyard to identify potential 
diseased grapevines. The various stakeholders involved in this project, funded by the French Research 
Agency (ANR) [grant ANR-19-ECOM-0004 Prospect FD], include the IFV3, INRAE4, GDON des Bordeaux, 
BNIC, Bordeaux Sciences Agro, and the IMS laboratory. 

The second project takes place in New Zealand at the Plant and Food Research (PFR) laboratory 
of the Marlborough Research Centre. PFR has been actively involved in a range of research 

 
3 Institut Français de la Vigne et du vin (French Institute of Vine and Wine)  
4 Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (National Institute for 
Agricultural, Food, and Environmental Research) 
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programmes investigating grapevine trunk diseases in the past. Some of these investigations have 
been government and/or industry funded, and other works were funded by Plant and Food Research 
itself. Reviewing GTDs research conducted over the last two decades had determined that a gap 
existed for the automated detection of GTDs for both research and application uses. This project was 
designed to investigate possible tools to fill the pipeline for subsequent projects and was carried out 
at the PFR laboratory of the Marlborough Research Centre.  

In the following, the targeted diseases, the image acquisition system used for both projects and 
the collected and annotated data will be presented. 
 
 

A. Targeted diseases 
 

 Flavescence dorée 
 

i. Historic, impacts and control methods of the disease 
 
Flavescence dorée is a relatively new grapevine disease. This devastating grapevine disease was first 
identified in the early 1950s in the French Côte d'Or region. The name "Flavescence dorée", which 
translates to "golden yellowing", vividly describes the yellow discolouration exhibited by infected vines 
of white grape varieties. Initially, FD was regarded as a localized problem confined to specific areas of 
France. However, over time, it has spread relentlessly, impacting other prominent wine-producing 
regions across Europe, and affecting both red (red leaf symptoms) and white grape varieties (yellow 
leaf symptoms). 

The leafhopper Scaphoideus titanus Ball has emerged as the primary vector responsible for the 
transmission of Flavescence dorée (Lefol et al., 1993). This small insect, measuring about 3-4 mm in 
length and belonging to the Cicadellidae family, originates from North America. Probably accidentally 
introduced to Europe in the early 20th century (Papura et al., 2009), Scaphoideus titanus has 
established itself in various wine-growing regions. The leafhopper becomes infected when it feeds on 
grapevine phloem sap from an infected plant. During this feeding process, the phytoplasma 
responsible for FD, known as "Candidatus Phytoplasma vitis," is ingested by the insect, subsequently 
the spread of FD can occur through various mechanisms. Infected leafhoppers can move from one 
grapevine to another, transferring the phytoplasma and spreading the disease within a vineyard. 
Additionally, the insects can be carried by wind currents, facilitating their dispersal over longer 
distances. Human activities, such as the movement of plant material or agricultural machinery, can 
also contribute to the spread of infected leafhoppers and the transmission of FD to new areas. In 
addition, if scions or rootstocks are taken from an infected plant without appropriate desinfection, the 
resulting plants are highly likely to carry the phytoplasma (S. Robert et al., 2007). 

FD poses a significant challenge in vineyards, and current practices revolve around meticulous 
inspection of each grapevine to detect disease symptoms. Directly targeting the phytoplasma causing 
FD is not feasible; therefore, control measures focus on indirect approaches. The European Union 
classified FD as a quarantine organism in 1993. France and Italy have implemented mandatory 
declarations and control measures through ministerial decrees. Prefectural orders are also issued 
annually in FD-contaminated winegrowing regions, outlining legal obligations such as reporting disease 
cases, treatment requirements in specific areas, insecticide-based vector control with treatment 
documentation, uprooting of affected vines or plots, and the elimination of abandoned vineyards. 

Population dynamics of S. titanus are influenced by temperature, humidity, vineyard 
management practices, and host plant availability. Effective monitoring and control of the vector are 
vital in preventing FD spread (Chuche & Thiéry, 2014). Integrated pest management strategies, 
including targeted insecticide applications and physical barriers, are used to manage S. titanus 
populations and reduce disease transmission risks. 
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FD imposes significant consequences on vineyards and the wine industry, leading to 
substantial economic losses attributed to diminished grape yields and quality (Morone et al 2007). In 
addition to the direct effects on grapevine health and grape production, managing FD requires costly 
practices such as establishing control perimeters and administering insecticide treatments, thus 
increasing production costs for growers. In France in 2018, the mandatory control perimeters 
encompassed 75% of the vineyard area. 61% of the vineyards were classified as contaminated by FD, 
with surveillance efforts covering 19% of the vineyard. Presently, various countries in the 
Mediterranean region are affected by this disease (EFSA Panel on Plant Health (PLH), 2016). 
Furthermore, FD is subject to strict regulation in many other nations, necessitating quarantine 
measures and mandatory reporting. The spread of FD can have devastating consequences for entire 
vineyards, impacting both current and future harvests. Therefore, it is crucial to implement effective 
prevention, early detection, and appropriate management strategies to minimize the effects of FD on 
vineyards. 
 
 

ii. Symptom description 
 
FD manifests itself through various symptoms in affected grapevines. These symptoms typically 
become visible during the summer, approximately one year after the plant becomes contaminated. 
The signs of FD are concurrently evident on three primary organs of the grapevine: the leaves, shoots, 
and bunches. Leaf symptoms include a red discolouration in red grape varieties and a yellow 
discolouration in white grape varieties. The leaves may also exhibit rolling or curling. Shoots affected 
by FD stay green in the absence of browning, meaning they do not undergo the normal lignification 
that provides resistance to frost in colder seasons. At the bunch level, the berries are wilting and the 
inflorescence are drying out (Figure 1). 

Figure 1. Images of Flavescence dorée symptoms : a) Symptomatic leaves on Cabernet sauvignon ; b) 
Symptomatic leaves and shoots on Cabernet sauvignon ; c) Symptomatic leaves and shoots on 
Sauvignon blanc ; d) Symptomatic bunches and shoot on Cabernet franc.  
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The symptoms of FD can vary significantly depending on the grape variety affected, especially 
those on leaves, the most obvious symptom of FD. Some grape varieties may display more pronounced 
and noticeable symptoms of FD. The leaf discolouration in these varieties may be more vivid, with 
intense red or yellow hues that are easily distinguishable. In contrast, other grape varieties may exhibit 
milder symptoms of FD. The leaf discolouration may be less intense or restricted to certain areas of 
the plant, making it less conspicuous. The rolling or curling of leaves may also be less pronounced, 
resulting in a more subtle visual effect (Figure 2). Understanding these variations is crucial for accurate 
diagnosis and the development of effective management strategies tailored to specific grape varieties.  

 

 
Figure 2. Images illustrating the differences in symptom expression among varieties. The symptomatic 
leaves of FD are bright red for: a) Cabernet sauvignon variety; dark red for :b) Cabernet franc variety; 
pale purple for: c) Merlot variety; yellowing and curling for: d) Sauvignon blanc variety; slightly 
yellowing for: d) Ugni blanc variety. 
 

It is important to note that while these colour changes in the leaves are common indicators of 
FD, they are not exclusive to this disease. Other phytosanitary conditions or environmental factors can 
also cause similar leaf discolouration. When diagnosing FD, it is essential to consider other confounding 
biotic or abiotic stresses that may exhibit similar symptoms. These include conditions such as leaf roll 
(Naidu et al., 2014), where the symptoms visually resemble FD with faded veins in red grape varieties 
and yellowing in white varieties, but the lignification of shoots remains normal. Magnesium 
deficiencies or Esca (Scalabrelli, 2014) can also lead to similar symptoms, but in these cases, the leaf 
veins remain unchanged, and lignification is unaffected. The presence of the green leafhopper or 
Buffalo treehopper can cause symptoms similar to FD, with red (or yellow on white varieties) 
discolouration primarily occurring at the leaf margins, forming mosaic-like patterns delimited by small 
veins. Grapevine yellows can exhibit symptoms that may be confused with FD. This group of diseases 
includes diseases caused by phytoplasmas or viruses that can lead to yellowing and other symptoms 
similar to FD. Laboratory analysis or molecular testing is often necessary to distinguish them from FD. 
The tips of the shoots can also be non-lignified even though the grapevine is healthy. Lignification is a 
process that starts from the base of the shoot and extends to its tip, it is then possible to find only 
partially lignified shoots while the disease is not present. This can be due simply to a lack of vine vigour. 
Additionally, other factors such as broken shoots are leading to a visually green shoot and discoloured 
leaves (Figure 3). Finally, the most confounding disease of FD is Bois noir, caused by the phytoplasma 
“Candidatus Phytoplasma solani” (Quaglino et al., 2013) and also transmitted by a leafhopper 
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(Hyalesthes obsoletus). Bois noir can cause very similar symptoms, including leaf discolouration and 
wilting of berries (Tessitori et al., 2018). Distinguishing between FD and Bois noir disease is visually 
impossible, even for experts. Laboratory analysis of grapevine samples becomes necessary to obtain 
an accurate diagnosis and differentiate between the two diseases. While the symptoms may resemble 
each other, a proper diagnosis ensures appropriate disease management strategies can be 
implemented to protect the vineyard. The laboratory investigations were not included in the scope of 
this study. Hence, for the remaining sections of the manuscript, the term "FD" will be used to 
encompass both FD and Bois noir, acknowledging the potential presence of either condition.  
 

 
Figure 3. Example of confounding symptoms of FD. First row: a) FD; b) Buffalo Treehopper; c) Leafroll 
virus on Cabernet sauvignon. Second row: d) FD; e) Other yellowing disease; f) Broken shoot on 
Sauvignon blanc. 
 

 Botryosphaeria and Eutypa diebacks 
 

i. Historic, impacts and control methods of the diseases 
 
Botryosphaeria dieback (BD), a fungal disease, has had a notable impact on grapevines for some 
decades. This plant pathogen, belonging to the Botryosphaeriaceae family, affects grapevine species 
worldwide. Historically, BD has posed persistent challenges in vineyards, with outbreaks occurring in 
various wine-producing regions. Its prevalence can be attributed to factors such as climatic conditions, 
susceptible grapevine cultivars, and inadequate disease management practices. Early reports on BD, 
also known as black dead arm, mentioned the presence of both Phomopsis viticola and Sphaeropsis 
malorum (synonymous with Botryosphaeria stevensii). Initially, P. viticola was considered the primary 
pathogen responsible for the symptoms (Chamberlain et al., 1964). However, research since the early 
2000s has increasingly shown the significant role played by species within the Botryosphaeriaceae 
family in grapevine decline (Larignon et al., 2015).  

Eutypa dieback (ED) is the result of an infection caused by the fungus Eutypa lata, alternatively 
recognized during its asexual phase as Libertella blepharis. It is prevalent in grape-growing regions 
worldwide where annual rainfall exceeds 600 mm (Pearson & Goheen, 1988). The primary means of 
spreading Eutypa lata is through spores, which are discharged from infected wood when it rains. These 
spores have the potential to be disseminated through either rain splash or wind to nearby pruning 
wounds, thereby posing a risk of infecting otherwise healthy vines (Mundy & Manning, 2010). 
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Controlling these two diseases requires an integrated approach that combines cultural, 
chemical, and biological control methods. Cultural practices include proper pruning techniques, 
maintaining adequate plant spacing for air circulation, and removing and destroying infected plant 
material to minimize the disease's spread. Chemical control measures can be employed using 
fungicides at or following pruning to protect the wounds from infections. Biological control methods 
involve using beneficial microorganisms or natural antagonists that can suppress the growth and 
activity of the pathogen.  In the absence of effective chemical, biological and cultural control, removal 
and destruction of diseased grapevine parts is recommended (Pearson & Goheen, 1988). 

The impact of these two diseases on grapevine cultivation is substantial, with infected plants 
experiencing reduced vigour, stunted growth, and diminished fruit quality and yield. Dieback of shoots 
can result in fewer and smaller grape bunches or smaller-sized grapes. These consequences can lead 
to significant economic losses for grape growers by potentially impacting the fruit availability and the 
quality of the wine produced. Furthermore, BD and ED are chronic and can persist in a vineyard for 
many years. The fungus can survive in infected wood or grapevine debris, leading to ongoing infections 
and recurring outbreaks. This long-term impact necessitates appropriate management strategies to 
control the disease effectively. 

 
 

ii. Symptom description 
 
Similarly to FD and Bois noir, Botryosphaeria and Eutypa diebacks both exhibit the same symptoms 
and a laboratory analysis is required to differentiate between them. In the rest of the document, the 
acronym ‘GTDs’ (for Grapevine Trunk Diseases) will refer to both of these diseases. Note that the 
symptoms described in this section are specific to the GTDs observed in the Marlborough region of 
New Zealand. 

In the early stages of infection mild leaf chlorosis is one such sign, characterized by slight 
yellowing or discolouration of the leaves. Leaf wilt, where the leaves droop and lose their turgidity, is 
another indication.  

Vascular occlusions form within the xylem, blocking the flow of water and nutrients. This 
process is known as vascular occlusion formation. Visually, this leads to stunted branches with sparse 
foliage, referred to as "short shoots" (Figure 4). Moreover, the cambium layer, responsible for the 
growth of new vascular tissue, is also damaged This results in the death of the cambium layer itself.  

As a consequence, a canker, a localized dead area, becomes visible on the outer surface of the 
grapevine's trunk or arm. 

The impact on grapevine health becomes more apparent as the symptoms progress. Affected 
grapevines may experience sudden wilting during the growing season, losing their vigor and vitality. 
Additionally, some infected grapevines may fail to emerge from their dormant state, leading to delayed 
or stunted growth. A highly distinctive symptom of the disease is shoot development occurring 
exclusively on one side of the trunk. This characteristic is commonly known as "half head" 
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B. Acquisition device 
 
The data acquisition system used to collect the data was developed by the IMS laboratory, used at the 
core of several projects, and presented by Rançon et al. (2023). 

The core of the data acquisition device is the Basler Ace (acA2440-20gc GigE) industrial RGB 
camera, boasting a 5-megapixel resolution and a global shutter mechanism (Figure 5). Complemented 
by a 6mm lens, the camera offers a wide 70-degree horizontal field of view, capturing detailed imagery 
with clarity. 

To address the variability in luminance levels arising from diverse weather conditions, the 
sensor system incorporates a powerful lighting solution: the high-power Phoxene Sx-3 xenon flash. In 
addition, the system leverages a unique "day for night" effect, carefully designed to selectively 
illuminate the foreground while maintaining a dark background. This technique not only adds visual 
appeal to the images but also enhances analysis accuracy by creating a distinct contrast between the 
subject of interest and the surroundings. Moreover, to combat motion blur resulting from vehicle 
vibrations, a combination of techniques was employed: firstly, the implementation of a short exposure 
time allowed for sharp image capture even in the presence of movement and secondly, the use of a 
small aperture, for an optimal depth of field.  

The sensor system integrates a Global Navigation Satellite System (GNSS) module, enabling 
precise positioning and geolocalization of captured images. For optimal precision, two options are 
proposed: a high-precision ublox Zed-F9P unit and a standard precision generic USB GNSS unit based 
on the ublox Neo-6 chip. Since real-time georeferencing was not necessary for the study, 
postprocessed kinematics (PPK) was performed to achieve subdecimetric precision, allowing accurate 
geolocalization of images within vineyards. 
 
 

Figure 4. The 3 visual symptoms associate with GTDs. First row: a) Short shoots; b) Canker; c) Half 
head on Sauvignon blanc. Second row: zoom on the symptoms. 
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Figure 5. Presentation of the acquisition device used for the acquisition of FD and GTDs images in a) a 
large case; b) a narrow case. Illustration from (Rançon et al., 2023). 
 

The need for versatility and ease of integration is ensured by a sensor system designed to be 
mounted on various vehicles, as presented in Figure 6. The central unit of the system is the Raspberry 
Pi 4+, providing a standardized platform for integrating different devices, including the camera, flash 
unit, GNSS system, and rangefinder. 

 
 

Figure 6. Image acquisition device for the acquisition of FD images attached to a wheelbarrow for 
targeted acquisitions, a tractor and a quad during automated image acquisitions. 
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The sensor system supports two modes of operation: autonomous and manual control. In the 
autonomous mode, image acquisition is triggered and halted based on precise positioning data. Active 
plots are defined as polygons using geographical information systems (GIS), such as Google Earth, and 
saved as ".kml" files. This approach enables seamless image capture within designated areas, 
streamlining data acquisition workflows. 

For manual control, an Android smartphone application that establishes a remote Wi-Fi 
connection with the sensor system was developed. The interface provides comprehensive status 
updates for each component, real-time preview of captured images, storage space monitoring, and 
more. Users can manually initiate and terminate acquisitions, adjust camera parameters (exposure 
time, frequency) and manage data operations. 
 
 

C. Acquisition at the grapevine scale 
 

 Flavescence dorée 
 
In collaboration with experts in FD diagnosis, a meticulous image acquisition protocol was developed 
to ensure accurate labelling of the acquired images. 

Prior to collecting images, experts identified specific blocks known to have a high prevalence 
of FD cases. Upon reaching these locations, experts pointed out the target grapevines for photography. 
These included grapevines affected by FD, as well as other diseases such as Esca, mildew, deficiencies, 
and phytosanitary issues that could exhibit symptoms resembling FD. For added convenience, the 
acquisition device was mounted on a wheelbarrow, enabling swift movement through the grapevine 
rows while maintaining stability during image capture. During the image acquisition process, an 
annotation file was completed, specifying the identified disease at the grapevine level and any 
additional symptoms observed, such as non-lignified shoots, desiccated bunches, burnt leaves, and 
nutrient deficiencies. 

Over a period of two years, images were acquired accompanied by scouting experts to 14 
vineyard blocks, planted with five different grape varieties, all identified as having a significant 
presence of FD cases. Images were acquired of the most prevalent grape varieties in the Nouvelle-
Aquitaine region in France: Ugni blanc for white wine and Cabernet sauvignon for red wine. 
Additionally, to account for variations in symptom expression across different grape varieties, images 
of two other red grape varieties, Cabernet franc and Merlot, as well as one other white grape variety, 
Sauvignon blanc were acquired. The image acquisition took place in September and October 2020 and 
2021, just prior to the harvest in France, as this is when the symptoms are most prominently expressed. 
The images were captured from a distance of 100 to 200 centimetres, depending on the size of the 
rows, in order to encompass the entire grapevine within the frame. The primary focus during the 
acquisitions was on FD and its confounding diseases. To facilitate data analysis, the images were 
classified into four distinct classes based on the disease symptoms present in the images: 'FD', 'ESCA', 
'CONF', and 'CONF+'. The ‘Esca’ class was created due to the substantial number of images exhibiting 
this particular disease. Images displaying visual symptoms different from those of FD but potentially 
confusing for algorithms (e.g. sunburned leaves or symptomatic leaves of deficiencies) were classified 
into the 'CONF' class. Images exhibiting visual symptoms, particularly on the leaves, closely resembling 
those of FD, were categorized under the 'CONF+' class. This classification aimed to assess the 
algorithm's efficacy in handling the most challenging and complex cases. A summary of the acquisition 
for the diagnosis of FD is presented in Table 1. The precise locations of each parcel in which acquisitions 
were made are available in Appendix 1. 
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Table 1. Summary of the number of acquired images and associated ground truth at the grapevine 
scale for FD. 

Grape variety, 
acquisition year 

Cabernet 

sauvignon, 
2020 

Ugni 
blanc, 
2020 

Cabernet 
sauvignon, 

2021 

Merlot, 
2021 

Cabernet 
franc, 
2021 

Ugni 
blanc, 
2021 

Sauvignon 
blanc, 
2021 

 
Total 

Dataset name CS20 UB20 CS21 M21 CF21 UB21 SB21  

Total number of 
images 

405 463 116 98 86 161 154 1483 

of which FD 159 211 107 53 56 112 56 754 

of which Esca 97 49 3 5 8 28 59 249 

of which CONF 90 153 6 23 22 17 35 346 

of which CONF+ 59 10 0 17 0 4 4 94 

 

 Grapevine trunk diseases 
 
The GTDs acquisitions took place in the region of Marlborough, New Zealand. Spanning a period from 
November 20 to December 22, 2022, the data collection efforts were focused on understanding the 
presence and manifestation of GTDs. 

To ensure a comprehensive study, strategically acquisitions were conducted at different 
phenological stages of the grapevines. This approach allowed us to investigate the ease of detection 
in early stages (flowering and fruit set) when foliage density is lower, enabling clearer observation of 
characteristic symptoms such as stunted and deformed shoots. By capturing images at these crucial 
stages, the aim was to enhance the understanding of the disease's progression and develop more 
effective diagnostic methods. 

To manoeuvre through the vast vineyards and take full advantage of the ample row width, the 
acquisition setup was fixed to the rear of a compact utility van (Figure 7). Accompanying the team was 
an expert in grapevine trunk diseases, whose expertise ensured accurate image-based diagnostics. 
During the expeditions, vineyard blocks identified in advance were visited, known to harbour a 
significant prevalence of GTDs. To introduce an additional layer of variability, the selected plots 
encompassed a mix of conventional and organic cultivation methods, allowing the exploration of 
potential management influences on disease expression. The acquired images were captured during 
the early stages of development, precluding the identification of confounding diseases that may 
emerge at later phenological stages. Nevertheless, this enabling the creation of a robust dataset, 
predominantly focused on the primary target of GTDs, laying the foundation for accurate disease 
analysis. 
 

Figure 7. Presentation of the acquisition device attached to the back of a van, remotely controlled via 
WiFi. 
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In this process, the acquisition device was set in "manual" mode, allowing an expert to identify 
and designate the diseased grapevines that needed to be photographed.  

Subsequently, to ensure a well-rounded study, additional acquisitions were conducted in 
"automatic" mode to capture images of healthy grapevines. This involved systematically 
photographing all the grapevines in one or more rows. These images, captured through the automated 
process, provided a broader scope for analysis and comparison. 

Once the data collection phase was complete, each image was scrutinized to determine 
whether it belonged to the ‘GTDS’ class, indicating the grapevine was affected by the disease, or to the 
‘Healthy’ class, indicating the grapevine was disease-free. This classification process ensured the 
dataset was accurately labelled and served as a foundation for subsequent analysis and research. 

Table 2 provides a comprehensive summary of the specific vineyard blocks, corresponding 
acquisition dates, cultivation methods employed, and the number of images acquired for both healthy 
grapevines and those exhibiting symptoms of GTDs. Figure 8 provides an overview of an image of each 
date of acquisition. 
 
Table 2. Summary of the number of acquired images and associated ground truth at the grapevine 
scale for GTDs. 

Acquisition 
date (2022) 

20/11 22/11 25/11 28/11 01/12 08/12 20/12 22/12 Total 

Management Organic Organic Conventio
nal 

Conventio
nal 

Conventio
nal 

Conventio
nal 

Organic No herbicide  

Total number 
of images 

624 895 145 307 95 1898 2986 3355 10305 

of which 
healthy 

268 617 0 243 5 1052 2343 2947 7475 

of which GTDs 356 278 145 64 90 846 643 408 2830 

 
 

 
Figure 8. Images of GTDs from each acquisition dates: a) 20/11/2022; b) 22/11/2022; c) 25/11/2022; 
d) 28/11/2022; e) 01/12/2022; f) 08/12/2022; g) 20/12/2022; h) 22/12/2022. 
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D. Symptom annotations 
 
There are several types of annotations used to detect objects in images. The type of annotation used 
depends on the type of object one wishes to detect, the complexity of the object, and the specific 
requirements of the data type. The most common object annotation methodologies are: 

• Bounding boxes: This method involves surrounding the object with a rectangle (or a 
parallelepiped for 3D objects). The coordinates of the rectangle define the position and size of 
the object in the image. 

• Semantic Segmentation: Instead of defining a bounding box, this method involves labelling 
each pixel of the image with the class of the object it belongs to. This allows for a more precise 
detection of the object's contours. 

• Instance Masks: Similar to semantic segmentation, but instead of grouping all pixels of the 
same class, this method assigns a unique mask to each individual instance of the class. 

• Keypoints: This method involves annotating specific points on the object of interest, such as 
corners, endpoints, or centres. These points can be used to reconstruct the shape and 
orientation of the object. 

• Polygons: For objects with complex shapes, such as animals or characters, polygons are used 
to define the exact shape of the object using a series of interconnected points. 

In order to best detect the symptoms of the two diseases (of different size and shape), several 
types of annotation have been tested. In this chapter, a comprehensive description of these annotation 
types is provided. 
 
 

 Annotation of FD symptoms 
 

i. Bounding boxes for leaves 
 
After acquiring the images, individual symptoms on leaves and bunches were annotated directly on 
the computer screen using bounding boxes. This method of annotation, employed by FD specialists, 
offered the advantage of being swift and straightforward. During the annotation process, the leaves 
were categorized into three classes: 'FD symptomatic leaf,' 'Esca leaf,' and 'Confounding leaf.' The 
'Confounding leaf' class encompassed all leaves visually distinct from a healthy leaf.  Annotate them in 
a separate class may allow the algorithms to better discern between different leaf types. To facilitate 
this annotation approach, the Labelme software (Wada, 2021) was used, which supports bounding box 
annotations (Figure 9). 

The meticulous process of annotating each leaf individually proved time-consuming, often 
requiring up to 20 minutes for an image laden with symptoms. Nevertheless, the necessity of such 
detailed annotation was confirmed through rigorous testing, as omitting the 'Confounding leaf' class 
significantly compromised the accuracy of prediction results. The annotated dataset comprises images 
along with their corresponding symptom annotations. These annotations are saved in the '.json' 
format, providing comprehensive descriptions of each annotated symptom, including its label 
(symptom class), the coordinates of its bounding box or line strip ([[xmin, ymin], [xmax, ymax]]), and 
its shape type (bounding box or line strip). These annotations serve as resources for detection 
algorithms (presented in Chapter V). 

Among the various symptoms of FD, leaf symptoms present the greatest challenge in 
differentiating them from confounding symptoms. To maximize the number of annotated leaves while 
considering time constraints, the decision was made to focus expert’s annotation efforts primarily on 
leaves and not bunches.  
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Figure 9. Example of annotation with bounding boxes of foliar symptoms. Presentation of a raw image 
(at the left) and its annotation with bounding boxes (at the right). In red: Symptomatic leaf of Esca; in 
blue: Symptomatic leaf of FD; in purple: Confounding leaf. 
 
 

A summary of the number of annotated images and symptoms per grape variety and 
acquisition year is available in Table 3. 
 
Table 3. Summary of images annotated with bounding boxes for the detection of FD symptoms, 
detailing each object class. 

Grape variety, 
acquisition year 

Cabernet 

sauvignon, 
2020 

Ugni 
blanc, 
2020 

Cabernet 
sauvignon, 

2021 

Merlot, 
2021 

Cabernet 
franc, 
2021 

Ugni 
blanc, 
2021 

Sauvignon 
blanc, 2021 

 
Total 

# of annotated 
images with 
bounding boxes 

 
67 

 
221 

 
116 

 
43 

 
86 

 
161 

 
50 

 
744 

# of bounding 
boxes per class 

        

FD leaves 1086 2962 1101 475 1871 3155 629 11279 

Esca leaves 299 425 357 0 274 758 354 2467 

Conf. leaves 2956 3317 1473 2026 2930 7790 1929 22421 

 
 

ii. Segmentation masks for shoots and bunches 
 
Segmentation masks were manually created to further refine the annotations. This annotation 
methodology was chosen because it offers the highest level of precision in capturing the intricate 
shapes and contours exhibited by the shoots. Annotating them by bounding boxes was not possible, 
as shoots can take curved forms and the area covered by the shoots within the bounding box is 
relatively small. Consequently, there would have been a considerable amount of additional 
information present within the bounding box beyond just the shoot information. 

A segmentation mask, also known as a pixel-level mask or annotation mask, is a visual 
representation that assigns a specific label or category to each pixel in an image. It is used to precisely 
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outline and identify different objects or regions of interest within an image. Each pixel in the 
segmentation mask corresponds to a pixel in the original image, and the assigned label or colour 
indicates the category or class to which that pixel belongs. The segmentation masks were created with 
the GIMP software (The GIMP Development Team, 2019). 

Moreover, the choice to include symptomatic bunches in these masks was done, considering 
their limited occurrence in the expert-annotated images. These additional annotations of the 2 other 
symptoms of FD were performed on a separate dataset. It was carried out with the intention of 
achieving a comprehensive coverage of as many possible occurrences of these symptoms as possible. 
When dealing with machine learning tasks, it is crucial to have a well-balanced and representative 
dataset to train the model effectively. If there are only a few instances of a specific class or symptom 
in the dataset, the model may struggle to learn and generalize patterns accurately. 

Given that symptomatic bunches, typically dried, often occupy only a few pixels in the images, 
challenges in accurate detection by algorithms were anticipated. To mitigate this issue, the healthy 
bunches were also annotated on the segmentation masks. Detecting healthy bunches tends to be 
comparatively easier, and their presence or absence may provide valuable insights into the presence 
of the disease. The symptomatic shoots maintain a consistent visual appearance across the images, 
irrespective of the grape variety, be it red or white. Annotating shoots from different grape varieties 
does not require attention due to the uniformity of this symptom among varieties. However, grape 
bunches, both symptomatic and healthy, exhibit colour variations based on whether they belong to 
red or white grape varieties. Therefore, the decision was made to focus annotation efforts on the red 
and white grape varieties with the largest available image datasets, namely Cabernet sauvignon and 
Ugni blanc. These annotations serve as resources for segmentation algorithms (presented in Chapter 
V). An example of a segmentation mask is presented in Figure 10, and the summary of the number of 
annotated images and symptoms per grape variety is provided in Table 4. 
 
 

 
Figure 10. Example of annotation by segmentation mask of symptomatic shoots and bunches of FD and 
healthy bunches for a grapevine of Ugni blanc variety. Presentation of a raw image (at the left) and its 
associated annotation mask (at the right). Pixels in red: Symptomatic shoot; in green: symptomatic 
bunch; in blue: healthy bunch; in black: all the rest.    
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Table 4. Summary of the number of images annotated by segmentation mask for the symptom 
segmentation of FD. 

Grape variety, acquisition year Cabernet   sauvignon, 2020 Ugni blanc, 2020 Total 

# of annotated images with 
segmentation masks 

78 50 128 

# of annotated object per class    

Symptomatic shoot 575 258 833 

Symptomatic bunch 348 120 468 

Healthy bunch 441 219 660 

 
 

 Annotation of grapevine trunk diseases symptoms 
 

i. Segmentation masks for foreground, trunk and foliage identification 
 
Segmentation masks were created to facilitate the detection of disease symptoms. These masks were 
designed with three distinct classes: 'Foliage,' 'Trunk,' and 'Background'. An example of a segmentation 
mask with these three classes is provided in Figure 11. The purpose of this segmentation is to enhance 
the detection of the 'Half head' symptom by accurately delineating the grapevine trunk from the 
surrounding elements in the image. This separation is particularly crucial because the presence of 
background grapevines or shoots from neighbouring grapevines can create an optical illusion, making 
it appear as if the foliage is growing on both sides of the trunk. By employing a dedicated algorithm 
specifically designed for this task, the accuracy and efficacy of detecting this particular symptom can 
be improved. 

Furthermore, the segmentation of foliage can also contribute to better detection of symptoms 
on the shoots, specifically the short shoots. This segmentation enables a clearer differentiation 
between the shoots and the background, resulting in improved identification and classification of 
symptoms affecting the shoots. By isolating the shoots from the background, the algorithm can focus 
on analysing the specific characteristics and abnormalities present in the short shoots, leading to 
enhanced detection and analysis of these symptomatic structures. Segmentation masks were created 
for images of the different dates of acquisition. The summary of the number of images annotated with 
segmentation mask per acquisition date is available in Table 5. 
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Figure 11. Example of a raw image (at the left) of a grapevine suffering from GTDs and its associated 
segmentation mask (at the right). Pixels of trunk have been set in white, foliage in red and all the rest 
in black. 
 
Table 5. Summary of the number of images annotated by segmentation masks for the symptom 
segmentation of GTDs per date of acquisition. 

Acquisition 
date (2022) 

20/11 22/11 25/11 28/11 01/12 08/12 20/12 22/12 Total 

# of annotated 
images with 
segmentation 
masks 

29 9 5 5 34 11 11 9 113 

 
 
 

ii. Bounding boxes for symptomatic organs 
 
An annotation process using bounding boxes to identify and label the symptoms was conducted. Using 
the same software as the one used for the annotation of FD leaves, three classes of bounding boxes 
for GTDs symptoms were created: 'Half Head,' 'Short shoot,' and 'Canker' (Figure 12). This approach 
was suitable for annotating symptomatic shoots because their characteristic symptom is stunted 
growth, resulting in small, thin shoots without curved shapes. The annotations for GTDs symptoms 
underwent rigorous expert evaluation to ensure accuracy. Due to the minimal presence of confounding 
factors in this particular disease, it was not necessary to create a separate class for 'confounding 
symptoms' in the dataset. Instead, the focus remained on accurately annotating the specific symptoms 
associated with GTDs. To obtain a well-rounded annotated dataset that encompasses the diverse 
range of symptom expressions, annotations on a subset of images from each plot were performed. 
This approach aimed to capture the various manifestations of symptoms and provide comprehensive 
coverage across the dataset. Table 6 provides an overview of the number of annotated images and 
symptoms by bounding boxes. 
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Figure 12. Example of a row image (at the left) of a grapevine suffering from GTDs and its symptom 
annotation by bounding boxes. In red, symptoms of the class ‘Short shoot’, in yellow, symptom of the 
class ‘Half head’. 
 
Table 6. Summary of the annotation of GTDs symptoms by bounding boxes per image acquisition date. 

Acquisition 
date (2022) 

20/11 22/11 25/11 28/11 01/12 08/12 20/12 22/12 Total 

# of annotated 
images with 
bounding 
boxes 

172 141 27 21 12 0 69 63 505 

# of annotated 
Half head 

89 78 10 14 7 0 54 16 268 

# of annotated 
Short shoot 

695 451 62 13 20 0 12 227 1480 

# of annotated 
Canker 

73 34 11 12 2 0 6 1 139 

 
 

E. Acquisitions at the vineyard block scale 
 

 Description of the acquisitions 
 

As part of the automated detection of FD, acquisitions were conducted at the block level across three 
diverse vineyards in France, encompassing different regions and grape varieties. A description of these 
3 vineyards is provided in Table 7. A comprehensive approach was taken, involving the photography 
and geolocation of all the grapevines within these designated parcels. Notably, both sides of each 
grapevine were captured in the images to ensure a thorough examination of potential disease 
symptoms. Symptoms such as leaf or shoot abnormalities may only be visible on one side of the 
grapevine due to the foliage arrangement during the specific time of observation. To establish reliable 
ground truth data, expert scouts were deployed to prospect the grape vineyards. They reported the 
geolocations of the affected grapevines, providing valuable reference points for subsequent analysis 
(as illustrated in Figure 13). This pre-established ground truth data served as a benchmark for the 
automated detection algorithms, facilitating the identification of diseased grapevines based on 
acquired imagery. To carry out the acquisitions, two acquisition devices were mounted on a quad 
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vehicle, and the acquisitions were efficiently conducted, capturing the necessary data while ensuring 
minimal disruption to the vineyard operations. This acquisition strategy aimed to gather 
comprehensive data from different regions and grape varieties, enabling analysis and the development 
of automated diagnosis algorithms for FD at the block scale.  
 
Table 7. Summary of the acquisitions at the block scale for the diagnosis of FD. 

Acquisition date  20/09/22 23/09/22 09/09/22 

localisation 922.8, 5566875.2 44.651314, 0.024368 45.739181, -0.228742 

Grape variety Merlot Cabernet sauvignon Ugni blanc 

Dataset name Neuffons Couture Cognac 

# of acquired 
images 
 

8243 18 076 17 221 

# of grapevines 
suffering from FD 

61 1764 16 

 
These three vineyards each had their own characteristics and distinguish themselves from one 

another. The 'Neuffons' vineyard contained two separate blocks, with Merlot grapevines and 61 cases 
of FD, where symptoms were sometimes very mild. The 'Cognac' vineyard featured Ugni blanc 
grapevines and only 16 grapevines affected by FD, the lowest number among the three vineyards. 
Additionally, numerous vines exhibited yellowing symptoms (leaves turning yellow without FD 
infection) whereas symptoms expressed by FD affected grapevine were also very mild. Lastly, the 
'Couture' vineyard boasted a staggering 1764 vines afflicted with FD. Symptoms were very pronounced 
but here again, confounding diseases of FD were present. Grapevines were of the Cabernet sauvignon 
variety.  

Although these 3 vineyards represented a limited number of study vineyards to evaluate the 
methodologies described earlier at the block scale, the diversity in grape varieties, number of vines 
affected by FD, and the presence or absence of confounding diseases provided an initial representative 
foundation of the diversities encountered in a real-world use case. 
 

 
Figure 13. Aerial view of the three study vineyards displaying the positions of each acquired image (red 
dots) as well as the vines affected by FD (green triangles). Vineyard a) 'Neuffons' comprised two 
separate blocks but was treated as a single vineyard, vineyards b) and c) correspond to the vineyards 
named 'Cognac' and 'Couture'. 
 

For each acquired image, a file was automatically filled in with the time the image was taken 
('timestemp'), the latitude ('lat') and longitude ('lon') coordinates. A PPK correction was then applied 
to these coordinates. In addition to the PPK correction, the image coordinates were repositioned on 
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the grapevine and not at the camera location (Figure 14). Folders for saving images and files describing 
the properties of each image were created separately for each camera. A procedure was also 
integrated to prevent the camera from taking an image if there was no grapevine present (for example, 
in cases of already uprooted plants or changes in rows). 

