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Résumé

Le domaine des matériaux composites a permis le développement de propriétés exotiques en
termes de contréle de la propagation d’onde. Ces matériaux artificiels, correspondant aux
métamatériaux, ont connu un intérét important durant les deux dernieres décennies pour leurs
propriétés extraordinaires qu’on ne retrouve pas dans la nature. Ces matériaux composés d’un
réseau de cellule microstructurée ont permis des applications dans plusieurs branches de la
physique. Initialement développé en électromagnétisme, le domaine des métamatériaux s’est
répandu a d’autres disciplines comme ’acoustique, 1’élastodynamique, les ondes a la surface
de 'eau et en géophysique.

Dans cette these, on s’intéresse a la modélisation des métamatériaux acoustiques résonants.
En utilisant des techniques d’homogénéisations asymptotiques, on dérive et analyse des
modeles effectifs pour deux systemes acoustiques résonants différents.

La premiere partie est consacrée a 1’étude d’un réseau de période sub-longueur onde
composé de fente. Ce type de structure donne lieu & des résonances de Fabry-Pérot, ou
la résonance fondamentale est associée a une longueur d’onde deux fois plus grands que la
longueur de la fente. Cela permet la transmission extraordinaire, observé en acoustique et
en électromagnétisme, a des fréquences proches de la résonance.

Dans le cas d’un réseau a double période, composé d’une cellule périodique avec deux
fentes, on s’intéresse a la configuration ou une certaine symétrie est brisée. Ce faisant, le
champ évanescent le long de la structure peut se coupler avec le continuum qui se propage. Les
résonances parfaites deviennent des quasi-résonances, ou des modes fuyants, ce qui entraine
un comportement frappant dans le spectre de transmission. Des pics asymétriques de type
Fano sont observés et sont caractérisés par une transmission parfaite suivis d’une réflexion
parfaite sur une bande de fréquences tres étroite.

Des propriétés d’un réseau régulier de période sub-longueur sont d’abord rappelées, ainsi
que des résultats d’homogénéisation. On illustre numériquement la présence de modes piégés
et le repliement des branches de ’onde guidée, qui conduit & I’apparition de la résonance de
Fano. La dérivation du modele effectif homogénéisé du réseau a période double est obtenue par
une combinaison d’homogénéisation en volume et des méthodes de raccordements asympto-
tiques. Le modele effectif permet d’obtenir des solutions explicites et analyser les mécanismes
résonnants sous-jacents du systeme.

La deuxiéme partie porte sur les matériaux enroulés dans 'espace (‘space-coiled’) dans le
contexte acoustique. Dans le but d’avoir un réseau plus compact et de réduire son épaisseur,
I'idée d’enrouler les fentes sur elles-mémes a été introduite. Ces matériaux labyrinthiques
ou ‘space-coiled’ reposent sur 1'idée que 'onde acoustique est forcée de suivre la trajectoire
de la fente enroulée. Ces structures ont stimulé de nombreuses recherches en matiere de
manipulation de front d’onde, grace a leur capacité & obtenir un grand déphasage de I'onde
transmise par rapport & l’épaisseur de la structure. On utilise des outils asymptotiques
similaires & ceux de la premiere partie, et étudions deux types d’arrangement labyrinthiques.

On revisite I’enroulement communément rencontré dans la littérature en appliquant des
techniques d’homogénéisation classique et on montre que, bien que les études précédentes
aient donné de bons résultats par intuition, I’approche par homogénéisation donne un indice
effectif équivalent plus précis.

Une deuxieme étude est consacrée a ce qu'on appelle un méta-cristal. Il s’agit d'un
matériau enroulé dans l'espace avec des fentes droites de 'ordre de la longueur d’onde. Un
modele effectif est dérivé et permet une propagation unidimensionnelle a I'intérieur de chaque



fente et ou chaque coude, éloigné de I'ordre de la longueur d’onde, agit comme un diffuseur.
Cela peut étre interprété comme un cristal phononique unidimensionnel imbriqué dans un
réseau sub-longueur d’onde, et bénéficie maintenant de deux échelles de longueurs. La struc-
ture peut exhiber des bandes interdites dues a la diffraction de Bragg qui sont couplées
aux résonances Fabry-Pérot. La taille totale de ’échantillon reste cependant faible grace au
repliement des fentes. Le modele effectif permet notamment d’obtenir la relation de dispersion
du cristal imbriqué, permettant de mieux comprendre le comportement résonant.

vi



Abstract

The field of composite materials has allowed for the development of exotic properties in terms
of manipulation of wave propagation. These artificial materials, corresponding to metamate-
rials, have seen an increased interest the last two decades for their extraordinary properties
not commonly found in nature. These materials are composed of an array of microstructured
cells, and has allowed for several applications in various fields of wave physics. Initially de-
veloped in electromagnetism, the field of metamaterials has been extended to other branches
such as acoustics, elastodynamics, water waves and geophysics. In this thesis, we are inter-
ested in the modelling of resonant acoustic metamaterials. Using asymptotic homogenization
techniques, we derive and analyse effective models for two different acoustical resonant sys-
tems. The first part is devoted to the study of subwavelegnth gratings composed of slits. Such
gratings allow the presence of Fabry-Pérot resonances, where the fundamental resonance cor-
responds to a wavelength twice as large as the length of the slit. This leads to extraordinary
transmission, observed both in acoustics and electromagnetism, at frequencies close to the
resonance. We are interested in the case of a dual-period array, sometimes referred to as
compound gratings. When dealing with a dual-period grating, composed of a periodic unit
cell with two slits, we are interested in the configuration where some symmetry is broken.
By doing so, the evanescent field along the structure can couple with the propagating con-
tinuum. The perfect resonances become quasi-resonances, or leaky modes, and this leads
to some striking behaviour in the transmission spectra. Asymmetric Fano like peaks are
observed and are characterised by a perfect transmission followed by a perfect reflection on
a very narrow bandwidth of frequencies. We recall some properties of a regular subwaveleg-
nth grating as well as homogenization results. We illustrate numerically the occurrences of
trapped modes and the branch folding of guided wave, which allow the presence of the Fano
resonance. The derivation of the homogenized effective model of a dual period metagrating is
obtained through a combination of bulk homogenization and matched asymptotic techniques.
The obtained model allows for the derivation of closed form solutions and an analytical study
of underlying resonant mechanisms. The second part focuses on space-coiled materials in
the acoustic setting. In order to obtain a more compact design and reduce the width of the
grating, the idea of folding the slits on themselves has been introduced. These space-coiled
or labyrinthine materials rely on the idea that the acoustic wave is forced to follow the path
of the coiled slot. It has stimulated a lot of research in terms of wave front manipulation,
as large phase shift of the transmitted wave compared to the thickness of the structure can
be obtained. We use similar asymptotic tools as in the first part, and study two types of
coiling arrangement. We revisit the most encountered coiled arrangement through classical
homogenization and show that, although previous studies have shown good results through
intuition, the homogenization approach gives a more accurate equivalent effective index. A
second study is devoted to what we refer to as a meta-crystal. It consists of a space-coiled
material, with straight slots of the order of the wavelength. Through some careful scaling,
we derive an effective model which allows for one dimensional propagation inside each slot
and where each turn distanced at the ordered of the wavelength acts as a scatterer. This can
be interpreted as a one dimensional phononic crystal embedded in a subwavelength grating,
which now benefits from two length-scales. The structure benefits from band gaps due to
Bragg scattering, that is coupled with the Fabry-Pérot resonances. The total sample size stays
however small thanks to the folding of the slots. Thanks to the derived effective model, the
dispersion of the embedded crystal can be obtained, giving insight on the resonant behaviour.
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Chapter

Introduction

The properties of materials encountered in nature are a direct consequence of the interaction
of waves and their microscopic structure. For instance, the colours of everyday objects are a
result of the interaction of chemical elements composing the material, and their geometrical
arrangement. Playing with the arrangement, the field of composite materials has allowed to
control wave propagation and obtain materials exhibiting new extraordinary properties. The
majority of these discoveries and studies were first done in electromagnetism, where exotic
behaviour and ideas such as cloaking, negative refraction, lensing and subwavelength imaging
were developed. In the last couple of decades, efforts in extending these ideas into other areas
of wave physics have been made, such as the field of acoustics, elasticity, water waves and
geophysics [32, 133].

These man-made materials can be divided into two subcategories. The first one is photonic
crystals in electromagnetism, and their acoustic analogue phononic crystals [62]. They are
composed by a periodic arrangement of unit cells composed of a scatterer. The periodicity of
the unit cell is of the same order as the interacting wavelength, and Bragg scattering occurs
[19]. Destructive interference takes place at certain frequencies which opens up band gaps,
i.e. a range of frequencies where propagation is no longer possible. As their name imply, their
behaviour is similar to the one of electrons in solid state physics, governed by energy bands
[67] . Nevertheless, a major drawback of these types of structures are their size, as they are
of the order of the wavelength. For instance, to obtain some low frequency bandgaps in the
audible regime, the sample size will have to be at order of several meters. In the quest of
reducing their sizes and improve their performance in the low frequency regime, materials
with subwavelength unit cells endowed with a local resonance were envisioned. As the unit cell
is of subwavelength size, the structured material can be seen a homogeneous medium with
effective parameters, such as the permeability and permittivity in electromagnetism, and
mass density and bulk modulus in acoustics. These so-called locally resonant metamaterials
allowed for new applications, such as superlensing [121, 64], cloaking [106, 21], where the
effective parameters can be interpreted as negative parameters, and opened up a new branch
of wave physics. Other applications in terms of guiding properties [74, (6], sound absorption
[136, 61, 100] and shielding [30, 29] have also been of large interest within the community.

Obtaining these effective parameters from a given microstructure is not a trivial task. Two
main methods can be distinguished, a discrete approach and a homogenization approach,
where the latter is favoured in this work. The discrete approach consists in studying a
discrete system, considered as an analogue of the actual continuous problem, from which the
effective parameters are deduced using various retrieval methods [107, 73, 102]. Depending
on its complexity, deriving such a system is not straightforward and the approach might
be completely flawed as the possibility of inconsistency between the discrete and continuous
problem can be present.

The homogenization approach on the other hand starts off with the actual continuous
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Chapter 1. Introduction

problem. Through some upscaling techniques and rigorous averaging processes, the mi-
crostructure is replaced by an equivalent medium described by some effective parameters
at the macroscopic level, which faithfully reproduces the behaviour. These methods were
initially studied in the static setting, with the asymptotic homogenization as a popular and
efficient approach toward periodic microstructures. Specifically, the two-scale approach has
been of high interest since its introduction in the 1970s. It relies on a scale separation as a
variable at the order of the periodic unit cell is introduced to account for the fast oscillation
of the microstructure. We refer to the works of [16, 135, 28, 14] for an in-depth presentation
of the method. In the case of dynamical problems, the two scale approach has given fruitful
results in the low-frequency (equivalently long-wavelength) framework, where the asymptotic
are carried out as the period is small compared to the wavelength.

These methods are developed for an infinite periodic domain, and do not take into account
any behaviour at presence of a boundary or interface. In the case of metamaterials, these size
effects can generally not be neglected as the leading physical property can be governed by the
behaviour at the edge. It is especially the case for thin structures. In order to reduce their
size, the emergence of metasurfaces, or metafilms has been of great interest as they exhibit
striking phenomenon despite their small size. In this case, an asymptotic treatment is needed
on the boundary or at the interface. These problems have been of intensive investigation,
where we mention for the case of boundary problem the works of [4, 112, 54]. For the case of
interface problems between a periodic medium and homogeneous medium, less results exist
and are more recent, notably [22, 96, 99, 31]. The derivation of such models is closely linked
to the transmission problems through thin films, both homogeneous [15, 128] and periodic
[1, 41, 38, 39, 95, 125, 126, 97]. The boundary layer effects correspond to the presence
of evanescent fields confined to the boundary or interface. From an asymptotic view, two
approaches are possible. The first consists of introducing boundary layer correctors, depending
on the microscopic scale along the surface which exponentially decay away from it, to the
homogenized solution depending only on the macroscopic scale. The second approach studies
the problem in the vicinity of the layer at the microscopic scale, which is then matched with
the homogenized far field at the macroscopic scale. Both approaches yield equivalent results
at a given order.

The result is twofold: the homogenized solution is of especial interest for numerical appli-
cations. As the metamaterial usually depends on several scales, the numerical results come
at an extremely high computational cost. The fine spatial discretization can be avoided by
having a homogenized model only dependent of a macroscopic scale, leading to large com-
putational gains. This also allows for an approximated analytical study of the problems, as
the solutions are explicit through the effective model description. These methods are how-
ever limited by the chosen asymptotic setting, for instance the long wavelength regime. We
will use these techniques to derive effective models for different configurations of materials,
which benefits of analytical results and a further understanding of the resonant nature of the
structures.

We also mention the Willis approach, a homogenization method derived from variational
formulations. From the early works of [56, 151] initially developed in statics, extensions
to dynamical problems have been made [152, 153]. More recently, links between the two

approaches have been presented in [114, 104].

Compared to waves of another nature, the possibility of having a local resonance during
the propagation of acoustic waves in fluids is limited. Plasmonic-type resonances are not
available because there are no fluids with negative-valued compressibility or mass density in
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Introduction

acoustics, as is the case for the permittivity of metals at optical frequencies in electromagnetics
[93, 127]. The same is true for Mie-type resonances, which exploit the high contrast value
of shear modulus in elasticity [38] and permittivity in electromagnetics [70] to encapsulate
a wavelength in an inclusion. Again, the contrast needed to create such a Mie resonance is
simply not available in acoustics. The choice is therefore restricted to our knowledge to three
types of local resonances in acoustics. The first is the sub-wavelength Minnaert resonance
[134, 7, 5], which is a liquid-gas resonance (air bubble in water) that relies on a strong mass
density contrast. The second is the Helmholtz resonance associated with the small leakage
through an aperture of a perfect cavity mode [61, 8]. Finally, the last one is perhaps the
simplest: it is the quarter or half-wavelength resonance which is that of an open straight slit,
where the fundamental resonance corresponds to a wavelength four times or two times the
slit length. It is this type of resonance that we use in the first part of this work. In order
to significantly reduce the size of this type of resonator, the idea of winding the straight slit
gave birth to the field of space-coiled metamaterials. This is the main subject of the second
part of the thesis.

A result that sparked interests in subwavelength apertures is the one of the pioneering
works of the group of Ebbessen [43] in the late 1990s. In the mentioned paper, an experimental
study on light transmission through a perforated metallic screen was presented. A hole larger
than the wavelength allows virtually all the light to pass, whereas a subwavelength hole
allows almost no light to pass. In the latter case, the hole is too small and the incident wave
does not ’see’ the small aperture. This was widely known, and it was shown theoretically
several decades ago [17] that the transmittance of a circular hole decreased quadratically
with respect to its radius for a given wavelength. The thickness of the film only weakens the
transmittance. However, the group of Ebbesen showed experimentally that a metallic array
with periodically spaced subwavelength holes could resonantly enhance the transmittance.
Notably, such an array could transmit more energy than a large hole with an equivalent
holey surface. This resonance is referred to as extraordinary optical transmission (EOT), and
was later on extended to the microwave regime and to its acoustic analogue, extraordinary
acoustical transmission (EAT) [90]. The resonant nature was explained by the existence of
a surface wave confined along the array and a cavity resonance of the hole. As the EOT
is a full three dimensional problem, the acoustic case can be reduced to a two dimensional
problem, and is less complicated as it only relies on the cavity resonance of the hole, which is
a Fabry-Pérot resonance due to constructive interference. EOT (EAT) was later on extended
to gratings of finite size, and have been of high interest in the last two decades. Classical
homogenization has shown fruitful results, extending the model to any angle of incidence
[53, 105]. By classical homogenization, we refer to the fact that the model is obtained at the
dominant order of the asymptotic expansion. These models also capture a more broadbanded
EAT, associated with the Brewster angle, corresponding to the impedance matching between
the grating and the surrounding medium. Building on these ideas and methods, we extend
these studies to more complex geometries, which together with a more involved asymptotical
analysis, constitutes the major works of this thesis.

Before going further, we need to disclaim that the bibliography in this section is not ex-
haustive. As there exists a vast literature in each domain of physics, where the communication
between them is not always present, we only present a few which illustrates the extremely vast
field of metamaterials. Similarly, the list of references concerning the asymptotical techniques
is limited to the most relevant in the sequel.



Chapter 1. Introduction

The manuscript is divided into two parts:

Part I - The first part of the thesis is devoted to the study of dual-period array, sometimes
referred to as compound gratings. The geometry is illustrated in figure 1.1 When studying
the scattering properties of gratings subject to a certain symmetry, local resonant states exist
along the grating and do not interact with the propagating modes. These localized modes
are referred to as trapped modes, or guided modes, in the context of acoustic and mechanical
waves, and bound states in the continuum in the electromagnetism and quantum mechanics.
They have gained a lot of interest in recent years for applications in filters and for sensing
applications. When dealing with a dual-period grating, composed of a periodic unit cell with
two slits, we are interested in the configuration where some symmetry is broken. By doing
so, the evanescent field along the structure can couple with the propagating continuum. The
perfect resonances become quasi-resonance, or leaky modes, and this leads to some striking
behaviour in the transmission spectra, where asymmetric Fano like peaks are observed.

e (a) S (b)

Figure 1.1: Geometry of the considered grating. (a) Regular grating and (b) dual period
grating subject to some symmetry brekaing.

We treat the acoustic problem for incident pressure waves diffracted by the sound hard
rigid parts. This is the analogue problem as for transverse polarized electromagnetic waves
impinging on perfect conductors.

From an homogenization perspective, the behaviour of a regular grating is recovered at
the dominant order. In order to capture the sharp anomalies, it is not sufficient to derive
higher order term in the homogenization process, as the resonance is due to the excitation
of an evanescent field along the structure. To proceed, an additional asymptotic treatment
needs to be performed at each interface in order to recover the Fano-type behaviour.

In chapter 2, we present the problem setting. We will consider in this work the propagation
a scalar wave, corresponding to solving the Helmholtz equation in two dimensions. We recall
some properties of a regular subwavelegnth gratings and the a semi-analytical modelling. We
recall some fundamental properties, and establish the homogenization setting for the rest of
the manuscript.

In chapter 3, we present the physical properties of the dual period metagrating. We
illustrate numerically the occurrences of trapped modes and the branch folding of guided
wave, which allow the presence of the Fano resonance. The derivation of the homogenized
effective model of a dual period metagrating is then presented, and we show the importance
of the analysis at the edges of the array. The results show that the model is accurate up to
surprisingly high frequencies. Furthermore, the obtained model allows for the derivation of
closed form solutions and an analytical study of resonances. The results have been published
in the paper [159].



Introduction

[159] Zhou Hagstrom, Joar and Maurel, Agnes and Pham, Kim. (2021). The interplay
between Fano and Fabry-Pérot resonances in dual-period metagratings, Proceedings of the
Royal Society A, 477(2255):20210632.

Part II - The second part focuses on space-coiled materials in the acoustic setting. As men-
tioned above, these space-coiled or labyrinthine materials rely on the idea that the acoustic
waves are forced to follow the path of the coiled slot. Spiral geometries and folding of the
slot has allowed for compact design when dealing with surface waves.

It has also stimulated a lot of research in terms of wave front manipulation. This can
result in possibly large phase shift of the transmitted wave compared to the thickness of the
structure. By varying the coiling from a cell to another, one can tune the phase shift and
thus obtain beam steering.

From a theoretical point of view, few attempts of deriving effective coefficient have been
made. The question of effective length, i.e. the equivalent length of its uncoiled analogue,
has been of great interest, and the few results rely on some heuristic definition of the uncoiled
analogue. We tackle this problem through a more rigorous homogenization approach, and
show that through some rearrangement of the coiling, one can obtain a richer response.

JLLL
i

L

Figure 1.2: (a) Classical space-coiled metasurface (b) Space-coiled metacrystal. The orange
parts show the unit cell. Both structures can exhibit large phase shifts, here of the order T,
much larger than the thickness of the structure.

In chapter 4, we revisit the classical space-coiled materials through classical homogeniza-
tion and show that, although previous results have shown good results through intuition, the
homogenization approach gives a more accurate equivalent effective index. The result are
illustrated with numerical examples, and results from the existing literature are compared.
The result reported in this chapter mainly reproduces the results obtained in [161] currently
under revision at wave motion.

[161] Zhou Hagstrom, Joar and Maurel, Agneés and Pham, Kim. (2022) Revisiting effective
acoustic propagation in labyrinthine metasurfaces, under revision

Chapter 5 concerns the study of what we refer to as a meta-crystal. It consists of a
space-coiled material, with straight slots of the order of the wavelength. The considered

7



Chapter 1. Introduction

configurations is depicted in figure 1.2.Through some careful scaling, we derive an effective
model which allows for one dimensional propagation inside each slot and where each turn
distanced at the ordered of the wavelength acts as a scatterer. This can be interpreted as a
one dimensional phononic crystal embedded in a subwavelength grating, which now benefits
from two length-scales. The structure benefits from band gaps due to Bragg scattering,
that is coupled with the Fabry-Pérot resonances. The total sample size stays however small
thanks to the folding of the slots. Thanks to the derived effective model, the dispersion of
the embedded crystal can be obtained, giving insight on the underlying mechanism. The
derivation of the effective model is the main contribution of the following paper submitted in
October 2022.

[160] Zhou Hagstrom, Joar and Maurel, Agnés and Pham, Kim. (2022) Modeling acoustic
space-coiled metacrystals, submitted to SIAM

Finally, the results are summarised in a last chapter. We make final conclusions and
discuss possible perspectives.
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Chapter

Problem setting - Subwavelength grating

Chapter summary: This chapter gives an introductory outline of the studied problem
and the general setting is defined. We recall properties of a periodic grating and present the
homogenization scheme of a layered material applied to the study of a regular sound hard
grating.
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2.1 Governing equation

In this section, we lay down the the physical setting and the governing equations. Acoustic
wave propagation is a scalar wave propagation in a given dimension, in this case two dimen-
sional. The spacial coordinates are denoted by & = (x1,72) € R? and the time variable is
denoted by t. The linearized Euler equations govern the acoustic wave propagation, namely

ou B 1 8j ) B 9
p(w)ﬁ(w,t) = —VP(x,t), Bx) 0t (x,t) +divU(x,t) =0, Vo ecR*, (2.1)

where p is the scalar pressure field, u is the vectorial velocity field, p is the mass density and
B = pc? is the bulk modulus, with c is the velocity of the wave in the given fluid. The study
is often done in the harmonic regime. This corresponds to a system with a periodic time
dependency of e~™!. This enables a spectral and modal analysis of the problem, as well as
dropping an initial time condition imposed by the time dependence. This allows us to solve
the problem by variable separation of the form

P(x,t) = Re (p(:v)e_m) , Ulx,t) =Re (u(w)e_w) , weR, (2.2)

where w is the angular frequency. This is justified by a Fourier transform, and a time domain
solution can be obtained by an inverse Fourier transform. We have the harmonic problem:

Vp(z) = iwp(x)u(x), divu(z) = iw

p(x), (2.3)

11



Chapter 2. Problem setting - Subwavelength grating

from which we obtain the wave equation

1 w?
i (5 Vp(a) ) + () =0, (2.4
p(x) B(z)
where we omitted the time dependedy e~ This is equivalent to the case of transverse
magnetic (TM) polarization, where the magnetic field H = H(x)e, is perpendicular to the
plane. The waves are in this setting governed by the following equation

1wt

div <1VH(:B)> b p(@)wH () = 0, (2.5)
€(x)
where € is the permittivity and p the permeability. Similarly, the same equation describes the
out-of-plane elastodynamical wave propagation, where the shear modulus G plays the role of
permittivity and the mass density p the role of permeability. The elastic scalar displacement
field U is governed by
div (G(z)VU(x)) + p(x)w?U(z) = 0. (2.6)

These analogy are of interest as works in different fields have led to the similar results, as
will be shown later on. Although we focus on acoustical propagation, the wave equation can
be written in its generic form

div (a(x)Vp(x)) + b(z)w?p(x) = 0, (2.7)

where a and b will be the material parameters. We consider a grating of length 2¢ centered
along x1 = 0 and is of periodicity h. We also consider a layer Dy of material of width 2¢
with material properties (a;, b;), surrounded by an ambient medium (a., b.). By periodically
removing material from the layer, we are left with a grating composed of an array of domains
U;D;. The governing equation (2.7) can be rewritten as

2 i 2\ (1. .
{Ap—l—k’p—()lnR\UlDl (2.8)

Ap—l—kigp:()in U; D;,

where we have the wavenumber k = w+/b./a. and k; = wy/b;/b;. As contrasts exists between
the material properties, we need the additional natural continuity conditions of both pressure
and velocity along the interface of each D,

dp

ply =pl_ and 35N

_ o

. =2y - ) on each 0D;. (2.9)

where, n denotes the outward normal vector of each D; and -|, denotes the limit of inside
and outside of D;. Let D; = {x € (—£,¢) x (—1,(—=1+ ¢))h/2U ((1 — p),1)h/2}, where ¢ is
the filling fraction, see figure 2.1.

In the following, we illustrate some properties of the gratings when excited by a right going
plane wave p™(x) = eilkozitbo(22+0)) wwhere kg and by corresponds respectively to the z1 and
x2 component of the wave number k. The angle of incidence is given by 6 = atan(bg/ko).
Knowing that the incident wave only differs by a phase shift of 0" between (x1,z2) and
(1, z2+h), we take advantage of the periodicity of the grating to search for a pseudo-periodic
solution of the form, referred to as a Bloch wave solution,

p(x) = plz)e™, (2.10)

12
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Figure 2.1: Periodic array composed of a finite layered material.

where j(x) is a h-periodic function with respect to x3. As p(x)e~"0?2 is h-periodic, it admits
a fourier series expansion, which gives the following expansion for p(x),

p(@) = 3 puler)en(a2). (2.11)

nez
where @, forms an orthonormal basis and is given by

1 2
n(x2) = ﬁe’b””, where b, = by + ?n, n € Z. (2.12)
Substituting the expansion (2.11) into (2.8) leads to the second order ordinary differential
equation

po(xy) + (k‘2 — bi)pn(ml) =0, neZ. (2.13)

Knowing the general solution to this differential equation, we can obtain the general solution
to the Helmholtz equation,

pl@) = > (Ane™ + Bue 1) oy (1), (2.14)
nez
where A,,, B, € C, and we have defined
1 _{ VK2 — b2 ifb2 < k2, (2.15)
" iy/b2 — k? otherwise.
We identify two types of modes. When k, is a real number, the terms e**7%1 represents
left /right-going propagation modes. When £k, is imaginary, the modes are evanescent as the
terms are of exponentially decay as |x1| — oco. The propagation modes are of finite number,

and the evanescent modes are of infinite number. When we consider the incidence of a plane
wave p'™°, the solution of the problem is of the form

pinc (.’12) + Z rne—ikn(xﬁ-f) eibnm 1 < —L,

x) = _ meL 2.16
p( ) Ztnezkn(xl—f)ezbnm’ T > /. ( )

neZ

We have for the moment not specified any conditions when z1 tend to infinity. Such condition
is referred to as a radiation condition. We consider that all scattered fields are bounded

13



Chapter 2. Problem setting - Subwavelength grating

composed of only outgoing plane waves, referred to as outgoing wave condition. It is this
condition that leads to the form (2.16), where Ag = 1 and B,, = r, for z; < —¢, and A,, = t,
and B,, = 0 for 1 > /.

