
HAL Id: tel-04439527
https://theses.hal.science/tel-04439527

Submitted on 5 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Solving Some Nonlinear Optimization Problems with
Deep Learning

Dawen Wu

To cite this version:
Dawen Wu. Solving Some Nonlinear Optimization Problems with Deep Learning. Optimization and
Control [math.OC]. Université Paris-Saclay, 2023. English. �NNT : 2023UPASG083�. �tel-04439527�

https://theses.hal.science/tel-04439527
https://hal.archives-ouvertes.fr


TH
ES
E
D
E
D
O
CT
O
RA

T
N
N
T
:2
02
3U

PA
SG

08
3

Solving Some Nonlinear Optimization
Problems with Deep Learning

Résolution de quelques problèmes d’optimisation non
linéaire avec l’apprentissage profond

Thèse de doctorat de l’université Paris-Saclay

École doctorale n◦ 580 Sciences et Technologies de l’Information et de la
Communication (STIC)

Spécialité de doctorat : Informatique mathématique
Graduate School : Informatique et sciences du numérique.

Référent : Faculté des sciences d’Orsay

Thèse préparée dans l’unité de recherche Laboratoire des Signaux et
Systèmes (Université Paris-Saclay, CNRS, CentraleSupélec), sous la

direction d’Abdel LISSER, Professeur, Université Paris-Saclay

Thèse soutenue à Paris-Saclay, le 30 novembre 2023, par

Dawen WU

Composition du jury
Membres du jury avec voix délibérative

Salah-Eddine EL AYOUBI Président
Professeur, Laboratoire des Signaux et Systèmes,
Université Paris-Saclay
Alexei GAIVORONSKI Rapporteur & Examinateur
Professeur, Norwegian University of Science and
Technology
Andrea SIMONETTO Rapporteur & Examinateur
Professeur, ENSTA-Paris, Institut Polytechnique de
Paris
Jia LIU Examinateur
Professeur associé, Xi’an jiaotong university
Sihem TEBBANI Examinatrice
Professeur, Laboratoire des Signaux et Systèmes,
Université Paris-Saclay



Title : Solving Some Nonlinear Optimization Problems with Deep Learning
Keywords : Nonlinear optimization problem, Deep learning, Neurodynamic optimization, Physics-
informed neural network, Ordinary differential equation, Game theory

Abstract :
This thesis considers four types of nonlinear

optimization problems, namely bimatrix games,
nonlinear projection equations (NPEs), nons-
mooth convex optimization problems (NCOPs),
and chance-constrained games (CCGs). These pro-
blems find extensive applications in various do-
mains such as engineering, computer science, eco-
nomics, and finance. We aim to introduce deep
learning-based solution algorithms for these pro-
blems.

For bimatrix games, we use Convolutional Neu-
ral Networks (CNNs) to compute Nash equilibria.
Specifically, we design a CNN architecture where
the input is a bimatrix game and the output is
the predicted Nash equilibrium for the game. To
construct a training dataset, we generate a set of
bimatrix games by a given probability distribution
and use the Lemke-Howson algorithm to find their
true Nash equilibria. The proposed CNN is trained
on this dataset to improve its prediction accuracy.
After training, the CNN is capable of predicting
Nash equilibria for unseen bimatrix games. Expe-
rimental results demonstrate the exceptional com-

putational efficiency of our CNN-based approach,
at the cost of sacrificing some accuracy.

For NPEs, NCOPs, and CCGs, which are more
complex optimization problems, they cannot be di-
rectly fed into neural networks. Therefore, we need
more advanced tools to handle these problems,
namely neurodynamic optimization and Physics-
Informed Neural Networks (PINNs). Specifically,
we first use a neurodynamic approach to model
a nonlinear optimization problem as a system of
Ordinary Differential Equations (ODEs). We then
use a PINN-based model as an approximate solu-
tion to the resulting ODE system, where the end
state of the model represents a prediction to the
original optimization problem. The neural network
is trained toward solving the ODE system, the-
reby solving the original optimization problem. A
key contribution is that our approach transforms a
nonlinear optimization problem into a neural net-
work training problem. As a result, we solve the
optimization problems using only deep learning in-
frastructure such as PyTorch, Tensorflow, Jax, wi-
thout relying on convex optimization solvers such
as CVXPY, CPLEX, or Gurobi.



Titre : Résolution de quelques problèmes d’optimisation non linéaire avec l’apprentissage profond
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Résumé :
Cette thèse examine quatre types de problèmes

d’optimisation non linéaire, à savoir les jeux à bi-
matrices, les équations de projection non linéaires
(NPEs), les problèmes d’optimisation convexe non
lisse (NCOPs) et les jeux à contraintes aléatoires
(CCGs). Ces quatre classes de problèmes d’optimi-
sation non linéaire trouvent de nombreuses appli-
cations dans divers domaines tels que l’ingénierie,
l’informatique, l’économie et la finance. Nous vi-
sons à introduire des algorithmes de solution basés
sur l’apprentissage profond pour ces problèmes.

Pour les jeux à bimatrices, nous utilisons des
réseaux neuronaux à convolution (CNNs) pour cal-
culer les équilibres de Nash. Plus précisément, nous
concevons une architecture de CNN où l’entrée est
un jeu à bimatrice et la sortie est l’équilibre de Nash
prédit pour le jeu. Pour construire un ensemble
de données d’entraînement, nous générons un en-
semble de jeux à bimatrices selon une distribution
de probabilité donnée et utilisons l’algorithme de
Lemke-Howson pour trouver leurs véritables équi-
libres de Nash. Le CNN proposé est entraîné sur
cet ensemble de données pour améliorer sa préci-
sion de prédiction. Après l’entraînement, le CNN
est capable de prédire les équilibres de Nash pour
des jeux à bimatrices non vus. Les résultats expéri-
mentaux démontrent l’efficacité computationnelle

exceptionnelle de notre approche basée sur CNN,
au prix de sacrifier un peu de précision.

Pour les NPEs, les NCOPs et les CCGs, qui
sont des problèmes d’optimisation plus complexes,
ils ne peuvent pas être directement introduits dans
les réseaux neuronaux. Par conséquent, nous avons
besoin d’outils plus avancés pour gérer ces pro-
blèmes, à savoir l’optimisation neurodynamique
et les réseaux neuronaux informés par la phy-
sique (PINNs). Plus précisément, nous utilisons
d’abord une approche neurodynamique pour mo-
déliser un problème d’optimisation non linéaire
comme un système d’équations différentielles or-
dinaires (ODEs). Nous utilisons ensuite un modèle
basé sur PINN comme solution approximative au
système d’ODE résultant, où l’état final du modèle
représente une prédiction au problème d’optimisa-
tion original. Le réseau neuronal est formé en vue
de résoudre le système d’ODE, résolvant ainsi le
problème d’optimisation original. Une contribution
clé est que notre approche transforme un problème
d’optimisation non linéaire en un problème d’en-
traînement de réseau neuronal. En conséquence,
nous résolvons les problèmes d’optimisation en uti-
lisant uniquement l’infrastructure d’apprentissage
profond comme PyTorch, Tensorflow, Jax, sans
compter sur les solveurs d’optimisation convexe
tels que CVXPY, CPLEX ou Gurobi.
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Résumé

Cette thèse explore quatre types de problèmes d’optimisation non linéaire : les jeux bimatrix, les équations
de projection non linéaire (NPEs), les problèmes d’optimisation convexe non lisse (NCOPs), et les jeux sous
contraintes de chance (CCGs). Ces problèmes trouvent des applications étendues dans divers domaines tels
que l’ingénierie, l’informatique, l’économie et la finance. L’objectif principal est d’introduire des algorithmes
de solution basés sur l’apprentissage profond pour ces problèmes.

Dans le cas des jeux bimatrix, nous utilisons des Réseaux Neuronaux Convolutifs (CNNs) pour calculer
les équilibres de Nash. Plus précisément, nous concevons une architecture CNN où l’entrée est un jeu
bimatrix et la sortie est l’équilibre de Nash prédit pour le jeu. Pour construire un ensemble de données
d’entraînement, nous générons un ensemble de jeux bimatrix selon une distribution de probabilité donnée et
utilisons l’algorithme de Lemke-Howson pour trouver leurs véritables équilibres de Nash. Le CNN proposé est
entraîné sur cet ensemble de données pour améliorer sa précision de prédiction. Après l’entraînement, le CNN
est capable de prédire les équilibres de Nash pour des jeux bimatrix non vus. Les résultats expérimentaux
démontrent l’efficacité computationnelle exceptionnelle de notre approche basée sur CNN, au prix de sacrifier
une certaine précision.

Pour les NPEs, NCOPs et CCGs, qui sont des problèmes d’optimisation plus complexes, ils ne peuvent
pas être directement introduits dans les réseaux neuronaux. Par conséquent, nous avons besoin d’outils plus
avancés pour gérer ces problèmes, à savoir l’optimisation neurodynamique et les Réseaux Neuronaux Infor-
més par la Physique (PINNs). Spécifiquement, nous utilisons d’abord une approche neurodynamique pour
modéliser un problème d’optimisation non linéaire comme un système d’Équations Différentielles Ordinaires
(ODEs). Nous utilisons ensuite un modèle basé sur PINN comme solution approximative au système d’ODE
résultant, où l’état final du modèle représente une prédiction du problème d’optimisation original. Le réseau
neuronal est entraîné à résoudre le système d’ODE, résolvant ainsi le problème d’optimisation original. Une
contribution clé est que notre approche transforme un problème d’optimisation non linéaire en un problème
d’entraînement de réseau neuronal. En conséquence, nous résolvons les problèmes d’optimisation en utilisant
uniquement l’infrastructure d’apprentissage profond telle que PyTorch, Tensorflow, Jax, sans dépendre de
solveurs d’optimisation convexe tels que CVXPY, CPLEX ou Gurobi.

Contribution 1 : Résolution du Jeu Bimatrix avec CNN. Considérons la résolution de l’équilibre
de Nash d’un jeu bimatrix. Ce problème a été démontré comme étant complet PPAD [1], ce qui signifie que
trouver un équilibre de Nash exact est coûteux en calcul et peu probable en temps polynomial. Cela motive
l’utilisation de l’apprentissage profond pour trouver des solutions approximatives. Nous tirons avantage du
fait qu’un jeu bimatrix peut être représenté simplement par ses deux matrices de paiement. Par conséquent,
nous concevons une architecture CNN qui prend les deux matrices de paiement en entrée et produit un
équilibre de Nash prédit pour le jeu. Le CNN proposé est entraîné sur des données de jeu auto-générées
pour améliorer la précision de prédiction. Les résultats expérimentaux montrent que notre approche est
nettement plus rapide que les solveurs traditionnels, en particulier lors de la résolution de plusieurs instances.
Par exemple, considérant un jeu de taille 20 × 20, notre approche CNN résout une seule instance plus de
5 fois plus rapidement que l’algorithme LH, et résout 10 000 instances plus de 5 000 fois plus rapidement
(Voir Figure 3.4, Chapitre 3.5.2), avec une erreur moyenne de 13% (Voir Table 3.2, Chapitre 3.5.3).

Contribution 2 : Résolution des NPE et NCOP avec Optimisation Neurodynamique et PINN.
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Nous proposons un solveur basé sur l’apprentissage profond pour les NPE et NCOP introduits dans la Section
1.1. Les étapes principales de la solution sont décrites ci-dessous :

(i) Le problème d’optimisation non linéaire est modélisé par un système d’ODE utilisant une approche
neurodynamique.

(ii) Un réseau neuronal de type PINN est utilisé comme solution approximative à ce système d’ODE, où
l’état final du réseau est une prédiction pour le problème d’optimisation original.

(iii) Le réseau neuronal est entraîné à résoudre le système d’ODE, améliorant ainsi la précision de prédiction
pour le problème d’optimisation original.

Pour différents types de problèmes d’optimisation, soit NPE soit NCOP, nous avons apporté des ajustements
algorithmiques pour exploiter la structure du problème pour améliorer les performances. Une contribution
clé de l’algorithme proposé est qu’il transforme un problème d’optimisation en un problème d’entraînement
de réseau neuronal. Par conséquent, notre solveur n’utilise que des logiciels d’apprentissage profond tels que
PyTorch, TensorFlow ou JAX pour résoudre le problème d’optimisation cible.

Contribution 3 : Résolution des CCG à Différents Niveaux de Confiance avec Apprentissage
Profond. Nous considérons la résolution des CCG à différents niveaux de confiance α, ce qui équivaut à
résoudre un ensemble de plusieurs problèmes d’optimisation non linéaires. De manière similaire à la Contribu-
tion 2, nous résolvons les problèmes en utilisant l’optimisation neurodynamique et les PINNs. Ici, la différence
est que nous utilisons un seul réseau neuronal pour résoudre plusieurs problèmes d’optimisation au lieu d’un
seul. Spécifiquement, nous concevons une architecture de réseau qui prend le niveau de confiance α en
entrée et produit l’équilibre de Nash prédit pour le CCG à α. Les résultats expérimentaux montrent que, une
fois entraîné, le modèle de réseau neuronal proposé peut prédire les équilibres de Nash à plusieurs niveaux
de confiance α en un temps CPU extrêmement court au coût d’une précision raisonnable. Par exemple,
considérant un CCG avec 5 joueurs, le modèle prend seulement 1 seconde pour prédire pour 500 différents
α, ce qui est 1000 fois plus rapide que la méthode RK, au coût d’une erreur moyenne de 0.16 (Voir Table
6.7, Chapitre 6.4.3).

Perspectives : Finalement, nous esquissons quelques directions futures possibles :

— Côté méthodologie : Intégrer les approches proposées avec des idées, concepts ou théories de pointe
en apprentissage profond pour améliorer l’efficacité computationnelle et la précision.

— Côté application : Appliquer les approches proposées pour résoudre des problèmes réels.

— Côté théorique : Mener une analyse de convergence pour les approches proposées.
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1 - Introduction

Nonlinear optimization problems serve as critical tools in diverse fields inclu-
ding engineering, physics, economics, and finance. Such problems are pivotal in
decision-making processes, ranging from the enhancement of industrial produc-
tion to financial investment. They also contribute to mission-critical tasks such as
optimal design, resource allocation, and risk assessment. The landscape of chal-
lenges is continuously evolving, marked by increasing competition and constrained
resources. Consequently, the quest for more efficient and economical solutions has
become critical. Advances in computing power have synergized with the rapid deve-
lopment of optimization models, thereby significantly broadening their applicability
and scope.

Nonlinear optimization originated from linear programming, a specific subclass
where both the objective function and constraints are linear. Initiated during World
War II for resource allocation and scheduling, linear programming evolved into a
standalone academic field following Dantzig’s seminal introduction of the simplex
method [2]. Subsequently, various algorithms such as the interior-point and ellipsoid
methods have further diversified the field, extending its capabilities to tackle a
broader spectrum of complex, real-world challenges [3].

The shift from linear to nonlinear frameworks gives rise to a diverse array of
nonlinear optimization problems. These problems involve at least one nonlinear
function in the objective or constraints and can be divided into convex and non-
convex categories. Convex optimization problems are typically well-posed, with the
optimal solution solvable by algorithms such as interior-point methods or Newton
methods [4]. In contrast, nonconvex problems present the challenge of multiple
local optima, and solving the global optimum is difficult. While heuristics such as
simulated annealing, genetic algorithms, and gradient-based methods offer some
solutions, they do not guarantee convergence to the global optimum [5].

Furthermore, nonsmooth optimization problems introduce an additional layer
of complexity due to their discontinuous derivatives. These problems find diverse
applications, from LASSO regression in statistics to robust optimization in supply
chain management. Their resolution frequently necessitates specialized approaches
such as subgradient methods or various approximation techniques. Recent advan-
cements have shed light on the convergence properties of these algorithms [6, 7]
and introduced innovative techniques like derivative-free optimization [8].

Nonlinear optimization is closely related to game theory. Game theory studies
the interactions among rational individuals, serving as a robust framework for un-
derstanding choice, conflict, and cooperation in various decision-making contexts
[9]. The cornerstone of this framework is the concept of Nash equilibrium, which
defines a stable state in which no player benefits from a unilateral change in stra-
tegy [10]. In addition to the Nash equilibrium, several other types of equilibria
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have been extensively studied in non-cooperative game theory [11, 12, 13]. Their
existence is usually proved by fixed point theorems.

While the existence of a Nash equilibrium in a game is generally guaranteed,
finding it can be computationally challenging. In special cases like two-player zero-
sum games, Nash equilibria can be reformulated as linear programming problems
[2] and efficiently solved using interior-point methods. However, for more general
scenarios such as n-player non-zero-sum games, determining the Nash equilibrium
becomes considerably more complex. Such problems fall into the category of PPAD-
complete, meaning that there is no polynomial-time algorithm for solving them
[14].

This thesis explores the use of machine learning as a potent tool for addressing
nonlinear optimization problems [15]. As a cornerstone of artificial intelligence,
machine learning has permeated diverse domains, from data analysis and decision
making to pattern recognition. Traditional machine learning algorithms such as
decision trees and support vector machines laid the initial groundwork. However,
these algorithms often stumble when dealing with high-dimensional and complex
data structures. This limitation has catalyzed the rise of neural networks and deep
learning [16].

Characterized by multi-layer architectures and activation functions, deep neu-
ral networks are revolutionizing fields from computer science to engineering and
beyond. In 2012, AlexNet, a convolutional neural network, set an unprecedented
performance benchmark in the ImageNet competition [17, 18]. Since that miles-
tone, deep learning has rapidly evolved and diversified, finding applications in a
variety of fields, including computer vision [16], natural language processing [19],
robotics [20], and bioinformatics [21], among others.

In response to a diverse array of challenges, numerous specialized model archi-
tectures have emerged to handle specific tasks. For example, Convolutional Neural
Networks (CNNs) for computer vision [22, 16], Recurrent Neural Networks (RNNs)
for natural language processing [23, 16], Generative Adversarial Networks (GANs)
for data generation [24], Graph Neural Networks (GNNs) for structured data [25],
and Physically-Informed Neural Networks (PINNs) for solving partial differential
equations [26]. These specialized architectures not only offer robust and efficient
means for analyzing complex problems and data but also broaden the scope of
possibilities across various scientific and industrial domains.

Training a neural network essentially boils down to solving a large-scale, un-
constrained, non-convex optimization problem. Stochastic Gradient Descent (SGD)
is a widely used training method for neural networks and has several variants, such
as Adam [27] and AdaGrad [28]. These variants often incorporate adaptive learning
rates and momentum terms to improve the convergence speed and stability of the
original SGD algorithm. Choosing the appropriate variant and tuning its hyperpa-
rameters can significantly influence the training efficiency and the quality of the
resulting model.
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1.1 . Four Nonlinear Optimization Problems

In this thesis, we aim to solve the following four optimization problems.
Problem 1 : Bimatrix Game. We consider solving two-player general-sum

games with finite actions for both players. Such a game is also known as a bimatrix
game, since its two payoff matrices contain all the information about the game.
Player 1 and player 2 have the payoff matrices A and B, respectively, of the form

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

...
am1 am2 . . . amn

 ,B =


b11 b12 . . . b1n
b21 b22 . . . b2n
...

...
...

...
bm1 bm2 . . . bmn

 , (1.1)

where m and n denote the numbers of actions for player 1 and player 2, respectively.
When player 1 selects the i-th action and Player 2 selects the j-th action, player 1
and player 2 receive payoffs of aij and bij , respectively. The objective is to solve
for the Nash equilibrium (x∗ ∈ X, y∗ ∈ Y ) that satisfies the following system of
inequalities :

(x∗)T Ay∗ ≥ xTAy∗ ∀x ∈ X,

(x∗)T By∗ ≥ (x∗)T By ∀y ∈ Y,
(1.2)

where X = {x ∈ Rm | 1Tmx = 1, x ≥ 0} and Y = {y ∈ Rn | 1Tny = 1, y ≥ 0},
and 1Tm ∈ Rm represents an all-ones vector.

Traditional solution algorithms for solving bimatrix games include the Lemke-
Howson algorithm [29] and enumeration methods [9]. The Lemke-Howson (LH)
algorithm is the state-of-the-art exact solution algorithm that guarantees to find a
Nash equilibrium for a game. The enumeration methods, including support enume-
ration and vertex enumeration, are used to find all Nash equilibria for a game, but
they are computationally more expensive. Existing research indicates that solving
bimatrix games is challenging, as the computational steps for both the LH algo-
rithm and the enumeration methods grow exponentially with the size of the game,
even in the best-case scenario [30].

Problem 2 : Nonlinear Projection Equation (NPE). We consider solving
NPEs that take the following form :

PΩ(x
∗ −G(x∗)) = x∗, (1.3)

where G : Rn → Rn is a nonlinear function, and Ω ⊂ Rn is a feasible set. The
projection function PΩ : Rn → Ω projects any vector z ∈ Rn onto the feasible set
Ω, defined as,

PΩ(z) = argmin
x∈Ω
∥z − x∥2 (1.4)

The objective of an NPE problem is to find an optimal solution x∗ ∈ Ω that
solves (1.3). As demonstrated by Harker & Pang (1990) [31], NPEs can be vie-
wed as a unified framework for many optimization problems, including nonlinear
complementarity problems, variational inequaties, and equilibrium point problems.
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The NPE problem is commonly solved by neurodynamic optimization methods
[32, 33, 34]. These methods use a system of first-order ordinary differential equation
(ODE) to model the NPE problem. Under certain conditions on the function G and
the feasible set Ω, the ODE system exhibits a global convergence property, meaning
that its state solution converges to the optimal solution of the NPE problem.

Problem 3 : Nonsmooth Convex Optimization Problem (NCOP). We
consider solving NCOPs that take the following form

min
x

f(x)

s.t.
g(x) ≤ 0,

x ≥ 0,

(1.5)

where x ∈ Rn represents the decision variables. f : Rn → R and g : Rn → Rm

denote the objective function and the constraint function, respectively. Problem
(1.5) can be classified into various types depending on the properties of f and g,
such as linear programming when both f and g are linear, quadratic programming
when f is quadratic and g is linear, convex optimization when both f and g are
convex, and nonsmooth optimization when the functions are nonsmooth.

The problem(1.5) has a wide range of applications spanning in statistical lear-
ning, compressed perception, optimal transportation, signal processing, image pro-
cessing, financial engineering, power systems, and other fields. There are standard
and well-established algorithms to solve the optimization problem (1.5), particularly
in cases where both the objective function and the constraint function are convex
and smooth. For example, the barrier method and the primal-dual interior-point
method are commonly used solution algorithms. See more details in [35, 4].

Problem 4 : Chance Constrained Game (CCG). An n-player general-sum
game is represented by the tuple of

(
N, (Ai)i∈N , (ui)i∈N

)
, where

— N = {1, 2, . . . , n} is the set of players.

— Ai = {1, . . . , ai} is the action set of player i.

— ui :
∏n

i=1Ai → R is the payoff function for player i.

When the game contains randomness in its payoff functions, such a game is called a
Stochastic Nash Game. Research works [36, 37, 38, 39, 40] leverage the framework
of chance-constrained programming to accommodate such randomness, culmina-
ting in the formulation of (CCGs). In CCGs, players are guaranteed to achieve
payoffs with a predefined confidence level.

When the probability distributions in CCGs satisfy certain conditions, they can
be reformulated as solvable mathematical optimization problems. For example,
the two-player zero-sum game, with a random strategy set following an elliptical
distribution, is reformulated as a second-order cone programming problem [40]. The
n-player game general-sum game, with the random payoff following an elliptical
distribution, is reformulated as a variational inequality [39].
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1.2 . Contributions

The goal of this thesis is to solve the four nonlinear optimization problems
presented in Section 1.1 using deep learning. The main contributions of this thesis
are summarized below.

Contribution 1 : Solving Bimatrix Game using CNN. Consider solving
the Nash equilibrium of a bimatrix game. This problem has been shown to be
PPAD-complete [1], which means that finding an exact Nash equilibrium is com-
putationally expensive and unlikely to be done in polynomial time. This motivates
the use of deep learning to find approximate solutions. We take advantage of the
fact that a bimatrix game can be represented simply by its two payoff matrices.
Therefore, we design a CNN architecture that takes the two payoff matrices as
an input and outputs a predicted Nash equilibrium for the game. The proposed
CNN is trained on self-generated game data to improve the prediction accuracy.
Experimental results show that our approach is significantly faster than traditio-
nal solvers, especially when solving multiple instances. For example, considering
a game of size 20 × 20, our CNN approach solves a single instance over 5 times
faster than the LH algorithm, and solves 10,000 instances over 5,000 times faster
(See Figure 3.4, Chapter 3.5.2), with an average gap error of 13% (See Table 3.2,
Chapter 3.5.3).

Contribution 2 : Solving NPE and NCOP using Neurodynamic Optimi-
zation and PINN. We propose a deep learning-based solver for the NPE and
NCOP introduced in Section 1.1. The main solution steps are outlined below :

(i) The nonlinear optimization problem is modeled by an ODE system using an
neurodynamic approach.

(ii) A PINN-like neural network is used as an approximate solution to this ODE
system, where the end state of the network is a prediction for the original
optimization problem.

(iii) The neural network is trained toward solving the ODE system, thereby im-
proving the prediction accuracy for the original optimization problem.

For different types of optimization problems, either NPE or NCOP, we have made
algorithmic adjustments to exploit the problem structure for improved performance.
A key contribution of the proposed algorithm is that it transforms an optimization
problem into a neural network training problem. Therefore, our solver only uses
deep learning software such as PyTorch, TensorFlow or JAX to solve the target
optimization problem.

Contribution 3 : Solving CCGs at Different Confidence Levels using
Deep Learning. We consider solving CCGs at different confidence levels α, which
is equivalent to solving a set of multiple nonlinear optimization problems. Similar
to Contribution 2, we solve the problems based on the use of neurodynamic op-
timization and PINNs. Here, the difference is that we use a single neural network
to solve multiple optimization problems instead of one. Specifically, we design a
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network architecture that takes the confidence level α as input and outputs the
predicted Nash equilibrium for the CCG at α. Experimental results show that, the
proposed neural network model, once trained, can predict Nash equilibria at mul-
tiple confidence levels α in an extremely short CPU time at a reasonable cost of
accuracy. For example, considering a CCG with 5 players, the model takes only
1 second to predict for 500 different α, which is 1000 times faster than the RK
method, at the cost of an average error of 0.16 (See Table 6.7, Chapter 6.4.3).

The remainder of this thesis is organized as follows : Chapter 2 provides an in-
depth review of three different topics : neurodynamic optimization, PINNs, and ma-
chine learning for solving optimization problems. Chapter 3 solves bimatrix games
with CNNs. Chapters 4 and 5 solve NPEs and NCOPs, respectively, and both
chapters are based on neurodynamic optimization and PINNs. Chapter 6 intro-
duces CCGnet, a network architecture for solving CCGs at different confidence
levels. Finally, Chapter 7 concludes the thesis and discusses potential avenues for
future research.

Please note that each chapter is self-contained and has its own conventions for
mathematical notation and abbreviations.
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2 - Related Works

This chapter first introduces two important methods, neurodynamic optimiza-
tion and physics-informed neural networks, which are used extensively throughout
this thesis. Then, we present some recently emerging research on deep learning for
solving optimization problems.

2.1 . Neurodynamic Optimization

This section provides a comprehensive review of the literature on neurodynamic
optimization. In particular, in Section 2.1.1 we describe in detail how the neurody-
namic approach solves an optimization problem. We also introduce the most basic
model in neurodynamic optimization, the recurrent model. Section 2.1.2 introduces
projection neurodynamic models, which are a special class of neurodynamic mo-
dels dedicated to solving nonlinear projection equations. Section 2.1.3 discusses
collaborative neurodynamic optimization, which has been a hot topic in recent
years.

2.1.1 . Recurrent Neurodynamic Models

Step 1 
Optimization problem

Step 2
ODE system

Step 4 

End state

State solution

Step 3
Initial value problem

ODE:

Initial point:

Time range:

Solution

Figure 2.1 – A neurodynamic approach for solving a nonlinear optimi-
zation problem.

Fig. 2.1 outlines the procedure for using a neurodynamic approach to solve a
nonlinear optimization problem. The details are explained below :

— Step 1 : Consider an optimization problem, such as one of the four problems
listed in Section 1.1.

— Step 2 : The neurodynamic approach constructs a first-order Ordinary Dif-
ferential Equation (ODE) system that should have a global convergence
property.
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— Step 3 : Specify an initial point and an appropriate time range to formulate
an initial value problem for the ODE system.

— Step 4 : Solve the initial value problem using a numerical integration method
and obtain the state solution. In the state solution, the end state represents
the solution to the original optimization problem.

The most critical step here is the second one, which involves proving the global
convergence property of the ODE system. The global convergence property here
means that the state solution of the ODE system converges to the optimal solution
of the original optimization problem as the time variable goes to infinity. The proof
of this property usually consists of two parts : 1) The equilibria of the ODE system
coincide with the optimal solutions of the original optimization problems. 2) The
ODE system converges globally to these equilibria. Typically, the proof is based on
the use of the Lyapunov method [41].

In the following, we discuss the development and applications of the most
classical neurodynamic model, i.e., Recurrent Neurodynamic Models (RNMs). Tank
and Hopfield proposed the first RNM and used it to solve linear programming
problems [42], and such a method is also called the Hopfield network. Since then, a
variety of RNMs have been proposed to solve various optimization problems, such
as quadratic programming problems [43, 44, 45], nonlinear convex optimization
problems[46, 47, 48, 49], nonsmooth convex optimization problems [50, 51, 52],
and minimax optimization problems [53, 54]. These RNMs have been proven to
be globally convergent to the optimal solution of the corresponding problem. In
addition to model development and analysis, RNMs have found applications in
many areas, including sparse signal reconstruction [55, 56, 57], feature selection
[58, 59], and portfolio selection [60, 61], to name a few.

In recent years, RNMs have also been used to solve nonconvex problems. Fin-
ding the global minimum in nonconvex problems is a well-known challenging task.
To the best of our knowledge, there is no solution algorithm that solves this pro-
blem efficiently. Fortunately, recent studies have shown that the stationary points
of nonconvex optimization problems perform well in many practical applications,
such as some statistical problems in machine learning [62]. Therefore, there have
been studies using RNMs to solve the first-order stationary point of the nonconvex
problem.

