ACKNOWLEDGEMENTS FIGURE LIST TABLE LIST

INTRODUCTION I. BIBLIOGRAPHY

ACKNOWLEDGEMENTS

Words cannot express my gratitude to my supervisor Prof. Artan SINOIMERI for the full support since the first day of this project, from whom I have been lucky to learn a lot and I still have a lot to learn.

A major thanks goes to the professors, members of the jury: Prof. Jean-François GANGHOFFER, Prof. Samir ALLAOUI, Prof. Gilles HIVET, Prof. Jean-Yves DREAN and the co-director of my thesis Ass. Prof. Ligor NIKOLLA, for their priceless advices and feedbacks that allowed me to undertake this journey. I am also grateful to everyone in the laboratory: professors, office mates, support staff that helped me every day during my stay in France.

Lastly, I would be remiss in not mentioning my family: my parents, my sisters, my fiancé.

Their belief in me has been my biggest motivation to continue even in the rough days. 

THANK YOU Nertila OGRENI

TABLE LIST

INTRODUCTION

Many researchers have highlighted the fact that textile fabrics present complex mechanical behaviour, difficult to predict by conventional methods. This complexity arises partially from the behaviour of yarns composing the fabric, which present very often geometrical and/or material nonlinearities, but also from the large number of fabric and/or yarn parameters to be taken into account. It is in this context that this Ph.D. work is being taken.

The first chapter deals with the bibliography about the mechanical behaviour of thin rods. Different studies and models, often based on Kirchhoff`s theory, have been presented and discussed.

Il follows Chapter 2 concerning some preliminary trials carried on single fibres out. Different methods have been applied and compared to FEM results. Some comparisons and comments at the end permit us to decide on using the De Jong & Postle method ensuring rapidity and precision.

Coherent fibre behaviour has been obtained and the procedure has been implemented in a Matlab code.

Chapter 3 deals with fabric models. A brief description of geometrical and mechanical fabric is presented, and then the code developed for single fibres is applied to charge and deform the plain fabric following some typical experimental tests in order to optimize it and validate the preliminary.

After the validation of the computing code, Chapter 4 describes a complete factorial design used to charge a plain fabric in uniaxial, biaxial, and/or shear forces, all in the same type, called 'multiload' situation, the principal aim being to assess the relationships between forces and deformations by a linear correlation procedure.

A final chapter concerning conclusions end this manuscript.

I. BIBLIOGRAPHY

MECHANICAL BEHAVIOUR OF THIN RODS.

Every material subjected to some external constraint (forces and/or torques) moves and is deformed, i.e., its form and dimensions change. The motion of a rigid body is described by Dynamics, whereas its deformations are given by Elasticity. The basic concepts of elasticity are stress and strain. The stress has the dimensions of force per unit area, or, less often, force per unit length. Strain, on the other hand, means a relative change in body shape or size, implying that strain is dimensionless and has no units.

Let us consider a unit cell of dimensions (dx, dy, dz) given in Figure I.1. There are 3x6=18 stress components applied on this unit cell, but, considering the static equilibrium of the cell, this number is reduced to 6 independent terms -3 normal and 3 shear stresses -which form the stress tensor.

The latter can be written as a vector of 6 components. Similarly, one can consider the deformation of this unit cell: 3 longitudinal strains and 3 shearing ones, composing the strain tensor, which can be written as a vector of 6 components. The statement of Hooke's Law is the more general statement, which relates these two physical quantities. In its linear form, which does not include second gradient effects -i.e., linear behaviour, it states that, within the limit of elasticity, the strain (ε) of the solid is always proportional to the stress-induced (σ) in the solid due to some external force. This proportionality is given by the inverse of the elasticity tensor. 

I-1

For an isotropic material, there are only two independent parameters in the tensor [E], the Young Modulus E and the Poisson's ratio 𝜗, relating stress and strain following the equation:

𝜎 𝑖𝑗 = 𝐸 1+𝜗 (𝜀 𝑖𝑗 + 𝜗 1-2𝜗 𝜀 𝑘𝑘 𝛿 𝑖𝑗 ) I-2
where 𝜀 𝑘𝑘 is the trace of the strain tensor (sum of its diagonal elements), whereas 𝛿 𝑖𝑗 is the Kronecker symbol.

There are different types of anisotropic materials, but as far as fibres and thin roads are concerned, the more interesting one is the transverse isotropy, which means that the properties are symmetric about an axis that is normal to a plane of isotropy. If the first axis X1 defines the symmetry, then the elastic behaviour of the material is governed by the tensor 
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where L and T represent respectively longitudinal and transverse directions, and G is the shear rigidity.

When a stretching force (tensile force) is applied to an object, it will be deformed. The components of the strain tensor are calculated from the displacement vector 𝑢(𝒓), 𝒓 is the position vector, as follows [START_REF] Landau | Theory of Elasticity[END_REF] [5] [6] [START_REF] Boresi | Theories of Stress and Stain[END_REF]:

𝜀 𝑖𝑗 (𝒓) = 1 2 ( 𝜕𝑢 𝑖 (𝒓) 𝜕𝑥 𝑗 + 𝜕𝑢 𝑗 (𝒓) 𝜕𝑥 𝑖 ) + 1 2 𝜕𝑢 𝑘 (𝒓) 𝜕𝑥 𝑖 𝜕𝑢 𝑘 (𝒓) 𝜕𝑥 𝑗 I-4
In general, the second term is negligible, i.e., linear elastic behaviour. By integrating eq. I-1 and eq. I-4, it is possible to calculate the displacement vector u(r).

If the displacement vector 𝑢(𝒓) is considered to be not negligible concerning body dimensions (or 𝒓), in this case, we are dealing with the second type of non-linearity, the geometrical one [START_REF] Landau | Theory of Elasticity[END_REF] [4] [START_REF] Pomeau | Elasticity and Geometry. From hair curls to the non-linear response of shells[END_REF]. The deformation modes of thin rods and fibres are strongly concerned by this type of nonlinearity. For example, when a long thin rod is slightly deformed by an external force, its ends may drift a considerable distance, even if the relative displacements of neighbouring points in the rod are small. There are two types of deformation of a thin rod, which may be accompanied by a large displacement of certain parts of it. One of these consists in twisting the rod, and the other one in bending it (Fig.

I.3).

A torsional deformation is one in which, although the geometry does not change, meaning that the rod remains straight, each transverse section is rotated through some angle relative to those below it. If the rod is long, even a slight torque moment causes sufficiently distant cross-sections to turn through large angles, which is easily visible by geometric changes. The generators on the sides of the rod, which are initially parallel to its axis, become helical under torsional conditions. A bent rod is stretched at some points and compressed at others. The generator lines on the convex side of the bent rod are extended, and those on the concave side are compressed. As with any other shape of material, there is a neutral surface in the rod, which undergoes neither extension nor compression. It separates the region of compression from the region of extension. To describe the deformation of a thin rod, it is convenient to proceed as follows. The rod is divided into infinitesimal elements of length ds, each of which is bounded by two adjacent cross-sections.

Then the rod is subjected to external forces. The co-ordinate system in each element is rotated, and in general differently in different elements as a function of distributed external forces. Any two adjacent systems are rotated through an infinitesimal relative angle.

KIRCHOFF'S EQUATIONS FOR THIN RODS.

The first investigation of any importance is that of Elastica or elastic line given by Bernoulli in 1705 in which the resistance of a bent rod was assumed to arise from the extension and compression of its longitudinal filaments and the equation of the curve was assumed by its axis.

This development involves that the resistance of bending is a couple proportional to the curvature of the rod [START_REF] Michel Nizette | Towards a classification of Euler-Kirchhoff filaments[END_REF]. This result was assumed by Euler in his later treatment of the problem of Elastica.

The mathematics of elastic rods, known as Elastica was compiled in the 1730s, with the work done by Bernoulli and Euler [START_REF] Love | A treatise on the mathematical theory of Elasticity[END_REF]. The theory of bending and twisting of thin rods was a long time developed independently of the general equations of elasticity, by similar methods employed by Euler. The flexural and torsional couples as well as the resultant forces of the section must be sought out in terms of general theory. The obstacle was that the general equations could be used only for small displacements. The first one to work on this was Kirchhoff, who found out that the general equations are strictly applicable to a small portion of a thin rod if the deformation and the parameters of the rod are in the same order of magnitude [START_REF] Love | A treatise on the mathematical theory of Elasticity, Chapter I, 4th Edition[END_REF].

The theory of Kirchhoff is a great kinematical extension when a thin rod is bent and twisted. The strain is distributed on every element of the rod, based on one of Saint-Venant's prisms, but neighboring elements must fit. To express that, the conditions take the form of differential equations correcting the displacements of the points and with the quantities that define the position of a small element of the rod.

From these equations, Kirchhoff deduced an approximate calculation of the strain in an element of the rod and thence an expression of the potential energy per unit length in terms of extensioncompression, components of curvature, and twist.

In 1859, Kirchhoff discovered the equations that describe the thin elastic rod in equilibrium are mathematically identical to those used to describe the dynamics of the rigid body [START_REF] Hearst | The Kirchhoff elastic rod, the nonlinear Schrodinger equation, and DNA supercoiling[END_REF]. Kirchhoff only solved the initial value problem of the thin symmetric rod in equilibrium. Based on Kirchhoff's theory, we suppose that a thin rod is bent, so it has a certain curvature and then it is Therefore, we have 9 unknown quantities and 6 equations connecting them: (N, N', T) the forces, (G, G', H) the couples, (X, Y, Z) the coordinates referred to the principal axis and (K, K', θ) the deformations. There is a need to find out three additional equations, which will lead to the calculation of the curvature and the twist angle of the rod. Referring to a generalization of the Bernoulli-Eulerian theory, which consists of assuming that the stress couples are proportional to the curvature and the twist as follows:

G=𝑨 • 𝑲 G'=B•K' I-9

H=C• 𝝉

where: A=B=E•ω•ρ 2 ; C=A/2 are the rigidities respectively in bending in two cross-section directions and in twisting.

E is Young's modulus, ω is the area of the cross section and ρ is the radii gyration about two crosssection axes. The fibre taken into consideration has a circular cross-section and its material is isotropic, which means it has the same mechanical properties in any radial direction.

MODELIZATION.

Since the beginning of this research, the initial idea was to find out a mathematical model for our simulations, which would make it possible to reach easier and faster the final goal: the deformation state of a fibre or a structure composed of fibres. Three models have been considered: is the parallel transport model, which consists of a moving frame during the centreline of the rod.



BENDING AND TWISTING OF THIN RODS.

The special circumstance of this problem, on which the theory must take account, is the possibility that the relative displacements of the parts of a thin rod may be by no means small, and yet the strain may be small enough to satisfy the requirements of the mathematical theory. [START_REF] Antman | The Ambiguous Twist of Love[END_REF] In the unstressed state, the rod is considered to be cylindrical, and the homologous lines of crosssection are parallel to each other. If the rod is twisted without bent, linear elements of different cross-sections, which are parallel in the unstressed state, become inclined to each other.

We select one set of linear elements, which in the unstressed state are parallel and lie along the principal axis of the cross-section. When the rod is bent and twisted, the twist cannot be estimated so simply. We suppose that the central line becomes a tortuous (curving) line with curvature 1/df, and it measures the tortuosity [START_REF] Antman | The Ambiguous Twist of Love[END_REF]. The total twist comes from the bending deformation in two directions and the tortuosity caused by an external couple of forces.

When the rod is deformed, initial directions do not continue to be at right angles to each other but using them we can construct a system of orthogonal axes x, y, z, (different from x, y, z).

The origin of this system is the displacement position P1 (material frame) at P. The z-axis is tangent at P1. The orientation of the axis z is chosen to be that in which the arc s of the centreline measured from some assigned point of it increases and the sense of the axis of y is determined by the condition x, y, z to be a right-handed system.

If P1 is a point at the centreline near P and P1' is the new position after deformation (displaced position of P). The extension ε of the centreline at P1 will be calculated as below:

lim 𝜕𝑠→0 𝜕𝑠 1 𝜕𝑠 = 1+ ε I-11
where:

𝜕𝑠 1 =𝑃 1 𝑃 1 ′ and 𝜕𝑠=𝑃𝑃 1 .
The material is considered to be inextensible when ε is equal to 0.

