
HAL Id: tel-04441308
https://theses.hal.science/tel-04441308v1

Submitted on 6 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Combining Graph and Text to Model Conversations: An
Application to Online Abuse Detection

Noé Cecillon

To cite this version:
Noé Cecillon. Combining Graph and Text to Model Conversations: An Application to Online Abuse
Detection. Computer Science [cs]. Avignon Université, 2024. English. �NNT : �. �tel-04441308�

https://theses.hal.science/tel-04441308v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT D’AVIGNON UNIVERSITÉ

École Doctorale no536
Agrosciences & Sciences

Mention de doctorat :
Informatique

Laboratoire Informatique d’Avignon

Présentée par
Noé CÉCILLON

Combining Graph and Text to Model Conversations:
An Application to Online Abuse Detection

Soutenue publiquement le 18 janvier 2024 devant le jury composé de :

Irina ILLINA MCF HDR à Université de Lorraine, LORIA/INRIA Rapporteuse
Julien VELCIN PR à Université Lyon 2, ERIC Rapporteur
Serena VILLATA DR à Institut 3IA Côte d’Azur Examinatrice
Harold MOUCHÈRE PR à Nantes Université, LS2N Président du jury
Vincent LABATUT MCF HDR à Avignon Université, LIA Directeur de thèse
Richard DUFOUR MCF à Avignon Université, LIA Co-directeur de thèse

2

ACKNOWLEDGEMENTS

This work would not have been accomplished without the help and encouragement of many
people.

Firstly, I would like to sincerely thank Irina Illina and Julien Velcin for accepting to review my
PhD thesis. I thank them for all the time and efforts they have committed to thoroughly read this
manuscript. I also extend my thanks to Serena Villata and Harold Mouchère for participating in my
thesis defense.

I would like to express my deepest gratitude to my advisors Vincent Labatut and Richard Dufour.
I thank you for the trust you placed in me and all the help you have given me over the past 4 years.
This entire thesis would not have been possible without your advice and expertise. I believe that
the end of this thesis only marks a fresh start for future and fruitful collaborations with you.

Thanks to all my colleagues from the LIA for your welcome and for the numerous and various
discussions.

I am also grateful to all the people involved in any way in this thesis. Particular thanks to
Thomas without whom none of this would have happened.

I warmly thank all my friends for the great moments we spent together. Special thanks to Laure
and Renzo, we’re going to hell, but we had a good laugh.

Last but not least, I would like to heartily thank my parents for their support during my studies.
Mom, you are the one that convinced me I was able to do this. I thank you for that, though you still
do not fully understand what I am working on. Thanks to my sisters and brother for their continuous
encouragements.

1

2

ABSTRACT

Online abusive behaviors can have devastating consequences on individuals and communities.
With the global expansion of internet and the social networks, anyone can be confronted with these
behaviors. Over the past few years, laws and regulations have been established to regulate this
kind of abuse but the responsibility ultimately lies with the platforms that host online communica-
tions. They are asked to monitor their users in order to prevent the proliferation of abusive content.
Timely detection and moderation is a key factor to reduce the quantity and impact of abusive behav-
iors. However, due to the sheer quantity of online messages posted every day, platforms struggle
to provide adequate resources. Since this implies high human and financial costs, companies have
a keen interest in automating this process. Although it may seem a relatively simple task, it turns
out to be quite complex. Indeed, malicious users have developed numerous techniques to bypass
the standard automated methods. Allusions or implied meaning are other examples of strategies
that automatic methods struggle to detect. While usually performed on individual messages taken
out of their context, it has been shown that automatic abuse detection can benefit from considering
the context in which the message was posted.

In this thesis, we want to focus on the combination of content and structure of conversations to
tackle the abuse detection task. Using the textual content of messages is the standard approach
which was first developed in the literature. It has the advantage of being easy to set up, but
on the other hand, it is vulnerable to text-based attacks such as obfuscation. The structure of
the conversation which represent the context is less frequently used as it is more complicated to
manipulate. Yet it allows to introduce a contextual aspect which helps detecting abuse occurrences
when the text on its own is not sufficient. This context can be modeled as a contextual graph
representing the conversation which includes the message. By comparing two methods based
on feature engineering on a dataset of conversations extracted from a video games, we could
show that a method relying exclusively on conversational graphs and ignoring the content was able
to obtain better detection performance. The literature suggest that combining multiple modalities
often result in a better detection of abusive messages. We propose multiple strategies to combine
the content and structure of conversations and prove that their combination is indeed beneficial to
the detection.

A limitation of feature-based methods is that they are costly in time and computational re-
sources. Our study also highlights that only a fraction of the computed features are truly relevant
for the task. Representation learning methods can be used to mitigate these issues by automati-

3

cally learning the representations of text and conversational graphs. For graphs, we demonstrated
that using edge weights, signs and directions improved the performance. As no method exists for
signed whole-graph embedding, we fill this gap in the literature by developing two such methods.
We assess them on a newly constituted benchmark of three datasets of signed graphs and show
that they perform better than their unsigned counterparts.

Lastly, we perform a comparative study of several lexical and graph-embedding method for
abuse detection by applying them to our dataset of conversations. Our results show that they
perform better than feature-based approaches on text and are slightly less effective on graphs.
Still, they obtain promising results given that they are completely task independent, much more
scalable and time-efficient than feature-based approaches.

4

RÉSUMÉ

Les comportements abusifs en ligne peuvent avoir des conséquences dramatiques sur les util-
isateurs et les communautés. Avec l’avènement d’internet et des réseaux sociaux, personne n’est
à l’abri de ce genre de comportement. Ces dernières années, de nombreux pays ont mis en place
des lois visant à réduire ce type d’abus. Cependant, la responsabilité incombe principalement aux
entreprises hébergant ces plateformes de discussion. Celles-ci se doivent de surveiller le com-
portement de ses utilisateurs afin d’éviter la prolifération de propos abusifs. Une détection et un
traitement rapide des cas abusifs est un facteur important afin de réduire leur impact et leur nom-
bre. Cependant, les plateformes en ligne ont souvent du mal à fournir les ressources nécessaires
à cette détection à cause de la très grande quantité de messages postés chaque jour. Cette tâche
de modération impliquant d’importants coûts humains et financiers, les entreprises ont un gros
intérêt à l’automatiser. Bien que celà puisse paraître assez basique au premier abord, la détection
automatique de contenu abusif se révèle assez complexe. En effet, les utilisateurs malveillants ont
développé de nombreuses techniques pour tromper les méthodes automatiques. Par exemple, les
propos implicites et l’utilisation de sous-entendus permettent souvent de ne pas se faire détecter
par les méthodes automatiques standards. Pour contrer ce problème, il a été montré que prendre
en compte le contexte dans lequel un message est posté permet d’améliorer la détection. Cepen-
dant la méthode la plus courante dans la littérature consiste à traiter des messages individuels,
pris en dehors de leur contexte.

Dans ce manuscrit, on s’intéresse plus particulièrement à la combinaison du contenu et de
la structure pour la détection de contenu abusif. Utiliser le contenu textuel des messages est
l’approche la plus courante dans la littérature. Cette méthode présente l’avantage d’être facile à
mettre en place, mais elle est aussi très vulnérable aux attaques basées sur le texte, notamment
aux techniques d’obfuscation. La structure de la conversation, représentant le contexte, est beau-
coup moins étudiée car elle est plus complexe à manipuler. Pourtant, elle permet d’introduire une
notion de contexte qui permet de détecter des cas abusifs là où le texte seul n’en est pas capa-
ble. Ce contexte peut être modélisé sous la forme d’un graphe conversationnel représentant la
conversation contenant le message étudié. En comparant deux méthodes construites à partir d’un
procédé d’extraction de caractéristiques (feature engineering), nous avons montré qu’une méth-
ode n’utilisant que des graphes conversationnels et ignorant le contenu textuel des messages était
capable d’obtenir de meilleures performances. Des auteurs dans la littérature suggèrent que com-
biner plusieurs modalités d’information permet d’améliorer la détection de messages abusifs. À

5

cet effet, nous proposons plusieurs stratégies pour combiner le contenu et la structure des conver-
sations et par nos expériences, nous prouvons que celà est en effet bénéfique pour la détection.

Une limitation de ces méthodes basées sur un ensemble de mesures est qu’elle sont assez
coûteuses tant en ressources informatiques qu’en temps de conception. Notre étude montre égale-
ment que seule une fraction des mesures calculées sont réellement importantes pour cette tâche.
Les méthodes d’apprentissage de représentations peuvent être une solution à ce problème, en per-
mettant d’apprendre automatiquement la représentation numérique d’un message ou d’un graphe
conversationnel. Pour les graphes, nous avons démontré que considérer les attributs des liens,
à savoir la direction, le poids et le signe, permet d’améliorer les performances. La littérature ne
proposant aucune méthode de plongement de graphe entier signé, nous comblons ce vide en
développant deux méthodes de ce type. Nous les évaluons sur un benchmark nouvellement créé
et constitué de trois jeux de données de graphes signés, et prouvons qu’ils obtiennent de meilleurs
résultats que leurs équivalents ne prenant pas en compte les signes.

Finalement, nous menons une étude comparative de plusieurs méthodes de plongement lexi-
cal et de graphes pour la détection de messages abusifs en les appliquant à un jeu de données de
conversations. Nos résultats montrent qu’elles sont plus efficaces que les méthodes se basant sur
un ensemble de mesures pour le texte, et légèrement moins efficaces pour les graphes. Cepen-
dant, ces résultats restent très encourageants car ces méthodes possèdent de nombreux autres
avantages tels qu’être complètement indépendantes de la tâche, plus faciles à adapter à d’autres
environnements d’utilisation, et beaucoup plus efficaces en termes de temps.

6

TABLE OF CONTENTS

1 Introduction 11

1.1 Contributions . 13

1.2 Personal Bibliography . 14

1.3 Thesis Outline . 15

2 Survey of Online Abuse Detection 17

2.1 Definition of Online Abuse . 18

2.2 Abuse Detection Methods . 19

2.2.1 Textual Methods . 19

2.2.2 Contextual Methods . 22

2.3 Datasets . 25

2.3.1 Existing Datasets . 25

2.3.2 Datasets Related to this Thesis . 27

2.4 Formalization and Evaluation . 29

2.4.1 Formalization of Abuse Detection . 29

2.4.2 Evaluation Metrics . 30

2.5 Conclusion . 31

3 Graph metrics as graph features 33

3.1 Definitions and Notations . 34

3.2 Vertex-Focused Topological Measures . 35

3.2.1 Microscopic Measures . 35

3.2.2 Macroscopic Measures . 37

3.2.3 Mesoscopic Measures . 41

3.3 Graph-Focused Topological Measures . 42

3.3.1 Microscopic Measures . 42

3.3.2 Macroscopic Measures . 43

3.3.3 Mesoscopic Measures . 44

3.4 Conclusion . 44

7

Table of Contents

4 Feature Engineering for Abuse Detection 45
4.1 Graph Extraction from Conversations . 47
4.2 Proposed Representation Methods . 51

4.2.1 Text-Based Features . 51
4.2.2 Graph-Based Features . 54
4.2.3 Combining the Textual and Structural Information 56

4.3 Experiments . 58
4.3.1 Experimental Protocol . 58
4.3.2 Classification Results . 59
4.3.3 Feature Study . 61

4.4 Analysis and Discussion . 65
4.4.1 Temporal Aspect . 65
4.4.2 Impact of Edge Attributes . 66

4.5 Conclusion . 67

5 Signed Whole-Graph Embedding 69
5.1 Definitions and Notations . 71
5.2 Graph Representation Learning . 72

5.2.1 Vertex Embedding . 73
5.2.2 Whole-Graph Embedding . 76
5.2.3 Signed Graph Embedding . 78

5.3 Datasets . 80
5.3.1 Correlation Clustering Instances . 81
5.3.2 European Parliament Roll-Calls . 81
5.3.3 Brief Comparison . 82

5.4 Proposed Methods . 83
5.4.1 Signed Network Embedding . 83
5.4.2 Signed Graph2vec . 84
5.4.3 Signed Graph Convolutional Networks . 85

5.5 Experiments . 86
5.5.1 Results . 87
5.5.2 Comparison . 92

5.6 Conclusion . 93

6 Representation Learning for Abuse Detection 95
6.1 Embedding Methods . 98

6.1.1 Lexical Embedding Methods . 98
6.1.2 Selected Graph Embedding Methods . 100

8

Table of Contents

6.1.3 Proposed Whole-Graph Embedding Methods 103
6.2 Experiments . 106

6.2.1 Experimental Protocol . 107
6.2.2 Classification Results . 107
6.2.3 Fusion of Embeddings . 113
6.2.4 Results Summary . 115

6.3 Feature Study . 115
6.3.1 Text Features . 116
6.3.2 Graph Features . 116

6.4 Conclusion . 118

7 Conclusion and Perspectives 121
7.1 Conclusion . 121
7.2 Perspectives . 123

Appendices 126

A Text and Graph Joint Embedding 127
A.1 Flair Embedding . 127
A.2 Proposed Architecture . 127

B Datasets 129
B.1 Ruddit . 129

B.1.1 Limitations of Ruddit . 130
B.2 Wikipedia Abusive Conversations . 130

B.2.1 Proposed Corpus . 131
B.2.2 Limitations of WAC . 133

References 135

9

Table of Contents

10

Chapter 1

INTRODUCTION

Online abusive behaviors can harm a platform or community in the long term. From targeted
personal attacks to major threats toward a group of persons, these behaviors can have a devastat-
ing effect. They may have a lasting impact on the mental health, confidence, and sense of safety of
the victims [1]. In extreme cases, they can even trigger legal issues in some countries. In their 2021
study, Hinduja et al. [2] stated that 45.5% of the audited US middle and high schoolers had been
cyberbullied during their lifetime. Because we focus exclusively on online abuse, we use the term
abuse to refer to online abuse in the rest of this thesis. We also limit our study to text documents,
although online abuse can be found in other media including audio, video, or animation. With the
ever-growing quantity of text messages generated on the internet each year, the monitoring and
detection of abusive content online has become a task of prime importance. This is a complex
task, as abusive messages often make use of innuendos, irony, implicit statements or even refer to
past events shared by the persons involved in the conversation. In these conditions, it is mandatory
to understand the true meaning of a message before deciding whether to sanction its author.

The monitoring of online exchanges is usually done by human moderators to ensure the quality
of the moderation. However, due to the increasingly global use of the Internet, it is often difficult
for human moderators to treat all abusive comments on time. At the same time, online platforms
are now responsible for the content that they host in multiple countries, which means that it can
trigger legal issues if they fail to correctly moderate their content. Therefore, they have a strong
interest in automating this moderation process. While a fully automated system can be difficult to
implement, particularly because of the risk of censorship, a semi-automatic system can be used
to assist human moderators for instance by pre-processing the comments and filtering out all the
correct ones.

The standard approach to automatically detect abusive messages online is to do so by an-
alyzing their content. Some markers of abuse, including swear words, and offensive or hateful
expressions can easily be detected in this way. However, one can wonder if such expressions are
necessarily representative of an abusive message. For instance, does quoting a previous mes-
sage containing swear words make yours abusive? Does making a lame joke to a friend make
you a harasser? The answer often depends on some general information, covering a wider scope
than just the message itself. This is one of the reasons why it is difficult to automatically detect
abusive comments. To overcome this, depending on the framework and application, multiple el-

11

Chapter 1. Introduction

ements can be considered such as the shared history between users, demographic data, or the
conversation preceding the problematic message. This latter point is particularly important. Tweets
taken without their conversational context are 50% more likely to be labeled as abusive by human
annotators than the same tweets provided in their context [3]. While effective in many cases, a
limitation of methods using the content to detect abuse is their vulnerability to text-based attacks
such as obfuscation [4].

The structure of a conversation can reflect the presence of an abusive author. Indeed, they
tend to participate significantly more in the discussions than others and to receive more replies
than regular users [5]. It can be done deliberately by adopting a troll-like behavior to draw users
into pointless discussions. It can also simply result from the fact that humans tend to react more
to controversial subjects. Either way, the abusive author plays a central role in the conversation,
and one can assume that the changes reflected in its structure can help discover an abuse case.
Previous studies [6] showed that modeling conversations under the form of conversational graphs
and characterizing them through various topological measures was efficient in detecting abusive
messages. These graphs represent the structure of the conversation. This structure-based ap-
proach which completely ignores the content of the messages achieves even better results than a
content-based method.

Combining multiple information modalities to analyze textual documents has proved effective
on multiple tasks including sentiment analysis [7], named entity recognition [8], and recommen-
dation [9]. For abuse detection, multimodal methods improve the performance of traditional text-
oriented techniques. However, they are mainly centered around the combination of content and
contextual data. The structure of the conversation is almost always overlooked in the literature. In
a previous work conducted by our research team, Papegnies et al. [6] proposed a method based
on the dynamics of conversation able to obtain strong results. The objective of this thesis is to
go further and combine message content and conversation structure to build a representation that
takes advantage of both and use this representation to improve the detection of abusive comments
in online conversations.

Such combination can be conducted in several ways, which we explore in this manuscript.
For any text classification task, the first step usually consists of transforming the raw input data into
numeric representations. From the traditional feature-based strategies [6], [10]–[13] to more recent
representation learning techniques [14]–[17], a lot of methods have been tested in the literature.
By construction, they all capture different aspects of the input data. Furthermore, their efficiency
is often closely related to the application and the data. We propose new methods and apply both
traditional feature engineering-based approaches and more recent representation learning-based
methods, in order to compare them to our abuse detection class and assess their complementarity.

12

1.1. Contributions

1.1 Contributions

This thesis brings several contributions to the literature, the most prominent being three-fold.
The first 2 arise in the context of abuse detection, while the third is specific to graph embeddings:

• Combination of graph and text: Many works in the literature combine different modalities
of data to tackle the abuse detection task. It has been shown that including contextual infor-
mation related to authors and conversations helps improve the classification compared to a
content-only setting. The structure of the conversation, modeled by conversational graphs,
is impacted by the behavior of users. This structural information on its own is able to obtain
strong performance, and it has never been used in combination with other modalities. We
propose multiple strategies to combine the text and the graphs to detect abusive messages
in conversations.

• Signed whole-graph embedding: When leveraging graph-based approaches, we need to
represent entire graphs. Whole-graph embedding methods are specifically designed to per-
form this task. As shown empirically, graph edges can include properties such as weights,
directions, and signs, which are likely to improve the classification performance for abuse
detection. However, all whole-graph embedding methods existing in the literature focus on
unsigned graphs. Therefore, we propose 2 methods to fill this gap. The first is an adaptation
of an unsigned whole-graph embedding approach to signed graphs, whereas the second is
based on signed vertex representations, which we adapt to handle whole signed graphs.

• Comparison of feature-based and embedding methods for abuse detection: To com-
bine content and structure, we develop methods to treat these aspects individually before
combining them. We proceed in 2 successive steps.

1. First, we study feature-based methods leveraging the content and the graphs (i.e. struc-
ture). We also perform a feature ablation study to determine the most important features.

2. Second, we use several text and graph embedding methods of different natures, in
order to automate the learning of representations. We determine the most efficient for
the abuse detection task.

We compare these 2 approaches in different aspects.

Besides these prominent contributions, this thesis also advances the field in 2 more minor
aspects:

• Network extraction: To extract conversational graphs from conversation logs, we extend an
existing network extraction method to obtain signed weighted directed graphs, as the original
method is unable to produce signed graphs.

13

Chapter 1. Introduction

• Data availability: The development of abuse detection methods leveraging the structure
of the conversation is limited by a lack of publicly available datasets. To tackle this issue,
we made available the collection of conversational graphs extracted from our SpaceOrigin
dataset and used throughout this thesis1. We also constituted the WAC dataset, that contains
Wikipedia-based conversations annotated for 3 types of abuses [18]. Finally, we assembled a
benchmark composed of 3 collections of signed networks annotated for diverse classification
tasks.

1.2 Personal Bibliography

The following articles have been published in the framework of this PhD thesis:

• International journal with peer review

– N. Cécillon et al., “Graph embeddings for abusive language detection,” SN Computer
Science, vol. 2, no. 37, 2021. DOI: 10.1007/s42979-020-00413-7 (Chapter 6)

• International conferences with peer review

– N. Cécillon et al., “Abusive language detection in online conversations by combining
content- and graph-based features,” Frontiers in Big Data, vol. 2, p. 8, 2019, ISSN:
2624-909X. DOI: 10.3389/fdata.2019.00008 (Chapter 4)

– N. Cécillon et al., “WAC: A corpus of wikipedia conversations for online abuse detection,”
in 12th International Conference on Language Resources and Evaluation, 2020. [On-
line]. Available: http://www.lrec-conf.org/proceedings/lrec2020/pdf/2020.lrec-

1.173.pdf (Chapter 2)

• National journal with peer review

– N. Cécillon et al., “Approche multimodale par plongement de texte et de graphes pour
la détection de messages abusifs,” Traitement Automatique des Langues, vol. 62, no. 2,
pp. 13–38, 2021. [Online]. Available: https://www.atala.org/sites/default/files/

TAL_62_2_v2.pdf (Chapter 6)

• National conference with peer review

– N. Cécillon et al., “Tuning graph2vec with node labels for abuse detection in online con-
versations,” in 11th MARAMI, 2020. [Online]. Available: http://ceur-ws.org/Vol-

2750/paper8.pdf (Chapter 6)
1https://figshare.com/articles/dataset/Conversational_Networks_For_Automatic_Online_Moderation/

7442273?file=24681479

14

https://doi.org/10.1007/s42979-020-00413-7
https://doi.org/10.3389/fdata.2019.00008
http://www.lrec-conf.org/proceedings/lrec2020/pdf/2020.lrec-1.173.pdf
http://www.lrec-conf.org/proceedings/lrec2020/pdf/2020.lrec-1.173.pdf
https://www.atala.org/sites/default/files/TAL_62_2_v2.pdf
https://www.atala.org/sites/default/files/TAL_62_2_v2.pdf
http://ceur-ws.org/Vol-2750/paper8.pdf
http://ceur-ws.org/Vol-2750/paper8.pdf
https://figshare.com/articles/dataset/Conversational_Networks_For_Automatic_Online_Moderation/7442273?file=24681479
https://figshare.com/articles/dataset/Conversational_Networks_For_Automatic_Online_Moderation/7442273?file=24681479

1.3. Thesis Outline

• Submitted article

– N. Cécillon et al., “Whole-graph representation learning for the classification of signed
networks,” Submitted, 2023 (Chapter 5)

1.3 Thesis Outline

The thesis is organized as follows.

• Chapter 2: We introduce the abuse detection task and review the literature associated with
it.

• Chapter 3: We review the existing graph measures that can be used as classification features,
to characterize the structure of a graph.

• Chapter 4: We describe our framework based on feature engineering to detect abusive mes-
sages using the textual content and the conversation structure. Using the measures previ-
ously described, we put it into practice on a conversation dataset, discuss its results, and
perform a feature ablation study.

• Chapter 5: Because of the limitations detected in the previous approach, we want to use
representation learning to automatically learn representations of messages and graphs. The
previous chapter shows that edge attributes, including edge signs, bring useful information
for the classification. As no signed whole-graph embedding methods currently exist in the
literature, we propose 2 of them that we will later use to detect abusive messages. We
evaluate the proposed methods on a new benchmark of 3 datasets and discuss their results.

• Chapter 6: We present our framework based on representation learning to detect abusive
messages. We compare several text and graph embedding methods, including those pro-
posed in Chapter 5, on the same conversation dataset as before. We discuss the results and
perform a feature study.

• Chapter 7: We summarize our work, and identify its main perspectives.

15

Chapter 1. Introduction

16

Chapter 2

SURVEY OF ONLINE ABUSE DETECTION

2.1 Definition of Online Abuse . 18

2.2 Abuse Detection Methods . 19

2.2.1 Textual Methods . 19

2.2.2 Contextual Methods . 22

2.3 Datasets . 25

2.3.1 Existing Datasets . 25

2.3.2 Datasets Related to this Thesis . 27

2.4 Formalization and Evaluation . 29

2.4.1 Formalization of Abuse Detection . 29

2.4.2 Evaluation Metrics . 30

2.5 Conclusion . 31

Online abuse includes malicious behaviors that have a threatening, intimidating or harassing
effect on a group or an individual target. Detecting these behaviors is thus an important task,
that researchers tackle with different approaches, including a majority based on the text and some
based on different aspects of the conversation. The latter includes the use of conversational graphs
to represent the dynamics of the conversation, as we will see in the remainder of this thesis. A key
part in the development of an abuse detection method is to obtain a suitable dataset, but this
often proves to be a complex task because of multiple factors that can affect the quality of human
annotations in such datasets.

The following chapter is partially based on our work published at the International Conference
on Language Resources and Evaluation (LREC 2020) [18]. It makes the following contributions:

1. We give a definition of what constitutes an online abuse based on the literature.

2. We survey the abuse detection methods and distinguish several categories depending on the
information they use.

3. We review the publicly available datasets annotated in terms of abuse. This includes datasets
of individual messages and datasets of messages in a flow of conversations. We also present

17

Chapter 2. Survey of Online Abuse Detection

the 2 datasets related to this thesis, one is an original contribution and the other was previ-
ously developed in the same research team.

4. We formalize the abuse detection problem and present the standard evaluation settings for
this task.

This chapter is organized as follows. In Section 2.1, we first define the concept of an online
abuse. Second, we present and categorize the automatic abuse detection methods proposed in
the literature in Section 2.2. In Section 2.3 we present the annotated datasets for abuse detection,
including the 2 that are related to this thesis: one that we constituted and published, and the other
that was previously used in our research team. We then formalize the problem of online abuse
detection, and describe the standard evaluation methods in Section 2.4. Finally, we conclude this
chapter in Section 2.5.

2.1 Definition of Online Abuse

Online abuse can be defined as the use of electronic media devices to cause harm to an-
other person1. This wide concept points at a number of distinct abusive behaviors including hate
speech, cyberbullying or impersonation. Some of these terms may be used interchangeably, which
makes it difficult to have a consistent definition. To ease comparison, we curate the most accepted
definitions from the literature of the main online abusive tactics.

Hate speech: Offensive discourse targeting a group or an individual based on inherent char-
acteristics such as gender, religion, age, origin or sexual orientation [24], [25].

Cyberbullying: A repeated behavior, aimed at shaming or scaring an individual target. It
includes posting embarrassing content of someone on social media and repeatedly sending hurtful
remarks [26], [27].

Impersonation: The act of pretending to be another person on an online platform for the
purpose of degrading or exploiting its public image [28].

Defamation: The action of posting comments with the intent to harm someone else’s reputa-
tion, for instance by spreading lies [29], [30].

Doxing: The act of searching and publicly providing private information about a particular
individual on the internet, typically with malicious intent [31], [32].

In this thesis, we use a general definition of abuse. We can describe it as all behaviors that do
not respect the rules of the community in which the user is posting. Some of them can be specific
to one community, but there is almost always a common core of rules prohibiting personal attacks,
discrimination based on race, religion, or sexual orientation, as well as impersonation and doxing.

1https://cpdonline.co.uk/knowledge-base/safeguarding/online-abuse/

18

https://cpdonline.co.uk/knowledge-base/safeguarding/online-abuse/

2.2. Abuse Detection Methods

These various types of abuse are not without consequences and can have a negative impact
on the people receiving these messages. Moderation is the process of monitoring user-generated
content and taking actions against users who act abusively. This task is usually done by human
moderators to ensure a high-level of moderation quality. Timely detection and moderation is a
key factor to reduce the quantity and impact of abusive behaviors. However, due to the ever-
growing quantity of content generated daily on the Internet, platforms struggle to provide adequate
resources. Since this implies high human and therefore financial costs, companies have a keen
interest in automating this process. Although it may seem a relatively easy task, it turns out to
be quite complex. Indeed, over the years, malicious users have developed numerous techniques
to bypass automated systems. In most situations, abuse comes as a text message, but it is not
restricted to that. On platforms allowing to post multimedia content, abuse can come as a video,
picture or audio record. However, this thesis focuses on text documents, so we will not consider
such situations.

2.2 Abuse Detection Methods

2 main families of automatic approaches emerged in the abuse detection literature. The first
and most widespread one is based on the textual content of the targeted message. Such methods
can rely on a mix of standard Natural Language Processing (NLP) features, or be more machine
learning-intensive with embedding-based approaches. The quality of these methods is however
very often related to the training data used to learn abuse detection models. In the case of online
social networks, the great variety of users, including very different language registers, spelling
mistakes, as well as intentional obfuscation, makes it almost impossible to have models robust
enough to be applied in all situations. Therefore, some authors consider contextual information
to treat the abuse detection task. This may involve the messages occurring around the targeted
message as well as information on the users themselves. Automatic abuse detection methods can
be used in different settings. They can be used in a fully automated fashion, where they detect
abusive instances and apply sanctions without any human intervention. The most common case,
however, is a semi-automated framework where these methods are used to filter the potential
abusive messages and human moderators review this small set of messages to take a decision.
This pre-filter can greatly reduce the moderator’s workload, and thus, the associated cost. In
this section, we review the abuse detection literature, by first focusing on the textual methods
(Section 2.2.1), then on the contextual methods (Section 2.2.2).

2.2.1 Textual Methods

The methods relying on the content of the targeted message to detect abuse or similar prop-
erties are the most widespread in the literature. We can divide them into 2 categories: standard

19

Chapter 2. Survey of Online Abuse Detection

methods based on feature engineering, and more recent ones based on neural networks.

2.2.1.1 Feature Engineering-Based Methods

Spertus [33] was among the first to propose an automatic method for abuse detection. She
hand-crafted rules over text to generate a feature vector composed of 47 elements representing
the syntax and semantics of sentences. The rules are based on the author’s observations of
abusive and non-abusive messages. Such a manual feature engineering process was later used
by Razavi et al. [10] who collected an Insulting and Abusive Language Dictionary composed of
2,700 words and expressions. Each entry is assigned a weight based on its potential abusive
impact. Other works adopted such a lexicon-based approach later on [34]–[38]. Static rules and
lexicon-based features are most of the time used as parts of systems, and combined with other
techniques such as TF-IDF [11], [39], [40] and bag-of-words [11], [41].

The manual construction of an abuse lexicon is expensive, and results in a language-dependent
dictionary. Wiegand et al. [42] propose a framework to automate this process. First, they build a
small lexicon of negative polar expressions annotated via crowdsourcing. Then they extract a set
of hand-crafted linguistic and semantic features to train an SVM which is used to automatically
expand the lexicon. Mubarak et al. [43] propose a similar idea, but to expand a vocabulary of
obscene words in Arab media. They perform a log odds ratio analysis to detect the words favoring
documents categorized as obscene. This approach however requires a dataset with a wide variety
of abusive and obscene words.

In sentiment analysis, the main objective is to detect the polarity of a message. In the context
of abuse detection, a negative polarity can be seen as a marker of abuse. On other tasks such
as authorship identification, sentiment analysis helped improve classification [44]. It was therefore
adapted to detect various forms of abuse like hate speech [12], [13] and sexual harassment [45].
A limitation to this approach noted in [12] is that the words’ meanings can change according to
the context. For instance, the expression "You are stupid" is clearly offensive, whereas "This is
stupid" is not. Hence, the aforementioned frameworks usually use sentiment-based features in
combination with other syntactic, linguistic and lexicon-based features.

2.2.1.2 Neural Networks-Based Methods

With the advancements in computational capabilities, researchers have rapidly introduced abuse
detection methods that rely on neural architectures. We first present those using distributed repre-
sentations of messages, then those that don’t but still use deep learning.

20

2.2. Abuse Detection Methods

2.2.1.2.1 Distributed Representations

Djuric et al. [46] use the paragraph2vec [47] framework to learn low-dimensional representa-
tions of messages, and then train a logistic regression classifier to discriminate them based on this
representation. With this method, they are able to outperform models trained on representations
constructed from bag-of-words. An important observation of the authors is that text obfuscation
in abusive comments leads to a high dimensionality and sparsity in bag-of-word representations,
which has a negative impact on the classifier’s performance. Nobata et al. [24] improve upon this
work by training a regression model on a set of features derived from 4 different categories: word
and character N -grams, linguistic features, syntactic features and distributional representations.
They obtain the best results with all features combined, but note that character N -grams contribute
significantly more to the performance than other features. Pavlopoulos et al. [48] and Mishra et
al. [49] use 3 datasets annotated for toxicity, personal attacks and aggression to train Recurrent
Neural Networks (RNN) operating on word embeddings and character N -gram features. Subse-
quently, numerous methods based on word embedding representations have been proposed to
detect different types of abuse. This includes methods based on GloVe [50]–[54], FastText [50],
[54], word2vec [52], [55], [56] and BERT [16], [17], [57]. Caselli et al. proposed HateBERT [58], a
BERT model specifically designed for abusive language detection in English. To train HateBERT,
they collect a dataset of approximately 1.5 million messages in English from various Reddit com-
munities banned for being offensive, abusive, or hateful. They demonstrate better performance
with HateBERT than a standard BERT model on multiple datasets. A number of studies are based
on this model [59], [60].

2.2.1.2.2 Deep Learning

Badjatiya et al. [50] investigate different neural architectures trained for hate speech detection.
They obtain their best performance with a Long-Short Term Memory (LSTM) model operating on
word-level. Park et al. [61] classify sexist and racist abusive language by implementing 3 CNN-
based models operating on different granularities of input features: characters, words or both. The
model combining both characters and words outperforms the other models which use them sepa-
rately and a logistic regression classifier based on N -grams used as a baseline. Akhter et al. [62]
also show that deep learning models perform significantly better than machine learning models
to detect abusive language in Urdu and Roman Urdu comments. They compare 4 architectures
(Convolutional Neural Network, LSTM, Bidirectional-LSTM, and Contextual-LSTM) and obtain bet-
ter results with one-layer than 2-layer architectures. The best performance being achieved by
CNN. A tendency in recent studies is to develop hybrid deep learning models that combine mul-
tiple models instead of using them individually. This tendency is justified by the complexity of the
task. The limitations of independent models can be complemented when used in combination with

21

Chapter 2. Survey of Online Abuse Detection

one another, hence enhancing the overall performance of the system. We can cite CNN, LSTM,
Bidirectional-LSTM and Gated Recurrent Units as some of the most widespread models in these
hybrid architectures [63]–[67].

2.2.1.3 Discussion

There is a huge variety of methods relying on the content of the targeted message to detect
abuse or related properties. Some of them use basic sets of hand-crafted rules while more so-
phisticated methods implement multiple deep learning architectures. While being generally more
effective, the latter require large datasets for training. Since textual methods are usually language-
dependent, they have to be trained on a dataset of the specific language, which can be difficult to
find or constitute for low-resource languages. It is also common that a model trained on a particular
type of text is not efficient on another type of text. Textual methods obtain very strong performance
on multiple datasets and tasks. However, they have limitations when the abusive nature of a mes-
sage is not only related to its content, but also to surrounding messages or contextual information.
For instance, abuse can be spread over successive messages or can reference a shared history
between users. This makes the detection more difficult. Furthermore, as noted in different stud-
ies [33], [42], they are vulnerable to text-based attacks. Abusive users can voluntarily obfuscate
message content to deceive automatic methods based on text. Usual techniques include replacing
letters (e.g. f**k), adding spaces or additional characters (e.g. f u c k, f-u-c-k) and more sophis-
ticated methods such as encoding text in binary or hexadecimal. Hosseini et al. [4] demonstrate
such an attack against the Perspective API2, an API developed to mitigate toxicity online. For abu-
sive comments, they are able to reduce the toxicity score given by the API to the level of benign
phrases by slightly modifying the toxic words.

2.2.2 Contextual Methods

To address the aforementioned problems with the methods focusing on the content of the ex-
changed messages, some authors propose to consider the context of these messages. Menini et
al. [3] explore the role of such context in abusive language annotation. They annotate 8,000 tweets
in 2 conditions: with and without context. They find that almost half of the single tweets (i.e. tweets
without context) labeled as abusive are later labeled as non-abusive when considering the context.
This proves how context-dependent the offensiveness of swearing is. Yin et al. [39] also state that
they often need to look at the context of a post to make a decision when manually labeling training
data. In their comprehensive study of antisocial behavior in online discussion communities, Cheng
et al. [5] add that instances of abusive messages generate significantly higher number of replies
than regular messages. As the context can take multiple forms, we divide the context-based meth-

2https://perspectiveapi.com/

22

https://perspectiveapi.com/

2.2. Abuse Detection Methods

ods for abuse detection in 2 categories: those using the text surrounding a message and those
using user-based features.

2.2.2.1 Surrounding Text-Based Features

Based on the previous observations, we can assume that the messages surrounding an abuse
case can give precious information on the nature of this targeted message. In their model, Yin et
al. [39] include features derived from the sentences neighboring the targeted message to detect
harassment. Their objective is to spot conversations going off-topic, and use that as an indicator.
In particular, they indicate that when a first abusive post appears, it often causes other users to
respond with retaliatory harassment. Anuchitanukul et al. [68] propose a context-aware model that
combines a representation of context (history representation) and target post. They encode the
context as a sequence of sentences and learn the representations with BERT [69]. The concate-
nated representations of context and target post are then fed to a final classifier.

Vargas et al. [70] build on the many lexicon-based methods to propose a contextual lexicon
approach. This is based on an offensive lexicon enhanced with contextual labels. They obtain
better results for hate speech and offensive comment detection in Portuguese when using features
built from this lexicon. Karan et al. [71] develop a preemptive toxic language detection system to
assess if a comment is toxic based on the preceding messages. More formally, the model treats
a sequence of comments including the one to classify and all of its ancestors. They show that
considering the entire thread leads to better performance, in particular in threads which already
contain a toxic comment. Almerekhi et al. [72] propose a related study. They investigate the
causes leading to toxic discussion threads in Reddit. They define toxicity triggers, i.e. comments
that incur direct toxic responses. These triggers can be used to detect threads where abusive
messages are more likely to appear. The considered context can be even broader. Gao et al. [73]
rely on the title of the news article that the message was posted for. They extract character and
word N -gram features as well as lexicon features from the title to detect hate speech in Fox News
user comments.

2.2.2.2 User-Based Features

Offensive authors tend to post abusive comments in multiple conversations. This suggests that
considering user-level features could improve the detection of abusive messages. Researchers
have proposed to incorporate different types of user-level context. Balci et al. [74] take advantage
of user features such as gender, number of in-game friends, avatars or number of daily logins, to
detect abuse in the community of an online game. Such demographic signals have been success-
fully leveraged in several works (e.g. [26], [75], [76]). The level of activity of users is especially
interesting according to multiple studies. Cheng et al. [5] indicate that abusive authors are much

23

Chapter 2. Survey of Online Abuse Detection

more involved in the conversations they participate in than regular users, and Xiang et al. [77] state
that users who spend more time online are more likely to engage in antisocial behavior. There-
fore, features such as the daily activity [74], account status [76], [78], [79] or number of messages
posted [79]–[81] were used to include user-related information. Chatzakou et al. [78] also consider
the inter-arrival time, i.e. the time between 2 consecutive messages, to study the waiting time in
user’s posting activity.

The fact that social media posts are short and noisy is a problem for abuse detection ap-
proaches. Qian et al. [82] mitigate this issue by collecting and analyzing the users’ historical posts.
They use the Twitter API to collect up to 400 tweets posted by each user and feed them into a
pre-trained bi-LSTM to obtain an historical representation of the user, which is then used in com-
bination with other representations based on text. Adding this historical representation of the user
greatly improves the detection of abusive comments. While originally used to detect hate speech,
this method could also be used to detect suspicious authors. Based on the same idea, Ziems et
al. [79] estimate the historical language behavior of user based on a 4-year snapshot of its timeline.
They consider that abusive comments are outside the norm. In this sense, they count the ratio of
tokens in a post having zero occurrences in the timeline. According to their hypothesis, the higher
this value, the greater the probability that the post is abusive.

2.2.2.3 Graph-Based Features

Modeling the users’ social and conversational interactions via their respective graph showed
promising results. A direct manner to use such structures is to describe them via a variety of graph
measures such as Jaccard’s similarity index [79], centrality scores, reciprocity or degree central-
ity [6], [78], [83], [84]. The latter method differs from the others in the sense that it relies exclusively
on a conversational graph and ignores the content of messages, while other methods often use a
mix of graph-based and linguistic features. Nonetheless, they achieve strong performance, even
better than certain content-based method.

Another approach to leverage graph-based information, is to use graph embedding techniques.
Mishra et al. [14] exploit community-based information from a graph representing authors of tweets
to improve the detection of abusive comments. They create an undirected graph wherein vertices
are authors and edges are the follower–followee relations between them. From this graph, they
obtain a user profile, i.e. an embedding for each user, using node2vec [85]. This embedding
emphasizes the structural role of the author in the community. They feed these user profiles to
a gradient boosted decision tree classifier and prove that they greatly improve the system perfor-
mances for detecting racist and sexist comments. In a subsequent work [86], they apply a Graph
Convolutional Network (GCN) [87] to the same dataset, in order to obtain author representations.
This approach allows producing input feature vectors for the author vertices which correspond to a
representation of its entire set of tweets. This feature vector additionally incorporates the linguistic

24

2.3. Datasets

behavior of authors in their learned profiles, which results in better performance. Ribeiro et al. [88]
also apply a Graph Neural Network (GNN) using GraphSAGE [89], to learn user profiles. Nagar
et al. [15] propose a framework that takes into account the content produced by authors and their
profile information. They use a Variational Graph Auto-encoder to learn a joint representation of
these 2 sources.

2.3 Datasets

This section is dedicated to the review of datasets for abuse detection. We only consider
annotated datasets as we define our task as a supervised learning task. As mentioned previously
in this chapter, abuse can take multiple forms, e.g. sexism, hate speech, racism, profanity or
harassment. Here we consider abuse as a whole no matter its sub-category. Table 2.1 provides
a summary of the recent datasets that are publicly available online, distinguishing between those
that focus on independent messages (top part of the table) and whole conversations (bottom part).
It is important to note that the majority of datasets in the literature use oversampling strategies to
increase the proportion of abusive instances. Indeed, the typical prevalence of abusive tweets and
personal attacks on Wikipedia talk pages is smaller than 1% [90], [91]. This oversampling can be
done by considering specific sensitive topics and communities, or by using keywords related to
abuse to filter messages.

This section is organized as follows. We first list and describe the existing datasets for abuse
detection in Section 2.3.1. Then, we present the 2 datasets linked to this thesis in Section 2.3.2.
Finally, we formalize the abuse detection problem and present how it is evaluated in Section 2.4.

2.3.1 Existing Datasets

Most of the datasets concern English messages, as this is the most common language on
the Internet, but efforts are being made to provide datasets in other languages too. The last
column of Table 2.1 highlights a recurring issue regarding the size of the datasets. Most of them
consist of fewer than 10,000 messages, which is a limitation for deep learning approaches, as
they often require a lot of data for training. Creating a large dataset is a long and expensive
process, particularly to obtain high-quality human annotations. The challenging nature of this
task is highlighted by the low inter-annotator agreement observed in the annotation process [90].
This is why some authors propose to automate the annotation of messages [18], [90] or even to
automatically generate abusive instances with pre-trained language models (e.g. [94], [96]). We
can distinguish 2 categories of abuse datasets: those constituted of individual messages, and
those containing whole conversations.

