
HAL Id: tel-04440713
https://theses.hal.science/tel-04440713

Submitted on 6 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning models on healthcare data with quality
indicators
Donato Tiano

To cite this version:
Donato Tiano. Learning models on healthcare data with quality indicators. Artificial Intelligence
[cs.AI]. Université Claude Bernard - Lyon I, 2022. English. �NNT : 2022LYO10182�. �tel-04440713�

https://theses.hal.science/tel-04440713
https://hal.archives-ouvertes.fr

THESE de DOCTORAT DE
L’UNIVERSITE CLAUDE BERNARD LYON 1

Ecole Doctorale N° 512
InfoMaths

Discipline : Informatique

Soutenue publiquement le 08/12/2022, par :
Donato Tiano

Learning Models on Healthcare Data with
Quality Indicators

Modèles d’apprentissage sur les données de santé avec
indicateurs de qualité

Devant le jury composé de :

AUSSEM Alexandre
Professeur des Universités, Université Lyon 1
BOUCELMA Omar
Professeur des Universités, Aix-Marseille Université
ZEITOUNI Karine
Professeure des Universités, Université Paris-Saclay
BEN MOKHTAR Sonia
Directrice de Recherche, CNRS Lyon
DUMBRAVA Stefania Gabriela
Maître de Conférences, ENSIIE Paris
BONIFATI Angela
Professeure des Universités, Université Lyon 1
BIFET Albert

Examinateur

Rapporteur

Rapporteure

Présidente

Examinatrice

Directrice de thèse

Invité
Professeure des Universités, Université de Waikato

ii

Resumé en Français
L’évolution incessante de la technologie nous a permis de recueillir des données sur

chaque type de phénomène. Cette amélioration a été rendue possible par la multiplication

des sources à partir desquelles de nouvelles données peuvent être collectées. Les données

collectées par ces sources sont très diverses, mais les données les plus couramment recueillies

sont les séries temporelles. Les séries temporelles sont des collections de données obtenues

par des mesures répétées dans le temps. Elles sont généralement représentées par l’axe

cartésien, où l’axe des y représente les valeurs détectées, et l’axe des x le temps de détection.

La figure 1.1 est un exemple de série temporelle. Cette collecte de données vise à fournir

des éléments de réflexion pour l’extraction d’événements dans les données. L’extraction

de données vise à extraire des informations des ensembles de données et à les représenter

dans une configuration compréhensible pour une utilisation ultérieure, telle que la détection

d’anomalies, le regroupement, l’analyse prédictive, etc. L’ensemble du processus de décou-

verte et d’extraction de modèles à partir de l’ensemble de données s’effectue par le biais de

plusieurs techniques d’extraction, notamment l’apprentissage automatique, les statistiques et

les systèmes de base de données.

Les séries temporelles sont probablement le principal type de données collectées et ensuite

évaluées par les systèmes d’exploration de données. Ce type de données peut représenter des

données collectées dans différents domaines, tels que la surveillance de la santé, les appareils

ménagers et les machines industrielles. Par conséquent, l’extraction de séries temporelles

(TSM) est probablement le domaine le plus étudié de tous les sujets d’extraction de données.

Ce domaine est ensuite divisé par le nombre de sources adoptées pour surveiller un

phénomène. Par exemple, dans le cadre d’une simple surveillance cardiaque, les données

sont généralement collectées par une seule source (ECG), mais cela ne suffit souvent pas pour

découvrir certaines pathologies. D’autres sources doivent donc être adoptées pour obtenir des

informations plus précises. Cette différenciation conduit à deux types de séries temporelles :

Les séries temporelles univariées (UTS) lorsque la source de données est unique, et les séries

temporelles multivariées (MTS) lorsque la source de données est multiple.

La série chronologique n’est pas une structure simple. Chaque observation de la série

a une relation forte avec les autres observations. Cette interrelation est la caractéristique

principale des séries temporelles, et toute opération d’extraction de séries temporelles doit y

faire face. L’interrelation est souvent révélée sur l’axe temporel, par exemple, les anciennes

observations peuvent affecter les récentes, ou sur les signaux, par exemple, une source de

données peut interagir avec les autres pour générer les données à chaque horodatage. La

solution adoptée pour gérer l’interrelation est liée aux opérations d’extraction. Par exemple,

iii

la recherche de certaines observations cycliques est une opération fréquente pour découvrir

des anomalies. En effet, dans le cas d’anomalies, ces cycles peuvent être interrompus. Alors

que dans le regroupement de séries temporelles, les algorithmes négligent généralement des

sous-ensembles d’observations communes dans certaines séries pour les regrouper.

Le principal problème de la plupart de ces techniques d’exploration est de ne pas adopter

d’opération de prétraitement sur les séries temporelles. En effet, de nombreux algorithmes

utilisent les séries temporelles brutes pour en extraire des informations utiles à l’utilisateur.

Cependant, les séries chronologiques brutes présentent de nombreux effets indésirables, tels

que des points noisy ou l’énorme espace mémoire requis pour les longues séries. Dans

cette thèse, nous proposons de nouvelles techniques d’exploration de données basées sur

l’adoption des caractéristiques les plus représentatives des séries temporelles pour obtenir

de nouveaux modèles à partir des données. L’adoption de ces caractéristiques a un impact

considérable sur l’évolutivité des systèmes. En effet, l’extraction d’une caractéristique de la

série temporelle permet de réduire une série entière en une seule valeur. Par conséquent, cela

permet d’améliorer la gestion des séries temporelles, en réduisant la complexité des solutions

en termes de temps et d’espace.

L’évolutivité n’est pas le seul avantage de l’adoption des caractéristiques des séries

temporelles. La plupart des solutions ont récemment adopté des techniques d’extraction

de caractéristiques basées sur l’analyse en composantes principales (ACP) ou les réseaux

neuronaux. Les caractéristiques obtenues à partir de ces processus sont incompréhensibles

pour l’homme, ce qui signifie qu’elles ne permettent pas une étude plus approfondie. Dans

cette thèse, nous adoptons des caractéristiques interprétables qui permettent une étude plus

approfondie lorsque nos algorithmes obtiennent de nouvelles solutions. De plus, nous

proposons une nouvelle technique de sélection des caractéristiques pour réduire le nombre

de caractéristiques extraites et l’interprétabilité des résultats.

La figure 1.2 montre les principaux problèmes rencontrés au cours de cette thèse. Nous

présentons les solutions de l’état de l’art pour deux sujets, puis nous présentons nos solutions.

Les problèmes étudiés sont divisés en deux sujets principaux : (i) Dans le premier, nous avons

étudié le clustering pour les données de séries temporelles univariées et multivariées. Dans

la solution univariée, nous proposons un algorithme pour détecter la relation globale entre

les séries en exploitant les caractéristiques statistiques. Dans la solution multivariée, nous

proposons un algorithme qui exploite à la fois les caractéristiques intra-signal, caractérisant

les signaux uniques des séries temporelles multivariées, et les caractéristiques inter-signal

mesurant la relation par paire (en termes de similarité et de corrélation) des signaux multiples

en utilisant des métriques interprétables. (ii) Dans le deuxième thème, nous avons exploré les

algorithmes de détection des anomalies dans le contexte streaming. Nous proposons ensuite

iv

un algorithme de détection des anomalies qui exploite les caractéristiques statistiques pour

détecter les changements dans les données en streaming. De plus, l’algorithme combine le

clustering et l’algorithme de réseau neuronal pour améliorer sa qualité.

Le temps est une dimension qui affecte de nombreux aspects des phénomènes du monde

réel et du monde numérique. L’environnement physique, les machines industrielles, le

suivi des soins de santé et les activités économiques et financières sont quelques exemples

d’applications dont les composants sont régulés et évoluent dans le temps. Le regroupement

de séries temporelles est un problème récurrent dans les applications réelles impliquant des

pipelines de science des données et d’analyse des données. Il vise à organiser des objets de

données non étiquetés en groupes homogènes tout en minimisant la dissimilarité intra-classe

et en maximisant la dissimilarité inter-classe. Les systèmes existants s’appuient souvent

sur des mesures de distance entre des séries temporelles brutes et ne parviennent pas à

garantir l’interprétabilité des résultats tout en préservant l’efficacité et l’évolutivité. Cela

entrave l’intervention humaine et son droit à l’explicabilité, en particulier pour les experts du

domaine qui ne sont pas familiers avec le le Machine Learning.

Dans la solution FeatTS, nous proposons une méthode de clustering pour les séries

temporelles univariées qui extrait les caractéristiques les plus représentatives de la série. Les

séries temporelles univariées sont des séries temporelles où chaque phénomène est mesuré

par une seule source. Pour ce problème, la plupart des solutions adoptent la forme de la série

pour découvrir des similarités dans les données. Cette méthode est puissante dans les séries

temporelles très particulières. De plus, dans le cas de très longues séries, la recherche de

particularités nécessite beaucoup de temps et de mémoire. Notre solution vise à adopter les

particularités en les convertissant en réseaux de graphes pour extraire les interrelations entre

les signaux en adoptant des algorithmes de détection de communautés. Ensuite, une matrice

de cooccurrence fusionne toutes les communautés détectées. L’intuition est que si deux séries

temporelles sont similaires, elles appartiennent souvent à la même communauté, et la matrice

de cooccurrence permet de le révéler. Nous résumons nos principales contributions comme

suit :

• Nous présentons une nouvelle méthode de Semi Supervised Clustering qui tire parti

des caractéristiques les plus discriminantes extraites des séries chronologiques.

• Notre méthode permet de traiter à égalité toutes les caractéristiques d’un ensemble

de données donné au lieu de présélectionner un nombre fixe d’entre elles pour tous

les ensembles de données ou de se contenter de tirer parti de la similarité des données

brutes.

v

• Notre méthode permet d’obtenir des résultats de plus haute qualité que les dernières

lignes de base sur les ensembles de données de la littérature.

Dans Time2Feat, nous créons un nouveau clustering de séries temporelles multivariées.

Dans les séries temporelles multivariées, la mesure du phénomène étudié est détectée à travers

différentes sources. En raison de leurs besoins élevés en mémoire, la plupart des solutions

proposées dans la littérature visent à réduire la taille des séries en appliquant des algorithmes

d’extraction de caractéristiques tels que l’ACP ou le réseau neuronal. Ces solutions sont

très gourmandes en temps et ne fournissent souvent aucune caractéristique discriminante.

C’est pourquoi Time2Feat propose deux extractions différentes pour améliorer la qualité

des caractéristiques. Le premier type d’extraction est appelé extraction de caractéristiques

intra-signal et permet d’obtenir des caractéristiques à partir de chaque signal de la série

temporelle multivariée. L’autre type d’extraction est appelé Inter-Signal Features Extraction

et permet d’obtenir des caractéristiques en considérant des couples de signaux appartenant

à la même série temporelle multivariée. En outre, les deux méthodes fournissent des car-

actéristiques interprétables, ce qui rend possible une analyse ultérieure. Grâce à l’adoption

des caractéristiques, l’ensemble du processus de clustering des séries temporelles est plus

léger, ce qui réduit le temps nécessaire pour obtenir le cluster final. Par conséquent, les deux

solutions représentent l’état de l’art dans leur domaine. Les principales contributions sont

résumées comme suit :

• Un système de regroupement de bout en bout interprétable et efficace pour les séries

temporelles multivariées.

• Un système de regroupement humain dans la boucle permettant des annotations basées

sur l’apprentissage.

• Une évaluation complète et une source ouverte d’artefacts.

La recherche de sous-séquences anormales dans les données de séries temporelles est

un problème crucial dans divers contextes, des applications financières au suivi des soins de

santé. Une anomalie peut signifier des événements critiques, qu’il est essentiel de révéler au

plus vite. Ces dernières années, de nombreux algorithmes ont été proposés pour détecter ces

anomalies, et la plupart d’entre eux sont basés sur deux techniques principales : Le clustering

et les réseaux neuronaux. Le clustering est adopté pour découvrir si les nouveaux points

obtenus sont placés à un endroit connu dans la dimension spatiale, et la plupart du temps, il

est adopté pour les séries temporelles hors ligne. En revanche, les réseaux neuronaux sont

généralement adoptés pour les séries chronologiques en ligne, et ils prévoient les points futurs

vi

qui seront comparés à l’original. Les points originaux sont considérés comme anormaux si la

distance entre les points est élevée.

Dans AnomalyFeat, nous proposons un algorithme pour révéler des anomalies à partir de

séries temporelles univariées. La caractéristique de cet algorithme est la capacité de travailler

parmi des séries temporelles en ligne, c’est-à-dire que chaque valeur de la série est obtenue

en streaming. Dans la continuité des solutions précédentes, nous adoptons les fonctionnalités

de révélation des anomalies dans les séries. Avec AnomalyFeat, nous unifions les deux

algorithmes les plus populaires pour la détection des anomalies : le clustering et le réseau

neuronal récurrent. Nous cherchons à découvrir la zone de densité du nouveau point obtenu

avec le clustering. En revanche, nous adoptons le réseau neuronal récurrent pour prédire le

nouveau point, pour savoir s’il sera similaire au point réel et si les deux ont été placés dans le

même cluster.

Abstract

Time Series is a set of observations arranged chronologically. Time Series usually result

from observing some phenomenon analyzed in the real world, such as medical monitoring,

financial analysis, and industrial machinery. Many of these applications are addressed in

the literature by various tasks such as Classification, Anomaly Detection, Prediction, and

Clustering. In this thesis, we propose new methods for facing two of these tasks tasks, namely

Clustering and Anomaly Detection, by adopting the characteristics of the series. The main

advantage of adopting the characteristics is their natural explainability. Indeed, each feature

is obtained through a series of statistical features, in most cases understandable by humans.

The adoption of these features guarantees the interpretability of the results while at the same

time preserving efficiency and scalability.

For what concerns the clustering task, we propose FeatTS and Time2Feat, respectively for

univariate and multivariate time series. FeatTS is a feature-based semi supervised clustering

framework addressing the above issues for variable length and heterogeneous time series.

Specifically, FeatTS leverages a graph encoding of the time series obtained by considering a

high number of extracted features. It then employs community detection and builds upon

a Co-Occurrence matrix to unify all the best clustering results. FeatTS outperforms the

state-of-the-art clustering methods and is the first to digest domain-specific time series such

as healthcare time series while still being robust and scalable.

Time2Feat is an end-to-end machine learning system for multivariate time series (MTS)

clustering. The system is the first to leverage the time series’ inter-signal and intra-signal

features. While relying on state-of-the-art feature extraction approaches allows further refine

the features by choosing the most appropriate ones and incorporating human feedback in the

feature selection process. Time2Feat also enables users to inspect MTS further, compare

the state-of-the-art methods, analyze the features, and cluster results. The system leverages

human knowledge to improve the clustering pipeline using human annotations. We demon-

strate the effectiveness, interpretability, efficiency, and robustness of Time2Feat through

experiments on eighteen real-world and benchmarking time series datasets, comparing them

with state-of-the-art MTS clustering methods.

viii

For what concerns anomaly detection„ we propose AnomalyFeat, a new method that

leverages the features for recognizing anomalous points in streaming data by learning

incremental Neural Networks and creating clusters of points with similar characteristics.

This method is innovative as it combines unsupervised learning with supervised learning for

capturing the anomalies of time series in an incremental fashion. Preliminary experiments

show the promising effectiveness and efficiency of the approach.

Table of contents

List of figures xi

List of tables xiii

1 Introduction 1
1.1 Motivation . 1

1.2 Contributions . 3

1.2.1 Time Series Clustering . 3

1.2.2 Anomaly Detection in Streaming Time Series 5

1.3 Outline . 6

1.4 List of Publications . 7

2 Background 9
2.1 Introduction . 9

2.2 Approaches for time series analysis . 11

2.2.1 Shape-Based . 11

2.2.2 Feature Based . 12

2.3 Tasks . 18

2.3.1 Similarity Search . 18

2.3.2 Clustering . 19

2.3.3 Classification . 21

2.3.4 Anomaly Detection . 24

3 Related Work 31
3.1 Similarity Search . 31

3.2 Clustering . 32

3.3 Classification . 34

3.4 Anomaly Detection . 36

x Table of contents

4 Time Series Features Clustering 39
4.1 Introduction . 39

4.2 FeatTS: Clustering Univariate Time Series 40

4.2.1 Pipeline of FeatTS . 41

4.2.2 Real-world Clinical Data . 48

4.2.3 Experimental Setup and Results 48

4.2.4 Ablation and Scalability tests . 50

4.2.5 Human Centered Settings . 54

4.3 Time2Feat: Clustering Multivariate Time Series 59

4.3.1 Motivating Real-World Scenario 60

4.3.2 Time2Feat Pipeline . 62

4.3.3 Experimental evaluation . 65

4.3.4 Lessons Learned . 73

4.4 Conclusion . 74

5 Time Series Feature-based Anomaly Detection 77
5.1 Introduction . 77

5.1.1 Related Work . 79

5.2 Anomaly Scoring . 81

5.2.1 IntraClusterEvaluation . 83

5.2.2 InterClusterEvaluation . 84

5.2.3 Density Evaluation . 85

5.3 Algorithm . 87

5.3.1 Learning Phase . 87

5.3.2 Estimation Parameter . 91

5.3.3 Evaluation Phase . 94

5.3.4 Streaming Anomaly Detection Properties 96

5.4 Experiments . 96

6 Conclusion and Future Work 101
6.1 Conclusion . 101

6.2 Future Work . 102

References 103

List of figures

1.1 Example of Time Series . 2

1.2 Resuming of the Data Types and Algorithms adopted in this thesis. 7

2.1 Components Category . 10

2.2 Visual Representation of the DTW and ED Warping Paths. 12

2.3 Taxonomy of Features Selection Methods. 16

2.4 Classification with kNN, with k=3 . 22

2.5 Time Series Classification with CNN on Raw Time Series 24

2.6 Type of Anomalies . 25

2.7 Example of Differencing Operation . 27

4.1 The algorithmic pipeline of FeatTS. 41

4.2 A running example on real-world healthcare data. 41

4.3 Encoding from time series to graph. 44

4.4 Application of Community Detection algorithm for each feature. 44

4.5 DTW Pipeline . 51

4.6 Random Features Pipeline . 51

4.7 kMeans Ablation Pipeline . 52

4.8 Scalability Results. 54

4.9 The algorithmic pipeline of FeatTS. 54

4.10 Test Learning Threshold. 56

4.11 Similarity and distances within the Communities. 57

4.12 Distances within the Communities. 58

4.13 Time series of the GFR signal for patients treated for Acute and Chronic

Dialysis. 59

4.14 The clustering analysis supported by Time2Feat on the BasicMotion dataset. 63

4.15 The proposed pipeline and the implementation in the Time2Feat system. . . 64

4.16 Efficiency analysis. 71

xii List of figures

4.17 Removing the Features Selection from the pipeline. 72

4.18 Difference (AMI) between feature-based and raw data clustering with the

same technique. 74

5.1 Time Series Example . 82

5.2 Distance Predicted Formula. 83

5.3 Distance Centroid Formula. 84

5.4 Distance Inter Centroid Formula. 85

5.5 Different version of Z-Score. 86

5.6 Covered area with Z-Score equal to 0 . 87

5.7 AnomalyFeats Pipeline . 88

5.8 Division between Anomaly-Free and Unknown Data 88

5.9 Clusters creation for each selected feature. 90

5.10 Example of Incremental Neural Network 91

5.11 Incremental Model MSFt,i . 91

5.12 Computation of the AnomScoreMean, μ and σ on sliding windows 3 and 4. 92

5.13 Evaluation Phase Flowchart . 95

5.14 Example of Anomaly Window in a NAB Scoring. 97

5.15 Scoring example for a sample anomaly window, where the values represent

the scaled sigmoid function, the second term in Eq. (13). 98

List of tables

4.1 Co-Occurrence Matrix with weights. 47

4.2 Results showing the values of AMI for UCR datasets 50

4.3 Results on Kidney 3Yr and 5Yr Datasets 50

4.4 Ablation Test Results. 53

4.5 Datasets used in the experiments. V is the number of MTS, S the number of

signals, N the length of the series, C the number of classes, EO the overall

number of elements per dataset, EM the number of elements per MTS. . . . 67

4.6 Effectiveness (AMI score). In bold, the best value per dataset. The ↑ mark

denotes Time2Feat settings that overcome the competing approaches. . . . 68

4.7 Interpretability as number of intra-signal / inter-signal features. � indicates

1+ inter-signal feature(s). 69

4.8 Runtime execution , in seconds (- timeout exception fixed in 10 hours, ×
memory exception). 70

4.9 Accuracy (AMI) varying the clustering techniques. In bold, the best result

per dataset. The ↑ mark denotes the best results per setting (T2F0, T2F2,

T2F5). 73

5.1 Example of a subset of features extracted on the Sliding Windows of length t
on the last point xl p . 89

5.2 Example of the features extracted with two different size of Sliding Windows 89

5.3 Example of the features selected for two different sizes of Sliding Windows 90

5.4 Example of the Anomaly Score distribution of the two different size of

Sliding Windows . 92

5.5 Distribution of the Z−AnomalyScore . 93

5.6 Distribution Difference of the Z−AnomalyScore 94

5.7 Application Profiles of NAB . 98

Chapter 1

Introduction

1.1 Motivation

The relentless evolution of technology has allowed us to gather data from each kind of

phenomenon. This improvement has been made possible by increasing sources from which

new data can be collected. The data collected by these sources are very diverse, but the most

commonly gathered data are temporal series. The temporal series are collections of data

obtained through repeated measurements over time. They are usually represented through

the Cartesian Axis, where the y-axis represents the values detected, and the x-axis is the

detection time.

Figure 1.1 is an example of temporal series. This data collection aims to provide some

food for thought for mining events inside the data. Data Mining aims to extract information

from the datasets and represent them into an understandable configuration for further use,

such as anomaly detection, clustering, predictive analysis, et cetera. The entire process

of discovering and extracting patterns from the dataset takes place through several mining

techniques, including machine learning, statistics, and database systems.

The temporal series is probably the primary data type collected and then evaluated by the

data mining systems. This kind of data can represent data collected from different domains,

such as health monitoring, household appliances, and industrial machines. Therefore, Time

Series Mining(TSM) is presumably the vastest studied area of all the Data Mining topics.

This area is subsequently split by the number of sources adopted for monitoring a

phenomenon. For example, in simple heart monitoring, the data are usually collected by

only one source (ECG) but often is not enough to discover some pathologies. Hence, other

sources need to be adopted to obtain more precise information. This differentiation leads to

two kinds of time series: Univariate Time Series(UTS) when the data source is unique, and

Multivariate Time Series(MTS) when the data source is more than one.

2 Introduction

Fig. 1.1 Example of Time Series

The time series is not an easy structure. Each observation in the series has a strong

relationship with the other observations. This inter-relationship is the primary characteristic

of the time series, and any time series mining operation has to deal with it. The inter-

relationship is often revealed on the temporal axis, e.g., the old observations may affect the

recent ones, or on the signals, e.g., one data source may interact with the others to generate

the data at each timestamp. The solution adopted for managing the inter-relationship is

related to the mining operations. For instance, looking for some cyclic observations is a

frequent operation for discovering anomalies. Indeed, in the case of anomalies, these cycles

may be interrupted. While in the clustering of time series, the algorithms usually overlook

subsets of observations in common in some series to group them.

The majority of mining techniques employed suffer from a crucial deficiency, namely

the absence of any preprocessing operations performed on the time series data. Indeed,

many algorithms threaten raw time series for extracting helpful information for the user.

Nevertheless, raw time series carries numerous adverse effects, such as noisy points or the

huge memory space required for long series. In this thesis, we propose new data mining

techniques based on adopting the most representative characteristics of the time series for

obtaining new patterns from the data. Adopting the features has a profound impact on the

scalability of the systems. Indeed, extracting a characteristic from the time series allows

the reduction of an entire series into one value. Therefore, it permits improving time series

management, reducing the complexity of solutions in terms of time and space for each length

of time series.

In addition to scalability, adopting the characteristics of time series data offers other

advantages as well. While many solutions use feature extraction techniques such as Principal

1.2 Contributions 3

Component Analysis (PCA) or Neural Networks, the resulting features are often unintelligible

to humans, limiting further analysis. In this thesis, we propose the use of interpretable features

that allow for further investigation when new solutions are obtained using our algorithms.

Furthermore, we introduce a novel feature selection technique to reduce the number of

extracted features and increase the interpretability of the results.

My thesis has been funded by ANR under the contract ANR QualiHealth1.

1.2 Contributions

Figure 1.2 shows the main tasks faced during this thesis. We present state-of-the-art solutions

for two topics, and then we present our solutions. The problems studied are divided into

two main topics: (i) In the first, we studied the clustering for the univariate and multivariate

time series data. In the univariate solution, we propose an algorithm for detecting the global

relationship between the series by leveraging the statistical features. In the multivariate

solution, we propose an algorithm that exploits both intra-signal features, characterizing

the single signals of multivariate time series, and inter-signal features measuring pairwise

relatedness (in terms of similarity and correlation) of multiple signals employing interpretable

metrics. (ii) In the second topic, we explored algorithms for detecting anomalies in the

streaming context. Then, we propose an anomaly detection algorithm that leverages the

statistical features for detecting changement in the streaming data. Moreover, the algorithm

combines the clustering and the neural network algorithm to improve its quality.

1.2.1 Time Series Clustering

Time series clustering is a recurrent problem in real-life applications involving data science

and data analytics pipelines. It aims to organize unlabeled data objects into homogeneous

groups while minimizing intra-cluster dissimilarity and maximizing inter-cluster dissimilarity.

Existing systems often leverage distance measures between raw time series and fail to

guarantee the interpretability of the results while at the same time preserving efficiency and

scalability. This hinders human intervention and their right to explainability, especially for

domain experts unfamiliar with ML.

1.2.1.1 Limitation of Current Approaches

The main limitation in univariate time series clustering is the series size. Indeed, many

approaches adopt the distance between the series to evaluate the similarities, and in very long

1https://anr.fr/Project-ANR-18-CE23-0002

4 Introduction

series, the procedure can require much time. Other methods have been proposed to adopt

the features for clustering the time series[142, 111]. However, many apply the same features

for every kind of dataset without any feature selection algorithm for detecting the most

characteristic features. Research on MTS is still at an early stage. Proposals adapt clustering

approaches designed for univariate to multivariate time series after applying dimensionality

reduction techniques. Examples of such techniques (CSPCA[76] and MC2PCA[75]) are

based on the Principal Component Analysis (PCA), which enables the conversion of corre-

lated features in the high dimensional space into a set of uncorrelated features in the low

dimensional space. Nevertheless, the resulting clusters suffer from poor explainability as the

original dimensions are lost.

1.2.1.2 FeatTS

In the FeatTS solution, we propose a clustering method for univariate time series that extract

the most representative characteristics of the series. The univariate time series are temporal

series where each phenomenon is measured through one single source. For this problem,

most of the solutions adopt the shape of the series for discovering similarities in the data[41].

This method is powerful in very peculiar time series. Moreover, in the case of very long

series, finding peculiarities requires a lot of time and memories. Our solution aims to adopt

the features by converting them into graph networks to extract the inter-relationship between

the signals by adopting community detection algorithms. Subsequently, a Co-Occurrence

Matrix merges all the communities detected. The intuition is that if two time series are

similar are often in the same community, and the Co-Occurrence Matrix permits to reveal

that. We summarize our main contributions as follows:

• We introduce a novel semi-supervised clustering method leveraging the most discrimi-

nating features extracted from the time series

• Our method allows to treat at par all the features of a given dataset instead of prese-

lecting a fixed number of them for all datasets or just leveraging the similarity of raw

data.

• Our method achieves high-quality results compared with the latest baselines on the

literature datasets

1.2.1.3 Time2Feat

In Time2Feat, we propose a new multivariate time series clustering. In multivariate time

series, the measure of the studied phenomenon is detected through different sources. Due to

1.2 Contributions 5

its high memory requirements, most of the solutions proposed in the literature aim to reduce

the size of the series by applying algorithms for extracting features such as PCA or Neural

Network. The solutions mentioned are often time-intensive and may not always provide

discriminative features. Therefore, Time2Feat proposes two different feature extraction

for improving the quality of the features. The first type of extraction is called Intra-Signal

Features Extraction and allows obtaining features from every signal in the Multivariate Time

Series. The other type of extraction is called Inter-Signal Features Extraction and permits

obtaining features by considering couples of signals belonging to the same multivariate

temporal series. Furthermore, both methods provide interpretable features, making possible

further analysis. Through the adoption of the features, the entire process of time series

clustering is more light, which reduces the time required for obtaining the final cluster.

Consequently, both the solutions represent state of the art in their topic. The key contributions

are summarized as follows:

• An interpretable and efficient end-to-end clustering system for multivariate time series.

• A human-in-the-loop clustering system allowing for learningbased annotations.

• A comprehensive evaluation and an open source artifacts.

1.2.2 Anomaly Detection in Streaming Time Series

Finding anomalous subsequences in time series data is a crucial problem in various contexts,

from financial applications to healthcare monitoring. An anomaly might signify critical

events, which is critical to reveal soonest. In recent years, many algorithms have been

proposed to detect these anomalies, and most of them are based on two main techniques:

Clustering and Neural Networks. The clustering is adopted for discovering if the new points

obtained are placed in a known place in the space dimension, and most of the time is adopted

for the offline time series. Instead, Neural Networks are usually adopted for online time

series, and they forecast the future points that will be compared with the original. The

original points are considered anomalous if the distance between the points is high.

1.2.2.1 Limitation of Current Approaches

Most of the approaches of Anomaly Detection adopt average or variance for computing all the

previous data points and fix a tolerance threshold for the anomaly. If an observation exceeds

the threshold, the algorithm marks it as an anomaly. These techniques are computationally

efficient, but they do not work for most online time series as they mostly ignore the temporal

aspects of the data.

6 Introduction

The Distance Approach is another similar approach that computes the difference between

the value of the last observations with the new one.ì, and if the difference exceeds the

tolerance, the algorithm notifies the presence of an anomaly. However, this method can

perform well only in stationary time series data because the difference between the last

observation and the new one is expected to follow a consistent pattern.

Clustering algorithms project the observation in a multidimensional space and then

compute the density of the observation in the space that helps to detect point anomalies.