Suppose the origin of a frame of x, y, z (P1) moves along the strained centreline of the rod with unit velocity on the direction of principal torsion-flexure axes. The angular velocities directed along the instantaneous positions of the three axes are K, K' and τ respectively the components of curvature and the twist at P1.

The new definition of twist consists of that which is given in the case of a rod with no bent and K and K' are the curvatures of the projections of the strained centreline on the planes y-z and x-z [START_REF] Postle | An Energy Analysis of Woven Fabric Mechanics Using Optimal Control Theory, Part I: Tensile Properties; Part II: Pure Bending Properties[END_REF].

We can measure tortuosity using this relation [START_REF] Antman | The Ambiguous Twist of Love[END_REF]:

1 𝛴 2 = lim 𝜕𝑠 1 →0 [𝜕𝑙 2 +𝜕𝑚 2 +𝜕𝑛 2 ] 𝜕𝑠 1 2 I-12
Where l, m, n are the cosine direction of the binormal related to the fixed axes and l', m', n' are the cosine direction of the binormal referred to fixed axis in strained state of the rod [START_REF] Love | A treatise on the mathematical theory of Elasticity[END_REF].

Based on Kirchhoff's equations (eq. I-8) we can write 9 differential equations which will lead us to the solution of our problem.

{ 𝑑𝑙 1 𝑑𝑠 1 = 𝜏𝑙 2 -𝑘 ′ 𝑙 3 𝑑𝑙 2 𝑑𝑠 1 = 𝑘′𝑙 3 -𝑘𝑙 1 𝑑𝑙 3 𝑑𝑠 1 = 𝑘𝑙 1 -𝜏𝑙 2 { 𝑑𝑛 1 𝑑𝑠 1 = 𝜏𝑛 2 -𝑘 ′ 𝑛 3 𝑑𝑛 2 𝑑𝑠 1 = 𝑘𝑛 1 -𝑘 ′ 𝑛 3 𝑑𝑛 3 𝑑𝑠 1 = 𝑘𝑛 1 -𝜏𝑛 2 { 𝑑𝑚 1 𝑑𝑠 1 = 𝜏𝑚 2 -𝑘 ′ 𝑚 3 𝑑𝑚 2 𝑑𝑠 1 = 𝑘𝑚 1 -𝑘 ′ 𝑚 3 𝑑𝑚 3 𝑑𝑠 1 = 𝑘𝑚 1 -𝜏𝑚 2 I-13
From here, by solving these differential equations, we can find the three parameters of curvatures and twist, which are the ones necessary to know the new geometry of the strained state of the rod.

𝜏 = 𝑙 2 𝑑𝑙 1 𝑑𝑠 1 + 𝑚 2 𝑑𝑚 1 𝑑𝑠 1 + 𝑛 2 𝑑𝑛 1 𝑑𝑠 1 𝑘 = 𝑙 3 𝑑𝑙 2 𝑑𝑠 1 + 𝑚 3 𝑑𝑚 2 𝑑𝑠 1 + 𝑛 3 𝑑𝑛 2 𝑑𝑠 1 I-14 𝑘′ = 𝑙 1 𝑑𝑙 3 𝑑𝑠 1 + 𝑚 1 𝑑𝑚 3 𝑑𝑠 1 + 𝑛 1 𝑑𝑛 3 𝑑𝑠 1
In the case of the inextensible fibres, since ε≅ 0, we can write ds1=ds. By replacing at equation, I- Referring to the work done by Love [START_REF] Love | A treatise on the mathematical theory of Elasticity[END_REF], cosine direction can be expressed as below [START_REF] Love | A treatise on the mathematical theory of Elasticity[END_REF]: De Jong & Postle`s work is based on the study of a single fibre, using the mathematical model of Love and the optimal control theory [START_REF] Postle | An Energy Analysis of Woven Fabric Mechanics Using Optimal Control Theory, Part I: Tensile Properties; Part II: Pure Bending Properties[END_REF], but the same equations can be obtained as follows by

Lagrangian mechanics, which is a formulation of classical mechanics founded on the stationaryaction principle (also known as the principle of least action).

Let's consider a function y=y(s), which enables the following integral to be extremal:

𝐼 = ∫ 𝐹(𝑠, 𝑦(𝑠), 𝑦 ′ (𝑠))𝑑𝑠 𝑠 2 𝑠 1 I-17
It is obvious that this integral is independent of the parameter s.

The question is to find out, among all y(s) functions, which one ensures the extremal (maximum or minimum) value of the integral I. According to the Euler-Lagrange theorem, this function should satisfy the solution above:

𝑑 𝑑𝑠 ( 𝜕𝐹 𝜕𝑦′ ) - 𝜕𝐹 𝜕𝑦 = 0 I-18
Let's introduce the Lagrange for a mechanical system:

𝐿(𝑍 𝑘 , 𝑍 ̇𝑘, 𝑡) = 𝑇 -𝑊 I-19
where T and W are respectively kinetic and potential energy.

If a space geometric variable s is used instead of the time t, and the body is deformed under external stresses without moving, i.e., static deformation, the Lagrangian represents the total negative potential energy accumulated in the deformed body.

Let's now introduce the Hamiltonian function.

𝐻 = ∑ 𝑝 𝑙 𝑔 𝑙=1 𝑍′ 𝑘 -𝐿(𝑍 𝑘 , 𝑍′ 𝑘 , 𝑠) I-20
where g is the number of the independent variables.

Hamiltonian function represents the total energy: the work done by external forces and the strain or internal energy accumulated within the body during its deformation, giving thus mechanical equilibrium, which means that the work of external forces is being transformed into strain (internal) energy.

If in equations I-17 and I-18, the function F is the Lagrangian L, the point is to find out the evolution of the independent co-ordinates y(s) and 𝑦̇(s) which minimize the energy accumulated in the system when external forces 𝑝 𝑙 are applied on it.

The solution is given by the canonical equations of Hamilton:

𝑍′ 𝑙 = 𝜕𝐻 𝜕𝑝 𝑙 I-21 𝑝′ 𝑙 = - 𝜕𝐻 𝜕𝑍 𝑙 I-22
If variables Zi are not independent, i = (1… n), where n>g, it is necessary to introduce g independent variables using a vector known as the "vector of control". The latter, defines the state equations:

𝑍′ 𝑗 = 𝑓 𝑗 (𝑍 1 , … , 𝑍 𝑛 , 𝑢 1 , … , 𝑢 𝑔 ), 𝑗 = 1 … 𝑛 I-23
which depends on the chosen geometrical model. The function to be minimized 𝑈(𝑍, 𝑢) is the same physical quantity, potential energy in our case, but with the constraints given by the state equations I-23. The minimization of this function is equivalent to the minimization of the Hamiltonian, where the Lagrangian is replaced by 𝑈(𝑍, 𝑢). The canonical equations hold, but in addition, the equilibrium is given in this case by:

𝜕𝐻 𝜕𝑢 𝑙 = 0, 𝑙 = 1 … 𝑔 I-24
The physical significations of equations I-24 depend on the choice of the vector u= (u1…ug) and the state equations I-23, from simple force equilibrium equations to more complicated expressions.

The independent variables were chosen by De Jong and Postle. The work of De Jong and Postle is a baseline study in this area.

PARALLEL TRANSPORT. BISHOP FRAME.

A theory of discrete Cosserat rods is formulated in the language of discrete Lagrangian mechanics.

By exploiting Kirchhoff's kinetic analogy, the potential energy density of a rod is a function on the tangent package of the configuration manifold and thus formally corresponds to the Lagrangian function of a dynamical system. [START_REF] Jung | A discrete mechanics approach to Cosserat rod theory Part 1: static equilibria[END_REF] Firstly, let's start with some basic concepts such as Cosserat rods. [15] [16] Cosserat rods are described by a smooth curve r(s): [s0, s1] → 𝑅 3 in 3d space. An orthonormal frame with the basis vectors {m1(s), m2(s), t(s)} is attached to every point of the curve in such a way that m1 and m2 span the plane of the rod's cross-section and t = m1×m2 is the normal of the cross-section.

The main idea of this model is to move the material frame during the length of the rod, by following its centreline in its strained state. So, we move the plane (m1(s), m2(s)) across the binormal vector with an angle equal to the total curvature of the rod and then by twisting it with an angle that depends on the moment applied on the rod, as shown in the change of (b1) material curvature κ1 related to the direction m1 of the cross-section, (b2) material curvature κ2 related to m2, and (b3) twist. The total curvature will be calculated as the first derivative of the tangent vector t of the curve, whereas the latter is the first derivative of the position vector r. So:

K=𝑡 (s)=𝑟(s) I-25
The three principal deformations based on Discrete Elastic Rod theory [START_REF] Jung | A discrete mechanics approach to Cosserat rod theory Part 1: static equilibria[END_REF] [8] are:

𝜔 1 =𝑡 ṁ1 I-26 𝜔 2 =𝑡 ṁ2 I-27 τ=𝑚 1 𝑚 2 I-28
Based on this mathematical model, [8] [17] [18], some tests have been carried out and shown on the next chapter. The curvature of the centreline of the rod is linearly proportional to the applied bending moment.

The deformation of the rod is planar, and the cross-sections are normal to the centreline as the rod is deformed [START_REF] Bergou | Discrete Elastic Rods[END_REF]. In the formulation of Bergou`s theory [START_REF] Pomeau | Elasticity and Geometry. From hair curls to the non-linear response of shells[END_REF], the centreline of the rod is subdivided into a series of n-1 edges and n vertices. The length between two neighbouring nodes can be calculated below:

𝑙 𝑘 = 𝑑𝑠 = 𝐿 𝑛-1 I-29
where L is the total length of the rod.

As n increases, the solution provided by the discrete elastic rod formulation converges to the deformed centreline predicted by Euler's Theory of Elastica. [START_REF] Khalid | A Primer on the Kinematics of Discrete Elastic Rods[END_REF] To build this model, three types of frames are used. The first one is the fixed frame (e1, e2, e3), which follows the centreline in the unstressed state. The second one is the intermediate frame which follows the centreline after bending stress (n, b, t) or Frenet Frame and the third is the moving frame or Bishop Frame (m1, m2, m3) which follows the centreline in the deformed geometry. It is possible to apply two types of stresses on the rod: forces or couples. By considering the i th node, the force is constant during the length of the vertex. This way the forces and couples applied on the rod can be written in the fixed frame (e1, e2, e3) as follows:

𝐹 ⃗ ={ 𝐹 1 𝐹 2 𝐹 3 } I-30 𝑀 ⃗⃗⃗ ={ 𝑥 𝑖 𝑦 𝑖 𝑧 𝑖 } { 𝐹 1 𝐹 2 𝐹 3 } = { -𝑦 𝑖 𝐹 3 + 𝑧 𝑖 𝐹 2 𝑥 𝑖 𝐹 3 -𝑧 𝑖 𝐹 1 -𝑥 𝑖 𝐹 2 + 𝑦 𝑖 𝐹 1 }= { 𝑀 1 𝑀 2 𝑀 3 } I-31
Then the binormal vector 𝑏 ⃗ ⃗ can be calculated as follows:

𝑏 ⃗ ⃗ ={ 𝑘 1 𝐾 𝑘 2 𝐾 0 } I-32
where k1 and k2 are the curvatures in two cross-section directions and K is the total curvature of the rod. They can be calculated as below:

k1=

𝑀 1 𝐵 1 I-33 k2 = 𝑀 2 𝐵 2 I-34 K=√𝑘 1 2 + 𝑘 2 2 I-35
where B1 and B2 are the bending rigidities of the rod in two cross-section directions. Considering transverse isotropic and circular thin rods/fibres, B1=B2=B.

