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Paris, centre 386
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été le pivot principal dans l’histoire d’une thèse interrompue par le décès de celui qui
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remercie aussi Aurélien Alvarez d’avoir pris le soin de m’orienter alors que je cherchais
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Enfin, j’ai une pensée pour Gennadi Henkin, qui commença à superviser cette thèse
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7

Résumé

Le sujet de cette thèse est une approche microlocale de la transformation de Radon.
Il s’agit d’appliquer à la dualité projective complexe et réelle les techniques initiées
dans l’article fondateur de Sato-Kashiwara-Kawai de 1972 et de retrouver, reformuler,
améliorer des travaux d’analyse plus classiques sur ce sujet, en particulier ceux de G.
Henkin ou S. Gindikin. La dualité projective vue sous l’angle microlocal et faisceautique
est apparue pour la première fois dans un travail important de J-L. Brylinski sur les
faisceaux pervers, travail repris ensuite par D’Agnolo et Schapira dans le cadre des D-
modules. Notre travail est de reprendre systématiquement cette étude avec les nouveaux
outils de la théorie microlocale des faisceaux (théorie qui n’existait pas à l’époque de
SKK72).

Ce travail se compose essentiellement de deux parties.
Dans la première, nous commençons par rappeler dans un cadre général la con-

struction des transformations canoniques quantifiées, sous l’hypothèse de l’existence
d’une section simple non-dégénérée (introduite sous un autre nom par J. Leray). Cette
construction n’avait jamais été faite dans un cadre global hors du cas projectif. Nous
montrons alors que ces transformations commutent à l’action des opérateurs microd-
ifferentiels. Il s’agit là d’ un résultat fondamental sans qu’aucune preuve consitante
n’existe dans la littérature, ce résultat étant plus ou moins sous-entendu dans SKK72.

La deuxième partie de la thèse traite des applications à la transformation de Radon
“classique”. L’idée de base est que cette transformation échange support des hyper-
fonctions (modulo analyticité) et front d’onde analytique. Nous obtenons ainsi des
théorèmes de prolongement ou d’unicité sur les ouverts linéellement concave. Nous
obtenons aussi un théoréme des résidus pour les valeurs au bord de classes de coho-
mologie définies sur les cones de signatures (1, n − 1), clarifiant substantiellement des
travaux de Cordaro-Gindikin-Trèves.

Mots Clés

Géométrie intégrale, Transformée de Radon, Analyse Algébrique, D-modules, E-modules,
Transformations de Contact, Dualité Projective, Géométrie Symplectique, Lagrangien,
Catégorie Dérivée.
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Abstract

The subject of this thesis is a microlocal approach to the transformation of Radon. It is
a question of applying to real and complex projective duality the techniques initiated in
the founding article of Sato-Kashiwara-Kawai of 1972 and to find, reformulate, improve
more classic analytical work on this subject, in particular those of G. Henkin or S.
Gindikin. Projective duality seen from the microlocal and sheaf point of view appeared
for the first time in an important work by J-L. Brylinski on perverse sheaves, work
then taken up by D’Agnolo and Schapira in the framework of D-modules. Our work is
to systematically resume this study with the new tools of the microlocal sheaf theory
(theory which did not exist at the time of SKK72).

This work essentially consists of two parts.
In the first, we begin by recalling in a general framework the construction of quan-

tized canonical transformations, under the hypothesis of the existence of a simple non-
degenerate section (introduced under another name by J. Leray). This construction had
never been done in a global framework outside the projective case. We then show that
these transformations exchange the action of the microdifferential operators. This is a
fundamental result without any consistent proof existing in the literature, this result
being more or less implied in SKK72.

The second part of the thesis deals with the applications to the ‘ ‘classical ” Radon
transform. The basic idea is that this transform exchanges the support of hyperfunc-
tions (modulo analyticity) and the analytic wavefront set. We thus obtain theorems of
continuation or uniqueness on linearly concave domain. We also get a residue theorem
for the boundary values of finite cohomology classes defined on cones with (1, n − 1)
signature, substantially clarifying the work of Cordaro-Gindikin-Trèves.

Keywords

Integral geometry, Radon transform, Algebraic Analysis, D-modules, E-modules, Con-
tact transformations, Projective duality, Symplectic geometry, Lagrangian, Derived
Category.



Contents

1 Introduction 11
1.1 Short introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.2 Classical results for Radon transform . . . . . . . . . . . . . . . . . . . 12
1.3 Announcement of the results . . . . . . . . . . . . . . . . . . . . . . . 16

2 Reminders on Algebraic Analysis and complements 25
2.1 Sheaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2 O-modules and D-modules . . . . . . . . . . . . . . . . . . . . . . . . 27
2.3 E -modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4 Hyperfunctions and microfunctions . . . . . . . . . . . . . . . . . . . . 30
2.5 Integral transforms for sheaves and D-modules . . . . . . . . . . . . . 31
2.6 Microlocal integral transforms . . . . . . . . . . . . . . . . . . . . . . . 33
2.7 Complements on the functor µhom . . . . . . . . . . . . . . . . . . . . 34

3 Complex quantized contact transformations 37
3.1 Kernels on complex manifolds . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 Main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Radon transform for sheaves 45
4.1 Projective duality: geometry . . . . . . . . . . . . . . . . . . . . . . . 45
4.2 Projective duality for microdifferential operators . . . . . . . . . . . . 48
4.3 Projective duality for microfunctions . . . . . . . . . . . . . . . . . . 49
4.4 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Applications 57
5.1 Geometrical preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 An application of the Holmgren-Kashiwara theorem . . . . . . . . . . 60
5.3 Hyperfunctions whose Radon transfom vanishes in linearly concave do-

mains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.4 Radon transform for quadratic cones . . . . . . . . . . . . . . . . . . . 64

6 Appendix 73
6.1 Radon transform of the structure sheaf . . . . . . . . . . . . . . . . . . 73
6.2 Associativity for the composition of µhom . . . . . . . . . . . . . . . . 76

References 81

9



10 CONTENTS



Chapter 1

Introduction

1.1 Short introduction

In this thesis, we will study the microlocal Radon transform, understood as a quanti-
zation of projective duality, both in the real and the complex case.

In the real case, denote by P the real projective space (say of dimension n), by P ∗

its dual and by S the incidence relation:

S := {(x, ξ) ∈ P × P ∗; 〈x, ξ〉 = 0}.(1.1.1)

In this setting, there is a well-known correspondance between distributions on P and
P ∗ due to Gelfand, Gindikin, Graev [GGG82] and to Helgason [Hel80]. However, it is
known since the 70s under the influence of the Sato’s school, that to well-understand
what happens on real (analytic) manifolds, it may be worth to look at their complexi-
fication.

Hence, denote by P the complex projective space of dimension n, by P∗ the dual
projective space and by S ⊂ P × P∗ the incidence relation. Denoting by T ∗X the

cotangent bundle to a manifold X and
•

T ∗X the bundle T ∗X with the zero section
removed, we get the correspondence

•

T ∗S(P× P∗)
∼

yy

∼

%%
•

T ∗P ∼ //
•

T ∗P∗

(1.1.2)

This contact transformation induces an equivalence of categories between perverse
sheaves modulo constant ones on the complex projective space and perverse sheaves
modulo constant ones on its dual, as shown by Brylinski [Bry86], or between coherent
D-modules modulo flat connections, as shown by D’Agnolo-Schapira [DS94].

In this thesis, we will focus on the real projective duality for microfunctions. This
is part of the continuation of the work of [Bry86] and [DS96]. We shall consider the

11
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contact transform induced by (1.1.2)

•

T ∗S(P× P∗) ∩ (
•

T ∗PP×
•

T ∗P ∗P
∗)

∼

uu

∼

))•

T ∗PP
∼ //

•

T ∗P ∗P
∗

(1.1.3)

The above contact transformation leads to the well-known fact that the Radon trans-
form establishes an isomorphism of sheaves of microfunctions on P and P ∗ (see [KKK86]).

In fact, we will work in the more general framework of integral transforms and then
specialize our results to the case of projective duality. We will consider the following
situation. Consider two complex manifolds X and Y of the same dimension, a closed

submanifold Z of X × Y , open subset U ⊂
•

T ∗X and V ⊂
•

T ∗Y and assume that the

conormal bundle
•

T ∗Z(X × Y ) induces a contact transformation

•

T ∗Z(X × Y ) ∩ (U × V a)

∼

uu

∼

))
•

T ∗X ⊃ U
∼ // V ⊂

•

T ∗Y.

(1.1.4)

Moreover, assume that X and Y are complexification of real analytic manifolds M and
N respectively. Then, it is known that, under suitable hypotheses, one can quantize
this contact transform and get an isomorphism between microfunctions of U∩T ∗MX and
microfunctions on V ∩T ∗NY [KKK86]. One of our main results will be the commutation
of this isomorphism to the action of microdifferential operators. Although considered as
well-known, the proof of this commutation does not appear clearly in the literature (see
[SKK, p. 467]), and is far from being obvious. In fact, we will consider a more general
setting, replacing sheaves of microfunctions with sheaves of the type µhom(F,OX).
Next, we will specialize our results to the setting of projective duality.

Finally, we will provide some applications of our results to the study of the real
Radon transform of hyperfunctions. Precisely, we will get a Holmgren-type vanishing
theorem describing the vanishing set of a hyperfunction whose wave-front set is subject
to special geometrical conditions. From there, we will recover vanishing theorems of
Kolm-Nagel [KN68] and Boman [Bom92]. Moreover, we will give an answer to a problem
formulated by Henkin [Hen04], namely the description of the kernel of the real Radon
transform in linearly concave domains. To treat this geometrical situation, a microlocal
treatment will be peculiarly well-suited.

1.2 Classical results for Radon transform

Notations

We will use the langage of sheaves and D-modules and we refer the reader to [KS90]
and [Kas03] for a detailed developement of these topics.
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We will denote by k a commutative unital ring of finite global dimension. Let X
be a good topological space, i.e. Hausdorff, locally compact, countable at infinity, of
finite cohomological dimension. We denote by Db(kX) the bounded derived category
of the category of sheaves of k vector spaces on X and we shall freely make use of the
six Gronthendieck operations. For a locally closed subset Z of X, we denote by kZ the
constant sheaf on Z with stalk k, extended by 0 on X \Z. For F ∈ Db(kX), we denote
by

D′XF := RHom (F,kX)

the dual of F . Assuming X is a manifold, we denote by SS(F ) the micro-support of
F .

For manifolds Mi,Mj we denote by Mij their cartesian product. We denote by qi
the projection Mij −→ Mi, pi the projection T ∗Mij −→ T ∗Mi. We add a subscript a

to pj to denote by paj the composition of pj and the antipodal map on T ∗Mj. Also,
for diagonal embedding, we denote for instance by δ2 the natural diagonal embedding:
M123 ↪→M1223.

On a complex manifold (X,OX), we denote by dX its complex dimension, by ΩX

the sheaf of holomorphic dX-forms, by DX the sheaf of rings of finite order holomorphic
differential operators, by Db(DX) the bounded derived category of the category of left
DX-modules.

For a holomorphic line bundle F on X, one sets

F∗ := HomOX (F ,OX)

the dual line bundle of F , and

DF := DX ⊗OX F

the natural left D-module attached to F .
For a morphism f : Y −→ X, we denote by f−1 and f ∗, the functors of inverse and

direct images for D-modules.
If Z is a closed complex submanifold of X of codimension d, we set

BZ|X := Hd
[Z](OX)

(in the sense of algebraic cohomology). For S a complex submanifold of X × Y , we

denote by B(dX ,0)
S|X×Y the following (DY ,DX)-bimodule

B(dX ,0)
S|X×Y := q−1

1 ΩX ⊗q−1
1 OX

BS|X×Y

Integral transform for sheaves and D-modules Let X, Y be complex manifolds
and S a closed submanifold X × Y . Consider the diagrams

S
f

��

g

��

S̃
g

��

f

��

X × Y
q1

||

q2

""
X Y, Y X, X Y

(1.2.1)
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S̃ being the image of S by the map r : X × Y −→ Y × X, (x, y) 7→ (y, x). Let us fix
some notations that we will detail later.

Let G ∈ Db(CY ) and K ∈ Db(CX×Y ). The integral transform of G with respect to
the kernel K is defined to be

ΦK(G) := Rq1!(K ⊗ q−1
2 G)(1.2.2)

We will denote ΦS̃(G) the integral transform of G with respect to the kernel CS[dS−dX ].
For M ∈ Db(DX) with coherent cohomology, one defines the integral transform of

M,

ΦS(M) := g∗f
−1M

Assuming M coherent and that f is non-characteristic for M and g is proper on
f−1(suppM), then we have the adjunction formula stated and proven in [DS94]

RHomDX (M,ΦS̃(G)⊗OX)[dX ] ' RHomDY (ΦSM, G⊗OY )[dY ](1.2.3)

We can use (1.2.3) to derive interesting computation of the integral transform of
special D-modules. Assume that X, Y are of equal dimension, and that f, g are smooth
and proper. Let F and G be holomorphic line bundles. Then it is proven in [DS94]
that, under specific hypotheses involving existence of global contact transformations,
namely a global section of q−1

1 F ⊗q−1
1 OX

B(dX ,0)
S|X×Y ⊗q−1

2 OY
q−1

2 G, non-degenerate on some

open subset of T ∗S(X × Y ), and some additional topological conditions, there is an
isomorphism

ΦSDF ' DG

Applying (1.2.3) to the D-module M = DXF , f being non-characteristic for DX since
f is smooth, we get the formula

RΓ(X; ΦS̃(G)⊗F∗) ' RΓ(Y ;G⊗G∗)

Radon transform for sheaves and D-modules In the context of projective duality,
we have the following situation

T ∗S(P× P∗)
p1

xx

p2

&&
T ∗P T ∗P∗

Denoting by Λ the Lagrangian manifold T ∗S(P×P∗)∩ (
•

T ∗P×
•

T ∗P∗), one can prove that

p1|Λ, resp. p2|Λ, is an isomorphism on
•

T ∗P, resp. on
•

T ∗P∗. Then a theorem of [Bry86]
asserts the equivalence of categories between perverse sheaves on P modulo constant
sheaves and perverse sheaves on P∗ modulo constant sheaves.

It is proven in [DS94] that there is an equivalence of categories between coherent
D-modules on P modulo flat connections and coherent D-modules on P∗ modulo flat
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connections. At the heart of the proof, fixing an integer k such that −n − 1 < k < 0,
and denoting by OP(k) the −k-th power of the tautological line bundle, the following
isomorphism of D-modules is proven

ΦS(OP(k)) ' OP∗(k
∗)(1.2.4)

with k∗ = −n− 1− k. From these results,we get the classical result, for F ∈ Db(CP),

RΓ(P;F ⊗OP(k)) ' RΓ(P∗; ΦS(F )⊗OP∗(k
∗))

Microlocalization of (1.2.4) Now, is there a microlocal counter-part of (1.2.4) ?
At the germ level, the answer given in [KS90, Theo. 11.4.9] is positive.

Let us consider again the diagram (1.2.1) and related notations. It is proven in
[SKK] that given a homogeneous symplectic isomorphism between open sets U ⊂ T ∗X
and V ⊂ T ∗Y , there is locally a (non unique) ring isomorphism between the sheaf of
microdifferential operators on X and the sheaf of microdifferential operators on Y . This
isomorphism is called a quantized contact transformation.

Also, let M,N be two real analytic manifolds, X, Y respective complexifications,
and S a hypersurface of X × Y . Consider the diagram:

(U × V a) ∩ T ∗S(X × Y )
p1

uu

p2a

))
U ∩ T ∗MX V ∩ T ∗NY

(1.2.5)

Assume that p1, p2a are isomorphisms. Then it is proven in [KKK86, Theo. 4.2.3]
that there is a local isomorphism between the sheaf of microfunctions on T ∗MX and the
sheaf of microfunctions on T ∗NY . We will prove in this work a global version of this
isomorphism in the context of real projective duality. We will have to twist the sheaf
of microfunctions by some power of the tautological line bundle.

Following [KS90], let X, Y be two complex manifolds of same dimension n, Λ be
a closed complex Lagrangian submanifold of T ∗(X × Y ), such that the natural mor-
phisms T ∗X ←− Λ −→ T ∗Y are isomorphisms. Let K ∈ Db(CX×Y ) be cohomologically
constructible, simple with shift 0 along Λ and let SS(K) be its micro-support. We
suppose that SS(K) ⊂ Λ.

Let p = (pX , p
a
Y ) ∈ Λ and consider a non-degenerate section s ∈ H0(µhom(K,ΩX×Y/Y )p),

where ΩX×Y/Y := OX×Y ⊗q−1
1 OX

q−1
1 ΩX . This defines a natural morphism

ΦK[n](OX) −→ OY(1.2.6)

in Db(CY ). This morphism is an isomorphism in the category Db(CY ; pY ), the localiza-
tion of Db(CY ) by the subcategory of sheaves whose singular support do not intersect
pY . Moreover, given the isomorphism between microdifferential operators in Db(CX ; pX)
and microdifferential operators in Db(CY ; pY ) [SKK], the morphism (1.2.6) is compat-
ible with their respective action on OX in Db(CX ; pX) and OY in Db(CY ; pY ) [KS90,
Theo. 11.4.9, Coro. 11.4.8].
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This is, at a germ level, a microlocal version of (1.2.4) with a precision related to
the action of microdifferential operators. The main result of our work will be to give

a global version of this result for an open set U ⊂
•

T ∗Y . From there, we will deduce
a correspondence result between solutions of systems of microdifferential equations on
the projective space and solutions of systems of microdifferential equations on its dual.

1.3 Announcement of the results

In this work, we will make the link between sheaf and D-module theory and results
related to the Radon transform, formulated or conjectured in the setting of several
variable complex analysis. Contact transformations between cotangent bundles of the
projective space and its dual play a key role to establish correspondance between relative
behaviour of objects in P and objects in P ∗: hyperfuctions, D-modules, microfunctions,
E-modules. We will investigate specifically relations between microfunctions in T ∗PP
and in T ∗P ∗P

∗ not only as sheaves but as E-modules. From there, we will establish an
isomorphism between microfunction solutions of a system of micro-differential equations
on the projective space and the counterpart solutions on its dual. As an application of
sheaf theory, we will get a Holmgren-type vanishing theorem describing the vanishing
set of a hyperfunction whose wave-front set is subject to special geometrical conditions.
Moreover, we will describe the kernel of the real Radon transform in linearly concave
domains as conjectured by Henkin [Hen04].

Results on the functor µhom

To establish our main results, we will need the following complement on the functor
µhom.

For (Mi)i=1,2,3, three manifolds, we consider the operation of composition of kernels:

◦
2

: Db(kM12)×Db(kM23) −→ Db(kM13)

(K1, K2) 7→ K1 ◦
2
K2 := Rq13!(q

−1
12 K1 ⊗ q−1

23 K2)

' Rq13!δ
−1
2 (K1 �K2).

