
HAL Id: tel-04440389
https://theses.hal.science/tel-04440389

Submitted on 6 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Boolean fault-resistant masking and white-boxability of
lightweight cryptography

Chloé Gravouil

To cite this version:
Chloé Gravouil. Boolean fault-resistant masking and white-boxability of lightweight cryptography.
Cryptography and Security [cs.CR]. Université de Rennes, 2023. English. �NNT : 2023URENS019�.
�tel-04440389�

https://theses.hal.science/tel-04440389
https://hal.archives-ouvertes.fr


THÈSE DE DOCTORAT DE

L’UNIVERSITÉ DE RENNES

ÉCOLE DOCTORALE NO 601
Mathématiques, Télécommunications, Informatique, Signal, Systèmes,
Électronique
Spécialité : Mathématiques et leurs Interactions

Par

Chloé GRAVOUIL
Masquage Booléen Résistant aux Attaques par Fautes et White-
Boxabilité de Primitives Cryptographiques Légères

Unité de recherche : Institut de Recherche Mathématique de Rennes

Rapporteurs avant soutenance :

Guilhem CASTAGNOS, Maître de conférence, Université de Bordeaux
Matthieu RIVAIN, Ingénieur et CEO, Cryptoexperts Paris

Composition du Jury :
Examinateurs : Guilhem CASTAGNOS, Maître de conférence, Université de Bordeaux

Pierre-Alain FOUQUE, Professeur, Université de Rennes
Sihem MESNAGER, Professeure, Université Paris VIII
Matthieu RIVAIN, Ingénieur et CEO, Cryptoexperts Paris
Karine VILLEGAS, Ingénieure, Kudelski IoT Security Lausanne

Dir. de thèse : Sylvain DUQUESNE, Professeur, Université de Rennes

Invité(s) :

Eric PIRET, Ingénieur et Manager, EDSI Cesson-Sévigné





REMERCIEMENTS

Tout d’abord, je voudrais remercier EDSI et son directeur Jean-Claude Fournier ainsi
que le Groupe Kudelski pour m’avoir donné l’opportunité de cette thèse.
Je veux également exprimer ma gratitude envers mon superviseur Eric Piret, mon direc-
teur de thèse Sylvain Duquesne ainsi que les experts du Groupe Kudelski Karine Villegas
et Brecht Wyseur pour m’avoir guidée durant ces quatre années, pour leurs conseils et
toujours utiles remarques sur mes travaux.

Je tiens également à remercier Pierre-Alain Fouque, Sihem Mesnager et Karine Ville-
gas d’avoir accepté de faire partie de mon jury, et à remercier Matthieu Rivain et Guilhem
Castagnos d’avoir accepté les rôles de rapporteurs de cette thèse.

Merci à mes collègues stagiaires Alex Charlès et Tom Beaumont pour leur bonne hu-
meur, nos heures de réflexions communes et nos nombreux débats sur la philosophie des
mathématiques et tant d’autres sujets. J’étends ces remerciements à mes collègues d’EDSI
et notamment mes collègues de bureau durant cette thèse : Béatrice, Laurent, Pierre, Sa-
muel et Kévin pour leur gentillesse et leur assistance technique.

Pour finir, merci à ma famille pour leur soutien durant ces quatre années.

3





Contents
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1 White-Boxabilité des Primitives Finalistes du Concours de

Standardisation des Algorithmes Lightweight du NIST 10
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Résumé en français

La cryptographie en bôıte blanche (white-box cryptography) est le domaine de
la cryptographie dédié à la conception d’implémentations de primitives cryp-
tographiques sûres face à un attaquant ayant le contrôle total du dispositif sur
lequel est déployée cette implémentation. L’implémentation en bôıte blanche
d’une primitive est donc une implémentation dont un attaquant ne peut pas
retrouver la clé même en ayant son contrôle total, ainsi que le contrôle de la
plateforme sur laquelle elle est exécutée.

L’un des enjeux majeurs de sécurité auquel la cryptographie bôıte blanche
doit répondre est la résistance aux attaques par canaux cachés (side-channel
attacks). A cette fin, les designers ont pour but d’éliminer ou atténuer au max-
imum toute dépendance entre les variables de l’implémentation et ses données
sensibles, comme les clés secrètes. L’une des contre-mesures classiques pour
cela est l’utilisation de schémas de masquage. Néanmoins, les implémentations
mettant en œuvre des schémas de masquage sont vulnérables à un autre type
d’attaques : les attaques par faute, dans lesquelles un attaquant perturbe in-
tentionnellement le fonctionnement normal de l’implémentation dans le but
d’extraire de potentielles informations de cette exécution modifiée.

De plus, au delà d’assurer la sécurité de leurs implémentations dans ce
modèle d’attaques, les concepteurs d’implémentations en bôıte blanche doivent
également prendre en compte leurs coûts tout en optimisant leurs performances.
En d’autres termes, la question du compromis entre la sécurité, les coûts et les
performances d’une implémentation cryptographique demeure dans le domaine
de la cryptographie en bôıte blanche. La cryptographie lightweight (légère) est
le domaine de la cryptographie dédié aux implémentations compatibles avec
des dispositifs aux capacités limitées. Ces dispositifs, de par leurs cas d’usages,
sont fréquemment vulnérables aux attaques en bôıte blanche. Par conséquent, la
question de la ”white-boxabilité” des algorithmes lightweight se pose également.

La contribution de cette thèse est double. Dans la première partie, nous
discutons l’adéquation à une implémentation en bôıte blanche des dix primi-
tives finalistes du concours de standardisation des algorithmes lightweight du
NIST. Nous développons par la suite une implémentation en bôıte blanche tab-
ularisée de GIFT, la principale sous-fonction cryptographique de GIFT-COFB.
Pour finir, nous décrivons une attaque différentielle sur cette construction, et
étudions l’adéquation des critères de résistance d’une SBox à cette attaque avec
les critères de choix de la SBox de GIFT.

Dans la seconde partie de ce manuscrit, nous décrivons la construction de
notre schéma de masquage de l’opération bit-à-bit AND résistant à l’introduction
de fautes, et pouvant être implémenté avec uniquement des opérations bit-à-bit.
Pour cela, ce schéma utilise un code correcteur d’erreurs, et plus précisément un
code correcteur d’erreurs BCH. Nous décrivons également comment les opérations
NOT et XOR peuvent être implémentées afin d’être compatibles avec ce schéma
de masquage, pour qu’il puisse être appliqué aux implémentations bitslicées de
toute primitive cryptographique.
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1 White-Boxabilité des Primitives Finalistes du

Concours de Standardisation des Algorithmes

Lightweight du NIST

Cette thèse débute par l’analyse de la ”white-boxabilité” des finalistes du con-
cours de standardisation des algorithmes lightweight du NIST [SMC`21]. En
effet, les primitives cryptographiques lightweight sont largement déployées sur
des dispositifs aux capacités limitées, qui sont fréquemment sujets aux attaques
en bôıte blanche en raison de leurs cas d’usages. La question de la résistance de
ces candidats à la standardisation face à ces attaques s’est donc posée.

Après analyse des spécifications des dix finalistes, nous avons établi que
la primitive la plus adéquate à être implémentée en bôıte blanche est GIFT-
COFB, et plus précisément sa principale sous-fonction cryptographique GIFT
[BPP`17a]. Pour cela, différents critères ont été pris en compte, comme la
sécurité de la primitive à la publication d’un état (state), ou la répartition des
variables secrètes (notamment liées à la clé) tout au long de la primitive [CG22].

L’idée derrière la conception de cette implémentation consiste à encoder les
sorties de chaque instance de la SBox de 4 bits de GIFT, afin de construire une
nouvelle table de substitution de 8 bits, nommée TBox. A cette fin, tout d’abord,
une seconde table de substitution de 4 bits est choisie aléatoirement. Les quatre
ensembles de 2 bits consécutifs en sortie de la TBox sont obtenus en utilisant 4
encodages de 2 bits différents, avec en entrée un bit de sortie de la SBox de GIFT
et un bit de sortie de la seconde table de substitution. Pour que l’implémentation
conserve la fonctionnalité de GIFT, les décodages sont appliqués en entrée des
TBoxes correspondantes de la ronde suivante, déterminées en fonction de la
permutation de 128 bits de GIFT.

Néanmoins, nous démontrons que la connaissance par l’attaquant de la SBox
de GIFT implique la possibilité d’une attaque différentielle visant deux rondes
consécutives de GIFT afin déterminer la clé utilisée. Pour finir, nous étudions
l’existence de potentielles SBoxes de 4 bits vérifiant les propriétés de celle de
GIFT tout en empêchant la possibilité de cette attaque.

2 Un Nouveau Schéma de Masquage Résistant

Aux Attaques par Fautes

Le bitslicing consiste à implémenter une primitive comme un circuit combina-
toire en software [MDLM18]. Nombre d’implémentations en bôıte blanche sont
basées sur des implémentations bitslicées elle-mêmes composées d’opérations
bit-à-bit, sur lesquelles sont appliqués des schémas de masquage.

Les schémas de masquage étant par nature des contre-mesures contre les at-
taques par canaux cachés, nous avons développé un nouveau schéma de masquage
composé d’opérations bit-à-bit et résistant aux attaques par faute [Gra23].
Plus précisément, ce schéma peut être appliqué sur des implémentations bit-
slicées de toutes primitives cryptographiques et corriger de potentielles fautes
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sans détériorer ou stopper l’exécution dès leur détection. Ces implémentations
vont donc toujours retourner des résultats, qui sont corrects même en cas
d’introduction de fautes, ce qui constitue un réel bénéfice dans ce domaine des
schémas de masquage résistants aux fautes.

Pour cela, nous utilisons un code correcteur d’erreurs BCH, puisque c’est
un code cyclique qui permet donc une facile gestion de la parité du poids de
Hamming de ses mots de code, et puisque son processus de correction peut être
implémenté avec uniquement des opérations bit-à-bit (AND, OR, XOR, NOT).
La valeur binaire de chaque mot de code est cette parité. Ainsi, les mots de
code de poids de Hamming pair représentent la valeur 0, et les mots de code de
poids de Hamming pair représentent la valeur 1.

2.1 Schémas de Masquage

Dans un corps K, masquer une variable X consiste à construire nin sous-
variables xi nommées shares, telles que X “ x0‘ . . .‘xnin´1. Par construction,
chaque ensemble d’au plus nin´1 shares est indépendant de la variable originale
X , c’est-à-dire

@i P t0, . . . , nin ´ 1u,@v P K,@pv0, . . . , vi´1, vi`1, . . . , vnin´1q P K
nin´1,

P ppX0, . . . , Xi´1, Xi`1, . . . , Xnin´1q “ pv0, . . . , vi´1, vi`1, . . . , vnin´1q|X “ vq “

P ppX0, . . . , Xi´1, Xi`1, . . . , Xnin´1q “ pv0, . . . , vi´1, vi`1, . . . , vnin´1qq

Les valeurs des shares x0, . . . , xnin´2 sont choisies aléatoirement, puis la
dernière share xnin´1 est calculée telle que xnin´1 “ X ‘ x0 ‘ . . . ‘ xnin´2.
Comme développé dans [BBP`16], la complexité de l’extraction d’information
sur X devient exponentielle en le nombre de shares nin.

Pour une fonction f avec n entrées Xi et une sortie Y , un schéma de
masquage dans lequel chaque entrée est divisée en nin shares Xi,j et chaque
sortie en nout shares Yj décrit nout sous-fonctions Fj telles que

Y0 “ F0pX0,0, . . . , X0,nin´1, . . . , Xn´1,0, . . . , Xn´1,nin´1q

Y1 “ F1pX0,0, . . . , X0,nin´1, . . . , Xn´1,0, . . . , Xn´1,nin´1q

...

Ynout´2 “ Fnout´2pX0,0, . . . , X0,nin´1, . . . , Xn´1,0, . . . , Xn´1,nin´1q

Ynout´1 “ Fnout´1pX0,0, . . . , X0,nin´1, . . . , Xn´1,0, . . . , Xn´1,nin´1q

,

avec

$
’’&
’’%

Xi “
nin´1À
j“0

Xi,j @i P t0, . . . , n´ 1u

Y “
nout´1ř
j“0

Yj “ fpX0, . . . , Xn´1q
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2.2 Détermination des Paramètres

Afin de garantir sa sécurité contre les probing attacks de premier ordre, nous
avons construit notre schéma pour qu’il respecte conjointement trois propriétés,
à savoir correctness, non-completeness et uniformity ([NRR06]). Ces propriétés
impliquent respectivement que la somme des shares en sortie du schéma est bien
égale au résultat de la fonction d’origine avec les mêmes entrées, que chaque
share en sortie ne dépend jamais de tous les shares d’une même entrée et que
les valeurs possibles des shares d’une même sortie sont équiprobables.

Respecter conjointement ces propriétés introduit des contraintes sur le choix
des paramètres de notre schéma. C’est pourquoi nous avons construit notre
schéma de masquage avec 4 shares pour chaque entrée et 4 shares en sortie.
Cela a également influencé le choix des paramètres du code correcteur d’erreurs
BCH mis en oeuvre, à savoir sa longueur et son polynôme générateur. De même,
le fait que chaque mot de code représente la parité de son poids de Hamming
en valeur binaire implique que le polynôme générateur soit de parité impaire,
afin qu’il soit possible de construire des mots de code de parités différentes.

2.3 Design du Schéma de Masquage

Pour la conception de ce nouveau schéma de masquage, nous nous plaçons
dans le modèle d’attaque one-bit flipping fault, c’est-à-dire que nous considérons
qu’un attaquant est capable d’aléatoirement remplacer la valeur d’un bit par son
opposée dans l’implémentation. En effet, c’est un modèle d’attaque par faute
susceptible d’être utilisé par un attaquant contre une implémentation bitslicée.
Nous construisons ce schéma pour qu’il puisse résister à l’introduction d’au plus
deux telles fautes dans ses shares d’entrée.

Pour pouvoir corriger d’éventuelles fautes dans chaque share d’entrée, cor-
riger chaque share individuellement nécessiterait 8 corrections. Afin d’éviter
autant de corrections et donc d’améliorer les performances du schéma, nous
construisons des sous-sommes de shares d’entrée. Nous montrons que le nom-
bre minimum de sous-sommes à construire pour qu’une faute détectée par la
correction d’une sous-somme soit attribuée à la correcte entrée tout en conser-
vant la propriété de non-completeness est 3.

Nous effectuons par la suite diverses multiplications entre les parités des
shares en entrée, et avec les parités des polynômes aléatoirement choisis. Ces
valeurs sont rassemblées dans une matrice sur laquelle sont appliqués différents
masques, eux-mêmes mots du code, dans le but de calculer les parités des
shares de sortie. Pour assurer la pérennité du schéma dans le cas d’exécutions
successives dans l’implémentation d’une primitive cryptographique et assurer
que les shares en sortie n’ont pas subi de faute, nous construisons ces shares
comme étant des mots du code BCH utilisé. Enfin, afin de respecter la propriété
d’uniformity, ces shares sont construits de manière équiprobable.
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3 Thesis Introduction

3.1 Security Models and White-Box Cryptography

Cryptographic primitives were first designed so that an attacker having access to
only its inputs and corresponding outputs would not be in capacity of retrieving
the secret key. This security model has been labeled as ”black-box” security
model, where implementing a cryptographic primitive is supposed to be secure.
Hence, any weakness in an implementation can only arise from the design of the
primitive itself and potential relations between its inputs and outputs.

Nevertheless, this assumption rapidly turned out to not be realistic. Indeed,
implementations are particularly sensitive to attacks labeled as ”side-channel
attacks”. Those types of attacks exploit flaws of the implementation that are
correlations between some sensitive data of the algorithm, for instance the secret
key bits, and physical data leakage during some executions of this implementa-
tion. Those data leakages can be of different types, as for example execution
time, electromagnetic emanations, or power consumption of the device execut-
ing the implementation [Cad05]. Consequently, side-channel countermeasures
aim to eliminate any relation between sensitive data of the primitive and those
physical data leakages [PR13]. For instance, in the timing attack case, condi-
tional statements depending on the sensitive data must be avoided. An attacker
exploiting those flaws as well as potential weaknesses in the design of the prim-
itive spotted in the black-box security model is considered being an attacker in
the ”grey-box” security model.

Over the course of the last twenty years, the development of devices like
Internet of Things (IoT) devices has led to an increasing need of cryptography.
Likewise, the expansion of subscription television and then streaming services
has brought a need of cryptography to ensure correct and secure Digital Right
Managment (DRM). Nevertheless, the open nature of these devices and services
constitute an additional threat to the security of these cryptographic primitives.
Indeed, a potential attacker can then have total access over the execution plat-
form of the algorithm and its implementation : he can even be the owner of
the device. This model of attacker is considered an attacker in the ”white-box”
security model. A primitive being secure in this model imply that it is, first of
all, secure in the grey-box model and thus naturally in the black-box model,
and that it is not possible to recover the key for an attacker having total access
to the implementation and its execution platform.

To protect the key from such attacker, one of the first and most known
method that was proposed by Chow et al. [CEJvO02] in 2002 consists in tabu-
larizing then encoding the implementation. Their original idea was to turn the
AES algorithm into a giant look-up table mapping each possible plaintext to its
corresponding ciphertext, consequently avoiding any manipulation of the key.
Nevertheless, such a look-up table matching all 128-bit plaintexts to 128-bit
ciphertexts would be too heavy and thus unrealistic (2128 ˚ 128 “ 2135 bits).
Therefore, the chosen solution was to build a network of encodings look-up ta-
bles. Nonetheless, this scheme has been broken many times in the literature
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([BGEC04], [MRP13], [LR13]).
Indeed, side-channel attacks inherited from the grey-box attack model are

one of the main threats a white-box implementation need to thwart. The Chow
et al. implementation is notably sensitive to this type of attacks. Among the va-
riety of countermeasures to side-channel attacks, masking is the most developed
topic.

3.2 Variable Sharing and Masking Schemes

In a field K, masking a variable X consists in splitting it into nin sub-variables
X0, . . . , Xnin´1 of K named shares, such that X “ X0 ‘ . . . ‘ Xnin´1. Fur-
thermore, each tuple of at most pnin ´ 1q variables Xi is independent from X,
i.e.

@i P t0, . . . , nin ´ 1u,@v P K,@pv0, . . . , vi´1, vi`1, . . . , vnin´1q P K
nin´1,

P ppX0, . . . , Xi´1, Xi`1, . . . , Xnin´1q “ pv0, . . . , vi´1, vi`1, . . . , vnin´1q|X “ vq “

P ppX0, . . . , Xi´1, Xi`1, . . . , Xnin´1q “ pv0, . . . , vi´1, vi`1, . . . , vnin´1qq

To that end, the values of the shares X0, . . . , Xnin´2 are chosen uniformly
at random in K, and the value of the last share Xnin´1 is computed so that
X “ X0‘ . . .‘Xnin´1. Therefore, if the value of a variable Z is correlated to a
sensitive value X then, as each share Zi separately is independent from Z, they
are independent from the sensitive value X. As stated in [BBP`16], the tuple of
shares pZiq0ďiďnin´1 still depends on X but, because of the noise, the complexity
of the extraction of information then becomes exponential in the number of
shares nin. Each set of nin sub-variables Xi such that X “ X0 ‘ . . .‘Xnin´1

is named a nin-sharing of X.
On a larger scale, masking schemes describe how, for a given function f

with n inputs Xk and m outputs Yk “ fkpX0, . . . , Xn´1q, the sharings of the
outputs of f are built as functions of the sharings of its inputs. As an example,
if each input is split into nin shares and each output is split into nout shares,
a masking scheme pFi,jq0ďiăm,0ďjănout describes the nout ˚ m sub-functions
Fi,0, . . . , Fi,nout´1 with 0 ď i ă m such that

Yi,0 “ Fi,0pX0,0, . . . , X0,nin´1, . . . , Xn´1,0, . . . , Xn´1,nin´1q

Yi,1 “ Fi,1pX0,0, . . . , X0,nin´1, . . . , Xn´1,0, . . . , Xn´1,nin´1q

...

Yi,nout´2 “ Fi,nout´2pX0,0, . . . , X0,nin´1, . . . , Xn´1,0, . . . , Xn´1,nin´1q

Yi,nout´1 “ Fi,nout´1pX0,0, . . . , X0,nin´1, . . . , Xn´1,0, . . . , Xn´1,nin´1q

,

with
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$
’’&
’’%

Xk “
nin´1ř
j“0

Xk,j for all k P t0, . . . , n´ 1u

Yk “
nout´1ř
j“0

Yk,j “ fkpX0, . . . , Xn´1q for all k P t0, . . . ,m´ 1u

For the most usual case of a function f admitting n inputs and one output, if
each input is split into nin shares and the output is split into nout shares, a mask-
ing scheme pFiq0ďiănout of f describes the nout sub-functions F0, . . . , Fnout´1

such that

Y0 “ F0pX0,0, . . . , X0,nin´1, . . . , Xn´1,0, . . . , Xn´1,nin´1q

Y1 “ F1pX0,0, . . . , X0,nin´1, . . . , Xn´1,0, . . . , Xn´1,nin´1q

...

Ynout´2 “ Fnout´2pX0,0, . . . , X0,nin´1, . . . , Xn´1,0, . . . , Xn´1,nin´1q

Ynout´1 “ Fnout´1pX0,0, . . . , X0,nin´1, . . . , Xn´1,0, . . . , Xn´1,nin´1q

,

with $
’’&
’’%

Xi “
nin´1À
j“0

Xi,j @i P t0, . . . , n´ 1u

Y “
nout´1ř
j“0

Yj “ fpX0, . . . , Xn´1q

Such masking scheme is noted a pnin, noutq-masking scheme of the function
f , and precisely a ns-masking scheme if ns “ nin “ nout.

3.3 Research Questions

The primary purpose of this thesis was to develop improvements to the white-
box cryptographic primitives used in the Kudelski Group products, that are
mostly symmetric white-box cryptographic primitives. Consequently, I started
my PhD researches by constituting a state-of-art of white-box cryptography,
and particularly symmetric white-box cryptography. I then chose to focus in
the field of bitsliced implementations using masking schemes.

Two of the main threats to cryptographic primitives and notably crypto-
graphic primitives in the white-box attack model are side-channel attacks and
fault attacks. Fault attacks consist of disrupting the correct functioning of the
cryptographical primitive to observe faulty behaviour of variables depending
on sensitive data ([GT04], [Ott05]). Leaked information can then be processed
with statistic or analytic methods, thereby disclosing all or part of sensitive data
involved in the computation. The masking schemes designed with fault resis-
tance in mind usually adopt the strategy of detecting faults instead of correcting
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them. At the detection of a fault, they abort or deteriorate the execution of
the implementation. Masking schemes are by design countermeasures against
side-channel attacks, therefore I aimed to develop a masking scheme that could
combine resistance to side-channel attacks as well as resistance to fault attacks,
and that would only be using Boolean operations in order to be applied on
Boolean implementations. More precisely, this masking scheme would not only
detect faults but correct them, allowing the execution of the implementation to
carry on in a correct manner.

With this aim in mind, I introduced error-correcting codes in this new mask-
ing scheme, and more precisely BCH error-correcting codes since the correspond-
ing decoding can be performed with only Boolean operations.

On the other hand, one of the main challenges cryptography needs to deal
with consists in balancing the security of a cryptographic primitive with its
costs and performances. This is notably important when the considered cryp-
tographic primitive is deployed on a device with constrained capacities, like
for example the IoT (Internet of Things) products developed by the Kudelski
Group. Consequently, performances and costs remain important parameters to
take into consideration when designing a white-box secure implementation.

To that end, the company offered an internship to Alex Charlès so we would
work in collaboration to evaluate the ”white-boxability” of the primitives fi-
nalists of the NIST Lightweight Cryptography Standardization Contest. This
criterion was not part of the Standardization Contest criteria, therefore the aim
of this study was to pick the Lightweight Contest finalist the most suitable to
first undergo a primary layer of white-boxing, and then be bitsliced to apply
the masking scheme developed during my PhD. We selected GIFT-COFB and
more precisely its core cryptographic function GIFT, and developed a tabular-
ized encoding solution to apply to GIFT before bitslicing, based on Chow et al.
white-box AES ([CEJvO02]).

3.4 Thesis Overview

In the preamble of this dissertation we will first detail the tools used for the
thesis, i.e. the notations and theoretical basis to our study. Then, we will
present an overview of the state-of-the-art of white-box cryptography contests
and bitsliced masking schemes.