However, this method does not reveal contextual anomalies, i.e., when the point is different

from the value expected, but its spaced area is highly dense.

The approach most used in anomaly detection algorithms is certainly the prediction.

The time series teaches a neural network model to forecast the distribution of the following

points. The main problem of this approach is the number of observations that the model

needs to understand the distribution. Indeed, most Neural Network requires a high demand of

observations to recognize perfectly the following points. Therefore, adopting this approach

to streaming data requires much time to be accurate.

1.2.2.2 AnomalyFeat

In AnomalyFeat, we propose an algorithm for revealing anomalies from the univariate time

series. The characteristic of this algorithm is the ability to work among online time series,

i.e., each value of the series is obtained in streaming. Pursuing the previous solutions, we

adopt the features for revealing anomalies in the series. With AnomalyFeat, we unify the

two most popular algorithms for anomaly detection: Clustering and the Recurrent Neural

Network. We aim to discover the density area of the new point obtained with the clustering.

Instead, we adopt the Recurrent Neural Network to predict the new point, whether it will be

similar to the real one, and whether both have been placed in the same cluster.

1.3 Outline

The rest of the thesis is organized as follows.

• Chapter 1 introduces basic definitions and taxonomy related to Time Series mining.

Then, we present the most adopted methods for solving the leading data mining tasks

on temporal data.

• Chapter 2 reviews the state-of-the-art of each task presented in the previous chapter.

1.4 List of Publications 7

FeatTS (Ch.2) Time2Feat (Ch.2) AnomalyFeat (Ch.3)

Features Extraction and Selection

Clustering

Data Type

Offline Time Series Online Time Series

Algorithms

Graphs Network

Co-Occurence Matrix

Inter-Signal Features Extraction

Neural Networks

Local Reachability Density

Univariate Time Series Univariate Time SeriesMultivariate Time Series

Fig. 1.2 Resuming of the Data Types and Algorithms adopted in this thesis.

• Chapter 3 presents the techniques proposed for clustering offline time series by

leveraging interpretable features. We first introduce FeatTS, a clustering method for

univariate time series. This method leverages the interpretable features for creating a

graphs network for extracting the global similarity among the time series. Then, we

introduce Time2Feat, a clustering method for multivariate time series. This method

aims to extract interpretable features by analyzing couples of signals.

• Chapter 4 presents the technique proposed for revealing anomalies in online time

series. First, we introduce some background of the task by defining the principal

properties to respect. Then, we present AnomalyFeats an algorithm that combines

the two main techniques for detecting anomalies(Clustering and Neural Networks) by

leveraging the interpretable features.

1.4 List of Publications

• Donato Tiano, Angela Bonifati, and Raymond Ng. 2021. FeatTS: Feature-based Time

Series Clustering. In Proceedings of the 2021 International Conference on Management

of Data (SIGMOD ’21). Association for Computing Machinery, New York, NY, USA,

2784–2788. https://doi.org/10.1145/3448016.3452757

• Donato Tiano, Angela Bonifati, Raymond Ng. Feature-Driven Time Series Clustering.

24th International Conference on Extending Database Technology, EDBT 2021, May

2021, Nicosia, Cyprus.

8 Introduction

• Tiano Donato, Bonifati Angela, Ng Raymond. (2021). Human-Centered Clustering for

Time Series Data. Data Science with Human in the Loop @ KDD’21

• Angela Bonifati, Francesco Del Buono, Francesco Guerra, and Donato Tiano. Time2Feat:

Learning Interpretable Representations for Multivariate Time Series Clustering. VLDB

2023 (To Appear)

Chapter 2

Background

2.1 Introduction

A time series is a result of observing an underlying phenomenon. Values are collected from

measurements made at uniformly spaced time instants. The values are usually stored with

timestamps to detect the exact moment when they are measured[145, 46]. This information

is crucial because the sampling frequency can change over time, and with the timestamps,

we can see when the value was obtained. The timestamp is unnecessary when the sampling

frequency is constant, and the first sample is saved. The observations to study a phenomenon

can come from different types of sources. Often, the number of sources defines the macro

category of the time series. If the source is only one, these time series are called Univari-

ate Time Series(UTS). Instead, if the source is more than one, the time series are called

Multivariate Time Series(MTS).

Definition 1 (Univariate Time Series). A univariate time series u is an ordered sequence of
values u = (t1, t2, . . . , tN), where N is the length of the series, and ti ∈ R,∀i.

Definition 2 (Multivariate Time Series). A multivariate time series M is a set of univariate
time series (a.k.a. signals). In particular, M = (u1,u2, . . . ,uS), where S is the number
of signals, and u j = (t j1, t j2, . . . , t jN). More generally, a multivariate time series can be
represented as a matrix R

NxS, where the signals are described as column vectors.

Definition 3 (Time Series Dataset). A dataset D of time series is a set of V time series D =

(T S1,T S2, . . . ,T SV). This is a generic definition, T Si can be represented by an Univiariate
or Multivariate Time Series.

The peculiarity of the time series data is its capacity to exhibit a variety of patterns, each

representing an underlying category[102]. These categories, also called components, help

10 Background

Fig. 2.1 Components Category

split the time series to obtain more knowledge about the data. Time series can include some

or all of the following components: Trend(T), Cyclical(C), Seasonal(S) and Irregular(I).

These components may be combined in different ways. Most of the time, they are multiplied

or added:

u = T ×C×S× I or u = T +C+S+ I

The components are usually divided by the length of the pattern, as shown in Figure 2.1.

Trend(T)[88, 135] is a long-term pattern of the time series. It represents a relatively

smooth, steady, and gradual movement of a time series in the same direction. Indeed, when

a time series shows a general upward pattern, it is called an uptrend, and when the trend

exhibits a lower pattern, that is a downward trend.

Seasonal(S)[126] fluctuations describe any regular variation with a period of less than

year. This variation will be present in a time series if the data are recorded hourly, daily,

weekly, or monthly. These variations come into play either because of natural forces, such as

seasons and climatic conditions, or artificial conventions, such as festivals and habits.

Cyclical(C)[89] variation is a non-seasonal component that varies in a recognizable cycle.

In this case, the duration of a cycle depends on the type of event being analyzed. This cyclic

movement is sometimes called the ‘Business Cycle’.

Irregular(I)[71] variation is the unpredictable component. These fluctuations are unfore-

seen, uncontrollable, unpredictable, and erratic.

2.2 Approaches for time series analysis 11

2.2 Approaches for time series analysis

This section summarizes the tasks that have attracted the attention of researchers in time

series mining. It is organized into three main categories: Shape-Based, Features-Based

Approaches and Model-Based Approaches. The shape-based approach is probably the most

known and used method. This category of algorithms uses the raw data to analyze the

time series and perform their main tasks analysis. Conversely, feature-based approaches

adopt meaningful and interpretable characteristics for performing the principal tasks. A

third category for analyzing the time series is called the model-based approach. These

approaches aim to generate models or a mixture of underlying probability distributions and

time series are considered identical when the models characterizing individual series are

similar. Model-based approaches are not relevant for the solutions proposed in this thesis.

For such a reason, they will not be discussed further in this chapter.

2.2.1 Shape-Based

In most of shape-based tasks, computing the similarity between the time series is an typical

operation[6, 37].

Definition 4 (Time Series similarity measure). A similarity measure Δ(ui,u j) of time series
ui, u j is a function taking two time series as inputs and returning the distance between these
series.

The methods for computing the similarity are numerous[137, 138, 83]. The most common

and easy similarity measure is the Euclidean Distances(ED).

EDui,u j =

√√√√ k

∑
k=1

(uik −u jk)
2 (2.1)

It considers the time series a data vector and provides an exact mapping between each

time point of the two time series. The complexity of this similarity measure is O(n), where n

is the length of time series. The main problem with this measure is the lack of consideration of

temporal, which can generate several pitfalls[68, 36]. Dynamic Time Warping (DTW)[14, 90]

is an elastic similarity measure for sequential data. The DTW warps the time axis by finding

an optimal alignment between two time series. Specifically, DTW aims to find the shortest

warping path as the optimal alignment. A warping path P is a set of contiguous matrix indices

defining a mapping between the time points in two time series. The number of warping paths

obtained by the measure can be enormous. DTW selects the path that minimizes the global

12 Background

(a) DTW Alignment (b) Warping Paths (c) ED Alignment

Fig. 2.2 Visual Representation of the DTW and ED Warping Paths.

warping cost/distance. Fig. 2.2 shows the visual illustration of the differences between DTW

and ED for better understanding. Compared with ED, DTW better extracts the points with

similar geometric shapes, improving the accuracy of the distance (similarity) measure. The

complexity of computing DTW is O(m ∗ n), where m and n represent the length of each

sequence. Many techniques have improved efficiency performance in the last years. These

strategies aim to restrict the number of allowed warpings. The highest acceptable distance

between any couple of indexes is defined to lower bound the warping path. For instance,

the FastDTW[118] calculates the warp path in a multi-resolution manner, which recursively

projects a warped path to a higher resolution and then refines it. This solution allows a

linear-time computation of DTW but with an exchange of information loss, leading to an

optimal warping path.

2.2.2 Feature Based

The usage of the raw series for analyzing the time series is the most adopted method. This

solution has proven a highly discriminating power and a good performance on most of

the algorithms exposed. However, this approach profoundly depends on the quality of the

raw series. Indeed, most algorithms compute the distances between the series or series

subsequences to discriminate the similarity. Therefore, this approach is fruitful when the

series presents discriminant shapes or apparent differences between each series. Moreover,

another problem with the raw series is the quality of the sensor that has recorded them. Many

low-quality sensors could miss some data points during the recording of the series or, even

worse, can produce noisy data. These inaccurate values can prejudicate the performance of the

algorithms. Another problem that arises when the raw series are adopted is time performance.

Computing the distance between long time series is time consuming. Moreover, in the case

of a large dataset, producing the distances between each series can harm time performance.

Moreover, the longer the series are, the more the distances increase, making it challenging to

distinguish a series from another and reducing the quality performance. Besides performance

2.2 Approaches for time series analysis 13

problems, having very long time series causes an increase in the required memory space.

Adopting the distance for measuring the difference between the time series in some domains

is not discriminatory enough. This characteristic alone is probably not enough to obtain

a good analysis of the series. In the last years, it has been proven that a high number of

uncorrelated characteristics improve the quality of the task analysis. Moreover, with the

explosion of the Explainable AI (XAI)[119] trend, adopting explainable characteristics can

produce deep analysis among the subject domain.

A possible solution that has been proposed to solve this problem is to extract high-level

view of the time series rather than only their raw shapes and distances. The idea is to capture

different properties from same series and analyze the temporal sequence by studying these

properties. This solution is known under the name of Features Analysis of time series. The

features, or characteristics, allow to capture a global picture of the data, identifying different

details of the series and with different natures. The process for detecting and extrapolating

the characteristics of the time series is called Features Extraction. This procedure allows to

summarize the entire series in a vector of values, where each value represents the extracted

feature. The first problem that the adoption of the features permits to solve is connected

with its property of summarizing long and noisy time series. Indeed, the features are less

susceptible to the noisy time series because of their statistical nature, allowing them to

balance the noise with the entire series. Moreover, the feature extraction can be considered a

dimensionality reduction operation. In some cases, the summarized characteristics of the

time series can provide a more meaningful dimensionality reduction than other methods.

Indeed, many features that reduce the dimensionality of the series are interpretable, i.e.,

adopt some interpretable formulation for summarizing the entire series. This property of the

features is significant for knowing the nature of the features that better interpret the domain of

the time series. There is extensive literature on time series analysis methods that characterize

time series properties. The easiest way to categorize the features is by their nature. The

distribution features are probably the most straightforward measure of the time series values.

They are independent of the time ordering of the points but can express inherent information

of the series. Examples of distribution features are mean, variance, distribution entropy, and

measure for outliers. An example is the absolute energy of the time series, which is the sum

of the squared values.

E =
n

∑
i=1

x2
i (2.2)

In the formula, xi represents the values of the time series and n is the length of the series.

14 Background

The autocorrelation features allow the measurement of the correlation between time series

values separated by a given time lag. These features are very useful for finding repeated

signals in the presence of noise. The autocorrelation is computed as follows:

C(τ) =
1

s2
x(N− τ)

N−τ

∑
t=1

(xt− x̄)(xt+τ − x̄) (2.3)

In the formula, τ represents the time lag for the time series x, with variance s2
x and mean x̄.

The family of Entropy Features are used to quantify the grade of predictability in a

time series. These features are based on Information Theory, a branch of mathematics that

permits to discover and explore the mathematical laws underlying the behavior of data.

Some examples of the Entropy Features are Approximate Entropy (ApEn)[104], Sample

Entropy (SampEn) [112], and Permutation Entropy (PermEn)[50]. The PermEn quantifies

the complexity of a dynamic system by capturing the order relations between values of a

time series. Moreover, it extracts the probability distribution of the ordinal patterns, i.e., the

frequency of occurrence of each possible ordinal pattern in a time series of discrete values.

The PermEn does not require any parameter in input, and it is very robust to the noise and

the time complexity. The formula of PermEn is expressed as:

PED,norm =− 1

log2D!

D!

∑
i=0

pilog2 pi, (2.4)

In the formula, D represents the embedding dimension, i.e., the size of the subsequence

to permute. The parameter pi represents the relative frequency of each permutation. This

value is computed by dividing the number of times the permutation is found in the series by

the total number of sequences. The formula is normalized between 0 and 1. As the values

decrease, the time series tends to exhibit greater regularity and determinism. Conversely,

when the values approach 1, the time series is more likely to be noisy.

Another family of features is based on the extraction of a set of models among the series.

The idea is to find the most suitable parameters for each model proposed and use these

parameters to compare the series. Most of these models are based on the regression model,

such as ARMA, ARIMA, GARCH, or statistical models, such as the Hidden Markov Model

(HMM) and Gaussian process models.

The Regression and Statistical models are not the only ones used for extracting the

features among the series. The non-linear time series analysis methods, including embedding

dimensions and fluctuation analysis, allow to obtain non-linearity measures, such as the

Fractal Dimension Spectrum of a time series[77].

2.2 Approaches for time series analysis 15

The Stationary Features allow to quantify how properties of a time series change over

time. For example, the Average Stationarity metric (StatAv) provides a measure of mean

stationarity

StatAv(τ) =
μ({x1:w,xw+1:2w, ...,x(m−1)w:mw})

μ(x)
(2.5)

This metric computes m non-overlapping windows, with a length of w, among the time series.

A standard deviation μ is computed among each window, and time series in which the mean

in windows varies more than the entire time series have higher values of StatAv.

The Fourier transform in discrete time allows a time series to be represented as a linear

combination of frequency components, such as power spectrum, wavelet spectrum, and other

periodicity measures. The most representative formula is expressed as:

x̃k =
1√
N

N

∑
i=1

xie
2πnki

N (2.6)

In the formula, the real and complex parts of x̃k encode the amplitude and phase of that

component, e
2πnki

N , for frequencies fk =
k

NΔt , where Δt is the sampling interval.

Other basis function decompositions use a wavelet basis set under variations in temporal

scaling and translation to capture changes. Those linear systems of equations can only

produce exponentially growing (or decaying) or (damped) oscillatory solutions. However,

irregular behavior in a linear time series must be attributed to a stochastic external drive to

the system.

Other properties like extreme events[4] or visibility graphs[70], and other statistics from

biomedical signal processing can be applied to a time series for obtaining features from

different domains. For example, many features can be derived from the heart rate variability

(HRV) literature[81].

With the explosion of statistical methods for analyzing the time series, the number

of features for exploring the temporal sequence is augmented. The literature presents

studies[8, 30, 38] where the number of possible features extractable from the time series

can surpass 7000 for each series. Therefore, the selection of which features can be relevant

for capturing the approximation of the dataset represents the fundamental problem of these

methods. Timmer et al. wrote: “The crucial problem is not the classificator function, but

the selection of well-discriminating features. In addition, the features should contribute to

an understanding [...]"[133]. The choice of the features for characterizing the time series is

often based on the subjectivity of the data analyst. The problem with this solution is in the

ability of the analyst to know the domain and select the most suitable features. Moreover,

it is not easy to know whether the features used by one researcher would work better than

16 Background

Fig. 2.3 Taxonomy of Features Selection Methods.

others. This human methodological comparison is complicated to perform because of the

vast and interdisciplinary character of the time-series analysis literature and the different

nature of the extractable features.

In the last years, many techniques have been developed to select the best features auto-

matically. In the machine learning field, this operation is often divided into two categories

Supervised and Unsupervised techniques. Figure 2.3 shows a taxonomy of the primary ways

to select the features in both categories.

In the Filter Method, features are selected based on statistics measures. It removes

redundant and irrelevant features by ranking them. This ranking is computed by correlating

the features with the output values. In the supervised approach, the review is done by

checking if the features and the labels are positively or negatively correlated.

In the Wrapper Method, selecting the features is considered a search problem. The

dataset is split into different subsets of features and evaluated. The set of features that obtain

the best performance is provided in the output.

The Embedded Methods combine the advantages of filter and wrapper methods by

considering the interaction of features along with the low computational cost.

In the filter category, the Benjamin–Hochberg[13] procedure is a semi supervised method

that evaluates the importance of every single feature by applying a multiple testing procedure

to decide which features to keep and which to delete. The multiple testing is supervised, and

it is based on two hypotheses:

H0 = Target and Feature are independent.

H1 = Target and Feature are dependent.

2.2 Approaches for time series analysis 17

where indipendent means that the feature does not influence the target. Viceversa, the features

influence the target.

The Principal Features Analysis (PFA)[82] is an Unsupervised Method based on the

Principal Component Analysis (PCA). PCA is one of the popular methods used and can be

shown to be optimal using different optimality criteria. However, it has the disadvantage that

all original features are used in the projection to the lower-dimensional space. This projection

is the critical difference between PFA and PCA. Indeed, PFA preserves the original values of

the features and thus the distance between them. The only parameter required by the PFA

is the Explained Variance(EV). This value represents the ratio between the variance of one

single feature and the sum of variances of all individual features. PFA computes the EV of

each feature and orders it by the highest ratio. Finally, PFA takes the minimum number of

the first F features which the sum of their EV is higher than the fixed Explained Variance.

Recursive Feature Elimination(RFE)[29] is the most supervised method used in the

Wrapper category. RFE aims to select features by considering smaller and smaller sets of

features. The algorithm trains a Support Vector Machines (SVMs) model to obtain each

feature’s importance through any specific attribute. The least important features are pruned

from the last set of features. The procedure is repeated on the pruned set until the desired

number of features to select is eventually reached. [19] uses a new optimization criterion for

minimizing the intra-cluster and maximizing inter-cluster inertias. The authors propose a

function based on minimization-maximization of the variance of scattering matrices obtained

from the clusters built by the k-means clustering algorithm. This function assigns a ranking

score to each partition that may be defined in the search space of all possible subsets of

features and the number of clusters. The criterion proposed in this method provides both a

ranking of relevant features and an optimal partition.

Finally, in the Embedded Features Selection, the state of the art of Supervised approach

adopted for selecting the features is the Sparse Multinomial Logistic Regression(SMLR)[66].

SMLR is an implementation of a sparse regularization of the Automatic Relevance Determi-

nation (ARD)[146] of the classical multinational logistic regression. The ARD is based on a

Bayesian Ridge Regression and estimates the importance of each feature. Finally, the SMLR

prunes the not-valuable features for the prediction.

A Unsupervised Embedded Features Selection was proposed in [127]. In this method,

the authors combine spectral feature selection and the Calinski-Harabasz index for selecting

a relevant feature subset. The feature selection operates in two stages: in the first stage, the

algorithm identifies the features that keep the data structure by computing the Laplacian

Score for each feature. In the second stage, feature subsets are evaluated through a modified

18 Background

internal evaluation index called WNCH (Weighted Normalized Calinski-Harabasz index).

The features selected correspond to the subset that has the highest WNCH value.

2.3 Tasks

This section presents the principal tasks in time series analysis. The tasks have many common

notions, but for simplicity’s sake, it is organized into four different objectives.

2.3.1 Similarity Search

The problem of similarity search is to find a subset of items that are the nearest to a query

item, called nearest neighbors, under some distance measure from a dataset[6, 37].

The K-Nearest Neighborhood(k-NN)[74, 35] is the most used algorithm for creating the

list L of series in similarity search. This algorithm computes the proximity by applying a

similarity measure Δ between each data value.

In the time series Shape-Based similarity approaches, two main categories of algorithms

are proposed: The Whole Matching(WM) Queries and the The Subsequence Matching(SM)

Queries. The Whole Matching(WM) Queries compute the similarity between an entire query

series and an entire candidate series. Therefore, the length of the series involved has to be

the same. The Subsequence Matching(SM) Queries compute the similarity between an entire

query series and all subsequences of a candidate series. In this case, the candidate series can

have different lengths.

For instance, in the case of time series, computing the k-NN with the Euclidean Distance

as a similarity measure has O(n×V) as time complexity. It represents the time complexity

of the Euclidean Distance repeated for each element of dataset D with the time series query

uq.

The analysis of the series is usually made through two main methods: Sequential and

Indexing methods. The Sequential approach[109] directly compares each time series of the

dataset with the query series. This approach leads to an enormous amount of comparison and

a massive amount of time to be completed. Therefore, many optimization algorithms improve

this technique. The Indexing approach[143, 152, 121] generally has two main steps: in the

first step, it reduces the number of candidates by creating a pre-built index. Subsequently,

the not filtered series candidates are then compared to the query series in the original space.

There also exist hybrid approaches[65] that combine indexing and sequential methods. In

particular, the data are transformed and reorganized in levels in the multi-step approaches.

2.3 Tasks 19

The filtering of the candidate’s series occurs at each step, and the data are sequentially read

one at a time.

Searching for a list of candidates series among many data can require much time. More-

over, this problem is enhanced when long raw time series are treated. The summarization

techniques [141] permit to reduce the computational time by encoding the time series in a

short representation, identifying points or observations in time series data that are relatively

more important than other points in the input data. The principal techniques for summarizing

the Time Series are divided into two categories:

• Non-data adaptive representation applies equal parameters for converting every time

series in the database regardless of its nature.

• Data Adaptive representation applies a standard representation for all database items

that minimize the global reconstruction error.

Based on the high demanding time requested by the Shape-Based approach, the Features-
Based approaches are a potent tool for fastly searching time series. Indeed, these approaches

allow to reduce the dimensionality of the temporal series and to optimize the time of the

similarity search. Most of the algorithms proposed extract a set of features on time series.

Then, the k-NN algorithm is applied to the extracted features for detecting the k closest series

of the item query.

2.3.2 Clustering

Clustering is a data mining technique that aims to place together similar data, creating

natural groups called clusters. The goal is to discover the most homogeneous groups that

are distinguishable from other groups. Formally, data distribution over clusters should be

carried out to maximize inter-cluster variance and minimize intra-cluster variance. In both

the approaches, Shape-Based and Feature-Based, the clustering algorithms are divided into

two categories: Hierarchical and Partitional algorithms. Hierarchical clustering creates a

hierarchy of groups, as its name suggests. Clusters are created by merging or dividing the

groups from the next lower or upper level, such that an ordered sequence of groupings is

obtained. These methods are called Agglomerative or Divisive. In agglomerative procedures

(bottom-up), every data member starts in its cluster. Members are grouped sequentially

based on the similarity measure until all members are contained in a single cluster. Divisive

procedures do the opposite, starting with all data in one cluster and dividing them until each

member is in a singleton. Hierarchical clustering is one of the most powerful visualization

tools for time-series clustering. For example, [101] uses agglomerative clustering to predict

20 Background

the road accident data in combination with trend analysis. In another study, [48] the authors

use the agglomerative clustering to study the behavior of the people’s activities in the field of

public transit demand analysis. Moreover, in many types of research, Hierarchical is used

to evaluate dimensionality reduction or distance metric due to its power in visualization.

For example, in a study [79], the authors presented Symbolic Aggregate Approximation

(SAX) representation, using hierarchical clustering to evaluate their work. The results

obtained show the same performance between SAX and the Euclidean distance. Another

notable feature of this algorithm is that it does not require entering the cluster number as

an initial parameter. Indeed, defining the number of clusters in real-world problems is very

complicated. The principal weakness of the Hierarchical Algorithm derives from the poor

flexibility in the creation of the clusters in the divisive and agglomerative method. Therefore,

the Hierarchical algorithms are usually adopted with other algorithms[54, 86] as a hybrid

clustering approach to fix this problem. In the partitional clustering, the algorithm assigns

each data point of the dataset in k different clusters specified beforehand. The procedure

follows combinatorial optimization problems that minimize the intracluster distance while

maximizing the intercluster distance. In the most classical procedure, k data points, called

prototypes, will be chosen randomly and assigned to individual clusters. Then, distances

between the data points and prototypes are calculated, and each object is assigned to the

cluster of its closest centroid. Subsequently, a function updates the prototypes of each cluster,

and distances and prototypes are updated iteratively until a certain number of iterations have

elapsed or no object changes clusters anymore. One of the most used partitioning clustering

algorithms is k-Means[56], where each cluster has a prototype based on the mean value of its

objects. The main idea behind k-Means clustering is minimizing the total distance between

all objects in a cluster from their prototypes. In most time series clustering algorithms, the

k-Means are challenging to apply. Indeed, finding a prototype that represents the time series

average is a complex operation. Therefore, the most used approach for this domain is the

k-Medoid(PAM)[100]. This algorithm is similar to k-Means, but the prototype is represented

by an original data of the dataset, called centroid. The classical approach[47] for the time

series clustering with the k-Medoid is to randomly choose the k time series and then adopt a

similarity measures to obtain the distances between the centroid and the other time series.

By definition, most clustering algorithms are entirely unsupervised (i.e., any information

about the data points is furnished in advance). In the last years, many Semi-Supervised

solutions have been proposed to improve the performance of the algorithms [108]. Semi-

supervised clustering is a new method that combines semi-supervised learning (SSL)[151]

and cluster analysis, using a small amount of prior information to process unlabeled data.

The preliminary information provided to the semi-supervised clustering algorithms is usually

2.3 Tasks 21

divided into Independent Class Labels and Pairwise Constraints. In Independent Class
Labels, a small amount of data is furnished in input with the dataset. SeededKMeans[9] is an

example of this category. The latter uses the labels provided as input to find the constraints

among the data and the centroids and then applies the k-Means algorithm to find the clusters.

The Pairwise Constraints method relies on a small number of labels of the original dataset

to create two kinds of links, i.e., Must Link and Cannot Link. Must links are connections

between two data points that represent a ‘constraint of belonging’. This means that the data

points (or time series at large) should be clustered together. Cannot Links do the opposite,

thus leading to separate data points.

2.3.3 Classification

The classification task aims to assign labels to each series of a dataset. The main difference

with the clustering task is the information provided in advance. Indeed, in classification, the

labels of each time series are provided in advance. The purpose is to adopt the labels for

learning the most prominent characteristics for distinguishing the classes. Then, when an

unlabeled dataset is entered into the system, it can automatically determine which class each

series. Learning and discriminating functions are usually called ‘Training’ and ‘Testing’.

With the growth of diverse research areas, the number of approaches for classifying the

time series is enormous. In literature, the approaches are usually divided by the discriminatory

features that the technique attempts to find. The main approaches can be divided into

Distance-Based, Interval-based, Dictionary-based, and Shapelets-based.

The distance-based is probably the most common approach. In Time Series Classification,

the method for obtaining the class of the unlabeled data is very similar to the Similarity

Approach explained in Section 2.3.1. The most common technique is to train a k-NN model.

Each time series is categorized by its label and the algorithm assigns the class of an unlabeled

series by computing the closest k series, as shown in Figure 2.4. The computation of the

distances is made by computing the differences between the Shape or the Features of the

series.

In the interval-based approach, subseries of the original series are extracted for classi-

fying the entire time series. This solution is mainly adopted when the long time series is

characterized by a high quantity of regions of noise that could confound the classifier. The

problem of this solution is to find the correct interval. The approach adopted from many time

series classification algorithms is to generate many different random intervals and classifiers

on each one, ensembling the resulting predictions. This approach is mainly adopted by the

Shape-based approaches.

22 Background

Fig. 2.4 Classification with kNN, with k=3

The dictionary-based classifiers are a family of time series classification algorithms

that capture the frequency of pattern occurrences in a time series. This approach is potent

when the discriminatory repeated patterns occur more frequently in one class than in other

classes. Generally, a base classifier takes a window of a real-valued series, trims it to create a

shorter real-valued series then discretizes it to convert it into a symbol, also called a word.

Histograms of symbols are formed from all windows. Most of these approaches are adopted

by Features-based approaches.

The shapelets-based classifiers are a set of time series classification algorithms that extract

subsequences or small sub-shapes of time series representative of a class. This family of

classifiers is potent in extracting unusual patterns that occasionally occur at any point during

the measurement, allowing the classification of the unusual patterns within the same class.

Most of these approaches are adopted by Shape-based approaches.

All the above approaches need heavy crafting on data preprocessing to perform well. In-

deed, as seen in the shapelet-based approaches, choosing the correct shapelets is an operation

that requires a high amount of time and precision. Deep Neural Networks(DNN)[61] have

been employed in time series classification tasks in the last years. The primary purpose of

the DNNs is to obtain complex dependency structures between the data, where this operation

is highly complex in the previous approaches. The main problem with applying the time

series in the DNN is their structure. Indeed, the networks have to be designed to accept

the hierarchical representation of the series. A DNN is a structure composed of several

parametric functions called simplicity layers. These layers are composed of ‘Neurons’, a

structure that receives several inputs and weights and produces an output based on the activa-

tion function. The activation functions[110] are the core of the DNN[134]. They permit the

neurons, and thus the layers, to communicate between them. Therefore, each layer receives

the input and weights from the previous layers and produces the input for the consequent

2.3 Tasks 23

layers. The weights have another essential rule in the DNN. Indeed, they can be adapted

to adjust the input of each neuron for obtaining the desired output in the next layer. This

operation is called feed-forward propagation[11]. The values of each weight are fixed during

the training phase. The training phase teaches the neural network to recognize the class of

each series. In input, a high amount of series is provided with their class of belonging. The

weights are randomly assigned above all the layers in the first iteration. At the end of the first

iteration, the network produces a vector in which, for each series belonging to the dataset, it is

estimated the probability of belonging to each class provided in the input. These estimations

are compared with the original classes of the series, where a cost function computes the loss

between the original class and the estimated class. Then, the backward pass propagates[49]

the error on each neural network weight. The new values of the weights are estimated by

adopting the gradient descent technique that permits finding a local minimum/maximum of a

given function, which in this case is to minimize the cost function. Therefore, repeating the

feed-forward and the backpropagation permits minimizes the estimation error and improves

the neural network’s performance. This structure is a simple representation of a neural

network, and it is usually indicated as Multilayer Perceptron(MLP). Once the loss function is

minimized, the neural network can classify the new series. This process is called Testing,

and it is similar to the process of feed-forward. Indeed, a series is given in input to the neural

network that produces a probability estimation of each class. The class with the highest

probability is assigned to the series.