(1.3.1)

We define the composition of kernels on cotangent bundles (see [KS90, Prop. 4.4.11])

a◦
2

: Db(kT ∗M12)×Db(kT ∗M23)−→Db(kT ∗M13)

(K1, K2) 7→K1
a◦
2
K2 := Rp13!(p

−1
12aK1 ⊗ p−1

23 K2)
(1.3.2)

Let Fi, Gi, Hi respectively in Db(kM12),Db(kM23),Db(kM34), i = 1, 2. Let Ui be an open
subset of T ∗Mij (i = 1, 2, j = i+ 1) and set

U3 = Ui
a◦
2
Uj = p13(p−1

12a(U1) ∩ p−1
23 (U2))

In [KS90], a canonical morphism in Db(kT ∗M13) is constructed

µhom(F1, F2)|U1

a◦
2
µhom(G1, G2)|U2 −→ µhom(F1 ◦

2
G1, F2 ◦

2
G2)|U3 .(1.3.3)
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We will see that the composition
a◦ is associative and we will see also that the morphism

(1.3.3) is compatible with associativity with respect to
a◦.

Complex contact transformations

Consider now two complex manifolds X and Y of the same dimension n, open C×-

conic subsets U and V of
•

T X and
•

T Y , respectively, Λ a smooth closed submanifold of
U × V a and assume that the projections p1|Λ and pa2|Λ induce isomorphisms, hence a
homogeneous symplectic isomorphism χ : U ∼−→ V :

Λ ⊂ U × V a

p1

∼

ww pa2

∼

''
•

T ∗X ⊃ U
∼
χ

// V ⊂
•

T ∗Y

Let us consider a perverse sheaf L on X × Y satisfying

(p−1
1 (U) ∪ pa2

−1(V )) ∩ SS(L) ⊂ Λ

and a section s of µhom(L,ΩX×Y/X) on Λ, where

ΩX×Y/X := OX×Y ⊗q−1
2 OY

q−1
2 ΩY

Recall that one denotes by E R
X sheaf of rings:

E R
X := µhom(C∆X

,ΩX×X/X)[dX ](1.3.4)

and EX the subsheaf of E R
X of finite order microdifferential operators. We will prove

our main theorem:

Theorem 1.3.1. Let G ∈ Db(CY ) and assume to be given a section s of µhom(L,ΩX×Y/X),
non-degenerate on Λ.

(i) For W ⊂ U , P ∈ EX(W ), there is a unique Q ∈ EY (χ(W )) satisfying P · s = s ·Q
(P,Q considered as sections of EX×Y ). The morphism induced by s

χ−1EY |V −→ EX |U
P 7→ Q

is a ring isomorphism.

(ii) We have the following isomorphism in Db(CU)

χ−1µhom(G,OY )|V ∼−→ µhom(ΦL[n](G),OX)|U(1.3.5)

(iii) The isomorphism (1.3.5) is compatible with the action of EY and EX on the left
and right side of (1.3.5) respectively.
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We will see that the action of microdifferential operators in Theorem 1.3.1 (iii) is
derived from the morphism (1.3.3) given the definition (1.3.4). We refer to (1.2.2) for
the definition of ΦL[n]. The first part of this theorem is well-known, see [SKK], but
the fact that isomorphism (1.3.5) is compatible with the action of microdifferential
operators was announced for microfunctions in various papers but no detailed proof
exists to our knowledge.

Projective duality for microfunctions

For M a real analytic manifold and X its complexification, we might be led to identify
T ∗MX with i · T ∗M . We denote by

AM := OX |M

BM := RHom (D′XCM ,OX)

CM := µhom(D′XCM ,OX)

the sheaves of real analytic functions, hyperfunctions, microfunctions, respectively.
We denote by sp the isomorphism

sp : BM
∼−→ π∗CM

Let U an open subset of M . For u ∈ BM(U), we denote by WF (u) its analytic
wave front set:

WF (u) := supp(sp(u)) ⊂ TUX

All through this thesis, we will quantize the contact transform associated with the

Lagrangian submanifold
•

T ∗S(P× P∗), where S is the hypersurface of P× P∗ defined by
the incidence relation 〈ξ, x〉 = 0, (x, ξ) ∈ P× P∗.

We denote by
•

T ∗PP, resp.
•

T ∗P ∗P
∗, the conormal space to P in

•

T ∗P, resp. to P ∗ in
•

T ∗P∗, and we will construct and denote by χ the homogeneous symplectic isomorphism

between
•

T ∗P and
•

T ∗P∗.
For ε ∈ Z/2Z, we denote by CP (ε) the following sheaves: for ε = 0, we set

CP (0) := CP

for ε = 1, CP (1) is the sheaf defined by the following exact sequence:

0→ CP (1)→ q!CP̃
tr−→ CP → 0(1.3.6)

where q is the 2 : 1 map from the universal cover P̃ of P , to P and tr the integration
morphism tr : q!CP̃ ' q!q

!CP −→ CP .
Let an integer p ∈ Z, ε ∈ Z/2Z, we define the sheaves of real analytic functions,

hyperfunctions on P resp. P ∗ twisted by some power of the tautological line bundle,

AP (ε, p) := AP ⊗OP
OP(p)⊗C CP (ε)
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BP (ε, p) := BP ⊗AP
AP (ε, p) ' RHom (D′PCP ,OP(p))⊗CP (ε)

We define the sheaves of microfunctions on P resp. P ∗ twisted by some power of
the tautological bundle,

CP (ε, p) := H0(µhom(D′PCP ,OP(p)))⊗CP (ε)

and similarly with P ∗ instead of P . We notice that for n odd, D′PCP ' CP (0) = CP ,
and for n even D′PCP ' CP (1).

For X, Y either the manifold P or P∗, for any two integers p, q, we note OX×Y (p, q)
the line bundle on X ×Y with homogenity p in the X variable and q in the Y variable.
We set

ΩX×Y/X(p, q) := ΩX×Y/X ⊗OX×Y OX×Y (p, q)

E R
X(p, q) :=µhom(C∆X

,ΩX×X/X(p, q))[dX ]

and we define accordingly EX(p, q). Let us notice that E R
X(−p, p) is a sheaf of rings.

Let n be the dimension of P , (of course n = dP). For an integer k and ε ∈ Z/2Z,
we note

k∗ := −n− 1− k

ε∗ := −n− 1− ε mod(2)

We have:

Theorem 1.3.2. (i) Let k be an integer such that −n − 1 < k < 0 and let s be a

global non-degenerate section on
•

T ∗S(P×P∗) of H1(µhom(CS,ΩP×P∗/P∗(−k, k∗))).
For P ∈ EP(−k, k), there is a unique Q ∈ EP∗(−k∗, k∗) satisfying P · s = s · Q.
The morphism induced by s

χ∗EP(−k, k) −→ EP∗(−k∗, k∗)

P 7→ Q

is a ring isomorphism.

(ii) There exists such a non-degenerate section s.

In fact, we will see that the non-degenerate section of Theorem 1.3.2 is provided by
the Leray section.

Now, from classical adjunction formulas for E -modules, we get a correspondance
between solutions of systems of microdifferential equations on the projective space and
solutions of systems of microdifferential equations on its dual. We will prove our main
theorem
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Theorem 1.3.3. Let k be an integer such that −n − 1 < k < 0. Let N be a coherent
EP(−k, k)-module and F ∈ Db(P). Then, we have an isomorphism in Db(C •

T ∗P∗
)

χ∗RHom EP(−k,k)(N , µhom(F,OP(k))) '

RHom EP∗ (−k∗,k∗)(Φ
µ
S(N ), µhom((ΦCS[−1]F,OP∗(k

∗)))

where Φµ
S it is the counterpart of ΦS for E -modules, and will be defined in Section

2.6.1.

Corollary 1.3.4. Let k be an integer such that −n − 1 < k < 0 and ε ∈ Z/2Z. The
section s of theorem 1.3.2 defines an isomorphism:

χ∗CP (ε, k)| •
T ∗PP
' CP ∗(ε

∗, k∗)| •
T ∗
P∗P

∗

Moreover, this morphism is compatible with the respective action of χ∗EP(−k, k) and
EP∗(−k∗, k∗).

Applications

Application I : the wave-front set of hyperfunctions We will obtain a descrip-
tion of the kernel of the Radon transform in linearly concave domain, generalizing some
results announed in [Hen04]. Consider the diagram:

P × P ∗
q1

{{

q2

$$
P P ∗

(1.3.7)

For a set A ⊂ P , we set

Â := q2(q−1
1 (A) ∩ S)

and similarly for B ⊂ P ∗. In some sense, Â represents the Radon transform of A.

Definition 1.3.5. A set A ⊂ P is said to be linearly concave if there exists a set
B ⊂ P ∗ such that A = B̂. Moreover, if B is connected, A is said to be strongly linearly
concave.

Let Ω be a non empty linearly concave domain, strictly contained in P . Let us
denote by Ω

∧

the set:

P ∗ \ ̂(P \ Ω)

i.e. the set of hyperplanes contained in Ω. As it will be seen in Section 4, S may be
identified to P ∗P the projectivization of the cotangent bundle of P . Let us denote

by ρP the projection
•

T ∗P −→ P ∗P and similarly ρP ∗ . Let us consider the following
situation:
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•

T ∗S(P × P ∗)

•

T ∗P
•

T ∗P ∗

P ∗S(P × P ∗)

P ∗P P ∗P ∗

P P ∗

p1 pa2

∼
χ

ρP ρP∗

∼
p̃1

∼
p̃2

We will identify S to P ∗S(P × P ∗). Let Ω be a non empty linearly concave domain

strictly contained in P . The set (Ω× Ω

∧

) ∩ S is decribed by:

(Ω× Ω

∧

) ∩ S = {(x, ξ) ∈ P × P ∗;x ∈ Ω, ξ̂ ⊂ Ω}

We set


 := ρ−1
P (p̃1((Ω× Ω

∧
) ∩ S)) ⊂

•

T ∗P

We denote by 
∗ the set χ(
) ⊂
•

T ∗P ∗. We will see that 
∗ =
•

T ∗
Ω

∧P∗.

Definition 1.3.6. Let U an open subset of P . For a section f of BP (ε, k)(U), we
define the Radon transform Rad(f) as the image of f by the sequence of morphisms:

Rad : BP (ε, k)(U) CP (ε, k)(
•

T ∗U) CP ∗(ε
∗, k∗)(χ(

•

T ∗U))'

For f ∈ BP (ε, k)(Ω), we will see that Rad(f)|
∗ may be viewed as an element of

BP ∗(ε
∗, k∗)/AP ∗(ε∗, k∗)(Ω

∧

). We will denote this element by Rad(f)|
Ω

∧.

As an application of Theorem 1.3.1, we have

Proposition 1.3.7. Let f ∈ BP (ε, k)(Ω). Then, we have

WF (f) ∩ 
 = χ−1(WF (Rad(f)|
Ω

∧))

In the case where n = 2 and Ω is a strongly linealry concave domain, we denote
by ΩC the union of complex lines, complexification of real lines contained in Ω. Let us
consider an affine chart R2. Then, there are 2 connected components of (ΩC \ Ω) ∩ R2,
which we denote by Ω±. In this condition, we get the following corollary:

Corollary 1.3.8. Assume that WF (Rad(f)|
Ω

∧) = ∅. Then, f is the boundary value of

(f+, f−) respectively holomorphic in Ω±.



22 CHAPTER 1. INTRODUCTION

Let V be a real finite dimensional vector space, V ∗ its dual, V its complexification,

and set
•

V ∗= V ∗ \ {0}. Let us denote by S the incidence hypersurface in V × V ∗. For
an open set U ⊂ V , we set

B(U) := Γ(U ; BV )

We will deduce an analytic-continuation type theorem below from an Hölmgren-type
theorem of Kashiwara, (whose proof is published in [Hör83, Th. 8.5.6’]), stating that
the normal cone of a support of a distribution is contained in its wave-front set. Let Ω
be a convex open subset of V and ω ⊂ Ω an open convex subset. Let us consider the
set

Z = {(x, iξ) ∈ V × i.
•

V ∗; (x, ξ) ∈ S,Hx,ξ ∩ Ω 6= ∅, Hx,ξ ∩ ω = ∅}

where, for (x, ξ) ∈ V ×
•

V ∗, we denote by Hx,ξ the hyperplan passing through x and of
conormal ξ.

Then one have the following theorem

Theorem 1.3.9. Let u ∈ B(Ω). Assume that u = 0 on ω and that WF (u) ∩ Z = ∅.
Then u = 0.

Application II : residues of homolomorphic forms in tubes Let us denote by A
the real affine space and by A its complexification. For q an integer such that 0 ≤ q < n,
we denote by γq the cone of signature (q, n− q) in A:

γq := {(x1, . . . xn) ∈ A;
∑

1≤j≤q

x2
j <

∑
q+1≤j≤n

x2
j}

About a result announced by Henkin in [Hen04].
Let γ ⊂ A be an open cone of signature (1, n − 1). Then, the complementary set

of γ is the union of two closed convex cones, denoted by λ1 and λ2. Recall that we
denote by CA the sheaf of microfunctions on T ∗AA and by λ◦i , i = 1, 2 the polar cones of
λi considered here as closed subsets of T ∗AA. We notice that

λ◦1,2 := {(x1, . . . xn) ∈ A;x2
1 ≥

∑
2≤j≤n

x2
j ,±x1 ≥ 0}

Let Int(λi◦), i = 1, 2 be the interior of the polar sets λi◦.
Let K be a compact convex subset of A, we set as usual

B(K) := lim→
U⊃K

B(U)

The following Theorem brings a proof to a variant of a conjecture by Henkin in
[Hen04], which was formulated, without the assumption that K is a convex compact,
in the following way: the wave-front set of a hyperfunction has no intersection with
λi◦, i = 1, 2 if and only if it is the residue of a ∂̄-closed (0, n − 2)-form defined on
K + i · γ.
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Theorem 1.3.10. There exists a exact sequence

0 // lim→
γ′
Hn−2(K + iγ′;OA) Res //B(K) //

// CA(K + i · Int(λ1◦))
⊕

CA(K + i · Int(λ2◦)) // 0

where γ′ ranges over the family of open convex cones of signature (1, n − 1), with
γ ⊂ γ′.

Residue in cones of signature (q, n− q)

Proposition 1.3.11. We have the natural morphism:

Hn−q−1RΓA+i.γq(OA) Res //BA

This residue was constructed in [CGT95] through several variables complex analysis
technics. Our approach provides a natural construction of this residue.

Residue diagram for Radon Transform
In the following, we see how cones of signature (1, n − 1) in A rise naturally from

the Radon transform of strip-like sets in P∗ and we explicit the diagram 1.3.8 showing
how residues and Radon transforms commutes.

Let δ be a strictly positive real number. Let us consider the open subset U of
P ∗ ↪→ P∗,

U := {ξ ∈ A∗, (
∑

2≤j≤n

| ξj |2)
1
2 < δ}

Let us set

Z := Û ∩ P
K :=P \ Z

We will see that Û \ P is a cone of signature (1, n − 1). Let LZ(ε∗) be the object of
Db(CP∗), defined, up to an isomorphism, by the distinguished triangle:

LZ(ε∗) // CP ∗(ε∗) // CK̂ [n− 1]
+1 //

Recalling that we denoted by χ the homogeneous symplectic isomorphism between
•

T ∗P and
•

T ∗P∗, we have

Theorem 1.3.12. Given a section s of µhom(CS[−1],ΩP×P∗/P∗(−k, k∗)), the following
diagram commutes:

(1.3.8)
χ∗H

n−2(µhom(CÛ\A(ε),OP(k)))| •
T ∗P

Res //

Rad
��

χ∗H
n(µhom(CZ(ε),OP(k)))| •

T ∗P

Rad
��

Hn−2(µhom(ΦS(CÛ\A(ε)),OP∗(k
∗)))| •

T ∗P∗ Res
// Hn(µhom(LZ(ε∗),OP∗(k

∗)))| •
T ∗P∗

Assuming that s is non-degenerate on
•

T ∗S(P×P∗), the vertical arrows Rad are isomor-
phisms.
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Let us consider a complex neighborhood ω ⊂ A∗ of U such that, denoting by π the
natural projection A∗

π−→ A∗, π(ω) = U .

Proposition 1.3.13. We have

SS(CÛ\A(ε)) ∩ χ−1
•

T ∗ω = ∅(1.3.9)

We deduce the following

Corollary 1.3.14. We have

µhom(CÛ\A(ε),OP(k))|
χ−1

•
T ∗ω
' 0



Chapter 2

Reminders on Algebraic Analysis
and complements

In this chapter, we recall classical results of Algebraic Analysis, with the exception of
section 2.7.

2.1 Sheaves

2.1.1 Notations for manifolds

(i) Let Mi (i = 1, 2, 3) be manifolds. For short, we write Mij :=Mi×Mj (1 ≤ i, j ≤ 3),
M123 = M1 ×M2 ×M3, M1223 = M1 ×M2 ×M2 ×M3, etc.

(ii) δMi
: Mi −→Mi×Mi denote the diagonal embedding, and ∆Mi

the diagonal set of
Mi ×Mi.

(iii) We will often write for short ki instead of kMi
and k∆i

instead of k∆Mi
and

similarly with ωMi
, etc., and with the index i replaced with several indices ij, etc.

(iv) We denote by πi, πij, etc. the projection T ∗Mi −→Mi, T
∗Mij −→Mij, etc.

(v) For a fiber bundle E −→ M , we denote by Ė −→ M the fiber bundle with the
zero-section removed.

(vi) We denote by qi the projection Mij −→ Mi or the projection M123 −→ Mi and
by qij the projection M123 −→ Mij. Similarly, we denote by pi the projection
T ∗Mij −→ T ∗Mi or the projection T ∗M123 −→ T ∗Mi and by pij the projection
T ∗M123 −→ T ∗Mij.

(vii) We also need to introduce the maps pja or pija , the composition of pj or pij and
the antipodal map a on T ∗Mj. For example,

p12a((x1, x2, x3; ξ1, ξ2, ξ3)) = (x1, x2; ξ1,−ξ2).

(viii) We let δ2 : M123 −→M1223 be the natural diagonal embedding.

25
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2.1.2 Sheaves

We follow the notations of [KS90].
Let X be a good topological space, i.e. separated, locally compact, countable at

infinity, of finite global cohomological dimension and let k be a commutative unital ring
of finite global dimension.

For a locally closed subset Z of X, we denote by kZ , the sheaf, constant on Z with
stalk k, and 0 elsewhere.

We denote by Db(kX) the bounded derived category of the category of sheaves of
k-modules on X. If R is a sheaf of rings, we denote by Db(R) the bounded derived
category of the category of left R-modules.