We identify three regions in the (k, bg)-plane, when supposing b /a. < b;/a;:

bg < w?be/ac,
w?be/a. < b3 < w?b;/a;, (2.17)
w?b;/a; < bE.

The first one corresponds to the scattering states, a continuous radiation spectrum situ-
ated above the light/sound line by = wb./a. where all outgoing waves satisfy the outgoing
radiation condition. In the last region, no scattering nor guided states exists, as the modes
are exponential inside and outside the slab.

In the second region, the modes are of exponential decay outside the grating as |z1| — oo,
and are confined and propagating along the grating with a phase velocity vy = w/bg, slower
than the waves of the ambient medium. These correspond to guided modes, which are modes
localized along the grating and are the nontrivial solution to the Helmholtz equation without
source term. The decay on either side of the grating are given by a relation between k and
bo, corresponding to the branches of the dispersion relation. These branches start off from
the light /sound lines for a given k depending on the thickness of the grating. In contrast
to the scattering states which are excited by incoming sources infinitely far away from the
structures, guided modes can only be excited through a source in the near field or inside the
grating, corresponding to an evanescent field confined to the grating.

Due to the pseudo-periodicity of the problem, the Bloch wave form allow one to reduce the
problem. In fact, as the solution p(x) = p(x)e™®*? is periodic, by a change of periodicity one
has p(x) = p(x)e’®t™)?2 with n an integer. The wavenumber by can therefore be restricted
to the first Brillouin zone by € (—m/h,7/h). We will study reciprocal problem, which means
that the Brillouin zone is symmetric. Our results will therefore be illustrated for by € (0,7/h).

2.2 Guided modes

Surface waves, also referred to as Rayleigh-Bloch waves or guided waves, are of great impor-
tance when studying the response of gratings. They are the origin of several intriguing phe-
nomenon, where the Wood anomaly might the first observed case. In 1902, Wood published
some astonishing experimental results [154] when he studied the diffraction of a continuous
light source upon a grating. He explains, in an almost romanticised way, how he instead of
exhibiting a smooth spectrum, he observed sharp drops from maximum illumination to min-
imums. Fascinated, without any explanation, he termed them anomalies. Later on, Rayleigh
[131] suggested that these anomalies were due the passing to higher order term of diffraction,
and that the energy was redistributed. Although the order passing accounts to some extend
the original observation, it does not fully explain the underlying mechanism, see [39]. In fact,
this conditions can easily be observed in the case present in the previous section. As b2 < k?,
the modes are propagating, and b2 > k? are evanescent. The Wood anomaly occurs around
the critical case b2 = k2. The wave is now purely guided surface wave, transporting energy
only along the grating.

There are several settings where a flat interface supports guided waves. For instance,
Rayleigh waves propagating along the interface of an elastic solid, or water waves guided

14



2.2. Guided modes

along the coastline. The very well know surface-plasmon polaritons (SP) at a metal-dielectric
interface allows for guided modes in for the optical frequencies, with the typical character-
istic of a having only one dispersion branch for a frequency interval lying below the plasma
frequency. Hard sound flat boundaries does on the contrary not support surface waves in the
acoustic setting. This is also the case of perfectly conducting metal for electromagnetic waves,
and out-plane shear waves along a free edge in elasticity. These guided modes can however
exist if the interface is subject to some periodic microstructure. Such waves, initially referred
to as Rayleigh-Bloch surface waves, has been subjected to intense study for several different
wave physics, such as electromagnetism [60, 147], acoustics [65] , and water waves [15]. They
gained interest and new popularity with the paper by Pendry and coworkers [122] in the
middle of the 2000s. They showed that electromagnetic waves localized along a periodically
corrugated perfect conductor could produce similar dispersions relation as surface plasmon
polaritons. These were dubbed as Spoof surface plasmons (SSP), or designer surface plas-
mons, and subsequently opened up the branch of plasmonics to other areas in wave physics.
When the periodic unit cell consists of slots, the wave can propagate along inside the slot,
and half-wavelength resonance can be observed. They correspond to standing waves along
the slots (this corresponds to quarter-wavelength resonance for grooves). These resonance are
inversely proportionate to the length of the slots, and acts as the upper horizontal bounds,
similar to the plasma frequency for SP. One can easily tune the dispersion of the SSP by
varying the length of the slots. To further bring down the dispersion to low frequencies for
thin structures, space-coiled or labyrinthine geometries were envisioned [58], see chapter 4.
As we deal with sound hard plates, the third region defined in (2.17) vanishes, and no lower
cut-off frequency exist, which allows for even slower surface waves.

We come back to theoretical and numerical modelling of such modes. Taking advantage
of the pseudo-periodic decomposition, the problem (2.16) is restricted to the study on an
infinite strip of width A. As mentioned before, the guided modes corresponds to the nontrivial
solutions to the homogeneous Helmholtz equation (i.e. without source term). The existence
of a guided mode at a given frequency is equivalent to the nonuniqueness of the problem.
Passing to a weak form of the problem, one obtains an eigenvalue problem where A = k2
act as an eigenvalue of the self-adjoint Laplace operator —A with the appropriate boundary
conditions. They are characterised by the min-max principle taken over a specific function
space, which we do not specify here. This variational set up is presented in [18], in which
they prove the existence of a finite number of guided modes below the continuous spectrum
of radiation. For a more general review, see the chapter in [139]. By choosing a suitable
test function, it is easy to prove rigorously prove the existence of guided modes below the
cut off by < k, as is done in [36] for the case of sound hard obstacles. If one insists in
solving the scattering problem, which is our case [101], solving the scattering problem with
the presences of a guided mode yields an ill posed problem. This leads to a divergence of
the scattering coefficients at the frequencies of the guided modes, as shown in figure 2.2. It
is worth noting that although the scattering coefficient diverge, the energy conservation is
not violated as the incident field is also evanescent. Despite the fact that this is a result of a
semi-analytic method, analytic results are hard to come by. We provide in the next section
an homogenization approach, corresponding to classical leading order homogenization.
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2.3 Homogenization/effective model

2.3.1 Classical homogenization

When studying such problems, an effective medium approach is of interest as one obtains
effective parameters. These parameters are useful as they provide information on the physical
properties. From a numerical point of view, such approach able one to drastically reduce
the computational cost as the microstructure does not have be meshed. Homogenization
is an averaging process where the microstructure is replaced by an effective medium. When
dealing with periodic microstructures, asymptotic homognization [16, 28, 135] has been widely
used. It relies on the multiple scale approach, obtained by an asymptotic approach as the
periodicity h tends to 0. We provide in this section a brief example of the homogenization
scheme of the Helmholtz equation for an infinite stratified media along the xs axis. In the
context of subwavelength periodicity, the homogenization is done in the small frequency/
long wavelength regime, by introducing the small parameter ¢ = kh < 1. To proceed, we
start by introducing the dimensionless coordinates & = kx, where the periodicity of the
stratified media now is ¢ = kh < 1. In order to make this dependence explicit in the
equations, we introduce the dimensionless coefficients a®(z) = a(x), b°(Z) = b(x) and the
fields p°(z) = p(z) and u®(Z) = k~'a(x)Vp(x). In the dimensionless form, where we drop
the * for simplicity, the governing equations reads

{ divu® (x) 4+ b*(x)p°(x) = 0,

uf (z) = o () VF (x). (2.18)

where
X2

a®(x) =a (?) , b*(x) =b (%) . (2.19)
In the above definitions, a and b are 1-periodic function and piecewise constant. We associate
the following boundary conditions to (2.18): continuity conditions applies both to the dimen-
sionless pressure p° and normal velocity and u® - n at each boundary between two stratified
layers (n denotes the normal vector to the boundary). To this end, some radiation condition
conditions needs to be applied. As the medium is periodic along x2, a conditions needs to be
given for some x9 = +L. This can be disregarded, or alternatively consider the case L — oo.
For |z1| — oo, a radiation condition needs to be defined. The homogenization is carried out
with bearing in mind the two-scale approach: a macroscopic spatial dependence in x, taking
inot account the slow variations of typical scale O(1/k), and a microscopic scale, tanking into
account the fast variation inside each unit cell at the scale O(h). The two-scale expansion
relies on the following postulated ansatz, where we expand the fields

i) T2 xI9
pe(x) = (&, =) +ep' (2, =) +p% (@, =) + -
g 1o (2.20)

u(@) = u'(@, ) +eul (x, ?) +etut@, 2) 4

where we have made evident the explicit dependency of the microstructure e. We define the
microscopic coordinate y, = x3/e . Each terms (p™, u™) are functions of both variables x and
y2, and are Y-periodic in yo with Y = (=1/2,1/2). By injecting the ansatz into (2.18), we
obtain the field (p?, u’) for any i € N. For any vectorial function f(z,y2) and scalar function
f(x,y2), the divergenece and gradient operator now reads

of 10f

1
VioVer+- ey div o divaf+ 20 e, (2.21)
€ Oy € Yo
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where V, denotes the gradient w.r.t. &. This leads to the cascade of equation in each order
of €, namely

1 9u oud ( . oubtt )
+ divgu® + =2 + divgu' + +b =0
€ Oy2 ay bv2)p’ ; 0y (v2)p
1 a 0 a 1 8pi+1 > )
—es+a Ve —l——e —ul + 0"+ es | —u') =0.
(y2)8y2 2 +a(y2) ( ’ e 2) Z ( ( P’ Oyn 2

i1

(2.22)
We conduct the derivation of the homogenized solutions, we introduce the average for any
function f

= / f(z, y2)dys. (2.23)
Y

Note that if the unit cell is not of unity, one should divide the average over the periodic cell
by its measure |Y|.

At leading order O(1/e), the equations reads 9,,p° = 9y,u) = 0 for yo € Y and where

x act as a parameter in the unit cell. This implies that (p°, 8) are independent of the fast
variable o,

P(@,2) = (), uplz,ye) = up(), (2.24)

and that p° and uJ are equal to their averages over the unit cell. Moving on to the next order,
we establish the relation between the average (u”) and pU. At order O(1), the equations reads

oul

u®(a 12) =a(y) (vmu%) n 8y2(w7y2)62> ,

) (2.25)

) 0
divaud (z, ys) + aiyf(m, y2) + b(y2)p () = 0.

As p! and ud are periodic w.r.t.ys, we have <8y2p1 = Oyzu% = 0). Averaging the above
equations gives us the wave equation at the dominant order

dive (u’)(z) + (b)p’(x) = 0,

Coming back to the dimensional form, we obtain the highly anisotropic effective tensor a,
with the principal axis (x1,x3), of the wave propagation at dominant order

divu(z) + (bYk?p(x) = 0,

(2.26)

2.27
u(x) =aVp(x), a= < <8> <1/g>_1 > : (2.27)

Note that the geometry is simple, a rather incremental method has been used in order to
derive the form at the dominant order, as the solution is explicit. As the unit cell might be
more complex, the derivation usually requires the definition of a so-called elementary problem,
posed on the unit cell [16, 28, 135]. This is the case in chapter 4. If we consider that the
layer is of width ph, where ¢ is the filling fraction, we obtain the following averages

(@) = (1 —p)/ai+¢/a,
(1/a)~1 = ((1 — @)a; + pac) !, (2.28)
(b) = (1 — p)bi + b,
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For the moment, we have only formally derived the solution by injecting the ansatz into
the governing equation. It is however necessary to assure some convergence of (uf,p®) to
some solution as € tends to 0, which can justify the formal derivation a posteriori. Several
methods exist for such justification, and without being exhaustive we only mention the two-
scale convergence [3, 116], and a variational method, relying on I'-convergence [35].

2.3.2 Material properties: Limit cases

We take a moment to discuss the different cases and limitations of the homogenized solutions
in terms of material properties for different kinds of physical wave propagation. Up to this
point, we have only considered the case where the material properties of the grating are of the
same order. In this case, the obtained effective solutions is valid in the low frequency regime
for the three types of waves considered, TM-polarized electromagnetic waves, elastodynamical
shear waves and acoustic pressure waves. When allowing for a large contrast, a new scaling
needs to be done in order to take into account the local resonance within the inclusions.
The material parameters are scaled a;/a. = O(¢?) and b; /b, = O(1). This has been studied
for bulk homogenization in [13, 12, 158, 49], and for the transmission problem across an
interface of highly contrasted inclusions [125]. As mentioned before, this is possible only in
electromagnetism and elasticity, but not in acoustics as there is no high contrast material in
this range.

Considering the limit case of Neumann boundary conditions, corresponding to vanishing
normal derivative along the layers, consists in a large impedance of the material, |Z| =
1/|v/a;b;| — oo. In acoustics, such conditions are associated to a large density p = 1/a; and a
large bulk modulus B = pc? = 1/b;. As the velocity ¢ does not vary much from one material
to another, it means that the large wavelength approximation still holds in such a media, and
one can safely consider the limit Z — co. However, this is not the case in electromagnetism
as the double limit does not commute. This has been studied in [113, 117, 48]. The Neumann
limit applies to several material for different types of waves. In acoustics, it is associated to
sound hard walls, and in elastodynamics to cracks or void. In electromagnetism, it is the
case of perfectly conducting material for TM-polarised waves. This limit also coincides with
the surface elevation of water waves in the shallow water regime. Taking the above limit
corresponds to a;,b; — 0 and setting the fraction a;/b; equal to a constant. This results in
the equivalent effective parameters (a) = (b) = ¢ and (1/a)~! = 0, and the homogenized
wave equation

divu(a) + (b)k2p(z) =0,  u(z) = ( L o F 8 >Vp(m). (2.29)

2.3.3 Application to grating

In the preceding section, we considered the case of an infinite medium. In the case of a
grating, the layered media is of finite size, and in order to apply the effective medium theory,
we simply truncate the domain at 7 = +¢. Outside of the layered media, |x1| > ¢, we
consider an homogeneous medium. The question of the transmission conditions at the edge
of the layered medium z; = £/ needs to be addressed. The natural and intuitive choice is
the one of continuity of the both the pressure and normal velocity across each interface at
xTrl = +/

[p] =0, [ui] =0, (2.30)
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where the jump is defined for any scalar function f for a given interface for instance in x1 = e,
[f] = f(eT) — f(e™). As it will be shown in the following chapters, by doing an additional
asymptotic treatment around the interface one does indeed obtain the transmission conditions
(2.30) at the leading order, although their derivation are far from being trivial. At higher
order, correction appears from the asymptotic in general both for the pressure and flux.
However, as the physical properties of the problem are mainly governed by the anisotropy of
the effective slab, the leading order solution does accurately reproduces the original problem.

(@

0 boh T 0 boh

Figure 2.2: Dispersion relation for the SPP. The colormap corresponds to direct numerics
log|r| , and the relation is visible by diverging log|r| in red. The dashed grey line corresponds
to the light /sound line. The dashed black lines corresponds to the dispersion relation obtained
from homogenization. (a) corresponds to the transmission grating, and (b) to the reflection
grating, which does not support antisymmetric modes, opening up a bandgap.

We shift our attention to the case of slits in a sound hard slab. The scattering properties
are detailed in the next chapter 3, and we shift our focus to the guiding properties. In the
following, we present some approximated closed forms of the dispersion branches. As speci-
fied, we look for solution of the wave equation without source term, namely, the homogenized
problem for guided waves reads

0%p

— +k’p=0, for |z1] < ¢,

Ox?

Ap +k?p =0, for |x1| > ¢, (2.31)

_ o9y _
|Ip]] — 07 Hai‘rl]] — 0, fOI‘ fEl — ig,

where some Bloch-Floquet condition needs to be taken into account at xo = £L. The layered
material has been replaced by an equivalent effective medium. The solution of (2.31) is of
the form

e, for z1 < —¢,
p(x) = etor2 5 & pekrr Be k1, for |z1] < ¢, (2.32)
Ce 771, for x1 > ¢,

where ~ is real valued and positive. The coefficients A, B and C can easily be obtained,
from which we can determine for all by > k the explicit dispersion relation by = bg(k),

(2.33)

bo = k\/1+ p2tan? k¢, for tankl > 0,
bo = k\/1 + 2cotankl, for tankl < 0.
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This is in fact the same dispersion relation as recovered in [53, 105, 83] for subwavelength
periodicity. We report in figure 2.2 the logarithm of the reflection coefficient log|r| in the
(2k¢, boh)-plane from a scattering problem. The numerical method is presented in the follow-
ing chapter, and is based on a multimodal method similar to [85].The guided surface waves
lie below the light/sound line, and can be observed by diverging parts of log|r| (in red).

We note that the term of spoof plasmons was introduced due to its ability to mimic
the dispersion of plasmon polaritons at the interface between metal and air. The usual
context is that of a grating composed of an array of length ¢/2 above a sound hard material.
This problem is equivalent to the array with a Dirichlet conditions along the axis x1 = 0,
preventing the excitation of anti-symmetric modes, see the figure 2.3. This leads to the
dispersion relation

1+ ¢2tan?2k¢, for tan2kl > 0, (2.34)

resulting in bandgaps for tan 2k¢ < 0. In the analogy, the air above the grating corresponds
to the air above the metal, and the grating corresponds to the metal. In the air above, surface
waves propagates along the interface and are evanescent away from the interface, whereas as
the behaviour differs in the metal and grating, see figure 2.3. As the wave can not propagate
in the metal, it is also evanescent, while standing waves are present in the slots.

(a) i (b)

Figure 2.3: Sketch of SPP along a transmission and reflection grating. (a) Sketch of the
exponential decay in black on the upper on lower side of the grating. Inside a slit, the
first symmetric and antisymmetric half wavelength resonance are illustrated in blue and red
respectively. (b) The same representation as (a) is done for a reflection grating. In this
case, only symmetric resonnances are allowed, and the first quarter wavelength resonance is
illustrated in blue.
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2.4 Conclusion

We have presented classical homogenization techniques for layered materials and a sound
hard grating. We have illustrated how the model can recover the dispersion relation of the
SPPs thanks to a closed form solution. The effective model is obtained at leading order in the
bulk, where continuity conditions applies both for the pressure and velocity at the interfaces
of the grating. Carrying out the asymptotical derivation to the next order will yield non
trivial jump conditions at the edges. In the case of regular gratings, such correction will
indeed improve the accuracy of the model, although the model at dominant order faithfully
reproduces the behaviour of the grating. We present in the following chapter a case where a
first order model is necessary, as the dominant order model fails.
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Chapter

Dual Period

Chapter summary: This chapter is devoted to the study of the properties of a dual period
grating of subwavelength periodicity. We consider the propagation of a scalar wave in the two
dimensional plane, with a grating composed of slits in a non penetrable slab. At low frequency,
a grating composed of a long enough slit supports Fabry-Pérot resonances, upon which Fano
superimposes when the grating acquires dual period. The resulting transmission spectrum
consists a flat-banded peaks of transmission scared by a sharp asymmetric dips of perfect and
zero transmission over a small bandwidth. The modelling is done using a homogenization
scheme combined with matched asymptotics at each interface. The obtained model consists
in two non identical effective media which are coupled at each interface through effective
jump conditions. These jump conditions efficiently ’encapsulate’ the effect of the evanescent
field which allows for the guided/trapped modes to be excited by a propagating wave. The
model is validated by comparing to direct full wave numerics, and the approximated model
allows for a physical analysis where closed forms solution can be derived.
The main results of this chapter have been published in the following article

[159] Zhou Hagstrom, Joar and Maurel, Agnes and Pham, Kim. (2021). The interplay
between Fano and Fabry—Pérot resonances in dual-period metagratings, Proceedings of the
Royal Society A, 477(2255):20210632.
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3.1 Introduction

Striking asymmetric peaks of transmission or absorption can be observed in several physical
settings. These peaks are attributed to Fano resonances, presented in the seminal works by
Ugo Fano [17] dealing with autoionization of helium. Such resonance peaks were explained as
the result of an interference between a ’discrete state’ and a background ’continuum’. This
discrete state is typically due to a defect or perturbation, allowing the scattering states to
interact with the localized modes of the original configuration, see the review [108]. In the
original work, Fano derived a formula describing the asymmetric line shape of the transmitted
energy,

g +ef?
f(6)— 1+627

where e = (E — Fyes)/(I'/2) is the dimensionless energy in the units of the resonance width
I' for a resonant energy FE,es. ¢ is the parameter, fano factor, that controls the asymmetry
of the line shape. As ¢ ranges from 0 to infinity, the line shape transforms from a inverted
Lorentzian 2 /(1 + €?) to a Lorentzian 1/(1 + €?). The asymmetric lineshapes are recovered
for values in between, and their orientation depends on the sign of g, see figure 3.1.

(3.1)

1

Figure 3.1: The transmitted energy given by the formula (3.1) for different values of g.

In this chapter, we study asymmetric peaks of transmission of a subwavelegnth grating
composed of sound hard material. When these gratings are subjected to some symmetry
breaking, the spectrum is scared by asymmetric peaks of perfect transmission and perfect
reflection over an extremely small bandwidth, as shown in figure 3.2. This Fano resonance
is due to the interaction of the scattering state and the resonant nature of the grating. As
regular gratings are highly symmetric, they prevent any excitation of non-symmetric modes.
These modes are trapped modes, corresponding to guided waves lying below the light line and
are uncoupled to the continuum of propagating modes. For grating of thickness larger than
the half-scpaing, constructive interferences occurs of the Fabry-Pérot (FP) type, leading to
flat-banded peaks of perfect transmission 3.2(a). When considering a dual period structure,
for instance the case of two identical slits brought closer together, and still preserving the
symmetry of the unit cell, a local periodicity is introduced and the threshold is divided by
two 3.2(b). By breaking some symmetry of the unit cell, for instance by considering two slits
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3.1. Introduction

of different width, it allows for the coupling of antisymmetric modes with the propagating
waves. The perfect resonance becomes a quasi-resonance with radiative damping, as it gains
a small imaginary part. The perfect trapped mode becomes a quasi-trapped mode. This
coupling occurs instantaneously for any perturbation of the initial symmetry, resulting in
scars in the spectra with characteristic asymmetric Fano shapes, see figure 3.2(c). In the
classical explanation, the ’continuum’ corresponds to the smooth Fabry-Pérot resonances,
and the ’discrete state’ is due to the quasi-trapped mode.

O5h
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Figure 3.2: (a) A periodic grating with slits of width 0.15h and length 2¢. (b) The same
grating with two identical slits brought closer together, introducing a local periodicity re-
sulting in a lower threshold. (c) The same grating after symmetry breaking with two slits in
the unit cell of widths 0.1h and 0.2h. The symmetry breaking produces the appearance of
Fano resonances with sharp variations of the scattering coefficients. Right-panels show the
transmission coefficient for 2¢ = 4h at normal incidence.
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The scattering by dual-period or compound gratings has been analyzed in a series of
papers in two-dimensions for p-polarized electromagnetic waves [141, 57, 92, 140, 115, 82] and
for their acoustic counterparts [157, 150]. In electromagnetism, the case of s-polarized wave
for which the Neumann condition is replaced by a Dirichlet condition has been considered in
[34]. Also, breaking the symmetry by using different dielectric materials in neighbouring slits
has been sought [142, 103, 155, 94, 52]. From a theoretical point of view, models have been
proposed using approximate modal method [140, 94] and using equivalent circuit models for
normal wave incidences [103]. Recently, a rigorous mathematical theory has been conducted
for narrow slit gratings [32, 84]. We also mention theoretical works on Fano-resonances
occurring in high-contrasted regular gratings [145] and for dual-period gratings of resonant
bubbly inclusions [6]. In the context of applications and metascreens, we refer to [69, 75] for
a high contrast dual-period setting. Recently, efforts to extend the study to the full three
dimensional Maxwells equation has been done in [9].

As shown in chapter 2, the homogenization theory is a good approach to handle subwave-
length gratings. Indeed, the Fabry-Pérot resonances are recovered within classical asymptotic
homogenization for regular gratings [118, 105, 83, 129], and a better estimate is obtained at
higher order when size effects have been taking into account [96].
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Chapter 3. Dual Period

To the opposite the occurrence of Fano resonances in dual-period gratings is surprising as
the gratings (a), (b) and (c) in the figure 3.2 have the same filling fraction of air hence they
should behave the same. In this study we show that conducting the homogenization beyond
the classical dominant order allows us to capture the coupling between the Fabry-Perot and
the quasi-trapped mode resonances, leading to the emergence of a Fano resonance. Indeed,
while waves in the slits propagate independently, they are coupled at the grating interfaces
through the evanescent field; the coupling is in general weak except when the evanescent field
resonates, which is rendered possible by the branch folding of guided modes being the acoustic
counterpart of Spoof Plasmon Polaritons. This coupling is recovered by the asymptotic
analysis, which provides non trivial effective transmission conditions encapsulating the effect
of the evanescent field.

kh =0.74 kh =N0x75
X I;a
L L
L LMY BTN
-3

-10h

30h

Figure 3.3: Scattering by an ultra-sparse grating — In general the scattering is weak, panel
(a). Near the Fano resonance, the pattern mimics a negative refraction system (panel (b)
similar to that reported in [129] for a regular grating of inclined plates). The rigid slab is
patterned with large slits of length 2¢ = 4h (widths 0.20h and 0.76h) living rigid parts 0.02h
thick (the incidence is 40°).

The rest of the chapter is organized as follows. In section 3.2, we present the problem
setting of the actual problem, give some theoretical background of trapped modes and illus-
trate their existence through numerical simulation. Next, in section 3.3 we summarize the
main results of the analysis specifically the effective problem involving a homogenized version
of the pressure fields (p,p) within each slit in the unit cell (3.7) complemented by effective
transmission conditions (3.8)-(3.9) applying at the slab interfaces. We do not make assump-
tion on the slit widths and our result holds for slits separated by ultra-thin rigid parts, which
give rise to unexpected scattering as illustrated in figure 3.3. The technical derivation of the
model is detailed in section 3.4; it is done for two slits of arbitrary widths and inter-distance
but with the same length 2¢. Properties of the obtained effective parameters is given in
section 3.5. We provide an extension of this to the case of rigid part of different lenght in an
additional part. We solve the effective problem for a scattering problem in section 3.6, which
is then validated in section 3.7. In particular, we conduct a local analysis, which highlights
the links between the Fano complex poles, the zero-transmission and the trapped mode for
the case of slits of different width.
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3.2. Problem formulation and results

3.2 Problem formulation and results

3.2.1 The actual problem

The dual-periodic grating has spacing h and thickness 2¢. It contains two rigid parts and
two slits with the sequence of thicknesses (7, ¢,7,¢)h (0 < @, ¢ < 1,0 < 7,7 < 1 and
N+ 1+ @+ @ = 1), see figure 3.4. In the harmonic regime with e~ time dependence,
the wavenumber is k = w/c with ¢ the speed of sound in the fluid. The acoustic pressure
p" satisfies the Helmholtz equation with Neumann boundary conditions on the rigid part
boundaries, namely

Ap’ + k2" = 0,
{ porEp (3.2)

Vp"-n =0 on the boundaries with rigid parts.