As shown in Figure I.9, θ represents the bending angle of the rod and ϕ is the twist angle. Referring to [START_REF] Pomeau | Elasticity and Geometry. From hair curls to the non-linear response of shells[END_REF] [17] [START_REF] Bergou | Discrete Elastic Rods[END_REF] the twist angle and the total curvature of the rod are related by the relation below:

tg ϕ 2 = 𝐾 2 I-36
This way, it is possible to calculate the intermediate frame just by rotating the fixed frame through the tangent vector with an angle equal to the twist angle 𝜙, and after we rotate the treader with an angle equal to the bending angle θ. Based on references [START_REF] Pomeau | Elasticity and Geometry. From hair curls to the non-linear response of shells[END_REF] [17] [START_REF] Bergou | Discrete Elastic Rods[END_REF], the bending angle can be calculated as follows:

tan θ=-

𝑘 1 𝑘 2 I-37
The next step is to check if the equilibrium conditions are achieved for the deformed rod:

M1-k1B1≤ ∆ I-38 M2-k2B2≤ ∆ I-39 M3-τsC≤ ∆ I-40
where τs is the external twist; C is twisting rigidity and ∆ is an arbitrary accepted error value.

Due to large geometrical deformations of thin rods, the equilibrium conditions do not hold since the first calculation step, an iterative procedure has to be conducted. So, the algorithm based on this model is composed as follows:

 According to the actual geometry and applied external forces, calculate the curvatures k1, k2, K.

 Rotation through the binormal vector.

 Rotation through tangent vector

 Deformation geometry update.

 Calculation of couples.

 Equilibrium.

II. SINGLE FIBERS SIMULATIONS 2.1 INDEPENDENCE OF ENERGY TERMS.

The theory of thin rods, as considered first by Kirchhoff and Love, starts with the assumption that every cross-section of the rod behaves as in a random rigid body. The cross section in this case is a circular one, and it remains circular and planar. This implies that there are no strains 23 or 32

nor external forces applied on the rod surface -like friction ones-greater enough to deform the rod cross-section.

By integrating the tensorial relation of equation I-1, it is possible to compile the tensorial relation between displacements and the forces/torques applied on the road.

In addition, the elastic energy of an infinitesimal volume element (dx, dy, dz) is given by the equation: 

𝑑𝐸 = 1 2 𝜀 𝑡 [𝐸]𝜀 =
𝐸 𝑡𝑜𝑟𝑠 = 1 2 𝐺 𝐿𝑇 𝐼 𝑃 𝜃 𝑡 2 II-6
where I2 is the planar second moment of the cross-section according to the torque direction, K2 is the central line total curvature, θt is the rotation angle of the rod and Ip is the polar quadratic moment of the cross-section of the fibre. In addition, as long as the rod section is circular and the ratio rod length/rod diameter is greater than 10, the cross-section shearing energy term as well as the corresponding thin rod deflection are negligible concerning other energy terms or rod deformation terms. For this reason, only the first three terms of the above equation have been considered in the present work.

SOME COMPARISONS AND COMMENTS.

Let's show some results taken by using the Parallel Transport Model.

The two figures below show the fibre geometry after applying some punctual forces. In the first trial, there is applied only one punctual force at the free edge of the fibre. The results are shown in Postle oneat about 500 times less. It seems at this stage that the Parallel transport method is more adapted for our purpose. However, this gain in accuracy (0.71%) and in the total number of calculation cycles (at about 5 times less for Parallel transport method) will be largely counterbalanced where it will be necessary to calculate contact forces between neighbouring fibres/yarns (see section 3.3.2). For this reason, the De Jong & Postle method has been preferred and used in this study. The Computing Algorithm steps are as below [START_REF] De | A general Energy Analysis of Fabric Mechanics Using Optimal Control Theory[END_REF]  Feed-in a guess for controlling parameters m (noted u in equations I-23 and I-24) such that, after the next step, a loop shape with the correct interlocking characteristics may be obtained. The initial conditions of m1, m2, m3 that represent the curvatures and the twist of the fibre/thin rod depend on the initial geometry and conditions. For the boundary conditions, we know the derivatives and the initial position of the fibre or the forces and the torques.

 Integration of the state equations (I-21) to find out the loop shape.

 Obtain the shape of the surrounding bodies (including all types of possible jamming or contact) either from the symmetry consideration or from the above steps in the case of differently shaped yarns. 

 Integrate the costate equations (I-24).

 Check whether the energy gradients are less than a minimum value, chosen previously so that it can assure a good precision. If so, the mechanical equilibrium and energy minimum have been reached and computation closes. If not, it is necessary to update controlling parameters m, i.e., curvature and twist, before turning back to the second step of this algorithm. The parameters updating is performed according to the Newton-Rawson formula:

𝑚 𝑗 𝑘+1 = 𝑚 𝑗 𝑘 + 𝛼 [ 𝜕 2 𝐻 𝜕𝑚 𝑗 𝜕𝑚 𝑙 ] -1 [ 𝜕𝐻 𝜕𝑚 𝑙 ] II-8
where 𝛼 < 1 is the step size, often called the damping parameter. Very low values of 𝛼 increase the time to attain the convergence. Also, the computation may get stuck and stopped in a virtual potential cavity. For greater values of 𝛼, the computation may be prolonged unnecessarily by some (perhaps endless) back-and-forth updating around the real potential cavity. Therefore, it is important to use a proper value of this damping parameter in order to reduce as much as possible the time required until the reach of the equilibrium geometry.

Another important parameter related to the problem of convergence is the precision of the minimum of the elastic energy of the fibre after deformation (equation I-24). This parameter allows the insert of a limit value of the elastic energy gradient and fixes this way the accuracy of the results mechanical equilibrium. In the present work, the minimal value of the elastic energy gradient has been expressed as follows:

dE=10 -𝐴 II-9
The higher the value A, the closer to the real state of the minimum elastic energy the obtained results will be. The effect of the A value on the deflection of the rod in a cantilever configuration is shown in Another element was taken into consideration, to have the most optimal choice after all these trials. By having all these considerations, the most optimal value is taken A=8, and all the trials in the continuing work will be using this optimized value. i.e., without external charging, Z3 being this way the normal vector of rod cross-sections. First, the fibre is considered inextensible, then as an extensible one. Punctual or distributed external forces are applied on the fibre in Z2 or/and Z1 directions, as well as torques in the Z3 direction.

DATA ANALYSIS AND RESULTS

SIMPLE BENDING

Simple bending means that only bending forces are applied in the fibre on Z2 or Z1 directions.

These bending forces can be distributed, for example, by weight of the fibre, or it can be punctual, which means that it is applied at the end of the fibre, at the free edge of it. Below are shown some results obtained for these situations for different force values. It follows that when the fibre undergoes no parallel forces at different points, the fibre deflection shape seems like a twisted one. This effect is the so-called "The ambiguous twist of Love" [START_REF] Love | A treatise on the mathematical theory of Elasticity[END_REF]. In this case, there is no twist elastic energy accumulated in the deformed fibre. 

TWIST

Let us see now how a fibre responds to an external torque on the free edge of it with no other charging types. It is important to note that the torque vector is applied perpendicularly to the free section of the fibre, which means that its direction moves during the simulation paths. So, it meant that it was necessary to add another deformation parameter known as elongation and another term in the elastic energy of the fibre (eq. II 2).

This analysis was already performed before [START_REF] Sinoimeri | Contribution a l'Étude du Comportement Mecanique des Etoffes par Methodes Energetiques cas de l'Armure Toile[END_REF]. The traction rigidity is calculated based on the fibre material and its cross-section surface.

Y=E S II-10

where S is the fibre cross-section surface.

The new expression of elastic energy, the updated form of equation II-2 will be as follows:

𝐸 = ∫ ( 𝑙 0 𝐸 𝑡𝑟 + 𝐸 𝑏 + 𝐸 𝑡𝑜𝑟𝑠 )𝑑𝑠 II-11
As mentioned at the end of paragraph 2.2, the term of shear energy has been neglected, as well as the Timoshenko effect [START_REF] Goodier | Theory of Elasticity[END_REF] and the energy of traction/compression of the fibre is calculated as below [START_REF] Goodier | Theory of Elasticity[END_REF]:

𝐸 𝑡𝑟 = 𝑌[𝑚 ℎ -1] II-12
In equation II-10, the total energy is expressed by adding a fourth parameter of deformation besides curvatures m1 and m2 in two directions and twist m3: the elongation =mh-1. The convergence procedure described in paragraph 2. 

COMMENTS AND CONCLUSIONS.

Some examples of charging and deformation of single fibres are presented in the present chapter.

The computing algorithm works very fast, and the results seem in very good agreement with other classical methods (FEM) or less classical ones (Parallel Transport).

For this reason, the same procedure has been implemented in the fabric procedure computation.

III. FABRICS 3.1 MODELIZATION.

There are two large groups of models used to study textile structures:

 Geometric Models.
 Mechanical Models.

Both of them are analysed briefly below. 1. Precise information about the maximum density of yarn packing.

Possibility to calculate the relationship between different geometrical parameters.

Pierce explains in his work that this model can be used only for circular yarn cross-section, almost inextensible, and at the same time perfectly flexible [19] [21].

By using geometric models, it is possible to evaluate the fabric conditions. Also, the results obtained from these models are widely used to predict and control the mass and dimensional parameters in different phases of processing and the use of the fabric. Nevertheless, geometric models cannot be used for the analysis of the mechanical properties of a fabric. The reason for this failure is the fact that the geometric hypotheses do not allow the evaluation of the forces between the yarns. Indeed, if the fabric is perfectly flexible, this means that there is no force that develops in the structure when this yarn is wound or twisted around another yarn to create the fabric. As a result, there will be no energy stored in such a structure. The foundations for the mathematical treatment of the mechanical response of fabrics subjected to strain were also laid by Peirce. Indeed, most material models for fabrics that followed have been Although, this first model and the others created after it are based on similar principles and assumptions, there are some significant differences, especially based on the mechanical properties of the materials and the geometrical evaluations. We will mention some of them above.

Skelton (1971) compared the mechanical properties of triaxle and orthogonal fabrics. He found that the tensile strength of the triaxle fabric is dependent upon the amount of shear distortion sustained by the fabric at rupture, but it seemed probable that the variation of strength with direction would be less than the variation found in orthogonal fabrics. [START_REF] Hu | Structure and mechanics of woven fabrics, Chapter IV[END_REF] The model developed by Testa (1978), for example, is specifically related to PTFE 1 coated glass fibre fabrics and includes a component for the coating, which is assumed to be an isotropic plate.

The models of Olofsson (1964), Leaf and Anandjiwala (1985) and Huang (1979) include the yarn 1 Polytetrafluoroethylene is a synthetic fluoropolymer of tetrafluoroethylene.

bending deformation mechanism. A general approach that allows fabrics other than plain weave to be analysed was developed by Sun (1997). As a further example of how the many models vary, the Another discrete model of a fabric has been developed by Boubaker, Haussy and Ganghoffer from an analogical description [START_REF] Ben Boubaker | Discrete woven structure model: yarn-on-yarn friction[END_REF], using a mass-spring system of discrete elements. An element of fabric is modelled by a set of grid nodes endowed with a mass and connected with flexional and stretching springs. This model describes the mechanical behavior of a woven structure at a mesoscopic scale. An energy analysis of the discrete system of analogical elements is performed, considering the compression strain energy of the yarns and the work of the reaction forces exerted between yarns. A suitable discrete variational principle, accounting for the presence of the no holonomic forces arising from friction, serves as a basis for a numerical implementation.

The use of woven reinforcements is constantly increasing since they make it possible to obtain composite structures thin and light with complex shapes in a single operation. The simulation codes are necessary to respond, on the one hand, to the feasibility of the forming and, on the other hand, to predict the orientation of the reinforcements which will influence the mechanical behavior of the composite structure. Many codes based on a mechanical approach have been developed as shown in [START_REF] Hivet | Mechanical Behaviour of Woven composites[END_REF].

Recently, the Finite Element Method (FEM) is being used mostly and it uses the initial geometry based on a software similar to the mechanical model of Pierce. One of these softwares is TexGen [START_REF]TexGen[END_REF], which is an open-source software developed at the University of Nottingham for modelling the geometry of textile structures. TexGen has been used as the basis of models for a variety of properties, including textile mechanics, permeability, and composite mechanical behaviour.

