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Résumé : Alors que les applications d'agriculture de
précision (AP) sont déja bien établies pour les
quadrirotors, la navigation autonome, en particulier
dans les champs agricoles complexes, non structurés
et capricieux, reste un défi permanent pour ces
véhicules. Les stratégies de navigation aérienne
autonome ne doivent pas se limiter a garantir que la
cible est atteinte sans entrer en collision avec les
obstacles. Elles doivent également viser a identifier le
chemin et la trajectoire optimaux (ou sous-optimaux)
que le quadrirotor doit utiliser pour déplacer de son
point de départ a sa destination, en tenant compte
de toutes les contraintes pratiques qui peuvent
s'appliquer. En général, la navigation aérienne
autonome ne peut pas étre résolue directement.
Cependant, elle peut étre divisée en plusieurs sous-
problémes : planification de la trajectoire, génération
et optimisation de la trajectoire, replanification de la
trajectoire et contrdle et suivi de la trajectoire. Cette
thése propose une solution complete et efficace du
probleme de navigation autonome pour un
quadrirotor afin d'accomplir des missions de vol
sures et stables pour la télédétection dans les champs
agricoles. La solution est multi-phase et basée sur
une combinaison d'algorithmes utilisés pour la
premiere fois dans un scénario de AP. Certains de ces
algorithmes ont été choisis avec précision parmi ceux
actuellement disponibles dans la littérature afin
d’identifier la meilleure combinaison d'algorithmes
de navigation autonome. Dans la premiére phase,
une définition hors ligne de la trajectoire optimale a
été utilisée. Cette phase s'est généralement
d’déroulée en deux étapes consécutives. La premiere
étape utilisait des représentations de
I'environnement,  principalement des  cartes
artificielles d'occupation (OGM) et des cartes
numériques d'élévation (DEM), pour générer des
trajectoires géométriques optimales et localiser des
points de référence de position.

Des contraintes contenant les points de passage
extraits et la vitesse/accélération a ces points de
passage ont été formées. Dans un deuxiéme temps,
un algorithme de régulation quadratique linéaire
(LQR) a été adopté pour générer des trajectoires
minimales optimales. Le générateur de trajectoires
LQR traite les contraintes des points de passage
comme étant souples. Cela garantit a la fois la
relaxation des contraintes des points de passage et
la génération de trajectoires de position stables.
Dans la phase de replanification de la trajectoire, un
algorithme de champ potentiel artificiel (APF)
amélioré a été utilisé pour replanifier localement la
trajectoire du quadrirotor en temps réel.
L'algorithme APF amélioré utilise des forces
artificielles pour éloigner le véhicule de tout
obstacle inattendu. Dans la phase finale, un
contréleur géométrique a été congu pour suivre les
trajectoires générées tout en pointant vers une
direction de pointage spécifiée. Dans ce cas, le
controleur devait utiliser les mesures vectorielles
bruitées fournies par l'unité de mesure inertielle
(IMU) pour construire I'attitude du quadrirotor en
temps réel le long de la trajectoire de position
générée. Le controleur géométrique a été mis en
ceuvre sur le groupe euclidien spécial SE(3) afin
d'éviter les singularités associées aux angles d'Euler
ou les ambiguités accompagnant la représentation
en quaternions. Les performances de la stratégie de
navigation autonome proposée ont été
d’démontrées a l'aide de simulations illustratives
dans différents scénarios et les résultats ont
confirmé l'efficacité de la stratégie proposée. Les
résultats ont confirmé l'efficacité de la stratégie
proposée. En particulier, des trajectoires de
guidage géométrique sures ont été obtenues. Des
trajectoires de position optimales satisfaisant aux
contraintes des points de passage ont été générées
avec succés en minimisant l'instantanéité du
quadrirotor.
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Abstract While Precision Agriculture (PA)
applications are already well-established for
quadrotors, achieving autonomous navigation
especially in intricate, unstructured, and fickle

agricultural fields still remains an ongoing challenge
for such vehicles. Autonomous aerial navigation
strategies should not be limited to ensuring that the
target is reached without colliding with the obstacles.
It should also aim to identify the optimal (or sub-
optimal) path and trajectory for the quadrotor to
travel from its starting location to the destination,
taking into consideration any practical constraints
that may apply. In general, the autonomous aerial
navigation cannot be solved directly. However, it can
be divided into multi-phase sub-problems: path
planning, trajectory generation and optimization,
trajectory re-planning and trajectory control and
tracking. As its core, this thesis proposes a complete
and efficient solution of the autonomous navigation
problem for a quadrotor to accomplish safe and
stable flight missions for remote sensing purposes in
agricultural fields. The solution is multi-phase and
based on a combination of algorithms used for the
first time in a PA scenario. Some of these algorithms
were accurately among those currently available in
the literature aiming to identify the best combination
of autonomous navigation algorithms. In the first
phase, an offline definition of optimal trajectory was
used. This phase was typically performed in two
consecutive stages. The first stage made use of
environment  representations, mainly artificial
Occupancy Grid Maps (OGMs) and Digital Elevation
Maps (DEM), to generate optimal geometric paths
and locate reference position way-points.

Constraints containing the extracted position way-
points and velocity/acceleration at these way-
points were formed. In the second stage, a Linear
Quadratic Regulator (LQR) algorithm was adopted
to generate optimal minimum snap trajectories.
The LQR trajectory generator treats the constraints
at the way-points to be soft. This would guarantee
both the relaxation on fulfilling the way-points
constraints and a generation of stable position
trajectories. In the trajectory re-planning phase, an
Improved Atrtificial Potential Field (APF) algorithm
was used to locally re-plan the quadrotor trajectory
in real-time. The Improved APF uses artificial forces
to move the vehicle away from any unexpected
obstacle. In the final phase, a geometric controller
was designed to track the generated trajectories
while pointing towards a specified pointing
direction. The controller in this case was required
to use the noisy vector measurements provided by
the Inertial Measurement Unit (IMU) to construct
the quadrotor's attitude in real-time along the
generated position trajectory. The geometric
controller was implemented on the Special
Euclidean SE(3) group aiming to avoid singularities
associated with Euler angles or ambiguities
accompanying quaternion representation. The
performance of the proposed autonomous
navigation strategy was demonstrated using
illustrative computer simulations in different
scenarios and the results have confirmed the
effectiveness of the proposed strategy. In
particular, safe geometric guiding paths were
achieved. Optimal position trajectories that satisfy
the way-points constraints were successfully
generated with minimized quadrotor’s snap.




Résumé

Bien que les applications d’agriculture de précision (AP) pour les quadcopteres soient déja bien
établies, la navigation autonome, en particulier dans les champs agricoles complexes, non struc-
turés et imprévisibles, reste un défi constant pour ces véhicules. Les stratégies de navigation
aérienne autonome ne doivent pas se limiter a atteindre la destination sans entrer en collision avec
des obstacles. Elles doivent également viser a déterminer le chemin et la trajectoire optimaux
que le quadcoptere doit utiliser pour se déplacer de son point de départ a sa destination, en ten-
ant compte de toutes les contraintes pratiques qui peuvent s’appliquer. En général, la navigation
aérienne autonome ne peut pas étre résolue directement. Cependant, elle peut étre divisée en
plusieurs sous-problemes : la planification du mouvement, la génération et 1’optimisation de la
trajectoire, la replanification de la trajectoire, et le controle et le suivi de la trajectoire. Dans cet
article, nous proposons une solution complete et efficace au probleme de la navigation autonome
pour un quadrotor afin d’effectuer des missions de vol stires et stables pour la télédétection dans les
champs agricoles. La solution est a plusieurs niveaux et repose sur une combinaison d’algorithmes
utilisés pour la premiere fois dans un scénario de navigation autonome. Certains de ces algorithmes
ont été soigneusement sélectionnés parmi ceux actuellement disponibles dans la littérature afin de
déterminer la meilleure combinaison d’algorithmes de navigation autonome. Tout d’abord, une
définition hors ligne de la trajectoire optimale a été effectuée. En général, cette phase s’est déroulée
en deux étapes consécutives. Dans la premiere phase, des représentations de I’environnement, prin-
cipalement des cartes d’occupation artificielle et des cartes d’élévation numériques, ont été utilisées
pour générer des trajectoires géométriques optimales et trouver des points de référence de position.
Les contraintes ont été formées a partir des points de repere extraits et de la vitesse/accélération
au niveau de ces points de repere. Ensuite, un algorithme de régulation linéaire quadratique (LQR)
a été utilisé pour générer des trajectoires optimales minimales. Le générateur de trajectoires LQR
traite les contraintes d’intersection comme étant lisses. Cela garantit a la fois le relachement des
contraintes liées aux points de passage et la génération de trajectoires de position stables. Dans la
phase de replanification de la trajectoire, un algorithme APF (Artificial Potential Field) amélioré a
été utilisé pour la replanification locale de la trajectoire du quadcoptere en temps réel. L’algorithme
APF amélioré utilise des forces artificielles pour éloigner le véhicule d’obstacles inattendus. Dans
la phase finale, un contréleur géométrique a été développé pour suivre les trajectoires générées
pointant dans une direction spécifique. Dans ce cas, le contréleur devait utiliser les mesures vecto-
rielles bruitées de 'unité de mesure inertielle pour construire la position en temps réel du quadrotor
le long de la trajectoire de position générée. Le controleur géométrique a été mis en ceuvre dans le
groupe euclidien spécial SE(3) pour éviter les singularités liées aux angles d’Euler ou les ambiguités
dans la représentation en quaternions. La performance de la stratégie de navigation autonome pro-
posée a été démontrée par des simulations illustratives dans différents scénarios, et les résultats ont
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confirmé l'efficacité de la stratégie proposée. Les résultats ont confirmé l'efficacité de la stratégie
proposée. En particulier, des trajectoires de guidage géométrique siires ont été obtenues. Des tra-
jectoires de position optimales ont été générées, satisfaisant aux contraintes des points de passage
et minimisant I’élan du quadrotor. II a été démontré que le contréleur géométrique suivait les
trajectoires générées et atteignait une stabilité asymptotique quasi globale pour les rotations.
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Chapter 1

Introduction

1.1 Overview

Unmanned Aerial Vehicle (UAV) or drone is the term that refers to the aircraft that can fly without
a human pilot on-board0. UAVs are gaining more interest in applications that can reduce human
effort or where human piloting is impractical. These applications involve structural inspection,
Precision Agriculture (PA), security, emergency response, surveillance and photography. Among
these vehicles, Unmanned Aerial Vehicles or UAVs have seen substantial progression in the past
decades. They have become very popular due to their relative compact size, high maneuverability
and low manufacturing cost. UAVs can be either tele-operated remotely by a pilot or autonomously
fly by relying on the information provided by the different sensors mounted on them. Although
UAVs were primarily dedicated for military purposes, however with the the advent of the Internet of
Things (IoT) and the development in the computing efficiency, mini and micro UAVs have received
a significant attention from the robotics community.

Several schemes have been adopted for to classifying the UAVs, however, these classifications
are not unique. In order to do so, a large number of different characteristics are used. Mass,
size, altitude of operation, autonomy, propulsion system, flying principle ... etc. are some of these
characteristics. It is worth noting that each scheme has its advantages and drawbacks. The most
common classification is based on the type of wings. Hence, UAVs can be rotory-wing, fixed-wing
or flapping-wing. A quadrotor, which is one of the most well-known under-actuated multi-rotor
UAYV systems, consists of two pairs of rotors in cross configuration capable of spinning at different
angular velocities for achieving a certain motion (Sun et al., 2020). Thanks to their significant
mechanical simplicity, several commercial quadrotors models have been developed for autonomous
applications by the use of advanced mechanical and electrical technologies in association with fast
processors and accurate sensor measurements.

As the demands of autonomous quadrotors are increasing in the recent years, navigation prob-
lems have become an extensive research subject in the field of robotics. Hence, navigation systems
are critical elements of autonomous quadrotors where higher level of autonomy and more stable
flight are sought for a robust and efficient flight missions especially when dealing with complex tasks.
Autonomous navigation in known environments involves mainly four processes: path planning, tra-
jectory generation, trajectory control and trajectory re-planning (Kanellakis and Nikolakopoulos,
2017). The first and the last processes aim to determine the shortest path between two configura-
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tions. Trajectory generation uses an optimization algorithm where the input is the geometric infor-
mation produced by the first process in order to generate a smooth position/velocity /acceleration
profiles for the quadrotor. Trajectory control adopts control laws in order to track the generated
trajectory profiles. Autonomous navigation can be categorized into inertial, satellite and vision-
based navigation (Arafat, Alam, and Moh, 2023). Inertial navigation processes the information
provided by an Inertial Measurement Unit internally to drive the quadrotor from its starting loca-
tion to a predefined location. Satellite navigation is based on the data coming from a positioning
sensor like GPS. Visual sensors can provide online information about the environment and perform
visual-based navigation.

Autonomous navigation can be classified also based on the structure designed. On one hand,
coupled structure autonomous navigation combines the planning and the trajectory control pro-
cesses. The advantage of such structure is its effectiveness in real-time applications. However, it
tends to obtain results which are heuristic only (not optimal). Besides, coupled structure has a
heavy reliance on the on-board sensors which are not immune to errors. As a result, catastrophic
control action may occur. On the other hand, decoupled structure uses a simple decouple design
of the mentioned processes to solve the problem of autonomous navigation. Such structure is ad-
vantageous since the trajectories may be obtained from a maximization/minimization of a certain
objective function (time, effort, energy, a position derivation, etc). However, it is mainly dedi-
cated for offline applications. Owing to both structures capabilities to provide solutions for the
autonomous navigation problem, combining them in one single structure improves the accuracy
and the effectiveness of the navigation system.

From these aspects, this thesis presents an autonomous navigation approach for a single quadro-
tor where the path planning and part of the trajectory generation (position generation) are per-
formed using the offline decoupled structure, however, the other part of the trajectory generation
(attitude generation), the tracking controller and the trajectory re-planning are implemented using
the online coupled structure. This autonomous navigation approach provides effective and accurate
solution for quadrotors for both indoor and outdoor scenarios.

1.2 Thesis Scientific Context

This thesis is part of an Algerian-French joint supervision between the University of Paris Saclay
and the University of Abou Bekr Belkaid, Tlemcen. It is entitled ”Navigation Autonome d’un Engin
Volant a Voilures Tournantes pour I’Agricuture de Précision”. The work presented in this report
is the fruit of a thesis co-financed by the French Ministry of Higher Education, Research and Inno-
vation (MESRI) and the Algerian Ministry of Higher Education and Scientific Research (MESRS).
The thesis is supervised by Professor BENALLEGUE Abdelaziz (Laboratoire d’Ingénierie des
Systemes de Versailles, Université de Versailles Saint Quentin en Yvelines, France) and Profes-
sor CHOUKCHOU-BRAHAM Amal (Laboratoire d’Automatique de Tlemcen LAT, Université de
Tlemcen, Algeria) and co-supervised by Dr. El HADRI Abdelhafid (Laboratoire d’Ingénierie des
Systemes de Versailles, Université de Versailles Saint Quentin en Yvelines, France) and Professor
CHERKI Brahim (Laboratoire d’Automatique de Tlemcen LAT, Université de Tlemcen, Algeria).
The two laboratories join thanks to this thesis subsidized by the programme of Partenariat Hubert
Curien PHC Tassili. This thesis is a continuation of work started at the laboratory level on the
synthesis of control, observation, data fusion and the design of a UAV. Its purpose is to generate
an optimal trajectory for an already built UAV platform in the interest of navigating, localization
and mapping in the context of PA.
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1.3 Research Question

The main topic of this thesis is to investigate the different navigation strategies (path planning,
trajectory generation and control methods) developed for autonomous vehicles especially UAVs.

Nowadays, agriculture is facing many challenges. These challenges can be economic such as
productivity (quality and quantity), cost effectiveness and labour shortage in rural areas. They can
be also global such as population increase, urbanization, environment degradation, and of course
climate change (Gnip, Charvat, Krocan, et al., 2008). In addition, reliable monitoring of crops and
accurate detection and identification for analyzing the plants condition are critical to be performed
regularly to lessen economic expenditures, trade disruptions and even human health risks. Under
these conditions, more advanced technologies and tools derived from scientific advances, research
and development activities should absolutely be a priority. Although there exist satellites and
ground-based monitoring and detection solutions, the upper hand of UAVs as they offer better
detailed resolution, low cost implementation and high maneuverability and flexibility which can
not be defeated. Our first research question is how to deploy UAVs to perform remote sensing in
agricultural fields.

Navigation is one of the most prominent and essential abilities of autonomous vehicles as it
has been and still the focus of research in the robotics field. The necessity of the autonomous
aerial navigation algorithm should not be satisfied with the ability to achieve the objective without
colliding with the obstacles only, but also should attempt to solve for a possible optimal or heuristic
motion from an initial position configuration to the objective while satisfying the UAV kinematics
and dynamics constraints. Hence, our second research question is how to improve the accuracy and
the effectiveness of the UAV in known and partially known environment with obstacles.

At present, many strategies have been developed by various researchers for path planning,
trajectory generation and tracking control. Each strategy has its own strengths and flaws in terms
of computational intensiveness, ability in handling maximum uncertainty, the requirement of an
accurate real-time navigation, ability in handling vehicle’s kinematics and dynamics constraints,
etc. However to exploit such strengths, these strategies can be combined together in a decouple
structure. Thus, the last research question is how to build such decouple structure of navigational
techniques in order to offer an efficient and complete autonomous navigation solution for UAVs.

1.4 Thesis Contribution

In this thesis, an extensive research from various perspectives have been conducted to address the
above research questions. For the first question, we use a quadrotor vehicle system with a camera
mounted on it. We envision to fly the quadrotor at low altitudes within irregular and unstructured
agricultural scenarios for sake of performing remote sensing. This is can be achieved by pointing
the camera toward the plants. For the second question, we develop a collision-free navigation
technique which helps the quadrotor execute three-dimensional flight missions with high degree of
autonomy and stability. Mainly two methods are presented: the point-to-point and the coverage
aerial navigation. For the last question, we conduct a feasibility screening among the possible
already known navigation technologies. We attempt to design a complete and efficient solution by
accurately selecting navigation algorithm among those currently available in the literature aiming to
identify the best combination of them. This thesis contributes in the area of autonomous navigation
for quadrotors for PA scenarios. The main contribution can be described as follows:
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A collision-free point-to-point and coverage path planning algorithms for a quadrotor is pro-
posed. The objective is to enable the quadrotor to plan geometric paths from a starting
location to a target one without hitting any obstacle in a partially known environment. The
input of the algorithms is a map representation and the output is a minimum distance geomet-
ric path while keeping safe distance margin from the obstacles. The presented path planning
algorithms can navigate the quadrotor via optimal path successfully.

e An offline trajectory optimization based on Linear Quadratic Regulator (LQR) is designed.
The input to the LQR algorithm is waypoints which are extracted from the planned geometric
path. The output is a smooth minimum snap trajectory. The position trajectory must satisfy
the pointing direction constraints along the whole flight. Depending on the scenarios, a
corridor constraint is added in order to keep the quadrotor fly within the plants rows.

e A nonlinear real-time geometric control law that helps the quadrotor generate its attitude
trajectory is implemented. The control law uses raw vector measurements provided by the
on-board sensors such as Inertial Measurement Unit (IMU). These vectors allow us to avoid
using the desired attitude directly in the control law as presented in most existing algorithms.
The nonlinear geometric control is used also for tracking both the generated position and
attitude trajectories.

e Since the environment where the quadrotor navigate is partially known, an online reactive
trajectory algorithm is proposed. This algorithm is enabled when an unknown obstacle is
detected. It aids the quadrotor re-plan its trajectory locally and commends it to move away
from the unknown obstacles. The vehicle takes the current position (when obstacle detection
occurs) as the starting configuration and the next turning point in the global path as the goal
configuration.

e The performance and the effectiveness of the presented navigation strategy have been con-
firmed by illustrative computer simulations in different scenarios. The simulation results
demonstrated the effectiveness of the presented strategy by comparing it with other strate-
gies.

1.5 Thesis Organization

The thesis is organized into seven chapters:

Chapter 2 presents a comprehensive state of the art that is related to UAVs, specifically their
different classifications, autonomous navigation and its applications. Chapter 3 provides the differ-
ent path planning algorithms and techniques developed in literature. The detailed review focuses
on the algorithms applied on quadrotors and discusses their advantages and drawbacks. The first
part of Chapter 4 develops the quadrotor dynamic model that is used in this thesis. However, the
second part is devoted to the various strategies designed for both trajectory generation and control
for quadrotors. The methodology of the proposed autonomous navigation strategy is described in
Chapter 5. A detail mathematical development of each algorithm is presented. Chapter 6 shows the
different simulation experimental setups, results and discussions of the proposed strategy. Chapter
7 summarized the final conclusion and provides some possible directions for future work.






Chapter 2

Quadrotors: State of The Art

2.1 Introduction

Research on Unmanned Aerial Vehicles or UAVs has been increasingly developed over recent
decades. UAVs havebeen used across the world for several applications ranging from military
applications (e.g., enemy surveillance), civil applications (e.g., search and rescue, remote sensing)
to commercial applications (e.g., package delivery). However, the development of these vehicle
systems still faces many challenges because of the application complexity that increases with such
development particularly with the aim of switching to fully autonomous operations. In addition,
many UAVs applications are evolved to autonomously operate in complex environments where they
require reliance on onboard sensors to perceive the environment they navigate in and to perform
the application tasks effectively. The aim of this chapter is to introduce the different UAVs systems
and give insights about autonomous navigation of such vehicle systems.

2.2 UAV Systems Classifications

An Unmanned Aerial Vehicle, which is better known with its generic term drone, can refer to
intelligent autonomous aircraft that flies without human pilot onboard. Several factors, such as
size, control configuration, autonomy and mean takeoff, are used in order to classify UAVs.

2.2.1 Based on Size and Weight

Based on the size and weight of the vehicle, UAVs can be categorized into four different groups:
micro (< 1kg), small (1 — 25kg), medium (25 — 150kg) and large (> 150kg) (Zakaria, Abdallah,
and Elshafie, 2012) (See Figure 2.1).

Micro and Nano UAVs

Micro and nano UAVs are small drones with less than fifteen centimeters in size and few tens
to hundreds grams. They can fly at lower altitudes (under 300 meters). Micro and nano UAVs
are equipped with propellers driven by electric motors. The designs for such class of UAVs have
focused on making aerial vehicles that can operate in both inside and outside buildings, flying along
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Figure 2.1: UAV classification based on size and weight.

hallways, carrying sensor devices such as transmitters and miniature TV cameras. The autonomy
of such type of UAVs is about twenty minutes for a radius of action of about ten kilometers. Figure
2.2 depicts a micro and a nano UAV.