25

Chapter 2. Survey of Online Abuse Detection

Table 2.1: Summary of available abuse detection datasets.

Dataset Ref. Description Language Entries

SemEval-2023 Task 10 [92] Class labels are - sexist, not sexist English 20,000
Reddit context-aware dataset [93] Annotated with the parent post as

context. Classes are hate, counter-
hate or neutral

English 6,846

ToxiGen (Implicit Hate Speech) [94] Machine-generated dataset, labels
are toxic and benign

English 274,186

Istanbul Convention dataset [95]
5 classes: no hate speech, insult,
exclusion, wishing harm, threaten-
ing harm. 2 datasets

Turkish 1,206
&

1,278
DynaHate [96] Machine-generated dataset, labels

are hate or not hate + 5 secondary
labels for hate type

English 41,255

Abuse is Contextual tweets dataset [3] Tweets enriched with preceding
comment. Annotated for abuse

English 8,018

Civil Comments in Context [97] Comments annotated with and
without context. Labels are non-
toxic, unsure, toxic, very toxic

English 10,000

Hate Speech and Offensive Con-
tent Identification in Indo-European
Languages (HASOC)

[98]
Class labels are - Non offensive,
hate and offensive, hate, offensive,
profane

English 5,335
German 3,425
Hindi 4,288

SemEval-2019 Task 5 [99] Class labels are - Hateful, Non-
Hateful

English 13,000
Spanish 6,600

Wikipedia talk pages [90] Annotated for personal attack English 115,737

Reddit Contextual Abuse Dataset [100] Contains conversation threads. La-
bels are 6 primary categories of
abuse

English 27,494

CyberAgressionAdo [101] Full conversations. Collected
through a role-playing game with
high-schoolers

French 3,260

Ruddit [102] Annotation of full conversations.
Real-valued scores ranging from
supportive to offensive

English 6,000

Wikipedia Abuse Corpus [18] Provides conversations. Three
datasets for personal attack, ag-
gression, toxicity

English 382,665

26

2.3. Datasets

2.3.1.1 Individual Message Datasets

The individual message datasets consider all messages independent of each other. They are
listed in the top part of Table 2.1. They are the most common, as it is much easier to extract and
annotate such individual messages (e.g. [94]–[96], [99]). We also include datasets such as [3],
[92], [97] in this category. They provide the parent post or a few preceding posts in addition to the
targeted post, but this context is too short to be considered as a real conversation. Indeed, it is
mainly used to improve the quality of labels, by providing some context to the annotators, which
has been proved beneficial.

2.3.1.2 Conversation Datasets

On the other hand, there are datasets with full conversations, such as [18], [100]–[103]. They
are listed at the bottom of Table 2.1. Some of them are fully annotated (i.e. all messages have
individual annotation) while others provide conversations in which only one message is annotated
and the rest serve as context. We discuss conversation datasets in more details because they
best suit our research needs. As mentioned in the introduction, in this thesis, we want to combine
text content and conversation structure to detect abuse. For the latter, we thus require some
conversational context in order to exploit the conversation structure. CyberAgressionAdo [101]
is composed of fully annotated conversations. They were collected through a role-playing game
wherein scenarios were introduced and high-school students had to play a role such as conciliator,
bystander or bully. The dataset however contains only 19 conversations of around 130 messages
each, which is too few to train a machine learning algorithm. Ruddit [102] and the Reddit Contextual
Abuse Dataset [100] both propose conversation threads from Reddit. They specifically include
subreddits which are likely to contain higher-than-average levels of abuse. They contain 6,000 and
27,494 posts, respectively. However, we cannot use these datasets for our experiments because
of the way the conversation threads work on Reddit. A thread groups comments under an initial
post, while each comment can in turn answer to a previous comment. In this manner, threads often
have a tree structure, with a large width and a small depth. As different branches of this tree are
usually unrelated and concern different users, it is not possible to correctly use the structures of
Reddit comment threads to build significant conversation graphs.

2.3.2 Datasets Related to this Thesis

We now discuss the datasets directly related to this thesis that aim at solving the issues ob-
served with the other existing datasets. The first one, SpaceOrigin [11], was constituted in the
same research team as this thesis and constitutes the main dataset for our experiments in the rest
of this thesis. The second, Wikipedia Abuse Corpus [18] is an original dataset that we constituted
and published.

27

Chapter 2. Survey of Online Abuse Detection

The SpaceOrigin dataset [11] is a collection of annotated French messages enriched with their
conversational context, i.e. the messages posted before and after in the same conversation. The
messages were extracted from a database of users’ in-game interactions on the Massively Multi-
player Online Role-Playing SpaceOrigin3. They were posted in the in-game chat used by all users
to communicate, propose alliances or make strategies. The original database contains more than
4 million entries among which 655 have been flagged as being abusive by at least one user in the
game, and confirmed as such by a human moderator. This ensures the high quality of annota-
tions for the Abuse class. Among the messages never been flagged by a confirmed abuse report,
1,890 were chosen at random to compose the Non Abuse class. Each of the 2,545 messages in
the constituted dataset, whatever its class, is associated to its surrounding context (i.e. messages
posted in the same thread). It is composed of up to 2,000 messages on each side of the message
(before and after). They are ordered from oldest to newest, usually with a gap of a few seconds
between them. The annotated messages were selected in such a way that they do not appear in
the context of each other. This is particularly important that no abusive message appear in the
context of another message, as it could trigger reactions and bias the analysis. All the messages
forming the context are unlabeled, they are only used to represent the conversation in which the
labeled message was posted. To summarize, the SpaceOrigin dataset is composed of 2,545 dis-
tinct conversations, each containing one annotated message and the context before and after it.
However, this dataset is based on proprietary data which means that we are not allowed to share
the raw text publicly. This is the reason why it is not included in Table 2.1.

To counter this problem, we constituted the Wikipedia Abuse Corpus (WAC) [18], a dataset of
Wikipedia comments, along with the conversation in which they were posted. The objective with
WAC is to provide a large dataset of almost 400,000 messages with conversational context. Such
a large dataset is non-existent in the literature, as it contains one order of magnitude more anno-
tated messages than the second largest conversation dataset in Table 2.1. The conversations in
WAC come from Wikipedia talk pages, i.e. the web pages associated to Wikipedia articles where
editors can exchange. Typically, editors write a message explaining which change they made on
the article and why. These comments are longer than other types of online posts such as tweets or
chat messages, with an average length of more than 1,000 characters. The conversations, how-
ever, are relatively short, with a majority of them constituted of fewer than 20 messages. Abusive
comments usually come from pages related to sensitive topics such as religion or politics. Abusive
comments represent 13.31% of the total comments in the dataset. The conversations on Wikipedia
talk pages are however particular, in the sense that the time gap between 2 consecutive comments
on less-visited pages can be several years which makes them more like a succession of messages
than actual conversations. To constitute this dataset, we used 2 other publicly available datasets:
the Wikipedia Comment Corpus [90] containing more than 63 million individual machine-labeled

3https://www.spaceorigin.fr

28

https://www.spaceorigin.fr

2.4. Formalization and Evaluation

Wikipedia comments for personal attack, and WikiConv [104], a large corpus of Wikipedia conver-
sations. We combined these 2 datasets to retrieve the context of the annotated messages, and
therefore build a new conversation-based dataset.

The fact that conversations in WAC are usually very short (a few messages), and the time gap
between 2 consecutive comments make this dataset unusable for our methods in the remaining
of this thesis: first, these require longer conversations, and second, the slow evolution is likely
to exhibit very different dynamics compared to chat rooms. For this reason, the rest of the work
presented in the following focuses on the SpaceOrigin corpus. Even though we could not take
advantage of our own dataset to assess our proposed methods, it is worth stressing that it was
used by others [105]–[108].

2.4 Formalization and Evaluation

The literature does not always refer to the exact same problem when talking about abuse detec-
tion. We first formalize this task (Section 2.4.1), before presenting different metrics used to assess
the quality of abuse detection systems, including the one that we use in this thesis (Section 2.4.2).

2.4.1 Formalization of Abuse Detection

Abuse detection is usually defined as a classification task consisting in automatically determin-
ing whether a post is abusive given a set of guidelines [105]. It is almost always treated as a clas-
sification task of individual messages, where all messages to classify are considered independent
from each other. Still, a few works propose to directly detect abusive authors instead of messages
(e.g. [109]). For the classification, 2 approaches exist. The first one consists in treating abuse
detection as a binary task, with an Abuse class covering all types of abuse listed in Section 2.1,
and a Non-Abuse class (e.g. [11], [41], [48], [54]). Systems trained following this procedure are
easier to adapt to different frameworks, as they use a global definition of abuse. In many cases,
however, it is interesting to treat abuse detection as a multi-class problem with different types or
degree of abuse (e.g. [50], [110], [111]). This is particularly interesting for systems that have to
apply different sanctions depending on the category of abuse. In this thesis, we focus on the de-
tection of abusive comments that we consider as such if they do not meet the guidelines of the
platform they are posted on. This is therefore a binary classification task which involves classes
Abuse and Non abuse. We adopt this approach for 2 reasons. First, the SpaceOrigin dataset that
we use only provides this type of annotation and second, we want to build a general system which
could be adapted to different settings and datasets. To this end, treating abuse as a single, global
class encompassing all types of abuse seems to be the most suitable strategy.

29

Chapter 2. Survey of Online Abuse Detection

2.4.2 Evaluation Metrics

To evaluate abuse detection, a number of different metrics are used in the literature. In the
following, we focus on the 2 most widespread.

2.4.2.1 ROC-AUC

The Receiver Operating Characteristic (ROC) curve is another method used to evaluate
abuse detection [78], [112]. Let us define true positives (TP) (resp. true negatives (TN)) as abusive
(resp. non-abusive) messages that are correctly predicted as such by the system. Conversely,
false positives (FP) (resp. false negatives (FN)) are non-abusive (resp. abusive) messages that are
incorrectly predicted as such by the system. A false negative corresponds to an abusive message
that was missed by the classifier, whereas a false positive is a message that was wrongly flagged.

The ROC curve is the plot of the true positive rate (TPR) against the false positive rate (FPR),
at various threshold settings. In their most basic form, the former is defined as

TPR = TP

TP + FN
, (2.1)

and the latter as
TNR = TN

TN + FP
. (2.2)

In a binary classification setting, certain classifiers associate a continuous random variable X to
each instance. X is a score representing the probability of the instance to be abusive. Given a
threshold parameter T , the instance is abusive if X > T and non-abusive otherwise. X follows
the probability density f1(x) if the instance is abusive and f0(x) if it is non-abusive. It is therefore
possible to compute both TPR and FPR as functions of T . For the former we get:

TPR(T) =
∫ ∞

T
f1(x) dx, (2.3)

and for the latter:
FPR(T) =

∫ ∞

T
f0(x) dx. (2.4)

The ROC curve is the plot of TPR(T) versus FPR(T) with T as the varying parameter. The
performance of a classifier is usually assessed by calculating the Area Under the Curve (AUC)
which can be seen as the probability of the classifier to correctly give a higher score to a random
positive case than a random negative case. For a predictor f :

AUC(f) =
∑

t0∈D0
∑

t1∈D1 1[f(t0) < f(t1)]
|D0| · |D1|

, (2.5)

where 1[f(t0) < f(t1)] returns 1 if f(t0) < f(t1) and 0 otherwise, D0 is the set of negative examples
and D1 is the set of positive examples.

30

2.5. Conclusion

Several studies criticize the use of the ROC curve for assessing the performance of a classi-
fication system [113]–[115]. They criticize the use of some portions of area under the curve with
low sensitivity which are rarely of interest and should therefore be excluded from the AUC compu-
tation. Furthermore, another possible limitation noted by [112] is related to the low prevalence of
abusive messages in abuse datasets. The author states that precision-recall curves might be more
appropriate than ROC for this task.

2.4.2.2 F -Measure

The most commonly used metric to evaluate abuse detection is the F -measure (e.g. [14],
[34]–[36], [38], [39]). Let us define a binary classification problem of abusive messages with P

positive instances (Abuse class) and N negative instances (Non-Abuse class). The Precision
(Pre) (Equation 2.6) is the proportion of actual abusive messages among all messages detected
as abusive by the method:

Pre = TP

TP + FP
. (2.6)

The Recall (Rec) is the proportion of abusive messages that are retrieved among all existing abu-
sive messages:

Rec = TP

TP + FN
. (2.7)

The F -measure (Equation 2.8) is the harmonic mean of the precision and recall:

F1 = 2 × Pre × Rec

Pre + Rec
. (2.8)

The macro F -measure is the unweighted arithmetic mean of all the per-class F -measures. This
metric handles all classes equally, even in case of unbalanced dataset. In a classification problem
with n classes, it is defined as:

macro F1 =
∑n

c=1 F1c

n
. (2.9)

The F -measure is by far the most commonly used metric to assess abuse detection. To ease
the comparison with other studies, we decide to express all our performances in terms of macro
F -measure in the remaining of this thesis. We use the macro averaged variant of this metric
because the SpaceOrigin dataset that we use is unbalanced with only 25% of abusive messages.

2.5 Conclusion

In this chapter, we first defined what constitutes an abuse and the concepts related to their
detection on online platforms. We then reviewed the abuse detection methods proposed in the
literature. Afterwards, we gave an overview of the existing datasets of messages annotated for
abuse detection. Almost all of them focus on individual messages rather than conversations, while

31

Chapter 2. Survey of Online Abuse Detection

the literature points out that the conversational context is important to detect abusive comments.
We presented the WAC corpus, a dataset of annotated conversations that we developed to mitigate
this issue, but that exhibits certain limitations making it unsuitable in our case, and the SpaceOrigin
corpus, which we use in the rest of the thesis. Finally, we defined the task and presented the
metrics used in the abuse detection literature including the macro F -Measure, the metric that we
use in the rest of this thesis.

As we saw in the survey of existing methods, leveraging multiple sources of information seems
important in the abuse detection task. This motivates us to propose our own approaches, based
on multiple modalities, i.e. text and graphs. As explained in Section 2.2, there are 2 main types of
methods: those relying on textual content and those using contextual information. In this thesis, we
focus on the conversational context, which we model through a graph representing the structure of
the conversation. We propose to explore both aspects of this dual information by comparing and
combining text- and graph-based methods. As a first step, we manually engineer features to train
a classifier. On the one hand, this strategy is quite standard in NLP, so we directly present the
selected text-related features when presenting our method in Chapter 4. On the other hand, using
graph features is not that common when performing graph classification, especially when applied
to abuse detection, as no method relying on conversational graphs currently exist. Hence, in the
next chapter, we perform a review of the most popular topological metrics proposed in the literature
to describe graphs, which we later leverage as classification features in Chapter 4.

32

Chapter 3

GRAPH METRICS AS GRAPH FEATURES

3.1 Definitions and Notations . 34

3.2 Vertex-Focused Topological Measures . 35

3.2.1 Microscopic Measures . 35

3.2.2 Macroscopic Measures . 37

3.2.3 Mesoscopic Measures . 41

3.3 Graph-Focused Topological Measures . 42

3.3.1 Microscopic Measures . 42

3.3.2 Macroscopic Measures . 43

3.3.3 Mesoscopic Measures . 44

3.4 Conclusion . 44

Machine learning tasks such as classification and regression require numerical inputs of fixed
size. Feature engineering is the process of extracting chosen features from raw data to obtain
such numerical representations. Numerous topological measures were proposed over the years
to characterize the structure and nature of graphs at different scales and scopes, and can be
used as features to describe them. The scale depends on the nature of the characterized entity:
vertex, subgraph or graph while the scope corresponds to the information used to characterize this
entity: microscopic (interconnection between a vertex and its direct neighborhood), mesoscopic
(structure of a subgraph and its direct neighborhood), and macroscopic (structure of the whole
graph) [116]. Throughout this thesis, we are interested in 2 types of entity: the graphs, which
are the elements that we want to classify, and the vertices, including some that are particularly
interesting to represent, such as the author of the message. Furthermore, it is even possible to
directly construct a representation of the graph by aggregating all the representations of the graph’s
vertices. Therefore, we focus only on the vertex and graph measures.

This chapter makes the following contribution:

1. We review the literature of graph metrics that can be used as graph features, focusing on the
scales and scopes that are relevant for our abuse detection task. This review includes vertex
and graph-focused measures.

33

Chapter 3. Graph metrics as graph features

It is organized as follows. In Section 3.1, we introduce concepts and notations that are used in
the rest of the manuscript. Then, we survey the vertex-focused measures in Section 3.2, and the
graph-focused measures in Section 3.3. For both, we distinguish topological measures in terms of
scope.

3.1 Definitions and Notations

We start with the definition of a simple graph, i.e. undirected, unweighted, and unsigned.

Definition 3.1 (Simple graph). A simple graph is a pair G = (V, E) composed of a set of vertices
V and a set of edges E ⊆ V 2 connecting them. Each edge is a pair of vertices placed in an arbitrary
but constant order (e.g. lexicographic order).

We note n = |V | the number of vertices and m = |E| the number of edges. It is possible to add
some information over the edges to enhance the graph structure.

Definition 3.2 (Directed graph). A directed graph is a pair G = (V, E) composed of a set of
vertices V and a set of directed edges E ⊆ V 2 connecting them. Unlike the undirected graph, both
(u, v) and (v, u) can exist in such graphs.

Definition 3.3 (Weighted graph). A weighted graph is a triple G = (V, E, w) composed of a set
of vertices V , a set of edges E ⊆ V 2 connecting them, and a function w : E → R that associates a
weight to each edge.

For the sake of simplicity, we note wuv the weight of edge (u, v). It is possible to have a graph
that is both directed and weighted.

Definition 3.4 (Signed graph). A signed graph is a triple G = (V, E, s) composed of a set of
vertices V , a set of edges E ⊆ V 2 connecting them, and a function s : E → {−, +} that associates
a sign to each edge. We note E− ⊂ E and E+ ⊂ E the subsets of negative and positive edges,
respectively. Consequently, E = E− ∪ E+.

A signed graph can also be directed and/or weighted. The graphs can thus be just signed, but
also signed directed, signed weighted, or signed directed weighted.

Definition 3.5 (Adjacency matrix). The adjacency matrix of a graph with vertex set V =
{v1, ..., vn} is a square n × n binary matrix A whose elements Aij take the value 1 if an edge
connects the vertex vi to the vertex vj and 0 otherwise.

The adjacency matrix is symmetric in undirected graphs, but not necessarily in directed graphs.

Definition 3.6 (Neighborhood). The neighborhood N(u) of a vertex u ∈ V includes all vertices
attached to this vertex: N(u) = {v ∈ V : (u, v) ∈ E}.

34

3.2. Vertex-Focused Topological Measures

In directed graphs, the neighborhood is split in 2: the incoming neighborhood and the outgoing
neighborhood.

Definition 3.7 (Incoming and outgoing neighborhoods). In a directed graph, the incoming N in

and outgoing Nout neighborhoods of a vertex u are the sets of vertices connected to u through
incoming and outgoing edges, respectively: N in(u) = {v ∈ V : (v, u) ∈ E} and Nout(u) = {v ∈ V :
(u, v) ∈ E}.

In undirected signed graphs, one can distinguish between 2 neighborhoods, depending on the
edge signs:

Definition 3.8 (Positive and negative neighborhoods). The positive N+(u) and negative N−(u)
neighborhoods of a vertex u ∈ V focus each on a specific edge sign: N±(u) = {v ∈ V : (u, v) ∈
E±}.

The unsigned neighborhood of vertex u is thus defined as the union of its positive and negative
neighborhoods N(u) = N+(u) ∪ N−(u). In case of directed signed graph, the neighborhood of
vertex u is split in 4 depending on edge sign and direction: N(u) = N in+ ∪ N in− ∪ Nout+ ∪ Nout−.

Definition 3.9 (Shortest path). In an unweighted undirected graph, the shortest path between 2
vertices is the path that connects them with the fewest edges. In a weighted graph, it is the path of
minimal total weight.

Definition 3.10 (Distance). In an undirected graph, the distance between 2 vertices is the number
of edges in the shortest path between them. In a directed graph, we consider the oriented paths. We
note d(u, v) the distance between u and v.

3.2 Vertex-Focused Topological Measures

Vertex measures are defined relatively to a single vertex of the graph. We first describe
the microscopic measures that characterize a vertex depending on its direct neighborhood (Sec-
tion 3.2.1). Then, we explain the macroscopic measures which operate on the entirety of the graph
(Section 3.2.2). Finally, we focus on the mesoscopic measures relying on an intermediate structure
to characterize vertices (Section 3.2.3).

3.2.1 Microscopic Measures

The Degree Centrality measures the size of the direct neighborhood of the considered vertex
v as:

k(v) = |N(v)|. (3.1)

35

Chapter 3. Graph metrics as graph features

In directed and signed graphs, the incoming (Equation 3.2), outgoing (Equation 3.3), positive
and negative (Equation 3.4) degree centralities of a vertex are defined as the cardinalities of the
corresponding neighborhoods as:

kin(v) = |N in(v)|, (3.2)

kout(v) = |Nout(v)|, (3.3)

k±(v) = |N±(v)|. (3.4)

The Strength Centrality is the generalization of the degree to weighted graphs. It is based on
the sum of the weights of the edges linked to the considered vertex. The strength of vertex v is
defined as:

Str(v) =
∑

u∈N(v)
wuv. (3.5)

Once again, it is possible to use the incoming (Equation 3.6) and outgoing (Equation 3.7)
versions of that measure in a directed graph. Compared to the degree centrality, the strength takes
into account the frequency or intensity of the interactions in the following way:

Strin(v) =
∑

u∈N in(v)
wuv, (3.6)

Strout(v) =
∑

u∈Nout(v)
wvu. (3.7)

The Local Transitivity [117] (aka local clustering coefficient) corresponds to the proportion
of the considered vertex’s neighbors connected through an edge, relatively to the total number of
connections possible among them. It is a score ranging from 0 (no inter-neighbor edge at all) to 1
(the vertex and its neighborhood are completely interconnected and form a clique). The measure
is originally defined for unweighted undirected graphs:

LT (v) = 2|{(u, z) ∈ E : u, z ∈ N(v)}|
k(v)(k(v) − 1) , (3.8)

where the degree can be reformulated as k(v) =
∑

u Auv. A weighted variant based on the strength
centrality was proposed [118]:

LTw(v) = 1
Str(v)(k(v) − 1)

∑
u,z

wuv + wvz

2 AuvAvzAuz. (3.9)

36

3.2. Vertex-Focused Topological Measures

Burt’s Constraint [119] measures how redundant the neighbors of a vertex are. Vertices with
high constraint values are said to be constrained by their neighbors, i.e. they stand in a highly
cohesive group of vertices. On the other hand, vertices with a low constraint value have a higher
reach outside their direct neighbors pool. This measure is based on the proportion of the relations
of some vertex v that are invested in connection with another vertex u, compared to the total weight
that v shares with its neighbors. It is expressed as:

pvu = Avu + Auv∑
z∈V \{v}(Avz + Azv) . (3.10)

Burt’s constraint (Equation 3.11) is composed of 2 parts: the direct influence pvu and the indirect
influence

∑
pvzpzu which measures the amount of weight indirectly shared by v and u through a

mutual neighbor z. It is defined as:

BurtC(v) =
∑

u∈V \{v}

(
pvu +

∑
z∈V \{u,v}

pvzpzu

)2
. (3.11)

3.2.2 Macroscopic Measures

Macroscopic measures operate on the entirety of the graph structure. They allow characterizing
the position of a particular vertex relatively to the whole graph. We can distinguish 3 families of
macroscopic measures: the spectral measures (Section 3.2.2.1), the distance-based measures
(Section 3.2.2.2) and the connectivity-based measures (Section 3.2.2.3).

3.2.2.1 Spectral Measures

The spectral measures are based on the Eigenvectors or Eigenvalues of the graph adjacency
matrix, or any related matrix.

The Eigenvector Centrality [120] is another generalization of the degree, in which instead of
just counting the direct neighbors, one also takes into account their own centrality:

EigC(v) = 1
λ

∑
u∈N(v)

EigC(u) = 1
λ

∑
u∈V

AvuEigC(u), (3.12)

where λ ̸= 0 is a constant. A central neighbor contributes more to the centrality than a peripheral
one. A high Eigenvector value indicates a vertex that is connected to many vertices who them-
selves have high values. Using matrix notation, the Eigenvector centrality can be rewritten as the
Eigenvector equation:

Ax = λx, (3.13)

with x =
(
EigC(v1), ..., EigC(vn)

)
, and λ is the largest Eigenvalue of A.

37

Chapter 3. Graph metrics as graph features

The PageRank Centrality [121] can be seen as a variant of the Eigenvector centrality originally
designed for directed graphs, but that can also be applied to undirected graphs. It includes an
additional normalization allowing to model the dilution of the influence of a vertex through all its
outgoing edges. This is done through the damping factor d, which represents the probability to
jump from one vertex to another without having an explicit connection between them. In practice, it
is usually set to 0.85 based on empirical results [121]. At each time step t, the computation yields:

R(t + 1) = dMR(t) + 1 − d

n
1, (3.14)

where 1 is the column vector of length n containing only ones and matrix M is defined as:

Muv =

⎧⎨⎩1/Nout(v) if (v, u) ∈ E

0 otherwise.
(3.15)

This formula can be rewritten recursively as:

PR(v; t + 1) = 1 − d

n
+ d

∑
u∈N in(v)

PR(u; t)
Nout(u) , (3.16)

where the first term model the probability of randomly visiting a given vertex and in the second
term, vertices equally dilute their influence to all their outgoing neighbors.

The Hub and Authority Scores [122] are 2 complementary measures for directed graphs,
computed through the Hyperlink-Induced Topic Search (HITS) algorithm. They split the Eigenvec-
tor centrality value into 2 parts. The authority score focuses on incoming edges and the hub score
on the outgoing edges. In matrix notation with constant α and β, authority and hub scores are
respectively

a = αAT h, (3.17)

h = βAa. (3.18)

In their iterative definition, Hub(v) = Auth(v) = 1 for all vertices v ∈ V in the initial step.
Then, at each iteration, the authority of all vertices is updated as the sum of the hub score of all its
incoming neighbors, divided by the square root of the sum squared authority scores:

Auth(v) =

∑
u∈N in(v)

Hub(u)√ ∑
u∈V

Auth(u)2
. (3.19)

This normalization is needed to obtain values that converge. The hub score of all vertices is
updated in the same manner, except that it is the sum of all the authority scores of outgoing

38

3.2. Vertex-Focused Topological Measures

neighbors divided by the square root of the sum of the squared hub scores:

Hub(v) =

∑
u∈Nout(v)

Auth(u)√ ∑
u∈V

Hub(u)2
. (3.20)

The Alpha Centrality, or Katz Centrality [123], [124], relates to the same idea, but it considers
all the walks between pairs of vertices instead of only the shortest paths in directed graphs. This
measure computes the relative influence of a vertex within the graph by considering its direct and
indirect neighbors, but the latter are penalized by an attenuation factor α ∈ (0, 1):

Alpha(v) =
∞∑

ℓ=1

n∑
u=1

αℓ(Aℓ)uv, (3.21)

wherein the power of the adjacency matrix (Aℓ) denotes the presence (or absence) of a path of
length ℓ between 2 vertices.

The Power Centrality [125] generalizes both the Eigenvector and Alpha Centralities in directed
unweighted graphs. It is based on the notion that the power of a vertex is recursively defined by
the sum of the power of its neighbors. It uses an attenuation parameter β ∈ (−1/λA1; 1/λA1)
(the reciprocal of the largest eigenvalue of the adjacency matrix A) which controls the influence of
distant vertices and a scaling parameter α. The power centrality is defined as follows:

PC = α (I − βA)−1 A1, (3.22)

or in its iterative form:

PC(v) =
∑

u∈N(v)
(α + βPCu)Avu. (3.23)

The SubGraph Centrality [126] defines the notion of reachability based on closed walks in
undirected graphs. The subgraph centrality of vertex v is computed as the sum of the closed walks
of all lengths starting and ending at v. The contribution of the closed walks decreases as their
length increases, making short walks more influential on the centrality of the vertex than longer
ones. It is formally defined as:

SC(v) =
∞∑

ℓ=0

(Aℓ)vv

ℓ! , (3.24)

where the numerator is the local spectral moments, which is defined as the vth diagonal entry of
the ℓth power of the adjacency matrix A.

39

Chapter 3. Graph metrics as graph features

3.2.2.2 Distance-Based Measures

Another family of macroscopic measures is based on the notions of shortest path and geodesic
distance between vertices.

The Betweenness Centrality [127] is related to the number of shortest paths going through the
considered vertex. For every pair or vertices in a connected graph, there exists at least one shortest
path connecting the vertices. In an undirected unweighted graph, the betweenness centrality of a
vertex is the proportion of such shortest paths passing through it:

BetC(v) =
∑

u̸=v ̸=z

σuz(v)
σuz

, (3.25)

where σuz is the number of shortest paths between u and z, and σuz(v) is the number of those
passing through v. In directed graphs, this measure is defined as the proportion of directed short-
est paths passing through v and in weighted graphs, it considers the paths of minimal weight.

The Closeness Centrality [128] is related to the reciprocal of the total geodesic distance be-
tween the vertex of interest and the other vertices. The more central a vertex is, the higher its
closeness centrality. It is generally considered that it measures the efficiency of the vertex to
spread a message over the graph, and its independence from the other vertices in terms of com-
munication. The closeness centrality was originally defined as:

CloseC(v) = 1∑
u d(u, v) , (3.26)

where d(u, v) is the distance between u and v. In directed and weighted graphs, this distance
is the length of the shortest oriented path and the weight of the path of minimal weight, respec-
tively. However, the closeness centrality often refers to its normalized form, where the previous
formula is multiplied by the number of remaining vertices in the graph. This normalization eases
the comparison of vertices in graphs of different sizes. The formula becomes:

CloseCNorm(v) = n − 1∑
u d(u, v) . (3.27)

This measure is generalized to directed graphs by considering the length of directed shortest paths,
and to weighted graphs by considering the cost of the paths of minimal cost.

The Eccentricity [129] is related to the closeness centrality, but it is not a centrality measure.
On the contrary, it quantifies how peripheral a vertex is, by considering the distance to its farthest
neighbor in the graph. In directed and weighted graphs, this distance is computed on directed and
weighted paths, respectively, in the following manner:

Ecc(v) = max
u∈V

d(u, v). (3.28)

It is generalized to directed or weighted graphs using the same principle as for the closeness.

40

3.2. Vertex-Focused Topological Measures

3.2.2.3 Connectivity-Based Measures

The last family of macroscopic measures is based on the notion of connectivity, i.e. whether or
not a path exists between certain parts of the graph.

An Articulation Point is a vertex whose removal makes the graph disconnected, i.e. split into
several separate components [129]. We define a binary feature indicating whether the vertex is an
articulation point (1) or not (0).

3.2.3 Mesoscopic Measures

Mesoscopic measures rely on an intermediate structure to characterize a vertex, such as a
subgraph.

The Coreness Score [130] is related to the k-core of the graph which is the maximal connected
subgraph in which every vertex has at least degree k. The coreness score of vertex v is k if it
belongs to the k-core but not to the (k + 1)-core. Ingoing cores and outgoing cores can be used to
compute this score in directed graphs.

The Within-Module Degree (or internal intensity) and Participation Coefficient [131] are a
pair of complementary measures defined relatively to the community structure of the graph. They
aim at characterizing the position of vertices at this intermediate level. They can be computed in
undirected and directed graphs by considering the oriented paths in the latter [132]. The within-
module degree measures the connectivity of a given vertex to other vertices in its community. Let
ki(v) be the community degree of v for the ith community, i.e. the number of edges that v shares
with vertices in this community. The within-module degree is defined as the z-score (or statistical
standardization) of ki(v):

WM(v) =
ki(v) − µi

[
ki(v)

]
σi

[
ki(v)

] , (3.29)

where µi
[
ki(v)

]
is the average of ki over all vertices in community Ci, and σi

[
ki(v)

]
is its standard

deviation.
The participation coefficient measures the strength of a vertex’s connections within its commu-

nity. It is expressed as:

PC(v) = 1 −
∑

1≤i≤K

(ki(v)
k(v)

)2
, (3.30)

where K is the number of communities in the graph.

A collection of 4 measures have been proposed to decompose community roles in a more
precise way, and better capture the position of vertices in a modular graph [132]: Internal Intensity,
External Intensity, Diversity, and Heterogeneity. They all rely on the notion of z-score shown in
Equation 3.29 for the community degree ki(v).

41

Chapter 3. Graph metrics as graph features

The internal intensity is just another name for the within-module degree. The external intensity
measures the amount of edges that a vertex have towards communities other than its own. It
is based on the external degree kext(v) of a vertex v, which corresponds to the total community
degree over all communities except its own. The external intensity is the z-score of the external
degree, which is obtained formally by replacing ki(v) by kext(v) in Equation 3.29.

The diversity relies on the number of communities to which a vertex v is connected, outside
of its own. Let ϵ(v) be this number. The diversity is defined as the z-score of ϵ(v), obtained by
substituting ki(v) by ϵ(v) in Equation 3.29.

The heterogeneity of vertex v measures the variation of the number of edges a vertex has, from
one community to another. It requires computing the standard deviation of the number of edges
that u has to each community, denoted by δ(v). The heterogeneity is the z-score of δ, once again
obtained by substituting δ(v) to ki(v) in Equation 3.29.

These measures can be extended to directed graphs by distinguishing incoming and outgoing
links. This results in 2 versions of each measure, the in- and out- measures.

3.3 Graph-Focused Topological Measures

Though less numerous than vertex-focused measures, some measures have been specifically
designed to characterize the graph structure as a whole. As for the vertex measures, one can
distinguish them based on their scope.

3.3.1 Microscopic Measures

A number of very standard statistics exist to describe a graph using only local information. The
vertex count or graph order, is the total number of vertices in the graph: n = |V |. The edge
count or graph size is the total number of edges in the graph: m = |E|. In a signed graph, it can
be splited in a positive count (m+) and a negative count (m−). The graph density represents the
ratio between the number of edges present in a graph and the maximum number of edges that this
graph can contain. It is defined as:

D = 2m

n(n − 1) . (3.31)

The Global Transitivity [133], also known as global clustering coefficient, is the graph-focused
counterpart of the local transitivity. It corresponds to the ratio of the count of triangles to connected
triples (i.e. 3 vertices that are connected by either 2 or 3 edges in the graph). This measure is
related to the proportion of vertices possessing a common neighbor that are directly connected.

42

3.3. Graph-Focused Topological Measures

The Reciprocity [134] measures the proportion of bilateral edges (i.e. edges pointing in both
directions) over all pairs of vertices in a directed graph. Formally, the reciprocity of a graph G is
written:

Rec =

∑
(u,v)∈G

auvavu

|E|
. (3.32)

3.3.2 Macroscopic Measures

The Weak Component Count corresponds to the number of maximally connected subgraphs
in an undirected graph. A subgraph is connected if there exists a path between any given pair
of vertices. The Strong Component Count is its variant for directed graphs, which is based on
directed paths. A directed graph is called strongly connected if there is a directed path in each
direction between any given pair of vertices.

The Cohesion of a graph is the minimum number of vertices one needs to remove in order to
make the graph disconnected [135]. The Adhesion is a similar measure, but for edges.

When describing the vertex-oriented measures, we defined an articulation point as a vertex
whose removal makes the graph disconnected. The Articulation Point Count is the total number
of articulation points in the graph:

APC =
∑
v∈V

AP (v), (3.33)

where AP : V → {0, 1} associates 1 to a vertex if it is an articulation point and 0 otherwise.

The Diameter is the length of the longest shortest path (i.e. the largest distance) over all pairs
of vertices (indirectly) connected in the graph. It corresponds to the maximum eccentricity of any
vertex in the graph:

dia = max
v∈V

Ecc(v). (3.34)

The Radius is the minimum among all the maximum distances over all pairs of vertices (indi-
rectly) connected in the graph. It corresponds to the minimal eccentricity of any vertex:

rad = min
v∈V

Ecc(v). (3.35)

The Average Distance is the arithmetic mean of the lengths of the shortest paths processed
over all pairs of (indirectly) connected vertices. Let d(u, v) be the length of the shortest path

43

Chapter 3. Graph metrics as graph features

between u and v. The average distance is thus:

AvgDist =

∑
(u,v)∈V 2

d(u, v)

n(n−1)
2

. (3.36)

3.3.3 Mesoscopic Measures

A clique is a subset of vertices such that every 2 distinct vertices in the clique are adjacent.
In other words, a clique beloging to a graph G is a complete induced subgraph of G. The Clique
Count is the total number of cliques in G.

The Community Count and the Modularity [136] are 2 measures related to the notion of com-
munity structure, i.e. of partition of vertex set reflecting the network mesoscopic organization. The
former is the number of communities, while the latter is a measure of the quality of the community
structure defined as:

Q =
∑

i

(eii − a2
i). (3.37)

There are a very large number of different methods to detect such community structures, but their
discussion is out of the scope of this thesis. See for instance [137] for a review.

3.4 Conclusion

With the graph measures presented throughout this chapter, it is possible to characterize the
structure of a graph. Each one of them capture particular information and their multiplication allows
to better characterize the entire graph. In the next chapter we want to use these measures in order
to represent conversational graphs. This procedure known as feature engineering which has long
been the standard approach allows us to obtain graph representations that have the benefit of
being interpretable (i.e. based on known and identified characteristics). We can then feed them to a
classifier in order to detect abusive messages in conversations, while identify the most discriminant
feature in order to provide some interpretation to our results.

44

Chapter 4

FEATURE ENGINEERING FOR ABUSE DETECTION

4.1 Graph Extraction from Conversations . 47

4.2 Proposed Representation Methods . 51

4.2.1 Text-Based Features . 51

4.2.2 Graph-Based Features . 54

4.2.3 Combining the Textual and Structural Information 56

4.3 Experiments . 58

4.3.1 Experimental Protocol . 58

4.3.2 Classification Results . 59

4.3.3 Feature Study . 61

4.4 Analysis and Discussion . 65

4.4.1 Temporal Aspect . 65

4.4.2 Impact of Edge Attributes . 66

4.5 Conclusion . 67

In this chapter, we propose abuse detection methods based on text, graphs and an approach
combining these 2 modalities of information. The methods using text and graphs individually
through feature engineering are largely based on the work conducted in our research team by Pa-
pegnies et al. [6], [103]. The first one, called content-based method, relies on the content of the
exchanged messages to perform abuse detection. The second one, called graph-based method,
focuses on the interactions between participants of the conversation modeled by a conversational
graph, and uses the graph measures described in Chapter 3. It significantly differs from the rest
of the literature, as it completely ignores the content of the messages, and only focuses on the
dynamics of the conversation.

These 2 types of approach perform reasonably well when taken separately, but given the differ-
ent nature of text and graphs, one can assume that the content of the exchanged messages and
the interactions between users convey different information which is at least partially complemen-
tary, hence improving the classification when combined. Mishra et al. [14] actually achieves better
performances when combining these 2 modalities. To investigate this phenomenon, we propose 3
Fusion strategies to take advantage of both content- and graph-based methods.

45

Chapter 4. Feature Engineering for Abuse Detection

To obtain numerical representations of text and graphs, both of our method use a standard
approach adopted in the literature, which consists in selecting and extracting relevant measures
from the raw data through a Feature Engineering process. For the methods based on the content
of messages, this approach has been used in a number of works, e.g. [11], [33], [40]. Therefore,
the content-based method uses a set of features that are quite standard in the literature of abusive
language detection. On the other hand, there is no previous work that uses conversational graphs
to handle this task. Hence, the adopted approach is exploratory and consists in selecting a huge
range of widespread topological measures to describe the graphs. The objective is to have a large
set of measures, including some that can handle edge signs, directions and weights, to increase
the probability of capturing the important information carried by the graph structure. Finally, we
propose to perform a feature ablation study on all the modalities and their combination to determine
the best suited measures relatively to our task.

Our work differs from the original works proposed by Papegnies et al. [6], [103] on several
points. First, we seek to compare the 2 sources of information and study their complementarity by
combining them. Second, we extend the original graph extraction method to create signed graphs,
which require us to include signed features in the graph-based method. Finally, we propose an
extended analysis of our results.

This chapter is based on our work published at the International workshop on Modeling and
mining Social-Media-driven Complex Networks [20]. The conversational graphs extracted from our
proprietary dataset1 and the source code2 to reproduce our experiments are available online. This
chapter makes the following contributions:

1. We develop a procedure to extract directed signed weighted conversational graphs from user-
generated conversations.

2. We present and compare a Content-based and a Graph-based method on an abuse detec-
tion task. We propose 3 Fusion strategies to combine these methods and take advantage of
both sources of information.

3. We perform a feature ablation study on text and graph modalities, and their combination, to
identify the most important features for our task. Furthermore, we analysis how the temporal
aspect and the edge attributes can impact the graph-based method.

The rest of this chapter is organized as follows. First, we present the methods that we use to
extract conversational graphs from our dataset of conversations in Section 4.1. In Section 4.2, we
introduce the methods and fusion strategies used through this chapter. In Section 4.3, we present

1https://figshare.com/articles/dataset/Conversational_Networks_For_Automatic_Online_Moderation/
7442273?file=24681479

2https://github.com/CompNet/Alert

46

https://figshare.com/articles/dataset/Conversational_Networks_For_Automatic_Online_Moderation/7442273?file=24681479
https://figshare.com/articles/dataset/Conversational_Networks_For_Automatic_Online_Moderation/7442273?file=24681479
https://github.com/CompNet/Alert

4.1. Graph Extraction from Conversations

our experimental setup and put it into practice on the SpaceOrigin dataset. We extensively interpret
the obtained results and determine the most important features on our task for each method. We
further analyze some aspects related to graphs and discuss our findings regarding the context in
Section 4.4. Finally, we review our main findings and identify some perspectives for future works
in Section 4.5.

4.1 Graph Extraction from Conversations

Graphs can be used to represent conversations under the form of so-called conversational
networks, which represent the flow of the conversation between persons. These persons are rep-
resented as vertices and the edges model the communication between them. While extracting
conversational networks from well-structured conversations is straightforward, it can be far from
trivial for unstructured conversations such as online chatrooms or IRC (Internet Relay Chat). In-
deed, these multi-participant chats often have multiple distinct conversations that overlap. There
can be a built-in mechanism to explicitly specify the recipient of a message, but it is rarely used by
users, for time and practicality reasons. In this context, Mutton [138] proposes to use the temporal
density and temporal proximity of the messages to build conversational networks. In other words,
he considers that messages posted consecutively in the chat have a higher probability of being
related than distant messages. We build an extraction framework based on this hypothesis.