  
Figure 14. Illustration of the PPK correction and the repositioning of the coordinates at the location of 
the grapevine photographed. The yellow and pink dots are the uncorrected coordinates of images of 
the same grapevine row acquired on either side of the row. The orange and red points correspond 
respectively to the corrected coordinates of the yellow and pink points.   
 
 

 Creating a database of image triplets 
 
When capturing images of a grapevine automatically at the block scale, images may not be centred on 
the targeted grapevine, or may not contain the entirety of that grapevine. For example, a long shoot 
carrying symptomatic leaves may not be fully captured in one image, but the missing part of this shoot 
can be found in the image acquired just before or just after. It is in this sense that the '3-neighbouring 
grapevines' dataset was developed for each vineyard.  
 
The procedure to find the images to the left and right of each image was as follows: 

1. For each targeted image, the camera that captured it was retrieved, and the file describing the 

image was opened. The ‘timestamp’ of the targeted image is then obtained, along with the 

image whose timestamp was just before it, and the one immediately after. 

2. A timestamp threshold was applied to manage cases where an image was not captured right 

next or before to the one being studied (possible missing grapevine or the target image is the 

first or last in the row). If the timestamp difference is greater or less than 1 second (an image 

was acquired every 0.5 second), the acquired image was too far from the one being studied, 

and the image was not considered in the creation the image triplet. 

3. It was necessary to determine the orientations in which the images were taken in order to 
properly align the images with each other. To achieve this, the timestamp, original position, 
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and corrected position of each image were required. There were four different configurations, 
as illustrated in Figure 15. The timestamp first indicated the direction of camera movement. 
To determine which side of the grapevine the camera was on, the uncorrected coordinates of 
the target image (Figure 14) indicated the camera's position relative to the grapevine. 

 

 
Figure 15. The 4 scenarios of image capture and their impacts on the reconstruction orientation. 
 

 Creating a database of image sextuplets 
 
This database allowed for the full potential of dense acquisitions made at the parcel scale to be realized 
by considering, as in the dataset of images triplets, the images of the preceding and following 
grapevines of the targeted one, but also the images acquired on the opposite side of these 3 
grapevines.  
 
The procedure to create the ‘6-neighbouring grapevines’ database was as follows: 

1. For the image of the studied grapevine, the three steps of the procedure to create the image 

triplets database were applied to locate the images of the vines to the left and right if they 

existed. 

2. The image of the opposite side of the studied grapevine was found by searching for the image 

with the closest corrected latitude and longitude coordinates (Figure 14). For this opposite 

face, the images of the vines to the left and right were located in the same way as in step 1). 

3. To ensure that the symptoms on each side were aligned as closely as possible, considering that 
the images may not have been taken from the exact same positions on each side of the 
grapevine, this offset was taken into account. By examining a sample of images (each plot was 
treated independently), the average overlap in terms of pixel width between two consecutive 
images was calculated. Similarly, the average difference in latitude and longitude between two 
consecutive images was also calculated. Consequently, an estimation of how a difference in 
corrected latitude and longitude (as they are placed on the same line) impact the difference in 
terms of pixels. This was calculated as follows: if the average width of overlap was X pixels, the 
distance in pixels between two consecutive images is 2448 (the width in pixels of the images) 
minus 2*X. The positions of the images on the opposite face were therefore updated to 
account for the offset in corrected latitude and longitude between those of the target image 
and its opposite face.  
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F. Summary of the datasets 
 
A concise overview of the acquisitions made and the diverse datasets created for the purpose of 
symptom detection and diagnosis of the two diseases is presented in this section. Specifically, Table 8 
provides a comprehensive summary of these acquisitions and annotations related to the diagnosis of 
FD, while Table 9 focuses on the different datasets related to the diagnosis of GTDs. 
 
Table 8. Summary of all acquisition and split of the data among tasks for FD automated diagnosis. 

Purpose Name of the 
dataset 

Number of 
images 

Details 

Acquisition at the 
grapevine scale 

 1483  

 
Segmentation mask 
annotations  

 
SegFD 

 
128 

dataset FD 
shoot 

FD 
bunch 

Healthy 
bunch 

CS20 575 348 441 
UB20 258 120 219 

 

 
 
Bounding box 
annotations 

 
 

DetFD 

 
 

568 

dataset FD leaf Esca leaf CONF leaf 

CS20 1086 299 2956 
UB20 2962 425 3317 
CS21 225 104 412 
M21 475 0 2026 
CF21 1376 236 2231 
UB21 2479 534 4890 
SB21 629 354 1929 

 

 
 
Grapevine scale 
annotation 

 
 

ClaFD 

 
 

787 

dataset FD Esca CONF CONF+ 

CS20 72 45 87 56 
UB20 83 13 88 8 
CS21 86 2 6 0 
M21 32 5 7 11 
CF21 23 3 2 5 
UB21 33 12 4 0 
SB21 41 44 17 2 

 

Block scale annotation 
 
 
 

BloFD 43540 dataset Variety FD vines 

Neuffons Merlot 61 
Couture Cabernet sauvignon 1764 
Cognac Ugni blanc 16 

 

 
Image-level acquisitions and symptom annotations by bounding boxes and segmentation 

masks for FD diagnosis have been published (Tardif et al., 2023). The datasets 'SegFD,' 'DetFD,' and 
'ClaFD' are publicly available, as indicated in the publication. 

As detailed in Tables 8, separated class were created for Esca for both image and symptom 
scales diagnosis. Consequently, it became possible, alongside the study of FD automated diagnosis, to 
obtain results for the automated diagnosis of Esca. The results presented in the upcoming chapters 
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will be exclusively for FD, the targeted multi-symptom disease. However, all results related to Esca are 
available, detailed and discussed in Appendix 2. 
 
Table 9. Summary of all acquisition and split of the data among tasks for GTDs automated diagnosis 

Purpose Name of the 
dataset 

Number of 
images 

Details 

Acquisition at the 
grapevine scale 

 10305  

 
Segmentation mask 
annotations 

 
SegGTD 

 
113 

dataset # of annotated 
images 

20_11 29 
22_11 9 
25_11 5 
28_11 5 
01_12 34 
08_12 11 
20_12 11 
22_12 9 

 

 
 
Bounding box 
annotations 

 
 

DetGTD 

 
 

505 

dataset Half 
head 

Short 
shoot 

Canker 

20_11 89  695 73 
22_11 78  451 34 
25_11 10  62 11 
28_11 14  13 12 
01_12 7  20 2 
08_12 0  0 0 
20_12 54  12 6 
22_12 16  227 1 

 

 
 
Grapevine scale 
annotation 

 
 

ClaGTD 

 
 

9687 

dataset GTDs Healthy 

20_11 155 268 
22_11 128 617 
25_11 113 0 
28_11 38 243 
01_12 44 5 
08_12 835 1052 
20_12 563 2343 
22_12 336 2947 
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IV. One-step diagnosis using Convolutional Neural Networks 
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In the initial phase of the research, the objective was to thoroughly examine the widely adopted 
methodology found in the existing literature for diagnosing grapevine diseases (Boulent et al., 2020; Ji 
et al., 2020; B. Liu et al., 2020). This entailed leveraging the power of CNNs in image processing and 
assess their capability to detect mutli-symptom grapevine diseases by directly providing them with the 

entire image. By utilizing CNNs, the aim was to extract meaningful insights from grapevine disease 
images and potentially establish a robust diagnostic framework. 

The results obtained through this initial phase have served as a baseline for subsequent 
investigations. Building upon this foundation, innovative two-step approaches that go beyond this 
conventional method have been explored.  
 
 

A.  Selection of baseline algorithms for 1-step classification of grapevine images 
 

 About Convolutional Neural Networks (CNNs) 
 
A CNN is a type of deep learning model specifically designed for processing and analysing visual data 
such as images (LeCun et al., 2015). The key building blocks of a CNN are convolutional layers, pooling 
layers, and fully connected layers. In the convolutional layers, filters (also called kernels) are applied 
to the input image to extract relevant features that indicate for instance the presence of edges, corners 
or textures. The pooling layers downsample the spatial dimensions, reducing the computational 
complexity, allowing feature extractions at different scales and providing some degree of translational 
invariance. Finally, the fully connected layers process the extracted features to make predictions, such 
as classifying an image into different categories. Figure 16 represents these different blocks (typically, 
multiple convolutional/pooling blocks are used in succession). 
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Figure 16. Basic workflow of a CNN for image classification. It consists of key layers, including 
convolutional and pooling layers, as well as a fully-connected layer responsible for delivering the final 
predicted class. 
 

CNNs are trained through a process called backpropagation, where the network adjusts the 
weights of the filters and connections to minimize the difference between predicted outputs and 
ground truth labels. This difference is calculated by a loss function. The choice of the loss function 
depends on the specific task being performed and the goal is to minimize the loss value, as it indicates 
how well the model is performing on the training data. This training is typically performed using large 
labelled datasets. 

One of the key advantages of CNNs is their ability to automatically learn hierarchical 
representations of data. The early layers capture low-level features, while deeper layers learn high-
level and more abstract features. This hierarchical feature extraction allows CNNs to excel at tasks like 
image classification (Jmour et al., 2018), object detection (Girshick, 2015; W. Liu et al., 2016; Redmon 
et al., 2016), image segmentation (Ajmal et al., 2018; Geng et al., 2017), and even more complex tasks 
like visual question answering (Anderson et al., 2018; Chen et al., 2016) and image generation (S.-Y. 
Wang et al., 2020). In the following, the abbreviation CNN will be used to refer to CNNs used for image 
classification. 

CNNs are powerful deep learning models tailored for visual data analysis. They leverage 
convolutional layers to extract features, pooling layers to downsample the data, and fully connected 
layers for final prediction. CNNs have had a significant impact on computer vision tasks and continue 
to drive advancements in the field. They emerge as a pertinent choice for the automated detection of 
grapevine diseases in image analysis. 

 
 

 Choice of three architectures 
 
CNNs can have different architectures, each with its own characteristics and design choices. Each 
architecture has its own strengths and trade-offs, depending on the specific task and computational 
requirements. Researchers continuously explore new architectures and variations to improve the 
performance and efficiency of CNNs for various computer vision tasks (Bhatt et al., 2021). 

Three state-of-the-art CNN architectures have been selected for the study, each with different 
combinations of parameters and depths. This deliberate choice enabled to perform a comprehensive 
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comparative analysis of their respective outcomes. This enabled to optimize the selection in terms of 
network and architecture and potentially enhance computation times. 

The first one, MobileNetV3-large (Howard et al., 2019), is a CNN architecture specifically 
designed for efficient inference on mobile and embedded devices with limited computational 
resources. It is an extension of the MobileNet  family of architectures (Howard et al., 2017), aiming to 
further reduce model size and improve performance. Here are some notable features of MobileNetV3-
large: 

• Efficient architecture: MobileNetV3-large employs a combination of depthwise separable 
convolutions and inverted residual blocks. Depthwise separable convolutions split the 
convolution operation into depthwise and pointwise convolutions, reducing the 
computational complexity. Inverted residual blocks introduce a linear bottleneck layer 
followed by a non-linear activation function, enabling efficient feature extraction. 

• Neural architecture search (NAS): MobileNetV3-large incorporates Neural Architecture Search 
techniques to automatically discover optimal network configurations. This search process 
helps to identify efficient network architectures with improved accuracy. 

• Activation functions: MobileNetV3-large introduces novel non-linear activation functions such 
as h-swish and h-swish with a hard sigmoid, which provide a good balance between non-
linearity and computational efficiency. 

• Squeeze-and-Excitation (SE) blocks: MobileNetV3-large incorporates SE blocks, which 
selectively recalibrate feature maps by adaptively scaling channel-wise information. This 
mechanism enhances the representation power of the network and improves performance. 

The overall goal of MobileNetV3-large is to provide lightweight and efficient models that can be 
deployed on resource-constrained devices without compromising too much on accuracy. 

 
It was chosen as the initial CNN to test, as achieving good results would eliminate the need for 

CNNs with a higher parameter count. Such models would require more time for inference and pose 
challenges in terms of integration into acquisition devices. MobileNet have multiple mode variants. 
The MobileNetV3-large, which focuses on achieving higher accuracy at the expense of a larger model 
size (only around 5 million parameters), has been chosen for the study. Figure 17 describes the 
succession of neural layers of the model. The input has a shape of 224*224*3 and the output is a 
classification among k classes. Between these layers, simple convolutional layers and bottleneck layers 
coming from MobileNetV2 (Inverted Residual and Linear Bottleneck) (Sandler et al., 2018), either with 
Squeeze-and-Excitation (SE) blocks or not.   
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The second CNN studied is called ResNet50 (He et al., 2016). ResNet50 is a popular deep 

learning model that belongs to a family of models called Residual Neural Networks (ResNets). It was 
introduced by Microsoft Research in 2015 and has since been widely used for various computer vision 
tasks. 

The main idea behind ResNet50 is to address the problem of vanishing gradients in very deep 
neural networks. As the network gets deeper, the gradients tend to become extremely small, making 
it difficult for the network to learn effectively. ResNet50 addresses this problem by introducing a "skip 
connection" or a "shortcut connection" that allows the gradient to bypass one or more layers and 
directly propagate from one layer to a later layer. ResNet50 architecture is presented in Figure 18. 
Here's how ResNet50 works at a high level: 

• Convolutional Layers: The input image passes through a series of convolutional layers, which 
are responsible for extracting visual features from the image. ResNet50 uses a combination of 
1*1 and 3*3 convolutions to capture different levels of spatial information. 

• Residual Blocks: The core building block of ResNet50 is the residual block. A residual block 
consists of two or three convolutional layers with a shortcut connection. Each residual block 
learns to model the residual mapping instead of directly trying to learn the desired underlying 
mapping. This allows the network to effectively learn the incremental changes required to 
improve the performance. 

Figure 17. Specification for MobileNetv3-large (Jain, 2019). SE denotes whether there is a Squeeze-And-

Excite in that block. NL denotes the type of nonlinearity used. HS denotes h-switch and RE denotes ReLU. 

NBN denotes no batch normalization. s denotes stride. 
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• Stacking Blocks: ResNet50 consists of several stacked residual blocks. The number of blocks 
can vary depending on the specific ResNet variant (e.g., ResNet18, ResNet34, ResNet50, etc.). 
ResNet50 has 50 layers in total, hence the name. 

• Global Average Pooling: After the residual blocks, the network applies global average pooling, 
which averages the spatial dimensions of each feature map to obtain a fixed-length feature 
vector.  

 

 
Figure 18. The architecture of ResNet-50 model (Ali et al., 2021). 
 

Overall, ResNet50's depth, residual connections, strong performance, transfer learning 
capabilities, and versatility make it a good choice for image classification tasks. ResNet50 uses 
approximately 25 million parameters. 

The third CNN studied, EfficientNetB5, is deeper (312 layers) and with more parameters (about 
30 million) than the others. EfficientNetB5 is a CNN architecture that is part of the EfficientNet family. 
It was introduced by Tan & Le (2019) as an extension to the EfficientNet models, which are known for 
their superior performance in image classification tasks while maintaining efficiency in terms of model 
size and computational cost. Higher versions exist, but they were not chosen because they were even 
deeper, had more parameters, and consumed too many resources during training. EfficientNetB5 is 
designed to handle more complex visual recognition tasks that require a higher level of feature 
extraction and representation. Here are some key features of EfficientNetB5: 

• Depth and Width: EfficientNetB5 has a greater depth and width compared to earlier 
EfficientNet models. It consists of multiple stacked layers, with increasing depth as the 
network progresses. The increased width helps capture more fine-grained details in the input 
images. 

• Compound Scaling: Similar to other EfficientNet models, EfficientNetB5 incorporates 
compound scaling to balance model size and performance. It scales the depth, width, and 
resolution of the network in a principled manner, optimizing the trade-off between accuracy 
and computational efficiency. This allows EfficientNetB5 to achieve high accuracy without 
excessively increasing the model size or computational requirements. 

• Convolutional Blocks: EfficientNetB5 utilizes various convolutional blocks, including depthwise 
separable convolutions, bottleneck structures, and squeeze-and-excitation modules. These 
blocks enhance the efficiency and effectiveness of feature extraction, enabling the network to 
capture complex patterns and dependencies in the input data. 
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The architecture of EfficienNetB5 is presented in Figure 19. 

 
Figure 19. Architecture of EfficientNetB5 (Agarwal, 2020). 
 

EfficientNetB5 has demonstrated impressive performances on various image classification 
benchmarks, surpassing many state-of-the-art models in terms of accuracy while still maintaining a 
reasonable model size and computational cost. It is particularly beneficial in scenarios where accuracy 
is crucial, but computational efficiency is also a consideration. 

 
A summary of the different chosen CNNs is provided in Table 10. 
 
Table 10. Summary of the tested CNNs MobileNetV3-large, ResNet50 and EfficientNetB5 for the 
automated diagnosis of FD and GTDs. 

Architecture Top 1 accuracy* # of parameters Depth** 

MobileNetV3-large 75.2% 5.4 M 105 

ResNet50 75.8% 25.6 M 107 

EfficientNetB5 83.6% 30.5 M 312 
*Refers to the model’s performance on the ImageNet validation dataset 
**Number of layers with parameters 

 
 

 A common training methodology 
 
In this section, a comprehensive overview of the methodology employed to train the different CNNs is 
presented. A detailed description of deep learning algorithm training is offered in Appendix 3. 

The fine-tuning technique was employed during the training of these algorithms. Fine-tuning 
played a crucial role in training these algorithms by adapting pre-trained models to the specific task at 
hand. This technique involves taking a pre-trained CNN model, originally trained on a large dataset, 
and fine-tuning it on a new, smaller dataset or a different task. By leveraging the pre-trained model's 
learned representations, fine-tuning allows for improved performance and faster convergence on the 
new task. Instead of starting from scratch, the fine-tuning process builds upon the existing knowledge 
encoded within the pre-trained model. 

Here is an overview of the fine-tuning process for a CNN: 

• Select a pretrained model: Choose a pre-trained CNN model that was trained on a large-scale 
dataset, such as ImageNet (Deng et al., 2009). The choice of the model depends on the specific 
requirements of the new task and the availability of pre-trained models. 
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• Freeze initial layers: Initially, the pre-trained model's layers are frozen, which means their 
weights and parameters are not updated during training. This freezing is done to preserve the 
learned representations from the original task and prevent the model from forgetting what it 
has already learned. 

• Modify output layers: Replace or modify the final fully connected layers of the pre-trained 
model to match the number of classes or the requirements of the new task.  

• Training: With the modified output layers in place, the fine-tuning process involves training 
the model on the new dataset. The new dataset typically has a smaller number of samples 
compared to the original dataset. During training, the weights of the modified output layers 
are updated to learn the task-specific features while keeping the initial layers frozen. 

• Gradual Unfreezing: After some initial training on the modified output layers, a technique 
called gradual unfreezing can be applied. Gradual unfreezing involves unfreezing and 
selectively fine-tuning some of the earlier layers of the pre-trained model, allowing them to 
adapt to the new task. This process helps the model to generalize better and capture task-
specific features. 

• Training Parameters: Fine-tuning involves setting the appropriate hyperparameters such as 
learning rate, batch size, and regularization techniques like dropout or weight decay. These 
parameters may need to be tuned to achieve optimal performance on the new task. 

• Evaluation and Testing: Once training is completed, the fine-tuned model is evaluated on a 
validation set to measure its performance. Additional adjustments and fine-tuning may be 
performed based on the evaluation results. Finally, the model can be tested on a separate test 
set to assess its performance on unseen data. 
 
The added output layers at the top of these algorithms were the same for all three models. 

They consisted of a GlobalAveragePooling2D layer following the pre-trained model, followed by a 
dense layer with 64 neurons using the 'ReLU' non-linear activation function. Predictions were then 
obtained through a final dense layer using the 'sigmoid' activation function for binary classification 
(GTDs) or 'Softmax' activation function for three-class prediction (FD). The 'Binary_crossentropy' loss 
function was used to train the models for binary classifications, while 
'Sparse_Categorical_crossentropy' was used for three-class predictions. 

The hyperparameters are consistent across all three CNNs: 100 epochs (complete pass of the 
model through the entire training dataset) with a batch size (determines how many data are used to 
update the model's parameters in one optimization step) of 10. There was no extensively fine-tuning 
of the hyperparameters. To ensure fair comparison among the CNNs, uniform hyperparameter settings 
across all models were chosen.  

To evaluate the performances of these algorithms, precision and recall metrics are computed 
for each class. The precision and recall are commonly used measures to evaluate the performance of 
a classification model. Precision is a measure of the model's ability to provide trustworthy results for 
a specific class. It is calculated by dividing the number of true positives by the sum of true positives 
and false positives. In other words, precision measures the proportion of positive results given by the 
model that are actually correct. Recall, also known as sensitivity or true positive rate, is a measure of 
the model's ability to correctly identify all positive examples of a given class. It is calculated by dividing 
the number of true positives by the sum of true positives and false negatives. In other words, recall 
measures the proportion of actual positive examples that were correctly identified by the model. 

These CNNs were developed in Python using the TensorFlow library, designed for the 
development, training, and testing of artificial intelligence algorithms. The CNNs were pre-trained on 
ImagetNet. The fine-tuning was performed on an NVIDIA GeForce RTX 3090 graphics card. 
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B. Datasets 
 

 Grapevine trunk diseases 
 
To conduct a comprehensive analysis of the influence of training data size and data uniformity (images 
taken at different growth stages), two distinct datasets for CNN-based image-level classification of 
GTDs-infected grapevines (Table 11) were created. This division allows the comparison of one dataset 
with fewer images but less variability in the growth stage and another containing many more images 
but greater variability in symptom expression: 

• The first dataset, named 'ClaGTD_till25', is composed of three subsets ('20_11', '22_11', and 
'25_11') extracted from the larger 'ClaGTD' dataset. To ensure a balanced representation of 
classes, only 200 images of healthy vines from the '22_11' subset were selected. Consequently, 
this dataset comprises 416 images of GTDs-infected grapevines and 468 images of healthy 
grapevines.  

• For the second dataset, the complete 'ClaGTD' dataset was used with the exception of 
achieving class balance. 200 images of healthy grapevines from the '22_11' subset, along with 
200 images from '08_12', 500 images from '20_12', and another 500 images from '22_12' were 
randomly sampled. As a result, this dataset encompasses 2212 images of DTD-infected 
grapevines and 1916 images of healthy vines. 

 
Table 11. Summary of the two studied datasets for the automated diagnosis of GTDs by CNNs. 

Dataset name Acquisition period # of GTDs # of Healthy Symptom 
variability 

'ClaGTD_till25' 20/11/22 – 25/11/22 416 468 low 

'ClaGTD' 20/11/22 – 22/12/22 2212 1916 high 

 
 

 Flavescence dorée 
 
To enhance the automated diagnosis of FD, the study took advantage of a larger variety of images. 
Multiple datasets were examined to investigate different aspects (described in Table 12), with the most 
important ones being the impact of confounding factors (‘CONF+’ images) and the grape variety. 

• Firstly, the impact of images from the ‘CONF+’ class on algorithm performance was explored for 
specific grape varieties. This analysis was conducted on two subsets: ‘CS20’ for red grape varieties, 
which contains a substantial number of ‘CONF+’ images, and ‘UB20’ for white grape varieties, 
which had a lower quantity of ‘CONF+’ images but provided sufficient training data for the training 
on one grape variety. The performance of algorithms trained on these subsets was evaluated using 
cross-validation within the same datasets. Additionally, the trained models were tested on images 
from other grape varieties, taking into account the colour of the grape variety. This allowed for an 
assessment of how the grape variety influenced the inference results. 

• A series of trainings and tests were carried out subsequently on grape varieties sharing the same 
colour. The objective was to determine the ability of CNNs to generalize when presented with 
various expressions of symptoms during the training phase. This was particularly important 
because different grape varieties may exhibit distinct manifestations of symptoms despite 
belonging to the same colour category. 

• Finally, an experiment was conducted to evaluate the possibility of creating a unified model that 
encompasses both red and white grape varieties. The datasets containing images of both grape 
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colours were combined for training. This approach aimed to assess whether a single model can 
effectively handle the diagnosis of FD across grape varieties of different colours. 

 
By systematically examining these different training and testing scenarios, the study aimed to 

gain insights into the effects of image diversity, grape variety, and the inclusion of ‘CONF+’ images on 
the performance of automated FD diagnosis algorithms. 
 
Table 12. Training and testing scenarios for the automated diagnosis of FD by CNNs 

Training set Testing set Usage % of ‘CONF+’ 
(training 

set ; testing 
sets) 

CS20 without 
‘CONF+’ 

CS20 without 
‘CONF+’ 

Training and testing on the same 
grape variety without the ‘CONF+’ 

images 
(0%; 0%) 

CS20 CS20 
Test the impact of the ‘CONF+’ 

images 
(22%; 22%) 

CS20 without 
‘CONF+’ 

 
(CS21, CF21, M21) 
without ‘CONF+’ 

Testing grape variety change 
resilience (red grape varieties) 

(0%; 0%, 0%, 
0%) 

UB20 UB20, UB21, SB21 
Testing grape variety change 

resilience (white grape varieties) 
(4%; 4%, 0%, 

2%) 

CS20 + CS21 + CF21 
+ M21 

CS20 + CS21 + CF21 
+ M21 

Training and testing on the entire 
set of red grape varieties 

(16%; 16%) 

UB20 + UB21 + 
SB21 

UB20 + UB21 + 
SB21 

Training and testing on the entire 
set of white grape varieties 

(3%; 3%) 

ClaFD ClaFD 
Training and testing with both red 

and white grape varieties 

 
 

(10%; 10%) 

 

 Data pre-processing 
 
Three types of data preprocessing were tested on the images before training the CNNs. Firstly, the 
images were loaded as they were, with a size of 2048*2448*3 pixels. Processing the images directly at 
this size would preserve the most complete information as input for the algorithms. However, this 
would result in longer training and prediction times, and the models might receive more information 
than necessary to accurately predict the image class. Moreover, the average image resolution on which 
the algorithms have been pre-trained (ImageNet dataset) is 469*387 pixels. Therefore, resolution 
degradation techniques were tested. Reductions by a factor of 16, 64, and 256 in the number of pixels 
were tested by selecting every 4th column and row (8 and 16, respectively). These different 
degradations allowed for studying the optimal approach and making choices based on computation 
times. Prior to this selection, a Gaussian filter was applied to the images to ensure that the retained 
pixels also carried the information of the discarded pixels. The input images for the algorithms were 
then of dimensions (512*640*3), (256*320*3), and (128*160*3). Padding of the images (adding pixels 



48 
 

with a value of 0) was performed to ensure that the images could be properly processed by the 
algorithms. 

The images were subsequently divided into training, validation, and testing sets using the 
cross-validation method. Cross-validation is a widely adopted technique in machine learning for 
assessing model performance and generalization. It allows us to evaluate how well a model will 
perform on unseen data by splitting the available data into multiple subsets, known as folds. The 
dataset was divided into K equal-sized folds, where K is typically determined based on the dataset size 
and computational resources. For each fold, the model was trained on K-1 folds (the training set) and 
evaluated on the remaining fold (the test set). This process was repeated K times, with each fold 

serving as the test set once. The final metrics are averaged over the K test folds. Data were split into 5 
folds, resulting in 80% of the data allocated to the training set and 20% to the test set. Additionally, 
20% of the training data was set aside as the validation data. Validation data refer to a separate 
dataset, distinct from the training data, used to evaluate the performance of a model during training 
Consequently, the final distribution across training/validation/testing sets was as follows: 56% in the 
training set, 24% in the validation set, and 20% in the test set. Furthermore, to maintain proportional 
representation of each class across the different sets, the technique of stratification was employed. 
Stratification ensures that the distribution of classes remains the same in the training, validation, and 
testing sets, which is particularly important for classification tasks. 

Following the preprocessing stage, the training images underwent a data augmentation 
process. Data augmentation is a widely used technique in deep learning to increase the size and 
diversity of training datasets. Its aim is to improve model performance and generalization by 
introducing synthetic variations into the training data, simulating real-world scenarios and enabling 
models to better generalize. Data augmentation techniques can include operations such as rotation, 
resizing, cropping, horizontal/vertical flipping, zooming, adding noise, adjusting contrast and 
brightness, etc. These geometric and colour transformations increase the variability of images and 
expose the model to different perspectives and lighting conditions. The augmented data is used 
alongside the original data during model training. This exposes the model to a greater variety of 
situations and variations, promoting better generalization and robustness to real-world data. Data 
augmentation helps prevent overfitting by providing more diversity in the training data, reducing the 
model's sensitivity to minor variations in the training examples. It can also address class imbalances by 
creating synthetic examples of minority classes. The same data augmentation process was applied 
during all training sessions. It consisted of a combination of operations applied randomly to each 
image, including vertical flipping, random cropping (0-10% of the image), adding Gaussian noise, 
setting 1% to 5% of pixels to 0, setting 3% to 10% of pixels to 0 in square patches, adding a value of -
10 to 10 to each pixel channel, changing brightness (70-130% of the original value), adjusting contrast 
(70-130% of the original value), affine transformations including zooms or dezooms (80%-120% of the 
original value), vertical and horizontal translations (up to 20% of pixels in one direction), and rotation 
(-45 to 45 degrees). 
 
 

C. Results 
 

 Grapevine trunk diseases 
 
In the study of automated diagnosis of GTDs, two different datasets were used. These datasets were 
subjected to experiments involving three pre-processing techniques and three CNNs. The three pre-
processing techniques applied to the datasets involved dividing the number of pixels by 16, 64, and 
256, respectively (Figure 20). This division aimed to reduce the dimensionality of the images and 
potentially enhance the features relevant for GTDs diagnosis as well as reducing the inference time. 
Each pre-processing technique was applied to both datasets separately.  
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Figure 20. Illustration of the different resolution degradation: a) The original image; b) resolution 
divided by 8; c) by 64; d) by 256. 
 
 

The CNNs were trained on the pre-processed datasets, and their performance were evaluated 
using a cross-validation approach. The results obtained from the experiments are presented in Table 
13. It is important to note that the values displayed in the table represent the average performance 
metrics calculated from the results on the 5 test sets of the 5-fold cross-validation. A plot of the loss 
and accuracy curves for the methodology reaching the best results is presented in Figure 21. 
 
Table 13. Summary of the results of the 5-fold cross-validation for each combination of dataset, 
preprocessing and CNN for the GTDs diagnosis. 

 
Dataset 

 
Pre-process 

MobileNetV3-
large 

ResNet50 EfficientNetB5 

  (p, r)* ‘GTDs’ class (p, r) ‘GTDs’ class (p, r) ‘GTDs’ class 

ClaGTD_ 
till25 

/16 (0.82, 0.77) (0.88, 0.83) (0.87, 0.82) 

/64 (0.86, 0,78) (0.85, 0.85) (0.87, 0.83) 

/256 (0.82, 0.83) (0.85, 0.8) (0.83, 0.79) 

ClaGTD 

/16 (0.9, 0.92) (0.94, 0.92) (0.92, 0.93) 

/64 (0.89, 0.92) (0.91, 0.93) (0.9, 0 .89) 

/256 (0.87, 0.89) (0.86, 0.89) (0.87, 0.83) 

*(precision, recall)  
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The results showed that the ResNet50 architecture achieved the best performance on the first 
dataset when the input image resolution was downscaled by a factor of 16. The precision and recall 
for the ‘GTDs’ class reached p=0.88 and r=0.83 respectively. Interestingly, there was no substantial 
disparity in performance among the three architectures when using different preprocessing methods, 
such as downsampling the image resolution by factors of 16 or 64. The crucial information for 
diagnosing this disease in the images, such as the distinct symptoms like 'half head' or 'short shoot', 
remains clearly visible and easily recognizable by the algorithms even in low resolution images. These 
important visual cues enable the algorithms to effectively identify and classify the presence of these 
specific symptoms, aiding in accurate disease diagnosis. However, the achieved results were relatively 
low compared to those considering the entire dataset. 

When considering the entire dataset, which encompassed more images and a greater 
variability in disease expression, results were better for all the CNNs. The ResNet50 architecture with 
a downsampling factor of 16 for image resolution yielded the best results. This preprocessing approach 
consistently outperformed the others across all three architectures. The precision-recall pairs for the 
'GTDs' class were notably higher, reaching (p=0.90, r=0.92), (p=0.94, r=0.92), and (p=0.92, r=0.93) for 
MobileNetV3-large, ResNet50, and EfficientNetB5 architectures, respectively. 
 

 
Figure 21. Loss and accuracy curves for the Resnet50 architecture with a 1/16 reduction in input image 
resolution on the training and validation sets for the GTDs diagnosis. 

 
Figure 21 illustrates the impact of the two phases in the fine-tuning process. Once the training 

of the final layers started to plateau, early stopping was employed to halt this training. Subsequently, 
the remaining layers of the network were unfrozen, and a second round of training started, resulting 
in further enhancements to the results. 
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Upon closer examination of the results, particularly the mispredictions (Figure 22), it seemed 
that these very good results could likely have been further improved. Concerning false negatives 
(images from the ‘GTDs’ class predicted as 'Healthy'), it was observed that images containing the 'Half 
head' symptom were not correctly predicted. This could have been due to the difficulty in 
distinguishing between the foreground and background of the image, leading the background to be 
perceived as an extension of the foreground grapevine. When analysing the false positives (images 
from the 'Healthy' class predicted as ‘GTDs’), it appeared that the algorithm classified these images as 
belonging to the ‘GTDs’ class when some shoots were smaller than others, which could occur at the 
ends of healthy grapevines. The algorithm seemed to have learned to discriminate between healthy 
and diseased vines based on variations in vegetation within the same grapevine.   
 

 
Figure 22. Images of the first test set of the cross-validation for the ClaGTD dataset. First row: Images 
of the class ‘GTDs’ predicted as 'Healthy'. Second row: Images of the class 'Healthy' predicted as ‘GTDs’. 
 

The study revealed that the depth of the architecture and the number of parameters did not 
directly correlate with improved results. The ResNet50 architecture, which was not the deepest but 
had a relatively large number of parameters, achieved the best performance. Conversely, the 
MobileNet architecture, with significantly fewer parameters, demonstrated nearly equivalent results. 
These findings suggested that, in scenarios where computational time needs to be minimized, selecting 
the ResNet50 architecture with a downsampling factor of 256 for image resolution or the MobileNet 
architecture with a downsampling factor of 64 could be beneficial. Although slightly lower precision 
and recall were observed (0.9, 0.93) and (0.89, 0.92) respectively, these results remained high while 
greatly reducing inference time, as presented in Table 14 with the comparison of the prediction time 
of each architecture and image pre-processing. 
 
Table 14. Prediction time (in seconds) for a batch of 30 images, depending on the image pre-processing 
and the architecture of the CNNs. Average time over 10 repetitions calculated on an NVIDIA GeForce 
RTX 3090 graphics card. 

Pre-process MobileNetV3-large ResNet50 EfficientNetB5 

/16 0.12 0.18 0.39 

/64 0.06 0.08 0.14 

/256 0.04 0.05 0.07 
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 Flavescence dorée 
 
The first aspect studied in the automated diagnosis of FD was the training and testing on single grape 
variety. Cabernet sauvignon (CS20) and Ugni blanc (UB20) were used for red and white grape varieties 
respectively. Furthermore, the training and testing on CS20 were conducted in two different ways: 
without and with the inclusion of the 'CONF+' images (Table 15). This was done to assess the impact 
of highly confounding diseases related to FD on the results and to determine if the algorithm was 
capable of distinguishing them. This particular dataset in Table 15 had the most ‘CONF+’ images (22%). 
 
Table 15. Results of the cross-validation for CS20 with/without the 'CONF+' class for the FD diagnosis 
using CNNS. 

Dataset Pre-processing MobileNetV3-
large 

 

(p,r) ‘FD’ class 

ResNet50 
 

(p,r) ‘FD’ class 

EfficientNetB5 
 

(p,r) ‘FD’ class 

CS20 without 
‘CONF+’ 

/16 (0.91, 0.95) (0.84, 0.82) (0.88, 0.95) 

/64 (0.96, 1) (0.84, 0.93) (0.93, 0.91) 

/256 (0.96, 0.95) (0.75, 0.76) (0.89, 0.91) 

CS20  

/16 (0.8, 0.88) (0.76, 0.8) (0.82, 0.83) 

/64 (0.84, 0.86) (0.76, 0.69) (0.83, 0.8) 

/256 (0.77, 0.6) (0.74, 0.4) (0.78, 0.71) 

 
The results presented in Table 15 without 'CONF+' images were excellent. For all three CNNs, 

the best results were achieved with a downsampling factor of 64 for input image resolution. 
MobileNetV3-large, ResNet50, and EfficientNetB5 attained precision-recall pairs of (p=0.96, r=1), 
(p=0.84, r=0.96), and (p=0.93, r=0.91), respectively. Notably, the least deep architecture yielded the 
highest performance. The results were also excellent for the same architecture with a downsampling 
factor of 256 for image resolution (p=0.96, r=0.95). 

However, when including the 'CONF+' class images, which depict symptoms similar to those of 
FD, the results declined. The confusion matrix of the first test fold in the training on the ‘CS20’ dataset 
is presented in Table 16 and shows that the ‘CONF+’ images are responsible of this decrease in results.  
 
Table 16. Confusion matrix of the first test fold of the 5-fold cross-validation for the CS20 dataset using 
MobileNetV3-large with the resolution degradation by 64. It shows the classifier's performance by 
comparing its predicted results with the actual true values. The numbers represent the count of 
correctly or incorrectly classified images. 