Specific finite elements are proposed for modelling elementary strand and/or yarns, the elementary strain energy is calculated as the sum of the energies of deformations of each of these strands. This approach is a good fit with the physics of woven materials since it allows to introduce the behavior following the results of biaxial experimental tests, as shown in [START_REF] Boisse | Simulation de la mise en forme d'un renfort déséquilibré[END_REF].

ENERGETICAL METHOD.

The energetic methods can be often used to resolve complex mechanical problems, by substituting the geometrical evaluations with mathematical relation of the minimum of energy. The only obstacle for these models is that they can be used only for elastic deformation.

The method followed by De Jong and Postle to build their model [START_REF] De | A general Energy Analysis of Fabric Mechanics Using Optimal Control Theory[END_REF] is the more known example.

Following their work, it is possible to write more explicitly the mathematical equations of the model.

Starting from equation II.23, where the total energy is given as a sum of three principal elastic energy densities per unit length: bending energy density, torsional energy density and traction energy density. The relations to calculate each of these energetic terms are:

𝐸 𝑏 = 𝐵 2 𝐾 2 III-1 𝐸 𝑡𝑜𝑟𝑐 = 𝐺 2 𝜃 2 III-2
For the third term of energy related to traction, we will use formula II-24.

By using the energy equilibrium equations, from I-20 to I-24, the explicit form of external forces 

GEOMETRY OF THE FABRICS

The fabrics considered in the study are plain weaves, the most common ones in the textile industry, due to their properties related to the simplicity of their fabrication, with their geometric and mechanical characteristics. Indeed, considering the existing symmetries in this structure [START_REF] Goodier | Theory of Elasticity[END_REF], it becomes evident that the study of only 1/8 th of each yarn in the unit cell is sufficient to represent the whole structure. After having found the equilibrium shape of these two yarn portions, the whole unit cell and even more can be built by symmetry considerations.

EQUILIBRIUM OF THE STRUCTURE WITHOUT STRAINS.

Let us note first that, for simplicity reasons, all the calculations for the two yarns are carried out as if they were in the yarn 1 position. This means that, after calculating the shape of both yarns, the second one is placed by two rotations (first relative to the Z3 axis, then relative to Z2 axis) to its 'natural' place in order to calculate inter-yarn contact forces (Figure III.8). Also, to accelerate the computation, both yarns are placed at the beginning as straight segments on the Z3 axis, i.e., with a maximum interpenetration. They are bent during the simulation paths due to yarn-to-yarn contact forces until the mechanical equilibrium is achieved (equations III-3 to III-6). It is interesting to consider two types of contact forces:

 Punctual Contact.  Continuous Contact.
They are analysed in detail below.

To have better control of our work, we first considered punctual contact between yarns, which is not close to the real situation, but it will help later to control the geometry equations before they get more complicated by applying continuous contact.

PUNCTUAL CONTACT.

Before starting to analyse the punctual contact forces, is necessary to accept the assumption that the yarns, that compose the fabrics cannot penetrate each-other, and mathematically the maximal distance d (Fig. III.8) between the yarns can be written as follows:

d≤ 𝑑 1 2 + 𝑑 2 2 III-7
Even in a fabric without external strains, this distance has to be lower than (d1+d2)/2, which means that the contact force will compress both yarns in the O zone and bend them.

The boundary conditions for both yarns (without rotation of the second one to place it in its 'natural' place) in the case of punctual contact are summarized in the table below:

Table III-1: Boundary condition for coordinates and forces in the punctual contact. [START_REF] Sinoimeri | Contribution a l'Étude du Comportement Mecanique des Etoffes par Methodes Energetiques cas de l'Armure Toile[END_REF] Based on the geometry shown in Figure III.5, and on the assumption that there is only one interyarn contact force, the latter will bend both yarns in the plane Z2-Z3 (left hand of equation I-22), noted λ2=F, as in the original paper of De Jong & Postle [START_REF] Hearst | The Kirchhoff elastic rod, the nonlinear Schrodinger equation, and DNA supercoiling[END_REF]. F is the force applied on both yarns by the contact between them. In the case of punctual contact, this force can be calculated as an exponential function:

F=Fc( 𝑑 0 𝑑 -1) 𝛽 III-8
Where Fc is the magnitude of the function, and its value can be chosen arbitrarily or experimentally evaluated.

d0 is the minimum distance between the yarns, and it can be calculated as the sum of two radii of both yarns. If d> d0 then F=0.

d is the distance between the yarns calculated for each iteration path.

𝛽 is a parameter that takes into account the yarn compression rigidity. 

Now let us present

CONTINUOUS CONTACT

After obtaining coherent results by applying punctual contact between yarns, the main interest is to get closer to a realistic situation, where the contact between the yarns is considered to be a The boundary conditions for both yarns (without rotation the second one to place it in its 'natural' place) in the case of continuous contact are summarized in the table below.

Z 1 Z 2 Z 3 Z 4 Z 5 Z 6 λ 1 λ 2 λ 3 λ 4 λ 5 λ 6 Point 1 - 0 - - - - 0 - - 0 0 0 Point n 0 - 0 𝜋 2 - 𝜋 2 - 0 0 0 - - 0
Table III-2: Boundary condition for coordinates and forces in the continuous contact. [START_REF] Sinoimeri | Contribution a l'Étude du Comportement Mecanique des Etoffes par Methodes Energetiques cas de l'Armure Toile[END_REF] To calculate the continuous contact force, the first step is to build, for each iteration path, the whole unit cell of the fabric by symmetry evaluations. The entire geometry of the unit cell is build based on the relations below:

A1= [Ω1'', Ω1, Ω1'] A2= [Ω2'', Ω2, Ω2'] III-9
Where Ω1 and Ω2, are the yarns of 1/8 th of the cell, respectively for the first and the second fibre, as shown in Fig III .8.

Ω1' is the symmetric of Ω1 (first yarn) related to the extremal point (z1, 0, 0). Ω2'is the symmetric of Ω2 (second yarn) related to the extremal point (z1, 0, 0). Ω1'' is the symmetric of Ω1' (first yarn) related to 0Z2 axis.

Ω2'' is the symmetric of Ω2' (second yarn) related to 0Z2 axis.

This way all the information needed about the geometry of the fabric is collected and allows for to calculation of the compression forces.

After knowing the geometry, the force that each point of one yarn applies at each point of the other yarn can be calculated. Since the yarns composing the fabric are of the same material and with the same geometry parameters, diameter, and length, it is easier to calculate the effect of compression of one to the other.

Each one of these forces fji applied from the i th point of one yarn to the j th point of the other one can be calculated as: where dji is the distance between two candidate points, the i th point of the first yarn and the j th point of the second one; d1 and d2 are the yarn's initial diameters. Summing up all these terms on j or i, for each yarn point, the compression force applied on the point i or j of the other yarn will be: 

UNIAXIAL TRACTION AND BIAXIAL TRACTION

After completing the equilibrium geometry without external strains, external forces can be applied to the fabric in order to simulate the new equilibrium geometry after deformation. Based on the most common deformation tests for fabrics, the two principal external forces applied are:

 Traction, uniaxial or biaxial.

 Shear.

The first test we applied concerns uniaxial or biaxial traction on the fabric. 

Z 1 Z 2 Z 3 Z 4 Z 5 Z 6 λ 1 λ 2 λ 3 λ 4 λ 5 λ 6 Point 1 - 0 - - - - 0 0 F 1 0 0 0 Point n 0 - 0 𝜋 2 - 𝜋 2 - 0 0 0 - - 0
Let us note that in the case of uniaxial traction, the F1 boundary condition holds for only one yarn;

it is zero for the other free one, whereas this value is different from zero for both yarns in the case of biaxial traction. Different charging conditions have been applied, noted below as F1 and F2, symmetrical biaxial charging (F1=F2) or not (F1≠F2). where ε 1 is the longitudinal deformation according to the traction axis. 

SHEAR LOAD

The next charging mode we have considered is the in-plane shearing. Based on Figures III.7 and III.8, the shear plane will be the Z1-Z3.

Shear deformation can be studied only when the contact forces between the yarns are considered to be continuous, otherwise, lateral contacts between yarns will not be taken into account. If there is no traction applied on the fabric, but only shear forces, as shown in Figure III.22), the fabric undergoes pure shear deformation. The boundary conditions in pure shearing are presented in Table III-4, where F12 is the external shearing force applied to the fabric. where:

Z1 Z2 Z3 Z4 Z5 Z6 λ1 λ2 λ3 λ4 λ5 λ6 Point 1 - 0 - - - - F12 - - 0 0 0 Point n 0 - 0 𝜋 2 - 𝜋 2 - 0 0 0 - - 0

M is the actual torque on the Z2 axis (equation III-13).

Mo is the torque slipping threshold chosen arbitrarily.

Gg is the slipping rigidity Nm/radian.

Therefore, if the actual torque M, given by the equation III-13, is superior to Mo, then the angle Z4 condition in Table III.4 becomes:

Z4= 𝜋 2 -a g

III-15

Let us show some results obtained in pure shearing.

With the assumption that there is no yarn slippage, which means that the initial angle Z4 remains 𝜋 2 (Table III-4), the fabric after applying shear forces will look as follows: 

MULTILOAD CHARGE OF THE FABRICS.

After applying independently two types of charges, i.e., pure uniaxial/biaxial traction and pure shear, implying respective deformations on our structure, based on the final goal, it is important to apply both charges on the fabric: uniaxial/biaxial traction and shear. ( As it is known, if non-conservative phenomena occur, the final equilibrium will depend on the charging history. To avoid this situation, it has been decided to consider only the conservative system i.e., there is no slippage during shear, meaning that the slipping angle ag=0.

It is important to underline that the mechanical equilibrium (eq.III-13) in the case when all forces are applied should be updated as follows:

𝐹 21 * 𝑧 3 + 𝐹 2 * 𝑧 3 = 𝐹 12 * 𝑧 3 + 𝐹 1 * 𝑧 1 III-16
For all the trials shown below, the length of the fibre is 1mm, and the diameter is 0.5 mm. The Young's Module has been taken 4GPa. 

Z2 Z1 F 1 =8N F 2 =0 F 1 =0 F 2 =5N F 1 =F 2 =0N
Figure III.34: Geometry of the yarn in the shear plane, after applying shear on multiload tests for three different values of symmetric biaxial strains (F12=3N).

It is obvious and physically well-founded that traction forces, in the uniaxial/biaxial trials, negatively affect the shearing angle (reduce it) by straightening the yarns due to condition III-16.

In addition, the shearing forces, in the pure shear trials, imply considerable negative values of 𝜀 11

and 𝜀 22 by crimping the yarns. This is a typical non-linear geometrical effect. The latter may be easily observed in the graphs of figures below: -0,0012 -0,001 -0,0008 -0,0006 -0,0004 -0,0002 0 despite the increase of the shearing forces, the shear angle does not change, implying this way an increase in shear rigidity, in accordance with [START_REF] Skelton | Fundamentals of Fabric Shear[END_REF]. This means that after this limit, wrinkling of the fabric out of the plane may occur. For this reason, more attention has been paid to the linear region before this shear limit, which is shown in The computing algorithm works well but shows some slowness. Changing progressively the damping factor during the updating of the variables, from high values to lower ones, permitted to optimise the computing time.

z3 Z1 F 1 =F 2 =5N F 1 =F 2 =0N F 1 =F 2 =1N 0 1 2 3 4 5 -0,4 -0,2 0 0,2 0,4 0,6 0,8 1 1,2 1,4 SHEAR 
The obtained results are coherent and in very good agreement with experimental observation during fabric testing, especially in biaxial loading [START_REF] Boisse | Meso/macro-mechanical behaviour of textile reinforcements[END_REF]. Indeed, as shown in Figures III. [START_REF] De | A general Energy Analysis of Fabric Mechanics Using Optimal Control Theory[END_REF] to III.21, the fabric response during a tensile text, i.e., 11, is strongly affected by the force in the perpendicular direction, the non-linearity of the forcedeformation curve also. As well as the simultaneous biaxial loading is concerned, the ratio k=F2/F1 affect also strongly the non-linear behaviour of the fabric. These results are in a good accordance referring to bibliographic studies [START_REF] Sinoimeri | Personal Notes[END_REF].