Although many types of DNNs exist, the most adopted in time series classification is the

Convolutional Neural Network (CNN)[3]. This DNN has been successfully used in many

domains to recognize objects in different contexts, but its power has also been shown in class

recognition. The CNN is composed of the repetition of two operations: Convolution and

Pooling. The Convolution operation flows some convolution filters on the raw time series.

These filters are usually determined previously according to domain knowledge or based on

experiments. Therefore, this operation permits filtering redundant information. The Pooling

operation is another filtering operation that permits down-sampling of the convolutional

output, reducing variability in the hidden activations. This operation is made by reducing

the results of each convolutional filter by computing the average of each filter or taking the

maximum value. After several convolution and pooling operations, the original time series

is represented by a series of feature maps. Then the features are connected to a multilayer

perceptron (MLP) to perform classification. Figure 2.5 shows an example of time series

classification adopting the CNN when the shape is used[72].

24 Background

Fig. 2.5 Time Series Classification with CNN on Raw Time Series

2.3.4 Anomaly Detection

The anomaly detection task aims to find unexpected events in data. By definition: “An

anomaly is an observation or a sequence of observations that deviate remarkably from the

general data distribution. The set of the anomalies forms a tiny part of the dataset"[18].

This task has been a research topic for a long time, but it has gained more attraction in

the last years. The motivation derives from the augmented digitalization data that makes

the automatization of the detection anomalies necessary. Indeed, various domains, such as

health care, fraud detection, and intrusion detection, have outsourced the search for possible

anomalies to automated anomaly detection techniques. A necessary distinction has to be

made between detecting the anomalies and the noise. Indeed, these two operations strongly

depend on the interest of the analyst or the particular scenario considered. The noise detection

is orientated on cleaning/correcting the data, and any analysis is made once the noise is

detected. The principal objective of the noise revelation is to improve the original dataset and

increase the algorithm’s performance that adopts the dataset[117]. By contrast, in anomaly

detection, the objective is to comprehend the anomalous event and the cause. An important

aspect enhanced from the definition is the number of anomalies expected in the dataset.

An anomaly is defined as an infrequent and unexpected event, meaning that the number

of normal data points is significantly higher than the number of anomalous points.è This

information is crucial in creating a methodology for discovering anomalies because some

standard techniques require a balanced dataset to work well. In time series data, an anomaly

can assume different forms. These forms can be resumed in three categories:

• Point Anomaly: When a datum deviates significantly from the rest of the data (global

anomaly). This anomaly represents the easiest irregularity to reveal. Figures 2.6 shows

2.3 Tasks 25

Fig. 2.6 Type of Anomalies

an example of this anomaly. This anomaly could represent a credit card transaction

that is tremendously higher compared with the usual.

• Collective Anomalies: A collection of continuous points shows a different pattern

from standard data over time. In this form, the points that belong to the suspicious

pattern may not be anomalies by themselves, but their occurrence together can be

identified as anomalous. Figures 2.6 shows an example of this anomaly. This anomaly

could represent a credit card transaction that could be usual if done in a single day but

suspicious if it is repeated for more than two days in a row.

• Contextual anomalies: When a point or collective instance is suspicious in the context

when they arise but normal in some other context, it is defined as Contextual Anomaly.

This type of anomaly arises when the dataset has a clear structure, i.e., it is specified in

the problem formulation. Figures 2.6 shows an example of Contextual Anomalies.

The approaches proposed for solving this problem are often divided into statistical,

classical machine learning, and neural networks approach. Most of these approaches are

Shape-based. Indeed, detecting anomalies by adopting a Feature-Based approach is still

an unexplored domain. In the statistical approach, the most well-researched techniques are

based on the regressive models, such as AR, MA, ARMA, and ARIMA. These models detect

the anomaly by computing the expected point or subsequence point and comparing them

with the original. The more the data are different, the higher the probability of detecting an

anomaly.

The Autoregressive Model (AR) is the basic regression model for detecting an anomaly.

This stochastical approach permits forecasting a dependent variable value Xt on a finite set of

26 Background

previous independent variable values of length p and with an error value ε:

Xt =
p

∑
i=1

ai ·Xt−1 + c+ εt (2.7)

The coefficients ai, and c are computed by training the data and solving the corresponding

linear equations with least-squared regression. The error coefficient εt represents the anomaly

score, computed by the difference between the forecasted and observed values. This model

works appropriately only on stationary data, making necessary a transformation if the dataset

does not respect this property.

The Moving Average(MA) computes a linear combination differently from the AR. MA

computes a linear combination on the last q predicted error { εt ,εt−1, ...,εt−q }, rather than

the last p observation as AR.

Xt =
q

∑
i=1

ai · εt−1 +μ + εt (2.8)

In the definition, μ is the mean of the entire time series, and the coefficients {a0, ...,aq} are

learned from the data. The main problem with the MA is to obtains the q predicted errors.

These values are usually obtained once the model is fitted. Therefore, the only way to find

the Xt is to optimize the error sequentially, leading to the time performance of the algorithms.

Once the model is fitted, the procedure for detecting the anomaly is equal to the AR model.

The power of these two models is the capability to be combined with other models.

ARMA is, for example, the combination of AR and MA. The linear model depends on the p
last observations and the q last errors with this model.

Xt =
p

∑
i=1

ai ·Xt−1 +
q

∑
i=1

bi · εt−1 + εt (2.9)

The sticking point of this model is the choice of the p and q coefficient. Adopting a higher

number of p and q, the model uses many points for converging. The result is an overfitted

model that can produce many false negatives during the anomaly evaluation. Conversely, if

the model is trained on low values of p and q, it can produce an underfitted model, producing

many false positives. Many algorithms have been proposed for fitting the models and finding

the correct values of p and q [1, 17, 59].

Combining the two models, AR and MA do not solve the AR model’s problem of treating

the non-stationary time series. A model called ARIMA solves this problem by adopting the

differencing, a method that permits making a non-stationary time series stationary. The idea

2.3 Tasks 27

Fig. 2.7 Example of Differencing Operation

is to compute the difference between consecutive points to remove some trends from the

data. Formally, the differencing is defined by a parameter d which defines the number of

times the time series is differenced. For example, with d = 1, each point of the time series is

differenced from only the previous point.

Xi = Xi−X ′i ,∀i ∈ {1, ..,T} (2.10)

Figure 2.7 shows an example of non-stationary data. Setting the differencing parameter d
equal to 1 and 2, the time series produced is shown in Figure 2.7. This model detects the

anomaly as the previous models exposed.

Other methods for discovering anomalies in time series derives directly from the task

previously exposed. The clustering is probably the most adopted solution for discovering

anomalies in time series. KMeans, a partitional clustering exposed in Section 2.3.2, suits

well for exploring the time series and discovering anomalies among the data points.

The growth of systems capable of recording the data in real-time has augmented the

necessity of detecting anomalies in streaming time series. This new data type has increased

the difficulty of revealing the anomalous point. Indeed, the techniques that aspire to detect

anomalies in streaming data have to respect other constraints:

28 Background

• Transient: In the data stream, the importance of a point is directly proportional to the

time elapsed since it was detected. It means that an outlier detection algorithm should

detect outliers of the observation immediately as it arrives.

• Infinite: There is an endless reception of points in data streaming by nature. A

necessary consequence is an impossibility of keeping the entire dataset received in

memory. Therefore, all the solutions requiring the whole dataset to detect outliers

cannot be adopted. It means that the dataset needs to be summarized, and when a new

point is received, it has to be compared with the summarization of the previous points.

• Arrival Rate: This constraint is strictly correlated with the Transient constraint. This

constraint binds the outlier detection technique for the data stream to process data

points before the next data point arrives. This limitation is not easy to ensure because

the reception of each point in the data stream can be fixed or variable. Therefore, the

detection of the anomalies should be adjusted based on the available processing time.

• Concept Drift: The endless reception of the points of the data streaming can affect

the distribution of observations by drifting the trend. Therefore, the anomaly detection

algorithm must automatically adapt to this drift, assuming any fixed distribution of

data.

There are many approaches in the literature for solving anomaly detection algorithms

on Online Time Series data. The most straightforward approach adopts some statistical

operators as average and variance. The idea is to compute the mean and variance for all the

previous data points and fix a tolerance threshold to the anomaly. If an observation exceeds

the threshold, the algorithm marks it as an anomaly. This technique is very computationally

efficient in terms of time and memory requirements; however, these approaches do not

work for most time series as they mostly ignore the temporal aspects of the data. Moreover,

they cannot detect a majority of contextual and collective anomalies[84]. Another similar

approach, called Distance Approach, computes the difference between the value of the last

observations with the new one. Like the previous approach, if the difference exceeds the

tolerance, the anomaly detection algorithm notifies the presence of an anomaly. This method

also seems to be relatively straightforward. Indeed, it can perform well only in stationary

time series data[26].

The clustering approach exposed for the offline time series anomaly detection is also

applicable to the online anomaly detection. The idea is essentially based on the computation

of the Density Area around a point. However, classical clustering is complex to apply

to the time series streaming because most of the solutions must keep in memory all the

2.3 Tasks 29

points obtained, but this does not respect the Infinite constraint. Moreover, clustering is

not applicable in the presence of contextual anomalies. Indeed, if an instance is locally

anomalous, i.e., different from the value expected, but globally the instance is known, the

clustering does not detect it as an anomaly [106, 64].

The approach most used by the real-time anomaly detection algorithms is undoubtedly

the Predictive. With this approach, the time series teaches a regression model[39] to forecast

the distribution of the next point. In this way, the algorithm compares the subsequent

observations with the forecasted distribution and, in case the deviation is high, it will mark

them as anomalies.

This approach is probably the most complete compared with the previous. Indeed, it

permits handling all the kinds of anomalies discussed before. The main problems of this

approach depend on the number of observations that the model needs to learn the distribution.

Teaching regressive statistical models, like ARIMA[139], or even worse, the Regressive

Neural Network, like LSTM[43], to recognize perfectly the following points requires a high

demand of observations. Therefore, adopting this approach among streaming data requires

much time to be accurate, violating the Transient constraint.

Finally, the Autoencoder approach now appears the trending topic. With the Autoencoder,

the input data passes into an Encoder algorithm, which tries to summarize the input data as

much as possible, creating an object called Code. This Code is the input of another algorithm

of the Autoencoder, called Decoder. The Decoder aims to recreate the initial data input based

on the object Code, minimizing the difference between original and recreated input[40].

Encoder and Decoder are frequently Neural networks. Indeed, the Encoder is a multilevel

neural network, where the number of neurons per level decreases as the levels increase to

reduce the number of features required. The final layer outcome represents the Code. The

Decoder is even a neural network with the difference that the number of neurons per level

increases as the levels increase to reconstruct the initial input [28].

This operation permits recognizing an anomaly when the output of the Decoder is mainly

different from the Encoder’s input[69]. The reason is if there is an anomaly inside the input

data. The Encoder creates a different Code from the ones created during the training. Thus,

the Decoder tries to decode a never-seen Code. Therefore, the expected output of the Decoder

will contain many differences from the original input. Hence, this mistake in reproducing the

initial input depends on an anomaly of the data in the input.

The results of this approach are exciting, but most of them require much data to train

perfectly the Encoder and the Decoder. Moreover, this method appears like a black box,

making a deep analysis of the anomalies impossible.

30 Background

Another strategy adopted in the last years is to use an Ensemble approach. The idea is

to use a variety of algorithms to control each observation and apply some form of voting

mechanism [107] for the output of each algorithm. An ensemble setup can be composed of

similar algorithms, such as a set of Clustering approaches, or with different combinations of

anomaly detectors, such as Statistical and Predictive Approaches.

This method can improve the performance of the other solutions, but it increases the

configuration complexity and the computational time. This increase derives from the manner

the algorithms are combined. Indeed, in literature, most ensemble approaches execute the

outlier detectors in parallel, without any influence between them. Subsequently, the voting

system has to study each evaluation and then decide. Moreover, this operation requires heavy

computation approaches like Predictive and Clustering, a very high time complexity for good

performance.

Chapter 3

Related Work

3.1 Similarity Search

In the Shape-Based approach, Piecewise Aggregate Approximation (PAA)[67] is a non-

adaptive technique that approximates a time series by dividing it into equal-length segments

and recording the mean value of the data points within the segment. In addition, [87] proposes

Multi-Resolution PAA, which constructs the representation at various resolution levels.

Instead of using mean values, it adopts the segmented sum of variation (SSV)[73] to represent

each segment. At the same time, proposes extracting and concatenating each local segment’s

amplitude-levels local features (ALF) to represent the whole series. In general, most of the

non-adaptive techniques are generally less efficient than the data adaptive approaches as they

do not adapt to each data[141]. Adaptive Piecewise Constant Approximation(APCA)[25] is

an adaptive summarization technique that transforms each time series into a set of constant

value segments of various lengths based on its minimal reconstruction errors. Another

method, called Piecewise Linear Approximation (PLA)[123], is a widely used representation

for the time series summarization task. Each linear segment in PLA is represented by

polynomial coefficients and can be obtained either by interpolation or regression. Another

method for summarizing the time series is to transform the sequence into a set of symbols.

Symbolic representations authorize to take advantage of the richness of data structures and

algorithms in the text processing and bioinformatics communities. The Symbolic Aggregate

approXimation(SAX)[79] is probably the most known algorithm of symbolic representation.

SAX first transforms the data into the PAA representation and then symbolizes the PAA

representation into a discrete string. In this way, the symbolic distance measure defined in

SAX would allow lower bounding of the PAA distance.

By contrast, an algorithm that leverages the Features for querying the time series in a

dataset is TimeExplorer[32]. TimeExplorer(TE) extracts a small number of characteristics

32 Related Work

among the raw time series. These features include the classic distribution characteristics,

such as means and standard deviations. Moreover, some other features have been discovered

individually by other researchers, such as sharp increases[125], mountains[22], and serial

periodicities[24]. The TE implements three analysis tasks:

• Brushing: The user provides a time series, and TE retrieves all similar time series in

the database.

• Sorting: Sort time series based on their relevance to the time series provided.

• Filtering: Extracts all the time series that satisfy filtering conditions on their feature

space provided by the user.

These operations are based on a Weighted Dissimilarity computation. Indeed, the user

can select a weight for each feature to customize.

Dissimilarity(V F1,V F2) =

√
F

∑
i=i

Wi(V F1−V F2)2 (3.1)

In the formula, V F1 e V F2 are the features vectors of the time series, F is the number of

features, and Wi represents the weight of the features analyzed.

3.2 Clustering

In the Shape-Based approaches, many algorithms are based on the kMeans algorithm. The

most powerful algorithm of this category is kShape[98]. kShape is a partitional clustering

method that creates the prototypes of the k clusters by detecting and extracting the most

peculiar shapes of each cluster. In brief, kShape works in two steps: in the refinement step,

the time series prototypes are created by extracting the shapes that most reflect the changes in

clusters; In the assignment step, the algorithm updates the cluster memberships by comparing

each time series with all the computed prototypes and assigning each time series to the cluster

of the closest prototype.

The other approach used in partitional clustering is kMedoid. [12] is a kMedoid algo-

rithms that merges the PAM solution with a density-based [23] approach for obtaining the

clusters. In the first step, the algorithm computes all the distances between the time series by

adopting the DTW, finding series with many close neighbors. A series is considered close

when the distance is lower than a specified cutoff distance dc. Then series that lie in dense

areas (i.e., that have lots of neighbors) are taken as centroids.

3.2 Clustering 33

In the Semi-Supervised approaches for clustering the time series based on the shape,

CobrasTS[136] is probably the most prominent. It creates the two kind of connection

explained in Section 2.3.2 by asking the user if some time series could be placed in the same

cluster or not. This operation, also called active learning, permits the creation of connections

based on the user’s knowledge.

The grouping of time series through interpretable Features-Based approaches is still

in its early stages. The first work was proposed by [142]. The authors use a small set of

measures for clustering the time series. Once extracted the features, the framework adopts a

Hierarchical clustering algorithm for obtaining the group. [111] proposed the features-based

time series clustering for analyzing the customer’s electricity consumption and estimating

the electricity network’s load estimation. These pieces of information help discover the hours

where the consumers use more electricity and optimize the load of the entire net. The method

proposes to extract seven features from each customer’s data. The features extracted were:

mean, standard deviation, skewness, kurtosis, chaos, energy, and periodicity. Finally, the

algorithms apply the kMeans for obtaining the group of customers with the same electrical

load.

Another approach called Two-Stage Statistical Segmentation Clustering procedure (TS3C)

[42] extracts the features not on the entire time series but its subsequences. The algorithm

is divided into two main stages. In the first stage, the algorithm extracts the most interest-

ing subsequences by adopting an algorithm called SwiftSeg. SwiftSeg creates a sequence

that iteratively grows up and simultaneously is computed the corresponding least-squares

polynomial approximation of the sequence and its error. The sequence grows until the error

exceeds the threshold. When this occurs, the obtained sequence of points is saved, and the

operation is continued until the time series is completed. After the SwiftSeg process, the

sequences are mapped in arrays, including the polynomial coefficients of the least-squares

approximation of the sequence and the set of statistical features extracted on each sequence.

Finally, a clustering algorithm is applied to group all the time series sequences. The purpose

is to represent each time series with the arrays and significantly reduce the representation

size. The second stage of the method proposed consists of mapping the time series to a

common representation. The idea is to represent each time series by the arrays created

previously. Then, the centroid array, i.e., the average of all cluster points, and the sequence

with higher variance are chosen. Finally, The time series having the most representative

arrays in common are clustered in the same group.

34 Related Work

3.3 Classification

The Shape-Based approaches are the most used methods for classifying the time series. The

most used algorithm is the Learned pattern similarity (LPS)[10] algorithm. LPS creates an

internal regression model capable of detecting correlations between subseries. LPS selects

random subseries, and for each location, the subseries in the original data are concatenated to

form a new attribute. The internal model selects a random attribute and constructs a regression

tree. A collection of regression trees are processed to create a new collection of instances

based on the counts of the number of subseries at each leaf node of each tree. Finally, the

procedure for classifying a new time series is based on adopting a 1-NN classification of the

concatenated leaf node counts. The LPS belongs to the interval-based classifiers.

Bag of patterns (BOP)[80] is a dictionary-based classifiers and applies SAX (presented in

Section 2.3.1) to each sliding window of fixed dimension to form the words. This process will

be repeated to evaluate a new unlabeled time series. Indeed, once obtained the new histogram,

the class will be chosen by applying the k-NN algorithm, adopting the difference between

the histograms as a distance. Another algorithm for creating words adopting windows is

Bag of SFA Symbols (BOSS)[120]. The main difference between BOSS and BOP is the

extraction of the words. Word features for BOSS classifiers are extracted from series using

the Symbolic Fourier Approximation (SFA)[121]. This algorithm is essentially composed of

two main steps. In the first step, the Fourier transformation is applied among all the sliding

windows of the series. Then, the first l Fouriers terms will be discretized by applying the

Multiple Coefficient Binning (MCB). This algorithm permits the division of the time series

into a sequence of letters. Subsequently, the BOSS algorithm is equal to BOP.

In the family of the shapelet-based classifiers, [148] is the first shapelet classification

algorithm that finds shapelets by enumerating all possible candidates, then uses the best

shapelet as the splitting criterion at each node of a decision tree. In the last years, many

shapelets-based algorithms have been proposed. For example, in [51] the authors once

extracted all the possible shapelets candidates, adopt the k-NN for finding the shapelets

with the smallest distances. This solution is poorly performed in terms of time. Therefore,

the most recent version [16] balances the number of shapelets per class and evaluates each

shapelet on how well it discriminates against just one class. The process is based on finding

the k/c shapelets for each class, where c is the number of classes. The algorithm extracts

all the possible candidate shapelets, computing the discriminatory power of each shapelet

belonging to a class. The discriminatory power is computed by flowing the shapelets among

the original series of the same classes. Then, the Euclidean Distance is computed between

the shapelets and each subseries of the original series. This operation permits measuring how

3.3 Classification 35

well the shapelet discriminates the series (using the information gain) of a specific class, and

the top k/c shapelets are retained.

Finally, in a new method called Ensemble-based approach, most of the previously pre-

sented solutions are merged to improve the quality of results. Collection of transformation

ensembles (COTE)[5] is probably the most performed algorithm for classifying the time

series. This algorithm merges different classifiers (and domains) in order to improve the

accuracy of time-series classification. The algorithm combines classifiers in the time, auto-

correlation, power spectrum, and shapelet domains. Any constraints are used for choosing

the classifiers from each domain except for the time domain that are used a set of elastic

similarity measures, such as all the derivatives of DTW. To achieve its high accuracy, COTE

becomes hugely computationally intensive and impractical to run on a real big data mining

problems.

Among the Neural Network solutions adopted for classifying the time series based on

shape, the most straightforward approach was proposed by [144]. The network comprises

three convolutional layers, each one performing a non-linear transformation of the input

time series. Before the final classifier, a global average pooling technique is used. This final

architecture is independent of the input time series length. Another interesting network is

called Multi-Channels Deep Convolutional Neural Networks(MCDCNN)[60]. This network

is composed of several couples of convolutional layers and max-pooling operations. Then,

an MLP is used for classifying the series. A similar approach called Time Convolutional

Neural Network (Time-CNN)[150] modifies the MCDCNN by adopting the mean squared

error (MSE) instead of the traditional categorical cross-entropy loss function, which all the

deep learning methods have used.

In the Feature-Based approach for classifying the time series, the first method is [94].

This method aims to extract some statistical features (Skewness, Mean, Standard Deviation,

and Kurtosis). Each time series is represented by an array describing the value of the features,

and these vectors will be the input of an MLP Neural Network. The results obtained by this

method were already exciting, also with a small set of features.

Another algorithm that has adopted the features for classification is [147]. This method

performs an early classification, i.e., it tries to optimize earliness under a requirement of

minimum accuracy instead of optimizing accuracy in general classification methods. This

method is the first approach that proposes a sort of selection of the most discriminant features

among the ones extracted. It is divided into two stages: in the first stage, an extraction of local

shapelets is applied to obtain the most interesting shapelets from the time series. For each

local shapelet, a features extraction method is applied to detect the most distinctive features

for time series classification. In the second stage, the algorithm selects a small subset of local

36 Related Work

shapelets by the criteria of earliness, frequency, and distinctiveness. This step is beneficial

for extracting features that are fruitful for early classification and opt-out of overfitting.

TSCLAS[15] is a new method for classifying the time series based on their main charac-

teristics. This approach was proposed for classifying time series in the IoT domain, where

the traditional classification algorithms are inapplicable. TSCLAS transforms the time series

into the ordinal patterns domain, where it appears straightforward to capture the temporal

dynamics of raw data. The process of transforming a time series into the ordinal pattern

domains is based on two parameters: an embedding dimension D and an embedding delay τ .

The parameter D permits the construction of sliding windows of size D, which will define

the ordinal patterns. At the same time, the parameter τ corresponds to the timescale interval

used to sample the consecutive points of those sliding windows. The importance of choosing

the best parameters is evident. TSCLAS estimates the parameter by maximizing the class

separability of the time series dynamics within the training dataset. Indeed, they consider

the training dataset and its classification potential given the separation of their classes for

different parameters. Finally, TSCLAS classifies the IoT data based on a combination of

different features extracted from ordinal patterns probability distribution and the ordinal

patterns transition graph, both derived transformations from the set of computed ordinal

patterns. The features extracted from the ordinal distribution are similar to those extracted

from the time series. Indeed, they adopt the normalized permutation entropy, the statistical

complexity, and the Fisher information measure.

3.4 Anomaly Detection

In the actual state of the art, all the solutions proposed for detecting anomaly in time series are

based on the Shape-Based approaches. The straightforward approach, called Subsequence

Time-Series Clustering (STSC)[57], adopts KMeans for detecting anomalies. This algorithm

divides the entire time series into s different subsequences. The user defines the number k of

clusters required, and the kMeans process the entire dataset, providing the k final centroid.

The anomalies are detected by computing the distances between the centroid subsequence

and each subsequence of the cluster. The subsequences with a distance higher than a specified

threshold are considered anomalies.

Other interesting anomaly detection algorithms are based on the Local Outlier Factor

(LOF) [20]. LOF is an algorithm based on the kNN that computes the local density deviation

of a data point, comparing it with the local density deviation of its neighbors. A data point is

considered an anomaly if the local density of the data points is substantially lower than their

neighbors. [97], as the previous algorithm, divide the time series into s different subsequences.

3.4 Anomaly Detection 37

The obtained subsequences are subsequently divided into two datasets called ‘Training’ and

‘Testing’. The LOF on all the subsequences belonging to the Testing dataset is computed.

The subsequences with a low value of LOF are considered anomalies.

The ability of the deep neural network to discover dependencies between the data fits very

well for detecting anomalies in time series data. A simple method for detecting anomalies

in time series is to adopt the MLP introduced in Section 2.3.3. During the process, a

sliding window of length w flows on the time series, providing in input to the MLP model

the subsequence. After a few iterations, the MLP model converges, and it can produce

predictions on future subsequences. Therefore, these predictions will be used to compare

with the observed subsequences. If the difference is huge, the observed subsequences will be

evaluated as anomalous. Other deep neural network approaches adopt CNN for detecting

anomalies. DeepAnT[91] proposes an approach similar to the one explained for the MLP but

with a CNN network.

Long Short Term Memory (LSTM)[52] network is a Neural Network designed for the

sequence data. It belongs to the Recurrent Neural Network(RNN) family, a family of Neural

Networks where the data are treated sequentially. The difference between the feed-forward

neural networks and the RNN is in the computation of the data. The RNNs work with

sequence data; thus, the neurons’ weights are updated each time a new sequence is received.

Therefore, the weights are already updated with the previous sequence when a new sequence

occurs. This kind of Neural Network permits training the model incrementally without using

the entire training dataset. [27] applies the LSTM for predicting the values of the given time

series. It uses the probability distribution of the prediction error for marking timestamps as

normal or anomalous.

Chapter 4

Time Series Features Clustering

4.1 Introduction

Time is a dimension that affects many aspects of real-world and digital-world phenomena.

Physical environment, industrial machinery, healthcare monitoring, and economic and fi-

nancial activities are a few applications whose components are regulated and evolve over

time. In many of these applications, the time series dataset are widely used data artifacts for

encoding collections of sequential observations over the temporal axis.

Time Series analytics includes supervised and unsupervised tasks, ranging from classi-

fication and clustering to pattern discovery, forecasting, and exploration. Cluster analysis

recently gained momentum in many applications and use cases where sensors collect massive

data points. Clustering aims to organize unlabeled data objects into homogeneous groups

while minimizing intra-cluster dissimilarity and maximizing inter-cluster dissimilarity. Most

of the solutions proposed in the literature are based on adopting raw data for computing the

similarity between the series. However, these solutions are very sensitive to the noise in the

data, making it impossible to apply these solutions in the real-life domain. The adoption

of the features permits avoiding this problem. Indeed, the features permit a summarization

of the series’ principal characteristics and diminish the sensibility to the noise. Moreover,

most of the tools proposed for extracting features allow to obtain fully explainable features.

These tools lead to more interpretable analyses. An essential improvement in the time series

analysis comes from studying the global relationship between the series. In the process of

time series clustering, only the local relationships among neighbor data samples are identified,

while global long-distance relationships remain unknown in general. However, in some time

series analyses, capturing the global knowledge of the pattern formation of a given time series

permits an improvement of the studies. Networks are a powerful mechanism for recognizing

the long relationship between any pair or group of time series.

40 Time Series Features Clustering

Research on Multivariate Time Series (MTS), i.e., datasets with more than one time-

dependent variable (also called signal), is still at an early stage. Several proposals adopt

clustering approaches designed for Univariate time series to Multivariate time series after

applying dimensionality reduction techniques. The main problem with the Multivariate

Time Series analysis is managing the high dimensionality of the data. In particular, in the

MTS clustering analysis, most of the solutions aim to reduce the high dimensionality of

the datasets. An example of such techniques is the Principal Component Analysis (PCA)

[76, 75], which enables the conversion of a set of correlated features in the high dimensional

space into a set of uncorrelated features in the low dimensional space. Nevertheless, the

resulting clusters suffer from poor explainability as the original dimensions are lost. More

recently, approaches based on Deep Neural Networks (DNNs) have been used to generate

MTS encodings to apply clustering methods. Although these solutions might exhibit high

performance, the resulting clusters are based on latent dimensions that remain unexplainable

to the end-users. Explainability and interpretability are essential aspects of data science

pipelines [114, 92], aiming at motivating the insights extracted from raw data.

This chapter introduces two novel techniques, called FeatTS and Time2Feat, for clustering

respectively Univariate and Multivariate time series by adopting interpretable solutions and

leveraging the concept of global relationships.

FeatTS algorithm revolves around feature-based clustering for univariate time series by

providing a unifying framework in which global and local relationships between different

time series and characteristic features are leveraged. Time2Feat is an extension to multivariate

signals, in which intra-signal and inter-signal features are exploited and shown to be more

effective and efficient than existing clustering approaches.

