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Abstract

Writing high-performance computing packages is not an easy task given the
ever-burgeoning supercomputing ecosystems. In the last decade the land-
scape of supercomputers has become more complex to maintain low energy
consumption and high computing power throughput. To achieve this feat
groundbreaking computing chips are used such as GPUs. This hardware comes
with specific low-level tools to program it and, as such, requires much expertise
when building computing-intensive applications.

This thesis is focused on task-based programming models that make the
adaptation of the software stack more productive and more resilient to hard-
ware breakthroughs.

The sequential task flow (STF) model is given special care as it proposes
polished interfaces that has been widely-adopted in scientific computing pack-
ages executed on shared-memory parallel machines. The adoption of this
model is more disputable on distributed-memory machines; the mechanisms
put in place by state-of-the-art scalable algorithms are well-established in low-
level programming models such as the message passing interface however they
are not transparently supported by the STF model. By reviewing linear al-
gebra scalable algorithms we have identified missing features in STF that are
pivotal to obtain scalability by avoiding communications.

We have implemented and validated them in the StarPU runtime system
that support the STF model. The resulting extended programming model
makes it possible to express state-of-the-art scalable algorithms in a portable
and compact way. The first one is distributed-memory matrix-matrix mul-
tiplication for which we deliver a single elegant code that can span multiple
algorithmic variants. The second one is matrix decomposition for which our
implementation compactly exhibits state-of-the-art designs. These algorithms
have been added to the dense routines of the qr_mumps package.

A large experimental campaign has been carried out to validate the per-
formance of our implementations. Performance measurements indicate com-
pelling results with regard to other dense linear algebra packages especially
on smaller problems typically harder to parallelize or when input matrices
dimensions are unbalanced.

The flexibility of our implementations was instrumental to enable the use
of layouts tailored for symmetric matrix multiplication when the symmetric
matrix is the largest one. The resulting operation now performs comparably
well to general matrix multiplication while using half the memory.
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Résumé

L’écriture de bibliothèques de calcul haute performance n’est pas une tâche
aisée surtout dans des environnements de calcul en perpétuelle évolution. La
dernière décennie a vu le paysage des supercalculateurs se complexifier pour
maintenir une consommation d’énergie faible et une puissance de calcul élevée.
Pour y parvenir des technologies avancées comme les GPU sont mises en œu-
vre. Ce matériel peut être programmé à l’aide d’outils bas-niveau et à ce titre
une expertise est requise pour développer des applications de calcul intensif.

Cette thèse étudie les modèles de programmation à base de tâches rendant
l’adaptation logicielle productive et flexible aux innovations matérielles.

On s’intéresse en particulier au modèle de programmation séquentiel en
flots de tâches (STF) qui propose une interface largement adoptée par la
communauté du calcul scientifique dans l’utilisation des machines en mémoire
partagée. Cette adoption est cependant moins univoque dans le cadre des ma-
chines à mémoire distribuée; les méchanismes mis en place par les algorithmes
de l’état de l’art qui passent à l’échelle s’appuyant plus souvent sur des inter-
faces bas-niveau comme celle proposée par MPI, ils ne sont pas disponibles
de manière transparente dans le STF. En passant en revue les algorithmes
d’algèbre linéaire qui passent à l’échelle on a pu identifié des fonctionnalités
manquantes au modèle qui permettent l’évitement des communications.

On a implémenté et validé ces fonctionnalités dans le moteur d’exécution
StarPU qui prend en charge le modèle STF. Le modèle étendu qui en résulte
rend possible l’expression portable et compacte d’algorithmes de l’état de l’art
qui passent à l’échelle. Le premier algorithme d’intérêt est la multiplication de
matrices pour laquelle on fournit un unique code élégant qui balaie différentes
variantes. Le second est la factorisation de matrice dont notre implémenta-
tion expose compactement des choix de conception de l’état de l’art. Ces
algorithms ont été intégrés à la suite de routines denses de qr_mumps.

Une campagne expérimentale importante a été mise en place pour valider
les gains de performance réalisés. Les résultats indiquent que notre approche
est compétitive face à celle mise en place par des bibliothèques de l’état de
l’art, en particullier sur des problèmes de petites tailles difficiles à paralléliser
ou bien des problèmes pour lesquels les dimensions sont déséquilibrées.

La flexibilité de nos implémentations a été déterminante pour permet-
tre l’utilisation de distrbutions de données avancées quand la matrice sym-
métrique est la plus grande. L’opération qui en résulte est aussi performante
que la multiplication de générale tout en utilisant moitié moins de mémoire.
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Chapter 1

Introduction

The cost of developing software is high and even more so when the objec-
tives are to deliver performance, portability and ease of maintenance at the
same time. Supercomputers are commonly employed in a large variety of ap-
plications and algorithms that require considerable computing power; these
range from classical numerical simulations to data analytics and are widely-
used in numerous scientific and industrial fields. The landscape of supercom-
puter architectures, however, is ever-changing as constructors strive to adopt
state-of-the-art technological advances to obtain unprecedented performance.
This makes the task of developing high-performance, portable code for high-
performance computing a daunting challenge for developers.

In this thesis we are interested in task-based programming models that
aim at making the production, porting and maintenance of high-performance
computing software easier on existing and future supercomputers.

If typical supercomputers in the 1990s mostly consisted of clusters of single-
core machines, the machines used in the 2020s are vastly different. They host
multiple manycore Central Processing Units (CPUs) which are often – but not
always – accelerated with other processors such as Graphical Processing Units
(GPUs). Writing software that is portable across these different machines is
not simply a compilation issue. The correct sets of tools and frameworks which
vary between supercomputers have to properly be used to target and extract
the performance out of the hardware. One way to observe the evolution of
supercomputers is to follow the Top500 semestrial reports. Every semester,
the Top500 ranks the most high-performing supercomputers in the world: in
2020 the Japanese Fugaku supercomputer equipped with ARM CPU chips was
the fastest supercomputer in History with 442 PFlop/s – for two years. In 2022
it was superseded by the American Frontier equipped with GPUs that reached

1
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1.2 EFlop/s. These two supercomputers have very different architectures that
seek to deliver a vast quantity of raw computing power. Their differences partly
come from how they account for electricity supply, energy cost of cooling, etc.:
the landscape of supercomputers keeps changing in part to accommodate these
physical limits. The related emerging hardware has an impact on the software
that is written to use it.

As the hardware gets increasingly complex and varied, porting scientific
software over multiple architectures while maintaining performance becomes
a challenging task. The programmer has to manage data transfers across
processing units and across the network as well as orchestrate the schedul-
ing of operations on the (heterogeneous) processing units. Most parts of the
development efforts end up being devoted to these tasks rather than to the
implementation of the application. Low-level programming models are used
by the programmer to abstract the computer’s components and to simplify
its use. Community-wide efforts have even made it possible to structure these
programming models into standards. For distributed-memory architectures,
the Message-Passing Interface (MPI) provides tools to describe data trans-
fers [107]; it is implemented both as free software through OpenMPI, MPICH,
etc. as well as by several vendors like Intel. When orchestrating computation
on shared-memory architectures, the OpenMP standard is favored because
the modification of the code can come off as relatively inexpensive through
its directive programming [34]. These standards demand a certain level of ex-
pertise to be used efficiently. Additionally their impact on the codebase can
become considerable. The same standardization effort has not yet settled for
the use of GPUs as many actors are involved (Nvidia [47], AMD [16]) and get-
ting involved (Intel) in GPU manufacturing. Adapting a codebase to GPUs
often takes the form of a thorough rewrite to handle data transfers between
processing units.

Modernizing software cannot be sustainably achieved by incrementally up-
dating entire codebases. A more durable option is to rely on higher-level ab-
stractions of the computer. Using such programming models make the effort of
the programmer less focused on low-level architectural details and more time
can be spent expressing computation that are prone to parallelism. Among
these programming models, task-based ones are becoming increasingly pop-
ular because oftentimes algorithms can be easily expressed as a collection of
tasks, that is, elementary operations. Runtime systems such as StarPU [20]
or PaRSEC [38] (formerly DAGue) expose an interface of these programming
models to effectively discharge the programmer of data management, schedul-
ing, etc.. Among the models proposed by runtime systems, the Sequential
Task Flow (STF) model has been well integrated in multiple scientific com-
puting packages. The sequential aspect of this model is an integral part of
its accessibility. A vast body of recent literature and software demonstrates
that task-based parallel programming models and runtimes allow achieving
great performance and portability on shared memory, heterogeneous systems;
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among these efforts, many focus on the use of the STF model for implement-
ing mathematical software. Nonetheless, this model has seen a less pervasive
adoption when dealing with distributed-memory architectures. Data man-
agement at the shared memory level is often entirely delegated to the run-
time system, however this hardly translates to the distributed memory case.
Managing the distributed memory comes with more challenges regarding the
coherency of the system; therefore the efficient mechanisms to transfer data
are more intrusive, especially when the algorithms are presented through a
sequential flow of tasks. Ultimately the adoption of general purpose runtime
systems is more disputable in distributed-memory environment.

Dense and sparse linear algebra software packages are extensively used in
numerous high-performance computing applications. Among these, one of the
most well-known and widely-used is ScaLAPACK [29]; this library that pro-
vides a wide range of dense linear algorithms has been developed at the end
of the 1990s using a message passing parallel programming model relying on
the MPI standard. Although ScaLAPACK is still the reference in distributed-
memory parallel dense linear algebra software its rigid programming model
makes it unsuitable for modern supercomputers as it lacks asynchronism, and
native support for multicores and accelerators. This has prompted the High-
Performance Computing (HPC) community to develop modern ScaLAPACK
replacements such as SLATE [57], Elemental [95] or Chameleon [3]; these have
taken over ScaLAPACK from a performance and portability point of view al-
though they do not cover an equally large panel of algorithms. Additionally
all of the above packages do not support state-of-the-art scalable algorithms.
Many recent research efforts from the HPC community focused on the devel-
opment of scalable algorithms for large-scale supercomputers; these are often
referred to as “communication-avoiding” because they increase parallelism by
carefully reducing either the volume of data transfers (i.e., the bandwidth us-
age) or the number of exchanged messages (i.e., the communications latency),
possibly at the cost of a modest increase in the operational complexity. In
some cases, for example, this is done by rearranging the computing nodes into
a 3D logical grid which requires more intricate communication patterns than
the standard 2D logical grids [18, 105, 102, 82]. In other cases, the latency
of data transfers can be reduced by grouping more messages together which
can create additional, redundant computation [70, 45]. These advanced al-
gorithms cannot be straightforwardly implemented in the basic STF model
because it lacks the necessary features; this issue can be partially overcome
through carefully designed coding where data and communications are man-
ually handled by the programmer but this, in essence, defeats the purpose
of using a high productivity programming model like STF. In this work,
we focus our attention on relieving programmers from such effort
by providing them with a suitable programming model to develop
scalable algorithms. Such a model is expected to help the programmer
devote more time to the numerical intricacies of the computation they wish
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to implement.
The objective of this thesis is to extend the task-based programming mod-

els capabilities to improve their use in a highly-parallel distributed-memory
context. The implementation of such programming models by runtime sys-
tems should grant a practical tool to programmers that seek to harness the
computing power of supercomputers with millions of heterogeneous cores in-
terconnected by a relatively slow network. The proposed work could be help-
ful to modernize the computational routines provided by e.g. ScaLAPACK.
It could also be instrumental in helping algorithm designers conceive new,
innovative algorithms that help users make the most out of any supercom-
puter. Although StarPU is the runtime system used in this thesis, the scope
of our work is much wider since the proposed solutions are applicable virtu-
ally in any runtime system relying on the STF model in distributed-memory
environments. The contributions presented in this manuscript are as follows.

First, we have focused on the implementation of scalable matrix multiplica-
tion algorithms through the STF model. We have demonstrated that through
the use of three advanced features – reduction operations, tasks mapping and
dynamic collective communications – of the STF model it is possible to imple-
ment, in a single parameterized code, six different variants of the well-known
SUMMA algorithm, namely, stationary-A, -B and -C both in a 2D and a 3D
setting. This code is barely more complex than the canonical three nested
loops of a sequential matrix multiplication; this ensures great ease of devel-
opment and maintenance and great portability because this implementation
is completely agnostic of the underlying architecture and data distribution.
The above-mentioned features were already available in the StarPU runtime
system; nevertheless, we have proposed an improvement of the reduction op-
erations features that better suits large distributed-memory supercomputers.
We have conducted an extensive experimental campaign on a large supercom-
puter (up to 256 nodes and 32,768 cores) demonstrating that not only our
code is more readable and portable but it achieves performance that is on par
with reference dense linear algebra libraries for the same algorithmic variants.
Furthermore, because our implementations covers a wider panel of algorithmic
variants, overall it achieves better performance when dealing with matrices of
unbalanced dimensions.

Second, we have turned our attention to matrix factorization algorithms.
In addition to the STF features presented at the previous point, scalable
factorization algorithms require two novel features which we have designed
and implemented within StarPU. The first is data write replication which
enables multiple tasks to concurrently update multiple copies of the same
data. Prior to using this feature in a matrix factorization algorithm, we have
assessed its effectiveness on a communication-avoiding stencil computation
algorithm showing that it can provide considerable performance benefits with
only little additions to a classical STF implementation. The second feature is
allreduce operations. The combined use of these two features and those in the
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previous point allowed us to develop portable and compact implementations
of 3D matrix factorization algorithms. We have conducted experiments on
large platforms to demonstrate that the obtained implementation achieves
comparable or better performance than existing reference libraries.

Third, we have further validated the extended STF programming model
developed in the previous two points. Although the data distribution certainly
plays a fundamental role in the performance and scalability, as we explained
above, this programming model allows implementing algorithms regardless of
the way data is distributed because the runtime will transparently move data
where the corresponding tasks are computed. This makes it very easy to exper-
iment with novel data distributions because only very little modification in the
code is needed. Based on this, we have worked in collaboration with experts
of scheduling to develop data distribution schemes that are capable of reduc-
ing the communication volume in parallel algorithms for symmetric matrices.
We have experimented with these novel data distributions on the symmetric
matrix multiplication and the Cholesky factorization demonstrating that they
can practically reduce the communication volume and, consequently, improve
performance especially on relatively small-size matrices when the cost of com-
munications is dominant. Finally, we have assessed the effectiveness of this
approach in the Diodon data analysis package 1 which makes a heavy use of
symmetric matrix-matrix multiplication in its most computing-intensive parts:
we assess the performance of several symmetric layouts analyzing real-world
datasets over computing nodes accelerated with GPUs. Note that to target
accelerated platforms we do not need to adapt our STF expression but we
simply need to provide the runtime with accelerated kernels which are readily
available in GPU-specialized BLAS and LAPACK libraries.

The rest of the manuscript is structured as follows: key concepts and el-
ements found in the scientific literature are detailed in Chapter 2 with an
emphasis on hardware, how to program it efficiently and what algorithms
are programmed over it. In Part I of this manuscript, the ability of the
STF programming model to express scalable algorithms is assessed and en-
hanced. More precisely, Chapter 3 focuses on expressing scalable General
Matrix-Matrix multiplication variants. While this routine is ubiquitous in
numerical linear algebra, the chapter focuses on bringing the most studied –
but not necessarily implemented – scalable state-of-the-art routines under a
versatile, efficient expression. This routine requires the definition of essential
features: the mapping of tasks, the dynamic detection of collective operations
and the use of distributed-memory reduction patterns. While these features
are instrumental to scalable algorithms, they do not allow the expression of
the presented decomposition algorithms. Thus Chapter 4 focuses on some ad-
ditional features: one is the replication of task computation explored through

1diodon git repository https://gitlab.inria.fr/diodon/cppdiodon

https://gitlab.inria.fr/diodon/cppdiodon
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the example of 2D Stencil computation, the other is the allreduce collective
operation. The sum of these features becomes an extended STF program-
ming model suitable to express scalable matrix decompositions. Part II of
this manuscript is composed of a single chapter. Chapter 5 builds on the
use of the features proposed in Part I for the development of data distribu-
tion schemes for algorithms on symmetric matrices. Chapter 6 concludes this
thesis and enumerates some perspectives of the accomplished work.



Chapter 2

Background

Plenty of scientific fields have reveled in the use of numerical simulations
because they are both confident in the equations that govern their systems
and their systems are too big to fit in laboratories. Not only are numerical
simulations able to tackle problems that may be hard to set up physically,
the precision and scale at which they are able to do so is staggering and ever-
increasing. However this sustained growth exposes researchers, engineers and
the scientific computing community at large to challenges to maintain, port,
and efficiently execute their applications on top of the best computers.

To benefit from the latest breakthroughs in hardware, the past trends
for software implementations have been to adapt the code by combining pro-
gramming models together. Section 2.1 presents the leading architectures that
have been manufactured over the three past decades. Porting code over these
architectures is an enterprise that becomes more challenging as the software
stack gets unreasonably complex and hard to maintain, therefore difficult to
expand. To address this issue runtime systems that act as a layer of ab-
straction between applications and both the hardware and some specialized
libraries are recently being favored. These runtime systems and corresponding
programming models are described in Section 2.2. They meet most require-
ments to address the efficient use of parallel supercomputers, especially at
the shared memory level. Indeed, they commonly provide programming mod-
els that have proven relatively easy to use, productive and efficient in many
contexts. Section 2.3 focuses on two omnipresent algorithms in numerical
linear algebra: matrix-matrix multiplication and matrix factorization. Being
able to design and implement algorithms that are scalable across platforms is
paramount to use supercomputers properly. Nonetheless, the latest iterations
of these scalable algorithms are still developed through home-brewed, special-

7



8 CHAPTER 2. BACKGROUND

ized abstraction layers despite the existence of general runtime systems. It
appears runtime systems lack features in their programming model that make
optimizations for scalability easy to leverage.

2.1 An ever-complexifying ecosystem
The need for computing power has been ever-increasing as faster computers
can execute programs over larger inputs, sometimes in a shorter time. The
programs ran on supercomputers are used in computing-intensive scientific
fields to apprehend large-scale phenomenons or in industrial settings to op-
timize the design of new products. Breakthroughs in hardware manufacture
have been a constant driver of scientific computing performance. Figure 2.1
(top) illustrates how, before 2005, processors’ capabilities were growing ex-
ponentially. From 2005 onwards, Moore’s law keeps proving itself valid as
the number of transistors grew exponentially yet the performance of a single
computing thread has stalled as the frequency of the CPU clock stagnates.

Nonetheless, one can observe that the growth in computing power for su-
percomputers keeps its exponential pace in the bottom of Figure 2.1. Paral-
lelism has been the key principle to maintain such trends. The exaflop barrier
was breached in 2022 with the Frontier supercomputer by assembling a system
where parallelism can be leveraged at many levels from the Central Process-
ing Units (CPUs) all the way up to the Network Interface Controllers (NICs).
When using modern computing centers, a programmer wants to take advan-
tage of all the different levels of parallelism to run their program efficiently.
To achieve this goal they typically rely on a great deal of abstractions. The
programming language they use to write their source code is a first abstrac-
tion – as it provides a translation to machine code – but what they often rely
on are specialized libraries or middlewares that leverage the actual architec-
tural properties of the computer they use. Such libraries typically focus on a
specific component or technology in the computer: from the efficient use of a
single core to the data transfers over various channels, from the orchestration
of computation over many cores to the use of dedicated hardware. However,
because of the expertise required to use these libraries and the very large
scope they encompass, the source code resulting in their usage may come off
as tough to read, troublesome to profile and prone to maintenance issues.

2.1.1 Evolution of supercomputers hardware
Supercomputer constructors have sought after ways to maintain a steady in-
crease in computing power. In doing so, they evolved from the canonical
single-core machine to clusters of multicore accelerated nodes. This modifi-
cation of supercomputers has been incremental, with prominent architectures
often lasting for about a decade. Latest supercomputers hold thousands of
computing nodes each housing hundreds of computing cores, amounting in
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petaFlop/s or even exaFlop/s of computing power. In this section we will
briefly discuss the main technologies that are still in use on modern super-
computers.

2.1.1.1 Clusters

Starting in the 1990s, as a single computing node became a commodity, su-
percomputers were built as the aggregate of several computing nodes linked
through a high-performance network. The ability to efficiently distribute
computations over these clusters of computing nodes – often referred to as
distributed-memory parallel computers – was pivotal to increase supercom-
puters’ computing power. This decade of supercomputing saw a fierce compe-
tition in vendors’ products as well as a prolific literature to study distributed-
memory algorithms.

Linking up computing nodes through a network is a high-stake endeavor
since the channels used to communicate data between CPUs are orders of
magnitude slower than transfers made inside the CPU chip. Therefore, the
organization of interconnections between computing nodes has been a key
concern when building supercomputers. Indeed one of the metrics used to
measure the cost of a running supercomputer is the number of network links
it requires: it would be expensive to link every compute node in a cluster
with one another but it is possible to link them indirectly. These topological
questions rely on dedicated hardware that routes data transfers – switches.
These switches interconnect parts of a single cluster with one another.

2.1.1.2 Multicores

The so-called golden age of computer architecture began around the 60s and,
for many years, thanks to an effective interplay between Moore’s law [87]
and Dennard scaling [53] allowed for producing processors that were increas-
ingly denser, i.e., more capable, and with a higher frequency with no or little
increase in the energy consumption. During this period, simply upgrading
the processors of a computer lead to satisfactory performance improvements
without further efforts from programmers.

In the beginning of the years 00s the Dennard scaling came to an end: the
microprocessors’ frequency could not be pushed any further without encoun-
tering thermal dissipation and energy consumption issues. Despite Moore’s
law being still valid, improving processors’ performance under these con-
straints became more challenging. Instruction level parallelism (ILP) tech-
niques such as vectorization or deep pipelining certainly offered a way to push
performance a bit further but certainly not at the exponential rate observed
in the previous decades.

It is at this moment that computing architectures switched to CPUs equip-
ped with multiple computing cores. Instead of linking computing cores through
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the network, a single processor was now built equipped with multiple cores.
This design makes it possible to parallelize instructions at a higher level than
ILP: sets of instructions accessing different memory addresses can be exe-
cuted by different cores. This essentially leads to thread-level parallelism
(TLP) where a thread is a lightweight process run over a single core. Because
the buses inside a computing node are orders of magnitude faster than links
over the network, this design is relatively efficient to move data between fast
memory such as Random-Access Memory (RAM) and computing units.

This major technological shift lead to a sharp discontinuity with the past
which can be easily seen in Figure 2.1 (top). The multiplication of computing
cores came with newer hardware challenges. It must also be noted that, if
multicore systems are able to process instructions concurrently, the rate at
which each core in the system performs stagnates and, in general, is lower
compared to an old-generation single-core; the reason for this trend lies in the
need to respect a power consumption budget which is shared across cores.

CPUs are equipped with cache memories that store some data closer to the
Arithmetic and Logical Units (ALUs) than the relatively slow RAM. In mul-
ticore computers, this cache is typically shared among multiple cores at some
level (typically the farthest from CPU). Although this allows for faster com-
munication between cores, as a shared resource, memory accesses become the
subject of contention and may create bottlenecks that degrade performance.
Furthermore, modern supercomputer nodes are often equipped with multiple
multicore processors possibly in a non-uniform memory architecture (NUMA)
setting which makes the speed access to data irregular.

Inside modern supercomputers, a single computing node can hold as many
as hundreds of cores. Figure 2.2 shows the result of the lstopo utility pro-
gram delivered by hwloc when executed on Platform A. This visualization
makes the hierarchy and complexity of the machine apparent. On such a
platform, memory accesses are non-uniform between two cores selected ran-
domly. Non-Uniform Memory Accesses (NUMA) domains have to be taken
into consideration when allocating memory over such a machine.

This technological rupture with the past came with many daunting chal-
lenges for programmers and users of intensive computing. Indeed, upgrading
to a new processor does not lead to a performance improvement for sequential
codes anymore; many codes and libraries had to be adapted or rewritten with
parallelism in mind.

2.1.1.3 PU specialization

At the beginning of the 2010s, the supercomputers started to be equipped with
accelerators and, more specifically, with Graphical Processing Units (GPUs)
to increase their computing power. This can be seen as a consequence of the
end or the slowdown of Moore’s law – an issue that can be mitigated through
specialization of processing units. These specialized processing units take
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Figure 2.2: The topology of a single computing node of Platform A.

advantage of data parallelism to map instructions over numerous ALUs. A
GPU architecture is designed to process massively parallel workloads. Because
of their design, GPUs are especially suited for operations that deal with heavy
data streams while requiring a low amount of branching and conditions. This
hardware specialization is of great interest for scientific computing because
applications such as simulations rely on the processing of large data inputs
such as arrays of floating-point numbers. GPUs are fundamentally well suited
to deal with these regular problem formulations where dense numerical linear
algebra is used. However, they often fail to obtain as impressive speedups
over CPUs when dealing with irregular or sparse computations. In most cases,
GPUs extend the reach of tractable numerical problems but they have to be
used in combination with CPUs.

GPUs are often equipped with their own dedicated RAM – often called
Video RAM or VRAM – and they compute instructions using data stored
therein: CPUs are used to command the data transfers from the RAM to the
VRAM or command the allocation of memory in the VRAM. While the GPU
memory is typically smaller than RAM, the available bandwidth between this
dedicated memory and the GPU cores is higher than the bandwidth between
RAM and CPUs. GPUs require such dedicated memory and high memory
bandwidth because of the acceleration they provide over large chunks of mem-
ory: large bandwidth is a requirement to move data across the multiple ALUs
found on the GPU chip.

Because of their large computing power and their design that target mas-
sive data parallelism, GPUs are better suited to operate on larger chunks of
data. This difference with CPUs is often referred to as the granularity of
the operations. A single CPU core is equipped to efficiently process fine-grain
operations while a GPU chip is equipped to efficiently process coarse-grain op-
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erations. When multiplying matrices, a modern CPU core can reach peak per-
formance with hundreds of millions of flop (equivalent to multiplying square
matrices of size 512) however a GPU would require a significantly larger work-
load to perform at its peak – about three orders of magnitude more.

Nvidia has been a key manufacturer in the beginning of the 2000s however
major manufacturers are trying to seize the GPU market. Two of the principal
actors are AMD and Intel.

2.1.1.4 Summary

In the course of the last three or four decades, three main hardware tech-
nologies have become dominant and widely-adopted in the domain of high-
performance computing. The first is distributed-memory parallel computing
achieved by connecting multiple computing nodes through a high-performance
network. The second is represented by multicore processors. The third cor-
responds to the advent of accelerators (most commonly GPUs). In order to
achieve high-performance at a very large scale, all these technologies are often
combined in modern supercomputers. Although world-grade supercomputers
do not use dedicated processing units such as the Fugaku. Nodes of a modern
supercomputer, illustrated in Figure 2.3, are commonly equipped with multi-
ple multicore processors, often in a NUMA setting, and multiple accelerators
or GPUs. These processing units are connected to each other using different
types of interconnects and are attached to different memories. These nodes
are assembled in very large numbers thanks to dedicated, high-performance
networks in order to achieve great performance and scalability. As a result,
modern supercomputers are extremely heterogeneous: they are equipped with
numerous processing units that have different speeds and capabilities, memo-
ries with different capacities, bandwidths and latencies and interconnects with
different bandwidths and latencies. Therefore, although all these technologies
allow increasing performance on paper, in practice they throw an incredible
burden on the programmers who have to deal with all this complexity.

2.1.2 Parallel programming paradigms
Because of the incremental development of hardware architectures, the soft-
ware stack used to program supercomputers has become incrementally com-
plex over the years. To face this complexity, many approaches have been
proposed that address different layers of the computer architecture. Through
community-wide effort, some of these approaches were standardized and be-
came adopted across scientific computing applications. MPI and OpenMP
are such open standards which have been widely-implemented by vendors of
hardware to deliver high performance across different machines. The use of
GPUs to accelerate computers primarily relies on proprietary libraries that re-
quired more involvement from their users than standardized frameworks. Nat-
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Figure 2.3: A typical HPC computing node inside a cluster of thousands of
nodes. Data transfer speeds and computing speeds are indicative and only
reflect adopted technologies such as PCIe4, DDR4, Infiniband HDR, etc.

urally when an application undertakes refactoring to use one single vendor’s
hardware, its efforts are not rewarded with performance portability across all
GPUs. Ongoing initiatives aim to provide open, common standards but they
are not yet widely adopted. The large combination of hardware technologies
means that programmers face a challenge when trying to port their code over
a large range of computer architectures. In this exercise, they must rely on
the parallel programming paradigms presented in the following sections.

