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GENERAL INTRODUCTION 
 

The coast is the contact zone between the mainland and the sea. It is a place of different activities 

such as tourism, leisure, fishing, etc. It is therefore likely to collect polluted liquid coming both 

from the sea and from the mainland. Those that come from the sea are for example heavy crude oil 

and those come from the land are generally releases from human activities. We are interested for the 

case where intrusive liquid which is moved by gravity alone and is called the gravity current, is 

denser than seawater and therefore flows below it. Hydrodynamic stability analysis of this gravity 

current is fundamental as it will determine if a small disturbance will grow or vanish.  

To tackle that problem, we consider two configurations:  

 

1) The gravity current propagates upon a sloping plane and beneath static water. Both liq-

uids are immiscible with different densities and equal viscosities; the seawater depth is 

much greater than the thickness of the gravity current. A small disturbance (perturbation) 

is superimposed to the basic laminar flow and we investigate its temporal instability, in 

order to determine the critical parameters characterizing the occurrence of the instability. 

The investigation is analytic.  

2) Two immiscible liquids of different densities are released in lockexchange configuration 

upon horizontal plane. Both liquids are immiscible with equal viscosities. The difference 

of density is kept fixed while the viscosities are increased to control the initial Reynolds 

number (Re0). The interfacial surface tension is varied to control the initial Weber num-

ber (We0). The Reynolds and Weber numbers permit to determine the threshold of the in-

terface instability between the seawater and the denser liquid. The investigation is per-

formed  by the numerical simulations.  

The main goal of this work is to identify the nature of the instabilities created at the interface in 

stratified flow between two immiscible liquids with different densities. The competition between 

stratification and shear leads to Kelvin-Helmholtz or Holombe instability at the interface (Figures 

Pouliquen 1994, Alexakis 2009, Carpenter 2010). The answer to this question is to compare the 

thickness of the velocity gradient (δu) and that of the density gradient (δ) close to the interface. For 

the case of two immiscible liquids, the thickness of the density gradient is equal to zero (δ=0). In 

this case, only the interface position and velocity gradient need to be calculated (figure 0). We must 

state if the instability is of the Holomboe type and validate the result.  

The manuscript is organized in three chapters:  
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         The first chapter presents the literature: description of generalities on gravity current, main 

previous theoretical experimental and numerical studies on gravity currents, mains previous works 

in our laboratory on gravity current in coastal environment and finally  the scientific project of this 

thesis. The second chapter is devoted to the analytical study of  the gravity current that propagates 

upon a sloping plane and beneath static water.  After a presentation of the instability due to viscosity 

stratification, Kelvin-Helmhotz instabilities, an extension of the Kowal model, we develop a general 

analytical model taking into a count the density stratification, the interfacial  surface tension and the 

slope. The results have been published in the International Journal of COMADEM (Maskoni et al., 

2023). 

  

        In the third chapter, we present the numerical simulations of a system of two immiscible 

liquids in the lockexchange configuration upon horizontal plane performed with the help of 

OpenFoam softwar. The obtained results from the numerical simulations are validated by the 

Huppert theory (Huppert et al., 1982) of the space-time front position with the initial Reynolds 

number lying between 25 and 7000 and with the initial Weber number lying between 5 and 2000. 

We have investigated the hydrodynamic field close to the unstable interface in order to identify the 

nature of the instabilities.   
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Figure 0. (a,b) Gray-scale image of the vorticity (top panel)and the density lower. (c,d)  Gray-scale image of 

the vorticity (top panel) and the density (lower panel) field at the nonlinear stage for the first Holmboe mode 
instability. (e,f)  Gray-scale image of the vorticity (top panel) and the density (lower panel)field at the 

nonlinear stage for the second Holmboe instability(Alexakis, 2009 & Carpenter and al.,2010) 
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INTRODUCTION GÉNÉRALE 

 
La côte est la zone de contact entre la terre ferme et la mer. C'est un lieu de différentes activités 

telles que le tourisme, les loisirs, la pêche, etc. Elle est donc susceptible de collecter des liquides 

pollués provenant aussi bien de la mer que de la terre ferme. Ceux qui viennent de la mer sont par 

exemple du pétrole brut lourd et ceux qui viennent de la terre sont généralement des rejets 

d'activités humaines. Nous nous intéressons au cas où le liquide intrusif qui est déplacé par la seule 

gravité et est appelé le courant gravitaire, est plus dense que l'eau de mer et s’écoule donc en 

dessous. La stabilité hydrodynamique de ce courant gravitaire est fondamentale et déterminera si 

une petite perturbation va croître ou s’évanouir. 

Pour résoudre ce problème, nous considérons deux configurations : 

 

1) Le courant gravitaire se propage sur un plan incliné et sous l'eau statique. Les deux liquides 

sont immiscibles avec des densités différentes et des viscosités égales ; la profondeur de 

l'eau de mer est très supérieure à l'épaisseur du courant gravitaire. Une petite perturbation est 

superposée à l'écoulement laminaire de base et nous étudions sa stabilité temporelle, afin de 

déterminer les paramètres critiques caractérisant l'apparition de l'instabilité. L’étude est 

analytique. 

 

2) Deux liquides immiscibles de densités différentes sont libérés dans une configuration de 

lockexchange sur un plan horizontal. Les deux liquides sont immiscibles avec des viscosités 

égales. La différence de densité est maintenue fixe tandis que les viscosités sont augmentées 

pour contrôler le nombre de Reynolds initial (Re0). La tension interfaciale est variée pour 

contrôler le nombre de Weber initial (We0). Les nombres de Reynolds et de Weber 

permettent de déterminer le seuil d'instabilité de l'interface entre l'eau de mer et le liquide 

plus dense. L'investigation est réalisée par des simulations numériques. 

 

 

        L'objectif principal de ce travail est d'identifier la nature des instabilités créées à l'interface en 

écoulement stratifié entre deux liquides immiscibles de densités différentes. La compétition entre 

stratification et cisaillement conduit à une instabilité de Kelvin-Helmholtz ou Holombe à l'interface 

(Figures Pouliquen 1994, Alexakis 2009, Carpenter 2010). La réponse à cette question est de 

comparer l'épaisseur du gradient de vitesse (δu) et celle du gradient de densité (δ) près de l'interface. 

Pour le cas des liquides immiscibles, l'épaisseur du gradient de densité est égale à zéro (δ=0). Dans 
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ce cas, seuls la position de l'interface et le gradient de vitesse doivent être calculés (figure0). Il faut 

dire si l'instabilité est de type Holomboe et valider le résultat. 

Le manuscrit est organisé en trois chapitres : 

        Le premier chapitre présente la littérature : généralités sur les courants gravitaires, principales 

études théoriques expérimentales et numériques antérieures sur les courants gravitaires, principaux 

travaux antérieurs dans notre laboratoire sur les courants gravitaires en milieu côtier, et presentation 

du projet scientifique de cette thèse. Le deuxième chapitre est consacré à l'étude analytique du 

courant de gravité qui se propage sur un plan incliné et sous l'eau statique. Après une présentation 

de l'instabilité due à la stratification de la viscosité, les instabilités de Kelvin-Helmhotz, une 

extension du modèle de Kowal, nous avons développé un modèle analytique général prenant en 

compte la stratification de la densité, la tension interfaciale et la pente. Les résultats sont publiés 

dans le Journal International de COMADEM (Maskoni et al., 2023). 

 

        Dans le troisième chapitre, nous présentons les simulations numériques réalisées à l'aide du 

logiciel OpenFoam dans la configuration du lockexchange sur plan horizontal. Les résultats obtenus 

à partir des simulations numériques sont validés par la théorie de Huppert (Huppert et al., 1982) par 

la determination spatio-temporelle de la position du front pour des valeurs du nombre de Reynolds 

initial comprises entre 25 et 7000 et pour des valeurs du nombre de Weber initial comprises entre 5 

et 2000. Nous avons étudié le champ hydrodynamique proche d’une interface instable afin 

d'identifier la nature des instabilités. 
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1  Chapter I                      Literature 

1.1 General presentation of gravity currents (GC) 

                     
Gravity currents are pertinent to engineering sciences, namely with regard to environmental 

protection from pollution among other concerns (e.g. process engineering). Pollution of ocean limits 

our ability to use oceans for economic, recreational and aesthetic purposes, can inhibit economic 

growth (Thanh Ca&al.2014a). The polluted ocean is a public health risk. It can cause significant 

changes in ecosystems that harm the health and livelihoods of communities. So discharged effluent 

in ocean such as heavy crude oil spill due to ships overloading is an environmental disaster that 

needs to find appropriate solutions and address it. This disaster can be represented by propagation 

of anthropogenic gravity currents. The following section will be to provide a presesntation general 

of gravity currents and as follows: 

  

1.1.1  Gravity Currents 
 

        Gravity currents or “density/turbidity /buoyancy currents” are flows generated by a density 

gradient between two fluids and occur in both natural and industrial flows. The density differences 

can be due to the variations in salinity, temperature, or concentration of suspended particulates 

(Simpson1997& Benjamin 1968). 

    

        Gravity currents are a ubiquitous phenomenon in the atmosphere or water bodies. They can be 

observed in both natural and anthropogenic environments, and there are numerous examples of 

gravity currents. In the atmosphere, the sea breeze is a well-know example of gravity current. The 

sea breeze (Figure1.1a), which is the flow of cool moist air from the sea to the land. On a warm day 

the sun heats the land more than the sea and, consequently, the air at low altitudes over the land is 

warmer than that over the sea. The resulting density difference drives the sea breeze (Breeze& 

Linden2004).   

Gravity currents can also be found in the industral setting: When we pour honey on a pancake and 

we let it spread out on its own (thespruceeats.com), as shown as bellow in Figure1.1b. 
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                                      (a)                                                                                   (b) 

Figure1.1: Example of gravity currents in the atmosphere and the industral: (a) the atmosphere gravity 

current (the sea breeze) (b) the industral gravity currents (honey) on Cinnamon Pancakes. 

             

        Gravity currents can also be found in the natural setting. Regarding natural examples include a 

hot particle-laden gravity currents, or pyroclastic flow from the eruption of Mt. Unzen in Japan 

2001 and a pyroclastic flow on Montserrat in the Caribbean (Huppert2006). Shell Oil Spill in the 

Gulf of Mexico-Greenpeace in USA 2010 (https://www.greenpeace.org/usa/90000-gallon-oil-spill-

looks-like/shell-oil-spill-in-the-gulf-of-mexico-4). Oil from the 2010 spill flowed toward the coast 

of Alabama(https://www.nsf.gov/news/mmg/mmg_disp.jsp?med_id=133765&from) as shown as 

follows: 

 
 

 

 

 

 

 

 

 

 

 

                

 

Figure 1.2: Example of gravity currents in the natural and industral environment: (a) A hot, particle-laden 
gravity current, or pyroclastic flow, from the eruption of Mt. Unzen in Japan. (2001), (b) A pyroclastic flow 

on Montserrat in the Caribbean (photographer: R. S. J. Sparks), (2001).  (c) Shell Oil Spill in the Gulf of 

Mexico (2010). (d)   Oil from the spill flowed toward the coast of Alabama.       
 

 

 

A natural example to intrusive gravity currents is the “Morning Glory” phenomenon in northern 

Australia, where fluid of one density propagates along an interface between two homogeneous 

layers (Clarke and al.1981 & Smith and al. 1982). Morning Glory is an amplitude-ordered series of 
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solitary waves that form a series of roll clouds, The roll cloud is often very smooth in appearance, 

several hundred meters in diameter and 100-1000 km long, traveling at a speed of 10-20 ms-1 at 500 

m above the ground. Seen near the southern coast of the Gulf of Carpenteria in northern Australia. 

“Morning Glory” phenomenoncan be seen in Figure1.3. 

 

 

 

  

      

 

 

        Figure1.3: Example of intrusive gravity currents is the “Morning Glory” phenomenon  in northern     

                       Australia (Morning glory cloud over Goondiwindi July 2017). 

                 

For all these examples, there are several reasons for studying gravity currents: 

(1) To assimilate this phenomenon and understand its various stages: The resting stage, the 

spreading stage and the deceleration phase.      

(2) The consequences of a spillage of heavy crude oil is disastrous, as illustrated by Oil Spill in the 

Gulf of Mexico in 2010, Figure 1.2 (c). For this reason, the study of gravity currents to assess the 

risks if they occur.  

(3) Because of thier economic significance, there is an economic importance for the study of gravity 

currents, which is represented by important economic costs related to the problem of loss of storage 

capacity in reservoirs due to one of the types of gravity currents, which are called turbidity currents 

(Cesare & al.2001). 

1.1.2   Description of gravity current flow 
       

        The basic sketch of a typical gravity current configuration is shown in Figure1.4. Important 

parameters that determine gravity currents propagation are the total depth of the fluid layer (H), 

depth of the gravity current (h), the density diference between the two fluids (∆ρ), the the 

gravitational acceleration (g), the density of heavy fluid ρ, the density of ambient fluid (ρ-∆ρ), and 

reduced gravity 𝑔́ = (𝑔∆ρ) (ρ − ∆ρ)⁄ . 
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                                                  Figure 1.4. Basic sketch of a gravity current 

     

    The gravity current with density ρ propagates into the ambient fluid with a different density (ρ-

∆ρ). If the difference in density is small, so that the buoyancy forces are of equal or greater 

magnitude than the inertial forces, in this case, this system is called by Boussinesq system.   

     The gravity current’s shape consists of the head, which is the leading edge of the gravity current, 

is a region in which relatively large volumes of ambient fluid are displaced. Its height is 

approximately twice the height of the current in the next phase of the flow (Simpson.1982), in the 

frontal zone of the current (the head) a nose rising above in the next phase of the flow can usually 

be observed (Simpson 1997). The body and tail is the bulk of flow that follows the head. Gravity 

flow characteristics can be characterized by the Froude and Reynolds numbers, which is an 

important dimensionless parameter, and represent the ratio of flow speed to gravity (buoyancy) and 

viscosity, respectively (Huppert.2006). 

 

  

                                      

                                        

                            Figure 1.5. A schematic diagram of the gravity current sections 

 

1.1.3 Non-dimensional parameters 
 

        The most important non-dimensional parameters for a Boussinesq gravity current are: 

1- Reynold number (Re), which is defined as the ratio of inertial forces to viscous forces. Reynolds  

number is given by the following well-known formula: 𝑅𝑒 = 𝑈𝑏ℎ/𝑣  where  𝑈𝑏  is the current 

velocity,  𝑣 is kinematic viscosity, h is the height of gravity current. 𝑈𝑏can be calculated as𝑈𝑏 =

√𝑔𝐻́ , H depth gravity current, 𝑔́ = 𝑔
𝜌2−𝜌1

𝜌1
  reduced gravity. Reynolds number measures the 

importance of viscous dissipation on the current (Marianoi & al.2007). 
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2- The Froude number (Fr), which is defined as the ratio between the inertia and gravity forces in a 

fluid, which is defined as  𝐹𝑟 = 𝑈 √𝑔́ℎ⁄   where h hydraulic mean depth(m), U velocity (m/s) and g 

acceleration of gravity (9.81 m/s2). 

 

3- Weber number (We), which is defined as the ratio between the inertial force and the surface 

tension force. Weber number is given by the following well-known formula 𝑊𝑒 = 𝜌𝑈2ℎ 𝜎⁄ , where 

h is the height of gravity cur rent, σ surface tension, and ρ density current. It can be thought of as a 

measure of the relative importance of the fluid's inertia compared to its surface tension. The 

quantity is useful in analyzing thin film flows and the formation of droplets and bubbles (Day& 

al.2012). 

        

4- The Richardson number (Ri) which is defined as the ratio of the buoyancy term to the flow shear  

 flow term. Richardson number is given by the following well-known formula:  𝑅𝑖 =
𝑔

𝜌

𝜕𝜌 𝜕𝑦⁄

(𝜕𝑢 𝜕𝑦⁄ )2
,  

where g is  gravity, ρ is density,  u represents flow velocity, y represents the depth. The Richardson 

number, of practical importance in investigating density and turbidity currents in oceans, lakes, and 

reservoirs. And it is used to estimate the level of turbulence in the gravity currents flows (Kundu & 

Cohen 2002). 

 

         The phenomenon of gravity currents has a broad and active field of academic research and 

engineering applications. In fluid dynamics, the dynamics of gravity currents have been widely 

studied by laboratory experiments and numerical simulations. The study of gravity currents has 

generated a quite large literature including some partial review papers e.g. (Griffiths and al.1986 & 

Felix & a l.2002). The start of quantitative study (or modeling) of gravity current is attributed to 

von Karman in 1940, where the first quantitative study of gravity currents flows was done by Von 

Karman, who evaluated the spread of poisonous gas (Huppert 2006). Subsequently, (Karm 1940) 

formulated a classical relationship for the GC depth and velocity using Bernoulli’s theorem in 

which a heavier fluid advances into the lighter atmosphere: 𝐹𝑟 = 𝑈 √𝑔́ℎ⁄ , where h and U are the 

depth and velocity of the front or leading edge of the GC, respectively.  𝐹𝑟 is the Froude number of 

the GC front, which was evaluated by Von Karman to equal √2 in the context of a relatively deep 

ambient (Benjamin 1968) argued that Von Karman’s formulation was invalid because he applied 

Bernoulli’s theorem across a streamline characterized with head losses. Subsequently, Benjamin re-

derived this expression 𝐹𝑟 = 𝑈 √𝑔́ℎ⁄   using the momentum integral and ended up with the same 

results. This result surprised Benjamin; however, because both approaches used a different integral 

of the Euler equation, they could not have reached different results (Huppert 2006). 
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1.1.4  Gravity current flow stages 
 

        The gravity current evolves through three stages, defined by the dominant forces acting upon it. 

During the initial stage, known as the slumping stage, non-equilibrium condition occurs between 

the two fluids. Hence the heavier fluid flows under the lighter one, producing the gravity current,  

this stage, which is characterized by the initial drop in depth And increase the velocity of the current 

and the head, body(and tail) of the gravity current are formed, and the height of the current 

decreases. The buoyancy forces dominate and the front travels at a quasi-constant velocity. After 

travelling a certain distance, the current transitions into the self-similar phase, during which the 

front starts decelerating with the velocity following a t-1/3 law (Huppert & al.1980, Gratton and 

al.1994). During the final stage, the current rush decreases and the velocity decreases because the 

gravity current becomes at this stage surrounded by the ambient fluid that works to trap and impede 

the progress of the gravity current. In this stage onward the propagation rate decreases with time 

and the current gradually slows down. Finally, as the current spreads even further, it becomes so 

thin that viscous forces between the intruding fluid and the ambient and boundaries govern the flow. 

Viscous forces start to dominate over the inertial-buoyant forces, and the current enters the buoyant-

viscous phase characterised by an even faster deceleration which follows a t-4/5 law (Huppert & 

al.1982, Rottman & al.1983). 

 

1.1.5 Classification of gravity currents 
 

         Bottom gravity currents or (turbidity currents, debris flow) are generated when the gravity 

current density is greater than the density of the ambient fluid, upper gravity currents are generated 

when the gravity current density is less than the density of the ambient fluid. Furthermore, gravity 

currents can also occur as intrusions of mixed fluid in a sharply or linearly stratified ambient 

(Ungarish2009). 

    According to the different density types of the current and the ambient fluid, gravity currents can 

be draw as: (1) Bottom gravity currents (Figuer1.5(a)), when the current is denser than the ambient 

fluid, (𝜌 > (𝜌 − ∆𝜌)). (2) Upper greavity currents (Figuer1.5 (b)) if the density of the current is 

lower than the ambient fluid ( 𝜌 < (𝜌 − ∆𝜌)). (3) Intrusion of “mixed” fluid in a sharply stratified 

ambient (Figuer1.5(c)) when the current has intermediate density value when compared to the 

stratified ambient fluid. (4) Intrusion of “mixed” fluid in a linearly-stratified ambient, with  𝜌 =

(𝜌 − ∆𝜌)(Figuer1.5 (d)).  
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Figure 1.6: Schematic description of typical gravity current configurations (a) bottom current of more  

                    dense (heavy) fluid  𝜌 > (𝜌 − ∆𝜌); (b) top (surface) current of less dense (light) fluid, 

                  𝜌 < (𝜌 − ∆𝜌); (c) intrusion of “mixed” fluid in a sharply stratified ambient ; (d) intrusion                  

                     of “mixed” fluid in a linearly-stratified ambient,  𝜌 = (𝜌 − ∆𝜌) (y= 0). 

    

 

     On the other hand, gravity currents can be categorized as compositional or particle-driven gravity 

currents. In the case of compositional gravity currents. The movement of the gravity current is 

caused by the difference in density as we mention above. While for particle-driven gravity currents, 

the driving force is represented by the suspension of sediments. By depending on the concentration 

intensity of the sediment, three main types of gravity currents flow can be distinguished: (1) debris 

flows: Debris flows are characterized by the cohesion existing between the transported particles 

(sands, pebbles). (2) Granular (or fluidized) flows: This type flow occurs in silts, sands (3) liquefied 

flows: Liquefied flows are mainly due to a rapid increase in pressure interstitial of the fluid. 

Liquefied flows are characterized by non-cohesive particles (sands or silts), held in suspension by 

the over pressure of the interstitial fluid. From the three main types of gravityl currents, depending 

on the concentration of particles. 

 

 



 

27 

 

1.1.6 Classification     
                 

Gravity currents can be of the following types: 

 

1 – Constant (fixed) / non-constant volume 

 

        Depending on the volume of the fluid, gravity currents can be divided into two types, the first 

type is gravity currents which is of finite volume. In this type, Fixe volume gravity currents, are 

generated in the laboratory using a lock-exchange tank in which the two fluids of different densities 

are separated by a vertical barrier. The vertical barrier is swiftly removed, and the intruding fluid 

collapses into the receiving ambient, eventually giving way to a constant-volume gravity current. 

The second type of gravity current is called non-finite volume gravity current which is provided by 

a continuous source.       

2 – Inviscid / viscous  

        Viscous gravity currents propagate under a balance between viscous and buoyancy forces (and 

the two fluids are usually considered essentially immiscible). The Reynolds number 𝑅𝑒 = 𝑈𝐿 𝑣⁄   

gives an indication of the ratio of these two effects (inviscid or viscous). Here U, L and v are the 

typical velocity, length and kinematic viscosity of the current. A current is inviscid or inertial when 

𝑅𝑒 ≪ 1, and viscous when Re is not large. 

3 – Boussinesq /non-Boussinesq  

        If the difference of the density between the gravity current and the ambient fluid is small, then 

the current is a Boussinesq type. Otherwise, it is called non-Boussinesq type. 

4 – Homogeneous / stratified ambient  

        It depends on the density of the ambient fluid as a function of the vertical coordinate. The case 

of homogeneous in the ambient fluid is the simpler and the more investigated. The stratified 

ambient is the most interesting, difficult. The difference between them is that gravity currents and 

intrusions in a continuously-stratified ambient propagate more slowly than in a homogeneous 

ambient for similar geometry. 

5 – Gravity current / intrusion  

 A gravity current propagates on a wall defined lower or upper geometric boundary of the system, 

such as the bottom or top of a channel, including the free surface but an intrusion propagates 

horizontally inside a stratified fluid, typically like an isolated wedge which does not touch the 

horizontal boundaries. The guiding surface z = 0 say, is plane of neutral buoyancy for the intruding 

fluid. 
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6 – Two-dimensional (2D) rectangular geometry / axisymmetric (cylindrical) geometry 

 In the two-dimensional (2D) rectangular geometry, the axis of symmetry is not vertical, and the 

current propagation horizontally but in the cylindrical case, the axis of symmetry is vertical, and the 

current propagation in the radial direction(r). The curvature terms in the axisymmetric system 

introduce some non-trivial differences to the 2D current. In particular, we note that a cylindrical 

current may be convergent (propagate from the periphery of the container to the center), or 

divergent (spread out in the positive r direction). 

7 – Rotating / non-rotating frames 

         In a current in a x-long box bounded by vertical side-walls, the major Coriolis acceleration is 

in the direction y but for an axisymmetric gravity current. The coriolis acceleration is in the 

direction of spread, hinders the propagation. and eventually renders.   

1.1.7  Gravity current produced by lock exchange  
 

         The most straight forward approach to study density currents is the immediate release of a 

fluid of fixed volume to another fluid of large volume. In a lock exchange technique, the two fluids 

have different densities in a tank. At the first stage the two fluids at rest and separated by a vertical 

barrier-the lock gate-in a tank. When removing the septum, differences in the hydrostatic pressure 

cause the denser fluid to flow in one direction along the bottom boundary of the tank, while the 

lighter fluid flows in the opposite direction along the top boundary of the tank. A dense gravity 

current travels to the right along the lower boundary and a buoyant current travel to the left along 

the upper boundary. We can observe the flows are approximetly symmetric, and the dense fronts 

travel at almost the same speeds and at the same times (SHINand al.2004). When the lock is 

removed, the gravity current flows and it is consist of, a head, body and a tail. The head, which is 

the leading edge of the gravity current, is a region in which relatively large volumes of ambient 

fluid are displaced. The body and tail are the bulk of flow that follows the head. The depth of the 

current becomes much less than half of the total depth. If the gravity current movement is fast when 

the lock is removed, a region of mixed liquid is formedin the upper region of the head of the gravity 

current, vertical velocities are generally much smaller than horizontal velocities in the current, and 

Flow characteristics can be characterized by the Froude and Reynolds numbers, which represent the 

ratio of flow speed to gravity (buoyancy) and viscosity, respectively. After that the propagation rate 

decreases with time and the current gradually slows down. Finally, as the current spreads even 

further, it becomes so thin that viscous forces between the intruding fluid and the ambient and 

boundaries govern the flow.  
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1.2  Main previous works and their results 

      Many previous theoretical, experimental and numerical studies, deals with gravity currents, and 

the results obtained had the greatest impact in providing a lot of information about this phenomenon. 

The first credit for the results and information obtained is to the giant names in the subject, 

including Von Kàrmàn (Von Kàrmàn1940), Benjamin (Benjamin1968) and Simpson (Simpson 1997) 

and others. The following is the representation of the most important research works and its results, 

which are closely related to this thesis. 

      In 1940, Theodore Von Karman, investigated the applications of analytical methods available 

for the solution of certain nonlinear problems in which the engineer was interested. The 

phenomenon of gravity currents has been discussed. The purpose of his paper was to improve the 

convergence between the viewpoints of mathematics and engineering, and induce mathematicians 

to volunteer for pioneering work in such engineering problems (Von Kàrmàn 1940). 

        In 1967 Benjamin presented a broad investigation into the properties of steady gravity currents. 

It was represented by perfect-fluid theory and simple extensions of it (like the classical theory of 

hydraulic jumps) that give a rudimentary account of dissipation. The effects of viscosity and mixing 

of the fluids at the interface were ignored, the hydrodynamical problem was formally the same as 

that for an empty cavity advancing along the upper boundary of a liquid. The problem is treated as a 

prototype for the class of physical problems under study: most of the analysis was related to it 

specifically, but the results thus obtained were immediately applicable to gravity currents by scaling 

the gravitational constant according to a simple rule. The possible states of steady flow in the 

present category between fixed horizontal boundaries were examined on the assumption that the 

interface becomes horizontal far downstream. A certain range of flows appears to be possible when 

energy was dissipated; but in the absence of dissipation only one flow is possible, in which the   

asymptotic level of the interface was midway between the plane boundaries. The corresponding 

flow in a tube of circular cross-section is founded. The theory was shown to be in excellent 

agreement with the results of recent experiments by (Zukoski 1966). The two-dimensional energy-

conserving flow was investigated. A close approximation to the shape of the interface was obtained. 

The discussion turns to the question whether flows characterized by periodic wavetrains were 

realizable, and it appears that none is possible without a large loss of energy occurring. The case of 

infinite total depth was considered, relating to deeply submerged gravity currents. It was shown that 

the flow must always feature a breaking ‘head wave’, and various properties of the resulting wake 

were demonstrated. Reasonable agreement was established with experimental results obtained by 

Keulegan & al. (Benjamin 1968 & Keulegan 1957).   
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        In 2002, Simpson & al., measured the linearly stratified fluid experimentally and calculated 

numerically. Their goal was to determine how this sequence is modified when the heavy fluid is 

released at the lower boundary of tank containing a linearly stratified ambient fluid that is, how the 

internal waves produced by the lock release interact with the current to change its characteristics 

and how it, in turn may change the wave field. The density, bottom to top, of the stratification was 

(ρb-ρ0) and its intrinsic frequency is N. For a given ratio of the depth of released fluid h to total 

depth H, it has been found that the dimensionless internal Froude number, 𝐹𝑟 = 𝑉 𝑁𝐻⁄   where V 

represents the constant initial speed of propagation of heavy gravity currents, was independent of 

the length of the lock and is a logarithmic function of a parameter R = (ρc-ρ0)/(ρb-ρ0), except at 

small values of h/H and R close to unity. This parameter R, was one possible measure of the relative 

strength of the current (ρc-ρ0) and stratification(ρb-ρ0). The distance propagated by the current 

before this constant velocity regime ended (Xtr), scaled by h, has been found to be a unique 

function of Fr for all states tested. After this phase of the motion, for subcritical values of Fr, 

internal wave interactions with the current resulted in an oscillation of the velocity of its leading 

edge. For supercritical values, velocity decay was monotonic for the geometries tested. A two-

dimensional numerical model incorporating a no-slip bottom boundary condition has been found to 

agree with the experimental velocity magnitudes to within 1:5%. 