In addition, at Figure III.39, it is shown that for higher values of the force ratio (k=2), the deformations ε1 are negatives. 

IV. TENSORIAL CALCULATION

The principal objective of this chapter is to try relating forces applied on the fabric and its deformations as if the fabric were supposed to be a continuous deformable body obeying a certain low of elasticity having the form of equation I-1. In order to realise this task, it was first important to apply different forces -F1, F2 and F12-on the fabric, and to compute fabric geometry and deformations. Nevertheless, if non-conservative phenomena occur, like yarn slippage, for example, the fabric geometry and deformations will depend on the charging history. For this reason, the fabric shearing behaviour has been considered without yarn slippage. The fabric charging has been carried out by a general full factorial design. At each charging situation (F1, F2, F12), the fabric equilibrium geometry allows to calculate the deformations. A regression procedure is needed at this stage in order to carry out linear regression between different deformation terms, linear and non-linear ones, and the applied forces.

LINEAR REGRESSION

Let us briefly remind the linear regression method, which is used in this study. [START_REF] Sinoimeri | Personal Notes[END_REF] Linear regression attempts to model the relationship between two or more variables by fitting a linear equation to observed data. One variable is the dependent variable (in the concrete study represented by forces), and the others are considered to be observed variables (in the concrete study represented by deformations). Before attempting to fit a linear model to observed data, one should first determine whether there is a relationship between the variables of interest. This does not necessarily imply that one variable causes the others but that there are some significant associations between these variables.

Let us consider a case with two supposed effective variables X1 and X2:

𝑌 = 𝑌 ̂+ 𝑒 IV-1 𝑌 ̂= 𝑎 0 + 𝑎 1 𝑋 1 + 𝑎 2 𝑋 2 + 𝑎 3 𝑋 1 𝑋 2 IV-2
where Y is the experimental response, 𝑌 ̂ is the model predicted value, and e is the error, supposed to be a Gaussian one.

For each experimental trial, it can be noted:

{ 𝑌 1 = 𝑎 0 + 𝑎 1 𝑋 1,1 + 𝑎 2 𝑋 2,1 + 𝑎 3 𝑋 1,1 𝑋 2,1 + 𝑒 1 𝑌 2 = 𝑎 0 + 𝑎 1 𝑋 1,2 + 𝑎 2 𝑋 2,2 + 𝑎 3 𝑋 1,2 𝑋 2,2 + 𝑒 2 … … … … … … … … … … … … … … … … … … … … … . … … … … … … … … … … … … … … … … … … … … … . … … … … … … … … … … … … … … … … … … … … … . 𝑌 𝑛 = 𝑎 0 + 𝑎 1 𝑋 1,𝑛 + 𝑎 2 𝑋 2,𝑛 + 𝑎 3 𝑋 1,𝑛 𝑋 2,𝑛 + 𝑒 𝑛 IV-3
where Xi is the explanatory variable and Yj is the dependent variable, often called 'output'. There are 4 coefficients: ai (i=0:3) et n errors ej (j=1: n)

These n equations may be written in an explicit form as follows:

[𝑌] 1𝑥𝑛 = [𝑋] 3𝑥𝑛 [𝑎] 1𝑥3 + [𝑒] 1𝑥𝑛 IV-4
The coefficients a0, a1, a2, a3, and the errors ej are unknown. It is not possible to resolve equations IV-3 or IV-4 because there are more unknowns than equations relating to them.

Nevertheless, the question is to find out ai (i=0:3) such that errors are minimized. The least squares method (LSM) is used to find out the solution of the problem.

If e=

[ 𝑒 1 𝑒 2 … … 𝑒 3
is the error vector, then the scalar 𝑒 𝑡 𝑒 = ∑ 𝑒 𝑗 2 𝑛 𝑖 must be minimized. It follows four additional equations:

𝜕(𝑒 𝑡 𝑒) 𝜕𝑎 𝑖 = 0 𝑓𝑜𝑟 𝑖 = 0,1,2,3 IV-5
The solution of these four equations and equation IV-4 gives the final solution of the predicted coefficients of the model, often called the explanatory variable.

𝑎 ̂= (𝑋 𝑡 𝑋) -1 𝑋 𝑡 𝑌 IV-6

DATA COLLECTION

The most important step forward is the results taken by the simultaneous multi-charge of the yarn.

To sum up, the situation related to the strain and deformation, there are three forces applied to the yarn: two traction forces F1, F2 and the shear force F12. For each set of them, there is calculated the updated deformed geometry.

The test is realized by applying first a fixed traction force F1 in the principal direction of the yarn Z1 varying a traction force F2 in the second direction Z2. For each F2, a shear force F12 is applied, varying from zero to a specific maximum value.

It is necessary to underline the fact that all these simulations are realized by a unique trial (one set of calculations). The timing of these calculations, using the continuous contact force is relatively high. If for the case of the punctual contact, the waiting time is only some minutes (1-5 minutes).

For the continuous contact the time increases in almost 12 hours for 21 levels of forces in traction and 12 levels of forces in shear and more than 20 hours for 31 level of forces in traction and 12 level of forces in shear.

FABRIC PARAMETERS AND APPLIED FORCES

As shown previously, the mechanical properties of yarns composing the fabric have been varied

first in order to observe their effect on the fabric behaviour, and second in order to choose the properties that fit better with a real fabric behaviour. The mechanical properties of yarns are chosen as follows:

E1=E2=4 GPa (Young's Module) B1=B2=1.97 mNm 2 (Bending Rigidity) G1=G2=24.5 µNm 2 (Torsional Rigidity)

Y1=Y2=3.14kN (Traction Rigidity)

A general full factorial design has been used to assign a level of forces. The values of forces on the main trial vary from 0 to 6 N for traction forces, and from 0 to 3.3 N for shear forces with the same step size of 0.3 N. It follows that the total number of simulations grew up to 21x21x12=5 292.

EQUILIBRIUM GEOMETRY AND CONVERTED COORDINATES

The geometry of the first yarn was described in our model by (z1p, z2p, z3p) set of coordinates and by (z1s, z2s, z3s) for the second one. Nevertheless, un-coordinate conversion has been decided such as X1 and X2 will define the fabric plane, X3 being the fabric thickness direction ( 

F1 [N] F2 [N] F12 [N] a1 [m] c [m] b1 [m] a2 [m] d [m] b2

[m] 0 0 6.12E-20 -0.00024 0.000965 -0.00097 0.000238 -6.1E-20 0 0.3 -5.2E-05 -0.00024 0.000964 -0.00096 0.000238 5.24E-05 0 0.6 -0.0001 -0.00024 0.000959 -0.00096 0.000238 0.000104 0 0.9 -0.00015 -0.00024 0.00095 -0.00095 0.000238 0.000154

------------------------------------------------------------------------------------------------------------ 0.3 0 -7
.5E-10 -0.00025 0.000963 -0.00097 0.000228 2.72E-10 0.3 0.3 -5.2E-05 -0.00025 0.000961 -0.00097 0.000228 4.93E-05 0.3 0.6 -0.0001 -0.00025 0.000956 -0.00096 0.000228 9.55E-05 0.3 0.9 -0.00015 -0.00025 0.000948 -0.00096 0.000229 0.00014 ------------------------------------------------------------------------------------------------------------6 0 4.94E-09 -0.00024 0.000969 0.000969 0.000235 1.98E-09 6 0.3 -2.4E-05 -0.00024 0.000969 -0.00097 0.000235 2.41E-05 6 0.6 -4.8E-05 -0.00024 0.000968 -0.00097 0.000235 4.82E-05 6 0.9 -7.2E-05 -0.00024 0.000966 -0.00097 0.000235 7.21E-05

Table IV-1: The results of the test on the multiload charge of the yarn.

LINEAR AND NONLINEAR DEFORMATIONS

As mentioned by the equation I-4, the deformations of a 3D body can be calculated as follows,

referring to [START_REF] Boresi | Theories of Stress and Stain[END_REF]:

𝜀 11 = 1 2 [( 𝜕𝑢 1 𝜕𝑥 + 𝜕𝑢 1 𝜕𝑥 ) + ∑ ( 𝜕𝑢 𝑖 𝜕𝑥 ) 2 3 𝑖=1 
] ]

𝜀 22 = 1 2 [( 𝜕𝑢 2 𝜕𝑦 
The highlighted terms in these equations are the second-order ones. Their importance will be analysed further.

In the present case, it was not possible to charge and deform the fabric in all directions. The only linear deformations taken into account are explicated hereafter as follows:

𝜕𝑢 1 𝜕𝑥 1 ≅ 𝑎 1 -𝑎 1𝑜 𝑎 10 = Aε11𝑙𝑖𝑛 IV-8 𝜕𝑢 2 𝜕𝑥 2 ≅ 𝑏 1 -𝑏 1𝑜 𝑏 10 = Bε22𝑙𝑖𝑛 IV-9 𝜕𝑢 3 𝜕𝑥 3 ≅ (𝑐 1+𝑑 1 ) -(𝑐 1𝑜+𝑑 1𝑜 ) (𝑐 1𝑜+𝑑 1𝑜 ) = Cε33𝑙𝑖𝑛 IV-10 𝜕𝑢 1 𝜕𝑥 2 ≅ 𝑏 1 𝑏 1𝑜 =D IV-11 𝜕𝑢 2 𝜕𝑥 1 ≅ 𝑎 1 𝑎 1𝑜 =E IV-12 1 2 (𝐷 + 𝐸)𝜀 12 𝑙𝑖𝑛 IV-13
The nonlinear deformations in their explicit form are as follows:

𝜀 11 𝑛𝑙𝑖𝑛 ≅ 1 2 (𝐴 2 + 𝐸 2 )
IV-14 -----------------------------------------------------------------------------------------------------0 0. --------------------------------------------------------------------------------------------------- --------------------------------------------------------------------------------------------------- 

𝜀 22 𝑛𝑙𝑖𝑛 ≅ 1 2 (𝐵 2 + 𝐷
------------------------ -------- -------- -------- -------- -------- -------- -------- 0 2.
----------------------------------------------------------------------------------------------------- 0 6 

RESULTS AND DISCUSSIONS

To sum up, after all these trials and calculations, for each triple of forces applied on the fabric, all the deformation terms are given by equations IV-8-10, IV-13-17, the first four being linear terms and the four last nonlinear ones.

As will be shown afterwards, it was impossible to find an acceptable correlation relating linearly the deformation terms to the forces applied on the fabric. It is for this reason that we have decided to begin with simple charging situations. suggesting that the deformation 11lin should not be considered as an explanatory variable for the force F12. 

Préd(F12) / F12

Let us reduce the dependence of F12 on 12 linear and nonlinear. R 2 = 0,999987 F12 depends on all k, deformations, linear and nonlinear.

R 2 = 0,981 The fact that the force F12 depends on 12lin is physically comprehensible, whereas the dependence of the force F12 from 33nlin seems curious and strange, but it is not really the case. The biaxial traction F1=F2, forces affect directly and negatively 33, rather nonlinearly due to inter-yarn compression function. On the other hand, these biaxial traction forces negatively modify the effect of F12 on the shear deformation (see equation III-16) by creating an anti-shear torque.

Despite the physical explanations given below, this model is not really predictive because of large differences between predicted and computed F12 values. It is evident from the last result that the fabric's general mechanical behaviour cannot be described in terms of linear dependence of the forces on the linear and nonlinear deformations.

COMMENT AND CONCLUSIONS

As it has been shown and discussed, explaining the pure shear force as a function of only linear 12

is not physically acceptable despite the relatively good correlation. If the nonlinear term of 12 is added, the correlation between the data is very good. In addition, the coefficients of these two variables, 12 linear and nonlinear, seem to be linearly dependent on the shear force.

Because of the geometrical nonlinearities, 11 deformation during pure shear, the result analysis and interpretation become complicated. By contrast, the symmetrical biaxial charging seems easily described by linear and nonlinear11 and 22 deformations.

However, the fabric's general mechanical behaviour cannot be described in terms of linear dependence of the forces on the linear and nonlinear deformations.