2.1.2.1 Message-passing paradigms

The Single Program Multiple Data streams (SPMD) approach has been popu-
larized widely as it provides a way to tackle the implementation of a distributed-
memory program. By using the proper distributed-memory paradigms, pro-
grammers can write one single program using various function calls to transfer
data across the network. When they compile their program and command
its execution over multiple instances, each instance can behave as either the
receiver or the sender of the expressed data transfers – or even both when
collective operations are invoked. Each computing node equipped with a sin-
gle computing core would execute the compiled code concurrently. For a long
time, SPMD approaches were largely platform-dependent and a plethora of
ways to use the network existed. Because of the relative speed of the net-
work, it was often satisfactory to rely on Bulk Synchronous Parallel (BSP)
execution model to design algorithms: applications were divided into syn-
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chronization, communication and computation phases and each was achieved
simultaneously.

The Message-Passing Interface (MPI) standard emerged in the early 90s
in a community-wide effort to design software libraries to level the implemen-
tation of distributed-memory programs [107]. The MPI standard consists of
routines wrapping-up essential communication primitives, including point-to-
point as well as collective data transfers, that can be called with a certain level
of finesse if the user desires – for instance, explicit support of asynchronism.
The MPI standard exposes several key concepts that programmers can har-
ness. One of these concepts is the communicator which is a set of processes
that can exchange with one another, possibly using collective communication
operations such as reduce, gather, allreduce, etc. Within a communicator,
each process is given a numerical identifier which we call rank in order to
express communications more conveniently. Communicators can be split into
subcommunicators of fewer processes. Through MPI, users essentially design
ways to split ranks into various, hopefully independent, communicators to ex-
press the data transfers they require. Over the years, a large literature was
produced to provide scalable algorithms for the implementation of efficient
communication schemes: their goal was to give the ability to execute them,
however complex they could be, at an arbitrary large scale over any network
topology.

Other paradigms were instrumental in leveraging distributed-memory com-
puting power such as Partitioned Global Address Space (PGAS) – which has
been implemented for C through the Unified Parallel C (UPC) extension [43]
or for Fortran through coarrays (since the 2008 standard). The main differ-
ence between MPI and PGAS is that PGAS focuses on providing a logical
partitioning of the memory such that retrieving a remote piece of data is eas-
ily expressed as a one-sided communication. As such, the approach is easier
to manage for the programmer because it hides the need to describe commu-
nication patterns in a precise manner where the receiver and the sender have
to express the same communication on their respective sides. Note that the
one-sided communications were eventually incorporated into MPI – without
the same focus on logical partitioning that PGAS typically provides.

Many algorithms, including numerical linear algebra algorithms, were de-
signed in terms of MPI or PGAS paradigms: this is detailed in Section 2.3.2.

2.1.2.2 OpenMP

Although it must be noted that shared-memory parallel computers existed
already before multicores, it is only with the advent of this technology that
shared-memory parallelism became ubiquitous and unavoidable. Therefore,
since the mid 00s, many existing multithreading solutions were revamped and
many new ones were proposed to make efficient use of this new technology.
Some existing approaches such as Posix threads (or pThreads) became widely
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adopted but turned out to be too low-level to allow for high productivity;
proprietary solutions were also proposed, such as Intel TBB [96] but did not
meet the broad interest of the HPC community. Among the other existing
approaches, we can cite Cilk [33] or Charm++ [79] which are still being used
although only by a limited number of programmers.

Among all the existing options, certainly the one that is the most widely
adopted is OpenMP, a standard that was first submitted in 1997 [35] and
considerably improved and extended over the years. While there is an inherent
difficulty to exhibiting parallelism in applications, programming models such
as the one offered in the OpenMP standard allow users to simply decorate
their code through directives to take advantage of the multiple cores. Such
a directive programming approach is convenient for the programmer because
they get to point out what statements are prone to parallelism – not modifying
their initial serial code much – while letting the compiler produce machine code
that will be efficiently dispatched across many cores.

OpenMP relies on a fork-join programming model where a code is made of
alternating sequential and parallel sections; within a parallel section multiple
threads exist which can share work, commonly, through the use of worksharing
constructs. The most popular worksharing construct, especially in the early
OpenMP standards, is certainly the parallel loops directive which became so
widely used that OpenMP was often, although incorrectly, referred to as “loop
parallelism”. Through the years, the OpenMP standard has been considerably
extended and improved. One major step is represented by the introduction
of task parallelism in the 3.0 version of the standard, a feature that we will
deeply discuss in the remainder of this document. More recently, support for
accelerators was also introduced in OpenMP v4.0 as we will explain in the
next section.

Although, as explained, many sequential codes had to be rewritten us-
ing some multithreading approach in order to take advantage of multicores,
parallel codes based on message passing could take advantage of this new tech-
nology right away: communications between cores sitting in the same node do
not correspond to messages sent through the network but, rather, to copies in
the shared memory. Nevertheless, because of these relatively expensive and
avoidable copies, and because of its essentially synchronous nature, the MPI
model does not allow taking full advantage of shared-memory parallelism. For
this reason, many, if not most, codes designed for large scale supercomput-
ers are based on a combination of MPI and some multithreading technology,
often OpenMP. This combination is not always easy to achieve and multi-
ple approaches exist. It must be noted that the MPI standard was recently
(in MPI 3.0) extended with features that are specifically designed to achieve
higher performance on shared-memory parallel computers. Nevertheless, the
MPI+OpenMP approach still seems to be the most widely adopted.
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2.1.2.3 Programming accelerators

Programming accelerators such as GPUs, often relies on the use of proprietary
solutions. For example, one strong actor in the GPU sector is Nvidia that
provides the CUDA programming toolkit to program their GPUs [47]. This
toolkit includes compilers that provide an extension of the C/C++ language
for distributing computations over the GPU cores, debugging and profiling
tools and performance libraries, such as cuBLAS, a GPU-optimized imple-
mentation of the Basic Linear Algebra Subprograms (BLAS) library. As ex-
plained earlier, GPUs commonly have their dedicated memory which is faster
than the main memory but of limited size; furthermore, some operations can-
not be run efficiently on GPUs or are very hard to implement. Therefore,
GPUs are typically used in combination with CPUs, which means that data
has to be moved, more or less frequently, from CPU to GPU memory. Cuda
comes with data management functions that allow allocating memory on the
GPU and moving data from CPU to GPU and the other way around. It must
be noted that these data movements make coding for GPUs relatively hard
and, despite they happen through fast interconnects, their cost can, at times,
overcome the benefit of offloading computations to GPUs.

Cuda is property of Nvidia and, therefore, does not work on GPUs pro-
duced by other vendors. Despite this lack in portability, there has been a
strong motivation from the HPC community members to adapt their own
application using Cuda which has been, for many years, the most widely, if
not the only, adopted technology. Other prominent industrial actors such as
AMD have recently jumped into the general-purpose GPU (GPGPU) market
and have produced boards that are used (and increasingly so) on supercom-
puters among the most powerful ones. AMD offers the ROCm platform [16]
that includes the Heterogeneous Interface for Portability (HIP) layer to target
its GPUs as well as other ones. Intel recently delivered a series of consumer-
grade GPUs: it is easy to conceive that computing-intensive applications may
need to rely and port on a plethora of specialized hardware in a relatively
near future. For this reason efforts have been pursued, such as OpenACC [89]
or OpenCL [88], to provide a standard and portable programming interface
for GPUs. More recently, the OpenMP standard (since v4.0) was extended
with directives for programming accelerators but support from compilers is
still lacking or incomplete. Other notable efforts to improve the portability of
codes across GPUs include portability/abstractions layers such as SYCL [64]
or Kokkos [110]. Although all these solutions provide greater portability than
proprietary options, they fail to achieve the same performance.

Large code bases have often been rewritten to target trending architec-
tures that deliver an increasingly large amount of computing power. These
new architectures come with components that can only be used through spe-
cialized packages that limit the portability when adapting applications to
supercomputers. Portability may require considerable effort because archi-
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tectural breakthroughs force programmers to reconsider the algorithms they
implement. The diversity of supercomputers ecosystem has not been inter-
rupted yet, so software packages will need to adapt further. The next section
details the middleware – specifically runtime system – that is being considered
to mitigate the cost of this adaptation.

2.2 Runtime systems and their programming
models

In the same vein as supercomputers have become an assembly of different
technologies (i.e., distributed memory, multicores and accelerators), typical
modern high-performance computing codes are implemented through a com-
plex combination of programming models and paradigms such as MPI+Open-
MP+X (where X refers to any technology used to program accelerators). This
mostly happened for two reasons. The first is historical: as new hardware tech-
nologies were introduced, existing codes were incrementally extended with the
corresponding programming solutions. The second lies in performance: in an
attempt to squeeze the last GFlop/s out of their expensive machines, HPC
practitioners often prefer to have direct access to all the hardware features
through dedicated programming solutions.

As the landscape of HPC architectures becomes increasingly varied and
heterogeneous, the inherent difficulty to maintain a software stack that weaves
multiple paradigms addressing each component of a modern supercomputer
becomes unsustainable. As a consequence, the HPC community has recently
leaned toward runtime systems as a way of achieving high productivity and
performance portably across many architectures. Runtime systems, or more
simply runtime, act as a layer between the application and the hardware as
pictured in Figure 2.4; by hiding most of the low-level architectural details,
they provide the programmer with the vision of an abstract parallel machine
and a unified programming model and interface to write code independently
of the hardware features. This allows for a much higher productivity and bet-
ter separation of concerns; applications or mathematics specialists can focus
on the development of efficient and scalable algorithms without the burden
of dealing with low-level architectural details, whereas runtime experts can
develop sophisticated mechanisms and methods to deploy the workload effi-
ciently on the available computing resources.

Numerous runtime systems have been developed over the years; an exten-
sive review of runtime systems is given by Thibault [108]. Our work focuses on
runtime systems that rely on task-based parallelism, specifically through the
use of the sequential task flow (STF) programming model, which we describe
in the next sections.
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Figure 2.4: Typical HPC application software stack.

2.2.1 Features of runtime systems implementing task-based
programming models

Although many, high-level, unified, parallel programming models exist, task-
based parallelism and runtime systems are becoming increasingly popular in
the high-performance computing domain due to their effectiveness and relative
ease of use. In this programming model, the workload is expressed as a collec-
tion of tasks, that is, elementary operations on data. These tasks are arranged
in a directed acyclic graph (DAG) that expresses their mutual dependencies
and, consequently, the available parallelism: tasks lying on different paths of
the dependency graph are independent and can thus be executed in any order
and, possibly, concurrently. The main advantage of this programming model
is that porting a code on a new architecture mostly consists in producing op-
timized (sequential) implementations of tasks, provided that the runtime has
been extended to support the new machine. In many cases, these optimized
implementation of tasks are available off the shelf within vendor libraries such
as BLAS or LAPACK. For a given task type the programmer can provide
several implementations, one for each type of worker that is entitled to exe-
cute tasks of this type; as such, depending on the scheduling policy and the
availability of resources, the runtime can schedule the execution of a task on
either worker for which an implementation was provided.

A very simple example of a DAG is provided by the diamond graph illus-
trated in Figure 2.5 (left) which represents the workload associated with the
code in the right part of the figure. This DAG includes four tasks of types
a, b and c. Tasks b are two different instances of the same operation but on
different data and lie on the same level in the graph. From the DAG it is
clear that once a is completed both b tasks can be executed and c can only
be executed when both b tasks are completed themselves. In this example b
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could have a Nvidia GPU implementation provided by a cuda_b function and
a classical CPU implementation provided by core_b; in this case the runtime
can choose to execute the two b tasks simultaneously on a CPU core and on
a GPU.

a

b b

c

1 A0,A1 = a()
2 A0 = b(A0)
3 A1 = b(A1)
4 c(A0,A1)

Figure 2.5: Diamond graph with 4 tasks. Left: the DAG that can be sched-
uled with each task assigned a letter. Right: a pseudocode of a sequential
execution. Note that tasks b which are on the same level in the DAG can
commute.

Numerous runtime systems rely on task-based parallelism, the most popu-
lar among them certainly being OpenMP. Although they might offer different
features and achieve different performance and scalability, they all have to
face the same challenges and, therefore, present the same, or comparable,
components which we briefly describe below.

Programming model and interface The programming model and inter-
face are certainly two key ingredients of any runtime including task-based
ones. Through the programming model and interface, the runtime provides
programmers with a way of expressing their workload in the form of a DAG
of tasks. They must be sufficiently expressive to offer high productivity which
means that the programmer must be able to express complex algorithms sim-
ply and independently of the low-level architectural details to achieve great
portability.

One trivial way of describing the DAG of tasks is by explicit enumeration
of all the tasks which it is composed of, along with the corresponding depen-
dencies – an approach that clearly becomes unfeasible at very large scales.
Therefore, programming models have been developed that allow for an easier
description of the tasks and for the automatic detection of their dependencies.
The most widely-employed programming models for task-based parallelism
are certainly sequential task flow (STF) and parameterized task graph (PTG)
which we describe in greater details in sections 2.2.3 and 2.2.2, respectively.
These programming models can be implemented through different interfaces
that rely, for example, on the use of directives (as in the case of OpenMP),
functions (as in the case of StarPU) or domain specific languages (DSL) (as
in the case of PaRSEC). In some case the interface not only allows describing
the DAG of tasks but also allows the programmer to provide the runtime sys-



2.2. RUNTIME SYSTEMS AND THEIR PROGRAMMING MODELS 21

tem with hints to help it achieve better optimizations and, ultimately, better
performance.

It must be noted that describing the DAG of tasks has a certain cost
which can be more or less important depending on the chosen programming
model and interface; modern runtime systems strive to offer the best trade-off
between this overhead and expressiveness and ease of use.

Scheduling Once the DAG of tasks is described, the runtime is in charge of
deploying the corresponding tasks on the available computing resources. This
duty can be extremely challenging considering that, in real-life uses, DAGs can
be extremely large, tasks can be of different nature and size and the underlying
architecture can be large and heterogeneous. Achieving an efficient distribu-
tion of the tasks under all these constraints and taking all these parameters
into account, basically amounts to a complex scheduling problem. Because
the DAG is often generated dynamically and in order to better take the ma-
chine status into account, most of the time dynamic scheduling approaches are
preferred to static ones. The literature around dynamic scheduling of DAGs
of tasks on parallel architectures has been very prolific in recent years. A
scheduling policy can be extremely eager and try to assign a ready task to
the first available processing unit. On the other side, complex policies may be
much more insightful and take many parameters into account such as the crit-
ical path, the affinity of tasks and processing units, the placement of data and
the cost of data transfers through interconnects. In some cases performance
models are automatically built or hints may be provided by the programmer
to guide scheduling decisions. Obviously, the more complex the policy is, the
higher is the overhead associated with taking scheduling decisions; therefore
the granularity of tasks must be large enough that this overhead does not
exceed the advantage of using a careful scheduling policy.

Modern runtime systems often include a scheduling engine which imple-
ments one or more scheduling policies that aim at maximizing the use of the
available computing resources. Runtime users can easily choose the option
which is better suited to their workload and computer; some runtime systems
also offer the possibility to develop and plug in custom scheduling policies.

Data management In the case were a code is executed on a system that
includes multiple incoherent memories, not only the execution of tasks is del-
egated to the runtime system but also the handling of data. In essence, the
runtime will make sure that whenever a task is executed on a given processing
unit, the data it needs will be available on the associated memory. In the
diamond DAG presented in Figure 2.5, assuming that task a is executed on
the CPU and the left task b on a GPU, the runtime system will automatically
transfer data A0 from the CPU memory to the GPU memory after the execu-
tion of task a and prior to the execution of task b. An optimization technique
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rk 0 rk 1 rk 2 rk 3

Figure 2.6: A DAG distributed over four ranks to execute a distributed mem-
ory operation. The transfers between ranks are highlighted in blue.

commonly employed by modern runtime systems, referred to as prefetch con-
sists in executing these transfers in advance so that when a task is scheduled
for execution, all the data it needs is already in place and the task execution
can start right away without any latency.

Because of these data transfers, at any time during the execution, multiple
copies of a single data may exist in the various memories; it is the duty
of the runtime to ensure coherency among the existing copies. As long as
one data is only read by tasks, these multiple copies can co-exist and be
used simultaneously but runtime systems normally prevent multiple tasks from
modifying the same data concurrently. In Chapter 4, we will propose a feature
that allows relaxing this constraint temporarily.

The coherence that is ensured at the shared memory level should be prop-
agated when working in a distributed-memory setting. Figure 2.6 presents a
DAG distributed across four computing nodes; in this figure, dependencies (in
solid blue) that cross the border between nodes (in dashed black) inherently
describe data transfers happening over the network. Therefore, all nodes must
have a sufficiently detailed knowledge of the entire DAG (more on this will
be said later) in order to not only schedule the locally-executed tasks but also
the necessary remote data transfers. The runtime system should enforce co-
herency locally such that communications are performed before the local task
is executed – communications can be interpreted as tasks reading pieces of
data, and being executed by a special worker process that handles the NIC.



2.2. RUNTIME SYSTEMS AND THEIR PROGRAMMING MODELS 23

2.2.2 The parameterized task graph (PTG) programming
model

In the PTG programming model, the DAG is broken down into task classes.
A class of tasks is defined by its inputs and outputs – either some instance of
a task class or a given piece of data – as well as ranges of values its instances
can take. This description allows for writing an algebraic representation of
the DAG: it is entirely known from this high-level, implicit description. This
provides the PTG model with great scalability because the DAG is not ex-
plicitly and entirely built but, instead, tasks are efficiently instantiated based
on the rules defined by the programmer. However, this comes at the price of
a considerably higher programming effort than the STF programming model
presented in Section 2.2.3 [7].

The PTG expression for the diamond DAG presented in Figure 2.5 would
result in the code presented in Algorithm 1. The task class b describes two
separate instances b0 and b1. Nodes a, b and c are described with their input
nodes stated before the first→ symbol. The output nodes are stated after the
second → symbol. For each input or output node, the position of the variable
in the list of arguments can be deduced as it appears only once – for instance,
C the second argument of task a(0) is the first argument of task b(1).

Algorithm 1: PTG expression of a diamond DAG with 4 tasks.
1 a(i=0,B:W,C:W)▷
2 A0 → B → b(i,B)
3 A1 → C → b(i+1,B)
4 b(i={0,1},B:RW)▷
5 if i=0 then a(0,B,∼) → B → c(0,B,∼)
6 else a(0,∼,C) → B → c(0,∼,C)
7 c(i=0,B:R,C:R)▷
8 b(i,B) → B
9 b(i+1,B) → C

PaRSEC [38] is a runtime that implements interfaces to offer the PTG pro-
gramming model. PaRSEC delivers a wider ecosystem of development tools
to handle debugging, visualization, etc.. PaRSEC provides the Job Data Flow
(JDF) DSL which can be compiled to source code that uses PaRSEC inter-
faces. The JDF format simplifies the job of the application developers as
PaRSEC can translate the representation of the application to an optimized
program. Once an application is described in terms of the PaRSEC interfaces,
the runtime system is able to schedule its execution over available processing
units in a shared memory as well as a distributed-memory environment. The
PTG approach has recently been generalized into the Template Task Graph
(TTG) programming model [37]. TTG is focused on the portability and per-
formance of irregular, sparse workflows which often prove challenging because
of conditional execution or very low granularity.
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2.2.3 The sequential task flow (STF) programming model
The focus of this manuscript is the STF programming model, sometimes also
referred to as superscalar since it mimics the functioning of superscalar pro-
cessors where instructions are issued sequentially from a single stream but
can actually be executed in a different order and, possibly, in parallel depend-
ing on their mutual dependencies. This programming model does not deal
with the issuing of instructions but rather the submission of tasks: the user
describes computation to the runtime and let it schedule them accordingly.
The STF model relies on a task insertion or submission primitive which allows
creating said tasks: insert_task. The insertion is non-blocking in the sense
that the control is immediately returned to the caller and the execution of the
task is deferred. Upon insertion of a task, the caller must not only specify the
operation that the task must execute but also the data used by the task and
whether the task accesses these data in read (R), write (W) or read-write (RW)
mode. Based on the order in which tasks are inserted and their data access
modes, dependencies between tasks can be easily determined and the DAG of
tasks automatically built.

The automatic detection of dependencies from task submission can be
achieved by the runtime system by following Bernstein’s conditions [28]. In a
task-based paradigm, task b depends on a previously-submitted task a if:

• Tasks a and b write over the same datum (Write After Write, “WAW”)

• Task a writes over data task b reads (Read After Write, “RAW”)

• Task b writes over data task a reads (Write After Read, “WAR”)

The diamond DAG presented in Figure 2.5 is expressed through the STF
programming model as in Algorithm 2. The reader can appreciate how the
expression is very similar to the one of the sequential code: the role of the
programmer is simply to delegate function calls to the runtime system.

Algorithm 2: STF expression of a diamond DAG with 4 tasks.
1 insert_task(a, A0:W, A1:W)
2 insert_task(b, A0:RW)
3 insert_task(b, A1:RW)
4 insert_task(c, A0:R, A1:R)

In the case of a shared-memory parallel computer, the STF model com-
monly relies on the use of a manager process in charge of inserting the tasks
and multiple workers in charge of executing them on the available process-
ing units. Multiple types of workers may exist if different processing units
are available such as CPU cores and GPUs. In the case of a distributed-
memory machine, multiple managers (at least one per computing node) exist
which communicate by exchanging messages; these communications can be
internally implemented by the runtime system through the MPI standard but
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other communication interfaces or libraries can also be used. These com-
munications essentially correspond to dependencies between tasks that are
executed by workers in charge of distributed-memory data transfers. For this
reason, in the most basic use of the STF model, all managers must insert all
the tasks of the DAG to make sure these communications are correctly de-
tected and executed. This corresponds to the approach based on a concurrent
unrolling of the task graph proposed by YarKhan (Figure 4.2 in his disser-
tation): he outlined a SPMD approach where a single basic program is run
across processes to handle the distributed-memory task insertion [114]. This
program, introduced in Algorithm 3, indicates how to process a task T in a
distributed-memory environment. First, all processes have to nominate the
same processor Pexe that will execute the task. As Pexe requires valid copies
of the task’s inputs Ai, communications may need to be scheduled between
processes owning Ai and Pexe. The runtime should also track dependencies
between tasks to avoid redundant communications – Ai should not be sent
back if it has not been modified. Because every process unrolls the same DAG
it is indeed possible to associate a cache record with any data Ai. Agullo
et al. implemented a distributed-memory cache mechanism to avoid these re-
dundant communications [6]. The required update of this cache is omitted
from the algorithm.

Algorithm 3: Generic statements executed by the rank me in a task-based
distributed runtime system processing a task T.
1 task = build_task(T)
2 Pexe ← task.executing_rank
3 for Ai in task.inputs if me = Ai.owner and Ai invalid in Pexe’s memory

do
4 insert_mpi_exchange(Ai,to: Pexe)
5 if me = Pexe then
6 insert_local_task(task)

The STF programming model is commonly appreciated because of its sim-
plicity which allows, in a relatively easy way, to transform a sequential code
into a parallel one while preserving its readability and maintainability. This
advantage must, however, be weighted against potential limitations due to the
fact that the DAG must be entirely unrolled by inserting all of its tasks: not
only can this be time-consuming, but it may require considerable resources
for the management of the DAG when it is sizeable. Several techniques have
been recommended in the literature to alleviate this issue. One such tech-
nique is the pruning of the DAG traversal as depicted in Figure 2.7 which
reduces the DAG generation time on each rank by only inserting the subset
of tasks that are relevant to this rank [6]; these include tasks that are meant
to be executed locally as well as remote tasks that are connected to local ones
through an inbound or an outbound dependency. A technique that also limits
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rk 0 rk 1 rk 2 rk 3

Figure 2.7: A pruned DAG focusing on the operation executed by a single
rank. Discontinued elements are not necessary and as such can be removed
from the DAG inserted at rank 1.

the processing of irrelevant tasks is hierarchical tasks: parts of the DAG may
be discarded at a high-level in the hierarchy such that a given rank does not
explore the entirety of the DAG [93, 74, 80]. The pruning of the DAG can be
put in place by replicating the control of the memory regions managed by the
runtime system as studied in Legion [104, 23].

The STF model is, for example, available in OpenMP (through the task
directive and the depend clause), OmpSs [54] or StarPU [20], the runtime
system we use in this work. PaRSEC also provides an STF interface called
Dynamic Task Discovery in reference to the DAG being built at runtime rather
than symbolically [72]. Chunks and Tasks is a lightweight library that provides
an STF programming model where tasks get registered sequentially to use the
logically partitioned chunks of memory [99], its authors have also proposed a
related linear algebra library [100]. In the Legion runtime, tasks can be dis-
patched dynamically to be executed over the relevant memory regions [24]; like
PaRSEC it provides a DSL to ease the implementation of applications [103].

2.2.4 StarPU
StarPU is a runtime system that delivers an interface for the STF program-
ming model. This interface has been refined and extended since the work
achieved by Augonnet during his PhD thesis [19]. Because StarPU is central
to this thesis – extensions to the STF model are implemented and tested with
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StarPU – this section presents its architecture and main concepts. StarPU is
open-source and available as free software 1. It has been used to implement
numerous parallel codes.

2.2.4.1 StarPU architecture and concepts

At the level of a manager thread, StarPU provides two large components in
its infrastructure: a Virtual Shared Memory (VSM) and a modular scheduling
engine. The VSM is a way for users to delegate the handling of their data to
StarPU. Algorithm 4 shows how a simple array of 10 single-precision elements
can be registered into the VSM; from this moment on, StarPU has full control
over this data and the user must not attempt to use it directly although
it can reclaim the data at any moment through dedicated methods. While
the presented example registers array as a generic space in memory, StarPU
makes it possible to describe more complex data structures. Some of these data
structures – vector, matrix, etc. are already described by StarPU. Datatypes
are useful to describe how data can be manipulated and transferred across
memories. Users may create their own by providing key routines to describe
packing/unpacking of a piece of data. Pieces of data managed by StarPU are
referred to as handles. These handles are used when submitting tasks through
the usual insert_task function.

Algorithm 4: Registering data with StarPU.
1 starpu_data_handle_t handle;
2 array = malloc(10*sizeof(float));
3 starpu_data_register(&handle, array, 10*sizeof(float));

In StarPU, the submission of a task relies on the use of a so-called codelet.
A codelet is, essentially, a task prototype that describes all the important
information needed by the runtime to instantiate actual tasks of a given type.
The codelet must describe the code that will be run when the task execu-
tion is triggered; specifically, one code variant may be provided for each PU
type available on the machine so that the runtime can pick whatever PU
is most suitable based on the scheduling policy. Once a codelet is defined,
tasks can be inserted through the starpu_insert_task routine. This rou-
tine takes the codelet itself, handles referencing data along with their access
modes (STARPU_R, STARPU_W, STARPU_RW and more) and, possibly, other data
passed “by value” through a STARPU_VALUE access mode. Other information
can be provided at the task insertion such as a priority, a scratchpad memory,
scheduling hints. An example of codelet declaration and task submission is
described in Algorithm 5.

When a task is submitted to StarPU, it becomes ready once all the required
handles are available. In Algorithm 5, this may happen once all the previously-

1https://starpu.gitlabpages.inria.fr/
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Algorithm 5: Inserting user-defined tasks with StarPU.
1 starpu_codelet work_cl ← {
2 .cpu_func = work_cpu,
3 .cuda_func = work_cuda,
4 .opencl_func = work_opencl,
5 .fpga_func = work_fpga,
6 .nhandles = 1
7 };
8 starpu_data_handle_t handle;
9 int value = 42;

10 starpu_insert_task(work_cl, STARPU_RW, handle,
11 STARPU_VALUE, &value, sizeof(int), 0);

inserted tasks reading or writing over array have been executed. When a
task becomes ready, it has to be scheduled over one of the available processing
units. Users choose a scheduling policy to make this very complex decision.
Several scheduling policies are implemented in StarPU but users can develop
their own if they see fit. To take advantage of the heterogeneous cores found
on a typical modern machine, some scheduling policies rely on performance
models that are trained through simple machine-learning techniques such as
least-square fitting.

StarPU has been extended to provide a distributed memory support named
StarPU-MPI. The VSM of StarPU has been adapted to this extension: it is
possible to register a piece of data without knowing its location in memory
i.e. through a NULL pointer. Each handle has an owner MPI rank. If we
assume that rank 0 is the owner of array, Algorithm 4 can simply be adapted
into Algorithm 6 to take advantage of the distributed memory. Instead of
using starpu_insert_task, tasks should be inserted through the MPI layer
with starpu_mpi_insert_task. By using this layer, the runtime is able to
check for necessary data transfers and schedule them in advance. StarPU-MPI
can be compiled to use different communications engine backends: currently,
it supports a generic MPI backend as well as a NewMadeleine backend [51].
Some backends are able to leverage specific features: through NewMadeleine,
dynamic broadcasts are available [52].