Kurdyka et al. proved that, under certain conditions, the state solutions of
negative gradient systems can converge to the stationary points of unconstrained
non-convex optimization problems [63]. Based on this, RNMs were proposed to
find the first-order stationary point by negative gradient systems. In addition, with
the use of penalty methods, RNMs have been developed to solve for constrained
nonconvex problems [64, 65]. These methods have subsequently been extended
to nonsmooth problems by replacing gradient to subgradient [66, 67]. However,
it is worth noting that the aforementioned RNMs all rely on the use of penalty
parameters. The disadvantage of using penalty parameters is that in many cases
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optimal solutions can only be achieved when these parameters are set extremely
high, which is computationally expensive. This has led to the development of RNMs
based on Tikhonov regularization to avoid the use of penalty parameters [68, 51].

2.1.2 . Projection Neurodynamic Models

Projection Neurodynamic Models (PNMs) are a special class of neurodynamic
models that are closely related to nonlinear projection equations (NPEs). According
to the literature [31], NPEs can be viewed as a framework for unifying the treat-
ment of many constrained optimization problems, including variational inequalities,
nonlinear complementarity problems, and nonlinear programming problems. PNMs
are used to solve NPEs, thus addressing a wide range of nonlinear optimization
problems.

Initially, PNMs were focused on solving the general form of NPE [69, 32]. Over
time, PNMs have been specifically modified to solve various optimization problems
[70, 71], especially variational inequalities [72, 73]. In addition, PNMs have found
applications in areas such as robotic manipulators, model predictive control, and
data fusion [74].

Similar to the RNMs described in Section 2.1.1, PNMs can also be used to solve
standard constrained optimization problems. The core strategy is to reformulate
the optimization problem into its optimality conditions, such as the KKT condi-
tions, which can be further reformulated as an NPE. In particular, PNMs have been
adapted to solve standard nonlinear optimization problems such as quadratic opti-
mization problems [75], nonsmooth optimization problems [64], and pseudoconvex
optimization problems [71].

An important issue in PNMs is the model size. Early PNMs often introduced
auxiliary variables to facilitate problem solving [76, 69]. However, this approach
leads to computational inefficiency as the problem size increases. Therefore, recent
PNM research has focused on reducing the use of auxiliary variables, thereby re-
ducing the model dimensions and improving computational efficiency [77, 78, 79].
For example, the reduced dimensional PNMs use a projection function to ensure
that the equality constraints are satisfied, thereby avoiding auxiliary variables with
respect to the equality constraint and thus improving computational performance
[78, 69, 80].

2.1.3 . Collaborative Neurodynamic Optimization

In Sections 2.1.1 and 2.1.2, we presented the use of a single neurodynamic
model to solve a nonlinear optimization problem. However, these single-model ap-
proaches cannot solve for more complex problems, such as mixed-integer optimi-
zation problems, or nonconvex optimization problems. Recently, a popular topic in
neurodynamic optimization is using multiple neurodynamic models to collabora-
tively solve complex optimization problems. This approach is called collaborative
neurodynamic optimization (CNO), which is essentially a combination of neuro-
dynamic approaches and particle swarm optimization [81]. Specifically, the initial
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states of a set of neurodynamic models are updated using particle swarm optimi-
zation.

CNO has been effectively applied to a wide range of complicated problems,
including but not limited to, distributed optimization problems [82, 83, 84], bile-
vel optimization problems [85], biconvex optimization problems[86], mixed integer
problems [87], nonconvex optimization problems [34], multi-objective optimization
[88, 84], and combinatorial optimization problems [34, 87].

The basic neurodynamic models used in CNO are of particular importance. A
CNO approach based on multiple PNMs has been proposed to solve combinatorial
optimization problems [34]. In addition, a two-time scale CNO approach based
on two RNMs has been proposed for mixed integer optimization problems [87].
Both of these two approaches were shown to almost surely converge to the global
optimal solution.

The CNO framework has found various applications, such as in model predictive
control [89, 90], nonnegative matrix factorization [91], vehicle-task assignment
[92, 89], robust portfolio selection [60], spiking neural network regularization [93],
sparse bayesian learning [94], and hash bit selection [95, 96].

2.2 . Deep Learning for Solving Differential Equations

The advent of deep learning has opened up a new paradigm for solving ordinary
differential equations and partial differential equations (ODEs and PDEs). This
section is organized as follows :

— In Section 2.2.1, we demonstrate the use of Physics-Informed Neural Net-
works (PINNs) to solve PDEs, followed by a literature review on PINNs.

— In Section 2.2.2, we introduce two advanced research topics closely related
to PINNs, namely deep energy methods and DeepONet.

2.2.1 . Physics-Informed Neural Networks
A typical PDE problem can be expressed in the following general form :

Dx(u;λ) = f(x), x ∈ Ω ⊂ Rd

Bk(u) = gk(x), x ∈ ∂Ω ⊂ Rd, for k = 1, 2, . . . , nb,
(2.1)

where Dx(·) is the differential operator, and u : Ω ∪ ∂Ω → R is the solution to
be found. Ω and ∂Ω represent the domain and the boundary of the domain in Rd,
respectively. d denotes the dimension of the PDE. λ denotes the parameters of
the PDE. Bk(·) denotes to the boundary conditions, which can be of the Dirichlet,
Neumann, or mixed type. nb represents the number of boundary conditions. For
problems involving temporal dynamics, time t is considered as part of x, and the
initial conditions can be treated as a unique type of boundary condition.

Remark 2.1 The ODE systems considered in Section 2.1 are a special case of the
PDE problem (2.1) considered in PINNs. The main differences are :
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Loss

Physics-informedNeural network:   

Governing PDE

Measurement data

Backpropagation and update 

Figure 2.2 – A typical PINN framework for solving a nonlinear PDE.

— The solution of the ODE system is a function with only one input, while the
PDE solution is a function with multiple inputs.

— The ODE system involves multiple differential equations, each corresponding
to a state dynamic, whereas the PDE typically involves only a single equation
with multiple variables.

The solution of (2.1) has the form of u : Rd → R, where d is the number of
variables. In contrast, the solution of the ODE system has the form of u : R→ Rn,
where n is the number of differential equations in the system.

Let {x(i)b , u
(i)
b }

Nb
i=1 be a set of randomly chosen points for the boundary condi-

tions. Let {x(i)r }Nr
i=1 be a set of randomly chosen points for the PDE residual. These

points are usually drawn from unknown distributions. Let uΘ be a surrogate func-
tion based on a neural network with model parameters Θ. The goal of the PINN
approach is to learn a surrogate function uΘ that solves the target PDE problem.
Figure 2.2 summarizes the solution procedure of PINNs.

The loss function for the PINN approach can be expressed as :

L(Θ) = WbMSEb

(
Θ; {x(i)b , u

(i)
b }

Nb
i=1

)
+Wr MSEr

(
Θ; {x(i)r }Nr

i=1

)
, (2.2)

where Wb and Wr represent the weights for the boundary and residual losses,
respectively. MSEb

(
Θ; {x(i)b , u

(i)
b }

Nb
i=1

)
and MSEr

(
Θ; {x(i)r }Nr

i=1

)
are given by :

MSEb

(
Θ; {x(i)b , u

(i)
b }

Nb
i=1

)
=

1

Nb

Nb∑
i=1

∣∣∣u(i)b − uΘ

(
x(i)u

)∣∣∣2 ,
MSEr

(
Θ; {x(i)r }

Nr
i=1

)
=

1

Nr

Nr∑
i=1

∣∣∣Dx(uΘ(x
(i)
r );λ)− f(x(i)r )

∣∣∣2 , (2.3)

where MSEb measures the data mismatch term, which enforces the boundary
conditions as constraints. MSEr evaluates the PDE residual at a finite set of
collocation points. The neural network parameters Θ are trained by minimizing the
loss function in (2.2).
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The success of PINNs lies in their use of automatic differentiation [97], which
provides an efficient and accurate evaluation of the PDE operator. Thus, PINNs
transform the task of solving a PDE into a neural network training problem, where
the global minimum of the loss function signifies the solution to the PDE. Next,
we briefly review the development of PINNs and highlight and some important
contributions.

With the rapid development of deep learning, PINNs have emerged as a ro-
bust computational framework for solving both forward and inverse PDE problems
[26, 98, 99, 100]. Unlike traditional numerical methods such as Finite Element
Methods (FEMs), PINNs take advantage of a mesh-free architecture to provide
unparalleled flexibility. In addition, PINNs are uniquely capable of incorporating
physics-based constraints and empirical data into their loss function, paving the
way for a wide range of applications in computational science and engineering.
These span multiple domains, including but not limited to nano-optics inverse pro-
blems [101], metamaterials [101], fluid dynamics [98], and systems biology para-
meter estimation [102, 103]. Recent advances have even extended the applicability
of PINNs to specialized PDEs such as integro-differential equations [99], fractional
PDEs [104], and stochastic PDEs [105].

Despite their remarkable achievements, PINNs are not without limitations. Ad-
dressing increasingly complex PDE problems poses both theoretical and practical
challenges that require further advances in PINN capabilities for improved predic-
tive accuracy, computational efficiency, and robustness [100]. Several extensions
to the basic PINN model have already been proposed, including the introduction
of meta-learned loss functions [106] and gradient-augmented PINNs, which incor-
porate gradient information into the PDE residuals [107]. The issue of effectively
balancing multiple loss terms in the total loss has also been addressed through au-
tomated weight-tuning methods [108, 109, 110]. Advanced strategies such as spa-
tial domain decomposition and temporally staged training further accelerate PINN
training while improving model accuracy [111, 112, 113, 114, 115, 116, 117, 118].
In addition to these general improvements, problem-specific adaptations such as
the precise enforcement of Dirichlet or periodic boundary conditions via specialized
network architectures have also been developed [119, 120, 121].

2.2.2 . Other Related Topics
Deep Energy Methods (DEMs). DEMs are another cutting-edge deep lear-

ning approaches for solving PDEs [122, 123, 124]. A key difference between DEMs
and PINNs is the loss design. In PINNs, the loss function is constructed to consider
only the general form of PDEs. Conversely, DEMs ingeniously exploit the inherent
structure of the problem at hand to design their loss functions. For example, in
solid mechanics, the Principle of Minimum Potential Energy (PMPE) dictates that
the potential energy of a system reaches a local minimum at equilibrium. This
principle synergizes well with the DEM minimization framework, allowing the use
of the total potential energy as its loss function.
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The innovative loss design has provided DEMs with superior computational per-
formance, especially in solving computational mechanics problems. Applications of
DEMs cover a wide range of problems, including Poisson’s equation [122], linear
elasticity [123, 125], hyperelasticity [123, 125], viscoelasticity [126], piezoelectricity
[123], fracture mechanics [123], strain gradient elasticity [123], and topology op-
timization [127]. In particular, the DEM loss function requires only the first-order
gradient of the displacement fields, making it less computationally intensive than
the PINNs [26, 128, 129], which require both second-order and first-order spatial
gradients.

Deep Operator Network (DeepONet). Another rapidly growing topic is
DeepONet. Unlike the aforementioned PINNs and DEMs, which use neural net-
works to approximate the solutions to PDEs, DeepONet aims to approximate ge-
neral PDE operators that map one function to another [130]. DeepONet integrates
two separate sub-networks : a branch network for encoding the input function and
a trunk network for the spatial variables. Subsequent adaptations have introdu-
ced convolutional layers to the branch network [131], multiple branch networks for
encoding various input source functions [132], and intermediate data fusion stra-
tegies before the final dot product [133]. DeepONet has found applications in a
wide range of areas, including heat diffusion [134], plastic deformation in dogbone
specimens [135], multi-scale analyses [136], crack propagation [137], Darcy flow
over complex domains [138], and engine combustion [139].

2.3 . Deep Learning for Solving Optimization Problems

In this section, we present two deep learning methods for solving optimization
problems. The first, known as Voice of Optimization [140, 141], considers solving
mixed integer convex optimization problems. The second, known as Deep Unfolding
[142, 143, 144], considers solving inverse problems with many applications in image
reconstruction and signal recovery. These two methods have connections with our
thesis and may inspire further development.

Method Target
Problem

NN
architecture

Input
Space

Output
Space

Loss
Type

Problem
Receiving

Multiple
Problems

[140, 141] (Chapter 2.3.1) Mixed integer convex optimization FNN Rp Rd+m Empirical Loss Partial Yes
[142, 143, 144] (Chapter 2.3.2) Linear inverse problem FNN Rm Rn Empirical Loss Full Yes
[145] (Chapter 3) Bimatrix game CNN (Rm×n,Rm×n) (Rm,Rn) Empirical Loss Full Yes
[146] (Chapter 4) Nonlinear projection equation FNN R Rn ODE Loss Full No
[147] (Chapter 5) Nonsmooth convex optimization FNN R Rn ODE Loss Full No
[148] (Chapter 6) Chance-constraint games FNN R2 Rn ODE Loss Full Yes

Table 2.1 – Summary of the deep learning methods covered in this the-
sis

Table 2.1 summarizes the six deep learning approaches in this thesis. We will
now explain the meaning of each column :

— "Target Problem" refers to the optimization problem to be solved.
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— "NN Architecture" refers to the neural network (NN) architecture adopted
by the approach.

— "Input Space" and "Output Space" describe the input and output of the
NN, respectively.

— "Problem Receiving" refers to whether the NN receives all or part of the
information of the target optimization problem. For example, if the NN
only receives some problem parameters of the optimization problem, it is
considered partial reception.

— "Multiple Problem" indicates whether the NN can solve multiple optimiza-
tion problems coming from the same probability distribution.

In particular, the "Loss Type" column in Table 2.1 indicates the type of loss
function used for training the NN. We categorize the loss into two types : empirical
loss and ODE loss. The empirical loss has the following form

ℓ(w) = ∥NN(x;w)− y∗∥, (2.4)

where NN represents a NN model with training parameters w. x is the model
input. NN(x;w) is the prediction given by the model, and y∗ is the corresponding
ground truth. Such a loss measures the discrepancy between the prediction and
the true value, and it is widely used in numerous deep learning tasks.

The ODE loss has the following form

ℓ(w) =

∥∥∥∥∂NN(x;w)

∂x
− Φ(NN(x;w))

∥∥∥∥ , (2.5)

where ∂NN(x;w)
∂x ∈ Rn denotes the derivative of the NN output with respect to its

input x. Φ(NN(x;w)) ∈ Rn is the expected true derivative, and Φ(·) is an ODE
system. This loss function is a special case of the PINN loss in Eq. (2.2), where
we consider the ODE system instead of a PDE. The NN is trained with this loss
function to become a solution to the ODE system.

2.3.1 . Voice of Optimization
Bertsimas & Stellato [140] proposed a machine learning approach for mixed in-

teger convex optimization (MICO) problems, namely Voice of Optimization. Below,
we present how this approach works.

Consider the MICO problem with the following form

min
x

f(x, θ) (2.6)

s.t. g1(x, θ) ≤ 0,

...

gm(x, θ) ≤ 0,

xI ∈ {0, 1}d,
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where x ∈ Rn is decision variables, and θ is problem parameters or problem data.
I is the index set for the decision variables constrained to take binary values, with
|I| = d. The functions f and gj , j ∈ {1, 2, . . . ,m} are assumed to be convex w.r.t.
x.

The solution approach consists of two phases, Training Phase and Prediction
Phase, as detailed below.

Training Phase : This phase generates a training dataset with the following
form

{(θi, s(θi))}Ni=1, (2.7)

where N denotes the number of instances. θi is a problem data corresponding to
an instance of (2.6). s(θi) denotes the true label corresponding to θi. The following
outlines the process of generating a data point (θi, s(θi)).

1. Sample θi by a given probability distribution P (θi).

2. Solve the MICO instance associated with θi to identify the optimal solution
(denoted by x∗(θi)) and tight constraints τ(θi).

3. Combine the optimal value of the binary variables x∗I(θi) and τ(θi), i.e.,
s(θi) = (x∗I(θi), τ(θi)).

Here, τ(θi) is the index set of constraints that are equalities at optimality, with
the following formal definition,

τ(θi) = {j ∈ {1, 2, . . . ,m}|gj(x∗(θi), θi) = 0}. (2.8)

The NN model is represented by

NN(θi;w) = ŝ(θi), (2.9)

where w is trainable parameters. The model inputs θi and predicts ŝ(θi). The NN
model is trained by the dataset {(θi, s(θi))}Ni=1 with the following loss function
defined as

ℓ(w) =
N∑
i=1

∥NN(θi;w)− s(θi)∥ . (2.10)

Prediction Phase : Given a new parameter θ drawn from the same training
probability distribution P (θ), the trained NN predicts ŝ(θ). Using ŝ(θ), the MICO
problem (2.6) becomes the following

min
x

f(θ, x) (2.11)

s.t. gi(θ, x) ≤ 0, ∀i ∈ T (θ)
xI = x⋆I(θ),

Solving (2.11) is much easier than (2.6), since redundant constraints are no longer
imposed. Bertsimas & Stellato [141] show that large dimensionality MICO problems
can be solved in just milliseconds.
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We summarize some of the following work on Voice of Optimization. As the
dimensionality of the problem increases, the number of different strategies in the
training set also becomes excessively large, posing a challenge to the classification
task. Bertsimas & Stellato [141] proposed a pruning algorithm to reduce this num-
ber, albeit at the cost of some performance compromise. Bertsimas & Kim [149]
employed an optimal-tree based prescriptive algorithm instead of neural networks to
solve the MICO problems. Voice of Optimization has demonstrated its applicability
in adaptive robust optimization [150] and robot planning [151] problems.

2.3.2 . Deep Unfolding
Deep unfolding or deep unrolling are emerging methods that are typically used

to solve inverse problems and have found many applications in the field of signal
processing [152]. These methods exploit the strengths of deep learning to accelerate
and improve the performance of iterative algorithms. By unrolling iterative schemes
into a finite number of layers in a deep NN, they enable the direct learning of
algorithmic parameters from data. This transformative approach not only preserves
the interpretability of traditional methods but also benefits from the adaptability
and generalization power of NNs. Through the lens of these methods, we gain
the capacity to address the inherent challenges of inverse problems, such as ill-
posedness and underdetermined systems, with newfound efficiency and robustness.
Below, we specifically demonstrate how a deep unfolding method known as LISTA
[142] solves linear inverse problems.

Consider the linear inverse problem, studied in [153, 154, 142, 143, 144], with
the following form

b = Ax∗ + ϵ, (2.12)

where

— x∗ ∈ Rn is the sought signal or image.

— b ∈ Rm is the observed data.

— ϵ ∈ Rm is an additive Gaussian white noise.

— A ∈ Rm×n is the observation operator, which is assumed known.

The objective is to recover x∗ given the observation b. The linear operator A is
learned from a physical model or prior identification step.

Typically, we have m≪ n, and the problem defined in (2.12) is an ill-posed and
highly under-determined system. Nevertheless, the problem becomes tractable if
x∗ is assumed to be sparse ; that is, the cardinality of the support S = {i|x∗i ̸= 0}
is small relative to n.

The LASSO formulation, a widely adopted method for addressing this problem,
is expressed as

min
x

1

2
∥b−Ax∥22 + λ∥x∥1, (2.13)

where λ is a scalar regularization parameter. ∥b − Ax∥22 is used to measure the
fidelity of the reconstructed signal to the observed data, ensuring that the solution
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is consistent with the observations, and ∥x∥1 is used to encourage the sparsity of
x.

The iterative shrinkage thresholding algorithm (ISTA) [153, 154] is a popular
choice to solve (2.13), with the following update rule

xk+1 = ηλ/L

(
xk +

1

L
AT (b−Axk)

)
, k = 0, 1, . . . ,K − 1, (2.14)

where K is the maximum number of iterations, and L is typically chosen as the
largest eigenvalue of ATA. ηθ(·) is the soft-thresholding function, defined in an
element-wise way

ηθ(x) = sign(x)max(0, |x| − θ). (2.15)

Gregor & LeCun [142] reinterpreted ISTA as a recurrent neural network (RNN)
with parameters W1 =

1
LA

T , W2 = I − 1
LA

TA, and θ = λ
L . Then, (2.14) becomes

xk+1 = ηθ

(
W1b+W2x

k
)
, k = 0, 1, . . . ,K − 1. (2.16)

Buidling upon this reinterpretation, they proposed Learned-ISTA (LISTA) that un-
rolls the RNN, given by

xk+1 = ηθk
(
W k

1 b+W k
2 x

k
)
, k = 0, 1, . . . ,K − 1. (2.17)

As a result the model (2.17) is a K-layer feed-forward NN, with Θ = {W k
1 ,W

k
1 , θ

k}K−1
k=0

as trainable parameters.
In ISTA, all parameters are predefined except for the hyperparameter λ to be

tuned. In comparison, LISTA treats the weights and thresholds as learnable parame-
ters and optimize them through stochastic gradient descent. The training dataset
{(x∗i , bi)}Ni=1 is sampled from a predefined distribution P . The corresponding trai-
ning objective is formulated as

min
Θ

E(x∗,b)∼P

∥∥x∗ − xK(Θ, b, x0)
∥∥2
2
, (2.18)

where x0 is the initial point as a hyperparameter.
After training, the LISTA model (2.17) has the ability to recover a new x from

the noisy data b which are from the same training distribution P . In addition,
empirical results [142, 143, 155, 156] have demonstrated that a sufficiently trained
K-layer LISTA network can match or exceed the generalization capabilities of
ISTA, often achieving comparable reconstruction of x′ from b with significantly
fewer iterations and improved accuracy of the outputs across the layers.

As a follow-up, Chen et. al [143] proposed a variant called LISTA-CPSS (LISTA-
coupling weight and support selection). They provided a linear convergence gua-
rantee for the proposed algorithm under certain conditions on the sampling distri-
bution P . Liu et al. [144] analytically characterized optimal network parameters by

29



imposing mutual incoherence conditions on the network weights. Analytical deri-
vation of the optimal parameters helps reduce the parameter dimensionality to a
large extent. Furthermore, the authors demonstrated that a network with analytic
parameters can be as effective as a network trained completely from data.
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3 - Solving Bimatrix Games with Bi-channel
Convolutional Neural Networks

In this chapter, we consider the problem of finding a Nash equilibrium in a
bimatrix game. We use a bi-channel convolutional neural network that takes the
bimatrix game as an input and generates two mixed strategies as a predicted
Nash equilibrium. Experimental results show that our approach is much faster
than traditional solution algorithms, including the Lemke-Howson algorithm and
enumeration methods, but at the cost of sacrificing some accuracy.

This chapter corresponds to the publication [145].

3.1 . Introduction

This chapter focuses on two-player general-sum games with finite actions, also
known as bimatrix games, which are fundamental models in non-cooperative game
theory [9]. Bimatrix games have numerous applications in engineering and econo-
mics, helping decision makers to analyze and make rational choices in competitive
environments.

The Nash equilibrium is a common solution concept for bimatrix games. It
represents a state in which no player has an incentive to unilaterally change his
strategy to increase his payoff. For two-player zero-sum games, von Neumann [157]
established the minimax theorem, which states that such games always have an
equilibrium point known as a saddle point. For n-player general-sum games, Nash
[10] proved the existence of a Nash equilibrium. Subsequently, various forms of
equilibrium in non-cooperative game theory have been developed through fixed
point theorems [11, 158].

However, despite significant advances in equilibrium existence theorems in game
theory, computing Nash equilibria remains challenging. Two-player zero-sum games
can be reformulated as linear programming (LP) problems [2], which can be solved
in polynomial time using interior-point methods [159, 160]. However, there is no
polynomial time algorithm for bimatrix games, and computing a Nash equilibrium
in a bimatrix game falls into the PPAD complexity class [1, 14].

Another research topic covered in this chapter is convolutional neural networks
(CNNs). Due to the rapid growth of data availability and computational resources,
deep learning has been applied across various domains, such as computer vision
[16, 161, 162], natural language processing [19, 163], and recommender systems
[164]. CNNs are deep neural networks with many applications in image proces-
sing [22, 165]. Following the remarkable success of AlexNet [17] in the ImageNet
challenge [18], research on neural network architectures has rapidly advanced to
improve computational performance [166, 167, 168, 169, 170]. In addition, specia-
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lized network architectures have been developed for various application purposes
[171, 172, 173]. For example, by combining with physics-informed neural networks
[26] or multigrid methods [174], CNNs have been used to solve partial differential
equations [175, 176, 177].

Lemke-Howson Algorithm. The Lemke-Howson algorithm (LH algorithm
for short) is a well-established method for finding a Nash equilibrium of a bimatrix
game [29]. Despite being in use for several decades, it remains the most efficient
method available. In each iteration, the LH algorithm performs an integer pivoting
operation until a Nash equilibrium is found. The final Nash equilibrium determined
by the method depends on a chosen parameter called the initially dropped label.
The algorithm ensures that a Nash equilibrium of a bimatrix game can be compu-
ted. However, the complexity of this algorithm implies that the required number of
iterations grows exponentially with respect to the game size, even in the best-case
scenario [30, 1].

Enumeration Methods. In contrast to the LH algorithm, which finds only
one Nash equilibrium, support enumeration and vertex enumeration are two me-
thods that identify all Nash equilibria of a bimatrix game. Support enumeration
iterates through all possible supports of mixed strategies, and it solves a linear
system in each iteration [9]. Vertex enumeration requires finding all vertices of
two best response polytopes, which is equivalent to solving many linear systems
[9, 178]. Like the LH algorithm, these enumeration methods require exponential
time to find an equilibrium [30].

CNNs for Solving Two-Player Zero-Sum Games. Recent research has
explored the potential of using CNNs to solve two-player zero-sum games. In [179],
the CNN model first predicts the optimal value of a two-player zero-sum game
based on player 1’s payoff matrix. Then, the corresponding predicted saddle point
is obtained by solving a system of linear inequalities. The advantage of this approach
is that the trained CNN can quickly predict the optimal value of the game with
a relative loss of accuracy. The disadvantage, however, is that it still requires a
standard LP solver to solve the system of linear inequalities to obtain the predicted
saddle point. Later research improved this method by using the CNN to predict the
saddle point directly, thus eliminating the need for an LP solver to handle linear
systems [180].

Motivations. Traditional solution methods, such as the LH algorithm and
the enumeration methods, solve a bimatrix game iteratively. Specifically, to reach a
Nash equilibrium, the LH algorithm requires numerous integer pivoting iterations,
while the enumeration methods must solve many linear systems. Consequently,
these traditional methods can be computationally intensive, especially when dealing
with numerous bimatrix games. Recently proposed CNN approaches show compu-
tational advantages [179, 180]. However, they are only applicable to two-player
zero-sum games, which are a special case of bimatrix games.

Contributions. The key contributions of this chapter are as follows.
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— In contrast to [179, 180], the proposed method can now address the bimatrix
game problem. Specifically, we introduce the bi-channel CNN (BiCNN for
short), which takes the two payoff matrices of a bimatrix game as input and
predicts its Nash equilibrium.

— We propose a new algorithm to train the BiCNN model using a diverse set
of bimatrix games with different game sizes and probability distributions.
It is worth noting that in [180], the training algorithm uses only a single
combination of game size and probability distribution to train the model.

— Compared to traditional solution methods, such as the LH algorithm and
enumeration methods, our proposed BiCNN method can solve a bimatrix
game directly without any iterative process. Consequently, the BiCNN mo-
del outperforms these traditional methods in terms of computational time,
especially when solving multiple instances. For example, the BiCNN model
solves a single instance more than 5 times faster than the LH algorithm, and
solves 10,000 instances more than 5,000 times faster than the LH algorithm.

The rest of this chapter is organized as follows. Section 3.2 introduces the
bimatrix game and discusses traditional solution methods for solving it. Section
3.3 presents the design of the BiCNN model and its loss function. Section 3.4
describes the process of training the BiCNN model, including the generation of
training data and the training algorithm. Section 3.5 provides the implementation
details of the proposed method and compares the computational performance of
the BiCNN model with that of traditional methods. Finally, Section 3.6 gives a
summary of this work.

3.2 . Preliminaries

A two-player general-sum game, or a bimatrix game, is represented by a tuple(
N, (Si)i∈N , (ui)i∈N

)
, where

— N = {1, 2} is the set of players, denoted by player 1 and player 2.

— S1 = {1, . . . ,m} and S2 = {1, . . . , n} are nonempty finite sets of pure
strategies for player 1 and player 2, respectively. m and n represent the
number of pure strategies for player 1 and player 2, respectively. Throughout
this chapter, we use (m,n) to represent the game size of a bimatrix game.

— Let S := S1 × S2 denote the set of pure strategy profiles. u1 : S → R and
u2 : S → R are payoff functions for player 1 and player 2, respectively.

The two payoff functions, u1 and u2, can be represented by two payoff matrices
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A ∈ Rm×n and B ∈ Rm×n, respectively, as follows :

A =


a11 a12 . . . a1n
a21 a22 . . . a2n
...

...
...

...
am1 am2 . . . amn

 , (3.1)

B =


b11 b12 . . . b1n
b21 b22 . . . b2n
...

...
...

...
bm1 bm2 . . . bmn

 . (3.2)

If player 1 chooses the i-th pure strategy and player 2 chooses the j-th pure
strategy, player 1 and player 2 receive payoffs of aij and bij , respectively. These
two matrices encapsulate all the information needed for a bimatrix game, including
the game size and the payoff functions. Consequently, a bimatrix game can be
concisely represented by its two payoff matrices, denoted as Γ := (A,B).

A mixed strategy is a discrete probability distribution over the set of pure
strategies. Let x ∈ X and y ∈ Y represent the mixed strategies of player 1 and 2,
respectively. X = {x ∈ Rm | 1Tmx = 1,x ≥ 0} and Y = {y ∈ Rn | 1Tny = 1,y ≥
0} are feasible sets, where 1Tm = [1, 1, . . . , 1]T ∈ Rm and 1Tn = [1, 1, . . . , 1]T ∈
Rn. The support of a mixed strategy consists of the pure strategies with positive
probability.

A mixed strategy x∗ of player 1 is considered a best response to the given
mixed strategy y of player 2 if x∗ maximizes player 1’s expected payoff, denoted
as x∗ := argmaxx∈X xTAy. Similarly, a best response y∗ of player 2 to the given
x maximizes player 2’s expected payoff, denoted as y∗ := argmaxy∈Y xTBy.

