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Titre : Méthodes variationnelles appliquées à l'étude de modèles discrets et dynamiques en endommagement brutal

Mots clés : Calcul des variations, théorie géométrique de la mesure, Γ-convergence, relaxation, homogénéisation, mécanique des milieux continus dissipatifs, élasticité linéaire, rupture, plasticité, endommagement Résumé : L'objectif de cette thèse consiste à étudier un modèle de la mécanique de l'endommagement brutal, dans différents régimes où la zone endommagée se concentre sur des ensembles de mesure nulle, et à identifier les modèles limites effectifs obtenus par analyse asymptotique basée sur la Γ-convergence des énergies totales. Nous commencerons par présenter différents modèles de la mécanique de l'endommagement et rappellerons quelques résultats fondateurs du cadre mathématique variationnel considéré par la suite. Ensuite, nous étudierons le comportement asymptotique d'une famille d'énergies d'endommagement brutal dans un cadre statique et discret en espace, où les énergies considérées agissent seulement sur des déplacements continus et affines par morceaux. Nous montrerons l'existence de différents modèles limites selon les lois d'échelle des régimes associés. En particulier, nous prouverons un résultat d'approximation discrète par éléments finis adaptatifs de la fonctionnelle de Griffith isotrope bidimensionnelle (en termes de Γ-convergence) par une suite d'énergies discrètes d'endommagement brutal définies pour des déplacements affines par morceaux et continus. Enfin, nous nous attarderons sur une interaction surprenante entre relaxation et irréversibilité au cours d'une évolution quasi-statique en mécanique de l'endommagement, en montrant que l'évolution quasi-statique d'un matériau élastique subissant un processus de déformation plastique indépendant de la vitesse de charge ne peut pas être obtenue de façon systématique comme modèle limite d'évolutions quasistatiques d'endommagement brutal.

Title : Variational methods applied to discrete and evolutionary brittle damage models Keywords : Calculus of variations, geometric measure theory, Γ-convergence, relaxation, homogenization, continuum mechanics with dissipative phenomena, linear elasticity, fracture, plasticity, damage Abstract : The purpose of this thesis consists in studying brittle damage models, in different regimes where the damaged zone concentrates on vanishingly small sets, and in identifying the nature of the effective limit models obtained by means of an asymptotic analysis based on the Γ-convergence of the total energies. First, we introduce several damage mechanical models and recall some seminal results of the variational mathematical framework considered hereafter. Then, we address the question of the asymptotic analysis of brittle damage energies in the discrete and static setting, where the energies are restricted to piecewise affine continuous displacements. We exhibit different effective limit models according to the related regimes' scaling laws. In particular, we prove a discrete adaptive finite element approximation (in terms of Γ-convergence) of the isotropic two-dimensional Griffith functional, by a sequence of discrete brittle damage energy functionals defined on continuous piecewise affine displacements. Finally, we focus on a peculiar interplay between relaxation and irreversibility throughout a quasi-static evolution in damage mechanics, by showing that the quasi-static evolution of an elastic material undergoing a rate-independent process of plastic deformation cannot be systematically derived as the limit model of a sequence of quasi-static brittle damage evolutions.

-Introduction Générale

Les travaux présentés dans cette thèse portent sur l'analyse mathématique de modèles dissipatifs en mécanique des milieux continus, abordés du point de vue du calcul des variations et de la théorie géométrique de la mesure. Nous nous placerons dans le cadre de l'élasticité linéaire, sous l'hypothèse des petites déformations, et porterons une attention particulière sur certains phénomènes dissipatifs tels que l'endommagement (brutal ou progressif), la plasticité parfaite et la rupture fragile. Plus précisément, cette thèse a pour but d'étudier des modèles d'endommagement brutal sous différentes lois d'échelle et d'établir, par le biais d'une analyse asymptotique menée par Γ-convergence, la nature des modèles effectifs obtenus dans ces régimes respectifs. Cette question sera d'abord abordée dans un cadre statique aux chapitres 2 et 3, puis quasi-statique au chapitre 4.

Nous commençons ce chapitre introductif en rappelant succinctement quelques notions de base en thermomécanique des milieux continus et discuterons de la modélisation des milieux dissipatifs qui en découle, afin d'introduire et de justifier les modèles dissipatifs variationnels évoqués dans la suite de ce mémoire. Nous présenterons ensuite les objectifs de cette thèse, notamment en motivant l'articulation que l'on entend entre modèle d'endommagement et lois d'échelle. Nous décrirons et analyserons enfin les résultats obtenus au cours de cette thèse, avant de conclure cette introduction générale en introduisant les notations et outils de base empruntés ici.

. Mécanique des milieux continus dissipatifs

Ce paragraphe, à vocation heuristique, se base sur le livre de Gurtin, Fried et Anand [START_REF] Gurtin | The mechanics and thermodynamics of continua[END_REF], auquel nous renvoyons le lecteur pour une étude approfondie et rigoureuse de la mécanique et de la thermodynamique des milieux continus.

Nous considérons un matériau continu dont la configuration au repos, i.e. de référence, est un ouvert borné et régulier Ω ⊂ R N . Au cours d'un intervalle de temps [0, T ], le matériau se déforme sous l'effet du chargement auquel il est soumis. Nous désignons par ϕ(t, Ω) la configuration déformée qu'il occupe au temps t ∈ [0, T ], où nous supposerons que le champ des déformations ϕ : [0, T ] × Ω → R N est régulier, afin de simplifier la suite des raisonnements de ce paragraphe. La position d'un point

x ∈ Ω dans la configuration déformée au temps t est ainsi donnée par ϕ(t, x). Afin d'assurer les conditions de non-interpénétration de la matière et la préservation de l'orientation de l'espace, nous faisons l'hypothèse (classique) que ϕ(t, •) est injective et que le jacobien du gradient (en espace) des déformations ∇ϕ(t, •) satisfait det ∇ϕ(t, •) > 0 dans Ω, en tout temps t. Toute courbe dans la configuration d'origine subit alors un changement de longueur mesuré à l'aide du tenseur de Cauchy-Green ∇ϕ(t, •) T ∇ϕ(t, •) à l'instant t. Au cours du mouvement, les interactions entre les parties du milieu ou entre le milieu et son environnement extérieur résultent de trois types d'efforts :

(i) des forces de contact T (par unité de surface) à l'interface entre des parties internes adjacentes du corps, (ii) des forces de contact g (par unité de surface) exercées par l'environnement extérieur sur le bord du milieu, (iii) des forces volumiques f (par unité de volume) exercées par l'environnement extérieur à l'intérieur du milieu.

Un des axiomes fondamentaux de la mécanique des milieux continus concerne les forces de contact : si S est une surface régulière dans la configuration déformée ϕ(t, Ω) séparant le matériau en deux parties P 1 et P 2 , l'hypothèse de Cauchy suppose que P 2 exerce sur P 1 une force par unité de surface T (ν(y), y, t) en tout point y ∈ S, ne dépendant que de la normale ν à S orientée de P 1 vers P 2 .

Conservation de la masse Les milieux continus possèdent une masse qui doit être conservée au cours du mouvement. Autrement dit, en notant ϱ(t, •) la masse volumique du milieu à l'instant t, le principe de conservation de la masse assure que pour toute sous-partie ω ⊂ Ω, ϕ(t,ω) ϱ(t, x) dx = ω ϱ(0, x) dx = ω ϱ(t, ϕ(t, x))det ∇ϕ(t, x) dx où nous avons utilisé la formule de changement de variables. En particulier, il vient que ϱ(t, ϕ(t, x))det ∇ϕ(t, x) = ϱ(0, x) pour tout x ∈ Ω et en tout temps.

En introduisant la vitesse dans la configuration déformée v(t, ϕ(t, x)) := φ(t, x), on en déduit la version locale de la conservation de la masse : ρ(t, y) + div (ϱv)(t, y) = 0 pour tout t ∈ [0, T ] et tout y ∈ ϕ(t, Ω).

Théorème de Cauchy

Les bilans de la quantité de mouvement et du moment cinétique expriment le fait que la variation temporelle de la quantité de mouvement (respectivement, du moment cinétique) est donnée par la somme des forces extérieures (respectivement, des moments des forces extérieures) appliquées au système. Autrement dit, on a pour toute sous-partie ω ⊂ Ω et en tout temps : T (ν, y, t) ∧ y dH N -1 (y)

d dt ϕ(t,
où ∧ désigne le produit vectoriel (ici, N = 2 ou 3). Il en découle le Théorème de Cauchy, qui assure que l'application ν → T (ν, y, t) est symétrique et linéaire, d'où l'existence du tenseur des contraintes de Cauchy, σ(t, y) ∈ M N ×N sym , tel que T (ν, y, t) = σ(t, y)ν pour tout y ∈ ϕ(t, Ω). raisonnablement supposer que la configuration déformée du matériau coïncide en tout temps avec sa configuration au repos, à un déplacement homogène en espace près. En particulier, le principe de conservation de la masse assure que la masse volumique du corps ϱ(t, x) =: ϱ(x) est indépendante du temps, de sorte que le bilan de la quantité de mouvement (1.1.1) conduit au principe fondamental de la dynamique : 

Hypothèse des petites transformations

ϱ(x) v(t, x) = f (t, x) + divσ(t,
           ϱü = f + div σ dans [0, T ] × Ω, σ T = σ dans [0, T ] × Ω, σν = g sur [0, T ] × Γ N , u = w sur [0, T ] × Γ D .
Lorsque le mouvement est suffisamment lent, on peut négliger les effets d'inertie et les équations d'équilibre s'obtiennent alors à partir des équations du mouvement en négligeant le terme d'accélération :

f + div σ = 0 dans [0, T ] × Ω.
Nous avons alors affaire à une évolution quasi-statique où le milieu cherche en chaque instant un état d'équilibre. Dans la suite de ce mémoire, les équations du mouvement serons réécrites sous une formulation faible en terme d'énergie, permettant de s'affranchir des hypothèses de régularité forte des solutions.

Modélisation des milieux dissipatifs à l'aide d'une variable interne À ce stade de la modélisation, les équations du mouvement ne forment pas un système fermé. Il manque des relations liant le tenseur des contraintes et les déformations : c'est la loi de comportement, traduisant les propriétés physiques du matériau. Prenons par exemple le cas d'un solide purement élastique, caractérisé par la réversibilité de son comportement : il revient précisément à sa configuration de référence après un processus de charge-décharge, sans affaiblissement de ses propriétés élastiques. La modélisation des milieux continus élastiques (non dissipatifs) en petites déformations repose sur l'hypothèse que le tenseur des contraintes dérive d'un potentiel. Dans la suite de ce mémoire, nous nous intéresserons principalement à des milieux dissipatifs (non purement élastiques) pour lesquels un affaiblissement des propriétés élastiques et des déformations permanentes (irréversibles) peuvent subvenir. Pour modéliser de tels matériaux (toujours sous l'hypothèse des petites déformations), nous supposons dorénavant que la densité volumique d'énergie élastique du système et irréversible

W : M N ×N sym × R d → R + est
σ i = σ -σ r .
La déformation d'un milieu continu est une transformation thermodynamique particulière qui doit s'opérer en accord avec les deux principes de la thermodynamique. Le premier affirme qu'au cours du mouvement, la variation en temps de l'énergie totale (interne et cinétique) du milieu est égale à la quantité d'énergie échangée avec l'environnement extérieur, par transferts thermique (chaleur) et mécanique (travail des forces extérieures). Le deuxième principe assure que l'entropie, qui mesure le degré de désordre du milieu à l'échelle moléculaire, ne peut que croître au cours de la transformation. Dans cette thèse, nous considérerons toujours des évolutions isothermes (température constante en temps et en espace). Les effets de chaleur ne dissipent alors pas d'énergie, de sorte que les deux principes de la thermodynamique résultent en particulier en la validité de l'inégalité de dissipation mécanique :

∆ := σ : e( u) -Ẇ ≥ 0. Afin d'obtenir les lois de comportement des milieux continus dissipatifs, il nous manque encore des lois complémentaires liant les vitesses (e( u), σ) et les forces (σ i , A). À cet effet, nous nous restreignons à l'étude des matériaux standards généralisés (voir [START_REF] Halphen | Sur les matériaux standards généralisés[END_REF]) pour lesquels les forces thermodynamiques appartiennent au sous-différentiel d'un potentiel de dissipation évalué en les vitesses.

En définissant la force thermodynamique

Autrement dit, nous supposons l'existence d'un potentiel de dissipation D : M N ×N sym × R d → R + convexe, minimal et nul en 0, tel que (σ i , A) ∈ ∂D(e( u), α).

En introduisant D * la conjuguée convexe du potentiel, on vérifie alors que

D * (σ i , A) = sup (ξ,z)∈M N ×N sym ×R d σ i : ξ + A • z -D(ξ, z) = σ i : e( u) + A • α -D(e( u), α)
de sorte que l'inégalité de dissipation devient ∆ = D(e( u), α) + D * (σ i , A) ≥ 0.

Remarquons que cette description englobe le cas d'un matériau élastique, où la densité d'énergie élastique W (e(u), α) = W (e(u)) dépend uniquement du tenseur des déformations. Il n'y a donc pas de variable interne supplémentaire, de sorte que D = 0 et par conséquent la dissipation mécanique ∆ = 0, ce qui traduit bien le fait que le modèle est non dissipatif.

Il n'aura pas échappé au lecteur que certaines classes de matériaux et de comportements mécaniques n'entrent pas dans le formalisme présenté ci-dessus. Un certain manque de rigueur quant au caractère bien posé des lois précédentes est ainsi parfois inévitable, du fait de la trop grande rigidité sur les conditions de régularité imposées au matériau. L'approche par formulation variationnelle présente alors un intérêt certain de par sa plus grande flexibilité, en s'affranchissant des contraintes de dérivabilité classiques, et par conséquent de par son plus large cadre d'application. La pertinence mécanique des modèles variationnels introduits reste néanmoins sujet à discussion, tant de par leur non-unicité que de par l'incontournable nécessité de relaxer les formulations énergétiques afin de garantir des résultats d'existence. Nous sommes désormais en mesure d'introduire les modèles variationnels des différents milieux dissipatifs dont il sera question dans la suite de ce mémoire. Ces modèles (à l'exception de d'élasticité linéaire et de la plasticité parfaite), ne sont pas équivalents au formalisme des lois de comportement précédent, bien que motivés par ce dernier. 

E(t) = E(0) - t 0 Ω ḟ (s) • u(s) dxds - t 0 Γ N ġ(s) • u(s) dH N -1 ds + t 0 Ω ϱü • ẇ dxds + t 0 Ω σ(s) : e( ẇ(s)) dxds - t 0 Ω f (s) • ẇ(s) dxds - t 0 Γ N g(s) • ẇ(s) dH N -1 ds. = t 0 Γ D σν • ẇ dH N -1 ds

. Plasticité parfaite

La plasticité parfaite est un phénomène typiquement anélastique où des déformations permanentes surviennent lorsque la contrainte atteint un certain seuil. Plus précisément, le comportement du matériau est décrit par le biais de quatre quantités de la façon suivante : d'une part, le déplacement u : [0, T ]×Ω → R N est tel que son tenseur des déformations e(u) = e+p est additivement décomposé en la somme d'un tenseur des déformations élastiques e : [0, T ] × Ω → M N ×N sym et d'un tenseur des déformations plastiques p : [0, T ] × Ω → M N ×N sym , représentant respectivement les parties élastique (réversible) et permanente (irréversible) de la déformation. D'autre part, le tenseur des contraintes ne dépend (linéairement) que de la partie élastique de la déformation et est astreint à demeurer dans un convexe fermé contenant l'origine, K ⊂ M N ×N sym , tout en respectant le principe du travail maximal de Hill selon lequel les déformations plastiques ne progressent que lorsque la contrainte atteint le bord ∂K. L'intérieur de K correspond ainsi au domaine des déformations élastiques. Autrement dit, l'évolution plastique du matériau est caractérisée par les lois de comportement σ(t, x) = A(x)e(t, x), σ(t, x) ∈ K, ṗ(t, x) : σ(t, x) = max τ ∈K ṗ(t, x) : τ en tout temps t ∈ [0, T ] et pour tout x ∈ Ω, où A est le tenseur de Hooke du milieu, et par les équations du mouvement (au sens faible)

     divσ(t) + f (t) = ϱü(t)
dans Ω, Plus récemment, le modèle de plasticité a été reformulé dans un cadre variationnel ( [START_REF] Suquet | Un espace fonctionnel pour les équations de la plasticité[END_REF][START_REF] Suquet | Sur les équations de la plasticité : existence et regularité des solutions[END_REF][START_REF] Temam | Problèmes mathématiques en plasticité[END_REF]), donnant lieu à plusieurs résultats d'existence dans le cadre statique, quasi-statique pour des processus indépendants des vitesses, et dynamique (voir [START_REF] Mora | Relaxation of the Hencky model in perfect plasticity[END_REF], [START_REF] Maso | Quasistatic evolution problems for linearly elasticperfectly plastic materials[END_REF][START_REF] Babadjian | Quasi-static evolution in nonassociative plasticity : the cap model[END_REF], [START_REF] Babadjian | Approximation of dynamic and quasi-static evolution problems in elasto-plasticity by cap models[END_REF][START_REF] Anzellotti | Dynamical evolution of elasto-perfectly plastic bodies[END_REF] par exemple). En plasticité parfaite, la notion de solution variationnelle coïncide parfaitement avec la notion précédente de solution, ce qui n'est pas le cas pour un grand nombre de phénomènes mécaniques dissipatifs. Nous décrivons ici le cas d'une évolution quasi-statique (i.e. l'accélération est négligée) et indépendante des vitesses. D'après [START_REF] Maso | Quasistatic evolution problems for linearly elasticperfectly plastic materials[END_REF]Definition 4.2], un triplet

p(t) = (w(t) -u(t)) ⊙ ν sur Γ D , σ ( 
(u, e, p) : [0, T ] → BD(Ω) × L 2 (Ω; M N ×N sym ) × M(Ω ∪ Γ D ; M N ×N sym )
est une évolution variationnelle quasi-statique de plasticité parfaite si les propriétés suivantes sont satisfaites, pour tout t ∈ [0, T ] :

(i) Eu(t) = e(t)L N Ω + p(t) Ω dans M(Ω; M N ×N sym ) ; (ii) σ(t) = Ae(t) ∈ K presque partout dans Ω ;

(iii) div σ(t) + f (t) = 0 dans H -1 (Ω; R N ) et σ(t)ν = g(t) sur Γ N au sens faible, i.e. pour toute fonction test ψ ∈ H 1 (Ω; R N ) telle que ψ = 0 sur Γ D :

Ω σ(t) : e(ψ) dx = Ω f (t) • ψ dx + Γ N g(t) • ψ dH N -1 ; (iv) p(t) Γ D = (w(t) -u(t)) ⊙ νH N -1 Γ D dans M(Γ D ; M N ×N sym ) ; (v) p : [0, T ] → M(Ω ∪ Γ D ; M N ×N sym ) est à variation bornée.
Enfin, en introduisant le coût dissipatif cumulé dû aux déformations plastiques p au court de l'intervalle de temps [0, t] σ : e( ẇ) dxds -

t 0 Ω Ä ḟ • u + f • ẇä dxds - t 0 Γ N ( ġ • u + g • ẇ) dH N -1 ds.
Remarquons que l'inégalité de dissipation mécanique ∆ = σ : e( u) -Ẇ ≥ 0 est toujours satisfaite, puisqu'en intégrant ∆ en temps sur [0, t] et en espace sur Ω donne ici, formellement t 0 Ω

σ : e( u) dxds - 

σ(t) : ṗ(t) Ω ∪ Γ D = Ω∪Γ D I * K Å d ṗ(t) d | ṗ(t)| ã d | ṗ(t)| pour L 1 -presque tout t ∈ [0, T ].

. Endommagement

L'endommagement est un processus de déformation au cours duquel les propriétés élastiques du milieu s'affaiblissent de façon irréversible sous l'effet du chargement auquel il est soumis. La modélisation d'un tel phénomène se base sur le postulat que le tenseur de rigidité A(t, x) (module de Young) du matériau est une fonction d'une variable interne d'endommagement χ(t, x) :

A(t, x) = Â(χ(t, x))
où χ varie dans l'intervalle [0, 1], les cas χ = 1 correspondant à l'état d'endommagement maximal et χ = 0 à l'état sain. Un choix simple et naturel définissant la dépendance du tenseur de rigidité par rapport à la variable d'endommagement consiste à prendre 

Â(χ) = χA 0 + (1 -χ)A 1 , où A 0 et A 1 sont
W (e(u), χ) = 1 2 (χA 0 + (1 -χ)A 1 ) e(u) : e(u) + I [0,1] (χ).
Le cas où χ prend uniquement les valeurs 0 et 1 correspond à de l'endommagement brutal. Sinon, l'endommagement est dit progressif. Nous supposons ici que A 0 est défini positif, traduisant un endommagement seulement partiel. Dans le cas où A 0 est nul, l'endommagement est dit total. L'irréversibilité du processus est modélisé par la croissance en temps de la variable interne

χ ≥ 0.
En endommagement brutal, la transformation du milieu est caractérisée par le biais d'un critère de contrainte maximale de type Griffith, selon lequel les déformations élastiques cèdent le pas à l'endommagement dès lors que le tenseur des contraintes excède un certain seuil. En d'autres termes, la rigidité du matériau passera de celle de l'état sain A 1 à celle de l'état endommagé A 0 dès lors que

(A 1 -A 0 ) e(u) : e(u) > 2κ,
où la ténacité κ > 0 est une constante intrinsèque du matériau représentant la densité d'énergie dépensée par unité de volume lors de la transition de l'état sain à l'état endommagé. Dans le cas général (progressif ou brutal), les lois de comportement du modèle d'endommagement sont données par le système

     0 ≤ χ ≤ 1, χ ≥ 0, (A 1 -A 0 ) e(u) : e(u) ≤ 2κ si 0 ≤ χ < 1, A 1 -A 0 e(u) : e(u) -2κ χ = 0 si 0 < χ ≤ 1.
Avec le formalisme ultérieur, cela correspond au choix du potentiel de dissipation homogène en contrainte

D(χ) = κχ + I [0,+∞) (χ)
de sorte que

σ r = (χA 0 + (1 -χ)A 1 ) e(u) = σ et σ i = 0.
La correspondance exacte avec le formalisme précédent est mise en difficulté lors de la détermination de la force thermodynamique associée à χ, le potentiel de dissipation n'étant pas suffisamment régulier. La détermination de la loi d'évolution pour la variable interne d'endommagement est alors mal posée et nécessite un choix (non unique) quant à la force thermodynamique A, qui doit satisfaire

A ∈ (A 1 -A 0 ) e(u) -∂I [0,1] (χ), A ∈ ∂D( χ).
Une fois un choix fixé pour A, l'inégalité de dissipation s'écrit alors

∆ = A χ = κ χ ≥ 0.
Ainsi, le recours à l'approche variationnelle pour la description des processus d'endommagement s'avère pertinent et légitime, sinon nécessaire, comme expliqué dans [START_REF] Francfort | Stable damage evolution in a brittle continuous medium[END_REF] dans le cas quasi-statique. L'idée proposée par Francfort et Marigo consiste à compléter le modèle avec un critère de stabilité (globale, conduisant à des débats quant à la pertinence mécanique du modèle, mais nécessaire pour le caractère bien posé du modèle mathématique) selon lequel toute solution variationnelle (u, χ) : [0, T ] × Ω → R N × {0, 1} doit minimiser la somme des énergies potentielles et dissipatives parmi tous les déplacements et réarrangements admissibles du matériau (i.e. tenant compte de l'historique passé du chargement et de l'irréversibilité du processus d'endommagement). Plus précisément, étant donnée une subdivision de [0, T ] 0 = t 0 < ... < t I = T,

Francfort et Marigo introduisent l'énergie totale au temps t i associée à un couple (u, χ) ∈ H 1 (Ω; R N )× L ∞ (Ω; {0, 1}) : E i (u, χ) := Ω 1 2 (χA 0 + (1 -χ)A 1 ) e(u) : e(u) dx + κ Ω χ dx - Ω f (t i ) • u dx - Γ N g(t i ) • u dH N -1 .
Le problème consiste alors à trouver les couples 

(u i , χ i ) ∈ H 1 (Ω; R N ) × L ∞ (Ω; {0, 1}) qui minimisent E i (u, χ) (1.1.3) parmi tous les couples (u, χ) ∈ H 1 (Ω; R N ) × L ∞ (Ω; {0, 1}) tels que u = w(t i ) sur Γ D et χ = 1 dans {χ i-1 = 1}, pour chaque i ∈ 0, I avec χ 0 = 0. Malheureusement,
(u i , θ i ) ∈ H 1 (Ω; R N ) × L ∞ (Ω; [0, 1])
qui minimisent

E * i (u, θ) = Ω min A * ∈G θ (A 0 ,A 1 ) 1 2 A * e(u) : e(u) dx + κ Ω θ dx - Ω f (t i ) • u dx - Γ N g(t i ) • u dH N -1 parmi tout les couples (u, θ) ∈ H 1 (Ω; R N ) × L ∞ (Ω; {0, 1}) tels que u = w(t i ) sur Γ D et θ ≥ θ i-1 , pour i ∈ 0, I avec θ 0 = 0, où G θ (A 0 , A 1 ) est l'ensemble défini à la section 1.4.
Bien que ces problèmes de minimisation sous contraintes admettent des solutions, seul le temps initial correspond réellement à la relaxation du problème d'origine (1.1.3). Ce problème est résolu dans [START_REF] Francfort | A Variational View of Partial Brittle Damage Evolution[END_REF], où les auteurs définissent et démontrent le caractère bien posé de la formulation variationnelle relaxée de (1.1.3) en temps continu dans le cas quasi-statique. Une évolution quasi-statique d'endommagement brutal est alors donnée par un triplet

(u, Θ, A) : [0, T ] → H 1 (Ω; R N ) × L ∞ (Ω; [0, 1]) × G(A 0 , A 1 ) tel que • A(t) ∈ G 1-Θ(t) (A 0 , A 1 ) en tout temps t ∈ [0, T ] ; • A et Θ sont décroissants en temps ; • (u(t), A(t), 0) minimise en tout temps t ∈ [0, T ] Ω 1 2 A * e(v) : e(v) dx + κ Ω Θ(t)θ dx - Ω f (t i ) • v dx - Γ N g(t i ) • v dH N -1 parmi tout les triplets (v, A * , θ) ∈ H 1 (Ω; R N ) × G(A 0 , A(t)) × L ∞ (Ω; {0, 1}) tels que v = w(t) sur Γ D et A * ∈ G θ (A 0 , A(t)) ; • et l'énergie totale E := Ω 1 2 Ae(u) : e(u) dx + κ Ω (1 -Θ) dx - Ω f • u dx - Γ N g • u dH N -1
satisfait le bilan d'énergie, en tout temps t ∈ [0, T ] :

E(t) = E(0)+ t 0 Ω σ : e( ẇ) dxds- t 0 Ω Ä ḟ • u + f • ẇä dxds- t 0 Γ N ( ġ • u + g • ẇ) dH N -1 ds.
Des formulations variationnelles (relaxées) dans le cadre d'évolutions quasi-statiques et dynamiques ont également été introduites dans [START_REF] Garroni | Threshold-based quasi-static brittle damage evolution[END_REF][START_REF] Garroni | Sarrocco : Damage dynamics : a variational approach[END_REF], pour lesquelles les auteurs démontrent le caractère bien posé et l'existence de solutions. L'assouplissement des contraintes de régularité et la plus grande flexibilité apportés par l'approche variationnelle ont également permis de modéliser des phénomènes où plusieurs types de dissipation entrent en compte, aboutissant notamment à des modèles élastoplastiques mêlés à de l'endommagement ( [START_REF] Crismale | Globally stable quasistatic evolution for a coupled elastoplastic-damage model[END_REF][START_REF] Crismale | Globally stable quasistatic evolution for strain gradient plasticity coupled with damage[END_REF]).

Perfect Plasticity 

A ≡ A 1 p = 0 hardening A ≡ A 2 < A 1 A = A e(u) < A 1 Figure 1.1

. Rupture fragile

La mécanique de la rupture décrit la résistance d'un matériau élastique à la rupture fragile (fracture) ou ductile. Nous décrivons ici la présence de défauts de type fissure dont le cadre théorique, bien qu'introduit dès le début du vingtième siècle dans les travaux fondateurs de Griffith ([72]), continue de poser de nombreuses difficultés aux mathématiciens comme aux mécaniciens (voir [START_REF] Francfort | Variational fracture : twenty years after[END_REF]). Supposons par simplicité que le problème est planaire (N = 2) et que le chargement est suffisamment lent, de sorte que les effets d'inertie peuvent être négligés. Nous nous plaçons donc ici dans le cadre quasi-statique. Le terme générique de fissure désigne les lignes de discontinuité du champ de déplacements. Supposons, en adoptant le postulat de Griffith, que le chemin de fissuration Γ ⊂ Ω ∪ Γ D est a priori connu. La fracture est astreinte à demeurer dans Ω ∪ Γ D . Par conséquent, sous l'hypothèse que la fissure est suffisamment régulière, celle-ci sera complètement déterminée par sa longueur l, et nous noterons Γ(l) la fissure de longueur l dans Γ. Le phénomène de rupture sera donc modélisé par l'intermédiaire de la variable interne l. Du point de vue mécanique, étant donnée une longueur de fissuration l ≥ 0, le matériau Ω \ Γ(l) doit être à l'état d'équilibre avec le chargement à chaque instant t ∈ [0, T ], de sorte que le déplacement u(t, l) minimise l'énergie potentielle 

E(t, l, u) := Ω\Γ(l) W (e(u)) dx - Ω f (t) • u dx - Γ N g(t) • u dH 1 parmi tous les déplacements u ∈ C 1 (Ω \ Γ(l); R 2
< ∆ ≪ 1, E t, l(t) + ∆, u(t, l(t) + ∆) + κ(l(t) + ∆) ≥ E t, l(t), u(t, l(t)) + κl(t). (1.1.4) 
Un premier pas pour comprendre l'évolution future de la fracture consiste alors à faire décroître ∆ vers 0, de sorte que le taux de restitution d'énergie potentielle par unité de surface de zone rompue doit satisfaire :

G(t) := - ∂E t, l(t), u(t, l(t)) ∂l ≤ κ.
Cette condition nécessaire est alors complétée par la condition de croissance de la fissure, traduisant l'hypothèse d'irréversibilité du processus dans les matériaux fragiles :

l ≥ 0,
à laquelle on adjoint le postulat selon lequel la fissure ne progresse que lorsque le taux d'énergie restituée atteint la ténacité κ > 0 :

l = 0 sauf si G(l) = κ.
L'évolution de la fissure est alors dictée par le critère, dit de Griffith :

     l ≥ 0, G(l) ≤ κ, κ -G(l) l = 0.
(1.1.5) Remark 1.1.1. Bien qu'impossible de faire correspondre ce modèle (global) avec le formalisme présenté précédemment (local), une forte analogie est néanmoins notable, où la force thermodynamique A = -∂W/∂l associée à l correspond au taux de restitution de l'énergie potentielle G(l). En effet, en prenant le potentiel de dissipation homogène en contrainte

D(l) = κl + I [0,+∞) (l)
et en posant σ = σ r = Ae(u) et σ i = 0 (ce qui est cohérent avec le fait que les propriétés élastiques du milieu ne s'affaiblissent pas tant que la contrainte demeure inférieure à κ), on vérifie alors que le critère de Griffith correspond bien à

G(l) ∈ ∂D( l) et à l'inégalité de dissipation ∆ = G(l) l = κ l ≥ 0.
Encore une fois, notons que le formalisme de (1.1.5) nécessite de pouvoir différentier l'énergie potentielle par rapport à la longueur de la fissure et de pouvoir dériver la longueur de la fissure ellemême en temps. De plus, le modèle de Griffith nécessite de connaître à l'avance la trajectoire de fissuration du matériau, et ne permet donc pas de modéliser l'initiation de fissures. Ces différents inconvénients motivent de préférer une approche variationnelle de la mécanique de la rupture.

Une formulation variationnelle forte a ainsi vu le jour, en remplaçant la loi d'évolution de la fissuration par la conservation de l'énergie totale et en permettant aux fissures de se propager librement tant que leur trajectoire minimise l'énergie totale ( [START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF][START_REF] Bourdin | The variational approach to fracture[END_REF]). Autrement dit, en notant Γ(t) ⊂ Ω ∪ Γ D la fissure au temps t ∈ [0, T ], la condition de minimalité (locale) (1.1.4) est remplacée par la condition de minimalité (globale)

(Γ(t), u(t)) ∈ argmin (Γ,u) ® E(t, Γ, u) := Ω\Γ W (e(u)) dx - Ω f (t) • u dx - Γ N g(t) • u dH 1 + κH 1 (Γ) (1.1.6) parmi tous les couples (Γ, u) avec Γ(t) ⊂ Γ de longueur finie et fermé et u ∈ H 1 (Ω \ Γ; R 2 ) tel que u = w(t) sur Γ D \ Γ. En particulier, u(t) ∈ H 1 (Ω \ Γ(t); R 2 ) est solution au sens faible de            -divAe(u(t)) = f (t) dans Ω \ Γ(t), u(t) = w(t) sur Γ D \ Γ(t), Ae(u(t))ν = g(t) sur Γ N , Ae(u(t))ν = 0 sur Γ ∩ Ω, puisque Γ(t) ∩ ∂Ω ⊂ Γ D de sorte que ∂ Ω \ Γ(t) = (Γ D \ Γ(t)) ⊔ Γ N ⊔ (Γ(t) ∩ Ω).
Enfin, la condition d'irréversibilité du processus de fissuration est remplacée par la croissance ensembliste de la fissure :

Γ(s) ⊂ Γ(t) pour tous 0 ≤ s ≤ t ≤ T, (1.1.7) 
tandis que le critère de propagation de Griffith est remplacé par le bilan d'énergie Le caractère bien posé de la formulation variationnelle forte et l'existence de solution sont des questions délicates. Dans le contexte de segmentation d'images introduit par Mumford et Shah, l'homologue scalaire du problème de fracture, l'existence de solution forte s'est avérée équivalente à l'existence de solution faible dans l'espace SBV (Ω). Ce résultat non trivial fait l'objet de l'article [START_REF] De Giorgi | Existence theorem for a minimum problem with free discontinuity set[END_REF].

E(t) := E t, Γ(t), u(t) = E(0) + t 0 Γ D \Γ(t) Ae(u)ν • ẇ dH 1 ds - t 0 Ω ḟ • u dxds - t 0 Γ N ġ • u dH 1 ds. ( 1 
Comme pour son homologue scalaire, nous décrivons ici une formulation variationnelle faible du problème de fracture, introduite par Francfort et Marigo dans le cas où f = 0 et g = 0 ( [START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF][START_REF] Bourdin | The variational approach to fracture[END_REF]). La condition de minimalité (1.1.6) est alors remplacée par

(Γ(t), u(t)) ∈ argmin (Γ,u) ß E(t, Γ, u) := Ω W (e(u)) dx + κH 1 (Γ) ™ (1.1.9) parmi tous les couples (Γ, u) avec Γ(t) ⊂ Γ ⊂ Ω ∪ Γ D de longueur finie et fermé et u ∈ SBD 2 (Ω; R 2 ) tel que u = w(t) sur R 2 \ Ω et J u ⊂ Γ.
Notons en particulier que des fissures peuvent apparaître sur tout le bord du domaine. L'existence de solution variationnelle faible a été obtenue dans plusieurs contextes, notamment dans le cas de cisaillements anti-planaires où u : Ω → R ( [START_REF] Francfort | Existence and convergence for quasi-static evolution in brittle fracture[END_REF]), en élasticité non-linéaire ( [START_REF] Maso | Quasistatic crack growth in nonlinear elasticity[END_REF]) et avec condition de non-interpénétration de la matière ( [START_REF] Maso | Quasistatic crack growth in finite elasticity with non-interpenetration[END_REF][START_REF] Maso | Crack growth with non-interpenetration : a simplified proof for the pure Neumann problem[END_REF]) ou encore en élasticité linéaire en dimension deux ( [START_REF] Friedrich | Solombrino : Quasistatic crack growth in 2d-linearized elasticity[END_REF]). Comme pour le problème de Mumford-Shah, prouver l'existence de solutions fortes à partir des solutions faibles requiert l'obtention de régularité plus forte sur le déplacement et son ensemble de saut, ce qui est souvent difficile. Citons quelques avancées récentes dans le cadre statique ( [START_REF] Conti | Existence of strong minimizers for the Griffith static fracture model in dimension two[END_REF][START_REF] Chambolle | Existence of strong solutions to the Dirichlet problem for the Griffith energy[END_REF]) et quasi-statique ([54, 14, 31]).

. Lois d'échelle et endommagement brutal

Rappelons que dans le contexte de l'endommagement brutal, nous considérons un matériau linéairement élastique composé de deux phases pures : une phase endommagée dont les propriétés élastiques sont affaiblies, et une phase saine. Les propriétés élastiques des régions endommagée et Marigo (voir [START_REF] Francfort | Stable damage evolution in a brittle continuous medium[END_REF]), l'énergie totale du système associée à un champ de déplacements u ∈ H 1 (Ω; R N ) est définie comme la somme de l'énergie élastique emmagasinée dans le corps Ω W (e(u), χ) dx et de l'énergie de dissipation Ω D(χ) dx : 

E(u, χ) = 1 2 Ω (χA 0 + (1 -χ)A 1 ) e(u) : e(u) dx + κ Ω χ dx, (1.2 
χ = 1 {(A 1 -A 0 )e(u) : e(u) ≥ 2κ} .
Il est alors équivalent de chercher à minimiser dans

H 1 (Ω; R N ) l'énergie Ω min Å 1 2 A 0 e(u) : e(u) + κ ; 1 2 A 1 e(u) : e(u) ã =:W (e(u))
dx ou encore son enveloppe semi-continue inférieure

E(u) := Ω SQW (e(u)) dx, où SQW (ξ) = inf ® (0,1) N W (x, ξ + ∇ϕ(y)) dy : ϕ ∈ H 1 0 Ä (0, 1) N ; R N ä ést
l'enveloppe symétrique quasi-convexe de W (voir [START_REF] Allaire | Minimizers for a double-well problem with affine boundary conditions[END_REF]). L'obtention de formules explicites pour SQW est une question souvent difficile et encore largement ouverte. Notons néanmoins les précisions apportées dans [START_REF] Allaire | Minimizers for a double-well problem with affine boundary conditions[END_REF][START_REF] Allaire | Shape Optimization by the Homogenization Method[END_REF], où son expression est donnée par le biais de minimisations dans l'ensemble des matériaux composites admissibles grâce aux bornes de Hashin-Shtrikman. L'objectif de cette thèse est d'étudier de telles énergies couplées avec différentes lois d'échelle. En d'autres termes, en introduisant des petits paramètres dans la densité d'énergie volumique et dans le domaine de définition de l'énergie totale, nous nous plaçons dans des régimes où la zone endommagée est "petite" et l'endommagement est de plus en plus fort jusqu'à devenir total. La question est alors d'identifier la nature des modèles mécaniques effectifs obtenus par analyse asymptotique (menée par Γ-convergence) lorsque les paramètres tendent vers 0, selon leurs taux de convergence relatifs. Les énergies d'endommagement brutal que nous considérerons seront donc typiquement de la forme

E ε (u, χ) = 1 2 Ω η ε χA 0 + (1 -χ)A 1 e(u) : e(u) dx + κ ε Ω χ dx (1.2.2)
où η ε > 0 et ε > 0 sont deux petits paramètres tels que η ε → 0 lorsque ε → 0. On constate alors que les propriétés élastiques de l'état endommagé, η ε A 0 , dégénèrent vers 0 lorsque ε → 0. Simultanément, pour toute suite {(u ε , χ ε )} ε>0 uniformément bornée en énergie, le caractère divergeant de la ténacité du matériau κ/ε → +∞ force la zone endommagée à se concentrer sur des ensembles Lebesgue-négligeables. L'analyse du comportement asymptotique de ces énergies consiste à comprendre l'effet de la compétition entre les deux phénomènes cités plus haut sur la densité d'énergie limite : d'une part l'intérêt énergétique des suites minimisantes à osciller et développer des microstructures, d'autre part la concentration de l'endommagement. Selon les lois d'échelle considérées, l'interaction entre l'homogénéisation du matériau (due à la nécessité de relaxer l'énergie totale) et la formation de singularités spatiales (due à la concentration de l'endommagement) met en lumière des phénomènes surprenants et non triviaux. Par exemple, dans l'étude statique [START_REF] Babadjian | Concentration versus oscillation effects in brittle damage[END_REF], les auteurs ont mis en évidence trois lois d'échelle pour lesquelles les modèles limites ont des propriétés mécaniques très différentes : un modèle trivial lorsque η ε ≪ ε, un modèle d'élasticité linéaire lorsque η ε ≫ ε et un modèle de plasticité de Hencky lorsque η ε ∼ ε.

. Description des résultats 1.3.1 . Approximation discrète de la fonctionnelle de Griffith

Le deuxième chapitre de cette thèse constitue un travail en collaboration avec Jean-François BA-BADJIAN et a donné lieu à une publication [START_REF] Babadjian | Discrete approximation of the Griffith functional by adaptive finite elements[END_REF] dans la revue SIAM Journal on Mathematical Analysis. Dans ce travail, nous démontrons une approximation discrète par éléments finis adaptatifs de la fonctionnelle de Griffith isotrope en dimension 2, en termes de Γ-convergence, par une suite de fonctionnelles intégrales de type (1.3.1). La fonctionnelle de Griffith a été initialement introduite dans les travaux de Griffith [START_REF] Griffith | The phenomena of rupture and flow in solids[END_REF] en mécanique de la rupture fragile, puis revisitée dans un cadre d'évolution variationnelle par Francfort et Marigo dans [START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF] (voir également [START_REF] Bourdin | The variational approach to fracture[END_REF]). Étant donné Ω ⊂ R 2 , la configuration de référence d'un matériau élastique se fracturant sous l'effet d'un champ de déplacements discontinu u : Ω → R 2 , l'énergie de Griffith est définie (dans une formulation faible) comme

G(u) := Ω\Ju |e(u)| 2 dx + κH 1 (J u ),
où les fissures du matériau élastique correspondent à l'ensemble de saut J u ⊂ Ω du déplacement, et où e(u) est son gradient symétrisé (tous deux définis au sens de la théorie géométrique de la mesure). L'énergie met en compétition un terme d'énergie de volume, représentant l'énergie élastique emmagasinée dans le matériau hors de la fracture, et un terme d'énergie surfacique qui pénalise l'existence de la fracture en payant sa longueur (donnée par sa mesure de Hausdorff 1-dimensionnelle) pondérée par la ténacité κ > 0.

S'inspirant de l'approche présentée dans [START_REF] Chambolle | Discrete approximation of the Mumford-Shah functional in dimension two[END_REF], nous considérons l'ensemble des éléments finis 

V ε (Ω) = u ∈ C 0 Ω; R 2 : ∃T ε ∈ T ε (Ω, θ 0 ), u est affine sur chaque triangle T ∈ T ε et introduisons les fonctionnelles approximantes E ε (u) := Ω 1 ε f (εAe(u) : e(u)) dx où u ∈ V ε (Ω), A ∈ L(M 2×2 sym ; M 2×2 sym )
f (t) = t ∧ κ, l'énergie s'écrit E ε (u) = Ω (1 -χ ε )Ae(u) : e(u) dx + κ ε Ω χ ε dx où χ ε = 1 {Ae(u):e(u)≥ κ ε } ∈ L ∞ (Ω; {0, 1}),
ce qui correspond à l'énergie d'endommagement brutal d'un matériau élastique dont l'élasticité de la phase saine est prise égale à l'identité et celle de la phase endommagée est fixée à 0. En considérant une suite {u ε } ε uniformément bornée en énergie, l'espace d'énergie qui intervient naturellement pour l'obtention de résultats de compacité est l'ensemble des fonctions spéciales généralisées à déformations bornées GSBD 2 (Ω) (introduit dans [START_REF] Maso | Generalised functions of bounded deformation[END_REF]).

Dans [START_REF] Babadjian | Discrete approximation of the Griffith functional by adaptive finite elements[END_REF], nous démontrons la Γ-convergence (pour la topologie de la convergence en mesure dans L 0 (Ω; R 2 )) des énergies d'endommagement brutal E ε vers la fonctionnelle de Griffith :

Ω Ae(u) : e(u) dx + κ sin θ 0 H 1 (J u ),
généralisant les résultats de [START_REF] Chambolle | Discrete approximation of the Mumford-Shah functional in dimension two[END_REF] au cadre vectoriel (2-dimensionnel) de l'élasticité linéaire. La preuve de l'inégalité de la borne supérieure se base sur des résultats de densité récents dans GSBD(Ω) et sur la construction explicite d'une triangulation admissible optimale, introduite dans [START_REF] Chambolle | Discrete approximation of the Mumford-Shah functional in dimension two[END_REF]. La difficulté principale vient du fait que l'énergie ne contrôle que la partie symétrique du gradient, ce qui rend impossible toute adaptation de la preuve constructive de [START_REF] Chambolle | Discrete approximation of the Mumford-Shah functional in dimension two[END_REF] et nécessite une méthode complètement différente afin d'obtenir l'inégalité de la borne inférieure pour le terme d'énergie surfacique. Nous nous ramenons dans un premier temps au cas d'une interface de saut rectiligne, par un argument de blow-up autour d'un point de saut de u. Notre démonstration consiste alors à quantifier, parmi les triangles de la triangulation globale, le nombre minimal de triangles associés à de grandes variations des déplacements. Pour cela, nous procédons par une méthode de slicing le long des sections (essentiellement) orthogonales à l'interface de saut J u . L'idée consiste alors à comparer l'amplitude limite du saut de u avec l'estimation de la variation d'une fonction affine le long d'une section (orthogonale à l'interface de saut) d'un tel triangle.