 

        In 1994 Huppert & Woods studied the motion of instantaneous and maintained releases of 

buoyant fluid through shallow permeable layers of large horizontal extent which was described by a 

nonlinear advection-diffusion equation. The similarity solutions of this equation are describe the 

release of one fluid into a horizontal porous layer initially saturated with a second immiscible fluid 

of different density. Asymptotically, a finite volume of fluid has spreaded as t1/3. On an inclined 

surface, in a layer of uniform permeability, a finite volume of fluid have propagated steadily along 

slope under gravity, and spreaded diffusively owing to the gravitational acceleration normal to the 

boundary, as on a horizontal boundary. However, if the permeability varies in this cross-slope 

direction, then, in the moving frame, the spreading of the current eventually becames dominated by 

the variation in speed with depth, and the current length have increased as t1/2. They showed that if 

the porosity increases or decreases with distance from the boundary, then, in the long-time 

asymptotic limit, a discrete release of fluid will tend to generate a discontinuity at the nose or tail of 

the flow respectively. Shocks developed either at the leading or trailing edge of the flows depending 

upon whether the permeability increased or decreased away from the sloping boundary. Finally they 

have considered the transient and steady exchange of fluids of different densities between reservoirs 

connected by a shallow long porous channel. Similarity solutions in a steadily migrating frame 

described the initial stages of the exchange process. In the final steady state, there was a continuum 
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of possible solutions, which may include flow in either one or both layers of fluid. The maximal 

exchanged flow between the reservoirs involved motion in one layer only. They have confirmed 

some of our analysis with analogue laboratory experiments using a Hele-Shaw cell (Huppert & 

Woods 1994). 

         In 2007, Huppert & Takagi studied Newtonian viscous gravity currents propagating along 

horizontal and inclined channels with semicircular and V-shaped boundaries. They obtained the 

similarity solutions from the governing mathematical equations and they compared with closely 

matching data from laboratory experiments in which the propagation of glycerine along different 

channels was recorded. They discussed the resultsof geological applications (lava flows down the 

flanks of a volcano). Based on the concept of viscous fluid. They came up with different 

mathematical relationships that they had obtained between propagation distance and time by 

looking at different confining boundaries. At the instantaneous release of a fixed volume of fluid 

into a semicircular cross-section, the propagating distance scales was t1/4 for non-inclined and t3/7 

forinclined channels, regardless of the angle of inclination. For V-shaped boundaries, the distance 

scales was t2/7 for non-inclined and t1/2 for inclined channels, again independent of the angle of 

inclination. These scalings hold independently of the angle at the vertex. they have noted that the 

results significantly differ from two-dimensional and axisymmetric geometries in the horizontal, 

where propagation distance scales like t1/5 and t1/8 respectively (Huppert 1982a). Two-dimensional 

flows down a slope propagate like t1/3. They concluded that the results they obtained were very 

consistent with (Naranjo & al.1992 and Huppert & Takagi 2007). 

        In 2000 Huppert & Ungarish analyzed the behaviour of an inviscid, lock-released gravity 

current which propagates over a horizontal porous boundary in either a rectangular or an 

axisymmetric geometry by both shallow-water theory and box-model approximations. They solved 

the one-layer shallow-water equations for this problem, and they pointed out the differences with 

the classical current (over an impermeable boundary). It was showed that the effect of the porous 

boundary could be incorporated by means of a parameter λ which represents the ratio of the 

characteristic time of porous drainage τ to that of horizontal spread x0 = (g׳h0)
1/2 where x0 and h0 

where the length and height of the fluid initially behind the lock and g׳ =gΔρ/ρ0 was the   reduced 

gravity. The value of τ is assumed to be known for the fluid-boundary combination under simulation. 

The interesting cases correspond to small values of λ, otherwise the current has drained before any 

signicant propagation can occur. Typical solutions were presented for various values of the 

parameters, and differences to the classical current (over a non-porous boundary) are pointed out. 

The results were consistent with the experiments in a rectangular tank (Thomas & al.1998), but a 
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detailed verification, in particular for the axisymmetric geometry case, requires additional 

experimental data (Huppert & Ungarish 2000).  

 

        Nsom& al. (2019) comparatived the influence of the initial and geometrical conditions on 

dam-break flow. The conditions were including the reservoir still water level, length and width as 

well as tail-water depth on dry and wet beds, respectively. The free surface evolution was analyzed 

through the volume of fluid (VOF) method. The sensitivity to mesh resolution and turbulence 

closure models were evaluated in three cell sizes and four models, respectively namely k-ε, k-w, 

RNG (RANS models) and LES. Likewise, the turbulence closure models namely Reynolds 

averaged Navier-Stokes (RANS) and large eddies simulation (LES) were compared with the 

previous experimental data. The LES showed relatively better agreement than other ones on the free 

surface evolution. The results declared the crucial role of the initial and geometrical conditions on 

the free surface progression, flow energy, outflow and inflow hydrographs and the resultant forces. 

The researchers reached the following important results: (1) Raising the dam reservoir water level 

causes an increase the free surface height, the advancing distance and the flow velocity. Likewise, it 

leads to increase the downstream specific energy; the outflow maximum depth and the hydrograph; 

the resultant shears and pressure forces. Whereas, it leads to relative decline of the Froude number 

in the middle to last stages. (2) Raising the reservoir length leads to attenuate the dam-break Froude 

number during the middle to last stages. However, it causes an increase the free surface height; the 

outflow maximum depth and the hydrograph during the middle to last stages. Nevertheless, it does 

not affect the downstream specific energy. Further, it leads to raise the resultant shears forces in the 

dam reservoir. (3) Increasing the reservoir width does not affect the free surface height; the 

advancing distance and the flow velocity; the temporal variations of the dam-break Froude number; 

the reservoir outflow depth as well as the downstream specific energy. However, it increases the 

dam outflow rate, the resultant shears and pressure forces. (4) Increasing the tail water level reduces 

the flow velocity during the initial to the middle stages. Further, it leads to increase the free surface 

height; the free surface fluctuations in the jet body region as well as the maximum depth of the dam 

reservoir outflow. In return, it causes an attenuate in the outflow hydrograph and the resultant shears 

and pressure forces (Nsom & al. 2019).  

 

        In (2015) Kowal & Worster presented a theoretical and experimental study of viscous gravity 

currents lubricated by another viscous fluid from below (golden syrup lubricated by dense 

potassium carbonate solution). Lubrication theory have been used to model both layers as 

Newtonian fluids spreads under their own weight in two-dimensional and axisymmetric settings 

over a smooth rigid horizontal surface and consider the limit in which vertical shear provides the 
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dominant resistance to the flow in both layers. There were contributions from Poiseuille-like flow 

driven by buoyancy and Couette-like flow driven by viscous coupling between the layers. The flow 

is self-similar if both fluids are released simultaneously, and exhibits initial transient behaviour 

when there is a delay between the initiation of flow in the two layers. they have been solved for 

both situations and they showed that the latter converges towards self-similarity at late times. The 

flow relied on three key dimensionless parameters relating the relative dynamic viscosities, input 

fluxes, and density differences between the two layers. Provided the density difference between the 

two layers was bounded away from zero, they were found an asymptotic solution in which the front 

of the lubricant is driven by its own gravitational spreading. There was a singular limit of equal 

densities in which the lubricant no longer spreads under its own weight in the vicinity of its nose 

and ends abruptly with a non-zero thickness there. They explored various regimes, from thin 

lubricating layers underneath a more viscous current to thin surface films coating an underlying 

more viscous current and find that although a thin film does not greatly influence the more viscous 

current if it forms a surface coating, it begins to cause interesting dynamics if it lubricates the more 

viscous   current from below. They found experimentally that a lubricated gravity current is prone to 

a fingering instability where fingering instability develops at late stages of thier experiments, with 

lobes of highly lubricated, thin regions of high viscosity fluid becoming separated from the less 

lubricated and less mobile regions of deep, high viscosity fluid, also they have explored, 

theoretically and experimentally, the fundamental dynamics relevant to the flow of lubricated ice 

streams and extended the study to a broader range of fluid mechanical situations, and they 

concluded that the results they obtained from conducting the experiments were in agreement with 

the theoretical results (Kowal & Worster 2015).  

 

        By asking whether the instability is an internal instability, arising from internal dynamics or a 

frontal instability, arising from viscous intrusion. In (2019) Kowal& Worster examined the origin of 

the instability. They found it was the latter (frontal instability) and characterize the instability 

criterion in terms of viscosity difference or, equivalently, the jump in hydrostatic pressure gradient 

at the intrusion front. The mechanism of this instability was similar to, but contrasts with, the 

Saffman-Taylor instability, which occured as a result of a jump in dynamic pressure gradient across 

the intrusion front. They focused on the limit in which the two viscous fluids are of equal density in 

which a frontal singularity arising at the intrusion, or lubrication front becomes a jump discontinuity 

and perform a local analysis in an inner region near the lubrication front, which they matched it 

asymptotically to the far field. They also investigated the large-wavenumber stabilization by 

transverse shear stresses in two dynamical regimes: a regime in which the wavelength of the 
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perturbations is much smaller than the thickness of both layers, and an intermediate regime, in 

which both vertical and horizontal shear stresses are important. 

  

        Linear stability analyzes of lubricated viscous gravity currents in the internal region showed 

that the steady flow is unconditionally stable and suggests that the instability observed in 

experiments was a frontal instability. The latter analysis explained the mechanism of instability by 

exploring three physical scenarios. The first scenario has occured for wavelengths much larger than 

the thicknesses of the two layers. Analytically, they derived an asymptotic solution for the growth 

rate of the perturbations as an outer, large-wavenumber limit, which showed that the growth rate σ 

of the perturbations grows linearly with the wavenumber k as k → ∞. Also they showed that jump 

in upper surface slope was positive (that is, the flow was stable) precisely when the viscosity ratio 

M= µ/µl (µ:Upper layer kinematic viscosity, µl: lower layer kinematic viscosity), between the two 

layers was less than one. By using a combination of asymptotic and numerical methods, they found 

that for the second scenario, involving perturbations resisted dominantly by horizontal shear 

stresses, the growth rate of the perturbations converges towards a constant rather than growing 

unboundedly. By considering the third scenario, they found that transverse shear was weakly 

stabilizing for intermediate wave numbers as well and that intermediate wave numbers are the most 

unstable at modest values of M (Kowal & Worster 2019). 

 

        Also in (2019) Kowal & Worster investigated the interaction between the mechanism of the 

instability and the stabilising influence of buoyancy forces by performing a global and fully time-

based analysis, which does not use the frozen-time approximation. They determined a critical 

condition for instability in terms of the viscosity ratio and the density difference between the two 

layers. Instabilities were occurred when the jump in hydrostatic pressure gradient across the 

lubrication front was negative or equivalently, when the intruding fluid was less viscous than the 

overlying fluid, provided that the two fluids were of equal densities. Once there was a nonzero 

density difference, these driving buoyancy forces suppresed the instability for large wavelengths, 

giving rise to wavelength selection. As the density difference increases, the instability criterion has                   

required higher viscosity ratios for any instability to occur, and the band of unstable wavenumbers 

became bounded. Large enough density differences suppresed the instability completely. And they 

concluded from the results they obtained that the flow became unstable precisely when the jump in 

hydrostatic pressure gradient across the lubrication front was negative (Kowal & Worster 2019). 
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        Nsom & al. (2019) studied the linear stability of shear-thinning fluid down an inclined plane 

was investigated theoretically with application to chemical engineering (coating process) and 

environmental engineering (debris flow impact). The following four issues were tackled in this 

paper: (1) Build an equation of Orr-Sommerfeld type associatedwith appropriate boundary 

conditions. (2) Solve the generalized Orr-Sommerfeld equation. (3) From this solution the wave 

velocity was derived. (4) From this solution, derive Effect was extracted (stabilizing or not) of the 

different forces acting on the flow. The power-law modelwas used to describe the fluid rheological 

behavior. A linear stability analysis was brought out for building a generalized Orr-Sommerfeld 

model with appropriate definition of non-dimensional numbers in order to overcome the 

inconsistency of the existing shallow-water models. At first order, the effect of the different forces 

acting on the flow has been pointed out. It was particularly shown that pressure and surface tension 

have a stabilizing effect, while inertia and rheo-fluidification have a destabilizing effect. Moreover, 

the relative variation of critical Reynolds number increases with increasing reduced wavenumber 

for all values of slope tested while it decreases with increasing power-law index for all values of 

reduced wavenumber tested (Nsom & al.2019). 

 

        Holmboe instability is an instability of an unbounded stratified parallel shear flow to the 

development of cusplike waves that propagate with phase speed along the flow direction 

significantly different from the speed of the inflection point of the shear. In (2005) and in his tagged 

article, ’ On Holmboe’s instability for smooth shear and density profiles’, Alexakis presented a 

study of the linear stability of a stratified shear flow for smooth density profiles. The work focused 

on the nature of the stability boundaries of flows in which both Kelvin–Helmholtz and Holmboe 

instabilities were present. For a fixed Richardson number, the unstable modes were confined to 

finite bands between a smallest and a largest marginally unstable wave number. The             

researcher observed a deep connection between the free gravity wave spectrum and the Holmboe 

unstable waves. The results indicated that the stability boundary for small was comprised of neutral 

modes with wave numbers phase velocity equal to the maximum/minimum wind velocity whereas 

the other stability boundary, for large wave numbers, was comprised of singular neutral modes with 

phase velocity in the range of the   velocity shear. He showed how these stability boundaries could 

be evaluated without solving for the growth rate over the entire parameter space as was previously 

done. The researcher showed how these modes can be determined without solving the full 

eigenvalue problem for the complex eigenvalue c. The results indicated further that there was a new 

instability domain that has not been previously noted in the literature. The unstable modes, in this 

new instability domain, appeared for larger values of the Richardson number and are related to the 

higher harmonics of the internal gravity wave spectrum (Alexakis 2005). 
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        Khoshkonesh and al. (2021) compared numerical results for SWE and 3DNavier Stokes 

models in the dam-break phenomenon. The study was to specify the capability of SWE and 3D 

Navier Stokes models in reconstructing the instantaneous dam-break phenomenon. The numerical 

simulations were implemented by a CFD software. The results showed that SWE model had lower 

accuracy, in reproducing the wave evolution and bed deformation, compared to the 3D Navier 

Stokes model. Furthermore, the kinematic and dynamic properties of the dam-break wave were 

affected by the initial conditions and bed characteristics. The researchers concluded that, the 3D 

Navier Stokes models, and LES amongst them, had highest accuracy in reproducing the free surface 

evolution and bed deformations compared to the SWE model. Furthermore, the 3D models need 

lower computational efforts in reproducing this phenomenon (Nsom& al.2019). 

 

 

        In (2005), EAMES&al., studied the influence of an external laminar flow on the spreading of a 

viscous gravity current moving over a horizontal floor theoretically and experimentally. The viscous 

stress exerted by the ambient flow drives the viscous gravity current streamwise with a velocity 

proportional to the local height of the current. The one-way coupling between the ambient flow and 

the spread of the current was examined. The underlying equations developed by coupling mass 

continuity and momentum equations were   reduced to a similarity form and applied to study 

viscous gravity currents generated by line and point sources. Similarity and numerical solutions 

were developed to describe viscous gravity currents spreading from line and point sources. An 

experimental study of the spreading of viscous gravity currents issuing from a point source in a 

channel flow, for both constant-flux and instantaneous releases, confirmed the essential character of 

this description. The researchers concluded that there is a new agreement between the experimental 

and theoretical data obtained (EAMES & al.2005). 

 

        Mathunjwa&Hogg in 2006 generalized the linear stability analysis of the axisymmetric self-

similar solution of gravity currents from finite-volume releases to include perturbations that depend 

on both radial and azimuthal coordinates. They showed that the similarity solution was stable to 

sufficiently small perturbations by proving that all perturbation eigenfunctions decayed in time. 

They established that the self-similar solution is linearly stable to disturbances that involve both 

radial and azimuthal dependences by proving that all eigenvalues have negative real parts. 

Moreover, asymmetric perturbations were showed to decay more rapidly than axisymmetric 

perturbations in general. An asymptotic formula for the eigenvalues were derived, which indicates 

that asymptotic rates of decay of perturbations were given by t−σ where 0< σ < 14 as the Froude 
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number decreases from √2  to 0. They demonstrated that this formula agreed closely with 

numerically calculated eigenvalues and, in the absence of azimuthal dependence, it reduces to an 

expression that improves on the asymptotic formula obtained by Grundy & Rottman (1985). For 

two-dimensional(planar)currents, they further proved analytically that all perturbation 

eigenfunctions decay like t−1/2 (Mathunjwa & Hogg in 2006). 

 

        In 1985, and in‘ The approach to self-similarity of the solutions of the shallow-water equations 

representing gravity-current releases‘ Grundy& Rottman studied similarity solutions of the shallow-

water equations  representing the motion of constant-volume gravity currents in both plane and 

axisymmetric geometries. They found that these solutions were linearly stable to small 

correspondingly symmetric perturbations and that they constitute the large-time limits of the 

solutions of the initial-value problem. Furthermore, the analysis revealed that the similarity solution 

has been approached in an oscillatory manner. Two initial-value problems have been solved 

numerically using finite differences and in each case the approach to the similarity solution was         

compared with the analytic predictions (Grundy and Rottman1985). 

  

        Thomas&al. (2004) studied the motion of a dense fluid that develops as an inertial gravity 

current of decreasing mass above a horizontal porous bed. The flow is described by Darcy’s law 

which states that the flow rate at any point in the reservoir is given by the fluid pressure gradient, 

the viscosity of the fluid, and its effective fluid permeability. Laboratory experiments were carried 

out in which fixed volumes of salt water were released from behind a lock with an impermeable 

bottom into a large rectangular crosssection channel containing fresh water. The current were 

flowing over a thick permeable layer, which was initially saturated with fresh water. As the salt 

water penetrates the bed, it drives the fresh water downwards in the bed, and out through the bottom. 

Measurements were presented of the gravity current and related to the loss of salt water from the 

current. From the set of laboratory experiments performed, they obtained measurements of the mass 

and the front position of the current by changing different parameters were presented. The results 

were explained by means of a global analytical model that suggested practical correlations 

combining the parameters. Thus, previous experimental, numerical and theoretical findings have 

extended to describe lock-release gravity currents above more realistic porous beds. They have 

presented a model to describe the flow of the current in terms of a local Froude number at the front, 

and a global mass balance suggesting an analytical approximation to extended currents over thick 

porous layers: the mass evolution does not depend on the height profile, mixing, Froude number at 

the front, details of the beginning of the flow including the evolution of the bore, and the initial 

fractional depth of the dense fluid. For a better comparison between the loss of fluid from the 
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current and the laboratory results, they introduced a simple correction through an integral model 

with proper initial conditions and F function, and achieving a good agreement. In addition, the 

current decelerate as the driving pressure was reduced because of the current thinning due to the 

sinking (Thomas & al. (2004)). 

 

         NSOM & al.2008 presented a paper dealt with the dam-break problem in a horizontal smooth 

1D   channel, for hydrogeological hazards purpose. The fluid is muddy and It has been described as 

Newtonian model, provided that the inertial effects be neglected versus the viscous ones in the 

momentum balance. Assuming the shallow water approximation, a non dimensional equation was 

built from the continuity and the Navier-Stokes equations in the limit of zero-inertia and solved 

analytically in two limits: short time and long time. These solutions were then combined into a 

single, universal model. Limitations of the model were examined by comparison to a converged 

finite difference numerical solution of the flow equation. The results of the researchers showed that 

there is agreement between numerical and analytical solutions through the consistency of the 

numerical scheme for both short time and long time solutions. The time evolution of the abscissa 

and velocities of the different front waves were determined, as well as the different characteristic 

heights (NSOM & al.2008). 

 

        Zhu & al.(2004)  performed experiments for lock release gravity currents in a rectangular 

channel with salt  water and fresh water. The spreading law of the salt water was validated by using 

a digital video to record the progress of the current. Detailed instantaneous velocity structure of lock 

release gravity currents in the slumping phase was studied experimentally with particle image 

velocimetry (PIV). The time variation of the spatial distribution of velocity and vorticity was 

obtained, which shows some qualitative characters of the current as well as the effects of the bottom 

boundary layer and upper mixing layer. The results showed that the horizontal velocity increased 

gradually from the end of the tail to the current head, reached its maximum value under the 

maximum depth of the head, and then decreased till the foremost point of the current. Two obvious 

vorticity strips were seen at the interface of the two fluids and near the rigid bottom boundary, 

respectively.  Eddies formed at the rear of the gravity current head because of velocity shearing and 

flow separating. The dense fluid was supplied from the center of the head to the leading edge and it 

was entrained away mainly by the upward ambient fluid and slightly by the downward ambient 

fluid. The horizontal velocity profiles in the gravity current head were shown, and the depth of the 

bottom boundary layer was estimated, which validates that the negative vorticity is concentrated in 

the boundary layer (Zhu & al.2004 ). 
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        Zemach (2018),and in’Asymptotic similarity solutions for particle-driven gravity currents in              

non-rectangular cross-section channels of power-law form. He considered a high-Reynolds                   

particle-driven gravity current (GC) propagating in channel above a horizontal boundary. The 

bottom and the top of the channel were at z = 0, H and it was cross-section is given by − f (z) ≤ y ≤ 

f (z) for 0 ≤ z ≤ H, where f (z) was a power-law function f (z) = zα. he focused on the similarity 

stage of propagation of the current using a shallow-water (SW) model. While it was possible to 

derive the analytical similarity solutions for the homogeneous GC (for which the density of the 

current remains constant during the propagation), such similarity did not exist for the particle-driven 

GCs. He extended the similarity solutions of homogeneous GC to particle-driven currents by 

developing an asymptotic expansion and derived approximations of such solutions for channels of 

typical rectangular, triangular and parabolic forms. Comparison with the numerical solution of the 

SW equations showed that the leading-order asymptotic results were a good approximation in the 

domain of expected validity. However, out of bounds of this domain the numerical solutions 

systematically departed from the first-order asymptotic solutions, suggesting the need to include 

higher-order terms in the asymptotic series. The conclusion he reached in his research was that the 

particles in the current slow down the speed of propagation (Zemach2018). 

 

        Shringarpure&al. (2013) In their tagged research ‘Front conditions of high-Re gravity currents 

produced by constant and time-dependent influx: An analytical and numerical study’. In particular 

attention was focused on the front condition of the current which was characterized by the Froude 

number  𝐹𝑟𝑁 = 𝑈𝑁 (𝑔́ℎ𝑁)1 2⁄⁄  (where UN, hN were the speed and the height of the front, and g′ is the 

reduced gravity). Following a procedure similar to the one given in (Benjamin 1968), they have 

showed that the front condition was significantly influenced by the position of the outflow 

boundary (i.e. by the direction of flow of the ambient fluid displaced by the current). An expression 

for the front Froude number (FrN) as a function of the depth ratio a = hN/H, which took into account 

the direction of the ambient flow, was presented. Two limiting cases were considered: no-return 

ambient flow (when the outflow and inflow were at the opposite end walls) and full-return ambient 

flow (inflow and outflow on the same end wall). Theoretical considerations suggested that the 

propagation speed of the gravity current in the no-return configuration would been higher than in 

the classical full-return configuration of Benjamin. Navier–Stokes simulations of constant inflow 

currents in no-return configuration were carried out. Overall, the front Froude number (FrN) has 

evaluated from these simulations conforms to the analytical insights and it was predictions. 

Unsteady gravity currents were also simulated by implementing time dependent inflow boundary 

conditions. Two sets of simulations were carried out that represent accelerating and decelerating   

currents by implementing waxing (increasing in time) and waning (decreasing in time) inflow rates. 
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It was observed that the front Froude number (FrN) has evaluated from the simulations of unsteady 

fronts was in good agreement with the front Froude number of a steady front for comparable depth 

ratio. The conclusion they reached in his research: This results confirmed the prediction that the 

ambient flow direction can significantly influence the front condition of the current (Shringarpure & 

al.2013).    

       

        Ciriello& al. (2016) have developed a model to grasp the combined effect of rheology and 

spatial stratifications on two- dimensional non-Newtonian gravity-driven flow in porous media. 

They have considered a power-law constitutive equation for the fluid, and a monomial variation of 

permeability and porosity along the vertical direction (transverse to the flow) or horizontal direction 

(parallel to the flow). Under these assumptions, similarity solutions were derived in semi-analytical 

form for thin gravity currents injected into a   two-dimensional porous medium and having constant 

or time-varying volume. The extent and shape of the   porous domain affected by the injection was 

significantly influenced by the interplay of model parameters. These described the fluid (flow 

behaviour index n), the spatial heterogeneity (coefficients β, γ, δ, ω for variations of per- meability 

and porosity in the horizontal or vertical direction), and the type of release (volume exponent α). 

Theoretical results were validated against two sets of experiments withα=1(constant inflow) 

conducted with a stratified porous medium (simulated by superimposing layers of glass beads of 

different diameter) and a Hele-Shaw analogue for power-law fluid flow, respectively. In the latter 

case, a recently established Hele-Shaw analogy was extended to the variation of properties parallel 

to the flow direction. Comparison with experimental results were showed that the proposed model 

was able to capture the propagation of the current front and the current profile. Their study 

predicted the time dependence of the volume of subsurface domain invaded by the contaminant or 

reached by the remediation agent; the results might be useful for a quick evaluation or bench- 

marking of numerical models even when the real conditions differ moderately from model 

assumptions. Future extensions of the model might include the usage of more complex constitutive 

equation for the fluid, and an improvement in the description of spatial heterogeneity (Ciriello& 

al.2016). 

        Longo& Federico (2014) have presented a novel formulation to analyse the axisymmetric 

propagation of single-phase gravity currents induced by the release of a time-variable volume of 

fluid in a porous domain. Their approach has based on a first order expansion of the velocity 

potential that allowed for the presence of vertical Darcy velocities. Coupling the flow law with mass 

balance equations led to a PDE which admited a self-similar solution for the special case in which 

the volume of the fluid fed to the current had increased at a rate proportional to t3. A numerical 

solution was developed for rate proportional to t  α with α ≠ 3. Current profiles obtained with the first 
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order solution have a finite height at the origin. Theoretical results were compared with two 

experimental datasets, one has included freshwater and the other air as an ambient fluid. In   general, 

experimental current profiles had collapsed well onto the numerical results; the first order solution 

showed a marked improvement over the zeroth order solution in interpreting the current behavior 

near the injection point.  A sensitivity and uncertainty analysis was conducted on both the first order 

and zeroth order theoretical model. The sensitivity analysis were indicated that the flow process was 

more sensitive to porosity variations than to other parameters. The uncertainty analysis of the 

present experimental data indicated that the diameter of glass beads in an artificial porous  

 medium was the source of most of the overall uncertainty in the current profile. The researchers 

reached several important results, namely: (1) The solution was self-similar for α= 3. (2) An 

extensive comparison of the zeroth and first order theoretical models with two sets of experiments 

was carried out, together with a statistical analysis of the uncertainties affecting model results and 

experimental data. (3) Profiles obtained with the first order solution have a finite height in the origin 

and depend almost linearly on the distance from the origin. (4) The effect of the correction was 

much less important for the radius of propagation, which in the first order solution always increases, 

albeit modestly, with respect to the zeroth order solution. (5) In general the sensitivity analysis 

indicates that porosity (directly affecting, with the diameter d, the intrinsic permeability) was the 

main source of uncertainty hence, in controlled experiments, a great deal of attention should be paid 

in reproducing the porous medium with uniform known porosity (Longo& Federico2014). 

1.3  Experimental and numerical study of model GC in coastal environment 

      Release of pollutants into rivers, the oil spillage on the sea environment, and desalination plants 

outflow are examples of man-made gravity currents that frequently cause negative environmental 

impacts. In order to better understand the propagation dynamics and the mixing process of dense 

gravity currents, the following outstanding contributions have been in our lab (Institut de Recherche 

Dupuy de Lôme (IRDL) Laboratory of Brest University UBO), presented the results of a thorough 

experimental and numerical investigation on dense gravity currents models. The gravity currents 

prepared were salt/tap water solutions at assigned concentrations.  They were released in the form 

of a jet into a calm lighter ambient liquid (fresh tap water in this case) over a flat, smooth, and rigid 

bottom in order to simulate the discharge of a denser fluid in the coastal environment. The 

importance of studying gravity currents in the laboratory is due to several reasons, including firstly, 

laboratory experiments are carried out in a more controlled environment than larger scale field 

experiments. This means that more data of higher quality can be collected. Secondly, the effect of 

each aspect of the flow can be carefully studied for a full understanding. Thirdly, experiments can 

easily be repeated, either with the same parameters or for a wide range of parameters. It should be 
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noted that, since the 1950’s, the gravity   currents have been studied widely in laboratory 

experiments, and the spreading of buoyant jets in calm, and stratified environment with a linear 

density has been the theme of consideration by many researchers, including Ahmed 2015 and 2017, 

the owner of this contributions. 

 

1.3.1  Experimental study of the effect of the spreading buoyant gravity current 

on the coastal 
 

        An experimental study of the effect of the spreading buoyant gravity current on the coastal was 

reproduce in a rectangular basin by releasing the fresh water with density ρ and initial speed U0 

over a salty water surface with density ρ+Δρ at rest. The surface flow of light liquid horizontally 

was looked  as a special case of a two dimensional gravity current. This study was dedicated to 

displaying the results of laboratory experiments the spreading law of the fresh water was validated 

by using image processing technique to record the progress of the injection current. The time 

evolution of was measured of the progress x, and the spreading y of the gravity currents. The jet 

fluid was colored and the digital video can have a variation of light intensity in order to obtain the 

shape of the outer boundary of the gravity current and its distance from the source point with 

relation to initial time, or flow parameters of the jet source. The experimental device setup consists 

of a transparent basin made Plexiglas (3m long, 0.49 m wide and 0.49 m deep) containing the static 

ambient liquid, of 700L. A reservoir of 60L equipped with a floodgate and which releases the 

gravity currents into the basin. As shown in Fig.1.7. A bowl of 240L used to prepare the ambient 

fluid by introducing the quantity of salt corresponding to the concentration needed into a given 

volume of water. The solution prepared (salty water) was then poured into the previous basin. An 

observation system consisted  of one camera(type: Photron Fastcam) taking 190 images per second 

with a resolution of (1024x1024 Pixels) was used. The camera was placed 1m above the water 

surface of the basin. The pictures observed by the camera were captured at a frequency of 38 Hz 

owing to a system of image processing consisting of a PC equipped with a Pentium IV processor 

(2.6 GHz) of a 1024 Mb random-access memory. 
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                                                    Fig.1.7. Schematic of the experimental setup                                                                                                                                                                                    
 

The experimental data collected come from visual method (e.g.visual technique measurements, red 

dye Rhodamine B), where the visualization was observed clearly by adding rhodamine B to the 

gravity current which can give the variation of the light intensity recorded by a camera. Also the red 

dye Rhodamine B was used to obtain the instantaneous images sequences of the saline gravity 

currents injection into the static fresh water. Recorded images were analyzed for extract the position 

of gravity current boundary. The image processing was based on the filtering of noise and 

binarization of image sequences as shown in Fig.1.8. and to exact the spatiotemporal interface 

position of the gravity current. 