A

T2

nh i

Figure 3.4: The actual problem set on the pressure p” satisfying (3.2). The dual-period
grating is of period h and extend 2¢ and contains two rigid parts and two slits with the
sequence of thicknesses (7, @, 7, @)h.

3.2.2 Trapped modes

As mentioned in chapter 2, trapped modes, or guided modes, are modes that are solution
to the homogeneous Helmholtz problem (3.2). In case of a regular grating with rigid parts,
guided modes exist below the light/sound line. Trapped modes can nonetheless exist in the
continuum of propagating states above the light line under certain symmetry conditions.
From an operator point of view, such modes are associated with real eigenvalues embedded
in the continuous spectrum. Such modes are referred to as Bound States in the Continuum
in the context of quantum mechanics, see [59] for a recent review. It was first studied in
the works [149], where the authors theoretically constructed a potential well that extends
to infinity with a tailored in a specific way to support the bound states in the continuum.
It has since then been several studies of other setting where such modes are observed. In
the case of acoustics and waterwaves, trapped modes have been of large interest in the
study of closed waveguides, where we mention the works of [148, 23, 44, 36, 87, 26, 46, 120].
To construct such modes, the following configuration is often studied, see [16]: consider a
two dimensional closed waveguide propagating along the xi-axis of unity width, along with
Neumann boundary conditions on its lateral boundary xo = +1/2. A sound hard obstacle,
symmetric with respect to xo, is placed along the centre line of the guide. The continuum
of propagating states consist of all real frequencies, as no lower cut on frequency exist. By
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Chapter 3. Dual Period

separating the problem into symmetric and antisymmetric parts, we obtain two decoupled
problems. The even transverse modes are associated to the symmetric problem, and the
odd transverse modes to the antisymmetric problem. The symmetry preserves the lower
cut-on frequency for the even modes, whereas the cut on only appears at w for the odd
modes. This implies that evanescent waves can exist below this threshold, leaving room for
a trapped mode to exist. Through a variational formulation, simple test functions can prove
the existence of such modes in the continuum of propagating modes. Extending these ideas
to gratings, the existence of trapped modes above the light/sound line were proven in [18]
under the symmetry condition, see also [139] and references there in. These modes are known
to be non robust, meaning that any perturbation that breaks the symmetry results a trapped
modes becoming a quasi-trapped modes with a small imaginary part. These antisymmetric
quasi-trapped modes can interact with the propagating states. In the case of non penetrable
obstacles, a dual period is needed to observe any trapped mode.

Before proceeding to the homogenization scheme, it is useful to have some insight into the
physical properties of such a grating. To do so, we start by showing some numerical results.

3.2.3 Numerical evidence of the perfect trapped-mode through guided-
wave excitation

The numerical solution is obtained following a multimodal method similar to the Rigorous
Coupled-Wave Analysis developed in electromagnetism [109] or the Eigenfunction Matching
Method developed for water waves [35]. To start off, we consider the configuration consisting
of rigid parts with same width % = 7 while the two slits may have different widths ¢ # ¢.
We consider an incident wave of the form

pinc(a:) — eikm(:ﬁ-i-f)-‘ribml?’ m € Z, (33)
with k,, : n — /k? — b2 (with b, = bg+2nm/h for a given by) and the solution of the resulting
scattering problem is expanded as follows

pinc(x) + Z ,rmne—ik?n($1+f)wn(x2>’ xl c (—OO, —E),
p(x) = 0o nffoo (3.4)
Z tmne @0y (29), z1 € (£, +00),

n=—oo

with ¢, (z2) = €®7*2 forming a basis of the pseudo-periodic functions for zo € X = (0,h).
Next, for z; € (—¢,¢) and z9 € X = (2,2 + ¢h) or 9 € X = (&, % + ph), we write the fields
in each slit as

oo
p(x1, 9 € X) = Z (S’mn c0s kpx1 + Apn sin l;:n;m) T/A)n(l‘g),

" (3.5)
pry, 0 € X) = Z (Smn o8 knx1 4+ Apn sin l;:nxl) (),

n=0

with kp, = VAZ — an, G, = nw/(¢h), and ¢, (x2) = cos (an(xe — &)) forming a basis of
functions with Neumann conditions at zo = & and at o = & + ¢h (the same for ). The
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3.2. Problem formulation and results

solutions in (3.4) and (3.5) are then matched at 1 = £¢ where we apply the continuity of
the pressure and of the velocity by imposing, for i = 0,--- |

(Plees ¥i)x = (Blaes i) < (Plae ¥i)x = (Plae, i) (3.6)

(O D16, V7 ) x = Oy Pl U7 ) x + (Ouy Dpees V7 ) % '
where 97 denotes the complex conjugate of i; and where, for ¥ = X,X' X, (a,b)y =
[, a(x2)b(x2)dzs. In the last relation, we have accounted for the Neumann boundary condi-
tion Oz, p4p = 0 for x5 € X\(XUX) In practice the series are truncated to M terms p and p
and to IV terms fO}" p. Thus, vthe problem (3.6) is reduced to the determination of (4M +2N)
unknowns (Syun, Amn, Smns Amns Tmns tmn ), which are obtained from the 2 x (2M + N) equa-
tions in (?’62 by simple matrix inversion, the source being composed of the projections of
P, on (1i, ;) and of O P, Om 1]

The numerics allows the two resonances of regular gratings to be evidenced although
one is a perfect resonance prevented by symmetry. The Fabry-Pérot resonance is excitable
through scattering that is for an incident propagating mode. By sending the mode 0, it
is observed at perfect-transmissions |tgg| = 1 when 2k¢ ~ nm with n integer. The second
resonance is that of a trapped mode associated with the excitation of guided waves whose
dispersion branches lie below the light-line (these guided waves are the acoustic analogs of
spoof plasmon polaritons). By sending the evanescent mode 1 which breaks the symmetry of

(a) Fabry-Pérot resonances

2.5 okl 47

/

(b) perfect trapped-mode resonances

10°

[t11]

2.5m 2kt 4

Figure 3.5: FP resonance and perfect trapped-mode resonance in regular gratings — (a) FP
resonances with perfect transmissions |tgg| = 1, the right panel shows the pressure field near
2k¢ = 4m. (b) Perfect trapped-mode resonances due to guided wave excitation producing
arbitrarily large [t11] in the numerics, the left panel shows pressure field near 2k¢ = 47
(p=¢=0.3,20 =4h).



Chapter 3. Dual Period

the array, the guided waves can be excited which is visible by means of arbitrarily large values
of |t11|. This allows the formation of the perfect trapped-mode with nearby slits oscillating
out-of-phase. The variations of |too| and [¢11| for 2k¢ € (2.5,4)7 are reported in figure 3.5
along with the fields at resonances.

To further illustrate the double periodicity of the grating, we report the full (boh, 2k¢)-
plane in figure3.7. For both a regular and a dual period array, we logq|roo| and logo|ro1]. In
the radiative region 2k¢ > byh, we observe Fabry-Pérot resonances for the regular array with
roo = 0 visible for 2kf ~ nm, with n an integer. For 2kf < byh, the branches of the guided
modes being the SPPs are visible by means of diverging |ro|, and are clearly characterised
by their horizontal asymptotes at the edge of the Brillouin zone. The range bph € (0,7)
corresponds to half the Brillouin zone of the actual periodicity h/2 of a regular grating. As
the Brillouin zone is reduced by half, the branch of the SSPs is folded upon itself and brought
into the radiative region, hence becoming excitable through scattering. This corresponds to
the interaction of the quasi-trapped mode and the propagating states.

Indeed, this branch folding can be seen by examining the variations of |rg1|. For the
dual-period array, this evanescent mode can be excited. Below the light /sound line, the SPP
branch is still visible as it corresponds to the divergence of the evanescent field. Note that it
corresponds to the whole evanescent field and not only the first evanescent mode. Above the
light /sound line, the folded branch that corresponds to the quasi-trapped modes can be seen
by the large, although finite amplitudes of the evanescent field. For the regular array, the
pseudo-periodicity conditions applies at the actual periodicity h/2, hence rg,, = to, = 0 for all
odd n. These somewhat artificial perfect trapped modes can be visualized by the emergence
of noise in the numerical computation. A related study exploiting the noised spectrum to
reveal trapped modes has been presented in [119]. This allows us to observe the perfect
branch folding occurring at the edge of the first Brillouin zone bgh = w. As the symmetry is
broken, a band gap opens up.

Fano resonances
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Figure 3.6: Fano resonances in dual-period gratings — Variations of |tg9| € (0,1) (plain blue
line) and |¢p;| normalized to its maximum value (dashed red line) and field patterns at the
zero-transmissions near 2k¢ = 47 (¢ = 0.4, = 0.2,2¢ = 4h).

3.3 The effective problem

In the subwavelength regime, ¢ = kh < 1 is a small parameter that can be used to conduct
asymptotic analysis within each slit far from the grating interfaces at x1 = £/ (analysis in the
bulk) and in their close vicinity (analysis at a grating interface). In the resulting homogenized
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(a) regular array (b) dual period array
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Figure 3.7: Overall behaviors of the regular and dual-period gratings by means of the reflec-
tion coefficients |ro| and |ri| (in log,q scale) against bph and 2k¢, (a) for the regular grating,
and (b) for the dual-period grating.

model, we obtain two distinct pressure fields, p being associated to the actual pressure field in
the slit of thickness 71k and p being associated to the slit of thickness 77h. It is worth noticing
that these two solutions coexist in the whole domain x; € (—¢,¢) as sketched in figure 3.8.
Specifically we have

for z1 ¢ (—4,0), Ap + k*p =0,
9%p 92p 3.7
for 71 € (—0,0), P ikp=0, and 2L 4kp—o, 3.7
Oxy Oy

and as it should be, each wave equation is one-dimensional within the slits as the propagation
is allowed along x1 only.

In the effective problem, the region of the grating is defined by z; € (—¢,¢) where the
propagation involves the two fields p and p. Outside this region, 1 ¢ (—/,¢), the propagation
involves a single field p. At the boundaries x1 = £/, the analysis provides effective jump, or
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transmission conditions, which complement (3.7). They read, at x; = —/,
(py_e+—p|-‘f':h¢B1§_ai_g +hb§—x1 +h32§fg
Pl g+ — Pl - = hpb aé’pl +h¢31§_£_( + hBy 8852
L (ﬁg_ﬂ;l_ﬁ—i_@% g+_ %_g-z P52 5’90123;32 _g++h¢BQ a968125372 _g+_hc%_g-
(3.8)
and similarly at 1 = ¢,
(Dl — l, = hoBy e +hgh o h, i N
Plos — Ble- = hipb f—i +hoBy 87191 B, ;—;; "
5_51 o+ 7 5_3]351 ¢ ¢ 87]91 ¢ a hcﬁ% 851251’2 v el 851251’2 2 - giﬂg é*( )
3.9

n (3.8)-(3.9), the six parameters (By, By, By, By, b, C) are effective parameters obtained
from the solving of elementary static problems, which only depend on (7,7, ¢, ¢). It is worth
noticing that even for a grating of slits with same width (¢ = @), the two solutions p and
pin z1 € (—¢,¢) differ as their role is not symmetric in the jump conditions. The above
transmission conditions further simplify in the case where the slits or the rigid parts of the
grating have the same width, specifically we have

for slits with the same widths, o =¢, By = —By,
(3.10)

Il
=
F

Il
&

Il
(@)

for rigid parts with the same widths, i
Finally for a regular grating (the slits and the rigid parts have the same width), we have
p=¢, N=1i, Bi+b=DB+b=—Lllogsinmy, By=By=0, (3.11)

which enforce the limiting case p = p. These properties are shown in the section 3.5.

AL1
e
...O - >
(5, D) 2
y

Figure 3.8: The effective problem is set on p for z1 ¢ (—¢,¢) and on (p,p) which coexist for
x1 € (=4, ¢), with (p,p, p) satisfying (3.7) with jump conditions (3.8)-(3.8) at x1 = £/.
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3.4. Asymptotic homogenization

3.4 Asymptotic homogenization

In this section we present the two-scale asymptotic analysis to derive the set of equations (3.7)
and (3.8)-(3.9). This is done thanks to a field p* approximating p” in the limit ¢ = kh — 0.
For the ease of the calculations, we introduce the field u* = Vp* which is proportional to the
acoustic velocity and, without loss of generality, we keep dimensional space variable & and
set k = 1. Doing so, we get that (p°, u®) satisfy

divu® + p* =0, u® = Vp©,
u®-n =0 on the boundaries with rigid parts.

(3.12)

Note that the grating has now a period ¢ = kh < 1 and an extension k¢ = O(1). In the
homogenization process two different regions have to be considered. The first one corre-
sponds to the region within a single slit far from the grating interfaces at x1 = 4£. Here
classical homogenization techniques are used. The second one corresponds to a region near a
grating interface at x1 = —¢ or 1 = . Here matched asymptotic expansions together with
homogenization techniques will be used to derive effective jump conditions.

3.4.1 Analysis in the bulk — Effective wave equations

The analysis in the bulk is identical to that conducted in [96] for a regular grating. The
calculations are recalled below for the sake of completeness and because we shall need them
when the analysis near the grating interfaces will be considered.

Preliminaries

The effective model is obtained for averaged fields defined in the elementary unit cell depicted
in figure 3.9 and the averaging process is achieved over the fast variable yo = x9/e, which
accounts for the subscale laminar structuration. As the two slits are disconnected, the solution
follows two different expansions, which at this stage are independent. The two expansions
hold in the domains Y of width ¢ and Y of width ¢

Y={pc@i+@)}, Y={pel-¢1)}

Accordingly, the expansions read

p° :ﬁ0($7y2)+8ﬁ1($7y2)+'” ) u’ :ﬂo(x7y2)+5ﬁl(x7y2)+”' ; in Ya
p =@, y2) +ept(®y2) +-- . uwt=al(z,y0) Feul(zye) +--, Y.
(3.13)
Following [96] we define the macroscopic pressure and velocity fields in the two slits as
. 1 . . .
@) = [ e de (@) @) = [ ) die (3.14)
v v

(the same for (p") and (@")). It is worth noticing that we anticipate the conservation of

the flowrates at the dominant order by defining (i,%1) as the flowrates rather than as the

mean velocities. Eventually, due to the multiple scale variables in the field expansions (3.13),

the divergence operator applied to any vectorial function f(x,y2) and the gradient operator

applied to any scalar function f(x,y2) become
1 0f

€ Oy2

10f
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Figure 3.9: Elementary unit strip in which the analysis in the bulk is conducted. The analysis
involves the terms (p",4") in Y and (p", ") in Y in the expansions (3.13).

In the following, we conduct the analysis in Y for the terms (p™,u"). The results hold in Y
using ¢ — ¢ and (p", ") — (p™,a").
The zero order solution in Y

Injecting the expansions (3.13) in the dimensionless Euler equations (3.12) and using (3.15),
we get at the dominant order (in O(e™1)) that d,p° = 0. Hence p° do not depend on y2. We
also have 9,49 = 0 and accounting for the boundary condition @3|,,—; = 0 we deduce that
uo is zero everywhere. Hence we have

P(x) = ) (@), a5 =0. (3.16)

At the order O(1), we retain the two following equations

. 0p° ) o Bl
W0 (z) = a_];(“’)’ () + divg 4°(x) + 8—y§(w,y2) —0, (3.17)

that we integrate over ¥~ according to the definitions (3.14). It results

-0
(@)(@) = p W@y e, diva () (a) + 2)(w) =0 (.19

which describes expected one-dimensional propagation.

The first order solution in Y

From (3.17), we obtain that 9,4} is independent of y», hence @3 is linear with respect to
yo. However, as the boundary conditions on the rigid parts impose 43 = 0 at yo = 9,9 + &,
we must have @) = 0 everywhere. At the order O(1), we have written the form of @
in (3.17) and we now consider the second component 4y = 0 (from (3.16)), which reads
49 = 0y, p (z, y2) + 02,°(z) = 0. By integration, we obtain the form of !, and we have

d(p°)
a’L'Q

a5 =0,  p(w,y2) = (J. — v2) (z) + (') (), (3.19)
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3.4. Asymptotic homogenization

where y. = 7 + ¢/2 is the center the channel (hence (j. — y2) = 0). We now write the
equivalent of (3.17) at the order O(e), which reads

op* 3u2

at(z, 0) = 871(;1;@), P, yo) + divy @' (x, yo) + =0. (3.20)

Oy
By integrating both equations over ¥ and accounting for (3.19), we obtain the first order
wave equation

L O(p!
P 8<p>
1

()er,  dive (@')(@) + (') (2) =0, (3.21)

which reads the same as at the dominant order. As previously said, the analysis holds in Y
and we shall now see how the two solutions are linked through the analysis at the grating
interfaces.

Solutions in the fluid far from the grating

We have established the effective wave equations satisfied by the first two terms of the expan-
sions in the region of the plates (far from the interfaces). As the surrounding fluid is already
a homogeneous medium, such expansions are strictly not required. However, when effective
transmission conditions will be sought, we shall need the equivalent of the expansions (3.13).
Hence, in the fluid for |z1| > ¢, expansions are written in the form

=) +ept(@)+--, uw=u(@)teul(z)+--, (3:22)
and at each order we simply have

divgy vl +p' =0, uw=Vyup', i=0,1,---. (3.23)

3.4.2 Analysis at an grating interface and effective transmission conditions
Preliminaries

We now investigate the effective transmission conditions that apply at the interfaces between
the fluid and the slab. This is done by zooming in the vicinity of one boundary at x; = +/.
We consider the boundary x; = —¢ and for simplicity we use a translation of the origin
x1 = —{ — x1 = 0 (the result will hold for the other boundary at z; = ¢).

In the slab far from the boundary, the two-scale expansions (3.13) holds and the depen-
dence on yz of the two first terms of the expansions have been determined (3.16), (3.17),
(3.19) and (3.20). In the region of the fluid far from the boundary, the expansions (3.22)
hold and the two first terms of the expansions satisfied (3.23). The objective is to match the
two expansions by performing a dedicated analysis of the boundary layer at x1 = 0. We thus
analyze the solution of the linearized Euler equations in an intermediate region corresponding
to a rescaled zoom around x; = 0. The rescaling is done by means of the change of variable

= x /e to which we associate an elementary unit strip ) = Y~ U y UY where v, y and )
correspond to the regions of the fluid and the two slits, see figure 3.10. Spe(nﬁcally, they are
defined by

y_:{y€R2|y1<an2€(0’1)}v J}:{yGR2|yl >0,y2€}>}7
Y={yeR’|y >0,pp €Y}
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Figure 3.10: Elementary unit strip in which the analysis at a single grating interface is
conducted. The analysis involves the terms (¢, v") in ) and their matchings (3.27)-(3.28).

In Y, the fields are expanded as follows
P =0m) +eq' (yz) +--,  uw =0(y,x2) +ev'(y,m9) - (3.24)

and for y; < 0, the (¢*,v") are assumed to be yo-periodic. As in the region of the grating,
due to the multiple scale variables in the field expansions, the divergence operator applied to
any vectorial function g(y, z2) and the gradient operator applied any scalar function g(y, z2)

become . 5 ) 5
. . g g
d —-d . Vg= -V —Z eo.
ivg . vy g+ s es, g - yg+ D2y ey

We now explicit the matching conditions as we ask the solution (3.24) valid in the vicinity
of the interface to match the solutions (3.13) and (3.22) valid far from the interface when
y1 — Foo. Note that for y; — 400, we have to specify in which slit the limit is considered
and we denote these two limits y; — +co in Y and y1 — 4o in Y. Looking, e.g. at the
pressure, the matching for y; — —oo0 and x; — 0~ reads

(3.25)

¢ (y, v2) +eq' (y,22) + -+ ~p°(x) +ep'(z) +-- -,

with 1 = ey;. Note that the above relation tells us that the ¢", n = 0,1, --- become
independent of y2 as y; — —oo. This is because the rapid variations (with y3) of the fields
are due to evanescent field, which vanishes when moving away from the interface. Using
Taylor expansions of the p™(ey1, z2) and identifying the terms with same power in ¢ provides
the matching conditions at each order. At the dominant order and at the first order, we get

0
0/~ ; 0 10— : 1 P -
= 1 = llll — - . 2
p (07, 22) ym g (y,22), p (07, 22) ,m (q (Y, 72) Ul (0 ,xz)) (3.26)

The same holds when y; — +co or when y; — 40c0. Looking, e.g. at the pressure, the
matching for y; — +co and 7 — 0% reads

qo(yva) + eql(y,xg) R ﬁo(a:?yQ) + eﬁl(mva) +e

We hence obtain at the zero-order

]30(0+,932,y2) = lim qo(y7I2)7 (327)

y1—++0c0
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3.4. Asymptotic homogenization

and at the first-order

. . op°
(0%, 2a,m) — lim (q1<y,x2> 2 <o+,x2,y2>) . (3.28)
Yy1—>+00 8.%'1

By replacing formally the * by ™ in (3.27)-(3.28), we obtain the matching conditions when
y1 — +oo.

Similar matching conditions on the velocity are obtained by replacing formally (p, %, p*, ¢*)
in (3.27)-(3.28) by their counterparts (u’, @', @', v?).

The transmission conditions at zero-order

By injecting the expansions (3.24) in the dimensionless Euler equations (3.12) together with
(3.25), we get
V" =0, div,v? = 0.

Hence ¢ is independent of y and in virtue of the matching conditions (3.26)-(3.27), we obtain
(y,22) = p°(0~,22) = p°(0F, 22) = p°(0*, 25). We express this continuity of the pressure
fields as

[6°] = £°(0%, 22) = p°(07,22) =0, [3°] = p°(0*, 22) —p°(07, 22) = 0. (3.29)

Next, by integrating divy v = 0 over J and using the periodic conditions for y; < 0 and the
condition of vanishing normal velocity on the rigid boundaries for y; > 0, we obtain

1
([ i) dnt [ i) = [ o) dim ) <o
yi—~+oo \Jy Y 0
The matching conditions (3.26) and (3.27) expressed in terms of the velocities provides
/ a}(0%, z2) dys +/ 4307, ) dya — u} (07, 22) dya = 0, (3.30)
v Y

where we have used from (3.17) that 49 (x) and 4{(x) do not depend on y2. At this dominant
order, we obtain the continuity of the flow-rate written as

[(ud)] = (a1)(0F, a2) + (@}) (0", x2) — u(07, x2) = 0. (3.31)

At the leading order, the continuity conditions (3.29) and (3.31) together with the bulk
equations (3.18) imply that the two channels would behave identically, i.e. (p°,@") = (5%, ).
To retrieve the possible different solutions, we must go further in the analysis and derive first

order corrections.

The transmission conditions at first-order

We first determine the field ¢! associated to v° through the following boundary layer problem

( apo
divy =0, o= qul + —(07,z2)eq,
0.7)2
. 0 _ 720\ ((+ €1 . 0 _ /-0\((+ €1
yllggobv = (a7)(07, z2) 5 v = (ug) (07, 22) e (3.32)
0
y11—i>r£loo oY = (<ﬂ(1]>(0+’ :Eg) + <ﬂ(1]>(0+’ :Eg)) ey + 25:2(0‘,952)(32.
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with v° - n = 0 on the rigid boundaries and (¢!, v°) y2-periodic for y; < 0.

n (3.32), we have used that (i) ¢° = p(0~,z2) from (3.29), (i) @9 = 49 = 0, (@) (=)
ol ( ) and (u >( ) = pud(z) from (3. 6) and (3.17) (for the limit y; — +00, +c0) and (iii
u® = ule; + udes with uf(0-, 29) = (a9) (0%, x2) + (@)(0*, z2) from (3.30) and u§ = Oy,p
from (3.23), which holds at z; = 0~ (for the limit y; — —o0). Doing so, the macroscopic
contributions 9,,p%(0~, z2), (49)(0*, x9) and (u?)(0*, z2) appearing in (3.32) are independent.
This implies that the solution ¢'(y,x2) of the boundary layer problem (3.32) can be linearly
decomposed as (up to a function Q;(x2) independent of )

O~—

0

%(0_’ 22)Q2(y) + Q1 (x2), (3.33)
45

~ -

¢'(y, 22) = (01)(0%,22)Q1(y) + (a}) (0", 22)Q1(y) +
where (Q1(y), Q1(y)) are the solutions of the elementary problems

Ay leoa Ay leoa

. A €1 . A
y11—1>mooVle =en  Mm VyQi ==, lm VyQi =0 (3.34)
lim VyQ1=e;, lim V,Q1 =0, lim V,0 =,
Yy1——00 Y1—+00 y1—+00 ®
and Q2(y) is the solution of the elementary problem
Ay Q? = 07
lim VyQ2 = 07 lim VyQ2 = —ey, hrn VyQQ (3'35)
Y1—>—00 Y1 ——+c0 —+co

with Q = Ql,Ql (respectively Q2) satisfying the conditions of vanishing normal velocity
V4@ -n =0 on the rigid boundaries (respectively V,Q2-n = —ez - n) and (Q, V4 Q) (re-
spectively (Q2, V4 Q2)) ya2-periodic for y; < 0. It follows that the solutions of the elementary
problems have the following behaviors at infinity

Q1 @1 Q2
Y1 — —00 (7 (7 0
y1— 450 | 4+ B b (§ — y2) + B
Y1 — +c0 b %4-5’1 (% — y2) + Ba

(3.36)

(it is shown in section 3.5 that b= 13) The average jump of the pressure p' derives directly
from the matching conditions (3.28) along with (3.33) and (3.36). We get

5'0

ap2 (07, 29) ((QC —y2) + Bz) + Q1 (22),

0
P (07, 22, y2) = b(a?)(0F, z2) + By (af) (0%, 22) + 222(071’2) (5. — y2) + B2) + Q1(x2),

p' (07, 22) = Q1(22),

~

(0%, a2, y2) = B1(a) (07, w2) + (@) (0, 22) +

(3.37)
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3.4. Asymptotic homogenization

and using (3.19) and (3.29), we finally obtain the jump conditions on the pressure at the first

order
0

o
%(077 x2)7
2 (3.38)

[(51)] = b{ad) (0%, x2) + B1(af) (0", x2) + Bzgi(()‘, 2).