This first part of this dissertation will discuss in section 6 the study of the
white-boxability of the NIST Lightweight Cryptography Standardization Con-
test finalists. We selected GIFT-COFB and built a tabularized white-box im-
plementation of GIFT, the main cryptographic block of this finalist, that is
described in section 7. This work has been presented at the NIST Lightweight
Cryptography Workshop 2022 [CG22]. Finally, a differential attack on this im-
plementation will be introduced, as well as a potential evolution of the GIFT
SBox so that our implementation could resist this attack. This work is described
in a paper currently being finalized.

The second part of the dissertation presents in section 9 the rationale behind
the design of the new fault resistant masking scheme, before describing this
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design in section 10. Finally, section 11 details the application of the scheme to
a global implementation of a cryptographic primitive. This masking scheme is
presented in [Gra23].
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4 Tools for the Thesis

4.1 Notations

This dissertation will use the following notations :

• For a random variable X , we note P pXq its probability distribution and H
its entropy pHpXq “ ´

ř
x P pX “ xq log2pP pX “ xqqq.

• For random variables X and Y ,

– We note HpX |Y q “
ř

x

ř
y P pX “ x, Y “ yq log P pX“x,Y “yq

P pY “yq the

conditional entropy of X given Y.

– IpX ;Y q “ HpXq ´ HpX |Y q is the mutual information between X
and Y.

• We consider K a field with charpKq “ 2.

• For an array a P K
n, we note HW paq the Hamming weight of a, i.e. the

number of non-zero elements of a.

• For a, b P K
n, we note dHW pa, bq “ HW pa ´ bq the Hamming distance

between a and b.

• For an array y “ pyn´1, . . . , y0q P K
n, we note ypXq “ yn´1X

n´1 ` . . .`
y1X ` y0 P KrXs its corresponding polynomial.

• For a 128-bit array b “ pb0, b1, ..., b127q, we note b “ B0B1...B15 its de-
composition in 16 bytes.

• We note the parity of a polynomial P P KrXs to be HW pP q mod 2.

• For a set S, we note #S its cardinality.

• For pxn´1, . . . , x0q P F
n
2 such that

n´1ř
i“0

xi2
i “ x P N, we note pxqn “

pxn´1, . . . , x0q.

– For pxn´1, . . . , x0q P F
n
2 such that pxn´1, . . . , x0q “ pxqn and S an

SBox with n-bit inputs, we note Srxn´1 . . . x0s “ Srxs.

• For x P F2, we note x “ x‘ 1.

– For pxn´1, . . . , x0q P F
n
2 , we note xn´1 . . . x0 the array xn´1 . . . x0 P

F
n
2 .

– Particularly, for pa, b, c, dq P F4
2, we note abcd the array abcd.

• For v P F2
2 and v0 P F2, we note v “ v0 if the value of the first bit of v is

known to be v0 and the value of the second bit is yet to be determined.

• We note ‚ the scalar product of F4
2.

• We note a nibble to be a unit of four bits, corresponding to half a byte.
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4.2 Probability Property

The following property on sums of products of uniform, independent and iden-
tically distributed random variables over F2 will be used in subsubsection 9.1.5.

Property 1. Let n P N
‹. Let a0, . . . , an´1, b0, . . . , bn´1 be 2n uniform, inde-

pendent and identically distributed (i.i.d.) random variables over F2. Then,

Ppa0b0 ‘ . . .‘ an´1bn´1 “ 0q “ 10

2n`2 ´
1

2n´1 `
1

2

Proof. We first suppose that n “ 1. Then Ppa0b0 “ 0q “ 1´Ppa0b0 “ 1q. As a0
and b0 are uniform and i.i.d. variables over F2, Ppa0b0 “ 1q “ Ppa0 “ 1qPpb0 “
1q “ 1

2
˚ 1

2
“ 1

4
. Thus Ppa0b0 “ 0q “ 1´ 1

4
“ 3

4
.

Simultaneously, for n “ 1, 10

2n`2 ´
1

2n´1 `
1

2
“ 10

21`2 ´
1

21´1 `
1

2
“ 10

8
´1` 1

2
“

5

4
´ 1

2
“ 3

4
.

We now suppose that there exists n P N
‹ such that the property is verified

for this value of n, i.e. for any 2n uniform and i.i.d. random variables over F2

a0, . . ., an´1, b0, . . ., bn´1 , Ppa0b0‘ . . .‘an´1bn´1 “ 0q “ 10

2n`2 ´
1

2n´1 `
1

2
. We

then consider a0, . . . , an, b0, . . . , bn 2pn` 1q uniform and i.i.d. random variables
over F2. Subsequently,

Ppa0b0 ‘ ...‘ an´1bn´1 ‘ anbn “ 0q “ Ppa0b0 ‘ ...‘ an´1bn´1 “ 0X anbn “ 0q

` Ppa0b0 ‘ ...‘ an´1bn´1 “ 1X anbn “ 1q

“ Ppa0b0 ‘ ...‘ an´1bn´1 “ 0qPpanbn “ 0q

` Ppa0b0 ‘ ...‘ an´1bn´1 “ 1qPpanbn “ 1q

“

ˆ
10

2n`2
´

1

2n´1
`

1

2

˙
˚
3

4

`

ˆ
1´

ˆ
10

2n`2
´

1

2n´1
`

1

2

˙˙
˚
1

4

“
30

2n`4
´

3

2n`1
`

3

8
`

1

4
´

10

2n`4
`

1

2n`1

´
1

8

“
20

2n`4
´

2

2n`1
`

2

8
`

1

4

“
10

2pn`1q`2
´

1

2pn`1q´1
`

1

2

Therefore, by induction, the property is verified for every n P N‹.

4.3 Substitution Boxes Properties

In 1949, Shannon suggested to combine two different approaches to mitigate
the cryptanalysis of a block cipher, namely diffusion and confusion ([Sha49],
[Wys09]).
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In a few words, diffusion consists in maximizing the propagation of any
plaintext bit or key bit difference to all ciphertext bits. Ideally, flipping one
of these plaintext or key bits would lead to a flip of each ciphertext bits with
probability 1

2
. Diffusion is usually achieved by bit permutations and/or linear

operations in block ciphers.
Confusion consists in complexifying as much as possible the dependence

between plaintext, key and ciphertext bits. To that end, block ciphers use non-
linear operations, usually defined as Substitution Boxes (SBoxes) implemented
as look-up tables.

Property 2. Let n P N‹. There exists 2n! n-bit to n-bit SBoxes.

Property 3. Let m,n P N‹. An m-bit input to n-bit output SBox weighs 2m ˚n
bits.

To achieve a good confusion, different properties of SBoxes can be considered,
as listed in [BPP`17b] :

Definition 1 (DDT). Let S be a m-bit to n-bit SBox. The Difference Distri-
bution Table (DDT) of S is the 2m ˆ 2n-table defined such that

DDT pδi, δoq “ #tx P Fm
2 | Srx‘ δis “ Srxs ‘ δou for pδi, δoq P F

m
2 ˆ F

n
2

In particular, Banik et. al. introduce in [BPP`17b] the 1-1 DDT, i.e.
the sub-table of the Difference Distribution Table DDT composed of coefficients
DDT pδi, δoq such that the input and output differences δi P F

m
2 and δo P F

n
2

have both Hamming weight one.

Definition 2 (from [BPP`17b]). The differential score of an SBox S is
#GI `#GO, observed from 1-1 bit DDT.

• The Good Inputs (GI) observed from the 1-1 DDT are the input differences
δi P F

m
2 verifying HW pδiq “ 1 such that there does not exist an input

x P Fm
2 and an output difference δo P F

n
2 verifying HW pδoq “ 1 such that

Srx‘ δis “ Srxs ‘ δo.

• The Good Outputs (GO) observed from the 1-1 DDT are the output
differences δo P F

n
2 verifying HW pδoq “ 1 such that there does not exist

an input x P F
m
2 and an input difference δi P F

m
2 verifying HW pδiq “ 1

such that Srx‘ δis “ Srxs ‘ δo.

All inputs (resp. outputs) that are not Good Inputs (resp. Good Outputs)
are considered Bad Inputs (resp. Bad Outputs).

Definition 3 (LAT). Let S be a 4-bit SBox. The Linear Approximation Table
(LAT) of S is the 16ˆ 16-table defined such that

LAT pα, βq “ #tx P F4
2 | α ‚ x “ β ‚ Srxsu ´ 8 for pα, βq P F4

2 ˆ F
4
2

Similarly as for the DDT, Banik et. al. introduce in rBPP`17bs the 1-1
LAT.
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Definition 4 (from [BPP`17b]). The linear score of an SBox S is #GI `
#GO, observed from 1-1 bit LAT.

• The Good Inputs (GI) observed from the 1-1 LAT are the input operands
α P F

4
2 verifying HW pαq “ 1 such that for each output operand β P F

4
2

LAT pα, βq “ 0, i.e. #tx P F4
2 | α ‚ x “ β ‚ Srxsu “ 8.

• The Good Outputs (GO) observed from the 1-1 LAT are the output
operands β P F

4
2 verifying HW pβq “ 1 such that for each input operand

α P F4
2, LAT pα, βq “ 0, i.e. #tx P F4

2 | α ‚ x “ β ‚ Srxsu “ 8.

All inputs (resp. outputs) that are not Good Inputs (resp. Good Outputs)
are considered Bad Inputs (resp. Bad Outputs).

Furthermore, potential supplementary properties of Substitution Boxes may
fragilize the cryptographic primitives they are used in : for example, their lin-
earity.

Property 4 (Cardinality of Linear SBoxes). Let n P Ně2. The number of linear
n-bit Substitution Boxes verify

p2n ´ 1q ˚ p2n ´ 2q ˚ . . . ˚ p2n ´ 2n´1q “
n´1ź

i“0

p2n ´ 2iq

Proof. Let S be a n-bit linear SBox. For every x such that 0 ď x ă 2n,

Srpxqns “ Srpxqn ‘ p0qns “ Srpxqns ‘ Srp0qns,

thus Srp0qns “ p0qn.

By linearity, all values of the SBox only depend on the values of Srp1qns,
Srp2qns, Srp2

2qns, . . . , Srp2
n´1qns. Indeed, for every x P N such that 0 ď x ă 2n,

there exists pxn´1, . . . , x0q P F
n
2 such that x “

řn´1

i“0
xi2

i´1. Subsequently,

Srpxqns “
Àn´1

i“0
xiSrp2

iqns.

• As mentioned above, the value of Srp0qns is fixed to be p0qn. There-
fore, there exists 2n ´ 1 potential values for Srp1qns, that are the non-
zero values of Fn

2 . In the same manner, it implies that, given the value
of Srp1qns there exists 2n ´ 2 possible values of Srp2qns : the values of
F
n
2 z tSrp0qns, Srp1qnsu.

Thus, at this point, the values of Srp0qns, Srp1qns, Srp2qns and Srp3qns “
Srp1qns ‘ Srp2qns are fixed.

• It remains 2n ´ 22 possible values for Srp22qns : the elements of F
n
2 z

tSrpiqns for 0 ď i ď 3u. Then, once this value chosen, the 23 values

tSr
ř2

i“0
xip2

iqns for px2, x1, x0q P F
3
2u are fixed.
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• In the same way, it remains 2n´ 23 different values for Srp23qns : the ele-

ments of Fn
2 z tSr

ř2

i“0
xip2

iqns for px2, x1, x0q P F
3
2u. Once this value has

been chosen, the 24 first values of S (tSr
ř3

i“0
xip2

iqns for px3, x2, x1, x0q P
F
4
2u) are fixed.

This process can be repeated : for the choice of the value of Srp2kqns there

exists 2n´2k possibilities : the elements of Fn
2 z tSr

řk´1

i“0
xi2

is for pxk´1, . . . , x0q
P Fk

2u. The last value to be chosen will be Srp2n´1qns, with 2n ´ 2n´1 possibil-
ities.

As a conclusion, as detailed above all values of the linear SBox S can be
deduced from Srp20qns, Srp2

1qns, . . . , Srp2
n´1qns, and there exists respectively

2n´20, 2n´21, . . . , 2n´2n´1 possibilities for each. Hence, the number of linear
n-bit SBoxes verify

p2n ´ 1q ˚ p2n ´ 2q ˚ . . . ˚ p2n ´ 2n´1q “
n´1ź

i“0

p2n ´ 2iq

4.4 Bitslicing

Firstly introduced and applied on DES in [Bih97], bitslicing consists in imple-
menting an operation as a combinatorial circuit in software ([MDLM18]). In
other words, the basic idea of bitslicing is to implement an operation using
only Boolean operators XOR, AND, OR and NOT on bits. To that end, n-bit
variables of this operation are implemented as n variables of one bit.

Bitslicing look-up tables avoids cache-timing attacks, as the result value of
the circuit is computed at each instance and cannot be stored into the cache.
For example, [Kwa00] describes how to implement the 4-bit SBox of DES using
56 gates XOR, AND, OR or NOT, and the 3-bit SBox S “ r2, 0, 1, 6, 3, 5, 4, 7s
can be written as b2b1b0 “ Sra2a1a0s with

x0 “ a0 AND a1

x1 “ a0 XOR a1

x2 “ NOT a0

x3 “ x1 AND a2

x4 “ x2 AND a1

b0 “ x4 XOR a2

b1 “ x2 XOR a1

b2 “ x0 XOR x3

Bitslicing is notably useful when performing several instances of the imple-
mentation in a parallel manner is needed. Indeed, a m-bit register can be filled
with m one-bit variables arised from m different instances of the implementation.

Bitsliced implementations are by nature resistant to timing attacks. Tim-
ing attacks aim to extract the key (or a secret variable) from a cryptographic
primitive by exploiting the variations of the execution time depending on this
primitive inputs [BB05]. Bitsliced implementations are composed of the bitwise
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operations mentioned hereinabove, and those operations are by design constant-
time, hence the timing attack resistance.

There exists different ways to bitslice an implementation. Some papers like
[MPC00] or [BLL15] describe bitsliced implementations specifically designed for
certain cryptographic primitives. Many methods destined to bitslice any crypto-
graphic primitive focus on the bitslicing of SBoxes, that are the usual non-linear
operations of those primitives ([GR16], [SKP23]). To be able to fully bitslice
any primitive, [Mer20] introduces the Usuba language and its corresponding
compiler Usubac. Usubac takes the description of a symmetric cryptographic
primitive in this language and produces a bitsliced implementation of the prim-
itive in C.

4.5 Error-Correcting Codes

For the new masking scheme described in section 10, we firstly aim to use an
error-correcting code with an easy management of codewords parities, hence
the choice of cyclic codes. Furthermore, since the masking scheme is designed
to only be constituted of Boolean operations, we choose BCH codes as they
can be decoded in constant time via the Peterson-Gorenstein-Zierler algorithm
([Pet60]).

To that end, we first remind basic properties of error-correcting codes and
subsequently BCH error-correcting codes.

4.5.1 Basic Properties

We first remind basic properties of error-correcting codes needed for the remain-
der of the dissertation.

Definition 5. Let A be a finite alphabet and n P N‹. An error-correcting code
over A of length n is a non-empty set of An.

Definition 6 (Minimal Distance). Let C be an error-correcting code of length
n. The minimal Hamming distance d of C verify

d “ min
x,yPC

dHW px, yq

Definition 7 (Correction Capacity). Let C be an error-correcting code of length
n and minimal Hamming distance d. The correction capacity t of the code C

verifies

t “ t
d´ 1

2
u.

Definition 8 (Cyclic codes [ABO09]). Let n P N
‹. A linear code C of length

n is said to be a cyclic code if all cyclic permutations of codewords belong to
the code as well, i.e.

pc0, c1, . . . , cn´1q P C ùñ pcn´1, c0, c1, . . . , cn´2q P C
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Property 5 (Polynomial Representation of Codewords). For a cyclic code C of
length n over a finite field Fq,

• we can identify each codeword pc0, c1, . . . , cn´1q P F
n
q to its polynomial

representation c0 ` c1X ` c2X
2 ` . . .` cn´1X

n´1 P FqrXs{pX
n ´ 1q and

reciprocally.

• there exists a polynomial gpXq P FqrXs such that, for each codeword
pc0, c1, . . . , cn´1q, gpXq|c0 ` c1X ` c2X

2 ` . . . ` cn´1X
n´1. This poly-

nomial gpXq is noted generator polynomial of the cyclic code C.

4.5.2 BCH Error-Correcting Codes

BCH error-correcting codes are based on the following mathematical notions
and properties. Thereafter, we will assume q to be a prime power.

Definition 9. Let n P N
‹ such that n ^ q “ 1, m the multiplicative order of

q modulo n. Let s P t0, . . . , n ´ 1u. We note Cpsq the q-cyclotomic class of s
modulo n :

Cpsq “ ts, s ˚ q, . . . , s ˚ qms´1u,

with ms being the smallest non-zero integer verifying s “ s ˚ qms pmod nq.

Definition 10. Let n P N
‹ such that n ^ q “ 1, m the multiplicative order

of q modulo n and α an element of Fqm of multiplicative order n. Let s P
t0, . . . , n´ 1u. We note the polynomial MαspXq to be

MαspXq “
ś

iPCpsq

pX ´ αiq “
ms´1ś
i“0

pX ´ αsqiq.

Subsequently, the BCH (Bose Chaudhuri Hocquenghem) error-correcting
codes can be defined as follows :

Definition 11 (BCH Code, [BRC60a], [BRC60b]). Let n P N
‹, m the multi-

plicative order of q modulo n, α an element of Fqm of multiplicative order n and
b, δ P N such that δ ě 3. A cyclic code of length n over Fq is said to be a BCH

code of minimum Hamming distance at least δ if its generator polynomial gpXq
verifies

gpXq “ lcmpMαbpXq,Mαb`1pXq, . . . ,Mαb`δ´2pXqq

Property 6 (Correction Capacity of a BCH Code). The correction capacity t
of a BCH code of minimum Hamming distance at least δ verifies

t ě t
δ ´ 1

2
u.
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4.5.3 Additional Properties

For the selection of the parameters of the BCH code we use in the scheme that is
detailed in subsection 9.1, we consider the following additional properties about
the 2-cyclotomic classes and Mαi polynomials.

Property 7. Let odd n P N
‹ such that n ě 3 and s P t0, . . . , n´ 1u. The

2-cyclotomic class of s modulo n is a singleton if and only if s “ 0.

Proof. On the one hand, by definition, Cp0q “ t0u. On the other hand, suppose
that there exists s P t0, . . . , n´ 1u such that Cpsq “ tsu. This implies that ms,
defined as the smallest non-zero integer such that s “ s ˚ 2ms pmod nq, also
verifies that s ˚ 2ms´1 “ s.

Therefore, as naturally ms ´ 1 ă ms, the hypothesis on ms implies that
ms´ 1 “ 0, and thus ms “ 1. Therefore, s verifies 2 ˚ s “ s pmod nq, i.e. s “ 0
pmod nq. Since s P t0, . . . , n ´ 1u, this implies that s “ 0. As a conclusion, if
the 2-cyclotomic class of s modulo n is a singleton, then s “ 0.

Property 8. Mαs P FqrXs.

Proof. First of all, pMαspXqq
q “ p

ms´1ś
i“0

pX ´ αsqi qqq “
ms´1ś
i“0

pX ´ αsqi qq “

ms´1ś
i“0

Xq´αsqi`1

, therefore pMαspXqq
q “

ms´1ś
i“0

Xq´αsqi`1

“
ms´1ś
i“0

Xq´αsqi “

MαspX
qq.

Subsequently, we note MαspXq “
řms´1

j“0
ajX

j , with aj P Fqm for 0 ď j ď
ms ´ 1. Then,

• pMαspXqq
q “ p

ms´1ř
j“0

ajX
jqq “

ms´1ř
j“0

a
q
jX

qj

• MαspX
qq “

ms´1ř
j“0

ajpX
qqj “

ms´1ř
j“0

ajX
qj

Thus, MαspXq
q “MαspX

qq ùñ
ms´1ř
j“0

a
q
jX

qj “
ms´1ř
j“0

ajX
qj .

Consequently, since these polynomials are equal, it implies that for all 0 ď

j ď ms ´ 1, aj “ a
q
j , hence aj P Fq. In conclusion, MαspXq “

ms´1ř
j“0

ajX
j P

FqrXs.

Property 9. Mαs is irreducible over Fq.

Proof. By definition, αs P Fqm is a root of Mαs . If we suppose that Mαs is not
irreducible over FqrXs, then there exists a factor P P FqrXs admitting αs as a
root, i.e. P pαsq “ 0. As P P FqrXs, P pα

sqq “ P pαsqq “ 0 and by extension
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P pαsqi q “ 0 for all 0 ď i ď ms ´ 1. Consequently, MαspXq “
ms´1ś
i“0

pX ´ αsqi q

divides P .
Moreover, P |Mαs by hypothesis, therefore P “ Mαs . In conclusion, Mαs is

irreducible over FqrXs (and is the minimal polynomial of αs over FqrXs).

Property 10. Let ti0, i1, . . . , ir´1u Ă t0, . . . , n´1u. The least common multiple
of Mαi0 ,Mαi1 , . . . ,Mα

ir´1 is a product of some of these Mαj polynomials.

Proof. First of all, we note tj0, . . . , jt´1u the representatives of the different
cyclotomic classes of i0, i1, . . . , ir´1, in such a way that each different polynomial
Mαiv only appears once in the set tMαj0 , . . . ,Mα

jt´1 u. Therefore,

lcmpMαi0 ,Mαi1 , . . . ,Mα
ir´1 q “ lcmpMαj0 , . . . ,Mα

jt´1 q,

with the polynomialsMαj0 , . . . ,Mα
jt´1 being two by two distincts. As these

polynomials are irreducible (see Property 9) and two by two distincts, they are
coprime. Therefore,

lcmpMαi0 ,Mαi1 , . . . ,Mα
ir´1 q “ lcmpMαj0 , . . . ,Mα

jt´1 q

“
Mαj0 ˚Mαj1 ˚ . . . ˚Mα

jt´1

gcdpMαj0 ,Mαj1 , . . . ,Mα
jt´1 q

“Mαj0 ˚Mαj1 ˚ . . . ˚Mα
jt´1

Thus, the least common multiple of Mαi0 ,Mαi1 , . . . ,Mα
ir´1 is a product of

some of these polynomials.
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5 State of the Art

5.1 State of the Art of White-Boxing Contests

Since the development of the white-box cryptography, a cat-and-mouse challenge
has been running between designers and attackers. For a long time, the security
of most solutions deployed in the industry relied on secrecy rather than on
academic-proved designs. To that end, the ECRYPT-CSA consortium organized
for the first time WhibOx, a white-box cryptography competition during the
2017 edition of CHES [Whia]. The purpose of this Catch The Flag challenge
was to allow white-box design researchers to confront their implementations to
all attackers of the white-box cryptography community.

Participant designers were invited to submit their implementations of AES-
128 with freely-chosen fixed keys, written with only generic C instructions. Each
submission needed to comply with different requirements, for example a source
code of at most 50 MB, a compilation time of less than 100 seconds, an exe-
cutable being 20 MB in size or less and using 20 MB of RAM or less, and a
function call time of less than one second on average. The results of this contest
illustrated the difficulty of white-box secure cryptography designing, as none
of the 94 submitted challenges had remained unbroken at the end. Precisely,
among those 94 submissions :

• 88 were broken in less than one week p94%q, including

• 81 that were broken in less than a day p86%q, including

• 55 that were broken in less than an hour p59%q, including

• 38 that were broken in less than 30 minutes p40%q, including

• 20 that were broken in less than 10 minutes p21%q.

More precisely, the three most successful challenges resisted for respectively
11, 12 and 27 days ([GPRW20]).

Subsequently, a second edition of WhibOx was organized in 2019 by Crypto-
Experts and CyberCrypt, that was still concerning AES-128 implementations in
C [Whib]. Most of the requirements imposed during the first edition of WhibOx
(including the ones mentioned above) were renewed. Among the 27 submissions
of this edition :

• the 24 submissions that were broken p89%q were broken in less than a
month, including

• 23 that were broken in less than two weeks p85%q, including

• 18 that were broken in less than a week p67%q, including

• 6 that were broken in less than a day p22%q, including

• none that were broken in less than an hour.

31



Three challenges had remained unbroken by the end of the contest (respec-
tively 21 and 24 days after their submissions), but were later broken with grey-
box attacks in [GRW20].

Finally, a third edition of the WhibOx contest was organized as the CHES
2021 Catch the Flag Challenge [Whic]. Nevertheless, the focus of this edition
was public-key white-box cryptography, and more specifically the ECDSA sig-
nature (on NIST P256 curve) under a freely chosen secret key. Therefore the
submissions were not in the symmetric white-box cryptography scope of this
thesis.