 

 

 

 

 

 

   Fig.1.8. Image captured by a camera: (A) initial frame without flow Io, (B) frame with a  
               colored gravity current flow, and (C) image obtained by difference and filtering   

               processes. 

 

After the captured video frames with current development have been subsequently converted into 

greyscale matries, in the region of the basin surface. They were converted into instantaneous density 

field as shown in Fig.1.9 
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                                  Fig.1.9 Snapshot of gravity currents obtained by image processing. 

   

         The techniques of image processing were complementary to characterize well experimentally 

the flow of gravity current. The two dimensions profiles of the gravity current showed that, the flow 

is non-axisymmetric and the shape of the outer boundaries of the gravity currents are nearly of 

elliptical form. The evolution of the front position showed a power law with time as shown in 

Fig.1.10 (a, b, c). A horizontal plane coordinate system (x; y), represented the outer boundary of 

injection current. An image analysis was applied to investigate the gravity currents developing over 

a horizontal free surface of the basin. Immediately after the injection of the lighter fluid in the basin, 

a gravity current was formed and the injection zone was depended on the flow rate. Through the 

injection process, the instantaneous front position xf was estimated.  
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                           ( a )                                                                             ( b )                                                                              

 

 

 

 

 

 

 

                                                                                 ( c )                                                                                                                                                               
Fig.1.10 The profile of gravity currents outer boundary y=f(x, t) for ( a )Q= 30L/h ( b )Q= 

70L/h   ( c )Q= 110L/h. 

        Furthermore, the front of the two dimensional gravity currents were obtained by inconstant jet 

flow of fresh water. Through used the scaling law by appling the power fitting for measurements the 

exponents B and D (for x =AtB, y = CtD). It was found that B and D did not vary noticeably for all 

experiments. The exponents in a series of all experiments got the functional forms of the positions x 

and y together with time relationships and this led to the study of the variable spreading problem 

since the gravity current grows with time and the outer boundary variations as shown that in table 

1.1. 
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Q Re Fr Spreading Law(x-direction) Spreading Law(y-direction) 

30 481 0.36 x=52t0.69 

[1.8 < t(s) <18.6] 

x=96t0.48 

[18.8 < t(s) <30.2] 

y = 64.6t0.67 

70 3587 0.84 x=68t0.63 

[1 < t(s) <9.4] 

x=91t0.56 

[9.6 < t(s) <19.6] 

y = 113t0.60 

110 4434 1.32 x=63t0.49 

[0.2 < t(s) <2.6] 

x=38.9t 

[2.6 < t(s) <11] 

y = 90t0.70 

                          

                              Table1.1: Scaling laws obtained For The Spreading of Fresh water   

 

 Also they observed the variation of distances with time can see in Fig.1.11. (a ,b). 

 

 

 

                                              (a)                                                                           (b) 

 

                         Fig.1.11. Evolution of spreading front in (a) x-direction (b)y-direction.  
 

 

        This study is reached some conclusions, including: (1) For the initial Reynolds number and 

initial Froude number, which shown in table1.1, the alteration of flow regimes (which is any change 

in the natural flow regime of a river or stream) was in viscous regime x~t0.6 approximately this 

confirmed experimentally by Britter (Britter1979). (2) The outer boundary of gravity current 

spreading on the salty water free surface was almost non-axisymmetric and the same thing for jet 

zone. (3) The front positions distances from the jet source to the outer boundary of the gravity 

currents were correlated with spatio temporal diagram and showing the balancing between 

buoyancy and, either drag (viscous spreading) or inertia. (4) By comparing the experimental results 

with Huppert1982, the front of the two dimensional gravity currents were obtained by a constant 

fresh water injection over the salty water surface basin. 
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1.3.2 Horizontal miscible jet propagation with positive buoyancy 
 

       Attention has been paid to a study of the spreading of a dense miscible jet (water salty) within a 

another less dense liquid (fresh water) on a rigid horizontal wall. In the presence of the difference in 

density between the fluid injected and the ambient fluid, the jets are driven by positive or negative 

buoyancy. In most previous studies, the authors have used the position of the forehead as an easily 

measured parameter. To test their theory which does not take mixing phenomena into account. The 

experimental setup consists of a rectangular basin containing a static ambient fresh water of 1.1cm3 

at H=5 cm. The dimensions of the basin are the following: L = 55 cm length, ℓ= 40 cm width, and 

H=5 cm depth. The walls of the basin are made of 5mm transparent glass allowing the visualization 

of the gravity current development. A tank with a capacity of 6 cm was used to prepare the salt fluid. 

The denser fluid is pumped to another tank with a capacity of 2 cm3, where it was colored with 

Rhodamine B dye. The colored salt water was injected into the basin via a transparent plastic square 

channel at the horizontal bottom surface made of a smooth white plastic. The injection tube is a 

square channel with a length of d =0.5 cm, and it is kept horizontal for the duration of all the 

experiments. When the injection orifice opens instantly, the two fluids with different densities come 

in contact and a non-equilibrium condition occurs.  

 

        To describe the mixing of fresh and salt water, volume fraction transport equation was used, 

which took into account advection and diffusion. The volume fraction of salt water noted α1 is equal 

to 0 in the region where there was onlyfresh water, and it was between 0 and 1 for the mixing zone. 

The volume fraction of water soft was determined as α2=1-α1 when α1 was calculated. The 

equations of continuity and momentum were formulated by neglecting the interface tension force 

between the two miscible liquids. The averaged Navier-Stokes equations (RANS: Reynolds-

Averaged Navier-Stokes) and that of the advection-diffusion of the volume fraction α1 of salt water 

were used to calculate the volume fraction α1, the average speed ū and the pressure p. 

         Density was defined as ρ = α1ρ1+ α2ρ2, the effective viscosity μeff = μ+μt ,where μ  was the 

dynamic viscosity and  μt   was the turbulent viscosity. The configuration studied was that of a salt 

water jet with a density of ρ1=1040kg /m injected at the bottom of a freshwater basin of density ρ2 

=1000kg/m at constant initial flow Q0=U0.d2 with d = 5 mm the diameter of the square section of 

the injection channel (Fig.1.12). viscosities dynamics of the two liquids are respectively μ1 =1.04.10 

Pa.s  for salt water and  μ2 =1.10-3 Pa.s for fresh water. 
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                        Figure 1.12 Configurations du jet horizontal miscible de flottabilité positive.  

 

 

        The twoLiquid Mixing solver has been used. BlockMesh has been taking used to achieve a 

structured and   constant mesh (275x80x50) in the three directions without taking into account the 

symmetry of the problem. The numerical data were compared with the experimental data and it was 

found that there was a good and acceptable match between them. 

      Figure1.13. represents an example of the experimental and numerical jet spreading for a number 

initial Reynolds number of Re0= ρ1 U0.d/μ1 =2778 which corresponds to an initial Froude number of  

Fr0=U0/(g'd)=12.8. The researchers found that the overall shape of the digital jet is similar to that 

observed in experiments. Instabilities at the interface of the front were observed unlike at the 

experimental jet. By comparing the position of the front of the experimental jet with that of the 

digital one in depending on the number of initial Reynolds Re0 and the initial froude number Fr0 

(Fig.1.14), A delay of the digital jet far from injection was observed for low initial Reynolds 

number values Re0 between 1111 and 2222 and Froude numbers Fr0 between 5.1 and 10.2. This 

delay disappears for initial Reynolds values Re0. Between 2500 and 3889 which corresponds to Fr0. 

Between 10.5 and 18. Thanks to numerical calculations, it was possible to trace the variance of 

volume fraction of the jet as a function of time in the three directions (fig.1.13 on the right, fig.1.15). 

Near the injection the height of the jet can give a boundary allowing the distinction of the fresh 

water from the jet. On the other hand, far from the injection when the jet is well spread out, one 

cannot distinguish a clear boundary making it possible to distinguish the height of the jet α1 (x, y, z, 

t). It is therefore a continuous   evolution of the height of the jet. 
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Figure 1.13:  Miscible horizontal jet of positive buoyancy near the rigid wall at the bottom of the basin for 
Re0=2778  and Fr0=12.8; obtained experimentally on the left: images of the reflection of the  

 light intensity I (x,y) of rhodamine B with time and numerically on the right: volume fraction of  

 the  mixture α1(x, z) with time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1.14. Comparison of the maximum axial position of the experimental and numerical jet front  

                   as a  function of time: Re0=1667 equivalent to Fr0=7.7 (left) and Re0=3889 equivalent                        

                    to Fr0=17.9 (right). 

 

 

In Figure1.15. The evolution of the head of mixing gravity currents jet shows a head expansion and 

the disappearance of the density gradients throughout the gravity current development, which 
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occurs through deterioration of the current jet velocity far from the jet source, and finally fades 

away in time by diffusion processes. 

 

 

 

 
Figure 1.15 : Evolution of the volume fraction of the jet α1 (x, z) with time at y=0 for Re0=2778;   

                      Fr0=12.8. 
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1.3.3   Applied the large scale particle image velocimetry technique for meas-

urement the velocity of gravity currents in the laboratory 
         

 

        This series laboratory experiments presented by Ahmed & al. (2015) was dedicated to 

investigate the gravity current of colored fresh water with density ρ-Δρ, and initial speed u0 upon 

the free surface of an ambient liquid (salty water) with density ρ at rest in a basin. Velocity flow 

measurement in laborator described by two steps: first: surface velocity measurement using particle 

image velocimetry (PIV) at the water surface, which is a measurement technique, that allows for 

capturing velocity information of the whole flow field in fractions of a second. This technique 

similar to large scale of particle image velocimetry (LSPIV). Second: Surface velocity 

measurements were made using particle image velocimetry, as well established technique in fluids 

research for laboratory flow measurement. We applied the image processing and the spatiotemporal 

diagrams technique in order to describe the time evolution of the progress x, and the spreading y of 

the gravity current. That means it is able to measure these two components which characterize the 

flow of the gravity current as a function of the flow rate and salinity (Froude number). These 

experiments shed light on some phenomena like the dominant flow and transport phenomena in the 

presence of river, stream and wetland ecology, stream corridor restoration, in the case of accidental 

pollution spills. 

         The experiments were conducted in a dark laboratory room to a void other light sources 

disturbing the experiments. The experimental device setup consists of an injection channel (600 mm 

long and 17 mm wide) manufactured in transparent glass and which links the reservoir to the basin. 

A transparent basin made from Plexiglas, containing the static ambient liquid, of 700 L (300 cm 

long, 49 cm wide and 49 cm deep). A reservoir of 60 L equipped with a floodgate and which 

releases the gravity currents into the basin.A bowl of 240 L used to prepare the ambient fluid by 

introducing the quantity of salt corresponding to the concentration needed into a given volume of 

water. The solution prepared (salt water), then poured into the previous basin. A light source made 

of 500 w (50 Hz) projector was placed ahead of basin to provide reflection of light source as shown 

in the figure: 

 

 

 

 



 

52 

 

 

 

 

 

  

  

 

                          

                                      
                                            Figure1.16 Schematic of the experimental setup 

 

        An instrumentation equipment included: an observation system consisting of one SONY CCD  

XC-ST51/ST51CE camera equipped with a resolution of 768 × 576 pixels. The system of image 

capturing which consists of a PC equipped with a Pentium IV processor (2.6 GHz) of 1024 Mb of 

random-access memory and provided with a Matrox Meteor II multi-voice at 8 bits smart card. The 

images observed by camera was simultaneously captured at a frequency of 25 Hz or 50 Hz. 

 

         In the (PIV) technique, the small quantity of Rhodamine B colouring agent as a tracer was 

introduced for video-photographic analysis purpose. In testing the density and the viscosity of these 

gravity currents, it was observed that the addition of Rhodamine B does not modify the physical 

properties of the gravity current. Then the LSPIV technique has been used which provided the 

reliable measurements of velocities with acceptable accuracy. In this case, the solid particles used in 

classical PIV were replaced by an inert colouring agen (e.g. Rhodamine B), which was introduced 

in the gravity current injected in the ambient fluid. The difference between the light intensities of 

the two liquids was observed on the images and their respective motions could be followed and 

analyzed using the time elapsed between two consecutive images. The differences in light     

intensity between the two methods caused by the intrusion level of the gravity current were 

compared. The inter correlation algorithm has been used to compute velocity (Figure1.17a, b) and 

vorticity (Figure1.17 b) as shwon  
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                               (a)                                                                (b) 
  Figure1.17(a)Spatio-temporal evolution of velocityfor increasing concentration  in salt: Cs =  

                      10g/Lang,  Fr= 0.71. (b) Spatio-temporal evolutions of velocity (left) and of vorticity    

                      (right) for  Cs=10g/Lang   Fr = 0.71. 

                                  

  Both axial velocity U(x, 0) and the lateral velocity V(x, 0) have been plotted as shown : 

 

 

 

 

 

 

 

 

 

 

 

 

 
          Figure1.18 :  Variation of the velocity with the axial direction at y = 0 of (a) axial component 

                  U(x,0) and of (b) lateral component V(x,0) for Δρ/ρ = 0.0196: Re = 3587: and Fr = 0.97. 

 

        It was noted that the axial velocity U(x, 0) (Figure1.18(a)) was almost constant close to the 

injection channel. It was explained by the presence of the inertia regime when the progress of the 

front was linear with time. While far from the injection channel, the axial velocity decreased 

strongly with axial direction to it becomes 1 cm/s at the distance of 45 cm. It was explained by the 

establishment of the viscous regime. In the other hand, the lateral velocity V(x, 0) was very small 

at y = 0 in axial direction near the injection channel, while far from the injection, even the lateral 

velocity was small but it was of the same order than the axial velocity. This has been interpreted as 

near the injection channel, the flow was one dimensional in x-direction where the vorticity was 

very small or vanishing. Far from the injection channel, the free surface flow has followed a two 

dimensional propagation where the vorticity was not vanishing with a weak asymmetry with 

respect to the axis of the injection channel (Figure1.18(b)). 
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Both the axial velocity U(0, y) and lateral V(0, y) at fixed axial direction(x = 0)have been plotted as 

shown : 

 

 

 

 

 

 

 

 

 

 

 

 
Figure1.19 Variation of the velocity with the axial direction at x = 0 of (a) axial component U(0,y)  
                  and of (b) lateral component V(0,y) for Cs = 10 g/L, and Fr = 0.71. 

 

 

It was noted that the axial velocity direction U(0,y)(Figure1.19(a)) was maximal close to the 

injection channel and it decreased strongly with y. The lateral velocity V (0,y) vanished at the 

injection channel and then it became maximal. The lateral velocity V(0, y) decreases strongly with y 

(Figure 1.19(b)). 

 

The study concluded: (1) Image processing technique has been proved for use in flow velocity 

measurement because of the initial evaluation of the feasibility of making flow surface 

measurements. (2)The characterization of flow was made by measurement of the velocity field and 

vorticity field using a large scale PIV technique.The image processing to estimate the surface 

velocity field with the LSPIV techniques. (3) Surface LSPIV measurements showed that the 

diffusion of dissolved tracer (Rhodamine B colouring) into the mixinglayer and the method 

involves surface velocity field injection estimation, and using initial flow parameters analysis as 

Froude Number. 
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1.4 Synthesis of numerical work - Issue and numerical project of this thesis                                                                   

1.4.1  Synthesis of numerical work 
 

        Many previous numerical studies looked at gravity currents, and the results obtained had the 

greatest impact in providing a lot of information about this phenomenon. The following is a 

summary of the most important research work and its results, which are closely related to this thesis.  

        In (2018) Lam &al.presented direct numerical simulations (DNS) of two-dimensional stratified 

gravity current using OpenFOAM. The two-dimensional stratified gravity currents were simulated 

with the solver twoLiquidMixingFoam. The numerical data: the streamwise length Lx=20, the wall-

normal length Ly=4. The step length Δx ≈0.0078 and Δy ≈0 .0156. The purpose of the study was to 

investigate the effects of the initial aspect ratio and the stratification. Different aspect ratio were 

simulated like the ratio of the height of the dense fluid to the length of the dense fluid (h0/l0), with 

stratification ranging from S=0 (homogenous ambient) to S = 0.2. The Reynolds number (Re) of 

4000 was used for  all simulations. The magnitude of the stratification (S=ԑb/ԑ) has been determined 

by calculating the reduced density differences of the bottom fluid with the  ambient fluid (ԑb = (ρb- 

ρ0)/ ρ0) and the dense fluid with the ambient fluid (ԑ = (ρc-ρ0)/ ρ0, where ρc  represents the density 

of the dense fluid, ρb was the density at the bottom of the domain and ρ0 is the density at the top). 

The analysis of contour has been used to compare the flow structure of weak stratified (S= 0.2) 

gravity current with non-stratified (S=0) gravity current. The front location of the gravity was 

reduced as the stratification increase and denoted that the front velocity of the gravity current was 

reduced by the stratification. They noted Kelvin-Helmholtz (K-H) billow formed behind the gravity 

current head. The simulation was validated with a test case from (Birman&al.2007) and he results 

were satisfactory  (Lam &al.presented 2018).  

 

         Hydrodynamic characteristics of lock-exchange flow in curved channels in the presence of 

blocks were reported by Hamzenejad&al. (2020), where a rigid barrier was placed inside a curved 

channel with a curvature of 120 degrees and a radius (R) of one meter. It should be noted that the 

presence of a block within curved channels can cause new phenomena. Simulations were performed 

using the OpenFoam open-source software and the realizable k-epsilon turbulence model. They 

used  twoLiquidMixingFoam, multiphase solver. This solver was based on the Volume of Fluid 

(VOF) method. The Reynolds number (Re) of 19700 was used for all simulations. The blocks were 

placed at 60 degrees of the curve. With an impediment, the secondary current was visible in the 

body and tail of the current but did not occur in the current head. They observed that the pattern of 

the secondary currents was different around the block from the other locations and the barrier also 
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reduced the spanwise velocity of the flow body. The current head was also affected by the block. 

The results showed that during the collision with the obstacle, the current slows down, and the nose 

of the current on the outer bank is overtaken by centrifugal forces on the external bank, and finally, 

it continues its path at a constant velocity as before the obstacle (Hamzenejad&al.2020). 

 

         Pelmard&al. (2018) investigated the influence of the grid resolution on the large eddy 

simulation (LES) (which is a mathematical model for turbulence used in computational fluid 

dynamic) of a lock-exchange turbidity  current. The present work aimed at quantify the effect of 

grid resolution on the turbulence characteristics for currents with buoyant Reynolds numbers. The 

simulations were performed using a finite volume Boussinesq code(Finite volume schemes for 

Boussinesq type equations) with a Smagorinsky turbulence model(which is a model used for 

subgrid-scale for LES) for a range of buoyancy Reynolds numbers, ranging from transitional 

currents(Reb= 1,0 0 0) to fully-developed turbulence (Reb=60, 0 0 0). The general features of the 

flow and the relative independence of the current front for Reb > 10, 0 0 0 were correctly predicted. 

The spanwise two-point correlations (which is employed to compare various shapes) were found to 

be the most useful  quantities to assess the mesh resolution. In addition, velocity power spectrum 

densities were used to provide information on the maximum cell size required to ensure the LES 

filter cutoff wave length it was found inside the inertial range of the turbulence spectra. They 

showed that at low Reynolds numbers, the turbulence model was too restrictive and direct 

resolution (DNS) is preferable. For 10,0 0 0 < Reb < 60,0 0 0, the combination of the different 

criteria led to a minimum resolution of 1140 ×37 ×74 cells for coarse LES, and 1925 ×62 ×125 cells 

for well-resolved LES, regardless of the Reynolds number. Finally, recommendations were maded 

on how to achieve a well-resolved LES based on examination of the vertical profiles of the ratio of 

SGS viscosity to molecular viscosity, and of the SGS (called subgrid-scale modeling and it is used 

to represent the effects of unresolved small-scale fluid motions (small eddies, swirls, vortices) in the 

equations governing the large-scale motions that are resolved in computer models).  They showed 

that Nv= νSGS /ν (The ratio of the SGS viscosity to the molecular viscosity), and NS = τSGS,12 / (u' 

v')ave  (the ratio of the SGS shear-stress to the resolved Reynolds stresses)  decrease with grid 

refinement inside the current head.  However, threshold values for a well-resolved LES are difficult 

to define. From the two-point correlations and the power spectrum densities they concluded that a 

complete resolution of the flow in the low turbulence region above the upper boundary of the 

current is achieved when Nν< 0.3. The ratios of shear-stresses inside the turbulent mixing layer was 

recommended to converge to values below N S < 0.05 to achieve a well-resolved LES (Pelmard & 

al.2018).  

 

https://zlibrary.to/pdfs/finite-volume-schemes-for-boussinesq-type-equations
https://zlibrary.to/pdfs/finite-volume-schemes-for-boussinesq-type-equations
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         In (2016) Penney& Stastna presented three-dimensional direct numerical simulations of 

laboratory scale  double-diffusive gravity currents. The study utilized high-resolution DNS to 

simulate currents and presented an analysis of the effects of boundary conditions and current 

volume on flow development. Flow was governed by the incompressible Navier-Stokes equations 

under the Boussinesq approximation (which is called Joseph Valentin Boussinesq, it is used in the 

field of buoyancy-driven flow. Density diffrence is not taken into account except where they appear 

in terms multiplied by g, the acceleration due to gravity. The basis of the Boussinesq approximation 

is that the difference in inertia is negligible but gravity is sufficiently strong to make the specific 

weight appreciably different between the two fluids), with salinity and temperature coupled to the 

equations of motion using a nonlinear approximation to the UNESCO equation of state. The effects 

of vertical boundary conditions and current volume were examined, with focus on flow pattern 

development, current propagation speed, three-dimensionalization, dissipation, and stirring and 

mixing. It was observed that no-slip boundaries cause the gravity current head to take the standard 

lobe-and-cleft shape(Structures which is formed in the front part of the intrusive gravity current) 

and encourage both a greater degree and an earlier onset of three-dimensionalization when 

compared to what occurs in the case of a free-slip boundary. Under the effects of the no-slip 

condition, the current head exhibits the classical lobe-and-cleft instability and a significant degree 

of three-dimensionalization, while under the effects of free-slip conditions, the head remains two-

dimensional and takes the shape predicted by inviscid theory.  Two-dimensional salt fingers develop 

in the primary direction of the shear near the bottom of the wake of the currents. These fingers 

eventually experience spanwise rippling due to the shear-induced salt sheet instability, leading to 

fully three-dimensional salt fingers. Additionally, numerical simulations with no-slip boundary 

conditions experienced greater viscous dissipation, stirring (A process that occurs during the 

propagating of a gravity current in an ambient fluid and allows for the homogenization of mixable 

liquids), and mixing when compared to similar configurations using free-slip conditions. 

Preliminary investigations were suggested that shear dominates the double-diffusive instabilities in 

this type of configuration, which led to a typical gravity current, and little in the way of double 

diffusive effects (Penney& Stastna 2016). 

 

 

        In (2022) Farenzena & Silvestrini proposed a new method of front position determination free 

of arbitrary iso-value choice and strategies to minimize local uncertainty errors in the temporal 

evolution of the front velocity. Obtained results show that the local uncertainty error in front 

velocity was a function of the spatial discretization, the temporal sampling and the numerical 

derivative method. Such error could be minimized by the use of interpolation in the front position 
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acquisition method and/or using a new definition for the front velocity proposed in this study. The 

mathematical model and the computational code employed were described to perform the numerical 

simulations, The method to measure the front position from data was introduced, they showed the 

front velocity definition and its local uncertainties. The results presentation was divided into three 

parts: initially, the general features of a lock-release gravity current were presented with 

instantaneous flow visualizations. Afterward, they showed the front position obtained using the 

previously presented approaches. Finally, they presented the front velocity evaluation and its 

uncertainty (Farenzena& Silvestrini 2002). 

 

         In (2019) Tao&Zhang have made a research contribution to analyzed the Rayleigh-Taylor 

instability (RTI). Rayleigh-Taylor instability (RTI) along the density interfaces of gravity current 

fronts has been analyzed. The equations were solved with a pseudos-pectral method (or discrete 

variable representation (DVR) methods, are a class of numerical methods used in applied 

mathematics and scientific computing for the solution of partial differential equations) to study the 

lock-exchange flows in a cuboid box. The flowfield was expanded in Fourier modes in the x and z 

directions and Chebyshev polynomials in the y direction. Both the location and the spanwise wave 

number of the most unstable mode determined by the local dispersion relation agree with those of 

the strongest perturbation obtained from numerical simulations, suggesting that the original 

formation mechanism of lobes and clefts at the current front is RTI. Furthermore, the predictions of 

the semi-infinite RTI model, i.e., the original dominating spanwise wave number of the Boussinesq 

current substantially depends on the Prandtl number (which is a dimensionless number, defined as 

the ratio of momentum diffusivity to thermal diffusivity) and has a1/3 scaling law with the Grashof 

number(which  is a dimensionless number and defined as  the ratio of the buoyancy to viscous 

forces acting on a fluid), are confirmed by the three-dimensional  numerical simulations. They 

illustrated that the density stratification was the crucial factor dominating the onset of lobes and 

clefts. Without any detailed information of the flow field but only the fluids’ properties (Gr and Pr) 

They showed theoretically and numerically that the Prandtl number has a substantial effect on the 

wave-number selection. With the increase of Gr and the development of turbulent states (Tao& 

Zhang2019). 

  

         In (2009) GONZALEZ-JUEZ & MEIBURG obtained simulation results for the flow of a 

partial-depth lock-exchange gravity current past an isolated bottom mounted obstacle by means of 

two-dimensional direct numerical simulations and steady shallow-water theory. The simulations 

indicated that the flux of the current downstream of the obstacle is approximately constant in space 

and time. This information was employed to extend the shallow-water models of (Rottman et 
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al.1985) and (Lane-Serff&al.1995) in order to predict the height and front speed of the downstream 

current as functions of the upstream Froude number and the ratio of obstacle to current height. The 

model predictions were found to agree closely with the simulation results. In addition, the shallow-

water model provided an estimate for the maximum drag that lies within 10% of the simulation 

results for obstacles much larger than the boundary-layer thickness (GONZALEZ-JUEZ& 

MEIBURG2009). 

  

         Using high resolution numerical simulations of the two-dimensional Navier–Stokes equations, 

François Blanchette &al. (2006) evaluated a conceptually simple approach to model gravity 

currents traveling over a bottom boundary of varying slope. Their objective was to develop a 

conceptually simple approach which allows to simulate complex geometries. They considered a 

rectangular  

computational domain, which allows for simple and efficient implementation of the equations and 

boundary conditions. Rather than implementing a complete coordinate transformation, the varying 

slope was modeled through the introduction of a spatially varying gravity vector. They assumed that 

the density of the fluid is linearly related to the concentration, c of either a solute or suspended 

particles, ρ=ρ0(1+αc)whereα=(ρp–ρ0)/ρ0whereρ0 and ρp are the fluid and particle density respectively, 

and ρ0, ρp and c were dimensional quantities. Their methodology was validated through studies of 

mass and energy conservation. The propagation velocity of the current and qualitative features of 

the flow were also found to be consistent with experimental observations of gravity currents 

travelling down constant or varying slopes. The researchers found that such models can be used to 

simulate flows with high Reynolds numbers and thier computations were seen to be consistent with 

numerical results obtained by previous authors (Blanchette &al.2006). 

 

         In (2017) Francisco&al. presented a numerical investigation of bi-disperse particle-laden 

gravity currents in the lock-exchange configuration. The intention of this work was to present a 

significant improvement and extension of the preliminary previous studies. This discussion focused 

on explaining how the presence of more than one particle diameter influences the main features of 

the flow, such as deposit profile, the evolution of the front location and suspended mass. They 

developed the complete energy budget equation for bi-disperse flows. A set of two and three-

dimensional direct numerical simulations (DNS), with different initial compositions of coarse and 

fine particles, are carried out for Reynolds number equal to 40 0 0. Such simulations showed that 

the energy terms were strongly affected by varying the initial particle fractions. The addition of a 

small amount of fine particles into a current predominantly composed of coarse particles increases 

it’s run-out distance. In particular, it was showed that higher amounts of coarse particles have a 
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dumping effect on the current development. Comparisons showed that the two-dimensional 

simulation does not reproduce the intense turbulence generated in 3D cases accurately, which 

results in a significant difference in the suspended mass, front position as well as the dissipation 

term due to the advective motion (Francisco & al.2017). 

 

         In (2019) Issakhov& al. preformed a numerical simulation of the movement of the water 

surface  when a dam was broken by the volume of fluid (VOF) method. They developed a three-

dimensional numerical model of a dam break flow and identified flooding zones for three test 

problems. The mathematical model was based on the Navier-Stokes equations and uses the LES 

turbulent model, describing the flow of an incompressible viscous fluid and the equation for the 

phase (to determine the phase properties across the interface). All calculations were performed 

using the ANSYS Fluent. As a turbulence model was used the Smagorinsky model (which is a 

model used for subgrid-scale for LES). These equations were discretized by the finite volume 

method. PISO algorithm was chosen for numerical solution of this system of equation. The 

movement of the water surface was captured by using the VOF method (The equation for the phase 

was numerically solved by the CICSAM-VOF method (wher CICSAM: Compressive Interface 

Capturing Scheme for Arbitrary Meshes). This CICSAM-VOF method was designed to capture the 

surface and was clearly solved and implemented to track the movement that occurs on the water 

surface in multidimensional models), which led to a strict mass conservation law. The accuracy of 

the 3D model and the chosen numerical algorithm were tested using several laboratory experiments 

on dam break problem. In each of the problems, the obtained results were compared with the 

experimental data and several calculations by other authors and in each of the test problems, the 

developed model showed results close to the experimental data. Comparison of simulation results 

with experimental data for various turbulent models was also performed. And also a three-

dimensional model of dam break flow on uneven terrain was developed. Two combined problems 

were performed which are more close to real conditions, with the help of these problems, flooding 

zones and flooding time were    identified that would help in evacuating people from dangerous 

zones. All the results they obtained were satisfactory and can be relied upon to continue scientific 

research in this field ( Issakhov& al.2019).  