Algorithm 6: Registering data with StarPU executed by rank me.
1 owner ← 0
2 array ← if me = owner then malloc(10*sizeof(float)) else NULL
3 starpu_data_handle_t handle;
4 starpu_data_register(&handle, array, 10*sizeof(float);)
5 starpu_mpi_register(&handle, owner);
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2.2.5 Summary

This section has presented several programming models that are being used
in scientific computing applications. Their portability, productivity and the
performance they deliver make them suitable candidates to guarantee they
can run applications efficiently and effortlessly on a single computing node
across supercomputers. To make sure these programming models are actually
useful to target modern and future supercomputers, we have to present what
algorithms they should be able to express. Indeed the mechanisms that are
in place when dealing with large-scale distributed memory may be poorly
delivered by runtime systems. Thus the next section is interested in scalable
algorithms that are designed to perform efficiently on large-scale machines.

2.3 Dense numerical linear algebra software and
algorithms

In this work we will mostly focus on dense numerical linear algebra algorithms
and software which deal with the computation of operations that use dense
matrices, i.e., matrices whose coefficients are all assumed to be mostly nonzero.

Numerical linear algebra libraries have been at the core of scientific com-
puting applications because they provide all the necessary building blocks for
large-scale simulations, solution of systems, etc.. They have been present from
the birth of computer science and strive to keep up with novel hardware. The
job of these libraries’ developers is not only to enhance the capabilities of the
software, it also includes code maintenance and bug fixing. Therefore the de-
cision to undergo new programming paradigms for linear algebra libraries may
be hazardous as it is difficult to ensure that a chosen programming model is
sufficiently not error-prone, sufficiently easy to port and sufficiently resilient
to new mechanisms that will be uncovered in the future.

Most numerical linear algebra libraries provide algorithms and methods
that rely on efficient sequential building blocks to achieve high performance.
Two prominent examples are the BLAS [84] and LAPACK [17] libraries which
are, most often, optimized and provided by hardware vendors. These foun-
dational libraries standardize sets of subprograms that are meant to run effi-
ciently over a single computing core although most modern implementations
often provide shared-memory parallel versions. The specifications of BLAS
and LAPACK are regularly adapted in other libraries – cuBlas is a BLAS
implementation for Nvidia GPUs. These subprograms are very important to
design applications because they offer tools that are readily usable and rel-
atively easy to compose for the programmer. Modern libraries dealing with
shared and distributed memory rely as much as possible on these efficient
kernels to either implement different algorithms or adapt them into routines
that target novel architectures. Some of these state-of-the-art dense numerical
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linear algebra libraries are presented in Section 2.3.1. Advanced scalable algo-
rithms not yet implemented in these libraries are introduced in Section 2.3.2.

2.3.1 Distributed memory dense linear algebra libraries
When implementing software and algorithms for distributed-memory comput-
ers, design choices related to the (intimately related) distributions of data and
operations on the participating nodes are of paramount importance. Because
of the relatively regular nature of dense linear algebra algorithms, reference
software libraries often (if not always) employ static distribution approaches;
nevertheless the distribution has to be carefully designed in order to maximize
the workload balance and reduce the volume and number of communications
in order to achieve high-performance and scalability. In most of the widely-
used dense linear algebra software libraries, data and workload distributions
are designed similarly and only differ in minor details. Major differences,
instead, lie in how communications are done among computing nodes (for ex-
ample, whether they are overlapped with computations or not, whether and
how collective communications are used), how intra-node parallelism is used
(i.e., natively or through multithreaded BLAS/LAPACK) and whether they
support accelerators.

Certainly the most widely-known dense linear algebra library for distri-
buted-memory computers is ScaLAPACK [29], which was developed in the 90s
but is still in great use. ScaLAPACK is written in C and Fortran 77 and relies
on the message-passing parallel programming paradigm; it includes a com-
munication library called BLACS (for Basic Linear Algebra Communication
Subroutines) which provides communication primitives specifically designed
for linear algebra algorithms and developed on top of MPI or PVM (Parallel
Virtual Machine, a message-passing standard that has now become obsolete).
All communications within ScaLAPACK are blocking and thus not overlapped
with computations. In ScaLAPACK matrices are distributed according to a
2D Block Cyclic (2DBC) distribution exemplified in Figure 2.8. The P par-
ticipating ranks are arranged in a logical grid of size p× q; a m× n matrix A
is then split in blocks of size mb×nb and each block Aij is stored on the local
memory of rank q(i%p)+j%q. This distribution has two main favorable prop-
erties. First, it simplifies the task of balancing the workload for a wide range
of dense linear algebra algorithms. Second, with this distribution, in many
dense linear algebra algorithms, most communication happen (potentially in
parallel) within rows and columns of the ranks’ grid; this property can be
very conveniently exploited in the message-passing paradigm by defining one
subcommunicator for each row and column of the grid of ranks. ScaLAPACK
does not have native support for intra-node shared-memory parallelism but,
rather, uses it indirectly by using multithreaded BLAS and LAPACK libraries
for local computations. This is possible because all the blocks assigned to a
rank are stored contiguously in memory, which makes it possible to call BLAS
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Figure 2.8: The 2D Block Cyclic layout with p = 3, q = 2 for a 4× 5 matrix.
Each rank is colored differently and assigned a number between 0 and pq− 1.
Left: each block of the matrix A of size mb×nb is owned by a different rank.
The rank is determined by cyclically stamping the matrix with the pattern
of size p × q. Right: the blocks owned by a given rank are the combination
of rows and columns of A that intersect with the location of the rank in the
logical grid. For instance, 1 owns the combination of A4: and A1: with A:4
and A:2 i.e. rank 1 owns A44, A42, A14, A12 .

and LAPACK routines on large submatrices at once. ScaLAPACK does not
support accelerators natively although some attempts have been made to port
it on GPUs which essentially amount to synchronously offloading computa-
tions to GPUs through specialized BLAS or LAPACK libraries. ScaLAPACK
has hardly evolved through the years; this is partly due its very monolithic de-
sign where the 2DBC data distribution is tightly hardwired in the algorithms
and communication library. For this reason several attempts have been made
at replacing this library (some of which we mention below) rather than porting
it on modern architectures.

Elemental [95] was an attempt at providing a reference library for domain
scientists to cover dense linear algebra routines. Instead of a 2DBC distribu-
tion, the Elemental library relies on a 2D Element Cyclic distribution, i.e.,
elements owned by a given rank are contiguous in local memory – this is es-
sentially a 2DBC layout with mb = nb = 1. This choice of distribution still
allows for efficient use of level 3 BLAS. The cornerstone design of Elemental
is to heavily rely on its flame runtime. The library leverages the C++ object-
oriented capabilities to express the commonly-encountered matrix structures
such that pointing toward a given (range of) element(s) is achieved transpar-
ently in computational kernels. All operations between ranks are amenable
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to row or column communication patterns that are standardized in MPI. The
efficient execution of BLAS is handled transparently as well as the portability
to accelerated platforms equipped with GPUs.

Slate [57] has been coined the successor to ScaLAPACK by its designers.
Its goal is to rewrite the entire library from the ground up using modern
approaches – exploiting C++ features such as templating – and abstracting
data transfers over GPUs through the OpenMP directive programming. Slate
uses the 2DBC approach of ScaLAPACK however it departs from storing the
locally-owned matrix inside a single contiguous array. Slate instead stores
each block of the matrix inside its own contiguous array such that BLAS can
be efficiently called over a single block. This makes it possible for Slate to
handle natively intra-node shared-memory parallelism using OpenMP tasking
rather than relying on multithreaded BLAS/LAPACK. Additionally, this ap-
proach allows storing distributed-memory matrices of different classes – such
as triangular, symmetric or band matrices – in a more efficient way. Slate can
leverage other layouts than the canonical 2DBC layout. Matrix classes are
easily expressed in the objected-oriented programming offered through C++.

Chameleon [4] is another attempt at providing a replacement for ScaLA-
PACK. Written in C, it relies on task-based parallelism through the STF pro-
gramming model. One peculiarity of Chameleon is that it can use different
runtime systems, namely OpenMP, PaRSEC, Quark or StarPU. It supports
intra-node shared-memory parallelism natively and, depending on the chosen
runtime, distributed-memory parallelism and GPUs (from Nvidia and AMD
in the latest release). By default, Chameleon uses the same storage format
and distribution as Slate, i.e., 2DBC with local storage by blocks. However,
thanks to high abstraction of the STF programming model, algorithms are ex-
pressed independently of the matrix distribution and therefore it is relatively
easy to implement custom distributions.

DPlasma [39] also uses general-purpose runtime systems to its advantage.
Implementations of linear algebra routines in DPlasma however are not written
in the usual C/C++/Fortran programming language but rather the JDF DSL
compiled by PaRSEC. While the approach differs from Chameleon, the use of
a general runtime system allows both of the libraries to port to a wide range
of architectures and outperform ScaLAPACK.

Modern libraries considerably improve the readability of their routines
when compared with ScaLAPACK thanks to the use of higher abstraction
made possible by modern programming languages and models. While a ubiq-
uitous operation like the General Matrix-Matrix (GEMM) multiplication is
written over hundreds of lines to describe intricate memory transfers, the
descendants of ScaLAPACK often manage to express GEMM in about a hun-
dred lines of source code – as low as a few dozens for Elemental. However, the
scope of operations modern libraries are able to target is not as vast as ScaLA-
PACK. These libraries are expanding on a continuous-flow basis by integrating
routines when needs arise. For the single pGEMM routine – the parallel im-
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plementation of GEMM which has 3 implemented variants in ScaLAPACK –
the discontinued Elemental was able to implement the 3 of them in dedicated
routines but DPlasma, Chameleon and Slate fail to achieve the same coverage.

2.3.2 Scalable algorithms
The next sections deal with General Matrix Multiplication (GEMM– Sec-
tion 2.3.2.1), Symmetric Matrix Multiplication (SYMM– Section 2.3.2.2) and
matrix decompositions (POTRF– Section 2.3.2.3). Algorithms over 2D logical
grids e.g. using matrices stored in 2DBC layouts are introduced first so that
the reader can get acquainted with how the STF programming model can be
used to express these routines. The presented 2D algorithms have been im-
plemented in the linear algebra software libraries presented in Section 2.3.1.
This section also presents variants of GEMM and POTRF that improve their
scalability over the 2D variants. These improvements come from using 3D
logical grids to map block-wise computations. Using 3D logical grids leads to
a reduction in communication-volume: in fact, the 3D algorithms are often
referred to as “communication-avoiding”.

While 3D algorithms have been the objects of several studies they are
not delivered by the state-of-the-art linear algebra packages we have pre-
sented in this chapter. Rather, these implementations are confined to open-
source git repositories where they often remain standalone. The provided
repositories regularly rely on home-brewed layers of abstractions that are
tailored for numerical linear algebra. As such, they generally fail to sep-
arate concerns in a way that would foster sharing the diverse expertise of
the computer science community. Oftentimes, these implementations rely on
“MPI+OpenMP+CUDA“ and have probably demanded great effort by their
programmers to write while not necessarily being easy to port or simple to
maintain.

2.3.2.1 Distributed memory scalable matrix multiplication
algorithms

The GEMM operation, as defined in the BLAS standard, consists in comput-
ing

C = α · op(A) · op(B) + β · C

with C, op(A) and op(B) being, respectively M×N , M×K and K×N real or
complex matrices , op(.) being either the identity, the transpose or conjugate
transpose (only for complex matrices) operator and α and β real or complex
scalars. Without loss of generality, in the remainder of this document we drop
the op(.) operator (and, thus, assume that neither A nor B are transposed)
and assume that both α and β are equal to one.

For the purpose of the parallelization, we will assume that all matrices
are partitioned into blocks of size b and that m = ⌈M/b⌉, n = ⌈N/b⌉ and
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k = ⌈K/b⌉. This will allow us to use efficient sequential BLAS routines for
computations on blocks. Based on this assumption, the sequential matrix
multiplication can be simply written as the triply nested loop in Algorithm 7,
where the instruction in the innermost loop computes Cij = Cij + Ail · Blj .
Ignoring the data locality issues in NUMA memory configurations, this code
can be trivially parallelized for shared-memory parallel computers using, for
example, loop parallelism or task-based parallelism.

Algorithm 7: Sequential, blocked GEMM.
1 for i = 1 . . . m do
2 for j = 1 . . . n do
3 for l = 1 . . . k do
4 call gemm (Ail, Blj , Cij)

When targeting distributed-memory parallel computers, the A, B and C
matrices must be distributed among the ranks that participate in the compu-
tation. For the sake of simplicity, we will assume that all matrices are aligned,
i.e., have a conforming distribution across the ranks’ grid.

Despite its large arithmetic intensity, the scalability of the GEMM oper-
ation on large size supercomputers can be severely limited by the slowness
of network communications and many algorithms have been proposed in the
literature to overcome this limitation. The Cannon’s algorithm [41], for ex-
ample, has been proved to minimize both the communication bandwidth and
latency [76, 21]. Nevertheless, this algorithm only works on square ranks’ grids
and is, therefore, unpractical. SUMMA [102, 58, 2] overcomes the limitations
of the Cannon’s algorithm and has become the most widely adopted algorithm
in reference parallel dense linear algebra libraries such as ScaLAPACK [29] or
PLAPACK [59]. In the SUMMA algorithm, shown in Algorithm 8, the ma-
trix product is defined as a sequence of outer products where at each iteration
l = 1, . . . , k the l-th column of A is multiplied with the l-th row of B and the re-
sult added to C. Each (r, c) rank computes the contribution for the Cij blocks
it owns and, therefore must receive the corresponding Ail and Blj blocks; the
outer product formulation allows transferring these blocks using efficient col-
lective communications: the Ail block is broadcasted to all the ranks in the
r-th grid row and the Blj block is broadcasted to all the ranks in the c-th grid
column. A pipelined version of this algorithm was also proposed [58] which
further reduces the length of the critical path of the parallel matrix product;
however, if non-blocking collective communications are available, the interest
of this variant is limited with respect to the basic one.

We highly encourage the reader to take a look at the existing implemen-
tations in ScaLAPACK 1, Elemental 2, Slate 3, Chameleon 4 and Dplasma 5.
The algorithm that is implemented by these libraries is detailed in the follow-
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line 3

line 5

Figure 2.9: Pattern of communications of Stationary-C SUMMA for l = 1 on
an example with a 4× 4 ranks’ grid, m = n = 4 and k = 2.

ing.

Algorithm 8: Stationary-C SUMMA algorithm as executed by the (r, c)
rank.
1 for l = 1 . . . k do
2 forall i such that i%p = r do
3 bcast(Ail, to:(r,:))
4 forall j such that j%q = c do
5 bcast(Blj , to:(:,c))
6 forall i such that i%p = r do
7 forall j such that j%q = c do
8 call gemm (Ail, Blj , Cij)

The SUMMA algorithm presented above is particularly efficient in the case
where the C matrix is much larger than A and B because only these two are
transferred whereas C stays in place; for this reason we refer to this algorithm
as stationary C (or stat-C, for short) following the notation put forward by
Schatz, Geijn, and Poulson. Stationary A or stationary B variants can be used
in the case where A or B are larger than the other two matrices, respectively;
because these two variants behave the same, we only present the first one
here. In this algorithm, reported in Algorithm 9, the matrix-matrix product
is defined as a sequence of matrix-panel products where, at each step, the
entire A matrix is multiplied by a B∗,j block-column producing a C∗,j block-

1https://github.com/Reference-ScaLAPACK/scalapack/blob/master/PBLAS/SRC/
PTOOLS/PB_CpgemmAB.c

2https://github.com/LLNL/Elemental/blob/hydrogen/src/blas_like/level3/
Gemm/NN.hpp

3https://github.com/icl-utk-edu/slate/blob/master/src/gemmC.cc
4https://gitlab.inria.fr/solverstack/chameleon/-/blob/master/compute/

pzgemm.c
5https://github.com/ICLDisco/dplasma/blob/master/src/zgemm_NN_summa.jdf

https://github.com/Reference-ScaLAPACK/scalapack/blob/master/PBLAS/SRC/PTOOLS/PB_CpgemmAB.c
https://github.com/Reference-ScaLAPACK/scalapack/blob/master/PBLAS/SRC/PTOOLS/PB_CpgemmAB.c
https://github.com/LLNL/Elemental/blob/hydrogen/src/blas_like/level3/Gemm/NN.hpp
https://github.com/LLNL/Elemental/blob/hydrogen/src/blas_like/level3/Gemm/NN.hpp
https://github.com/icl-utk-edu/slate/blob/master/src/gemmC.cc
https://gitlab.inria.fr/solverstack/chameleon/-/blob/master/compute/pzgemm.c
https://gitlab.inria.fr/solverstack/chameleon/-/blob/master/compute/pzgemm.c
https://github.com/ICLDisco/dplasma/blob/master/src/zgemm_NN_summa.jdf
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line 3

line 5

+ line 9

Figure 2.10: Pattern of communications of Stationary-A SUMMA for j = 1
on an example with a 4× 3 ranks’ grid, m = 4,n = 2,k = 3.

column. In this case the A matrix stays in place, the B matrix is transferred
using efficient collective communications and locally-computed contributions
to the C matrix (denoted Ct

ij) are assembled using reductions. Note that in
this algorithm, because of the cyclic data distribution, the recv and bcast
communications in lines 3 and 5 can be more efficiently implemented using
scatter and allgather primitives [102].

Algorithm 9: Stationary-A SUMMA algorithm as executed by the (r, c)
rank.
1 for j = 1 . . . n do
2 forall l such that l%p = r and l%q = c do
3 recv(Blj , from:(r, j%q))
4 forall l such that l%p = c do
5 bcast(Blj , to:(:, c))
6 forall i such that i%p = r do
7 forall l such that l%q = c do
8 call gemm (Ail, Blj , iCh

ij)
9 reduce(Ch

ij , to:(i%r, j%q))

The scalability of the SUMMA algorithm can be further improved using
so-called 2.5D or 3D algorithms [60, 102]. In these algorithms we consider
the ranks arranged in a three-dimensional grid of size p× q × s and the A, B
and C matrices initially distributed among the ranks in the lowest level (0)
of this grid, i.e., (:, :, 0). The pseudocode for the 3D stat-C case executed by
the (r, c, h) rank is reported in Algorithm 10. Here the A and B matrices are
partitioned in s parts along the k dimension (columns and rows, respectively)
and each part is replicated on one of the higher levels 1, . . . , s − 1 where a
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lines 9, 11lines 9, 11
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line 17

Figure 2.11: Pattern of communications are shown for the 3D stationary-C
SUMMA algorithm on a 4× 4× 2 ranks’ grid with m = n = 4 and k = 2.

partial stat-C matrix product is computed producing local Ch contributions
to the final result. The local contributions are finally assembled into the C
matrix using reductions. Clearly, equivalent 3D algorithms can be formulated
for stat-A or stat-B SUMMA; we refer the reader to the paper by Schatz,
Geijn, and Poulson [102] for the related details.

Algorithm 10: 3D stationary-C SUMMA algorithm as executed by the
(r, c, h) rank.
1 forall j such that h ∗ k/s ≤ j < (h + 1) ∗ k/s, j%q = c do
2 forall i such that i%p = r do
3 recv(Aij , from:(r,c,0))
4 forall i such that h ∗ k/s ≤ i < (h + 1) ∗ k/s, i%p = r do
5 forall j such that j%q = c do
6 recv(Bij , from:(r,c,0))
7 for l = h ∗ k/s, (h + 1) ∗ k/s− 1 do
8 forall i such that i%p = r do
9 bcast(Ail, to:(r,:,h))

10 forall j such that j%q = c do
11 bcast(Blj , to:(:,c,h))
12 forall i such that i%p = r do
13 forall j such that j%q = c do
14 call gemm (Ail, Blj , Ch

ij)
15 forall i such that i%p = r do
16 forall j such that j%q = c do
17 reduce(Ch

ij , to:(r,c,0))
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2.3.2.2 The case of A a symmetric matrix

The general matrix-matrix multiplication – i.e. not assuming A is symmetric
(nor even square) – has been the focal point of many meticulous studies [1,
58, 102, 83]. On the other hand, relatively little attention has been devoted to
handling the specific features of SYMM in a distributed-memory context. As a
consequence, its implementation in reference codes such as ScaLAPACK [29]
or Elemental [95] follows the same parallel design as GEMM, relying on a
2DBC data distribution.

2.3.2.3 Distributed memory scalable factorization algorithms

LAPACK standardizes multiple routines to factorize matrices [17]. These
routines implement algorithms that take the properties of the matrices into
consideration. In the case of factorization resulting in triangular matrices,
two principal implementations are GETRF which outputs the LU factoriza-
tion of an input matrix A of any size and POTRF which outputs the LLT

factorization of a symmetric positive definite matrix A. If not for numerical
stability considerations that lead to pivoting in GETRF, both algorithms exe-
cute similarly: as they iterate over the columns of A, they factor the diagonal
element aii, scale the elements below the diagonal using uii or lii and update
the trailing submatrix through a rank-one update using the vector li,i+1: – as
well as ui+1:,i if A is not symmetric. A partially factorized matrix is presented
in the left of Figure 2.12.

The same three steps described above are also found in blocked variants of
the factorization algorithms. At each step, instead of factorizing the element
aii, an entire diagonal block of A is factorized using GETRF or POTRF. All
the off-diagonal blocks are then solved with respect to Uii – or LT

ii – through
the trsm subprogram. Given square blocks of size b, updating the remainder
of the matrix is equivalent to a rank-b update using gemm – or syrk if A is
symmetric – with off-diagonal blocks (see Algorithm 1 from Buttari et al.[40]).
A partially factorized, blocked matrix is presented in the right of Figure 2.12.

As explained above, in a distributed-memory setting an important de-
sign choice concerns the workload distribution. In the case of factorization
algorithms, this assignment can be visualized as a 3D lattice where the el-
ement (i, j, l) corresponds to the processing of the block Aij at the lth step
of the factorization. If l > max(i, j), the Aij block has already been factor-
ized. Figure 2.13 illustrates the case of the LU factorization where blocks of
color correspond to an operation executed over a block of the input matrix.
While this representation can guide programmers to extract parallelism when
designing software, it fails to account for existing dependencies in the opera-
tion: a block can be factorized (or solved) if and only if it has been updated
with respect to all previous iterations. A pseudocode for the right-looking
distributed-memory Cholesky factorization is provided in Algorithm 11. In
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Figure 2.12: GETRF algorithm at a given step where the orange panel is the fac-
torized L matrix, the purple panel is the factorized U matrix, the red element
(resp. blocks) corresponds to the factorization step, the green elements (resp.
blocks) correspond to the solve step and the blue elements (resp. blocks)
correspond to the update step. Left: Element-wise factorization. Right:
Block-wise factorization.

getrf(A33)

trsm(A2: w.r.t U22)

gemm(A:: w.r.t L4: and U:4)

Figure 2.13: Visualization of the elementary block operations involved in the
LU factorization. Red blocks correspond to getrf tasks applied on diagonal
blocks, blue and green tasks are trsm tasks applied off the diagonal, and grey
tasks correspond to update tasks.

this algorithm, updates are executed as early as possible to benefit from high
parallelism. Updates can also be deferred as late as possible which lead to the
left-looking variant of the LLT factorization. The Cholesky factorization has
been central, both because of its relative simplicity and relevance in scientific
computing, to showcase the advancements of runtime systems in numerical
linear algebra [6, 52].

The presented Cholesky decomposition relies on the 2DBC layout. Because
there are plenty of independent statements through trsm and gemm calls, it is
possible to obtain relatively good performance with this algorithm: each rank
is involved in most steps to execute multiple block-wise operations. Nonethe-
less this distribution is not the most efficient to tackle the operation. First,
it is important to use the symmetric property of the matrix in an advan-
tageous way [25]. Then, as for Matrix-Matrix multiplications presented in
Section 2.3.2.1, 3D logical grids of ranks can be operated to further reduce the
communication volume [75].

3D Cholesky factorization algorithms have often been implemented through
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Algorithm 11: Right-looking 2DBC Cholesky factorization of a matrix A
by blocks for a rank (r, c).
1 for l = 1 . . . m do
2 if l%q = c then
3 if l%p = r then
4 call potrf (All)
5 bcast(All,to:(:, c))
6 forall i = l + 1 . . . m such that i%p = r do
7 if l%q = c then
8 call trsm (All,Ail)
9 bcast(Ail,to:(r, :))

10 bcast(Ail,to:(:, c))
11 forall i = l + 1 . . . m such that i%p = r do
12 if i%q = c then
13 call syrk (Ail,Aij)
14 forall j = i + 1 . . . m such that j%q = c do
15 if i%q = c then
16 call gemm (Ail,Ajl,Aij)

the standard MPI+X programming model: it is possible to ease the design of
factorization algorithms through the use of runtime systems. This approach
enables the use of specific layouts to further enhance scalability – this has
been shown with symmetric layouts for POTRF by Beaumont et al. [25]. The
symmetric layouts they consider can be adapted to 2D logical grids as well
as 3D ones. In their 3D algorithm, Beaumont et al. assigned each step of
the Cholesky factorization to a single layer and they distributed the matrix
accordingly. This round-robin storage and assignment of tasks is depicted in
the right of Figure 2.14.

In their algorithms, Solomonik and Demmel assign the updates related to
the lth iteration to the (l%h)th layer – assuming there are h layers in the 3D
grid [105]. The first benefit of using a 3D logical grid comes with a reduction
in communication volume. Similarly to matrix-matrix multiplication when
broadcasts are executed by rows or columns of processes, the 3D logical grid
of dimension

√
P/h×

√
P/h×h ranks incurs fewer data movements than the 2D

logical grid of
√

P ×
√

P ranks. The second benefit comes with an increased
parallelism by assigning more ranks to the computation of trsm. This increase
in parallelism shortens the critical path. In their algorithm, Solomonik and
Demmel chose to replicate the computation of diagonal block factorization
over layers i.e. over an aisle of h ranks to be able to distribute their trsms
over columns of ranks across layers. By doing so, they are also able to bypass
some steps required to broadcast the factorized, assembled diagonal block:
each h rank is responsible to broadcast the replicated block inside its layer.
The authors therefore propose a hierarchical cyclic distribution of the matrix
A into “big blocks” owned by ranks in the same layer and “small blocks” owned
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Algorithm 12: Right-looking 3D Cholesky factorization of a matrix A by
blocks for a rank (r, c, h).
1 for l = 1 . . . m do
2 if l%q = c then
3 if l%p = r then
4 all_reduce(All,across:(r, c, :))
5 call potrf (All)
6 bcast(All,to:(:, c, h))
7 forall i = l + 1 . . . m such that i%p = r do
8 if l%q = c then
9 reduce(Ail,across:(r, c, :))

10 H ← layer of big block storing Ail

11 if h=H then call trsm (All,Ail)
12 bcast(Ail,to:(r, :, h))
13 bcast(Ail,to:(:, c, h))
14 H ← l % h
15 if h=H then
16 forall i = l + 1 . . . m such that i%p = r do
17 if i%q = c then
18 call syrk (Ail,Aij)
19 forall j = i + 1 . . . m such that j%q = c do
20 if i%q = c then
21 call gemm (Ail,Ajl,Aij)

by a single rank. Their mapping of tasks is depicted in the left of Figure 2.14.
The initial interest of the authors was LU factorization: their work has been
extended to Cholesky Factorization through UPC [60]. The case of sparse
Cholesky factorization has also been considered [77].

A pseudocode for the 3D POTRF of Solomonik and Demmel is proposed
in Algorithm 12. Note that this pseudocode leaves room to choose the dis-
tribution of the matrix A. It assumes that the diagonal block is factorized
over multiple ranks. The symmetry is not strictly taken into account in this
pseudocode as results of trsm are systematically broadcasts to (r, :, h) and
(:, c, h). For the sake of simplicity the edge cases occurring when a block-row
of block-column is stored over a single communicator are discarded and two
broadcasts are submitted.

In SUMMA algorithms, all the outer products can be readily mapped to
any layer available in the 3D grid. This property comes from the embarrass-
ingly parallel nature of the matrix-matrix multiplication. For factorization
algorithms the dependencies are much stronger and hinder parallelism: the
updates in the trailing submatrix of a given step depend on the terminal tasks
(factor,solve) of this step. Therefore update tasks are accumulated iteratively
across layers. To increase parallelism, Kwasniewski et al. propose to break
down the rank-b update operation in h updates of rank b/h [82]. The resulting
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Figure 2.14: State-of-the-art factorization algorithms map tasks onto processes
differently. Three layers are represented with three colors (purple, orange,
yellow). Left: Solomonik and Demmel assign updates in a round-robin fashion
over layers and distribute the matrix hierarchically. Center: Kwasniewski et
al. partition updates over layers so all layers are involved at each iteration.
Right: Beaumont et al. assign each iteration, both factorization and update,
to a layer.

mapping of tasks from the algorithm they propose is depicted in the center of
Figure 2.14. They essentially ensure that all layers are taking part in the bulk
of computation – the update phase – as early as possible in the operation. By
doing so, assuming a strictly synchronous setting, fewer ranks are left idle.
Note that in the material of their experiments, Kwasniewski et al. rely on 2
layers at most.