4.2 FeatTS: Clustering Univariate Time Series

In this section, we present FeatTS, a Semi-Supervised Clustering method that leverages

features extracted from the raw time series to create clusters that reflect, as much as possible,

the original time series. Our approach differs from existing methods in the literature since

it employs the time series features, whereas existing methods focus on the similarity of the

time series themselves. The novelty of FeatTS consists in automatically selecting the most

appropriate statistical features based on the dataset provided as input, the latter characteristic

being relevant for data science and data analytics pipelines. In fact, not all the features

have the same quality, and choosing a subset of high-quality features for each dataset is

beneficial for the clustering step. Moreover, the time series features are interpretable by

humans, thus leading to a more transparent and human-centric clustering process. To the best

4.2 FeatTS: Clustering Univariate Time Series 41

[T S1,...,T Sm]
1) Extraction and

Selection

of n Features

2) PFA Feature

Selection

3) Creation of Graphs

and Application of

Community Detection

4) Create the

Co Occurrence Matrix

5) Compute Clustering

on Matrix

Quality Evaluation

and Comparison

Fig. 4.1 The algorithmic pipeline of FeatTS.

Time Series mean trend_stderr variance peaks quantile trend_rvalue Length Label

T S1 51.3 3.51 788.56 8 57 -0.94 89 No Kidney Failure

T S2 40.6 4 128.9 5 43 -0.55 206
����������No Kidney Failure

T S3 74.3 17 296.8 10 106 0.01 159 Kidney Failure

T S4 95.8 9.4 783.3 10 85 0.43 139
��������Kidney Failure

quantile
trend_stderr
trend_rvalue

Dataset T S1 T S2 T S3 T S4

T S1 1 1 + 0.5
0.66 + 1 + 0.5

0.5
0.66 + 1 + 0.5

0.5
0.66 + 1 + 0.5

T S2
1 + 0.5

0.66 + 1 + 0.5 1 0.5
0.66 + 1 + 0.5

0.5
0.66 + 1 + 0.5

T S3
0.5

0.66 + 1 + 0.5
0.5

0.66 + 1 + 0.5 1 0.66 + 1 + 0.5
0.66 + 1 + 0.5

T S4
0.5

0.66 + 1 + 0.5
0.5

0.66 + 1 + 0.5
0.66 + 1 + 0.5
0.66 + 1 + 0.5 1

Dataset T S1 T S2 T S3 T S4

T S1 1 0.69 0.23 0.23

T S2 0.69 1 0.23 0.23

T S3 0.23 0.23 1 1

T S4 0.23 0.23 1 1

a

b c d

Fig. 4.2 A running example on real-world healthcare data.

of our knowledge, FeatTS is the first feature-based semi-supervised clustering framework

with these characteristics.

4.2.1 Pipeline of FeatTS

The pipeline of FeatTS, as illustrated in Figure 4.1, is a combination of steps that contribute

to the quality of the clustering results. We describe these steps in detail in the following.

4.2.1.1 Feature Extraction and Selection

The first step of the pipeline is the feature extraction step from the time series corresponding

to step 1) in Figure 4.1. We consider feature extraction methods available in the literature

and in readily predefined libraries [30]. Formally, given a vector of features [f1, f2, . . . , fn]

extracted, we construct a table containing the value of each feature, thus having as columns

the features and having the time series [T S1, T S2, . . . ,T Sm] as rows. As a simple example,

in Figure 4.2a, we show an instance of the table for 4 time series and 6 features. Moreover,

each time series is displayed with its corresponding label. The features shown in Figure

4.2a represent only a tiny subset of the set of features that can be extrapolated from the time

series. Indeed, the tsfresh[30] library allows us to extract a significantly higher number of

features. Therefore, feature selection becomes pivotal in our setting since not all the features

have the same relevance for the subsequent clustering steps. In particular, we compute the

relevance of the extracted features by solely using the feature values corresponding to the

class label of the time series (e.g., in Figure 4.2a the class ‘Kidney Failure’ or ‘No Kidney

42 Time Series Features Clustering

Failure’). The Benjamin–Hochberg is a supervised procedure [13] that allows us to identify

the relevance of the features based on the label associated with the time series. It computes

the p-value of each feature provided as input based on their relevance. The p-value is a critical

metric that allows us to quantify the significance of each feature. The Benjamin–Hochberg

procedure output is a list of features ranked by p-values. Among these features, only a subset

of them usually has an acceptable relevance. Indeed, a high p-value implies poor quality

of the features. From our empirical study, it has been evinced that the top-20 features in

order of relevance are sufficient to obtain high-quality clustering. Thus, we drop all the

other features keeping the best 20. Usually, one of the main problems when computing the

p-value is the redundancy of the obtained features. Finding a duplicate-free combination

of the features is desirable, preserving the quality and little number. Therefore, once we

select the 20 features from the list produced by Benjamin–Hochberg, we need an algorithm

that allows us to find a minimum number of features representative of the other features

not included in the analysis. Dimensionality reduction comes at hand to help us reduce the

dimensionality of the feature space by obtaining a set of principal features. We apply a

technique called Principal Feature Analysis (PFA) [82]. We fix a value t of the explained

variance in our experiments equal to 0.9. This value is the best result empirically produced

with various threshold values t. In our example, among all the features presented in Figure

4.2a, we have selected only quantile, trend_stderr and trend_rvalue, as shown in Figure

4.2b. In our experimental analysis, we obtained a different number (always less than 20)

of features out of the PFA feature selection, the final number depending on the particular

dataset.

4.2.1.2 Graph Rendering and Community Detection

We convert the time series and their relationships into edge-weighted graphs. Encoding time

series into edge-weighted graphs allows us to represent our clustering problem in another

dimension space without loss of information. This operation is crucial in order to be able to

capture the global relationships among the raw time series samples.

Suppose we have a feature Fi (as selected by PFA in the previous step) and a set of n time

series {T S1, ..,T Sn}. Let T Si be a node vi in the set of vertices V of a graph G. Let E be

the set of edges of graph G, where each edge ei connects two nodes in G representing two

different time series. Let w : E → R be an edge-based weight function. Each edge ei is thus

assigned a weight w(ei) representing the distance between the connected nodes of the edge,

i.e., the difference between the values of two different time series using the feature Fi. In

order to capture similarity, we only retain in G the edges whose weight is less than a given

threshold distance th.

4.2 FeatTS: Clustering Univariate Time Series 43

Example 1. As an example, let us consider the four time series as in Figure 4.2a, each of

which has the values of quantile; we will compute all the distances between these values.

Figure 4.3a shows the graph encoding of these time series where the weights on the edges

represent the distance between the time series, based on quantile.

One immediate question is the choice of the threshold th. Given n nodes in G correspond-

ing to the n time series, there are
N∗(N−1)

2 distances between all pairs of nodes. To capture

similarity, we use a simple heuristic of a percentage x representing the proportion of the

smallest distances to be kept. The threshold th is thus selected based on this x percentage.

Example 2. For instance, for the graph in Figure 4.3a, the array in Figure 4.3b contains the

distances between the vertices in ascending order. Suppose that the user specifies 50% of the

vector as the percentage. This amount implies that the distance boundary will be 28, and the

distances higher than 28 will be discarded (i.e., the corresponding edges in the graph will

be ignored). Once we have chosen the boundary distance, we can create the corresponding

graph as depicted in Figure 4.3b.

Notice that a higher threshold would consider lower significance edges and thus weaker

similarities between the times series. On the other hand, a lower threshold may cut important

edges. In our empirical evaluation, we used a threshold determined by a user-specified

percentage of 80%, which works well in practical scenarios, as we will see in the remainder

of the section. The chosen threshold will be used for all features selected by PFA and thus

for all graphs created. Each graph is created based on one selected feature from PFA in the

previous step. Thus, if PFA selects k features, there will be k graphs, each corresponding

to one notion of similarity between a pair of time series. The intention is to combine

these different notions of similarity in time series clustering, by leveraging the structures of

connectivity in the various graphs. To this purpose, we apply a community detection (CD)

algorithm in order to search for groups of densely connected vertices forming communities.

Among the different tested algorithms, we have opted for the Greedy Modularity Algorithm

[95] in the NetworkX library [45]. This algorithm turns out to strike a balance between speed

and robustness and does not require any additional input parameter other than the graphs.

In Figure 4.4, we show an example of clustering obtained by applying this algorithm to a

family of graphs. We can notice that the clustering varies from one graph to another graph. A

natural question is how we can unify the different clusters in order to obtain understandable

results.

44 Time Series Features Clustering

T S1

T S2 T S3

T S4V1

V2 V3

V4

14

63

21

28

49

42

(a) Edge-weighted graph with distances

as weights.

V1

V2 V3

V4

14

28

21

V1 V2 14
V3 V4 21
V1 V4 28
— — —

V2 V3 42

V1 V3 49

V2 V4 63

(b) The graph for a single feature after application

of the threshold

Fig. 4.3 Encoding from time series to graph.

V1

V2 V3

V4

14

28

21

f eat1

V1

V2 V3

V4

30 70 80

f eat20

. . .

Fig. 4.4 Application of Community Detection algorithm for each feature.

4.2.1.3 Co-Occurrence Matrix

The underlying intuition is that if two time series are similar, they will be similar for the

majority of their discriminating features. We employ a co-occurrence matrix [93] to put

this in practice. The matrix records each pair of time series and how many times they are

grouped within the same community. Intuitively, the more they are placed within the same

community, the more similar the time series are.

Co-Occurrence Matrices without weights. Assuming we have M time series and L features,

we know that, once applied the CD algorithm on the L graphs, we will obtain the following

result:
Feature1 = {(T S1,T S3, ...,T Ss), ...,(T S2,T S4, ...,T Sp)}
Feature2 = {(T S2,T S3, ...,T St), ...,(T S1,T S4, ...,T Si)}

...

Featuren = {(T S2,T S1, ...,T Sm), ...,(T S3,T S4, ...,T Sq)}
where for each feature Featurei selected by the PFA, we obtain different communities

(T S1, ...,T Si) composed by the time series. We can now create a matrix in which the rows

and columns contain all the time series of the dataset. Each cell xi j in the matrix corresponds

4.2 FeatTS: Clustering Univariate Time Series 45

to the similarity between time series T Si (in row i of the matrix) and T S j (in column j of the

matrix).

Next, we convert the counts in the Co-Occurrence matrix into a similarity metric for the

eventual clustering. We consider the number of times that a pair of time series is present in

all possible communities where at least one of the two time series belongs. That is, given the

time series T Si,T S j, the communities C and the set of all the time series M, the similarity

between T Si and T S j will be as follows.

∀ T Si,T S j ∈M, ∀c ∈C xi j =

∣∣{ c ∈C | T Si ∈ c & T S j ∈ c
} |

|{c ∈C| T Si ∈ c}| (4.1)

That is, the number of times that the two time series T Si and T S j fall within the same

community divided by the number of times that T Si is found within any community. No-

tice that (1) is entirely symmetrical. Indeed, the communities found for each feature are

considered hard clustered, i.e., a time series T Si cannot be part of two communities of the

same feature and must necessarily belong to one. Thus, if T Si and T S j are within the same

community of a specific feature, neither of them can be part of other communities of the same

feature. Therefore, the value xi j, given by the number of times T Si and T S j are in the same

community, will be equal to x ji because T S j and T Si must also be in the same community.

Co-Occurrence Matrices with Weights. Applying the CD algorithm and its processing with

co-occurrence matrices without weights might incur the problem of community fragmentation.

More precisely, the CD algorithm might lead to the formation of many communities, each

containing a few time series. This effect is because some features are often not discriminatory

enough for that dataset. To overcome this problem, we assign an approximate weight to

each feature based on the number of communities that the CD algorithm derives from the

graph. Again, to correctly determine the weights, we require the user’s input on the expected

number of clusters.

Let wi be a weighting function defined on each feature Fi as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

wi =
C
Oi
, i f Oi >C

wi =
Oi
C , i f C > Oi

wi = 1, otherwise

(4.2)

Where C is the number of clusters expected by the user and Oi is the number of commu-

nities extracted through the CD algorithm. Hence, the weights will be higher if the number of

obtained communities O is equal or sufficiently close to C and lower otherwise. The weights

will be propagated to the similarity matrix, which will now reflect the importance of each

feature from a user viewpoint. Not surprisingly, instead of simply counting the times that the

46 Time Series Features Clustering

time series T Si and T S j co-occur in the same community, we sum their weights and divide

by the sum of the weights of the all-time series, as also shown in the following.

Example 3. As shown in Figure 4.2b, the PFA feature selection has chosen three fea-

tures, namely [trend_stderr, quantile, trend_rvalue]. After applying the CD algorithm, we

obtained the following communities (per feature) among the 4 Time Series in Figure 4.2a:

quantile = {(T S1,T S2),(T S3,T S4)}
trend_stderr = {(T S1),(T S2),(T S3,T S4)}

trend_rvalue = {(T S1,T S2,T S3,T S4)}

Assume that the user specifies an expected number of clusters equal to 2. Trend_stderr
and trend_rvalue do not satisfy the number of clusters expected by the user. Therefore,

trend_stderr will have a weight of 2
3 (0.66), while trend_rvalue will have a weight of 1

2

(0.5), and quantile we will have 1 as weight. We report the intermediate computation of the

co-occurrence matrix with weights for this example in the Table in Figure 4.2c and the final

result in the Table in Figure 4.2d.

4.2.1.4 Clustering the Co-Occurrence Matrix

The co-occurrence matrix obtained in the previous step allows us to quantify the similarity

between two time series. In order to be prepared for the creation of the time series clusters,

we need one more intermediate step, i.e., to compute the distances between the rows of

the Co-Occurrence Matrix. We employ a standard Euclidean distance to perform the row

comparison.

As an example, applying the Euclidean distance between the rows of the table in Figure

4.2d, we obtain Table 4.1. For instance, the value of the cell C3,4 of the Table 4.1 is 0 because

the row 3 and 4 of the Table in Figure4.2d are equal. Consequently, the time series 3 and 4

are always together in each cluster discovered by the CD algorithm. Finally, we apply the

standard k-Medoid algorithm [100] on the distances computed above. K-Medoid allows us

to extract the time series with the smallest distance.

To complete our running example, applying the k-Medoid algorithm to Table 4.1 requiring

2 clusters as the input parameter, we obtain two clusters Cl1 = {T S1,T S2} and Cl2 =

{T S3,T S4}, as shown in the Table in Figure 4.2d.

The time complexity of the FeatTS is summarized in Lemma 1.

Lemma 1. Let D a dataset composed by m time series and let L the number of features
chosen by PFA among the N features extracted and k the number of requested clusters. A

4.2 FeatTS: Clustering Univariate Time Series 47

Dataset T S1 T S2 T S3 T S4

T S1 0 0.64 1.36 1.36

T S2 0.64 0 1.36 1.36

T S3 1.36 1.36 0 0

T S4 1.36 1.36 0 0

Table 4.1 Co-Occurrence Matrix with weights.

dataset D is evaluated by FeatTS in time O(L(m2)+m2 + k(m− k)2 +n · t f) and in space
O(n+L(m+E)+m2).

Proof: Let D a dataset composed by m time series and let L the number of features choose

by PFA among the n extracted. A dataset D is evaluated by FeatTS in time Ω(L(m2)+m2 +

k(mk)2 +n · t f) and in space Ω(n+L(m+E)+m2).

Time Complexity. Starting from the Community Detection, the Greedy Modularity

algorithm requires Ω(m2) time to extract the community from a graph with m nodes. FeatTS

transforms each time series in a node; thus in a dataset of m time series, one community is de-

tected in time Ω(m2). However, this cost is related to a single feature. Indeed, FeatTSFeatTS

creates as many graphs as the number of features chosen by PFA. Hence, assuming PFA

chooses L features, the total cost will be Ω(L(m2)). The time complexity required by the

Co-Occurrence Matrix depends strongly on the computation of Equation (1.1). Indeed, since

we have to estimate the number of times in which two time series fall within the same com-

munity, we can easily deduce that creating the Co-Occurrence Matrix will take time Ω(m2).

Finally, the time requested by the kMedoid to extract the cluster in the Co-Occurrence matrix

is equal to Ω(k(mk)2), where k is the number of requested clusters. A further component

used in the pipeline is features extraction. TSFresh does not provide the time complexity of

the method proposed but the time complexity required will be equal to the time needed by

each feature to be extracted. Therefore, fixing as tf the average extraction time of a single

feature, the time required to extract the features is given by n · t f , where n is all the extracted

features.

Space Complexity. We evaluate the space required by each component of the pipeline.

In the first step, TSFresh allows us to extract plenty of features, where each feature occupies

constant memory. Therefore, suppose n are the features extracted by TSFresh, the features

extraction component requires Ω(n) space in memory. In the Community Detection step,

each community is represented by a graph. Usually, a graph in memory occupies a space

equal to Ω(V +E), where V are the vertices and E the edges. Therefore, suppose that m
are all the time series, it is required O(m+E) space in memory for each feature chosen

by the PFA. Thus, suppose that L are all the features chosen by PFA. This Community

Detection step occupies Ω(L(m+E)) space in memory. Lastly, the space occupied by the

48 Time Series Features Clustering

Co-Occurrence Matrix is equal to O(m2). The space required by the Cluster is constant and

thus can be omitted.

4.2.2 Real-world Clinical Data

We use real-life time series courtesy of the Personalized Medicine Department at the European

Hospital George Pompidou in Paris. These time series contain signals from patients suffering

from kidney diseases. Kidneys have many functions, including maintaining acid-base balance,

regulating fluid balance, regulating sodium, potassium, and other electrolytes, removing

toxins, absorbing glucose, amino acids, and other small molecules, and regulating blood

pressure, producing various hormones. Much of renal physiology is studied at the nephron

level, the kidney’s smallest functional unit. Each nephron begins with a filtration component

that filters the blood entering the kidney. This filtrate then flows along the length of the

nephron, a tubular structure lined by a single layer of specialized cells and surrounded by

capillaries. The primary functions of these lining cells are the reabsorption of water and

small molecules from the filtrate into the blood and the secretion of wastes from the blood

into the urine. Proper function of the kidney requires that it receives and adequately filters

blood. This function is performed at the microscopic level by many hundreds of thousands of

filtration units called renal corpuscles, each composed of a glomerulus. A global assessment

of renal function is often ascertained by estimating the filtration rate, called the glomerular

filtration rate (GFR). GFR estimates how much blood passes through the glomeruli each

minute. Glomeruli are the tiny filters in the kidneys that filter waste from the blood. A

renal failure is detected when GFR is under 90mL/min/1.73m2. Whereas when it drops to

15mL/min/1.73m2, it means that the patient needs dialysis or a transplant. Thus, it is very

important to understand when a patient needs medical treatment before the GFR reaches

its lowest possible value. Moreover, since dialysis is an invasive operation, it is important

to understand if a sudden drop in the GFR occurs. In this case, medical doctors might

recommend urgent surgery or to resort to dialysis depending on the GFR values over time.

4.2.3 Experimental Setup and Results

We ran experiments on two variants of the Kidney dataset. The first variant, named

Kidney3Y r, contains 222 patients (one time series per patient) and spans 1 to 3 years with a

variable length between 90 and 230 data points in the time series. The second variant, called

Kidney5Y r, is composed of 278 patients spanning five years, with the time series having

roughly 100 data points. In both cases, we ran our experiments using only the 20% of the

labeled time series to compute the set of features necessary to run the clustering algorithm

4.2 FeatTS: Clustering Univariate Time Series 49

and to emulate the real-world scenario where not all the labels of the data points are available.

The features thus being ordered based on their relevance have been employed to cluster the

entire unlabeled dataset into those with GFR signals concerning high-risk patients and those

containing GFR for patients with lower risk.

We also used 64 benchmark datasets from the UCR collection[33], including both real-life

and synthetic datasets. The entire list of datasets used for a benchmark is available online1.

For consistency, we used only 20% of the labeled time series during feature extraction during

the clustering step in all experiments.

For each dataset, we consider 20 as the upper bound of the number of features we

consider in the analysis. A higher number of features are supported by our method but

are not indispensable for obtaining better accuracy. Moreover, a higher number of features

deteriorates the performance. Furthermore, we chose 80% as the threshold value of the

percentage of features selected by the user. We used the AMI [113] metric, a well-established

measurement of the quality of clustering. We adopt the same metric for our comparisons as

well.

We consider two main baselines, the first being the state-of-the-art algorithm for time

series clustering, i.e., kShape[99], and the second being the state-of-the-art algorithm for

Semi-Supervised time series clustering, i.e., Seeded kMeans [9], sharing the same category

of our approach. kShape[99] could not be used on the real-world GFR time series as it cannot

process variable-length time series. Hence, we limit the comparison with kShape to the UCR

datasets. Other baselines of semi-supervised clustering algorithms such as SSSL[140] (Self

Labeling Algorithm) and SUCCESS[85] (Cluster then Label Algorithm) could not be used

in our study due to the lack of available source code. All experiments have been executed on

a Linux server with 64GB of RAM, Intel Xeon CPU Skylake, and IBRS @ 2.6GHz.

4.2.3.1 UCR Dataset

The results in Table 4.2 are an excerpt of the entire results obtained by our algorithm and its

baselines for various UCR datasets. It can be observed that FeatTS obtains the best results

among all. Indeed, out of 64 datasets used for the comparison, FeatTS performed better on

37 datasets. In addition, kShape performed well only on 15 datasets (out of 64) and Seeded

kMeans outperformed the others in only 12 datasets (out of 64).

1https://github.com/DonaTProject/FeatTS

50 Time Series Features Clustering

Dataset FeatTS kShape SeededKMeans

Adiac 0,31 0,39 0,52
MoteStrain 0,48 0,01 0,02

TwoLeadECG 0,88 0,10 0,07

ECG200 0,34 0,11 0,06

Computers 0,09 0,06 0,01

Coffee 1 0,35 0,88

GunPoint 0,52 0 0

Arrowhead 0,29 0,26 0,27

ItalyPowerDemand 0,54 0,39 0

Meat 0,4 0,64 0,75
OliveOil 0,27 0,52 0,53

Trace 0,74 0,52 0,69

Wine 0,12 0 0,01

Worms 0,16 0,06 0,12

ShapesAll 0,08 0,62 0,45

Table 4.2 Results showing the values of AMI for UCR datasets

Dataset FeatTS SeededKMeans

Kidney3Yr 0.56 0.44

Kidney5Yr 0.58 0.48

Table 4.3 Results on Kidney 3Yr and 5Yr Datasets

4.2.3.2 Kidney Dataset

As shown in Table 4.3, the results obtained by FeatTS are significantly more accurate than

Seeded kMeans on the clinical case study. For the patients under medical supervision for 5

years, as shown in Table 4.3, we have obtained results following a similar trend.

4.2.4 Ablation and Scalability tests

In this section, we present a handful of ablation tests devoted to showing the importance of

each step of the FeatTS pipeline. These tests were performed on several datasets belonging to

the UCR. Moreover, we test the scalability of our system by adopting a time series generator.

The tests are based on increasing the length and the number of the time series.

4.2 FeatTS: Clustering Univariate Time Series 51

[T S1,...,T Sm] 1) Dynamic Time Warping

3) Creation of Graphs

and Application of

Community Detection

4) Create the

Co Occurrence Matrix

5) Compute Clustering

on Matrix

Quality Evaluation

and Comparison

Fig. 4.5 DTW Pipeline

[T S1,...,T Sm]
1) Extraction and

Selection

of n Features

2) Random Features

Selection

3) Creation of Graphs

and Application of

Community Detection

4) Create the

Co Occurrence Matrix

5) Compute Clustering

on Matrix

Quality Evaluation

and Comparison

Fig. 4.6 Random Features Pipeline

4.2.4.1 DTW versus Features

The idea behind this ablation test is to show the importance of adopting the distance between

the features instead of using the distance between the raw time series using Dynamic Time

Warping (DTW) [14, 90]. In a nutshell, this corresponds to removing steps 1 and 2 from

the pipeline in Figure 4.1, i.e., the extraction and the selection of the features using PFA, as

shown in Figure 4.5. The Table 4.4 shows the results obtained by replacing the distances

between the features with the distance computed by the DTW directly on the time series.

The results are expressed in the column called DTW .

The results showed that 14 datasets (out of 15) have a worse behavior if DTW is adopted.

Indeed, only in one dataset (OliveOil) does the usage of DTW outperform the features. On

average, we have a difference in terms of AMI of 0.31. This ablation test confirms the

importance of using distances between features instead of merely using distances between

raw data.

4.2.4.2 p-value versus Random

Figure 4.6 shows the pipeline removing the ordering of the features based on their relevance,

and replacing with a random features selection. We repeated this test 5 times, and we

averaged the results. The column Rand represents the average results obtained by FeatTS

using Random Features.

The results in Table 4.4 show that the algorithm’s performance drastically deteriorates

for most of the datasets (13 out of a total of 15 datasets) if random features are employed.

Indeed, computing the average overall results of the two experiments, we have a difference

of 0.35 in AMI. Therefore, ordering the features based on their relevance turns out to be

indispensable for achieving good results.

52 Time Series Features Clustering

[T S1,...,T Sm]
1) Extraction and

Selection

of n Features

2) PFA Feature

Selection

4) kMeans
Quality Evaluation

and Comparison

Fig. 4.7 kMeans Ablation Pipeline

4.2.4.3 kMeans versus Global Relation

This ablation test aims to show the importance of capturing the global relationship among

the raw time series samples through graph encoding and of the subsequent application of the

Community Detection algorithm as in this approach. Therefore, we replace steps 3, 4, and 5

as in Figure 4.1 with k-Means, i.e., a classical clustering algorithm in its multidimensional

version. Hence, once the features have been extracted and selected through PFA in steps 1

and 2, we apply the k-Means algorithm to obtain the clustering, as shown in Figure 4.7.

In Table 4.4, we show the results capturing the global relationship among the raw time

series samples through graph encoding and the subsequent application of the Community

Detection. The column k-Means shows the results obtained by k-Means among the features

selected by each dataset used in this experiment. We have highlighted in bold the best results

obtained between k-Means and FeatTS for each dataset.

The results show that FeatTS outperforms kMeans in the majority of the cases. Indeed,

there are only four datasets for which k-Means show slightly better results, namely UMD,

Meat, Co f f ee, and OliveOil. On average, the results obtained by FeatTS outperform those

obtained by k-Means of 0,08 in terms of AMI. Therefore, this ablation test shows the

importance of capturing the global relationships between the various time series to achieve

better performance results.

4.2.4.4 Scalability

We have assessed the scalability of our method by increasing both the number and length

of time series in a dataset. In this experiment, we have used synthetic time series generated

with GRATIS [63]. This tool allows a controlled generation of time series by using diverse

characteristics such as spectral entropy, trend, seasonality, stability, etc. In the synthetic

generation, we have opted for spectral entropy and trend as the underlying characteristics

since they reflect the real-life time series we have used in the rest of our experimental

assessment. The spectral entropy allows for measuring the “forecastability” of a time series.

It has a range of values between 0 and 1, and a low entropy value indicates a high signal-to-

noise ratio, while large values occur when a time series is challenging to forecast. For this

4.2 FeatTS: Clustering Univariate Time Series 53

Dataset FeatTS DTW Rand kMeans

ScreenType 0,02 0,01 0 0,01

UMD 0,3 0,27 0,01 0,42
TwoLeadECG 0,88 0 0,02 0,75

ECG200 0,32 0,08 0,06 0,16

Computers 0,09 0 0 0

Coffee 0,8 0,01 0,12 0,9
GunPoint 0,56 0 0 0,26

Arrowhead 0,28 0,2 0,02 0,24

ItalyPowerDemand 0,57 0 0 0,51

Meat 0,42 0 0,16 0,48
OliveOil 0,15 0,32 0,2 0,35

Plaid 0,35 0,01 0,11 0,03

Asphalt Regularity 0,54 0 0 0,35

Asphalt Obstacles 0,38 0,27 0,02 0,37

Gesture Pebble 0,25 0,02 0 0,16

Table 4.4 Ablation Test Results.

characteristic, we have fixed a value of spectral entropy equal to 0.6. Conversely, the trend

represents low-frequency variations in the time series. It has a range of values between 0 to

1, and we have chosen a value of 0.9 for this experiment.

In the first experiment, we increase the number of time series for each tested dataset while

the length of the time series is fixed and equal to 60. Figure 4.8a shows the results obtained

on datasets consisting of 100, 200, 500, 1000, 2000, 4000 time series, respectively. The

results show the scalability of the method in terms of time performance, while a significant

increase can be observed when shifting to more than 2000 time series. The times in Figure

4.8a are in logarithmic scale for clarity of exposition.

We have studied the percentage of time due to each pipeline component as shown in

Figure 4.8c. Upon increasing the dataset size, the component that is computationally more

demanding is the creation of the co-occurrence matrix. Obviously, since the Co-Occurrence

Matrix depends on the number of time series, the time required for its creation increases

as the size increases. In the second experiment, we increased the time series length while

fixing to 500 the number of time series belonging to each dataset. Figure 4.8b shows the

results obtained by increasing the time series length between 120 and 4000. The figure shows

the scalability of the approach for time series under 2000 and a sudden increase of the time

beyond this value. The time breakdown in Figure 4.8d shows that the more expensive step of

the pipeline for this experiment is the feature extraction step.

54 Time Series Features Clustering

(a) Time vs. dataset size (b) Time vs. TS length (c) % Time of each component vs. dataset size. (d) % Time of each component vs TS length.

Fig. 4.8 Scalability Results.

4.2.5 Human Centered Settings

In this section, we discuss the human-in-the-loop aspects of FeatTS by focusing on the

parameters that can be changed along the pipeline. Figure 4.9 shows which component of

the original pipeline the human can tune to influence the clustering process. The tuning takes

place at the end of each step. The system allows the visualization of the output to appreciate

the effect of the choice.

[T S1,...,T Sm]
1) Extraction and

Selection

of n Features

2) PFA Feature

Selection

3) Creation of Graphs

and Application of

Community Detection

4) Create the

Co Occurrence Matrix

5) Compute Clustering

on Matrix

Quality Evaluation

and Comparison

Learning Threshold Cutting Threhsold

Number of Cluster

Fig. 4.9 The algorithmic pipeline of FeatTS.

4.2.5.1 Learning Threshold

The personalization of the features based on the user needs is the first problem faced by

FeatTS. This parameter tunes the amount of supervision the system uses, increasing the

relevance of the features that best fit with the labels provided as input. The choice of

supervision depends on the user’s purpose. The resulting clusters obtained with a high

amount of supervision are strongly similar to the labels provided in input. This solution

is fruitful when the user does not care about revealing others’ information about the data.