  

 

         In (2022)  Garoosi & al. Improved the accuracy and consistency of Volume-of-Fluid (VOF)  

method for simulating multiphase flow problems with large density ratios and moving interfaces. To  

 accomplish this a novel high-order TVD flux-limiter scheme (total variation diminishing (TVD) is 

a property of certain discretization schemes used to solve hyperbolic partial differential equations) 
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has been developed and applied to approximate the convective fluxes in the momentum, energy and 

volume fraction equations. Moreover, the classical implicit non-iterative PISO (Pressure-Implicit 

with Splitting of Operators) algorithm was modified according to SIMPLER algorithm (it is 

numerical procedure which is used to solve the Navier-Stokes  equations. SIMPLE is an acronym 

for Semi-Implicit Method for Pressure Linked Equations) and the  combined model(PISOR) was 

then employed to handle the pressure-velocity coupling and to maintain a high level of numerical 

accuracy. Furthermore, the piecewise linear interface calculation (PLIC) based on the Efficient 

Least Squares Volume-of-Fluid Interface Reconstruction Algorithm(ELVIRA)(which is a class of  

interface tracking algorithms) was adopted for the treatment of the interface and curvature 

estimation. The robustness and consistency of the proposed modifications in handling violent free-

surface flows involving interface rupture and coalescence were verified via simulation of several 

canonical test cases including: dam break over the dry and wet beds, rotating square patch of fluid 

and Rayleigh-Taylor Instability (RTI). The researchers came to the following conclusions: (1) the 

proposed model outperformed the existent classical VOF model available in the OpenFoam® 

environment. (2) The proposed hybrid PISOR algorithm with the aid of monotone convection 

scheme can accurately resolve physical discontinuities without obvious numerical fluctuations. (3) 

The ELVIRA technique (Efficient Least-square Volume-of-fluid Interface Reconstruction  Algorith) 

can successfully reconstruct any arbitrary linear interfaces. (4) the newly constructed third-order 

bounded scheme can effectively eliminate the interface smearing due to numerical dispersion and 

dissipation errors and subsequently retain the integrity of the interface shape. (5) the pressure under-

relaxation factor in the present hybrid PISOR scheme can be taken as unity which in turn 

accelerates the convergence rate of numerical simulations. (6) the proposed PISOR algorithm is 

capable of solving wide range of complex velocity coupling problems without introducing 

convergence difficulties. (7) The proposed TVD scheme can robustly control thickness of the 

interface and preserve sharpness of moving interfaces over2,3mesh intervals. (8) An improved 

VOF-R model is capable of dealing with a wide variety of multiphase flows with high topological 

changes (Garoosi & al.2022). 

 

 

        In (2016) Kaloudis & al. and by using Direct Numerical Simulations (DNS) investigated the 

flow phenomena in the intrusion region of a thermal storage water tank during discharge. The work 

was focued to the study of GCs inconfined spaces, by considering their interactions with solid 

boundaries in storage tanks and their implications with regard to mixing. The early times of the 

discharging process have significant effect on the thermal mixing and the associated energy losses. 

Methods to assess mixing have been used (method of analyze the evolution of the thermocline 
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thickness), which is one of the most popular method to quantify the energy losses associated with 

mixing during the charge/discharge phases, (Haller et al.2009). A detailed time evolution of the flow 

and temperature fields inside the tank was obtained for a range of relevant Froude numbers (Fr). 

Parameters such as the thermocline thickness(δ), the entropy generation rate Sg and the thermal 

mixing factor(k) were calculated to quantify the mixing mechanism in the tank. There were several 

alternative discharging scenarios where the Froude number (Fr) varied between 0.05 and 2.00, a 

range which corresponds to typical discharging conditions in real applications involving water 

storage tanks. The gravity currents (GCs) developing as the incoming cold fluid flows along the 

floor of the tank, their subsequent reflection on the opposite vertical wall and the interaction 

between the reverse flow and the incoming flow were analyzed and correlated to δ, Sg and k. 

Results of thermal mixing factor were in a qualitative agreement with mixing models showing 

enhanced mixing for the starting times of the discharging process( Kaloudis & al.2016). 

 

        In (2010) Zhang & al., studied the head front location as the function of time for an 

axisymmetric gravity current. The RNG approach is a mathematical technique that can be used to 

derive a turbulence model similar to the k-epsilon, results in a modified form of the epsilon 

equation which attempts to account for the different scales of motion. In this study, the adopted 

renormalization group (RNG) k-ϵ model for Reynolds-stress closure was used to character the time-

dependent current with transitional and highly localized turbulence. The following dimensionless 

parameters were used: R*
f=Rf/R0 , t*=t/tc, where R0 is the radius of cylindrical barrier, and 

tc=R0(g
’h0)-1/2 is the characteristic time, g’=g∆ρ/ρa being the reduced gravitational acceleration, with 

g standing for the gravitational acceleration, and ∆ρ=ρ0-ρa standing for density difference of salt 

water and fresh water. Seven cases were discussed in this study. Numerical results were well-

supported by experimental observations and showed that the motion of gravity current passed 

through two phases: a slumping phase with constant front velocity, and a self-similar phase with the 

front velocity decreasing as t1/2(Zhang & al.2010). 

 

  

        In (2018) Ottolenghi&al. presented numerical simulations to assess the ability of the Lattice-

Boltzmann Method(LBM)(which is a class of computational fluid dynamics(CFD) methods for 

fluid simulation. A fluid density in this method is simulated with streaming and collision (relaxation) 

processes, instead of solving the Navier-Stokes equations directly) in reproducing the fundamental 

features of lock-exchange gravity currents. Both two- and three-dimensional numerical simulations 

were performed at different Reynolds numbers (1000 ≤ Re ≤ 30.000). The standard notation DnQm 

for m discrete velocities in n spatial dimensions is used throughout. They used two classes of 
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lattices, the D2Q9(for 9 discrete velocities in 2 spatial dimensions is used throughout) and the 

D3Q19(for 19 discrete velocities in 3 spatial dimensions is used throughout), both 4th order 

isotropic in two and three dimensions, respectively. Numerical results showed that for Re = 1000 

there was the abrupt transition from the slumping to the viscous phase, without developing the      

inertial phase. Turbulence has been accounted for by implementing an equivalent Large Eddy 

Simulation (LES) model in the LBM framework. The advancement of the front position and the 

front velocity obtained by LBM numerical simulations are compared with laboratory experiments 

appositely performed with similar initial and boundary conditions and with previous results from 

literature, revealing that the dynamics of the gravity current as a whole is correctly reproduced. 

Lobes and clefts instabilities arising in three-dimensional simulations and the entrainment 

parameter are also analysed and comparisons with previous studies are presented. Numerical results 

showed the LBM can be considered as a valid tool for the investigation ongravity currents 

(Ottolenghi & al.2018). 

 

        In (2018) Issakhov& al.,investigated the effects of water on obstacles in the dam break flow 

problem   numerically. The numerical simulation of this problem was carried out using the ANSYS 

Fluent software product. The numerical method was based on the Navier-Stokes equations 

describing the flow of an incompressible viscous fluid and the equation of state. As a numerical 

method for solving equations, the numerical algorithm PISO (Pressure-Implicit with Splitting of 

Operators)(which is is an efficient method to solve the Navier-Stokes equations in unsteady 

problems) was chosen. The water surface movement was captured by using the volume of fluid 

(VOF) method, which leads to a strict mass conservation. They were able to distinguish the models 

such as Realizable k-ε(which is the most common model used in computational fluid dynamics 

(CFD) to simulate mean flow characteristics for turbulent flow conditions. It is a two equation 

model that gives a general description of turbulence by means of two transport equations), SST k-ω 

(which is a two-equation eddy-viscosity model which has become very popular where (SST) is 

shear stress transport), DES models (which is called Detached Eddy Simulation, this approachis 

very popular in industrial   applications as it helps overcoming some of the limitations of the RANS 

models) and for 3D problem  especially the LES model, which very well describes flow behavior 

and pressure distribution on the dam surface. Moreover, the accuracy and reliability of the 2D and 

3D models were tested using several small and large-scale laboratory experiments on dam 

destruction problem. The obtained free surface dynamics was compared with the experimental data 

and numerical results of other authors. These numerical results gave good agreement with the 

experimental data. Comparison of simulation results with experimental data for various turbulent 

models was also performed. By dam break flow problem simulation, the best turbulent models were 
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chosen, which describe almost the same pressure distribution. Finally, various forms of obstacles 

were examined, by which the pressure distributions were reduced three times on the dam 

(Issakhov& al.2018). 

 

        In (2018) Francisco & al. Investigated the idealized gravity currents over a flat bed for which 

density   differences are small enough for the Boussinesq approximation(which is an approximation 

of the Navier-Stokes equations for incompressible free-surface flows in which there is a vertical 

density gradient resulting in the absence of hydrostatic equilibrium) to be valid. They presented 

three-dimensional highly resolved direct numerical simulations (DNS) of particle-laden gravity 

currents for the lock-exchange problem in an original basin configuration, similar to delta formation 

in lakes. The concentration of particles was described in an Eulerian fashion by using a transport 

equation combined with the incompressible Navier-Stokes equations, with the possibility of 

particles deposition but no erosion nor re-suspension. The focus of this study was on the influence 

of the Reynolds number and settling velocity on the development of the current which can freely 

evolve in the streamwise and spanwise direction. When the Reynolds number was increased, the 

currents exhibited a large number of curved lobe-and-cleft structures of different sizes, unevenly 

distributed radially, different from the straight ones observed in axisymmetric currents. Also it was 

showed that the settling velocity has a strong influence on the spatial extent of the current, the 

sedimentation rate, the suspended mass and the shape of the lobe-and-cleft structures while the 

Reynolds number mainly affecting the size and number of vortical structures at the front of the 

current, and the energy budget. One important result was that, unlike channelized gravity currents, 

the macroscopic dissipation Ed is not necessarily the dominant dissipation term when particles 

deposit at the bottom wall (Francisco&al.2018).   

 

        In (2015) Zgheib&al. They presented results from direct numerical simulations (DNS) of 

cylindrical particle-laden gravity currents. The DNS will allow to explore the three-dimensional 

struc-tures of the current from iso-surfaces of density and iso-surfaces of the swirling strength that 

show the intensity and structure of the coherent eddies. They considered the case of a full depth 

release with monodisperse particles at a dilute concentration where particle–particle interactions 

may be neglected. Eulerian-Eulerian model of the two-phase flow equations was implemented. 

They chosed a grid resolution of 680×680×109 (along the x, y, and z directions, respectively). The 

disperse phase was treated as a continuum and a two-fluid formulation is a dopted. They presented 

results from two simulations at Reynolds numbers of 3450 and 10.000. Thier results were in good 

agreement with previously reported experiments and theoretical models. At early times in the 

simulations, they observed a set of rolled up vortices that flow at varying speeds. These Kelvin-
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Helmholtz (K-H) vortex tubes were generated at the surface and exhibit a counter-clockwise 

rotation. In addition to the K-Hvortices, another set of clockwise rotating vortex tubes initiate at the 

bottom surface and play a major role in the near wall dynamics. These vortex structures have a 

strong influence on wall shear-stress and deposition pattern. Their relations are explored as well. 

The results of the numerical simulation were compared wit previously reported 

results(Bonnecaze1995), and they matched very well(Zgheib&al.2015). 

 

        In(2018) Z.H.Gu & al., built a two-phase flow algorithm based on the interface-preserving 

level set method  developed for three-dimensional dam-break flows on uniform staggered cartesian 

grids. This method solved mass transfer problems on a uniform staggered Cartesian grid (which is a 

simple way to avoid odd-even decoupling between the pressure and velocity. Odd-even decoupling 

is a discretization error that can occur on collocated grids and which leads to checkerboard patterns 

in the solutions). The advection equation that has been used to advect the level set function for 

capturing the interface was discretized by a proposed fourth-order spatial discretization scheme. 

This scheme was dispersion-relation-preserving and is compact-reconstruction weighted essentially 

non-oscillatory (DRP-CRWENO4). The scheme was compared with a previous fifth-order, 

weighted, essentially non-oscillatory (WENO5) scheme (which is the fifth-order WENO scheme for 

approximating the solution of hyperbolic conservation laws) and can represent an interface more 

accurately, while exactly preserving mass conservation. The level set approach introduced a mass 

correction term into the re-initialization equation based on local interface-preserving conditions. An      

explicit Adams-Bashforth algorithm (which is use to compute the approximate solution at an instant 

time from the solutions in previous instants, in each step of Adams–Moulton methods an algebraic 

matrix Riccati  equation (AMRE) is obtained, which is solved by means of Newton's method) on a 

staggered Eulerian grid was used for the Navier–Stokes solver. The point successive over-relaxation 

method (SOR)(which is a variant of the Gauss–Seidel method for solving a linear system of 

equations, resulting in faster convergence) was then employed to solve the resulting linear system. 

Two one-dimensional wave propagation problems were simulated to verify the proposed DRP-

CRWENO4 scheme (which is dispersion-relation-preserving and is compact-reconstruction 

weighted essentially non-oscillatory), which was shown to be capable of effectively capturing large 

gradients with fourth-order accuracy. To demonstrate their resolution, the two advection schemes 

(WENO5 and DRP-CRWENO4) were applied in two two-dimensional benchmark cases, i.e.,a      

vortex deforming problem and Zalesak’s disk problem(which is a test, a slotted circle of fluid 

rotates around the center of the domain in a solenoidal velocity field.it is used to  assessment of the 

efficiency of an  algorithms), where simulation results of both schemes were compared against each 

other. Demonstration study was then further extended to three-dimensional cases of the vortex 
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deforming problem and Zalesak’s sphere problem, and simulation results agree well with those 

using hybrid particle level set method. Finally, several dam-break problems with and without 

obstacles were investigated to validate the coupled two-phase incompressible flow and level set 

method solver. The results for the predicted flow structure and mass   conservation properties were 

compared with the reported experimental data or numerical simulations (Z.H.Gu & al 2018).  

 

      In (2020) Yiqun Ye & al.employed a mesh-free method  to simulate dam-break wave spreading 

in  different bed configurations. In the method, the pressure field is calculated by an equation to 

explicitly solve the pressure Poisson equation (PPE) (which is a classical elliptic partial differential 

equation which provides a relationship to extract the so-called pressure parameter from a distributed 

parameter on an enclosed domain). The mesh-free method was good at capturing the free surface in 

the dam-break flow. In the numerical method, an explicit calculation for the pressure field was used 

and the spatial operators are based on the Moving Particle Semi implicit method (MPS). The mesh-

free method was validated to simulate the dam-break flow by comparing to available experimental 

measurements. The numerical method was also validated by modeling the dam-break wave 

propagating along the wet bed. The effect from the combination of dry and wet bed for the dam-

break wave was also investigated by the mesh-free method. They noted that when the dam-break 

wave encounters the wet bed, the wave can push the downstream water body forwards while the 

wavefront speed is reduced. The downstream water depth can result in a more uniform bed shear 

stress compared to the flow with the dry bed and the large value of bed shear stress occurs in the 

vicinity of the wavefront. In the simulations, the flow characteristics including free surface, flow 

pattern, and wavefront movement, and bed shear stress are presented and discussed(Yiqun Ye & 

al.2020). 

 

        To understanding the gravity currents propagation at the base of a linearly stratified ambient.  

Dai & al.(2021) performed three-dimensional high-resolution simulations. A passive tracer was 

implemented in the   simulations to quantitatively measure the energies associated with the gravity 

current and the ambient fluid. Attention was focused on the initial slumping stage of gravity 

currents. The dynamics of the subcritical gravity currents, and the supercritical gravity currents 

were qualitatively different and we examined with the help of three-dimensional and two-

dimensional high-resolution simulations. For the subcritical gravity currents, the flow was 

dominated by the internal wave, the Kelvin–Helmholtz vortices (which are a regions in a fluid in 

which the flow revolves around an axis line, which may be straight or curved) were inhibited, and 

the two-dimensional simulation agrees well with and serves as a good surrogate model for the three-

dimensional simulation in the slumping stage. For the supercritical gravity currents, the Kelvin-
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Helmholtz vortices were pronounced and prone to breakup into three-dimensional structures in the 

slumping stage. By using two-dimensional simulation. They observed the kinetic energy associated 

with the supercritical gravity currents, and the potential energy associated with the ambient fluid. 

The transition distance for the slumping stage and dissipation rate in the system have 

underpredicted while the kinetic energy associated with the ambient and the potential energy 

associated with the current have over predicted by the two-dimensiona simulation for the 

supercritical gravity currents. It was understood that the internal Froude number is a        

logarithmic function of the stratification parameter R (i.e. Fr = 0.226+log(R)). In this study, they 

confirmed that the logarithmic relationship is valid only in the range1 < 𝑅 = 3 but may fail outside 

this range. They also showed that the shallow-water model can appropriately describe the internal 

Froude number throughout the whole range 1 < R ≤ 10 in this study (Dai & al. 2021). 

 

         In (2021) Marshall&al., presented numerical simulations of the effect of high Schmidt number 

on three-dimensional flow. Schmidt number (Sc) is the ratio of the kinematic viscosity to the 

molecular diffusion coefficient. (DNS) method was used to investigate the structure and dynamics 

of gravity current flows by providing the instantaneous density and velocity fields. Three-

dimensional direct numerical simulations of constant-influx solute-based gravity currents were 

presented. The spectral element solver Nek5000(which is a computational fluid dynamics code that 

simulates unsteady incompressible fluid flow with thermal and passive scalar transport) has been 

used with Reynolds numbers 100 ≤ Re ≤ 3000 and Schmidt number1. The effect of Schmidt number 

in cases (Re, Sc) = (100,10), (100,100); and (500, 10) has been studied. These data were used to 

establish the effect of both Schmidt and Reynold number on different properties of gravity currents, 

such as density distribution and interface stability. The impact of varying the Schmidt number on 

both the head and body of gravity current flows have been investigated. It was shown that 

increasing Schmidt number from 1 leads to substantial structural changes not seen with increased 

Reynolds number in the range considered here. Some of the questions were answered, including: (1) 

how Reynolds and Schmidt numbers affect the structure of flow behind the head, in particular, the 

stability of the current-ambient interface, (2) How Reynolds and Schmidt numbers affect the 

structure of the head, in particular, the formation of lobe-and-cleft structures, (3) When assuming a 

low Schmidt number to reduce the computational cost of numerical investigations may be justified, 

and (4) Which of the changes observed with increased Schmidt number also occur with increased 

Reynolds number. Finally recommendations were made regarding lower Schmidt number 

assumptions, usually made to reduce computational cost (Marshall&al.2021). 
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        In (2021) Dai&al. investigated gravity currents in the slumping phase from a full-depth lock-

exchange configuration with a no-slip boundary by means of three-dimensional high-resolution 

simulations of the incompressible Navier–Stokes equations with the Boussinesq approximation. 

This work aimed at deepen the understanding of the vortices structure and the mechanism 

responsible for the merging of clefts and splitting of lobes for gravity currents propagating on the 

no-slip boundary. The simulations provided more detailed flow information to elucidate the merging 

and splitting processes. The three-dimensional domain was (Lx1×Lx2×Lx3) = (17×1.5×1). The front 

Reynolds number was in the range 383< Ref < 3267. They symbolized the height of the gravity 

current head by 𝑑̃, mean lobe width 𝑏̃ and mean maximum lobe width  𝑏̃𝑚𝑎𝑥 .  These quantities were 

obedient to the empirical relationship:𝑏̃𝑚𝑎𝑥 𝑑̃ = 12.6𝑅𝑒𝑓
−0.36⁄  and 𝑏̃ 𝑑̃ = 7.4𝑅𝑒𝑓

−0.39⁄  respectively. 

The front Reynolds number was defined as:  𝑅𝑒𝑓 = 𝑈̃𝑓𝑑̃ 𝑉̃⁄   here 𝑈̃  was the front velocity and 

𝑉̃was the fluid kinematic viscosity. With the viscous length scale, the mean lobe width and the mean 

maximum lobe width increase with increasing front Reynolds number. The merging process for the 

vortices structure inside a lobe required the interaction of three tooth-like vortices and the middle 

tooth-like vortex disintegrated and reconnected with the two neighbouring tooth-like vortices. 

Therefore, a cleft might continually merge with another neighboring cleft but might never disappear. 

The initiation of the splitting process could be attributed to the Brooke&Hanratty mechanism 

(Mechanism generating vortices near the wall) reinforced by the baroclinic production of vorticity. 

Depending on the orientation of the parent vortex, the resulting new cleft after the splitting process 

could shift laterally in the positive or negative spanwise direction along the leading edge of the 

gravity currents as the lobe-and-cleft structure. The researchers concluded that the results obtained 

were in agreement with the experimental results that had been reported earlier (Dai&al.2021). 

 

         In (2015) Ooi&al. reported the results of their numerical simulations from full three-

dimensional direct   numerical simulation of gravity currents propagating down a uniform slope. 

They presented three-dimensional direct numerical simulation by using Direct numerical simulation 

(DNS) method (which give complete three-dimensional and time-dependent solution of the Navier–

Stokes equations to obtain results for the instantaneous fluid velocity as a function of position and 

time) of Boussinesq of gravity currents propagating down a uniform slope starting from a truncated 

cylinder initial shape. They modeled the release a finite amount of heavy fluid into an ambient 

environment of lighter fluid on a sloping boundary. They assumed the density difference was small. 

Simulations were carried out at Re=5000 and a grid resolution of (Nx,Ny,Nz)=(700,600,201) and 

slope angle T=5°, 10°, 15°, and 20°. The value of the Schmidt number was taken as unity for all 

simulations. In the experiments of (Ross&al.2002), the Schmidt number was much greater than1. 

However (Bonometti &al.2008) have shown that the Schmidt number only has a small effect on the 
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dynamics and structure of the gravity current, provided that the Reynolds number was high enough 

(O (104)). For smaller Reynolds number, diffusion effects would influence the mixing and front 

velocity of the gravity current. The time step was chosen such that the Courant number was always 

less than 0.5. Their data showed that in most cases, the gravity current evolved to a shape that was 

similar to a triangular wedge. The physical mechanisms leading to the formation of this triangular 

shape and the dynamics of such a structure was presented (Ooi&al.2015). 

 

        By using an implicit large eddy simulation (ILES) to model a gravity currents evolution, 

Patterson&al. (2005) presented a series of two-dimensional(2D), axisymmetric and three-

dimensional(3D) numerical flow simulations. The aim was to examine at a qualitative level the 

suitability of an ILES to model a gravity current. In the 2D case the results were well predicted. The 

position and form of the gravity current. For the axisymmetric case, the form of the gravity current’s 

head and the ring vortices above the head were accurately described by the simulations good 

agreement was observed between the experimental work and the simulations up to the point of 

vortex breakdown. Simulations based on modelling the axisymmetrical form of the Navier-Stokes 

equations cannot match the experimental observation after the breakdown of the ring vortex in the 

experiments because there is no mechanism for breakdown in the equations of motion. Examination 

of the 3D results shows that the lobe and cleft instability observed at the interface between the light 

and dense fluid were also modelled well. They concluded that the Large Eddy algorithm was 

successful in modeling a gravity current’s large scale structure (Patterson&al.2005).  

 

        In (2016) Armenio&al. presented a contribution to the evaluation of entrainment and mixing in 

unsteady    gravity currents, focusing on the effect of the aspect ratio between the initial water depth 

and the lock length (which is the horizontal distance between the barrier separating the two fluids 

and the adjacent edge of the tank), and the initial excess density driving the motion. Entrainment 

and mixing in lock-exchange gravity currents were investigated by large eddy simulations. Different 

methodologies were used in order to evaluate entrainment and mixing during the slumping phase. 

Laboratory experiments were also performed and the comparison between the numerical and 

experimental results showed an acceptable agreement. Nine different cases of lock-exchange 

gravity currents propagating over a horizontal surface were examined through both laboratory 

experiments and numerical simulations. These cases were obtained by varying the initial excess 

density driving the motion and the aspect ratio r of the initial water depth to the lock length. The 

aspect-ratio of the retained fluid was showed to affect the time development of the gravity current 

and the associated mixing.  In the r = 0.5 and r =1 runs, mixing was evaluated using three different 

approaches. The first two methods are based on the evaluation of two entrainment parameters and 
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on the variation in time of the fractional area of the dense current; the third approach considers the 

evolution of the background potential energy. The entrainment is found to increase as r decreases. 

The occurrence of irreversible mixing is detected during the entire development of the flow, i.e. 

both in the slumping and self-similar phases. A higher amount of mixing was observed as r 

decreases and the initial excess density increases (Armenio&al.2016). 

 

1.4.2   Issue and numerical project of this thesis 
 

        At the time that the study of interface instability between the gravity current and the air has 

received a lot of attention in the field of research, we find that the interface instability between the 

gravity current and ambient fluid due to the difference in density is still not well understood and has 

not received wide attention in the field of research. Hence this thesis came to shed light on the study 

of the interface instability between the gravity current and the horizontal bottom and the interface 

instability between the gravity current and the ambient fluid, as well as the effect of each of 

Reynolds and Weber numbers on the instability. 

 

 

       A numerical simulation was conducted to investigated the interface instability of gravity 

currents. The motion was treated using computational fluid dynamics (CFD), which is a branch of 

fluid mechanics that uses numerical methods and algorithms to solve and analyze problems 

involving fluids. By using Open FOAM software, the following numerical simulation were 

performed. 

 

 

         In this work we investigated the exchange wall of two immiscible fluids via the numerical 

simulation using a CFD package for the Reynolds numbers in the range25-7000. The flow has been 

driven by gravity current on a horizontal surface. The density of the gravity current was high and it 

is surrounded by a fluid of less density. Particular attention was given to observe two types of the 

interface instability. The results showed that, the first type was the interface instability between the 

heavy fluid and the horizontal bottom. The lower interface was seen in the form of balls containing 

the ambient fluid and surrounded by gravity current. We were showed that the instability between 

the heavy fluid and the horizontal bottom was happend when Reynolds numbers are less than or 

equal to 2000. The second type was the interface instability between the heavy fluid and the 

ambient fluid and this kind is called Holmboe instability. The numerical simulation results showed 

that the instability between the heavy fluid and the ambient fluid was happend when Reynolds 

numbers are greater or equal to 2500. OpenFOAM solver has been developed to release a specific 
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volume of gravity current into a static fluid of lower density. The front position points𝑿𝒇(𝒎), 

Weber numbers (We) and velocity front points 𝑉𝑓(𝑚 𝑠⁄ )for the gravity current were calculated. The 

velocity of front position points is equal to the hydrodynamic velocity inside the gravity current. 

Also, the velocity of front position points is equal to the nose velocity. Furthermore, the results were 

compared to non-dimensional variables and were identical.   

This study was organized as follows: 

(1) Description of geometrical domain: Three-dimensional geometry on horizontal plane was  

chosen as a test case. In this domain. The length of the case (0.8 m), the width (0.01m), the height 

(0.08m), The dimensions in which the gravity current is before launch were (0.08 m), (0.01 m) and 

(0.08 m) for its lenght, width and height respectively and the shape contains 12 vertices. 
(2) Numrical Model: Equation for the interphase and Navier Stokes equations for two  

   incompressible, isother mal immiscible fluids were used to describe two immiscible liquids. 

(3) The Volume-of-Fluid (VOF) method: VOF method belongs to the Eulerian class of modeling 

approach. In order to surround to scientific understanding of numerical simulation, a description of 

this method has been presented.           

(4) Results: The numerical simulation results for interface instabilities have been shown. 

 

 

 

 

 

 

 

 

 

 

 

 

        



 

72 

 

 

CHAPTER II 

MODELLING 

 

 

 

  



 

73 

 

2 Chapter II    Modelling 

2.1 Introduction 

        For modelling, we consider the stability of the interface between two non-miscible liquids in 

the configuration presented in Figure 2.1. At initial time, a fixed volume of the denser liquid with 

density 𝜌2 and viscosity𝜇2 is released under the sole effect of gravity, over a plane smooth surface 

beneath a static ambient lighter one with density 𝜌1 and viscosity 𝜇1. Such a configuration may 

represent the propagation of heavy oil escaping from the tank of an oil tanker that has sunk to the 

ocean floor. The interface is said to be stable if a small disturbance superimposed on it vanishes 

over time. The interface is said to be unstable if a small disturbance superimposed on it grows or 

remains constant over time.  

 

        Woumeni (1991) provides a comprehensive description of the effect of density gradient and 

viscosity gradient on interface stability. Indeed, considering a system of two liquids with different 

densities and viscosities, Woumeni (1991) points out four cases : 

a/ Effect of density gradient 

-If the lighter liquid is in the upper layer if a protusion with volume is superimposed to the system, i 

twill vanish because the Archimede force will be greater than its weigh. 

-If the lighter liquid is in the lower layer, the weigh of the protusion overwhelms the Archimede 

force so, the protusion will grow and the flow is unstable.  

b/ Effect of viscosity 

-In the case where the moving liquid is the less viscous one, if a protusion is superimposed to the 

system, the isobars will be more spaced in the center than on the periphery. From Darcy’s law, the 

local velocity being proportional to the pressure gradient, the velocity at the center will be lower 

than on the periphery, consequently the protusion will vanish. 

-If the moving liquid is the more viscous one, the progression of the other liquid is impeded by the 

less mobile fluid in place. It follows a tightening of the isobars towards the center where the local 

velocity will become very important under Darcy’s law. Therefore, any protusion will grow and the 

flow is unstable as shown.  