2.3.3 Summary
This section has presented some dense linear algebra routines that are perva-
sive across scientific computing. Software libraries implementing such routines
target large-scale machines where network communications are a major bot-
tleneck: researchers have detailed “communication-avoiding” variants of these
operations. Such research has led to a plethora of algorithms that are not
systematically ported to modern software packages due to their relative com-
plexity and tough maintenance. In the following section we detail some of
the efforts of the scientific community to provide a scalable, portable and
productive software stack over large-scale machines.

2.4 Context of the thesis and related efforts
The use of task-based programming models and runtime systems for high-
performance mathematical libraries has received considerable interest in recent
times; numerous research projects have been developed around this subject
and the related literature is very rich and broad. An extensive review of all
the related efforts is out of the scope of this document but we will briefly
mention some of them.

This PhD is part of (and funded by) the ANR (the French national research
agency) SOLvers for Heterogeneous Architectures over Runtime systems, In-
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vestigating Scalability (SOLHARIS) project whose objective is to investigate
the use of task-based parallelism and runtime systems to develop efficient and
scalable mathematical libraries and, more precisely, dense and sparse linear
solvers for distributed memory, heterogeneous parallel supercomputers. This
project tackles this objective by gathering experts of linear algebra algorithms,
of runtime systems and of scheduling. In the context of this project, ongoing
efforts around Maxime Gonthier’s PhD, aim at developing scheduling poli-
cies that incorporate memory constraints to better organize the data transfers
over GPUs [62, 63]. Gwénolé Lucas’ PhD, instead, focuses on developing an
extension of the STF programming model to achieve a better management of
tasks granularity through a refinement of the partitioning mechanism that pro-
vides hierarchical tasks [56]. Philippe Swartvagher’s PhD [106] was devoted
to enhancing the interfacing of the newMadeleine communication library with
StarPU to increase the reach of newMadeleine features StarPU can take ad-
vantage of [52], notably, dynamic collectives which we will use in our work
(see Chapter 3).

Related efforts include the NLAFET – Numerical Linear Algebra For Ex-
Treme scale systems – project funded by the European Union and ECP –
Exascale Computing Project – funded by the American Department of En-
ergy. These endeavors bring very large communities of experts from entirely
different fields: separation of concerns is of great interest to fulfill their objec-
tives. We refer the reader to reports from the two projects for more details 23.

Many dense and sparse linear algebra software packages have been pro-
duced that rely on the use of task-based parallelism and runtime systems. One
of the earliest efforts is represented by the PLASMA [14] software package
that provided parallel dense linear algebra routines developed using OpenMP
tasking (formerly QUARK); as such, this package was designed to run solely
on shared-memory parallel computers. The Chameleon library, mentioned
above, also provides dense linear algebra methods and achieves parallelism
through the use of different task-based runtime systems such as QUARK,
OpenMP, StarPU and PaRSEC; consequently it can use a much broader
range of architectures including distributed memory, heterogeneous comput-
ers. The PaStiX [68] software package implements a sparse direct solver based
on the LU and Cholesky factorizations on top of the StarPU and PaRSEC run-
time systems; it supports shared-memory systems with GPUs and support for
distributed-memory computers has been achieved for full-rank – a low-rank
feature being under development. The SPRAL package provides solvers and
algorithms that are able to target GPU architecture through OpenMP offload-
ing. Notably it includes SSIDS that target symmetric indefinite problems for
shared-memory accelerated platforms; it delivers a multifrontal solver com-
patible with Nvidia GPUs that ensures numerical stability through threshold

2ECP reports https://www.exascaleproject.org/reports/
3NLAFET working notes https://www.nlafet.eu/working-notes/

https://www.exascaleproject.org/reports/
https://www.nlafet.eu/working-notes/
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partial pivoting [71]. The qr_mumps package implements a sparse direct solver
based on the QR and Cholesky factorizations on top of the StarPU runtime; it
currently supports shared-memory systems equipped with GPUs and support
for distributed-memory computers is ongoing. Both these solvers were consid-
erably improved and extended in the context of the SOLHARIS project and
its predecessor, the SOLHAR project. Furthermore, all the solutions proposed
in this PhD have been implemented and experimentally validated within the
qr_mumps software package. While qr_mumps focuses on sparse linear algebra
it also delivers some dense linear algebra routines that can be extended for a
distributed-memory environment.

2.5 Concluding remarks
The scientific computing ecosystem has been getting visibly more complex at
each technological breakthrough to achieve ever-increasing computing power.
This escalation in complexity at a myriad of levels in the computer architecture
has called for abstractions in programming models that have taken different
forms – what is generally referred to as “runtime systems”. The goal of an
algorithm designer is then to write their algorithms using the programming
model’s interface offered by these runtime systems, adapting to the level of ab-
straction they provide. General task-based runtime systems have gained a lot
of traction in the numerical linear algebra community as their relatively high
level of abstraction allowed algorithm designers to focus on numerical aspects
rather than hardware features or programming productivity. The generality
of runtime systems is key to leverage off-centered features such as scheduling,
memory management – including optimized transfers or checkpointing.

While the interest of task-based runtime systems and their associated pro-
gramming models has been ever-clearer in the shared-memory setting, its use
for petascale and exascale supercomputers remains questioned as novel scal-
able algorithms, exhibiting clever communication patterns and data manage-
ment, are mostly confined to standalone libraries with home-brewed, domain-
specific abstraction layers. A risk for the algorithm designer is that their
clever techniques are only available when they have total control over their
application and they could not delegate these techniques to a runtime.



Part I

Scalability of the STF
programming model

45





Chapter 3

Scalable STF matrix multiply

State-of-the-art scalable algorithms sometimes favor MPI+X instead of general-
purpose runtime systems such as PaRSEC or StarPU. This makes the imple-
mentation provided by their authors not (easily) portable to most architec-
tures. As we will detail in this chapter, this lack of adoption comes from a
lack of features in productive programming models such as STF. The follow-
ing sections aim at ensuring the STF programming model is better equipped
to face the requirement of distributed-memory systems. To this end, STF is
extended by adding general-purpose features that are found in matrix-matrix
multiplications.

We first detail in Section 3.1 how the STF model can be leveraged as it
exists to express pGEMM, an omnipresent operation in dense linear algebra.
This STF programming model is labeled “baseline”. Section 3.2 details the
key features that are required to improve the STF model such that scalable
variants of pGEMM can be introduced directly. This improved STF model ex-
tends from the baseline one. The actual specification is detailed in Section 3.3
and implementation details that are addressed both in the runtime and in our
software package are presented in Section 3.4. We validate our approach in
Section 3.5 by presenting strong scalability results including state-of-the-art
libraries that implement some variants of pGEMM.

3.1 Baseline STF model
The GEMM operation presented in the previous chapter in Algorithm 7 can
be straightforwardly parallelized using the STF model by replacing the calls to
the sequential gemm on blocks with task insertions through the insert_task
routine; this delegates the execution of the corresponding operations to the

47
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C1,1
C1,2
C1,3
C2,1
C2,2
C2,3

Figure 3.1: DAG with m = 2, n = 3, k = 4; green circles representing gemm
tasks; each chain of tasks in the DAG corresponds to contributions to a single
block of C.

runtime system. The expression of the algorithm is straightforward: for each
block in the matrix C, k tasks are inserted with each task reading blocks of
A and B and reading and writing the block of C. Figure 3.1 shows, as an
example, the DAG corresponding to the case m = 2, n = 3, k = 4.

Algorithm 13: Parallel GEMM using the baseline STF model.
1 for i = 1 . . . m do
2 for j = 1 . . . n do
3 for l = 1 . . . k do
4 insert_task (gemm,Ail:R,Blj :R, Cij :RW)

Thanks to the very high arithmetic intensity of the GEMM operation, the
code of Algorithm 13 can achieve very good performance on shared mem-
ory, possibly accelerated (e.g., with GPUs) systems, provided that a suitable
block size is chosen which provides a good trade-off between parallelism and
efficiency of tasks. Additionally, in order to run this code on distributed-
memory parallel systems, it is enough to make the runtime system aware of
the data distribution; for example, in the case of a 2D block-cyclic distribution
each (i, j) block of A, B and C is assigned to rank (i%p, j%q) of the p × q
ranks’ grid. In this case, the runtime system will take care of transferring over
the network the blocks needed by a task on the rank where the task is exe-
cuted. Although this code, based on the baseline model proposed in [6], will
be perfectly functional, its performance and scalability can be poor compared
with what can be achieved with the algorithms described in section 2.3.2.1 for
a number of reasons.

First, this code will not be able to make use of collective communications.
In this baseline STF model, communications are expressed by the edges of the
DAG which, essentially, define point-to-point data transfers.

Second, this baseline STF model does not allow any control on the mapping
of tasks over the p × q ranks of the grid. Runtime systems implement basic
mapping policies where a task is executed on the rank which owns the data
that is accessed in read-write mode (Cij , in the case of Figure 13). This can
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lead to a very large volume of communications, for example, in the case where
A and/or B are much larger than C and will not allow us to use computing
ranks that do not own blocks of the C matrix.

Finally, in this baseline STF model it is not possible to take advantage of
the commutativity and associativity of certain operations. In our case, it must
be noted that all the summations in tasks of the type Cij = Ail ·Blj + Cij for
all l can commute or be grouped in any way. This property can be used to
improve parallelism or reduce communications. In the baseline STF model,
instead these summations are forced to be executed sequentially: because of
the order in which tasks are inserted and of the RW access mode on the Cij

block, the task that computes Cij = Ai,l+1 · Bl+1,j + Cij depends on the one
computing Cij = Ail ·Blj + Cij .

3.2 Proposed extensions to the STF model
The limitations discussed in the previous section make the baseline STF
model [6] unsuitable for implementing state-of-the-art algorithms for distri-
buted-memory systems such as those presented in section 2.3.2.1. It must be
noted that it is possible to get around some of these limitations through careful
programming. For example, it is possible to take advantage of associativity of
some operations by declaring temporary data and explicitly inserting tasks to
combine partial results; in other words, this amounts to manually implement-
ing reduction operations. This practice, however, leads to complex code which
is poorly portable and hard to maintain which, essentially, defeats the purpose
of using a high-level task-based parallel programming model. The Chameleon
dense linear algebra library uses this approach by submitting explicit copy
tasks. In order to achieve collective communication patterns, the implemen-
tation provided by this library dedicates references to copies of blocks of A
and B. Most notably, the implementation covers only the stationary-C vari-
ant and no stationary-A or -B variants are implemented following the same
approach which indicates that this is not productive.

The purpose of this section is to present a minimal subset of extensions
of the baseline STF model of section 3.1 that allow us to implement scalable
algorithms. These features extend both the programming interface and the
functionality of an STF-based runtime system while preserving the high-level
expressiveness of the STF model and, ultimately, the portability and main-
tainability of the code. In section 3.4.1 we will discuss the availability of these
features in modern runtime systems and possible improvements that lead to
better performance.

Reduction tasks The objective of this feature is to provide a mean of taking
advantage of the associativity and commutativity of the block-sum operation
to improve parallelism. As explained above, this is not possible in the baseline
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STF model because all the tasks that compute a Cij = Ail ·Blj + Cij contri-
bution are inserted with RW (read-write) access mode on the Cij block; this
induces a chain of dependencies on these tasks according to the order in which
they have been inserted. One way to overcome this problem is to introduce a
new access mode, which we call REDUX. With this access mode, each task will
assemble its contribution in a temporary block Df

ij , f = 1, . . . , z; the runtime
system takes care of creating all the z temporary blocks and combining their
content through dedicated tasks transparently. This reduction phase is car-
ried asynchronously, the only constraint being that it must be completed prior
to any other access to the Cij block with a different access mode; parallelism
is also available in this phase which can be used through suitable reduction
trees. For this feature to work, it is necessary that the runtime system is
informed of how to initialize the temporary blocks and how to combine their
values. This can be achieved by declaring to the runtime system two methods,
called the initializer and the combiner (to follow the naming in the OpenMP
standard). As temporary blocks are part of a reduction pattern, all tasks that
modify a copy of Cij should be made commutable. It must be noted that a
crucial design choice concerns the number z of temporary copies Df

ij for each
Cij block: this is discussed in section 3.4.1.

Dynamic collective communications In order to take advantage of ef-
ficient and scalable collective communications, whose role is essential in the
algorithms presented in section 2.3.2.1, we rely on the so-called dynamic col-
lective communications feature proposed by Denis et al. [52]. This approach
consists in automatically detecting that a data must be transmitted from a
source rank to multiple destination ranks; when such a pattern is detected, the
corresponding transfers are grouped together and achieved through a collective
communication. This feature has a number of interesting properties. First of
all, it is completely transparent to the user: no change has to be done at the
user-level code but the detection and use of collective communications happen
in the communication library underlying the runtime system. Second, these
collective communications do not rely on the use of subcommunicators which
has several advantages as we will explain below. Finally, dynamic collective
communications are non-blocking which allows for an effective overlapping of
communications and computations.

Tasks mapping This feature amounts to binding one task to one rank,
which means that it can be executed by any of the workers associated with
that rank. This is simply achieved through an additional ON_RANK argument
to the insert_task routine, which defines the identifier of the rank where the
task has to be run on. This feature is essential for the stationary-A/B and
3D variants where the placement of tasks is not trivially related to the initial
data distribution.
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3.3 Scalable GEMM with the extended STF model
Using the improved STF model including the features presented in section 3.2,
all the GEMM algorithms of section 2.3.2.1 i.e. all of the 2D/3D stationary-
A/B/C variants can be conveniently implemented as in the pseudocode of
Algorithm 14. Depending on the stationary variant defined by the stat vari-
able and the number of grid levels defined by the s variable, the task_map
function return the rank where a (i, j, l) task must be executed and the access
mode on the Cij block for this task. This function is described in more details
in the next sections and in Table 3.1. It must be noted that the function
provides the same result regardless of how the i, j, and l loops are nested
because in all cases the DAG of tasks would be, essentially, the same. For
the sake of readability, in the pseudocode of Algorithm 14 we have omitted
the declaration of the initializer and combiner routines for the reductions;
these correspond, respectively, to zeroing out all the coefficients of a block
and summing two input blocks into an output one.

The central claim of this chapter is that the proposed extended
STF model allows one to express the three advanced GEMM algo-
rithms (and communication patterns) described in section 2.3.2.1
with this extremely compact and simple code (Algorithm 14), to-
gether with an appropriate choice for the mapping and access modes.
In Table 3.1, we present the mapping and access mode corresponding to each
of the 3D GEMM algorithms for completeness. In the following paragraphs,
we detail such mapping and access mode corresponding to three specific vari-
ants: the 2D stat-C, the 2D stat-A and 3D stat-C. The remaining variants are
essentially similar and are not discussed further. Remarkably, other mapping
policies could be proposed by algorithm designers: the STF code we propose
is fundamentally unaffected by such newer designs. The underlying GEMM
operation will be correctly computed while benefitting from newer tasks map-
pings.

Algorithm 14: Parallel GEMM using the improved STF model. The out-
puts of function map and am can be found in Table 3.1.
1 for i = 1 . . . m do
2 for j = 1 . . . n do
3 for j = 1 . . . k do
4 rank, am = task_map(i,j,l,stat,s)
5 insert_task (gemm, Ail:R, Blj :R, Cij :am, rank:ON_RANK)

Stationary-C SUMMA In the stationary-C SUMMA algorithm the rank
owning the Cij block is in charge of all the Cij = Ail · Blj + Cij tasks for
l = 1, . . . , k. Therefore, assuming a 2D block-cyclic distribution on a p × q
grid, the rank output of the task_map function will be (i%p, j%q). As for the
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Table 3.1: The mapping of tasks and access modes on the C matrix for the
stat-A, stat-B and stat-C 3D GEMM algorithms. They correspond to the
values returned by the task_map method in Algorithm 14.

Algorithm 3D stat-C 3D stat-A 3D stat-B
Executing node of

AilBlj (rank) (i%p, j%q, l
k/s

) (i%p, l%q, j
n/s

) (l%p, j%q, i
m/s

)

Access mode for
Cij (am)

s = 1 : RW + COMMUTE
s ̸= 1 : RANK_REDUX RANK_REDUX RANK_REDUX

access mode am of the Cij block returned by the function, this is read-write RW;
however, to improve parallelism and take advantage of the fact that each rank
has multiple workers, we can make all the tasks related to the same Cij block
commutable; this is achieved through the COMMUTE access mode which informs
the runtime that all of these tasks can be performed in any order. This access
mode has been available in StarPU 1.3 alongside the REDUX access mode. The
dynamic collective communications feature will transparently group together
all the transfers of a Ail (Blj) along the i%p (j%q) ranks row (column) and
perform them using an efficient collective communications; this corresponds
to the broadcast communications in lines 3 and 5 of the pseudocode in Algo-
rithm 8 (p.35).

Stationary-A SUMMA In the stationary-A SUMMA variant, the rank in
charge of computing Cij = Ail · Blj + Cij is the one that owns the Ail block;
therefore, the rank returned by the task_map function is (i%p, l%q). As for
the access mode for the Cij block, this has to be RANK_REDUX to achieve the
reduction on line 9 of the pseudocode in Algorithm 9 (p.36). The dynamic
collective communications feature will detect that the Blj block has to be
sent to all the ranks in the l%q grid column and achieve these transfers with
an efficient broadcast communication corresponding to the recv and bcast
communications in lines 3 and 5 of the pseudocode in Algorithm 9. It must be
noted that in MPI-based implementations, the broadcasting of Blj to the l%q
grid column must be done in two steps because the rank owning this block
does not necessarily belong the l%q grid column sub-communicator. Because
the dynamic collective communications feature does not rely on the use of
sub-communicators, the recv communication in line 3 of Algorithm 9 is not
necessary.

3D Stationary-C SUMMA In the 3D stationary-C SUMMA variant, the
rank selected for computing the contribution Ail · Blj to the Cij block is
(i%p, j%q, l/(k/s)). The access mode to the Cij block is RANK_REDUX to op-
erate the reductions in line 17 of the pseudocode in Algorithm 10 (p.37). The
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broadcasts in lines 9 and 11 of Algorithm 10, are performed straight from
the lowest grid level through dynamic collectives without the need for the pre-
liminary point-to-point communications of lines 3 and 6. Similarly to what is
explained above for the stationary-A variant, these point-to-point communica-
tions are necessary to move data on a rank belonging to the sub-communicator
where the broadcast happens; because in the dynamic collectives feature the
scope of a collective communication is arbitrary and not defined by a sub-
communicator, these preliminary copies are unnecessary.

3.4 Implementation
In this section we discuss the practical implementation of the pseudocode of
Algorithm 14 which we achieved using the StarPU runtime system and its
STF programming API within the qr_mumps [12] library.

3.4.1 STF advanced features
The proposed implementation of Algorithm 14 makes use of the features de-
scribed in section 3.2. In this section we discuss the availability and use of
these features in the StarPU runtime system and, in the case of the reduc-
tion tasks feature, some improvements that we have implemented in order to
achieve better performance. The task mapping feature is already available in
the latest StarPU releases and will not be discussed any further.

The second feature, the dynamic detection of collective communications,
is available, through the NewMadeleine library; the reader is referred to the
recent work by Denis et al. for a thorough discussion of this feature [52]. This
mechanism has been released in StarPU 1.4.0 and is implemented such that
the communication pattern used to achieve collective communications can be
chosen at run time through an environment variable. In all our experiments
we have used a binomial tree. It must be noted, though, that the use of a chain
(where each rank forwards the message to only one other rank) essentially leads
to an asynchronous implementation of the pipelined SUMMA algorithm [58,
sec. 5.2]. We reserve the analysis of this approach for future work.

Regarding the third feature, reduction tasks, recent official releases of
StarPU provide the REDUX access mode to data. In the available implementa-
tion of this feature, every worker executing a task on a data provided with this
access mode allocates, initializes and modifies a private copy of it; as soon as
another task is submitted that accesses the same data with a different access
mode, the runtime system transparently creates tasks that perform a reduc-
tion to merge all the private copies into the original one at the shared memory
level. This design choice might lead to an excessively high, and potentially
unnecessary, number of copies of the data; for example, in the case of the
stationary-A (resp. 3D stationary-C) variant, for each Cij block, there can be
as many copies as q (resp. s) times the number of workers per rank. At the
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distributed memory level the user also has to call a method redux_submit to
let the runtime system insert the subgraph related to the reduction. Another
shortcoming of the available StarPU implementation of the REDUX access mode
is that the reduction step is performed sequentially, that is, all the copies are
assembled into the original one sequentially, one after the other. The overall
design maximizes parallelism but may lead to an excessive memory consump-
tion and time-consuming reductions when the number of workers is high.
Therefore, we improved this feature in two ways. First, we implemented the
RANK_REDUX access mode in StarPU; here, the number of temporary copies is
equal to the number of ranks participating in the reduction which means only
one private copy of the data is created per rank and, therefore, shared by all
the workers associated with the rank. Although, with this access mode, we do
not take advantage of associativity within a rank, we still use commutativity;
this means that all the tasks mapped on the same rank that access one data
through this access mode can be executed in any order. Second, we extended
this implementation in such a way that the reduction tree shape can be cho-
sen (at run time) among multiple shapes; we also incorporated a mechanism
to automatically submit the subgraph related to the reduction part so that
the user does not need to explicitly call redux_submit – they can still do it
to bypass the default tree shape configuration. In all our experiments (see
section 3.5) a binary tree was used.

3.4.2 Handling the general case

The general matrix-matrix multiplication operation includes multiplications
by the α and β scalars and the possibility of transposing the A and B matrices
as explained in section 2.3.2.1. Additionally, in a completely general setting,
the matrices may not be aligned on the ranks’ grid and possibly they can be
distributed over different, non-overlapping, sets of ranks.

Our work deals with implementing all the discussed SUMMA variants and
is not concerned with how to choose the most fit one to address a choice of
transposition operations, size of the matrices and the grid, etc.. This choice
is not any different from other libraries such as ScaLAPACK and is conveyed
through the stat argument in the pseudocode of Algorithm 14.

First the scaling of the output matrix C by β is presented; second, the
eventual transpositions and re-alignement of input matrices A and B are pre-
sented.

3.4.2.1 Scaling

Scaling by the α scalar does not require any special handling. Scaling of the
C matrix by the β scalar, instead, might be handled in such a way to achieve
better efficiency and parallelism. Let’s assume k = 2 in the pseudocode of
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Algorithm 14; this implies that each Cij block is concerned by the two tasks

task1 : Cij = αAi1B1j + βCij

task2 : Cij = αAi2B12 + Cij

These two tasks, which can be computed using the BLAS gemm routine, do not
commute because of the multiplication by β; this means that the second task
can only be performed after the first even if all the data it needs are already
available on the computing rank. In our implementation, the scaling by β is
performed beforehand through dedicated tasks:

task1 : Cij = βCij

task2 : Cij = αAi1B1j + Cij

task3 : Cij = αAi2B12 + Cij

Here, the first task is relatively cheap and does not require communications
and the two other tasks are commutative; this allows for a faster start of
computations on all the ranks which might lead to significant performance
improvements especially for small-size problems.

3.4.2.2 Transposition and alignment

In MPI the scope of a collective communication is defined by a subcommu-
nicator. This does not represent a problem in the case where the A, B and
C matrices have a conforming distribution over ranks and neither A nor B
must be transposed: all blocks of A (respectively, B) already belong to the
row (column) subcommunicators where the broadcasts happen in the stat-C
SUMMA algorithm (similar observations can be made for the stat-A and -B
algorithms). In the opposite case, however, a block of A (respectively, B)
might reside on a rank which does not belong in the same row (column) sub-
communicator as where the broadcast happens. Handling this case requires
additional communications and code, as it is the case, for example, in ScaLA-
PACK. In our approach, though, handling misaligned distributions and matrix
transpositions does not require any special care because dynamic collectives
do not rely on the use of subcommunicators but are constructed on the fly for
any arbitrary set of ranks.

3.4.3 Scalability of the STF model
In STF, all the tasks must be created sequentially in order to ensure the depen-
dencies are correctly detected. Although this has some favorable implications
(for example it can be used to reliably control the memory consumption of a
parallel execution [12]), because of this the STF model is commonly regarded
as less scalable than other task-based parallel programming models such as
PTG, that is, less capable of handling large workloads on large parallel sys-
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tems. Nevertheless, with some care in the programming and some appropriate
techniques that we present in this section, it is possible to overcome this limi-
tation even for very large workloads and computers. The experimental results
shown in the next section have benefitted from such techniques.

3.4.3.1 DAG pruning

Our implementation employs a DAG pruning technique [6] to prevent each
rank from creating all the tasks in the DAG as in the basic concurrent un-
rolling [114] (see the discussion in section 2.2.3). Each rank, instead, will
create a part of the DAG containing only local tasks (i.e., the tasks it has to
execute), remote tasks that use data it owns and remote tasks that produce
data needed by local tasks to ensure that dependencies are correctly detected
at a global scale. In the case of the stat-C 2D SUMMA algorithm, for example
this means that a rank has to create a task only if it owns one of the three
blocks involved from A, B and C, respectively; in this case the local size of
the DAG is (mnk)/P if the A, B and C matrices are aligned over the ranks’
grid. As for the other variants, the same rule can be applied but, additionally,
a node involved in a reduction must insert all the tasks that participate in
it; this only implies a moderate increase in the local DAG generated on each
node. It must be noted that the above pruning rules are generic and can
be systematically applied to any algorithm regardless of its complexity. The
effectiveness of the pruning obviously depends on how well-balanced is the
distribution of data and workload in the implemented algorithm.

3.4.3.2 Efficient submission of tasks

It must be noted that all the possible nesting orders for the loops of Algo-
rithm 14 will lead to equivalent DAGs where collective communications and
reductions are correctly detected and executed for all the presented variants.
Nevertheless, if the nesting order is appropriately chosen, it is possible to en-
sure some properties of the execution that can be exploited, for example, to
control the memory consumption (more on this will be said in section 3.5.2.3).
For the stat-A, stat-B and stat-C variants, the nesting order used in our im-
plementation is, respectively, (n, m, k), (m, n, k) and (k, m, n). Although it is
still possible to implement the three variants in a single code by using suitable
iterators, this would inevitably render the code less readable and, most im-
portantly, the creation of tasks less efficient. Preliminary experimental results
revealed that the StarPU runtime system is particularly sensitive to the effi-
ciency of tasks creation and, for this reason, we decided to have three separate
codes for the stat-A, stat-B and stat-C algorithms and their 3D variants.
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3.5 Experiments
In this section we report experimental results that aim at assessing the ef-
fectiveness of the proposed approach. pGEMM is an extremely important
numerical kernel and a subject that has been the object of numerous research
works. As a result, many different implementations exist in many software
packages. Among the most recent efforts, we can cite the work by Herault et
al. where remarkable performance is achieved on large, GPU-based systems,
with a task-based parallel approach relying on the PaRSEC runtime system
and its PTG programming model [69]. An exhaustive comparison with other
software packages is out of the scope of this manuscript. Rather, the main
objective of this experimental analysis is to show that the proposed approach
can achieve performance that is on par with reference implementations, de-
spite the use of a very high-level parallel programming model and the fact
that most of the complex work is delegated to a runtime system. For this
reason we have chosen to compare with libraries that either are well-known
references to which most other works compare, or share some features with
our approach; these are

• ScaLAPACK (version 2.0.2): this is the de facto standard in parallel
dense linear algebra. This library implements the stat-A, -B and -C 2D
SUMMA algorithms using MPI; shared-memory parallelism is achieved
through the use of multithreaded BLAS routines.

• Elemental 1: this library has been developed using the MPI+X approach
but relies on a carefully engineered abstraction layer that uses modern
features of the C++ language. Codes for all the 2D stationary variants
are implemented.

• Slate 2: this recent effort has the objective of producing a ScaLAPACK
replacement for modern multicore and accelerator based supercomput-
ers. It implements the stat-A and -C 2D SUMMA variants using a hybrid
MPI+OpenMP approach and employs a lookahead method to achieve
better efficiency by overlapping communications and computations.

• Chameleon 3: this library provides parallel dense and data-sparse lin-
ear algebra subroutines using task-based parallelism through different
runtime systems. It implements the pipelined stat-C 2D SUMMA algo-
rithm using the baseline STF model (see section 3.1); therefore, it does
not make use of the extended features described in the present work
but, rather, communications are explicitly handled through data copies

1commit 4abe4ef0 (June 24th 2022) from https://github.com/LLNL/Elemental
2commit bb597ae4 (June 2022) from https://bitbucket.org/icl/slate
3commit 9825fbf1 (June 2022) from https://gitlab.inria.fr/solverstack/

chameleon

https://github.com/LLNL/Elemental
https://bitbucket.org/icl/slate
https://gitlab.inria.fr/solverstack/chameleon
https://gitlab.inria.fr/solverstack/chameleon
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into temporary matrices. It uses a lookahead mechanism to overlap
computations and communications. The runtime system chosen for our
experiments is StarPU.