5.2 Masking Offers Resistance to Side-Channel Attacks

The analysis of the security of the candidates of the WhibOx 2017 contest
detailed in [AT20] illustrates that side-channel attacks are a major threat to
white-box implementations.

Masking constitutes a countermeasure to side-channel attacks. Indeed, as
detailed in subsection 3.2, masking a variable x P K with nin shares x0, . . . ,
xnin´1 in K consists in replacing in an implementation the variable x by its
shares pxiq0ďiănin . By definition of sharings, each tuple of nin ´ 1 shares xi
is independent from x. Therefore, as the side-channel leakage of each share
is independent from the side-channel leakage of other shares, recovering the
variable x requires the retrieval of all nin shares.

Consequently, as detailed notably in [Cas22], if each share xi can be recov-
ered with a probability pw then, since an attacker will be able to recover the
original variable x only by retrieving all nin shares xi, he will be able to retrieve
the value of x with a probability being Oppninw q, hence the security enhancement.

5.3 Different Strategies to Mask an Implementation

Different types of masking have been developed in the literature. A branch
has been notably devoted to the design of masking dedicated to specific cryp-
tographic primitives. In these cases, a different masking scheme pFiq0ďiănout is
designed for each component function f of the considered primitive.

The most studied primitive to be masked is AES. For example, in 2012,
[NSGD12] expounded RSM, a countermeasure masking each component func-
tion of AES-256, that was later improved in [BBD`14]. Many papers including
[ZSM`08], [SBS16] and [GD17] focus on the masking of the SBox in AES, since
it is its only non-linear operation, with high complexity. On the other hand, in
2021, [MZLZ21] aimed to improve the masking of the non-linear operations of
AES, weaknesses of the then-existing constructions. Finally, in 2022, [ADN`22]
focused on designing three different AES maskings that do not require fresh
randomness.

The other major strategy consists in designing masking schemes operating
on a lower level of the implementations of primitives, therefore allowing those
schemes to not be specific to a cryptographic primitive. To that end, the im-
plementations on which those masking schemes are applied are usually bitsliced

32



implementations of any cryptographic primitive. Most masking schemes with
this aim in mind are designed in finite fields of characteristic two (i.e. of the
form F2k), in particular F2. In this instance, the operations are mainly bitwise
operations, namely XOR, AND, OR and NOT.

The bitwise operation f of a bitsliced implementation mostly targeted to
be masked when following the second strategy is the AND operation. Indeed,
among the four Boolean operations XOR, AND, NOT and OR,

• The XOR operation is associative with regards to input sharings. There-
fore, performing a XOR between two variables using their sharings can be
performed simply by XORing shares.

• The NOT operation can be performed on a sharing of a variable by flipping
the value of one of its shares.

• The OR operation can be rewritten with three instances of the NOT op-
eration and one instance of the AND operation, since a_b “  p a^ bq.

5.4 State of the Art of Masking Schemes Security Prop-

erties

Different models have been introduced in the literature to assess the security
of masking schemes, and different properties of these masking schemes can be
sufficient conditions to ensure their security in those models.

5.4.1 Noisy Leakage Model Implies d-Probing Security

In 1999, Chari et al. introduced in their paper [CJRR99] the noisy leakage model
which aimed to be the more realistic leakage model, where the adversary can
obtain leaked values that are sampled thanks to a Gaussian distribution centered
on the real value of the sensitive variables. This model was later extended by
Rivain and Prouff in [PR13] to general noise distributions. The noisy leakage
model allows to simulate leakage in a rather precise manner, but is not very
easy to use in practice. That is why, in [ISW03], Ishai et al. introduced the
d-probing security model.

Property 11 (d-probing security). A circuit is d-probing secure if and only if
every set of d intermediate variables is independent of any sensitive variable.
For every set of d probes pp0, . . . , pd´1q, this amounts to

Ipp0 Y . . .Y pd´1;xq “ 0

This property is much easier to prove than security in the noisy leakage
model, but was thought to be not sufficiently accurate to describe the leakage.
However, in 2014, Duc et al. proved in [DDF14] that security in the d-probing
model implies security in the noisy leakage model.
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5.4.2 Correctness

The first property that all masking schemes must comply with is correctness
([Bil15]). This property does not participate in the security of the scheme by
itself, but is essential for the natural purpose of maintaining the functionality of
the function to be masked f . Indeed, for a masking pFiq0ďiďnout´1 of a function
f such that Y “ fpX1, . . . , Xnq, the output shares functions pFiq0ďiďnout´1

must verify that

nout´1À
i“0

Fi

´
pX0,jq0ďjănin

, . . . , pXn´1,jq0ďjănin

¯
“ f

˜
nin´1À
j“0

X0,j , . . . ,
nin´1À
j“0

Xn´1,j

¸

5.4.3 Non-Completeness

Property 12 (Non-Completeness, [NRR06], [Bil15]). A masking scheme F ver-
ifies non-completeness if each of its component functions Fi is independent of
at least one share of each of the input variables of the scheme.

In other words, non-completeness is necessary when supposing that a probe
on a combinational block (i.e. an operation) implies the leakage of all inputs
of this combinational block ([RBN`15]). Consequently, for a masking scheme
that does not satisfy non-completeness, a probe would imply the leakage of all
shares of at least one input variable, and therefore the recovery of the value of
this input.

5.4.4 Uniformity

Property 13 (Uniform Masking, [Bil15]). A pnin, noutq-masking scheme F of
a function f : Kn Ñ K with n inputs Xi and one output Y is said to be uniform
if and only if

@ px0, . . . , xn´1q P K
n,@ py0, . . . , ynout´1q P K

nout ,

P
´
pYjq0ďjďnout´1

“ pyjq0ďjďnout´1

ˇ̌
ˇ pXiq0ďiďn´1

“ pxiq0ďiďn´1

¯
“

$
’&
’%

1

|K|nout´1 if f px0, . . . , xn´1q “
nout´1À
j“0

yj

0 otherwise

In other words, uniformity implies that, for each n-tuple of input values of
f noted px0, . . . , xn´1q, all nout-sharings py0, . . . , ynout´1q that are computed by
F with a nin-sharing of px0, . . . , xn´1q as input are equiprobable.
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5.4.5 Non-Completeness and Uniformity Imply 1-Probing Security

In [NRR06], Nikova et al. demonstrate that the three properties of correctness,
uniformity and non-completeness constitute, when combined, sufficient condi-
tions for the security of implementations against first-order probing attacks.

Lemma 1 ([NRR06]). Non-completeness and uniformity implies 1-glitch prob-
ing extended security.

5.5 State of the Art of Boolean AND Masking Schemes

Our purpose is to design a masking scheme implementing the AND operation
between two bits with only Boolean operations. Among Boolean operations, the
masking of AND is by far the most developed since XOR and NOT are linear
with regards to their input shares. Therefore, they can be performed on input
sharings by respectively XORing shares or performing NOT on only one input
share. Finally, the OR operation can be written as a combination of instances
of AND and NOT.

We test the uniformity and non-completeness properties on four different
examples of such masking schemes : ISW ([ISW03]) and the three different
multiplication gadgets presented in [GJRS18], namely the BDF+ algorithm
of [BDF`17], the BBP+ algorithm of [BBP`16] and the BCPZ algorithm of
[BCPZ16]. The results are presented in Table 1.

ISW BDF+ BBP+ BCPZ

Number of
shares d

2 4 8 2 4 8 2 4 8 2 4 8

Uniformity ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

1st-Order
Non-Completeness

✗ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗

2nd-Order
Non-Completeness

✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Probing Security
Order

1 3 7 1 3 7 1 1 3 1 3 7

Clock cycles 75 291 1155 77 146 344 1204 108 498 2106
Code Size (Bytes) 164 164 164 248 244 344 344 240 648 2324
Random Variables 1 6 28 1 1 2 1 5 19 1 10 68

Table 1: Properties of ISW, BDF+, BBP+ and BCPZ gadgets

The implementations results, taken from [GJRS18], consider the straight
implementations of ISW, BDF+ and BBP+ with loops, and BCPZ with macros.

5.6 Fault-Resistant Masking Schemes

The study of the WhibOx 2017 candidates in [AT20] also illustrates that fault
attacks constitute the other major threat to white-box implementations. There-
fore, fault-resistant masking schemes have been developed in order to combine
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resistance against the listed two major threats to white-box implementations,
namely side-channel attacks and fault attacks. One of the solutions frequently
used to do so consists in introducing error-correcting codes in the design of
masking schemes.

The strategy most fault-resistant masking schemes use is detecting potential
faults rather than correcting them. In the case of masking schemes based on
error-correcting codes, it uses the fault detection property of the code to deterio-
rate the computation in the presence of a fault : this avoids the costly procedure
of correction. For example, authors of [MAN`19] detail a countermeasure to
combined side-channel and fault attacks, that associates masking with infective
computation at the detection of a fault. Likewise, [RDB`18] describes CAPA
(combined Countermeasure Against Physical Attacks) that is a side-channel
countermeasure inherited from Multi-Party Computation. This methodology
aborts the computation when detecting faults. Furthermore, [CCG`19] de-
scribes IPM-FD, a masking scheme derived from IPM (Inner Product Masking,
[BFGV12]) and DSM (Direct Sum Masking, [CGM19]) that performs error de-
tection as well.

Most of the masking schemes using error-correcting codes necessitate the
construction of suitable new error-correcting codes, as for example [CG16], and
operate with words of these codes. Particularly, [BCC`14] introduces Orthog-
onal Direct Sum Masking (ODSM). This masking uses a code C and its dual
D, then each element c P C is masked by XORing an element d P D. Subse-
quently, a method is provided to adapt the computation of the different steps of
a block cipher, using ODSM. Additionally, most masking schemes using error-
correcting codes use Maximum Distance Separable Codes specially designed for
the masking scheme, as they can be considered optimal. Nevertheless, [CRZ13]
describe a masking scheme using different non-MDS codes, depending on the
scheme order.

In conclusion, the reasoning between our approach is to build a masking
scheme that not only detects faults but corrects them. The overall computation
is thus not distorted or aborted in the presence of a fault, but always return
results, results that are correct. To do so, we aim to use an error-correcting code
well studied in the literature, since it allows to select a code with an optimized
correction process being compatible with bitslicing.
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6 Study of the White-Boxability of NIST Light-

weight Finalists

Lightweight cryptography is the cryptography field that aims to develop cryp-
tographic primitives suitable to devices with constrained capacities. To fulfill
the increasing need of cryptography in this type of devices, the NIST launched
in 2015 the NIST Lightweight Cryptography Standardization Contest, a process
to ”solicit, evaluate, and standardize” cryptographic algorithms fulfilling these
requirements.

Many of those devices with constrained capacities, as for example IoT ones,
can be used in a context where they will be vulnerable to white-box attackers.
Hence, we study the white-boxability of lightweight cryptographic primitives,
and focus on the finalists of the NIST Lightweight Cryptography Standardiza-
tion Contest.

6.1 Overview of NIST Lightweight Cryptography Stan-

dardization Contest

The NIST Lightweight Cryptography Standardization Contest was launched in
August 2018 when the NIST published a call for algorithms to be standardized as
”lightweight cryptographic standards with authenticated encryption with asso-
ciated data (AEAD) and optional hashing functionalities” ([SMC`21]). Among
the 57 submissions, 56 were confirmed as Round 1 candidates and announced
in April 2019. After a first selection process, the 32 Round 2 candidates were
revealed in August 2019.

Finally, the 10 finalists were announced in March 2021 :

• ASCON [DEMS21]

• Elephant [KCM20]

• GIFT-COFB [BPP`17b],[BCI`20]

• Grain-128AED [HJM`20]

• ISAP [DEM`20]

• PHOTON-Beetle [BCD`20]

• Romulus [GIK`20]

• SPARKLE [BBdS`20]

• TinyJambu [SSS`20]

• Xoodyak [DHP`20]

In February 2023, NIST announced ASCON to be the standardized lightweight
cryptography primitive, as it ”meets the needs of most use cases where lightweight
cryptography is required”.

The different criteria used to decide between candidates were side-channel
and fault attacks resistances, costs and performances, third-party analyses and
suitability for hardware and software implementations [NIS]. As white-boxability
was not part of those criteria, we proceed to review the white-boxability of the
10 finalists of the contest.
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6.2 A First Selection on the Ten NIST Lightweight Can-

didates

To select one of the ten NIST lightweight cryptography finalist candidates, Alex
Charlès and I made a first sorting following the arguments described below.

Firstly, an algorithm must not be broken with the disclosure of a state. In-
deed, in this case, retrieving the key would require to break only the encoding
of a state rather than the encoding scheme of the whole algorithm, thus weak-
ening the security of the said encoding scheme. In the NIST status report of
the second round candidates ([SMC`21], §3.3.4), PHOTON-Beetle [BCD`20],
Sparkle [BBdS`20] and Xoodyak [DHP`20] are not in accordance with this
argument.

Secondly, key information should be spread throughout an algorithm, as it
will oblige a white-box attacker to attack more parts of this algorithm ([Wys09],
§3.2).

Finally, the Kerckhoffs’s axiom imposes that it is supposed that the attacker
knows the algorithm and its design except for the key. Therefore, retrieving a
state of an algorithm allows an attacker to compute all operations that are not
key-dependent. Thus, Isap [DEM`20], Ascon [DEMS21] and Grain128-AEAD
[HJM`20] were eliminated.

6.3 The Choice of GIFT-COFB

6.3.1 Ruling Out TinyJAMBU and Romulus

TinyJAMBU [SSS`20] has an LFSR-based permutation that fills a 128-bit
LFSR with its current state to clock it. As the feedback is computed using
5 bits of the LFSR content and one bit of the key, and recovering the bits used
for the computation and the resulting feedback implies retrieving the key bits
involved, the LFSR and feedback bits need to be encoded. However, each of
the LFSR bits used in this computation can be reused up to 5 times during the
following clocks, and will need to be decoded at each usage. That constitutes
a drawback from the perspective of designing a white-box implementation of
this algorithm, as decoding repetitively the same pieces of information could
facilitate the attacker’s access to them, and potentially lead to the break of the
applied encoding scheme.

The 128-bit Romulus [GIK`20] state can be regarded as a matrix of 4x4
bytes. The MixColumns step of Romulus consists in XORing some state bytes
with each other, as for TinyJAMBU. Thus, similarly as in TinyJAMBU, it will
be necessary to decode some elements multiple times to achieve this MixColumns
step, leading to the same potential weakness as the TinyJAMBU one.

6.3.2 The Elephant Case

Elephant [KCM20] uses a function maskpK, a, bq “ mask
a,b
K that extends a key

K depending on a, b P N. Those parameters a and b depend on the block indexes
of the message and associated data. Thus maska,bK depends only on constant
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inputs, so we would want to precompute it in a white-box implementation to
reduce the manipulation of the key. However, the message length and the nonce
length are potentially infinite, forcing to restrict their lengths. Though, if Ele-
phant is using the Spongent-π permutation (Dumbo and Jumbo instances), a
similar solution to the one we are proposing might be able to encode it, after
spreading the XOR of maska,bK through the permutation.

6.3.3 Choosing GIFT-COFB

Even though algorithmic white-box implementations may exist for the last three
algorithms (TinyJAMBU, Romulus and Elephant), we finally choose GIFT-
COFB [BCI`20] for a white-box implementation.

GIFT-COFB uses GIFT [BPP`17b] to perform its cipher. There exists
two versions of GIFT : GIFT-64 and GIFT-128. For the rest of our study,
we considered GIFT to be GIFT-128. This block cipher GIFT-128 performs a
128-bit keyed encryption of a 128-bit plaintext, whereas COFB allows to cipher
arbitrary-long inputs for an Associated Encryption with Associated Data, using
GIFT.

We assume that a white-box implementation of GIFT-COFB would be the
easier to realise amongst the other algorithms, as the key is only used in GIFT
calls. Furthermore, GIFT XORs some key bits near the SubCells step, which
allows us to develop an implementation similar to the one proposed in Chow et
al. AES [CEJvO02].

Finally, we focus on realising a white-box implementation of simply GIFT
rather than the whole GIFT-COFB primitive, as the key is not used in GIFT-
COFB outside of GIFT occurences. Indeed, GIFT being white-box secure would
theorically imply GIFT-COFB being also secure to a white-box attacker.
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7 Our White-Box Implementation of GIFT

7.1 Overview of GIFT

As explained previously, we choose to concentrate our efforts into designing
a white-box implementation of GIFT. The GIFT primitive consists in forty
rounds, and uses three different operations in each of its forty rounds : SubCells,
PermBits and AddRoundKey ([BPP`17b]).

Algorithm 1: GIFT(S,RK)

Input : S, the 128-bit state and RK the round keys
Output: S

1 for i “ 0 to 39 do

2 S Ð SubCellspSq
3 S Ð PermBitspSq
4 S Ð AddRoundKeypS,RKrisq

5 end for

6 return S

• SubCells applies the 4-bit GIFT SBox GS to all 4-bit nibbles of the 128
bit state.

GS “ r1, 10, 4, 12, 6, 15, 3, 9, 2, 13, 11, 7, 5, 0, 8, 14s

• PermBits applies a bitwise permutation PB to the state.

• AddRoundKey XORs two bits of the current round key and one bit of a
round constant to each 4-bit nibble of the state. To simplify the notations,
we consider the round keys RK to include those round constants.

7.2 Presentation of Our Solution

We aim to build a white-box table-based implementation of GIFT. To that end,
we first need to make a modification in the layout of GIFT, while retaining its
correctness. Indeed, our solution first requires to merge AddRoundKey with
SubCells. To do so, as AddRoundKey and SubCells are not consecutive in a
same round, PermBits and AddRoundKey will be swapped. We use that, for S
the state and E the key and round constants array,

PBpSq ‘ E “ PBpS ‘ PB´1pEqq

Therefore, GIFT can be rewritten as described in Algorithm 2, in a way that
facilitates the design of a table-based implementation of this primitive.

The SubCells and AddRoundKey operations can then be merged together
in a single lookup table whose outputs will be encoded. Subsequently, to keep
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Algorithm 2: ČGIFT pS,ĄRK)

Input : S, the 128-bit state and ĄRK “ PB´1pRKq
Output: S

1 for i “ 0 to 39 do

2 S Ð SubCellspSq

3 S Ð AddRoundKeypS,ĄRKrisq
4 S Ð PermBitspSq

5 end for

6 return S

the correctness of GIFT, the inverses of the output encodings of the previous
round will be applied to the table input. We name the resulting look-up table
a TBox : Figure 1 represents T0, the right-most TBox of a round r.

G´1

r´1,15 G´1

r´1,10 G´1

r´1,5 G´1

r´1,0

GIFT

SBox

c k1 k0

Intern

LUTr,0

Gr,3 Gr,2 Gr,1 Gr,0

Figure 1: T0, the right-most TBox of round r

The eight output bits of each TBox are split into four 2-bit blocks, each one of
them being encoded by a randomly-chosen 2-bit permutation Gr,i. As a result,
each 2-bit input block is decoded by the inverse G´1

r´1,j of the corresponding
output encoding of the previous round.

In each 2-bit block of the input, once decoded, the left bit corresponds to a
bit of the GIFT state, while the right one goes as one of the four input bits of
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a randomly-chosen 4-bit bijective SBox ILUT .
Thus, on the one hand, the four decoded input blocks left bits go through the

GIFT SBox GS (SubCells stage) and are then XORed to the key bits pk1, k0q
and round constant bit c (AddRoundKey stage). On the other hand, the four de-
coded input blocks right bits go through the intern SBox ILUT . Then, similarly
as for the input blocks, the left bit of each 2-bit output block is an output bit of
GS and corresponds to a state bit of the actual GIFT computation, while the
right bit is an output bit of ILUT and can be considered as a pseudo-random
bit. As a conclusion, each of these 2-bit output blocks can be considered as
pseudo-random as it corresponds to the output of a pseudo-random encoding
computation, with half of its input being pseudo-random as well.

Finally, the PermBits step remains the same as in the original implementa-
tion of GIFT, except for the fact that the permutation is now applied to the
two-bit output blocks instead of single bits.

7.3 Design Rationale

7.3.1 The Output Bits of the GIFT SBox Cannot Be Encoded Al-

together

During an execution of GIFT, we cannot encode if only two out of the four
output bits of an instance of the GIFT SBox GS within the same function, as
they will map to different instances of GS in the following round due to the
GIFT permutation.

Furthermore, if we apply a 4-bit encoding to the 4-bit output of the GIFT
SBox GS in a round r, it would force to decode those whole four bits before
each GS instance of the next round r ` 1 that take as input a bit out of these
four. Indeed, the GIFT permutation PB was designed to ensure that the four
output bits of the SBox are linked to four different instances of the SBox in the
following round, and the 4-bit encoding applied implies that to recover one of
these bits it is mandatory to recover the whole four. Therefore, decoding and
recovering the four needed input bits of an instance of GS implies to decode
four blocks of four bits independently. Moreover, each 4-bit encoded output of
an instance of GS would need to be transmitted to each of the four next round
instances of GS taking one of its bits as input. Consequently, the resulting
TBoxes would have 16 input bits. The weight of a n-bit to m-bit look-up table
being 2n˚m bits, it would imply a TBox weight of (at very least) 216 bits, which
is already too heavy regardless of the output size of the TBox.

In the case where we would split the 4 output bits of the SBox GS into
two blocks of two bits and apply 2-bit encodings to each of these blocks, this
encoding repartition would provide a differential attacker with information on
the SBox GS inputs. Indeed, in this case, the attacker will be able to observe
if modifying an input block to the SBox GS will impact the left half, the right
half or the whole encoded output. As the value of GS is known to the attacker,
he will easily be able to break the encodings.
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7.3.2 Each Output Bit of the GIFT SBox Is 2-Bit Encoded

As stated above (subsubsection 7.3.1), it is not feasible to encode the output
bits of an instance of the GIFT SBox altogether. For this reason, we decide to
encode each of these four output bits separately, firstly by 2-bit encodings.

To ensure correctness throughout the different rounds, these 2-bit output
encodings need to be inversed at the beginning of corresponding TBoxes of the
following round. To that end, we use 2-bit input to 2-bit output encodings, and
to obtain the extra pseudo-random input bit of each of those 2-bit encodings, we
introduce the 4-bit pseudo-random SBox ILUT , that is bijective and non-linear.
Thus, each TBox consists of 8 input bits and 8 output bits.

Once the 8-bit TBox input is decoded, each left bit of the four 2-bit blocks
represents the state of GIFT, while the four remaining bits (the right bits of the
2-bit blocks) are pseudo-random bits. These four pseudo-random bits are mixed
together thanks to the randomly-chosen bijective SBox ILUT to complexify
differential attacks. Indeed, a single bit modification of the 8-bit input of a TBox
will have an impact on the 2-bit output of the decoding of the corresponding
2-bit input block. Thus, at least one bit of the state or one pseudo-random bit
will be modified. If a state bit is modified, then the 4-bit output of the GIFT
SBox GS will be modified and if a pseudo-random bit is modified then the 4-bit
output of ILUT will be modified. Hence, the overall 8-bit output of the TBox
will be modified, and not only the 2-bit output block with the same index as the
modified 2-bit input block. However, we will demonstrate in subsection 8.2 that
the knowledge of the GIFT SBox GS leads to an differential 2-round attack.

Moreover, the randomly-chosen intern lookup table complicates a brute force
attack. Indeed, there exists p2nq! different n-bit lookup tables, so the 4-bit intern
lookup table brings p24q! « 244 possibilities. A brute force attack would also
require to go through all the possible 2-bit lookup tables for each of the four
input decodings and four output encodings, as well as for the four possible key
values, and this, for each 256 inputs. Overall, this attack has to enumerate
around 290 possibilities.

We have chosen the 2-bit encoding design as it was the lightest, but heavier
encodings are also an option to enhance the brute-force attack resistance. Re-
placing the two middle 2-bit encodings and decodings by a 3-bit version also
allows to have a 6-bit intern lookup table (around 2296 possibilities), raising the
total cost of a brute force attack to around 2385 possibilities.