W

&=

(a) (b

Figure 2.2: (a) Micro and (b) nano UAVs.

Mini UAVs

Mini UAVs or Mini Air Vehicles (MAVs) are types of aerial vehicles that have an endurance of few
hours and dimensions of the order of a meter. MAVs can fly up to an altitude of 300 meters and
operate at distances up to around 30 kilometers while carrying light payloads. Like micro UAVs,
MAVs can be electrically powered. This what makes them relatively slow (some tens of kilometers
per hour) and have limited obstacle avoidance abilities. The technological development required
for this class of UAVs involves sensors such as cameras and lidars. MAVs are characterized by their

7



2.2. UAV SYSTEMS CLASSIFICATIONS

robustness, low noise signature, stable observation sensors and man portable (folded in a rucksack).
CPX4 is an example of such UAV as depicted in Figure 2.3.

Figure 2.3: CPX4 mini UAVs.

Tactical UAVs

Tactical UAVs or TUAVs have an operational range from 30 to 500 kilometers and an altitude
ranging from 200 to 5,000 meters. They have also a radius of action up to more than one hundred
kilometers with autonomy of tens of hours. With the aid of visible and infrared optical sensors,
most of the TUAVs are used for surveillance and reconnaissance mission purposes. Watchkeeper
WK450 and Sagem Spewer manufactured by Thales and Safran, respectively, are example of such
class of UAVs.

Hy!

Figure 2.4: Tactical UAVs: (a) Watchkeeper WK450 and (b) Sagem Spewer.

Combat UAVs

Combat UAVs or Unmanned Combat Air Vehicles (UCAV) are fighter planes which are equipped
with weapons systems or intelligence information gathering. They can perform missions of recon-

8
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naissance, attack and shooting thanks to their technical advances in the areas of automation, data
transmission, satellite link, precision guidance and stealth technology. Figure 2.5 shows an example
of an UCAV.

Figure 2.5: A British MQ-9A Reaper UCAV.

MALE and HALE

MALEs or Medium Altitude Long Endurance UAVs have a wing span of 10 to 20 meters and an
operational range of 500 to 1,000 kilometers. They have autonomy of thirty hours and can fly
between 5,000 and 15,000 meters above sea level and they can carry a payload ranging from 1,500
to 3,500 kilograms. The search for extending the range, endurance, maximum altitude and payload
capacity of MALE UAVs missions has led to the HALE or High Altitude Long Endurance UAVs
whose dimensions are comparable with those of a civilian plane. HALE UAVs are able to fly 7
to 8 kilometers in one single day at very high altitude and carry a payload of one to two tons.
Both MALE and HALE UAVs can carry missions such as strategic reconnaissance and surveillance,
tactical reconnaissance, early detection of missile launching, target identification and designation
and jamming. MQ-1 Predator and Gloabl Hawk in Figure 2.6 are examples of MALE and HALE
UAVs, respectively.

2.2.2 Based on Control Configuration

A typical classification of UAVs is based on control configurations. They can be classified into
rotary-wing drones, fixed-wing drones, hybrid-wing drones and flapping-wingdrones (See Figure
2.7).

Rotary-wings UAVs

Rotary-wings UAVs use rotor blades to produce a forceful thrust which can be used for lifting and
propelling. This type of aerial vehicles is characterized by vertical takeoff and landing (VTOL) which
can make the vehicle to hover at a place (Schauwecker et al., 2012). Rotary-wing UAVs can be either
single-rotor or multi-rotor. Single-rotor UAVs (e.g., helicopters) have been not exploited much as
multi-rotor UAVs. These latter are designed by number and location of propellers on the frame.
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Figure 2.7: Different types of UAVs (a) rotary-wing, (b) fixed-wing (c¢) flapping-wing (Ornithopters)
(d) flapping-wing (Entomopters).

Multi-rotor drones are advantageous in terms of hovering capabilities and maintaining the speed
abilities making them the ideal choice for civilian applications like monitoring and surveillance. The
most popular multi-rotor UAVs are tricopters, quadrotors, hexacopters and octocopters as shown in
Figure 2.8. All of these vehicles are underactuated systems and have similar dynamical models for
control. Quadrotors come at cheaper prices and are faster and highly maneuverable. Hexacopters
and octocopters are known by their flight stability and higher payload capacity. However, all multi-
rotors require more power consumption which limits the vehicles endurance (Singhal, Bansod, and
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Mathew, 2018).

Figure 2.8: Rotary-wings UAVs: (a) tricopter, (b) quadcopter, (c) hexacopter and (d) octocopter.

Fixed-wings UAVs

Fixed-wing UAVs have a simple design. The manufacturing of such type of drones is saturated
nowadays thanks to the further developments and improvements of such type. Fixed-wing aerial
vehicles, which are horizontal takeoff and landing (HTOL) vehicles, use a forward accelerating speed
applied to fixed wings components to produce a lift. This lift is controlled by the air flowing velocity
and steep angle (Singhal, Bansod, and Mathew, 2018). Unlike rotary-wing UAVs, fixed wings UAV's
cannot hover at a certain place due to their typical non-holonomic constraints. Besides, they require
a higher initial speed. However, fixed wings vehicles are characterized by long endurance, less power
consumption and thrust loading less than 1. Figure 2.9 shows two examples of fixed-wing UAVs
which are M?AV Carolo and eBee.

Flapping-wing UAVs

A special UAV configuration that is inspired by birds (Ornithopters) and insects (Entomopters) is
flapping-wing. This type of UAVs is known by lightweight and flexible wings. These configurations
allow agile maneuvers while being more discreet than rotary wings, which represents another definite
advantage for reconnaissance or surveillance missions. Like hybrid UAVs, flapping-wings UAVs are
under development due to the complicated flapping mechanism which results in complex dynamics
and power problems (Gerdes, Gupta, and Wilkerson, 2012). However unlike fixed-wing UAVs,
flapping-wing drones have stable flights especially under windy conditions. Examples of flapping-
wings UAVs are shown in Figure 2.10

11
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Figure 2.9: Fixed-wings UAVs: (a) M2AV Carolo, (b) eBee.

(a) (b)

Figure 2.10: Flapping-wings UAVs: (a) Nano Humming, () The Harvard RoboBee and (¢) The
BionicOpter.

Hybrid-wing UAVs

Hybrid-wing UAVs are types of aerial vehicles which combine both configurations of rotary-wing
and fixed-wing. By doing so, the drawback of a type of an UAV is compensated with the advantage
of another type. This may lead to have VTOL, hovering and long endurance vehicle (See Figure
2.11). Hybrid drones require more reliable and sophisticated control algorithms especial to adapt
with flight mode switching. This is why they are still under research and development.

12
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Figure 2.11: Hybrid-wing UAV design.

2.2.3 Based on Autonomy Level

Another UAV classification is based on autonomy level. Autonomy can be defined as the ability to
perform a mission/task that is assigned to the UAV with minimum human intervention. Thus, the
UAV autonomy level depends on the complexity of the mission/task. The classification is as below
(Huang, 2004):

e Fully autonomous controlled UAVs: These are the UAVs that can carry out the assigned
mission/task without any intervention for a human being. They are fully automated vehicles
systems where all decisions are made onboard using sensory information that perceive and
interact with the environment changes.

e Semi-Autonomous UAVs: In this type of UAVs, when the aerial vehicle is not able of
making decisions, a human being can interfere to make those decisions. This can happen in
cases where high level flight mission is delegated to the vehicle.

e Tele-operated UAVs: These UAVs are operated by human operator that uses the infor-
mation gathered by sensors to directly send control signals in the aim of performing the
mission/task successfully. This type of aerial vehicles is used mainly in Beyond-Line-of-Sight
(BLOS)missions.

e Remotely controlled UAVs: The UAV is controlled manually by a human operator using
a remote control from a Ground Control Station (GCS) (See Figure 2.12). Most of these
UAVs are used in Line-of-Sight (LOS) missions.

2.3 UAYV Applications

the role of UAVs has changed drastically in the last decades. Their applications have been extended
from military to cover civilian and transport applications. To make them more suitable for these

13
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Figure 2.12: Communication means of UAVs through GCS.

applications, the UAVs’ configurations have been changed in favor of smaller dimensions. Besides,
there have been lot of research works to develop their autonomy and endurance. Some of these
applications are discussed in this section.

2.3.1 Military Applications

UAVs, especially tactical, combat, HALE and MALE UAVs, have several applications within the
military and defense area. Very advanced UAV technologies have emerged in this domain as they
make it possible to perform military operations in a more effective and less risky way. These
technologies are now leading to have numerous Intelligence, Surveillance and Reconnaissance (IRS)
and Reconnaissance, Surveillance, and Target Acquisition (RSTA) capabilities. Other applications
of military UAVs are shown in Figure 2.13.

2.3.2 Civilian Applications

UAVs can be deployed in various civilian uses thanks to their high maneuverability, low cost and
high efficiency. In the last years, UAVs have supported public safety, search and rescue (SAR)
operations and disaster management. UAVs play important responsibilities in rescue operations
in case of natural or man-made disasters like floods, Tsunamis or terrorist attacks ... etc. They
can be used to provide communications coverage in support of such operations. UAVs can be
also a solution to provide medical supplies especially in the areas that are inaccessible (Tanzi et
al., 2016). UAVs can be also used for construction and infrastructure inspection. To have a better
visibility about the project progress, project managers fly UAVs to monitor constructions buildings,
wind turbines dams ... etc. Furhermore, UAVs can be also deployed for inspecting high voltage
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Figure 2.13: Some military applications of UAVs (Udeanu, Dobrescu, and Oltean, 2016).

power transmission lines. Another civilian application of UAVs is real-time monitoring of road
traffic. They can monitor large continuous road segments more effectively compared to traditional
road monitoring tools (loop detectors, video cameras ... etc.). In addition to these, other civilian
applications of UAVs can be shown in Figure 2.14.

2.3.3 Transport Applications

Considering the technological development, UAVs are becoming a crucial part of the modern lo-
gistics industry. They can be used for transporting food, packages and goods. Because of traffic
congestion issues, many industries have begun to employ UAVs for transportation. these aerial
vehicles are starting to emerge by integrating into the current infrastructures of transportation.
UAVs for transport can accelerate the delivery time significantly while reducing its cost. In health-
care service, UAVs, which are called ambulance drones (See Figure 2.15 (a)), can travel between
a pick up location and a delivery location to deliver medicines, blood samples and immunizations.
Considering also the increasing of e-Commerce on one hand and the demise of snail mail on the
other hand, postal companies are investing in UAVs to make package delivery fast and more suitable
(Bekhti et al., 2017) (See Figure 2.15 (b)). Companies and researchers are working on exploring new
methods to overcome the challenges and the issues related to airspace safety, the privacy of citizens,
theft, payload requirements, navigation systems ... etc. Another application of UAVs is passenger
transport. Passenger UAVs or "air taxi” (See figure 2.15(¢)) have shown their technical capabilities
to transport passengers between or within cities (Kellermann, Biehle, and Fischer, 2020). Although
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Figure 2.14: Civilian applications of UAVs (Sivakumar and TYJ, 2021).
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this application is still in its infancy, this marks the start of a new era where low level airspace may
be expanded to the third dimension of transportation.

2.4 Quadrotor Autonomous Vehicle Systems

A quadrotor vehicle is a rotary-wing UAV that consists of four (04) rotors located at the extrem-
ities of a cross structured frame. The flight motion of a quadrotors is controlled by the speed of
its rotors; they can roll, pitch, yaw and accelerate along their common orientation. As mentioned
before, quadrotors are multi-rotor vehicles having certain key characteristics like VTOL, hovering
capability, slow precise movements ability, higher payload capacity and higher degree of maneu-
verability. Quadrotors are mechanically simple but they are inherently stable. Thus, they require
feedback control algorithms to make them fly with stability. In order to design a quadrotor, two
modular approaches are adopted: hardware and software.

2.4.1 Hardware Modular Approach

A simpler hardware approach can be used to build a quadrotor with a frame, a propulsion system
and a Flight Control System (FCS) (See Figure 2.16.

Quadrotor Frame

The quadrotor frame can have a common configuration, either +, X, or H configuration (See Figure
2.17). In the “plus” configuration, a single rotor leads the quadrotor; however, in the “cross” and
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Figure 2.15: Transport applications of UAVs: (a) ambulance drone, (b) delivery drone and (c¢) air
taxi.

“H” configuration, two rotors lead the vehicle. The cross and the plus configurations are considered
the most popular. Even though the first configuration is more stable than the second one however
this latter is easier to control (Agrawal and Shrivastav, 2015). The X-copter is considered the most
symmetrical while its weight is concentrated at the vehicle center of gravity. This may lead to
improve its stability, whereas the vulnerability to aerodynamics disturbances is increased. Despite
the simplicity of the X-frame configuration, the shortage of space for integrating other hardware
components remains a big problem. The “plus” frame configuration has the same footprint as the
X-frame flipped with 45°. Such configuration has an advantage of each motor being responsible for
rotation movements (roll, pitch, and yaw) in one axis only. As a result, this allows applying finer
control system strategies. Nevertheless, it is more likely to break because most impacts involve
only solid contact with the front arm. The H-frame configuration is an antique design where the
vehicle’s arms are located in front of a long bus shaped carriage. Due to its hefty design and odd
configurations, the research in H-copter has been recently ignored.

Propulsion System

The propulsion system comprises four motors, four propellers, four Electronic Speed Controllers
(ESCs) and a source of power (batteries).

At the beginning, quadrotors were equipped with DC motors with gearboxes. Recently, they
have been replaced by Brushless DC motors because of the life limit and the friction caused by
the brushes. Brushless DC motors are synchronous motors having longer life, more reliable, better
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Figure 2.16: Hardware components that built up a quadrotor.

(a) (b) (c)

Figure 2.17: Quadrotor configurations: (a) X-quad, (b) +-quad and (¢) H-quad.

efficiency and lighter than DC motors. Besides, they offer better thrust-to-weight ratios. Kv
and current rating are properties that characterize motors. The Kv ratings shows how a motor
transforms the power it receives into speed. The current ratings, however, show the maximum
current that can be drawn by the motor.

The propellers are spun by the Brushless DC motors to create lift thrust to the quadrotor. They
are characterized by their diameter, the larger the propeller, the more lift it provides, and pitch, the
smaller the pitch, the more traction the propeller offers at low speeds. The propellers can be made
from several materials like plastic, carbon, fiber reinforced polymer. However, the most common
ones are nylon and carbon. To ensure flight, the propellers must not all turn in the same direction.
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Hence, they can turn either in CW (Clockwise) direction or in CCW (Counter Clockwise) direction
(See Figure 2.18).

e)

Low speed High speed

Figure 2.18: Scheme of propellers for maneuvering in ”+4” configuration (Lukmana and Nurhadi,
2015).

ESCs are what allow the flight controller to control the speed and direction of motors at a
specific time. They must be able to handle the maximum current the motor can draw without
overheating according to their current rating, and be able to supply it at the correct voltage. In
design, the choice of the ESCs must be done carefully in order to guarantee that the motors draw
enough current.

The batteries provide electrical power to the quadrotor’s motors and other electronic compo-
nents. The most used batteries are made of Lithium Polimer or LiPo due to their small weight, high
energy density, longer run periods, and ability to be recharged. However, they are not completely
safe because they contain pressurized hydrogen gas and tend to burn and/or explode when there is
a problem.

Flight Control System (FCS)

Flight Control System or FCS is the brain of the quadrotor. It is an Integrated Circuit (IC)
component, composed of a microprocessor, sensors and input/output pins, responsible of ensuring
stable flights and makes remote control and autonomous flight possible by setting the right power for
each motor (Valavanis and Vachtsevanos, 2015). The principle work of the FCS is simple. It obtains
the quadrotor’s states (position, velocity, orientation, etc) from sensors such as Inertial Measurement
Units (IMUs), barometers/altimeters, and Global Navigation Satellite Systems (GNSS), converts
radio command signals into actuator pulses and maintains desired states to achieve proper flight
mission performance. FCS contains also a computing module, like a microcontroller, coupled with
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the autopilot to implement its logic for effective flight control mission. FCSs come with build-in
software and can be categorized into two classes: closed-source and open-source software. Closed-
source software can not be modified. However, open-source FCSs are developed such that they allow
customers to modify the software based on their own needs. In this way, universities and industries
can cooperate on solving issues related to aerial vehicles such as their reliability, functionality,
endurance and fault tolerance. These issues are mainly associated with the FCSs hardware and
software. Examples of FCSs with open-source software are depicted in Figure 2.19.

Figure 2.19: FCSs examples: (a) Pixhawk PX4 FMUv5, (b) Chemira Autopilot for Paparazzi, (c)
Ardupilot Mega (APM) and (d) N3 DJI.

Sensors for Navigation and Localization

Sensors are crucial components for both the stability and the autonomy of the quadrotor. These
components provide information about the location of the vehicle for the user (drone pilot) or the
autopilot. The sensors of the quadrotor can be divided into three categories:

e Proprioceptive sensors: they provide information on the current state of the quadrotor, i.e.,
on its state at a given moment. These sensors measure the position, speed or acceleration of
the machine relative to a reference state.

e Exteroceptive sensors: they provide information on the environment in which the drone is
flying, such as mapping, temperature, etc.

e Exproprioceptive: sensors: combination of proprioceptive and exteroceptive.

The design of more efficient sensors ensures perfection and autonomy for quadrotor. These sensors
are: IMUs, accelerometers, magnetometers, gyroscope, GNSS, barometer and imagers.
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An IMU is an electronic navigation system that provides the angular orientation of a body with
respect to an inertial reference. It typically consists of three accelerometers, three magnetometers
and a gyroscope for obtaining an accurate attitude of the body. To execute any flight maneuver,
the vehicle’s orientation read by the IMU should be provided to the flight controller. Micro Electro-
Mechanical Systems or MEMS technologies are the most used recently in quadrotors thanks to their
cost, simplicity, and dimensions. MEMS have made it possible to have accelerometers, gyroscopes
and magnetometers integrated into an electronic circuit weighing around ten grams.

Accelerometers provide the linear acceleration of the frame along the three body-frame orthog-
onal axes. The principle of accelerometers is based on the deformation or displacement of a body
during acceleration. The advantage of an accelerometer is its great ease in revealing a several data
such as acceleration, speed, displacement, force, etc. Nevertheless, obtaining the body displace-
ment necessitates a double integration of the acceleration. Consequently, this leads to problems of
precision. In this case, fusing with other sensors such as gyrometers makes it possible to adjust the
measurements.

On one hand, magnetometers are essentially magnetic compasses that measure the direction
and/or the intensity of a magnetic field, and in particular the direction of the earth’s magnetic
field. Sensitivity to external magnetic disturbances is considered as the major issue of such sensor.
On the other hand, Gyroscope is a device that provides angular rates of a frame with respect to the
body reference frame of the quadrotor. The attitude of this latter can be determined by integrating
the angular rate provided by the gyroscope in a small period of time.

The GNSS is a navigation system that relies on satellites to provide the geo-spatial positioning
of the aerial vehicle. It consists of a constellation of satellites that orbit the Earth. Signals, which
are continuously transmitted from these satellites, are utilized by users to provide their three-
dimensional position. The GNSS consists mainly of three types of satellites technologies: Global
Positioning System or GPS, Glonass and Galileo. The GPS, which was developed by the United
States Department of Defense (DoD) for military purposes, is a satellite positioning and navigation
system containing 24 satellites spread over six orbits (four satellites per orbit) revolving around
the globe (2 turns in 24 hours) and located at an altitude of 20,200 kilometers with an inclination
of 55° relative to the equator or Medium Earth Orbit (MEO) (Subirana, Hernandez-Pajares, and
Miguel Juan Zornoza, 2013). The constellation of the Nominal Glonass is made of 24 MEO satellites
which are located in three different orbital planes which endow 8 satellites equally spaced. They
are located at an altitude of 19,100 kilometers with an inclination of 64.8°. Last but not least,
the constellation of Galileo contains 27 operational and 3 spare MEO satellites at an altitude of
23,222 kilometers with an inclination of 56°. Above all, due to atmospheric disturbances, the signal
propagations of these constellations are altered. This may result in measurement errors. These
latter can be minimized by fusing them with sensory data from imagers (lasers or cameras). Lasers
and cameras represent great sources of information that can be exploited for quadrotor navigation
and localization. Lasers can be ultrasonic, lidar, radar, etc. Cameras can be RGB, multispectral,
thermal, etc.

Barometers are instruments that provide atmospheric pressure. They are used as sensors to
determine the altitude of the quadrotor with respect to a reference level. The main disadvantage
of such sensors is their sensitivity to atmospheric conditions alteration such as wind.
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2.4.2 Software Modular Approach

The quadrotor software module uses the computing unit to run several processes in parallel. A
middleware messaging system provides the ability to interchange messages between the different
processes on the same computing module or with other computing modules on the same network.
The software implemented on the computing module depends on the application to which the
quadrotor is delegated (Elmokadem and Savkin, 2021). For instance n remote sensing, the quadrotor
software is dedicated to both ensure safe mobility in the environment where it navigates and collect
imagery data that can be processed after the mission is ended.

The module, which is related to the quadrotor mobility, is one of the fundamental modules.
The aim of this module is to autonomously generate safe-collision navigation plans for the aerial
vehicle. In most cases, the autonomous navigation module has four (04) submodules (See Figure
2.20): perception, localization and mapping, motion planning and obstacle avoidance and control
(Laghmara et al., 2019). However in other cases, one or more submodules can be discarded. For
example, the motion planning module can be coupled with the control module without the need to
use the localization and mapping module.

Motion Planning H Execution

Obstacle _ Local Global
Avoidance Map Map

Path Tracking

Quadrotor
Environment

Sensors ‘ Localization & Mapping Control

Figure 2.20: Quadrotor software module for autonomous navigation.

2.5 Quadrotor Autonomous Navigation: Definition

Most quadrotors require higher performance autonomous navigation techniques for the purpose of
completing the tasks they are assigned effectively and efficiently. Quadrotor autonomous navigation
can be defined as the process that the vehicles safely and quickly plans and executes its path in
order to achieve the target location. Autonomous navigation is the core element for ensuring the
vehicle collision-free motion. During this process, information like current position and velocity,
heading direction, starting and target location are provided for the quadrotor system aiming to
complete the scheduled mission successfully.