In Chapter 2.3, we presented several datasets for abuse detection. For our experiments, we
want to extract graphs from the selected dataset. Therefore, we require a dataset of conversations,
with conversations long enough to have a variety of users and messages in each of them. The
SpaceOrigin dataset is the one that best suits our requirements, so we use it in all the following ex-
periments. As a reminder, it contains chat logs extracted from the in-game live conversation module
of an online video game. It is composed of 2,545 messages labeled as Abusive or Non-Abusive,
with each one being provided with its surrounding context. Since one of the method that we use in
this chapter is based on conversational graphs to model the context of conversations, we have to
extract such networks from the dataset. These networks are directed signed weighted graphs to
exploit all the information available. Vertices and edges represent users and their communications,
respectively. The following graph extraction procedure was first proposed by Papegnies et al. [6].
Their procedure is able to extract directed weighted graphs. We propose to extend it with a senti-
ment analyzer to infer the polarity of the interactions between users. This allows us to add signs to
interactions and thus to extract directed signed weighted networks.

The key concepts of the graph extraction framework from a conversation are illustrated in Fig-
ure 4.1, in which each vertical rectangle represents a message. The messages are ordered from
oldest to newest, and time flows from left to right in the figure. Each extracted network is defined
relatively to a targeted message, i.e. a labeled message of the SpaceOrigin dataset that we use

47

Chapter 4. Feature Engineering for Abuse Detection

Targeted message

Context period

Past messages Future messages

Current message

Sliding window

Figure 4.1: Illustration of the main concepts of our conversational network extraction process.
Figure from [6].

in our classification task. Furthermore, labeled messages were originally extracted so that they do
not appear in each other’s context. There are 3 steps in the extraction framework:

• First, we select a subset of messages that we use to construct the network (the context period
in Figure 4.1).

• Second, we identify the subset of users that are the likely receivers of each message (repre-
sented by the sliding window in Figure 4.1).

• Third, we compute the polarity of an exchange between 2 users based on the content of
the exchanged message. We also compute the strength of the interaction depending on the
proximity between the exchanged messages. We add edges and revise their weights and
signs accordingly.

Context period. Each targeted message in the SpaceOrigin dataset is associated with its
context that can be composed of thousands of messages. Therefore, we have to determine the
subset of messages to use in order to extract the network associated to this targeted message.
To this end, we restrict the extraction process to a so-called context period, a sub-sequence of
messages. This sequence is centered around the targeted message which is represented in red
in Figure 4.1. The context period spans symmetrically before (left side) and after (right side) the
targeted message. Each participant posting at least one message during this period is modeled
by a vertex in the produced conversational network.

Sliding window. Our dataset in composed of a series of messages. Users can write a direct
reference to another user as @user to explicitly direct a message towards him. However, most of the
messages do not contain such references. Therefore, we have to infer the recipients of messages.

48

4.1. Graph Extraction from Conversations

We do so by sliding a mobile window over the whole context period, one message at a time. At each
step, the network is updated either by creating new edges, or by updating the weights of existing
ones. The sliding window has a fixed length expressed in number of messages, which is derived
from ergonomic constraints relative to the online conversation platform from which the dataset
was extracted. At a given time, the rightmost message of the window, i.e. the oldest one posted
(in blue in Figure 4.1), is called current message and its author current author. This procedure
allows focusing on a smaller part of the context period. Following the hypothesis that consecutive
messages have a higher probability of being related than distant messages, we assume that the
current message is aimed at the authors of the other messages posted right before it (i.e. the
messages present in the sliding window). It is also possible that the current message contains
direct references to users as @user. In the case of a direct reference to one or multiple users, we
consider that the referenced users are the prime targets of the message. We connect the current
author to the receivers (or strengthens their weights if the edge already exists) according to the
process described next

Weight assignment. To assign weight to a connection between users, we list and order all
the users that interact with the current author, excluding the current author himself. This list first
contains the users directly referenced in the message, if there are any (step a in Figure 4.2). Then,
we add all the authors of messages currently present in the sliding window except the ones that
are already among the referenced users. They are ordered by their last posted message to take
chronology into account (step b in Figure 4.2). Only the edges towards users in that list receive
weight. We want to favor the first authors in the list as they are more likely to be the targeted
receivers of the current message. The weights are adjusted depending on the proximity of the
concerned receivers: the higher the proximity, the stronger the interaction. For this purpose, we
use a recursive scoring function to assign weights to the connections. Each receiver is assigned
a score which is a decreasing function of both his rank i in the ordered list of receivers and of the
length N of this list. This function is defined in Equation 4.1:

f(i) =

⎧⎨⎩0.6 × 0.4i−1, if 1 ≤ i < N

0.4i−1, if i = N.
(4.1)

The first receiver gets 60% of the total weight, and the rest of them share the remaining 40%
using the same recursive 60-40% split scheme. This approach gives more importance to temporal
proximity, with scores dropping fast when the receiver is not the author of the immediately preceding
message. The resulting weights are represented on the right-hand side of Figure 4.2. Papegnies
et al. [6] experimented with 2 other weight assignment strategies, but they were less effective than
the recursive scoring function described above, so here we focus on this last one.

Relation polarity. In order to obtain signed edges, we additionally leverage a state-of-the-art

49

Chapter 4. Feature Engineering for Abuse Detection

Sliding window
Rank

1.

2.

3.

Receivers list

a b Weight

0.60
0.24
0.16

Figure 4.2: Example of sliding window (left) and computation of the corresponding receivers’
weights (right). Each color represents a specific user. On the left, each message in the win-
dow is filled with the color of its author, whereas the small squares represent direct references to
users. On the right, the a and b columns represent the different steps of the computation. See
main text for details.

Current message polarity: negative

0.28
0.15

−0.30

Original

0.28
0.15

−0.30

−0.60

−0.60

Rank i = 1

0.15

−0.30

−0.60

−0.60

0.04

Rank i = 2

0.15

−0.30

−0.60

−0.60

0.04

−0.16

Rank i = 3

Figure 4.3: Update of the edges and weights of the conversational graph corresponding to the
example in Figure 4.2. We consider that the sentiment analyzer determined a negative polarity for
the current message. All the weights added at this step are therefore negative. The first graph
displays the state before the update, and each remaining one corresponds to one rank in the
receiver list.

BERT-like sentiment analyzer3 to determine the polarity of the users’ interactions, based on their
exchanged textual content. More specifically, the analyzer is applied to the current message. The
polarity thus computed can be either negative (hostile interaction) or positive (friendly) and is used
as the sign of the weight computed at the current step. Figure 4.3 illustrates this weight update
following the weights computed in Figure 4.2. In this illustration, we consider a negative polarity for
the current message. The total weight of an edge is obtained by summing all its interactions over
the whole context period, and can thus be negative or positive. The sign of this summed weight is
used as the sign of the edge. This last part is an original proposition compared to the extraction
process proposed by [6].

3https://github.com/TheophileBlard/french-sentiment-analysis-with-bert

50

https://github.com/TheophileBlard/french-sentiment-analysis-with-bert

4.2. Proposed Representation Methods

Once this iterative framework has been applied over the whole context period, we obtain the Full
network associated to one labeled message of the original dataset. We repeat this operation for
each of the 2,545 labeled messages. Besides the Full network extracted over the whole context
period, we additionally extract 2 smaller networks. We split the context period in 2, right in the
middle, with only the targeted message included in both parts. We extract the Before network
from the messages posted in the first half and the After network from the messages posted in the
second half. In a live classification setting where only past information is available, one would only
be able to use the Before network. However, in a more general setting we can use all 3 networks
(Full, Before, After). Figure 4.4 shows an example of such networks obtained for a message of the
corpus. The disconnected vertices in the Before and After networks correspond to users present
in the context period, but active only before or after the targeted message.

Figure 4.4: Example of the 3 types of conversational networks extracted for a given context period:
Before (left), After (center), and Full (right). The author of the targeted message is represented in
red.

4.2 Proposed Representation Methods

In this section, we describe the feature engineering approaches that we use to tackle the prob-
lem of detecting abusive messages in conversations. We first summarize the text- (Section 4.2.1)
and graph-based (Section 4.2.2) approaches. We then describe the fusion methods that we pro-
pose, aiming at taking advantage of both sources of information (Section 4.2.3). Figure 4.5 shows
the whole process discussed through this section.

4.2.1 Text-Based Features

One way of representing a word is to characterize it with appropriate measures selected through
a Feature engineering process. This procedure is heavily task- and context-dependent, and must

51

Chapter 4. Feature Engineering for Abuse Detection

therefore be performed specifically for each application. For instance, one can assume that the
ratio of capital letters must be a key element to detect spam, while the presence of smileys is more
important in sentiment analysis. With a carefully designed set of measures, it is possible to obtain
representations of text that are suitable for downstream tasks such as text classification [139],
keyword extraction [140] or text categorization [141]. There exist a huge range of features that can
be used to characterize a word. Some of them are based on the morphology of words and some are
based on the language. We use a selection of text-based features oriented for the representation
of abusive messages, previously used in the literature [11], [142], [143]. We describe them in the
remaining of this section.

4.2.1.1 Morphological Features

Morphological features are characteristics related to the shape of the message.

Message length: The length of the message expressed in number of characters. The intuition
is that abusive messages are often either very short or very long which might be symptomatic of a
massive copy/paste.

Word length: The average and maximum word length in the message expressed in number of
characters.

Characters count: The number of characters in the message. We distinguish 5 classes of
characters (letters, digits, punctuation, spaces, and others) and compute 2 features for each one:
the number of occurrences and the proportion of that class of characters in the message.

Unique characters: The number of unique characters in the message. In conjunction with the
previous features, it can allow to detect spam messages with a single character overly emphasized
(e.g. "fuuuuuuuuuuuuuuuuuuuuuuuuuuuck").

Capital letters: The number and ratio of capital letters in the message. Abusive users tend to
use a lot of capital letters to emphasize their messages.

Compression ratio: Abusive messages often contain a lot of copy/paste. To deal with such
redundancy, we apply the Lempel-Ziv-Welch (LZW) compression algorithm [144] to the message
and take the ratio of its raw to compress lengths, expressed in characters. This feature highlights
users that tend to repeat exactly and multiple times the same text.

Collapsed characters: Abusive messages also often contain extra-long words, which can be
identified by collapsing the message, i.e. extra occurrences of letters repeated more than 2 times
consecutively are removed. For instance, looooooool would be collapsed to lool. We compute the
difference between the raw and collapsed message lengths.

52

4.2. Proposed Representation Methods

4.2.1.2 Language Features

Language features are associated to a higher granularity of text than morphological features.
They are related to words in the message.

Number of words: Intuitively, a message with more words and diverse ones is more likely to be
constructive. People that verbally abuse other users rarely take the time to elaborate. We compute
the total number of words and the number of unique words in the message.

Bad words: Even though there are obfuscations techniques to hide abusive words, many
abusive words can still be detected with a simple predefined list of insults and symbols considered
as abusive. We count the number of occurrences in the message. We also count them in the
collapsed version of the message. In this application, we use a list of French and English bad
words as our dataset is in French. We created this list from dictionaries of insults and swear words.

Bag-of-Words (BoW): BoW is a model that uses the frequency of words in a corpus to convert
a piece of text into fixed-length vectors. As the name suggests, it puts words in a "bag" and
compute the frequency of every word. Put differently, a textual document is represented by all
the words contained in it together with the frequency of each word. Each dimension of the vector
corresponds to a word from the corpus, and the associated value is the number of times this word
appears in the document. This means that the dimension of the vectors depends on the size of the
vocabulary. This causes the same scalability issues as with the one-hot encoding. The frequency
count of words used in this model helps compare and contrast documents. However, with such a
"bag" representation, any information about the order of words in the original text is lost. Hence,
the sentences "I love cats and hate dogs" and "I love dogs and hate cats" obtain similar BoW
representations.

We lower-case the text and strip punctuation, in order to represent the message as a basic
BoW. We then train a Naive Bayes classifier to detect abuse using this sparse binary vector (as
represented in the very bottom part of Figure 4.5). The output of this simple classifier, in the form
of a score, is then used as an input feature for the SVM classifier.

TF-IDF scores: Term Frequency-Inverse Document Frequency determines how relevant a
word is to a document in a corpus. It adjusts for the fact that some words appear more fre-
quently in general by applying a scaling factor to the term frequency. The TF-IDF value increases
proportionally to the number of times a word appears in a document, and is offset by the number
of documents in the corpus that contain that word. Formally, this approach comprises 2 metrics,
Term Frequency (TF) and Inverse Document Frequency (IDF). TF is the ratio of the number of oc-
currences of a word in a document to the total number of words in that document. It is formalized
as

TF (t, d) = ft,d∑
t′∈d

ft′,d
, (4.2)

53

Chapter 4. Feature Engineering for Abuse Detection

where ft,d is the count of a term t in document d, and the denominator is the total number of terms
in d.

The IDF score measures the rarity of words in the text. It is the log ratio of the number of
documents in the corpus N to the number of documents with the term in them D:

IDF (t, D) = log
N

D
. (4.3)

The TF-IDF score of a document is the product of the 2 previous metrics (Equation 4.4). This
method does not provide direct representations of words, but rather a score that indicates how
important a term is in a document. This score can then be used among other measures in a
feature engineering process to represent a word. It is defined as:

TF -IDF (t, d, D) = TF (t, d) × IDF (t, D). (4.4)

We compute 2 overall TF-IDF scores corresponding to the sums of the standard TF-IDF scores
of each individual word in the message. One is processed relatively to the Abuse class, and the
other to the Non-abuse class. We proceed similarly with the collapsed message.

4.2.2 Graph-Based Features

To characterize the extracted conversational graphs, we use the measures formally defined
in Section 3. We use the (un)weighted, (un)directed, (un)signed versions of all these measures
when possible. Table 4.1 gives an overview of all the measures and their variants that we use.
In this section, we give an interpretation of these measures in the context of abuse detection to
understand why they can be useful for this task.

4.2.2.1 Vertex-Focused Topological Measures

We compute the vertex-focused measures for the vertex corresponding to the author of the
targeted message (represented in red in Figure 4.4). The intuition is that measures related exclu-
sively to this vertex could bring information that is not altered by other vertices. Hence, they could
capture more precise information on the behavior of this particular author in the conversation.

Microscopic measures: In our application, microscopic measures are used to characterize
the position of some user depending on its direct interlocutors. The degree centrality directly
depicts the number of users that have exchanged (undirected version), received or sent (directed
version) messages to the author. The strength centrality is the generalization of the degree
to weighted graphs, which allows taking into account the frequency of the interactions. This is
particularly important to describe authors with few interlocutors but strong interactions with them.
Some users play a more central role than others in a community. As abusive users often operate
on a short period of time, they are usually not very well embedded in the community. Burt’s

54

4.2. Proposed Representation Methods

constraint relates to this. The local transitivity gives information about the connections between
the neighbors of the considered vertex. In our context, a high transitivity denotes that the author
is implied in a single large conversation in which most users interact with each other. On the other
hand, a low transitivity indicates that the user participates in several distinct conversations or that
some of its interlocutors ignore each other.

Macroscopic measures allow characterizing the position of the targeted author relatively to
the whole context period when dealing with the Full graph, or to one of its halves with the Before
and After graphs. The eigenvector centrality helps to detect central vertices, which can be symp-
tomatic of an abusive author. An important authority score can characterize a user which receives
much attention, while a very important hub score can rather represent someone harassing others.
In our conversational graph, we expect that a user participating a lot in the conversation will be cen-
tral, and thus have a high subgraph centrality. The betweenness centrality can be interpreted
as the level of control that the user has over information transmission. The goal of abusive authors
is usually to reach as many people as possible with their messages. The closeness centrality
precisely measures the efficiency of a given vertex to spread a message over the graph. A high
closeness indicates an author that plays an important role in the discussion. The eccentricity also
indicates how involved the considered user is in the conversation. The articulation point binary
feature help detect users that play the role of a bridge between 2 separate groups of users in the
conversation.

Mesoscopic measures rely on a subgraph that is likely to represent a conversation. The
coreness score is related to the number of participants of the largest conversation in which the
author of interest is involved. It can be seen as the potential targets of an abusive message. The
within-module degree relates to how involved the user is in his current conversation, and the
participation coefficient indicates if the user holds a mediation position in the conversation.

4.2.2.2 Graph-Focused Topological Measures

Although we suppose that the vertex corresponding to the author of the targeted message is
the one with most important information for our task, it is still possible that other vertices bring
additional information. A solution to obtain measures describing the entirety of the graph is to
compute a vertex-focused measure over the whole vertex set, and average them. We apply this
methodology with all the vertex features described in Section 4.2.2.1. In addition to these artificial
aggregated features, we also leverage measures that are specifically defined at the graph scale.

We assume that in a standard conversation, all interactions tend to be bilateral, which is a
property captured by the reciprocity measure. The degree assortativity measures the tendency
for vertices to be connected with other similar vertices, and thus can differentiate groups of users
based on their behaviors. Many users leave a conversation when an abusive author is active in
it. Thus, users in healthy conversations interact with more people than users in conversations

55

Chapter 4. Feature Engineering for Abuse Detection

containing abusive comments. The weak component count captures this phenomenon. The
cohesion and adhesion denote the presence of several distinct conversations in the network,
with users interacting in many of them. To compute the community count and the modularity,
we extract the community structure through the InfoMap algorithm [145].

4.2.3 Combining the Textual and Structural Information

In the previous sections, we defined a set of text and graph features. We now propose a
method seeking to take advantage of both to study the complementary nature of these 2 sources
of information. Indeed, they are based on 2 completely distinct ways of representing messages in a
conversation, i.e. the message itself and the conversational graphs. To check this complementarity,
we propose and experiment with 3 different fusion strategies to combine the features extracted by
both feature-based methods. Figure 4.5 shows the whole pipeline.

User4: PTDR

User1: salut !

User2: alors, ce raid?

User1: je l'ai raté !

User1: je dormais...

NAIVE
BAYES

Bag-of-Words

GRAPH
BASED
SVM

Graph
Based

Features
Conversation

User2: naaaan !

Score

CONTENT

BASED
SVM

Content
Based
Score

Graph
Based
Score

EARLY
FUSION

SVM

LATE
FUSION

SVM

HYBRID
FUSION

SVM

Fusion
Early

Score
Fusion
Hybrid

Score
Fusion
Late

Graph-based Method

Content-based Method

CONVERSATIONAL
NETWORK

EXTRACTION

Content
Based

Features

Conversational
Graph

COMPUTING
TOPOLOGICAL

MEASURES

FEATURE
EXTRACTION

BoW
EXTRACTION

User3: quoi ?!

Figure 4.5: Representation of our processing pipeline. The top part (red) represent the graph-
based method, the bottom part (green) represent the content-based method and the fusion strate-
gies appear on the right side.

The left part represents the conversation in which the message to classify (in orange) was
posted. This whole conversation is used by the graph-based method (top part, in red) to extract
a conversational graph. Then, we compute all the topological measures described previously to
represent this graph. Finally, this vector of features is fed to the graph-based SVM to obtain a
predicted class. The bottom part (in green) represents the content-based method. The top part
illustrates the extraction of text-based features directly from the message. In the bottom part, we
first represent the message as a BoW, and train a Naive Bayes classifier to detect abuse using
this sparse binary vector. The output of this classifier is added to the other features to form the
message’s representation which is then fed to the content-based SVM. We then use the features
and scores produced by these 2 methods in our 3 fusion methods. We describe them as:

56

4.2. Proposed Representation Methods

Scale Scope Name Weight Direction Sign

Vertex

Microscopic

Degree Centrality U U/I/O U/S
Strength Centrality W U/I/O -
Local Transitivity U/W U -
Burt’s Constraint U/W - -

Macroscopic

Eigenvector Centrality U/W U/D -
PageRank Centrality U/W U/D -
Hub / Authority scores U/W D -
Alpha Centrality U/W D -
Power Centrality U D -
SubGraph Centrality U U -
Betweenness Centrality U/W U/D -
Closeness Centrality U/W U/I/O -
Eccentricity U U/I/O -
Articulation point - U -

Mesoscopic

Coreness Score - U/I/O -
Within-module Degree U U/I/O -
Participation Coefficient U U/I/O -
External Intensity U U/I/O -
Diversity U U/I/O -
Heterogeneity U U/I/O -

Graph

Microscopic

Vertex count - - -
Edge count - - U/S
Density - - -
Global Transitivity U U -
Reciprocity - D -
Degree Assortativity - U/D -

Macroscopic

Weak Components Count - U -
Strong Components Count - D -
Adhesion/Cohesion - D -
Articulation Points - U -
Diameter U/W U/D -
Radius U U/I/O -
Average Distance U U/D -

Mesoscopic
Clique Count - - -
Communities U D -
Modularity U/W U -

Table 4.1: Summary of the graph measures used in the graph-based method. The letters in the
Weight, Direction and Sign columns stand for: Unweighted, Undirected or Unsigned (U), Weighted
(W), Directed (D), Incoming (I), Outgoing (O) and Signed (S).

Early Fusion: The first strategy consists in constituting a global feature set containing all
content- and graph-based features from Sections 4.2.1 and 4.2.2 respectively, then training an

57

Chapter 4. Feature Engineering for Abuse Detection

SVM classifier directly using these features. This is illustrated in the top-right corner of Figure 4.5.
The rationale with this method is that the classifier has access to the whole set of features, inde-
pendently of its source (text or graph). Thus, it can determine which ones are the most relevant for
the classification task and put the focus on them to improve the performance.

Late fusion: The second strategy is processed in 2 steps. First, we apply separately both text
and graph methods. We feed the respective features of each method to an SVM that outputs a
score corresponding to the probability of each message to be abusive given by the content- and
graph-based methods, respectively. Then, we fetch these 2 scores to a new classifier trained to
determine if a message is abusive or not. This third classifier thus only takes 2 input variables
and outputs the final predicted class of the message. This is illustrated in the middle-right part
of Figure 4.5. This approach relies on the assumption that the 2 initial classifiers could act as an
extreme dimensionality reduction system which compact the important information into a single
score. Hence, these scores contain all the information that the final classifier needs, and not the
noise present in the raw features.

Hybrid fusion: Finally, the third fusion strategy seeks to combine both previous proposed ones.
We create a feature set containing features from both sources, like with Early Fusion, but also both
scores used in Late Fusion. This whole set is used to train a new classifier. It corresponds to
the bottom-right corner of Figure 4.5. The idea with this strategy is to check if the scores convey
additional information compared to the raw features, in which case combining scores and features
should lead to better results.

4.3 Experiments

In the previous section, we described the various text and graph features that we extract, and
the approaches proposed to combine them. We now assess the performances of these methods.
We first describe the experimental protocol followed in our experiments regarding the automatic
detection of abusive messages in conversations (Section 4.3.1). Then, we present and discuss
our results, in terms of classification performance (Section 4.3.2). Finally, we perform an in-depth
analysis of our features to determine the most important ones for the classification and gain a
better comprehension of our dataset and task (Section 4.3.3).

4.3.1 Experimental Protocol

We conduct our experiments on the SpaceOrigin dataset previously described in Section 2.3
composed of 2,545 annotated messages. We are in a posterior classification setup which implies
that we have access to the context before and after the annotated messages. To handle all classes
equally in this unbalanced setting, we express the performance in terms of macro F -measure, as
defined in Section 2.4.

58

4.3. Experiments

For the graph-based method, we extract conversational networks following the methodology
described in Section 4.1. There are 2 important parameters for this extraction process, the context
period size and the sliding window length. We use the values matching best performances on
the test set, obtained during the greedy search of the parameter space performed in [6]. We
fix the length of the sliding window to 8 messages and the size of the context period to 1,600
messages. Half of which were posted before the annotated message and the other half after.
Implementation-wise, we use the iGraph library [146] to extract the conversational networks and
process the corresponding features. We use the Sklearn toolkit [147] to get the text-based features.

We use an SVM for the classification, as it is well-suited for small datasets such as ours. We
also experimented with other standard classifiers, but that did not change the order in which the
methods are ranked. Therefore, we use an SVM as our classification system in the rest of this
thesis. For the same reason of dataset dimension, we set up our experiments with a 10-fold
cross-validation. We use a 70%-train / 30%-test split, which means that for each run of the cross-
validation, 7 folds are used for the train and the remaining 3 compose the test set.

4.3.2 Classification Results

Table 4.2 presents the macro F -measure scores obtained for the independent text and graph-
based methods, and all 3 fusion strategies described previously (Early Fusion, Late Fusion, Hybrid
Fusion). It also shows the number of features used to perform the classification. Note that Late
Fusion has only 2 direct inputs (the scores generated by content- and graph-based SVMs), but
these in turn have their own inputs, which explains the values displayed in the table.

Table 4.2: Comparison of the performances obtained with the methods Content-based, Graph-
based, and the 3 Fusion strategies. The total runtime is expressed as h:min:s.

Method Number of Total F -measure
features runtime

Content-Based 29 0:41 75.21

Graph-Based 477 3:51:25 83.40

Early Fusion 506 3:55:17 84.51

Late Fusion 506 (2) 3:54:57 84.17

Hybrid Fusion 508 3:57:44 84.97

The first interesting result is that the graph-based method clearly outperforms the content-
based one. Intuitively, one could think that the content of a message is the main factor to determine
its degree of abusiveness. However, this result shows otherwise. Relying on the interactions
between users on a short period of time before and after a particular message is posted, seems

59

Chapter 4. Feature Engineering for Abuse Detection

to be much more efficient for this task. Though surprising at first sigh, this result is in line with
previous studies [6], [11]. We suppose that when an abusive message is posted in a conversation,
it tends to change the way users interact with each other. It can be either by generating a massive
spike in reactions toward the author of that message, or by killing the conversation with people not
wanting to interact with the abusive author and ultimately leaving the discussion. Thus, the abusive
author plays a central role in the conversational graph that can be captured by our features. On
the other hand, non-abusive messages usually go unnoticed and are mixed in with all the others
messages, therefore not playing such a central role in the graph.

This result also emphasizes the importance of using conversational context to correctly detect
abuse. Indeed, the content-based method might easily be tricked by spelling mistakes (intentional
or not) or by obfuscation techniques (e.g. "f..k 0ff"). This can lead to abusive messages not being
detected when using the content, while the graph-based method is unaffected by such techniques.
The modeling of conversations and interactions can also reduce the false positive rate. For in-
stance, in the case of a borderline message which some would consider abusive, knowing that the
2 authors share a long history drastically reduces the likelihood that the message is truly abusive.
It might be more of a joke between friends.

Although showing many benefits, the graph-based method is computationally very expensive
due to the high number of computed features and the complex nature of some of them. It took
almost 4 hours to compute the graph-based features for the full dataset, while it took less than a
minute on the same machine for the content-based approach. This difference is also due to the
number of features for each method: only 29 for the text and 477 for the graphs. One could argue
that the performance gap between these 2 approaches is mainly caused by this major difference
in the size of the features set. We address this question in the next section and show that this is
not the case. The content-based method also suffers from the fact that there is no clear standard
in the features used to describe a message. On the other hand, there are many well established
topological measures to capture various properties of graphs.

With the fusion methods, we try to further improve the classification performance by combining
the 2 modalities. Our first observation is that we get higher F -measure values compared to both
individual methods when performing the fusion, no matter the fusion strategy. This confirms what
we expected, i.e. both sources are at least partly complementary, since the performance increases
when merging them. The content can bring useful information for the messages that are clearly
abusive in their form, while the conversational graphs can bring information based on the context.

Next, when comparing the fusion strategies, it appears that Hybrid Fusion performs better than
the others, with an F -measure of 84.97%. This is what we were expecting, since this strategy
is the combination of the other 2, benefiting from both. The Late Fusion is the least efficient
fusion strategy but by just a few tenths of a point. This method only gets 2 features, which are
themselves the outputs of 2 other classifiers. This means that these classifiers do a good work in

60

4.3. Experiments

summarizing their inputs, without losing much of the information necessary to efficiently perform
the classification task. We could see these intermediate classifiers as a pre-processing step, which
reduces the dimensionality of data. The Early Fusion produces better results than the Late Fusion
with its combination of all the available features. Regarding runtime, the fusion methods are a few
minutes longer than graph-based method since these approaches require computing both content-
and graph-based features.

4.3.3 Feature Study

We developed our content- and graph-based methods based on an exploratory approach which
consists in selecting a very wide range of widespread features in the literature. We adopted this
methodology because we had no idea of the features that were important for this specific task.
The goal with such an exploratory approach was not to miss any important features. This resulted
in large sets of 29 content features and 477 graph features that are computationally expensive to
calculate, especially the latter. Furthermore, we assume that some of them are useless for the
classification, i.e. they do not bring any additional information compared to the rest of the features.

In this section, we try to estimate the discriminative power of our features with regard to our
classification task. The objective is to identify the best features for all our methods and fusion
strategies. In order to do so, we apply an iterative approach based on the Sklearn toolkit, which
allows us to fit a linear kernel SVM to the dataset and provide a ranking of the input features
reflecting their importance in the classification process. Using this ranking, we identify the least
discriminant feature, remove it from the dataset, and train a new model with the remaining features.
The impact of this deletion is measured by the performance loss, in terms of F -measure. We
reiterate this process until only one feature remains. We call Best Features (BF) the minimal subset
of features allowing to reach 97% of the original performance (when considering the complete
feature set). This threshold was chosen arbitrarily to have a limited number of BF, while preserving
good performance.

We apply this process to our content- and graph-based methods and all 3 fusion strategies.
We then repeat the classification process using only their respective BF. The results are shown in
Table 4.3 with a comparison to the original results obtained on the complete feature sets. Note
that the Late Fusion BF performance is obtained using the scores produced by the SVMs trained
on Content-based BF and Graph-based BF. These are also used as features when computing the
BF for Hybrid Fusion BF (together with the raw content- and graph-based features). In terms of
classification performance, by construction, the methods are ranked exactly like when considering
all available features.

The BF obtained for each method are listed in Table 4.4. The last 4 columns indicate which
variants of the graph-based features are concerned. Indeed, as explained in Section 4.2.2, most
of these topological measures can handle/ignore edge weights and/or edge directions, can be

61

Chapter 4. Feature Engineering for Abuse Detection

Table 4.3: Comparison of the performances obtained with the methods (Content-based, Graph-
based, Fusion) and their subsets of Best Features (BF). The total runtime is expressed as h:min:s.

Method Number of Total F -measure
features Runtime

Content-Based 29 0:41 75.21
Content-Based BF 3 0:27 73.17

Graph-Based 477 3:51:25 83.40
Graph-Based BF 10 7:59 81.08

Early Fusion 506 3:55:17 84.51
Early Fusion BF 4 9:49 82.29

Late Fusion 506 (2) 3:54:57 84.17
Late Fusion BF 13 9:31 81.89

Hybrid Fusion 508 3:57:44 84.97
Hybrid Fusion BF 4 10:29 82.66

vertex- or graph-focused, and can be computed for each of the 3 types of networks (Before, After
and Full).

There are 3 Content-Based BF. The first is the Naive Bayes prediction, which is not surprising
as it comes from a fully fledged classifier processing BoW. This system on its own could be used
as the main abuse detection method in some scenarios. In our application context, the naive
Bayes classifier alone obtains a F -measure score of 62.01. The second BF is the TF-IDF score
computed over the Abuse class, which shows that considering term frequencies indeed improve
the classification performance. The fact that this is the score computed over the Abuse class
is particularly interesting because it suggests that there are words or family of words which are
characteristic of abusive messages. Of course, we can think of insults and swear words. This
information should be captured by our Bad words feature, but since it is not among the BF, we can
assume that its information is redundant with the TF-IDF score. The third BF is the Capital Ratio
(proportion of capital letters in the comment), which is likely to be caused by abusive messages
tending to be shouted, and therefore written in capitals.

We obtain 10 features for the Graph-Based BF. Among them, 4 are computed at the vertex-
scale (i.e. only for the targeted vertex) and 6 are computed over the whole graph. Most of these
features seem to confirm our previous assumption that abusive messages tend to generate more
reactions than non-abusive messages. The Coreness score, which is closely related to the number
of users interacting with the author of a message, is the best topological measure for this task. We
find 2 variants of this measure in the BF, one computed over the Full graph and the other over
the Before graph. The presence of the Authority score among BF can be explained by the same

62

4.3. Experiments

Table 4.4: Best features obtained for our 5 methods. The letters in the Graph column stand for Be-
fore (B), After (A) and Full (F). Those in the Weights and Directions columns stand for: Unweighted
or Undirected (U), Weighted (W), Directed (D), Incoming (I) and Outgoing (O). Those in the Signs
column mean Unsigned (U) or Signed (S). Those in the Scale column stand for Graph-scale (G)
or Vertex-scale (N).

Method Best Features (BF) Graph Weights Directions Signs Scale

Content-Based
Naive Bayes – – – – –
TF-IDF Abuse Score – – – – –
Character Capital Ratio – – – – –

Graph-Based

Coreness Score F – I – G
Authority Score B W D – G
Closeness Centrality B W O – G
PageRank Centrality A U D – N
Closeness Centrality B W O – N
Coreness Score B – I – G
Degree Centrality F U O U N
Vertex Count F – – – G
Reciprocity A – D – G
Closeness Centrality A W U – N

Early Fusion

Coreness Score A – O – G
Strength Centrality B W O – N
Naive Bayes – – – – –
Eccentricity B – I – G

Late Fusion
Content-Based BF ∪ – – – – –
Graph-Based BF

Hybrid Fusion

Graph-based output – – – – –
Coreness Score B – I – G
Content-based output – – – – –
Hub Score B U D – N

reasons as it also relates to how central a vertex is in the graph. There are 3 variants of the
Closeness centrality in the BF subset. 2 of them focus on the targeted vertex while the third
is averaged over all vertices to represent the graph scale. This measure is considered as the
efficiency of the vertex to spread a message over the graph. Once again, this directly relates to
the tendency of abusive message to spread wider and faster than other messages. The PageRank
captures how influential a vertex is in the graph and the Degree centrality can be interpreted as

63

Chapter 4. Feature Engineering for Abuse Detection

the number of users that have exchanged with the author. All these features can be interpreted
as different measures of our assumption. However, they all capture different information since
removing any of the BF has a noticeable negative impact on the classification performance. The
last 2 BF are the Reciprocity, which captures the tendency of certain users to respond or not to
others. Finally, the Vertex count is the number of users participating in the conversation. The fact
that an abusive author interact in the discussion can affect one way or the other the number of
active users in the discussion.

There are 4 features for Early Fusion BF. One is the Naive Bayes feature (content-based), and
the other 3 are topological measures (graph-based features). The Coreness score, though with
different variants, was also among the graph-based BF. The Strength centrality is a generalization
of the degree centrality, which was also among them. The Eccentricity of the graph reflects impor-
tant changes in the interactions between users. It is likely caused by angry users piling up on the
abusive user after he has posted some inflammatory remark. Note that eccentricity is related to
the closeness centrality. Hence, the 4 Early Fusion BF are either directly among the BF of one of
our 2 methods or, related to a feature that is part of them.

For Hybrid Fusion BF, we also get 4 features but those include both scores produced by the
classifiers from the content- and graph-based methods. Those are completed by 2 graph-based
features, the Coreness score (also found in the Early Fusion BF) and Hub score. It is interesting
to note that the Hybrid Fusion BF and Early Fusion BF are a mix of features based on text and
graphs. The complementary nature of these 2 methods was already proved by the results in
Table 4.2, but this also demonstrates that both methods provide some measures that cannot be
replaced by features of the other type.

This in-depth study of our features gives us a better understanding of our dataset and classifica-
tion process. We now know which text and graph measures are the most important to characterize
abusive messages of our dataset. In addition, we demonstrated that a small subset of features
can be enough to train a classifier almost as good as the original classifier trained on the complete
set of features. We can retain 97% of the performance while using only 3 out of the 29 features
(10.34%) based on the content. This effect is even stronger with graphs, as only 10 out of 477
(2.10%) features are needed to retain this degree of performance. This is a very interesting result,
since the feature computation is by far the most computationally expensive step of the framework.
Computing only a handful of features instead of hundreds allows drastically decreasing the com-
putational cost of the classification. This is true for all methods. For instance, a classifier trained
with the Graph-Based BF, only requires 3.5% of the total Graph-Based runtime.

64

4.4. Analysis and Discussion

4.4 Analysis and Discussion

We now discuss the results of the feature engineering methods aiming to detect abusive mes-
sages. Our 2 points concern the graph-based system. First, we explore its temporal aspect (Sec-
tion 4.4.1). Second, we investigate how considering the edge weights, directions and signs in
graphs impact the classification performance (Section 4.4.2).

4.4.1 Temporal Aspect

As explained in the graph extraction process (Section 4.1), there are actually 3 networks ex-
tracted for each message to classify: the Full, Before and After networks. The graph-based results
shown until now are all obtained using the All feature set, i.e. the features resulting from the
calculation of all topological measure variants for all 3 individual graphs (Full, Before and After).

However, the After network is only available in a post-classification context where users have
had time to respond to the message of interest. This is the case in our work, and more generally
with most of the research work. However, real life applications often require taking a decision as
soon as the message is posted. For instance, to block it before it is published if there is a suspected
abuse. In this case, the detection method can only rely on the context posted Before the message.
In this section, we study the performance of our framework in a real-time classification context. For
the sake of completeness, we also consider the opposite case, where only the context After the
message is available. This could correspond to an application which logs messages only after one
of them has been reported.

To obtain a better understanding of the role of each part of the context, we train and test a
classifier on each of the 3 feature sets (Full, Before and After). Each feature set is composed of the
graph-based features extracted from the corresponding graph. Table 4.5 shows the classification
performance obtained. As a comparison, we also include the All set, which is the combination of
the other 3. This is the set of features that was used in all the previous experiments. Aside from
the input graphs, the experimental protocol is exactly the same as in the previous section.

Table 4.5: Comparison of the performances obtained with the feature sets Before, After, Full and
All. The latter is the combination of the first 3.

Temporality Number of F -measure
features

Before 159 79.08

After 159 78.97

Full 159 82.89

All 477 83.40

65

Chapter 4. Feature Engineering for Abuse Detection

The performance of the Before and After feature sets are almost on par. They obtain acceptable
performance level considering that they have access to only half of the Full context. This shows
that the context before is as important as the context after to detect an abusive message. This is
surprising, as one could think that the reactions after a message give more information about its
nature than its predecessors.

For the context After, we already mentioned the fact that abusive messages tend to modify the
way authors interact with each other and thus change the structure of the graph. Regarding the
context Before the message, we can assume that it is possible to predict an abusive message
before it is even posted thanks to the build-up leading to that message. The abusive author starts
to stand out from the other users and draws attention before posting its abusive comment. This
result is very promising as it shows that building a real-time classifier using only the past messages
is possible and can give decent performance. This is the type of application that could typically be
used on online forums or social networks.

The Full feature set logically obtains a better F -measure as it covers the same context pe-
riod as the previous 2 combined. It is worth noting that this feature set obtain noticeably higher
performance than the Before and After sets, which means that there is information allowing to
discriminate abusive messages in both sets and that their information do no completely overlap.
As expected, the All feature set performs best overall, as it is the union of all the other considered
feature sets. However, it is only slightly better than Full. This shows that the Full feature set already
conveys almost all the information. This is interesting as using the Full set instead of All means
computing only one third of the features and thus greatly decreases the runtime without impacting
heavily the classification performance. Furthermore, the All set requires extracting 3 graphs, while
the Full set only requires one. The time saving is negligible compared to the previous point, but it
is still important as it could have a bigger impact for very large graphs. These 2 options are worth
exploring in a future work, and especially in combination with the best features.

4.4.2 Impact of Edge Attributes

Edge directions and weights are graph-specific information that cannot be found in the content-
based method. The weight represents the intensity of an interaction between 2 users, the direction
its reciprocity (unilateral or bilateral). On the other hand, the edge sign, which represents its polar-
ity (hostile or friendly), is obtained through a sentiment analysis of the text, and is therefore directly
related to it. Some of the measures used to represent graphs are able to deal with these prop-
erties, while others ignore them. To investigate in more details how using or not these properties
affects the classification performance, we set up the following experiments. We define 8 variants of
our conversational graphs, all the possible combinations of (Un)weighted-(Un)directed-(Un)signed
graphs. Note that the Weighted-Directed-Signed graph is the standard configuration used in all our
previous experiments. We then compute our graph-based features for each graph and compare

66

4.5. Conclusion

their respective classification performance. The results are shown in Table 4.6.

Table 4.6: Comparison of the F -measure obtained when considering the 8 different types of
graphs. Bottom right is the standard configuration used in the rest of this section.

Graph type Unsigned Signed

Unweighted
Undirected 72.26 72.39
Directed 72.51 72.60

Weighted
Undirected 74.94 74.92
Directed 75.18 75.21

It appears that all weighted methods obtain better performance than their unweighted counter-
parts. This indicates that edge weights help the classifier to identify abusive messages. If we think
of abusive authors as persons who draw a lot of attention because of their behavior, this is reflected
in the edge weights that are higher than other users overall. As a reminder, most of the weights
in our graphs are computed based on an assumption that consecutive messages respond to each
other. While generally true, this assumption can lead to incorrect weight assignation in some cases.
Consequently, we think that weights can have an even stronger impact in applications where they
are perfectly computed.

The directions also bring a slight improvement, but very limited compared to the weights. We
can think of some cases where edge weights used in conjunction with directions can highlight an
abusive behavior. For instance, a very strong unilateral link between 2 users can be symptomatic
of harassment.

Edge signs appear to have a small impact on the performance. This impact is probably lim-
ited due to the very small number of signed features. Edge signs are particularly well suited for
conversational graphs as they can model friendships and enmities, so we think that in other con-
figurations, it could have a lot more impact. Nonetheless, the best overall performance is reached
with the Weighted – Directed – Signed graphs showing that this is worth including measures that
account for these graph-specific properties.

4.5 Conclusion

In this chapter, we have presented several approaches to automatically detect online abu-
sive messages using feature engineering from different sources of information. We extended this
framework by applying 2 methods: the first one based on the content and using NLP features. The
second, a graph-based approach, integrates all the contextual aspects of conversions through con-
versational graphs. We manually constituted a set of 29 textual features to create a representation
of the message in the content-based method, and a set of 477 topological measures to character-

67

Chapter 4. Feature Engineering for Abuse Detection

ize the graph in the graph-based approach. We applied these methods to the dataset extracted
from the in-game chat of SpaceOrigin, an online video game from Chapter 2.3.2. Our experiments
showed that the method relying exclusively on feature engineering from graphs to model the inter-
actions between users (i.e. the context in which a message is posted), obtain better classification
performance than the method relying on the content and ignoring context of the targeted message.
This highlights how important the context is when dealing with abuse detection.

We also proposed 3 fusion strategies to combine the 2 proposed methods and showed that
their combination improve the performance, suggesting that text and graphs are 2 complementary
sources of information for this task. Then, we studied in details the features of all our methods
and identified the ones that are the most important in the classification process. We showed
that using only a very small subset of so-called best features was enough to obtain 97% of the
original performance. Furthermore, we explored the temporal aspects of our graph-based method.
Though it is better to use all the context available around the message to classify, we showed that
using only the context before or after the message still leads to satisfying performance. Finally,
we demonstrated how using the edge directions, edge signs and most importantly the edge weight
improve the performance.