7.4 The Problem of the First and Last Round

Our white-box implementation implements GIFT with encoded inputs and out-
puts. To keep correctness with raw inputs, its first round input decodings and
last round output encodings must be removed. At this point, in each TBox of
the last round, the attacker would have access to the two output bits of the
GIFT SBox GS that are not to be XORed with (unknown) round key bits.
Indeed, we consider the round constant XORed to the left output bit of GS to
be known, we can then recover the plain value of this bit.
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Thus, by brute-force, the attacker could recover the two other GS output
bits, thus breaking all the TBoxes of the last round. This comprises the recovery
of the input encodings of these TBoxes, that are inverses of the output encodings
of the TBoxes of the penultimate round. These output encodings could hence
be recovered and we could apply the same method to break the TBoxes of
the penultimate round. Therefore, we could break the TBoxes round by round
from the last round up until the first, thus leading to the break of the encoding
scheme.

To avoid this kind of attacks, we suppose that GIFT is operating with en-
coded inputs and outputs. As a matter of fact, this is a use case common for
instance in the DRM field.
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Figure 2: Intermediate notations of T0, the right-most TBox of round r

8 Differential Attack and Evolution Perspectives

In this section, we first detail how, even in the case where ILUT is non lin-
ear, the attacker knowledge of the GIFT SBox GS results in the possibility
of a differential attack targeting two consecutive rounds of TBoxes. Then, we
demonstrate that this attack can be simplified if ILUT is linear. Finally, we
look for the existence of a SBox complying with the GIFT SBox properties while
preventing this 2-round differential attack. To that end, we use the notations
detailed in subsection 8.1.

8.1 Notations

To investigate the differential properties of a TBox, we use the following no-
tations, illustrated in Figure 2 with T0, the right-most TBox of a round r.
Additionally, we note that the reasoning developed in this section is valid for
any TBox of any round but the last, as TBoxes of the following round will need
to be considered.

The intermediate values of the TBox can be detailed as :

• TBoxin “ px7x6 x5x4 x3x2 x1x0q the input of the TBox.

• Decodout “ py7y6 y5y4 y3y2 y1y0q “ pG
´1

r´1,15px7x6q G
´1

r´1,10px5x4q

G´1

r´1,5px3x2q G
´1

r´1,0px1x0qq the output of the input decodings.

• GSin “ py7y5y3y1q the input of the SBox GS.

• GSout “ pz7z5z3z1q “ GSry7y5y3y1s the output of the SBox GS.
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• GSout* “ ppz7‘cqpz5‘k1qpz3‘k0qz1q the output of the SBox GS, XORed
with c the round constant bit and pk1, k0q the key bits.

• ILUTin “ py6y4y2y0q the input of the intern SBox ILUT .

• ILUTout “ pz6z4z2z0q “ ILUT ry6y4y2y0s the output of the intern SBox
ILUT .

• Encodin “ ppz7‘cqz6 pz5‘k1qz4 pz3‘k0qz2 z1z0q the input of the output
encodings.

• TBoxout “ pt7t6 t5t4 t3t2 t1t0q “ pGr,3ppz7 ‘ cqz6q Gr,2ppz5 ‘ k1qz4q
Gr,1ppz3 ‘ k0qz2q Gr,0pz1z0qq the output of the TBox.

8.2 Differential Attack

The 2-round differential attack can be decomposed into three major steps : first
of all, we show that the left bit of each input encoding of the TBox T0 can
be recovered, i.e. for each input encoding G´1

r´1,j and each pxl, xmq P F
2
2, we

recover yl P F2 such that G´1

r´1,jpxlxmq “ yl . The second step applies the
same principle to the TBoxes of the following round to recover the left bits of
their input encodings, and especially to the left bits of the input encodings that
are inverses of the output encodings of T0. This implies that, for each output
encoding Gr,k of T0 and each ptl, tmq P F

2
2, we can recover z‹

l P F2 such that
Gr,kpz

‹
1 q “ tltm. Finally, the last step uses this knowledge about the encodings

of T0 and the knowledge of the GIFT SBox GS to recover k0 and k1, the key
bits embedded in T0.

8.2.1 First Step Of The Attack

As detailed hereinabove, to perform our attack, we first choose px7, x6, x5, x4, x3,
x2q P F

6
2 and note that

• G´1

r´1,15px7x6q “ y7y6

• G´1

r´1,10px5x4q “ y5y4

• G´1

r´1,5px3x2q “ y3y2

As G´1

r´1,0 is a 2-bit encoding, it can be described as a bijective endo-

morphism of F
2
2. Thus, for every py1, y0q P F

2
2, there exists a unique input

px
py1,y0q
1

, x
py1,y0q
0

q P F2
2 such that G´1

r´1,0px
py1,y0q
1

x
py1,y0q
0

q “ py1, y0q.

For example, there exists px
p0,0q
1

, x
p0,0q
0

q P F
2
2 such that the computation of

T0rx7x6 x5x4 x3x2 x
p0,0q
1

x
p0,0q
0

s entails Decodout “ py7y6y5y4y3y200q and more
broadly the intermediate values listed in Figure 3.

Likewise, there exists px
p0,1q
1

, x
p0,1q
0

q P F
2
2 such that the output of the input

decodings isDecodout“py7y6 y5y4 y3y2 01q. It then implies that the GIFT SBox
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Figure 3: Example of intermediate values of T0

input GSin is py7y5y30q and the ILUT input ILUTin is py6y4y21q. Furthermore,
we note the ILUT output ILUTout “ ILUT ry6y4y21s as pz

1
6z

1
4z

1
2z

1
0q. This entails

that the inputs of the output encodings Encodin are ppz7‘cqz
1
6 pz5‘k1qz

1
4 pz3‘

k0qz
1
2 z1z

1
0q, as summed up in Figure 4.

More broadly, on the one hand, when we compute T0rx7x6x5x4x3x2x
py1,y0q
1

x
py1,y0q
0

s for all py1, y0q P F
2
2, the intermediate values Decodout obtained after

the input decodings are :

• py7y6 y5y4 y3y2 00q

• py7y6 y5y4 y3y2 01q

• py7y6 y5y4 y3y2 10q

• py7y6 y5y4 y3y2 11q

Furthermore, we note

• GSry7y5y30s “ pz7z5z3z1q

• GSry7y5y31s “ pz
1
7z

1
5z

1
3z

1
1q

• ILUT ry6y4y20s “ pz6z4z2z0q

• ILUT ry6y4y21s “ pz
1
6z

1
4z

1
2z

1
0q

The intermediate values Encodin, inputs of output encodings for the com-

putations of the T0rx7x6x5x4x3x2x
py1,y0q
1

x
py1,y0q
0

s are thus

• ppz7 ‘ cqz6 pz5 ‘ k1qz4 pz3 ‘ k0qz2 z1z0q for py1, y0q “ p0, 0q

• ppz7 ‘ cqz
1
6 pz5 ‘ k1qz

1
4 pz3 ‘ k0qz

1
2 z1z

1
0q for py1, y0q “ p0, 1q

• ppz1
7 ‘ cqz6 pz

1
5 ‘ k1qz4 pz

1
3 ‘ k0qz2 z

1
1z0q for py1, y0q “ p1, 0q

• ppz1
7 ‘ cqz

1
6 pz

1
5 ‘ k1qz

1
4 pz

1
3 ‘ k0qz

1
2 z

1
1z

1
0q for py1, y0q “ p1, 1q
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Figure 4: Second example of intermediate values of T0

On the other hand, in the first place, we can compute the values of T “
tT0rx7x6 x5x4 x3x2 x1x0s | px1, x0q P F

2
2u. These values can also be written as

• pGr,3ppz7 ‘ cqz6qGr,2ppz5 ‘ k1qz4qGr,1ppz3 ‘ k0qz2qGr,0pz1z0qq

• pGr,3ppz7 ‘ cqz
1
6qGr,2ppz5 ‘ k1qz

1
4qGr,1ppz3 ‘ k0qz

1
2qGr,0pz1z

1
0qq

• pGr,3ppz
1
7 ‘ cqz6qGr,2ppz

1
5 ‘ k1qz4qGr,1ppz

1
3 ‘ k0qz2qGr,0pz

1
1z0qq

• pGr,3ppz
1
7 ‘ cqz

1
6qGr,2ppz

1
5 ‘ k1qz

1
4qGr,1ppz

1
3 ‘ k0qz

1
2qGr,0pz

1
1z

1
0qq

For each of the elements listed above, we cannot determine the corresponding
px1, x0q. For example, we cannot determine px1, x0q P F

2
2 such that T0rx7x6 x5x4

x3x2 x1x0s “ pGr,3ppz7 ‘ cqz1
6qGr,2ppz5 ‘ k1qz

1
4qGr,1ppz3 ‘ k0qz

1
2qGr,0pz1z

1
0qq,

we only know that the value of pGr,3ppz7 ‘ cqz1
6qGr,2ppz5 ‘ k1qz

1
4qGr,1ppz3 ‘

k0qz
1
2qGr,0pz1z

1
0qq figures in the set T . Nevertheless, we demonstrate that infor-

mation about the encodings can still be deduced from the values of T .
Indeed, as Gr,3 is a bijection,

• if Gr,3ppz7‘ cqz6q “ Gr,3ppz7‘ cqz
1
6q “ Gr,3ppz

1
7‘ cqz6q “ Gr,3ppz

1
7‘ cqz

1
6q,

then pz7 ‘ cqz6 “ pz7 ‘ cqz1
6 “ pz

1
7 ‘ cqz6 “ pz

1
7 ‘ cqz1

6, i.e. z7 “ z1
7 and

z6 “ z1
6.

• if Gr,3ppz7‘ cqz6q ‰ Gr,3ppz7‘ cqz
1
6q ‰ Gr,3ppz

1
7‘ cqz6q ‰ Gr,3ppz

1
7‘ cqz

1
6q,

then pz7 ‘ cqz6 ‰ pz7 ‘ cqz1
6 ‰ pz

1
7 ‘ cqz6 ‰ pz

1
7 ‘ cqz1

6, i.e. z7 ‰ z1
7 and

z6 ‰ z1
6.

• if #tGr,3ppz7‘cqz6q, Gr,3ppz7‘cqz
1
6q, Gr,3ppz

1
7‘cqz6q, Gr,3ppz

1
7‘cqz

1
6qu “ 2,

then #tppz7‘cqz6q, ppz7‘cqz
1
6q, ppz

1
7‘cqz6q, ppz

1
7‘cqz

1
6u “ 2. Consequently,

either z7 “ z1
7 and z6 ‰ z6 or z7 ‰ z1

7 and z6 “ z6.
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The numerical value of the GIFT SBoxGS is known (see subsection 7.1), and
by notation GSry7y5y30s “ z7z5z3z1 and GSry7y5y31s “ z1

7z
1
5z

1
3z

1
1. Moreover, if

for example z7 “ z1
7, then GSry7y5y31s can be noted as z7z

1
5z

1
3z

1
1. Hence, in this

case :

#
GSry7y5y30s “ z7z5z3z1

GSry7y5y31s “ z7z
1
5z

1
3z

1
1

ñ py7, y5, y3q “ p1, 1, 0q or p1, 1, 1q

ñ py7, y5q “ p1, 1q

ñ

#
G´1

r´1,15px7x6q “ 1

G´1

r´1,10px5x4q “ 1

Note that we can also set the values of px7, x6, x5, x4, x1, x0q and vary px3, x2q
to obtain information about G´1

r´1,15, G
´1

r´1,10 and G´1

r´1,0, and keep the same
principle when varying px7, x6q or px5, x4q.

To determine the value of the two key bits of this TBox T0 of round r, the
previous procedure needs to be applied in order to obtain the left bit of each of
its four input encodings.

8.2.2 Second Step of the Attack : Consider TBoxes of Following

Round

This first step can also be applied on the corresponding TBoxes of following
round r` 1, that admit G´1

r,3 , G
´1

r,2 , G
´1

r,1 or G´1

r,0 as one of their input decodings.

Hence, for all pa, bq P F2
2, we can recover c3, c2, c1, c0 P F2 such that

• G´1

r,3pabq “ c3

• G´1

r,2pabq “ c2

• G´1

r,1pabq “ c1

• G´1

r,0pabq “ c0

Therefore, regarding the inverses of these encodingsGr,3, Gr,2, Gr,1, Gr,0 that
are the output encodings of the TBox T0, we can for all pt, t1q P F

2
2 recover

z̃7, z̃5, z̃3, z̃1 P F2 such that Gr,3pz̃7 q “ tt1, Gr,2pz̃5 q “ tt1, Gr,1pz̃3 q “ tt1 and
Gr,0pz̃1 q “ tt1.

8.2.3 Final Step Of The Attack

As the left bits of the TBox T0 input encodings G´1

r´1,15, G
´1

r´1,10, G
´1

r´1,5 and

G´1

r´1,0 are known, for any possible TBox input TBoxin “ px7, x6, x5, x4, x3, x2,

x1, x0q P F
6
2 the corresponding intermediate GIFT SBox inputGSin “ py7y5y3y1q

and thus GIFT SBox output GSout “ GSry7y5y3y1s “ pz7z5z3z1q can be de-
duced.

On the other hand, we can compute TBoxout “ pt7t6 t5t4 t3t2 t1t0q “ T0rx7x6
x5x4 x3x2 x1x0s. Since the left bits of G´1

r,3, G
´1

r,2, G
´1

r,1 and G´1

r,0 are known as
detailed in subsubsection 8.2.2, the values of pz7 ‘ cq, pz5 ‘ k1q, pz3 ‘ k0q and
z1 P F2 can be determined such that
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$
’’’’&
’’’’%

G´1

r,3pt7t6q “ pz7 ‘ cq

G´1

r,2pt5t4q “ pz5 ‘ k1q

G´1

r,1pt3t2q “ pz3 ‘ k0q

G´1

r,0pt1t0q “ z1

, i.e.

$
’’’&
’’’%

Gr,3ppz7 ‘ cq q “ t7t6

Gr,2ppz5 ‘ k1q q “ t5t4

Gr,1ppz3 ‘ k0q q “ t3t2

Gr,0pz1 q “ t1t0

Hence, GSout* “ ppz7‘cqpz5‘k1qpz3‘k0qz1q is also known. In conclusion, for
any TBox input TBoxin “ px7, x6, x5, x4, x3, x2, x1, x0q P F

6
2 we can determine

both GSout “ pz7z5z3z1q and GSout* “ ppz7 ‘ cqpz5 ‘ k1qpz3 ‘ k0qz1q. Thus,
the value of key bits pk1, k0q can be deduced from the values of pz5 ‘ k1q, pz3 ‘
k0q, z5 and z3.

A numerical example of the major steps of the attack can be found in Ap-
pendix A.

8.3 Intern SBox ILUT and Differential Properties

8.3.1 Using a Linear Intern SBox ILUT Leads to its Recovery

In this subsection we suppose that we use in the TBox T0 an intern linear SBox
ILUT . Thus, as an example, when noting pv6, v4, v2, v0q “ ILUT r0001s then
for all pa, b, c, dq P F4

2 verifying ILUT rabcds “ efgh P F4
2,

ILUT rabcds “ ILUT rabcds ‘ ILUT r0001s “ efgh‘ v6v4v2v0.

Subsequently, let px7, x6, x5, x4, x3, x2q P F
6
2. We note

$
’&
’%

G´1

r´1,15px7x6q “ y7y6

G´1

r´1,10px5x4q “ y5y4

G´1

r´1,5px3x2q “ y3y2

We then compute successively T0rx7x6x5x4x3x200s, T0rx7x6x5x4x3x201s,
T0rx7x6x5x4x3x210s and T0rx7x6x5x4x3x211s. As detailed above in the gen-
eral case of the attack, this implies that among these four computations the
output bits py1, y0q P F

2
2 of the right-most input encoding G´1

r´1,0 take alterna-

tively (but not necessarily respectively) the four values 00, 01, 10 and 11 of F2
2.

Therefore, the inputs and outputs of the GIFT SBox GS and the intern SBox
ILUT are :

• When G´1

r´1,0px1x0q “ 00,

pz7z5z3z1q “ GSry7y5y30s and pz6z4z2z0q “ ILUT ry6y4y20s
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• When G´1

r´1,0px1x0q “ 01,

z7z5z3z1 “ GSry7y5y30s and z
1
6z

1
4z

1
2z

1
0 “ ILUT ry6y4y21s

“ ILUT ry6y4y20s ‘ ILUT r0001s

“ z6z4z2z0 ‘ v6v4v2v0

“ pz6 ‘ v6qpz4 ‘ v4qpz2 ‘ v2qpz0 ‘ v0q

• When G´1

r´1,0px1x0q “ 10,

z1
7z

1
5z

1
3z

1
1 “ GSry7y5y31s and z6z4z2z0 “ ILUT ry6y4y20s

• When G´1

r´1,0px1x0q “ 11,

z1
7z

1
5z

1
3z

1
1 “ GSry7y5y31s and z

1
6z

1
4z

1
2z

1
0 “ ILUT ry6y4y21s

“ ILUT ry6y4y20s ‘ ILUT r0001s

“ z6z4z2z0 ‘ v6v4v2v0

“ pz6 ‘ v6qpz4 ‘ v4qpz2 ‘ v2qpz0 ‘ v0q

Thus, the different outputs of the TBox are

• Gr,3pz7z6qGr,2pz5z4qGr,1pz3z2qGr,0pz1z0q

• Gr,3pz7pz6 ‘ v6qqGr,2pz5pz4 ‘ v4qqGr,1pz3pz2 ‘ v2qqGr,0pz1pz0 ‘ v0qq

• Gr,3pz
1
7z6qGr,2pz

1
5z4qGr,1pz

1
3z2qGr,0pz

1
1z0q

• Gr,3pz
1
7pz6 ‘ v6qqGr,2pz

1
5pz4 ‘ v4qqGr,1pz

1
3pz2 ‘ v2qqGr,0pz

1
1pz0 ‘ v0qq

By computing sets of values tT0rx7x6x5x4x3x200s, T0rx7x6x5x4x3x201s,
T0rx7x6x5x4x3x210s, T0rx7x6x5x4x3x211su for px7, x6, x5, x4, x3, x2q P F

6
2, it is

possible to determine the value v6v4v2v0 “ ILUT r0001s. First of all, regarding
the value of v6 :

• If v6 “ 0 then tGr,3pz7z6q, Gr,3pz7pz6‘v6qq, Gr,3pz
1
7z6q, Gr,3pz

1
7pz6‘v6qqu “

tGr,3pz7z6q, Gr,3pz7z6q, Gr,3pz
1
7z6q, Gr,3pz

1
7z6qu. Thus,

– if z1
7 “ z7 then #tGr,3pz7z6q, Gr,3pz7z6q, Gr,3pz7z6q, Gr,3pz7z6qu “ 1

– if z1
7 “ z7 then #tGr,3pz7z6q, Gr,3pz7z6q, Gr,3pz7z6q, Gr,3pz7z6qu “ 2

• If v6 “ 1 then tGr,3pz7z6q, Gr,3pz7pz6‘v6qq, Gr,3pz
1
7z6q, Gr,3pz

1
7pz6‘v6qqu “

tGr,3pz7z6q, Gr,3pz7z6q, Gr,3pz
1
7z6q, Gr,3pz

1
7z6qu. Thus,

– if z1
7 “ z7 then #tGr,3pz7z6q, Gr,3pz7z6q, Gr,3pz7z6q, Gr,3pz7z6qu “ 2

– if z1
7 “ z7 then #tGr,3pz7z6q, Gr,3pz7z6q, Gr,3pz7z6q, Gr,3pz7z6qu “ 4
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Therefore, if there exists px7, x6, x4, x3, x2q P F
6
2 such that the left-most

2-bit output block Gr,3pz7z6q takes the same value in F
2
2 for the four compu-

tations of T0rx7x6x5x4x3x200s, T0rx7x6x5x4x3x201s, T0rx7x6x5x4x3x210s and
T0rx7x6x5x4x3x211s, then v6 “ 0. Likewise, if this 2-bit output block takes
four different values, then v6 “ 1. Thus, as v6 is known to the attacker, he can
for a given px7, x6, x5, x4, x3, x2q P F

6
2 determine whether z1

7 “ z7 or z1
7 “ z7,

i.e., for y7y6 “ G´1

r´1,15px7x6q, y5y4 “ G´1

r´1,10px5x4q, y3y2 “ G´1

r´1,5px3x2q and
GSry7y5y30s “ z7z5z3z1, whether

GSry7y5y31s “ z7z
1
5z

1
3z

1
1 or GSry7y5y31s “ z7z

1
5z

1
3z

1
1

In the same manner, v4 can be recovered considering the set of values of
the second left-most 2-bit output block tGr,2ppz5 ‘ k0qz4q, Gr,2ppz5 ‘ k0qpz4 ‘
v4qq, Gr,2ppz

1
5 ‘ k0qz4q, Gr,2ppz

1
5 ‘ k0qpz4 ‘ v4qqu. This can be applied to the

recovery of v4, v2 and v0 such that it is possible for an attacker to determine
v6v4v2v0 “ ILUT r0001s.

Likewise, it is possible for an attacker to determine the values of ILUT r0010s,
ILUT r0100s and ILUT r1000s, and subsequently all values of ILUT , as for all
py6, y4, y2, y0q P F

4
2, ILUT ry6y4y2y0s “ py6˚ILUT r1000sq‘py4˚ILUT r0100sq‘

py2 ˚ ILUT r0010sq ‘ py0 ˚ ILUT r0001sq.

8.3.2 The Knowledge of the Intern SBox ILUT Simplies the 2-Round

Differential Attack

We demonstrate that the knowledge of the intern SBox ILUT simplifies the
recovery of the left bit of the input encodings of the TBox T0. For that pur-
pose, we still suppose px7, x6, x5, x4, x3, x2q P F

6
2 with G´1

r´1,3px7x6q “ y7y6,

G´1

r´1,2px5x4q “ y5y4 and G´1

r´1,1px3x2q “ y3y2, and more broadly retain the
notations developed in subsubsection 8.2.1.

In the generic setting of the attack described in subsection 8.2, when com-
puting T0rx7x6x5x4x3x200s, T0rx7x6x5x4x3x201s, T0rx7x6x5x4x3x210s and
T0rx7x6x5x4x3x211s, the different input arrays of output encodings Encodin are
noted :

• ppz7 ‘ cqz6 pz5 ‘ k1qz4 pz3 ‘ k0qz2 z1z0q for py1, y0q “ p0, 0q

• ppz7 ‘ cqz
1
6 pz5 ‘ k1qz

1
4 pz3 ‘ k0qz

1
2 z1z

1
0q for py1, y0q “ p0, 1q

• ppz1
7 ‘ cqz6 pz

1
5 ‘ k1qz4 pz

1
3 ‘ k0qz2 z

1
1z0q for py1, y0q “ p1, 0q

• ppz1
7 ‘ cqz

1
6 pz

1
5 ‘ k1qz

1
4 pz

1
3 ‘ k0qz

1
2 z

1
1z

1
0q for py1, y0q “ p1, 1q

with#
GSry7y5y30s “ z7z5z3z1

GSry7y5y31s “ z1
7z

1
5z

1
3z

1
1

and

#
ILUT ry6y4y20s “ z6z4z2z0

ILUT ry6y4y21s “ z1
6z

1
4z

1
2z

1
0

Thus, regarding the value of the first 2-bit output block in the four compu-
tations,

56



• If #tG´1

r´1,3ppz7 ‘ cqz6q, G
´1

r´1,3ppz7 ‘ cqz
1
6q, G

´1

r´1,3ppz
1
7 ‘ cqz6q,

G´1

r´1,3pz
1
7 ‘ cqz

1
6u “ 4, then #tpz7‘cqz6, pz7‘cqz

1
6, pz

1
7‘cqz6, pz

1
7‘cqz

1
6u “

4, thus z1
7 “ z7 and z1

6 “ z6.

• If #tG´1

r´1,3ppz7 ‘ cqz6q, G
´1

r´1,3ppz7 ‘ cqz
1
6q, G

´1

r´1,3ppz
1
7 ‘ cqz6q,

G´1

r´1,3pz
1
7 ‘ cqz

1
6u “ 1, then #tpz7‘cqz6, pz7‘cqz

1
6, pz

1
7‘cqz6, pz

1
7‘cqz

1
6u “

1, thus z1
7 “ z7 and z1

6 “ z6.

• If #tG´1

r´1,3ppz7 ‘ cqz6q, G
´1

r´1,3ppz7 ‘ cqz
1
6q, G

´1

r´1,3ppz
1
7 ‘ cqz6q,

G´1

r´1,3pz
1
7 ‘ cqz

1
6u “ 2, it cannot be determined whether z1

7 “ z7 and
z1
6 “ z6 or z1

7 “ z7 and z1
6 “ z6.