Predicted label 
 
True label 

FD Esca CONF CONF+ 

FD 12 0 1 1 
Esca 0 2 7 1 
CONF 0 2 12 4 
CONF+ 3 0 1 7 

 
 

MobileNetV3-large and EfficientNetB5 architectures achieved the best results of (p=0.84, 
r=0.86) with a downsampling factor of 64 and (p=0.82, r=0.83) with a downsampling factor of 16, 
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respectively. By visualizing the results (Figure 23), one can note that the classifier does not rely on the 
3 symptoms to make its diagnosis. Indeed, the first and third images classified as 'CONF+' (positive for 
the disease) by the CNN do not have symptomatic shoots and bunches, only reddening leaves. 
Additionally, using a downsampling factor of 256 for the MobileNetV3-large architecture led to poor 
results of (p=0.77, r=0.6).  In addition to significantly degrading the CNNs' classification performance, 
the 'CONF+' images required higher input image resolution to be effectively processed by the CNNs. 
The architecture that performed the best in the study of GTDs, ResNet50, delivered the lowest results 
in this case. This demonstrates the crucial importance of selecting an appropriate architecture tailored 
to the targeted disease and the dataset. 
 

 
Figure 23. Images of the 'CONF+' class of the first test set of the CS20 dataset. First row: images 
correctly predicted as 'CONF+' images. Second row: images of the 'CONF+' class predicted as 'FD' class. 
Results obtained for MobileNetV3-large with the resolution degradation by 64. 
 

In a second step, these trained models were evaluated on images from other datasets to test 
the robustness of these algorithms when faced with a change in grape variety, where they had never 
been trained on these specific varieties. Results are presented separately for red and white grape 
varieties in Table 17 and 18 respectively. 
 
Table 17. Results of the training of the CNNs on CS20 and test on the other red grape varieties for the 
diagnosis of FD. 

Training set Pre-processing, 
testing set 

MobileNetV3-
large 

ResNet50 EfficientNetB5 

  (p,r) ‘FD’ class (p,r) ‘FD’ class (p,r) ‘FD’ class 

CS20 without 
‘CONF+’ 

/64, CS21 without 
‘CONF+’ 

(1, 0.15) (0.96, 0.21) (0.96, 0.24) 

/64, CF21 without 
‘CONF+’ 

(1, 0.67) (1, 0.55) (1, 0.71) 

/64, M21 without 
‘CONF+’ 

(0.83, 0.1) (0.75, 0.16) (0.96, 0.21) 
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Table 18. Results of the training of the CNNs on UB20 and test on UB20 and the other white grape 
varieties for the diagnosis of FD. 

 
The study on the impact of grape variety change revealed that CNNs struggle to generalize 

their training, and even slight variations in symptom expression between the training and testing 
datasets significantly affect the quality of the results. When it came to red grape varieties, training on 
the 'CS20' dataset and testing on images of other red grape varieties highlighted this difficulty. Even 
without including the 'CONF+' images, the results for all three approaches on the 'CS21' dataset 
showed high precision (1, 0.96 and 0.96) but very low recall (0.15, 0.21 and 0.24). This means that the 
algorithms rarely misclassified an image as affected by FD, but they failed to identify a significant 
number of vines actually affected by FD (resulting in many false negatives). Similar patterns were 
observed in other datasets. However, the EfficientNetB5 approach appeared to perform slightly better 
each time, although the results were still not excellent ((p=0.96, r=0.24), (p=1, r=0.71) and (p=0.96, 
r=0.21) for CS21, CF21 and M21 respectively).  

In contrast, the results for white grape varieties were significantly better. Training and testing 
on the 'UB20' dataset yielded similar good results (p=0.91 and r=1 for MobileNetV3-large) to training 
and testing on 'CS20' without the 'CONF+' images (since 'UB20' contains only 4% 'CONF+' images 
compared to 22% in 'CS20'). Once again, MobileNetV3-large achieved the best results. However, 
compared to red grape varieties, testing this training on other white grape datasets produced relatively 
better results. However, the recalls (0.79 and 0.35) remained lower compared to the precisions (0.94 
and 0.94). This could be attributed to the similarity in symptom expression between white grape 
varieties such as Ugni blanc and Sauvignon blanc, where leaf yellowing was a common symptom, unlike 
the distinct red leaf discolouration seen, for example, between Cabernet sauvignon and Merlot. This 
similarity explained the improved results in white grape datasets. 

Trainings and tests were then conducted on all grape varieties of the same colour to test 
whether CNNs were capable of generalizing when they have multiple different expressions of 
symptoms during training. The 'CONF+' images of the different grape varieties were also included. The 
results of these tests are presented in Table 19 
 
Table 19. Results of trainings and tests of CNNs for each grapevine colour for the diagnosis of FD. 

Dataset Pre-processing MobileNetV3-
large 

ResNet50 EfficientNetB5 

  (p,r) ‘FD’ class (p,r) ‘FD’ class (p,r) ‘FD’ class 

CS20 + CS21 + 
CF21 + M21 

/16 (0.85, 0.85) (0.85, 0.84) (0.84, 0.86) 

/64 (0.8, 85) (0.84, 0.81) (0.87, 0.84) 

/256 (0.82, 0.81) (0.86, 0.79) (0.82, 0.88) 

UB20 + UB21 + 
SB21 

/16 (0.92, 0.95) (0.89, 0.94) (0.92, 0.93) 

/64 (0.97, 0.96) (0.92, 0.93) (0.9, 0.93) 

/256 (0.86, 0.87) (0.9, 0.84) (0.84, 0.89) 

Training 
set 

Pre-processing, 
testing set 

MobileNetV3-
large 

ResNet50 EfficientNetB5 

  (p,r) ‘FD’ class (p,r) ‘FD’ class (p,r) ‘FD’ class 

UB20  

/64, UB20 (0.91, 1)  (0.84, 0.96)  (0.84, 1) 

/64, UB21  (0.94, 0.79) (0.78, 0.89)  (0.63, 0.78) 

/64, CS21  (0.94, 0.35)  (0.81, 0.69) (0.68, 0.85) 
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Two separate training processes were carried out: one involving all red grape varieties and the 
other involving all white grape varieties. The 'CONF+' images were included in the training, although 
there was a notable difference in the proportion of these images between the two trainings. 
Specifically, the 'CONF+' class accounted for 16% of the training and testing images for red grape 
varieties, whereas it comprised only 3% for white grape varieties. 

The results clearly reflected this discrepancy, with significantly better outcomes observed for 
the white grape varieties. In addition to having symptoms that are easier to generalize, the lower 
presence of 'CONF+' images contributed to excellent results, akin to the performance achieved in 
trainings and predictions focused on a single grape variety without 'CONF+' images. Once again, the 
MobileNetV3-large architecture demonstrated the highest performance, achieving a precision-recall 
pair of (p=0.97, r=0.96). The other two architectures also yielded excellent results. However, for the 
red grape varieties, the results were slightly worse while still remaining satisfactory for training and 
predicting across multiple grape varieties. The architectures demonstrated similar performance, with 
precision-recall pairs of (p=0.85, r=0.85), (p=0.85, r=0.84), and (p=0.87, r=0.84) for MobileNetV3-large, 
ResNet50, and EfficientNetB5 architectures, respectively. The impact of 'CONF' and 'CONF+' images on 
these results can be visualized through the confusion matrix presented in Table 20, which refers to the 
results on the first test fold of the cross-validation of EfficientNetB5 with a resolution degradation on 
the input images by 64. 
 
Table 20. Confusion matrix of the first test fold of the 5-fold cross-validation for the red grape varieties 
dataset using EfficientNetB5 with the resolution degradation by 64 for the diagnosis of FD. 

 
The results from Table 20 indicate that among the 16 images in the 'CONF+' class, 4 of them 

were classified as 'FD' by the CNN. Furthermore, 5 images from the 'FD' class were classified as 
belonging to the 'CONF+' class by the model. It is also noteworthy that 8 images from the 'CONF' class 
were classified as belonging to the 'FD' class by the model. Even more surprising, 5 images from the 
'Esca' class were classified as belonging to the 'FD' class. The addition of different symptom expressions 
depending on the grape varieties and acquisition year has significantly disrupted the model for red 
grape varieties. This is not the case for white grape varieties, where the 'CONF+' images are in a much 
smaller proportion and the expression of symptoms is less variable. 

Finally, a training was conducted that included all available images for classification (dataset 
'ClaFD'). Both red and white grape varieties were mixed, and the 'CONF+' class images were included. 
The results are presented in Table 21. 
 
Table 21. Results of the training and test of the CNNs on all the images of the 'ClaFD' dataset for the 
diagnosis of FD. 

Dataset Pre-processing MobileNetV3-
large 

ResNet50 EfficientNetB5 

  (p,r) ‘FD’ class (p,r) ‘FD’ class (p,r) ‘FD’ class 

ClaFD 

/16 (0.85, 0.83) (0.76, 0.79) (0.84, 0.77) 

/64 (0.84, 78) (0.8, 0.82) (0.8, 0.82) 

/256 (0.79, 0.76) (0.75, 0.74) (0.74, 0.71) 
 

Predicted label 
 
True label 

FD Esca CONF CONF+ 

FD 65 1 3 5 
Esca 5 10 7 2 
CONF 8 5 28 2 
CONF+ 4 1 6 5 
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The objective was to determine whether CNNs could generalize and comprehend that diverse 
symptom expressions could lead to the same ultimate diagnosis. While the results presented in Table 
21 are reasonably good considering the complexity of the task, they remain insufficient to provide a 
reliable FD automated diagnosis model. Once again, MobileNetV3-large emerged as the top-
performing architecture, achieving a precision-recall pair of (p=0.85, r=0.83) when the input image 
resolution was downscaled by a factor of 16. 
 
 

D. Synthesis 
 
In conclusion, the study successfully used CNNs for classifying grapevine images affected by GTDs. Two 
datasets were utilized, and ResNet50 emerged as the top-performing architecture, achieving the best 
results when the input image resolution was downscaled by a factor of 16 ((p=0.88, r=0.83) for the 
‘ClaGTD_till25’ dataset and (p=0.94, r=0.92) for the ClaGTD dataset). The best results were obtained 
for the dataset containing the most images, despite the presence of more variability in the grapevine's 
development stage and symptoms. These excellent results can be explained by the fact that when a 
grapevine is affected by GTDs, there is a marked difference between the symptomatic and non-
symptomatic parts of the grapevine (either the absence of vegetation on one side of the trunk due to 
the presence of a 'half head', or a significant difference in the size and foliage of the shoots between 
the 'short shoot' and non-symptomatic ones). 

Regarding the automated diagnosis FD using CNNs, excellent results were obtained when 
training and testing on the same grape variety without the ‘CONF+’ images ((p=0.96, r=1) for the 
MobileNetV3-large-large with a preprocessing of /64 on the ‘CS20 without ‘CONF+’ dataset). However, 
these results declined when 'CONF+' images were incorporated, indicating the difficulty of 
distinguishing them from 'FD' images for these algorithms ((p=0.84, r=0.86) for the same methodology 
on the ‘CS20’ dataset). The study highlights the importance of including test grape varieties in the 
training datasets. Finally, the attempt to create a single model encompassing both red and white grape 
varieties proved difficult. It demonstrated the advantage of separating them into two distinct training 
processes. 

Based on the study of automated diagnoses of GTDs and FD using CNNs, the results with a 
single grape variety were excellent when none, or very few, confounding diseases were present. This 
was the case of the GTDs dataset and the ‘CS20 without CONF+’ dataset. However, for the FD study, 
as the proportion of grapevine images presenting symptoms similar to FD increased, the results 
declined. This can be a realistic scenario, as numerous vines can be affected by diseases that resemble 
FD. On the other hand, the robustness of CNNs has been demonstrated when dealing with changes in 
grape varieties, as long as those varieties are included in the training dataset. For both diseases, the 
pre-processing of the images with a division of the resolution by 16 or 64 gave the best results. The 
division by a factor 256 resulted in the loss of too much information.  

In the upcoming chapters, the focus will be on further improving the results, particularly by 
enhancing the differentiation between the 'FD' and 'CONF+' classes for the FD automated diagnosis as 
well as a better understanding of the symptoms for the automated diagnosis of GTDs. To accomplish 
this, the implementation of a dedicated initial phase focused on symptom detection was performed. 
The hypothesis was that by incorporating this additional step, the accuracy and reliability of the 
classification process could be enhanced.  
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V. Unitary symptom detection 
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In the previous chapter, it was observed that directly feeding the image to the model, without 
additional information about the various symptoms of the disease, yielded very good results on 
'simple' datasets containing few diseases with confusing symptoms. However, the results were less 
favourable as soon as the studied datasets contained more diseases. It was then proposed, in order to 
achieve a better distinction between the targeted diseases and diseases presenting confusing 
symptoms, to mimic the method of field prospectors in distinguishing diseases from each other: First, 
ensure the presence of one or more symptoms of the disease, and then focus on the relationship 
between these symptoms and their arrangements to provide the most reliable diagnosis possible. In 
this chapter, the first phase of this diagnostic method will be study, namely the detection of individual 
symptoms of the targeted diseases. 

For the two types of multi-symptom diseases under investigation, two distinct approaches, 
namely detection and segmentation, were employed to identify the diverse symptoms associated with 
these conditions. This chapter will exclusively address the symptoms, refraining from drawing 
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diagnostic conclusions on a broader scale. Within this chapter, a comprehensive breakdown of the 
various algorithms that were tested, accompanied by their respective outcomes will be provided. 
 
 

A. Detection networks for bounding box identification of symptoms 
 

 State-of-the-art detection neural networks 
 
A detection network is a specialized neural network architecture extensively used in computer vision 
tasks for locating and identifying objects within images. Each detected object in the image comes with 
a bounding box encompassing the object in question and a prediction of the object's class. These 
networks can be separated in primary categories: two-stage and single-stage detectors. Two-stage 
detectors typically involve a proposal generation step followed by object classification and localization, 
while single-stage detectors directly predict object positions and categories in one pass. In this family 
of detection networks, some of the most popular ones can be mentioned: 

• Faster R-CNN: Faster R-CNN (Ren et al., 2015) is a two-stage object detection algorithm that 
combines region proposal generation and object classification into a single model. It is known 
for its accuracy but can be relatively slow. 

• YOLO (You Only Look Once): YOLO (Redmon et al., 2016) is a single-stage object detection 
algorithm that can achieve real-time detection on standard hardware. It is known for its speed 
and is often used in real-time applications like video analysis and robotics. 

• SSD (Single Shot MultiBox Detector): SSD (W. Liu et al., 2016) is another single-stage object 
detection algorithm that aims to balance speed and accuracy. It can detect objects at multiple 
scales and aspect ratios within a single pass. 

• RetinaNet: RetinaNet (Lin et al., 2018) is a one-stage detector known for its accuracy and the 
ability to handle a wide range of object scales. It introduces the focal loss to address class 
imbalance in object detection. 

• Mask R-CNN: While primarily designed for instance segmentation (detecting objects and their 
precise outlines), Mask R-CNN (He et al., 2017) is also capable of object detection. It provides 
pixel-level object masks in addition to bounding boxes and class labels. 
 
Studies have compared the methodologies and results of these different types of detection 

algorithms (Kaur & Singh, 2023; Srivastava et al., 2021; Zhao et al., 2019). 
Among the various deep detection algorithms, the preference has been for YOLO-style models. 

It is a fully convolutional network, meaning that it exclusively uses convolutional layers. The selection 
of YOLO for detection was motivated by several compelling reasons. YOLO offers distinct advantages 
that make it a suitable choice for the detection task within this study: 

• Real-time Performance: YOLO's architecture is designed to process images in a single pass, 
enabling real-time object detection which is especially beneficial for scenarios where timely 
detection is crucial. 

• Speed and Efficiency: YOLO's unified architecture allows it to simultaneously predict multiple 
object classes and their bounding boxes. This design contributes to its speed and efficiency, as 
it reduces redundant computations and streamlines the detection process. 

• Multi-Scale Detection: YOLO is capable of detecting objects of varying sizes within the same 
image. This is particularly valuable when dealing with multi-symptom diseases, where 
symptoms can manifest itself at different scales. 

• Minimal Post-Processing: YOLO's direct bounding box predictions mean that it requires 
minimal post-processing steps. This simplifies the pipeline and reduces the risk of errors being 
introduced during post-processing. 
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Given these reasons, the YOLO architecture aligned well with the objectives of efficiently and 
accurately detecting the diverse symptoms associated with the multi-symptom diseases studied and 
is suited for potential future real-time image processing. 

YOLO takes a different approach by framing object detection as a regression problem. Here 
follows a quick explanation of how YOLO is working: 

• Grid-based Approach: YOLO divides the input image into a grid of cells. Each cell is responsible 
for predicting the presence of objects within its boundaries. The size of the grid depends on 
the chosen architecture and configuration. 

• Bounding Box Prediction: Within each cell, YOLO predicts bounding boxes that define the 
location of potential objects.  

• Objectness Score: For each bounding box, YOLO calculates an "objectness" score that 
estimates the probability of an object's presence within the box. This score helps filter out false 
positives. 

• Class Prediction: In addition to the bounding box and objectness score, YOLO predicts the 
probability distribution over predefined classes for each bounding box. YOLO can detect and 
classify multiple object classes within a single cell. 

• Non-maximum Suppression: After predictions are made, a post-processing step called non-
maximum suppression is applied. This step eliminates redundant bounding box detections and 
retains only the most confident and accurate ones. 

 
In order to determine the accuracy and reliability of the detection process during the learning 

and validation steps, the IOU (Intersection over Union) threshold and confidence threshold play crucial 
roles.  An IOU is a measurement of how much two bounding boxes overlap. It is calculated as follows 
(equation 1): 
 

𝐼𝑂𝑈 =  
𝐴𝑟𝑒𝑎 𝑜𝑓 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛

𝐴𝑟𝑒𝑎 𝑜𝑓 𝑈𝑛𝑖𝑜𝑛
 (1) 

 
 

The IOU threshold is used to determine whether a predicted bounding box accurately captures 
an actual object in the image.  If the IOU between a predicted bounding box and the ground truth 
bounding box exceeds the set IOU threshold, the detection is considered accurate. If the IOU falls 
below the set threshold, the detection is treated as a false positive.  

The confidence threshold is associated with the predicted probability of an object's presence 
within a bounding box. In YOLO, each detected bounding box is associated with a confidence score 
that represents the model's confidence in its prediction. This confidence score is a value between 0 
and 1. The set confidence threshold is used to filter out low-confidence detections. Detections with 
confidence scores below the threshold are discarded as they are considered less reliable.   
Figure 24 represents the basic operation of the algorithm. 

During the experiments, the IOU and confidence thresholds were set respectively to 0.5 and 
0.25.  

During the initial trials (Tardif et al., 2022), the latest released version of YOLO was YOLOv4. 
YOLOv4 incorporates a more powerful backbone architecture than YOLO, using CSPDarknet53 as the 
base network. This helps to extract more meaningful and representative features from input images. 
YOLOv4 incorporates a Feature Pyramid Network (FPN), which enables the model to better detect 
objects at different scales. This is crucial for detecting objects of varying sizes within an image. It 
introduces various improvements with respect to previous version in object detection, including better 
handling of small objects and dense object clusters, leading to increased accuracy in detection results. 
In the head of the network, the non-maximum suppression (NMS) step improve the selection of the 
most relevant bounding boxes while eliminating redundant detections. Finally, YOLOv4 incorporates 
self-attention mechanisms, enabling the model to focus on relevant features and ignore irrelevant 
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ones. In order to minimize inference times, the most compact architecture, YOLOv4-tiny, was chosen. 
YOLOv4-tiny is optimized for faster inference while sacrificing some accuracy.  
 
 

Figure 24. Representation of the YOLO model (Redmon et al., 2016). It divides the image into an S × S 
grid and for each cell predicts bounding boxes, their confidence score and the class probabilities. 
 

Subsequently, the performance of YOLOv4-tiny, chosen for its inference time, was compared 
with another one, YOLOv8, less fast but presumed to be more accurate. YOLOv8 is faster (without 
taking into account the "tiny" versions) and more accurate than the previous versions. It incorporates 
a new backbone network, a new anchor-free head and a new loss function. The regression branch 
employs both Distribution Focal Loss (DFL) (Li et al., 2022) and Complete Intersection over Union (CIoU) 
loss (Zheng et al., 2019). 

YOLOv4-tiny and YOLOv8 architectures are presented in Appendix 4. 
 
 

 Data pre-processing 
 
Each dataset was partitioned into three sets with consistent proportions: 70% of images for training, 
15% for validation, and 15% for testing. Furthermore, the class distribution was maintained identically 
across these three sets. All subsequent results presented will pertain to outcomes on the test sets 
within each dataset which remain consistent regardless of the specific training set. Due to the 
considerable training time required by these algorithms, cross-validation was applied exclusively to 
the methodology that yielded the most promising results, aiming to validate their performance.  

To best match the input resolution required by both algorithms, the images were divided into 
corresponding-sized patches (416*416*3 for YOLOv4-tiny, 640*640*3 for YOLOv8m). The choice was 
made not to degrade the image resolution, with the assumption that degrading the resolution would 
have led to a decrease in detection results. For instance, in the case of YOLOv4-tiny, an image 
(2048*2448*3) was partitioned into 5*6=30 patches 416*416*3. (by adding lines and columns of zeros 
to the original image) This approach accomplished two objectives: maintaining the desired input 
resolution while retaining the full resolution of the images (crucial for accurate symptom detection) 
and augmenting the training dataset's quantity. This partitioning was conducted after the distribution 
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into training/validation/test sets, ensuring that patches from the same original image did not end up 
in different datasets 

During the patch partitioning, some bounding boxes might be split into two parts. These 
bounding boxes were adjusted to ensure completeness across every patch in which they appeared. If 
the resulting corresponding bounding box measured less than 30 pixels, it was removed, as the 
enclosed symptom portion became less significant for detection. Additionally, for training and test 
images, an overlap among the patches was introduced. Sometimes bounding boxes were cut in half 
during patching. To prevent them from not being fully visible to the algorithm, an extra patch was 
created between each adjacent patch (as illustrated in Figure 25). Consequently, every bounding box 
appeared at least once in its entirety during training. For prediction and evaluation of test images, only 
predictions within the central portion of each patch were retained. For instance, in the case of 
640*640*3 patches, predictions made within the 160-pixel border regions— which did not correspond 
to the true borders of the complete image— are not factored in during the reassembly of the entire 
images. This approach guaranteed that every symptom was seen in its entirety during its prediction, 
thereby enhancing diagnostic accuracy. 
 

 
Figure 25. Thumbnail creation with/without overlapping. The thumbnails bordered in green are those 
created with overlapping. 
 

The YOLOv8m algorithm was also tested to provide the whole image in order to compare the 
results to pre-processing results with thumbnails. The images were decimated by a factor of two to 
avoid memory error and having an input image size that is excessively large compared to the one most 
suitable for this network (640*640*3). The algorithm automatically resizes the image to match its 
architecture. The image's largest dimension (in that case, 2448) is reduced to 1216 (must by divisible 
by 32), degrading the resolution. The second dimension is scaled down while maintaining the original 
image's proportions (2048 becomes 1088). The advantages were that no symptoms were cut off and 
the algorithm processed the image in its entirety. The disadvantages were a loss of image resolution 
and a lower number of images available for training. 

For the YOLOv4-tiny, a data-augmentation applied randomly one or more of the following 
operations on the images in the training set before the training: horizontal flip, image resize, rotation, 
crop, horizontal and/or vertical translation, luminosity and brightness variation. The YOLOv8m, 
contains an integrated data-augmentation, which includes a variety of transformations such as random 
crops, flipping, rotation, distortion, luminosity and brightness variation, mosaic augmentation 
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technique (combining four images into one, which helped prevent overfitting and augment the training 
data). 
 

 Detection datasets and experimental design 
 

i. Flavescence dorée 
 
The detection algorithms were tested to automatically detect symptomatic leaves of FD. Three classes 
of leaves were annotated in the images: 'FD Leaf', 'Esca Leaf', and 'Confounding Leaves'. Initially, tests 
were conducted on the ‘CS20’ subset of ‘DetFD’ (described in Chapter III Section F, Table 8) dataset to 
determine the optimal way to annotate the images. Thus, two annotation methods for leaves were 
tested: either a bounding box per leaf, attempting to closely fit the leaf (A1), or larger bounding boxes 
grouping clusters of leaves of the same class together (A2). This latter annotation approach could 
potentially save a significant amount of annotation time if the results were promising. Secondly, tests 
were conducted with and without leaves from the 'Confounding Leaves' class (A3). Once again, there 
would be a substantial time-saving in annotation if not annotating the confounding leaves didn't 
negatively impact the algorithm's performance. The 3 annotating ways are presented in Figure 26. 
 

 
Figure 26. Three ways to annotate the leaves for FD leaf detection. Left image: One box per leaf, 
confounding leaves annotated (A1). Middle image: Annotation by cluster of leaves, confounding leaves 
annotated (A2). Right image: One box per leaf, no annotation of confounding leaves (A3). 
 
 

Tests were subsequently conducted to assess the algorithm's ability to detect FD leaves on 
grape varieties not included in the training dataset using the annotation method that yielded the best 
results in the previous step. By separating the images of the white and red grape varieties, the tests 
began with only one grape variety used for training and testing on the others. Then, the training 
dataset was gradually supplemented with images of the other grape varieties of the same colour to 
monitor the progression of the results. The objective was to determine if adding new grape varieties 
to the training dataset improved the test results on these same grape varieties without decreasing the 
results for the grape varieties already present in the training set. A summary of the tests conducted 
for the detection of FD symptomatic leaves is presented in Table 22. 
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Table 22. Summary of the tests conducted for the algorithms detecting symptomatic FD leaves. The 
colours of the rows indicate the colour of the studied grape varieties: red for red grape varieties, yellow 
for white grape varieties. Annotation method A1 refers to leaf-by-leaf annotation, including 
confounding leaves. Method A2 refers to annotation by leaf clusters, including confounding leaves. 
Method A3 refers to leaf-by-leaf annotation, excluding confounding leaves. 

Training set Testing set algorithm Annotating 
method 

Input Image 
size 

Purpose 

CS20 CS20 YOLOv4-tiny A1 416*416*3 Choice of 
the 

annotation 
method 

CS20 CS20 YOLOv4-tiny A2 416*416*3 

CS20 CS20 YOLOv4-tiny A3 416*416*3 

      

CS20 
CS20 + CF21 + M21 + 

CS21 
YOLOv4-tiny A1 416*416*3  

Testing on 
out-of-
training 
grape 

varieties + 
tracking 
results 

evolution 
with 

dataset 
expansion 

CS20 + CF21 
CS20 + CF21 + M21 + 

CS21 
YOLOv4-tiny A1 416*416*3 

CS20 + CF21 + 
M21 + CS21 

CS20 + CF21 + M21 + 
CS21 

YOLOv4-tiny A1 416*416*3 

UB20 UB20 + UB21 + SB21 YOLOv4-tiny A1 416*416*3 

UB20 + UB21 UB20 + UB21 + SB21 YOLOv4-tiny A1 416*416*3 

UB20 + UB21 + 
SB21 

UB20 + UB21 + SB21 YOLOv4-tiny A1 416*416*3 

      

CS20 + CF21 + 
M21 + CS21 

CS20 + CF21 + M21 + 
CS21 

YOLOv8m A1 640*640*3  
YOLO 

versions 
comparison 

+ image 
pre-

processing 
selection 

CS20 + CF21 + 
M21 + CS21 

CS20 + CF21 + M21 + 
CS21 

YOLOv8m A1 
2048*2448*

3 

UB20 + UB21 + 
SB21 

UB20 + UB21 + SB21 YOLOv8m A1 640*640*3 

UB20 + UB21 + 
SB21 

UB20 + UB21 + SB21 YOLOv8m A1 
2048*2448*

3 
 
 

ii. Grapevine trunk diseases 
 
Regarding the GTDs, the 3 symptoms ('Half Head', 'Short shoot', and 'Canker') found in Sauvignon blanc 
grapevines were annotated with bounding boxes and tested for detection. Unlike the images used for 
FD diagnosis, acquired at the same period of the year (a few days before harvest), the GTDs images 
were acquired much earlier in the season and over a longer period during grapevine growth. Thus, the 
symptoms vary in size depending on the acquisition date. To assess the impact of the acquisition date, 
dataset ‘DetGTD’ was divided into 2 subsets: 'DetGTD_till2 ' consisting of images from ‘DetGTD’ 
acquired between the 20/11/22 and 25/11/22, and 'DetGTD_since28' consisting of images acquired 
between 28/11/22 and 22/12/22.  

The training on 'DetGTD_till25’ was tested separately on the test sets of ‘DetGTD_till25‘ and 
‘DetGTD_since28' (same for the training on ‘DetGTD_since28') to evaluate the algorithm's capabilities 
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in detecting symptoms on vines at different stages of development. These results were then compared 
with those from the entire ‘DetGTD’ dataset. The chosen annotation methodology (A1) and the 
algorithm (Yolov8m) were the ones that yielded the best results during FD leaf detection. The image 
size in input was either patches of 640*640*3 or the whole rescaled image in 1088*1216*3. A summary 
of these experiment is presented in Table 23. 
 
Table 23. Summary of the tests conducted for the algorithms detecting GTDs symptoms. Annotation 
method A1 refers to leaf-by-leaf annotation, including confounding leaves. 

Training set Testing set algorithm Annotating 
method 

Image size Purpose 

DetGTD_till25 
DetGTD_till25,  

DetGTD_since28 
YOLOv8m A1 

640*640*3, 
1088*1216*3 

Identifying the 
phenological 
stage(s) that 
allow for the 

best detection 
of GTDs 

symptoms 

DetGTD_since28 
DetGTD_till25,  

DetGTD_since28 
YOLOv8m A1 

640*640*3, 
1088*1216*3 

DetGTD_till25 +  
DerGTD_since28 

DetGTD_till25,  
DetGTD_since28 

YOLOv8m A1 
640*640*3, 

1088*1216*3 
 
 
 

 Results 
 

i. Flavescence dorée 
 
The first aspect studied was the impact of annotating the symptoms in order to avoid wasting time 
later by changing and redoing annotations. The three annotation methods were tested on the CS20 
dataset, and the results are presented in Table 24. 
 
Table 24. Results of the YOLOv4-tiny of the 3 annotating methods on the CS20 dataset for the detection 
of symptomatic leaves of FD. Annotation method A1 refers to leaf-by-leaf annotation, including 
confounding leaves. Method A2 refers to annotation by leaf clusters, including confounding leaves. 
Method A3 refers to leaf-by-leaf annotation, excluding confounding leaves. 

 
It can be observed from Table 24 that the best results (p=0.65, r=0.45), when combining 

precision and recall, were achieved with annotation method A1, referring to individual small bounding 
boxes for each symptom, compared to method A2 referring to the annotation of clusters of leaves 
(p=0.53, r=0.43). Furthermore, including the annotation of confounding leaves enhanced the results in 
symptomatic leaf detection (A1 vs. A3 (p=0.51, r=0.48)). This annotation methodology, although the 
most time-consuming, was subsequently adopted and applied to other datasets for the detection of 
symptomatic FD leaves. 

The results of the ‘FD leaf’ class detection were not really high, due to the complexity of the 
task and to the small number of training images.  

It was then decided to investigate the algorithm’s capability to effectively predict symptomatic 
leaves of FD on grapevine varieties it hadn’t been exposed to previously. The training datasets had 
been gradually expanded with new grape varieties to monitor the progress of the results. These results 

Training set Testing set Annotating method Results of the ‘FD leaf’ class in 
(precision, recall) 

CS20 CS20 A1 (0.65, 0.45) 
CS20 CS20 A2 (0.53, 0.43) 
CS20 CS20 A3 (0.51, 0.48) 
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are presented separately for the white grape varieties in Table 25 and for the red grape varieties in 
Table 26. 
 
Table 25. YOLOv4-tiny's results of the detection of FD symptomatic leaves for white grape varieties. 
 

 
 
 
 
 
 

 

 

 

As for identifying symptomatic leaves of FD in white grape varieties, initial training using the 
UB20 images yielded an acceptable precision (p=0.64 and 0.61) for UB20 and UB21 datasets 
respectively. However, the recall (r=0.40 and 0.39 for UB20 and UB21 respectively) was poor for both 
datasets. Incorporating the UB21 dataset into the training process significantly enhances the recall of 
‘FD leaf’ in the UB20 (r=0.53) and UB21 (r=0.74) sets, leading to a more comprehensive recovery of FD-
symptomatic leaves. Moreover, both precision (p=0.67) and recall (r=0.42) exhibit an improvement in 
SB21 images. This enhancement can be attributed to the greater diversity of symptom expressions and 
image acquisition conditions offered by the UB21 images, even though the symptoms on the leaves in 
SB21 images differed. Subsequently, the introduction of SB21 images into the training dataset results 
in improved performance on SB21 images (p=0.66, r=0.57), without adversely affecting the results on 
UB20 (p=0.57, r=0.49) and UB21 (p=0.54, r=0.69) sets. 
 
Table 26. YOLOv4-tiny's results of the detection of FD symptomatic leaves for red grape varieties. 

 
When addressing red grape varieties, the initial training using the CS20 dataset, which 

comprises only 51 images, demonstrates good precision results (p=0.65 for CS20, p=0.70 for CF21). 
Notably, the results on CS21 images (p=0.54, r=0.31) were interesting as they were captured from a 
greater distance compared to the images in CS20. This highlighted the pivotal role of data 
augmentation, as the algorithm's ability to train on leaf sizes akin to those in CS21 is made possible 
through randomized scaling operations. This proved beneficial despite the absence of such examples 
in the original training dataset. Nonetheless, the results on M21 images were not so good, (p=0.24, 
r=0.13), likely due to the distinctiveness of symptoms in these images. Incorporating CF21 images into 
the training dataset enhanced the identification of FD symptomatic leaves across CF21 (p=0.67, 
r=0.50), M21 (p=0.54, r=0.29), and CS21 (p=0.77, r=0.32) images. This augmentation introduces a wider 
spectrum of symptoms, leading to a significant improvement in FD detection. The conclusive training 
phase involving red grape varieties yields highly satisfactory results. The inclusion of M21 and CS21 
sets improved the recall results on CS20 (p=0.63, r=0.63) and CF21 (p=0.71, r=0.79) sets, while 

 Results of the ‘FD leaf’ class in (precision, recall) 

Training set UB20 UB21 SB21 

UB20 (0.64, 0.40) (0.61, 0.39) (0.52, 0.08) 

UB20 + UB21 (0.52, 0.53) (0.51, 0.74) (0.67, 0.42) 

UB20 + UB21 + SB21 (0.57, 0.49) (0.54, 0.69) (0.66, 0.57) 

 Results of the ‘FD leaf’ class in (precision, recall) 

Training set CS20 CF21 M21 CS21 

CS20 (0.65, 0.45) (0.70,0.51) (0.24, 0.13) (0.54, 0.31) 

CS20 + CF21 (0.67, 0.50) (0.77, 0.63) (0.54, 0.29) (0.77, 0.32) 

CS20 + CF21 + M21 + CS21 (0.63, 0.63) (0.71, 0.79) (0.61, 0.58) (0.73, 0.68) 
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substantially enhancing the prediction accuracy for symptomatic FD leaves in M21 (p=0.61, r=0.58) 
and CS21 (p=0.73, r=0.68) images. 

In summary, the investigation into detecting symptomatic leaves of FD across different 
grapevine varieties underscored the importance of dataset diversity and the crucial role of data 
augmentation. The results were not excellent, due to the numerous confounding leaves of those of FD 
symptomatic leaves and the rather limited quantity of annotated data. However, the results 
demonstrated the algorithm's adaptability, by sometimes even achieving good performances on 
varieties not present in the training sets. This study highlights the evolving nature of object detection 
training and the crucial role of holistic dataset enrichment in enhancing detection accuracy across 
varied conditions and grapevine varieties. 

Finally, in order to ascertain whether opting for YOLOv4-tiny resulted in a significant 
performance loss, the utilization of YOLOv8m was tested on the training sets that yielded the best 
results with YOLOv4-tiny. This was done with a training on all red grape varieties (as presented in Table 
26) and all white grape varieties (as presented in Table 25). To validate the image patch cropping 
methodology, complete images were fed into the detection network as inputs. Results of these tests 
are presented in Table 27 for the red grape varieties and in Table 28 for white grape varieties. 
 
Table 27. Results of the YOLOv8m and comparison with the best results of the YOLOv4-tiny for the 
detection of the FD symptomatic leaves on red grape varieties. Best results for each set are put in bold. 

 
The first thing that can be noted is the superior overall performance of the YOLOv8m algorithm 

(global precision and recall) of (p=0.71, r=0.68) and (p=0.78, r=0.61) compared to that of YOLOv4-tiny 
of (p=0.66, r=0.67). Three out of four grape varieties achieve better results with the former. Only the 
CF21 set obtained better results with YOLOv4-tiny, but the results of YOLOv8m for this variety are not 
far behind. For the other three grape varieties, the results are indeed better, though not significantly 
superior to YOLOv8m.  

Regarding the pre-processing of images using patches or full images, once again, for three out 
of four grape varieties, the patch-based pre-processing yields better results. Sometimes, there is a 
significant difference (for the CS20 dataset, patch pre-processing achieves (p=0.70, r=0.70), compared 
to full image pre-processing (p=0.73, r=0.53)). At other times, the difference is similar (for the CF21 
dataset, patches yield (p=0.76, r=0.7), while full images yield (p=0.81, r=0.63). Only the M21 dataset 
obtains improved results with the algorithm trained on full images. The YOLOv8m algorithm with 
patch-based pre-processing appears to stand out, although it doesn't achieve superior results across 
all test sets.  