Notons que par définition de l'ensemble des éléments finis, les triangulations admissibles sont adaptatives et ont une structure géométrique flexible (mis à part une contrainte de non-aplatissement traduite par l'angle minimal θ 0 > 0). En effet, minimiser l'énergie à ε > 0 fixé fait appel à une optimisation implicite parmi les ε-triangulations adaptées à un déplacement donné u ε . Cela permet en particulier d'obtenir une énergie surfacique isotrope dans la Γ-limite, ne dépendant que de la longueur de la fissure et non de son orientation. La ténacité du matériau limite est une constante explicite et déterminée par la géométrie de nos triangles (κ sin θ 0 ), de sorte que toute ténacité donnée µ > 0 peut être obtenue en remplaçant κ par µ/(sin θ 0 ) dans la définition de E ε .

Finalement, nous étendons ce résultat au cas des énergies avec conditions de Dirichlet au bord et démontrons la convergence des minimiseurs. Plus précisément, afin de donner un sens à la notion de condition au bord à ε > 0 fixé, nous considérons un voisinage ouvert Ω ⊂⊂ Ω ′ et définissons l'ensemble des éléments finis

V Dir ε Ω ′ = ß u ∈ C 0 (Ω ′ ; R 2 ) : ∃T ε ∈ T ε (Ω ′ ), u est affine sur chaque T ∈ T ε et u = w Tε sur chaque T ∈ T ε intersectant Ω ′ \ Ω.
™ où w Tε est l'interpolation de Lagrange affine par morceaux de w sur T ε . Nous démontrons alors que les fonctionnelles

G ε : u ∈ L 0 (Ω ′ ; R 2 ) →    Ω 1 ε f εAe(u) : e(u) dx si u ∈ V Dir ε (Ω ′ )
+∞ sinon Γ-convergent (pour la topologie de la convergence en mesure dans L 0 (Ω ′ ; R 2 )) vers l'énergie de Griffith avec condition au bord de Dirichlet

G : u ∈ L 0 (Ω ′ ; R 2 ) →          Ω Ae(u) : e(u) dx + κ sin θ 0 H 1 (J u ∩ Ω) + H 1 (∂Ω ∩ {u ̸ = w}) si u ∈ GSBD 2 (Ω ′ ) et u = w L 2 -p.p. dans Ω ′ \ Ω +∞ sinon lorsque ε ↘ 0.
Nous plaçant ensuite dans le cas plus simple où

f (t) = κ ∧ t,
nous prouvons l'existence de minimiseurs, à ε > 0 fixé, pour la fonctionnelle d'énergie G ε avec conditions de Dirichlet et obtenons un résultat de compacité pour les suites de déplacements uniformément bornés en énergie. Pour cela, nous utilisons un théorème de compacité dans GSBD(Ω) introduit dans [START_REF] Chambolle | Equilibrium configurations for nonhomogeneous linearly elastic materials with surface discontinuities[END_REF], qui nécessite le retrait de mouvements rigides par morceaux associés à une partition de Cacciopoli du domaine élargi Ω ′ . Nous avons alors besoin d'une borne inférieure plus fine, afin de contrôler les éventuels sauts additionnellement créés aux frontières de la partition de Cacciopoli. Finalement, nous démontrons la convergence des minimiseurs (après le retrait des mouvements rigides) vers un minimiseur de la fonctionnelle de Griffith avec condition de Dirichlet.

. Modèles statiques discrets en endommagement brutal

Dans le troisième chapitre de cette thèse, nous complétons l'étude statique [START_REF] Babadjian | Concentration versus oscillation effects in brittle damage[END_REF] 

T ∈ T hε (Ω, θ 0 ),
si elle est formée de triangles dont les longueurs des côtés sont de l'ordre de h ε et dont tous les angles sont supérieurs ou égaux à θ 0 (ce qui correspond à un critère de non aplatissement des triangles). Nous définissons alors l'ensemble des éléments finis X hε (Ω) comme l'ensemble des couples

(u, χ) ∈ C 0 (Ω; R 2 ) × L ∞ (Ω; {0, 1})
tels qu'il existe une triangulation admissible commune de Ω adaptée au couple (u, χ) au sens où u est affine et χ constante sur chacun de ses triangles. Nous introduisons alors les fonctionnelles d'énergie

F ε : L 1 (Ω; R 2 ) × L 1 (Ω) → [0, +∞] définies par F ε (u, χ) =    1 2 Ω η ε χA 0 + (1 -χ)A 1 e(u) : e(u) dx + κ ε Ω χ dx si (u, χ) ∈ X hε (Ω), +∞ sinon (1.3.1)
ainsi que les taux de convergence

α = lim ε↘0 η ε ε ∈ [0, +∞] et β = lim ε↘0 h ε ε ∈ [0, +∞],
donnant lieu à cinq lois d'échelle à traiter :

(i) α = +∞ ou β = +∞ ; (ii) α = β = 0 ;
(iii) α = 0 et β ∈ (0, +∞) ;

(iv) α ∈ (0, +∞) et β = 0 ;

(v) α, β ∈ (0, +∞).

L'analyse asymptotique des trois premiers régimes est démontrée aux paragraphes 3.1, 3.2 et 3.3 du deuxième chapitre de cette thèse, tandis que les deux derniers régimes sont encore ouverts et constituent des projets de recherche en cours. Nous discutons des difficultés allant à l'encontre de l'obtention de la borne supérieure dans le quatrième régime au paragraphe 3.4, tandis qu'un premier résultat dans le cadre un-dimensionnel est démontré pour le dernier régime au paragraphe 3.5 du deuxième chapitre.

-Dans le régime (i),

ε ≪ η ε ou ε ≪ h ε .
La concentration de la zone endommagée l'emporte alors sur les phénomènes d'oscillation, de sorte que

F ε Γ-converge dans L 1 (Ω; R 2 ) × L 1 (Ω) vers le modèle d'élasticité linéaire F(u, χ) =    1 2 Ω A 1 e(u) : e(u) dx si u ∈ H 1 (Ω; R 2 ) et χ = 0, +∞ sinon.
-Dans le régime (ii),

η ε ≪ ε et h ε ≪ ε.
En particulier, l'énergie élastique emmagasinée dans la zone endommagée devient négligeable, de sorte que F ε Γ-converge dans L 1 (Ω; R 2 ) × L 1 (Ω) vers le modèle trivial

F(u, χ) = ® 0 si χ = 0, +∞ sinon, sous condition que θ 0 ≤ 45 • .
-Dans le régime (iii),

η ε ≪ ε et h ε ∼ βε.
La fonctionnelle F ε Γ-converge alors vers un modèle de rupture fragile, donné par l'énergie

F(u, χ) =    1 2 Ω A 1 e(u) : e(u) dx + βκ sin(θ 0 )H 1 (J u ) si u ∈ GSBD 2 (Ω) et χ = 0,
+∞ sinon, pour la topologie de la convergence en mesure dans L 0 (Ω; R 2 ) × L 0 (Ω). Nous démontrons ce résultat au paragraphe 3.3 du chapitre 3, en adaptant légèrement les arguments du travail présenté au chapitre 2 (décrit plus haut).

-Les deux derniers régimes (iv) et (v) restent encore ouverts et constituent des projets de recherche en cours. Plus précisément, nous supposons ici que A 0 et A 1 sont des tenseurs isotropes, déterminés par leurs coefficients de Lamé λ 1 > λ 0 > 0 et µ 1 > µ 0 > 0 en posant, pour tout ξ ∈ M 2×2 sym :

A i ξ = λ i trξ I N + 2µ i ξ, i ∈ {1, 2}.
• Dans le régime (iv),

η ε ∼ αε et h ε ≪ ε,
de sorte que la vitesse de convergence de la discrétisation en espace vers le modèle continu est plus rapide que celles des autres phénomènes en jeu. Ainsi, nous nous attendons naturellement à ce que F ε Γ-converge dans L 1 (Ω; R 2 ) × L 1 (Ω) vers le même modèle de plasticité (de Hencky) obtenu dans [15, Theorem 3.1], donné par

F(u, χ) =    Ω W α e(u) dx + Ω W ∞ α Å dE s u d|E s u| ã d|E s u| si u ∈ BD(Ω) et χ = 0, +∞ sinon. où W α est l'inf-convolution W α : ξ ∈ M 2×2 sym → inf τ ∈M 2×2 sym ß 1 2 A 1 τ : τ + » 2ακh(ξ -τ ) ™ , W ∞ α est sa fonction de récession W ∞ α : ξ ∈ M 2×2 sym → lim t→+∞ W α tξ t , et h : ξ ∈ M 2×2 sym → A 0 ξ : ξ + 4µ 0 detξ + .
Un premier pas vers cette conjecture est démontré au Théorème 3.4. où la ténacité γ > 0 représente l'énergie par unité de surface dépensée pour fracturer localement le matériau, comme en rupture fragile. Tandis que pour les sauts de grande amplitude, l'énergie de surface dépensée est alors de l'ordre de l'amplitude du saut :

σ 0 Ju u + -u -dH 1
où la densité surfacique est à croissance linéaire en l'amplitude du saut. Comme en plasticité, σ 0 > 0 représente le seuil sur les contraintes à partir duquel les déformations élastiques cèdent le pas aux déformations plastiques. Ici, la densité surfacique ϕ α,β a le même comportement : pour les sauts de petite amplitude, le terme dissipatif prépondérant correspond à l'énergie de fracture (avec γ = βκ), alors que celle-ci devient négligeable vis à vis du coût de la déformation plastique (avec σ 0 = √ 2κa 0 α) pour les sauts de grande amplitude.

. Modèles d'évolution en endommagement brutal

Les phénomènes mécaniques dissipatifs étant associés à des processus d'évolution, il est naturel de vouloir étendre les travaux de [START_REF] Babadjian | Concentration versus oscillation effects in brittle damage[END_REF], menés dans le cadre statique et continu en espace, au cadre dynamique. Le plus simple étant celui des évolutions quasi-statiques, où l'inertie (l'accélération du déplacement) est négligée. Dans le quatrième chapitre de cette thèse, nous nous intéressons à l'étude quasi-statique du régime η ε ∼ ε, faisant l'objet de l'article [START_REF] Bonhomme | Perfect plasticity versus damage : an unstable interaction between irreversibility and Gamma-convergence through variational evolutions[END_REF] en cours de soumission. Ce papier traite de l'interaction, au cours d'un processus d'évolution, entre les phénomènes de relaxation (i.e. de Γ-convergence) et l'irréversibilité de l'endommagement.

Nous nous plaçons en dimension un et considérons un matériau linéairement élastique dont la configuration au repos est un intervalle ouvert Ω = (0, L) soumis à un déplacement donné aux extrémités {0, L},

w ∈ AC([0, T ]; H 1 (R)).
Nous supposons connus les coefficients d'élasticité a 1 > 0 et la ténacité κ > 0 du matériau. L'idée est alors d'adapter la méthode introduite dans [START_REF] Babadjian | Concentration versus oscillation effects in brittle damage[END_REF] au cadre quasi-statique. Pour cela, nous considérons la famille d'évolutions quasi-statiques d'endommagement brutal introduite dans [START_REF] Francfort | A Variational View of Partial Brittle Damage Evolution[END_REF] avec la même loi d'échelle, où nous prenons le taux de convergence égal à 1 pour simplifier (i.e. η ε = ε). Plus précisément, à ε > 0 fixé, nous appliquons le [60, Theorem 2] à un matériau élastique de ténacité κ/ε, composé exclusivement de deux phases pures, l'une endommagée et l'autre saine ayant 0 < εa 0 < a 1 pour coefficients d'élasticité respectifs, soumis au déplacement w(t) aux extrémités {0, L} en tout temps t ∈ [0, T ]. Nous disposons ainsi d'un triplet

(u ε , Θ ε , a ε ) : [0, T ] → H 1 (Ω; R) × L ∞ (Ω; [0, 1]) × L ∞ (Ω; [0, a 1 ]) (1.3.2)
décrivant, à ε > 0 fixé, l'état du matériau en tout temps t ∈ [0, T ] : sa configuration spatiale est donnée par le déplacement u ε (t) et ses coefficients d'élasticité sont donnés par

a ε (t) = Å Θ ε (t) a 1 + 1 -Θ ε (t) εa 0 ã -1 où Θ ε (t) ∈ [0, 1]
est la fraction linéique de matériau sain a 1 . La question étudiée dans [START_REF] Bonhomme | Perfect plasticity versus damage : an unstable interaction between irreversibility and Gamma-convergence through variational evolutions[END_REF] est alors : en faisant tendre le paramètre ε vers 0 dans les évolutions (1.3.2), obtient-on une évolution quasi-statique de plasticité parfaite

(u, e, p) : [0, T ] → BV ((0, L)) × L 2 ((0, L)) × M([0, L])
comme définie au paragraphe 1.1.2 de l'Introduction ?

Par analogie, nous nous attendons à ce que le convexe d'élasticité associé à l'évolution limite soit le même que celui obtenu dans l'analyse statique de [START_REF] Babadjian | Concentration versus oscillation effects in brittle damage[END_REF] :

K := - √ 2κa 0 , √ 2κa 0 .
Le potentiel de dissipation associé est alors donné par ii. Condition de Dirichlet Relaxée : p(t) {0, L} = w(t) -u(t) δ L -δ 0 dans M({0, L})

I * K = √ 2κa 0 | • | .
iii. Loi de Comportement :

σ(t) = a 1 e(t) iv. Équation d'Équilibre : σ ′ (t) = 0 dans H -1 ((0, L))
v. Contrainte sur les forces : σ(t) ∈ K.

Contrairement à l'analyse statique, l'interaction entre l'irréversibilité de l'endommagement et la Γconvergence des énergies n'est pas stable au cours de l'évolution en temps. En effet, en fonction de la donnée au bord w, l'évolution obtenue ci-dessus peut ne pas être compatible avec une évolution de plasticité parfaite. Étonnamment, l'évolution du matériau effectif limite peut être interprétée comme de l'endommagement, en introduisant la variable interne

c : t ∈ [0, T ] → µ(t) a 0 + 1 a 1 L 1 (0, L) ∈ M + ([0, L]),
qui représente la compliance du matériau limite (tenseur de la souplesse élastique) et dont le caractère croissant retranscrit l'irréversibilité de l'endommagement. En effet, la compliance satisfait la Loi de Comportement

Du(t) = σ(t)c(t) (0, L) dans M((0, L))
en tout temps t ∈ [0, T ] et vérifie une Loi d'Évolution de type Griffith 

ċ(t) 2κa 0 -σ(t) 2 = 0 dans M + ([0, L]) pour L 1 -presque tout t ∈ [0, T ]. Ainsi,
w(t) L 0 < w(s) L 0 ⇒ w(t) L 0 ≤ √ 2κa 0 L a 1 .
Cette étude scalaire est un exemple d'interaction instable au cours d'évolution en temps entre la Γconvergence des énergies et l'irréversibilité de l'endommagement.

Dans une vision à court terme, j'aimerais généraliser cette étude au cadre multi-dimensionnel. Une étape intermédiaire de ce projet de recherche consisterait à s'intéresser au cadre scalaire antiplan où Ω ⊂ R 2 . Il s'agit d'un modèle à la fois mutli-dimensionnel et scalaire, au sens où le déplacement anti-plan u : Ω → R est à valeurs réelles. Les coefficients élastiques du matériau sont donnés par une matrice symétrique A ∈ M 2×2 sym satisfaisant les propriétés de croissance et de coercivité 0 < a 0 ≤ A ≤ a 1 < +∞ au sens des formes quadratiques agissant sur R 2 . Dans ce contexte, les enveloppes quasi-convexes coïncident avec les enveloppes convexes, pour lesquelles il est généralement plus facile d'obtenir des formules explicites, offrant l'espoir que les méthodes menées en dimension un soient adaptables. En effet, l'une des difficultés consiste à calculer l'enveloppe symétrique quasi-convexe des densités d'énergie à ε > 0 fixé, faisant appel à l'utilisation des bornes de Hashin-Shtrikman pour lesquelles l'obtention de formules explicites est difficile dans le cadre vectoriel.

Au plus long terme, j'aimerais travailler sur le cas dynamique, en prenant en compte les effets d'inertie dans les modèles d'évolution d'endommagement brutal. En s'inspirant de la méthode précédente, l'idée serait de coupler les évolutions d'endommagement brutal introduites dans [START_REF] Garroni | Sarrocco : Damage dynamics : a variational approach[END_REF] avec la loi d'échelle η ε = ε et d'effectuer l'analyse asymptotique de ce régime. Comme dans le cas quasistatique, la première étape consisterait à étudier le modèle un-dimensionnel pour comprendre les phénomènes en jeu et l'expression de l'irréversibilité dans le modèle limite effectif. Measures. The Lebesgue and k-dimensional Hausdorff measures in R N are respectively denoted by L N and H k . If X is a borel subset of R N and Y is an Euclidean space, we denote by M(X; Y ) the space of Y -valued bounded Radon measures in X which, according to the Riesz Representation Theorem, can be identified to the dual of C 0 (X; Y ) (the closure of C c (X; Y ) for the sup-norm in X). The weak-* topology of M(X; Y ) is defined using this duality. The indication of the space Y is omitted when Y = R. For µ ∈ M(X; Y ), its total variation is denoted by |µ| and we denote by µ = µ a +µ s the Radon-Nikodým decomposition of µ with respect to Lebesgue, where µ a is absolutely continuous and µ s is singular with respect to the Lebesgue measure L N .

. Notation and preliminary results

Vectors

Convex analysis. We recall some definition and standard results from convex analysis (see [START_REF] Rockafellar | Convex Analysis[END_REF]). Let f : R N → [0, +∞] be a proper function (i.e. not identically +∞). The convex conjugate of f is defined as

f * (x) = sup y∈R N {x • y -f (y)}
which turns out to be convex and lower semicontinuous. If f is convex and finite, we define its recession function as

f ∞ (x) = lim t↗+∞ f (tx) t ∈ [0, +∞]
which is convex and positively 1-homogeneous. If f, g : R N → [0, +∞] are proper convex functions, then their infimal convolution is defined as We recall some properties regarding functions with values in a Banach space and refer to [START_REF] Fonseca | Modern Methods in the calculus of Variations : L p Spaces[END_REF][START_REF] Brézis | Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert[END_REF][START_REF] Maso | Quasistatic evolution problems for linearly elasticperfectly plastic materials[END_REF] for details and proofs on this matter. If Y is a Banach space and T > 0, we denote by AC([0, T ]; Y ) the space of absolutely continuous functions f : [0, T ] → Y . If Y is the dual of a separable Banach space X, then every function f ∈ AC([0, T ]; Y ) is such that the weak-* limit

f □ g(x) = inf y∈R N {f (x -y) + g(y)}
ḟ (t) = w*-lim s→t f (t) -f (s) t -s ∈ Y exists for L 1 -a.e. t ∈ [0, T ], ḟ : [0, T ] → Y is weakly-* measurable and t → ∥ ḟ (t)∥ Y ∈ L 1 ([0, T ]). If f : [0, T ] × R → R
is a function of two variables, time and spatial derivatives will be respectively denoted by ḟ and f ′ . We recall that a sequence

{g k } k∈N in L 0 (U ; R m ) converges in measure to g ∈ L 0 (U ; R m ) if for all ε > 0, L N ({x ∈ U : |g k (x) -g(x)| > ε}) → 0.
Note that, for any fixed constant M > 0, we can define the following mapping

d M : (g, h) ∈ L 0 (U ; R m ) × L 0 (U ; R m ) → U M ∧ |g -h| dx ∈ R + (1.4.1)
which turns out to be a distance over L 0 (U ; R m ), with the property that g k converges in measure to g if and only if d M (g k , g) → 0. It confers to L 0 (U ; R m ) a metric space structure.

Functions of bounded variation and sets of finite perimeter. We refer to [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF] for an exhaustive treatment on that subject and just recall few notation. Let U ⊂ R N be a bounded open set. A function u ∈ L 1 (U ; R m ) is a function of bounded variation in U , and we write u ∈ BV (U ; R m ), if its distributional derivative Du belongs to M(U ; M m×N ). We use standard notation for that space, referring to [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF] for details. We just recall that a function u belongs to SBV 2 (U ; R m ) if u ∈ SBV (U ; R m ) (the distributional derivative Du has no Cantor part), its approximate gradient ∇u belongs to L 2 (U ; M m×N ) and its jump set J u satisfies H N -1 (J u ) < ∞.

If U has Lipschitz boundary, every function u ∈ BV (U ; R m ) has an inner trace on ∂U (still denoted by u and H N -1 -integrable on ∂U ) and there exists a constant C > 0 depending only on U such that

1 C ∥u∥ BV (U ;R m ) ≤ |Du|(U ) + ∂U |u| dH N -1 ≤ C∥u∥ BV (U ;R m ) (1.4.2)
according to [94, Proposition 2.4, Remark 2.5 (ii)].

A Lebesgue measurable set A ⊂ R N is a set of finite perimeter in U if its characteristic function 1 A belongs to BV (U ; R N ). The reduced boundary of A is denoted by

∂ * A = ® x ∈ supp |D1 A | ∩ U : the limit ν A (x) = lim ϱ↘0 D1 A B ϱ (x) |D1 A | B ϱ (x)
exists and satisfies |ν A (x)| = 1 ánd the essential (or measure theoretic) boundary is denoted by

∂ * A = R N \ A 0 ∪ A 1
where, for every t ∈ [0, 1], we denote the set of points where A has density t by

A (t) = ® x ∈ R N : lim ϱ↘0 L N A ∩ B ϱ (x) L N B ϱ (x) = t
´.

We also recall that a partition P = {P i } i∈N of an open set U is a Cacciopoli partition if each P i have finite perimeter in U , and i∈N |D1 P i |(U ) < ∞. In that case, i∈N [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]Section 4.4]). In the sequel (as in [START_REF] Chambolle | Equilibrium configurations for nonhomogeneous linearly elastic materials with surface discontinuities[END_REF]Theorem 2.5]), we will sometimes use the following notation for Caccioppoli partitions :

(P i ) (1) ∪ i,j∈N, i̸ =j ∂ * P i ∩ ∂ * P j contains H N -1 -almost all of U (see
P (1) := i∈N P i (1) , ∂ * P := i∈N ∂ * P i .
(Generalized) functions of bounded deformation. A function u ∈ L 1 (U ; R N ) is a function of bounded deformation, and we write u ∈ BD(U ), if its distributional symmetric gradient Eu := (Du + Du T )/2 belongs to M(U ; M N ×N sym ). We refer to [START_REF] Suquet | Un espace fonctionnel pour les équations de la plasticité[END_REF][START_REF] Temam | Problèmes mathématiques en plasticité[END_REF][START_REF] Strang | Functions of bounded deformations[END_REF][START_REF] Ambrosio | Fine properties of functions with bounded deformation[END_REF][START_REF] Bellettini | Compactness and lower semicontinuity properties in SBD(Ω)[END_REF] for the main properties and notation of that space. The space SBD 2 (U ) is made of all functions u ∈ SBD(U ) (Eu has no Cantor part) such that the approximate symmetric gradient e(u) (the absolutely continuous part of Eu with respect to L N ) belongs to L 2 (U ; M N ×N sym ) and its jump set

J u satisfies H N -1 (J u ) < ∞.
We now recall the definition and the main properties of the space of generalized functions of bounded deformation introduced in [START_REF] Maso | Generalised functions of bounded deformation[END_REF]. We first need to introduce some notation. Let ξ ∈ S N -1 , we denote by Π ξ := {y ∈ R N : y • ξ = 0} the orthogonal space to ξ and by p ξ the orthogonal projection onto Π ξ .

For every set B ⊂ R N , we define for ξ ∈ S N -1 and y ∈ R N ,

B ξ y := {t ∈ R : y + tξ ∈ B}, B ξ := p ξ (B)
and, for every (vector-valued) function u : B → R N and (scalar-valued) function f : B → R,

u ξ y (t) := u(y + tξ) • ξ, f ξ y (t) = f (y + tξ) for all y ∈ R N and all t ∈ B ξ y . Definition 1.4.1. Let U ⊂ R N be a bounded open set and u ∈ L 0 (U ; R N ).
Then, u ∈ GBD(U ) if there exists a nonnegative measure λ ∈ M(U ) such that one of the following equivalent conditions holds true for every ξ ∈ S N -1 :

1. for every τ ∈ C 1 (R) with -1 2 ≤ τ ≤ 1 2 and 0 ≤ τ ′ ≤ 1, the partial derivative D ξ (τ (u • ξ)) = D(τ (u • ξ)) • ξ belongs to M(U ), and 
|D ξ (τ (u • ξ))|(B) ≤ λ(B) for every Borel set B ⊂ U ; 2. u ξ y ∈ BV loc (U ξ y ) for H N -1 -a.e. y ∈ U ξ ,

and

Π ξ |Du ξ y |(B ξ y \ J 1 u ξ y ) + H 0 (B ξ y ∩ J 1 u ξ y ) dH N -1 (y) ≤ λ(B) for every Borel set B ⊂ U,
where J 1

u ξ y := {t ∈ J u ξ y : |[u ξ y ](t)| ≥ 1}.
The function u belongs to GSBD(U ) if u ∈ GBD(U ) and u ξ y ∈ SBV loc (U ξ y ) for every ξ ∈ S N -1 and for H N -1 -a.e. y ∈ U ξ . Every u ∈ GBD(U ) has an approximate symmetric gradient e(u) ∈ L 1 (U ; M N ×N sym ) such that for every ξ ∈ S N -1 and for H

N -1 -a.e. y ∈ U ξ , e(u)(y + tξ)ξ • ξ = (u ξ y ) ′ (t) for L 1 -a.e. t ∈ U ξ y .
Moreover, the jump set J u of u ∈ GBD(U ), defined as the set of all x 0 ∈ U for which there exist

(u + (x 0 ), u -(x 0 ), ν u (x 0 )) ∈ R N × R N × S N -1 with u + (x 0 ) ̸ = u -(x 0 ) such that the function y ∈ B 1 → u x 0 ,ϱ := u(x 0 + ϱy) converges in measure in B 1 as ϱ ↘ 0 to y ∈ B 1 → ® u + (x 0 ) if y • ν u (x 0 ) > 0, u -(x 0 ) if y • ν u (x 0 ) ≤ 0, is countably (H N -1 , N -1)-rectifiable.
Finally, the energy space GSBD 2 (U ) is defined as

GSBD 2 (U ) := {u ∈ GSBD(U ) : e(u) ∈ L 2 (U ; M N ×N sym ), H N -1 (J u ) < ∞}.
Homogenization and H-convergence We refer to [START_REF] Allaire | Shape Optimization by the Homogenization Method[END_REF] for an exhaustive presentation of these notions and only recall minimal results. We denote, for fixed α, β > 0, the subset of fourth-order symmetric tensors

F α,β = ¶ A ∈ R N 4 : A ijkl = A klij = A jikl , α |ξ| 2 ≤ Aξ : ξ ≤ β |ξ| 2 for all ξ ∈ M N ×N sym © .
Let Ω be a bounded open set of R N . We say that

A n ∈ L ∞ (Ω; F α,β ) H-converges to A ∈ L ∞ (Ω; F α,β ) if, for every f ∈ H -1 (Ω; R N ), the solutions u n ∈ H 1 0 (Ω; R N ) of the equilibrium equations ® -div A n e(u n ) = f in Ω u n = 0 on ∂Ω are such that u n ⇀ u weakly in H 1 0 (Ω; R N ) and A n e(u n ) ⇀ Ae(u) weakly in L 2 (Ω; M N ×N sym ) as n ↗ +∞, where u ∈ H 1 0 (Ω; R N ) is the solution of ® -div Ae(u) = f in Ω u = 0 on ∂Ω. Given a volume fraction θ ∈ L ∞ (Ω; [0, 1]) and A, B ∈ L ∞ (Ω; F α,β ) with A ≤ B as quadratic forms on M N ×N sym , the G-closure set G θ (A, B)
is defined as the set of all possible H-limits of ]). We also denote the set of all possible composite materials by

χ n A + (1 -χ n )B where χ n ∈ L ∞ (Ω; {0, 1}) weakly-* converges to θ in L ∞ (Ω; [0, 1 
G(A, B) := {C ∈ G θ (A, B) : θ ∈ L ∞ (Ω; {0, 1})} .
Γ-convergence We refer to [START_REF] Maso | An introduction to Γ-convergence[END_REF] for a complete study of this notion and only recall the definition and Fundamental Theorem of Γ-convergence. Let (X, d) be a metric space. We say that a sequence

f k : X → R Γ-converges in (X, d) to f : X → R if for all x ∈ X we have 1. (Lower bound) f (x) ≤ lim inf k↗∞ f k (x k ) for any sequence {x k } k converging to x, 2. (Upper bound) f (x) ≥ lim sup k↗∞ f k (x k ) for some (recovery) sequence {x k } k converging to x. In this case, if x * k ∈ argmin X f k converges to some x * ∈ X, then x * ∈ argmin X f and f k (x * k ) → f (x * ) as k ↗ ∞.

-Discrete approximation of the Griffith functional by adaptive finite elements

This chapter is devoted to show a discrete adaptive finite element approximation result for the isotropic two-dimensional Griffith energy arising in fracture mechanics. The problem is addressed in the geometric measure theoretic framework of generalized special functions of bounded deformation which corresponds to the natural energy space for this functional. It is proved to be approximated in the sense of Γ-convergence by a sequence of discrete integral functionals defined on continuous piecewise affine functions. The main feature of this result is that the mesh is part of the unknown of the problem, and it gives enough flexibility to recover isotropic surface energies. This is joint work with Jean-François Babadjian corresponding to [START_REF] Babadjian | Discrete approximation of the Griffith functional by adaptive finite elements[END_REF] and accepted for publication in the journal SIAM Journal on Mathematical Analysis.

. Introduction

. The variational approach to fracture

The Griffith functional has been introduced in the context of brittle fracture. It finds its roots in the seminal work of Griffith [START_REF] Griffith | The phenomena of rupture and flow in solids[END_REF] whose main ideas have been revisited in [START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF] (see also the monograph [START_REF] Bourdin | The variational approach to fracture[END_REF]) into a variational evolution formulation. The main point is that, in a quasi-static setting and in presence of irreversibility, a constrained global minimization principle together with an energy balance select equilibrium states of an elastic body experiencing brittle fracture. In a nutshell, the Griffith energy is defined by

G(u, K) := Ω\K |e(u)| 2 dx + µH N -1 (K), (2.1.1)
where Ω ⊂ R N , a bounded open set, stands for the reference configuration of an elastic material, K ⊂ Ω is a codimension-one set representing the crack, u : Ω \ K → R N is the displacement field which might be discontinuous across K, and its symmetric gradient e(u) := (∇u + ∇u T )/2 is the linearized elastic strain. The constant µ > 0 is a material parameter called toughness. This energy puts in competition a bulk energy, representing the elastic energy stored in the body outside the crack, and a surface energy penalizing the presence of the crack K through its (N -1)-dimensional Hausdorff measure, henceforth denoted by H N -1 . This problem falls within the framework of so-called free discontinuity problems (according to De Giorgi's terminology), and it presents many formal analogies with its scalar counterpart, the Mumford-Shah functional. Although, thanks to geometric measure theory, the existence theory for the latter is by now quite well understood (see e.g. [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF] and references therein), the minimization of the Griffith functional had to face serious additional difficulties. In particular, a satisfactory existence theory has only recently been solved. As for the Mumford-Shah functional, it passes through the introduction of a "weak formulation" where the crack is replaced by the jump set J u of u. A convenient functional setting to investigate this problem is that of functions of bounded deformation, BD(Ω), which correspond to (integrable) vector fields u : Ω → R N whose distributional symmetric gradient Eu is a bounded Radon measure. This space has been introduced in [START_REF] Suquet | Un espace fonctionnel pour les équations de la plasticité[END_REF] (see also [START_REF] Temam | Problèmes mathématiques en plasticité[END_REF][START_REF] Strang | Functions of bounded deformations[END_REF]) as a natural space to formulate problems of perfect plasticity. Brittle fracture however requires a finer understanding of this space and especially the introduction of the subspace SBD(Ω) of special functions of bounded deformation in [START_REF] Ambrosio | Fine properties of functions with bounded deformation[END_REF][START_REF] Bellettini | Compactness and lower semicontinuity properties in SBD(Ω)[END_REF], for which the singular part of Eu with respect to the Lebesgue measure is concentrated on the jump set. Unfortunately, this step forward was still not enough because of lack of control of the values of u (due to the failure of Poincaré-Korn and/or Korn type inequalities in that space). It is only recently that the introduction of the space GSBD(Ω) of generalized special functions of bounded deformation in [START_REF] Maso | Generalised functions of bounded deformation[END_REF] (see Section 1.4 for the precise definition) has given a satisfactory mathematical framework to investigate a well founded existence theory for the weak formulation, as well as for the original one. Some further compactness properties of that space have been investigated in [START_REF] Chambolle | Crismale : Compactness and lower semicontinuity in GSBD[END_REF][START_REF] Chambolle | Existence of strong solutions to the Dirichlet problem for the Griffith energy[END_REF] which has led to prove the existence of minimizers of the Griffith functional under Dirichlet boundary conditions (formulated in a relaxed sense).

. Approximation of the Griffith energy

The Γ-convergence approximation of free discontinuity problems (e.g. by more tractable ones from a numerical point of view) is of fundamental importance in applications. It has been proven in [START_REF] Braides | Non-local approximation of the Mumford-Shah functional[END_REF] that it is not possible to approximate free discontinuity functionals by means of local integral functionals. To overcome this difficulty, a first possibility is to introduce an additional variable like, e.g., in phase field approximations where the sharp discontinuity is smoothened into a diffuse discontinuity. It represents one of the most popular methods which have already proven to be successful in other contexts such as the Modica-Mortola approximation of the perimeter functional [START_REF] Modica | Un esempio di Γ-convergenza, Boll[END_REF], or the Ambrosio-Tortorelli approximation of the Mumford-Shah functional [START_REF] Ambrosio | On the approximation of free discontinuity problems[END_REF]. In the context of brittle fracture, such approximations, which have a founded mechanical interpretation as a gradient damage model, have only recently been established in full generality in [START_REF] Chambolle | A density result in GSBD p with applications to the approximation of brittle fracture energies[END_REF] (see also [START_REF] Chambolle | An approximation result for special functions with bounded deformation[END_REF][START_REF] Iurlano | A density result for GSBD and its application to the approximation of brittle fracture energies[END_REF]). The main drawback is that, an additional numerical approximation would give rise to a multiscale problem with on the one hand the parameter of approximation, and on the other hand the mesh size (see e.g. [START_REF] Bellettini | Discrete approximation of a free discontinuity problem[END_REF][START_REF] Bach | Quantitative analysis of finite-difference approximations of free-discontinuity problems[END_REF][START_REF] Crismale | A derivation of Griffith functionals from discrete finitedifference models[END_REF]). Another possibility is to use nonlocal integral functionals as e.g. in [START_REF] Braides | Non-local approximation of the Mumford-Shah functional[END_REF][START_REF] Negri | A non-local approximation of free discontinuity problems in SBV and SBD[END_REF][START_REF] Scilla | Non-local approximation of the Griffith functional[END_REF]. For what concerns the numerical treatment of free discontinuity problems, the main difficulty is related to the fact that the jump set is part of the unknowns and that standard discontinuous finite element methods do not in general apply in this context. Having this problematic in mind as well as the multiscale issues arising in phase field or nonlocal approximations, one is thus tempted to find single scale discrete approximations of free discontinuity problems. There is a huge literature on this subject and, without being exhaustive, we refer to discrete-to-continuous approximations results [START_REF] Alicandro | Finite-difference approximation of energies in fracture mechanics[END_REF][START_REF] Chambolle | Image segmentation by variational methods : Mumford and Shah functional and the discrete approximations[END_REF][START_REF] Chambolle | Finite-differences discretizations of the Mumford-Shah functional[END_REF][START_REF] Gobbino | Finite difference approximation of the Mumford-Shah functional[END_REF][START_REF] Negri | The anisotropy introduced by the mesh in the finite element approximation of the Mumford-Shah functional[END_REF][START_REF] Negri | A finite element approximation of the Griffith's model in fracture mechanics[END_REF][START_REF] Negri | Convergence analysis for a smeared crack approach in brittle fracture[END_REF], nonlocal finite elements approximations [START_REF] Lussardi | Convergence of nonlocal finite element energies for fracture mechanics[END_REF][START_REF] Negri | A finite element approximation of the Griffith's model in fracture mechanics[END_REF] or discrete approximations based on stochastic meshes in [START_REF] Bach | Random finite-difference discretizations of the Ambrosio-Tortorelli functional with optimal mesh size[END_REF][START_REF] Ruf | Discrete stochastic approximations of the Mumford-Shah functional[END_REF].

Let us focus on the discrete approximation result obtained in [START_REF] Chambolle | Discrete approximation of the Mumford-Shah functional in dimension two[END_REF] for the Mumford-Shah functional in dimension N = 2. In that work, the classical Mumford-Shah functional

F (u) := Ω |∇u| 2 dx + µH 1 (J u )
is approximated in the sense of Γ-convergence by a functional of the form

F ε (u) := Ω f ε (∇u) dx
putting a restriction on the functional space on which F ε is defined. The functional F ε is discrete in the sense that u is (a scalar-valued) continuous function and piecewise affine on suitable ε-dependent meshes (see Definition 2.1.1). It consists in an adaptive finite element approximation because there is an implicit mesh optimization whose numerical implementation has been carried out in [START_REF] Bourdin | Implementation of an adaptive finite-element approximation of the Mumford-Shah functional[END_REF]. The

function f ε (∇u) takes the form 1 ε f (ε|∇u| 2 )
where f is a nondecreasing function satisfying the standard properties (2.1.4). Typical examples of functions f are, on the one hand the arctan function (as e.g. in [START_REF] Gobbino | Finite difference approximation of the Mumford-Shah functional[END_REF] following a conjecture of De Giorgi) and, on the other hand f (t) = t ∧ κ. The main feature of this result is that, allowing the mesh to move gives enough flexibility to approximate isotropic surface energies. The constant µ appearing in the functional F is explicit and only depends on κ and the geometry of the triangulation.

An analogous analysis has been carried out in [START_REF] Negri | The anisotropy introduced by the mesh in the finite element approximation of the Mumford-Shah functional[END_REF], where the author constraints the mesh to be made either of equilateral triangles, or of right isosceles ones. In that case, the result is that the functional F ε Γ-converges to an anisotropic version of the Mumford-Shah functional

Ω |∇u| 2 dx + Ju ϕ(ν u ) dH 1 ,
for some function ϕ : S 1 → R, which can be explicitly computed, depending on the normal ν u to the jump set J u . In [START_REF] Negri | Convergence analysis for a smeared crack approach in brittle fracture[END_REF], the same problem is addressed in the two-dimensional vectorial setting. If f ε is as before, the following approximating energy is considered

Ω f ε (e(u)) dx.
As in [START_REF] Negri | The anisotropy introduced by the mesh in the finite element approximation of the Mumford-Shah functional[END_REF], the ε-dependent mesh is fixed and made either of equilateral triangles, or of right isosceles triangles, and the result is that this functional Γ-converges to an anisotropic version of the Griffith functional

Ω |e(u)| 2 dx + Ju ϕ(ν u ) dH 1 , where ϕ : S 1 → R is as in [84]. Note that if f (t) = t ∧ κ, then f ε (e(u)) = ® ε|e(u)| 2 if ε|e(u)| 2 ≤ κ, κ if ε|e(u)| 2 > κ. (2.1.2)
In order to recover the isotropic Griffith energy (2.1.1), a similar approximation result is considered in [START_REF] Negri | A finite element approximation of the Griffith's model in fracture mechanics[END_REF] where, now, the meshes are allowed to move as in [START_REF] Chambolle | Discrete approximation of the Mumford-Shah functional in dimension two[END_REF], but the function f ε now depends on the full gradient ∇u (instead of the symmetric gradient) and behaves like

f ε (∇u) ∼ ® ε|e(u)| 2 if ε|∇u| 2 ≤ κ, κ if ε|∇u| 2 > κ (2.1.3)
(compare with (2.1.2)). In that case, the analysis of [START_REF] Chambolle | Discrete approximation of the Mumford-Shah functional in dimension two[END_REF] can be adapted to show a Γ-convergence result towards the isotropic Griffith energy (2.1.1) with the same geometric multiplicative constant µ (as in [START_REF] Chambolle | Discrete approximation of the Mumford-Shah functional in dimension two[END_REF]) in front of the surface energy.

. Our result

The objective of the present work is to generalize the previous results in the two-dimensional vectorial case to show an analogous statement as in [START_REF] Chambolle | Discrete approximation of the Mumford-Shah functional in dimension two[END_REF], namely an adaptive discrete finite element approximation of the isotropic Griffith functional. To state precisely our main result, Theorem 2.1.3, we need to introduce some notation (we refer to Section 1.4 regarding functional spaces).

Let Ω be a bounded open set of R 2 with Lipschitz boundary. As in [START_REF] Chambolle | Discrete approximation of the Mumford-Shah functional in dimension two[END_REF], we introduce the following class of admissible meshes. Definition 2.1.1. A triangulation of Ω is a finite family of closed triangles intersecting Ω, whose union contains Ω, and such that, given any two triangles of this family, their intersection, if not empty, is exactly a vertex or an edge common to both triangles. Given some angle θ 0 with 0 < θ 0 ≤ 45 •arctan(1/2), and a function ε → ω(ε) with ω(ε) ≥ 6ε for any ε > 0 and lim ε→0 + ω(ε) = 0, we define, for any ε > 0

T ε (Ω) := T ε (Ω, ω, θ 0 )
as the set of all triangulations of Ω made of triangles whose edges have length between ε and ω(ε), and whose angles are all greater than or equal to θ 0 . Then we consider the finite element space V ε (Ω) of all continuous functions u : Ω → R 2 for which there exists T ∈ T ε (Ω) such that u is affine on each triangle T ∈ T.

Remark 2.1.2. Imposing θ 0 > 0 and ω(ε) ≥ ε corresponds to a non-flatness condition that ensures the existence of a radius ϱ(θ 0 ) > 0 such that for all triangle T ∈ T, one can find a point x ∈ T such that

B ϱ (x) ⊂ T.
As for the conditions θ 0 ≤ 45 • -arctan(1/2) and ω(ε) ≥ 6ε, we will later see that they are crucial to prove the existence of recovery sequences. Indeed, we use the same optimal triangulation introduced in [39, Appendix A], where the authors' explicit construction makes use of triangles with edges of length 6ε and angles equal to 45 • -arctan(1/2).

Let us consider a nondecreasing continuous function

f : [0, +∞) → [0, +∞) satisfying f (0) = 0, lim t→0 + f (t) t = 1 and lim t→∞ f (t) = κ, (2.1.4) 
for some constant κ > 0, and a symmetric fourth order tensor

A ∈ L (M 2×2 sym , M 2×2 sym ) such that α|ξ| 2 ≤ Aξ : ξ ≤ β|ξ| 2 for all ξ ∈ M 2×2 sym , (2.1.5) 
for some constants α, β > 0.

Our main result is the following Γ-convergence approximation of the Griffith functional.

Theorem 2.1.3. The functional

F ε : L 0 (Ω; R 2 ) → [0, +∞] defined by F ε (u) =    1 ε Ω f εAe(u) : e(u) dx if u ∈ V ε (Ω), +∞ otherwise (2.1.6)
Γ-converges, with respect to the L 0 (Ω; R 2 )-topology of convergence in measure, to the Griffith functional

F : L 0 (Ω; R 2 ) → [0, +∞] given by F(u) =    Ω Ae(u) : e(u) dx + κ sin θ 0 H 1 (J u ) if u ∈ GSBD 2 (Ω), +∞ otherwise.
Remark 2.1.4. As explained above, a meaningful choice is the function f (t) = t ∧ κ, for which the energy reduces to

Ω κ ε ∧ Ae(u) : e(u) dx.
It corresponds to the brittle damage energy of a linearly elastic material composed of two phases : an undamaged one whose elasticity coefficients are represented by the Hooke tensor A, and a damaged one whose elasticity coefficients are set to 0. The constant κ/ε stands for the toughness of the material whose diverging character as ε → 0 forces the damaged zones to concentrate on vanishingly small sets (see [START_REF] Babadjian | Concentration versus oscillation effects in brittle damage[END_REF]).

. Strategy of proof

As usual in Γ-convergence, the proof is achieved by combining a compactness result, a lower bound and an upper bound inequality. In order to describe our argument, let us assume for simplicity that f (t) = t ∧ κ and A = id.

