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Résumé

Le sujet de cette these est une approche microlocale de la transformation de Radon.
Il s’agit d’appliquer a la dualité projective complexe et réelle les techniques initiées
dans I'article fondateur de Sato-Kashiwara-Kawai de 1972 et de retrouver, reformuler,
améliorer des travaux d’analyse plus classiques sur ce sujet, en particulier ceux de G.
Henkin ou S. Gindikin. La dualité projective vue sous ’angle microlocal et faisceautique
est apparue pour la premiere fois dans un travail important de J-L. Brylinski sur les
faisceaux pervers, travail repris ensuite par D’Agnolo et Schapira dans le cadre des D-
modules. Notre travail est de reprendre systématiquement cette étude avec les nouveaux
outils de la théorie microlocale des faisceaux (théorie qui n’existait pas a I’époque de
SKK72).

Ce travail se compose essentiellement de deux parties.

Dans la premiere, nous commencons par rappeler dans un cadre général la con-
struction des transformations canoniques quantifiées, sous ’hypothese de 'existence
d’une section simple non-dégénérée (introduite sous un autre nom par J. Leray). Cette
construction n’avait jamais été faite dans un cadre global hors du cas projectif. Nous
montrons alors que ces transformations commutent a ’action des opérateurs microd-
ifferentiels. 1l s’agit 1a d’ un résultat fondamental sans qu’aucune preuve consitante
n’existe dans la littérature, ce résultat étant plus ou moins sous-entendu dans SKK72.

La deuxieme partie de la these traite des applications a la transformation de Radon
“classique”. L’idée de base est que cette transformation échange support des hyper-
fonctions (modulo analyticité) et front d’onde analytique. Nous obtenons ainsi des
théoremes de prolongement ou d’unicité sur les ouverts linéellement concave. Nous
obtenons aussi un théoréme des résidus pour les valeurs au bord de classes de coho-
mologie définies sur les cones de signatures (1,n — 1), clarifiant substantiellement des
travaux de Cordaro-Gindikin-Treves.

Mots Clés

Géométrie intégrale, Transformée de Radon, Analyse Algébrique, D-modules, F-modules,
Transformations de Contact, Dualité Projective, Géométrie Symplectique, Lagrangien,
Catégorie Dérivée.



Abstract

The subject of this thesis is a microlocal approach to the transformation of Radon. It is
a question of applying to real and complex projective duality the techniques initiated in
the founding article of Sato-Kashiwara-Kawai of 1972 and to find, reformulate, improve
more classic analytical work on this subject, in particular those of G. Henkin or S.
Gindikin. Projective duality seen from the microlocal and sheaf point of view appeared
for the first time in an important work by J-L. Brylinski on perverse sheaves, work
then taken up by D’Agnolo and Schapira in the framework of D-modules. Our work is
to systematically resume this study with the new tools of the microlocal sheaf theory
(theory which did not exist at the time of SKK72).

This work essentially consists of two parts.

In the first, we begin by recalling in a general framework the construction of quan-
tized canonical transformations, under the hypothesis of the existence of a simple non-
degenerate section (introduced under another name by J. Leray). This construction had
never been done in a global framework outside the projective case. We then show that
these transformations exchange the action of the microdifferential operators. This is a
fundamental result without any consistent proof existing in the literature, this result
being more or less implied in SKK72.

The second part of the thesis deals with the applications to the ¢ ‘classical ” Radon
transform. The basic idea is that this transform exchanges the support of hyperfunc-
tions (modulo analyticity) and the analytic wavefront set. We thus obtain theorems of
continuation or uniqueness on linearly concave domain. We also get a residue theorem
for the boundary values of finite cohomology classes defined on cones with (1,n — 1)
signature, substantially clarifying the work of Cordaro-Gindikin-Treves.

Keywords

Integral geometry, Radon transform, Algebraic Analysis, D-modules, E-modules, Con-
tact transformations, Projective duality, Symplectic geometry, Lagrangian, Derived
Category.
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Chapter 1

Introduction

1.1 Short introduction

In this thesis, we will study the microlocal Radon transform, understood as a quanti-
zation of projective duality, both in the real and the complex case.

In the real case, denote by P the real projective space (say of dimension n), by P*
its dual and by S the incidence relation:

(1.1.1) S:={(z,&) € P x P*;(x,&) = 0}.

In this setting, there is a well-known correspondance between distributions on P and
P* due to Gelfand, Gindikin, Graev [GGG82] and to Helgason [Hel80]. However, it is
known since the 70s under the influence of the Sato’s school, that to well-understand
what happens on real (analytic) manifolds, it may be worth to look at their complexi-
fication.

Hence, denote by P the complex projective space of dimension n, by P* the dual
projective space and by S C P x P* the incidence relation. Denoting by 7% X the
cotangent bundle to a manifold X and T*X the bundle T*X with the zero section
removed, we get the correspondence

(1.1.2) TL(P x P¥)

TP ~ TP

This contact transformation induces an equivalence of categories between perverse
sheaves modulo constant ones on the complex projective space and perverse sheaves
modulo constant ones on its dual, as shown by Brylinski [Bry86], or between coherent
D-modules modulo flat connections, as shown by D’Agnolo-Schapira [DS94].

In this thesis, we will focus on the real projective duality for microfunctions. This
is part of the continuation of the work of [Bry86] and [DS96]. We shall consider the

11



12 CHAPTER 1. INTRODUCTION
contact transform induced by (1.1.2)
(1.1.3) T5(P x P*) N (T%P x T%.P*)

T

TP ~ 74P

The above contact transformation leads to the well-known fact that the Radon trans-
form establishes an isomorphism of sheaves of microfunctions on P and P* (see [KKK86]).

In fact, we will work in the more general framework of integral transforms and then
specialize our results to the case of projective duality. We will consider the following
situation. Consider two complex manifolds X and Y of the same dimension, a closed
submanifold Z of X x Y, open subset U C T*X and V C T*Y and assume that the

conormal bundle T*Z(X X Y') induces a contact transformation

(1.1.4) THX xY)Nn (U x V%)
/ \

T*X>U ~ V C T*Y.

Moreover, assume that X and Y are complexification of real analytic manifolds M and
N respectively. Then, it is known that, under suitable hypotheses, one can quantize
this contact transform and get an isomorphism between microfunctions of UNT}, X and
microfunctions on VNT}Y [KKKS86]. One of our main results will be the commutation
of this isomorphism to the action of microdifferential operators. Although considered as
well-known, the proof of this commutation does not appear clearly in the literature (see
[SKK, p. 467]), and is far from being obvious. In fact, we will consider a more general
setting, replacing sheaves of microfunctions with sheaves of the type phom(F, Oy).
Next, we will specialize our results to the setting of projective duality.

Finally, we will provide some applications of our results to the study of the real
Radon transform of hyperfunctions. Precisely, we will get a Holmgren-type vanishing
theorem describing the vanishing set of a hyperfunction whose wave-front set is subject
to special geometrical conditions. From there, we will recover vanishing theorems of
Kolm-Nagel [KN68] and Boman [Bom92]. Moreover, we will give an answer to a problem
formulated by Henkin [Hen04], namely the description of the kernel of the real Radon
transform in linearly concave domains. To treat this geometrical situation, a microlocal
treatment will be peculiarly well-suited.

1.2 Classical results for Radon transform

Notations

We will use the langage of sheaves and D-modules and we refer the reader to [KS90]
and [Kas03] for a detailed developement of these topics.
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We will denote by k a commutative unital ring of finite global dimension. Let X
be a good topological space, i.e. Hausdorff, locally compact, countable at infinity, of
finite cohomological dimension. We denote by DP(ky) the bounded derived category
of the category of sheaves of k vector spaces on X and we shall freely make use of the
six Gronthendieck operations. For a locally closed subset Z of X, we denote by k; the
constant sheaf on Z with stalk k, extended by 0 on X \ Z. For F' € D"(ky), we denote
by

D\ F := Rsom (F,kx)

the dual of F. Assuming X is a manifold, we denote by SS(F') the micro-support of
F.

For manifolds M;, M; we denote by M;; their cartesian product. We denote by ¢;
the projection M;; — M;, p; the projection T*M;; — T*M,;. We add a subscript ¢
to p; to denote by p? the composition of p; and the antipodal map on 7"M;. Also,
for diagonal embedding, we denote for instance by ds the natural diagonal embedding;:
Mgz — Mia3.

On a complex manifold (X, Ox), we denote by dx its complex dimension, by Qx
the sheaf of holomorphic dx-forms, by Dx the sheaf of rings of finite order holomorphic
differential operators, by DP(Dy) the bounded derived category of the category of left
Dx-modules.

For a holomorphic line bundle F on X, one sets

= Jom o, (F,Ox)
the dual line bundle of F, and
DF :=Dx ®, F

the natural left D-module attached to F.

For a morphism f : Y — X, we denote by f~* and [, the functors of inverse and
direct images for D-modules. B B

If Z is a closed complex submanifold of X of codimension d, we set

(in the sense of algebraic cohomology). For S a complex submanifold of X x Y, we

denote by ,@Sﬁ(( OY the following (Dy, Dx)-bimodule

dx,0 —
'@fﬂ;x)}/ = 1QX ®q;1(9x %S|X><Y

Integral transform for sheaves and D-modules Let X,Y be complex manifolds
and S a closed submanifold X x Y. Consider the diagrams

12 X xY

AN /\ N
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S being the image of S by the map r : X x Y — Y x X, (x,y) = (y,z). Let us fix
some notations that we will detail later.

Let G € DP(Cy) and K € DP(Cxxy). The integral transform of G with respect to
the kernel K is defined to be

(1.2.2) Pr(G) :=Rq(K ® ¢;'G)

We will denote ®5(G) the integral transform of G with respect to the kernel Cg[dg—dx].
For M € DP(Dy) with coherent cohomology, one defines the integral transform of
M,
Ps(M) =g [T'M

Lyl

Assuming M coherent and that f is non-characteristic for M and ¢ is proper on
/7 (supp M), then we have the adjunction formula stated and proven in [DS94]

(123) RHOIHDX (M, q)g(G) X Ox)[dx] ~ RHOH]DY (@SM, G X Oy)[dy}

We can use (1.2.3) to derive interesting computation of the integral transform of
special D-modules. Assume that X, Y are of equal dimension, and that f, g are smooth
and proper. Let F and G be holomorphic line bundles. Then it is proven in [DS94]
that, under specific hypotheses involving existence of global contact transformations,

namely a global section of ¢; *F ®, :@(ST;((S)Y ®q2_1 oy &2 G, non-degenerate on some

-1
1 Ox
open subset of T¢(X x Y), and some additional topological conditions, there is an

isomorphism
S DF ~ DG

Applying (1.2.3) to the D-module M = DxF, f being non-characteristic for Dy since
f is smooth, we get the formula

RI'(X;®5(G) @ F*) ~RI(Y; G @ G")

Radon transform for sheaves and D-modules In the context of projective duality,
we have the following situation

TE(P x P¥)

TP T*P*

Denoting by A the Lagrangian manifold T%(P x P*)N (T*P x T*P*), one can prove that

P1|a, reSp. pala, is an isomorphism on T*P, resp. on T*P*. Then a theorem of [Bry86]
asserts the equivalence of categories between perverse sheaves on P modulo constant
sheaves and perverse sheaves on P* modulo constant sheaves.

It is proven in [DS94] that there is an equivalence of categories between coherent
D-modules on P modulo flat connections and coherent D-modules on P* modulo flat
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connections. At the heart of the proof, fixing an integer k£ such that —n — 1 < k < 0,
and denoting by Op(k) the —k-th power of the tautological line bundle, the following
isomorphism of D-modules is proven

(1.2.4) Os(Op(k)) =~ Op« (k™)
with k* = —n — 1 — k. From these results,we get the classical result, for ' € D?(Cp),

RI'(P; F ® Op(k)) ~ RI'(P*; Ps(F) ® Op« (k™))

Microlocalization of (1.2.4) Now, is there a microlocal counter-part of (1.2.4) ?
At the germ level, the answer given in [KS90, Theo. 11.4.9] is positive.

Let us consider again the diagram (1.2.1) and related notations. It is proven in
[SKK] that given a homogeneous symplectic isomorphism between open sets U C T*X
and V' C T*Y, there is locally a (non unique) ring isomorphism between the sheaf of
microdifferential operators on X and the sheaf of microdifferential operators on Y. This
isomorphism is called a quantized contact transformation.

Also, let M, N be two real analytic manifolds, X,Y respective complexifications,
and S a hypersurface of X x Y. Consider the diagram:

(1.2.5) (U xV)NTLX xY)
UNTyX VNTyY

Assume that pi, pee are isomorphisms. Then it is proven in [KKK86, Theo. 4.2.3]
that there is a local isomorphism between the sheaf of microfunctions on 73, X and the
sheaf of microfunctions on 7%Y. We will prove in this work a global version of this
isomorphism in the context of real projective duality. We will have to twist the sheaf
of microfunctions by some power of the tautological line bundle.

Following [KS90], let X,Y be two complex manifolds of same dimension n, A be
a closed complex Lagrangian submanifold of 7*(X x Y'), such that the natural mor-
phisms T*X < A — T*Y are isomorphisms. Let K € DP(Cxxy) be cohomologically
constructible, simple with shift 0 along A and let SS(K) be its micro-support. We
suppose that SS(K) C A.

Let p = (px,p}) € A and consider a non-degenerate section s € H°(phom (K, Qxxy/v)p),
where Qx,y/y = Oxxy ®q1_10X q; 'Qx. This defines a natural morphism

(1.2.6) q)K[n}(OX) — Oy

in DP(Cy ). This morphism is an isomorphism in the category D"(Cy; py), the localiza-
tion of DP(Cy) by the subcategory of sheaves whose singular support do not intersect
py. Moreover, given the isomorphism between microdifferential operators in D*(Cy; px)
and microdifferential operators in D?(Cy; py) [SKK], the morphism (1.2.6) is compat-
ible with their respective action on Oy in DP(Cx;pyx) and Oy in DP(Cy;py) [KS90,
Theo. 11.4.9, Coro. 11.4.8].
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This is, at a germ level, a microlocal version of (1.2.4) with a precision related to
the action of microdifferential operators. The main result of our work will be to give
a global version of this result for an open set U C T*Y. From there, we will deduce
a correspondence result between solutions of systems of microdifferential equations on
the projective space and solutions of systems of microdifferential equations on its dual.

1.3 Announcement of the results

In this work, we will make the link between sheaf and D-module theory and results
related to the Radon transform, formulated or conjectured in the setting of several
variable complex analysis. Contact transformations between cotangent bundles of the
projective space and its dual play a key role to establish correspondance between relative
behaviour of objects in P and objects in P*: hyperfuctions, D-modules, microfunctions,
E-modules. We will investigate specifically relations between microfunctions in 7p5P
and in T5.P* not only as sheaves but as £-modules. From there, we will establish an
isomorphism between microfunction solutions of a system of micro-differential equations
on the projective space and the counterpart solutions on its dual. As an application of
sheaf theory, we will get a Holmgren-type vanishing theorem describing the vanishing
set of a hyperfunction whose wave-front set is subject to special geometrical conditions.
Moreover, we will describe the kernel of the real Radon transform in linearly concave
domains as conjectured by Henkin [Hen04].