We believe that this work can be extended in several ways. First, one important limitation of our
methodology based on feature engineering is the high computational time required to extract the
graph features. However, we show that using a small subset of relevant features can dramatically
reduce the processing time (by more than 96%) while keeping more than 97% of the original per-
formance. Second, our graph-based method currently uses all the context available. An extension
could be to adapt it to a real-time classification setting by considering only the messages which
were posted before the message to process. Third, we showed that edge weights, directions and
signs were important parameters which improve the classification performance of the graph-based
method. They provide additional information regarding the nature and the intensity of the interac-
tions between users. Finally, one main finding of this chapter is that combining content and graphs
works fine, but it is difficult and computationally expensive in a feature engineering framework. It
is also possible to miss some important features with this approach. Therefore, in the rest of this
manuscript, we propose to use representation learning to automatically learn representations of
messages and graphs. For text, we focus on existing methods [148]–[154] in Chapter 6. There
are also many graph representation learning techniques, however they do not cover the full range
of attributes available in our conversational networks. In the next chapter, we review the graph
representation learning literature, and propose methods to fill this methodological gap.

68

Chapter 5

SIGNED WHOLE-GRAPH EMBEDDING

5.1 Definitions and Notations . 71

5.2 Graph Representation Learning . 72

5.2.1 Vertex Embedding . 73

5.2.2 Whole-Graph Embedding . 76

5.2.3 Signed Graph Embedding . 78

5.3 Datasets . 80

5.3.1 Correlation Clustering Instances . 81

5.3.2 European Parliament Roll-Calls . 81

5.3.3 Brief Comparison . 82

5.4 Proposed Methods . 83

5.4.1 Signed Network Embedding . 83

5.4.2 Signed Graph2vec . 84

5.4.3 Signed Graph Convolutional Networks . 85

5.5 Experiments . 86

5.5.1 Results . 87

5.5.2 Comparison . 92

5.6 Conclusion . 93

In Chapter 4, we experimentally showed that edge directions, weights and signs help improve
the detection of abusive messages when using feature-based approaches. Because of the im-
portant computational cost of feature engineering methods for graphs, and the complexity for a
human to create a set of discriminant features, we propose to use representation learning as a
solution to automatically learn graph representations. It is even possible that such representations
also improve the classification performance because they are dense representations automatically
learned without having to redefine them. Graph representation learning methods can operate at
different granularity levels, such as vertex and whole graph. Vertex embedding is the task con-
sisting in learning a representation for each vertex of the graph, while whole-graph embedding
seeks to learn a single representation of the graph as a whole. In our context, the abuse detec-
tion task consists in classifying graphs, therefore we would like to learn representations of whole

69

Chapter 5. Signed Whole-Graph Embedding

graph, while taking into account edge attributes. On the one hand, a number of graph embedding
approaches allow, or can easily be tweaked, to take weights and directions into account (e.g. [85],
[155]–[157]). There are weighted and/or directed methods that are designed for vertex and for
whole-graph embedding. On the other hand, signs are much more complicated to incorporate in
a graph embedding pipeline, as the duality between positive and negative edges involves complex
concepts. Therefore, several recent methods only handle vertex representations in signed graphs
(e.g. [158]–[160]), and the literature offers no method for signed whole-graph representations.

In this chapter, we first review the literature of graph representation learning. Then, we pro-
pose 2 original approaches to learn whole-graph representations of signed graphs. The first is a
generalization of the unsigned whole-graph embedding method Graph2vec [161] to signed whole
graphs. The second one is a generalization of the signed vertex embedding method Signed Graph
Convolutional Networks (SGCN) [160] to signed whole graphs. We propose several variants of
these models and assess them experimentally. The SpaceOrigin dataset that we used in the pre-
vious chapter is relatively small, so we constitute a benchmark composed of 3 distinct collections
of graphs, including SpaceOrigin for the experimental evaluation of our methods. This benchmark
also allows us to improve the diversity of graphs, both in terms of structure and properties.

The following chapter is based on our work [23]. Our source code is publicly available online1.
It makes the following contribution:

1. We review the graph representation learning literature, focusing on the vertex- and graph-
level methods.

2. We propose 2 adaptations of existing methods to learn whole-graph representations of signed
graphs, for which we define several variants.

3. We constitute and share a benchmark annotated for signed graph classification, and com-
posed of 3 distinct collections.

4. We present extensive computational experiments established for the proposed methods, on
our benchmark.

The rest of this chapter is organized as follows. In Section 5.1 we introduce the main con-
cepts and notations used later in the chapter. Next, we survey graph embedding techniques in
Section 5.2. Then, we present our signed graph classification benchmark in Section 5.3, and
we describe the methods that we propose to handle signed whole-graph representation learning
in Section 5.4. We present and discuss our results in Section 5.5. Finally, we review our main
findings and describe how our work can be extended in Section 5.6.

1https://github.com/CompNet/SWGE

70

https://github.com/CompNet/SWGE

5.1. Definitions and Notations

5.1 Definitions and Notations

The presence of signs associated to edges allows defining the notion of path sign:

Definition 5.1 (Sign of a path). The sign of a path or cycle corresponds to the product of its
constituting edge signs. Consequently, this sign is negative if the path or cycle contains an odd
number of negative edges, and positive otherwise.

Edge signs can also be used to define additional properties, in particular the reachable set,
which we use later:

Definition 5.2 (Reachable set of a vertex). The positive (resp. negative) reachable set of a vertex
u ∈ V is the subset of vertices that are connected to u through positive (resp. negative) shortest
paths.

Structural Balance (SB) is a fundamental property of signed graphs [162], [163], stating that
the graph can be partitioned in 2 clusters such that all positive edges are internal, i.e. they connect
vertices from the same cluster, whereas all negative edges are external, i.e. they lie in-between
both clusters.

Definition 5.3 (Structural balance (SB)). A graph G = (V, E, s) is said to be structurally
balanced if it is possible to find a bisection C = {C1, C2} of V such that E[C1, C2] = E− and
E[C1] ∪ E[C2] = E+, where E[X] denotes the edges connecting 2 vertices from X ∈ V , and E[X, Y]
denotes the edges connecting 2 vertices from X and Y ∈ V .

This definition is the strict version proposed by Cartwright et al. [164], and illustrated in Fig-
ure 5.1.a). Equivalently, all the cycles of a structurally balanced graph are positive.

In real-world networks, though, graphs are rarely perfectly balanced, and no bisection exists
that respects the SB definition. In this case, one may want to measure the amount of imbalance
of the graph, through the notion of Frustration. The positive edges located in-between the clusters
and the negative edges located inside them are said to be frustrated, as they do not respect SB.
The Frustration (aka Line Index or Imbalance) of this bisection is the number of such edges.

Definition 5.4 (Frustration of a bisection). For a graph G = (V, G, s), let C = {C1, C2} be an
arbitrary bisection of V . The frustration of this bisection is the total number of external positive
edges and internal negative edges : F (G, C) = |E+[C1, C2]| + |E−[C1]| + |E−[C2]|.

The Frustration of a graph corresponds to the minimal Frustration over all possible bisections
of the graph.

Definition 5.5 (Frustration of a graph). The frustration of a graph G = (V, G, s) is the minimal
frustration over all possible bisections: F (G) = min

C∈C
F (G, C), where C is the set of all possible

bisections of V .

71

Chapter 5. Signed Whole-Graph Embedding

v1

v2

v3
v4

v5

v6
v7

+

+
+ −

−
−

+

+
+

+

a)

v1

v2

v3

v4 v5

v6

v7
v8

+

+
+

+

++

−
−

−

−
− − −

b)

Figure 5.1: Examples of balanced graphs according to a) Structural Balance (SB); and b) Gener-
alized Balance (GB) (k = 3).

Put differently, the Frustration is the minimal number of edges whose sign must be switched
to reach perfect structural balance. Computing the frustration requires solving a combinatorial
optimization problem which was proposed by Doreian et al. [165], and later called the Correlation
Clustering (CC) problem [166]. One of the datasets presented in Section 5.3 is directly related to
this CC problem.

SB was later generalized to allow partitions constituted of more than 2 antagonistic clus-
ters [167], i.e. clusters where all positive edges are internal, and all negative edges are external.
A graph which can be split into k antagonistic clusters is said to be k-balanced.

Definition 5.6 (Generalized balance (GB)). A graph G = (V, E, s) is said to enforce the general
balance property if it is possible to find a partition C = {C1, ..., Ck} of V such that

⋃
1≤i<j≤k

E[Ci, Cj] =

E− and
⋃

1≤i≤k

E[Ci] = E+.

Equivalently, a graph respecting the generalized balance has no cycle with exactly one negative
edge. Figure 5.1.b) illustrates the notion of GB. Note that the Frustration remains a valid imbalance
measure for this generalization of the SB.

5.2 Graph Representation Learning

Graph representation learning methods have to learn representations of graphs that preserve at
least some part of their topological properties [168]. 2 graphs with similar properties must sit close
in the embedding space [169]. Graph embedding is a very popular research topic, and the litera-
ture provides numerous methods allowing to automatically train models into representing various
types of graphs (directed, weighted, signed, multiplex, etc.), and various parts of graphs (vertices,

72

5.2. Graph Representation Learning

edges, subgraphs, whole graphs, etc.). Each category better fits the needs of different applications
and problems. In this thesis, we are interested in abuse detection, which we formulated as a graph
classification task. Therefore, this chapter mainly describes whole-graph representation methods.
However, as shown in Chapter 4, it is alternatively possible to agglomerate vertex representations
to create graph representations. For this reason, we also include vertex-level methods in our re-
view. Furthermore, representation learning provides representations which can be used for various
tasks. We explore this possibility with a benchmark constituted of 3 tasks, including abuse detec-
tion, later in this chapter. We first summarize the main approaches for representing the vertices of
graphs (Section 5.2.1), then we review the methods that directly handle graphs as a whole (Sec-
tion 5.2.2). Finally, edge signs are difficult to integrate in an embedding framework due to their
nature. We dedicate the last section of this review to the main approaches designed to deal with
signed graphs, which all handle only vertex representation, and not whole graphs (Section 5.2.3).

5.2.1 Vertex Embedding

Vertex embedding methods take a graph as an input and output a fixed-length vector repre-
sentation for each of its vertices. It is the most common form of graph embedding in the literature.
Following the taxonomy proposed in [170], we distinguish 3 categories of methods depending on
the general approach used to perform the transformation: Matrix Factorization (Section 5.2.1.1),
Random Walks (Section 5.2.1.2) and Graph Neural Networks (GNNs) (Section 5.2.1.3). Note that
random walks also use neural networks but leverage a different strategy to sample the graph.

5.2.1.1 Matrix Factorization

There are various ways to represent a graph in a matrix form, such as the adjacency, Laplacian
or transition matrices. The pioneering studies on vertex embedding propose to map them into low-
dimensional vectors by decomposing such matrices into products of smaller matrices of the desired
dimension, a process called Matrix Factorization (MF). Depending on the matrix properties, there
are multiple approaches to decompose it.

The most straightforward approach is to leverage existing dimensionality reduction techniques,
originally designed for tabular data, and apply them to a graph matrix. Doing so with the Lo-
cally Linear Embedding method proposed by Roweis et al. [171] amounts to considering that
the representation of each vertex in the graph is a weighted linear combination of its neighbors’.
The method first estimates weights that best reconstruct the original characteristics of a vertex
from its neighbors, and then uses these weights to generate vector representations. This method
has been used in the literature to perform face recognition [169]. Belkin et al. propose Laplacian
Eigenmaps [156], a method aiming at keeping strongly connected vertices close in the represen-
tation space. Representations are obtained by computing the Eigenvectors of the graph Laplacian.

73

Chapter 5. Signed Whole-Graph Embedding

Typical applications for this method include vertex classification and link prediction [156], [170].
Both these approaches preserve the first order proximity, i.e. vertices which are directly connected
have close representations. A major drawback of these 2 methods is that their time complexity is
in O(|E|d2) with d being the number dimensions in the learned representation. This makes them
poorly scalable and impossible to use on very large real-world graphs.

Graph Factorization [157] proposed by Ahmed et al. is much more time efficient and can han-
dle graphs with several hundred million vertices. It uses stochastic gradient descent to optimize
the matrix factorization. To improve its scalability, this approach uses some approximation strate-
gies, which can introduce noise in the generated representations. Furthermore, the authors focus
on preserving only the first-order proximity. Hence, the global graph structure is not necessarily
well-preserved by this method. Ahmed et al. use this method to partition graphs and to predict the
volume of e-mail exchanges between pairs of users [157].

Ou et al. introduce a matrix factorization method called High-Order Proximity preserved Em-
bedding (HOPE) [155]. The similarity matrix is obtained using centrality measures like Rooted
PageRank, Katz measure and Adamic-Adar score. HOPE is specifically designed to preserve
asymmetric transitivity in directed graphs. To this end, 2 vector representations are learned for
each vertex to capture asymmetric edges, a source vector and a target vector. Applications of this
method include link prediction, proximity approximation and vertex recommendation [172]. How-
ever, once again the time complexity of this factorization method is high and does not allow the
processing of very large graphs.

Li et al. present BoostNE [173]. This multi-level graph embedding framework learns multi-
ple graph representations at different granularity levels. Inspired from boosting, it is built on the
assumption that multiple weak embeddings can lead to a stronger and more effective one. It ap-
plies an iterative process to a closed form vertex connectivity matrix. This process successively
factorizes the residual obtained from the previous factorization, to generate increasingly finer rep-
resentations. The sequence of representations produced is then assembled to create the final
embedding. Li et al. apply their method to a multi-label vertex classification task.

Matrix factorization was the first strategy developed to learn representations of vertices. How-
ever, it has a major limitation. Their time complexity is very high and depends on the number of
edges in the graph. Hence, it makes them unusable on large real-world graphs. To prevent this
issue, authors proposed a more efficient strategy to model the structure of the graphs: random
walks.

5.2.1.2 Random Walks

Random walks have first been adopted by graph embedding approaches trying to mimic word-
embedding methods such as word2vec [174]. Since vertices in graphs have no natural ordering,

74

5.2. Graph Representation Learning

random-walks allow representing the graph structure under a sequential form, analogous to sen-
tences in a text. They are used to sample the graph, and can be seen as a proxy allowing to
obtain a partial representation of its structure. They also have the advantage of being able to deal
with graphs too large to be explored in their entirety. Given a starting vertex, random-walk-based
methods generate vertex sequences by selecting a neighbor and repeating this procedure until the
sequence reaches a certain length. Different strategies can generate random walks that sample
the graph in completely distinct ways, allowing to capture various properties.

Perozzi et al. propose DeepWalk [175]. It is among the first vertex embedding methods based
on random-walks. First, DeepWalk samples vertex sequences using uniform random walks and
then applies the standard SkipGram model [174] to generate the representations. This model
takes a vertex as input and aims at predicting its context, i.e. the vertices in its neighborhood.
With this method, vertices with similar contexts share similar representations. Typical applications
of this approach include vertex classification [176], [177] and link prediction [155]. However, a
limitation is that 2 vertices can be structurally similar (i.e. they play the same role in the graph) but
be distant in the graph, hence, not share any common neighbors. Their representations might thus
be completely different.

The Node2vec [85] method proposed by Grover et al. was developed following the idea of
DeepWalk. The main difference is that Node2vec uses biased random-walks to provide a more
flexible notion of a vertex’s neighborhood and better integrate the notion of structural equivalence.
More specifically, it uses 2 parameters to bias the transition probabilities between vertices. The
return parameter controls the likelihood of immediately revisiting a vertex in the random walk. The
in-out parameter can restrict the walks to a local neighborhood or conversely, increase the prob-
ability of visiting vertices which are further away from the current one. Node2vec has been used
to predict links in a biomedical context [172], and to classify vertices [176]. However, the model
randomly initializes the embeddings, which can result in being stuck in a local optima during the
computation of embeddings. Chen et al. propose an improved weight initialization strategy to avoid
such problems in their Hierarchical Representation Learning method [178]. In Walklets [179],
Perozzi et al. introduce a new random walk strategy. Traditional random-walk methods select the
next vertex from the current vertex’s neighbors. Instead, Walklets proposes to skip over vertices to
obtain sequences which are not constituted of direct neighbors. This strategy allows modeling and
preserving higher order relationships between vertices and can be used in multi-label classification
problems [179].

5.2.1.3 Graph Neural Networks

Modern neural approaches have been successfully adapted to many fields including graph rep-
resentation learning. The proposed methods were first direct adaptation of standard neural network

75

Chapter 5. Signed Whole-Graph Embedding

approaches to graphs, before developing a new family of neural networks that directly operates on
graph data: Graph Neural Networks (GNNs).

Wang et al. propose the Structural Deep Network Embedding (SDNE) framework [177]. This
method learns representations based on first and second order proximities in the graph. These 2
properties are jointly optimized using a deep autoencoder and a variation of Laplacian Eigenmaps,
applying a penalty when similar vertices are mapped far from each other in the embedding space.
This allows a good representation of both the local and global structure of the graph. This method
has been used on vertex classification and link prediction tasks [170], [177].

Generative Adversarial Networks (GANs) have also been adapted to vertex embedding.
Wang et al. [180] propose GraphGAN, which works through 2 models. First, a generator G(v|vc)
tries to approximate the true connectivity between vertices v and vc and selects the most likely
connected vertices to vc. Second, a discriminator D(v, vc) computes the probability of an edge to
exist between v and vc. The generator tries to fit the distribution of vertices as much as possible
to generate the most indistinguishable fake pairs of connected vertices. The discriminator tries to
distinguish between ground truth and the fake pairs created by the generator. This method is how-
ever only able to capture the local structure. Wang et al. apply GraphGAN to vertex classification,
link prediction and movie recommendation tasks.

Graph Convolutional Networks (GCNs) [87] are a family of neural networks adapting tra-
ditional Convolutional Neural Networks (CNNs) so that they can process graph data instead of
standard tabular data [181]. Shallow embedding methods such as Graph2vec may miss complex
patterns in the graphs, and deep learning methods like CNNs are likely to solve this limitation [182].
GCNs generalize the convolution operation by considering graph neighborhood instead of linear or
grid neighborhoods, as in standard CNN used in NLP and image processing. Kipf et al. leverage
their method to perform document and entity classification.

GraphSAGE [89] aggregates feature information from the local neighborhood of a vertex. At
each iteration, it samples a neighborhood of fixed size for each vertex and aggregate them through
an aggregator function. Thus, vertices aggregate information from their local neighbors at each
iteration and propagate it through the following layers of the network. By this way, vertex repre-
sentations incrementally gain more and more information from further neighbors as the process
iterates.

5.2.2 Whole-Graph Embedding

As mentioned before, vertex embedding methods are the most widespread in the literature. But
some tasks require information at a higher granularity, in which case one would turn to whole-graph
embedding. These methods allow representing a whole graph as a single vector of fixed length.
They take a collection of graphs, and output a representation for each of them. Some strategies

76

5.2. Graph Representation Learning

used for vertex embedding can be transposed to whole-graph embedding matrix factorization and
random-walks.

Lara et al. [183] propose the Simple and Fast algorithm based on the spectral factorization of
the graph Laplacian. It computes the k smallest positive Eigenvalues of normalized Laplacian of
the input graph in ascending order, to form the representation of the whole graph. Lara et al. use
their approach to predict the properties of chemical compounds [183].

Mousavi et al. [184] introduce a whole-graph embedding hierarchical framework called Pyrami-
dal Graph Embedding, based on some ideas originating from image processing algorithms. Im-
portant global information from images can be extracted by recursively analyzing local information.
In the context of graphs, this means that the overall graph structure can be modeled by analyzing
substructures at different scales. To this end, a graph pyramid is formed with subgraphs of differ-
ent scales. Every graph is embedded into vector representations, which are all concatenated to
form the global graph embedding. The representations are obtained by factorizing an affinity ma-
trix. This pyramidal approach is especially designed for large graphs, since they potentially contain
more different scales. Mousavi et al. used it for graph classification tasks.

Verma et al. propose a Family of Graph Spectral Distances [185] to represent a whole-graph.
This method is built on the assumption that the graph atomic structure is encoded in the multiset
of all vertex pairwise distances. It computes the Moore-Penrose Pseudoinverse spectrum of the
graph Laplacian. A vector representation of the whole graph is constructed from the histogram of
this spectrum. Typical tasks include graph classification in various fields such as bioinformatics
and social networks [185], [186].

Tsitsulin et al. introduce NetLSD [186], a permutation- and size-invariant, scale-adaptive em-
bedding method. Like the aforementioned vertex embedding method Laplacian Eigenmaps [156],
NetLSD operates on the Laplacian matrix of the graph. It relies on a physical analogy consisting in
simulating a heat diffusion process on the graph to preserve its structure. The method processes
the amount of heat transferred between vertices at different times scales. These heat traces at
different time scales are then used to compute the heat trace signature of the graph, i.e. the vector
representation of the graph. Tsitsulin et al. use NetLSD for graph classification and for community
detection.

Another popular approach involves leveraging models from the field of NLP, such as in Graph2vec [161]
and Graph Classification via Graph Structure Learning (GC-GSL) [187]. Both are based on an
analogy with the Doc2vec approach defined for text [47]. Graph2vec, one of the earliest methods
for whole-graph representation learning, is an unsupervised and task-agnostic approach designed
to learn whole-graph representations. Its principle is to consider graphs (documents, in the anal-
ogy) as collections of subgraphs (words that compose the document). The procedure enumerates
rooted subgraphs around all vertices of the considered graphs. Each one represents the neighbor-

77

Chapter 5. Signed Whole-Graph Embedding

hood of a vertex (the so-called root) at a certain order.
Another family of approaches relies on graph autoencoders to learn the representation in an

unsupervised way, e.g. Permutation-Invariant Graph-level Autoencoder (PIGAE) [188], or the
Denoising Autoencoder (DAE-based) method from [189]. Such neural networks are constituted
of 2 parts. First, the encoder receives a raw representation of the graph, which is compressed in
order to remove redundant information and superfluous variability, and get a fixed-sized and com-
pact representation. Second, the decoder is in charge of reconstructing the original input based
on the compressed representation. The autoencoder is trained by minimizing the reconstruction
error.

Deep Divergence Graph Kernels (DDGK) [190] is an unsupervised method that adopts a dif-
ferent approach based on attention. It relies on an encoder to learn a first compact representation
of the graphs. Pairs of graphs are then fed to a cross-graph attention network, using this represen-
tation. This attention network is trained into reconstructing one representation based on the other.
Based on the latter, DDGK is able to compute a divergence measure between the input graphs,
which is then used to build the embedding space.

The literature contains another family of approaches, which adapts CNNs from the field of im-
age processing to handle graphs, resulting in supervised methods able to learn whole-graph repre-
sentations for specific classification tasks, e.g. Patchy-San Convolutional Network (PSCN) [191]
and NgramCNN [192]. PSCN adapts the notion of convolution to the context of graphs, which
allows applying the same principle as for image processing. The graph is represented by a collec-
tion of subgraphs, on which PSCN performs convolutions. These are then aggregated to create
higher-level representations of the graph. NgramCNN operates in a similar fashion, but it first de-
composes the graph into a sequence of n-gram blocks connected through overlapping regions,
before applying convolutions on them.

Finally, another strategy is to modify vertex-oriented Graph Neural Networks (GNNs) in order
to produce whole-graph representations, e.g. Message Passing Neural Network (MPNN) [193]
or Virtual Column Network (VCN) [194]. This is conducted by the addition of a so-called master
node, which is connected to all the other vertices. At the end of the training, the vector associated
to this master node can be used as a representation of the graph.

5.2.3 Signed Graph Embedding

Signed graphs are commonly used in social sciences to represent friendly relations and enmity
between individuals (modeled by vertices). It is much more difficult to handle signs than other
attributes such as weights and directions in embedding methods, because of the complex rela-
tionships induced by the positive and negative edges. Although less common than for unsigned
graphs, a number of graph embedding methods have been developed for signed graphs. However,
they are all designed to operate at vertex-level and no signed whole-graph embedding method ex-

78

5.2. Graph Representation Learning

v2

v1

v3

+ +

a)

v2

v1

v3

+ −

b)

v2

v1

v3

− −

c)

Figure 5.2: 3 types of open triads.

ists. Therefore, we dedicate this section to the review of the literature on signed vertex embedding.

Historically, the first type of such methods relies on random walks, e.g. Signed Network Em-
bedding (SNE) [158] or Signed Directed Embeddings (SIDE) [159]. The general idea is to
sample the graph using random walks, and feed them to a standard neural network, which learns
a representation that preserves simultaneously graph structure and edge signs. Put differently, the
representations of 2 well-connected vertices tend to be close in the embedding space, whereas
those of 2 vertices connected by a negative edge tend to be distant.

Signed Network Embedding (SiNE) is a deep learning framework for vertex embedding in
signed graphs [195]. Following [196], it is based on the assumption that the representation of a
vertex should be similar to its positive neighbors, and dissimilar to its negative ones. To model
signed networks based on this principle, SiNE proceeds at a local level by focusing on a very
specific type of subgraph. It extracts the set of all open triads (i.e. 3 vertices connected by 2
edges) present in the graph. Figure 5.2 shows the 3 types of possible open triads. SiNE focuses on
those containing one positive and one negative edges (Figure 5.2.b). This set of triads represents
the graph, and is fed to a deep learning framework composed of 2 neural networks sharing the
same weights. In accordance with the principle mentioned earlier, this model is trained in order to
minimize the similarity between the representation of the vertex located at the center of the triad
and its negative neighbors, while maximizing its similarity with its positive ones. One neural network
within the framework is dedicated to the positive neighbors, while the other network handles the
negative ones.

A limitation of this approach is that it ignores vertices whose neighbors are all positive or all
negative. To handle this case, SiNE introduces a dummy vertex that is connected through a neg-
ative edge to each vertex with an all-positive neighborhood. This allows creating as many dummy
triads containing one positive and one negative edges, which can be processed by the framework.
The principle is the same for all-negative neighborhoods, except with positive dummy edges.

Most GCNs are designed to produce vertex-level representations. The general principle is
as follows. Each vertex is initially represented by a vector, that can be generated randomly or

79

Chapter 5. Signed Whole-Graph Embedding

based on some vertex features. In a convolution layer, the representation of a given vertex is
combined with those of its neighbors. The result is then fed to a generally non-linear function
(e.g. multilayer perceptron) in order to get the updated vertex representation. The information
is propagated through multiple layers to incorporate information from multi-hop neighbors. The
maximal number of hops corresponds to the number of convolution layers in the network. GCNs
achieve state-of-the-art performances on many tasks [160] such as vertex classification, edge
prediction, and community detection.

Standard GCNs are only able to handle unsigned networks, though. Leveraging the information
conveyed by edge signs mainly requires adapting the message passing rules used when computing
the graph-based convolution. Signed Graph Convolutional Networks (SGCN) [160] allow doing
so. This method relies on a dual hidden representation of a vertex, corresponding to its positive
vs. negative reach sets, respectively noted h+ and h−. It uses balance theory to aggregate and
propagate vertex representations across layers. Formally, the hidden representations h at layer t
are updated as follows:

h+
t (u) = σ

(
W+

t

[∑
v∈N+

h+
t−1(v)

k+(u) ,
∑

v∈N−

h−
t−1(v)

k−(u) , h+
t−1(u)

])
, (5.1)

h−
t (u) = σ

(
W−

t

[∑
v∈N+

h−
t−1(v)

k+(u) ,
∑

v∈N−

h+
t−1(v)

k−(u) , h−
t−1(u)

])
, (5.2)

where σ is a non-linear activation function, [] denotes the concatenation, and the W matrices are
learnable weights. Ultimately, the dual hidden representations are concatenated to obtain a single
vertex representation.

In addition, methods such as Signed Graph Attention Networks (SiGAT) [197] or Signed
Network Embedding via Graph Attention (SNEA) [198] introduce attention to GNNs, in order to
give more importance to relevant neighbors during the message passing step.

5.3 Datasets

A bottleneck in the development of whole-graph oriented methods for signed graphs is the lack
of data. Indeed, these methods require collections of signed graphs, with each graph representing
an instance in the treated task. However, the literature is mostly built around single, very large
graphs, appropriate to test vertex representation learning techniques. The abuse detection task
that we treat throughout this manuscript does not provide enough diversity to allow a correct as-
sessment of our proposed methods. Therefore, we propose to extend it with 2 additional collections
of signed networks annotated for diverse classification tasks. They come from various sources and
are different in their structures and sizes. The benchmark that we constitute is thus composed of
3 collections of graphs. The first one is the SpaceOrigin collection extracted in Chapter 4.1 from

80

5.3. Datasets

the raw dataset described in Section 2.3. It contains exactly the same graphs as before, so we do
not further describe it in this section. The second one (Section 5.3.1) is an existing collection of
artificially generated graphs, and the third one (Section 5.3.2) is an existing collection of real-world
vote networks. We leverage the metadata associated to these collections, in order to repurpose
them and define proper classification tasks. Global statistics describing the 3 constituted datasets
are available in Table 5.1.

5.3.1 Correlation Clustering Instances

This dataset is proposed in [199], originally as a means to study the space of optimal solutions
of the Correlation Clustering (CC) problem [166], described in Section 5.1. This graph partition-
ing problem consists in detecting internally collaborative but mutually hostile communities, which
amounts to identifying the vertex partition that minimizes the total number of frustrated edges.
The authors want to study the multiplicity and the diversity of the optimal solutions to CC. For this
purpose, they define a random model and generate a collection of artificial graphs with planted par-
tition, applying various levels of noise to control the problem difficulty. They use an exact method to
identify all possible optimal solutions for each graph in this collection, and study how certain graph
characteristics relate to the number of solutions.

Due to the NP-hard nature of CC, they focus on relatively small graphs, with a maximal order
(number of vertices) of n = 50. They produce a total of 24,660 unweighted signed graphs, including
22,560 completely connected graphs (i.e. every pair of vertices is connected), while the remaining
2,100 graphs are not completely connected, with a density ranging from 0.25 to 0.75.

In order to use this dataset in the present work, we define a classification problem by associ-
ating each graph of the collection to a label. This problem, noted Correlation Clustering Solutions
(CCS), consists in predicting whether there is a single vs. several optimal CC solutions for the
graph of interest. It is thus a binary classification task.

5.3.2 European Parliament Roll-Calls

The third and last dataset is based on a collection of signed graphs extracted in [200] from a
description of the voting activity at the European Parliament (EP). The raw data corresponds to roll-
call votes cast individually by Members of the EP (MEPs) during plenary sessions, in the course
of the 7th term (2009–2014). Such votes can take one out of 3 values: FOR (MEP supporting
the proposition), AGAINST (MEP opposing the proposition) or ABSTENTION (MEP not taking a
stand despite being present). MEPs can also be absent, and consequently not take part at all to
a roll-call. Some MEPs resigned from their position in the course of their term of office, and some
MEPs were appointed after the beginning of the term. In such cases, we consider them absent for
all the roll-call that they missed.

81

Chapter 5. Signed Whole-Graph Embedding

Each network extracted by the authors corresponds to a specific roll-call, using vertices to
model MEPs and edges to represent agreement between them: a positive sign models an identical
vote, and a negative one a disagreement. Note that ABSTENTION is an expressed opinion,
so a FOR vs ABSTENTION or AGAINST vs ABSTENTION is considered as a disagreement.
Contrariwise, an absent MEP is not considered as expressing an opinion and no edge is associated
with him. The goal of the authors is to study the polarization of the EP, and more specifically its
voting patterns, and how these are affected by various criteria such as the topic of the voted
proposition. For this purpose, they first identify factions of similarly voting MEPs in each roll-call
network. Next, they compare the resulting vertex partitions to identify types of situations that result
in a comparable voting pattern.

The raw data contains 6,595 roll-calls, from which the authors extract much more networks by
leveraging the metadata associated to the voting activity. Since each MEP belongs to a member
state, and to a European political group, they extract overall networks containing all MEPs, but
also state- and group-specific networks, containing only the MEPs from a given member state or
political group, respectively. In total, they produce 244,015 networks. Some of them are too small
or too sparse (almost empty) to be interesting in a classification context, though. We constitute
our own dataset by first filtering out these unusable instances. We consider state- and group-
specific networks with 20 or more MEPs. Then, we randomly sample 6,000 networks among all
the networks matching the previous criteria.

Like for the previous dataset, the initial collection of networks considered here is not originally
used to perform any prediction task. We leverage the clusters of networks exhibiting similar voting
patterns identified by the authors, and define a classification task consisting in predicting the num-
ber of factions identified in a network. There are 3 classes (i.e. 1 faction, 2 factions, 3 factions)
in this task. We call the resulting dataset European Parliament Factions (EPF). We present the
statistics of the 3 datasets in the next section.

5.3.3 Brief Comparison

Table 5.1 provides a few descriptive statistics for all 3 datasets, in order to help to interpret
the classification results in Section 5.5.1. CCS is by far the largest dataset in number of graphs
(# Graphs), however these are smaller. Moreover, the size of graphs in terms of vertices is not
as uniform in both SO and EPF, covering 2 orders of magnitude. The number of edges is quite
variable in all 3 dataset. In EPF, a few graphs have no positive or no negative edges at all. Overall,
the graphs tend to be rather dense compared to unsigned real-world networks.

The Frustration, which we compute for both types of considered balance (SB vs. GB) is ex-
pressed as a proportion over the total number of edges in the graph, in order to have comparable
values. The top right columns contain the number of classes in each dataset, and the Gini index
showing how imbalanced they are.

82

5.4. Proposed Methods

Table 5.1: Statistics describing the 3 datasets. Notations ± and [] denote the standard deviation,
and minimum & maximum.

Dataset # Graphs Avg. # Vertices # Classes Gini Index
SO 2,545 47.74 ±20.34 [2;214] 2 0.74

CCS 24,660 27.31 ±7.44 [16;50] 2 0.66

EPF 6,000 67.34 ±59.21 [20;274] 3 0.44

Dataset Avg. # Negative Edges Avg. # Positive Edges % Positive Edges
SO 166.1 ±22.96 [1;1,692] 245.9 ±30.41 [1;2,323] 59.61 ±24.73 [0.0;100.0]

CCS 220.6 ±130.45 [25;833] 131.0 ±80.11 [24;392] 37.54 ±11.99 [20.1;79.0]

EPF 333.9 ±877.20 [0;15,933] 2,552.2 ±5,761.46 [0;33,153] 78.30 ±22.22 [0.0;100.0]

Dataset Avg. SB Frustration Avg. GB Frustration Avg. density
SO 0.30 ±0.04 [0.01;0.48] 0.25 ±0.04 [0.01;0.46] 0.48 ±0.16 [0.10;1.00]

CCS 0.37 ±0.05 [0.03;0.51] 0.33 ±0.04 [0.01;0.49] 0.95 ±0.17 [0.19;1.00]

EPF 0.28 ±0.04 [0.01;0.46] 0.22 ±0.03 [0.00;0.45] 0.70 ±0.19 [0.07;1.00]

5.4 Proposed Methods

In this section, we describe the 3 families of methods which we propose to handle signed
whole-graph representation learning. The first can be considered as a baseline, and relies on
the aggregation of signed vertex embeddings (Section 5.4.1). The second is an adaptation of an
unsigned whole-graph embedding method to signed graphs (Section 5.4.2). The third is based
on a Graph Convolutional Network able to learn signed vertex representations, which we adapt to
handle whole signed graphs (Section 5.4.3).

5.4.1 Signed Network Embedding

As described in Section 5.2.3, SiNE learns a compact representation for each vertex in the
input graph, based only on its direct neighborhood. Since our tasks consist in classifying graphs
and not vertices, our proposition is to aggregate the representations of all the vertices in the graph
in order to get a graph-level representation. This approach is quite standard in the literature [201],
[202]. It relies on the assumption that individual vertex representations each contain some part of
information that describes the whole graph. Thus, aggregating all the vertex representations allows
obtaining a graph-level representation. For the sake of completeness, we consider 2 approaches
for the aggregation process: averaging the vertex representations, and summing them.

SiNE exhibits some limitations, though. First, it does not really handle vertices possessing
only negative edges. The authors argue that this case is very uncommon in real-world data, but

83

Chapter 5. Signed Whole-Graph Embedding

such vertices exist in our datasets. Second, SiNE is based only on local information, while we can
suppose that global information might be important to represent the graph in its entirety. Therefore,
this method can be considered as a baseline to assess whether it is beneficial to use whole-graph
embedding methods to learn representations for the classification of signed networks, compared
to more standard vertex embedding methods.

5.4.2 Signed Graph2vec

Graph2vec [161] enumerates rooted subgraphs to represent the neighborhood of a vertex.
These rooted subgraphs are named using labels obtained with the relabeling procedure of the
Weisfeiler–Lehman isomorphism test [203] (WL for short). Starting with the degree as the initial
vertex label, this procedure goes through 2 phases to iteratively update these labels. First, each
vertex is described by a tuple constituted of its previous label, and a sorted multiset containing
those of its neighbors. Second, each unique tuple is replaced by a new label, to be used in the
next iteration. 2 identical tuples are replaced by the same label, but 2 different one get distinct
labels. This phase allows keeping a compact representation of the vertices. At the end of the
process, each rooted subgraph is represented by its root’s label. More formally, the label update
rule is:

ℓt(u) = f
(
ℓt−1(u), {ℓt−1(v) : v ∈ N(u)}

)
, (5.3)

where ℓt(u) is the label of the subgraph rooted in u at iteration t, N(u) is the neighborhood of u,
and f is an injective function used to replace the tuples by new labels. The number of iterations
corresponds to the desired order of the neighborhood covered by the rooted subgraph. A higher
number of iterations leads to more distant vertices being considered during the relabeling phase.

At the end of this process, 2 isomorphic rooted subgraphs should get the same label. The
obtained labels are then used to train the standard Doc2vec SkipGram model. Graph2vec has
proven its effectiveness in many tasks involving the classification of unsigned graphs [204]–[206].

This method is not able to take advantage of the additional information present in signed
graphs (i.e. edge signs), though. For this purpose, we define Signed Graph2vec, an adaptation of
Graph2vec that relies on 2 variants of the WL relabeling procedure able to handle edge signs. The
first one, noted SG2Vn (n for neutral), is straightforward and does not assume that the network has
any form of structural balance. Regarding label initialization, instead of using the degree, we use
both positive and negative degrees. For each vertex u, we first define a tuple (k+(u); k−(u)), and
then replace each unique pair by a unique label using f . For the rest of the iterations, we proceed
as in Graph2vec, except that we append the sign of the concerned edge in front of each neighbor
when building the labels:

ℓt(u) = f
(
ℓt−1(u),

{[
s(u, v), ℓt−1(v)

]
: v ∈ N(u)

})
, (5.4)

84

5.4. Proposed Methods

where s(u, v) is the sign of edge (u, v), and [] denotes string concatenation. This allows distin-
guishing vertices holding the same label, but connected to the root with edges of opposed signs.

The second relabeling method, noted SG2Vsb, is the one proposed (for a different purpose)
by Zhang et al. [207], and it assumes that the network is structurally balanced. Each vertex is
represented by 2 labels, based on its positive and negative reachable sets, respectively (see Sec-
tion 5.1). The authors do not explain how they perform their initialization, so we use the positive
(resp. negative) degree for the positive (resp. negative) label. The method requires one update
rule for each label:

ℓ+
t (u) = f

(
ℓ+

t−1(u), {ℓ+
t−1(v) : v ∈ N+(u)}, {ℓ−

t−1(v) : v ∈ N−(u)}
)

(5.5)

ℓ−
t (u) = f

(
ℓ−

t−1(u), {ℓ−
t−1(v) : v ∈ N+(u)}, {ℓ+

t−1(v) : v ∈ N−(u)}
)
, (5.6)

At the end of the process, f is applied to tuples formed by the positive and negative labels of each
vertex, resulting in the final rooted subgraph labels.

5.4.3 Signed Graph Convolutional Networks

This method is based on SGCN, whose implementation is conveniently available online2, and
can be modified to fit our needs. Similarly to SG2Vsb (Section 5.4.2), this method uses the balance
theory to aggregate and propagate vertex representations across layers.

SGCN effectively learns representations of vertices in signed graphs. However, our objective is
to handle whole graphs. A solution proposed for unsigned graphs in the literature [193] consists in
adding a master node (also called virtual or super node), which is connected to all other vertices
in the graph. One then uses the representation of this master node as the representation of the
whole graph. The intuition is that, as the master node is connected to all parts of the graph, its
representation is able to aggregate all its information.

In the context of signed graphs, connecting a master node to the rest of the graph is not trivial,
though, as there are 2 different types of edges. We propose 5 interconnection schemes. Figure 5.3
shows an example for each one of them. The first 3 ones do not respect structural balance,
and can be considered as baselines: SGCN+ (Figure 5.3.a) and SGCN- (Figure 5.3.b) consist in
connecting a single master node to the rest of the graph using only positive and only negative
edges, respectively. With SGCN± (Figure 5.3.c), we use 2 distinct master nodes (one positive and
one negative), which allows us to combine both previous schemes at once. The whole-graph
representation is obtained by summing both master node representations. The fourth scheme,
SGCNsb (Figure 5.3.d), is based on the (strict) structural balance. Using the signnet library3, we
detect the optimal graph bisection. Then, we connect one distinct master node to each cluster

2https://github.com/benedekrozemberczki/SGCN
3https://github.com/schochastics/signnet

85

https://github.com/benedekrozemberczki/SGCN
https://github.com/schochastics/signnet

Chapter 5. Signed Whole-Graph Embedding

v1

v2 v3

v4

MN+

a)

v1

v2 v3

v4

MN−

b)

v1

v2 v3

v4

MN+ MN−

c)

v1

v2 v3

v4

MN1 MN2

d)

v1

v2 v3

v4

MN1
MN2 MN3

e)

Figure 5.3: Examples of the 5 proposed interconnection schemes: SGCN+ (a), SGCN- (b),
SGCN±(c), SGCNsb (d) and SGCNgb (e). MN stands for Master Node. Green and red edges
represent positive and negative connections, respectively.

while respecting structural balance, i.e. positive edges within the cluster and negative ones with the
other cluster. Like before, the whole-graph embedding is obtained by summing the representations
of both master nodes. Finally, the fifth scheme, SGCNgb (Figure 5.3.e), relies on the generalized
balance. Like before, we find the optimal graph partition, but this time there may be more than
2 clusters. We add one master node for each cluster, and sum their representations to get the
whole-graph embedding.

5.5 Experiments

Our experimental protocol consists in assessing all the methods described in Section 5.4 on
the datasets and tasks presented in Section 5.3. As a reminder, there are 3 tasks each based
on a distinct dataset of signed graphs. The SO and CCS tasks contain 2 classes while EPF has
3. For all the tasks and methods, we first produce the representations and then train an SVM to
perform the classification, using a 10-fold cross-validation. For the sake of consistency, this is the

86

5.5. Experiments

Table 5.2: Results in terms of macro F -measure obtained with SiNE. Each line focuses on a task
while columns focus on the type of aggregation functions for vertex representations.

Task Sum Average

SpaceOrigin (SO) 55.42 50.21

Correlation Clustering Solutions (CCS) 50.48 48.62

European Parliament Factions (EPF) 69.81 67.58

same classifier and the same procedure as in Section 4. For all tasks, we experiment with 1 to 5
iterations or layers. We fix the limit to 5 because it is the maximum average diameter among our
3 datasets. Furthermore, increasing this parameter requires a lot of computational resources for
some methods. We conduct our experiments on an Nvidia RTX 2080 Ti GPU. We first present and
discuss our detailed results for each method in Section 5.5.1. Then, we compare the 3 families of
methods in Section 5.5.2.