Let Y be a good topological space and f a morphism Y −→ X. We denote by

Rf∗, f
−1,Rf!, f

!,RHom,
L
⊗ the six Grothendieck operations. We denote by � the ex-

terior tensor product.
We denote by ωX the dualizing complex on X, by ω⊗−1

X the sheaf-inverse of ωX and
by ωY/X the relative dualizing complex

ωY/X := f !(kX) ' ωY ⊗ f−1(ω⊗−1
X )

In the following, we assume that X is a real manifold. Recall that ωX ' orX [dimX]
where orX is the orientation sheaf and dimX is the dimension of X. We denote by
DX( • ) resp. D′X( • ) the duality functor

DX( • ) = RHom ( • , ωX)

D′X( • ) = RHom ( • ,kX)

For F ∈ Db(kX), we denote by SS(F ) its singular support, also called micro-
support. For a a subset Z ⊂ T ∗X, we denote by Db(kX ;Z) the localization of the
category Db(kX) by the full subcategory of objects whose micro-support is contained
in T ∗X \ Z.

For a closed submanifold M of X, we denote by

νM : Db(kX) −→ Db
R+(kTMX)

the functor of specialization along M ,

µM : Db(kX) −→ Db
R+(kT ∗MX)

the functor of microlocalization along M , and by

µhom : Db(kX)×Db(kX)op −→ Db
R+(kT ∗X)

the functor of microcalization of RHom . The subscript R+ stands for conic objects of
Db(kT ∗X), i.e. objects locally constant with respect to the natural action of R+ on the
fibers of T ∗X −→ X. We recall that µM is the Fourier-Sato transform of νM and that

µM( • ) = µhom(kM , • )
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Let Mi (i = 1, 2, 3) be manifolds. We shall consider the operations of composition
of kernels:

◦
2

: Db(kM12)×Db(kM23) −→ Db(kM13)

(K1, K2) 7→ K1 ◦
2
K2 := Rq13!(q

−1
12 K1

L
⊗q−1

23 K2)

' Rq13!δ
−1
2 (K1

L

�K2)

(2.1.1)

◦
23

: Db(kM12)×Db(kM23)×Db(kM34) −→ Db(kM14)

(K1, K2, K3) 7→ K1 ◦
2
K2 ◦

3
K3 := Rq14!(q12

−1K1

L
⊗q23

−1K2

L
⊗q34

−1K3)
(2.1.2)

Let us mention a variant of ◦:

∗
2

: Db(kM12)×Db(kM23) −→ Db(kM13)

(K1, K2) 7→ K1 ∗
2
K2 := Rq13∗

(
q−1

2 ω2 ⊗ δ!
2(K1 �K2)

)
There is a natural morphism K1 ◦

2
K2 −→ K1 ∗

2
K2.

We refer the reader to [KS90] for a detailed presentation of sheaves on manifolds.

2.2 O-modules and D-modules

We refer to [Kas03] for the notations and the main results of this section.
Let (X,OX) be a complex manifold. We denote by dX its complex dimension and

by DX the sheaf of rings of finite order holomorphic differential operators on X.
For an invertible OX-module F , we note

F⊗−1
:= HomOX (F ,OX)

the inverse of F . Denote by Mod(DX) the abelian category of left DX-modules and
Mod(DopX ) of right DX-modules. We denote by ΩX the right DX-module of holomorphic
dX forms. There is an equivalence of category between left and right DX-modules
provided by

Db(DX) −→Db(DopX ),M 7→ΩX ⊗OXM
Db(DopX ) −→ Db(DX), N 7→N ⊗OX Ω

⊗−1

X

Let Db(DX) be the bounded derived category of the category of left DX-modules,
Db

coh(DX) its full triangulated subcategory whose objects have coherent cohomology.
Let us recall the notion of good D-modules due to Kashiwara [Kas03].

Definition 2.2.1. An OX-module F is good if for any relatively compact open subset
U ⊂⊂ X, there exists a small and filtrant category I and an inductive system {Fi}i∈I
of coherent OU -modules such that lim→

i

Fi ∼−→ F|U . A coherent DX-module is good if it

is good as an OX-module.
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Let Db
good(DX) be the triangulated subcategory of Db(DX), whose objects have all

cohomologies consisting in good DX-modules (see [Kas03] for a classical reference).
For M ∈ Db

coh(DX), the complex of holomorphic solutions of M is defined by

Sol(M ) := RHomDX
(M ,OX)

Operations on D-modules

We refer in the following to [Kas03]. Let f : Y −→ X be a morphism of complex
manifolds. We denote by DY−→X the transfer bimodule, i.e. the (DY , f−1DX)-bimodule

DY−→X := OY ⊗f−1OX f
−1DX

We shall be aware that the action of DY on DY−→X is not given by the action on OY .
We denote by DX←−Y the (f−1DX ,DY )-bimodule

DX←−Y := (DY−→X ⊗OY ΩY )⊗
f−1OX f

−1Ω
⊗−1

X

We define the pull-back and the direct image of D-modules. Let M ∈ Db(DX),
N ∈ Db(DY )

f−1M := DY−→X

L
⊗f−1DXf

−1M, f ∗N := Rf∗(DX←−Y
L
⊗DYN )

The following results are proven in [KS96, Prop 2.4]. Let M ∈ Db
good(DX), N ∈

Db(DY ), F ∈ Db(CX), G ∈ Db(CY ). We assume that f is non-characteristic for M.
We have

Rf∗RHomDY (f−1M,N ) ' RHomDX (M, f ∗N ),

f−1RHomDX (M,OX) ' RHomDY (f−1M,OY ),

Rf!RHomDY (f−1M, G⊗OY ) ' RHomDX (M,Rf!G⊗OX)

Assume M ∈ Db(DX), N ∈ Db
good(DY ). We no longer assume that f is non-

characteristic for M. We assume that f is proper on supp(N ). Then, we have

Rf∗RHomDY (N , f−1M[dY/X ]) ' RHomDX (f ∗N ,M),

Specializing this isomorphism to the case M = F ⊗OX , we get

Rf!RHomDY (N , f−1F ⊗OY )[dY/X ] ' RHomDX (f ∗N , F ⊗OX)
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2.3 E -modules

We refer in the following to [SKK] (see also [Sch85] for an exposition). For a complex
manifold X, one denotes by EX the sheaf of filtered ring of finite order holomorphic
microdifferential operators on T ∗X. We denote by Db

coh(EX) the full triangulated sub-
category of Db(EX) whose objects have coherent cohomology.

For m ∈ Z, we denote by EX(m) the abelian subgroup of EX of microdifferential
operators of order less or equal to m. For a section P of EX , we denote by σ(P ) the
principal symbol of P .

Let πX denote the natural projection T ∗X −→ X. Let us recall that EX is flat over
π−1(DX). To a DX-module M , we associate an EX-module defined by

E M := EX ⊗π−1
X DX

π−1
X M

Let us notice that

M ' E M |T ∗XX

To a morphism of manifolds f : Y −→ X, we associate the diagram of natural mor-
phisms:

TY

τY
%%

Tf // Y ×X TX
fτ //

τ
��

TX

τX

��
Y

f // X

(2.3.1)

and the dual diagram

T ∗Y

πY
&&

Y ×X T ∗X
fdoo fπ //

π
��

T ∗X

πX

��
Y

f // X

(2.3.2)

where fd is the transposed of the tangent map Tf : TY −→ Y ×X TX.
We denote by EY−→X ,EX←−Y the transfer bimodules and for M,N objects of re-

spectively Db(EX) and Db(EY ), one defines the functors f−1

E
and fE

∗ by

f−1

E
(M) := Rfd∗(EY−→X

L
⊗f−1

π EX
f−1
π M)

fE

∗ (N ) := Rfπ∗(EX←−Y
L
⊗f−1

d EY
f−1
d N )

Under specific assumptions, the extension of D-modules to E -modules commutes with
the push forward and the pull-back operation of E -modules ([SS94]).

Let M∈ Db
coh(DX). We assume that f is non-characteristic for M, then we have

E (f−1M) ' f−1

E
(EM)
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Let N ∈ Db
good(DY ), and assume f is proper on supp(N ), then we have

E (g∗N ) ' gE
∗ (EN )

For M a left coherent EX-module generated by a section u ∈M , we denote by IM

the annihilator left ideal of EX given by:

IM := {P ∈ EX ;Pu = 0}

and by I M the symbol ideal associated to IM :

I M := {σ(P );P ∈ IM}

Definition 2.3.1 ([Kas03]). Let M be a coherent EX-module generated by an element
u ∈M . We say that (M , u) is a simple EX-module if I M is reduced and I M = {ϕ ∈
OT ∗X ;ϕ|supp(M ) = 0}.

Consider two complex manifolds X and Y , open subsets U and V of
•

T ∗X and
•

T ∗Y ,
respectively, and denote by p1 and p2 the projections U

p1←− U × V a p2−→ V . Let Λ be a
smooth closed submanifold Lagrangian of U × V a. We will make use of the following
result from [SKK, Th. 4.3.1], [Kas03, Prop. 8.5]:

Theorem 2.3.2 ([SKK],[Kas03]). Let (M , u) be a simple EX×Y -module defined on
U × V a such that supp M = Λ. Assume Λ −→ U is a diffeomorphism. Then, there is
an isomorphism of EX-modules:

EX |U ∼−→ (p1|U×V a)∗M
P 7→P · u

Assume that the projections p1|Λ and pa2|Λ induce isomorphisms. We denote by χ
the homogeneous symplectic isomorphism χ := p2|Λ ◦ p1|−1

Λ ,

Λ ⊂ U × V a

∼
p1|Λww

∼
pa2 |Λ ''

•

T ∗X ⊃ U ∼
χ

// V ⊂
•

T ∗Y

(2.3.3)

Corollary 2.3.3. Let (M , u) be a simple EX×Y -module defined on U × V a. Assume
supp M = Λ. Then, in the situation of (2.3.3), we have an anti-isomorphism of algebras

χ∗EX |U ' EY |V

2.4 Hyperfunctions and microfunctions

Let M be a real analytic manifold and X a complexification of M . We denote by AM

the sheaf of complex valued real analytic functions on M :

AM := OX ⊗CM
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by BM the sheaf of hyperfunctions on M:

BM := RHom (D′XCM ,OX)

and by CM the sheaf of microfunctions on T ∗MX:

CM := µhom(D′XCM ,OX)

Let us notice that BM and CM are concentrated in degree 0. Let us denote by sp,
the isomorphism

sp : BM
∼−→ RπM ∗CM(2.4.1)

There is a natural action of the sheaf of microdifferential operators EX on CM .
Given that, D′XCM ' ωM/X ' ω⊗−1

M , and denoting by orX/M the relative orientation
sheaf, we get that

BM ' RΓM(OX)⊗ωM/X ' Hn
M(OX)⊗ orM/X ,

CM ' µM(OX)⊗ωM/X ' Hn(µM(OX))⊗ orM/X .

If Z is a closed complex submanifold of X of codimension d, we note

BZ|X := Hd
[Z](OX)

the algebraic cohomology of OX with support in Z.

2.5 Integral transforms for sheaves and D-modules

2.5.1 Integral transforms for sheaves

Let X and Y be complex manifolds of respective dimension dX , dY . Let S be a closed
submanifold X × Y of dimension dS. We set dS/X := dS − dX . Consider the diagram
of complex manifolds

S
f

��

g

��

S̃
g

��

f

��
X Y, Y X

(2.5.1)

where the second diagram is obtained by interchanging X and Y .
Let F ∈ Db(CX), G ∈ Db(CY ), we define

ΦS(F ) := Rg!f
−1F [dS/Y ], ΦS̃(G) := Rf!g

−1G[dS/X ]

ΨS(F ) := Rg∗f
!F [dX/S], ΨS̃(G) := Rf∗g

!G[dY/S]
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For K ∈ Db(CX×Y ), and given the diagram X
q1←− X×Y q2−→ Y , we define the Radon

transform of F with kernel K

ΦK(F ) := Rq2!(K ⊗ q−1
1 F )

When K = CS[dS/Y ], we recover the functor ΦS.
We have the adjunction formulae:

RHom (ΦS̃(G), F ) ' RHom (G,ΨS(F )),

RΓc(X; ΦS̃(G)⊗F )[dX ] ' RΓc(Y ;G⊗ΨS(F ))[dY ]

2.5.2 Integral transforms for D-modules

Let X, Y be complex manifolds of equal dimension n > 0, and S a complex manifold.
Consider again the situation (2.5.1).

We suppose{
f, g are smooth and proper,
S is a complex submanifold of X × Y of codimension c > 0

(2.5.2)

Let M ∈ Db(DX), N ∈ Db(DY ). Let us denote by S̃ the image of S by the map
r : X × Y −→ Y ×X, (x, y) 7→ (y, x). One sets

ΦS(M) := g∗f
−1M, ΦS̃(N ) := f ∗g

−1N

LetM∈ Db
good(DX), assume that f is non characteristic forM and let G ∈ Db(CY ).

The functorial properties of inverse and direct image of D-modules leads to the following
adjonction formulae, proven in [DS94, Prop. 2.6.],

ΦSRHomDX (M,OX) 'RHomDY (ΦSM,OY )

RHomDX (M,ΦS̃(G)⊗OX)[dX ] 'RHomDY (ΦSM, G⊗OY )[dY ]

RHomDX (M⊗ΦS̃(G),OX)[dX ] 'RHomDY (ΦSM⊗G,OY )[dY ]

(2.5.3)

Let us recall that we denote by ΩX the sheaf of holomorphic n-forms and let

B(n,0)
S|X×Y := q−1

1 ΩX ⊗q−1
1 OX

BS|X×Y

This (DY ,DX)-bimodule allows the computation of ΦS because of the isomorphism,
proven in [DS94, Prop 2.12]

DY←−S
L
⊗DSDS−→X

∼−→ B(n,0)
S|X×Y

leading to

ΦS(M) ' Rq2!(B
(n,0)
S|X×Y

L
⊗q−1

1 DX
q−1

1 M)
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2.6 Microlocal integral transforms

2.6.1 Integral transforms for E -modules

Let X, Y be complex manifolds and S is a closed submanifold of X × Y . We consider
again the diagram (2.5.1) under the hypothesis (2.5.2).

We define the functor

Db(EX) −→ Db(EY ), Φµ
S(M) := gE

∗ f
−1

E
M

We define the EX×Y -module attached to BS|X×Y ,

CS|X×Y := E BS|X×Y

and we consider the (EY ,EX)-bimodule

C (n,0)
S|X×Y := π−1q−1

1 ΩX

L
⊗π−1q−1

1 OX
CS|X×Y(2.6.1)

One can notice that

EY←−S
L
⊗ESES−→X

∼−→ C (n,0)
S|X×Y

and hence, we have

Φµ
S(M) ' Rpa2!(C

(n,0)
S|X×Y

L
⊗p−1

1 EX
p−1

1 M)(2.6.2)

Let M ∈ Db
good(DX). The functors Φµ

S and ΦS are linked through the following

isomorphism in Db(C •
T ∗Y

), (see [SS94])

E (ΦS(M)) ' Φµ
S(EM)(2.6.3)

2.6.2 Microlocal integral transform of the structure sheaf

Consider two open subsets U and V of T ∗X and T ∗Y , respectively and Λ a closed
complex Lagrangian submanifold of U × V a

U × V a

p1

ww

p2a

''
T ∗X ⊃ U V ⊂ T ∗Y

(2.6.4)

As detailed in Section 11.4 of [KS90], let K ∈ Db(CX×Y ), SS(K) its micro-support
and let us suppose that

(i) p1|Λ : Λ −→ U and pa2|Λ : Λ −→ V are isomorphisms

(ii) K is cohomologically constructible



34CHAPTER 2. REMINDERS ON ALGEBRAIC ANALYSIS AND COMPLEMENTS

(iii) (p−1
1 (U) ∪ p−1

2 (V )) ∩ SS(K) ⊂ Λ

(iv) K is simple with shift 0 along Λ

Let p = (pX , p
a
Y ) ∈ Λ and let us consider some section s ∈ H0(µhom(K,ΩX×Y/Y ))p,

where ΩX×Y/Y := OX×Y ⊗q−1
1 OX

q−1
1 ΩX . The section s gives a morphism K −→ ΩX×Y/Y

in Db(CX×Y ; p). Then, we get the sequence of morphisms

ΦK[dX ](OX) = Rq2!(K[dX ]⊗ q−1
1 OX)

−→ Rq2!(ΩX×Y/Y ⊗ q−1
1 OX [dX ])

−→ Rq2!ΩX×Y/Y [dX ]
−→ OY

(2.6.5)

the last morphism being the integration morphism. We have:

Theorem 2.6.1 ([KS90, Th.11.4.9]). There exists s ∈ H0(µhom(K,ΩX×Y/Y ))p such
that the associated morphism ΦK[dX ](OX) −→ OY is an isomorphism in the category
Db(CY ; pY ). Moreover, this morphism is compatible with the action of microdifferential
operators on OX in Db(CX ; pX) and the action of microdifferential operators on OY in
Db(CY ; pY )

This is a microlocal version of (1.2.4) with a precision related to the action of
microdifferential operators.

2.7 Complements on the functor µhom

2.7.1 Associativity for the composition of kernels

The next result is well-known although no proof is written down in the literature, to
our knowledge.

Lemma 2.7.1. Let M1,M2,M3 be real manifolds, and K,L,M be objects respectively
of Db(kM12), Db(kM23),Db(kM34), then the composition of kernels ◦ defined in 2.1.1 is

associative. We have the following isomorphism

(K ◦
2
L) ◦

3
M ∼−→K ◦

2
(L ◦

3
M)(2.7.1)

such that for any N ∈ Db(kM45), the diagram below commutes:

((K ◦
2
L) ◦

3
M) ◦

4
N //

��

(K ◦
2
L) ◦

3
(M ◦

4
N)

��

(K ◦
2
(L ◦

3
M)) ◦

4
N

��
K ◦

2
((L ◦

3
M) ◦

4
N) // K ◦

2
(L ◦

3
(M ◦

4
N)).

(2.7.2)
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Proof. Consider the following diagram

M1234

q3
124

�� ��
q23
14

��

q2
134

�� ��

�� �� �� ��

M124

��
q2
14

��

  

q1
24

  

q4
12



M134

q3
14

�� ��
q4
13

~~ ~~

q1
34

��

M123

q3
12

��

q2
13

�� ��

q1
23

((

M14 M234

q4
23

vv

q3
24

�� ��

q2
34

��
M12 M13 M23 M24 M34

where the thick squares are cartesian, and where for clarity we enforced the notation:
the projection Mijk −→Mij by qkij (independently of order of appearence of the indices),
and the projection Mijkl −→Mij by qklij . We now have:

Rq3
14!(q

4
13
−1

(Rq2
13!(q

3
12
−1
K ⊗ q1

23
−1
L))⊗ q1

34
−1
M) ' Rq3

14!(Rq
2
134!(q

34
12
−1
K ⊗ q14

23
−1
L)⊗ q1

34
−1
M)

' Rq23
14!(q

34
12
−1
K ⊗ q14

23
−1
L⊗ q12

34
−1
M)

:=K1 ◦
2
K2 ◦

3
K3

The same way, we get the isomorphism

K1 ◦
2
K2 ◦

3
K3'Rq2

14!(q
4
12
−1
K ⊗ (q1

24
−1

(Rq3
24!(q

4
23
−1
L⊗ q2

34
−1
M))))

which proves the isomorphism (2.7.1). And, it follows immediately that given N ∈
Db(kM45), the diagram (2.7.2) commutes.