Results on the functor phom

To establish our main results, we will need the following complement on the functor
phom.
For (M;)i=1 23, three manifolds, we consider the operation of composition of kernels:

(2) : Db<kM12) X Db(kM23> — Db(les)
(1.3.1) (K1, Ky) — K, <2>K2 = Rau31(g19 K1 @ g5 K)
~ qugl(S;l(Kl X KQ)

We define the composition of kernels on cotangent bundles (see [KS90, Prop. 4.4.11])

a

(1 3 2) g : Db(kT*Mm) X Db(kT*M23) — Db(kT*M13)
- (K1, K2) = K1 0 Ky := Rpsy (e K @ pig )

Let F;, G;, H; respectively in D°(kyy,, ), D®(Kan, ), DP(Kas, ), @ = 1,2. Let U; be an open
subset of T*M;; (i = 1,2, j =i+ 1) and set

Us = Ui 5 Uj = p1s(pize(U1) N o (U2))
In [KS90], a canonical morphism in DP(kyg=yy,,) is constructed

(1.3.3) whom(Fy, Fy)|u, <§uh0m(G1, Gso)lu, = phom(Fy o G, Fy o Ga)|us-
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We will see that the composition 5 is associative and we will see also that the morphism

(1.3.3) is compatible with associativity with respect to 5.

Complex contact transformations

Consider now two complex manifolds X and Y of the same dimension n, open C*-
conic subsets U and V of T X and T Y, respectively, A a smooth closed submanifold of
U x V* and assume that the projections p;|, and p§|s induce isomorphisms, hence a
homogeneous symplectic isomorphism y: U == V:

ACUxVe
> =
T*X>U - V Ty

Let us consider a perverse sheaf L on X x Y satisfying
(pr ' (U)Ups (V) NSS(L) C A
and a section s of phom(L,Qx«y/x) on A, where
Qxxy/x = Oxxy Qs 10y @ Qy
Recall that one denotes by &R sheaf of rings:
(1.3.4) ER = phom(Ca ., Qxxx/x)[dx]

and &y the subsheaf of &R of finite order microdifferential operators. We will prove
our main theorem:

Theorem 1.3.1. Let G € D*(Cy) and assume to be given a section s of phom(L, Qxxy/x),
non-degenerate on A.

(i) For W C U, P € & (W), there is a unique Q € & (x(W)) satisfying P-s =s-Q
(P,Q considered as sections of Exxy ). The morphism induced by s

X v lv — Exlu
P~ Q

1S a ring isomorphism.
(ii) We have the following isomorphism in DP(Cy)
(1.3.5) X phom(G, Oy )|y == phom(®rp (G), Ox)|u

(iii) The isomorphism (1.5.5) is compatible with the action of & and &x on the left
and right side of (1.3.5) respectively.
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We will see that the action of microdifferential operators in Theorem 1.3.1 (iii) is
derived from the morphism (1.3.3) given the definition (1.3.4). We refer to (1.2.2) for
the definition of ®,;. The first part of this theorem is well-known, see [SKK], but
the fact that isomorphism (1.3.5) is compatible with the action of microdifferential
operators was announced for microfunctions in various papers but no detailed proof
exists to our knowledge.

Projective duality for microfunctions

For M a real analytic manifold and X its complexification, we might be led to identify
Ty X with ¢ - T*M. We denote by

JZ{M = ﬁX|M
%M = Rom (DS(CM, ﬁx)
G = phom (D' Cyy, Ox)

the sheaves of real analytic functions, hyperfunctions, microfunctions, respectively.
We denote by sp the isomorphism

sp: By == 6y

Let U an open subset of M. For u € %y(U), we denote by WF(u) its analytic
wave front set:

WF(u) := supp(sp(u)) C Ty X

All through this thesis, we will quantize the contact transform associated with the

Lagrangian submanifold T $(P x P*), where S is the hypersurface of P x P* defined by
the incidence relation (£, z) =0, (z,£) € P x P*.

We denote by T*PP, resp. T .P*, the conormal space to P in T*P, resp. to P* in

T*P*, and we will construct and denote by y the homogeneous symplectic isomorphism

between T*P and 7'*P*.
For € € Z/2Z, we denote by Cp(e) the following sheaves: for € = 0, we set

CP(O) = Cp
for e = 1, Cp(1) is the sheaf defined by the following exact sequence:
(1.3.6) 0— Cp(1) = ¢Cp = Cp — 0

where ¢ is the 2 : 1 map from the universal cover P of P, to P and tr the integration
morphism 7 : ¢Cp ~ 0q'Cp — Cp.

Let an integer p € Z, ¢ € Z/2Z, we define the sheaves of real analytic functions,
hyperfunctions on P resp. P* twisted by some power of the tautological line bundle,

Ap(e,p) = Ap ®, Op(p) ®; Cp(e)
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@p(&,p) = PBp ®WP %P(éj,p) ~ RAom (D;;Cp, ﬁp(p)) ®CP(€)

We define the sheaves of microfunctions on P resp. P* twisted by some power of
the tautological bundle,

©p(e,p) == H°(uhom(DpCp, Op(p))) @ Cp(e)

and similarly with P* instead of P. We notice that for n odd, DpCp ~ Cp(0) = Cp,
and for n even DpCp ~ Cp(1).

For X,Y either the manifold P or P*, for any two integers p, ¢, we note Oxxy (p, q)
the line bundle on X x Y with homogenity p in the X variable and ¢ in the Y variable.
We set

Qxxy/x (P, @) = Qxxy/x R0y Oxxy(p,q)
ER(p, q) == phom(Cay, Lxxx/x (p, q))[dx]

and we define accordingly &x(p,q). Let us notice that &F(—p, p) is a sheaf of rings.
Let n be the dimension of P, (of course n = dp). For an integer k and € € Z/2Z,
we note

K= —n—1—k

e :=-—n—1—¢ mod(2)
We have:

Theorem 1.3.2. (i) Let k be an integer such that —m —1 < k < 0 and let s be a
global non-degenerate section on T4(P x P*) of H(uhom(Cs, Qpyps - (—Fk, k¥))).
For P € & (—k,k), there is a unique Q € &p«(—k*, k*) satisfying P-s = s - Q.
The morphism induced by s

X«6p(—k, k) — &p-(—k", k")
P—Q
1S a ring isomorphism.
(ii) There exists such a non-degenerate section s.

In fact, we will see that the non-degenerate section of Theorem 1.3.2 is provided by
the Leray section.

Now, from classical adjunction formulas for &-modules, we get a correspondance
between solutions of systems of microdifferential equations on the projective space and
solutions of systems of microdifferential equations on its dual. We will prove our main
theorem
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Theorem 1.3.3. Let k be an integer such that —n —1 < k < 0. Let N be a coherent
&p(—k, k)-module and F € DP(P). Then, we have an isomorphism in Db(Cf*P*)

X« RAom g (o iy (N, phom(F, Op(k))) ~
RAAom g, (—+ 1) (R (N), phom((Peg—1)F, Op-(k")))

where ®f% it is the counterpart of ®g for &-modules, and will be defined in Section
2.6.1.

Corollary 1.3.4. Let k be an integer such that —m — 1 < k < 0 and ¢ € Z/2Z. The
section s of theorem 1.3.2 defines an isomorphism:

X*%P(gv k)|jﬂ};p = (KP* (8*7 k*)

TP
Moreover, this morphism is compatible with the respective action of x.&p(—k, k) and

Epe (—k*, k).

Applications

Application I : the wave-front set of hyperfunctions We will obtain a descrip-
tion of the kernel of the Radon transform in linearly concave domain, generalizing some
results announed in [Hen04]. Consider the diagram:

(1.3.7) P x P*
P
P P
For a set A C P, we set
A= gaq (AN )
and similarly for B C P*. In some sense, A represents the Radon transform of A.

Definition 1.3.5. A set A C P is said to be linearly concave if there exists a set
B C P* such that A = B. Moreover, if B is connected, A is said to be strongly linearly
concave.

Let 2 be a non empty linearly concave domain, strictly contained in P. Let us
denote by ) the set:

P\ (P\9Q)

i.e. the set of hyperplanes contained in 2. As it will be seen in Section 4, S may be
identified to P*P the projectivization of the cotangent bundle of P. Let us denote
by pp the projection T*P — P*P and similarly pp«. Let us consider the following
situation:
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L(P x P*)
/ \

, [ pr
pp P§(P x P¥) pp
P*P P*

P P

We will identify S to P§(P x P*). Let Q be a non empty linearly concave domain
strictly contained in P. The set (2 x ) N S is decribed by:

QxNS={(z,£) e PxPzec0fcC}
We set
=pp' (X Q)N S) cT P
We denote by * the set y( ) € T*P*. We will sce that * = TigP*

Definition 1.3.6. Let U an open subset of P. For a section f of Bp(e,k)(U), we
define the Radon transform Rad(f) as the image of f by the sequence of morphisms:

Rad : Bp(e, k) (U) —— Cp(e, k) (T*U) —=— Cp-(c*, k%) (x(T*U))
For f € Zp(e, k)(2), we will see that Rad(f)| - may be viewed as an element of
PBp+(e*,k*) | Ap= (%, k*)(£2). We will denote this element by Rad(f)|ﬁ.

As an application of Theorem 1.3.1, we have

Proposition 1.3.7. Let f € Bp(e, k)(Q). Then, we have
WE(f)n =x""(WF(Rad(f)le))

In the case where n = 2 and Q) is a strongly linealry concave domain, we denote
by €2c the union of complex lines, complexification of real lines contained in 2. Let us
consider an affine chart R%. Then, there are 2 connected components of (¢ \ ) N R,
which we denote by €21. In this condition, we get the following corollary:

Corollary 1.3.8. Assume that W F(Rad(f) 5) = @&. Then, f is the boundary value of

(f+, f-) respectively holomorphic in Q.
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Let V be a real finite dimensional vector space, V* its dual, V its complexification,
and set V*= V*\ {0}. Let us denote by S the incidence hypersurface in V' x V*. For
an open set U C V| we set

BU) =1(U; Byv)

We will deduce an analytic-continuation type theorem below from an Hélmgren-type
theorem of Kashiwara, (whose proof is published in [Hér83, Th. 8.5.6]), stating that
the normal cone of a support of a distribution is contained in its wave-front set. Let €2
be a convex open subset of V and w C €2 an open convex subset. Let us consider the
set

Z ={(x,i€) € V xi.V*(2,6) € S, Hye NQ # B, Hye Nw = &}

where, for (z,£) € V x V*, we denote by H, ¢ the hyperplan passing through x and of
conormal &.
Then one have the following theorem

Theorem 1.3.9. Let u € AB(Q). Assume that u =0 on w and that WF(u) N Z = &.
Then u = 0.

Application II : residues of homolomorphic forms in tubes Let us denote by A
the real affine space and by A its complexification. For ¢ an integer such that 0 < ¢ < n,
we denote by -, the cone of signature (¢,n — ¢) in A:

Vq::{(xl,...mn)EA;Zx§< Z x3}

1<j<q q+1<j<n

About a result announced by Henkin in [Hen04].

Let v C A be an open cone of signature (1,n — 1). Then, the complementary set
of « is the union of two closed convex cones, denoted by A; and A;. Recall that we
denote by €4 the sheaf of microfunctions on T4A and by A, 7 = 1,2 the polar cones of
A; considered here as closed subsets of TA. We notice that

Ay = {(z1,...2y) € Az} > Z a3, +x; > 0}

2<j<n

Let Int(\°), i = 1,2 be the interior of the polar sets \™.
Let K be a compact convex subset of A, we set as usual

B(K) = lim B(U)
UDK

The following Theorem brings a proof to a variant of a conjecture by Henkin in
[Hen04], which was formulated, without the assumption that K is a convex compact,
in the following way: the wave-front set of a hyperfunction has no intersection with
M° i = 1,2 if and only if it is the residue of a J-closed (0,n — 2)-form defined on
K+i-7.
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Theorem 1.3.10. There exists a exact sequence

0 —=lim H" (K + iv; Op) = B(K) —
,yl

e Gu(K i IntNO) @ Ca(K + i - Int(A)) — 0

where 7' ranges over the family of open convexr cones of signature (1,n — 1), with
v CA
Residue in cones of signature (q,n — q)

Proposition 1.3.11. We have the natural morphism:
HniqilRFA-i-i/yq(ﬁA) _ftes_ By

This residue was constructed in [CGT95] through several variables complex analysis
technics. Our approach provides a natural construction of this residue.

Residue diagram for Radon Transform

In the following, we see how cones of signature (1,n — 1) in A rise naturally from
the Radon transform of strip-like sets in P* and we explicit the diagram 1.3.8 showing
how residues and Radon transforms commutes.

Let 0 be a strictly positive real number. Let us consider the open subset U of
P* — P,

U={ceA (Y 1&P)<6)

2<j<n
Let us set
Z::l/]\ﬂP
K:=P\Z

We will see that U \ P is a cone of signature (1,n — 1). Let £z(c*) be the object of
DP(Cp+), defined, up to an isomorphism, by the distinguished triangle:

Ly(e*) —=Cpe(e*) —=Cp[n — 1] =

Recalling that we denoted by y the homogeneous symplectic isomorphism between
T*P and T*P*, we have

Theorem 1.3.12. Given a section s of phom(Cs[—1], Qpxp+/p+(—k, k*)), the following
diagram commutes:

(1.3.8)X* H™2(juhom(Cpr, 1(€), Op(k)))].., — =y H" (sthom(C(e), O (k)]

T*P
RadL Radl

H"=(uhom(®s(Cg 4(€)), Op- (k7)) H"(phom(Lz(€"), Op-(k")))

. —_— .
T*P* Res T*p*

Assuming that s is non-degenerate on Tg(P x P*), the vertical arrows Rad are isomor-
phisms.
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Let us consider a complex neighborhood w C A* of U such that, denoting by 7 the
natural projection A* = A*, w(w) = U.

Proposition 1.3.13. We have
(1.3.9) SS(Caue) Nx T 'w =0

We deduce the following

Corollary 1.3.14. We have

fthom(Cg, 4(¢), ﬁp(k))|x,1f*w ~ 0



Chapter 2

Reminders on Algebraic Analysis
and complements

In this chapter, we recall classical results of Algebraic Analysis, with the exception of
section 2.7.

2.1 Sheaves

2.1.1 Notations for manifolds

(i) Let M; (i = 1,2,3) be manifolds. For short, we write M;;:=M; x M; (1 <1i,j < 3),
M123 = M1 X M2 X Mg, M1223 = M1 X M2 X MQ X M37 etc.

(i) dpr,: M; — M; x M; denote the diagonal embedding, and Ay, the diagonal set of
Mi X Mz

(iii) We will often write for short k; instead of ky;, and ka, instead of ka,, and
similarly with wyy,, etc., and with the index 7 replaced with several indices 77, etc.

iv) We denote by 7, m;;, etc. the projection T*M; — M;, T*M,: — M;;, etc.
Yy J proj J J

(v) For a fiber bundle £ — M, we denote by E — M the fiber bundle with the
zero-section removed.

(vi) We denote by ¢; the projection M,;; — M, or the projection M3 — M; and
by ¢;; the projection Mjs3 — M;;. Similarly, we denote by p; the projection
T*M;; — T*M,; or the projection T*M9s — T*M; and by p;; the projection
T*Mlzg — T*MZ]

(vii) We also need to introduce the maps pja or p;ja, the composition of p; or p;; and
the antipodal map a on T™*M;. For example,

p12a (21, 22, 23561, &2, &3)) = (21, 02; &1, —&2).

(viii) We let dy: Myo3 — Miaes be the natural diagonal embedding.

25
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2.1.2 Sheaves

We follow the notations of [KS90].