Indeed, due to the general full factorial design used to assign force levels, some deformations, which are the input variables in our correlation models, are sometimes strongly correlated and complicate this way the statistical analysis. Two solutions may be used to overcome these difficulties: -To analyse the present data, consider forces as inputs (which are totally independent for instance by the choice of the general full factorial design) and consider all deformations as model outputs. This last analysis is in progress.

V. CONCLUSIONS

This This code was applied to charge and deform the plain fabric following some typical experimental tests in order to optimise it and validate the preliminary. The obtained results were coherent and in very good agreement with experimental observation during fabric testing.

After the validation of the computing code, a full factorial design was used to charge the fabric in uniaxial, biaxial and shear forces, all in the same type, called a 'multiload' situation, the principal aim being to assess the relationships between forces and deformations by a linear correlation procedure. It followed some interesting results.

Explaining the pure shear force as a function of only linear ε12 is not physically acceptable despite the relatively good correlation. Nevertheless, adding f the nonlinear term of ε12 yields to a very good correlation between data. In addition, the coefficients of these two variables, ε12 linear and nonlinear, seem to be linearly dependent on the shear force.

Because of the geometrical nonlinearities, ε11 deformation during pure shear, the result analysis and interpretation become complicated. By contrast, the symmetrical biaxial charging seems easily described by linear and nonlinear ε11 and ε22 deformations.

However, the fabric's general mechanical behaviour cannot be described in terms of linear dependence of the forces on the linear and nonlinear deformations.

Indeed, due to the general full factorial design used to assign force levels, some deformations, which are the input variables in our correlation models, are sometimes strongly correlated and complicate this way the statistical analysis.

There may be different solutions to overcome these difficulties, such as:

-To enforce fabric deformations by rigid body conditions as model inputs and calculate forces needed, consider as outputs of the model outputs.

-To analyse the present data considering forces as inputs (which are totally independent for at instance by the choice of the general full factorial design) and consider all deformations as model outputs. This last analysis is in progress. -----------------------------------------------------------------------------------------------------5. Il peut y avoir différentes solutions pour surmonter ces difficultés, telles que :

VI. Résumé de la thèse en français

-Pour appliquer les déformations du tissu par des conditions de corps rigides comme entrées du modèle et calculer les forces nécessaires, considérez comme sorties des sorties du modèle.

-Analyser les données actuelles en considérant les forces comme entrées (qui sont totalement indépendantes, par exemple par le choix du plan factoriel général complet) et considérer toutes les déformations comme sorties du modèle. Cette dernière analyse est en cours.
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 12 Figure I.1: Stress components applied on the unit cell of a solid.

Figure I. 3 :

 3 Figure I.3: Twisting (a) and bending (b) of a rod.

  twisted. Following this analysis and based on Figure I.3 we can arrive at Kirchhoff's formulas for the strains of the rod in three directions: η)  the displacements in three directions (x, y, z). (k, k')  curvatures in two directions (y, z) τ  the twist.Based on this equation we can write Kirchhoff's equations of equilibrium

Figure I. 4 :

 4 Figure I.4: Representation of the twist angle of the thin rod. Let us consider the elementary internal twist angle df (Fig. I.4), which is the rotation angle in the strained state between the directions of two neighbouring elements of the rod. The twist will be calculated as [11]:
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 5 Figure I.5: Schematic representation of the rod in a strained state, twisted and bent. [6]

3 𝑑𝑠Figure I. 6 :

 36 Figure I.6: Schematic representation of the rod in a strained state, twisted and bent. [6]

  l1=-sin 𝜑 cos ϕ +cos φ cos ϕ cos θ l2=-sin φ cos ϕ -cos φ sin ϕ cos θ l3=sin θ cos φ m1=cos φ sin ϕ + sin φ cos ϕ cos θ m2=cos φ cos ϕ -sin φ sin ϕ cos θ I-16 m3= sin θ sin φ n1=-sin θ cos φ n2= sin θ sin φ n3 = cos θ The relations between these parameters are obtained by observing the projections on the principal torsion-flexure axes (Fig. I.6), at P1 of a vector which is equivalent to the velocities of changes of the angles MODEL AND DE JONG & POSTLE MODEL Now, we are going to analyse the mathematical model proposed by De Jong & Postle, based on Love's one [5] [6] [13]. The difference between these two mathematical modulations consists in the orientation of the coordinative system, but the principle remains the same. In De Jong & Postle's work, the fixed system (z1, z2, z3) and the angles z4, z5, z6, as well as a fibre portion ds are disposed of as shown in Figure I.7. The angle z6, which represents the twist rate of the ds portion, is not shown in Figure I.7.
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 7 Figure I.7: Coordinate system for a yarn element ds, as presented by De Jong & Postle. [13]
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 8 

Figure I. 8 :

 8 Figure I.8: Schematic representation of the parallel transport model. [15] Figure I.8 is condensed information about the concept of this model. It can be detailed as follows. Kinematics of the Cosserat rod in the global Cartesian frame (x, y, z). (a) The configuration of the rod is defined by its centreline r(s). The orientation of each mass point of the rod is represented by an orthonormal basis (m1(s) m2(s) t(s)), called the directors, where t(s) is constrained to be tangent to the curve r(s). (b) The three local modes of deformation of the elastic rod, are associated with
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 9 Figure I.9: Schematic representation of the frames (fixed frame (e1, e2, e3) and moving frame (m1, m2, t)) between neighbouring nodes(edges).

1 2𝜎 1 Figure II. 1 :

 111 Figure II.1: Three forces and three torques are applied on a thin slice of the rod.
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 2 Figure II.2: Infinitesimal element (dx, dr, r dθ) under shearing.
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 34 Figure II.3. In the second trial, there are applied two forces, in two cross-section directions of the fibre, one at the free edge and one in the middle of the fibre:

Figure II. 5 :

 5 Figure II.5: Cantilever test: Comparisons between de Jong, Love, Parallel Transport, and FEM methods as a function of the number of discrete elements. The fibre parameters are the same as in the trials above and the force applied is 1N)
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 67 Figure II.6: Deflection of the fibre during a Cantilever test calculated by De Jong & Postle model and FEM.



  For the kth loop shape calculate the forces per unit length (I-22) due to all the fibre or yarn contacts (which automatically includes all types of jamming).

  Figure II.8, where the vertical axis represents the deflection difference between the computation with the respective value of parameter A and the one with the next subsequent value of A.

Figure II. 8 :

 8 Figure II.8: The dependence between the deflections of the cantilevered fibre obtained for different values of parameter A.

Figure II. 9 ,

 9 Figure II.9, shows the dependence between the amount of time for which the central processing unit (CPU) used for processing the instructions of this program made with the model of De Jong and Postle, and the parameter A.

Figure II. 9 :

 9 Figure II.9:The dependence between CPU time and the parameter A.

  As mentioned above, the De Jong & Postle model has been preferred in the present work as a good compromise between the convergence and the velocity of the simulations. Some typical tests/simulations have been carried out and are shown hereafter to verify the rapidity. The fibre/thin rod is disposed in a cantilever configuration, with the centreline following Z3 axis in the free stage,

Figure II. 10 :

 10 Figure II.10: Deflecting the shape of the fibre under bending forces in two cases: distributed force along the length of the fibre and punctual applied only on the free edge of the fibre.

2. 4

 4 .2 BENDING IN TWO DIRECTIONS. The next test concerns bending the fibre in both perpendicular directions with different levels of force. Our fibre is first deformed by two sets of distributed forces: one acting along the whole fibre length in Z1 direction, and another one, the same magnitude, in Z2 direction, but only on the second half of the fibre (Figure II.10). A second test is shown in Figure II.11, where the fibre is deflected by two forces of the same magnitude applied on the free end and the middle of the fibre respectively on Z1 and Z2 direction.

Figure II. 11 :

 11 Figure II.11: Deflected shape of deformed with two bending forces F=0.03N/m, one distributed during the length of the fibre in Z1 direction and the other just in the second half of the fibre, distributed with the same value, referring to the schematic representation.
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 12 Figure II.12: Deflected shape of the fibre charged by variable punctual bending forces in two perpendicular directions.

Figure II. 13 shows

 13 some results obtained by applying different values of the twisting torque.

Figure II. 13 :

 13 Figure II.13: The deflected shape of the fibre charged by an external torque applied at the free edge of the fibre.

  3 remains the same adding this new parameter. The results are nearly the same as those presented in Figures II.10 to II.11, as far as traction force in the Z3 direction is not applied. More results comparing no extensible and extensible fires/yarns will be shown in the next chapter, especially in Figure III.18 to III.21.
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 1 Figure III.1: Symbolic representation of the plain fabric.
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 2 Figure III.2: Geometric Model of Peirce. [21] The parameters shown in Figure III.2 are:

Figure III. 3 :

 3 Figure III.3:Mechanical Model of Pierce[START_REF] Sinoimeri | Contribution a l'Étude du Comportement Mecanique des Etoffes par Methodes Energetiques cas de l'Armure Toile[END_REF] 

  largely based on Peirce's work. Following the same assumptions as the geometric model and by having a simple geometric form and mechanical elements, this model gives the mechanical response of fabrics when subject to strains. The Peirce model (Fig. III.3) is based on thefundamental assumption that the fibres are axially rigid with zero initial bending. Although this assumption overly simplifies the true response, it allows the effect of pure crimp interchange to be studied, which furnishes an in-depth understanding of this important deformation mechanism. It was anticipated that as the study of fabrics developed, further deformation mechanisms could be introduced to make the model more representative. These deformation mechanisms include yarn extension and yarn compression. Physical theories, to allow such deformation mechanisms, have been developed.[19] [22] 

FreestonFigure III. 4 :

 4 Figure III.4: Unit cell of the fabrics, Kawabata model.

Figure III. 5 :

 5 Figure III.5: Notation of the forces and deformations.

  and torques are obtained by integrating the equations (equation I-21, I-22) and calculating the Hamiltonian derivatives equation I-24 for l=1…5, are calculated. The resulting equations above refer to the minimum of elastic energy accumulated on the structure, i.e., the mechanical equilibrium. -1) + λ1 cos Z4 + λ2 sin Z4 cos Z5 + λ3sin Z4 sin Z5 III-6 Where λl, l=1…5 represent the external forces and torques (noted p in equation I-22). The first two equations are related to the bending in two cross-section directions. The third equation of equilibrium is related to the torsional energy, whereas the last one concerns the energy in traction/compression. Each one of these terms H1, H2, H3 and H4 should arrive at an arbitrary low-level dE, discussed in paragraph 2.2 and Figure II.5, that allows to consider that the mechanical equilibrium has been obtained.

Figure III. 1

 1 Figure III.1 shows the symbolic representation of the elementary cell of the weave, whereas Figure III.5 shows it, let's say, in a more realistic way. In order to facilitate the study of the mechanical
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 6 Figure III.6: Schematic representation of the fabric and the symmetric analysis.

Figure III. 7 :

 7 Figure III.7: Schematic representation in 3 dimensions of the representative segments of the fabric.

Figure III. 8 :

 8 Figure III.8: Schematic representation of the contact force F in the equilibrium geometry of the yarn.

  some results showing the effect of the parameter β of the contact force function on the yarn shapes in the fabric without external charging or undergoing uniaxial traction (Figure III.9), as well as the dependence between the crimp of the fabric and the parameter β (Figure III.10).

Figure III. 9 :

 9 Figure III.9: Effect of the parameter 𝛽 of the inter-yarn compression function on the yarn shape: no external forces (left) and uniaxial traction with F1=15N (right). As shown in Figure III.9, the yarns are located in different planes, Z2-Z3 for the first fibre and Z1-Z2 for the second one. To make them visible in the same graph, they are subplots in Figure III.9 in such a way that the second yarn is located on the left side (plane Z1-Z2) and the first one is located on the right side (plane Z3-Z2).