Figure 27 demonstrates the significance of overlapping predictions during image cropping and 
prediction by patch. In the highlighted area, it can be observed that an inaccurate prediction of 'FD 

  Results of the ‘FD leaf’ class in (precision, recall) 

Training set Algorithm, 
pre-

processing 

CS20 CF21 M21 CS21 Global 

CS20+CF21+ 
M21+CS21 
 

YOLOv4-
tiny, 

patches 
(0.63, 0.63) (0.71, 0.79) (0.61, 0.58) (0.73, 0.68) (0.66, 0.67) 

YOLOv8m, 
patches (0.70, 0.70) (0.76, 0.70) (0.51, 0.6) (0.79, 0.72) (0.71, 0.68) 

YOLOv8m, 
whole 
images 

(0.73, 0.57) (0.81, 0.65) (0.79, 0.48) (0.88, 0.59) (0.78, 0.61) 
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leaf' is avoided at the centre of the white circle, and the confounding leaves in the top left and the FD 
leaves in the bottom right of the white circle are better delineated. 

 

 
Figure 27. Comparison between the predictions by patches with and without overlapping of patches on 
a red grape variety. Boxes of the class ‘FD leaf’ in red and of the class ‘Confounding leaf’ in orange. 
Inaccurate prediction of 'FD leaf' is avoided at the centre of the white circle, and the confounding leaves 
in the top left and the FD leaves in the bottom right of the white circle are better delineated. 
 
Table 28. Results of the YOLOv8m and comparison with the best results of the YOLOv4-tiny for the 
detection of the FD symptomatic leaves on white varieties. Best results for each set are put in bold. 

 
 

Regarding the results for white grape varieties in Table 28, the difference between the results 
of YOLOv4-tiny (same as Table 25) and YOLOv8m is even smaller. Precision is consistently better for 
YOLOv4-tiny (global precision of 0.57), but recall is further improved for YOLOv8m (recall of 0.64 for 
the patches and 0.69 for the whole images), making it the best algorithm when both indices are 
considered ((p=0.57, r=0.57) for Yolov4-tiny with patches, (p=0.42, r=0.64) for YOLOv8m with patches, 
(p=0.48, r=0.69) for YOLOv8m with whole images). However, unlike on the red grape varieties, the 
precision and recall results are better across all four datasets for the processing of the entire image. 
This can be explained by the fact that, unlike red grape varieties, the symptoms on white grape 
varieties are much less pronounced (slight yellowing of the leaves), making them harder to 
differentiate from confusing symptoms, even in full resolution with patch-based slicing. On the other 
hand, providing the entire image can help the algorithm calculate the distribution of symptomatic 
leaves on the grapevine and achieve better results.  

Figure 28 illustrates a comparison of predictions from the three modalities (choice of algorithm 
and image pre-processing). For the first example (first row, symptomatic leaves of FD of M21 set, the 
3 modalities gave good results, except a false prediction of ‘Confounding leaf’ for the YOLOv4-tiny. The 
second example (second row) displays confounding leaves of an image of CF21. The 3 modalities 
wrongly predicted some leaves of the ‘FD leaf’ class. This was a very hard image to predict as the leaves 

  Results of the ‘FD leaf’ class in (precision, recall) 

Training set Algorithm, pre-
processing 

UB20 UB21 SB21 Global 

UB20+UB21+
SB21 
 

YOLOv4-tiny, 
patches 

(0.57, 0.49) (0.54, 0.69) (0.66,0.57) (0.57,0.57) 

YOLOv8m, 
patches 

(0.42, 0.56) (0.40, 0.72) (0.54, 0.78) (0.42, 0.64) 

YOLOv8m, whole 
image 

(0.44, 0.64) (0.52, 0.76) (0.62, 0.75) (0.48, 0.69) 
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appeared to be exactly the same in shape and colour as leaves symptomatic of FD in this grape variety. 
However, the YOLOv8m algorithm on large images still managed to predict 2 of these leaves as 
belonging to the 'confounding leaf' class. It is the only algorithm that achieved this. Finally, the last 
example (last row of Figure 28) presents leaves that are very similar to those symptomatic of FD on 
Sauvignon Blanc grape variety. Once again, these leaves are very challenging to distinguish from FD 
leaves, sharing the same colour and shape. The YOLOv4-tiny algorithm predicted them as belonging to 
the 'FD leaf' class; however, both YOLOv8m algorithms predicted them correctly, either as belonging 
to the 'Confounding leaf' class or by not making any predictions on them (indicating that, for the 
algorithm, these leaves do not belong to any of the classes 'FD leaf,' 'Esca leaf,' or 'Confounding leaf'). 
 

 
Figure 28. Comparison of the leaf predictions. First column: Ground truth images for Merlot (M21), 
Cabernet franc (CF21) and Sauvignon blanc (SB21). Second column: Predictions by the YOLOv4-tiny. 
Third column: predictions by the YOLOv8m on patches. Fourth column: predictions by the YOLOv8m on 
whole images. Box colours are dark red for the 'FD leaf’ class and brown for the ‘Confounding leaf’ 
class. First row: FD symptomatic leaves of M21 set. Second row: Confounding leaves of CF21 set. Third 
row: Confounding leaves of SB21 set.   
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ii. Grapevine trunk diseases 

 
For the detection of GTDs symptoms, the methodology that achieved the best results in FD leaf 
detection was adopted. This includes annotating images using the A1 method, employing the 
YOLOv8m architecture, and cutting images into patches (640*640*3) or whole image (1088*1216*3) 
as network inputs. Three training sets were compared to analyse the impact of grapevine growth 
stages on symptom detection. Table 29 compares these approaches for input images cut into patches 
and Table 30 for entire input images. 
 
 
Table 29. Comparison of the results of the YOLOv8m on patches from images acquired before and after 
the 25/11/22 for the GTDs symptoms detection. 

Regarding the results of Table 29, the first thing to note is the best performance on the 
DetGTD_since28 test set, even when trained on the DetGTD_till25 images (p=0.64, r=0.65) for the ‘Half 
head’ class, (p=0.43, r=0.34) for the ‘Short shoot’ class). This can be explained by the fact that during 
the analysis of a grapevine in an early stage, symptoms like short shoots can be easily mistaken for 
healthy shoots that have just emerged or are not yet densely covered in leaves. Regarding the ‘half 
head’, once again, the more substantial the vegetation, the more pronounced the absence of growth 
on one side becomes. As for the cankers, their very low count (139 in total across all annotations) 
prevents their accurate detection. The score (p=-, r=0) indicates that no canker was detected. The best 
results are achieved when training on the entire dataset, which includes a wider variety of symptom 
expressions, and testing on the DetGTD_since28 dataset ((p=0.63, r=0.67) and (p=0.42, r=0.53) for the 
classes ‘Half head’ and ‘Short shoot’ respectively). 
 
Table 30. Comparison of the results of the YOLOv8m on entire images acquired before and after the 
25/11/22 for the GTDs symptoms detection. 

 DetGTD_till25  DetGTD_since28 

Training set ‘Half 
head’ 

‘Short 
shoot’ 

‘Canker’  ‘Half 
head’ 

‘Short 
shoot’ 

‘Canker’ 

DetGTD_till25 (0.36, 0.65) (0.24, 0.56) (-, 0)  (0.64, 0.65) (0.43, 0.34) (-, 0) 

DetGTD_since28 (0.32, 0.45) (0.23, 0.45) (-, 0)  (0.56, 0.43) (0.47, 0.53) (-, 0) 

DetGTD_till25 +  
DerGTD_since28 

(0.56, 0.61) (0.26, 0.43) (-, 0)  (0.63, 0.67) (0.42, 0.53) (-, 0) 

        

 DetGTD_till25  DetGTD_since28 

Training set ‘Half head’ ‘Short 
shoot’ 

‘Canker’  ‘Half head’ ‘Short 
shoot’ 

‘Canker’ 

DetGTD_till25 (0.43, 0.71) (0.35, 0.65) 
(0.12, 
0.09) 

 (0.62, 0.71) (0.38, 0.24) (-, 0) 

DetGTD_since28 (0.45, 0.58) (0.1, 0.32) (-, 0)  (1, 0.25) (0.45, 0.62) (-, 0) 

DetGTD_till25 +  
DerGTD_since28 

(0.74, 0.59) (0.47, 0.35) (-, 0)  (0.85, 0.81) (0.58, 0.58) (-, 0) 
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The training and testing results on the full images followed the trend of patch-based 
processing, with the best outcomes observed for each training scenario when tested on the 
'DetGTD_since28' dataset. The best results are also achieved when training on all the available data 
and evaluating on the 'DetGTD_since28' test set, with (p=0.85, r=0.81) and (p=0.58, r=0.58) for the 
classes ‘Half head’ and ‘Short shoot’ respectively. These results are notably superior to those obtained 
with patch-based processing, except for the cankers which still remain undetected. Supplying the 
entire image enhances the detection of 'Half head' symptoms, as it allows for a clearer recognition that 
no growth occurs on one side of the grapevine. Additionally, for 'short shoots', comparing their sizes 
and shapes to the healthy ones on the same grapevine is easier with the full image, than with 
segmented patches.  

Reducing the resolution should not result in significant loss of performance since it is primarily 
the shape of the symptoms and their surroundings that are being analysed (such as the lack of foliage 
on shoots or the absence of vegetation on one side of the trunk). Figure 29 displays results of both 
successful and unsuccessful symptom detection on images from the ' DetGTD_till25 + DetGTD_since28' 
test dataset, using the training that yields the best outcomes for this specific dataset (training on whole 
images from the entire dataset).  
 

 
Figure 29. Examples of symptom predictions on images of grapevine affected by GTDs. First column: 
Ground truth. Second columns: predictions by the YOLOV8m. Boxes in red: 'Half head', in green: 'Short 
shoot'. 
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In Figure 29, the first example (first row) depicts a correctly detected 'half head' by the 
YOLOV8m algorithm. In the second example (second row), a 'half head' is not detected by the 
algorithm. The hypothesis was that, unlike the first example, the grass touching the 'half head' in the 
image is almost the same colour as the foliage, and therefore the algorithm doesn't recognize it as a 
'half head'. The third example (third row) show cases the accurate detection of a 'half head' (again with 
grass of a different colour than the foliage), along with correct identifications of 'short shoots,' 
although a few are missing. Finally, the last example (last row) shows 'short shoots' that are not 
detected by the algorithm. The photographed grapevine is in an early stage, and as seen before, the 
algorithm struggles to achieve good results on such images, even though the symptoms seem clear to 
the human eye. While some 'short shoots' were not detected in the previous example, in this case, 
none of the 'short shoots' were detected. 
 
 

B. Segmentation of symptomatic grapevine organs 
 
Another category of algorithms, tailored for predicting symptoms in images, has also been explored. 
These are segmentation algorithms, potentially better suited for identifying specific symptoms. 
 
 

 Segmentation neural networks and related methodology 
 

i. Choice of a relevant architecture 
 
Segmentation algorithms belong to a category of computer vision methods employed to divide an 
image into various segments or regions, where each segment corresponds to a unique object, area, or 
characteristic present in the image. The main objective of image segmentation is to break down the 
complexity of an image into meaningful and controllable components, simplifying the task of computer 
analysis and comprehension of the visual content. Semantic segmentation involves assigning a label 
(like ‘Trunk’ or ‘Foliage’) to individual pixels in an image, essentially classifying each pixel into a 
particular object category. This process offers a broad overview of the image's content. 

Several methods are available for achieving this task. One common approach is thresholding, 
where a specific intensity threshold is used to separate regions in an image based on pixel intensity 
values. Alternatively, clustering can be employed, grouping similar pixels into clusters by considering 
attributes like colour, intensity, or texture. Region Growing (Shih & Cheng, 2005) is another technique 
that begins with a seed pixel and progressively expands a region by incorporating adjacent pixels that 
satisfy particular similarity criteria. In recent years, the domain of image segmentation has been 
revolutionized by deep learning models, particularly CNNs. Architectures like U-Net (Ronneberger et 
al., 2015), FCN (Long et al., 2015), and Mask R-CNN (He et al., 2017) have introduced a paradigm shift 
in image segmentation by harnessing the power of deep learning to understand intricate features and 
relationships within images, resulting in significantly enhanced accuracy and performance of the pixels 
classification.  

ResUNet (Diakogiannis et al., 2020), a CNN architecture combining the advantages of two other 
popular architectures, ResNet and U-Net, has been chosen to be tested for symptom segmentation. 
Here's a breakdown of these two components: 

• U-Net: The U-Net architecture is widely used in image segmentation tasks. It consists of a 
contracting path (encoder) to capture contextual information and a symmetric expanding path 
(decoder) to generate a precise segmentation mask. The U-Net's architecture enables it to 
localize and segment objects within images effectively. 

• ResNet: Residual Networks, or ResNets, are a type of deep convolutional neural network 
architecture known for their skip connections, which help mitigate the vanishing gradient 
problem and enable the training of very deep networks. As already explained, ResNet 
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introduced the concept of residual blocks, where the network learns the residual (difference) 
between the input and the desired output, making it easier to optimize deep networks. 
 
The ResUNet architecture combines the U-Net's ability to perform semantic segmentation with 

the ResNet's skip connections for efficient training of deep networks. By integrating skip connections, 
the ResUNet architecture allows the network to capture both fine-grained and contextual features, 
making it well-suited for tasks like image segmentation where accurate boundary localization is crucial. 
The architecture essentially takes advantage of the U-Net's architecture for segmentation tasks and 
leverages the ResNet's residual connections to facilitate the training of deeper networks, leading to 
improved accuracy and convergence during training. Figure 30 illustrates the workflow of both U-Net 
and ResNet architecture. 
 

 
Figure 30. U-Net and ResUNet architecture. The input image has a depth of 3 (3 values per pixel), and 
the output is transformed into K dimensions (for pixel classification into K classes). 
 

Each training example is associated with a true class label. The true class label for each pixel is 
represented as a vector, where the element i, corresponding to the true class i is 1, and the rest are 0. 
The final convolution of the ResUNet produces raw scores or logits for each class. These logits are then 
transformed into probabilities using the Softmax function. The Softmax function ensures that the 
predicted probabilities sum up to 1. 

A more classical image processing algorithm was also tested to segment a certain type of 
symptom. This is the structure tensor (Budde & Frank, 2012). The results, although interesting, were 
outperformed by the neural network approach. For the sake of coherence and space saving, this 
approach has been removed from the main body of the manuscript. The structure tensor approach is 
detailed in Appendix 5, and its results are compared to those obtained by ResUnet for the 
segmentation of the target symptom. 
 
 

ii. Metrics 
 
In order to study and compare the results of these segmentation algorithms, two metrics were used. 
Firstly, since the classification is conducted at the pixel level, the 'pixel' metric was employed. It reflects 
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the classification outcomes at the pixel scale. However, it might not be very informative as numerous 
classification errors can occur, especially at the edges of objects, even when these are relatively well 
detected. For small symptoms or elongated symptoms, these edge errors can constitute a significant 
percentage. Additionally, precisely detecting every pixel of a symptom is not necessarily essential; 
what matters is accurate localization and classification of the symptom. Hence, a second metric was 
examined, termed the 'Object' metric. In this metric, if at least 50% of an object's pixels were correctly 
classified, the object is deemed correctly predicted. This metric enables a comparison of the number 
of symptoms correctly predicted or not. 
 
 

iii. Loss functions 
 
A study was also conducted regarding the loss function. Indeed, for the segmentation of certain 
symptoms, the number of pixels belonging to these classes can be considerably smaller compared to 
the number of pixels in other classes. This disparity in proportions can pose challenges during model 
training. In fact, deep learning models, like neural networks, learn by adjusting their parameters based 
on the examples in the training data. When one class is heavily outnumbered, the model might 
prioritize learning the majority class and perform poorly on the minority class. This results in an 
unbalanced model that cannot make accurate predictions for the minority class. They tend to overfit 
to the majority class, leading to poor performance on the minority class. These models use a loss 
function to quantify the difference between predicted and actual outcomes. In imbalanced datasets, 
it is important to choose a loss-function that takes into account these class imbalances. To study the 
impact of the choice of loss function, four loss functions have been tested:  
 

1. Categorical cross-entropy. The categorical cross-entropy loss calculates the dissimilarity 
between the predicted probabilities and the true class labels. Its formula is given in equation 
2: 

𝐶𝐸 = − ∑ 𝑦𝑖 . 𝑙𝑜𝑔(𝑦̂𝑖)

𝑁

𝑖=1

(2) 

 
where N  is the number of classes, 𝑦𝑖  is the i-th element of the true class label vector and 
𝑦̂𝑖  is the i-th element of the predicted probability vector. 
 
The closer the probability of belonging to the correct class is to 1, the closer the logarithm of 
that probability will be to 0. As a result, the value of the loss function will be close to 0. This is 
a basic loss function that doesn't take into account class imbalance issues. 
 

2. Weighted categorical cross-entropy. The weighted categorical cross-entropy is the same as 
the previous one except that class-specific weights are designed to balance the contribution 
of each class to the overall loss. Typically, the weight of a class is inversely proportional to its 
frequency in the training dataset. That is, classes with fewer samples get higher weights, and 
classes with more samples get lower weights. The formula is given in equation 3: 

𝑊𝐶𝐸 = − ∑ 𝑤𝑖 . 𝑦𝑖 . 𝑙𝑜𝑔(𝑦̂𝑖)

𝑁

𝑖=1

(3) 

 
 with wi the weight associated with the class i. 
 

3. Dice loss. The Dice loss measures the similarity between the predicted segmentation mask and 
the ground truth mask by comparing the overlapping regions of these masks. It is used to 
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evaluate how well the predicted segmentation matches the true segmentation. The formula 
(equation 4) for Dice Loss is:  
 

𝑫𝐿 = 1 −
2 .  ∑(𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 ∩ 𝐺𝑟𝑜𝑢𝑛𝑑𝑇𝑟𝑢𝑡ℎ)

∑ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 +  ∑ 𝐺𝑟𝑜𝑢𝑛𝑑 𝑇𝑟𝑢𝑡ℎ
(4) 

 
where Prediction represents the predicted segmentation mask, Ground Truth represents the 
true segmentation mask, ∩ denotes the intersection between two sets and ∑ represents the 
number of pixels in a set. 
 
By minimizing the Dice Loss during training, the model learns to generate segmentation masks 
that align closely with the ground truth masks. It focuses more on the overlapping regions and 
is less affected by the background regions that are usually larger in size. 
 

4. Twersky loss. Twersky Loss is a loss function introduced as an alternative to traditional loss 
functions, like the Dice Loss, for addressing the class imbalance issue in image segmentation 
tasks. This formula (equation 5) is as follow: 
 

𝑻𝑳 =
𝑻𝑷

𝑻𝑷 +  𝜶. 𝑭𝑵 +  𝜷. 𝑭𝑷
(𝟓) 

 
where TP represents true positives (correctly classified pixels), FN represents false negatives 
(missed pixels), FP represents false positives (misclassified pixels), α is a parameter that 
controls the emphasis on false positives and β is a parameter that controls the emphasis on 
false negatives. 
 
The Twersky Loss allows adjusting parameters α and β to customize the loss function's 
behaviour. By setting different values for these parameters, the loss function can be tailored 
to prioritize either precision or recall. For example, if α is set to a larger value, the loss function 
will be more sensitive to false positives, which might be desirable in scenarios where 
minimizing false positives is crucial. Conversely, if β is set to a larger value, the loss function 
will focus more on reducing false negatives, which could be important in tasks where avoiding 
missed detections is critical as the detection of symptoms.  
 
 

 Data pre-processing 
 
Three different image sizes were tested as input for the ResUNet: the whole image, thumbnails from 
the original image of size 512*512*3, following the methodology presented for the detection 
algorithms, with overlapping, and the same thumbnails shape (512*512*3) but also with a reduction 
of 4 times the number of pixels (removing every other row and column, resulting in 256*256*3 
thumbnails). This reduction aimed to improve computation times and potentially enhance algorithm 
results (for instance, in the case of symptomatic shoots of FD segmentation, this resolution reduction 
might prevent the detection of very thin green shoot tips that are not indicative of FD). During the 
prediction of test images using this last methodology, the resolution of the original image is 
reconstructed using bilinear interpolation. For the structure tensor, the whole images are used.  

The images were separated in the following way: 75 % in training set, 10 % in validation and 
15 % in test, while making sure that the proportions of pixels of each class were similar in each set. A 
stratified 5-fold cross-validation was performed on the methodology yielded to the best results (70% 
in training, 15% in validation, 15% in test). For the images in training, a data augmentation randomly 
applies one or more of the following operations: image rotation, pixel dropout, contrast adjustment, 
and brightness change. 
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 Datasets 
 

i. Flavescence dorée 
 
After having studied the main markers for FD, the coloured leaves, by using deep detection algorithm, 
the first symptom studied by segmentation method was the unlignified shoots. The ResUNet and 
structure tensor algorithms were initially tested for the segmentation of this symptom alone, using 
images from the dataset ‘SegFD’ where only the shoots were annotated. Subsequently, healthy 
bunches and symptomatic bunches of FD were annotated on the same images, and the ResUNet 
algorithm was retrained to segment these three classes on the same dataset. The description of these 
symptoms and the creation of segmentation masks were detailed in Chapter III Section D. 
 
 

ii. Grapevine trunk diseases 
 
Segmentation for the GTDs images was explored to delineate the grapevine trunk, its foliage, and the 
background, with the aim of potentially enhancing disease diagnosis. For this disease, only the 
ResUNet model was investigated using the ‘SegGTD’ dataset. 
 
 

 Results 
 

i. Flavesence dorée 
 
The comparison of results between the Structure Tensor algorithm and the ResUNet algorithm for 
segmenting symptomatic shoots of FD is available and discussed in Appendix 5. This section will only 
address the results obtained by ResUNet, which are superior for the segmentation of the symptomatic 
shoots of FD, in addition to the fact that ResUNet is capable of segmenting multiple types of symptoms. 
The results of the symptomatic shoots of FD segmentation by the ResUNEt are available in Table 31. 
 
Table 31. Symptomatic shoots of FD segmentation results at pixel and object scales using ResUNet. 

Algorithm Input size 
Pixel 

precision 
Pixel 
recall 

Object 
precision 

Object 
recall 

ResUNEt 2048*2448*3 (whole image) 0.53 0.59 0.74 0.52 

ResUNEt 512*512*3 (patches) 0.64 0.53 0.76 0.58 

ResUNEt 256*256*3 (1:4 patches) 0.69 0.58 0.82 0.59 
The ResUnet algorithm reached the best results for the Tversky loss function (those presented in this table), five levels of depth, 
α = β = 0.8 for batches of 30 images during 300 epochs. 
 

According to the results in Table 31, optimal performance was attained for the ResUNet by 
employing the 256*256*3 patches (512*512*3 image patches with 1:4 downsizing) with (p=0.82, 
r=0.59) for the object metric. This technique significantly bolsters precision during result comparisons 
(for the object metric, p=0.74 for the whole images as input and p=0.76 for the 512*512*3 patches). 
This phenomenon stems from the fact that petioles (leaf stems), resembling shoots in their elongated 
shape and green colour, are frequently predicted by the algorithm as they naturally appear. 
Nevertheless, the resolution reduction diminishes their distinctiveness in the images, given their 
slender nature, resulting in fewer predictions by the algorithm of them being branches. For 
comparison, none of the pixels of symptomatic shoots were predicted by the classic 'Categorical cross-
entropy' loss function. 

Subsequently, annotations for healthy and symptomatic bunches were added to those of 
shoots on the segmentation masks. The algorithm was then retrained to detect both symptomatic 
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shoots and bunches, as well as healthy bunches. The results of the segmentation of these 3 classes are 
presented in Table 32 and examples of prediction of these 3 classes are presented in Figure 31. 

 
Table 32. Results of the ResUNet for a 5-fold cross-validation with image patch of size 256*256*3. 

Class Pixel precision Pixel recall Object precision Object recall 

Symptomatic shoot 0.72 0.58 0.83 0.57 
Symptomatic bunch 0.85 0.47 0.78 0.40 
Healthy bunch 0.89 0.8 0.85 0.68 

 
For the segmentation of the symptomatic bunches, the precision was high, but the recall not 

so good ((p=0.78, r=0.40) for the object metric). This can be explained by the fact that i) the 
symptomatic bunches that had lost all their berries were very complicated to predict because of their 
very small size (a few pixels of thickness), and ii) the division of the resolution by 2 of the original 
images (to reduce the prediction time) reduced the size of the symptomatic bunches even further. The 
segmentation of the healthy bunches showed pretty good results ((p=0.85, r=0.68) for the object 
metric). Recall was also lower than precision. Once again, smaller bunches and bunches overlaid by 
leaves were less accurately detected. 
 

 
Figure 31. Examples of predictions of the ResUNet for the 3 classes. First column: raw image of a white 
grape variety and two of red grape variety. Second column: Prediction of the ResUNet overlaid with the 
image. In green: Symptomatic shoots, in yellow: symptomatic bunches, in blue: healthy bunches. 



77 
 

It can be seen in Figure 31 that the symptomatic shoots and bunches and the healthy bunches 
were rather well detected in these three examples. 

 
ii. Grapevine trunk diseases 

 
The results of the segmentation into 3 classes ('background', 'trunk', and 'foliage') in GTDs were studied 
using the ResUNet algorithm. The input consisted of either full images, image patches of size 
512*512*3, or 256*256*3 (with the resolution divided by 4 as in the previous section). Only the cross-
entropy and weighted cross-entropy (with weights corresponding to the inverse of the proportion of 

pixels for each class.) loss functions have been tested here, as the classes are not significantly 
imbalanced. While the 'trunk' class is a minority, it is in proportions such that the network cannot 
disregard this class to achieve good results. The results are presented in Table 33. The object-level 
metric is not used here since the objects of interest (trunk and foliage) are contiguous (there was only 
one object of these class in each image).  
 
Table 33. Results of the ResUNet for the segmentation of the GTDs images with the weighted cross-
entropy loss function. 

Input shape Trunk (p, r) Foliage (p, r) Background (p, r) 

2048*2448*3 (0.86, 0.95) (0.93, 0.92) (0.97, 0.97) 

512*512*3 (0.82, 0.89) (0.88, 0.87) (0.95, 0.94) 

256*256*3 (0.76, 0.54) (0.82, 0.84) (0.94, 0.93) 

 
Segmentation on large images performs better than using patch-based processing. This seems 

logical because providing the entire image to the network helps it understand the location of the trunk 
and foliage, which are almost always in the same positions. An overall view seems more appropriate 
for this segmentation. On a small patch, it can be challenging for the network to distinguish between 
the foliage of the studied grapevine and the foliage of the grapevine in the row behind for instance. 
The weighted cross-entropy performed better for each of the input shape. Best results for the cross-
entropy were for the input shape of 2048*2448*3 and were of (p=0.83, r=0.85) for the ‘Trunk’, (p=0.81, 
r=0.84) for the ‘Foliage’, and (p=0.95, r=94) for the ‘Background’ class. 

Figure 32 presents three examples of segmentation using the algorithm that achieves the best 
performance. In the first image, an example is shown where everything is working well: the grapevine 
is correctly segmented from the background, and the trunk is clearly distinguished from the rest. In 
the second image, two problems are apparent: grass is predicted as part of the foliage, and a small 
portion of the foliage is missing. However, it's noteworthy that the grass predicted as foliage is very 
close to the trunk, which also exhibits a 'Half head' symptom on that side. It's possible that the 
detection network might not have identified this 'Half head' due to the grass resembling foliage. Yet, 
through segmentation, even though some pixels of grass are wrongly detected as pixels of the ‘Foliage’ 
class, a clear distinction between them and the trunk is visible, likely enabling the accurate 
identification of the symptom later on. Regarding the third image, a portion of the vehicle is predicted 
as either trunk or foliage. The training dataset lacks sufficient images of this type (where the vehicle is 
visible) to accurately differentiate it from the rest. However, this should not be a problem moving 
forward, as long as it doesn’t distort symptoms. 
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C. Synthesis 
 
Whether it was for the detection or segmentation of FD symptoms, the results in precision and recall 
of the analyses were modest.  In the case of detecting symptomatic FD leaves, the best results were 
achieved for red grape varieties because white grape varieties displayed less prominent symptomatic 
FD leaves. There was no methodology for red grape varieties that consistently outperforms the other 
analysis methods   studied in this study. However, the YOLOv8m algorithm seems to perform better 
on average across these red varieties. For white grape varieties, one algorithm stands out: YOLOv8m 
using whole image inputs. Results for this methodology are, for the red and white variety, reaching the 
bests results with (p=0.81, r=0.63) for the CF21 test set and (p=0.62, r=0.75) for the SB21 test set. As 
for the segmentation of symptomatic shoots, symptomatic bunches, and healthy bunches, the best 
results are obtained with the ResUNet model by dividing images into 512*512*3 patches and reducing 
the resolution of each patch by a factor of four. The object metrics results are (p=0.83, r=0.57), (p=0.78, 
r=0.40) and (p=0.85, r=0.68) for respectively the ‘Symptomatic shoot’, ‘Symptomatic bunch’ and 
‘Healthy bunch’ classes. 

Regarding the detection of GTDs symptoms, the best precision and recall results are achieved 
with YOLOv8m using whole image inputs. Additionally, there is a noticeable difference in results 
between images acquired before and after 25/11/2022 (acquisition date appearing to mark a change 

Figure 32. Example of prediction with ResUNet for the segmentation of GTDs images. First column: 
raw images of white grape variety. Second column: prediction mask by the algorithm (in red: 'Trunk', 
in blue: 'Foliage', in black: all the rest). Third column: Overlay of the raw image and the predictions 
to segment the studied grapevine to the background. 
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in vegetation density). The best results for more advanced grapevine development stages are (p=0.85, 
r=0.81) for 'Half head' symptoms and (p=0.58, r=0.58) for 'Short shoot' symptoms. Unfortunately, the 
'Canker' symptoms are never detected due to their low frequency in the training dataset. Finally, the 
segmentation of GTDs images into three classes achieves its best results by using the entire images as 
input for the ResUNet algorithm. The results (using the pixel metric) are (p=0.86, r=0.95) for the 'Trunk' 
class, (p=0.93, r=0.92) for the 'Foliage' class, and (p=0.97, r=0.97) for the 'Background' class. 

The modest results of the symptom detection were somewhat expected, considering the 
complexity of the task (high variability in symptom expression, occlusion, presence of confounding 
symptoms). However, the redundancy and structure of the detected symptoms on the grapevine could 
potentially overcome some of their inaccuracies, in order to achieve a precise diagnosis at the vine 
scale. In the next chapter, the way to combine these detections will be explored in order to obtain the 
best possible plant-scale diagnostic outcomes. 
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In this chapter, the methodologies developed to address the challenge of disease diagnosis based on 
prior symptom detections are explored. The previous chapter demonstrated that it was feasible to 
associate a rich collection of indications with each image, encompassing both the evident disease 
symptoms and the confounding symptoms. These indications, originating from various sources, serve 
as a resource for potential disease detection. In this regard, two approaches have been explored to 
achieve the most accurate diagnosis possible. The first approach relied on feature extraction from the 
detected symptoms, followed by the application of a machine learning method, specifically Random 
Forest (RF) (Ho, 1995). The second innovative approach, hinges on representing the intricate network 
of detected symptoms in images as a graph. To efficiently exploit this graph structure, a Graph Neural 
Network or GNN (Scarselli et al., 2009) model has been applied. This approach has the potential to 
capture relationships between symptoms and minimize information loss during the association phase 
of detections. Throughout this chapter, both approaches will be examined in detail, highlighting the 
steps of their implementation, challenges encountered, and the results obtained. The workflows of 
these two 2-step methodologies are presented in Figure 33. 

Only the diagnosis of FD will be studied in this chapter. The numerous symptoms of the disease 
and confounding symptoms present in the images are well suited to the 2-step methodologies. 
However, when it comes to GTDs, an image of a grapevine affected by this disease contains on average 
only 2 symptoms. It thus seems inappropriate to apply such methods to associate detected symptoms. 

The symptom association methodologies (using either random forests or graphs) have partly 
been presented in previous articles (Tardif et al., 2022; Tardif et al., 2023a; Tardif et al., 2023b). This 
chapter brings an additional dimension by a deeper explanation of the algorithm’s principles and a 
more in-depth experimental evaluation of these methodologies. Regarding experimental design, 
variations are introduced in algorithm hyperparameters and new leaf detections obtained with the 
YOLOv8m algorithm were used as priors (while only the YOLOv4-tiny algorithm was used in the 
previous articles). 
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Figure 33. Representation of the two symptom association methodologies. Symptoms are detected in 
the same manner for both methods. In the RF methodology, a feature vector is calculated from these 
detections and is used as input by an RF classifier to provide a decision at the image scale. In the graph-
based methodology, a graph is created from the detected symptoms and uses as input of a Graph 
Neural Network to provide a decision at the image scale. 
 

 

A. Symptoms association using a Random Forest classifier 
 

 Feature vectors creation 
 
The RF methodology involves the creation of an input information vector. A specific information vector 
was created for each image. The procedure for creating the information vector was as follows: For 
each image, symptoms were predicted using symptom prediction algorithms trained on an 
independent dataset, as discussed in Chapter V. The ‘SegFD’ dataset was used for the segmentation of 
symptomatic shoots, symptomatic and healthy bunches. The ‘DetFD’ dataset was used for the 
detection of symptomatic leaves. The chosen segmentation algorithm that achieved the best results 
in Chapter V, ResUNet (Diakogiannis et al., 2020), took 256*256*3 pixel patches as input. Symptomatic 
leaves from FD were predicted in two ways: either by the YOLOv4-tiny algorithm (Bochkovskiy et al., 
2020), taking 416*416*3 pixel patches as input, or by the YOLOv8m (Jocher et al., 2023) algorithm, 
taking entire images of 1088*1216*3 pixels as input.  This allowed the study of the impact of slightly 
improved leaf prediction on the final classification, and answered the question if even better results 
could be expected by improving the average leaf detection outcomes. The trainings used to predict 
the symptomatic leaves were those whose results were presented in Chapter V. The symptomatic 
leaves of white grape varieties were predicted using networks trained on all white grape varieties 
(UB20 + UB21 + SB21), and those of red grape varieties were predicted using networks trained on all 
red grape varieties (CS20 + CF21 + M21 + CS21). A feature vector was computed from the detections 
made on the image. This vector was put at the input of the RF classifier which delivered a classification 
at the image scale in output (Figure 33). For the creation of the feature vector, 16 features were 
studied, as described below.  

From the detection of individual leaves, 8 parameters were calculated. The number of 
elements in each class, as well as the average confidence score of each class, were computed. A high 
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number of elements in either the ‘FD leaf’ or ‘Esca leaf’ classes, along with a high average confidence 
score, could indicate the presence of one of these two diseases. For the 'FD leaf' and 'Esca leaf' classes, 
the number of 'neighbouring' symptomatic leaves was calculated. This measurement was intended to 
help deciding whether symptomatic leaves were located on the same shoot, as was the case for a 
grapevine affected by FD or Esca. This measurement was calculated as follows: The number of leaves 
of the same class that were pairwise within a distance of less than 200 pixels (with the centre of 
bounding boxes as the reference point) was counted. This yielded the first 8 parameters of the feature 
vector: 

• x1: The total number of leaves in the ‘FD leaf’ class. 

• x2: The average of the ‘FD leaf’ class confidence scores. 

• x3: The total number of leaves in the ‘Esca leaf’ class. 

• x4: The average of the ‘Esca leaf’ class confidence scores.  

• x5: The total number of leaves in the ‘CONF leaf’ class. 

• x6: The average of the ‘Conf leaf’ class confidence scores 

• x7: The number of spatially close leaves of the ‘FD leaf’ class. 

• x8: The number of spatially close leaves of the ‘Esca leaf’ class. 
 

Then, based solely on the results of the segmentation algorithm, the following parameters 
were computed: the numbers of elements (a connected component issued by the segmentation 
algorithm) in the classes 'Symptomatic shoot', 'Symptomatic bunch', and 'Healthy bunch'. A large 
number of symptomatic shoots or bunches could indicate the presence of the disease, whereas a large 
number of healthy bunches could indicate the absence of the disease. 

In an attempt to differentiate between petioles or shoot tips that could be segmented as 
symptomatic shoots, the maximum thickness among segmented symptomatic shoots was calculated 
and included as a parameter in the feature vector. The minimum distance between a symptomatic 
shoot detection and a symptomatic bunch was indicated in the information vector. If the FD symptoms 
were localized in a specific part of the grapevine, as could be the case, this parameter could help 
confirm true predictions or, conversely, distinguish false prediction if the distance was large. Similarly, 
the minimum distance between a healthy bunch and a symptomatic branch was calculated, as the 
healthy bunch, if present, should ideally be far from the affected side of the grapevine. The significance 
of these last two parameters (distances between a symptomatic shoot and either a symptomatic bunch 
or a healthy bunch) was not certain, and the importance of the parameters in the final algorithm 
decision was produced to understand their real impacts on disease diagnosis. This introduced six new 
parameters to the feature vector: 

• x9: The total number of shoots in the ‘Symptomatic shoot’ class. 

• x10: The total number of shoots in the ‘Symptomatic bunch’ class. 

• x11: The total number of shoots in the ‘Healthy bunch’ class. 

• x12: The maximum thickness of the shoots in the ‘Symptomatic shoot’ class 

• x13: The minimum distance between instances of the ‘Symptomatic shoot’ and ‘Symptomatic 
bunch’ classes. 

• x14: The minimum distance between instances of the ‘Symptomatic shoot’ and ‘Healthy 
bunch’ classes. 