2.7.2 Associativity for the composition of µhom

We define the composition of kernels on cotangent bundles (see [KS90, section 3.6,
(3.6.2)]).

a◦
2

: Db(kT ∗M12)×Db(kT ∗M23)−→Db(kT ∗M13)

(K1, K2) 7→K1
a◦
2
K2 := Rp13!(p

−1
12aK1 ⊗ p−1

23 K2)

' Rp13a !(p
−1
12aK1 ⊗ p−1

23aK2).

(2.7.3)

There is a variant of the composition ◦, constructed in [KS14]:

∗
2

: Db(kM12)×Db(kM23) −→ Db(kM13)

(K1, K2) 7→ K1 ∗
2
K2 := Rq13∗

(
q−1

2 ω2 ⊗ δ!
2(K1

L

�K2)
)
.

(2.7.4)
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There is a natural morphism for K1 ∈ Db(kM12) and K2 ∈ Db(kM23), K1 ◦
2
K2 −→

K1 ∗
2
K2.

Let us state a theorem proven in [KS90, Prop. 4.4.11] refined in [KS14].

Theorem 2.7.2. Let Fi, Gi, Hi respectively in Db(kM12),Db(kM23),Db(kM34), i = 1, 2.

Let Ui be an open subset of T ∗Mij (i = 1, 2, j = i + 1) and set U3 = U1
a◦
2
U2. There

exists a canonical morphism in Db(kT ∗M13), functorial in F1 (resp. F2):

µhom(F1, F2)|U1

a◦
2
µhom(G1, G2)|U2 −→ µhom(F1 ∗

2
G1, F2 ◦

2
G2)|U3 .(2.7.5)

and hence

µhom(F1, F2)|U1

a◦
2
µhom(G1, G2)|U2 −→ µhom(F1 ◦

2
G1, F2 ◦

2
G2)|U3 .(2.7.6)

We state the main theorem of this section.

Theorem 2.7.3. Let Fi, Gi, Hi respectively in Db(kM12),Db(kM23),Db(kM34), i = 1, 2
then we have:

(a)(
µhom(F1, F2)

a◦
2
µhom(G1, G2)

)
a◦
3
µhom(H1, H2) ∼−→

µhom(F1, F2)
a◦
2

(
µhom(G1, G2)

a◦
3
µhom(H1, H2)

)
(b) The above isomorphism is compatible with the composition ◦ in the sense that the

following diagram commutes

(µhom(F1, F2)
a◦
2
µhom(G1, G2))

a◦
3
µhom(H1, H2) ∼ //

��

µhom(F1, F2)
a◦
2
(µhom(G1, G2)

a◦
3
µhom(H1, H2))

��

µhom(F1 ◦
2
G1, F2 ◦

2
G2)

a◦
3
µhom(H1, H2)

��

µhom(F1, F2)
a◦
2
µhom(G1 ◦

3
H1, G2 ◦

3
H2)

��
µhom((F1 ◦

2
G1) ◦

3
H1, (F2 ◦

2
G2) ◦

3
H2) ∼ // µhom(F1 ◦

2
(G1 ◦

3
H1), F2 ◦

2
(G2 ◦

3
H2))

Proof. (a) This is a direct application of Lemma 2.7.1 with X, Y, Z taken to be respec-
tively T ∗M12, T

∗M13, T
∗M34.

(b) We refer the reader to 6.2 in Appendix for a sketch of proof.



Chapter 3

Complex quantized contact
transformations

3.1 Kernels on complex manifolds

Consider two complex manifolds X and Y of respective dimension dX and dY . We shall
follow the notations of Section 2.1.1.

For K ∈ Db(CX×Y ), we recall that we defined the functor ΦK : Db(CY )→ Db(CX),
ΦK(G) = Rq1!(K ⊗ q−1

2 (G)), for G ∈ Db(CY ). With regards to the notation of Sec-
tion 2.1.1, let us notice that ΦK(G) is K ◦G.

We set

ΩX×Y/X := OX×Y ⊗q−1
2 OY

q−1
2 ΩY

and

E R
X := µhom(C∆X

,ΩX×X/X)[dX ]

We recall that EX is a subring of E R
X .

We recall the

Lemma 3.1.1. There is a natural morphism

ΩX×Y/X ◦OY [dY ] −→ OX .

Proof. We have

ΩX×Y/X ◦OY [dY ] = Rq1!(ΩX×Y/X ⊗ q−1
1 OY [dY ])

−→Rq1!(ΩX×Y/X [dY ])
∫
−→ OX ,

where the last arrow is the integration morphism on complex manifolds.

The following Lemma will be useful for the proof of Lemma 3.1.3. Let us first denote
by Mi (i = 1, 2, 3, 4) four complex manifolds, Li ∈ Db(CMi,i+1

), 1 ≤ i ≤ 3. We set for
short

di = dimCMi, dij = di + dj,Ωij/i = ΩMij/Mi
= Ω

(0,dj)
Mij

.

37
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Set for 1 ≤ i ≤ 3,

Ki = µhom(Li,Ωi,j/i[dj]), j = i+ 1

Lij = Li ◦ Lj j = i+ 1, L123 = L1 ◦ L2 ◦ L3,

K̃ij = µhom(Lij,Ωi,j/i [dj] ◦ Ωj,k/j [dk]) j = i+ 1, k = j + 1

K̃123 = µhom(L123,Ω12/1[d2] ◦ Ω23/2[d3] ◦ Ω34/3[d4])

Kij = µhom(Lij,Ωi,k/i[dk]) j = i+ 1, k = j + 1,

K123 = µhom(L123,Ω14/1[d4]).

We recall that we have the sequence of natural morphisms:

Ωi,j/i ◦Ωj,k/j = Rqi,k !(q
−1
i,j Ωi,j/i ⊗ q−1

j,kΩj,k/j)

−→Rqi,k !(Ωi,j,k/i)

−→Ωi,k/i[−dj](3.1.1)

Lemma 3.1.2. The following diagram commutes:

K1 ◦K2 ◦K3

ww ''
A

K̃12 ◦K3
//

��

K̃123

��

K1 ◦ K̃23
oo

��
K12 ◦K3

//

B

K123 K1 ◦K23
oo

C

Proof. Diagram labelled A commutes by the associativity of the functor µhom (see
Theorem 2.7.3). Let us prove that Diagram B and C commute. Of course, it is enough
to consider Diagram B. To make the notations easier, we assume that M1 = M4 = pt.
We are reduced to prove the commutativity of the diagram:

µhom(L2,Ω2 ◦ Ω2,3/2[d23]) ◦ µhom(L3,O3) //

∫
2
��

µhom(L23,Ω2 ◦ Ω2,3/2[d23] ◦ O3)∫
2
��

µhom(L2,Ω3[d3]) ◦ µhom(L3,O3) // µhom(L23,Ω3[d3] ◦ O3)

For F, F ′ ∈ Db(k12), G,G′ ∈ Db(k23), we saw in Theorem 2.7.3 (b) that the morphism
µhom(F, F ′) ◦µhom(G,G′) −→ µhom(F ◦G,F ′ ◦G′) is functorial in F, F ′, G,G′. This

fact applied to the morphism

Ω2 ◦ Ω2,3/2[d23] −→ Ω3[d3]

gives that the above diagram commutes and so diagram B commutes.

Let Z be a complex manifold and let Λ ⊂ T ∗(X × Y ) and Λ′ ⊂ T ∗(Y × Z) be two
conic Lagrangian smooth locally closed complex submanifolds.
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Let L, L′, be perverse sheaves on X × Y , Y × Z, with microsupport SS(L) ⊂ Λ,
SS(L′) ⊂ Λ′ respectively. We set

L′′ := L[dY ] ◦ L′

Assume that

pa2|Λ : Λ −→ T ∗Y and p2|Λ′ : Λ′ −→ T ∗Y are transversal(3.1.2)

and that

the map Λ×T ∗Y Λ′ −→ Λ ◦Λ′ is an isomorphism.(3.1.3)

Let us set

L := µhom(L,ΩX×Y/X)

Note that L ∈ Db(T ∗(X × Y )) is concentrated in degree 0. Indeed, it is proven in
[KS90, Th. 10.3.12] that perverse sheaves are the ones which are pure with shift zero at
any point of the non singular locus of their microsupport. On the other hand, Theorem
9.5.2 of [KS85] together with Definition 9.5.1 of [KS85] show that the latter verify the
property that, when being applied µhom(•,ΩX×Y/X), they are concentrated in degree
0. Moreover, L is a (EX ,EY )-bimodule. Indeed, such actions come from morphism
(2.7.6) and the integration morphism (3.1.1). We define similarly L ′ and L ′′.

Now consider two open subsets U ,V and W of
•

T ∗X,
•

T ∗Y ,
•

T ∗Z, respectively.

KU×V a the constant sheaf on (U × V a) ∩ Λ with stalk H0RΓ(U × V a; L ), extended by 0 elsewhere
K ′V×Wa the constant sheaf on (V ×W a) ∩ Λ′ with stalk H0RΓ(V ×W a; L ′), extended by 0 elsewhere

K ′′U×Wa the constant sheaf on (U ×W a) ∩ Λ ◦ Λ′ with stalk H0RΓ(U ×W a; L ′′), extended by 0 elsewhere

Let s, s′ be sections of Γ(U×V a; L ) and Γ(V ×W a; L ′) respectively. We define the
product s · s′ to be the section of Γ(U ×W a; L ′′), image of 1 by the following sequence
of morphisms

CΛ◦Λ′
∼←−CΛ ◦ CΛ′

:= Rp13!(p
−1
12aCΛ ⊗ p−1

23 CΛ′)
−→ Rp13!(p

−1
12aKU×V a ⊗ p−1

23 KV×Wa)
−→ Rp13!(p

−1
12aµhom(L,ΩX×Y/X)⊗ p−1

23 µhom(L′,ΩY×Z/Y ))
:= µhom(L,ΩX×Y/X) ◦ µhom(L′,ΩY×Z/Y ) −→ L ′′

where the first isomorphism comes from the assumption 3.1.3.

Lemma 3.1.3. Assume that conditions 3.1.2 and 3.1.3 are satisfied. Let s, s′ be sections
of Γ(U × V a; L ) and Γ(V ×W a; L ′) respectively, and let G ∈ Db(CY ), H ∈ Db(CZ).
Then,

(i) s defines a morphism

αG(s) : CΛ ◦ µhom(G,OY )|V −→ µhom(L[dY ] ◦G,OX)|U
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(ii) Considering the morphism

αH(s · s′) : CΛ◦Λ′ ◦ µhom(H,OZ)|W −→ µhom(L[dY ] ◦ L′[dZ ] ◦H,OX)|U

we have the isomorphism

αH(s · s′) ' αL′[dZ ]◦H(s) ◦ ΦCΛ
(αH(s′))

Proof. (i) Given s and two objects G1, G2 ∈ Db(CY ), we have a morphism

CΛ ◦ µhom(G1, G2)|V −→µhom(L ◦G1,ΩX×Y/X ◦G2)|U

corrresponding to the composition of morphisms:

Rp1!(CΛ ⊗ p−1
2a µhom(G1, G2)|V )−→Rp1!(KU×V a ⊗ p−1

2a µhom(G1, G2)|V )
−→Rp1!(µhom(L,ΩX×Y/X)⊗ p−1

2a µhom(G1, G2)|V )
−→µhom(L ◦G1,ΩX×Y/X ◦G2)|U

(3.1.4)

where the second morphism comes from the natural morphismKU×V a −→ µhom(L,ΩX×Y/X).
We conclude by choosing, G1 = G, G2 = OY and by using Lemma 3.1.1:

µhom(L ◦G1,ΩX×Y/X ◦OY ) −→ µhom(L ◦G1,OX [−dY ]) ∼−→ µhom(L[dY ] ◦G1,OX)

(ii) Let H ∈ Db(CZ). We denote by H := µhom(H,OZ). It suffices to prove that the
following diagram commutes:
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(CΛ ◦ CΛ′) ◦H ' //

'

��

A

ΦCΛ
(αH(s′))

!!

CΛ ◦ (CΛ′ ◦H )

��
CΛ ◦ CΛ′ ◦H

α(s·s′)

��

��

CΛ ◦K ′ ◦H

��
K ◦K ′ ◦H

��

CΛ ◦ µhom(L′,ΩY×Z/Y ) ◦H

��
CΛ ◦ µhom(L′ ◦H,ΩY×Z/Y ◦ OZ)

∫
Z

��
CΛ ◦ µhom(L′[dZ ] ◦H,OY )

��

αL′[dZ ]◦H(s)

��

K ◦ µhom(L′,ΩY×Z/Y ) ◦H
∫
Z //

��

B

K ◦ µhom(L′[dZ ] ◦H,OY )

��
µhom(L,ΩX×Y/X) ◦ µhom(L′,ΩY×Z/Y ) ◦H

∫
Z //

��

C

µhom(L,ΩX×Y/X) ◦ µhom(L′[dZ ] ◦H,OY )

��
µhom(L ◦ L′[dZ ] ◦H,ΩX×Y/X ◦ OY )

∫
Y

��
µhom(L ◦ L′ ◦H,ΩX×Y/X ◦ ΩY×Z/Y ◦ OZ)

∫
Y,Z // µhom(L[dY ] ◦ L′[dZ ] ◦H,OX)

where we omitted the subscript U × V a and V ×W a, H, L′[dZ ] ◦H for KU×V a ,
K ′V×Wa , αH , αL′[dZ ]◦H , respectively.

We know from Theorem 2.7.2 that the operation ◦ is functorial, so that diagram
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A and B commute. For instance, diagram A decomposes this way:

CΛ ◦ CΛ′ ◦H ' //

��

CΛ ◦ (CΛ′ ◦H )

��
CΛ ◦K ′ ◦H //

��

CΛ ◦ µhom(L′,ΩY×Z/Y ) ◦H ' //

��

CΛ ◦ (µhom(L′,ΩY×Z/Y ) ◦H )

∫
Y

��
CΛ ◦ µhom(L′[dZ ] ◦H,OY )

��
K ◦K ′ ◦H // K ◦ µhom(L′,ΩY×Z/Y ) ◦H

∫
Y // K ◦ µhom(L′[dZ ] ◦H,OY )

Besides, diagram C commutes by Lemma 3.1.2.

Finally, the bottom diagonal punctured line correponds to α(s · s′), since the
following diagram commutes

CΛ◦Λ′
' //

α(s·s′)

''��

CΛ ◦ CΛ′

��
K ′′U×Wa

// µhom(L ◦ L′[dY ],ΩX×Z/X)

Remark 3.1.4. In the following of this thesis, unless necessary, we will omit the sub-
sript for α.

Theorem 3.1.5. Let s ∈ Γ(U × V a; L ), G ∈ Db(CY ). Then,
(i) s defines a morphism

α(s) : CΛ ◦ µhom(G,OY )|V −→ µhom(L[dY ] ◦G,OX)|U .(3.1.5)

(ii) Moreover, if P ∈ Γ(U ; EX) and Q ∈ Γ(V ; EY ) satisfy P · s = s ·Q, then the diagram
below commutes

CΛ ◦ µhom(G,OY )
α(s) //

ΦCΛ
(α(Q))

��

µhom(L[dY ] ◦G,OX)

α(P )

��
CΛ ◦ µhom(G,OY )

α(s)
// µhom(L[dY ] ◦G,OX).

(3.1.6)

Proof. (i) is already proven in Lemma 3.1.3.
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(ii) With regards to the notation of Lemma 3.1.3, we consider the triplet of manifolds
X,X, Y , Λ = C∆X

, L := µhom(C∆X
[−n],ΩX×X/X). Then, the assumption 3.1.2 is

satisfied and noticing that ΦC∆X
' IdX , we conclude by Lemma 3.1.3 that

α(P ) ◦ α(s) ' α(P · s) ' α(s ·Q) ' α(s) ◦ ΦCΛ
(α(Q))

3.2 Main theorem

In this section, we will apply Theorem 3.1.5 when we are given a homogeneous sym-
plectic isomorphism. Consider two complex manifolds X and Y of the same dimension

n, open subsets U and V of
•

T ∗X and
•

T ∗Y , respectively, Λ a smooth closed Lagrangian
submanifold of U × V a and assume that the projections p1|Λ and pa2|Λ induce isomor-
phisms, hence a homogeneous symplectic isomorphism χ : U ∼−→ V :

Λ ⊂ U × V a

∼
p1ww

∼
pa2 ''

•

T ∗X ⊃ U ∼
χ

// V ⊂
•

T ∗Y

(3.2.1)

We consider a perverse sheaf L on X × Y satisfying

(p−1
1 (U) ∪ pa2

−1(V )) ∩ SS(L) = Λ.(3.2.2)

and a section s in Γ(U × V a;µhom(L,ΩX×Y/X)).
Let G ∈ Db(CY ). From Theorem 3.1.5 (i), the left composition by s defines the

morphism α(s) in Db(CU):

CΛ ◦ µhom(G,OY )|V
α(s)−−→ µhom(L[n] ◦G,OX)|U(3.2.3)

The condition (3.2.2) implies that supp(µhom(L,ΩX×Y/X)|pa2−1(V )) ⊂ Λ. Since, p1

is an isomorphism from Λ to U and that χ ◦ p1|Λ = pa2|Λ, we get a morphism in Db(CU)

χ−1µhom(G,OY )|V
α(s)−−→ µhom(ΦL[n](G),OX)|U(3.2.4)

Theorem 3.2.1. Assume that the section s is non-degenerate on Λ. Then, for G ∈
Db(CY ), we have the following isomorphism in Db(CU)

χ−1µhom(G,OY )|V ∼−→ µhom(ΦL[n](G),OX)|U(3.2.5)

Moreover, this isomorphism is compatible with the action of EY and EX on the left and
right side of (3.2.5) respectively.
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Proof. Let us first prove the following lemma, whose proof is available at the level of
germs in [KS90, Th. 11.4.9].