If ILUT is known, noting ILUT r0001s “ v6v4v2v0 implies that

#
ILUT ry6y4y20s “ z6z4z2z0

ILUT ry6y4y21s “ pz6 ‘ v6qpz4 ‘ v4qpz2 ‘ v2qpz0 ‘ v0q

Thus, the different input arrays of output encodings Encodin can be written
as :

• ppz7 ‘ cqz6 pz5 ‘ k1qz4 pz3 ‘ k0qz2 z1z0q for py1, y0q “ p0, 0q

• ppz7 ‘ cqpz6 ‘ v6q pz5 ‘ k1qpz4 ‘ v4q pz3 ‘ k0qpz2 ‘ v2q z1pz0 ‘ v0qq for
py1, y0q “ p0, 1q

• ppz1
7 ‘ cqz6 pz

1
5 ‘ k1qz4 pz

1
3 ‘ k0qz2 z

1
1z0q for py1, y0q “ p1, 0q

• ppz1
7 ‘ cqpz6 ‘ v6q pz

1
5 ‘ k1qpz4 ‘ v4q pz

1
3 ‘ k0qpz2 ‘ v2q z

1
1pz0 ‘ v0qq for

py1, y0q “ p1, 1q

As a result, the third case where #tG´1

r´1,3ppz7 ‘ cqz6q, G
´1

r´1,3ppz7 ‘ cqz
1
6q,

G´1

r´1,3ppz
1
7 ‘ cqz6q, G

´1

r´1,3pz
1
7 ‘ cqz

1
6u “ 2 can be rewritten as #tG´1

r´1,3ppz7 ‘

cqz6q, G
´1

r´1,3ppz7‘cqpz6‘v6qq, G
´1

r´1,3ppz
1
7‘cqz6q, G

´1

r´1,3ppz
1
7‘cqpz6‘v6qqu “ 2.

As v6 is known, it can be deduced whether z1
7 “ z7 or z

1
7 “ z7. At this point, the

left bits of the input encodings of the TBox T0 can be recovered by the 2-round
attack detailed in subsection 8.2.

Nevertheless, we prove hereinbelow that the knowledge of the intern SBox
ILUT of the TBox T0 (whether being deduced thanks to its linearity or not)
does not enable an attacker to recover the key bits by a differential attack on
T0 only.

8.3.3 The Knowledge of the Intern SBox Does Not Lead to a Dif-

ferential Attack on the TBox Itself

In this section, we suppose that in the set-up stated in subsection 8.2 the intern
SBox ILUT is known to the attacker. Therefore, the left bits of the input
encodings of T0 can be recovered as detailed in subsubsection 8.3.2.
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Knowledge on the input left bits of output encodings of T0 is essential for an
attacker to determine with certainty its key bits, even if he has entirely broken
the input encodings beforehand. Indeed, if we suppose that the attacker has
effectively broken those input encodings, then when fixing the input of three
2-bit input blocks and computing the outputs of T0 when varying the fourth
2-bit input block, he could effectively deduce the outputs of the GIFT SBox GS
and the intern SBox ILUT .

Nevertheless, the key bits to be determined are added afterwards to the GS
output bits. Given the four computed outputs of T0, there exists for every
possible key bits pk0, k1q P F

2
2 potential corresponding outputs encodings Gr,3,

Gr,2, Gr,1 and Gr,0.
For example, we suppose px5, x4, x3, x2, x1, x0q P F

6
2. As mentioned above, by

hypothesis we assume that the attacker has entirely broken the input encodings
(whether by brute force or not). Thus, the attacker knows the input encodings
output values G´1

r´1,10px5x4q “ y5y4, G
´1

r´1,5px3x2q “ y3y2 and G´1

r´1,0px1x0q “
y1y0. Throughout the four computations of T0r00x5x4x3x2x1x0s, T0r01x5x4x3x2
x1x0s, T0r10x5x4x3x2x1x0s and T0r11x5x4x3x2x1x0s, the inputs and outputs of
the GIFT SBox GS and the inputs and outputs of the intern SBox ILUT are
(not necessarily respectively)

• GSr0y5y3y1s “ z7z5z3z1 and ILUT r0y4y2y0s “ z6z4z2z0

• GSr0y5y3y1s “ z7z5z3z1 and ILUT r1y4y2y0s “ z1
6z

1
4z

1
2z

1
0

• GSr1y5y3y1s “ z1
7z

1
5z

1
3z

1
1 and ILUT r0y4y2y0s “ z6z4z2z0

• GSr1y5y3y1s “ z1
7z

1
5z

1
3z

1
1 and ILUT r1y4y2y0s “ z1

6z
1
4z

1
2z

1
0

As by hypothesis the values of SBoxes GS and ILUT are known to the
attacker, he can compute those four different values GSr0y5y3y1s, GSr1y5y3y1s,
ILUT r0y4y2y0s and ILUT r1y4y2y0s. The output arrays of output encodings
corresponding to those pairs of GS and ILUT outputs will then respectively be
noted

• Gr,3ppz7 ‘ cqz6qGr,2ppz5 ‘ k0qz4qGr,1ppz3 ‘ k1qz2qGr,0pz1z0q

• Gr,3ppz7 ‘ cqz
1
6qGr,2ppz5 ‘ k0qz

1
4qGr,1ppz3 ‘ k1qz

1
2qGr,0pz1z

1
0q

• Gr,3ppz
1
7 ‘ cqz6qGr,2ppz

1
5 ‘ k0qz4qGr,1ppz

1
3 ‘ k1qz2qGr,0pz

1
1z0q

• Gr,3ppz
1
7 ‘ cqz

1
6qGr,2ppz

1
5 ‘ k0qz

1
4qGr,1ppz

1
3 ‘ k1qz

1
2qGr,0pz

1
1z

1
0q

The output bits values zi and z
1
i, the round constant bit c value as well as the

outputs of the TBox output encodings T0r00x5x4x3x2x1x0s, T0r01x5x4x3x2x1x0s,
T0r10x5x4x3x2x1x0s and T0r11x5x4x3x2x1x0s are known to the attacker, the key
bits k0 and k1 are not. Even with this knowledge, the attacker does not have
enough information on the output encodings to determine with certainty the
key bits.
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For example, we consider the second left-most output encoding Gr,2 and
the corresponding key bit k0. The attacker knows the values z4, z

1
4, z5, z

1
5 P

F2 and the set of values G “ tGr,2ppz5 ‘ k0qz4q, Gr,2ppz5 ‘ k0qz
1
4q, Gr,2ppz

1
5 ‘

k0qz4q, Gr,2ppz
1
5 ‘ k0qz

1
4qu. Thus, he can at most recover the right input bits

of Gr,2. More precisely, he knows the right bit of the inputs of Gr,2 whose
corresponding output belong to the set of values G : for g P G, he knows y P F2

such that Gr,2pxyq “ g, with an undetermined x P F2. Furthermore,

• If z1
5 “ z5 and z1

4 “ z4 then #G “ 1. Twelve out of the twenty-four 2-
bit encodings g effectively verify that the right bit of the input of g whose
corresponding output is Gr,2ppz5‘k0qz4q equals to z4: among those twelve
encodings, six verify that gp0z4q “ Gr,2ppz5‘k0qz4q and the other six verify
that gp1z4q “ Gr,2ppz5 ‘ k0qz4q.

• If z1
5 “ z5 and z1

4 “ z4 then #G “ 2. Four of the twelve 2-bit encodings g
verifying that the right bit of the input ab P F2 of g whose corresponding
output is Gr,2ppz5‘k0qz4q equals to z4 also verify that gpabq “ Gr,2ppz5‘
k0qz4q. Among those four encodings, two verify that gp0z4q “ Gr,2ppz5 ‘
k0qz4q and the other two verify that gp1z4q “ Gr,2ppz5 ‘ k0qz4q.

• If z1
5 “ z5 and z1

4 “ z4 then #G “ 2. Four of the twelve 2-bit encodings g
verifying that the right bit of the input ab P F2 of g whose corresponding
output is Gr,2ppz5‘k0qz4q equals to z4 also verify that gpabq “ Gr,2ppz5‘
k0qz4q. Among those four encodings, two verify that gp0z4q “ Gr,2ppz5 ‘
k0qz4q and the other two verify that gp1z4q “ Gr,2ppz5 ‘ k0qz4q.

• If z1
5 “ z5 and z1

4 “ z4 then #G “ 4. Two of the twelve 2-bit encodings g
verifying that the right bit of the input ab P F2 of g whose corresponding
output is Gr,2ppz5‘k0qz4q equals to z4 also verify that gpabq “ Gr,2ppz5‘
k0qz4q, gpabq “ Gr,2ppz5 ‘ k0qz4q and gpabq “ Gr,2ppz5 ‘ k0qz4q. Among
those two encodings, one verifies that gp0z4q “ Gr,2ppz5 ‘ k0qz4q and the
other one verifies that gp1z4q “ Gr,2ppz5 ‘ k0qz4q.

Therefore, in all cases there exists as many potential 2-bit encodings Gr,2 com-
patible with k0 “ 0 as potential 2-bit encodings Gr,2 compatible with k0 “ 1.
Consequently, it is not possible for an attacker to determine key bits in a dif-
ferential manner without further information on the output encodings of the
TBox.

8.3.4 Conclusion

In this subsection we demonstrate that using a linear intern SBox ILUT in the
presented TBox construction leads to the recovery of this SBox, but that does
not allow an attacker to determine with certainty the key bits embedded in a
TBox T by a differential attack on T itself.

Nevertheless using such a linear ILUT implies a slight improvement in the 2-
round differential attack detailed in subsection 8.2. We however do not consider
this eventuality to constitute a major additionnal threat to the construction as,
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by Property 4, there exists
ś3

i“0
p24´2iq “ 20160 linear 4-bit SBoxes. Therefore,

the probability to randomly pick an 4-bit SBox that is linear equals to 20160

24!
,

i.e. around 2´30, thus negligeable.

8.4 Another GIFT SBox

We search for the existence of an SBox complying with the GIFT SBox prop-
erties listed in subsubsection 8.4.1 while preventing the differential attack pre-
sented in subsection 8.2.

8.4.1 GIFT SBox Properties

The GIFT SBox GS has been chosen according to the following properties
([BPP`17b], §3.3):

• The implementation cost of GS should be of at most 17 units, with the
operations NOT, NAND, NOR counting as 1 unit, and XOR and XNOR
as 2 units.

• GS should have differential score and linear score of at least 4. (see
subsection 4.3)

• There exists a common BOGI permutation for both differential and linear
cases. In other words, there exists a permutation of t0001, 0010, 0100, 1000u
such that the Bad Outputs (BO) are mapped to Good Inputs (GI) in both
of DDT and LAT cases.

• #
 
p∆x,∆yq P F4

2 ˆ F
4
2|#

 
x P F4

2|GSrxs ‘GSrx‘∆xs “ ∆y
(
ą 4

(
ď 2.

• #
 
x P F4

2|GSrxs ‘GSrx‘∆xs “ ∆y
(
ą 4 ùñ HW p∆xq`HW p∆yq ě

4.

8.4.2 Attack Resistance Property

The attack presented in subsection 8.2 functions thanks to the differential prop-
erties of the GIFT SBox GS. To prevent this attack from happening, an SBox
S must ensure that no differential SBox computation leads to exploitable infor-
mation.

For instance, noting Sry7y5y30s “ z7z5z3z1 and Sry7y5y31s “ z7*z5*z3*z1*
with zi* P tzi, zi, z

1
iu and z1

i being either zi or zi (but not determined), no in-
formation about y7, y5 or y3 should leak thanks to the knowledge of the values
of S. In other words, we must have

P

˜
yi “ 0

∣

∣

∣

∣

Sry7y5y30s “ z7z5z3z1

Sry7y5y31s “ z7*z5*z3*z1*

¸
“

1

2

for every i P t3, 5, 7u.
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For example, if there exists a tuple py7, y5, y3q P F
3
2 such that Sry7y5y30s “

z7z5z3z1 and Sry7y5y31s “ z7z
1
5z

1
3z1, then we must have that for each pvy7, vy5,

vy3q P F
3
2 Srvy7vy5vy30s “ vz7vz5vz3vz1 implies that Srvy7vy5vy31s “ vz7vz

1
5

vz1
3vz1. Hence, no information on py7, y5, y3q would leak.
To avoid any point of attack, the previous property should stand for every

pair

• Sry7y5y30s and Sry7y5y31s

• Sry7y50y1s and Sry7y51y1s

• Sry70y3y1s and Sry71y3y1s

• Sr0y5y3y1s and Sr1y5y3y1s

and for every z7*z5*z3*z1*, with zi* P tzi, zi, z
1
iu.

Therefore, this implies that, to thwart this attack on the TBox, the under-
lying SBox S should obey to the following property :

Property 14. There exists ps3, s2, s1, s0q P F
4
2 such that for all py7, y5, y3, y1q P

F
4
2, Sry7y5y3y1s “ Sry7y5y3y1s ‘ ps3, s2, s1, s0q.

Consequently, there exists 16˚15˚14˚12˚10˚8˚6˚4˚2“ 30˚27˚8! » 227 4-
bit SBoxes satisfying this property. We aim to determine if any of these SBoxes
could also satisfy the GIFT SBox properties.

8.4.3 A New SBox

After an heuristic research, we determine the following SBox GS1 that complies
with most of the GIFT SBox properties.

GS1 “ r5, 0, 3, 4, 15, 6, 1, 10, 2, 9, 14, 7, 12, 11, 8, 13s

Indeed, GS1 presents the following 1-1 Difference Distribution Table (Table 2)
and 1-1 Linear Approximation Table (Table 3) :

δi

δo 0001 0010 0100 1000

0001 0 0 0 0

0010 0 0 4 0

0100 0 4 0 0

1000 0 0 0 0

Table 2: 1-1 DDT of GS1
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δi

δo 0001 0010 0100 1000

0001 0 0 0 0

0010 0 0 0 0

0100 0 0 0 4

1000 0 0 0 4

Table 3: 1-1 LAT of GS1

Thus, firstly, the repartition between Good Inputs and Bad Inputs on the
one hand and Good Outputs and Bad Outputs on the other hand that are
observed from the 1-1 DDT are :

• GID “ t0001, 1000u

• GOD “ t0001, 1000u

• BID “ t0010, 0100u

• BOD “ t0010, 0100u

Secondly, the repartition between Good Inputs and Bad Inputs on the one
hand and Good Outputs and Bad Outputs on the other hand that are observed
from the 1-1 LAT are :

• GIL “ t0001, 0010u

• GOL “ t0001, 0010, 0100u

• BIL “ t0100, 1000u

• BOL “ t1000u

Therefore, we can sum up the compliance of GS1 to the GIFT SBox prop-
erties as following:

• GS1 has for differential score #GID`#GOD “ 4 and linear score #GIL`
#GID “ 5.

• There exists two BOGI permutations that are common to differential and
linear case, i.e. permutations πi : t0001, 0010, 0100, 1000u Ñ t0001, 0010,
0100, 1000u such that

#
x P BOD ùñ πDpxq P GID

x P BOL ùñ πLpxq P GIL

These permutations verify

π1 : 0001Ñ 0100

0010Ñ 0001

0100Ñ 1000

1000Ñ 0010

π2 : 0001Ñ 0100

0010Ñ 1000

0100Ñ 0001

1000Ñ 0010
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•
 
p∆x,∆yq P F4

2 ˆ F
4
2|#

 
x P F4

2 | GS
1rxs ‘GS1rx‘∆xs “ ∆y

(
ą 4

(
“

tp0000, 0000q, p1111, 1000qu.

• Consequently,

#
#
 
x P F4

2|GSrxs ‘GSrx‘∆xs “ ∆y
(
ą 4

p∆x,∆yq ‰ p0000, 0000q

ô p∆x,∆yq “ p1111, 1000q

ñ HW p∆xq `HW p∆yq ě 4

Moreover, GS1 complies with the differential attack property (i.e. Property
14) as for all py7, y5, y3, y1q P F

4
2,

GS1ry7y5y3y1s “ GS1ry7y5y3y1s ‘ p1, 0, 0, 0q.

Algorithm 3: GS’ Bitsliced Implementation

Input : pMSBq xr3s, xr2s, xr1s, xr0s pLSBq
Output: pMSBq yr3s, yr2s, yr1s, yr0s pLSBq

1 yr0s “ xr0s NXOR xr3s
2 t0 “ xr0s XOR xr1s
3 t1 “ xr3s NAND t0
4 t2 “ NOT pt0q
5 yr3s “ t1 XOR t3
6 t4 “ xr2s XOR xr3s
7 t5 “ NOT pyr0sq
8 t6 “ t4 NAND t5
9 yr1s “ t0 XOR t6

10 t7 “ t1 XOR t4
11 t8 “ NOT pxr1sq
12 t9 “ xr0s NOR t8
13 yr1s “ t7 XOR t9
14 return (y[3],y[2],y[1],y[0])

Nevertheless, this SBox has an implementation cost of 20 units. Indeed, its
bitsliced implementation (detailed in algorithm 3) consists of 6 XOR, 3 NOT,
2 NAND, 1 NXOR and 1 NOR, with respective costs of two, one, one, two and
one unit.

We note nevertheless that the instructions of this bitsliced implementation
do not comply with the types recommended in [BPP`17b], designed for the ease
of the implementation of the SBox inverse.
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Part II

A New Fault Resistant Masking

Scheme
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9 Masking Scheme Design Rationale

The second goal of this thesis is to design a Boolean masking scheme composed
of Boolean operations that, complementary to its side-channel countermeasure
nature by design, can correct at most two one-bit flipping faults committed
during (or just before) its execution.

This section details the main design choices made during the development of
this new masking scheme. First of all, it will be described how the scheme verifies
the properties listed in subsection 5.4 that are sufficient conditions for first-order
probing security. Subsequently, it will be explained how the correction of input
shares is performed at the beginning of the scheme execution.

9.1 Masking Scheme Design Constraints

We aim to design our AND masking scheme so that it verifies the three im-
plementation properties listed in Lemma 1 (correctness, uniformity and non-
completeness) to ensure its first order probing security. The purpose of the
scheme is to compute a^ b with a, b P F2, while supposing that all input shares
Ai from input A and Bi from input B are words of an error-correcting code
in order to introduce code correction at the beginning of the scheme. In other
words, HW p

À
iAiq mod 2 “ a and HW p

À
iBiq mod 2 “ b. To ensure com-

patibility between consecutive instances of the scheme, this implies that all the
output shares will be codewords as well. Since the goal is to design a Boolean
masking scheme, we aim to use an error-correcting code whose corresponding de-
coding process could be written with only Boolean operations, which is the case
for BCH error-correcting codes, via the Peterson-Gorenstein-Zierler algorithm
([Pet60]). Furthermore, we also want to introduce randomness, with random
polynomials Ri of respective parities ri.

To achieve this, we design in the first place variables si P F2 intented to be
the parities of the codewords Si, output shares of our scheme. These output
shares parities depend on products between parities ai and bi of shares of differ-
ent inputs, products airj or ribj between parities of input shares and parities of
random polynomials, and products rirj between parities of random polynomials.
We aim to design those variables si so that they comply with both uniformity
and non-completeness properties regarding the input shares and random poly-
nomials parities ai, bi and ri. Finally, by the correctness property, the sum of
these output shares parities si will be equal to a^ b.

In the remainder of this subsection, we describe how these aimed design and
masking scheme properties influence the construction of output shares parities
si and the choice of the used BCH code.

9.1.1 Non-Completeness Implies a Condition on the Number of Shares

First of all, to be able to perform one instance of the scheme after another, the
number of output shares needs to be equal to the number of shares of each input.
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Furthermore, to comply with non-completeness the number of input shares of
both a and b cannot be equal to 2. Indeed, in this case, we would suppose that

• a is represented by two codewords shares A0 and A1 of respective parities
a0 and a1 such that a0 ‘ a1 “ a.

• b is represented by two codewords shares B0 and B1 of respective parities
b0 and b1 such that b0 ‘ b1 “ b.

• There are two output codewords shares S0 and S1 of respective parities s0
and s1 depending on parities a0, a1, b0 and b1, such that their sum s0‘ s1
verifies s0 ‘ s1 “ a^ b.

Therefore, the input shares parities ai and bi and output shares parities s0
and s1 would verify that

s0 ‘ s1 “ a^ b “ a0b0 ‘ a0b1 ‘ a1b0 ‘ a1b1

As a result, there would be four different products aibj of input shares par-
ities to be distributed among the two output shares parities si, namely a0b0,
a0b1, a1b0 and a1b1. Consequently, at least one variable si would be computed
from two (or more) of those products. But, since there are only two shares ai
and two shares bi, the sum of any two out of the four products aibj can not
verify non-completeness.

In conclusion, the number nin of input and output shares of the scheme
needs to be at least 3.

9.1.2 Parity Requirement on the BCH Code Generator Polynomial

As we consider ai and bj the parities of codewords input shares and si the
parities of codewords output shares, the generator polynomial of the BCH
correcting code they belong to needs to be of odd parity so that variables
ai, bj and si could take either values in F2. To that end, we suppose the
generator polynomial of this BCH correcting code of length n to be gpXq “
lcmpMαbpXq,Mαb`1pXq, . . . ,Mαb`δ´2pXqq, such that m is the multiplicative or-
der of 2 modulo n and α is an element of Fqm of multiplicative order n. Based
on Property 10, gpXq can be written as a product of MαipXq polynomials.

Furthermore, according to its definition, the degree of a polynomialMαipXq
is determined by the cardinality of Cpiq, the corresponding 2-cyclotomic class
of i. Therefore, on the one hand, Property 7 states that for any possible code
length n the only 2-cyclotomic class modulo n of cardinality one is Cp0q, the 2-
cyclotomic class of 0. Consequently, the corresponding polynomial Mα0pXq has
even parity, since Mα0pXq “ X´α0 “ X`1. On the other hand, this property
also implies that all other 2-cyclotomic classes modulo n have a cardinality of
at least two, so the polynomials MαipXq with 0 ă i ă n have a degree greater
than or equal to two.

In addition to this, all irreducible polynomials of F2rXs with degree greater
than or equal to two have odd parity, as otherwise they would admit 1 as a root,
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and therefore could be factorized by X`1. Consequently, as they are irreducible
polynomials of F2rXs according to Property 9, all polynomials MαipXq with
0 ă i ă n have odd parity.

As a conclusion, to ensure its odd parity, the generator polynomial gpXq of
the BCH code used in the scheme must not be a multiple of Mα0pXq “ X ` 1.
In other words, this generator polynomial gpXq “ lcmpMαbpXq,Mαb`1pXq, . . . ,
Mαb`δ´2pXqq must verify that 0 R tb mod n, b` 1 mod n, . . . , b` δ´ 2 mod nu,
i.e.

0 ă b ă n´ pδ ´ 2q.

9.1.3 Maximizing the BCH Code Dimension

In subsubsection 9.2.5, it will be detailed why a BCH code of correction capac-
ity at least two is needed to ensure the correctness of the scheme. Since the
correction capacity t of a BCH code of minimum Hamming distance at least
δ verifies t ě t δ´1

2
u, imposing t ě 2 necessitates that δ ě 5. Therefore, the

generator polynomial gpXq of the BCH code we aim to use can be rewritten in
the form of

gpXq “ lcmpMαbpXq,Mαb`1pXq,Mαb`2pXq,Mαb`3pXqq,

with 0 ă b ă n´ 3.
Furthermore, we know that subsequently we will need codewords to act

as masks to be applied to an array of cross-products of parities among input
shares parities ai and bi and random polynomials parities ri, and this in order
to compute the parities si of the output shares. To ensure correctness, all cross-
products involved of form airj , ribj or rirj must appear in an even number of
variables si and all cross-products involved of form aibj must feature in an odd
number of variables si, therefore those codewords need to have a certain number
of exponents in common. To that end, we aim to maximize the search space for
these codewords, and thus the dimension of the code they will belong to.

9.1.4 Randomness Requirement and its Impact on the BCH Code

Choice

We note nr the total number of random polynomials involved in the scheme.
We suppose the number of random polynomials associated to each input to be
identical, that is to say that there exists as many random polynomials parities
rj that are to be multiplied to input shares parities ai than random polynomials
parities ri that are to be multiplied to input shares parities bj . Consequently,
nr is even and the number of random polynomials associated to each input is
equal to nr

2
.

To keep a reasonable randomness requirement of our scheme, we impose on
ourselves that the number nr

2
of random variables associated to each input is

strictly less than the number of shares of each input. For instance, the number of
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random polynomials parities rj that are to be multiplied to the input parities ai
is defined to be strictly less than the number nin of shares Ai, and reciprocally.