[(p")] = B1(a) (0", z2) + b(af) (0, 22) + By

It remains to derive the jump condition on the velocity field at first order. At the zero
order, we have integrated the equation of mass conservation div, v? = 0 to get (3.31); at the
order 1, the equation of mass conservation now reads

ley’U +gz

that we integrate over the finite domain )). We have on the one hand that

+p (O_,ﬂfg) = 07
/ divy, vl dy = <ﬁ%>(0+,x2) + <7:L%>(0+,$2) — u%(O*,xg)
Yy

and on the other hand

0 R ~0 . ~0 2,0
/ <g::2 +p0(0’x2)> dy _ —B28<UI> o BQa<U1> +Ca p2 (077x2)
y 2

(3.40)
We have used the periodicity of Q1, Q1 and Q2 in Y~ and we have defined the new parameter

C= <&Q2 + 1) dy.
yuy \ Y2

Eventually we used that (B, By) defined in (3.36) satisfy the relations

- L8 - 0
BQZ_/ &dyv BZZ_/ Qldya
yuy 2 yuy Oy2

(this relation is shown in section 3.5). We now use that 9, 49(0%,z2) + ¢p°(0~,22) =
02,09 (0F, 22) + gbp (0-,22) = 0 from (3.18) along with (3.29), and that 0,,ul(0~,x2) +
92,p° (07, z2) 4+ p°(0~, x2) = 0 from (3.23). Doing so, summing the two integrals (3.39) and
(3.40) makes the terms linear in y} to cancel. It results that the jump in the flow rate at the
first-order reads
o) 00

. A1
6$2 8952 (3 )

0
[(uh)] = (@1)(07, za) + (@}) (0%, 22) — ul(0~, x9) = 8< ;> L B

3.4.3 Formulation of a unique effective problem

The unique effective problem is expressed gathering the zero and first-order contributions
that is for the field (p,p,p) and (u, @, w) defined by

p=p'+ept,  p=")+e(),  p={") +elpt
u=u+eu', a=@%+e@), a=(al) +¢
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From the wave equations in the two slits (3.18) and (3.21) and those in the surrounding fluid
(3.23) along with the transmission conditions on the pressure (3.29) and (3.38) and on the
flow-rate (3.31) and (3.41), the unique problem reads

divu + p =0, u = Vp, in the fluid,
op
divii + ¢ = 0, i=p e 3.42
ox 1 . . (3.42)
N in the equivalent slab,
L o 0p
diva + ¢p = 0, U=p-—e
63;1
complemented by transmission conditions applying at an interface z; = 0
dp
[5] = eBya (0%, x2) + ebiy (07, x2) + EBQa s (07, z2),
. - - 0
[p] = ebtu1 (0%, o) + eB1u1 (0%, x2) + EBQ%(O*, z2), (3.43)
2
N 87:61 - 8111 3uQ _
=eBy— (0" By—(07 —eC—=(0 .
[u1] = ¢ 26932( ,T2) + € 28x2( ,Tg) — € 6952( , T2)

Once coming back in dimensional form, we obtain (3.7) and (3.8)-(3.9).

3.5 Properties of the effective parameters

We deduce some properties of the effective parameters obtained in the previous section.
Depending on the chosen configuration, we can show the following properties directly from
the formulaition of the elementary problems.

Proof of b = b

We introduce the restriction Y* C Y, with Y* = {(y1,42) € (—y*,0) x (0,1) U (0,5%) x Y U
(0,yF) x Y} for y > 0 sufficiently large. Multiplying by Q1 the equilibrium equation on Q4
in the elementary problem (3.34) and integrate it over }*, which gives after an integration
by parts

Qudivy (VyQ) dy=— | VyQ1-VyQidy+ | Qi(VyQi-n)dy. (3.44)

P % oy~
Now, knowing that Q; and Vle are periodic with respect to yo for y; < 0 (with n anti-
periodic), then the boundary terms on the lateral sides for y; < 0 compensate and vanish.
Same holds for the contribution on the rigid walls which are zero in virtue of the Neumann
conditions. We are left with the terms on the boundaries at y; = +y] which can be made
explicit up to vanishing contributions from the asymptotic behavior of ) and Q1 given by

(3.36)
Qidivy (VyQ1)dy =— [ V4Q1-VyQ1dy +b—y} +o(1), (3.45)
y* y*
where o(1) is a vanishing contribution as y} tends to infinity. Using the same arguments, but
switching the roles ()1 and )1, we have

Qidivy (VyQ1)dy = — | VyQi-VyQidy +b—yi+o(1). (3.46)
y* y*
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3.5. Properties of the effective parameters

Combining (3.45) and (3.46), and passing to the limit as y} tends to infinity, we deduce that
b=b.

Properties on the parameters By and By
Integral form of Bg and B,

Multiplying the equilibrium equation on Q; in the elementary problem (3.34) by Qs and
integrating by parts over ) leads to

0= / QleVy le / VyQQ le dy + B2 (347)

Similarly to the previous paragraph, we have simplified the expression of the boundary terms
in (3.47) by using the periodicity conditions, the Neumann boundary conditions on the rigid
walls as well as the asymptotic behavior of Q; and Qo at infinity given by (3.36). Next,
multiplying the equilibrium equation on Q)2 in the elementary problem (3.35) by Q1 and
integrating by parts over ) leads to

. . Q)
0= /)}Qldlvy (Vy (QQ —+ yg)) dy = —/yvaQ . Vle dy — /y W; dy, (3.48)

with the same arguments on Q1 and Qs to eliminate the vanishing contributions on the
boundaries involving the periodicity and the rigid walls. Combining (3.47) and (3.48), and

noticing that the periodicity of Q1 on Y~ implies that fy ayl dy = 0, we conclude that

5 3@1
By = —/ dy. 3.49
? Jup 02 (3.49)

Conversely, replacing Q1 by Q1 in (3.47) and (3.48), we obtain

. 90,
By = — 3.50
) /y o (3.50)

Explicit relations for symmetric obstacles

We can now establish the properties given in (3.10) when #) =7 or when ¢ = ¢. First let us
extend to R?, in virtue of the periodicity with respect to ys, the solutions Q1(y) and Q1(y)
defined on the unit cell ), see figure 3.10.

Case n = un By making the change of variable g2 = ya — ) — ¢/2, it suffices to notice that
(y1,72) — Q1(y1, 72 + 1 + ¢/2) and (y1,752) — Q1(y1,J2 + 1 + $/2) are even functions of
g2 € (—1/2,1/2) when 7) = 7). Thus, their derivative with respect to g2 are odd functions of gs.
Using the integral forms (3.49) and (3.50) of the effective parameters established previously
and which remain invariant by translation along direction es of the unit cell in virtue of the
periodicity, we deduce that By =B, =0.
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Chapter 3. Dual Period

Case ¢ = ¢. By making the change of variable g = y2 — 7/2, it suffices to notice
that (y1,92) — Qyi,72) = Qi(y1, 72 + 1/2) + Q1(y1, 72 + 1/2) is an even function of
U2 € (—1/2,1/2) when ¢ = ¢. Thus its derivative with respect to g2 is an odd function of gs.
Using again (3.49) and (3.50) by summing the two integrals, we deduce that By + By = 0.

Finally, we mention that for approximate solutions exists for the regular grating, which
are given by 3.11. For simple geometries, closed form approximations can be obtained, see
for instance [98, 146].

3.6 Solutions and effective problems

We consider rigid parts with same width 7 = 7 while the two slits may have different widths
@ # . This leads to some simplification in the transmission conditions (3.8)-(3.9) thanks
to (3.10) while keeping the whole complexity of the spectra. In the following we use the
notations B = Bl and B = B;.

3.6.1 Explicit solution of the effective problem

From now on, we consider a propagating incident wave at incidence 6, with
ko = kcosf, by =ksin6.

The homogenized scattering problem is set on (p, p, p) satisfying (3.7) and (3.8)(3.9). As the
effective transmission conditions are translational invariant, the solution is explicit and it
reads in the surrounding fluid

ezkcos@(ler@) + ,,,.677,’{(3059("1714*@)’ T € (—OO, —6),

_ _tksinOzx
p(w) =e ? X { teikcos@(m1—€)7 x1 € (&_}_00)7 (351)

while within the effective slab x1 € (—/,¢) we have the coexistence of the two solutions

p(x) = (S’ cos kx1 4+ Asin ka;1> etksinbes () = (S coskxy + Asin k) etksindz,
o (3.52)
The scattering coefficients (r,¢) and the amplitudes (S, S, A, A) within the effective slab are
given by (3.8)-(3.9), which provides 6 equations. We obtain the scattering coefficients (r, t)

zz* —1 z— 2"
= — t=—— .
r=T el (3.53)
where z is given by
1
z=— ((icos® — khC'sin §) 2 sin 2kl — 2o cos 2k) (3.54)

pz3

along with
21 = (14 7)% = B2 + 28(1 — 7) cotan2kl + 4~ cotan?2k¢,

zo=1—7—af + 2« cotan2kl + (a(y + 1) — ) tan 2k, (3.55)
z3 =1+~ — af + 2« cotan2k’,
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3.6. Solutions and effective problems

and

o=¢+o. a= 2 (BrB-2)kh B=(@B+eBkh =g (BB 1) (kh)
¥
(3.56)
The coefficients (r,t) are expected to approximate (rg,to) in the actual problem and the
solutions (3.52) with (S,S,.A, A) are expected to approximate the actual solutions in the
slits. The amplitudes are of the form

1 cos kl — (B — b) sin kl z— 2"

g1 |
2cos2 kl — Bsinklcoskl +ysin?kl 1+ z
3—1 cos kl — ¢(B — b) sin k( z— 2
"~ 2cos2kl — Bsinklcoskl +ysin?kl 1+ 2 (3.57)
fl—} sin k¢ + @(B — b) cos kl z—2z* '
~ 2sin?kl + Bsinklcoskl +ycos2kl 1 — 2
A sin kf + ¢(B — b) cos k( z—2z*
251n kl + Bsinklcoskl +ycos2kl 1 — 2z~

In the following section, we show that the parameters (o, [3,7) are positive.

Positivity of the quadratic form (x,() — Bx% + B¢2 + 2bx¢

We aim to prove the semi positivity of the quadratic form (x, C) > BX + BC? + 2bx( for
any (y,¢) € R2. We start from the elementary problems on Q1 and Q; defined in (3.34).
Setting Q1 = Q1x + Q1¢ with x, ¢ two reals, the function Q, satisfies by linearity

. ) e
Ay Q1 =0in )Y, lim V,Q1=(x+ (e, lim V, Q1 = 1, lim V, Q1 = (—Vl.
Yy1—>—00 y1—>+00 90 ¥

y1—+00
(3.58)
We define F(y) as a piecewise linear function with F'(y; < 0,y2) = (x + Q)yi1, F(y1 > 0,32 €
Y) =y1x/$ and F(y, > 0,52 € Y) = y1¢/¢. Introducing the function Q = Q; — F which is
continuous in 0, we have

Q ~ 0, Q ~ DBy+b and Q ~ by+BC (3.59)

Y1—>—00 ’ Y1 —+0c0 y1——+0c0

We introduce again the restriction Y* C Y, with Y* = {(y1,92) € (—v7,0) x (0,1) U (0, y7) %
Y U(0,y7) x Y} and y7 > 0. Using the values as y; — oo, we obtain by integration

QAy Q1 dy=— | V,Q-V,(Q+F)dy+ Bx*+ B +2bx¢ +o(1),  (3.60)
= =

where o(1) is a vanishing contribution as yj tends to infinity. By a similar integration, we

obtain

2
Oz/y*FAy 1 dy:—/y* VyF-Vy(Q+F) dy—i—(gp C

+=+(x+9Q > yi+o(1). (3.61)

Since fy* VyF -V Fdy= (XT; + % + (x + C)Q) y; + o(1), by passing to the limit yj — oo,
we finally obtain the positivity of the quadratic form :

0< / VyQ VyQdy =Bx*+ B +2bx(,  Y(x,() € R (3.62)
y
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N -

We can now establish some properties on the effective coefficients (B, B, b) and the parameters
(o, B,7) given in (3.56). In particular, we have

a>0, 820, v>20, B>a. (3.63)

First, choosing (x,¢) = (1,0) or (0,1) in (3.62), we have obviously that B >0and B >0,

hence 8 > 0. Next, choosing (x,() = (b, —B) gives BB > b2, hence v > 0. Likewise,
choosing (x,¢) = (1,—1) leads to B+ B — 2b > 0, hence a > 0. Finally, by taking (x,() =

(/@)@ /2] P), we get (¢/@)B + (¢/@)B + 2b > 0, which is equivalent to 8 > a.

3.7 Validation of the effective model for a scattering problem

3.7.1 Efficiency of the effective model in a scattering problem

To begin with, and as a rough illustration of the efficiency of the model, we report in figure
3.11 the pressure fields (3.51)-(3.52) along with (3.53) and (3.57), which are the effective
counterparts of the fields shown in figure 3.3 (calculated using the modal method presented
in §3.6.3.2.3). Note that in principle, p(x) and p(x) in (3.52) both live in the whole region
z1 € (—4,0); to allow for a comparison with the actual solution, we represent them in the
region of the actual slits. For kh = (.74 reasonably far from the Fano resonance, the scattering
is very weak, which is expected for this ultra-sparse grating. Next kh ~ 0.75 corresponds to
the close end of the Fano resonance, that we have chosen for the amusing capacity to mimic
negative refraction. The effective fields nicely reproduce those of the figure 3.3; to go further
in the validation of the effective model, we provide below quantitative comparisons of the
effective and numerical solutions.

(a) (b)
10h
kh =0.74 kh =S5

8 [T LR TR "”:é

3

-10h

30h

Figure 3.11: Pressure fields p and (p,p) of the homogenized problem, (3.51)- (3.52) for the
ultra-sparse grating of figure 3.3 (¢ = 0.20, ¢ = 0.76, 2¢ = 4h and 6 = 40°).

Regular gratings

A classical result for the regular grating corresponds to our effective model at the dominant
order see, e.g.[105, 118, 83, 129]. In this case, the conditions (3.8)-(3.9) simplify to continuity
relations. As a result, we have a = f =~ = 0 in (3.56), hence z; = 22 = 23 = 1 in (3.55) and
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3.7. Validation of the effective model for a scattering problem

eventually z = % sin 2kf — cos 2kl 4+ O(e) in (3.54). Thus, the scattering coefficients up to
O(e) read

B (cos? 0 — p?) sin 2k¢ ‘ 2ip cos b
~ (cos? 0 + ¢2?) sin 2k{ — 2ip cos O cos 2kL’ ~ (cos? 0 + ¢?) sin 2kl — 2ip cos O cos 2kL’
(3.64)
These estimates correctly predict the scattering properties of a regular grating. Namely, a
perfect transmission is reached (i) for cos 0z = ¢ for any frequency, which corresponds to the
so-called extraordinary acoustic transmission at the Brewster angle and (ii) at the Fabry-
Pérot resonances at 2kppl = nr for any incidence. The effective model at the order 1 (3.53)
is expectedly more accurate than (3.64), this has been discussed [96] and it is illustrated in

figure 3.12 for a grating of plates of length 2¢ = 4h and ¢ = ¢ = 0.15.

(a) (b)

1 AN ) ) 5 * T *
\ 1 \V AR !
o\ 1\ 1\ ]
4 \ / \ ! \ !
4 \ / \ / \ /
It])? N\_/" N7 NS
0 I I I 0 I I I
0 ™ 2T 3T 47 0 m 2T 3T 47
2kt 2k¢

Figure 3.12: Fabry-Pérot resonances in a regular grating (¢ = ¢ = 0.15, 20 = 4h, 6 = 30°).
Variations against the dimensionless frequency 2k¢ of (a) the transmittance |t|> and (b) the
amplitudes in the slits. Coloured plain lines show the direct numerics, grey and black dashed
lines show the effective model at the order 0 with A = 0 in (3.52)-(3.53), and at the order 1
from (3.52)-(3.53).

Dual-period gratings

With the same range of frequencies as in figure 3.12, we now consider two dual-period gratings
(¢ =0.20, ¢ = 0.10) and (¢ = 0.29, ¢ = 0.01). Depending on the asymmetry between the two
slits, the wide Fabry-Pérot peaks located at 2kzpf = nm are scared by sharp dips on their low
or high frequency sides. Next, odd resonances (odd n) are characterized by large amplitudes
of the symmetric component S of p(x) in (3.52), even resonances by large amplitudes of the
antisymmetric component A. All these features are accurately reproduced by the effective
model as shown in figure 3.13. Fano resonances are characterized by the succession of a
perfect-transmission and, what is more demanding, a zero-transmission. In the present case,
this is attributable to the appearance of a quasi-trapped mode sometimes called m-mode
because the fields in two nearby slits oscillate out-of-phase. This is illustrated in the figures
3.14 where we report the fields for [t = 1 and ¢ = 0 at the third Fano resonance (for
¢ = 0.20, ¢ = 0.10). It is worth noting that the out-of-phase oscillations of the fields in the
slits are made possible as they are coupled at the grating interfaces x; = +/¢ through a strong
evanescent fields. In the effective model, this coupling is encapsulated in the jump conditions
(3.8)-(3.9). Eventually, as the effective model is translational invariant, the solution involves
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(a) (c)
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Figure 3.13: Occurence of Fano resonances in dual-period gratings for (a-b) ¢ = 0.20, ¢ =
0.10 and (c-d) ¢ = 0.29, ¢ = 0.01 (in both cases 2¢ = 4h, § = 0). Same representation
as in figure 3.12 with in (b) and (d) the numbers near each peak indicating the maximum
amplitude of the peaks.

only the propagating wave and, as it should be, does not reproduce the strong evanescent
field close to the interfaces.

3.7.2 Local analysis of the resonances

The effective solution used in the previous section is explicit but it remains difficult to analyze
the mechanism responsible for the occurence of Fano resonances and their proximity with the
Fabry-Pérot resonances observed in the figure 3.2 and 3.13. To get physical insights of this
mechanism, we conduct a local analysis in a vicinity, of the order of kh < 1, of the Fabry-
Pérot resonances 2k¢ = nm with n an integer. Hence in this section we consider («, 3,7) in
(3.56) at the dominant order with

a:?<B+B—2b>

nwh

20

A e Th o hB 2 nwh\?
B=(¢pB+eB) 7, fy_cpgp(BB—b)<2€) , (3.65)

being now real positive constants in the vicinity of the n-th Fabry-Pérot/Fano resonance (the
positiveness is proven in (3.63)). With k¢ = O(1), « and 3 are of order kh and ~ of order
(kh)2.

Complex poles of the Fano resonance

To obtain simplified expressions of (r,t) from (3.53), we consider that the wavenumber k is

close to a resonance at 57 in a vicinity measured by 2k{—nm = O(kh) < 1. At the dominant
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direct numerics effective model
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Figure 3.14: Pressure fields at the third Fano resonance, (a) perfect transmission and (b)
zero-transmission (0§ = 40°). Left panels show the results from direct numerics (2k¢ ~ 2.84
and 2.85), right panels the results given by the effective model (3.51)-(3.52) (2k¢ ~ 2.85 and
2.86).

order, we obtain

:i(—l)"go (k—ki—o)
Ccos® (k — ki) (k — kpuno)

where k,_, = ”“2£2°‘ ki, are the two complex-roots of P(2k{ — nr), with P(¢) = &2 +

(,8—1—1(:059) E+4 (7+Zcos9 ) and («, 8,7) are given by (3.65). The two complex poles
(Kfanos Ktano) are characteristic of the Fano resonance and we discriminate them by their
imaginary parts denoting ki the pole of the strongest resonance being closer to the real
axis.

r=1-(-1)", (3.66)

Fano

It is worth noticing that for regular gratings, B = B hence, from (3.56), 8 = a + v/a.

It results that kg, = k.o and kn,,, = kep = "”_22;/ ¢ —iy2— and the transmission (3.66)
simplifies to
i(—D)"p 1
trp = . 3.67
T lcos® k — kpp (3:67)

As expected zero-transmissions are not possible anymore and tpp = (—1)" when k equals the
real part of kpp.

We report in figure 3.15 the trajectories of the complex pole ki, in the complex plane
when varying the detuning parameter for 6 = 40° (note that the trajectories remain almost
identical for all #-values). Here, the detuning parameter is defined as ¢ for given ¢ = 0.10,
which measures the strength in the symmetry breaking and the arrows indicate the path
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with increasing ¢. As it was already visible on figure 3.13, the two resonances have very
different thinnesses as their imaginary parts differ by a factor 103. Expectedly, the pole k..
of weaker resonance is close to the pole of the Fabry-Pérot resonance kpp of regular arrays
which is reported for comparison (the trajectory of kgp is obtained by varying @ = ¢). They
coincide for ¢ = ¢ and asymptotically for vanishing rigid part thickness @+ ¢ — 1. The pole
k... is associated to the strong resonance of the quasi trapped-mode. It becomes real when
the grating becomes regular; there, the quasi-trapped becomes a perfect trapped mode and
the Fano resonance disappears.

x1073
0 0
)
g
&
=
L s
"Fano
-0.7 -1
0.76 0.79 0.74 0.79
Re (kFano) Re (kFano)

Figure 3.15: Trajectories of the complex poles kp,,, (left panel) and ki, (right panel)
varying the detuning parameter ¢ € (0,0.90) for ¢ = 0.10 (2¢ = 4h, 6 = 40°). Fano
resonance disappears in the regular grating ¢ = ¢ (open symbols), resulting in kg, = kpp
and real ki,

Fano*

Perfect-transmissions and zero-transmissions

From (3.66), perfect and zero- transmissions are obtained for real wavenumbers

1
perfect transmissions, k‘ft[l:l = 2—£(n7r - B+ \/52—747)7 (3.68)

zero-transmissions, ki_o nm — 2a),

=0 — ?ﬂ(
with ky_, < ko < kjj_,. This relation is valid for any values for ¢ and ¢, and a proof is
given.

Proof of k,_; < k._o < kf{\zl

Given the definition (3.68) of k., and kj,_,, a straightforward manipulation shows that
proving the inequality kj_, < k,—o < kf{l:l is equivalent to proving v < (8 — «). Thus, from
the definitions of (a, 3,7) in (3.65), we must prove that

22 (B+ B —2b) <¢B+¢B— ﬁ(BqLB—Qb)), (3.69)

P T o

$p(BB —b?) <
( ) o

which is equivalent after simplification to

e

(¢ + @)2(BB —b?) < (B+ B —2b)($*B + ¢*B + 2¢¢b). (3.70)
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Now, it is sufficient to remark the following identity

(B+B—20)(¢*B+ @*B+2¢pb) — (o + @) (BB —1?) = (pB—pB+ (

<
|
>
~—
=
~—
[\
(Y
=
—~
@0
-3
=
~—

from which we deduce that (3.70) is fulfilled and thus that Koy < kimo < k‘f{‘:l.

Re(k;

Fano
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sy

Figure 3.16: Real wavenumbers k:ff‘:l realizing perfect-transmissions (red plain lines) and k,_,
realizing zero-transmission (plain yellow line). Dashed lines show the real parts of the Fano
complex poles, Re(kg,,,) associated to the FP resonance (green) and Re(kg,,,) associated to
the trapped-mode (blue, almost superimposed to k,_).

The figure 3.16 shows the variations of k,_, and of kfflzl against ¢@; to draw the link
with the resonances we also report the real parts of the complex poles kg,,.. As said above,
for any value of ¢, we observe the occurence of a zero-transmission (yellow curve) between
two perfect transmissions (red curves) except for ¢ = ¢ = 0.10 where the Fano resonance
disappears (k,—, = kﬁ\zl)- Eventually, the proximity of k‘jttl:l with the real part of kr,,,
associated with FP resonances is enlightening on the shapes observed in figures 3.13 when
increasing the frequency. For small ¢, the first perfect transmission is associated to the FP
resonance while the following zero- and perfect-transmission are associated to the trapped-
mode resonance, as in figure 3.13(b). The opposite situation occurs as kj_, is closer to
real(kp,,,) as in figure 3.13(a). Next, the real part of kf,,, (dashed blue line) almost coincides
with k,_, which strongly suggests that the trapped-mode resonance is responsible for the
zero-transmission. They coincide perfectly for two distinct values, as shown in figure 3.17.
The first one being the case of regular grating ¢ = ¢ = 0.10. The second occurs when the two
perfect transmissions change associated resonances as the real parts of the resonances ki .

are equal. As ¢ + ¢ — 1, the regular array is recovered, and the difference asymptoticaly
tends to 0.

Eventually, we have also seen from figure 3.13(c) that the pole of the Fano resonance
has a real part that nearly coincides with k,_, realizing zero-transmission. The link between
geometries realizing zero-transmissions and those supporting trapped modes has been inves-
tigated recently [27, 25] and we report here evidences of this link for the m-mode. To do so,
we consider the wave amplitudes in the slits and we conduct the same local analysis as we

49



Chapter 3. Dual Period
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Figure 3.17: Difference between k,_, and Re(k,..)-

have done to get (3.66). For n = 2i + 1 an odd integer, we obtain

. (=) k—k A :
S=-— A= (-1)
€ (k= kfano) (K — Epane ’
| (F — Krano)( ke )’ (3.72)
< (=1 k—k . ;
S = — _1 (2
N T A
where k = 22 - %( —b)™ and k= 127 — %;( —b)™ For n = 2i an even integer, the

roles of (S,S) and (A, A) are reversed. It is worth noticing that for regular gratings, with
Lp—cﬁzgandB B, we obtain k = k = k,_, and as in (3.67) we have ki,,, = k,_, and

Fano

kpano = kpp. It follows that near the FP resonances, the amplitudes in the identical slits have
smooth variations, as we have
o (1)
Sep =Spp = ———————. 3.73
FP FP (k _ kFP)e ( )

Coming back to dual-period gratings, we notice from (3.72), with k,_, = % and « in
(3.65), that @k + @k = @k,_, hence

(=D k— ko
E (k k}*i:mo) (k kl;mno)

@S + ¢S = (3.74)
It follows that for k = k,_, the m-mode takes place with zero-flux over two nearby slits,
@3 + @S = 0. The trajectories of the complex values t and (g?JS', @S, @A, @A) shown in
figure 3.18 are obtained numerically (plain lines) and from the effective model (3.53) and
(3.57) (dashed line). The observed features are very similar to that reported in [145] for
high-contrast gratings. In particular for the regular grating, the Q-factor of the Fabry-Pérot
resonance being small, the effect of the poles merges, hence forming a peanut shape (a detailed
analysis on the positions of the poles and the trajectory of ¢ in the complex plane can be
found in [145]).

In the vicinity of Fano resonances the trajectories describe circles whose equations are
given by (3.66) and (3.72), specifically for n even integers

2 . R ki_o—k
_ B2 R= t=0
| 20 T () ()

Fano

(3.75)
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(a) (b)
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Figure 3.18: Trajectories of t(k) (a) and of D(k), with D = @A, ¢ A, ¢S, 3S (b) through
the complex-plane obtained numerically (plain line) and from the effective model (dashed
lines). In (a) the yellow curve shows the result for the regular grating, the blue curve for the
dual-period grating. In (a) and (b), the vertical arrows show the place, marked with a square
symbol, where t = 0.

the same for S with R = @R (and for n even integers, the roles of (A, A) and (S,S)
are reversed). Expectedly, as Im(kg,,,) ~ Im(kgp) does not depend much on the symmetry
breaking, the amplitudes (R R) within the slits are inversely proportional to the distance
Im(ki,..) of ki, from the real axis.