Figure III. 10 :

 10 Figure III.10: The dependence between the crimp of the fabric from the 𝛽 parameter of the punctual contact force.

  This means that each point of one yarn may apply a contact force to every point of the other fibre(Figure III.11). It is necessary in this case to calculate contact forces for each pair of points between both yarns and then by summing all the resulting forces.

  xj-xi, yj-yi, zj-zi are the differences in coordinates between the point i th of the first yarn and the j th point of the second one. The values of fij terms are calculated only if dji≤d0, which represents the condition of the yarns being in contact:

Figure III. 11 :

 11 Figure III.11: Schematic representation of the continuous contact forces between two yarns of the fabric.

Figure III. 12 :

 12 Figure III.12: Building the unit cell of the fabric in the equilibrium geometry.

  Some results for inextensible yarns are shown below, where subscripts 1 and 2 represent the inplane principal directions and subscript 3 one the fabric thickness direction. 3 is calculated as the relative change of yarn inter-axes distance (OtrOch in Figure III.7 or 8).

Figure III. 13 :

 13 Figure III.13: Force-Deformation curves for inextensible yarns in uniaxial and biaxial traction.

Figure III. 14 :

 14 Figure III.14: Force-Deformation curves in normalized terms for inextensible yarns in uniaxial and biaxial traction.

Figure

  Figure III.15: Deformation ε1 versus deformation ε3 for inextensible yarns in both cases: uniaxial traction and biaxial traction.

Figure III. 16 :Figure III. 17 :

 1617 Figure III.16: Deformation ε1 versus deformation ε2 for inextensible yarns in both cases: uniaxial traction and biaxial traction.The results for extensible yarns (Young modulus Y=3.14 kN) are shown below:

Figure III. 18 :

 18 Figure III.18: Force-Deformation curves in normalized terms for extensible yarns in uniaxial and biaxial traction.

6 Figure III. 19 :

 619 Figure III.19: Deformation ε1 versus deformation ε3 for extensible yarns in both cases: uniaxial traction and biaxial traction.

Figure III. 20 :Figure III. 21 :

 2021 Figure III.20: Deformation ε1 versus deformation ε2 for extensible yarns in both cases: uniaxial traction and biaxial traction.

Figure III. 22 :

 22 Figure III.22: Schematic representation of the fabric under pure shear.

Figure III. 23 :

 23 Figure III.23: Rheological Model of slipping between fibres, under pure shear, in the contact zone and the variation of their intersection angle.

Figure III. 24 :

 24 Figure III.24: Experimental observations shearing trials. To simulate something that is similar to experimental observations it is necessary to consider a shearing trial as shown in Figure III.24. There are normally three regions: during the 1 st one, yarns

Figure III. 25 :

 25 Figure III.25: Yarn shapes in Z1-Z3 plane after applying shear forces on the fabric.Let us show some shear force curves in pure shear versus deformation ε12, known as shearing angle, yarns parameters being Length L1=L2=0.001m, Diameter D1=D2=0.0005m and Young's Module E1=E2=4GPa, bending rigidity B1=B2=3.9 x10 -6 Nm 2 .

Figure III. 27 :Figure III. 28 :

 2728 Figure III.27: Force-Deformation graph for different values of Mo [Nm].

Figure III. 29 :

 29 Figure III.29: Construction of the whole unit cell of the fabric after pure shear.

Figure III. 30 Figure III. 30 :

 3030 Figure III.30: Schematic representation of the fabric under traction in both directions and shear

Figure III. 31 :

 31 Figure III.31: Yarn geometry in the traction's planes under multiload charge F1=0, F2=5N F12=3N (non-symmetric biaxial traction and shear).

Figure

  Figure III.32 Yarn geometry in the shear plane with shear on multiload (symmetric biaxial traction and shear) F1=F2=0 N and F12=3N.

Figure III. 33 :

 33 Figure III.33: Geometry of the yarn in the traction plane (first yarn on the right and second yarn on the left), after multiload charging with an F12=3N and different forces F1 and F2.

Figure

  Figure III.35: The dependence between deformations and shear force applied in pure shear test: F1=F2=0

Figure III. 36 :

 36 Figure III.36: The dependence between deformations and shear force applied in the pure shear test: F1=F2=0, F12 limited to 2N In Figure III.35, the changes in all considered deformations -𝜀 11 , 𝜀 22 , 𝜀 12 -slow down after a certain threshold 𝜀 12 ≈ 1.2, which corresponds to an angle of about 50 o . In this situation, the yarns begin to contact laterally each other, blocking this way further shearing. Beyond this shearing angle,

Figure III. 36 .Figure III. 37 :F1=F2=10NFigure III. 38 :

 363738 FigureIII.37: The dependence between deformations and shear force applied in multiload test: F1=F2=10N

Figure III. 39 :

 39 Figure III.39: Comparing results with bibliographic studies.

i=0, 1 , 2

 12 are the variable indices j=1: n are the trial indices.

  Figure IV.1). The new coordinate extreme yarn points (c, a) and (d, b) will serve to calculate fabric deformations, as will be shown in the next part 4.2.3. TableIV.1 below shows a small part of the collected data.

Figure IV. 1 :

 1 Figure IV.1: Schematic representation of the converted coordinates of the yarn.

Figure IV. 2 :

 2 Figure IV.2: F12 predicted versus F12, pure shear, F12 depending on ε12lin only. The figure above clearly shows a regular error, i.e., a non-random one, which indicates a noncorrect model. It will be interesting to enrich the model as shown here below.

Figure IV. 3 :

 3 Figure IV.3: F12 predicted versus F12, pure shear, F12 depending on on εk, k=1, 2, 12, linear and nonlinear -0,5 0 0,5 1 1,5 2 2,5 3 3,5 4 4,5

Figure IV. 4 :

 4 Figure IV.4: F12 predicted versus F12, pure shear, F12 depending on ε12 linear and nonlinear. We have extended this last model for different levels of F1=F2, i.e., symmetric biaxial. It is shown in Figure below.

Figure IV. 5 :

 5 Figure IV.5: F12 predicted in shear and symmetric biaxial, coefficients of ε12 linear and nonlinear.

Figure IV. 9 :

 9 Figure IV.9: F1 predicted versus F1, biaxial traction, F1 or F2 depending on all εk, k=11, 22, 33, deformations, linear and nonlinear It becomes evident, especially when comparing these two last cases, that the biaxial traction is governed strongly by nonlinear behaviours.

-

  To enforce fabric deformations by rigid body conditions as model inputs and calculate forces needed, considered as outputs of the model outputs.

  work began with a bibliographic study of thin rods. Most current models are based on Kirchhoff's study of thin rods: Love's model, De Jong & Postle's model, and the Parallel Transport method. Some preliminary trials carried out using Love and De Jong & Postle, Parallel Transport method, and FEM have shown identic results between Love and De Jong & Postle methods, and very few differences between those two, Parallel Transport and FEM. It was tested and shown that the better compromise between computation rapidity and precision was obtained by De Jong & Postle methods, which have been implemented in a Matlab code.

Figure R- 2 :

 2 Figure R-2: Représentation schématique du tissu (à gauche) et représentation schématique du positionnement du fil de l'élément étudié (à droite) Il n'est pas nécessaire d'étudier l'équilibre mécanique de la cellule élémentaire entière, seulement 1/8 de la cellule suffira amplement. En effet, la cellule entière peut être construite par des considérations de symétrie. Après avoir calculé la géométrie d'équilibre, en tenant compte de deux types de contact, contact continu et contact ponctuel, des forces externes peuvent être appliquées au tissu dans le but de trouver par calcul itératif la nouvelle géométrie d'équilibre après déformation. Les trois modes les plus courants de sollicitation des tissus sont :  Traction, uniaxiale et biaxiale.  Cisaillement sans et avec glissement entre les fils en contact.  Chargement multiple (Traction et cisaillement sans glissement).

Figure R- 3 :

 3 Figure R-3: Présentation schématique de la déformation en traction.

Figure R- 4 :

 4 Figure R-4: Présentation schématique du cisaillement.

Figure R- 5 :

 5 Figure R-5: Courbes force-déformation en termes normalisésfils extensibles et inextensibles.

Figure R- 7 :

 7 Figure R-7 : Géométrie des fils dans le plan de traction (premier fil à droite et deuxième fil à gauche) F12=3N.

Figure R- 8 :

 8 Figure R-8 : Géométrie de la projection des fils dans le plan horizontal pour trois valeurs différentes de traction biaxiale symétrique. (F12=3N). La traction uniaxiale/biaxiale affecte négativement l'angle de courbure des fils dans le plan Z1-Z3, dons le cisaillement, en tendant de les aligner (Figure. R-8). De la même manière, les projections des fils dans les axes Z1 et Z3 décroisent (déformation 11 et 22 négatives) uniquement sous l'effet du cisaillement, sans qu'il y ait de forces de traction.

Figure R- 9 :Figure R- 11 : 3 N]

 9113 Figure R-9 : L'évolution des déformations en cas de cisaillement pur : F1=F2=0 Figure R-10 : L'évolution des déformations en cas de cisaillement avec chargement biaxial F1=F2=10N

Tableau R 1 :

 1 Forces et déformations lors du chargement multiple du tissu. Après les simulation et l'obtention du tableau précèdent, le tenseur d'élasticité peut être obtenu par régression linéaire.Dans l'essai considéré, les forces F1 et F2 sont maintenues au niveau zéro, tandis que F12 varie de 0 à 3,3 N, avec un pas de 0,3 N, ayant ainsi 12 niveaux. Le résultat de la régression est le suivant : F12 dépendant de εk, k=1, 2, 12, linéaire et non linéaire, R 2 = 0,999997

Figure R- 13 :

 13 Figure R-13 : F1 prédit versus F1, traction biaxiale, F1 ou 2, εk, k=11, 22, 33, déformations linéaires et non linéaires

  dans le sens 2) x (12 niveaux d'efforts de traction dans le sens 1) x (12 forces en glissement) = 5 292 combinaisons simulées. F1 ou 2 selon les déformations εk, k=1,2,3,12, linéaires et non linéaires, R 2 = 0,917

Figure R- 14 :«

 14 Figure R-14 : F12 prédit versus F12, F1 ou 2, εk, k=1,2,3,12, linéaire et non linéaire. Il ressort clairement du dernier résultat que la généralisation du comportement mécanique du tissu ne peut être décrite uniquement par les termes de déformation linéaire et non linéaire de la mécanique des milieux continus.
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4: Boundary conditions of coordinates and strains in fabric pure shear.

[START_REF] Sinoimeri | Contribution a l'Étude du Comportement Mecanique des Etoffes par Methodes Energetiques cas de l'Armure Toile[END_REF] 

  Let us replace Table IV.1 with the following one with the values of deformation for each charge

	F1 [N]	F2 [N] F12 [N]	ε11 lin	ε22 lin	ε11 nlin	ε22 nlin	ε12 lin	ε12 nlin	ε33 lin
	0	0	0	8.19E-14 8.19E-14 3.35E-27 3.35E-27 -6.3E-17	-5.2E-30	-1.3E-14
	0.3	0	0	0.003052 -0.00298 4.66E-06 4.43E-06 8.15E-07 2.68E-09 -0.00033
	0.6	0	0	0.005767 -0.00585 1.66E-05 1.71E-05 3.98E-07 2.47E-09 -0.00063
	0.9	0	0	0.008221 -0.00866 3.38E-05 3.75E-05 8.25E-06 -4.3E-08	-0.0009
									2 )	IV-15
					𝜀 33 𝑛𝑙𝑖𝑛 ≅	1 2	(𝐶 2 )		IV-16
					𝜀 12 𝑛𝑙𝑖𝑛 ≅	1 2	(𝐴𝐷 + 𝐸𝐵)	IV-17
	situation:								

Table IV -

 IV 2: Deformation results of the test on multiload charge of the yarn.

								--
	5.1	6	3.3	-0.0477	-0.03082 0.040227 0.032066 0.265482	-0.0103	-0.00995
	5.4	6	3.3	-0.0435	-0.03311 0.038043 0.032907	0.26339	-0.01004 -0.01023
	5.7	6	3.3	-0.04009 -0.03501 0.036193 0.033703 0.261651 -0.00981 -0.01045
	6	6	3.3	-0.03687 -0.03688 0.034472 0.034475 0.259976 -0.00959 -0.01065

  4.3.1 PURE SHEARIt appears from the initial zone Figures III.[START_REF] Pargana | Realistic Modelling of Tension Fabric Structures[END_REF] to III.24 that the shear deformation seems to be linearly dependent on the shear force. The forces F1 and F2 are maintained at zero level, whereas F12 varies from 0 to 3.3 N, by 0.3 N steps, which gives 12 levels.