Definition 3.1 Consider a bimatrix game Γ = (A ∈ Rm×n,B ∈ Rm×n). A mixed
strategy profile (x∗,y∗), x∗ ∈ X and y∗ ∈ Y , is called a Nash equilibrium if the
following holds

(x∗)T Ay∗ ≥ xTAy∗ ∀x ∈ X,

(x∗)T By∗ ≥ (x∗)T By ∀y ∈ Y.
(3.3)

Theorem 3.1 ([10]) Any game with a finite set of players and a finite set of pure
strategies per player has a Nash equilibrium of mixed strategies.

According to Theorem 3.1, for any bimatrix game, there always exists at least
one Nash equilibrium (x∗,y∗). The corresponding optimal values v∗1 and v∗2 for
players 1 and 2 are denoted as :

v∗1 := (x∗)TAy∗,
v∗2 := (x∗)TBy∗.

(3.4)
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Definition 3.2 A bimatrix game is called nondegenerate if no mixed strategy of
support size k has more than k best responses of pure strategies.

Traditional Methods 1 : Support enumeration Input : a nondegenerate
bimatrix game (A ∈ Rm×n,B ∈ Rm×n). Output : all Nash equilibria. The solution
procedure is as follows.

1. For k = 1, . . . ,min{m,n}, generate two sets (I, J) which are k-sized sub-
sets of S1 and S2, respectively.

2. Solve the following linear system with the variable vectors (x,y, v, u),∑
i∈I xibij = v ∀j ∈ J,∑
j∈J aijyj = u ∀i ∈ I,

1Tmx = 1, 1Tny = 1, x ≥ 0, y ≥ 0,

(3.5)

where xi and yj denote the i-th and j-th element of x and y, respectively.

3. The solution vector (x,y) that solves Eq. (3.5) is a Nash equilibrium.

Traditional Methods 2 : Vertex enumeration Input : a nondegenerate bi-
matrix game (A ∈ Rm×n,B ∈ Rm×n). Output : all Nash equilibria. This method
is based on two concepts, i.e., completely labeled and best response polytopes. We
say x has label k if one of the following two conditions hold. (a) If k ∈ {1, . . . ,m},
xk = 0. (b) If k ∈ {m+1, . . . ,m+n}, (BTx)k = max

{
(BTx)k | k ∈ S2

}
. Simi-

larly, y has label k if one of the following two conditions hold. (a) If k ∈ {1, . . . , n},
yk = 0. (b) If k ∈ {n+1, . . . , n+m}, (Ay)k = max {(Ay)k | k ∈ S1}. A mixed
strategy profile (x,y) is called completely labeled if every label k ∈ {1, . . . ,m+n}
appears in either x or y. The two best response polytopes are denoted as

P =
{
x ∈ Rm | B⊤x ≤ 1, x ≥ 0

}
,

Q = {y ∈ Rn | Ay ≤ 1, y ≥ 0} .
(3.6)

The solution procedure is as follows.

1. Obtain the polytopes P and Q of the game according to Eq. (3.6).

2. Find all vertices in P and Q.

3. Check each pair of vertices (x ∈ P,y ∈ Q), except (0,0). If (x,y) is
completely labeled, output a Nash equilibrium

(
x/1⊤x,y/1⊤y

)
.

Traditional Methods 3 : The LH algorithm Input : a nondegenerate bima-
trix game (A ∈ Rm×n,B ∈ Rm×n). Output : one Nash equilibrium. The solution
procedure is as follows.

1. Obtain the polytopes P and Q of the game according to Eq. (3.6).

2. Start with (x,y) = (0,0), which is completely labeled. Choose an initially
dropped label k ∈ {1, 2, . . . ,m+ n}, and set lold = k.
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3. Drop the label lold and move to a new pair of vertices (x ∈ P,y ∈ Q) of
the polytopes. (x,y) has a new label lnew.

4. If lnew = k, return the Nash equilibrium
(
x/1⊤x,y/1⊤y

)
. Otherwise, set

lnew = lold and repeat step 3.

Note that in step 3, the label replacement corresponds to an integer pivoting
operation [2].

For more details on these three traditional solution methods, we refer the reader
to [9].

3.3 . BiCNN Model

Hidden layers

Shared CNN Task-specific CNNs Global Pooling

Model architecture
Input
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Output

Normalization

P
re

d
icte

d
 N

E
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Predicted optimal values

True optimal values

Convolutional layers
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Channel-length wise pooling
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Figure 3.1 – An overview of the proposed BiCNN model. (A) BiCNN mo-
del architecture, where the input (A,B) is a bimatrix game represen-
ted by its two payoffmatrices, and the output (x̂, ŷ) is a predicted Nash
equilibrium. (B) Loss computation, where the predicted optimal values
(v̂1, v̂2) are calculated using Eq. (3.9), and the true optimal values (v∗1, v∗2)
are obtained using the Lemke-Howson (LH) algorithm.

Input and Output. We propose a Bi-channel CNN (BiCNN) model that
takes a bimatrix game as input and predicts its Nash equilibrium. The BiCNN
model receives a two-channel array representing the payoff matrices of player 1
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and player 2 in a bimatrix game, respectively. The BiCNN model can be expressed
as :

h(A,B;w) = (x̂, ŷ). (3.7)

(A ∈ Rm×n,B ∈ Rm×n) is a bimatrix game to solve, where A is player 1’s
payoff matrix and B is player 2’s payoff matrix. h(A,B;w) represents a neural
network with trainable parameters w. (x̂ ∈ Rm, ŷ ∈ Rn) denotes a predicted Nash
equilibrium for the input bimatrix game, where x̂ is the predicted mixed strategy
of player 1 and ŷ is the predicted mixed strategy of player 2.

Double Branches Architecture. As shown in Fig. 3.1(A), the model consists
of two parts : a shared CNN and two task-specific CNNs. The shared CNN first
transforms the input bimatrix game into shared hidden feature maps. The two
task-specific CNNs then process the shared feature maps separately to generate
the predicted mixed strategies x̂ and ŷ. A key feature of the BiCNN model is its
ability to solve bimatrix games of different sizes. The model takes in two matrices
(A,B) with arbitrary shapes (m ∈ R, n ∈ R) and outputs two corresponding
vectors with m and n dimensions. This feature is made possible by two impor-
tant techniques : (a) fully convolutional layer design, and (b) two global pooling
techniques.

Spatial Shape Preservation. The BiCNN model consists entirely of convo-
lutional layers, omitting fully connected layers. A convolutional layer with certain
settings preserves the spatial shape of the feature map. For example, consider an
input feature map with a spatial shape of (10, 10) and a convolutional layer with
a kernel size of 3 ∗ 3, stride of 1, and padding of 1. After processing through
this convolutional layer, the feature map retains its spatial shape of (10, 10). Each
convolutional layer in the BiCNN model uses such a setup to preserve the spatial
shape of a bimatrix game from input to output.

Width-wise and Length-wise Pooling. As shown in the hidden layer of Fig.
3.1(A), the outputs of the two task-specific CNNs are compressed by width-wise
and length-wise pooling, respectively. The two final feature maps have the shapes
(c1,m, n) and (c2,m, n), respectively, where c1 and c2 represent the number of
channels, and (m,n) corresponds to the game size of the input bimatrix game.
Width-wise pooling compresses the channel and width directions, resulting in an
m-dimensional vector. Similarly, length-wise pooling compresses the channel and
length directions, resulting in an n-dimensional vector. These two vectors are then
normalized using the softmax function to become discrete probability distributions,
which represent the predicted mixed strategies.

Loss Function. The loss function for the proposed BiCNN model is designed
as follows :

L(A,B;w) =
1

2
ℓ(v̂1, v

∗
1) +

1

2
ℓ(v̂2, v

∗
2), (3.8)

where
v̂1 = x̂TAŷ,
v̂2 = x̂TBŷ.

(3.9)
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v̂1 and v̂2 represent the predicted optimal values for player 1 and player 2, respec-
tively, obtained from the predicted Nash equilibrium (x̂, ŷ). v∗1 and v∗2 are the true
optimal values, obtained from the true Nash equilibrium and calculated using Eq.
(3.3). ℓ(·, ·) denotes an error metric, such as mean square error.

Motivation for the Loss Design. The loss function measures the error on
the predicted optimal values rather than the predicted Nash equilibrium for the
following reasons. (a) A bimatrix game typically has multiple Nash equilibria, and
fitting to any one of them would be unfair to the others. Using the optimal value
circumvents this issue, as it is unique. (b) Training to minimize the gap between
two scalars is easier than reducing the gap between two vectors, i.e., approximating
(v̂1, v̂2) to (v∗1, v

∗
2) is simpler than approximating (x̂, ŷ) to (x∗,y∗).

3.4 . Model Training

In this section, we describe the training process for the BiCNN model. Similar
to [179, 180], due to the lack of standard and available datasets, we randomly
generate bimatrix games for training and testing. The generation of a bimatrix game
is determined by two predefined parameters : game size and probability distribution.
To improve the ability of the BiCNN model to solve a wide range of bimatrix games,
we design an objective function that takes into account different game sizes and
probability distributions. We propose a training algorithm that aims to minimize
this objective function.

3.4.1 . Bimatrix Game Generation

A Training Sample. A sample used to train the BiCNN model has the form
of (Amn,Bmn, v

∗
1, v

∗
2), where

— (Amn,Bmn) represents a bimatrix game with game size (GS) of (m,n),
where Amn ∈ Rm×n and Bmn ∈ Rm×n.

— (Amn,Bmn) is generated by a given probability distribution (PD), such as
the uniform distribution with interval [0, 100], denoted as U(0, 100). We
use the notation Amn ∼ P to indicate that each element within the matrix
Amn is sampled by P . Bmn ∼ P has the same meaning.

— (v∗1, v
∗
2) are the optimal values corresponding to the bimatrix game (Amn,Bmn).

Traditional solution methods, such as the LH algorithm, are used to solve the
bimatrix game and obtain the Nash equilibrium (x∗,y∗). Then, the optimal
values (v∗1, v

∗
2) are computed using Eq. (3.4).

GS-PD Combination. A GS-PD combination determines how a bimatrix
game is generated. It takes the form of GS : (m,n) and PD : P , where (m,n)

specifies the game size, and P specifies how the two payoff matrices are sampled.
A GS-PD combination is considered trained if it is used to generate training data
of bimatrix games, and untrained otherwise.
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Robustness of BiCNN. In this chapter, we define the model robustness as its
ability to solve bimatrix games generated from untrained GS-PD combinations. To
improve model robustness, we train the model with multiple GS-PD combinations,
which means that the training bimatrix games have different game sizes and are
sampled from different probability distributions. This is in contrast to the previous
study [180], where the model is trained with only one GS-PD combination.

3.4.2 . Objective Function with Multiple GS-PDs
Objective Function. The objective function that takes into account multiple

training GS-PDs is formulated as follows :

E(w) =
∑

(m,n)∈G

∑
P∈P

EAmn∼P,Bmn∼P [L(Amn,Bmn;w)], (3.10)

where G is a set containing multiple GSs. P is a set containing multiple PDs. |G|
and |P| denote the sizes of G and P, respectively. The objective function E(w)

has |G| ∗ |P| terms, and each term EAmn∼P,Bmn∼P [L(Amn,Bmn;w)] represents
an expected risk with respect to a GS-PD combination.

Batch Loss. However, the objective function E(w) is computationally in-
tractable even though the PDs of the expectation are known. Therefore, in practice,
the model is trained with a batch loss that serves as an estimate of the objective
function (3.10). The batch loss is as follows :

LB(w) =
1

|B|
∑

(A
(i)
mn,B

(i)
mn)∈B

L(A(i)
mn,B

(i)
mn;w), (3.11)

where |B| denotes the batch size. B = {(A(1)
mn,B

(1)
mn), (A

(2)
mn,B

(2)
mn), . . . , (A

|B)|
mn ,B

(|B)|
mn )}

represents a batch of training bimatrix games, and each training sample (A(i)
mn,B

(i)
mn)

in the batch has the same GS and is sampled from the same PD. The batch loss
LB(w) represents the average of Eq. (3.8) across all bimatrix games in the batch
B.

3.4.3 . Training Algorithm with Multiple GS-PDs
Multi-GS-PD Training Algorithm. Alg. 1 outlines the training process for

the BiCNN model, which incorporates multiple GS-PDs and focuses on optimizing
the objective function described in Eq. (3.10). The training GSs and PDs are repre-
sented by G and P, respectively, which are traversed by the two for-loops in the
algorithm. In each iteration, a combination of GS-PD, i.e., (m,n) ∈ G and P ∈ P,
is selected to generate a batch of training bimatrix games. The LH algorithm is
used to solve these bimatrix games and obtain the true optimal values, which are
then used in the loss function according to Eq. (3.8).

Bimatrix Game Generation Rule. Unlike traditional machine learning tasks,
Alg. 1 does not rely on a given training dataset. Instead, it relies on a bimatrix game
generation rule, specifically the set of GS-PDs, to generate the bimatrix games for
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Algorithm 1 BiCNN Training with Multiple GSs and PDs
Require: G : a set of training GSs ; P : a set of training PDs
1: Initialize a BiCNN model denoted as h(· ;w)
2: while iter ≤Max iteration do
3: for (m,n) ∈ G do
4: for P ∈ P do
5: Generate a batch of bimatrix games : B ∼ P
6: Predict Nash equilbria : h(B;w)
7: Calculate predicted optimal values by Eq. (3.9)
8: Solve the batch B by the LH algorithm : LH(B)
9: Compute LB(w)
10: Update w by∇wLB(w)
11: end for
12: end for
13: end while

training. During each iteration, the model is trained on a batch of bimatrix games
generated according to this rule. The algorithm can continue indefinitely without
training on the same bimatrix game twice, since the probability of sampling a
bimatrix game with the same PD more than once is extremely small.

Learning from the LH Algorithm. In addition to the bimatrix game ge-
neration rule, a solution algorithm is needed to solve these games and obtain the
true values. Alg. 1 uses the LH algorithm for this purpose. The model learns the
LH algorithm in the context of a specific bimatrix game generation rule. The ge-
neralization ability of the model depends on the pre-specified generation rule and
the quality of its training. Once training is complete, the model can predict the
Nash equilibrium for an unseen bimatrix game generated by the same rule used for
training, and the BiCNN model makes the prediction without the need for the LH
algorithm.

3.4.4 . Error Analysis

Notations Setup. This subsection presents an error analysis for the BiCNN
model. For simplicity, we focus on the single GS-PD pair scenario, but note that
the analysis can be easily generalized to scenarios involving multiple GS-PD pairs.
Before delving into the specifics of the analysis, we first establish some basic defi-
nitions to facilitate our discussion.

— LB : Represents the empirical risk, where B refers to a training dataset
comprised of bimatrix games, and each training game is sampled by the PD
of D. LB is defined in Eq. (3.11) with only one GS-PD pair.

— LD : Represents the expected risk associated with the PD of D. Similarly,
LD is defined in Eq. (3.10) with only one GS-PD pair is considered.
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— H : Represents a class of BiCNN models that share a similar architecture
as shown in Fig. 3.1-(A). These models must be implementable, i.e., they
should contain a certain number of hidden layers and neurons, and their
model parameters must be finite.

— G : Represents a more general class of models, which may or may not be
implementable, but which necessarily includes H, i.e., H ⊂ G. For example,
G could be a network architecture with an infinite number of hidden layers
and neurons.

Three Predictors. The empirically optimal predictor h∗B ∈ H w.r.t. the em-
pirical risk LB is given by

h∗B ∈ argmin
h∈H

LB(h). (3.12)

The expected optimal predictor h∗ ∈ H w.r.t. the expected risk LB is given by

h∗ ∈ argmin
h∈H

LD(h). (3.13)

The universal optimal predictor g∗ ∈ G is given by

g∗ ∈ argmin
g∈G

LD(g). (3.14)

In terms of the expected risk LD, the three predictors h∗B, h∗, and g∗ have the
following relationship,

LD(g∗) ≤ LD(h∗) ≤ LD (h∗B) . (3.15)

The first inequality holds because the model class G contains H, such that h∗ ∈ G,
but g∗ may not be in H. The second inequality holds because h∗B is the minimizer
of the empirical risk LB for a finite set B, while h∗ is the minimizer of the expected
risk LD. Even with LB(h∗B) = 0, the inequality still holds, since the predictor h∗B
tends to overfit the training dataset B.

Error Decomposition. Let h̃ ∈ H be a BiCNN model that one obtain in
practice, e.g. the output of Alg. 1 after 10,000 iterations. As shown in Fig. 3.2-
(A), the total error from h̃ to the universal optimal predictor g∗ is decomposed
into three parts : 1) optimization error, 2) estimation error, and 3) approximation
error.

— Optimization error : It measures the gap between the BiCNN predictor h̃

and the empirically optimal predictor h∗B. This error is due to the fact that
the empirical risk is highly non-convex and therefore it is difficult to find
the global optimum, i.e. h∗B. Minimizing this error has been a persistent pro-
blem in machine learning, usually involving many technical tricks and tedious
trial-and-error hyperparameter tuning. Gradient descent is typically used to
minimize this error, and many variants have been proposed to improve per-
formance.
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Optimization error

Optimization error

Estimization error Approximation error

(A)
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Figure 3.2 – (A) : Illustration of the error decomposition for a BiCNNmo-
del, denoted as h̃. (B) : The error decomposition when given an infinite
number of iterations and a sufficiently complicated network architec-
ture for Alg. 1.

— Estimation error : This measures the difference between the empirically op-
timal predictor h∗B and the expected optimal predictor h∗. This error stems
from the use of finite training data of bimatrix games. h∗B gradually converges
to h∗ as the provided game dataset B tends to infinity. In the context of our
proposed BiCNN approach, minimizing this error refers to providing more
training iterations for Alg. 1, since each iteration generates a new batch of
bimatrix games, which is equivalent to expanding B

— Approximation error : This measures the difference between the expected
optimal predictor h∗ and the universal optimal predictor g∗. This error re-
sults from the limited representational capacity of a particular BiCNN model
architecture. Reducing this error requires the construction of more compli-
cated network architecture with stronger representational capabilities, such
as more hidden layers and neurons.

Infinite Iterations and Complex Model Architecture. Fig. 3.2-(B) shows
the scenario where Alg. 1 undergoes infinite iterations and is equipped with a
sufficiently complicated network architecture. Under such circumstances, both the
estimation error and the approximation error, tend to gradually approach zero.
Consequently, the empirically optimal predictor h∗B converges to the universally
optimal predictor g∗. However, this inevitably leads to an increase in the optimi-
zation error, which can be difficult to minimize for the BiCNN model. Here, we
must emphasize the importance of providing more iterations for Alg. 1. In each
iteration, the algorithm not only trains the model, but also generates game data,
which reduces both the optimization error and the estimation error.

Open Problems. Our goal is to continuously refine and improve the BiCNN
model h̃ to approximate the universally optimal predictor g∗. Despite our progress,
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several important problems still remain open in the study of game theory. First,
given a model class H, what is the value of minh∈H LD(h) ? Second, what is
the lower bound of ming∈G LD(g) for any arbitrary hypothesis class G ? Third, is
there a hypothesis class G for which the minimum expected risk, ming∈G LD(g),
is zero ? Answering these questions could potentially reshape our understanding of
the limits of model performance. Their answers, once revealed, will undoubtedly
deepen our understanding and contribute significantly to the advancement of our
BiCNN research.

3.5 . Numerical Results

Experimental Setup. We run our experiments on the Google Colab Pro+
platform with an A100-40GB GPU. The BiCNN model is implemented using Py-
Torch 1.12.1 with CUDA 11.2 support [181]. Our proposed method is benchmarked
against the LH algorithm, support enumeration, and vertex enumeration methods,
all of which are implemented in the Nashpy library [182].

Training and Testing Data. As described in Section 3.4, we generate bi-
matrix games for training and testing purposes. A bimatrix game is generated
according to a GS-PD combination. For example, a bimatrix game (A,B) is consi-
dered generated by GS : (20, 20) and PD : U(0, 100) if (a) the game has 20 pure
strategies for both player 1 and player 2, i.e., A ∈ R20×20 and B ∈ R20×20, and
(b) each element within the payoff matrices A and B is sampled from the uniform
distribution U(0, 100). In practice, we generate such a bimatrix game with this
GS-PD combination using the numpy.random.uniform(0, 100, (20, 20)) function
in the NumPy library [183].

In Section 3.5.1, we present the training process for a BiCNN model, detailing
the model architecture, hyperparameter settings, and training loss. Section 3.5.2
and Section 3.5.3 evaluate the performance of the trained BiCNN model in terms
of computation time and prediction accuracy, respectively. In Section 3.5.4, we
perform an ablation study to evaluate the robustness training property of Alg. 1.
In Section 3.5.5, we combine the BiCNN model with the traditional solvers for
efficient and accurate solutions. In Section 3.5.6, we discuss the advantages and
limitations of our proposed approach.

3.5.1 . Model Training
Model Details and Hyperparameters. We initialize a BiCNN model with

the architecture shown in Table 3.1. The training hyperparameters are as fol-
lows : the maximum number of iterations is set to 15,000, and the ADAM op-
timizer [27] is used. The learning rate is set to 0.001 before the 10,000th ite-
ration and to 0.0001 thereafter. The batch size is fixed at 32. We choose the
training GS set as G = {(20, 20), (30, 30), (40, 40)} and the training PD set as
P = {U(0, 100), N(50, 25)}. U(0, 100) denotes the uniform distribution on the
interval [0, 100], and N(50, 25) denotes the normal distribution with a mean of 50
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Table 3.1 – Details of the BiCNN model. Given a bimatrix game with
game size (m,n) as input, the model predicts two mixed strategies : an
m-dimensional vector x̂ for player 1 and an n-dimensional vector ŷ for
player 2. Each hidden layer uses leaky relu as the activation function,
as well as batch normalization.
Group Layer Operator Details Input size Output size

Shared CNN

1 Conv 3*3 8 filters (2, m, n) (8, m, n)
2 Conv 3*3 16 filters (8, m, n) (16, m, n)
3 Conv 3*3 32 filters (16, m, n) (32, m, n)
4 Conv 3*3 64 filters (32, m, n) (64, m, n)

Task-specific CNN
for Player 1

1 Conv 3*3 32 filters (64, m, n) (32, m, n)
2 Conv 3*3 16 filters (32, m, n) (16, m, n)
3 Conv 3*3 16 filters (16, m, n) (16, m, n)
4 Conv 3*3 8 filters (16, m, n) (8, m, n)

5 Pooling Channel-width wise
global pooling (8, m, n) (m, )

Task-specific CNN
for Player 2

1 Conv 3*3 32 filters (64, m, n) (32, m, n)
2 Conv 3*3 16 filters (32, m, n) (16, m, n)
3 Conv 3*3 16 filters (16, m, n) (16, m, n)
4 Conv 3*3 8 filters (16, m, n) (8, m, n)

5 Pooling Channel-length wise
global pooling (8, m, n) (n, )

and a variance of 25.
Training of the BiCNN Model. We train the BiCNN model using Alg.

1. In each iteration, the algorithm first selects a GS and a PD from G and P,
respectively. The BiCNN model is then trained on the bimatrix games that are
generated based on the selected GS-PD combination. In each iteration, the model
updates its parameters six times, corresponding to the six different combinations
in G and P. Figs. 3.3 (B-C) shows the losses for the six combinations of GS-PD,
while Fig. 3.3 (A) shows the average of these six losses.

Loss Analysis. Due to the characteristics of our training algorithm, our
BiCNN model is not explicitly trained on any particular bimatrix game dataset,
thus avoiding overfitting to any particular dataset. Notably, the model is constantly
trained on fresh, unseen data, and the loss shown in Fig. 3.3 refers to the test loss.
Within a span of 15,000 iterations, the loss value shows a significant reduction,
converging from an initial value of 1600 to a relatively minimal value of about 250.
As explained in Section 3.4.4, this final loss value of 250 is composed of three com-
ponents : optimization error, estimation error, and approximation error. This final
loss value of 250 serves as a measure of the deviation between the performance
of the BiCNN model and an exact method, such as the LH algorithm, which can
solve the bimatrix game with zero error.

3.5.2 . Computational Efficiency
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Figure 3.3 – M.S.E. loss versus the number of iterations, where M.S.E.
refers to mean square error. In each iteration, there are six updates of
the model parameters, corresponding to six loss values. (A) Average of
the six losses. (B) The three losses associated with the uniform distri-
bution U(0, 100). (C) The three losses associated with the normal distri-
bution N(50, 25).

Solving a Single Instance. The main advantage of our proposed BiCNN
method is that it is much faster than traditional solvers. Fig. 3.4(A) compares the
computation time of the BiCNN model with the LH algorithm, support enumeration
(SE), and vertex enumeration (VE) for solving a bimatrix game of GS (20, 20)

generated by PD U(0, 100). The BiCNN model significantly outperforms these
three solvers. On average, the LH algorithm, the most efficient traditional solver,
takes 15.1 ms to solve a bimatrix game, while the BiCNN model solves it in only
2.8 ms (5x faster). SE and VE take even more than 1.5 hours to find a Nash
equilibrium. In addition, the solution time of BiCNN is more stable than that of
the LH algorithm, as indicated by the lower standard deviation. This is because the
LH algorithm typically performs a varying number of pivoting operations depending
on the instance to reach a Nash equilibrium. In contrast, the solution time of the
BiCNN model is independent of the specific instance.

Solving Multiple Instances. When it comes to solving multiple instances of
bimatrix games, the computational efficiency of our BiCNN method outperforms
the LH algorithm by more than an order of magnitude. We test the computational
time of the two methods on solving different numbers of game instances, where
each game instance has a GS of (20, 20) and is generated by U(0, 100). As shown
in Fig. 3.4(B), the LH algorithm requires a total of 145,213 ms to solve 10,000
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Figure 3.4 – Computational efficiency comparison. Time is measured
in milliseconds (ms). (A) Computational times (ms) for solving a single
bimatrix game using four solvers : the BiCNN model (our approach),
Lemke-Howson algorithm (LH), support enumeration (SE), and vertex
enumeration (VE). (B) Computational times (ms) for solving multiple bi-
matrix games using the BiCNN model and LH algorithm.

instances, while the BiCNN model completes the predictions in only 22.5 ms (6454x
faster). Furthermore, the solution time of the LH algorithm increases linearly with
the number of instances to be solved. For example, the LH algorithm takes ten
times longer to solve 1,000 instances than it does to solve 100 instances. Conversely,
the BiCNN model breaks this linear growth, requiring only twice the computational
time to solve 1,000 instances compared to 100 instances.

CUDA Support. To the best of our knowledge, traditional algorithms for
solving bimatrix games, including the LH algorithm and the enumeration methods,
operate on CPUs and do not have CUDA support. This lack of CUDA utilization
in the traditional solution algorithms is mainly due to their iterative nature, where
each step involves solving sub-optimization problems, making it difficult to utilize
CUDA to improve performance. In contrast, our proposed BiCNN model works
in a fundamentally different way. The solution process of the BiCNN model for a
bimatrix game is equivalent to a single forward propagation of neural networks,
which inherently depends on matrix operations. As a result, the BiCNN model is
capable to take advantage of CUDA to greatly improve computational efficiency.
From the perspective of CUDA support, BiCNN can be seen as a novel method that
effectively exploits the power of CUDA, in stark contrast to traditional CPU-based
methods.

3.5.3 . Prediction Accuracy

Evaluation Setup. The accuracy of the trained BiCNN model is evaluated
by comparing its performance with both the naive method and the LH algorithm,
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as shown in Table 3.2. The test bimatrix games are generated using the same gene-
ration rule applied during training, with (m,n) ∈ G = {(20, 20), (30, 30), (40, 40)}
and P ∈ P = {U(0, 100), N(50, 25)}. While G and P participated in the training
process, the game instances for testing are untrained data.

Naive Method. In this context, the naive method generates two random
mixed strategies as a predicted Nash equilibrium. For example, we first generate
two vectors by the uniform distribution U(0, 1), which are then transformed into
two probability distributions by the softmax function. These two probability distri-
butions constitute a mixed strategy profile that serves as a predicted Nash equi-
librium. Note that the naive method is equivalent to an untrained BiCNN model.
The computational time of the naive method is considered negligible, since the
generation of two vectors requires minimal machine time.

Evaluation Metric. The Mean Absolute Percentage Error (MAPE) is used
to evaluate prediction accuracy. The MAPE is defined as :

MAPE =
1

BS

BS∑
i=1

∣∣∣∣v∗i − v̂i
v̂i

∣∣∣∣ ∗ 100%, (3.16)

where BS is the number of instances in a test batch. v̂i, i = 1, 2 and v∗i , i = 1, 2

represent the predicted and true optimal values for both players, respectively. Since
the LH algorithm generates an exact Nash equilibrium, its MAPE is considered to
be zero.
The Mean Optimal Value (MOV) and Standard Deviation of Optimal Values (SOV)
are employed to provide a simple description of a test batch, denoted as :

MOV = 1
BS

∑BS
i=1 vi,

SOV =
√

1
BS

∑BS
i=1(MOV− vi)2,

(3.17)

where vi refers to either v̂i or v∗i .
Comparative Results. The experimental results presented in Table 3.2 pro-

vide the following insights :

(a) In all scenarios, the errors of the BiCNN model are significantly lower than
those of the naive method. This confirms the effectiveness of our training in
Section 3.5.1, since the naive method is equivalent to the untrained BiCNN
model. The BiCNN model after training can be considered as an improved
version of the naive method, providing a significant improvement in accuracy
with only a small increase in computational time.

(b) Although the LH algorithm can produce an exact Nash equilibrium, it re-
quires more computation time. As discussed in Section 3.5.2, our approach
drastically reduces the computational cost of the LH algorithm. Furthermore,
we note that the BiCNN model predicts GS (40, 40) in 4 times more time
than GS (20, 20), while the time of the LH algorithm increases by about 5.5
times. The MOV and SOV results computed by BiCNN are already close to
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Figure 3.5 –M.S.E. loss values of untrainedGS-PD combinations. RT and
WRT refer to robust training and non-robust training, respectively. (A)
Loss values for GS : (25, 25) and PD : N(75, 25). (B) Loss values for GS :
(35, 35) and PD : N(75, 25).

the results obtained by the LH algorithm, indicating a higher efficiency in
predicting outcomes.