5.5.1 Results

In this section, we discuss each family of methods separately: SiNE (Section 5.5.1.1), Signed
Graph2vec (Section 5.5.1.2), and Signed Graph Convolutional Networks (Section 5.5.1.3). All the
performance values are expressed in terms of macro F -measure, i.e. by computing the F -measure
for each class separately, then averaging them to get the overall performance. This allows giving
the same importance to all classes, even in imbalanced datasets as explained in Section 2.4.2.2.

5.5.1.1 Signed Network Embedding

We first present the results obtained with SiNE, the signed vertex embedding method that we
consider as our baseline. The performance scores are shown in Table 5.2 for all 3 datasets.

On SO and CCS, the performances are close to a random classifier, which would get an ex-
pected 50% macro F -measure. The method is completely unable to learn correct representations
of signed graphs for these 2 datasets. SiNE performs better on EPF with the best result reaching
69.81%. We assume that for this task, the local information available is often sufficiently discrimi-
native. Moreover, vertex-oriented methods such as SiNE are usually designed to operate on very
large graphs. This is not the case for the first 2 datasets. The graphs in EPF tend to be larger
both in terms of vertices and edges. Hence, SiNE can extract a greater number of training triads,
contributing to the improved model performance. Furthermore, the choice of the aggregation func-
tion has a notable impact on performance, with the sum operation yielding better results across all
tasks. Averaging the representations has a tendency to smooth them which ultimately result in a
loss of information.

87

Chapter 5. Signed Whole-Graph Embedding

5.5.1.2 Signed Graph2vec

Second, we present the results obtained with our 2 proposed variants of the Signed Graph2vec
method: SG2Vn (which does not enforce SB) and SG2Vsb (which does). As a reference, we also
include the original Graph2vec method (noted G2V) in the study, which simply ignores all edge
signs. The performances are shown in Table 5.3 for various numbers of iterations. As a reminder,
this parameter controls the number of iterations performed with the WL algorithm. In other terms, it
controls the order of the rooted subgraphs extracted to describe the graph, and therefore the range
taken into account when characterizing vertex neighborhoods. In the following, we discuss each
dataset separately.

5.5.1.2.1 SpaceOrigin Conversations

The top part of Table 5.3 presents the performances of the 3 Graph2vec variants on the Signed
SpaceOrigin dataset. It appears that they are affected diversely by the number of iterations. On
the one hand, G2V and SG2Vn get their best score with a single iteration, and increasing iterations
tend to reduce the performance. This is a tendency that we already observed with this method
in a previous work [19]. On the other hand, SG2Vsb starts low but increases consistently with the
number of iterations. In the end, it reaches an F -measure of 77.44% and outperforms both other
variants. The average diameter is 5.47 in this dataset, which means 5 iterations correspond to an
almost complete graph coverage.

G2V and SG2Vn obtain very similar performances. From this observation, we can assume that
a lot of information is already conveyed by the unsigned graph structures, in this dataset. This is
consistent with the results obtained in the article that published the original data [6], and with our
experiments in Section 4, where we had some success performing a similar task with the unsigned
version of this dataset. Nevertheless, SG2Vsb obtain better performances than the other 2 variants
which indicates that the signs bring some additional discriminative power, which SG2Vsb is able to
leverage. By comparison, this is not the case of SG2Vn. We infer that the relatively low level of SB
Frustration in this dataset (0.30) favors methods relying on SB.

5.5.1.2.2 Correlation Clustering Solutions

The results obtained for this dataset are shown in the middle part of Table 5.3. The performance
is clearly lower, for all 3 variants, and even similar to the score expected from a random classifier
(50%), with a maximum F -measure of 52.57% obtained by SG2Vn. As explained previously, the
dataset contains 2 subsets: some graphs are completely connected, and the rest are not. Assum-
ing that one type of graph might be more difficult to handle than the other, we try training separately
on these subsets. However, we do not get any significant difference between the obtained results,

88

5.5. Experiments

Table 5.3: Results in terms of macro F -measure obtained with Graph2vec and our 2 proposed
signed adaptations. Each column focuses on a specific number of iterations used when extracting
rooted subgraphs.

Task Method 1 it. 2 it. 3 it. 4 it. 5 it.

SpaceOrigin (SO) G2V 75.09 71.32 72.62 73.96 73.77
SG2Vn 74.85 71.44 72.15 72.88 72.37
SG2Vsb 67.29 72.01 74.88 76.98 77.44

Correlation Clustering Solutions (CCS) G2V 48.43 48.12 45.97 51.85 52.07
SG2Vn 49.70 49.25 48.37 52.57 52.12
SG2Vsb 49.84 51.81 49.70 51.37 51.62

European Parliament Factions (EPF) G2V 45.63 49.76 52.31 60.43 63.14
SG2Vn 75.63 81.44 84.18 86.16 88.68
SG2Vsb 80.83 82.90 86.31 87.99 89.98

which are similar to those of Table 5.3.

We assume that either this classification task is too hard, in the sense that the information
available in the graphs is not sufficient to perform the prediction, or that none of the 3 Graph2vec
variants are able to capture the relevant information. The value predicted in this task is directly
related to the distribution of edge signs (see Section 5.3.1), so we know with certainty that the
information conveyed by signs is essential. The fact that G2V has similar performance to its signed
counterparts hints at the second assumption (methods unable to capture relevant information). In
addition, the higher level of SB Frustration (0.37) may hinder the performance of SG2Vsb, compared
to SG2Vn.

Increasing the number of iterations eventually improves the performance, but the effect is not
as strong and as stable as for the previous dataset. The graphs are more compact in this dataset,
with an average diameter of only 3.60, which may partially explain this observation. Indeed, a few
iterations are enough to retrieve all available information, and increasing their number does not
bring any new neighbors.

5.5.1.2.3 European Parliament Factions

The results for this dataset are shown in the bottom part of Table 5.3. It appears that both our
signed adaptations perform drastically better than the original unsigned method. The difference in
F -measure is the largest of the 3 datasets: 63.14 (G2V vs. 88.68 (SG2Vn) and 89.98 (SG2Vsb). Edge
signs thus appear to be even more important for this task than it was for the Signed SpaceOrigin
dataset. The SB-based variant SG2Vsb is slightly above SG2Vn, which seems to indicate that this

89

Chapter 5. Signed Whole-Graph Embedding

type of structure may be relevant to this classification task. The average SB Frustration is 0.28 for
this dataset.

This dataset contains larger graphs than the others, with an average of 67.34 vertices (vs.
47.74 and 27.31 previously) and a mean diameter of 4.12. This may explain the very strong effect
of the number of iterations on the performance, even for G2V, the unsigned variant. It seems that
even a small increase (proportionally to the network size) of the part of the graph covered when
extracting rooted subgraphs, is enough to greatly improve the quality of the classification.

5.5.1.3 Signed Network Embedding

In this section, we present the results obtained with the 5 variants that we proposed for the
SGCN method. Each one relies on the addition of one or several master nodes, through different
interconnection schemes. The first 3 (SGCN+, SGCN-, SGCN±) ignore any type of structural balance,
whereas the others enforce respectively SB (SGCNsb) and GB (SGCNgb). We consider 2 methods to
extract a graph representation: using only the last layer vs. the sum of all layers. Preliminary ex-
periments show that the former performs better, so we only focus on this approach in the following
discussion.

We also include SGCN as a reference in our study, i.e. the original method without any master
node. To get a graph-level representation, we proceed like for SiNE, and sum the representations
of all vertices. We alternatively experimented with averaging them, but got lower performance,
which explains why we focus only on sum, here. The results are shown in Table 5.4, for various
numbers of convolution layers. Each additional layer allows considering neighbors that are located
1-hop farther away from the vertex. In the following, we discuss each dataset separately.

5.5.1.3.1 Signed Space Origin

The top part of Table 5.4 shows the results on the Signed SpaceOrigin dataset. Increasing
the number of layers in the convolutional network results in better performances for all variants,
but to different extents. For instance, when going from 1 to 5 layers, the performance gain is +7,1
F -measure points for SGCNgb but only +0.11 for SGCN±. With an average diameter of 5.47 in this
dataset, using 5 layers allows an almost complete graph coverage.

All 3 variants that ignore any form of balance (SGCN+, SGCN-, SGCN±) are below the unsigned
baseline (SGCN), which indicates that using signs improperly is counterproductive as it decreases
the classification performance. SGCN+ largely outperform both other variants, probably because
there are many more positive than negative edges in this dataset.

Among the variants that take balance into account, SGCNgb consistently outperforms SGCNsb:
55.67 vs. 73.69 with 5 layers. This shows that the type of balance selected when learning the
representation must match the structural properties of the considered graphs. Interestingly, SGCN

90

5.5. Experiments

Table 5.4: Results in terms of macro F -measure obtained with SGCN and our 5 proposed intercon-
nection schemes. Each column focuses on a specific number of convolution layers.

Task Method 1 lay. 2 lay. 3 lay. 4 lay. 5 lay.

SpaceOrigin (SO) SGCN 66.48 67.21 68.06 68.87 69.54
SGCN+ 65.12 66.78 68.42 68.98 69.29
SGCN- 54.19 54.89 55.56 55.59 55.89
SGCN± 49.28 48.95 49.01 49.25 49.39
SGCNsb 52.69 54.99 55.49 55.08 55.67
SGCNgb 66.59 68.85 71.21 72.28 73.69

Correlation Clustering Solutions (CCS) SGCN 70.29 70.65 71.27 71.43 71.89
SGCN+ 70.50 70.86 71.13 71.27 71.35
SGCN- 70.14 70.55 70.84 71.02 71.18
SGCN± 70.76 71.02 71.00 71.20 71.37
SGCNsb 69.59 70.12 70.86 71.21 71.46
SGCNgb 71.75 72.20 72.98 73.24 73.49

European Parliament Factions (EPF) SGCN 90.16 90.87 91.63 92.04 92.65
SGCN+ 88.56 89.30 90.49 91.11 91.87
SGCN- 88.61 89.30 90.49 91.09 91.80
SGCN± 86.32 88.45 90.01 90.78 91.56
SGCNsb 91.11 92.09 93.31 94.17 94.99
SGCNgb 92.36 93.65 95.29 96.04 96.43

is the second-best method, which illustrates the methodological importance of the interconnection
scheme when using a master node approach. It is on par with SGCNgb when using a single layer,
because they are equivalent for this specific parameter value, however the difference quickly grows
with the number of layers.

5.5.1.3.2 Correlation Clustering Solutions

The middle part of Table 5.4 shows the F -measure scores for the Correlation Clustering So-
lutions. On this dataset, all methods yield quite similar results, except for SGCNgb that once again
obtains the best performances. In particular, this method is able to capture more information at the
whole-graph level than SGCN at the vertex level. Increasing the number of layers still improves the
results, but the effect is much weaker than for the previous dataset. The graphs are smaller there,
which may explain this, as more layers do not bring more information after a certain point. These
results also show that this task is not as challenging as assumed when discussing Graph2vec re-

91

Chapter 5. Signed Whole-Graph Embedding

sults, since it is possible to get scores much higher than the expected performance of a random
classifier.

5.5.1.3.3 European Parliament Factions

The bottom part of Table 5.4 shows the results obtained for the EPF graphs. The behav-
ior on this dataset is similar enough to that on Signed SpaceOrigin: the 3 variants that ignore
balance (SGCN+, SGCN-, SGCN±) are below the original SGCN method (the latter being the worst,
again), whereas SGCNgb gets the best results, peaking at 96.43% when using 5 layers. There are
3 differences, though: first, the overall performance is much better, with a minimal F -measure of
86.32. This is in line with the behavior exhibited by Graph2vec on the same datasets, and could
be explained by the low level of Frustration (0.20). Second, SGCN+ and SGCN- perform similarly.
Third, SGCNsb is above SGCN, which could mean that many graphs have a 2-cluster structure in this
dataset.

5.5.2 Comparison

We now compare and analyze the results of the 3 families of methods. Our baseline based on
SiNE is consistently the least efficient method on all tasks. The gap of F -measure reaches up to
22.02 points with the best method, on the Signed SpaceOrigin dataset. This could be explained in
part by the size of the graphs that constitute our benchmark: these are relatively small, whereas
SiNE was designed to handle large graphs, with hundreds or thousands of vertices. Nevertheless,
it remains that our results indicate that applying a method designed to handle whole graphs directly
leads to much better classification results than simply aggregating multiple vertex representations.

Signed Graph2vec, through its SG2Vsb variant, obtains the best performance on the Signed
SpaceOrigin dataset, while SGCN, through its SGCNgb variant, dominates on both other datasets.
Overall, the variants that respect some form of structural balance obtain better results than the
ones that do not. This confirms the interest of including this notion in the design of representation
learning methods for signed graphs, in order to preserve this property in the representation space.
However, it is worth noticing that datasets do not equally favor the 2 types of balance considered
here: Signed Space Origin leads to better results with SB, whereas both others favor GB.

Increasing the number of iterations in Graph2vec, or that of layers in SGCN, has a positive
impact on performances for all datasets, and for almost all variants, including the unsigned ones.
This effect is generally stronger when the appropriate type of balance is leveraged to aggregate
the representation of direct and indirect neighbors, though, which confirms the importance of this
concept when dealing with signed graphs. For the SGCN variants, it also shows that the method
does not suffer from oversmoothing on the considered datasets.

Signed methods consistently obtain better performances than the unsigned Graph2vec method

92

5.6. Conclusion

and all datasets. This proves that signs are indeed relevant information for the considered graph
classification tasks. Including them directly in the representation learning process improves the
quality of the learned representations for all tasks.

Graph Convolutional Networks are the best performing method, overall. However, this comes
at a cost: they also are the most expensive in terms of computational runtime. Learning the
representation of a graph with SGCN variants takes more than 25 seconds in average. As a
comparison, Graph2vec variants take an average of 0.15 second per graph, and SiNE 0.65 second.

5.6 Conclusion

In this chapter, we have presented 2 methods for signed whole-graph embedding. The first is an
adaptation to signed whole graphs of Graph2vec, an unsigned whole-graph embedding method.
We generalize the original Weisfeiler-Lehman relabeling procedure in order to handle edge signs.
Our second proposed method is based on SGCN, a Graph Convolutional Network method de-
signed to learn signed vertex representations, which we adapt to handle signed whole graphs.
Our proposition is to integrate one or several master nodes connected to all parts of the graph, and
to use their representation as the representation of the whole graph. The intuition is that, as the
master node is connected to all parts of the graph, this representation is able to aggregate all its
information. This idea was first proposed for unsigned graphs in the literature, and we propose so-
lutions to adapt it to signed graphs. The challenge is to determine how to connect the master node
to the rest of the graph, since there are 2 different types of edges. We propose 5 interconnection
schemes.

We constituted a benchmark for signed graphs classification containing artificially generated
and real-world graphs. By applying our methods to 3 graph classification tasks included in this
benchmark, we could show that both of them are more efficient on all tasks than our baseline
based on the aggregation of vertex representations. In particular, methods respecting the structural
balance obtain better results than the ones that do not. Therefore, this is a property that must be
considered when developing an embedding method for signed graphs. To return to the 2 questions
that we wanted to answer throughout this chapter, our experimental results show that methods
specifically designed to handle whole graphs are indeed able to learn better representations of
such objects compared to vertex oriented methods, especially for our dataset. This is an important
result, since this is a part of the literature that is currently rather neglected. The second question
was about the interest of using signed representations of graphs. We demonstrated that the signed
methods were more effective than unsigned ones on all the datasets, confirming the benefit of
considering signs.

We believe that this work opens new directions for future research. First, our proposed bench-
mark of 3 graph classification tasks allows evaluating and comparing methods designed for signed

93

Chapter 5. Signed Whole-Graph Embedding

whole-graph representation learning. This benchmark could be expanded with new collections of
graphs, especially larger ones. Second, the master node approach could be applied to other types
of signed GNNs such as Graph Attention Networks. Third, it would be interesting to generalize
our methods so that they can use edge weights, as we showed in Section 4 that this brings some
additional discriminative power when available: we propose such an extension in Chapter 6.1.3.
Finally, another interesting future direction is to experiment with other master node interconnection
schemes, based on other variants of Structural Balance. The concept of Relaxed Balance [208],
[209], in particular, is very interesting, as it allows inter-cluster (resp. intra-cluster) edges to be
positive (resp. negative). With these signed whole-graph embedding methods, we now have all
the tools available to apply representation learning to abuse detection. This is the subject of our
next chapter.

94

Chapter 6

REPRESENTATION LEARNING FOR ABUSE

DETECTION

6.1 Embedding Methods . 98

6.1.1 Lexical Embedding Methods . 98

6.1.2 Selected Graph Embedding Methods . 100

6.1.3 Proposed Whole-Graph Embedding Methods 103

6.2 Experiments . 106

6.2.1 Experimental Protocol . 107

6.2.2 Classification Results . 107

6.2.3 Fusion of Embeddings . 113

6.2.4 Results Summary . 115

6.3 Feature Study . 115

6.3.1 Text Features . 116

6.3.2 Graph Features . 116

6.4 Conclusion . 118

In Chapter 4, we noted 2 main limitations of feature-based approaches. On the one hand, one
has to manually search the existing measures and select the most appropriate ones to constitute
the feature set. To be exhaustive, it often has to include a few hundred features. On the other hand,
the computation of these feature sets can be resource-intensive, in particular that of graph-based
methods. Representation learning can solve this problem by automatically learning appropriate
embedding representations of text and graphs. These methods can rely on edge attributes such
as signs, weights, and directions to improve the representations. However, no signed whole-graph
embedding method existed in the literature. In Chapter 5, we filled this gap by proposing 2 such
approaches and showed that they performed better than their unsigned counterparts. In this chap-
ter, we leverage these approaches, together with other existing representation learning methods,
to tackle the same task as in Chapter 4, and thus study how automatically learned representations
compare with feature engineering.

95

Chapter 6. Representation Learning for Abuse Detection

Classification
Predicted

Class
Vector representation

m1

mp

Embedding
computing

Concatenation

Vector representation

m1 mp

Textual Embedding-based Approach

NLP Measures-based Approach

je l'ai raté !

Message

Text
measures
computing

BoW
extraction

Naive
Bayes

mBoW

mBoW

Figure 6.1: Illustration of the differences between the feature-based method presented in Sec-
tion 4.2.1 (in orange) and text embedding methods used throughout this chapter (in red).

Lexical embeddings transform words into vectors that preserve their semantic and syntactic
information. These methods offer robust representations that can help overcome the limitations of
standard NLP techniques. Different methods can learn representations of text at different levels of
granularity. Some of them provide representations of words, while others provide representations
of sentences or documents. Textual embeddings have been used in a wide range of applications,
including the detection of sexist and racist comments [49] and the offensive or hate speech detec-
tion [83], [210].

Graph embedding methods learn representations of various parts of graphs (i.e. vertices,
edges, subgraphs, whole graphs, etc.). By construction, different methods are assumed to capture
different aspects of the graph structure or properties, but it is difficult to compare them directly, for
the same reason. One way to assess the appropriateness of a graph embedding method for a task
is to do so empirically [170].

In this chapter, we apply embedding techniques to the abuse detection task. We follow the
same procedure as in Chapter 4 with the exception that representations of text messages and
conversational graphs are automatically learned through embedding methods instead of features.
The differences between these 2 methodologies are illustrated by Figure 6.1 (text) and Figure 6.2
(graphs). We perform extensive experiments to compare multiple textual and graph embedding
methods, including the signed whole-graph embedding approaches proposed in Chapter 5, to as-
sess their appropriateness for this specific task. Our objective here is to determine how embedding
methods perform compared to feature-based ones. Since the learned representations are not di-
rectly interpretable, it is not straightforward to understand exactly which information is captured by
the embeddings. Therefore, we also perform an in-depth analysis of the methods to detect which
properties are captured by which methods.

The following chapter is based on our works published in the international journal SN Computer

96

Classification
Conversational

Graph

Graph Embedding-based Approach

Topological Measures-based Approach

Predicted
ClassVector representation

m1

mp

M1

Mq

Topological
measures
computing

Embedding
computing

Concatenation

Vector representation

m1(v) mp(v)

⟨m1⟩ ⟨mp⟩

M1 Mq

Figure 6.2: Illustration of the differences between the feature-based method presented in Sec-
tion 4.2.2 (in orange) and graph embedding methods used throughout this chapter (in green).

Science (2021) [19], the French journal Traitement Automatique des Langues (2021) [21], and the
MARAMI 2020 conference [22]. Some of the results on edge attributes and directions have not yet
been published. This chapter makes the following contributions:

1. We propose extensions of the SG2V and SGCN models from Chapter 5 that can use edge
weights and directions in addition to the signs

2. We propose 3 variants of Graph2vec, a graph embedding method, that integrate information
relative to our task.

3. We experiment and compare 6 lexical embedding methods and 11 graph embedding meth-
ods designed to operate at different scales of the graph (vertex and whole graph). We assess
these methods on the abuse detection task on the SpaceOrigin dataset and estimate their
complementarities by combining them following the 3 fusion strategies presented in Sec-
tion 4.2.3.

The rest of this chapter is organized as follows. In Section 6.1, we present all the lexical
embedding methods that we use, the parameters of graph embedding approaches, the weighted
directed extensions of the 2 signed whole-graph embedding methods developed in the previous
chapter and the variants of Graph2vec that we propose to incorporate task-specific information.
Next, we put all these methods into practice on our abuse detection task and discuss their results
in Section 6.2. Then, we put a focus on determining which information is captured by every method
in Section 6.3. Finally, we review our main findings in Section 6.4, and identify some perspectives
for this work.

97

Chapter 6. Representation Learning for Abuse Detection

6.1 Embedding Methods

In this section, we present the lexical models from the literature, which we use in our exper-
iments (Section 6.1.1). We then summarize the existing methods from the literature that we se-
lected to produce graph embeddings (Section 6.1.2). Finally, we present some extensions of graph
embedding approaches designed to fit our needs (Section 6.1.3.3).

6.1.1 Lexical Embedding Methods

Representation learning for text data is the task that consists of transforming textual input into
vector representations which can then be used by machine learning algorithms for various tasks.
Word embedding methods learn dense vectors of fixed size that represent a set of words, one
vector per token in the vocabulary. They efficiently encode the semantic and syntactic information
of words. Those that are used in similar ways obtain very close representations in the vector space,
naturally capturing their meaning. However, representing polysemy and homonymy is difficult. We
can distinguish 2 categories of word embedding approaches: the ones that are context-invariant
and output a fixed representation for each word, and the contextualized ones that can generate
different embeddings for a given word depending on the context in which it is used. Here, we
experiment with 5 methods, the first 2 are context-invariant while the other 3 are contextualized.
One constraint of our dataset is that it is constituted of French messages. Therefore, we selected
models for which a pre-trained French version is publicly available.

Word2vec [174] generates fixed representations of words. It is one of the most popular word
embedding approaches in recent years. In particular, it proposes the SkipGram model architecture
which has been reused in numerous methods since. The model learns representations while trying
to keep the semantic and/or syntactic similarity of words. Word2vec is based on a distributional
hypothesis and learns the meaning of words from a large corpus of texts. Technically, it uses a
neural network that has an input layer, an output layer, and a projection layer. The latter constitutes
the word embedding. The output layer is used to perform a classification task allowing to train the
model. There are 2 variants of Word2vec with symmetrical architectures: the Continuous Bag of
Words (CBOW) model that predicts a word based on its context fed as input, and the SkipGram
model that aims to predict the surrounding context words given the center word. Word2vec models
are trained with a sliding window process, i.e. at each iteration, the model targets a word before
moving one word forward. The size of that window determines how many words before and after a
given word are included in its context. In this application, we set it to 10 words. We use a model1

trained on French texts extracted from Wikipedia. Each word is associated with a representation
of dimension 300.

1https://github.com/Kyubyong/wordvectors

98

https://github.com/Kyubyong/wordvectors

6.1. Embedding Methods

Since the representation process of Word2vec is based on the words observed in the train-
ing corpus, this method is unable to deal with out-of-vocabulary words. For the same reason,
uncommon words that appear only a few times in the training phase often obtain poor-quality rep-
resentations. fastText [211] is an extension of Word2vec that was developed to mitigate the afore-
mentioned limitation. It breaks words down to N -grams of characters instead of treating full words
as Word2vec does. In this way, each word can be represented as a bag-of-characters N -grams
(with 3 ≤N ≤6, generally). For instance, with N = 3, the word mode would be represented by
(<mo,mod,ode,de>) where the " < " and " > " symbols correspond to the beginning and the end of
the word. Once the character N -grams are extracted, a SkipGram model learns their representa-
tions. The representation of a word is obtained by summing all its N -grams. With this approach,
rare and out-of-vocabulary words can still have quality representations since it is very likely that at
least a portion of their N -grams appear in other words. We use a model2 [211] trained on French
texts from Wikipedia. All the representations are of dimension 300.

CamemBERT [212] and FlauBERT [213] are 2 French word embedding models directly adapted
from the RoBERTa [214] architecture. Therefore, they share a lot of similarities. The main differ-
ence between them lies in the way that they mask tokens in the masked language model. Camem-
BERT also uses more training data. They both provide contextualized representations of words.

CamemBERT [212] is trained on a masked language modeling task. The authors follow the
original architecture configurations of BERT. They propose a CamemBERTBASE model with 12
layers of encoders, 768 hidden dimensions, 12 attention heads and 110M parameters, and a
CamemBERTLARGE model with 24 layers of encoders, 1,024 hidden dimensions, 16 attention
heads and 335M parameters. According to the authors’ study [212], the latter gives better re-
sults on named entity recognition but similar results on part-of-speech and dependency parsing
tasks. Thus, we use the CamemBERTLARGE model in the remainder of this chapter. This model3

is pre-trained on the CCNet [215] corpus containing 135GB of French text extracted from various
websites. All the representations are of size 1,024.

Similar to CamemBERT, FlauBERT [213] proposes a FlauBERTBASE model composed of 12
layers of encoders, 768 hidden dimensions and 12 attention heads, and a LARGE model with 24
layers of encoders, 1,024 hidden dimensions and 16 attention heads. These models are trained
on a corpus of 71GB of French text aggregated from multiple online sources. We use the LARGE

model4 that provides embeddings of dimension 1,024.

Unlike the 4 previous approaches, Flair [216] learns representations that are built at the char-
acter level and not the word level. This feature allows Flair to be particularly efficient when dealing
with rare or misspelled words and to better model language-related concepts such as prefixes

2https://github.com/flairNLP/fasttext
3https://camembert-model.fr/
4https://github.com/getalp/Flaubert

99

https://github.com/flairNLP/flair/blob/master/resources/docs/embeddings/CLASSIC_WORD_EMBEDDINGS.md
https://camembert-model.fr/
https://github.com/getalp/Flaubert

Chapter 6. Representation Learning for Abuse Detection

and suffixes. This architecture uses a bi-directional LSTM operating on characters. The model is
trained to predict the next character for each element in the sequence to process. Therefore, it
learns 2 hidden representations for each character of the sequence: one for the forward network
and one for the backward network. The embedding of a word is obtained by combining the forward
representations of the characters located before the end of the word and the backward representa-
tions of the characters located after the beginning of the word. We use the forward and backward
models5 trained on French Wikipedia articles. Each model generates representations of size 1,024
that we concatenate to obtain the final embedding of a word, with 2,048 dimensions.

6.1.2 Selected Graph Embedding Methods

In this chapter, we compare several graph embedding techniques applied to abuse detection.
This task consists of classifying conversational graphs. However, our approach to represent con-
versations through conversational graphs is particular. Indeed, vertices represent authors and the
objective is to classify one message posted by a specific author, given the context represented
by the whole graph. Therefore, one could assume that the vertex corresponding to this specific
author is more important than other vertices and that using the representation of that single vertex
could be enough to characterize the whole conversation. Furthermore, it is possible to construct
a representation of the graph by combining vertex-level features. For this reason, we include both
vertex and whole-graph embedding methods in this study. The methods from the literature that we
selected use different strategies and focus on preserving various aspects of the graph, to include
as much diversity as possible. All implementations are from the Karate club toolkit [201] except
Node2vec, which was implemented by E. Cohen6.

In the remainder of this section, we list the methods selected for our experiments, half of them
treating the graph at the vertex scale, and the other half treating the whole graph. We selected
them to represent a diversity of techniques. For each, we indicate their parameter settings, which
we experimentally determined in a previous study [19]. In the following description, the names
of the parameters correspond to those used in these toolboxes. Table 6.1 summarizes the exact
parameter settings for all the graph embedding methods, which are described in more detail in
the previous chapter (Section 5.2). Table 6.2 shows a summary of the edge attributes (weights,
directions, signs) that the graph embedding methods are able to handle.

6.1.2.1 Vertex Embedding Methods

In the conversational graph extracted from the context of the targeted message, all vertices
are not equal. One of them represents the author of the targeted message (represented in red

5https://github.com/flairNLP/flair
6https://github.com/eliorc/node2vec

100

https://github.com/flairNLP/flair/blob/master/resources/docs/embeddings/FLAIR_EMBEDDINGS.md
https://github.com/eliorc/node2vec

6.1. Embedding Methods

Table 6.1: Parameters of the graph embedding methods.

Parameter FGSD SF NGNN G2V SG2V SGCN DW WL N2V BNE GW KH

dimensions 200 128 64 128 128 128 128 32 128 8 100 64
hist_range 10 - - - - - - - - - - -
wl_iterations - - - 1 5 - - - - - - -
layers - - 8 - - 5 - - - - - -
down_sampling - - - 10−4 10−4 - - - - - - -
learning_rate - - 10−3 0.06 0.06 - 0.05 0.05 - - - 10−3

epochs - - 300 12 12 - - - - - - 200
min_count - - - 1 - - 1 1 - - - -
window_size - - - - - - 10 4 10 - - -
walk_number - - - - - - 5 5 10 - - -
walk_length - - - - - - 80 80 20 - - -
p - - - - - - - - 0.95 - - -
q - - - - - - - - 1.0 - - -
iterations - - - - - - - - - 16 - -
order - - - - - - - - - 1 - -
alpha - - - - - - - - - 0.01 - -
step_size - - - - - - - - - - 0.2 -
heat_coefficient - - - - - - - - - - 0.5 -
approximation - - - - - - - - - - 100 -
switch - - - - - - - - - - 1,000 -

in Figure 4.4), which we assume plays a particular role if an abuse is occurring at this moment
of the conversation. We can suppose that this vertex is the most important in the graph, and
that characterizing it individually could be enough to represent the full conversation. The vertex
embedding methods presented in this section allow learning the representation of this vertex.

DeepWalk [175] (DW) samples a certain number of uniform random walks starting from each
vertex to represent the graph structure. There are multiple parameters to tweak the generation of
random walks. We extract 5 random walks starting at each vertex of the graph with a maximum
length of 80. We use a neighborhood of 10 vertices and consider all vertices appearing at least
once in the graph. The representations are of dimension 128.

Node2vec [85] (N2V) also uses random walks to characterize the graph structure. When draw-
ing these random walks, it introduces a bias controlled by 2 parameters. The return parameter p

controls the likelihood of immediately revisiting a vertex during the walk, and the in-out parameter q

controls the balance between the breadth-first and depth-first strategies. We use values 0.95 and
1.00 respectively in order to obtain representations that capture the global structure of the graph
and the structural equivalence between vertices. We extract 10 random walks of length 20 starting
from each vertex with a window_size of 10. The representations are of size 128.

Walklets [179] (WL) is an extension of DeepWalk which aims at explicitly modeling multi-scale

101

Chapter 6. Representation Learning for Abuse Detection

relationships, i.e. combining distinct views of vertex relationships at different granularity levels. The
key change is in the random walk sampling algorithm, as the walks can now skip some vertices to
reach farther parts of the network. It creates a representation for each size of skip) and the output
representation is the result of their concatenation. We use the same parameters as DeepWalk,
except for the window_size that denotes the size of skips in random walks. We use a value of
4 and 32 dimensions for each representation. The final representation is thus of size 128, the
product of the values of these 2 parameters.

BoostNE [173] (BNE) also learns multiple graph representations at different granularity levels,
but unlike Walklets, it relies on matrix factorization. It successively factorizes a vertex connectiv-
ity matrix to obtain representations corresponding to an increasingly finer granularity. The final
embedding is obtained by concatenating these representations. We consider 16 iterations that
each generates a representation of size 8, for a final embedding of size 128.

GraphWave [217] (GW) mimics a physical process consisting in propagating some energy
through the graph structure, starting from the vertex of interest. The way this energy is diffused over
the graph is assumed to characterize the vertex and its neighborhood. The heat_coefficient),
which corresponds in terms of graph structure to the radius of the considered vertex neighborhood,
is set to 0.5. We set the size of the embeddings to 100.

k-hop Graph Neural Networks [218] (KH) aggregates the direct neighbors of a vertex and its
k-hop neighborhood through a graph neural network. We use a learning rate of 0.001 with 200
epochs to obtain representations of dimension 64.

6.1.2.2 Whole-Graph Embedding Methods

Using a description of the whole graph amounts to consider the entire conversation at once
when performing the classification. It can help better capturing the global dynamics of the ex-
changes between users in the graph.

Family of Graph Spectral Distances [185] (FGSD) discretizes the distribution of the vertex
pairwise distances through a histogram. We can control the way this histogram is computed. We
set the range covered by our histogram to 10 and generate representations of dimension 200.

Spectral Features [183] (SF) computes the spectrum of the normalized graph Laplacian, keep-
ing only the k smallest positive Eigenvalues. These Eigenvalues, in ascending order, form the rep-
resentation of the graph. Parameter k, called dimensions in the implementation, therefore directly
controls the size of the representation. We set it to 128.

Nested Graph Neural Networks [219] (NGNN) extracts rooted subgraphs and pool their rep-
resentations into a single one to represent the whole graph. We use a learning rate of 0.001, with
300 epochs and 8 GNN layers to learn representations of dimension 64.

Graph2vec [161] (G2V) considers a graph as a collection of subgraphs, which are then used
to train a SkipGram model. More precisely, it looks for so-called rooted subgraph, i.e. vertex

102

6.1. Embedding Methods

neighborhoods of a certain order. We extract rooted subgraphs of degree 1 (wl_iterations), with
an embedding size of 128.

Signed Graph2vec (SG2V) is a method that we proposed in Chapter 5.4.2. It is an adaptation
of the original Graph2vec approach that is able to learn representation of signed graphs. Following
the results in Chapter 5.5.1, we extract rooted subgraphs of degree 5 (wl_iterations) with a
representation size of 128. We use the variants which enforce structural balance (SG2Vsb).

Signed Graph Convolutional Networks (SGCN) is the other signed whole-graph embedding
method that we developed (Chapter 5.4.3). It includes master vertices to connect some parts of
the graph and uses the representations of such global vertices to represent the whole graph. We
use 5 layers in our graph convolutional network and generate representations of size 128. We use
the best performing variant (SGCNgb), which enforces the generalized balance.

Scale Method Reference Weighted Directed Signed

Vertices DeepWalk [175] - - -
Node2vec [85] ✓ ✓ -
Walklets [179] - - -
BoostNE [173] ✓ - -
GraphWave [217] - - -
KH [218] - - -

Whole graph FGSD [185] ✓ - -
Spectral Features [183] - - -
NGNN [219] - - -
SG2V Section 5.4.2 - - ✓

WD-SG2V Section 6.1.3.1 ✓ ✓ ✓

SGCN Section 5.4.3 - - ✓

WD-SGCN Section 6.1.3.2 ✓ ✓ ✓

Graph2vec [161] - - -
Graph2vec-author Section 6.1.3.3 - - -
Graph2vec-target Section 6.1.3.3 - - -
Graph2vec-distance Section 6.1.3.3 - - -

Table 6.2: Summary of the edge attributes handled by the selected graph embedding methods.

6.1.3 Proposed Whole-Graph Embedding Methods

In Chapter 5, we proposed SG2V and SGCN as whole-graph embedding methods able to
operate on undirected unweighted signed graphs. However, in Chapter 4.4.2 we found that consid-

103

Chapter 6. Representation Learning for Abuse Detection

ering edge attributes and directions has a positive impact on the detection performance of abusive
messages. Consequently, we think that including edge weights and directions directly in the rep-
resentation learning process of SG2V and SGCN could improve the quality of their learned repre-
sentations of whole graphs. We first introduce a Weighted Directed variant of SG2V (WD-SG2V)
in Section 6.1.3.1 that generalizes the Weisfeiler-Lehman (WL) relabeling procedure in order to
handle these supplementary edge attributes. Then, we propose a Weighted Directed variant of
SGCN (WD-SGCN) in Section 6.1.3.2. Finally, we propose an extension of the Graph2vec model
in Section 6.1.3.3, which includes certain task-related information into the embedding.

6.1.3.1 Weighted Directed SG2V

In Section 5.4.2, we proposed 2 signed adaptations of the Graph2vec model relying on 2 vari-
ants of the WL relabeling procedure able to handle edge signs. To incorporate supplementary
edge attributes in the learned representations, we follow the same procedure and propose a new
variant able to handle edge weights and directions. The original Graph2vec label update rule is
an iterative process where a vertex is described by a tuple constituted of its previous label, and a
sorted multiset containing those of its neighbors. It is formally defined in Equation 5.3. In order to
incorporate both other edge properties, we first consider the set of outgoing neighbors of a vertex
u and split them into 4 quartiles based on the weight of the concerned edges. Based on this break-
down, we can attribute a quartile number (i.e. 1, 2, 3 or 4) to each edge. This allows distinguishing
vertices holding the same label but connected to u with different weight levels. We experimentally
determined that splitting the weights into quartiles is the best option, as using fewer quartiles does
not provide enough possibilities to distinguish edges, and using more of them leads to too many
possible labels, hence reducing the efficiency of the method.

The first variant that we proposed in Section 5.4.2, SG2Vn, uses the original label update rule
except that it appends the sign of the concerned edge in front of each neighbor (Equation 5.4). Our
proposition for WD-SG2Vn is to further append the quartile number in front of each neighbor when
building the labels in the following manner:

ℓt(u) = f
(
ℓt−1(u),

{[
q(u, v), s(u, v), ℓt−1(v)

]
: v ∈ N(u)

})
, (6.1)

where q(u, v) and s(u, v) are the quartile number and the sign of edge (u, v), respectively, and []
denotes string concatenation.

The second variant proposed in Section 5.4.2, SG2Vsb, creates 2 labels for each vertex, based
on its positive and negative reachable sets. Our proposition for WD-SG2Vsb is the same as above,
i.e. adding the quartile number in front of each positive and negative neighbor when building the
labels. The update rules for the positive and negative labels are:

104

6.1. Embedding Methods

ℓ+
t (u) = f

(
ℓ+

t−1(u), {
[
q(u, v), ℓ+

t−1(v)
]

: v ∈ N+(u)}, {
[
q(u, v), ℓ−

t−1(v)
]

: v ∈ N−(u)}
)

(6.2)

ℓ−
t (u) = f

(
ℓ−

t−1(u), {
[
q(u, v), ℓ−

t−1(v)
]

: v ∈ N+(u)}, {
[
q(u, v), ℓ+

t−1(v)
]

: v ∈ N−(u)}
)
. (6.3)

Once all the iterations are completed, f is applied to tuples formed by the positive and negative
labels of each vertex, resulting in the final rooted subgraph labels.

6.1.3.2 Weighted Directed SGCN

SGCN is a graph embedding method that originally learns representations of vertices in signed
graphs. In Section 5.4.3, we adapted it to handle whole graphs by adding master vertices to the
graph and using their representations as the representation of the whole graph. To make this model
able to use edge weights and directions, we propose a modification of its aggregation step. The
original model consists of collecting features from neighboring vertices and aggregating them. In
WD-SGCN, to obtain the representation of each vertex u, we first consider only their set of ingoing
neighbors as they are the ones that have influence on the vertex. Then, to integrate the fact that all
these neighbors have different degrees of importance depending on the weight of the edge shared
with the vertex of interest, we perform a weighted aggregation of the neighbors. In other words, we
weigh the features from neighboring vertices by the edge weight that we normalize to obtain a sum
of 1. Then we aggregate them. This gives more importance to neighbors with a strong relationship
in the resulting representation. We apply this procedure with all the 5 interconnection schemes
that we proposed for SGCN.

6.1.3.3 Tuning Graph2vec

In addition to the standard Graph2vec [161] model presented in the previous section, we use a
feature of that method to propose 3 Graph2vec variants specifically designed for our abuse detec-
tion task. Graph2vec allows labeling each vertex used in the rooted subgraph extraction process.
In this way, 2 subgraphs containing vertices with identical labels are considered similar. This intro-
duces an additional concept of similarity between vertices in addition to the graph structure. If no
label is given, Graph2vec uses the vertex degree as the default label. We propose and assess the
performances of 3 alternative labeling procedures that are designed for our task, and illustrated in
Figure 6.3.

The first one, called Graph2vec-author (Figure 6.3.a), consists of using the unique identifier
associated with the author of a post in our dataset. Therefore, we can identify if a same author
is active in several conversations. Our intuition is that identifying the authors could allow us to
consider context at a larger scale than a simple conversation. For instance, the fact that 2 authors

105

Chapter 6. Representation Learning for Abuse Detection

id74

id07 id28

id99

id34id57

a)

0

1 2

1

21

b)

1

0 0

0

00

c)

Figure 6.3: Examples of the 3 labeling procedures: Graph2vec-author (a), Graph2vec-distance (b),
Graph2vec-target (c). The targeted vertex is represented in red.

interact in multiple conversations and that there is a history between them could be an important
information.

With Graph2vec-distance (Figure 6.3.b), we compute the distance, between the vertex and
the targeted vertex, and use it as its label. The purpose is to group different vertices (i.e. users)
with the same label depending on their proximity with the author represented by the targeted vertex.
The groups with low distances could correspond to the persons close to the author while the groups
with high distances represent the users that only have brief contact with him. This strategy reduces
the number of distinct labels in the graph and could make it easier to detect structural equivalence.

Finally, Graph2vec-target (Figure 6.3.c) is an extension of the previous strategy that further
reduces the number of labels in the graph down to 2. With Graph2vec-target, we use a binary label
that indicates whether the vertex is the targeted one or not. The intuition is that the targeted vertex
plays a particular role in the graph, thus it could be important to differentiate it from others.

These labels generated by the 3 strategies are all based on the users and their proximity to the
author of the targeted message. Therefore, they introduce information that is directly related to our
task. For all these methods, we use representations of size 128.

6.2 Experiments

In this section, we present our experimental protocol (Section 6.2.1) and the performances
obtained by the studied lexical and graph embedding methods (Section 6.2.2). Finally, we com-
bine these embeddings (Section 6.2.3) as we did in Chapter 4 and summarize our findings (Sec-
tion 6.2.4).

106

6.2. Experiments

6.2.1 Experimental Protocol

The objective of the following experiments is to draw a comparison between embedding meth-
ods and feature-based approaches studied in Section 4. To this end, we use the same experimental
protocol as the one described in Section 4.3.1. We use the SpaceOrigin dataset and conduct the
experiments on the binary classification task consisting of detecting instances of Abusive and Non
abusive messages. We separate the experiments into 2 distinct aspects: textual and conversa-
tional.