Our compactness result, Proposition 2.3.5 rests on the general GSBD compactness result of [START_REF] Chambolle | Equilibrium configurations for nonhomogeneous linearly elastic materials with surface discontinuities[END_REF]. Given a sequence {u ε } ε>0 with uniformly bounded energy, one can apply [START_REF] Chambolle | Equilibrium configurations for nonhomogeneous linearly elastic materials with surface discontinuities[END_REF]Theorem 1.1] to the modified function v ε := u ε 1 {|e(uε)| 2 ≤κ/ε} which consists in putting the value zero inside each triangle T where the (symmetric) gradient of u ε is "large". It might thus create a jump on the boundary of T whose perimeter can be estimated by L 2 (T )/ε. It leads to compactness in measure for the sequence {u ε } ε>0 (up to subtracting a sequence of piecewise rigid motions, leaving the energy unchanged), which thus justifies why it is natural to consider Γ-convergence with respect to this topology.

The upper bound causes no particular difficulty. It consists in using known density results in GSBD 2 (Ω) (see [START_REF] Chambolle | A density result in GSBD p with applications to the approximation of brittle fracture energies[END_REF][START_REF] Cortesani | A density result in SBV with respect to non-isotropic energies[END_REF]) to reduce to the case where the jump set of u is made of finitely many pairwise disjoint closed line segments, and u is smooth outside. Then, considering a similar optimal triangulation of Ω as in [START_REF] Chambolle | Discrete approximation of the Mumford-Shah functional in dimension two[END_REF] (whose vertices do not cross the jump set) and a piecewise affine Lagrange interpolation of u, it leads to the desired upper bound (see Proposition 2.2.11).

The proof of the lower bound inequality is much more delicate to address and it represents, to our opinion, the main achievement of this work. First of all, the blow-up method allows one to identify separately the bulk part and the singular part. The bulk part can be easily recovered by modifying u ε into a new function which vanishes in all triangles where e(u ε ) is "too large" as in the compactness argument (see Proposition 2.2.4). The main difficulty is to get a lower bound for the singular part of the energy.

Before describing our strategy of proof, let us briefly explain why the methods of [START_REF] Chambolle | Discrete approximation of the Mumford-Shah functional in dimension two[END_REF] (and similarly [START_REF] Bourdin | Implementation of an adaptive finite-element approximation of the Mumford-Shah functional[END_REF]) fail in our situation. The idea of [START_REF] Chambolle | Discrete approximation of the Mumford-Shah functional in dimension two[END_REF] consists in modifying every minimizing sequence {u ε } ε>0 inside each triangle T of the associated triangulation T ε ∈ T ε (Ω) according to its variations along each edge of T . It rests on the introduction of a jump criterion which stipulates that if the variation of u ε is large enough, it is convenient to create a jump along the edge. More precisely, if x 1 , x 2 and x 3 stand for the vertices of the triangle T , it will be energetically favorable to create a jump at the middle point of the segment

[x i , x j ] if |u ε (x i ) -u ε (x j )| |x i -x j | > σ √ ε ,
for some constant σ > 0, while u ε remains unchanged on [x i , x j ] otherwise. This criterion has to be defined in such a way that :

(i) the new function, say w ε , has a jump set in each triangle T which satisfies

H 1 (J wε ∩ T ) ≤ L 2 (T )/(ε sin θ 0 )
, where θ 0 is as in Definition 2.1.1, and w ε does not jump across ∂T ;

(ii) the absolutely continuous part of the gradient, ∇w ε , is controlled in L 2 (T ) by the energy restricted to T .

This construction ensures that the variation of the new discontinuous and piecewise affine function w ε is always controlled along at least two edges of each triangle T , and it yields a control of the full gradient ∇w ε of w ε inside T . In [START_REF] Chambolle | Discrete approximation of the Mumford-Shah functional in dimension two[END_REF], this is possible thanks of the scalar nature of the problem because the gradient ∇w ε|T is a (constant) vector in R 2 (see [START_REF] Chambolle | Discrete approximation of the Mumford-Shah functional in dimension two[END_REF]Remark 3.5]).

In our case, u ε is not scalar-valued anymore, but vector-valued and the energy only depends on its symmetric gradient e(u ε ). If one uses the same criterion than in [START_REF] Chambolle | Discrete approximation of the Mumford-Shah functional in dimension two[END_REF], then condition (i) above will be satisfied for the new function w ε on T . However, one will only be able to estimate the L 2 -norm of the (symmetric) gradient of w ε by that of the full gradient of u ε which, unfortunately, is not controlled by the energy F ε (u ε ). Note that in [START_REF] Negri | A finite element approximation of the Griffith's model in fracture mechanics[END_REF], such a control is artificially made possible thanks to the particular form of the energy (see (2.1.3) above). This is however not natural in this linearized elasticity setting where the energy should be expressed in terms of the symmetric gradient of the displacement.

As a consequence, the jump criterion has to be modified. As the energy only depends on the symmetric part of the gradient of u ε , it would be natural to consider a criterion involving the longitudinal variation of u ε along the edges of the triangle instead of the full variation. In other words, one could modify the criterion by asking that if

|(u ε (x i ) -u ε (x j )) • (x i -x j )| |x i -x j | 2 > σ √ ε ,
then we create a jump at the middle point of [x i , x j ], while u ε remains unchanged on [x i , x j ] otherwise.

In that case, it is again not possible to control the symmetric gradient e(w ε ) of the new function w ε by that of u ε . Indeed, in a similar way as in [START_REF] Chambolle | Discrete approximation of the Mumford-Shah functional in dimension two[END_REF], the previous criterion ensures that the longitudinal variation of w ε along at least two edges of each triangle is controlled by the energy restricted to T . If we call ξ 1 and ξ 2 ∈ S 1 both (linearly independent) directions associated to these "good" edges, it shows that e(w ε ) |T : (ξ 1 ⊗ ξ 1 ) and e(w ε ) |T : (ξ 2 ⊗ ξ 2 ) are controlled by e(u ε ) |T which is not enough to control the full 2 × 2 symmetric matrix e(w ε ) |T which has three degrees of freedom. In addition, some (uncontrolled) discontinuities can also be created at the interface I := ∂T ∩ ∂T ′ between two adjacent triangles T and T ′ so that condition (i) fails as well.

Overcoming these difficulties seems to be a very serious issue so that we decided to attack this problem from a different angle. First of all, the use of the blow-up method allows one to reduce to the case where Ω = B is the unit ball, u is a step function of the form

u(x) = ® a if x • ν < 0, b if x • ν > 0,
for some a, b ∈ R 2 with a ̸ = b and ν ∈ S 1 (with a jump set corresponding to the diameter of B orthogonal to ν), and, see Lemma 2.2.6, such that

{|e(uε)| 2 ≤κ/ε} |e(u ε )| 2 dx → 0. (2.1.7)
To make our strategy of proof more transparent, we assume that a • ν ̸ = b • ν. A standard argument based on Fubini's Theorem shows that the one-dimensional section of u ε in the direction ν passing through the point y,

namely t → (u ε ) ν y (t) := u ε (y + tν) • ν converges (in measure) to the step function t → u ν y (t) = a • ν1 R -+ b • ν1 R + .
Let us denote by T ε the triangulation on which u ε is (continuous and) piecewise affine. We further denote by T ε b the familly of all triangles

T ∈ T ε such that |e(u ε ) |T | 2 > κ/ε. Thanks to (2.1.7), we show that almost every line orthogonal to J u ∩ B must cross at least one triangle T ∈ T ε b (see Lemma 2.2.7).
The reason is that if, for some y ∈ J u ∩ B, the line y + Rν intersects no such triangles, then

(u ε ) ν y would be bounded in H 1 (because |((u ε ) ν y ) ′ | ≤ |e(u ε )(y + tν)|
) and thus, it would converge weakly in that space to a constant function, contradicting that a•ν ̸ = b•ν. This information allows one to get a bad lower bound for the surface energy with 1/2 multiplicative factor. It suggests to improve the previous argument by showing that "many" lines y + Rν passing through y ∈ J u ∩ B must actually cross at least two triangles in T ε b , which is the object of Lemma 2.2.8. To do that, we show in Lemma 2.2.9 that there are very few points y in J u ∩ B such that the line y + Rν crosses exactly one triangle T ∈ T ε b . Indeed, in that case, up to a small error, the function (u ε ) ν y would have to pass from the value a • ν to b • ν inside T . Due to the particular shape of a triangle and of the fact that u ε is affine inside T , this could only happen for at most two values of y. Moreover, if y is far away from these two values, the variation of (u ε ) ν y across the triangle T is not sufficient, and it becomes necessary to cross an additional triangle T ′ in T ε b . With this improvement, we can now construct two disjoint families of triangles with the property that both families project onto J u ∩ B into two sets of almost full H 1 measure (see Lemma 2.2.10). It enables one to compensate the bad multiplicative factor 1/2 in the previous argument, and obtain the expected lower bound with the correct constant corresponding to κ sin θ 0 (see Proposition 2.2.5). In [START_REF] Ambrosio | On the approximation of free discontinuity problems[END_REF], the right factor in the lower estimate of the jump part comes from the two transitions of the phase field approximating J u , one from each side of the jump set. Similarily here, the same role is played by the characteristic function χ ε = 1 {|e(uε)| 2 >κ/ε} . Indeed, having in mind the optimal triangulation computed in the upper bound (see [39, Appendix A]) and knowing that almost every line orthogonal to J u ∩ B crosses at least two distinct triangles of T ε b , we expect these triangles to form a neighbourhood of J u as in To conclude this introduction, let us mention that the originality of this work is twofold. First of all, we are able to provide a deterministic discrete finite element approximation result of the Griffith

ν B J u ∩ B = Π ν ∩ B ε sin θ 0 (χ ε ) ν y = 0 0 1 B ν y y Figure 2.1
functional with isotropic surface energies. In particular, our approach does not require any unnatural dependence of the approximating energy with respect to the skew symmetric part of the gradient (in the context of linear elasticity) nor the use of stochastic meshes. Second, our method relies on an unusual application of the slicing method, which is rather employed in Γ-convergence analysis to reduce the dimension of the problem to a one-dimension study. Here, we instead use this method as a tool to enumerate in a non trivial way the number of triangles needed to derive the correct multiplicity in the surface energy.

. Organisation of the paper

In Section 1.4, we collect useful notation and preliminary results that will be useful in the subsequent sections. Section 3 is devoted to show our main result, Theorem 2.1.3. It is divided into three parts : a first one consisting in a compactness result, Proposition 2.2.1, a second one corresponding to the lower bound inequality, Proposition 2.2.3, and a last one for the upper bound inequality, Proposition 2.2.11 through the construction of a recovery sequence. Eventually, in Section 2.3, we extend the previous Γ-convergence analysis allowing for Dirichlet boundary conditions formulated in a suitable way at the discrete and continuum levels (see Theorem 2.3.1). We then deduce the fundamental property of Γ-convergence, Corollary 2.3.2, in our specific setting, i.e., the convergence of minimizers as well as the minimum value.

. Proof of the main result

Let us introduce the Γ-lower and upper limits (with respect to the topology of convergence in measure) F ′ and F ′′ : L 0 (Ω; R 2 ) → [0, +∞] defined by

F ′ (u) := inf lim inf ε→0 F ε (u ε ) : u ε → u in measure in Ω , and 
F ′′ (u) := inf ß lim sup ε→0 F ε (u ε ) : u ε → u in measure in Ω ™ ,
for all u ∈ L 0 (Ω; R 2 ).

. Domain of the Γ-limit

We begin our analysis by identifying the domain of finiteness of the Γ-limit.

Proposition 2.2.1. Let {ε k } k∈N satisfying ε k → 0, u ∈ L 0 (Ω; R 2 ) and {u k } k∈N ⊂ L 0 (Ω; R 2 ) be such that M := sup k F ε k (u k ) < ∞ and u k → u in measure in Ω. Then, u ∈ GSBD 2 (Ω).
Proof. According to the properties (2.1.4) satisfied by f , for all δ > 0, there exists a constant 0 < K < κ such that

f (t) ≥ K ∧ [(1 -δ)t] for all t ≥ 0.
(2.2.1)

Indeed, since f (t)/t → 1 as t → 0 + , there exists t * > 0 such that f (t)/t ≥ 1 -δ for all t ∈ [0, t * ] and K := (1 -δ)t * < κ. Hence, for all t ∈ [0, t * ], we have f (t) ≥ (1 -δ)t, while for all t > t * , as f is nondecreasing, f (t) ≥ f (t * ) ≥ K.
By definition of F ε k , there exists a triangulation

T k ∈ T ε k (Ω) such that u k ∈ V ε k (Ω)
is affine on each triangle T ∈ T k . We introduce the characteristic functions

χ k := 1 (1-δ)Ae(u k ):e(u k ) ≥ K ε k ∈ L ∞ (Ω; {0, 1})
which are constant on each triangle T ∈ T k , so that

D k := {χ k = 1} ∩ Ω = N k i=1 (T k i ∩ Ω)
for some triangles

T k i ∈ T k . Remark that this choice of χ k implies that M ≥ F ε k (u k ) ≥ (1 -δ) Ω (1 -χ k )Ae(u k ) : e(u k ) dx + K ε k Ω χ k dx, forcing χ k to converge to 0 in L 1 (Ω) since 0 ≤ Ω χ k dx ≤ K -1 M ε k → 0. Let v k := (1 -χ k )u k so that, by [6, Theorem 3.84], v k ∈ SBV 2 (Ω; R 2 ) with ∇v k = (1 -χ k )∇u k and J v k ⊂ Ω ∩ ∂D k ⊂ N k i=1 ∂T k i .
Note that

v k → u in measure in Ω and A := {x ∈ Ω : |u k (x)| → ∞} is L 2 -negligible. (2.2.2) Indeed, since u k → u in measure in Ω and {u k ̸ = v k } ⊂ D k with L 2 (D k ) → 0, for all η > 0, we get that L 2 ({|v k -u| > η}) ≤ L 2 ({|u k -u| > η}) + L 2 (D k ) → 0. Additionally, up to a subsequence (not relabeled), u k (x) → u(x) ∈ R 2 for L 2 -a.e. x ∈ Ω.
On the one hand, using the energy bound F ε k (u k ) ≤ M and the ellipticity property (2.1.5) of A, we infer that

Ω |e(v k )| 2 dx ≤ M (1 -δ)α . (2.2.3)
On the other hand, by definition of an admissible triangulation, the edges of each triangle T k i have length greater than or equal to ε k and their angles are all greater than or equal to θ 0 , so that the heights of such triangles must be greater than or equal to ε k sin θ 0 . Therefore, for all

1 ≤ i ≤ N k , L 2 (T k i ) ≥ 1 2 (ε k sin θ 0 ) H 1 (∂T k i ) 3
which implies that for all open subset U ⊂⊂ Ω :

H 1 (J v k ∩ U ) ≤ 6 sin θ 0 i∈{1,...,N k }, T k i ∩U ̸ =∅ L 2 (T k i ) ε k . Let k U ≥ 1 (depending on U ) be such that for all k ≥ k U , any triangle T ∈ T k intersecting U is contained in Ω, then it follows that for all k ≥ k U , H 1 (J v k ∩ U ) ≤ 6 ε k sin θ 0 Ω χ k dx ≤ 6M K sin θ 0 , (2.2.4) 
where we used once more the energy bound

F ε k (u k ) ≤ M .
Gathering (2.2.3) and (2.2.4), we can apply the GSBD 2 -compactness Theorem ([35, Theorem 1.1]). Together with (2.2.2), it ensures the existence of a subsequence (depending on the open subset U , which we do not relabel) such that

u |U ∈ GSBD 2 (U ), e(v k ) |U ⇀ e(u |U ) weakly in L 2 (U ; M 2×2 sym ) and H 1 (J u ∩ U ) ≤ lim inf k→∞ H 1 (J v k ∩ U ).
We then consider an exhaustion of Ω by a sequence of open subsets {U m } m∈N satisfying U m ⊂⊂ U m+1 ⊂⊂ Ω for all m ∈ N and m U m = Ω. Using a diagonal extraction argument, we can find a subsequence (still denoted by {v k } k∈N ) such that for all m ∈ N,

u |Um ∈ GSBD 2 (U m ) and e(v k ) |Um ⇀ e(u |Um ) weakly in L 2 (U m ; M 2×2 sym ) and H 1 (J u ∩ U m ) ≤ lim inf k→∞ H 1 (J v k ∩ U m ).
(2.2.5)

Let us now check that u belongs to GSBD 2 (Ω). Indeed, let ξ ∈ S 1 and τ ∈ C 1 (R) be such that |τ | ≤ 1 2 and 0 ≤ τ ′ ≤ 1. For all test function ϕ ∈ C ∞ c (Ω), there exists m ∈ N such that supp ϕ ⊂ U m so that, owing to the dominated convergence Theorem,

⟨D ξ (τ (u • ξ)) , ϕ⟩ = - Um τ (u • ξ)D ξ ϕ dx = -lim k→∞ Um τ (v k • ξ)D ξ ϕ dx = lim k→∞ ⟨D ξ (τ (v k • ξ)), ϕ⟩. Since v k • ξ ∈ SBV 2 (Ω), using the chain rule formula in BV ([6, Theorem 3.96]), we get that τ (v k • ξ) ∈ SBV 2 (Ω) with D ξ (τ (v k • ξ)) = τ ′ (v k • ξ)e(v k ) : (ξ ⊗ ξ) L 2 Ω + τ (v + k • ξ) -τ (v - k • ξ) ν v k • ξ H 1 J v k .
Taking the variation, we infer that

|D ξ (τ (v k • ξ))| ≤ |e(v k )|L 2 Ω + H 1 J v k =: λ k .
As a consequence of (2.2.3) together with (2.2.4), the sequence

{λ k } k∈N is bounded in M(U m ) for all m ∈ N, with sup k≥k Um λ k (U m ) ≤ M (1 -δ)α + 6M K sin θ 0 =: M δ < +∞, so that, up to a further diagonal extraction, λ k U m ⇀ λ (m)
weakly* in M(Ω) for some nonnegative measure λ (m) ∈ M(Ω) satisfying, for all m ∈ N,

λ (m) (Ω) ≤ lim inf k→∞ λ k (U m ) ≤ M δ .
Therefore, we can introduce the following nonnegative measure λ ∈ M(Ω) defined by

λ(B) := sup m∈N λ (m) (B) = lim m→∞ λ (m) (B) for all Borel subset B ⊂ Ω.
We thus obtain that

|⟨D ξ (τ (u • ξ)) , ϕ⟩| ≤ lim k→∞ ⟨λ k U m , |ϕ|⟩ = ⟨λ (m) , |ϕ|⟩ ≤ ⟨λ, |ϕ|⟩,
implying both that D ξ (τ (u • ξ)) ∈ M(Ω) according to Riesz Representation Theorem and that

|D ξ (τ (u • ξ))| ≤ λ in M(Ω), which shows that u ∈ GBD(Ω). Using next that u ∈ GSBD(U m ) for all m ∈ N and [48, Definition 4.2],
we deduce that u ∈ GSBD(Ω). Eventually, by locality of the definition of the approximate symmetric gradient e(u) (see [48, Formula (9.1)]), as a consequence of (2.2.3) together with (2.2.5), we infer that e(v k ) ⇀ e(u) weakly in L 2 (Ω; M 2×2 sym ) with e(u) ∈ L 2 (Ω; M 2×2 sym ). Passing to the limit as m → ∞ in the last property of (2.2.5) and using (2.2.4) shows that H 1 (J u ) < ∞. All of this establishes that u ∈ GSBD 2 (Ω) and completes the proof of the Proposition. Remark 2.2.2. We will later improve the previous result (see Proposition 2.3.5) by getting rid-off the a priori knowledge that u k converges in measure in Ω. The price to pay will be to subtract a sequence of piecewise rigid body motions. Proposition 2.3.5 will a posteriori justify why the topology of convergence in measure is the natural one to address the Γ-convergence analysis.

. The lower bound

The proof of the lower bound inequality relies on the blow up method which consists in identifying separately the Lebesgue and jump parts of the energy. Proposition 2.2.3. For all u ∈ L 0 (Ω; R 2 ),

F(u) ≤ F ′ (u).
Proof. Without loss of generality, we can assume that F ′ (u) < ∞. For any ζ > 0, there exists a sequence {u ε } ε>0 such that u ε → u in measure in Ω and

lim inf ε→0 F ε (u ε ) ≤ F ′ (u) + ζ < ∞. Let us extract a subsequence {u k } k∈N := {u ε k } k∈N from {u ε } ε>0 such that u k → u L 2 -a.e. in Ω and lim k→∞ F ε k (u k ) = lim inf ε→0 F ε (u ε ) < ∞.
This implies that, for k large enough,

u k ∈ V ε k (Ω) and sup k F ε k (u k ) < ∞. By definition of the finite element space V ε k (Ω), there exists a triangulation T k ∈ T ε k (Ω) such that u k is affine on each T ∈ T k .
We first note that, according to Proposition 2.2.1, u ∈ GSBD 2 (Ω). Let us show the lower bound inequality F ′ (u) ≥ F(u). To this aim, we introduce the following sequence of Radon measures on Ω

λ k := 1 ε k f ε k Ae(u k ) : e(u k ) L 2 Ω.
Since the sequence {λ k } k∈N is uniformly bounded in M(Ω), up to a subsequence (not relabeled), we have λ k * ⇀ λ weakly* in M(Ω) for some nonnegative measure λ ∈ M(Ω). Thanks to the lower semicontinuity of weak* convergence in M(Ω) along open sets, we have that

F ′ (u) + ζ ≥ lim k→∞ λ k (Ω) ≥ λ(Ω). (2.2.6)
Using that the measures L 2 Ω and H 1 J u are mutually singular, it is enough to show that 

dλ dL 2 ≥ Ae(u) : e(u) L 2 -a.e.
λ = dλ dL 2 L 2 Ω + dλ dH 1 J u H 1 J u + λ s ,
for some nonnegative measure λ s which is singular with respect to both L 2 Ω and H 1 J u . Thus, after integration over Ω and recalling (2.2.6), we get that

F ′ (u) + ζ ≥ Ω Ae(u) : e(u) dx + κ sin θ 0 H 1 (J u ) = F(u).
Taking the limit as ζ → 0, we obtain the desired lower bound inequality.

The rest of this section is devoted to the establishment of (2.2.7) and (2.2.8). We start by identifying the lower bound for the bulk energy. Proposition 2.2.4 (Lower bound for the Lebesgue part). For L 2 -a.e. x 0 ∈ Ω,

dλ dL 2 (x 0 ) ≥ Ae(u)(x 0 ) : e(u)(x 0 ). Proof. Let x 0 ∈ Ω be such that dλ dL 2 (x 0 ) = lim ϱ↘0 λ B ϱ (x 0 ) πϱ 2
exists and is finite, and

lim ϱ↘0 1 ϱ 2 Bϱ(x 0 ) |e(u)(y) -e(u)(x 0 )| 2 dy = 0.
According to Besicovitch and Lebesgue differentiation Theorems, L 2 -almost every point x 0 in Ω satisfies these properties. We next consider a sequence of radii {ϱ j } j∈N such that ϱ j ↘ 0 and λ(∂B ϱ j (x 0 )) = 0 for all j ∈ N.

As in the proof of Proposition 2.2.1, according to the properties (2.1.4) satisfied by f , for all δ > 0, there exists a constant 0 < K < κ such that f (t) ≥ K ∧ [(1 -δ)t] for all t ≥ 0. Moreover, using the characteristic functions

χ k := 1 (1-δ)Ae(u k ):e(u k ) ≥ K ε k ∈ L ∞ (Ω; {0, 1})
we have for every Borel set B ⊂ Ω,

λ k (B) ≥ (1 -δ) B (1 -χ k )Ae(u k ) : e(u k ) dx + K ε k B χ k dx.
Note that because u k is affine on each triangle T ∈ T k , χ k is constant on each triangle T ∈ T k . Following the proof of Proposition 2.2.1, the sequence

v k := (1 -χ k )u k ∈ SBV 2 (Ω; R 2 ) satisfies v k → u in measure in Ω and e(v k ) ⇀ e(u) weakly in L 2 (Ω; M 2×2 sym ).
Then, for all j ∈ N,

λ(B ϱ j (x 0 )) = lim k→∞ λ k (B ϱ j (x 0 )) ≥ (1 -δ) lim inf k→∞ Bϱ j (x 0 ) Ae(v k ) : e(v k ) dx ≥ (1 -δ) Bϱ j (x 0 )
Ae(u) : e(u) dx.

Dividing the previous inequality by πϱ 2 j and passing to the limit as j → ∞ implies by the choice of the point x 0 that

dλ dL 2 (x 0 ) = lim j→∞ λ(B ϱ j (x 0 )) πϱ 2 j ≥ (1 -δ) lim j→∞ 1 πϱ 2 j Bϱ j (x 0 ) Ae(u) : e(u) dx = (1 -δ)Ae(u)(x 0 ) : e(u)(x 0 ).
Taking the limit as δ → 0 + completes the proof of the lower bound for the Lebesgue part.

We next pass to the lower bound inequality for the jump part of the energy which represents the most difficult and original part of our result. Proposition 2.2.5 (Lower bound for the jump part). For H 1 -a.e. x 0 ∈ J u ,

dλ dH 1 J u (x 0 ) ≥ κ sin θ 0 .
The proof of Proposition 2.2.5 is quite long and involved. It necessitates the introduction of some tools in order to carry out the blow-up analysis coupled with the slicing method.

Let x 0 ∈ J u be such that

dλ dH 1 J u (x 0 ) = lim ϱ↘0 λ B ϱ (x 0 ) H 1 J u ∩ B ϱ (x 0 )
exists and is finite, and

lim ϱ↘0 H 1 (J u ∩ B ϱ (x 0 )) 2ϱ = 1.
According to the Besicovitch differentiation Theorem and the countably (H 1 , 1)-rectifiability of J u (see [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]Theorem 2.83]), it follows that H 1 -almost every point x 0 in J u fulfills these conditions. The point x 0 ∈ J u being fixed throughout the rest of the proof of Proposition 2.2.5, we sometimes intentionally omit to write the dependence with respect to x 0 .

By definition of the jump set J u , there exist ν := ν u (x 0 ) ∈ S 1 and u

± (x 0 ) ∈ R 2 with u + (x 0 ) ̸ = u -(x 0 ) such that the function u x 0 ,ϱ := u(x 0 + ϱ •)
converges in measure in B := B 1 (0) to the jump function

u : y ∈ B → ® u + (x 0 ) if y • ν > 0, u -(x 0 ) if y • ν < 0, as ϱ ↘ 0 (see [48, Definition 2.3]). Note that, the jump set J u in B coincides with the diameter B ν = p ν (B) orthogonal to ν. Moreover, since H 1 ξ ∈ S 1 : [u](x 0 ) • ξ = 0 = 0, for any η > 0, there exists ξ ∈ S 1 such that |ν -ξ| ≤ η, ν • ξ ≥ 1 2 , ν • ξ ⊥ ≤ η and [u](x 0 ) • ξ ̸ = 0, (2.2.9)
where

[u](x 0 ) := u + (x 0 ) -u -(x 0 ). If [u](x 0 ) • ν ̸ = 0,
we can simply take ξ = ν. We then set

M η := |u + (x 0 ) • ξ| + |u -(x 0 ) • ξ| > 0.
(2.2.10)

From now on, when working with the convergence in measure, we will use the distance d Mη defined in (1.4.1) associated to this precise value of M η . As before, we consider a sequence of radii {ϱ j } j∈N such that ϱ j ↘ 0 and λ(∂B ϱ j (x 0 )) = 0 = H 1 (J u ∩ ∂B ϱ j (x 0 )) for all j ∈ N.
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By our choice of x 0 , we have

             lim j→∞ lim k→∞ u k (x 0 + ϱ j •) = lim j→∞ u x 0 ,ϱ j = u in measure in B, lim j→∞ lim k→∞ λ k (B ϱ j (x 0 )) 2ϱ j = lim j→∞ λ(B ϱ j (x 0 )) 2ϱ j = dλ dH 1 J u (x 0 ), lim j→∞ lim k→∞ ε k ϱ j = lim j→∞ lim k→∞ ω(ε k ) ϱ j = 0.
The metrizability of the convergence in measure in B shows the existence of an increasing sequence {k j } j∈N (depending on η) such that k j ↗ ∞ as j → ∞ and

               v j := u k j (x 0 + ϱ j •) → u in measure in B, λ k j (B ϱ j (x 0 )) 2ϱ j → dλ dH 1 J u (x 0 ), ε k j ϱ j → 0, ω(ε k j ) ϱ j → 0. (2.2.11a) (2.2.11b) (2.2.11c)
In particular, using a change of variables, we get that

2 dλ dH 1 J u (x 0 ) = lim j→∞ 1 ϱ j ε k j Bϱ j (x 0 ) f ε k j Ae(u k j ) : e(u k j ) dx = lim j→∞ ϱ j ε k j B f Ç ε k j ϱ 2 j Ae(v j ) : e(v j ) å dy ≥ lim sup j→∞ ϱ j ε k j B f Ç ε k j ϱ 2 j α|e(v j )ξ • ξ| 2 å dy,
where, in the last inequality, we used the ellipticity property (2.1.5) of A, the nondecreasing character of f and that ξ ∈ S 1 .

According to the properties (2.1.4) satisfied by f , for all δ ∈ (0, 1), there exists a constant A > 0 such that

f (t) ≥ (At) ∧ [(1 -δ)κ] for all t ≥ 0.
Indeed, since f (t) → κ as t → ∞, there exists t * ≥ 0 such that for all t ≥ t * , f (t) ≥ (1 -δ)κ. The function f (t)/t being continuous over [0, t * ] (extended by the value 1 at t = 0), it reaches its minimum value A > 0 over this segment so that

f (t) ≥ At for all t ∈ [0, t * ].
Let us introduce the characteristic functions

χ j := 1 ® Aαε k j ϱ 2 j |e(v j )ξ•ξ| 2 ≥(1-δ)κ ´∈ L ∞ (B; {0, 1}), so that 2 dλ dH 1 J u (x 0 ) ≥ lim sup j→∞ ® αA ϱ j B (1 -χ j )|e(v j )ξ • ξ| 2 dy + (1 -δ)κϱ j ε k j B χ j dy ´.
(2.2.12)
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We then introduce the translated and rescaled triangulations

T x 0 ,j := 1 ϱ j Ä T k j -x 0 ä , T x 0 ,j b := ® T ∈ T x 0 ,j : αA ϱ j |e(v j ) |T ξ • ξ| 2 ≥ (1 -δ)κϱ j ε k j
´.

(2.2.13)

Note that v j is affine on each T ∈ T x 0 ,j . Let us point out that

χ j |T := ® 1 if T ∈ T x 0 ,j b , 0 otherwise. (2.2.14) Since ((v j ) ξ z ) ′ (t) = e(v j )(z + tξ)ξ • ξ, then for H 1 -a.e. z ∈ B ξ , (χ j ) ξ z (t) = 1 if αA ϱ j |((v j ) ξ z ) ′ (t)| 2 ≥ (1-δ)κϱ j ε k j , 0 otherwise, for L 1 -a.e. t ∈ B ξ z . (2.2.15)
The triangles belonging to the collection T x 0 ,j b correspond to the sets where the longitudinal slope of v j in the direction ξ is "very large". They, roughly speaking, represent the places where it will be energetically convenient to introduce a jump because of the sharp transition.

The following result, which will play a major role in the proof of Proposition 2.2.5, shows that for many points y ∈ J u ∩ B, the one-dimensional energy on B ξ y is arbitrarily small uniformly with respect to y.

Lemma 2.2.6. For all η > 0, there exist a subset Z ⊂ J u ∩ B with H 1 (Z) ≤ η and a subsequence (not relabeled, depending on x 0 ) such that the following property holds : for all γ > 0, there exists j 0 = j 0 (γ) ∈ N such that for all y ∈ J u ∩ B \ Z and all j ≥ j 0 ,

                   B ξ y (χ j ) ξ y dt ≤ γ, B ξ y 1 -(χ j ) ξ y |((v j ) ξ y ) ′ | 2 dt ≤ γ 2 , B ξ y M η ∧ |(v j -u) ξ y | dt ≤ γ. (2.2.16a) (2.2.16b) (2.2.16c)
Proof. According to Fubini's Theorem, the convergence in measure (2.2.11a) and (2.2.12), we infer that

B ξ Ç B ξ z M η ∧ |(v j -u) ξ z | dt + B ξ z (1 -(χ j ) ξ z )|((v j ) ξ z ) ′ | 2 dt + B ξ z (χ j ) ξ z dt å dH 1 (z) ≤ B M η ∧ |v j -u| dx + B (1 -χ j )|e(v j )ξ • ξ| 2 dx + B χ j dx → 0.
As a consequence, up to a subsequence (not relabeled), there exists an

H 1 -negligible set N ⊂ B ξ such that B ξ z M η ∧ |(v j -u) ξ z | dt + B ξ z (1 -(χ j ) ξ z )|((v j ) ξ z ) ′ | 2 dt + B ξ z (χ j ) ξ z dt → 0 for all z ∈ B ξ \ N .
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In order to pass from arbitrary points z ∈ B ξ to arbitrary points y ∈ J u ∩ B = B ν , let us consider the following mapping (see Figure 2.2)

Φ : z ∈ R 2 -→ z - ν • z ν • ξ ξ ∈ Π ν (2.2.17)
which corresponds to the linear projection onto Π ν in the direction ξ. Thanks to (2.2.9), we can check that the Lipschitz constant of Φ is bounded by 1 + 4η2 . Moreover, since for all z ∈ B ξ we have

B ξ z + ν•z ν•ξ = B ξ Φ(z) = ¶ s ∈ R : z + s -ν•z ν•ξ ξ ∈ B © , we deduce that B ξ z M η ∧ |(v j -u) ξ z | dt + B ξ z (1 -(χ j ) ξ z )|((v j ) ξ z ) ′ | 2 dt + B ξ z (χ j ) ξ z dt = B ξ Φ(z) M η ∧ |(v j -u) ξ Φ(z) | ds + B ξ Φ(z) (1 -(χ j ) ξ Φ(z) )|((v j ) ξ Φ(z) ) ′ | 2 ds + B ξ Φ(z) (χ j ) ξ Φ(z) ds thanks to the change of variables s = t + ν•z ν•ξ . Since B ν ⊂ Φ(B ξ ), setting N ′ := Φ(N ) ⊂ Π ν , we get that H 1 (N ′ ) = 0 and B ξ y M η ∧ |(v j -u) ξ y | ds + B ξ y (1 -(χ j ) ξ y )|((v j ) ξ y ) ′ | 2 ds + B ξ y (χ j ) ξ y ds → 0 for all y ∈ B ν \ N ′ .
Applying Egoroff's theorem, for all η > 0, there exists a subset Z ⊂ B ν such that H 1 (Z) ≤ η and the above convergence is uniform with respect to y ∈ B ν \ Z.

Let us consider the subsequence introduced in Lemma 2.2.6. For all y ∈ B 1-

η 4 ν = J u ∩ B 1-η 4 ,
we define the end points of the section passing through y in the direction ξ (see the Figure 2.2) :

a(y) := min ¶ t ∈ [-2, 2] : y + tξ ∈ B 1-η 4 © ∈ [-2, 0], b(y) := max ¶ t ∈ [-2, 2] : y + tξ ∈ B 1-η 4 © ∈ [0, 2],
(2.2.18)

so that B 1-η 4 ξ y = (a(y), b(y)). Note that, for all y ∈ J u ∩ B 1-η 2 ⊂ B 1-η 4 ν , 0 < L η := 1 - η 2 2 |ξ • ν ⊥ | 2 + η(8 -3η) 16 -1 - η 2 ξ • ν ⊥ ≤ |a(y)|, |b(y)| ≤ 2. (2.2.19)
We introduce the family

T x 0 ,j b,int := ¶ T ∈ T x 0 ,j b : T ∩ B 1-η 4 ̸ = ∅ © of triangles which intersect B 1-η 4
and where v j varies enough in the direction ξ. Note that for j ∈ N large enough (depending on η), each T ∈ T x 0 ,j b,int is contained in B, since the lengths of all triangles's edges are controlled by ω(ε k j )/ϱ j → 0. The collection T x 0 ,j b,int is introduced for technical reasons to deal with triangles which intersect the boundary of the ball B.

In the following result, we show that, for some subset of Z ′ ⊂ J u ∩ B 1-η 2 of arbitrarily small H 1 measure, and along a subsequence (only depending on η), all the sections in the direction ξ passing through

J u ∩ B 1-η
We then consider the extraction ϕ : j ∈ N -→ j + j * ∈ N which only depends on η. By assumption, there exists y = y(ϕ)

∈ J u ∩ B 1-η 2 \ Z and j = j(ϕ) ∈ N such that (T ∩ B) ξ y = ∅ for all T ∈ T x 0 ,j+j * b,int .
Remembering (2.2.14), we deduce that (χ j+j * ) ξ y ≡ 0 on (a(y), b(y)). Moreover, since ϕ(j) = j +j * ≥ j * , we have

b(y) a(y) |((v j+j * ) ξ y ) ′ | 2 dt ≤ γ * 2 and b(y) a(y) M η ∧ |(v j+j * -u) ξ y | dt ≤ γ * . y T Π ν u + (x 0 ) u -(x 0 ) y + t -ξ y + t + ξ y + a(y)ξ y + b(y)ξ 0 ξ ν Figure 2.3 By continuity of (v j+j * ) ξ y on the compact [a(y), b(y)], (v j+j * ) ξ y being in H 1 (B ξ y ), there exist two points t ± ∈ [a(y), b(y)] ∩ R ± such that min [a(y),b(y)]∩R ± Ä M η ∧ | (v j+j * ) ξ y -u ± (x 0 ) • ξ| ä = M η ∧ | (v j+j * ) ξ y (t ± ) -u ± (x 0 ) • ξ|.
Hence,

γ * L η ≥ 1 L η 0 a(y) M η ∧ | (v j+j * ) ξ y -u -(x 0 ) • ξ| dt + 1 L η b(y) 0 M η ∧ | (v j+j * ) ξ y -u + (x 0 ) • ξ| dt ≥ M η ∧ | (v j+j * ) ξ y (t -) -u -(x 0 ) • ξ| + M η ∧ | (v j+j * ) ξ y (t + ) -u + (x 0 ) • ξ| ≥ M η ∧ Ä | (v j+j * ) ξ y (t -) -u -(x 0 ) • ξ| + | (v j+j * ) ξ y (t + ) -u + (x 0 ) • ξ| ä ≥ M η ∧ |[u](x 0 ) • ξ| - t + t - Ä (v j+j * ) ξ y ä ′ (t) dt ≥ M η ∧ (|[u](x 0 ) • ξ| -2γ * ) ,
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which is impossible thanks to of our choice of γ * .

We are now in position to complete the proof of Lemma 2.2.7. For all j ∈ N, let

Z j := y ∈ J u ∩ B 1-η 2
: there exists T ∈ T x 0 ,j b,int such that (T ∩ B) ξ y is contained in an edge or a vertex of T , and

Z ′ := Z ∪ j∈N Z j .
We notice that j Z j is H 1 -negligible (each Z j being finite), hence H 1 (Z ′ ) ≤ η. Moreover, for all y ∈

J u ∩ B 1-η 2 
\ Z ′ and all j ∈ N, there exists a triangle T ∈ T

x 0 ,ϕ(j) b,int such that (T ∩ B) ξ y is non-empty, and it is neither reduced to a vertex of T nor contained in an edge of it. It thus implies that

( T ∩ B) ξ y ̸ = ∅.
Let us consider the further subsequence introduced in Lemma 2.2.7. As a consequence, for all j ∈ N, the family of triangles

F j := ¶ T ∈ T x 0 ,j b,int : there exists y ∈ J u ∩ B 1-η 2 such that ( T ∩ B) ξ y ̸ = ∅ © (2.2.20)
is nonempty. Thanks to Lemma 2.2.7, it is possible to obtain a bad lower bound. Indeed, from that result, we infer that

J u ∩ B 1-η 2 \ Z ′ ⊂ T ∈F j Φ(p ξ (T ))
with Φ the projection onto Π ν in the direction ξ defined in (2.2.17). Using next that L 2 (T ) ≥ H 1 (p ξ (T ))(ε k j /ϱ j ) sin θ 0 /2 and that the Lipschitz constant of Φ is bounded by 1 + 4η 2 , we deduce from (2.2.12) and our choice of x 0 that

2 dλ dH 1 J u (x 0 ) ≥ lim inf j→∞ (1 -δ)κϱ j ε k j B χ j dy ≥ lim inf j→∞ T ∈F j (1 -δ)κϱ j L 2 (T ) ε k j ≥ (1 -δ)κ sin θ 0 2 1 + 4η 2 lim inf j→∞ H 1 Ñ T ∈F j Φ(p ξ (T )) é ≥ (1 -δ)κ sin θ 0 2 1 + 4η 2 H 1 Ä J u ∩ B 1-η 2 \ Z ′ ä ≥ (1 -δ)κ sin θ 0 1 + 4η 2 (1 -η).
Letting η → 0 and δ → 0 leads to dλ dH 1 J u (x 0 ) ≥ κ sin θ 0 2 which corresponds to a too low lower bound because of the factor 1/2 in the right-hand side of the previous inequality. In order to improve the previous argument, we need to establish that many lines B ξ y parallel to ξ and passing through the jump set at some point y ∈ J u ∩ B must actually intersect at least two triangles of the collection T x 0 ,j b,int , where the longitudinal variation of v j in the direction ξ is "large". This idea is precisely formulated in the following result which is an improvement of Lemma 2.2.7.

Lemma 2.2.8. For all η > 0, there exist Z ′′ ⊂ J u ∩B containing Z ′ with H 1 (Z ′′ ) ≤ 3η, and a (not relabeled) subsequence such that for all j ∈ N and for all y

∈ J u ∩ B 1-η 2 \ Z ′′ , # ¶ T ∈ T x 0 ,j b,int : ( T ∩ B) ξ y ̸ = ∅ © ≥ 2.
The proof of Lemma 2.2.8 consists in constructing both Z ′′ and the subsequence inductively by means of the following technical result, Lemma 2.2.9. It stipulates that the set of all points y ∈ J u ∩ B such that B ξ y intersects exactly one triangle T in the collection T x 0 ,j b,int , has arbitrarily small H 1 measure. To establish this property, we first show that if such situation arises, then the function (v j ) ξ y is uniformly close (with respect to y) to the step function u ξ y taking the values u ± (x 0 ) • ξ. Thus, up to a small error which is uniform in y, the function (v j ) ξ y must pass from the value u -(x 0 ) • ξ to u + (x 0 ) • ξ in an affine way inside the only triangle T ∈ T x 0 ,j b,int which is crossed by B ξ y . However, due to the shape of a triangle, this can happen for at most two different values of y, say z 1 and z 2 . Then, if y ∈ J u ∩ B is far away from these two values z 1 and z 2 , the variation of (v j ) ξ y is not sufficient to connect the values u ± (x 0 ) • ξ in an affine way. It thus becomes necessary for B ξ y to intersect an additional triangle

T ′ ∈ T x 0 ,j b,int
, where the variation of (v j ) ξ y is substantial, in order to recover the full jump.

Lemma 2.2.9. For all η > 0, there exist constants

C * = C * (η) > 0, γ * = γ * (η) > 0 and a subset Z * = Z * (η) ⊂ J u ∩ B containing Z ′
and satisfying H 1 (Z * ) ≤ 2η such that the following property holds : for all 0 < γ < γ * , there exists j(γ) ∈ N such that for all j ≥ j(γ), the set

Y j := ¶ y ∈ J u ∩ B 1-η 2 \ Z ′ : there exists a unique T ∈ T x 0 ,j b,int such that ( T ∩ B) ξ y ̸ = ∅ © (2.2.21) satisfies H 1 (Y j \ Z * ) ≤ C * γ.
Proof of Lemma 2.2.9. The proof is divided into three steps.