        More generally, an instability may occur in our flow configuration if a gradient exists between 

the respective velocities, densities, viscosities, temperatures or interfacial tensions of both fluid 

layers. In literature, different authors have modeled one or the other case. Thus, Yih (1961) among 

others studied the effect of viscosity and velocity stratification on horizontal interface stability. As 

well, Lagrée & Rossi (1997) among others present an analysis of the Kelvin-Helmholtz instability 

due to density and velocity stratification in presence of interfacial tension. For the first time, the 

general case where all gradients exist between a heavy lower layer and an upper lighter ambient 

liquid and the base plane is inclined is tackled in this work. Indeed, only the temperature and the 
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interfacial tenion gradients are not considered. Indeed, it is well known that when the temperature 

difference is not significant (this case), a thermo-mechanical coupling must not be brought out, 

while the intruding film at ocean bottom is assumed homogeneous so, the interfacial tenion between 

both layer is assumed constant and instabilities related to interfacial gradient such as Marangoni’s 

effect are not considered.  

        In the second subsection, we present Yih’s theory (1967) of viscosity-driven instability and in 

third subsection, we present the analysis of Guyon et al. (2001) among others, of Kelvin-Helmholtz 

instability. More recently, Kowal & al. (2019) considered but the internal stability of a horizontal 

monodirectional gravity current driven by the three gradients (Fig.2.1).  

 

 

 

 

 

 

 

   

   

   

   
    

 

 

Figure 2.1: Monodirectional gravity current beneath an ambient liquid flow at (a) initial time 𝑡 = 0 and at (b) 

assigned time 𝑡 = 𝜏           

       

  In the fourth section, we propose an extension of the theoretical study of Kowal & al. to the case 

where the flow is bidirectional. Finally in the fifth subsection, we present the original model of the 

hydrodynamic stability of a denser gravity current over a sloping smooth plane beneath an ambient 

static lighter liquid in presence of velocity, viscosity and density gradients and interfacial tension as 

well. 
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2.2 Instability due to viscosity stratification (Yih, 1967) 

        We consider the stability of the horizontal interface between an upper liquid layer with 

viscosity 𝜇1 and a lower layer liquid with viscosity 𝜇2flowing between two fixed and parallel solid 

plates. Both liquids have the same density 𝜌 and the same thickness 𝑑. Figure 2.1 presents the flow 

configuration. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2: Instability occurring at the horizontal interface of two liquids of equal density and different 
viscosities in plane Poiseuille flow 

 

2.2.1 Laminar steady basic flow 

The laminar steady basic flow in (𝑋 − 𝑌 ) plane in each layer is governed in one hand by the 

equation of conservation of the mass  

div (𝑉𝑏 (𝑖)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) = 0          (2.1) 

and in the other hand by the equations of conservation of the momentum 

𝜌
𝑑𝑉𝑏 (𝑖)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

dt
= −𝛻⃗ 𝑃

𝑏

(𝑖) + 𝜇𝑖𝛥𝑉𝑏 (𝑖)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗          (2.2) 

where 𝑖 = 1 refers to the upper layer and 𝑖 = 2 to the lower layer. Operators div (𝑉
𝑏

(𝑖)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
) ,  

𝑑𝑉𝑏 (𝑖)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

dt
 and (𝛥 𝑉𝑏 (𝑖)

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ) on vector 𝑉𝑏 (𝑖)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  = 𝑈

𝑏

(𝑖)𝑒𝑋⃗⃗⃗⃗ + 𝑉
𝑏

(𝑖)𝑒𝑌⃗⃗⃗⃗  are respectively defined as : 

div𝑉
𝑏

(𝑖)⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗
=

𝜕𝑈
𝑏

(𝑖)

𝜕𝑋
+

𝜕𝑉
𝑏

(𝑖)

𝜕𝑌
 ; 

𝑑𝑉
𝑏

(𝑖)
⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  

dt
=

dU
𝑏

(𝑖)

dt
𝑒𝑋⃗⃗⃗⃗ +

dV
𝑏

(𝑖)

dt
𝑒𝑌⃗⃗⃗⃗ − 𝜌𝑔    (2.3)  

𝑑

dt
⋅ [

𝜕

𝜕𝑡
+ 𝑈𝑏

𝜕

𝜕𝑋
+ 𝑉𝑏

𝜕

𝜕𝑌
] ⋅    ;  𝛥 𝑉𝑏

⃗⃗⃗⃗⃗⃗ = 𝛥𝑈𝑏 𝑒𝑋⃗⃗⃗⃗ + 𝛥𝑉𝑏 𝑒𝑌⃗⃗⃗⃗   ;  𝛥 ⋅ [
𝜕2

𝜕𝑋
2 +

𝜕2

𝜕𝑌
2] ⋅(2.4) 

where 𝑔  denotes the gravity and the gradient of the pressure-field is defined as 
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𝛻𝑃𝑏 =
𝜕𝑃𝑏

𝜕𝑋
𝑒𝑋⃗⃗⃗⃗ +

𝜕𝑃𝑏

𝜕𝑌
𝑒𝑌⃗⃗⃗⃗          (2.5) 

Assuming a one-dimensional flow in 𝑋 −direction, in each layer the previous continuity and 

Navier-Stokes equations, i.e. Eqs. (2.1)-(2.2) respectively reduce to 

𝜕𝑈𝑏

𝜕𝑋
= 0           (2.6) 

0 =
−𝜕𝑃𝑏

𝜕𝑋
+ 𝜇

𝑑2𝑈𝑏

dY
2           (2.7) 

0 =
−𝜕𝑃𝑏

𝜕𝑌
− 𝜌𝑔          (2.8) 

With the help of the equation of continuity, Equ. (2.7) indicates that 
−𝜕𝑃𝑏

𝜕𝑋
= 𝐾 where 𝐾 is a true 

constant, then Equ.(2.7) can be written as 

𝑑2𝑈𝑏

dY2 =
−𝐾

𝜇
           (2.9) 

Equ. (2.9) must be solved in each layer with the viscosity 𝜇 taking the value 𝜇1in the upper layer 

and 𝜇2 in the lower layer with the boundary layers stating  

-the no slip condition on both limiting plates  

-the continuity of velocity and shear at the interface 

Defining the non dimensional coordinates and velocities respectly as follows : 

𝑋 =
𝑋

𝑑
    ; 𝑌 =

𝑌

𝑑
   ;   𝑈𝑏(1) =

𝑈𝑏(1)

𝑈𝑏 (0)
   ;    𝑈𝑏(2) =

𝑈𝑏(2)

𝑈𝑏 (0)
      (2.10) 

The solution of Equ. (39) associated with the boundary conditions given by Equ.(3.10) write as 

follows in non dimensional form 

𝑈𝑖 = 1 + 𝑎𝑖𝑦 + 𝑏𝑖𝑦
2          (2.11) 

where subscript 𝑖 = 1 refers to the upper layer and 𝑖 = 2  refers to the lower layer. Noting the 

viscosity ratio as 

𝑚 =
𝜇2

𝜇1
 

the constants 𝑎𝑖and 𝑏𝑖are given by 

𝑎1 =
1

2
(𝑚 − 1)   ;   𝑏1 =

−1

2
(𝑚 + 1)   ;   𝑎2 =

1

2
(1 −

1

𝑚
)   ;   𝑏2 =

−1

2
(1 +

1

𝑚
)  (2.12) 

2.2.2- Equation governing the flow stability 

Let us superimpose on the latter laminar steady base flow a small disturbance with hydrodynamic 

field in the 𝑖thlayer (𝑢𝑖, 𝑣𝑖 , 𝑝𝑖) and that can be made non dimensional by the use of the following 

statements 

𝑢𝑖 =
𝑢𝑖

𝑈𝑏(0)
     ;     𝑣𝑖 =

𝑣𝑖

𝑈𝑏(0)
     ;     𝑝𝑖 =

𝑝𝑖

𝜌(𝑈𝑏(0))
2     ;     𝜏 =

tU𝑏(0)

𝑑
    (2.13) 

Therefore, the resulting flow with hydrodynamic field  

(𝑈𝑖 = 𝑈𝑏(𝑖) + 𝑢𝑖, 𝑣𝑖, 𝑃𝑖 = 𝑃𝑏(𝑖) + 𝑝𝑖)      ;     𝑢𝑖, 𝑣𝑖<<𝑈𝑏(𝑖)     (2.14) 

is governed both by the Navier Stokes equations and the continuity that respectively write 
dU𝑖

dt
=

−𝜕𝑃𝑖

𝜕𝑥
+

1

Re
𝛥𝑈𝑖          (2.15) 

dv𝑖

dt
=

−𝜕𝑃𝑖

𝜕𝑦
+

1

Re
𝛥𝑣𝑖          (2.16) 

𝜕𝑈𝑖

𝜕𝑥
+

𝜕𝑣𝑖

𝜕𝑦
= 0           (2.17) 

Where Re =
𝜌𝑈(0)𝑑

𝜇1
 stands for the Reynolds number. As the basic laminar steady flow obeys the 

continuity equation, we can see that Equ. (2.17) reduces to 
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𝜕𝑢𝑖

𝜕𝑥
+

𝜕𝑣𝑖

𝜕𝑦
= 0           (2.17b) 

Which suggests us to introduce a stream function 𝜓𝑖in the 𝑖th layer, defined as follows 

𝑢𝑖 =
𝜕𝜓𝑖

𝜕𝑦
 ; 𝑣𝑖 =

−𝜕𝜓𝑖

𝜕𝑥
        (2.18) 

If a choice of an exponential time-dependence of the stream function and the pressure, 

i.e.{𝜓𝑖(𝑥, 𝑦, 𝑡), 𝑝𝑖
′(𝑥, 𝑦, 𝑡)} = {𝜑𝑖(𝑦), 𝑓𝑖(𝑦)} ⋅ exp[𝑖𝛼(𝑥 − 𝑐𝜏)]    (2.19) 

Where 𝑐 is complex and 𝛼 is real 

The flow is stable if a small disturbance vanishes with time, i.e. if 𝑐𝑖 is is negative while 

The flow is unstable if a small disturbance grows or remains constant with time, i.e. if  𝑐𝑖is positive 

or nul. 

Then, we introduce the expressions assumed for the disturbance, say Equs. (2.14) ; (2.18) ; (2.19) 

into the equations of motion given by Equs.(2.15)-(2.17). Noting that the basic laminar static flow 

itself obeys these same equations, the equations governing the disturbance in the upper layer 

(𝑖 = 1) are derived in the following form after linearization 

𝑖𝛼[(𝑈𝑏(𝑖) − 𝑐)𝜑1
′ − 𝑈𝑏(𝑖)

′ 𝜑1] = −𝑖𝛼𝑓1 + Re−1(𝜑1
''' − 𝛼2𝜑′)    (2.20) 

𝛼2(𝑐 − 𝑈𝑏(1))𝜑1 = 𝑓1
′ + (

𝑖𝛼

Re
) (𝜑1

'' − 𝛼2𝜑1)       (2.21) 

Where the primes appearing on 𝑓, 𝑈𝑏(1) and 𝜑 indicate derivation with respect to variable 𝑦. 

Introducing Equ. (2.20) into Equ.(2.21) leads to the following Orr-Sommerfeld type equation  

𝜑1
(4)

− 2𝛼2𝜑1
'' + 𝛼4𝜑1 = 𝑖𝛼Re[(𝑈𝑏(1) − 𝑐)(𝜑1

'' − 𝛼2𝜑1) − 𝑈𝑏(1)
'' 𝜑1]       (2.22) 

Equs. (2.20)-(2.22) refer to the upper layer layer (𝑖 = 1). For the lower layer (𝑖 = 2), the 

corresponding Orr-Sommerfeld type equation writes 

𝜑2
(4)

− 2𝛼2𝜑2
'' + 𝛼4𝜑2 =

𝑖𝛼Re

𝑚
[(𝑈𝑏(2) − 𝑐)(𝜑2

'' − 𝛼2𝜑2) − 𝑈𝑏(2)
'' 𝜑2]         (2.23) 

Equs. (2.22) and Equ.(2.23) govern the flow stability associated to the corresponding boundary 

conditions govern the flow stability in the upper and in the lower layer respectively.  

 

2.2.2 Boundary conditions 
The associated boundary conditions are the following : 

a/No slip condition on the solid plates 

𝜑1(1) = 0     ;     𝜑1
′ (1) = 0       (2.24) 

𝜑2(−𝑛) = 0     ;     𝜑2
′ (−𝑛) = 0       (2.25) 

b/Continuity of velocity, for 𝑣 and 𝑢 write respectively 

𝜑1(0) = 𝜑2(0)  

𝜑1
′ (0) − 𝜑2

′ (0) =
𝜑1(0)

𝑐′
𝑈𝑏(2)

′ (0)       (2.26) 

Where 

𝑐′ = 𝑐 − 𝑈(0)        (2.27) 

c/Continuity of shear stress 

𝜑1
''(0) + 𝛼2𝜑1(0) = 𝑚[𝜑2

''(0) + 𝛼2𝜑2(0)]      (2.28) 

d/Normal stress condition 

𝑚(𝜑2
''' − 3𝛼2𝜑2

′ ) − (𝜑1
''' − 3𝛼2𝜑1

′ ) =
𝑖𝛼3Re𝑆𝜑1

𝑐′
 at 𝑦 = 0   (2.29) 

Where 

𝑆 =
𝑇

𝜌dV2         (2.30) 

and 𝑇 denotes the interfacial tension. 
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2.2.3  Solution 
Assuming that 𝛼Re<<1, the previous set of differential equations can be solved by successive 

approximations (Yih, 1967). This is a non-singular perturbation method around the case 𝛼 = 0, 

which corresponds to long waves. 

 

-In the first approximation, all the terms containing 𝛼 are neglected in the differential system. 

Therefore, Equs (2.22) - (2.23) write 

𝜑𝑖(0)
(4)

= 0      with      𝑖 = 1,2        (2.31) 

All the boundary conditions remain unchanged except for the continuity of the shear stress given by 

Equ. (2.28) and for the normal stress condition given by Equ. (2.29) which respectively reduce to 

𝜑1(0)
'' (0) − 𝑚𝜑2(0)(0) = 0       (2.31)     

𝜑1(0)
''' (0) − 𝑚𝜑2(0)

''' (0) = 0       (2.32) 

The solution for this differential system writes 

𝜑1(0) = 1 + 𝐵1𝑦 + 𝐶1𝑦
2 + 𝐷1𝑦

3       (2.33) 

𝜑2(0) = 1 + 𝐵2𝑦 + 𝐶2𝑦
2 + 𝐷2𝑦

3       (2.34) 

Where 

𝐵1 =
7+𝑚

4
 ; 𝐵2 =

1+7𝑚

4𝑚
 ; 𝐶1 =

1+𝑚

2
     (2.35) 

𝐶2 =
𝐶1

𝑚
  ; 𝐷1 =

1−𝑚

4
 ; 𝐷2 =

𝐷1

𝑚
    (2.36) 

while the eigenvalue writes 

𝑐0 = 1 +
2(𝑚−1)2

(𝑚2+14𝑚+1)
        (2.37) 

 

-In the second approximation, all the terms containing 𝛼2 or of higher order than 2 are neglected, the 

differential system then reduce to 

𝜑1(1)
(4)

= 𝑖𝛼Re[(𝑈0 − 𝑐0)𝜑1(0)
'' − 𝑈𝑏(1)

'' 𝜑1(0)
'' ]      (2.38) 

𝜑2(1)
(4)

= 𝑖𝛼Re ⋅ 𝑚−1[(𝑈0 − 𝑐0)𝜑2(0)
'' − 𝑈𝑏(2)

'' ö2(0)
'' ]     (2.39) 

Whose solution writes 

𝜑1(1) = 𝛥𝐵1𝑦 + 𝛥𝐶1𝑦
2 + 𝛥𝐷1𝑦

3 + 𝑖𝛼Reℎ1(𝑦)     (2.40) 

𝜑2(1) = 𝛥𝐵2𝑦 + 𝛥𝐶2𝑦
2 + 𝛥𝐷2𝑦

3 + 𝑖𝛼Re ⋅ 𝑚−1ℎ2(𝑦)     (2.41) 

Where 

ℎ1(𝑦) =
𝑚2 − 1

1680
𝑦7 −

(𝑚 − 1)2

480
𝑦6 +

𝑚4 + 18𝑚3 − 156𝑚2 − 98𝑚 − 21

480(𝑚2 + 14𝑚 + 1)
𝑦5 −

𝑚3 − 17𝑚2 − 17𝑚 + 1

24(𝑚2 + 14𝑚 + 1)
𝑦4 

ℎ2(𝑦) =
𝑚2 − 1

1680
𝑦7 −

(𝑚 − 1)2

480
𝑦6 +

21𝑚4 + 98𝑚3 + 156𝑚2 − 18𝑚 − 1

480𝑚2(𝑚2 + 14𝑚 + 1)
𝑦5 −

𝑚3 − 17𝑚2 − 17𝑚 + 1

24𝑚(𝑚2 + 14𝑚 + 1)
𝑦4 

The constants 𝛥𝐵1 , 𝛥𝐵2 , 𝛥𝐶1, 𝛥𝐶2, 𝛥𝐷1, 𝛥𝐷2 are determined using the boundary conditions. The boundary 

conditions lead to 

𝑐 = 𝑐0 + 𝛥𝑐       ;       𝛥𝑐 = ic𝑖       ;       𝑐𝑖 = 8𝛼Re𝐻3     (2.44) 

𝐻3 = (
1−𝑚

𝑚2+14𝑚+1
)
2

[
−(𝑚+1)

2
{ℎ1(1) + ℎ2(−1) + ℎ2

′ (−1) − ℎ1
′ (1)} − 𝐴]   (2.45) 

𝐴 =
−(𝑚−1)

4
[ℎ1(1) − ℎ1

′ (1) − ℎ2(−1) − ℎ2
′ (−1)] − mh1(1) − ℎ2(−1)   (2.46) 

 

The variation of 𝐻3 vs. 𝑚 is presented below in Fig. (2.3) using Equ. (2.45). The graph obtained 

shows that 𝐻3 is always positive, whatever the value of 𝑚. It means that the plane Poiseuille flow of 

2 liquids of equal density with a horizontal interface is always unstable, for any value of the 

Reynolds number. 
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                                     Figure 2.3 : Variation of 𝐻3 vs. 𝑚 (Yih, 1967) 
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2.3 The Kelvin-Helmholtz instability  

2.3.1  Problem statement 
        Consider a system of two inviscid and non miscible fluids with different densities. The system 

is submitted to a plane shear flow under gravity action as shown in Figure 2.4 and the interface is 

assumed horizontal with a constant surface tension. Note that as the interface is assumed horizontal, 

the surface tension does not intervene explicitly because it is associated with a curvature of the 

interface. The density of the upper fluid is 𝜌1 and its velocity 𝑈 is constant while the lower fluid is 

gifted with a density 𝜌2 and a velocity −𝑈. Finally, we assume that both velocities derive from a 

potential, i.e. 

𝑈 = grad(𝑈 ⋅ 𝑥) ; −𝑈 = grad(−𝑈 ⋅ 𝑥)      (2.47)  

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

               Figure 2.4 : The basic laminar steady flow 

 

Notice that if the velocity distribution is more generally given by 𝑈𝑏(1) in the upper layer and 𝑈𝑏(2) 

in the lower layer as shown in Figure 2.5, the latter configuration used for the present model can be 

recovered by putting  

𝑈 =
𝑈𝑏(2)−𝑈𝑏(1)

2
         (2.48) 
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                                      Figure 2.5 : Sketch of more general basic configuration 

 

A linear study of the stability of that flow is now proposed. 

 

2.3.2 Stability analysis 
a/Equations 

A small disturbance is superimposed to the interface. Therefore, the interface is no more horizontal 

but has the height 𝜉(𝑥, 𝑡).  

As well, a small angle 𝛼(𝑥, 𝑡) is defined between the horizontal axis and the tangent to the interface 

at abscissa 𝑥 and time 𝑡, as shown in Figure 2.6.  

 

 

 

 

 

 

 

 

 

 

 

 

 

        Figure 2.6 : Sketch of the small disturbance superimposed to the basic steady laminar flow 
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The resulting velocity field in lower and in upper layer is respectively given by : 

𝑉⃗ 1(𝑥, 𝑧, 𝑡) = −𝑈⃗⃗ + 𝑣 1(𝑥, 𝑧, 𝑡) with 𝑣1 = gra \{𝑑 (𝜑1)    (2.49) 

𝑉⃗ 2(𝑥, 𝑧, 𝑡) = 𝑈⃗⃗ + 𝑣 2(𝑥, 𝑧, 𝑡) with 𝑣2 = gra \{𝑑 (𝜑2)     (2.50) 

Now, let us adopt the following assumptions : 

*𝜉(𝑥, 𝑡) together with its space and time derivatives are infinitely small quantities to 1st order 

*|𝑣 1|<<𝑈 and |𝑣 2|<<𝑈        (2.51) 

*𝛼<<1           (2.52) 

*|
𝜉

𝐿
|<<1           (2.53) 

Where 𝐿 is a characteristic length of the flow, the wavelength in this case. 

So, the following consequences can be derived 

*sin(𝛼) ≈ tan(𝛼) ≈ 𝛼 ≈
𝜕𝜉

𝜕𝑥
         (2.54) 

*To 1st order, the normal to the interface can be written as : 

𝑛⃗ interface = cos(𝛼)𝑒 𝑧 − sin(𝛼)𝑒𝑥 ≈ 𝑒 𝑧 − 𝛼𝑒 𝑥      (2.55) 

As both fluids are non miscible and inviscid, the normal components of the velocity fields of both 

fluids must be equal at the interface, i.e. 

[𝑉⃗ 1(𝑥, 𝜉, 𝑡) − 𝑉⃗ 2(𝑥, 𝜉, 𝑡)] ⋅ 𝑛⃗ interface = 0       (2.56) 

The normal velocities being defined as the interface velocity, i.e. the time derivatives of 𝜉(𝑥, 𝑡) we 

get 

𝑣jz − 𝛼𝑣jx − 𝛼𝑈 =
𝜕𝜉

𝜕𝑡
      with      𝑗 ∈ {1,2}       (2.57) 

Taking into account the definitions of the different terms appearing in Equ. (3.57), it can be 

rewritten as 
𝜕𝜑𝑗

𝜕𝑧
(𝑥, 𝜉, 𝑡) −

𝜕𝜉

𝜕𝑥
(𝑥, 𝑡)

𝜕𝜑𝑗

𝜕𝑥
(𝑥, 𝜉, 𝑡) −

𝜕𝜉

𝜕𝑥
(𝑥, 𝑡) ⋅ 𝑈 =

𝜕𝜉

𝜕𝑡
(𝑥, 𝑡)    (2.58) 

In Equ. (2.58), the 2nd term in the left hand side being the product of two terms of the 1st order, it is 

of the 2nd order while the other terms of the equation are of the 1st order. Therefore, it can be 

neglected. So, Equ. (2.58) is simplified in the form 
𝜕𝜑𝑗

𝜕𝑧
(𝑥, 𝜉, 𝑡) − 𝑈 ⋅

𝜕𝜉

𝜕𝑥
(𝑥, 𝑡) =

𝜕𝜉

𝜕𝑡
(𝑥, 𝑡)       (2.59) 

The system of 2 partial differential equations (3.59) with 3 unknowns 𝜑1(𝑥, 𝜉, 𝑡), 𝜑2(𝑥, 𝜉, 𝑡), 𝜉(𝑥, 𝑡) 

must be completed by a complementary 3rd equation in order to form a well posed mathematical 

problem.  

For this, we recall the following assumptions : 

-the fluids are inviscid 

-the velocities derive from a potential 

-the flow is incompressible 

-the only volumic force is weight which itself also derives from a potential. 

Consequently, Bernoulli’s theorem can be applied to the upper layer and to the lower layer 

separately, say : 

{
𝑃1 + 𝜌1 (

𝜕𝜑1

𝜕𝑡 𝑧=𝜉 + 𝑔𝜉 +
𝑉1

2

2
) = 𝐶1

𝑃2 + 𝜌2 (
𝜕𝜑2

𝜕𝑡 𝑧=𝜉 + 𝑔𝜉 +
𝑉2

2

2
) = 𝐶2

       (2.60) 

Equating at the interface (𝑧 = 𝜉), the pressure in each field derived from Equ. (3.60), we get 

𝜌1 (
𝜕𝜑1

𝜕𝑡 𝑧=𝜉 + 𝑔𝜉 +
𝑉1

2

2
) − 𝜌2 (

𝜕𝜑2

𝜕𝑡 𝑧=𝜉 + 𝑔𝜉 +
𝑉2

2

2
) = 𝐶1 − 𝐶2    (2.61) 

Recalling that 𝑉1 and 𝑉2 are the resulting velocity fields in the upper and in the lower layer 

respectively, i.e. 

𝑉1 = 𝑈 + 𝑣1      ;      𝑉2 = −𝑈 + 𝑣2        (2.62) 

 



 

83 

 

there comes 

𝑉1
2 = 𝑈2 + 2𝑈 ⋅ 𝑣 1 + 𝑣1

2 ; 𝑉2
2 = 𝑈2 − 2𝑈 ⋅ 𝑣 1 + 𝑣2

2    (2.63) 

Moreover, the disturbance being assumed small, the following approximations can be made from 

Equ. (2.63) 

𝑉1
2 = 𝑈2 + 2𝑈

𝜕𝜑1

𝜕𝑥
      ;      𝑉2

2 = 𝑈2 − 2𝑈
𝜕𝜑2

𝜕𝑥
      (2.64) 

Substituting these expressions of   𝑉1
2and 𝑉2

2 in Equ. (2.62), we obtain 

𝜌1 (
𝜕𝜑1

𝜕𝑡 𝑧=𝜉 +
𝑈2

2
+ 𝑈

𝜕𝜑1

𝜕𝑥
) − 𝜌2 (

𝜕𝜑2

𝜕𝑡 𝑧=𝜉 +
𝑈2

2
− 𝑈

𝜕𝜑2

𝜕𝑥
) + 𝑔(𝜌1 − 𝜌2)𝜉 = 𝐶1 − 𝐶2   

Finally, we recall that 𝐶1and 𝐶2in Bernoulli’s equation are arbitrary constants so, we must choose a 

gauge for the potentials in order to identify the streamlines in the flow field. The gauge is chosen 

such that 

𝜌1 (
𝜕𝜑1

𝜕𝑡 𝑧=𝜉 + 𝑔𝜉) = 𝜌2 (
𝜕𝜑2

𝜕𝑡 𝑧=𝜉 + 𝑔𝜉)      (2.66) 

So, we find 

𝐶1 − 𝐶2 = 𝜌1 (
𝑈2

2
+ 𝑈

𝜕𝜑1

𝜕𝑥
) − 𝜌2 (

𝑈2

2
− 𝑈

𝜕𝜑2

𝜕𝑥
) ≈ (𝜌1 − 𝜌2)

𝑈2

2
    (2.67) 

Consequently, Equ. (2.65) takes the following simplified form 

𝜌1 (
𝜕𝜑1

𝜕𝑡 𝑧=𝜉 + 𝑈
𝜕𝜑1

𝜕𝑥
) − 𝜌2 (

𝜕𝜑2

𝜕𝑡 𝑧=𝜉 − 𝑈
𝜕𝜑2

𝜕𝑥
) + 𝑔(𝜌1 − 𝜌2)𝜉 = 0   (2.68) 

 

b/Assumptions 

Assume a time and space exponential form for 𝜑1(𝑥, 𝜉, 𝑡), 𝜑2(𝑥, 𝜉, 𝑡), 𝜉(𝑥, 𝑡) as follows 

{𝜑1(𝑥, 𝑧, 𝑡) = 𝐵1𝑒
ikx+𝜎𝑡−kz{𝜑2(𝑥, 𝑧, 𝑡) = 𝐵2𝑒

ikx+𝜎𝑡+kz     (2.69) 

Substituting these expressions for the corresponding functions 𝜑1(𝑥, 𝜉, 𝑡), 𝜑2(𝑥, 𝜉, 𝑡), 𝜉(𝑥, 𝑡) in Equ. 

(2.59), we get 

{−kB1𝑒
−𝑘𝜉 − AUik = 𝐴𝜎         (2.70) 

Moreover, the disturbance being assumed very small, we have  

𝑒−𝑘𝜉 ≈ 1           (2.71) 

So, Equs. (2.70) take the following simplified form 

{kB1 + (𝜎 + ikU)𝐴 = 0         (2.72) 

while the 3rd complementary equation (2.68) becomes 

𝜌1(𝜎 + ikU)𝐵1 − 𝜌2(𝜎 − ikU)𝐵2 + 𝑔(𝜌1 − 𝜌2)𝐴 = 0     (2.73) 

Finally, the flow stability is governed by Equs. (2.72) -(2.73) which is a set of 3 algebraic equations. 

  

c/Solution 

Substituting 𝐵1and 𝐵2 in Equ. (3.73), for their expressions derived from Equ. (2.72) we get the 

following secular equation 

𝜌1
(𝜎+ikU)2

𝑘
+ 𝜌2

(𝜎−ikU)

𝑘
+ 𝑔(𝜌1 − 𝜌2) = 0       (2.74) 

Where a new unknown can be sorted in the form  

𝑋 =
𝜎

𝑘
            (2.75) 

And the secular equation then writes 

𝑋2 + 2iU
𝜌1−𝜌2

𝜌1+𝜌2
𝑋 − 𝑈2 +

𝑔

𝑘

𝜌1−𝜌2

𝜌1+𝜌2
= 0       (2.76) 

Equ. (2.76) is a 2nd order algebraic equation whose solutions write 

𝑋 =
𝜎

𝑘
= 𝑖

(𝜌2−𝜌1)𝑈

𝜌1+𝜌2
± √

4𝜌1𝜌2𝑈2

(𝜌1+𝜌2)
2 −

𝑔

𝑘

𝜌1−𝜌2

𝜌1+𝜌2
       (2.77) 
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The Kelvin-Helmholtz instabilities appear if the waves exist, i.e. if their amplitude follows an 

exponential variation with time. So, the 2nd term of 𝑋in Equ. (2.77) must be real. Therefore, the 

condition for the instabilities to appear writes 
4𝜌1𝜌2𝑈

2

(𝜌1+𝜌2)2
>

𝑔

𝑘

𝜌1−𝜌2

𝜌1+𝜌2
          (2.78) 

The only condition for the appearance of instabilities is that the condition posed by Equ. (2.78) is 

satisfied. Only 3 parameters are driving the phenomenon : the fluids velocity 𝑈and the densities of 

the different layers : 𝜌1and 𝜌2. 