 
Finally, by combining the detections from the two algorithms, 2 new parameters were 

calculated. The minimum distances between an element of the 'symptomatic shoot' class and the 'FD 
leaf' class, as well as the 'Esca leaf' class, were computed. Again, a small distance could indicate the 
presence of FD. Regarding Esca, which doesn't produce symptoms on shoots or bunches, this 
parameter shouldn't typically hold significant importance in the final classification. This has been 
confirmed or refuted in the subsequent stages of the study. 

• x15: The minimum distance between instances of the ‘Symptomatic shoot’ and ‘FD leaf’ 
classes. 
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• x16: The minimum distance between instances of the ‘Symptomatic shoot’ and ‘Esca leaf’ 
classes. 

 
Many other studies (Albetis et al., 2017; Boulent et al., 2020; Musci et al., 2020) consider leaf 

information alone, sufficient to accurately diagnose FD and differentiate it from its confounding 
diseases. To determine if the addition of symptomatic information from shoots and bunches would 
bring a real improvement, two different information vectors were investigated. The first vector 
consisted only of features calculated from leaf detection (from x1 to x8), while the second contained 
all the parameters presented above (from x1 to x16). A total of 4 feature vectors were examined and 
summarized in Table 34. 
 
Table 34. Description of the studied feature vectors used for the diagnosis of FD with the RF 
methodology. 

Feature vector name Detection algorithm Features 

VectYOLOv4leaves YOLOv4-tiny Only leaf features 
VectYOLOv4all YOLOv4-tiny All features 
VectYOLOv8leaves YOLOv8m Only leaf features 
VectYOLOv8all YOLOv8m All features 

 
The Random Forest classifier was chosen to process these feature vectors. The following 

section provides a detailed explanation of its functioning and the reasons behind its selection among 
other possible approaches. 
 
 

 Random Forest classifier 
 
Random Forest is a powerful machine learning algorithm that falls under the category of ensemble 
learning methods. It is widely used for both classification and regression tasks. The algorithm is known 
for its effectiveness, robustness, and ability to handle complex datasets. 
Here's how the RF algorithm works: 

• Ensemble Learning Concept: RF is an ensemble of decision trees. Ensemble learning involves 
combining multiple models (in this case, decision trees) to improve the overall performance 
and generalization of the model. RF creates a "forest" of decision trees and then combines 
their predictions to make more accurate and robust predictions. 

• Decision Trees: Decision trees are a type of supervised machine learning model that makes 
decisions based on a series of if-else conditions. Each node in the tree represents a feature, 
and the tree is split into branches based on the feature values. At the leaf nodes, the model 
provides the final prediction. 

• Voting or Averaging: During the prediction phase, each tree in the RF makes its own prediction 
based on the input features. For classification tasks, the class that receives the most votes from 
the individual trees becomes the final prediction. For regression tasks, the predictions from all 
trees are averaged to obtain the final prediction. 

• Bootstrapping: RF employs a technique called "bootstrapping" to create different subsets of 
the original dataset. Bootstrapping involves randomly sampling the data with replacement, 
which means some samples may appear multiple times in a subset while others may not 
appear at all. This process creates diversity among the subsets. 

• Random Feature Selection: For each tree in the RF, only a subset of features is considered at 
each split. This introduces further randomness and diversity among the trees. The number of 
features to consider at each split is typically smaller than the total number of features. This 
process prevents the model from becoming too biased towards dominant features. 
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• Building Trees: Each decision tree in the RF is built using the bootstrapped dataset and the 
randomly selected subset of features. The trees are grown deep but not pruned, which can 
lead to overfitting for individual trees. However, since the RF combines predictions from 
multiple trees, the overfitting tendencies of individual trees are mitigated. 

 
Three hyperparameters are important during the training phase of a Random Forest classifier: 

i) The Number of Decision Trees (NDT), ii) the Maximum number of Samples (MS) that were used to 
train each individual decision tree in the ensemble. This parameter controls the amount of data that is 
randomly sampled for each tree's training process. iii) the Maximum number of Features (MF) that 
were considered when making a split at each node of an individual decision tree in the ensemble. Each 
node uses only one feature at a time to make its splitting decision, but this feature is chosen from a 
limited subset of features based on the value of MF. The workflow of a RF classifier is illustrated in 
Figure 34. 
 

 
Figure 34. Workflow of a Random Forest (RF) classifier. NDT stands for the Number of Decision Trees, 
MS for the Maximum number of Samples and MF for the maximum number of Features.  
 

The RF classifier has been chosen as the first methodology to associate the symptom 
detections and deliver a diagnosis at the image scale because of its advantages: 

• Feature Importance: RF provides a measure of feature importance. It calculates the 
contribution of each feature in the model's predictions. This information is valuable for 
understanding which features are most relevant to the task and can aid in feature selection or 
feature engineering. This renders RF a suitable methodology to initially test. 

• Easily and quickly implementable: RF allows a practical association of symptom methodology 
in order to obtain preliminary results and test different types of associations. 

 
Other approaches could have also been tested instead of RF for classifying the feature vectors. 

Among them, some popular can be mentioned: 

• Support Vector Machines (SVM) (Cortes & Vapnik, 1995): SVMs seek to find an optimal 
hyperplane that separates classes in a feature space. 
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• K-Nearest Neighbours (KNN) (Cunningham & Delany, 2007): KNN is a proximity-based 
classification method. It assigns a class to a vector based on the classes of the k nearest 
neighbours. 

• Artificial Neural Networks (ANN) (McCulloch & Pitts, 1943): Neural networks are deep learning 
models that can be used for classification tasks.  

 
 

B. Symptom association using a graph-based methodology 
 
To better preserve information about individual symptom detections (without reducing them to a 
feature vector) during the image-scale diagnosis, an attempt was made to represent these detections 
in the form of a "graph”. This graph was then processed by a GNN to deliver a classification at the 
graph scale, i.e. at the image scale. 
 
 

 Understanding graphs: types and characteristics 
 
A graph is a mathematical representation of structured data where entities, termed ‘nodes’ are 
interconnected via relationships known as “edges” or “links”. Nodes symbolize individual entities or 
elements present in the dataset. Each node is associated with a feature vector that encodes pertinent 
details about that entity. For example, in text data, this might include word embeddings, while in social 
networks, it could contain user attributes. Edges denote the connections or links between nodes. For 
instance, in a social network, edges could represent friendships. Not all nodes are required to be linked, 
and some nodes may have no connection to any other nodes. 

Graphs can be undirected or directed. In an undirected graph, edges have no direction. If 
there's an edge between nodes A and B, it implies that there's a relationship between A and B in both 
directions. Undirected graphs are used to represent relationships without a clear "source" and 
"destination”. However, in a directed graph, edges have a direction. An edge from node A to node B 
signifies a relationship that goes from A to B only. Directed graphs are used to model asymmetric 
relationships or flows of information.  

These connections can be bi-directional or unidirectional, and they might carry additional 
attributes or weights that signify relationship strength or type.  

Graphs can also be either heterogeneous (Wang et al., 2023) or homogeneous (Bo, 2023). A 
homogeneous graph is a type of graph where all nodes and edges belong to the same type or category. 
In other words, all nodes in a homogeneous graph share the same set of attributes and have the same 
type of relationships with other nodes. A heterogeneous graph, on the other hand, contains multiple 
types of nodes and edges, each associated with distinct attributes and relationship types. 
Heterogeneous graphs are particularly useful for representing complex systems where entities have 
various characteristics and interact in diverse ways. Figure 35 illustrates four different graph 
architectures. 
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Figure 35. Four possibilities when creating a graph (not exhaustive). The homogeneous graph has all 
its nodes in the same class (symbolized here by nodes of the same colour) and is undirected if the edges 
do not contain information about the target and source nodes. The heterogeneous graph has nodes of 
different types (nodes of different colours) and can also have edges of different types (edges of different 
colours). Heterogeneous graphs can be either directed or undirected. 
 
 

 Graph creation from symptom detections 
 
The initial part of the graph-based methodology is the same as that of the RF (see Figure 33). Symptoms 
were predicted using the two symptom detection algorithms. However, instead of creating an 
information vector from the detections, each detection is represented as a node in the graph. This 
way, each node can be provided with a distinct information vector, minimizing the loss of information.  
The hypothesis made here is that the proximity between symptoms is a relevant indicator for disease 
diagnosis, and therefore, it is necessary to connect them during the construction of the graph. To 
account for these distances in the graphs, nodes were connected if they were within a certain 
threshold distance (calculated in pixels using the centres of bounding boxes or predicted segmented 
objects). In this case, the created graphs were undirected, as there was neither a starting symptom nor 
and a target symptom. The decision was made to create homogeneous graphs because they are easier 
to manipulate. In the case of the final classification results had not been satisfactory, the creation of 
heterogeneous graphs would have been tested. All the detected symptoms have been placed in the 
same class and therefore share a feature vector of the same type. However, the classes of these 
symptoms have been encoded in the feature vector as dummy variables (1 if the node belongs to the 
class, 0 otherwise). Figure 36 illustrates the process of creating the graphs. The image has been overlaid 
by the graph for better understanding. However, the nodes did not have any specific spatial 
arrangement when graphs were created. The only known information was which nodes were 
connected to each other (which means: which symptoms were close). 
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Figure 36. Process of creating a graph. Example for an image showing a grapevine of red grape variety. 
Symptoms were first detected by the symptom predictions algorithms. For the creation of the graph, 
each predicted symptom represented a node (the circles) and has been connected to another one if 
their distance was less than 200 pixels. 
 

As for mathematical representation and computer implementation, a graph G is divided into 
two matrices: the feature matrix X and the adjacency matrix A:  

- The feature matrix X provides the initial node attributes. Each row corresponds to a node, and 
the columns represent the various attributes or features assigned to the nodes. The features 
could be binary, categorical, or continuous values that describe the properties of the nodes. In 
the case of a categorical feature, each modality (category) can be encoded by a dummy 
variable, i.e. a binary variable that indicates the belonging to the modality. 

- The adjacency matrix A is a square matrix of binary values that represents the relationships 
between nodes in a graph. In an undirected graph, the entry at position (i,j) indicates whether 
there is an edge between nodes i and j (i and j refer to the row number of the nodes in the 
feature matrix) with a 1 if they are linked or 0 otherwise.  

Figure 37 illustrates this decomposition into feature and adjacency matrices. 

 
Figure 37. Example of decomposing a 5-nodes graph into feature and adjacency matrices. The nodes 
are numbered according to their order of appearance in the feature matrix. Each node contains a 3-
features vector. 
 

To study the impact of node choice in graphs as well as of node linkage distance, various 
distance thresholds (100, 200, 400, 800 pixels) were evaluated (illustrated in Figure 38), and three 
distinct node sets (Figure 39) were compared: 

• The first node set, termed 'leafgraph,' was constructed exclusively from symptomatic leaf 
detections. Each node corresponding to a detected 'FD symptomatic leaf,' an 'Esca leaf,' or a 
'confounding leaf' was represented by an 8-feature vector: 
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leafgraph ∶  [1𝐹𝐷 , 1𝐸𝑆𝐶𝐴, 1𝐶𝑂𝑁𝐹 , 𝑆𝑐𝑜𝑟𝑒𝐹𝐷 , 𝑆𝑐𝑜𝑟𝑒𝐸𝑆𝐶𝐴, 𝑆𝑐𝑜𝑟𝑒𝐶𝑂𝑁𝐹  , 𝑥, 𝑦], 

 
where 1𝑍 equals 1 if the detected leaf symptom is of class 𝑍, and 0 otherwise. 𝑆𝑐𝑜𝑟𝑒𝑍 reflected 
the confidence score from the leaf detection algorithm for a leaf of class 𝑍, remaining 0 
otherwise. The coordinates 𝑥 and 𝑦 in pixels of each symptoms were also added in order to 
potentially assist the algorithm in recognizing spatial arrangements of symptoms within the 
image, in addition to the linked nodes. 

• The second node set encompassed all detected symptoms ('allgraph'). In addition to the first 
graph's attributes, the feature vector encoded the symptomatic shoots' length and width and 
the areas of both symptomatic and healthy bunches. Each node was thus described by a 15-
parameter vector:  
 

allgraph ∶  [1𝐹𝐷 , 1𝐸𝑠𝑐𝑎, 1𝐶𝑜𝑛𝑓 , 1𝑆ℎ𝑜𝑜𝑡 , 1𝑆𝑦𝑚𝑝𝑡.𝑏𝑢𝑛𝑐ℎ, 𝑆𝑐𝑜𝑟𝑒𝐹𝐷, 𝑆𝑐𝑜𝑟𝑒𝐸𝑠𝑐𝑎, 𝑆𝑐𝑜𝑟𝑒𝐶𝑜𝑛𝑓, 

                𝐿𝑒𝑛𝑔𝑡ℎ𝑆ℎ𝑜𝑜𝑡, Width𝑆ℎ𝑜𝑜𝑡 , Area𝑆𝑦𝑚𝑝𝑡.𝑏𝑢𝑛𝑐ℎ, Area𝐻𝑒𝑎𝑙𝑡ℎ.𝑏𝑢𝑛𝑐ℎ, 𝑥, 𝑦] 

 

• The third node set ('allgraph_withoutconf') mirrored the second, but without the information 
on the ‘Confounding leaf’ to investigate the impact of this symptom on the prediction:  
 

allgraph_withoutconf ∶ [1𝐹𝐷 , 1𝐸𝑠𝑐𝑎, 1𝑆ℎ𝑜𝑜𝑡 , 1𝑆𝑦𝑚𝑝𝑡.𝑏𝑢𝑛𝑐ℎ, Score𝐹𝐷, Score𝐸𝑠𝑐𝑎 , 

                                               Length𝑆ℎ𝑜𝑜𝑡 , Width𝑆ℎ𝑜𝑜𝑡 , Area𝑆𝑦𝑚𝑝𝑡.𝑏𝑢𝑛𝑐ℎ, Area𝐻𝑒𝑎𝑙𝑡ℎ.𝑏𝑢𝑛𝑐ℎ, 𝑥, 𝑦] 

 
These symptoms, often highly prominent in the images, could either obscure useful 

information and lead to poorer results or enhance the ability to effectively distinguish FD from its 
confounding diseases. 
 

 
Figure 38. Illustration of the graph creation with increasing link distance thresholds. a) Raw image, b) 
symptom detections. Graph with a distance threshold of c) 100, d) 200, e) 400 and f) 800 pixels. The 
detected symptoms and other occurrences are represented by different colours: in purple ‘Confounding 
leaf’, in red ‘FD leaf’, in yellow ‘Symptomatic bunch’, in green ‘Symptomatic shoot’, in blue ‘Healthy 
bunch’. 
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Figure 39. Comparison of the graphs issued from 3 node sets. a) Raw image, b) symptom predictions. 
Graphs created from the 3 node sets: c) ‘leafgraph’ only, d) ‘allgraph’, e) ‘allgraph_withoutconf’. 
Distance threshold was 100 pixels for the 3 configurations.   
 
 

 Graph classification algorithm 
 
Algorithms adapted to graph data can be applied to various tasks, which often fall into three main 
categories: node-level tasks, link-level tasks and graph-level tasks. Node-level tasks focus on individual 
nodes, including classification (Bhagat et al., 2011; Xiao et al., 2021), embedding learning (Garcia Duran 
& Niepert, 2017; Pan et al., 2020) and anomaly detection (Akoglu et al., 2015; Ma et al., 2021). These 
tasks offer insights into the characteristics and behaviours of individual nodes. Link-level tasks revolve 
around analysing and predicting the connections within a graph. These tasks include link prediction 
and classification (M. Wang et al., 2021; M. Zhang & Chen, 2018). Graph-level tasks are centred around 
understanding and analysing entire graphs as holistic entities. These tasks involve the classification 
(Morris, 2022), regression (Saigo et al., 2009), or generation (Yang et al., 2018; Zhu et al., 2022) of 
entire graphs based on their structural, topological, or attribute properties. Graph classification entails 
assigning labels or categories to entire graphs. Graph regression focuses on predicting continuous 
graph-level properties. Graph generation aims to create new graphs that adhere to certain predefined 
patterns or distributions.  

In this chapter, the focus will be on the graph-level task, specifically graph classification. 
Several algorithms and approaches are suitable for graph classification. For instance, graph kernels 
(Kriege et al., 2020; Vishwanathan et al., 2010) assess graph similarities by considering subgraph 
patterns and structural features. Inspired by the success of transformers in natural language 
processing, graph transformers (Hu et al., 2020; Yun et al., 2019) leverage self-attention mechanisms 
for effective graph classification. Graph autoencoders (Pan et al., 2018) enable unsupervised 
representation learning for graphs, and the acquired embeddings can be applied to downstream 
classification tasks. GraphSAGE (Hamilton et al., 2017) emerges as a noteworthy graph-based deep 
learning algorithm designed to address various graph-related tasks, with a particular emphasis on 
efficiency for handling large graphs. Graph Convolutional Networks (GCNs) (S. Zhang et al., 2019) are 
also a prominent choice for graph classification, employing convolutional operations to learn node 
representations that can be employed for graph-level classification. GCNs are part of a broader class 
of GNNs (Wu et al., 2021). GNNs have been studied for graph classification in this chapter. 
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iii. Graph Neural Networks 
 
A GNN is a type of neural network model specifically designed to work with data structured as graphs. 
The main idea behind GNNs is to extend traditional neural network architectures to accommodate 
graph-structured data. Indeed, there is a lot of similarity between CNNs and GNNs. Both architectures 
are based on a stacked layer structure. Each layer performs specific operations to extract information 
at different scales or levels of abstraction. Both GNNs and CNNs use local operations to process data. 
CNNs apply local convolutions to image regions, while GNNs aggregate information from local 
neighbours in a graph. Both methods can use pooling techniques to reduce the size of either the image 
or the graph, in order to extract information at different scales and to obtain a condensed and 
representative form for the classification step. This is often performed in the same way for both 
methods: through an MLP.  These common steps are illustrated and compared in Figure 40. 

 
Figure 40. Comparison between the key steps of CNNs and GNNs. For CNNs, image pixels are 
represented by squares. Local information is processed through convolution operations. A 3x3 
convolution is shown here. Information from neighbouring pixels is associated with information on each 
processed pixel (in red). The same principles are applied for GNNs, except that only information from 
nodes connected to the target node (also shown in red) is associated with the node under study. For 
the pooling step, the one depicted for CNNs is the widely used MaxPooling2D 2x2 pixels, where a 2x2 
sliding window extracts the pixel with the highest score (darker colours indicating higher scores). For 
GNNs, this operation is performed by forming node clusters. These two steps (convolution/aggregation 
and pooling) can be applied multiple times to extract features at different levels. Finally, the mainly 
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used classification step is the same for both architectures: the final representation of the image or 
graph is flattened into a 1D vector and fed into an MLP that outputs the class prediction. 
  

GNNs can operate directly on graph data by considering both the nodes and their neighbouring 
nodes' information. Here's a basic overview of how GNNs work: 

• Graph Representations: Provide to the network a pair of feature and adjacency matrix for each 
graph. 

• Neighbourhood Aggregation: GNNs update a node's representation by aggregating 
information from its neighbouring nodes. This can be done through a message-passing 
function (Equation 6). The idea is that the nodes are updated based on their features and the 
features of their neighbours, capturing both local and global structure of the graph. That is 
why the choice of nodes linked together is important. This aggregation is usually performed 
by computing a weighted sum or a combination of the neighbouring nodes' features. 

• Learnable Parameters: GNNs include learnable parameters, just like traditional neural 
networks. These parameters are used to combine and transform node features during the 
aggregation process. 

• Layer Stacking: Like other neural networks, GNNs can have multiple layers stacked on top of 
each other. In each layer, node representations are updated based on their aggregated 
neighbourhood information. This allows the model to capture information from nodes that are 
further away in the graph. 

• Activation Function: After aggregation, an activation function (usually ReLU or similar) is 
applied to the aggregated features, introducing non-linearity to the model. 

• Output and Prediction: The final node representations can be used for various downstream 
tasks, such as node classification, link prediction, or graph classification. In this study case, the 
final node representation is flattened and an MLP with a final Softmax operation is used for 
graph classification. 

 
Message passing: given a graph G (A, X) with n nodes and c feature channels, 𝐴 ∈ 𝑀𝑛(𝑛) representing 
its adjacency matrix, 𝑋 ∈  R𝑛.𝑐 representing its feature matrix and c’ the number of output feature 
channels, the message passing function used throughout the experiences of this chapter can be written 
as in equation 6: 

𝑍 = 𝑓(𝐷̂−1. 𝐴̂. 𝑋. 𝑊) (6) 
 
with 𝐴̂  =  𝐴 +  𝐼 the adjacency matrix of the graph with added self-loops,  𝐷̂ is the diagonal degree 
matrix of 𝐴̂ with 𝐷̂𝑖𝑖 = ∑ 𝐴̂𝑖𝑗𝑗 , 𝑊 ∈  R𝑐.𝑐′ the matrix of trainable parameters, f the non-linear 

activation function and 𝑍 ∈  R𝑛.𝑐′ the output of the message passing function. 
 
This message passing function can be separated into 4 steps:  

1. A linear transformation of the node matrix is executed using 𝑌 = 𝑋. 𝑊. This process maps the 
original c feature channels to c′ channels. 

2. The operation 𝐴̂. 𝑌 disseminates node-related information to both neighbouring nodes (nodes 
linked to the studied node) and the node itself. That is why self-loops were added to 𝐴, to take 
into consideration the feature vector of the studied node when aggregating the information 
of the linked nodes). 

3. Normalization of each new feature vector by multiplying with 𝐷̂−1, in order to keep a fixed 

feature scale after feature vector aggregation. In fact, 𝐷̂𝑖𝑖 contain the number of linked nodes 
to the i-th node +1 with the addition of the self-loops. 

4. Application of the non-linear function f. 
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iv. Pooling functions 
 
Similar to image processing, pooling layers are crucial for enhancing performance in graph 
classification. They help reduce the dimensionality of graph representations, capture important 
features, and improve efficiency in downstream tasks like classification. The challenge was how to 
reduce the number of nodes in the graphs without losing useful information for classification. These 
pooling functions can occur between each aggregation phase, gradually reducing the graph's size, or 
at the end of the sequence of message passing functions to leverage a comprehensive understanding 
of the graph, enabling a more effective selection of important nodes. These pooling functions can be 
trainable or non-trainable and may have hyperparameters. Three pooling functions have been tested: 

• SortPooling (M. Zhang et al., 2018). It is used at the end of the several consecutive message 
passing functions. The idea behind the SortPooling is to sort nodes based on a certain criterion, 
select the top nodes, and then aggregate their features to create a representative graph-level 
feature vector. It is then fed into an MLP for the final graph classification. The hyperparameter 
K in this pooling function allow the selection of the K-top nodes. Following the procedure 
described in the paper by Zhang et al. (2018), the several outputs of the message passing 
functions are concatenated together, allowing the extraction of multi-scale substructure 
features. In the concatenated output, each row can be regarded as the “feature descriptor” 
(of size m) of a node, encoding its multi-scale local substructure information. The last message 
passing function maps the feature channels into 1 single feature channel, and this channel is 
used to perform the sorting.  

The nodes in the concatenated output are subsequently ranked based on the scores 
obtained from this final message passing layer. Only the nodes achieving the top K scores are 
retained. In doing so, a consistent ordering is enforced for the graph vertices, enabling the 
training of conventional neural networks on the sorted graph representations. When using this 
pooling layer, 1-D convolutions (sliding a filter over a one-dimensional sequence) are used 
before the MLP. The first 1-D convolution layer has a filter size and step of size m, in order to 
sequentially apply filters on node’s feature descriptors. Subsequent to this, a sequence of 
MaxPooling layers and 1-D convolutional layers are added in order to learn local patterns on 
the node sequence. The workflow of the GNN with the SortPooling layer is presented in Figure 
41. 
 
 

 

• DiffPool (Ying et al., 2018). It aims to learn hierarchical representations of graphs by iteratively 
coarsening the graph structure and features to reduce the computational complexity of GNNs 
while preserving important information. Unlike SortPooling, this pooling function is applied 
after each message passing function or stack of message passing functions in order to gradually 

Figure 41. Workflow of the GNN with the SortPooling layer (Zhang et al., 2018). 
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reduce the size of the graph. DiffPool performs graph pooling by selecting a subset of nodes 
to form a coarser representation of the graph. DiffPool employs a learnable mechanism to 
assign pooling scores to nodes. To achieve this, two GNN layers are defined with distinct roles 
(each composed of a stack of message passing functions and with l the layer number):  
 

o 𝐺𝑁𝑁𝑙,𝑒𝑚𝑏𝑒𝑑  which, as defined above, is responsible for learning a new representation 

Z of each node through linear transformation, aggregation, and non-linear 

transformation. It can be written as in equation 7 (with 𝐴(𝑙−1) and 𝑋(𝑙−1) respectively 
the adjacency matrix and the feature matrix at layer 𝑙 − 1: 

 

𝑍(𝑙) = 𝐺𝑁𝑁𝑙,𝑒𝑚𝑏𝑒𝑑(𝐴(𝑙−1), 𝑋(𝑙−1)) (7) 

 

o 𝐺𝑁𝑁𝑙,𝑝𝑜𝑜𝑙  which is responsible for calculating the pooling scores s for each node. These 

scores are represented in the matrix S, where at row i and column j is indicated the 
probability for node i to belong to cluster j. Its calculation at layer l is as written in 
equation 8: 
 

𝑆(𝑙) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝐺𝑁𝑁𝑙,𝑝𝑜𝑜𝑙(𝐴(𝑙−1), 𝑋(𝑙−1))) (8) 

 

After calculating the new representation of each node 𝑍(𝑙) and the probabilities for each node 

to belong to each future cluster j contained in 𝑆(𝑙), the new feature matrix 𝑋(𝑙) (equation 9) 

and adjacency matrix 𝐴(𝑙) (equation 10) accounting for the clustering are calculated in the 
following way: 
 

𝑋(𝑙) = 𝑆(𝑙)𝑇𝑍(𝑙) (9) 

𝐴(𝑙) = 𝑆(𝑙)𝑇𝐴(𝑙−1)𝑆(𝑙) (10) 
 
The graph representations at different stages are not stacked, and after a certain number of 
iterations of message passing functions and poolings, the final graph representation at layer 𝑙,  

𝑋(𝑙) , is passed to the layers responsible for the classification. 𝑋(𝑙) is flattened and the MLP 
classifies it. The entire DiffPool process is differentiable, allowing it to be trained in an end-to-
end manner with backpropagation. The pooling scores, coarsened graphs, and GNN 
parameters are all learned simultaneously through gradient-based optimization. The workflow 
of the GNN with DiffPool layer is presented in Figure 42. 

 

 
Figure 42. Workflow of the graph classification with 2 DiffPool layers. The input graph is 𝐺(𝐴0, 𝑋0) and 
the output is the classification of the graph.  
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• MinCUT Pooling (Bianchi et al., 2020). The principle of MinCUT Pooling is the same as for 
DiffPool, which is to form node clusters and aggregate nodes belonging to the same clusters 
in order to create a new graph representation. However, unlike DiffPool which employs a 
separate stack of MP function dedicated to determine pooling score (𝐺𝑁𝑁𝑙,𝑝𝑜𝑜𝑙), MinCUT 

Pooling calculates these scores directly on the new node features (output of the 𝐺𝑁𝑁𝑙,𝑒𝑚𝑏𝑒𝑑). 
The goal of the partitioning is to create clusters of nodes that are densely connected within 
the clusters but have sparse connections between clusters. The aim is to exert greater control 
over node grouping by clustering together nodes that are interconnected while establishing 
clusters as distinct as possible. This is achieved by finding a cut in the graph that minimizes the 
number of edges between clusters while maximizing the number of intra-cluster edges.  

The learning of a new representation 𝑍(𝑙)of the nodes is the same as presented in equation 7. 
However, the clustering is not performed through a second GNN, but by directly applying to Z 
an MLP with a Softmax on the output layer, as presenting in equation 11: 
 

𝑆(𝑙) = 𝑀𝐿𝑃(𝑍(𝑙)) (11) 

 

Each row i of 𝑆(𝑙) corresponds to the soft cluster assignment of the feature vector of node i 

contained in 𝑍(𝑙). The cluster assignment is computed from the node feature. However, due 
to the MLP function, clusters are likely to contain nodes that are both strongly connected and 
with similar features. Then, an auxiliary loss 𝐿𝑢 is computed at each new cluster assignment to 
optimize this clustering (equation 12): 
 

𝐿𝑢 = 𝐿𝑐  +  𝐿𝑜 
 

𝑤𝑖𝑡ℎ 𝐿𝑐 = −
𝑇𝑟(𝑆(𝑙)𝑇𝐴(𝑙−1)𝑆(𝑙))

𝑇𝑟(𝑆(𝑙)𝑇𝐷(𝑙−1)𝑆(𝑙))
(12) 

 

𝑎𝑛𝑑 𝐿𝑜 = ‖
𝑆(𝑙)𝑇𝑆(𝑙)

‖𝑆(𝑙)𝑇𝑆(𝑙)‖
𝐹

−  
𝐼𝑘

√𝑘
‖

𝐹

 

 

where 𝑇𝑟 is the trace of the matrix (the sum of its diagonal coefficients), 𝐷(𝑙−1) the degree 

matrix of 𝐴(𝑙−1), ‖ ‖𝐹 the Frobenius norm (the square root of the sum of the squared values 
of all the elements in a matrix), k the number of clusters required at layer 𝑙 and 𝐼𝑘 the identy 
matrix of order 𝑘. 
The term 𝐿𝑐 can be rewritten simply as in equation 13:  
 

 − 
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑖𝑛𝑘𝑠 𝑤𝑖𝑡ℎ𝑖𝑛 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑖𝑛𝑘𝑠
 , or  

−
(𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑖𝑛𝑘𝑠) − (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑖𝑛𝑘𝑠 𝑎𝑚𝑜𝑛𝑔 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑠)

𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑙𝑖𝑛𝑘𝑠
(13) 

  
Hence, the closer this term is to -1 (the minimum), the more the total number of links within 
the clusters equals the total number of links in the graph, indicating very few links between 
nodes of different clusters. Minimizing this term indeed aims to create the most distinct 
clusters possible. However, this minimum can be achieved for clusters that are not desirable. 
For example, one could consider a graph with 10 000 nodes all interconnected in a certain way, 
and 4 other nodes not connected to any others. Five node clusters are desired to be created. 
Minimizing the term Lc would lead to the 10 000 interconnected nodes being grouped in the 
same cluster, and the 4 isolated nodes each placed in one of the other 4 clusters. This does not 
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seem like a relevant way to cluster the graph. Another undesirable outcome of minimization 
would be to classify all the nodes of a graph into the same cluster. 𝐿𝑐 is bounded by: −1 ≤
 𝐿𝑐 ≤ 0. 

To avoid this, the term  𝐿𝑜is added to encourage node clusters to be of similar size. 𝑆(𝑙)𝑇𝑆(𝑙) is 
a diagonal matrix containing at row and column i the number of nodes grouped in cluster i. 

The matrix 
𝑆(𝑙)𝑇𝑆(𝑙)

‖𝑆(𝑙)𝑇𝑆(𝑙)‖
𝐹

 can be seen as the diagonal matrix of the number of nodes in each cluster 

relatively to the total number of nodes. The trace could have been used instead of the 
Frobenius norm, but this norm, squaring each element individually, takes better into account 
the individual variations of each element, and thus the differences in size between the clusters. 

Finally, 𝐼𝑘 can be seen as the rescaled 𝑆(𝑙)𝑇𝑆(𝑙) where the number of nodes is perfectly 
partitioned among the 𝑘 clusters. In addition, if the number of nodes is perfectly partitioned 

among the 𝑘 clusters, ‖𝑆(𝑙)𝑇𝑆(𝑙)‖
𝐹

 can be written as √𝑘. 𝑛 with n the number of nodes in each 

cluster. The two matrices of  𝐿𝑜 are then element-wise equal and the  𝐿𝑜 is minimised. 0 <
𝐿𝑜 ≤  2 as the two matrices of  𝐿𝑜 have unitary norm. 
𝐿𝑜 is commensurable to 𝐿𝑐  and the two terms can be safely summed without rescaling them. 
𝐿𝑢 = 𝐿𝑐  +  𝐿𝑜 is bounded by  −1 <  𝐿𝑢 ≤  2 and minimizing it simultaneously aims to evenly 
distribute the nodes across each cluster while also striving to create groups of nodes well-
distinct from each other. The rest of the algorithm follows the same steps as explained for 
DiffPool. The main advantage of MinCut Pooling is that it can lead to more controlled and 
interpretable pooling results. 

 
 

C. Experiments 
 
Similar to the investigation of CNNs for image-scale diagnosis (Chapter IV), several different 
experiments were examined. In fact, the same datasets as those used for CNNs study were used to 
allow for a comparison of the performance of these three methodologies. The same data splitting was 
also applied (5-fold stratified cross-validation with the same images in each fold as in Chapter IV 
Section B). The only difference was that a validation set didn’t play a role in training the RF. As a result, 
the data that constituted the validation sets during the training of the CNNs or GNNs have been placed 
into the training sets of the RF. The testing sets remained the same for the 3 methodologies. 

Initially, the 'CS20' dataset (Cabernet sauvignon, red variety) from 'ClaFD' was studied with the 
RF methodology because it contained the highest proportion of 'CONF+' images (22 %, as a percentage 
of the total number of images). The RF was trained and tested on this dataset with/without the 'CONF+' 
images, using the 4 feature vectors, in order to analyse performances and parameter importances in 
each scenario.  

The study of the RF was also conducted on the 'UB20' dataset from 'ClaFD' to compare the 
results in parameter importances with those obtained on the ‘CS20’ dataset with images from a white 
grape variety (Ugni blanc, white variety). This dataset contains very few 'CONF+' images (4%). 
Training and testing were performed separately on all red grape varieties (16% of ‘CONF+ images) and 
all white grape varieties (3% of ‘CONF+ images) within 'ClaFD' for both RF and GNN methodologies. 
The purpose of these tests was to compare the results of the two methodologies and to assess whether 
or not increasing the training dataset and the diversity of symptom expression improved performance 
or not for both methodologies.  

Lastly, training including all images (both red and white grape varieties combined, 10% of 
‘CONF+’ images) was tested to investigate whether any particularities in detections, distributions, or 
spatial arrangements of red and white grape varieties, if present, enhanced the RF and GNN 
methodologies performance when present in the same training database. 

The different datasets studied, along with their total number of images, the number of images 
in the 'FD' class, and the number of images in the 'CONF+' class, are indicated in Table 35. 
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Table 35. Summary of the various datasets on which the RF methodology was trained and tested, along 
with a reminder of their respective total image counts, the number of images grapevines affected by 
FD, and the number of images displaying highly confounding symptoms. 

Training and testing set Total number of 
images 

Number of ‘FD’ 
images 

Number of ‘CONF+’ 
images 

CS20 without ‘CONF+’ 204 72 0 

CS20 with ‘CONF+’ 260 72 56 

UB20 192 83 8 

CS20 + CS21 + CF21 + M21 442 214 72 

UB20 + UB21 + SB21 413 157 10 

ClaFD 787 370 82 

 
The same data augmentation was also performed for all experiments. It involved augmenting 

the raw images and then performing symptom detections on these new images. As a result, the 
symptom detections were different, and new vectors and graphs were created. This data 
augmentation was the same as for the CNNs methodology (Chapter IV Section B).  

During each training of the RF, three of its hyperparameters were studied: i) The Number of 
Decision Trees (NDT, either 50, 100 or 500), ii) the Maximum number of Samples (MS, either 50%, 60% 
or 70% of the training set), iii) the Maximum number of Features (MF, either 1, 2 or 3). 

For each of the algorithms, a range of MP functions between 0 and 4 were tested for the 
classification of the graphs, with 0 indicating that the graph is directly flattened and fed into the MLP. 
For each MP function, the c feature channels of each node feature were mapped into 16 feature 
channels by the linear transformation of the node matrix. 

The SortPooling layer was integrated after the consecutive MP functions. The primary concept 
of the SortPooling involved selecting the top k nodes based on the score obtained after applying an 
additional MP function, which maps each node features into a single feature channel. These selected 
top k nodes were subsequently employed for the graph classification process. Tests were conducted 
using different values of k, specifically 10, 20, 50, and 100. 

The DiffPool layer was also applied after each MP function. The value of k assigned to the final 
DiffPool layer (which represents the number of node clusters created by the pooling layer) was set to 
either 10 or 20. For each consecutive MP function and DiffPool layer leading up to this final DiffPool 
layer, the value of k was doubled. For instance, in the case of 3 stacks of MP function and DiffPool 
layer, k took respectively the values {40,20,10} or {80, 40, 20}. The same approach was adopted during 
the testing of the MinCut pooling layer. 
 
 

D. Results 
 
The initial results only concern those obtained through the RF methodology as it allowed visualizing 
the importance of each parameter in the information vector. Therefore, it allowed confirming or 
disproving the significance of considering symptoms other than foliar symptoms for the automated 
classification of FD. The results presented for the RF methodology are the best obtained for each 
feature vector. Therefore, the parameters of the Random Forest indicated in the tables are the ones 
that led to the best results. 

The initial results presented in Table 36 are from the cross-validation conducted on the 'CS20' 
dataset without its 'CONF+' images.  
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Table 36. RF results for the 5-fold cross-validation on CS2O without ‘CONF+’ images for the FD study.  

Feature vector RF parameters 
(NDT, MF, MS) 

FD precision FD recall 

VectYOLOv4leaves (500, 1, 0.5) 1 1 

VectYOLOv4all (100, 3, 0.6) 0.93 1 

VectYOLOv8leaves 
All except  
(50, 1, 0.5) 

(100, 2, 0.6) 
1 0.93 

VectYOLOv8all 
(100 & 500, 2 & 3, 0.5) 

(50 & 100 & 500, 3, 0.7) 
 

1 0.93 

NDT, MF and MS stand for the Number of Decision trees, the Maximum number of Features and the Maximum number of 
Samples respectively. 
 