Conversely, when using a small or zero amount of supervising, the algorithm will favor the

4.2 FeatTS: Clustering Univariate Time Series 55

features based on their variance. In this case, the obtained clusters are less aligned with

the input labels, but they can be better coupled with the raw data (i.e., the original time

series). A parameter called ‘Learning Threshold’ will help the user choose the right amount

of supervision. Figure 4.1 shows that the Learning Threshold parameter impacts steps 1 and

2 of the pipeline. In particular, the Benjamini-Yekutieli procedure will leverage the labels

provided by the user during the supervised phase to provide the importance of each feature.

Subsequently, the PFA leverages the features’ importance to select the subset of features.

We evaluate how FeatTS behaves when the Learning Threshold changes. In this experi-

ment, we consider the quality of the resulting clusters by comparing the original labels of the

dataset with those obtained from the final clusters. The purpose is to evaluate how the quality

of the resulting clusters increases as the learning threshold increases. This operation will be

repeated for each value of the threshold. In our case, we decided to increase the threshold by

10% starting from 10% up to 90%. The quality of the clusters is measured with the Adjusted

Mutual Information (AMI).

By modifying the amount of supervision and then increasing the Learning Threshold, we

show how the quality of the clustering process can be improved. The experiments in Figure

4.10 show how the quality of the resulting clusters increases where the Learning Threshold

increases. In some datasets, the same features can be selected at low and high threshold

values. This result is often due to a small set of features that can be extracted. Indeed, as

shown in 4.10d, this increase stops when we choose to use only 40% of the labels. This stop

happens because, from 50% onwards, the features chosen by PFA are equal. Therefore the

results obtained by FeatTS are the same.

4.2.5.2 Cutting Threshold

The primary goal of any clustering algorithm is to detect the similarity between the input data

points. At this stage, we want to leave the users the possibility of playing with the quality of

the similarity by using a parameter that allows them to increase or decrease the similarity

between the various time series. FeatTS extracts and evaluates the global relationships

between the time series by creating weighted edges. As Section 4.2.1.3 explains, the weights

represent the distances computed by subtracting the absolute values of the feature of two

connected time series. Hence, to obtain the level of similarity desired by the user, we propose

the ‘Cutting Threshold’ parameter. This parameter, which represents the third step of the

pipeline in Figure 4.9, indicates the percentage of lower distances to be kept for each feature

encoded as a graph. Suppose that the user specifies a percentage of 50%, half of the edges

will be cut. Theoretically, if the user wants to obtain small clusters formed by time series

with a high similarity, they must delete several edges within the graphs. Hence, they have

56 Time Series Features Clustering

10 20 30 40 50 60 70 80 90

0.2

0.3

0.4

0.17

0.350.340.33

0.38
0.36

0.390.39

0.44

Learning Threshold Values

A
M

I

(a) ECG200 AMI

10 20 30 40 50 60 70 80 90

0.3

0.35

0.4

0.45

0.5

0.28

0.42

0.38
0.39

0.48

0.51
0.49

0.42

0.48

Learning Threshold Values

A
M

I

(b) GunPoint AMI

10 20 30 40 50 60 70 80 90

0.5

0.6

0.7

0.8

0.9

0.56

0.45

0.880.880.890.89 0.9 0.9 0.91

Learning Threshold Values

A
M

I

(c) Coffee AMI

10 20 30 40 50 60 70 80 90

0.45

0.5

0.55

0.44

0.48

0.51

0.57

0.5 0.5 0.5 0.5 0.5

Learning Threshold Values

A
M

I

(d) UMD AMI

Fig. 4.10 Test Learning Threshold.

to choose a low value of the cutting threshold. On the other hand, if the aim is to obtain

large clusters at the expense of similarity, in this case, the user should keep as many edges as

possible. For this reason, a high cutting threshold is preferred. Once the edges are pruned,

FeatTS extracts the actual global relationships through Community Detection. We evaluate

how the similarity of the time series within community detection varies based on the value of

the Cutting Threshold provided by the user. Theoretically, the similarity between time series

should decrease as the percentage of the Cutting Threshold increase. In order to prove this

statement, we extract all the communities from the features chosen by PFA. Subsequently, we

compute the distances between the time series belonging to each community by leveraging

DTW [14]. These distances will then be combined into an average for each community. This

computation is shown in the Formula 4.3 where Mck represents the average of all the time

series TS that belong to a single community Ck.

Mck = ∀ T Si,T S j ∈ Ck,
∑|Ck|

i, j=0 DTW (T Si,T S j)

|Ck|·|Ck−1|
2

(4.3)

4.2 FeatTS: Clustering Univariate Time Series 57

The obtained average of the single community will be combined again with the average

of the other communities for the features chosen by PFA.

Therefore, assuming that C is the set of all the communities found for all the features, we

compute the final average as in formula 4.4. This final average called Mth corresponds to the

distance average of the chosen threshold.

Mth = ∀Ck ∈ C,
∑|C|k=0 Mck

|C| (4.4)

In this experiment, we set a percentage of Learning Threshold of 20%, and the number

of clusters equal to those required within the supervised dataset.

Table 4.11a shows that the average of the distances between the time series belonging

to each community on the GFR Dataset increases as the Cutting Threshold increases. The

increase of the threshold corresponds to the decrease of the similarity. Indeed, in Figure

4.11b, we can see that the drop of the similarity is about 7%. In order to compute the

similarity, we have applied the Formula 4.5. Indeed, assuming that T Si and T S j are two time

series that belong to the dataset, we have normalized the average distances of each threshold

Mth with the maximum distance found between two time series

Sth = 1− Mth

max(DTW (T Si,T S j))
(4.5)

In Figure 4.12 we report some results for UCR datasets that are compatible with those

obtained with the GFR dataset and show a similar trend.

Threshold
Average

Distances

10%

20%

30%

40%

50%

60%

70%

80%

90%

2449

3060

3966

4366

4354

4625

4648

4661

4662

(a) Average Distances

10 20 30 40 50 60 70 80 90

0.92

0.94

0.96

0.98
0.98

0.96

0.95
0.940.94

0.930.93

0.92

0.91

Cutting Threshold Values

S
im

il
ar

it
y

(b) Similarity

Fig. 4.11 Similarity and distances within the Communities.

58 Time Series Features Clustering

10 20 30 40 50 60 70 80 90
0

1,000

2,000

3,000

4,000

417 308

915

2058
2261

2453

3248

3949

4461

Cutting Threshold Values

D
is

ta
n
ce

s

(a) Plaid Distances

10 20 30 40 50 60 70 80 90

8

10

12

14

7.5

11.911.7

13.8
14.2

14.614.714.814.9

Cutting Threshold Values

D
is

ta
n
ce

s

(b) Coffee Distances

10 20 30 40 50 60 70 80 90

2.5

3

3.5

4

4.5

2.38

3.14

3.69
3.92

4.554.564.574.664.75

Cutting Threshold Values

D
is

ta
n
ce

s

(c) Meat Distances

10 20 30 40 50 60 70 80 90

10

20

30

40

8.84
10.9

12.44

17.23

20.67
22.7

35.81
37.79

35.68

Cutting Threshold Values

D
is

ta
n
ce

s

(d) UMD Distances

Fig. 4.12 Distances within the Communities.

4.2.5.3 Number of Clusters

In classical semi-supervised clustering algorithms, the number of clusters is directly extracted

using the classes provided as input by the user. This solution is limited since the user who

might be interested in finding a different number of clusters from those in the supervised

dataset cannot really obtain those through the clustering step. We show that the third

parameter, called ‘Number of Clusters’, allows obtaining this behavior. Therefore, with the

third parameter, it will be possible to choose the number of final clusters the user wants to

visualize.

The importance of this parameter is twofold. The first meaning is the possibility of

finding undefined classes in the supervised dataset, providing additional information about

the input dataset and further insights. Moreover, this parameter combines all the communities

of global relations into a precise number of clusters. Indeed, the number of communities

detected may be different in each feature. Therefore, defining a precise number of clusters

favors the relationships obtained from a feature with several communities equal to the number

4.3 Time2Feat: Clustering Multivariate Time Series 59

(a) Acute Dialysis (b) Chronic Dialysis

Fig. 4.13 Time series of the GFR signal for patients treated for Acute and Chronic Dialysis.

of clusters. Thus, the last two steps of the pipeline are dedicated to this parameter, as shown

in Figure 4.9.

We show the importance of deciding upon the number of clusters to be extracted despite

a different number of labels provided as input. The GFR dataset shows two classes called

Kidney Failure and Not Kidney Failure. With the help of a domain expert, we have increased

the number of classes to analyze the behavior of FeatTS with classes different from those

given as input. After interacting with the expert, we obtained two other classes out of the

Kidney Failure class, namely Chronic Dialysis and Acute Dialysis. Patients under chronic

dialysis must regularly go to the hospital for health care. Chronic kidney disease is a disease

in which there is gradual loss of kidney function over months to years. Acute kidney injury

is an abrupt loss of kidney function that develops within seven days. An acute kidney injury

occurs when the kidneys are exposed to something harmful or considered harmful by the

body.

In this experiment, we show the usefulness of FeatTS to help the medical doctors separate

the cases of chronic dialysis from the acute dialysis while not having these labels available

as input. Figure 4.13 shows the two classes discovered by FeatTS.

4.3 Time2Feat: Clustering Multivariate Time Series

We introduce Time2Feat, an open-source scalable and interpretable system for MTS cluster-

ing that adopts an end-to-end semi-supervised clustering pipeline, mainly based on feature

extraction, feature selection, and clustering. Features are automatically extracted from the

signals composing the MTS by exploiting both intra-signal features, characterizing the

60 Time Series Features Clustering

single signals of MTS, and inter-signal features measuring pairwise relatedness (in terms

of similarity and correlation) of multiple signals employing interpretable metrics. Two

dataset-dependent techniques are introduced to select the most important features among the

ones describing the MTS. The unsupervised mode is an entirely intuitive approach based

on Principal Features Analysis (PFA) [82]. The semi-supervised mode relies on users’ an-

notations on small dataset samples to improve the selection process. Finally, a clustering

technique is adopted for a group of the MTS. The resulting clusters turn to be interpretable:

users can conduct an in-depth analysis of them to understand why MTS share the same

cluster.

4.3.1 Motivating Real-World Scenario

The BasicMotions dataset is a real-world dataset belonging to the UEA multivariate time

series classification archive [7]. This dataset describes four kinds of activity (i.e., playing

badminton, running, standing, and walking) performed by students through two sensors (an

accelerometer and a gyroscope) installed in their smartwatches. The sensors gather data in a

three-dimensional space, thus producing three different signals (X, Y, Z). The overall dataset

comprises 80 MTS, and each signal includes 100 recordings. We use this dataset to provide

an example motivating our research. Suppose we were asked to analyze the dataset without

detailing the activities that MTS describes. This lack of information frequently happens in

business scenarios where trade secrets or simply the costs for labeling make it necessary to

work with unlabeled datasets. Clustering is one of the main data exploration techniques we

can perform on unlabeled data.

Generating clusters for MTS is a non-trivial task. From a data structure perspective, they

are third-order tensors, i.e., a dataset includes many MTS, each one containing multiple

signals, and each signal is composed of several timestamps. From a numerical perspective, it

is frequent to work with datasets composed of thousands of MTS and hundreds of signals with

thousands of records (see, for example, the datasets used in the experiments in Section 4.3.3).

This problem gives rise to a first challenge to address: (C1): Analyzing MTS datasets requires
the application of scalable techniques capable of dealing with the high dimensionality of the
data.

We address this challenge by proposing Time2Feat, which computes the clusters based

on features extracted from the signals of the MTS. This operation allows us to reduce the

problem’s dimensionality: from the many timestamps constituting the time series to the single

values of the features. We rely on external specialized software libraries to extract intra and
inter-signal features from the MTS. The former describes particular properties of the signals

in isolation (e.g., the mean value, the autocorrelation, et cetera.). The latter evaluates pairwise

4.3 Time2Feat: Clustering Multivariate Time Series 61

the signals measuring distances, correlations, et cetera. This operation overall generates 4842

features in the BasicMotion Dataset. Nevertheless, the high dimensionality of the features

extracted could introduce inefficiency in the cluster generation process. A scalable approach

should identify the most important features and base the clustering technique on them. In

addition, high dimensionality datasets generate ineffective results. Clusters of elements

resulting from high-dimensional datasets are difficult to manage and understand for humans.

Although very close according to some statistical quality metrics (e.g., Silhouette [34]), the

clusters would be unusable by users who would not understand the reasons why the elements

were grouped together. This problem introduces a second challenge: (C2): providing an
interpretable clustering technique is of paramount importance for data analysis.

State-of-the-art approaches for MTS clustering [76, 75, 58] suffer from low interpretabil-

ity. Time2Feat addresses this problem by letting the approach use a reduced number of

interpretable features. In particular, Time2Feat adopts a mechanism for the feature selections

based on the PFA, that allows us to rank the features according to their importance in the

process and to select only the meaningful ones. Table 4.14a shows the features adopted for

clustering reduced from PFA to 46 from the 4842 initially extracted.

The number of clusters to generate is another critical parameter to select. We could

adopt the well-known Elbow Method to automatically compute the number that better fits

the computed statistical measures. The application of the Elbow method to BasicMotion

generates 4 clusters, as shown in Figure 4.14c in blue circles. This result is obtained through a

completely automatic unsupervised procedure where the pipeline starts with the BasicMotion

dataset and generates 4 clusters generated via 46 features. Data analytics processes are

typically the result of several iterations where users gain more and more insights from the

data that require the application of deeper analytical functions. This intuition is the third

challenge to address: (C3): clustering techniques for data analytics need to put the human in
the loop.

Time2Feat addresses this challenge by allowing users to select the number of clusters

and label some samples for each, thus also supporting a semi-supervised procedure. Our

experiments demonstrate that just labeling a few elements per cluster improves the accuracy

of the results and significantly reduces the number of features adopted by the clustering

technique, thus improving their interpretability. Going back to our example, suppose that

a user decides to manually inspect the clusters and provides four labels for each cluster.

For instance, the user can analyze some elements from the top-right cluster of Figure 4.14c

and observe that they refer to people playing badminton. By analyzing some elements

from the second top-right cluster, s/he can observe that they refer to people doing running.

Time2Feat exploits the user annotations by further reducing the number of features used

62 Time Series Features Clustering

for the clustering (from 46 to 3), as shown in Table 4.14b, and improving the quality of the

clusters. Figure 4.14d shows the result of the clustering process where a subset of elements

in the dataset has been annotated. We observe that the limited number of features used for

the clustering allows the user to understand why the data have been grouped (i.e., they are

describing the same kind of activity).

Finally, we would like to point out that cluster analysis offered by Time2Feat is excep-

tionally flexible and facilitate more precise and flexible data exploration. For instance, in

case the user wants to group the data into two clusters instead of four, Time2Feat would

obtain the first cluster with blue and green data points in Figure 4.14d (the one is referring to

the badminton and running activities) and the second with gray and red elements (referring

to the standing and walking activities).

4.3.2 Time2Feat Pipeline

Time2Feat implements the components of the data analysis pipeline as illustrated in Figure

4.15. Time2Feat takes MTS dataset D as input and the number of clusters to generate

(provided by the user or via some heuristic). It can run under unsupervised mode, i.e., no

further input is required, and under semi-supervised mode, i.e., the users specify a subset of

clustered samples. The three steps of the pipeline are implemented by the feature_extraction
function (described in Section 4.3.2.1), the feature_selection function (in Section 4.3.2.2)

and the cluster function (in Section 4.3.2.3).

4.3.2.1 Feature Extraction

The goal is to generate an exhaustive representation of an MTS dataset via a large spectrum

of features, each describing the MTS signals (in isolation or pairs).

Intra-signal Features Extraction. The computation of statistical features describing the

signals of the MTS relies on the library tsfresh [30], already adopted in many time series

analysis tasks [115, 149, 116]. Out of the 700+ computed by tsfresh, each feature encodes

the signal description from the perspective offered by a specific analysis method, such as

Distribution Analysis, Statistical Analysis, et. Lines 2-6 of Algorithm 1 shows a simplified

procedure where a nested for-cycle is used to iterate over the MTS in the datasets and applies

the intra_feature_extraction function to generate the features for each composing

signal. In the actual implementation, we leverage the efficient parallelization of the feature

extraction function provided by tsfresh that can compute features in batches of univariate

series.

4.3 Time2Feat: Clustering Multivariate Time Series 63

Intra-Signal Inter-Signal
AccX AccY AccZ GirX AccX-AccY AccX-AccZ

Quantile0.4 ... PACF 9 L1 dist. Chebyshev L1 dist.

MT SR 1.87 ... 0.16 981.78 49.56 1115.71

MT SB 4.45 ... 0.26 1121.45 30.71 1423.28

MT SS -0.19 ... -0.23 85.05 1.93 35.60

MT SW 0.71 ... 0.14 301.46 8.45 174.99

...

(a) Excerpt of the features (46) extracted in the unsupervised mode.

Intra-Signal Inter-Signal
AccX GirX AccY-AccZ

Variance Quantile 0.3 L1 dist.

MT SR 80.12 -0.94 764.99

MT SB 139.75 -3.57 1083.85

MT SS 0.09 -0.14 97.05

MT SW 2.26 -1.02 325.82

...

(b) The features (3) extracted in the semi-supervised mode.

(c) Clusters generated with the unsuper-

vised mode.

(d) Clusters generated with the semi-

supervised mode.

Fig. 4.14 The clustering analysis supported by Time2Feat on the BasicMotion dataset.

Inter-signal Features Extraction Many works [78, 124] highlight the importance of inter-

signal relationships in the analysis of time series. Nevertheless, they typically extract the

features employing neural network architectures, obtaining uninterpretable descriptions.

We adopt a straightforward approach by conceiving inter-signal features as the measure

of the relatedness (in terms of similarity and correlation) between pairs of signals that we

measure through 8 metrics (e.g., correlation, Euclidean distance, et cetera). The pipeline

firstly generates the pairs of signals per time series (lines 7-12 of the Algorithm 1), then

applies the function inter_feature_extraction in charge of the extraction.

64 Time Series Features Clustering

Su
pe

rv
is

ed
ra

nk
in

g

M
ul

tiv
ar

ia
te

 T
im

e
Se

rie
s

D
at

as
et

unsupervised

C
lu

st
er

s

Fe
at

ur
e

se
le

ct
io

n

C
le

an
in

g

ClusteringFeature Extraction

Inter-signal
extraction

Intra-signal
extraction

N
or

m
al

iz
at

io
n

C
lu

st
er

s
ge

ne
ra

tio
n

Feature Selection

Fig. 4.15 The proposed pipeline and the implementation in the Time2Feat system.

Algorithm 1: feature_extraction
Input :D ∈ R

V xNxS Multivariate time series dataset.

Output :F ∈ R
V xE Matrix of signals and extracted features.

// Extracting intra-signal features

1 F []← 0; // list of extracted features

2 foreach V ∈ D; // For each MTS in the dataset

3 do
4 foreach Si ∈V ; // For each signal in the MTS

5 do
6 F ← intra_ f eature_extraction(Si)

// Extracting inter-signal features

7 foreach V ∈ D do
8 foreach Si ∈V do
9 V =V −Si;

10 foreach S j ∈V ; // For pairs of signals in the MTS

11 do
12 F ← inter_ f eature_extraction(Si,S j)

13 return F ;

The feature extraction procedure generates a large number of features per dataset. Reduc-

ing the dimensionality of such representation improves the interpretability and increases the

performance of the clustering procedure.

4.3.2.2 Feature Selection

As a first operation, in line 1 of Algorithm 2, we clean the matrix of the features by removing

all zero-variance features and the features that have missing or infinite values (they would

be useless for the cluster generation). Suppose there are labels available, i.e., Time2Feat is

running with the semi-supervised mode. These are used to rank the relevance of the features

for identifying a subset capable of generating clusters. We rely on the Analysis of Variance

4.3 Time2Feat: Clustering Multivariate Time Series 65

Algorithm 2: feature_selection
Input :F ∈ R

V xE Matrix of signals and features.

labels Optional labels

Output :t ∈ R
V xF Matrix of signals and top features.

// Remove features with constant, null and/or infinite values

1 T ← clean(F);
// Semi-supervised step if the user labels some records

2 if labels then
3 T ← auto_anova_selection(T, labels);

4 T ← p f a(T); // Extract best feature with PFA

5 return T ;

(ANOVA) [128] for computing the p-value associated with each feature and quantifying

its significance. Then, we apply a grid search analysis identifying the subset of features

that maximizes the quality of the generated clusters. To evaluate the quality, we use the

Homogeneity Score which measures the homogeneity of the elements in a cluster by using

conditional entropy analysis, the Adjusted Mutual Information (AMI) [113] and Adjusted
Rand Index[129] which are specific measures evaluating the agreement and similarity of

pairs of cluster elements. The joint application of the ANOVA and grid search analysis is

referred to auto_anova_selection in line 3 of the Algorithm. Finally, both in the presence

and in the absence of labels, we apply the PFA technique to reduce the dimensionality of the

feature representation further. PFA is a variation of the PCA preserving the original values of

the features and then the distance between them.

4.3.2.3 Clustering

Concerning the number of clusters, the Time2Feat system leverages state-of-the-art heuristics

(e.g., applying the well-known Elbow method) or user preferences. Moreover, in Section

4.3.3, we show the evaluation of classical clustering algorithms, among which the Hierarchical

technique achieved the best accuracy in the results. Finally, the clustering operation includes

a normalization step that avoids the dominance of features due to large-scale domain ranges.

4.3.3 Experimental evaluation

The evaluation addresses four main research questions:

RQ1 How effective is Time2Feat in solving MTS clustering tasks (Section 4.3.3.1);

RQ2 To what extent the clusters generated are interpretable (Section 4.3.3.2);

RQ3 How efficient is the cluster computation (Section 4.3.3.3);

66 Time Series Features Clustering

RQ4 How robust is the pipeline, i.e. to what extent do the components in the pipeline

contribute to the task. (Section 4.3.3.4)

Baselines. We selected 18 benchmark datasets from the UEA multivariate time series

classification archive [7]. For each dataset, Table 4.5 reports the number of MTS (V), the

number of signals (S), the length (N) of the series, and the clusters (C), where the MTS can

be grouped. In addition, we computed the overall number of elements in the dataset (EO –

obtained by multiplying V ×S×N) that provides a yardstick for measuring the scalability of

the approach. Finally, we estimate the complexity of generating the clusters by computing

the number of elements per MTS (EM – obtained by multiplying S×N). Intuitively, the lower

the value, the lower the ability to extract descriptive features. The datasets represent different

scenarios as their overall number of elements EO spans over three orders of magnitudes, and

EM ranges from 16 elements for the PD dataset to 10000 for SW.

We compared Time2Feat with seven approaches: Hierarchical, KMeans, and Spectral are

straightforward applications of these classical clustering techniques to MTS datasets. CPSCA

and MC2PCA introduce a PCA-based mechanism to reduce the data dimensionality before

the clustering. DETSEC leverages neural networks by creating embeddings for the series

through autoencoders, and DTW measures the similarity between two temporal sequences.

Setup. The experiments are executed on an Intel Xeon Processor machine with 12 cores,

64GB of RAM, and 324GB of local (SSD) storage. The machine runs Ubuntu version 18.04.

All experiments have been executed ten times, and the average result plus standard deviation

is reported.

4.3.3.1 Effectiveness

To measure the accuracy, we run Time2Feat on the datasets in the benchmark. We computed

the AMI, which takes a value of 1 when the evaluated clustering is identical to the baseline,

and 0 when the different cluster distributions are random. Table 4.6 shows the results of

this experiment. Time2Feat has been evaluated executing the unsupervised mode (column

T2F0) and by providing a stratified random sample composed of 20% (column T2F2), 40%

(column T2F4), 50% (column T2F5) of labels per cluster from the baseline datasets. The

latter has been used to simulate the user interaction in the semi-supervised mode. The

remaining columns show the competing approaches (discussed in Section 5.1.1). Among

them, Hierarchical, KMeans, and Spectral can be considered as reference baselines for their

simplicity2. Finally, in Table 4.6, we mark in bold the best value per dataset, and with ↑ the

results where the selected Time2Feat configuration overcomes the competing approaches

2We rely on the sklearn implementations of these algorithms with default parameters.

4.3 Time2Feat: Clustering Multivariate Time Series 67

Dataset V S N C
EO

(V xSxN)
EM

(SxN)
Li — Libras 360 2 45 15 32400 90

AF – AtrialFibrillation 30 2 640 3 38400 1280

BM – BasicMotions 80 6 100 4 48000 600

RS – RacketSports 303 6 30 4 54540 180

ER – ERing 300 4 65 6 78000 260

Ep – Epilepsy 275 3 206 4 169950 618

PD – PenDigits 10992 2 8 10 175872 16

SW – StandWalkJump 27 4 2500 3 270000 10000

UW – UWaveGestureLibrary 440 3 315 8 415800 945

Ha – Handwriting 1000 3 152 26 456000 456

AW – ArticularyWordRecognition 575 9 144 25 745200 1296

HM – HandMovementDirection 234 10 400 4 936000 4000

LS – LSST 4925 6 36 14 1063800 216

Cr – Cricket 180 6 1197 12 1292760 718

EC – EthanolConcentration 524 3 1751 4 2752572 5253

S1 – SelfRegulationSCP1 561 6 896 2 3015936 5376

S2 – SelfRegulationSCP2 380 7 1152 2 3064320 8064

PS – PhonemeSpectra 6668 11 217 39 15916516 2387

Table 4.5 Datasets used in the experiments. V is the number of MTS, S the number of signals,

N the length of the series, C the number of classes, EO the overall number of elements per

dataset, EM the number of elements per MTS.

while not obtaining the best accuracy value. We do not consider the confidence intervals due

to the high discrepancy between the computed values.

Discussion. The experiment results clearly show that Time2Feat outperforms its competitors.

In particular, in the unsupervised mode, the accuracy of the clusters generated by Time2Feat

is higher than the other approaches in 12 out of 18 datasets. Among them, in 3 datasets, it

obtains the best accuracy score. By providing 20% labels per cluster, Time2Feat outperforms

the other approaches in 13 datasets (obtaining in 2 datasets the best accuracy score). The

performances generally improve by adding more labels, as in the configuration T2F5, where

Time2Feat outperforms the other approaches in 15 out of 18 datasets (showing the best

accuracy value in 9 out of 18 datasets). This experiment helped us derive the following

insights: (1) Time2Feat’s pipeline is highly efficient as at least one configuration of Time2Feat

outperforms the other approaches in all datasets, except in the UW dataset, where it performs

slightly worse than some competing approaches. The reason is that UW describes trajectories.

One kind of trajectory is the composition of two other trajectories. The features extracted

by Time2Feat cannot recognize these three different movements. (2) Time2Feat is highly

scalable as it obtains high accuracy results both for small (the ones at the top of Table 4.6)

and for large datasets (the ones at the bottom of the Table 4.6). These results do not hold for

the competitors, where the accuracy drops as the number of elements in the dataset increases

68 Time Series Features Clustering

Dataset Semi-supervised Unsupervised Competing approaches
T2F2 T2F4 T2F5 T2F0 Hierarchical KMeans Spectral DTW CPSCA DETSEC MC2PCA

Li 0.728±0.02↑ 0.722 ± 0.016↑ 0.730±0.020 0.716±0.012↑ 0.563 0.545 0.492 0.503 0.311 0.416 0.069

AF 0.028±0.046 0.123 ± 0.066↑ 0.238±0.059 0.038±0.027↑ -0.002 -0.002 -0.002 0.005 -0.07 -0.001 -0.056

BM 0.977±0.034↑ 1.000 ± 0.000 1.000±0.000 1.000±0.000 0.347 0.23 0.002 0.832 0.7 1.000 0.189

RS 0.559±0.038↑ 0.666 ± 0.049↑ 0.710±0.047 0.35±0.006↑ 0.192 0.194 0.0 0.215 0.221 0.224 0.094

ER 0.801±0.016 0.823 ± 0.014 0.826±0.023 0.921±0.011 0.859 0.91 0.0 0.775 0.5 0.646 0.115

Ep 0.896±0.025↑ 0.913 ± 0.019 0.882±0.007↑ 0.792±0.04↑ 0.135 0.167 -0.001 0.25 0.258 0.213 0.08

PD 0.752±0.022↑ 0.771 ± 0.028↑ 0.784±0.013 0.437±0.02 0.728 0.682 N/A 0.6 N/A 0.431 0.065

SW 0.038±0.036 0.101 ± 0.01 0.23±0.046 0.048±0.079 0.131 -0.002 0.0 -0.005 -0.072 -0.097 0.045

UW 0.555±0.026 0.554 ± 0.036 0.59±0.035 0.587±0.055 0.752 0.712 0.0 0.611 0.236 0.414 0.111

Ha 0.325±0.023↑ 0.353 ± 0.019 0.349±0.009↑ 0.161±0.006 0.226 0.193 0.0 0.235 0.165 0.271 -0.004

AW 0.921±0.007 0.931 ± 0.01↑ 0.927±0.005↑ 0.963±0.007 0.926 0.902 0.0 0.781 0.716 0.794 0.182

HM 0.021±0.011↑ 0.045 ± 0.007 0.07±0.012 0.015±0.008 -0.006 -0.002 0.001 0.01 0.002 -0.004 0.018

LS 0.293±0.013↑ 0.317 ± 0.011↑ 0.333±0.002 0.156±0.009↑ 0.028 0.018 0.001 N/A 0.047 0.152 0.048

Cr 0.984±0.021 0.975 ± 0.018↑ 0.974±0.021↑ 0.946±0.021↑ 0.756 0.719 0.0 N/A 0.876 0.865 0.361

EC 0.065±0.017↑ 0.097 ± 0.006↑ 0.121±0.04 0.052±0.002↑ 0.009 0.01 -0.003 N/A 0.013 N/A 0.002

S1 0.397±0.047 0.374 ± 0.025↑ 0.382±0.012↑ 0.007±0.001 0.212 0.194 -0.001 N/A N/A 0.18 0.022

S2 0.008±0.003↑ 0.015 ± 0.004 0.015±0.006 0.003±0.001 ↑ -0.002 -0.001 0.01 N/A 0.001 0.007 0.005

PS 0.2±0.006↑ 0.202 ± 0.002 0.201±0.002↑ 0.121±0.007↑ 0.093 0.096 0.0 N/A N/A N/A 0.058

Table 4.6 Effectiveness (AMI score). In bold, the best value per dataset. The ↑ mark denotes

Time2Feat settings that overcome the competing approaches.