In the vicinity of the FP resonances, with 2k¢ — nmt = O(kh), the above expressions
simplify to (3.72). Denoting & = 2k¢ — n7, (3.72) can be written

\ . Rl (¢4 2p(B - b)gh)
S = (_1) 1cosb (¢2 ’
(€ +20) — =227(8 + 2B8E + 4y)
) ‘ zcos@ <§+290( _b)mrh)
S = (_1)Z zcosG 2
€+ 204) - (€2 + 266 +4v)’

where { = O(kh) < 1 and from (3.65), (o, B, ’y) are O(kh) (as kl = O(1)). It follows
that (S,S) are in general O(1) expect if £ = —2a, that is k = k,_, where (S,S) become
0 (ﬁ) > 1. At zero-transmissions, we have

(3.76)

] a—p(B-b)E S — @(B — b)nah
:—1Z :—11/ .
S= (- S Sy R (3.77)
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hence, from (3.65), we have

LA L —1)! WA nmh

3.8 Guiding Properties

We move our focus to the guided modes lying below the light/sound line. We start with the
regular grating. As the dispersion branch approaches the edge of the first Brillioun zone, it
admits a horizontal asymptote before decreasing as it enters the second Brillioun zone. As
the effective medium does not possess any periodicity, the notion of Brillioun zones becomes
irrelevant. The slab act as an homogeneous slab as the dispersion branch appears along the
light /sound line at the cut-on frequencies 2k¢ ~ nm with n an integer. The n-th dispersion
branch of the effective medium tend asymptotically to 2k¢ ~ nm as b tends to infinity as
no Brillioun zone exists. This means that the effective model becomes more accurate as ¢
increases, which is expected. It has already been shown that a better estimate of the first
branch is obtained when taking into account the size effects of the structure [96].

The story for the dual period is different. As mentioned, the symmetry breaking reduces
the Brillioun zone by two which the homogeneous slab cannot do. As seen in section 3.2.3, the
symmetry breaking opens up a band gap as the branch of dispersion relation is folded in the
new irreducible Brillioun zone (0,7/h) compared to the regular grating with an irreducible
Brillioun zone (0,27 /h). A distinct property of the folded branch is its negative slope, which
has been of large interest when designing material exhibiting negative refraction,e.g. [64],
as it exhibits negative phase velocity. Its cut-on frequency k. is lies below 2k¢ = nw. As
for regular gratings, we expect to recover the first branch of the dispersion relation before
the opening of the band gap, and the accuracy depends on ¢ as the branch approaches the
Brillioun zone (0,7/h). The nature of the equivalent folded branch is on the other hand
completely different. The quasi-trapped mode will act as a local resonance and a hybridized
dispersion relation appears. This leads a second branch with positive slope, and thus the
band gap is also erroneous. The divergence of the model is shown in figure 3.19. To overcome
this, one may apply some high frequency homogenization scheme, see for instance [33].

196 ! | ————
| |
Ll — /’

2kl

1.8

Figure 3.19: Behaviour of the dispersion branch over the first two Brillioun zones (0, 27) by
means of the reflection coefficient log;|roo| against 2k¢ (¢ = 0.4, = 0.2,2¢ = 4h). Direct
numerics (colorscale) are compared to the dispersion of the homogenized model. The first
Brillioun zone is delimited by the dashed vertical line at boh = 7.
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3.9 Concluding remarks and perspectives

The focus of this chapter has been on the coupling of Fano resonances to Fabry-Pérot res-
onances in gratings with symmetry breaking. We have proposed an effective model relying
on asymptotical homogenization. As the propagation is independent in a slit to another, two
distinct effective media are obtain in the effective model. An additional treatment is done
at each boundary to capture the evanescent field, yielding effective transmission conditions.
We have shown that the model accurately reproduces the scattering properties of such a
dual-period gratings. In the limiting case of identical slits and rigid parts, we recover the
behaviour of a regular grating, for which Fano resoances are prevented by symmetry.

Furthermore, a local analysis of the model around the Fabry-Pérot resonances has allowed
for approximate closed form expressions of the two complex resonances poles, shedding further
light on their link with the perfect- and zero-transmissions. Besides, we showed that the
occurrence of a - or trapped-mode produces zero-transmissions, which confirms the “negative
role of resonant plasmons in the transmission of grating” stressed in [24] (in the present case,
resonant SPPs).

We discuss the possible extensions and perspectives:

Extending the model to the case of multiple slits in the unit-cell is straightforward al-
though the resulting model might be cumbersome. The underlying mechanism remains how-
ever the same, though associating the resonances becomes more complicated.

Another technical extension is the one to three dimensional wave propagation. The three-
dimensional problems offers new symmetries to exploit. Dual-periods of square lattices is a
straightforward extension of the two-dimensional problem. Extensions toward other lattices,
such as the honeycomb structures seems more interesting and should be rather incremental
process. Extending the model to other types of physics is also possible. The three di-
mensional elastodynamical problem is unambiguous, although more technical. The case of
three-dimensional electromagnetism differs, as the boundary conditions changes depending
on the polarization. The problem is much more involved, as the case of a single slit is not
evident.

We have presented some limitations of the model. The model is accurate for surprisingly
high frequencies, and is somewhat expected as no local resonances are involved. However, the
model does not capture the folded branch of the guided mode, nor the band gap at the edge
of the Brillioun zone. A high frequency approach, as presented in [33], could be a compelling
technique to tackle the surface homogenization. Another possibility to overcome this could
be by choosing a different scaling. In this chapter, we have considered a subwavelength
periodicity, with the asymptotics performed for kh = ¢ < 1, which leads to the horizontal
asymptote as bph tends to infinity. By considering another asymptotic parameter, for instance
the width of the slit compared to the periodicity, i.e. ¢ < h, one could investigate the
behaviour beyond the first region of propagating modes. Note that the distance between two
slits must also be of the order of the slit width.

Lastly, we discuss the possibility of observing similar behaviour in other types of settings.
As mentioned in the introduction, the case of anti symmetric inclusion with local resonances
of the Mie type is of great interest [09]. Using similar techniques and adapting the ho-
mogenization process present in [125], an effective model of such an array can be obtained.
Similarly for the case of minnaert resonance, a dual period setting has been considered in
[6] in the linear regime. In the work [126], the focus was on the nonlinear bubble to bubble
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interaction in a metascreen in the dilute regime. Inspired by this approach, we can consider
the nonlinear bubble to bubble interaction in a dual-periodic setting.
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Chapter

Revisiting space-coiled metamaterials

Chapter summary: This chapter is the first in this part dealing with space-coiled or
labyrinthine metamaterial. These structures gained a lot of interest ever since their intro-
duction as they allowed for structures of compact design. By elongating the wave path, large
phase shifts can be obtained for the transmitted field. Few attempts has been done in deriv-
ing effective models, and we revisit the problem by applying a homogenization scheme at the
dominant order. We compare the obtained model with some existing results, and show that
the homogenized model is more accurate. We discuss the differences and their advantages.

The main results of this chapter are under revision at Wave Motion in the following paper
[161] Zhou Hagstrom, Joar and Maurel, Agnes and Pham, Kim. (2022) Revisiting effective
acoustic propagation in labyrinthine metasurfaces, under revision
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4.2.2 Two-stepmodel . . . . . ... .. 61
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4.1 Introduction

As mentioned in the introductory chapter 1, the acoustic setting in fluid is considerably lim-
ited in terms of resonance compared to other types of waves. As seen in part I, this limitation
has been overcome by exploiting the low frequency waveguiding in rigid slabs perforated by
subwavelength apertures. The use of straight slot has been a successful approach, resulting
in perfect transmissions due to resonances of the Fabry-Pérot(FP) type [90, 20]. As this
mechanism relies on the halfwavelength resonance of the slits, the thickness is of the order
of the wavelegnth. To reduce their size, the idea that the slits can be coiled up without
modifying the underlying resonant mechanism was persued.

In 2012, Liang and Li [81] proposed such a metamaterial whose unit cell is an elongated
curled waveguide dug in a rectangular rigid material. The acoustical waves are forced to
follow the coiling path of the guide resulting in a phase accumulation possibly much larger
than the unit cell width. It quickly gained a lot of attention as the main idea is fairly simple.
Note that similar structures can be found in other applications, such a bass woofers [68] and
meandering structures in the antenna community [144].
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(a) (b) unit cell

.............

Figure 4.1: Labyrinthine metasurface and its unit cell. The metasurface is infinite along y
and of thickness ¢ (w = w' = 0.03hy, d = 0.012hy, h, = 0.242h,, { = h, with kh, = 0.096
and 6 = 40°).

As it enables possibly large phase shift compared to its size, lot of efforts where made
in terms of transmittive of reflective metasurfaces [76]. This is illustrated in figure 4.1,
wherethe wave travels in a curled waveguide whose total length in the unit cell is about 2h,
much larger than its thickness h,. As a result, a metasurface made of a periodic arrangement
of this unit cell enables unexpected large phase shifts in view of it thickness. This allows
to tailor phase shifts within the full 0-27 range resulting in practical applications including
acoustic focusing [78, 110, 130], negative refraction devices [156, 80], one-way transmission
and lenses [77, 110, 79] or high absorption[l11]. Reviews can be found in [91, 11].

Although the relative simplicity of the structure, few attempts have been done in terms
of the effective modelling of space-coiled metasurfaces. The effective parameters are in most
cases obtained through retrieval methods which presents several ambiguities [51]. They are
typically retrieved from the scattering coefficient obtained from numerical results of the direct
scattering problem, simulated for instance at a given angle of incidence. In such a case, the
effective parameters are in fact dependent on the angle of incidence. To overcome this, we
simply revisit the problem by applying classical homogenization results [16] as done in the
previous chapters. From this, we unambiguously obtain the effective parameters for a given
geometry.

We take the time to reflect on the classical model encountered in the existing literature.
A model, which we refer to as the two-step model, was introduced in [79, 2] and we show
that this model corresponds to the homogenization of an array of straight slots, as seen in the
chapter 2. The length /¢, of the slot is supposed to correspond to the uncoiled labyrinthine
path, and is estimated heuristically.

We compare the ability of both the models to reproduce the scattering properties of the
actual metasurface with full wave numerical results. We notice that, when the labyrinth
can be uncoiled, the two-step model offers a nice physical interpretation of the resonant
mechanism which lacks in the homogenized model. However, it is in general less accurate
and it relies on the notion of the uncoiled labyrinth length which is already fuzzy for simple
geometries and may become very ambiguous for non trivial ones.
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4.2 Homogenized models

4.2.1 Two-scale Homogenization

We present below the derivations of the direct homogenized model of the labyrinth and the
two-step model involving the homogenization of a straight slot. In the actual problem, the
pressure p satisfies the Helmholtz equation in the air along with vanishing normal velocity
on the boundaries of the labyrinth walls. Specifically, we consider p solution to

Ap + k%p =0, in the air,
{ (4.1)

Vp-n=0, on the sound hard walls.

We start with the model based on a direct, single step, homogenization, as sketched
in figure 4.2. We proceed in the same way as in 2, and reproduces them in the following
for completness. Following the two-scale homogenization procedure [16], two systems of
coordinates are used, x = kx (at the macroscopic scale of the wavelength) and & = i% (at
the microscopic scale of the unit cell, figure 4.3(a)). We also introduce the small parameter
€ = kh, < 1 which is a measure of the subwavelength regime (hence & = x/¢). For simplicity,

we write the governing equation in non-dimensional coordinate in the following way
divu +p = 0, u = Vp, (4.2)
where u is proportional to the acoustic velocity. Next, we use the expansions
b= pO(X7€) +5pl(x7€) R
. ) (4.3)
u=u (X>£)+€u (Xvé)—i_ ’

with (p™,u™), n = 0,1,--- are periodic w.r.t & in the unit cell. The above expansions are
used in (4.2), with the differential operator of the form V — Vy + 1V,. It follows that (4.2)
provides a hierarchy of equations at each order in €. At the leading order, we have

V' =0, p’=P(x), (4.4)

which tells us that the pressure is uniform at the microscopic scale, that is within the unit
cell Y (figure 4.3(a)). We then gather the following system set on (u?,p!)

divEu0 =0, u’ = Vip! + V,PY(x),
u’-n =0, on the rigid parts, (4.5)
pl,u® 1 — periodic along &,.

4 4
,,,I,(,i ,,,,,,,,, h——
hy - S N,
d

Figure 4.2: Direct homogenization of the labyrinthine structure resulting in an effective slab.
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This problem is linear with respect to the components of VP, hence we can set

0 0
P 8) = Q&) () - 6,2 () + P (x).
S (4.6)
u(x,€) = (VLQ(€) + e,) B X
with Q(&) solution to
AQ =0, / Qdé =0
Y . (4.7)
V(Q+¢&:) n=0, on therigid parts,

Q,V (Q+¢&:) 1— periodic along &,

(the condition fy Qd¢ = 0 defined P'(x) in (4.6), namely fy pt(x,&)d€ = P'(x)). The above
problem corresponds to the so called elementary problem posed on the periodic unit cell.

@ R
b
er .

Figure 4.3: (a) Unit cell ) in which the homogenization far from the boundary is performed.
(b) Domain (a strip unbounded along &) in which the asymptotic analysis at a boundary is
performed.

The flow associated to (p!,u’) is incompressible, from which the flux U2(x) through a
section of Y at constant &, € (0,1) is conserved, namely

l&mzéﬂ@m@®(=ﬂﬁm@@) (48)

We notice that @) is odd with respect to &, hence fY 8Q = 0 (this result is general and would

hold in the absence of symmetry of the unit cell). Evaluating the integral over Y of u? in

(4.6), we obtain
0 opr°
0900 =% (x), C= /(8@“) de,. (4.9)

Eventually, we use the incompressibility condition at the order 0, divgu1 +diveu’ + PY =0
that we integrate over Y to get

U0

o (x) + SP(x) =0, (4.10)

with S is the normalized surface of air in the unit cell (normalized to h2). Egs. (4.9) and
(4.10) constitute the main result of the present analysis and they will be put in dimensional
form in the following,.
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4.2. Homogenized models

As we are interested in the transmission problem, we need to derive the transmission
conditions at the boundary between the labyrinth and the surrounding fluid. We use the
same matched asymptotic technique as in 3. This is done at x = 0 (the same applies at
x = (). To do so we have to introduce the pressure and acoustic fields in an intermediate
region containing the boundary (figure 4.3(b)). They are written

p=4"(y.&) +eq' (y. &)+,
v :Uo(y7£)+€vl(y7€)+"' 5

which do not depend on x since these fields are defined close to the boundary at the micro-
scopic scale. Accordingly, the differential operator now reads V — gyey + %V& We shall
consider the dominant order only for which the matching conditions read

lim (y, &) = p°(0%,y),

(4.11)

Ex—=E

lim v%(y, &) =u®(07,y), (4.12)
Ex——00

lim vy, &) = 4’07y, §).
Ex—+o00

Note that v° does not depend on & when &, — —oo while it tends to the periodic function
u’ (0", y, &) (with respect to &) when &, — +00. At the dominant order, we have V,¢" = 0
from which ¢° does not depend on &. According to (4.12), we thus have

p°(07,y) =p°(07,y). (4.13)

We also have divev? = 0 that we integrate over &, € (=&, £%). Passing to the limit £ — oo,

—£,
this provides
hy o

a0y = [ 0%y 008 = U207y, (414)
T &x=0

which constitutes the continuity of the flux.

4.2.2 Two-step model

We now move on on the analysis of the two-step model. Basically, it uses the main ideas
developed in [79] and allows us to obtain the expressions of scattering coefficients given in this
reference. The procedure follows different steps, sketched in figure 4.4, the main ingredient
being to invoke the uncoiled version of the labyrinth (Step 1).

The homogenization of a periodic set of straight slots has been presented in 2, and for
the sake of readability, we briefly recal the homogenization result.

We start with (4.2) and (4.3) in a unit cell which is now reduced to a straight duct of
length unity and of width d/h, (figure 4.5(a); note that the periodicity h, is arbitrary as
long as it is chosen O(hy)). As previously, we obtain at the dominant order that p® = P%(x)
is constant within a unit cell. Then we have to solve (4.5) but due to the simplicity of the
geometry, the boundary condition reads u® - n = u = 0 on the rigid part of the duct. As a
result, the solution is explicit and reads

0
P (6,8) = 6, 0 () + P'(x).
Yy
) (4.15)
W) = 22 (e,

16)
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Step 1

Figure 4.4: Homogenization of a straight slot with effective length ¢, corresponding to the
model in [79].

D‘|D“
8 <

Figure 4.5: Homogenization of a straight slot (two-step model) - same representation as in
figure 4.3.

and u’(x) is constant within a unit cell (and the function @ = 0). Then we still have a
constant flux given by
d
W
Eventually, we use the incompressibility condition at the order 0, diveu! + divxu® + P = 0,
that we integrate over Y, and we obtain

e d o,

—P =0 4.17

00+ 1= P(x) =, (417)
with d/h, is the normalized surface of air in the unit cell (normalized to h2). Eqs. (4.16)
and (4.17) are the equivalent of (4.9) and (4.10).

Repeating the same exercice as for the direct homogenization, the matching conditions
(4.12) remain unchanged, but v° now tends to u’(0%*,y) which does not depend on & when
& — +oo (figure 4.5(b)). As ¢° does not depend on &, we still have continuity of the
pressure p°(07,y) = p?(07,y). Next, we integrate the incompressibility condition divev® =0
over & € (=&, &) which provides the continuity of the flux

Ud(x) = —ul(x). (4.16)

hy oo
iz (07,y) = U7 (0%, y). (4.18)
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4.2. Homogenized models

4.2.3 The two models in dimensional form

For simplicity, we shall use the cell-problem (4.7) in dimensional form that is in the unit cell
of dimensions (hg, hy). It reads

AQ =0,
V(Q+z)-n=0, on therigid parts, (4.19)
Q,V(Q+zx) hy— periodic along z,

(hence @ in (4.7)— h,Q) and we define the length d.

d, = / . @f(x) + 1> dy. (4.20)

Gathering (4.9) and (4.10) in dimensional form, we obtain the equation of propagation in the
effective slab and the boundary conditions applying at the interfaces with the surrounding
air, specifically the pressure satisfies

&p 272
s (@) +nZkp(@) =0, e (0,0),
_ o Ip (4.21)
— (0t op _ 7 9P+ .
p(o 7y)_p(0 7:1/), hyﬁx(o ay) deal'(o 7y)7
o op

T - —p P+
p(t™,y) =plT,y), dcax(f ,y)—hyax(f 2 Y)-

\

with n, the effective refractive index

(4.22)

where ¢ is the surface of the labyrinthine normalized to the surface of the unit cell (with
S the surface of the labyrinth within the unit cell, S = @hghy). As a first insight of the
accuracy of the homogenized model, we report in figure 4.6 the pressure field from (4.21) (see
also the forthcoming explicit solution (4.25)-(4.27)). With the dimensions of the unit cell (see
the caption of figure 4.1), we have ¢ = 0.7526 and after Q(x) has been solved, d. = 0.0121h,
(hence n, = 7.89). As it should be, the scattered pressure field outside the metasurface is
accurately reproduced; we also notice that the homogenized solution provides a continuous
version of the pressure field within the labyrinth structure.

We do the same for the two-step model, using (4.16) and (4.17) in dimensional form. We
obtain an equation of propagation and the boundary conditions applying at the interfaces
with the surrounding air

(a2
g;;(zc) + k2p(w) =0, z€(0,4),
_ o, op (4.23)
_ + op _ 9P+ .
p(O ay) _p(o 7y)> hyax(o 7y) d@:c(o >y)7
Op Op
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M W : Q(x) :
130 i
v “

Figure 4.6: (a) Pressure field solution of the direct homogenized problem in the configuration
of figure 4.1, from (4.21) (see also (4.25)). (b) Solution Q(x) of the unit cell problem (4.19)
entering in d. (4.20).

The phase accumulation of a plane wave at normal incidence is k¢, which can be identified
to the phase accumulation in an effective slab of width ¢ by introducing the refractive index

Ne = — (4.24)

which is the last step (not labelled) sketched in figure 4.4. Hence, if a good estimate of ¢, can
be found, we expect that 7, coincides with n, in (4.22). In particular, if the labyrinth consists
of a straight slot, no uncoiling is necessary and ¢, = ¢. Then @) = 0 is an exact solution of
(4.19), hence d. = d in (4.20); this implies further that, with ¢ = d/h,, the refractive index
is n, = 1 in (4.22). As it should be in this limiting case, the two models coincide.

4.3 Comparison of the models

From now on, we consider the scattering of an incident plane wave at oblique incidence 6 on
the labyrinthine structure as reported in figures 4.1 and 4.6. As the two effective problems
restore translational invariance along y, explicit forms of the solutions can be obtained. In
the homogenized model, owing to (4.21), the solution reads

(ei‘”‘ac + re_w“) , x € (—00,0),
p(x) = PV x { (atelT +a"eiT) | € (0,0), (4.25)
tete(z—6) x € (£, +00),

with o = kcosf, f = ksinf and a. = n.k. Using further the transmission conditions in
(4.21), the impedance mismatch at oblique incidence of the form

o = (4.26)

hy’
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we get
48
(5 + 1)26—1'049,5 _ (6 _ 1)2eiaef’
(52 _ 1) (eia(J _ e—iaeﬁ)
- (§ 4 1)2e—iae€ _ (f _ 1)2€iae€’

t =
(4.27)

and at = % (1 + %) teFioet  Similarly, using (4.23) the solution of the two-step problem reads

(ei‘” + fe_mz) , r € (—00,0),
p(:c) = €i6y X (d+€ikm + &7€7ikx) , T E (Oagt)7 (428)
ieia(m_£)7 T c (Etv +OO)7

along with the transmission conditions in (4.23). The solution is similar to the previous one,
with

= L
(€ 1 1)2e—tkle _ (£ _ 1)2¢ikt:]
(5 +A ) e t' (5 ) € ¢ (429)
(52 o 1) (ezkét o €_Zk€“)
7= — X ~ - )
(é’ + 1)267119& _ (é’ _ 1)267'k€t
with .
o : d
— —— 4.30
f cos 0 ) 50 hy ( )
It is then sufficient to restore the actual thickness of the slab, namely
kb, = knt, (4.31)

thanks to (4.24) in order to recover the forms proposed in [79], see eq. (1), and by [2], see
eq. (4) given at normal incidence (and ps = pg). Note that the homogenization that we have
inferred for this two-step model comes from the fact that 7. does not enter in é in this model
contrarily to (4.26) which means that the effective medium has a unitary refractive index. To

(a)

U X ! 1
AR B ! [
J ! ! 1 ) I ! y
t \ 1 U 1 1)
d \ i
\ '
a \
' i

0 L/ /2 0 L/ /2

Figure 4.7: Case C1- [79] - (a) |t| against k¢ from numerics (plain line), homogenized model
(4.27) (black dashed line) and two-step model (4.29) (grey dashed lines). (b-c) Pressure fields
at the first perfect transmission.
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begin with, we consider the configurations presented in [79] and [2] since these authors provide
valuable informations on the geometry of the unit cell and on the total length of the uncoiled
labyrinths, see C1 and C2 in table 4.1 respectively. In [79], the authors use a retrieval method
to determine the refractive index 7, = 7.5. Ones notices that this value is close though not
identical to the prediction of their model. It is in fact determinde heuristically ¢, = 7.03/,
hence #, should be 7.03 from (4.31). Next, & = 0.0913 is simply obtained from (4.30).
The prediction of the direct homogenization are as follow: ¢ = 0.7526 and d. = 0.0121
(from the resolution of the cell problem), from which n, = 7.89 and &, = 0.0954. We notice
the agreement between both (however, we stress that 7, = 7.03 would produce significant
discrepancies). We report in figure 4.7 the transmission against k¢ € (0,7/2). Expectedly, the
labyrinthine structure allows for the occurence of Fabry-Pérot resonances at low frequency
that is for k¢ < 1. Specifically, FPs take place when a.f/7 in (4.25) is integer, hence for

k'FP:]Vl

N int 4.32
e’ integer, ( )

independently of the incidence 6. The agreement with the two models is good, although the
overall accuracy of the direct homogenized prediction is better.

We now move to the labyrinthine structure proposed in [2]. In this reference, the authors
consider that the labyrinth can be filled with a fluid of different refractive index than that
the air surrounding the metasurface. Here, we disregard this fact, specifically we use &y = &;
in the expressions of the scattering coefficients, (4) and (5) in [2], and f = d/h, is our &.
Doing this, the scattering coefficients have the same form as (4.29) at normal incidence. The
authors estimate the total length £, = 9.9, hence n, = 1.65; next the impedance mismatch éo
is defined as in (4.30), hence & = 0.190. With ¢ = 0.346 and d, = 0.1185 (from the resolution
of the cell problem), we obtain n, = 1.69 and £, = 0.267; the agreement is reasonable for
the refractive index, significantly different for the impedance mismatch. We show in figure
4.8 the same sequence of results as in figure 4.7; again the two models are comparable in
accuracy with a slight improvement in using the direct homogenized result.

0 Ll 1.57 0 kf 1.57

h 1

Figure 4.8: Case C2 - [2] - (a) Same representation as in figure 4.7. (b-c) show the fields at
the first perfect transmission for k¢ = 0.67 (kh, = 0.31).
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(a) (b)

14
Jda
d d
R &
d M
d1 4+ de = 2d 9
0 dl/d 2

Figure 4.9: (a) labyrinth with dissymmetric turning regions. (b) Resulting effective parame-
ters (n., &) deduced from (4.22) against d;/d.

The geometry of the two structures discussed above clearly differ, hence their effective
properties are intuitively also very different. Very different scattering properties can be
obtained from structures whose uncoiled versions would be difficult more delicate to define.
This is expected to happen when strong evanescent fields are triggered in the turning regions
of the labyrinth.

To inspect this case, we consider the case C3 in table 4.1; we keep the thickness of the
vertical channels equal to d and we introduce a dissymmetry in the width of the openings on
the top (d2) and on the bottom (d;) while keeping d; 4+ d2 = 2d (figure 4.9(a)). Doing so,
¢ = 0.9 is kept constant and it should be possible to find a trick to evaluate ¢, but not an
obvious one. For d;/d € (0.01,1.99) we have solved the cell problems to get d. which is found
to increase with dy/d € (0.01,1). We report in figure 4.9(b) the resulting variations of the
effective parameters (n., ). Expectedly, the strongest variations of the effective parameters
take place when dj /d tends to zeros which fosters strong evanescent fields. The consequence
of such evanescent field in the turning regions is illustrated in figure 4.10 where we report the
transmission against k¢ € (0,0.2)7 for two structures with d; = dy = d and with d; = 0.01d,
do =d—dj.

NN T i

0' t] o(t) 4y =01 |

0 1l 0.257 0 Y, 0.257

Figure 4.10: Transmission (amplitude and phase) against k¢ for d; = do = d and for d; =
0.01d (see figure 4.9), numerics (plain lines) and direct homogenized model, (4.27) (dashed
black lines).
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Cl[[C2] | C3
w 0.03 0.5837 | 0.01
w’ 0.03 0.1750 | 0.01
h, | 0.2425 | 1.5475 0.2
J4 4h, 6 1.01
d | 00913 | 0.19 |0.09

Table 4.1: Characteristics of considered labyrinths.

direct numerics homogenization
I n

dp=d

0.01d

‘; 'l

-, - |

di

Figure 4.11: Pressure fields of the two labyrinthine structures with symmetrical turning
regions (di = dy = d) and non-symmetrical turning regions (d; = 0.01d and dy = 2d — dy),
direct numerics (left panels) and homogenized solutions (4.25)-(4.27).