It can be observed that without the 'CONF+' images, the vector constructed solely with leaf 
information achieved the best results for leaves predicted with YOLOv4-tiny (outperforming YOLOv8m 
on the grape variety Cabernet sauvignon).  Moreover, the results were perfect, with both precision 
and recall of 1. Furthermore, it can be observed that adding information about other symptoms (on 
shoots and bunches) besides the leaves decreased precision (p=0.93), leading to false positives in 
predicting images of vines affected by FD.  

The analysis of parameter importance scores during one of the cross-validation training 
sessions using the 'VectYOLOv4all' vector was performed and is presented in Figure 43. This score 
indicates how much each feature contributes to the predictive capacity of the model and to the 
reduction of error. The higher the importance score, the greater the impact the feature has on the 
model's predictions. The calculation is based on how individual trees within the RF utilize each feature 
to conduct splits. Specifically, when trees make decisions at each node by dividing the data, the 
features that lead to the most informative and distinct splits contribute more to the overall prediction. 
 
 

 
Figure 43. Feature importance scores of the training on CS20 without 'CONF+' with VectYOLOv4all for 
the FD study. 



98 
 

 
It can be observed in Figure 43 that even when training the algorithm with other symptoms 

apart from the leaves, the 5 most important criteria are solely related to the leaves. Specifically, the 
top 4 criteria that stand out from the rest are the number of elements and spatially close elements of 
the 'FD leaf' and 'Esca leaf' classes. When the dataset doesn't include 'CONF+' images, adding 
parameters related to other symptoms only confuses the algorithm, as demonstrated by the results 
presented in Table 37. These results were compared to those from the same dataset, CS20, but this 
time including the images from the 'CONF+' class. Results are presented in Table 37. 
 
Table 37. RF results for the cross-validation on CS2O images, including CONF+ images, for the FD study. 

Feature vector RF parameters 
(NDT, MF, MS) 

FD precision FD recall 

VectYOLOv4leaves All 0.85 0.79 

VectYOLOv4all 
(500, 1 & 2 & 3, 0.5) 
(500, 3, 0.6 & 0.7) 
(100, 1, 0.6 & 0.7) 

0.87 0.93 

VectYOLOv8leaves 
(50, 1 & 3, 0.5) 

(500, 3, 0.6) 
(500, 2, 0.7) 

0.8 0.86 

VectYOLOv8all 
(50, 3, 0.7) 

(100, 3, 0.5) 
(500, 3, 0.6) 

0.86 0.88 

NDT, MF and MS stand for the Number of Decision trees, the Maximum number of Features and the Maximum number of 
Samples respectively. 
 

Firstly, it can be observed in Table 37 that the addition of 'CONF+' images led to worse results 
for all the studied feature vectors. Moreover, this time, the vectors that took into account all the 
symptoms achieved better results (p=0.87, r=0.93) for the ‘VectYOLOv4all’. The vectors created with 
the YOLOv4-tiny detection algorithm once again yielded superior results. By analysing the importance 
scores of features for the feature vector VectYOLOv4all, as proposed in Figure 44, the change in their 
scores became evident.  
 

 
Figure 44. Feature importance scores of the training on CS20 with 'CONF+' with VectYOLOv4all 
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When looking at Figure 44, the most important criterion remained the number of 'FD leaf' 
spatially close. However, the second most important criterion became the minimum distance between 
a 'Symptomatic shoot' and an 'FD leaf,' with almost the same importance score. This criterion seemed 
crucial in distinguishing vines affected by FD from confounding diseases. Following this were the 
number of 'FD leaf' and 'Esca leaf,' which remained important criteria. In the fifth position, came the 
minimum distance between a 'Symptomatic shoot' and an 'Esca leaf.' Criteria related to grape bunches 
are scarcely considered by the model and can even lower the model's precision. Therefore, an attempt 
was made to remove these 4 parameters related to bunches from the VectYOLOv4all vectors, resulting 
in a precision and recall of (0.93, 0.93) for the 'FD' class. 

The same tests were conducted on the 'UB20' dataset, which consisted of white grape 
varieties and contained very few 'CONF+' images. The results of these tests are presented in Table 
38. 

 
Table 38. RF results for the cross-validation on UB2O images for the FD study. 

Feature vector RF parameters 
(NDT, MF, MS) 

FD precision FD recall 

VectYOLOv4leaves All 0.94 0.94 

VectYOLOv4all All 0.89 0.94 

VectYOLOv8leaves 
(50 & 100, 1 & 2, 0.5) 

(50 & 100 & 500, 1, 0.7) 
0.94 0.94 

VectYOLOv8all 
All except 

 (50 & 100 & 500, 2, 0.5) 
 (50 & 100 & 500, 3, 0.6) 

0.94 0.94 

NDT, MF and MS stand for the Number of Decision trees, the Maximum number of Features and the Maximum number of 
Samples respectively. 
 

As shown in Table 38, the feature vectors considering only leaf parameters achieved the best 
results (p=0.94, r=0.94). Training with the 'VectYOLOv8all' vector also yielded these same excellent 
results (p=0.94, r=0.94). This further supported the notion that when studying a dataset with very few 
confounding diseases to FD, leaf information alone was sufficient. Adding parameters related to other 
symptoms contributed no additional value. It was also tested to remove the parameters related to 
bunches from the VectYOLOv8all vectors, but this did not result in an improvement of the results. 

Table 39 shows the results of the RF on the entire set of red grape varieties and Table 40 
those on the entire set of white grape varieties. 
 
Table 39. RF results for the cross-validation on red grape datasets CS20 + CF21 + M21 + CS21 for the 
FD study. 

Feature vector RF parameters 
(NDT, MF, MS) 

FD precision FD recall 

VectYOLOv4leaves (50, 1, 0.6) 0.89 0.76 

VectYOLOv4all 
(500, 2, 0.6) 

(500, 3, 0.6 & 0.7) 
0.89 0.76 

VectYOLOv8leaves (50, 3, 0.5) 0.86 0.88 

VectYOLOv8all (50, 2, 0.5) 0.86 0.9 
NDT, MF and MS stand for the Number of Decision trees, the Maximum number of Features and the Maximum number of 
Samples respectively. 
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As shown in Table 39, the two vectors created with YOLOv8m produced better results (p=0.86, 
r=0.88) and (p=0.86, r=0.9), especially in terms of recall. Furthermore, adding information other than 
leaves led to a slight improvement in recall compared to the vector created solely with leaf information 
(r=0.88 vs r=0.9). This was different from the results obtained on CS20, where YOLOv4-tiny yielded the 
best results (p=0.87, r=0.93). This is explained by the fact that on the entire set of red grape varieties, 
YOLOv8m achieved better results for leaf detection. Both types of vectors created from YOLOv4-tiny 
achieved the same results (p=0.89, r=0.76). Once again, the parameters related to bunches ended up 
in the last positions during the study of their importance. However, their removal did not lead to better 
results this time. 
 
Table 40. RF results for the cross-validation on white grape datasets UB21 + UB21 + SB21 for the FD 
study. 

Feature vector RF parameters 
(NDT, MF, MS) 

FD precision FD recall 

VectYOLOv4leaves 
(50 & 100 & 500, 1, 0.5) 
(50 & 100 & 500, 1, 0.7) 

1 0.87 

VectYOLOv4all All 1 0.91 

VectYOLOv8leaves 
(50 &100 & 500, 2 & 3, 0.5) 

(50 & 500, 2 & 3, 0.7) 
0.97 0.91 

VectYOLOv8all (100, 1, 0.6) 1 0.94 
NDT, MF and MS stand for the Number of Decision trees, the Maximum number of Features and the Maximum number of 
Samples respectively. 

 

The results shown in Table 40 for training and testing on all combined white grape varieties 
were very good ((p=1, r=0.91), (p=0.97, r=0.91), (p=1, r=0.94)). They were superior to those obtained 
for all red grape varieties ((r=0.86, p=0.9)), despite the fact that leaves were detected less accurately 
by the YOLOs. These better results for white varieties are explained by the fact that only 3% of the 
images in the dataset of combined white grape varieties are 'CONF+' images, compared to 16% for the 
combined red grape varieties dataset. However, it can be noted that considering the other symptoms 
further enhanced the results, unlike the results from the 'UB20' dataset alone. 

Finally, RF and GNN were evaluated on all the images from the 'ClaFD' dataset, white and red 
grape varieties combined. The results are presented in Table 41 and 42 for the RF methodology. 
 
Table 41. RF results for the cross-validation on ClaFD images for the FD study 

Feature vector RF parameters 
(NDT, MF, MS) 

FD precision FD recall 

VectYOLOv4leaves 
(100 & 500, 3, 0.5) 
(100 & 500, 1, 0.6) 
(50 & 100, 2, 0.6) 

0.85 0.96 

VectYOLOv4all (100, 1, 0.5) 0.85 0.96 

VectYOLOv8leaves 
(100, 3, 0.7) 
(500, 2, 0.6) 

0.82 1 

VectYOLOv8all (50 & 100, 2, 0.5) 0.84 1 
NDT, MF and MS stand for the Number of Decision trees, the Maximum number of Features and the Maximum number of 
Samples respectively. 

 
Results in Table 41 shown that once again, the 'VectYOLOv8all' vector yielded the best results, 

with a precision of 0.84, but most importantly, a recall of 1 (all images showing a grapevine affected 
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by FD were correctly classified as such by the algorithm). Mixing all the grape varieties had the effect 
of predicting all cases of FD, at the expense of precision (more false positives). To determine whether 
it was preferable to choose this model over those that separate red and white grape varieties, the 
results were tested on separate test sets for red and white grape varieties, and presented in Table 42. 
 
Table 42. VectYOLOv8all best results for red and white separate in test for the FD study. 

Test set Feature vector, RF 
parameters 

(NDT, MF, MS) 

FD precision FD recall 

ClaFD VectYOLOv8all, (50, 2, 0.5) 0.84 1 
CS20+CF21+M21+CS21 VectYOLOv8all, (50, 2, 0.5) 0.79 1 
UB20+UB21+SB21 VectYOLOv8all, (50, 2, 0.5) 0.88 1 

NDT, MF and MS stand for the Number of Decision trees, the Maximum number of Features and the Maximum number of 
Samples respectively. 
 

When looking at the results shown in Table 42, for the white grape varieties, the recall is slightly 
better (0.94 when training exclusively with white grape varieties, Table 40), but the precision is lower 
by a larger proportion (previously 1). For white grape varieties, it was preferable to choose training 
exclusively with white grape varieties.  

For red grape varieties, the recall was also significantly better (increased from 0.9 to 1, Table 
41), and the precision was worse (decreased from 0.86 to 0.79). Both models were comparable, and 
one can choose the model based on whether the goal is to correctly detect all cases of FD at the 
expense of more false positives (training on combined white and red) or to have fewer false positives 
but potentially miss more cases of FD (training exclusively on red grape varieties). 

Regarding the parameters of the Random Forest, their choices did not lead to a significant 
difference in the results. There was no specific triplet of parameters that stood out from the others; 
the choice of parameters did not seem to be critical. For example, for the cross-validation performed 
on the 'ClaFD' dataset using the YOLOv8all vector, the results for the 'FD' class are between 0.78 and 
0.84 for average precision and between 0.96 and 1 for average recall. The results of all the 
hyperparameter combinations tested for this set and this type of feature vector are available in 
Appendix 6. 

The importance scores of the parameters of the VectYOLOv8all vector for the training and 
testing that achieved the best results on the 'UB20', 'CS20 + CF21 + M21 + CS21', 'UB20 + UB21 + SB21' 
and 'ClaFD' sets are available in Appendix 7. 
 

Table 43 presents the best results achieved using the GNN methodology for each tested 
pooling method and graph type for the 5-fold cross-validation on the ‘ClaFD’ data. 
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Table 43. Best results for each evaluated pooling method and graph type in 5-fold cross-validation on 
the 'ClaFD' dataset. Distance thresholds tested were either 100, 200, 400 or 800 pixels. 0 to 4 
consecutive MP layer were tested. Tests were conducted using different values of k, specifically 10, 20, 
50, and 100 for the SortPooling and 10 or 20 for the DiffPooling and MinCut pooling with 1 MP layer, 
{20, 10} or {40, 20} with 2 MP layers, {40, 20, 10} or {80, 40, 20} with 3 MP layers, {80, 40, 20, 10} or 
{160, 80, 40, 20} for 4 MP functions. 

Pooling Graph Link 
distance 
(pixel) 

Number of 
MP layer 

K FD 
precision 

FD 
recall 

Without 

leafgraph 200 2  0.76 0.86 

allgraph_withoutconf 100 2  0.64 0.87 

allgraph 200 2  0.66 0.92 

SortPooling 

leafgraph 400 1 20 0.85 0.81 

allgraph_withoutconf 200 1 20 0.77 0.91 

allgraph 200 2 20 0.81 0.83 

DiffPooling 

leafgraph 200 1 10 0.83 0.81 

allgraph_withoutconf 100 2 [20, 10] 0.82 0.86 

allgraph 200 2 [20, 10] 0.84 0.87 

MinCut 
Pooling 

leafgraph 200 1 10 0.91 0.92 

allgraph_withoutconf 200 1 10 0.90 0.93 

allgraph 200 1 10 0.93 0.93 

 
 

The first thing that can be observed when looking at results in Table 43 is that the best 
outcomes were consistently achieved for almost the same link distances and number of consecutive 
MP layer, regardless of the pooling method and graph type used. Smaller link distances (100 or 200) 
yield superior results for the detection of FD with a precision between 0.64 and 0.93 and a recall 
between 0.81 and 0.93. Only the SortPooling applied to the graph consisting solely of leaf detections 
delivered the best results for FD classification on ‘ClaFD’ with a link distance of 400 (p=0.85, r=0.81). 
When visually inspecting these distances (shown in Figure 38), it seemed that small distances were 
more conducive to clustering by clusters compared to larger distances where most symptoms, even 
when distant, were connected. As a consequence, during the passage through the MP layer, each node 
carried information about distant nodes and was less conducive to effective clustering. With smaller 
distances, clusters were more easily identifiable and interpretable. Supporting this notion, a low 
number (1 or 2) of MP layer iterations yielded the best results. This also reinforced the idea that node 
information did not need to be aggregated with information from distant nodes to accurately identify 
nodes to group together (for each MP layer, information was aggregated from nodes that already had 
aggregated information of their neighbours). This seems logical, as the created graphs were rather 
small in size: The graph with the largest number of nodes (the 'allgraph' type nodes) contained only 
202 nodes, while the average number of nodes in graphs of the 'allgraph' type was only 76 nodes. For 
each node, the information did not need to be fetched very far from its neighbours to attribute it with 
an attribute vector characterizing its neighbourhood correctly, enabling it to be accurately classified 
within one of the node clusters. Finally, the parameter k, representing the number of nodes or groups 
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of nodes selected for the graph classification phase, yielded the best results for smaller values: either 
20 for the pooling method selecting the top-k nodes (SortPooling), or 10 for the methods creating node 
clusters (DiffPooling, MinCut Pooling). As depicted in Figure 39, for each graph type, nodes can be 
effectively grouped into a small number of relevant clusters for classification purposes. This 
observation was consistent with the fact that, once again, the generated graphs had a relatively low 
number of nodes. However, when comparing the results obtained by each pooling method to the 
models without pooling method, it became evident that all results with pooling surpassed those 
attained without pooling. Hence, even though the graphs were relatively simple, these methods 
substantially contributed to enhanced graph classification outcomes.  

Notably, SortPooling achieved its optimal results on the 'allgraph_withoutconf' type of graphs, 
yielding (0.77, 0.91) in terms of precision and recall for the FD class. The addition of confounding 
symptoms appeared to hinder the results of this pooling method, as fewer instances of actual FD in 
the vines were correctly identified by the model (recall drops from 0.91 to 0.83). It is also noteworthy 
that the model performed similarly when considering only leaf information ('leafgraph'). The inclusion 
of other symptoms did not significantly improve the results. 

The pooling method (DiffPool) achieved similar results, but this time the discrepancy in results 
between graphs containing only leaves and those with other symptoms was more pronounced. 
Furthermore, the inclusion of confusing leaves slightly enhanced the results this time. One can suppose 
that the clustering methods better took into account the other symptoms, whereas for SortPooling, 
the 20 nodes selected for classification of the graphs likely contained leaf information. 

Lastly, the finest results for all three graph types were achieved with the MinCut Pooling layer. 
The incorporation of auxiliary losses during clustering significantly enhanced classification results. The 
most impressive results were obtained for graphs containing all symptoms (p=0.93, r=0.93) in terms of 
precision and recall. The results for the other two graph types were quite comparable, suggesting that 
the information from symptom types other than leaves may be somewhat drowned out by the 
significance of leaf-related information. A test was conducted by removing the x and y coordinates 
from the information vector of each node for this combination of pooling function, graph, and 
hyperparameter, resulting in the best performance. The same results were obtained (p=0.93, r=0.93), 
suggesting that the model does not take into account these channel features during the node 
clustering process. 

Results on the ‘allgraph’ were further categorized into results for the red grape test set and 
the white grape test set and presented in Table 44. Additionally, two separate training and testing 
instances were conducted with red and white grapes separated to assess whether it was more 
advantageous to separate the grape types or mix them using this symptom detection association 
method. The results are presented in Table 45 
 
Table 44. Mincut Pooling results with 'allgraph' trained on ‘ClaFD’ and tested separately on red and 
white grape variety. 

Test set Pooling Graph Distance MP 
layer 

K FD 
precision 

FD  
recall 

CS20+CS21+M21+CF21 MinCut allgraph 200 1 10 0.9 0.96 
UB20+UB21+SB21 MinCut allgraph 200 1 10 0.97 0.89 

 
The separated results for red and white grapes presented in Table 44 when training on ‘ClaFD’ 

were intriguing, featuring remarkably high recall for red grapes (0.96) coupled with a decrease in 
precision (from 0.93 to 0.9), while the opposite held true for white grapes (precision from 0.93 to 0.97, 
recall from 0.93 to 0.89). These differences may be due to variations in leaf detection for white and 
red grape varieties as discussed in Chapter V. 
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Table 45. MincutPooling with 'allgraph' trained separately on red and white grape variety 

Train and test set Pooling Graph Distance MP 
layer 

K FD 
precision 

FD  
recall 

CS20+CS21+M21+CF21 MinCut allgraph 200 1 10 0.85 0.89 
UB20+UB21+SB21 MinCut allgraph 200 1 10 0.87 0.84 

 
The results of separated training between red and white grapes presented in Table 45 yielded 

inferior results compared to when they were mixed: (p=0.9, r=0.96) and (p=0.97, 0.89) compared to 
(p=0.85, 0.89) and (p=0.87, r=0.84) for separated training on red and white grape variety respectively. 
This contrasts with the results obtained thus far for other methodologies, where better results were 
found when separating red and white grape varieties. However, the hypothesis was that in this case, 
the clustering of nodes (symptom clusters) compensated for the distribution and detection differences 
among grape varieties. Moreover, the amalgamation of the two colours significantly augmented the 
volume of training data for the model, a crucial parameter to consider in deep learning algorithms. 
 
 

E. Synthesis 
 
A summary of the best results on the red and white grape variety obtained by the CNN methodologies 
(Chapter IV Section C) and symptom detection and segmentation association using the RF approach 
and the GNN approach is provided in Table 46. These results are those of the 5-fold cross-validation 
with the same images in each folder for the 3 methodologies. Standard deviations (std) have been 
added to the results of precision and recall averages obtained in cross-validation. It indicates how much 
the results obtained for each test fold are dispersed around the mean value shown in the Table 46.  

Results in Table 46 are showing that concerning the red grape varieties, best results are 
achieved for the GNN methodology with (p=0.90, r=0.96). The RF method yielded slightly inferior 
results (p=0.86, r=0.90). The less favourable results are delivered by the CNN methodology with 
(p=0.87, r=0.84). These results contrast with those obtained for white grape varieties, for which the 
best results are achieved with the CNN methodology (p=0.97, r=0.96) and with the RF methodology 
(p=1, r=0.94). This reinforces the hypothesis that for datasets without or with very few confounding 
diseases, as is the case for white grapes (3% of images in the 'CONF+' class), CNNs yield excellent 
results. However, as soon as the number of 'CONF+' images is higher, as in the case of the red grape 
dataset (16%), CNN results were less favourable. The two-step methodologies, with a first step 
dedicated to symptom prediction and a second step for associating these detections, appeared to 
better differentiate FD from its confounding diseases. The standard deviations range from 0 to 0.05 
without any particular method obtaining significantly more variable results than others during the 
different tests of the 5-fold cross-validation. The results of the 3 methodologies remained stable from 
one fold to another during their 5-fold cross-validation, and the differences in results between the 
methodologies, with regards to the standard deviations, can be considered significant. 

The hypothesis was that GNN had the potential to outperform the RF method, given its capacity 
to accommodate extensive symptom detection information without input size limitations. However, it 
was found that GNN results were not outperforming the RF results. Several explanations are 
suggested: 

• The chosen parameters for constructing the RF input vector aptly encapsulated the grapevine's 
physiological state, rendering additional information redundant for diagnostics. 

• The average symptom detection results capped the potential image-scale classification results 
for both methods. 

• The created graphs might lack a sufficient number of nodes to fully leverage the power of the 
graph methodology and the cluster creation of pooling methods.  
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Table 46. Comparison of the most relevant results of a 5-fold cross-validation obtained using the CNN 
methodology, the RF methodology and the GNN methodology, on red and white varieties. 
VectYOLOv8all stands for the vector with 16 parameters including features about all the symtpoms and 
leaves detected with YOLOv8m. ‘allgraph’ stands for the graph created with all the symptoms (including 
the confounding leaves) with node feature vectors of 15 parameters. MP stands for Message Passing 
function. K stands for the number of clusters created by the pooling function. Std stands for the 
standard deviation. 

Training and  
Testing set 

% of 
‘CONF+’ 
images 

Method Parameters FD 
precision 

(std) 

FD  
recall 
(std) 

Red grape 
varieties 

 CNN 
EfficientNetB5, /64 of the 

resolution 
0.87 (0.01) 0.84 (0.03) 

16% RF 
VectYOLOv8all, NDT=50, 

MF=2, MS= 0.5  
0.86 (0.02) 0.90 (0.04) 

 GNN 
‘allgraph’, link distance = 
200, 1 MP layer, MinCut 

pooling with k=10 
0.9 (0.03) 0.96 (0.03) 

White grape 
varieties 

 CNN 
MobileNetV3-large, /64 of 

the resolution 
0.97 (0.04) 0.96 (0.02) 

3% RF 
VectYOLOv8all, NDT=100, 

MF=1, MS= 0.6  
1 (0) 0.94 (0.05) 

 GNN 
‘allgraph’, link distance = 
200, 1 MP layer, MinCut 

pooling with k=10 
0.97 (0.04) 0.90 (0.02) 

NDT, MF and MS stand for the Number of Decision trees, the Maximum number of Features and the Maximum number of 
Samples respectively. 

 
 

To explore this last possibility, a comparison of these methods at the scale of several neighbouring 
grapevines has been performed, allowing for the creation of more complex graphs taking advantage 
of the redundancy of information on neighbouring grapevines. These methodologies were developed 
and tested thanks to the acquisitions made at the whole-vineyard scale. This study is discussed in 
Chapter VII. 
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The objective was to evaluate and compare the CNN methodology detailed in Chapter IV and the 
symptom association methodologies detailed in Chapter VI, not on images acquired sporadically from 
blocks, but on images depicting the entirety of a blocks to concretely assess these methodologies in 
real world use scenarios. 
 
 

A. Algorithms 
 
The CNN, RF and GNN models trained and obtaining the best results on the 'ClaFD' set (see Table 46) 
have been tested on the images of these 3 blocks. For each image acquired on these blocks, the unitary 
symptoms were predicted by the symptom detection algorithms (see Chapter V) and these detections 
were associated, either via the vector ‘VectYOLOv8all’ for the RF methodology, or by creating ‘allgraph’ 
for the GNN methodology. 

In addition, new ways of assembling the detections have been tested in order to make the 
most of these continuous acquisitions at block scale. 

 
 

 Associating the symptoms detected on 3 neighbouring grapevines 
 
The image triplets from the '3-neighbouring grapevines' dataset (Chapter III Section E) were used. 
During the classification of each image, it took into account the symptoms detected in the images 
acquired just before/after the targeted image. 
 

i. Random Forest based methodology 
 
The principle of the RF considering 3 neighbouring grapevines was the same as for the RF with a single 
image, except that the symptoms considered for vector creation were those detected in the 3 images. 
The same features as those in the ‘VectYOLOv8all’ vector were then calculated in the same manner as 
described in Chapter VI Section A, but this time by considering the predictions from these 3 images. 
These new information vectors were subsequently fed into the RF for the classification step.  
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ii. GNN-based methodology 

 
Taking into consideration the symptoms detected in 3 neighbouring images allowed the creation of a 
large graph that aggregated all these detections. Once the alignment direction was determined, the 
coordinates of the nodes in each graph were updated to match the coordinates relative to the 3 images 
placed side by side. This allowed connecting the nodes of the 3 graphs below the defined distance 
threshold, illustrated in Figure 45. 
 

 
Figure 45. Example of the reconstruction of 3 consecutive images and visualization of the detected 
symptoms, along with the graph that summarizes the detected symptoms on the 3 images. 
 

On Figure 45, it can be observed that there was some overlap between the images. However, 
this overlap was not consistent. The images captured at the block scale were taken with cameras fixed 
on a quad, making it challenging to maintain a constant speed. Due to this variability, it was decided 
not to remove this overlap between the images when creating the graphs with 3 neighbours. 
Furthermore, this overlap could be beneficial. If the same symptom was present in two consecutive 
images and was predicted to belong to the same class on both images, the confidence in this detection 
could be higher. Conversely, if it was classified into two different classes, this could help identify 
potential false positives or false negatives more effectively. 
 
 

 Associating the symptoms detected on 6 neighbouring grapevines 
 

The image sextuplets from the ‘6-neighbouring grapevines’ dataset (Chapter III Section E) were used. 
The symptoms detected in the images of the preceding and following grapevines of the targeted one, 
but also the symptoms detected on the opposite side of these 3 grapevines were considered for the 
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diagnosis. This methodology enabled the correlation of symptoms detected on each side and, 
therefore, held the promise of a more precise disease diagnosis. 
 

i. Random Forest based methodology 
 
The same features as those in the ‘VectYOLOv8all’ vector were then calculated in the same manner as 
described in Chapter VI, Section A, but this time by considering the symptom predictions from these 6 
images. 
 

ii. GNN-based methodology 
 
For the graph-based methodology, two graphs were created from the symptom detections of the three 
images of each side. Then, the nodes of the two graphs were linked: a third dimension, which would 
be that of depth, is not taken into account, and the two graphs are superimposed as if they were 
derived from the same side of the vine. Their nodes were linked to each other if their distances were 
below the set threshold (Figure 46). 

 
Figure 46. Representation of a 6-neighbours graph. The images in the first row represent the 
reconstruction into a single large image of one side. The second row represents the images acquired 
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from the other side, arranged in the correct order and flipped so that the detected symptoms on each 
side correspond. The graph created by combining these 6 images is depicted below. This illustration 
was created to provide a better understanding of what a graph representing the detections of the 6 
neighbouring images looked like. The visible difference in link size is solely due to a scaling difference 
between the axes to enhance the figure's representation. The z axis is only present for a better 
understanding, the 2 graphs are positioned on the same plane when combining them. 
 

 

B. Algorithm hyperparameters 
 

The data vectors generated for the RF 3 and 6 neighbours methodologies are of the same size and 
share the same parameters as those used for the RF methodology. It was observed that 
hyperparameters such as the Number of Decision Trees (NDT), Maximum Number of Features (MF), 
and Maximum Number of Samples (MS) did not have a significant influence on the final results of the 
study (Chapter VI Section D). Following this observation, the decision was made to set these specific 
hyperparameters (NDT=50, MF=2, and MS=0.5) for the RF 3 and 6 neighbours methodologies. These 
values demonstrated optimal performance during the analysis of red grape varieties (as indicated in 
Chapter VI Section E, Table 46). It is important to note that two out of the three study vineyards are 
planted with red grape varieties, further justifying the choice of these hyperparameters for these 
specific methodologies. 

Regarding the GNN methods, the decision was made to test only the method using MinCut 
pooling, as this method achieved by far the best results when classifying the graphs in the 'ClaFD' 
dataset (Chapter VI Section D, Table 43). The graphs created by the GNN 3 and 6 neighbours methods, 
considering the detections on 3 or 6 images, have more nodes and edges than those created from the 
images in the 'ClaFD' dataset, considering detections on a single image. Consequently, the number of 
Message Passing functions (MP functions) and successive MinCut pooling function were re-evaluated 
to find the optimal hyperparameters. The parameter 𝐾𝑙, representing the number of clusters of nodes 
at pooling step 𝑙, was tested with values in {10, 20} for 𝑙 = 1, {20, 40} for 𝑙 = 2, {40, 80} for 𝑙 = 3, and 
{80, 160} for 𝑙 = 4. Since the graphs are more complex, it was also tested to apply multiple consecutive 
MP layers before applying the MinCut pooling layer. Up to 4 consecutive MP functions were tested 
between each MinCut pooling layer. 
 

 

C. Datasets and experiments 
 
Experiment 1 
The CNN, RF and GNN methodologies at the scale of a single grapevine, developed in Chapter IV and 
Chapter VI Section A and B respectively, have been tested on the three study plots. Thus, the training 
sets that achieved the best results for red grape varieties and white grape varieties of ‘ClaFD’ in the 
CNN methodology were used to predict all the images acquired in these three vineyards. The training 
sets that achieved the best results for red and white grape varieties of ‘ClaFD’ in the RF methodology 
were used to predict all the images acquired in these three vineyards. Similarly, for the GNN 
methodology, the training sets that achieved the best results for red and white grape varieties was 
tested on the images of these plots. 
 
Experiment 2 
The RF and GNN methodologies at the scale of 3 and 6 neighbouring grapevines were studied. It was 
not possible to directly test these methodologies on these plots, as was the case for the methodologies 
at the scale of a single grapevine, because these three plots constituted the only image dataset 
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containing images of neighbouring vines. Images other than these were not available to train the 
models beforehand. In order to validate the accuracy of these methodologies, they were tested 
through cross-validation on each of the three vineyards. The vineyards were divided into three distinct 
zones, as illustrated in Figure 47. For each of the three vineyards, the RF methodologies with 3 
neighbours and 6 neighbours were trained on two parts of these plots and tested on the remaining 
part. For the GNN methodologies with 3 and 6 neighbouring grapevines, which require a validation set, 
the training was conducted on one part, validated on another, and tested on the remaining part. The 
validation set contained a significant amount of data because it was important to have a validation set 
that included a sufficient number of cases of vines affected by FD. As illustrated in Figure 47, some 
plots contain very few such cases.  

For the cross-validation of the 'Cognac' and 'Neuffons' vineyards, the number of vines affected 
by FD for training was very low (16 for 'Cognac' and 61 for 'Neuffons' vineyards). The images showing 
these vines placed in the training set underwent three independent data augmentations (the same as 
presented Chapter IV Section B for the CNN study), resulting in three different images, vectors and 
graphs for the same image. Additionally, the number of healthy grapevine images was randomly 
reduced to achieve a training population consisting of 20% of vectors or graphs from FD-affected vines 
and 80% from healthy vines. This proportion was chosen to ensure that there were enough elements 
for the models to train properly, avoiding overfitting. Loss functions to deal with this class unbalance 
were not tested because the models did not show a tendency to classify all elements as healthy during 
training. 
 

 
Figure 47. The study vineyards were divided into 3 parts for the study of the RF and GNN methodologies: 
one grapevine, 3 neighbouring vines, and 6 neighbouring vines. Points of the same colour represent the 
coordinates of images that were placed in the same folder during cross-validation. The red triangles 
correspond to the coordinates of the vines affected by FD as recorded by the experts.  
 

Furthermore, the CNN, RF and GNN methodologies at the scale of a single grapevine were also 
trained and tested in the same manner. The results obtained allowed for a comparison of these seven 
methodologies among themselves, using the same training and testing dataset, and identified the most 
promising one for vineyard-scale diagnostic. 
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Experiment 3 
The methodology that achieved the best results in intra-vineyard cross-validation was trained on one 
or two vineyards and tested on the other(s) in order to validate these methodologies in a real-world 
scenario where the algorithm had never been exposed to the images of the studied vineyard. 

It is important to note that for the training and testing of all these methodologies, the 
symptoms were predicted in the same way: using the two algorithms YOLOv8-m and ResUNet 
presented in Chapter V and trained on the DetFD and SegFD datasets, respectively.  
 
A summary of the tests conducted on these three vineyards is available in Table 47. 

 
Table 47. Summary of the tests conducted at the vineyard level for the CNN, RF, RF 3-neighbours, RF-6 
neighbours and GNN, GNN 3-neighbours, GNN 6-neighbours methodologies. 

Experiment Methodology Train Test Purpose 

1 

CNN 
CS20+CF21+M21+CS21, 

UB20+UB21+SB21 
BloFD 

Evaluate the training 
conducted on 'ClaFD' 

across the three vineyards 

RF 
CS20+CF21+M21+CS21, 

UB20+UB21+SB21 
BloFD 

GNN ClaFD BloFD 

2 

CNN BloFD BloFD 

Cross-validation on each 
vineyard to determine the 
most suitable method for 
the diagnosis of FD at the 

vineyard scale. 

RF, RF 3-
neighbours, RF-6 
neighbours. 

BloFD BloFD 

GNN, GNN 3-
neighbours, GNN 
6-neighbours 

BloFD BloFD 

3 
GNN 6-
neighbours 

BloFD BloFD 

Training on two vineyards 
and testing on the 

remaining vineyard to 
evaluate these 

methodologies in a real-
world application scenario. 

 

 

Examples illustrating the specificities of each vineyard are provided in Figure 48. Grapevines affected 

by FD at the 'Neuffons' vineyard show very few symptoms. Many grapevines at the 'Cognac' vineyard 

exhibit symptoms very similar to those of FD without being affected by it. The 'Couture' vineyard 

contains a large number of grapevines affected by FD and a few confusing diseases. 
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Figure 48. Grapevines affected by FD and confounding diseases in the 3 study blocks. First row: 3 
grapevines affected by FD of the ‘Neuffons’ vineyard. The first one (a)) present few symptoms, while 
the other two (b) and c)) did not appear to present any symptoms of FD. Second row: Grapevines of the 
‘Cognac’ vineyard. d) Grapevine affected by FD; e) and f) Grapevine non-affected by FD but displaying 
symptoms similar to those of FD. Third row: grapevine of the ‘Couture’ vineyard. Grapevine affected by 
FD (g)) and 2 grapevines showing symptoms similar but without being affected by FD ((h) and i)). 
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D. Results 
 
Experiment 1 
The results of tests on the 3 vineyards (Neuffons, Cognac, Couture) of the methodologies RF and GNN 
trained on the 'ClaFD' dataset images are presented in Table 48. 
 
Table 48. Experiment 1: results for the class ‘FD’ obtained with the CNN, RF and GNN methodologies 
trained on the 'ClaFD' dataset images and tested on the vineyards of the 'BloFD' dataset. 

Vineyard Grapevine 
affected 

by FD 

Methodology Grapevine 
correctly 

predicted as 
infected by FD 

FD 
precision 

FD 
recall 

Neuffons 61 

CNN 51 0.04 0.84 

RF 6 0.3 0.1 

GNN 19 0.25 0.26 

Cognac 16 

CNN 15 0.00 0.94 

RF 14 0.00 0.88 

GNN 16 0.00 1 

Couture 1764 

CNN 1692 0.13 0.99 

RF 258 0.89 0.15 

GNN 384 0.96 0.22 

 
 

The results presented in Table 48 are rather disappointing. For all three vineyards, the GNN 
method yields the best results, but these results are quite poor. For the 'Neuffons' vineyard, the GNN 
method achieved (p=0.25, r=0.26) for the 'FD' class, compared to (p=0.3, r=0.1) for the RF method and 
(p=0.04, r=0.84) for the CNN method. However, the three methods failed to correctly diagnose this 
vineyard, where the symptoms of FD are very subtle (as illustrated in Figure 49 where the symptom 
predictions are displayed for two grapevines of the ‘Neuffons’ vineyard affected by FD). The first 
reason could be that the symptom detection algorithm is missing a lot of symptomatic leaves of FD. 
This could be also be because the 'ClaFD' database on which the methodologies were trained 
predominantly contained vines with highly pronounced symptoms of FD. As a result, the association 
methods struggle to accurately diagnose vines affected by FD with less visible symptoms. The CNN 
method correctly predicted most of the grapevine affected by FD (r=0.84) but made a significant 
number of false predictions of grapevine affected by FD (p=0.04). 
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Figure 49. Image and symptom detections on two images acquired on the 'Neuffons' vineyard. Images 
a) and c) show grapevines affected by FD. The symptoms are very faintly expressed in these two vines. 
On images b) and c), where symptom predictions have been overlaid onto the images, it can be 
observed that all symptomatic FD leaves have been predicted as confounding leaves by the YOLOv8m 
algorithm (purple bounding boxes). 
 