(and in some cases, marked N/A in the Table 4.6, no cluster is generated due to timeout

or memory exceptions). (3) The semi-supervised procedure involving the user annotations

improves the accuracy. By labeling a small number of elements per dataset, the accuracy

steadily increases.

4.3.3.2 Interpretability

We assume that the user’s perception of a few features is better than the user’s exploration

of a large number of features. Therefore, we measure the interpretability of the clusters as

the number of features that Time2Feat uses for their computation. The column All in Table

4.7 shows the overall amount of features extracted after the feature extraction step of the

pipeline (Section 4.3.2.1). The other columns report the number of features retained with

the unsupervised mode (column T2F0) and with increasing levels of supervision as in the

previous experiment. The values represent the average of the features selected in the ten

experiments.

Discussion. The feature extraction generates a large number of features that increases as the

number of elements per dataset EO (the Pearson correlation coefficient – Pcc is 0.61) and

the number of elements per MTS EM (Pcc = 0.39) increases. The unsupervised approach

drastically reduces the selected features while maintaining a strong correlation (Pcc = 0.51)

with the overall number of features. Not always an increase in the supervision corresponds

to a reduction in the features. We explain this as a sort of “overfitting” that forces better

accuracy results by adding features. However, we observe the small number of features

retained in all semi-supervised settings that allow users to interpret the cluster generation

4.3 Time2Feat: Clustering Multivariate Time Series 69

Dataset All T2F0 T2F2 T2F4 T2F5

Li 1574/8 55.0/1.0� 7.17/0.0 8.33/0.0 9.4/0.0

AF 1574/8 21.0/0.0 2.83/0.17 5.67/0.0 5.67/0.0

BM 4722/120 44.33/1.67� 2.33/1.5� 2.0/0.67 2.0/0.17

RS 4722/120 141.2/9.8� 12.8/2.6� 15.4/3.4� 21.0/4.2�
ER 3148/48 125.83/3.17� 7.0/1.67� 6.83/1.33� 7.17/1.17�
Ep 2361/24 163.33/3.67� 12.67/1.83� 15.67/1.17� 15.33/1.33�
PD 1574/8 98.0/1.0� 16.4/0.6 13.8/0.6 18.8/0.8

SW 3148/48 20.0/0.0 1.8/0.4 3.4/0.0 6.4/0.0

UW 2361/24 124.0/3.0� 4.4/0.2 4.4/0.2 4.4/0.0

Ha 2361/24 309.83/3.17� 23.83/1.5� 25.0/2.17� 30.83/2.67�
AW 7083/288 283.67/30.33� 10.0/5.0� 9.5/4.0� 10.5/4.0�
HM 7870/360 167.0/11.0� 15.17/1.0� 28.17/1.33� 24.83/2.17�
LS 4722/120 217.0/5.0� 6.6/3.6� 9.4/3.2� 12.8/4.4�
Cr 4722/120 113.17/3.83� 4.5/3.83� 4.17/4.17� 4.17/4.0�
EC 2361/24 122.83/5.17� 9.33/0.33 8.5/0.0 3.0/0.0

S1 4722/120 222.2/1.8� 2.0/0.2 2.0/0.0 3.0/0.2

S2 5509/168 183.0/3.0� 26.4/0.4 20.8/0.4 20.2/0.0

PS 8657/440 293.0/8.0� 4.0/0.0 4.4/0.0 4.2/0.0

Table 4.7 Interpretability as number of intra-signal / inter-signal features. � indicates 1+

inter-signal feature(s).

process. Finally, the experiment highlights the importance of the inter-signal features. Even

if, by construction, the number of inter-signal features is lower than the intra-signal, the

final retained features include inter-signal elements for almost all Time2Feat settings, thus

showing their importance in the clustering process.

4.3.3.3 Efficiency

We perform three experiments to evaluate the efficiency of our approach. The first experiment,

called Time Performance, measures the efficiency by computing the overall time required

to complete the pipeline. The second experiment, called Time breakdown of the pipeline
components, evaluates the time breakdown of Time2Feat’s pipeline. Finally, the third

experiment, called Workload balancing, improves the pipeline by introducing a simple

heuristic to optimize the parallelism of the feature extraction.

Time Performance Table 4.8 shows the maximum time to complete the cluster computations

for all the datasets in the 10 experiment repetitions. We show only the time measured in the

unsupervised mode (T2F0): the semi-supervision does not change the value significantly.

The last row shows the average time computed on all datasets (excluding the ones raising the

exceptions).

Discussion. The clustering techniques that reach the best time performance are KMeans and

Hierarchical, which finish the pipelines in a few seconds. However, this comes at the cost

70 Time Series Features Clustering

Dataset T2F0 Hierarch. KMeans Spectral DTW CPSCA MC2PCA DETSEC
Li 20.31 0.2 0.28 0.37 366 2 0.53 500
AF 31.01 0.04 0.06 0.31 350 0.01 0.12 876
BM 58.45 0.09 0.16 0.23 175 0.03 209 260
RS 50.11 0.2 0.39 0.39 474 0.317 356 270
ER 34.2 0.18 0.24 5.27 914 0.21 559 555
Ep 47.95 0.24 0.42 7.71 3667 0.31 682 1673
PD 198.03 9.0 3.0 × 24713 50 6 3395
SW 559.69 0.16 0.25 0.34 10768 0.01 1 10142
UW 58.42 0.45 0.74 15.6 20639 0.47 3063 4229
Ha 44.74 0.86 2.0 7.19 27018 0.19 25 4301
AW 135.18 1.0 1.0 1.35 23611 1 18811 220
HM 220.78 0.83 1.0 0.89 30251 0.62 3162 3175
LS 300.23 6.0 3.0 6.49 - 0.35 16591 4666
Cr 737.61 0.8 1.0 0.91 - 0.14 13642 12145
EC 876.3 2.0 2.0 2.01 - 0.26 9708 -
S1 727.37 2.0 2.0 2.37 - - 12 19317
S2 952.58 2.0 2.0 2.22 - 0.36 11 20898
PS 1219.88 1.0 1.0 34.73 - × × -

Avg 348.49 1.50 1.14 5.19 11912.17 3.52 3931.69 5537.88

Table 4.8 Runtime execution , in seconds (- timeout exception fixed in 10 hours, × memory

exception).

of accuracy and interpretability loss. CPSCA also shows a low time performance, but the

algorithm cannot handle large datasets, where time and memory exceptions occur and poor

accuracy. The other approaches report an average time greater than Time2Feat of at least an

order of magnitude and, in some cases, time and memory exceptions. Finally, we observe

that Time2Feat’s execution time ranges from a few seconds to a few thousands of seconds,

having the performance correlated with the overall number of elements (Pcc=0.75).

Time breakdown of the pipeline components The goal of this experiment is to analyze the

breakdown of the computation time (see Figure 4.16a) into the main pipeline components

(feature extraction, feature selection, and cluster generation).

Discussion. In all datasets, the time required for extracting the features dominates the other

components: it takes between 88% and 99% of the overall time needed for completing the

pipeline. The average time to complete the feature extraction is around 337 seconds, and

the one to complete features selection is 9 seconds, whereas, for clustering, it amounts to

1 second. The correlation between the time spent in clustering and V is strong (Pcc=0.99).

This is why in three datasets (PD, LS, and PS, the ones with the largest V), the clustering

time takes more than 1 second but less than 8 seconds. The feature extraction and selection

show a different behavior: they are correlated with the overall number of elements in the

datasets EO (the Pcc is more than 0.95 for both the tasks).

Workload balancing In this experiment, we evaluate a straightforward heuristic to improve

the time performance by optimizing the computational workload on the processors. We recall

4.3 Time2Feat: Clustering Multivariate Time Series 71

(a) Pipeline Breakdown. (b) Custom parallelization.

Fig. 4.16 Efficiency analysis.

that feature extraction, based on an external library, performs the computation using batches

of time series. These batches are not balanced by default. Time2Feat allows to balance the

workload by customizing the number of batches per dataset by dividing the total number of

MTS (V) by the number of available processors, rounding for excess to the upper integer.

Figure 4.16b shows the time reduction by adopting this heuristic.

Discussion. By balancing the workload on the processors, the time performance essentially

improves in almost all datasets (the average time computed on all datasets decreases from

348 to 242 seconds. In 5 datasets (AF, BM, Ep, SW, and HM), the time reduction is more

than 60%. In only two cases (PD and LS), the heuristic does not affect the time performance,

and the time slightly increases.

4.3.3.4 Robustness

This Section evaluates the robustness of the pipeline components by a series of ablation tests.

We evaluate the importance of feature selection. Then, we evaluate alternative options to the

Hierarchical algorithm for performing the final cluster computations. Finally, we evaluate

the importance of the features in the clustering procedure.

Importance of feature selection We show the importance of feature selection by evaluating

the clusters generated without this operation in terms of accuracy (AMI) in Figure 4.17a,

interpretability (number of features) in Figure 4.17b, and efficiency (time for performing the

feature extraction and clustering) in Figure 4.17c.

Discussion. The experiment shows that the step removal generally has a large impact on

the accuracy and the interpretability. With fewer features, the decrease is two orders of

magnitude, Time2Feat obtains more accurate clusters than adopts all the features. The

AMI is close to 0 in almost all datasets when the clusters are computed with all features.

Concerning the time, feature selection and clustering operation generally take less time than

72 Time Series Features Clustering

(a) Accuracy. (b) Interpretability.

(c) Efficiency for feature extraction and clustering.

Fig. 4.17 Removing the Features Selection from the pipeline.

clustering on all features. The comparison between the time required for executing this step

and the duration of the overall pipeline in Figure 4.8 shows that: (1) this time saving is

irrelevant, (2) most of the time is spent by the Time2Feat pipeline in the feature extraction

step. In summarizing, the feature selection step improves the accuracy and the interpretability,

by keeping unaltered the cluster computation time.

Importance of the clustering step We experimented with three techniques (Hierarchical,
KMeans, Spectral) for generating the clusters, as shown in Table 4.9. For each technique, we

computed the AMI of the clusters obtained with three settings: the unsupervised procedure
(T2F0), the semi-supervised procedure with 20% and 50% labeled elements per cluster

(T2F2 and T2F5, respectively).

Discussion. The results show that Time2Feat’s default clustering technique (i.e., the Hier-

archical) provides the best performance above all the others. The KMeans technique has

similar accuracy. The Spectral clustering does not obtain competitive values apart from the

most extensive datasets where it achieves the best results, very close to the other approaches.

Importance of the features in the clustering task This experiment evaluates whether a

feature-based clustering approach is more effective than an approach based on raw data. To

this end, we run Time2Feat in the unsupervised mode by performing the clustering computa-

tion with the same techniques used in the previous experiment (Hierarchical, KMeans, and

4.3 Time2Feat: Clustering Multivariate Time Series 73

Dataset
Hierarchical KMeans Spectral

T2F0 T2F2 T2F5 T2F0 T2F2 T2F5 T2F0 T2F2 T2F5

Li 0.716↑ 0.728↑ 0.730 0.711 0.691 0.722 0.627 0.709 0.705

AF 0.038↑ 0.028 0.238 0.007 0.047↑ 0.192 -0.001 0.047↑ 0.188

BM 1.000 0.977↑ 1.000 1.000 0.961 1.000 0.992 0.902 0.993

RS 0.35 0.559 0.710 0.359 0.578↑ 0.649 0.371↑ 0.612 0.663

ER 0.921 0.801 0.826↑ 0.955 0.819↑ 0.824 0.925 0.79 0.804

Ep 0.792 0.896 0.882↑ 0.874↑ 0.839 0.867 0.528 0.800 0.793

PD 0.437 0.752↑ 0.784 0.639↑ 0.727 0.715 0.377 0.651 0.688

SW 0.048 0.038 0.231 0.071↑ 0.074 0.327 -0.004 0.167↑ 0.256

UW 0.587↑ 0.555↑ 0.59 0.566 0.541 0.539 0.454 0.511 0.537

HM 0.161↑ 0.325↑ 0.349 0.153 0.302 0.325 0.014 0.277 0.289

AW 0.963 0.921↑ 0.927↑ 0.945 0.918 0.903 0.807 0.89 0.899

HM 0.015↑ 0.021 0.069 0.011 0.048↑ 0.089 0.005 0.037 0.062

LS 0.156↑ 0.293 0.333 0.146 0.315↑ 0.332 0.041 0.037 0.051

Cr 0.946↑ 0.984 0.974↑ 0.907 0.956 0.96 0.787 0.95 0.967

Ec 0.052 0.065 0.121 0.056↑ 0.066↑ 0.094 0.049 0.06 0.106

S1 0.007 0.397 0.382 0.019↑ 0.419 0.391↑ 0.002 0.387 0.379

S2 0.003↑ 0.008 0.015 0.000 0.015 0.024 0.000 0.021 0.035
PS 0.121 0.2 0.201 0.143↑ 0.211 0.208↑ 0.143↑ 0.211 0.208↑

Table 4.9 Accuracy (AMI) varying the clustering techniques. In bold, the best result per

dataset. The ↑ mark denotes the best results per setting (T2F0, T2F2, T2F5).

Spectral), and we compare the accuracy obtained (in terms of AMI) with the one obtained by

the application of the same clustering technique to the raw datasets.

Discussion. The comparison with the clustering techniques executed on the original time

series shows the feature extraction’s importance in obtaining accurate clusters independently

from the selected clustering algorithm. Figure 4.18 shows the results obtained in terms of

AMI difference between the feature-based and the raw-data-based approaches clustered with

the same technique. Positive values mean that the feature-based approach performs better

than the raw-based approach, which applies to most datasets. Only three datasets (PD, UW,

and S1) show a reduced performance.

4.3.4 Lessons Learned

We conclude by pinpointing how our feature-based clustering pipeline addresses the research

aforementioned questions.

(RQ1) Thanks to the features, we gain on effectiveness. The experiment in Section 4.3.3.1

demonstrates that Time2Feat provides more accurate clusters than its competitors. The

ablation test confirms that the application of a feature-based clustering technique generates

more effective results than the application of clustering on raw data.

74 Time Series Features Clustering

Fig. 4.18 Difference (AMI) between feature-based and raw data clustering with the same

technique.

(RQ2) The features facilitate interpretability. The experiment in Section 4.3.3.2 shows

that Time2Feat allows exploiting a small number of features for generating the clusters

and making them interpretable by the users. Moreover, it demonstrates the importance of

inter-signal features retained in many settings for cluster generation.

(RQ3) Feature-based clustering achieves a trade-off between accuracy and performance.
Time2Feat achieves the best accuracy in the majority of the datasets along with good

performance. The approach is among the fastest ones and performs in seconds, thus making it

efficiently usable for batch analyses. The studied time breakdown of the pipeline components

shows that the feature extraction phase is the most expensive. Nevertheless, heuristics for

optimizing the workload balance, e.g., concerning the available processors, can be quickly

developed to reduce the overall time execution considerably.

(RQ4) The pipeline for feature based clustering MTS is robust and scalable. The pipeline is

highly modular and then scalable concerning the specificities of real-world environments.

Our robustness analysis shows the importance of all components of the pipeline, i.e., shows

that feature selection improves both accuracy and interpretability. The use of the hierarchical

clustering technique as the default technique, as well as other classical clustering algorithms,

shows the adaptativeness of the pipeline, allowing for striking a balance between accurate

results in small and large datasets depending on the use case at hand.

4.4 Conclusion

In this chapter, we studied Univariate and Multivariate time series clustering based on

interpretable features. First, an interpretable pipeline is proposed for clustering univariate

time series based on explainable features and the discovery of global relationships between

the series through the usage of the networks. Then, another interpretable pipeline is proposed

for clustering multivariate time series. This pipeline is based on two types of interpretable

4.4 Conclusion 75

features (intra-signal and inter-signal) and permits the best results among the multivariate

time series clustering algorithms. Both the methods are based on a semi-supervised procedure

for selecting the features that improve the latter’s performance.

In future work, we aim to improve the multivariate time series clustering to accept the

different lengths of signals in time series and implement the global relationship techniques

on the signals. In univariate time series, we aim to improve the time performance of the

algorithm. Another improvement would be to dynamically choose the threshold for graph

creation based on the processed features. Finally, the community detection algorithm’s

weights could be combined with the features’ relevance degrees.

Chapter 5

Time Series Feature-based Anomaly
Detection

5.1 Introduction

Anomaly Detection in Time Series data is one of the fascinating recent problems. In particular,

with the expansion of the IoT systems, most of the Anomaly Detection problem moves the

detection of the inconsistencies on the Real-Time Time Series, i.e., the reception of the points

moved its target to the detection online.

Many algorithms solve this problem by considering the raw time series, i.e., without any

preprocessing operation on the original data. However, previous studies show interesting

approaches for time series data by adapting some characteristics [131, 132]. These articles

show an improvement in the algorithm’s performance compared with the Raw-Based al-

gorithms. Nevertheless, the data adopted by these approaches is mainly on Offline Time

Series, but adapting this preprocessing operation among Online Time Series data can improve

algorithms’ performance.

It is common in the Time Series online algorithms to find solutions adopting Windowing

approaches. This solution permits the observation of only a subset of the data received and

avoids recomputing the entire time series on the algorithm. The sliding windows algorithms’

performance strongly depends on the window size. Indeed, the window’s length is an open

problem, and the dimensions strongly depend on the case studies.

AnomalyFeats(AF) is an Online Feature-Based Anomaly Detection algorithm for Time

Series data. AF aims to adapt the features to improve the detection of anomalies in Real-Time

Time Series using an approach of multi-windows, i.e., creating multiple sizes of windows to

78 Time Series Feature-based Anomaly Detection

reduce the dependency on the use case studies. AnomalyFeats holistically combines different

theoretical approaches to improve each approach’s performance, reducing their defeats.

By definition, an anomaly is a measurable result of an unexpected change in the state of a

system that exceeds its local or global specification [31]. As already discussed in Section

2.3.4, the most frequently encountered anomalies may be summarized in:

• Point Anomalies: The values are entirely too far off from the rest.

• Contextual anomalies: Sequences or single instances deviate from the expected

patterns of the time series; however, if taken in isolation, they can be within the range

of expected values for the time series.

• Pattern Anomalies: A collection of anomalous observations concerning the rest of

the data.

In addition to detecting these anomalies, an anomaly detection algorithm on streaming

data has to be capable of respecting some intrinsic properties of real-time data. Indeed, when

the observations arrive constantly, there are some properties that each streaming algorithm

has to handle[Thakkar et al.]:

• Transient: In the data stream, the importance of a point is directly proportional to the

time elapsed since it was detected. It means that an outlier detection algorithm should

detect outliers of the observation immediately as it arrives.

• Infinite: The reception of the points can be endless; therefore, it appears crucial to

handle the memory complexity.

• Arrival Rate: The arrival rate can be fixed or variable. The outlier detection technique

for data stream has to process data points before the next data point arrives.

• Concept Drift: The distribution of the observation can change during the entire

reception of the data. Therefore, the algorithm of outlier detection has to adapt to this

drift.

AnomalyFeat respects all these properties, adopting a Windowing approach for solving

the Transient and Infinite properties. Moreover, AF appears very fast in extracting and

evaluating the features. Finally, AnomalyFeats handles the Concept Drift using the Clustering

approach and then the Summarization phase.

An important novelty of AF is the ability to holistically combine the most used theoretical

approaches in one single methodology.

5.1 Introduction 79

• The Forecasting methods predict the new observation in the nearest future. The

prediction of this point aims to discover the expected area of the following original

point.

• The Clustering helps to detect the shapes of the points distributions. Indeed, as shown

in Figure 5.1b, the Clustering can easily understand the position of the point in the

distribution compared with the previous points observed.

The comparison of the data needs another technique based on the distances approach.

With this technique, AF computes the distances between the evaluating point and his closest

point to obtain a final decision about the quality of the last point received.

Another novelty proposed by AF for detecting the anomalies in the Time Series Streaming

Data is adopting the features. As shown in [131, 132] and in the previous chapters, the

features are a good tool for clustering the time series. Moreover, these characteristics could

help make successful studies on the features that best detect an anomaly.

Extracting the features on the time series requires a minimum number of data points.

Indeed, if some features are extractable with one single data point, the quality depends on

the time series length. In data streaming, the reception of the point is constant; therefore, the

time series length increases as more points are received, but AF cannot keep all the points in

memory. Moreover, the time required to extract the features tends to increase at each point’s

reception, violating the arrival rate property.

AF solves the streaming problem by adopting a Novel Multi-Windowing approach.

Indeed, AF leverages the windows to extract the features each time new observations come,

without saving all the observations arrived. Moreover, AF creates different sizes of sliding

windows to reduce the probability of working with unnecessary information due to the wrong

sizes of the windows.

5.1.1 Related Work

There are many approaches in the literature for solving anomaly detection algorithms on

Online Time Series data. The most straightforward approach adopts some statistical operators

as average and variance. The idea is to compute the mean and variance for all the previous

data points and fix a tolerance threshold for the anomaly. If an observation exceeds the

threshold, the algorithm marks it as an anomaly.

This technique is computationally efficient in terms of time and memory requirements;

however, these approaches do not work for most online time series as they mostly ignore

the temporal aspects of the data. Moreover, they cannot detect a majority of contextual and

collective anomalies[84].

80 Time Series Feature-based Anomaly Detection

Another similar approach, called Distance Approach, computes the difference between

the value of the last observations with the new one. Like the previous approach, if the

difference exceeds the tolerance, the Outlier Detection Algorithm notifies the presence of an

anomaly. This method also seems to be relatively straightforward. Indeed, it can perform

well only in stationary time series data[26].

Anomaly detection algorithms leverage the Clustering to project the observation in a

multidimensional space and then compute the density of the observation in the space. The

computation of the Density Area around a point helps detect point anomalies. However,

Clustering is not applicable in the presence of contextual anomalies. Indeed, if an instance is

locally anomalous, i.e., different from the value expected, but globally the instance is known,

the Clustering does not detect it as an anomaly[106, 64].

The approach most used by real-time anomaly detection algorithms is undoubtedly the

Prediction. With this approach, the time series teaches a regression model[39] to forecast

the distribution of the next point. In this way, the algorithm compares the subsequent

observations with the forecasted distribution and, in case the deviation is high, it will mark

them as anomalies.

This approach is probably the most complete compared with the previous. Indeed, it

permits handling all the kinds of anomalies discussed before. The main problems of this

approach depend on the number of observations that the model needs to learn the distribution.

Teaching regressive statistical models, like ARIMA[139] or SARMA[62], or even worse,

the Regressive Neural Network, like GRU[44] or LSTM[43], to recognize perfectly the

following points requires a high demand of observations. Therefore, adopting this approach

to streaming data requires much time to be accurate.

Finally, the Autoencoder approach now appears as a trending topic. With the Autoencoder,

the input data passes into an Encoder algorithm, which tries to summarize the input data as

much as possible, creating an object called Code. This Code is the input of another algorithm

of the Autoencoder, called Decoder. The Decoder aims to recreate the initial data input based

on the object Code, minimizing the difference between original and recreated input[40].

Encoder and Decoder are frequently Neural networks. Indeed, the Encoder is a multilevel

neural network, where the number of neurons per level decreases as the levels increase to

reduce the number of features required. The final layer outcome represents the Code. The

Decoder is even a neural network with the difference that the number of neurons per level

increases as the levels increase to reconstruct the initial input [28].

This operation permits recognizing an anomaly when the output of the Decoder is mainly

different from the Encoder’s input[69]. The Encoder creates a different Code from the ones

created during the training. Thus, the Decoder tries to decode a never-seen Code. Therefore,

5.2 Anomaly Scoring 81

the expected output of the Decoder will contain many differences from the original input.

Hence, this mistake to reproduce the initial input depends on an anomaly of the data in the

input.

The results of this approach are exciting, but most of them require much data to train

perfectly the Encoder and the Decoder. Moreover, this method appears like a black box,

making a deep analysis of the anomalies impossible.

Another strategy adopted in the last years is to use an Ensemble approach. The idea is

to use a variety of algorithms to control each observation and apply some form of voting

mechanism [107] for the output of each algorithm. An ensemble setup can be composed

of similar algorithms, such as a set of Clustering approaches, or different combinations of

anomaly detectors, such as Statistical and Predictive Approaches.

This method can improve the performance of the other solutions, but it increases the

configuration complexity and the computational time. This increase derives from the manner

the algorithms are combined. Indeed, in literature, most ensemble approaches execute

the outlier detectors in parallel, without any influence. Subsequently, the voting system

has to study each evaluation and then decide. Moreover, this operation requires heavy

computation approaches like Predictive and Clustering, a very high time complexity for good

performance.

5.2 Anomaly Scoring

When AF receives a new data point xo in the time series, the algorithm activates the procedure

for estimating the anomaly degree. AF uses a Spatio-Temporal Analysis for evaluating this

new point, and the outcome will be named Anomaly Score. The description of the Spatio-

Temporal Analysis is subdivided into two principal evaluations:

• In the first evaluation called Context Evaluation, AF estimates the anomaly degree of

the xo adopting the Soft Clustering Algorithm and the predicted point xp forecasted by

the Neural Network.

• In the second evaluation, called Density Evaluation, AF measures the anomaly rate by

checking the density area of xo.

In the Context Evaluation, AF uses the forecasted value xp for analyzing the new data point

xo. A large number of algorithms[53, 96, 103] gauge the difference between the two points

to estimate the anomaly.

AF combines the Predictive or Temporal Analysis with Spatial Analysis to achieve a

more effective evaluation. In detail, the idea is to use the forecasted point xp for discovering

82 Time Series Feature-based Anomaly Detection

(a) Time Series Received (b) Time Series Clustered

Fig. 5.1 Time Series Example

where xo has to be placed in the space and then retrieve his cluster, denoted as Cxo , as shown

in Figure 5.1b.

In this manner, the information retrieved about all the related data points of the Cxo

permits a more in-depth evaluation.
The AnomalyScore formula can be written as follows:

AnomalyScore(xo) =
IntraClusterEvaluation(xo,xp,accRate) + InterClusterEvaluation(xo,xp) + densityEvaluation(xo)

3
(5.1)

In AF, as shown in Formula 5.1, there are two different evaluations called InterClus-
terEvaluation and IntraClusterEvaluation. These two evaluations are exclusive between

them.

The IntraClusterEvaluation represents the case when the two points are placed in the same

cluster, i.e when Cxo is equal to Cxp . In this situation, the probability of the original point being

an anomaly is lower. Thus, AF assigns the 0% of an anomaly for the InterClusterEvaluation.

As the opposite, in case the two points are in different clusters, i.e., Cxo is different to

Cxp , AF assigns 100% to the IntraClusterEvaluation, this is because the probability to be an

anomaly is higher.

Analyzing a point’s density permits deriving its proximity to the points in the dataset.

By definition, a point is in a very dense area when several points with a minimal distance

are nearby. The evaluation of the density of a point is essential for detecting anomalies.

Indeed, if a point is in a highly populated area, the distribution of values is aligned with it

and therefore cannot be considered anomalous.

The following pseudocode summarizes the entire procedure:

5.2 Anomaly Scoring 83

Algorithm 3: AnomalyDetectionAlg

Input: Original Point xo, Clustering Algorithm clustAlg, Online Recurrent Neural

Network RNN, Anomaly Marginal Factor ε
Output: Percentage of Anomaly AnomalyScore

1 Procedure AnomalyScore(xo):
2 xp = RNN. f orecast()
3 Cxo = clustAlg. f ind(xo)
4 Cxp = clustAlg. f ind(xp)

5 if Cxp == Cxo then
6 varIntraClusterEvaluation = distancePredicted(xo,xp)∗

distanceCentroid(xo)∗membershipStrength(xo,accRate)
7 varInterClusterEvaluation = 1− ε
8 else
9 vaIntraClusterEvaluation = ε

10 varInterClusterEvaluation = distanceInterCentroid(xo)

11 AnomalyScore = varIntraClusterEvaluation+varInterClusterEvaluation+DensityEvaluation
3

5.2.1 IntraClusterEvaluation

This estimation permits to rate the divergence of the xo between the data points of the Cxo .

The IntraClusterEvaluation is based on three main functions:

IntraClusterEvaluation(xo,xp,accRate) = distancePredicted(xo,xp) ∗ distanceCentroid(xo) ∗ membershipStrength(xo,accRate)
(5.2)

distancePredicted(xo,xp): This function computes the distance between xo and xp. AF

evaluates the gap between the xo and xp with the gap between the farthest points of the cluster.

Indeed, if the difference between the two gaps is very high, it means that the xo is pretty close

to the expected point xp. Therefore, the Figure 5.2a shows the formula:

distancePredicted(xo,xp) =
dist(xo,xp)

dist(xmin,xmax)

(a) Equation. (b) Time Series Clustered

Fig. 5.2 Distance Predicted Formula.

84 Time Series Feature-based Anomaly Detection

distanceCentroid(xo): This function evaluates the distance between the original point and

the centroid of the Cxo against the maximum distance between the farthest point and the

centroid within the cluster. Again, the value of the anomaly grows as the original value

moves away from the centroid. Thus, the Figure 5.3a shows the formula:

distanceCentroid(xo) =
dist(xo, xcentroid)

dist(x f arthest , xcentroid)

(a) Equation. (b) Time Series Clustered

Fig. 5.3 Distance Centroid Formula.

membershipStrength(xo): With this function, AF allows the user to specify the sensitivity to

the anomaly of new points arriving in the time series through a minimum value of membership

degree requested to the user.

In particular, each data point received is Soft Clusterized, which means that each data

point obtains the membership grade of the predicted cluster. These membership grades

indicate the degree to which the data points belong to each cluster. Hence, points on the

border of a cluster with lower degrees of membership may be in the cluster to a lesser extent

than points in the cluster’s core.