(c) The BiCNN method strikes a balance between the naive method and the
LH algorithm. While the naive method requires minimal computation time,
it lacks prediction accuracy. Conversely, BiCNN significantly improves the
accuracy of the naive method while significantly reducing the computational
time required by the LH algorithm, making it an ideal compromise between
the two approaches.

3.5.4 . Ablation Study

Motivation for the Ablation Study. In previous studies [180], the model
therein is trained with a single GS-PD combination, resulting in suboptimal perfor-
mance on untrained GS-PDs. Our proposed Alg. 1 incorporates multiple GS-PDs
for training to improve the robustness of the model over a wide range of untrained
GS-PDs. We refer to training with only one GS-PD as without robust training
(WRT) and training with multiple GS-PDs as robust training (RT). This ablation
study aims to investigate the importance of RT in Alg. 1.

RT and WRT Setup. We initialize two BiCNN models and train them
with RT and WRT, respectively. The other training settings, including hyperpara-
meters and model architecture, remain the same for both models. The first model
(BiCNN), trained with RT, is the same as the one obtained in Section 3.5.1. The se-
cond model (BiCNN WRT) is trained only with the GS (20, 20) and PD U(0, 100).
All test bimatrix games in this subsection are generated from untrained GS-PD
combinations. Fig. 3.5 shows the loss reduction for RT and WRT on untrained
GS-PD combinations, specifically (25, 25) −N(75, 25) and (35, 35) −N(75, 25).
Table 3.3 shows additional results for the two models after training.

RT and WRT Result Comparison. As shown in Fig. 3.5, RT converges
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faster and achieves a lower loss compared to WRT. The results in Table 3.3 reveal
the following insights :

(a) The computation times for BiCNN and BiCNN WRT are identical, since
they share the same model structure. The different training methods do not
affect this aspect.

(b) In all cases, BiCNN outperforms BiCNN WRT, as shown by the lower MAPE
and the MOV that is closer to the true MOV.

(c) The accuracy gap between the two models on GS (35, 35) is more significant
because BiCNN includes training GSs of (30, 30) and (40, 40), ensuring ac-
curate performance on (35, 35). In contrast, BiCNN WRT only has a training
GS of (20, 20), which is far from (35, 35).

3.5.5 . Enhancing Traditional Solvers with BiCNN
TS and DFM Solvers. In this subsection, we explore the combination of

BiCNN with two traditional solvers :

— TS algorithm [184] is a polynomial-time approximation algorithm for sol-
ving bimatrix games. It computes ϵ-approximate Nash equilibrium, with
ϵ = 0.3393.

— DFM algorithm[185] is a new refinement of the TS algorithm, and yields
a 1/3 approximate Nash equilibrium, which is slightly better than the TS
algorithm.

The difference between TS and DFM with the LH algorithm and enumeration
methods is that TS and DFM are polynomial-time approximation algorithms. While
the LH algorithm and enumeration methods are exact methods that cannot solve
problems in polynomial time.

BICNN+TS/DFM. We use the BiCNN prediction as an initial strategy to
warm start both TS and DFM. The BiCNN model first provides a fast prediction,
which is then refined by the traditional solvers, TS and DFM, to improve accuracy.
By combining with these traditional solvers, our goal is to provide a theoretical
guarantee for the BiCNN prediction. However, we did not include BiCNN to speed
up the LH algorithm and the enumeration methods. The reason for this is that both
the LH algorithm and the enumeration methods work independently of the initial
strategy. For example, the LH algorithm is dependent on the initial drop label, and
the enumeration methods have similar dependencies, making them impossible to
take advantage of the BiCNN prediction.

Accelerating TS/DFM with BiCNN. Fig. 3.6-(A) clearly shows that using
the BiCNN model as a warm start for traditional solvers leads to a dramatic increase
in computational efficiency. These solvers require nearly 100 iterations to complete
the computation when using a random strategy as the initial strategy. In contrast,
using the BiCNN prediction as the initial strategy, they complete the computation
in just a few iterations, speeding up the process by more than 20 times. We also
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Figure 3.6 – (A) : Average iterations of standalone TS/DFM and
BiCNN+TS/DFM. (B) : Prediction accuracy of standalone BiCNN and
BiCNN+TS/DFM. The game sizes under consideration are (100, 100),
(200, 200), (300, 300) with the probability distribution of U(0, 100). Each
test batch contains 100 game instances.

observed that the results of TS and DFM are very close, since they differ only in the
final output step, and thus the number of iterations is almost the same. We have
not shown the computation time in the figure because the computation of both
solvers depends on the linear programming solver used, which could introduce
significant variance. Therefore, to maintain fairness in our comparison, we have
focused only on the iteration counts.

Improving BiCNN Prediction with TS/DFM. As shown in Fig. 3.6-(B),
traditional solvers significantly improve the prediction accuracy for the BiCNN
model. Originally, the BiCNN prediction has a relatively high MAPE, especially
since the considered game sizes are large and untrained. With the help of the TS
and DFM solvers, the MAPE of the BiCNN model drops to nearly 3%, which means
that the predicted strategy after the improvement is much closer to the true Nash
equilibrium. This significant improvement in accuracy is due to the fact that the
traditional solvers have a strict error bound. Therefore, this combination not only
improves the computational efficiency of traditional solvers, but also improves the
prediction accuracy of BiCNN, illustrating the potential of our hybrid approach in
tackling complex games.

3.5.6 . Discussion
Why BiCNN is Much Faster. As discussed in Section 3.5.2, BiCNN signi-

ficantly outperforms traditional solvers in terms of solution speed. This superior
performance is due to the non-iterative solution procedure in BiCNN, as opposed
to the iterative procedure used by traditional solvers. Essentially, the BiCNN model
is a function that directly maps bimatrix games to its predicted Nash equilibrium,
while traditional solvers require multiple iteration steps to determine the Nash
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equilibrium. For example, the LH algorithm requires continuous label replacement
until a Nash equilibrium is reached, and the enumeration methods require solving
a system of inequalities at each solution step. In contrast to these traditional me-
thods, BiCNN requires only one forward pass of the neural network to obtain the
predicted Nash equilibrium, which requires very little computational time.

Computational Complexity. Consider a BiCNN model with fixed structure.
The computational time complexity is linear with respect to the size of the game
to be solved, denoted as O(d), where d is the size of the bimatrix game. This
is because as the size of the game increases, the convolution operations within
the neuralnetwork scale linearly. Even with multiple convolution kernels or deeper
networks, the basic linear growth remains, affected only by a constant multiplier.
In comparison, the LH algorithm, recognized as the best exact method, has an
exponential growth even in the best case [30], underscoring the computational
efficiency of our BiCNN approach.

BiCNN Limitations. Despite the promising results, there is still room for im-
provement in the BiCNN model, especially in terms of prediction accuracy. While
traditional solution methods can provide an exact Nash equilibrium, our approach
can only provide an approximation. Compared to previous research [180, 179] that
solves matrix games (a special case of bimatrix games), the MAPE error in this
study is higher. The increase in error is primarily due to the inherent complexity
of bimatrix games compared to matrix games. Specifically, matrix games can be
transformed into linear programming problems, while bimatrix games lead to rela-
tively more complex linear complementarity problems. In terms of robustness, the
performance of the model is highly dependent on the selected training GS-PDs.
Although the robust training of Alg. 1 improves the accuracy on some untrained
GS-PDs, as shown in Table 3.3, it is not guaranteed for a wider range of untrained
GS-PDs.

Future Directions for Improving BiCNN Accuracy : To improve the accu-
racy and robustness of the BiCNN model, we can explore several future directions :

— Running more iterations in Alg. 1 : Our proposed algorithm ensures that
the BiCNN model avoids training twice on the same bimatrix game and
overfitting on any specific dataset. Thus, providing more training iterations
could potentially refine the accuracy of the model without any negative
impact.

— Designing efficient training algorithms : Although Alg. 1 prevents overfitting,
it introduces a higher computational overhead than traditional deep learning
training because it requires the generation of a new batch of bimatrix games
at each iteration. This data generation process is time-consuming, which
can be improved by recycling the generated bimatrix games for training,
or by using approximation algorithms such as TS or DFM to speed up the
generation of bimatrix games.

— Fine-tuning the model architecture and training details : To facilitate un-
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derstanding of the proposed approach, the model architecture and training
details in this chapter are intentionally kept simple. There are many op-
portunities for further improvement, including adjusting hyperparameters,
incorporating advanced model architectures, and implementing state-of-the-
art training techniques.

— Expanding training GS-PD combinations : In Section 3.5.1, we use only six
combinations of training GS-PDs. We could introduce a greater variety of
combinations to improve the BiCNN model’s ability to solve more untrained
GS-PDs, although this may also increase the training load.

3.6 . Conclusion

In this chapter, we introduced BiCNN, a CNN-based approach for predicting
Nash equilibria in bimatrix games. We provided a comprehensive description of
the methodology, including the design of the BiCNN model, the loss function, and
the robust training algorithm with multiple GS-PDs. In the numerical experiments
section, we compared BiCNN with traditional solution methods in terms of compu-
tational efficiency and accuracy, and discussed both the advantages and limitations
of our proposed method.

By connecting the bimatrix game problem to the expanding fields of machine
learning and deep learning, this work contributes to the ongoing exploration of
Nash equilibria from a machine learning perspective. Given the rapid growth of
these research areas, we believe that this proposed approach will continue to be
relevant and valuable to the advancement of computational game theory and its
applications.
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4 - Solving Nonlinear Projection Equations
with Neurodynamic Optimization and PINNs

In this chapter, we consider Nonlinear projection equations (NPEs), which is a
unified framework for various nonlinear optimization and engineering problems [31].
Unlike the bimatrix games in Chapter 3, NPEs cannot be directly used as input for
neural networks. Therefore, we need some advanced tools, namely neurodynamic
optimization and PINNs, both of which are discussed in detail in Chapter 2.

To address these challenges, our approach consists of three main steps. First,
we transform the NPE into an Ordinary Differential Equation (ODE) system via
neurodynamic optimization, making the ODE system our new objective to solve.
Second, we use a Physics-Informed Neural Networks (PINNs)-like model to serve
as an approximate solution to this ODE system. Finally, we train the neural network
using a specialized algorithm that is designed to optimize both the ODE system
and the original NPE problem. By following this sequence of steps, we are able to
bridge the gap between NPEs and deep learning. The effectiveness of our propo-
sed framework is validated on a variety of classical problems, including variational
inequalities and complementarity problems.

This chapter corresponds to the publication [146].

4.1 . Introduction

Nonlinear optimization problems are prevalent across a wide range of fields,
such as engineering, physics, and economics. Solving these problems requires fin-
ding an optimal solution that satisfies a defined set of constraints while optimizing
the objective function [186]. NPEs are a useful tool for formulating these problems
and serve as a unifying framework for treating various nonlinear optimization pro-
blems, including nonlinear complementarity problems, variational inequalities, and
equilibrium point problems [31, 187].

The NPEs are typically addressed by neurodynamic optimization, which models
the problem as a system of ODEs [32, 33, 34]. The constructed ODE system must
be shown to have the global convergence property, i.e., the state solution of the
system converges to the optimal solution of the NPE, regardless of the initial
point. The NPE problem is then transformed into solving the state solution of
the ODE system. However, the ODE system is typically highly nonlinear and has
no analytical solutions. Therefore, numerical integration methods such as Runge-
Kutta (RK) methods are commonly used to solve the state solution [188].

Despite the usefulness of numerical integration methods, they are not efficient
enough for solving the NPE problems. This inefficiency is due to the fact that
the state solution of the ODE system only provides a solution to the NPE at
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the end state. To reach the end state, numerical integration methods require the
computation of all intermediate states starting from the initial state, making the
process computationally intensive. Therefore, there is a need for a more efficient
algorithm to solve the NPE problem.

Neurodynamic Optimization. Over the past few decades, numerous neuro-
dynamic approaches have been developed to solve various constrained optimization
problems, including linear and quadratic programming [42, 189], general convex
programming [46, 69, 190], biconvex optimization [86], non-smooth optimization
[191], and pseudoconvex optimization problems [192]. In particular, a projection
neurodynamic model for solving NPEs was introduced and found to have global
convergence to the exact solution under mild conditions [32]. The model also sho-
wed both asymptotic and exponential stability without the need for a smooth non-
linear mapping. To further improve the performance, a bi-projection neurodynamic
model was developed to efficiently solve quadratic optimization problems [33]. In
addition, a collaborative approach combining the projection neurodynamic model
with particle swarm optimization was introduced for global optimization problems
[34].

Physics-Informed Neural Networks. Another avenue of research explored
in this chapter is the use of deep learning to solve differential equations. In the
1990s, Lagaris et al. used neural networks (NNs) to serve as solutions to both ODEs
and PDEs, embedding boundary conditions directly into the network architecture
[193, 194]. The advent of deep learning has reinvigorated interest in using such
methods to tackle high-dimensional, nonlinear PDEs [195, 196]. A key contribution
in this area is the development of PINNs [26], which integrate differential equa-
tions and data errors into the loss function. The versatile architecture and efficient
training algorithms of PINNs have enabled numerous successes in a wide range
of computational challenges in physics and engineering [123, 197, 198, 199, 200].
This expanding research landscape is driven by a combination strategy that adapts
PINNs to exploit the structural properties of the target problem. As a result,
a variety of PINN variants have emerged to address different problem scenarios
[119, 201] and improve computational efficiency [107, 202, 203, 128]. Apart from
collocation-based PINN approaches, many studies use deep energy methods to
solve PDEs, where the energy of the system is used as a loss function to train the
NN model [204, 123, 122]. Many packages have been developed to support the
use of deep learning for solving PDEs [99, 205].

Contributions. This chapter presents several key contributions :

— We propose a deep learning approach to NPEs that combines neurodynamic
optimization with PINNs. Our approach reformulates an NPE problem as an
NN training problem, thereby eliminating the need for numerical methods
to solve NPEs.

— To improve the performance of our proposed approach, we design a specia-
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lized training algorithm that focuses on the end state of the ODE system.
In each training iteration, the algorithm uses an evaluation metric based on
the NPE error to assess the predictive accuracy of the NN model and retain
the optimal result. Therefore, the NN model is not only trained to solve the
ODE system, but also to solve the NPE problem.

— In our experiments, we demonstrate the effectiveness of the proposed ap-
proach in solving large-scale NPE problems. We compare our approach with
the traditional RK method and PINN to validate its performance. In ad-
dition, we perform a hyperparameter sensitivity analysis to investigate the
impact of different hyperparameter configurations on the performance of our
proposed approach.

The remaining sections are organized as follows : Section 4.2 provides the ne-
cessary background, including an introduction to the NPE problem, neurodynamic
optimization, and the RK method. In Section 4.3, we present our NN model for the
NPE problem. Section 4.4 details the design of the loss function and the training al-
gorithm for the proposed NN model. Section 4.5 presents the experimental results,
and we compare our approach with the RK method and PINN. Finally, Section
4.6 summarizes the main results of the chapter and outlines possible directions for
future research.

4.2 . Preliminaries

4.2.1 . NPE Problems
Definition 4.1 (NPE) Consider a nonlinear mapping G : Rn → Rn and a feasible
set Ω ⊂ Rn. The projection function PΩ : Rn → Ω maps a point z ∈ Rn onto Ω,
such that :

PΩ(z) = argmin
x∈Ω

∥z − x∥ (4.1)

where ∥ · ∥ denotes the Euclidean norm.
The NPE problem, denoted by NPE(Ω, G), is to find a vector x∗ ∈ Ω satis-

fying :
PΩ(x

∗ −G(x∗)) = x∗ (4.2)

Assumption 4.1

— The function G(·) is locally Lipschitz continuous.

— The feasible set Ω is a box-constrained set, defined as Ω = {x = (x1, x2, . . . , xn) ∈
Rn | li ≤ xi ≤ hi}, where li and hi denote the lower and upper bounds of
xi respectively. In this case, the projection function PΩ(·) in equation (4.1)
is reduced as follows :

PΩ(x) =
(
P 1
Ω(x1), P

2
Ω(x2), . . . , P

n
Ω(xn)

)T
, (4.3)
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where P i
Ω(xi), i ∈ {1, 2, . . . , n} is defined as :

P i
Ω(xi) =


li if xi < li,

xi if li ≤ xi ≤ hi,

hi if xi > hi.

(4.4)

— The Jacobian ∇G(x) for x ∈ Ω is positive semi-definite.

In this chapter, we only consider the NPE problem under Assumption 4.1, na-
mely that the feasible set is box-constrained and the nonlinear mapping is locally
Lipschitz continuous. In the following, we show two nonlinear optimization pro-
blems, namely the nonlinear complementarity problem (NCP) and the variational
inequality (VI), both of which can be reformulated as NPEs.

Definition 4.2 (NCP) Consider a nonlinear mapping G : Rn → Rn. The nonli-
near complementarity problem, denoted by NCP (G), is to find a vector x∗ ∈ Rn

satisfying :
G(x∗) ≥ 0, x∗ ≥ 0, G(x∗)Tx∗ = 0. (4.5)

Definition 4.3 (VI) Consider a nonlinear mapping G : Rn → Rn and a feasible
set Ω ⊂ Rn. The variational inequality problem, denoted by V I(Ω, G), is to find
a vector x∗ ∈ Ω satisfying :

(x− x∗)T G (x∗) ≥ 0, x ∈ Ω. (4.6)

Proposition 4.1 (Harker & Pang [31]) Let Ω ⊂ Rn be a nonempty closed
convex set. Then x∗ solves the problem NCP (G) if and only if x∗ solves NPE(Rn

+, G),
where Rn

+ = {x ∈ Rn|x ≥ 0} represents the set of non-negative real vectors.

Proposition 4.2 (Harker & Pang [31]) Let Ω ⊂ Rn be a nonempty closed
convex set. Then x∗ solves the problem V I(Ω, G) if and only if x∗ solves NPE(Ω, G).

4.2.2 . Neurodynamic Optimization
In the following, we show how to model an NPE as an ODE system. Let

y : R→ Rn be a time-dependent function, where y(t) represents the state at time
t. The aim of neurodynamic optimization is to design a first-order ODE system,
dy
dt , to govern y(t). In this chapter, we employ the projection neurodynamic model
introduced by [32] to model the NPE, where the ODE system is defined as follows :

dy

dt
= −G (PΩ(y)) + PΩ(y)− y. (4.7)
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To simplify the discussion, we define :

Φ(y) = −G (PΩ(y)) + PΩ(y)− y. (4.8)

Thus, the ODE system (4.7) can be written as dy
dt = Φ(y).

Definition 4.4 (State solution) Consider an ODE system dy
dt = Φ(y), where Φ :

Rn → Rn and an initial condition y(t0) = y0. A vector value function y : R→ Rn

is the state solution, if it satisfies the ODE system dy
dt = Φ(y) and the initial

condition y(0) = y0.
y(t) is called the state at time t. Given a time range [t0, T ], y(T ) is called the

end state on the interval.

Theorem 4.3 (Xia & Feng [32]) Consider an NPE problem, NPE(Ω, G), and
let Assumption 4.1 hold. Given any initial condition, y(t0) = y0, the state solution
of the ODE system of Eq. (4.7) converges to the optimal solution of NPE(Ω, G)

as time t goes to infinity, i.e,

lim
t→∞

y(t) = x∗, (4.9)

where x∗ is a satisfied point of NPE(Ω, G).
In particular, if NPE(Ω, G) contains only one satisfied point x∗, then the ODE

system is globally asymptotically stable at x∗.

Initial Value Problem (IVP) Construction. In practice, in order to use the
neurodynamic approach to solve the NPE, we need to construct an IVP consisting
of three components : 1) the ODE system of Eq. (4.7), 2) an initial condition
y(t0) = y0, and 3) a time range t ∈ [t0, T ]. y(t) for t ∈ [t0, T ] represents the
state solution of this IVP over the time range [t0, T ], where the end state, y(T ),
is considered to be the predicted solution to the NPE. According to Theorem 4.3,
the larger the time range [t0, T ], the closer y(T ) is to the optimal solution x∗ of
the NPE.

4.2.3 . Runge-Kutta Method
The fourth-order Runge-Kutta method (often referred to as the RK method)

is a commonly used method for solving ODE systems. The RK method takes as
input an ODE system dy

dt = Φ(y), an initial condition y(t0) = y0, and a time
range [t0, T ]. The method sets N collocation points that are equally spaced on the
time range [t0, T ]. The RK method returns an approximate state solution, denoted
by ȳ(t), where t is a time point within the finite set {t0, t1, . . . , tN , tT }. The RK
algorithm is stated as follows :

— Step 1 : Initialize the step size h =
(T − t0)

N + 1
, the initial time t = t0, and

set the initial state ȳ(t0) = y0.
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— Step 2 : For i = 1, 2, . . . , N + 1 do Steps 3 and 4.

— Step 3 : Set
K1 = hΦ (ȳ(t)) ,

K2 = hΦ

(
ȳ(t) +

K1

2

)
,

K3 = hΦ

(
ȳ(t) +

K2

2

)
,

K4 = hΦ (ȳ(t) +K3) .

(4.10)

— Step 4 : Set

ȳ(t+ h) = ȳ(t) +
K1 + 2K2 + 2K3 +K4

6
, (4.11)

and t = t+ h.

When applying the RK method to the NPE problem, the approximate end state
ȳ(T ) is considered as the predicted solution of the NPE problem. Specifically, we
have :

ȳ(T ) ≈ y(T ) ≈ x∗, (4.12)

where ȳ(T ) ≈ y(T ) indicates that the end state obtained by the RK method is an
approximation of the true end state, and y(T ) ≈ x∗ indicates that the true end
state is the predicted solution of the NPE problem according to Theorem 4.3.

4.3 . Modified PINN

Model description. We propose a neural network (NN) model to solve the
NPE problem. Our model can be expressed by the following equation :

ŷ(t;w) = y0 +
(
1− e−(t−t0)

)
N(t;w), t ∈ [t0, T ], (4.13)

where N(t;w) represents a fully connected NN with trainable parameters w, and
[t0, T ] is a given time range. We use the Lagaris method to incorporate the initial
conditions of the ODE system into the NN model [193]. In particular, the auxi-
liary function

(
1− e−(t−t0)

)
ensures that the NN model always satisfies the initial

condition (t0, y0), i.e., ŷ(t = t0;w) = y0, regardless of the model parameters w.
The exponential form in the auxiliary function has been demonstrated to improve
the convergence of the model [206].

Approximate state solution of the ODE. As shown in Fig. 4.1 (Left), the
proposed model itself is an approximate state solution to the ODE system of Eq.
(4.7) on the time range [t0, T ], i.e.,

ŷ(t;w) ≈ y(t), t ∈ [t0, T ], (4.14)
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NN as approximate state solution 
to ODE system

NN provides prediction 
to NPE

When When 

Fully connected network Fully connected network

End state

Figure 4.1 – Neural network (NN) solution for the ODE system and the
NPE. Left : When t ∈ [t0, T ], the model ŷ(t;w) itself is considered to be
an approximate state solution of the ODE system. Right : When t = T ,
the end state of the model, ŷ(t = T ;w), is a predicted solution to the
NPE.

where y(t) represents the true state solution of the ODE system. Although the
input time t of the model ŷ(t;w) can be any real number, we only consider ŷ(t;w)
as the solution of the ODE for the time range [t0, T ]. Therefore, we restrict the
input to t ∈ [t0, T ].

Predicted solution of the NPE. The end state of the proposed model, i.e.,
ŷ(t = T ;w), is used as a predicted solution to the NPE of Eq. (4.2), as shown in
Fig. 4.1 (Right). The following equation shows how ŷ(t = T ;w) approximate the
optimal solution x∗ of the NPE problem :

ŷ(t = T ;w) ≈ y(T ) ≈ x∗, (4.15)

where ŷ(t = T ;w) ≈ y(T ) indicates that the end state of our model approximates
the true end state, and y(T ) ≈ y∗ comes from Theorem 4.3, indicating that y(T )
solves the NPE.

Unlike most PINN models, which aim to solve for the entire input space [t0, T ],
our NN model focuses on the end state of the ODE system, since it represents the
predicted solution to the NPE problem. In the following section, we will show how
to train the NN model with an emphasis on improving the prediction accuracy of
the end state.

4.4 . Model training
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Neural network Loss computation

Incorporate

NPENonlinear optimization problem

Figure 4.2 – Integrating an NPE into loss computation for NN training.

Section 4.4.1 provides a definition of the loss function and objective function
for the proposed NN model. Section 4.4.2 presents a training algorithm for the NN
model. Section 4.4.3 compares our proposed NN approach with the RK method.

4.4.1 . Training Objective

Loss Function. The loss function of the proposed NN model is defined as :

L(t, w) =
∥∥∥∥∂ŷ(t;w)∂t

− Φ(ŷ(t;w))

∥∥∥∥ , (4.16)

where Φ(·) refers to the ODE system, corresponding to the NPE problem to be
solved. Φ(ŷ(t;w)) represents the expected derivative according to the ODE sys-
tem, and ∂ŷ(t;w)

∂t represents the actual derivative of the NN model. ∂ŷ(t;w)
∂t can be

computed using automatic differentiation tools such as PyTorch or JAX [181, 207].
L(t, w) represents the difference between the two at time t and with network pa-
rameters w. As shown in Fig. 4.2, the NPE is first reformulated as an ODE system
via neurodynamic optimization. The ODE system is then incorporated into the loss
computational process.

Objective Function. The objective function of the NN model is defined as :

J(w) =

∫ T

t0

L(t, w)dt, (4.17)

which is the integral of the loss function over the time range [t0, T ]. The loss value
L(t, w) represents the error of the model at time t, while the objective function
J(w) represents the total error of the model over the time range [t0, T ].

Batch Loss. However, the objective function J(w) is computationally intrac-
table due to its integral part. Therefore, in practice, we cannot directly use J(w)
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to train the NN model. Instead, we train the model by minimizing the following
batch loss :

L(T, w) = 1

|T|
∑
t∈T
L(t, w), (4.18)

where T is a set of time points uniformly sampled from the interval [t0, T ], and
|T| denotes the size of the set. The batch loss L(T, w) approximates the objective
function J(w) by a sum of loss values over a set of sampled time points. By
minimizing the batch loss, we can effectively train the model to solve the NPE.

4.4.2 . Algorithm Design

NPE Error. We introduce an evaluation metric, called NPE error, to measure
how well a prediction xpred solves the NPE problem. The metric is defined as :

NE(xpred) =
∥∥PΩ(xpred −G(xpred))− xpred

∥∥
∞ , (4.19)

where ∥·∥∞ represents the infinity norm.

Algorithm 2 Deep learning solver for NPE based on neurodynamic op-
timization
Input : NPE(Ω, G) as defined in Eq. (4.2) ; Time range [t0, T ] ; Initial
condition (t0, y0).
Output : xbest, the NN prediction to NPE(Ω, G).
1: function solver(NPE(Ω, G), [t0, T ], y0)
2: Derive the ODE system, Φ(·), according to Eq. (4.7).
3: Initialize a NN model ŷ(t;w).
4: NEbest = NE(ŷ(t = T ;w))
5: while iteration ≤maximum iteration do
6: T ∼ U(t0, T ) ▷ Sample collocation points T
7: L(T, w) ▷ Forward propagation
8: w ← ∇wL(T, w) ▷ Backward propagation
9: xcurr = ŷ(t = T ;w)
10: xcurr = PΩ(xcurr) ▷ Project xcurr onto the feasible set Ω.
11: NEcurr = NE(xcurr)
12: if NEcurr < NEbest then
13: NEbest = NEcurr
14: xbest = xcurr
15: end if
16: end while
17: return xbest
18: end function

Pipeline. Alg. 2 summarizes how to use our proposed approach to solve an
NPE problem. First, we need to specify an initial condition (t0, y0) and a time
range [t0, T ] to construct an IVP for the NPE problem. Then, we initialize the
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proposed NN model (4.13), which serves as an approximate state solution for this
IVP. The model is trained by performing gradient descent on the batch loss of Eq.
(4.18) to improve the approximation. Note that our solver is completely based on
the deep learning infrastructure and does not require any standard optimization
solver or numerical integration solver.

Optimal Result Retention (ORR) Mechanism. A key to Alg. 2 is that
we use an ORR mechanism based on the evaluation metric of Eq. (4.19). Spe-
cifically, in each iteration, the algorithm compares the NPE error of the current
iteration, denoted as NEcurr, with the lowest NPE error found so far, denoted as
NEbest. Correspondingly, xcurr and xbest represent the current prediction and the
best predictions found so far, respectively. If NEcurr is less than NEbest, it means
that the model found a better prediction in the current iteration. The algorithm
then updates NEbest to equal NEcurr and stores the best prediction as xbest = xcurr.
This mechanism ensures that the best prediction obtained by the model is main-
tained throughout the training process, improving the overall performance of the
algorithm.

4.4.3 . Comparison with the RK Method

(A) NN training

Training iteration

A
cc

u
ra

cy

Approximate state solution
Prediction to NPE

(B) RK method

Collocation point

A
cc

u
ra

cy

Approximate state solution
Prediction to NPE

Figure 4.3 – Comparison of the solution procedures between the NN
approach and RK method.

Fig. 4.3 compares the solution procedures between our proposed NN approach
and the RK method, both of which solve the NPE problem by solving the IVP.
Both approaches use the end state as the predicted solution for the NPE problem.
However, they differ in how they enhance the accuracy of the end state.
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NN Solution Procedure. The NN approach employs gradient descent on
the batch loss of Eq. (4.18) to improve the NN prediction at each iteration. The
evolution of the NN model is represented by ŷ(t;w1), ŷ(t;w2), . . . , ŷ(t;wM ), where
wi and ŷ(t;wi) denote the model parameters and the approximate state solution
at the i-th iteration, respectively. The predicted end states are ŷ(t = T ;w1), ŷ(t =

T ;w2), . . . , ŷ(t = T ;wM ), where ŷ(t = T ;wi) represents the NPE prediction at
the i-th iteration.

RK solution procedure. In contrast, the RK method computes discrete col-
location points iteratively. The method progresses by solving Eq. (4.10) and Eq.
(4.11) to obtain ȳj and tj , which represent the solved state values and colloca-
tion point at the j-th iteration, respectively. The state value ȳj incorporates all
previously solved state values. At the end of the j-th iteration, ȳj is used as the
prediction for the NPE.