It is visible that the scattering properties differ significantly notably by the positions of the
FP resonances. This is further illustrated in figure 4.11 where we report a comparison of the
pressure fields in the actual problems for k¢ = 0.27 close to the second perfect transmission
of the symmetric labyrinthine structure, along with their homogenized counterparts.

4.4 Concluding remarks and perspectives

This chapter has been dedicated to the study of so called space-coiled metasurfaces. We have
revisited the problem, and obtained trough asymptotic homogenization the effective refrac-
tive index and impedance mismatch without any ambiguity. The obtained model faithfully
reproduces the properties of the actual problem, and is in general more accurate than the so
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called two-step model. As shown, the two-step models major flaws is the heuristical deter-
mination of the uncoiled labyrinthine path. We note that the underlying physics is not new,
as it relies on Fabry-Pérot resonance of an array of equivalent slots. The two-step model
relies on good intuition, and the asymptotic homogenization simply provides a more rigorous
result.

We discuss the possible extensions and perspectives:

The use of acoutiscal space-coiled metasurfaces gained a lot of interest for its application
towards wave front manipulation. This can be done by varying the size of the coiling from
one unit cell to another, either along the surface of the metasurfaces, or along its thickness,
or both. Implementing gradients of dissymmetries from one unit cell to another along the
thickness has been considered in [55] to produce horn-like behaviour. Result in the context
of focusing and wave steering is presented in [42, 138], with quasi-periodicity along the meta-
surface. With this in mind, one could apply quasi-periodic homogenization, which has been
applied in the case of static solid mechanics in [10, 72], and recent efforts in the dynamical
case has been presented in [412, 138]. When variations are only present along the thickness,
quasi-periodic homogenization in bulk would result in a smoothly varying effective refractive
index. In the case of variations along the interface, the derivation of non-trivial transmission
conditions obtained at higher order might be necessary. This has recently been done for the
case of thin film in the work [123].
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Chapter

Modelling of a metacrystal

Chapter summary: This chapter is devoted to the modelling of space-coiled material where
the winding arrangement differs from the one presented in the previous chapter, and has got
little to no attention in the literature. It consists of slots in the direction as the propagation
of the incident wave. The identification of a periodic unit cell is thus not evident, and the
classical homogenization approach is not applicable. Indeed, one has to take into account the
one dimensional propagation in the straight slots, and the effect at each bend. This results in
a crystal like behaviour where the bend act as scatterer. Combined with the subwavelength
nature of the periodicity of the slab, we refer to such structures as metacrystals. We derive
a model that takes into account the dispersive behaviour of the embedded crystal through
a combination of asymptotic homogenization and matched asymptotic techniques. The val-
idation is done in the time domain which allows to illustrate the delay of the transmitted
field.
The main results of this chapter has been submitted in the following paper

[160] Zhou Hagstrom, Joar and Maurel, Agnés and Pham, Kim. (2022) Modeling acoustic
space-coiled metacrystals, submitted to SIAM
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Chapter 5. Modelling of a metacrystal

5.1 Introduction

In the present chapter, we are interested in a space-coiled structure that differs from the
one studied in the previous chapter. Although both configurations can exhibit large phase
shift, as shown in figure 5.1, the scattering properties are significantly different. As the long
straight parts of the slots are not constrained by the subwavelength periodicity h of the array,
identifying a repeating unit cell is not evident. The classical homogenization is therefore
directly applicable in this case. One does have to take into account the one dimensional
propagation in each straight part of the coiled slot, and the the evanescent field triggered
in the turning regions. To model the structure, we apply two-scale homogenization to deal
with periodicity combined with asymptotic techniques to take into account the effects of the
turning regions. The modelling allows us to shed some insight in the physical phenomenon.
As the propagation present in the straight parts, which is anisotropic but homogeneous, can
be of the order of the wavelength, it will be scattered by a bend that is periodically spaced.
It is in fact the case a one dimensional phononic crystal embedded in a subwavelength array.

m

1 P PO

Figure 5.1: (a) Classical space-coiled metasurface presented in chapter 4 (b) Space-coiled
metacrystal which is the object of the present study. The orange parts show the unit cell.
Both structures can exhibit large phase shifts, here of the order .

The treatment of the turning region which will be presented later on in the chapter
corresponds to the wave propagation at a junction of two semi infinite closed wave guides.
Such problems shares a lot of similarity with the studies devoted to wave propagation in
graph and lattice like structures, for a review see [71]. It is generally done in the asymptotical
setting as the width of the waveguide tends to 0, leading to a graph structures with adequate
conditions at the nodes, referred to as Kirchhoff conditions. In quantum mechanics, such
systems are associated to the case of Dirichlet boundary conditions, and is complicated as
trapped modes often exist at bends and nodes. For the Neumann boundary conditions, which
is our case, the existence of trapped modes typically requires some symmetry conditions (see
chapter 3). This simplifies the problem as we will derive non-trivial transmission conditions
for both the pressure field and the flux. The analysis performed in this chapter shares a
lot of similarities with the works performed in [63] and [137]. Their study was on fractal
tree systems, with the aim to model wave propagation in the human lung. They derived the
transmission conditions for the junction of two, or several thin slots, at a given angle in the
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acoustical setting. Our case deals with the case of the junction of two parallel slots with the
presence of a turning region, which will need some additional treatment.

We start by presenting the main result of the model. We will perform the derivation in the
time domain, which we have favoured to illustrate the time delay of the transmitted field. We
can however recover the harmonic formulation, and this will be presented in the next chapter.
The derivation in the time domain also allows us to perform an energy analysis, which we
discuss in section 5.4. The model is then validated by comparison with direct numerics done
in section 5.5.

5.2 Main results

5.2.1 The actual problem

We consider the scattering of acoustic waves by a metacrystal as shown in figure 5.1(b). It
is made of a periodic arrangement of identical cells along the vertical, o, direction with
subwavelength periodicity h and horizontal thickness ¢ (along x1). Each cell contains a coiled
slot resulting in N horizontal slots connected between them through turning regions. Note
that for a transmissive structure, N is odd (N = 1 corresponds to a straight, uncoiled, slot
and we show the case N = 3 in figure 5.1(b)). In the air, the acoustic pressure p and velocity
u satisfy the linearized Euler equations

ou

1
a, _7Vp7 ap
P

T +divu =0, w-np=0, (5.1)

ot
where (p, x) are the mass density and the compressibility of the air (and ¢ is the time). The
above problem is complemented by Neumann boundary conditions on the pressure (vanishing
normal velocity) applying on the boundaries of the sound-rigid walls. To simplify the nota-
tions, we do not add any specific notation to distinguish the time dependent variables and
the harmonic formulation carried out in the previous chapter. All the pressure and velocity
fields (p,u) are time dependent in this chapter.

5.2.2 The effective problem

In the effective model, whose derivation is detailed in the forthcoming §5.3, we distinguish
two regions, as sketched in figure 5.2. In the outside region z1 ¢ (0,¢), the linearized Euler
equations still apply, namely

du
at

| )
=V Xa—f tdivu=0, for 1 ¢ (0,0), (5.2)

with p and w depending of & and ¢ as in the actual problem.

Next, in the metacrystalline region x; € (0,¢), we denote (P,U) the acoustic pressure
and velocity, respectively. This region is described in terms of a strongly anisotropic effective
medium, the spatial variable z; being replaced by the curvilinear abscissa s, s € (0, L;) with
L; = N/ the total length of the coiled slot. In each straight part of the slot for s € (s, Sp41)s
n € {0,...,N—1}, (blue segments associated with specific s-orientation in figure 5.2), (P,U)
are solutions to the one-dimensional propagation equations

oU 5P oP U .
s XEJF%_O’ for s € (s,,5,,1), (5.3)
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(P, u) (PU)

Figure 5.2: The effective problem where the unit cell of the metacrystal has been replaced by
a homogenized anisotropic region with one-dimensional propagation. It is set on a curvilinear
coordinate s that follows the coiled path (blue lines). Jump conditions account for boundary
layer effects in the turning regions (red dotted lines) and at the extremities of the coiled slot
connected to the surrounding air (green dotted lines). The actual rigid, pierced, block is
shown in light grey to assist in the understanding.

where
sar =0, sy=DN{, s,il =nf+e, otherwise, (5.4)

with e = (n + 7v)h the width of the turning region (6, n and v are geometrical parameters
defined in figure 5.3). Note that the fields (P, U) depend on s which allows us to describe the
propagation within a single cell but they also depend on x2 which allows us to describe the
field variations from one cell to the others (and they depend on time t). Next, the effect of the
turning region connecting two consecutive slots (sketched in red in figure 5.2) is encapsulated
in jump conditions of the form

[P], = —phD8<aUt>" — h(5 + g)ag;?l’ .
5.5

8952 ’

for n € {1,...,N — 1} (§ is a geometrical parameter defined in figure 5.3), and where the
jump and the average of the field F' = (P,U) are defined by

(F(s,@2,t) + F(s,,x2,1)) . (5.6)

N | =

[Fln = F(sy, 22,t) = F(sy, w2,1),  (F),, =
Eventually at the extremities s = sar and s = sy of the coiled slot, which communicate with
the surrounding air at z1 = 0 and x1 = ¢ (these regions are sketched in green in figure 5.2),
jump conditions of a different type apply, of the form

[[P]]n = _phBag{t)na
n € {0, N}, — oW oW 1a(p), (5.7)
" Oxy’ A ot p Oxy
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where we have defined, for f = (p,u1) and F = (P,U), the jumps
1
[Flo = F(s{,z2,t) — f(07,32,1), (F)y= 5 (F(sg,m2,t) + f(07,m2,1)), 658)
5.8
1
[Fly = f(tT, 20,t) — F(sy, x2,t), (F)y = 3 (f(IT 29, t) + F(sy,x2,1)) .

The effective model involves, in addition to geometrical parameters, three effective parameters
(B,C, D) which are boundary layer coefficients given by elementary static problems that will
appear in the asymptotic analysis.

14

Figure 5.3: Decomposition of the unit cell into sub-regions requiring appropriate asymptotic
analysis. In the straight parts of the coiled slot (blue area) the propagation is accounted for;
in the turning regions connecting two of these straight slots (red area) and in the regions
connecting the extremities of the coiled slot to the surrounding air (green area), matched
asymptotic methods are used to capture the effect of the boundary layers.

5.3 Derivation of the effective model

We derive in this section the effective model based on asymptotic analysis valid in the sub-
wavelength regime. As we are working in the time domain, the subwavelength regime im-
plicitly assumes that the spectral content of the sources, once they will be defined, is limited
by a maximum angular frequency w satisfying e = wh/c < 1, with ¢ = 1/,/px the speed of
sound. We shall use non-dimensional forms of the linearized Euler equations (5.1), with

p—xp, u—ufc, t—wt x— wx/c, (5.9)
resulting in

ou Op .

E = —Vp, E + divu = 0, U-nr = 0. (5‘10)

In the asymptotic procedure, we shall consider sub-regions where appropriate analysis
will be achieved. Specifically, as sketched in figure 5.3 (the figure uses the same color code as
in figure 5.2), we shall distinguish the straight parts of the coiled slot (blue area) where one-
dimensional wave propagation takes place resulting in (5.3), the turning regions connecting
two straight slots (red area) and eventually the regions connecting the coiled slot to the
surrounding air (green area). These two families of intermediate regions involve evanescent
fields whose signatures in the effective model are the jump conditions announced in (5.5) and
(5.7).
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Chapter 5. Modelling of a metacrystal

5.3.1 Effective propagation in the straight parts of the coiled slot

Setting of the asymptotic procedure

In the straight slots far from the turning regions, the medium is structured along xo only. It
follows the same analysis as the one presented in chapter 3, but for IV straight slots. Hence,
we assume the following expansions

P° —ZE (z,22,1) , u® —ZE (x,29,t) with ' = (u',0"), (5.11)

=0 =0

where x9 = x2/e € (0,1) is a fast variable describing the vertical position towards the N
slots. We denote Y, the region of the n-th slot within the unit cell x5 € (0,1), specifically

Yo = (W) — /2.9 +8/2), yy = (n— )0 +€) +6/2, (5.12)

see figure 5.4. For the n-th slot and at any order i, we define the average pressure field p(fl)
and the flow rate u/, as

1 . .
p(n (x,t) = 5 p'(x, zo,t) daa, ug, (x,t) = /Y u'(x, x2,t) ds, (5.13)
(

n)

Yy
which are the effective, macroscopic, fields we are interested in.

Y2

Y(n+1) }/(n-H)
Y(n-1) Yv(n—l)

Figure 5.4: The one-dimensional representative cell defined by x2 € (0, 1) inside the coiled
region far from the extremities. It is made of N fluid segments of thickness ¢ (blue region)
separated by walls of thickness £ (grey region).

The Neumann condition on the horizontal rigid walls, separating each slot from the other,
holds at each order of the expansion and reads

V' (@, Yy £ 0/2,t)) = 0. (5.14)
Due to the two-scale expansions in (5.11), the divergence operator and the gradient operator

now read 5 19
divf =divef + ——f es, Vf=Va&f+ ——feg, (5.15)
8$2 3%‘2

for any vectorial function f(x,z9,t) and for any scalar function f(x,z9,t). Accordingly,
applying the differential operators (5.15) to (5.10) along with (5.11) and identifying the
terms with same powers in €, we obtain
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5.3. Derivation of the effective model

0 i 4 i+l
N o P v+ 2 —0 fori> ol
Oxg ot Oz
op° ou’ opitt (5.16)
0= 2 = _Vp' — for i > 0.
drs’ Ot P g, 2 T =

The zero-th order in the slots

We deduce from the leading order in (5.16) that p” and v" take constant values in each slot
(yet possible different values due to the rigid walls between the slots). Using the definition
(5.13) of the average, we get

PPz, 20 € Yy, t) = p&(m,t). (5.17)
and from the Neumann boundary conditions (5.14), we have
V(, w3 € Vi, t) = 0. (5.18)
At the next order in (5.16), we obtain that 88—1;0 = —g—gi with p® piecewise constant. We
deduce using (5.13) that
0 Lo
u’(z, 22 € Yy, t) = gu(m(m,t)el. (5.19)

Next, integrating the mass balance in (5.16) at order i = 0 over Y, and using (5.13) as well
as Neumann boundary conditions (5.14) to get rid of the contribution of v! at the walls, we
also obtain 0 0 0 0
Oug, N 5% 0 Oug, N 5%

ot 8.%‘1 ’ 0.%‘1 ot
which describes the expected one-dimensional propagation in the n-th slot.

=0, (5.20)

The first order in the slots

From the balance of mass given by (5.16) (with ¢ = 0) and equations (5.17) and (5.20) derived
at the dominant order, we get that aa—p: + divgu® = 0, hence we have 9,,0! = 0 and v! is
piecewise constant. By taking into account the Neumann boundary conditions (5.14) at order

1, we deduce that v! = 0 in all the slots. From the balance of momentum in (5.16) along ez
at order 0 and (5.18), we have

opt  op®
0=——+—— —, 5.21
81‘2 8$2 ( )

which after integration gives
op’
1 () 1

= — 5.22
p (y(n) xQ) Oy + DPiy> ( )

with fy( )(y(n) — x9) dzg = 0. Integrating the mass balance (5.16) for ¢ = 1 and using the

Neumann boundary conditions (5.14), we get the one-dimensional wave equation at the first
order in the n-th slot

1 1 1 1

Ou n 5‘9%) —0 Oug " 581)@)

ot 0x1 ’ ox1 ot

which is the same as the one obtained at order 0.

=0, (5.23)
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Chapter 5. Modelling of a metacrystal

5.3.2 Solutions in the air far from the material

Since the surrounding air for z1 ¢ (0, ¢) is a homogeneous medium, the asymptotic expansion
is straightforward and does not involve two scales expansion. Specifically, we have

p° = Zsipi(az, t), u® = Zsiui(m,t), (5.24)
i>0 i>0

which after injection in (5.10) results at each order in

op’ . oul .
1 T v — R _— = — T Z‘ 2
5 + divgpu' =0 5 VD (5.25)

Vi > 0,

5.3.3 Analysis at the junctions at the entry/exit of the slot

We shall now derive the effective jump conditions applying between the extremities of the
coiled slot and the surrounding air. The analysis is presented at the extremity z; = 0 as the
jump conditions at x1 = ¢ can be deduced by mirroring the analysis.

Setting of the asymptotic procedure

It consists in matching the outer expansions (5.11) and (5.24) through an intermediate inner
region governed by boundary layer effect. To do that, we introduce the representative unit
cell V), obtained by rescaling spatially the extremity of the slot near x1 = 0 owing to the
variable y = x/e, see figure 5.5. This cell is the union Y = YT U Y~ of the semi-infinite

e 5I §Y<1)y
= 1

Figure 5.5: The representative unit cell ) = YT UY ™ near one extremity of the slot at 1 = 0
connects the surrounding air (green region) to the interior of the slot (blue region).

region Y~ in the surrounding fluid and of the semi-infinite region }* in the first straight slot,
specifically

V7 =(-00,0)x(0,1), YT =(0,00) x Y. (5.26)

In this inner region, we use the following expansion of the fields

P = eplany,t),  uw =) ul(enyt), u=(uv), (5.27)

=0 =0
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5.3. Derivation of the effective model

where (p’,u’) are assumed to be periodic with respect to y2 in )~ and u’ - n = 0 on the
boundaries of the rigid walls, denoted I'. As in the previous section, the divergence operator
and the gradient operator are affected by the two-scale expansion, which in this case read
of 1 af 1
divf = —— - eg + —divy f, Vf=—-—"-e+-V,f, 5.28
f 6952 2 & yf f 8$2 2 3 yf ( )
for any vectorial function f(x2,vy) and for any scalar function f(x2,vy). Injecting the expan-
sions (5.27) in (5.10), we get at the leading orders

op’

divyuo = 0, diVyul -+ &EQVO + E = 0,
o’ 9p° (5.29)
0=v,p’ =— ~V,p' '
yP ot ax282 yP

uO-n|F:u1-n|F:0.

The matching conditions are obtained by pairing the outer expansions (5.11) and (5.24) valid
far from the entry at y; = 0 with the inner expansions (5.27) valid in the vicinity of the entry.
For the pressure expansions in (5.24) and (5.27), the matching reads

p0($27y,t) + cc:[)1(1"27 yvt) o po(x’t) + 5p1(:137t) + (530)

as x1 — —oo and x1 — 0. By recalling that 1 = ex; and by using a Taylor expansion of
the outer expansion with respect to e, we get at the dominant order and at the first order in
the fluid

(07, 29,t) = lim pY (29,9, 1), (5.31)
Tr1——00
p (07, 29,t) = lim (p'(ze,y,t) — 2z —apo (07, x2,t) (5.32)
y L2, 21— 00 2,Y 1a$1 y L2, . .

Doing the same for the expansions in (5.11) and (5.27) results in
po(x% Y, t) + 5pl(:p2a Y, t) e p(](w, I2, t) + gpl(ma x2, t) +ee (533)

as r1 — +oo (with xg € Y(l)) and x1 — 07, hence for x5 € Yy, we get

p0(0+,x2,x2,t) = lim po(xg,y,t), (5.34)
T1—+00
1o+ 1 p’ +
p (07, x9, o, t) = xlligoo <p (x2,y,t) — xla—xl(o ,acg,acg,t)> ) (5.35)

The exact same matching conditions as (5.31) and (5.34) are obtained for the velocity field
by replacing formally p by u and p by w.

The continuity conditions at dominant order

From (5.29), we deduce that p° is independent of y and we obtain from the matching condi-
tions (5.31) and (5.34) that

P (0, 29, 8) = p° (22,9, ) = p° (07, @2, 1), (5.36)
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Chapter 5. Modelling of a metacrystal

since p¥ = pg) for x9 € Y{3) from (5.17). Next, by integrating the free divergence equation
in (5.29) set on u® over the subset domain Y* C ), truncated at x1 = +y; with y} > 1,
and using the Neumann boundary conditions on the rigid walls and the periodic boundary
condition in Y* N Y™, we obtain

/ u®(zo, 95, zo,t) day —/ u®(za, —yi, x2,t) doy = 0. (5.37)
Yo Y

Passing to the limit as yJ — 400 and using the matching conditions (5.31) and (5.34) written
on the velocity, we obtain

ug)(0+,x2, t) = u’(07, x9,1). (5.38)
Therefore, there is no boundary layer correction at the dominant order, meaning that the
usual continuity conditions on pressure and flow rate apply. Conducting the same analysis
at the extremity x; = £ of the slot, we get the same continuity conditions, namely

p(g)v)(ﬂ_,azg,t) = p0(€+,x2,t), ug\,)(ﬁ_,xg,t) = uo(f"',xg,t). (5.39)

The jump conditions at first order

Jump condition on the pressure From (5.29), the problem set on ) for the couple
(p',u®) is given by

.
ﬁ:—a—m O,eQ_Vyp , divyu' =0, u -n, =0,
ou’ ol op°
lim & — 7‘ ., 5.40
s 0t Ot - By lo- (5:40)
i o’ 1 6u0’
im —=-—1 e
mtoo O 6 Ot lo-
with %’0‘ = g—fp’g(()*,xg,t) and %qf’o_ = Ba—f(of,xg,t). In (5.40), we have used the conti-

nuities of the pressure and of the flow rate given by (5.36) and (5.38), along with (5.17) (for
n = 1). By linearity, the solution of (5.40) can be decomposed as a linear combination of the

macroscopic fields g—gzb_ and 88—1f|0_ which do not depend on y. Specifically, we have

0 0
P (a2 w,t) = 0| Qola) — | @u(w) + Qulaz) (.41)

- 8%2 0
where the functions (Q1, Q2) satisfy the so-called elementary problems given by (i = 1,2)
diVy(VyQi + (51'262) =0 in y, (VyQZ + 51262) . ’I’L|F = 0,
(Qi, VQ;) w9 — periodic for x1 <0,

) 1,2 42
PR m v,Q0= e, (542
T1—r—00
zll_lgrloovai = 5i1€1/5 — 0;0€2,
with 0;; = 0 if ¢ # j and 0;; = 1 otherwise. The behavior of (Q1,Q2) at infinity reads
lim lim
r1——00 r1—+0o0
Q1 T % +B (5.43)
Q2 0 Ya) — @2
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with yq) = §/2 from (5.12) and where B is a boundary layer corrector. We have used that
@2 is odd with respect to o = §/2 in the slot, hence its behavior at infinity when z; — +o0.
From the matching condition (5.31) with the exterior together with (5.25), we get

pl (07, z9,t) = lim (pl (y, xa, ) + .%'1 ‘ > Q*<$2,t). (5.44)
T1—>—00 ot
From the matching condition (5.34) with the first slot together with (5.20) and (5.38) which
. 0 8u 0
gives % lo- = 5[0+ = 351 o+, we get

. x1 Ou’
p1<0+7$27$2 S Yr(l),t) = lim (pl(’y7m27 ) + it el )

mﬁ*g‘” oo o ot (5.45)
u” P
- B— — - «(T2,1).
ot B g 0- (Y — z2) + Qx(22, )
Using (5.22) (since p°[o- = p|o+), we deduce
1t ou°
Py (07, @9,1) = _BE + Qs (5.46)
Finally, substracting (5.44) to (5.46) we get the jump conditions on the pressure field
1+ 10— A’
P07, 22,8) —p (07, 22,1) = Bﬁ (5.47)
By conducting the same analysis at the other extremity x1 = £ of the slot, we obtain
1(p+ 1 (p— Ou’
p (ﬂ y L2 t) — Py (E » L2, ) Tar (548)

Jump condition on the flow rate We start from the divergence relation on u' in (5.29)
that we integrate over the truncated domain )* after taking the time derivative, specifically

) aul 82\/0 82p0

We evaluate separately the three contributions in the integral in (5.49). First, since p°
constant in Y, see (5.36), we have

we get

2,0
LN 0P ’ (5.50)

T2 Wi G

Next, using the divergence theorem and the matching conditions (5.31)-(5.34) written for the
velocity as well as the definitions (5.13) of the flow rate, we have the asymptotic estimate

ou! oul
[y =50

where o(1) are vanishing terms as y; — +o0o. Adding the two contributions (5.50) and (5.51)
and using mass balance equations (5.20) and (5.25), we get

. 8u1 82 0 8’LL(1)
/ . <dwy ot o ) =5

oul %) ., 0%u°

o+ 0t lo- ylataml

ylm‘o_ +0(1) (551)

oul , 020

— Y= 1). .52
o+ ot lo- % 6t8:v2‘0— +o(1) (5.52)
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The remaining term of the integral (5.49) can be expressed using (5.40) as

82V0 a2p0 (:)2p1
dy = —(1+ )i 55| - 5.53
7 i S v Pl B v (5.53)
The last integral can be made explicit using (5.41) to get
82 1 82 0 o
() e (%) o)
= 8:628372 8w2 Y+Ay- 8302 yeay+ \ 072
0*u? o1
— —d 5.54
8t8:v2‘0 e By, WO (5.54)

Note that due to periodicity conditions in ))~, we have fy* Y- g%' dy =0for¢=1,2. One
can also remark that the loading being in the direction ey for 1, the solution is symmetric
with respect to zo = §/2 in the slot and hence we have fy*mJH 9 dy = 0. Finally,

0xa
introducing the boundary layer corrector

c— <‘;§; + 1) dy, (5.55)
and adding (5.52) to (5.53) with the use of (5.54), we get
o 82 0
pr (uly (0T, @2, ) —u' (07, w2, 1)) =C—5 5.2 5 (07, 2, 1). (5.56)
2

To get rid of the time derivative, we introduce the auxiliary velocity field Wy(x2,t) defined
as

6WO ap
— t) = t .
(o2 t) = 5 (0 a1, (5.57)
which allows us to express the jump condition on the normal velocity at first order as
_ oWy
ulh (07, 29, 8) —u' (07, 22, 1) = 7678352 (5.58)
By conducting the same analysis at the exit of the crystaline region, we get
_ oWy
+ 1 —
u(l™, w2,t) — up, (0, 2,t) = —C 0z, (5.59)
with the auxiliary velocity field Wi (z2,t) defined as
oWy op°
——(x9,t) = —— (£, 2o, :
5 (@21) axz( , T2, 1) (5.60)

5.3.4 Analysis at the junctions

We shall now derive the effective jump conditions applying between two consecutive slots at
a turning region. We notice that a similar analysis has been conducted in [63, 37]. For the
sake of conciseness, we shall consider a turning region close to x1 = 0, that is to say between
the n-th and the (n + 1)-th slot with n even. The conditions for the turning region on the
opposite side near 1 = £ can be deduced by mirroring the analysis. We also notice that the
analysis is very similar but not identical to that developed in the preceding section; to avoid
multiple references to this previous analysis, we simply repeat below the exercice.
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5.3. Derivation of the effective model

Setting of the asymptotic procedure

We define the representative cell ). of the turning region (see figure 5.6), using the rescaled
space variable y = x/e, as the semi-infinite region

Ve = (77 +m) X Yy — /2, Ypgr) +6/2) U (v + 1, 4+00) X (Vi) U Yiq)), (5.61)

with y, and Y, defined by (5.12).