Let X be a good topological space, i.e. separated, locally compact, countable at
infinity, of finite global cohomological dimension and let k be a commutative unital ring
of finite global dimension.

For a locally closed subset Z of X, we denote by k, the sheaf, constant on Z with
stalk k, and 0 elsewhere.

We denote by DP(kx) the bounded derived category of the category of sheaves of
k-modules on X. If Z is a sheaf of rings, we denote by DP(Z) the bounded derived
category of the category of left Z-modules.

Let Y be a good topological space and f a morphism ¥ — X. We denote by

Rf., f~Y Rfi, f',R#om, é{) the six Grothendieck operations. We denote by X the ex-
terior tensor product.

We denote by wx the dualizing complex on X, by w?}_l the sheaf-inverse of wy and
by wy,x the relative dualizing complex

wy/x = flky) 2wy @ FHwi )

In the following, we assume that X is a real manifold. Recall that wx =~ orx [dim X]
where ory is the orientation sheaf and dim X is the dimension of X. We denote by
Dx () resp. Dx(+) the duality functor

Dx(*) =RAom (-, wx)
D'y (+) = R#om (+,kx)

For ' € DP(ky), we denote by SS(F) its singular support, also called micro-
support. For a a subset Z C T*X, we denote by DP(kx;Z) the localization of the
category DP(ky) by the full subcategory of objects whose micro-support is contained
inT*X\ Z.

For a closed submanifold M of X, we denote by

var: DP(kx) — Dy (kry, x)
the functor of specialization along M,
par s DP (k) — DRy (kg x)
the functor of microlocalization along M, and by
phom: D (k) x DP(ky)*® — Dl (ky-x)

the functor of microcalization of R.7#om . The subscript R™ stands for conic objects of
DP(kp-x), i.e. objects locally constant with respect to the natural action of R™ on the
fibers of T*X — X. We recall that p,; is the Fourier-Sato transform of vy, and that

par(*) = phom(kay, *)



2.2. O-MODULES AND D-MODULES 27

Let M; (i = 1,2,3) be manifolds. We shall consider the operations of composition
of kernels:

o+ D(kap,) X D*(Kasy,) = D”(Kayy)

L
(2.1.1) (K1, Ka) = K <2>K2 =Rz (912 K1 ®a3 Ko)

L
~ quglégl(Kl & Kg)

2% : Db(ka) X Db(kMzs) X Db(kM34) - Db(kM14)

(2.1.2) L L
(Ky, Ky, K3) — K, ‘23K2 0 K3 :=Rqi4, (12 ' K1®q23  Ko®qss ' K3)

Let us mention a variant of o:
’5 : Db(ka) X Db(kMzzs) - Db(ka)
(Kl> Kg) —> Kl >§ K2 = qug* (q2_1002 X 5'2([(1 X KQ))

There is a natural morphism K; gKQ — K ;KQ.

We refer the reader to [KS90] for a detailed presentation of sheaves on manifolds.

2.2 (O-modules and D-modules

We refer to [Kas03] for the notations and the main results of this section.

Let (X,Ox) be a complex manifold. We denote by dx its complex dimension and
by Dx the sheaf of rings of finite order holomorphic differential operators on X.

For an invertible Ox-module F, we note

f@_l = %OM@X(]:, Ox)

the inverse of F. Denote by Mod(Dx) the abelian category of left Dx-modules and
Mod(D%) of right Dx-modules. We denote by Qx the right Dx-module of holomorphic
dx forms. There is an equivalence of category between left and right Dyx-modules
provided by

Db(Dy) = DY(DE), M - Qx &, M
-1
D(D¥) — DP(Dx), N = N @, Qy

Let D*(Dyx) be the bounded derived category of the category of left Dx-modules,
D, (Dx) its full triangulated subcategory whose objects have coherent cohomology.
Let us recall the notion of good D-modules due to Kashiwara [Kas03].

Definition 2.2.1. An Ox-module F is good if for any relatively compact open subset
U CC X, there exists a small and filtrant category I and an inductive system {F;}ics
of coherent Oy-modules such that lil}lﬂ = Flu- A coherent Dx-module is good if it

is good as an Ox-module.



28CHAPTER 2. REMINDERS ON ALGEBRAIC ANALYSIS AND COMPLEMENTS

Let Dgood(DX) be the triangulated subcategory of DP(Dx ), whose objects have all

cohomologies consisting in good Dx-modules (see [Kas03] for a classical reference).
For .# € D!, (Dx), the complex of holomorphic solutions of .# is defined by

coh

Sol(A) := Ritom , (M, Ox)

Operations on D-modules

We refer in the following to [Kas03]. Let f : Y — X be a morphism of complex
manifolds. We denote by Dy x the transfer bimodule, i.e. the (Dy, f~'Dx)-bimodule

Dy—x = 0Oy @1, f'Dx

We shall be aware that the action of Dy on Dy _sx is not given by the action on Oy.
We denote by Dx«y the (f~'Dx, Dy )-bimodule

-1
Dx+vy = (Dy—x Do, Qy) Q10 f10y

We define the pull-back and the direct image of D-modules. Let M € DP(Dyx),
N € DP(Dy)

L L
i_lM = DY—)X®f*1DXf_1M’i*N = Rf*(DX+Y®DYN)

The following results are proven in [KS96, Prop 2.4]. Let M € D® .(Dx), N €

good

DP(Dy), F € D(Cx), G € DP(Cy). We assume that f is non-characteristic for M.
We have

Rf.RAomp, (7'M, N) ~ R#omp, (M, f N),
f_lR,%ﬂOmDX (./\/l, Ox) ~ R%OTTLDY (iil./\/l, Oy),

RfRAomp, (f'M,G ® Oy) ~ R#omp, (M,RfiG @ Ox)

Assume M € D(Dy), N € D° _.(Dy). We no longer assume that f is non-

good
characteristic for M. We assume that f is proper on supp(N). Then, we have

Rf.RAomp, (N, [~ ' Mldy,x]) ~ RA#omp, (f N, M),
Specializing this isomorphism to the case M = F @ Ox, we get

Rf[R%O?TLDY (N, fﬁlF & Oy)[dy/X] ~ R%Ompx (i*/\/, F® Ox)
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2.3 &-modules

We refer in the following to [SKK] (see also [Sch85] for an exposition). For a complex
manifold X, one denotes by &x the sheaf of filtered ring of finite order holomorphic
microdifferential operators on T*X. We denote by DP, (&x) the full triangulated sub-
category of DP(&x) whose objects have coherent cohomology.

For m € Z, we denote by &x(m) the abelian subgroup of &x of microdifferential
operators of order less or equal to m. For a section P of &y, we denote by o(P) the
principal symbol of P.

Let mx denote the natural projection T*X — X. Let us recall that & is flat over
7 (Dx). To a Dx-module .#, we associate an &x-module defined by

& % =& x & ™ )_(1%

W)_(lpx
Let us notice that

M~ EM

T3 X

To a morphism of manifolds f: Y — X, we associate the diagram of natural mor-
phisms:

(2.3.1) 7Y vy xxTX o TX
\ L jTX
TY
y —1 . x

and the dual diagram

(2.3.2) Ty <Y xx T X LT X
\ lﬂ- lﬂ'x
Ty f
Y X

where f; is the transposed of the tangent map Tf: TY — Y xx TX.
We denote by &y —x, &x<«y the transfer bimodules and for M, N objects of re-
spectively DP(&x) and DP(&y ), one defines the functors L);l and if by

FHM) = R (S x oy, f2M)

L
if(/\/) = wa*(gX%Y‘gf;lgyf(;lN)
Under specific assumptions, the extension of D-modules to &-modules commutes with
the push forward and the pull-back operation of &-modules ([SS94]).

Let M € D2, (Dx). We assume that f is non-characteristic for M, then we have

coh

E(fM) = fHEM)
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Let N € ng’ood(Dy), and assume [ is proper on supp(N'), then we have

E(gN) =gl (EN)

For .# a left coherent &x-module generated by a section u € .#, we denote by .7 ,
the annihilator left ideal of &y given by:
Iy ={P € E;Pu=0}
and by .# , the symbol ideal associated to .Z 4
Tw = 1{o(P)P € 54}

Definition 2.3.1 ([Kas03]). Let .# be a coherent &x-module generated by an element
u € M. We say that (.4 ,u) is a simple &x-module if .# 4 is reduced and .¥ 5, = {¢ €

ﬁT*X; 90|supp((///) = 0}

Consider two complex manifolds X and Y, open subsets U and V of T*X and T*Y,
respectively, and denote by p; and p, the projections U EUxVe 2 V. Let A bea
smooth closed submanifold Lagrangian of U x V¢ We will make use of the following
result from [SKK, Th. 4.3.1], [Kas03, Prop. 8.5]:

Theorem 2.3.2 ([SKK],[Kas03]). Let (A ,u) be a simple Exxy-module defined on
U x V® such that supp # = A. Assume A — U is a diffeomorphism. Then, there is
an isomorphism of &x-modules:

5X|Ui>(P1|vaa)*///
P —P-u

Assume that the projections p;|y and p§|x induce isomorphisms. We denote by x
the homogeneous symplectic isomorphism x := pa|s 0 1|3,

(2.3.3) ACUx Ve
T*X > U ~ VcT*Y

X

Corollary 2.3.3. Let (A ,u) be a simple Exyy-module defined on U x V. Assume
supp.# = A. Then, in the situation of (2.3.3), we have an anti-isomorphism of algebras

X«Ex|u =~ Ev|v

2.4 Hyperfunctions and microfunctions

Let M be a real analytic manifold and X a complexification of M. We denote by o7,
the sheaf of complex valued real analytic functions on M:

= Ox ®Cyy



2.5. INTEGRAL TRANSFORMS FOR SHEAVES AND D-MODULES 31

by % the sheaf of hyperfunctions on M:
By =R H#om (D Cy, Ox)
and by @ the sheaf of microfunctions on 775, X:
G = phom (D' Cyy, Ox)

Let us notice that %), and %), are concentrated in degree 0. Let us denote by sp,
the isomorphism

There is a natural action of the sheaf of microdifferential operators &x on %, .
Given that, D\Cp ~ w M/X w%’[l, and denoting by orx/ys the relative orientation

sheaf, we get that

By ~ R (Ox) @wnyx ~ Hy (Ox) ®@oryyx,
ch ~ /LM(ﬁx) ®UJM/X ~ Hn(pM(ﬁx)) ®OIM/X .

If Z is a closed complex submanifold of X of codimension d, we note
%ZLX = H[dZ](O)()

the algebraic cohomology of Oy with support in Z.

2.5 Integral transforms for sheaves and D-modules

2.5.1 Integral transforms for sheaves

Let X and Y be complex manifolds of respective dimension dyx,dy. Let S be a closed
submanifold X x Y of dimension ds. We set dg/x := ds — dx. Consider the diagram

of complex manifolds
S S
X Y, Y X

where the second diagram is obtained by interchanging X and Y.
Let F' € D*(Cx), G € D*(Cy), we define

(2.5.1)

Pg(F) :=Raf ' Fldgv], P5(G) :=Rfig"'Gldg/x]

Us(F) := Ry f'Fldx/s), U5(G) := Rf.g'Gldy/s]
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For K € DP(Cxy), and given the diagram X <~ X xY £ Y, we define the Radon
transform of F with kernel K

P (F) :=Rgy(K ® ¢ 'F)

When K = Cg[ds/y], we recover the functor ®g.
We have the adjunction formulae:

RHom (®5(G), F) ~ RHom (G, Ug(F)),

RT.(X; @5(G) @ F)ldx] =~ RT(Y; G ®@ Vs(F))[dy]

2.5.2 Integral transforms for D-modules

Let X,Y be complex manifolds of equal dimension n > 0, and S a complex manifold.
Consider again the situation (2.5.1).
We suppose

f, g are smooth and proper,
S is a complex submanifold of X x Y of codimension ¢ > 0

(2.5.2) {

Let M € D*(Dx), N' € D(Dy). Let us denote by S the image of S by the map
r: X xY =Y xX, (x,y) — (y,x). One sets

(M) =g f M, B5(N)=f g'N

Let M € DP,4(Dx), assume that f is non characteristic for M and let G € D*(Cy).

The functorial properties of inverse and direct image of D-modules leads to the following
adjonction formulae, proven in [DS94, Prop. 2.6.],

CI)SR%OTRDX (M, Ox) :R%ﬂompy (@SM, Oy)
(253) RHomDX (M, (I)g(G) X OXde] ZRHOHIDY (@SM, G X Oy)[dy]
RHomp, (M ® ®5(G), Ox)[dx| ~RHom p, (g M ® G, Oy)[dy]

Let us recall that we denote by €2x the sheaf of holomorphic n-forms and let
n,0 —
%A(g‘x)xy = 1QX ®q1_1(9x ggS|X><Y

This (Dy, Dx)-bimodule allows the computation of ®¢ because of the isomorphism,
proven in [DS94, Prop 2.12]

L
~ n,0
Dy+s@psDs—x == %’(Sp()xy

leading to

n, L —
Dg(M) ~ Raay (B 3y @yrpy 6" M)
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2.6 Microlocal integral transforms

2.6.1 Integral transforms for &-modules

Let X,Y be complex manifolds and S is a closed submanifold of X x Y. We consider
again the diagram (2.5.1) under the hypothesis (2.5.2).
We define the functor

DP(Ex) — DP(Ey), ®4(M) := g% ;' M
We define the &xxy-module attached to B xxy,
%SP(XY = £%5|X><Y

and we consider the (&y, & )-bimodule

" L L
(261) Cgs('\)’(?i}/ =T 1(]1 1QX®W*1q1—10X(gS\X><Y
One can notice that
L ~ (n,O)
By ¢—5QssEs—x — Cgspgxy

and hence, we have
a n,0 L -
(2.6.2) DE(M) = RS, (€45 hy Opr 1 P1 M)

Let M € DP _,(Dx). The functors ®% and @4 are linked through the following

good

isomorphism in Db(ci“*y)’ (see [SS94])

(2.6.3) E(D5(M)) = DLEM)

2.6.2 Microlocal integral transform of the structure sheaf

Consider two open subsets U and V of T*X and T*Y, respectively and A a closed
complex Lagrangian submanifold of U x V¢

(2.6.4) U x Ve

/ baa

"X >U Vcry

As detailed in Section 11.4 of [KS90], let K € D*(Cxyxy), SS(K) its micro-support
and let us suppose that

(i) p1|A: A — U and p§|A : A — V are isomorphisms

(ii) K is cohomologically constructible



34CHAPTER 2. REMINDERS ON ALGEBRAIC ANALYSIS AND COMPLEMENTS

(iii) (py"(U)Upy ' (V)) NSS(K) C A
(iv) K is simple with shift 0 along A
Let p = (px,p}) € A and let us consider some section s € H°(puhom (K, Qxxy/yv))p,
where Qx vy = Oxxy ® 10y qleX. The section s gives a morphism K — Qx,y/y
in D*(Cxxy;p). Then, we get the sequence of morphisms
©klax) (Ox) = Rz (K [dx] @ g1 Ox)
(2.6.5) — Rao (Qx xyvyy ® q; 'Oxdx])

- RQ2!QX><Y/Y[dX]
— Oy

the last morphism being the integration morphism. We have:

Theorem 2.6.1 ([KS90, Th.11.4.9]). There exists s € HO(puhom (K, Qxxy,y)), such
that the associated morphism @K[dx](OX) — Oy s an isomorphism in the category
DP(Cy;py). Moreover, this morphism is compatible with the action of microdifferential
operators on Ox in DP(Cx;px) and the action of microdifferential operators on Oy in

Db(CY;pY)

This is a microlocal version of (1.2.4) with a precision related to the action of
microdifferential operators.