4.5 . Numerical Results

Section 4.5.1 delineates the application of the proposed NN approach for sol-
ving various types of NPE problems. Section 4.5.2 contrasts our approach with
the PINN. Section 4.5.3 investigates the performance of our NN approach over
different network architectures and hyperparameter configurations. Section 4.5.4
demonstrates the effectiveness of our NN approach in solving large-scale NPE pro-
blems. Finally, Section 4.5.5 discusses the distinctive features and limitations of our
proposed NN approach, while also outlining possible avenues for future research.

4.5.1 . Three Examples

Experimental Setup of Our NN Approach. We used PyTorch 1.12.1 [181]
to implement the proposed NN model and JAX 0.4.1 [207] to implement the ODE
system. The NN model consists of a single fully connected layer with 100 neurons,
and the activation function is Tanh. For training, we used the Adam optimizer with
a learning rate of 0.001, a batch size of 128.

Experimental setup of the RK method. We used the RK method [208]
for comparison and called it via the Scipy library [209]. We set the number of
collocation points to 50,000, evenly distributed over the time range.

Linear Complementarity Problem

Example 1 : Consider the following linear complementarity problem :

xT (Mx+ q) = 0, x ≥ 0, Mx+ q ≥ 0, (4.20)
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where

M =


50 −8 −6 −9 12
−8 33 −1 −25 3
−6 −1 38 10 −4
−9 −25 10 55 −24
12 3 −4 −24 20

 , q =


−2
−20
−16
−12
−14

 . (4.21)

The goal is to find an optimal solution x∗ ∈ R5 that solves Eq. (4.20). Example
1 is reformulated as NPE(R+, G) by Proposition 4.1, where G(x) = Mx + q.
Then, NPE(R+, G) is modeled by the ODE system of Eq. (4.7). We establish an
IVP by specifying the initial condition as y(0) = 0 and the time range as [0, 10].
We use the NN model proposed in Eq. (4.13), denoted as ŷ(t;w), to serve as an
approximate state solution for this IVP. The end state, ŷ(t = 10;w), serves as
the predicted solution for both NPE(R+, G) and Example 1. The NN model is
trained using Alg. 2 to improve accuracy.
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Figure 4.4 – Solving Example 1 : (A) Mean square error (MSE) loss versus
training iterations. (B) NPE error versus training iterations, where the
NPE error is defined in Eq. (4.2). (C) Evolution of the NN solution, ŷ(t;w).
(D) Evolution of the RK solution, ȳ(t).

Fig. 4.4(A) and Fig. 4.4(B) show the decreasing loss and NPE error, respecti-
vely, where the loss drops from 152.59 to 0.23 and the NPE error drops from 24.69

to 0.03. Fig. 4.4(C) shows the NN model ŷ(t;w) at the 0th, 1,000th, 10,000th,
and 50,000th training iterations, from left to right, and the predicted solutions for
Example 1 are marked with red stars. Fig. 4.4(D) shows the results of the RK
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Table 4.1 – Comparison of predicted solutions for Example 1 between
our approach and the RK method
Our NN approach The RK method

Iteration Prediction NPE
error

Collocation
point Prediction NPE

error
0 [0.26, 0.43, 0.37, 0.77, 0.97] 24.67 0 [0.00, 0.00, 0.00, 0.00, 0.00] 20.00
100 [0.17, 3.07, 0.00, 3.64, 4.50] 2.32 100 [0.05, 0.34, 0.22, 0.24, 0.28] 14.60
1000 [0.13, 2.65, 0.06, 3.13, 3.92] 1.62 1000 [0.15, 1.70, 0.26, 1.82, 2.20] 7.86
5000 [0.08, 2.76, 0.13, 3.32, 4.25] 0.13 5000 [0.07, 2.71, 0.09, 3.25, 4.15] 0.37
10000 [0.07, 2.76, 0.08, 3.33, 4.25] 0.08 10000 [0.07, 2.75, 0.08, 3.32, 4.24] 0.03
30000 [0.07, 2.75, 0.08, 3.32, 4.24] 0.03 30000 [0.07, 2.75, 0.08, 3.32, 4.24] 0.03
50000 [0.07, 2.75, 0.08, 3.32, 4.24] 0.03 50000 [0.07, 2.75, 0.08, 3.32, 4.24] 0.03

method after accumulating 0, 5,000, 25,000, and 50,000 collocation points, and
the predicted solutions are marked with yellow stars.

Table 4.1 shows the predictions of our NN approach and the RK method
for Example 1 at different iterations. The results suggest that our approach is
comparably accurate to the RK method given the same initial condition and time
range. After 10,000 iterations, the NPE error of our prediction is reduced to less
than 0.1. The final solution from our NN approach is [0.07, 2.75, 0.08, 3.32, 4.24],
with an NPE error of 0.03.

Nonlinear Complementarity Problem

Example 2 : Consider the following nonlinear complementarity problem :

xTF (x) = 0, x ≥ 0, F (x) ≥ 0, (4.22)

where

F (x) =


x1e

(x2
1+(x2−1)2) + x22 + x3 − 10

(x2 − 1)ex
2
1+(x2−1)2 + 4x1 + x2x3 + 2x23 + ex4−2

x1 + 8x2 + 3x3 − 3
x4 − 4

 . (4.23)

We reformulate Example 2 as NPE(R+, F ) by Proposition 4.1. Then, NPE(R+, F )

is modeled by the ODE system of Eq. (4.7). We establish an IVP by specifying the
initial point as y(0) = 0 and the time range as [0, 10]. We use the NN model,
ŷ(t;w), to serve as an approximate state solution for this IVP, where the end state
ŷ(t = 10;w) is the predicted solution for Example 2.

Fig. 4.5(A) and Fig. 4.5(B) illustrate the decrease in loss and NPE error,
respectively. Specifically, the loss decreases from 17.78 to 0.05, while the NPE error
decreases from 5.04 to a value close to zero. Notably, the most substantial reduction
in both loss and NPE error occurs within the first 10,000 iterations. In addition,
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Figure 4.5 – Solving Example 2 : (A) MSE loss versus training iterations.
(B) NPE error versus training iterations. (C) Evolution of theNN solution,
ŷ(t;w). (D) Evolution of the RK solution, ȳ(t).

Table 4.2 – Comparison of predicted solutions for Example 2 between
our approach and the RK method
Our NN approach The RK method

Iteration Prediction NPE
error

Collocation
point Prediction NPE

error
0 [0.86, 0.00, 0.00, 0.00] 5.04 0 [0.00, 0.00, 0.00, 0.00] 10.00
100 [1.30, 0.94, 0.00, 2.01] 2.00 100 [0.19, 0.04, 0.05, 0.08] 9.44
1000 [1.08, 0.00, 0.59, 3.99] 0.14 1000 [1.16, 0.19, 0.20, 0.73] 3.27
5000 [1.08, 0.00, 0.64, 3.99] 0.01 5000 [1.22, 0.22, 0.00, 2.53] 1.47
10000 [1.08, 0.00, 0.64, 4.00] 0.00 10000 [1.10, 0.01, 0.40, 3.46] 0.62
30000 [1.08, 0.00, 0.64, 4.00] 0.00 30000 [1.08, 0.00, 0.64, 3.99] 0.08
50000 [1.08, 0.00, 0.64, 4.00] 0.00 50000 [1.08, 0.00, 0.64, 4.00] 0.09
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the implementation of the ORR mechanism, as described in Alg. 2, ensures that
the NPE error decreases consistently, despite occasional small increases in the loss
values.

Fig. 4.5(C) shows the NN model ŷ(t;w) at the 0th, 1,000th, 10,000th, and
50,000th training iterations, from left to right, and the predicted solution for
Example 2 are marked with red stars. As shown in the figure, the NN model at
the 1,000th iteration is already very close to the final result at the 50,000th itera-
tion. Fig. 4.5(D) shows the results of the RK method after accumulating 0, 5,000,
25,000, and 50,000 collocation points, and the predicted solutions are marked with
yellow stars.

Table 4.2 shows the predictions and their NPE errors of our NN approach and
the RK method for Example 2 at different iterations. Thanks to the adoption of
the projection function in Alg. 2, our NN approach has a lower initial NPE error
compared to the RK method. By the 1,000th iteration, the NPE error associated
with our NN approach has been reduced to 0.14. By the 5,000th iteration, the
NPE error has further diminished to 0.01. Upon completion of 10,000 iterations, our
NN approach yields an optimal solution of [1.08, 0.00, 0.64, 4.00], which accurately
resolves Example 2.

Variational Inequality

Example 3 : Consider the following variational inequality :

(x− x∗)T G (x∗) ≥ 0, x ∈ Ω, (4.24)

where

G(x) =


x1 − 2

x1+0.8 + 5x2 − 13

1.2x1 + 7x2
3x3 + 8x4

1x3 + 2x4 − 4
x4+2 − 12

 ,
Ω = {x ∈ R4 |1 ≤ x1 ≤ 100,−3 ≤ x2 ≤ 100,

− 10 ≤ x3 ≤ 100, 1 ≤ x4 ≤ 100}.

(4.25)
We reformulate Example 3 as NPE(Ω, G) by Proposition 4.2. Then, NPE(Ω, G)

is modeled by the ODE system of Eq. (4.7). We establish an IVP by specifying ini-
tial point as y(0) = 0 and the time interval as [0, 10]. We use the NN model,
ŷ(t;w), to serve as an approximate state solution for this IVP, where the end state
ŷ(t = 10;w) is the predicted solution for Example 3.

Fig. 4.6(A) and Fig. 4.6(B) illustrate the decrease in loss and NPE error,
respectively. Specifically, the loss decreases from 126.99 to 0.10, while the NPE
error decreases from 15.42 to 0.00. Note that there are small fluctuations in the
loss value around the 18,000th iteration, but the NPE error remains unaffected
because the training algorithm retains the best prediction from its training history.

Fig. 4.6(C) shows the NN model ŷ(t;w) at the 0th, 1,000th, 10,000th, and
50,000th training iterations, from left to right, and the predicted solution for
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Figure 4.6 – Solving Example 3 : (A) MSE loss versus training iterations.
(B) NPE error versus training iterations. (C) Evolution of theNN solution,
ŷ(t;w). (D) Evolution of the the RK solution, ȳ(t).

Table 4.3 – Comparison of predicted solutions for Example 3 between
our approach and the RK method
Our NN approach The RK method

Iteration Prediction NPE
error

Collocation
point Prediction NPE

error
0 [1.00, -0.46, 0.24, 1.00] 15.42 0 [1.00, 0.00, 0.00, 1.00] 13.11
100 [1.77, 0.12, -1.57, 1.66] 11.43 100 [1.00, -0.02, -0.16, 1.00] 13.22
1000 [27.62, -3.00, -10.00, 10.92] 0.46 1000 [2.61, -0.22, -1.75, 2.28] 12.09
5000 [28.15, -3.00, -10.00, 11.18] 0.08 5000 [11.38, -1.69, -10.00, 8.88] 10.26
10000 [28.07, -3.00, -10.00, 11.15] 0.00 10000 [20.78, -3.00, -10.00, 10.87] 7.32
30000 [28.07, -3.00, -10.00, 11.15] 0.00 30000 [27.96, -3.00, -10.00, 11.15] 0.11
49999 [28.07, -3.00, -10.00, 11.15] 0.00 49999 [28.07, -3.00, -10.00, 11.15] 0.00
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Example 3 are marked with red stars. In particular, at the 1,000th iteration, i.e.,
the first subplot on the left in Fig. 4.6(C), the NN model is already very close to
the final result of the 50,000th iteration. Fig. 4.6(D) shows the results of the RK
method after accumulating 0, 5,000, 25,000, and 50,000 collocation points, and
the predicted solutions are marked with yellow stars.

Table 4.3 shows the predictions for Example 3 provided by our NN approach and
the RK method. Remarkably, after only 1,000 iterations, our NN approach yields an
acceptable prediction with an NPE error of 0.46. After 5,000 iterations, our NN ap-
proach refines this prediction further to an NPE error of less than 0.1. After 10,000
iterations, our approach converges to the solution of [28.07,−3.00,−10.00, 11.15],
which is an optimal solution of Example 3.

4.5.2 . Comparision with PINN
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Figure 4.7 – Comparison of NPE errors between our proposed ap-
proach and the PINN for the three examples given in Section 4.5.1.

In this subsection, we compare our approach with PINNs in terms of accuracy.
Specifically, we have chosen the basic version of PINN [26] for comparison. Despite
the existence of more advanced models such as CPINNs [210] or XPINNs [113],
however, we find that the basic version of PINN is sufficiently effective for the
NPE problem, obviating the need for more complex variants. Regarding the setting
for the PINN, we use the same network architecture and hyperparameters as in
Section 4.5.1.

Our approach can be viewed as a modification of the PINN, specifically de-
signed for the NPE problem to improve computational performance. The core
distinction between our approach and the PINN lies in our focus on the end state
of the NN model. Building on this, we employ the ORR mechanism in Alg. 2, which
continuously monitors the NPE error of the end state throughout the training pro-
cess. Therefore, the NN model optimizes simultaneously for both the ODE system
and the NPE problem at hand, consistently maintaining the best result throu-
ghout the solution process. This unique focus results in improved performance, as
demonstrated below.

71



Fig. 4.7 compares our approach with the PINN for solving the three examples
given in Section 4.5.1. As shown in the figure, both approaches start with similar
initial errors, but our approach is significantly outperforms the PINN as training
progresses. Specifically, in Example 1, the NPE error converges to 0.03 with our
approach, while the PINN converges to 0.7. In Example 2, our approach converges
to less than 0.001, while the PINN could only converge to 0.4. In Example 3, our
approach again converges to less than 0.001, while the PINN only converges to
0.1. These experimental results show that our approach provides superior solutions
for solving these NPE problems. Moreover, this validates the effectiveness of the
key designs in Alg. 2, such as the use of the ORR mechanism and the projection
function.

4.5.3 . Hyperparameter Study
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Figure 4.8 – (A) NPE errors versus training iterations for three different
initial points. (B) NPE errors versus training iterations for three different
time ranges.

Table 4.4 – Predictions and their NPE errors at different training itera-
tions for three different initial points

Initial point :
y(0) = [1, 2, 3, 4]

Initial point :
y(0) = [−10,−15,−10,−14]

Initial point :
y(0) = [20, 0, 0, 8]

Iteration Prediction NPE error Prediction NPE error Prediction NPE error
0 [1.00, 2.79, 2.86, 3.18] 12.86 [1.00, -3.00, -10.00, 1.00] 28.11 [20.10, 1.38, 0.23, 7.94] 13.89
100 [4.37, -0.06, -0.55, 5.96] 9.45 [1.00, -3.00, -10.00, 1.00] 28.11 [17.92, -2.25, -3.62, 6.54] 6.43
300 [23.89, -3.00, -10.00, 13.22] 4.19 [11.23, 5.10, 0.28, 6.14] 10.28 [26.40, -3.00, -10.00, 11.98] 1.68
500 [25.77, -3.00, -10.00, 12.87] 3.48 [14.21, -0.67, -10.00, 10.50] 2.33 [26.40, -3.00, -10.00, 11.98] 1.68
1000 [28.47, -3.00, -10.00, 11.28] 0.41 [14.21, -0.67, -10.00, 10.50] 2.33 [27.88, -3.00, -10.00, 11.72] 1.15
3000 [28.37, -3.00, -10.00, 11.30] 0.31 [30.04, -3.00, -10.00, 12.00] 1.97 [28.14, -3.00, -10.00, 11.14] 0.07
5000 [28.06, -3.00, -10.00, 11.16] 0.01 [28.01, -3.00, -10.00, 11.19] 0.07 [28.09, -3.00, -10.00, 11.15] 0.02
10000 [28.06, -3.00, -10.00, 11.16] 0.01 [28.01, -3.00, -10.00, 11.19] 0.07 [28.06, -3.00, -10.00, 11.16] 0.01

In this subsection, we explore the influence of various hyperparameters on the
computational performance of our NN model. Specifically, we focus on Example
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Table 4.5 – Prediction and their NPE errors at different training itera-
tions for three different time ranges.

Time range :
t ∈ [0, 5]

Time range :
t ∈ [0, 8]

Time range :
t ∈ [0, 15]

Iteration Predition NPE error Predition NPE error Predition NPE error
0 [1.00, 1.23, -0.22, 1.00] 11.56 [1.00, 0.63, 0.15, 1.00] 11.183 [1.00, 0.90, -0.40, 1.00] 11.74
100 [5.47, -0.52, -6.10, 5.25] 10.44 [5.53, -0.56, -5.13, 4.76] 10.59 [ 4.30 -0.236 -4.644 4.08] 10.27
300 [22.82, -3.00, -10.00, 14.27] 6.28 [23.81, -3.00, -10.00, 14.69] 7.14 [ 22.12, -3.00, -10.00, 14.18] 6.12
500 [27.04, -3.00, -10.00, 11.93] 1.57 [27.73, -3.00, -10.00, 12.17] 2.06 [ 27.14, -3.00, -10.00, 12.14] 2.00
1000 [27.04, -3.00, -10.00, 11.66] 1.03 [27.26, -3.00, -10.00, 11.55] 0.81 [ 27.25, -3.00, -10.00, 11.55] 0.82
3000 [28.08, -3.00, -10.00, 11.11] 0.08 [28.62, -3.00, -10.00, 10.91] 0.55 [ 27.77, -3.00, -10.00, 10.98] 0.35
5000 [28.05, -3.00, -10.00, 11.16] 0.02 [28.18, -3.00, -10.00, 11.21] 0.12 [ 28.40, -3.00, -10.00, 11.32] 0.33
9999 [28.05, -3.00, -10.00, 11.16] 0.02 [28.07, -3.00, -10.00, 11.15] 0.00 [ 28.08, -3.00, -10.00, 11.15] 0.01

3, as given in Section 4.5.1. The hyperparameters under investigation include the
initial point, the time range, the number of hidden layers, the number of neurons,
and the activation function used.

Initial point. Fig. 4.8(A) and Table 4.4 show the results of different initial
point configurations with the same time range of [0, 10]. The results suggest the
following :

— All initial points converge to the same optimal solution, as supported by
Theorem 4.3.

— The convergence rates of different initial points vary, with initial points closer
to the optimal solution converging faster.

— The initial point y(0) = [1, 2, 3, 4] is closest to the optimal solution and
achieves the fastest convergence with the smallest initial NPE error.

— The initial point y(0) = [−10,−15,−10,−14] is the furthest away from the
optimal solution and still converges, but has a higher initial error and slower
convergence rate.

Time Range. Fig. 4.8(B) and Table 4.5 show the results of different time
range configurations with the same initial points of y(0) = [0, 0, 0, 0]. The results
suggest the following :

— Shorter time ranges lead to faster convergence but may result in less accurate
predictions. As shown in the table, the shortest time range of [0, 5] converges
very fast, but its NPE error does not decrease much after 3,000 iterations.

— Longer time ranges provide better predictions, but require more training ite-
rations. The longest range of [0, 15] converges slowly, but with more training
it can give better results than the other two ranges.

— The choice of time ranges represents a trade-off. Longer ranges may enhance
accuracy but require more training, whereas shorter ranges are easier to train
but may yield less satisfactory predictions. As shown in Table 4.5, considering
a fixed maximum number of iterations at 10,000, the time range of [0, 8]
achieves the optimal performance.
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Table 4.6 – Comparison of NPE errors for NNs with different model
sizes. The top half of the table presents the results for single-layer net-
works with different numbers of neurons, while the bottom half pre-
sents the results for multi-layer networks with 500 neurons per layer.

Iteration 1 layer,
100 neurons

1 layer,
500 neurons

1 layer,
1000 neurons

1 layer,
1500 neurons

1 layer,
2000 neurons

100 11.43 0.33 0.23 0.78 2.32
300 7.08 0.33 0.23 0.75 0.71
500 2.07 0.33 0.23 0.52 0.71
1000 0.46 0.33 0.23 0.16 0.29
3000 0.10 0.00 0.03 0.02 0.02
5000 0.08 0.00 0.00 0.01 0.01
10000 0.00 0.00 0.00 0.00 0.01

Iteration 1 layer each,
500 neurons

2 layer each,
500 neurons

3 layer each,
500 neurons

4 layer 500,
each neurons

5 layer each,
500 neurons

100 0.33 1.73 2.22 6.43 6.88
300 0.33 0.10 0.76 1.82 6.70
500 0.33 0.07 0.27 0.57 0.52
1000 0.33 0.01 0.03 0.23 0.34
3000 0.00 0.01 0.01 0.03 0.03
5000 0.00 0.00 0.00 0.03 0.03
10000 0.00 0.00 0.00 0.02 0.03
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Number of Layers and Neurons. Table 4.6 shows the NPE errors of dif-
ferent model sizes, specifically different numbers of hidden layers and neurons. As
shown in the table, all models of different sizes converge to solutions with NPE
errors below 0.03 by the 10,000th iteration. However, the model size has a signifi-
cant impact on the speed of convergence. Models that are too small or too large
perform worse than the others. For example, the 100-neuron single-layer model has
higher NPE errors in the first 1000 iterations. The 5-layer model with 500 neurons
per layer has similar results.

Therefore, selecting an appropriately-sized model is importance to achieve opti-
mal performance. Small model sizes have limited capacity, while large model sizes
require a lot of training to converge, which may not be necessary. Among the
model sizes considered in Table 4.6, the two-layer model with 500 neurons each
achieves the best performance. It converges to an NPE error of 0.1 within 300
iterations and further reduces to 0.01 within 1000 iterations, outperforming other
model architectures.

Table 4.7 – Comparison of NPE errors for different activation functions.
The considered NN model is a two-layer network, with 500 neurons in
each layer.

Iteration 2 layers, each 500 neurons
tanh sinx sigmoid relu leaky relu

100 1.73 2.18 3.01 2.62 2.32
300 0.10 0.73 0.28 1.13 0.71
500 0.07 0.15 0.05 1.13 0.71
1000 0.01 0.03 0.01 1.13 0.29
3000 0.01 0.03 0.01 0.01 0.01
5000 0.00 0.03 0.01 0.01 0.01
10000 0.00 0.03 0.00 0.01 0.00

Activation Function. Table 4.7 shows the NPE errors for different activation
functions on the same NN model. The data show that regardless of the activation
function chosen, all NN models converge to solutions with NPE errors less than
0.03. Notably, the influence of the activation function on model performance is
relatively minor when compared to the effects of model size. Among the tested
activation functions, ReLU and Leaky ReLU were found to be slightly less effective
than the others. Specifically, the tanh activation function stands out as the most
efficient, which corroborates its widespread adoption in research related to PINNs
[211, 212, 213].

4.5.4 . Large Scale NPE
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Consider the following NPE problem : For i = 1, 2, . . . , 1000,(
x∗i −

1

2
√
(Mx∗)i + qi

)+

= x∗i . (4.26)

The objective is to find an optimal solution x∗ = [x∗1, x
∗
2, . . . , x

∗
1000] ∈ R1000 that

solves Eq. (4.26). The problem data M ∈ R1000×1000 is partitioned as

M =

[
M1 M2

M3 M4

]
, (4.27)

where M1 ∈ R500×500, M2 ∈ R500×500, M3 ∈ R500×500, and M4 ∈ R500×500 are
given by

M1 =


1.2 0.6 . . . 0.6
0.6 1.2 . . . 0.6
...

...
. . .

...
0.6 0.6 . . . 1.2

 ,M2 =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

 ,M3 =


−1 0 . . . 0
0 −1 . . . 0
...

...
. . .

...
0 0 . . . −1

 ,M4 =


0 0 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . 0

 .(4.28)

For the problem data q ∈ R1000, the first half is sampled uniformly from the
interval [−31,−28], while the second half is sampled uniformly from the interval
[3, 10]. We create a problem set by generating ten different q, resulting in ten
different NPE problems. All the sampled q can be accessed through the link 1.
Solving these NPE problems is non-trivial due to their high dimensionality with
1,000 variables and the presence of multiple nonlinear operations. Therefore, the
RK method may encounter computational inefficiencies when applied to these NPE
problems.

Table 4.8 – Performance of the NN approach for solving the set of NPE
problems. STD stands for standard deviation. CPU time is measured in
seconds.
Iteration M.S.E. loss

(Mean ± STD)
CPU time
(Mean ± STD)

NPE error
(Mean ± STD)

NPE error
(50%-quantile)

NPE error
(75%-quantile)

NPE error
(95%-quantile)

0 470.29± 92.68 0.00± 0.00 4839.33± 673.10 4720.42 4911.21 6008.41
100 45.85± 39.83 2.36± 0.60 15.34± 16.46 6.65 19.98 46.38
500 32.10± 26.70 11.32± 0.68 0.67± 0.89 0.37 0.46 2.30
1000 26.81± 11.53 22.57± 1.16 0.31± 0.18 0.27 0.36 0.60
3000 15.20± 11.23 67.82± 1.40 0.19± 0.06 0.18 0.24 0.27
5000 12.33± 10.44 112.91± 2.20 0.13± 0.07 0.11 0.17 0.24
7000 8.16± 8.13 157.98± 2.86 0.10± 0.06 0.07 0.14 0.19
10000 2.93± 3.38 225.47± 3.82 0.05± 0.04 0.04 0.07 0.12
30000 0.73± 1.18 670.38± 5.82 0.01± 0.01 0.01 0.01 0.02

We use the proposed NN approach to solve the ten large-scale NPE problems.
With respect to the experimental setup, the employed network architecture consis-
ted of a three-layer fully connected network, each layer having 500 neurons and
utilizing the tanh activation function. The time range chosen for the experiments

1. https://github.com/wuwudawen/IJNME_data_2023/blob/main/Q.npy
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Table 4.9 – Performance of the RK method for solving the set of NPE
problems STD stands for standard deviation. CPU time is measured in
seconds.
Time range CPU time

(Mean ± STD)
NPE error
(Mean ± STD)

NPE error
(50%-quantile)

NPE error
(75%-quantile)

NPE error
(95%-quantile)

[0, 2] 369.33± 44.27 1.87± 0.16 1.86 2.01 2.08
[0, 4] 547.93± 74.83 0.48± 0.06 0.50 0.51 0.55
[0, 6] 739.74± 88.02 0.14± 0.02 0.15 0.15 0.16
[0, 8] 1048.92± 88.20 0.04± 0.01 0.04 0.05 0.05
[0, 10] 1542.07± 205.43 0.01± 0.01 0.01 0.01 0.02

is [0, 10], and the initial point is set to a zero vector. All other hyperparameter
settings are kept consistent with those described in Section 4.5.1. Tables 4.8 and
4.9 present the experimental results of our NN approach compared to the RK
method, focusing on both accuracy and computational time. In order to offer a
comprehensive understanding of the experimental results, we provide statistical
descriptors of the outcomes, including the mean, standard deviation (STD), and
various percentiles.

In the following, we discuss the differences between our NN approach and the
RK method in terms of computational efficiency, stability and convergence.

— Efficiency : As shown in the tables, our NN approach outperforms the RK
method in terms of computational efficiency when solving large scale NPE
problems. In particular, our NN approach requires less CPU time than the RK
method for the same level of accuracy. For example, our approach achieves an
NPE error of 0.01, requiring an average of 30,000 iterations and consuming
only 670.38 seconds. On the contrary, the RK method requires spanning a
time range of [0, 10], which requires a higher average time of 1542.07 se-
conds. Moreover, the efficiency gap becomes more significant as the required
accuracy is relaxed. For example, for an NPE error threshold of less than
0.50, our NN approach takes on average only 500 iterations and 11.32 se-
conds, making it about 48 times faster than the RK method, which requires
547.93 seconds.

— Stability : Our NN approach demonstrates not only computational efficiency,
but also greater stability, reflected in a much lower STD of CPU times
- only 5.82 at the 30,000th iteration. This indicates consistent and reliable
performance across different NPE problem instances. On the other hand, the
RK method exhibits higher variability with an STD of 205.43 for the time
range of [0, 10], signifying greater sensitivity to the specific NPE problem at
hand.

— Convergence : While there are notable differences in computational efficiency
and stability between our NN approach and the RK method, both techniques
demonstrate comparable accuracy in the long run, each achieving an NPE
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error as low as 0.01. As discussed in Section 4.4.3, the convergence mecha-
nisms of the two approaches are fundamentally different. Our NN approach
operates within a fixed time range of [0, 10] and refines its predictive ac-
curacy through iterative training. In contrast, the RK method improves its
accuracy by progressively extending the time range.

4.5.5 . Discussion

Below, we summarize the key features of our proposed NN approach :

— Our NN approach reliably converges to the optimal solutions of the NPE
problems. This is supported by Theorem 4.3 in neurodynamic optimization
and the universal approximation theorem of NNs. Experimentally, we have
shown that the NN approach successfully found optimal solutions for the
three types of NPE problems in Section 4.5.1, as well as ten large-scale NPE
problems in Section 4.5.4.

— The proposed NN approach outperforms the PINN in solving NPE problems.
This improvement is due to some modifications made to the basic PINN
approach that allow it to exploit the problem structure of NPEs for better
performance. In particular, during each training iteration, the NN model
evaluates the accuracy of its end state against the target NPE problem and
retains the best performing solution. Additionally, we employ the projection
function of Eq. (4.1) to further boost accuracy.

— The computational performance of our NN approach is significantly affec-
ted by the hyperparameter settings. As discussed in Section 4.5.3, choices
regarding the time range and initial point have a strong impact on the
convergence result. For example, smaller time ranges may prevent the NN
model from converging to an optimal solution, regardless of the training
time. Moreover, in our empirical observations, the network architecture and
activation functions influence the model convergence rate.

— Our NN approach excels in solving large-scale NPE problems. As presented
in Section 4.5.4, our NN approach outperforms the RK method in terms
of computational efficiency. For the same level of accuracy, the CPU time
required by our approach is less than that required by the RK method.
In addition, our approach exhibits greater stability, with its solution time
remaining consistent across different NPE problems.

However, we must acknowledge some limitations of our proposed NN approach.
The most notable limitation is that, unlike traditional RK methods, the NN ap-
proach lacks rigorous theoretical underpinnings to guarantee convergence, primarily
due to the black-box nature of NNs. Furthermore, as elaborated in Section 4.5.3,
the performance of the model is highly sensitive to hyperparameter choices and
architectural decisions, requiring careful tuning. Numerical integration methods,
which are typically simpler, avoid these complexities.
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To address these limitations, future research should focus on improving network
design and training methods. This could include developing more effective hyper-
parameter search strategies or exploring advanced network architectures, such as
attention-based models or transformers. In addition, investigating how to incorpo-
rate domain-specific knowledge into the network structure may improve solution
accuracy and reduce training time.