Therefore, if the new data point has a membership rate below that specified by the user, it

is considered an anomaly. Instead, if it is greater or equal than the minimum value indicated,

the more it deviates from the minimum value indicated, the less it is an anomaly. Hence,

Formula 5.3 is applied:

membershipStrength(xo,accRate) =

⎧⎨
⎩ 1 if 0≤ memberDegree(xo)≤ accRate

1− memberDegree(xo) − accRate
1− accRate if accRate < memberDegree(xo)≤ 1

(5.3)

5.2.2 InterClusterEvaluation

If the predicted and the original point are not within the same cluster, the algorithm analyzes

how far the clusters in which the values were settled are from each other. Specifically,

AF divides the distance between the centroids of the points clusters by the distance of the

centroids belonging to the two most distant clusters.

5.2 Anomaly Scoring 85

distanceInterCentroid(xo) =
dist(xcentroido , xcentroidp)

dist(xcentroid1
, xcentroidn)

(a) Equation. (b) Time Series Clustered

Fig. 5.4 Distance Inter Centroid Formula.

5.2.3 Density Evaluation

The purpose of this evaluation is to estimate if the data point xo is in a highly dense zone.

Many algorithms address this problem. AF uses the Local Reachability Density(LRD). LRD

is the core of the Local Outlier Factor[21], one of the best algorithms for the detection of

anomalies.

The local reachability density is a measurement of the compactness of k-nearest points
around a point. This value k denotes the number of points close to the point xo, indicated

as Nk(xo), to analyse. Deciding the value of the k value is not trivial. While a small k has a

more local focus, i.e., looks only at nearby points, it is more erroneous when having much

noise in the data. However, a large k can miss local outliers. Usually, the choice of the value

k depends on the accuracy requested by the user. The value k is also important for computing

the k-distance that represents the distance between the point, and it’s kth nearest neighbour.

This distance permits the computation of the Reachability Distance defined as the maximum

of the distance between two points and the k-distance of that point.

reach-dist(X,Y) = max (k-distance(Y), distance(X,Y)) (5.4)

If point X is within the k neighbors of point Y, the reach-dist(X, Y) will be the k-distance
of Y. Otherwise, the distance used will be the actual distance between X and Y.

Once computed all the reachability distances of the k-nearest neighbors of the xo, it is

possible to determine his Local Reachability Density (LRD). The local reachability density

is a measure of the density of k-nearest points around a specific point. LRD employs the

inverse of the sum of all of the reachability distances of all the k-nearest neighboring points.

LRD(xo) =
1

(
∑y∈Nk(xo) reach−distk(xo,y)

|Nk(xo)|)
(5.5)

A high value of LRD(xo) implies that points are close from the point xo.

86 Time Series Feature-based Anomaly Detection

The difficulty in using this technique comes from the impossibility of declaring an interval

where the point xo is close enough to the other points. This problem stems from the fact that

LRD can take values ranging from 0 to infinity.

Therefore, AF compares the LRD obtained from xo with the LRD values obtained from

values belonging to its cluster. If the LRD turns out to be in line with the distribution values,

then the latter is a non-outlier value. This is because if the value of LRD(xo) is equal to the

distribution of the cluster Cxo , it means that the distance of point xo with its Nk(xo) nearest

points is equal to the distance of each point x belonging to the cluster Cxo with their k nearest

points Nk(x).
To analyze the divergence between the LRD(xo) from previous LRDs, AF uses a formula

known as the Robust Z-Score.

The common Z-score is a measurement that defines a value’s relationship to the mean of

a set of values. Z-score is measured in terms of standard deviations from the average. If the

value of the Z-score is 0, it indicates that the data point’s score is identical to the average. A

Z-score of 1 would indicate a value of one standard deviation from the average.

The robust Z-Score Method is similar to the Z-score method with some changes in

parameters. Since Outliers heavily influence average and Standard Deviation, AF uses

Median and Median Absolute Deviation (MAD).

Z− score =
x−μ

σ

(a) z-score.

Robust Z− score =
0.6745∗ (x−Median)

MAD

(b) Robust z-score.

Fig. 5.5 Different version of Z-Score.

If x follows a standard normal distribution, the MAD will converge to the median of the

half-normal distribution, which is the 75% percentile of a normal distribution. Therefore, to

convert this normal distribution into a standard, AF multiplies N(0.75), approximately equal

to 0.6745, to the formula.

The choice of the Robust Z-Score derives from the high values that the LRD can assume.

Indeed, when two points are extremely close, the LRD computes a value very high. Therefore,

using a standard z-score, the average can be completely different from the natural distribution

of the LRD. Hence, adopting the Robust Z-Score, which uses the median and the MAD,

permits controlling the outliers.

The Robust Z-Score also has another essential property. Indeed, if the values of x follow

a standard normal distribution, the Robust Z-Score has the same properties as the distribution.

Therefore, it permits the computation of the area under the curve straightforwardly.

5.3 Algorithm 87

Fig. 5.6 Covered area with Z-Score equal to 0

In fact, in the standard normal distribution, the average is equal to 0 and the variance equal

to 1. Thus, the Z-Score (or Robust) can compute the area below the curve in the calculated

point. Therefore, as shown in Figure 5.6, in case the value computed by the Robust Z-Score

is 0, the area below the curve covers 50% of the total. The Standard Normal Distribution

Table (SNDT) converts the Robust Z-Score results and the percent coverage.

The percentage representing the area below the curve could be adopted to evaluate the

anomaly. The idea leverages the assumption that xo is not an anomaly if it is in a dense area.

Thus, the LRD(xo) is equal to or higher than the median of the distribution of the LRDs of

the other points of the cluster Cxo . Therefore, the value obtained by RobustZ−Score(xo) is

high, and thus the covered area is high too.

Hence, the more area is covered, the higher the probability that xo is not an anomaly.

Alternatively, vice versa, the more uncovered area there is, the more the probability that the

point xo is an anomaly. Therefore, the formula is:

DensityEvaluation = 1 - SNDT(Robust Z-Score(LRD(xo))) (5.6)

5.3 Algorithm

The algorithm proposed for discovering anomalies in time series data is based on three main

phases: Learning Phase, Estimation Parameter Phase, and Evaluation Phase. Figure 5.7

shows the entire pipeline of the algorithm.

5.3.1 Learning Phase

The cold start is the main problem of anomaly detection algorithms on streaming data[55,

122, 105]. It concerns the impossibility of deducting any information because the system

has not yet gathered sufficient data. In literature, the cold start is solved by providing an

initial Learning Phase. This phase helps the system to gather data for estimating some

88 Time Series Feature-based Anomaly Detection

Learning Phase

Sliding Windows Computation

Features Extraction and
Selection

Clusters and Models

Creation

Estimation Parameter

New Point Received

Flowing Sliding Windows

Z-AnomalyScore Update

Clusters and Models Update

Evaluation Phase

New Point Received

Flowing Sliding Windows

Anomaly Score Evaluation

End Estimation
Points

Fig. 5.7 AnomalyFeats Pipeline

Fig. 5.8 Division between Anomaly-Free and Unknown Data

characteristics of the data domain. The data provided during this phase are anomaly-free for

not falsifying the information detected, as shown in Figure 5.8.

For our purpose, the Learning Phase permits us to discover which features can represent

the domain of the data provided in input and which is the peculiarity of the features selected.

As shown in previous work, feature extraction is an operation made on a fixed number of

points in the temporal series. In streaming data, the points are obtained continuously, and it

is impossible to define a priori a fixed number of points. Therefore, our algorithm solves this

problem by adopting a model that permits looking after a subset of all the points, i.e., the

sliding window. The sliding window is a structure with a fixed number of elements t that

flow among the series when a new element arrives and rejects the oldest point of the series.

Formally, once obtained xl p, the last point received in a streaming way during the Learning

5.3 Algorithm 89

Last Point mean trend_stderr variance peaks quantile trend_rvalue
xl p 51.3 3.51 788.56 8 57 -0.94

Table 5.1 Example of a subset of features extracted on the Sliding Windows of length t on

the last point xl p

Last Point mean trend_stderr variance peaks quantile trend_rvalue
xl p 51.3 3.51 788.56 8 57 -0.94

xl p−1 50.2 3.91 745.96 4 51 -0.91

xl p−2 54.8 4.01 792.05 6 56 -0.89

...

(a) Matrix of features extracted on swt

Last Point mean trend_stderr variance peaks quantile trend_rvalue
xl p 38.3 10.41 491.66 25 91 -4.94

xl p−1 41.7 12.95 422.45 30 88 -5.84

xl p−2 48.3 15.21 477.96 21 98 -3.99

...

(b) Matrix of features extracted on sws

Table 5.2 Example of the features extracted with two different size of Sliding Windows

Phase, we define the sliding windows swt , a data structure that contains the last t points of

the streaming:

swt = [xl p,xl p−1,xl p−t]

The size of the sliding window is a delicate parameter to choose. Indeed, big sliding

windows can extract efficient time series but can approximate small shifts in the series that

can be anomalies. Conversely, small sliding windows can reveal these small shifts, but the

features could not be reliable. Therefore, our algorithm proposes adopting multiple sliding

window sizes to balance the previously exposed problems. Formally, we define SW as the set

of all the sliding windows size i:

SW = {swi : i ∈ Z+}

Hence, adopting multiple sliding windows permits observing different peculiarities of the

same signal and obtaining different insights for evaluating the quality of the time series point.

Moreover, the sliding windows permit obtaining a fixed number of points where it is

possible to extract the features.

Indeed, selecting a sliding window swt ∈ SW , where xl p is the last point received in the

streaming data, the features extraction algorithm extracts all the possible features on t points.

Therefore, we define as Ft,xl p , the features extracted on the sliding window with size t when

the point xl p is received. Table 5.1 shows an example of an array of a subset of extracted

features.

When a new point in the series arrives, this extraction operation is repeated on each

sliding window swi ∈ SW . When all the points of the Learning Phase are evaluated, the

features extracted from each sliding window are combined, obtaining a matrix of features for

each sliding window swi ∈ SW , as shown in Table 5.2.

90 Time Series Feature-based Anomaly Detection

Features Selected Weight

trend_stderr 0.55

variance 0.35

... ...

(a) Features Selected SFt on swt

Features Selected Weight

mean 0.65

variance 0.15

... ...

(b) Features Selected SFs on sws

Table 5.3 Example of the features selected for two different sizes of Sliding Windows

(a) Clusters CSFt, j of the SFt (b) Clusters CSFs, j of the SFs

Fig. 5.9 Clusters creation for each selected feature.

The number of features extracted from each sliding window can be highly impactful in

terms of memory. Moreover, not all the features are meaningful for representing the input

signal. Therefore, an analysis of extracted features is needed to select the most prominent

features that better represent the signal. In our algorithm, we adopt the PFA for selecting

the best features of the signals. In addition to the property of feature selection, the PFA

permits evaluating the importance of each chosen feature. Therefore, we define as SFt the

set of features extracted from the sliding window with length t, where each feature has a

weight derived from the PFA that is adopted in the computation of the anomaly. The features

selected from each sliding window can be different, as shown in the Tables 5.3. We also keep

the weight computed by the PFA for each feature selected.

In Section 5.2, the clusters are employed to evaluate the points quality during the Eval-

uation Phase. Our algorithm computes these clusters on the features selected by the PFA

for each sliding window size. Indeed, we define CSFi, j, the cluster dedicated to the features

selected j for the sliding window with size i, as shown in Figures 5.9. During the creation of

the clusters, the algorithm computes the Local Reachability Distances used in the Density

Evaluation in Formula 5.6.

The incremental neural networks are a machine learning technique adopted for improving

the system’s quality. The potentiality of these models derives from their ability to train the

models online, i.e., the models are updated each time new data arrives, as shown in Figure

5.10.

The incremental neural networks adopted are based on regression models. These regres-

sion models forecast new values based on the values previously seen. We define MSFi, j the

regression model M trained on the values of the feature selected j in the sliding windows with

size i. Figure 5.11 shows an example of a Incremental Neural Network based a Regression

Model for the trend_stderr feature.

5.3 Algorithm 91

Fig. 5.10 Example of Incremental Neural Network

Fig. 5.11 Incremental Model MSFt,i

5.3.2 Estimation Parameter

During this phase, some parameters for evaluating the anomaly are calibrated. The idea is to

compute the formulas presented in Section 5.2 on not anomalous data to detect the ‘expected’

value of the formula among usual points. The points adopted during this phase are defined as

EP and are indicated in red in Figure 5.8. These points belong to the Anomaly-Free data and

are adopted by the estimation parameter for calibrating the parameters. In detail, each point

xep ∈ EP of the series is given in input to the algorithm during this phase. The system moves

all the sliding windows for each point and evaluates the sliding windows by applying the

formula presented in Section 5.2. Therefore, for each sliding window of size t, we obtain an

AnomalyScoret(xep). At the end of all the points in EP, the algorithm produces a different

distribution of AnomalyScore for each sliding window size. In each of these distributions,

the values generated can be different for each sliding window, even if they are generated on

the same free-anomaly data, as shown in Table 5.4.

Therefore, we opted for creating a single distribution that tries to merge all the distribu-

tions into one. We have adopted the Z-Score to normalize the distributions for obtaining

similar values in the case of no anomaly data. Indeed, as shown in Formula 5.7, the Z-Score

compares each anomaly score value with the average of the anomaly score distribution and

divides the value by the standard distribution.

92 Time Series Feature-based Anomaly Detection

Sliding Window Anomaly Score

[xep,xep−1,xep−t] 0.52

[xep−1,xep−2,xep−t−1] 0.59

... ...

(a) Anomaly Score Distribution on swt

Sliding Window Anomaly Score

[xep,xep−1,xep−s] 0.22

[xep−1,xep−2,xep−s−1] 0.29

... ...

(b) Anomaly Score Distribution on sws

Table 5.4 Example of the Anomaly Score distribution of the two different size of Sliding

Windows

... 0.12 0.15 0.16 0.10 0.09 0.16 0.19 0.17

AnomalyScore sw4

... 0.35 0.38 0.31 0.35 0.34 0.31 0.32 0.39

AnomalyScore sw3

... 0.13 0.14 0.127 0.135 0.152

AnomScorMed sw4

... 0.346 0.346 0.333 0.333 0.323

AnomScorMed sw3

μ4=0.136
σ4=0.0087

μ3=0.336
σ3=0.0087

Fig. 5.12 Computation of the AnomScoreMean, μ and σ on sliding windows 3 and 4.

Z−Scoret(xep) =
AnomScoret(xep)−μt

σi
(5.7)

In the formula, μi and the σi are respectively the average and the standard distribution of the

anomaly score of the sliding window with size i.
This solution permits obtaining Z-Score results close to 0 when the new anomaly score

is similar to the distribution average and results far from 0 when the new anomaly score is

far from the average. The Z-Score can assume a range of elements between −in f and +in f ;

therefore, as introduced for the Robust Z-Score in section 5.2, we use the Standard Normal

Distribution Table to reduce the range between 0 and 1. Hence, we define Z-AnomalyScore

as:

Z−AnomalyScore(xep) =
∑M

i Z−Scorei(xep)

‖M‖ (5.8)

M is the set of all the sizes of the sliding windows. This formula can be improved to

obtain better results. Indeed, the AnomalyScore(xep) can be replaced by computing the

average of the last t anomaly score, where t is the size of the sliding window[2]. Formally,

we define AnomScoreMeant(xep)as:

AnomScoreMeant(xep) =
∑t

i=0 AnomScore(xep−i)

t
(5.9)

Where t is the sliding window size and AnomalyScore(xep−i) is the anomaly score ob-

tained on the i point before the xep. Figure 5.12 shows an example of how the AnomScoreMeant

5.3 Algorithm 93

... xep−4 xep−3 xep−2 xep−1 xep

... 0.5600 0.7759 0.2577 0.4096 0.5173

Table 5.5 Distribution of the Z−AnomalyScore

is computed on two different sliding windows. Therefore, Z−AnomalyScore(xep) is defined

as:

Z−AnomalyScore(xep) =
∑M

i SNTD(
AnomScoreMeani(xep)−μi

σi
)

‖M‖ (5.10)

In summary, this formula permits merging the anomaly scores obtained on M different

sliding windows in one value for each value xep obtained. Equation 5.11 shows an example

of application of the Z-AnomalyScore on the last value computed in Figure 5.12.

Z−AnomalyScore(xep) =
0.152−0.136

0.0087 + 0.323−0.336
0.0087

2
=
↑

because of SNDT

0.9670+0.0675

2
= 0.5173 (5.11)

At the end of the points in EP, we have a set of values that defines the distribution of

the Z−AnomalyScore on anomaly-free data. This distribution is a crucial parameter for

revealing the anomaly for evaluating future points. Indeed, Z−AnomalyScores that are not

in line with the distribution computed during the estimation parameter can reveal an anomaly.

In detail, computed the distribution of the Z−AnomalyScore as shown in Table 5.5, our

algorithm defines the center of the distribution as the maximum threshold for defining not

anomalous a new point in the evaluation phase. This assumption is based on the construction

of the Formula 5.1. Indeed, the formula returns the anomaly score of a point based on the

previous points obtained and the learning phase. During the estimation parameter phase,

the formula computes the AnomalyScore on not anomalous data. Therefore, the distribution

center represents the most common Z−AnomalyScore for the not-anomalous data. Hence,

if the Z−AnomalyScore of a point in the evaluation phase is bigger than the distribution

center, it is bigger than the most common AnomalyScore of the not-anomalous data, and it

could be an anomaly. Formally, we define Z−AnomalyTreshold as the maximum threshold

for considering points not-anomalous. For example, the Z − AnomalyTreshold on the

distribution of the Z−AnomalyScore in Table 5.5 is around 0.50.

Unfortunately, the definition of this threshold for declaring a point anomaly is a very

stringent condition. As expressed in the last paragraphs, the computation of this threshold

is based on the distribution of the Z-AnomalyScore. Therefore, a not anomalous point can

94 Time Series Feature-based Anomaly Detection

... xep−4 xep−3 xep−2 xep−1 xep

... 0.6371 0.9466 0.0782 0.2985 0.5402

Table 5.6 Distribution Difference of the Z−AnomalyScore

differ by some value from the Z-AnomalyThreshold declared. Thus, it appears helpful

to compute a boundary of tolerance for accepting normal point that differs from the Z-
AnomalyThreshold. Our algorithm defines the tolerance by adopting the difference in terms

of percentage between the Z-AnomalyScore and Z-AnomalyThrehsold. Therefore, we define

Formula 5.12 for computing the difference in percentage between these two values.

percentageAnomaly(x) =
|Z−AnomalyScore(x)−Z−AnomalyT hreshold|

Z−AnomalyScore(x)−Z−AnomalyT hreshold
2

(5.12)

Once the difference is computed, we provide two methods for expressing the boundary.

In the first, the user can decide the maximum difference in terms of the percentage the system

can accept. In the second method, we compute the percentage difference, leveraging the

distribution of the Z-AnomalyScore. The idea is to observe how much the Z-AnomalyScores
computed during the Estimation Parameter phase are far from the center of the distribution.

The Z-Score perfectly suits this purpose. Our algorithm computes the Z-Score function by

adopting the Z-AnomalyScore of each EP point and the average and the standard deviation of

the Z-AnomalyScore distribution. Table 5.6 shows an example of the distribution differences

by adopting the Z-AnomalyScore distribution in Table 5.5. All the results are computed by

adopting a μ = 0.50 and σ = 0.171 and already converted in the range between 0 and 1,

adopting the Standard Normal Distribution Table.

Then, we compute the average of these values that represents the percentage of how much

the Z-AnomalyScore can differ from the Z-AnomalyThreshold. In the case of the distribution

of the Table 5.5, the difference accepted is up to 50% more than the Z-AnomalyThreshold.

Finally, clusters and models created and trained during the Learning Phase are updated

during the Estimation Parameter with the values of the features extracted.

5.3.3 Evaluation Phase

In this phase, the algorithm evaluates the quality of the points on the unknown data. The

process of anomaly recognition during the Evaluation Phase is very similar to the Estimation

parameter Phase. Indeed, at the reception of a new point x, the algorithm computes the

Z−AnomalyScore(x) to reveal the quality of this point. In case the Z-AnomalyScore of

x does not overpass the Z-AnomalyThreshold, the algorithm computes the same step seen

5.3 Algorithm 95

Protection State = False

Z-AnomalyScore(x)
>

Z-AnomalyThreshold

New Point x Received

Z-AnomalyScore(x)
Computation

True

ProtectionState

False

ProtectionState

initialThreshold = Z-AnomalyThreshold
ProtectionState = True

False

Z-AnomalyThreshold
Update

True False

percDiff = increaseDiff(Z-AnomalyThreshold,
initialThreshold)

True

percDiff >
safeThreshold

Anomaly Detected

True

Z-AnomalyThreshold = initialThreshold
ProtectionState = False

False

Clusters and Model
Update

Fig. 5.13 Evaluation Phase Flowchart

during the Evaluation phase, i.e., updating the Z-AnomalyTreshold and calibration of the

tolerance percentage.

Conversely, if the Z-AnomalyScore is higher than the Z-AnomalyTreshold, the algorithm

actives a ’Protection State’. During this state, the algorithm saves the Z-AnomalyThreshold
obtained before the state of protection of the system and continues accepting new points,

computing the Z-AnomalyScore, and updating the Z-AnomalyThreshold. During this pro-

tection state, the value of the Z-AnomalyTreshold tends to augment. The algorithm stops

the protection state when, during the process of accepting the points, the Z-AnomalyScore
obtains a value minor of the Z-AnomalyThreshold, i.e., when the Z-AnomalyTreshold stops to

increase. This Z-AnomalyThreshold, obtained during the protection state, will be compared

with the Z-AnomalyTreshold obtained before the protection state. Suppose the difference

expressed in terms of percentage adopting Formula 5.12 is higher than the threshold com-

puted. In that case, all the points received during that phase are considered anomalies, and

the Z-AnomalyThreshold will be restored. Conversely, if the percentage is minor, then the

points are not considered anomalies, and the parameters saved before the protection state

are updated after these new points. The incremental neural network models and the clusters

are constantly updated during the protection state. The motivation is explained in the next

section. Figure 5.13 shows the entire process of the Evaluation Phase.

96 Time Series Feature-based Anomaly Detection

5.3.4 Streaming Anomaly Detection Properties

In Section 5.1, we have introduced four main properties that an anomaly detection algorithm

on streaming data has to respect. In this section, we demonstrate that our algorithm respects

all these requests.

Transient: Our algorithm respects this property because the process immediately acti-

vates a protection state when an anomaly or a subset of anomalies is recognized and notifies

the user of these anomalies when the points return in a recognized state.

Infinite: Our algorithm respects this property because all the averages and standard

deviations adopted during the process are computed through the Welford method. This

technique does not need to keep in memory all the previous values. Therefore, it has an

impact constant on the memory. The Clusters and the Incremental Neural Networks can

cause concerns about the high impact on memory. Our algorithm solves these problems by

adopting optimization systems of the clusters that permit removing old and redundant points

from the agglomerations. Furthermore, the Incremental Neural Networks adopted by our

system automatically discard data constantly seen from the network.

Arrival Rate: Our algorithm respects this property because when an anomaly is received,

the computation of the AnomalyScore is immediate. Therefore, the algorithm processes the

data point before the reception of the other points.

Concept Drift: Our algorithm respects this property by adopting the Clusters and the

Neural Network. The clusters keep in memory the most representative values of features

that usually are the most repeated during the reception of the points. When an anomaly is

detected, the features’ value is presumably in a low-density cluster area because the point was

never seen before. By definition of anomaly, this area should remain lowly dense because

the anomaly is a rare event. If the points in this area augment, this means that the original

signal is changing. Therefore, keeping in memory this low-density area for enough time, the

algorithm can reveal a concept drift. As a consequence, in case some high-density areas are

not even more populated when new points are received, through the process of optimization

cluster, those areas are slowly reduced until they are completely deleted. The Incremental

Neural Network models respect the concept drift property by construction. Indeed, based on

their constant training, they automatically adapt to the changing of the signal.

5.4 Experiments

In this section, we introduce the first results obtained by our algorithm among some datasets

provided by Numenta Anomaly Benchmark (NAB)[2]. NAB is a benchmarking system that

allows the evaluation of algorithms for anomaly detection in streaming. It comprises over

5.4 Experiments 97

Fig. 5.14 Example of Anomaly Window in a NAB Scoring.

50 labeled real-world and artificial time series data files and a novel scoring mechanism for

real-time applications. The scoring mechanism provided by NAB proposes a set of rules to

determine the overall quality of anomaly detection by following the ideal requirements for a

real-world anomaly detector:

1. Detects all anomalies present in the streaming data

2. Detects anomalies as soon as possible

3. Triggers no false alarms (no false positives)

4. Works with real-time data (no look ahead)

5. Fully automated across all datasets (any data specific parameter tuning must be done

online without human intervention)

These rules are implemented by adopting three key elements: the anomaly windows, the

scoring function, and application profiles. The anomaly windows are a range of data points

centered around the anomaly labels that allow awarding the early detection of the algorithms.

Figure 5.14 shows an example of how the windows are created. The range of data points

adopted for creating the windows is equal to 10% of the length of a data file, divided by the

number of anomalies in the given file. Once created the anomaly windows, a scoring function

uses these windows to identify and weight true positives, false positives, and false negatives.

The scoring function is based on a scaled sigmoidal function, which defines the weight of

individual detections given the anomaly window and the relative position of each detection.

This function gives higher positive scores to true positive detections earlier in a window, and

98 Time Series Feature-based Anomaly Detection

Fig. 5.15 Scoring example for a sample anomaly window, where the values represent the

scaled sigmoid function, the second term in Eq. (13).

Standard

Profile

Reward

Low FPs

Reward

Low FNs

Atp 1 1 1

Atn 1 1 1

Afp 0.11 0.22 0.11

Afn 1 1 2

Table 5.7 Application Profiles of NAB

detections slightly after the window contribute less to negative scores than detections well

after the window, as shown in Figure 5.15.

The sole purpose of this function is to reveal the importance of the position where

the anomaly is detected, indicating if the point is a true positive, true negative, or false

negative. Different applications may emphasize the relative importance of true positives,

false negatives, and false positives. Therefore, NAB introduces the notion of application

profiles. For TPs, FPs, FNs, and TNs, NAB applies different relative weights associated with

each profile to obtain a separate score per profile. NAB includes three application profiles:

standard, reward low FPs and reward low FNs. In Table 5.7 are indicated the weights of

every single configuration.

Equation 13 defines the scaled sigmoidal function. Let A be the application profile under

consideration, with AT P, AFP, AT N , and AFN the corresponding weights for true positives,

false positives, etc. These weights are bounded 0≤ AT P,AT N ≤ 1, and −1≤ AFP,AFN ≤ 0.

5.4 Experiments 99

The y in the equation represents the relative position of the detection within the anomaly

window.

σA(y) = (AT P−AFP)(
1

1+ e5y)−1 (5.13)

In Eq. (13), the parameters are set such that the right end of the window evaluates to

σ(y) = 0.0 = 0, yielding a max and min of AT P and AFP respectively. Every detection

outside the window is counted as a false positive and given a scaled negative score relative to

the preceding window. The number of windows with zero detections in the data file is the

number of false negatives AFN , represented by f d.

The raw score for a data file Yd is the sum of the scores from individual detections plus

the impact of missing any windows. Eq. (14) accumulates the weighted score for each true

positive and false positive and detriments the total score with a weighted count of all the

false negatives.

SA
d = (∑

y∈Yd

σA(y))+AFN f d (5.14)

The benchmark raw score for a given algorithm is the sum of the raw scores over all the

tested datasets D.

SA = ∑
d∈D

SA
d (5.15)

The final reported NAB scores are normalized such that the perfect score is 100, and a

“null” detector defines the baseline of 0. However, this is not the minimum; negative scores

are possible. Equation 16 shows the normalized reported score of NAB.

SA
NAB =

SA−SA
null

SA
per f ect−SA

null
(5.16)

We have adopted only six datasets in our experiments to test our algorithm. The final

reported score on these datasets equals 16%, based on the standard application profile. The

result does not outperform state-of-the-art, but this algorithm is still under construction.

Therefore, we aim to simplify and improve the algorithm’s pipeline for better results.

Chapter 6

Conclusion and Future Work

6.1 Conclusion

This research aimed to design a novel and effective method for solving the most interesting

data mining problems researched in the last years in the time series domain: Clustering and

Anomaly Detection. In this thesis, we solve these problems by leveraging statistical features

extracted from the time series. The novelty of our work consists in automatically selecting

the most appropriate statistical features based on the dataset provided as input. Not all the

features have the same quality, and choosing a subset of high-quality features for each dataset

is beneficial for the clustering step. This characteristic is fruitful in several real-life data

sciences and data analytics pipelines. Indeed, the time series features are interpretable by

humans, thus leading to a more transparent and human-centric clustering process, which is

helpful for the user interested in in-depth analysis. To the best of our knowledge, our solutions

are the first feature-based semi-supervised clustering and anomaly detection frameworks

with these key properties. Moreover, based on the results obtained, adopting these features

permits a substantial complexity reduction expressed in memory and time. Our work on time

series clustering shows that there is no one-size-fits-all solution regarding the set of features

to use. The results produced by our two open source12 algorithms show that the features are

an interesting tool for obtaining high-quality, fast, and interpretable solutions.

1https://github.com/protti/FeatTS
2https://github.com/softlab-unimore/time2feat

102 Conclusion and Future Work

6.2 Future Work

Here, we give some perspectives on our current contributions. FeatTS could be improved by

rendering the entire pipeline unsupervised instead of the current semi-supervised approach.

This requires non-trivial extensions in order to be able to cluster the time series without loss

of performance. Another improvement would be to dynamically choose the threshold for

graph creation based on the processed features. Finally, the community detection algorithm’s

weights could be combined with the features’ relevance degrees. Time2Feat could be

improved by creating a new feature extraction method that permits extracting features by

providing in input all the signals of the multivariate series and not only a couple of them.