2.7 Complements on the functor phom

2.7.1 Associativity for the composition of kernels

The next result is well-known although no proof is written down in the literature, to
our knowledge.

Lemma 2.7.1. Let M, My, M3 be real manifolds, and K, L, M be objects respectively
of DP(kyr,,), DP(Kag, ), DP(Kag, ), then the composition of kernels o defined in 2.1.1 is

associative. We have the following isomorphism

(2.7.1) (KoL)o M= Ko(LoM)

such that for any N € D"(kyy,.), the diagram below commutes:

(2.7.2) ((KQL)‘:QM)EN_’(KSL)S(MZ{N)
(Kg(LgM))iN
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Proof. Consider the following diagram

where the thick squares are cartesian, and where for clarity we enforced the notation:
the projection M;j;, — M;; by qu (independently of order of appearence of the indices),

and the projection M, — M;; by qul. We now have:

-1 -1 -1 1 -1 ~1 ~1
Rl (gl (Rafsy(qfy, K ®qys L)) ®qz M) ~Raiy(Rafsy(afy K ®qys L) ®@qz M)

-1 -1 -1
~Raih(aly K ©qs Leogi M)
I:KngggKg

The same way, we get the isomorphism
-1 -1 -1 ~1
K S Ko 9 K3~ RQ%41(QL112 K ® (g (ng’41<‘1§3 L® Q§4 M))))

which proves the isomorphism (2.7.1). And, it follows immediately that given N €
D"(kyy,. ), the diagram (2.7.2) commutes.
[l

2.7.2 Associativity for the composition of phom
We define the composition of kernels on cotangent bundles (see [KS90, section 3.6,
(3.6.2)]).
0+ D"(kreany) X DP(krean,) = DP(kreas,)
(2.7.3) (K1, Ka) — K, §K2 = Rp13)(p1oa K1 @ pog K>)
~ Rpuge) (Prae K1 ® page ).

There is a variant of the composition o, constructed in [KS14]:

’5 : Db(kMu) X Db(kM23) - Db<kM13)

(2.7.4) . ' L
(K1, K2) — K, 5 Iy 1= Raus, (¢5 'w2 @ 05( K1 X K)).
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There is a natural morphism for K; € DP(kyy,) and Ky € DP(kyy,,), K1<23K2 —
Kl ;KQ
Let us state a theorem proven in [KS90, Prop. 4.4.11] refined in [KS14].

Theorem 2.7.2. Let F;, G;, H; respectively in DP(Kap,, ), D*(Kans ), DP(Kas, ), @ = 1,2.
Let U; be an open subset of T*M,;; (i = 1,2, j =i+ 1) and set U3 = U1§U2. There

exists a canonical morphism in D (Kp-py,,), functorial in Fy (resp. Fy):
(2.75)  phom(Fy, Fy)|y, §uh0m(G1, Go)lu, = phom(Fy % Gy, Fy g Ga)lu,.
and hence

(2.7.6) phom(Fy, Fy)|u, %uhom(Gl, Go)|u, = phom(Fy 0 G1, Fy ° Go)|us-

We state the main theorem of this section.

Theorem 2.7.3. Let F;, G;, H; respectively in DP(kyz,,), DP(Kags, ), DP(kag,), @ = 1,2
then we have:

(a)
(uhom(Fl, F) éuhom(Gl, G2)> %uhom(Hl, Hy) =

phom(Fy, Fy) cZ) (uhom(Gl, G) §uh0m(H1, Hg))

(b) The above isomorphism is compatible with the composition o in the sense that the

following diagram commutes

(whom(Fy, Fy) éuhom(Gl, G)) §Mh0m(H1, Hy) —=—= phom(F, F3) g(uhom(Gl, G) %,uhom(Hl, H,))

phom(Fy ° G1, Fy o Gs) %,uhom(Hl, Hy) phom(Fy, Fy) éuhom(Gl 0 H,, G, 0 Hy)

phom((Fy <2>G1) 0 Hy, (Fy o Gs) 0 Hy) phom(Fy g(Gl o Hy), F, g(Gg o Hy))

Proof. (a) This is a direct application of Lemma 2.7.1 with X, Y, Z taken to be respec-
tively T*Mlg, T*M13, T*M34.

(b) We refer the reader to 6.2 in Appendix for a sketch of proof.



Chapter 3

Complex quantized contact
transformations

3.1 Kernels on complex manifolds

Consider two complex manifolds X and Y of respective dimension dx and dy. We shall
follow the notations of Section 2.1.1.

For K € DP(Cxyxy), we recall that we defined the functor ® : D*(Cy) — DP(Cyx),
P (G) = Rpn(K @ ¢, 1(Q)), for G € DP(Cy). With regards to the notation of Sec-
tion 2.1.1, let us notice that ®x(G) is K o G.

We set

Qxxy/x = Oxxy ®q2‘10y q{lQY
and
ER = phom(Ca, Qxxx/x)[dx]

We recall that & is a subring of £%.
We recall the

Lemma 3.1.1. There is a natural morphism

QXXY/X o ﬁy [dy] — ﬁx.

Proof. We have
Qxxy/x © Oy [dy] = Ra1,(Qxxv/x ® q ' Oy ldy))

—>R€711(QXxY/X[dY]) L Ox,
where the last arrow is the integration morphism on complex manifolds. O

The following Lemma will be useful for the proof of Lemma 3.1.3. Let us first denote
by M; (i =1,2,3,4) four complex manifolds, L, € D*(Cyy,,,,), 1 <7 < 3. We set for
short

di = dime M;, dij = d; + dj, Qijpi = Qg ym, = Qﬁf“-

37
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Set for 1 < i < 3,
Kz' = /LhOm(Ll, Qi,j/i[dj]>7 j =i+1
Lz]:LzOLJ j:Z+1, L123:L10L20L37
Kij = prhom(Lij, Qi jji [dj] o Qrys [di) G =i+ 1,k =j+1
K3 = pthom(Lyas, Q12/1[Gl2] © Q23/2 [ds] o Q34/3[d4])
K93 = phom(Lias, Q1a/1[d4)).

We recall that we have the sequence of natural morphisms:

Qi iji 0 Qnsi = Raiey (45 Qigri © 452 Ljnys)

— Rai ) (i jiki)
(3.1.1) — Qi goyi[—d;]

Lemma 3.1.2. The following diagram commutes:

Kl o KQ (¢] Kg
/ A \
1?12OK3 %123 Klo[?%
| = e
Ky 0 K3 Ko Ky o Ko

Proof. Diagram labelled A commutes by the associativity of the functor phom (see
Theorem 2.7.3). Let us prove that Diagram B and C commute. Of course, it is enough
to consider Diagram B. To make the notations easier, we assume that M; = M, = pt.
We are reduced to prove the commutativity of the diagram:

phom(Lg, (2 o Q2,3/2 [das]) o phom(Ls, O3) — phom(Las, 23 0 Q2,3/2 [das] 0 O%)

|1 |t

uhom(Lg, Qg[d3]) o ,uhom(L;;, ﬁg) uhom(ng, Q3[d3] o ﬁg)

For F, F’ € D"(kys), G, G’ € DP(ky3), we saw in Theorem 2.7.3 (b) that the morphism
phom(F, F') o phom(G,G") — phom(F oG, F'oG") is functorial in F, F',G,G’. This

fact applied to the morphism
Qy 0 Q932 [das] — Q3[ds]

gives that the above diagram commutes and so diagram B commutes. O

Let Z be a complex manifold and let A C T*(X x Y) and A’ C T*(Y x Z) be two
conic Lagrangian smooth locally closed complex submanifolds.
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Let L, L', be perverse sheaves on X x Y, Y x Z, with microsupport SS(L) C A,
SS(L") € A respectively. We set

L":=Lldy]o L'
Assume that
(3.1.2) P5la : A = T*Y and po|pn : A — T*Y are transversal
and that
(3.1.3) the map A xp+y A" — Ao A’ is an isomorphism.
Let us set

L= uhom(L, QXXY/X)

Note that .Z € DP(T*(X x Y)) is concentrated in degree 0. Indeed, it is proven in
[KS90, Th. 10.3.12] that perverse sheaves are the ones which are pure with shift zero at
any point of the non singular locus of their microsupport. On the other hand, Theorem
9.5.2 of [KS85] together with Definition 9.5.1 of [KKS85] show that the latter verify the
property that, when being applied pthom(e,Qx,y/x), they are concentrated in degree
0. Moreover, .Z is a (&x, &y )-bimodule. Indeed, such actions come from morphism
(2.7.6) and the integration morphism (3.1.1). We define similarly .#’ and 2"

Now consider two open subsets U,V and W of T*X , T Y, T+Z , respectively.

Ky yva the constant sheaf on (U x V) N A with stalk HRI'(U x V% %), extended by 0 elsewhere
K/ the constant sheaf on (V' x W) N A’ with stalk H'RT'(V x W, "), extended by 0 elsewhere
K/} wa the constant sheaf on (U x W) N Ao A’ with stalk H'RI'(U x W%, £"), extended by 0 elsewhere

Let s, s be sections of ['(U x V% .Z) and I'(V x W, £") respectively. We define the
product s- s to be the section of I'(U x W®; £"), image of 1 by the following sequence
of morphisms

CAOA/ ; CA (@] CA/
= Rp13, (p12:Ca © P33 Co')
— Rp131(Pron Kurxve @ pag Kysowe)
— Rpusy (proapphom(L, Qx wy)x) @ pag phom(L', Qy xz/v))
= uhom(L, QXXY/X) o ,uhom(L’, nyz/y) — "

where the first isomorphism comes from the assumption 3.1.3.

Lemma 3.1.3. Assume that conditions 3.1.2 and 3.1.3 are satisfied. Let s, s’ be sections
of T(U x V% %) and T(V x W, £") respectively, and let G € DP(Cy), H € D*(Cy).
Then,

(i) s defines a morphism

ag(s): Cp o phom(G, Oy)|y — phom(Lldy] oG, Ox)|u
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(ii) Considering the morphism
ap(s-s'): Chonr 0 phom(H, Oz)|w — phom(L[dy] o L'ldz| o H, Ox)|u
we have the isomorphism
an(s-s') ~ apyon(s) o e, (an(s))
Proof. (i) Given s and two objects G, Gy € DP(Cy), we have a morphism
Ca o phom(G1, Ga)|v — pphom(L o Gy, Qxxy/x © Ga)|u
corrresponding to the composition of morphisms:

an(CA ®p5a1uh0m(G17 G2)|V) N Rpu(KUxVa ®p2]1,uh0m(G1, G2)|V)
(3.1.4) = Rpu(uhom(L, Qxxyyx) @ pyt phom(Ga, Ga)lv)
— phom(L o Gy, Qxxy/x 0 Ga)lu

where the second morphism comes from the natural morphism Ky xye — phom(L, Qxxy/x)-
We conclude by choosing, G; = G, G2 = Oy and by using Lemma 3.1.1:

phom(L oGy, Qxxy/x 0 Oy) — phom(L oGy, Ox[—dy]) =% phom(Lldy]o G, Ox)

(ii) Let H € D?(Cz). We denote by 5 := phom(H, Oy). 1t suffices to prove that the
following diagram commutes:
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12

(CAOCA/)O% CAO(CA’O%>
CroCp o CroK'o?

CI)CA (OcH (S/))

KoK'o ,%” Ca o phom(L', Qywzyy) 0 H

@  Caopuhom(L o H,Qyzpy 0 O7)

Iz

."n,_._‘a(&s’) N

Ca o phom(L'[dz] o H, Oy )

Ko uhom(L’, nyz/y) o IZ

K o phom(L'[dz) & H, Oy)

..._:::EaL/ [dZ] oH (S)

J o
phom(L, Qx .y x) o phom (L', Qyy z/y) © 4%”—Z>uh0m(L__?. Qxxy/x) o ,uhom([é/[dz] o H,Oy)

©  whom(LoL[dz) o H,Qxxy/x © Oy)

J Y

Fro oy
’ phom(L|dy] o L'[dz] o H, Ox)

phom(Lo L' o H,Qxxy/x © Qyxz/y © Oz)

where we omitted the subscript U x V* and V x W® H, L'[dz] o H for Kyxya,
Ky wwas OH, Q'1/[dyoH, Tespectively.

We know from Theorem 2.7.2 that the operation o is functorial, so that diagram
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A and B commute. For instance, diagram A decomposes this way:

~

CAOCA/O% — CAO<CA’O%)

Cpro K' ot —Cyp o pphom(L', Qyz/y) © H = Cy o (phom(L/, Qywzyy) o )
Jy

Ca o phom(L'ldz] o H, Oy)

KoK' o — K o phom(L',Qyxz/v) o%LKouhom([/[dZ] o H,Oy)

Besides, diagram C' commutes by Lemma 3.1.2.

Finally, the bottom diagonal punctured line correponds to a(s - §'), since the
following diagram commutes

Cponr — > Cp 0 Cy

K({/[XWa - ,uhom(L ©) L/[dy], QXXZ/X)

]

Remark 3.1.4. In the following of this thesis, unless necessary, we will omit the sub-
sript for a.

Theorem 3.1.5. Let s € T'(U x V% %), G € D®(Cy). Then,
(i) s defines a morphism

(3.1.5) a(s): Cp o phom(G, Oy)|y — phom(Lldy] oG, Ox)|y.

(11) Moreover, if P € I'(U; &x) and Q € I'(V; &y) satisfy P-s = s-Q, then the diagram

below commutes

a(s)

(3.1.6) Ca o phom(G, Oy ) phom(L[dy]o G, Ox)
oc, (a(Q)) la(p)

Ca o phom(G, Oy ) phom(L[dy]o G, Ox).

a(s)

Proof. (i) is already proven in Lemma 3.1.3.
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(ii) With regards to the notation of Lemma 3.1.3, we consider the triplet of manifolds
X, XY, A = Ca,, Z := phom(Ca,[—n],Qxxx/x). Then, the assumption 3.1.2 is
satisfied and noticing that ®¢ Ay = Idx, we conclude by Lemma 3.1.3 that

a(P)oa(s) ~a(P-s)~a(s Q) ~ a(s) o Pc, (a(Q))

3.2 Main theorem

In this section, we will apply Theorem 3.1.5 when we are given a homogeneous sym-
plectic isomorphism. Consider two complex manifolds X and Y of the same dimension
n, open subsets U and V' of T*X and T *Y, respectively, A a smooth closed Lagrangian
submanifold of U x V' and assume that the projections p;|x and p§|s induce isomor-
phisms, hence a homogeneous symplectic isomorphism y: U == V:

(3.2.1) ACUxVe
> s
T*X>U - VT

We consider a perverse sheaf L on X x Y satisfying
(3.2.2) (pr (U)Ups (V) NSS(L) = A.
and a section s in I'(U x V' phom(L, Qxxy/x)).