4.6 . Conclusion

In this chapter, we presented an innovative deep learning-based approach for
solving NPEs based on neurodynamic optimization and PINNs. We showed how
our approach can efficiently solve NPEs and highlighted its advantages over PINNs
and the RK method. The proposed approach transforms NPE problems into NN
training problems, allowing the use of the latest advances in machine learning and
deep learning to solve NPEs. We also identified areas for future research, such as
exploring better methods for selecting initial points and time ranges, experimen-
ting with different network architectures, and investigating advanced neurodynamic
optimization techniques, among others.

In summary, our proposed framework shows considerable promise for improving
computational efficiency in solving NPEs. With ongoing research and development,
we expect to further strengthen the robustness of our approach and position it as a
valuable computational tool for addressing a wide range of nonlinear optimization
challenges in diverse applications.
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5 - Solving Nonsmooth Convex Optimization
Problems with Neurodynamic Optimiza-
tion and PINNs

In this chapter, we consider Nonsmooth Convex Optimization Problems (NCOPs),
which are a more general class than smooth nonlinear convex optimization. The
NCOPs under consideration naturally encompass various types of nonlinear convex
optimization problems, including linear programming, quadratic programming, and
second-order cone programming, among others. The approach presented in this
chapter is similar to the one introduced in Chapter 4, and their solving algorithms
are both based on neurodynamic optimization and Physics-Informed Neural Net-
works (PINNs).

The main differences between the approach in this chapter and that in Chapter
4 are :

— We use a different neurodynamic method to model the NCOP.

— We use a projection function to handle the equality constraints in NCOPs.

— We use a different evaluation metric specifically the NCOP to improve per-
formance.

The main contribution of this chapter is to present a new paradigm for sol-
ving classical nonlinear programming problems. The proposed solution algorithm is
based on deep learning and can be implemented entirely on PyTorch or Tensorflow.

This chapter corresponds to the reference [147].

5.1 . Introduction

Constrained nonlinear optimization problems involve finding the best solution
among a set of possible solutions by minimizing or maximizing an objective func-
tion. These problems are prevalent in various fields such as engineering, physics,
finance, and management, with a wide range of applications. They can be divided
into two groups based on the nature of the objective or constraint functions : convex
and nonconvex optimization problems. Convex optimization problems, which in-
clude linear programming and quadratic programming, are a special class of non-
convex optimization problems and have been studied extensively. Methods such
as the primal-dual interior point method have been developed to solve them effi-
ciently [35, 4]. Nonconvex optimization problems, however, are more complex and
commonly solved through gradient descent-based algorithms [214, 215]. Consider
solving smooth and deterministic nonconvex problems using gradient descent. Car-
mon et al. [216] showed that Ω(ϵ−1) gradient evaluations are necessary to find a
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ϵ-stationary point. For smooth and stochastic settings, Arjevani et al. [217] showed
that Ω(ϵ−2) noisy gradient evaluations are required to find a ϵ-stationary point.

In this chapter, we focus on Nonsmooth Convex Optimization Problems, which
have a non-differentiable objective function or constraint function. While traditional
optimization algorithms have proven effective in solving smooth convex optimiza-
tion problems, they encounter limitations when applied to NCOPs. This limitation
arises because most traditional algorithms are gradient-based, and gradient in-
formation is not available in the context of NCOPs. Therefore, algorithms such
as subgradient methods and bundle methods have been developed specifically to
overcome the challenges associated with the nondifferentiable functions [6, 218].
Among the many solution methods, we explore neurodynamic approaches for sol-
ving NCOPs [219, 220, 221, 51, 222]. This approach entails the deployment of
a circuit-based neurodynamic model capable of real-time optimization problem-
solving. Such methods hold promise for a wide array of applications, including but
not limited to resource allocation [191], feature selection [223], and the coordina-
tion of multi-manipulator systems [224].

In this chapter, we propose a deep learning approach, based on neurodynamic
optimization [221] and PINNs [26], for solving NCOPs. The main steps are outlined
below :

— First, we use the neurodynamic method proposed by [221] to model the
NCOP as an Ordinary Differential Equation (ODE) system.

— Second, we adapt the PINN model [26] to solve the ODE system. In parti-
cular, the end state of the PINN represents a prediction for the NCOP.

— Third, we train the PINN to solve the NCOP. The training algorithm focuses
on improving the end state of the PINN.

The remaining sections are organized as follows : Section 5.2 illustrates the
neurodynamic approach used to model NCOPs. Section 5.3 describes our proposed
approach, including model introduction, loss definition, and model training. Section
5.4 presents the experimental results of solving some NCOP instances using the
proposed deep learning approach. Finally, Section 5.5 summarizes the main results
of this chapter and outlines possible directions for future research.

5.2 . Neurodynamic Approach to Model NCOPs

NCOP. We consider the following optimization problem :
min
x

f(x)

s.t.
g(x) ≤ 0

Ax = b,

(5.1)
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where x = (x1, x2, . . . , xn)
T ∈ Rn is the decision variables, and f : Rn → R is the

objective function. g(x) = (g1(x), g2(x), . . . , gm(x))T : Rn → Rm represents the
inequality constraints, and u = (u1, u2, . . . , um) represents the dual variables of the
inequality constraints. Ax = b represents the equality constraints with A ∈ Rk×n

and b ∈ Rk. n, m, and k denote the number of decision variables, inequality
constraints, and equality constraints, respectively.

In this chapter, we consider the case where f(x) and g(x) are convex but not
necessarily smooth, and A is of full row rank. We denote x∗ and u∗ as the optimal
primal and dual solutions, respectively.

Definition 5.1 (Subgradient and subdifferential) A vector l ∈ Rn is a subgra-
dient of f : Rn → R at x ∈ dom f if the following holds

f(z) ≥ f(x) + lT (z − x), ∀z ∈ dom f. (5.2)

The set of all subgradients of f at x is called the subdifferential of f at x and
is denoted by ∂f(x).

Neurodynamic Approach. Now, let x : R→ Rn and u : R→ Rm be some
time dependent functions. The aim of a neurodynamic approach is to construct a
first-order ODE system to govern x(t) and u(t), such that they will settle down
to the optimal primal and dual solutions of the NCOP (5.1). In this chapter, the
two-layer neurodynamic approach in [221] is adopted, where the ODE system is
described as follows :

dx

dt
∈ − (I − U)

[
∂f(x) + ∂g(x)T (u+ g(x))+

]
−ATρ(Ax− b),

du

dt
=
1

2

(
−u+ (u+ g(x))+

)
,

(5.3)

where U = AT
(
AAT

)−1
A, I ∈ Rn×n is the identity matrix, ρ(s) = (ρ̃ (s1) , ρ̃ (s2) , . . . , ρ̃ (sk))

T ,
and for i = 1, 2, . . . , k,

ρ̃ (si) =


1 if si > 0,

[−1, 1] if si = 0,

−1 if si < 0.

(5.4)

To simplify the discussion, we denote y(t) = (x(t)T , u(t)T )T and define :

Φ(y) =

[
−(I − U)

[
∂f(x) + ∂g(x)T (U + g(x))+

]
−ATρ(Ax− b)

1
2 (−U + (U + g(x))+)

]
. (5.5)

Thus, the ODE system (5.3) can be written as dy
dt ∈ Φ(y).

Definition 5.2 (State solution) Consider an ODE system dy
dt ∈ Φ(y), where Φ :

Rn → Rn. Given (t0 ∈ R, y0 ∈ Rn), a vector value function y : R→ Rn is called
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a state solution, if it satisfies the ODE system dy
dt ∈ Φ(y) and the initial condition

y(t0) = y0.
In particular, we call y(t) the state at time t. Given a time interval [t0, T ], we

call y(T ) the end state on that time interval.

Theorem 5.1 ([221]) Consider a NCOP (5.1) and its derived ODE system (5.3).
Given any initial condition y(t0) = y0, the state solution y(t) of the ODE system
converges to an optimal solution y∗ as time t approaches infinity, i.e.

lim
t→∞

y(t) = y∗, (5.6)

where y∗ = (x∗T , u∗T )T , x∗ and u∗ are the optimal primal and dual solutions to
the NCOP.

In particular, if the NCOP contains only one optimal solution x∗, then the ODE
system is called globally asymptotically stable at y∗.

Initial Value Problem (IVP) Construction. In practice, in order to use the
neurodynamic approach to solve the NCOP, we need to construct an IVP consisting
of three components : 1) the ODE system (5.3), 2) an initial condition y(t0) = y0,
and 3) a time range t ∈ [t0, T ]. y(t) for t ∈ [t0, T ] represents the state solution
of this IVP problem over the time range [t0, T ], where the end state, y(T ), is
considered to be the predicted solution to the NCOP. According to Theorem 5.1,
the larger the time range [t0, T ], the closer y(T ) is to the optimal solution y∗ of
the NCOP.

5.3 . Methodology

5.3.1 . Modified PINN
Model Description. We propose a modified PINN model to solve the NCOP.

Our model can be expressed by the following equation :

ŷ(t;w) = y0 +
(
1− e−(t−t0)

)
N(t;w), t ∈ [t0, T ], (5.7)

where N(t;w) is a fully connected neural network with trainable parameters w.
y0 is a given initial point for the ODE system. [t0, T ] is a given time range. The
auxiliary function

(
1− e−(t−t0)

)
ensures that the neural network always satisfies

the initial condition ŷ(t = t0;w) = y0 regardless of w.
Approximate State Solution to the ODE. As shown in Figure 5.1 (Left),

the proposed model (5.7) itself is an approximate state solution of the ODE system
(5.3) on the time range [t0, T ], i.e,

ŷ(t;w) ≈ y(t), t ∈ [t0, T ], (5.8)

where y(t) is the true state solution of the ODE system. While the input time t of
the model ŷ(t;w) can be take any real number, we specifically use ŷ(t;w) as the
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NN itself is a prediction to the ODE system

Approximate State Solution to the ODE

NN provides 
a prediction to the NCOP

Predicted Solution to the NCOP

Figure 5.1 – Neural network solution for the ODE system and the NCOP.
Left : When t ∈ [t0, T ], the model ŷ(t;w) itself is considered to be an
approximate state solution of the ODE system. Right : When t = T ,
the model returns the prediction, (x̂, û) = ŷ(t = T ;w), where x̂ and û
represent the primal and dual predictions for the NCOP, respectively.

solution of the ODE over the time range [t0, T ]. As a result, we restrict the input
of ŷ(t;w) to the time range t ∈ [t0, T ].

Predicted Solution to the NCOP. The end state of the proposed model,
i.e., ŷ(t = T ;w), is used as the predicted solution to the NCOP (5.1), as shown in
Figure 5.1 (Right). The following equation shows how ŷ(t = T ;w) approximates
the optimal solution y∗ :

ŷ(t = T ;w) ≈ y(T ) ≈ y∗. (5.9)

Here, ŷ(t = T ;w) ≈ y(T ) indicates that the end state of our model approximates
the true end state, and y(T ) ≈ y∗ comes from Theorem 5.1, indicating that the
true end state is the predicted solution of the NCOP.

5.3.2 . Training Objective
Loss Function. We define the loss function of the proposed model (5.7) as

follows :

L(t, w) =
∥∥∥∥∂ŷ(t;w)∂t

− Φ(ŷ(t;w))

∥∥∥∥ , (5.10)

where Φ(·) refers to the ODE system (5.3), which corresponds to the NCOP to be
solved. ∥·∥ is the Euclidean norm. Φ(ŷ(t;w)) is the expected derivative according
to the ODE system. ∂ŷ(t;w)

∂t is the actual derivative of the model, which can be
computed using automatic differentiation tools such as PyTorch or JAX [181, 207].
L(t, w) represents the difference between the two at time t and with network
parameters w.
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Embedding the NCOP into the Loss Function. The NCOP is integra-
ted into the loss computation process through the ODE system rather than as a
component of the neural network. A neural network is created as an empty frame-
work without a specific goal to solve a particular NCOP. Instead, by reformulating
the NCOP as an ODE system and embedding it into the loss function, the neural
network is trained toward solving the NCOP.

Objective Function. The goal of training the proposed model is to minimize
the following objective function :

J(w) =

∫ T

t0

L(t, w)dt, (5.11)

which is the integral of the loss function over the time range [t0, T ]. The loss value
L(t, w) represents the error of the model at time t, while the objective function
J(w) represents the total error of the model over the time range [t0, T ].

Batch Loss. However, the objective function J(w) is computationally in-
tractable to compute due to its integral part. Therefore, in practice, we train the
model by minimizing the following batch loss :

L(T, w) = 1

|T|
∑
t∈T
L(t, w), (5.12)

where T is a set of randomly sampled time points from the interval [t0, T ], and
|T| denotes the size of this set. In this way, we can approximate the integral in the
objective function J(w) by a sum of loss values over the set of sampled times. By
minimizing the batch loss, we can effectively train the model to solve the NCOP.

5.3.3 . Algorithm Design
Objective value under Constraints (OuC) Metric. We introduce an eva-

luation metric called OuC to measure how well a predicted solution, xpred, solves
the NCOP :

OuC(xpred) =

{
f(xpred) if xpred ∈ Ω,

+∞ otherwise ,
(5.13)

where Ω is the feasible set defined as Ω = {x|x ≤ g(x), Ax = b}. If the predicted
solution is not feasible, the OuC is set to positive infinity ; if it is feasible, the OuC
is set to the objective value.

Projection Mapping onto Equality Constraints. To increase the likeli-
hood of OuC(xpred) being a real value instead of infinite, we employ the following
projection function to map xpred to the set of equality constraints,

Peq(xpred) = xpred −AT
(
AAT

)−1
(Axpred − b). (5.14)

By definition, the evaluation metric OuC(xpred) attains a real value only when
xpred lies within the feasible set Ω. As illustrated in Figure 5.2, there are two
circumstances when Peq aids in projecting xpred onto the feasible set :
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Figure 5.2 – I and Q denote the feasible set of inequality constraints
and equality constraints, respectively. Ω = I ∩ Q denotes the general
feasible set of the problem. Peq is a projection function that maps xpred
onto Q.

— xpred satisfies the inequality constraints but fails to meet the equality constraints,
i.e., xpred ∈ I −Q.

— xpred does not satisfy both the inequality and equality constraints, i.e.,
xpred /∈ I ∪ Q.

In both of the above scenarios, Peq has a reasonable chance of mapping xpred onto
the feasible set Ω, resulting in the value of OuC being a real number rather than
infinite.

Pipeline. Algorithm 3 summarizes how to use our proposed method to solve
the NCOP. First, we need to specify an initial condition y(t0) = y0 and a time
range [t0, T ] to construct the IVP. Then, we instantiate the proposed model (5.7),
which serves as an approximate state solution for this IVP. The model is trained by
performing gradient descent on the batch loss (5.12) to improve the approximation.
Note that our solver is completely based on the deep learning infrastructure and
does not require any standard optimization solver or numerical integration solver.

Optimal Result Retention (ORR) Mechanism. A key to Algorithm 3 is
that we use an ORR mechanism based on the OuC metric (5.13). Specifically, at
each iteration, the algorithm compares the OuC value at the current iteration,
denoted as OuCcurr, with the best OuC value found so far, denoted as OuCbest.
(x̂curr, ûcurr) and (x̂best, ûbest) represent the current prediction and the best pre-
diction found so far, respectively. If OuCcurr is less than OuCbest, it means that the
model found a better prediction in this iteration. The algorithm updates OuCbest

to equal OuCcurr and stores the best prediction as (x̂best, ûbest) = (x̂curr, ûcurr).
This mechanism ensures that the best prediction obtained by the model is main-
tained throughout the training process, improving the overall performance of the
algorithm.

Neural Network Solution Procedure. Our approach employs gradient des-
cent on the batch loss (5.12) to improve the neural network prediction at each itera-
tion. Assume that the maximum number of training iterations is M . The evolution
of the neural network is represented by ŷ(t;w1), ŷ(t;w2), . . . , ŷ(t;wM ), where wi

and ŷ(t;wi) denote the network parameters and the approximate state solution at
the i-th iteration, respectively. The predicted end states are ŷ(t = T ;w1), ŷ(t =
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Algorithm 3 Deep learning solver for NCOPs based on neurodynamic
optimization
Input : A NCOP as defined in (5.1) ; A time range [t0, T ] ; An initial
condition y(t0) = y0 ; Learning rate α.
Output : The predicted primal and dual solution to the NCOP, deno-
ted as x̂best and ûbest, respectively.
1: function
2: Derive the ODE system, Φ(·) by Eq. (5.3).
3: Instantiate the proposed model ŷ(t;w) of Eq. (5.7).
4: (x̂best, ûbest) = ŷ(t = T ;w)
5: OuCbest = OuC(x̂best)
6: while iter ≤maximum iteration do
7: T ∼ U(t0, T ) ▷ Sample collocation points T.
8: L(T, w) ▷ Forward propagation.
9: w = w − α∇wL(T, w) ▷ Backward propagation.
10: (x̂curr, ûcurr) = ŷ(t = T ;w) ▷ Neural network prediction
11: x̂curr = Peq(x̂curr) ▷ Project x̂curr to the feasible set.
12: OuCcurr = OuC(x̂curr) ▷ Calculate the OuC value of x̂curr.
13: if OuCcurr < OuCbest then
14: OuCbest = OuCcurr
15: (x̂best, ûbest) = (x̂curr, ûcurr)
16: end if
17: end while
18: return (x̂best, ûbest)
19: end function

T ;w2), . . . , ŷ(t = T ;wM ), where ŷ(t = T ;wi) represents the prediction to the
NCOP at the i-th iteration.

5.4 . Numerical Results

Neural Network Setup. To implement our proposed model and the ODE
system, we used PyTorch 1.12.1 with CUDA 11.2 [181] and JAX 0.4.1 [207]. Our
neural network architecture consisted of a single layer fully connected network
with 100 neurons and a Tanh activation function. For training, we used the Adam
optimizer [27] with a learning rate of 0.001, and a batch size of 128.

Evaluation metrics. We employed two metrics to assess model performance.
The first is computation time, which measures computational efficiency. The se-
cond is the OuC metric, defined in equation (5.13), which measures accuracy. The
OuC metric categorises a prediction into two scenarios. In the first scenario, if the
prediction falls outside the feasible set, it returns ‘inf’. In the second scenario, if
the prediction is within the feasible set, the OuC metric returns the objective value
of the optimization problem ; in this case, a lower OuC value indicates better per-
formance. The rationale behind using this metric is its convenience in measuring
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how swiftly the proposed method can find a feasible solution and the extent of
improvement after finding one.

5.4.1 . Comparisons with Numerical Integration Methods
In this subsection, we compare our proposed method with six classical nu-

merical integration methods : Runge-Kutta 45 (RK45), Runge-Kutta 23 (RK23),
Dormand-Prince 853 (DOP853), Backward Differentiation Formula (BDF), Ra-
dau, and LSODA. All of these methods are available in the Scipy library [209].
The RK45, RK23, and DOP853 are explicit Runge-Kutta methods, while the BDF
and Radau are implicit methods. LSODA is an adaptive method that automatically
switches between explicit and implicit methods depending on the stiffness of the
ODE system.

Example 1 : We aim to solve the following NCOP :

min
x

f(x) = 10(x1 + x2)
2 + (x1 − 2)2 + 20|x3 − 3|+ ex3

s.t.

g(x) = (x1 + 3)2 + x2 − 36 ≤ 0

h(x) = 2x1 + 3x2 + 5x3 − 7 = 0.

(5.15)

The feasible set of this problem is convex, and the objective function is convex but
non-smooth due to its inclusion of absolute values.

Construction of IVPs. We model the problem (5.15) by the ODE system
(5.3) and set the time range as [t0, T ] = [0, 10]. We choose three initial points
to study, namely [0, 0, 0, 0], [1, 0,−2, 3], and [−1, 1,−1, 1], which result in three
IVPs. Based on these three initial points, we construct each of the three proposed
neural networks (5.7) as approximate state solutions to the IVPs.

Neural Network Solution. Figure 5.3 shows the solution process of our
approach. Each horizontal row represents the evolution of a neural network trained
by Algorithm 3. Each sub-figure shows ŷ(t;w) for t ∈ [0, 10], which represents the
approximate state solution of the IVP at a given training iteration. Here, we must
emphasize that ŷ(t;w) is implemented by one neural network with four output
units, and ŷ(t;w) = (ŷ1(t;w), ŷ2(t;w), ŷ3(t;w), ŷ4(t;w)). In particular, the end
state has

ŷ(t = 10;w) =

ŷ1(t = 10;w), ŷ2(t = 10;w), ŷ3(t = 10;w)︸ ︷︷ ︸
=x̂

, ŷ4(t = 10;w)︸ ︷︷ ︸
=û

 ,

(5.16)
where x̂ and û represent the predicted primal and dual solutions, respectively, of
the problem (5.15).

Evolution of the Predictions. As discussed in Section 5.3.3, the end state
prediction ŷ(t = 10;w) is improved by training on the entire approximate state
solution. At training iteration 0, the approximate state solution is far from the
true state solution, resulting in a high OuC value of the endpoint prediction. After

89



NN 1 with
IP: [0, 0, 0, 0]

Primal prediction

Dual prediction

Iteration = 0 Iteration = 10 Iteration = 20

0 2 4 6 8 10
t

4

2

0

2

4

y(
t;
w
)

y1(t;w)

y2(t;w)

y3(t;w)

y4(t;w)

0 2 4 6 8 10
t

4

2

0

2

4

y(
t;
w
)

0 2 4 6 8 10
t

4

2

0

2

4

y(
t;
w
)

0 2 4 6 8 10
t

4

2

0

2

4

y(
t;
w
)

y1(t;w)

y2(t;w)

y3(t;w)

y4(t;w)

0 2 4 6 8 10
t

4

2

0

2

4

y(
t;
w
)

0 2 4 6 8 10
t

4

2

0

2

4

y(
t;
w
)

0 2 4 6 8 10
t

4

2

0

2

4

y(
t;
w
)

y1(t;w)

y2(t;w)

y3(t;w)

y4(t;w)

0 2 4 6 8 10
t

4

2

0

2

4

y(
t;
w
)

0 2 4 6 8 10
t

4

2

0

2

4

y(
t;
w
)

Iter: 0
Prediction: [0.18, 0.19, 1.22 , 0. 00]
OuC: 43.66

Iter: 10
Prediction: [2.95, -3.52, 2.33, 0.00]
OuC: 27.39

Iter: 20
Prediction: [3.24, -3.42, 2.16, 1.22]
OuC: 27.39

Iter: 20
Prediction: [2.88, -2.96, 2.03, 2.33]
OuC: 27.41

Iter: 0
Prediction: [1.67, 1.08, 0.08, 1.94]
OuC: 135.25

Iter: 10
Prediction: [1.20, -1.33, 1.72, 0.00]
OuC: 32.06

Iter: 20
Prediction: [2.85, -3.05, 2.09, 2.27]
OuC: 27.43

Iter: 0
Prediction: [-1.29, 2.22, 0.58, 1.32]
OuC: 69.64

Iter: 10
Prediction: [2.13, -2.77, 2.21, 0.00]
OuC: 28.94

NN 2 with
IP: [1, 0, -2, 3]

NN 3 with
IP: [-1, 1, -1, 1]

Figure 5.3 – Neural network solutions to problem (5.15). The three neu-
ral networks are initialized with three different initial points (IPs). Each
row shows a neural network as a function at selected training itera-
tions.

20 training iterations, the approximate state solution gets closer to the true state
solution, and the endpoint prediction improves significantly. Notably, as these net-
works are constructed with different initial conditions, they have varying initial OuC
values. Nonetheless, our proposed algorithm ensures that all networks converge to
a prediction with an OuC value of less than 28 after 20 training iterations.

OuC Performance. Figure 5.4 presents a comparative analysis of the OuC
drop rates for our proposed method and six traditional numerical integration me-
thods over three different initial points. The following observations can be made :

— Our method outperforms traditional numerical integration methods in terms
of OuC reduction, as evidenced by the lower OuC values achieved in fewer ite-
rations. For example, for the initial point (IP) [0, 0, 0, 0], our method reduces
OuC from 43.66 to 28 in just five iterations, whereas the best-performing
numerical integration methods, namely RK45, DOP853, and Radau, require
20 iterations to achieve comparable results. Similar results are observed for
the other two initial points.

— The speed of convergence varies for different initial points, with our method
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Figure 5.4 – Comparison of our proposed method with the numerical
integration methods on the OuC metric. The OuC metric is defined in
Equation (5.13).

showing greater robustness to different initial settings compared to numerical
integration methods. While most numerical integration methods converge
faster for the IP [1, 0,−2, 3] and slower for [0, 0, 0, 0], our method converges
at approximately the same rate for both.

— The starting OuC values differ for various initial points, with the IP [1, 0,−2, 3]
having the highest starting OuC value of around 135, and [0, 0, 0, 0] having
the lowest starting OuC of approximately 43. However, the results demons-
trate that the OuC values do not significantly affect the speed of conver-
gence.

Why Our Approach has Better OuC than RK45. It is important to em-
phasize that our approach has no advantage over classical numerical integrators
such as RK45 when it comes to solving for the full solution on the IVP, i.e. the
function y. As shown in Figure 5.4, our method outperforms these numerical in-
tegrators in the OuC metric because our approach focuses on improving the end
point ŷ(t = T ;w), rather than the entirety of the function ŷ. It is also worth noting
that the OuC performance metric only considers the endpoint ŷ(t = T ;w), not
the entire function ŷ. The methodology we propose, described in sections 5.3, is
deliberately designed with this specific goal in mind.

Computational Time Performance. Figure 5.5 shows the time needed by
different solution methods to obtain an acceptable solution (i.e., OuC ≤ 28) to
Problem (5.15). Our proposed method outperforms all considered numerical inte-
gration methods in terms of computational efficiency. The most efficient numerical
integration method, BDF, still requires 10 times more computational time than
our method to obtain a satisfactory solution. Moreover, the computational time of
our method is less affected by different IP settings, requiring about 1.78 seconds
for all three initial points. In contrast, some numerical integration methods, such
as Radau and LSODA, show significant variations in computation time at different
initial points.
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Figure 5.5 – Comparison of our method with the numerical integration
methods in terms of computational efficiency. Time is measured in se-
conds.

5.4.2 . Comparisons with PINN
In this subsection, we perform an ablation study comparing the proposed me-

thod with PINN [26] and Lagaris method [193] to validate the effectiveness of our
method.

Example 2 :

min
x

f(x) = |2.3x1 + x3 − 3.5|+ |x2 + 2x3 − 1.8|+ |1.3x1 + x2 + x3 + 3|

s.t.

g(x) = x21 − x2 + x3 + 3 ≤ 0

h1(x) = x1 + x2 + x3 = 0,

h2(x) = 2x2 + x3 = 2.
(5.17)

We aim to solve the NCOP (5.17). The problem has a convex feasible set and a
convex but non-smooth objective function due to its inclusion of absolute values.

Construction of IVPs. We model problem (5.17) as an ODE system (5.3)
and set the time range as [t0, T ] = [0, 10]. To construct three IVPs, we choose three
initial points, namely [1,−1, 0, 3], [2, 3,−2, 1], and [2,−2, 1,−2]. Based on these
initial points, we instantiate three proposed neural networks (5.7) as approximate
state solutions.

Experimental Setup. We compare our proposed approach with two me-
thods : vanilla PINN and PINN with Lagaris construction method (PINN+Lagaris).
Our approach can be regarded as the PINN+Lagaris method enhanced by the ORR
mechanism (PINN+Lagaris+ORR). The hyperparameters and training details are
the same as those in Section 5.4.1.

Table 5.1 shows the performance of the three methods over the first one hun-
dred iterations, while Figure 5.6 shows their convergence behavior over the first
one thousand iterations. The results reveal the following key observations :

— Our proposed approach yields an excellent predicted solution within the
first 20 training iterations, consistent with the results presented in Section
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Table 5.1 – Comparison of PINN, PINN+Lagaris, and PINN+Lagaris+ORR
(Our approach) for three different initial pointswith predicted solutions
and correspondingOuC values. inf indicates that the predicted solution
is not in the feasible set.