The textual aspect relies on the content of the messages to perform the detection. We use the
5 lexical embedding models described previously in Section 6.1.1. As a baseline, we also include
the feature-based method developed in Section 4. The 5 approaches generate embeddings at the
word level. As our objective is to represent the message as a whole and not individual words,
we use the standard technique of averaging the representations of all words in a message to
obtain its global embedding [220]. Furthermore, the methods based on the BERT architecture,
i.e. CamemBERT and FlauBERT, directly learn a global representation of the sequence through a
particular token added at the very beginning of the sequence. We use this global representation
as a second technique to represent the messages, in addition to the averaged representations.

The conversational aspect focuses on the use of contextual information. It relies on the con-
versational graphs extracted from the SpaceOrigin dataset. They represent the full conversations
(i.e. context) in which messages were posted. In the following experiments, we use the models
described in Section 6.1.2. We also include the feature-based baseline developed in Section 4.2.2
for reference. Additionally, we experiment with the proposed weighted directed variants of SG2V
and SGCN, and the 3 strategies proposed to tune Graph2vec for this specific task. Half of the
selected methods learn vertex embeddings and the other half focus on the whole graph. The latter
directly learns representations of the graph as a whole, we use these representations. For the
former, we use 2 strategies. First, we use only the representation of the vertex corresponding to
the author of the targeted message. Second, we average the representations of all vertices in the
graph into a single global one.

All these methods are used to learn representations of messages which are ultimately used as
input values of an SVM. As in Chapter 4.3, we perform a 10-fold cross-validation with 70%-train /
30%-test split. The performance is expressed in terms of macro F -measure.

6.2.2 Classification Results

In this section, we present the results of our experiments with lexical and graph embeddings
on the abuse detection task. We also include the content- and graph-based original methods
developed through feature engineering (Chapter 4), as a reference. In the following, we discuss
each aspect separately.

107

Chapter 6. Representation Learning for Abuse Detection

6.2.2.1 Lexical Embedding

Table 6.3 shows the results obtained by the baseline and the 5 lexical embedding methods that
we consider. The first column denotes the scale of the generated representations: Word for the
methods that generate representations of words that we average to obtain the representation of a
message, and Message for BERT-based methods able to directly learn a global representation of
the message. The third column shows the dimension of the learned representations. We keep the
original dimension of all the pre-trained models used.

For most models, the most frequent classification error is to label a non-abusive message as
abusive. This phenomenon represents approximately 60% of the total classification errors. Some
non-abusive messages are quite ambiguous and therefore, difficult to classify.

Scale Method Dimension F -measure Total Runtime

- Baseline-Text 29 75.21 0:41

Word Word2vec 300 71.14 04:14
fastText 300 76.01 04:29
Flair 2,048 77.33 05:25
CamemBERT-W 1,024 81.02 06:56
FlauBERT-W 1,024 78.46 07:11

Message CamemBERT-M 1,024 80.96 04:59
FlauBERT-M 1,024 74.99 05:08

Table 6.3: F -measures obtained by our baseline approach (based on feature engineering) and the
5 word embedding methods.

Our first observation is that all the word embedding approaches but one obtain a better F -measure
than the baseline. Word2vec and fastText are among the least effective approaches for this classi-
fication task. This is not surprising since they are the 2 methods that produce fixed representations
of words, i.e. a single representation for each word, independent of the context. Therefore, they are
unable to distinguish homographs which can lead to confusion on the meaning of a message. The
gap in terms of performance between these 2 methods can be explained by the fact that Word2vec
is completely unable to treat words that were not seen during training (i.e. out-of-vocabulary words)
while fastText, by construction, is able to deal with them. In the context of online messages, this
feature is essential since spelling mistakes, rare and very specific terms, or even intentional obfus-
cation, are more than common.

The contextualized embeddings learned by Flair yield better performances, but they are lower
than all other contextual methods. It seems that the character-level representation of Flair is not
well suited for the abuse detection task, or at least, for our dataset.

108

6.2. Experiments

FlauBERT-M, which learns a global representation of the message, gets lower performances
than its counterpart Flaubert-W, which creates the embedding by averaging the representations of
words composing the message. We assume that the abusive nature of a message is often based
on just a few words, and that operating directly on words allows improving their detection. However,
we do not find this situation with CamemBERT since its 2 variants obtain performances that are
not statistically different. CamemBERT-W, nonetheless, gets the best F -measure (81.02%) of all
the lexical embedding methods. This constitutes an improvement of almost 6 points compared to
our baseline.

These results highlight all the potential of word embedding methods. On this classification
task, they are able to learn representations that capture much more discriminative information
compared to the baseline based on a handcrafted set of morphological and language features
computed on the message. This directly leads to an improvement of up to 6 points in terms of
F -measure on the abuse detection task. Furthermore, these methods are not built following the
same concepts and objectives, therefore, we can suppose that they could be complementary. For
instance, Le et al. [213] show that the combination of CamemBERT and FlauBERT yields better
performances than the 2 methods used separately on a POS tagging task. We explore these
options in Section 6.2.3.

On the other hand, word embedding methods require much more time than the baseline to
obtain the representations of messages. This could be a limitation in a real-world application
where the time to classify a message is limited.

6.2.2.2 Graph Embedding

The results of our graph embedding methods and the baseline are shown in Table 6.4. The last
3 rows are the Graph2vec variants tuned to include additional information through vertex labels.
The first column indicates whether it is a vertex or whole-graph embedding method. With these
results, we want to answer 3 research questions.

• First, which scale is the most efficient for learning representations of conversational graphs
(Section 6.2.2.2.1)?

• Second, which edge attributes (weights, signs or directions) should be considered in the
representation learning process of graphs (Section 6.2.2.2.2)?

• Third, which vertex attribute brings more information to the representation (Section 6.2.2.2.3)?

6.2.2.2.1 Representation Scale

We evaluated 3 different strategies in Table 6.4: learning a representation of the whole graph,
using the representation of the targeted vertex, and averaging the representations of all vertices in

109

Chapter 6. Representation Learning for Abuse Detection

Scale Method Dimension F -measure Total Runtime

- Baseline-Graph 477 83.40 03:51:25

Vertices DeepWalk 128 73.72 14:29
DeepWalk-avg 128 73.54
Node2vec 128 74.59 15:01
Node2vec-avg 128 74.44
Walklets 128 74.84 16:21
Walklets-avg 128 74.21
BoostNE 136 71.53 16:00
BoostNE-avg 136 71.51
GraphWave 200 80.34 15:12
GraphWave-avg 200 79.58
k-hop GNN 64 73.96 24:55
k-hop GNN-avg 64 73.55

Whole graph FGSD 200 71.13 06:35
Spectral Features 128 74.23 06:57
NGNN 64 74.51 16:58
SG2V 128 79.13 06:24
WD-SG2V 128 79.31 06:53
SGCN 128 74.74 14:14
WD-SGCN 128 75.02 14:50
Graph2vec 128 78.17 04:54
Graph2vec-author 128 78.24 05:10
Graph2vec-target 128 78.05 05:08
Graph2vec-distance 128 80.47 05:04

Table 6.4: F -measures of our baseline and graph embedding methods, including the 3 proposed
variants of Graph2vec. In the top part, avg denotes a method averaging all vertices in the graph.

the graph. For these last 2 strategies, the representation of the targeted vertex always gives better
performances than averaging all the vertices’ representations. We can assume that the targeted
vertex is the most important for our classification task and considering the other vertices does not
bring additional information, and even add noise to the learned representation.

Between vertex and whole-graph approaches, there is no clear distinction in terms of F -measure.
Since the graph in its entirety represents the message and its associated conversation, one could
assume that embedding the whole graph could allow capturing more information than a single ver-

110

6.2. Experiments

tex embedding. However, it seems that these graphs can be well-characterized by focusing on the
vertex of the author of the targeted message. This could mean that the relative position of this ver-
tex in the graph is enough to characterize the whole conversation and that vertex-level embeddings
are able to capture such information.

6.2.2.2.2 Edge Attributes

To assess the impact of edge attributes on the learned representations, we compare the perfor-
mances of SG2V (Table 6.5) and SGCN (Table 6.6) on all 8 possible combinations of edge weights,
directions, and signs.

Table 6.5: Comparison of the F -measure obtained when considering the 8 different types of graphs
with SG2V.

Graph type Unsigned Signed

Unweighted
Undirected 79.13 79.21
Directed 79.15 79.24

Weighted
Undirected 79.21 79.29
Directed 79.23 79.31

Table 6.6 shows the results for SG2V. We can observe that each attribute brings a bit of infor-
mation, leading to a better representation. The best performance is obtained when considering
edge weights, directions, and signs.

Table 6.6: Comparison of the F -measures obtained when considering the 8 different types of
graphs with SGCN.

Graph type Unsigned Signed

Unweighted
Undirected 74.74 74.85
Directed 74.76 74.88

Weighted
Undirected 74.86 74.92
Directed 74.91 75.02

Table 6.6 shows the results for SGCN. The observation is similar to SG2V. All the attributes
slightly improve the representation, and the best performance is obtained when considering all of
them. These results confirm what we already showed in Chapter 4, that edge properties contain
information that improves the quality of the representations.

111

Chapter 6. Representation Learning for Abuse Detection

6.2.2.2.3 Vertex Attributes

Regarding the Graph2vec variants that we propose, 2 of them obtain performances almost
equivalent to the one of the original model. Identifying the author (Graph2vec-author) or the tar-
geted message itself (Graph2vec-target) allows to create classes of vertices rather than treating
vertices as individual components. However, this does not bring additional information useful for
the detection of abusive messages. We suppose that the Graph2vec-target approach, which only
distinguishes 2 classes of vertices, does not bring information discriminant enough to improve the
detection performance. On the other hand, Graph2vec-author creates a distinct label for each au-
thor. Graph2vec is unable to benefit from this, probably because it is difficult to detect and capture
structural equivalence in graphs with so many different vertex labels. Graph2vec-distance, the
method that uses the distance between each vertex and the targeted one, obtains better results
that make it the best-performing graph embedding method with a F -measure of 80.47. This dis-
tance is closely related to our task since it can categorize users based on their proximity to the
targeted author (e.g. close friend, acquaintance, stranger). This proximity can be a key contextual
element to detect an abuse. This shows that adding a task-specific information during the learning
of the embeddings can improve their quality.

6.2.2.2.4 General Observations

Unlike what we observed on the textual embeddings, no graph embedding method is able
to outperform the baseline. This is not surprising, because this set of features was specifically
designed for this task and dataset and includes a large number of various measures, whereas the
embedding methods are somewhat generic. The text baseline also includes much less features
than the graph baseline, which probably made it easier to beat.

GraphWave (vertex scale approach), Graph2vec, and its signed variant SG2V (whole-graph
scale) yield the best performances among graph embedding approaches. The other methods, ob-
tain correct performances with an F -measure approximately ranging from 71% to 78%. Spectral
Features and FGSD, which operate on the whole graph, might be penalized by the small size of our
dataset and by the fact that graphs have approximately the same size and thus, possibly similar
structures. DeepWalk is less efficient than Node2vec, which is in line with other studies [85], [170].
The Walklets algorithm learns multi-scale relationships in the graph. However, such relationships
might not be very developed in our graphs, which could explain its lower performance. This obser-
vation could also be the reason for the very poor performance of BoostNE, which also operates
on different granularity levels. Signed Graph2vec (SG2V) is one point above Graph2vec, which
confirms once again that signs are important for the representation.

In the end, the best graph embedding method (Graph2vec-distance) is less efficient than our
baseline by approximately 3 points. However, embedding-based approaches still have 2 major

112

6.2. Experiments

advantages compared to the feature-based baseline. First, they are not specifically designed for
this task or dataset and are hence more likely to be efficient in other settings. For instance, the
textual embedding models that we use are not specifically pre-trained on abusive datasets, which
illustrates this ability to be applied in various contexts. Second, embedding methods are more
scalable than hand-crafted sets of features. Computing the topological measures used in our
baseline is computationally very expensive, with a total runtime of almost 4 hours. On the other
hand, it only takes a few minutes to deal with the embedding methods on the same machine, which
makes them a lot more time-efficient.

6.2.3 Fusion of Embeddings

Past work in the literature [14] and the study conducted in Chapter 4.2.3 show that combining
multiple types of information can be effective in the context of abusive message detection. In
this chapter, we propose to combine some of the lexical and graph embedding methods that we
used in the previous experiments. Our intuition is that these methods are based on completely
different modalities, namely the text and the conversational graphs, and that their embeddings must
therefore capture different information, possibly complementary. In this case, their combination
should improve the classification performance. Furthermore, we also consider the combination of
methods that operate on the same modality. As mentioned by Le et al. [213], the combination of
multiple methods can lead to improved performance.

We use the 3 fusion strategies that we previously proposed in Chapter 4.2.3 to combine content-
and graph-based features.

In this chapter, we focus on the embedding methods which obtained the best performances in
our experiments. For the textual embeddings, we select Camembert-W, FlauBERT-W (word level),
and CamemBERT-M (message level). For the graphs, we use GraphWave (vertex-scale approach)
and Graph2vec-distance (whole-graph scale approach). We also consider the baselines for both
text and graph-based methods. Table 6.7 shows the F -measures obtained when applying the 3
fusion strategies to the best-performing methods.

Our first observation is that all 3 fusion strategies yield close fairly similar results. Generally
speaking, the hybrid fusion achieves top performance, ahead of the early fusion and the late fusion.
This is an expected result since the hybrid fusion is a combination of the other 2. All the information
available in the early fusion process is summarized in just 2 scores in the late fusion. One could
think that this is not enough to preserve all the information, but despite this process, the late fusion
performs only slightly worse than the early fusion.

As we previously showed in Chapter 4, the hybrid fusion of the 2 baselines improves the per-
formance by more than 2 points compared to the graph baseline used alone. The fusion of the 2
CamemBERT approaches (CamemBERT-W and CamemBERT-M) does not bring a significant per-
formance boost. Therefore, we can suppose that they both capture similar information. The same

113

Chapter 6. Representation Learning for Abuse Detection

Early Late Hybrid

Methods Base Perf. Dim. F -m. Dim. F -m. Dim. F -m.

Graph Base. + Text Base. 83.40 506 84.51 2 84.17 508 84.97

CamemBERT-W + CamemBERT-M 81.02 2,048 81.32 2 80.21 2,050 81.17
CamemBERT-W + FlauBERT-W 81.02 2,048 79.85 2 80.10 2,050 80.34

Graph2vec-dist. + GraphWave 80.47 256 82.45 2 82.07 258 81.19

Graph2vec-dist. + CamemBERT-W 81.02 1,152 85.66 2 85.10 1,154 86.07
GraphWave + CamemBERT-W 81.02 1,152 85.99 2 85.80 1,154 86.11
Graph Base. + CamemBERT-W 83.40 1,501 86.77 2 86.21 1,503 87.06
Graph2vec-dist + Text Base 80.47 157 82.24 2 82.21 159 82.36

Table 6.7: F -measures obtained by the fusion of the best performing embedding methods following
the 3 fusion strategies. The second column indicates the performance of the best method among
the 2 combined ones. The table is split into 4 parts depending on the nature of the methods
combined. The first part is for the baselines, the second for the fusion of lexical embeddings, the
third for the fusion between graph embeddings, and the fourth for the fusion of text and graphs.

applies to the fusion of CamemBERT and FlauBERT, which stays on par with the performance
of CamemBERT used on its own. These lexical embeddings thus capture redundant information,
which can be explained by the fact that they are both based on the same RoBERTa architecture.

For the graph-based methods, the early fusion of GraphWave and Graph2vec-distance (82.45%)
reaches a performance only one point lower than the graph baseline (83.40%). On the one hand,
this result acknowledges the assumption that graph embedding methods that operate on differ-
ent granularity levels (vertices for GraphWave, whole-graph for Graph2vec-distance), can capture
complementary information. On the other hand, the late and hybrid fusions perform worse. Thus,
we hypothesize that all the complementary information captured by these 2 methods cannot be
summarized in only 2 scores.

Finally, the combination of the best text-based method (CamemBERT-W) with each approach
based on graphs always achieves better performance than the combination of the 2 baseline meth-
ods (84.97%). The hybrid fusions of CamemBERT-W with Graph2vec-distance and GraphWave
obtain a F -measure of 86.07% and 86.11% respectively. The overall best performance is achieved
by combining CamemBERT-W with the graph baseline (87.06%). Interestingly, this combination
is only one point above both previous combinations, while when used on their own, Graph2vec-
distance and GraphWave are 5 points behind the baseline. The best combination method is 7
points above the best embedding method used alone.

114

6.3. Feature Study

6.2.4 Results Summary

To summarize our results in this chapter, Table 6.8 shows the best performance we obtain for
each type of approach studied. For lexical embeddings, the best method is CamemBERT applied
to the words (CamemBERT-W) and averaged over the set of words composing a message. For
graphs, this is the whole-graph embedding method Graph2vec in its variant using the distance as
a vertex label (Graph2vec-distance). It is worth noting that Graph2vec is still less effective than our
graph-based baseline. For fusion between text-based methods, this is the hybrid combination of
CamemBERT methods applied on word and message level that outputs the best F -measure. The
improvement is, however, very small compared to the methods used on their own. The early fusion
between GraphWave (vertex-level) and Graph2vec (whole-graph level) is the best combination of
graph embedding methods. Finally, the overall best performance is achieved by the fusion of text
and graphs. The hybrid combination of CamemBERT with the graph-based baseline achieves a
87.06% F -measure, with a 86.21% precision and 87.93% recall. This result shows that, for the task
of abuse detection, different modalities contain different types of information and that combining
them brings real benefits compared to using them separately.

Type Method(s) Dim. F -m.

Baseline Baseline-Graph 477 83.40
Baseline-Text 29 75.21

Lexical embedding CamemBERT-W 1,024 81.02

Graph embedding Graph2vec-distance 128 80.47

Fusion text-text CamemBERT-W + CamemBERT-M 2,048 81.32

Fusion graph-graph Graph2vec-dist + GraphWave 256 82.45

Fusion graph-text Baseline-Graph + CamemBERT-W 1,501 87.06

Table 6.8: Summary of the best-performing method in terms of F -measure for each type of ap-
proach studied in this chapter.

6.3 Feature Study

In Chapter 4, we identified, among the measures used in the baselines, the most discriminative
features for our classification task, which we called Best Features. We were able to define subsets
of 4 features for the text-based approach and of 10 features for the graph-based method which
were sufficient to reach 97% of the original performance when considering the complete feature
set. Since embedding methods provide vector representations in which dimensions are not directly
interpretable, it does not make sense to apply the same method here. Instead, we propose to study

115

Chapter 6. Representation Learning for Abuse Detection

whether the best features from our baselines are well captured by the embedding methods used in
this chapter. We perform this analysis for both lexical and graph embedding approaches.

To this end, We compare the F -measure score obtained by each embedding method on its own,
with the score obtained by using a representation composed of the same embedding completed by
one of the best features. If the performance significantly increases, we conclude that the topological
measure was not captured by the embedding. These cases are represented in red in Figures 6.4
and 6.5. If the performance stays the same or increases by less than 0.50 point with the additional
feature, we conclude that the structural property corresponding to this topological measure is well
captured by the embedding (represented in green). If the performance increase is higher than
0.50 point but not statistically significant, we conclude that the property is only partially captured
by the embedding method (represented in orange). If the performance increase is higher than 0.50
point and statistically significant, we conclude that the property is not captured by the embedding
method (represented in red). We first study text-related features (Section 6.3.1), then graph-related
measures (Section 6.3.2).

6.3.1 Text Features

Results for text best-features addition are shown in Figure 6.4. The ratio of capital letters in the
message seems to be well captured by all the embedding methods. The same observation applies
to the TF-IDF score computed over the Abuse class except for Word2vec, which only partially cap-
tures this measure. In contrast, no method completely captures the information conveyed by the
Naive Bayes score. Word2vec is even completely unable to capture it. This feature comes from
a fully-fledged classifier and is, by far, the most important one from the content-based baseline.
Therefore, we can suppose that this information is too complex to be modeled by our embed-
ding methods. Furthermore, it integrates several types of information which might be difficult for
an embedding to capture. However, almost all these methods yield a better F -measure than the
baseline. Therefore, we can suppose that these methods might be able to capture other properties
of the message that are not represented by any text-related feature, but improve the overall perfor-
mance when all combined through the embedding. Another interesting observation of this study is
that we can understand why Word2vec performs worse than the baseline and is the least efficient
embedding method, as it fails to capture the 2 most important features of that baseline.

6.3.2 Graph Features

An interesting result shown by Figure 6.5 is that some topological measures seem to be well
captured by almost all the embedding methods (e.g. Authority score at graph level, PageRank
centrality, Degree centrality, Vertex count, and Reciprocity). Contrariwise, the Coreness score
at graph level on the Full and Before graphs are partially captured by GraphWave and Spectral

116

6.3. Feature Study

W
or

d2
ve

c

fa
st

Te
xt

Naive Bayes

tf-idf score

Capital ratio

2.23 0.76 0.89 0.49 0.67 0.53 0.78

0.98 0.41 0.15 0.17 0.28 0.15 0.30

0.13 0.14 0.05 0.12 0.19 0.15 0.18

Fl
ai
r

Cam
em

BERT
-W

Cam
em

BERT
-M

Fla
uBERT

-W

Fla
uBERT

-M

: feature not captured

: feature partially captured

: feature captured

Figure 6.4: Text measures captured (green), partially captured (orange), or not captured (red)
by the word embedding approaches. Each value is the difference between the F -measure score
obtained by the embedding method on its own and the score obtained by the embedding method
completed by the corresponding Best Feature.

Features, and not captured at all by all other methods. The Closeness Centrality at the graph
level and the vertex level on the Before and After graphs are well captured by some methods
and partially captured by others. BoostNE fails to capture the authority at the graph level, which
might explain why this method obtains the worst results among vertex embeddings. SG2V and
Graph2vec, 2 whole-graph embedding methods, are the only ones to correctly capture all the
features except for the 2 mentioned above. There is no surprise that they are 2 of the best-
performing methods, together with GraphWave. The latter, considered as a vertex embedding
method, is the only approach to capture, at least partially, all the best features. However, these
3 methods obtain lower F -measure scores than the baseline. We assume that they might not
capture other properties of the graph which are less important but improve the performance when
all combined. A possibility to combine text and graphs is to directly learn representations from
these 2 aspects. We developed an experimental work in this direction (see Appendix A) based on
the architecture of the textual embedding Flair [216]. It seeks to learn combined representations of
text and graphs to improve the quality of the representations.

An interesting result of this study is that there is no clear difference in the type of information
captured by vertex and whole-graph embedding approaches. Vertex embedding methods can cap-
ture certain graph-scale topological measures, and whole-graph embedding methods can capture
some vertex-scale measures. This property may result from the relatively small size of our graphs,
as the second-order neighborhood of a vertex might include the majority of the graph. Thus, differ-
ences between vertex and whole-graph embedding methods are not as important as they could be
on larger graphs. Furthermore, our graphs are built around a specific vertex. This specificity might
help the whole graph embeddings to capture better vertex-level information.

117

Chapter 6. Representation Learning for Abuse Detection

DW
N2V W

L
BNE

GW
FG

SD SF

SG
2V

SG
CN

G2V

Average Coreness (Full)

Average Authority

Average Closeness

PageRank

Closeness (Before)

Average Coreness (Before)

Degree

Vertex count

Reciprocity

Closeness (After)

3.24 2.08 2.19 7.42 0.87 5.82 1.81 4.66 3.99 5.02

0.24 0.08 0.21 1.98 -0.02 1.26 0.10 -0.03 0.08 -0.01

0.58 0.60 0.73 0.94 0.39 0.61 0.61 0.34 0.64 0.31

0.06 0.13 -0.01 0.04 0.05 0.26 0.21 0.13 0.21 0.10

0.07 0.44 0.50 0.09 0.65 0.67 0.50 0.04 0.56 0.02

2.73 2.11 2.15 2.11 0.56 4.51 1.64 3.53 3.65 3.87

0.67 0.26 0.21 0.27 0.18 0.12 0.10 0.11 0.11 0.04

0.03 0.16 0.10 0.55 0.24 0.06 0.09 0.09 0.20 0.11

0.88 0.20 0.15 0.17 0.04 0.06 0.67 0.02 0.21 0.07

0.06 0.51 0.62 0.09 0.87 0.03 0.58 0.13 0.64 0.03

KH

4.10

0.30

0.84

0.13

0.58

3.12

0.06

0.10

0.25

0.21

NGNN

3.87

0.12

0.78

0.12

0.21

3.64

0.09

0.11

0.04

0.10

Figure 6.5: Topological measures captured (green), partially captured (orange), or not captured
(red) by the embedding approaches. The first 4 topological measures are computed at the Graph
level and the last 5 topological measures are computed at the Vertex level. Each value is the
difference between the F -measure score obtained by the embedding method on its own and the
score obtained by the embedding method completed by the corresponding Best Feature.

6.4 Conclusion

In this chapter, we have experimented with embedding methods to automate the representation
learning process as part of the automatic abuse detection task. Our experiments cover the textual
and contextual aspects of that task. We first compared 5 lexical embedding methods to learn
representations of messages in French. The contextualized embeddings were much more efficient
than the fixed ones. The best approach, CamemBERT, achieved up to 81.02% F -measure. This
is a massive improvement over our baseline based on a manually crafted set of features. We then
compared 11 graph embedding methods, half of them generating embeddings at the vertex scale,
and the other half treating the whole graph. We proposed variants of the SG2V and SGCN models
able to treat weighted, directed graphs. Both variants obtain better results than the original model

118

6.4. Conclusion

showing that edge attributes convey important information for this task. In addition, we explored a
functionality offered by Graph2vec, one of these methods. We consider 3 vertex labeling strategies
allowing us to integrate various information related to our task directly into the learning process.
The variant using the distance between a vertex and the targeted vertex as a label was the best
graph embedding method with a F -measure of 80.47%. Finally, we experimented with the 3 fusion
strategies from Chapter 4.2.3 to combine different types of embeddings. We could show that the
combination of textual and graph embeddings takes advantage of both sources of information and
significantly improves the detection of abusive messages, as already observed with the features in
Chapter 4.

We think that these results are very promising in multiple aspects. The textual embeddings
are much more efficient than the feature engineering approaches on the abuse detection task.
The embeddings are much more robust and thus, less likely to be negatively impacted by spelling
mistakes and other special language features that are common in online conversations. Graph
embeddings, though less efficient than the feature-engineered baseline, still demonstrate great
results. This is particularly interesting since these methods are completely task-independent, much
more scalable, and time-efficient.

We believe that our work opens new directions for future research. In this work, we combine
lexical and graph embeddings which are learned separately. An idea could be to combine these
aspects directly during the representation learning process to obtain a single embedding including
all these types of information. As the messages are posted in a specific order, we could also
think of an approach including a temporal aspect, for instance with a dynamic conversational graph
reflecting the evolution of conversation over time.

119

Chapter 6. Representation Learning for Abuse Detection

120

Chapter 7

CONCLUSION AND PERSPECTIVES

7.1 Conclusion

In this thesis, we tackled the problem of combining 2 modalities, text and graphs, representing
conversation content and structure, for the analysis of text-based documents. We applied it to
the detection of abusive messages in online conversations. We observed that the literature was
largely focused on text-based approaches because this seems to be the most straightforward way
of detecting an abuse case. While effective for flagrant instances of abuse, this approach shows its
limitations when it comes to detecting more intricate occurrences such as innuendos and allusions.
The conversation in which messages are posted represents important contextual information that
can greatly improve the detection in such situations. As is the case in many other domains, this
multimodal approach combining the text and the graphs provides even better detection perfor-
mances. As they each focus on different aspects of the conversation, they are able to capture
different but complementary information.

To compare the content and structural aspects, we divided our studies into 2 parts. The first
focuses on the textual content of the message itself, whereas the second deals with conversa-
tional graphs built to represent the conversation in which the message was posted. The key part
of an abuse detection system is the way it represents messages and conversations. We first used
a methodology based on feature engineering. We used a set of measures that characterize the
messages and the graphs. For the content-based method, we used a mix of NLP features includ-
ing morphological and topological ones. For the graph-based method, we used a wide range of
topological measures defined for different scales and scopes. The representations of the mes-
sages are thus directly related to the nature of the information considered by these 2 methods. By
applying them to a dataset of real-world conversations extracted from a video game, and feeding
the representations to a classifier, we showed that the graph-based method obtained better results
than those of the content-based method. This is a particularly important result since this aspect
of the literature is largely overlooked. We then proposed a method seeking to take advantage of
both the text and the graphs by combining them. Through several variants, we could confirm that
this combination is beneficial to the detection of abusive messages. We were also able to show
that edge attributes (i.e. weight, direction, sign) bring more discriminative power to the graph-
based method. Furthermore, while it was originally designed to do the classification afterward, this

121

Chapter 7. Conclusion and Perspectives

method could be adapted to a live setting as the performance is still convincing when considering
only the messages posted prior to the targeted message. The main limitation of this feature-based
framework is its important computational cost due to the large number of features, and the algo-
rithmic complexity to compute some of them. This motivated us to determine subsets of the most
important features for each method. They drastically reduce the processing time of the methods
while preserving a high performance.

Another solution to obtain representations of messages and graphs is to automatically dis-
cover them through representation learning. More precisely, embedding techniques present sev-
eral advantages over feature engineering, including being more flexible and time-efficient. As our
graph-based approach for abuse detection roughly corresponds to a graph classification task, we
proposed to use whole-graph embedding, the specific type of embedding methods dedicated to
learning representations of the whole graph at once. Motivated by the fact that edge directions and
weights improve the classification, we proposed to consider a third sort of edge attribute in the form
of signs. As there is no signed whole-graph embedding method in the literature, we developed our
own 2 methods. Signed Graph2vec (SG2V), a generalization of the unsigned whole-graph em-
bedding method Graph2vec to signed whole graphs, and a generalization of the signed vertex
embedding method SGCN to signed whole graphs. There is no benchmark to evaluate such meth-
ods, so we compiled our own benchmark composed of 3 datasets of annotated signed graphs.
It contains real vote networks, conversation networks, and artificially generated graphs. We em-
pirically showed that our 2 proposed methods obtain better classification results than standard
unsigned whole-graph and signed vertex-oriented methods.

To complete our comparison between text and graphs for the analysis of text-based documents,
we extended our previous framework to replace feature-based methods with automatic embedding
approaches. We compared several approaches from the literature. For the aspect focused on
the content, we selected methods operating on different granularities of text. For the graph-based
system, the selected methods include our 2 signed ones, also operating on different scales. We
showed that, for the content, textual embeddings were much more effective than the feature-based
system. This observation did not stand for the graphs, as the graph embeddings are slightly less
effective. However, they still have numerous advantages in terms of computational cost and adapt-
ability to different environments. We concluded the comparison by combining the text and graph
aspects and have once again found that they are complementary, as their joint use improved the
classification performance on top of the gain already brought by text representation learning. Em-
bedding methods provide vector representations in which dimensions are not directly interpretable.
To overcome this issue and provide a way to interpret our results, we proposed a framework to de-
tect which properties are captured by the embeddings. It consists of adding a dimension to the rep-
resentation vector containing a single one of the previously selected features. We then compared
the performance obtained with and without this additional dimension. If the performance increased

122

7.2. Perspectives

as the feature is used, we concluded that the property associated with it was not properly captured
by the considered embedding method. Otherwise, the information brought by the feature is redun-
dant and does not impact the performance. This experiment showed that all the textual embedding
methods were able to capture or partially capture the important text-based features, which is in line
with the fact that textual embeddings are more effective than the feature-based system. On the
other hand, most of the graph embedding methods are unable to capture variants of an important
feature (i.e. the coreness centrality) which might be the reason why they are less effective than the
feature-based system.

7.2 Perspectives

The different studies conducted in this thesis suggest diverse opportunities that remain open to
extend this work. We already discussed some of them in general terms at the end of each chapter.
In the following, we discuss them more precisely.

Task reformulation: In the literature, abuse detection is always formulated as a classification
problem. Be it binary or multi-class, such a framework usually suffers from an imbalanced distri-
bution of classes. In real-world online discussions, the prevalence of abusive messages is very
low, inferior to 1% in general [90], [91]. That is a reason why most authors oversample abusive oc-
currences when creating datasets, by using comments from specific communities and topics with
a higher probability of abuse. Hence, one could argue that these datasets are not representative
of reality. As abuse occurrences are relatively rare, one could consider them as anomalies that
deviate from the majority of the data. For this reason, an interesting research line would be to
reformulate the abuse detection problem as an anomaly detection task, instead of a classification
task, where the goal is to identify abusive comments (anomalies) that appear inconsistent with
the rest of the conversation. By construction, anomaly detection methods are suitable for highly
imbalanced datasets.

Conversation datasets: The abuse detection literature mainly focuses on content and over-
looks structure, even though it is highly efficient, as we showed. One reason for this trend is the
lack of experimental datasets providing suitable data. Indeed, annotated datasets of conversations
are rare, and for the few that exist, the conversations are often too short to exploit the full potential
of structure-based approaches. We constituted a conversation dataset [18] to mitigate this issue
(see Appendix B.2), but it is also limited to rather short conversations. An interesting work would be
to extend this effort to create a large-scale dataset of lengthy conversations annotated for abuse.
This would open opportunities for future research based on the structure of conversations. An idea
could be to use recent text generation models to create large conversations. However, such mod-
els are usually tweaked to avoid generating abusive comments. Another interesting point could be
to work on a multilingual corpus, to assess the possibilities of transfer learning from one language

123

Chapter 7. Conclusion and Perspectives

to another.
Temporal aspect: When working on the structure, we used static graphs to represent con-

versations. However, conversations evolve through time. An interesting research line would be to
directly integrate the temporal aspect of conversations, either by using representation techniques
able to simultaneously embed structural and temporal information [221] or by extracting a dynamic
graph (i.e., a sequence of graphs to represent the evolution of conversations over time). We started
to experiment with different types of context around messages based on temporality: the context
posted before, after, and the combination of both. However, this is still ongoing research, and we
believe that integrating the temporal aspect would improve the classification performance.

Combining text and graphs: Finally, in this thesis, we showed that it is efficient to combine
the text and graphs to detect abuse. However, we performed this combination only after the rep-
resentation step, i.e. we combined the text and graph representations learned by our different
systems. A possible improvement could be to simultaneously learn from both in order to obtain a
global representation of a message including text and graph information. We experimented with
this idea by extending the Flair [216] framework, a textual embedding framework, to include text
and graphs. We briefly present this preliminary work in Appendix A. However, the preliminary re-
sults and difficulties with this approach prevented us from developing it further, and it remains an
open work.

124

7.2. Perspectives

.

125

Appendices

126

Appendix A

TEXT AND GRAPH JOINT EMBEDDING

This appendix presents a preliminary work of an embedding method designed to jointly learn
from text and graphs. It is based on the Flair embedding architecture [216], a textual embedding
model. The preliminary results with this approach were negative, but the methodology can still be
interesting so we present it. We first explain this original architecture (Section A.1), then we explain
how we propose to transform this model to include both graphs and text (Section A.2).

A.1 Flair Embedding

Flair [216] is a textual embedding model that learns contextualized representations at the char-
acter level. An input sentence is treated as a character sequence and input into a bi-directional
LSTM operating on characters. Working at the character level has two major advantages over
word-level models: first, it is particularly efficient when dealing with rare or misspelled words and
second, it is able to better model language-related concepts such as prefixes and suffixes. The
model is trained to predict the next character for each element in the sequence to process. As
it uses a bi-directional LSTM, the Flair model learns 2 hidden representations for each character
of the sequence: one for the forward network and one for the backward network. The contextual
embedding of a word in a sentence is obtained by concatenating the forward representations of the
characters located before the end of the word and the backward representations of the characters
located after the beginning of the word. Figure A.1 shows an example of this process.

A.2 Proposed Architecture

Our objective is to develop a model able to jointly learn from graphs and text. To this end, we
propose a two-stepped architecture that we call Flair2. The first step is similar to the standard Flair
model, and is used to learn representations of words based on their character-level decomposition.
The outputs of this first step are thus word-level representations. We introduce the graph repre-
sentations in the second step of our proposed model. These representations can be learned from
any graph embedding model presented in Section 6.1.2. The second step of Flair2 uses a similar
architecture as the first one, but its inputs are the word-level representations from the first step and
the representation of the graph representing the corresponding conversation. Our objective with

127

Appendix A. Text and Graph Joint Embedding

Figure A.1: Extraction of the embedding for word "Washington" in the sentence "George Wash-
ington was born". The forward model is shown in red and the backward model in blue. Figure
from [216].

this second part of our model is two-fold. First, as a message is a sequence of words, in Chapter 6
we proposed to average the representations of all the words in a sentence to obtain its represen-
tation. Here, we think that this step could automate this aggregation process and directly learn
a better manner to combine the words’ representations to obtain a representation of a message.
Second, as we input both text and graph representations to the model, we think that the resulting
representations could integrate information from both modality.

Combining graph and text right from the learning phase, instead of treating them separately and
combining their learned representations could help better capture the complementary information
of both modality.

128

Appendix B

DATASETS

As mentioned in Chapter 2, we use the SpaceOrigin dataset throughout this thesis. We tried to
experiment with some others, but we always faced limitations related to the specific needs for our
task. This includes the fact that our methods require full conversations with a certain diversity in
the messages and authors. In this appendix, we detail the two datasets that we tried to experiment
with. First, we present Ruddit (Section B.1), a dataset of conversations from the platform Reddit1,
which is annotated for abuse, and explain its limitations relatively to our task. Then, we present
Wikipedia Abusive Conversations (WAC) (Section B.2), a corpus that we constituted to overcome
the limitations of the other existing datasets.

B.1 Ruddit

Ruddit [102] is a dataset of 6,000 English language Reddit comments annotated for offensive-
ness. Reddit is a social news aggregation and discussion website where users can can create a
post to share various types of content such as links, text posts, images, and videos. Users can
also comment an existing post and reply to a comment to start a discussion. A post can thus be
viewed as the root of a discussion (called thread) divided into multiple sub-discussions.

Reddit is divided into forums called subreddits, each dedicated to specific topics. To constitute
the Ruddit dataset, Hada et al. sampled 808 posts from particular subreddits. This selection was
made to increase the proportion of offensive comments. 50% of the selected posts are from a
selection of subreddits covering diverse generic themes, 25% are from ChangeMyView, a subreddit
with posts on controversial topics and the final 25% are from random subreddits. The authors
extracted the first and last 25 comments from these 808 posts and sampled 6,000 comments from
this set to constitute the Ruddit dataset. All these comments have then been annotated with a
real-valued score between -1 (maximally supportive) and 1 (maximally offensive). The annotation
was done using crowdsourcing.

The Ruddit dataset thus has quality annotations for offensiveness and provides comments that
are not completely independent from each others as some of them were posted in the same thread.
However, a number of limitations prevented us from using this dataset in our experiments. We

1https://www.reddit.com/

129

https://www.reddit.com/

Appendix B. Datasets

describe them in the following section.

B.1.1 Limitations of Ruddit

Conversation structure: The first limitation of Ruddit is inherent to Reddit. Indeed, each
comment on a post is considered as the strat of a new conversation, and each conversation can
then be divided into multiple sub-conversations. A general observation is that posts with a lot
of comments, often tend to generate many sub-conversations, with only very few different users
interacting in each of them. This phenomenon results in conversations that are relatively short
and with only a limited number of participants, which is the opposite of what our proposed methods
require. Furthermore, we could observe that comments posted under the same post but in different
sub-conversations are often completely unrelated. This is due to the fact that while the original post
is the same, conversations tend to quickly deviate into other subjects.

Missing Data: Another limitation of this dataset is that it does not provide full conversations.
Indeed, Ruddit contains multiple annotated comments from the same conversation but there are
missing comments between them. As the authors provide the id of the reddit posts, our idea was to
retrieve all the missing comments to obtain full conversations. However, this showed poor results
as a lot of the original comments were missing either because they were deleted by their author
or because they were removed by moderators. The same problem applied with authors whose
account had been deleted, making it impossible for us to correctly associate comments with their
author.

The aforementioned limitations prevented us from using Ruddit in our experiments and inspired
us to constitute our own dataset of annotated conversations. We discuss this dataset in the next
section.

B.2 Wikipedia Abusive Conversations

The Wikipedia Abusive Conversations (WAC) [18] is a large dataset of Wikipedia comments
that we constituted. The particularity of this dataset is that each annotated comment is provided
along with the conversation in which it was posted. Our objective with this work was to encourage
further development of context- and thread-based methods in the area of abusive content detec-
tion by providing the first large scale corpus of contextualized abusive messages. WAC contains
roughly 193,000 conversations and 383,000 messages annotated as being abusive or not. In Sec-
tion B.2.1, we give details on the dataset and how we contructed it. In Section B.2.2, we explains
the limitations of this dataset that prevented us from using it in our experiments.

130

B.2. Wikipedia Abusive Conversations

B.2.1 Proposed Corpus

The conversations in WAC come from Wikipedia talk pages, i.e. the web pages associated to
Wikipedia articles where editors can exchange. Typically, editors write a message explaining which
change they made on the article and why. Every Wikipedia article and user has a related talk page.
To constitute WAC, we aggreagted data from 2 existing datasets.

B.2.1.1 Wikipedia Comment Corpus

The Wikipedia Comment Corpus (WCC) [90] is a corpus of discussion comments from English
Wikipedia talk pages which are extracted using the revision history of each considered talk page.
In January 2016, a dump of more than 63M Wikipedia talk page comments was made public. From
this dump, Wulczyn et al. sampled 3 smaller datasets that were annotated by humans for different
type of abuse:

• personal attack : abusive content directed at somebodys person rather than providing evi-
dence;

• aggression: malicious remark to a person or group on characteristics such as religion, na-
tionality or gender;

• toxicity : comment that can make other people want to leave the conversation.

The Personal attack and Aggression datasets contains exactly the same 115k comments while
the Toxicity dataset contains more comments (159k). Among them, 77k appear in all 3 datasets.
Table B.1 shows the prevalence of abusive comments in each dataset.

Dataset Comments Percentage
abusive

Personal attack 115,864 13.4 %

Aggression 115,864 14.7 %

Toxicity 159,686 11.5 %

Table B.1: Main properties of the three datasets constituting the Wikipedia Comment Corpus
(WCC).

This dataset thus provides high quality annotations for 383k messages. However, all these
messages are unrelated and we cannot use conversation-based techniques directly on them. To
obtain this conversation structure, we use a second dataset.

131

Appendix B. Datasets

B.2.1.2 WikiConv

WikiConv [104] is a large public corpus also based on Wikipedia talk pages. This corpus
contains full conversations, and not only isolated comments like WCC. It was created by analyzing
the history of Wikipedia talk pages. However, Wikipedia does not provide a standard post system
for these pages such as those commonly used in online forums. Instead, the talk page is similar
to a regular Wikipedia article page, or a wiki page in general: in theory, users have the ability to
edit it by adding, modifying or removing text anywhere. However, in practice, a set of writing and
formatting conventions2 allow giving structure to the various conversations taking place on the talk
page. For instance, when a user adds his own post, he indents it so as to indicate its hierarchical
level in the conversation tree. Figure B.1 shows an example of Wikipedia conversation under the
form of the rendered talk page and the corresponding Wikicode (Wikipedia markup language).