Finally, we notice that the greater the difference in the speeds of the 2 fluid layers, the more Kelvin-

Helmholtz instabilities are likely to appear.  

 

2.4 Extension of Kowal’s model to the stability analysis of lubricated viscous 

bidirectional gravity current 

        Kowal et al. (2019) addressed the question to determine whether the resulting instability was 

an internal instability resulting from the internal movement of fluid particles, or a frontal instability 

resulting from the movement of the head and intrusions into the surrounding fluid, as shown in 

figure 2.1. This subsection is to extend Kowal’s model to the bidirectional case. In this aim, we 

analyze the stability of a lubricated viscous bidirectional gravity current. A local stability analysis in 

an inner region near the lubrication front in two directions is performed. The linear stability analysis 

of the steady basic flow is brought out and the perturbation fluxes and normal-mode solutions are 

derived. Exploring the asymptotic behavior of the perturbations in an inner region of size ε (the 

small parameter) and expanding the solution as a series ε, three flow control parameters are pointed 

out, say the relative density difference, the viscosity ratio and the flux ratio. Moreover, we show that 

the system is stable to all perturbations, whatever the choice of these three dimensionless 

parameters. In order to generalize this unexpected result, it was checked numerically in the case of 

two miscible liquids. The numerical simulations of a viscous miscible gravity current show that the 

flow is stable. 

2.4.1 Introduction 
 

         Oil spills are health, ecological and economic disasters (Tansel, 2014, French-McCay, 2004). 

They can be caused by the accidental (ruin of the material constituting the tank) or intentional 

(degassing or act of war) spillage of a large quantity of oil from an oil tanker into the ocean. An oil 

spill then undergoes the distribution of oil on the water surface, on shorelines, in the water column 

and in the sediments accounting for spreading, evaporation, transport, dispersion, emulsification, 

entrainment, dissolution, volatilization, partitioning, sedimentation and degradation. The collection, 

destruction, and storage of the oil that ran aground on the coast, as well as the coast cleaning are 

arduous, dangerous and penalizing tasks. Moreover, oil spills are health, ecological and economic 

disasters for the populations living in these soiled territories (Reed et al., 1999).  

All models seek to describe the key physical and chemical processes that transport and weather the 

oil on and in the sea. Two models purporting to contain the same algorithms may give quite 

different results from the same input data and namely give quite different ratios between spreading, 

evaporation, emulsification and natural dispersion. This is the proof that oil spill is a complex 
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phenomenon of which each process (advection, spreading, evaporation, dispersion, emulsification) 

must firstly be controlled before they are put into competition by a relevant modeling. 

In this paper, we study the 2D propagation of a dense fluid (with density   and kinematic viscosity 

 ) plunging from a reservoir to the bottom of a large body of ambient liquid, static water in this 

case (with density 0  and kinematic viscosity 0 ). Based on this description, the phenomenon 

studied is defined as a lubricated (a flow in which one dimension is significantly smaller than the 

others) gravity current (a flow of one fluid driven by the gravity into another fluid with a different 

density). The ocean is not flat but for modelling purpose in the present pioneering study, a basic 

configuration where the ocean bottom is horizontal is considered as a model case and is not applied 

to a particular real ocean bottom topography. 

The lubricated gravity flow of one liquid in another liquid upon a horizontal plane was investigated 

earlier in a unidirectional configuration (figure 2.7) by Fay (1969), Hoult (1986), Britter (1979), 

Didden & Maxworthy (1982) and Huppert (1982), Kowal & Worster (2019).  

 

 

 
     Figure 2.7: Intrusion of a dense liquid in a lighter ambient liquid upon a horizontal plane 

 

 

For modeling in lubrication theory, the vertical velocity w  is negligibly small as compared to the 

horizontal velocity u , then the longitudinal pressure gradient in the current can be written 

 
 
x

txh
g

x

p








 ,
           (2.79) 

where 0            (2.80) 

while the Navier Stokes equations reduce to its projection in the x -direction in the following form: 

2

2
1

0
z

u

x

p









 


          (2.81) 

Inserting Equ.(2.79) in the latter, 

2

2

0
z

u

x

h
g









 



         (2.82) 

Self-similar solutions are then sought in the following form 
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KtxN   ; 
 








 

tx

x
ft

K

q
h

N

         (2.83) 

where Nx  is the abscissa of the current front.  

The configuration considered in this paper is more realistic. Oil escaping from tanker tanks lying on 

the ocean floor (e.g. the Prestige oil spill, S. Castanedo et al. (2005)) spreads in two opposite 

directions, left (index l ) and right (index r ) as shown in figure 2 and the stability of the flow is 

investigated, i.e. the decay or the growth of a small disturbance introduced in that basic flow.  

The paper is organized as follows. First, the equations governing the steady basic flow are stated 

and solved. Then a linear stability stability is proposed. In the fourth section, numerical simulations 

are presented in the case of a miscible system for generalization and finally, the fifth section is 

devoted to discussion of the results and conclusions. 

 

 

2.4.2 Basic steady flow 
 

We consider the bi-directional lubricated flow with one right-moving lane and another left-moving 

lane over a horizontal plane, as shown in figure 2.8. We denote the height of the interface between 

the lower fluids (gravity current) and the upper one (ambient fluid) by ),,( tyxh , which includes 

),,( tyxh


 for the right-moving lane interface and 
),,( tyxh



 for the left-moving lane interface such 

that 
),,(),,(),,( tyxhtyxhtyxh




. Similarly, we denote the upper surface height by ),,( tyxH  

which includes 
),,( tyxH



 for the right-moving lane upper surface and 
),,( tyxH



 for the left-moving 

lane upper surface, such that 
),,(),,(),,( tyxHtyxHtyxH




. 

 

 

 

 

 

 

 

 

 
                                                           Figure 2.8: Flow configuration 

 

 

a) Equations of motion 

The fluxes in the lower (index l ) and in the upper layer (index u ) are obtained from the equations 

of conservation of mass and momentum in the right-moving lane write:  

x

q

t

h l











   ;   
 

x

q

t

hH u











)
          (2.84) 
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x

p

z

u
uu









2

2

    ;   
x

p

z

u
ll

l








2

2

         (2.85) 

The left-moving lane is described by analogous equations. 

Three dimensionless parameters arise from this system of equations, namely the dynamic viscosity 

ratio 
l


  , the dimensionless density difference 



 
 lD  

and the flux ratio between the two sheets given by 
0

0
1

q

q
Q l





  in the left-moving lane and 
0

0
2

q

q
Q l





 . 

The solution to this system gives the fluxes in the different lanes respectively as: 

  































x

H
hHh

x

H

x

h
Dhql

23

23


      (2.86) 

                    

      




































x

H
hHh

x

H

x

h
DhHh

x

H
hHqu

223

23

1



     (2.87) 

 

 

b) Steady solution 

The mass conservation equation can be solved analytically to get the two-dimensional steady 

solution (index s ) in the following form: 

  4/1
1 xAH s 


   ;     4/1

1 xahs 


         

 (2.88) 

we get the steady state solution from Equ. (2.84) in the form: 

   







 aAAaADaaql

23

234

1 
       (2.89) 

 

    
8

3414

12

3 322332234 DaDAaDaAAaAaAaaAA
qu








   (2.90) 

where a  and A  depend on the dimensionless parameters via the following system: 

    QaAAaADaa 







 23

234

1 
       (2.91) 

       1
23

1

4

1 223









 aAaAADaaAaAaA 


     (2.92) 

The interdependence between a  and A  is shown in fig.2.9a and fig.3.9b for where lq


 and uq


 

respectively, and with the following arbitrary set of values for the dimensionless parameters: 

004.0D  ; 5.0  and 10Q  and A . 
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Figure 2.9a: Interdepence between a  and A  in lq


for assigned values to the non dimensional parameters 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.9b: Interdepence between a  and A  in uq


for assigned values to the non-dimensional parameters  

 

2.4.3 Stability analysis 
 

To analyze the local stability, a small perturbation is superimposed on the steady basic flow then 

normal-mode solutions and asymptotic solution near the singular front are sought. 

 

a) Linear perturbation equations 
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In the right-moving lane, we superimpose small perturbations (index p ) such that 1, pp hH


 

to the previous steady solution. Substituting the heights of the resulting flow, say ps HHH


  

and ps hhh


 in Equs.(2.86)-(2.89), we get: 

  ...
23

23












































x

H
hHh

x

H

x

h
Dhq

p

sss

pp

slp





 
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b) Normal-mode Solutions                          

 Let the small perturbations take the form ikyt

p exhh  )(ˆ


 and ikyt

p exHH  )(ˆ


. Substituting now Equs. 

(2.90) in the previous linearized flux equation and mass conservation equation, if we set x1  and 

we write the system compactly in matrix form, we obtain the following system 
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c) Asymptotic solution near the singular front    

 

For the right-moving lane, let us explore the asymptotic behavior of the perturbations in an inner 

region of size 𝜀 ≪ 1  about  𝜉 = 0, and define an inner variable  


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By using Equ. (2.97) and expanding the solution as a series with the form 
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At leading order in  , Equ. (3.102) reduces to 
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with general solution 

00
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0 BAv M            (2.104) 

d) Analytical results 

A flow is said to be stable if a small disturbance introduced into it increases and unstable if it 

decreases. In order to decide in the present case, we need to determine the sign of the growth rate of 

the disturbance. In this aim, we must solve the following equation for 𝜎: 
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After algebraic calculations, we find that 0 , which means that the system is stable to all 

perturbations whatever the choice of the three dimensionless parameters  , D  and  Q . This result 

is in agreement with that obtained by Kowal & Worster (2019). 
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2.4.4 Numerical simulations 
 

        In order to get a first idea of the numerical simulations that will be carried out during the work. 

We present an overview of the OpenFOM structure. 

OpenFoam is an acronym for (Open Field Operation and Manipulation), It can be defined as an 

open-source software suite written in C++, was originally developed in the late 1980’s at Imperial 

College, London, to solve continuum mechanics problems. It contains many solvers to address fluid 

motion problems, these programs can be implemented after making some changes to suit for the 

problems we wish to address.  

 

 

 

The structure of OpenFOAM is consisit of: pre-processing, solving and post-processing as shown in 

the following diagram: 

 

 

 
 
 
 
 
                                 
 
 
 
 
 
 
 
 
 
                                                Figure 2.10 .The structure of OpenFOAM. 

 

The pre processing environment gives the possibility to create a mesh (block Mesh utility), 

selection of the physical phenomena that need to be modelled definition of fluid properties and 

specification of appropriate boundary conditions at cells. 

 

 A solver environment, which is used to solve the governing equations of the flow subject to the 

conditions   provided. The method used as a flow solver is finite volume method. 

  The post-processing environment supplied with OpenFOAM is ParaView, an open source 

visualization application.  post-processing utilities allow us to display the simulation results as 

desired by the user and allow user to convert the   results of simulations into data or graphs.Also 

there is  a plugin (paraFoam) for visualisation of solution data and meshes in ParaView.  

 

 Every OpenFOAM case consists of a directory structure containing specific files that are required 

to run the  simulation.We can describe the  Directory tree of a generic OpenFOAM case as follows: 

                           Open FOAM  Library 

Post-processing Pre-processing Solving 

Utilities Meshing 

tools 

User 

Applications 

Standard 

Applications 
ParaView Others 

(EnSight) 
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                                      Figure 2.11 Directory tree of a generic OpenFOAM case 

 

2.4.4.1 OpenFOAM Case 
 

        To simulate any problem using OpenFOAM, we always need three folders to be present: 

system, constant, and “time” folders. These three folders contain all the information needed to run a 

simulation and each directory is responsible for an important part of the simulation process.  

 

1- A system folder contains the specifications for the simulation and includes at least the following 

three files: controlDict, fvSchemes, fvSolution. Each directory has the following task: 

     

ControlDict is used to determine time the start and end time, time steps, and data output parameters  

are set. fvSchemes contains the discretization schemes and the algorithms which is used in the 

simulation. where    discretisation schemes used in the solution may be selected at run-time. 

                     

fvSolution contains the linear solvers for the sequential equations, tolerances and other algorithm 

controls, where the equation solvers, tolerances and other algorithm controls are set for the run.                     

 This is in addition tothe blockMesh tool is being used to prepare the mesh. 

 

 

 

 

 

OpenFOAM 

User Directory 

Run Applications 

Solvers Utilities Case 

0 Constant System 

P U 

PolyMesh 
Transport 
Properties 

fvsolutions fvSchemes controlDict 
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2- A constant folder contains files that are related to the physics of the problem, It contains two 

important sub-directories-the polyMesh folder, which contains the mesh information, and at least 

one file containing the physical properties of the system, typically the transportProperties file. This 

folder contains specifications for turbulence and fluid properties. Depending on the solver chosen, 

and the type of turbulence model applied is determined in turbulenceProperties where either LES, 

RAS or laminar model can be chosen. For incompressible solvers the file transportProperties 

determines the behavior of the kinematic viscosity ν. 

 

 3- The 0 directory is a special time directory that contains the initial condition(s) for the simulation. 

zero folder (or ‘time’ folder) contain the data files in time step 0 file, these data can either be initial 

or boundary conditions that the user has specified. 

 

2.4.5  Numerical Model 
 

        In order to generalize the previous analytical result, the intrusion of a dense gravity current 

beneath a lighter miscible ambient liquid has been simulated numerically. The Navier-Stokes 

equations coupled to the advection-diffusion equation for the volume of the salt water fraction are 

used to describe the dynamics of the mixture density and the viscosity of the flow.  The open-source 

code provided in OpenFOAM with a collection of C++ libraries was used to compute the flow. 

Specifically, the (TwoLiquidMixingFoam) solver was used in our simulations (Ahmed et al., 2018).  

a) Equations 

The Navier-Stokes equations coupled to the advection-diffusion equation for such miscible system 

(e.g. intrusion of a volume of salt water beneath a large volume of fresh water) are used to describe 

the dynamics of the mixture density and the viscosity of the fluid.   
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where iu denotes the velocity in the ix -directions (also referred as x , y  and z ); p  is the 

pressure field;  and   are the density and the density of the saline mixture, respectively; g  is the 

gravitational acceleration acting along the 3x  (or z ) direction, ij is the Kronecker delta and 

129105.1  smDm  is the molecular diffusion of the salt water. 

 

The flow domain consists of a parallelepiped with a small inlet of rectangular section (red colour in 

figure 4), with length m1105  , width m21015   and height m2107  . 
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                                      Figure 2.12a: Global view of the flow domain 

 

 

 

 

                                                                                 

 

 

 

 

        

                                  Figure 2.12b: Edges and vertices of the flow domain 

 

b) Numerical procedure 

The previous set of equations was solved using the volume of fluid method (VOF). The density 𝜌 

and the viscosity 𝜇 were determined in each cell by the volume fraction of the salt water c as 

follows. The density variation in a cell is due only to the difference in density between salt water 

and fresh water because the temperature is kept constant. Consequently, the state equation 

governing the viscosity reads as: 

  21 1  cc            (2.110) 

where sPa  3

1 1004.1  and sPa  3

2 10  and subscripts 1 and 2  stand for salt water and 

fresh water respectively. 

A similar procedure was used for the density. According to the state equation of the density, the 

mixture density varies linearly with the volume fraction because 1 and 2 were kept constant in 

the numerical calculations. 

The (TwoLiquidMixingFoam) solver was used to solve the set of equations described previously 

with start time = 0, end time= s10  and time increment = s5.0 . The velocity was uniform in the inlet 

with components U (0 ; -0.1m/s ; 0) while the non-slip condition was applied at the flow boundaries: 

left and right edges, bottom and atmosphere as well. The kinematic viscosity and density were taken 
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as 
126

1 10  sm and 
3

1 /1040 mkg  for salt water and 
126

2 102  sm  and 

3

2 /1000 mkg  

 

c) Numerical results 

Figure2.13presents the propagation of the gravity current from the top view, i.e. in the  yx   plane.  

 

   

  

 

 

 

                st 0                                    st 5.0   

 

                       

 

 

 

 

                 st 5.1                   st 2  

               

 

 

 

 

 

                                                        

 

 

                                                     t=2.5s 

              Figure 2.13: Numerical simulations of the propagation of a bidirectional gravity-current in a  
                                   miscible lighter liquid 
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The flow is uniform in the inlet and as it reaches the bottom, it breaches off in a two-way flow 

called bidirectional gravity-current. Then it drains into the ambient lighter fluid in both a left-

moving lane and right-moving lane.  

It was notably found that the velocity of the inner layer is less than the flow velocity of the outer 

layer and therefore, the inner layer remains behind the outer layer throughout the flow period as 

found also by Dhafar et al. (2018). 

Moreover, it was found that the maximum depth of the head of the gravity-current depends both on 

spatiotemporal evolution and on density threshold, while the head of the gravity current does not 

show any show from the bottom of the basin so, the hydroplaning phenomenon was not observed in 

these numerical simulations. In contrast, the hydroplaning phenomenon on gravity currents was 

observed experimentally by La Rocca (2008) and was examined in detail by Mohrig et al. (1998) 

for subaqueous debris flow. 

Finally, as can be observed in figure 5, no waves appeared in the flow, which shows that the flow is 

stable as stated for non miscible system in the previous section. 

2.4.6   Discussion and Conclusions 
        In this paper, the stability of a lubricated viscous bidirectional gravity current on a horizontal 

plane was considered as model configuration. In this aim, a local analysis in an inner region near 

the lubrication front in the two directions was performed and matched asymptotically. Notably, the 

large wavenumber stabilization by transverse shear stress was investigated in two dynamical 

regimes: i/ a regime in which the wavelength of the perturbations is much smaller than the thickness 

of both layers and of both directions in which case the perturbations are resisted dominantly by 

horizontal shear stress and an intermediate regime in which both vertical and horizontal shear 

stresses are important; ii/ the origins of the internal instability arising from internal dynamics are 

analyzed. Then the linear stability of the steady basic flow was brought out in terms of normal-

mode solutions. Notably, it was shown that the flow is stable to all perturbations, whatever the 

choice of the three dimensionless parameters. 

 

2.5  Stability of viscous lubricated thin film down an inclined plane beneath 

ambient lighter non miscible static liquid 

 

        This subsection considers the stability of a thin film propagating beneath a large quantity of 

ambient static non miscible lighter liquid and over a sloping plane. Such configuration that has 

never been considered earlier can model the spill of a heavy hydrocarbon into the ocean by a tanker. 

Equations of conservation of the mass and the momentum were appropriately made non 

dimensional and a similar solution is proposed in this paper. In this way, an analytical expression of 

the hydrodynamic field, say velocity field and pressure field is provided. Then, the equation 

governing the spatiotemporal evolution of the water-oil interface was built and solved by a 

perturbation method. Also, the time evolution of the wave front position along the inclined plane 

was built. Finally, the effect of the control parameters on the linear stability of the flow was 

investigated.   
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2.5.1  Introduction 
 

        Oil spills can be caused by the accidental (ruin of the material constituting the tank) or inten-

tional (degassing or act of war) spillage of a large quantity of oil from an oil tanker into the ocean. 

The collection, destruction, and storage of the oil that ran aground on the coast, as well as the coast 

cleaning are arduous, dangerous and expensive tasks for the populations living in these soiled terri-

tories (Tansel, 2014; French-McCay, 2004; Reed et al., 1999).  

 

        The oil which is spilled in the ocean undergoes three main phenomena: entrainment on the 

ocean surface on the one hand and at the ocean bottom on the other hand and evaporation as well as 

physico-chemical reactions with the medium in which it evolves. Moreover, to date, no universal 

law makes it possible to determine a priori the respective proportions of oil in these three processes. 

Therefore, an oil spill is a complex phenomenon of which each process must firstly be controlled 

before they are put into competition by a relevant modeling. 

 

        In this work, we study the 1D propagation of a fixed volume of dense fluid (with density 
2  

and kinematic viscosity 
2 ) released from a reservoir to the bottom of a large body of ambient 

lighter non miscible liquid, static water in this case (with density 1  and kinematic viscosity 1 ). 

Based on this description, the phenomenon studied is defined as a lubricated (a flow in which one 

dimension, thickness in this case, is significantly smaller than the others) viscous (the inertial terms 

in the momentum equation can be neglicted versus the viscous ones) film flow. The ocean is not flat 

so, for modelling purpose in the present pioneering study, a basic configuration where the ocean 

bottom is an inclined plane is considered as a basic case and is not applied to a particular real ocean 

bottom topography. Consequently, the flow is controlled by gravity, oil/water density difference, oil 

viscosity and surface tension. 

        The lubricated gravity flow of one liquid in another liquid upon a horizontal plane (termed as 

gravity current) was investigated earlier in a unidirectional configuration (figure 3.12) by Fay 

(1969), Hoult (1986), Britter (1979), Didden & Maxworthy (1982) and Huppert (1982), Kowal & 

Worster (2019).  

 
Figure 2.14: Intrusion of a dense liquid in a lighter ambient liquid upon a horizontal plane  

                       (Huppert, 1982)   
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       In lubrication theory, the Navier Stokes equations describing the one-dimensional lubricated 

intrusion (in x -direction) of a dense gravity current beneath a static large volume of lighter static 

ambient liquid reduce to its projection in the x -direction in the following form : 
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where the longitudinal pressure gradient in the current can be written 
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Inserting Equ. (2.112) in Equ. (2.111), we get 
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Self-similar solutions are then sought in the following form 
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where Nx  is the abscissa of the current front.  

        Hydrodynamic stability is a fundamental topic of the fluid dynamics curriculum in schools of 

engineering. A laminar flow is said to be stable if a small disturbance superimposed on it vanishes 

over time. The flow is unstable if this small disturbance increases or remains constant over time. 

The aim of this work is to point out the control parameters that promote instability in order to pro-

vide reliable information to contribute to the protection of the ocean. Since Kapitza’s original work 

on stability of film flow over an inclined plane (Kapitza &Kapitza, 1949), many papers have been 

published on this topic (e.g.: Yih, 1955; 1963, Benjamin, 1957; Kao, 1964 among others). They 

found that the critical Reynolds number cRe , i.e. the threshold above which some disturbances will 

be amplified depends only on the slope and is given by 

cot
6

5
Re c            (2.116) 

      Moreover, very short waves are damped by surface tension. Kao (1964) extended that basic con-

figuration to flow of a binary system of two layers of viscous fluids of different densities. More 

recently, the shallow water models (e.g. : Ruyer-Quil & Manneville, 1998 ; 2000) provide a good 

understanding of the stability of Newtonian fluids. For power-law fluids, Ng. & Mei (1994) as well 

as Hwang & al. (1994) built lubrication models while Nsom et al. (2019) proposed a generalized 

Orr-Sommerfeld model with appropriate definition of non-dimensional numbers. All of the models 

existing in literature were restricted to the case where the flow develops in the atmosphere, while in 

the present paper, the case where the ambient fluid is a large volume of static non miscible liquid is 

tackled. 

      The work is organized as follows. In the second section, the flow configuration is presented and 

the equations of motion are presented and made non-dimensional. These equations of motion are 

solved and the hydrodynamic field as well as the interface profile are derived in the third section. 

The fourth section is devoted to the linear stability where Orr-Sommerfeld equation is built and 

solved by the method of perturbation and notably the effects of the different control parameters on 

the linear stability of the flow are respectively pointed out. Finally, the fifth presents a discussion 

and the conclusions.  
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2.5.2 Problem statement  
 

a) Flow configuration 

        We consider a fixed quantity of a dense viscous Newtonian fluid (heavy crude oil) spilled at 

time 
 0t  upon an inclined plane in the form of a thin film beneath a large quantity of static 

lighter non miscible liquid (sea water in this case) between abscissa film tail  lx  and film front 

 0x . Downstream, the film front is occupied by the ambient static liquid. At initial time, 
 0t   

the film flows downstream the sloping plane with slope   and length L , with lL   and beneath 

the ambient static liquid. The width of the flow system is infinite. 

The quantities referring to lighter ambient static liquid have the subscript 1, while those referring to 

the heavy viscous liquid contained in the reservoir at negative time and that will undergo the flow 

have the subscript 2. Typically, we have 12   .  

The flow configuration is presented on figure 2.13. 

 
 
                                          Figure 2.15: Flow configuration 

 

 

 

b) Equations of motion 

If )0,0,( **

bb UV
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 and 
*

bP  denote the velocity field and the pressure field in the gravity current that 

propagates downstream the inclined plane, the 1D flow in hand is governed by the conservation 

equations of the mass (Equ. (2.117)) and of the momentum (Equs.(2.118)-(2.119)). They write: 
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2.5.3  Basic laminar flow 
 

a) Hydrodynamic field 

Equ. (2.119) shows that the pressure field is hydrostatic so it writes 

BgyyPb   cos*)( 2

*
         (2.120) 

Denoting the atmospheric pressure by atmP , the constant of integration B is determined by equating 

at the interface, the pressure in ambient liquid given by Pascal law as atmPgHerfaceP  11 )(int   

with its value in the denser liquid given by Equ.(2.120) as   BerfaceP int
2 . Consequently, the 

pressure field in the gravity current has the following expression: 

     atmb PxhLHggyyP   cos*)(*sincos* 012
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    (2.121) 

Introducing that expression of the pressure field in Equ. (2.118), we get 
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whose general solution writes 
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The constants of integration 1K  and 2K  are determined by the boundary conditions. The first 

boundary condition is the no slip condition at channel bed, i.e. 

0* bU      at     ** hy           (2.124) 

while the second boundary condition expresses the continuity of the shear stress at the interface. 

Assuming the ambient liquid (water) to be a perfect fluid, it writes 

0
*
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After straightforward calculations, the velocity field is obtained with the following expression
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b) Evolution equation of the interface 

To form the evolution equation of the interface, the continuity equation is written in its global form, 

i.e. 
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Using the expression of the velocity field given by Equ. (2.126), the integral appearing in Equ. 

(2.127) writes 
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So, equation of continuity takes the form 
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Assuming the following set of non-dimensional functions and variables in which the characteristic 

height of the gravity current H  ; the characteristic abscissa is L  and the characteristic longitudinal 

velocity U  
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with the lubrication assumption LH   and the characteristic time is derived as 
U

L
T

ˆ
  

Equ. (2.128) takes the following non-dimensional form  
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Parameter   is defined as    

 tg
H

L
            (2.132) 

 

c) Interface profile 

*Spatiotemporal equation of interface profile 

Flow upon an inclined plane is governed by Equs. (2.131) whose meaning is that the convective 

term is balanced by the summ of the two others. Meanwhile these two tems are not of the same 

order of magnitude. The order of magnitude of the second term of Equ. (2.131) is 
2

4

L

H
 while the 

order of magnitude of the third term is 
L

H 3

. From the lubrication assumption the second term of 

Equ. (2.131) is much smaller than the third one so, it can be neglected. Consequently, Equ. (2.131) 

becomes 
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We seek similar solutions to Equ. (2.133) of the form 

    txDtxh ,           (2.134) 

where  ,,D  are constants that we can determine by inserting the form assumed for the solution 

Equ. (2.134) in the equation of motion (Equ. (2.133) we find 

2
1        ;      

32

1
D         (2.134b) 

Inserting these values in Equ. (2.134b), the interface evolution equation writes 

 
t

x
txh

32

1
,            (2.135) 

Fig.2.16 and Fig.2.17 show for assigned parameter   the variation of fluid height vs. abscissa at 

given time and vs. time at given abscissa, respectively. It can be noticed that the smaller parameter 

the greater fluid height. That flow characteristic is explained by the fact that the higher parameter 

 , i.e. the higher the slope for given ratio 
L

H , the greater the gravity effect. Moreover, Fig. 2.16 

exhibits the general space evolution of a gravity current. Immediately after the initiation of the flow, 

an inertial regime takes place, where inertia dominates the other effects present in the flow and the 

equation of a characteristic tangent is given by xh 4 . During the development of the inertial 

regime, the viscous effects increase to the point of becoming dominant and the equation of a 

characteristic tangent is given by xh 75.0 . The viscous regime then settles over a given distance, 
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until an equilibrium is reached which characterizes the asymptotic regime, where the equation of a 

characteristic tangent is given by xh 2.0  . 

 
 

Figure 2.16 : Variation of fluid height vs. abscissa at given time and for assigned parameter   

 

 

     Figure 2.17 : Variation of fluid height vs. time at given abscissa and for assigned parameter   
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*Law of evolution of the front 

To determine the law of evolution of the front abscissa fx , we state that the fluid volume V is 

equal to a constant  , that is equal (see Fig.2.13) at any time t, per unit width in non dimensional 

variable to 
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Taking one quadrature of Equ. (2.137), we get 

3
1

Ctx f             (2.138) 
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Fig. 2.18 shows, for assigned value to parameter  , the time variation of the abscissa of film front 

vs. parameter  . It can be noticed that the higher parameter  , the greater front abscissa. That 

flow characteristic is explained by the fact that the higher parameter  , the greater the liquid 

volume and consequently the faster the flow. 

 

                 Figure 2.18 : Time evolution of front abscissa for given parameters   and   
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2.5.4  Interface profile 
 

        Combining the results of the two previous sections, the whole interface can be shown. A 

master curve is obtained for given parameter   and the front is obtained to close the interface 

downwards after computing front abscissa, for assigned parameter  . As shown in Fig.2.19 where 

the interfaces corresponding to three flow configurations from the same master curve obtained with 

5.0  and the respective fronts can be drawn, considering the corresponding value of parameter 

 , namely 0.3 ; 0.5 and 0.7 in this case 

 
                                         Figure 2.19 : Interface profile 

 

 

2.5.5 Linear stability analysis 

2.5.5.1  The Orr-Sommerfeld equation 

If, from Equ. (2.126), we take the surface velocity as the reference velocity 0U , i.e. 
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Then, in non dimensional form, the velocity field of the basic flow field writes 
21)( yyU             (2.141) 

where the flow depth has been used as reference length defining the non dimensional normal 

coordinate y . 