Step 1. In this first step, we show that for j large enough and for many points y ∈ Y j , the set (B ∩ T ) ξ y (where T is the only triangle in T x 0 ,j b,int which crosses B ξ y ) is close to (J u ) ξ y , uniformly with respect to y. For all j ∈ N and all y ∈ Y j , let T j (y) ∈ T x 0 ,j b,int be the unique triangle such that ( Tj (y) ∩ B) ξ y ̸ = ∅. We define the end points of the section in the direction ξ passing through y inside T j (y) (see the Figure 

f j (y) := (|a j (y)| + |b j (y)|) 1 Y j (y) → 0 for all y ∈ J u ∩ B 1-η 2 \ Z ′ . (2.2.23) Let y ∈ J u ∩ B 1-η 2 \ Z ′ and set ℓ := lim sup j f j (y) ∈ [0, 4].
Assume by contradiction that ℓ > 0 and extract a subsequence depending on y (not relabeled) such that f j (y) → ℓ. Then, there exists j 0 ∈ N such that y ∈ Y j for all j ≥ j 0 . Moreover, according to Lemma 2.2.6 and setting I j (y) := (a(y), b(y)) \ (a j (y), b j (y)) ⊂ B ξ y , we have with the convention that (x, y) = ∅ if y < x. We set

                 |b j (y) -a j (y)| ≤ B ξ y (χ j ) ξ y dt → 0, I j (y) |((v j ) ξ y ) ′ | 2 dt ≤ B ξ y 1 -(χ j ) ξ y |((v j ) ξ y ) ′ | 2 dt → 0, b (y) a(y) 
M η ∧ |(v j -u) ξ y | dt ≤ B ξ y M η ∧ |(v j -u) ξ y | dt → 0.
I - τ := (a(y), m -τ ) , I + τ := (m + τ, b(y)) , so that (v j ) ξ y |I ± τ ∈ H 1 (I ± τ )
and the truncated function

w j := Ä M η ∧ (v j ) ξ y ä ∨ (-M η ) ∈ H 1 (I ± τ ) satis- fies w ′ j = ((v j ) ξ y ) ′ 1 ¶ |(v j ) ξ y |≤Mη
© . According to the second condition in (2.2.24), the sequence {w j } j∈N is bounded in H 1 (I ± τ ) and w ′ j → 0 in L 2 (I ± τ ). As a consequence, up to a subsequence, there exist constants c ± ∈ R such that w j → c ± in H 1 (I ± τ ) and L 1 -a.e. in I ± τ . Yet, as (v j ) ξ y converges in measure to u ξ y in I ± τ , up to another subsequence (still not relabeled), we have that

(v j ) ξ y pointwise converges to u ξ y L 1 -a.e. in I ± τ . Hence c ± = (M η ∧ u ± (x 0 ) • ξ) ∨ (-M η ) = u ± (x 0 ) • ξ by our choice (2.2.10) of M η . Thus, for all τ > 0, u -(x 0 ) • ξ 1 (a(y),m-τ ) + u + (x 0 ) • ξ 1 (m+τ,b(y)) = u ξ y |Iτ L 1 -a.e. in I τ .
Taking the limit as τ → 0 + , we obtain that

u -(x 0 ) • ξ 1 (a(y),m) + u + (x 0 ) • ξ 1 (m,b(y)) = u ξ y L 1 -a.e. in (a(y), b(y)),
leading to m = 0 since [u](x 0 ) • ξ ̸ = 0 by our choice (2.2.9) of ξ. As a consequence f j (y) = (|a j (y

)| + |b j (y)|)1 Y j (y) → 0 which is against ℓ > 0.
Using (2.2.23), Lemma 2.2.6 and owing to Egoroff's Theorem, we can find a set Z * ⊂ J u ∩ B containing Z ′ with H 1 (Z * ) ≤ 2η such that for all γ > 0, there exists j 0 (γ) ∈ N satisfying

             B ξ y (1 -(χ j ) ξ y )|((v j ) ξ y ) ′ | 2 dt ≤ γ 2 , B ξ y M η ∧ |(v j -u) ξ y | dt ≤ γ, (|a j (y)| + |b j (y)|) 1 Y j (y) ≤ γ for all y ∈ J u ∩ B 1-η 2 
\ Z * and all j ≥ j 0 (γ).

(2.2.25)

Step 2. In this step, we show that for many points y ∈ Y j , the variation of (v j ) ξ y inside the only triangle T in T x 0 ,j b,int which is crossed by B ξ y , is uniformly close with respect to y to the jump of u ξ y . More precisely, let

C η := 8 Å 1 + 1 L η ã > 0, γ * = γ * (η) := 1 2 min Å 1, M η C η , L η , |[u](x 0 ) • ξ| 4C η ã > 0.
(2.2.26)

Let us show that for all 0 < γ < γ * , there exists j 1 (γ) ∈ N such that

(v j ) ξ y (b j (y)) -(v j ) ξ y (a j (y)) -[u](x 0 ) • ξ ≤ C η γ for all j ≥ j 1 (γ) and all y ∈ Y j \ Z * . (2.2.27) 
Fix 0 < γ < γ * and, by (2.2.25), let j 0 (γ) ∈ N be such that

             (a(y),b(y))\(a j (y),b j (y)) |((v j ) ξ y ) ′ | 2 dt ≤ γ 2 , B ξ y M η ∧ |(v j -u) ξ y | dt ≤ γ, (|a j (y)| + |b j (y)|) ≤ γ
for all j ≥ j 0 (γ) and all y ∈ Y j \ Z * .

In 

)| ≥ L η > γ * > γ ≥ |b j (y)| and 2 ≥ |a(y)| ≥ L η > γ * > γ ≥ |a j (y)|, hence a(y) < a j (y) ≤ b j (y) < b(y).
Writing

M η ∧ (v j ) ξ y (b j (y)) -(v j ) ξ y (a j (y)) -[u](x 0 ) • ξ ≤ M η ∧ (v j ) ξ y (0 ∨ b j (y)) -u + (x 0 ) • ξ +M η ∧ (v j ) ξ y (0 ∨ b j (y)) -(v j ) ξ y (b j (y)) +M η ∧ (v j ) ξ y (0 ∧ a j (y)) -u -(x 0 ) • ξ +M η ∧ (v j ) ξ y (a j (y)) -(v j ) ξ y (0 ∧ a j (y)) =: J 1 + J 2 + J 3 + J 4 ,
it remains to control each of the last four terms.

Let us first estimate the terms J 2 and J 4 . If b j (y) ≥ 0, J 2 = 0. Otherwise, by the Cauchy-Schwarz inequality,

J 2 = M η ∧ 0 b j (y) ((v j ) ξ y ) ′ dt ≤ » |b j (y)| Ç 0 b j (y) | Ä (v j ) ξ y ä ′ | 2 dt å 1 2 ≤ γ 3/2 ≤ γ.
Similarly, we have that J 4 ≤ γ.

Let us now estimate the term J 1 . We consider the function

z j := M η ∧ |(v j ) ξ y -u + (x 0 ) • ξ| ∈ H 1 (B ξ y )
with

z ′ j = ((v j ) ξ y ) ′ 1 {0≤(v j ) ξ y -u + (x 0 )•ξ≤Mη} -((v j ) ξ y ) ′ 1 {0≤u + (x 0 )•ξ-(v j ) ξ y ≤Mη} ,
and the nonempty open interval I + := (0 ∨ b j (y), b(y)). By the Sobolev embedding and (2.2.26), we have that for all t ∈ I + ,

|z j (t)| ≤ » b(y) -0 ∨ b j (y) ∥z ′ j ∥ L 2 (I + ) + 1 b(y) -0 ∨ b j (y) ∥z j ∥ L 1 (I + ) ≤ √ 2∥((v j ) ξ y ) ′ ∥ L 2 (I + ) + 2 L η ∥M η ∧ |(v j ) ξ y -u + (x 0 ) • ξ|∥ L 1 (I + ) ≤ Å √ 2 + 2 L η ã γ.
By continuity of (v j ) ξ y in B ξ y , the above inequality remains true up to the end point 0 ∨ b j (y) of I + , so that J 1 ≤ ( √ 2 + 2 Lη )γ. A similar argument shows that J 3 ≤ ( √ 2 + 2 Lη )γ, and thus

J 1 + J 2 + J 3 + J 4 ≤ 8(1 + 1 Lη )γ = C η γ, which shows that M η ∧ (v j ) ξ y (b j (y)) -(v j ) ξ y (a j (y)) -[u](x 0 ) • ξ ≤ C η γ.
Eventually, as C η γ < M η for all 0 < γ < γ * by (2.2.26), we conclude the validity of (2.2.27).

Step 3. We now show that it is possible to include Y j \ Z * inside a finite union of arbitrarily small segments contained in J u ∩ B (see Figure 2.7).

Let 0 < γ < γ * and j 1 (γ) ∈ N be given by (2.2.27). For all j ≥ j 1 (γ), we define

" T j := {T ∈ T x 0 ,j b,int : there exists y ∈ Y j \ Z * such that ( T ∩ B) ξ y ̸ = ∅},
and, for all T ∈ " T j , we introduce both following quantities :

   L ref (T ) := |[u](x 0 )•ξ|-4Cηγ
|e(vj) |T :(ξ⊗ξ)| the reference length of T, L max (T ) := max z∈p ξ (T ) L 1 (T ξ z ) the maximal section's length of T along the direction ξ.

(2.2.28)

Note that because T ∈ T x 0 ,j b , see (2.2.13), then |e(v j ) |T ξ•ξ| 2 ≥ (1-δ)κϱ 2 j /(αAε k j ) > 0, so that L ref (T ) is well defined, and positive by (2.2.26) since γ < γ * . The quantity L ref (T ) stands for the required length of the section T ξ y in order for the (affine) function (v j ) ξ y to pass exactly from the values u -(x 0 ) • ξ to u + (x 0 ) • ξ across T , up to the error 4C η γ. Note that L 1 (T ξ y ) = L ref (T ) for at most two values of y, say z 1 and z 2 , only depending on j and T . If y ∈ Y j \ Z * is such that ( T ∩ B) ξ y ̸ = ∅, we know from Step 2 that the variation of (v j ) ξ y across T is close to [u](x 0 ) • ξ, up to a small error of order O(γ) which is uniform with respect to y. Therefore, we will show that if y is far away from z 1 and z 2 , then the variation of (v j ) ξ y across T is not sufficient to recover the full jump [u](x 0 ) • ξ. Let x 1 , x 2 and x 3 ∈ T be the three vertices of T and X i := p ξ (x i ) ∈ B ξ . We easily see that there exists i 0 ∈ {1, 2, 3} such that X i 0 = arg max

z∈p ξ (T ) L 1 (T ξ z ).
Up to a permutation of {x 1 , x 2 , x 3 }, there is no loss of generality to assume that i 0 = 3 and

X 3 • ξ ⊥ ≤ X 1 • ξ ⊥ , with ξ ⊥ ∈ S 1
being one of the two orthogonal vectors to ξ.

Let h T ≥ ε k j sin(θ 0 ) ϱ j
> 0 be the smallest height of T . We claim that, for all z, z ′ ∈ p ξ (T ) be such that

T ξ z ̸ = ∅, T ξ z ′ ̸ = ∅ and either z • ξ ⊥ , z ′ • ξ ⊥ ≥ X 3 • ξ ⊥ or z • ξ ⊥ , z ′ • ξ ⊥ ≤ X 3 • ξ ⊥ , then, z -z ′ ≤ 2L 2 (T ) h T |L 1 (T ξ z ) -L 1 (T ξ z ′ )| max(L 1 (T ξ z ), L 1 (T ξ z ′ ))
.

(2.2.29) Indeed, consider for instance the case where

X 1 • ξ ⊥ ≥ z • ξ ⊥ > z ′ • ξ ⊥ ≥ X 3 • ξ ⊥ (see Figure 2.5). Let L := L 1 (T ξ z ), L ′ := L 1 (T ξ z ′ ), d := |X 1 -z| , d ′ := X 1 -z ′ . ξ ⊥ ν ⊥ ξ ν x 1 x 1 x 3 x 3 X 3 z ′ z X 1 L L ′ L max T T d d ′ L L ′ L max Π ξ Figure 2.5
Then, L ′ > L > 0, d ′ > d > 0 and using Thalès' Theorem, we have that

d d ′ = d ′ -|z -z ′ | d ′ = L L ′ . Since d ′ ≤ |X 1 -X 3 | = H 1 (p ξ ([x 1 , x 3 ])) ≤ |x 1 -x 3 | ≤ 2L 2 (T )
h T , we obtain that

|z -z ′ | = d ′ L ′ -L L ′ ≤ 2L 2 (T ) h T |L -L ′ | L ′ ,
so that (2.2.29) holds in that case. The proof of the other case

X 2 • ξ ⊥ ≤ z • ξ ⊥ , z ′ • ξ ⊥ ≤ X 3 • ξ ⊥ is
similar and we omit it.

For all j ≥ j 1 (γ) and all T ∈ " T j , we have L max (T ) > L ref (T ). Indeed, if such would not be the case,

denoting by y ∈ Y j \ Z * a point such that ( T ∩ B) ξ y ̸ = ∅, then L 1 (T ξ p ξ (y) ) = L 1 (T ξ y ) = b j (y) -a j (y) ≤ L max (T ) ≤ L ref (T ), entailing that |(v j ) ξ y (b j (y)) -(v j ) ξ y (a j (y))| = e(v j ) |T : (ξ ⊗ ξ) (b j (y) -a j (y)) ≤ |[u](x 0 ) • ξ| -4C η γ,
by definition (2.2.28) of L ref (T ). Therefore, we would obtain that

4C η γ ≤ |[u](x 0 ) • ξ| -(v j ) ξ y (b j (y)) -(v j ) ξ y (a j (y)) ≤ (v j ) ξ y (b j (y)) -(v j ) ξ y (a j (y)) -[u](x 0 ) • ξ ,
which is against (2.2.27). Applying the Intermediate Value Theorem to the strictly monotone and conti-

nuous functions y ∈ [X 1 , X 3 ] → L 1 (T ξ y ) ∈ [0, L max (T )] and y ∈ [X 2 , X 3 ] → L 1 (T ξ y ) ∈ [0, L max (T )],
there are at least one and at most two points z 1 ref , z 2 ref ∈ p ξ (T ) (according to whether T has an edge along the direction ξ or not, see Figure 2.6), only depending on j and T , such that

L 1 (T ξ z 1 ref ) = L 1 (T ξ z 2 ref ) = L ref (T ).
(We set z 1 ref = z 2 ref in the case where T has an edge along the direction ξ). Without loss of generality, we can assume that z 

1 ref • ξ ⊥ ≥ z 2 ref • ξ ⊥ . ξ ⊥ ν ⊥ ξ ν z 1 ref = z 2 ref L max L ref L ref L max L ref z 1 ref z 2 ref Π ξ T T Figure 
T i (T ) := ® z ∈ Π ξ : z -z i ref ≤ C ′ η ϱ j L 2 (T ) ε k j γ ´for i ∈ {1, 2}, (2.2.30) 
where

C ′ η := 20C η sin θ 0 |[u](x 0 ) • ξ| is a constant only depending on η.
For every j ≥ j 1 (γ) and every y ∈ Y j \ Z * , let T ∈ T x 0 ,j b,int be such that 

( T ∩ B) ξ y ̸ = ∅. Note that T ∈ " T j . If p ξ (y) • ξ ⊥ ≥ X 3 • ξ ⊥ and z 1 ref • ξ ⊥ ≥ X 3 • ξ ⊥ (
p ξ (y) -z 1 ref ≤ 2L 2 (T ) h T (b j (y) -a j (y)) -L ref (T ) max (b j (y) -a j (y), L ref (T )) ≤ 2L 2 (T ) h T |(v j ) ξ y (b j (y)) -(v j ) ξ y (a j (y))| -|[u](x 0 ) • ξ| + 4C η γ e(v j ) |T : (ξ ⊗ ξ) L ref (T ) ≤ 2L 2 (T ) h T 5C η γ |[u](x 0 ) • ξ| -4C η γ ≤ C ′ η ϱ j L 2 (T ) ε k j γ,
where we also used (2.2.27) and (2.2.26).

We have just shown that for all j ≥ j 1 (γ) and all y ∈ Y j \ Z * , there exists T ∈ " T j such that p ξ (y) ∈ T 1 (T ) ∪ T 2 (T ). Since y ∈ Π ν , then y = Φ(p ξ (y)) ∈ Φ (T 1 (T ) ∪ T 2 (T )), with Φ introduced in (2.2.17). Recalling that the Lipschitz constant of Φ is less than 1 + 4η 2 ≤ 2 for η small enough, we deduce that

H 1 (Φ (T 1 (T ) ∪ T 2 (T ))) ≤ 2H 1 (T 1 (T ) ∪ T 2 (T )) ≤ 8C ′ η ϱ j L 2 (T ) ε k j γ.
Together with the fact that each triangle in " T j ⊂ T x 0 ,j b,int is contained in B, we obtain that for all j ≥ j 1 (γ),

H 1 (Y j \ Z * ) ≤ T ∈ " T j H 1 (Φ (T 1 (T ) ∪ T 2 (T ))) ≤ 8C ′ η γ ϱ j ε k j T ∈ " T j L 2 (T ) ≤ 8C ′ η γ κ(1 -δ) (1 -δ)κϱ j ε k j B χ j dx ≤ 8C ′ η γ κ(1 -δ) λ k j (B ϱ j (x 0 )) ϱ j .
Possibly taking a larger j 1 (γ) ∈ N, we finally get that for all j ≥ j 1 (γ),

H 1 (Y j \ Z * ) ≤ 8C ′ η κ(1 -δ) Å 2 dλ dH 1 J u (x 0 ) + 1 ã γ =: C * γ,
for some constant C * > 0 only depending on η.

L L

z 1 ref T 1 (T ) T 2 (T ) z 2 ref X 3 y x 3 L ref L ref L max Π ν Π ξ T ξ ⊥ ν ⊥ ξ ν Φ η 4 Figure 2.7 -The length of T i (T ) is given by L = 2C ′ η ϱ j L 2 (T ) ε k j γ.
We are now in position to prove Lemma 2.2.8.

Proof of Lemma 2.2.8. Let j 0 = j 0 (η) ∈ N such that η 2 j 0 C * < γ * , where C * and γ * are given by Lemma 2.2.9. For all j ≥ j 0 , as 0 < γ j := η 2 j C * < γ * , Lemma 2.2.9 ensures the existence of an integer i(γ j ) ≥ j 0 such that for all i ≥ i(γ j ),

H 1 (Y i \ Z * ) ≤ C * γ j = η 2 j .
Thereby, we define the following extraction ® ϕ(j 0 ) := i(γ j 0 ) ≥ j 0 , ϕ(j + 1) := max (ϕ(j) + 1, i(γ j+1 )) for all j ≥ j 0 .

(2.2.31)

Since ϕ(j) ≥ i(γ j ), then H 1 (Y ϕ(j) \ Z * ) ≤ η 2 j .
Hence, we set

Z ′′ := Z * ∪ +∞ j=j 0 Y ϕ(j) , (2.2.32) 
which satisfies

H 1 (Z ′′ ) ≤ 2η + j≥j 0 η 2 j ≤ 3η.
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Moreover, for all j ≥ j 0 and all y ∈

J u ∩ B 1-η 2 \ Z ′′ , Lemma 2.2.7 ensures that # ¶ T ∈ T x 0 ,ϕ(j) b,int : ( T ∩ B) ξ y ̸ = ∅ © ≥ 1,
and since y / ∈ Y ϕ(j) for all j ≥ j 0 , it actually follows that

# ¶ T ∈ T x 0 ,ϕ(j) b,int : ( T ∩ B) ξ y ̸ = ∅ © ≥ 2,
concluding the proof of Lemma 2.2.8.

Let us consider the further subsequence introduced in Lemma 2.2.8. In order to derive a lower bound for the surface energy without the factor 1/2, we now construct two disjoint subfamilies F 1 j and F 2 j from F j (see (2.2.20)) with the property that both sets \Z ′′ be a compact set. For all j ∈ N, there exist two disjoint subfamilies F 1 j and F 2 j of F j such that

T ∈F 1 j T, T ∈F 2 j T project onto B ν = J u ∩ B,
K ⊂ Φ Ö T ∈F 1 j p ξ ( T ) è ∩ Φ Ö T ∈F 2 j p ξ ( T ) è .
Proof. For the sake of clarity, we omit to write the explicit dependance on j for the different objects considered herafter (triangles, intervals, and so forth).

For all y ∈ J u ∩ B 1-η 2 \ Z ′′ , we consider a pair of distinct triangles of F j satisfying

T 1 (y), T 2 (y) ∈ arg min H 1 Ä Φ(p ξ ( T 1 ) ∩ p ξ ( T 2 )) ä : T 1 , T 2 ∈ T x 0 ,j b,int , T 1 ∩ T 2 = ∅, ( T 1 ∩ B) ξ y ̸ = ∅, ( T 2 ∩ B) ξ y ̸ = ∅ . (2.2.33) Note that Lemma 2.2.8 ensures that the set ¶ {T 1 , T 2 } ⊂ T x 0 ,j b,int : ( T i ∩ B) ξ y ̸ = ∅ for all i ∈ {1, 2}
© is nonempty and finite, hence the minimum in (2.2.33) is achieved and we have at our disposal such a pair of distinct triangles T 1 (y), T 2 (y) . Then, we introduce the following open segment in

B ν = J u ∩B I(y) := Φ Ä p ξ ( T 1 (y)) ∩ p ξ ( T 2 (y)) ä ⊂ B ν = J u ∩ B.
(2.2.34)

Since y ∈ I(y), it follows that 

K ⊂ J u ∩ B 1-η 2 \ Z ′′ ⊂ y∈J u ∩B 1-η 2 \Z ′′ I(y). y z z T ia T i b b a T T Π ν ξ ⊥ ν ⊥ ν ξ
J. If y • ν ⊥ < z • ν ⊥ , then J ⊂ (ã, z) since J is a segment containing y.
In particular, Φ(p ξ ( T ia (y))) ∩ J ⊂ (a, z). Together with (2.2.33) and recalling that J := Φ(p ξ ( T )), it ensures that

H 1 ((a, z)) ≥ H 1 Ä Φ(p ξ ( T ia (y))) ∩ Φ(p ξ ( T )) ä ≥ H 1 (I(y)) = H 1 ((a, z)) + H 1 ((z, b)) > H 1 ((a, z)),
which is impossible. A similar argument shows that the other situation y•ν ⊥ > z•ν ⊥ is also impossible.

This shows the validity of (2.2.35).

By compactness of K, there exist an integer N = N (j, K) ≥ 1 and points y 1 , . . . , y

N ∈ J u ∩ B 1-η 2 \ Z ′′ such that K ⊂ N i=1 I(y i ).
(2.2.36) Up to relabeling the points y i , we can assume that 2.9). Let us now construct two disjoint subfamilies F 1 j and F 2 j of F j by induction in N iterations. Iteration 1. Set F 1 (1) := {T 1 (y 1 )} and F 2 (1) := {T 2 (y 1 )}. Clearly F 1 (1) ∩ F 2 (1) = ∅ and, for all k ∈ {1, 2}, there is T ∈ F k (1) such that (B ∩ T ) ξ y 1 ̸ = ∅ and I(y 1 ) ⊂ Φ(p ξ ( T )) .

y 1 • ν ⊥ < • • • < y N • ν ⊥ (See Figure
Iteration 2. We distinguish two cases :

i) If {T 1 (y 2 ), T 2 (y 2 )}∩ F 1 (1) ∪ F 2 (1) = ∅, then we set F 1 (2) := F 1 (1)∪{T 1 (y 2 )} and F 2 (2) := F 2 (1) ∪ {T 2 (y 2 )}. We have that F 1 (2) ∩ F 2 (2) = ∅
and, for all i, k ∈ {1, 2}, there exists T ∈ F k (2) such that (B ∩ T ) ξ y i ̸ = ∅ and I(y i ) ⊂ Φ(p ξ ( T )). ii) Otherwise, there exist i, k ∈ {1, 2} such that T i (y 2 ) ∈ F k (1), i.e. T i (y 2 ) = T k (y 1 ), and T 3-i (y 2 ) / ∈ F k (1). In that case, we set F k (2) := F k (1) and F 3-k (2) := F 3-k (1) ∪ {T 3-i (y 2 )}. Note that, it might be the case that

T 3-i (y 2 ) ∈ F 3-k (1). We have that F 1 (2) ∩ F 2 (2) = ∅ and, for all i, k ∈ {1, 2}, there exists T ∈ F k (2) such that (B ∩ T ) ξ y i ̸ = ∅ and I(y i ) ⊂ Φ(p ξ ( T )).
Iteration n + 1 for some n ∈ {1, . . . , N -1}. Assume that we have constructed two disjoint subfamilies F 1 (n) and F 2 (n) of F j with the following properties : for all k ∈ {1, 2} and all i ∈ {1, . . . , n}, there exists

T ∈ F k (n) such that (B ∩ T ) ξ y i ̸ = ∅ and I(y i ) ⊂ Φ(p ξ ( T )). Let us now construct F 1 (n + 1) and F 2 (n + 1) : i) If {T 1 (y n+1 ), T 2 (y n+1 )} ∩ F 1 (n) ∪ F 2 (n) = ∅, then we set F 1 (n + 1) := F 1 (n) ∪ {T 1 (y n+1 )} and F 2 (n + 1) := F 2 (n) ∪ {T 2 (y n+1 )}.
In that case, we have that F 1 (n + 1) ∩ F 2 (n + 1) = ∅ and that for all k ∈ {1, 2} and all i ∈ {1, . . . , n + 1}, there exists T ∈ F k (n + 1) such that (B ∩ T ) ξ y i ̸ = ∅ and I(y i ) ⊂ Φ(p ξ ( T )). For i ∈ {1, . . . , n}, it follows from the previous iteration n and because

F k (n) ⊂ F k (n + 1), while for i = n + 1, it is a consequence of the fact that T k (y n+1 ) ∈ F k (n + 1).
ii) Otherwise, there exist p, q ∈ {1, 2} such that T p (y n+1 ) ∈ F q (n). Let us further distinguish two subcases :

(a) If T 3-p (y n+1 ) / ∈ F q (n), then we set F q (n + 1) := F q (n) and F 3-q (n + 1) := F 3-q (n) ∪ {T 3-p (y n+1 )}. Then F 1 (n + 1) ∩ F 2 (n + 1) = ∅ and, for all k ∈ {1, 2} and all i ∈ {1, . . . , n + 1}, there exists T ∈ F k (n + 1) such that (B ∩ T ) ξ y i ̸ = ∅ and I(y i ) ⊂ Φ(p ξ ( T )). Indeed, for i ∈ {1, . . . , n} this is a consequence of the previous iteration n and of the fact that F k (n) ⊂ F k (n + 1), while, for i = n + 1, it results from T p (y n+1 ) ∈ F q (n + 1) and T 3-p (y n+1 ) ∈ F 3-q (n + 1).

(b) If both T 1 := T 1 (y n+1 ) ∈ F q (n) and T 2 := T 2 (y n+1 ) ∈ F q (n), we introduce the indexes

i 1 := arg min ¶ i ∈ {1, . . . , n + 1} : (B ∩ T 1 ) ξ y i ̸ = ∅ © and i 2 := arg min ¶ i ∈ {1, . . . , n + 1} : (B ∩ T 2 ) ξ y i ̸ = ∅ © .
Up to interchanging T 1 and T 2 , there is no loss of generality to assume that i 1 ≥ i 2 (see Figure 2.9). We set F q (n + 1) := F q (n) \ {T 1 } and F 3-q (n + 1) := F 3-q (n) ∪ {T 1 }. Once more, we have F 1 (n + 1) ∩ F 2 (n + 1) = ∅ and, for all k ∈ {1, 2} and all i ∈ {1, . . . , n + 1}, there exists T ∈ F k (n+1) such that (B ∩ T ) ξ y i ̸ = ∅ and I(y i ) ⊂ Φ(p ξ ( T )). This is immediate for i = n + 1 because T 2 = T 2 (y n+1 ) ∈ F q (n + 1) and T 1 = T 1 (y n+1 ) ∈ F 3-q (n + 1). For i ∈ {1, . . . , n}, there are two possibilities :

• for k = 3 -q, it follows from F 3-q (n) ⊂ F 3-q (n + 1).

• for k = q and i ∈ {1, . . . , i 1 -1}, by the previous iteration n there exists T ∈ F q (n) such that (B ∩ T ) ξ y i ̸ = ∅ and I(y i ) ⊂ Φ(p ξ ( T )). As (B ∩ T 1 ) ξ y i = ∅, by definition of i 1 , this implies that T ̸ = T 1 , so that actually T ∈ F q (n + 1) satisfies the above requirements. Assuming next that i ∈ {i 1 , . . . , n}, we deduce that n + 1 > i ≥ i 2 . By definition of i 2 , we have (B ∩ T 2 ) ξ y i 2 ̸ = ∅ while (B ∩ T 2 ) ξ y n+1 ̸ = ∅ so that the convexity of T 2 together with the ordering of the points y i lead to (B ∩ T 2 ) ξ y i ̸ = ∅. Hence, owing to (2.2.35), we infer that I(y i ) ⊂ Φ(p ξ ( T 2 )) and T 2 ∈ F q (n + 1) satisfies the above requirements.

We proceed this construction up to the N th iteration, and finally define

F k j := F k (N ) for k ∈ {1, 2}, (2.2.37) 
which define two disjoint subfamilies of F j satisfying in particular, thanks to (2.2.36),

K ⊂ N i=1 I(y i ) ⊂ Ö T ∈F 1 j Φ(p ξ ( T )) è ∩ Ö T ∈F 2 j Φ(p ξ ( T )) è = Φ Ö T ∈F 1 j p ξ ( T ) è ∩ Φ Ö T ∈F 2 j p ξ ( T ) è .
The proof of Lemma 2.2.10 is now complete. We are now in position to complete the proof of Proposition 2.2.3.

ξ ⊥ ν ⊥ ξ ν y N y n+1 y i 1 y i 2 y i 2 -1 y 1 Π ν T 1 T 2 . . . . . .
Proof of Proposition 2.2.3. Since all triangles T in F j are contained in B, we get from (2.2.11b) and

(2.2.12),

dλ dH 1 J u (x 0 ) = lim j→∞ λ k j (B ϱ j (x 0 )) 2ϱ j ≥ lim inf j→∞ (1 -δ)κϱ j 2ε k j B χ j dx ≥ lim inf j→∞ (1 -δ)κϱ j 2ε k j T ∈F j L 2 (T ).
Using next the inequality L 2 (T ) ≥ H 1 (p ξ (T ))(ε k j /ϱ j ) sin θ 0 /2, we deduce that

2 dλ dH 1 J u (x 0 ) ≥ (1 -δ)κ sin θ 0 2 lim inf j→∞ T ∈F j H 1 (p ξ (T )). Let K ⊂ J u ∩ B 1-η 2 \
Z ′′ be a compact set and F 1 j and F 2 j be two disjoint subfamilies of F j given by Lemma 2.2.10. Thus

2 dλ dH 1 J u (x 0 ) ≥ (1 -δ)κ sin θ 0 2 lim inf j→∞      T ∈F 1 j H 1 (p ξ (T )) + T ∈F 2 j H 1 (p ξ (T ))     
, and remembering that Φ has a Lipschitz constant bounded by 1 + 4η 2 ,

2 dλ dH 1 J u (x 0 ) ≥ (1 -δ)κ sin θ 0 2 1 + 4η 2 lim inf j→∞      T ∈F 1 j H 1 (Φ(p ξ (T ))) + T ∈F 2 j H 1 (Φ(p ξ (T )))      ≥ (1 -δ)κ sin θ 0 2 1 + 4η 2 lim inf j→∞      H 1 Ö T ∈F 1 j Φ (p ξ (T )) è + H 1 Ö T ∈F 2 j Φ (p ξ (T )) è     ≥ (1 -δ)κ sin θ 0 1 + 4η 2 H 1 (K).
By inner regularity of the Radon measure H 1 (J u ∩B 1-η 2 \Z ′′ ), passing to the supremum with respect to all compact sets K ⊂

J u ∩ B 1-η 2 \ Z ′′ , we get that 2 dλ dH 1 J u (x 0 ) ≥ (1 -δ)κ sin θ 0 1 + 4η 2 H 1 (J u ∩ B 1-η 2 \ Z ′′ ).
Remembering that J u ∩ B = B ν , we have

2 = H 1 (J u ∩ B) = H 1 (J u ∩ B 1-η 2 ) + η ≤ H 1 (J u ∩ B 1-η 2 \ Z ′′ ) + 4η because H 1 (Z ′′ ) ≤ 3η. Hence 2 dλ dH 1 J u (x 0 ) ≥ (1 -δ)κ sin θ 0 1 + 4η 2 (2 -4η).
Finally passing to the limit as η → 0 and δ → 0, we deduce that dλ dH 1 J u (x 0 ) ≥ κ sin θ 0 , which corresponds to the desired lower bound with the correct multiplicative constant.

. The upper bound

The proof of the Γ-lim sup inequality relies on suitable approximation results in GSBD (see [START_REF] Chambolle | An approximation result for special functions with bounded deformation[END_REF][START_REF] Iurlano | A density result for GSBD and its application to the approximation of brittle fracture energies[END_REF][START_REF] Chambolle | A density result in GSBD p with applications to the approximation of brittle fracture energies[END_REF][START_REF] Cortesani | A density result in SBV with respect to non-isotropic energies[END_REF]) which allow us to reduce to the case where the jump set of u is a finite union of pairwise disjoint closed line segments, and u is smooth outside the jump set. Then, an explicit mesh construction introduced in [START_REF] Chambolle | Discrete approximation of the Mumford-Shah functional in dimension two[END_REF], adapted to this simple geometrical situation, provides the desired upper bound. Proposition 2.2.11. For all u ∈ L 0 (Ω; R 2 ),

F ′′ (u) ≤ F(u).
Proof. We can assume that F(u) < ∞, and thus that u ∈ GSBD 2 (Ω). Using the density result for GSBD functions (see [START_REF] Chambolle | A density result in GSBD p with applications to the approximation of brittle fracture energies[END_REF]Theorem 1.1]) as well as the lower semicontinuity of F ′′ with respect to the convergence in measure (see [START_REF] Maso | An introduction to Γ-convergence[END_REF]Proposition 6.8]), we can further assume without loss of generality

that u ∈ SBV 2 (Ω; R 2 ) ∩ L ∞ (Ω; R 2 ).
Writing u = (u 1 , u 2 ), we can apply [39, Lemma 4.2] to both components u 1 and

u 2 ∈ SBV 2 (Ω) ∩ L ∞ (Ω) of u. For Ω ′ := (a, b) × (c, d) ⊂ R 2 with Ω ⊂⊂ Ω ′ , we can find an extension v ∈ SBV 2 (Ω ′ ; R 2 ) ∩ L ∞ (Ω ′ ; R 2 ) such that v |Ω = u, ∥v∥ L ∞ (Ω ′ ;R 2 ) ≤ √ 2∥u∥ L ∞ (Ω;R 2 ) and H 1 (∂Ω ∩ J v ) = 0. (2.2.38) 
Next owing to the density result in SBV (see [START_REF] Cortesani | A density result in SBV with respect to non-isotropic energies[END_REF]Theorem 3.1]), there exists a sequence

{v k } k∈N in SBV 2 (Ω ′ ; R 2 )∩L ∞ (Ω ′ ; R 2 ) as well as N k disjoint closed segments L k 1 , . . . , L k N k ⊂ Ω ′
with the following properties :

J v k = N k i=1 L k i , H 1 (J v k \ J v k ) = 0, v k ∈ W 2,∞ (Ω ′ \ J v k ; R 2 ) and      v k → v strongly in L 1 (Ω ′ ; R 2 ), ∇v k → ∇v strongly in L 2 (Ω ′ ; M 2×2 ), lim sup k H 1 (A ∩ J v k ) ≤ H 1 (A ∩ J v ) for all open subset A ⊂⊂ Ω ′ .
(2.2.39) Using (2.2.39) and the lower semicontinuity of F ′′ in L 0 (Ω; R 2 ) with respect to the convergence in measure, we obtain that

F ′′ (u) ≤ lim inf k→∞ F ′′ (v k|Ω ).
The proof is complete once we know that lim inf k F ′′ (v k|Ω ) ≤ F(u). This follows from Lemma 2.2.12 below, applied to each function v k . Indeed, using that result, we get that

lim inf k→∞ F ′′ (v k|Ω ) ≤ lim inf k→∞ ß Ω Ae(v k ) : e(v k ) dx + κ sin θ 0 H 1 (J v k ∩ Ω) ™ .
Recalling the convergences (2.2.39), we conclude that

F ′′ (u) ≤ Ω Ae(v) : e(v) dx + κ sin θ 0 H 1 (J v ∩ Ω) = Ω Ae(u) : e(u) dx + κ sin θ 0 H 1 (J u ) = F(u),
where we used H 1 (J v ∩ ∂Ω) = 0 and that v = u in Ω.

We are back to establishing the following result.

Lemma 2.2.12.

Let v ∈ SBV 2 (Ω ′ ; R 2 ) ∩ L ∞ (Ω ′ ; R 2 ) be such that J v = N i=1 L i , H 1 (J v \ J v ) = 0, v ∈ W 2,∞ (Ω ′ \ J v ; R 2 ),
for some pairwise disjoint closed segments L 1 , . . . , L N ⊂ Ω ′ . Then,

F ′′ (v |Ω ) ≤ Ω Ae(v) : e(v) dx + κ sin θ 0 H 1 (J v ∩ Ω). Proof. Since Ω ⊂⊂ Ω ′ , then d := dist(Ω, R 2 \ Ω ′ ) > 0.
For all δ ∈ (0, d), let us consider the open sets

Ω δ := {x ∈ Ω ′ : dist(x, R 2 \ Ω ′ ) > δ} which satisfy Ω ⊂⊂ Ω δ ⊂⊂ Ω ′ . We introduce a cut-off function ϕ δ ∈ C ∞ c (R 2 ; [0, 1]) which is supported in Ω ′ and such that ϕ δ = 1 in Ω δ , ϕ δ = 0 in R 2 \ Ω δ 2 . We next introduce the function v := ϕ δ v ∈ SBV 2 (R 2 ; R 2 ) ∩ L ∞ (R 2 ; R 2 ). We remark that v ∈ W 2,∞ R 2 \ N i=1 L i ; R 2 , J v ⊂ J v , and J v \ J v ⊂ J v \ Ω δ . (2.2.40) Since J v ⊂ J v and H 1 (J v ) < ∞, the disjoint closed segments L i ⊂ Ω ′ satisfy H 1 (J v ) = H 1 (J v ) = N i=1 H 1 (L i ).
Then according to [39, Appendix A], since θ 0 is smaller than or equal to Θ 0 := 45 • -arctan(1/2), for all ε > 0 there exists an admissible triangulation T ε ∈ T ε (R 2 , ω, θ 0 ) such that, setting T ′ ε := {T ∈ T ε :

T ∩ i L i ̸ = ∅},
• The vertices of T ε are never situated on any L i : for all i ∈ {1, . . . , N }, L i ∩ Vertices(T ε ) = ∅,

• Using [39, Formula (4.9)],

T ∈T ′ ε L 2 (T ) ε → sin θ 0 H 1 (J v ).
(2.2.41)

We define the set D ε := T ∈T ′ ε T and χ ε := 1 Dε ∈ L ∞ (R 2 ; {0, 1}), while v ε is the Lagrange interpolation of the values of v at the vertices of the triangulation T ε . Note that, if x 1 , x 2 and x 3 are the vertices of T ∈ T ε , the values v(x i ) are well defined since, by construction of the triangulation T ε , the points x 1 , x 2 and x 3 do not belong to i L i . In particular, v ε ∈ V ε (Ω ′ , ω, θ 0 ) and

     χ ε → 0 strongly in L 1 (Ω ′ ), v ε → v strongly in L 2 (Ω ′ ; R 2 ), e(v ε )1 Ω ′ \Dε → e(v) strongly in L 2 (Ω ′ ; M 2×2 sym ).
(2.2.42) Indeed, the first convergence is a consequence of (2.2.41) since

∥χ ε ∥ L 1 (Ω ′ ) ≤ L 2 (D ε ) = T ∈T ′ ε L 2 (T ) → 0.
Next, noticing that every

T ∈ T ε \ T ′ ε is contained in R 2 \ i L i and v ∈ W 2,∞ (R 2 \ i L i ; R 2 ), we infer that for all ε > 0 and T ∈ T ε \ T ′ ε , ∥v ε -v∥ H 1 (T ;R 2 ) ≤ Cε∥D 2 v∥ L 2 (T ) , (2.2.43)
for some constant C = C(θ 0 ) > 0 depending only on θ 0 (see e.g. [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF]Theorem 3.1.5]). On the one hand, since

∥v ε ∥ L ∞ (T ;R 2 ) ≤ ∥v∥ L ∞ (T ;R 2 ) for all T ∈ T ε , we get that ∥v ε -v∥ 2 L 2 (Ω ′ ;R 2 ) ≤ 2∥v∥ 2 L ∞ (R 2 ;R 2 ) T ∈T ′ ε L 2 (T ) + T ∈Tε\T ′ ε , T ∩Ω ′ ̸ =∅ T |v ε -v| 2 dx.
Then, using (2.2.43) yields

∥v ε -v∥ 2 L 2 (Ω ′ ;R 2 ) ≤ 2∥v∥ 2 L ∞ (R 2 ;R 2 ) L 2 (D ε ) + C 2 ε 2 T ∈Tε\T ′ ε , T ∩Ω ′ ̸ =∅ ∥D 2 v∥ 2 L 2 (T ) ≤ 2∥v∥ 2 L ∞ (R 2 ;R 2 ) L 2 (D ε ) + C 2 ε 2 ∥D 2 v∥ 2 L 2 (R 2 \ i L i ) → 0,
leading to the second convergence in (2.2.42). Note in particular that v ε converges in measure to v in Ω ′ . On the other hand, writing

∥e(v ε )1 Ω ′ \Dε -e(v)∥ 2 L 2 (Ω ′ ;M 2×2 sym ) = Ω ′ ∩Dε |e(v)| 2 dx + Ω ′ \Dε |e(v ε ) -e(v)| 2 dx,
and using that L 2 (D ε ) → 0, that ∇v ∈ L 2 (R 2 ; M 2×2 ) (because v ∈ SBV 2 (R 2 ; R 2 )) as well as (2.2.43), we get that

∥e(v ε )1 Ω ′ \Dε -e(v)∥ 2 L 2 (Ω ′ ;M 2×2 sym ) ≤ Ω ′ ∩Dε |e(v)| 2 dx + C 2 ε 2 ∥D 2 v∥ 2 L 2 (R 2 \ i L i ) → 0,
which implies the third convergence in (2.2.42).

We next show that

F ′′ (v |Ω ) ≤ Ω Ae(v) : e(v) dx + κ sin θ 0 H 1 (J v ∩ Ω) + H 1 (J v \ Ω δ ) .
(2.2.44) Indeed, as f ≤ κ thanks to the growth properties (2.1.4), we get

Ω ′ 1 ε f (εAe(v ε ) : e(v ε )) dx ≤ T ∈Tε\T ′ ε , T ∩Ω ′ ̸ =∅ L 2 (T ∩ Ω ′ ) 1 ε f Ä εAe(v ε ) |T : e(v ε ) |T ä + κ ε T ∈T ′ ε L 2 (T ).
On the one hand, (2.2.41) implies that κ ε

T ∈T ′ ε L 2 (T ) → κ sin θ 0 H 1 (J v ).
(2.2.45)

On the other hand, since every triangle

T ∈ T ε \ T ′ ε is contained in R 2 \ N i=1 L i , then ∇v ε|T x i -x j |x i -x j | = |v(x i ) -v(x j )| |x i -x j | ≤ ∥∇v∥ L ∞ (R 2 \ i L i ;M 2×2 ) ,
where x 1 , x 2 and x 3 are the vertices of T . Hence, applying [39, Remark 3.5], it results that

∥e(v ε )∥ L ∞ (R 2 \Dε;M 2×2 sym ) ≤ √ 5 sin θ 0 ∥∇v∥ L ∞ (R 2 \ i L i ;M 2×2 ) =: K < ∞.
(2.2.46)

Therefore, setting

δ ε := sup 0<t<εβK 2 f (t) t ,
we deduce, using f (0) = 0 and the property (2.1.5) of A, that

1 ε f (εAe(v ε ) : e(v ε )(1 -χ ε )) ≤ δ ε Ae(v ε ) : e(v ε )(1 -χ ε ) in Ω ′
From the properties (2.1.4) of f , we infer that δ ε → 1 as ε → 0. Hence, using the third convergence in (2.2.42), it ensures that 

T ∈Tε\T ′ ε , T ∩Ω ′ ̸ =∅ L 2 (T ∩ Ω ′ ) 1 ε f Ä εAe(v ε ) |T : e(v ε ) |T ä = Ω ′ 1 ε f (εAe(v ε ) : e(v ε )(1 -χ ε )) dx ≤ δ ε Ω ′ Ae(v ε ) : e(v ε )1 Ω ′ \Dε dx → Ω ′ Ae(v) : e(v)
ε→0 + Ω ′ 1 ε f (εAe(v ε ) : e(v ε )) dx ≤ Ω ′ Ae(v) : e(v) dx + κ sin θ 0 H 1 (J v ).
(2.2.48)

Besides, after decomposing the above integral over Ω ′ \ Ω and Ω, we can apply the lower bound estimate of Propostion 2.2.3 to the open bounded set with Lipschitz boundary Ω ′ \ Ω (for which T ε is also an admissible triangulation,

v ε |Ω ′ \Ω ∈ V ε (Ω ′ \ Ω) and v ε converges in measure to v in Ω ′ \ Ω),
which leads to lim sup

ε→0 + Ω ′ 1 ε f (εAe(v ε ) : e(v ε )) dx ≥ lim sup ε→0 Ω 1 ε f (εAe(v ε ) : e(v ε )) dx + lim inf ε→0 Ω ′ \Ω 1 ε f (εAe(v ε ) : e(v ε )) dx ≥ F ′′ (v |Ω ) + Ω ′ \Ω Ae(v) : e(v) dx + κ sin θ 0 H 1 (J v ∩ Ω ′ \ Ω).
Gathering (2.2.48) and (2.2.40), as by construction v |Ω = v |Ω , we deduce that

F ′′ (v |Ω ) ≤ Ω Ae(v) : e(v) dx + κ sin θ 0 H 1 (J v \ J v ) + κ sin θ 0 H 1 (J v ∩ Ω) ≤ Ω Ae(v) : e(v) dx + κ sin θ 0 H 1 (J v \ Ω δ ) + κ sin θ 0 H 1 (J v ∩ Ω),
which settles (2.2.44). Passing to the limit as δ ↘ 0 + thanks to the monotone convergence Theorem, we obtain that

H 1 (J v \ Ω δ ) → H 1 (J v \ Ω ′ ) = 0, hence F ′′ (v |Ω ) ≤ Ω Ae(v) : e(v) dx + κ sin θ 0 H 1 (J v ∩ Ω),
which completes the proof of Lemma 2.2.12.