Regarding the 'Cognac' vineyard, the RF method correctly predicted 14 out of 16 vines affected 
by FD, while the CNN method correctly predicted 15 and the GNN method correctly predicted all 16 
affected vines. Unfortunately, the three methods also predicted a significant number of non-FD vines 
as FD-affected. For results, the three methods reached a precision close to 0. This is due to many vines 
at the 'Cognac' vineyard suffering from grapevine yellowing. The leaves of these vines had turned 
yellow and were often misidentified as 'FD leaves' by the leaf detection algorithm, as it is illustrated in 
Figure 50. Their prevalence in large numbers caused both methods to struggle, even when combined 
with other symptoms (symptomatic shoots and bunches, confounding leaves), to correctly predict 
these images of vines affected by yellowing as non-FD. The 'ClaFD' dataset on which both methods 
were trained may not contain enough images of this type (false detections of FD leaves in large 
numbers when the grapevine is not affected by FD) to accurately diagnose FD on this vineyard. 
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Figure 50. Image and symptom detections on two images acquired on the 'Cognac' vineyard. Images a) 
and c) are not affected by FD and show yellowing leaves very similar to those symptomatic of FD. The 
symptoms detected on these images (b) and d)) show that most of these yellowing leaves are predicted 
as FD leaves by the YOLOv8m algorithm (red bounding boxes). The purple bounding boxes correspond 
to leaves of the 'Confounding leaf' class, and the pink ones belong to the 'Esca leaf' class. The blue pixels 
correspond to healthy bunches pixels, and the yellow ones represent symptomatic bunches. 
 

Finally, for the 'Couture' vineyard, both symptom associating approaches achieved high 
precision in predicting vines affected by FD (0.89 for the RF approach, 0.96 for the GNN approach) but 
had relatively low recall (0.15 and 0.22 for the RF and GNN approaches, respectively). This vineyard 
contains a very high number of vines affected by FD (1764), and both approaches struggle to identify 
most of them. This is likely because, once again, the detected symptoms and their spatial arrangement 
are not present in the 'ClaFD' dataset. However, on this vineyard, vines displaying symptoms very 
similar to those of FD are fairly accurately predicted (very few false positives for both methods) in 
contrast to the results obtained on the 'Cognac' vineyard. The hypothesis is that foliar symptoms are 
overall better predicted for red grape varieties (‘Couture’ is planted with the Cabernet sauvignon red 
variety) than for white grape varieties (‘Cognac is planted with the Ugni blanc white variety). Indeed, 
as presented in Chapter V, Section A, Tables 27 and 28, leaf symptom detection results in the best 
outcomes (p=0.78, r=0.61) for red grape varieties compared to (p=0.48, r=0.69) for white grape 
varieties. The CNN approach, on the other hand, allowed for the detection of almost all the vines 
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affected by FD (1692). However, as with the other two vineyards, this method delivered a significant 
number of false predictions (p=0.13). 

 
Experiment 2 
The CNN, RF and GNN methodologies have been trained and tested independently in cross-validation 
on each vineyard to determine if learning and testing on the same vineyard resulted in good FD 
prediction results. These three methodologies were compared to the RF 3 and 6 neighbours and GNN 
3 and 6 neighbours methodologies. It should be noted that the symptoms are always predicted using 
algorithms trained on the 'SegFD' and 'DetFD' datasets. The results of this study are presented in Table 
49.  
 
Table 49.  Experiment 2: cross-validation results for the class ‘FD’ obtained using the CNN, RF, RF 3-
neighbours, RF 6-neighbours, GNN, GNN 3-neighbours, and GNN 6-neighbours methodologies on the 3 
vineyards of the 'BloFD' dataset. The method and results in bold are those that achieved the best results 
when combining precision and recall. The results for the GNN 3-neighbours were obtained using 2 
consecutive layers of MP functions followed by a single layer of MinCut pooling with k=10. For the GNN 
6-neighbours, the results were obtained using 4 consecutive layers of MP functions followed by a single 
layer of MinCut pooling with k=10. 

Vineyard Grapevine 
affected 

by FD 

Methodology Grapevine correctly 
predicted as 

infected by FD 

FD precision FD recall 

Neuffons 61 

CNN 52 0.17 0.86 

RF 13 0.87 0.21 

RF 3-neighbours 30 0.16 0.56 

RF 6-neighbours 24 0.37 0.52 

GNN 32 0.43 0.65 

GNN 3-neighbours 21 0.84 0.26 

GNN 6-neighbours 42 0.76 0.71 

Cognac 16 

CNN 9 0.01 0.63 

RF 9 0.19 0.49 

RF 3-neighbours 7 0.07 0.46 

RF 6-neighbours 8 0.16 0.45 

GNN 10 0.27 0.63 

GNN 3-neighbours 12 0.25 0.71 

GNN 6-neighbours 15 0.36 0.93 

Couture 1764 

CNN 1694 0.36 0.99 

RF 1663 0.67 0.96 

RF 3-neighbours 1634 0.78 0.96 

RF 6-neighbours 1630 0.82 0.96 

GNN 1572 0.74 0.90 

GNN 3-neighbours 1645 0.69 0.97 

GNN 6-neighbours 1651 0.94 0.98 
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The results presented in Table 49 first show a significant improvement in the performance of 
the CNN, RF and GNN methods when trained on the same vineyard (on different subplot). This may 
seem logical, but it indicates that the 'ClaFD' dataset on which the methods were previously trained 
(experiment 1) lacked representative images of grapevines affected by FD and confounding diseases 
in these plots. For example, for the GNN method, the results improved from (p=0.25, r=0.26), (p=0, 
r=1), and (p=0.96, r=0.22) to (p=0.43, r=0.65), (p=0.27, r=0.63), and (p=0.74, r=0.9) respectively for the 
'Neuffons,' 'Cognac,' and 'Couture' vineyards. A comparison of the results for one of the cross-
validations of the GNN, GNN 3-neighbours, and GNN 6-neighbours methods on the 'Couture' vineyard 
is presented in Figure 51, illustrating the improvement in results when considering neighbouring 
grapevines for diagnosis. 

Regarding the comparison between the GNN, GNN 3-neighbours, and GNN 6-neighbours 
methods, the best results were obtained with the GNN 6-neighbours method. The results for the GNN 
6-neighbours methods were (p=0.76, r=0.71), (p=0.36, r=0.93) and (p=0.94, r=0.98) for the ‘Neuffons’, 
‘Couture’ and ‘Cognac’ vineyards, respectively. 

As for the RF methodologies, the results varied from vineyard to vineyard. For the 'Neuffons' 
and 'Cognac' vineyards, the best results were achieved by the RF method, with (p=0.87, r=0.21) and 
(p=0.19, r=0.49), respectively. For the 'Couture' vineyard, the RF 6-neighbours method obtained the 
best results: (p=0.82, r=0.96). 

Regarding the results obtained by CNNs, it can be observed that even in cross-validation on a 
single vineyard, the results exhibited the same trend: high recall but low precision ((p= 0.17, r=0.86), 
(p=0.01, r=0.63), and (p=0.36, r=0.99) for the ‘Neuffons’, ‘Cognac’, and ‘Couture’ vineyards, 
respectively). The method generates a large number of false FD predictions and does not appear to be 
suitable for diagnosing at the scale of an entire vineyard. 

When comparing the best results vineyard by vineyard, considering all methodologies, the 
GNN 6-neighbours methodology consistently outperforms the others.  

The 'Neuffons' vineyard achieved the best results with (p=0.76, r=0.71), which may be seen as 
somewhat disappointing for cross-validation. However, given the very low expression of FD symptoms 
in the vines at this vineyard, these results are good. Combining the detections from six images likely 
provides enough information to accurately classify most images. 

The 'Cognac' vineyard obtained the lowest cross-validation results, with the GNN 6-neighbours 
method achieving (p=0.36, r=0.93). Even when trained on a portion of this plot, the model struggled 
to deal with the significant number of vines not affected by FD but with symptom predictions indicating 
FD. This results in a high number of false positives, although it has been reduced compared to the GNN 
method (p=0.27). The low number of FD cases on the ‘Neuffons’ and ‘Cognac’ vineyards also makes it 
challenging for the methods to correctly detect affected vines. 

For the 'Couture' vineyard, which had the highest number of FD cases and the most 
pronounced symptom expression but also contained grapevines displaying confounding symptoms, 
the results of the GNN 6-neighbours method were excellent: (p=0.94, r=0.98). Here, the algorithm 
successfully distinguishes grapevines affected by FD from healthy vines or those showing confounding 
symptoms. 
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Figure 51. Comparison of the results obtained during the cross-validation of the GNN, GNN 3-
neighbours, and GNN 6-neighbours approaches on the 'Couture' vineyard. Training and validation were 
conducted on two out of the three parts of the vineyard, and the results presented here are the 
predictions of the models on the third part of the vineyard. The yellow points or areas represent the 
grapevine (for the GNN method) or groups of grapevines (for the GNN 3-neighbours and GNN 6-
neighbours methods) incorrectly predicted as showing grapevines affected by FD. Conversely, the green 
points or areas indicate the grapevine or groups of grapevines correctly predicted as displaying 
grapevines affected by FD. Blue triangles indicate the FD-affected grapevines predicted by the models, 
while red triangles represent the FD-affected grapevines that were not predicted. Grey points represent 
the grapevines for which the model did not detect FD. 
  

Regarding the hyperparameters of the GNN 6-neighbours methodology, it's interesting to note 
that using the same number of MinCut pooling functions (1) and clusters of nodes formed (10) as the 
GNN method on 'ClaFD' yielded the best results. However, in this case, there are 4 consecutive MP 
functions preceding the MinCut pooling function. Applying multiple MinCut pooling functions seems 
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to degrade the model's performance. One possible explanation is that each time clusters of nodes are 
formed, the new node feature for that cluster is the average of the features of the nodes in that cluster. 
This process degrades the information, and the application of multiple MinCut pooling functions 
further degrades it. The successive pooling layers are supposed to extract information at different 
scales and provide a condensed form of the graph that is relevant for classification. However, even 
though the size of the graphs has been increased, they are still relatively small. The maximum number 
of nodes is 659 and average number of nodes is 113 on the 3 vineyards for the 6-neighbours graphs. A 
single pooling layer provides a condensed form of the graph with minimal information loss, relevant 
for its classification. On the other hand, for the 6-neighbours graphs, using 4 consecutive MP functions 
before the pooling function yielded the best results. For each node, information needs to be combined 
with information from distant nodes to obtain a feature vector that best describes it for classification 
within the clusters. 
 
Experiment 3 
The GNN 6-neighbours methodology was subsequently trained on one or two of these vineyards and 
tested on the remaining vineyard(s). The results of these tests are presented in Table 50. 
 
Table 50. Experiment 3: results for the ‘FD’ class, when trained on one or two complete vineyards and 
tested on the remaining vineyard(s) using the GNN 6-neighbours methodology. 

Test vineyard Train vineyard precision FD Recall FD 

Neuffons 

Cognac 0 0 

Couture 0 0 

Cognac + Couture 0 0 

Cognac 

Neuffons 0.01 0.63 

Couture 0.1 0.13 

Neuffons + Couture 0.08 0.18 

Couture 

Neuffons 0.88 0.92 

Cognac 0.65 0.88 

Neuffons + Cognac 0.88 0.93 

 
The results presented in Table 50 show significant disparities. First, concerning the 'Neuffons' 

vineyard, regardless of the training vineyard(s), no graph was classified, correctly or incorrectly, as 
representing a set of symptoms associated with a grapevine affected by FD. The very low expression 
of symptoms in the affected vines on this vineyard contrasts with the presence of very pronounced 
symptoms on the other two vineyards. As a result, the model learned that for a graph to be classified 
as FD, it must contain a lot of FD symptoms. However, this is not the case for the 6-neighbours graphs 
created from the detections on the 'Neuffons' vineyard. 

Regarding the 'Cognac' vineyard, the precision was very low regardless of the training 
vineyard(s) (p=0.01, 0.1, and 0.08). Here, the presence of numerous vines displaying confounding 
symptoms is the cause. The precision was lowest (p=0.01) when training was performed on the 
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'Neuffons' vineyard. Since the model learned from vines affected by FD with very few symptoms, all 
vines showing symptoms are classified as FD on the 'Cognac' vineyard. Poor symptom detection on the 
confounding diseases of the 'Cognac' vineyard resulted in classifying all these vines as FD. However, 
this led to the highest recall (r=0.63). Training on a vineyard with FD-affected vines displaying more 
symptoms ('Couture') improved precision (p=0.1) but still led to too many false positives. In return, 
recall droeds (r=0.13), and fewer FD-affected vines were detected by the model. Finally, combining the 
graphs from the 'Neuffons' and 'Couture' vineyards for training yielded results that were somewhat of 
an 'average' of training on these separate vineyards (p=0.08, r=0.18). Combining the two vineyards in 
training did not help the model better detect FD on the 'Cognac' vineyard. 

Finally, the results were the best on the 'Couture' vineyard. Training the model on the 
'Neuffons' vineyard achieved a precision of 0.88 and a recall of 0.92. The model learned on the 
'Neuffons' vineyard to detect FD even with few symptoms, and even though the vines on the 'Couture' 
vineyard had many symptoms, most of the grapevine affected by FD were still correctly detected. This 
contrasts with training on the 'Couture' vineyard and testing on the 'Neuffons' vineyard, where no 
vines were detected as FD. It can be supposed that if the model is trained on vines with few symptoms, 
it will be able to predict vines with many symptoms. However, if the model is trained on vines with 
many symptoms, vines with few symptoms will not be correctly detected. Training on the 'Cognac' 
vineyard yielded poorer results on the ‘Couture’ vineyard, with a precision of 0.65 and a recall of 0.88. 
Nevertheless, this is still a decent result considering the symptom detections of the 'Cognac' vineyard 
and demonstrates a certain adaptability of the method, which manages the numerous false detections 
on the 'Cognac' vineyard when trained on it. Finally, training on both the 'Neuffons' and 'Cognac' 
vineyards yielded the best results, with a precision of 0.88 and a recall of 0.93. The model did not get 
lost when training on these two completely distinct vineyards in terms of symptom expression. This 
result suggest that the model is capable of achieving good results when trained on very different 
graphs.  
 
 

E.  Synthesis 
 
The acquisitions made at the scale of three vineyards allowed for the initial investigation of automated 
FD diagnosis at the whole-vineyard scale. Although this database is limited, it highlights methodologies 
with greater potential as well as certain challenges when implementing the developed methodologies 
in a real-world use case. 

The 'Neuffons' vineyard was planted with the red Merlot variety, and most of the vines 
affected by FD displayed very few symptoms. The 'Cognac' vineyard was planted with the white Ugni 
Blanc variety and had a high number of vines affected by grapevine yellows without being infected by 
FD. The 'Couture' vineyard was planted with the red Cabernet sauvignon variety and contained 
numerous vines affected by FD that expressed the disease's symptoms prominently. 

To evaluate the effectiveness of the CNN, RF and GNN methods in classifying images from 
these vineyards, the models that achieved the best results on the 'ClaFD' dataset were initially tested. 
The GNN methodology outperformed RF and CNN on all three vineyards, although the results were 
not entirely satisfactory. Specifically, the precision and recall scores for the 'Neuffons' vineyard were 
(p=0.25, r=0.26), for the 'Cognac' vineyard were (p=0, r=1) and for the 'Couture' vineyard were (p=0.96, 
r=0.22). 

In an effort to improve the results, RF and GNN methods that incorporated symptom 
detections from neighbouring images were developed. Experiments with a '3 neighbours’ method, 
considering the images on the left and right of the target image, as well as a '6 neighbours’ method, 
incorporating detections from opposite sides of the vines in these three images, were conducted. Intra-
vineyard cross-validation tests for the CNN, the standard RF and GNN methods as well as the 3 and 6 
neighbours methods were conducted to identify the most suitable approach for vineyard-scale 
automated diagnosis of FD. 
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The GNN 6 neighbours methodology emerged as the most effective for all three vineyards, 
with results reaching (p=0.76, r=0.71) for the 'Neuffons' vineyard, (p=0.36, r=0.93) for the 'Cognac' 
vineyard, and (p=0.94, r=0.98) for the 'Couture' vineyard. These findings underscored the significance 
of considering the surrounding vines and both sides of the same vine for improved diagnostic accuracy. 
Finally, the GNN 6 neighbours method was tested across the entire extent of each vineyard, training it 
on images from one or both of the other vineyards. This allowed the test of its performance in a real-
world scenario where the images of the target vineyard have never been encountered before. The 
results varied: during the 'Neuffons' vineyard test, the model did not detect any FD cases, while the 
'Cognac' vineyard test yielded poor results (p=0.08, r=0.18). Ultimately, the 'Couture' vineyard test 
produced the most promising outcomes (p=0.88, r=0.93). 

These latest results emphasize the fact that, in a decision-making process, learning set must 

absolutely contain similar cases to those encountered during the production deployment of the same 

process. This is particularly pronounced in the case of FD detection, where it is known that 

symptomatic expression varies greatly depending on the grape variety or vintage. Even if diagnostic 

algorithms have shown excellent results in a specific context, their performance can be much reduced 

in a different context, with cases that have never or rarely been observed before. 
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Conclusion 
 
Review of the objectives and hypotheses 
This research aimed to study the automated diagnosis of multi-symptom grapevine diseases using 
digital technologies. The objectives were to: i) propose a comprehensive protocol that integrates RGB 
imaging, ground truth dataset collections and various types of annotations at both the plant and 
symptom scales; ii) develop innovative chains of artificial intelligence algorithms for the automated 
diagnostic of multi-symptom grapevine diseases; iii) conduct an evaluation of these methodologies 
using data that accurately reflect the vineyard conditions and iv) provide a solution to identify high-
risk areas of the presence of these diseases in order to assist prospecting efforts. 

Before beginning the research, the literature review of previous studies on this subject allowed 
for the formulation of four hypotheses which have guided this research. 

Firstly, proximal sensing appeared to be the most optimal data acquisition method for 
distinguishing the various symptoms expressed by diseased grapevines. Furthermore, it seemed that 
RGB imagery was a suitable way for correctly visualizing the investigated disease symptoms, which 
could be distinguished by their colours and shapes. It was considered that multi or hyperspectral 
imaging would not provide significant additional information for their visualization.  

Secondly, deep learning approaches seemed highly suitable and promising for the automated 
processing of images and diagnosis at the grapevine scale. It appeared that there was a lack of 
consideration in the literature regarding the inclusion of confounding diseases in the learning base of 
the algorithms studied (Al Saddik, 2019; Albetis et al., 2018; Boulent et al., 2020; Daglio et al., 2022; 
Musci et al., 2020). However, grapevines are susceptible to many biotic or abiotic stresses that can 
lead to highly varied visual symptoms, which can be easily confused with those of the diseases under 
study. The diagnosis of certain multi-symptom diseases such as Flavescence Dorée (FD) is performed 
in the field by examining the presence and combination of symptoms on three different organs 
simultaneously: the leaves, shoots and bunches. This allow the distinction of FD from its confounding 
diseases, which may exhibit very similar foliar symptoms but not on other organs.  

The third hypothesis was that the traditional approach in previous research on this subject, 
which processes an image in a single pass to provide a grapevine-scale diagnosis, would not be able to 
deal with the complexity of this diagnostic process. Approaches in two steps, consisting of a first step 
dedicated solely to the detection and distinction of symptoms of the targeted disease and its 
confounding diseases, followed by a second step dedicated to combining these detections to provide 
the vine-scale diagnosis, seemed to hold more potential in the automated diagnosis of these multi-
symptom diseases.  

Finally, a last hypothesis was that when diagnosing a grapevine disease, taking into account 
the data acquired from neighbouring vines as well as from both sides of these vines would improve 
the diagnosis at the grapevine scale. 
 
Research synthesis 

In order to study the research topic and affirm or refute the four hypotheses, two distinct types 
of multi-symptom grapevine diseases were targeted, being at the centre of two distinct projects in 
which this research participated.  

Firstly, FD, belonging to the category of diseases known as grapevine yellows, was at the core 
of the French project ProspectFD, which aims to create a comprehensive decision support tool for FD 
prospecting. This disease, which has a significant impact in Europe, presents three distinct symptoms 
on leaves, shoots, and bunches, and their simultaneous presence is necessary for an optimal in-field 
diagnosis. In more detail, this disease is characterized by a discolouration of the leaves (turning red for 
red grape varieties and yellow for white grape varieties), non-lignification of the shoots and drying of 
the bunches.  

A second type of multi-symptom disease was studied: Grapevine Trunk Diseases (GTDs) 
studied in direct connection with the historical and current projects taking place in New Zealand, at 
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the Plant and Food Research (PFR) laboratory of the Marlborough Research Centre. Here, 
Botryosphaeria and Eutypa diebacks were the targeted diseases. These two diseases both present 
three different symptoms, however, contrary to FD, their simultaneous presence is not essential for 
diagnosis. Stunted growth of the shoots (named ‘Short shoot’), one-sided vegetative growth on the 
trunk (named ‘Half head’) and cankers are the symptoms of these diseases. 

The establishment of a database specific to these two types of diseases was the first step in 
this research. Regarding FD, 1483 images were acquired at the vineyard scale, encompassing 5 
different grape varieties (Cabernet sauvignon, Cabernet franc and Merlot for red varieties, Ugni blanc 
and Sauvignon blanc for white varieties). Out of these 1483 images, 754 featured grapevines affected 
by FD, while the others displayed grapevines with foliar symptoms that could be confused with those 
of FD. The latter were categorized into three different classes: 'Esca' for grapevines affected by Esca, 
'CONF' for grapevines with leaves visually different from healthy leaves, and 'CONF+' for grapevines 
exhibiting foliar symptoms almost identical to those of FD. 

As for GTDs, a total of 10,305 images were acquired to build the dataset for studying their 
automated diagnosis. Among these, 2830 images displayed grapevines affected by GTDs, and 7,475 
showed healthy vines. It must be noted that the surveyed vineyards during the database collection for 
the GTD study did not have confounding diseases. Also, the photographed vines were of the 
predominant variety in the acquisition region, namely Sauvignon Blanc. 

The initial grapevine-scale diagnostic results were obtained through Convolutional Neural 
Networks (CNNs). This one-step method, which takes the image as input and directly classifies it, is the 
most commonly used approach in research on the automated diagnosis of grapevine disease (Boulent 
et al., 2020; Ji et al., 2020; B. Liu et al., 2020).Testing this methodology on the image datasets of the 
two types of diseases had two main purposes: i) to obtain initial disease diagnostic results for 
comparison with subsequent results and ii) to confirm or refute the hypothesis that this methodology 
did not effectively distinguish between vines affected by a disease and vines affected by a disease with 
confounding symptoms. Three different CNN architectures, among the most prevalent ones, were 
tested (MobileNetV3-large, ResNet50, and EfficientNetB5). During this study for the automated 
diagnosis of FD, tests were conducted by grouping different red grape varieties on one side and 
different white grape varieties on the other. The dataset of red grape varieties contained images of 
Cabernet Sauvignon acquired in 2020 and 2021, Cabernet Franc, and Merlot acquired in 2021, with 
16% of images from the 'CONF+' class. In comparison, the dataset covering white grape varieties 
contained only 3% of images from the 'CONF+' class and included images of Ugni Blanc acquired in 
2020 and 2021, as well as Sauvignon Blanc acquired in 2021. The best results for classifying 'FD' class 
images for red grape varieties were (p=0.87, r=0.84), while those for white grape varieties were 
(p=0.97, r=0.96). These results appeared to demonstrate the improvable performance of CNNs in 
distinguishing between FD and diseases with very similar symptoms. They also seemed to confirm their 
effectiveness found in the literature in diagnosing FD in the absence of confounding diseases and their 
ability to effectively consider FD symptoms from vines of different grape varieties. 

The study of CNNs for the automated diagnosis of GTDs was performed too. The dataset tested 
included 4,128 images, with 2,212 of them featuring vines affected by GTDs. The CNN ResNet50 with 
input image resolution division achieved the best results, namely (p=0.94, r=0.92) for classifying images 
of vines affected by GTDs. This result reaffirmed with another type of disease that CNNs deliver 
excellent results for the automated diagnosis of vine diseases when highly confusable diseases are not 
taken into account.  

In order to achieve a better diagnosis of diseases and to improve their differentiation from 
confounding biotic and abiotic factors, the hypothesis was that a two-step approach, with a first step 
solely dedicated to symptom detection and a second step dedicated to their association, would be 
beneficial. The study conducted after the one on CNNs focused on the automated detection of 
symptoms of the targeted diseases. 

In order to detect the symptoms, some of the FD and GTDs images were annotated at the 
symptom scale. Two types of annotations, which best corresponded to the properties of the studied 
symptoms, were carried out. For FD, symptomatic leaves of FD ('FD leaf' class), Esca ('Esca leaf' class), 
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and visually different leaves from healthy leaves as well as leaves similar to those of FD ('CONF leaf' 
class) were annotated with bounding boxes on 744 images. These annotations resulted in 11,279 
leaves in the 'FD leaf' class, 2,467 in the 'Esca leaf' class, and 22,421 in the 'CONF leaf' class, all 
annotated with bounding boxes. Symptomatic shoots and bunches of FD were annotated using 
segmentation masks. There were 128 segmentation masks, encompassing 833 symptomatic shoots 
and 468 symptomatic bunches. Additionally, 660 healthy bunches were also annotated on these 
segmentation masks, as their presence in large numbers in an image could be evidence of the absence 
of the disease. For GTDs, 505 images were annotated with bounding boxes. Of these, 268 'Half head' 
type symptoms, 1,480 'Short shoot' type symptoms, and 139 'Canker' type symptoms were annotated 
in this manner. Segmentation masks were also created for GTDs, highlighting the distinction between 
the vine trunk being studied ('Trunk' class), its foliage ('Foliage' class), and the rest ('Background' class). 
The goal was to extract characteristic information from this segmentation, such as the difference in 
size and foliage of certain shoots (characteristic of the presence of ‘Short shoot’) or foliage in contact 
with only one side of the trunk (characteristic of ‘Half head’). In this regard, 113 GTDs images were 
annotated with segmentation masks comprising these three classes. 

The detection of symptomatic FD leaves achieved the best results with the YOLOv8m detection 
algorithm, with (p=0.78, r=0.61) for red grape varieties and (p=0.48, r=0.69) for white grape varieties. 
The segmentation of symptomatic shoots, symptomatic bunches and healthy clusters obtained the 
best results with the ResUNet segmentation algorithm, with (p=0.83, r=0.57), (p=0.78, r=0.40), and 
(p=0.85, r=0.68), respectively. Regarding GTDs, the best symptom detection results were also achieved 
with the YOLOv8 algorithm, with (p=0.85, r=0.85) for the 'Half head' class and (p=0.58, r=0.58) for the 
'Short shoot' class. No Canker symptoms were correctly detected. The segmentation between the 
trunk, foliage, and the rest achieved the best results with the ResUNet algorithm with (p=0.86, r=0.95) 
for the 'Trunk' class, (p=0.93, r=0.92) for the 'Foliage' class, and (p=0.97, r=0.97) for the 'Background' 
class. 

These results, while not exceptional, should be considered in light of the complexity of the 
task: presence of confusing symptoms, symptoms masked by the foliage and symptoms with different 
appearances depending on the grape variety, vine phenological stage and disease stage. A less fast 
algorithm than YOLOv8m might have potentially yielded slightly better detection results. However, 
these results served as an initial foundation on which to build the second step of the methodology, on 
which a significant portion of the efforts of this research was concentrated, namely the association of 
these detections to deliver the final diagnosis. Specifically, these detection association methodologies 
were exclusively developed and tested for the FD disease type, where the number of symptoms 
detected per image and the number of 'CONF+' images were substantial. This dataset was instrumental 
in determining whether the two-step methodologies would yield better results in distinguishing 
between grapevines affected by the targeted disease and its highly confusing symptoms of other vine 
health issues. 

Two different symptom association methodologies were tested: The first used a fixed-size 
information vector for each image based on the detected symptoms and classified it with a Random 
Forest (RF) classifier. The second represented the detections as graphs for each image, which were 
then classified by a Graph Neural Network (GNN). For the dataset of red varieties, containing 16% of 
images from the 'CONF+' class and on which CNNs achieved the best results with (p=0.87, r=0.84) for 
classifying images of vines affected by FD, the RF methodology achieved the best results with (p=0.86, 
r=0.9), and the GNN methodology with (p=0.9, r=0.96). For the dataset of white varieties, containing 
3% of images from the 'CONF+' class and on which CNNs achieved the best results with (p=0.97, r=0.96) 
for classifying images of vines affected by FD, the RF methodology achieved the best results with (p=1, 
r=0.94), and the GNN methodology with (p=0.97, r=0.90). Therefore, the symptom association 
methods yielded better results on the dataset when the proportion of 'CONF+' class images was 
substantial (16% for the red grape varieties dataset). When this proportion was very low (3% for the 
white grape varieties dataset), the results were not better than those obtained by CNNs. These image 
classification results, in conjunction with the symptom detections results upon which the classification 
methods rely, are very good. This seems to indicate that the choice to acquire data through proximal 
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sensing using RGB imagery, to detect and then associate symptoms using deep learning algorithms, 
were relevant choices for the automated diagnosis of multi-symptoms grapevine diseases. 

Finally, the effectiveness of the CNN and the two-step methodologies was tested to deliver a 
diagnosis at the scale of an entire vineyard, simulating a real-world use case. Acquisitions were made 
on both sides of each vine from three distinct vineyards, each with unique characteristics. The 
'Neuffons' vineyard was planted with the red Merlot variety, and most of the vines affected by FD 
displayed very few symptoms. The 'Cognac' vineyard was planted with the white Ugni blanc variety 
and had a high number of vines affected by grapevine yellows without being infected by FD. The 
'Couture' vineyard was planted with the red Cabernet sauvignon variety and contained numerous vines 
affected by FD that expressed the disease's symptoms prominently. The trainings of the CNN, RF and 
GNN methods that achieved the best results mentioned above were tested to classify each image 
acquired in these vineyards. The GNN methodology obtained the best results on all three vineyards, 
although they were not satisfactory. They were (p=0.25, r=0.26) for the 'Neuffons' vineyard, (p=0, r=1) 
for the 'Cognac' vineyard, and (p=0.96, r=0.22) for the 'Couture' vineyard. In an attempt to achieve 
better results, RF and GNN methods using symptom detections from the images on the left and right 
of the image to be classified (3 neighbours method) as well as from the opposite sides of the vines in 
these three images (6 neighbours method) were developed. Intra-vineyard cross-validation were 
tested for the CNN, the standard RF and GNN methods considering 1 image, as well as the 3 and 6 
neighbours methods. These tests aimed to determine the most suitable method for vineyard-scale 
diagnosis. The GNN 6 neighbours methodology obtained the best results for each of the three 
vineyards, namely (p=0.76, r=0.71) for the 'Neuffons' vineyard, (p=0.36, r=0.93) for the 'Cognac' 
vineyard, and (p=0.94, r=0.98) for the 'Couture' vineyard. These results highlighted the fact that 
considering the surrounding vines as well as the two sides of the same vine led to better diagnostic 
results. Finally, the GNN 6 neighbours method was tested on the entirety of each vineyard, being 
trained on the images from one or both of the other vineyards, to establish its effectiveness in a real-
world scenario where the model would have never encountered the images of the target vineyard 
before. During the test on the 'Neuffons' vineyard, the model did not make any detections of FD. The 
test on the 'Cognac' vineyard yielded poor results (p=0.08, r=0.18). Finally, the test on the 'Couture' 
vineyard obtained the best results (0.88, 0.93). 
 
Response to the thesis statement 
In response to the question, "How to effectively diagnose grapevine multi-symptom diseases by digital 
means considering real vineyard conditions?" The answer, according to this research, lies in the 
creation of the most complete database as possible in term of symptoms expression of the studied 
diseases and its confounding diseases, precise symptom detection and subsequent intelligent 
association of the symptoms of these diseases. Taking into account the symptoms detected on both 
sides of the same vine as well as on neighbouring vines appears to be a significant advantage. However, 
when delving into the complex reality of vineyards, it becomes apparent how challenging addressing 
this issue is. Each vineyard seems to have its own specificity, its own expression of symptoms for the 
targeted diseases, its own confounding diseases, all of which makes diagnosing on vineyards other 
than those where the algorithms were trained extremely complicated. Creating a database and 
obtaining good results with it is one thing, applying the developed model to a vineyard that has never 
been studied is another. Efforts have been made to build a solid database containing multiple grape 
varieties, expressions of the targeted disease and its confounding health problems very diverse. 
Methodology that yields good results and innovative methodologies for even better results on this 
database have been developed. However, there always seem to be expressions of symptoms for the 
targeted disease or its confounding diseases that have not been encountered before when these 
methods are put into practice. 
 
Position in relation to other research 
This research has confirmed the findings of previous studies on this topic, namely that the use of CNNs 
allows for very good results in automated diagnosis of grapevine diseases when considering only vines 
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affected by the targeted disease and healthy vines (Boulent et al., 2020; Ji et al., 2020; B. Liu et al., 
2020). However, it distinguishes itself from these previous studies by also taking into account diseases 
with confounding symptoms during the development of automated diagnosis models. When 
considering these confounding diseases, CNNs are no longer the best models for automated diagnosis, 
and the proposed innovative two-step methodology deliver better results. Finally, even when 
considering these highly confounding diseases during model training, this study aligns with the 
conclusion of Al Saddik (2019) and Albetis et al. (2018) that, during the application of models in real-
use cases, distinguishing between grapevines multi-symptom diseases and their very similar symptoms 
of other health problems is very challenging to achieve. 
 
Limitations of the study 
This research has several limitations. Only 3 acquisitions were performed at the scale of an entire 
vineyards. More acquisition at the vineyard scale could have improved the model that group 6 
neighbouring images, which is the method yielding the best results for automated FD diagnosis. While 
different CNN architectures have been tested as the one-step methodology, vision transformers (S. 
Khan et al., 2022), which offer a novel and promising approach to process visual data that differs from 
traditional CNN, could have been tested. A greater diversity of images with annotated symptoms and 
a more in-depth study of symptom detection algorithms could have been conducted to achieve better 
results when associating them. Regarding GTDs, methods for associating symptom detections could 
have been developed to compare the results with those obtained during the FD study. A more 
thorough investigation of the diseases that could be confused with GTDs, a consideration of multiple 
grape varieties, and vineyard-scale acquisitions could have been conducted to provide a more 
comprehensive study of GTDs automated diagnosis. A more in-depth study of the chosen parameters 
of the RF (feature vectors) and GNN methods (node features and type of graph) could have been 
conducted. 
 
Perspectives for improving the graph-based methodology 
The emerging direction from this research for grapevine-scale diagnosis appears to revolve around 
refining methods for symptom detections association, with a particular focus on graph-based 
approaches. According to the literature review conducted on the topic of automated disease diagnosis 
in crops, this method has never been applied before. This approach yielded the best results during the 
study of automated FD diagnosis. It could be further developed by consolidating the learning databases 
of symptom detection and association algorithms. The detection and association algorithms for 
symptoms could also undergo a more in-depth study. For graph-based association, other approaches 
could have been considered, such as using different sets of nodes, assigning weights to graph links, 
creating heterogeneous graphs rather than homogeneous ones and employing alternative graph 
classification algorithms apart from GNNs. In the 3 and 6 neighbours approaches, the image 
registration process remained rudimentary. The use of registration and 3D reconstruction approaches, 
potentially relying on different sensors, as well as the use of different and less constrained robotic 
acquisition vectors, would allow a better leveraging of the redundancy between images and establish 
better connections between the various instances of symptoms on the same vine.  
  
General conclusion and perspectives 
The main goal of this research was the development and comparison of methods for the automated 
diagnosis of multi-symptom grapevine diseases. Data was collected through RGB imaging directly in 
the vine rows to obtain the most precise view of the different symptoms. The widely used methodology 
for automated grapevine diseases diagnosis in the literature was tested and yielded very satisfactory 
results in most cases. However, when the datasets contained a large proportion of vines with 
symptoms that were similar to those of the targeted disease, the results of this method became less 
accurate. In order to improve the differentiation performance between the targeted disease and 
diseases with similar symptoms, two-step methodologies were developed. 
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The first step involved the detection of individual symptoms, carried out by two neural 
algorithms, a segmentation one and a detection one. The second step involved the association of these 
symptom detections to deliver a diagnosis at the vine scale. The representation of the symptom 
detections as graphs and their processing by graph neural networks were proposed. This innovative 
methodology improved the distinction between the targeted disease and diseases with similar 
symptoms. The developed methodologies were subsequently tested on three acquisitions covering 
entire vineyards. While the results were very satisfactory for one vineyard, they were disappointing 
for the other two. These results highlight the challenges of the widespread practical implementation 
of automated grapevine diseases diagnosis methods. There are numerous variability factors affecting 
the expression of symptoms which, from one vineyard to another, from one vintage to another, from 
one grape variety to another, can take different forms. This research seems to confirm, despite the 
very promising results shown by the developed methodologies, the urgent need to conduct model 
training on consolidated databases, encompassing all or at least a very large portion of these variability 
factors. 

To address all the specificities that may be encountered when applying the models in real-
world use cases, a scaling up of the number of data acquisitions and annotations for model training 
seems necessary. The innovative methodologies developed in this research, which provide vine-by-
vine diagnosis solely based on images, appear to be a first step in improving disease detection in 
vineyards. However, for a better identification of high-risk areas of disease presence within vineyards, 
it seems essential to develop a comprehensive decision support tool that takes into account factors 
such as the history of symptoms and the vineyard environment, and adapts diagnostic criteria 
accordingly. 
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Appendix 1. Precise locations of each block in which acquisitions of 
grapevine affected by FD images were made  
 

 

Table 51. Summary of acquired images and associated ground truth at the grapevine scale for FD. The 
department, city and localisation in (latitude, longitude) are available. 