As the number nin of input shares Ai is equal to the number of input shares
Bi, it implies that

nr

2
ă nin.

Therefore, by definition of nin and nr
2
, there exists at most pnin`

nr
2
q2 products

of parities involved in the computation of output shares parities si, divided as
follows:

• n2
in products aibj of input shares parities

• nin˚nr
2

products airj

• nin˚nr
2

products ribj

•
`
nr
2

˘2
products rirj

The total number of these products is considered to be an upper bound of
the length of the BCH code used in the scheme, as codewords serving as masks
will be applied to the array gathering them (see section 10). Therefore, applying
a mask to an array that would be longer than this array would provoke a loss of
efficiency. In the same manner, n2

in is a lower bound of the code length n since
it corresponds to the number of products aibj , that are imperatively involved
in the computations of si variables to ensure correctness. To sum up, the code
length n must verify that

n2

in ď n ď pnin `
nr

2
q2

First and foremost, supposing that the number of shares nin is 3 and the
number of random polynomials associated to each input nr

2
is 2, these bounds

imply that the code length n would verify that 9 ď n ď 25. For every potential
code length n complying with those bounds, the minimal degree of generator
polynomials verifying the conditions detailed in subsubsection 9.1.3 is listed
in Table 4 hereunder, together with the corresponding maximum BCH code
dimension.

Code Length
n

9 11 13 15 17 19 21 23 25

Minimal Generator
Polynomial Degree

8 10 12 8 16 18 9 11 20

Corresponding Maximum
Code Dimension

1 1 1 7 1 1 12 12 5

Table 4: Maximum code dimension depending on code length, with generator
polynomial gpXq of adequate form, for a number of shares nin “ 3
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Therefore, for a code length n within the bounds 9 ď n ď 25, the maximum
potential dimension of a BCH code of correction capacity at least 2 is k “ 12,
reached for either n “ 21 or n “ 23. These cases correspond to BCH codes of
cardinality 212.

Secondly, if the number of shares nin is 4 and the number of random poly-
nomials associated to each input nr

2
is 3, then the code length n verifies 16 ď

n ď 49. Retaining the same BCH code properties, the maximum potential di-
mension value reaches k “ 29 when n “ 45, as listed in Table 5. In this case,
the cardinality of the code equals to 229.

Code Length
n

17 19 21 23 25 27 29 31 33

Minimal Generator
Polynomial Degree

16 18 9 11 20 20 28 10 20

Corresponding Maximum
Code Dimension

1 1 12 12 5 7 1 21 13

Code Length
n

35 37 39 41 43 45 47 49

Minimal Generator
Polynomial Degree

15 36 24 20 28 16 23 42

Corresponding Maximum
Code Dimension

20 1 15 21 15 29 24 7

Table 5: Maximum code dimension depending on code length, with generator
polynomial gpXq of adequate form, for a number of shares nin “ 4

Since the code dimension k “ 29 implies a rather large search space for
potential codewords serving as masks, we select the corresponding number of
shares nin “ 4. Subsequently, if the number of random polynomials associated
to each input nr

2
verifies nr

2
ď 2, then it implies that pnin `

nr
2
q2 ă n “ 45.

This brings a contradiction to the condition that pnin`
nr
2
q2 is an upper bound

of the value of code length n, therefore we define nr
2
“ 3.

Therefore, the BCH code used in the scheme has length n “ 45, cardinality
229 and generator polynomial

gpXq “ lcmpMαpXq,Mα2pXq,Mα3pXq,Mα4pXqq

“ pX12 `X3 ` 1q ˚ pX4 `X ` 1q

“ X16 `X13 `X12 `X7 `X3 `X ` 1,

with m “ 12 is the multiplicative order of 2 modulo n “ 45 and α is a 45th

primitive root of unity in Fqm “ F212 .
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9.1.5 Ensuring Uniformity and Correctness

Since we choose the number of shares to be nin “ 4 and the number of random
polynomials associated to each input to be nr

2
“ 3, there exists at most 49

different products of parities involved in the computation of the output shares
parities si. Those parities can be divided in the following way :

• 16 products of form aibj that must all be present in an odd number of si
computations.

• 12 products of form airj , 12 products of form ribj and 9 products of form
rirj . Each of these products does not necessarily need to be present in
the computation of any parity si, but if it does, it needs to be involved in
an even number of si computations to guarantee correctness (so that the
occurrences could cancel themselves).

It can be noticed that, to ensure uniformity, it is compulsory that each si in-
cludes at least one single parity, i.e. one variable of the form ai, bi or ri. Indeed,
as variables ai, bi and ri are independent from one another and verify equiprob-
ability in F2, all products of two of those variables admit p3

4
, 1
4
q as probability

vector in F2. Therefore, sums of those products cannot be equiprobable accord-
ing to Property 15 hereinbelow.

Property 15. Let P the set of products of form aibj, airj, ribj and rirj. Any
sum s of elements in P complying with non-completeness cannot be equiprobable
in F2.

Proof. We will suppose for this proof that the sum s comprises addends of the
four types. If otherwise, this does not change the core of the demonstration.
Rearranging the addends according to their type, such sum s can be written in
the form of aj0bk0

‘ . . .‘ajΘ´1
bkΘ´1

‘al0rm0
‘ . . .‘alΛ´1

rmΛ´1
‘ rn0

bo0 ‘ . . .‘
rnχ´1

boχ´1
‘ rp0

rq0 ‘ . . .‘ rpψ´1
rqψ´1

, with 0 ď Θ ď 16, 0 ď Λ ď 12, 0 ď χ ď 12
and 0 ď ψ ď 9.

As s complies with non-completeness, it involves at most nin´1 “ 3 different
shares ai. We will note them aυ, aδ and aξ. In potential cases where strictly less
than three shares ai would be involved in the computation of s, we can consider
aυ, aδ or aξ to be null. Subsequently, s can be also be rewritten such that

s “ aυV Bυ ‘ aδV Bδ ‘ aξV Bξ ‘ r0V B0 ‘ r1V B1 ‘ r2V B2,

with each V Bi being a sum of at most nin ´ 1 “ 3 variables bi and some
variables ri among r3, r4 and r5. In the same way as for variables aυ, aδ and aξ,
if r0, r1 or r2 are not involved in s, we respectively consider V B0, V B1 or V B2

to be null.
By definition of sharings (subsection 3.2), any tuple of at most nin ´ 1 “ 3

parities bi of shares Bi constitute a set of variables independent from one an-
other. Furthermore, random polynomials Ri are independent one from another
and independent from shares Bi by design, and so are their respective parities
bi and ri. Therefore, each sum V Bi verifies
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PpV Bi “ 0q “ PpV Bi “ 1q “
1

2
.

As mentioned above, all random polynomials Ri are independent from each
other by design. Likewise, they are independent from shares Ai, and shares Ai

are also independent from shares Bi, therefore so are their respective parities ai,
bi and ri. Hence all variables ai, r0, r1 and r2 are independent from sub-sums
V Bj , and any sub-sum S of variables ai, r0, r1 and r2 verifies PpS “ 0q “ PpS “
1q “ 1

2
. Furthermore, for x = 0, 1 or 2, we note vx “ rx and for x = υ, δ or ξ

we note vx “ ax. Then, in the same manner that PpS “ 0q “ PpS “ 1q “ 1

2
,

each product viV Bi verifies PpviV Bi “ 1q “ 1

4
.

Moreover, we suppose that there exists tx0, . . . , xp1´1u Ă t0, 1, 2, υ, δ, ξu such
that V Bx0

“ . . . “ V Bxp1´1
. As demonstrated above, Ppvx0

‘ . . . ‘ vxp1´1
“

1q “ 1

2
. Therefore,

Ppvx0
V Bx0

‘ . . .‘ vxp1´1
V Bxp1´1

“ 1q “ Pppvx0
‘ . . .‘ vxp1´1

qV Bx0
“ 1q

“ Ppvx0
‘ . . .‘ vxp1´1

“ 1qPpV Bx0
“ 1q

“
1

2
˚
1

2

“
1

4

Consequently, the sum s can be rewritten in the form of V A0V B0 ‘ . . . ‘
V AΩ´1V BΩ´1, with

• V Bi distincts

• V Ai being either vx P taυ, aδ, aξ, r0, r1, r2u or a sub-sum of variables in
taυ, aδ, aξ, r0, r1, r2u.

• each vx appearing only once among all the V Ai

Therefore, all the sums V Ai and V Bi are independent from one another and
equiprobable in F2. Based on Property 1, this implies that

Pps “ 0q “
10

2Ω`2
´

1

2Ω´1
`

1

2
.

Furthermore, if we suppose s being equiprobable, then Pps “ 0q “ 1

2
. It thus

implies that 10

2Ω`2 ´
1

2Ω´1 `
1

2
“ 1

2
, then

10

2Ω`2
´

1

2Ω´1
“ 0ðñ

10

2Ω`2
“

1

2Ω´1

ðñ 10 “ 8,

hence the contradiction. Consequently, a sum s “ aj0bk0
‘ . . .‘ajΘ´1

bkΘ´1
‘

al0rm0
‘ . . .‘alΛ´1

rmΛ´1
‘rn0

bo0‘ . . .‘rnχ´1
boχ´1

‘rp0
rq0‘ . . .‘rpψ´1

rqψ´1
“

V A0V B0‘. . .‘V AΩ´1V BΩ´1 of elements of set P cannot be equiprobable.
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Therefore, to guarantee the uniformity of each si, at least one single parity
among the variables ai, bi and ri needs to figure in the computation of each
si. Moreover, similarly as for products airj , ribj and rirj , these single parities
must be added in even numbers of si computations to ensure the correctness of
the overall scheme.

Therefore, to build the output shares parities si, we first randomly split the
16 products of parities of form aibj among s0, s1, s2 and s3 so that each of them
complies with non-completeness. At this point, each si variable cannot verify
equiprobability (according to Property 15). Consequently, we add three single
variables to pairs of si to ensure global equiprobability of each si among the
values observed for all possible inputs, and then equiprobability conditioned
by the value of a ^ b necessary for the uniformity property. Among all single
variables, using r0, a2 and r5 allows us to do so while verifying non-completeness.

Subsequently, we add products of form airj ,ribj or rirj one after another
to pairs of si variables, so that, when conditioned by either value of a^ b, the
probability of each value of ps0, s1, s2, s3q verifying s0 ‘ s1 ‘ s2 ‘ s3 “ a ^ b

equals to
`
1

2

˘3
, while retaining the non-completeness property. We obtain the

following formulas for the respective parities of output shares S0, S1, S2 and
S3:

• s0 “ r1b1‘r2b1‘r0‘a1r3‘a2r5‘a2b2‘a3r3‘a3b2‘r1b0‘a3b1‘r1r5‘r2r5

• s1 “ r1b1 ‘ r0 ‘ a2b1 ‘ a0b2 ‘ a2r5 ‘ a0b1 ‘ a0r3 ‘ a3b0 ‘ r2b2 ‘ a0b0 ‘
r2r5 ‘ a2 ‘ r1r5 ‘ r0r3

• s2 “ a3b3‘a1r5‘r5‘a3r3‘r2b2‘a1b2‘r1b0‘r2r5‘r2b0‘a2‘r0r3‘a2r4

• s3 “ a2b3 ‘ r2b1 ‘ a1r5 ‘ a1b1 ‘ r5 ‘ a1r3 ‘ a0r3 ‘ a1b0 ‘ a0b3 ‘ r2r5 ‘
r2b0 ‘ a1b3 ‘ a2b0 ‘ a2r4

9.2 Input Shares Correction

To fulfill our purpose of developing the new masking scheme to be fault-resistant,
we design the input shares correction part as described in subsubsection 9.2.2.
Additionally, we specify in subsubsection 9.2.1 the fault attack model we place
ourselves into.

Furthermore, for the purpose of detail, the effective functioning of the input
shares correction part will be described for the different fault cases considered
by our scheme in subsubsection 9.2.4 and subsubsection 9.2.5.

9.2.1 Fault Attack Model

For the design of this new masking scheme, we place ourselves in the one-bit
flipping fault attack model, that is to say we consider an attacker to be able to
randomly flip a bit in the implementation. Indeed, this is a fault attack model
likely to be used by an attacker targeting a bitsliced implementation.
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We demonstrate below the resistance of the masking scheme to the intro-
duction of at most two one-bit faults in its input shares, as it is a reasonable
fault resistance goal for each AND operation among all AND instances of the
bitsliced implementation of a cryptographic primitive.

9.2.2 Input Shares Correction Design

The objective of the correcting design is to be able to correct potential faults
in the masking scheme input shares, that is to say to correct faults committed
at the end of the preceding instances or just before the beginning of the current
instance of the scheme. That is why we impose that all input and output shares
of the masking scheme will be codewords, and why the code correction is placed
at the beginning of the scheme rather than at the end : as instances of the
scheme are supposed to be used successively in a wider bitsliced implementation
to mask different ANDs, this implies that faults committed in the last stages
of one instance of the scheme or just after the end will be corrected at the
beginning of the following instances.

To that end, to minimize the number of corrections needed we compute
and correct sub-sums of input shares instead of correcting each input share
separately. For non-completeness compliance, it is not possible to add all poly-
nomial shares Ai of input A (or all polynomial shares Bi of input B) in a same
sub-sum. Furthermore, we aim to design those sub-sums in such a way that,
while using the smallest number of them, it is feasible in case of a fault to de-
termine whether it was committed on A or B although they are sub-sums of
shares coming from both inputs A and B. To do so, we determine the following
repartition of input shares between sub-sums V0, V1 and V2 and correct those
sub-sums into respective codewords noted V 1

0 , V
1
1 and V 1

2 :

• V0 “ A0 ‘A1 ‘B0 ‘B1

• V1 “ A2 ‘A3 ‘B2 ‘B3

• V2 “ A2 ‘A3 ‘B0 ‘B1

We can outline this repartition of polynomial shares Ai and Bi among sub-
sums V0, V1 and V2 as follows in Figure 5.

Subsequently, we add the sub-sums Vi and their corrected values V 1
i to the

polynomial input shares Ai and Bi to obtain the modified input shares A1
i and

B1
i. These modified input shares will be used instead of the initial ones for the

remainder of the masking scheme.

• A1
0 “ A0 ‘ V0

• A1
1 “ A1 ‘ V

1
1

• A1
2 “ A2 ‘ V2

• A1
3 “ A3 ‘ V

1
2

• B1
0 “ B0 ‘ V1

• B1
1 “ B1 ‘ V 1

0

• B1
2 “ B2 ‘ V2

• B1
3 “ B3 ‘ V 1

2
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A0 A1 A2A2 A3A3

B0 B1 B2 B3

Share involved in V2

Share involved in V1

Share involved in V0

Figure 5: Diagram of the repartition of input shares Ai and Bi among sub-sums
V0, V1 and V2

In the case when no fault has been committed, all sub-sums Vi are then
naturally not faulted. Therefore, by definition of sub-sums V 1

i , it implies that
V 1
i “ Vi for i “ 0, 1, 2 and 3. In this manner, the modified input shares A1

i and
B1

i stay coherent with the original input shares of the scheme, given that

• A1
0 ‘ A1

1 ‘ A1
2 ‘ A1

3 “ pA0 ‘ V0q ‘ pA1 ‘ V 1
1q ‘ pA2 ‘ V2q ‘ pA3 ‘ V 1

2q “
A0‘pA0‘A1‘B0‘B1q‘A1‘pA2‘A3‘B2‘B3q‘A2‘A3‘pV2‘V

1
2q “

B0 ‘B1 ‘B2 ‘B3

• B1
0 ‘ B1

1 ‘ B1
2 ‘ B1

3 “ pB0 ‘ V1q ‘ pB1 ‘ V 1
0q ‘ pB2 ‘ V2q ‘ pB3 ‘ V 1

2q “
B0‘pA2‘A3‘B2‘B3q‘B1‘pA0‘A1‘B0‘B1q‘B2‘B3‘pV2‘V

1
2q “

A0 ‘A1 ‘A2 ‘A3

9.2.3 The Correction Design Preserves Non-Completeness

In this subsection we verify that the correction design detailed above comply
with non-completeness. First of all, we assume that no fault is committed. In
this case, by definition, all sub-sums Vi and corresponding corrected values V 1

i

verify that V 1
i “ Vi.

Consequently,

• A1
0 “ A0 ‘ V0 “ A0 ‘ pA0 ‘A1 ‘B0 ‘B1q “ A1 ‘B0 ‘B1

• A1
1 “ A1 ‘ V

1
1 “ A1 ‘ pA2 ‘A3 ‘B2 ‘B3q “ A1 ‘A2 ‘A3 ‘B2 ‘B3

• A1
2 “ A2 ‘ V2 “ A2 ‘ pA2 ‘A3 ‘B0 ‘B1q “ A3 ‘B0 ‘B1

• A1
3 “ A3 ‘ V

1
2 “ A3 ‘ pA2 ‘A3 ‘B0 ‘B1q “ A2 ‘B0 ‘B1

• B1
0 “ B0 ‘ V1 “ B0 ‘ pA2 ‘A3 ‘B2 ‘B3q “ A2 ‘A3 ‘B0 ‘B2 ‘B3

• B1
1 “ B1 ‘ V

1
0 “ B1 ‘ pA0 ‘A1 ‘B0 ‘B1q “ A0 ‘A1 ‘B0

• B1
2 “ B2 ‘ V2 “ B2 ‘ pA2 ‘A3 ‘B0 ‘B1q “ A2 ‘A3 ‘B0 ‘B1 ‘B2

• B1
3 “ B3 ‘ V

1
2 “ B3 ‘ pA2 ‘A3 ‘B0 ‘B1q “ A2 ‘A3 ‘B0 ‘B1 ‘B3
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Secondly, we notice that, in the case where a fault is committed, it does not
change the involvment (or not) of shares Ai and Bi in the computations of
modified input shares A1

i and B
1
i.

As a result, those modified input shares A1
i and B

1
i verify non-completeness

with regards to the original input shares Ai and Bi.

9.2.4 One-bit Fault on One Input Share

Sub-sums V0 and V1 are designed to cover all possible locations for input shares
faults, whereas, in case of a fault detected by one of those two sub-sums, V2
is designed to determine whether this fault has initially been committed on a
share Ai of A or on a share Bi of B.

In this section, we detail the impact on the parities of all modified input
shares A1

i and B1
i of a one-bit fault on one input share Ai or Bi. With this

aim in mind, from now onwards, we note ai and bi the parities of respective
non-faulted input shares Ai and Bi. For example, if a fault is committed on A2,
it implies that

• HW pA2q mod 2 “ a2 ‘ 1

• HW pAiq mod 2 “ ai for i P t0, 1, 3u

• HW pBiq mod 2 “ bi for i P t0, 1, 2, 3u

A2 is involved in the computations of sub-sums V1 and V2, but not in the
computation of V0. Therefore, commit one fault on A2 impacts the sub-sums
V1 and V2, but not V0. Consequently, the parities of the three sub-sums V0, V1
and V2 in this case are :

• HW pV0q mod 2 “ HW pV 1
0q mod 2 “ a0 ‘ a1 ‘ b0 ‘ b1

• HW pV1q mod 2 “ HW pV 1
1q mod 2‘ 1 “ a2 ‘ a3 ‘ b2 ‘ b3 ‘ 1

• HW pV2q mod 2 “ HW pV 1
2q mod 2‘ 1 “ a2 ‘ a3 ‘ b0 ‘ b1 ‘ 1

Consequently, it implies that the sums of the parities of modified shares A1
i

and B1
i are respectively equal to the sums of the parities of non-faulted shares

Bi and Ai. As a matter of fact,

• HW pA1
0 ‘A

1
1 ‘A

1
2 ‘A

1
3q mod 2 “ HW pA0 ‘A1 ‘A2 ‘A3 ‘ V0 ‘ V

1
1 ‘

V2‘V
1
2q mod 2 “ a0‘a1‘pa2‘1q‘a3‘pa0‘a1‘ b0‘ b1q‘ pa2‘a3‘

b2 ‘ b3q ‘ pa2 ‘ a3 ‘ b0 ‘ b1q ‘ pa2 ‘ a3 ‘ b0 ‘ b1 ‘ 1q “ b0 ‘ b1 ‘ b2 ‘ b3

• HW pB1
0 ‘B

1
1 ‘B

1
2 ‘B

1
3q mod 2 “ HW pB0 ‘B1 ‘B2 ‘B3 ‘ V

1
0 ‘ V1 ‘

V2 ‘ V
1
2q mod 2 “ b0‘ b1‘ b2‘ b3‘ pa0‘ a1 ‘ b0‘ b1q ‘ pa2 ‘ a3 ‘ b2‘

b3 ‘ 1q ‘ pa2 ‘ a3 ‘ b0 ‘ b1 ‘ 1q ‘ pa2 ‘ a3 ‘ b0 ‘ b1q “ a0 ‘ a1 ‘ a2 ‘ a3
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We can notice that the formulas of sub-sums Vi imply that introducing a
one-bit fault on share A0 brings the same impact on the scheme as introducing
a fault on A1. In the same way, introducing a one-bit fault on A2 brings the
same impact as introducing a fault on A3, as well as introducing a fault on B0

or B1, or on B2 or B3. Therefore, for the remainder of this dissertation, we will
exclusively consider faults in A0, A2, B0 or B2 to simplify the notations.

Regarding the correctness of parities of sub-sums Vi depending on the loca-
tion of the fault, Table 6 indicates if the parities of the sub-sums V0, V1 or V2
are correct after the introduction of a fault on one input share (A0, A2, B0 or
B2).

Fault

Location

Vi

V0 V1 V2

A0 ✗ ✓ ✓

A2 ✓ ✗ ✗

B0 ✗ ✓ ✗

B2 ✓ ✗ ✓

Table 6: Correctness of the parity of sub-sums Vi depending on the location of
the single one-bit fault

According to the definitions of the sub-sums Vi and regardless of the one-bit
fault location, the parities of corresponding corrected sub-sums V 1

i verify

• HW pV 1
0q mod 2 “ a0 ‘ a1 ‘ b0 ‘ b1

• HW pV 1
1q mod 2 “ a2 ‘ a3 ‘ b2 ‘ b3

• HW pV 1
2q mod 2 “ a2 ‘ a3 ‘ b0 ‘ b1

Moreover, if the one-bit fault impacts a sub-sum Vi (see Table 6), then
HW pViq mod 2 “ HW pV 1

i q mod 2‘ 1.

Fault

Location

Parities

of V0 ‘ V
1
1 ‘ V2 ‘ V

1
2 V 1

0 ‘ V1 ‘ V2 ‘ V
1
2

A0 b0 ‘ b1 ‘ b2 ‘ b3 ‘ 1 a0 ‘ a1 ‘ a2 ‘ a3

A2 b0 ‘ b1 ‘ b2 ‘ b3 ‘ 1 a0 ‘ a1 ‘ a2 ‘ a3

B0 b0 ‘ b1 ‘ b2 ‘ b3 a0 ‘ a1 ‘ a2 ‘ a3 ‘ 1

B2 b0 ‘ b1 ‘ b2 ‘ b3 a0 ‘ a1 ‘ a2 ‘ a3 ‘ 1

Table 7: Parities of sub-sums Vi and V
1
i allow to correct the impact of a one-bit

fault on an input share.
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Therefore, we can observe in Table 7 that the parity of V0 ‘ V 1
1 ‘ V2 ‘ V 1

2

(i.e. the sum of sub-sums and corrected sub-sums added to shares Ai) behaves
such that, regardless of the position of the one-bit fault, HW pA1

0 ‘A
1
1 ‘ A1

2 ‘
A1

3q mod 2 “ b0‘ b1‘ b2‘ b3. Likewise, the parity of the sum of sub-sums and
corrected sub-sums added to shares Bi (V

1
0 ‘ V1 ‘ V2 ‘ V 1

2) behaves such that
HW pB1

0 ‘B
1
1 ‘B

1
2 ‘B

1
3q mod 2 “ a0 ‘ a1 ‘ a2 ‘ a3.

On an input share scale, Table 8 represents the correctness of parities of the
modified input shares A1

i and B1
i (obtained after the XOR of variables Vi and

V 1
i to the initial input shares Ai and Bi). In other words, this table indicates if,

after the XOR of sub-sums Vi and of the results of their respective corrections
V 1
i , each modified input share A1

i or B
1
i carries the same parity as would have

carried the corresponding input share Ai or Bi in a non-faulted environment.