Let us prove that the morphism (3.2.4) is an isomorphism. Let L∗ be the perverse
sheaf r−1RHom (L, ωX×Y/Y ) where r is the map X × Y −→ Y ×X, (x, y) 7→ (y, x). Let
s′ be a section of µhom(L∗,ΩY×X/Y ), non-degenerate on r(Λ), then we apply the same
precedent construction to get a natural morphism

χ∗µhom(ΦL[n](G),OX)|U −→ µhom(ΦL∗[n] ◦ ΦL[n]G,OY )|V ' µhom(ΦL∗◦L[n]G,OY )|V

We know from [KS90, Th. 7.2.1] that C∆X
' L∗ ◦ L, so that we get a morphism in

Db(CV )

χ∗µhom(ΦL[n](G),OX)|U
α(s′)−−→ µhom(G,OY )|V(3.2.6)

We must prove that (3.2.4) and (3.2.6) are inverse to each other. By Lemma 3.1.3(ii),
we get that the composition of these two morphisms is α(s′ · s), with s′ · s ∈ EX .

For any left EX-module M , corresponds a right EX-module ΩX ⊗OX
M . Fixing a

non-degenerate form tX of ΩX |U (resp. tY of ΩY |V ), we apply now Theorem 2.3.3: s
and s′ are non-degenerate sections so that (EX×Y |U×V a , tX⊗s) and (EY×X |V a×U , s′⊗tY )
are simple and so isomorphic to (p−1

1 EX |U , 1) ' (pa2
−1EY |V , 1). ΩX resp. ΩY being

invertible OX-module resp. OY -module, we get as well for the left-right (EX |U ,EY |V )
bi-module, resp. left-right (EY |V ,EX |U) bi-module generated by s resp. s′, that they
are both isomorphic to p−1

1 EX |U ' pa2
−1EY |V .

Then, following the proof of [KS90, Th. 11.4.9], s and s′, define ring isomorphisms
associating to each P ∈ EX(U), P ′ ∈ EX(U), some Q ∈ EY (V ), Q′ ∈ EY (V ), such
that P · s = s · Q, s′ · P ′ = Q′ · s′, respectively. Hence, we get that α(s′) ◦ α(s) is an
automorphism µhom(G,OY )|V , defined by the left action of s′ · s ∈ EX . Hence, we can
choose s′ so that α(s′) ◦ α(s) is the identity.

We are now in a position to prove Theorem 3.2.1: we constructed in the proof of
the lemma, for each P ∈ p−1

1 EX |U , some Q ∈ p−1
2a EY |V such that P · s = s · Q and we

can apply Theorem 3.1.5 to conclude.



Chapter 4

Radon transform for sheaves

We are going to apply the results of the last chapter to the case of projective duality.

4.1 Projective duality: geometry

4.1.1 Notations

We refer to the notations of the sections 1.3 and 2.1. We recall that we denote by

V , V, an (n+ 1)-dimensional real and complex vector space, respectively,

P , P, the n−dimensional real and complex projective space, respectively,

S, S, the real and complex incidence hypersurface in P × P ∗, P× P∗, respectively.

When necessary, we will enforce the dimension by noting Pn, resp. P∗n.

In this section, k denotes either the field R or C.

Let X, Y be complex manifolds, we recall that we denote by q1 and q2 the respective
projection of X × Y on each of its factor.

For K ∈ Db(CX×Y ), we recall that we defined the functor:

ΦK : Db(CX)→ Db(CY )

F 7→ Rq2!(K ⊗ q−1
1 F )

For an integer k and ε ∈ Z/2Z, we note k∗ = −n−1−k and ε∗ = −n−1−ε mod(2).
We refer to Section 1.3 for the definition of the sheaves of twisted microfunctions
CP (ε, k),CP ∗(ε

∗, k∗).

4.1.2 Geometry of projective duality

For a manifold X, we denote by P ∗X the projectivization of the cotangent bundle of
X. Let us prove the following:

45
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Proposition 4.1.1. There is an homogeneous complex symplectic isomorphism

•

T ∗P '
•

T ∗P∗(4.1.1)

and a contact isomorphism

P ∗P ' S ' P ∗P∗(4.1.2)

Proof. We have the natural morphism

V \ {0} ρ−→ P

According to 2.3.2, this morphism, after removing the zero section, induces the following
diagram

T ∗(V \ {0})

((

V \ {0} ×P T
∗P

tρ′oo //

��

T ∗P

��
V \ {0} // P

We notice that tρ′ is an immersion. Let us denote by H, H∗, the incidence hypersurfaces:

H = {(ξ, x) ∈ V∗ × (V \ {0}); 〈ξ, x〉 = 0}
H∗ = {(x, ξ) ∈ V× (V∗ \ {0}); 〈x, ξ〉 = 0}

Noticing that for x ∈ V \ {0}, ρ is constant along the fiber above ρ(x), we see that tρ′ is
an immersion into the incidence hypersurface H. Besides, tρ′ is a morphism of fibered
space and so, by a dimensional argument, we conclude that this immersion is also onto.

Removing the zero sections, we get the diagram

T ∗(V \ {0})

'
��

H? _oo

'

��

V \ {0} ×P

•

T ∗Poo //

'
��

•

T ∗P

T ∗(V∗ \ {0}) H∗? _oo (V∗ \ {0})×P∗
•

T ∗P∗oo //
•

T ∗P∗

(4.1.3)

where the isomophism between H and H∗ follows from the following symplectic isomor-
phism:

•

T ∗(V \ {0}) '
•

T ∗(V∗ \ {0})
(x, ξ) 7→ (ξ,−x)

Now, taking the quotient by the action of C∗ on both sides of the isomorphism between

(V \ {0})×P

•

T ∗P and (V∗ \ {0})×P∗
•

T ∗P∗, we get the isomorphism:

•

T ∗P ' (V∗ \ {0})×P∗ P
∗P∗ '

•

T ∗P∗

This gives (4.1.1).
Besides, passing to the quotient by the action of C∗×C∗ on the two central columns

of diagram (4.1.3), we get (4.1.2).
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Proposition 4.1.2. Consider the double fibrations

•

T ∗S(P× P∗)

•

T ∗P
•

T ∗P∗

∼
p1

∼
pa2

∼
χ

(4.1.4)

Then, p1 and pa2 are isomorphisms and χ = pa2 ◦ p−1
1 is a homogeneous symplectic

isomorphism.

Proof. In the proof Proposition 4.1.1, we have proved that (V\{0})×P

•

T ∗P is isomorphic
to the incidence hypersurface of (V∗ \ {0}) × (V \ {0}). Taking the quotient on the
incidence hypersurface with respect to V, we get the tautological line bundle over S
with respect to the V variable. Hence, we have

•

T ∗P ' (V \ {0} × P)×S S

and similarly, taking the quotient with respect to V∗, we get tautological line bundle
over S with respect to the V∗ variable, we get

•

T ∗P∗ ' S×S (V∗ \ {0} × P∗)

But these tautological line bundles are both isomorphic to
•

T ∗S(P× P∗).

Now, we are going to prove the following

Proposition 4.1.3. The diagram 4.1.4 induces

•

T ∗S(P× P∗) ∩ (
•

T ∗PP×
•

T ∗P ∗P
∗)

•

T ∗PP
•

T ∗P ∗P
∗

∼
p1

∼
pa2

∼
χ

Proof. The embedding of P, P ∗ into their compexification P,P∗ induces an isomorphism
•

T ∗PP ' i
•

T ∗P,
•

T ∗P ∗P
∗ ' i

•

T ∗P ∗

Besides, we have the isomoprhism
•

T ∗S(P× P∗) ∩ (
•

T ∗PP×
•

T ∗P ∗P
∗) ' i

•

T ∗S(P × P ∗)

Indeed, let (z0, ξ0) ∈ P ×P ∗ and ϕ ∈ (
•

T ∗S(P×P∗))z0,ξ0 . In local coordinates (z, ξ) ∈ P×
P∗, ϕ vanishes on any vector (u, v) belonging to the kernel of the 1-form, ω = ξdz+xdξ.

Then (<u,<v) ∈ TS, and (Imu, Im v) ∈ TS. Assume now, ϕ ∈ (
•

T ∗PP)z0 × (
•

T ∗P ∗P
∗)ξ0 ,

then ϕ vanishes on vector of type (<(u),<(v)) and so is pure imaginary and vanishes

on (Imu, Im v) ∈ TS. Hence, ϕ ∈ i
•

T ∗S(P × P ∗). From Proposition 4.1.2, we get the
isomorphisms:

•

T ∗PP ' i
•

T ∗P ' i
•

T ∗S(P × P ∗) '
•

T ∗S(P× P∗) ∩ (
•

T ∗PP×
•

T ∗P ∗P
∗) '

•

T ∗P ∗P
∗
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4.2 Projective duality for microdifferential opera-

tors

Let k, k′ be integers and ε ∈ Z/2Z. We follow the notations of the sections 1.3 and 4.2.

We define similarly a twisted version of B(n,0)
S|P×P∗ and C (n,0)

S|P×P∗ .
We set

B(n,0)
S (k, k′) := q−1

2 OP∗(k
′)⊗

q−1
2 OP∗

BS|P×P∗ ⊗q−1
1 OP

q−1
1 (OP(k)⊗OP

ΩP)

and the (EP(−k, k),EP∗(−k∗, k∗))-module

C (n,0)
S|P×P∗(k, k

′) := E B(n,0)
S|P×P∗(k, k

′)

We notice that EP(−k, k) is nothing but OP(−k)D ⊗ πP
−1DP

EP ⊗ πP
−1DP
DOP(k).

According to the diagram 4.1.4, we denoted by χ the homogeneous symplectic isomor-
phism

χ := pa2| •T ∗S(P×P∗) ◦ p1|−1
•
T ∗S(P×P∗)

We have:

Theorem 4.2.1 ([DS96, p. 469]). Assume −n− 1 < k < 0. There exists a section s of

µhom(CS[−1],ΩP×P∗/P∗(−k, k∗)), non-degenerate on
•

T ∗S(P× P∗).

Proof. From the exact sequence:

0 −→ C(P×P∗)\S −→ CP×P∗ −→ CS −→ 0(4.2.1)

we get the natural morphism

RΓ((P× P∗) \ S; ΩP×P∗/P∗(−k, k∗)) −→RΓS(P× P∗; ΩP×P∗/P∗(−k, k∗))[1]
' RΓ(P× P∗; RHom (CS; ΩP×P∗/P∗(−k, k∗)))[1]
' RΓ(T ∗(P× P∗);µhom(CS; ΩP×P∗/P∗(−k, k∗)))[1]

−→RΓ(
•

T ∗(P× P∗);µhom(CS[−1]; ΩP×P∗/P∗(−k, k∗)))

Let z = (z0, ..., zn) be a system of homogeneous coordinates on P and ζ = (ζ0, ..., ζn)
the dual coordinates on P∗. As explained in [DS96], a non-degenerate section is provided
by the Leray section, defined for (z, ξ) ∈ (P× P∗) \ S by

s(z, ζ) =
ω′(z)

〈z, ζ〉n+1+k
(4.2.2)

where ω′(z) is the Leray form ω′(z) =
∑n

k=0(−1)kzkdz0∧ . . . ∧ dzk−1 ∧ dzk+1 ∧ . . .∧dzn,
Leray [Ler59].

Let s be a section ofH1(µhom(CS[−1],ΩP×P∗/P∗(−k, k∗))), non-degenerate on
•

T ∗S(P×
P∗).
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Theorem 4.2.2. Assume −n−1 < k < 0. Then, we have an isomorphism in Db(C •
T ∗P

)

Φµ
S(EP(−k, k)| •

T ∗P
) ' EP∗(−k∗, k∗)| •T ∗P∗

χ∗EP(−k, k)| •
T ∗P
' EP∗(−k∗, k∗)| •T ∗P∗

Proof. Let F , G be line bundles on P, and P∗ respectively. We know from [SKK] that

a global non-degenerate section s ∈ Γ(
•

T ∗P×
•

T ∗P∗; C (n,0)
S|P×P∗ ⊗p−1

1 EP
EF ⊗

p−1
2 EP∗

G⊗−1
E )

induces an isomorphism of E -modules

Φµ
S(EF| •

T ∗P
) ' E G| •

T ∗P∗

Now, let us set F = OP(k), G = OP∗(k
∗). Then, 4.2.1 provides such a non-degenerate

section in Γ(
•

T ∗P ×
•

T ∗P∗; C (n,0)
S|P×P∗ ⊗p−1

1 EP
EOP(k) ⊗

p−1
2 EP∗

OP∗(k
∗)
⊗−1

E ). So that, we

have an isomorphism

Φµ
S(EP(−k, k)| •

T ∗P
) ' EP∗(−k∗, k∗)| •T ∗P∗

On the other hand s is a non-degenerate section of C (n,0)
S|P×P∗(−k, k∗), hence we can apply

Theorem 2.3.3. Let us denote by

EP×P∗(k, k
∗) := EP(−k, k)�π−1OP×P∗ EP∗(−k∗, k∗)

Theorem 2.3.3 gives the following isomorphisms

EP(−k, k)| •
T ∗P
' p1∗(EP×P∗(k, k

∗).s)| •
T ∗P

p2∗(EP×P∗(k, k
∗).s)| •

T ∗P∗
' EP∗(−k∗, k∗)| •T ∗P∗

And so

χ∗EP(−k, k)| •
T ∗P
' EP∗(−k∗, k∗)| •T ∗P∗

4.3 Projective duality for microfunctions

Let U and V be open sets of respectively
•

T ∗P and
•

T ∗P∗ such that χ(U) = V . Let us
denote by Λ the conic lagragian set

Λ := (U × V a) ∩
•

T ∗S(P× P∗)

In order to prove Proposition 4.3.3 below, we will use the following theorem proven
in [KS90, Th. 7.2.1], stated inthere for smooth manifolds.

Theorem 4.3.1 ([KS90, Th. 7.2.1]). Let K ∈ Db(P× P∗) and assume that

(i) K is cohomologically constructible

(ii) (p−1
1 (U) ∪ (pa2)−1(V )) ∩ SS(K) ⊂ Λ
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(iii) the natural morphism CΛ −→ µhom(K,K)|Λ is an isomorphism.

Then for any F1, F2 ∈ Db(P;U), the natural morphism

χ∗µhom(F1, F2) −→ µhom(ΦK(F1),ΦK(F2))

is an isomorphism in Db(P∗;V ).

In the following, we will denote by K the object CS[n − 1]. In order to prove
Proposition 4.3.3, we will need to compute ΦK(CP (1)). Though we provide an alternate
proof, the following Lemma is also proved in [DS96].

Lemma 4.3.2. We have

ΦK(CP (1)) '
{
CP ∗(1) , for n odd
CP∗\P ∗ [1] , for n even

and

Hj(ΦK(CP (0))) '


CP∗ , for j = n− 1
CP∗\P ∗, for j = −1 and n odd
CP ∗(1), for j = 0 and n even
0 in any other case

Proof. We will only treat the computation of ΦK(CP (ε)), ε = 1. We have:

K ⊗ q−1
1 (CP (1)) ' CS[n− 1]⊗ CP×P∗(1)

' C(P×P∗)∩S(1)[n− 1]
(4.3.1)

where CP×P∗(1) denotes the exterior product CP (1) � CP∗ , and C(P×P∗)∩S(1) :=
CP×P∗(1)⊗CS.

Let us compute the stalks of ΦK(CP ). For ξ ∈ P ∗, we have

ΦK(CP )ξ ' (Rq2!(C(P×P∗)∩S)[n− 1])ξ

Noticing that (P × {ξ}) ∩ S is the (n− 1)-dimensional real projective space, we have

RΓc(q
−1
2 ({ξ});C(P×P∗)∩S) ' RΓc(q

−1
2 ({ξ});C(P×{ξ})∩S)

' RΓc(Pn;CPn−1)

' RΓc(Pn−1;CPn−1)

For ξ ∈ P∗ \ P ∗, (P × {ξ}) ∩ S is the intersection of two real projective spaces of
dimension (n− 1), so that

RΓc(q
−1
2 ({ξ});C(P×P∗)∩S) ' RΓc(Pn;CPn−2)

' RΓc(Pn−2;CPn−2)

We conclude by using real projective spaces cohomology classical computation: all
constant sheaf cohomology groups vanish for degree ranging from 1 to n − 1, and one
have to distinguishes between n being even or odd.



4.3. PROJECTIVE DUALITY FOR MICROFUNCTIONS 51

For n even, we have

RΓc(Pn−1;CPn−1)'C[0]⊕ C[1− n]
RΓc(Pn−2;CPn−2)'C[0]

so that

ΦK(CP )ξ '
{
C[0]⊕ C[n− 1], for ξ ∈ P ∗
C[n− 1], for ξ ∈ P∗ \ P ∗

For n odd, we have

RΓc(Pn−1;CPn−1)'C[0]
RΓc(Pn−2;CPn−2)'C[0]⊕ C[2− n]

so that

ΦK(CP )ξ '
{
C[n− 1], for ξ ∈ P ∗
C[1]⊕ C[n− 1], for ξ ∈ P∗ \ P ∗

We recall that the sheaf of CP (1) is defined by the following exact sequence

0→ CP (1)→ q!CP̃
tr−→ CP → 0

where P̃ is the n-sphere, q is the 2 : 1 fibered map P̃ −→ P .
We note i the embedding P ↪→ P. We have the following diagram:

P̃ × P∗

P̃ P × P∗

P P× P∗ P∗

P P∗

q̃1 q̃

q q1 q2j

i
q1 q2

id

Let us compute ΦK(i∗q!CP̃ )ξ, ξ ∈ P∗. Still denoting S∩ (P ×P∗) by S and denoting

q̃−1S by S̃, we have

ΦK(i∗Rq!CP̃ ) := Rq2!(CS[n− 1]⊗ q−1
1 i∗Rq!CP̃ )

' Rq2!(CS[n− 1]⊗ j∗q−1
1 Rq!CP̃ )

' Rq2!j∗(CS[n− 1]⊗ q−1
1 Rq!CP̃ )

' Rq2!j∗(CS[n− 1]⊗Rq̃!q̃
−1
1 CP̃ )

' Rq2!j∗(CS[n− 1]⊗Rq̃!CP̃×P∗)

' Rq2!j∗Rq̃!(CS̃[n− 1])

' R(q2 ◦ j ◦ q̃)!(CS̃[n− 1])
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where we used that for the closed embedding i, j, the push-forward and proper direct
image are isomorphic. Now, S̃ ∩ (q2 ◦ j ◦ q̃)−1({ξ}) are the real (n− 1)-sphere and the
real (n − 2)-sphere, when ξ ∈ P ∗ and ξ ∈ P∗ \ P ∗, respectively. From the well-known
cohomology of spheres, we get that:

ΦK(Rq!CP̃ )ξ '
{
C[0]⊕ C[n− 1], for ξ ∈ P ∗
C[1]⊕ C[n− 1], for ξ ∈ P∗ \ P ∗

Consider the distinguished triangle,

ΦK(CP (1)) ΦK(Rq!CP̃ ) ΦK(CP )
+1

we deduce that, for n even,

ΦK(CP (1))ξ '
{

0, for ξ ∈ P ∗
C[1], for ξ ∈ P∗ \ P ∗

For n odd,

ΦK(CP (1))ξ '
{
C[0], for ξ ∈ P ∗
0, for ξ ∈ P∗ \ P ∗

So that, for n even, ΦK(CP (1)) is a locally constant sheaf, with stalks C on P∗ \P ∗,
concentrated in degree 1, and for n odd, a locally constant sheaf with stalks C on P ∗,
concentrated in degree 0.