. Convergence of minimizers

In order to investigate the approximation of minimizers for the Griffith energy, it is natural to impose boundary conditions to avoid trivial minimizers such as rigid displacements. This section is devoted to an approximation of the Griffith functional under a Dirichlet boundary condition by means of brittle damage energies.

. Griffith energy with Dirichlet boundary condition

In order to formulate a Dirichlet boundary condition, we need to consider a larger bounded Lipschitz open set Ω ′ such that Ω ⊂ Ω ′ . Let w ∈ W 2,∞ (R 2 ; R 2 ) be a prescribed boundary displacement. Given an admissible triangulation T ε ∈ T ε (Ω ′ ) of Ω ′ , we define w Tε as the piecewise affine Lagrange interpolation of w on T ε . Note that by standard finite element estimates (see [44, Theorem 3.1.5]),

w Tε ∈ V ε (Ω ′ ), w Tε → w strongly in H 1 (Ω ′ ; R 2 ) and sup ε>0 F ε (w Tε ) < +∞. (2.3.1)
We define V Dir ε (Ω ′ ) to be the set of all continuous functions u : Ω ′ → R 2 for which there exists a triangulation T ε ∈ T ε (Ω ′ ) so that u is affine on each triangle T ∈ T ε and u = w Tε on each triangle T ∈ T ε such that T ∩ (Ω ′ \ Ω) ̸ = ∅. We consider the following discrete functionals

G ε : u ∈ L 0 (Ω ′ ; R 2 ) →    1 ε Ω f εAe(u) : e(u) dx if u ∈ V Dir ε (Ω ′ ), +∞ otherwise.
The Griffith energy with Dirichlet boundary condition w is defined, for u ∈ L 0 (Ω ′ ; R 2 ), by

G(u) :=          Ω Ae(u) : e(u) dx +κ sin θ 0 H 1 (J u ∩ Ω) + H 1 (∂Ω ∩ {u ̸ = w}) if ® u ∈ GSBD 2 (Ω ′ ), u = w L 2 -a.e. in Ω ′ \ Ω, +∞ otherwise.
Note that the additional boundary term accounts for possible jumps at the boundary, where the boundary condition fails to be satisfied. In the previous expression and in the sequel, we still denote by u the trace of u |Ω ∈ GSBD 2 (Ω) on ∂Ω (see [START_REF] Maso | Generalised functions of bounded deformation[END_REF]Theorem 5.5]).

We will first prove the following result, generalizing Theorem 2.1.3 to the case of Dirichlet boundary conditions.

Theorem 2.3.1 (Γ-convergence under Dirichlet boundary conditions).

The family {G ε } ε>0 Γ-converges, with respect to the L 0 (Ω ′ ; R 2 )-topology, to the Griffith functional G.

Next, we will show a compactness result for sequences of dispacements u ε with uniformly bounded energy, with respect to the L 0 (Ω ′ ; R 2 )-topology of convergence in measure, under the simplifying assumption that f : [0, +∞) → [0, +∞) reduces to

f (t) = κ ∧ t for t ∈ R + .
Considering eventually a sequence of minimizers of G ε (see Lemma 2.3.13), we will show that, up to a subsequence and up to subtracting a sequence of piecewise rigid body motions, it converges in measure in Ω ′ to a minimizer of G and the minimal value of G ε converges to the minimal value of G. In other words, we obtain the fundamental theorem of Γ-convergence in our specific context.

Corollary 2.3.2 (Convergence of minimizers).

Assume further that Ω and Ω ′ are connected. For each ε > 0 small, let u ε ∈ V Dir ε (Ω ′ ) be a minimizer of G ε . Then, there exist a subsequence (not relabeled), a sequence of piecewise rigid body motions {r ε } ε>0 and a function u

∈ GSBD 2 (Ω ′ ) with u = w L 2 -a.e. in Ω ′ \ Ω, such that u ε -r ε → u in measure in Ω, G ε (u ε ) → G(u) and u is a minimizer of G.
Remark 2.3.3. Let us clarify that the improved lower bound (2.3.6) in Proposition 2.3.5 is crucial only for the compactness and convergence of minimizing sequences, to ensure that after the removal of piecewise rigid body motions, minimizers of the approximating functionals converge to a minimizer of the Griffith functional and their energies converge as well. Instead, the Γ-convergence result under Dirichlet boundary conditions directly follows from Theorem 2.1.3 and Proposition 2.2.1. Indeed, the proof of the lower bound in Theorem 2.3.1 is the consequence of the lower bound in Theorem 2.1.3 applied in Ω ′ together with the identification of the volume terms in Ω ′ \ Ω.

. Γ-limit under Dirichlet boundary conditions

Let us introduce the Γ-lower and upper limits G ′ and G ′′ defined, for all u ∈ L 0 (Ω ′ ; R 2 ), by

G ′ (u) := inf lim inf ε→0 G ε (u ε ) : u ε → u in measure in Ω ′ ,
and

G ′′ (u) := inf ß lim sup ε→0 G ε (u ε ) : u ε → u in measure in Ω ′ ™ .
Proof of Theorem 2.3.1. Lower bound. Let u ∈ L 0 (Ω ′ ; R 2 ). Without loss of generality, we can assume that G ′ (u) < +∞. For any ζ > 0, there exists a sequence

{u ε } ε>0 such that u ε → u in measure in Ω ′ and lim inf ε→0 G ε (u ε ) ≤ G ′ (u) + ζ < +∞.
Let us extract a subsequence

{u k } k∈N := {u ε k } k∈N such that u k → u L 2 -a.e. in Ω ′ and lim k→∞ G ε k (u k ) = lim inf ε→0 G ε (u ε ) < +∞.
This implies that, for k large enough,

u k ∈ V Dir ε k (Ω ′ ) and sup k G ε k (u k ) < +∞.
Especially, we get that u k ∈ V ε k (Ω ′ ). Hence, according to Proposition 2.2.1 and Theorem 2.1.3 applied in Ω ′ , we infer that

u ∈ GSBD 2 (Ω ′ ) and lim inf k→∞ Ω ′ 1 ε k f ε k Ae(u k ) : e(u k ) dx ≥ Ω ′ Ae(u) : e(u) dx + κ sin θ 0 H 1 (J u ).
Setting w k := w Tε k and using (2.3.1) together with the convergence in measure of u k = w k to u in Ω ′ \ Ω, we get that u = w L 2 -a.e. in Ω ′ \ Ω. Setting now δ k := sup f (t)/t : 0 < t < ε k βK 2 where

K = √ 5 sin θ 0 ∥∇w∥ L ∞ (R 2 ;R 2 ) < ∞,
one can check that δ k converges to 1 as k → ∞ according to (2.1.4) and

Ω ′ 1 ε k f ε k Ae(u k ) : e(u k ) dx ≤ G ε k (u k ) + Ω ′ \Ω δ k Ae(w k ) : e(w k ) dx.
Hence, the Dominated Convergence Theorem ensures that

ζ + G ′ (u) + Ω ′ \Ω Ae(w) : e(w) dx ≥ Ω ′ Ae(u) : e(u) dx + κ sin θ 0 H 1 (J u ).
Recalling that J u ∩∂Ω = {u ̸ = w}∩∂Ω and

J u ∩(Ω ′ \Ω) = J w ∩(Ω ′ \Ω) = ∅, it entails that ζ+G ′ (u) ≥ G(u),
and the conclusion follows letting ζ ↘ 0.

Upper bound. Let u ∈ L 0 (Ω ′ ; R 2 ). We can assume that G(u) < +∞ so that u ∈ GSBD 2 (Ω ′ ) and u = w L 2 -a.e. in Ω ′ \ Ω. According to the density results for GSBD functions (see [START_REF] Chambolle | A density result in GSBD p with applications to the approximation of brittle fracture energies[END_REF]Theorem 1.1] and [36, Formula (5.11)]), there exists a sequence of functions

u n ∈ SBV 2 (Ω; R 2 ) ∩ L ∞ (Ω; R 2 ) such that      u n → u in measure in Ω, u n = w in an open bounded neighborhood of ∂Ω, lim sup n G(u n ) ≤ G(u). (2.3.2)
Extending (continuously) u n by w on Ω ′ \ Ω, we get that u n → u in measure in Ω ′ . The proof is thus complete once we know that G ′′ (u n ) ≤ G(u n ), for all n ∈ N, as it would imply G ′′ (u) ≤ G(u), using the lower semicontinuity of G ′′ in L 0 (Ω ′ ; R 2 ) with respect to the convergence in measure together with the last point of (2.3.2).

Therefore, we can assume without loss of generality that

u ∈ SBV 2 (Ω ′ ; R 2 ) ∩ L ∞ (Ω ′ ; R 2 ) and u = w on V ∪ (Ω ′ \ Ω) with V an open bounded neighborhood of ∂Ω. Next according to Proposition 5.0.1 (see Appendix) there exist a sequence {u k } k∈N in SBV 2 (Ω; R 2 ) ∩ L ∞ (Ω; R 2 ) as well as N k disjoint closed segments L k 1 , . . . , L k N k ⊂ Ω satisfying : J u k = N k i=1 L k i , H 1 (J u k \ J u k ) = 0, u k ∈ W 2,∞ (Ω \ J u k ; R 2 ),            u k = w in an open neighborhood of ∂Ω, u k → u strongly in L 1 (Ω; R 2 ), ∇u k → ∇u strongly in L 2 (Ω; M 2×2 ), lim sup k→∞ H 1 (J u k ) ≤ H 1 (J u ).
(2.3.3) Thus, extending continuously u k to Ω ′ by setting u k = w on Ω ′ \ Ω and using again the lower semicontinuity of G ′′ in L 0 (Ω ′ ; R 2 ) with respect to the convergence in measure together with the convergences in (2.3.3), we are back to establishing that G ′′ (u k ) ≤ G(u k ) as the conclusion follows letting k → +∞.

Arguing almost word for word as in the proof of Lemma 2.2.12, we show the following Lemma 2.3.4, which leads to the desired inequality.

Lemma 2.3.4. Let v ∈ SBV 2 (Ω ′ ; R 2 ) ∩ L ∞ (Ω ′ ; R 2 ) and W be a bounded open neighborhood of ∂Ω be such that v = w on W ∪ (Ω ′ \ Ω)
and

Ω \ W ⊃ J v = N i=1 L i , H 1 (J v \ J v ) = 0, v ∈ W 2,∞ (Ω ′ \ J v ; R 2 ),
for some pairwise disjoint closed segments L 1 , . . . , L N ⊂ Ω \ W . Then,

G ′′ (v) ≤ Ω Ae(v) : e(v) dx + κ sin θ 0 H 1 (J v ) = G(v).
We do not detail the proof of Lemma 2.3.4. We only stress that, following Lemma 2.2.12, for ε > 0 small enough, if T ε is the admissible triangulation given by [39, Appendix A] and v ε is the Lagrange interpolation of the values of v at the vertices of T ε , each triangle

T ∈ T ε such that T ∩ (Ω ′ \ Ω) ̸ = ∅ is contained in W ∪ R 2 \ Ω, so that v ε = w Tε on T . In particular, it ensures that v ε ∈ V Dir ε (Ω ′ ).

. Compactness for sequences with uniformly bounded energy and convergence of minimizers

In this paragraph, the density f reduces to f (t) = κ∧t for t ∈ R, so that the energy G ε corresponds to

G ε (u) = Ω κ ε ∧ Ae(u) : e(u) dx for u ∈ V Dir ε (Ω ′ ).
The reason of this simplifying assumption on f comes from the difficulty to obtain compactness for sequences with uniformly bounded energies and from the difficulty to prove the existence of minimizers, as it will be detailed below. This is however a meaningful case since it corresponds to a brittle damage type energy from the mechanical point of view.'

The following result shows a compactness and lower bound estimate for any sequence with uniformly bounded energy.

Proposition 2.3.5. Let {ε k } k∈N satisfying ε k → 0 and let {u k } k∈N ⊂ L 0 (Ω ′ ; R 2 ) be such that M := sup k G ε k (u k ) < ∞.
Then there exist a subsequence (not relabeled), a Caccioppoli partition P = P j j∈N of Ω ′ , a sequence of piecewise rigid motions {r k } k∈N with

r k := j∈N r j k 1 P j ,
and a function u ∈ GSBD 2 (Ω ′ ) such that u = w L 2 -a.e. in Ω ′ \ Ω, 

|r i k (x) -r j k (x)| → +∞ for L 2 -a.e. x ∈ Ω ′ , for all i ̸ = j, (2.3.4) u k -r k → u in measure in Ω ′ , (2.3 
f (t) = κ ∧ t for t ∈ R.
Indeed, when working with a more general density f : [0, +∞) → [0, +∞) satisfying (2.1.4), the main issue arises when one needs to fix some δ > 0 to use (2.2.1), in order to exhibit an extraction, a

Caccioppoli partition, rigid motions and a limit displacement which satisfy (2.3.4) and (2.3.5). As all of them depend on δ > 0, it becomes difficult to derive the lower bound, even for the Lebesgue part (2.3.9) below, since one simultaneously needs δ to be fixed (so that P, {r k } k∈N and u are well defined) and to converge to 0 (in order to recover (2.3.9) as in the proof of Proposition 2.2.4).

Proof. By definition of V Dir ε k (Ω ′ ), there exists an admissible triangulation T k ∈ T ε k (Ω ′ ) such that u k is affine on each triangle T ∈ T k and u k = w T k on each triangle T ∈ T k intersecting Ω ′ \Ω. We introduce the characteristic functions

χ k := 1 {Ae(u k ):e(u k )≥ κ ε k } ∈ L ∞ (Ω ′ ; {0, 1})
which are constant on each triangle T ∈ T k . Since u k = w T k on each triangle T ∈ T k intersecting Ω ′ \ Ω and w ∈ W 2,∞ (R 2 ; R 2 ), we deduce that, for k large enough, χ k = 0 in Ω ′ \ Ω. Thus

D k := {χ k = 1} = N k i=1 T k i ⊂ Ω for some triangles T k i ∈ T k , and L 2 (D k ) = Ω χ k dx → 0. Let v k := (1 -χ k )u k ∈ SBV 2 (Ω ′ ; R 2 ) with ∇v k = (1 -χ k )∇u k and J v k ⊂ N k i=1 ∂T k i ⊂ Ω. Arguing
as in the proof of Proposition 2.2.1, we infer that

sup k∈N ß Ω ′ |e(v k )| 2 dx + H 1 (J v k ) ™ < ∞.
In view of the GSBD 2 -compactness Theorem ([37, Theorem 1.1]), there exist a subsequence (not relabeled), a Caccioppoli partition P = P j j∈N of Ω ′ , a sequence of piecewise rigid motions {r k } k∈N with rk := j∈N rj k 1 P j , and a function ũ ∈ GSBD 2 (Ω ′ ) such that

     |r i k (x) -rj k (x)| → +∞ for L 2 -a.e. x ∈ Ω ′ , for all i ̸ = j, v k -rk → ũ in measure in Ω ′ , e(v k ) ⇀ e(ũ) weakly in L 2 (Ω ′ ; M 2×2 sym ). Since L 2 (D k ) → 0, we deduce that u k -rk → ũ in measure in Ω ′ .
For all j ∈ N such that L 2 (P j ∩ Ω ′ \ Ω) > 0, the convergence in measure of u k -rj k to ũ together with the convergence in measure of u k to w in P j ∩ Ω ′ \ Ω =: V j ensure that rj k → w -ũ in measure in V j . Since the space of rigid body motions is a closed finite dimensional subspace of L 0 (Ω ′ ; R 2 ), we can find a rigid body motion r j such that r j |V j = w -ũ L 2 -a.e. in V j . Therefore, with

r := j∈N, L 2 (P j ∩Ω ′ \Ω)>0
r j 1 P j , the piecewise rigid body motion r k := rk -r and the function

u = ũ + r ∈ GSBD 2 (Ω ′ ) are such that      u k -r k → u in measure in Ω ′ , u = w L 2 -a.e. in Ω ′ \ Ω, e(v k ) ⇀ e(u) weakly in L 2 (Ω ′ ; M 2×2 sym ).
(2.3.7)

We are now back to prove (2.3.6). As in the proof of Proposition 2.2.3, we define the following Radon measures on

Ω ′ λ k := κ ε k ∧ Ae(u k ) : e(u k ) L 2 Ω ′ ∈ M(Ω ′ ).
Using (2.3.1) and the energy bound assumption on u k , we obtain that the sequence {λ k } k∈N is uniformly bounded in M(Ω ′ ). Thus, up to a subsequence (not relabeled), we have λ k * ⇀ λ weakly* in M(Ω ′ ) for some nonnegative measure λ ∈ M(Ω ′ ). Thanks to the lower semicontinuity of weak* convergence in M(Ω ′ ) along open sets, we have that

lim inf k→∞ Ω ′ κ ε k ∧ Ae(u k ) : e(u k ) dx = lim inf k→∞ λ k (Ω ′ ) ≥ λ(Ω ′ ).
(2.3.8)

Recalling that P (1) ∪∂ * P contains H 1 -almost all of Ω ′ , and using that the measures L 2 Ω ′ , H 1 (P (1) ∩ J u ) and H 1 ∂ * P are mutually singular, it is enough to show that dλ dL 2 Ω ′ ≥ Ae(u) : e(u) L 2 -a.e. in Ω ′ , (2.3.9) 

dλ dH 1 (P (1) ∩ J u ) ≥ κ sin θ 0 H 1 -a.e. in P (1) ∩ J u , (2.3 
λ = dλ dL 2 Ω ′ L 2 Ω ′ + dλ dH 1 (P (1) ∩ J u ) H 1 (P (1) ∩ J u ) + dλ dH 1 ∂ * P H 1 ∂ * P + λ s ,
for some nonnegative measure λ s which is singular with respect to L 2 Ω ′ , H 1 (P (1) ∩ J u ) and H 1 ∂ * P. Thus, after integration over Ω ′ and recalling (2.3.8), we would get that

lim inf k→∞ Ω ′ κ ε k ∧ Ae(u k ) : e(u k ) dx ≥ Ω ′
Ae(u) : e(u) dx + κ sin θ 0 H 1 (J u ∩ P (1) ) ∪ ∂ * P .

On the one hand, the convergence in

H 1 (Ω ′ ; R 2 ) of w T k to w (see (2.3.1)) ensures that lim inf k→∞ Ω ′ κ ε k ∧ Ae(u k ) : e(u k ) dx ≤ lim sup k→∞ Ω ′ \Ω Ae(w T k ) : e(w T k ) dx + lim inf k→∞ G ε k (u k ) ≤ Ω ′ \Ω Ae(w) : e(w) dx + lim inf k→∞ G ε k (u k ).
(2.3.12)

On the other hand, using that u = w in Ω ′ \ Ω and that P (1) ∪ ∂ * P covers H 1 almost every Ω ′ , we obtain that Using the last convergence in (2.3.7), we easily get inequality (2.3.9) arguing in an identical manner than in the proof of Proposition 2.2.4. We do not reproduce the argument. The rest of this section is devoted to the establishment of (2.3.10) and (2.3.11). We start with the lower bound inequality for the jump part of the energy in the measure theoretic interior of P. Proposition 2.3.7 (Lower bound for the jump part in P (1) ). For H 1 -a.e. x 0 ∈ P (1) ∩ J u , dλ dH 1 (P (1) 

Ω ′ Ae(u) : e(u) dx + κ sin θ 0 H 1 (J u ∩ P (1) ) ∪ ∂ * P = Ω ′ \Ω Ae(
∩ J u ) (x 0 ) ≥ κ sin θ 0 .
Proof. The proof is very similar to that of Proposition 2.2.5. We just sketch it, underlying the main differences.

Let x 0 ∈ P (1) ∩ J u be such that dλ dH 1 (P (1) 

∩ J u ) (x 0 ) = lim ϱ↘0 λ B ϱ (x 0 ) H 1 P (1) ∩ J u ∩ B ϱ (x 0 )
exists and is finite, and

lim ϱ↘0 H 1 (P (1) ∩ J u ∩ B ϱ (x 0 )) 2ϱ = 1.
According to the Besicovitch differentiation Theorem and the countably (H 1 , 1)-rectifiability of P (1) ∩ J u , it follows that H 1 -almost every point x 0 in P (1) ∩ J u fulfills these conditions.

By definition of the jump set J u , there exist ν := ν u (x 0 ) ∈ S 1 and u

± (x 0 ) ∈ R 2 with u + (x 0 ) ̸ = u -(x 0 ) such that the function u x 0 ,ϱ := u(x 0 + ϱ •)
converges in measure in B := B 1 (0) to the jump function

u : y ∈ B → ® u + (x 0 ) if y • ν > 0, u -(x 0 ) if y • ν < 0,
as ϱ ↘ 0. As before, we consider a sequence of radii {ϱ j } j∈N such that ϱ j ↘ 0 and λ(∂B ϱ j (x 0 )) = 0 = H 1 (P (1) ∩ J u ∩ ∂B ϱ j (x 0 )) for all j ∈ N. Arguing as in Proposition 2.2.5, there exists an increasing sequence {k j } j∈N such that k j ↗ ∞ as j → ∞ and

         u k j -r k j (x 0 + ϱ j •) → u in measure in B, λ k j (B ϱ j (x 0 )) 2ϱ j → dλ dH 1 (P (1) ∩ J u ) (x 0 ), ε k j /ϱ j → 0, ω(ε k j )/ϱ j → 0.
By definition of P (1) , there exists i 0 ∈ N such that x 0 ∈ P i 0 (1) . We thus infer that the function v j :=

u k j -r i 0 k j (x 0 + ϱ j •) ∈ H 1 (B; R 2 ) converges in measure to u in B.
Indeed, for all η > 0,

L 2 B ∩ {|v j -u| > η} ≤ L 2 B ∩ {| u k j -r k j (x 0 + ϱ j •) -u| > η} + L 2 Å B \ Å P i 0 -x 0 ϱ j ãã → 0,
where we used that x 0 is a point of density 1 for P i 0 . We are now back to an analogous situation than (2.2.11), since v j is continuous on B and piecewise affine on each triangle T ∈ T k j -x 0 /ϱ j . Therefore, from here the conclusion of Proposition 2.3.7 results from the proof of Proposition 2.2.5.

We next pass to the lower bound inequality for the energy on the reduced boundary of P, which presents some non trivial adaptations of the proof of Proposition 2.2.5. The rest of this subsection is devoted to prove Proposition 2.3.8, with essentially the same structure than the proof of Proposition 2.2.5.

Blow-up. Let x 0 ∈ ∂ * P be such that

x 0 ∈ ∂ * P i 0 ∩ ∂ * P j 0 for some i 0 ̸ = j 0 , ν := ν P i 0 (x 0 ) = -ν P j 0 (x 0 ) where ν P k (x 0 ) := lim ϱ↘0 D1 P k B ϱ (x 0 ) |D1 P k | B ϱ (x 0 ) for k ∈ {i 0 , j 0 }, dλ dH 1 ∂ * P (x 0 ) = lim ϱ↘0 λ B ϱ (x 0 ) H 1 ∂ * P ∩ B ϱ (x 0 )
exists and is finite,

lim ϱ↘0 H 1 (∂ * P ∩ B ϱ (x 0 )) 2ϱ = 1,
and there exist traces u ± (x 0 ) ∈ R 2 such that the function

u x 0 ,ϱ := u(x 0 + ϱ •) converges in measure in B := B 1 (0) to y ∈ B → u(y) := ® u + (x 0 ) if y • ν > 0, u -(x 0 ) if y • ν < 0, as ϱ ↘ 0.
The previous properties turn out to be satisfied for H 1 -a.e. x 0 ∈ ∂ * P. This is a consequence of the countably (H 1 , 1)-rectifiability of that set, the Besicovitch differentiation Theorem, the fact that P (1) ∪ i̸ =j (∂ * P i ∩∂ * P j ) covers H 1 almost all of Ω ′ ([6, Theorem 4.17]), and the existence of traces on (H 1 , 1)rectifiable sets (see [START_REF] Maso | Generalised functions of bounded deformation[END_REF]Theorem 5.2] in the case of 1-dimensional C 1 submanifolds which may be extended to countably (H 1 , 1)-rectifiable sets arguing as in [START_REF] Babadjian | Traces of functions of bounded deformation[END_REF]Proposition 4.1]).

To simplify notation, let us denote by P + := P i 0 and P -:= P j 0 . According to De Giorgi's Theorem (see [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]Theorem 3.59]) we infer that

1 P ± -x 0 ϱ → 1 H ± strongly in L 1 (B) as ϱ ↘ 0, (2.3.14)
where H ± ⊂ R 2 denote the halfspaces orthogonal to ν and containing ±ν. With these notation, we have that

u = u + (x 0 )1 H + ∩B + u -(x 0 )1 H -∩B .
Note also that contrary to Proposition 2.2.5 where jump points were considered, it might be the case that u + (x 0 ) = u -(x 0 ), i.e. that u is constant.

Extraction of diagonal subsequences. As before, we consider a sequence of radii {ϱ j } j∈N such that ϱ j ↘ 0 and λ(∂B ϱ j (x 0 )) = 0 = H 1 ∂ * P ∩ ∂B ϱ j (x 0 ) for all j ∈ N. By our choice of x 0 , (2.3.4) and (2.3.5), with r ± k := r k|P ± , we have :

                   lim j→∞ lim k→∞ u k -r k (x 0 + ϱ j •) = lim j→∞ u x 0 ,ϱ j = u in measure in B, lim j→∞ lim k→∞ arctan|r + k -r - k |(x 0 + ϱ j •) = π 2 in measure in B, lim j→∞ lim k→∞ λ k (B ϱ j (x 0 )) 2ϱ j = lim j→∞ λ(B ϱ j (x 0 )) 2ϱ j = dλ dH 1 ∂ * P (x 0 ), lim j→∞ lim k→∞ ε k ϱ j = lim j→∞ lim k→∞ ω(ε k ) ϱ j = 0.
We can thus find an increasing sequence {k j } j∈N such that k j ↗ ∞ as j → ∞ and

                       u k j -r k j (x 0 + ϱ j •) → u in measure in B, arctan|r + k j -r - k j |(x 0 + ϱ j •) → π 2 in measure in B, λ k j (B ϱ j (x 0 )) 2ϱ j → dλ dH 1 ∂ * P (x 0 ), ε k j ϱ j → 0, ω(ε k j ) ϱ j → 0. (2.3.15a) (2.3.15b) (2.3.15c) (2.3.15d) Let v j := u k j (x 0 + ϱ j •), r ± j := r ± k j (x 0 + ϱ j •) and r j := r + j 1 H + ∩B + r - j 1 H -∩B
. By (2.3.14) and (2.3.15), we have for all η > 0,

L 2 {|v j -r ± j -u ± (x 0 )| > η} ∩ B ∩ H ± ≤ L 2 B ∩ H ± \ (P ± -x 0 )/ϱ j + L 2 {|v j -r k j (x 0 + ϱ j •) -u| > η} ∩ B → 0.
Thus, up to a subsequence

® v j -r ± j → u ± (x 0 ) in measure in B ∩ H ± , |r + j -r - j | → +∞ L 2 -a.e. in B.
(2.3.16)

Selection of a slicing direction. According to [START_REF] Chambolle | Equilibrium configurations for nonhomogeneous linearly elastic materials with surface discontinuities[END_REF]Lemma 2.8], there exist an H 1 -negligible set N ⊂ B ν and a countable dense subset D of S 1 such that for all ξ ∈ D and all y ∈ B ν \ N ,

|(r + j -r - j )(y) • ξ| → +∞ as j → +∞. Note that ∇r ± j ξ • ξ = 0, so that the quantity t → (r + j -r - j ) ξ y (t) = (r + j -r - j )(y) • ξ is independent of t ∈ B ξ y .
Thus, for all y ∈ B ν \ N , we have

arctan|(r + j -r - j ) ξ y | → π 2 uniformly in t ∈ B ξ y .
(2.3.17)

For any η > 0, let ξ ∈ S 1 ∩ D be such that

|ν -ξ| ≤ η, ν • ξ ≥ 1 2 , ν • ξ ⊥ ≤ η.
(2.3.18)

As in the proof of Proposition 2.2.5, using a change of variables and the ellipticity property (2.1.5) of A and (2.3.15d), we get

2 dλ dH 1 ∂ * P (x 0 ) ≥ lim sup j→∞ ϱ j B κ ε k j ∧ α ϱ 2 j |e(v j )ξ • ξ| 2 dy
so that, introducing the following characteristic functions,

χ j := 1 ® α ϱ 2 j |e(v j )ξ•ξ| 2 ≥ κ ε k j ´∈ L ∞ (B; {0, 1}),
we obtain that

2 dλ dH 1 ∂ * P (x 0 ) ≥ lim sup j→∞ ® α ϱ j B (1 -χ j )|e(v j )ξ • ξ| 2 dy + κϱ j ε k j B χ j dy ´. (2.3.19)
We define the translated and rescaled triangulations :

T x 0 ,j := 1 ϱ j Ä T k j -x 0 ä , T x 0 ,j b := ® T ∈ T x 0 ,j : α ϱ j |e(v j ) |T ξ • ξ| 2 ≥ κϱ j ε k j ´,
As in Lemma 2.2.7, we consider the extraction ϕ : j ∈ N -→ j + j * ∈ N. By assumption, there exist

y ∈ (B 1-η 2 ) ν \ Z and j ∈ N such that (T ∩ B) ξ y = ∅ for all T ∈ T x 0 ,j+j * b,int
, implying that (χ j+j * ) ξ y ≡ 0 on (a(y), b(y)), (r

+ j+j * -r - j+j * ) ξ y ≥ |[u](x 0 ) • ξ| + 1 and b(y) a(y) |((v j+j * ) ξ y ) ′ | 2 dt ≤ γ * 2 , [a(y),b(y)]∩R ± 1 ∧ |(v j+j * -r ± j+j * ) ξ y -u ± (x 0 ) • ξ| dt ≤ γ * 2 ,
since ϕ(j) = j + j * ≥ j * . By continuity of (v j+j * -r ± j+j * ) ξ y on the compact sets [a(y), b(y)] ∩ R ± , there exist two points

t ± ∈ arg min [a(y),b(y)]∩R ± 1 ∧ | Ä v j+j * -r ± j+j * ä ξ y -u ± (x 0 ) • ξ| .
Hence, recalling (2.2.19)

γ * L η ≥ 1 ∧ | Ä v j+j * -r - j+j * ä ξ y (t -) -u -(x 0 ) • ξ| + 1 ∧ | Ä v j+j * -r + j+j * ä ξ y (t + ) -u + (x 0 ) • ξ| ≥ 1 ∧ [u](x 0 ) • ξ + (r + j+j * -r - j+j * ) ξ y - t + t - Ä (v j+j * ) ξ y ä ′ (t) dt ≥ 1 -2γ * ,
which is impossible thanks to of our choice of γ * . We conclude the proof of Lemma 2.3.10 in the same way as for Lemma 2.2.7.

As a consequence of Lemma 2.3.10, introducing the family of triangles

F j := ¶ T ∈ T x 0 ,j b,int : there exists y ∈ (B 1-η 2 ) ν such that ( T ∩ B) ξ y ̸ = ∅
© for all j ∈ N, it is possible to obtain a too low lower bound, roughly speaking because Lemma 2.3.10 does not exhibit enough triangles in T x 0 ,j b,int , as explained after (2.2.20). Therefore, we need to establish that many lines B ξ y parallel to ξ and passing through B ν must actually intersect at least two triangles of the collection T x 0 ,j b,int . To this aim, we show that the set of points y ∈ B ν such that B ξ y intersects exactly one triangle T in the collection T x 0 ,j b,int , has arbitrarily small H 1 measure.

Lemma 2.3.11. For all η > 0, there exist constants

C * = C * (η) > 0, γ * = γ * (η) > 0 and a subset Z * = Z * (η) ⊂ B ν containing Z ′
and satisfying H 1 (Z * ) ≤ 3η such that the following property holds : for all 0 < γ < γ * , there exists j(γ) ∈ N such that for all j ≥ j(γ), the set

Y j := ¶ y ∈ (B 1-η 2 ) ν \ Z ′ : there exists a unique T ∈ T x 0 ,j b,int such that ( T ∩ B) ξ y ̸ = ∅ © satisfies H 1 (Y j \ Z * ) ≤ C * γ.
Proof of Lemma 2.3.11. We follow the same three steps structuring the proof of Lemma 2.2.9.

Step 1. We start by showing that for j large enough and for many points y ∈ Y j , the only triangle T in T x 0 ,j b,int crossing B ξ y is getting closer to the diameter B ν .

Thus, for all j ∈ N and for each triangle T ∈ " T j , there exists a point y

T ∈ Φ • p ξ ( T ) \ Z 2 * ⊂ B ν \ Z 2 * which satisfies |α • y T + β| ≥ m α,β (η) > 0,
with Φ introduced in (2.2.17).

Remembering that ω(ε k j )/ϱ j → 0 and that the Lipschitz constant of Φ is less than 1 + 4η 2 ≤ 2 for η small enough, together with the uniform convergence (2.3.23) and (2.3.22), it follows that for all γ > 0, there exists j 2 (γ) ≥ j 1 (γ) such that for all j ≥ j 2 (γ),

       1 µ j (r + j -r - j ) ξ y -α • y + β ≤ m α,β 8 γ for all y ∈ B ν \ Z * , H 1 (Φ • p ξ (T )) ≤ 2ω(ε k j )/ϱ j ≤ m α,β 8 
γ for all T ∈ T x 0 ,j .

(2.3.24a)

(2.3.24b)
Therefore, for all j ≥ j 2 (γ) and all T ∈ " T j , we introduce the following quantities :

       L ref (T ) := [u](x 0 ) • ξ + µ j α • y T + β -C η + m α,β 2 µ j γ e(v j ) |T : (ξ ⊗ ξ)
the reference length of T,

L max (T ) := max z∈p ξ (T )
L 1 (T ξ z ) the maximal section's length of T along the direction ξ.

(2.3.25)

Note that L ref (T ) is well defined (since |e(v j ) |T ξ • ξ| 2 ≥ κϱ 2 j /(αε k j ) > 0 as T ∈ T x 0 ,j b
) and positive for j large enough since µ j → +∞ and |α • y T + β| > m α,β γ/2 > 0. Moreover, we have L max (T ) > L ref (T ). Indeed, if such would not be the case, denoting by y ∈ Y j \ Z * a point such that

( T ∩ B) ξ y ̸ = ∅, then L 1 (T ξ p ξ (y) ) = L 1 (T ξ y ) = b j (y) -a j (y) ≤ L max (T ) ≤ L ref (T ), entailing that |(v j ) ξ y (b j (y)) -(v j ) ξ y (a j (y))| = e(v j ) |T : (ξ ⊗ ξ) (b j (y) -a j (y)) ≤ [u](x 0 ) • ξ + µ j α • y T + β -C η + m α,β 2 µ j γ,
by definition (2.3.25) of L ref (T ). Therefore, we would obtain that 

C η γ + m α,β 2 µ j γ ≤ [u](x 0 ) • ξ + µ j α • y T + β -(v j ) ξ y (b j (y)) -(v j ) ξ y (a j (y)) ≤ (v j ) ξ y (b j (y)) -(v j ) ξ y (a j (y)) -[u](x 0 ) • ξ -(r + j -r - j ) ξ y + (r + j -r - j ) ξ y -µ j α • y + β + |µ j α • (y -y T )| ≤C η γ + m α,β 8 µ j γ + m α,β 8 
(T ξ z 1 ref ) = L 1 (T ξ z 2 ref ) = L ref (T ).
Then, as in (2.2.30), we introduce the following segments (orthogonal to ξ) associated to T (see Figure 2.7),

T i (T ) := ® z ∈ Π ξ : z -z i ref ≤ C ′ η ϱ j L 2 (T ) ε k j γ ´for i ∈ {1, 2},
where the constant C ′ η , only depending on η, now changes into

C ′ η := 8 sin θ 0 Å 2C η m α,β + 1 ã .
For every j ≥ j 2 (γ) and every y ∈ Y j \ Z * , let T ∈ T x 0 ,j b,int be such that ( T ∩ B) ξ y ̸ = ∅. In particular, note that T ∈ " T j . Arguing in the same way as in the proof of Lemma 2.2.9, we get that there exists i ∈ {1, 2} such that

|p ξ (y) -z i ref | ≤ 2L 2 (T ) h T (b j (y) -a j (y)) -L ref (T ) L ref (T ) = 2L 2 (T ) h T |(v j ) ξ y (b j (y)) -(v j ) ξ y (a j (y))| -|[u](x 0 ) • ξ + µ j (α • y T + β)| + C η + m α,β 2 µ j γ [u](x 0 ) • ξ + µ j α • y T + β -C η + m α,β 2 µ j γ ≤ 2L 2 (T ) h T C η γ + (r + j -r - j ) ξ y -µ j (α • y T + β) + C η + m α,β 2 µ j γ µ j m α,β /4 ≤ 2L 2 (T ) h T 2C η + m α,β µ j γ µ j m α,β /4 ≤ C ′ η ϱ j L 2 (T ) ε k j γ,
where we used (2.3.22), (2.3.24a), (2.3.24b) and the fact that

[u](x 0 ) • ξ + µ j α • y T + β -C η + µ j m α,β 2 γ ≥ µ j m α,β 4 
up to enlarging j 2 (γ) ∈ N. As in the proof of Lemma 2.2.9, we deduce that for all j ≥ j 2 (γ),

H 1 (Y j \ Z * ) ≤ T ∈ " T j H 1 (Φ (T 1 (T ) ∪ T 2 (T ))) ≤ 8C ′ η γ ϱ j ε k j T ∈ " T j L 2 (T ) ≤ 8C ′ η γ κ κϱ j ε k j B χ j dx.
Recalling (2.3.19) and possibly taking a larger j 2 (γ) ∈ N, we finally get that for all j ≥ j 2 (γ),

H 1 (Y j \ Z * ) ≤ 8C ′ η κ Å 2 dλ dH 1 ∂ * P (x 0 ) + 1 ã γ =: C * γ,
for some constant C * > 0 only depending on η, which settles Lemma 2.3.11.

Arguing exactly as in the proof of Lemma 2.2.8, having Lemma 2.3.11 at hand, we deduce the following result. Lemma 2.3.12. For all η > 0, there exist Z ′′ ⊂ B ν containing Z ′ with H 1 (Z ′′ ) ≤ 4η, and a (not relabeled) subsequence such that for all j ∈ N and for all y ∈ (B 1-

η 2 ) ν \ Z ′′ , # ¶ T ∈ T x 0 ,j b,int : ( T ∩ B) ξ y ̸ = ∅ © ≥ 2.
Finally, owing to Lemma 2.3.12, the proof of Proposition 2.3.8 is identical to that of Proposition 2.2.5.

In the following result, we prove the existence of minimizers of the discrete brittle damage energy

G ε on V Dir ε (Ω ′ ).
Lemma 2.3.13. Assume that Ω and Ω ′ are connected. For ε > 0 sufficiently small, there exists a minimizer

u ε ∈ V Dir ε (Ω ′ ) of G ε . Proof. Let ε 0 := κ/(β∥∇w∥ 2 L ∞ (R 2 ;M 2×2 ) ) and fix ε < ε 0 . Since G ε (w Tε ) < +∞, we can consider a minimizing sequence {u n } n∈N ⊂ V Dir ε (Ω ′ ) satisfying lim n→∞ G ε (u n ) = inf L 0 (Ω;R 2 ) G ε ∈ [0, +∞). (2.3.26)
By definition of the finite element space V Dir ε (Ω ′ ), there exists a triangulation

T n ∈ T ε (Ω ′ ) such that u n is affine on each T ∈ T n and u n = w T n on every triangle T ∈ T n such that T ∩ (Ω ′ \ Ω) ̸ = ∅.
Let Ω ′′ be a bounded open set such that Ω ′ ⊂⊂ Ω ′′ and T ∈Tn T ⊂ Ω ′′ for all n ∈ N. Since, for all

T ∈ T n , L 2 (T ) ≥ ε 2 sin θ 0 /2, it is easily seen that #T n ≤ 2L 2 (Ω ′′ ) ε 2 sin θ 0 .
As a consequence, the sequence of integers {#T n } n∈N admits a subsequence converging as n → +∞ to an integer N ∈ N. We can thus assume, without loss of generality, that #T n = N for all n ∈ N.

We write T n = {T n 1 , . . . , T n N } for all n ∈ N. Up to a subsequence, we can check that for all i ∈ {1, . . . , N }, the closed triangle T n i converges to a closed limit triangle T i in the sense of Hausdorff, with the property that the limit triangulation T := {T 1 , . . . , T N } ∈ T ε (Ω ′ ) remains an admissible triangulation of Ω ′ .

Introducing the characteristic functions χ n := 1 {εAe(un):e(un)≥κ} ∈ L ∞ (Ω ′ ; {0, 1}), we can write the energy as

G ε (u n ) = Ω (1 -χ n )Ae(u n ) : e(u n ) dx + κ ε Ω χ n dx. (2.3.27)
First, by definition of ε 0 and since ε < ε 0 , we have that

χ n = 0 in Ω ′ \ Ω for all n ∈ N, since Ae(u n ) : e(u n ) = Ae(w Tn ) : e(w Tn ) ≤ β|e(w Tn )| 2 ≤ β|∇w Tn | 2 ≤ β∥∇w∥ 2 L ∞ (R 2 ;M 2×2 ) < κ ε
on that set. Being constant equal to 1 or 0 on each triangle of T n , χ n can be identified with a vector V n ∈ {0, 1} N . Hence, up to a subsequence, there exists V ∈ {0, 1} N such that V n → V in R N . In particular, there exists n 0 ∈ N such that V n = V for all n ≥ n 0 . Up to reordering the triangles, we can thus find a integer 0 ≤ M < N such that

{χ n = 1} = M i=1 T n i , {χ n = 0} = N i=M +1
T n i for all n ≥ n 0 .

By the Hausdorff convergence property, we infer that

χ n → χ := 1 M i=1 T i strongly in L 1 (Ω ′ ).
(2.3.28)

We next show some compactness on the sequence of displacements {u n } n∈N , carefully overcoming the lack of control on

{χ n e(u n )} n in L 2 (Ω ′ ; M 2×2 sym ). Remembering that (1 -χ n )|e(u n )| 2 ≤ κ/(αε
) for all n ≥ n 0 and that the sequence {(1 -χ n )e(u n )} n∈N lives in the finite dimensional space (M 2×2 ) N , up to a new subsequence (not relabeled), there exists a function ξ ∈ L ∞ (Ω ′ ; M 2×2 sym ) which is constant on each triangle T ∈ T such that

(1 -χ n )e(u n ) → ξ strongly in L 2 (Ω ′ ; M 2×2 sym ), (2.3.29)
and ξ = 0 on M i=1 T i . Let us define the set

ω 0 := N i=M +1 T i . Note that Ω ′ \ Ω ⊂ ω 0 . Indeed, if x ∈ Ω ′ \ Ω, then for all n ≥ n 0 , there exists M + 1 ≤ i n ≤ N such that x ∈ T n in .
At the expense of extracting a further subsequence, there is no loss of generality to assume that i n = i is independent of n. By the Hausdorff convergence of T n i to T i , we infer that x ∈ T i ⊂ ω 0 . By connectedness of Ω ′ \Ω ⊂ ω 0 , we can consider ω the connected component of ω 0 containing Ω ′ \Ω. Let M ≤ K < N be such that ω = N i=K+1 T i , up to reordering the triangles again. Observe that for all T ∈ T such that T ∩ (Ω ′ \ Ω) ̸ = ∅, then T ∈ {T K+1 , . . . , T N }. Thus, for all T ∈ {T 1 , . . . , T K }, T ∩ (Ω ′ \ Ω) = ∅ so that T ⊂ Ω. Therefore, for all open set W ⊂⊂ Ω ′ with

K i=1 T i ⊂ W , having that K i=1 T n i → K i=1
T i in the sense of Hausdorff, there exists

n 1 ≥ n 0 such that K i=1 T n i ⊂ W for all n ≥ n 1 .
Since

Ω ′ \ W ⊂ N i=K+1 T n i ⊂ N i=M +1 T n i = {χ n = 0},
owing to (2.3.26), (2.3.27) and that u n = w T n in Ω ′ \ Ω, we infer that

Ω ′ \W |e(u n )| 2 dx ≤ C * ,
for some constant C * > 0 independent of n and W . Using that u n -w

T n ∈ H 1 (Ω ′ \ W ; R 2 ) is equal to 0 on the open set (Ω ′ \ W ) ∩ (Ω ′ \ Ω) ̸ = ∅, the Poincaré-Korn inequality ensures that (up to a subsequence) there exists u ∈ H 1 (Ω ′ \ W ; R 2 ) such that u n ⇀ u weakly in H 1 (Ω ′ \ W ; R 2 ), u = w T on (Ω ′ \ W ) ∩ (Ω ′ \ Ω) since w T n → w T strongly in H 1 (Ω ′ ; R 2
) and, thanks to (2.3.29), e(u) = ξ in Ω ′ \ W . In addition, by weak lower semicontinuity of the norm, we get that

Ω ′ \W |e(u)| 2 dx ≤ lim inf n→∞ Ω ′ \W |e(u n )| 2 dx ≤ C * .
Considering a decreasing sequence of open sets {W j } j∈N such that K i=1 T i ⊂ W j ⊂⊂ Ω ′ for each j ∈ N, and j W j = K i=1 T i , we deduce through a diagonalisation argument that there exists

u ∈ H 1 (ω ∩ Ω ′ ; R 2 ) such that u = w T on ω ∩ (Ω ′ \ Ω) = Ω ′ \ Ω and e(u) = ξ in ω ∩ Ω ′ .
In particular, since ξ is constant in each triangle of ω, we infer that u is affine in the interior of each triangle of ω.