In general, quadrotor autonomous navigation techniques include three (03) key elements (See
Figure 4.4.2): perception, planning and control (Alanezi et al., 2022). These elements are mainly
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used to improve the vehicles autonomy until reaching the final destination. Perception uses the
information gathered by the different sensors for determining the current state of the quadrotor
(e.g. position and orientation) as well as the representation of the surrounding environment (e.g.
obstacles). Several algorithms have been developed for perception. These algorithms comprise algo-
rithms for object detection, localization, object tracking and Simultaneous Localization and Map-
ping (SLAM). Afterwards, the information gathered by perception are used in planning for making
motion decisions. Here, two types of planning are differentiated: path planning (global/local) and
trajectory planning/generation. The former concept refers to the process of generating a geometric
collision-free between a starting and target positions with no timing law. However in the latter con-
cept, the collision-free path associates with a timing law to provide a trajectory which has higher
derivative information (e.g. velocity, acceleration, jerk, etc.) (Elmokadem and Savkin, 2021). The
purpose of the control is to ensure that the vehicle follows the generated path/trajectory in the
planning step. Control algorithms have been implemented for path/trajectory tracking, obstacle
avoidance and stability (Alanezi et al., 2022).

[ Planning

Designed Navigation
Algorithms

Perception Control

Figure 2.21: Quadrotor autonomous navigation elements.

Depending on the complexity of the autonomous navigation problem, different structures have
been used with quadrotors. Structures can be designed by either coupling or decoupling the planning
and the control elements (See Figure 4.4.3). Coupling structures combine planning and control
resulting in complicated reactive control elements. However, decoupling structures are the most
common thanks to their simple designs (Elmokadem and Savkin, 2021).

2.6 Quadrotor Autonomous Navigation: Applications

Quadrotor autonomous navigation has been applied in wide applications and is being recently
envisioned for larger applications with the design technology advancement. Many of the current
applications still do not use fully autonomous design systems because of two main reasons: (1) the
different operational risks that these systems may experience, and (2) the immaturity of research
associated with these applications. Precision Agriculture (PA), Search and Rescue (SAR), oil and
gas exploration, wildlife monitoring and construction are the most relevant applications where

23



2.6. QUADROTOR AUTONOMOUS NAVIGATION: APPLICATIONS

quadrotors are required to attract more interest in developing aerial vehicle system technologies
with high level navigation autonomy.

Quadrotor Autonomous Navigation in PA

Agriculture is one of the most important sectors and contributes with a huge role in the world
economic status. It is the most promising and challenging sector since it is dependent on weather
conditions, soil conditions and water irrigation quantity and quality. On the other hand, the world
population is increasing day by day and projected to reach 9.4 billion people in 2050 (Boretti and
Rosa, 2019). Hence, food production in sustainable manner must increase to satisfy the need of the
large population. This can be done by implementing modern technologies in agricultural production.
These technologies will contribute in solving problems related to agriculture and establish proper
farming processes by introducing Smart Farming or Precision Agriculture (PA).

PA, dubbed “the farming of the century” is gaining more attraction in today’s modern technology-
driven world. It refers to that type of computerized farming where advanced technologies are used
to monitor and optimize agricultural activities for the aim of improving farm productivity in terms
of quantity and quality. In order to do so, PA takes the advantage of the current technology and
concepts and uses them for regulating temporal and spatial variations (soil, yield, crop, field and
management) in all agricultural output elements (Tsouros, Bibi, and Sarigiannidis, 2019).

Quadrotor systems are one of the technologies that have taken PA one step further. Quadrotors
offer great prospects for acquiring in-field information in an easy, fast and cost-effective manner
compared to other methods like satellites and manned aircrafts (Tsouros, Bibi, and Sarigiannidis,
2019). Quadrotor vehicles are able to fly at low altitudes in agricultural fields for sake of collecting
images of the crops with an ultra-high spatial resolution (few centimeters) such that the performance
of the monitoring systems is improved. Besides, quadrotors are more efficient that Ground Vehicles
(GVs) systems since they can cover larger field areas in short period of time and in non-destructive
manner.

Autonomous navigation quadrotor systems are very commonly used in remote sensing (RS)
applications under PA. Such systems are equipped with different types of sensors and can be used
for identifying which zones of the fields need different management. In this way, the farmers
are able to react on time and with the required quantity of products in any problem detected.
Autonomous navigation quadrotor systems can be used in different applications under PA. Among
these applications, weed mapping is the most popular. Weeds are undesirable plants that grow in
agricultural crops causing many problems such as losses in crop yields and harvesting. In order to
control these weeds, herbicides are sprayed over the entire agricultural field, even in areas with free
weeds. Such activity leads to overuse quantities of herbicides resulting in evolution of herbicide-
resistant weeds, cost as well as pollution problems. These problems are solved in PA using Site-
Specific Weed management (SSWM) approach. Rather than spraying the whole field, SSWM
applies the herbicides only on spots where undesirable weeds present with higher stress (Hunter I11
et al., 2020). In order to do so, an accurate weed map should be generated a priori. Autonomous
navigation quadrotor systems can be employed to collect aerial images of the whole field. These
images can be used to generate a precise weed cover map showing the spots where the herbicides
are required the most. Under the same concept, crop spraying is also an application of autonomous
quadrotor systems. These later are very useful thanks to their lower operator exposure and their
enhanced ability to apply products in timely resolved way.
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Autonomous navigation quadrotor systems represent a great solution for monitoring and assess-
ing the health of the crops. They can monitor the crops constantly in time and in non-destructive
way to detect diseases and avoid economic losses as a consequence of reduced yield quantity and
quality. This can be achieved by data processing techniques that use crop imaging information
collected by the quadrotors to spot changes in the biomass and health of the plant (Patel et al.,
2013). Periodic monitoring flight missions can be scheduled to detect the diseases especially in their
early stages allowing farmers to intervene by providing special treatment of infection using targeted
spraying.

Under the same context of monitoring, autonomous navigation quadrotor systems are commonly
used to monitor the growth of the vegetation and estimate the yield. These systems are means of
collecting information and visualization of crops for mainly two reasons: (1) recording the variability
observed on the field, and (2) monitoring the crop growth. At this stage, crop imaging is also used
to analyze the biomass and nitrogen status information in order to determine the management
actions required for the crop such as the use of fertilizers (e.g., use of nutrients) (Duggal et al.,
2016). In addition, the crop imaging analysis can be performed using 3D digital map models of
the crop by measuring various parameters like the crop height, the Leaf Area Index (LAI), and the
vegetation greenness index or the Normalized Difference Vegetation Index (NDVI).

Another important application of the autonomous navigation quadrotor systems under PA is
crop irrigation management. The extensive consumption of water for crop irrigation (about 70% of
water consumed worldwide according to (Saccon, 2018)) urges to highlight the need for precision
irrigation methods. The purpose of such methods is to improve the water use efficiency by applying
the resource in the right time, places and quantities. This can be done using autonomous quadrotor
systems that can incorporate appropriate sensors to divide the field into different irrigation zones
and identify which zones of a crop that require more water. Precision irrigation methods help
farmers to save time and water resources and increase the crop quality and productivity. In addition
to the aforementioned PA applications, autonomous navigation quadrotor systems have been also
used for soil analysis, mammal detection and phenotyping (Tsouros, Bibi, and Sarigiannidis, 2019).

2.7 Conclusion

In this chapter, we briefly presented the main UAV system architectures and their classifications
based on size and weight, control configuration and the level of autonomy. Afterwards, we grouped
the different applications of such vehicles into mainly three categories: military, civilian and trans-
port. Then, we described the quadrotor autonomous navigation system focusing on its applications
under the PA context. In the next chapter, we will divide quadrotor autonomous navigation system
into multi-phase processes where each phase will be described in details.
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Chapter 3

Quadrotors Path Planning

3.1 Introduction

A crucial part of autonomous robotic system is to ensure that the robot can move while avoiding
collisions with the obstacles present in its environment. Generally, this problem can be addressed
by path planning. Path planning is an essential task from the control engineering perspectives. It
is considered as a hot spot in the field of robot autonomous navigation research. When dealing
with UAVs, the path planning research is essential since it is correlated with the autonomy of such
vehicles, the built-in components required, guidance, endurance, and functionality. Since UAVs
suffer from the limited payload problems, the insertion of many batteries and power banks is not
as option. Hence, path planning becomes the primary issue to solve UAVs time-limited problems
for performing the required tasks. This chapter aims to introduce the concept of path planning, its
types and paradigms used for quadrotor platforms.

3.2 Robot Path Planning

3.2.1 Path Planning: Definition

Robot path planning (RPP) related problems have been extensively studied, generally focusing on
manipulators and ground mobile vehicles. From a technical point of view, path planning is a process
of deliberatively producing a path or a set of way-points for a robot from a starting location to
a goal location while taking into account the environmental and physical constraints of the robot
in order to achieve a collision free path (Lin and Saripalli, 2017). In more technical terms, it is
defined by (Dudek and Jenkin, 2010) as “determining a path in configuration space between the
initial configuration of the robot and a final configuration such that the robot does not collide
with obstacles and the planned motion is consistent with the kinematic constraints of the vehicle”.
A configuration in the definition refers to the position and the orientation of the robot while a
configuration space is the set of all possible configurations (See Section 3.2.2 for more detail).
RPP is associated with a several terms that can be used interchangeably. Motion planning,
which frequently associated with manipulators, is widely used to plan paths that are feasible and
safe. Trajectory planning is which deals with the robot’s dynamics, to plan the next move. Obsta-
cle/collision avoidance is a part of motion planning; it uses the robot’s current sensed information
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for moving away from immediate obstacles while ensuring stability and safety (Giesbrecht, 2004).

Obstacle

Start

Goal

Figure 3.1: Robot path planning.

Path planning paradigms takes into consideration four main criteria (Teleweck and Chan-
drasekaran, 2019). Optimization is the criterion which guarantees that the selected path is the
best among all of the possible solutions in terms of distance, time computation, cost, and so on.
In case of UAVs where the autonomy problem is recurrent, optimization plays a primordial role
in minimizing the flight distances and time, hence, increasing the vehicles’ endurance and decreas-
ing revelation to possible risks. Besides, optimizing the computational time is required especially
in real-time applications. Completeness criterion ensures the path planning algorithm finding all
possible solutions for the path at hand. Accuracy/precision is another criterion that can be taken
into account for the purpose of driving all states of a robot from an initial configuration to a final
one. Execution time is considered as an important path planning criterion since it ensures the
best-case settings to handle the designated problem. It refers to the time taken by the robot to
complete the entire path (Atiyah, Adzhar, and Jaini, 2021). There often a trade-off among these
criteria. For instance, on one hand, path optimality has to be discarded in order to reduce the
computational time. On the other hand, higher computational time is required for an optimal path
to be generated. Thus, the consideration of these criteria has to be done before the process of path
planning takes place.

3.2.2 Configuration Space

In path planning, the robot and the environment (referred to as workspace) through which it
travels, are represented in some manner so that paths can be planned in a search space. This
latter considers all possible states that can exist. However for planning motions in case of multiple
Degrees of Freedom (DOFs), the notion of configuration space is used. The configuration space
or C-space refers to the set of all possible transformations applied to the robot. C-space is an
important technique that offers solutions for motion planning problems varying in geometry and
kinematics. The configuration space consists of reducing the robot’s size to a point and enlarging
the size of the obstacles according to the robot’s dimensions (Raja and Pugazhenthi, 2012).
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The term “configuration space” is introduced in (LaValle, 2006) as follows:

For an n DOFs robot, the configuration space of a robot, denoted C, is an n-dimensional
manifold that contains the set of all transformations. In particular, the C-space for a 2D rigid body
is called SE(2), for 3D rigid body SE(3), and for multiple independent rigid bodies is the Cartesian
product of the configuration spaces of each of them. The C-space contains two regions: an obstacle
region and a free region as shown in Figure 3.2. The obstacle region, C,,s < C, is all configurations
that the robot collides with obstacles or each other. All the leftover configurations are denoted by
free region, Crree = C/ Cops. Using the definition above, path planning is defined as finding a

fa) (b

Figure 3.2: (a)The workspace and (b) the configuration space of a robot.

continuous path 7 : [0,1] = Cjyee, such that 7(0) = ¢r and 7(1) = g¢ where ¢7,ga € Cyree are the
initial and target configuration, respectively.

3.2.3 Types of Path Planning

The field of RPP can be categorized mainly in two major aspects: the point-to-point path planning
and the coverage path planning. In recent years, researchers and experts have concentrated their
research on the first aspect; however, the study of the second one has relatively reduced.

Point-to-Point Path Planning

The objective of robot point-to-point path planning approach consists of finding a collision-free path
from a starting configuration to a destination configuration while optimizing a certain parameter
like time, distance or energy. This approach is in a sense analogous to a single particle in a potential
field with attraction and repulsion points while the particle being a robot, the attraction point being
a destination configuration and the repulsion point being obstacles (Chakraborty et al., 2022).

Coverage Path Planning

The coverage path planning (CPP) or the complete CPP (CCPP) refers to as the task of traversing
the robot’s whole environment while taking the motion restrictions and avoiding the collision with
the obstacles present in that environment (Cabreira, Brisolara, and Paulo R, 2019). The CPP often
arise in robotics applications. It is considered as an integral task to many robotics systems like
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vacuum cleaners, painter robots, lawn mowers, autonomous harvesters... etc. Coverage planning
necessitates assumptions on the abilities of the robot to sense its environment, get to know its
position in that environment (map knowledge and positioning abilities) and plan its route, efficiently.
The study of the CPP started in the eighties’, Cao et al. in (Cao, Huang, and Hall, 1988) delineated
the conditions that a robot must take into account to perform a coverage operation:

e The robot must cover completely all points in its environment;

e The robot must fill the environment without overlapping routes;

Continuous and sequential coverage process without repetition of the routes is entailed;

The robot must avoid obstacles (if present);
e Motion routes, which are simple (straight lines or circles), must be used (for sake of simplicity);
e Optimal path is obtained under predefined conditions.

However, taking into considerations all the above conditions in a complex environment is unfeasible
in most situations. Thus, priority consideration is required.

The CPP problem can be related to other problems known in literature. The lawn mower
problem is one of them. The lawnmower problem, which states to find a path to cut all the grass of
a pre-defined ROT is proven to be NP-hard (Non-deterministic Polynomial-time) (Dudek and Jenkin,
2010). Another problem is the “piano mover’s problem” which is based on finding a collision free
path from a starting configuration to a target configuration while avoiding obstacles. The problem
is also known to be NP-hard. Consequently, even the CPP is considered as an NP-hard problem.

3.2.4 Path Planning Paradigms

The existing robot path planning techniques in general can be categorized into deliberative (offline
global planning), sensor-based (online local planning) and hybrid as shown in Figure 3.3. In the
deliberative methods, the information of the environment, presented as a map, is known to the
robot prior the planning process. As the information includes global data, the process is slow;
however it can generate optimal paths if one exists. Sensor-based methods rely on the acquired
information from the current robot’s surrounding environment (i.e., a local map) using sensory
observations to plan collision-free paths in real time. In this way, the planned paths are locally
optimal only. However, they can be trapped in local minima. Sensor-based methods provide great
solutions for navigation in partially-known, unknown and dynamic environments thanks to their
computational performance (Hoy, Matveev, and Savkin, 2015). In most practical cases, optimality
is sacrificed for speed of computation when dealing with fast and limited computing power robots
like UAVs. Hybrid methods combine the advantages of both deliberative and sensor-based methods
for planning advanced behaviors (Elmokadem and Savkin, 2021). The robot uses the global planning
for guidance and the local planning for handling unknown and dynamic obstacles, simultaneously.

3.2.5 Map-Based vs. Mapless Path Planning Methods

Path planning paradigms, by their turns, can be divided into map-based and maples methods
depending on the environment information accessibility (See Figure 3.4) (Bonin-Font, Ortiz, and
Oliver, 2008). The former methods depend on local (or global) environment map representation to
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Figure 3.3: Different path planning paradigms.

Sense

plan safe and feasible paths using deliberative and/or sensor-based planning algorithms. Map-based
approaches have a particular reliance on the size and the complexity of the environment map. Con-
sequently, problems related to computational complexity, planning time and memory requirements
are inevitable. On the other hand, the latter methods, known also as reactive methods, do not de-
pend on local (or global) maps but on sensory observations for making motion decisions. Mapless
methods when coupled with a control provide great solutions for obstacle avoidance problems in
terms of computational complexity. However, non-optimal path, local minima and limited Field of
View (FOV) are the most challenging issues that face such methods.

3.3 Map Representation for Path Planning

Robots must have a representation of their environment, a mechanism for choosing targets and a
method for effective navigation to a target to operate autonomously. Combined with efficient local-
ization abilities, an explicit environment representation guarantees the robot to navigate effectively.
Maps are the most natural environment representations. They may contain other information, in-
cluding reflectance properties of objects, unsafe regions or difficult to traverse, and information
gained from prior experiences. Maps are required for at least three different tasks classes; they are
used for (Dudek and Jenkin, 2010):
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Figure 3.4: Map-based vs. mapless path planning.

1. Establishing what parts of the environment are free for traversing. This is a requirement to
present and manipulate that part of the environment that is free of obstacles. This region is
known as free space;

2. Recognizing regions or locations in the environment;
3. Recognizing specific objects within the environment.

The problem of map representation is a dual of the problem of representing the robot’s possible
position or positions. Decisions taken regarding the representation of the environment can affect
the choices available for robot position representation. Hence, the position representation fidelity
is correlated with the map fidelity. Choosing a particular map representation should be done by
taking in consideration three fundamental relationships (Siegwart, Nourbakhsh, and Scaramuzza,
2011):

1. The map precision must match with the precision with which the robot requires to achieve
its target;

2. The map precision and the features type represented must match with the precision and data
types returned by the robot’s sensors;

3. The map representation complexity affects directly the computational complexity of analysis
about mapping, localization, and navigation.

There are mainly three ways to represent the robot’s map: continuous, discrete and hybrid rep-
resentations. A continuous map representation can be used as an exact decomposition of the
robot environment. The main advantage of continuous maps is that the features positions can be
reconstructed precisely in a continuous space (See Figure 3.5(a)). However, augmenting the dimen-
sionality of such representation may lead to a computational explosion. Discrete representation can
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be either exact decomposition or fixed decomposition. Both decompositions deal with environments
which are occupied by polygonal obstacles. Exact decomposition tessellates the space obstacle-free
region into areas of free space. In this way, the representation becomes compact since each area
can be stored as a single node (See Figure 3.6(a)). Fixed decomposition is used to tessellate the
continuous real environment and convert into a discrete map approximation. Such transformation
is demonstrated in Figure 3.6(b) which shows what happen to obstacle-filled and obstacle-free areas
during this conversion. Hybrid representation is considered as a combination of the both repre-
sentations (continuous and discrete). The environment is taken discrete but the motion planning
algorithm is considered as continuous environment (See Figure 3.5(b). This strategy is used to avoid
the difficulties of software implementation of continuous environment (Siegwart, Nourbakhsh, and
Scaramuzza, 2011). (Siegwart, Nourbakhsh, and Scaramuzza, 2011).

&
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fa) {b)

Figure 3.5: Continuous map vs. hybrid map.
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Figure 3.6: Exact cell decomposition vs. fixed cell decomposition.
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3.4 Robotic Mapping

In last decades, robotic mapping has been extensively studied in robotics and Artificial Intelligence
(AI). The problem of robotic mapping deals with constructing spatial models of physical world
through robots. Such problem is generally is challenging, especially for complex environments, and
regarded as one of the most major problem for implementing efficient path planning algorithms.
Robotic mapping can be achieved using sensors that enable robots to perceive the outside world.
These sensors include cameras, range finders using sonar, laser, and infrared technology, radar,
tactile sensors, compasses, and GPS (Thrun et al., 2002).

All state-of-the-art robotic mapping algorithms are characterized by their probabilistic feature.
They use probabilistic models of both the robot and its environment for building maps from sensor
measurements. Probabilistic techniques are employed mainly because of two reasons: (1) robot
mapping uncertainty and (2) sensory noise. They solve the robotic mapping problem by formulating
distinctly different noise sources models and their effects on measurements. The basic principle of
most of these techniques is Bayes rule (Thrun et al., 2002):

p(z|d) = np(d|z)p(z) (3.4.1)

Where « is the map, d is the measurement data (say range sensors, odometry). Bayes rules solve the
mapping problem by multiplying p(d|z), the probability of observing the measurement d given the
map z, and p(z), the prior. 7 is a normalizer that ensures p(z|d) is a valid probability distribution.

In robotic mapping, Bayes filters, which extend Bayes rule to deal with temporal estimation
problems, are the most dominating schemes. These filters recursively compute sequence posterior
probability distributions over quantities known as states and denoted by x; at time ¢. Let us define
two different types of components: sensor observation at time ¢, denoted by z; (e.g., camera image),
and control signal asserted in the time interval [t — 1,¢), denoted by u; (e.g., motion commands).
The generic Bayes filter calculates a posterior probability over the state x; via the following recursive
equation:

P21, ur) = nplarlze) / p(aelug, o )p(@e—1 |21, 1)ty (3.42)

3.4.1 Mapping without Localization

Mapping without localization algorithms, which were introduced by (Elfes, 1989) in late 80’s, refer
to a family of robotic algorithms that address the problem of constructing abstract probabilistic
map representation of an environment with the assumption that the pose of the robot is already
known. The basic idea of mapping without localization is to represent a map of the environment
as an evenly spaced grid of binary random variables each referring the occupancy of an obstacle
at that location. This may result in maps known as occupancy grid maps (OGMs). Occupancy
maps use sensor observations for representing the environment as a block of cells, each one either
occupied, so that the robot cannot pass through it, or free, so that the robot can traverse it. The
sensor readings report the status of a set of grid cells that can be verified without reference to
the rest of the map. Initially, all grid cells are assigned a value of 0.5 which means that they are
unvisited yet (See Figure 3.7). The readings of the sensors are compared to the map changing the
probability that observed cells are occupied (Li and Ruichek, 2014).

Occupancy grid mapping algorithms uses Bayes filtering to compute approximate posterior
estimates for the binary random variables. The state z and the observation z are the only required
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Figure 3.7: Occupancy-based grid map (Nuss et al., 2018).

components to solve this filtering problem. There is no need for the control signals since the position
of the robot is initially known. Given the sensor data zj.;, the states x1.; and assuming that the
map does not change with time, a model of the map m can be estimated by filtering each map
cell m; independently assuming that they are in fact independent. Hence, the map posterior is the
products of the maps marginal probabilities (Thrun, 2003):

p(m|zi.e, z1.¢) = ILip(m| 216, T1:¢) (3.4.3)

Occupancy grid maps cannot be accurate, but by selecting a small enough cell size they can offer
all the necessary information. Besides, they offer a uniform framework for fusing data from several
sensors. However, more accurate probabilistic models of sensors are required. Occupancy maps
approach takes into consideration the assumption that the position of the robot is known. This
may lead to an accumulation of position errors over time while mapping is being performed. An
efficient alternative is to perform both mapping and localization in parallel (Dudek and Jenkin,
2010).