Now, to conclude, we refer to [DS96, Coro. 5.15], where it is shown in particular that
Hom(ΦK(CP (1)),CP (1)) is isomorphic to 0 for n even and C for n odd. And so, since
there are only 2 locally constant sheaves on P ∗, namely CP ∗ and CP ∗(1), we conclude
that for n odd, ΦK(CP (1)) is precisely CP (1). Besides, for n > 2 and even, P∗ \ P ∗ is
contractible, so that ΦK(CP (1)) is precisely CP∗\P ∗ [1].

Theorem 4.3.3. Assume −n − 1 < k < 0. Recall that any section s ∈ Γ(P ×
P∗; B(n,0)

S (−k, k∗)), defines a morphism in Db(C •
T P

)

χ∗CP (ε, k)| •
T ∗PP
−→ CP ∗(ε

∗, k∗)| •
T ∗
P∗P

∗(4.3.2)

Assume s is non-degenerate on
•

T ∗S(P×P∗). Then (4.3.2) is an isomorphism. More-
over, there exists such a non-degenerate section.

Remark 4.3.4. (i) This is a refinement of a general theorem of [SKK] and is a
microlocal version of Theorem 5.17 in [DS96].

(ii) The classical Radon transform deals with the case where k = −n, k∗ = −1.

Proof. We will deal with the case ε = 1 and n even, the complementary cases being
proven the same way. Let us apply Theorem 4.3.1 in the following particular case

- U =
•

T ∗P, V =
•

T ∗P∗, Λ =
•

T ∗S(P× P∗).
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- K is CS[n− 1].
- F1 = CP (1) and F2 = OP(k)
K verifies conditions (i),(ii),(iii) of Theorem 4.3.1
(i) is fulfilled as the constant sheaf on a closed submanifold of a manifold is coho-

mologically constructible.
(ii) is fulfilled since SS(CS) is nothing but T ∗S(P× P∗).
(iii) CT ∗S (P×P∗) −→ µhom(CS,CS) is an isomorphism on T ∗S(P×P∗) (this follows from

the fact that for a closed submanifold Z of a manifold X, µZ(CZ) ∼−→ CT ∗ZX , see [KS90,
Prop. 4.4.3]).

By a fundamental result in [DS96, Th 5.17], we know that for −n − 1 < k < 0,

a section s ∈ Γ(P × P∗; B(n,0)
S (−k, k∗)), non-degenerate on

•

T ∗S(P × P∗), induces an
isomorphism

ΦK(OP(k)) ' OP∗(k
∗)

(see Appendix 6.1.1 for a sketch of the proof). Formula (4.2.2) provides an example of
such a non-degenerate section. Hence, applying Lemma 4.3.2, Theorem 4.3.1 gives:

χ∗µhom(CP (1),OP(k))| •
T ∗P
' µhom(CP∗\P ∗ [1],OP∗(k

∗))| •
T ∗P∗

We have the exact sequence:

0 −→ CP∗\P ∗ −→ CP∗ −→ CP ∗ −→ 0(4.3.3)

Now, for any F ∈ Db(CP∗), we have

supp(µhom(CP∗ , F )| •
T ∗P∗

) ⊂ (SS(CP∗) ∩
•

T ∗P∗) ∩ SS(F ) = ∅

and hence,

µhom(CP∗ , F )| •
T ∗P∗

' 0

Applying the µhom functor to 4.3.3, we get

µhom(CP∗\P ∗ , F )| •
T ∗P∗

[−1] ' µhom(CP ∗ , F )| •
T ∗P∗

Hence, we have proved in particular that

χ∗µhom(CP (1),OP(k))| •
T ∗PP
' µhom(CP ∗ ,OP∗(k

∗))| •
T ∗
P∗P

∗

4.4 Main results

We follow the notations of Section 1.3 and Section 2.1.
Let us consider the situation (4.1.4), where we denoted by χ the homogeneous

symplectic isomorphism between
•

T ∗P and
•

T ∗P∗ through
•

T ∗S(P× P∗). We set

L := CS[−1]
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Then L is a perverse sheaf satisfying

(p−1
1 (

•

T ∗P) ∪ pa2
−1(

•

T ∗P∗)) ∩ SS(L) =
•

T ∗S(P× P∗)(4.4.1)

Recall Theorem 4.2.1, and let s be a section of µhom(CS[−1],ΩP×P∗/P∗(−k, k∗)),
non-degenerate on

•

T ∗S(P× P∗). We are in situation to apply Theorem 3.2.1.

Theorem 4.4.1. Let G ∈ Db(CP∗), k an integer. Assume −n− 1 < k < 0. Then, we
have an isomorphism in Db(C •

T ∗P
):

χ−1µhom(G,OP∗(k
∗)) ∼−→ µhom(ΦCS[n−1](G),OP(k))(4.4.2)

This isomorphism is compatible with the action of EP∗(−k∗, k∗) and EP(−k, k) on the
left and right side of (4.4.2) respectively.

Proof. The isomorphism is directly provided by Theorem 3.2.1 in the situation where,

using the notation inthere, U =
•

T ∗P, V =
•

T ∗P∗ and Λ =
•

T ∗S(P × P∗) and where we
twist by homogenous line bundles of P, P∗ as explained below.

Let us adapt (3.2.5) by taking into account the twist by homogeneous line bundles.
We follow the exact same reasoning than sections of 3.1 and 3.2.

We have the natural morphism

ΩP∗×P/P(−k∗, k) ◦OP∗(k
∗) [n] −→ OP(k).

Indeed, we have

ΩP∗×P/P(−k∗, k) ◦OP∗(k
∗) [n] = Rq1!(OP∗×P(−k∗, k)⊗

q−1
2 OP∗

q−1
2 ΩP∗ ⊗ q−1

2 OP∗(k
∗)[n])

−→Rq1!(OP∗×P(k, 0)⊗
q−1
2 OP∗

q−1
2 ΩP∗)[n]

∫
−→ OP(k)

Given this morphism and considering L := µhom(CS[−1],ΩP∗×P/P(−k∗, k)), we

mimic the proof of Theorem 3.1.5 so that for a section s of L on
•

T ∗P ×
•

T ∗P∗a and

for P ∈ Γ(
•

T ∗P; EP(−k, k)) and Q ∈ Γ(
•

T ∗P∗; EP∗(−k∗, k∗)) satisfying P · s = s ·Q, the
diagram below commutes:

(4.4.3)

CS ◦ µhom(G,OP∗(k
∗))| •

T ∗
P∗P

∗ α(s)
//

ΦCS
(α(Q))

��

µhom(CS[n− 1] ◦G,OP(k))| •
T ∗PP

α(P )

��
CS ◦ µhom(G,OP∗(k

∗))| •
T ∗
P∗P

∗ α(s)
// µhom(CS[n− 1] ◦G,OP(k))| •

T ∗PP
.

From there, given a non-degenerate section of L on
•

T ∗S(P×P∗), Theorem 3.2.1 gives
the compatible action of micro-differential operators on each side of the isomorphism
(4.4.2)

χ−1µhom(G,OP∗(k
∗))| •

T ∗
P∗P

∗
∼−→ µhom(ΦCS[n−1](G),OP(k))| •

T ∗PP



4.4. MAIN RESULTS 55

It remains to exhibit a non-degenerate section so that, for P ∈ Γ(
•

T ∗P; EP(−k, k)),

there is Q ∈ Γ(
•

T ∗P∗; EP∗(−k∗, k∗)) such that P · s = s · Q. Precisely, s is given by
Proposition 4.2.1.

Specializing the above proposition, we get

Corollary 4.4.2. Let ε ∈ Z/2Z. In the situation of Proposition 4.4.1, we have the iso-
morphism, compatible with the respective action of p−1

1 EP(−k, k) and pa2
−1EP∗(−k∗, k∗)

χ∗CP (ε, k)| •
T ∗PP
' CP ∗(ε

∗, k∗)| •
T ∗
P∗P

∗

Proof. This is an immediate consequence of Proposition 4.4.1, where we consider the
special case G = CP ∗(ε∗). Indeed, we have, from Lemma 4.3.2, the isomorphism in

Db(CP∗ ;
•

T ∗P∗)

CS[n− 1] ◦CP ∗(ε∗) ' CP (ε)

We can state now

Corollary 4.4.3. Let k be an integer. Let N be a coherent EP(−k, k)-module and
F ∈ Db(P). Assume −n− 1 < k < 0. Then, we have an isomorphism in Db(C •

T ∗P
)

χ∗RHom EP(−k,k)(N , µhom(F,OP(k))) '

RHom EP∗ (−k∗,k∗)(Φ
µ
S(N ), µhom((ΦCS[n−1]F,OP∗(k

∗)))

Proof. It suffices to prove this statement for finite free EP(−k, k)-modules, which in
turn can be reduced to the case where N = EP(−k, k). By Theorem 4.2.2, we have

Φµ
S(EP(−k, k)| •

T ∗P
) ' EP∗(−k∗, k∗)| •T ∗P∗

Then, by applying Proposition 4.4.1, we have

χ∗µhom(F,OP(k))| •
T ∗P∗

' RHom EP∗ (−k∗,k∗)(EP∗(−k∗, k∗), µhom((ΦCS[n−1]F,OP∗(k
∗)))| •

T ∗P∗

which proves the corollary.



56 CHAPTER 4. RADON TRANSFORM FOR SHEAVES



Chapter 5

Applications

5.1 Geometrical preliminaries

5.1.1 Radon transform for sets

Let q1, q2 denote the first and second projection of P × P ∗ on each of its factor. For A
and B subsets of P and P ∗, we denote by Â and B̂ the subsets of P ∗ and P respectively

Â := q2(q−1
1 (A) ∩ S)

B̂ := q1(q−1
2 (A) ∩ S)

Of course, for ξ ∈ P ∗, {̂ξ} is the hyperplane of P associated to ξ. We denote by A
∧

the
set

A

∧

:= P ∗ \ ̂(P \ A)

and similarly for B

∧

.
We will say that A is affine if it is contained in a local chart of P . If A is affine, we

denote by Conv(A) the convex hull of A.

We have the following description of Â and A

∧

:

Lemma 5.1.1. For A ⊂ P , we have

(i) Â = {ξ ∈ P ∗; {̂ξ} ∩ A 6= ∅}

(ii) A

∧

= {ξ ∈ P ∗; {̂ξ} ⊂ A}

Proof. (i) By definition, ξ ∈ Â if and only if there exists x ∈ A, such that (x, ξ) ∈ S,

and so if and only if there exists x ∈ A, such that x ∈ {̂ξ}.
(ii) Indeed, from (i), we have that ξ ∈ A

∧

if and only if {̂ξ} ∩ (P \ A) = ∅.

We have the following properties.

Lemma 5.1.2. For A ⊂ P , the following statements hold

57
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(i) If A 6= ∅, then
̂̂
A = P .

Assume now that A is affine and connected. Then:

(ii) Â = ̂Conv(A).

(iii) Â

∧

= Conv(A).

(iv)
̂̂
A

∧

= Â.

Proof. (i) Let x, y be two distinct element of P with x ∈ A. Let H ⊂ P be any

hyperplane containing both x and y. Setting H = {̂ξ} for ξ ∈ P ∗, we have {ξ} ⊂ {̂x}.

Since, y ∈ {̂ξ}, we get that y ∈ ̂̂{x}.
(ii) Assume A is a subset of E, a local chart of P . Let ξ ∈ ̂Conv(A) and denote by

H be the hyperplan {̂ξ}. There exists z ∈ Conv(A) such that z ∈ H. Let x, y ∈ A be
such that z ∈ [x, y]. Since A is connected, [x, y] ∩H 6= ∅ implies H ∩ A 6= ∅, so that

we have ξ ∈ Â.
We have thus proved that, for any x, y ∈ A, and any z ∈ [x, y], ẑ ⊂ Â, so that

̂Conv(A) ⊂ Â. Now since,̂ is increasing in the sense that A ⊂ B implies Â ⊂ B̂, we

have Â ⊂ ̂Conv(A).

(iii) The inclusion Conv(A) ⊂ Â

∧

follows immedialtely from (ii) and lemma 5.1.1
(ii). Let us prove the converse inclusion. Let x /∈ Conv(A) and consider H a separation

hyperplane of {x} and A. There exists ξ ∈ P ∗ such that {̂ξ} = H. Again by Lemma

5.1.1 (ii), it suffices to prove that {ξ} /∈ Â. Indeed, in that case, {̂x} ∩ (P ∗ \ Â) 6= ∅
since it would contain {ξ} implying that x /∈ Â

∧

.

Suppose that ξ ∈ Â. Then, then there exists y ∈ A such that ξ ∈ {̂y}. However, the
latter fact means that y ∈ H, implying that H ∩A 6= ∅, which leads to a contradiction.

(iv) Follows from (ii) and (iii).

Remark 5.1.3. (i) Let H∞ be a hyperplane in P . For any non empty affine set

A ⊂ P \ H∞, we have A

∧

= ∅. Indeed, for any ξ ∈ P ∗, ξ̂ has non empty
intersection with H∞.

(ii) For two sets A,B ⊂ P , we have the obvious relation Â ∪B = Â∪B̂. However, thê operation does not commute with the set-intersection operation. For instance,

consider x, y distinct elements of P , {̂x} ∩ {̂y} is non empty since it contains any
ξ ∈ P ∗ whose associated hyperplane contains x and y.

In the following, we will be essentially interested in linearly concave domains.

Definition 5.1.4. A set A ⊂ P is linearly concave if there exists a set B ⊂ P ∗ such
that A = B̂. Moreover, if B is connected, A is said to be strongly linearly concave.

We have the simple lemma:
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Lemma 5.1.5. Let A be a subset of P . Then A is a linearly concave if and only if

Â

∧

= A.

Proof. Let B ⊂ P ∗ such that A = B̂. By lemma 5.1.2 (iv), we have the follwing
equalities:

Â

∧

=
̂̂
B

∧

= B̂ = A

The converse statement is obvious.

5.1.2 Sheaves associated with some locally closed subsets

Let X, Y be two real analytic manifolds of dimension n, S a closed submanifold of
X × Y of codimension c. We note X

q1←− X × Y
q2−→ Y the projections, j the closed

embedding S ↪→ X × Y . We denote by f, g the restrictions of q1, q2 to S:

S
f

��

g

��
X Y

We assume that f and g are smooth and proper. For A ⊂ X, B ⊂ Y , we still note
Â := g(f−1(A)), B̂ := f(g−1(B)).

Definition 5.1.6. [DS96] Let Z be a locally closed subset of X. One says that Z is

S-trivial if for any y ∈ Ẑ, g−1({y}) has trivial cohomology in the sense that

k ∼−→ RΓ(g−1({y}); kf−1(Z))(5.1.1)

Refering to the notations of section 2.5, recall that for F ∈ Db(CX), we defined

ΦS(F ) := Rg!f
−1F [dS/Y ]

Lemma 5.1.7. For F ∈ Db(kX), we have

ΦS(F ) ' Rq2!(kS ⊗ q−1
1 F )[n− c]

Proof. We have

Rg!f
−1F ' Rg!(j

−1q−1
1 F )

' Rq2!(Rj!j
−1)q−1

1 F

' Rq2!((q
−1
1 F )j∗S)

' Rq2!(kj∗S ⊗ q−1
1 F )

Here are some conditions under which the Radon transform of locally constant
sheaves on some locally closed set A ⊂ X, is the constant sheaf on Â with some shift
in degrees.
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Lemma 5.1.8 ([DS94, Lem 2.8]). (i) Let U be an S-trivial open subset of X, then

ΦS(kU) ' kÛ [c− n](5.1.2)

(ii) Let K be a S-trivial compact subset of X, then

ΦS(kK) ' kK̂ [n− c](5.1.3)

5.2 An application of the Holmgren-Kashiwara the-

orem

Let M be a real analytic manifold, X a complexification of M . In the sequel, we
identify the conormal bundle T ∗MX and iT ∗M . We denote by BM the sheaf of Sato’s
hyperfunctions on M, by B(M) the vector space Γ(M ; BM), and for u ∈ B(M), we
denote by WF (u) its analytic wave front set, a closed conic subset of T ∗MX. Let us first
recall an unpublished result due to M. Kashiwara, proven in Hormander [Hör83] Th.
8.5.6.

Theorem 5.2.1. Let M be a real analytic manifold and let f : M −→ R be a C 1

function. Let x0 ∈ M with f(x0) = 0 and df(x0) 6= 0 and let U = {x ∈ M ; f(x) < 0}.
Let u ∈ B(M) satisfying u|U = 0 and x0 ∈ supp(u). Then ±i.df(x0) ∈ WF (u).

From this result, we deduce the following. Let V be a real finite dimensional vector

space, V ∗ its dual, and set
•

V ∗= V ∗ \ {0}. We denote by S the incidence variety of

V × V ∗. Let ω ⊂ Ω be convex open subsets of V . For (x, ξ) ∈ V ×
•

V ∗, we denote by
Hx,ξ the hyperplane passing through x and of conormal ξ. Let us consider the set

Z = {(x, iξ) ∈ V × i
•

V ∗; (x, ξ) ∈ S,Hx,ξ ∩ Ω 6= ∅, Hx,ξ ∩ ω = ∅}

Then one have the following theorem

Theorem 5.2.2. Let u ∈ B(Ω) and assume that u = 0 on ω and that WF (u)∩Z = ∅.
Then u = 0.

Proof. We will mimic the proof of [Hör83, Th. 8.6.8]. Let y ∈ Ω and x ∈ ω and denote
by I the segment joining y and x. Then, as explicited in [Hör83, Th. 8.6.8], one can find
an open convex set X b ω such that for any (z, ξ) ∈ WF (u)∩Z such that Hz,ξ∩I 6= ∅,
then Hz,ξ∩X 6= ∅. For t ∈ [0, 1], let us denote by Yt the convex hull of X and the point
yt = tx+ (1− t)y. For small enough t, yt ∈ X, so that Yt = X and u|Yt = 0. Let T be
supt∈[0,1]{u|Yt = 0}. We want to prove that T = 1. We have that u|YT = 0 with yT /∈ ω.
Let us consider a supporting hyperplane H of YT . If yT ∈ H, then WF (u) ∩ Z = ∅,
since H does not intersect X. If yT /∈ H, then H ∩YT b U . It follows from [Hör83, Th.
8.5.8] and Theorem 5.2.1 that ∂YT ∩ supp(u) = ∅, and so that T = 1 and u vanishes
in the neighborhood of y.
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We are going to apply Theorem 5.2.2 to prove a refinement of the “edge-of-the-
wedge” theorem, due to Kolm and Nagel [KN68], (we refer also to Vladimirov [Vla61],
Martineau [Mar68]).