Let G € D(Cy). From Theorem 3.1.5 (i), the left composition by s defines the
morphism a(s) in DP(Cy):

(3.2.3) Ca o hom(G, &)y 25 phom(Lin] o G, 6x)|v

The condition (3.2.2) implies that supp(uhom(L, Qxxy)x)|pa-1)) C A. Since, py
is an isomorphism from A to U and that x o pi[s = p$|a, we get a morphism in DP(Cy)

(3.2.4) X Lphom(G, 6 v 255 phom(® 1, (G), Ox)|u

Theorem 3.2.1. Assume that the section s is non-degenerate on A. Then, for G €
DP(Cy), we have the following isomorphism in D(Cy)

(3.2.5) X phom(G, Oy )|y =2 phom (@, (G), Ox)|u

Moreover, this isomorphism is compatible with the action of & and &x on the left and
right side of (3.2.5) respectively.
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Proof. Let us first prove the following lemma, whose proof is available at the level of
germs in [KS90, Th. 11.4.9].

Let us prove that the morphism (3.2.4) is an isomorphism. Let L* be the perverse
sheaf r'Rom (L, wxxy,y) where r is the map X xY =Y x X, (z,y) — (y,z). Let
s" be a section of phom(L*,Qy . x/y ), non-degenerate on r(A), then we apply the same
precedent construction to get a natural morphism

X*MhOW(CI)L[n](G), ﬁX)|U — ,uhom(CI)L*[n] o) q)L[n}Gy ﬁy)h/ ~ ,uhom(q)L*oL[n]G, ﬁy)|v

We know from [KS90, Th. 7.2.1] that Cao, ~ L* o L, so that we get a morphism in
D"(Cy)

(3.2.6) Xetthom(® L (G), Ox) w2 phom(G, 64|y

We must prove that (3.2.4) and (3.2.6) are inverse to each other. By Lemma 3.1.3(ii),
we get that the composition of these two morphisms is a(s’ - s), with s" - s € &x.

For any left &x-module .#, corresponds a right &x-module Qx g, A . Fixing a
non-degenerate form tx of Qx|y (resp. ty of Qy|y), we apply now Theorem 2.3.3: s
and s’ are non-degenerate sections so that (&xxy|uxve,tx ®s) and (Ey xx|vaxy, s @ty)
are simple and so isomorphic to (p;'&x|y,1) ~ (P Ev|v,1). Qx resp. Qy being
invertible &x-module resp. Oy-module, we get as well for the left-right (&x|v, &y |v)
bi-module, resp. left-right (&y |y, &x|v) bi-module generated by s resp. s, that they
are both isomorphic to p;'&x|v ~ pd & |v.

Then, following the proof of [KS90, Th. 11.4.9], s and s’, define ring isomorphisms
associating to each P € &x(U), P’ € &x(U), some Q € & (V), Q' € & (V), such
that P-s=s-Q, s+ P' =@ - ¢, respectively. Hence, we get that a(s’) o a(s) is an
automorphism phom(G, Oy )|y, defined by the left action of s’ - s € &x. Hence, we can
choose s’ so that a(s’) o a(s) is the identity.

We are now in a position to prove Theorem 3.2.1: we constructed in the proof of
the lemma, for each P € p;'&x |y, some Q € py &y |y such that P-s = s-Q and we
can apply Theorem 3.1.5 to conclude. O
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Radon transform for sheaves

We are going to apply the results of the last chapter to the case of projective duality.

4.1 Projective duality: geometry

4.1.1 Notations

We refer to the notations of the sections 1.3 and 2.1. We recall that we denote by

V, V, an (n + 1)-dimensional real and complex vector space, respectively,
P, P, the n—dimensional real and complex projective space, respectively,

S, S, the real and complex incidence hypersurface in P x P*, P x P*, respectively.

When necessary, we will enforce the dimension by noting P,,, resp. P.

In this section, k denotes either the field R or C.

Let X, Y be complex manifolds, we recall that we denote by ¢; and ¢ the respective
projection of X x Y on each of its factor.

For K € DP(Cxy), we recall that we defined the functor:

Dy Db(Cx) — Db(Cy)
F s Rgn(K @ ¢ 'F)

For an integer k and € € Z/2Z, we note k* = —n—1—k and ¢* = —n—1—¢ mod(2).
We refer to Section 1.3 for the definition of the sheaves of twisted microfunctions

Cgp({f, k’), Cgp* (8*, k}*)

4.1.2 Geometry of projective duality

For a manifold X, we denote by P*X the projectivization of the cotangent bundle of
X. Let us prove the following:

45



46 CHAPTER 4. RADON TRANSFORM FOR SHEAVES

Proposition 4.1.1. There is an homogeneous complex symplectic isomorphism
(4.1.1) T*P ~ T*P*
and a contact isomorphism
(4.1.2) PP ~ S~ P*P*
Proof. We have the natural morphism
v\{0} &P

According to 2.3.2, this morphism, after removing the zero section, induces the following
diagram

T*(V\ {0}) <2V \ {0} xp T*P —T"P

| |

V\ {0} P

We notice that ?p" is an immersion. Let us denote by H, H*, the incidence hypersurfaces:

H={(§ ) e Vi x (V\{0}); (€, z) = 0}
H* = {(2,€) € Vx (V' \ {0}); (x,€) = 0}

Noticing that for x € V\ {0}, p is constant along the fiber above p(x), we see that p’ is

an immersion into the incidence hypersurface H. Besides, ‘o’ is a morphism of fibered

space and so, by a dimensional argument, we conclude that this immersion is also onto.
Removing the zero sections, we get the diagram

TP

(4.1.3) T*(V\ {0}) )T V\ {0} xp T*P
T*(V*\ {0}) =<—H* < (V*\ {0}) xp- T*P* —=T*P*

where the isomophism between H and H* follows from the following symplectic isomor-
phism:

T (VA{0}) =TV \ {0})
(m,f) = (gv —$)
Now, taking the quotient by the action of C* on both sides of the isomorphism between
(V\{0}) xp T*P and (V*\ {0}) xp« T*P*, we get the isomorphism:
T*P ~ (V*\ {0}) xp+ P*P* ~ T*P*

This gives (4.1.1).
Besides, passing to the quotient by the action of C* x C* on the two central columns
of diagram (4.1.3), we get (4.1.2). O
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Proposition 4.1.2. Consider the double fibrations
T5(P x P)
(4.1.4) - .

a

p1 23

TP ~ s T*P*

X

Then, p1 and p} are isomorphisms and x = p% o p;' is a homogeneous symplectic
1somorphism.

Proof. In the proof Proposition 4.1.1, we have proved that (V\{0})xp7"*P is isomorphic
to the incidence hypersurface of (V*\ {0}) x (V\ {0}). Taking the quotient on the
incidence hypersurface with respect to V, we get the tautological line bundle over S
with respect to the V variable. Hence, we have

T*P ~ (V\ {0} x P) x5 S

and similarly, taking the quotient with respect to V*, we get tautological line bundle
over S with respect to the V* variable, we get

T*P* ~ S xg (V*\ {0} x P*)
But these tautological line bundles are both isomorphic to 75(P x P*). O
Now, we are going to prove the following
Proposition 4.1.3. The diagram 4.1.4 induces
T5(P x P*) N (THP x T%.P%)
- P1 5

TP ~ s TP

X

Proof. The embedding of P, P* into their compexification P, P* induces an isomorphism
THP ~ iT*P, T%.P* ~ {T*P*
Besides, we have the isomoprhism
T5P x PN (THP X T%5.P*) = iT%5(P x P*)

Indeed, let (29,&) € Px P* and ¢ € (T'§(P xP*)),¢- Inlocal coordinates (z,§) € P x
P*, ¢ vanishes on any vector (u,v) belonging to the kernel of the 1-form, w = {dz +xd§.

Then (Ru, Rv) € T'S, and (Imwu, Imv) € T'S. Assume now, ¢ € (T5P)., X (T'5.P*)e,,
then ¢ vanishes on vector of type ((u),R(v)) and so is pure imaginary and vanishes

on (Imu,Imv) € T'S. Hence, ¢ € @T*S(P X P*). From Proposition 4.1.2, we get the
isomorphisms:

TP~ iT*P o~ iT5(P x P*) =~ T5(P x P*) N (T%P x T%5.P*) ~ T'%,.P*
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4.2 Projective duality for microdifferential opera-
tors
Let k, k' be integers and € € Z/2Z. We follow the notations of the sections 1.3 and 4.2.

We define similarly a twisted version of @gﬁ;ox) p and ‘KS(HD’OX)P*.
We set

%én,())(k;, k") — QQ_IOP* (l{j/) ®q;1(9p* %S\PXP* ®q;10p ql_l(op(k;) ®OP QP)
and the (8p(—Fk, k), &p«(—k*, k*))-module
Coper (k. K') = E B . (k,K)

We notice that &p(—Fk, k) is nothing but Op(—k)D ® 1p-1ppép & rp-1p.POp (k).
According to the diagram 4.1.4, we denoted by x the homogeneous symplectic isomor-
phism

X = P2ligppey © Pl (PxP*)

We have:

Theorem 4.2.1 ([DS96, p. 469]). Assume —n—1 < k < 0. There ezists a section s of
phom(Cs[—1], Qpyp+/p-(—k, k*)), non-degenerate on T5(P x P*).

Proof. From the exact sequence:
(4.2.1) 0— C(pxp*)\s — Cpxp* — CS —0

we get the natural morphism

RI((P x P*)\'S; Qpype o (—k, k%)) — RIs(P x P*; Qpype o (—k, k))]1]
~ RI'(P x P*; Rs#om (Cs; Qpxp+ /p+ (=K, k*)))[l]
r~ RF(T*(P x P*); whom(Cg; Qpyp+ p- (—k, k*)))[1]
— RI(T*(P x P*); phom(Cs[—1]; Qpyp+ /p« (—k, k*)))

Let z = (2o, ..., z») be a system of homogeneous coordinates on P and ¢ = ({, .., (»)
the dual coordinates on P*. As explained in [DS96], a non-degenerate section is provided
by the Leray section, defined for (z,£) € (P x P*)\ S by

w'(2)
(z,C)n+1+k

(4.2.2) s(z,Q) =

where w’'(z) is the Leray form w'(z) = > 1_o(=1)*zkd20/ ... Adzg—1 Adzpia A - .. Adzy,
Leray [Lerb9. O

Let s be a section of H'(uhom(Cs[—1], Qpxp«/p+(—Fk, k*))), non-degenerate on T3 (Px
P*).
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Theorem 4.2.2. Assume —n—1 < k < 0. Then, we have an isomorphism in Db(CT*P)

BL(Ep(—h, )| 5.p) = G (7, )
X*Cgop(_ku k) T*p = gp*(_k*u k*)

’j“*P*

Fepe
Proof. Let F, G be line bundles on P, and P* respectively We know from [SKK] that

a global non-degenerate section s € F(T*P x T*P*: (KSFPOX)P* Byp1g EF ® o5 o g®‘1<5")
induces an isomorphism of &-modules

Ps(

p) =

Now, let us set F = Op( ), G = (’)p (k*). Then, 4.2.1 provides such a non-degenerate
section in T(T*P x T*P*; gm0 ®y-1g, E0p(k) ® Op*(k*)®_lé°‘). So that, we

S|PxP*

T p

have an isomorphism

s (p (=K, k)l .p

) & G (—K*, )

j"*p*

On the other hand s is a non-degenerate section of Cfs‘npgp*( k, k*), hence we can apply
Theorem 2.3.3. Let us denote by

S (koK) 1= Ep(—k, k) By 10y, o0 Spr(—H°, K)
Theorem 2.3.3 gives the following isomorphisms

&p(—k, k) Pep = p1.(Epxps (K, k7).5) 7
P2, (Epxpe(k, k7).5) ~ Ep+(—k", K7)

P

Tp TP

And so

X«Ep(—k. k)|

~ Epe(— K", )

T+P TP

4.3 Projective duality for microfunctions

Let U and V be open sets of respectively 7*P and T*P* such that y(U) = V. Let us
denote by A the conic lagragian set

A= (UxVYNTEP x PY)

In order to prove Proposition 4.3.3 below, we will use the following theorem proven
in [KS90, Th. 7.2.1], stated inthere for smooth manifolds.
Theorem 4.3.1 ([KS90, Th. 7.2.1]). Let K € D*(P x P*) and assume that

(1) K is cohomologically constructible

(ii) (py " (U) U (p§) (V) N SS(K) C A
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(#i) the natural morphism Cy — phom(K, K)|a is an isomorphism.
Then for any Fy, Fy € DP(P;U), the natural morphism

X*,ufiom(Fl, FQ) — uﬁom(q)K(Fl), (I)K(FQ))
is an isomorphism in D°(P*; V).

In the following, we will denote by K the object Csln — 1]. In order to prove
Proposition 4.3.3, we will need to compute ®x(Cp(1)). Though we provide an alternate
proof, the following Lemma is also proved in [DS96].

Lemma 4.3.2. We have

Cp«(1) , for n odd
Cp\p+[1] , for n even

i(Cr(1)) = {

and

Cps , forj=n-—1
Cp-\p+, for j = =1 and n odd
Cp«(1), for j =0 and n even
0 wn any other case

(@ (Cp(0))) =

Proof. We will only treat the computation of ®x(Cp(e)), e = 1. We have:

K ® ¢ (Cp(1)) ~ Cs[n — 1] ® Cpyp-(1)

(4.3.1) ~ C(pxp+yns(1)[n — 1]

where Cpyp-(1) denotes the exterior product Cp(1) X Cp-, and Cipyp-)ns(1l) =
Cpup(1) ®Cs.
Let us compute the stalks of ®x(Cp). For £ € P*, we have

P (Cp)e = (Rga(Cipxpryns)[n — 1])e

Noticing that (P x {{}) NS is the (n — 1)-dimensional real projective space, we have

ch(qgl({f}% C(PxP*)ms) = ch(qgl({f}); C(Px{g})ms)
~ RFC(PN, Cpnil)
= RFC(Pnfl; CPn,1>

For £ € P*\ P*, (P x {{}) NS is the intersection of two real projective spaces of
dimension (n — 1), so that

ch(fb_l({f}); C(PxP*)mS) = ch(Pm CPnfz)
= RFC(PTL72; CPn_g)

We conclude by using real projective spaces cohomology classical computation: all
constant sheaf cohomology groups vanish for degree ranging from 1 to n — 1, and one
have to distinguishes between n being even or odd.
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For n even, we have

RT.(P,_1;Cp,_,)~C[0] & C[1 — n]
RT.(P,_5;Cp, ) =~

so that

- JClo]@Cln — 1], for § € P
Pk (Cp)e ~ {C[n — 1], for £ € P*\ P*

For n odd, we have

ch(Pnfl; CPn_1>
ch(Pan; CPn,z)

[0]
[0] ® C[2 — n]

OO0

~
~

so that

N C[n—l],fOI“fEP*
P (Cp)e =~ {C[l] ®C[n — 1), for £ € P*\ P*

We recall that the sheaf of Cp(1) is defined by the following exact sequence
0—Cp(1) = q¢Cs 2 Cp—0

where P is the n-sphere, ¢ is the 2 : 1 fibered map P P.
We note ¢ the embedding P — P. We have the following diagram:

15><P*

o
N /W

L

Let us compute @ (7.¢:Cp)e, £ € P*. Still denoting SN (P x P*) by S and denoting
¢ 'S by S, we have

D (i RqCp) := Rgn(Cs[n — 1] ® ¢y 'i.RqiCp)
~ Ry (Cs[n — 1] ® jug; ' RaiCp)
~ Rgnj.(Cs[n — 1] ® ¢; ' Ra:Cp)
~ Rgj.(Cs[n — 1] ® Rqg; 'Cp)
~ Rgyj.(Cs[n — 1] ® RgCp,p.)
~ Rgxj.Rq(Cg[n — 1])
~ R(gz 0 j © ¢)i(Cg[n — 1])
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where we used that for the closed embedding ¢, j, the push-forward and proper direct
image are isomorphic. Now, SN (gs 0 j 0 q)~'({¢}) are the real (n — 1)-sphere and the
real (n — 2)-sphere, when £ € P* and £ € P*\ P*, respectively. From the well-known
cohomology of spheres, we get that:

_ JClo]@Cln—1], for & € P
Py (RgCp)e ~ {C[l] @ Cln — 1], for £ € P*\ P*

Consider the distinguished triangle,
O (Cp(1)) — Px(RgCp) —— P (Cp) ——

we deduce that, for n even,

_JO, for e P
P (Cpl1))e = {cm, for ¢ € P*\ P*

For n odd,

f *
Pk (Cp(1))e ~ {(():,[(2)} (grEgFi ]\DP*

So that, for n even, ®x(Cp(1)) is a locally constant sheaf, with stalks C on P*\ P*,
concentrated in degree 1, and for n odd, a locally constant sheaf with stalks C on P*,
concentrated in degree 0.