Y2

Y(n+1)

Figure 5.6: The representative cell ), at a turn connecting two consecutive slots (red region).

In this region, we use the following asymptotic expansions

P =) pl(wa,yt),  uw =) elul(ws,y,1) (5.62)

=0 >0

Injecting (5.62) in the governing equations (5.10), we get at the leading orders

N ol 3P9
div,u’ =0, divyu! + 9,,v° 875 =0,
ou’ op?
0=w,pl, M Peg vyl (5.63)

ot (9.’]32
0

_ 1. _
u;mp =Uu, = 0,

where I'. denotes the part of the boundary ). associated to the rigid walls. The matching
conditions between the inner expansions and the outer expansions (5.11) far in the slots can
be derived using the same procedure as in the preceding §5.3.3. For the pressure, they read

p0(0+a al) - acll—lfﬂoo P. (3317 O’.@)

op° (5.64)
10+ N = 1 AN o0t .
p (07, o) s (pc (w1, ) b (] ,az)) ,

with the notation a; = (72 € Y5, w2,t) for i = {n,n + 1}. The same matching conditions on
the velocity are obtained by replacing formally p by w and p, by u, in (5.64).

The continuity conditions at dominant order

At the dominant order, we get from (5.63) that p” is independent of 4, hence we obtain from
the matching condition (5.64) together with the result (5.17) set in the bulk that

Z)(?L+1)(0+7 z2, t) = pg(.’l)g, Y, t) = p((v)z)(OJra z2, t)’ (565)
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Chapter 5. Modelling of a metacrystal

which translates in the continuity of the pressure between two consecutive slots. Next, by
integrating the divergence free equation in (5.63) over the subset domain YV C ), truncated
at 1 = £y with y7 > 1, and eliminating the boundary terms associated to the Neumann
boundary conditions on the rigid walls, we obtain

J;

)

ul(zg, 2}, 2, 1) 29 +/ u9(z9, 2%, 29, t) dag = 0. (5.66)
Yoty

Passing to the limit when yf — +o00 and using the matching condition (5.64) (written for the
velocity) together with the definitions of the flow rate (5.13) in the bulk, we obtain a jump
condition on the flow rate

0 0
g oy (0, 0, 8) + u,y (0%, 29, 1) = 0. (5.67)
At the dominant order, we recover the continuity conditions on the pressure and on the
flowrate.
The jump conditions at the first order

Jump condition on the pressure From (5.63), the problem set for the couple (p!,u?) is
given by

du? ol 1 .0 0
% - D2 0+e2 - Vyp,, divyu, =0, u; n =0,
8“0 1 au(o)
. 0 _ 10y, 5.68
zll_lgzoo s (z1,m2 € Y, 2, 1) 5 ot ot € (5.68)
o ou] 1 dug
\ :6113200 ot (1,22 € Y(n+1),x2,t) T 5 ot 0+e1

The above formulation has been obtained using i) (5.67) used to express the limit when
ou?
(n)

r1 — 400 in terms of —* |+ only, ii) that the vertical velocity vY is zero in the slots from
0 apP
(5.18), iii) the continuity of the pressure in (5.65) which shows that g;g = a‘iﬁ? lo+. The

solution of (5.68) can now be expressed as a linear combination of the two macroscopic fields

O Dui ; -
92 lo+ and —5*[o+ (which are independent of y), namely we use
op? ou?
1 _ TP _ ) (n) (n)
P. (x27y7t> Oz lo+ (y(n) 1132) ot O*Q (y) + Qx (.Tg,t), (569)

with Q" (y) being solutions to the elementary problems
AyQ(”) =0 in Y., VyQ(n) -ny, =0,

. . e

Jim VM (a0 € Yy) = 570
. . .

xIIEEOOVyQ( (21,22 € Yjp i) = -

The asymptotic behavior of Q™ at infinity is given by

lim lim
22€Y (), 01—>+00 | 22€Y (4 1),T1—>+00
T = o (5.71)
0 0
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5.3. Derivation of the effective model

Note that the problem (5.70) corresponds to a classical potential flow problem in fluid me-
chanics, with a fluid flowing in a curved portion of channel; in this context, the parameter D*
is called the blockage coefficient. We can now express jump conditions at the first order. For
that, we pass to the limit in (5.69) with the help of the asymptotic behavior (5.71), and then
make use of the matching conditions (5.64) together with the form (5.22) of the pressure p!
in the slots. This leads to

8p(2> _ *8“(%1)
Oxy lo+ ot o

p(i+1)(0+7 L2, t) = (y(n) - Z/(n+1))

L (07, 2o, 1) = QU (o, 1).

Noticing that yg,11) — ym) = 6 + &, we deduce the jump condition on the pressure at the
junction between each slot

(n)
N + Q* (.I'Q,t), (572)

ou? on
1 + ot — _px_(tD — )
Py (0 » L2, t) p(n)(o 1125 t) =-D ot lo+ (5 + 6) 0xo o+

(5.73)

Jump condition on the velocity We start from the divergence relation on u' in (5.63)
that we integrate over the truncated domain Y after taking the time derivative. This reads

aul 82V0 (92p0
di < < =) dy =0. 74
/y:< Yo T dtows aﬁ) y=0 (5.74)

We evaluate below the three contributions in the integral in (5.74). First, since p? is constant
in Y., see (5.65), we have

82 pO
v Ot

2,0
9" Py
ot2

dy = (26(y7 — ) +&n) (5.75)

o+

Next, using the divergence theorem and the matching conditions (5.64) written for the
velocity, we have the asymptotic estimate

oul oul oult 0 0?0
d . YU d _ (n+1) (n) * (n+1) * (n) 1 5.76
/ G =50 o T B lor TV Bty lor T VG800 TOW (570

where o(1) are vanishing terms as y; — +o00. Adding the two contributions (5.75) and (5.76)
and using mass balance equations (5.20), we get

Hul 82p0 out oul
d- c c d — (n+1) ()
/yg < Yor T o > Y="2 lo- T ot

2,.0
9" Py
ot?

+ (&n — 267)

o+

(1), (5.77)
The remaining term of the integral (5.74) can be further simplified using (5.68), namely

aQ™
N /y oy (5.78)

with the integral on the right-hand side being explicit. Indeed, integrating by part of (5.70)
after a multiplication by xo gives

0*vy y— 0%up

(n)
o:/ 22 A, Q™ dy:/ :L‘ZVyQ<”)-ndy—/ 0Q dy. (5.79)
Ve Y. O

Ye
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Eliminating the zero contribution in the boundary integral, on the rigid walls due to the
Neumann boundary condition, it leaves only the contribution when z; — 400

1 1
/ xQVyQ(”) ‘ndy = / o dag — / xg dzg = —(0 + &) (5.80)
oV 0 Jyi, 0 S
from which we deduce
Q™ d 4] 5.81
| Sy dw=-G50) (5:51)
Finally, adding (5.77) and (5.78), we find the jump condition at order 1 on the normal velocity
opP ou?
Ui (07, 2, 8) 1y (07,2, 8) = — (0 = 269) 52|+ G+ 52| - (5:82)

5.3.5 Effective problem with curvilinear coordinate and unique formula-
tion

The curvilinear description

The effective problem derived from the asymptotic analysis in the slots can be rewritten a
posteriori in a more intuitive form. It consists in using the curvillinear coordinate s that runs
along the coiled slot. Specifically, s is defined over (0, N¢) with the mapping from the global
frame, made of the IV slots, to the curvilinear frame, made of a single path, given by

(nyx1) > s=(n—3) 0+ (=1)" (§£ —21),
{ (= ? (5.83)
{1,...,N} x (0,¢) — (0,N¢).
Expressing the one-dimensional wave equation (5.20) and (5.23) in terms of s gives
ou’ opP! ou’ op!
' 1 NY 4] = 4] = .84
1€{0,1}, s€(O,Nb), —-+d5-=0, H-+0--=0, (5.84)

where (P!, U?) are the pressure and flow rate variables set in the new frame and defined as
(P'(s,22), U (s,m2)) = (ply (w1, 22), (—1)"uf, (x1,22)). (5.85)

The jump conditions (5.65) and (5.67) at order 0, (5.73) and (5.82) at order 1, now apply at
s=mnl withn € {1,...,N — 1} and read

([P°] = [U°] =0,

ouv oP°
17 — _ mxYY - vLr
[P]=-D GRS o

0
0
0] = ~n—20m 2| ~@+e)

(5.86)

né7
ou°
81‘2

nt

At the entrance and the exit, at s = 0 and s = N/, the continuity conditions at order 0 with
the exterior now read

PO|5:O+ _p0|x1:0_ :p0|$1=f+ - P0|8=(NK)_ =0,
(5.87)

U smor — u0p,—0- = U°pymer — Uo|s=(Ne)— =0,

86



5.3. Derivation of the effective model

while the jump conditions at order 1 are given by

oul oW,
‘Pl‘S:O7L _p1|a:1:0* = P ) U1‘5:0+ — ’U,1|$1:07 = _C707
815 x1=0 aﬂ’j2 (5 88)
8u0 8WN ’
Plar=er = Pllo=(ney- = B et gy e+ — UMsovg- = —C Oy

with (Wy, W) still given by (5.57) and (5.60).

The unique formulation

The last step in the construction of the effective model is to gather the contributions (p°, PY, u?, U°)
at order 0 and (p!, P',u',U') at order 1 into a unique problem. Inside the equivalent
metacrystalline region, we introduce the pressure and flow rate fields (in the curvilinear
frame)

P=P'+eP! and U=U"+cU', (5.89)

while in the surrounding air we introduce
p=p"+ep' and w=u’+ecul. (5.90)

Using (5.84) and (5.25), it is straightforward to deduce the final effective wave equations
(5.2)-(5.3) after using the dimensionalization procedure (5.9). The derivation of the unique
formulation of the jump conditions is more involved as it requires the introduction of mean
quantities. At the entry of the metacrystalline region, in virtue of the continuity of the flow
rate (5.87) at order 0 combined with (5.89)-(5.90), we have

1
x1:0* o 2 325

Now, summing the contributions (5.87) at order 0 and (5.88) at order 1 on the pressure
together with (5.91), we finally get the jump condition on the pressure (5.7) at the entry (up
to the second order in €). Next the continuity equation on the pressure (5.87) implies that
(5.57) gives

our
ot

Lou
x1=0" 0t

s_0+> +0(e). (5.91)

or

8W0 _ 1 (9]9 or
r1=0" (%g

—=—| = (0] 5.92
o =3 (o N RTC 592
which allows to deduce from (5.87) and (5.88) the jump condition on the flow rate (5.7) at
the entry (up to the second order in ¢). The same exact procedure can be applied to get the

final jump conditions at the exit of the metacrystalline region.

Getting the final jump conditions at each junction is more involved because it needs to
introduce the enlargement of the interface due to the finite size of the turning region (at
order 1). This is done in order to ensure stability of the model which requires that a positive
definite energy can be defined; exemples can be found in [38, 95] and the positivity will be
proven in the forthcoming section 5.4. To do this, we aim to express the jump conditions,
when going from the slot n to the slot (n+ 1), in terms of s values s =nf —e and s =nl+e
(with e = (n++)e). By doing a Taylor expansion as € < 1 of the continuity conditions (5.86)
on the pressure field and using (5.84), it can be shown that
o)

2
Po‘s:n@re - Po‘s:nffe = _55(77 + V)W + O(€2>7 (593)
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Chapter 5. Modelling of a metacrystal

with the mean operation defined as

<f> = % (f’s:n€+e + f‘s:né—e) . (594)

Similarly at the next order, by doing a Taylor expansion on the first order jump condition
(5.86) on the pressure, we have
Lo0U o(P
Plscntre — Psepp—e = =D o) _ (6 + (5)L +O(e). (5.95)
ot 8.732
Now multiplying (5.95) by € and adding the contribution (5.93), we obtain the desired jump
conditions (5.5) at the junction on the pressure field (valid up to the second order in €) with

2(n+7)
5

The unique formulation of the jump condition on the flow rate at the junction is obtained
similarly. We first enlarged the continuity condition (5.86) with a Taylor expansion to get

o(P)
ot
with (P) defined by (5.94). We proceed similarly with the jump condition at the first order

to get
o(P) oU)
Uls*n e*Ulszn—e:* *2(5 —5
|s=ne+ |s=ne (&n = 207) =5~ — 0+ &5~

Now multiplying (5.98) by € and adding the contribution (5.97), we obtain the desired jump
conditions (5.5) (valid up to the second order in ¢).

D =D+ . (5.96)

UO’s:né-i-e - U0|s:n€—e = _26(77 + ’7)5 + 0(52)7 (5'97)

+0(e). (5.98)

5.4 Energetic properties

5.4.1 Energy balance of the effective model

We consider a rectangular domain 2 = (—Ly, L) X (—Lg, Ly) with L; > ¢ so that € contains
the crystalline region. In the direct problem given by (5.1), the classical energy balance
equation is given by

d 1
d&, +/ m-nde=0, with & = 2/ (xp* + plul?) de, (5.99)
o0 Q

dt
where &, is the acoustic bulk energy and @ = pu the Poynting vector that accounts for the
flux energy throughout the boundary 92. A similar energy balance can be obtained for the
effective model (5.2)-(5.8). Specifically, it involves four contributions to the energy and reads
d . 4
— [EF + &+ ER + EM] + / - -nde=0. (5.100)
dt ) ; 90
The bulk energy £¥* is the standard energy stored in 2/Q*, the region of the surrounding
air, with Q* = (0,¢) x (—Lag, L) C €, namely

) 1
goir — / (xp? + pluf? ) dz. (5.101)
2 Q/Q*

88



5.4. Energetic properties

The bulk energy £7°" is the effective energy stored in the straight slots. Expressed by means
of the curvilinear coordinate, it reads:

goor = 1 Z / / o (xoP* + £20%) dsda (5.102)

The surface energy £™/°* is the sum of the effective energies stored in the boundary layers
at the entry/exit of the coiled slot and it reads

gsin/out: 3 / p (hCW2 + hB(U)2) das (5.103)
nG{ON}

Finally the surface energy £™™" is the sum of the effective energies stored in the boundary
layers at each turning region between two consecutive slots; it reads

g = 2 Z/ xh(20 + E)n(P)? +phD<U>i) das. (5.104)

A proof of the positivity of the effective coefficients (B,C, D) is given in the supplemen-

tary material. This ensures the positivity of the surface energies, hence avoiding numerical
instabilities in the time domain, see [10] for a detailed analysis of such issue.

5.4.2 Derivation of the energy balance

Multiplying in (5.3) the momentum balance and the mass balance by §U and P, respectively

(for each segment s € (s,},s,, ;) with n € {0,. —1}). Adding the contributions, we get
B aP o (PU)
+ Sl o 1
s€(sy,8,.1), XOP o + 5U 875 s = 0. (5.105)
Similarly in the air we have
gt +pu - ({;t + div(pu) = 0. (5.106)

To obtain a balance of energy, we start with the energy stored in the surrounding air by
integrating (5.106) over ©/Q*, which makes (5.101) appear. Next we integrate (5.105) over
x3 € (—La, Ly) and each segment (s}, s, ), which makes (5.102) appear. Summing the two
contributions, and after application of the divergence theorem, we get

N L
d .. 2
el gall‘ + gks)lot _ PU n dl‘z -+ mw'n dm = 07 5107
b
dt s 1)

with £ and &' given by (5.101)-(5.102). The terms associated to the surface energies
appear as we have the identity [PU], = [P],(U), + (P),[U]n. Specifically, by using the
jump conditions, we get for n =0 or N,

I(P),,Wn)

[PU], = — Dics ,

p (heW? + hB<U>i) —hC

5% ( (5.108)
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Chapter 5. Modelling of a metacrystal

and, for 1 <n < (N —1),

O((P),(U),)

PU|, =
[PU] Dy

< (xh(25 + (P + phD{U)2) — h(s +€) (5.109)

1

2dt
We obtain the surface energies (5.103)-(5.104) after integration along z2 of (5.109)-(5.108)
(up to some flux terms at the edges of the crystaline region at xo = +L9 and associated to

the integration of the last term in (5.109) and (5.108). These contributions will be left out
of the present analysis).

5.4.3 Positivity of C

The parameter C is defined by C = fy+ (% + 1) dy. It is sufficient to remark from (5.42)
that

O:/QQA(Q2+x2) dy:_/+\va2+e2\2 dy+C—/ V,0dy,  (5.110)
Yy Yy Y-

to get that
C>0. (5.111)

In the above integration by parts, the boundary term | ay(Qg)an (Q2 + x2) dS vanishes since
(i) on the rigid parts of ), 0,(Q2 + x2) = 0, (ii) in the connected regions, Q2 and V,Q2 are
periodic, and (iii) at 1 — +00, 0,(Q2 + x2) = V,Q2 - €1 = 0. Also, we have used that

0
| Vi V@renay= [ vl [ e G
Y- Y- y- 042

and the last integral of the right hand-side term vanishes since )2 is xa-periodic in Y.

5.4.4 Positivity of B

The proof relies on the variational formulation of the solution @1 of the elementary problem
(5.42). If we introduce @] defined on subset domain Y* C ), truncated at z; = +y] and
which is solution of

AyQT=0inY*, 0,Q71 =00nT", Q] zy-periodic in Y~ NY*,

\ . 5.113)
00" . 10t . (
A1, (y1,22 € }/(1)) = 5’ o1 (—yi,22 € (0,1)) =1,

then @ solution of (5.42) is the limit of Q7 when y; — oo (up to a constant). Next, Q7
minimizes the energy functional

E(Q7) < E(Q),

EQ)= [ 5IVaF ay - D) A1

where

~ 1 ~
D@ =1 [ Oyt wa) des /0 O(—yi, ) das, (5.115)

Ya
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5.4. Energetic properties

for any test function @) with a gradient being square integrable (in fact Q in H'()*)) and
periodic on Y~ N Y*. In particular we have

D(Q7)
2 Y

B(Q}) = - (5.116)

since an integration by part shows that 0 = f; QTAQT dy = —2E(Q7) — D(Q7). We now
choose an admissible test function Q of the form

r1, x1 <0,

Qy) = (5.117)
%, x1 > 0.

The energy E(Q) of such function using (5.114) is
EQ)=—(1+1/8)y;/2. (5.118)
It is now sufficient to plug (5.116) and (5.118) in the inequality (5.114) to get
D(Q7) > (1+1/6)y; (5.119)
Finally, using (5.43), we have for yi — +oo that D(QF) ~ B+ (1 + 1/0)y], whence

B> 0. (5.120)

5.4.5 Positivity of D

The proof is identical to the positivity of B. It relies on the variational formulation of the
solution @ of the elementary problem (5.70). If we introduce @* defined on subset domain
Vi C Ve, truncated at 1 = yj and which is solution of

AQ =0inY), 0,Q"=0o0nT7,

. 5.121)
Q" 1o0Qr 1 (
Oy (y17x2 EYv(n—i—l)):_g’ Oy (ylaxQEYY(n)):gv

then @ solution of (5.70) is the limit of @* when yj — 400 (up to a constant). Next, Q*
minimizes the energy functional

P(Q) < (6;2)
P(Q) = 5\ OF dy — L(Q), (5.122)
where ,
= 5/}/@ Q(y1, r2) dwy — /Y(n+1> (y7, z2) dxa, (5.123)

for any test function Q with a gradient being square integrable (in fact Q in H'(Y?)). In
particular we have

L(@Q)

PQ) = == (5.124)
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Chapter 5. Modelling of a metacrystal

since an integration by part shows that 0 = fy* Q*AQ* dy = —2P(Q*) — L(Q*). We now

choose a test function Q of the form

+n—
- sgn(ﬂ?z)%, x>y,
Qly) = (5.125)

0, otherwise.

The energy P(Q) of such function using (5.122) is

P@Q) =0 +n-y1)/d (5.126)
and it is now sufficient to plug (5.124) and (5.126) in the inequality (5.122) to get
L(Q) = 2(yf — (v +m))/6. (5.127)

Finally, using (5.71), we have for y; — +oo that L(Q*) ~ D* 4 2y; /0, whence D* > —2(n +
v)/d and given (5.95), we deduce that

D > 0. (5.128)

5.5 Validation of the effective model in the transient regime

In this section, we inspect the validity of the effective model in the transient regime by
comparison with a reference numerical solution. The details on the numerics is provided in
the next chapter. For simplicity, we consider hard walls with zero thickness, i.e. £ =~ = 0;
next, the length of the slots is £ = 2h, and their width is A/N (hence 6 = 1/N), with
N =3,5,7.

7

. ___ e

Figure 5.7: Pressure field in the coiled crystal for an incoming Gaussian pulse (§ = 70° and
cr/h =2.51n (5.129)), (left) from direct numerics; inset shows a magnification in the coiled
structure, (right) from the effective model. The red arrow illustrates the vector n and the
black arrow the vector n'.
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5.6. Conclusions

We consider an incident pressure field in the form of a Gaussian pulse s at oblique incidence
f, namely
. 2
P (x,t) =s(x-n/c—t), where s(t)=e @), (5.129)

with 7 the width of the Gaussian, n = (cos6,sinf) and ¢ = 1/,/px the speed of sound. The
pressure field of the reference solution computed numerically at ¢ = 0 is represented in figure
5.7 (left), for 8 = 70°, er/h = 2.5 and N = 3. The transmitted pulse is propagating with
the same vector n = (cos 6, sin ) as the incident pulse, and the reflected pulse is propagating
with the vector n’ = (cosf, —sinf). The corresponding pressure field in the homogenized
model is obtained by solving the effective problem (5.2), (5.3), (5.5), (5.7) for a time har-
monic dependency e~®?. The resulting reflected and transmitted fields are deduced from the
scattering coefficients r"(w) and t"(w) by Fourier transform,

pl(x,t) = 2Re / i (w)e ho1eibrz 5 () eiwt dw} ,
0 | | , (5.130)
pl(x,t) = 2Re / th(w)e®@E1=0 gibr2 5 () —i0t dw} .
0

with §(w) the Fourier Transform of s(¢) (additional informations are provided in the supple-
mentary material). The result in shown in figure 5.7(right) which is in good agreement with
the reference solution.

To allow for quantitative comparisons, we report in figure 5.8 snapshots of the numerical
solution (plain blue lines) and of the homogenized solution (dashed black lines) for z/h €
(—60,60) and ct/h € (—30,100). For simplicity, that is to say to get a true one dimensional
system, we have considered § = 0. The result is shown for N = 3, as in figure 5.7, and
for N = 5 and 7. As expected, the time delay between the incident pulse and the first
transmitted pulse is equal to At ~ N{/c corresponding to the time-of-flight inside the coiled
structure; likewise the time delay between two successive reflected pulses is equal to 2At. In
figure 5.8, it results that the non-dimensional time separation 2cAt/h = 4N, where {/h = 2,
and non-dimensional spatial separation is Az/h = 4N.

This feature is common to both of the winding arrangements shown in figure 5.1, that is
to say that the behaviour of a Fabry-Pérot slab with a relative refraction index ~ N. In our
metacrystal, however, the magnifications in the insets of the figures 5.8 and the single profile
reported in 5.9, for x/h € (—400, 400) at time ct/h = 350, reveal additional scatterings
at the turns associated with the shorter time-of-flight ¢/c. These additional scatterings are
attributable to the crystalline structure of the present arrangement and do not take place
in the classical one as seen in the previous chapter. We note that in our model the main
scattering at the extremities of the slab (the coiled crystal) is taken into account by the jump
conditions (5.7), whereas the scattering at each turning region within the slab (the atoms of
the crystal) is taken into account by the jump conditions (5.5). The combination of these two
ingredients allows us to be faithfully reproduce the scattering properties of the metacrystal.

5.6 Conclusions

In this chapter, we have reported a space-coiled structure with properties that differs dras-
tically from the one presented in the previous chapter 4. By rearranging the coiled slot,
new dispersive effects can be obtained. A model that is able to accurately reproduces the
scattering properties of a space-coiled metacrystal has been provided. The model accounts
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Figure 5.8: Snapshots of the pressure for the same structure as in figure 5.7 (§ = 0) of the
reference solution (plain blue lines) and of the homogenized solution (dashed black lines).

for the propagation inside the coiled up space by reducing the problem to one dimensional
propagation with effective jump conditions at each turn which account for the presence of
possible strong evanescent field. The treatment at the turns allows the model to take into
account the crystalline structure and its dispersive behaviour inside the array. These effects
have been illustrated in the transient regime, and validate compared to full wave numerics.

We discuss the perspectives the presented model. As the structure posses a crystallin
structure, one can envision a model with slots in the coiled up space of different width. For
instance, defect modes could be studied, with one slot of different width. Another possible
extension is the one considering a multiple port system inside the coiled up space, for instance
the junction of three slots with only one entry slot on one side of the array but two exit slots on
the other side. This would need some additional treatment at each junction, but the method
remains the same. One could then consider a symmetric unit cell, and obtain possibly more
complex responses by some symmetry braking. Such system could exhibit trapped mode as
presented in chapter 3.
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0.8

-0.4 ‘ :
-400 0 400 -400 0 400
x/h z/h
N=7
0.8 - ‘

0.4 S S S —
-400 0 400

x/h

Figure 5.9: Pressure profile (as in (5.8)) for c¢t/h = 350. The multiply scattered pulses due
to the crystalline structure are visible in the inset fo width z/h € (275, 355).

95



Chapter 5. Modelling of a metacrystal

96



Chapter

Properties of the meta-crystal

Chapter summary: In this chapter, we present the solutions of both the numerical and
effective model presented in the previous chapter. We solve the numerical problem in the
harmonic regime, from which we obtain the time domain simulation. Similarly, we express
the effective model in the harmonic regime. From this, we study the scattering problem
of a plane wave. We analyse the band diagram of the embedded crystalline structure, and
illustrate how it affects the scattering properties of the total structure.
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6.1 Introduction

In this chapter, we provide some numerical results to the structure presented in the previous
chapter. Using a multimodal method, we provide the full wave numerical results from which
the simulations in the transient regimes present in the previous chapter are obtained. We
compare the effective model with direct numerics in the harmonic regime through a scatter-
ing problem of a plane wave. The effective model is rewritten thanks to a transfer matrix
formulation, which only depends on the effective parameters or geometrical parameters.