Let K be a convex compact set of V and let a, b ∈ V , we define

ΓaK := V \ ̂̂{a} ∩ K̂

which is the affine cone, union of hyperplanes passing through a with empty inter-
section with K.

Let A be a subset of V . We define

Γa,bK , the connected component of ΓaK ∩ ΓbK containing the segment ]a, b[,

ConvKA = ∪a,b∈AΓa,bK ,

Z = {(x, iξ) ∈ V × i
•

V ∗; (x, ξ) ∈ S,Hx,ξ ∩K = ∅}

Corollary 5.2.3. Let ω be an open convex set in V \ K. Let u ∈ B(V ) such that
u|ω = 0. We assume that WF (u) ∩ Z = ∅. Then u vanishes on ConvK(ω).

Proof. This is a direct application of theoreom 5.2.2 where we set Ω = ˚ConvK(ω) since
we verify that for any x ∈ ConvK(ω) and (x, iξ) ∈ Z, Hx,ξ ∩ ω = ∅.

5.3 Hyperfunctions whose Radon transfom vanishes

in linearly concave domains

5.3.1 Notations

Let us fix some notations. Let k be an integer, ε ∈ Z/2Z. We will assume in this
chapter that 0 < k < −n− 1. For a real analytic manifold M and its complexfication
X, let πM denote the projection T ∗MX → M . Denote by P ∗M the projectivisation of

the cotangent bundle of M , and by ρM the projection
•

T ∗M −→ P ∗M .

As usual, P and P ∗ will denote the real dimension projective space and its dual,
and S the incidence submanifold of P ×P ∗. We denote by p̃1 and p̃2 the isomorphisms
P ∗P ' P ∗S(P ×P ∗) ' P ∗P ∗, and we will identify S to P ∗S(P ×P ∗) (cf. remark following
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Proposition 4.1.1). Let us consider the following situation:

•

T ∗S(P × P ∗)

•

T ∗P
•

T ∗P ∗

P ∗S(P × P ∗)

P ∗P P ∗P ∗

P P ∗

p1 pa2

∼
χ

ρP ρP∗

∼
p̃1

∼
p̃2

Let Ω be a non empty linearly concave domain strictly contained in P . We denote by


 := ρ−1
P (p̃1((Ω× Ω

∧

) ∩ S)) ⊂
•

T ∗P


∗ := ρ−1
P ∗(p̃2((Ω× Ω

∧

) ∩ S)) ⊂
•

T ∗P ∗

We notice that


 = ρ−1
P (p̃1({(x, ξ) ∈ S;x ∈ Ω, {x} ⊂ ξ̂ ⊂ Ω}))


∗ = χ(
)

In the following, we will identify i.T ∗P ' T ∗PP and i.T ∗P ∗ ' T ∗P ∗P
∗.

5.3.2 Application of projective duality for microfunctions

We shall follow the notations of Section 1.3. Let k be an integer with −n− 1 < k < 0.
In all this section, we will set

s ∈ Γ(
•

T ∗S(P× P∗);µhom(CS[−1],ΩP×P∗/P∗(−k, k∗)))

Assume s is non-degenerate on
•

T ∗S(P× P∗). Theorem 4.2.1 provides such a section.
Let U an open subset of P . Let f be a section of BP (ε, k)(U). As defined in 1.3.6,

Rad(f) is the image of f by the sequence of morphisms:

BP (ε, k)(U) CP (ε, k)(
•

T ∗UP) CP ∗(ε
∗, k∗)(χ(

•

T ∗UP))'

Lemma 5.3.1. Let Ω ( P be a non empty linearly concave domain. Then,
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(i) πP (
) = Ω

(ii) 
∗ =
•

T ∗
Ω

∧P∗

Proof. (i) By lemma 5.1.5, we have Ω = Ω̂

∧

, so that for any x ∈ Ω, there exists an

element ξ ∈ Ω

∧

such that x ∈ ξ̂ and ξ̂ ⊂ Ω. And so, x ∈ πP (
)

(ii) For ξ ∈ Ω

∧

, the fiber 
∗ξ is ρ−1
P ∗(p̃2({(ξ, x) ∈ P ∗P ∗; {x} ⊂ ξ̂ ⊂ Ω})) which is

•

T ∗P ∗ξ .

So, after identifying In the following i.T ∗P ∗ ' T ∗P ∗P
∗, we get 
∗ =

•

T ∗
Ω

∧P∗.

Remark 5.3.2. Let f ∈ BP (ε, k)(Ω). It follows immediately from (ii) of the above

lemma that Rad(f)|
∗ may be viewed as an element of BP ∗(ε
∗, k∗)/AP ∗(ε∗, k∗)(Ω

∧

). We
will denote this element by Rad(f)|

Ω

∧.

We have:

Proposition 5.3.3. Let Ω ( P be a non empty linearly concave domain and let f ∈
BP (ε, k)(Ω). Then, we have

WF (f) ∩ 
 = χ−1(WF (Rad(f)|
Ω

∧))

Proof. For any integer −n − 1 < k < 0, Theorem 4.3.3 gives a sheaf isomorphism
between χ∗CP (ε, k)| •

T ∗PP
and CP ∗(ε

∗, k∗)| •
T ∗
P∗P

∗ . Thus, we have an isomorphism of C-

modules CP (ε, k)| •
T ∗PP

(
) ' CP ∗(ε
∗, k∗)| •

T ∗
P∗P

∗(

∗). Recalling the isomorphism sp in

2.4.1, we have

WF (f) ∩ 
 = supp(sp(f)) ∩ 
 = χ−1(WF (Rad(f)) ∩ 
∗) = χ−1(WF (Rad(f)|
Ω

∧))

In the particular case of dimension n = 2, we denote by ΩC, the union of complexi-
fication of the real lines contained in Ω. Assume Ω is strongly linearly concave domain
and let us consider an affine chart R2. Then, there are 2 connected components of
(ΩC \ Ω) ∩ R2, which we denote by Ω±. In this condition, we deduce immediatly:

Corollary 5.3.4. Assume that n = 2 and that WF (Rad(f)|
Ω

∧) = ∅. Then, f is the

boundary value of (f+, f−) respectively holomorphic in Ω±.

Remark 5.3.5. We recover a variant of a result of [Ben11, Th 1.4]. Indeed, it was
proven therein that, if the Radon transform of a function f in R2 with O( 1

|x|2 ) growth
at infinity, vanishes in a strongly linearly concave domain, then f is the boundary value
of holomorphic functions, verifying in their respective domains some growth conditions
at O( 1

|z|2 ) rate at infinity.
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5.4 Radon transform for quadratic cones

5.4.1 Residues of forms on cones of signature (1, n− 1)

Notations

Let n ≥ 2 and let A be an affine chart of P . For a cone γ in A, we denote by γ◦ the
polar cone of γ:

γ◦ := {x ∈ A; 〈x, u〉 ≥ 0,∀u ∈ γ}

Let x = (x1, ..., xn) be a system of linear coordinates on A, u = (u1, ..., un) the dual
coordinates on A∗. For q an integer such that 0 ≤ q < n, we denote by γq the cone of
signature (q, n− q) in A:

γq := {(x1, . . . xn) ∈ A;
∑

1≤j≤q

x2
j <

∑
q+1≤j≤n

x2
j}(5.4.1)

λq := A \ γq

and

γ∗q := {(u1, . . . un) ∈ A∗;
∑

q+1≤j≤n

u2
j <

∑
1≤j≤q

u2
j}

λ∗q := A∗ \ γ∗q

We denote by λq the complementary of γq in A and similarly for λ∗q in A∗.
Let us denote by Db

R+(CA∗), the subcategory of Db(CA∗) consisting of conic objects
with respect to the natural action of R+. For F ∈ Db

R+(CA∗), we denote by F∧ ∈
Db

R+(CA) its Fourier-Sato transform.

Topological boundary morphism for cones of signature (q, n− q)

Proposition 5.4.1. There is a natural morphism in Db(CA)

C{0} −→ Cγq [q + 1](5.4.2)

Proof. We have a natural mophism

CA∗ −→ Cλ∗q

Let us apply on both sides the Fourier-Sato functor using [KS97, Lem. 6.2.1], we
get

(CA∗)
∧ ' C{0}[−n]

(Cλ∗q )
∧ ' Cλq [−n+ q]
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Hence, we get the natural morphism

C{0} −→ Cλq [q]

Given the distinguished triangle,

Cγq // CA // Cλq
+1 //

we have:

C{0} −→ Cλq [q] −→ Cγq [q + 1]

Remark 5.4.2. The case of cones of signature (1, n − 1) can be handled in a more
constructive way. Indeed, the complementary set λ1 of γ1 is the union of two closed
convex sets, let us say λ1

1 and λ2
1.

We have the two distinguished triangles:

Cλ1
1∪λ2

1

// Cλ1
1

⊕
Cλ2

1

// C{0}
+1 //(5.4.3)

Cγ1
// CA // Cλ1

1∪λ2
1

+1 //(5.4.4)

From the triangles (5.4.3), (5.4.4), we get the morphisms:

C{0} −→ Cλ1
1∪λ2

1
[1]

Cλ1
1∪λ2

1
−→ Cγ1 [1]

Hence, we get:

C{0} −→ Cγ1 [2](5.4.5)

Application to hyperfunctions with wave-front set in (n-1,1)-signature cones

We recall that we denote by CA the sheaf of microfunctions on T ∗AA. For K be a compact
convex subset of A, we set

B(K) := lim→
U⊃K

B(U)

In the following, let us denote by γ = γ1 the cone of signature (1, n− 1) defined by
5.4.1, and by λ = λ1 its complementary set in A, union of two closed convex sets, λ1

and λ2. Let Int(λi◦), i = 1, 2 be the interior of the polar sets λi◦.

Lemma 5.4.3. Let W be an open convex neighborhood of K in A. There exists a
natural exact sequence

(5.4.6)

0 // Hn−2(W + iγ;OA) //B(W ) // Hn
W+iλ1(A;OA)

⊕
Hn
W+iλ2(A;OA) // 0
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Proof. From (5.4.3), we get

CW+i(λ1
1∪λ2

1)
// CW+iλ1

1

⊕
CW+iλ2

1

// CW
+1 //

Applying the functor RHom (•,OA) to this distinguished triangle, we get the long
exact sequence:

· · · // Hn−1
W+iλ1(A;OA)

⊕
Hn−1
W+iλ2(A;OA) // Hn−1

W+i(λ1∪λ2)(A;OA) //

Hn
W (A;OA) // Hn

W+iλ1(A;OA)
⊕

Hn
W+iλ2(A;OA) // Hn

W+i(λ1∪λ2)(A;OA) // · · ·

(5.4.7)

From the distinguished triangle (5.4.4), and taking into account that W + iA is
convex, RHom (CW+iA,OA) ' OW+iA is concentrated in degree 0, and we get the
isomorphism

Hn−2(W + iγ;OA) ∼−→ Hn−1
W+i(λ1∪λ2)(A;OA)(5.4.8)

and

Hn−1(W + iγ;OA) ∼−→ Hn
W+i(λ1∪λ2)(A;OA)

Since, γ is a cone of signature (1, n− 1), Hn−1(W + iγ;OA) ' 0, and so

Hn
W+i(λ1∪λ2)(A;OA) ' 0(5.4.9)

Noticing that RΓW+iλi(OA), i = 1, 2, is concentrated in degree n, and applying 5.4.8,
5.4.9 to 5.4.7, we get the exact sequence (5.4.6)

Theorem 5.4.4. Let K be a compact convex subset of A. There exists a natural exact
sequence

0 // lim→
γ′
Hn−2(K + iγ′;OA) Res //B(K) //

CA(K + i · Int(λ1◦))
⊕

CA(K + i · Int(λ2◦)) // 0

where γ′ ranges over the open convex cones of signature (1, n− 1), with γ ⊂ γ′.

Proof. Let W be an open neighborhood of K in A.
Following [KS90, Th.4.3.2], we know that for an open convex cone V ⊂ T ∗WA, we

have the isomorphism

CA(V ) ' lim→
Z,U

Hn
Z∩U(U ;OA)

where Z and U range over respectively, the closed sets whose normal cone is contained
in the polar set of V , and the open subsets U of A such that π(V ) = U ∩W , π being
the natural projection of T ∗A onto A.
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Let U be an open neighborhood of K in A, γ′ an open cone of signature (1, n− 1),
with γ′ ⊃ γ and λi

′
, i = 1, 2, the two convex closed sets the union of which, is the

complementary of γ′. Then, we get by the same steps as above the exact sequence:

0 // Hn−2((W + i.γ′) ∩ U ;OA) //B(W ) //

Hn
(W+i.λ1′)∩U(A;OA)

⊕
Hn

(W+i.λ2′)∩U(A;OA) // 0

Passing to the inductive limit on W ⊃ K in A, U complex neighborhood of K, and γ′

ranges over the open convex cones of signature (1, n − 1), with γ ⊂ γ′, which consiti-
tutes a fundamental system of neighborhoods, we deduce from the above sequence the
following exact sequence:

0 // lim→
γ′,U

Hn−2((K + iγ′) ∩ U ;OA) //B(K) //

CA(K + i.Int(λ1◦))
⊕

CA(K + i.Int(λ2◦)) // 0

Indeed,

CA(K + i.Int(λi◦))' lim→
W⊃K

CA(W + i.Int(λi◦))

' lim→
W⊃K,γ′,U

Hn
(W+i.λ′i)∩U

(A;OA)

' lim→
W⊃K,γ′,U

Hn
(W+i.λ′i)∩U

(A;OA)

Remark 5.4.5. Theorem 5.4.4 brings a proof to a variant of a conjecture by Henkin in
[Hen04], which was formulated, without the assumption that K is a convex compact,
in the following way: the wave-front set of a hyperfunction has no intersection with
λi◦, i = 1, 2 if and only if it is the residue of a (0, n − 2)-form defined on K + iγ and
∂̄-closed inthere.

5.4.2 Residue diagram for Radon Transform and application

Residue on cones of signature (q, n− q)

Let F ∈ Db(CP) and suppose we are given a topological boundary morphism

CP (ε)[−n] −→ F

Then, we get the analytic boundary morphism

µhom(F,OP(k)) −→ µhom(CP (ε)[−n],OP(k)) := CP (ε, k)(5.4.10)

Let k be an integer with −n− 1 < k < 0. Let us set,

s ∈ Γ(
•

T ∗S(P× P∗);µhom(CS[−1],ΩP×P∗/P(−k, k∗)))
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The following diagram commutes

χ∗µhom(F,OP(k))| •
T ∗P

Res //

Rad
��

χ∗CP (ε, k)| •
T ∗P

Rad
��

µhom(ΦS(F ),OP∗(k
∗))| •

T ∗P∗ Res
// CP ∗(ε

∗, k∗)| •
T ∗P∗

(5.4.11)

Assume s is non-degenerate on
•

T ∗S(P × P∗), then the vertical arrows Rad above are
isomorphisms.

Throughout the rest of this section, we will set s the section of 4.2.1, which provides
such a non-degenerate section.

We recall we denoted by A an affine chart of P .

Proposition 5.4.6. We have the natural morphism:

Hn−q−1RΓA+i.γq(OA) Res //BA

Proof. We already constructed the natural morphism (5.4.2):

C{0} −→ Cγq [q + 1](5.4.12)

We deduce the morphism

CA −→ CA+i.γq [q + 1]

Remark 5.4.7. The residue 5.4.12 was constructed in [CGT95] through several vari-
ables complex analysis technics. Our approach provides a natural construction of this
residue.

The special case of cones of signature (1, n− 1)

Throughout the end of this section, we will see how cones of signature (1, n − 1) in A
rise naturally from the Radon transform of strip-like sets in P∗. We will then provide
the residue diagram 5.4.17.

Setting the geometric context Let δ > 0 be a real number. Let A be the affine
chart relative to {(z0 : z1 : . . . : zn) ∈ P; z1 = 1}, and A∗ the affine chart related to
{(ξ0 : ξ1 : . . . : ξn) ∈ P∗; ξ0 = 1}. We set:

A∗ = A∗ ∩ P ∗H := {(z0 : z1 : . . . : zn) ∈ P; z1 = 0}
H := {(x0 : x1 : . . . : xn) ∈ P ;x1 = 0}

We will consider the following sets

U := {ξ ∈ A∗; (
∑

2≤j≤n

ξ2
j )

1
2 < δ} ↪→ P∗(5.4.13)

Z := Û ∩ P(5.4.14)

We have



5.4. RADON TRANSFORM FOR QUADRATIC CONES 69

Lemma 5.4.8. The following assertions hold

(i) U is S-trivial,

(ii) Û \ H is a cone of signature (1, n− 1),

(iii) There exists an affine S-trivial compact set K ⊂ P such that Z = P \K

Proof. (i) is related to a more general and obvious fact: convex sets, either open or
closed, are S-trivial.

(ii) Let z ∈ Û\H. There exists ξ ∈ U such that 〈z, ξ〉 = 0, so that z0+ξ1+
∑

2≤j≤n
zjξj =

0. Taking the imaginary part, and denoting y = Im(z), we have

| y0 |=
∑

2≤j≤n

| yjξj |< δ(
∑

2≤j≤n

y2
j )

1
2(5.4.15)

Let γ be the cone of signature (1, n− 1)

γ := {y = (y0, y2 . . . , yn) ∈ A; | y0 |< δ(
∑

2≤j≤n

y2
j )

1
2}

We have

Û \ H = A+ iγ

Indeed, (5.4.15) proves that Û \ H ⊂ A + iγ. For the converse inclusion, let z =
x+ iy ∈ A+ iγ. Let us choose ξ ∈ A∗ such that

ξ1 = −z0 −
∑

2≤j≤n

zjξj

ξj =
y0.yj∑

2≤j≤n
y2
j

, j 6= 2

Then ξ ∈ U and 〈z, ξ〉 = 0.

(iii) Let us notice that Z ∩H is described by {(x0, x2, . . . , xn) ∈ A;
∑

2≤j≤n
x2
j >

x2
0

δ2 },

the complement of which in H is a ball of radius 1
δ
. Indeed, for x ∈ Z ∩ H and any

ξ ∈ U such that (x, ξ) ∈ S, we have:

| x0 |=
∑

2≤j≤n

| xjξj |< δ(
∑

2≤j≤n

x2
j)

1
2
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The Residue diagram Let ε ∈ Z/2Z. We recall the defintion of Z by 5.4.14, and
K in 5.4.8 (iii).