3.5.1 Experimental setup

Our experiments were run on two different partitions of the Joliot-Curie super-
computer of the French Très Grand Centre de Calcul (TGCC) supercomputing
center, Platforms B and A.

On both computers and for all software packages we used the BLAS rou-
tines provided by the Intel MKL (version 21.3.0) library and the GNU (ver-
sion 9.3.0) compilers suite. OpenMPI (version 4.0.5) was used for ScaLA-
PACK, Elemental and Slate whereas for qr_mumps and Chameleon we use
StarPU 4 with the NewMadeleine communication backend 5 which, in the case
of qr_mumps, provides support for the dynamic collective communications.

In order to ensure the fairness of the experimental comparison, we have
tuned several parameters as explained below. Due to the very high number
of experiments we have conducted, it was not possible to fully optimize all
of these parameters simultaneously but our choices ensure that none of the
tested packages was severely advantaged or penalized with respect to others
and that, for all of them, performance was close to the optimum; this allows
us to draw conclusions from the experiments below with good confidence.

We have tuned the number of ranks per node and of threads per rank
making sure that all the available cores were used and that all the ranks
and threads were correctly placed on the resources. For Slate, Chameleon
and qr_mumps experiments were run with one rank per node using as many
threads/workers as the available cores. In the case of ScaLAPACK multiple
ranks (MPI processes) per node were used (24 and 64 for Skylake and Rome,
respectively) each using two threads as this configuration resulted in the best
performance. This is also the case of Elemental which uses 24 ranks per node
on Skylake (two threads per rank) and 32 ranks per node on Rome (four
threads per rank).

We have chosen to experiment with multiple block sizes in all the pack-
ages; this parameter can be tuned to achieve a favorable trade-off between
parallelism and efficiency of local computations. We have chosen to run all
experiments using multiple block sizes, namely, 256, 512 and 1024, and report
the best results. Smaller and larger block sizes were found to be suboptimal on
all the tested configuration either because of an excessively small granularity
of computations or because of an insufficient amount of parallelism.

For the Slate and Chameleon packages, the default lookahead depth of one
was used; higher values were not found to improve the performance.

4commit 0afdaeb09 (February 2021) from https://gitlab.inria.fr/starpu/starpu
5commit fdec689ab (December 2021) from https://gitlab.inria.fr/pm2/pm2

https://gitlab.inria.fr/starpu/starpu
https://gitlab.inria.fr/pm2/pm2
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For the qr_mumps tests, because the GEMM routines are benchmarked
alone and not as part of a larger application, we enriched the DAG with ar-
tificial tasks to make sure that the dynamic collective communications are
correctly detected and the reduction operations entirely executed. Because
the operation timings are measured between MPI_Barrier-like functions, pre-
ceding tasks such as tasks writing the initial values in the matrices have al-
ready been processed and cannot be accounted for by the dynamic collective
detection mechanism.

All the experiments are run using double precision real data; in the case of
complex matrices we expect to achieve better scalability because of the higher
arithmetic intensity.

Finally, multiple runs were executed for each experiment, including a
warm-up run which is not taken into account in the performance measurement;
median performance across these runs is reported in the following sections.

3.5.2 Experimental results

We have chosen 3 matrix problem types (m = n = k, m = n = 8k, m =
8n = k) and, for each type, three sizes of increasing value. The range of sizes
was chosen so as to evaluate both strong and weak scalability and to evaluate
performance on small as well as large matrices which might be of interest for
different classes of applications. For each type and size we have conducted
experiments using 16, 64 and 256 nodes (i.e., up to 12, 288 and 32, 768 cores
on Skylake and Rome, respectively). For the 2D variants, Chameleon, Slate
and qr_mumps use square grids with (4× 4, 8× 8, 16× 16) ranks, one rank
per node each using all the available cores; ScaLAPACK uses grids with (24×
16, 48 × 32, 96 × 64) and (32 × 32, 64 × 64, 128 × 128) ranks using two
cores each on Skylake and Rome, respectively. Elemental uses the same grids
as ScaLAPACK on Skylake; on Rome the grids are of size (32 × 16), (64 ×
32), (128 × 64). When using a 3D variant in qr_mumps, we used rank grids
with 4 layers (4× 4× 4, 8× 8× 4) on 64 and 256 nodes.

3.5.2.1 Stationary-C

We have evaluated the effectiveness of the stat-C variant on two different prob-
lems: the first one uses square matrices (m = n = k) and the second one only
keeps the C matrix square with A and B being smaller, i.e., (m = n = 8k).
The first problem is often used in the literature for comparing pGEMM algo-
rithms and implementations. In this case, where all matrices are of comparable
size, all 2D variants are likely to achieve comparable performance although the
stat-C one can be preferred due to its relative simplicity. The stat-C is still the
best suited variant for the second problem despite k being small. Although, in
this case, a considerable amount of parallelism might still be available when
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m and n are large, the latency to exchange blocks of A and B is critical to
achieve high execution speed because the number of outer products is reduced.

For both problem types, we can observe in Figures 3.2 and 3.3 that our
method is competitive with all the libraries: it obtains the best median across
several configurations. When it is not the most efficient method, our method
is able to be on par with other ones as it proves strongly scalable. This is likely
due to the use of asynchronous collective communications and the ability of
the runtime system to take advantage of the commutativity of the tasks that
contribute to the same Cij block.

For square matrices, we compared our implementations of the 2D and 3D
stat-C variants. The 2D variant is better than the 3D in all tests except on
Rome for the smallest problem and largest grid. In this case the 3D variant
achieves better performance than the 2D one thanks to its ability to achieve
better parallelism without using an excessively small block size. This is not
inconsistent with results presented in the literature related to 3D matrix mul-
tiplication [102, 60, 49] because our approach heavily relies on multithreading
for using the cores of each node rather than message passing and employs
non-blocking collective communications which were not available in MPI at
the time of those works. Notably, our implementation is able to achieve over
500 TFlop/s on the largest size of the m = n = 8k problem on the Rome
partition, on par with Elemental.

3.5.2.2 Stationary-A

In order to evaluate the effectiveness of the stat-A variant, we have chosen
problems where the size of the A matrix is much larger than that of the B
and C ones, namely m = 8n = k with m = {65536, 131072, 262144}. For
qr_mumps and Slate, the stat-A and stat-C routines are directly callable and,
thus, we include results for both of them; for Elemental we only report the
stat-A variant; for ScaLAPACK it is only possible to call the generic pGEMM
routine which, internally, chooses the most appropriate variant (which ended
up being stat-A for the chosen problem sizes); Chameleon does not implement
the stat-A algorithm so we have chosen not to report the performance of this
library on this problem type.

For this problem type, we can observe on Figure 3.4 that our method is
significantly better than most libraries – Elemental obtains results similar to
ours on both partitions. This is likely due to the use of non-blocking collective
communications and the runtime system leveraging commutativity of local
tasks as well as the reduction patterns.

Stat-A variants are significantly better than their stat-C counterparts es-
pecially on small-size problems and large size grids where the execution time
is dominated by communications. As the problem size increases, this dif-
ference is less remarkable because there’s more opportunity for overlapping
communications and computations.
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Figure 3.2: Comparisons of ScaLAPACK, Elemental, Slate, Chameleon and
qr_mumps pGEMM on square matrices (m = n = k) and an increasing
number of nodes. Markers correspond to the best median across runs using a
given blocking for an algorithm.

3.5.2.3 Controlling the memory consumption

Task-based parallel runtime systems in general, and StarPU in particular,
commonly rely on an eager scheduling: as soon as a task becomes ready, it is
scheduled for execution. In the case of StarPU, this also concerns communi-
cations because they are fulfilled by dedicated tasks which are automatically
and transparently created by the runtime system. When the GEMM routine is
not evaluated as part of a larger application where the matrices are produced
by other operations, all the communication tasks are immediately ready and
scheduled for execution and potentially all executed in the very early stages
of the matrix product. This has two effects. First it might cause an excessive
memory consumption because StarPU must allocate communication buffers
for blocks that are received much earlier than when they are actually used.
Second, it may reduce performance because of the high contention that it
generates on the network.

StarPU does not currently offer a proper feature to control the execution
of communication tasks. Nevertheless, it is possible to control the execution
of communications indirectly by delaying the submission of tasks. Note that
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Figure 3.3: Comparisons of ScaLAPACK, Elemental, Slate, Chameleon and
qr_mumps pGEMM involving a large C matrix (m = n = 8k) on an increasing
number of nodes. Markers correspond to the best median across runs using a
given blocking for an algorithm.

this relies on a fundamental property of the STF programming model: tasks
are created sequentially, that is, in exactly the same order in which the cor-
responding operations would be executed in a sequential code. Based on this
assumption it is possible to use a feature of StarPU that allows one to cap
the number of submitted tasks through a sliding window mechanism (this fea-
ture is already discussed in related work by Agullo et al. [6]). This feature
provides two environment variables that can be used to define the maximum
and minimum number of submitted tasks: when the maximum is reached, the
tasks’ creation is suspended (the task submission routine becomes blocking)
and is resumed when, upon execution of already-created tasks, the number
falls below the minimum. We used this feature to implement a lookahead
mechanism in our implementation. The maximum is set to be the number
of tasks in a prescribed number of iterations of the outer loop of the product
which, essentially, corresponds to the lookahead depth.

The results obtained with this approach on the stat-C variant are presented
in Figure 3.5a and Figure 3.5b. This figure shows the maximum memory con-
sumption over all ranks, including the initial A, B and C matrices (represented
by the gray dotted line), with respect to performance for multiple values of
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Figure 3.4: Comparisons of ScaLAPACK, Elemental, Slate and qr_mumps
pGEMM involving a large A matrix (m = 8n = k) on an increasing number
of nodes. Markers correspond to the best median across runs using a given
blocking for an algorithm.

the lookahead depth compared to Slate and Chameleon (for which the default
lookahead of 1 was used). The figure clearly shows that when no memory con-
trol mechanism is used in qr_mumps (which corresponds to an infinite depth
lookahead), the memory consumption is excessively high and much higher
than the other packages. When a fixed-depth lookahead is used, instead,
not only the memory consumption becomes comparable to that of Chameleon
and Slate, but performance is improved thanks to a reduced pressure on the
communication layer.

This analysis suggests that the memory consumption could be reliably
controlled through an analogous feature that allows capping the maximum
size of communication buffers rather than the number of tasks. The sequential
tasks’ submission order will ensure that no deadlocking occurs provided that a
sufficient amount of memory can be used [12]. We reserve the implementation
and study of such a feature for future work.
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3.6 Concluding remarks
It is possible to design state-of-the-art matrix multiplication algorithms for
distributed-memory machines through a very compact sequential-like code.
The programmer can be relieved from the burden of writing low-level com-
plex communication schemes as it the case for instance with MPI-based codes
such as ScaLAPACK. This can be achieved through the use of advanced fea-
tures of the STF, task-based, parallel programming model. In this enhanced
STF model we have proposed, we have indeed shown that efficient communi-
cation patterns can be effectively inferred from an appropriate choice of the
mapping and data access modes. We emphasize also that relying on this ex-
tended STF model, the scalability is achieved with moderate effort from the
programmer’s point of view: The main philosophy of the STF model (express-
ing parallel algorithms through a sequential submission process) still holds in
this distributed-memory context. The second main conclusion is that the
software ecosystem is ripe enough to ensure that the resulting code may be
competitive against state-of-the-art, finely hand-tuned libraries.





Chapter 4

Replicating data write

In a task-based programming model such as STF, modifications on a piece
of data are serialized. This means that two distinct workers managed by a
runtime system will not execute concurrently two tasks modifying the same
memory addresses. While this principle is important, we have seen how it
can be beneficial to relax it in the case of reduction operations. In such a
case, multiple copies of the piece of data coexist and while sequential consis-
tency is ensured for each individual copy, out-of-order execution will produce
the same final result. Reductions are only one such operation where a strict
sequential consistency could be relaxed momentarily. This chapter focuses
on an approach that relaxes sequential consistency to achieve data write
replication; this corresponds to the case where multiple tasks, potentially
on different computing nodes, redundantly compute over the same data. As
we will explain in the following section, this feature can be used to reduce
the communications at the cost of a slight increase (often negligible) in the
operational complexity.

This chapter is outlined as follows: first, we motivate the interest of pro-
viding an interface to enable data replication in Section 4.1. Section 4.2 deals
with the actual specification of the related novel interface – an additional
access mode SAME– as well as a demonstration of its use in a stencil appli-
cation. The following section, Section 4.3, is concerned with implementing
an allreduce collective communication; this operation leads to the situation
where multiple ranks own copies of the same data which can be concurrently
updated through the data write replication feature. This mechanism, imple-
mented through the extensions presented in this chapter, is actually leveraged
in factorization algorithms.

67
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4.1 Motivation
In a reduction, one rank starts with a piece of data it owns and other ranks
start with a copy initialized according to the program’s specifications. Each
rank partially contributes to its copy of the data that it will assemble. The
assembled result is stored by the owner of the data. Such a pattern, rooted
toward the owner of the piece of data, is essential in several algorithms includ-
ing the ones found in linear algebra computations. It is a core component of
the extended STF programming model in Chapter 3.

Another feature of interest is the replication of data output or data mod-
ification. By replicating data modification, the same handle is modified on
different distributed memories. We refer to this behavior as data write repli-
cation. The key component of the mechanism we present is the concurrent
modification of data. Because this mechanism requires the initial value of the
modified data to be exchanged, the corresponding DAG is rooted from the
owner of the data. As the tasks modifying the data use the same input value,
replication has to break the consistency of the serial accesses over the data.
This feature can be used to trade off communication with computation as
presented in Figure 4.1. If the DAG remains sequentially consistent, the mod-
ification of a data A may only be executed in one place to produce A0,A1,etc..
If another rank requires these values of A, multiple transfers between ranks
have to be executed, as depicted in the left part of the figure. By replicating
modifications of A on the two ranks, those transfers can be discarded: it is
enough to transfer the initial value of A and let the ranks proceed with the
computation as depicted in the right part of the figure. If this alteration of the
DAG is beneficial to network communication, it is also clear that the compu-
tational workload increases because some work has been duplicated. We will
see in Section 4.2.3 how this trade-off can improve scalability in practice.

To the extent of our knowledge, one element that is not studied in the
literature is data write replication over multiple ranks in a runtime system.
Nonetheless related mechanisms exist especially considering resiliency mech-
anisms. Better guarantees on the resiliency can be obtained through check-
pointing, where the result of tasks is reliably stored, but also replication, where
multiple identical tasks are scheduled. Designing and implementing such be-
haviors within runtime systems is possible without a dramatic overhead and
with little to no intervention from the user [42, 85, 65]. Our contribution di-
verges from resiliency concerns as data write replication can be used to shorten
the critical path and increase performance.

In the current programming model, including the extension proposed in
Chapter 3, the sequential consistency remains central. Any relaxation of the
sequential consistency is clearly framed. For instance when dealing with re-
duction patterns, access modes are defined to produce partial contributions
which are not supposed to be read nor used by an application in their partial
state. When considering replicating, a similar temporary relaxation should
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Figure 4.1: Replicating modifications of a piece of data may reduce the com-
munication volume if sequential consistency is relaxed. Orange tasks reads
the value of A. Green tasks modifies the value of A. Left: Strict sequential
consistency is maintained. Transfers are issued after each update task. Right:
Sequential consistency is relaxed. One transfer is issued.

be provided by the runtime system because the same piece of data cannot be
modified in multiple places without risking invalidating previously-modified
copies. Thus to enable the design of a replicating pattern (see Figure 4.1),
a contract should be made between the user and the runtime system: the
sequential consistency could be momentarily ignored in some clearly defined
context.

4.2 Enabling redundant computation within STF
Data write replication as introduced in this chapter is found in algorithms
presented in Section 2.3.2.3 and 4.2.3.2. In its extended state, presented in
Chapter 3, the STF programming model lacks such replication that is a strong
requirement in the expression of these algorithms. This section is dedicated
to the specification of the related features.

We have detailed YarKhan’s approach to replicate the traversal of any
DAG submitted to an STF runtime system in Section 2.2.3. One can assume
that such a DAG contains a task T that modifies a single piece of data D owned
by a given rank Pown. We can further assume that the rank executing T is
Pexe which is different from Pown. All the ranks have registered D as owned
by Pown: a robust and simple way to maintain coherency for subsequent tasks
is to transfer the new value of D back to its owner once T is executed. StarPU
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plans these data transfers during task submission. In any case, because the
value of D has been modified, possible copies that are stored by other ranks
should be invalidated to make sure these ranks retrieve an up-to-date copy
when executing tasks in the remaining portion of the DAG – especially if
a distributed-memory cache mechanism has been implemented (as proposed
by Agullo et al. [6]).

4.2.1 Obtaining local data over multiple ranks
The robust and systematic fallback to the owner contradicts the data write
replication: two ranks cannot execute a task modifying the same data without
redundant transfers between one another, possibly through the owner of the
data. A user can bypass this behavior and implement replication by explicitly
duplicating memory managed by the runtime. This fundamentally leads to
tricking the runtime into thinking about the replicates and the original data
as completely separate references: instead of modifying a data D owned by
Pown, the executing rank Pexe can modify its own handle D(Pexe) that appears
entirely different to the runtime. While feasible, this approach may hurt
readability as it provides an inelegant expression that makes it uncomfortable
to write code productively. This approach might also lead to the creation
of an overhead for the runtime related to the management of the additional
handles.

Rather than this approach, we propose the following extension to the STF
programming model: instead of inserting a task T using a piece of data D
with the usual WRITE access mode, an additional access mode SAME is intro-
duced. This access mode actually reduces to a flag over D that indicates that
copies are produced across multiple ranks. The runtime is therefore not ex-
pected to transfer these copies back to the original data owner: the transfer
is fundamentally bypassed. Such an access mode gives more manoeuvrability
to the user as they get to adjust the behavior of the runtime system to their
needs. Nonetheless, this approach puts more burden on the user regarding the
correctness of the DAG as several copies now exist in the distributed mem-
ory whose consistency must be ensured. Note that, semantically, the SAME
access mode allows inserting multiple tasks that produce, each, a copy of the
same data. In the case where all these tasks are the same, i.e., use the same
codelet, same data and same arguments, we can actually speak of task repli-
cation. This however does not necessarily have to be the case because in our
approach nothing prevents these tasks to use a different codelet, different data
(other than the one flagged with the SAME access mode) or different arguments.
Obviously, in this case, it is the duty of the programmer to ensure that these
tasks produce the same data, or, at least, copies that are equivalent for the
purpose of the algorithm.

To facilitate the usage of this feature, a wrapper function can be imple-
mented in the runtime system: this additional function, insert_tasks, takes
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a list of replicating ranks repl_ranks along with the usual arguments (a
codelet T , its own arguments, etc.). Note that insert_tasks, with an “s”,
differs from insert_task. This wrapper can be used to hide the usage of the
novel access mode: all Write accesses are appended with SAME and the task
T is submitted once for each rank in repl_ranks plus the owner if it was
not included, transparently for the user. Its use is exemplified in Figure 4.2
for a piece of data A. It is important that the task executed by the owner
of the original data is inserted last because each rank in repl_ranks should
receive the initial, unmodified value of A. Consequently the owner of A should
schedule sending the unmodified data before scheduling its own modification.
Likewise the owner rank should insert all the tasks to ensure that every rank
in repl_ranks get the unmodified value, but other ranks can prune the DAG.

1 insert_tasks(repl_ranks,T,A:RW)

1 repl_ranks ← unique({ repl_ranks, A.owner })
2 for rank in repl_ranks do
3 insert_task (T, A:RW +SAME, rank:ON_RANK)

Figure 4.2: insert_tasks simplifies the use of the SAME access mode.

With the proposed additions to the programming model, the DAG in-
troduced in the beginning of this chapter can be expressed in an STF code
displayed in Algorithm 4.3. This algorithm shows how two very similar func-
tion calls in the STF programming model generate very different behaviors:
while insert_task and insert_tasks have very similar arguments they lead
to extremely dissimilar tradeoffs between computation and communication
workloads. Given a completely submitted DAG the tradeoff of replicating
tasks on several ranks may be evaluated by a runtime system; this evaluation
could lead to an automatic data write replication. We have not evaluated the
(engineering) cost of setting this detection mechanism up.

1 for it=. . . do
2 insert_task (update,A:RW) or insert_tasks ({0,1},update,A:RW)
3 for rank in {0,1} do
4 insert_task (compute,A:R,rank:ON_RANK)

Figure 4.3: Either the blue or the red statement can be called. They result
in different DAGs. The blue one corresponds to the left part of Figure 4.1
whereas the red one corresponds to the right part of the figure that leverages
the proposed extensions of the STF model.
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4.2.2 Transferring from alternative ranks
One straightforward advantage of using the SAME access mode on a data D is
that any subsequent local task needing D will actually use the redundantly
computed local copy rather than fetching D from its owner. However, in the
case where a task needing D is executed on a rank which does not possess
a local copy, any of the existing copies of D can be transferred to that rank
prior to the execution of the task; a choice has to be made. A conservative
policy is to source D from its owner. Although this approach is simple and
very robust, it might not be the most efficient. First it makes the data output
replication only useful in a limited number of cases where replicated data is
only used locally. Second it may result in a loss of efficiency due to contention
issues on the owner rank which is involved in numerous communications. As
an example, consider the factorization algorithms detailed in Section 2.3.2.3.
Here all the trsm tasks at a given iteration of the algorithm are spread over the
existing layers of the 3D ranks grid; each of these tasks will fetch a copy of the
diagonal block from a rank lying on the same layer. To address this situation,
we developed the following method, which makes it possible to declare that a
rank rcv_rk must retrieve a data handle from a designated rank new_src in
subsequent tasks, rather than from its owner:

• set_alternative_source(handle, rcv_rk, new_src)

The default behavior of the runtime to fetch data from the owner rank is
superseded: when new_src schedules data transfers for handle it is the defined
alternative rank that is used. Because the source rank is set in-between task
submission it is possible to benefit from other features already proposed by a
runtime system such as dynamic multicast communications [52].

The set_alternative_source function may be called outside the repli-
cation mechanism. In such a case no valid copy of the data described by
handle exists in new_src: a preliminary transfer has to be executed with
the owner. When the alternative source new_src has been set, the cache
mechanism can be updated to account for the valid copy it possesses. When
replicating computation through SAME, such a cache entry is already set in
the required state. Because set_alternative_source mostly consists in ma-
nipulating the records of the distributed-memory cache it has no practical
overhead when used conjointly with SAME.

4.2.3 Stencil iterations over a 2D structured domain
In this section, we will be interested computing stencil iterations that will
be detailed in the following paragraphs. The related algorithms provide an
interesting framework to data write replication.

Some areas of scientific computing are interested in computing fields of
e.g. temperature, velocity,etc. along a time dimension. It is then common
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practice to discretize these fields into geometric domains to compute their
values iteratively through time. The interactions between cells of these fields
can often be described locally i.e. neighboring cells interact. If the interac-
tion can be described through linear functions, then iterations are commonly
described as a suite of sparse matrix-vector multiplications. The interaction
of cell i over cell j can be stored in the (i, j) coefficient of this sparse matrix
however some computations over meshes do not need to explicitly store all
coefficients. In the case of partial differential equations, the next iteration is
typically computed by means of an explicit stencil that is applied at each cell.
Section 4.2.3.1 introduces some notation for the specific case of 2D stencils in
distributed memory.

With the past and current trends in computer architectures, the scalability
of stencil algorithms has been extensively studied both in a shared-memory
and a distributed-memory setting. On parallel machines, it is necessary to
distribute the input domain as well as the initial state of the system: because
of this distribution, inputs need to be shared between parallel elements e.g.
threads on a computing node or ranks on a cluster of computers. Then, when
computing the next iteration over the domain, these parallel elements have to
exchange their inputs to proceed further. When this exchange is performed
at each iteration, this creates synchronization that hinders parallelism and
degrades execution time. Section 4.2.3.2 presents some strategies and designs
proposed in the literature to enhance the performance of such computation
on modern machines.

The following sections detail STF implementations of a 2D stencil. Sec-
tion 4.2.3.3 presents the implementation of a classical approach. A communi-
cation-avoiding approach leveraging data write replication is presented in Sec-
tion 4.2.3.4. Both approaches are benchmarked in Section 4.2.3.5.

4.2.3.1 Problem notations

The geometric domain Ω storing the field of values can take different forms
based on the underlying phenomenon that is simulated: in this work, only 2D
structured meshes are considered with each cell having four neighbors that
can be designated with cardinal orientations (north, south, west, east). The
domain Ω of size X × Y includes boundary values that are constant across
iterations i.e. Ω(1, :), Ω(X, :), Ω(:, 1) and Ω(:, Y ) are not updated. We are
interested in computing a simple 5-points stencil over the domain Ω: each
cell is updated by computing a function of itself and its direct neighbors. In
the remainder of this document, to address the distributed-memory setting,
a subdomain Ωr is considered as the aggregate of cells owned by rank r. We
introduce the notation δΩ(d)

r which is the union of cells at minimum distance
1 and maximum distance d of Ωr. The distribution of subdomains is often
defined according to a 2D Block layout as to minimize the length-surface ratio
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Figure 4.4: Cell 2D block layout. Green cells are owned by rank (1,1). Red
cells are part of δΩ(1,1), assuming s = 2. (1,1) retrieves red cells from neigh-
boring ranks.

(similar to surface-volume ratio in the 3D case) of the cells owned by different
ranks. A rank p may be designated by its coordinate (r, c).

4.2.3.2 Related works

Demmel et al.[50] provide two communication-avoiding parallel approaches
to improve the scalability of the conventional procedure. These approaches
reduce the number of messages exchanged by taking into account the size of
the subdomain that is locally computable. In their Parallel Approach 1 (PA1)
this amounts to exchanging cells owned by neighboring ranks that are up to
distance s every s steps. We recall their PA1 algorithm for the 2D mesh
case in Algorithm 15. With i iterations, the communication latency cost of
the PA1 approach is in the range of O(i/s) [50]. The conventional approach
fundamentally uses s = 1 and may be prone to synchronization issues. This
decrease in latency by a factor of s has to be weighted against an increase in
computational load as the communication-avoiding approaches replicate the
execution of the stencil. δΩr, without superscripts, refers to δΩ(s)

r . Assuming
a rank r owns x× y cells, Ω ∪ δΩr contains x + s× y + s cells and δΩr alone
contains (x + 2s)(y + 2s)−xy− 4 s(s−1)

2 = 2s(x + y + 1) + 2s2 cells. Figure 4.4
presents a layout of the cells where (1, 1) owns 4 × 4 green cells and has to
compute an extra 42 red cells, assuming s = 2.

Algorithm 15: PA1 executed from the process of rank r = (r, c).
1 for it= 1, s + 1, . . . do
2 recv δΩr from at most 8 ranks {(r+/−1, c+/−), (r+/−1, c), (r, c+/−1)}
3 for s_it= s− 1, s− 2, s− 2, , . . . 0 do
4 update Ωr ∪ δΩ(s_it)

r
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The PA1 approach has been studied repeatedly over the 2010s to better
understand how it lifts the cost of synchronization, especially in the case of
iterative solvers [70, 44]. Other techniques such as overlapping communica-
tion and computation have been studied [61]. The communication-avoiding
algorithms have been ported to single-node accelerated platforms with suc-
cess inside the Magma library to avoid data transfers to GPU devices [112].
A large portion of the literature has been focused on the productivity of the
domain experts. In a shared-memory setting, compiler optimizations can be
enough to abstract the reordering of vertical memory movement transparently
to the programmer [22].

In a distributed-memory setting, the use of runtime systems has been
extensively explored for the case of simpler algorithms that do not avoid com-
munications [15, 67, 36, 5, 55]. Recent works have been geared toward en-
abling the communication-avoiding approaches in widely-available software
stack such as Trilinos [113]. The use of PaRSEC has been explored to en-
able communication-avoiding techniques through its PTG interface: the work
from Pei et al.[92] actually tackles similar concerns as the ones addressed in
this chapter. The main difference resides in the approaches that are set up:
the PTG interface has been used to implement the communication-avoiding
algorithm while the work we present seek to modify the STF programming
model with respect to this algorithm.

4.2.3.3 STF implementations of stencils

This section aims to present how the STF programming model can be lever-
aged to implement the conventional approach. The concerns (granularity,
layout) raised in this section also applies to the communication-avoiding ap-
proach and have to be adapted.

One of the first concerns to address is the granularity of the tasks: it would
be inefficient to submit a task per cell as it results in poor scaling over a large
amount of computing resources. Indeed, updating a cell typically requires
computing only a few flops and the flow of tasks from a sizeable domain
Ω would create a large scheduling overhead. It is, instead, appropriate to
aggregate cells into blocks, e.g. of b× b cells, such that each task updates all
the cells in a block.