Now, to conclude, we refer to [DS96, Coro. 5.15], where it is shown in particular that
Hom(®x(Cp(1)),Cp(1)) is isomorphic to 0 for n even and C for n odd. And so, since
there are only 2 locally constant sheaves on P*, namely Cp« and Cp«(1), we conclude
that for n odd, ®x(Cp(1)) is precisely Cp(1). Besides, for n > 2 and even, P*\ P* is
contractible, so that ®x(Cp(1)) is precisely Cp-\p+[1].

O

Theorem 4.3.3. Assume —m — 1 < k < 0. Recall that any section s € T'(P X
P %’én’o)(—k, k*)), defines a morphism in Db(CTP)

(4.3.2) -Cp(e, k)

Q."*PP — Cgp* (5*, k*)

T%.P*
Assume s is non-degenerate on TE(P x P*). Then (4.3.2) is an isomorphism. More-
over, there exists such a non-degenerate section.
Remark 4.3.4. (i) This is a refinement of a general theorem of [SKK] and is a
microlocal version of Theorem 5.17 in [DS96].

(ii) The classical Radon transform deals with the case where k = —n, k* = —1.

Proof. We will deal with the case ¢ = 1 and n even, the complementary cases being
proven the same way. Let us apply Theorem 4.3.1 in the following particular case
-U=T*P,V=T*P", A=T%(P x P*).
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- K is Csn — 1.

- F; =Cp(1) and F» = Op(k)

K verifies conditions (i),(ii),(iii) of Theorem 4.3.1

(i) is fulfilled as the constant sheaf on a closed submanifold of a manifold is coho-
mologically constructible.

(ii) is fulfilled since SS(Cs) is nothing but T4 (P x P*).

(iii) Crz(pxpry — phom(Cs, Cs) is an isomorphism on T (P x P*) (this follows from
the fact that for a closed submanifold Z of a manifold X, uz(Cz) = Cr;x, see [KS90,
Prop. 4.4.3)).

By a fundamental result in [DS96, Th 5.17], we know that for —n — 1 < k < 0,
a section s € I'(P x P*;%én’o)(—k, k*)), non-degenerate on Tg(P x P*), induces an
isomorphism

Pk (Op(k)) = Op- (k")

(see Appendix 6.1.1 for a sketch of the proof). Formula (4.2.2) provides an example of
such a non-degenerate section. Hence, applying Lemma 4.3.2, Theorem 4.3.1 gives:

Xethom(Cp(1), Op(k) 5. = phom(Corp- [1], Op- (i)

CZ.—’*P*
We have the exact sequence:
(433) 0— CP*\P* — Cpx — Cpx — 0

Now, for any F' € D?(Cp-), we have

. ) C(S8(Cp-)NT*P)NSS(F) =@

T *Pp*

supp(phom(Cps«, F')
and hence,

phom(Cp-, F) ~(

7"’*P*

Applying the phom functor to 4.3.3, we get
phom(Cps\ px, F')

#-pe[—1] = phom(Cp-, F)

'I.“*P*

Hence, we have proved in particular that

X*,uﬁ()m(Cp(l), Op(l{)) 'l.”jgp ~ uﬁom(Cp*, Op* (k*))

1%, P*

4.4 Main results

We follow the notations of Section 1.3 and Section 2.1.
Let us consider the situation (4.1.4), where we denoted by x the homogeneous

symplectic isomorphism between T*P and T*P* through T'§(P x P*). We set
L= Cs[—l]
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Then L is a perverse sheaf satisfying
(4.4.1) (prH(T*P) U s (T*P*)) N SS(L) = T'5(P x P*)

Recall Theorem 4.2.1, and let s be a section of phom(Cs[—1], Qpxp/p+(—k, k*)),
non-degenerate on 7' (P x P*). We are in situation to apply Theorem 3.2.1.

Theorem 4.4.1. Let G € DP(Cp-), k an integer. Assume —n — 1 < k < 0. Then, we

b .
have an isomorphism in D*(C, __):

(4.4.2) X phom(G, Op-(K*)) =% phom(®cgn-1)(G), Op(k))

This isomorphism is compatible with the action of &p-(—k*, k*) and &p(—k, k) on the
left and right side of (4.4.2) respectively.

Proof. The isomorphism is d1rect1y provided by Theorem 3.2.1 in the situation where,

using the notation inthere, U = T*P, V = T*P* and A = T'% $(P x P*) and where we
twist by homogenous line bundles of P, P* as explained below.

Let us adapt (3.2.5) by taking into account the twist by homogeneous line bundles.
We follow the exact same reasoning than sections of 3.1 and 3.2.

We have the natural morphism

Qp /o (=K', k) © p- (k) ] = O(h).
Indeed, we have
Qoo k", ) 0 O (k) [n] = Ry (Ope o k", ) 8 10, 65U © 03" O (k)]
= R (Op- e (£,0) ©, 100, 65 [n] 1> On(h)

Given this morphism and considering .2 := phom(Cs[—1], Qp-xp/p(—k*, k)), we
mimic the proof of Theorem 3.1.5 so that for a section s of £ on TP x T*P*@ and
for P € I'(T*P; &p(—k, k)) and Q € ['(T*P*; &p«(—k*, k*)) satisfying P -s = s - @, the

diagram below commutes:

(4.4.3)
Cs o phom(G, Op«(k*)) Fi,pe T>ph0m(CS[n —1]o G, Op(k))|. Fip
<I>cs(a(Q))L a(P)l
Cs o phom(G, Op«(k*)) Fu,pe Tuhom(Cs[n — 1] oG, Op(k)) Fip

From there, given a non-degenerate section of . on T*S(P x P*), Theorem 3.2.1 gives
the compatible action of micro-differential operators on each side of the isomorphism

(4.4.2)
X~ phom(G, Op- (k*))

=5 phom(QPegpn-11(G), Op (k)|

1%, P 74P



4.4. MAIN RESULTS 95

It remains to exhibit a non-degenerate section so that, for P € F(T*P; Ep(—k, k)),
there is ) € F(T*P*;(g’p*(—k*,k*)) such that P-s = s- (. Precisely, s is given by
Proposition 4.2.1. O

Specializing the above proposition, we get
Corollary 4.4.2. Let e € Z/2Z. In the situation of Proposition 4.4.1, we have the iso-
morphism, compatible with the respective action of py *ép(—k, k) and pd~*&p-(—k*, k*)

X*(KP(E, k)

’j""jap = (gp*(g*7 k*>|j_,* p*

pP*

Proof. This is an immediate consequence of Proposition 4.4.1, where we consider the
special case G = Cp«(¢*). Indeed, we have, from Lemma 4.3.2, the isomorphism in

D"(Cp-; T*P¥)

Cs[n — 1] oCp«(e*) ~ Cp(e)

We can state now

Corollary 4.4.3. Let k be an integer. Let N be a coherent &p(—k,k)-module and

F € DP(P). Assume —n — 1 < k < 0. Then, we have an isomorphism in Db(Cf*P)

x«RAom g (— 1o iy (N, phom(F, Op(k))) ~
RAtom g,. (— 1) (PE(N), phom((Pegjn—1)F, Op+ (k*)))

Proof. 1t suffices to prove this statement for finite free &p(—k, k)-modules, which in
turn can be reduced to the case where N' = &p(—k, k). By Theorem 4.2.2, we have

Ds(Ep(—k, k)

pop) 2= o (7 1)

’i“*P*

Then, by applying Proposition 4.4.1, we have

X«phom(F, Op(k))

~ R,%”om gp*(,k*,k*)(gp* (—k*, k*), ,uhom((q)cs[n,l]F, Op* (k*)))’

j"*P*

which proves the corollary. O]

j”*P*
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Chapter 5

Applications

5.1 Geometrical preliminaries

5.1.1 Radon transform for sets

Let g1, g2 denote the first and second projection of P x P* on each of its factor. For A
and B subsets of P and P*, we denote by A and B the subsets of P* and P respectively

02(q ' (A)NS)
¢1(g; ' (A) N S)

oy} T N

Of course, for £ € P*, {/5} is the hyperplane of P associated to £. We denote by A the
set

—

A:=P \(P\A)

and similarly for B.

We will say that A is affine if it is contained in a local chart of P. If A is affine, we
denote by Conv(A) the convex hull of A.

We have the following description of A and A:

Lemma 5.1.1. For A C P, we have
() A={ce P {gnA+o}
(i) A={¢ePri{eyca)

Proof. (i) By definition, £ € A if and only if there exists = € A, such that (z,§) € S,
and so if and only if there exists x € A, such that z € {{}.
(i) Indeed, from (i), we have that £ € A if and only if {¢} N (P\ A) = @. O

We have the following properties.
Lemma 5.1.2. For A C P, the following statements hold

57
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(i) If A+ @, then A= P.

Assume now that A is affine and connected. Then:

(iv) A=A

Proof. (i) Let x,y be two distinct element of P with o € A. Let H C P be any
hyperplane containing both z and y. Setting H = {f} for £ € P*, we have {{} C {x}

Since, y € {5}, we get that y € {x}
(ii) Assume A is a subset of E, a local chart of P. Let £ € Conv(A) and denote by

H be the hyperplan {{}. There exists z € Conv(A) such that z € H. Let x,y € A be
such that z € [z, y]. Since A is connected, [x,y] N H # & implies H N A # &, so that
we have & € A

/VVihave thus proved that, for any z,y € A, and any z € [z,y], Z C g, so that

Conv(A) C A. Now since, is increasing in the sense that A C B implies AcC E, we
have A C Conv(A).

(iii) The inclusion Conv(A) C A follows immedialtely from (i) and lemma 5.1.1
(ii). Let us prove the converse inclusion. Let x ¢ Conv(A) and consider [ a separation
hyperplane of {x} and A. There exists £ € P* such that {5} = H. Agaln by Lemma
5.1.1 (i), it suffices to prove that {¢} ¢ A. Indeed, in that case, {a:} N(P\A) + o

since it would contain {£} implying that x ¢ A.

Suppose that £ € A. Then, then there exists y € A such that £ € {/y\} However, the
latter fact means that y € H, implying that H N A # &, which leads to a contradiction.
(iv) Follows from (ii) and (iii). O

Remark 5.1.3. (i) Let H, be a hyperplane in P. For any non empty affine set

A C P\ Hy, we have A= Indeed, for any & € P*, £ has non empty
intersection with H..

(i) For two sets A, B C P, we have the obvious relation AU B = AUB. However, the
~ operation does not commute with the set-intersection operation. For instance,

consider z,y distinct elements of P, {x} N {y} is non empty since it contains any
¢ € P* whose associated hyperplane contains x and y.

In the following, we will be essentially interested in linearly concave domains.

Definition 5.1.4. A set A C P is linearly concave if there exists a set B C P* such
that A = B. Moreover, if B is connected, A is said to be strongly linearly concave.

We have the simple lemma:
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Lemma 5.1.5. Let A be a subset of P. Then A is a linearly concave if and only if
A=A

Proof. Let B C P* such that A = B. By lemma 5.1.2 (iv), we have the follwing
equalities:

—B=A

ool

A=

The converse statement is obvious. O]

5.1.2 Sheaves associated with some locally closed subsets

Let X,Y be two real analytic manifolds of dimension n, S a closed submanifold of
X XY of codimension ¢. We note X <~ X xY & Y the projections, j the closed
embedding S <— X x Y. We denote by f, g the restrictions of ¢;, g2 to S:

S
N
X Y
_ We assume that f and g are smooth and proper. For A C X, B C Y, we still note
A= g(f~'(4), B = f(g7(B)).

Definition 5.1.6. [DS96] Let Z be a locally closed subset of X. One says that Z is
S-trivial if for any y € Z, g~ '({y}) has trivial cohomology in the sense that

(5.1.1) k = RE(g ({y})i ky-1(2))
Refering to the notations of section 2.5, recall that for F' € DP(Cy), we defined
Dg(F) :=Rgif ' Flds)y]
Lemma 5.1.7. For F € DP(ky), we have
®s(F) = Raay(ks ® ¢ ' F)[n — ]
Proof. We have

Rof'F ~Rg(j 'q;'F)
~ Rgn(Rjij gy ' F
~ Rgoy((q1 ' F)j.s)
~ Rgo(kj.s ® ¢, 'F)
]

Here are some conditions under which the Radon transform of locally constant
sheaves on some locally closed set A C X, is the constant sheaf on A with some shift
in degrees.
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Lemma 5.1.8 ([DS94, Lem 2.8]). (i) Let U be an S-trivial open subset of X, then
(5.1.2) Ps(ky) ~ kgl —n]

(ii) Let K be a S-trivial compact subset of X, then
(5.1.3) Ps(kg) ~ kgpn —
[l

5.2 An application of the Holmgren-Kashiwara the-
orem

Let M be a real analytic manifold, X a complexification of M. In the sequel, we
identify the conormal bundle 773, X and ¢7*M. We denote by %, the sheaf of Sato’s
hyperfunctions on M, by B(M) the vector space I'(M; ABy;), and for u € B(M), we
denote by W F(u) its analytic wave front set, a closed conic subset of T, X. Let us first
recall an unpublished result due to M. Kashiwara, proven in Hormander [Hor83] Th.
8.5.6.

Theorem 5.2.1. Let M be a real analytic manifold and let f : M — R be a €1
function. Let xog € M with f(xg) =0 and df (x¢) # 0 and let U = {x € M; f(z) < 0}.
Let uw € B(M) satisfying u|U = 0 and zo € supp(u). Then xi.df (x¢) € WF(u).

From this result, we deduce the following. Let V' be a real finite dimensional vector
space, V* its dual, and set V*= V*\ {0}. We denote by S the incidence variety of

V x V*. Let w C Q be convex open subsets of V. For (z,£) € V x V*, we denote by
H, ¢ the hyperplane passing through x and of conormal {. Let us consider the set

Z ={(x,i€) € V xiV*(2,6) € S, Hpe NV # @, Hye Nw = &}
Then one have the following theorem

Theorem 5.2.2. Let u € B(N2) and assume that uw =0 on w and that WF(u)NZ = @.
Then u = 0.