Fault

Location

Modified Input

Share
A1

0 A1
1 A1

2 A1
3 B1

0 B1
1 B1

2 B1
3

A0 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

A2 ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓

B0 ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓

B2 ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓

Table 8: Correctness of the parity of input shares A1
i and B

1
i after the XOR of

variables Vi and V
1
i in a single fault location case

Moreover, we can notice that modified input sharesA1
0, A

1
1, A

1
2, A

1
3, B

1
0, B

1
1, B

1
2

and B1
3 are not necessarily codewords in the case where a fault has been detected.

At this point, the only requirement for the correctness of the following steps of
the masking scheme is that the parities of A1

0‘A
1
1‘A

1
2‘A

1
3 and B

1
0‘B

1
1‘B

1
2‘B

1
3

are (not necessarily respectively) a0 ‘ a1 ‘ a2 ‘ a3 and b0 ‘ b1 ‘ b2 ‘ b3.
Furthermore, on a wider scope, when applied on a bitsliced implementation

of a cryptographic primitive this design does not correct the original faulted
input share(s) Ai or Bi. This can be acceptable if the number of AND instances
in the implementation is low, or if only very few faults are introduced in the
overall implementation as these faults would be corrected at the beginning of
each instance that involves the corresponding faulted share. Otherwise, there
will rapidly exist instances of the masking scheme whose inputs would hold more
faults that the correction design is able to handle.

To avoid this issue, all input shares Ai or Bi can be replaced at the end of
the scheme by codewords of respective parities the parities of B1

i and A1
i (i.e.

bi or ai). Indeed, as precedently detailed, HW pA1
0 ‘ A1

1 ‘ A1
2 ‘ A1

3q mod 2 “
b0 ‘ b1 ‘ b2 ‘ b3 and HW pB1

0 ‘B
1
1 ‘B

1
2 ‘B

1
3q mod 2 “ a0 ‘ a1 ‘ a2 ‘ a3.
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These observations still stand in the case detailed in the subsubsection here-
inafter, where two one-bit faults are committed on two different input shares.

9.2.5 One-bit Faults on Two Input Shares

We now consider the case where two one-bit faults are committed on two dif-
ferent input shares among the eight shares Ai and Bi. Table 9 represents the
impact on the correctness of sub-sums V0, V1 and V2 of committing a one-bit
fault on each share of each couple of two different input shares among A0, A2,
B0 and B2.

Fault

Locations

Vi

V0 V1 V2

A0 A2 ✗ ✗ ✗

A0 B0 ✓ ✓ ✗

A0 B2 ✗ ✗ ✓

A2 B0 ✗ ✗ ✓

A2 B2 ✓ ✓ ✗

B0 B2 ✗ ✗ ✗

Table 9: Correctness of the parity of variables Vi, depending on locations of two
one-bit faults on two input shares

For example, commit a one-bit fault on both input shares A2 and B2 will
impact both sub-sums V0 and V1, but not V2 (hence V2 “ V 1

2 , i.e. V2 ‘ V
1
2 “ 0).

Therefore,

• HW pA1
0‘A

1
1‘A

1
2‘A

1
3q mod 2 “ HW pA0‘A1‘A2‘A3‘V0‘V

1
1‘V2‘

V 1
2q mod 2 “ a0‘a1‘pa2‘1q‘a3‘pa0‘a1‘b0‘b1‘1q‘pa2‘a3‘b2‘b3q “
b0 ‘ b1 ‘ b2 ‘ b3

• HW pB1
0‘B

1
1‘B

1
2‘B

1
3q mod 2 “ HW pB0‘B1‘B2‘B3‘V

1
0‘V1‘V2‘

V 1
2q mod 2 “ b0‘b1‘pb2‘1q‘b3‘pa0‘a1‘b0‘b1q‘pa2‘a3‘b2‘b3‘1q “
a0 ‘ a1 ‘ a2 ‘ a3

Accordingly, in spite of these two faults, the parities of A1
0 ‘ A1

1 ‘ A1
2 ‘A

1
3

and B1
0‘B

1
1‘B

1
2‘B

1
3 carry respectively the correct values b “ b0‘ b1‘ b2‘ b3

and a “ a0 ‘ a1 ‘ a2 ‘ a3 of the parities of non-faulted inputs B and A.
Subsequently, in the case where the two faults are committed on shares of

the same input (i.e. on A0 and A2 or on B0 and B2), the impacts of these faults
will naturally cancel themselves regarding the parity of the sum of the modified
shares of this input. Consequently, the parity of the sum of the modified shares
of each input will be correct even without correction. Nevertheless, it can be
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noted that the correction process still keeps the correctness of the parities of
the sums of shares of each input. Indeed, if faults are committed for example
on A0 and A2, it impacts V0, V1 and V2. Therefore, in this case the parities of
respective sums of modified shares A1

i and B
1
i verify

• HW pA1
0‘A

1
1‘A

1
2‘A

1
3q mod 2 “ HW pA0‘A1‘A2‘A3‘V0‘V

1
1‘V2‘

V 1
2q mod 2 “ pa0‘ 1q‘ a1‘pa2‘ 1q‘ a3‘pa0‘ a1‘ b0‘ b1‘ 1q‘ pa2‘
a3‘ b2‘ b3q‘pa2‘a3‘ b0‘ b1q‘pa2‘a3‘ b0‘ b1‘1q “ b0‘ b1‘ b2‘ b3

• HW pB1
0 ‘B

1
1 ‘B

1
2 ‘B

1
3q mod 2 “ HW pB0 ‘B1 ‘B2 ‘B3 ‘ V0 ‘ V

1
1 ‘

V2 ‘ V
1
2q mod 2 “ b0 ‘ b1 ‘ b2 ‘ b3 ‘ pa0 ‘ a1 ‘ b0 ‘ b1q ‘ pa2 ‘ a3 ‘ b2 ‘

b3 ‘ 1q ‘ pa2 ‘ a3 ‘ b0 ‘ b1q ‘ pa2 ‘ a3 ‘ b0 ‘ b1 ‘ 1q “ a0 ‘ a1 ‘ a2 ‘ a3

Similarly as for Table 8, Table 10 indicates if each of the modified input
shares A1

i and B
1
i carries the same parity as would have carried the correspond-

ing input share in a non-faulted environment in the two one-bit faults case,
depending on the locations of these faults.

Fault

Locations

Modified Input

Share
A1

0 A1
1 A1

2 A1
3 B1

0 B1
1 B1

2 B1
3

A0 A2 ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓

A0 B0 ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓

A0 B2 ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✓

A2 B0 ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓

A2 B2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

B0 B2 ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓

Table 10: Correctness of parities of modified input shares A1
i and B

1
i after the

XOR of variables Vi and V
1
i in a two faults locations case

Moreover, it can be noticed that using only two variables Vi would not be
enough to ensure both the correctness of parities of input shares and the non-
completeness of those sub-sums Vi.

Indeed, to ensure non-completeness not all the shares Ai can figure in the
computation of a same sub-sum Vi, and in the same manner not all the shares
Bi can figure in the computation of a same sub-sum Vj . Nevertheless, to ensure
that all potential input fault locations are covered, all input shares Ai and
Bi must feature in at least one sub-sum Vi. Supposing that we employ only
two sub-sums, these two conditions combined imply that both sub-sums would
comprise at the same time some shares Ai from A and some shares Bi of B.
Therefore, it is not possible to attribute with certainty a fault detected on one of
these sub-sums to the input where it has been committed initially. That is why
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the minimum number of sub-sums needed to cover all potential fault locations
while complying with non-completeness is three, as deployed in our scheme.

Furthermore, in this two one-bit faults scenario, each sub-sum naturally car-
ries at most two one-bit faults. In this case, this sub-sum, despite being faulted,
represents the correct parity as parities are computed modulo 2. Nevertheless,
we impose that the BCH code we use has a correction capacity of at least 2, to
avoid the eventuality where a correction of two faults by a BCH code of correc-
tion capacity strictly less than two could modify the sub-sum in question and
its then-correct parity.
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10 A New Fault Resistant Masking Scheme

This section details the design of the masking scheme in three parts. The
first subsection describes the input shares correction design, then the second
subsection explains the core operations of the AND multiplication. Finally, the
construction of the output shares is detailed in the third subsection.

10.1 Input Shares Correction

As explained in subsubsection 9.1.4, we choose to use the BCH code of length
n “ 45 with the maximum dimension. To that end, we consider m “ 12 the
multiplicative order of 2 modulo n, α a 45th primitive root of unity in Fqm and
therefore determine the generator polynomial gpXq of the BCH code we use to
be

gpXq “ lcmpMαpXq,Mα2pXq,Mα3pXq,Mα4pXqq

“ pX12 `X3 ` 1q ˚ pX4 `X ` 1q

“ X16 `X13 `X12 `X7 `X3 `X ` 1.

To compute a ^ b with a, b P F2, we represent a and b by codewords A
and B P F

45
2 verifying HW pAq mod 2 “ a and HW pBq mod 2 “ b. We then

suppose each of those two input codewords A and B to be split between four
shares. In other words, we randomly pick shares A0, A1, A2, A3, B0, B1, B2

and B3 that are codewords as well and verify A “ A0 ‘ A1 ‘ A2 ‘ A3 and
B “ B0 ‘B1 ‘B2 ‘B3.

Firstly, we perform code correction on the input shares to prevent any faults
introduced at the end of preceding operations or just before the start of the
current instance of the scheme. As explained in subsubsection 9.2.2, we must
avoid the correction of each of the eight input shares for performance reasons.
Consequently, we compute the following three intermediate sub-sums V0, V1 and
V2 and correct them into respective codewords V 1

0 , V
1
1 and V 1

2 :

• V0 “ A0 ‘A1 ‘B0 ‘B1

• V1 “ A2 ‘A3 ‘B2 ‘B3

• V2 “ A2 ‘A3 ‘B0 ‘B1

Subsequently, thanks to these variables Vi and their corresponding corrected
codewords V 1

i , we can correct the parities of shares Ai and Bi by computing
modified shares A1

i and B
1
i as follows :

83



• A1
0 “ A0 ‘ V0

• A1
1 “ A1 ‘ V

1
1

• A1
2 “ A2 ‘ V2

• A1
3 “ A3 ‘ V

1
2

• B1
0 “ B0 ‘ V1

• B1
1 “ B1 ‘ V 1

0

• B1
2 “ B2 ‘ V2

• B1
3 “ B3 ‘ V 1

2

10.2 Array of Subproducts

We consider nr “ 6 random polynomials R0, R1, R2, R3, R4, R5 P F
45
2 . More-

over, we note ai P F2 the parities of respective input shares A1
i, bi P F2 the

parities of respective input shares B1
i and ri P F2 the parities of respective ran-

dom polynomials Ri. Subsequently, we compute the following array of products
of parities, noted mCP :

mCP “

»
————–

r2b3 a3b3 r1b1 a2b3 r2b1 a3r4 r0 a1r5 a1b1
a0r4 a2b1 r0b2 a0b2 r5 r1r3 a1r3 a1r4 a2r5
a2b2 a3r3 a0b1 a0r3 a3b0 r0b1 a1b0 r0r5 r2r3
r1r4 a3b2 r2b2 a1b2 a0b0 r1b0 r0b0 a3b1 a0b3
a0r5 r2r5 r2b0 a2 r1r5 a1b3 r0r3 a2b0 a2r4

fi
ffiffiffiffifl

The positioning of the products in the array enables to compute the output
shares parities si by applying to mCP the following masks maskS0, maskS1,

maskS2, maskS3 P F
45
2 . The literal formulas of those output shares parities si

depending on ai, bi and ri are listed in subsubsection 9.1.5. In this manner,
each output parity si can be computed the following way :

si “
44ÿ

j“0

pmCP rjs & maskSirjsq

These masks, whose values are listed hereinbelow, are also codewords. There-
fore, they can be corrected a few times among all the masked AND occurrences
of a global bitsliced implementation of a cryptographic primitive.

maskS0 “

»
————–

0 0 1 0 1 0 1 0 0
0 0 0 0 0 0 1 0 1
1 1 0 0 0 0 0 0 0
0 1 0 0 0 1 0 1 0
0 1 0 0 1 0 0 0 0

fi
ffiffiffiffifl
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maskS1 “

»
————–

0 0 1 0 0 0 1 0 0
0 1 0 1 0 0 0 0 1
0 0 1 1 1 0 0 0 0
0 0 1 0 1 0 0 0 0
0 1 0 1 1 0 1 0 0

fi
ffiffiffiffifl

maskS2 “

»
————–

0 1 0 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 1 0 1 0 0 0
0 1 1 1 0 0 1 0 1

fi
ffiffiffiffifl

maskS3 “

»
————–

0 0 0 1 1 0 0 1 1
0 0 0 0 1 0 1 0 0
0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 1
0 1 1 0 0 1 0 1 1

fi
ffiffiffiffifl

These masks maskSi are respectively equivalent to the following codewords
msipXq :

• ms0pXq “ X42 `X40 `X38 `X29 ` X27 ` X26 `X25 `X16 `X12 `
X10 ` X7 ` X4, with ms0 “ pX26 ` X24 ` X23 ` X21 ` X19 ` X18 `
X16 `X15 `X13 `X12 `X10 `X9 `X7 `X6 `X5 `X4q ˚ gpXq

• ms1pXq “ X42 `X38 `X34 `X32 ` X27 ` X24 `X23 `X22 `X15 `
X13`X7`X5`X4`X2, with ms1 “ pX

26`X23`X20`X19`X18`
X16 `X12 `X11 `X10 `X6 `X3 `X2q ˚ gpXq

• ms2pXq “ X43`X37`X31`X25`X15`X14`X12`X7`X6`X5`X2`1,
with ms2 “ pX

27 `X24 `X23 `X19 `X18 `X16 `X14 `X13 `X11 `
X8 `X7 `X6 `X5 `X3 `X ` 1q ˚ gpXq

• ms3pXq “ X41`X40`X37`X36`X31`X29`X23`X20`X9`X7`
X6 `X3 `X ` 1, with ms3 “ pX

25 `X24 `X22 `X21 `X19 `X17 `
X15 `X14 `X13 `X12 `X11 `X9 `X8 `X7 `X6 ` 1q ˚ gpXq

10.3 Output Shares Computation

For 0 ď i ď 3, we compute the variables xi,0, xi,1, xi,2, xi,3 P F2 depending on
variables ai, bi and ri, such that the following sets are four sets of independent
and equiprobable variables.

• s0, s1, s2, x0,0, x0,1, x0,2 and x0,3

• s1, s0, s3, x1,0, x1,1, x1,2 and x1,3

85



• s2, s0, s3, x2,0, x2,1, x2,2 and x2,3

• s3, s1, s2, x3,0, x3,1, x3,2 and x3,3

Subsequently, we randomly choose four codewords C0,0, C1,0, C2,0, C3,0 P F
45
2

of odd parity, and twenty-four codewords of even parity (C0,j , C1,j , C2,j , C3,j P
F
45
2 for 1 ď j ď 6). Finally, we use those codewords and these sets of variables

in F2 to compute the output shares S0, S1, S2, S3 P F
45
2 such that

• S0 “ s0 ˚C0,0` s1 ˚C0,1` s2 ˚C0,2`x0,0 ˚C0,3`x0,1 ˚C0,4`x0,2 ˚C0,5`
x0,3 ˚ C0,6

• S1 “ s1 ˚C1,0` s0 ˚C1,1` s3 ˚C1,2`x1,0 ˚C1,3`x1,1 ˚C1,4`x1,2 ˚C1,5`
x1,3 ˚ C1,6

• S2 “ s2 ˚C2,0` s0 ˚C2,1` s3 ˚C2,2`x2,0 ˚C2,3`x2,1 ˚C2,4`x2,2 ˚C2,5`
x2,3 ˚ C2,6

• S3 “ s3 ˚C3,0` s1 ˚C3,1` s2 ˚C3,2`x3,0 ˚C3,3`x3,1 ˚C3,4`x3,2 ˚C3,5`
x3,3 ˚ C3,6

In this manner, each output share Si verifies uniformity and can equiprob-
ably take 27 “ 128 different values. With the codewords Ci,j we choose, we
obtain the following formulas for the output shares codewords Si :

S0 “ ps0, s1 ‘ x0,0, s2, s0 ‘ x0,1, s0 ‘ x0,0, x0,2 ‘ x0,0, x0,2, s1, s1 ‘ s2 ‘ x0,2

‘ x0,1, s2, x0,2, s1 ‘ x0,1, s2, s1, s1 ‘ s2 ‘ x0,3 ‘ x0,1, s2, s1, s1 ‘ s2

‘ x0,2, s2, x0,3, x0,3 ‘ x0,1, x0,2, s1, s2, s0 ‘ x0,1, s0, s1, s2 ‘ x0,1, x0,2,

s0, x0,3 ‘ x0,1, s0 ‘ x0,0, x0,3 ‘ x0,1, s0, x0,2, x0,2 ‘ x0,0, x0,2 ‘ x0,1

x0,3 ‘ x0,0, s0 ‘ x0,0, x0,3, s0 ‘ x0,0, s0, x0,3, x0,3 ‘ x0,0, x0,3 ‘ x0,0q

S1 “ ps0, s1, s3 ‘ x1,0, s0, s1, s1, s0, x1,3 ‘ x1,1, s3 ‘ x1,0, s3 ‘ x1,1, x1,3, x1,3

‘ x1,0, s3, x1,3 ‘ x1,1, s3 ‘ x1,1, s3 ‘ s0 ‘ x1,1 ‘ x1,1, s0 ‘ x1,0, s3

‘ x1,1 ‘ x1,3, s3, x1,3, x1,3 ‘ x1,0, s0, s1 ‘ x1,1, s3 ‘ x1,1 ‘ x1,0, s0, s0,

s1 ‘ x1,1, s3 ‘ s0 ‘ x1,1, s0, s1, x1,1, s1 ‘ x1,1, s1, x1,1, s1 ‘ x1,0, x1,1,

x1,1 ‘ x1,1, s1, s1 ‘ x1,0, x1,1, x1,3 ‘ x1,0, x1,1 ‘ x1,0, x1,1, x1,3, x1,3q

S2 “ ps3, x2,0 ‘ x2,2, s3, x2,3 ‘ x2,1, x2,0 ‘ x2,1, x2,0 ‘ x2,2, s2, s2 ‘ x2,2, s2

‘ x2,2, x2,3, s0, s3 ‘ x2,1, s3 ‘ s0 ‘ x2,3, s0 ‘ x2,1 ‘ x2,2, s3, s2, s0‘

x2,1 ‘ x2,2, x2,3 ‘ x2,2, s2, s2, s2 ‘ x2,1, x2,3 ‘ x2,1, s3, s0, x2,3, s2, s2,

s3 ‘ x2,1, s2, s2, s0, s3 ‘ s0 ‘ x2,0 ‘ x2,2, s0 ‘ x2,1, s3, s3 ‘ x2,2, s0‘

x2,3 ‘ x2,0 ‘ x2,1 ‘ x2,2, s0, x2,0, x2,0, x2,3, x2,0, x2,3, x2,3, x2,0, x2,0q

86



S3 “ px3,2, s2, s1, x3,2, x3,2, s2, x3,2 ‘ x3,1, s2, s2 ‘ s1, x3,2 ‘ x3,1, x3,2 ‘ x3,1

‘ x3,0, s1, s3 ‘ x3,0, s2 ‘ x3,0, x3,3, s3, s2 ‘ s1 ‘ x3,0, s2 ‘ x3,3, x3,3

‘ x3,1, s3, s1 ‘ x3,3, s3 ‘ x3,1, s3, s1 ‘ x3,0, s3, s3, x3,3, x3,3 ‘ x3,1, s3

‘ x3,1, x3,3, x3,3 ‘ x3,0, s2 ‘ x3,0, x3,3 ‘ x3,0, s3 ‘ x3,1, s2 ‘ s1 ‘ x3,1,

s2 ‘ x3,0, x3,2 ‘ x3,0, s3, s1, s3, s1 ‘ x3,2, s1, x3,2 ‘ x3,1, x3,2, x3,3q
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11 Application to a Global Implementation

The AND masking scheme presented above requires that its input and output
shares are represented by codewords. Therefore, to be able to apply it on a bit-
sliced implementation of any cryptographic primitive, the three other Boolean
operations (OR, XOR and NOT) need to be addressed considering this require-
ment on the format of their inputs and outputs.

First of all, the XOR operation is associative with regards to input sharings,
hence the input shares of a XOR can be just XORed to one another to compute
output shares. In our AND masking scheme set-up where each input is split
into four shares such that HW pA0 ‘A1 ‘A2 ‘A3q mod 2 “ a and HW pB0‘
B1 ‘B2 ‘B3q mod 2 “ b, the most straightforward manner to compute a‘ b
depending on codewords input shares Ai and Bi is the following :

• S0 “ A0 ‘B0

• S1 “ A1 ‘B1

• S2 “ A2 ‘B2

• S3 “ A3 ‘B3

Therefore, the sum of parities of output shares Si carries the correct value.
Indeed,

HW pS0 ‘ S1 ‘ S2 ‘ S3q mod 2 “ HW pA0 ‘B0q `HW pA1 ‘B1q

`HW pA2 ‘B2q `HW pA3 ‘B3q mod 2

“ HW pA0 ‘A1 ‘A2 ‘A3q

`HW pB0 ‘B1 ‘B2 ‘B3q mod 2

“ a‘ b

As a result, this XOR implementation is compatible with the new mask-
ing scheme, since its input shares are codewords and its output shares Si are
codewords as well, as sums of codewords.

Secondly, regarding the OR operation, it can be noticed that it can be written
as a combination of an AND operation and three NOT operations. As a matter
of fact,

a_ b “  p a^ bq

Therefore, the OR operation can be implemented using the AND masking
scheme developed in this thesis and the NOT implementation described here-
inbelow. Thus, the only bitwise operation left to be implemented to be able
to apply our AND masking scheme to any cryptographic algorithm is the NOT
operation, detailed in the following subsection.

11.1 Implementation of the NOT Operation

As we consider input and output shares of the AND operation to be codewords,
input and output shares of the NOT operation need to be codewords as well
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to ensure compatibility. Hence, the NOT operation takes as input shares code-
words A0, A1, A2 and A3 and returns codewords S0, S1, S2 and S3 such that
HW pA0q `HW pA1q `HW pA2q `HW pA3q mod 2 “ HW pS0q `HW pS1q `
HW pS2q `HW pS3q ` 1 mod 2.

The basic idea of the implementation is to add random codewords to the
three first input shares A0, A1 and A2, then add to A3 a codeword of parity
opposite to the parity of the sum of the random codewords XORed to A0, A1

and A2.
The major drawback to this solution lies in the fact that computing random

codewords can rapidly become costly. This can be done either by computing
random messages and multiplying them by the generator polynomial of the
code gpXq, or by testing the residue of random arrays y P F

45
2 modulo gpXq

until finding one verifying ypXq “ 0 mod gpXq. Moreover, those operations
would have to be performed using only bitwise operations as well, so that the
implementation of the cryptographic primitive would be exclusively made up of
bitwise operations.

To limitate this extra cost, we aim to re-use codewords already involved in
our AND masking scheme : the masks ms0pXq, ms1pXq, ms2pXq and ms3pXq
(listed in subsection 10.2). To that end, we pick random variables vi,j P F2 for
0 ď i ď 2 and 0 ď j ď 3, and use them in the computation of output shares S0,
S1, S2 and S3 such that :

• S0 “ A0 ‘ pv0,0 ˚ms0pXqq ‘ pv0,1 ˚ms1pXqq ‘ pv0,2 ˚ms2pXqq ‘ pv0,3 ˚
ms3pXqq

• S1 “ A1 ‘ pv1,0 ˚ms0pXqq ‘ pv1,1 ˚ms1pXqq ‘ pv1,2 ˚ms2pXqq ‘ pv1,3 ˚
ms3pXqq

• S2 “ A2 ‘ pv2,0 ˚ms0pXqq ‘ pv2,1 ˚ms1pXqq ‘ pv2,2 ˚ms2pXqq ‘ pv2,3 ˚
ms3pXqq

• S3 “ A3‘ppv0,0‘ v1,0‘ v2,0q ˚ms0pXqq‘ ppv0,1‘ v1,1‘ v2,1q ˚ms1pXqq‘
ppv0,2 ‘ v1,2 ‘ v2,2q ˚ms2pXqq ‘ ppv0,3 ‘ v1,3 ‘ v2,3q ˚ms3pXqq ‘ gpXq

Thereby A0 ‘ A1 ‘ A2 ‘ A3 ‘ S0 ‘ S1 ‘ S2 ‘ S3 “ gpXq. As detailed in
subsubsection 9.1.2, the BCH code generator polynomial gpXq has been chosen
to have odd parity. Thus,

HW pS0 ‘ S1 ‘ S2 ‘ S3q mod 2 “ HW pA0 ‘A1 ‘A2 ‘A3q ` 1 mod 2.