3.4.2 Simultaneous Localization and Mapping

Navigation in unknown environments requires both mapping and localization to be performed
simultaneously. This is known as Simultaneous Localization and Mapping (SLAM). In SLAM, both
the position trajectory of the robot and its location of landmarks in the environment are estimated
online without any prior information of the location (Taketomi, Uchiyama, and Ikeda, 2017). The
SLAM process is also probabilistic. A probability distribution, which has to be computed for all
times ¢, is given by

(¢, m|20:t, Uo:t, To) (3.4.4)

Where zg.; = {xg, 21, ...,2¢} = {Z0.t—1, 2+ }: The history of robot locations, ug.; = {uy,us,...,us} =
{ug:t—1,ut}, m = {my,ma,...,ms}. The set of all landmarks and zg.; = {21, 22, ..., 2t} = {20:t—1, 2t 1
The set of all landmark observations. p relates both the landmark locations and the robot’s state
at time t given sensor observations and control input commands with the initial state of the robot.
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Using the Bayesian Theorem, a solution for the SLAM problem can be derived recursively. In order
to do so, an observation model and motion model are required (Durrant-Whyte and Bailey, 2006).
The former model refers to the probability of obtaining an observation z; knowing the locations of
both the robot and the landmark. It can be expressed as:

p(2tlze, m) (3.4.5)

However, the latter model refers to the probability of obtaining a current location x; knowing the
current control command u; and a previous robot location x;_1:

p(@elze—1,u) (3.4.6)

The probabilistic SLAM problem can be solved by constructing a suitable representations for the
observation model in Equation 3.4.5 and the motion model in Equation 3.4.6. As stated before,
the SLAM algorithms can be implemented recursively while this recursion is a function of the
two models. SLAM algorithms are mainly two-step algorithms: time-update and correction and
expressed respectively as follows (Durrant-Whyte and Bailey, 2006):

(X, m|20:¢, Uo:¢, To) = /p($t|$t71>Ut)p(wtq,m|20:t717uo:t—1,mo)dmtfl (3.4.7)

p(ze|ze, m)p(xe, m|20:0—1, U4, To)

P(2t|20:4—1,u0:1)
Both time-update and correction steps offer a recursive process for estimating the posterior in
Equation 3.4.8. In literature, there are three common solutions for the probabilistic SLAM prob-
lem. The first solution is in the form of state-space model which endows a Gaussian noise. This
solution uses the Extended Kalman Filter (EKF) to solve the problem (Castellanos, Neira, and
Tardds, 2018). The second solution expresses the motion model in Equation 3.4.6 as a set of more
general non-Gaussian probability distribution samples. This solution is known as Rao-Blackwellised
particle filter or FastSLAM (Montemerlo et al., 2002). The last solution, which called GraphSLAM,
addresses the SLAM problem by using a graph. The graph contains nodes which represents both
the robot states and the landmarks on the map (Thrun and Montemerlo, 2006).

p(@e, m|20:¢, Uost, To) = (3.4.8)

3.4.3 Types of Robotic Maps

Robotic mapping may result mainly in two specific representations of maps: metric or topological.
In metric maps, raw allothetic data are converted into 2D space information related to the idiothetic
data. The geometric features of the environment, such as the position of some objects, mainly the
obstacles, are stored on an absolute reference frame (Filliat and Meyer, 2003). Metric maps are
explicit occupancy maps that include connectivity information (See Figure 3.7). This is the main
reason why they are the most used form of maps in robotics. Topological maps or relational maps,
on the other hand, are type of maps that explicitly represent the connectivity information of the
environment in the form of a graph (Dudek and Jenkin, 2010). In these maps, the allothetic data
of places are stored, instead (See Figure 3.8). Hence, topological maps represent the environment
sparsely in such a way they only represent key locations for robots to navigate using allothetic
information. The main advantage of topological models is that they do not require metric sensors
to construct 2D models of the environment. However, navigation using such models becomes
difficult since their precision is low (Filliat and Meyer, 2003).
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Figure 3.8: (a) Physical environment (b) topological representation.

3.5 UAYV Path Planning Taxonomy

3.5.1 UAYV Point-to-Point Path Planning

In the last decades, many point-to-point path planning algorithms for UAVs have been proposed
in both 2D and 3D. These algorithms are constructed based on several theoretical hypotheses
like soundness (no collision with the obstacles), completeness, path optimality, time complexity ...
etc. The taxonomy of current methods of the developed path planning algorithm is shown in the
following Figure 3.9.

Classical Paradigms

The first classical paradigm is Artificial Potential Field (APF). Path planning based on APF algo-
rithms is based on a persuasive analogy proposed by Khatib in 1986 (Khatib, 1986): a robot, which
behaves as a single particle, moves under the influence of a potential field U. The target location
represents as an attraction point that draws the robot towards it while the obstacles represent
repulsive potentials such that collisions are avoided (See Figure 3.10). At every location in the
environment, the resultant force magnitude and direction, which the sum of the negative gradients
of each potential, determines the motion the robot should take.

As stated before, an APF U(q) is built from both components: the goal Ugoq:(g) and the obsta-
cles Upps(g). These components are used to generate attractive and repulsive forces, respectively.
The robot is subjected to a total potential given by

U(Q) = Ugoal(Q) + Z Uobs(Q) (351)
The total potential field is then used to generate artificial forces given by
F=-VU(q) (3.5.2)

APF path planning algorithm offers several advantages: mathematical elegance and simplicity
makes is suitable for UAV systems (Zhu, Cheng, and Yuan, 2016), smooth spatial paths can be

Y
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Figure 3.10: Illustration of the APF algorithm.

produced in real-time (Roussos, Dimarogonas, and Kyriakopoulos, 2010) and it can be coupled
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directly to a tracking control algorithm (Santos et al., 2017). However, the main drawback of the
APF algorithm is local minima issue. Several researches have been proposed to deal with the issue
(Chen et al., 2016; Wang, Dai, and Ying, 2021).

The second classical paradigm is sampling-based method. Sampling-based path planning ap-
proaches require pre-defined information of the workspace where the robot is supposed to navigate.
First, these approaches sample the robot’s workspace into a set of nodes, or cells or other rep-
resentations forms. Then, random search is performed to find a feasible path. Sampling-based
approaches can be grouped into two algorithm types: Probabilistic Roadmap (PRM) and Rapidly
exploring Random Trees (RRTSs).

Path planning using PRM algorithms, which was proposed by Latombe in 1996 (Kavraki et
al., 1996),consists of describing the connectivity of the continuous C-space in a network of one-
dimensional curves for sake of having fewer states than the original C-space. PRM methods rep-
resent the environment by generating maps or graphs from sets of nodes and edges. Once the
roadmaps are constructed, they are then utilized as standardized paths sets. In recent years, the
PRM sampling-based algorithms have been greatly enhanced especially in case of UAVs (Yan, Liu,
and Xiao, 2013; Tan et al., 2020). In literature, two types of PRM algorithms exist: the Voronoi
Diagram (VD) and the Visibility Graphs (VG)(See Figure 3.11) (Giesbrecht, 2004). In the VD al-
gorithms, the nodes are defined such that they are equidistant from all the points of the obstacles.
Hence, the generated paths are relatively safe; however, they are not optimal. In addition, VD algo-
rithms are not efficient, from practical point of view, especially when the dimensions are augmented
(more than 3D) and complex data structures are required. The Visibility Graph, in contrast, makes
use of the obstacle vertices including the starting and the target points to construct Visibility Line
network that joints nodes pairs by a set of lines. Generalized VG is an extension of a simple VG
where obstacles are in generalized polygonal shapes (Masehian and Amin-Naseri, 2004).

start stgrt

¥ goal

(a) (b

Figure 3.11: Probabilistic Roadmap algorithms: (a) VG, (b) VD (Siegwart, Nourbakhsh, and
Scaramuzza, 2011).

RRT algorithms are further variations of the PRMs approaches. However instead of sampling the
C-space, RRT's begin planning at the starting location and randomly expands a path, or tree, in the
configuration space. The tree is constructed incrementally from samples built randomly from the
search space and is inherently biased to grow towards large unsearched areas of the problem (See Fig-
ure 3.12). RRTs typically construct a graph during the search process and thus a priori only require
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an obstacle map (without graph decomposition) (Siegwart, Nourbakhsh, and Scaramuzza, 2011).
The Table 1 shows a pseudocode of the RRT algorithm where RANDOM _CONFIGURATION()
selects randomly a coordinate ¢qnq in the domain D, NEAREST VERTEX() finds the vertex
in the tree closest to ¢,qnq in D and NEW_CONFIGURATION produces a new configuration
(new in the tree by displacing a distance A from gpneqr t0 ¢rand.

Algorithm 1 RRT algorithm
Input:
Ginit < Initial configuration
K < Number of vertices in RRT
A + Incremental distance
D < the planning domain
Output: G + the RRT
Processing:
Repeat K times
Grand < RANDOM _CONFIGURATION (D)
Gnear & NEAREST VERTEX (¢rand, G)
Gnew & NEW _CONFIGURATION (¢near, Grand; /(A))
Add verter gnew to G
Add an edge between Qneqr and Qpew G
End repeat
Return G

RRTs represent great sampling-oriented approaches for exploring pathways randomly. In ad-
dition to their simplicity, they have also a relatively high speed to plan paths in large and high
dimensional search spaces. However, they are inefficient, and they create routes with sharp bends
(Rodriguez et al., 2006). Since RRT's do not explicitly construct the entire configuration space, the

45 iterations 390 iterations

Figure 3.12: RRT evolution illustration (Siegwart, Nourbakhsh, and Scaramuzza, 2011).
problem of a growing search time with growing spatial dimensions is avoided. RRT's tend to have

a lower algorithmic complexity in 3D space. Accordingly, they are the most suitable for solving
path planning problems for single UAV (Killian and Backhaus, 2021; Nurimbetov et al., 2017) and
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multi-UAVs (Liu et al., 2022). Recent researches have been developed many RRT algorithms. In
terms of performance, RRT*, which hasan asymptotically optimal property, is an improved version
of RRT algorithm. The RRT* always finds a solution even though the number of samples grow to
infinity (Karaman and Frazzoli, 2011).

Heuristic Approaches

In many UAV applications, the search spaces are generally large and have many unexplored regions.
Additional guidance, which gives the UAV information about the distance to the target location,
could save considerable amount of time. Path planning, in this case, can be done by heuristic
algorithms. These latter deal with nodes’ and arcs’ weight information and compute the cost by
exploring among the nodes resulting in an optimal path. Network algorithms and Node Based
Optimal Algorithms are other names of heuristic algorithms (Yang et al., 2016).

Dijkstra algorithm, proposed by E. W. Dijkstra in 1959, is a graph search algorithm which
sorts solutions for the single-source shortest path problem for a graph with known non-negative
edges’/arcs’ (Dijkstra, 2022). In other words, the algorithm assumes any positive value and searches
for a shortest path that depends on local path costs only. An improved of the Dijkstra Algorithm
is the Bellman-Ford algorithm that generates an optimal path with positive and negative costs (De
Filippis, Guglieri, and Quagliotti, 2012; De Filippis, Guglieri, and Quagliotti, 2011). The flowchart
of the Dijkstra algorithm is shown in Figure 3.13 where O is an open list and ¢ is the current
configuration.

Developed in early 50s, A* star is considered one of the most used algorithm for motion in
robotics. This algorithm merges the Dijkstra and Bellman-Ford characteristics to effectively analyze
the domain for avoiding distributed obstacles. The A* algorithm is a graph search algorithm that
finds a solution path from a given initial location to a given final location. It uses a heuristic
estimate (Hart, Nilsson, and Raphael, 1968):

F(n) = g(n) + h(n) (3.5.3)

Equation 3.5.3 provides an estimate of the best shortest route, where g(n) is the cost from the
starting node to the node n and h(n) is heuristic estimate cost from the node n to the goal.
A* algorithm is known also as the best first search. Usually, the Euclidean distance is used for
calculating the heuristic cost. A* is computationally expensive since it has to pre-plan the entire
path every time new information is added. In a grid map, where the starting location, target
location and the obstacles are identified, A* algorithm starts by searching the 8 neighboring nodes
of the starting location. The heuristics of those neighboring cells are calculated. Then, the process
continues by choosing the nodes that are closer to the target location till the path is sorted. Figure
3.14 depicts the flowchart of the A* algorithm.

For 3D UAV flights, a number of A* algorithm variants have been implemented. One variant,
the Dynamic A* or D* only updates new nodes while reducing computational demand (Zhang et al.,
2020). The Lifelong Planning A* or LPA* is an incremental A* variant that improves the efficiency
of path planning by information reuse. Such algorithm behaves more efficiently when it has specific
start and goal locations nodes (Koenig and Likhachev, 2001). The variant D* Lite was developed
to plan paths in case of a changing start node and a fixed goal node. D* Lite merges both the
heuristic and incremental search for purpose of achieving path planning. The algorithm takes into
consideration the information of the path between the current node and the goal one. Thus, D*
Lite is now widely used in autonomous navigation systems(Hao et al., 2020). Another variant is
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Figure 3.13: Dijkstra algorithm flowchart.

Lazy Theta®™ which can be used over octrees to find an optimal path between the start and target
nodes for sake of exploration (Faria, Maza, and Viguria, 2019; Faria et al., 2019).

Artificial Intelligence Approaches

In artificial Intelligence or A, the term planning is used generally to refer to the process of searching
for a sequence of logical operators or actions in order to transform an initial state to a goal one.
Hence, the aim here is to design systems that think intelligently and use decision-theoretic models
to generate suitable operators. UAVs (or multi-UAVs) systems are relatively novel field of Al
applicable for efficiently solving different complex navigation problems where conventional solutions
require a considerable amount of hand-tuning. Therefore, Al techniques are increasingly being used
to enhance autonomous UAV systems navigation (Rezwan and Choi, 2022).

Fuzzy logic (FL) imitates the human brain when making decisions in uncertain situations or
dealing with incomplete knowledge. FL uses true real number values between 0 and 1 to form a
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Figure 3.14: A* algorithm flowchart.

multi-valued logic. These values are used to deal with the concept of partial truth. In this latter,
the truth value may range between completely true and completely false. FL has been the key for
UAV path planning thanks to their high adaptability to objects that are unbounded and/or unclear
(Masehian and Sedighizadeh, 2007). FL algorithms are used to solve path planning problems
that are characterized with ambiguous optimization objectives. In literature, few works have been
conducted on FL stand-alone algorithm for path planning due to difficulty in adjusting membership
functions (between 0 and 1) such as in (Zhuoning et al., 2010; Sabo and Cohen, 2012). However, it
is used in combination with other types of algorithm like Genetic Algorithm (Kermani and Afzalian,
2014), Ant Colony Algorithm (Taylor and Choi, 2014) and Multi-objective FL (Yanyang, Tietao,
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and Xiangju, 2012).

Reinforcement Learning (RL) is a machine learning process where leaning is achieved by inter-
acting with the environment. In RL, sequences of actions are applied to collect information from
the environment. After each execution of an action, a feedback is obtained. The feedback is a
trial-and-error process that can be used to evaluate the action made by the environment. The
evaluation of the action by the environment is called an immediate reward which can be defined as
an improved signal that stipulates the impact of the action on the result (Yu, Su, and Liao, 2020).
The RL model is depicted by Figure 3.15

Robot —

Reward State Action

Environment —

Figure 3.15: RL schematic diagram.

In UAV path planning, RL generates and updates the selection strategies of the vehicle actions.
The environmental rewards are obtained based on the last state and last actions of the vehicle.
Different variants of RL are used to plan paths for UAVs such as Q-Learning (Carvalho et al.,
2022), Improved Q-Learning (Yan and Xiang, 2018) and Deep RL (DRL) (Theile et al., 2021).

Bio-inspired Approaches

Bio-inspired approaches are created from mimicking biological behavior to solve path planning
problems. The algorithms exclude the process of constructing complex models of the robot’s envi-
ronment and suggest a strong method to achieve the goal location. This may avoid some problems
where the aforementioned algorithms fail in solving NP-hard problems with large number of vari-
ables and nonlinear objective functions (one problem is the local minima) (Aghababa, 2012).

Genetic Algorithm (GA), which is based on a genetic reproduction mechanism and natural selec-
tion, is the most famous population-based numerical optimization method. GA is a reactive search
algorithm that obtains a solution space for an optimal solution to a problem. GA is decomposed of
chromosomes; each represents a solution, with different genes. The GA algorithm is implemented
such that populations of possible solutions are created and evolve to reach a better solution (Galvez,
Dadios, and Bandala, 2014).

Ant Colony Optimization (ACQO) is another bio-inspired approach that has been used for solving
UAVs path planning problems. The algorithm concept imitates the movement of a group of ant.
The path of the whole group represents the solution space for the problem of optimization. As
the time goes on, the shorter path is designated by the accumulation of pheromone. In this way,
there will be an increase in the number of ants choosing this path. Finally, the corresponding path
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represents the optimal solution for the path planning optimization problem (Cekmez, Ozsiginan,
and Sahingoz, 2014).

Particle Swarm Optimization (PSO) is one of the most well-known metaheuristic approaches
for path planning and formation problems, in general. PSO uses a stochastic optimization process
based on the behavior representation of natural organisms such as bird flocking and fish schooling.
The PSO principle is based on a population, named swarm, where each member, known as particle,
can be a potential solution to the problem. After randomly initializing the position and the velocity
of each particle in a continuous search space, the position and velocity values are updated after each
iteration of the process (Alaliyat, Oucheikh, and Hameed, 2019). The position and the velocity
of each particle are adjusted according not only to its own voyage experience but other particles’
experiences as well. These values are referred to as personal best or ppes;. Optimization is achieved
when each particle reaches its ppesi-

3.5.2 UAYV Coverage Path Planning

In recent years, the adoption of UAVs for surface coverage applications has been emerged. The UAV
coverage path planning (UAV-CPP) is being used in different fields. In UAV-CPP, the surface is
tracked by the vehicle while taking into account several factors aiming to reduce the time of flight or
save energy. HEssentially, the planned path that covers the whole surface has to be optimal. Here, it
is essential to point out that the aforementioned point-to-point path planning methods can be used
in this purpose. However, most of these methods have been used in environments without obstacles.
Thus, in environments where obstacles are present, adequate CPP algorithms are required.

Since CPP methods decompose the target environments into sub-regions called cells to achieve
coverage, the classification of such methods is performed according to the type of decomposition
used.

Exact Cellular Decomposition Coverage Methods

In the exact cellular methods, the free space of the environment is decomposed into simple, non-
overlapping cells. The combination of all free-obstacle cells fills the free space. This latter can
be covered easily and swept by the UAV using simple zig-zag motion patterns. FExact cellular
decomposition CPP methods generate paths in two steps. First, the free space is decomposed
into cells and stored the decomposition as an adjacency graph. Next, graph-based search is used
to exhaustively walk through the adjacency graph (node visiting) to derive the optimal coverage
path (Nasirian, Mehrandezh, and Janabi-Sharifi, 2021). Two of the most popular exact cellular
decomposition methods are trapezoidal decomposition and boustrophedon decomposition. The
first is an offline method that breaks down the environment into trapezoids. Simple back-and-forth
motions can be used to cover each trapezoid. The boustrophedon method decomposes the free
space similarly as the trapezoidal decomposition. However, vertices, where a vertical segment can
be extended both above and below the vertex, are considered (See Figure 3.16). These vertices are
called critical points (Galceran and Carreras, 2013).

Grid-Based Coverage Methods

Grid-based decomposition represents the environment as a grid of cells where each cell has the same
size and shape. It is known also as approximate cellular decomposition since it approximates the
shape of the free space and the obstacles. In this decomposition, each cell is associated with a
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1L

Figure 3.16: (a) Trapezoidal decomposition vs. (b) boustrophedon decomposition (Galceran and
Carreras, 2013).

(b)

certain value to state whether an obstacle is present or not. In most cases, square shapes are used,
however, other shapes may be used instead (e.g., triangular) (Oh et al., 2004).

After decomposing the environment into a grid, the search for an optimal coverage path can
be done using several approaches. Grid-based coverage using wavefront uses a distance transform
to propagate a wavefront from a starting location to a target location in order to assign a specific
number to each grid cell. Initially the target location is assigned by a 0 and all of its surroundings
are assigned a 1. After that, the algorithm assigns 2 to all of the unmarked cells neighboring the
marked 1. The process continues incrementally until the starting location is achieved (See Figure
3.17).
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Figure 3.17: (a) Wavefront distance transform vs. (b) Coverage path (Galceran and Carreras,
2013).

Grid-based CPP using Spiral Spanning Trees is an online coverage technique where a path is
generated following a systematic spiral pattern. Using onboard sensors, a spanning tree of the
partial grid is constructed by the robot. This can be achieved by dividing bigger (or mega) cells
into four cells of same size as the robot, first. The robot, which is located in its current cell,
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moves to a new mega cell in the free space using an anti-clockwise direction. A new tree edge of
the spanning tree is formed between the current cell and the new cell. The process proceeds in a
recursive manner. When the current cell has no neighbors, the process stops. Finally, the robot
uses the spanning tree to move from on cell to another until it reaches the tree end (Gabriely and
Rimon, 2002).

NIe_ga cell

Robot-size cell _'l. -

Figure 3.18: (a) Approximate cell decomposition vs. (b) Coverage spiral path (Galceran and
Carreras, 2013).