Proof. We will mimic the proof of [H6r83, Th. 8.6.8]. Let y € Q and = € w and denote
by I the segment joining y and z. Then, as explicited in [Hér83, Th. 8.6.8], one can find
an open convex set X € w such that for any (z,&) € WF(u)NZ such that H, NI # &,
then H, NX # @. Fort € [0,1], let us denote by Y; the convex hull of X and the point
yy =tz + (1 — t)y. For small enough ¢, y, € X, so that Y; = X and uly, = 0. Let T be
Supyejo 1 tuly, = 0}. We want to prove that 7' = 1. We have that uly, = 0 with yr ¢ w.
Let us consider a supporting hyperplane H of Y. If yr € H, then WF(u) N Z = &,
since H does not intersect X. If yr ¢ H, then HNY7 € U. It follows from [Hoér83, Th.
8.5.8] and Theorem 5.2.1 that 0Yy N supp(u) = &, and so that T = 1 and u vanishes
in the neighborhood of y.

[
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We are going to apply Theorem 5.2.2 to prove a refinement of the “edge-of-the-
wedge” theorem, due to Kolm and Nagel [KN68], (we refer also to Vladimirov [V1a61],
Martineau [Mar68]).

Let K be a convex compact set of V and let a,b € V', we define

—

re =v\{ank

which is the affine cone, union of hyperplanes passing through a with empty inter-
section with K.

Let A be a subset of V. We define

F%’b, the connected component of T'% N T containing the segment la, b,

a,b
Convg A = Ugpeal',

Z ={(x,i€) € V xiV*(x,§) € S,H,e N K = &}

Corollary 5.2.3. Let w be an open convex set in V \ K. Let uw € B(V) such that
uly = 0. We assume that WF(u) N Z = &. Then u vanishes on Convg(w).

Proof. This is a direct application of theoreom 5.2.2 where we set (2 = Conv K (w) since
we verify that for any x € Convg(w) and (z,i) € Z, Hye Nw = . O

5.3 Hyperfunctions whose Radon transfom vanishes
in linearly concave domains

5.3.1 Notations

Let us fix some notations. Let k be an integer, ¢ € Z/2Z. We will assume in this
chapter that 0 < k < —n — 1. For a real analytic manifold M and its complexfication
X, let my; denote the projection T3, X — M. Denote by P*M the projectivisation of

the cotangent bundle of M, and by pj; the projection T*M — P*M.
As usual, P and P* will denote the real dimension projective space and its dual,

and S the incidence submanifold of P x P*. We denote by p; and py the isomorphisms
P*P ~ P§(P x P*) >~ P*P*, and we will identify S to P&(P x P*) (cf. remark following
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Proposition 4.1.1). Let us consider the following situation:

“(P x P*)
/ \

y T P
pp P§(P x P*) pp
P*P P*

P P

Let €2 be a non empty linearly concave domain strictly contained in P. We denote by

= (X Q)N S)) cT*P

= ppl (2 x Q)N S)) c T*P*
We notice that

= o' (31 ({(z,€) € S;2 € Q, {z} CEC Q}))

T=x()
In the following, we will identify ¢.7*P ~ T3P and ¢.7* P* ~ T}.P*.

5.3.2 Application of projective duality for microfunctions

We shall follow the notations of Section 1.3. Let k£ be an integer with —n —1 < k£ < 0.
In all this section, we will set

s € T(T5(P x P*); hom(Cs[1], Qpp- p- (—k, k¥)))
Assume s is non-degenerate on T%(P x P*). Theorem 4.2.1 provides such a section.

Let U an open subset of P. Let f be a section of #p(e, k)(U). As defined in 1.3.6,
Rad(f) is the image of f by the sequence of morphisms:

Bp(e.k)(U) —— Gp(e k)(THP) —== €p- (", k") (X(T7P))

Lemma 5.3.1. Let 2 C P be a non empty linearly concave domain. Then,
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(i) () =9

i) *=17T%P
(i) 5

Proof. (i) B{lemma 5.1.5, we havi Q= 5, so that for any x € (2, there exists an
element & € (2 such that x € £ and £ C . And so, = € mp( )

(i) For ¢ € ©, the fiber tis ppe (P2({(€,2) € P*P*; {z} C £ C Q})) which is T*Pg
So, after identifying In the following ¢.7* P* ~ T}.P*, we get * = TiQP* O]

Remark 5.3.2. Let f € Bp(e, k)(2). It follows immediately from (ii) of the above
lemma that Rad(f)| » may be viewed as an element of Bp-(e*, k*)/ Ap-(*, k*) (). We

will denote this element by Rad(f )|\Q

We have:

Proposition 5.3.3. Let Q2 C P be a non empty linearly concave domain and let f €
PBp(e,k)(Q2). Then, we have

WE(f)n = x "' (WF(Rad(f)[))

Proof. For any integer —n — 1 < k < 0, Theorem 4.3.3 gives a sheaf isomorphism
between x.€p(e, k)|;. , and Ep-(c*, k") Thus, we have an isomorphism of C-
P

modules Cp (e, k)., () = Cp(e", k")

2.4.1, we have

TP

e P*( *). Recalling the isomorphism sp in
P*

WE(f)n = supp(sp(f)) N =x""(WF(Rad(f)) 0 ") =x""(WF(Rad(f)[5))

]

In the particular case of dimension n = 2, we denote by (¢, the union of complexi-
fication of the real lines contained in ). Assume (2 is strongly linearly concave domain
and let us consider an affine chart R2. Then, there are 2 connected components of
(Qc \ Q) NR?%, which we denote by Q. In this condition, we deduce immediatly:

Corollary 5.3.4. Assume that n = 2 and that W F(Rad(f)
boundary value of (fi, f_) respectively holomorphic in Q.

|§) = @. Then, [ is the

Remark 5.3.5. We recover a variant of a result of [Benll, Th 1.4]. Indeed, it was
proven therein that, if the Radon transform of a function f in R? with O(#) growth
at infinity, vanishes in a strongly linearly concave domain, then f is the boundary value
of holomorphic functions, verifying in their respective domains some growth conditions
at (’)(#) rate at infinity.
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5.4 Radon transform for quadratic cones

5.4.1 Residues of forms on cones of signature (1,7 — 1)
Notations

Let n > 2 and let A be an affine chart of P. For a cone v in A, we denote by 7° the
polar cone of ~:

7°i={z € A;{z,u) > 0,Vu € 7}

Let # = (x,...,x,) be a system of linear coordinates on A, u = (uy, ..., u,) the dual
coordinates on A*. For ¢ an integer such that 0 < g < n, we denote by -, the cone of
signature (¢,n — ¢) in A:

(5.4.1) vy = {(x1,...z,) € A; Z x? < Z x?}

1<j<q q+1<j<n

Aq 3:A\’Yq

and

Yy = (U, up) € AT Z uj < Z us}

q+1<j<n 1<j<q
* * *
Ay = A"\,

We denote by A, the complementary of 7, in A and similarly for A} in A"

Let us denote by DR, (C4-), the subcategory of DP(C4+) consisting of conic objects
with respect to the natural action of R. For F' € Dg,(Cy-), we denote by F" €
D} (C4) its Fourier-Sato transform.

Topological boundary morphism for cones of signature (¢,n — ¢)
Proposition 5.4.1. There is a natural morphism in D(C,)
(5.4.2) Cioy = Cylg + 1]
Proof. We have a natural mophism
Car = Cys

Let us apply on both sides the Fourier-Sato functor using [KS97, Lem. 6.2.1], we
get
(CA*)A ~ C{O}[—n]
(C)‘Z)/\ ~ C,\q[—n -+ CI]
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Hence, we get the natural morphism
Cioy — Cy, ld]

Given the distinguished triangle,

C, —>Cy—>Cy,

q

we have:
Ciop = C,lq) = Cyla + 1]
O]

Remark 5.4.2. The case of cones of signature (1,n — 1) can be handled in a more
constructive way. Indeed, the complementary set A\; of v; is the union of two closed
convex sets, let us say Al and A2

We have the two distinguished triangles:

1
(543) C/\%U)\% —_— C)\% @ C)\% C{O} +
(5.4.4) Cp,—=Ca——=Chp —=

From the triangles (5.4.3), (5.4.4), we get the morphisms:
Cioy — Corunz[1]
Cainz = G, [1]

Hence, we get:

(5.4.5) Ciop = Cy[2]

Application to hyperfunctions with wave-front set in (n-1,1)-signature cones

We recall that we denote by €4 the sheaf of microfunctions on T;A. For K be a compact
convex subset of A, we set

B(K) := lim B(U)

UDK

In the following, let us denote by 7 = ~; the cone of signature (1,n — 1) defined by
5.4.1, and by A\ = ); its complementary set in A, union of two closed convex sets, \!
and A2, Let Int(\"°), i = 1,2 be the interior of the polar sets \‘°.

Lemma 5.4.3. Let W be an open convex neighborhood of K in A. There exists a
natural exact sequence

(5.4.6)
0——=H"(W +i7;Op) —= B(W) — Hjj, 1 (A; On) D Hjy 2 (A; Oa) — 0
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Proof. From (5.4.3), we get

+1
CWJri()\%U)\%) - CWH)& @ CW+¢A§ Cw

Applying the functor RHom (e, Op) to this distinguished triangle, we get the long
exact sequence:

(5.4.7)- - Hy Lo (A On) @ Hi e (A On) —— Hir iy (A On) ——

W+iAl W+iA2

Hyy (A; Op) — Hyy i (A;O6) D Hy e (A; Op) — Hgv+z'(,\1uv) (A;Op) — -+

From the distinguished triangle (5.4.4), and taking into account that W + iA is
convex, RZom (Cyria, Op) ~ Owiia is concentrated in degree 0, and we get the
isomorphism

(5.4.8) H" (W + i3 On) = Hif L 12 (A On)

and
H" Y (W +i7; Oa) = Hipyiiaioaey (A Oa)
Since, 7 is a cone of signature (1,n — 1), H* Y(W +iy; Oa) ~ 0, and so
(5.4.9) Hiyyionuaey (A Oa) = 0

Noticing that Ry 10 (Oa), ¢ = 1,2, is concentrated in degree n, and applying 5.4.8,
5.4.9 to 5.4.7, we get the exact sequence (5.4.6) O

Theorem 5.4.4. Let K be a compact convexr subset of A. There exists a natural exact
sequence

0——lim H"2(K + iv/; Op) % B(K) —
,7/

Ca(K +i- Int(N°)) @ Ca(K +i - Int(A2°)) — 0

where 7' ranges over the open convex cones of signature (1,n — 1), with v C .

Proof. Let W be an open neighborhood of K in A.
Following [KS90, Th.4.3.2], we know that for an open convex cone V' C Tj,A, we
have the isomorphism

Ga(V) = lim H;(U; Op)

zZU

where Z and U range over respectively, the closed sets whose normal cone is contained
in the polar set of V', and the open subsets U of A such that 7(V) = U NW, 7 being
the natural projection of T*A onto A.
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Let U be an open neighborhood of K in A, 4/ an open cone of signature (1,n — 1),
with v/ D 7 and ' 4 = 1,2, the two convex closed sets the union of which, is the
complementary of 7/. Then, we get by the same steps as above the exact sequence:

0——H"((W+iy)NU;Op) —= B(W) —

n
H(W—i—i.)\l’)ﬂU

(A;Oa) D Hj; (A;Op) —0

(W+i.A2")nU

Passing to the inductive limit on W O K in A, U complex neighborhood of K, and ~/
ranges over the open convex cones of signature (1,n — 1), with v C 4/, which consiti-
tutes a fundamental system of neighborhoods, we deduce from the above sequence the
following exact sequence:

0—lim H"2((K + iv') N U; Op) —> B(K) —
v, U

Ca(K +1.Int(A\'°)) P €a(K + i.Int(N*°)) —=0
Indeed,
Ca(K +i.Int(N°)) = lim Ca(W + i Int(\'°))
- WDhlé,I'ly’,U H(nW“-Ai)ﬂU(A; On)

~ lim H(nWJri.,\;)mU(A? Oh)
WK AU

]

Remark 5.4.5. Theorem 5.4.4 brings a proof to a variant of a conjecture by Henkin in
[Hen04], which was formulated, without the assumption that K is a convex compact,
in the following way: the wave-front set of a hyperfunction has no intersection with
A° i = 1,2 if and only if it is the residue of a (0,n — 2)-form defined on K + iy and
O-closed inthere.

5.4.2 Residue diagram for Radon Transform and application
Residue on cones of signature (¢,n — q)

Let F' € DP(Cp) and suppose we are given a topological boundary morphism
Cp(e)[-n| = F
Then, we get the analytic boundary morphism
(5.4.10) phom(F, Op(k)) — phom(Cp(e)[—n], Op(k)) := €p(e, k)

Let £ be an integer with —n — 1 < k < 0. Let us set,

s € D(Tg(P x P*); phom(Cs[—1], Qpyp- jp(—Fk, k7))
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The following diagram commutes

(5.4.11) Xetthom(F, Op(k))| .., — = X.%p(e, k)

Radl l Rad

phom(®s(F), Op«(k*)) ——Cp+(e*, k*)

e px Res

T+P

j”*P*

Assume s is non-degenerate on TE(P x P*), then the vertical arrows Rad above are
isomorphisms.

Throughout the rest of this section, we will set s the section of 4.2.1, which provides
such a non-degenerate section.

We recall we denoted by A an affine chart of P.

Proposition 5.4.6. We have the natural morphism:
H" 9 'RT 4y (On) 2> B4
Proof. We already constructed the natural morphism (5.4.2):
(5.4.12) Cioy = Cy,lg + 1]
We deduce the morphism
Ca — Cavinglg+1]
O

Remark 5.4.7. The residue 5.4.12 was constructed in [CGT95] through several vari-
ables complex analysis technics. Our approach provides a natural construction of this
residue.

The special case of cones of signature (1,n — 1)

Throughout the end of this section, we will see how cones of signature (1,n — 1) in A
rise naturally from the Radon transform of strip-like sets in P*. We will then provide
the residue diagram 5.4.17.

Setting the geometric context Let 6 > 0 be a real number. Let A be the affine
chart relative to {(zp : 21 : ... : 2,) € P;z; = 1}, and A* the affine chart related to

{(o:& ... &) € P& =1} We set:
H:= {(z0 A=A 1xJeP;z =0}
H:={(xog:x1:...:1,) € P;x; =0}

We will consider the following sets

(5.4.13) U={cA5( ) £2)z < §} = P*

2<j<n

(5.4.14) Z=UNP
We have
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Lemma 5.4.8. The following assertions hold
(i) U is S-trivial,
(ii) U\ H is a cone of signature (1,n — 1),
(iii) There exists an affine S-trivial compact set K C P such that Z = P\ K

Proof. (i) is related to a more general and obvious fact: convex sets, either open or
closed, are S-trivial.
(ii) Let z € U\H. There exists £ € U such that (z,&) = 0, so that 2o+ + Y, 2§ =

2<j<n
0. Taking the imaginary part, and denoting y = Im(z), we have

(5.4.15) Lo = > & 1< a0 > )z

2<j<n 2<j<n

Let 7 be the cone of signature (1,7 — 1)

vi={y = oo va .- un) €Al o 1< (Y 422}

We have
U\H=A+iy

Indeed, (5.4.15) proves that U \ H C A + iy. For the converse inclusion, let z =
x+1iy € A+ 1ivy. Let us choose £ € A* such that

§1=—2 — Z zi&;

2<j<n

Yo-Yj )
oYy

2<j<n

Then £ € U and (z,£) = 0.

(iii) Let us notice that Z N H is described by {(xo, z2,...,2,) € A; > 25 > ?—é ,
2<j<n
the complement of which in H is a ball of radius . Indeed, for x € Z N H and any

5
¢ € U such that (z,&) € S, we have:

[wo = D g [<a( D a?)s

2<j<n 2<j<n
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The Residue diagram Let ¢ € Z/2Z. We recall the defintion of Z by 5.4.14, and
K in 5.4.8 (iii).