In conclusion, this implementation effectively performs the NOT operation
with regards to its input sharing.

11.2 Tests

We test the new masking scheme presented in this thesis on a AES implemen-
tation with a randomly-chosen fixed key using the TBoxes of [CEJv03] bitsliced
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with the Usuba tool ([Mer20]). This implementation is composed of 37586 AND
gates, 2293 NOT gates and 66751 XOR gates and can be summarized as follows
in algorithm 4 :

Algorithm 4: TBoxed AES With Fixed Key

Input : P, the 128-bit plaintext and RK the round keys
Output: C, the 128-bit ciphertext

1 for r “ 1 to 9 do

2 P Ð ShiftRowspP q
3 P Ð Tr,0rP0s...Tr,15rP15s
4 P ÐMixColumnspP q

5 end for

6 C Ð T10,0rP0s...T10,15rP15s
7 return C

• For the 8-bit TBoxes of rounds 1 to 9 p1 ď r ď 9q, Tr,irxs “ Srx ‘
ShiftRowspRKr´1qis

• For the 8-bit TBoxes of round 10, T10,irxs “ Srx‘ ShiftRowspRK9qis ‘
RK10,i

• The AES ShiftRows transformation can be considered as a 128-bit bitwise
permutation.

• The AES MixColumn transformation can also be be considered as a 128-
bit bitwise operation.

We test with a processor Intel(R) Core(TM) i7-6600U CPU @ 2.60GHz three
different versions of this implementation :

• The raw bitsliced implementation where the TBoxes are bitsliced and
the ShiftRows and MixColumn operations are implemented with Boolean
operations AND, OR, NOT and XOR as well.

• The bitsliced implementation where the NOT operation is performed by
flipping a bit share, the XOR operation is implemented by XORing shares
and the AND operation is masked by the ISW masking scheme ([ISW03]),
that is the most known and studied Boolean AND masking scheme but
does not offer fault-attack resistance.

• The bitsliced implementation where the NOT operation is performed as
described in subsection 11.1, the XOR operation is implemented by XOR-
ing polynomial shares and the AND operation is masked by the new mask-
ing scheme presented in this paper.

We obtain the following values:
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Raw Bitsliced

Implementation

Implementation

Masked With

ISW [ISW03]

Implementation

Masked With

Our Scheme

Time for

1000 executions
0.29 s 1103.12 s 2123.46 s

Binary Size 2.3 MB 3.6 MB 3.8 MB

These results show that masking a bitsliced implementation entails an in-
crease of the binary size and particularly of the execution time, even when using
a classic and well-studied masking scheme as ISW. It can also be noticed that,
thanks to the use in the implementation of macros that are inherited from the
bitslicing by Usuba, the binary size of the implementation masked with the new
scheme remains almost equal to the binary size of the implementation masked
with ISW. Likewise, the execution time of the implementation masked with the
new scheme only doubles compared to the execution time of the implementation
masked with ISW, although the new scheme offers the additional property of
fault correction compared to ISW.
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Conclusion

The first purpose of this PhD study is to develop enhancements and new tools
for the white-box cryptographic needs of the Kudelski Group. In this disserta-
tion, we first describe the study of the white-boxability of the NIST Lightweight
Cryptography Standardization Contest finalists. Indeed, lightweight cryptogra-
phy primitives are now widely deployed on devices with constrained capacities
that are vulnerable to white-box attackers. Therefore, we aim to determine the
finalist submission of the contest that is the most suitable to a white-box im-
plementation : GIFT-COFB, and more precisely GIFT, its cryptographic core
block.

Many white-box implementations are based on bitsliced implementations
composed themselves of Boolean operations, including some of the most resis-
tant challenges submitted to white-box cryptography contests WhibOx 2017
and WhibOx 2019. Masking schemes being by nature countermeasures to side-
channel attacks, we then develop a new masking scheme composed of Boolean
operations that is resistant to fault attacks. More precisely, this scheme can
be applied on implementations of any primitive, and corrects potential faults
without deteriorating or aborting the computation. These implementations will
then always return results, results that are correct even if a fault has been in-
troduced during computation. This constitutes a huge practical benefit in the
field of fault-resistant masking schemes.

To that end, we use BCH error-correcting codes as BCH decoding can be
performed with only Boolean operations as well. The design rationale behind
the masking scheme together with the description of the scheme are detailed in
the second part of the dissertation. Finally, the masking scheme is applied to a
bitsliced implementation of AES and compared to the raw bitsliced implemen-
tation and the implementation using the masking scheme ISW.

Directions for Future Research

The different considerations for further research that this dissertation has led
us to are the following :

Investigate the Possibility of Using Other Error-Correcting Codes

The error-correcting code used in the design of the masking scheme presented in
this dissertation is the BCH error-correcting code, chosen for its easy manage-
ment of codewords parity because of its cyclicity and for its decoding process
that can be implemented using Boolean operations. Nevertheless, using such
type error-correcting code while complying with the properties needed for the
scheme imply a BCH error-correcting code of rather high length, here chosen to
be 45.

It would be relevant to investigate if other types of error-correcting codes
would be suitable to comply with the properties needed while using a smaller
code length.
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Experimentally and Theoretically Prove the Side-Channel Security

of the Masking Scheme

The uniformity, non-completeness and correctness properties ensure the first-
order probing security of the masking scheme, so we would need further analysis
to determine the exact probing security order of the scheme.

In the same way, it would be relevant to experimentally confirm the side-
channel resistance of an implementation of a cryptographic primitive using the
presented AND masking scheme.

Balance Between Performance and Correction Efficiency

It can easily be noticed that the correction design is the most costly part of
the masking schemes, whether in performances or memory. Therefore, we can
ask ourselves if, throughout a whole bitsliced implementation, it is possible to
remove the correction part at the beginning of some of the instances of the
AND masking scheme to improve performances, while not impacting too much
the fault correction capacity of this implementation.
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A Attack Numerical Example

This appendix will detail the different steps of the attack on a TBox mentioned
in subsection 8.2. To that end, we keep the notations of the intermediate values
of a TBox detailed in subsection 8.1.

A.1 First Step of the Attack

The first step of the attack illustrates how to deduce the left half of the input
encodings of a TBox.

We consider the right-most TBox T0 of a round r, with key bits pk1, k0q “
p1, 1q, round constant bit c “ 0, the intern SBox ILUT “ r0110, 1100, 0011, 1111,
0010, 0001, 1010, 0111, 1011, 1101, 1000, 0101, 0000, 1001, 1110, 0100s and the in-
put and output encodings

$
’’’’&
’’’’%

G´1

r´1,15 “ r01, 11, 00, 10s

G´1

r´1,10 “ r00, 10, 01, 11s

G´1

r´1,5 “ r00, 11, 10, 01s

G´1

r´1,0 “ r10, 00, 11, 01s

,

$
’’’&
’’’%

Gr,3 “ r11, 10, 01, 00s

Gr,2 “ r10, 11, 00, 01s

Gr,1 “ r01, 10, 11, 00s

Gr,0 “ r10, 01, 11, 00s

.

First of all, from an attacker viewpoint, we randomly consider the values
of the six left-most input bits px7, x6, x5, x4, x3, x2q to be p0, 0, 1, 1, 0, 1q. By

the bijectivity of encodings, there exists a unique value px
p0,0q
1

, x
p0,0q
0

q P F2
2 such

that G´1

r´1,0px
p0,0q
1

x
p0,0q
0

q “ 00. Thus, the computation of T0r00 11 01 x
p0,0q
1

x
p0,0q
0

s
presents the following intermediate values :

G
´1

r´1,15

0 0

y7 y6

TBoxin

Decodout

G
´1

r´1,10

1 1

y5 y4

G
´1

r´1,5

0 1

y3 y2

G
´1

r´1,0

x
p0,0q
1

x
p0,0q
0

0 0

GS

y7 y5 y3 0GSin ILUTin

z7 z5 z3 z1GSout ILUTout

c k1 k0GS‹
out

ILUTr,0

y6 y4 y2 0

z6 z4 z2 z0

Gr,3

z7 ‘ c z6

t17 t16

Gr,2

z5 ‘ k1 z4

t15 t14

Gr,1

z3 ‘ k0 z2

t13 t12

Gr,0

z1 z0

t11 t10

Encodin

TBoxout
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Likewise, there exists distinct input bits values px
p0,1q
1

, x
p0,1q
0

q, px
p1,0q
1

, x
p1,0q
0

q,

px
p1,1q
1

, x
p1,1q
0

q P F2
2 such that G´1

r´1,0px
py1,y0q
1

x
py1,y0q
0

q “ y1y0 for all py1, y0q P F
2
2.

Therefore, the computations of T0r00 11 01 x
p0,1q
1

x
p0,1q
0

s, T0r00 11 01 x
p1,0q
1

x
p1,0q
0

s,

T0r00 11 01 x
p1,1q
1

x
p1,1q
0

s present the respective following intermediate values :

• For T0r00 11 01 x
p0,1q
1

x
p0,1q
0

s :

G
´1

r´1,15

0 0

y7 y6

TBoxin

Decodout

G
´1

r´1,10

1 1

y5 y4

G
´1

r´1,5

0 1

y3 y2

G
´1

r´1,0

x
p0,1q
1

x
p0,1q
0

0 1

GS

y7 y5 y3 0GSin ILUTin

z7 z5 z3 z1GSout ILUTout

c k1 k0GS‹
out

ILUTr,0

y6 y4 y2 1

z1
6 z

1
4 z

1
2 z

1
0

Gr,3

z7 ‘ c z1
6

t27 t26

Gr,2

z5 ‘ k1 z
1
4

t25 t24

Gr,1

z3 ‘ k0 z
1
2

t23 t22

Gr,0

z1 z1
0

t21 t20

Encodin

TBoxout

• For T0r00 11 01 x
p1,0q
1

x
p1,0q
0

s :

G
´1

r´1,15

0 0

y7 y6

TBoxin

Decodout

G
´1

r´1,10

1 1

y5 y4

G
´1

r´1,5

0 1

y3 y2

G
´1

r´1,0

x
p1,0q
1

x
p1,0q
0

1 0

GS

y7 y5 y3 1GSin ILUTin

z1
7 z

1
5 z

1
3 z

1
1GSout ILUTout

c k1 k0GS‹
out

ILUTr,0

y6 y4 y2 0

z6 z4 z2 z0

Gr,3

z1
7 ‘ c z6

t37 t36

Gr,2

z1
5 ‘ k1 z4

t35 t34

Gr,1

z1
3 ‘ k0 z2

t33 t32

Gr,0

z1
1

z0

t31 t30

Encodin

TBoxout
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• For T0r00 11 01 x
p1,1q
1

x
p1,1q
0

s :

G
´1

r´1,15

0 0

y7 y6

TBoxin

Decodout

G
´1

r´1,10

1 1

y5 y4

G
´1

r´1,5

0 1

y3 y2

G
´1

r´1,0

x
p1,1q
1

x
p1,1q
0

1 1

GS

y7 y5 y3 1GSin ILUTin

z1
7 z

1
5 z

1
3 z

1
1GSout ILUTout

c k1 k0GS‹
out

ILUTr,0

y6 y4 y2 1

z1
6 z

1
4 z

1
2 z

1
0

Gr,3

z1
7 ‘ c z1

6

t47 t46

Gr,2

z1
5 ‘ k1 z

1
4

t45 t44

Gr,1

z1
3 ‘ k0 z

1
2

t43 t42

Gr,0

z1
1 z1

0

t41 t40

Encodin

TBoxout

We can subsequently compute the values of T = t T0r00 11 01 x
p0,0q
1

x
p0,0q
0

s,

T0r00 11 01 x
p0,1q
1

x
p0,1q
0

s, T0r00 11 01 x
p1,0q
1

x
p1,0q
0

s, T0r00 11 01 x
p1,1q
1

x
p1,1q
0

s u =
t T0r00 11 01 00s, T0r00 11 01 01s, T0r00 11 01 10s, T0r00 11 01 11s u. As a result,

tp00 01 00 11q,

p10 01 10 11q,

p01 01 11 11q,

p11 01 01 11qu

“

tpt17t
1

6 t
1

5t
1

4 t
1

3t
1

2 t
1

1t
1

0q,

pt27t
2

6 t
2

5t
2

4 t
2

3t
2

2 t
2

1t
2

0q,

pt37t
3

6 t
3

5t
3

4 t
3

3t
3

2 t
3

1t
3

0q,

pt47t
4

6 t
4

5t
4

4 t
4

3t
4

2 t
4

1 t
4

0qu

“

tpGr,3ppz7‘cqz6qGr,2ppz5‘k1qz4qGr,1ppz3‘k0qz2qGr,0pz1z0qq,

pGr,3ppz7‘cqz
1
6qGr,2ppz5‘k1qz

1
4qGr,1ppz3‘k0qz

1
2qGr,0pz1z

1
0qq,

pGr,3ppz
1
7‘cqz6qGr,2ppz

1
5‘k1qz4qGr,1ppz

1
3‘k0qz2qGr,0pz

1
1z0qq,

pGr,3ppz
1
7‘cqz

1
6qGr,2ppz

1
5‘k1qz

1
4qGr,1ppz

1
3‘k0qz

1
2qGr,0pz

1
1z

1
0qqu

“

tT0r00 11 01 x
p0,0q
1

x
p0,0q
0

s,

T0r00 11 01 x
p0,1q
1

x
p0,1q
0

s,

T0r00 11 01 x
p1,0q
1

x
p1,0q
0

s,

T0r00 11 01 x
p1,1q
1

x
p1,1q
0

su

“

tT0r00 11 01 00s,

T0r00 11 01 01s,

T0r00 11 01 10s,

T0r00 11 01 11su
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Although it is not possible to determine yet i P t0, 1, 2, 3u such that p00 01 00
11q = pti7t

i
6 t

i
5t

i
4 t

i
3t

i
2 t

i
1t

i
0q, as Gr,3ppz7 ‘ cqz6q ‰ Gr,3ppz7 ‘ cqz1

6q ‰ Gr,3ppz
1
7 ‘

cqz6q ‰ Gr,3ppz
1
7 ‘ cqz1

6q it can be deduced by the bijectivity of Gr,3 that z1
7 ‰

z7 pand z
1
6 ‰ z6q, i.e. z

1
7 “ z7.

Furthermore, Gr,2ppz5 ‘ k1qz4q “ Gr,2ppz5 ‘ k1qz
1
4q “ Gr,2ppz

1
5 ‘ k1qz4q “

Gr,2ppz
1
5 ‘ k1qz

1
4q, hence z1

5 “ z5 and z1
4 “ z4. In the same manner, it can

be determined that z1
3 “ z3, z

1
2 “ z2, z

1
1 “ z1 and z1

0 “ z0. Consequently,
GSry7y5y30s “ z7z5z3z1 implies that y7, y5 and y3 verify that GSry7y5y31s “
z7z5z3z1. According to the values of the SBox GS it can then be deduced
that the unique possible value of py7, y5, y3q is p0, 1, 1q. Therefore G

´1

r´1,15p00q “

0 , G´1

r´1,10p11q “ 1 and G´1

r´1,5p01q “ 1 .

This method can be repeated while changing the six fixed input bits and
potentially the varying 2-bit input block to determine the remaining left bit
values of the four input encodings. For example, considering px7, x6, x5, x4,
x3, x2q “ p1, 0, 0, 1, 1, 0q, the output values of the TBox are

tpt17t
1

6 t
1

5t
1

4 t
1

3t
1

2 t
1

1t
1

0q,

pt27t
2

6 t
2

5t
2

4 t
2

3t
2

2 t
2

1t
2

0q,

pt37t
3

6 t
3

5t
3

4 t
3

3t
3

2 t
3

1t
3

0q,

pt47t
4

6 t
4

5t
4

4 t
4

3t
4

2 t
4

1 t
4

0qu

“

tp01 01 00 11q,

p11 01 10 11q,

p00 01 11 11q,

p10 01 01 11qu

Thus, noting GSry7y5y30s “ z7z5z3z1 implies that GSry7y5y31s “ z7z5z3z1.
Therefore, according to the values of GS, it can be deduced that G´1

r´1,15p10q “

0 , G´1

r´1,10p01q “ 1 and G´1

r´1,5p10q “ 1 .

Subsequently, considering px7, x6, x5, x4, x1, x0q “ p0, 0, 1, 0, 0, 0q, the output
values of the TBox are

tpt17t
1

6 t
1

5t
1

4 t
1

3t
1

2 t
1

1t
1

0q,

pt27t
2

6 t
2

5t
2

4 t
2

3t
2

2 t
2

1t
2

0q,

pt37t
3

6 t
3

5t
3

4 t
3

3t
3

2 t
3

1t
3

0q,

pt47t
4

6 t
4

5t
4

4 t
4

3t
4

2 t
4

1 t
4

0qu

“

tp01 00 01 10q,

p00 11 00 10q,

p01 10 11 10q,

p00 01 01 10qu

Therefore, when noting GSry7y50y1s “ z7z5z3z1, y7, y5 and y1 verify that
GSry7y51y1s “ z1

7z5z3z1. According to the values of GS, it can be deduced
that py7, y5, y1q is either equal to p0, 0, 1q, p0, 1, 1q or p1, 1, 1q. Thus y1 “ 1, i.e.
G´1

r´1,0p00q “ 1 .

Lastly, considering px7, x6, x3, x2, x1, x0q “ p1, 1, 1, 1, 1, 0q, the output values
of the TBox are

tpt17t
1

6 t
1

5t
1

4 t
1

3t
1

2 t
1

1t
1

0q,

pt27t
2

6 t
2

5t
2

4 t
2

3t
2

2 t
2

1t
2

0q,

pt37t
3

6 t
3

5t
3

4 t
3

3t
3

2 t
3

1t
3

0q,

pt47t
4

6 t
4

5t
4

4 t
4

3t
4

2 t
4

1 t
4

0qu

“

tp01 00 11 00q,

p11 11 11 01q,

p01 10 11 11q,

p11 01 11 10qu
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Then, GSry70y3y1s “ z7z5z3z1 and GSry70y3y1s “ z1
7z

1
5z3z1, which im-

plies py7, y3, y1q “ p0, 0, 1q, p0, 1, 1q, p1, 0, 1q or p1, 1, 1q. Therefore y1 “ 1, i.e.
G´1

r´1,0p10q “ 1 .

As a conclusion, all left bits of the four input encodings can be recovered
by applying the same method with different input bits. Therefore, in the cur-
rent exemple, the attacker can recover the following left bits of the four input
encodings G´1

r´1,15, G
´1

r´1,10, G
´1

r´1,5 and G´1

r´1,0 :

G´1

r´1,15 :00Ñ 0

01Ñ 1

10Ñ 0

11Ñ 1

G´1

r´1,10 :00Ñ 0

01Ñ 1

10Ñ 0

11Ñ 1

G´1

r´1,5 :00Ñ 0

01Ñ 1

10Ñ 1

11Ñ 0

G´1

r´1,0 :00Ñ 1

01Ñ 0

10Ñ 1

11Ñ 0

A.2 Second and Final Steps of the Attack

We now demonstrate how to deduce the two key bits of a TBox knowing the
left half of the inverse of its output encodings. To that end, we still consider
the TBox T0 with the same notations, and suppose that T0 does not belong to
the last round of GIFT. We assume that, thanks to the procedure above, the
attacker knows that the input encodings verify

G´1

r´1,15 :00Ñ 0

01Ñ 1

10Ñ 0

11Ñ 1

G´1

r´1,10 :00Ñ 0

01Ñ 1

10Ñ 0

11Ñ 1

G´1

r´1,5 :00Ñ 0

01Ñ 1

10Ñ 1

11Ñ 0

G´1

r´1,0 :00Ñ 1

01Ñ 0

10Ñ 1

11Ñ 0

Likewise, we suppose that the attacker knows the left halves of G´1

r,2 and

G´1

r,1, the inverses of the middle output encodings Gr,2 and Gr,1 of T0. They are
obtained by applying the same procedure to the corresponding TBoxes of round
r`1 that admit G´1

r,2 and G´1

r,1 as input encodings, and they provide information
on the output encodings of T0 themselves :

G´1

r,2 :00Ñ 1

01Ñ 1

10Ñ 0

11Ñ 0

ñ

Gr,2 :0 Ñ 10

0 Ñ 11

1 Ñ 00

1 Ñ 01

and

G´1

r,1 :00Ñ 1

01Ñ 0

10Ñ 0

11Ñ 1

ñ

Gr,1 :0 Ñ 01

0 Ñ 10

1 Ñ 00

1 Ñ 11

Finally, this knowledge on the input and output encodings is sufficient to
conclude the attack. Indeed, it can be used to determine with certainty some
of the intermediate values of the computation of T0 for any randomly chosen
input. For example, the computation of T0r00 00 00 00s presents the following
intermediate values :
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G
´1

r´1,15

0 0

0 y6

TBoxin

Decodout

G
´1

r´1,10

0 0

0 y4

G
´1

r´1,5

0 0

0 y2

G
´1

r´1,0

0 0

1 y0

GS

0 0 0 1GSin ILUTin

1 0 1 0GSout ILUTout

c k1 k0GS‹
out

ILUTr,0

y6 y4 y2 y0

z6 z4 z2 z0

Gr,3

c z6

0 0
Gr,2

k1 z4

0 0
Gr,1

k0 z2

1 0
Gr,0

0 z0

0 1

Encodin

TBoxout

Consequently, Gr,2pk1z4q “ 00 and Gr,1pk0z2q “ 10. Therefore, by the bi-
jectivity of the output encodings Gr,2 and Gr,1, the values of key bits k1 and k0
verify pk1, k0q “ p1, 0q, i.e. pk1, k0q “ p1, 1q.
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Titre : Masquage Booléen Résistant aux Attaques par Fautes et White-Boxabilité de Primitives
Cryptographiques Légères

Mot clés : Cryptographie White-Box, Masquage Résistant aux Fautes, Cryptographie Légère

Résumé : La cryptographie white-box est dé-
diée aux implémentations sûres face à un at-
taquant ayant le contrôle total des disposi-
tifs sur lesquels elles sont déployées. Un des
enjeux majeurs auquel elle doit répondre est
la résistance aux attaques side-channel. A
cette fin, les concepteurs d’implémentations
white-box ont pour but d’atténuer au maximum
toute dépendance entre les variables de l’im-
plémentation et ses données sensibles. Pour
cela, l’une des contre-mesures classiques est
l’utilisation de schémas de masquage, néan-
moins vulnérables aux attaques par fautes.

La cryptographie white-box doit aussi
considérer le compromis coûts-performances

de ses implémentations : la question de la
« white-boxabilité » des primitives légères,
adaptées aux dispositifs aux capacités limi-
tées se pose donc.

Dans cette thèse, nous discutons tout
d’abord de la white-boxabilité des finalistes du
processus de standardisation de primitives lé-
gères du NIST, et présentons une implémen-
tation white-box de GIFT. Dans la seconde
partie, nous décrivons notre schéma de mas-
quage de l’opération AND résistant à l’intro-
duction de fautes grâce à l’usage de codes
correcteurs BCH et pouvant être implémenté
avec uniquement des opérations bit-à-bit.

Title: Boolean Fault-Resistant Masking and White-Boxability of Lightweight Cryptography

Keywords: White-Box Cryptography, Fault-Resistant Masking, Lightweight Cryptography

Abstract: White-box cryptography is dedi-
cated to the implementations of cryptographic
primitives that are secure against an attacker
being in total control of the devices they are
deployed on. One of the main security chal-
lenges it needs to address is side-channel se-
curity. To that end, designers aim to eliminate
the dependence between variables and sensi-
tive data. Classical countermeasures to do so
are masking schemes. However, implementa-
tions using masking schemes are still vulnera-
ble to fault attacks.

Moreover, the classical cryptographic
compromise between security, costs and per-
formances remains in white-box cryptogra-

phy. Lightweight cryptography is the field
of cryptography designed for devices with
constrained capacities, therefore the question
of the white-boxability of lightweight crypto-
graphic algorithms arises as well.

In the first part of the thesis, we dis-
cuss the suitability of the finalists of the
NIST Lightweight Cryptography Standardiza-
tion Contest to white-boxing. We then de-
velop a white-box implementation of GIFT.
In the second part of the thesis, we de-
scribe a new construction of a bitwise AND
masking scheme correcting faults using BCH
error-correcting codes and only composed of
Boolean operations on bits.
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