3.6 Conclusion

The focus of this chapter was on path planning, which constitutes the initial stage of autonomous
navigation. To commence the chapter, we established the definition of path planning and introduced
various terms associated with it. Then, we divided the path planning process into two stages: map
representation stage and query stage. Starting with the first stage, we described the different maps
used for representing the environments where the quadrotor navigates. In addition, we presented
the different methods that are used for building these robotic maps. At the end, categorized the
approaches implemented for the query process into: point to point path planning and coverage path
planning and reported the taxonomy of each.
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Chapter 4

Quadrotors Trajectory (zeneration
& Control Strategies

4.1 Introduction

Generation and execution of feasible trajectories are considered the core problems in quadrotor
control. The trajectory generation step produces smooth trajectories as a function of time that
the quadrotor must follow. The generated trajectories must take into account the vehicle’s thrust
and hardware limitations as well as satisfy the different constraints imposed by the control in order
to perform complex and high-speed maneuvers. Despite quadrotors have relative mathematical
simplicity and low mechanical complexity, designing feasible trajectory generation algorithms and
tracking control laws is still challenging. The aim of this chapter is to investigate the different
approach that have been developed for generating and tracking feasible and smooth time trajecto-
ries for the position and the orientation of quadrotors. However, before approaches for these are
investigated it is necessary to give further details on quadrotor design.Hence, this chapter will cover
the kinematic and dynamic models that will be used in the simulations.

4.2 Quadrotor Dynamics Model

In general, the flight motion of autonomous aerial vehicles with rotory wings, for applications like
search-and-rescue, surveillance, inspection, etc, is characterized by a nonlinear dynamic behaviour.
High stability, high precision hovering ability, high bandwidth, and high manoeuvrability are of
great importance for successful execution of tasks within the application.

Quadrotor platforms have been extensively applied for research in flying robotics thanks to
their ability to hover, high maneuverability, mechanical simplicity and robustness. Quadrotors are
also known by their low rotational inertia which allow large translational accelerations and rapid
rotational accelerations (Penin, 2018). However in practice, it is very difficult to design models of
these vehicles that capture all the aerodynamic effects. Therefore, it is necessary to characterize
the non-linearities for each flight configuration in order to provide them with autonomous flight
and navigation capabilities. The work in (Bouabdallah, 2007) is one of the the earliest and most
comprehensive works on quadrotor design and control. Other works like (Martinez Martinez, 2007)
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and (Amir and Abbass, 2008) include the quadrotors aerodynamic effects. The model presented in
this section is common to the majority quadrotor vehicles.

In order to derive the nonlinear model of the quadrotor, a set of coordinates systems for specify-
ing the position, velocity, forces and moments acting on the vehicle must be defined, first. Let the
inertial frame be the surface of the earth and the body frame be fixed on the quadrotor rigid body
as shown in Figure 4.1. {b_i, b;, b_;;} are the unit vectors along the body-fixed frame axes {3} where
by convention b; is the longitudinal axis pointing to the front of the vehicle, bg defines the lateral
and right-facing axis of the vehicle and bs defines the vertical axis of the vehicle and points down
in our case. {a1,as,as} are the unit vectors along the body-fixed frame axes {Z} where aj points
to the North, a5 points to the East and a3 points upwards. This latter is supposed to be Galilean.
It is assumed that the center of mass of the quadrotor coincides with the origin of the body-fixed
frame. Further assumptions like the rigid structure and the axial symmetry of the quadrotor body
and no induced drag, blade flapping and ground effects are taken into consideration.

f3

Inertial frame,

by

Body-fixed frame,

Figure 4.1: Quadrotor inertial and body-fixed frames.

The configuration of quadrotor modeled as a rigid body with a mass m and a moment of inertia
J € R3%3 is represented by a position, denoted by b € R? and expressed in frame {Z} and an
orientation, denoted by R € SO(3) and defined as the rotation matrix from frame {B} to frame
{Z}. Both the position and the orientation together is referred as its pose G and given by

G- [ff ﬂ € SE(3) (4.2.1)

Where the special Euclidean group in three dimensions SE(3) € R3*3 is the six-dimensional Lie
group of rigid body motions (translational and rotational) that is obtained as the semi-direct prod-
uct of R? with SO(3). Figure 4.2 shows a schematic diagram that depicts the trajectory on SE(3)
passing through several poses G.

The quadrotor satisfies the kinematics relation

{é” (4.2.2)
R = RS(Q)

Where v is the quadrotor’s translational velocity expressed in {Z}; € is its rotational velocity

expressed in {B} and S(.) is the skew-symmetric cross product operator that gives the vector space
isomorphism between R® and so(3), the Lie algebra of the Lie group SO(3), which is a set of
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Inertial frame,

Figure 4.2: SE(3) trajectory of a quadrotor (Dhullipalla et al., 2019).

matrices M € R3*3 such that

0 —Q3 Q9
s0(3):={M=|a3 0 —a||MT=-M} (4.2.3)
—Q2 a7 0

Where «; € R. The quadrotor dynamics are expressed by the following equations (Sanyal, Nord-
kvist, and Chyba, 2010)

{1}.— %Reg,—geg, (4.2.4)

JO=JOxQ+ 7

where f is the thrust magnitude, e3 = [0, 0, 1], hence Res is the thrust direction.

4.3 Quadrotors Trajectory Control Strategies

Quadrotors have been particularly selected in many research works thanks to their good maneuver-
ability, stability and payload. Besides, they are agile vehicles that permit fast and accurate motion
behavior. Originally, quadrotors have been the object of study on designing controllers that are
capable of stabilizing them. Thus, different stabilization control techniques have been developed:
Backstepping, Feedback Linearization, Sliding Mode Control, PID, optimal control, robust control,
learning-based control, etc. (C)Zbek, Onkol, and Efe, 2016). Considering that these techniques have
been extensively studied, today the challenge for quadrotors is to deal with path/trajectory control,
fault tolerant control, path planning or obstacle avoidance problems.
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The path/trajectory control problem can be defined as guiding the quadrotor to follow a pre-
described path/trajectory in space. This can be mainly achieved using two different approaches:
path following controller or trajectory tracking controller (Rubi, Pérez, and Morcego, 2020). The
first approach solves the problem of following a reference path without assigning time information
to it. However, in the second approach, the reference trajectory with assigned time information is
tracked.

High Level Control Low Level Control
Path . h
Planning Trajectory _
N Generation N Trajectory Autopilot Quadrotor
Obstacle & Control
avoidance Optimization
A B \ T- N

Figure 4.3: Trajectory generation and control structure.

In order to take advantage of the quadrotor capabilities, appropriate trajectory control systems
must be implemented to allow reliable control over both the position and the attitude of the vehicle.
A plethora of trajectory control systems, that allow rejecting disturbances in quadrotor’s position
and attitude, has been emerged (Li, Sun, and Jin, 2015). Most of these control systems use a nested
structure, with an inner-loop and outer-loop, for controlling both the orientation and the position of
the vehicle, respectively. Thus, simple combination of control systems may be allowed to form hybrid
controllers aiming to obtain improved results. Besides, it is important to point out that most of the
trajectory control problems have been solved by relying on a sort of linear dynamic assumptions
for the controller design. Therefore, a trajectory control system can be either linear or nonlinear.
This latter are characterized to be theoretically complicated and extensive studies are required to
understand their functionality in terms of implementation. Yet, linear controllers are much easier.
In addition, nonlinear control systems consider the quadrotor full dynamic system for operating in
a wider operating region, hence, taking into account the vehicle’s nonlinear aerodynamic effects.
On the other hand, linear control systems have restricted operation regions (Partovi et al., 2012).

4.3.1 Linear Trajectory Control Systems

Quadrotors are inherently nonlinear, non-stable and complex systems, containing couplings between
the different axes and which can be subject to significant disturbances like wind. Preliminary studies
on designing controllers relied on the linearization of the vehicle dynamics around a hover point
(Li, Sun, and Jin, 2015). In other words, the vehicle’s speeds of translation and orientation are
low, which makes it possible to neglect the couplings between the different axes. Consequently, a
simplified dynamic model can be obtained and it is decoupled into four mono-input-mono-output
subsystems of the dynamics of the vehicle around the equilibrium point: the altitude subsystem,
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the longitudinal motion subsystem, the lateral motion subsystem, and the yaw subsystem. These
subsystems are independent and controllable, su that linear control techniques can be used easily.

Several classical and modern linear control techniques have been successfully applied on quadro-
tors to track predefined trajectories. Many research works have applied PID controllers. In most
cases, the control structure of the quadrotor contains an inner loop and an outer loop to stabilize
the attitude and the position, respectively (Li and Li, 2011). PID controllers can be applied in both
loops as shown in Figure 4.4. Otherwise, they can be applied in one single loop and combined with
other type of controllers applied in the other loop. PID controller has several advantages such as
it is easy to implement and its parameters are easy to optimize. Besides, PID can be used even in
the situation of without the knowledge of quadrotor dynamic model. Nevertheless, using PID con-
troller on quadrotors tend to limit its performance because of the under-actuation and nonlinearity
characteristics of the vehicle model.
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Figure 4.4: PID controller structure for a quadrotor (Jiao et al., 2018).

Another linear trajectory control technique is to use optimal control theory. The aim of such
technique is to operate the vehicle dynamic system at a minimum cost. Two well-known optimal
control techniques have been used to solve trajectory control problem: the Linear Quadratic Reg-
ulator (LQR) and the Linear Quadratic Gaussian (LQG). LQR controllers are still being designed
thanks to their capabilities to handle complex dynamic systems like quadrotors. Although LQR
controller is restricted to linear control laws, linearizing the quadrotor nonlinear dynamics shows
that greater performances are achieved (Zulu and John, 2016). LQR can be combined with Kalman
Filter (KF) and transformed into an LQG while preserving the control optimality (See Figure 4.5).
This is done in order to have both an optimal controller and an estimator simultaneously. Besides,
the LQR controller effectiveness is enhanced against the Gaussian white noise. As a result, clear
vehicle performances can be improved. However, relying heavily on the linearization of quadrotor
dynamics, detrimental effects can occur due to the parameter uncertainties (Montazeri, Can, and
Imran, 2021).

Gain scheduling controllers have a wide application in industry. The use of such controllers has
been extended to include autonomous vehicles like quadrotors where the scheduling of appropriate
parameters can be autonomously achieved during the flight. In other words, knowing that the
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Trajectory LQR u(t) ?;g
Generation Controller

Kalman Filter

(@

Figure 4.5: LQR/LQG control structure.

linearization about an operating point of the quadrotor nonlinear dynamics is only valid around
that point where local asymptotic stability is ensured. Hence, by extending to a range of operating
points, the gain scheduling can enhance the quadrotor linearization capability. This can be done
by urging the controller gains to vary as the system dynamically evolves (Sawyer, 2015). Gain
scheduling is an attractive approach since it uses linear control design techniques that are well-
understood, theoretically mature and comprise computationally efficient synthesis processes. In
addition, due to the plant linearization, the desired stability and the performance properties are
achieved by the feedback system. In case of changing of operating conditions, the gain scheduling
control systems tend to respond rapidly (Bett and Chen, 2005). However, the main drawback of
the scheduling controllers is that many decisions to be made are system-dependent (the selection
of appropriate scheduling gains and scheduling procedure).

Trajectory
Generator

(a)

Trajectory
Generator

(b)

Figure 4.6: (a) Conventional proportional controller vs. (b) gain scheduled controller (Sawyer,
2015).

Unlike modern and classical approaches (PID and LQR), the H;,s control approach takes into

account both performance and robustness explicitly; this is why it is also called robust control
method. Hiyr regards the control as a mathematical optimization problem where the aim here
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is to obtain the correct gain values that stabilize the system. The H;,¢ control configuration was
introduced by Doyle (Doyle et al., 1988) where the control structure shown in Figure 4.7 depicts how
the H;nr works. The block P represents the generalized plant containing the quadrotor dynamics,

w z
—_— p —
u v
K <

Figure 4.7: Control structure of Hiy¢ controller (Doyle et al., 1988).

while the block K is the controller. w is the input signal carrying external signals (e.g., sensor noise,
uncertain disturbances) and the commands. Z is the output signal carrying the system states. v is
the measured variable while u is the control input signal that enhances the plant P performances.
The purpose of this structure is minimizing the output signal error Z using the measured variable v
in K for manipulating the control input variable u. Designing such control system has demonstrated
the rejection of external disturbances as well as dealing with parametric uncertainties.

4.3.2 Nonlinear Trajectory Control Systems

The linear control approaches mentioned above keeps stability only within a certain region of
equilibrium points around which the quadrotor dynamics are linearized. The system becomes
uncontrollable when uncertainties are introduced. However, two methods have been commonly
used to handle the presence of uncertainties in nonlinear dynamical models: fixed gain control
and adaptive control. The fixed gain control, which is a robust control approach, dominates the
nonlinear disturbances in the system dynamics. Like so, the uncertain nonlinearities are handled
within a certain bound that is required to be known priory. The adaptive method, however, is a
type of control that is capable of handling the changing in the system parameters by adapting itself.
The adaptive control does not require the uncertainties bound and proposes an adaption law for
estimating the unknown parameters online in the closed-loop system.

Feedback Linearization

Feedback Linearization is one of the commonly used methods for controlling nonlinear dynamical
systems. The purpose of this control method is to linearize a system in certain range of the state
space using nonlinear inversion of the plant. In such a way, the plant nonlinearities are cancelled
so that linear control theory can be applied (Byrnes and Isidori, 1991). Feedback Linearization has
many advantages like simplicity in the control structure and implementation facility. However, it
has some limitations such as it requires more exact model for avoiding loss of precision because
of the process of linearization (Zulu and John, 2016). This kind of control method is frequently

56



4.3. QUADROTORS TRAJECTORY CONTROL STRATEGIES

applied in robot control like quadrotors. Several research works have been presented in literature
like in (Bonna and Camino, 2015; Al-Hiddabi, 2009).

Backstepping

Backstepping is a famous technique extensively used for nonlinear control systems. This technique
consists of breaking down the architecture of the control system into subsections. Backstepping
control uses a recursion algorithm that stabilizes the system based on the Lyapunov stability where
the objective is to force a set of given errors to be zeroed. First, a positive definite Lyapunov
function is asserted for each error such that the time derivative of those functions is negative
definite. In this way, errors converge to zero and the stability of the system is reached. In other
words, the Backstepping approach links the choice of a control Lyapunov functions with the feedback
controller design and assures global asymptotic stability of strict feedback systems (Vaidyanathan
and Azar, 2016). This control approach is used in most of trajectory control designs since it is
able to offer wider regions of attraction than any other controller type. Besides, the Backstepping
control algorithm converges fast and ensures boundedness of tracking error globally. However,
the approach, which suffers from the problem of “explosion of terms”, is limited to systems in
strict feedback form (Swaroop et al., 2000). Several works based on this control method have been
successfully developed and tested on quadrotors (Madani and Benallegue, 2007; Rashad, Aboudonia,
and El-Badawy, 2015).

Adaptive Control

Adaptive control provides many tools to tackle the autonomous quadrotors systems. The basic idea
behind such control strategy is automatically adjusting the controller’s parameters online based on
the measured signals of the systems (Perez-Alcocer and Moreno-Valenzuela, 2019). In other words,
when the parameters of the plant are unknown or change over time, the adaptive control requires
to be considered for achieving and maintain the desired performance. It has the ability to adapt
to compensate for the parameters variations of the quadrotor system especially in the presence
of external signal disturbances. While compared with robust control strategies, adaptive control
provides better performance for a large domain of uncertainty. However, this control technique
has some limitations. The online estimation of parameters may not be an easy especially in case
of cumbersome behaviors. In addition, the parameter estimation may have unwanted transient
behavior in such a way guaranteeing system stability and achieving the required performance can
be far from trivial (Giordano, Delamare, and Franchi, 2018). Figure 4.8 shows an example of the
adaptive controller for a quadrotor.

Model Predictive Control

Model Predictive Control (MPC) is a famous control strategy that turns the control problem into
an optimization problem. MPC is a crucial control method for handling multivariable control
problems. It has been extensively applied on quadrotors (Seborg et al., 2016). The aim of MPC
is to use the quadrotor dynamics model to estimate a sequence of future control values at any
sampling time instant while minimizing the error. Only the first element of the estimated control
sequence is utilized. The overall process is then repeated at the next sampling time. In such a way,
the MPC approach predicts the future behavior of the closed-loop system (state and control input)
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Figure 4.8: Control structure of an adaptive controller.

over a horizon of finite time. The strength of such approach is that it can handles multi-input multi-
output (MIMO) systems having interactions between their inputs and outputs. In addition, MPC
can handle systems at their optimized performance while satisfying some predefined constraints
(Faulwasser and Findeisen, 2015). However just like adaptive control strategies, MPC performs
optimization online. This may relatively require higher computational power.

4.3.3 Intelligent Trajectory Control Systems

The discipline of intelligent control describes control methods that endeavor to emulate important
attributes of human intelligence. The attributes may include learning and adaptation, planning un-
der the presence of large uncertainties and coping with tremendous data. Nowadays, this discipline
attempts to cover everything that is not known as conventional control (Koutsoukos and Antsaklis,
1999). Intelligent control can be defined as a computationally efficient process to guide complex
systems characterized with incomplete and inadequate representation and even under incomplete
specifications in uncertain environment toward a certain objective. Intelligent control strategies
have higher level of decision making scheme than conventional control ones. This leads to produce
control signals based on qualitative (heuristic) understanding of the process (Gao, 1996). The main
methods of intelligent control, which are used with trajectory control for quadrotors, include fuzzy
logic and neural network. As suggested from the literature, the best performances of such intelligent
control methods requires a combination with one or more of the aforementioned nonlinear control
strategies to achieve higher robustness, adaptability, optimality, tracking ability, and disturbance
rejection. Two well-known intelligent control systems are fuzzy logic and neural network.

Fuzzy logic control is a powerful problem-solving and well-known artificial intelligence control
method that can be applied in several applications. Fuzzy logic control design are characterized
by an easy implementation considering the fact that great performance can be obtained even if
the system plant behavior is not realized. As a result, this type of control is applied with systems
experiencing higher complexity and nonlinearity (Idrissi, Salami, and Annaz, 2022). Fuzzy logic
controller contains mainly three parts: a fuzzifier, rule base and defuzzifier as shown in Figure 4.9.
The dynamic behavior of the quadrotor can be the plant in the figure. The purpose of such control
structure is to minimize the error as the systems evolves. The fuzzifier manages the numerical
values of the plants and transforms them into class of fuzzy set members in such a way a decision
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is made depending on the condition of each member. The defuzzifier, however, transforms the
fuzzified output into numerical values that are fed back into the plant. The rule base is a control
system that is responsible of making decisions in the form of if-then rules. These rules decide on the
relationship between the input and the output variable based on the operator commands. Linguistic
terms, which describe the set of member, are used to define such control rules such as NB (Negative
Big), NS (Negative Small), Z (Zero), PS (Positive Small) and PB (Positive Big) (Zakariah et al.,
2015).

l Rule Base l
9(!)§ Fuzzifier Defuzzifier —> u m
o b

Inference
Engine

>

Fuzzy Logic Controller

Observer

Figure 4.9: Fuzzy logic controller applied to a quadrotor.

Neural network control strategy has become a popular modern engineering control thanks to its
ability to deal with intractable and complex nonlinear systems. It is inspired by the human central
nervous system and uses an intelligent controller for adjusting itself online. Neural network control
system tends to create nonlinear mappings between the inputs and the outputs of the system such
that it allows for the quadrotor dynamic to be derived and a controller to be implemented based
on a generated network of nodes and connections (Leondes, 1998). The purpose of developing such
type of a controller is to urge the system states converge towards an equilibrium point by enforcing
the feedback error converges to zero. Figure 4.10 shows an example of a sliding mode Artificial
Neural Network (ANN) applied to a quadrotor. (Zakariah et al., 2015).

4.3.4 Geometric Control Systems

The linearization of both position and attitude models at the equilibrium point represent a great so-
lution to preform quadrotor trajectory control. Although the attitude model linearization is effective
in fixed-point hovering, in some cases it is not applicable especially to track time-varying reference
trajectories. Consciously, it is crucial to study the nonlinear model of the quadrotor attitude. An
appropriate visual representation of such model is to use the Euler angles. Hence, the nonlinear
quadrotor model is generally expressed using position and Euler angles (Pizetta, Brandao, and
Sarcinelli-Filho, 2019). Yet, it is commonly known that the Euler angle representation suffers from
the singularities issues. That is, the quadrotor rotational matrix cannot be uniquely constructed
at the singular point. Thus, it is necessary to bind the Euler angles with prior assumptions.

In order to overcome the above limitation, geometric control is introduced to deal with the
quadrotor nonlinear model. Geometric control is the study of control systems evolving on non-
Fuclidean configuration manifolds. Besides, it can afford unique understanding of control theory
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Figure 4.10: Sliding mode ANN control structure (Raiesdana, 2020).
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that cannot be found from dynamic models constructed using local coordinates (Eslamiat et al.,
2022). The geometric control strategy, which is capable of avoiding the singularity issue, uses
the rotation matrices directly to design attitude controllers. The rotation matrices evolve on a
smooth manifold which is the Lie group of 3 x 3 orthonormal matrices denoted SO(3). The Special
Orthogonal SO(3) can well describe the rotation in the space and can be defined as

SO(3) = {R € R®*3|RRT =I,det(R) = I} (4.3.1)

Where RRT = I is an orthogonality condition that imposes six constraints on the matrix with nine
elements, thus making a matric with DOF of three. Every Lie group is associated with Lie algebra.
Thus, The SO(3) Lie group has an associated Lie algebra which is s0(3) (Eade, 2013). It represents
the tangent space around the Lie group identity element and allows a complete characterization
of the Lie group local properties. In other words, the Lie algebra is a vector space obtained by
differentiating the group transformations along a given direction at the identity element. The Lie
algebra s0(3) is defined as

0 —¢3 ¢2
s03)={S(@)=®=| ¢35 0 —¢1| €cR¥*>*3 | ¢ cR%} (4.3.2)
—¢p2 ¢ 0

Where S(.) (equivalently (.)") is the linear mapping that maps the vector ¢inR? to so(3). ® is a
skew-symmetric matrix. SO(3) can be associated with s0(3) by the exponential mapping which is
expressed by the following Rodrigues’ formula.

R =exp(S(¢)) = I3x3 + Ms((ﬁ) + 1 — cos(||#]])

9l llolI?

Accordingly, the elements of s0(3) can be mapped to SO(3) using the logarithmic mapping given
by

S(p)? (4.3.3)

S(e) = log(R) = {0’9 =1

4.3.4
25100 (R - RT), otherwise ( )
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Figure 4.11: Schematic visualization of the different mappings.

Where 6 is a rotation angle. Figure 4.11 visualizes the different mapping among R, s0(3) and SO(3).

In literature, several works attempted to design the aforementioned trajectory controllers inside
the Lie group. One of the most cited works is presented in (Lee, Leok, and McClamroch, 2010).
The authors introduced a geometric tracking control on the Special Euclidean group SE(3) = R3 x
SO(3). The control completely avoids singularities that are commonly associated with Euler angle
formulations. Other nonlinear geometric controllers have been also designed like PID (Goodarzi,
Lee, and Lee, 2013), backstepping (Lee et al., 2013), and adaptive control (Goodarzi, Lee, and Lee,
2015).