To investigate the linear stability of the previous laminar steady basic flow, a small 2D perturbation 

with velocity field [𝑢(𝑥, 𝑦, 𝑡)]; [𝑣(𝑥, 𝑦, 𝑡)] and pressure field [𝑝(𝑥, 𝑦, 𝑡)] is superimposed to the 

above steady basic flow. Using the characteristic length, velocity and time defined in Equ.(2.130), 
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the equations of conservation of mass and momentum are written in non dimensional form for the 

resulting hydrodynamic field   pppr PVUU ,,


 with 

   tyxuyUU bp ,,    ;    tyxvVp ,,    ;      tyxpyxPP bp ,,,     (2.142) 

in the following form: 
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where Reynolds number, Froude number respectively defined as 

2

2Re
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Fr           (2.146) 

have been sorted as non dimensional control parameters of the flow. 

The disturbance superimposed to the basic laminar steady flow produces a deformation  tyx ,,̂  of 

the interface. To satisfy identically the continuity equation, we introduce a stream function 

 tyx ,,̂  according to : 
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Assuming that the instability sets with respect to long waves as in the case where the flow develops 

in open atmosphere (Liu et al., 1993 ; Smith, 1990 ; Kelly & Goussis, 1989), we investigate the 

linear regime where the waves are sinusoidal, where the stream function, the perturbation on the 

free surface and the pressure field can be expanded in normal modes repectively with the form : 

   ctxiey  ̂    ;      ctxiey  ̂    ;      ctxieypp  ˆ      (2.148)    

We consider a temporal analysis where the wave number   is real and is viewed as a small 

parameter, while the wave speed c  is complex with the form ir iccc  and i  is the imaginary unit 

defined by 12 i .  

Substituting the disturbance hydrodynamic field described by Equs.(2.147)-(2.148) in the equations 

of motion (Equs.(2.143)-(2.144)), we get after a straightforward handling: 

    ''''Re''2'''' 242 UcUi       (2.149) 

Equ.(2.149) known as the Orr-Sommerfeld equation (Orr, 1907; Sommerfeld, 1908) governs the 

stability of a Newtonian fluid over a sloping plane. The effect of the ambient liquid, water in this 

case, is described by the boundary conditions. 

 

 

 

2.5.5.2  Boundary conditions 
        The above Orr-Sommerfeld equation is a fourth-order ordinary differential equation for the 

stream function is associated to four boundary conditions summarized in Table 2.1: 
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 No slip condition 

 

Kinematic condition Dynamic condition 

Liquid 2/Solid plane 

interface 

Impermeability of 

solid wall. Liquid 2 

takes the same ve-

locity as solid wall 

 

  

 

 

 

Liquid 1/Liquid 2 

interface 

 The normal velocity 

of Liquid 2 at the 

interface must be 

equal to the normal 

velocity of the inter-

face 

-The shear stress is 

continuous at the 

interface 

-The normal stress is 

subjected to a jump 

due to the interfacial 

tension 

 

 
                                Table 2.1: Summary of the boundary conditions.  

 

 

i/ The no slip condition indicates the impermeability of the solid wall. So, along the contact line, the 

liquid takes the same velocity as the solid wall    

0u      and     0v      at     0y         (2.150) 

Using Equs. (3.147), we get in terms of stream function: 

0'      and     0      at     0y        

 (2.151) 

ii/ The kinematic condition indicates the impermeability of the interface described by its tangential 

vector t


 and normal vector n


. Therefore, the normal velocity of the fluid nU r


  at the interface 

must be equal to the normal velocity of the interface, defined as 
 21 



x
. 

So, we must have 

𝑈2(−𝜕𝑥𝜂) + 𝑉2 = 𝜕𝑡𝜂 at   𝑦 = 𝜂      (2.152) 

Therefore, after a straightforward algebraic handling, the kinematic condition writes 

𝜓(0) − (𝑐 − 1)𝜂 = 0          (2.153)  

 

iii/ The dynamic condition indicates that the shear stress is continuous at the interface and that the 

normal stress is subjected to a jump due to the interfacial tension. The stress vector in the fluid 

being 𝜎 = 𝜎 ∙  𝑛⃗  and the action of the surrounding air being restricted to a purely normal stress 

−𝑃0 ∙ 𝑛⃗ , the dynamic condition gives the two following equations 

𝑡 ∙ 𝜎 = 0 at 𝑦 = 𝜂         (2.154) 

𝑛⃗ ∙ 𝜎 − 𝑛⃗ ∙ (−𝑃0𝑛⃗ ) =
𝛾

𝑅
  at 𝑦 = 𝜂      (2.155) 

After an algebraic handling, these two equations write respectively 

0)0()0()0('' 22  D         (2.156) 
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where a fifth characteristic non dimensional quantity 𝑊𝑒∗  and which can be turned as a 

characteristic Weber number, defined as 

𝑊𝑒∗ =
𝜌0𝑈0𝐿0

𝛾0
           (2.158) 

has been introduced, while the following relation exists between the Reynolds number and the 

Froude number  

𝐹𝑟∗ =
𝑅𝑒∗ tan 𝛽

2
           (2.159) 

 

In the next sections, Orr-Sommerfeld equation given by Equ. (2.149) with the associated boundary 

conditions governed by Equs. (2.151); (2.153) ; (2.156) ; (2.157) can be solved analytically, using a 

perturbation method. In that analysis, the velocity field of the basic flow in non dimensional form 

was obtained in Equ. (2.158) and it is assumed following Charru (2007) that 
𝛼2

𝑊𝑒
= 𝑂(1) . 

Furthermore, the celerity and the stream function can be investigated in the form of power series of 

that small parameter, say: 𝑐 = 𝑐0 + 𝛼𝑐1   and 𝜓(𝑦) = 𝜓0(𝑦) + 𝛼𝜓1(𝑦)  respectively. The index 

gives the order of the solution.  

 

In fact, Nsom et al. (2019) proposed a generalized model for shear thinning fluid over an inclined 

plane surrounded by the atmosphere that reduces to the previous model if power-law index equals 

unity  1n , i.e. for Newtonian fluid. So, a similar solution can be derived, provided that in the 

solution built by Nsom et al. (2019), we put  1n . Notably, the following results can be derived, 

where the subscript on the non dimensional parameters 𝑅𝑒, 𝐹𝑟,𝑊𝑒 will be dropped, for making the 

notations simpler.  

 

2.5.5.3 Solution  

i. General solution  

 

        The problem at order zero is governed by Orr Sommerfeld equation (Equ. (2.149)) associated 

with boundary conditions (Equs. (2.151); (2.153); (2.156); (2.157)) in which we put  𝛼 = 0 . Its 

solution writes for the stream function say 
)0(   

   2)0( 1 yy            (2.160) 

and for the celerity say 
)0(c  

2)0( c            (2.161) 

Equ. (2.161) indicates that the perturbation celerity 𝑐0 has a real value; the perturbation growth rate 

(imaginary part of celerity) is null. There is no instability with respect to the long wave 

perturbations considered, at zeroth order. Waves propagate without dispersion, at the same 

dimensional speed 2𝑈0 for any wavenumber.  Moreover, the ratio 
 )0(

 being real, the interface 

and the stream function are in phase, while 𝑢 and 𝑣 the components of the perturbation velocities 

are respectively in phase and in quadrature of phase. Again, this result is similar but not identical to 

the one obtained by Nsom et al. (2019) and Charru (2007). Indeed, the solution description is the 

same but the expression of the interface velocity 0U  is not the same. 
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At first order, the problem is governed by Orr Sommerfeld equation (Equ. (2.149)) associated with 

boundary conditions (Equs. (2.151); (2.153); (2.156); (2.157)) in which we put 1 . Its solution 

writes for the stream function say 
)1(  

   )0(

0

22)0(

0

)1(4 Re)(  UDDcUiyD         (2.162) 

Whose solution provides celerity at first order in the form 
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ii. Parametric study 

Notice that the celerity correction )1(c  is a pure imaginary so it does not bring a contribution to the 

wave celerity. It only affects its growth rate which at the order one in consideration is therefore 

 4)1(2)Im(  Occ          (2.164) 

The marginal stability corresponds to 𝑐1 = 0 . As Reynolds number and Froude number are related 

by Equ. (2.159), the latter secular equation involves two parameters say, Reynolds number Re  and 

reduced wavenumber 𝛼
2

𝑊𝑒⁄  . For assigned value of any of these parameters, Equ. (2.163) is solved 

by a shooting method. A trial value is given to one of them and the value of the other parameter is 

sought in order to satisfy Equ. (2.163). That parametric study is presented in the present subsection. 

Equ. (2.163) gives the solution to Orr-Sommerfeld equation at first order, stated in previous 

subsection. It provides a relation between the wave celerity, the wave number and the Reynolds or 

Froude number for given flow configuration. In order to point out the effect of the different forces 

acting on the flow, the numerical results are presented in the form of a parametric study by a 

shooting method. For given slope, the marginal stability curve is defined as the states separating the 

stable flows from the unstable ones in the (wavelength, Reynolds number) plane. For given slope, it 

is found that the solution to Equ. (2.163) is not sensitive to the wavenumber 𝛼 but to a reduced 

wavenumber given by ratio 𝛼
2

𝑊𝑒⁄ . The computations are brought out for gentle slopes, such that 

1° ≤ 𝛽 ≤ 6° (Allouche, 2015 ; Nsom et al., 2018) 
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Figure 2.20: The marginal stability curve separating the stable states from the unstable ones for 

assigned flow configurations 

 

Effect of inertia and pressure on flow stability 

        For given slope, the marginal stability curve is obtained as follows: a value of reduced 

wavelength is fixed and growing Reynolds numbers are used for computing Equ. (2.163). The 

values obtained for celerity 𝑐1 are negative (defining stable flow) and then positive (defining 

unstable flow). Stable and unstable flows are separated by the marginal state where 𝑐1 = 0 and the 

corresponding value of the Reynolds number defines the critical Reynolds number noted 𝑅𝑒𝑐 . 

Fig.2.18 shows that when the slope increases, the critical Reynolds number decreases for given 

reduced wavelength. Fig.2.18 shows that inertia acts along the x – axis while pressure (hydrostatic) 

acts along the y – axis. Therefore, inertia has a destabilizing effect while pressure has a stabilizing 

effect.  

 

 

iii. Discussion and Conclusions 

 

        The stability of a thin film propagating beneath a large quantity of ambient static non miscible 

lighter liquid and over a sloping plane was considered theoretically. Such configuration that has 

never been considered earlier can model the spill of a heavy hydrocarbon into the ocean by a tanker, 

following a voluntary or accidental degassing or an act of war. Equations of conservation of the 

mass and the momentum were appropriately made non dimensional and a similar solution was 

proposed in this paper. In this way, an analytical expression of the hydrodynamic field, say velocity 

field and pressure field is provided. Then, the equation governing the spatiotemporal evolution of 

the water-oil interface was built and solved by a perturbation method. Notably, three flow regimes 
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were identified, say the inertial the viscous and the asymptotic regime in the height spatiotemporal 

evolution, for assigned aspect ratio  . Also, the time evolution of the wave front position along the 

inclined plane was built.  

Indeed, it was found that an appropriate non dimensional form of the velocity field shows that it is 

similar to the case where the surrounding fluid is the atmosphere with a different average velocity. 

Consequently, the stability analysis of both configurations and the results of both problems were 

similar. Notably, the solution to the secular equation showed that at zeroth order, there is no 

instability with respect to the long wave perturbations considered. Waves propagate without 

dispersion, at the same dimensional speed for any wavenumber. Moreover, the interface and the 

stream function are in phase, while the components of the perturbation velocities are respectively in 

phase and in quadrature of phase.  

At first order, the secular equation was solved numerically by a shooting method. The effect of the 

different forces acting on the flow has been pointed out. It was particularly shown that pressure and 

surface tension have a stabilizing effect, while inertia has a destabilizing effect. Moreover, the 

relative variation of critical Reynolds number increases with increasing reduced wavenumber for all 

values of slope tested. 
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3 Chapter III                Numerical Simulations 

3.1 Problem statement 

        In this chapter, numerical simulations were carried out by using OpenFoam software. 

Interfoam is a specific solver of OpenFoam that used to release the gravity current in the lock-

exchange configuration. The lockexchange is a flow of two fluids separated initialy by a wall that 

moved up to generate a gravity current. In this case, the gravity current flow is created by the 

difference of density where the heaver liquid moved in the bottom and the lighter liquid moved 

upper the heavier liquid. The difference of densities between two liquids can be balanced by the 

inertia, viscous and interfacial tension forces.  

In our study, the two liquids are immiscibles and have differents densities, the same viscosities and 

an interfacial tension. To compare theses forces, we have used the follwong intial control 

parameters:  

- Re0: intial Reynolds number which is the ratio of the inertia to the viscous forces, and it 

varied from 25 to 7000 by variaying the viscosity of the liquids.  

- We0: initial Weber number which is the ratio of the inertia to the capillary forces and it 

varied from 0 to 2500 from by variying the interfacial tension.  

To validate our numerical simulations, the temporal evolution of the front positions is compared 

to that obtained by Huppet et al (Huppert 1982). The validation of the numerical simulations will be 

completed by the effect of the mesh numbers on the apparition of the interface instabilities between 

the two liquids.  

In our numerical simulations, we will show that the interface beween the two liquids can be 

smoth or can have undulations (Fig. 3.1) as function as the initial Re0 and We0. We have 

distinguished two interface instabilities: The first one occurs close the bottom (Fig 3.1. a) and the 

second one is in the stratified vertical direction (Fig 3.1.b).  

    

 

 

 

 

                    

 

 

 

Figure 3.1. Gravity current with an interface intability: (a) close to the bottom for Re0=25; We0=250; (b) in 

the stratified vertical direction for Re0=2500; We0=250. 
 

Theses two types of instabilities will be analysed to determine the mechanism of their creations. 

The velocity and density profiles and computed close to the interface instability in order to give the 

dominant force responsible to the destabilisation of the interface.    

 

(b)

B

b) 

 

(a)

B

b) 
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3.2 Lockexchange configuration 

 

        Two-dimensional geometry configuration on horizontal plane was chosen as a test case. In this 

domain, the length of the case is L=0.8 m and its height is h=0.08 m. The heavier fluid locates 

initially in the left side (red) while the lower fluid is in the right side (blue) of the geometry. The 

two fluids are separated by a wall which can be moved to give a gravity current motion. The 

dimensions of the heavier fluid are x0 =0.08 m and h=0.08 m. The shape contains 6 vertices as 

shown in the figure 3.2 : 

 

 

 

 

 

 

                                    

 

 

                                                                     

                                                                                              

                                                                     x(m) 

 Figure 3.2 .(a)  A sketch of the geometrical domain of gravity current (b)The  numerical simulation of  

contour of  fractional volumic  c of the gravity current  at t  = 0 s . The two-layer  immiscible fluids with 
same viscous but different densities ρ1 and ρ2 and with a grid resolution  1000×100.      
      

  The 2D simulations are carried out on a grid resolution  (𝒏𝒙, 𝒏𝒚) = (𝟏𝟎𝟎𝟎, 𝟏𝟎𝟎),  and the 

stepsizes are∆𝒙 = 𝒙 𝒏𝒙 = 𝟖𝟎  𝒄𝒎 𝟏𝟎𝟎𝟎 = 𝟎. 𝟎𝟖 𝒄𝒎⁄⁄ , and∆𝒚 = 𝒚 𝒏𝒚 = 𝟖  𝒄𝒎 𝟏𝟎𝟎 = 𝟎. 𝟎𝟖 𝒄𝒎⁄⁄ . 

Despite its simple geometry it creates interesting and complex phenomena. 

 

         In the OpenFOAM package, the walls and atmosphere (The atmosphere is a standard patch, i.e. 

has no special attributes, merely an entity on which boundary conditions can be specified) are 

associated with the wall condition. To complete the problem, it is essential to define the border and 

the initial Conditions. The boundary conditions are defined on all the boundary faces of the domain 

and can be divided mainly into two types: Dirichlet and Neumann conditions: Dirichlet-prescribes 

are the value of the dependent variable on the border and is therefore called "fixed value" in 

(a) 

(b) 
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OpenFOAM. Also, Neumann -prescribes the gradient of the normal variable at the border and is 

therefore called "fixedgradient" in OpenFOAM. 

3.3 Mathematical Model  

        In two-fluids system, the Navier Stokes equations for two incompressible, isothermal 

immiscible fluids include: 

1- Continuity equations:               
𝝏𝒖𝒋

𝝏𝒙𝒋
= 𝟎                                                                               (3.1) 

2- Momentum Equation      
𝝏𝝆𝒖𝒊

𝝏𝒕
+

𝝏𝝆𝒖𝒋𝒖𝒊

𝝏𝒙𝒋
= −

𝝏𝑷

𝝏𝒙𝒊
+

𝝏(𝝉𝒊𝒋+𝝉𝒕𝒊𝒋
)

𝝏𝒙𝒋
+ 𝝆𝒈𝒊 + 𝒇𝝈𝒊                            (3.2) 

 where 

   𝒖𝒊 Represent the velocity 
   𝒈𝒊 The gravitational acceleration,  
   𝑷  The pressure  
   𝝉𝒊𝒋and  𝝉𝒕𝒊𝒋 are the viscose and turbulent stresses.𝒇𝝈𝒊 is the surface tension. 
      The density ρ is defined as:    𝝆 = 𝑪𝝆𝟏 + (𝟏 − 𝑪)𝝆𝟐  

C is 1 inside fluid 1 with the densityρ1 and 0 inside fluid 2 with the densityρ2. At the interphase 

between the two fluids α varies between 0 and 1. The surface tension  𝑓𝜎𝑖    is calculated as:   𝑓𝜎𝑖 =

𝜎𝑘
𝜕𝐶

𝜕𝑥𝑖
  

 σ  is the surface tension constant, K  the curvature. The curvature can be approximated as: 
𝑘 = −

𝜕𝑛𝑖

𝜕𝑥𝑖
= −

𝜕

𝜕𝑥𝑖
(

𝜕𝐶 𝜕𝑥𝑖⁄

|𝜕𝐶 𝜕𝑥𝑖⁄ |
). 

 

3- Equation for the interphase   :
𝝏𝑪

𝝏𝒕
+

𝝏(𝑪𝒖𝒋)

𝝏𝒙𝒋
= 𝟎                               ( 3.3) 

In order to know where the interphase between the two fluids is, an additional equation for C has to 

be solved. The equation can be seen as the conservation of the mixture components along the path 

of a fluid parcel. 

 

        The VOF method that is used in this work is an excellent tool to simulate complex interface 

motion between the gravity current and ambient fluid, where it's used to the interface tracking for 

two immiscible fluids. The VOF method has been embedded into commercial codes such as open-

source CFD codes like OpenFOAM. In this method the interface is indirectly represented by a 

numerical field describing the volume fraction of gravity current within each computational cell. 

The VOF method is applied to several problems of environmental interest, including the dam-break 

problem, internal waves, and propagation of gravity current.  

 

        The volume of fluid (VOF) technique is one of the Finite volumes techniques which is use for 

tracking the interface between gravity current and the ambient fluid. In this method, continuity and 

momentum equations will be involved. And to determine the phase properties across the interface, 

we include the volume fraction equation. The equations, continuity, momentum equations will be 
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getting teamed by this volume fraction equation. The volume fraction equation is very important in 

case of two-fluid flow computations. 

 

        In this technique, we will solve the equations of mass and momentum conservation. Continuity 

equation have density ρ, this density is some average density in the field, and this average density 

will be having some particular value at bulk and some intermediate value between the bulk 

properties near the interface. So, the density ρ can be defined as function of volume fraction of the 

first fluid inside a cell, that volume fraction. We capture using the property called C. So C is the 

volume fraction, that means we are talking about two fluids 1 and 2, 1 is the first fluid and 2 is the 

second fluid so we will be finding out that we are having C1 =1 in the bulk of the first fluid and 

C2=1 at the bulk of second fluid and the corresponding values of C2 and C1 in the first fluid and 

second fluid will be becoming 0 and when the cell contains an interface between the tracked and           

non-tracked volumes, 0 < C < 1.We can defined the density based on the volume fraction of any of 

these two fluids. If C is nothing but the volume fraction for the first fluid so this ρC can be written 

as:𝝆 = 𝑪𝝆𝟏 + (𝟏 − 𝑪)𝝆𝟐  ,that is means whenever we are in the bulk of the first fluid, where value 

of C is 1 we will be getting that ρ gets the value of ρ1 and whenever we are in the bulk of second 

fluid, then we will be getting that this value of ρ, will be talking ρ2 because C will be at that time 

becoming 0. Similarly, viscosity can be also defined as:  𝝁 = 𝑪𝝁𝟏 + (𝟏 − 𝑪)𝝁𝟐 . Depending on C, 

we can find out the ρ and μ and we can write down a continuity equation which has the form (3.1). 

From the Momentum Equation(3.2), an added portion will be over here for the surface tension 

portion 𝒇𝝈𝒊 because as we are dealing with two phase so we will be having surface tension involved 

in that, and surface tension will be involved in the interface, that is means 𝒇𝝈𝒊 is the function which 

controls the value of surface tension.Since the interface location is changing, this value of α will be 

changing across the time then we need to get some equation of C which will be adverting from the 

first place to another place along with the time, and we have (3.3) which is the governing equation 

for conservation of volume fraction. 
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3.3.1 Inital conditions 

 
           Future values of the numerical simulation can be found by iterating forward one time period 

per iteration, so we shall need to initial conditions are needed in order to trace the system's variables 

forward through time. The initial and boundary conditions can be presented as follows: 

 
 1- The velocity  
 
         At the initial time t = 0, no-slip velocity initial conditions u=0, v=0 were used on walls, 

therefore, the initial velocity of walls with no-slip velocity y = 0, that is means the velocity in all 

directions is equal to zero. 

2- The pressure  

        The initial pressure at walls is fixed flux pressure, that is means the pressure in all directions is 

equal to zero, also the initial depth of the gravity current is 0.008 m and the initial gravity current 

length is 0.008 m. 

3.3.2 Boundary conditions 

 
        Boundary conditions are constraints necessary for the solution of a gravity currents problem in 

a specific domain. The boundary  conditions can be presented as follows: 

 
1- Leftwall:  The region of interest of gravity current is (the lenght x = 0 m, 0 ≤ y ≤ 0.08 m).  
2- Rightwall: The region of interest of gravity current is (the lenght x = 0.8 m, 0 ≤ y ≤ 0.08 m).   
The velocity is set to zero at the wall boundary. The phase fraction can have any value between 0 

and 1. The boundary conditions are summarized in the following table :  

 

Varibles Wall Atmospher  

U no-Slip Type:Pressureleft/rightwallVelocity 

Value:uniform( 0,0,0) 

p+ρgh Grad(p)=0 

       

Total pressure = 0 

c ZeroGradient ZeroGradient 

 

                                                   Table 3.1 .Boundary conditions 
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3.3.3 Control parameters values  

The control parameters are initial Reynolds and initial Weber numbers which defined as 𝑹𝒆𝟎 =
𝑼𝒃𝒉

𝒗
,  

𝑾𝒆𝟎 =
𝝆𝑼𝒃

𝟐𝒉

𝝈
  respectively, where 𝑼𝒃 = √

𝒈𝒉∆𝝆

𝝆
 is the intial velocity, v is the kinematic viscosity is 

the same for the liquids,  ∆𝝆 is the density difference between the two fluid, 𝝈  is the surface ten-

sion and h is the height of gravity current.  In this work, we have : ∆𝝆 = 𝟒𝟎 𝑲𝒈 𝒎𝟑⁄ , 𝑼𝒃 =

𝟎.𝟏𝟕 𝒎 𝒔⁄   𝝈 = {𝟎. 𝟎𝟏, 𝟎. 𝟎𝟎𝟎𝟏}, 𝑾𝒆𝟎=[0; 2500]. In the range of Re0 = [25; 7000], the kinematic 

viscosity v corresponding to each Reynolds number is summarized in the table 3. 2. 

 

Test 

number 

Kinematic viscosity Initial Reyn-

olds numbers 

Test 

number 

Kinematic viscosity Initial Reyn-

old  numbers 

1 5.56 × 10−4 25 10 3.98 × 10−6  3500 

2 2.78 × 10−4 50 11 3.48 × 10−6  4000 

3 1.39 × 10−4 100 12 3.09 × 10−6  4500 

4 2.78 × 10−5 500 13 2.78 × 10−6  5000 

5 1.39 × 10−5 1000 14 2.52 × 10−6  5500 

6 9.27 × 10−6 1500 15 2.31 × 10−6  6000 

7 6.95 × 10−6   2000 16 2.13 × 10−6 6500 

8 5.56 × 10−6  2500 17 1.99 × 10−6 7000 

9 4.63 × 10−6  3000    

 

                                           

                 Table 3.2. The kinematic viscosity by corresponds to Initial Reynold numbers 

3.4 Results and discussion 

3.4.1 The front position points of a gravity current 
 

The gravity current flow was computed with initial Reynolds number from 25 to 7000 and with a 

fixed intial Weber number at We0=250.  

 

The figure 3.3 presents the evolution of horizontal velocity Ux and the position of the interface 

represented by the countour with white coulour for Re0 =1000 and We0=250.  

The heavier gravity current propagates over the rigid bottom surrounding by the lighter liquid.  

This heavier gravity current consists of three main parts, namely: the head, the body and the tail.  

In this subsection, we focus on the head of the gravity current. The advanced position of the head 

gives the front position points of the heavier gravity current as a function of time  𝑿𝒇(𝒕) (Figure3.4a) 

this permits to calculate  the front velocity  𝑉𝑓(𝑡) = 𝒅𝑿𝒇 𝒅𝒕⁄  (Figure3.4b).   
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Figure3.3 . Horizontal velocity and interface position between two liquids for  Re0 =1000  and We0=250, at t  
= 0s; 1s; 3s; 10s; 15s;  20s and with a grid resolution 1000×100. 
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Figure 3.4 . (a) Diagram for the evolution of front position as a function of time for gravity current  
                    with initial Reynolds numbers =1000  and initial Weber number = 250. (b) Diagram for the  

                    evolution of the front velocity  as a function of time for gravity current  with initial Reynolds  

                    numbers =1000  and initial Weber number = 250 . 

 

        

The velocity of front position points is equal to the nose velocity.  

 Figure 3.3 shows the behavior of the gravity current head, where the front (Xf) increase with the 

time following a power function (Xf = a tb). The exponent b of the power function of the front 

position wil be determined using the Huppert theory in the next subsection for the initial Reynolds 

numbers between 25 to 7000 and for We0=250.   

(a) 

(b) 
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The position front points (Xf)  with the time were computed for the initial Reynolds numbers in the 

range 25-7000 and for We0=250 in the figure 3.5 where the horizontal axis represents time, and the 

vertical axis represents the front position points. Also the figure showed that when the Reynolds 

numbers increase, the values of the front position increase with time as shown in the figure 3.5 

 

 

 

 

                                                                                                         

 

 

 

 

 

 

 

 

 

 
Figure 3.5 . Evolution of front position as a function of the time for initial Reynolds numbers : 25, 50, 100, 

250, 500, 1000, 1500,2000, 2500, 3000,  3500, 4000 ,4500,5000, 5500, 6000, 6500, 7000 and initial Weber 
number We0= 250. 

 

3.4.2 Validation of numerical simulations 
 

In order to validate our numerical simulations, two complementaries methods were used to answer 

for this question: the first is based on the Huppert theory, while the second one is based on the 

apparition of the interface instabilities.   

The heoretical study of Huppert (Huppert et al 1982) showed (Huppet et al 1982) that the front 

position against time is a power law in the viscous regime:  𝐗𝐟 = 𝛇 (
𝐁𝟎𝐀𝟎

𝟐

𝟑𝐯
)
𝟏 𝟓⁄

𝐭𝟏 𝟓⁄ , where  𝐁𝟎 =

𝐠́𝟎𝐀𝟎  ,   𝐀𝟎 = 𝐋𝟎𝐡𝟎 = 𝐡𝟎
𝟐
. 

        In the figure 3.6, by dividing   Xf  by 
5/1

3/2
00 






 vAB , , we plot 𝑿𝒇 (

𝑩𝟎𝑨𝟎
𝟐

𝟑𝒗
)
𝟏 𝟓⁄

⁄  versus 𝒕𝟏 𝟓⁄  in 

order to compare with the theory of Huppert, We obtained on ζ=2.9.  Although the obtained 

coefficient  ζ  in our numerical is twice higher  than that obtained by  Huppert (Huppet et al 1982)  

in his theory (ζ=1.411 ) but we have the same exoponet as Huppert. 
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Figure 3.6 .Validation of numerical simulations by the theory of Huppert 1982 which showed that when the 
local Reynolds number decreases, the flow is visco-gravity (buyoncy-viscous phase), the position of the front 

is described by the power law:𝑿𝒇 = 𝜻(
𝑩𝟎𝑨𝟎

𝟐

𝟑𝒗
)
𝟏 𝟓⁄

𝒕𝟏 𝟓⁄ ,where  𝑩𝟎 = 𝒈́𝟎𝑨𝟎 ,   𝑨𝟎 = 𝑳𝟎𝒉𝟎 = 𝒉𝟎
𝟐
. 

 

To complete the validation of our numerical simulations, the effect of the mesh numbers with the 

apparition of the interface instabilities was used to give an answer of this question. We have 

compared both the hydrodynamic and interface shape for differents mesh numbers and we have 

concluded that the mesh with 1000×100 gave the best detection of the interface instabilities 

between two immiscible liquids.  

In Figure 3.7, we compare the numercal simulations results for the evolution of horizontal velocity 

with the interface position between two liquids with two meshes: (a) the low mesh is of 250×25 

points and (b) the high mesh is of 1000×100. We can observe that the interface instability was 

detected for the high mesh of 1000×100. With this comparison, we have complemented the 

validation of our numerical simulations.  

 

 

 

 

 

 

 

 

 

 

 

 

 

𝑿𝒇 (
𝑩𝟎𝑨𝟎

𝟐

𝟑𝒗
)

𝟏 𝟓⁄

⁄  

 

𝒕𝟏 𝟓⁄ (𝒔𝟏 𝟓⁄ ) 
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                       ( a )                                                                                             ( b )                        
Figure 3.7. The results of the numerical simulation of the evolution of horizontal and interface position for 

Re0 = 2500, t = 4s and 5s with a grid resolution: (a) 250×25 and (b) 1000×100. 