Displayed page Raw Text

Figure B.1: Part of the Japan Wikipedia article talk page: rendered page (left) and corresponding
Wikicode (right).

Therefore, Hua et al. defined heuristics to retrieve all the messages in a talk page. Each
message is identified by an id. WikiConv thus provides large conversations but without high quality
annotations. On objective in the next section is to combine the annotations from WCC with the
conversations of WikiConv in order to obtain annotated messages along with the conversation in
which it was posted.

B.2.1.3 Combining WCC and WikiConv

Comments in WCC and WikiConv are identified by an id that, in most cases, can be used
to link messages from both datasets. To create our WAC dataset, we retrieve the WikiConv’s
conversation associated with each comment in WCC. After this retrieval, all the annotated message
are associated with their corresponding conversation. Note that multiple annotated messages can

2https://en.wikipedia.org/wiki/Help:Talk_pages#Replying_to_an_existing_thread

132

https://en.wikipedia.org/wiki/Help:Talk_pages#Replying_to_an_existing_thread

B.2. Wikipedia Abusive Conversations

occur in the same conversation. Because of missing data, some messages from the original WCC
dataset can not be retrieved in WikiConv and are discarded. In total, the WAC corpus contains
more than 2.2M unique messages split into 168,827 unique conversations. Among the 2.2M,
382,665 messages are annotated and the rest are messages that only appear in the conversation
around an annotated one. The number of annotated messages and the division of annotations in
all three datasets is summarized in Table B.2.

Dataset Annotated Abuse Non-abuse
messages

Personal 113,174 14,934 98,240
attack (13.20%) (86.80%)

Aggression 113,174 16,331 96,843
(14.43%) (85.57%)

Toxicity 156,317 19,700 136,617
(12.60%) (87.40%)

Total 382,665 50,965 331,700
(13.31%) (86.69%)

Table B.2: Number of annotated messages and distribution of annotations in the proposed
Wikipedia Abusive Conversations (WAC) corpus.

The Wikipedia Abusive Conversations is thus a large scale dataset of messages annotated for
3 types of abuse and provided along with the conversation in which they were posted. However,
we were unable to benefit from this dataset in our experiments because of the limitations detailed
in the following section.

B.2.2 Limitations of WAC

Conversation Structure: As for Ruddit (Section B.1), WAC conversations are not structured as
a linear sequence of messages. A conversation is usually composed of multiple sub-conversations
with fery few different users interacting in each of them. In the context of this thesis, his is an
important limitation as our proposed methods benefit from having a diversity of users in the con-
versations.

Length of conversations: The conversations in WAC are also relatively short, with a majority
of them constituted of fewer than 20 messages. Figure B.2 shows the distribution of the conver-
sations length in the dataset. Note that the y -axis scale is logarithmic for readability reasons. We
can observe that some conversations contain more than 1,000 messages but for a large majority,
conversations are only 1- to 20-message long.

133

Appendix B. Datasets

0 500 1000 1500 2000 2500 3000 3500 4000
Total length of the conversation in number of messages

100

101

102

103

104

105
Nu

m
be

r o
f c

on
ve

rs
at

io
ns

 (l
og

)

Figure B.2: Distribution of the conversation lengths in Wikipedia abusive Conversations, expressed
in number of messages. The y -axis scale is logarithmic.

For these reasons and after preliminary experiments that were inconclusive, we decided to not
use the WAC dataset for our experiments.

134

REFERENCES

[1] M. O’Reilly, N. Dogra, N. Whiteman, J. Hughes, S. Eruyar, and P. Reilly, “Is social me-
dia bad for mental health and wellbeing? exploring the perspectives of adolescents,” Clin-
ical Child Psychology and Psychiatry, vol. 23, no. 4, pp. 601–613, 2018. DOI: 10.1177/

1359104518775154 (cited on p. 11).

[2] S. Hinduja and J. W. Patchin, “Cyberbullying: Identification, prevention, and response,”
[Online]. Available: https : / / cyberbullying . org / Cyberbullying - Identification -

Prevention-Response-2023.pdf (cited on p. 11).

[3] S. Menini, A. Palmero Aprosio, and S. Tonelli, “Abuse is contextual, what about nlp? the role
of context in abusive language annotation and detection,” in ArXiv Preprint, 2021. [Online].
Available: https://arxiv.org/pdf/2103.14916.pdf (cited on pp. 12, 22, 26, 27).

[4] H. Hosseini, S. Kannan, B. Zhang, and R. Poovendran, “Deceiving google’s perspective
api built for detecting toxic comments,” CoRR, vol. cs.LG, p. 1702.08138, 2017. [Online].
Available: https://arxiv.org/abs/1702.08138 (cited on pp. 12, 22).

[5] J. Cheng, C. Danescu-Niculescu-Mizil, and J. Leskovec, “Antisocial behavior in online dis-
cussion communities,” in 9th International AAAI Conference on Web and Social Media,
2015, pp. 61–70. [Online]. Available: https://cs.stanford.edu/people/jure/pubs/

trolls-icwsm15.pdf (cited on pp. 12, 22, 23).

[6] E. Papegnies, V. Labatut, R. Dufour, and G. Linarès, “Conversational networks for automatic
online moderation,” IEEE Trans. Comput. Social Systems, vol. 6, no. 1, pp. 38–55, 2019.
DOI: 10.1109/TCSS.2018.2887240 (cited on pp. 12, 24, 45–50, 59, 60, 88).

[7] A. Gandhi, K. Adhvaryu, S. Poria, E. Cambria, and A. Hussain, “Multimodal sentiment anal-
ysis: A systematic review of history, datasets, multimodal fusion methods, applications, chal-
lenges and future directions,” Information Fusion, vol. 91, pp. 424–444, 2023. DOI: https:

//doi.org/10.1016/j.inffus.2022.09.025 (cited on p. 12).

[8] Z. Wu, C. Zheng, Y. Cai, J. Chen, H.-f. Leung, and Q. Li, “Multimodal representation with
embedded visual guiding objects for named entity recognition in social media posts,” in
28th ACM International Conference on Multimedia, 2020, pp. 1038–1046. DOI: 10.1145/

3394171.3413650 (cited on p. 12).

135

https://doi.org/10.1177/1359104518775154
https://doi.org/10.1177/1359104518775154
https://cyberbullying.org/Cyberbullying-Identification-Prevention-Response-2023.pdf
https://cyberbullying.org/Cyberbullying-Identification-Prevention-Response-2023.pdf
https://arxiv.org/pdf/2103.14916.pdf
https://arxiv.org/abs/1702.08138
https://cs.stanford.edu/people/jure/pubs/trolls-icwsm15.pdf
https://cs.stanford.edu/people/jure/pubs/trolls-icwsm15.pdf
https://doi.org/10.1109/TCSS.2018.2887240
https://doi.org/https://doi.org/10.1016/j.inffus.2022.09.025
https://doi.org/https://doi.org/10.1016/j.inffus.2022.09.025
https://doi.org/10.1145/3394171.3413650
https://doi.org/10.1145/3394171.3413650

References

[9] Z. Huang, X. Xu, J. Ni, H. Zhu, and C. Wang, “Multimodal representation learning for recom-
mendation in internet of things,” IEEE Internet of Things Journal, vol. 6, pp. 10 675–10 685,
2019. DOI: 10.1109/JIOT.2019.2940709 (cited on p. 12).

[10] A. H. Razavi, D. Inkpen, S. Uritsky, and S. Matwin, “Offensive language detection using
multi-level classification,” in Canadian Conference on Artificial Intelligence, 2010, pp. 16–
27. DOI: 10.1007/978-3-642-13059-5_5 (cited on pp. 12, 20).

[11] E. Papegnies, V. Labatut, R. Dufour, and G. Linares, “Impact of content features for au-
tomatic online abuse detection,” in International Conference on Computational Linguistics
and Intelligent Text Processing, 2017, pp. 404–419. DOI: 10.1007/978-3-319-77116-8_30

(cited on pp. 12, 20, 27–29, 46, 52, 60).

[12] H. Watanabe, M. Bouazizi, and T. Ohtsuki, “Hate speech on twitter: A pragmatic approach to
collect hateful and offensive expressions and perform hate speech detection,” IEEE Access,
vol. 6, pp. 13 825–13 835, 2018. DOI: 10.1109/ACCESS.2018.2806394 (cited on pp. 12, 20).

[13] R. Martins, M. Gomes, J. J. Almeida, P. Novais, and P. Henriques, “Hate speech classifi-
cation in social media using emotional analysis,” in 7th Brazilian Conference on Intelligent
Systems, 2018, pp. 61–66. DOI: 10.1109/BRACIS.2018.00019. (cited on pp. 12, 20).

[14] P. Mishra, M. Del Tredici, H. Yannakoudakis, and E. Shutova, “Author profiling for abuse
detection,” in 27th International Conference on Computational Linguistics, 2018, pp. 1088–
1098. [Online]. Available: https://www.aclweb.org/anthology/C18-1093 (cited on pp. 12,
24, 31, 45, 113).

[15] S. Nagar, S. Gupta, C. S. Bahushruth, F. A. Barbhuiya, and K. Dey, “Hate speech detection
on social media using graph convolutional networks,” in International Conference on Com-
plex Networks and Their Applications, 2022, pp. 3–14. DOI: 10.1007/978-3-030-93413-2_1

(cited on pp. 12, 25).

[16] R. Ali, U. Farooq, U. Arshad, W. Shahzad, and M. O. Beg, “Hate speech detection on twitter
using transfer learning,” Computer Speech & Language, vol. 74, 2022. DOI: 10.1016/j.

csl.2022.101365 (cited on pp. 12, 21).

[17] H. Saleh, A. Alhothali, and K. Moria, “Detection of hate speech using bert and hate speech
word embedding with deep model,” Applied Artificial Intelligence, vol. 37, 2023. DOI: 10.

1080/08839514.2023.2166719 (cited on pp. 12, 21).

[18] N. Cécillon, V. Labatut, R. Dufour, and G. Linarès, “WAC: A corpus of wikipedia conversa-
tions for online abuse detection,” in 12th International Conference on Language Resources
and Evaluation, 2020. [Online]. Available: http://www.lrec-conf.org/proceedings/

lrec2020/pdf/2020.lrec-1.173.pdf (cited on pp. 14, 17, 25–28, 123, 130).

136

https://doi.org/10.1109/JIOT.2019.2940709
https://doi.org/10.1007/978-3-642-13059-5_5
https://doi.org/10.1007/978-3-319-77116-8_30
https://doi.org/10.1109/ACCESS.2018.2806394
https://doi.org/10.1109/BRACIS.2018.00019.
https://www.aclweb.org/anthology/C18-1093
https://doi.org/10.1007/978-3-030-93413-2_1
https://doi.org/10.1016/j.csl.2022.101365
https://doi.org/10.1016/j.csl.2022.101365
https://doi.org/10.1080/08839514.2023.2166719
https://doi.org/10.1080/08839514.2023.2166719
http://www.lrec-conf.org/proceedings/lrec2020/pdf/2020.lrec-1.173.pdf
http://www.lrec-conf.org/proceedings/lrec2020/pdf/2020.lrec-1.173.pdf

References

[19] ——, “Graph embeddings for abusive language detection,” SN Computer Science, vol. 2,
no. 37, 2021. DOI: 10.1007/s42979-020-00413-7 (cited on pp. 14, 88, 97, 100).

[20] ——, “Abusive language detection in online conversations by combining content- and graph-
based features,” Frontiers in Big Data, vol. 2, p. 8, 2019, ISSN: 2624-909X. DOI: 10.3389/

fdata.2019.00008 (cited on pp. 14, 46).

[21] N. Cécillon, R. Dufour, and V. Labatut, “Approche multimodale par plongement de texte et
de graphes pour la détection de messages abusifs,” Traitement Automatique des Langues,
vol. 62, no. 2, pp. 13–38, 2021. [Online]. Available: https://www.atala.org/sites/

default/files/TAL_62_2_v2.pdf (cited on pp. 14, 97).

[22] N. Cécillon, R. Dufour, V. Labatut, and G. Linarès, “Tuning graph2vec with node labels for
abuse detection in online conversations,” in 11th MARAMI, 2020. [Online]. Available: http:

//ceur-ws.org/Vol-2750/paper8.pdf (cited on pp. 14, 97).

[23] N. Cécillon, N. Arnk, V. Labatut, and R. Dufour, “Whole-graph representation learning for
the classification of signed networks,” Submitted, 2023 (cited on pp. 15, 70).

[24] C. Nobata, J. Tetreault, A. Thomas, Y. Mehdad, and Y. Chang, “Abusive language detec-
tion in online user content,” in 25th International Conference on World Wide Web, 2016,
pp. 145–153. DOI: 10.1145/2872427.2883062 (cited on pp. 18, 21).

[25] P. Fortuna and S. Nunes, “A survey on automatic detection of hate speech in text,” ACM
Computing Surveys, vol. 51, pp. 1–30, 2018. DOI: 10.1145/3232676 (cited on p. 18).

[26] M. Dadvar, D. Trieschnigg, R. Ordelman, and F. de Jong, “Improving cyberbullying detection
with user context,” in 35th European Conference on IR Research, vol. 7814, Mar. 2013. DOI:
10.1007/978-3-642-36973-5_62 (cited on pp. 18, 23).

[27] R. N. M. Mercado, H. F. C. Chuctaya, and E. G. C. Gutierrez, “Automatic cyberbullying
detection in spanish-language social networks using sentiment analysis techniques,” Inter-
national Journal of Advanced Computer Science and Applications, vol. 9, no. 7, pp. 228–
235, 2018. DOI: 10.14569/IJACSA.2018.090733 (cited on p. 18).

[28] O. Goga, G. Venkatadri, and K. P. Gummadi, “The doppelgänger bot attack: Exploring iden-
tity impersonation in online social networks,” in 2015 Internet Measurement Conference,
2015, pp. 141–153. DOI: 10.1145/2815675.2815699 (cited on p. 18).

[29] S. R. Sangwan and M. Bhatia, “Denigration bullying resolution using wolf search optimized
online reputation rumour detection,” Procedia Computer Science, vol. 173, pp. 305–314,
2020. DOI: 10.1016/j.procs.2020.06.036 (cited on p. 18).

137

https://doi.org/10.1007/s42979-020-00413-7
https://doi.org/10.3389/fdata.2019.00008
https://doi.org/10.3389/fdata.2019.00008
https://www.atala.org/sites/default/files/TAL_62_2_v2.pdf
https://www.atala.org/sites/default/files/TAL_62_2_v2.pdf
http://ceur-ws.org/Vol-2750/paper8.pdf
http://ceur-ws.org/Vol-2750/paper8.pdf
https://doi.org/10.1145/2872427.2883062
https://doi.org/10.1145/3232676
https://doi.org/10.1007/978-3-642-36973-5_62
https://doi.org/10.14569/IJACSA.2018.090733
https://doi.org/10.1145/2815675.2815699
https://doi.org/10.1016/j.procs.2020.06.036

References

[30] R. A. Monteiro, R. L. S. Santos, T. A. S. Pardo, T. A. de Almeida, E. E. S. Ruiz, and O. A.
Vale, “Contributions to the study of fake news in portuguese: New corpus and automatic de-
tection results,” in International Conference on Computational Processing of the Portuguese
Language, 2018, pp. 324–334. DOI: 10.1007/978-3-319-99722-3_33 (cited on p. 18).

[31] Y. Karimi, A. Squicciarini, and S. Wilson, “Automated detection of doxing on twitter,” ACM
Human-Computer Interactaction, vol. 6, pp. 1–24, 2022. DOI: 10.1145/3555167 (cited on
p. 18).

[32] D. M. Douglas, “Doxing: A conceptual analysis,” Ethics and Information Technology, vol. 18,
pp. 199–210, 2016. DOI: 10.1007/s10676-016-9406-0 (cited on p. 18).

[33] E. Spertus, “Smokey: Automatic recognition of hostile messages,” in 14th National Con-
ference on Artificial Intelligence and 9th Conference on Innovative Applications of Artificial
Intelligence, 1997, pp. 1058–1065. [Online]. Available: http://dl.acm.org/citation.

cfm?id=1867616 (cited on pp. 20, 22, 46).

[34] N. D. Gitari, Z. Zuping, H. Damien, and J. Long, “A lexicon-based approach for hate speech
detection,” International Journal of Multimedia and Ubiquitous Engineering, vol. 10, no. 4,
pp. 215–230, 2015. DOI: 10.14257/ijmue.2015.10.4.21 (cited on pp. 20, 31).

[35] Z. Waseem and D. Hovy, “Hateful symbols or hateful people? predictive features for hate
speech detection on twitter,” in NAACL Student Research Workshop, 2016, pp. 88–93. [On-
line]. Available: http://www.aclweb.org/anthology/N16-2013 (cited on pp. 20, 31).

[36] T. Davidson, D. Warmsley, M. Macy, and I. Weber, “Automated hate speech detection and
the problem of offensive language,” in International AAAI Conference on Web and Social
Media, 2017, pp. 512–515. DOI: 10.1609/icwsm.v11i1.14955 (cited on pp. 20, 31).

[37] E. Abdelzaher, “Lexicon-based detection of violence on social media,” Cognitive Semantics,
vol. 5, no. 1, pp. 32–69, 2019. DOI: 10.1163/23526416-00501002 (cited on p. 20).

[38] M. Fortunatus, P. Anthony, and S. Charters, “Combining textual features to detect cyberbul-
lying in social media posts,” Procedia Computer Science, vol. 176, pp. 612–621, 2020. DOI:
10.1016/j.procs.2020.08.063 (cited on pp. 20, 31).

[39] D. Yin, Z. Xue, L. Hong, B. D. Davison, A. Kontostathis, and L. Edwards, “Detection of
harassment on Web 2.0,” in WWW Workshop: Content Analysis in the Web 2.0, 2009,
pp. 1–7. [Online]. Available: http://www.cse.lehigh.edu/~brian/pubs/2009/CAW2/

(cited on pp. 20, 22, 23, 31).

[40] K. Dinakar, R. Reichart, and H. Lieberman, “Modeling the detection of textual cyberbullying,”
in 5th ICWSM / Workshop on the Social Mobile Web, 2011, pp. 11–17. [Online]. Available:
https://www.aaai.org/ocs/index.php/ICWSM/ICWSM11/paper/view/3841 (cited on
pp. 20, 46).

138

https://doi.org/10.1007/978-3-319-99722-3_33
https://doi.org/10.1145/3555167
https://doi.org/10.1007/s10676-016-9406-0
http://dl.acm.org/citation.cfm?id=1867616
http://dl.acm.org/citation.cfm?id=1867616
https://doi.org/10.14257/ijmue.2015.10.4.21
http://www.aclweb.org/anthology/N16-2013
https://doi.org/10.1609/icwsm.v11i1.14955
https://doi.org/10.1163/23526416-00501002
https://doi.org/10.1016/j.procs.2020.08.063
http://www.cse.lehigh.edu/~brian/pubs/2009/CAW2/
https://www.aaai.org/ocs/index.php/ICWSM/ICWSM11/paper/view/3841

References

[41] J. Salminen, H. Almerekhi, M. Milenkovi, S. Jung, J. An, H. Kwak, and B. J. Jansen, “Anatomy
of online hate: Developing a taxonomy and machine learning models for identifying and
classifying hate in online news media.,” in ICWSM, Jun. 2018. [Online]. Available: https:

//ojs.aaai.org/index.php/ICWSM/article/view/15028 (cited on pp. 20, 29).

[42] M. Wiegand, J. Ruppenhofer, A. Schmidt, and C. Greenberg, “Inducing a lexicon of abusive
words a feature-based approach,” in 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies, 2018,
pp. 1046–1056. DOI: 10.18653/v1/N18-1095 (cited on pp. 20, 22).

[43] H. Mubarak, K. Darwish, and W. Magdy, “Abusive language detection on arabic social me-
dia,” in Proceedings of the First Workshop on Abusive Language Online, 2017, pp. 52–56.
DOI: 10.18653/v1/W17-3008 (cited on p. 20).

[44] R. Martins, J. Almeida, P. Henriques, and P. Novais, “Increasing authorship identification
through emotional analysis,” in World Conference on Information Systems and Technolo-
gies, 2018, pp. 763–772. DOI: 10.1007/978-3-319-77703-0_76 (cited on p. 20).

[45] E. Alawneh, M. Al-Fawa’reh, J. M. T., and F. M. A., “Sentiment analysis-based sexual ha-
rassment detection using machine learning techniques,” in International Symposium on
Electronics and Smart Devices, 2021, pp. 1–6. DOI: 10.1109/ISESD53023.2021.9501725

(cited on p. 20).

[46] N. Djuric, J. Zhou, R. Morris, M. Grbovic, V. Radosavljevic, and N. Bhamidipati, “Hate
speech detection with comment embeddings,” in 24th WWW, 2015, pp. 29–30. DOI: 10.

1145/2740908.2742760 (cited on p. 21).

[47] Q. Le and T. Mikolov, “Distributed representations of sentences and documents,” in 31st
International Conference on International Conference on Machine Learning, vol. 32, 2014,
pp. II1188II1196 (cited on pp. 21, 77).

[48] J. Pavlopoulos, P. Malakasiotis, and I. Androutsopoulos, “Deep learning for user comment
moderation,” in Workshop on Abusive Language Online, vol. First Workshop on Abusive
Language Online, Aug. 2017, pp. 25–35. DOI: 10.18653/v1/W17-3004 (cited on pp. 21, 29).

[49] P. Mishra, H. Yannakoudakis, and E. Shutova, “Neural character-based composition models
for abuse detection,” in 2nd Workshop on Abusive Language Online, vol. 2nd Workshop on
Abusive Language Online (ALW2), Oct. 2018, pp. 1–10. DOI: 10.18653/v1/W18-5101 (cited
on pp. 21, 96).

[50] P. Badjatiya, S. Gupta, M. Gupta, and V. Varma, “Deep learning for hate speech detection in
tweets,” in 26th International Conference on World Wide Web Companion, 2017, pp. 759–
760. DOI: 10.1145/3041021.3054223 (cited on pp. 21, 29).

139

https://ojs.aaai.org/index.php/ICWSM/article/view/15028
https://ojs.aaai.org/index.php/ICWSM/article/view/15028
https://doi.org/10.18653/v1/N18-1095
https://doi.org/10.18653/v1/W17-3008
https://doi.org/10.1007/978-3-319-77703-0_76
https://doi.org/10.1109/ISESD53023.2021.9501725
https://doi.org/10.1145/2740908.2742760
https://doi.org/10.1145/2740908.2742760
https://doi.org/10.18653/v1/W17-3004
https://doi.org/10.18653/v1/W18-5101
https://doi.org/10.1145/3041021.3054223

References

[51] R. Kshirsagar, T. Cukuvac, K. McKeown, and S. McGregor, “Predictive embeddings for hate
speech detection on twitter,” in 2nd Workshop on Abusive Language Online, 2018, pp. 26–
32. DOI: 10.18653/v1/W18-5104 (cited on p. 21).

[52] R. Cao, R. K.-W. Lee, and T.-A. Hoang, “Deephate: Hate speech detection via multi-faceted
text representations,” in 12th ACM Conference on Web Science, 2020, pp. 11–20. DOI:
10.1145/3394231.3397890 (cited on p. 21).

[53] O. E. Ojo, T. H. Ta, A. Gelbukh, H. Calvo, G. Sidorov, and O. O. Adebanji, “Automatic
hate speech detection using deep neural networks and word embedding,” Computacion
y Sistemas, vol. 26, no. 2, pp. 1007–1013, 2022. DOI: 10.13053/CyS-26-2-4107 (cited on
p. 21).

[54] N. Badri, F. Kboubi, and A. H. Chaibi, “Combining fasttext and glove word embedding for
offensive and hate speech text detection,” Procedia Computer Science, vol. 207, pp. 769–
778, 2022. DOI: 10.1016/j.procs.2022.09.132 (cited on pp. 21, 29).

[55] B. Gambäck and U. K. Sikdar, “Using convolutional neural networks to classify hate-speech,”
in First Workshop on Abusive Language Online, 2017, pp. 85–90. DOI: 10.18653/v1/W17-

3013 (cited on p. 21).

[56] H. Faris, I. Aljarah, M. Habib, and P. A. Castillo, “Hate speech detection using word em-
bedding and deep learning in the arabic language context,” in 9th International Confer-
ence on Pattern Recognition Applications and Methods, 2020, pp. 453–460. DOI: 10.5220/

0008954004530460 (cited on p. 21).

[57] A. Mazari, N. Boudoukhani, and A. Djeffal, “Bert-based ensemble learning for multi-aspect
hate speech detection,” Cluster Computing, 2023. DOI: 10.1007/s10586-022-03956-x

(cited on p. 21).

[58] T. Caselli, V. Basile, J. Mitrovi, and M. Granitzer, “HateBERT: Retraining BERT for abusive
language detection in english,” in 5th Workshop on Online Abuse and Harms, ACL, 2021,
pp. 17–25. DOI: 10.18653/v1/2021.woah-1.3 (cited on p. 21).

[59] M. A. Khan, N. Yadav, M. Jain, and S. Goyal, “International conference on learning rep-
resentations,” in The Art of Embedding Fusion: Optimizing Hate Speech Detection, 2023.
[Online]. Available: https://arxiv.org/pdf/2306.14939.pdf (cited on p. 21).

[60] N. Zampieri, I. Illina, and D. Fohr, “Improving hate speech detection with self-attention mech-
anism and multi-task learning,” in 10th Language & Technology Conference: HumanLan-
guage Technologies as a Challenge for Computer Science and Linguistics, 2023. [Online].
Available: https://hal.laas.fr/INRIA/hal-04017250v1 (cited on p. 21).

140

https://doi.org/10.18653/v1/W18-5104
https://doi.org/10.1145/3394231.3397890
https://doi.org/10.13053/CyS-26-2-4107
https://doi.org/10.1016/j.procs.2022.09.132
https://doi.org/10.18653/v1/W17-3013
https://doi.org/10.18653/v1/W17-3013
https://doi.org/10.5220/0008954004530460
https://doi.org/10.5220/0008954004530460
https://doi.org/10.1007/s10586-022-03956-x
https://doi.org/10.18653/v1/2021.woah-1.3
https://arxiv.org/pdf/2306.14939.pdf
https://hal.laas.fr/INRIA/hal-04017250v1

References

[61] J. H. Park and P. Fung, “One-step and two-step classification for abusive language detection
on twitter,” in First Workshop on Abusive Language Online, 2017, pp. 41–45. DOI: 10 .

18653/v1/W17-3006 (cited on p. 21).

[62] M. P. Akhter, Z. Jiangbin, I. R. Naqvi, M. AbdelMajeed, and T. Zia, “Abusive language detec-
tion from social media comments using conventional machine learning and deep learning
approaches,” Multimedia Systems, vol. 28, no. 6, pp. 1925–1940, 2022. DOI: 10.1007/

s00530-021-00784-8 (cited on p. 21).

[63] S.-J. Bu and S.-B. Cho, “A hybrid deep learning system of cnn and lrcn to detect cyber-
bullying from sns comments,” in International Conference on Hybrid Artificial Intelligence
Systems, 2018, pp. 561–572. DOI: 10.1007/978-3-319-92639-1_47 (cited on p. 22).

[64] R. Beniwal and A. Maurya, “Toxic comment classification using hybrid deep learning model,”
in Sustainable Communication Networks and Application, 2021, pp. 461–473. DOI: 10 .

1007/978-981-15-8677-4_38 (cited on p. 22).

[65] M. Alotaibi, B. Alotaibi, and A. Razaque, “A multichannel deep learning framework for cyber-
bullying detection on social media,” Electronics, vol. 10, 2021. DOI: 10.3390/electronics10212664

(cited on p. 22).

[66] M. Raj, S. Singh, K. Solanki, and R. Selvanambi, “An application to detect cyberbullying
using machine learning and deep learning techniques,” Springer Nature Computer Science,
vol. 3, 2022. DOI: 10.1007/s42979-022-01308-5 (cited on p. 22).

[67] B. A. H. Murshed, J. Abawajy, S. Mallappa, M. A. N. Saif, and H. D. E. Al-Ariki, “Dea-rnn: A
hybrid deep learning approach for cyberbullying detection in twitter social media platform,”
IEEE Access, vol. 10, pp. 25 857–25 871, 2022. DOI: 10.1109/ACCESS.2022.3153675 (cited
on p. 22).

[68] A. Anuchitanukul, J. Ive, and L. Specia, “Revisiting contextual toxicity detection in conver-
sations,” Journal of Data and Information Quality, vol. 15, pp. 1–22, 2022. DOI: 10.1145/

3561390 (cited on p. 23).

[69] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirectional
transformers for language understanding,” in NAACL-HLT, 2019, pp. 4171–4186. DOI: 10.

18653/v1/N19-1423 (cited on p. 23).

[70] F. Vargas, F. Rodrigues de Góes, I. Carvalho, F. Benevenuto, and T. Pardo, “Contextual-
lexicon approach for abusive language detection,” in International Conference on Recent
Advances in Natural Language Processing, 2021, pp. 1438–1447. [Online]. Available: https:

//aclanthology.org/2021.ranlp-1.161 (cited on p. 23).

141

https://doi.org/10.18653/v1/W17-3006
https://doi.org/10.18653/v1/W17-3006
https://doi.org/10.1007/s00530-021-00784-8
https://doi.org/10.1007/s00530-021-00784-8
https://doi.org/10.1007/978-3-319-92639-1_47
https://doi.org/10.1007/978-981-15-8677-4_38
https://doi.org/10.1007/978-981-15-8677-4_38
https://doi.org/10.3390/electronics10212664
https://doi.org/10.1007/s42979-022-01308-5
https://doi.org/10.1109/ACCESS.2022.3153675
https://doi.org/10.1145/3561390
https://doi.org/10.1145/3561390
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/2021.ranlp-1.161
https://aclanthology.org/2021.ranlp-1.161

References

[71] M. Karan and J. najder, “Preemptive toxic language detection in wikipedia comments using
thread-level context,” in Third Workshop on Abusive Language Online, 2019, pp. 129–134.
DOI: 10.18653/v1/W19-3514 (cited on p. 23).

[72] H. Almerekhi, H. Kwak, B. J. Jansen, and J. Salminen, “Detecting toxicity triggers in online
discussions,” in 30th ACM Conference on Hypertext and Social Media, 2019, pp. 291–292.
DOI: 10.1145/3342220.3344933 (cited on p. 23).

[73] L. Gao and R. Huang, “Detecting online hate speech using context aware models,” in In-
ternational Conference Recent Advances in Natural Language Processing, 2017, pp. 260–
266. DOI: 10.26615/978-954-452-049-6_036 (cited on p. 23).

[74] K. Balci and A. A. Salah, “Automatic analysis and identification of verbal aggression and
abusive behaviors for online social games,” Computers in Human Behavior, vol. 53, pp. 517–
526, 2015. DOI: 10.1016/j.chb.2014.10.025 (cited on pp. 23, 24).

[75] M. Dadvar, F. de Jong, R. Ordelman, and D. Trieschnigg, “Improved cyberbullying detection
using gender information.,” in 12th Dutch-Belgian Information Retrieval Workshop, 2012,
pp. 23–26. [Online]. Available: http : / / dir2012 . intec . ugent . be / system / files /

proceedings/DIR2012_04_Maral_Dadvar.pdf (cited on p. 23).

[76] M. A. Al-Garadi, K. D. Varathan, and S. D. Ravana, “Cybercrime detection in online com-
munications: The experimental case of cyberbullying detection in the twitter network,” Com-
puters in Human Behavior, vol. 63, pp. 433–443, 2016. DOI: 10.1016/j.chb.2016.05.051

(cited on pp. 23, 24).

[77] G. Xiang, B. Fan, L. Wang, J. Hong, and C. Rose, “Detecting offensive tweets via topical
feature discovery over a large scale twitter corpus,” in 21st ACM CIKM, 2012, pp. 1980–
1984. DOI: 10.1145/2396761.2398556 (cited on p. 24).

[78] D. Chatzakou, N. Kourtellis, J. Blackburn, E. De Cristofaro, G. Stringhini, and A. Vakali,
“Mean birds: Detecting aggression and bullying on twitter,” in 2017 ACM on Web Science
Conference, 2017, pp. 13–22. DOI: 10.1145/3091478.3091487 (cited on pp. 24, 30).

[79] C. Ziems, Y. Vigfusson, and F. Morstatter, “Aggressive, repetitive, intentional, visible, and
imbalanced: Refining representations for cyberbullying classification,” in 14th International
AAAI Conference on Web and Social Media, 2020. [Online]. Available: https://ojs.aaai.

org/index.php/ICWSM/article/view/7345/7199 (cited on p. 24).

[80] E. F. Unsvåg and B. Gambäck, “The effects of user features on twitter hate speech detec-
tion,” in 2nd Workshop on Abusive Language Online, 2018, pp. 75–85. DOI: 10.18653/v1/

W18-5110 (cited on p. 24).

142

https://doi.org/10.18653/v1/W19-3514
https://doi.org/10.1145/3342220.3344933
https://doi.org/10.26615/978-954-452-049-6_036
https://doi.org/10.1016/j.chb.2014.10.025
http://dir2012.intec.ugent.be/system/files/proceedings/DIR2012_04_Maral_Dadvar.pdf
http://dir2012.intec.ugent.be/system/files/proceedings/DIR2012_04_Maral_Dadvar.pdf
https://doi.org/10.1016/j.chb.2016.05.051
https://doi.org/10.1145/2396761.2398556
https://doi.org/10.1145/3091478.3091487
https://ojs.aaai.org/index.php/ICWSM/article/view/7345/7199
https://ojs.aaai.org/index.php/ICWSM/article/view/7345/7199
https://doi.org/10.18653/v1/W18-5110
https://doi.org/10.18653/v1/W18-5110

References

[81] H. Hosseinmardi, R. I. Rafiq, R. Han, Q. Lv, and S. Mishra, “Prediction of cyberbullying
incidents in a media-based social network,” in 2016 IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining, 2016, pp. 186–192. DOI: 10.1109/

ASONAM.2016.7752233 (cited on p. 24).

[82] J. Qian, M. ElSherief, E. Belding, and W. Y. Wang, “Leveraging intra-user and inter-user rep-
resentation learning for automated hate speech detection,” in 2018 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, 2018, pp. 118–123. DOI: 10.18653/v1/N18-2019 (cited on p. 24).

[83] A. M. Founta, D. Chatzakou, N. Kourtellis, J. Blackburn, A. Vakali, and I. Leontiadis, “A
unified deep learning architecture for abuse detection,” in 10th ACM WebSci, 2019, pp. 105–
114. DOI: 10.1145/3292522.3326028 (cited on pp. 24, 96).

[84] M. Saveski, B. Roy, and D. Roy, “The structure of toxic conversations on twitter,” in Web
Conference, 2021, pp. 1086–1097. DOI: 10.1145/3442381.3449861 (cited on p. 24).

[85] A. Grover and J. Leskovec, “Node2vec: Scalable feature learning for networks,” in 22nd
ACM SIGKDD, 2016, pp. 855–864. DOI: 10.1145/2939672.2939754 (cited on pp. 24, 70,
75, 101, 103, 112).

[86] P. Mishra, M. Del Tredici, H. Yannakoudakis, and E. Shutova, “Abusive language detection
with graph convolutional networks,” in Conference of the North American Chapter of the
ACL, 2019, pp. 2145–2150. DOI: 10.18653/v1/N19-1221 (cited on p. 24).

[87] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional net-
works,” in International Conference on Learning Representations, 2017 (cited on pp. 24,
76).

[88] M. Ribeiro, P. Calais, Y. Santos, V. Almeida, and M. J. W., “Characterizing and detecting
hateful users on twitter,” in International AAAI Conference on Web and Social Media, 2018.
[Online]. Available: https://arxiv.org/pdf/1803.08977.pdf (cited on p. 25).

[89] W. Hamilton, Z. Ying, and J. Leskovec, “Inductive representation learning on large graphs,”
in Advances in Neural Information Processing Systems, 2017, pp. 1025–1035. [Online].
Available: https://dl.acm.org/doi/10.5555/3294771.3294869 (cited on pp. 25, 76).

[90] E. Wulczyn, N. Thain, and L. Dixon, “Ex machina: Personal attacks seen at scale,” in 26th
International Conference on World Wide Web, International World Wide Web Conferences
Steering Committee, Feb. 2017, pp. 1391–1399. DOI: 10.1145/3038912.3052591 (cited on
pp. 25, 26, 28, 123, 131).

143

https://doi.org/10.1109/ASONAM.2016.7752233
https://doi.org/10.1109/ASONAM.2016.7752233
https://doi.org/10.18653/v1/N18-2019
https://doi.org/10.1145/3292522.3326028
https://doi.org/10.1145/3442381.3449861
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.18653/v1/N19-1221
https://arxiv.org/pdf/1803.08977.pdf
https://dl.acm.org/doi/10.5555/3294771.3294869
https://doi.org/10.1145/3038912.3052591

References

[91] A. Founta, C. Djouvas, D. Chatzakou, I. Leontiadis, J. Blackburn, G. Stringhini, A. Vakali,
M. Sirivianos, and N. Kourtellis, “Large scale crowdsourcing and characterization of twitter
abusive behavior,” in 12th International AAAI Conference on Web and Social Media, 2018.
DOI: 10.1609/icwsm.v12i1.14991 (cited on pp. 25, 123).

[92] H. Kirk, W. Yin, B. Vidgen, and P. Röttger, “Semeval-2023 task 10: Explainable detection
of online sexism,” in 17th International Workshop on Semantic Evaluation, 2023, pp. 2193–
2210. DOI: 10.18653/v1/2023.semeval-1.305 (cited on pp. 26, 27).

[93] X. Yu, E. Blance, and L. Hong, “Hate speech and counter speech detection: Conversational
context does matter,” in Conference of the NAACL: Human Language Technologies, 2022,
pp. 5918–5930. DOI: 10.18653/v1/2022.naacl-main.433 (cited on p. 26).

[94] T. Hartvigsen, S. Gabriel, H. Palangi, M. Sap, D. Ray, and E. Kamar, “Toxigen: A large-scale
machine-generated dataset for adversarialand implicit hate speech detection,” in 60th An-
nual Meeting of the ACL, 2022, pp. 3309–3326. [Online]. Available: https://aclanthology.

org/2022.acl-long.234.pdf (cited on pp. 25–27).

[95] F. Beyhan, B. Çark, . Arn, A. Terziolu, B. Yanikoglu, and R. Yeniterzi, “A turkish hate speech
dataset and detection system,” in 13th Language Resources and Evaluation Conference,
2022, pp. 4177–4185. [Online]. Available: https://aclanthology.org/2022.lrec-1.443

(cited on pp. 26, 27).

[96] B. Vidgen, T. Thrush, Z. Waseem, and D. Kiela, “Learning from the worst: Dynamically
generated datasets to improve online hate detection,” in 59th Annual Meeting of the ACL
and the 11th International Joint Conference on NLP, 2021, pp. 1667–1682. DOI: 10.18653/

v1/2021.acl-long.132 (cited on pp. 25–27).

[97] A. Xenos, J. Pavlopoulos, and I. Androutsopoulos, “Context sensitivity estimation in toxicity
detection,” in 5th Workshop on Online Abuse and Harms, 2021, pp. 140–145. DOI: 10.

18653/v1/2021.woah-1.15 (cited on pp. 26, 27).

[98] T. Mandl, S. Modha, G. K. Shahi, A. K. Jaiswal, D. Nandini, D. Patel, P. Majumder, and
J. Schäfer, “Overview of the hasoc track at fire 2020: Hate speech and offensive content
identification inindo-european languages,” in CEUR Workshop, 2020, pp. 87–111. [Online].
Available: https://ceur-ws.org/Vol-2826/T2-1.pdf (cited on p. 26).

[99] V. Basile, C. Bosco, E. Fersini, D. Nozza, V. Patti, F. M. Rangel Pardo, P. Rosso, and M.
Sanguinetti, “Semeval-2019 task 5: Multilingual detection of hate speech against immi-
grants and women in twitter,” in 13th International Workshop on Semantic Evaluation, 2019,
pp. 54–63. DOI: 10.18653/v1/S19-2007 (cited on pp. 26, 27).

144

https://doi.org/10.1609/icwsm.v12i1.14991
https://doi.org/10.18653/v1/2023.semeval-1.305
https://doi.org/10.18653/v1/2022.naacl-main.433
https://aclanthology.org/2022.acl-long.234.pdf
https://aclanthology.org/2022.acl-long.234.pdf
https://aclanthology.org/2022.lrec-1.443
https://doi.org/10.18653/v1/2021.acl-long.132
https://doi.org/10.18653/v1/2021.acl-long.132
https://doi.org/10.18653/v1/2021.woah-1.15
https://doi.org/10.18653/v1/2021.woah-1.15
https://ceur-ws.org/Vol-2826/T2-1.pdf
https://doi.org/10.18653/v1/S19-2007

References

[100] B. Vidgen, D. Nguyen, H. Margetts, P. Rossini, and R. Tromble, “Introducing cad: The con-
textual abuse dataset,” in 2021 Conference of the NA Chapter of the ACL: Human Language
Technologies, 2021, pp. 2289–2303. DOI: 10.18653/v1/2021.naacl-main.182 (cited on
pp. 26, 27).

[101] A. Ollagnier, E. Cabrio, S. Villata, and C. Blaya, “Cyberagressionado-v1: A dataset of anno-
tated online aggressions in french collected through a role-playing game,” in 13th Language
Resources and Evaluation Conference, 2022, pp. 867–875. [Online]. Available: https://

aclanthology.org/2022.lrec-1.91 (cited on pp. 26, 27).

[102] R. Hada, S. Sudhir, P. Mishra, H. Yannakoudakis, S. M. Mohammad, and E. Shutova,
“Ruddit: Norms of offensiveness for english reddit comments,” in ACL-IJCNLP 2021, 2021,
pp. 2700–2717. DOI: 10.18653/v1/2021.acl-long.210 (cited on pp. 26, 27, 129).

[103] E. Papegnies, V. Labatut, R. Dufour, and G. Linarès, “Detection of abusive messages
in an on-line community,” in CORIA 2017 - Conférence en Recherche d’Informations et
Applications- 14th French Information Retrieval Conference, Mar. 2017, pp. 153–168. DOI:
doi:10.24348/coria.2017.16 (cited on pp. 27, 45, 46).

[104] Y. Hua, C. Danescu-Niculescu-Mizil, D. Taraborelli, N. Thain, J. Sorensen, and L. Dixon,
“Wikiconv: A corpus of the complete conversational history of a large online collabora-
tive community,” in Conference on Empirical Methods in Natural Language Processing,
vol. 2018 Conference on Empirical Methods in Natural Language Processing, 2018, pp. 2818–
2823. DOI: 10.18653/v1/d18-1305 (cited on pp. 29, 132).

[105] S. Kiritchenko, I. Nejadgholi, and K. C. Fraser, “Confronting abusive language online: A
survey from the ethical and human rights perspective,” Journal of Artificial Intelligence Re-
search, vol. 71, pp. 431–478, 2021. DOI: 10.1613/jair.1.12590 (cited on p. 29).