4.4 Trajectory Generation for Quadrotors

Once the trajectory control algorithm is designed, the problem is reallocated to the higher level
of the navigation task assimilated into trajectory generation or trajectory planning. Trajectory
generation is an integral problem in motion control for vehicle systems like UAVs. It is the key
solution for executing missions in cluttered environments. The trajectory planning algorithms
generates a trajectory as a function of time that the UAV must follow for executing the assigned
task. In order to do so, the planned trajectory must respect the thrust of the vehicle and its
hardware limitations. Besides, it must also satisfy the constraints dictated by the vehicle control.
In several applications, it is desirable to generate feasible trajectories such that the time required
to execute the task or the energy consumption during the motion is minimized. Therefore, the
trajectory generation problem is often regarded as an optimal control problem (LaValle, 2006).
An important criterion that has to be taken into consideration when designing trajectory gen-
erators is trajectory smoothness, in other words, trajectory having appropriate continuity features
(continuous velocity, accelerations and jerks). The purpose behind generating smooth trajectories
is to avoid the vehicle structural resonance and lessen the stresses to its actuators. In this way,
smoothness will aid execute fast and aggressive motions for a quadrotor while assisting the actions
of the controller. In addition, it is required to maintain the sensor measurements quality. For
instance, motion blur in the images can be reduced using smooth vehicle motions. The smooth
trajectories, which can be tracked by quadrotors quickly and accurately, must be C? i.e., at least
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continuous up to the third position derivative. The reason is that discontinuities in lateral accel-
eration necessitate instantaneous variations in the vehicle’s attitude, discontinuities in lateral jerk
necessitate variations in the vehicle’s angular velocity as well.

In addition to the trajectory smoothness criterion, a trajectory generator should fulfill other
requirements such as heading or pointing directions and corridor constraints. As stated in the pre-
vious chapter, path planners produce jagged paths and supply distinct way-points. The trajectory
generator uses these way-points and generates feasible trajectories by taking into account the vehi-
cle dynamic constraints (if any) and tackling optimal motion. The trajectory generation approaches
can be divided into: continuous geometrical curve-based methods, optimal control-based methods
and differential flatness based methods.

4.4.1 Continuous Geometrical Curved-Based Methods

The geometrical curved-based algorithms can be regarded as primarily geometric. The process of
generating a trajectory comprises a geometric path generation, first. Thereafter, the path is time
parameterized while satisfying the quadrotor dynamic constraints. The curves are characterized by
special features to produce smooth trajectories such as continuous acceleration profile. As a pioneer,
Dubins curves are often generated joining straight lines and arcs of circles in order to relate a set of
way-points. By selecting the radius of the circle to be sufficiently large, these curves satisfy always
upper bounds on curvature. Dubins showed in 1957 that for a forward (only) moving vehicle, the
curve linking two assigned way-points with bounded curvature x < K is formed of segments and
circles of radii 1/% (Dubins, 1957). Even though, Dubins guaranteed the shortest curve between
two configurations; however, at the joints of segments and circular arcs, curvature continuity is
not fulfilled. Another tool to generate smooth trajectory curves is polynomials. The trajectory
generator approximates the desired curve way-points by a class of polynomial functions and produces
a time-based control sequence from an initial configuration to a destination. Additional information
such as position, velocity and acceleration constraints with duration of motion and are required.
Cubic polynomials, which are expressed by Equation 4.4.1 are mostly used for quadrotors. However,
higher order polynomials, which can permit to satisfy different states and inputs constraints, can
be used.

z(t) = ag + ait + axt® + ast® (4.4.1)
Subjected to
2(0) =
#lty) = xf’ (4.4.2)
%(0) =
(tf) = 07

Splines are also means for planning curves for quadrotor vehicles. A spline can be defined as
a piecewise polynomial curve whose segments are required to be polynomials of the same degree
n (normally third-degree). Splines fulfill both the parametric (C™ continous) and the geometric
continuities. The curvature of the spline is restrained using points called knots or control points.
It is worth mentioning that the knots positions are decisive on the segments shape without any
erratic behavior or breaks in continuities. However, the optimal computation of these positions
is very time-consuming unless a set of cases are identified a priori (Judd and McLain, 2001). A
Bézier curve is an alternative tool that uses control points for generating trajectories. Bézier curves
generate continuous-curve trajectories by passing through the initial and the final way-points as the
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whole trajectory remains within the convex hull defined by the knots. This states that the entire
trajectory, except for the endpoints, will be inside a computable region. By definition, a Bézier

curve P(s) of degree n is a parametric curve, obtained from n + 1 control points (Py,...,P,) is
defined .
P(s)=)Y Bi'(s)P; s€[0,1] (4.4.3)
=0

Where B?(s) is the i'" Bernstein polynomial of degree n, given by

n

Bl'(s) = <Z> si(1—s)""" ie€{0,1,..,n} (4.4.4)

Figure 2.21 shows examples of the different geometrical curve-based.
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Figure 4.12: Geometrical curves: (a) Dubin (R: Right, L: Left, S: Straight (b) polynomial (c¢)
splines (d) Bézier.

4.4.2 Optimal Control-Based Methods

Although the geometrical curve-based methods mentioned before are popular thanks to their poly-
nomial natural choices for providing smooth, continuous motion and easy manipulation, differen-
tiation and implementation, however, caution must be taken when higher order polynomials are
utilized because of stability issues that can arise. Besides in case of aerial vehicles, problems related
to dynamic feasibility and optimality can occur. A dynamically feasible trajectory can be defined
as the one that the vehicle controls are capable of executing. For instance, sending acceleration
commands that are beyond the aircraft’s thrust capabilities is futile. As a result, the trajectory is

63



4.4. TRAJECTORY GENERATION FOR QUADROTORS

impossible to be tracked. On the other hand, optimality is also essential and to be desired even
though it is rarely achieved in practice.

Quadrotors trajectory generation can be regarded as an optimization problem where some per-
formance criteria (e.g., trajectory time, fuel expenditure, snap ... etc) have to be optimized
(minimized) while fulfilling the physical and environment constraints. This means obtaining the
best solution among all feasible solutions of the problem below

min  f(x)
st. gi(x) <0 i=1,.n (4.4.5)
hi(x) = 1=1

Where f(z) is the objective function to minimize over the variable z, the functions g;(x) are the
inequality constraints and h;(z) are the equality constraints. Therefore, the aim here is to find
the optimal value xx such that f(xx) has the smallest value among all the admissible solutions
f(x). Many algorithm methods have been implemented for solving the optimization problem above.
Various classes of optimization problems have been developed. The problem is referred to as Linear
Programming (LP) if the objective and the constraints functions satisfy the linearity property
(Ignizio and Cavalier, 1994):

flaz + By) = af(x) + Bf(y) (4.4.6)
For all z,y € R™ and all «, 8 € R. Thus, LP can be formulated as follow
min ¢’z
r (4.4.7)

s.t. aiTx <b, i=1,..n

Where a € R™ and b € R. Sometimes the cost function and/or one of the constraints are not linear,
this is referred to as nonlinear problem.

There exist two categories of optimization problems; convex and non-convex. Convex optimiza-
tion refers to the type of problems where the cost and constraint function are convex and satisfies the
convexity condition in (2.4). Solving the convex optimization problem leads to obtain an optimal
solution which is global (Boyd, Boyd, and Vandenberghe, 2004).

flax + By) < af(x)+ Bf(y) (4.4.8)

forall z,u € R" and all o, € R witha+8=1,a>0,8>0.

In the contrary, the non-convex optimization contains at least one non-convex function. Solving
non-convex optimization problem is harder since it leads to an optimal solution that is local. Besides,
several local minima solutions may be produced. It can be seen from equations 4.4.6 and 4.4.8 that
linear programming is a convex optimization problem. Quadratic Programming (QP) is one of
the recurrent convex optimization problems. QP is expressed as a quadratic function as the cost
function with linear constraint functions as shown below

1
min 27 Qz +pTx
P 2
st. Az <b (4.4.9)
Cx=d
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where @ € R"*"™ @ € R™>*™ and b € R™. The trajectory optimization problem in 4.4.5 can be a
very difficult problem to solve. Algorithms used to solve the problem may take numerous iterations
and function evaluations. The optimization problem has been solved using many methods which
can be divided into: state-space, indirect and direct methods.

The state-space method uses the principle of optimality of sub-arcs. The generated trajectory is
decomposed into sub-trajectories where each sub-trajectory of an optimal trajectory is considered
as an optimal trajectory. In discrete time, this is referred as dynamic programming. However in
continuous time, this is called the Hamilton-Jacobi-Bellman (HJB) equation. This latter solves
the trajectory optimization problem by solving a significant number of sub-problems. Examples
of such problem are grid-based path planning like A*, Dijkstra ... etc (See Chapter 3). In the
sate-space method, a global solution of the optimization problem is obtained even for case of non-
convex optimization problem. However, the main drawback of such method is that the complexity
of the global optimization increases exponentially with respect to the state-space dimension. This
drawback is known as “curse of dimensionality” (Bellman and Dreyfus, 2015).

The indirect approaches employ the Pontryagin’s Maximum Principle (PMP) which gives nec-
essary conditions that the control and the state require to satisfy. PMP transforms the trajectory
generation problem into an augmented Hamiltonian system of equations: either Ordinary Differen-
tial Equation (ODE) or Differential Algebraic Equation (DAE). The indirect approaches consider
the trajectory generation as an Optimal Control Problem (OCP) of the form

T
min /0 L(z(t),u(t))dt + E(T)

TEX ueld
st 2(t) = flx(t),u(t)), Vtel0,T] (4.4.10)
h(xz(t),u(t)) >0, ho(xg) >0, hr(xr) >0,
r(z(t),u®)) =0, ro(zo) =0, rr(zr)=0,

Where the decision variable are the trajectory in state z : ¢ € [0,7]—x(t) € X and in control
w:t€[0,T)]—x(t) €U (where X and U are the state and the control spaces, and the underlined
symbol is used to differentiate the trajectory from the time value). L represents the integral (or
running) cost, E is the terminal cost, f is the system dynamics and h and r functions represent
arbitrary constraints. The Hamiltonian of the problem above is expressed as: beginequation

H(a(t), u(t), (1),8) = Lix(t),u(t) + A" f(2(t), u(t)) (44.11)
While the necessary conditions of optimality are given by:

0 = 9H((®)u®),(t).t)
du
_ OH(=( ) ( ).(8),t)

| oHEBu..0 (4.4.12)
) dE(T)

- 0z(D)
The resulting Hamiltonian system of equations offers a complete and relatively cheap solution to the
problem. However, it is unfortunately often too hard to be integrated as is due to non-linearity and
the control structure complexity. Hence, the indirect approach is usually used on specific systems
where the differential equations are simplified enough in order to be integrated (Bohme et al., 2017).
The direct approaches directly solve a discretized approximation of the original problem using
numerical optimization techniques. The discretized approximation transforms the problem into a

’ﬂvv
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Nonlinear Programming (NLP). Such approaches are advantageous since they work directly on the
problem so there is no need of reformulation of the problem and solved by generic NLP solver
packages (Geisert and Mansard, 2016). discretization of the original optimal problem leads to have
a redundancy in the set of decision variables, the state  and control input u constrained by the
system dynamics. Three methods are used to handle such redundancy: single shooting, collocation
and multiple shooting methods. The direct single shooting, which is often called the control pa-
rameterization method, is the most widely used method for solving OCPs thanks to its simplicity.
It integrates the whole trajectory from parameterized control variables using ODE/DAE solvers
(Tassa, Erez, and Todorov, 2012). The cost function is calculated according to the integrator that
solves the system dynamics differential equations. Although its simplicity, the co-state information
cannot be provided using such method. Hence, the optimality of the solution is still questioned.
The direct collocation method approximates both the states and the controls using a set of basic
functions such as splines and exploits the properties of such functions to simplify the integration
computations. In the direct collocation, the constraints on the dynamics on intermediate points
named collocation points such that the solution of the OCP is required to satisfy the optimality con-
ditions at these points. The direct multiple shooting method is similar to the direct single shooting,
however comprises the state as decision variables in NLP at certain shooting points. Besides, it lifts
the OCP to a higher dimension so that the optimal solution convergence is improved (Andersson,
kesson, and Diehl, 2012). Nevertheless, this causes the NLP gets much larger.

4.4.3 Differential Flatness Based Methods

Solving the quadrotor trajectory generation problem in high dimensional space is challenging be-
cause of the under-actuation property of such aerial vehicle system. Both the trajectory control
and generation can be simplified using the vehicle differential flatness property which makes the
trajectory design easier. By definition, a differentially flat system is a system where all its states
and inputs can be expressed as algebraic function of a set of outputs and derivatives (Ferrin et al.,
2011). More precisely, a nonlinear system:

&= f(z,u) zeR",uecR™ (4.4.13)

is termed flat if there is o € R™, of the form

v =&@, U, ..,u")  €:R" x (R™)"TL 5 R™ (4.4.14)

such that
z=0¢(7,% ") ¢x: (R™) = R" (4.4.15)
u=¢u(V, % 7)  Gu: (R R™ (4.4.16)

where £, ¢, and ¢, are smooth functions and -y is the flat outputs.

The differential flatness property can reduce the algebra of the trajectory generation problem,
in theory, and the algorithms computations in practice. In case of quadrotors, the 12 state space
dimension can be decreased to a 4-dimentional space in which solving the dynamics 4.4.13 is not
necessary. The importance of a system differential flatness is that all system dynamics can be
expressed without integrating by the flat outputs and its derivatives. Figure 2.22 depicts that the
problem of finding the curves that steer the system from an initial state/input (2(0),u(0)) to a final
state/input (z(T),u(T)) is reduced to finding any sufficiently smooth curve that satisfies v*(0) and
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7*(T) up to some finite number /. Hence, in case of differentially flat system, solving a T'wo-Point
Boundary Value Problem (TBVP) is not required. After mapping all boundary conditions and
trajectory constraints into the flat output space, the optimal trajectories can be generated in the
flat output space and then elevated back to the state/input space. The differential flatness of the

State Space

x(T),u(T)

(0, u(0)

(r(M)Ly (), ...,y (T))
(r(0),7(0), ..., ¥'(0))

Figure 4.13: Differential flatness property and its mapping.

quadrotor system has been used in several applications. It is applied in (Mellinger and Kumar,
2011) to generate feasible polynomial trajectories that numerically minimize the vehicle snap. The
generated trajectories aid the quadrotor to fly quickly through static and moving hoops. The
concept of differential flatness is also applied in (Thomas et al., 2015) (Mellinger, Michael, and
Kumar, 2012) to successfully perch the quadrotor on inclined surfaces where a geometric trajectory
controller, which is developed in (Lee, Leok, and McClamroch, 2010), is used. The authors in
(Yu, Cai, and Wang, 2016) use the concept to implement a trajectory generator, which generates
minimum jerk trajectories, coupled with a nonlinear controller.

4.5 Conclusion

The aim of this chapter was on trajectory generation and control which are the second and the third
stages of the quadrotor autonomous navigation. At the beginning, we described the dynamical
model of the quadrotor used in this thesis. Then, we presented the different strategies used for
solving the trajectory tracking problem and classified them into: linear, nonlinear, intelligent and
geometric control systems. Most of these strategies are also used for trajectory generation. In
addition to these, we reported other strategies mainly continuous geometrical, optimal control and
differential flatness based methods.
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Chapter 5

Quadrotor Autonomous
Navigation: Methodology

5.1 Introduction

In the previous chapters, an extensive literature review about path planning, trajectory control
and trajectory generation for case of quadrotors was presented. Besides, several approaches have
been proposed to solve the quadrotor autonomous navigation problem using one or more of the
aforementioned element(s). The approaches were categorized into mainly two structures: coupling
structure and decoupling structure. The coupling structure combines essentially the planning and
the control elements, however the decoupling one does not. To the best of our knowledge, none of
these proposed approaches has presented a complete solution using all elements for the navigation
problem.This chapter is devoted to the methodology that will be followed in order to create efficient
and safe 3D navigation missions for a single quadrotor. In addition, mathematical modelling of each
method of each element that builds up the navigation solution will be developed.

5.2 Global Autonomous Navigation Structure

The problem of 3D autonomous navigation for aerial vehicles is very challenging. In general, direct
solutions do not exist; if they do, they are inefficient, complex and time consuming. Bearing this
in mind, the problem can be decomposed into multi-phase sub-problems: path planning, trajectory
generation, trajectory re-planning and trajectory control. A decoupling structure can be developed
by provide a solution to each sub-problem. First, because of the numerous frequent challenges of
each sub-problem, a feasibility screening among the developed solution technologies is conducted.
After that, an accurate selection among those currently available is performed and exploited here for
the first time in precision agriculture scenarios. The purpose of this selection process is to identify
the best combination of sub-problem solutions which could result in suitable performances in terms
of low computational requirements, reduced designed time, and optimal trajectory planning and
tracking capabilities for fully 3D aerial vehicle navigation.

The proposed autonomous navigation approach in Figure 5.1 falls under the decoupling structure
number 7 (See Figure 2.22 in Chapter 2). An offline definition of the optimal trajectory, which is
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typically a two-consecutive step, is used. The first makes use of a representation of the environment
to generate safe geometric paths. The purpose of this step is to locate reference way-points (or local
goals). The second uses the extracted local goals to generate global trajectories that comply with
position, velocity and acceleration constraints at these way-points. To do so, a Linear Quadratic
Regulator (LQR) trajectory generator is developed. When unknown obstacles interfere the motion,
a trajectory re-planning strategy directs the quadrotor to move away from them. An online Artificial
Potential Field (APF) planner is used for keeping the vehicle safe from collisions. In order to track
the generated trajectories while simultaneously pointing towards a predefined direction, a real-time
geometric controller is constructed.

Trajectory Generation &
optimization

‘ Velocity & [ IMU Measurement | \
Planned Path Acceleration Vectors
l constraints Position

A4

:‘ Velocity

Environment o
Representation Waypoints ﬁ LQR Optimization :

Extraction [T
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_ Path Finding / l T \ Control & Trajectory Tracking /

% Trajectory Re-planning ‘

e tric Tracki

Controller

Figure 5.1: An overview of the navigation global structure.

5.3 Aerial Terrain Mapping

As stated in the previous chapters, Mapping is the process of modelling a robot’s environment.
Maps are consistent environment models that can be constructed using observations from the robot’s
onboard sensors. Robots use the constructed maps to locate themselves and make motion plans.
Aerial mapping can be carried out using UAVs to construct maps of fields and terrains. In other
words, the UAVs are capable of acquiring high accuracy information about the terrain geometry and
the existence of static and dynamic obstacles. Accordingly, aerial mapping is an essential feature
for autonomous vehicles to perform navigation in unknown environments.

This work adopts two main products of aerial terrain mapping: Occupancy Grid Maps (OGMs)
and Digital Elevation Maps (DEMs). OGMs are well-known in robotics for storing the obstacle
information for the purpose of planning safe and stable geometric paths. They discretize the 2D
environment with fixed resolution into independent cells and each cell is associated with a binary
variable estimating either it is free or occupied (eg., 1 for free space and 0 for obstacle space). OGMs
are used in this work thanks to their simplicity, ease to maintain and their ability to guarantee
planning stable and safe geometric paths. DEMs are another type of grid maps in 3D that exhibit
the relief of the terrain in digital format at regularly spaced horizontal intervals. They are organized
as square grid of columns and rows where each grid point refers to the height at that location. The
methodology to follow in this work is to use OGMs to extract 2D coordinates along the z- and y-
axes of the planned paths then use the DEMs to extract the paths last coordinate along the z-axis.
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5.4 Optimal Path Finding

Optimal path searching is the first step of trajectory generation. It uses the OGMs to generate
collision-free passable geometric guiding paths. The quality of the initial paths in terms of stability
and safety affects the quality of the final flight path of the quadrotor. In this work, two scenarios
are treated. Scenario (I) considers a point-to-point flight mission in an environment that is free of
obstacles. In this way, any point-to-point path planning algorithm can be chosen to effectively plan
the geometric paths since the configuration space is obstacle-free. Scenario (2), however, considers
a coverage flight mission in an environments filled with several obstacles. An Iterative Structured
Orientation Algorithm (ISOA) is adopted as in (Horvath, Pozna, and Precup, 2018). The reason
behind choosing such an algorithm is that it makes use of OGMs and generates optimal coverage
paths by using the approach of main lines. These latter are a beam of parallel lines with an
orientation in the OGM. Straight lines with maximum length bordered by the map and interrupted
by the obstacles are guaranteed by the orientation. By connecting the beam of lines, optimal
continuous coverage paths are achieved.
Given a modeled OGM M = [M;jli=1..n,j=1..m € R™*™ as shown in Figure 5.2 where n is
number of horizontal pixels and m is the number of vertical pixels with
M, — {1, z:fpz:xel(z:,]:) white (5.4.1)
0, ifpizel(i,j)black

The problem of finding an optimal path can be summarized as fellow
1. Find the appropriate beam of parallel lines and their orientation;
2. Get the main segments;

3. Connect these segments with the auxiliary segments to form a continuous optimal coverage

path.
Main lines Auxiliary line
- -
t
- *
- -
- -
. - - -
-
-
- -
- Starting point
- Obstacle

Figure 5.2: The map with both main lines (black) and auxiliary lines (red).

The geometric path is then used to extract the 2D local goals. Finally, the coordinate along
the z-axis is added to these local goals by the use of the DEMs. The result of this step is a set of
positions p; in R3, be identified by an index set way-points W = {1,2, ..., N} required for trajectory
generation. The flowchart of the process is shown in Figure 5.3.
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Figure 5.3: The 3D local goals extraction flowchart.

5.5 Trajectory Generation and Optimization

Although the geometric guiding path generated above is safe, it is inappropriate as the initial path
since it does not consider the dynamic feasibility. Besides smoothness and temporal features should
be considered. The aim of this section is compute feasible position trajectory for a quadrotor while
following a collision-free path from a start point to a goal while minimizing a defined objective
cost. To do so, the indirect approach, which employs the Pontryagin’s Maximum Principle (PMP),
is used in our case. Before computing the trajectories, certain constraints have to be taken into
consideration depending on the flight mission requirements.

Trajectory generation should not only describe the desired trajectory accurately, but should
also have smooth kinematics profiles in order to increase the precision and the durability of the
system, maintain higher tracking accuracy while avoiding exciting natural modes of the mechanical
structure or servo control system (Sencer and Ishizaki, 2015). To do so, the trajectory must satisfy
certain constraints such as the vehicle’s physical limits, safety regulations and sensor specifications.