In order to simplify the implementation we will consider a static domain
partitioning with blocks of variable size, illustrated in Figure 4.5. Blocks
that are internal to a subdomain, i.e., blocks that can be updated without
data owned by another subdomain, are of size b × b. Instead, blocks that
lie at the interface with another subdomain are smaller and have either two
or four sides of size s. This partitioning makes it simple to retrieve all the
ranks that replicate computation over a given block (it can be stored in a
variable neigh for each block) and the retrieval of adjacent blocks as well as
the computation of Ωr∪δΩr both become trivial. Note that more sophisticated
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Figure 4.5: Layout for communication-avoiding 2D structured stencil algo-
rithm. The subdomain owned by a rank (x, y) is highlighted in green. This
rank will compute updates over its domain as well as the blocks highlighted
in red. A block is zoomed-in to clarify what are its neighbors.

partitioning approaches may be employed using dynamic partitioning features
provided by some runtime systems such as StarPU; we do not investigate
such approaches because the sole objective of this experimental analysis is to
validate the effectiveness of the data write replication feature.

In order to compute the next iterate over the mesh, storing Ω only once
in a limited memory budget context makes the code more complex. Indeed,
each block is updated with the values of its direct neighbors in the previous
iteration. To concurrently compute a next iterate, these values should be
available in-between steps. To simplify the implementation, we will consider
that two grids exist and at each step one is read and the other is written to
then they are swapped.

An STF implementation of the conventional approach, i.e. using s = 1 and
not requiring replication of updates over cells, is presented in Algorithm 16.
At each iteration the neighbor blocks at the interface of different ranks have
to be exchanged. Every block b is updated using its neighbors indicated as
b.{N, E, W, S}. This variant of the 2D 5-points stencil does not hold clever
mechanism and the resulting code is relatively plain. In the next sections, the
possibility to leverage replication, i.e. different values of s, is incorporated
inside this expression.
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Algorithm 16: Conventional STF implementation of a 5-points stencil.
1 for iter = 1 . . . do
2 for block in Ω do
3 insert_task(update, block:RW,
4 block.N:R,
5 block.E:R,
6 block.W:R,
7 block.S:R)

4.2.3.4 Communication-Avoiding algorithm

The communication-avoiding variant of the classical stencil algorithm can be
expressed using the STF programming model. This section focuses on the
PA1 algorithm (see Algorithm 15): we will describe how the baseline and the
extended STF programming model can be used to implement it.

Using the baseline STF model results in Algorithm 17. This algorithm
presents additional loops to set up the replication mechanism explicitly. These
additional loops are used to manage copies of existing handles for each repli-
cating ranks. Whether a computation over a block in Ω should be replicated
by a rank r is verified by checking whether the block is also in Ωr ∪ δΩr i.e.
whether it is at distance up to s from a cell owned by r. This condition is easy
to assess in the case of a 2D block layout. The handle that will be used in the
update task by rank r can be denoted B(r), a replicate of B. In order to get
the classical algorithm one can set s = 1 – in this case the explicit copies are
bypassed.

Algorithm 17: 5-points stencil STF implementation without replication
executed by rank r.
1 for it = 1, 2, . . . do
2 if it % s = 1 then
3 for block in Ωr ∪ δΩr do
4 for rank in block.neigh do
5 insert_task (copy,block:R,block(rank):RW)
6 for block in Ωr ∪ δΩr do
7 local_block ← if r=block.owner then block else blockr

8 insert_task(update, local_block:RW,
9 block.N:R,

10 block.E:R,
11 block.W:R,
12 block.S:R)

It is possible to simplify the expression of Algorithm 17 by using the fea-
tures presented in Section 4.2 that form an extended STF programming model.
The resulting expression is provided in Algorithm 18. In this algorithm we do
not use the insert_tasks wrapper function but rather submit each update
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tasks individually using the SAME access mode because each replicating rank
does not modify a given block similarly. For instance, assume a block B in
Ω at the interface of two ranks r and t: if r owns the block then r naturally
needs all of the neighboring blocks of B to update all the cells in it; however t
needs only up to three of them. For instance t may not require B.N because
B is in the northern region of δΩt. t would not need to receive B.N because
it does not need to update the top rows of B. The situation of the rank t is
exemplified in Figure 4.6. Assuming s = 3 there are three cases to consider:
first, the furthest row/column in δΩt is not updated; second, only the closest
row/column in δΩt is updated; third, no cells in δΩt are updated. Thus, tasks
modifying a given block are different across ranks: some should nullify han-
dles that are unnecessary. Every s steps, each rank r should get the updated
values in δΩr: in order to retrieve these values in, it is enough to modify the
access mode on blocks. Indeed, if the owner of a block uses a simple RW access
mode every s steps – instead of RW+Same – then the runtime will invalidate the
extra copies stored by the neighboring ranks. This will allow the scheduling
of the transfers upon submitting the next iteration.

While an additional loop is added to iterate over ranks around any block,
the expression allowed by replicating data write accesses is simplified compared
to the one provided in Algorithm 17. The proposed implementation that uses
the extension of the STF programming model for replication is more concise
and does not require the user to manage data as precisely: they only have to
be careful of the correctness of their algorithms by telling the runtime system
when replication does make sense in their application.

Algorithm 18: 5-points stencil STF implementation with replication
executed by rank r.
1 for it = 1, 2, . . . do
2 for block in Ω ∪ δΩr do
3 for rank in {block.neigh,block.owner} do
4 if it % s = 0 & rank = block.owner then
5 mode ← RW
6 else
7 mode ← RW +SAME
8 insert_task( update, block:mode,
9 block.N:R,

10 block.E:R,
11 block.W:R,
12 block.S:R)

4.2.3.5 Experiments

In this section, we compare implementation of the 2D 5-points stencil communi-
cation-avoiding approach. This implementation was achieved using the StarPU
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(s - it) % s = 2 (s - it) % s = 1 (s - it) % s = 0

Figure 4.6: The green cells in Ωt are owned by t and updated every step.
When t updates blocks in δΩt, not every cells in these blocks are updated ;
only glowing red cells are. At each step, one row/column less is updated until,
every s steps, δΩt is fetched from its owners with updated values. Assuming
s = 3 and every s steps ; Left: the first iteration s− 1 = 2 rows/columns are
updated. Center: the second iteration s− 2 = 1 rows/columns are updated.
Right: the s-th iteration s− s = 0 no cells are updated.

runtime system. The proposed extension to enable data write replication has
been added to the runtime in an experimental branch of its git repository1:
the SAME access mode has been added and the cache mechanism adapted to
support alternative sources. The experimental setup we use invokes one rank
per computing node and one worker thread per computing core.

In our application, no actual computation is executed. In order to reflect
the behavior of a real application, tasks sleep for a given time which is passed
as an argument to the task. The value of this time is modified such that the
interaction between the arithmetic intensity of the stencil operation and the
scalability of the various DAG submission approaches can be assessed. The
duration of a task is a linear function of the number of cells in the block that
needs to be updated. Given a rank r and a block B at the i-th step using the
communication-avoiding algorithm with parameter s, the computation is as
follows

• B is owned by r then r updates all the cells in B.

• B is not owned by r and out of the adjacent blocks to B:

– one is owned by r so r updates b ∗ i%s cells.
– none is owned by r so r updates i%s ∗ i%s cells.

To compute the speed of the operation, we assume that a single cell takes
9 Flop to be updated similarly to Pei et al. [92]. Thus, updating a block of
size m × n takes 9mn Flop. In our benchmark, the time to process a cell is

1the code is available online at https://gitlab.inria.fr/starpu/starpu/-/merge_
requests/68

https://gitlab.inria.fr/starpu/starpu/-/merge_requests/68
https://gitlab.inria.fr/starpu/starpu/-/merge_requests/68
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denoted tc and it is a tunable parameter of our experiments. The attainable
peak performance by one core is denoted pc = 9/tc. If i iterations over a mesh
of size X×Y take t to complete, then the computation speed will be p = i9XY

t
and the utilization percentage of the machine, equipped with c cores, is p

cpc
.

We use both Platforms A and B because their characteristics (number of cores,
memory bandwidth, interconnect generation) offer a realistic comparison.

Figure 4.7 presents the volume of communication as the number of it-
eration increases for a mesh of size 1152 × 1152 using 8 × 8 processes with
b = 6. This shows how the communication-avoiding variant behave at run-
time compared to the conventional approach. From this figure, it is clear that
the latency is more impactful on the conventional approach because it sends
messages at each iteration. For the communication-avoiding variant, commu-
nication volume plateaus for s steps and between each plateau the gap is wider
as s increases. We can observe a small discrepancy between all the variants as
s increase. This comes from the fact that the exchanged subdomains δΩ are
not trimmed at the edges: some useless cells are transferred because the blocks
are rectangular despite the required regions being triangular. This overhead
corresponds to s2/2 cells sent up to 4 times each s iteration for each rank.
We consider this gap to be negligible in our experiments but real applications
might find it worth the effort to implement the packing and unpacking of
arrays that describe the triangular blocks. This gap is further increased by
the initial conditions that are aggregated into blocks as well: although they
remain unchanged across iterations, they still have to be sent once at the first
iteration.

Figure 4.8 presents performance results for 38 iterations in strong scala-
bility. The problem size is fixed for all number of cores. The conventional
approach is compared with the communication-avoiding approaches taking 3
values for the s parameter: 4, 16 and 38. Each value is only a small percentage
of a block of size 1024. We have selected several tc to test the robustness of
approach with regard to this parameter. The selected values make it possible
to go from a regime where tasks are fast and the machine is hardly utilized to a
more efficient regime where tasks are relatively slow. These regimes can match
actual computation in the literature as some interactions between cells can be
very arithmetically intensive. We observe that the conventional approach is
less scalable than the communication-avoiding one. With s sufficiently high
(a small percentage of the block size) fewer messages are exchanged and the
scalability is increased. We also observe that when a kernel is taking longer
i.e. when its arithmetic intensity increases, as communications are fixed, then
the achievable scalability is improved which is expected.

Figure 4.9 shows different values of the parameter s in a specific scenario
using 36 Skylake computing nodes. In this scenario where the number of
iterations is far larger than the size of the blocks, we can assess the importance
of tuning s. We observe that up to s = 32 = b/32 it is beneficial to increment
s. Past this threshold increasing s yields diminishing returns. This behavior
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Figure 4.7: Communication volume along iterations evaluating conventional
(s = 1) and communication-avoiding (s > 1) approaches for a 2D five-points
stencil. Lines represent total communication volume. Bars represent commu-
nication volume at the ith iteration.

 1 ns per cell 20 ns per cell 40 ns per cell

X
 =

 Y
 =

 1
4

4
*b

 w
ith

 b
 =

 1
0

2
4

o
ve

r 3
8

 ite
ra

tio
n

s

R
o

m
e

X
 =

 Y
 =

 6
4

*b
 w

ith
 b

 =
 1

0
2

4
o
ve

r 3
8

 ite
ra

tio
n

s

S
kyla

ke

 4 6416 36  4 6416 36  4 6416 36

  0

100

 50

 25

 75

  0

100

 50

 25

 75

# of nodes

%
 o

f 
m

a
c
h

in
e
 u

s
e

s 1 4 16 38

Figure 4.8: Strong scalability experiment evaluating classical and
communication-avoiding approaches on a 2D five-points stencilfor stencil.
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Figure 4.9: Different values of s for the communication-avoiding five-points
stencil.

is expected since the amount of additional work that is replicated for a given
rank is, not considering rank close to the borders of the domain, (Y

p +2s)(X
q +

2s)− XY
pq ∼ 2s2 + 2s(X/q + Y/p). With the latency improved by O(s) and the

overall bandwidth unchanged the increased computational workload has to be
responsible for some overhead when s is too large.

4.2.4 Summary
In this section, we have enabled data write replication in the STF program-
ming model. The extension we provide amounts to an additional access mode
SAME as well as a function to declare alternative sources to retrieve data. To
assess the interest of this extension we have implemented a communication-
avoiding stencil algorithm in which some cells are updated redundantly across
ranks. Our extension makes it possible to avoid the pitfalls of the baseline
STF model when implementing this algorithm: it makes task insertion less te-
dious by letting the user focus on algorithmic consideration rather than data
management. We obtained compelling experimental results.

In the next section, the STF programming model is further extended. Our
objective is to be able to address numerical linear algebra operations including
factorization algorithms detailed in Section 2.3.2.3. Replication is one of the
necessary tools to express these algorithms. The next section considers how to
implement an allreduce reduction pattern and finally its use in implementing
scalable Cholesky factorization.

4.3 Implementing an allreduce pattern
In factorization algorithms presented in Section 2.3.2.3, data is replicated
as the result of an allreduce collective operation. In this operation, several
contributing ranks share their partial contributions with one another until all
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the ranks hold an assembled result. These assembled results are needed by
several other ranks to proceed with their computation.

Instead of relying on an allreduce, the same result could be obtained by
a simpler reduction followed by a broadcast. These features have been pre-
sented in Chapter 3 and are readily usable to implement scalable factorization
algorithms using the STF mode. However the cost of a reduce followed by
a broadcast is higher than that of an allreduce because this collective opera-
tion essentially executes several reductions in parallel. Once again, users can
manually implement an allreduce operation by explicitly inserting the relative
tasks. Rather than putting the burden of implementing their own allreduce on
every single user, the runtime should provide such an operation. The runtime
only needs to know how to reduce two contributions to submit the appropriate
DAG: this addition to the interface of the STF can remain generic.

In the next section, we discuss the implementation of the allreduce opera-
tion inside a runtime providing the STF programming model. The following
section leverages this feature as well as the extended STF programming model
to implement scalable factorization algorithms.

4.3.1 Task-based allreduce STF DAG
The approach we propose to implement the allreduce collective operation is
based on an extension of the reduce operation presented in Chapter 3. Let
us assume that N ranks have, each, submitted a task updating some data D
which is passed with the RANK_REDUX access mode. As explained in Chapter 3,
the submission of tasks that operate the reduction can either be triggered im-
plicitly, by submitting another task that requires D, or explicitly by calling
a redux_submit function. This is illustrated in Figure 4.10 (left). Equiva-
lently, we can define an allredux_submit method that, instead, inserts all
the necessary tasks to operate an allreduce operation, in such a way that all
participating ranks finally possess a copy of the assembled result.

A wide range of algorithms have been explored in the literature to address
allreduce communication patterns [46, 94]: exploring the variety of patterns
that can be implemented is not the topic of this work. These algorithms can
be tailored to specific message sizes, network topology and number of con-
tributing ranks. A naive yet reasonable approach is to implement a recursive
doubling algorithm [81]; without loss of generality, we focus on this approach
and we reserve the analysis of other patterns for future work. At the kth step
of the recursive doubling, there exists O( N

2k ) different partial contributions,
each of them held by O(2k) reducing ranks over a total of N reducing ranks.
After O(log(N)) steps all involved ranks hold the same result. Therefore,
the allredux_submit method, basically amounts to the pseudocode in Al-
gorithm 19 which presents a simplified version of the implemented algorithm
where preliminary and postliminary steps required to handle the case where
N is not a power of two are discarded. This algorithm has to update the
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1 set_redux(handle,redux,init)
2 for rank in contributing ranks do
3 insert_task(contrib,
4 handle:RANK_REDUX)
5 redux_submit(handle)

1 set_redux(handle,redux,init)
2 for rank in contributing ranks do
3 insert_task(contrib,
4 handle:RANK_REDUX)
5 allredux_submit(handle)
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Figure 4.10: The reduce or the allreduce operation can be submitted by the
runtime system when the user orovides a reduction codelet (orange tasks) and
an initilization codelet (grey tasks). The submission can be triggered by the
user once all the contributions (green tasks) have been submitted.

cache registry associated with D: after the DAG is submitted, the runtime
should consider that all N contributing ranks hold a coherent value of D.
Figure 4.10 (right) shows how the allredux_submit can be used in place of
the redux_submit to achieve an allreduce operation.

Algorithm 19: Program to submit the sub-graph describing allreduce op-
eration over a piece of data D using N contributing ranks. This sub-graph
is submitted by rank me.
1 contributors ← N contributing ranks
2 my_id ← index of me in contributors
3 arity ← 1
4 while arity < 2log2(N) do
5 if my_id

arity %2 == 0 then
6 partner ← contributors[my_id-arity];
7 else
8 partner ← contributors[my_id+arity];
9 insert_task(isend, D:R, partner)

10 T ← duplicate of handle describing D
11 insert_task(irecv, T:R, partner)
12 insert_task(redux, D:RW, T:R)
13 insert_task(invalidate, T:W)
14 arity ← arity * 2
15 update_cache()
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The question arises of whether it is possible to implicitly trigger the inser-
tion of the allreduce tasks as it is the case for the reduce operation. Obviously,
if both operations rely on the same RANK_REDUX access mode, this is not pos-
sible because the runtime has no way of deciding whether to insert tasks to
achieve a reduce or an allreduce. This problem can be overcome by introduc-
ing a new access mode, say, RANK_ALLREDUX; then, as soon as another task
which uses the data in R or W mode is inserted, the runtime can automatically
insert tasks to operate an allreduce among all the ranks that have previously
submitted a task with this access mode. This clearly requires much more in-
trusive modifications of the runtime and we reserve it for future work. It must
also be noted that the use of the allredux_submit makes it possible to im-
plement the allreduce operation as an all-to-many collective communication.
In this case the set of ranks owning a copy of the final assembled result can be
different (a subset or a completely different set) than the set owning the data
to be reduced; this can be achieved by passing a list of destination ranks to the
allredux_submit method. This feature has been also considered for future
work as a more appropriate algorithm than recursive doubling is required.

4.3.2 3D Cholesky factorization algorithmic variants
The use of 3D logical grids to compute distributed-memory matrix factoriza-
tion remains the subject of recent studies. Such grids indeed defy the design
of this operation vastly more than GEMM. When factorizing, different tasks
are involved. First each block goes through one or multiple chains of (com-
mutative) updates that are possibly assembled – this is a similar behavior to
GEMM. However then the block is either solved or factorized before being
broadcast: such a behavior creates more dependencies in the DAG of the op-
eration. In order to account for the dependencies created by assigning updates
across layers – a common design choice in the literature – the input matrix
is not stored through the standard 2DBC layout but rather on more com-
plex layouts that involve all layers of the 3D ranks grid. Additional design
choices have been proposed in the last decade. These choices have however
often been restricted to their respective designers’ implementations and have
hardly if never been adopted in common packages. In this section, we aim at
leveraging the extended STF programming model in order to bring the com-
plementary designs of the 3D Cholesky factorization under a single portable
code.

We first adapt the algorithm from Beaumont et al. [25] to our extended
set of features in Section 4.3.2.1. Through the features designed in this chap-
ter, the LU factorization from Solomonik and Demmel [105] is adapted to the
symmetric case in Section 4.3.2.2. Section 4.3.2.3 then consider the design
proposed by Kwasniewski et al. [82]. The final STF implementation is param-
eterized to set up the complementary designs: Section 4.3.2.4 evaluates the
performance of four variants of the Cholesky factorization we implemented as
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well as several state-of-the-art packages.

4.3.2.1 3D update approach

Throughout an LU or Cholesky factorization, the trailing submatrix receives
multiple contributions in the form of rank-k updates which are commutative
and associative. As in the case of the GEMM operation described in Chap-
ter 3, these properties can be easily exploited to design 3D algorithms: the
computation of successive updates can be assigned to different layers in a 3D
ranks grid and assembled using reduction operations prior to an elimination
operation. This idea, which reduces the communication volume of the fac-
torization, has already been used by Beaumont et al. in a recent work whose
main objective is the design of a data distribution specifically suited for sym-
metric matrices and algorithms [25]. In the experimental results they assess
the effectiveness of this distribution in a Cholesky factorization that relies on
a cyclic distribution of the rank-k updates over the layers of a 3D ranks grid.
Their algorithm was implemented in the Chameleon library using the basic
STF model described in Section 3.1, which means that reductions are manu-
ally implemented through explicit data copies and tasks, that the mapping of
tasks is bound to the data distribution and that no collective communications
(i.e., broadcast) are used.

In this work we take advantage of the features available in the extended
STF model that we introduced in Section 3.4.1 to obtain a more flexible, pro-
ductive STF implementation of their algorithm. We have detailed how the
purpose of the access mode RANK_REDUX is to spread the assembly of partial
contributions over different layers. This access mode allows us to easily derive
an STF implementation of the 3D Cholesky factorization from the 2D clas-
sical STF implementation. The resulting code is presented in Algorithm 20.
The rank executing the update of the block Aij at the lth iteration of the
factorization can be determined through a mapping function map. The map
function takes the current iteration i,j,l as arguments. It could also be used
to state the executing rank of the other tasks i.e. trsm and potrf tasks. In
practice, when P nodes are involved in the computation, using map(i,j,l) =
q*(i%p) + j%q + P/h∗(l%h) evenly balances the computational load related
to updates, where h is the number of layers.

4.3.2.2 Replicating diagonal block factorization

A more efficient but complex 3D Cholesky algorithm is proposed by Solomonik
and Demmel [105]; a brief presentation of this algorithm is provided in Sec-
tion 2.3.2.3. This algorithm, not only distributes rank-k updates of the trailing
submatrix across the layers of the 3D ranks grid, but also the trsm operations.
Note that these operations use the diagonal block after it has been factorized
through a potrf operation; in order to reduce the cost of retrieving this diago-
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Algorithm 20: STF-3D POTRF.
1 for l = 1 . . . m do
2 insert_task (potrf, All:RW, map(l,l,0):ON_RANK)
3 for i = l + 1 . . . m do
4 insert_task (trsm, All:R; Ail:RW, map(i,l,0):ON_RANK)
5 for i = l + 1 . . . m do
6 for j = i . . . m do
7 rank ← map(i,j,l)
8 op ← if i = j then syrk else gemm
9 insert_task (op, Ail:R, A⊤

jl:R, Aij :RANK_REDUX, rank:ON_RANK)

nal block, this algorithm replicates potrf on every layer of the ranks grid. Fi-
nally, prior to being factorized, the diagonal block must be assembled because
its contributions are spread over multiple layers; this can either be achieved
through a reduce followed by a broadcast or, more efficiently, through an
allreduce. Therefore, this algorithm can be efficiently implemented using the
novel features of the STF model that we introduced in this chapter, namely,
replicated data output and allreduce.

This implementation is presented in Algorithm 21. The actual replication
is presented in Line 4 using the insert_tasks wrapper function, which can
be used because the factorization of the diagonal block is replicated through
identical potrf tasks. Once a diagonal block is factorized, it should be broad-
cast to proceed with the solve of the off-diagonal blocks: ranks that own such
a block should retrieve the factorized diagonal block from a rank that lie on
the same layer. This can be declared through the set_alternative_source
method (see Line 7). The rest of the code is unchanged. The mapping that
was proposed for the 3D update algorithm is still relevant and both algorithms
are similarly compact.

4.3.2.3 Partitioning the updates

In Algorithm 22, the update of a block Aij related to the lth step of the fac-
torization is sliced into H updates; we use superscripts over handles to denote
the vertical slices – Ac

il. Setting H = h results in the algorithm designed
by Kwasniewski et al. [82]. To implement this slicing of updates, it is nec-
essary to partition the blocks that result from trsm tasks. This partitioning
may create a slight overhead to correctly pack the message of size b × b/H

that is sent. StarPU provides a feature that allows us to do this partitioning
dynamically in the course of the factorization. The data handle Ac

il describes
the c-th vertical slice of Ail out of H slices. Such a handle could be declared
while submitting the other tasks or, as is possible with StarPU, planned be-
forehand to be transparently handled during task submission. In practice, a
dynamic partitioning can be expressed as tasks inserted into the DAG that
enable or disable the use of the original parent data or its children; this fea-
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Algorithm 21: STF-3D with diagonal computation replication POTRF.
1 for l = 1 . . . m do
2 allredux_submit(All)
3 ranks_on_aisle ← map(l,l,:)
4 insert_tasks(ranks_on_aisle,potrf,All:RW)
5 for i = 1 . . . h do
6 ranks_on_level ← map(:,:,i)
7 set_alternative_source(All, map(l,l,i),ranks_on_level)
8 for i = l + 1 . . . m do
9 insert_task (trsm, All :R; Ail :RW, map(i,l, i

max(p,q) ):ON_RANK);
10 for i = l + 1 . . . m do
11 for j = i . . . m do
12 rank ← map(i,j,l)
13 op ← if i = j then syrk else gemm
14 insert_task (op, Ail:R, A⊤

jl:R, Aij :RANK_REDUX, rank:ON_RANK);

ture was recently used and improved to implement hierarchical tasks [56]. In
order to implement this algorithm a loop must be added in the trailing sub-
matrix update to iterate over the slices of a panel. This algorithmic variant
also requires adding a dimension to the map function. Setting map(i,j,l,c)
= rank(Aij) + P/h∗((l∗H +c)%h) yields a satisfactory load balancing as up-
dates are issued in a round-robin fashion over layers. Moreover the presented
algorithm extends from Algorithm 21: indeed, if H = 1, the partitioning
operation would simply present an additional, redundant variable to handle
Ail; additionally if map(i, j, l, c = 1) = map(i, j, l) then Algorithm 22 clearly
reduces to Algorithm 21.

The expression proposed in Algorithm 22 ends up offering a very versa-
tile and compact way to approach matrix factorizations when pivoting is not
needed. This expression may lead to the consideration of new algorithms
agnostic of the matrix distributions and able to carry out combinations of
state-of-the-art design choices. The goal of this work is not to extensively
explore the possibilities allowed by this code but rather to provide a mixture
of features that may help revisit state-of-the-art algorithms. The specified
extended programming model is one way to achieve a compact, versatile im-
plementation of a 3D pPOTRF.

4.3.2.4 Comparing the algorithmic variants

Several algorithmic variants are now available for benchmarking. For all the
3D variants, the matrix A is stored such that it is conforming to the mapping
of tasks. One way to design such a conforming distribution is to start with a
generic 2DBC layout of size p× q where p ∗ q = P/h. This layout matches with
the logical grid of the bottommost layer. Based on this initial distribution,
matrix A can be redistributed to the existing h layers to better match the
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Algorithm 22: STF-3D with diagonal computation replication POTRF
and partition of the results of the TRSM.
1 for l = 1 . . . m do
2 allredux_submit(All)
3 ranks_on_aisle ← map(l,l,:,0)
4 insert_tasks(ranks_on_aisle,potrf,All :RW)
5 for i = 1 . . . h do
6 ranks_on_level ← map(:,:,i,0)
7 set_alternative_source(All,map(l,l,i,0),ranks_on_level)
8 for i = l + 1 . . . m do
9 insert_task (trsm, All :R, Ail :RW, map(i,l, i

max(p,q) ,0):ON_RANK)
10 for i = l + 1 . . . m do
11 for j = i . . . m do
12 for c = 1 . . . H do
13 rank ← map(i,j,l,c)
14 op ← if i = j then syrk else gemm
15 insert_task (op, Ac

il :R, Ac
jl

⊤:R, Aij :RANK_REDUX,
rank:ON_RANK)

computational pattern of 3D algorithms. Indeed, it is possible to assign a
layer to subsets of p × q blocks of the matrix A. This assignment can be
used as an offset from the initial layout. A round-robin procedure, depicted
in Figure 4.11 for p = q = 2 and h = 3, can be implemented to make this
assignment. This procedure can adapt to 2DBC layouts but also symmetric
layouts described in Part II. For the Cholesky factorization, this means h ∗ q
different ranks are involved in the computation of trsm tasks which is suitable
to benefit from advanced scalable designs.

Four distinct algorithms can be benchmarked using the extended STF
programming model:

• 2D This is the classical 2D Cholesky factorization implementation in
STF.

• Baseline This corresponds to the 3D Algorithm 20. For this algorithm,
the input matrix A is distributed such that the lth column (if A’s upper
half is allocated) is stored over the l%hth layer. With an underlying
2DBC distribution, we set rank(Aij) = q ∗ (i%p + j%q) + (j%h) ∗ pq.

• Repl This corresponds to the 3D Algorithm 21. For this algorithm, the
input matrix A is stored as presented in Figure 4.11. With an underlying
2DBC distribution, we set rank(Aij) = q∗(i%p+j%q)+((m

L
i
L + j

L)%h)∗
pq where L = max(p, q).

• Repl-Part This corresponds to the 3D Algorithm 22 with H = h. For
this algorithm, the input matrix A is stored the same way as Repl
algorithm.
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Figure 4.11: 3D distributions with “large” blocks distributed in a round-robin
way. One color corresponds to one rank. The three color shades (purple, red,
green) each correspond to a layer.