Being in H 1 (ω ∩ Ω ′ ; R 2 ), we get that u is continuous at the interfaces of each triangle in ω. Moreover, since u = w T on Ω ′ \ Ω, we deduce that u |T = w T on each triangle T ∈ T such that T ∩ (Ω ′ \ Ω) ̸ = ∅. Note that u is defined on such triangles T , as they are included in ω.

In order to extend u outside ω, we introduce the family of triangles which are at a distance of at least one triangle from ω, i.e.

T far := {T ∈ T : T ∩ ω = ∅} ⊂ {T 1 , . . . , T K }, so that every remaining triangle T ̸ ∈ T far and such that T ̸ ⊂ ω, has its three vertices in Vertices(ω) ∪ Vertices T far . Note that {T M +1 , . . . T K } ⊂ T far since, by construction of the connected component ω of ω 0 , each triangle T ∈ T included in ω 0 \ ω is at a distance of at least one triangle from ω. We extend the function u to all triangles by setting u ≡ 0 on every triangle T ∈ T far , and by interpolating on each 

G ε = lim n→∞ ß Ω (1 -χ n )Ae(u n ) : e(u n ) dx + κ ε Ω χ n dx ™ = Ω (1 -χ)Aξ : ξ dx + κ ε Ω χ dx ≥ Ω (1 -χ)Ae(u) : e(u) dx + κ ε Ω χ dx = G ε (u),
which settles that u is a minimizer of G ε .

Remark 2.3.14. The above proof strongly relies on the choice of the density f (t) = κ ∧ t, mainly because of the identification (2.3.27), which would unfortunately result into a too low lower bound on the energy for a general f . Indeed for a generic f satisfying (2.1.4) one only gets, for all δ > 0, the existence of a constant 0 < K δ < κ such that

G ε (u n ) ≥ (1 -δ) Ω (1 -χ δ n )Ae(u n ) : e(u n ) dx + K δ ε Ω χ δ n dx
where the characteristic function χ δ n := 1 {ε(1-δ)Ae(un):e(un)≥K δ } ∈ L ∞ (Ω ′ ; {0, 1}) depends on δ. Even in the case where the above proof could be adapted to show the existence of a displacement u δ ∈ V Dir ε (Ω ′ ) and a characteristic function χ δ such that (up to a subsequence, not relabeled)

lim n→∞ ® (1 -δ) Ω (1 -χ δ n )Ae(u n ) : e(u n ) dx + K δ ε Ω χ δ n dx ≥ (1 -δ) Ω (1 -χ δ )Ae(u δ ) : e(u δ ) dx + K δ ε Ω χ δ dx,
the above lower bound might be too low since

f (t) > sup δ>0 K δ ∧ (1 -δ)t a priori.
We are now in position to prove the fundamental property of Γ-convergence.

Proof of Corollary 2.3.2. On the one hand, for all ε > 0, we remark that G ε (u ε ) ≤ G ε (w Tε ) is uniformly bounded due to (2.3.1). Therefore, Proposition 2.3.5 implies that, up to a subsequence, there exist a sequence of piecewise rigid motions {r ε } ε>0 and a function u

∈ GSBD 2 (Ω ′ ) with u = w L 2 -a.e. in Ω ′ \ Ω, such that u ε -r ε → u in measure in Ω ′ and lim inf ε G ε (u ε ) ≥ G(u).
On the other hand, the

Γ-convergence of G ε to G ensures that, for all v ∈ GSBD 2 (Ω ′ ) with v = w L 2 -a.e. in Ω ′ \ Ω, there exists a recovery sequence v ε ∈ L 0 (Ω; R 2 ) such that v ε → v in measure in Ω ′ and G ε (v ε ) → G(v). Hence G(v) = lim ε→0 G ε (v ε ) ≥ lim sup ε→0 G ε (u ε ) ≥ lim inf ε→0 G ε (u ε ) ≥ G(u), implying both that u ∈ arg min G and G ε (u ε ) → G(u).

95

-Discrete models in static brittle damage

This chapter is concerned with partial results on the asymptotic analysis of discrete brittle damage energies in different regimes. These are work in progress.

Let Ω be a bounded open set of R 2 with Lipschitz boundary. As in [START_REF] Chambolle | Discrete approximation of the Mumford-Shah functional in dimension two[END_REF], we introduce the following class of admissible meshes. Definition 3.0.1. A triangulation of Ω is a finite family of closed triangles intersecting Ω, whose union contains Ω, and such that, given any two triangles of this family, their intersection, if not empty, is exactly a vertex or an edge common to both triangles. Given some angle θ 0 > 0 and a function h → ω(h) with ω(h) ≥ 6h for any h > 0 and lim h→0 + ω(h) = 0, we define

T h (Ω) := T h (Ω, ω, θ 0 )
as the set of all triangulations of Ω made of triangles whose edges have length between h and ω(h), and whose angles are all greater than or equal to θ 0 . Then we consider the finite element space X h (Ω) of all couples (u, χ) ∈ C 0 (Ω; R 2 ) × L ∞ (Ω; {0, 1}) for which there exists T ∈ T h (Ω) such that u is affine and χ is constant on each triangle T ∈ T.

Let ε > 0, η ε > 0 and h ε > 0. As mentionned before, we introduce the brittle damage functionals

F ε : L 1 (Ω; R 2 ) × L 1 (Ω) → [0, +∞] defined by (1.3.1) : F ε (u, χ) =    1 2 Ω η ε χA 0 + (1 -χ)A 1 e(u) : e(u) dx + κ ε Ω χ dx if (u, χ) ∈ X hε (Ω), +∞ otherwise,
where κ > 0 and A 0 , A 1 are symmetric fourth order tensors satisfying

a i Id ≤ A i ≤ a ′ i Id for i ∈ {0, 1}
as quadratic forms over M N ×N sym , for some constants a 0 , a 1 , a ′ 0 , a ′ 1 > 0. We denote by

α = lim ε→0 η ε ε ∈ [0, +∞], β = lim ε→0 h ε ε ∈ [0, +∞] and let F ′ α,β and F ′′ α,β : L 1 (Ω; R 2 ) × L 1 (Ω) → [0,
+∞] be the Γ-lower and Γ-upper limits respectively, i.e., for all (u, χ)

∈ L 1 (Ω; R 2 ) × L 1 (Ω), F ′ α,β (u, χ) := inf lim inf ε→0 F ε (u ε , χ ε ) : (u ε , χ ε ) → (u, χ) in L 1 (Ω; R 2 ) × L 1 (Ω) , and 
F ′′ α,β (u, χ) := inf ß lim sup ε→0 F ε (u ε , χ ε ) : (u ε , χ ε ) → (u, χ) in L 1 (Ω; R 2 ) × L 1 (Ω) ™ .
The choice of the L 1 (Ω; R 2 ) × L 1 (Ω)-topology might sometimes be improved (see the regime of brittle fracture 3.3), in the sense that the natural topology should be the one for which sequences of displacements with uniformly bounded energies prove to be compact. Here, for simplicity, we confine ourselves to the strong L 1 (Ω; R 2 ) × L 1 (Ω)-topolgy wich in particular provides compactness, whatever is the regime under consideration, for sequences with uniformly bounded energies (with or without boundary condition). We begin with the following result, which in particular gives the domain of the

Γ-limit in L 1 (Ω; R 2 ) × L 1 (Ω; R) of the functionals (1.3.1)
according to the values of α and β.

Proposition 3.0.2. Let (u, χ) ∈ L 1 (Ω; R 2 ) × L 1 (Ω) be such that F ′ α,β (u, χ) < +∞. Then χ = 0 a.e. in Ω and if α = ∞ or β = ∞, then u ∈ H 1 (Ω; R 2 ). Proof. Let δ > 0 and (u ε , χ ε ) ε>0 be a sequence such that (u ε , χ ε ) → (u, χ) in L 1 (Ω; R 2 ) × L 1 (Ω) as ε ↘ 0 and lim inf ε↘0 F ε (u ε , χ ε ) ≤ F ′ α,β (u, χ) + δ < +∞.
Up to a subsequence (not relabeled), we can assume that the limit

lim ε↘0 F ε (u ε , χ ε ) ≤ F ′ α,β (u, χ) + δ < +∞ exists, M := sup ε>0 F ε (u ε , χ ε ) < +∞ and (u ε , χ ε ) ∈ X hε (Ω)
for all ε > 0. Thus, there exists T ε ∈ T hε (Ω) such that for all T ∈ T ε , u ε is affine and χ ε is constant on T . Using the energy bound, we infer that

Ω χ ε dx ≤ M κ ε → 0 as ε ↘ 0 hence χ = 0 L 2 -a.e. in Ω.
Next, if α = ∞, the result follows from the lower bound inequality of [START_REF] Babadjian | Concentration versus oscillation effects in brittle damage[END_REF]Theorem 5.1]. Let us assume that β = ∞ and show that u ∈ H 1 (Ω; R 2 ). We consider the displacements

v ε = (1 -χ ε )u ε ∈ SBV 2 (Ω; R 2 )
and the sets

D ε = T ∈Tε, χε |T ≡1 T which satisfy ∇v ε = (1 -χ ε )∇u ε , J vε ⊂ Ω ∩ ∂D ε and v ε → u in L 1 (Ω; R 2 ).
Moreover, by coercivity of A 1 , we get that

sup ε>0 Ω |e(v ε )| 2 dx ≤ 2M a 1 < +∞. (3.0.1)
We then consider an exhaustion of Ω by a sequence of smooth open subsets {U m } m∈N satisfying U m ⊂⊂ U m+1 ⊂⊂ Ω for all m ∈ N and m U m = Ω. In particular, for all m ∈ N, there exists ε(m) > 0 such that for all 0 < ε < ε(m),

U m ∩ ∂D ε ⊂ T ∈Tε, T ∩Um̸ =∅ ∂T ⊂ Ω.
Since for all T ∈ T ε

H 1 (∂T ) ≤ 6L 2 (T ) h ε sin θ 0 ,
we obtain that for all m ∈ N and all 0 < ε < ε(m)

H 1 J vε ∩ U m ≤ 6 h ε sin θ 0 Ω χ ε dx ≤ 6M sin θ 0 ε h ε . As β = ∞, we deduce that for all m ∈ N lim sup ε↘0 H 1 J vε ∩ U m = 0.
In particular, [START_REF] Maso | Generalised functions of bounded deformation[END_REF]Theorem 11.3] entails that u |Um ∈ GSBD 2 (U m ) and, up to a subsequence (not relabeled, depending on m),

e(v ε ) |Um ⇀ e(u |Um ) weakly in L 2 (U m ; M 2×2 sym )
when ε ↘ 0 and

H 1 J u |Um = 0.
Therefore, one can actually check that v := u |Um ∈ H 1 (U m ; R 2 ) for all m ∈ N. Indeed, due to the Generalized area formula [6, Theorem 2.91], we have for all ξ ∈ S 1 :

0 = H 1 Ä J ξ v ä = J ξ v |ν v • ξ| dH 1 = Π ξ # Ä J ξ v ξ y ä dH 1 (y)
Hence, [5, Proposition 3.2 and Theorem 4.5] entail that

v ∈ LD(U m ) ∩ GSBD 2 (U m ), so that v = u |Um ∈ H 1 (U m ; R 2 )
thanks to Korn-Poincaré's inequality (see [START_REF] Chambolle | Korn-Poincaré inequalities for functions with a small jump set[END_REF]Theorem 1.1]). Finally, we deduce from the weak convergence of the symmetric gradients in L 2 (U m ; M 2×2 sym ) and the uniform bound (3.0.1) that

sup m∈N ∥e(u)∥ L 2 (Um;M 2×2 sym ) < +∞.
Hence, we deduce that the distributional derivative Eu is in

L 2 (Ω; M 2×2 sym ). As u ∈ L 1 (Ω; R 2 ), applying Korn-Poincaré's inequality once more in Ω leads to u ∈ H 1 (Ω; R 2 ).
Also note that, using a diagonal extraction argument, we can find a subsequence

ε k ↘ 0 as k ↗ ∞ such that v k := v ε k satisfies v k → u strongly in L 1 (Ω; R 2 ) and e(v k ) ⇀ e(u) weakly in L 2 (Ω; M 2×2 sym )
when k ↗ ∞.

. Linear elasticity

Theorem 3.1.1. If α = ∞ or β = ∞, then the functional F ε Γ-converges for the strong L 1 (Ω; R 2 ) × L 1 (Ω)- topology to the functional Ψ α,β : L 1 (Ω; R 2 ) × L 1 (Ω) → [0, +∞] defined by Ψ α,β (u, χ) =      1 2 Ω A 1 e(u) : e(u) dx if ® χ = 0 a.e. in Ω, u ∈ H 1 (Ω; R 2 ), +∞ otherwise.
Proof. According to Proposition 3.0.2, it is enough to identify the Γ-limit for u ∈ H 1 (Ω; R 2 ) and χ = 0.

Lower bound. If α = ∞, Theorem [15, Theorem 5.1] ensures that for all β ∈ [0, ∞], F ′ ∞,β (u, 0) ≥ 1 2 Ω A 1 e(u) : e(u) dx = Ψ ∞,β (u, 0). Now if β = ∞ and α ∈ [0, ∞]
is arbitrary, arguing as in the proof of Proposition 3.0.2, there exists a sequence

(u k , χ k ) k∈N ⊂ X hε k (Ω; R 2 ) such that (u k , χ k ) → (u, 0) in L 1 (Ω; R 2 ) × L 1 (Ω), F ′ α,∞ (u, 0) = lim k→∞ F ε k (u k , χ k ) and the sequence (v k ) k∈N = ((1 -χ k )u k ) k∈N ⊂ SBV 2 (Ω; R 2 ) satisfies v k → u strongly in L 1 (Ω; R 2 ) and e(v k ) ⇀ e(u) weakly in L 2 (Ω; M 2×2 sym ) as k ↗ ∞.
Therefore,

F ′ α,∞ (u, 0) ≥ lim inf k→∞ 1 2 Ω A 1 e(v k ) : e(v k ) dx ≥ 1 2 Ω A 1 e(u) : e(u) dx = Ψ α,∞ (u, 0).

Upper bound.

Since Ω has a Lipschitz boundary, we can extend u and assume that u ∈ H 1 (R 2 ; R 2 ). By lower semi continuity of F ′′ α,β and density of C ∞ c (R 2 ; R 2 ) in H 1 (R 2 ; R 2 ), we can assume without loss of generality that u ∈ C ∞ c (R 2 ; R 2 ). For all ε > 0, let us fix any triangulation T ε ∈ T hε (Ω) and let u ε ∈ H 1 (Ω; R 2 ) be the Lagrange interpolation of the values of u at the vertices of T ε . According to [START_REF] Ciarlet | The finite element method for elliptic problems[END_REF]Theorem 3.1.5], there exists a constant C(θ 0 ) > 0 such that for all ε > 0 and

T ∈ T ε ∥u ε -u∥ H 1 (T ;R 2 ) ≤ Cω(h ε )∥D 2 u∥ L 2 (T ) .
Therefore, (u ε , 0) ∈ X hε (Ω) and

u ε → u strongly in H 1 (Ω; R 2 ), so that F ε (u ε , 0) = 1 2 Ω A 1 e(u ε ) : e(u ε ) dx → 1 2 Ω A 1 e(u) : e(u) dx,
which shows that F ′′ α,β (u, 0) ≤ Ψ α,β (u, 0).

. Trivial regime

Theorem 3.2.1. Assume that θ 0 ≤ 45

• . If α = β = 0, then the functional F ε Γ-converges for the strong L 1 (Ω; R 2 ) × L 1 (Ω)-topology to the functional Ψ 0,0 : L 1 (Ω; R 2 ) × L 1 (Ω) → [0, +∞] defined by Ψ 0,0 (u, χ) = ® 0 if χ = 0 a.e. in Ω, +∞ otherwise.
Proof. According to Proposition 3.0.2, it is enough to identify the Γ-limit for u ∈ L 1 (Ω; R 2 ) and χ = 0.

The proof of the lower bound is then straightforward, as

F ′ 0,0 (u, 0) ≥ 0.
Let us prove the upper bound inequality. By a rescaling and translation argument, we can assume without loss of generality that Ω is the unit cube Q := (0, 1) 2 . Next, arguing as in the proof of [START_REF] Babadjian | Concentration versus oscillation effects in brittle damage[END_REF]Theorem 4.1], we can assume that u is a piecewise constant function of the form

u = i∈ 0,N -1 2 u i 1 Q i
for some constant vectors u i ∈ R 2 and where

Q i := 1 N (i + Q)
for all i ∈ 0, N -1 2 . For all ε > 0, we define the parameter

δ ε := ε (η ε + h ε ) > 0 which satisfies η ε ≪ δ ε ≪ ε and h ε ≪ δ ε ≪ ε. (3.2.1) 
We will first construct a background triangulation T δε ∈ T δε (Q) and a recovery sequence

(u ε , χ ε ) ∈ L 1 (Q; R 2 )×L 1 (Q)
adapted to this triangulation in the sense of Definition (3.0.1). Next, since the meshsize δ ε ≫ h ε , we will further subdivide the triangulation T δε in order to obtain an admissible triangulation T rec ε ∈ T hε (Q) (see Figure 3.2). Assume that ε > 0 is small enough so that δ ε < 1/(2N ) and define

N ε := õ 1 δ ε N û ≥ 2 and l ε := 1 N ε N , so that δ ε ≤ l ε ≤ 2δ ε .
We denote by

Q M := 1 M Q the cube of side length 1 M > 0. We then subdivide the cube Q N into N 2 ε
subcubes of side length l ε , so that

Q N = j∈ 0,Nε-1 2 Å j N ε N + Q NεN ã and Q = i∈ 0,N -1 2 j∈ 0,Nε-1 2 Å i N + j N ε N + Q NεN ã
up to a L 2 -negligible set. These (N ε N ) 2 rectangles are then divided into two isoceles right triangles with edges of length l ε and √ 2l ε . In particular,

δ ε ≤ l ε ≤ √ 2l ε ≤ 2 √ 2δ ε ≤ ω(δ ε )
so that it defines a triangulation T δε ∈ T δε (Q) as illustrated in Figure 3.1. We consider the cut-off function ϕ N : R 2 → [0, 1] defined as the Lagrange interpolation of the values 0 at the vertices on the boundary ∂Q N and 1 at the vertices inside Q N , which we extend by 0 outside Q N . Then, ϕ N is continuous and piecewise affine, affine on each triangle T ∈ T δε , such that

ϕ N ≡ 0 in R 2 \ Q N and ϕ N ≡ 1 in Q ε N := ï l ε , 1 N -l ε ò 2
as illustrated in Figure 3.1. Defining the characteristic function

χ ε = 1 Dε of the set D ε = i∈ 0,N -1 2 Å i N + Q N \ Q ε N ã 102
and the displacement

u ε = i∈ 0,N -1 2 u i ϕ N Å • - i N ã , one can check that u ε ∈ C 0 (Q; R 2
), u ε is affine and χ ε is constant on each triangle T ∈ T δε and

χ ε → 0 in L 1 (Q), (3.2.2) 
u ε → u in L 1 (Q; R 2 ), (3.2.3) 
1 2 Q (η ε χ ε A 0 + (1 -χ ε )A 1 ) e(u ε ) : e(u ε ) dx + κ ε Q χ ε dx → 0 when ε ↘ 0. (3.2.4) 
Indeed,

∥χ ε ∥ L 1 (Q) = L 2 (D ε ) = N 2 L 2 (Q N \ Q ε N ) ≤ 4N l ε ≤ 8N δ ε → 0 and ∥u -u ε ∥ L 1 (Q;R 2 ) = i∈ 0,N -1 2 |u i | Q i 1 -ϕ N Å x - i N ã dx ≤ ∥u∥ L ∞ (Q;R 2 ) L 2 (D ε ) → 0 when ε ↘ 0, which proves (3.2.2) and (3.2.3) 
. On the other hand, by definition of ϕ N and T δε , there exists a constant C(θ 0 ) > 0 such that

∥∇ϕ N ∥ L ∞ ≤ C δ ε . Since e(u ε ) = i∈ 0,N -1 2 u i ⊙ ∇ϕ N Å • - i N ã is supported in D ε = {χ ε = 1}, we infer that 1 2 Q (η ε χ ε A 0 + (1 -χ ε )A 1 ) e(u ε ) : e(u ε ) dx + κ ε Q χ ε dx ≤ a ′ 0 2 ∥u∥ 2 L ∞ (Q;R 2 ) η ε C 2 δ 2 ε L 2 (D ε ) + κ ε L 2 (D ε ) ≤ C θ 0 , a ′ 0 , u, κ Å η ε δ ε + δ ε ε ã which proves (3.2.4) due to (3.2.

1).

It remains to construct an admissible triangulation T rec ε ∈ T hε (Q) still adapted to (u ε , χ ε ) in the sense of Definition 3.0.1. Note that because (u ε , χ ε ) are adapted to the background triangulation T δε , as long as we modify T δε by subdividing some of its triangles, (u ε , χ ε ) will remain adapted to the modified triangulation. Assume that ε > 0 is sufficiently small so that

h ε δ ε < 1 √ 2
and define

n ε := max ß n ∈ N : h ε δ ε ≤ √ 2 -n ™ . Q N 0 1 N 1 N l ε l ε √ 2l ε ϕ N ≡ 1 ϕ N ≡ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 D ε 1 1 1 1 1 1 1 1 1 1 1 1 Figure 3.1
In particular, one can check that n ε ≥ 1 and

h ε ≤ √ 2 -nε δ ε < √ 2h ε .
We will now construct T rec ε ∈ T hε (Q) recursively in n ε steps, by subdividing each triangle T ∈ T δε into 2 nε isocele right subtriangles as follows : we subdivide T along the height corresponding to its right angle, resulting into two adjacent closed subtriangles, as in Figure 3.2. One can check that these subtriangles are both isocele and right triangles, homotetic to T by a factor √ 2

-1 up to translations and rotations, i.e. : there sides lengths are given by √ 2 -1 l ε and l ε for their shortest and hypothenus edges respectively. We repeat this procedure for each new subtriangle, in total n ε times. Thus, we obtain 2 nε isocele right substriangles of T , homotetic to T by a factor √ 2

-nε . In particular, all their edges have lenghth

√ 2 -nε l ε or √ 2 -nε+1 l ε , which satisfy h ε ≤ √ 2 -nε l ε ≤ √ 2 -nε+1 l ε ≤ 4h ε ≤ ω(h ε ).
Therefore, we obtain an admissible triangulation T rec ε ∈ T hε (Q) such that u ε is affine and χ ε is constant on each of its triangle, and u ε ∈ C 0 (Q; R 2 ). We infer that (u ε , χ ε ) ∈ X hε (Q) and

F ′′ 0,0 (u, 0) ≤ lim sup ε↘0 F ε (u ε , χ ε ) = 0
thanks to (3.2.4), which completes the proof of the upper bound inequality.

. Brittle fracture

Theorem 3.3.1. If α = 0 and β ∈ (0, ∞), then the functional

F ε Γ-converges for the strong L 1 (Ω; R 2 ) × L 1 (Ω)-topology to the functional Ψ 0,β : L 1 (Ω; R 2 ) × L 1 (Ω) → [0, +∞] defined by Ψ 0,β (u, χ) =      1 2 Ω A 1 e(u) : e(u) dx + βκ sin θ 0 H 1 (J u ) if ® χ = 0 a.e. in Ω, u ∈ GSBD 2 (Ω) ∩ L 1 (Ω; R 2 ), +∞ otherwise.
of F ′′ 0,β with respect to the convergence in L 1 (Ω; R 2 ) × L 1 (Ω), we can further assume without loss of generality that u ∈ SBV 2 (Ω; R 2 ) ∩ L ∞ (Ω; R 2 ). Looking at the constructive proof for the recovery sequence in [START_REF] Babadjian | Discrete approximation of the Griffith functional by adaptive finite elements[END_REF]Proposition 3.11], there exists u ε ∈ V hε (Ω) and a triangulation T hε ∈ T hε (Ω) such that u ε is affine on each of its triangle and

sup ε>0 ∥u ε ∥ L ∞ (Ω;R 2 ) ≤ ∥u∥ L ∞ (Ω;R 2 ) , (3.3.1)
u ε → u strongly in L 1 (Ω; R 2 ) as ε ↘ 0, G ε (u ε ) → G(u) as ε ↘ 0. (3.3.2)
In particular, since u ε is affine on each triangle T ∈ T hε , the fact that the length of every edge of T is larger than h ε together with (3.3.1) imply that there exists a constant C(θ 0 ) > 0 such that

∥e(u ε )∥ L ∞ (T ;R 2 ) ≤ C∥u∥ L ∞ (Ω;R 2 ) h ε . (3.3.3) 
Introducing the characteristic functions

χ ε = 1 {A 1 e(u ε ) : e(u ε ) ≥ 2κβ/h ε } , one can check that (u ε , χ ε ) ∈ X hε (Ω) and F ε (u ε , χ ε ) = G ε (u ε ) + 1 2 Ω η ε χ ε A 0 e(u ε ) : e(u ε ) dx + Å h ε ε -β ã κ h ε Ω χ ε dx.
On the one hand, (3.3.2) entails that

M := sup ε>0 κ h ε Ω χ ε dx < +∞ is bounded, so that (u ε , χ ε ) → (u, 0) strongly in L 1 (Ω; R 2 ) × L 1 (Ω) when ε ↘ 0.
On the other hand, using the growth condition of A 0 together with (3.3.3), we infer that there exists a constant C ′ (a ′ 0 ; κ; θ 0 ; u) > 0 such that

F ε (u ε , χ ε ) ≤ G ε (u ε ) + C ′ M Å η ε h ε + h ε ε -β ã → G(u) = Ψ 0,β (u, 0) when ε ↘ 0,
where we also used the facts that lim ε↘0 (η ε /ε) = α = 0 and lim ε↘0 (h ε /ε) = β ∈ (0, +∞).

. Plasticity

We begin the study of the regime of plasticity with the following naive result, where the constraint on the mesh-size is relaxed as we allow any scale smaller than h ε .

Theorem 3.4.1. We define, for all ε > 0, the functionals "

F ε : L 1 (Ω; R 2 ) × L 1 (Ω) → [0, +∞] given by " F ε (u, χ) = ® F ε (u, χ) if (u, χ) ∈ X h (Ω) for some 0 < h ≤ h ε , +∞ otherwise. If α ∈ (0, +∞), then the functional " F ε Γ-converges for the strong L 1 (Ω; R 2 ) × L 1 (Ω)-topology to the functional " Ψ α (u, χ) =    Ω W α (e(u)) dx + Ω W ∞ α Å dE s u d |E s u| ã d |E s u| if u ∈ BD(Ω) and χ = 0 a.e. in Ω, +∞ otherwise.
Remark 3.4.2. Note that the above statement is independent of the converging rate β ∈ [0, +∞]. This yields to a painful lack of accuracy, since the elasticity regime (β = +∞) and the fracture-plasticity coupled regime (β ∈ (0, +∞) for the dimension one) are included and yet indistinguishable in the above convergence. In other words, this convergence result does not detect the regimes of elasticity and coupled fracture-plasticity.

Proof. Following a minor adaptation of Proposition 3.0.2, it is enough to assume that χ = 0. We denote by " F ′ α,0 and "

F ′′ α,0 : L 1 (Ω; R 2 ) × L 1 (Ω) → [0, +∞]
the Γ-lower and Γ-upper limits respectively.

Lower bound. Let δ > 0 and u ∈ L 1 (Ω; R 2 ) such that " F ′ α,0 (u, 0) < +∞. Consider a sequence (u ε , χ ε ) ∈ L 1 (Ω; R 2 ) × L 1 (Ω) such that (u ε , χ ε ) → (u, 0) in L 1 (Ω; R 2 ) × L 1 (Ω) as ε ↘ 0
and, up to a subsequence (not relabeled), the following limit exists and satisfies

lim ε↘0 " F ε (u ε , χ ε ) ≤ " F ′ α,0 (u, 0) + δ < +∞.
In particular, there exists

0 < h ε ≤ h ε such that (u ε , χ ε ) ∈ X hε (Ω) ⊂ H 1 (Ω; R 2 ) × L ∞ (Ω; {0, 1}) for all ε > 0.
Hence, the lower bound inequality of [15, Theorem 3.1] entails that u ∈ BD(Ω) and

δ + " F ′ α,0 (u, 0) ≥ " Ψ α (u, 0)
which completes the proof of the lower bound by letting δ ↘ 0.

Upper bound. The result being trivial when " Ψ α (u, 0) = +∞, we can assume that u ∈ BD(Ω). The Γ-convergence of [15, Theorem 3.1] then ensures the existence of a recovery sequence

(u ε , χ ε ) ∈ H 1 (Ω; R 2 ) × L ∞ (Ω; {0, 1}) such that (u ε , χ ε ) → (u, 0) in L 1 (Ω; R 2 ) × L 1 (Ω)
and

E ε (u ε , χ ε ) := 1 2 Ω (η ε χ ε A 0 + (1 -χ ε )A 1 ) e(u ε ) : e(u ε ) dx + κ ε Ω χ ε dx → " Ψ α (u, 0) as ε ↘ 0.
On the other hand, according to standard finite element approximation, one can find a sequence

u h ε ∈ V h (Ω) such that u h ε → u ε in H 1 (Ω; R 2 ) as h ↘ 0, for all ε > 0. Therefore, one can find a sequence h ε ↘ 0 as ε ↘ 0, with 0 < h ε ≤ h ε , and displacements v ε := u hε ε ∈ V hε (Ω) such that ∥v ε -u ε ∥ H 1 (Ω;R 2 ) ≤ ε and v ε → u in L 1 (Ω; R 2 ) as ε ↘ 0.
Then, we consider the characteristic functions

χ ε = 1 {(A 1 -η ε A 0 ) e(v ε ) : e(v ε ) ≥ 2κ/ε} ∈ L ∞ (Ω; {0, 1}),
which satisfy

(v ε , χ ε ) ∈ X hε (Ω)
and

E ε (v ε , χ ε ) ≥ F ε (v ε , χ ε ).
One can check that

E ε (v ε , χ ε ) = 1 2 Ω (η ε χ ε A 0 + (1 -χ ε )A 1 ) e(v ε ) : e(v ε ) dx + κ ε Ω χ ε dx → Ψ α,0 (u, 0) as ε ↘ 0 since e(v ε ) -e(u ε ) → 0 in L 2 (Ω; M 2×2 sym ) as ε ↘ 0.
In particular, we infer that

κ ε Ω χ ε dx ≤ E ε (v ε , χ ε ) is bounded, hence (v ε , χ ε ) → (u, 0) in L 1 (Ω; R 2 ) × L 1 (Ω) when ε ↘ 0.
Therefore,

" F ′′ α,0 (u, 0) ≤ lim sup ε↘0 " F ε (v ε , χ ε ) ≤ " Ψ α (u, 0)
which completes the proof of the upper bound.

Remark 3.4.3. Note that imposing h ε ≤ h ε in the construction of the recovery sequence is not a difficulty and does not rely on the convergence rate β ∈ [0, +∞]. The issue is rather to ensure the reverse inequality, which one would intuit to be true in the specific regime β = 0. Indeed, in this regime, ε > 0 is heuristically interpreted as constant with respect to h ε , so that the convergence of the discrete model to the continuous setting in space occurs faster than the interplay between concentration and elastic degeneracy of the weak material. Looking at the computation of the Hashin-Shtrikman bounds (see [2, Proposition 2.3.20]), we get that recovery sequences happen to be mixtures, obtained by successive laminations between the phases η ε A 0 and A 1 . Therefore, one could hope to solve the discretization scale issue thanks to the directions of oscillations of the recovery sequence, the idea being to adapt the scale of the spatial discretization to the scale of the lamination directions. Yet, as illustrated in the following example, ensuring that h ε ≥ h ε seems not guaranted by this procedure, even in the simplified one-dimensional setting. 

u ′ =: ξ ∈ R is a constant.
Let a 0 , a 1 > 0 be the elasticity tensors of the weak and strong material respectively. As proved in [15, Proposition 3.3], the convex envelope CW ε : R → [0, +∞) of

W ε : τ ∈ R → min Å κ ε + 1 2 η ε a 0 τ 2 ; 1 2 a 1 τ 2 ã pointwise converges to W α = Ä 1 2 a 1 |•| 2 ä □ √ 2κa 0 α |•| when ε ↘ 0. Thus, CW ε (ξ) → W α (ξ) as ε ↘ 0.
As we are working in the scalar setting, [2, Lemma 1.3.32, Formula (1.109)] stipulates that the G-closure set of all possible mixtures between the phases η ε a 0 and a 1 with proportions θ ∈ [0, 1] and 1 -θ respectively, G θ (η ε a 0 , a 1 ), is reduced to the singleton

a ε θ := Å θ η ε a 0 + 1 -θ a 1 ã -1 .
In particular, according to [3, Lemma 3.1] we deduce that

CW ε (ξ) = min θ∈[0,1] ß κθ ε + 1 2 a ε θ ξ 2 ™ .
The above minimization being over a strictly convex function, the minimum is indeed achieved at a unique minimizer θ ε ∈ [0, 1]. Denoting a θε := a ε θε , we infer that

CW ε (ξ) = κθ ε ε + 1 2 a θε ξ 2 .
The idea is now to exploit the fact that a θε is also a laminate. Indeed, for fixed ε > 0, let us consider the characteristic function

χ ε := ® 1 in (0, θ ε ), 0 in (θ ε , 1), in (0, 1) 
which we extend to R by 1-periodicity. Then, for all h > 0, we consider the rescaled characteristic function

χ h ε := χ ε • h ∈ L ∞ (R; {0, 1}).
Applying Riemann-Lebesgue's Theorem (see [18, Example 2.7]), we have that

χ h ε * ⇀ θ ε weakly-* in L ∞ (R) as h ↘ 0. Therefore, [2, Lemma 1.4.10] entails that a χ h ε := Ä χ h ε η ε a 0 + (1 -χ h ε )a 1 ä |Ω H-converges in Ω to a θε when h ↘ 0. In particular, the solutions u h ε ∈ u + H 1 0 (Ω) of ® -a h ε (u h ε ) ′ ′ = 0 in H -1 (Ω), u h ε = u on ∂Ω, are such that {u h ε -u} h is bounded in H 1 0 (Ω). Hence, there exists a subsequence h k ↘ 0 as k ↗ ∞ and v ∈ H 1 0 (Ω) such that u h k ε ⇀ u + v weakly in H 1 (Ω)
. By the property of independence with respect to the boundary conditions for the H-convergence (see [2, Proposition 1.4.6]), we infer that

a h k ε (u h k ε ) ′ ⇀ a θε (u + v) ′ weakly in L 2 (Ω) when k ↗ ∞.
Yet, since (a θε (u + v) ′ ) ′ = 0 = a θε v ′′ in H -1 (Ω) and v ∈ H 1 0 (Ω), we infer by Lax-Milgram that v = 0.

Since the limit is independent of the subsequence, we deduce that the whole sequence is such that

     u h ε ⇀ u weakly in H 1 (Ω), u h ε → u strongly in L 2 (Ω), a h ε (u h ε ) ′ ⇀ a θε ξ weakly in L 2 (Ω), when h ↘ 0
where we also used Rellich's Theorem for the second convergence. Thus, one can check that

1 2 Ω a h ε u h ε ′ 2 dx + κ ε Ω χ h ε dx -→ h↘0 1 2 Ω a θε ξ 2 dx + κ ε Ω θ ε dx = Ω CW ε (ξ) dx -→ ε↘0 Ω W α (ξ) dx
and therefore

θ ε → 0 strongly in L 1 (Ω) when ε ↘ 0.
Moreover, χ h ε and u h ε are respectively piecewise constant and piecewise affine on each subinterval m + (0, θ ε h) and m + (θ ε h, h) for m ∈ 0, ⌊L/h⌋ + 1 , as illustrated in Figure 3.3.

χ h ε = 1 χ h ε = 0 η ε a 0 a 1 η ε a 0 η ε a 0 η ε a 0 η ε a 0 a 1 a 1 a 1 a 1 u h ε piecewise affine u(0) u(L) h θ ε h 0 L Figure 3.3
The hope is then to find an adequate diagonal extraction h ε ↘ 0 as ε ↘ such that

h ε ≤ min θ ε h ε ; (1 -θ ε )h ε ≤ h ε ≤ ω(h ε ) so that (u ε , χ ε ) := Ä u hε ε , χ hε ε ä ∈ X hε(Ω
) . Yet, one only gets that for all ε > 0, there exists h ε > 0 such that

(u ε , χ ε ) := Ä u hε ε , χ hε ε ä ∈ X hε(Ω) , ∥u ε -u∥ L 1 (Ω) + ∥χ ε ∥ L 1 (Ω) + F ε (u ε , χ ε ) - Ω W α (ξ) dx ≤ ε,
without guarantee that h ε ≥ h ε .

. In between plasticity and brittle fracture

In the remaining case, α ∈ (0, +∞) and β ∈ (0, +∞), the one-dimensional case leads to a limit model, intermediate between plasticity and brittle fracture, which puts in competition the elastic energy stored in the body and a surface energy whose density is of the form

1 + u + -u -,
so that it controles the number of jump points and has linear growth at infinity (see Figure 3.4). This is the content of Theorem 3.5.1 below. This first result is a motivation for the study of the vectorial case. On the one hand, a naive expectation would be to derive the lower bound with a slicing method, in order to reduce the problem to a one-dimension study. Part of the difficulty here comes from the lack of control from below for the length of the triangles' sections. On the other hand, the construction of a recovery sequence for the upper bound seems much harder and is not clear yet in the vectorial case.

Let Ω = (0, L) ⊂ R be a bounded open interval and 0 < a 0 < a 1 < +∞ be the elasticity coefficients of the weak and strong materials respectively. We define the following surface density

ϕ α,β : t ∈ R →      a 0 α 2β t 2 + βκ if |t| ≤ β 2κ a 0 α , √ 2κa 0 α |t| otherwise.
(3.5.1)

Then, we consider the finite element set, still denoted by X hε (Ω) by analogy with the two-dimensional setting, made of all pairs

(u, χ) ∈ C 0 (Ω) × L ∞ (Ω; {0, 1})
for which there exists a subdivision of (0, L)

0 = x 0 < ... < x n = L for some n ≥ 1,
such that for all i ∈ 0, n -1 :

h ε ≤ x i+1 -x i ≤ ω(h ε ), u is affine on(x i , x i+1
) and χ is constant on (x i , x i+1 ).

Theorem 3.5.1. If α ∈ (0, +∞) and β ∈ (0, +∞), then the functional

F ε : L 1 (Ω) × L 1 (Ω) → [0, +∞]
defined by

F ε (u, χ) =    1 2 L 0 (η ε a 0 χ + a 1 (1 -χ)) u ′ 2 dx + κ ε L 0 χ dx if (u, χ) ∈ X hε (Ω), +∞ otherwise, Γ-converges for the L 1 (Ω) × L 1 (Ω) topology to the energy Ψ α,β : L 1 (Ω) × L 1 (Ω) → [0, +∞] given by Ψ α,β (u, χ) =      a 1 2 L 0 u ′ 2 dx + Ju ϕ α,β u + -u -dH 0 if χ = 0 and u ∈ SBV 2 (Ω), +∞ otherwise.
Proof. According to Proposition 3.0.2, we can assume that χ = 0. We denote by F ′ α,β : L 1 (Ω) × L 1 (Ω) → [0, +∞] and F ′′ α,β : L 1 (Ω) × L 1 (Ω) → [0, +∞] the Γ-lower and Γ-upper limits respectively. Lower bound. Let δ > 0 and u ∈ L 1 (Ω) be such that F ′ α,β (u, 0) < +∞. Then, one can find a sequence

(u ε , χ ε ) ∈ X hε (Ω) such that (u ε , χ ε ) → (u, 0)
in L 1 (Ω) × L 1 (Ω) as ε ↘ 0 and, up to a subsequence (not relabeled), the following limit exists and satisfies

lim ε↘0 F ε (u ε , χ ε ) ≤ F ′ α,β (u, 0) + δ =: M < +∞.
Hence, for all ε > 0, there exists a subdivision of Ω = (0, L)

0 = x ε 0 < ... < x ε nε = L
for some n ε ∈ N \ {0}, such that u ε is affine and χ ε is constant on each subinterval (x ε i , x ε i+1 ) and

h ε ≤ x ε i+1 -x ε i ≤ ω(h ε ) for all i ∈ 0, n ε -1 .
Noticing that

F ε (u ε , χ ε ) ≥ L 0 min Å 1 2 η ε a 0 |u ′ ε | 2 + κ ε ; 1 2 a 1 |u ′ ε | 2 ã dx = F ε (u ε , χε )
for the characteristic function

χε := 1 { 1 2 a 1 |u ′ ε | 2 ≥ 1 2 ηεa 0 |u ′ ε | 2 + κ ε } which is still constant on each subinterval (x ε i , x ε i+1
), we can assume without loss of generality that χ ε = χε . In particular, there exist m ε ∈ N and 0 ≤ b ε j < c ε j ≤ L for j ∈ 1, m ε such that

mε j=1 {b ε j , c ε j } ⊂ nε i=0 {x ε i }
and

D ε := {χ ε = 1} = mε j=1 b ε j , c ε j ⊂ u ′ ε ̸ = 0 . Hence M ≥ κ ε L 0 χ ε dx = κ ε L 1 D ε ≥ κh ε ε m ε .
Since h ε /ε → β ∈ (0, +∞) when ε ↘ 0, we infer that m ε ≤ M/(βκ) is bounded. Up to a further subsequence, still not relabeled, we infer that there exists m ∈ N such that m ε = m for all ε > 0.

The idea then consists in modifying the minimizing sequence {u ε } ε>0 on each subinterval where the variation of u ε is large enough. Indeed, we will see that it is energetically favorable to create a jump at the end point c ε j of each segment [b ε j , c ε j ] in D ε . First notice that if m = 0, then χ ε = 0 for all ε > 0 hence

M ≥ a 1 2 L 0 u ′ ε 2 dx, and 
1 L L 0 u ε dx → 1 L L 0 u dx as ε ↘ 0.
Therefore, Poincaré-Wirtinger's inequality entails that {u ε } ε>0 is bounded in H 1 (Ω). In particular, up to a further subsequence, we infer that u ∈ H 1 (Ω) and

u ε ⇀ u weakly in H 1 (Ω) so that δ + F ′ α,β (u, 0) ≥ a 1 2 L 0 u ′ 2 dx = Ψ α,β (u, 0).
We conclude the proof of the lower bound in this simpler case, by letting δ tend to 0. Let us now assume that m ≥ 1.

First, one can check that

Ẽε := 1 2 L 0 η ε a 0 χ ε u ′ ε 2 dx + κ ε L 0 χ ε dx = m j=1 f ε j Å c ε j -b ε j ε ã where f ε j : l ∈ (0, +∞) → κl + a 0 η ε 2ε u ε c ε j -u ε b ε j 2 1 l is strictly convex. Defining ϕ ε : t ∈ R →        h ε ε κ + η ε h ε a 0 2 t 2 if |t| ≤ h ε √ εη ε 2κ a 0 , √ 2κa 0 … η ε ε |t| otherwise, one can check that Ẽε ≥ m j=1 ϕ ε u ε c ε j -u ε b ε j . (3.5.2)
Indeed, the only critical point of f ε j on (0, +∞) being

l * j,ε := … a 0 η ε 2εκ u ε c ε j -u ε b ε j > 0, f ε j is increasing on [l * j,ε , +∞). Then, • either h ε /ε ≥ l * j,ε , so that u ε Ä c ε j ä -u ε Ä b ε j ä ≤ » 2κ a 0 hε √ εηε and f ε j Å c ε j -b ε j ε ã ≥ f ε j Å h ε ε ã = h ε ε κ + η ε h ε a 0 2 u ε c ε j -u ε b ε j 2 = ϕ ε u ε c ε j -u ε b ε j since Ä c ε j -b ε j ä ≥ h ε . • Otherwise, u ε Ä c ε j ä -u ε Ä b ε j ä > » 2κ a 0 hε √ εηε and f ε j Å c ε j -b ε j ε ã ≥ f ε j l * j,ε = … 2κa 0 η ε ε u ε c ε j -u ε b ε j = ϕ ε u ε c ε j -u ε b ε j .
We next consider the modified functions w ε ∈ SBV 2 (Ω) given by

w ε := ® u ε in Ω \ D ε , u ε (b ε j ) in (b ε j , c ε j ) for all j ∈ 1, m .
Especially, we get that

w ′ ε = (1 -χ ε )u ′ ε , J wε = m j=1 {c ε j }, w ε (c ε j ) := w + ε (c ε j ) -w - ε (c ε j ) = u ε (c ε j ) -u ε (b ε j ) ̸ = 0 and (w ε , χ ε ) → (u, 0) in L 1 (Ω) × L 1 (Ω) as ε ↘ 0.
Indeed, we infer by (3.5.2) together with Young's inequality that

M ≥ Jw ε ϕ ε w ε dH 0 ≥ √ 2κa 0 … η ε ε Jw ε w ε dH 0 and Dε |w ε | dx ≤ Dε |u ε | dx + Dε |u ε -w ε | dx ≤ Dε |u ε | dx + ω(h ε ) Jw ε w ε dH 0 .
Remembering that η ε /ε → α ∈ (0, +∞), we thus infer that {w ε } ε>0 is bounded in BV (Ω). Hence, Ambrosio's compactness Theorem [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]Theorem 4.7] entails the existence of a subsequence (not relabeled) and a function w ∈ SBV 2 (Ω) such that w ε ⇀ w weakly-* in BV (Ω) as ε ↘ 0.