5.5.1 Trajectory Generation Constraints

In this work, we adopt a method of decoupling these limits into constraints on the trajectory. The
first constraint is clearly a position constraint to force the trajectory generated pass through all of
the identified way-points. The second constraint depends on the flight mission scenario. In Scenario
(D), a constraint on the vehicle’s acceleration is used rather than on the velocity at the way-points as
shown in Equation (5.5.1). The motivation behind this is to obtain trajectories that are smooth and
with continuous curvatures. At each way-point, given a position vector p; and a pointing direction
vector s;, expressed in Z such that

(piysi) ER3 xS? Vie W

Let t; be the time required to reach the i*" way-point. The problem of trajectory generation is
posed on R? x S§2. The problem can be posed on SE(3) by defining a vector which is orthogonal to
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s;. Let us define a unit vector ¢; such that

ez — (eX'si)s;

= — 5.5.1
lles — (cTs)si] (5:5.1)

qi
such that ¢; 1 s;. Let us now define the quadrotor’s acceleration constraints be given as follow

a; = iqi — ges (5.5.2)
m

assuming a nominal thrust magnitude f € R.

In Scenario (2), a flight corridor is satisfied using constraints on both the velocity and the
acceleration. For the way-points at the coverage path corners, the velocities should be slowed down
to zero while a maximum velocity is applied to other way-points. However, the acceleration should
be always brought down to zero at every way-point.

5.5.2 LQR Optimal Control Trajectory Generation

An LQR approach is adopted in this work to generate position, velocity and acceleration trajectories
that satisfy the mentioned constraints above. The trajectory generator treats these constraints at
the way-points to be soft. This may lead to have relaxation on satisfying the way-point constraints
exactly while providing a stable technique of trajectory generation. This latter can handle a great
number of way-points to within desirable tolerance.

The system state x(t) is described by concatenating the quadrotor’s position, velocity, acceler-
ation and jerk as follows

z(t) = [bt) bt) bt) b )T (5.5.3)

Where b(t) is the position of the quadrotor in the 3D environment at instant ¢. Using the position
and three of its derivative in the state z(t) guarantees that the control torque calculated using
Equation 4.2.4 is at least C® continuous. The output y(t) is constructed such that the desired
output y; at the way-points is given by either (5.5.4) for Scenario (I) or (5.5.5) for Scenario (2)

yi=[pi al” (5.5.4)

Where a; is expressed as in (5.5.1).
yi=pi vi a (5.5.5)

Where v; and a; are the velocity and the acceleration constraints of the vehicle at the way-points,
respectively.

Problem: Given: (1) a set of way-points p; € R3Vi € W = {1,2,..,N}, and (2) a set
of wvelocity v;’s and acceleration a;’s constraints at the way-points p;’s, find the position b(t), the
velocity v(t) and the acceleration a(t) trajectories for ¥t € [to,tn] such that

N tNn 1
min J = Z(y(tl) —u)TS(y(ti) — i) + /f §(mTQx +ul Ru)dt (5.5.6)

Subjected to the constraint equations:

#(t) = Az + Bu (5.5.7)
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y(t) = Cx(t) (5.5.8)

_ |0gx3  Tgxo _ |0gx3 _ |Isx3 03x3 03x3 O3x3 -
Where A = |:03><3 03x9}’B_ L’sxs}’c_ |:03><3 03x3 I3x3 O3x3 for Seenario @), or C

I3x3 0O3x3 03x3 Oszx3
= |03x3 I3x3 03x3 O0sxs| for Scenario ). I,xn is the identity matriz of dimension n, ty is

O3x3 0O3x3 Isxs Osxs
the starting time, ty is the final time and the control input u is the snap.

We are able to solve the problem using the PMP’s principle discussed in Chapter 4. The
augmented objective function J’ is

tNn
J= Z(U(tz) —y) TS (y(t:) —wi) + / %xTQx + %uTRu + M(Az + Bu — &)dt (5.5.9)

i=1 to

Where A € R'2 is the Lagrangian multiplier or co-state that incorporates the constraint (5.5.7) to
the cost function in (5.5.6). Using 4.4.11, the Hamiltonian # is expressed as

1 1
H= §xTQx + §uTRu +AT(Az + Bu) (5.5.10)

Then, the necessary conditions of optimality expressed in 4.4.12 are as follows

_oH

0=25==Ru+ BT\ (5.5.11)
. OH
z(t) = = Az + Bu (5.5.12)
At) = —2—7; = —Qz— AT\ (5.5.13)
~10(y(t:) — wi) " S(y(ts) — wi) _
0=3 et + At = At;) (5.5.14)

Where tj is the time instant ¢; when approached from times ¢ > ¢; and t; s the time instant ¢;
when approached from times ¢ < ¢;. The co-state can be expressed as A(t) = P(t)x(t) + n(t). The
Optimal control v*(t) in Equation (5.5.11) is given by (the time ¢ is dropped for simplicity):
u=—R BT (Pz +n) (5.5.15)
Differentiating the co-state equation A(¢) yields
A\ = Pz 4 P(Az + Bu) +1 (5.5.16)
Replacing the control w in (5.5.16) and equating it with Equation (5.5.13) gives
—Qx — ATPx — ATy = Px + PAxz — PBR™'BTPz — PBR'BTn+14 (5.5.17)
By rearranging the above equation, we get

0=(Q+ATP+ PA—-PBR 'BTP+ P)x + (~PBR 'BT + AT)n+1 (5.5.18)
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The above equation is true if and only if

0=(Q+ATP+PA—-PBR 'BTP + P)x (5.5.19)
0= (=PBR'BT + AT)n 417 o
In this way we can get
P=—-ATpP_PA— PBR'BTP
. . Sl (5.5.20)
n=(—A"+PBR 'B')n

Replacing the co-state equation and y; = Cz; in Equation (5.5.14), it yields

_ 19(Cz(t;) — Czi)"S(Ca(ti) — Ci)

+ PO () +n(t)) — PO )e(t]) +n(t;)  (5.5.21)
Rearranging the above equation as follows
0=CTSCux(t;) — CTSCx; + P(t))x(t]) +n(t]) — P(t; )z(t;) +n(t;) (5.5.22)
If we assume that z(¢;) = z(t;}) = z(¢;") for small step, we get
0= (CTSC+ P(t}) — Pt )a(ts) — O Sys +n(tF) — n(t}) (5.5.23)

This is equivalent to say

{0 = CTSC + P(t}) — P(t;) (5.5.24)
0=—CTSy; +n(tH) —n(t;,)
Or

{P(t[) = P(t}) +CTsC (5.5.25)

n(t;) =nt) - CTSy; N
However, at i = N
{P(tN) =CcTsc (5.5.26)
n(ty) = —CTSy;

Equations (5.5.20) are solved backward in time starting at ¢ = ¢y and at every t; where i < N; the
boundary conditions are updated using Equation (5.5.25). In this way, the solutions of Differential
Riccati Equations are obtained. These solutions are used in Equations (5.5.7) and (5.5.8) to solve
the system dynamics. As a result, both the state vector x(t) and the control input vector u(t) are
determined V¢ € [to,tn].

5.6 Online Trajectory Re-planning

An online trajectory re-planner module is added in order to have an efficient complete solution
for the navigation problem. The objective of this module is to cope with the unmodeled obstacles
to maximize the safety of the quadrotor. The trajectory re-planner runs in several milliseconds
to keep the vehicle close to the global path while simultaneously avoids unexpected obstacles.
The polynomials, sampling-based and optimization methods discussed in Chapters 3 and 4 can be
utilized to build the re-planning module.
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5.6. ONLINE TRAJECTORY RE-PLANNING

In our work, an Improved APF method is used to perform the online trajectory re-planning
(Fan et al., 2020). The quadrotor takes the current position as the starting point when an unknown
obstacle is detected. It takes also the next turning point in the global path planning as the target
point. An attractive and repulsive potential fields are constructed at the goal and around the
obstacles, respectively. The joint action of the attractive and repulsive forces give assistance to
the quadrotor to move toward the target. In contrast to the conventional APF, the improved APF
solves both problems: the goal nonreachable with obstacles nearby (GNRON) and the local minima.
The former problem is solved by adding a distance correction factor to the repulsive potential field
function (See Figure 5.4(a)). The latter one is solved by the regular hexagon-guided (RHG) method
that constructs a virtual regular hexagon helping the vehicle to escape from difficult positions as
shown in Figure 5.4(b). The Improved APF is used because its model is simple and elegant. Besides,
it is widely applicable for real-time implementation.

z
Target
{l}\ arge

F
rep Target

Obstacle

Obstacle

Figure 5.4: The improved APF method: (a) the improved resultant force model for solving the
GNRON problem, (b) the RHG for solving the local minima problem.

Firstly, an attractive potential field is constructed at the target using the following expression:
1
Uait(P) = 5km.cﬂ(R P,) (5.6.1)

Where d(P, P;) = P, — P is the Euclidean distance between the vehicle’s position and the target.
kqtt is the attractive potential field constant. The attractive force of the quadrotor in the attractive
potential field is the negative gradient of U,yy:

Fort(P) = —=VUu41(P) = kayr.d(P, P,) (5.6.2)

Secondly, an improved repulsive potential field is constructed around the obstacles and can be
defined as:

N[

(ary — )°d" (P, Py) d(P,P,) < d,

(5.6.3)
0 d(P,P,) > d,

Urep(P) = {

Where P, is the position of the obstacle, d, is influence range of the repulsive potential field and
n is an arbitrary real number which is greater than zero (for our case n = 2). d"(P,P,) is the
distance between the current quadrotor position and the target. The repulsive potential field is
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5.7. TRAJECTORY CONTROL AND TRACKING

called improved since the distance correction factor d" (P, P,) is added to the conventional repulsive
potential field known in literature. This creates a balance between the two kind of forces especially
in case where a rapid increase in the repulsive force occurs. In this manner, the repulsive force
can be decreased gradually when the quadrotor is adjacent to the target. Most important of all,
this force ensures that the overall potential field at the target is the global minimum. Thus, the
GNRON related problem is solved. Figure 5.4(a) depicts the resultant of the improved repulsive
force F..p in Equation (5.6.4). The direction of this force is not on the line between the quadrotor
and the obstacle as in the conventional APF. The improved repulsive force has two components
Frep1 and Fpo expressed by Equations (5.6.5). The direction of F.p,1 is on the line between the
quadrotor and the obstacle, hence it makes the vehicle move away from the obstacle. However, the
direction of F.¢p2 is on the line between the vehicle and the target. Fy..p2 guides the quadrotor to
move toward the target.

F P)+ F P d(P,P,) <d
Frop(P) = —VUpep(P) = § FrevtP) - Frepa(P) (P, Fo) < d, (5.6.4)
0 d(P, P,) > d,
Where Fi..p1 and Fp..p2 are expressed as
d™(P,P,
Frept(P) = krep (qrrtey = &) m(mrY (5.6.5)
FrepQ(P) = %krep(m _ é)Qd’fL*I(‘P7 Pg)
The total force F'(P) is given by
Ftotal(P) = Fatt(P) + Frepl(P) + FrepQ(P) (566)

Figure 5.5 depicts a flowchart that explains the whole re-planning process. P, refers to the current
position of the quadrotor.

5.7 Trajectory Control and Tracking

Once the optimal trajectory is generated as previously described, it is necessary to design a control
strategy to track the reference trajectory. In this work, a geometric controller strategy, that uses the
quadrotor dynamics expressed globally on the Special Euclidean SE(3) configuration manifold, is
constructed to track predefined trajectories. Instead of using the heading and the thrust directions,
which are mostly applied in literature to construct the vehicle attitude, inertial measurement vectors
that can be provided by a sensor are used. In this way, new definitions of the errors between the
real vectors and the desired ones are used (See Equations (5.7.6)-(5.7.7)). These errors are injected
directly in the control law. Besides, the notion of a pointing direction is introduced instead of the
heading direction. The controller structure is shown in Figure 5.6.

The quadrotor translational dynamics is controlled using the total thrust fRes. The magnitude
of the total thrust f is directly controlled and its direction Res is along the third body-fixed axis
bs. Hence, to obtain stabilized translational motion along a desired trajectory, the total thrust
f and a desired direction of b3q are selected. A direction is required to complete the degrees of
freedom of the desired attitude Ry € SO(3). Thus, a pointing direction vector s¢, which has to be
corrected online using the desired direction b3, is chosen. The desired attitude is then obtained as
Ry = [b2d X b3d, bad, bzq] where bag = s¢. This desired attitude is followed by the control moment
T.
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Initialize parameters of
the Improved APF

v

Execute the global path «

End of
executing the
global path?

Obstacle?

/Calculate the initial and the target Iocationf/
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Calculate the attractive force F t the repulsive force F,
and the total force F

ep
total

No

/
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=P_?
next £°

No

~

Yes

Figure 5.5: The flowchart of the proposed trajectory re-planning method based on the improved
APF.

Section 5.5.2 results in an optimal desired position trajectories x4(t). The pointing directions
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xd(t) £
it ae q )
Desired Trajectory |30 Position Trajectory I
ag(t) Tracking '3d Quadrotor
> I E—_ Dynamics
Attitude Trajectory _T,
L Tracking
_’
Pointing Direction bed
Central Point —>
Sp
x,v,RQ

Figure 5.6: The structure of the geometric controller.

at every instant ¢ € [to,ts] are
 Sy— ()
1Sy = za(®)l

Where S, is a predefined centered point. The pointing directions can be corrected using the vector
b34(t) as shown in the expression below

s(t) Vt € [to, /] (5.7.1)

ey - S — (s(t)Tb3a(t))bsa(t)
v = [[s(t) — (s(t)Tbsa(t))bsa(t)]] (5.7.2)

Where s°(t) = baq(t), and s°(t) Lbsq(t). The vector bzq(t) is expressed as

_ —kgey — kye, +m(ges +a(t))
N || - kwex - kvev + m(ge3 + a(t))”

bsa(t) (5.7.3)

Where k,, k, are some positive constants, e, and e, are the tracking errors for the position z(t)
and the velocity v(t), respectively. They are expressed as

Co =& Td (5.7.4)
€y =V — g o
The vector by4(t) can be produced as

bld(t) = bgd(t) X bgd(t) (5.7.5)

It is assumed that the quadrotor’s attitude is unknown for measurements (unavailable for feed-
back). It is also assumed that it is equipped with sensors that provide unfiltered vector measure-
ments (in the body-fixed frame). Hence, the only variables available are the vector measurements
which are denoted by b;.

Proposition: Consider the rotational dynamics in (4.2.4). Define the following vector errors:

k
z,=>_ piS(bia)bi (5.7.6)
i=1
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—0-0Q
{em d (5.7.7)

BQQZQdXQ

Where p; > 0 and k is the number of measured vectors in the body frame (k =2 in our case). The
desired angular velocity is given by

Qq = Vex([bia, b2, b3a)” 014, baa, b3a)) (5.7.8)
with Vex(.) : s0(3) — R3. The following control law
T=Qx JQ+ I+ Jz, — Jeqr — Jeas (5.7.9)

guarantees Almost Global Asymptotic Stability (AGAS) of the body attitude and angular velocity to
their desired values.

In order to prove the above proposition, the following lemma is used.

Lemma (Tayebi, Roberts, and Benallegue, 2013): Assume that there are n vectors b;,
i = 1,...,n measured in the body attached frame, corresponding to n known inertial vectors r;,
i =1,....,n. Assume that the constant parameters ~y; are strictly positive and at least two vectors
among the r; vectors are non-collinear. Then, the following properties hold:

o The vector z, satisfies

2, = 3 1S E)bi = —2B7 (G0 — S(@)W4d, (5.7.10)
i=1
where the matriz W, = — Z?:l 'yZ-S(ri)2 is real symmetric and positive definite.

o If the gains v;, 1 = 1,...,n, are chosen such that W, has two by two distinct eigenvalues, the
following holds true:
z, =0 is equivalent to (Go = £1,§=0 ) or (Go = 0,4 = tv), where v is a unit eigenvector of
W,
Proof of Lemma: In order to prove the lemma above, we are going to use quaternions.
(1) Given the inertial vectors /s, they are related to the measured vectors bs using the rotations
R. Hence, b; = RTr;. Equivalently, b; = RTr;. Using the property S(RTr;) = RTS(r;)R, we can
write

zy = z”: viS(b;)b; = RT i:%S(ri)RTri (5.7.11)
i=1 i=1
The rotation matrix error R = RR is re-written in terms of the unit quaternions and by using the
properties S(r;)r; =0 and S(§)r; = —s(74)q, z, can be written as
27:ﬂ?ﬁi%ﬂnX@T—%MQVFLJRWS@NQ+%WMQ (5.7.12)
i=1

Where M, = — Y7 virirl. Since S%(r;) = rir? — rTr,1, it can be shown that

M, = Zn: yird il — W, (5.7.13)
i=1
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Substituting (5.7.13) in (5.7.12), we get (5.7.10).
(2) For a given vector y € R, we have

—yTS(ri)?y =y  (rr)y —yTrarly = |Iri| Pllyl* = (y"'r:)*> > 0 (5.7.14)

This shows that —S(r;)? > 0. By assuming that r; and 7o are non-collinear, it yields

n

YWy = —yT(_%S(ri)y = =y S(r1)%y — 2y" S(r2)’y +y" €y (5.7.15)
=1

Where ¢ = — 2?23 %‘5(7’1‘)2 = 0.

e yT'S(r1)%y is equivalent to S(ry)y = 71 x y = 0, which is verified for all y # 0, iff y and 7, are
collinear.

e Similarly for y # 0, yT'S(rs)y = 0 iff y and ry are collinear.

e 7, and 7y are non-collinear, they can not be collinear to the same y, hence —y;y7S(ry)%y —
Y2yT'S(r2)%y > 0 for all y # 0.

Therefore from Equation (5.7.15), yTWVyT > 0 for all y # 0. This means that W, is a positive
definite matrix.
(3) If zy = 0, it is equivalent to say that

(G —5(q))W>G=0 (5.7.16)

From the above equation, it can be noticed that (Go = +1,§ = 0) is the trivial solution. The other
solution can be obtained by assuming § # 0 and multiply the Equation (5.7.16) by ¢, we get
Q’OQTW7§ = 0. This shows that gy = 0 is a solution since W, is positive. Now, if go = 0, we get

S(@WyG=0 (5.7.17)

Since W, is non-singular, the equality (5.7.17) is satisfied iff. W,§ = Ag for any scalar A. This
shows that ¢ = v, where v is one of the unit eigenvectors of W,. [J

Proof of Proposition: It is given that z, = Ele 0iS(b;ia)b;. Using the lemma, we can write

k
zp= ) piS(bia)bi = —2RJ (451 — S(a°)) W4, (5.7.18)
i=1
Where W, = — Zle piS(r;)? is a symmetric positive definite matrix according to the lemma. The
tracking error R® = RRg of the attitude that correspond to the unit quaternion errors
Q° =QeQ;" = (46,4 (5.7.19)

Where Q € S* = {Q = (q0,9) € R x R3|¢% + ¢Tq = 1}. Given the attitude dynamics in (4.2.4) and
the control law (5.7.9), if we consider w = Rgeq1, where eq is given in Equation (5.7.7), the closed
loop dynamics are obtained as

O — {qo} _ {%( —%(qe)TL:))J (5.7.20)
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w=—aw—2(g5 — S(¢%))W,q° (5.7.21)

Note that these dynamics are autonomous. Defining x = (Q¢,®) in the state space X := S? x R3,
the above dynamics can be written in the form

x = f(x) (5.7.22)
We can also notice that (5.7.21) can be written as
W= —aw+ Rqz, (5.7.23)

Theorem: Consider the rigid body dynamics (4.2.4) with the control law (5.7.9) resulting in the
closed loop attitude dynamics given by (5.7.20)-(5.7.21). Then under assumptions of the lemma, the
trajectories of (5.7.20)-(5.7.21) converges to the following subsets S® x R3, given by ©1 = (£1,0,0)
and ©2 = {(0,+£v1,0), (0,+£vs,0), (0,£vs,0)}, where v; (i =1,2,3) are unit eigenvectors of W,,.

o The equilibrium set ©y is asymptotically stable with the domain of attraction containing ® =
{X = (Q% ) € S* x R3|ATPX < c} with P = diag(0,2W,, 3) and ¢ < 2Amin(W,) and
Amin(*) is the smallest eigenvalue of (x)

o The equilibria defined by the set Oy are unstable and ©1 is almost globally asymptotically
stable.

Proof of Theorem: Let us propose the Lyapunov function candidate

V =2(¢")"W,¢¢ + zoTw (5.7.24)

1
2
With W, symmetric positive definite. The time derivative of equation (5.7.24) in view of (5.7.20)
and (5.7.21) is expressed as

V =2(¢") "W, (g5I + S(¢%))@ + @ (—aw — 2(g5T — S(¢))W,q°) (5.7.25)

V = 207 (5] — S(q°)Wya* + &7 (—ai — 25T — S(¢°)Wpa") (5.7.26)

After simplification, we obtain )
V =—acTw (5.7.27)

It can be noticed in (5.7.27) that V < 0. Besides from the same equation, we have V = 0 only
w = 0. Using the Equation (5.7.23) and @ = 0, we get z, = 0. According to the lemma, this leads
to the equilibrium sets (¢§ = £1,¢° = 0,0 = 0) or (¢§ = 0,¢° = £v;,& = 0) which corresponds to
©1 and O,, respectively. It remains to show that ©s is unstable to complete the proof.