	Let us see the results of regressions.				
	F12 depending on 12lin only.				
	R 2 =0.995					
	Variable	Observations Minimum	Maximum	Mean	Stand.deviation
	F12	12	0,000	3,300	1,650	1,082
	12 lin	12	0,000	0,465	0,259	0,154

Table IV -

 IV 3: Descriptive statistics, pure shear, F12 depending on ε12lin only.

						Lower	Upper
			Standard			bound	Bound
	Source	Value	error	t	Pr > |t|	(95%)	(95%)
	Constante	0,000					
	12 lin	6,528	0,133	48,907	< 0,0001	6,234	6,822

Table IV -

 IV 4: Model parameters, pure shear, F12 depending on ε12lin only.

	These results seem to be acceptable, but let us see F12 predicted versus F12:

Table IV -

 IV 5: Model parameters, pure shear, F12 depending on εk, k=1, 2, 12, linear and nonlinear.

	The zero value of the parameter coefficients is explained by very strong correlations between input
	variables as shown below:						
		11 lin	22 lin	11 nlin	22 nlin	12 lin	12 nlin	F12
	11 lin	1	1,000	-1,000	-1,000	-0,961	0,988	-0,984
	22 lin	1,000	1	-1,000	-1,000	-0,961	0,988	-0,984
	11 nlin	-1,000	-1,000	1	1,000	0,960	-0,988	0,984
	22 nlin	-1,000	-1,000	1,000	1	0,960	-0,988	0,984
	12 lin	-0,961	-0,961	0,960	0,960	1	-0,910	0,995
	12 nlin	0,988	0,988	-0,988	-0,988	-0,910	1	-0,948
	F12	-0,984	-0,984	0,984	0,984	0,995	-0,948	1
	Table IV-6: Correlation matrix, pure shear, F12 depending on εk, k=1, 2, 12, linear and nonlinear.
	Despite very small and random errors yielding from this model (Figure IV-2), the observations of
	Figures III.31 to III.34 and the negative correlation between F12 and 11lin in Table IV-6 before

Table IV -

 IV 7: Model parameters, pure shear, F12 depending on ε12 linear and nonlinear.

Table IV -

 IV 8: Model parameters, a shear force under symmetric biaxial F12 depending on all deformations, linear and nonlinear.

Table IV

 IV 

				Préd(F12) / F12		
			5				
			4	F 12			
			3				
			2				
			1				
						Préd(F 12 )
			0				
		-1	0	1	2	3	4	5
			-1				
	Figure IV.7: F1 predicted versus F1, biaxial traction, F1 or F2 depending on all εk, k=11, 22, 33,
		deformations, linear and nonlinear
	Despite relatively small and quasi-random errors yielded from this model (Figure IV.7) and
	considering that measuring and/or evaluating deformations 11 and 22, linear or nonlinear, is easier
	than 33, some other tests have been varied as shown below.	
	F1 or F2 depending on all deformationsk, k=11, 22, only linear; there is no shear.
	R 2 = 0,190						
								Lower	Upper
		Standard				bound	bound
	Source	Value	error	t		Pr > |t|	(95%)	(95%)
	Constante	0,000					
	 11 lin	232,435	33,424	6,954	< 0,0001	166,744	298,127
	 22 lin	150,727	33,571	4,490	< 0,0001	84,747	216,707
	-9: Model parameters, biaxial traction, F1 or F2 depending on all εk, k=11, 22, 33,
		deformations, linear and nonlinear

Table IV -

 IV 10: Model parameters, biaxial traction, F1 or F2 depending on deformations εk, k=11, 22, only linear.

					Préd(F1) / F1		
			8				
			7	F 1			
			6				
			5				
			4				
			3				
			2				
			1				Préd(F 1 )
			0				
		-2	0		2	4	6	8
	-1 Figure IV.8: F1 predicted versus F1, biaxial traction, F1 or F2 depending on deformations εk,
			-2	k=11, 22, only linear.	
	F1 or F2 depending on deformationsk, k=1, 2, linear and nonlinear; there is no shear.
	R 2 = 0,997						
								Lower	Upper
			Standard				bound	bound
	Source	Value	error	t	Pr > |t|	(95%)	(95%)
	Constante	0,000					
	11 lin	825,287	2,473	333,698	< 0,0001	820,426	830,148
	22 lin	739,248	2,474	298,791	< 0,0001	734,386	744,111
	11 nlin	11894,263	118,859	100,070	< 0,0001	11660,656 12127,869
	22 nlin	10819,288	119,923	90,219	< 0,0001	10583,590 11054,986

Table IV

 IV 

	-11: Model parameters, biaxial traction, F1 or F2 depending on deformations εk, k=11,
	22, linear and nonlinear.

Table IV

 IV 

	Figure IV.10: F12 predicted versus F12, F1 or 2 depending on all deformations εk, k=1,2,3,12, linear
	and nonlinear
	-12: Model parameters, F1 or 2 depending on all deformations εk, k=1,2,3,12, linear and
	nonlinear.

  De nombreux chercheurs ont souligné le fait que les structures textiles présentent des comportements mécaniques complexes, difficiles à prévoir avec les méthodes conventionnelles.Cette complexité vient en partie du comportement des fils qui composent l'étoffe, qui présente très souvent des non-linéarités géométriques et/ou matérielles, mais aussi du grand nombre de paramètres de l'étoffe et/ou de fil qui doivent être pris en compte. Ce travail de thèse s'inscrit précisément dans ce contexte. L'objectif est de modéliser, au moyen de simulations, le comportement mécanique de ces matériaux.Le premier chapitre est consacré à une revue bibliographique de la littérature. Nous donnerons cidessous un bref résumé des traitements théoriques que nous avons considéré tout le long de ce travail. A partir de la forme linéaire de la loi de Hook, qui relie ces deux grandeurs, on peut écrire La théorie de Kirchhoff des poutres fines constitue une étude cinématique approfondie dans laquelle une fine tige est fléchie et tordue. Les contraintes sont réparties dans chaque élément de la barre selon le principe de Saint-Venant, mais doivent être en adéquation avec les éléments voisins.À partir de ces équations, Kirchhoff a dérivé un calcul approximatif de la contrainte dans un élément de poutre et de là une expression de la densité d'énergie potentielle longitudinale en termes des composantes de flexion, de de torsion en traction/compression. L'idée initiale de notre étude était de trouver un modèle mathématique adapté aux simulations, de manière à assurer la déformation d'une poutre fine/filament ou fil fin le plus simplement et le plus rapidement possible. Trois modèles sont considérés : Les termes d'énergie élastique sont indépendants les uns des autres et sont obtenus en intégrant les équations de Kirchhoff. Le modèle de De Jong & Postle a été testé pour des fils extensibles. La partie la plus importante de ce travail a été la simulation du comportement mécanique des étoffes par la méthode de De Jong & Postle. Les tissus considérés dans cette étude sont des tissus toiles, largement utilisés dans l'industrie textile en raison de leurs propriétés mécaniques et leur simplicité. Les fils qui composent le tissu sont supposés continus et obéissent à la mécanique des poutres fines. Suivant le système de coordonnées de De Jong & Postle, l'un des fils est situé dans

		0,088			
	LOVE	0,084 0,086			
	PARALLEL TRANSPORT THEORITICAL CALCULATIONS	0,074 0,078 0,08 0,082 0,076	Flexion			nombre d'éléments discrets
		0,072			10	100	1000	10000
	DE JONG				0,084	0,0843	0,0843	0,0843
	LOVE				0,084	0,0843	0,0843	0,0843
	PARALLEL TRANSPORT			0,0771	0,0863	0,0848	0,0849
	THEORITICAL CALCULATIONS		0,0849	0,0849	0,0849	0,0849
	cette relation pour les vecteurs contrainte (σ) et déformation (ε), au moyen de l'inverse du tenseur
	d'élasticité [A] :					
			𝜀 11				𝜎 11
			𝜀 22				𝜎 22
			𝜀 33 𝜀 23	= [𝐴]	𝜎 33 𝜎 23	R-1
			𝜀 13				𝜎 13
		(	𝜀 12 )		(	𝜎 12 )
			𝑑𝐸 =	1 2	𝜀 𝑡 [𝐸]𝜀 =	1 2	𝜎 𝑡 [𝐴]𝜎	R-2
	Travail de thèse					
	 Modèle de Love					
	 Modèle i De Jong & Postle le plan Z2-Z1 et l'autre dans le plan Z1-Z2, tandis que son épaisseur se mesure dans le sens Z2. La
	Figure VI-2 montre la cellule élémentaire d'un tissu toile.

 Transport parallèle

Après avoir obtenu les résultats avec les trois méthodes, il est important de faire une comparaison entre les résultats obtenus. La méthode des éléments finis -FEM est prise comme référence. À cette fin, une poutre fine est testée, dans lequel une extrémité est maintenue fixe et une force/un moment externe est appliqué à l'autre extrémité libre. Les résultats sont résumés dans la Figure R-1. Les paramètres de la poutre sont : E=4 Gpa, Diameter=0,1mm, Length=10 mm.

Figure R-1 : Comparaisons entre les modèles considérés. La force appliquée est de 1N. Dans le deuxième chapitre, le comportement mécanique des fibres est analysé selon la méthode de De Jong & Postle, comme méthode optimale compte tenu de la cohérence et de la rapidité des résultats. En intégrant l'équation R-I, il est possible de formuler une expression tensorielle entre les déplacements et les forces/moments appliqués à la fibre. L'énergie élastique d'un élément infiniment petit en volume (dx, dy, dz) est donnée par l'équation :

  Tableau R 2: Paramètres du modèle, cisaillement pur, F12 dépendant de εk, k=1, 2, 12, linéaire et non linéaire. Figure R-12 : F12 vs F12 prédit, F12 dépendant de εk, k = 1, 2, 12, linéaire et non linéaire. F12 prédit signifie la valeur de la force prédite par le modèle de régression linéaire, et F12 est la valeur obtenue à partir des simulations. La traction biaxiale implique (21 niveaux de force dans la direction 1) x (21 niveaux de force dans la direction 2) = 441 cas. F1 ou F2 selon les déformations εk, k=11, 22, 33, linéaires et non linéaires, R2 = 0,998 Tableau R 3: Paramètres du modèle, traction biaxiale, F1 ou 2 εk, k=11, 22, 33, , linéaire et non linéaire

					Erreur			Limite min	Limitemax
	Variable		Valeur	stand.	t		Pr > |t|	(95%)	(95%)
	11 lin		468,373	88,699	5,280	< 0,0001	294,040	642,705
	22 lin		381,905	88,803	4,301	< 0,0001	207,368	556,442
	11 nlin	7247,040	1170,553	6,191	< 0,0001	4946,397	9547,683
	22 nlin	6120,876	1183,752	5,171	< 0,0001	3794,291	8447,461
	33 lin	-191,828	51,834	-3,701	0,000	-293,704	-89,952
	33 nlin	14619,157 3264,921	4,478	< 0,0001	8202,175 21036,140
	Variable	Valeur	Erreur stand.	t	Pr > |t|	Limite min (95%)	Limite max (95%)
	Constante	0,000				
	11 lin	2,523	0,387	6,511	0,000	1,646	3,399
	12 lin	5,658	0,038	149,845	< 0,0001	5,572	5,743
	12 nlin	-15,412	0,600	-25,677	< 0,0001	-16,770	-14,054

  Tableau R 4 : Paramètres du modèle, F1 ou 2, εk, k=1,2,3,12, linéaires et non linéaires. (Les termes de déformation qui n'affectent pas n'exercent aucune influence sur le modèle).

	Variable	Valeur	Erreur stand.	t	Pr > |t|	Limite min (95%) Limite max (95%)
	Constante	0,000					
	11 lin	19,602	0,350	56,060	< 0,0001	18,917	20,287
	33 lin	-628,934	2,740	-229,523	< 0,0001	-634,306	-623,562
	33 nlin	0,000	0,000