The first evaluation that can be made is the improvement in communi-
cation volume brought by 3D algorithms. From Figure 4.12, it is clear that
the 3D algorithms reduce the communication volume with respect to the 2D
standard algorithm. In the present experiment, 64 Skylake computing nodes
are used. For the 2D algorithm, they are arranged in an 8 × 8 logical grid
whereas for the 3D algorithm they are arranged in a 4× 4× 4 logical grid. In
a 3D grid of size p × q × h, the communication volume V for a Baseline 3D
Cholesky factorization of a m×m matrix arranged in a block-cyclic p× q× h
layout can be computed as

V =
∑m

i=1

(
(p− 1)︸ ︷︷ ︸

send the result
of potrf

+ (m− i)(p− 1 + q − 1)︸ ︷︷ ︸
send the result

of trsm

)
+ m(m + 1)

2
(h− 1)︸ ︷︷ ︸

assemble the result
of updates

)

∼ (p + q + h− 3)m2

2

The increase from 3D to 2D algorithms in the presented figure is in the
range of 8+8+1−3

4+4+4−3 − 1 = 55% which is close to what we measured in practice.
We do not report the difference in communication volume across all the 3D
variants because it is barely measurable. First, parallelizing the trsm tasks
only affects the communication volume corresponding to sending the result
of potrf tasks which is of the first order in m and thus negligible. Second,
partitioning does not alter the communication volume at all: H slices of b×b/H

elements weigh as much as one slice of b× b elements.
Figure 4.13 compares the scalability of the different variants implemented

through the STF programming model. For these results, one MPI thread
is created per computing node. Block sizes 256, 512 and 1024 are used to
explore the tradeoff between arithmetic efficiency and task granularity. Our
STF implementation relies on efficient MKL BLAS sequential kernels provided
by the supercomputing facility. The 3D variants use h = 2 or h = 4: the best of
the two configuration is reported. The 3D variants however obtain results that
are occasionally significantly improving the performance of the 2D variant.
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Figure 4.12: Communication volume of Cholesky factorization with 64 Skylake
computing nodes. Matrix of increasing sizes are used.

This difference is rather unexpected because Figure 4.12 shows 3D algorithms
consistently perform fewer communications. The most sensible interpretation
of these results is that communications and computation are well overlapped
most of the time and minimizing communication does not systematically yield
more performance. We can observe that the Repl variant obtains the best
results on 128 nodes for m = 98, 304 and the Baseline one on 256 nodes for
m = 163, 840. Such cases seem to fall in a “sweet spot” where communications
are costly enough while proving difficult to parallelize for 2D algorithms. For
the smallest problem, strong scalability is difficult to maintain even for 3D
algorithms as the amount of work is relatively short. In larger problems, the
overhead that may come with advanced mechanisms – such as the overhead
of replicated computation – is larger than what the overlap of computation
and communication can absorb.

Figure 4.14 compares the best of the 2D and 3D STF approaches with
several state-of-the-art libraries: ScaLAPACK, its successor SLATE and Ele-
mental have already been presented in Section 3.5. CONFCHOX is included
in the comparison: it is the library from Kwasniewski et al.[82] available on-
line which provides an algorithm similar to Repl+Part 2. This library relies
on OpenMP to orchestrate multiple threads across cores as well as MPI to
exchange messages. In this sense, CONFCHOX is implemented with a pro-
gramming model that is close to SLATE. For CONFCHOX we have tested
block sizes 256, 512 and 1024 and relied on the previously mentioned sequen-
tial BLAS kernels. Two MPI ranks are spawned per computing node as it
proved efficient. One thread is spawned per core. Elemental and Slate fol-
low the same mapping of threads. Elemental, CONFCHOX and Slate rely

2CONFCHOX git repository: https://github.com/eth-cscs/conflux

https://github.com/eth-cscs/conflux
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on OpenMP for thread orchestration while ScaLAPACK relies on MKL mul-
tithreaded BLAS to busy all cores. We have found that larger block sizes
were beneficial in this multithreaded case (1024, 2048 and 4096). To simplify
the reading of the graph, block sizes are not denoted by their dimension but
qualified by “Small”, “Medium”, or “Large”. For each variant in each library,
each block size and each problem is run four times. We report the median
performance of the best block size. Elemental failed to run for m = 215, 040
with P = 16 when allocating the matrix. The dimensions of the logical grid
of ranks have been chosen to be as square as possible as to minimize commu-
nications i.e. p ∼ q. For CONFCHOX, h = 2 and h = 4 have been tested
and we report the best median for any configuration. From this figure, we
can observe that modern libraries are improving over ScaLAPACK which is
expected because they rely on asynchronous MPI calls to transfer data. The
observations that 3D algorithms perform relatively poorly remains. Notably
the CONFCHOX library performs badly on 128 and 256 nodes which is un-
expected as it gets remarkable performance on 16, 32 and 64 nodes. We have
not explored this behavior further.

We are confident in the capacity of our own implementation to perform
correctly: our 3D algorithms communicate less as expected. However, 3D al-
gorithms have been designed on entirely different machines with entirely dif-
ferent assumptions from the one that match with modern implementations. It
can be noted that the computing nodes on Platform B contain more cores and
deliver more computing power than the ones used by Solomonik and Demmel
or Kwasniewski et al. Moreover 3D algorithms often assume that communica-
tions are fully synchronous and each computation and communication steps
of the routine are clearly defined. In all the library except ScaLAPACK this
hypothesis is not verified: they all leverage asynchronous communications.
Our implementation moreover benefits from the fine-grain parallelism allowed
by the StarPU runtime system. Consequently the performance benefit of de-
creasing the communication volume may not be as stark because asynchronous
communications overlap computations very well on modern machines.

Figure 4.15 details the performance of a single Platform B core. The
figure evaluates the execution speed of multiple gemm executions with only the
median reported. Here, the resulting matrix C is always square (m = n) but
the update size k is increased from 64 up to the size of C. The graph shows
that peak performance is attained when C is at least of dimension 512. It also
shows that the update size should be large to maintain peak performance: with
C of dimension 512, if k = 512/4 = 128 then the execution speed of the kernel
is decreased by 10%. While this decrease in performance can seem negligible,
it should be pointed out that because gemm tasks make up the largest portion
of tasks a diminution in execution speed may become noticeable. Such a
diminution of the kernel speed may explain why the Repl+Part variant in
Figure 4.13 is underperforming all the other variants implemented in the STF
model in the majority of the configurations. With the largest block size of 1024
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Figure 4.13: Benchmarking all 3D variants using the STF model in a strong
scalability settings for some problem sizes of increasing dimension.
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Figure 4.14: Benchmarking reference libraries and STF model in a strong
scalability settings for some problem sizes of increasing dimension.

however, the Repl+Part variant obtained the best results for m = 215, 040
using P = 128 and P = 256 nodes with 117 TFlop/s (+42% over 2D) and 143.3
TFlop/s (+19% over next best 3D variant Repl) respectively. These results,
not reported in the figure because a smaller block size is more beneficial, hint
at the potential interest of partitioning the updates across layers that could
be explored in future work.

4.4 Concluding remarks
In this chapter, two features have been introduced to extend the STF pro-
gramming model further.
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Figure 4.15: Double-precision GEMM single-core performance

The first one introduces an additional data access mode SAME that allows
replicating data output. This access mode is provided to the programmer to
declare replicated data modifications across ranges of nodes. The use of this
access mode has been validated on a 2D 5-points stencil application by imple-
menting a communication-avoiding algorithm. The resulting code is simplified
by using the access mode – the programmer does not need to consider addi-
tional tasks to explicitly manage replicated copies, rather she/he just tell the
runtime what tasks should be multiplied over which ranks. The experimen-
tal results assess the effectiveness of this new feature as the communication-
avoiding variant proves to be more scalable than its conventional counterpart,
as expected from the literature.

The second extension to the programming model is the addition of an
allreduce operation. We introduced the allredux_submit method that, when
called, generates appropriate tasks to compute the allreduce of a data that was
previously updated by tasks submitted with the RANK_REDUX access mode.
More work might be required to make this feature completely transparent,
for example, through automatic tasks generation as in the case of the reduce
operation; this approach, however, is very little intrusive and preserves the
readability of the code.

The combination of the two extensions with those of Chapter 3 makes it
possible to express scalable Cholesky factorization algorithms. Several vari-
ants of such algorithms exist and four have been considered. Because these
variants incrementally expand the design of one another, only two routines
have actually been implemented with parameters guiding their behaviors to
target specific variants. The first routine covers the Baseline and 2D vari-
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ants. The second one covers the remaining variants. While it is technically
possible to cover all variants within one code, the engineering effort albeit
small was not deemed necessary. The final expression we have provided
demonstrates that the STF programming model can provide compact and
versatile code assembling key designs and concepts from the literature on scal-
able algorithms. Experiments have shown the STF implementations can be
scalable with respect to reference implementations, sometimes outperforming
them.
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Symmetric operations
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Chapter 5

Scalable Symmetric
Matrix-Matrix multiplication

Level 3 BLAS standardizes operations that take the structural properties of
the input matrices. This is the case for Matrix-Matrix multiplication that has
a general routine (GEMM) but also a triangular variant (TRMM) as well as
a symmetric one (SYMM). By taking these structural properties into account
it is possible to reduce the number of transfers required by leveraging the
symmetry or even to reduce the number of operations by taking zeroed out
values in consideration. In this chapter we will consider the case of SYMM as
it proves an opportunity to showcase the flexibility of the STF programming
model. For SYMM only the matrix A is considered symmetric with B and
C being full dense matrices: the operation computes C ← αAB + βC where
AT = A and α and β are scalars.

Out of the matrix multiplication context, Beaumont et al. recently pro-
posed to exploit the symmetry of matrices to enhance the distributed-memory
Cholesky factorization of dense symmetric positive definite matrices [25]. The
main idea is to rely on an alternative data distribution referred to as symmet-
ric block cyclic (SBC). Still in the context of the Cholesky factorization, but
in a sequential out-of-core setting, Beaumont et al. proposed in another study
a variant referred to as Triangular Block Syrk (TBS) [26], and provided sharp
bounds showing that TBS achieves the lowest possible I/O volume for this
operation. However, since it does not readily apply to a distributed-memory
context in the case of a Cholesky factorization, TBS was only considered in a
sequential setting.

Section 5.1 is dedicated to the design of the SYMM operation using the
extended STF programming model presented in Part I. This design is agnostic
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of the layout of the matrices involved in the operation and thus symmetric
layouts are adapted to this operation in Section 5.2 to benefit from a re-
duction in communication volume. Experimental evaluation is provided in
Section 5.3. Matrix-matrix multiplication can be used to project a set of vec-
tors B into a given euclidean space described by the symmetric matrix A. In
the MultiDimensional Scaling (MDS) algorithm presented in Section 5.4 such
projections make the bulk of the computational workload when randomized
algorithms provide a satisfactory precision. An application using the MDS
to analyze datasets is presented in Section 5.5. Through this application the
practical interest of the symmetric layouts combined with the extended STF
programming model are demonstrated.

5.1 SYMM task-based design
Fully-featured distributed-memory dense linear algebra libraries such as Sca-
LAPACK [29] or Elemental [95] implement SYMM with a 2DBC data dis-
tribution. Such a regular data distribution makes it possible to easily set up
MPI communicators along rows and columns and ensure collective communi-
cations. On the contrary, if we want to consider irregular data distributions,
like those discussed in Section 5.2, it may be challenging to implement the
corresponding code directly through the MPI interface. We therefore aim at
designing a SYMM routine completely independent of the proposed mappings
so that we can then effortlessly implement any non-trivial mapping. Task-
based programming allows for such a separation of concerns as discussed in
Section 2.2.1. Without loss of generality, we restrict the discussion to the
C ← AB + C case, where A is symmetric and only its lower part explicitly
stored. As in the previous chapters we also assume blocks of size b-by-b, so
that A is a M -by-M block matrix (m = M ∗ b) and B and C are M -by-N
block matrices (n = N ∗ b). The sequential algorithm of the SYMM consists
of three nested loops where the two innermost loops perform a matrix - block-
column product (C∗,j ← C∗,j + AB∗,j), while the outer loop goes through all
N block-columns.

Algorithm 23: STF blocked SYMM.
1 for j = 1 . . . N do
2 for i = 1 . . . M do
3 for l = 1 . . . M do
4 op ← if i = l then symm else gemm
5 blk_A ← if i ≤ l then Ail else A⊤

li

6 insert_task (op, blk_A:R,Blj :R,Cij :RW)

Algorithm 23 shows how to implement this algorithm for distributed-
memory machines with the baseline STF model. We may observe that the
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STF pseudocode is very similar to a sequential one. Section 3.1 already dis-
cusses how the access mode are chosen in the GEMM case. The main difference
between GEMM and SYMM is that the block of A multiplied by Blj should
be selected in the correct half of the matrix A. Moreover for diagonal blocks
in A the symm kernel should be submitted rather than gemm.

Algorithm 24: Scalable STF block stationary-A SYMM.
1 for j = 1 . . . N do
2 for i = 1 . . . M do
3 for l = 1 . . . M do
4 op ← if i = l then symm else gemm
5 block_A ← if i ≤ l then Ail else A⊤

li

6 rank ← if i ≤ l then rk(Ail) else rk(Ali)
7 insert_task (op, block_A:R,Blj :R,

Cij :RANK_REDUX,rank:ON_RANK)

The baseline STF algorithm would however prevent us from implement-
ing stationary-A schemes. Indeed, first, performing a task on the MPI ranks
owning data accessed in RW access mode implies that the C matrix stays in
place and A and B are transferred through the network. The analyses from
Section 5.2 assume that, because the matrix A is the largest one, it is instead
preferable to keep A in place and only move around blocks of B and C. To
implement such a stationary-A scheme, we can leverage the extended program-
ming model detailed in Part I. Altogether the provided extensions allow us
to reach our main goal of designing a SYMM routine completely independent
of the mappings so that we can then effortlessly implement any non-trivial
mapping and achieve the expected associated arithmetic intensity (AI) which
is the workload size over data transfers volume.

5.2 Data distributions for SYMM
In this section, we present different data distributions for the C ← AB ma-
trix product as adding the matrix C to this result has no impact on data
transfers. Distributions of increasing complexity and AI are presented. The
results are summarized in Table 5.1. In this chapter we assume m ≫ n, i.e.,
the matrix A is much larger than both B and C, in which case stationary-A
schemes – introduced in Section 2.3.2.1 – are the best approaches to minimize
communication volume.

We start by the easiest case: if the complete matrix A is stored, the best
solution is the 2DBC distribution (line 1 in Table 5.1, and Section 5.2.2), and
we analyze its communication volume. We then specialize to the case where
only half of matrix A is stored (because of symmetry). We use the same anal-
ysis to show that the communication volume of the 2DBC distribution (line 2,
and Section 5.2.3.1) is twice larger than in the previous case. We then de-
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Scheme P S Q/(mn) AI
1. G 2DBC(p, q) pq

m2

P (p + q − 2) m√
P

=
√

S

2. S 2DBC(p, q) pq
m2

2P 2(p + q − 2) m
2
√

P
=

√
S/2

3. S SBC(r) r2/2 m2

2P 2(r − 1) m√
2P

=
√

S

4. S TBC(c) c(c + 1) m2

2P 2c
m√
P

=
√

2S

Table 5.1: Discussed pGEMM (denoted G in the table) and pSYMM (denoted
S) stationary-A schemes together with their communication volume Q and AI.
P denotes the number of nodes, S the storage per node. The communication
volume Q is expressed as a factor of mn (which is the common size of matrices
B and C).

scribe two symmetric distributions: first SBC [25] (line 3, and Section 5.2.3.2),
whose communication volume is lower by a factor of

√
2, then TBC (line 4,

and Section 5.2.3.3), which we adapt from [26], whose communication volume
is lower by another factor of

√
2. In total, SYMM with the TBC distribution

achieves the same communication volume as 2DBC when the whole matrix is
stored, thus saving a factor of 2 on storage. Section 5.2.4 summarizes these
results and also proposes another interpretation when the memory is bounded.
Section 5.2.5 extends the analysis to the 3D case [1, 102].

5.2.1 Generalities
Since A is large, the best solution is to use a stationary-A algorithm: the
computations are performed on the node that owns the corresponding block
of A. In such an algorithm, the blocks of B are broadcast to the nodes
that require them, and we denote QB the corresponding quantity of data
transferred. Several nodes compute updates for a given block of C, and these
updates are then reduced to the corresponding node. The communication
volume for these reduce operations is denoted QC . The total communication
volume for the multiplication is Q = QB + QC .

With this total communication volume Q, we can also compute the AI,
defined as

AI = flop/Q, (5.1)

where flop is the total number of floating point operations. The number of
floating point operations does not depend on the allocation, it is 2m2n in all
cases: one multiplication and one addition for each product computed. Hence,
the AI is inversely proportional to the communication volume Q, and varies
like m√

P
for all 2D distributions (see left part of the AI column in Table 5.1).

However, we can also express AI as a function of the memory size of one
node, denoted as S; this allows one to measure how efficient an algorithm is
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Figure 5.1: Communications incurred with an stationary-A matrix multipli-
cation, with a 2DBC (2, 4) distribution. Left: storing the whole matrix A.
One block of B follows the red path and is sent to p− 1 = 1 nodes. A result
computed on a row of A is involved in a reduction operation on q nodes (blue
path), resulting in q − 1 = 3 messages sent. Right: storing the lower half of
A. Both types of communication now involve p + q − 1 = 5 nodes, resulting
in 4 messages sent. Parts of the matrix where fewer nodes are involved are
highlighted in gray.

at using the values stored in memory. For all 2D distributions studied here,
AI = Θ

(√
S

)
; the efficiency of an algorithm is measured by how large the

constant is, shown on the right part of the AI column in Table 5.1.

5.2.2 Stationary-A, general matrix multiplication

We first consider the situation where the whole matrix A is stored, and dis-
tributed among the nodes in a 2DBC (p, q) fashion. This situation is depicted
on the left of Figure 5.1.

Consider a given column of matrix A, the corresponding values are owned
by a set of p nodes. Each of these nodes must receive all values in the corre-
sponding row of B, which is owned by another set of nodes. The best possible
case is that the second set is included in the first one: in that case, each value
of B must be sent to p− 1 nodes, and this incurs a communication volume of
n(p− 1). Since there are m columns in A, in total we get QB = mn(p− 1) (in
the worst case, the set of nodes that own the blocks of B is disjoint from the
set of nodes that own the blocks of A, and we get QB = mnp).

Similarly, consider a given row of matrix A. Since the nodes that own this
row need to perform one reduction per column of C to send the total to the
owner of the corresponding block in C, the total communication volume for
the blocks of C is QC = mn(q − 1) in the best case, and QC = mnq in the
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worst case (when the owner of a block in C never belongs to the corresponding
set of nodes in the row of A).

The best case can be achieved if C is distributed with the same p×q 2DBC
distribution, and B is distributed with the transpose distribution of dimension
q × p.

In total, the communication volume is Qp,q
GEMM = mn(p + q − 2). In

practice, we often choose p ≃ q ≃
√

P , so that Q2DBC
GEMM ≃ 2mn(

√
P − 1).

Asymptotically, the AI is AI2DBC
GEMM ≃ 2m2n

2mn
√

P
= m√

P
, with a memory usage

S = m2

P , which yields AI2DBC
GEMM ≃

√
S. This result is summarized in Table 5.1,

line 1.

5.2.3 Stationary-A, symmetric case
We now assume that A is symmetric and that we store only (the lower) half
of the matrix.

5.2.3.1 Standard 2D block-cyclic distribution

In this case, the 2DBC distribution is only applied to the lower half of the
matrix, the upper tiles are not being stored at all. The result is depicted on
the right of Figure 5.1. We can apply the same kind of reasoning as for the
previous case. However, now the set of nodes that own a given column of A
can be of size 1 up to p + q− 1: the p nodes that own the (truncated) column,
plus the q nodes that own the (truncated) row that completes the column
(the total is p + q − 1 because one node belongs to both the row and the
column). Again, the best case is when the set of nodes that own the blocks of
B is included in these p + q nodes, and this yields a communication volume
QB = mn(p + q − 2). Similarly, we get QC = mn(p + q − 2).

In total, Qp,q
SYMM = 2mn(p + q − 2). As we can see, the communica-

tion volume is twice as large as in the previous case, and can be written as
Q2DBC

SYMM ≃ 4mn(
√

P −1). Asymptotically, the AI is AI2DBC
SYMM ≃ 2m2n

4mn
√

P
= m

2
√

P
,

with a memory usage S = m2

2P , which yields AI2DBC
SYMM ≃

√
S/2. This result is

summarized in Table 5.1, line 2. As we can see, the AI is twice smaller com-
pared to the previous case, but since the memory usage is also smaller by a
factor of 2, the AI expressed as a function of S is only lower by a factor of

√
2.

As discussed in more details in Section 5.2.4, this means that if the memory
of the nodes is the limiting factor, storing half the matrix allows to use half as
many nodes, which partially offsets the overhead in terms of communication
volume.

1The first q (respectively the last p) columns of A involve a slightly smaller number
of nodes, because not all nodes appear in the truncated row (respectively column). The
corresponding zones are highlighted in gray on the right of Figure 5.1. However, since we
are interested in large matrices A where m ≫ p, q, we decide to neglect this effect.



5.2. DATA DISTRIBUTIONS FOR SYMM 105

7
8

7
8

1
2 3
4 5 6

1 2
3

4
5
6

r

r

A

B

C

Figure 5.2: Symmetric Block Cyclic distribution. Left: the pattern with r =
4, using P = 8 nodes. The symmetrical lower and upper parts are highlighted.
Right: communications induced when using SBC. Communications related
to a row of matrices B and C both involve r nodes, resulting in r − 1 = 3
messages sent.

5.2.3.2 Symmetric Block Cyclic distribution

In order to reduce the amount of communication, we need to make sure that
the nodes that own a truncated column of A are the same as the nodes that own
the corresponding truncated row. The Symmetric Block Cyclic distribution
(SBC) has been proposed in the context of the Symmetric Rank-k update
(SYRK) and the Cholesky factorization [25], where a similar issue appeared.
We describe here the basic version of SBC, defined for an even integer r > 2
(see Figure 5.2). It consists of a symmetric r × r pattern with P = r2/2
nodes: r(r−1)

2 nodes are organized arbitrarily in one half of the pattern, and
symmetrically on the other half. The remaining r

2 nodes are each placed on
two locations in the diagonal.

For any i, the row i and the corresponding column i of the pattern contain
the same set of r nodes. We can compute the amount of data transferred
involved by using this distribution in an stationary-A SYMM operations: each
block of B is sent to a set of r nodes, and r nodes are involved in each reduction
operation for a given block of C. If we again consider the best case, we get
that QB = QC = mn(r − 1), which yields Q = 2mn(r − 1). Since r =

√
2P ,

we can write this as QSBC
SYMM = 2mn(

√
2P − 1): this improves over the 2DBC

distribution by a factor of
√

2. Since the memory usage is the same, the AI
is also improved by a factor of

√
2, which gives AISBC

SYMM ≃
√

S: SBC obtains
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√
S

√
S

√
2S

Figure 5.3: Triangles along the diagonal use fewer communications: both
the red square and the orange triangle contain S elements. However, the
corresponding operations for the square require 2

√
S rows of B, and only√

2S rows for the triangle.

the same AI as the 2DBC distribution when storing the whole matrix. This
result is summarized in Table 5.1, line 3.

5.2.3.3 Triangular Block Cyclic distribution

Another recent work proposed a Triangular Block approach for the SYRK
operation [26], which achieves provably the lowest possible quantity of data
transferred. This work was presented in the context of sequential out-of-core
computations, but we propose here a way to transform it into an allocation
for distributed nodes.

We remind that with the SBC distribution, each node is assigned S = m2

2P =
m2

r2 blocks, and needs to receive 2 rows of matrix B for each repetition of the
pattern. The number of required rows of matrix B is thus h = 2m

r = 2
√

S.
This is similar to assigning a square part of the matrix to a node, as shown on
Figure 5.3: if a node is responsible for the red square of side

√
S, it needs to

receive
√

S rows of B to perform the operations in the lower half, and another√
S rows to perform the operations in the upper half.
The idea of the TBS algorithm [26] stems from the observation that, thanks

to the symmetry of matrix A, triangular parts along the diagonal of A are
involved in operations that require even fewer communications than square
parts. Indeed, as shown with the orange triangle on Figure 5.3, if a node owns
a triangle containing S elements along the diagonal of A (its side length is thus√

2S), it only needs to receive
√

2S rows from matrix B since the operations
on the lower and upper half require the same rows of B. Similarly, this node
only needs to participate in reduction operations on

√
2S rows for matrix

C. The TBS algorithm defines a solution where these favorable properties
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R1

TB(R2)

R2

⋆

⋆
overlap

c

c2

one cell

a c× c zone

Figure 5.4: Top Left: two triangle blocks. An overlap happens when two
triangle blocks have two rows in common (⋆). Top Right: first column of the
triangle-blocks in the TBC pattern. Gaps must be introduced for the triangle-
block in the next column to avoid overlapping. Bottom Left: the gaps in
the next column need to be larger, with a “wrap around” when reaching the
bottom of the zone. Bottom Right: complete pattern for all the zones.

are extended to blocks away from the diagonal by ensuring that each node is
assigned a set of blocks which can be gathered into a diagonal triangle using
a symmetric permutation.

This leads to the notion of triangle-blocks, defined, for a given set R of
row indices, as the set of blocks of the matrix A that a node can own while
only requiring rows of matrix B indexed by R. Formally, the triangle-block
associated with R is TB(R) = {(i, j) ∈ R2|i > j}. Figure 5.4 (left) shows
examples of two triangle blocks. This notion generalizes the “triangle along
the diagonal”, since a triangle-block with |R| = h contains ∼ h2

2 blocks of A,
and the corresponding operations involve only h rows of matrices B and C.
A triangle-block can indeed be seen as a triangle along the diagonal, up to
reordering of the rows and columns of the matrix.

The key contribution of [26] is a method that makes it possible to partition
almost all the matrix in disjoint triangle-blocks. This requires to assign a set
of rows Rp to each node, so that any two sets Rp and Rp′ have at most
one row in common. Indeed, as can be seen on the top-left of Figure 5.4,
two triangle blocks overlap if they share two row indices. This implies that
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the two corresponding nodes will receive the data necessary to perform an
operation, however only one of them will actually perform it; communicating
that data to the other node was not useful. Finding a distribution with no
overlap ensures that we minimize the communication volume.

To apply these ideas in a distributed-memory setting, we propose to build
a pattern where each triangle-block is assigned to a different node. Since this
pattern is symmetric, for simplicity we only describe its lower half. We fix a
prime integer c > 2, and build a symmetric pattern of size c2 × c2, divided
in c× c square zones, each containing c2 cells. We partition the square zones
among triangle-blocks, and the main idea is that each triangle-block has one
cell in each zone. The top right of Figure 5.4 shows how the first c triangle-
blocks are organized. The next triangle-block is also shown, and we can see
that a gap must be introduced at each new row to ensure that it does not
overlap with the previous blocks. The bottom left of Figure 5.4 shows the
next step: the other blocks of the second column can be assigned with the
same gaps. However, the next block in the third column needs to have larger
gaps at each row to ensure that no overlap happens. With such large gaps, the
last row would be outside the zone, so the actual row is chosen modulo c: this
effectively “wraps around” at the boundary of the zone. The final partition
with all the triangle-blocks is shown at the bottom right of this figure.

With this partitioning, each node receives c(c−1)
2 cells from the lower half

of the pattern, but the cells in the triangular zones along the diagonal remain
unassigned. The choice of the pattern size ensures that if we exclude the
diagonal cells, each of these triangular zones also contain c(c−1)

2 cells. We can
thus assign them to c additional nodes, which describes the entire lower half of
the pattern. By replicating this symmetrically, we get a square pattern where
only the non-diagonal cells remain unassigned. A more precise description of
the pattern is described in Algorithm 25, and the resulting pattern for c = 3
is provided in the left of Figure 5.5. The iteration (i, j) of the loop in line 4
assigns the triangle-block which contains the cell of coordinates (i, j) of the
top-most zone (which is the cell (i+c, j) of the pattern). The idea behind line 5
is that each node should access one row in each zone: the value uc indicates
the index of the first row on the u-th zone, and the value i + (u− 1)j mod c
is the index of the row within this zone. We can see in this formula that there
is a gap of size j between one row and the next (thus for two successive values
of u), and that there is a modulo operation to perform the “wrap around”,
as described in the successive diagrams of Figure 5.4. The results from [26]
(in particular Lemma 5.5), together with the condition that c is prime, ensure
that the sets of rows assigned to different nodes overlap exactly once, so the
sets of cells assigned to the nodes are disjoint, and each row contains exactly
c + 1 nodes.