Let us define § = (¢°)T@, and consider the dynamics of ¢§ and around (g5 = 0,& = 0) which
corresponds to (¢§ =0, =0)

1
i =59 (5.7.28)
5= —ad — 2nq¢ (5.7.29)

Where 7 is an eigenvalue of W,. Hence, the system expressed by (5.7.28)-(5.7.29) can be written
as follows

[0 s
x_{_a _QH]X_AX (5.7.30)

82



5.8. CONCLUSION

1
With X = [qS n]T and A = [ Oa _2577]. The two eigenvalues of A are real and of opposite
sign. The characteristic equation of A is given by P(\) = A% + 2p\ — 5. Hence, the roots are
A1z = —n=£/n?+ §. Since the equilibrium (g§,n) = (0,0) is unstable, it can be concluded that
©5 is unstable. [
Given the proofs above and according to the Krasowsky-La Salle theorem, the equilibrium
is almost globally asymptotically stable in this case. Hence, the proposed control law (5.7.9)
guarantees AGAS. O

5.8 Conclusion

In this chapter, we presented the methodology that would be followed to design our 3D autonomous
navigation strategy for the case of a quadrotor. To do so, we presented the different methods that
were used in each phase of the strategy from planning to tracking. Besides, we developed the
mathematical modelling that would be followed to implement these methods. In the next chapter,
we will show the effectiveness of the proposed strategy by simulating the each method.
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Chapter 6

Simulation Experiments

6.1 Introduction

Deployment of quadrotors for real world agricultural tasks such as plant spraying, pesticide ap-
plication, pruning, etc., requires robotic vehicles to fly through complex 3D environments such as
forests, orchards, greenhouses, vineyards, etc. Decoupled structures of navigation can offer motion
cues for autonomous flights in partially or completely known 3D agricultural environments. How-
ever, coupled structures do not ‘look ahead’ and tend to bounce off obstacles rather than generating
motions to avoid these obstacles. As a result, the flight mission fails. The aim of this chapter is
to validate the effectiveness of the decoupled structure proposed in the previous chapter. Results
are obtained for a quadrotor flying in agricultural fields. This chapter is based off our published
article: Guidance, Navigation and Control for Autonomous Quadrotor Flight in Agricultural Field:
Case of Vineyards (Mokrane et al., 2022).

6.2 Experiment Setup

This section is devoted to simulation experiments to test the theory presented in Chapter 5 and to
validate the effectiveness of the complete autonomous navigation solution proposed in this thesis.

6.2.1 Simulation Setup

Simulations were conducted to test whether or not the decoupled structure of autonomous navi-
gation in Figure 5.1 would work as expected. The presented simulations can be used as a proof
of concept before applying it to a real quadrotor. All simulation experiments were performed by
Matlab running on an HP laptop with a 2.90 GHz Intel®) i7-10700 CPU and 32 Gb of RAM. All
integration operations were simulated using Matlab fixed-step Solvers, updated at a sample time
of 1 ms. The simulation have been carried out using a quadrotor with a mass of m = 4.34 kg, and
a moment of inertia of J = diag(0.820,0.0845,0.1377) kgm?. The quadrotor started at to = 0 s
at rest from a given position by € R3 i.e., 2(tg) = [bo,03x1,03%1,03x1]7 with an initial attitude,
without loss of generality, aligns with the inertial frame {Z}. Therefore, the quadrotor’s initial pose
was given by
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Go = {103 blo] (6.2.1)

6.2.2 Environmental Settings

The main purpose of this work is navigating the quadrotor in a given agricultural environment.
As stated in Chapter 5, two scenarios were taken into consideration. Scenario (I) and Scenario (2)
were dedicated for point-to-point and coverage navigation flights, respectively, to perform Remote
Sensing (RS). Scenario (I) was used simulate the navigation flight of the quadrotor while pointing
the imager (or sensor) toward a predefined object such as a tree or a bush. Scenario (2) was used to
simulate coverage navigation for the quadrotor flying between plants growing in lines. For our case,
vineyards terrains were selected to be our experimental environments. Vineyards is an example
of an intricate, unstructured, and fickle agricultural fields which can be challenging for robotic
machines like quadrotors. Vineyards terrains are known by their steep slopes and limited room for
maneuvering. We wanted the quadrotor to fly at relatively constant altitude between the vines.
2D and 3D environment representations were created with Matlab. Scenario (I) was built of a
free space configuration only as shown in Figure 6.1. However in Scenario (2), static obstacles were

Figure 6.1: Environment representation of Scenario (I) in (a) 2D and (b) 3D.

added. Since aerial imagery data was not available to build both real-life OGMs and DEMs, inflated
artificial (generated) maps were used. The maps were hand-drawn using black and white colors
then converted to binary occupancy maps. It was assumed that the environments presented as
OGMs were ideal and known, i.e., there is only 0 and 1 in the map, representing free and occupied
grids, respectively. Two vineyard terrain sub-scenarios were considered (See Figures 6.2 and 6.3).
The first is a flat rectangle. The second is a tilted irregular hexagon.
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Figure 6.2: Environment representation of Scenario (2) Terrain 1 in (a) 2D and (b) 3D.

5 7
y(m) 0

(a (b)

Figure 6.3: Environment representation of Scenario (2) Terrain 2 in (a) 2D and (b) 3D.

6.3 Results & Discussions

6.3.1 Path Planning

In case of Scenario (I), the quadrotor was supposed to start from rest at the origin, i.e., by = 03x1.
Four way-points were specified. The way-points b; were obtained from the expressions:
7 + 2 7Tti ) + 2 . 7Tti
—) 6 —) 0.6t; 6.3.1

L )eos(Z0) (o )sin(SE) 0.6t (6.3.1)

where t; = 4i Vi € W = {1,2,3,4}. The results are shown in Figure 6.4.
In case of Scenario (2), The binary occupancy maps above were fed to Matlab where the ISOA

coverage path planning algorithm was run. The distance between the main lines was initialized to

bi = [4(
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Figure 6.4: The generated local goals.

be d = 2.5 m. As a result, back and forth boustrophedon path was generated and way-points were
extracted as explained in Section 5.4 as shown in Figure 6.5.

%
= Coverage path O Local goals = Coverage path O Local goals|

Figure 6.5: The generated coverage paths and way-points: (a) Terrain 1, (b) Terrain 2

6.3.2 Trajectory generation

The extracted way-points were not fed directly to the trajectory generator since they contained
geometric information only, i.e., the position b;. However, velocity /acceleration constraints were
added to the way-points depending on the application. As stated in Section 5.5.1, only the acceler-
ation constraint given by the Equation 5.5.2 was added in Scenario (I). Hence, s; can be expressed
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as
Sp — b;

|15y — bdl|
The pointing direction was the center of the object of the interest (a tree) and given by S, =

[~5,0,4]T m. The time required to reach the i*" way-point was fixed to be 4 seconds and the
nominal force was given by

Vie W (6.3.2)

S; —

f=mg

The above information was used by the LQR trajectory generator with the weighting matrices

below
Q=Tlaoxia R=10%%I3x3 S=10"xIsx¢

Figure 6.6(a) shows the resulting position trajectory maneuvering around the way-points and point-
ing towards the object of interest compared to the results in 6.6(b) obtained by the authors in
(Dhullipalla et al., 2019). 6.6.

—ht)
o b 14

S\

—(t)

x (m) 05 y(m) x (m)

Figure 6.6: Trajectory on SF(3) obtained by (a) our algorithm, () algorithm in (Dhullipalla et al.,
2019).

In Scenario (2), a safe flight corridor (SFC) constrained the motion of the quadrotor between the
vines. Constant velocity and acceleration constraints were imposed at the way-points as explained
in Section 5.5.1. In our case, a velocity of v = lm/s was chosen. The starting locations were
bo = [20.8,1.4,0]T for Terrain 1 and by = [9.2,1.325,0]7 for Terrain 2. Again, this information was
exploited by the LQR trajectory generator with the weighting matrices below

Q=TIox1a R=1I3x3 S=10%x Iy

The resulting position trajectories of both vineyard fields, maneuvering around the way-points, are
shown in Figures 6.7 and 6.8 below.
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Figure 6.7: The generated optimal trajectory for Terrain 1: (a) 2D, (b) 3D.
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Figure 6.8: The generated optimal trajectory for Terrain 2: (a) 2D, (b) 3D.

6.3.3 Trajectory Control

The trajectory generator does not produce the position profile of the quadrotor only but even its
velocity and acceleration profiles. These information were fed into the trajectory control in order to
test its effectiveness. Without loss of generality, the object of interest was chosen to be the polygon
centroid in case of Scenario (2), i.e., S, = [10.7,9.2,1]T for Terrain 1 and S, = [9.3,11.9,2]7 for
Terrain 2. Thus, the pointing direction was chosen to be expressed as in Equation 5.7.1 Vt € [to, tf].
The control parameters were given by

kp =100 ky =20 p;=1
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The control law in (5.7.9) contains the measurement vectors b; and 2. These vectors were considered

to be noisy. A zero mean white noise with variance of 5.10~% was added. The resulting noisy

measurement vectors are shown in Figures 6.9 and 6.10. Figures 6.11, 6.12 and 6.13 show the
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Figure 6.10: The vector measurements of the flight in Scenario (2): (a) Terrain 1, (b) Terrain 2.

position tracking results; however, Figures 6.14 and 6.15 show the attitude tracking results of the
generated flight position trajectories. Figures 6.16,6.17,6.18(a) depict the pointing directions on
S2. Figures 6.16, 6.17,6.18(b) show the thrust directions. However, Figures 6.16,6.17,6.18(c) show

the aforementioned vector directions in 3D.
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Figure 6.11: The position tracking results of the flight in Scenario (D).
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Figure 6.12: The position tracking results of the flight in Scenario (2) in Terrain 1.
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Figure 6.13: The position tracking results of the flight in Scenario (2) in Terrain 2.

Desired attitude
T
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Figure 6.14: The attitude tracking results of the flight in Scenario (D).

6.3.4 Trajectory Re-planning

Terrain 1 of Scenario (2) was selected to test the performance of the improved APF re-planning
algorithm in 5.5. Several assumptions were taken into consideration:

e The quadrotor was modelled as a particle;

e The obstacles were static;
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e Desired aftitude === Real attitude
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Figure 6.15: The attitude tracking results of the flight in Scenario (2) in: (@) Terrain 1, (b) Terrain
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Figure 6.16: (a) The pointing, (b) thrust directions and (¢) their representations in 3D for Scenario

.

e For sake of simplicity, there were no uncertainties such as noise in the simulated measured
ranges between the vehicle and the obstacles;
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Figure 6.17: (a) The pointing, (b) thrust directions and (¢) their representations in 3D for Scenario
(2 Terrain 1.

e The obstacle and the goal were symmetrically aligned. This is referred to as Symmetrically
Aligned Robot-Obstacle-Goal (SAROG) problem;

e The local starting and the goal locations are calculated relative to the obstacle positions.

Besides, we supposed that the obstacles were in form of cylinders of equal sizes, located in the free
environment between the vines. The influence range of a single obstacle was fixed at dge; = 2.1m.
Figure 6.19 depicts the trajectory re-planned by the proposed method in case of single and multiple
obstacles.

6.4 Discussion

In this chapter, a complete strategy for solving the autonomous navigation problem is presented.
The strategy provides stable and efficient navigation method for autonomous quadrotor flight mis-
sions in agricultural fields. As mentioned before, the solution is based on a combination of algo-
rithms. In path finding step, two scenarios are taken into consideration. Way-points are already
defined in the point-to-point scenario. However, OGMs that maintain the environment informa-
tion obtained from the terrain mapping process are adopted in the coverage scenario. Based on
these maps, collision-free way-points are generated according to the ISOA. In trajectory planning,
an LQR trajectory generator is adopted to to generate minimum snap trajectories while satisfy-
ing position/velocity/acceleration constraints at the extracted way-points. In trajectory tracking,
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Figure 6.18: (a) The pointing, () thrust directions and (¢) their representations in 3D for Scenario
(2 Terrain 2.

= Global rajctory == Replanned trgectory
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Figure 6.19: The global position and the re-planned trajectories: (a) single obstacle, (b) multiple
obstacles.

a control law, which generates the attitude trajectories online using raw vector measurements, is
implemented. The control law is used also to track the generated position and attitude trajecto-

96



6.4. DISCUSSION

ries while simultaneously pointing towards predefined direction along the whole flight mission. In
trajectory re-planning, an Improved APF algorithm is used to enhance the safety of the quadrotor
when unknown obstacles are detected.

To verify the effectiveness of the proposed strategy, a series of simulation experiments are con-
ducted in this chapter. From the 2D view of 6.6, it can be seen that the ISOA efficiently generates
complete optimal coverage paths. The back-and-fourth boustrophedon paths contain sharp turns
which may contradict with the dynamics of the quadrotor. Hence, smoothing these paths represent
a crucial step before sending any command to the vehicle. The ISAO is advantageous since it makes
use of OGMs which offer a powerful technique for representing any environment and can be build
from off-the-shelf sensors.

Figures 6.7, 6.8 and 6.9 depict the position trajectory produced by the LQR trajectory genera-
tor. It can be seen clearly that the trajectories are continuous and smooth. Besides, they maneuver
around the extracted way-points successfully. This is achieved thanks to the LQR weighting di-
agonal terms S, ) and R. The choice of these terms is essential and plays a significant role in
smoothing the trajectory features. However, choosing appropriate weighting terms is a challenging
task. Figure 6.7 shows a comparison between the trajectories generated by our generator and the
one discussed in (Dhullipalla et al., 2019). The quadrotor attitudes at the way-points are identical
for both methods. However, a difference can be noticed in the trajectory curvatures. This difference
is due to the minimized control input quantity; minimum snap trajectories are produced by our
method, however minimum crackle (fifth derivative of the position) is used in (Dhullipalla et al.,
2019).

The generated flight trajectories were tracked and analyzed. At the end of the flight mission,
the quadrotor succeeded to track the desired trajectories despite the presence of white noise in the
IMU. The comparison between the actual position/attitude trajectory (red) and the desired posi-
tion/attitude trajectory (black) is depicted in Figures 6.11-6.15, showing that the two trajectories
are identical, hence highlighting the effectiveness of the proposed control scheme to properly track
the desired trajectories while fulfilling the pointing direction constraints at the local goals. The
results obtained in Figure 6.14 are compared to the results of the algorithm used in (Dhullipalla
et al., 2019) as shown in the following figures. By comparing the results, it can be seen that the
obtained thrust directions by our method and the method in (Dhullipalla et al., 2019) are identical.
In our case, bsq is given by the Equation 5.7.3, however ¢(¢) in (Dhullipalla et al., 2019) is given by

_ges+af(t)
1 = Ylges +a@)]

The two expression become the same if the parameters k, and k, are large enough to make the
errors e, and e, vanish. In addition, it can be seen from Figure 6.21 that both algorithms guarantee
the pointing direction at the way-points. The difference is that our algorithm fulfills the pointing
direction constraint during the whole flight. However, the algorithm in (Dhullipalla et al., 2019)
guarantees the pointing direction at the way-points only. This can be illustrated by Figure 6.22
which shows a top-view of Scenario (I) (The same thing happens in Scenario (2)).

A quantitative analysis of the position trajectories along the x—, y— and z— axes is shown in
Figures 6.23 and 6.24 below. The absolute value of the maximum error after stability is reached,
which is expressed as,:

+ e2
Tmax Ymazx Zmax

can be calculated to be: 0.0014m in Scenario (I), 0.0028m for the first terrain and 0.0041m for
the second one in Scenario (2). As it can be noticed, the errors are in the order of 1073m. Such

Cabs = \/62 +e2
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Figure 6.20: The thrust direction obtain by (a) our algorithm, (b) algorithm in (Dhullipalla et al.,
2019).
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Figure 6.21: The pointing direction obtain by (a) our algorithm, () algorithm in (Dhullipalla et al.,
2019).

errors are suitable relative to the size of the terrains. Hence, this data validates the efficiency of
the proposed tracking algorithm.

Figure 6.19 shows the selected vineyard scenario where static obstacles were added between
the vine rows to obstruct the motion of the quadrotor in its global trajectory. The figure depicts
the quadrotor’s avoidance trajectory near the static obstacles. Note that the black trajectory
represents the desired re-planned trajectory obtained from the improved APF algorithm and the
red trajectory represents the global trajectory obtained from the LQR trajectory generator. At
every time step, the trajectory re-planner takes the position information of the global trajectory.
Once the obstacle is sensed, it takes the position computed by the improved APF. It can be

98



6.4. DISCUSSION

H
)W H
4’1

£ 5 5 0 15

L]

Figure 6.22: The pointing direction (top-view) obtain by (a) our algorithm, (b) algorithm in (Dhul-
lipalla et al., 2019).
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Figure 6.23: The position error profile for Scenario (D).

observed that the obstacle avoidance was performed vertically. This is advantageous since it would
prevent collision with the vine rows if the avoidance was done horizontally. In addition, it can be
noticed that the relative distance maneuver remains greater than collision threshold that represents
a physical collision. Besides, it was assumed that the obstacle and the goal were symmetrically
aligned, i.e. SAROG problem, and the local starting and the goal locations are calculated relative
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Figure 6.24: The position error profile for Scenario (2) for: (a) Terrain 1, (b) Terrain 2.

to the obstacle positions. Hence, whenever multiple obstacles are available in same location, the
improved APF algorithm calculates different local starting and target positions such that a smooth
trajectory is replanned between the two positions while increasing the quadrotor safety as shown in
Figure 6.19(b). Above all, one can say that the quadrotor completes the avoidance mission safely.

However, although the combination of the algorithms has offered a complete and efficient solution
for navigation, there are some issues that need to be improved. Since the selected algorithms are
used in phases sequentially, the output of a particular phase depends on the output of the previous
one. Unreasonable outputs in a particular phase lead to intractable outputs in the next one.
Consequently, the quality of the flight trajectories will be poor. Besides, the solution computational
time depends on the dimensions of the environments. The more expansive the they are, the larger
the computational time.

6.5 Conclusion

In this chapter, several simulation experiments have been conducted to show the effectiveness of
the proposed approach developed in Chapter 5. First, a path planner that uses occupancy grids is
used to generate obstacle-free geometric way-points. These latter are fed into the LQR trajectory
generator to plan position trajectories while fulfilling the position/velocity /acceleration soft con-
straints at these way-points. A trajectory control is used to track the generated trajectories while
pointing toward a predefined direction. The control, which is developed in the Special Euclidean
SE(3), uses the raw measurements vector provided by the IMU to follow the quadrotor trajectories
with an absolute value of the maximum error in the order of 10~2m. From the obtained simulation
results, the validity of the proposed navigation approach is approved.
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Chapter 7

General Conclusion & Perspectives

Autonomous navigation is the fundamental element to ensure collision-free motion in any type of
environment. In case of quadrotors, the autonomous navigation techniques require suitable perfor-
mances in terms of reduced time design, low computational requirements and optimal trajectory
generation and control capabilities. The main objective of the research work presented in this thesis
was to design a complete and efficient decoupled solution for autonomous navigation problem of
quadrotors using a combination of algorithms exploited for the first time in Precision Agriculture
scenarios. The proposed design was constructed using four different components: offline path plan-
ning, offline trajectory generation and optimization, real-time trajectory control and tracking and
real-time trajectory re-planning. All of these components were utilized in an innovative cooperative
architecture aiming to complete the quadrotor scheduled mission successfully.

The whole research was conducted around the quadrotors autonomous navigation problem. Ear-
lier in Chapter 2, we investigated the background of UAVs in general including their classifications
based on the vast explored literature which showed the different advantages and drawbacks of
each common UAV system. Such classification has narrowed this research work into focusing on
quadrotors thanks to their great advantages in terms higher degree of maneuverability, hovering
ability, higher payload capacity and precise movements abilities. However, quadrotors are inher-
ently nonlinear and non-stable. Hence, assigning them motion commands directly would usher to
catastrophic results and mission failure. This has led us to survey the literature of the different
autonomous navigation strategies. After that, we grouped them into two main categories: coupled
and decoupled autonomous navigation structures. Focusing on the latter structure, we divided it
into mainly three elements: path planning, trajectory generation and trajectory control. Then, we
conducted an extensive literature review of each element where the advantage and drawbacks of
each approach of each element were presented (Chapter 3 and 4).

In Chapter 5, we presented the mathematical developments of each component that build up
our proposed autonomous navigation strategy. In the path planning component, we ran the ISO
algorithm that used artificial OGMs to generate safe and optimal geometric paths. Then, we used
the DEMs to locate the reference position local goals (way-points). We augmented the extracted
positions with velocities/accelerations and formed constraints at these way-points. In the trajectory
generation component, we built an LQR optimal problem that was used to minimize the snap of
the quadrotor when subjected to its kinematics. The inputs to the LQR generator were the way-
points constraints while the outputs were the global minimum snap trajectories with high degree
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of smoothness and stability. In the trajectory re-planning component, we adopted the Improved
APF algorithm to re-plan the vehicle’s trajectories locally in real-time whenever it sensed the un-
expected obstacles. This component made use of the artificial forces built by the Improved APF
algorithm around the obstacles and at the target to move the quadrotor away from those obstacles.
Finally, we implemented a geometric controller in the Special Euclidean SE(3) group to generate the
quadrotor’s attitude trajectories while pointing toward a predefined direction. This was achieved
using noisy vector measurements provided by the IMU. The geometric controller was also used to
track both the generated position and attitude trajectories. We validated the proposed autonomous
navigation strategy through several numerical simulations to show its effectiveness. The strategy
presents an innovative solution for autonomous navigation especial in PA scenarios, as it is specifi-
cally designed to comply the unique characteristics of both the scenario and the quadrotor. Besides,
the proposed strategy shows its capability of optimal and efficient generating trajectories, while also
demonstrating optimal tracking abilities, making it a highly suitable choice for fully autonomous
quadrotor navigation in any chosen outdoor scenario. However, the startegy has certain limitations
that need to be considered, such as being vulnerable to various weather conditions such as rain, fog,
and dust, as well as having difficulty maneuvering in windy or turbulent conditions. These chal-
lenges are particularly pronounced in large, unstructured agricultural environments, where issues
related to vehicle localization and endurance become even more prominent.

In terms of perspective of this work, there are several lines of research that could be pur-
sued. Firstly, the main limitation of the work presented in this thesis is that we were only able
to perform computer simulations to validate the proposed autonomous navigation strategy. Hence,
the experimental validation on a real quadrotor as presented herein will support the obtained re-
sults. Hardware In Loop (HIL) simulation environment represents a great alternative to test the
strategy algorithms in real-time. Secondly, the proposed strategy could be extended to deal with
external disturbances. Besides, in order to increase the reliability of such strategy for practical
applications, further work will be conducted to assist the quadrotor in environments with dynamic
obstacles. Finally, it would be beneficial to extend this strategy to collaborative systems where
multiple quadrotors can be used to perform the mission they will be assigned to. The problem at
hand is fraught with a multitude of technical difficulties, particularly with regards to effectively
coordinating movement and transmitting information between different systems. At the same time,
such system offers the potential to explore environments with very vast areas while reducing the
required amount of time to do that.
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In : Computational Vision and Bio-Inspired Computing: Proceedings of ICCVBIC 2021.
Singapore : Springer Singapore, 2022. p. 761-777.
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national Conference on Electrical Engineering (ICEE). IEEE, 2020. p. 1-5.
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Planning Of Autonomous Marsupial Systems For Supporting Fruit Counting Process. In :
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