Initial point : [1, -1, 0, 3]

Iteration PINN PINN+Lagaris PINN+Lagaris+ORR
Predicted solution OuC Predicted solution OuC Predicted solution OuC

0 [-0.64 1.36 -0.71 0.47] inf [-1.00 1.00 -0.00 3.09] inf [-1.00 1.00 -0.00 3.09] inf
5 [-0.40 1.60 -1.19 1.10] inf [-1.42 0.58 0.84 7.02] inf [0.05 2.05 -2.09 4.85] 12.44
10 [-0.31 1.69 -1.37 2.17] inf [ 0.16 2.16 -2.31 9.50] 12.77 [-0.18 1.82 -1.64 9.25] 11.76
20 [ 0.81 2.81 -3.63 3.53] 14.74 [ 1.43 3.43 -4.86 6.63] 16.60 [-0.18 1.82 -1.64 9.25] 11.76
40 [ 0.72 2.72 -3.44 5.03] 14.45 [ 0.29 2.29 -2.58 1.91] 13.17 [-0.18 1.82 -1.64 9.25] 11.76
60 [ 0.74 2.74 -3.48 4.80] 14.52 [ 1.12 3.12 -4.25 2.18] 15.67 [-0.18 1.82 -1.64 9.25] 11.76
80 [ 0.84 2.84 -3.68 4.35] 14.82 [ 0.45 2.45 -2.90 1.48] 13.65 [-0.18 1.82 -1.64 9.25] 11.76
100 [ 0.82 2.82 -3.64 3.96] 14.76 [ 0.19 2.19 -2.39 0.72] 12.88 [-0.18 1.82 -1.64 9.25] 11.76

Initial point : [2, 3, -2, 1]

Iteration PINN PINN+Lagaris PINN+Lagaris+ORR
Predicted solution OuC Predicted solution OuC Predicted solution OuC

0 [-1.00 1.00 0.00 0.00] inf [ 0.41 2.41 -2.82 0.23] 13.54 [ 0.41 2.41 -2.82 0.23] 13.54
5 [-1.07 0.93 0.13 0.64] inf [-0.77 1.23 -0.46 1.52] inf [-0.29 1.71 -1.41 1.77] 11.42
10 [-1.42 0.58 0.85 2.04] inf [ 0.04 2.04 -2.08 1.39] 12.42 [-0.29 1.71 -1.41 1.77] 11.42
20 [-1.44 0.56 0.87 4.04] inf [ 0.85 2.85 -3.69 2.26] 14.84 [-0.29 1.71 -1.41 1.77] 11.42
40 [ 0.89 2.89 -3.77 3.24] 14.96 [ 0.26 2.26 -2.53 1.21] 13.09 [-0.29 1.71 -1.41 1.77] 11.42
60 [ 0.56 2.56 -3.11 1.69] 13.97 [-0.29 1.71 -1.43 0.25] 11.44 [-0.29 1.71 -1.41 1.77] 11.42
80 [ 0.44 2.44 -2.88 1.79] 13.63 [-0.62 1.38 -0.75 0.71] inf [-0.30 1.70 -1.40 1.19] 11.40
100 [ 0.01 2.01 -2.02 1.05] 12.33 [-0.09 1.91 -1.83 0.88] 12.04 [-0.30 1.70 -1.40 1.19] 11.40

Initial point : [2, -2, 1, -2]

Iteration PINN PINN+Lagaris PINN+Lagaris+ORR
Predicted solution OuC Predicted solution OuC Predicted solution OuC

0 [-0.65 1.35 -0.7 0. ] inf [-1.05 0.95 0.1 0. ] inf [-1.05 0.95 0.1 0. ] inf
5 [-0.68 1.32 -0.65 0.44] inf [-2.78 -0.78 3.56 1.67] inf [-0.10 1.90 -1.80 6.38] 12.01
10 [-1.53 0.47 1.05 2.08] inf [-1.21 0.79 0.41 5.23] inf [-0.10 1.90 -1.80 6.38] 12.01
20 [-1.66 0.34 1.32 5.54] inf [ 2.03 4.03 -6.06 9. ] 18.39 [-0.23 1.77 -1.54 6.37] 11.62
40 [ 0.42 2.42 -2.84 6.84] 13.56 [ 0.53 2.53 -3.05 3.46] 13.88 [-0.23 1.77 -1.54 6.37] 11.62
60 [ 1.24 3.24 -4.47 6.27] 16.01 [ 0.67 2.67 -3.34 5.02] 14.31 [-0.23 1.77 -1.54 6.37] 11.62
80 [ 1.3 3.3 -4.6 5.42] 16.2 [ 0.63 2.63 -3.25 3.59] 14.18 [-0.23 1.77 -1.54 6.37] 11.62
100 [ 1.27 3.27 -4.54 4.92] 16.11 [ 0.59 2.59 -3.19 3.69] 14.08 [-0.23 1.77 -1.54 6.37] 11.62

5.4.1. In contrast, even after 1000 iterations, neither the PINN nor the
PINN+Lagaris methods achieves a predicted solution that compares favora-
bly to that of our approach.

— Our method has a higher probability of obtaining feasible solutions. As shown
in Table 5.1, the PINN method returns ’inf’ 11 times for the three IP configu-
rations, while the Lagaris method reduces this occurrence to 7. In contrast,
our method returns ’inf’ only twice, both times in the first round, indicating
that it can reach a feasible solution more quickly.

— Neither the PINN method nor the PINN+Lagaris method maintains an op-
timal solution during the optimization process. As shown in Table 5.1, the
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Figure 5.6 – Comparison of our proposed method with PINN and the
PINN+Lagarismethod on theOuCmetric. The experiment is conducted
on Problem (5.17)

PINN method and the PINN+Lagaris method achieve good OuC values of
12.33 and 12.04, respectively, for the IP [2, 3,−2, 1] at the 100th iteration.
However, neither method maintains this level of performance, and their OuC
values increase in subsequent iterations.

— The Lagaris method can improve the performance of vanilla PINN, as shown
in Figure 5.6. However, this improvement is not substantial and varies de-
pending on the IP configuration. For example, the improvement is significant
for the first and third initial points but negligible for the second IP.

5.4.3 . Hyperparameter Study
In this subsection, we perform a hyperparameter study on the following NCOP.
Example 3 :

min
x

f(x) = ∥Cx− d∥1
s.t.

g1(x) = x21 − x2 + x3 + x5 − x8 − 10 ≤ 0,

g2(x) = |x1− x3 + x4 + x7| − 4.8 ≤ 0,

h(x) = x1 + x3 + x5 + x7 − 1 = 0,

(5.18)

where ∥·∥1 denotes the L1 norm, and

C =


1 4 2 2 1.3 4 2 1
2.8 2 1.6 3.2 0 2 1 1
1 4 2.3 2 2.5 0 5 1
1 1 1 3.1 2.3 0 0.8 1

 , d =


1.5
−3.8
6.2
7.5

 . (5.19)

Example 3 involves a nonsmooth objective function and a nonsmooth inequality
constraint g2(x).

To set up the algorithm, we choose the IP as an all-ones vector and the time
range as [0, 10]. In the following, we discuss the computational performance for
different neural network sizes and different learning rates.
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Figure 5.7 – Hyperparameter study. (A) : OuC performance on different
numbers of neurons in a single layer neural network with a learning
rate of 0.01. (B) : OuC performance of different layers in a multilayer
neural network with 500 neurons per layer and a learning rate of 0.01.
(C) : OuC performance at different learning rates in a two-layer neural
network with 500 neurons per layer.

Model Size. In Figures 5.7 (A) and (B), we investigate the computational
performance of neural networks with various widths and depths, and the optimal
result is obtained with a 700-neuron-wide, single-layer structure. In (A), with a
maximum of 1000 training iterations, networks with fewer neurons (such as 100,
300, and 500) underperform due to their model capacity, limiting further improve-
ments in OuC even with more training. Conversely, a network with more neurons
(such as 900) shows underperformance, likely due to insufficient model training,
and its OuC would potentially improve with additional training. In (B), a single
layer neural network is shown to outperform other configurations. Taken together,
these results underscore the need to find the most appropriate network structure
for a given NCOP problem. An overly complex network would require an exces-
sive amount of computing resources for optimization that may not be necessary.
Conversely, a network that is too simple would not find the appropriate solution,
regardless of the amount of training. Thus, the size of the neural network should be
determined by factors related to the NCOP being solved. These include the number
of decision variables, the constraints, and the complexity of both the objective and
constraint functions.

Learning Rate. Figure 5.7(C) shows the performance of neural networks
trained with different learning rates. At iteration 1000, the optimal performance is
observed at the learning rate of α = 0.0001. It is important to note that if we zoom
into the first 100 iterations, a larger learning rate α = 0.001 is more effective. This
suggests that the choice of learning rate should depend on the actual preferences
of the user. The advantage of a large learning rate is that it can find a better
prediction for the NCOP in a short time, while the disadvantage is that it performs
poorly in the long run. In contrast, a small learning rate finds better solutions in
the long run. Overall, the choice of learning rate should be determined by the user’s
specific requirements for speed and accuracy.
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5.4.4 . L1 Norm Minimization Problem
Consider the following NCOP problem :
Example 4 :

min
x

f(x) = ∥x∥1
s.t.

gi(x) = x210∗(i−1)+1 + x210∗(i−1)+2 + · · ·+ x210∗(i−1)+10 − 20 ≤ 0,

for i = 1, 2, . . . , 300,

h(x) = Ax− b = 0,

(5.20)

where x ∈ R3000, A ∈ R1×3000, with the first half entries of A being 1 and the
rest 3, and b = 16.

Table 5.2 – Description of IPs and their OuC performance at different
algorithm iterations. Columns 2 to 6 describe the IPs and the their initial
information, and columns 7 to 10 describe their OuC values at different
training iterations.

Description Initial
f(x)

Initial
max

i=1,2,...,300
(gi(x))

Initial
h(x)

Initial
OuC

OuC at
iteration 100

OuC at
iteration 1000

OuC at
iteration 3000

OuC at
iteration 10000

IP1 All-ones vector :
(1, 1, . . . , 1)

3000.0 -10.0 5984. inf 133.92 7.08 6.31 5.81

IP2 All-threes vector :
(3, 3, . . . , 3)

9000.0 70 17984 inf 202 118 25 6.00

IP3 All-negative ones vector :
(−1,−1, . . . ,−1) 3000.0 -10.0 -6016 inf 166.10 8.65 6.23 6.23

IP4 Alternating sequence of 2 and -2 :
(2,−2, . . . , 2,−2) 6000.0 20 -16 inf 643 16.62 16.62 16.62

IP5 First half entries are 1 and the rest are 3 :
(1, 1, . . . , 3)

5700.0 70 14084 inf 946 380 344 95

IPs Description. We examine five different IPs, which are listed in Table 5.2.
The IPs are used to configure Algorithm 3 to solve problem (5.20). As shown in
the table, all the five IPs have large initial objective values, with IP2, IP4, and IP5
failing to satisfy the inequality constraint, i.e., max

i=1,2,...,300
(gi(x)) ≥ 0, and all IPs

failing to meet the equality constraint, i.e., h(x) ̸= 0. These observations indicate
that the IPs initially do not solve Example 4 well and are far from the optimal
solution.

Based on the five IPs, the OuC values at different algorithm iterations are
shown in Table 5.2 and Figure 5.8. We observe that :

— As shown in Figure 5.8-(A), our algorithm quickly finds a feasible solution
that satisfies both the inequality and equality constraints. Moreover, once
the first feasible solution is found, the subsequent solutions given by the
algorithm are all within the feasible set.

— The final solutions given by the algorithm are acceptable. After going through
the entire solution process, the OuC values associated with the IPs decrease
significantly. For IP1, the OuC decreases from 3000 to 5.81 (100%→ 0.2%),
and similar results can be found for other IPs. Given the fact that problem
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Figure 5.8 – OuC performance with various IP configurations. The de-
tailed descriptions for the five IPs are given in Table 5.2. In (A), the red
circle indicates the first time a feasible solution is found. (A), (B), (C),
and (D) show the results of the algorithm iterations 0∼100, 100∼1000,
1000∼3000, and 3000∼10000, respectively.

(5.20) has a known lower bound 0 for the objective value. This indicates
that the final solutions produced by the proposed algorithm are already very
close to the optimal solution.

— The OuC decreasing speed or convergence rate varies under different IP
configuration. The convergence rate and final result of IP1∼IP4 are signifi-
cantly better than those of IP5. This may be because IP5 is the farthest from
the optimal solution, and thus requires a larger time range and more mo-
del training. Nevertheless, the proposed algorithm still significantly improves
the OuC performance of IP5 (100% → 1.6%) with the given experimental
setup.

— Most of the decrease in OuC values occurs in the first 1000 iterations. In
particular, IP1, IP2, and IP4 reduce the OuC values to about 10 within only
1000 iterations, which is already very close to the final result, demonstrating
the efficiency of the algorithm.

5.4.5 . NCOP Problem Set
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Problem Set Description. We construct a set of NCOPs based on Example
4 (5.20), where each NCOP problem takes the following form :

min
x

f(x) = ∥x∥1
s.t.

gi(x) = x210∗(i−1)+1 + x210∗(i−1)+2 + · · ·+ x210∗(i−1)+10 − c(k) ≤ 0, i = 1, 2, . . . , 100

h(x) = A(k)x− b(k) = 0,
(5.21)

where x ∈ R1000, A(k) ∈ R1000, b(k) ∈ R, and c(k) ∈ R. A(k), b(k), c(k) are
sampled from uniform distributions U(1, 5), U(10, 20), U(20, 30), respectively.
We randomly generate 100 different problem data {

(
A(k), b(k), c(k)

)
} to form 100

different NCOPs. These problem datasets {
(
A(k), b(k), c(k)

)
}100k=1 can be accessed

from the link 1. Consistent with previous experimental subsections, we set the time
range for all NCOPs to [0, 10] and the IP y0 as an all-one vector.
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Figure 5.9 –OuC values of the 100NCOPs at different training iterations.
Left and right show the results of iterations 0∼100 and 100∼1000, res-
pectively.

Figure 5.9 shows the resolution of these 100 NCOPs using our neural network
approach, and Table 5.3 shows the statistical information for these OuC results at
different iterations. A clear trend can be seen is that all the OuC values decrease as
training progresses. Starting from a mean of 372.79, the OuC value drops to 24.00
after 1000 iterations (a reduction from 100% to 6.4%). This trend of decreasing
OuC values is not only observed at the mean, but also consistently observed at the
25%, 50%, 75%, and 90% quantiles. Of particular note is the impressive magnitude
of this reduction. The significant reduction in OuC values indicates that our method
efficiently navigates the solution space, making steady progress towards optimality.
This highlights the potential of our approach for tackling a wide variety of NCOPs.
In summary, these results provide a strong indication of the effectiveness of our

1. https://drive.google.com/drive/folders/1D_3HP-fBp9tew4IgDroIQtgVb8vU-vGO?
usp=drive_link

98

https://drive.google.com/drive/folders/1D_3HP-fBp9tew4IgDroIQtgVb8vU-vGO?usp=drive_link
https://drive.google.com/drive/folders/1D_3HP-fBp9tew4IgDroIQtgVb8vU-vGO?usp=drive_link


Table 5.3 – Statistical data of OuC values for 100NCOPs at different trai-
ning iterations. The table shows the mean, standard deviation (STD),
and values at the 25%, 50% (median), 75%, and 90% quantiles of the
OuC distribution at each iteration.
Iteration Mean STD 25% quantile 50% quantile 75% quantile 90% quantile
0 372.79 3.93 370.11 372.46 375.05 378.15
20 277.87 6.21 274.28 278.69 282.21 284.90
40 130.84 14.12 121.48 130.32 142.55 148.95
60 120.27 9.91 114.34 120.55 126.57 129.90
80 108.60 18.59 102.61 113.15 121.67 127.45
100 89.10 18.81 72.78 88.25 101.73 117.89
300 49.08 9.55 43.14 48.21 53.61 61.63
500 37.23 7.61 32.01 36.37 42.91 46.19
700 30.13 6.95 25.86 29.85 34.31 39.05
999 24.00 6.17 20.73 23.64 27.64 30.35

proposed method for solving NCOPs, demonstrating its robustness and efficiency
over a wide range of problem datasets.

5.4.6 . Comparsions with Optimization Solvers

Problem Our Approach CVXPY-ECOS CVXPY-SCS
OuC CPU time OuC CPU time OuC CPU time

Example 1 27.43 1.78 27.12 0.02 27.12 0.03
Example 2 11.40 2.13 11.39 0.02 11.39 0.03
Example 3 0.08 12.23 0.00 0.02 0.00 0.03
Example 4 5.34 180.32 5.33 1.06 5.33 2.31

Table 5.4 – Performance comparison with the optimization solvers.

Experimental Setup. In this section, we compare the proposed approach
with the optimization solvers. The solvers involved in this comparison are ECOS
[225] and SCS [226], which can be called directly from the CVXPY [227] library.
The target problems considered are the four NCOP examples presented in Sections
5.4.1 to 5.4.4. The accuracy and efficiency results are reported in Table 5.4.

Optimization Solver is Still the Best Choice. According to the results
shown in the table, it is easy to conclude that the optimization solvers are much
better than our approach at this stage. Therefore, when considering solving an
optimization problem, various SOTA optimization solvers remain the best choice,
offering more robustness and higher efficiency. It is important to emphasise that
this chapter does not aim to outperform classical optimisation solvers, which have
been developed over many years and are well established. Instead, the aim of this
chapter is to present a novel way of solving these classical problems and to inspire
future studies. In the experiments, we provide some preliminary guidelines. Sections
5.4.1 and 5.4.2 have shown that the proposed algorithm is not a naive combination
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of neurodynamic optimization and PINN. Sections 5.4.3 to 5.4.5 have discussed
some important hyperparameter settings in the proposed algorithm.

A Similar Situation with PINNs. In fact, there is a lot of experimental
evidence that PINNs cannot outperform classical finite element methods in solving
PDEs [228]. However, this does not diminish the innovation and significance of
PINNs. For example, recent developments such as Fourier Neural Operators [229]
and DeepONets [130] have demonstrated the potential for solving parameterized
PDEs. In cases where the problem parameters change, finite element methods re-
quire starting from scratch to solve a new PDE, while neural networks can rapidly
approximate by taking the parameters as additional inputs. As the unstoppable
development of artificial intelligence continues, we will see the evolution and deve-
lopment of these emerging, neural network-based algorithms.

5.5 . Conclusion

In this study, we present a deep learning-based methodology for solving NCOPs.
The proposed methodology is a fruitful fusion of neurodynamic optimization and
PINNs. Methodologically, we have extended the PINN approach to accommodate
neurodynamic optimization. In addition, we have developed a novel training algo-
rithm that increases computational efficiency by exploiting the problem structure of
NCOPs. Experimental results have demonstrated the effectiveness of the proposed
method on a number of NCOPs. The computational performance can be further
improved by tuning the hyperparameters and refining the training details.

In addition, our results have identified several avenues for future research. Spe-
cifically, we recommend investigating better methods for selecting initial points and
time ranges, exploring different network architectures and advanced neurodynamic
optimization techniques. Further development in these areas will undoubtedly im-
prove the effectiveness and robustness of our approach, making it an important
tool for addressing NCOPs in diverse applications.
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6 - Solving Chance-Constrained Games at Va-
rious Confidence Levels with CCGnet

This chapter aims to solve the Nash equilibrium in chance-constrained games
(CCGs), which are characterized by Singh et al. [38]. Specifically, we consider sol-
ving CCGs at different confidence levels. In the traditional approach, the CCGs at
different confidence levels are treated as independent tasks and solved individually
using standard optimization solvers. However, such an approach is obviously inef-
ficient. In this chapter, we introduce CCGnet, a neural network model capable of
efficiently solving CCGs at different confidence levels. Our experiments demonstrate
the exceptional performance of CCGnet.

Similar to Chapters 4 and 5, the method proposed in this chapter is also based
on neurodynamic optimization and Physics-Informed Neural Networks (PINNs).
The key distinction between this chapter and the preceding two lies in the network
architecture. While previous chapters employ a single neural network to solve one
optimization problem, this chapter utilizes a single network to solve multiple opti-
mization problems. This eliminates the need for training multiple neural networks,
thereby significantly improving computational efficiency. The methodology in this
chapter is inspired by the concept of ODE solution bundles [230], where a single
neural network is used to solve multiple systems of ordinary differential equations.
Here, we effectively adapt this framework for CCGs.

This chapter corresponds to the reference [148].

6.1 . Introduction

Game theory analyzes the strategic interactions between rational individuals in
situations involving conflict or cooperation [9]. A Nash equilibrium is a state in
which no player can improve his payoff by changing his strategy unilaterally. von
Neumann [157] demonstrated the existence of a saddle point for two-person zero-
sum games through the minimax theorem. Nash [10] showed that an equilibrium
also exists in multi-player non-zero-sum games commonly called Nash equilibrium.

The games mentioned above are all deterministic. However, many real-world
situations involve games where the player’s payoff function or strategy set contains
randomness. Such a game with randomness is called a stochastic Nash game. Ravat
& Shanbhag [231] characterized the solution set for various types of stochastic Nash
games. If players are assumed to be risk-neutral, the expected payoff criterion can
be used to handle the randomness in the game [231, 232].

When considering a risk-averse case, the randomness in a game can be ad-
dressed through the chance constraint programming approach, known as a chance
constraint game (CCG) [38, 40, 233]. In a CCG, players are guaranteed to receive
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payoffs with a certain confidence level. For example, Singh & Lisser [40] studied
a two-person zero-sum game with a random strategy set and characterized the
saddle point as a primal-dual pair of second-order cone programs when the random
variable follows an elliptical distribution.

Neurodynamic optimization uses ordinary differential equation (ODE) systems
to solve optimization problems. Hopfield & Tank [234] proposed Hopfield networks
for solving linear programming problems. Kennedy & Chua [46] developed an ap-
proach based on the penalty function method for solving nonlinear programming
problems. However, this approach involves a penalty parameter and the optimal
solution can only be obtained when the penalty term tends to infinity.. Since then,
neurodynamic optimization has been well established for solving various optimi-
zation problems, such as convex optimization problems [32, 235], pseudoconvex
problems [222, 192], distributed optimization problems [236, 237, 238, 239], and
Nash equilibrium computation [240, 241, 242].

Deep learning is a type of machine learning that involves the use of deep neural
networks, which consist of multiple layers of interconnected nodes, to identify
complex patterns and relationships in data. It has been applied successfully to
various fields, including computer vision [243], natural language processing [244],
bioinformatics [245], game theory [179, 180], and operation research [246, 247,
248]. However, deep learning also has limitations, and researchers are working to
improve its performance and address challenges such as bias and interpretability.

Approximation methods using deep learning for differential equations were first
studied in the 1990s. Dissanayake & Phan-Thien [249] used a neural network as
an approximate solution to a differential equation, where the neural network was
trained to satisfy the given differential equation and boundary conditions. Lagaris et
al. [193] proposed a neural network model that can satisfy boundary conditions by
construction. They discussed the use of this method on ODE and PDE problems,
respectively. This method was extended to irregular boundaries [194]. In recent
years, with the rapid development of deep learning, these methods have been
further extended for solving high-dimensional PDEs [122, 195]. Flamant et al. took
the parameters of the ODE system as the input variables of the neural network,
allowing the neural network to be used as the solution for a group of ODE systems
[230]. The rapid development of this research direction has been made possible
by automatic differentiation tools, which facilitate the computation of derivatives
[97, 181].

The main contributions of this chapter can be summarized as follows :

— Our proposed CCGnet is able to receive instances of different parameters and
solve them directly without any iterative process. In terms of computational
time, CCGnet outperforms traditional solution approaches. This advantage
becomes even more significant when solving multiple instances. For example,
for 10,000 instances, the CCGnet model solves within 1.53 ms CPU time,
while traditional numerical solvers take at least 22,500 ms CPU time.
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— CCGnet transforms a CCG problem into a neural network training problem.
Since our CCGnet model is based entirely on deep learning infrastructure,
we can solve CCG without using any standard numerical solvers.

The remaining sections of this chapter are organized as follows : Section 6.2 pre-
sents the background knowledge needed for understanding the chapter, including
the introduction of CCG and the neurodynamic optimization approach. Section
6.3 presents our proposed CCGnet approach. Section 6.4 gives numerical results
of using CCGnet for solving CCG. Section 6.5 summarizes this chapter and gives
future directions.

Table 6.1 – Notation list of Chapter 6
Notation Definition
CCG Chance-constrained game
NPE Nonlinear projection equation
IVP Initial value problem
CCGθ, NPEθ and IV P θ A CCG, NPE, IVP with parameter θ
n ∈ N The number of players
x ∈ Rn A strategy profile of a stochastic cournot competition
y ∈ R2n Variable of a NPE
Φ(z) : R2n → R2n An ODE system, dz

dt
= Φ(z)

z(t) : R→ R2n A state solution
ẑ(t, θ;w) A CCGnet model with model weight w
(t0, z0) ∈ R2n+1 An initial point
[t0, T ] ⊂ R A time range
θ ∈ Θ CCG parameter

The notations used in this chapter are listed in Table 6.1.

6.2 . Preliminaries

Section 6.2.1 introduces the CCG, including the definition and the existence
theorem of a Nash equilibrium. Section 6.2.2 introduces an example of CCG, namely
stochastic cournot games among electrical firms, and shows how to reformulate
such a CCG as a nonlinear projection equation (NPE). Section 6.2.3 introduces
the neurodynamic approach for solving the NPE.

6.2.1 . Chance-Constrained Game
Let an n-player game with continuous action and random payoffs be defined

as a tuple
(
I,
(
Xi
)
i∈I ,

(
ri
)
i∈I

)
, where

— I = {1, 2, . . . , n} is a set of players.

— For each i ∈ I, let Ai be a finite action set of player i together with its
generic element ai. A vector a = (a1, a2, · · · , an) denotes an action profile
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of the game. Let A=×n
i=1Ai be the set of all action profiles of the game.

Denote, A−i=×n
j=1;j ̸=iAj , and a−i ∈ A−i is a vector of actions aj , j ̸= i.

xi ∈ RAi is a strategy of player i. x ∈ RA is a strategy profile. x−i ∈ RA−i

is a strategy profile without xi. Xi, X−i and X are feasible set for xi, x−i

and x, respectively.

— Let (Ω,F , P ) be a probability space. ξi : Ω→ Rli is a random vector, and
f i : X → Rli is a function determining player i’s payoff. Consider a strategy
profile x ∈ X and an event ω ∈ Ω, the payoff of player i is

ri(x, ω) = f i(x) · ξi(ω). (6.1)

The CCG defines the payoff function of player i as

uαi
i (x) = sup

{
γ | P

({
ω | ri(x, ω) ≥ γ

})
≥ αi

}
, (6.2)

where αi ∈ [0, 1] is a confidence level of player i, and α = (αi)i∈I ∈ [0, 1]n. A
strategy profile x∗ is a Nash equilibrium, if the following holds

uαi
i

(
xi∗, x−i∗) ≥ uαi

i

(
xi, x−i∗) , ∀xi ∈ Xi. (6.3)

We consider the case where each random vector ξi, ∀i ∈ I follows an elliptically
symmetric distribution, i.e., Ellip (µi,Σi, φi). µi is a location parameter. Σi is a
positive definite matrix and φi is a characteristic generator function. Then, the
payoff function of player i is

uαi
i (x) = µT

i f
i(x) +

∥∥∥Σ1/2
i f i(x)

∥∥∥ϕ−1
Zi

(1− αi) , (6.4)

where ϕ−1
Zi

(·) is the quantile function of the distribution Ellip (µi,Σi, φi).

Assumption 6.1 The following conditions hold for each player i.

— Xi ⊂ Rji is a non-empty, convex and compact set.

— f i
k : Rj → R is a continuous function, for all k = 1, 2, . . . , li.

— For a given x−i ∈ X−i, f i
k

(
·, x−i

)
is an affine function, for all k =

1, 2, . . . , li. Or, for a given x−i ∈ X−i, f i
k

(
·, x−i

)
is an non-positive and

concave function, for all k = 1, 2, . . . , li, and all elements of µi and Σi are
non-negative.

Theorem 6.1 (Singh & Lisser [39], Theorem 1) Consider a chance constrai-
ned game

(
I,
(
Xi
)
i∈I ,

(
ri
)
i∈I

)
. For each player i ∈ I, the random vector ξi

follows an elliptical distribution Ellip (µi,Σi, φi). Let Assumption 6.1 holds. There
exists a Nash equilibrium for this chance constrained game with any α ∈ (0.5, 1]n.
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6.2.2 . Stochastic Cournot Competition
We now consider an example of CCG, namely stochastic cournot competitions

among electricity firms. We show how this CCG can be reformulated as an nonlinear
projection equation.

Consider an electricity market with n competing firms. xi ∈ Xi ⊂ R+ denote
an amount of electricity generated by firm i. Each firm i has a finite capacity
Ci, i.e., Xi =

[
0, Ci

]
. x =

(
x1, x2, . . . , xn

)
∈ Rn denote a strategy profile. Let

(Ω,F , P ) be a probability space. The unit market price is determined by x and an
event ω,

P (x, ω) = a− b ·
n∑

i=1

xi + ζ(ω), (6.5)

where ζ : Ω → R is a random variable, and a ∈ R and b ∈ R+ are two market
price factors.

The payoff function of firm i is

ri(x, ω) = xi · P (x, ω)− ci
(
xi
)
, (6.6)

where ci
(
xi
)

is the cost of firm i to produce xi amount of electricity, and ci (·) is
assumed to be differentiable and convex.

The chance-constraint payoff function for player i with confidence level αi is
defined as

uαi
i (x) = sup

γ | P

ω | xi
a− b ·

n∑
j=1

xj

+ xi · ζ(ω)− ci
(
xi
)
≥ γ


 ≥ αi

 .

(6.7)
If xi > 0,∀i ∈ I, we have

uαi
i (x) = sup

γ | P

ω | ζ(ω) ≤
γ − xi

(
a− b ·

∑n
j=1 x

j
)
+ ci

(
xi
)

xi


 ≤ 1− αi


= sup

γ | γ ≤ xi

a− b ·
n∑

j=1

xj

− ci
(
xi
)
+ xiϕ−1

ζ (1− αi)


= xi

a− b ·
n∑

j=1

xj

− ci
(
xi
)
+ xiϕ−1

ζ (1− αi) .

(6.8)
If xi = 0, ∀i ∈ I, we have

uαi
i (x) = −ci

(
xi
)
. (6.9)

Therefore, for a given x and αi , the payoff of firm i is

uαi
i (x) = xi

a− b ·
n∑

j=1

xj

− ci
(
xi
)
+ xiϕ−1

ζ (1− αi) . (6.10)
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Definition 6.1 The nonlinear complementarity problem NCP (F ) is to find a vec-
tor y∗ ∈ Rm such that

0 ≤ y∗ ⊥ F (y∗) ≥ 0, (6.11)

where F : Rm → Rm.

Theorem 6.2 ([39]) Denote a decision vector y =
(
x1, . . . , xn, λ1, . . . , λn

)
∈

R2n, and let F (y) = (F1(y), . . . , F2n(y)), where

Fi(y) =

{
−
(
a− b

∑n
j=1;j ̸=i x

j
)
+ 2bxi +

dci(xi)
dxi − ϕ−1

ζ (1− αi) + λi, if i = 1, . . . , n

Ci−n − xi−n, if i = n+ 1, . . . , 2n.
(6.12)

The strategy profile x∗ of y∗ = (x∗, λ∗) is a Nash equilibrium of the CCG if and
only if y∗ is a solution of the NCP (F ).

Proposition 6.3 ([31, 250]) The nonlinear projection equation NPE(F ) is to
find a vector y∗ ∈ Rm such that

(y∗ − F (y∗))+ = y∗, (6.13)

where F : Rm → Rm is a continuous function, (y)+ = max(0, y). y∗ is the
solution of NCP (F ) if and only if y∗ is the solution of NPE(F ).

By Theorem 6.1, a Nash equilibrium exists for this CCG with any α ∈ (0.5, 1]n.
By Theorem 6.2 and Proposition 6.3, the Nash equilibrium of this CCG can be ob-
tained by solving the NPE(F ). Note that NPEs are equivalent to variational
inequalities and generalized complementarity problems, the proof is given by Brow-
der fixed-point theorem [31, 250]. Here, Proposition 6.3 considers a simpler case,
i.e., the equivalence between NPE and NCP.