Lemma 5.4.9. There is a natural morphism in D"(Cp)
Cp-(e") = Cxln —1]

Denoting by Lz(*) the object in DP(Cp+) defined up to an isomorphism by the
distinguished triangle:

(5.4.16) L;(c") —=Cpe(c*) —=Cpn — 1] ==

we have in DP(Cpe; T*P*)
Ds(Cz(e")) =~ Lz(€7)

Proof. Let us compute ®s(Cy(¢)).
We have the exact sequence

0—— Cz(é) —— CP(S) —— CK(S) —0

Applying Lemma 4.3.2 and Lemma 5.1.8, we get the distinguished triangle in
DP(Cp-; T*P*):

®5(Cy(e*)) —=Cp(e”) —=Cpln — 1] -~

]

Theorem 5.4.10. Given a section s of H'(P x P*); phom(Cs[—1], Qpyxps /p+(—k, k*))
The following diagram commutes:

(5.4.17)
N H"2(ihom(Cg, (&), Gp (k)] .., —— X H (uhom(C(e), Op (k) ..,
Radj Radl
H"=2(phom(®s(Cq (), O+ (K)|1.p. —goz H" (phom(Lz ("), Op+ (k) ;...

Assuming that s is non-degenerate on T§(P x P*), the vertical arrows Rad are isomor-
phisms.

Proof. Since U \ Z is a cone of signature (1,n — 1), (5.4.2) gives a morphism:
and so,

(5.4.18) Cz — Cauul2]
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Let us now apply (5.4.11) 5.4.9. The following diagram commutes:
(5.4.19)

X H 2 (uhom(Co 4(e), Op (k). —— X H" (uhom(Cz(2), G (k)]

y o

H"=2(phom(®s(Cq 4(€)), Op+ (k7)) H"(uhom(Lz("), Op- (k7))

. _— .
T*P* Res T*pP*

Application to Radon transform for microfunctions residues

Now, let us consider a complex neighborhood w C A* of U such that, denoting by 7 the
natural projection A* = A* 7(w) = U.

Proposition 5.4.11. We have
(5.4.20) SS(Coue) X T w =2

Proof. For any £ € w, the set @ N (U \ A) is homeomorphic to P,_; \ A,_;. Hence,
the stalks of ®s(Cp 4(¢)) are constant over w. Since w is simply connected, there is

L € DP(mod(C)) such that Ps(Cp 4(€))w is is the constant sheaf L.
Hence, we have

SS(Caule)) NX T w = X1 (SS(Ps(Cpy () NT"w) = @

As an immediate corollary,

Corollary 5.4.12. We have

pthom(Cg 4(€), Op(k))| ~ 0

X*lj”*w
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Chapter 6

Appendix

6.1 Radon transform of the structure sheaf

6.1.1 Notations

In the following, let X,Y be two complex manifolds of dimension n, S a closed sub-
manifold a codimension ¢, we set

A=THX xY)NT*X x T*Y)

S=rS)CY xX

where 7 is the natural morphism X x Y — Y x X, (z,y) — (y,z). We denote by
X & X xY B Y the projections. We denote by f, g the restrictions of ¢y, gs to S:

S A
/ \ py %A
X Y, T*X T*Y

In the following, we also assume that,

(i) f and g are smooth and proper
(ii) p1|a and p§|a are isomorphisms

For AC X, BCY, wenote A :=g(f~'(A)), B := f(g7*(B)).
We denote by %gjxxy the Zxy-module H[‘fg](O(X x Y')) and we set

'%gr}((])x)’ = ql_ng ®q;10X %S|X><Y
For .7 ,% line bundles over X and Y respectively, one denotes by
BGO T D) =" GD @ 1y Bopxxy Byrg 6 DT By Ox)

73



74 CHAPTER 6. APPENDIX

where 99 and 2.% are the natural Zy-modules and Zx-modules associated with ¢
and .# respectively.
For F € D*(Cx), G € D*(Cy), we set

O5(F) :=Raf ' Fln —

D5(G) = Rfig™'Gln — d

Let DP(Zx) be the derived category of Zx-modules. For M € D*(Zx), and A4 €
D"(%y), we set

Qo( M) =g [ M

kI

It can be seen easily that
n,0 —
Dy( M) = Rao (B y @y 07" H)

Denoting by « : T*X — X the natural projection, one associates to any .# €
DP(Zx), the &x-module

EM = Ex @ /4

71-—1@X

One can define a microlocal version of ®4. For .# € DP(&), we set
a TL,O —
(A ) = Rp21<%§\xiy -1y P1 )

where Cgér)’?iy = q;lﬂx ®qflox %S‘XXY and (55|X><y = @(ax,%gpgxy.

6.1.2 Integral transform for D-modules associated to line bun-
dles

There is an isomorphism

D(X X Y; By (F.9%)) ~ Hom, (79, 859.F)

So that to any s € ['(X x Y %g‘g?)xy(ﬁ,%*)), one can associate a %y morphism

as): 99 — ©42.%. We then have

Theorem 6.1.1 ([DS96)). For s a non-degenerate section of T'(X X Y; ,@g‘g?)xy(ﬁ, G%))
over A, the induced morphism H°(a(s)) : 99 — HY (4D F) is a Dy -linear isomor-
phism.
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Proof. We reproduce the proof of [DS96]. It is shown in [SKK] that this morphism is an

isomorphism on 7*Y. It can be shown that a(s) induces an &y-linear morphism &% —
PL(EF). Let my be the projection T*Y — Y, we have the following distinguished
triangle for conic objects of DP(Crpwy)

Riyy(.) —— Ry () —— Ry, () ——

So that we have

Ry (69) ——— Ry, (89) ———— Ry, (69) —

(6.1.1) l&(s) l“(s) l‘j‘(s)

Ry (24(6.F)) —— Ry (B4(6.F)) —— Rivy(D5(6F)) ——

It suffices to prove that «a(s) is an isomorphism at the 0 cohomology degree. From the
theory of [SKK], we know that &(s) is an isomorphism. It is easily seen that

Ry (R4(8.7)) ~ Rg(OFY |s @10, f1F)[ =]
and
Ry (69) =~ Y><Y|Y R0, G[-n]

The 0-degree cohomology of these last two terms are null since ¢ > 0. So the long exact
sequence induced by 6.1.1 gives

0 — s (D) —— HRiy.(6Y)) s N n+1(O( XY’Y R, 4)

l lHo(a(S)) lﬁ lHl (@(s))

0 —— Ty (P5(6.F)) — H Ry, (RE(EF))) —— H(Rg(O%V s @510, [7F))

The result is immediate for n,c > 1 and we refer to [DS96] for the cases n = 1 or
n>1.c=1. O]

Let n > 0 be the dimension of the complex projective space. Let k € Z such that
—n —1 < k < 0. We denote by k* = —n — 1 — k. Specializing theorem 6.1.1 for the
projective space and its dual, we get

Corollary 6.1.2 ([DS96]). There is an isomorphism in DP(Cp-):
B5(Op(k)) = Op. (1)
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6.2 Associativity for the composition of phom

We will make use of the notations defined in section 2.1.1 and prove Theorem 2.7.3.

Theorem. Let Fj, G;, H; respectively in D(kyy,,), DP(kag,), DP(Kas, ), @ = 1,2 then
the following isomorphism

<ph0m(F1, F) é,uhom(Gl, Gg)) §Mhom(H1, Hy) =
phom(Fy, Fy) é;) (,uhom(G’l, Gs) é;),uhom(Hl, Hg))

is compatible with the o bifunctor in the following sense

(uhom(Fy, Fy) §uhom(G1, Gs)) §uh0m(H1, Hy) —— phom(F, F) %(,uhom(Gl, Gs) §>uh0m(H1, Hy))

phom(Fy ° G, Iy ° G) §ph0m(Hl, H,) phom(Fy, Fy) é,uhom(Gl ° H,, Gy ° H,)

uhom((FlgGl)gHb(FggGQ)gHg) = pwhom(Fy g(G1§H1),F28(G2§H2))

Proof. To lighten the notation, we won’t mention in the following the subscript of o, o,
01

and simply denote it o. Let us first recall the construction of the natural morphism in
Db(kT*Mm)
Lemma 6.2.1 ([KS90, Prop. 4.4.11]). There is a natural morphism

phom(Fy, Fy) §uhom(G1, Go) — phom(Fy o G1, Fy o Gs)
Proof. Let us consider the following situation:

(6.2.1) T* My X pr, T* Mg <—2—2T* M3

AN

P12 D23
T Mias 0 My x T M3

13 AN
p13l/ \
P13w

T Mo T M3 T Mas

Let us denote by j the diagonal inclusion Mjs3 SN Mis X Mg, and by pi3 the
projection 1™ Mio3 s, T*Mi3. We have the natural morphisms :

T*Mlgg <]—/ T*Mlg X My T*M23 <§—)T*M123

t

p/ P13m
T*Mlgg 5 M2 X T*Mlg T*Mlg
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Let Y, X, S be 3 manifolds and let G; € DP(ky), F; € D’(kx), i = 1,2. Assume we
are given morphims of manifolds X — S,Y — S and that the fiber product X xgY

is submanifold of X x Y. Let us denote by j the embedding X xgY <L X x Y, and
consider the induced natural morphisms

TH(X x5 V)<L T*X x5 TY 2= T*X x T*Y
It is proven in [KS90, Prop 4.4.8.], that there is the natural morphism

R\ (uhom(Fy, Fy) Rg phom(Gy, Ge)) — phom(F; Kg Gy, Fy Kg Gs)

In the case where X = My, Y = M3, S = My, we get

(6.2.2) RYj'\(phom(Fy, Fy) Ky, phom(Gy, Ge)) — phom(Fy Ky, Gi, Fo Ky, Ga)

Now, if we apply R'pisq of pi3' to both side of the latter morphism, we get the
morphism

Ripyar of pizt o Ry (mhom(Fy, Fy) My, phom(Gy, Ga)) —
R'p13m o' pi3 (hom(Fy Ky, Gy, Fy Ky, Gy))
so that
R'pi3z o p’lgl o RYj'\(phom(Fy, Fy) Wy, phom(Gy, Gy))
25 Rfpigry 0 Rp2sy 0 6 (whom(Fy, Fy) My, pwhom (G, Gs))
(6.2.3) =5 Rpizy 0 6~ (phom(Fy, Fy) Ry, phom(Gy, Ga))

2 Rpuay(pra phom(Fy, Fy) ® pyg pthom (G, Gs))
= phom(Fy, Fy) o uhom(Gy, G2)

and on the other hand, from (6.2.2) and from [KS90, Prop. 4.4.7.(ii)]

R'pran of plz' o RYj'\(uhom(FY, Fy) Bag, phom(Gh, Ga))
— Rtplgﬂ—! of p'lgl(,uhom(Fl &MQ Gl, FQ @MQ GQ))
(624) — uhom(Rplg,(Fl IEMQ G1>, Rplg!(Fg IZMQ Gg))
= ,uhom(Fl o Gl, Fg o G2>

so that we constructed a natural morphism

(6.2.5) phom(Fy, Fy) o phom(G1, Ge) — phom(Fy o Gy, Fy 0 G3)
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Considering the following diagram, with j the embedding Mio34 < M9 X Moz X M3y
and jo3 the natural diagonal embedding 7™ Mi934 < T* Mo X T* Moz X T* M3y

(626) T*M1234(T> T*Mlg X Mo T*M23 X Ms T*M34
i) |
My x My x T*M,, —2221 T*Mygsy |
/ P34
/ P13
T* M & T* Mo p1a T* M3y
T My

Lemma 6.2.2. We have the isomorphism in D®(kp«pr,,)

(whom(Fy, Fy) o phom (G, Gs)) o whom(Hy, Hs)
~ Rpuam o piy' o RY\(Bry phom(Fy, Fr) @ Py phom(Gy, Ga) © Py pphom(Hy, Hy))

Proof. From Lemma 2.7.1, we have

(uhom(Fy, Fy) o phom(Gq, Gs)) o whom(Hy, Hs)
~ Rp14!(pf21uhom(F1, F) ®p;31uhom(G1, Gs) ®p§41uhom(H1, Hy))

and

Rpia,(p1y pthom(Fy, ) @ pyy phom(Gh, Go) @ ps) phom(Hy, Ha))
=~ Rpuaq o' Py o R'\(Brg phom(Fy, Fy) @ Pyy pthom(Gh, Ga) @ py phom(Hy, Hy))

O

We decompose j in k o h, as follows:

T*M1234;h> T Mgz X T*M34¢> T Myg X T™ Moz X Msy

Let us denote by ps, and ‘p; the morphisms
T* Mygy <—— My x T* Myy 25 T* My,
Lemma 6.2.3. We have the isomorphism in DP(kz-py,,)

(6.2.7) Rpuam o' pi;' o R’ 0 ;!
~ Rpam o' Py ' 0 Rpigam o pigs o R°W v o it o RIE o kit

Proof. O]
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We denote by [ the inclusion T*M34 < T*M;i334 and by pi334 the projection
T Migzzq — T Mig3s.

Lemma 6.2.4. We have the isomorphism in DP(kg=py,,)

Rpar o' Py ' o Rpigar o py o RIA o ht o R 0 k!
= Rp37r! o pf{l o Rtl/! o l;l o Rp1334m of p’1§§4 © Rtk/! o k‘;l

After having “separating the variables”, the associativity of the diagram of Theorem
6.2 comes essentially from the following lemma:

Lemma 6.2.5. The following diagram of canonical morsphims commutes:

(6.2.8) (va(F) R le(G)) R vy (H) == vy (F) (VN(lG)) X vy (H))
(I/MxN(FﬁG))IEVL(H) VM(F)IX(VNXL(G&H))

| N l

VMXNXL((F&G)X,H) VMXNXL(FIX<G®H))

Proof. The proof relies on the following description of the speacialization sheaf given
in [KS90] th.4.2.3. Let V' a conic open subet of T, X, then for an integer j

H(V;vy F) =~ lim HY (U; F)
U

where U range through the open subsets of X such that C(X \U)NV = 2.

The natural morphism vy (F) Ky (G) = vy (FRG) is exposed in [KS90, Prop.
4.2.6]. We are going to explicit this morphism at the germ level and it will then
be sufficient to prove that the diagram 6.2.8 commutes at the germ level. Let p,p’
respectively be in Ty X,TxyY and let U resp. U’ be open subsets of X resp Y, such
that p & Cp (X \U), resp. p’ ¢ Cn(Y \ U’). For a topological space Z, we note ay the
natural morphism Z — {pt}.

We have (vy(F) X vy (G))pxy = (vm(F))p, @ (vn(G)),,, so that

HI ((var (F) B un(G))pxpr) = H ((var(F p® (v (G)),)
~ @y H (i (1)) @ H' (v (G))y)
hm@k—o—l ]Hk(RCLU* )@HZ(RCLU/*G)

— lll)ﬂ HJ(R,CLUXU/*(F X G))
U,U’
— H? (arun (F R G)prpr)

Now, let p” € T1Z and the open subsets U” such that p” ¢ Cp(Z\U"), the diagram
6.2.8 corresponds to nothing but the commutation of inductive limits when it is taken
first through the family of open sets U, U’ then U x U’,U”, or taken first through
the family of open sets U’, U” then U,U’ x U"” (we notice that for such families U, U’,

(P, 1) & Caxen (X \ (U x U"))). N
O
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