 

 

In Figure 3.9, we compare the simulation results for the evolution of  contour of vertical velocity of 

the  gravity current  and at time t = 4s, 5s, 8s with two meshes, the first meshe with an accuracy of 

250×25 and the second meshe with an  accuracy of 250×25. The results o showed that increasing 

the accuracy of the mesh gives more accurate results as   follows: 
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3.4.3 Interface instability close to the horizontal bottom 
 

      In the Figure 3.8, the numerical simulation results showed that the interface close to the bottom 

is unstable for Re0=[25; 2000] for We0=250. We have observed that the head of the heavier liquid 

has an elevation that permits the intrusion of the lighter liquid between the head and the rigid 

bottom. In this case, the interface between the heavier and the lighter liquids has an undulation. 

Thus, this lead to the instability of the lower interface between the heavier and the lighter liquids 

close to the horizontal surface. In this case, the part of the heavy fluid in contact with the solid 

surface has a discontinuity where the lighter liquid remains trapped in the form of drops (figure 3.8). 

This is due to the competitions of the several forces that dominate the flow close to the bottom. The 

two liquids are immiscibles, viscous and with an interfaciale tension. The calculations of the bulk 

Reynolds (𝑹𝒆𝒃 =
𝑽𝒇𝒉

𝝂
) and Weber (𝑾𝒆𝒃 =

𝝆𝑽𝒇
𝟐𝒉

𝝈
) numbers of the front permit to compare the 

dominate force close the bottom and the head with time. In the figure 3.9, the bulk Reynolds and 

Weber numbers are plotted with time for Re0=2000 and We0=250. When Reb<100 and Web<10, the 

capirally instability of the interface between the heavier and lighter liquis occurs as drops (Figures 3. 

8 and 3. 9).  
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Figure 3.8 Capillay instability of the interface between two liquids close the bottom wall represented by the 
volumic fraction C for Re0 = 2000 and We0=250 and for t  = 0, 1s,  3.5s, 5.5s and 10s. The zoom presents the 

drops (capillary instability).  
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Figures 3. 9. Time evolution of the bulk Reynolds numbers (a) and the bulk Weber number (b) for Re0=2000 

and We0=250. 

 

 

 

 

 

(a) 

(b) 
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3.4.4  Interface instability in vertical stratified density  
 

    On the addition of the interface close to the bottom, the two liquids have an interface in the 

vertical density stratification. Generally, the flow with density stratification has density and velocity 

thicknesses. In the case of miscible fluids, the characteristic thicknesses of the density  and 

velocity u profiles are of the same order of magnitude (  u), the resulting velocity profile is 

known to be subjected to an inflexional instability mechanism, which gives rise to the formation of 

vortical structures or Kelvin-Helmholtz billows travelling at approximately the average velocity 

between the two streams (Ho & Huerre 1984, Pouliquen 1993). In the case of immiscible liquids, 

the thickness of the density profile at the interface is much smaller than the thinckness of velocity 

profiles (<<u), As first demonstrated by Holmboe (1962), this situation is more complex where a 

density discontinuity is embedded within a linear velocity profile, there may exist an additional pair 

of unstable travelling waves or Holmboe modes (Pouliquen 1993).   

In Figure (3.10), the volumic fraction showed that the interface instability is in the form of cusp-like 

internal waves; consist of cusps projecting in to the interface between the heavier and the lighter 

liquids and moving from left to right. With the evolution of the flow with time, differences were 

observed in this wave’s structure. It is clear that the growth rate, absolute phase speed, and 

wavelength are not equal. This instability occurs at the range of intial Reynolds numbers Re0=[500-

7000] for We0=250. 

 

 

Figure 3.10 Volumic fraction C for the interface instability (Holmboe) in the vertical stratified density (for 

for Re0 = 2500, We0 = 250 at  t = 4 s. The red color represents the heavier liquid with 2=1080 kg.m-3 and the 

blue color represents the lighter liquid with 1=1040 kg.m-3, while the white color represents the interface 

between the two liquids for =1060 kg.m-3.  

 
In this subsection, we will analyse the thichness profile of the horizontal and vertical velocities (Ux; 

Uy) and the density thickness against the vertical axis points Y close to the intability interface.  

 Figure 3.11 a-b present the respectively the fields of the component velocity Ux and Uy in the 

plane (X,Y) at t=2,5s for Re0 = 2500, We0 = 250. The white color represents the position of the 

interface separate the two liquids. The interface of the Figure 3.11 a-b presents three cusps of the 



 

127 

 

Holomboe instability. The amplitude of the cusps is high close to the head of the gravity current 

while it is lower close to the tail and it is intermediaite in the body of the gravity current.  

First, we present the data analysis of the interface Holomboe instability for that close of the head of 

the gravity current which is marked by the white vertical narrow in the Figure 3.11 a-b at x=0.2m. In 

the interface Holomboe instability, the velocity profiles of the horizontal and vertical show a 

continuity variation while the density presents a discontinuity because of the immiscible liquids. To 

explore more the velocity variation, we have computed the velocity gradient (shear rate : 
𝒅𝑼𝒙

𝒅𝒚
;  

𝒅𝑼𝒚

𝒅𝒚
) 

as function of the Y axis close to the interface instability (Figure 3.11 c). The shear rate presents a 

maximum (
𝒅𝑼𝒙

𝒅𝒚
= 𝟏𝟗. 𝟑 𝒔−𝟏;  

𝒅𝑼𝒚

𝒅𝒚
= 𝟓.𝟕𝒔−𝟏) at the head of the cusps interface of Holomboe. The 

moduls velocity gradient defined as √(
𝒅𝑼𝒙

𝒅𝒚
)
𝟐

+ (
𝒅𝑼𝒚

𝒅𝒚
)
𝟐

 presents a clear maximum (20 s-1) at the 

head of the cusps interface of Holomboe (Figure 3.11. e). 
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Figure 3.11 : (a)Horizontal velocity Ux(X,Y, t=2.5s), (b) vertical velocity Uy(x,y, t=2.5s), (c) velocity and 
density profiles in the Holomboe instability, (d) velocity gradient profile,  (e) Modulus of velocity gradient in 

the Holomboe instability for Re0 = 2500, We0 = 250  t = 2.5 s.  
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In our case, the Holomoboe instability of the interface is related to the competition between the 

stratification of densities of the two liquids and the shear rate close to the interface. To quantify this 

competition, we use the Richardson number which is defined as the ratio between the buyoncy 

buoyancy frequency 𝑁2 =
−𝑔

𝜌𝑜
.
𝜕𝜌

𝜕𝑧
 to the vertical shear rate: 𝑅𝑖 = 𝑁2/ [(

𝜕𝑢

𝜕𝑧
)2 + (

𝜕v

𝜕𝑧
)2]. In our case 

the liquids are immiscibles so there is no density gradient  
𝜕𝜌

𝜕𝑧
. Pouliquen et al (1993) have used a 

modified density gradient which is defined as 
𝜌2−𝜌1

𝐿
 where 𝐿 = √

𝜎

𝑔(𝜌2−𝜌1)
 is the lenghtscale of the 

density discontinuity of the two immiscible liquids related to the interfaciale tension  and the 

density difference.  In this case, we obtain a modified Richardson number (Ri-loc) as follows:                                          

Ri𝑙𝑜𝑐 =

𝑔(𝜌1 − 𝜌2)
(𝜌1 + 𝜌2) × 𝐿

[(
𝜕𝑢
𝜕𝑧)2 + (

𝜕v
𝜕𝑧)

2]
 

 

In the Figure 3.12, we show the local Richardson number (Ri-loc) in the Holmboe intability in the 

three cusps: (a) Close to the tail of the gravity current, (b) in the body of the gravity current and (c) 

in close the head of the gravity current. The common behavior is that the Ri-loc presents a 

minimum at the three positions. This means that the shear rate can destabilize the stratification of 

the density and can create the instability at this position of the maximum shear.   
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                            Figure 3.12.  Local Richardson number behavior in the Holmboe instability  
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3.4.5 Relationship between Riloc and amplitude of the interface Holomboe in-

stability  
To analyse more the Holmboe instability, the amplitude was computed at three cusps (Figure. 3.13) 

and compared to Ri-loc (Figure 3.14). For Re0=2500, We0=250, the amplitude (A) of the interface 

Holmboe interface and Ri-loc are:  

- A=0.00643 m, Ri-loc=3.5 for the cusp close to the head of the gravity current,  

- A=0.00481 m,  Ri-loc=5 for the cusp in the body of the gravity current 

- A=0.0015 m,  Ri-loc=7 for the cusp close to the tail of the gravity current  

We conclude that the amplitude decreases when the Ri-loc increases. This means that the interface is 

smooth for the large values of (Ri-loc>10) where the density stratification is higher than shear rate. In 

the opposite case (small values of Ri-loc≤10), the interface is unstable and presents cusp-like 

Holomboe instability.  

 

 

 

 

 

 

 

                               Figure 3.13 .  Amplitude of the Holmboe for   Re0 = 2500, We0 = 250 t = 2 s. 

3.5 Relationship between We0c and Re0c of the interface Holomboe instability 

 

In table 3.3, we give the initial Weber critical and intial Reynolds critical numbers in the interface 

instability between the gravity current and the ambient fluid.  

 

In figure (3.14) diagram of the results for initial Weber critical’s numbers of gravity current as a 

function of the initial critical Reynolds numbers range Re=[500; 2500] are given, it can notice that 

the initial weber critical numbers decrease by increasing the critical initial Reynold numbers. 
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Test  Initial Reynolds 

critical number 

Initial Weber cri-

tical number 

1 500 250 

2 1000 100 

3 1500 90 

4 2000 50 

5 2500 40 

 

    Table 3.3. The initial Reynold critical with initial Weber critical numbers  

 

 

 

                      Figure 3.14. Initial Weber critical’s numbers as a function of the initial critical Reynolds 

numbers range Re=500-2500 
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3.6 Conclusion 

 

We have performed numerical simulations of the exchange flow of two immiscible fluids for intial 

Reynolds numbers Re0 = [25; 7000] and initial Weber numbers We0 = [0; 2500]. The numerical 

simulations were validated by the theory of Huppert et al (1982) where the front position against 

time presents a power law in the viscous regime. To complete the validation of our numerical 

simulations, the effect of the mesh numbers with the apparition of the interface instabilities was 

used. We have concluded that the mesh with 1000×100 gave the best detection of the interface 

instabilities between two immiscible liquids.  

We have distinguished two interface instabilities: The first one occurs close the bottom (capillary 

instability) and the second one is in the stratified vertical direction (Holomboe instability).  

The numerical simulation results showed that the interface close to the bottom is unstable (capillary 

instability) for Re0 = [25; 2000] and for We0=250. The calculations of the bulk Reynolds (Reb =
Vfh

ν
) 

number and Weber number (Web =
ρVf

2h

σ
) of the front permit to compare the dominate force close 

the bottom and the head with time. The capillary instability of the interface between the heavier and 

lighter liquids occurs as drops when Reb<100 and Web<10 for Re0=2000 and We0=250.   

On the other hand, the interface instability in the stratified vertical direction (Holomboe instability) 

is in the form of cusp-like internal waves; consist of cusps projecting in to the interface between the 

heavier and the lighter liquids. With the evolution of the flow with time, differences were observed 

in this wave’s structure. It is clear that the growth rate, absolute phase speed, and wavelength are 

not equal. This instability occurs at the range of initial Reynolds numbers Re0=[500-7000] for 

We0=250. The local Richardson number (Ri-loc which compares the stratification to the shear rate 

effects) presents a minimum in the Holomboe instability for three cusps positions. This means that 

the shear rate can destabilize the stratification of the density and can create the instability of 

Holomboe at the position of the maximum shear rate. The amplitude of the Holomboe instability 

decreases when the Ri-loc increases. This means that the interface is smooth for the large values of 

Ri-loc. We estimate that the Holomboe instability occurred when Ri-loc is lower than 10 (the shear 

rate dominates the stratification).  
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4 Chapter IV          Conclusions and future works 

4.1 GENERAL CONCLUSION 

 

  In this study we considered the propagation of a gravity current with density greater than that of 

seawater and therefore flow beneath it and upon a solid plate. We tackled our problem following 

two scenarios. 

 

The first scenario was devoted to the stability analysis of a thin film propagating beneath a large 

quantity of ambient static non miscible lighter liquid and over a sloping plane . The study was theo-

retical. Such configuration that has never been considered earlier can model the spill of a heavy 

hydrocarbon into the ocean by a tanker, following a voluntary or accidental degassing or an act of 

war. Equations of conservation of the mass and the momentum were appropriately made non di-

mensional and a similar solution was proposed in this work. In this way, an analytical expression of 

the hydrodynamic field, say velocity field and pressure field is provided. Then, the equation govern-

ing the spatiotemporal evolution of the water-oil interface was built and solved by a perturbation 

method. Notably, three flow regimes were identified, say the inertial the viscous and the asymptotic 

regime in the height spatiotemporal evolution, for assigned aspect ratio λ. Also, the time evolution 

of the wave front position along the inclined plane was built. Notably, an appropriate non dimen-

sional form of the velocity field shows that it is similar to the case where the surrounding fluid is 

the atmosphere but with a different average velocity. Consequently, the stability analysis of both 

configurations and the results of both problems were similar. Notably, the solution to the secular 

equation showed that at zeroth order, there is no instability with respect to the long wave perturba-

tions considered. At first order, the secular equation was solved numerically by a shooting method. 

The marginal stability curve was built and the effect of the different forces acting on the flow has 

been pointed out. It was particularly shown that pressure and surface tension have a stabilizing ef-

fect, while inertia has a destabilizing effect.  

 

In the second senario, the main goal of the work was to identify the nature of the instabilities 

created at the interface in stratified flow between two immiscible liquids with different densities. 

We brought out numerical simulations using OpenFoam software in the lockexchange configuration 

upon horizontal plane. The Navier-Stokes equations were solved for two incompressible and 

isothermal fluids as well as and an equation for the interphase by using volume of fluid method 

(VOF). The obtained results from the numerical simulations were validated by the Huppert theory 

(Huppert et al 1982) of the space-time front position for the initial Reynolds number lying between 
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25 and 7000 and for initial Weber number between We0 =250 and for two types of interface 

instability. The first type is the interface instability between the heavy fluid and the horizontal 

bottom. This instability occurs for inital Reynolds numbers lying in the range [25-2000] and for 

initial Weber number We0 =250.  

 The second type was the interface instability between the heavy fluid and the ambient fluid far 

from the bottom and it is called Holmboe instability. The numerical simulation showed that the 

interface instability is in the form of cusp-like internal waves. It consists of cusps projecting into the 

interface between the heavy fluid and the ambient fluid and it moves from the left to the right. With  

the evolution of the flow with time, differences were observed in this waves structure, so this type 

of instability is the asymmetric holmboe instability.This instability occurs at the range of initial 

Reynolds numbers 500-7000 and with for  initial Weber number We0 =250. 

 

 

4.2 Future Works 

 

An analytical and numerical study of gravity currents of intermediate density in stratified water 

is a possible follow of the invistigations brought out in this thesis. 
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Résumé : La côte est la zone de contact 

entre le continent et la mer. Il est donc 
susceptible de collecter des liquides pollués 
provenant à la fois de la mer et du continent. 
Cette thèse considère le cas où le liquide 
intrusif qui est déplacé par la seule gravité et 
est appelé le courant de gravité, est plus 
dense que l'eau de mer et coule donc en 
dessous de celle-ci. Les liquides sont non 
miscibles et ont la même viscosité. La 
stabilité hydrodynamique de l'interface de ce 
système liquide/liquide est abordée à la fois 
analytiquement et numériquement. Le 
modèle analytique étudie la stabilité 
temporelle d'une petite perturbation 
superposée à l'interface de ce système 
liquide/liquide afin de déterminer les 
paramètres critiques caractérisant 
l'apparition de l'instabilité. L'étude numérique 
vise à identifier la nature des instabilités  

créées à l'interface d'un système de deux 
liquides non miscibles de densités 
différentes dans une configuration 
d'écluse sur un plan horizontal. La 
différence de densité est maintenue fixe 
tandis que les viscosités sont augmentées 
pour contrôler le nombre de Reynolds 
initial. La tension superficielle interfaciale 
est variée pour contrôler le nombre de 
Weber initial. La compétition entre 
stratification et cisaillement conduit à une 
instabilité de Kelvin-Helmholtz ou 
Holmboe à l'interface. La réponse à cette 
question est de comparer l'épaisseur du 
gradient de vitesse et celle du gradient de 
densité près de l'interface. Pour le cas de 
deux liquides non miscibles, l'épaisseur 
du gradient de densité est égale à zéro. 
Dans ce cas, seuls la position de 
l'interface et le gradient de vitesse doivent 
être calculés. 

 

Title : Stability of Complex Gravity Currents in Coastal Environment 

Keywords : Linear stability analysis, Gravity current, Liquid/liquid interface 

Abstract : The coast is the contact zone 
between the continent and the sea. It is 
therefore likely to collect polluted liquids 
coming from both the sea and the continent. 
This thesis considers the case where the 
intruding liquid which is moved by gravity 
alone and is called the gravity current, is 
denser than seawater and therefore flows 
below it. Liquids are immiscible and have the 
same viscosity. The hydrodynamic stability of 
the interface of this liquid/liquid system is 
addressed both analytically and numerically. 
The analytical model studies the temporal 
stability of a small disturbance superimposed 
at the interface of this liquid/liquid system in 
order to determine the critical parameters 
characterizing the appearance of the 
instability. The numerical study aims to 
identify the nature of 

the instabilities created at the interface of a 
system of two immiscible liquids of different 
densities in a lock configuration on a horizontal 
plane. The difference in density is kept fixed 
while the viscosities are increased to control 
the initial Reynolds number. The interfacial 
surface tension is varied to control the initial 
We-ber number. The competition between 
stratification and shear leads to a Kelvin-
Helmholtz or Holmboe instability at the 
interface. The answer to this question is to 
compare the thickness of the velocity gradient 
and that of the density gradient near the 
interface. For the case of two non-target 
liquids, the thickness of the density gradient is 
equal to zero. In this case, only the interface 
position and the velocity gradient need to be 
calculated. 

 


	Thèse de doctorat de
	L'UNIVERSITE  DE BRETAGNE OCCIDENTALE
	Ecole Doctorale n  647  Sciences pour l’Ingénieur  Spécialité : Mécanique des Milieux Fluides
	Figure 0. (a,b) Gray-scale image of the vorticity (top panel)and the density lower. (c,d)  Gray-scale image of the vorticity (top panel) and the density (lower panel) field at the nonlinear stage for the first Holmboe mode instability. (e,f)  Gray-sca...
	1  Chapter I                      Literature
	1.1 General presentation of gravity currents (GC)
	1.1.1  Gravity Currents


	Figure1.1: Example of gravity currents in the atmosphere and the industral: (a) the atmosphere gravity current (the sea breeze) (b) the industral gravity currents (honey) on Cinnamon Pancakes.
	Figure 1.2: Example of gravity currents in the natural and industral environment: (a) A hot, particle-laden gravity current, or pyroclastic flow, from the eruption of Mt. Unzen in Japan. (2001), (b) A pyroclastic flow on Montserrat in the Caribbean (p...
	Figure1.3: Example of intrusive gravity currents is the “Morning Glory” phenomenon  in northern
	Australia (Morning glory cloud over Goondiwindi July 2017).
	1.1.2   Description of gravity current flow

	Figure 1.4. Basic sketch of a gravity current
	Figure 1.5. A schematic diagram of the gravity current sections
	1.1.3 Non-dimensional parameters
	1.1.4  Gravity current flow stages
	1.1.5 Classification of gravity currents

	Figure 1.6: Schematic description of typical gravity current configurations (a) bottom current of more
	dense (heavy) fluid  𝜌>,𝜌−∆𝜌.; (b) top (surface) current of less dense (light) fluid,
	𝜌<,𝜌−∆𝜌.; (c) intrusion of “mixed” fluid in a sharply stratified ambient ; (d) intrusion
	of “mixed” fluid in a linearly-stratified ambient,  𝜌=,𝜌−∆𝜌. (y= 0).
	1.1.6 Classification
	1.1.7  Gravity current produced by lock exchange
	1.2  Main previous works and their results
	1.3  Experimental and numerical study of model GC in coastal environment
	1.3.1  Experimental study of the effect of the spreading buoyant gravity current on the coastal


	Fig.1.7. Schematic of the experimental setup                                                                                                                                                           ...
	Fig.1.8. Image captured by a camera: (A) initial frame without flow Io, (B) frame with a
	colored gravity current flow, and (C) image obtained by difference and filtering
	processes.
	Fig.1.9 Snapshot of gravity currents obtained by image processing.
	( c )                                                                                                                                                               Fig.1....
	70L/h   ( c )Q= 110L/h.
	Fig.1.11. Evolution of spreading front in (a) x-direction (b)y-direction.
	1.3.2 Horizontal miscible jet propagation with positive buoyancy

	Figure 1.12 Configurations du jet horizontal miscible de flottabilité positive.
	Figure 1.13:  Miscible horizontal jet of positive buoyancy near the rigid wall at the bottom of the basin for Re0=2778  and Fr0=12.8; obtained experimentally on the left: images of the reflection of the
	light intensity I (x,y) of rhodamine B with time and numerically on the right: volume fraction of
	the  mixture α1(x, z) with time.
	Figure 1.14. Comparison of the maximum axial position of the experimental and numerical jet front
	as a  function of time: Re0=1667 equivalent to Fr0=7.7 (left) and Re0=3889 equivalent
	to Fr0=17.9 (right).
	Figure 1.15 : Evolution of the volume fraction of the jet α1 (x, z) with time at y=0 for Re0=2778;
	Fr0=12.8.
	1.3.3   Applied the large scale particle image velocimetry technique for measurement the velocity of gravity currents in the laboratory

	Figure1.16 Schematic of the experimental setup
	Figure1.17(a)Spatio-temporal evolution of velocityfor increasing concentration  in salt: Cs =
	10g/Lang,  Fr= 0.71. (b) Spatio-temporal evolutions of velocity (left) and of vorticity
	(right) for  Cs=10g/Lang   Fr = 0.71.
	Figure1.18 :  Variation of the velocity with the axial direction at y = 0 of (a) axial component
	U(x,0) and of (b) lateral component V(x,0) for Δρ/ρ = 0.0196: Re = 3587: and Fr = 0.97.
	Figure1.19 Variation of the velocity with the axial direction at x = 0 of (a) axial component U(0,y)
	and of (b) lateral component V(0,y) for Cs = 10 g/L, and Fr = 0.71.
	1.4 Synthesis of numerical work - Issue and numerical project of this thesis
	1.4.1  Synthesis of numerical work
	1.4.2   Issue and numerical project of this thesis


	2 Chapter II    Modelling
	2.1 Introduction

	Figure 2.1: Monodirectional gravity current beneath an ambient liquid flow at (a) initial time 𝑡=0 and at (b) assigned time 𝑡=𝜏
	2.2 Instability due to viscosity stratification (Yih, 1967)

	Figure 2.2: Instability occurring at the horizontal interface of two liquids of equal density and different viscosities in plane Poiseuille flow
	2.2.1 Laminar steady basic flow
	2.2.2 Boundary conditions
	2.2.3  Solution

	Figure 2.3 : Variation of ,𝐻-3. vs. 𝑚 (Yih, 1967)
	2.3 The Kelvin-Helmholtz instability
	2.3.1  Problem statement


	Figure 2.4 : The basic laminar steady flow
	Figure 2.5 : Sketch of more general basic configuration
	2.3.2 Stability analysis

	Figure 2.6 : Sketch of the small disturbance superimposed to the basic steady laminar flow
	2.4 Extension of Kowal’s model to the stability analysis of lubricated viscous bidirectional gravity current
	2.4.1 Introduction


	Figure 2.7: Intrusion of a dense liquid in a lighter ambient liquid upon a horizontal plane
	2.4.2 Basic steady flow

	Figure 2.8: Flow configuration
	Figure 2.9a: Interdepence between  and  in for assigned values to the non dimensional parameters
	Figure 2.9b: Interdepence between  and  in for assigned values to the non-dimensional parameters
	2.4.3 Stability analysis
	2.4.4 Numerical simulations

	Figure 2.10 .The structure of OpenFOAM.
	Figure 2.11 Directory tree of a generic OpenFOAM case
	2.4.4.1 OpenFOAM Case
	2.4.5  Numerical Model

	a) Equations
	Figure 2.12a: Global view of the flow domain
	Figure 2.12b: Edges and vertices of the flow domain
	Figure 2.13: Numerical simulations of the propagation of a bidirectional gravity-current in a
	miscible lighter liquid
	2.4.6   Discussion and Conclusions
	2.5  Stability of viscous lubricated thin film down an inclined plane beneath ambient lighter non miscible static liquid
	2.5.1  Introduction


	Figure 2.14: Intrusion of a dense liquid in a lighter ambient liquid upon a horizontal plane
	(Huppert, 1982)
	2.5.2 Problem statement

	Figure 2.15: Flow configuration
	2.5.3  Basic laminar flow

	Figure 2.16 : Variation of fluid height vs. abscissa at given time and for assigned parameter
	Figure 2.17 : Variation of fluid height vs. time at given abscissa and for assigned parameter
	Figure 2.18 : Time evolution of front abscissa for given parameters  and
	2.5.4  Interface profile

	Figure 2.19 : Interface profile
	2.5.5 Linear stability analysis
	2.5.5.1  The Orr-Sommerfeld equation
	2.5.5.2  Boundary conditions
	2.5.5.3 Solution


	3 Chapter III                Numerical Simulations
	3.1 Problem statement

	Figure 3.1. Gravity current with an interface intability: (a) close to the bottom for Re0=25; We0=250; (b) in the stratified vertical direction for Re0=2500; We0=250.
	3.2 Lockexchange configuration

	Figure 3.2 .(a)  A sketch of the geometrical domain of gravity current (b)The  numerical simulation of  contour of  fractional volumic  c of the gravity current  at t  = 0 s . The two-layer  immiscible fluids with same viscous but different densities...
	3.3 Mathematical Model
	3.3.1 Inital conditions
	3.3.2 Boundary conditions
	3.3.3 Control parameters values

	3.4 Results and discussion
	3.4.1 The front position points of a gravity current


	Figure3.3 . Horizontal velocity and interface position between two liquids for  Re0 =1000  and We0=250, at t  = 0s; 1s; 3s; 10s; 15s;  20s and with a grid resolution 1000×100.
	Figure 3.4 . (a) Diagram for the evolution of front position as a function of time for gravity current
	with initial Reynolds numbers =1000  and initial Weber number = 250. (b) Diagram for the
	evolution of the front velocity  as a function of time for gravity current  with initial Reynolds
	numbers =1000  and initial Weber number = 250 .
	Figure 3.5 . Evolution of front position as a function of the time for initial Reynolds numbers : 25, 50, 100, 250, 500, 1000, 1500,2000, 2500, 3000,  3500, 4000 ,4500,5000, 5500, 6000, 6500, 7000 and initial Weber number We0= 250.
	3.4.2 Validation of numerical simulations

	Figure 3.6 .Validation of numerical simulations by the theory of Huppert 1982 which showed that when the local Reynolds number decreases, the flow is visco-gravity (buyoncy-viscous phase), the position of the front is described by the power law:,𝑿-𝒇...
	Figure 3.7. The results of the numerical simulation of the evolution of horizontal and interface position for Re0 = 2500, t = 4s and 5s with a grid resolution: (a) 250×25 and (b) 1000×100.
	3.4.3 Interface instability close to the horizontal bottom

	Figure 3.8 Capillay instability of the interface between two liquids close the bottom wall represented by the volumic fraction C for Re0 = 2000 and We0=250 and for t  = 0, 1s,  3.5s, 5.5s and 10s. The zoom presents the drops (capillary instability).
	Figures 3. 9. Time evolution of the bulk Reynolds numbers (a) and the bulk Weber number (b) for Re0=2000 and We0=250.
	3.4.4  Interface instability in vertical stratified density

	Figure 3.10 Volumic fraction C for the interface instability (Holmboe) in the vertical stratified density (for for Re0 = 2500, We0 = 250 at  t = 4 s. The red color represents the heavier liquid with (2=1080 kg.m-3 and the blue color represents the lig...
	Figure 3.11 : (a)Horizontal velocity Ux(X,Y, t=2.5s), (b) vertical velocity Uy(x,y, t=2.5s), (c) velocity and density profiles in the Holomboe instability, (d) velocity gradient profile,  (e) Modulus of velocity gradient in the Holomboe instability fo...
	,Ri-𝑙𝑜𝑐.=,,𝑔(,𝜌-1.−,𝜌-2.)-(,𝜌-1.+,𝜌-2.)×𝐿.-,(,𝜕,𝑢.-𝜕𝑧.,)-2.+(,𝜕,v.-𝜕𝑧.,)-2...
	Figure 3.12.  Local Richardson number behavior in the Holmboe instability
	3.4.5 Relationship between Riloc and amplitude of the interface Holomboe instability

	Figure 3.13 .  Amplitude of the Holmboe for   Re0 = 2500, We0 = 250 t = 2 s.
	3.5 Relationship between We0c and Re0c of the interface Holomboe instability
	3.6 Conclusion
	CHAPTER IV

	4 Chapter IV          Conclusions and future works
	4.1 GENERAL CONCLUSION
	4.2 Future Works

	Bibliography
	Carpenter, J. R., Balmforth, N. J. and Lawrence, G.A. (2010). .Identifying unstable modes in stratified shear layers. Phys.Fluids,22, 054104.
	InterFoam-OpenFOAMWi (2018). ki.https://openfoamwiki.net/index.php/InterFoam.24 dec.
	Ottolenghi, L., Adduce, C. , Inghilesi, R., Armenio, V. and Roman, F.  (2016). Entrainment and mixing in unsteady gravity currents. Journal of Hydraulic Research Vol. 54, No. 5. pp. 541-557.
	Shin, J. O., Dalziel, S. B. and Linden P. F. (2004). Gravity currents produced by lock exchange. Uk. J. Fluid Mech. vol. 521, pp. 1–34.