Grape variety, 
acquisition 
year 

Cabernet 

sauvignon, 
2020 

Ugni 
blanc, 
2020 

Cabernet 
sauvignon, 

2021 

Merlot, 
2021 

Cabernet 
franc, 
2021 

Ugni blanc, 
2021 

Sauvignon 
blanc, 
2021 

 
Total 

City 
(department 
number) 

Saint-Sève, 
Louviac, 
Semens  

(33) 

Reparsac 
(16) 

Saint-
Martin 

(33) 

Rions 
Saint-
Martin 

(33) 

Rions (33) Reparsac 
Saint-

Laurent 
(16) 

Langoiran 
(33) 

 

Localisation 
(latitude, 
longitude) 

44.6126886, 
-0.0379963 

44.6102027, 
-0.0389426 

44.6255832, 
-0.3070293 

44.6071638, 
-0.2460330 

44.6058326, 
-0.2424245 

44.5750228, 
-0.2468006 

45.7406102, 
-0.2293657 

45.7414515, 
-0.2271748 

45.7409606, 
-0.2255990 

45.7405824, 
-0.2293786 

44.5712274, 
-0.1697558 

44.6704526, 
-0.3561660 

44.5712274, 
-0.1697558 

44.6726088, 
-0.3610193 

45.7391416, 
-0.2286879 

45.3702535, 
0.0334376 

44.6992974, 
-0.3924154 

 

Dataset name CS20 UB20 CS21 M21 CF21 UB21 SB21  

Total number 
of images 

405 463 116 98 86 161 154 1483 

of which FD 159 211 107 53 56 112 56 754 

of which Esca 97 49 3 5 8 28 59 249 

of which 
CONF 

90 153 6 23 22 17 35 346 

of which 
CONF+ 

59 10 0 17 0 4 4 94 
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Appendix 2. Automated diagnostic of Esca 
 
During the field visits to acquire images of grapevines affected by FD, many grapevines were also 
affected by Esca disease. This disease only exhibits symptoms on leaves and did not fall within the 
scope of this research problem. However, since the foliar symptoms of Esca can be confused with those 
of FD, images of Esca-affected grapevines were acquired, and symptomatic leaves of Esca were 
annotated to improve the detection of symptomatic FD leaves. Thus, through these annotations at the 
image and symptom scale, it was possible, alongside the study of FD automated diagnosis, to obtain 
results of the automated diagnosis of Esca. These results are presented in this appendix. 
 
 

A. Description of the disease 
 
Esca, classified as a Grapevine Trunk Disease (GTDs), stems from a diverse array of fungal pathogens 
with no taxonomic relation (Larignon & Dubos, 1997). These fungi target the wood tissues of 
grapevines, causing necrosis even within the vital vascular tissues. This process ultimately disrupts the 
vine's physiology and has the potential to result in the death of the plant. 

Regarding Esca, the viticulture industry has been deeply concerned due to the lack of effective 
control measures. In the past, sodium arsenite was the sole registered pesticide in Europe for Esca 
control. However, it was prohibited in the early 2000s due to its toxicity, which posed risks to both 
winegrowers and the environment (Mondello et al., 2018). 

When it comes to visible symptoms, there are two classic forms of Esca based on leaf 
manifestations. The first is a slow or chronic form characterized by leaf blade discolouration, with 
yellow digitations appearing in white grape varieties and dark-red in red grape varieties. These 
discoloured areas are bordered by yellow regions in red grape varieties, giving the leaves a tiger-stripe-
like appearance. The second foliar form, known as apoplectic or apoplexy, is marked by rapid and 
extensive drying of the entire vine, ultimately leading to the death of the plant. Figure 52 illustrates 
the different form of Esca. Small, dark-brown to purple spots can also develop on the berries (Essakhi 
et al., 2008). 
 

 
Figure 52. Example of visual symptoms of Esca. Image 1: Esca symptomatic leaves on white grape 
variety, slow form of the disease. Image 2: Esca symptomatic leaves on red grape variety, slow form of 
the disease. Image 3:  apoplectic form of Esca. Images from (Rancon, 2019). 
 
 

B. Database acquisition and annotation 
 
Table 52 summarizes the number of images of grapevines affected by Esca (named ‘Esca’ class) 
acquired during the various acquisition campaigns conducted in 2020 and 2021. Only images from 
grapevines suffering from the slow form of Esca were acquired.  
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Table 52. Summary of the number of ‘Esca’ images according to the grape variety and acquisition 
year. 

Number of ‘Esca’ 
images 

Red varieties White varieties  
Total 

Cabernet 

sauvignon 
Merlot Cabernet 

franc 
Ugni blanc Sauvignon 

blanc 

2020 97 0 0 49 0 146 

2021 3 5 8 28 59 103 

Total 113 136 249 

 
 It can be observed that Esca was more prevalent in certain plots, and the number of images in 
the 'Esca' class in the dataset is quite varied. However, the number of images of red grapevine varieties 
exhibiting Esca symptoms is then 113, while for white grape varieties, it is 136. This separation of 
images in the 'Esca' class between red and white grape varieties is more logical since the symptoms 
differ between the two grape colours, as illustrated in Figure 53.  
 

 
Figure 53. Zoom on symptomatic Esca leaves for red and white grape varieties on the acquired images. 
On the first row, 4 symptomatic leaves of Esca on red grape variety (Cabernet sauvignon) are displayed, 
from the earliest stage to the most advanced. The second row presents 4 symptomatic leaves of Esca 
on white grape variety (Ugni blanc), also from the earliest stage to the most advanced. 
 
 In Figure 53, it can be observed that during image acquisition, symptomatic leaves of Esca 
encountered on red grapevines exhibit a pronounced reddening, whereas on white grapevines, 
symptomatic Esca leaves show diffuse yellowing. 
 The number of acquired images of grapevine suffering from Esca presented in Table 52 
provided an initial foundation for studying its automated diagnosis, either through CNNs 
(Convolutional Neural Networks) or two-stage methodologies. Furthermore, two-stage methodologies 
require an initial step of symptom detection. Since the visual symptoms of Esca are confounding from 
those of FD expressed on the leaves, the symptom annotations for Esca consisted of bounding boxes 
around the symptomatic Esca leaves, in the same way as symptomatic leaves for FD were annotated 
(Chapter III Section D). Examples of annotations by bounding boxes of symptomatic Esca leaves are 
presented in Figure 54. 
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Figure 54. Examples of annotation using bounding boxes for symptomatic Esca leaves. The image on 
the left shows annotations of Esca symptomatic leaves on Cabernet sauvignon grape variety, while the 
one on the right is for Ugni blanc grape variety. Leaves belonging to the 'Esca leaf' class are enclosed 
in blue bounding boxes, while those of the 'Confounding leaf' class are enclosed in red. 
 
The number of symptomatic leaves of Esca annotated by bounding boxes is provided in Table 53.  
 
Table 53. Summary of the number of annotated Esca symptomatic leaves by bounding boxes per 
dataset. 

Number of ‘Esca’ 
bounding boxes 
annotations 

‘Det_all_red’ ‘Det_all_white’  

Cabernet 

sauvignon 
Merlot Cabernet 

franc 
Ugni blanc Sauvignon 

blanc 
 

Total 

2020 299 0 0 425 O 724 

2021 357 0 274 758 354 1743 

Total 930 1537 2467 

 
 Some of the figures in Table 53 may appear high given the number of images of grapevines 
affected by Esca in certain datasets. This is because, for these datasets, grapevines suffering from FD 
also exhibited symptoms of Esca and those were consequently annotated in these images as well. 
However, in the classification dataset, there are no grapevine exhibiting both FD and Esca symptoms 
to avoid any confusion. The images annotated with bounding boxes from the Cabernet Sauvignon 
2020, Cabernet Sauvignon 2021, and Cabernet Franc datasets were combined during the training of 
the algorithms into the 'Det_all_red' dataset. Similarly, the images from the Ugni Blanc 2020, Ugni 
Blanc 2021, and Sauvignon Blanc 2021 datasets were grouped into the 'Det_all_white' dataset. 
'Det_all_red' and 'Det_all_white' including leaves annotated as symptomatic of FD and leaves 
annotated as confounding with FD in the images of their respective datasets datasets). 
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 The images where these symptoms have been annotated were not present in the dataset for 
study of the classification at the image scale. The dataset used for studying the automated 
classification of Esca was those indicated in Table 54. This dataset encompassed images of the class 
‘FD’, ‘CONF’ and ‘CONF+’ as detailed in Chapter III. The study of automated Esca diagnosis was 
conducted by grouping red grape varieties on one side and white grape varieties on the other. The 
images from the datasets for the classification of Cabernet Sauvignon 2020, Cabernet Sauvignon 2021, 
Merlot 2021, and Cabernet Franc 2021 were all combined into the dataset 'Cla_all_red'. Similarly, the 
other three datasets were grouped together to form the 'Cla_all_white' dataset. It can be noted that 
the number of images in the 'Esca' class is balanced between the two datasets. 
 
 
Table 54. Description of the number of images of the class 'FD', ‘Esca’, ‘CONF’ and ‘CONF+’ for the 
classification at the image scale. 

Dataset Grape variety, acquisition date FD Esca CONF CONF+ 

Cla_all_red 

Cabernet    sauvignon, 2020 72 45 87 56 

Cabernet sauvignon, 2021 86 2 6 0 

Merlot, 2021 32 5 7 11 

Cabernet franc, 2021 23 3 2 5 

Cla_all_white 

Ugni blanc, 2020 83 13 88 8 

Ugni blanc, 2021 33 12 4 0 

Sauvignon blanc, 2021 41 44 17 2 

 
  
 

All the results presented subsequently for these datasets will be derived from the same 5-fold 
cross-validation. Each training image also underwent the same data augmentation, as described in 
Chapter IV, Section B. 

The initial method for automated diagnosis on the 'Cla_all_red' and 'Cla_all_white' datasets 
was carried out using the one-step methodology, which involves the use of Convolutional Neural 
Networks (CNNs). 
 
 

C. 1-step diagnosis - CNNs 
 
As presented in Chapter IV, Section A, three CNNs were tested for the automated classification of 
images. The images also underwent resolution degradation by factors of 16, 64, and 256. Table 55 
presents the results obtained during this study for images in the 'Esca' class. 

The best results were obtained for red grape varieties with the CNN ResNet50 and image 
resolution divided by a factor of 16, resulting in p=0.49 and r=0.50. The results for white grape varieties 
were much better, reaching p=0.81 and r=0.79 as the best results with the CNN MobileNetV3-large 
and image resolution divided by a factor of 64. 

Firstly, this difference in results may seem strange, but it actually makes sense when examining 
the images in these two datasets. As illustrated in Figure 55, some Esca symptomatic leaves can be 
confused with symptomatic FD or its confounding diseases for the red grape varieties. In contrast, 
symptomatic Esca leaves can be distinguished from symptomatic FD leaves and its confounding leaves 
in the dataset of white grape varieties images.  
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Table 55. Results of the classification by CNNs for the images of the 'Esca' class. 

Dataset Pre-processing MobileNetV3-
large 

ResNet50 EfficientNetB5 

  (p,r) ‘Esca’ class (p,r) ‘Esca’ class (p,r) ‘Esca’ class 

Cla_all_red 

/16 (0.50, 0.37) (0.49, 0.50) (0.44, 0.35) 

/64 (0.43, 0.19) (0.54, 0.43) (0.51, 0.36) 

/256 (0.29, 0.19) (0.28, 0.16) (0.44, 0.21) 

Cla_all_white 

/16 (0.78, 0.76) (0.84, 0.74) (0.67, 0.71) 

/64 (0.81, 0.79) (0.81, 0.81) (0.65, 0.59) 

/256 (0.75, 0.81) (0.70, 0.71) (0.66, 0.59) 

 
 

 
Figure 55. Comparison between symptomatic Esca leaves, symptomatic FD leaves and confounding 
leaves to those of FD for red and white grape varieties. First row: Leaves present in the images from 
the dataset 'Cla_all_red'. Second row: Leaves present in the images from the dataset 'Cla_all_white'. 
First column: Symptomatic Esca leaf. Second column: Symptomatic FD leaf. Third column: Confounding 
leaf to the symptomatic FD leaf. 
 

Secondly, it is apparent that having the highest resolution is not necessary to achieve the best 
results in leaf detection, and a resolution division by a factor of 64 yields among the best results. 
However, resolution division by a factor of 256 yields the worst results for each method and dataset. 
The two-step methodologies were then developed and tested. The first stage involves the detection 
of individual disease symptoms, as presented in the next section. 
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D. Symptom detection 
 
During the detection of symptomatic FD leaves, a separate class was dedicated to Esca symptomatic 
leaves because they could be confused with FD leaves. Due to the large numbers of Esca symptomatic 
leaves, a separate class was created for them. As a result, during the training of the symptom detection 
models presented in Chapter V Section A, results for the detection of Esca leaves were also available. 
The models tested, as detailed in Chapter V Section A, included two YOLO-type models (Redmon et al., 
2016) (YOLOv4-tiny (Bochkovskiy et al., 2020) and YOLOv8m (Jocher et al., 2023)). The images were 
either divided into patches (see Chapter V Section A) for both models or provided in their entirety for 
the YOLOv8m model (after a resolution division by 4). Training and results for these models were done 
separately for red grape varieties on one hand and white grape varieties on the other. The results for 
the detection of symptomatic Esca leaves for red grape varieties are presented in Table 56, and those 
for the detection of symptomatic Esca leaves for white grape varieties are in Table 57. 
 
Table 56. Precision and recall results for the detection of Esca symptomatic leaves in red grape varieties, 
using two different models and comparing the use of patches and whole images.  

 
 
Table 57. Precision and recall results for the detection of Esca symptomatic leaves in white grape 
varieties, using two different models and comparing the use of patches and whole images 

 
When comparing the overall performance of the models for red (Table 56) and white (Table 

57) grape varieties, it becomes apparent that it contradicts the results obtained by CNNs. In this test 
the leaves are better detected in red grape varieties (with precision ranging from 0.66 to 0.73 and 
recall from 0.57 to 0.73) than in white grape varieties (precision ranging from 0.49 to 0.57, and recall 
from 0.45 to 0.54). However, CNNs achieved better image-level classification results for white grape 
varieties. This can be explained by the fact that even though symptomatic Esca leaves on white grape 
varieties look visually different from FD or confounding leaves of FD (as illustrated in Figure 55), their 
symptoms are less pronounced than those on red grape varieties. Consequently, an algorithm 
dedicated to their detection has more difficulties to accurately identifying them. On the contrary, even 
though some Esca leaves visually resemble FD or confounding leaves of FD for red grape varieties, the 
fact that their symptoms are more pronounced allows a dedicated algorithm for their identification to 
achieve better results. 

Combining the results of precision and recall, the best performance in detecting symptomatic 
Esca leaves is achieved by the YOLOv8m model when using entire images for both red (p=0.66, r=0.73) 
and white (p=0.57, r=0.54) grape varieties. This aligns with the results for the detection of symptomatic 
FD leaves presented in Chapter V, Section A. 
 

Training set Algorithm, pre-
processing 

‘Esca leaf’ precision ‘Esca leaf’ recall 

Det_all_red 

YOLOv4-tiny, patches 0.73 0.57 

YOLOv8m, patches 0.67 0.66 

YOLOv8m, whole image 0.66 0.73 

Training set Algorithm, pre-
processing 

‘Esca leaf’ precision ‘Esca leaf’ recall 

Det_all_white 

YOLOv4-tiny, patches 0.49 0.45 

YOLOv8m, patches 0.54 0.52 

YOLOv8m, whole image 0.57 0.54 
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E. Symptom detections association 
 
The detection of symptomatic Esca leaves has allowed for their inclusion in the process of associating 
symptom detections, which is the second step of the two-step methodology for diagnosing diseases at 
the image level.  
 

 Random Forest based methodology 
 
Regarding the association methodology using the Random Forest classifier (RF) (Ho, 1995), depicted in 
Chapter VI Section A, the number of detected Esca leaves, their average confidence scores and the 
number of spatially close Esca leaves were included in the input information vector provided to the RF. 
Four different input vectors, as depicted in Chapter VI Section A, have been tested: an input vector 
taking into account only leaves detection predicted by Yolov4-tiny (VectYOLOv4leaves) or YOLOV8m 
(VectYOLOv8leaves) or the one taking into account all the symptoms detected for the FD diagnosis 
(VectYOLOv4all and VectYOLOv8all). 

The results of the image classification for the 'Esca' class in the 'Cla_all_red' and 'Cla_all_white' 
datasets using the RF methodology are presented in Table 58. 
 
Table 58. Results in precision and recall of the RF methodology for 4 different input vectors for the 
classification of ‘Esca’ image class for both red and white grape varieties sets. 

 Cla_all_red  Cla_all_white 

Feature vector Esca 
precision 

Esca 
recall 

 Esca 
precision 

Esca 
recall 

VectYOLOv4leaves 1 0.64 
 

0.82 1 

VectYOLOv4all 1 0.64  0.78 1 

VectYOLOv8leaves 0.86 0.88 
 

0.82 1 

VectYOLOv8all 1 0.64  0.82 1 
  

The precision and recall results presented in Table 58 show minimal variation based on the 
different input vectors for the RF. Concerning red grape varieties, the best results are achieved using 
the vector containing only parameters derived from the detection of leaves by the YOLOv8m algorithm 
(p=0.86, r=0.88). All other vectors yield exactly the same results (p=1, r=0.64). For white grape 
varieties, the vector containing predictions for all symptoms, including leaves detected by the YOLOv4-
tiny algorithm, obtains the lowest results (p=0.78, r=1), while the other three vectors yield identical 
results (p=0.82, r=1).  

It is concluded that the best input vector for the automated diagnosis of red and white 
grapevine infections with Esca appears to be the one that takes into account information solely from 
leaf detections by the YOLOv8m algorithm. These results make sense as YOLOv8m achieves better 
results for symptomatic Esca leaves detection. It also aligns with the notion that leaf information alone 
provides better results, as other parameters are related to symptoms specific to FD and potentially 
confuse the algorithm more than assisting it. 

 
 

 Graph neural network based methodology 
 
Regarding the association methodology using the Graph Neural Network (GNN) (Scarselli et al., 2009), 
depicted in Chapter VI Section B, the detected Esca symptomatic leaves were included in the different 
graphs at the input of the tested GNNs. Three different input graphs, as depicted in Chapter VI Section 
B, have been tested: graphs taking into account 1) only leaves detection predicted by Yolov8m 
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(‘leafgraph’), 2) all the symptoms (on leaves, shoots and bunches) but without the detection of the 
confounding leaves of FD (‘allgraph_withoutconf’) and 3) with the detection of the confounding leaves 
of FD (‘allgraph’).  

The results of image classification by GNN for the 'Esca' class for red and white grape varieties 
based on the three types of graphs are presented in Table 59. Only the best results, which are obtained 
using an MP function followed by MinCut pooling creating 10 clusters of nodes, are shown in this table. 
These results align with the best results achieved for image classification of the 'FD' class, as presented 
in Chapter VI, Section D. 
 
Table 59. Results in precision and recall of the GNN methodology using the MinCut pooling function for 
the classification of ‘Esca’ image class for both red and white grape varieties sets. 

   Cla_all_red  Cla_all_white 

Pooling Graph Link 
distance 
(pixel) 

ESCA 
precision 

ESCA 
recall 

 ESCA 
precision 

ESCA 
recall 

MinCut 
Pooling 

leafgraph 100 0.92 0.92  1 0.82 

allgraph_withoutconf 100 0.90 0.81  0.80 0.88 

allgraph 100 0.89 0.80  0.81 0.93 

 
The results presented in Table 59 demonstrate that the best image classification results for 

'Esca' are achieved with a node-link distance of 100 pixels, compared to 200 pixels for 'FD' (see Chapter 
VI section D). This indicates that the 3 different symptoms of 'FD' needed to be more interconnected, 
whereas for 'Esca', with a single symptom on leaves, the proximity of symptomatic leaves was more 
indicative of the disease for the model. 

In contrast to the results obtained for 'FD', the graph containing only leaf symptoms obtains 
the best results for the classification of ‘Esca’ images, reaching (p=0.92 and r=0.92) for red grape 
varieties, and (p=1 and r=0.82) for white grape varieties. The inclusion of symptoms on shoots and 
bunches for 'FD' did not improve the image classification results for 'Esca' and, in fact, to a decrease in 
performance. 

 
 

F. Conclusion 
 
The presence of numerous grapevines affected by Esca in the acquisition plots for grapevines affected 
by FD, along with foliar symptoms potentially confusing with those of FD, led to the creation of the 
specific 'Esca' class for the study of automated FD diagnosis at the image level. Additionally, the 'Esca 
leaf' class was created during the study of symptomatic leaf detection for FD. These specific classes 
allowed, during studies related to FD automated diagnosis, to obtain results on automated Esca 
diagnosis. No study was specifically conducted to optimize the results of automated Esca diagnosis, 
and the number of images of grapevines affected by Esca does not align with a comprehensive study 
on the subject. However, the results from different diagnostic methodologies highlight methodologies 
that seem more suitable for its diagnosis than others. 

Firstly, the automated diagnosis methodology by CNN demonstrated its limitations, achieving 
satisfactory results on white grape varieties (p=0.81, r=0.79) but disappointing results on red grape 
varieties (p=0.49, r=0.50). The results of symptomatic Esca leaf detection contrasted with these 
findings, achieving (p=0.66, r=0.73) for red grape varieties and (p=0.57, r=0.54) for white grape 
varieties. These results highlighted that in the dataset of this study, even though symptomatic Esca 
leaves on white grape varieties look visually different from FD or confounding leaves of FD, their 
symptoms are less pronounced than those on red grape varieties. Consequently, an algorithm 
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dedicated to their detection has more difficulty accurately identifying them. On the contrary, even 
though some Esca leaves visually resemble FD or confounding leaves of FD for red grape varieties, the 
fact that their symptoms are more pronounced allows a dedicated algorithm for their identification to 
achieve better results. 

The methods of associating Esca leaf detections to deliver a diagnosis at the image level 
successively outperformed the results obtained by CNNs. The RF methodology achieved image 
classification results for the 'Esca' class (p=0.86, r=0.88) and (p= 0.82, r=1) for red and white grape 
varieties, respectively. These results were obtained with the information vector containing only the 
information from leaf detections of the 'FD leaf,' 'Esca leaf,' and 'Confounding leaf' classes. The 
automated classification of grapevines affected by Esca by GNN achieved its best results (p=0.92, r= 
0.92) and (p=1, r=0.82) for red and white grape varieties, respectively. As with the RF method, the 
graph containing only the information from leaf detections allowed for the best results. Furthermore, 
the node-link distance of 100 pixels in the graph, which yielded the best results, suggests that 
information about Esca leaves in very close spatial proximity is an important criterion for the 
automated diagnosis of the disease. 
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Appendix 3. Workflow of a supervised deep learning model 
 
Training a deep learning model involves the process of iteratively updating the model's parameters 
(weights and biases) based on the input data and corresponding target outputs. The goal is to minimize 
the difference between the predicted outputs of the model and the ground truth labels, which is 
typically measured using a loss function. The training process can be divided into several key steps, 
each of which plays a crucial role in helping the model learn from the data and improve its 
performance. 
Here follows a detailed explanation of the training process for a deep learning model: 
 

1. Data Preparation:  

• The first step is to gather and preprocess the training data. This involves collecting a 
labelled dataset where the inputs and corresponding outputs (or labels) are known. 
The data is usually divided into two parts: the training set and the validation set. 

• Preprocessing includes tasks like normalization (scaling the data to a specific range), 
data augmentation (creating variations of the data to increase diversity), and splitting 
the data into batches for efficient computation (the model processes a certain number 
of samples at once). 

2. Model Architecture: 

• Choosing an appropriate deep learning model architecture is crucial for the success of 
the training process. The architecture defines the layout and connectivity of layers in 
the model, including the number of layers, the types of layers (e.g., convolutional, 
recurrent, fully connected), and the number of neurons or units in each layer. 

• The choice of architecture depends on the nature of the problem (e.g. image 
classification, language translation, etc.) and the available resources (computing 
power and memory). 

3. Forward Pass: 

• During training, input data (features) are fed into the model, and the model performs 
a forward pass. In the forward pass, the input data propagates through the network 
layer by layer. 

• At each layer, transformations (linear transformations, activation functions) are 
applied to the input data, and intermediate outputs (activations) are computed and 
passed to the next layer. 

4. Loss Calculation: 

• The model's predictions are compared to the true target outputs using a loss function 
(also called a cost function or objective function). The loss function quantifies how far 
off the predictions are from the actual labels. 

• Common loss functions include mean squared error (MSE) for regression problems 
and categorical cross-entropy for classification problems. 

5. Backward Pass (Backpropagation): 

• The backward pass is the core of the training process in deep learning. It involves 
calculating gradients of the loss function with respect to the model's parameters 
(weights and biases) using the chain rule of calculus. 

• The gradients indicate the direction and magnitude of the changes needed in each 
parameter to reduce the loss. These gradients are computed layer by layer, starting 
from the output layer and propagating backward to the input layer. 

6. Parameter Update (Optimization): 

• After computing the gradients, an optimization algorithm is used to update the 
model's parameters to minimize the loss function. The optimization algorithm adjusts 
the model's parameters by subtracting a fraction of the gradients from the current 
values, effectively moving the model in the direction of lower loss. 
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7. Training Loop: 

• The training process proceeds through multiple iterations called epochs. In each 
epoch, the entire training dataset is passed through the model, and the gradients and 
parameter updates are computed and applied. 

• The model is trained for a fixed number of epochs or until a stopping criterion is met 
(e.g. convergence of the loss function or a predefined maximum number of epochs). 

8. Validation: 

• Throughout the training process, the model's performance is evaluated on a separate 
validation dataset, which the model has not seen during training. This allows 
monitoring of the model's generalization to unseen data and helps in preventing 
overfitting (where the model performs well on the training data but poorly on new 
data). 

9. Hyperparameter Tuning: 

• Deep learning models have hyperparameters that are not learned during training but 
need to be set before training. These include learning rate (controls how quickly or 
slowly the model adapts and converges to a local minimum), batch size, number of 
layers, number of neurons in each layer, etc. 

• Hyperparameter tuning involves finding the best combination of hyperparameter 
values that lead to optimal model performance. This is often done using techniques 
like grid search, random search, or Bayesian optimization. 

10. Test: 

• Once the model is trained and validated, it is tested on a separate test dataset that 
has not been used during training or validation. The test dataset provides a final 
evaluation of the model's performance and gives an estimate of how well the model 
will perform in the real world. 

 
The training process is an iterative and resource-intensive task. It requires a significant amount 

of computational power and is often performed on GPUs or specialized hardware to speed up the 
training process. Additionally, the success of deep learning training also depends on the availability of 
a large and diverse dataset, as well as careful model architecture design and hyperparameter tuning. 
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Appendix 4.  YOLOv4-tiny and YOLOv8 architectures 
 

 
Figure 56. YOLOv4-tiny architecture using CSPDarknet53 as the base network (Saponara et al., 2022). 
CSP stands for "Cross-Stage Partial Networks", a convolutional neural network architecture used to 
enhance object detection performance in the YOLOv4 model. CSP aim is to divide the network into two 
branches so that information flow through these branches in a parallel manner, allowing for feature 
extraction at different spatial scales. The "head" is responsible for generating the final predictions of 
the model. 
 

Figure 57. Model structure of YOLOv8 detection models (P5) - YOLOv8n (nano)/s (small)/m (medium)/l 
(large)/x (extra-large). (Range, 2023) 
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Appendix 5. Segmentation of the symptomatic shoots of FD by 
structure tensor 
 
This aims to propose a segmentation method to isolate symptomatic shoots or pieces of symptomatic 
shoots of FD. A descriptor is proposed to distinguish the pixels of symptomatic shoots (of green colour) 
from other pixels of similar colour, such as those of petioles, leaves, and potentially present grass. This 
technique was successfully used by Abdelghafour et al. (2019) for grapevine image segmentation. It is 
known as the structure tensor. 
 

The structure tensor is a mathematical representation extensively used in image processing 
and computer vision to dissect the local characteristics and orientations of features within an image 
region. It serves as a fundamental tool for tasks like edge and corner detection, as well as texture 
analysis. Its main advantage is its rapid calculation speed compared to deep segmentation algorithms.  
First, the gradient of the image is calculated. The gradient provides information about the direction 
and magnitude of the image intensity changes. For each pixel in the image, a small local window (also 
called a neighbourhood) is defined around it. The size of this window determines the scale at which 
the structure tensor is computed. The gradient values within this window are used to calculate the 
structure tensor. The structure tensor is a 2*2 matrix that is computed using the gradient values within 
the local window. The components of the structure tensor are calculated by taking outer products of 
the gradient vectors. The structure tensor matrix can be represented as in equation 14: 
 

𝑆 = [
𝐼𝑥2 𝐼𝑥𝐼𝑦

𝐼𝑥𝐼𝑦 𝐼𝑦2
] (14)  

 
where Ix is the gradient in the x-direction, Iy is the gradient in the 𝑦-direction.  

 
Smoothing can be applied here to mitigate potential noise stemming from the discretized pixel 

effect. The eigenvalues and eigenvectors of the averaged structure tensor are computed. These 
eigenvalues represent the magnitude of the local intensity variations along the dominant and 
perpendicular directions within the local windows. The eigenvectors provide the corresponding 
directions of these variations. The orientation of the image features can be estimated using the 
eigenvector associated with the larger eigenvalue. The anisotropy (how elongated or stretched the 
features are) can be derived from the ratio of the eigenvalues as shown in equation 15: 

 

𝐴𝑛𝑖𝑠𝑜𝑡𝑟𝑜𝑝𝑦 =
𝜆1  −  𝜆2

𝜆1  +  𝜆2

(15) 

 
with λ1 and λ2 the eigenvalues of S. This value, between 0 and 1, is very close to 1 when the gradient 
has a preferred direction.  
 

In the present work, attempts have been done to use the anisotropy of the tensor to detect 
and distinguish certain symptoms with specific shapes and textures. A technique called hysteresis 
thresholding (Pridmore, 2001) was subsequently used to improve the segmentation results. Hysteresis 
thresholding, is a technique used in image processing to improve the accuracy of edge detection, 
particularly in the presence of noise or variations in intensity. The hysteresis thresholding method 
involves using two threshold values: a high threshold (T_high) and a low threshold (T_low). The main 
idea behind hysteresis thresholding is to establish a threshold range for potential edge pixels, allowing 
for more flexibility in distinguishing true edges from noise. The gradient magnitude values are 
compared with the high threshold (T_high). Pixels with gradient magnitudes above T_high are 
considered strong edge candidates, while those below T_high are either discarded or marked as 
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potential weak edges. Pixels with gradient magnitudes between T_low and T_high are considered 
weak edge candidates. These pixels are not immediately classified as edges but are kept for further 
evaluation. The connected regions of weak edge candidates are tracked to determine if they are part 
of a continuous edge structure. If a connected region of weak edges is found to be connected to a 
strong edge (above T_high), it is promoted to a strong edge. If a weak edge region is not connected to 
any strong edge, it is discarded as noise. 

By applying hysteresis thresholding on the anisotropy of the tensor, the edge detection process 
becomes more adaptable to variations in edge strength and noisy conditions. The high threshold helps 
in identifying strong edges, and the low threshold prevents the elimination of weaker edges that are 
still part of meaningful structures. 

Finally, connected components detection was carried out to isolate objects (groups of pixels) 
that may constitute symptomatic shoots. Morphological operations were tested to compare the 
detections with the expected shape of the desired symptom (length-to-width ratio) and retain only the 
corresponding detections.  
A comparison was conducted between the structure tensor and ResUNet algorithms for the 
segmentation of symptomatic shoots of FD. The results are provided in Table 60. 
 
Table 60. Segmentation results obtained for symptomatic shoots at pixel and object scales, using both 
the structure tensor and the ResUNet methodologies (see Chapter V). 

Algorithm Input size 
Pixel 

precision 
Pixel 
recall 

Object 
precision 

Object 
recall 

Structure tensor 2048*2448*3 0.19 0.24 0.12 0.15 

Structure tensor + 
hysteresis threshold 2048*2448*3 0.17 0.44 0.08 0.59 

Structure tensor + 
hysteresis threshold + 
morphological operation 

2048*2448*3 0.7 0.28 0.66 0.42 

      
ResUNEt 2048*2448*3 0.53 0.59 0.74 0.52 

ResUNEt 512*512*3 0.64 0.53 0.76 0.58 

ResUNEt 256*256*3 0.69 0.58 0.82 0.59 
The parameters of the structure tensor were the following: derivative filter: sigma = 2. Gaussian smoothing: sigma = 8. 
Threshold by hysteresis: low threshold = 0.5, high threshold= 0.9. Morphological operations: only the detections verifying: 
length of the major axis > 90 pixels, 6 pixels < length of the minor axis < 17 pixels were retained. The ResUnet algorithm 
reached the best results for the Tversky loss function (those presented in this table), five levels of depth, α = β = 0.8 for 
batches of 30 images during 300 epochs. 
 

Concerning the structure tensor results, it is evident that the initial outcomes are quite poor, 
both in relation to the pixel metric (p=0.19, r=0.24) and the object metric (p=0.12, r=0.15). The 
hysteresis threshold facilitates the retrieval of more pixels from symptomatic shoots at the expense of 
precision (p=0.08 and r=0.59 for the object metric). Morphological operations enhance the results by 
greatly improving precision, albeit at the cost of reduced recall (p=0.66 and r=0.42 for the object 
metric). Figure 58 displays an example of the results of each of these steps.  

The ResUNet yielded superior results. Optimal performance was attained by employing the 
256*256*3 patches (512*512*3 image patches with downsizing the resolution of each patch by a 
factor of 4) with p=0.82 and r=0.59 for the object metric. This technique significantly bolsters precision 
during result comparisons: for the object metric, p=0.74 for the whole images as input and p=0.76 for 
the patches 512*512*3 as input. This phenomenon stems from the fact that petioles (leaf stems), 
resembling shoots in their elongated and green form, are frequently predicted as syptomatic shoots 
by the algorithm as they naturally appear. Nevertheless, the resolution reduction diminishes their 
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distinctiveness in the images, given their slender nature, resulting in fewer wrong predictions by the 
algorithm. A comparison of the predictions of the structure tensor and the ResUNet is presented in 
Figure 59.  
 

 
Figure 58. Images of the different steps of the structure tensor algorithm. a) Original image. Original 
image overlayed with: b) threshold on the anisotropy, c) threshold on the anisotropy with hysteresis 
treshold, d) threshold on the anisotropy with hysteresis threshold and morphological operations. 
 

It can be observed in Figure 58 that simple thresholding on anisotropy produced false positives 
almost everywhere, and the detected shoots were not complete. The false positives were exacerbated 
by hysteresis thresholding, but more shoot pixels were recovered through this operation. Finally, 
thanks to morphological operations, many false detections were removed at the cost of removing 
many good detections as well. 
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Figure 59. Images comparing predictions for symptomatic FD shoots between the structure tensor and 
ResUNet. First column: Raw image. Second column: Predictions by the structure tensor (with hysteresis 
thresholding and morphological parameters). Third column: predictions by the ResUnet. 
 

In the first two images of Figure 59 (the first two rows), it can be observed that the shoots 
predicted by the ResUNet algorithm are generally more complete than those predicted by the 
structure tensor. Additionally, the last example (bottom row) highlights the better precision of the 
ResUNet algorithm, with significantly fewer false positives. 
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Appendix 6. Results of the RF methodology for the 'FD' class depending 
on the hyperparameter combinations 
 
Table 61. Comparison of the results in precision and recall of the RF for the 'FD' class on the 'ClaFD' 
dataset using the YOLOv8all vector for all the hyperparameter MS, MF and NDT combinations. 

 
MS, MF and NDT stand for the Maximum number of Samples, the Maximum number of Features and the Number of Decision 
trees respectively. 
 
 
 
 
 
 
 
 

MS (%) MF NDT FD precision FD recall 

0.5 1 50 0,82 0,96 

0.5 1 100 0,8 0,97 

0.5 1 500 0,8 1 

0.5 2 50 0,84 1 

0.5 2 100 0,84 1 

0.5 2 500 0,82 0,99 

0.5 3 50 0,8 0,99 

0.5 3 100 0,83 0,99 

0.5 3 500 0,83 0,99 

0.6 1 50 0,78 0,99 

0.6 1 100 0,81 0,99 

0.6 1 500 0,8 1 

0.6 2 50 0,81 0,99 

0.6 2 100 0,81 0,99 

0.6 2 500 0,82 0,99 

0.6 3 50 0,81 0,99 

0.6 3 100 0,82 1 

0.6 3 500 0,81 0,99 

0.7 1 50 0,79 0,99 

0.7 1 100 0,81 1 

0.7 1 500 0,81 1 

0.7 2 50 0,8 0,97 

0.7 2 100 0,8 0,99 

0.7 2 500 0,82 0,99 

0.7 3 50 0,82 0,99 

0.7 3 100 0,82 0,96 

0.7 3 500 0,84 0,97 
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Appendix 7: Random Forest’s importance scores of the parameters of 
the VectYOLOv8all vector for the FD study 
 

 
Figure 60. Importance scores of the parameters of the VectYOLOv8all vector for the training and testing 
of RF that achieved the best results on the 'UB20' set. 
 

 

 
Figure 61. Importance scores of the parameters of the VectYOLOv8all vector for the training and testing 
of RF that achieved the best results on the 'CS20 + CF21 + M21 + CS21' set. 
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Figure 62. Importance scores of the parameters of the VectYOLOv8all vector for the training and testing 
of RF that achieved the best results on the ‘UB20 + UB21 + SB21’ set. 
 

 

 
Figure 63. Importance scores of the parameters of the VectYOLOv8all vector for the training and testing 
of RF that achieved the best results on the ‘ClaFD’ set. 
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