Finally, AnomalyFeat could be improved by diminishing the number of points to keep in

memory to reduce computational time. Our work is only the starting point for new fascinating

solutions with the features. Many other Data Mining problems using time series data can be

solved by adopting this technique. Other kinds of data allow extracting features. An example

are graph-shaped data in which nodes and properties have dynamic components, such as

sequential values. Such hybrid networks have inherent semantics and can still benefit from

feature-based data mining tasks. Finally, the solutions proposed in this thesis provide food

for thought for many other data science problems.

References

[1] Aggarwal, C. C. (2017). An introduction to outlier analysis. In Outlier analysis, pages
1–34. Springer.

[2] Ahmad, S., Lavin, A., Purdy, S., and Agha, Z. (2017). Unsupervised real-time anomaly
detection for streaming data. Neurocomputing, 262:134–147.

[3] Albawi, S., Mohammed, T. A., and Al-Zawi, S. (2017). Understanding of a convolutional
neural network. In 2017 international conference on engineering and technology (ICET),
pages 1–6. Ieee.

[4] Altmann, E. G., Hallerberg, S., and Kantz, H. (2006). Reactions to extreme events:
Moving threshold model. Physica A: Statistical Mechanics and its Applications, 364:435–
444.

[5] Bagnall, A., Lines, J., Hills, J., and Bostrom, A. (2015). Time-series classification with
cote: the collective of transformation-based ensembles. IEEE Transactions on Knowledge
and Data Engineering, 27(9):2522–2535.

[6] Bagnall, A., Ratanamahatana, C., Keogh, E., Lonardi, S., Janacek, G., et al. (2006). A bit
level representation for time series data mining with shape based similarity. Data mining
and knowledge discovery, 13(1):11–40.

[7] Bagnall, A. J., Dau, H. A., Lines, J., Flynn, M., Large, J., Bostrom, A., Southam, P., and
Keogh, E. J. (2018). The UEA multivariate time series classification archive, 2018. CoRR,
abs/1811.00075.

[8] Barandas, M., Folgado, D., Fernandes, L., Santos, S., Abreu, M., Bota, P., Liu, H.,
Schultz, T., and Gamboa, H. (2020). Tsfel: Time series feature extraction library. Soft-
wareX, 11:100456.

[9] Basu, S., Banerjee, A., and Mooney, R. (2002). Semi-supervised clustering by seeding.
In In Proceedings of 19th International Conference on Machine Learning (ICML-2002.
Citeseer.

[10] Baydogan, M. G. and Runger, G. (2016). Time series representation and similarity
based on local autopatterns. Data Mining and Knowledge Discovery, 30(2):476–509.

[11] Bebis, G. and Georgiopoulos, M. (1994). Feed-forward neural networks. IEEE
Potentials, 13(4):27–31.

104 References

[12] Begum, N., Ulanova, L., Wang, J., and Keogh, E. (2015). Accelerating dynamic time
warping clustering with a novel admissible pruning strategy. In Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pages 49–58.

[13] Benjamini, Y. and Yekutieli, D. (2001). The control of the false discovery rate in
multiple testing under dependency. Annals of statistics, pages 1165–1188.

[14] Berndt, D. J. and Clifford, J. (1994). Using dynamic time warping to find patterns in
time series. In KDD workshop, volume 10, pages 359–370. Seattle, WA, USA:.

[15] Borges, J. a. B., Ramos, H. S., and Loureiro, A. A. F. (2022). A classification strategy
for internet of things data based on the class separability analysis of time series dynamics.
ACM Trans. Internet Things.

[16] Bostrom, A. and Bagnall, A. (2015). Binary shapelet transform for multiclass time
series classification. In International conference on big data analytics and knowledge
discovery, pages 257–269. Springer.

[17] Box, G. E., Jenkins, G. M., Reinsel, G. C., and Ljung, G. M. (2015). Time series
analysis: forecasting and control. John Wiley & Sons.

[18] Braei, M. and Wagner, S. (2020). Anomaly detection in univariate time-series: A survey
on the state-of-the-art. arXiv preprint arXiv:2004.00433.

[19] Breaban, M. and Luchian, H. (2011). A unifying criterion for unsupervised clustering
and feature selection. Pattern Recognition, 44(4):854–865.

[20] Breunig, M. M., Kriegel, H.-P., Ng, R. T., and Sander, J. (2000a). Lof: identifying
density-based local outliers. In Proceedings of the 2000 ACM SIGMOD international
conference on Management of data, pages 93–104.

[21] Breunig, M. M., Kriegel, H.-P., Ng, R. T., and Sander, J. (2000b). Lof: Identifying
density-based local outliers. In Proceedings of the 2000 ACM SIGMOD International
Conference on Management of Data, page 93–104, New York, NY, USA. Association for
Computing Machinery.

[22] Buono, P., Aris, A., Plaisant, C., Khella, A., and Shneiderman, B. (2005). Interactive
pattern search in time series. Visualization and Data Analysis 2005, 5669:175–186.

[23] Campello, R. J., Kröger, P., Sander, J., and Zimek, A. (2020). Density-based clustering.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 10(2):e1343.

[24] Carlis, J. V. and Konstan, J. A. (1998). Interactive visualization of serial periodic
data. In Proceedings of the 11th annual ACM symposium on User interface software and
technology, pages 29–38.

[25] Chakrabarti, K., Keogh, E., Mehrotra, S., and Pazzani, M. (2002). Locally adaptive
dimensionality reduction for indexing large time series databases. ACM Transactions on
Database Systems (TODS), 27(2):188–228.

References 105

[26] Chandola, V., Banerjee, A., and Kumar, V. (2009). Survey of anomaly detection. ACM
Computing Survey (CSUR), 41(3):1–72.

[27] Chauhan, S. and Vig, L. (2015). Anomaly detection in ecg time signals via deep long
short-term memory networks. In 2015 IEEE International Conference on Data Science
and Advanced Analytics (DSAA), pages 1–7. IEEE.

[28] Chen, M., Shi, X., Zhang, Y., Wu, D., and Guizani, M. (2017). Deep feature learn-
ing for medical image analysis with convolutional autoencoder neural network. IEEE
Transactions on Big Data, 7(4):750–758.

[29] Chen, X.-w. and Jeong, J. C. (2007). Enhanced recursive feature elimination. In Sixth
International Conference on Machine Learning and Applications (ICMLA 2007), pages
429–435. IEEE.

[30] Christ, M., Braun, N., Neuffer, J., and Kempa-Liehr, A. W. (2018). Time series feature
extraction on basis of scalable hypothesis tests (tsfresh–a python package). Neurocomput-
ing, 307:72–77.

[31] Cook, A. A., Mısırlı, G., and Fan, Z. (2019). Anomaly detection for iot time-series
data: A survey. IEEE Internet of Things Journal, 7(7):6481–6494.

[32] Dang, T. N. and Wilkinson, L. (2013). Timeexplorer: Similarity search time series
by their signatures. In International Symposium on Visual Computing, pages 280–289.
Springer.

[33] Dau, H. A., Bagnall, A., Kamgar, K., Yeh, C.-C. M., Zhu, Y., Gharghabi, S., Ratanama-
hatana, C. A., and Keogh, E. (2018). The ucr time series archive.

[34] Desgraupes, B. (2013). Clustering indices. University of Paris Ouest-Lab Modal’X,
1:34.

[35] Dhanabal, S. and Chandramathi, S. (2011). A review of various k-nearest neighbor
query processing techniques. International Journal of Computer Applications, 31(7):14–
22.

[36] Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., and Keogh, E. (2008). Querying
and mining of time series data: experimental comparison of representations and distance
measures. Proceedings of the VLDB Endowment, 1(2):1542–1552.

[37] Fuchs, E., Gruber, T., Pree, H., and Sick, B. (2010). Temporal data mining using shape
space representations of time series. Neurocomputing, 74(1-3):379–393.

[38] Fulcher, B. D. and Jones, N. S. (2017). hctsa: A computational framework for automated
time-series phenotyping using massive feature extraction. Cell systems, 5(5):527–531.

[39] Giannoni, F., Mancini, M., and Marinelli, F. (2018). Anomaly detection models for iot
time series data. arXiv preprint arXiv:1812.00890.

[40] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep learning. MIT press.

106 References

[41] Grabocka, J., Schilling, N., Wistuba, M., and Schmidt-Thieme, L. (2014). Learning
time-series shapelets. In Proceedings of the 20th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 392–401.

[42] Guijo-Rubio, D., Durán-Rosal, A. M., Gutiérrez, P. A., Troncoso, A., and Hervás-
Martínez, C. (2020). Time-series clustering based on the characterization of segment
typologies. IEEE transactions on cybernetics, 51(11):5409–5422.

[43] Guo, T., Xu, Z., Yao, X., Chen, H., Aberer, K., and Funaya, K. (2016). Robust
online time series prediction with recurrent neural networks. In 2016 IEEE International
Conference on Data Science and Advanced Analytics (DSAA), pages 816–825. Ieee.

[44] Guo, Y., Liao, W., Wang, Q., Yu, L., Ji, T., and Li, P. (2018). Multidimensional time
series anomaly detection: A gru-based gaussian mixture variational autoencoder approach.
In Asian Conference on Machine Learning, pages 97–112. PMLR.

[45] Hagberg, A. A., Schult, D. A., and Swart, P. J. (2008). Exploring network structure,
dynamics, and function using networkx. In Varoquaux, G., Vaught, T., and Millman, J.,
editors, Proceedings of the 7th Python in Science Conference, pages 11 – 15, Pasadena,
CA USA.

[46] Hamilton, J. D. (2020). Time series analysis. Princeton university press.

[47] Hautamaki, V., Nykanen, P., and Franti, P. (2008). Time-series clustering by approxi-
mate prototypes. In 2008 19th International conference on pattern recognition, pages 1–4.
IEEE.

[48] He, L., Agard, B., and Trépanier, M. (2020). A classification of public transit users
with smart card data based on time series distance metrics and a hierarchical clustering
method. Transportmetrica A: Transport Science, 16(1):56–75.

[49] Hecht-Nielsen, R. (1992). Theory of the backpropagation neural network. In Neural
networks for perception, pages 65–93. Elsevier.

[50] Henry, M. and Judge, G. (2019). Permutation entropy and information recovery in
nonlinear dynamic economic time series. Econometrics, 7(1):10.

[51] Hills, J., Lines, J., Baranauskas, E., Mapp, J., and Bagnall, A. (2014). Classification of
time series by shapelet transformation. Data mining and knowledge discovery, 28(4):851–
881.

[52] Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural computa-
tion, 9(8):1735–1780.

[53] Hollingsworth, K., Rouse, K., Cho, J., Harris, A., Sartipi, M., Sozer, S., and Enevoldson,
B. (2018). Energy anomaly detection with forecasting and deep learning. In 2018 IEEE
international conference on big data (Big Data), pages 4921–4925. IEEE.

[54] Horng, S.-J., Su, M.-Y., Chen, Y.-H., Kao, T.-W., Chen, R.-J., Lai, J.-L., and Perkasa,
C. D. (2011). A novel intrusion detection system based on hierarchical clustering and
support vector machines. Expert systems with Applications, 38(1):306–313.

References 107

[55] Huang, T., Chen, P., and Li, R. (2022). A semi-supervised vae based active anomaly
detection framework in multivariate time series for online systems. In Proceedings of the
ACM Web Conference 2022, pages 1797–1806.

[56] Huang, X., Ye, Y., Xiong, L., Lau, R. Y., Jiang, N., and Wang, S. (2016). Time series k-
means: A new k-means type smooth subspace clustering for time series data. Information
Sciences, 367:1–13.

[57] Idé, T. (2006). Why does subsequence time-series clustering produce sine waves?
In european conference on principles of data mining and knowledge discovery, pages
211–222. Springer.

[58] Ienco, D. and Interdonato, R. (2020). Deep Multivariate Time Series Embedding Clus-
tering via Attentive-Gated Autoencoder. In PAKDD 2020 - 24th Pacific-Asia Conference
on Knowledge Discovery and Data Mining, Advances in Knowledge Discovery and Data
Mining, Singapore, Singapore.

[59] Inoue, A. (2008). Ar and ma representation of partial autocorrelation functions, with
applications. Probability theory and related fields, 140(3):523–551.

[60] Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L., and Muller, P.-A. (2019).
Deep learning for time series classification: a review. Data mining and knowledge
discovery, 33(4):917–963.

[61] Iwana, B. K. and Uchida, S. (2021). An empirical survey of data augmentation for time
series classification with neural networks. Plos one, 16(7):e0254841.

[62] Kadri, F., Harrou, F., Chaabane, S., Sun, Y., and Tahon, C. (2016). Seasonal arma-
based spc charts for anomaly detection: Application to emergency department systems.
Neurocomputing, 173:2102–2114.

[63] Kang, Y., Hyndman, R. J., and Li, F. (2020). Gratis: Generating time series with diverse
and controllable characteristics. Statistical Analysis and Data Mining: The ASA Data
Science Journal.

[64] Karimian, S. H., Kelarestaghi, M., and Hashemi, S. (2012). I-inclof: improved incre-
mental local outlier detection for data streams. In The 16th CSI International Symposium
on Artificial Intelligence and Signal Processing (AISP 2012), pages 023–028. IEEE.

[65] Kashyap, S. and Karras, P. (2011). Scalable knn search on vertically stored time
series. In Proceedings of the 17th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 1334–1342.

[66] Kayabol, K. (2019). Approximate sparse multinomial logistic regression for classifica-
tion. IEEE transactions on pattern analysis and machine intelligence, 42(2):490–493.

[67] Keogh, E., Chakrabarti, K., Pazzani, M., and Mehrotra, S. (2001). Dimensionality reduc-
tion for fast similarity search in large time series databases. Knowledge and information
Systems, 3(3):263–286.

108 References

[68] Keogh, E. and Kasetty, S. (2003). On the need for time series data mining benchmarks:
a survey and empirical demonstration. Data Mining and knowledge discovery, 7(4):349–
371.

[69] Kieu, T., Yang, B., Guo, C., and Jensen, C. S. (2019). Outlier detection for time series
with recurrent autoencoder ensembles. In IJCAI, pages 2725–2732.

[70] Lacasa, L., Luque, B., Ballesteros, F., Luque, J., and Nuno, J. C. (2008). From time
series to complex networks: The visibility graph. Proceedings of the National Academy
of Sciences, 105(13):4972–4975.

[71] Lai, K.-H., Zha, D., Xu, J., Zhao, Y., Wang, G., and Hu, X. (2021). Revisiting time
series outlier detection: Definitions and benchmarks. In Thirty-fifth Conference on Neural
Information Processing Systems Datasets and Benchmarks Track (Round 1).

[72] Lara-Benitez, P., Carranza-García, M., Garcia-Gutierrez, J., and Riquelme, J. C. (2020).
Asynchronous dual-pipeline deep learning framework for online data stream classification.
Integrated Computer-Aided Engineering, 27(2):101–119.

[73] Lee, S., Kwon, D., and Lee, S. (2003). Dimensionality reduction for indexing time
series based on the minimum distance. Journal of Information Science and Engineering,
19(4):697–711.

[74] Levchenko, O., Kolev, B., Yagoubi, D.-E., Akbarinia, R., Masseglia, F., Palpanas, T.,
Shasha, D., and Valduriez, P. (2021). Bestneighbor: efficient evaluation of knn queries on
large time series databases. Knowledge and Information Systems, 63(2):349–378.

[75] Li, H. (2019). Multivariate time series clustering based on common principal component
analysis. Neurocomputing, 349:239–247.

[76] Li, H., Lin, C., Wan, X., and Li, Z. (2019). Feature representation and similarity measure
based on covariance sequence for multivariate time series. IEEE Access, 7:67018–67026.

[77] Li, M. (2010). Fractal time series—a tutorial review. Mathematical Problems in
Engineering, 2010.

[78] Li, Z., Zhao, Y., Han, J., Su, Y., Jiao, R., Wen, X., and Pei, D. (2021). Multivariate time
series anomaly detection and interpretation using hierarchical inter-metric and temporal
embedding. In KDD, pages 3220–3230. ACM.

[79] Lin, J., Keogh, E., Lonardi, S., and Chiu, B. (2003). A symbolic representation of
time series, with implications for streaming algorithms. In Proceedings of the 8th ACM
SIGMOD workshop on Research issues in data mining and knowledge discovery, pages
2–11.

[80] Lin, J., Khade, R., and Li, Y. (2012). Rotation-invariant similarity in time series using
bag-of-patterns representation. Journal of Intelligent Information Systems, 39(2):287–315.

[81] Lipponen, J. A. and Tarvainen, M. P. (2019). A robust algorithm for heart rate vari-
ability time series artefact correction using novel beat classification. Journal of medical
engineering & technology, 43(3):173–181.

References 109

[82] Lu, Y., Cohen, I., Zhou, X. S., and Tian, Q. (2007). Feature selection using principal
feature analysis. In Proceedings of the 15th ACM international conference on Multimedia,
pages 301–304.

[83] Magdy, N., Sakr, M. A., Mostafa, T., and El-Bahnasy, K. (2015). Review on trajec-
tory similarity measures. In 2015 IEEE seventh international conference on Intelligent
Computing and Information Systems (ICICIS), pages 613–619. IEEE.

[84] Markou, M. and Singh, S. (2003). Novelty detection: a review—part 1: statistical
approaches. Signal processing, 83(12):2481–2497.

[85] Marussy, K. and Buza, K. (2013). Success: a new approach for semi-supervised
classification of time-series. In International Conference on Artificial Intelligence and
Soft Computing.

[86] McInnes, L. and Healy, J. (2017). Accelerated hierarchical density based clustering. In
2017 IEEE International Conference on Data Mining Workshops (ICDMW), pages 33–42.
IEEE.

[87] Megalooikonomou, V., Wang, Q., Li, G., and Faloutsos, C. (2005). A multiresolu-
tion symbolic representation of time series. In 21st International Conference on Data
Engineering (ICDE’05), pages 668–679. IEEE.

[88] Melek, W. W., Lu, Z., Kapps, A., and Fraser, W. D. (2005). Comparison of trend
detection algorithms in the analysis of physiological time-series data. IEEE transactions
on biomedical engineering, 52(4):639–651.

[89] Morley, J. and Piger, J. (2012). The asymmetric business cycle. Review of Economics
and Statistics, 94(1):208–221.

[90] Müller, M. (2007). Dynamic time warping. Information retrieval for music and motion,
pages 69–84.

[91] Munir, M., Siddiqui, S. A., Dengel, A., and Ahmed, S. (2018). Deepant: A deep learning
approach for unsupervised anomaly detection in time series. Ieee Access, 7:1991–2005.

[92] Murdoch, W. J., Singh, C., Kumbier, K., Abbasi-Asl, R., and Yu, B. (2019). Definitions,
methods, and applications in interpretable machine learning. Proceedings of the National
Academy of Sciences, 116(44):22071–22080.

[93] Nanni, L., Brahnam, S., Ghidoni, S., Menegatti, E., and Barrier, T. (2013). Differ-
ent approaches for extracting information from the co-occurrence matrix. PloS one,
8(12):e83554.

[94] Nanopoulos, A., Alcock, R., and Manolopoulos, Y. (2001). Feature-based classification
of time-series data. International Journal of Computer Research, 10(3):49–61.

[95] Newman, M. (2010). Networks: An Introduction. Oxford University Press, Oxford.

[96] Nguyen, H., Tran, K. P., Thomassey, S., and Hamad, M. (2021). Forecasting and
anomaly detection approaches using lstm and lstm autoencoder techniques with the appli-
cations in supply chain management. International Journal of Information Management,
57:102282.

110 References

[97] Oehmcke, S., Zielinski, O., and Kramer, O. (2015). Event detection in marine time
series data. In Joint German/Austrian Conference on Artificial Intelligence (Künstliche
Intelligenz), pages 279–286. Springer.

[98] Paparrizos, J. and Gravano, L. (2015). k-shape: Efficient and accurate clustering of
time series. In Proceedings of the 2015 ACM SIGMOD international conference on
management of data, pages 1855–1870.

[99] Paparrizos, J. and Gravano, L. (2016). K-shape: Efficient and accurate clustering of
time series. SIGMOD Record.

[100] Park, H.-S. and Jun, C.-H. (2009). A simple and fast algorithm for k-medoids
clustering. Expert systems with applications, 36(2):3336–3341.

[101] Pasupathi, S., Shanmuganathan, V., Madasamy, K., Yesudhas, H. R., and Kim, M.
(2021). Trend analysis using agglomerative hierarchical clustering approach for time
series big data. The Journal of Supercomputing, 77(7):6505–6524.

[102] Pena, D. and Box, G. E. (1987). Identifying a simplifying structure in time series.
Journal of the American statistical Association, 82(399):836–843.

[103] Pena, E. H., de Assis, M. V., and Proença, M. L. (2013). Anomaly detection using
forecasting methods arima and hwds. In 2013 32nd international conference of the chilean
computer science society (sccc), pages 63–66. IEEE.

[104] Pincus, S. M. (1991). Approximate entropy as a measure of system complexity.
Proceedings of the National Academy of Sciences, 88(6):2297–2301.

[105] Pliakos, K., Joo, S.-H., Park, J. Y., Cornillie, F., Vens, C., and Van den Noortgate, W.
(2019). Integrating machine learning into item response theory for addressing the cold
start problem in adaptive learning systems. Computers & Education, 137:91–103.

[106] Pokrajac, D., Lazarevic, A., and Latecki, L. J. (2007). Incremental local outlier
detection for data streams. In 2007 IEEE symposium on computational intelligence and
data mining, pages 504–515. IEEE.

[107] Polikar, R. (2006). Ensemble based systems in decision making. IEEE Circuits and
systems magazine, 6(3):21–45.

[108] Qin, Y., Ding, S., Wang, L., and Wang, Y. (2019). Research progress on semi-
supervised clustering. Cognitive Computation, 11(5):599–612.

[109] Rakthanmanon, T., Campana, B., Mueen, A., Batista, G., Westover, B., Zhu, Q., Za-
karia, J., and Keogh, E. (2012). Searching and mining trillions of time series subsequences
under dynamic time warping. In Proceedings of the 18th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 262–270.

[110] Rasamoelina, A. D., Adjailia, F., and Sinčák, P. (2020). A review of activation function
for artificial neural network. In 2020 IEEE 18th World Symposium on Applied Machine
Intelligence and Informatics (SAMI), pages 281–286. IEEE.

References 111

[111] Räsänen, T. and Kolehmainen, M. (2009). Feature-based clustering for electricity
use time series data. In International conference on adaptive and natural computing
algorithms, pages 401–412. Springer.

[112] Richman, J. S. and Moorman, J. R. (2000). Physiological time-series analysis using
approximate entropy and sample entropy. American Journal of Physiology-Heart and
Circulatory Physiology.

[113] Romano, S., Vinh, N. X., Bailey, J., and Verspoor, K. (2016). Adjusting for chance
clustering comparison measures. The Journal of Machine Learning Research, 17(1):4635–
4666.

[114] Rudin, C. (2019). Stop explaining black box machine learning models for high
stakes decisions and use interpretable models instead. Nature Machine Intelligence,
1(5):206–215.

[115] Rätz, M., Javadi, A. P., Baranski, M., Finkbeiner, K., and Müller, D. (2019). Automated
data-driven modeling of building energy systems via machine learning algorithms. Energy
and Buildings, 202:109384.

[116] Sala, D. A., Jalalvand, A., Van Yperen-De Deyne, A., and Mannens, E. (2018).
Multivariate time series for data-driven endpoint prediction in the basic oxygen furnace.
In 2018 17th IEEE International Conference on Machine Learning and Applications
(ICMLA), pages 1419–1426.

[117] Salgado, C. M., Azevedo, C., Proença, H., and Vieira, S. M. (2016). Noise versus
outliers. Secondary analysis of electronic health records, pages 163–183.

[118] Salvador, S. and Chan, P. (2007). Toward accurate dynamic time warping in linear
time and space. Intelligent Data Analysis, 11(5):561–580.

[119] Samek, W., Montavon, G., Vedaldi, A., Hansen, L. K., and Müller, K.-R. (2019).
Explainable AI: interpreting, explaining and visualizing deep learning, volume 11700.
Springer Nature.

[120] Schäfer, P. (2015). The boss is concerned with time series classification in the presence
of noise. Data Mining and Knowledge Discovery, 29(6):1505–1530.

[121] Schäfer, P. and Högqvist, M. (2012). Sfa: a symbolic fourier approximation and index
for similarity search in high dimensional datasets. In Proceedings of the 15th international
conference on extending database technology, pages 516–527.

[122] Schein, A. I., Popescul, A., Ungar, L. H., and Pennock, D. M. (2002). Methods and
metrics for cold-start recommendations. In Proceedings of the 25th annual international
ACM SIGIR conference on Research and development in information retrieval, pages
253–260.

[123] Shatkay, H. and Zdonik, S. B. (1996). Approximate queries and representations for
large data sequences. In Proceedings of the Twelfth International Conference on Data
Engineering, pages 536–545. IEEE.

112 References

[124] Shih, S., Sun, F., and Lee, H. (2019). Temporal pattern attention for multivariate time
series forecasting. Mach. Learn., 108(8-9):1421–1441.

[125] Shmueli, G., Jank, W., Aris, A., Plaisant, C., and Shneiderman, B. (2006). Exploring
auction databases through interactive visualization. Decision Support Systems, 42(3):1521–
1538.

[126] Shokouhi, M. (2011). Detecting seasonal queries by time-series analysis. In Proceed-
ings of the 34th international ACM SIGIR conference on Research and development in
Information Retrieval, pages 1171–1172.

[127] Solorio-Fernández, S., Carrasco-Ochoa, J. A., and Martínez-Trinidad, J. F. (2016).
A new hybrid filter–wrapper feature selection method for clustering based on ranking.
Neurocomputing, 214:866–880.

[128] Stahle, L. and Wold, S. (1989). Analysis of variance (anova). Chemometrics and
Intelligent Laboratory Systems, 6(4):259–272.

[129] Steinley, D. (2004). Properties of the hubert-arable adjusted rand index. Psychological
methods, 9(3):386.

[Thakkar et al.] Thakkar, P., Vala, J., and Prajapati, V. Survey on outlier detection in data
stream. Int. J. Comput. Appl.

[131] Tiano, D., Bonifati, A., and Ng, R. (2021a). Featts: Feature-based time series
clustering. In Proceedings of the 2021 International Conference on Management of Data,
pages 2784–2788.

[132] Tiano, D., Bonifati, A., and Ng, R. (2021b). Feature-driven time series clustering.

[133] Timmer, J., Gantert, C., Deuschl, G., and Honerkamp, J. (1993). Characteristics of
hand tremor time series. Biological cybernetics, 70(1):75–80.

[134] Torres, J. F., Hadjout, D., Sebaa, A., Martínez-Álvarez, F., and Troncoso, A. (2021).
Deep learning for time series forecasting: a survey. Big Data, 9(1):3–21.

[135] Van, G. A., Staals, F., Löffler, M., Dykes, J., and Speckmann, B. (2016). Multi-
granular trend detection for time-series analysis. IEEE Transactions on Visualization and
Computer Graphics, 23(1):661–670.

[136] Van Craenendonck, T., Meert, W., Dumančić, S., and Blockeel, H. (2018). Cobras ts:
A new approach to semi-supervised clustering of time series. In International Conference
on Discovery Science, pages 179–193. Springer.

[137] Veltkamp, R. C. (2001). Shape matching: Similarity measures and algorithms. In
Proceedings International Conference on Shape Modeling and Applications, pages 188–
197. IEEE.

[138] Veltkamp, R. C. and Latecki, L. J. (2006). Properties and performance of shape
similarity measures. In Data Science and Classification, pages 47–56. Springer.

References 113

[139] Ventura, D., Casado-Mansilla, D., López-de Armentia, J., Garaizar, P., López-de Ipina,
D., and Catania, V. (2014). Ariima: a real iot implementation of a machine-learning
architecture for reducing energy consumption. In International conference on ubiquitous
computing and ambient intelligence, pages 444–451. Springer.

[140] Wang, H., Zhang, Q., Wu, J., Pan, S., and Chen, Y. (2019). Time series feature learning
with labeled and unlabeled data. Pattern Recognition.

[141] Wang, X., Mueen, A., Ding, H., Trajcevski, G., Scheuermann, P., and Keogh, E.
(2013a). Experimental comparison of representation methods and distance measures for
time series data. Data Mining and Knowledge Discovery, 26(2):275–309.

[142] Wang, X., Smith, K., and Hyndman, R. (2006). Characteristic-based clustering for
time series data. Data mining and knowledge Discovery, 13(3):335–364.

[143] Wang, Y., Wang, P., Pei, J., Wang, W., and Huang, S. (2013b). A data-adaptive and
dynamic segmentation index for whole matching on time series. Proceedings of the VLDB
Endowment, 6(10):793–804.

[144] Wang, Z., Yan, W., and Oates, T. (2017). Time series classification from scratch with
deep neural networks: A strong baseline. In 2017 International joint conference on neural
networks (IJCNN), pages 1578–1585. IEEE.

[145] Wei, W. W. (2006). Time series analysis. In The Oxford Handbook of Quantitative
Methods in Psychology: Vol. 2.

[146] Wipf, D. and Nagarajan, S. (2007). A new view of automatic relevance determination.
Advances in neural information processing systems, 20.

[147] Xing, Z., Pei, J., Yu, P. S., and Wang, K. (2011). Extracting interpretable features
for early classification on time series. In Proceedings of the 2011 SIAM international
conference on data mining, pages 247–258. SIAM.

[148] Ye, L. and Keogh, E. (2009). Time series shapelets: a new primitive for data mining. In
Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 947–956.

[149] Zhang, W., Dong, X., Li, H., Xu, J., and Wang, D. (2020). Unsupervised detection of
abnormal electricity consumption behavior based on feature engineering. IEEE Access,
8:55483–55500.

[150] Zhao, B., Lu, H., Chen, S., Liu, J., and Wu, D. (2017). Convolutional neural networks
for time series classification. Journal of Systems Engineering and Electronics, 28(1):162–
169.

[151] Zhu, X. and Goldberg, A. B. (2009). Introduction to semi-supervised learning. Syn-
thesis lectures on artificial intelligence and machine learning, 3(1):1–130.

[152] Zoumpatianos, K., Idreos, S., and Palpanas, T. (2016). Ads: the adaptive data series
index. The VLDB Journal, 25(6):843–866.

References 115

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