6.2 Validation of the model in the harmonic regime

6.2.1 Explicit solution of the effective model

In the harmonic regime, the problem reduces to solve the Helmholtz equation for the pressure

field P. To simplify the notation, we drop the . The jump conditions between s = s, and
— ot

s = s, are

[P]n = phD&ag?” —h(5+ f)f)é];in’
2 (6.1)
[OF] = "5 + ey, —n(s+ )% <§x>
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Chapter 6. Properties of the meta-crystal

and at the entry s = s('f and the exit s = sy of the crystaline structure, the jump
conditions reads

opr
1P = 2Tl

For simplicity, we will consider the case of a sound hard material of zero width, meaning
that £ = v = 0. We consider a structure of thickness 2¢ that is centred along 1 = 0. The

incident plane wave p™® has a wavenumber k and hits the slab at 2; = —¢ with an incidence
0,
inc<

P w) — e’ikox1+’ibox27 (63)

with kg = kcosf and by = ksinf. We have the solution outside out the slab in the form of

ROt pe=thomi gy € (00, —0),
p(x) = 0?2 x (6.4)

tetko(z1=0) x1 € (¢,00),

while the solution inside the slab is defined piecewise

Pn(s,22) = (Sp cos(ks) + A, sin(ks)) 02, (6.5)

We can obtain the explicit solution of the scattering coefficient in the form
t 1 : 1 agN—1
0 = Mtot - , Wlth Mtot = MoutM Min, (66)

where we have used a transfer matrix formulation. M, represents the transfer matrix of
the whole array, and is completely determined by the transfer matrices M ;,, M and M .4,
corresponding respectively to the jump conditions at the entry, each junction and at the exit
of the crystal. They are explicitly given by the effective parameters and the geometry, and
reads

]

T m 2
2kl 2kt

Figure 6.1: The transmission coefficient for two different configurations. Plain lines corre-
spond to direct numerics and the dashed line to the effective model.
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20

Figure 6.2: Symmetries of the array: Although the unit cell does not posses any symmetry
along the 1 or x5 axis, it does posses a rotational symmetry. This implies that r(k¢,6) =
ri(ke,-0) and th(ke,0) = th(kt,-0).

| Zie* Ziar | LB Zp
Mout - ( Zza Zla > ) Mm - ( Z;ﬁ* Zikﬁ* ) (67)
where ,
Zy=1+k 4 (kophB— %th) ,
2 (6.8)
Zy=1-to_j (k:oph13+ k—%xhc) ,
and
1 *, %
M=— ( AT AT ) . (6.9)
where
z1=1-— leg - Zg? + i(Zl + 32)7
z9 = Z(Zl — ZQ) s (610)
z3=1+ 2129 — Z32 + 2123,
and

Zy = xkh(26 + €)n/2, 25 = pkhD/2, Z5=Dboh(5+&)/2, (6.11)

with a = e*h g = ¢k(2l=1h) and 7 = ¢k(26=20h)  We report in figure 6.1 the transmission
coefficient of the actual problem and the effective model for the cases N = 3,5, with £ =
h, their corresponding width éh = 1/N and n = 0.05. The two solution are in excellent
agreement.

6.2.2 Time domain formulation

As mentioned in the previous chapter 5, we consider an incident Gaussian pulse with a given
angle 0
. 2
P, t) = s(x-njc—t), where s(t)=e W) (6.12)

and we have its analytic Fourier transform $(w). We use a multimodal method to solve the
actual problem in the harmonic regime. The derivation is presented in the appendix 6.A.
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We obtain the scattering coefficient (r,,t,), with n the number of modes. Knowing that
$(—w) = §*(w), we have for the modal problem

“+o00 00 ‘ '
> [ et e dw},
el (6.13)

400 )
pe(x,t) = 2Re{ Z / tn(w)e®n @10y (25)5(w)e ™! dw} ,
0

n=—oo

pr(x,t) = 2Re {

with k, = \/k? — b2, with b, = by + 2n7/h for a given by and for n € Z. The transverse
function is given by ‘
Y (2) = npetn®2, (6.14)

where n,, is a normalisation factor. The same is done for each subdomain when performing
the modal method. For the effective problem, we do not compute the field in the junctions,
where we instead have effective jump conditions over an enlarged surface. We compute the
reflected and transmitted field in the same way as for the modal problem.

[e.e]

e t) = 2mef [T r)e o ia)s)e  au
0

o ' ' (6.15)

pl(zx,t) = 2Re {/ t(w) e @1 =0y (19)§(w)e ™! dw} .
0

We can in a such manner easily retrieve the full time domain solution. Numerically, we
truncate the integration at wg, for which we consider that the contribution of § is insignificant.
For a sufficiant spectral precision, we consider the time step At < 1/(fmax), where frax is
the maximum frequency used to compute the harmonic solution.

6.3 Scattering properties of the effective model

In this section, we present some more general properties of the system. To simplify the
notation, we set p = x = 1. We consider the scattering problem of the considered grating.
We look for plane wave solutions of the form

A_eik(z1+0) 4 B_e*ik(lerz), x1 € (—o0,—0),
p(z) = 2 x (6.16)
Aue®@1=0 4 Be=ih@=0 5 € (4, 00),
with the jump conditions (6.2) applied at x; = 4/ outside the grating. A: and B. are the

complex valued amplitudes of the left and right going wave components. We obtain through
a transfer matrix formulation the scattering coefficients (77, "), namely

A Al . ] _
< B+ > — M,y ( B > ,with My = ML, MYN"1 M, (6.17)
" :

The coeflicients of the transfer matrix simplifies in the case of sound hard walls of vanishing
thickness £ = v = 0. Namely,

Zl = khT], ZQ = th/Q, Z3 = bohé/?, (618)
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6.3. Scattering properties of the effective model

We take a moment to comment the obtained transfer matrix formulation of the problem.
The transfer matrix method is often encountered for one dimensional problem, such as closed
waveguides, or layered material, which although they depend on the angle of incidence, are not
truly two dimensional problems. The presented structure differs from the ones mentioned
above as the behaviour inside the grating/coiled media is two dimensional and does only
interact with exterior at the opening at each end point of the crystalline structure. Although
the problem is reduced to one dimension s inside the grating, it still depends on the variable
x2. From a physical point of view, the dependence on x5 is purely an artefact which appears
in the derivation of the effective model in order to take into account the phase shift along o
inside the grating.

At normal incidence, the propagation is purely one dimensional and the matrix M behaves
as a typical transfer matrix of one dimensional problems, with the properties such as its
diagonal and anti diagonal terms are respectively complex conjugated, and detM = 1. These
properties translates out to the full total transfer matrix M,. However, when considering
an oblique incidence 6 # 0, the term z3 admits an imaginary part in terms of by. Several
properties are revisited for My, = (m;j). mi2 = —mai, however no clear relation exist
between mj; and moe, and only |det M| = 1 holds.

For an incident right going plane wave of incidence 6, p°(x) = etho(z1+O)+iborz  where
ko = kcos@ and by = ksin#, we obtain the scattering coefficients (r®,t") by plugging in
the form (A-,B)T = (1,7")T and (A4, B.)" = (t",0)". Similarly, for a left going wave
po(x) = e Ho(@1—=O+ibor2 e obtain (7, t") by plugging in the form (A-, B-)T = (0,t")7T
and (A4, By)" = (rh, 1)T.

One easily obtain

ma1 mi2
P ph 21 T2 (6.19)
ma2 ma2
and
M21M12 1
=y, = 222 yn 2 (6.20)
ma2 ma2
/‘///
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Figure 6.3: Band diagram of the embedded crystal at normal incidence with the corresponding
geometry on the right.
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Chapter 6. Properties of the meta-crystal

The energy conservation |r"|24|¢#|2 = 1 holds for all frequencies and for all angle of incidence
0. The above relations reflects some of the underlying symmetry properties of the geometry,

see figure 6.2. The linear dependence of b cancel out in the formulation of r", consequently
rh(ke,0) = r(ke, —0).

6.4 Effect of the embedded crystal

Using the transfer matrix formulation (6.17), we can identify the underlying mechanism of
the complex structure. Indeed, the matrix given in (6.9) takes into account the effect the
turns that acts as scatterer. To study its behaviour, we consider the infinite one dimensional
crystal of periodicity e = 2¢ —2n and we look for solutions of Bloch waves. By considering the
matrix M at normal incidence, i.e. kg = k and by = 0, one obtains the analytical dispersion
relation of the periodic crystal, namely

1— (kh)2Dn kh(2
cos(qe) = =2 ey - FIE D Gy, (6.21)
1+ (kh)221 1+ (kh)2 21

where ¢ is the effective Bloch wavenumber. The effective parameter D depends on the geom-
etry of the turn, and is thus a function of n. We report in figure 6.3 the band diagram for
four different values of . One can tune the dispersions relation so that coiled grating act as
a homogeneous medium, obtained for a critical value n = n, = D/2. Numerically we obtain
the value 7, ~ 0.1868136. For this value, the non-diagonal terms of transfer matrix in (6.9)
vanishes resulting in a non-dispersive medium. The dispersion reads

khD
1— (kh)2D?/4’

where ¢ is a nonlinear phase shift. As mentioned in the previous section, the physical study
of M only makes sense at normal incidence. For 6 # 0, the imaginary part of z3 act as
dissipation and no clear band gaps can be observed.

To study the effects that the dispersive material has on the properties of the grating, we
plot in figure 6.4 the transmission coefficient for several values of 7 and N = 3, the simplest
coiled material. The comparison between the full numerics and the model is shown, and
we see that the model is extremely accurate in the low frequency regime. For the specific
configuration 1 = 7,, the model exhibits perfect Fabry-Perot resonance, however with a non
evident effective length ¢,. Otherwise, one can clearly observe the effects of the presence of
band gaps inside the grating. As the band gaps open up on either side of the Dirac point,
one can tune the transmission of the grating. Although the model loses in accuracy for
larger frequencies, it still gives us good insight on the underlying mechanisms present in the
problem.

A feature of a Fabry-Pérot slab is the presence of reflectionless excitation at half wave-
length resonance 2kf, = 7 when 7,. This is the case when the zeros of r", i.e. mq lie
on the real axis when k is extended to the complex plane. As band gaps open up in the
medium, the closest zeros of " are pushed away on either of its side. Considering the case
1N < 7%, the reflectionless state is on the lower side of the band is pushed toward decreas-
ing frequencies until it coalesces with another zero at an exceptional point of reflection less
states at 7 = ngp. The two transmission peaks becomes one quadratically flat transmission.
As 1 < ngp, the two zeros of 7 leave the real axis and become complex conjugate. This

cos(ge) = cos(kl + ¢), ¢ = atan (6.22)
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Figure 6.4: Transmission coefficient |¢| for four different values of 1. From top, n =
0.25,74,0.1,0.01, where the three corresponds to the ones presented in 6.3, and the last
corresponds to the extreme case of a small opening. The blue shaded areas corresponds to
the band gaps of the embedded crystal.

is illustrated in figure 6.6. It is the coupling between the ”opacity” of the medium and the
Fabry-Pérot slab that give rise to this phenomenon. As illustrated in [143], this is an example
of exceptional points in a lossless system. In another study [50], similar results are obtained
experimentally. In this study, such points are observed in a Fabry-Pérot system in which
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T T 1
/||!,m|

Figure 6.5: Transmission coefficient |t| against the frequency 2k¢ and the opening of the turn
1. Top, direct numerics and bottom effective model. Left, at normal incidence, and ,right,
oblique incidence 6 = 40°. The cut-off frequency is illustrated by a white dashed vertical line.
The grey shaded area corresponds to the band gaps of the embedded crystal and the dashed
black horizontal line illustrates the value 7,

0 T 2m 3m
2kl

24

Im(2k¢)

™
Re(2k0)

Figure 6.6: Reflection coefficient log|r| against the frequency Re(2k¢) and Im(2k¢) in the
complex plane. Top corresponds to n = 1y, and zeros of relfection due to Fabry-Pérot
resonance are visible in blue along the real axis. The corresponding pole in red and is located
below the perfect transmission. Bottom corresponds to n = 0.01. The black and grey line
corresponds to the path of the respectively zeros and poles. We observe two exceptional point
at the coalescence of two zeros.
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Figure 6.7: Reflection coefficient |r| against the frequency 2k¢ and the angle of incidence 6.
Top, direct numerics and bottom the effective model. Left, for n = 7, and observe at low
frequency the Brewster angle. Right, n = 0.1, the appearance of band gaps completely breaks
the Brewster angle.

<

<

the scattering strength is tuned in a symmetrical manner. Such phenomena typically rely on
some underlying symmetry.

We report the reflection coefficient in the complex plane in figure 6.6. We track the path
of the zeros and poles as we vary the tuning parameter 7. We observe exceptional points
where two zeros coalesce on the real axis, and become complex conjugate. As they become
complex, they follow the typical parabolic path. The path of the reflection less state when
1 > 1 is less intuitive, as shown in the top in figure 6.4. As the reflectionless state is located
inside the band gap of the medium, the physical interpretation is not evident.

The following results are summarised in the figure 6.5, where the amplitudes of the trans-
mission coefficient ¢ and t" plotted against the frequency and the tuning parameter n for
two different angle of incidence. We can observe that the predictions of the large model are
accurate for surprisingly frequencies, as well as for fairly large . The overall behaviour of
the model completly fail at the cut off frequency, where a second propagating mode appears,
as expected as the model is condustructed for kh < 1.

The study of the problem at normal incidence gives us good insight in the band structure
of the embedded media and the effect it has on the scattering properties of the grating.
Similarly, we can observe what happens at oblique incidence. A Fabry-Pérot slab typically
feature a Brewster angle cos 0y = §, for which the structure admits perfect transmission for
any frequency. As mentioned in [124] at the intersection between the perfect transmission of
the Fabry-Pérot and Brewster angle, due to coupling of a strong evanescent field, the perfect
transmission don’t intersect. This is well captured by the model, as shown in figure 6.7.
When band gaps appears, the Brewster angle disapears.

6.5 Conclusion and perspectives

In this chapter, we shown how the embedded crystal affects the scattering properties of the
grating. The model derived in chapter 5 allows us to decouple the problem which leads
to an analytical study of the one dimensional crystal and deeper insight. Some interesting
perspective are straighforward, as we are interested in the future of the proposed systems in
Figure 6.8. The first one consists of slots of different width. This means that the periodicity
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is doubled, and as there is an odd number of slots, the last periodicity is cut in half. The
second consist of a port like structure. The last one is similar to the second, but with the
possibility of a phase shift as one branch is longer than the other.

I
Il
i

Figure 6.8: Possible metacrystal configurations

106



6.A. Multimodal method

6.A Multimodal method

We present the method to solve the actual problem in the harmonic regime. This leads to
solving the Helmholtz equation for which we use a multimodal method similar to Rigorous
Coupled Wave analysis. It relies on partitioning the domain into different subdomains and
projecting the waveform on adequate basis. We consider an incident plane wave of the form

pinC(m,w) _ eik0z1+ib01'2’ (6.23)

with k, = \/k? — b2, with b, = by + 2n7/h for a given by and for n € Z. The solution of
the scattering problem is expanded in the following way. To begin, we consider the domain
outside the crystaline structure, and we write the solution as follows:

+oo
P, w) + Z e Fnleh (1), z1 € (—o0, —{),

plx,w) =< L n=meo (6.24)
Z tne"k"(“%)wn(a:g), x1 € (¢,00).

Next, we treat each slot in the region z1 € (—/¢,¢), where we define the interval Xg) =
x() + 6h/2(=1,1), with ;) = (j — 1)h(d + &) + Eh/2, for j € {1,...,N}. In each horizontal
slot of width dh, we write the fields as following

(s 2 € Xig) = 3 AVt 4 B =ales=6 ) D ),
n=0
pg) (71,72 € X(j),w) = Z (A,(Z)em"(xﬁe—e) + Bg)e_i””(“_”e))) YO (), (6.25)
n=0
pavy (1,22 € Xy, w) = Z (Agv)emn(xﬁe*e) + BT(zN)efmn(m*eU i ().
n=0

The junctions are treated in the same way, where we define the interval X (Cj) = m%) + (26 +
§h/2(—1,1), with () = j(6+&)h, for j € {1,..., N—1}. We write the fields in each junction

Py (@1, 22 € X(j),w) = Z CY) cos (Kp(x1 — vh)) 9 (22), (j even),
0 (6.26)
Py (1, w2 € XG),w) =Y CP cos (Kn(wy — (£ —yh))) @ (x2),  (j 0dd).
n=0
The tranverse functions
¢n($2) = nneibn127
¢$Z) (xg) = ng) cos(an(z2 — 1(;))), with  a, = nn/(6h), (6.27)

cp,(z)(xg) = ny, cos(cn (w2 — 2(;))), with  cp =nm/((26 + §)h),

form orthonormal bases for the scalar products (a,b)y = [, a(x2)b*(x2) dxz, with b* the
complex conjugate of b, for Y = X, X(;, X (Cj) respectively (with the proper normalisation
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()

factors n,, nn' and ng). For practical purposes, it is important that each order of the above
expansion satisfies the Helmholtz equation. The wavenumbers k, and K, are therefore

defined as follows
En=VEk:—a,, K,=VEk?—c,. (6.28)

The solutions (6.24) and (6.25) are matched at 1 = ¢ by imposing continuity conditions
for the pressure and the normal velocity field, for i =0, ...,

1 1 * *
<P|_z,¢§ )>X<1> = (p(1)|_e,¢§ )>X<1> , (021210, V7)) ¢ = (OmiP)00 V) ¢ »

(6.29)
(Pwﬂ/)zm)x(m = (P(N)@WZ(N))X(N) v (0P ¥7) « = (Omvyie V7). -

When integrating over X, we have taken into account the Neumann boundary condition
Oz,pjo,e = 0 for x5 € X\ X5y and x5 € X\ X(n). By the same means, we match the solutions
(6.25) and (6.26) in 1 = +(¢ — e) with e = (v + n)h. For simplicity, we only consider the
matching at 1 = —¢ + e, and we have for j ={1,...,N — 1} and for i =0, ...,

(pT‘Z—I—e’ wi(]:)>X(j) = (ﬁ(m-f-f-ea wi(j)>X(j) ’.
(pf_g+e, i) o = (p(j+1)\-€+ea ! “)) : (6.30)

XG+1)
(aﬂﬁlp(‘:_£+e7 (1010)) . (ax1p(j)|—ﬂ+ea (1057)) + (am1p(j+1)|—£+ea 901(7)> )
X6 Xa) Xg+1
where we have taken into account the Neumann boundary condition 9, Plope =0 for x9 €
X\X(j)UX(j41). In practice, we truncate the series to M), terms for p, My terms for p;, and
M; terms for pf;. The modal matching problem thus reduces to 2 x (2MgN+M;(N —1)+M,)
equations for (4MyN + 2M;(N — 1) + 2M),) unknowns, and is solved by a simple matrix

inversion, with a source term composed of the projections of p® onto 1#1(1) and 0., p™° onto
Y (first line in (6.29)).
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Chapter

General conclusions and perspectives

7.1 General conclusions

In this thesis, we have studied the properties and modelled several acoustical metamaterials.
As mentioned in the introduction, the possibility of having local resonances in the context
of acoustic waves in fluids is rather limited, and we have focused on the halfwavelegnth
resonance due to slots in a sound hard grating. The microstructured grating can be replaced
by an effective medium derived through different asymptotical homogenization methods. We
have obtained closed form solutions of the approximated effective models, allowing for a
physical study the problem.

The work has been divided into two main parts. The first part deals with scattering
of an acoustical wave by a dual-period grating. In chapter 2, we have recalled classical
homogenization results for layered media, and more specifically, we have applied it to a
regular grating with sound hard part. We have shown that the dispersion relation of the SPP
localized at the interfaces can be recovered by a homogenized model at dominant order.

The main contribution of this part is presented in chapter 3, where an effective model of a
dual-period grating is derived. Such grating typically supports Fabry-Pérot resonances that
interact with Fano resonances. When a dual period grating is considered, perfect trapped
modes exist and do not interact with scattering continuum. By breaking the symmetry
of the unit cell, by considering one slot wider than the other, the perfect trapped mode
becomes a quasi-trapped mode, which leads to sharp asymmetric peaks in the transmission
spectrum. The homogenization is done thanks to classical two-scale homogenization in the
bulk combined with matched asymptotic techniques at the interface. The specificity of the
bulk homogenization is the fact that two effective medium are derived in order to take into
account the highly oscillatory fields from a slit to another. The two effective medium are
matched to each other and the outside domain through non trivial jump conditions. The
model has been validated by comparison with numerical results obtained with a multimodal
method.

We have used the effective model to give some further insight into the physical phe-
nomenon. By performing a local analysis around the Fabry-Pérot resonances explicit expres-
sions of the two complex resonances poles are obtained, which provide a deeper understanding
on their link with the perfect- and zero-transmissions. The limitation of the model has been
addressed as well.

The second part of the thesis concerns the study of so-called space-coiled metamaterials.
It concerns two types of winding arrangement which exhibits different scattering properties.
In chapter 4, we deal with the classical space-coiled structure and it is the one that is most
present in the existing literature. The major flaw of the existing effective models is the unclear
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definition of the length of an uncoiled straight slot. We have revisited the problem with a
two-scale homogenization approach. The model is derived at leading order, which yields an
effective refractive index and impedance mismatch without any ambiguity. The space-coiled
structure supports Fabry-Pérot resonances, and the intuition that it behaves as an equivalent
straight slot holds.

In chapter 5, we present what we refer to as a meta-crystal. By considering a different
coiling arrangement, one can benefit from two scales. As the straight part of coiled slot can be
of the order of the wave length, Bragg scattering can be observed as the turns act as scatterer.
This couples with the subwavelength nature of the grating. The homogenization leads to a
reduced one dimensional propagation in the straight part with effective jump conditions at
each turn. The reduced model is then coupled to the outside domain through additional
jump conditions. The dispersive behaviour of the crystalline structure is accounted for and
is illustrated in the transient regime. A detailed energy analysis is provided to assure the
stability of the model in the time domain.

In chapter 6, we have presented some physical properties of the presented meta-crystal.
The explicit solution of the effective model allow us to decouple the problem and study the
dispersive behaviour of the embedded crystal. We illustrate how the opening of band gaps
inside the array affects the scattering properties of the total structure.

7.2 Future perspectives

We conclude this chapter with an overview of some future interesting and possible extensions.

In the first part, we have only considered the case of acoustical waves in a two dimensional
setting. Extending the acoustical setting to three dimensional propagation is straightforward.
In this setting, one can be interested in different dual bi-periodic gratings. For instance, the
honeycomb lattice is tempting as it has several symmetries. In general, extending this works
to other types of waves is of high interest. In the case of elastodynamics, it can be interesting
to study the interaction between shear waves and pressure waves in the presence of a dual-
period.

In chapter 3, we mention the limitation of the model at the edge of the Brillioun zone.
To overcome this, one can consider another asymptotic parameter, such as the width of slot
small compared to the periodicity.

As mentioned in chapter 3, the study of double inclusions in a metasurface is also a
possible extension. Notably, in the context of Minnaert resonance, a dual period setting has
been considered in [6]. Inspired by the works in [126], we can consider the nonlinear bubble
to bubble interaction in a dual-periodic setting.

In the second part, we have for the moment only considered the case of perfect peri-
odicity. As space-coiled metamaterials has shown promising results in terms of wave-front
manipulation, an extension toward quasi-periodicity is of high interest. Building on the works
presented in [12, 138, 123], an effective model could be derived. Obtaining such a model could
be interesting from a design and optimization point of view.

In chapter 6, we discuss the extension of the study of the meta-crystal. One can consider
different periodicity of the embedded crystalline structure, as shown in figure 6.8. For the
moment, we have only focused on the effect that the crystalline structure has on the scattering
properties. A thorough study on the effect it has on the guided waves is an ongoing work.
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7.2. Future perspectives

Finally, we need to address the fact that all of the works presented in this thesis have
been done in an ideal lossless setting. When accounting for losses due to viscothermal effects
can become dominant leading to an absorbing medium. In this context, one can tune the
paramaters and obtain perfect absorption through critical coupling, see for instance [132].
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Résumeé Dans cette thése, on s'intéresse a
la modélisation des métamatériaux acoustiques
résonants. En utilisant des techniques d’ho-
mogénéisations asymptotiques, on dérive et analyse
des modeles effectifs pour deux systéemes acous-
tiques résonants différents.

La premiére partie est consacrée a I'étude d’un
réseau de période sub-longueur onde composé de
fente. Dans le cas d’'un réseau a double période, com-
posé d'une cellule périodique avec deux fentes, on
s'intéresse a la configuration ou une certaine symétrie
est brisée. Ce faisant, le champ évanescent le long
de la structure peut se coupler avec le continuum qui
se propage. Les résonances parfaites deviennent des
guasi-résonances, ou des modes fuyants, ce qui en-
traine un comportement frappant dans le spectre de
transmission ou I'on observe des pics asymétriques
de type Fano. La dérivation du modele effectif ho-
mogénéisé du réseau a période double est obtenue
par une combinaison d’homogénéisation en volume

Titre : Méthodes asymptotiques pour des métamatériaux acoustiques résonants (en frangais)

Mots clés : Méthode asymptotique, métamatériaux, propagation des ondes, homogénéisation

et des méthodes de raccordements asymptotiques.
Le modeéle obtenu permet d’obtenir des solutions ex-
plicites et analyser les mécanismes résonnants sous-
jacents du systéme.

La deuxieme partie porte sur les matériaux labyrin-
thiques ou ‘space-coiled materials’. Ces matériaux re-
posent sur I'idée que I'onde acoustique est forcée de
suivre la trajectoire de la fente enroulée. Deux types
d’enroulement sont étudiés.

Lenroulement communément rencontré dans la
littérature est revisité par I’homogénéisation et donne
un résultat plus précis que des études précédentes.
Le deuxieme type d’enroulement est ce que nous
appelons un méta-cristal. Cela peut étre interprété
comme un cristal phononique unidimensionnel im-
briqué dans un réseau sub-longueur d’'onde, et
bénéficie maintenant de deux échelles de longueurs.
La structure peut exhiber des bandes interdites
dues a la diffusion de Bragg qui sont couplées aux
résonances Fabry-Pérot.

Abstract : In this thesis, we are interested in the
modelling of resonant acoustic metamaterials. Using
asymptotic homogenization techniques, we derive
and analyse effective models for two different acous-
tical resonant systems.

The first part is devoted to the study of subwavelegnth
grating composed of slits in a sound hard slab. We are
interested in the case of a dual-period array, some-
times referred to as compound gratings. When dealing
with a dual-period grating, composed of a periodic unit
cell with two slits, we are interested in the configura-
tion where some symmetry is broken. By doing so, the
evanescent field along the structure can couple with
the propagating continuum. The perfect resonances
become a quasi-resonance, or leaky modes, and this
leads to some striking behaviour in the transmission
spectra, where asymmetric Fano like peaks are obser-
ved. The derivation of the homogenized effective mo-
del of a dual period metagrating is obtained through
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a combination of bulk homogenization and matched
asymptotic techniques. The obtained model allows for
the derivation of closed form solutions and an analyti-
cal study of underlying resonant mechanisms.

The second part focuses on space-coiled materials
or labyrinthine materials. These materials rely on the
idea that the acoustic wave is forced to follow the path
of the coiled slot. Two types of coiling arrangement
are studied.

We revisit the most encountered coiled arrangement
through homogenization and show that it gives a more
precise result than previous studies. The second ar-
rangement is what we refer to as a meta-crystal. It can
be interpreted as a one dimensional phononic crystal
embedded in a subwavelength grating, which now be-
nefits from two length-scales. The structure benefits
from band gaps due to Bragg scattering, that is cou-
pled with the Fabry-Pérot resonances.
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