[106] N. Babakov, V. Logacheva, and A. Panchenko, “Beyond plain toxic: Building datasets for de-
tection of flammable topics and inappropriate statements,” Language Resources and Eval-
uation, 2023. DOI: 10.1007/s10579-023-09682-z (cited on p. 29).

[107] Z. Li, M. Rei, and L. Specia, “Multimodal conversation modelling for topic derailment de-
tection,” in EMNLP, 2022, pp. 5115–5127. DOI: 10.18653/v1/2022.findings-emnlp.376

(cited on p. 29).

[108] F. Syeda Faizan, L. Seemab, and L. Rabia, “Fine tuning bert for unethical behavior classi-
fication,” in International Conference on Digital Futures and Transformative Technologies,
2021, pp. 1–6. DOI: 10.1109/ICoDT252288.2021.9441540 (cited on p. 29).

145

https://doi.org/10.18653/v1/2021.naacl-main.182
https://aclanthology.org/2022.lrec-1.91
https://aclanthology.org/2022.lrec-1.91
https://doi.org/10.18653/v1/2021.acl-long.210
https://doi.org/doi:10.24348/coria.2017.16
https://doi.org/10.18653/v1/d18-1305
https://doi.org/10.1613/jair.1.12590
https://doi.org/10.1007/s10579-023-09682-z
https://doi.org/10.18653/v1/2022.findings-emnlp.376
https://doi.org/10.1109/ICoDT252288.2021.9441540

References

[109] T. Xu, G. Goossen, H. K. Cevahir, S. Khodeir, Y. Jin, F. Li, S. Shan, S. Patel, D. Freeman, and
P. Pearce, “Deep entity classification: Abusive account detection for online social networks,”
in 30th USENIX Security Symposium, 2021, pp. 4097–4114. [Online]. Available: https:

//www.usenix.org/conference/usenixsecurity21/presentation/xu-teng (cited on
p. 29).

[110] S. Subramani, S. Michalska, H. Wang, J. Du, Y. Zhang, and H. Shakeel, “Deep learning
for multi-class identification from domestic violence online posts,” IEEE Access, vol. 7,
pp. 46 210–46 224, 2019. DOI: 10.1109/ACCESS.2019.2908827 (cited on p. 29).

[111] M. Jorgensen, M. Choi, M. Niemann, J. Brunk, and J. Becker, “Multi-class detection of
abusive language using automated machine learning,” in 15th International Conference on
Wirtschaftsinformatik,, 2020, pp. 1763–1775. DOI: 10.30844/wi_2020_r7-jorgensen (cited
on p. 29).

[112] A. Garcia-Recuero, “Discouraging abusive behavior in privacy-preserving online social net-
working applications,” in 25th International Conference Companion on World Wide Web,
2016, pp. 305–309. DOI: 10.1145/2872518.2888600 (cited on pp. 30, 31).

[113] J. M. Lobo, A. Jimenez-Valverde, and R. Real, “Auc: A misleading measure of the per-
formance of predictive distribution models,” Global Ecology and Biogeography, vol. 17,
pp. 145–151, 2008. DOI: 10.1111/j.1466-8238.2007.00358.x (cited on p. 31).

[114] S. Halligan, D. Altman, and S. Mallett, “Disadvantages of using the area under the receiver
operating characteristic curve to assess imaging tests: A discussion and proposal for an
alternative approach,” European Radiology, vol. 25, pp. 932–939, 2015. DOI: 10.1007/

s00330-014-3487-0 (cited on p. 31).

[115] J. Muschelli, “Roc and auc with a binary predictor: A potentially misleading metric,” Journal
of Classification, vol. 37, pp. 696–708, 2019. DOI: 10.1007/s00357-019-09345-1 (cited on
p. 31).

[116] K. Orman, “Contribution to the interpretation of evolving communities in complex networks :
Application to the study of social interactions,” PhD thesis, LIRIS, 2014. [Online]. Available:
https://www.theses.fr/2014ISAL0072 (cited on p. 33).

[117] D. J. Watts and S. H. Strogatz, “Collective dynamics of ’small-world’ networks,” Nature,
vol. 393, no. 6684, pp. 440–442, 1998. DOI: 10.1038/30918 (cited on p. 36).

[118] A. Barrat, M. Barthelemy, R. Pastor-Satorras, and A. Vespignani, “The architecture of com-
plex weighted networks,” Proceedings of the National Academy of Sciences, vol. 101,
no. 11, pp. 3747–3752, 2004. DOI: 10.1073/pnas.0400087101 (cited on p. 36).

[119] R. S. Burt, “Structural holes and good ideas,” American Journal of Sociology, vol. 110, no. 2,
pp. 349–399, 2004. DOI: 10.1086/421787 (cited on p. 37).

146

https://www.usenix.org/conference/usenixsecurity21/presentation/xu-teng
https://www.usenix.org/conference/usenixsecurity21/presentation/xu-teng
https://doi.org/10.1109/ACCESS.2019.2908827
https://doi.org/10.30844/wi_2020_r7-jorgensen
https://doi.org/10.1145/2872518.2888600
https://doi.org/10.1111/j.1466-8238.2007.00358.x
https://doi.org/10.1007/s00330-014-3487-0
https://doi.org/10.1007/s00330-014-3487-0
https://doi.org/10.1007/s00357-019-09345-1
https://www.theses.fr/2014ISAL0072
https://doi.org/10.1038/30918
https://doi.org/10.1073/pnas.0400087101
https://doi.org/10.1086/421787

References

[120] P. Bonacich, “Factoring and weighting approaches to status scores and clique identifica-
tion,” Journal of Mathematical Sociology, vol. 2, no. 1, pp. 113–120, 1972. DOI: 10.1080/

0022250X.1972.9989806 (cited on p. 37).

[121] S. Brin and L. E. Page, “The anatomy of a large-scale hypertextual Web search engine,”
Computer Networks and ISDN Systems, vol. 30, pp. 107–117, 1998. DOI: 10.1016/S0169-

7552(98)00110-X (cited on p. 38).

[122] J. Kleinberg, “Authoritative sources in a hyperlinked environment,” Journal of the Associa-
tion for Computing Machinery, vol. 46, no. 5, pp. 604–632, 1999. DOI: 10.1145/324133.

324140 (cited on p. 38).

[123] L. Katz, “A new status index derived from sociometric analysis,” Psychometrika, vol. 18,
no. 1, pp. 39–43, 1953. DOI: 10.1007/bf02289026 (cited on p. 39).

[124] P. Bonacich and P. Lloyd, “Eigenvector-like measures of centrality for asymmetric relations,”
Social Networks, vol. 23, no. 3, pp. 191–201, 2001. DOI: 10.1016/S0378-8733(01)00038-7

(cited on p. 39).

[125] P. F. Bonacich, “Power and centrality: A family of measures,” American Journal of Sociology,
vol. 92, no. 5, pp. 1170–1182, 1987. DOI: 10.1086/228631 (cited on p. 39).

[126] E. Estrada and J. A. Rodriguez-Velazquez, “Subgraph centrality in complex networks,”
Physical Review E, vol. 71, no. 5, p. 056 103, 2005. DOI: 10.1103/PhysRevE.71.056103

(cited on p. 39).

[127] L. C. Freeman, “A set of measures of centrality based on betweenness,” Sociometry, vol. 40,
no. 1, pp. 35–41, 1977. DOI: 10.2307/3033543 (cited on p. 40).

[128] A. Bavelas, “Communication patterns in task-oriented groups,” Journal of the Acoustical
Society of America, vol. 22, no. 6, pp. 725–730, 1950. DOI: 10.1121/1.1906679 (cited on
p. 40).

[129] F. Harary, Graph Theory. Addison-Wesley, 1969. [Online]. Available: http://www.dtic.

mil/dtic/tr/fulltext/u2/705364.pdf (cited on pp. 40, 41).

[130] S. B. Seidman, “Network structure and minimum degree,” Social Networks, vol. 5, no. 3,
pp. 269–287, 1983. DOI: 10.1016/0378-8733(83)90028-X (cited on p. 41).

[131] R. Guimerà and L. A. N. Amaral, “Functional cartography of complex metabolic networks,”
Nature, vol. 433, pp. 895–900, 2005. DOI: 10.1038/nature03288 (cited on p. 41).

[132] N. Dugué, V. Labatut, and A. Perez, “Identifying the community roles of social capitalists in
the Twitter network,” in IEEE/ACM International Conference on Advances in Social Network
Analysis and Mining, IEEE, 2014, pp. 371–374. DOI: 10.1109/ASONAM.2014.6921612 (cited
on p. 41).

147

https://doi.org/10.1080/0022250X.1972.9989806
https://doi.org/10.1080/0022250X.1972.9989806
https://doi.org/10.1016/S0169-7552(98)00110-X
https://doi.org/10.1016/S0169-7552(98)00110-X
https://doi.org/10.1145/324133.324140
https://doi.org/10.1145/324133.324140
https://doi.org/10.1007/bf02289026
https://doi.org/10.1016/S0378-8733(01)00038-7
https://doi.org/10.1086/228631
https://doi.org/10.1103/PhysRevE.71.056103
https://doi.org/10.2307/3033543
https://doi.org/10.1121/1.1906679
http://www.dtic.mil/dtic/tr/fulltext/u2/705364.pdf
http://www.dtic.mil/dtic/tr/fulltext/u2/705364.pdf
https://doi.org/10.1016/0378-8733(83)90028-X
https://doi.org/10.1038/nature03288
https://doi.org/10.1109/ASONAM.2014.6921612

References

[133] R. D. Luce and A. D. Perry, “A method of matrix analysis of group structure,” Psychometrika,
vol. 14, no. 2, pp. 95–116, 1949. DOI: 10.1007/BF02289146 (cited on p. 42).

[134] S. Wasserman and K. Faust, Social Network Analysis: Methods and Applications, ser. Struc-
tural Analysis in the Social Sciences. Cambridge, UK: Cambridge University Press, 1994,
vol. 8. [Online]. Available: http://www.cambridge.org/zw/academic/subjects/sociology/

sociology-general-interest/social-network-analysis-methods-and-applications

(cited on p. 43).

[135] D. R. White, F. Harary, M. Sobel, and M. Becker, “The cohesiveness of blocks in social
networks: Node connectivity and conditional density,” Sociological Methodology, vol. 31,
no. 1, pp. 305–359, 2001. DOI: 10.1111/0081-1750.00098 (cited on p. 43).

[136] M. E. J. Newman and M. Girvan, “Finding and evaluating community structure in networks,”
Physical Review E, vol. 69, no. 2, p. 026 113, 2004. DOI: 10.1103/PhysRevE.69.026113

(cited on p. 44).

[137] S. Fortunato, “Community detection in graphs,” Physics Reports, vol. 486, no. 3, Community
detection in graphs, 2010. DOI: https://doi.org/10.1016/j.physrep.2009.11.002 (cited
on p. 44).

[138] P. Mutton, “Inferring and visualizing social networks on internet relay chat,” in 8th Interna-
tional Conference on Information Visualisation, 2004, pp. 35–43. DOI: 10.1109/IV.2004.

1320122 (cited on p. 47).

[139] R. Dzisevi and D. eok, “Text classification using different feature extraction approaches,” in
Open Conference of Electrical, Electronic and Information Sciences, 2019, pp. 1–4. DOI:
10.1109/eStream.2019.8732167 (cited on p. 52).

[140] R. Campos, V. Mangaravite, A. Pasquali, A. M. Jorge, C. Nunes, and A. Jatowt, “A text
feature based automatic keyword extraction method for single documents,” in Advances in
Information Retrieval, 2018, pp. 684–691. DOI: https://doi.org/10.1007/978-3-319-

76941-7_63 (cited on p. 52).

[141] D. D. Lewis, “Feature selection and feature extraction for text categorization,” in Proceedings
of the Workshop on Speech and Natural Language, 1992, pp. 212–217. [Online]. Available:
https://aclanthology.org/H92-1041.pdf (cited on p. 52).

[142] Y. Chen, Y. Zhou, S. Zhu, and H. Xu, “Detecting offensive language in social media to
protect adolescent online safety,” in International Conference on Privacy, Security, Risk and
Trust and International Conference on Social Computing, 2012, pp. 71–80. DOI: 10.1109/

SocialCom-PASSAT.2012.55 (cited on p. 52).

148

https://doi.org/10.1007/BF02289146
http://www.cambridge.org/zw/academic/subjects/sociology/sociology-general-interest/social-network-analysis-methods-and-applications
http://www.cambridge.org/zw/academic/subjects/sociology/sociology-general-interest/social-network-analysis-methods-and-applications
https://doi.org/10.1111/0081-1750.00098
https://doi.org/10.1103/PhysRevE.69.026113
https://doi.org/https://doi.org/10.1016/j.physrep.2009.11.002
https://doi.org/10.1109/IV.2004.1320122
https://doi.org/10.1109/IV.2004.1320122
https://doi.org/10.1109/eStream.2019.8732167
https://doi.org/https://doi.org/10.1007/978-3-319-76941-7_63
https://doi.org/https://doi.org/10.1007/978-3-319-76941-7_63
https://aclanthology.org/H92-1041.pdf
https://doi.org/10.1109/SocialCom-PASSAT.2012.55
https://doi.org/10.1109/SocialCom-PASSAT.2012.55

References

[143] H. Chen, S. Mckeever, and S. J. Delany, “Presenting a labelled dataset for real-time detec-
tion of abusive user posts,” in International Conference on Web Intelligence, 2017, pp. 884–
890. DOI: 10.1145/3106426.3106456 (cited on p. 52).

[144] L. V. Batista and M. M. Meira, “Texture classification using the lempel-ziv-welch algorithm,”
in Brazilian Symposium on Artificial Intelligence, 2004, pp. 444–453. DOI: 10.1007/978-3-

540-28645-5_45 (cited on p. 52).

[145] M. Rosvall and C. T. Bergstrom, “Maps of random walks on complex networks reveal
community structure,” Proceedings of the National Academy of Sciences, vol. 105, no. 4,
p. 1118, 2008. DOI: 10.1073/pnas.0706851105 (cited on p. 56).

[146] G. Csardi and T. Nepusz, “The igraph software package for complex network research,”
InterJournal, vol. 1695, 2006. [Online]. Available: http://igraph.sf.net (cited on p. 59).

[147] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P.
Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011. [Online]. Available: http://www.jmlr.

org/papers/v12/pedregosa11a.html (cited on p. 59).

[148] K. Babi, S. Martini-Ipi, and A. Metrovi, “Survey of neural text representation models,” Infor-
mation, vol. 11, no. 11, 2020. DOI: 10.3390/info11110511 (cited on p. 68).

[149] T. Schomacker and M. Tropmann-Frick, “Language representation models: An overview,”
Entropy, vol. 23, no. 11, 2021. DOI: https://doi.org/10.3390/e23111422 (cited on p. 68).

[150] P. Siebers, C. Janiesch, and P. Zschech, “A survey of text representation methods and their
genealogy,” IEEE Access, vol. 10, pp. 96 492–96 513, 2022. DOI: 10.1109/ACCESS.2022.

3205719 (cited on p. 68).

[151] A. Mohamed, H.-y. Lee, L. Borgholt, J. D. Havtorn, J. Edin, C. Igel, K. Kirchhoff, S.-W. Li,
K. Livescu, L. Maaløe, T. N. Sainath, and S. Watanabe, “Self-supervised speech represen-
tation learning: A review,” IEEE Journal of Selected Topics in Signal Processing, vol. 16,
pp. 1179–1210, 2022. DOI: 10.1109/JSTSP.2022.3207050 (cited on p. 68).

[152] R. Patil, S. Boit, V. Gudivada, and J. Nandigam, “A survey of text representation and em-
bedding techniques in nlp,” IEEE Access, vol. 11, pp. 36 120–36 146, 2023. DOI: 10.1109/

ACCESS.2023.3266377 (cited on p. 68).

[153] F. Incitti, F. Urli, and L. Snidaro, “Beyond word embeddings: A survey,” Information Fusion,
vol. 89, pp. 418–436, 2023. DOI: https://doi.org/10.1016/j.inffus.2022.08.024

(cited on p. 68).

149

https://doi.org/10.1145/3106426.3106456
https://doi.org/10.1007/978-3-540-28645-5_45
https://doi.org/10.1007/978-3-540-28645-5_45
https://doi.org/10.1073/pnas.0706851105
http://igraph.sf.net
http://www.jmlr.org/papers/v12/pedregosa11a.html
http://www.jmlr.org/papers/v12/pedregosa11a.html
https://doi.org/10.3390/info11110511
https://doi.org/https://doi.org/10.3390/e23111422
https://doi.org/10.1109/ACCESS.2022.3205719
https://doi.org/10.1109/ACCESS.2022.3205719
https://doi.org/10.1109/JSTSP.2022.3207050
https://doi.org/10.1109/ACCESS.2023.3266377
https://doi.org/10.1109/ACCESS.2023.3266377
https://doi.org/https://doi.org/10.1016/j.inffus.2022.08.024

References

[154] Z. Liu. and M. Sun, “Representation learning and nlp,” in Representation Learning for Nat-
ural Language Processing, Springer Nature Singapore Singapore, 2023, pp. 1–27. DOI:
https://doi.org/10.1007/978-981-99-1600-9_1 (cited on p. 68).

[155] M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu, “Asymmetric transitivity preserving graph
embedding,” in 22nd ACM SIGKDD, 2016, pp. 1105–1114. DOI: 10.1145/2939672.2939751

(cited on pp. 70, 74, 75).

[156] M. Belkin and P. Niyogi, “Laplacian eigenmaps and spectral techniques for embedding and
clustering,” in Advances in Neural Information Processing Systems 14, 2002, pp. 585–591.
[Online]. Available: http://papers.nips.cc/paper/1961-laplacian-eigenmaps-and-

spectral-techniques-for-embedding-and-clustering.pdf (cited on pp. 70, 73, 74, 77).

[157] A. Ahmed, N. Shervashidze, S. Narayanamurthy, V. Josifovski, and A. J. Smola, “Distributed
large-scale natural graph factorization,” in 22nd International Conference on World Wide
Web, 2013, pp. 37–48. DOI: 10.1145/2488388.2488393 (cited on pp. 70, 74).

[158] S. Yuan, X. Wu, and Y. Xiang, “SNE: Signed network embedding,” in Pacific-Asia Confer-
ence on Knowledge Discovery and Data Mining, ser. Lecture Notes in Computer Science,
vol. 10235, 2017, pp. 183–195. DOI: 10.1007/978-3-319-57529-2_15 (cited on pp. 70,
79).

[159] J. Kim, H. Park, J.-E. Lee, and U. Kang, “SIDE: Representation learning in signed directed
networks,” in World Wide Web Conference, 2018, pp. 509–518. DOI: 10.1145/3178876.

3186117 (cited on pp. 70, 79).

[160] T. Derr, Y. Ma, and J. Tang, “Signed graph convolutional network,” in 18th ICDM, 2018,
pp. 929–934. DOI: 10.1109/ICDM.2018.00113 (cited on pp. 70, 80).

[161] A. Narayanan, M. Chandramohan, R. Venkatesan, L. Chen, Y. Liu, and S. Jaiswal, “graph2vec:
Learning distributed representations of graphs,” in MLG, 2017 (cited on pp. 70, 77, 84, 102,
103, 105).

[162] F. Heider, “Attitudes and cognitive organization,” Journal of Psychology, vol. 21, no. 1,
pp. 107–112, 1946. DOI: 10.1080/00223980.1946.9917275 (cited on p. 71).

[163] F. Harary, “On the notion of balance of a signed graph,” Michigan Mathematical Journal,
vol. 2, no. 2, pp. 143–146, 1953. DOI: 10.1307/mmj/1028989917 (cited on p. 71).

[164] D. Cartwright and F. Harary, “Structural balance: A generalization of Heider’s theory,” Psy-
chological Review, vol. 63, pp. 277–293, 1956. DOI: 10.1037/h0046049 (cited on p. 71).

[165] P. Doreian and A. Mrvar, “A partitioning approach to structural balance,” Social Networks,
vol. 18, no. 2, pp. 149–168, 1996. DOI: 10.1016/0378-8733(95)00259-6 (cited on p. 72).

[166] N. Bansal, A. Blum, and S. Chawla, “Correlation clustering,” in FOCS, 2002, pp. 238–247.
DOI: 10.1109/SFCS.2002.1181947 (cited on pp. 72, 81).

150

https://doi.org/https://doi.org/10.1007/978-981-99-1600-9_1
https://doi.org/10.1145/2939672.2939751
http://papers.nips.cc/paper/1961-laplacian-eigenmaps-and-spectral-techniques-for-embedding-and-clustering.pdf
http://papers.nips.cc/paper/1961-laplacian-eigenmaps-and-spectral-techniques-for-embedding-and-clustering.pdf
https://doi.org/10.1145/2488388.2488393
https://doi.org/10.1007/978-3-319-57529-2_15
https://doi.org/10.1145/3178876.3186117
https://doi.org/10.1145/3178876.3186117
https://doi.org/10.1109/ICDM.2018.00113
https://doi.org/10.1080/00223980.1946.9917275
https://doi.org/10.1307/mmj/1028989917
https://doi.org/10.1037/h0046049
https://doi.org/10.1016/0378-8733(95)00259-6
https://doi.org/10.1109/SFCS.2002.1181947

References

[167] J. A. Davis, “Clustering and structural balance in graphs,” Human Relations, vol. 20, no. 2,
pp. 181–187, 1967. DOI: 10.1177/001872676702000207 (cited on p. 72).

[168] H. Cai, V. W. Zheng, and K. C.-C. Chang, “A comprehensive survey of graph embedding:
Problems, techniques, and applications,” IEEE TKDE, vol. 30, no. 9, pp. 1616–1637, 2018.
DOI: 10.1109/TKDE.2018.2807452 (cited on p. 72).

[169] S. Yan, D. Xu, B. Zhang, H. Zhang, Q. Yang, and S. Lin, “Graph embedding and extensions:
A general framework for dimensionality reduction,” IEEE PAMI, vol. 29, pp. 40–51, 2007.
DOI: 10.1109/tpami.2007.250598 (cited on pp. 72, 73).

[170] P. Goyal and E. Ferrara, “Graph embedding techniques, applications, and performance:
A survey,” Knowledge-Based Systems, vol. 151, pp. 78–94, 2018, ISSN: 0950-7051. DOI:
https://doi.org/10.1016/j.knosys.2018.03.022 (cited on pp. 73, 74, 76, 96, 112).

[171] S. T. Roweis and L. K. Saul, “Nonlinear dimensionality reduction by locally linear embed-
ding,” Science, vol. 290, no. 5500, pp. 2323–2326, 2000. DOI: 10.1126/science.290.

5500.2323 (cited on p. 73).

[172] X. Liang, D. Li, M. Song, A. Madden, Y. Ding, and Y. Bu, “Predicting biomedical relationships
using the knowledge and graph embedding cascade model,” PLoS ONE, vol. 14, 2019. DOI:
https://doi.org/10.1371/journal.pone.0218264 (cited on pp. 74, 75).

[173] J. Li, L. Wu, R. Guo, C. Liu, and H. Liu, “Multi-level network embedding with boosted low-
rank matrix approximation,” in 2019 IEEE/ACM International Conference on Advances in
Social Networks Analysis and Mining, 2019, pp. 49–56. DOI: 10.1145/3341161.3342864

(cited on pp. 74, 102, 103).

[174] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representations
in vector space,” in ICLR, 2013. [Online]. Available: https://arxiv.org/abs/1301.3781

(cited on pp. 74, 75, 98).

[175] B. Perozzi, R. Al-Rfou, and S. Skiena, “DeepWalk: Online learning of social representa-
tions,” in 20th ACM SIGKDD, 2014, pp. 701–710. DOI: 10.1145/2623330.2623732 (cited on
pp. 75, 101, 103).

[176] B. Hou, Y. Wang, M. Zeng, S. Jiang, O. J. Mengshoel, Y. Tong, and J. Bai, “Customized
graph embedding: Tailoring embedding vectors to different applications,” arXiv, 2019. [On-
line]. Available: http://arxiv.org/abs/1911.09454 (cited on p. 75).

[177] D. Wang, P. Cui, and W. Zhu, “Structural deep network embedding,” in 22nd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, 2016, pp. 1225–1234.
DOI: 10.1145/2939672.2939753 (cited on pp. 75, 76).

151

https://doi.org/10.1177/001872676702000207
https://doi.org/10.1109/TKDE.2018.2807452
https://doi.org/10.1109/tpami.2007.250598
https://doi.org/https://doi.org/10.1016/j.knosys.2018.03.022
https://doi.org/10.1126/science.290.5500.2323
https://doi.org/10.1126/science.290.5500.2323
https://doi.org/https://doi.org/10.1371/journal.pone.0218264
https://doi.org/10.1145/3341161.3342864
https://arxiv.org/abs/1301.3781
https://doi.org/10.1145/2623330.2623732
http://arxiv.org/abs/1911.09454
https://doi.org/10.1145/2939672.2939753

References

[178] H. Chen, B. Perozzi, Y. Hu, and S. Skiena, “HARP: Hierarchical representation learning
for networks,” in 32nd AAAI Conferenceon Artificial Intelligence, 2018. [Online]. Available:
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/viewFile/16273/15922

(cited on p. 75).

[179] B. Perozzi, V. Kulkarni, and S. Skiena, “Don’t walk, skip! online learning of multi-scale net-
work embeddings,” in IEEE/ACM ASONAM, 2017, pp. 258–265. DOI: 10.1145/3110025.

3110086 (cited on pp. 75, 101, 103).

[180] H. Wang, J. Wang, J. Wang, M. Zhao, W. Zhang, F. Zhang, X. Xie, and M. Guo, “GraphGAN:
Graph representation learningwith generative adversarial nets,” in 32nd AAAI Conference
on Artificial Intelligence, 2018, pp. 2508–2515. [Online]. Available: https://www.aaai.

org/ocs/index.php/AAAI/AAAI18/paper/view/16611 (cited on p. 76).

[181] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A comprehensive survey on graph
neural networks,” IEEE Transactions on Neural Networks and Learning Systems, vol. 32,
no. 1, pp. 4–24, 2021. DOI: 10.1109/tnnls.2020.2978386 (cited on p. 76).

[182] S. Zhang, H. Tong, J. Xu, and R. Maciejewski, “Graph convolutional networks: Algorithms,
applications and open challenges,” in International Conference on Computational Social
Networks, ser. Lecture Notes in Computer Science, vol. 11280, 2018, pp. 79–91. DOI: 10.

1007/978-3-030-04648-4_7 (cited on p. 76).

[183] N. de Lara and E. Pineau, “A simple baseline algorithm for graph classification,” arXiv, 2018.
eprint: 1810.09155 (cs.LG). [Online]. Available: https://arxiv.org/pdf/1810.09155.pdf

(cited on pp. 77, 102, 103).

[184] S. F. Mousavi, M. Safayani, A. Mirzaei, and H. Bahonar, “Hierarchical graph embedding
in vector space by graph pyramid,” Pattern Recognition, vol. 61, pp. 245–254, 2017, ISSN:
0031-3203. DOI: 10.1016/j.patcog.2016.07.043 (cited on p. 77).

[185] S. Verma and Z.-L. Zhang, “Hunt for the unique, stable, sparse and fast feature learning
on graphs,” in Advances in Neural Information Processing Systems 30, 2017, pp. 88–98.
[Online]. Available: http://papers.nips.cc/paper/6614-hunt-for-the-unique-stable-

sparse-and-fast-feature-learning-on-graphs.pdf (cited on pp. 77, 102, 103).

[186] A. Tsitsulin, D. Mottin, P. Karras, A. Bronstein, and E. Müller, “NetLSD: Hearing the shape
of a graph,” in 24th ACM SIGKDD, 2018, pp. 2347–2356. DOI: 10.1145/3219819.3219991

(cited on p. 77).

[187] T. Huynh, T. T. Thi Ho, and B. Le, “Graph classification via graph structure learning,” in
Asian Conference on Intelligent Information and Database Systems, ser. Lecture Notes in
Computer Science, vol. 13758, Springer, 2022, pp. 269–281. DOI: 10.1007/978-3-031-

21967-2_22 (cited on p. 77).

152

https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/viewFile/16273/15922
https://doi.org/10.1145/3110025.3110086
https://doi.org/10.1145/3110025.3110086
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16611
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16611
https://doi.org/10.1109/tnnls.2020.2978386
https://doi.org/10.1007/978-3-030-04648-4_7
https://doi.org/10.1007/978-3-030-04648-4_7
1810.09155
https://arxiv.org/pdf/1810.09155.pdf
https://doi.org/10.1016/j.patcog.2016.07.043
http://papers.nips.cc/paper/6614-hunt-for-the-unique-stable-sparse-and-fast-feature-learning-on-graphs.pdf
http://papers.nips.cc/paper/6614-hunt-for-the-unique-stable-sparse-and-fast-feature-learning-on-graphs.pdf
https://doi.org/10.1145/3219819.3219991
https://doi.org/10.1007/978-3-031-21967-2_22
https://doi.org/10.1007/978-3-031-21967-2_22

References

[188] R. Winter, F. Noe, and D.-A. Clevert, “Permutation-invariant variational autoencoder for
graph-level representation learning,” in Conference on Neural Information Processing Sys-
tems, 2021 (cited on p. 78).

[189] L. Gutiérrez-Gómez and J.-C. Delvenne, “Unsupervised network embeddings with node
identity awareness,” Applied Network Science, vol. 4, p. 82, 2019. DOI: 10.1007/s41109-

019-0197-1 (cited on p. 78).

[190] R. Al-Rfou, B. Perozzi, and D. Zelle, “Ddgk: Learning graph representations for deep diver-
gence graph kernels,” in World Wide Web Conference, 2019, pp. 37–48. DOI: 10.1145/

3308558.3313668 (cited on p. 78).

[191] M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convolutional neural networks for graphs,”
in 33rd International Conference on International Conference on Machine Learning, 2016,
pp. 2014–2023 (cited on p. 78).

[192] Z. Luo, L. Liu, J. Yin, Y. Li, and Z. Wu, “Deep learning of graphs with ngram convolutional
neural networks,” IEEE Transactions on Knowledge and Data Engineering, vol. 29, no. 10,
pp. 2125–2139, 2017. DOI: 10.1109/tkde.2017.2720734 (cited on p. 78).

[193] J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, and G. E. Dahl, “Neural message passing
for quantum chemistry,” in Proceedings of the 34th ICML, 2017, pp. 1263–1272 (cited on
pp. 78, 85).

[194] T. Pham, T. Tran, H. Dam, and S. Venkatesh, “Graph classification via deep learning with
virtual nodes,” arXiv, vol. cs.LG, p. 1708.04357, 2017 (cited on p. 78).

[195] S. Wang, J. Tang, C. Aggarwal, Y. Chang, and H. Liu, “Signed network embedding in social
media,” in 17th SIAM International Conference on Data Mining, 2017, pp. 327–335. DOI:
10.1137/1.9781611974973.37 (cited on p. 79).

[196] M. Cygan, M. Pilipczuk, M. Pilipczuk, and J. Wojtaszczyk, “Sitting closer to friends than
enemies, revisited,” in Mathematical Foundations of Computer Science, 2012, pp. 296–
307. DOI: https://doi.org/10.1007/978-3-642-32589-2_28 (cited on p. 79).

[197] J. Huang, H. Shen, L. Hou, and X. Cheng, “Signed graph attention networks,” in Interna-
tional Conference on Artificial Neural Networks, 2019 (cited on p. 80).

[198] Y. Li, Y. Tian, J. Zhang, and Y. Chang, “Learning signed network embedding via graph
attention,” in 34th AAAI Conference on Artificial Intelligence, 2020 (cited on p. 80).

[199] N. Arnk, R. Figueiredo, and V. Labatut, “Multiplicity and diversity: Analysing the optimal
solution space of the correlation clustering problem on complete signed graphs,” Journal of
Complex Networks, vol. 8, no. 6, 2021. DOI: 10.1093/comnet/cnaa025 (cited on p. 81).

153

https://doi.org/10.1007/s41109-019-0197-1
https://doi.org/10.1007/s41109-019-0197-1
https://doi.org/10.1145/3308558.3313668
https://doi.org/10.1145/3308558.3313668
https://doi.org/10.1109/tkde.2017.2720734
https://doi.org/10.1137/1.9781611974973.37
https://doi.org/https://doi.org/10.1007/978-3-642-32589-2_28
https://doi.org/10.1093/comnet/cnaa025

References

[200] ——, “Multiple partitioning of multiplex signed networks: Application to european parliament
votes,” Social Networks, vol. 60, pp. 83–102, 2020. DOI: 10.1016/j.socnet.2019.02.001

(cited on p. 81).

[201] B. Rozemberczki and R. Sarkar, “Characteristic functions on graphs: Birds of a feather,
from statistical descriptors to parametric models,” in 29th ACM International Conference on
Information & Knowledge Management, 2020, pp. 1325–1334. DOI: 10.1145/3340531.

3411866 (cited on pp. 83, 100).

[202] A. Galland, “Deep learning techniques for graph embedding at different scales,” PhD the-
sis, Université Paris sciences et lettres, 2020. [Online]. Available: https://theses.hal.

science/tel-03690033/ (cited on p. 83).

[203] B. Y. Weisfeiler and A. A. Leman, “A reduction of a graph to a canonical form and an algebra
arising during this reduction,” Nauchno-Technicheskaya Informatsia, vol. 2, no. 9, pp. 12–
16, 1968 (cited on p. 84).

[204] C. Fang, Z. Liu, Y. Shi, J. Huang, and Q. Shi, “Functional code clone detection with syn-
tax and semantics fusion learning,” in International Symposium on Software Testing and
Analysis, 2020, pp. 516–527. DOI: 10.1145/3395363.3397362 (cited on p. 84).

[205] X. Zhou, Y. Zhang, Z. Li, X. Wang, J. Zhao, and Z. Zhang, “Large-scale cellular traffic
prediction based on graph convolutional networks with transfer learning,” Neural Computing
and Applications, vol. 34, pp. 5549–5559, 2022. DOI: 10.1007/s00521-021-06708-x (cited
on p. 84).

[206] Q.-D. Ngo, H.-T. Nguyen, H.-A. Tran, and D.-H. Nguyen, “IoT botnet detection based on
the integration of static and dynamic vector features,” in 8th International Conference on
Communications and Electronics, 2021, pp. 540–545. DOI: 10.1109/ICCE48956.2021.

9352145 (cited on p. 84).

[207] Z. Zhang, J. Liu, X. Zheng, Y. Wang, P. Han, Y. Wang, K. Zhao, and Z. Zhang, “RSGNN: A
model-agnostic approach for enhancing the robustness of signed graph neural networks,” in
ACM Web Conference, 2023, pp. 60–70. DOI: 10.1145/3543507.3583221 (cited on p. 85).

[208] P. Doreian and A. Mrvar, “Partitioning signed social networks,” Social Networks, vol. 31,
no. 1, pp. 1–11, 2009. DOI: 10.1016/j.socnet.2008.08.001 (cited on p. 94).

[209] R. Figueiredo and G. Moura, “Mixed integer programming formulations for clustering prob-
lems related to structural balance,” Social Networks, vol. 35, no. 4, pp. 639–651, 2013. DOI:
10.1016/j.socnet.2013.09.002 (cited on p. 94).

154

https://doi.org/10.1016/j.socnet.2019.02.001
https://doi.org/10.1145/3340531.3411866
https://doi.org/10.1145/3340531.3411866
https://theses.hal.science/tel-03690033/
https://theses.hal.science/tel-03690033/
https://doi.org/10.1145/3395363.3397362
https://doi.org/10.1007/s00521-021-06708-x
https://doi.org/10.1109/ICCE48956.2021.9352145
https://doi.org/10.1109/ICCE48956.2021.9352145
https://doi.org/10.1145/3543507.3583221
https://doi.org/10.1016/j.socnet.2008.08.001
https://doi.org/10.1016/j.socnet.2013.09.002

References

[210] J. Padilla Montani and P. Schüller, “TUWienKBS at GermEval 2018: German abusive tweet
detection,” in GermEval 2018 Workshop, 2018, pp. 45–50. [Online]. Available: https://

www.oeaw.ac.at/fileadmin/subsites/academiaecorpora/PDF/GermEval2018_Proceedings.

pdf (cited on p. 96).

[211] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word vectors with subword
information,” Transactions of the ACL, vol. 5, pp. 135–146, 2017. DOI: 10.1162/tacl_a_

00051 (cited on p. 99).

[212] L. Martin, B. Muller, P. J. Ortiz Suárez, Y. Dupont, L. Romary, E. de la Clergerie, D. Seddah,
and B. Sagot, “CamemBERT: A tasty french language model,” in ACL, 2020, pp. 7203–
7219. [Online]. Available: https://www.aclweb.org/anthology/2020.acl-main.645

(cited on p. 99).

[213] H. Le, L. Vial, J. Frej, V. Segonne, M. Coavoux, B. Lecouteux, A. Allauzen, B. Crabbé,
L. Besacier, and D. Schwab, “FlauBERT: Unsupervised language model pre-training for
french,” in 12th Language Resources and Evaluation Conference, 2020, pp. 2479–2490.
[Online]. Available: https://www.aclweb.org/anthology/2020.lrec-1.302 (cited on
pp. 99, 109, 113).

[214] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and V.
Stoyanov, “Roberta: A robustly optimized bert pretraining approach,” arXiv, 2019. [Online].
Available: https://arxiv.org/pdf/1907.11692.pdf (cited on p. 99).

[215] G. Wenzek, M.-A. Lachaux, A. Conneau, V. Chaudhary, F. Guzmán, A. Joulin, and E. Grave,
“CCNet: Extracting high quality monolingual datasets from web crawl data,” in 12th Lan-
guage Resources and Evaluation Conference, 2020, pp. 4003–4012. [Online]. Available:
https://www.aclweb.org/anthology/2020.lrec-1.494.pdf (cited on p. 99).

[216] A. Akbik, D. Blythe, and R. Vollgraf, “Contextual string embeddings for sequence labeling,” in
27th International Conference on Computational Linguistics, 2018, pp. 1638–1649. [Online].
Available: https://www.aclweb.org/anthology/C18-1139 (cited on pp. 99, 117, 124, 127,
128).

[217] C. Donnat, M. Zitnik, D. Hallac, and J. Leskovec, “Learning structural node embeddings via
diffusion wavelets,” in 24th ACM SIGKDD, 2018, pp. 1320–1329. DOI: 10.1145/3219819.

3220025 (cited on pp. 102, 103).

[218] G. Nikolentzos, G. Dasoulas, and M. Vazirgiannis, “K-hop graph neural networks,” Neural
Networks, vol. 130, pp. 195–205, 2020. DOI: 10.1016/j.neunet.2020.07.008 (cited on
pp. 102, 103).

155

https://www.oeaw.ac.at/fileadmin/subsites/academiaecorpora/PDF/GermEval2018_Proceedings.pdf
https://www.oeaw.ac.at/fileadmin/subsites/academiaecorpora/PDF/GermEval2018_Proceedings.pdf
https://www.oeaw.ac.at/fileadmin/subsites/academiaecorpora/PDF/GermEval2018_Proceedings.pdf
https://doi.org/10.1162/tacl_a_00051
https://doi.org/10.1162/tacl_a_00051
https://www.aclweb.org/anthology/2020.acl-main.645
https://www.aclweb.org/anthology/2020.lrec-1.302
https://arxiv.org/pdf/1907.11692.pdf
https://www.aclweb.org/anthology/2020.lrec-1.494.pdf
https://www.aclweb.org/anthology/C18-1139
https://doi.org/10.1145/3219819.3220025
https://doi.org/10.1145/3219819.3220025
https://doi.org/10.1016/j.neunet.2020.07.008

References

[219] M. Zhang and P. Li, “Nested graph neural networks,” in Conference on Neural Information
Processing Systems, 2021, pp. 15 734–15 747. [Online]. Available: https://proceedings.

neurips. cc /paper _ files/ paper /2021 / file/ 8462a7c229aea03dde69da754c3bbcc4 -

Paper.pdf (cited on pp. 102, 103).

[220] A. Rücklé, S. Eger, M. Peyrard, and I. Gurevych, “Concatenated power mean word embed-
dingsas universal cross-lingual sentence representations,” arXiv, 2018. [Online]. Available:
https://arxiv.org/abs/1803.01400 (cited on p. 107).

[221] U. Singer, I. Guy, and K. Radinsky, “Node embedding over temporal graphs,” in International
Joint Conference on Artificial Intelligence, 2019, pp. 4605–4612. DOI: 10.24963/ijcai.

2019/640 (cited on p. 124).

156

https://proceedings.neurips.cc/paper_files/paper/2021/file/8462a7c229aea03dde69da754c3bbcc4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/8462a7c229aea03dde69da754c3bbcc4-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/8462a7c229aea03dde69da754c3bbcc4-Paper.pdf
https://arxiv.org/abs/1803.01400
https://doi.org/10.24963/ijcai.2019/640
https://doi.org/10.24963/ijcai.2019/640

	Introduction
	Contributions
	Personal Bibliography
	Thesis Outline

	Survey of Online Abuse Detection
	Definition of Online Abuse
	Abuse Detection Methods
	Textual Methods
	Contextual Methods

	Datasets
	Existing Datasets
	Datasets Related to this Thesis

	Formalization and Evaluation
	Formalization of Abuse Detection
	Evaluation Metrics

	Conclusion

	Graph metrics as graph features
	Definitions and Notations
	Vertex-Focused Topological Measures
	Microscopic Measures
	Macroscopic Measures
	Mesoscopic Measures

	Graph-Focused Topological Measures
	Microscopic Measures
	Macroscopic Measures
	Mesoscopic Measures

	Conclusion

	Feature Engineering for Abuse Detection
	Graph Extraction from Conversations
	Proposed Representation Methods
	Text-Based Features
	Graph-Based Features
	Combining the Textual and Structural Information

	Experiments
	Experimental Protocol
	Classification Results
	Feature Study

	Analysis and Discussion
	Temporal Aspect
	Impact of Edge Attributes

	Conclusion

	Signed Whole-Graph Embedding
	Definitions and Notations
	Graph Representation Learning
	Vertex Embedding
	Whole-Graph Embedding
	Signed Graph Embedding

	Datasets
	Correlation Clustering Instances
	European Parliament Roll-Calls
	Brief Comparison

	Proposed Methods
	Signed Network Embedding
	Signed Graph2vec
	Signed Graph Convolutional Networks

	Experiments
	Results
	Comparison

	Conclusion

	Representation Learning for Abuse Detection
	Embedding Methods
	Lexical Embedding Methods
	Selected Graph Embedding Methods
	Proposed Whole-Graph Embedding Methods

	Experiments
	Experimental Protocol
	Classification Results
	Fusion of Embeddings
	Results Summary

	Feature Study
	Text Features
	Graph Features

	Conclusion

	Conclusion and Perspectives
	Conclusion
	Perspectives

	Appendices
	Text and Graph Joint Embedding
	Flair Embedding
	Proposed Architecture

	Datasets
	Ruddit
	Limitations of Ruddit

	Wikipedia Abusive Conversations
	Proposed Corpus
	Limitations of WAC

	References