This procedure results in a symmetric pattern of size c2× c2, in which the
diagonal cells are not allocated. However, there are c(c + 1) nodes in total,
and only c2 diagonal cells. Each of these diagonal cells can be allocated to
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Figure 5.5: Triangular Block Cyclic distribution. Left: the pattern with
c = 3, using P = 12 nodes, with no allocation on the diagonal blocks. Right:
allocation of this pattern on a 27 × 27 matrix, where the diagonal blocks of
the pattern are filled with the greedy algorithm. As shown in the highlighted
part, each communication (related to matrix B or C) involves 4 different
nodes (nodes 3, 4, 9, 11 in this example). For comparison, in the (3, 4) 2DBC
distribution, each communication involves 6 nodes.

Algorithm 25: TBC(c) pattern, on P = c(c + 1) nodes.
// Assign triangular zones (red nodes)

1 for i ∈ {0, . . . , c− 1} do
2 R← {i · c + u | 0 ≤ u ≤ c− 1}
3 Assign cells in {(x, y) ∈ R2|x ̸= y} to a new node

// Assign non-triangular zones (remaining nodes)
4 for (i, j) ∈ {0, . . . , c− 1}2 do
5 R← {uc + (i + (u− 1)j mod c)|1 ≤ u ≤ c− 1}
6 Assign cells in {(x, y) ∈ (R ∪ {j})2|x ̸= y} to a new node

any node already present on the row without increasing the communication
volume.

To obtain the final allocation, we replicate this incomplete pattern over the
matrix A, and apply a greedy algorithm to allocate the remaining blocks : for
each unassigned block, we pick the node with the lowest number of assigned
blocks among all the nodes present in the row (and thus in the column, by
symmetry of the pattern). The resulting allocation is thus not exactly a cyclic
allocation, but it can nonetheless be computed very quickly. An example is
provided on the right of Figure 5.5.

This pattern uses a total number of nodes P = c(c + 1), and each row and
column of matrix A is allocated to a set of c + 1 nodes. The communication
volume can be evaluated just like previously: each communication related to
a row of matrix B or C involves c + 1 nodes, and we obtain QB = QC =
mnc in the best case. Thus, Q = 2mnc ≃ 2mn

√
P . This corresponds to
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another improvement by a factor of
√

2 over SBC, and asymptotically the
same communication volume as with the 2DBC distribution when storing the
whole matrix. The AI is also improved by a factor of

√
2: AITBC

SYMM ≃
√

2S.
This is the best of both worlds: the reduced memory storage gained by storing
only half the matrix, and the reduced communication volume. This result is
summarized in Table 5.1, line 4.

5.2.4 Summary of AI analysis

Table 5.1 summarizes all the results. We propose two interpretations, depend-
ing on whether we read the left-hand side or the right-hand side, respectively,
of the last column (AI) of the table. A first interpretation, with the left-hand
side AI(m, P ), is as follows. Assuming an infinite storage (S =∞), for a given
size m of matrix A and a given number of nodes P , 2DBC SYMM has a lower
AI by a factor of 2 than 2DBC GEMM. SBC and TBC improve the AI of
SYMM by a factor of

√
2 and 2, respectively, thus in particular equaling that

of 2DBC GEMM for the latter one while consuming twice less memory.
A second interpretation, with the right-hand side AI(S), is as follows.

Assuming a given storage S and freely choosing the number of nodes P (as
low as possible and independently of methods), 2DBC SYMM has a lower AI
by a factor of

√
2 than 2DBC GEMM. SBC and TBC still improve the AI of

SYMM by a factor of
√

2 and 2, respectively. However, with respect to 2DBC
GEMM, this means that SBC equals GEMM AI and TBC improves over it
by a factor of

√
2.

5.2.5 3D variants

For a fixed number of nodes P , the above discussion hints at a possible strategy
for increasing the AI: increase the storage per node S. This is actually the
idea behind the 3D extensions to 2DBC [1, 102], and it can also be applied to
any of the above (stationary-A) distributions. The idea is to split the nodes
into s slices (each with P

s nodes) so that, on each slice, the whole matrix
A is distributed with one of the above distributions. The matrix A is thus
replicated s times. Matrices B and C are accordingly split into s column
matrices B1, . . . , Bs and C1, . . . , Cs, so that Bk and Ck are distributed among
the nodes of slice k. Then the computation of all the Ck ← αABk+βCk can be
performed independently, with no additional communication since matrix A
is replicated on each slice. For a fair comparison with the GEMM case where
matrix A is assumed to be fully stored, we do not consider the communications
involved in replicating A.

Using a 3D variant thus multiplies the storage cost S by a factor of s, for
a benefit on the communication volume by a factor of

√
s, since the AI grows

linearly with
√

S. In particular, using s = 2 slices with the TBC distribution
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yields the same storage cost as the GEMM solution, with a communication
volume lower by a factor of

√
2.

5.3 Experiments
Equipped with an adequate programming model and proper distributions that
can be plugged in transparently, we can consider measuring their combined
impact on communication volume as well as performance. In this section,
we consider two operations that have a (positive definite) symmetric ana-
logue: Section 5.3.1 assesses the pSYMM operation, 5.3.2 is interested in the
Cholesky factorization pPOTRF.

5.3.1 Assessing the arithmetic intensity of SYMM

The code designed in Section 5.1 allows us to assess all the mappings discussed
in Section 5.2. We study their impact on the AI and performance. We have im-
plemented Algorithm 24 on top of the StarPU [20] task-based runtime system
and the NewMadeleine communication back-end, which, combined, support
the dynamic detection of collective communications [52]. In an applicative
setting, where no synchronization is required between filling and computing
the matrices, blocks of B are transferred through broadcasts transparently:
the runtime detects them through dependencies in the DAG. In our bench-
marking setting, artificial tasks are added to mimic the dependencies that
allow a similar detection. We conducted our study in double precision on
Platform B. All codes have been assessed with a block size b equal to 256,
512 and 1024, preliminary experiments having shown that these values allow
for a good efficiency. Each configuration has been executed five times and
we retrieve the median performance. pGEMM and pSYMM algorithms are
executed with (p = 8, q = 7) on 56 nodes for 2DBC distributions. 2DSBC
(r = 11) and 2DTBC (c = 7) SYMM are executed on 55 and 56 nodes, re-
spectively. 3DSBC (s = 2,r = 8) and 3DTBC (s = 2,c = 5) SYMM are
executed on 56 and 60 nodes. The matrix size (m) of A varies while the
number of columns of B and C is constant (n = 8, 192).

The top plot of Figure 5.6 presents the AI of the STF algorithms discussed
in Section 5.2 as defined in Equation (5.1): AI = flop/Q. The total volume of
communication Q is retrieved by StarPU. The results show that the expected
theoretical ratios of AI from Section 5.2 are successfully achieved in practice.

The bottom of Figure 5.6 presents the resulting per-node performance.
The first observation is that the AI gains of SBC and TBC do yield compelling
performance benefits on lower size matrices where the AI is not sufficient to
ensure a good overlapping between communications and computations. For
instance with m = 110k, the performance improvement of using TBC (resp.
SBC) over the 2DBC layout is approximately 23% (resp. 13%). The proposed
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Figure 5.6: AI (top) and per-node performance (bottom) of the STF algo-
rithm of section 5.1 with the various distributions of section 5.2

STF design with SBC and TBC SYMM achieves a performance roughly com-
parable with 2DBC GEMM, while requiring to store only half of the dominant
matrix. The second main observation is that the AI advantage of 3DSBC and
TBC does not consistently translate into performance improvement. While
3D symmetric distributions perform well on small problems, they do not out-
perform the 2D case on larger ones. This is consistent with what is presented
in Part I. TBC is more impacted by this performance discrepancy despite
having an higher AI than GEMM. A preliminary analysis suggests that this
is due to contention in the network that happens because, unlike in BC, in
TBC any rank participates in multiple broadcast communications.

Figure 5.7 presents the comparison of the GEMM and SYMM performance
of our STF approach with state-of-the-art distributed-memory dense linear al-
gebra libraries proposing a stationary-A implementation of SYMM, namely
ScaLAPACK [29] (yellow) and Elemental [95] (black). We also report the
GEMM performance of SLATE [57], a potential successor to ScaLAPACK for
which a GPU portable stationary-A SYMM was not available. The first ob-
servation is the important gap between SYMM and GEMM performance of
both ScaLAPACK and Elemental libraries. These results confirm the empiri-
cal observation that SYMM state-of-the-art codes achieve a lower performance
than their GEMM counterpart. We recall that both these libraries implement
SYMM with a 2DBC data distribution. The second main observation is that
the STF algorithms proposed in Section 5.1 significantly improve over the
stationary-A ScaLAPACK and Elemental SYMM reference implementations.
This illustrates the strength of the programming model for designing efficient
communication schemes with a high-level expression. Note also that a special
care is required to handle rectangular matrices B and C.
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Figure 5.7: Per-node GEMM (left) and SYMM (right) performance of the
proposed STF design compared with state-of-the-art libraries.

5.3.2 Improving the Cholesky factorization

The symmetric layouts can readily be used in the Cholesky factorization.
The current section makes a detour from symmetric matrix multiplication
and aims at presenting an evaluation of the SBC layout for the 3D Cholesky
Factorization.

In Figure 5.8 the BC and SBC strong scalability capabilities are compared.
The number of layers is fixed to at most two across all configurations. The
SBC layout uses P = hr2/2 nodes and as such it rarely matches the nodes
count of the 2DBC layout. We have ensured that close-enough configurations
were selected to provide a rigorous comparison.

We can observe that the symmetric layout improves overall performance.
In the case of the 2D algorithm, the improvement in performance is most
visible on the smallest problem which hardly allow computation and com-
munication overlap. Because the 2D algorithm does not require additional,
complex mechanisms it may suffer from a reduced overhead compared to the
3D algorithms for this problem. In the case of the 3D algorithms, the Baseline
variant performance is remarkably better on both larger problems. A major
difference between the BC and SBC layouts is the distribution of diagonal
blocks: in the case of SBC, this distribution is evenly spread among the P
ranks across the entire block-diagonal of the input matrix. Such an even dis-
tribution may mitigate the overhead of broadcasting multiple diagonal blocks
without the need for complex replication mechanism.

Further study is required to refine the understanding of the observed im-
provements.
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Figure 5.8: Cholesky BC vs. SBC

5.4 Multidimensional scaling and randomized
singular value decomposition

Dimension reduction algorithms aim at transforming data from a high-dimen-
sional space into a low-dimensional space while keeping the most meaning-
ful properties of the original data [86, 111]. While the most well-known of
these algorithms is certainly the principal component analysis (PCA) [91,
73], MDS [97, 115, 109] may be viewed as its analogue when data items are
only known through their respective dissimilarities. As stated by Cox and
Cox [48], in a narrow definition, MDS searches for a low dimensional space,
usually Euclidean, in which points in the space represent the items, one point
representing one item, and such that the distances between the points in the
space match, as well as possible, the original dissimilarities.

From a numerical point of view, MDS resorts to processing a singular value
decomposition (SVD) [27, 78], as PCA does. However, contrary to PCA, MDS
uses an input matrix G built from representing dissimilarities between pairs
of items and often referred to as the Gram matrix. The dissimilarity between
pairs of items being a symmetric relation, the input matrix G is itself sym-
metric. As a consequence, the SVD of G is also its eigenvalue decomposition
(EVD) up to the sign of the eigenvalues. We pursue the presentation with the
SVD terminology, following [31, 32, 30].

When dealing with large data sets, performing an SVD may be out of
reach due to memory or time to solution constraints. A major step forward
has been the design of randomized SVD (RSVD) algorithms [98, 66], a fast and
probabilistic approach which ensures the quality of the solution via random
projections. Its usage within the MDS (RSVD-MDS) [31, 32, 30, 90] has al-
lowed for processing large data sets while preserving the numerical robustness
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of the standard SVD-MDS [90]. The main idea of the RSVD (here discussed
when applied to G) is to approximate the column space of the m-by-m matrix
G by only a small number n (such that m ≫ n) of vectors through a linear
combination of the columns. From a computational point of view, this step
consists in forming an m-by-n random matrix Ω and perform the Y ← GΩ
matrix product. After computing an orthonormal basis Q of Y , we compute
the Z ← GQ matrix product and, then, a deterministic SVD only needs to be
performed on the tall and skinny m-by-n Z matrix. A complete description
is provided in Algorithm 2 in [13].

As discussed in details in [13], the Y ← GΩ and Z ← GQ matrix prod-
ucts are the dominant steps of both the RSVD and the whole RSVD-MDS
algorithms. In the remainder of this manuscript, we will refer to them as ma-
trix multiplication 1 (MM1) and matrix multiplication 2 (MM2), respectively.
They have the exact same dimensions and can both be viewed in terms of the
more common BLAS notations as a C ← AB matrix product, where A is a
symmetric m-by-m dense matrix, and B and C are both m-by-n dense ma-
trices, with m≫ n. In order to maximize performance, both matrix products
may be performed with a GEMM; however this implies that the dissimilarity
matrix, initially stored in a symmetric format, has to be converted to full
format, thus doubling the initial memory footprint [13].

The central question we aim at addressing in this chapter is whether, in
a distributed-memory context, we can store such a symmetric matrix A in
symmetric format to use SYMM while achieving comparable performance to
GEMM.

5.5 Application to RSVD-MDS
The initial point of the present study was that, in the context of an RSVD-
MDS dimension reduction algorithm [13], it was necessary to trade off per-
formance, with 2DBC GEMM, with memory, with 2DBC SYMM, during the
dominant steps (denoted MM1 and MM2 steps in Section 5.4) of the RSVD
algorithm. The central question raised in Section 5.4 was whether we could
store only half of the symmetric matrix through SYMM while achieving a
performance on par with that of GEMM.

As discussed in Section 5.4, MDS computes a so-called Gram matrix G
from an input matrix representing dissimilarities between pairs of items. In the
context of our metabarcoding target application, items are diatoms collected
in Geneva and dissimilarities between them are their genetic distances. The
dataset 2 used as input for the MDS, fully described in [13], is a 106 × 106

matrix of genetic distances between sequences. We may consider either part
of the data (S1, S2, S3, S4), leading to a matrix of reduced dimension, of
the whole data set (S5). Table 5.2 presents the matrix size (m) and parallel

2Dataset available at https://doi.org/10.57745/NKTRHO.

https://doi.org/10.57745/NKTRHO
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Sample name m P (p, q) c

S1 99,594 1 (1,1) 1
S2 270,983 6 (3,2) 2
S3 426,548 30 (6,5) 5
S4 616,644 56 (8,7) 7
S5 1,043,192 132 (12,11) 11

Table 5.2: Samples names, matrix size m, number of nodes P (and of MPI
processes), parameters (p, q) for 2DBC mappings, and parameter c for TBC
mapping.
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Figure 5.9: Execution time (s) of the RSVD with n = 1, 000. MM1 and
MM2 are assessed with TBC layouts for SYMM. Yellow bars denote 1DBC
GEMM with a stationary-C scheme. Black bars denote TBC SYMM with
GPUs turned on. GPU accelerated executions on 132 nodes was not possible
because of a Quality of Service (QoS) limitation on Jean Zay supercomputer
(no more than 512 GPUs per job). Five test cases are assessed, ranging from
S1 on 1 node (denoted 99k-1) to S5 on 132 nodes (denoted 1,034k-132).

setup associated with each sample. The whole MDS algorithm consists of the
computation of the Gram matrix G followed by an RSVD (which includes
MM1 and MM2 steps). All the tests of this section are performed in single
precision and a number n = 1, 000 of columns for B and C, consistently
with [13]. We conducted the study on Platform C. Intel MKL v. 19.0.4
provides the implementation of single-core kernels.

Figure 5.9 illustrates the impact on performance of the present study. The
original code from [13] had been designed following the programming model
of [114, 6] in which task mapping was inferred from the data mapping of the RW-
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accessed blocks. This means that it relied on a stationary-C scheme, in which
case the optimum GEMM mapping is 1DBC (yellow bars in Figure 5.9) as it is
both a stationary-A and -C variant. The application of the new programming
model presented in Part I allows us to employ a 2DBC stationary-A variant
(l.1 of Table 5.1 p.102 and purple bars in Figure 5.9 after this line number).
The significant improvement shows the interest of the new programming model
when dealing with a task-based approach. Figure 5.9 furthermore shows that
it is possible to store only half of the symmetric matrix through a TBC SYMM
(l. 4 in Table 5.1 and red bars in Figure 5.9) while achieving a performance
competitive with (2DBC) GEMM, which positively answers the question that
originally motivated this work. As this observation applies to both MM1
and MM2 matrix multiplication steps and since they altogether dominate the
RSVD algorithm, this directly translates into a significant improvement for
the entire RSVD.

As recalled above, MDS requires computing the Gram matrix G before
applying the RSVD itself. We also redesigned this step, which is mainly
a reduction, using the RANK_REDUX access mode introduced in the extended
STF programming model. The previous implementation of this step relied
on six intermediary passes where elements are successively reduced on a per-
block, per-rank-column then per-rank-row basis to obtain a vector d2

+ and a
scalar d2

++ [13]. These passes relied on multiple temporary buffers explicitly
provided by the programmer. With our extended programming model, we can
leverage the lassq routine provided by LAPACK and simply submit a single
pass over the data to obtain d2

+. d2
++ is then obtained by submitting a second

last pass over d2
+. The accumulation in temporary buffers is handled by the

runtime system which makes it possible to maintain a compact expression on
the library’s side. This also lets the runtime system opportunistically process
reductions which can assist the improvement in performance we have observed.

We have not reported detailed figures on the matter, however, the execu-
tion time of the entire RSVD-MDS algorithm (Gram computation and RSVD
altogether) on the whole data set (S5) using 132 nodes (5,280 CPU cores) has
been reduced from 70 seconds, with the original code of [13], to 25 seconds,
with TBC SYMM together with the new Gram step design, while using about
half the memory.

We complete the study with the illustration of the capability of task-based
codes to exploit heterogeneous architectures. Without any change in the code
(other than providing the Cuda cuBLAS kernels of single-GPU kernels), the
runtime system may execute tasks on CPU or GPU [20]. A subset of Jean
Zay nodes have the exact same characteristics as described above in CPU-
only case but are furthermore enhanced with four NVIDIA Tesla V100 SXM2
GPUs (32 GB). Cuda v. 10.1.2 is used. Black bars in Figure 5.9 correspond
to the execution of the RSVD with GPUs enabled, relying on TBC SYMM for
the matrix multiplication. The results show a considerable improvement over
the CPU-only case in spite of the relatively low number of columns (n = 1, 000
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only) of B and C, a typical set up for the application.

5.6 Concluding remarks
We experimentally confirmed that reference distributed-memory libraries ach-
ieve a lower performance with SYMM than with GEMM. We showed that an
efficient design of the communication schemes can significantly alleviate this
gap. Moreover we showed that part of the gap is explained by a lower AI
of 2DBC SYMM compared to GEMM (by a factor of 2). We considered two
alternative data distributions SBC and TBC: SBC is a direct adaptation to
the matrix multiplication case of a study of the Cholesky factorization [25] and
TBC is a distributed-memory (and even a parallel) adaptation of the ideas
behind TBS [26], a sequential out-of-core algorithm. We proved that SBC
and TBC improve the AI of SYMM by a factor of

√
2 and 2, respectively,

thus in particular equaling that of 2DBC GEMM for the latter one. In the
case where we allow SYMM to store an amount of memory equivalent to a
full matrix as 2DBC GEMM does, we furthermore showed that 3D TBC with
s = 2 slices achieves a higher AI than 2DBC GEMM by a factor of

√
2. Our

experimental study showed that the improvement of the AI translates into a
compelling performance enhancement, up to the point of roughly matching
GEMM performance. However, the highest AI does not always translate into
the best performance.

The resulting code has been integrated in a metabarcoding application.
It consists in a MDS dimension reduction algorithm based on RSVD whose
main computational steps are two dense matrix multiplications involving a
symmetric input matrix. While one had to trade-off between performance,
with GEMM, or memory, with SYMM, we showed that, altogether, the pro-
posed STF design and the new TBC distribution now achieve a performance
competitive with GEMM. This study also showed that algorithms involving
very irregular data and task distributions can now be implemented with a
code easy to write, read and maintain thanks to the latest developments on
the scalability of the STF model, while ensuring a competitive performance.



Chapter 6

Conclusion

This thesis is focused on features in the STF programming model that are
helpful to productively write linear algebra routines designed for large-scale
architectures. In this chapter, the main contributions are recalled and future
lines of research are presented.

Contributions
Being able to target every architecture with a single code is a peak achievement
of any programmer. This goal does not simply entail the execution of the
code but rather the realization of certain performance metrics. As the HPC
community is faced with a plethora of heterogeneous architectures, such an
achievement would result in less time being devoted to adapting or rewriting
code and more time would be allocated researching cutting-edge algorithms
tailored to real-world numerical properties. In this thesis we have contributed
toward the long-lasting horizon of offering universally portable performance
and effective production of algorithms.

Our principal contribution is the extension of the STF programming model
described in Part I to better accommodate the mechanisms that are com-
monly found in scalable (linear algebra) algorithms. The STF programming
model is already appreciated for its productivity yet its use in writing scal-
able algorithms has not permeated linear algebra packages. In this work, we
have identified four features that help users diminish the amount of mech-
anisms they need to exhaustively set up by delegating them to the run-
time system. One of them is the ability to map tasks to any rank avail-
able. Consequently a runtime system should integrate a data management
component that manages data ownership and the coherency of data trans-
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fers over distributed memories. Another cornerstone feature is the ability to
dynamically detect collective communication at runtime: aggregating point-
to-point data transfers into collective operations enforces the design of scal-
able algorithms. The presented work stands on these two features that were
achieved in previous works. We have completed the programming model
with two lacking mechanisms: distributed memory reduction patterns
presented in Chapter 3 and data write replication introduced in Chap-
ter 4. These elements are present in linear algebra algorithms because the
manipulation of matrices often involve 1) commutative and associative op-
erations 2) multiple transfers of submatrices on which an operation can be
applied pre- or postliminary. We have specified these two mechanisms with
adequate details into access modes (RANK_REDUX,SAME) and utility functions
((all)redux_submit,set_alternative_source). This specification has led
to the integration of the proposed enhancements within the StarPU runtime
system - distributed memory reduction patterns are already released as part
of StarPU 1.4.0 however data write replication remains under (consolidating)
development as of writing. These improvements on the side of the runtime sys-
tem allowed us to develop dense linear algebra routines as part of the qr_mumps
and the Chameleon packages. The expression we have provided maintains the
separation of concerns that is much appreciated to better incorporate progress
from scheduling and runtime experts. For both pGEMM and pPOTRF we
have been able to provide an expression that describes the behaviors of scal-
able algorithms in a single versatile code; we are not limited by the default
“owner-computes” strategy when describing the reduction patterns. We plan
on releasing these routines as they have proved to deliver performances on
par or even outperfoming state-of-the-art libraries such as Slate or Elemen-
tal. Performance has been assessed for pGEMM, pSYMM and pPOTRF and
further progress can be considered that we detail in the Perspectives section.
We have benchmarked libraries on up to 256 modern computing nodes which
amount to 1.3 and 1.1 PFlop/s (Rmax) on platforms A and B, a noteworthy
amount of computing power.

Our work did not only explore the capabilities of sequential-like code: in
Part II we have leveraged the productive expression permitted by the extended
STF programming model into the Fast Methods for Randomized numerical
linear algebra (FMR) package. This linear algebra package is leveraged by the
Diodon 1 library. This library is used by domain scientists to perform data
analysis. It relies on the omnipresent matrix-matrix multiplication to ob-
tain random projections that form the foundation of methods such as MDS.
For the Diodon library Chapter 5 has demonstrated the importance of the
extended programming model in simplifying the use of scalable mechanisms
while taking the symmetry of the input matrix into consideration. By doing
so the memory consumption of the operation has been halved and the inte-

1diodon git repository https://gitlab.inria.fr/diodon/cppdiodon

https://gitlab.inria.fr/diodon/cppdiodon
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gration of the proper symmetric matrix layouts reduced the communication
volume while maintaining scalable performance. We can easily leverage the
stationary-A schemes to better deal with the dimensions of the random projec-
tions. The Gram matrix computation also exploits reduction operations that
we have efficiently and compactly delegated to the runtime system. With the
overall improvement of the MDS algorithm we have been able to maintain
a satisfactory scalability on homogeneous and heterogeneous platforms pro-
cessing actual scientific datasets. The advantageous symmetric layouts have
been transposed to our symmetric (positive definite) matrix decompositions
– for which they were originally designed: without modifying our 3D POTRF
code, we were able to compare the SBC layout with its 2DBC counterpart
and observe its relative superiority.

We have demonstrated the applicability of the STF programming model in
expressing state-of-the-art scalable linear algebra algorithms. While our work
was only interested in two prominent routines, the mechanisms we have put
forth are pervasive in linear algebra. Thus our focus on simple sequential-like
code can be adapted to take other structural or numerical matrix properties
into account while still being portable across architectures.

Perspectives
Applicability of the STF, dense linear algebra and beyond By in-
corporating tools in a runtime system to design algorithms we have made it
easier to consider adapting other linear algebra operations to “communication-
avoiding” techniques. The most immediate ones are TRSM routines that can
be adapted for 3D logical grids as well as dense factorization algorithms that
require pivoting. Tournament pivoting can notably be viewed as a reduction
pattern over pivots and a column of blocks. Other pivoting strategies may
be explored. Providing a single code that can readily switch between pivot-
ing strategies would be an interesting endeavor – whether through the STF
or another task-based programming model. Providing TRSM, POTRF and
GETRF routines through the STF programming model would be a first step
toward state-of-the-art scalable dense direct solvers. The usual techniques
found in sparse linear algebra could also benefit from the programming model
we have set up. Algorithms such as fan-both sparse factorizations [18] or
supernodal sparse factorization [101] might be expressed in a single versa-
tile routine that makes it possible to span different processes configuration
through a restricted set of parameters. While our main interest has been
dense numerical linear algebra, the scope of our work encompasses the algo-



122 CHAPTER 6. CONCLUSION

rithms the extended programming model is capable to express. It is entirely
possible to use the STF programming model to consider other applicative do-
mains. Text manipulation is more omnipresent than floating-point operations
in some computer science domains and programming models like MapReduce
often address this need.

Scalable algorithms design The 3D algorithms we have evaluated in this
work have obtained relatively limited results: their improvement over 2D vari-
ants was either marginal or happening in specific configurations of problem
sizes and number of cores. We believe that further investigation should be pur-
sued to evaluate these algorithms. Specifically, the platforms used to perform
the evaluation should be extended to exascale and/or heterogeneous machines
to better challenge the hypotheses that support their designs. To this end,
we plan on making our implementations of 3D algorithms readily available
for further studies. For the GPU case, our approach may require the use
of expert schedulers and/or a fine-grained submission sequence which neces-
sitates evaluation. It is apparent that scheduling communications (in what
order should data transfers be processed and what pattern should a collective
operation takes) is essential and should be explored further. Consequently
the expressions we have provided might be further modified to test and com-
pare communications policies. These policies should be refined and designed
from theoretical considerations that need to be consolidated in the case of
asynchronous communications.

Delegating the reduction operations We have implemented the reduc-
tion operations through the insertion of user-provided tasks on the side of the
runtime system. This is profitable to the programmer because they do not
need to implement the submission of this subgraph themselves; they can also
benefit from the automatic submission for the reduce pattern. This design
could be modified by delegating the totality of the reduction operations to
a communication backend. This will have an impact on the scheduling of
multiple reduction patterns because the worker handling the communication
engine will have to execute all of the (multiple) reduction tasks sequentially
instead of them being scheduled concurrently over multiple cores. Delegat-
ing the reduction patterns to a communication backend may however be a
sustainable way to strengthen separation of concerns between shared-memory
data management and distributed-memory data transfers.

Runtime systems and submission loops On the side of the runtime
system, further perspectives are worthy of consideration. First, when submit-
ting distributed memory DAGS, some of the mechanisms we have proposed
may be delivered transparently by the runtime system based on distributed
memory protocols. These protocols could be implemented by the user – with
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some default ones provided by the runtime system – to toggle the use of data
write replication or allreduce reduction. Additional protocols could integrate
memory constraints to alleviate the need for a window mechanism we have
showcased in the case of pGEMM. Second, the efficient submission of tasks
could be explored further by giving more directions to the compiler when it
comes to loops involved in the submission phase. The pruning of tasks is
typically controlled by verifying conditions and it is naturally prone to cre-
ate unnecessary branches when a CPU evaluates it. Branchless techniques
combined with suitable iterators that can be dynamically instantiated based
on problem dimensions and hardware resources may help to squeeze more
computing power out of supercomputers. This would mostly apply to regular
workload found in dense linear algebra.

Software releases Some engineering work remains to be done to ensure
our contributions get properly released as parts of the StarPU and qr_mumps
packages. This work should mainly focus on removing the more experimen-
tal aspects of the routines that have been developed to make their use as
straightforward and documented as possible.

Overall we believe that being able to consider sequential-like code to ob-
tain satisfactory performance on petascale machines opens doors for plenty of
theoretical, exploratory and applicative lines of research.
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