Lemma 5.4.9. There is a natural morphism in Db(CP∗)

CP ∗(ε
∗) −→ CK̂ [n− 1]

Denoting by LZ(ε∗) the object in Db(CP∗) defined up to an isomorphism by the
distinguished triangle:

LZ(ε∗) // CP ∗(ε∗) // CK̂ [n− 1]
+1 //(5.4.16)

we have in Db(CP∗ ;
•

T ∗P∗)

ΦS(CZ(ε∗)) ' LZ(ε∗)

Proof. Let us compute ΦS(CZ(ε)).
We have the exact sequence

0 // CZ(ε) // CP (ε) // CK(ε) // 0

Applying Lemma 4.3.2 and Lemma 5.1.8, we get the distinguished triangle in

Db(CP∗ ;
•

T ∗P∗):

ΦS(CZ(ε∗)) // CP ∗(ε∗) // CK̂ [n− 1]
+1 //

Theorem 5.4.10. Given a section s of H1(P × P∗);µhom(CS[−1],ΩP×P∗/P∗(−k, k∗))
The following diagram commutes:

(5.4.17)

χ∗H
n−2(µhom(CÛ\A(ε),OP(k)))| •

T ∗P

Res //

Rad
��

χ∗H
n(µhom(CZ(ε),OP(k)))| •

T ∗P

Rad
��

Hn−2(µhom(ΦS(CÛ\A(ε)),OP∗(k
∗)))| •

T ∗P∗ Res
// Hn(µhom(LZ(ε∗),OP∗(k

∗)))| •
T ∗P∗

Assuming that s is non-degenerate on
•

T ∗S(P×P∗), the vertical arrows Rad are isomor-
phisms.

Proof. Since Û \ Z is a cone of signature (1, n− 1), (5.4.2) gives a morphism:

CA −→ CÛ\Z [2]

and so,

CZ −→ CÛ\A[2](5.4.18)
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Let us now apply (5.4.11) 5.4.9. The following diagram commutes:

(5.4.19)

χ∗H
n−2(µhom(CÛ\A(ε),OP(k)))| •

T ∗P

Res //

'
��

χ∗H
n(µhom(CZ(ε),OP(k)))| •

T ∗P

'
��

Hn−2(µhom(ΦS(CÛ\A(ε)),OP∗(k
∗)))| •

T ∗P∗ Res
// Hn(µhom(LZ(ε∗),OP∗(k

∗)))| •
T ∗P∗

Application to Radon transform for microfunctions residues

Now, let us consider a complex neighborhood ω ⊂ A∗ of U such that, denoting by π the
natural projection A∗

π−→ A∗, π(ω) = U .

Proposition 5.4.11. We have

SS(CÛ\A(ε)) ∩ χ−1
•

T ∗ω = ∅(5.4.20)

Proof. For any ξ ∈ ω, the set {̂ξ} ∩ (Û \ A) is homeomorphic to Pn−1 \ An−1. Hence,
the stalks of ΦS(CÛ\A(ε)) are constant over ω. Since ω is simply connected, there is

L ∈ Db(mod(C)) such that ΦS(CÛ\A(ε))|ω is is the constant sheaf Lω.
Hence, we have

SS(CÛ\A(ε)) ∩ χ−1
•

T ∗ω = χ−1(SS(ΦS(CÛ\A(ε))) ∩
•

T ∗ω) = ∅

As an immediate corollary,

Corollary 5.4.12. We have

µhom(CÛ\A(ε),OP(k))|
χ−1

•
T ∗ω
' 0
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Chapter 6

Appendix

6.1 Radon transform of the structure sheaf

6.1.1 Notations

In the following, let X, Y be two complex manifolds of dimension n, S a closed sub-
manifold a codimension c, we set

Λ := T ∗S(X × Y ) ∩
•

T ∗X ×
•

T ∗Y )

S̃ = r(S) ⊂ Y ×X

where r is the natural morphism X × Y −→ Y × X, (x, y) 7→ (y, x). We denote by

X
q1←− X × Y q2−→ Y the projections. We denote by f, g the restrictions of q1, q2 to S:

S
f

��

g

��

Λ
p1|Λ

}}

pa2 |Λ

!!

X Y,
•

T ∗X
•

T ∗Y

In the following, we also assume that,{
(i) f and g are smooth and proper
(ii) p1|Λ and pa2|Λ are isomorphisms

For A ⊂ X, B ⊂ Y , we note Â := g(f−1(A)), B̂ := f(g−1(B)).
We denote by BS|X×Y the DX×Y -module Hd

[S](O(X × Y )) and we set

B(n,0)
S|X×Y := q−1

1 ΩX ⊗q−1
1 OX

BS|X×Y

For F ,G line bundles over X and Y respectively, one denotes by

B(n,0)
S|X×Y (F ,G ) := q−1

2 G D ⊗
q−1
2 DY

BS|X×Y ⊗q−1
1 DX

q−1
1 D(F ⊗OX ΩX)

73
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where G D and DF are the natural DY -modules and DX-modules associated with G
and F respectively.

For F ∈ Db(CX), G ∈ Db(CY ), we set

ΦS(F ) := Rg!f
−1F [n− c]

ΦS̃(G) := Rf!g
−1G[n− c]

Let Db(DX) be the derived category of DX-modules. For M ∈ Db(DX), and N ∈
Db(DY ), we set

ΦS(M ) := g∗f
−1M

ΦS̃(N ) := f ∗g
−1N

It can be seen easily that

ΦS(M ) ' Rq2!(B
(n,0)
S|X×Y ⊗q−1

1 DX
q−1

1 M )

Denoting by π : T ∗X −→ X the natural projection, one associates to any M ∈
Db(DX), the EX-module

E M := EX ⊗π−1DX
π−1M

One can define a microlocal version of ΦS. For M ∈ Db(EX), we set

Φµ
S(M ) := Rpa2!(C

(n,0)
S|X×Y ⊗p−1

1 EX
p−1

1 M )

where C (n,0)
S|X×Y := q−1

1 ΩX ⊗q−1
1 OX

CS|X×Y and CS|X×Y := EXBS|X×Y .

6.1.2 Integral transform for D-modules associated to line bun-
dles

There is an isomorphism

Γ(X × Y ; B(n,0)
S|X×Y (F ,G ∗)) ' HomDY

(DG ,ΦSDF )

So that to any s ∈ Γ(X × Y ; B(n,0)
S|X×Y (F ,G ∗)), one can associate a DY morphism

α(s) : DG −→ ΦSDF . We then have

Theorem 6.1.1 ([DS96]). For s a non-degenerate section of Γ(X×Y ; B(n,0)
S|X×Y (F ,G ∗))

over Λ, the induced morphism H0(α(s)) : DG −→ H0(ΦSDF ) is a DY -linear isomor-
phism.
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Proof. We reproduce the proof of [DS96]. It is shown in [SKK] that this morphism is an

isomorphism on
•

T ∗Y . It can be shown that α(s) induces an EY -linear morphism E G −→
Φµ
S(E F ). Let πY be the projection T ∗Y −→ Y , we have the following distinguished

triangle for conic objects of Db(CT ∗Y )

RπY !(.) RπY ∗(.) Rπ̇Y ∗(.)
+1

So that we have

RπY !(E G ) RπY ∗(E G ) Rπ̇Y ∗(E G )

RπY !(Φ
µ
S(E F )) RπY ∗(Φ

µ
S(E F )) Rπ̇Y ∗(Φ

µ
S(E F ))

α̃(s) α(s)

+1

α̇(s)

+1
(6.1.1)

It suffices to prove that α(s) is an isomorphism at the 0 cohomology degree. From the
theory of [SKK], we know that α̇(s) is an isomorphism. It is easily seen that

RπY !(Φ
µ
S(E F )) ' Rg!(O(n,0)

X×Y |S ⊗f−1OX f
−1F )[−c]

and

RπY !(E G ) ' O(n,0)
Y×Y |Y ⊗OY G [−n]

The 0-degree cohomology of these last two terms are null since c > 0. So the long exact
sequence induced by 6.1.1 gives

0 πY ∗(E G ) H0(Rπ̇Y ∗(E G )) H−n+1(O(n,0)
Y×Y |Y ⊗OY G )

0 πY ∗(ΦS(E F )) H0(Rπ̇Y ∗(Φ
µ
S(E F ))) H−c+1(Rg!(O(n,0)

X×Y |S ⊗f−1OX f
−1F ))

H0(α(s))

+1

' H1(α̃(s))

+1

The result is immediate for n, c > 1 and we refer to [DS96] for the cases n = 1 or
n > 1, c = 1.

Let n > 0 be the dimension of the complex projective space. Let k ∈ Z such that
−n − 1 < k < 0. We denote by k∗ = −n − 1 − k. Specializing theorem 6.1.1 for the
projective space and its dual, we get

Corollary 6.1.2 ([DS96]). There is an isomorphism in Db(CP∗):

ΦS(OP(k)) ' OP∗(k
∗)



76 CHAPTER 6. APPENDIX

6.2 Associativity for the composition of µhom

We will make use of the notations defined in section 2.1.1 and prove Theorem 2.7.3.

Theorem. Let Fi, Gi, Hi respectively in Db(kM12),Db(kM23),Db(kM34), i = 1, 2 then
the following isomorphism(
µhom(F1, F2)

a◦
2
µhom(G1, G2)

)
a◦
3
µhom(H1, H2) ∼−→

µhom(F1, F2)
a◦
2

(
µhom(G1, G2)

a◦
3
µhom(H1, H2)

)
is compatible with the ◦ bifunctor in the following sense

(µhom(F1, F2)
a◦
2
µhom(G1, G2))

a◦
3
µhom(H1, H2) ∼ //

��

µhom(F1, F2)
a◦
2
(µhom(G1, G2)

a◦
3
µhom(H1, H2))

��

µhom(F1 ◦
2
G1, F2 ◦

2
G2)

a◦
3
µhom(H1, H2)

��

µhom(F1, F2)
a◦
2
µhom(G1 ◦

3
H1, G2 ◦

3
H2)

��
µhom((F1 ◦

2
G1) ◦

3
H1, (F2 ◦

2
G2) ◦

3
H2) ∼ // µhom(F1 ◦

2
(G1 ◦

3
H1), F2 ◦

2
(G2 ◦

3
H2))

Proof. To lighten the notation, we won’t mention in the following the subscript of ◦
i
,
a◦
i
,

and simply denote it ◦. Let us first recall the construction of the natural morphism in

Db(kT ∗M13)

Lemma 6.2.1 ([KS90, Prop. 4.4.11]). There is a natural morphism

µhom(F1, F2)
a◦
2
µhom(G1, G2) −→ µhom(F1 ◦

2
G1, F2 ◦

2
G2)

Proof. Let us consider the following situation:

T ∗M12 ×M2 T
∗M23

tj′

��p̃12

}}

p̃23

##

T ∗M123
? _δoo

p2
13

��
T ∗M123

p13

��

M2 × T ∗M13tp′13

oo

p13πuu
T ∗M12 T ∗M13 T ∗M23

(6.2.1)

Let us denote by j the diagonal inclusion M123

j
↪−→ M12 × M23, and by p13 the

projection T ∗M123
p13−−→ T ∗M13. We have the natural morphisms :

T ∗M123 T ∗M12 ×M2 T
∗M23

tj′oo T ∗M123
? _δoo

T ∗M123 M2 × T ∗M13

tp′13oo p13π // T ∗M13
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Let Y,X, S be 3 manifolds and let Gi ∈ Db(kY ), Fi ∈ Db(kX), i = 1, 2. Assume we
are given morphims of manifolds X −→ S, Y −→ S and that the fiber product X ×S Y
is submanifold of X × Y . Let us denote by j the embedding X ×S Y

j
↪−→ X × Y , and

consider the induced natural morphisms

T ∗(X ×S Y ) T ∗X ×S T ∗Y
tj′oo jπ // T ∗X × T ∗Y

It is proven in [KS90, Prop 4.4.8.], that there is the natural morphism

Rtj′!(µhom(F1, F2)�S µhom(G1, G2)) // µhom(F1 �S G1, F2 �S G2)

In the case where X = M12, Y = M23, S = M2, we get

Rtj′!(µhom(F1, F2)�M2 µhom(G1, G2)) // µhom(F1 �M2 G1, F2 �M2 G2)(6.2.2)

Now, if we apply Rtp13π ! ◦t p′−1
13 to both side of the latter morphism, we get the

morphism

Rtp13π ! ◦t p′−1
13 ◦ Rtj′!(µhom(F1, F2)�M2 µhom(G1, G2)) //

Rtp13π ! ◦t p−1
13 (µhom(F1 �M2 G1, F2 �M2 G2))

so that

Rtp13π ! ◦t p′−1
13 ◦ Rtj′!(µhom(F1, F2)�M2 µhom(G1, G2))

∼−→Rtp13π ! ◦ Rp2
13! ◦ δ−1(µhom(F1, F2)�M2 µhom(G1, G2))

∼−→Rp13! ◦ δ−1(µhom(F1, F2)�M2 µhom(G1, G2))
∼−→Rp13!(p

−1
12 µhom(F1, F2)⊗ p−1

23 µhom(G1, G2))
:= µhom(F1, F2) ◦µhom(G1, G2)

(6.2.3)

and on the other hand, from (6.2.2) and from [KS90, Prop. 4.4.7.(ii)]

Rtp13π ! ◦t p′−1
13 ◦ Rtj′!(µhom(F1, F2)�M2 µhom(G1, G2))

−→ Rtp13π ! ◦t p′−1
13 (µhom(F1 �M2 G1, F2 �M2 G2))

−→ µhom(Rp13!(F1 �M2 G1),Rp13!(F2 �M2 G2))
∼−→µhom(F1 ◦G1, F2 ◦G2)

(6.2.4)

so that we constructed a natural morphism

µhom(F1, F2) ◦µhom(G1, G2) −→ µhom(F1 ◦G1, F2 ◦G2)(6.2.5)
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Considering the following diagram, with j the embedding M1234 ↪→M12×M23×M34

and j23 the natural diagonal embedding T ∗M1234 ↪→ T ∗M12 × T ∗M23 × T ∗M34

T ∗M1234
� �

j23

//

p23
14

��

T ∗M12 ×M2 T
∗M23 ×M3 T

∗M34

tj′

��p̃12

ww

p̃23

��

p̃34

%%

M2 ×M3 × T ∗M14

tp′14 //

p14π

''

T ∗M1234

p14

zz

p13
ss

p34

**
T ∗M12 T ∗M23 T ∗M34

T ∗M14

(6.2.6)

Lemma 6.2.2. We have the isomorphism in Db(kT ∗M13)

(µhom(F1, F2) ◦µhom(G1, G2)) ◦µhom(H1, H2)

' Rp14π ! ◦t p′−1
14 ◦ Rtj′!(p̃

−1
12 µhom(F1, F2)⊗ p̃−1

23 µhom(G1, G2)⊗ p̃−1
34 µhom(H1, H2))

Proof. From Lemma 2.7.1, we have

(µhom(F1, F2) ◦µhom(G1, G2)) ◦µhom(H1, H2)

' Rp14!(p
−1
12 µhom(F1, F2)⊗ p−1

23 µhom(G1, G2)⊗ p−1
34 µhom(H1, H2))

and

Rp14!(p
−1
12 µhom(F1, F2)⊗ p−1

23 µhom(G1, G2)⊗ p−1
34 µhom(H1, H2))

' Rp14π ! ◦t p′−1
14 ◦ Rtj′!(p̃

−1
12 µhom(F1, F2)⊗ p̃−1

23 µhom(G1, G2)⊗ p̃−1
34 µhom(H1, H2))

We decompose j in k ◦ h, as follows:

T ∗M1234
� � h // T ∗M123 × T ∗M34

� � k // T ∗M12 × T ∗M23 ×M34

Let us denote by p3π and tp′3 the morphisms

T ∗M134 M3 × T ∗M14

tp′3oo p3π // T ∗M14

Lemma 6.2.3. We have the isomorphism in Db(kT ∗M14)

(6.2.7) Rp14π ! ◦t p′−1
14 ◦ Rtj′! ◦ j−1

π

' Rp3π ! ◦t p′−1
3 ◦ Rp134π ! ◦t p′−1

134 ◦ Rth′! ◦ h−1
π ◦ Rtk′! ◦ k−1

π

Proof.
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We denote by l the inclusion T ∗M134 ↪→ T ∗M1334 and by p1334 the projection
T ∗M12334 −→ T ∗M1334.

Lemma 6.2.4. We have the isomorphism in Db(kT ∗M14)

Rp3π ! ◦t p′−1
3 ◦ Rp134π ! ◦t p′−1

2 ◦ Rth′! ◦ h−1
π ◦ Rtk′! ◦ k−1

π

' Rp3π ! ◦t p′−1
3 ◦ Rtl′! ◦ l−1

π ◦ Rp1334π ! ◦t p′−1
1334 ◦ Rtk′! ◦ k−1

π

After having “separating the variables”, the associativity of the diagram of Theorem
6.2 comes essentially from the following lemma:

Lemma 6.2.5. The following diagram of canonical morsphims commutes:

(νM(F )� νN(G))� νL(H) ∼ //

��

νM(F )� (νN(G))� νL(H))

��
(νM×N(F �G))� νL(H)

��

νM(F )� (νN×L(G�H))

��
νM×N×L((F �G)�H) ∼ // νM×N×L(F � (G�H))

(6.2.8)

Proof. The proof relies on the following description of the speacialization sheaf given
in [KS90] th.4.2.3. Let V a conic open subet of TMX, then for an integer j

Hj(V ; νMF ) ' lim→
U

Hj(U ;F )

where U range through the open subsets of X such that CM(X \ U) ∩ V = ∅.
The natural morphism νM(F )� νN(G) −→ νM×N(F �G) is exposed in [KS90, Prop.

4.2.6]. We are going to explicit this morphism at the germ level and it will then
be sufficient to prove that the diagram 6.2.8 commutes at the germ level. Let p, p′

respectively be in TMX,TNY and let U resp. U ′ be open subsets of X resp Y , such
that p /∈ CM(X \ U), resp. p′ /∈ CN(Y \ U ′). For a topological space Z, we note aZ the
natural morphism Z −→ {pt}.

We have (νM(F )� νN(G))p×p′ ' (νM(F ))p ⊗ (νN(G))′p, so that

Hj((νM(F )� νN(G))p×p′)' Hj((νM(F ))p ⊗ (νN(G))′p)
'
⊕

k+l=j H
k((νM(F ))p)⊗H l((νN(G))′p)

' lim→
U,U ′

⊕
k+l=j H

k(RaU ∗F )⊗H l(RaU ′∗G)

−→ lim→
U,U ′

Hj(RaU×U ′∗(F �G))

−→Hj(νM×N(F �G)p×p′)

Now, let p′′ ∈ TLZ and the open subsets U ′′ such that p′′ /∈ CL(Z \U ′′), the diagram
6.2.8 corresponds to nothing but the commutation of inductive limits when it is taken
first through the family of open sets U,U ′ then U × U ′, U ′′, or taken first through
the family of open sets U ′, U ′′ then U,U ′ × U ′′ (we notice that for such families U,U ′,
(p, p′) /∈ CM×N(X \ (U × U ′))).
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