On the other hand, since u ε → u in measure in Ω and {u ε ̸ = w ε } ⊂ D ε with L 1 D ε → 0, we infer that for all η > 0,

L 1 {|w ε -u| > η} ≤ L 1 {|u ε -u| > η} + L 1 D ε → 0 when ε ↘ 0.
Hence, w ε → u in measure in Ω as ε ↘ 0, so that w = u ∈ SBV 2 (Ω).

Moreover, since the limit is independent of the subsequence, we infer that the whole sequence w ε ⇀ u weakly-* in BV (Ω) as ε ↘ 0.

Finally, we get that

F ε (u ε , χ ε ) ≥ L 0 a 1 2 |w ′ ε | 2 dx + Jw ε ϕ ε w ε dH 0 = Ψ α,β (w ε , 0) + o ε↘0 (1)
where we used the fact that ϕ ε uniformly converges to ϕ α,β in R and H 0 (J wε ) = m. Hence, by lower semi-continuity of Ψ α,β for the weak-* convergence in BV (Ω) (see [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]Theorem 5.4]), we infer that

δ + F ′ α,β (u, 0) ≥ lim inf ε↘0 F ε (u ε , χ ε ) ≥ Ψ α,β (u, 0)
and we conclude the proof of the lower bound inequality by letting δ tend to 0.

Upper bound. Let u ∈ SBV 2 (Ω). We denote its jump set by

J u = m j=1
{x j } with 0 < x 1 < ... < x m < L. Using standard approximation results (see [START_REF] Cortesani | A density result in SBV with respect to non-isotropic energies[END_REF]Theorem 3.1] for instance) and the lower semi-continuity of F ′′ α,β in L 1 (Ω) × L 1 (Ω) and of Ψ α,β for the weak-* convergence in BV (Ω), we can assume that

u ∈ C ∞ (Ω \ J u ) ∩ L ∞ (Ω).
We define, for all ε > 0 and all j ∈ 1, m ,

h ε (j) := max ß h ε ; h ε u(x j ) 1 β … a 0 α 2κ ™
where u := u + -u -. Since d := min {|x j+1 -x j | : j ∈ 1, m -1 } > 0, one can find a subdivision of Ω = (0, L) 0 = y ε 0 < ... < y ε nε = L for some n ε ∈ N \ {0}, for ε > 0 small enough, such that

J u ∩ nε i=0 {y ε i } = ∅, each subinterval (y ε i , y ε i+1
) contains at most one point x j of J u and such subintervals are exactly of length h ε (j), while all the remaining subintervals have length between h ε and 6h ε . In other words, one can find 0 ≤ i 1 (ε) < ... < i m (ε) ≤ n ε -1 such that

y ε i j < x j < y ε i j +1 and y ε i j +1 -y ε i j = h ε (j) < d 8 for all j ∈ 1, m and 
h ε ≤ y ε i+1 -y ε i ≤ 6h ε ≤ ω(h ε ) ≤ d 8 for all i ∈ 0, n ε -1 \ m j=1 {i j }.
Since u ∈ C ∞ (Ω \ J u ), we can consider the Lagrange interpolation u ε ∈ H 1 (Ω) of u at the points {y ε 0 , ..., y ε nε } ⊂ Ω \ J u . Introducing the characteristic functions

χ ε = 1 m j=1 y ε i j ,y ε i j +1 ∈ L ∞ (Ω; {0, 1}),
one can check that u ε is affine and χ ε is constant on each subinterval (y ε i , y ε i+1 ) for i ∈ 0, n ε -1 , so that

(u ε , χ ε ) ∈ X hε (Ω).
Indeed, since h ε (j) ≥ h ε , it is enough to further subdivide each interval (y ε i j , y ε i j +1 ) into a finite number of subintervals of length between h ε and 6h ε , in order for (u ε , χ ε ) to be admissible. Note that

κ ε L 0 χ ε dx = m j=1 κ h ε (j) ε ≤ mκ max j∈ 1,m ß u(x j ) 1 β … a 0 α 2κ ™ h ε ε
is bounded, so that χ ε → 0 in L 1 (Ω) as ε ↘ 0. Moreover, using standard finite element estimates, one can check that there exists a constant C > 0 such that, for all i ∈ 0,

n ε -1 \ m j=1 {i j }, ∥u ε -u∥ H 1 ((y ε i ,y ε i+1 )) ≤ Cω(h ε )∥u ′′ ∥ L ∞ ((y ε i ,y ε i+1 )) .
In particular, since ∥u ε ∥ L ∞ (Ω) ≤ ∥u∥ L ∞ (Ω) , we infer that

∥u ε -u∥ L 2 (Ω) ≤ 2∥u∥ L ∞ (Ω) ∥χ ε ∥ L 1 (Ω) + Cω(h ε )∥u ′′ ∥ L ∞ (Ω\Ju) → 0 as ε ↘ 0 and ∥(1 -χ ε )u ′ ε -u ′ ∥ 2 L 2 (Ω) ≤ {χε=1} u ′ 2 dx + C 2 ω(h ε ) 2 ∥u ′′ ∥ 2 L ∞ (Ω\Ju) → 0 as ε ↘ 0
where we used the facts that u ′ ∈ L 2 (Ω) and L 1 ({χ ε = 1}) → 0 when ε ↘ 0. Therefore,

(u ε , χ ε ) → (u, 0) in L 1 (Ω) × L 1 (Ω) and (1 -χ ε )u ′ ε → u ′ in L 2 (Ω) when ε ↘ 0, so that 1 2 Ω a 1 (1 -χ ε ) u ′ ε 2 dx -→ ε↘0 1 2 Ω a 1 u ′ 2 dx.
(3.5.3)

Next, let us prove that

Ẽε (u ε , χ ε ) := Ω Å 1 2 η ε a 0 u ′ ε 2 + κ ε ã χ ε dx -→ ε↘0 Ju ϕ α,β u + -u -dH 0 .
(3.5.4)

First note that

Ẽε (u ε , χ ε ) = m j=1 Ç κ h ε (j) ε + a 0 η ε 2h ε (j) u(y ε i j +1 ) -u(y ε i j ) 2 å .
By definition of J u , since y ε i j ↗ x j and y ε i j +1 ↘ x j when ε ↘ 0, we infer that there exists a subsequence (not relabeled), such that for all j ∈ 1, m : u(y ε i j ) → u -(x j ) and u(y ε i j +1 ) → u + (x j ) as ε ↘ 0.

We now have to consider two cases, for each jump point x j ∈ J u .

• Either u(x j ) ≤ β » 2κ a 0 α , so that

   h ε (j) = h ε for all ε > 0, ϕ α,β u(x j ) = βκ + a 0 α 2β u(x j ) 2 .
Therefore,

κ h ε (j) ε + a 0 η ε 2h ε (j) u(y ε i j +1 ) -u(y ε i j ) 2 -→ ε↘0 βκ + a 0 α 2β u(x j ) 2 = ϕ α,β u(x j ) . • Or u(x j ) > β » 2κ a 0 α , so that    h ε (j) = h ε u(x j ) 1 β … a 0 α 2κ for all ε > 0, ϕ α,β u(x j ) = √ 2κa 0 α u(x j ) .
Therefore,

κ h ε (j) ε + a 0 η ε 2h ε (j) u(y ε i j +1 ) -u(y ε i j ) 2 -→ ε↘0 1 2 √ 2κa 0 α u(x j ) + 1 2 √ 2κa 0 α u(x j ) = ϕ α,β u(x j ) .
Taking the sum for j ∈ 1, m then leads to (3.5.4). We conclude the upper bound inequality by gathering (3.5.3) and (3.5.4) which entail that

lim ε↘0 F ε (u ε , χ ε ) = Ψ α,β (u, 0) ≥ F ′′ α,β (u, 0).

-Perfect plasticity versus Damage : an unstable interac-

tion between irreversibility and Γ-convergence through variational evolutions.

This chapter addresses the question of the interplay between relaxation and irreversibility through quasi-static evolutions in damage mechanics, by inquiring the following question :

Can the quasi-static evolution of an elastic material undergoing a rate-independent process of plastic deformation be derived as the limit model of a sequence of quasi-static brittle damage evolutions ?

This question is motivated by the static analysis performed in [START_REF] Babadjian | Concentration versus oscillation effects in brittle damage[END_REF], where the authors have shown how the brittle damage model introduced by Francfort and Marigo (see [START_REF] Francfort | Stable damage evolution in a brittle continuous medium[END_REF][START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF]) can lead to a model of Hencky perfect plasticity. Problems of damage mechanics being rather described through evolution processes, it is natural to extend this analysis to quasi-static evolutions, where the inertia is neglected. We consider the case where the medium is subjected to time-dependent boundary conditions, in the one-dimensional setting. The idea is to combine the scaling law considered in [START_REF] Babadjian | Concentration versus oscillation effects in brittle damage[END_REF] with the quasi-static brittle damage evolution introduced in [START_REF] Francfort | A Variational View of Partial Brittle Damage Evolution[END_REF] by Francfort and Garroni, and try to understand how the irreversibility of the damage process will be expressed in the limit evolution. Surprisingly, the interplay between relaxation and irreversibility is not stable through time evolutions. Indeed, depending on the choice of the prescribed Dirichlet boundary condition, the effective quasi-static damage evolution obtained may not be of perfect plasticity type.

. Introduction

. Interplay between Γ-convergence and variational evolutions

Rate-independent systems have proved to be very useful in many problems of continuum mechanics dealing with dissipative phenomena such as elastoplasticity, damage or fracture. These models share similar energetic formulations which put in competition a stored energy and a dissipated one which does not depend on the speed of the loading (see [START_REF] Mainik | Existence results for energetic models for rate-independent systems[END_REF] and references therein). When the model involves a scaling parameter, say ε > 0, a natural attempt consists first in studying static models before treating the related evolutions. Such considerations can be dealt within a more general setting, such as in [START_REF] Mainik | Γ-limits and relaxations for rate-independent evolutionary problems[END_REF] where the authors derive a sufficient condition in order for a family of parametrized time-dependent energy functionals of the form E ε +D ε to approximate the expected effective energy E 0 + D 0 in the limit, where E ε and D ε respectively stand for the stored and dissipated parts of the total energy and E 0 and D 0 are their corresponding Γ-limits. In a nutshell, for ε ∈ [0, ∞), if E ε stands for the stored energy and D ε (q, q) stands for the minimal energy dissipated as the medium changes from the states q to q, an evolution q ε is called an energetic solution during the time interval [0, T ] if it satisfies the following stability and energy balance conditions E ε (t, q ε (t)) ≤ E ε (t, q) + D ε (q ε (t), q) for all admissible state q E ε (t, q ε (t)) + Diss ε (q ε ; 0, t) = E ε (0, q ε (0)) + t 0 ∂ s E(s, q ε (s)) ds for all time t ∈ [0, T ], where the cumulated dissipation Diss ε (q ε ; 0, t) is the total variation of q ε with respect to the "distance" D ε in the time interval [0, t]. Given energetic solutions {q ε } ε>0 converging to some q 0 , the authors derive in [80, Theorem 3.1] a sufficient condition in order for q 0 to be an energetic solution of the limit problem associated to E 0 and D 0 . In particular, a joint condition on the interplay between the stored and dissipated energies is needed. Unfortunately, even if we have separate Γconvergence of E ε and D ε to E 0 and D 0 respectively, the Γ-limit of the total energies E ε + D ε might differ from the sum of the Γ-limits. This particular issue is adressed in [START_REF] Braides | Sarrocco : Quasi-static damage evolution and homogenization : a case study of non-commutability[END_REF] where the authors consider a family of quasi-static evolutions involving internal oscillating energies E ε and dissipations D ε and show that the Γ-limit of the sum can still be additively split as the sum of a stored energy Ẽ0 and a dissipated one D0 , even though they a priori differ from E 0 and D 0 . More generally, the interaction between Γ-convergence and variational evolutions frequently involves unexpected and tedious noncommutability phenomena in various contexts. For instance, such considerations have attracted renewed interest in the derivation of lower dimensional models for thin structures in the evolutionary setting, in the context of elastoplasticity [START_REF] Davoli | A quasistatic evolution model for perfectly plastic plates derived by Γconvergence[END_REF][START_REF] Liero | An evolutionary elastoplastic plate model derived via Γ-convergence[END_REF], crack propagation [START_REF] Babadjian | Quasistatic evolution of a brittle thin film[END_REF] or delamination problems [START_REF] Mielke | From damage to delamination in nonlinearly elastic materials at small strains[END_REF], without being exhaustive. Another case study concerns the stability of unilateral minimality properties through variational evolutions, as in fracture mechanics [START_REF] Giacomini | Ponsiglione : A Γ-convergence approach to stability of unilateral minimality properties in fracture mechanics and applications[END_REF] or periodic homogenization in multi-phase elastoplasticity [START_REF] Francfort | On periodic homogenization in perfect elasto-plasticity[END_REF].

. Motivation and results

In the static analysis led in [START_REF] Babadjian | Concentration versus oscillation effects in brittle damage[END_REF]Theorem 3.1], the authors consider a family of brittle damage energies (introduced in [START_REF] Francfort | Stable damage evolution in a brittle continuous medium[END_REF][START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF]) within a specific scaling law, and show how an asymptotic analysis in a singular limit can lead to a model of Hencky perfect plasticity. More precisely, they introduce a small parameter ε > 0 and consider a linearly elastic material which can only exist in one of two states : a damaged one whose elastic properties are described via a symmetric fourth-order Hooke Law εA 0 and a sound one with a stronger elasticity tensor A 1 , satisfying εA 0 < A 1 in the sense of quadratic forms acting on M N ×N sym . Introducing the characteristic function of the damaged region, χ ∈ L ∞ (Ω; {0, 1}), and following the model introduced by Francfort and Marigo, the total energy associated to a displacement u ∈ H 1 (Ω; R N ) and χ is given as the sum of the elastic energy stored inside the material and a dissipative cost, taken as proportional to the volume of the damaged zone :

Ω 1 2 (χεA 0 + (1 -χ)A 1 ) e(u) : e(u) dx + κ ε Ω χ dx
where κ/ε > 0 is the material toughness and the symmetric gradient e(u) = ∇u + ∇u T /2 is the linearized elastic strain. As the parameter ε tends to 0, the elasticity coefficients of the weak material degenerate to zero while the diverging character of κ/ε forces the damaged region to concentrate on vanishingly small sets. It is by now well-known that for fixed ε > 0, the minimization of the above energy with respect to the couple (u, χ) is ill-posed, so that the energy must be relaxed. By doing so, the brittle character of the damage is lost as minimizing sequences tend to develop microstructures and the class of admissible solutions is extended to the set of all possible homogenized elasticities, resulting from fine mixtures of strong and weak material (see [START_REF] Francfort | Revisiting brittle fracture as an energy minimization problem[END_REF][START_REF] Francfort | A Variational View of Partial Brittle Damage Evolution[END_REF][START_REF] Allaire | Shape Optimization by the Homogenization Method[END_REF][START_REF] Allaire | Minimizers for a double-well problem with affine boundary conditions[END_REF]). Given some displacement u and minimizing first pointwise with respect to χ, one can check that the asymptotic analysis of these energies is equivalent to finding the Γ-limit of the family of functionals dx when ε ↘ 0, or still the Γ-limit of their lower semicontinuous envelopes, given by

E ε (u) := Ω SQW ε (e(u)) dx
where SQW ε is the symmetric quasiconvex envelope of W ε (see [START_REF] Allaire | Minimizers for a double-well problem with affine boundary conditions[END_REF]). An explicit formula of SQW ε is generally unknown, as its expression is obtained through a minimization among all attainable composite materials (the G-closure set, see [START_REF] Allaire | Shape Optimization by the Homogenization Method[END_REF]) and makes use of the Hashin-Shtrikman bounds. Slightly adapting the proof of [15, Theorem 3.1] (see Appendix 5 for a precise statement and its proof), the authors have shown that when A 0 and A 1 are isotropic Hooke Laws defined by

A i ξ = λ i tr(ξ)Id + 2µ i ξ for all ξ ∈ M N ×N sym
where λ 1 > λ 0 > 0 and µ 1 > µ 0 > 0 are the Lamé coefficients, the brittle damage energies E ε Γ-converges in L 1 (Ω; R N ) as ε ↘ 0 to the functional

E : u ∈ BD(Ω) → Ω W (e(u)) dx + Ω I * K Å dE s u d|E s u| ã d|E s u| + ∂Ω I * K ((w -u) ⊙ ν) dH N -1
where

K = {τ ∈ M N ×N sym : G(τ ) ≤ 2κ} is a closed convex set, G : M N ×N sym → R is defined by G(τ ) :=        τ 2 1 λ 0 +2µ 0 if λ 0 +2µ 0 2(λ 0 +µ 0 ) (τ 1 + τ N ) < τ 1 , (τ 1 -τ N ) 2 4µ 0 + (τ 1 +τ N ) 2 4(λ 0 +µ 0 ) if τ 1 ≤ λ 0 +2µ 0 2(λ 0 +µ 0 ) (τ 1 + τ N ) ≤ τ N , τ 2 N λ 0 +2µ 0 if τ N < λ 0 +2µ 0 2(λ 0 +µ 0 ) (τ 1 + τ N ) , (4.1.1) 
with τ 1 ≤ ... ≤ τ N the ordered eigenvalues of τ ∈ M N ×N sym , W is the infimal convolution

W : ξ ∈ M N ×N sym → inf τ ∈M N ×N sym ß 1 2 A 1 τ : τ + I * K (ξ -τ ) ™ and I * K : ξ ∈ M N ×N sym → sup τ ∈K {τ : ξ}
is the support function of K, standing for the plastic dissipation potential (see [START_REF] Suquet | Un espace fonctionnel pour les équations de la plasticité[END_REF]). In particular, for all displacement u ∈ BD(Ω), writing the Radon-Nikodým decomposition of Eu with respect to Lebesgue Eu = e(u)L N Ω + E s u and using the definition of the infimal convolution, we infer that the absolutely continuous linearized strain can be additively split as e(u) = e + p a with e and p a ∈ L 1 (Ω; M N ×N sym ) such that

W (e(u)) = 1 2
A 1 e : e + I * K (p a ) L 1 -a.e. in Ω.
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Therefore, defining p = E s u + p a L N Ω + (w -u) ⊙ νH N -1 ∂Ω, one can check that

Eu = eL N Ω + p Ω,
so that

E(u) = Ω 1 2 A 1 e : e dx + Ω I * K Å dp d |p| ã d |p|
is indeed the energy functional corresponding to Hencky perfect plasticity, as mentionned in [START_REF] Mora | Relaxation of the Hencky model in perfect plasticity[END_REF].

The objective of the present paper is to extend this work to the quasi-static case in a one dimensional setting. More specifically, we consider a linearly elastic material whose reference configuration is Ω = (0, L), a bounded open interval, with toughness κ > 0 and stiffness a 1 > 0, subjected to a prescribed time-dependent displacement on ∂Ω = {0, L} :

w ∈ AC([0, T ]; H 1 (R)).
Adapting the analysis led in [START_REF] Babadjian | Concentration versus oscillation effects in brittle damage[END_REF] to the quasi-static setting, we consider a family of quasi-static brittle damage evolutions (introduced in [START_REF] Francfort | A Variational View of Partial Brittle Damage Evolution[END_REF]) within the same specific scaling law. More precisely, we introduce a small parameter ε > 0 and apply [60, Theorem 2] to a linearly elastic material which can only exist in a damaged state or in a sound state with respective stiffness 0 < εa 0 < a 1 , subjected to the prescribed displacement w on ∂Ω and with toughness κ/ε. Thus, we recover a triple

(u ε , Θ ε , a ε ) : [0, T ] → H 1 (Ω; R) × L ∞ (Ω; [0, 1]) × L ∞ (Ω; [0, a 1 ]) (4.1.2)
discribing the quasi-static evolution of brittle damage undergone by the medium for a fixed ε > 0. In other words, the state of the damaged medium (for ε > 0 fixed) at time t ∈ [0, T ] is dictated by the displacement u ε (t) while its elastic properties are given by the stiffness a ε (t) ∈ G Θε(t) (εa 0 , a 1 ) (see Section 1.4), where Θ ε (t) is the volume fraction of sound material a 1 (see Proposition 4.2.1 below). We next wish to perform the asymptotic analysis of these evolutions when taking the limit ε ↘ 0, in the hope of recovering a quasi-static evolution of perfect plasticity in the limit, of which we briefly recall the fundamentals now.

In [START_REF] Suquet | Un espace fonctionnel pour les équations de la plasticité[END_REF], Suquet proposed the (first complete) mathematical kinematical framework adapted to evolutions of perfect plasticity for dissipative materials and proves the existence of solutions in terms of the displacement field, under the assumption of small deformations. Heuristically, let Ω = (0, L) be the configuration at rest of an elastoplastic medium with stiffness a 1 , whose evolution is driven by a time-dependent boundary displacement w : [0, T ] × R → R prescribed on ∂Ω. The behaviour of the material is described via three kinematic variables (u, e, p), where the displacement u : [0, T ] × Ω → R is such that the linearized strain Du = e + p is additively decomposed in an elastic strain e : [0, T ] × Ω → R and a plastic strain p : [0, T ] × Ω → R accounting for the reversible and permanent deformations respectively. In the quasi-static setting, where inertia is neglected, the evolution satisfies the Constitutive Equations

       a 1 e(t) = σ(t) σ(t) ∈ K ṗ(t) : σ(t) = sup τ ∈K ṗ(t) : τ in Ω and the Equilibrium Equation ® σ ′ (t) = 0 in Ω u(t) = w(t) on ∂Ω at all time t ∈ [0, T ].
In other words, the Constitutive Equations mean that the elastic strain is proportional to the stress σ, which is constrained to lie in a given closed and convex set K ⊂ R standing for the elasticity domain and whose boundary ∂K is referred to as the yield surface. The last assertion is nothing but Hill's maximum work principle. More recently, quasi-static plastic evolutions have been revisited into a variational evolution formulation for rate-independent processes. The problem has been interpreted in an energetic form that does not require the solutions to be smooth in time nor in space, making use of modern tools of the calculus of variations instead (see [START_REF] Mainik | Existence results for energetic models for rate-independent systems[END_REF][START_REF] Maso | Quasistatic evolution problems for linearly elasticperfectly plastic materials[END_REF][START_REF] Mora | Relaxation of the Hencky model in perfect plasticity[END_REF] and references therein). Following [49, Definition 4.2], a quasi-static evolution of perfect plasticity is a triple

(u, e, p) : [0, T ] → BV (Ω) × L 2 (Ω; R) × M(Ω; R)
subjected to the relaxed boundary condition p(t) ∂Ω = (w(t) -u(t)) (δ L -δ 0 ) and satisfying the additive decomposition Du(t) = e(t)L 1 Ω + p(t) Ω, such that 

σ(t) = a 1 e(t), σ ′ (t) = 0 in H -1 (Ω), σ(t) ∈ K L 1 -a.e.
sup n i=1 Ω I * K Å d(p(s i ) -p(s i-1 )) d |p(s i ) -p(s i-1 )| ã d |p(s i ) -p(s i-1 )| : n ∈ N, 0 = s 0 ≤ s 1 ≤ ... ≤ s n = t .
The existence of quasi-static evolutions is (by now classically) obtained by performing a timediscretization and solving incremental minimization problems inductively, before letting the time-step tend to 0 (see [START_REF] Mainik | Existence results for energetic models for rate-independent systems[END_REF][START_REF] Crismale | Globally stable quasistatic evolution for a coupled elastoplastic-damage model[END_REF][START_REF] Crismale | Globally stable quasistatic evolution for strain gradient plasticity coupled with damage[END_REF][START_REF] Giacomini | Quasi-static evolution for a model in strain gradient plasticity[END_REF][START_REF] Maso | Quasistatic evolution problems for linearly elasticperfectly plastic materials[END_REF] for instance). The purpose of the present paper is not to prove the existence of quasi-static evolutions of perfect plasticity, but to establish whether such evolutions can be derived from the quasi-static brittle damage evolutions introduced above in (4.1.2). By analogy with the static analysis of [START_REF] Babadjian | Concentration versus oscillation effects in brittle damage[END_REF], we expect to derive the same closed convex set of plasticity K which is given by the closed interval

K := - √ 2κa 0 , √ 2κa 0
as one can check that G(τ ) = τ 2 /a 0 for all τ ∈ R in this simplified setting. In particular, the support function of K is simply given by

I * K = √ 2κa 0 | • | . v. Stress Constraint : σ(t) ∈ K.
Furthermore, the effective compliance defined by

c : t ∈ [0, T ] → µ(t) a 0 + 1 a 1 L 1 (0, L) ∈ M([0, L]; R + )
is non-decreasing in time and satisfies the following assertions :

vi. Constitutive Equation :

Du(t) = σ(t)c(t) (0, L) in M((0, L)) for all t ∈ [0, T ] vii. Griffith Evolution Law : ċ(t) 2κa 0 -σ(t) 2 = 0 in M([0, L]; R + ) for L 1 -a.e. t ∈ [0, T ].
As mentionned above, according to the choice of the Dirichlet condition, the medium's response to the loading might differ from a perfect plastic behaviour : 

For all 0 ≤ s < t ≤ T, w(t) L 0 < w(s) L 0 ⇒ w(t) L 0 ≤ √ 2κa 0 L a 1 . (4.1.6)
The present study may be seen as an illustration of non-stability issues arising when dealing with problems of H-convergence in the L 1 (Ω) framework where ellipticity is lost during the time process, even when working in the simplest evolution setting and in dimension one.

. Organization of the paper

In Section 1.4, we recall some notation and preliminary results. In Section 4.2, we introduce the family of quasi-static brittle damage evolutions derived in [60, Theorem 2] associated to a linearly elastic material with toughness κ/ε and stiffness tensors εa 0 and a 1 , for ε > 0, given a prescribed boundary datum and no volume force load in the one-dimensional setting. Particularly, due to the explicit knowledge of the G-closure set of all admissible homogenized composite materials in dimension one, we collect starting information of crucial interest for the subsequent sections. In Section 4.3, we derive the effective quasi-static evolution when passing to the limit ε ↘ 0. We first give uniform bounds in Proposition 4.3.1 and next analyse the behaviour and regularity properties of the effective evolution. Section 4.4 adresses the question of the nature of the quasi-static evolution and determines in Theorem 4.1.2 the necessary and sufficient condition ensuring the perfect plastic behaviour of the evolution. Finally, Section 4.5 discusses whether the present work could be improved in order to derive a quasi-static evolution of perfect plasticity.

. Francfort-Garroni's model of Quasi-Static Brittle Damage

For all ε > 0, we consider a linearly elastic material whose reference configuration is Ω = (0, L), with toughness κ/ε and stiffness tensors εa 0 and a 1 , corresponding to its damaged and sound zones respectively. Applying Theorem 2 and Remark 5 of [START_REF] Francfort | A Variational View of Partial Brittle Damage Evolution[END_REF] to this linearly elastic material without volume force load and with a prescribed boundary condition w ∈ AC([0, T ]; H 1 (R)), it ensures the following existence result for a relaxed quasi-static damage evolution. Proposition 4.2.1. For all ε > 0, there exist a time-dependent density, a displacement and a stiffness tensor

           Θ ε : [0, T ] → L ∞ ((0, L); [0, 1]) u ε : [0, T ] → H 1 ((0, L)) a ε = Å 1 -Θ ε εa 0 + Θ ε a 1 ã -1 : [0, T ] → L ∞ ((0, L)) (4.2.1)
all weakly-* measurable, such that Dirichlet Boundary Condition :

u ε (t) ∈ w(t) + H 1 0 ((0, L)) for all t ∈ [0, T ] ; Initial Minimality : for all v ∈ w(0) + H 1 0 ((0, L)) and θ ∈ L ∞ ((0, L); [0, 1]), L 0 Å 1 2 a ε (0)|u ′ ε (0)| 2 + κ ε 1 -Θ ε (0) ã dx ≤ L 0 Å 1 2 εa 0 a 1 θa 1 + (1 -θ)εa 0 |v ′ | 2 + κ ε θ ã dx; (4.2.2) Monotonicity : for all T ≥ t ≥ s ≥ 0, a ε (t) ≤ a ε (s) and Θ ε (t) ≤ Θ ε (s) L 1 -a.e. in (0, L) ; One-sided Minimality : for all t ∈ [0, T ], v ∈ w(t) + H 1 0 ((0, L)) and θ ∈ L ∞ ((0, L); [0, 1]), 1 2 L 0 a ε (t) u ′ ε (t) 2 dx ≤ 1 2 L 0 εa 0 a ε (t) θa ε (t) + (1 -θ)εa 0 |v ′ | 2 dx + κ ε L 0 θΘ ε (t) dx; (4.2.3) 
Energy Balance : for all t ∈ [0, T ], the total energy

E ε (t) := 1 2 L 0 a ε (t) u ′ ε (t) 2 dx + κ ε L 0 (1 -Θ ε (t)) dx satisifes E ε (t) = E ε (0) + t 0 L 0 a ε (s)u ′ ε (s) ẇ′ (s) dxds. ( 4 

.2.4)

Proof. This is the direct application of [60, Theorem 2, Remark 5] together with [2, Lemma 1.3.32, Formula (1.109)] which stipulates that for all 0 < a < b and all θ ∈ L ∞ ((0, L);

[0, 1]), G θ (a; b) = ß ab θb + (1 -θ)a ™ .
In particular, one gets that u ε : [0, T ] → H 1 ((0, L)) is strongly measurable (in the sense of [58, Definition 2.101]) as it is continuous outside of an at most countable subset of [0, T ]. One also gets that a ε : [0, T ] → L 2 ((0, L)) is strongly measurable (which is equivalent to the weak-* measurability according to Pettis' Theorem, see [58, Theorem 2.104]), since for all ϕ ∈ L 2 ((0, L))

t ∈ [0, T ] → L 0 ϕa ε (t) dx = L 0 max (0, ϕ)a ε (t) dx - L 0 max (0, -ϕ)a ε (t) dx
is L 1 -measurable, as it is the difference between two non-increasing functions. For similar reasons, one also infers that Θ ]) are (a priori) only weakly-* measurable. To see this, it suffices to take ϕ ∈ L 1 ((0, L)) instead of L 2 ((0, L)) above.

ε : [0, T ] → L 2 ((0, L); [0, 1]) is strongly measurable. Note that a ε : [0, T ] → L ∞ ((0, L)) and Θ ε : [0, T ] → L ∞ ((0, L); [0, 1 
For all ε > 0, a naive first use of the One-sided Minimality (4.2.3) entails the following properties of the stress

σ ε = a ε u ′ ε : [0, T ] → L 2 ((0, L)).
Proposition 4.2.2. For all ε > 0 and all t ∈ [0, T ], the stress σ ε (t) is homogeneous in space and σ ε ∈ L 0 [0, T ]; R . Moreover,

u ′ ε = σ ε Å 1 -Θ ε εa 0 + Θ ε a 1 ã . (4.2.5)
Proof. Indeed, for all v ∈ H 1 0 ((0, L)) and δ > 0, applying (4.2.3) with θ = 0 and v

± := u ε (t) ± δv ∈ w(t) + H 1 0 ((0, L)) ensures that 0 ≤ L 0 σ ε (t)u ′ ε (t) dx ≤ L 0 σ ε (t)u ′ ε (t) dx ± 2δ L 0 σ ε (t)v ′ dx + δ 2 L 0 a ε (t)|v ′ | 2 dx.
Dividing by δ > 0 then letting δ ↘ 0 entails that L 0 σ ε (t)v ′ dx = 0, which implies the space homogeneity of σ ε . Formula (4.2.5) is a consequence of the expression of a ε and the definition of σ ε .

For all ε > 0 and t ∈ [0, T ], we define the function

W t ε : (x, ξ) ∈ (0, L) × R → min Å κΘ ε (t)(x) ε + 1 2 εa 0 |ξ| 2 ; 1 2 a ε (t)(x)|ξ| 2 ã .
A second application of the One-Sided Minimality (4.2.3) implies that for L 1 -a.e. x ∈ (0, L)

1 2 a ε (t)(x)|u ′ ε (t)(x)| 2 = C W t ε (x, •) u ′ ε (t)(x) =: CW t ε x, u ′ ε (t)(x)
where CW t ε x, • is the convex envelope of W t ε (x, •).

Proposition 4.2.3. For L 1 -a.e. in {x ∈ (0, L), a ε (t)(x) > εa 0 },

1 2 a ε (t)|u ′ ε (t)| 2 =                    1 2 σ ε (t)u ′ ε (t) if |σ ε (t)| √ 2κa 0 ≤ L ε , |σ ε (t)| 2κa 0 Θ ε (t) a ε (t)(a ε (t) -εa 0 ) - κa 0 Θ ε (t) a ε (t) -εa 0 if L ε < |σ ε (t)| √ 2κa 0 ≤ a ε (t) εa 0 L ε , κΘ ε (t) ε + 1 2 εa 0 |u ′ ε (t)| 2 if a ε (t) εa 0 L ε < |σ ε (t)| √ 2κa 0 , (4.2.6) 
with

L ε := … a 1 a 1 -εa 0 > 1. (4.2.7)
Proof. Let ε > 0 and t ∈ [0, T ]. As we are working in the scalar setting, symetric quasiconvex and convex envelopes coincide. According to [3, Lemma 3.1], we have that for all ξ ∈ R and x ∈ (0, L)

CW t ε (x, ξ) := inf ® 1 0 W t ε (x, ξ + ϕ ′ (y)) dy : ϕ ∈ H 1 0 ((0, 1)) = min θ∈[0,1] ® κΘ ε (t)(x) ε θ + 1 2 Å 1 -θ a ε (t)(x) + θ εa 0 ã -1 |ξ| 2 
´.

The above minimization being over a strictly convex function, the minimum is indeed reached at a unique minimizer in [0, 1]. Since ]) and for L 1 -a.e. x ∈ (0, L)

g : (x, θ) ∈ (0, L) × [0, 1] → κΘ ε (t)(x) ε θ + 1 2 a ε (t)(x)εa 0 θa ε (t)(x) + (1 -θ)εa 0 |u ′ ε (t)(x)
(t)(x) ∈ [0, 1] of g(x, •) is actually L 1 -measurable in (0, L), i.e. θ ε (t) ∈ L ∞ ((0, L); [0, 1 
CW t ε (x, u ′ ε (t)(x)) = κΘ ε (t)(x) ε θ ε (t)(x) + 1 2 Å 1 -θ ε (t)(x) a ε (t)(x) + θ ε (t)(x) εa 0 ã -1 |u ′ ε (t)(x)| 2 .
Therefore, (4.2.3) implies that

1 2 L 0 a ε (t)|u ′ ε (t)| 2 dx = min θ∈L ∞ ((0,L);[0,1]) L 0 g(x, θ(x)) dx ≤ L 0 g(x, θ ε (t)(x)) dx = L 0 CW t ε (t)(x, u ′ ε (t)(x)) dx.
Since one simultaneously has

CW t ε (t)(x, u ′ ε (t)(x)) ≤ 1 2 a ε (t)(x)|u ′ ε (t)(x)| 2 for all x ∈ (0, L), we infer that CW t ε (t)(x, u ′ ε (t)(x)) = 1 2 a ε (t)(x)|u ′ ε (t)(x)| 2 for L 1 -a.e. x ∈ (0, L).
Therefore, (4.2.6) is the consequence of Lemma 5.0.2 (see Appendix 5) applied to W t ε (x, •) at every point x in the set {a ε (t) > εa 0 }. Note that the constant L ε = » a 1 a 1 -εa 0 > 1 only depends on ε > 0 and not on x ∈ (0, L) nor t ∈ [0, T ].

. The limit quasi-static evolution

As previously explained, the objective of this work is to derive an effective limit model by letting ε tend to 0. Since we expect a limit model of perfect plasticity type, one has to identify which quantities will play the role of the elastic and plastic strains at the scale ε > 0. Meanwhile, in order to pass to the limit along converging subsequences in the brittle damage evolutions described in Proposition 4.2.1, we rely on uniform bounds computed in Proposition 4.3.1 below. 

. Uniform bounds and compactness

sup ε>0 ß 1 ε ∥Θ ε (t) -1∥ L 1 ((0,L)) + ∥u ε (t)∥ BV ((0,L)) + |σ ε (t)| ™ ≤ C. (4.3.2)
Proof. Let us first prove (4.3.1). Note that (4.2.2) applied with θ = 0 and v = w(0) directly entails

E ε (0) ≤ 1 2 L 0 a 1 |w ′ (0)| 2 dx.
As for the subsequent times t ∈ [0, T ], (4.2.3) applied with θ = 0 and v = w(t) entails

1 2 L 0 a ε (t)|u ′ ε (t)| 2 dx ≤ 1 2 L 0 a 1 |w ′ (t)| 2 dx ≤ a 1 2 ∥w∥ 2 L ∞ ([0,T ];H 1 (R)) .
On the other hand, since w is absolutely continuous from [0, T ] into H 1 (R), we infer that

ẇ′ ∈ L 1 ([0, T ]; L 2 (R))
is Bochner integrable. Therefore, gathering the uniform bound on the initial time energies together with Cauchy-Schwarz inequality for the scalar-product

(ξ, η) ∈ L 2 ((0, L)) × L 2 ((0, L)) → L 0 a ε (s)ξη dx ∈ R
(for all time s ∈ [0, t] fixed) and the Energy Balance (4.2.4), we get that

E ε (t) = E ε (0) + t 0 L 0 σ ε (s) ẇ′ (s) dxds ≤ E ε (0) + t 0 Ç L 0 a ε (s)|u ′ ε (s)| 2 dx å 1 2 Ç L 0 a ε (s)| ẇ′ (s)| 2 dx å 1 2 ds ≤ C(w, T ).
We next show (4.3.2). Let ε > 0 and t ∈ [0, T ]. First, as shown in [15, Lemma 2.3, Formula (2.6)], there exists a constant c > 0 (only depending on a 0 , a 1 and κ) such that the function

W ε : ξ ∈ R → min ß κ ε + 1 2 εa 0 |ξ| 2 ; 1 2 a 1 |ξ| 2 ™ satisfies CW ε (ξ) ≥ c|ξ| -1 c for all ξ ∈ R.
Remembering the definition (4.2.1) of a ε (t) and the fact that

CW ε (ξ) = min θ∈[0,1] ® κθ ε + 1 2 Å θ εa 0 + 1 -θ a 1 ã -1 |ξ| 2
for all ξ ∈ R, we in particular get that

E ε (t) ≥ L 0 CW ε u ′ ε (t) dx ≥ c∥u ′ ε (t)∥ L 1 ((0,L)) - L c .
Thus, using the equivalent norm in BV ((0, L)) recalled in (1.4.2) leads to

∥u ε (t)∥ BV ((0,L)) ≤ ∥u ε (t) ′ ∥ L 1 ((0,L)) + |w(t)(0)| + |w(t)(L)| ≤ C(w, T ).
Finally, the homogeneity in space of the stress σ ε (t) ∈ R implies that

E ε (t) ≥ 1 2 L 0 a ε (t)|u ′ ε (t)| 2 dx ≥ T 2a 1 |σ ε (t)| 2
as well, thus concluding (4.3.2).

In particular, we infer that

E ε (0) = F ε (u ε (0)) = min F ε .
Indeed, according to [3, Lemma 3.1] we first remark that

CW ε (u ′ ε (0)) ≤ κ ε (1 -Θ ε (0)) + a ε (0) 2 u ′ ε (0) 2 hence F ε (u ε (0)) ≤ E ε (0). Besides, (4.2.2) implies that E ε (0) ≤ F ε (v) for all v ∈ w(0)+H 1 0 ((0, L))
, where we exchanged the infimum and the integral thanks to Aumann's criterion.

Therefore, we deduce from the Fundamental Theorem of Γ-convergence together with the bounds (4.3.1) and (4.3.2) that there exist a further subsequence (still not relabeled) and a displacement u(0) ∈ BV ((0, L)) such that

u ε (0) ⇀ u(0) weakly-* in BV ((0, L)) and E ε (0) → E(0) := F(u(0)) = min F (4.3.4)
when ε ↘ 0.

. Time independence of the subsequences

We first show that, along the whole subsequence introduced in Proposition 4.3.2 (not relabeled and independent of t), {σ ε (t)} ε pointwise converges to some limit stress σ(t) for all time in [0, T ]. Proposition 4.3.5. Along the subsequence introduced in Proposition 4.3.2 (independent of t, not relabeled), we have that for all time t ∈ [0, T ],

µ ε (t) [0, L] = L 0 1 -Θ ε (t) ε dx → l(t) := µ(t) [0, L] ≥ 0 and σ ε (t) → σ(t) := w(t) L 0 l(t) a 0 + L a 1 (4.3.5) when ε ↘ 0, where w(t) L 0 := w(t)(L) -w(t)(0). Moreover, σ(t) ∈ K = [- √ 2κa 0 , √ 2κa 0 ] for all t ∈ [0, T ]. (4.3.6)
In particular, we infer that σ ∈ L ∞ ([0, T ]; K),

σ ε * ⇀ σ weakly-* in L ∞ ([0, T ]; R) (4.3.7)
and for all t ∈ [0, T ], 

E ε (t) -→ ε↘0 E(0) + t 0 L 0 σ(s) ẇ′ (s)(x) dxds = w(t) L 0 2 σ(t) + κl(t) =: E(t).
µ ε (t) [0, L] = L 0 1 -Θ ε (t)(x) ε dx -→ ε↘0 l(t) := µ(t) [0, L] ≥ 0. Since u ε (t) ∈ w(t) + H 1 0 ((0, L)) satisfies u ′ ε (t) = σ ε (t)a ε (t) -1
and σ ε (t) is homogeneous in space, we infer by the Integration by Parts Formula in H 1 ((0, L)) that

w(t) L 0 = L 0 u ′ ε (t)(x) dx = σ ε (t) L 0 Å 1 -Θ ε (t)(x) εa 0 + Θ ε (t)(x) a 1 ã dx. Since L 0 Å 1 -Θ ε (t)(x) εa 0 + Θ ε (t)(x) a 1 ã dx -→ ε↘0 l(t) a 0 + L a 1 > 0, we obtain σ ε (t) -→ ε↘0 σ(t) := w(t) L 0 l(t) a 0 + L a 1
, which proves (4.3.5) and (4.3.7). Next, let us remark that for all ε > 0 and L 1 -a.e. in {a ε (t) > εa 0 },

1 2 σ ε (t)u ′ ε (t) > |σ ε (t)| 2κa 0 Θ ε (t) a ε (t)(a ε (t) -εa 0 ) - κa 0 Θ ε (t) a ε (t) -εa 0 if |σ ε (t)| √ 2κa 0 > L ε .
Indeed, 

1 2 σ ε (t)u ′ ε (t) -|σ ε (t)| 2κa 0 Θ ε (t) a ε (t)(a ε (t) -εa 0 ) + κa 0 Θ ε (t) a ε (t) -εa 0 = a ε (t) 2 u ′ ε (t) - κa 0 Θ ε (t) a ε (t) -
(t)| ≤ √ 2κa 0 L ε for all ε > 0 such that {a ε (t) > εa 0 } ̸ = ∅. • Either lim sup ε↘0 L 1 ({a ε (t) > εa 0 }) = 0, hence L |σ(t)| = lim ε L |σ ε (t)| = lim ε Ç {aε(t)=εa 0 } εa 0 u ′ ε (t) dx + |σ ε (t)| L 1 ({a ε (t) > εa 0 }) å = 0
and σ(t) = 0 ∈ K.

• Or lim sup ε↘0 L 1 ({a ε (t) > εa 0 }) > 0. Up to another subsequence (still not relabeled), we can assume that L 1 ({a ε (t) > εa 0 }) > 0 for all ε > 0. In particular, it implies that {a ε (t) > εa 0 } ̸ = ∅ hence |σ ε (t)| ≤ √ 2κa 0 L ε for all ε > 0. Taking the limit when ε ↘ 0, we obtain that |σ(t)| ≤ √ 2κa 0 hence σ(t) ∈ K.

In any cases, we get that the stress constraint (4.3.6) is satisfied. Thus, by homogeneity in space of σ ε (t), the Dominated Convergence Theorem entails that

t 0 L 0 σ ε (s) ẇ′ (s)(x) dxds = t 0 σ ε (s) Ç L 0 ẇ′ (s)(x) dx å ds -→ ε↘0 t 0 L 0 σ(s) ẇ′ (s)(x) dxds.
Therefore, using the convergence of the energies at the initial time (4.3.4) together with the Energy Balance (4.2.4), one gets that

E ε (t) -→ ε↘0 E(0) + t 0 L 0 σ(s) ẇ′ (s)(x) dxds =: E(t) ∈ R + .
By homogeneity in space of σ ε (t) again, since

E ε (t) = 1 2 σ ε (t) L 0 w ′ (t)(x) dx + κ L 0 1 -Θ ε (t)(x) ε dx -→ ε↘0 w(t) L 0 2 σ(t) + κl(t)
we deduce that

E(t) = w(t) L 0 2 σ(t) + κl(t)
which completes the proof of (4.3.8) and Proposition 4.3.5.