6.2.3 . Neurodynamic Optimization
Xia & Feng [32] proposes the following ODE system to solve the NPE(F )

dz

dt
= −F

(
(z)+

)
+ (z)+ − z. (6.14)

The ODE system (6.14) can be simplified as dz
dt = Φ(z). Let z∗ be an equilibrium

point of the ODE system, i.e., Φ(z∗) = 0. Then, we have

z∗ = −F
(
(z∗)+

)
+ (z∗)+ (6.15)

Applying the projection operator (·)+ on both side, we have

(z∗)+ =
(
−F

(
(z∗)+

)
+ (z∗)+

)+
, (6.16)

and hence the point (z∗)+ is a solution of NPE(F ).
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Definition 6.2 Consider an ODE system dz
dt = Φ(z), Φ(z) : Rm → Rm, and a

given initial point (t0, z0) ∈ Rm+1. A vector value function z(t) : R → Rm is
called a state solution, if it satisfies the initial condition z(t0) = z0 and the ODE
system dz

dt = Φ(z).

Definition 6.3 An ODE system dz
dt = Φ(z) converges globally to a solution set

Z∗ if for any given initial point, the state solution z(t) satisfies

lim
t→∞

dist (z(t),Z∗) = 0, (6.17)

where dist (z(t),Z∗) = infz∗∈Z∗ ∥z(t) − z∗∥, and ∥·∥ is the euclidean norm. In
particular, if the set Z∗ contains only one point z∗, then limt→∞ z(t) = z∗, and
the ODE system is globally asymptotically stable at z∗.

Theorem 6.4 (Xia & Feng [32], Theorem 1) If∇G(z) is symmetrical and po-
sitive semi-definite, then the ODE system (6.14) converges globally to the solution
set of NPE(K,G). In particular, if NPE(K,G) has only one solution z∗, then
z∗ is globally asymptotically stable.

6.3 . CCGnet

In Section 6.3.1, we summarize the reformulation of a CCG to an initial va-
lue problem (IVP) and present a method for parametrizing CCG instances using
θ. Section 6.3.2 introduces the CCGnet model and its associated loss function.
Section 6.3.3 presents the training algorithm and discusses newly introduced hy-
perparameters.

6.3.1 . Problem Setup

In this work, we consider the stochastic cournot game as introduced in Section
6.2.2. The CCG problem can be reformulated as an NPE where the solution y∗ =

(x∗, λ∗) includes the Nash equilibrium x∗ of the CCG. The neurodynamic approach,
introduced in Section 6.2.3, models this NPE as an IVP, resulting in a state solution
z(t) for t ∈ [t0, T ]. According to the global convergence theorem, as T approaches
infinity, z(T ) converges to y∗. Figure 6.1 summarizes this reformulation from a
CCG to an IVP.

Next, we consider the case of multiple instances. We parameterize a CCG
instance by θ ∈ Θ, where a different θ leads to a different CCG instance. The set
Θ is typically an uncountably infinite set that represents a range of possible values
for θ. For example, in the stochastic cournot game, θ can be the market price
factor a or b, and Θ can be [1, 5]. We denote the CCG instance for θ as CCGθ,
the corresponding NPE as NPEθ, and the IVP as IV P θ.
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1. ODE system

2. Initial point

3. Time range

Problems

Solutions

1. Players set

3. Payoff functions

2. Strategy set

1. Variable

2. NPE

Figure 6.1 – The problem reformulation from a CCG to an IVP via an
NPE. We use the stochastic cournot competition for illustration. In the
left box of CCG, x∗ represents the Nash equilibrium, and the payoff
function uαi

i (x) is given by (6.10). In themiddle box of NPE, y∗ represents
the solution of the NPE, and the function F (y) is given by (6.12). In the
right box of IVP, z(t), t ∈ [t0, T ] represents the state solution, and the
ODE system Φ(z) is given by (6.14).

6.3.2 . CCGnet Framework
The CCGnet model is defined by the following equation :

ẑ (t, θ;w) = z0 + (1− e−(t−t0))N (t, θ;w) , (6.18)

where t is an input time that falls within the time range [t0, T ] ⊂ R. (t0, z0) is
an initial point. N (t, θ;w) is a fully-connected neural network with weight w.
We put θ ∈ Θ as an input to the neural network, allowing the CCGnet model to
solve multiple CCG instances. The terms z0 and

(
1− e−(t−t0)

)
in (6.18) ensure

that the CCGnet model satisfies the initial condition (t0, z0) by construction, i.e.,
ẑ (t0, θ;w) = z0. This construction method for handling initial conditions was
introduced by Lagaris et al [193]. We use an exponential multiplier of 1− e−(t−t0),
which has been shown to achieve better convergence than the Lagaris method
[206].

The CCGnet model solves CCGθ, NPEθ and IV P θ, for any θ ∈ Θ, as
shown in Figure 6.2-(A). For a given instance of parameter θ, the CCGnet model’s
predicted state solution for the IV P θ is ẑ (t, θ;w), where t ∈ [t0, T ]. This is
obtained by using t as a variable and keeping θ constant. The predicted solution
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1 The predicted Nash equilibrium for  2 The predicted solution for 

The predicted state solution for 3

(B)

A CCGnet model

Solves

(A)

Figure 6.2 – CCGnet framework. (A) One CCGnet model to solve mul-
tiple CCG instances. (B) The CCGnet predictions for the CCGθ, NPEθ

and IV P θ. (C) The computation flow of the CCGnet loss.

for the NPEθ is ẑ (T, θ;w) = [x̂1, . . . , x̂n, λ̂
1, . . . , λ̂n], which is obtained by using

a constant value of T and a constant value of θ. The predicted Nash equilibrium
for the CCGθ is [x̂1, . . . , x̂n]. Figure 6.2-(B) illustrates how the CCGnet model
gives predictions for these three problems.

The loss function is defined by the following equation :

L(t, θ;w) = e(−τ(t−t0))ℓ

(
∂ẑ(t, θ;w)

∂t
,Φθ(ẑ(t, θ;w))

)
. (6.19)

Φθ is the ODE system corresponding to CCGθ. ∂ẑ(t,θ;w)
∂t is the partial derivative

of the CCGnet model with respect to time t. ℓ(·, ·) is an error metric, e.g., mean
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square error. The term ℓ
(
∂ẑ(t,θ;w)

∂t ,Φθ(ẑ(t, θ;w))
)

represents how well the CG-

Gnet model solves the ODE system Φθ at time t. The weighting function e(−τ(t−t0))

is an exponentially decaying function with respect to time t, with τ ∈ R as a hyper-
parameter. We include this weighting function to avoid initial errors which might
increase the global errors exponentially [230]. For a given instance of parameter
θ ∈ Θ and a time t ∈ [t0, T ], the computational flow of the loss value L(t, θ;w)

is shown in Figure 6.2-(C). The batch loss is defined as follows :

L(T, θ;w) =
1

|T|
∑
t∈T
L(t, θ;w), (6.20)

where T ⊂ [t0, T ] is the batch of t, and |T| represents the batch size.
The objective function of the CCGnet model is given by the following equation :

E(w) =

∫
θ∈Θ

∫
t∈[t0,T ]

L(t, θ;w), dt, dθ. (6.21)

The goal of training the CCGnet model is to minimize the objective function, i.e.,

min
w

E(w). (6.22)

The loss value L(t, θ;w) measures the error of the instance with θ at time t. The
objective value E(w) measures the overall error for all instances of θ ∈ Θ over the
time range [t0, T ].

6.3.3 . CCGnet Training

Algorithm 4 Training of the CCGnet model for solving CCGθ ∀θ ∈ Θ

Input : Time range [t0, T ] ; Initial point (t0, z0) ; Parameter set Θ
Output : The CCGnet model after training
1: function
2: while iter ≤Max iteration do
3: θ ∼ Θ : Uniformly sample a θ from the set Θ
4: T ∼ U(t0, T ) : Sample collocation points T from the interval [t0, T ]
5: Φθ : Derive the ODE system Φθ related to the instance CCGθ

6: Forward propagation : Compute the batch loss L(T, θ;w)
7: Backward propagation : Update the model weightsw by∇wL(T, θ;w)
8: end while
9: end function

Algorithm 4 presents the training of a CCGnet model for solving CCGθ ∀θ ∈ Θ.
At each training iteration, a value of θ is randomly sampled from the set Θ, and a
batch of time points T is randomly sampled from the time range [t0, T ], forming a
training data (θ,T). The CCGnet model is then trained using this batch of data,
and once the iteration finishes, the batch is discarded. The goal of the algorithm

110



is to minimize the objective function E(w), and the batch loss L(T, θ;w) is an
estimate of E(w).

The time range [t0, T ] is a hyperparameter that affects both the prediction
accuracy and training difficulty of the CCGnet model. Given a CCGθ and its cor-
responding NPEθ with solution y∗, the initial value problem IV P θ with time
range [t0, T ] has state solution z(t), where z(T ) ≈ y∗. The predicted state solu-
tion ẑ(t, θ;w) approximates z(t) on [t0, T ], such that ẑ(T, θ;w) ≈ z(T ) ≈ y∗.
Increasing the time range [t0, T ] leads to higher accuracy for z(T ) and, subse-
quently, a higher accuracy limit for ẑ(T, θ;w). However, a larger time range also
makes training more challenging as the model has a larger input space to learn.

The size of the time range is a trade-off that must be considered carefully. If
the time range is too small, the model will have a lower accuracy limit and will not
be able to surpass it, regardless of the number of training iterations. If the time
range is too large, the model will require more iterations to reach its accuracy limit.
Thus, it is important to choose a time range that is appropriate for the number of
training iterations.

6.4 . Numerical Results

We conducted our experiments using the Google Colab platform and built the
neural network with Pytorch 1.9.1 and the ODE system with JAX 0.3.13 [207].
The hyperparameters for training are as follows :

— The ADAM optimizer [27] was used for training with a learning rate of
0.001 and a batch size of 512. The maximum number of iterations was set
to 10,000.

— The CCGnet model consists of a fully connected neural network with three
hidden layers, each containing 100 neurons and using the tanh activation
function.

— The time range for the model was set to the interval [0, 1] with an initial
point of (0,0).

— The mean squared error (MSE) was used as the error metric and the weigh-
ting hyperparameter was set to τ = 0.5.

The CCGnet model was compared to four numerical integration methods : RK45,
LSODA, BDF, and DOP853 [208, 251, 252, 253]. These four methods can be
accessed using Scipy [209].

We consider a concrete example of stochastic cournot competitions as intro-
duced in Section 6.2.2. The number of electricity firms are n = 5, and the cost
function of firm i is defined as ci

(
xi
)
=
(
xi
)2. The random variable follows the

normal distribution ζ ∼ N
(
µ, σ2

)
. The Nash equilibrium of this game can be

reformulated as the following NPE

PY (y − (My + q)) = y, (6.23)
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where Y =
{
y ∈ R10 | y ≥ 0

}
, y =

(
x1, x2, x3, x4, x5, λ1, λ2, λ3, λ4, λ5

)T ,

M =



2b+ 2 b b b b 1 0 0 0 0
b 2b+ 2 b b b 0 1 0 0 0
b b 2b+ 2 b b 0 0 1 0 0
b b b 2b+ 2 b 0 0 0 1 0
b b b b 2b+ 2 0 0 0 0 1
−1 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0


, (6.24)

q =



−a− ϕ−1
ζ (1− α1)

−a− ϕ−1
ζ (1− α2)

−a− ϕ−1
ζ (1− α3)

−a− ϕ−1
ζ (1− α4)

−a− ϕ−1
ζ (1− α5)

C1

C2

C3

C4

C5


. (6.25)

The two market price factors are a = 1 and b = 2, The capacity of each firm
is C1 = C2 = C3 = C4 = C5 = 5. The confidence level of each firm are
α1 = α2 = α3 = α4 = α5 = 0.6. The mean and the variance of the normal
distribution is µ = 1 and σ2 = 2.

We use the following metric to evaluate the accuracy of the prediction ŷ

ϵ = ∥PY (ŷ − (Mŷ + q))− ŷ∥. (6.26)

We consider three different ways to parameterize this CCG problem. Subsec-
tion 6.4.1 parameterize the market price factor a as a variable. Subsection 6.4.2
parameterize the market price factor b as a variable. Subsection 6.4.3 parameterize
the confidence level ᾱ as a variable. We construct three independent CCGnet mo-
dels, each corresponding to one subsection, then train and test these three models
separately.

The experimental setup for Sections 6.4.1, 6.4.2, and 6.4.3 is the same and each
subsection includes the following results : (1) the training loss of the CCGnet model,
(2) the predicted state solutions of four IVPs corresponding to four CCG instances,
(3) the predicted solutions to the four CCG instances, and (4) a comparison of
CPU time between the CCGnet model and the numerical integration methods.
Finally, Section 6.4.4 compares the advantages and limitations of our method to
the numerical integration methods.
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6.4.1 . Case 1 : a as Variable
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Figure 6.3 – Case 1 : a as variable. (A) The training loss versus the num-
ber of iterations. (B) The predicted state solutions for the four example
instances.
The top-left, top-right, bottom-left, and bottom-right show the results

of a = 1.37, a = 3.27, a = 2.53, and a = 4.20, respectively.

We developed a CCGnet model, denoted as :

ẑ(t, a;w), t ∈ [0, 1], a ∈ [1, 5], (6.27)

to solve for the case when the market price factor a is a variable with a parameter
set of Θ = [1, 5]. At each iteration, a market price factor a is uniformly sampled
from the interval [1, 5], and a batch of time T is uniformly sampled from the time
range [0, 1], together forming the batch (a,T) to train the model. Figure 6.3-(A)
shows the loss value during training, which decreases from an initial value of 91.75
to 0.05.

We selected four different values of a to represent four different instances and
used the CCGnet model to solve them. Denote ẑ(t, a;w) =

(
x̂(t, a;w), λ̂(t, a;w)

)
.
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Table 6.2 – Case 1 : a as variable. The predicted Nash equilibrium for
the four example instances. CCGnet prediction refers to the predicted
Nash equilibrium from the CCGnet model. Nash equilibrium refers to
the true value.
Index a CCGnet prediction Nash equilibrium
1 1.37 [0.16, 0.16, 0.16, 0.16, 0.16] [0.14, 0.14, 0.14, 0.14, 0.14]
2 3.27 [0.29, 0.29, 0.29, 0.29, 0.29] [0.28, 0.28, 0.28, 0.28, 0.28]
3 2.53 [0.24, 0.24, 0.24, 0.24, 0.24] [0.23, 0.23, 0.23, 0.23, 0.23]
4 4.20 [0.36, 0.35, 0.36, 0.35, 0.36] [0.35, 0.35, 0.35, 0.35, 0.35]

In the following results, we only present the results of x̂(t, a;w). Figure 6.3-(B)
shows the predicted state solutions for x̂(t, a = 1.37;w), x̂(t, a = 3.27;w),
x̂(t, a = 2.53;w), and x̂(t, a = 4.20;w). Table 6.2 shows the predicted Nash
equilibria for these four instances at t = 1, i.e., x̂(t = 1, a = 1.37;w), x̂(t =

1, a = 3.27;w), x̂(t = 1, a = 2.53;w), and x̂(t = 1, a = 4.20;w).

Table 6.3 – Case 1 : a as variable. The computational performance of
the CCGnet model and the neurodynamic approach. Each row repre-
sents a test batch of many different instances. With or without GPU,
refers to whether the CCGnet model uses CUDA. RK45, LSODA, BDF,
and DOP853 are four numerical integration methods.
Instance
number

CCGnet Neurodynamic approach
CPU time
(without GPU)
(ms)

CPU time
(with GPU)
(ms)

ϵ error
RK45
CPU time
(ms)

LSODA
CPU time
(ms)

BDF
CPU time
(ms)

DOP853
CPU time
(ms)

1 < 1 < 1 0.27 2.51 2.23 8.94 3.41
100 < 1 < 1 0.21 250 217 852 341
500 1.07 < 1 0.20 1260 1120 4340 1760
1000 2.18 < 1 0.20 2590 2280 8830 3510
5000 8.94 1.1 0.20 12800 11200 43900 17400
10000 17.5 1.53 0.20 25500 22500 84000 34500

Table 6.3 compares the computational performance of the CCGnet model,
ẑ(t, a;w), and the neurodynamic approach when solving multiple instances. When
solving a single instance, the CCGnet model has a CPU time of less than 1 ms,
which is faster than the best result of 2.23 ms for the neurodynamic approach.
When solving 10,000 instances, the CCGnet model takes only 1.53 ms of CPU
time, significantly faster than the best result of 22,500 ms for the neurodynamic
approach. On average, the CCGnet model has an error of ϵ = 0.2.

6.4.2 . Case 2 : b as Variable

We developed a CCGnet model, denoted as :

ẑ(t, b;w), t ∈ [0, 1], b ∈ [1, 5], (6.28)
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Figure 6.4 – Case 2 : b as variable. (A) The training loss versus the num-
ber of iterations. (B) The predicted state solutions for the four example
instances. The top-left, top-right, bottom-left, and bottom-right show
the results of b = 3.83, b = 3.90, b = 2.34, and b = 1.46, respectively.

to solve for the case when the market price factor b is a variable with a parameter
set of Θ = [1, 5]. At each iteration, a market price factor b is uniformly sampled
from the interval [1, 5] and a batch of time points, denoted as T, is uniformly
sampled from the time range [0, 1]. These two samples, (b,T), form a batch used
to train the model. Figure 6.4-(A) shows the loss value during training, which
decreases from an initial value of 76.51 to 0.01.

We tested this CCGnet model on four example instances with different values
of b, specifically 3.83, 3.90, 2.34, and 1.46. Figure 6.4-(B) shows the predicted
state solutions for x̂(t, b = 3.83;w), x̂(t, b = 3.90;w), x̂(t, b = 2.34;w), and
x̂(t, b = 1.46;w). Table 6.4 shows the predicted Nash equilibria for these four
instances at t = 1, i.e., x̂(t = 1, b = 3.83;w), x̂(t = 1, b = 3.90;w), x̂(t = 1, b =

2.34;w), and x̂(t = 1, b = 1.46;w).
Table 6.5 compares the computational performance of the CCGnet model,
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Table 6.4 – Case 2 : b as variable. The predicted Nash equilibrium for
the four example instances. CCGnet prediction refers to the predicted
Nash equilibrium from the CCGnet model. Nash equilibrium refers to
the true value.
Index b CCGnet prediction Nash equilibrium
1 3.83 [0.07, 0.07, 0.07, 0.07, 0.07] [0.07, 0.07, 0.07, 0.07, 0.07]
2 3.90 [0.07, 0.07, 0.07, 0.07, 0.07] [0.06, 0.06, 0.06, 0.06, 0.06]
3 2.34 [0.11, 0.11, 0.11, 0.11, 0.11] [0.10, 0.10, 0.10, 0.10, 0.10]
4 1.46 [0.17, 0.17, 0.17, 0.17, 0.17] [0.15, 0.15, 0.15, 0.15, 0.15]

Table 6.5 – Case 2 : b as variable. The computational performance of
the CCGnet model and the neurodynamic approach. Each row repre-
sents a test batch of many different instances. With or without GPU,
refers to whether the CCGnet model uses CUDA. RK45, LSODA, BDF,
and DOP853 are four numerical integration methods.
Instance
number

CCGnet Neurodynamic approach

CPU time
(ms)

CPU time
(with GPU)
(ms)

ϵ error
RK45
CPU time
(ms)

LSODA
CPU time
(ms)

BDF
CPU time
(ms)

DOP853
CPU time
(ms)

1 < 1 < 1 0.04 3.09 2.64 8.70 3.68
100 < 1 < 1 0.07 282 247 841 355
500 1.03 < 1 0.07 1510 1410 4290 1840
1000 2.02 < 1 0.07 3000 2620 8550 3740
5000 8.61 1.07 0.07 15000 13000 42700 18500
10000 17.1 1.50 0.07 30200 26100 84000 36900

ẑ(t, b;w), and the neurodynamic approach. When solving a single instance, the
CCGnet model has a CPU time of less than 1 ms, outperforming the best result
of 2.64 ms for the neurodynamic approach. When solving 10,000 instances, the
CCGnet model takes only 1.50 ms of CPU time, faster than the best result of
26,100 ms for the neurodynamic approach. On average, the CCGnet model has an
error of ϵ = 0.07.

6.4.3 . Case 3 : ᾱ as Variable

We studied the case where the confidence level is a variable and assumed that
α1 = α2 = α3 = α4 = α5. We denote this common value as ᾱ and build a CCGnet
model, denoted as :

ẑ(t, α;w), t ∈ [0, 1], α ∈ [0.5, 0.9], (6.29)

to solve for this case when ᾱ is a variable with a parameter set of Θ = [0.5, 0.9].
At each iteration, a value of ᾱ is uniformly sampled from the interval [0.5, 0.9] and
a batch of time points, denoted as T, is uniformly sampled from the time range
[0, 1]. These two samples, (ᾱ,T), form a batch used to train the model. Figure
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Figure 6.5 – Case 3 : ᾱ as variable. (A) The training loss versus the num-
ber of iterations (B) The predicted state solutions for the four instances
The top-left, top-right, bottom-left, and bottom-right show the results
of ᾱ = 0.60, ᾱ = 0.90, ᾱ = 0.67, and ᾱ = 0.75, respectively.

Table 6.6 – Case 3 : ᾱ as variable. The predicted Nash equilibrium for
the four example instances. CCGnet prediction refers to the predicted
Nash equilibrium from the CCGnet model. Nash equilibrium refers to
the true value.
Index ᾱ CCGnet endpoint Nash equilibrium
1 0.60 [0.11, 0.11, 0.11, 0.11, 0.11] [0.12, 0.12, 0.12, 0.12, 0.12]
2 0.90 [0.01, 0.01, 0.01, 0.01, 0.01] [0.01, 0.01, 0.01, 0.01, 0.01]
3 0.67 [0.09, 0.09, 0.09, 0.09, 0.09] [0.10, 0.10, 0.10, 0.10, 0.10]
4 0.75 [0.06, 0.06, 0.06, 0.07, 0.06] [0.08, 0.08, 0.08, 0.08, 0.08]

6.5-(A) shows the loss value during training, which decreases from an initial value
of 74.39 to 0.03.

We tested this CCGnet model on four example instances with different values
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of ᾱ, specifically 0.60, 0.90, 0.67, and 0.75. Figure 6.5-(B) shows the predicted
state solutions for x̂(t, ᾱ = 0.60;w), x̂(t, ᾱ = 0.90;w), x̂(t, ᾱ = 0.67;w), and
x̂(t, ᾱ = 0.75;w). Table 6.6 shows the predicted Nash equilibria for these four
instances at t = 1, i.e., x̂(t = 1, ᾱ = 0.60;w), x̂(t = 1, ᾱ = 0.90;w), x̂(t =

1, ᾱ = 0.67;w), and x̂(t = 1, ᾱ = 0.75;w).

Table 6.7 – Case 3 : ᾱ as variable. The computational performance of
the CCGnet model and the neurodynamic approach. Each row repre-
sents a test batch of many different instances. With or without GPU,
refers to whether the CCGnet model uses CUDA. RK45, LSODA, BDF,
and DOP853 are four numerical integration methods.
Instance
number

CCGnet Neurodynamic approach

CPU time
(ms)

CPU time
(with GPU)
(ms)

ϵ error
RK45
CPU time
(ms)

LSODA
CPU time
(ms)

BDF
CPU time
(ms)

DOP853
CPU time
(ms)

1 < 1 < 1 0.16 2.57 2.27 8.02 3.47
100 < 1 < 1 0.15 267 225 838 347
500 1.02 < 1 0.16 1320 1180 4230 1770
1000 2.05 < 1 0.15 2640 2420 8440 3540
5000 8.52 1.08 0.15 13200 12200 42300 17700
10000 17.9 1.41 0.15 26600 24300 87000 35700

Table 6.7 compares the computational performance of the CCGnet model,
ẑ(t, α;w), and the neurodynamic approach. When solving a single instance, the
CCGnet model has a CPU time of less than 1 ms, faster than the best result of 2.27
ms for the neurodynamic approach. When solving 10,000 instances, the CCGnet
model takes only 1.14 ms of CPU time, significantly faster than the best result of
24,300 ms for the neurodynamic approach. On average, the CCGnet model has an
error of ϵ = 0.15.

6.4.4 . Discussion
The main advantage of the CCGnet model is its computational performance.

It can directly predict the Nash equilibrium without any iterative process, making
it much faster than numerical integration methods. This advantage becomes even
more significant when there are a large number of instances to solve. For example,
when solving 10,000 different instances, the CCGnet model can predict all the Nash
equilibria in a one-shot manner with only 1.5 ms, while numerical methods require
more than 20,000 ms to solve each instance one after another. Additionally, the
CCGnet model can utilize a GPU to further accelerate the solution process, while
GPU-based numerical methods are still under development.

One limitation of the CCGnet model is its prediction accuracy compared to
exact solutions obtained through numerical integration methods. While numeri-
cal integration methods can provide exact solutions given sufficient computational
time, the CCGnet model can only provide predictions. The accuracy of these pre-
dictions depends on technical details such as the neural network structure, training
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algorithm, and hyperparameter settings, which are active areas of research in ma-
chine learning and deep learning. As these areas progress, the CCGnet model has
the potential to improve its prediction accuracy.

6.5 . Conclusion

This chapter introduced a deep learning approach called CCGnet for solving
chance-constrained games. CCGnet is based on neurodynamic optimization, which
models a chance-constrained game as an ODE system. One of the key benefits of
CCGnet is its ability to solve multiple instances in a very short amount of CPU time,
significantly faster than traditional methods. We provide a detailed description of
the proposed method, including the parametrization of CCG instances, the model
framework, the training algorithm, and a discussion of hyperparameters.

However, it is important to note that the proposed method should not be
considered a replacement for standard solvers like RK45 and BDF. These methods
have been well-developed over many years. Our purpose is to link the machine
learning community and CCG. We believe that with the rapid growth of research on
machine learning, both methodologically and experimentally, this work will continue
to contribute to the efficient solution of CCG problems.

There are many potential avenues for future research. Some examples include :
1) Choosing the hyperparameter initial point to be all zero may not always lead
to the best computational performance. Is it possible to find other choices that
lead to better results ? 2) We used a uniform distribution to sample the dataset.
Could other sampling methods lead to better results ? 3) We used a fully-connected
network structure. How can we design a more suitable neural network structure and
activation function ?
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7 - Conclusions and Perspective

7.1 . Conclusions

This thesis used deep learning to solve four types of nonlinear optimization
problems : bimatrix games, nonlinear projection equations, nonsmooth convex op-
timization problems, and chance-constrained games.

For bimatrix games, they can be represented directly by their two payoff ma-
trices, and we use CNNs to solve for such problems. Specifically, the CNN takes a
bimatrix game as input and outputs a predicted Nash equilibrium.

For more complex nonlinear optimization problems, they cannot be fed di-
rectly into a neural network. For these complex problems, we need to use advanced
tools namely neurodynamic optimization and PINNs. In this thesis, we use the
combination of neurodynamic optimization and PINNs to solve nonlinear projec-
tion equations, nonsmooth convex optimization problems, and chance-constrained
games. Specifically, we first model the problem as an ODE system using neuro-
dynamic optimization, and the ODE system must be designed to have a global
convergence property. Then , we use a PINN-like neural network to solve the ODE
system. We solve the original optimization problem by training the nerual network
toward solving the ODE system.

In the field of numerical optimization, a well-known principle in algorithm design
is to take advantage of the problem structure to improve computational perfor-
mance. We have applied this principle to the design of our deep learning algorithms,
as described below.

— In Chapter 3, we deliberately used CNNs to handle bimatrix games, because
the CNNs are much better at handling matrix-type data. Note that using fully
connected networks still works for bimatrix games, but it would result in poor
performance. This is because fully connected networks process the elements
of the two payoff matrices individually, losing the structured information of
them.

— In Chapters 4 and 5, we specifically designed training algorithms that focus
on improving the end state of the model. If the proposed algorithm were just
a simple combination of neurodynamic optimization and PINNs, its perfor-
mance would be unsatisfactory, as evidenced by the experimental results in
Sections 4.5.2 and 5.4.3. In addition, we used the task-specific NPE error
(for Chapter 4) and the OuC metric (for Chapter 5), to facilitate training,
resulting in significant performance improvements.

— In Chapter 6, we specifically designed a network architecture that allows a
single model to solve multiple optimization problems. The problem therein is
to solve multiple CCGs that are interrelated and differ only in their confidence
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levels α. We designed a network architecture that takes the confidence level
α as input and outputs the corresponding predicted Nash equilibrium. Based
on this design, a single neural network can solve CCGs at different confidence
levels without retraining, greatly improving computational efficiency.

7.2 . Perspective

Finally, we outline some possible future directions :

— Methodology side : Integrate the proposed approaches with cutting-edge
ideas, concepts, or theories in deep learning to improve computational ef-
ficiency and accuracy. For example, in Chapter 3, the basic CNN model
could be replaced by a more advanced architecture such as transformer. In
Chapters 4 and 5, the proposed framework can be combined with multi-task
learning to solve multiple optimization problems in parallel, or with transfer
learning to allow the neural network to use past experience to solve new
optimization problems.

— Application side : Apply the proposed approaches to solve real-world pro-
blems. For example, certain equilibrium problems in electricity markets can
be modeled as NPE problems, which can be solved with our approach. In
addition, many operations research problems are typically transformed into
large-scale optimization problems that are difficult to solve with traditio-
nal solvers. Our approaches provide a viable alternative for solving these
challenging optimization problems.

— Theoretical side : Conduct convergence analysis for the proposed approaches.
A limitation of this thesis is the lack of rigorous mathematical theories to
guarantee the convergence. This limitation stems from the use of neural
networks, whose convergence analysis remains a challenging problem. To
alleviate this situation, we can use the prediction from the neural network
as an initial point to warm start traditional solvers to obtain a converged
solution. However, relying solely on neural networks to obtain theoretically
guaranteed solutions is still a major challenge. Future research in convergence
analysis should take advantage of the extensive knowledge of ODE stability
as well as the universal approximation theorems of neural networks.
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