We now define what will play the role of the elastic and plastic strains at the scale ε > 0, by setting

       e ε = σ ε Θ ε a 1 ∈ L 2 ((0, L)) p ε = σ ε a 0 µ ε = σ ε 1 -Θ ε εa 0 1 (0,L) ∈ L 2 ((0, L)) (4.3.9a) (4.3.9b)
which, by (4.2.5), satisfy the additive decomposition u ′ ε = e ε + p ε at all time. Using Proposition 4.3.2 together with the homogeneity in space of σ ε and σ, we infer that for all t ∈ [0, T ] The uniform bound (4.3.2) ensures that for all t ∈ [0, T ], there exist a further subsequence (depending on t, not relabeled) and a displacement u(t) ∈ BV ((0, L)) such that u ε (t) ⇀ u(t) weakly-* in BV ((0, L)) when ε ↘ 0. In particular, we deduce from (4.3.10c) that

                 e ε (t) → e(t) := σ(t) a 1 strongly in L 2 ((0, L)) p ε (t) ⇀ p(t) := σ(t) a 0 µ(t) weakly-* in M [0, L] u ′ ε (t) ⇀ σ(t) Å µ(t) (0, L) a 0 + L 1 a 1 ã = p(t) (0, L) + e(t)
Du(t) = p(t) (0, L) + e(t)L 1 in M((0, L); R)
is independent of the subsequence defining u(t). Moreover, one can check that p(t) {0, L} = w(t) -u(t) δ L -δ 0 . 

       u ε (t) = u ε (t)1 (0,L) + w(t)1 Ω ′ \(0,L) p ε (t) = p ε (t)1 [0,L] e ε (t) = e ε (t)1 (0,L) + w ′ (t)1 Ω ′ \(0,L) one can check that        u ε (t) ⇀ u(t)1 (0,L) + w(t)1 Ω ′ \(0,L) weakly-* in BV (Ω ′ ) p ε (t) ⇀ p(t) := p(t)1 [0,L] weakly-* in M(Ω ′ ) e ε (t) ⇀ e(t) := e(t)1 (0,L) + w ′ (t)1 Ω ′ \(0,L) weakly in L 2 (Ω ′ ) when ε ↘ 0. Therefore, using [94, Remark 2.3 (i)], we get that Du ε (t) = e ε (t) + p ε (t) ⇀ e(t) + p(t) = Du(t)1 (0,L) + w ′ (t)1 Ω ′ \(0,L) L 1 + w(t) -u(t) δ L -δ 0
which implies (4.3.12). In particular, we infer that the limit displacement u(t) is actually independent of the subsequence. Indeed, let u 1 (t) and u 2 (t) ∈ BV ((0, L)) be two weak limits of {u ε (t)} ε>0 in BV ((0, L)). On the one hand, (4.3.10c) entails that D(u

1 (t) -u 2 (t)) = 0 in M (0, L) hence u 1 (t) - u 2 (t) = C(t) ∈ R is homogeneous in space.
On the other hand, the internal traces of u 1 (t) and u 2 (t) being prescribed on {0, L} by (4.3.12), we infer that

C(t) = u 1 (t) -u 2 (t) (L) = 0 hence u 1 (t) = u 2 (t)
in BV ((0, L)). Therefore, we infer that the whole sequence converges and there exists u : [0, T ] → BV ((0, L)) such that u ε (t) ⇀ u(t) weakly-* in BV ((0, L)) when ε ↘ 0, for all t ∈ [0, T ]. Note that u(0) ∈ BV ((0, L)) was already given by (4.3.4) and the static analysis led in [START_REF] Babadjian | Concentration versus oscillation effects in brittle damage[END_REF], entailing the following Constitutive Equation at the initial time. Proposition 4.3.6. 

E(0) = La 1 2 e(0) 2 + √ 2κa 0 |p(0)| [0, L] (4 
® D a u(0) = e(0)L 1 + p(0) a p(0) s = D s u(0)1 (0,L) + (w(0) -u(0)) (δ L -δ 0 ) .
By definition of the inf-convolution and (4.3.4), we get that W (D a u(0)) ≤ a 1 2 e(0

) 2 + √ 2κa 0 |p(0) a | L 1 - a.e. in (0, L) and E(0) = F(u(0)) ≤ La 1 2 e(0) 2 + √ 2κa 0 |p(0)| [0, L]
, where we identified absolutely continuous measures with their densities. Besides, combining (4.3.8), (4.3.5) and (4.3.11), we also have that

E(0) = σ(0) 2 2 Å l(0) a 0 + L a 1 ã + κl(0) = La 1 2 e(0) 2 + √ 2κa 0 |p(0)| [0, L] + √ 2κa 0 -|σ(0)| 2 l(0) 2a 0 ≥ La 1 2 e(0) 2 + √ 2κa 0 |p(0)| [0, L] .
Therefore, we obtain that E(0) = La 1 2 e(0) 2 + √ 2κa 0 |p(0)| [0, L] and 2κa 0 -σ(0) 2 l(0) = 0.

. Regularity of the evolution

Looking at the proof of Proposition 4.3.5 and defining, for all time t ∈ [0, T ], the function

∆(t) = Å E(t) a 0 + κL a 1 ã 2 - 2κ a 0 w(t) L 0 2 , one can check that ∆(t) = Å σ(t) 2 2a 0 -κ ã 2 Å l(t) a 0 + L a 1 ã 2 ≥ 0 and l(t) = a 0 2κ Å E(t) a 0 - κL a 1 + » ∆(t)
ã .

On the one hand, since

E(t) = E(0) + t 0 L 0 σ(s) ẇ′ (s, x) dxds and s → L 0 σ(s) ẇ′ (s, x) dx is integrable on [0, T ],
we infer that E ∈ AC([0, T ]; R). On the other hand, since w ∈ AC [0, T ]; C 0 ([0, L]) and the product of absolutely continuous functions remains absolutely continuous, we infer that ∆ ∈ AC([0, T ]; R). In particular, we deduce that l, σ, e and p are continuous on the whole interval [0, T ]. By non-negativity and monotonicity in time of µ, we also infer that µ is continuous from [0, T ] to M([0, L]).

Using the Energy Balance in Proposition 4.2.1 together with the non-decreasing character of l, (4.3.8) and (4.3.5), we can actually show that σ ∈ AC([0, T ]; R). From this, we will deduce that l, u, p and µ inherit the same regularity. This is a strong result because it is usually obtained a posteriori, once an Energy Balance of the type (4.3.19) is proved to be satisfied (see [START_REF] Maso | Quasistatic evolution problems for linearly elasticperfectly plastic materials[END_REF]). Remarkably, here we do not rest on such an Energy Balance in order to prove the regularity of the quasi-static evolution. This is the content of the following proposition. 

[0, T ] → K × R × R + × M([0, L]) × M([0, L]) × BV ((0, L)) is absolutely continuous. Proof. One can check that for all 0 ≤ s ≤ t ≤ T , L 2a 1 (σ(t) -σ(s)) 2 = t s (σ(r) -σ(s)) ẇ(r) L 0 dr - l(s) 2a 0 (σ(t) -σ(s)) 2 - (l(t) -l(s)) 2a 0 σ(t)
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After taking the limit η ↘ 0, (4.3.17 At this point, we have identified good candidates for the limit evolution : ii. Relaxed Dirichlet Condition : p(t) {0, L} = w(t) -u(t) δ L -δ 0 in M({0, L})

iii. Constitutive Equation : σ(t) = a 1 e(t) iv. Equilibrium Equation : σ ′ (t) = 0 in H -1 ((0, L))

v. Stress Constraint : σ(t) ∈ K.

The absolute continuity of (u, σ, p, µ, l) guarantees that (u, σ) describes a quasi-static damage evolution, whose internal variable is the effective compliance (inverse effective rigidity) where the left hand side is the sum of the elastic energy and a dissipative cost due to damage.

c : t ∈ [0, T ] → µ(t) a 0 + 1 a 1 L 1 (0, L) ∈ M([
• As explained above, the Griffith type Evolution Law states that damage can only grow when the stress σ saturates the constraint. This threshold condition generalizes the Initial Constituve Law (4.3.15) to the quasi-static setting. As will be explained in the Section 4.4, this Constitutive Law (4.3.15) a priori does not propagate to subsequent times through the evolution process, unless the prescribed boundary condition satisfies (4.1.6), corresponding to the case of perfect plasticity. In this case, one can check that 2κa 0 -σ(t) 2 l(t) = 0 for all t ∈ [0, T ].

Motivated by the static analysis led in [START_REF] Babadjian | Concentration versus oscillation effects in brittle damage[END_REF] where the authors have shown how brittle damage can lead to Hencky perfect plasticity, it is natural to extend this analysis to quasi-static evolutions and inquire whether (u, e, p, σ) is of perfect plasticity type or not. Following [START_REF] Maso | Quasistatic evolution problems for linearly elasticperfectly plastic materials[END_REF]Definition 4.2], in order for this quasi-static evolution to be of perfect plasticity type, it only remains to prove the Energy Balance : Next, let us show that s 0 > 0. Indeed,

• either l(0) = 0. Hence, one can check that l(t 0 ) = 0 by definition of t 0 and continuity of l. This implies that s 0 > t 0 since l(s 0 ) = c > 0.

• Or l(0) > 0 thus t 0 = 0. Then, (4. Indeed,

• either t 0 > 0. In this case, by continuity of l and definition of t 0 , we must have l(t 0 ) = 0. By contradiction, assume that |σ(t 0 )| < √ 2κa 0 . Then, by continuity of σ and l again, there exists η > 0 small enough such that |σ(s)| < √ 2κa 0 for all s ∈ (t 0 -η, t 0 + η) ⊂ [0, T ]. Once more, Theorem 4.1.1 entails that l is constant on the whole segment [t 0 -η, t 0 + η]. In particular, 0 = l(t 0 ) = l(t 0 + η) which is impossible by definition of t 0 .

• Or t 0 = 0. We must again consider two cases.

• Either l(0) = 0. By contradiction, assume that |σ(0)| < √ 2κa 0 . By continuity of l and σ, as before there exists η > 0 small enough such that |σ(s)| < √ 2κa 0 for all s ∈ [0, η) ⊂ [0, T ], entailing that 0 = l(0) = l(η) which is again impossible by definition of t 0 .

• Or l(0) > 0 and (4. By contradiction, assume there exists t 0 < t ≤ T such that |σ(t)| < √ 2κa 0 and consider the maximal time interval where σ does not saturate the constraint, by defining : 

t 1 = inf{s ∈ [0,
L 0 = √ 2κa 0 Å l a 0 + L a 1 ã ≤ √ 2κa 0 L a 1 ,
which is impossible by positivity of l > 0. We have thus proven the validity of (4.4.7).

Therefore, we are in the configuration of Indeed, on the one hand, either t 0 = 0 ≤ t * 0 , or t 0 > 0. In this case, we infer that

w(t) L 0 = |σ(t)| L a 1 ≤ √ 2κa 0 L a 1
for all previous time 0 ≤ t < t 0 according to (4.3.5), Proposition 4.3.2 and the fact that l(t) = 0. Therefore, t ≤ t * 0 which leads to t 0 ≤ t * 0 when t tends to t 0 . On the other hand, assume by contradiction that t * 0 > t 0 . By definition of t 0 and t * 0 , we deduce that for all t ∈ (t 0 , t * 0 ),

w(t) L 0 = |σ(t)| Å l(t) a 0 + L a 1 ã ≤ √ 2κa 0 L a 1
and l(t) > 0.

In particular, we infer that |σ(t)| < √ 2κa 0 for all t ∈ (t 0 , t * 0 ), entailing that l ≡ l(t * 0 ) > 0 on [t 0 , t * 0 ] by (4.1.1) and continuity of l. Then, (4.4.6) implies that

w(t 0 ) L 0 = √ 2κa 0 Å l(t * 0 ) a 0 + L a 1 ã > √ 2κa 0 L a 1
which is impossible.

. Concluding remarks

In spite of the conjecture motivated by the static analysis of [START_REF] Babadjian | Concentration versus oscillation effects in brittle damage[END_REF], Theorem 4.1.2 determines the exact conditions on which the quasi-static evolution (u, e, p, σ) is of perfect plasticity type or not. In particular, when the prescribed boundary datum w ∈ AC([0, T ]; This suggests to interpret (u, c) rather as a quasi-static evolution of damage as stated in Theorem 4.1.1, even when the prescribed boundary datum satisfies (4.1.6). In this case, the very specific nature of the plastic evolution illustrated in Figure 4.2 seems to confirm the interpretation of the evolution as one of damage. Indeed, the only configuration of perfect plasticity we obtain is very restrictive as the evolution remains purely elastic until a threshold time t 0 , after which the stress σ always saturates the constraint and the damage keeps on increasing, so that the elastic strain remains constant until the end of the process which is rather specific to damage than plasticity. Besides, when choosing In particular, at the end of the loading-unloading process, the medium goes back to its reference configuration, whereas in perfect plasticity one expects a residual plastic strain (see Figure 4.5). On the other hand, interpreting the evolution as one of damage also fails to be completely satisfactory, as |σ| never exceeds the damage yield threshold √ 2κa 0 , including during the hardening phase, which is specific to perfect plasticity and therefore consists in a painful lack of generality for the description of a damage evolution as well (see Figure 4.5). One could wonder if the effective model we obtained lies somehow in between damage and plasticity. Without being able to answer completely this question, let us remark that the effective evolution obtained here does not fit in the large class of elastoplasticitydamage models introduced in [START_REF] Alessi | Gradient damage models coupled with plasticity and nucleation of cohesive cracks[END_REF][START_REF] Crismale | Globally stable quasistatic evolution for a coupled elastoplastic-damage model[END_REF][START_REF] Crismale | Globally stable quasistatic evolution for strain gradient plasticity coupled with damage[END_REF] where we expect the Energy Balance to hold and the plastic yield surface to shrink as damage increases, whereas here (4.3.19) is not always satisfied and ∂K = {± √ 2κa 0 } is fixed.

H 1 (R)) is such that |[w] L 0 |
Looking at the constructive proof of [60, Theorem 2], one could argue that passing to the limit ε ↘ 0 in the time-continuous quasi-static evolutions might not have been the right approach, as Proof of the density result. Let (u, e, p) ∈ BD(Ω) × L 2 (Ω; M N ×N sym ) × M Ω; M N ×N sym be such that Eu = eL N Ω + p Ω and p ∂Ω = (w -u) ⊙ νH N -1 ∂Ω. Up to replacing the triplet (u, e, p) by (u -w, ee(w), p), we can assume that w = 0. Let Ω ′ ⊃⊃ Ω be an open bounded set. We extend u and e by 0 in Ω ′ \ Ω and p by 0 in Ω ′ \ Ω. Since Ω is bounded and has a Lipschitz boundary, there exists a finite open cover {A j } j∈ 1,J of ∂Ω, made of open cubes included in Ω ′ and centred at points on ∂Ω with a face orthogonal to some vector ξ j ∈ S N -1 and such that A j ∩ Ω is a Lipschitz subgraph in the direction ξ j . We set A 0 = Ω and ξ 0 = 0. For every j ∈ 0, J and every k ∈ N, we consider the translation

τ j,k : x ∈ R N → x + 1 k ξ j .
Let {ϕ j } j∈ 0,J be a partition of unity subordinated to the covering {A j } j of Ω (i.e. J j=0 ϕ j ≡ 1 in Ω) and {ϱ n } n be a sequence of mollifiers. We introduce the functions so that, up to a subsequence, pk weakly-* converges to some q ∈ M Ω; M N ×N sym . Identifying the limits in the sens of distributions, we infer that q = Eu -e = p (hence the whole sequence converges) and by l.s.c. of the norm for the weak-* convergence of measures, we deduce that

u k =
|p| (Ω) ≤ lim inf k ≤ lim sup k |p k | dx ≤ |p| (Ω)
which concludes the proof of the density result.

  x) pour tout x ∈ Ω et en tout temps t ∈ [0, T ]. En imposant des conditions aux limites de type Neumann g : [0, T ] × Γ N → R N et de Dirichlet w : [0, T ]×Γ D → R N , avec Γ D et Γ N deux surfaces telles que ∂Ω = Γ D ⊔Γ N , les équations du mouvement s'écrivent alors

1 W

 1 En d'autres termes, nous supposons l'existence d'une densité volumique d'énergie élastique de classe C : M N ×N sym → R + dépendant uniquement du tenseur des déformations e(u) ∈ M N ×N sym , telle que la loi de comportement s'écrive σ = ∂W ∂e(u) (e(u)).

  une fonction de classe C 1 dépendant du tenseur des déformations e(u) ∈ M N ×N sym et d'une autre variable interne, notée α ∈ R d , qui rendra compte de la partie irréversible de la déformation du matériau. Il est alors naturel d'introduire les tenseurs de contraintes réversible σ r = ∂W ∂e(u) (e(u))

  variable interne α, nous avons alors que Ẇ = σ r : e( u) -A • α et l'inégalité de dissipation mécanique s'écrit ∆ = σ i : e( u) + A • α ≥ 0.

1. 1 . 1 . 2

 112 Élasticité linéaire L'élasticité linéaire est un cas particulier du modèle d'élasticité en petites déformations, où l'on suppose que le tenseur des déformations est proportionnel à la sollicitation. Autrement dit, la déformation élastique du matériau et le tenseur des contraintes sont liés via la Loi de Hooke (loi d'élasticité) σ = Ae(u) où A est le tenseur de Hooke du matériau, un tenseur d'ordre 4 symétrique et coercif représentant les coefficients d'élasticité du matériau. En reprenant les notations précédentes, ce modèle correspond donc au choix de la densité d'énergie élastique volumique W (e(u)) = 1 Ae(u) : e(u) et du potentiel de dissipation nul D = 0 de sorte que σ = Ae(u). La formulation variationnelle de ce modèle consiste alors seulement à résoudre la formulation faible des équations du mouvement avec conditions aux limites, également interprétée comme le principe des puissances virtuelles. Autrement dit,u ∈ L 2 ([0, T ]; H 1 (Ω; R N )) ∩ W 2,1 0 ([0, T ]; L 2 (Ω; R N )) doit satisfaire u(t) = w(t) sur Γ D en tout temps t ∈ [0, T ] et, pour tout champ de vitesse virtuel v ∈ H 1 (Ω; R N ) tel que v = 0 sur Γ D , Ω Ae(u(t)) : e(v) dx = Ω f (t) • v dx + Γ N g(t) • v dH N -1 -Ω ϱü(t) • v dx, où P a (v) := Ω ϱü(t) • v dxest la puissance virtuelle des forces d'inertie etP i (v) := -Ω Ae(u(t)) : e(v) dx et P e (v) := Ω f (t) • v dx + Γ N g(t) • v dH N -1désignent la puissance virtuelle des efforts internes et externes respectivement. En introduisant l'énergie totale au temps t ∈ [0, T ] Ae(u(t)) : e(u(t)) dx -Ω f (t) • u(t) dx -Γ N g(t) • u(t) dH N -1 ,la formulation variationnelle du deuxième principe de la thermodynamique ∆ = σ : e( u) -Ẇ = 0 intégré en temps sur [0, t] et en espace correspond au bilan d'énergie :

  t)ν = g(t) sur Γ N , où ν ∈ S N -1 désigne la normale extérieure à ∂Ω. La condition de Dirichlet est relaxée dans ce modèle, car les observations physiques montrent que des déformations plastiques peuvent apparaître jusque sur le bord du matériau. Avec le formalisme précédent, on vérifie que ce modèle correspond au choix de la densité volumique d'énergie élastique W (e(u), p) = 1 2 A(e(u) -p) : (e(u) -p), de sorte que la variable interne naturellement considérée ici est le tenseur des déformations plastiques p, tandis que le tenseur des contraintes irréversibles est nul (σ = σ r , σ i = 0), ce qui correspond à la première loi de comportement. En particulier, la force thermodynamique associée à p est donnée par A = A(e(u) -p) = σ. En prenant pour potentiel de dissipation la fonction d'appui du convexe K D = I * K : ξ ∈ M N ×N sym → max τ ∈K ξ : τ où I K = 0 dans K et +∞ sinon, on vérifie alors que A ∈ ∂D( ṗ) si et seulement si σ ∈ K et σ : ṗ = sup τ ∈K τ : ṗ, ce qui correspond bien aux deux dernières lois de comportement mentionnées ci-dessus. Finalement, la dissipation mécanique est donnée par l'expression ∆ = σ : ṗ ≥ 0. Notons que cette inégalité est automatiquement satisfaite grâce au principe du travail maximal de Hill dès lors qu'il existe une constante r > 0 telle que B r (0) ⊂ K, (1.1.2) puisque dans ce cas nous vérifions que I * K ≥ r |•|.

  p(s i ) -p(s i-1 )) d |p(s i ) -p(s i-1 )| ã d |p(s i ) -p(s i-1 )| : n ∈ N, 0 = s 0 ≤ s 1 ≤ ... ≤ s n = t Ae(t) : e(t) dx + Diss K (p; 0, t) -Ω f (t) • u(t) dx -Γ N g(t) • u(t) dH N -1doit satisfaire le bilan d'énergie :(vi) E(t) = E(0) + t 0 Ω

  : e(0) dx = Diss K (p; 0, t) = t 0 Ω∪Γ D σ : ṗ dxds = t 0 Ω∪Γ D I * K ( ṗ) dxds ≥ 0 par (1.1.2). L'équivalence de ces deux formulations provient du fait que toute solution variationnelle est absolument continue en temps (d'où l'existence de dérivées temporelles faibles en L 1 -presque tout temps, voir [49, Theorem 5.2]) et de l'équivalence entre le bilan d'énergie et la validité de la loi d'écoulement (elle-même équivalente au principe du travail maximal de Hill, voir [49, Theorem 6.1]) :

  deux tenseurs d'ordre 4 symétriques et coercifs, représentant les propriétés élastiques d'une phase endommagée et saine respectivement, ce qui est traduit par la propriété d'ordre A 0 < A 1 en tant que formes quadratiques agissant sur M N ×N sym . La densité volumique d'énergie élastique du matériau est alors donnée par

A

  = A e(u) e(u) = e + p σ = A e(u) e(u)

  .1.8) L'équivalence entre la formulation variationnelle forte (1.1.6)-(1.1.7)-(1.1.8) et la formulation de Griffith (1.1.5) est détaillée au [24, Chapter 2]. Notons simplement que l'inégalité de dissipation ∆ = σ : e( u) -Ẇ ≥ 0 est automatiquement assurée par le bilan d'énergie, puisque alors t 0 Ω Ae(u) : e( u) dx -Ω W (e(u(t)) dx + Ω W (e(u(0)) dx = κH 1 (Γ(t) \ Γ(0)) ≥ 0.

  saine sont décrites par leurs tenseurs d'élasticité A 0 et A 1 respectivement, deux tenseurs d'ordre 4 symétriques et coercifs qui satisfont la propriété d'ordre A 0 < A 1 en tant que formes quadratiques agissant sur M N ×N sym . Notons Ω ⊂ R N la configuration au repos du matériau, un ouvert borné. Comme discuté précédemment, il est naturel de choisir la fonction caractéristique de la zone endommagée χ ∈ L ∞ (Ω; {0, 1}) comme variable interne pour décrire le processus d'endommagement du milieu. Adoptant le modèle variationnel introduit par Francfort-

  Nous démontrons, grâce à l'obtention de bornes uniformes en temps et en ε, l'existence d'une suite extraite (indépendante du temps et toujours notée ε) et d'une évolution limite (u, e, p, µ) : [0, T ] → BV ((0, L)) × L 2 ((0, L)) × M([0, L]) × M + ([0, L]) absolument continue en temps, telle que p = σ a 0 µ dans M([0, L]) et satisfaisant les propriétés suivantes en tout temps t ∈ [0, T ] : i. Décomposition Additive : Du(t) = e(t)L 1 (0, L) + p(t) (0, L) dans M((0, L))

.

  If a and b ∈ R N , with N ∈ N \ {0}, we write a • b = N i=1 a i b i for the Euclidean scalar product and |a| = √ a • a for the corresponding norm. For x ∈ R N and ϱ > 0, we denote by B ϱ (x) := {y ∈ R N : |x -y| < ϱ} the open ball centered at x with radius ϱ. If x = 0, we simply write B ϱ instead of B ϱ (0). The notation S N -1 stands for the unit sphere ∂B 1 . Matrices. The space of all real m × N matrices is denoted by M m×N , and the subspace of symmetric real N ×N matrices by M N ×N sym . It will be endowed with the Froebenius scalar product A : B = tr(A T B) and the corresponding norm |A| = √ A : A. Given two vectors a and b ∈ R N , the tensor product between a and b is defined as a ⊗ b := ab T ∈ M N ×N and the symmetric tensor product by a ⊙ b := (a ⊗ b + b ⊗ a)/2 ∈ M N ×N sym .

  which is convex as well. The indicator function of a set C ⊂ R N is defined as I C = 0 in C and +∞ otherwise. The convex conjugate I * C of I C is called the support function of C. Functional spaces. We use standard notation for Lebesgue and Sobolev spaces. If U is a bounded open subset of R N , we denote by L 0 (U ; R m ) the set of all L N -measurable functions from U to R m .
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 21 Therefore, L 1 Ä ¶ (χ ε ) ν y = 1 ©ä = ε sin θ 0 which leads to the right lower bound, independently of the amplitude of the jump (b -a) • ν.
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 44 ) by® a j (y) := min {t ∈ [-2, 2] : y + tξ ∈ T j (y)} , b j (y) := max {t ∈ [-2, 2] : y + tξ ∈ T j (y)} ,(2.2.22)so that (T j (y)) ξ y = [a j (y), b j (y)]. Note that T j (y) ⊂ B (since T j (y)∩B 1-η = ∅), hence -2 ≤ a j (y) ≤ b(y) and 2 ≥ b j (y) ≥ a(y). Let us show that
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 26 Figure 2.6 -Two possible configurations of T .
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 2235 Indeed, setting J := Φ(p ξ ( T )), there exist points a, b, ã and b in B ν = J u ∩ B such that I(y) = (a, b), J = (ã, b) with a • ν ⊥ < b • ν ⊥ and ã • ν ⊥ < b • ν ⊥ . By construction, there exist i a (resp. i b ) ∈ {1, 2} such that a (resp. b) is the image by Φ • p ξ of a vertex of T ia (y) (resp. T i b (y)), see Figure 2.8. Assume by contradiction that there exists a point z ∈ I(y) \
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 29 Figure 2.9
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 238 Lower bound on the reduced boundary ∂ * P). For H 1 -a.e. x 0 ∈ ∂ * P, dλ dH 1 ∂ * P (x 0 ) ≥ κ sin θ 0 .

  remaining triangle which happens to have its three vertices' values imposed. It defines a function u ∈ V Dir ε (Ω ′ ) which satisfies e(u) = ξ on ω and e(u) ≡ 0 on each triangle T ∈ {T M +1 , . . . T K } ⊂ T far . On the one hand, ξ = 0 in {χ = 1}, hence ξ = (1 -χ)ξ. On the other hand, e(u) = ξ in ω and e(u) = 0 in ω 0 \ ω, so that (1 -χ)Aξ : ξ ≥ (1 -χ)Ae(u) : e(u) by positivity of A. Thus, by (2.3.28) together with (2.3.29), inf L 0 (Ω;R 2 )

Example 3 . 4 . 4 .

 344 Let us assume that Ω = (0, L) is a bounded open interval of R and u ∈ H 1 (Ω) is affine, so that

  Figure 3.4 

Theorem 4 . 1 . 2 .

 412 The quasi-static evolution (u, e, p): [0, T ] → BV ((0, L)) × R × M([0, L]) is a quasi-staticevolution of the perfect plasticity model (4.1.3) and (4.1.4) if and only if the Dirichlet boundary condition w ∈ AC([0, T ]; H 1 (R)) satisfies :

Proposition 4 . 3 . 1 .

 431 There exists a constant C(w, T ) ∈ (0, +∞) such that sup t∈[0,T ] sup ε>0 E ε (t) ≤ C (4.3.1) and sup t∈[0,T ]

( 4 . 3 . 8 )

 438 Proof. We work along the subsequence introduced in Proposition 4.3.2. Let t ∈ [0, T ]. Note that by the weak-* convergence of µ ε (t) to µ(t) in M([0, L]), one gets that

( 4 .

 4 3.12) Indeed, extending the problem on a larger open interval [0, L] ⊂ Ω ′ and setting

  .3.14) and 2κa 0 -σ(0) 2 l(0) = 0.

( 4 . 3 . 15 )

 4315 Proof. Gathering (4.3.10c) and (4.3.12), we can identify the absolutely continuous and singular parts (with respect to L 1 ) in the Radon-Nikodým decompositions of Du(0) and p(0) :

Proposition 4 . 3 . 7 .

 437 The mapping (σ, e, l, µ, p, u) :

0L 0 ∈

 0 dr for all 0 ≤ s ≤ t ≤ T, thus proving the absolute continuity of σ and e = σa -11 from [0, T ] to R. In particular, (4.3.AC([0, T ]; R).Since µ : [0, T ] → M([0, L]; R + ) is non-decreasing in time, (4.3.11) implies 0 ≤ (µ(t) -µ(s)) [0, L] = l(t) -l(s)for all 0 ≤ s ≤ t ≤ T , so thatµ ∈ AC [0, T ]; M([0, L]) and p = σ a 0 µ ∈ AC [0, T ]; M([0, L]) .Finally, the Trace Theorem in BV ((0, L)), (4.3.13) and (4.3.12) imply that for all 0 ≤ s ≤ t ≤ T ,∥u(t) -u(s)∥ BV ((0,L)) ≤ L |e(t) -e(s)| + |p(t) -p(s)| ([0, L]) + |w(t) -w(s)| (L) + |w(t) -w(s)| (0),thus proving the absolute continuity of u from [0, T ] to BV ((0, L)) as well.

  (u, e, p, σ, µ): [0, T ] → BV ((0, L)) × R × M([0, L]) × K × M([0, L]),which are all absolutely continuous on [0, T ] and satisfy the following assertions for all t ∈ [0, T ] : i. Additive Decomposition : Du(t) = e(t)L 1 (0, L) + p(t) (0, L) in M((0, L))

Proposition 4 . 3 . 9 .

 439 ) ẇ′ (s)(x) dxds(4.3.19) for all time t ∈ [0, T ], where we used thatt 0 | ṗ(s)| ([0, L]) ds = V(p; 0, t) according to[START_REF] Maso | Quasistatic evolution problems for linearly elasticperfectly plastic materials[END_REF] Theorem 7.1]. As u, σ, p, µ and l are all absolutely continuous on [0, T ], we have the following Proposition : For all t ∈ [0, T ],

(

  

Figure 4 . 1 Proof of Theorem 4 . 1 . 2 :

 41412 Figure 4.1

( 4 . 4 . 3 )L 0 =

 4430 On the one hand, (4.3.5) together with the trace theorem in BV ((0, L)) entail that, at all time,Du((0, L)) = u Le + p((0, L)) = wOn the other hand, by (4.3.18) we infer that for L 1 -a.e. time in [0, T ], the following time derivatives exist and satisfyṗ = σµ a 0 + σ μ a 0 in M([0, L]) hence ṗ([0, L]) = σl a 0 + σ μ([0, L]) a 0 = i σl a 0 = ˙ p([0, L]).

( 4 . 4 . 4 )

 444 Let t 0 := sup {t ∈ [0, T ] : l(t) = 0}, with the convention t 0 = 0 if l(0) > 0 (see Figure4.2). As l is non-decreasing on [0, T ], if t 0 = T then l ≡ 0 at all time and (4.3.5) entails that w L 0 ≡ σ L a 1 at all time as well, so that (4.1.6) is always true since σ ∈ K. We can thus assume that t 0 < T . Suppose that 0 ≤ a < b ≤ T are such that wnecessarily have |σ(b)| < |σ(a)| ≤ √ 2κa 0 hence |σ(b)| < √ 2κa 0 in particular. By continuity of σ and because 0 < b ≤ T , there exists η > 0 such that for all s ∈ [b -η, b] ⊂ [0, T ], |σ(s)| < √ 2κa 0 . Let us consider s 0 := inf{s < b : |σ(t)| < √ 2κa 0 for all s < t ≤ b} and I := (s 0 , b]. Recalling Theorem 4.1.1, by continuity we know that l is constant on the whole segment I := [s 0 , b]. Let us prove that l ≡ 0 on I (hence on [0, b]), which will prove (4.4.5) due to (4.3.5) once more. By contradiction, assume that l ≡ c > 0 on I. Since σ does not saturate the constraint during all the time interval (s 0 , b], the Flow Rule (4.4.3) implies that ṗ(s)([0, L]) = σ(s)l a 0 = 0 for L 1 -a.e. s ∈ (s 0 , b]. Therefore, σ is constant during the whole time interval I and in particular |σ(s 0 )| < √ 2κa 0 .

3 . 15 ) 0 L 0 σ

 31500 entails that |σ(0)| = √ 2κa 0 so that s 0 > 0 since |σ(s 0 )| < √ 2κa 0 . Thus, since s 0 > 0, |σ(s 0 )| < √ 2κa 0 and σ is continuous on [0, T ], there exists η > 0 small enough such that |σ(s)| < √ 2κa 0 for all s ∈ (s 0 -η, b] ⊂ [0, T ],which is impossible by definition of I. Sufficient condition. Assume (4.1.6). Let us show that the Energy Balance (4.3.19) is satisfied. As before, we consider the time t 0 := sup {t ∈ [0, T ] : l(t) = 0}, with the convention t 0 = 0 if l(0) > 0. If t 0 = T then l ≡ 0 at all time and (4.3.11) entails that µ ≡ 0 ≡ p in M([0, L]) at all time as well. Hence, the Energy Balance is obviously satisfied as it simply states that E(t) = E(0) + t ẇ′ dxds = σ(t) 2 L 2a 1 , which is true thanks to (4.3.8) and (4.3.5). Therefore, we can assume that t 0 < T . Let us first note that we always have |σ(t 0 )| = √ 2κa 0 . (4.4.6)

  3.15) ensures that |σ(0)| = √ 2κa 0 . Next, let us show that, as illustrated in Figure 4.2, |σ(t)| = √ 2κa 0 for all subsequent time t ∈ [t 0 , T ].

  Figure 4.2

Figure 4 . 2 .

 42 Whether l(0) > 0 or not, one can check thatp(t) = σ(t 0 ) a 0 µ(t) and √ 2κa 0 -|σ(t)| 2 l(t) 2a 0 = 0 for all t ∈ [0, T ].

( 4 . 4 . 8 )

 448 Indeed, either l(t 0 ) > 0 hence t 0 = 0 and σ = σ(0) = ± √ 2κa 0 is constant on the whole segment [0, T ]. Or l(t 0 ) = 0, so that µ(t) = 0 = p(t) for all t ∈ [0, t 0 ] and σ = σ(t 0 ) = ± √ 2κa 0 is constant on the whole segment [t 0 , T ]. In particular (4.4.8) is satisfied. Consequently, the monotonicity of µ entails thatV(p; 0, t) = σ(t 0 ) a 0 µ(t) [0, L] -µ(0) [0, L] = |p(t)| [0, L] -|p(0)| [0, L]

T > 2 √

 2 2κa 0 /a 1 and applying a loading-unloading Dirichlet conditionw : (t, x) ∈ [0, T ] × [0, L] → x t1 [0, T 2 ] (t) + (T -t)1 ( T 2 ,T ) (t) ,
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ϕ

  j u • τ j,k ∈ BD(Ω), e k = J j=0 ϕ j e • τ j,k ∈ L 2 (Ω; M N ×N sym ) ϕ j p + J j=0 ∇ϕ j ⊙ u • τ j,k ∈ M Ω; M N ×N sym )where τ # j,k ϕ j p E = τ j,k E ϕ j dp. Note that ϕ j u ≡ 0 in A j ∩ Ω ′ \Ω and ϕ 0 u is compactly supported in Ω, so that for all k ∈ N \ {0}, u k is compactly supported in Ω as well and u k ≡ 0 in a neighbourhood of ∂Ω. The same holds for e k and p k , hence we directly consider their restrictions to Ω. Moreover,Eu k = e k L N Ω + p k and u k → u strongly in L 1 (Ω; R N ), e k → e strongly in L 2 (Ω; M N ×N sym ) J j=0 ∇ϕ j ⊙ u • τ j,k → 0 strongly in L 1 (Ω; M N ×N sym )when k ↗ ∞ by continuity of the translation in L p (R N ; M N ×N sym ), where we also used that u = J j=0 ϕ j uand J j=0 ∇ϕ j ⊙ u = ∇ Ä J j=0 ϕ j ä ⊙ u = 0. Also note that J j=0 τ # j,k ϕ j p (Ω) ≤ J j=0 Ω ′ ϕ j d |p| = |p| (Ω), so that lim sup k |p k | (Ω) ≤ |p| (Ω). We now set ũk = ϱ n k * u k , ẽk = ϱ n k * e k and pk = ϱ n k * p k where n k is chosen such that ũk ∈ C ∞ (Ω; R N ), ẽk , pk ∈ C ∞ c (Ω; M N ×N sym ) and ∥ũ k -u k ∥ L 1 + ∥ẽ k -e k ∥ L 2 + Ω |p k | dx -|p k | (Ω) ≤1k , where the last inequality follows from the fact that |p k | (∂Ω) = 0, hence pk ⇀ p k strictly in M Ω; M N ×N sym when k ↗ ∞ (see [94, Formula (2.7)]). Note that we still have e(ũ k ) = ẽk + pk in Ω. Finally, we gather that lim sup k |p k | (Ω) = lim sup k |p k | (Ω) ≤ |p| (Ω)

  

  Il est alors naturel d'introduire, à chaque instant t, le déplacement u(t, x) := ϕ(t, x) -x d'un point x ∈ Ω ainsi que le tenseur des déformations (de Green-St. Venant) Puisque le gradient des déplacements reste petit sous l'hypothèse des petites déformations, nous pouvons raisonnablement approcher le tenseur des déformations E t par le tenseur dit des déforma-

		E t :=	1 2	Ä	∇ϕ(t, •) T ∇ϕ(t, •) -I N	ä	.
	Le gradient et le tenseur des déformations sont ainsi liés au gradient du déplacement par les relations
	∇ϕ(t, •) = I N + ∇u(t, •) et E t =	1 2	Ä	∇u(t, •) + ∇u(t, •) T + ∇u(t, •) T ∇u(t, •) ä	.
	tions linéarisées	e(t, u) :=	1 2	Ä ∇u(t, •) + ∇u(t, •)

Dans ce mémoire, nous nous plaçons sous l'hypothèse des petites déformations, où la différence ∇ϕ(t, •) -I N entre le gradient des déformations et l'identité est négligeable. T ä où l'on a négligé le terme d'erreur quadratique dans l'expression de E t . Nous pouvons également

  il est désormais communément connu que ce problème de minimisation est mal posé, par manque de convexité de sa densité. En effet, il s'avère énergétiquement favorable que les suites minimisantes forment des microstructures (mélanges fin entre les phases saines et endommagées) convergeant vers des états homogénéisés. La relaxation de l'énergie totale suggère ainsi d'élargir la classe des matériaux admissibles à tout mélange homogénéisé des phases saines en proportion volumique θ ∈ [0, 1] et endommagées en proportion 1 -θ. Le modèle finalement proposé par Francfort et Marigo consiste alors à traduire l'irréversibilité de l'endommagement en cherchant les couples

  ). Par simplicité, nous supposons ici que la densité où A est le module d'élasticité du milieu en dehors de la fissure Γ. L'idée de Griffith pour décrire la loi d'évolution de la fracture consiste alors à postuler que l'énergie dissipée, suite à la création d'une fissure de longueur l ≥ 0, doit être égale à sa longueur pondérée par la ténacité du matériau κ > 0 (plus communément notée G

	volumique d'énergie élastique est donnée par		
	W (e(u)) =	1 2	Ae(u) : e(u)

c > 0 dans le contexte de la fracture). L'évolution de la fracture est alors gouvernée par le principe selon lequel, si l(t) est la longueur de la fracture au temps t ∈ [0, T ], la création d'une fissure légèrement plus longue dissiperait plus d'énergie surfacique qu'il n'en serait restituée par l'énergie potentielle. Autrement dit, pour toute longueur 0

  the other cases being treated similarly), applying (2.2.29) above, with z = p ξ (y) and z ′ = z 1 ref , we get that

  thanks to the mapping Φ • p ξ , into two sets of almost full H 1 measure in J u ∩ B. This is the object of the following technical result.

Lemma 2.2.10. Let K ⊂ J u ∩B 1-η 2

  dx.

	(2.2.47)
	Gathering (2.2.45) and (2.2.47), we obtain that
	lim sup

  2 -2σ(t)σ(s) + 2κa 0 . (4.3.16) Indeed, the convergences in Proposition 4.3.5 together with the homogeneity in space of σ and σ ε Using (4.3.10a), (4.3.9a), (4.3.9b) and writing l ε := -a.e. t ∈ [s, T ] and any η > 0. As √ • is locally lipschitz on [η, +∞), we infer that -a.e. t ∈ [s, T ].Thus, integrating between s and t for any T ≥ t ≥ s ≥ 0 entails that

	imply that						
	L 2a 1	(σ(t) -σ(s)) 2 = L	Å σ(t)e(t) 2	-	2 σ(s)e(s)	-σ(s)(e(t) -e(s)) ã
										= lim ε↘0	0	L	Å σ ε (t)e ε (t) 2 -σ L -σ ε (s)e ε (s) 2 0 1-Θε ε dx, we get that
	L 2a 1	(σ(t) -σ(s)) 2 = lim	
										s	t	ẇ(r)	L 0 dr
										-	σ(t) 2 2a 0	l(t) +	σ(s) 2 2a 0	l(s) + σ(s)	Å σ(t)l(t) a 0	-	a 0 σ(s)l(s)	ã
	so that (4.3.8) entails (4.3.16). In particular, since 2κa 0 ≥ σ(s) 2 , we obtain
						L 2a 1	|σ(t) -σ(s)| 2 ≤
										L 0 ≤	…	2a 1 L	V s (t) + η ẇ(t)	L 0
	for L 1 … absolutely continuous on [s, T ] and	2a 1 L	V s + η is
			d dt	Ç…	2a 1 L	V s + η	å for L 1 … (t) = a 1 L Vs (t) » 2a 1 L V s (t) + η ≤ a 1 L ẇ(t) L 0 2a 1 L V s (t) + η -√ η ≤ t a 1 s L ẇ(r)

ε (s)(e ε (t) -e ε (s))

ã dx. ε↘0 Å E ε (t) -L 0 σ ε (t)p ε (t) 2 dx -κl ε (t) -E ε (s) + L 0 σ ε (s)p ε (s) 2 dx + κl ε (s) -σ ε (s) t s ẇ(r) L 0 dr + σ ε (s) L 0 (p ε (t) -p ε (s)) dx ã = E(t) -E(s) -κ(l(t) -l(s)) -σ(s) t s |σ(r) -σ(s)| ẇ(r) L 0 dr =: V s (t).

(4.3.17) Applying a Gronwall type Lemma (in the spirit of [49, Lemma 5.3.]), we infer that σ is absolutely continuous on [0, T ]. Indeed, fixing T ≥ s ≥ 0 momentarily, one can remark that V s ∈ AC([s, T ]; R) and Vs (t) = |σ(t) -σ(s)| ẇ(t) L 0 dr.

  0, L]; R + ) satisfying the Constitutive Equation and Griffith Evolution Law stated in Theorem 4.1.1.Proof of Theorem 4.1.1 : Using (4.3.8) and (4.3.5), one can check that for L 1 -a.e. t ∈ [0, T ] the following Besides, using that µ is non-decreasing in time together with [49, Theorem 7.1, Formula (7.4)] and -a.e. t ∈ [0, T ]. Thus, by non-negativity of the Radon measure μ(t), we infer thatμ(t) 2κa 0 -σ(t) 2 = 0 in M([0, L]; R + ) for L 1 -a.e. t ∈ [0, T ].The effective limit model obtained here is a different type of damage model where the dissipative phenomena is described by means of an internal variable, the effective compliance c : [0, T ] → M([0, L]; R + ), whose non-decreasing character in time accounts for the irreversibility of damage. This is a threshold stress model, based on the conjecture that damage propagates if and only if the stress saturates the constraint.• Formally inverting the compliance c(t), the Constitutive Equation allows us to interpret Du(t) 2 as the stored (elastic) energy density of the effective damaged medium at time t ∈ [0, T ]. In

	and	Ė(t) = σ(t) ẇ(t)	L 0 =	σ(t) w(t) 2	L 0	+	σ(t) ẇ(t) 2	L 0	+ κ l(t).
	Hence	κ l(t) +	σ(t) w(t) 2	L 0	=	σ(t) ẇ(t) 2	L 0		=	σ(t) w(t) 2	L 0	+	σ(t) 2 l(t) 2a 0	,
	entailing that												
							l(t)	Å κ -	σ(t) 2 2a 0	ã	= 0.
	(4.3.11) ensures that											
	μ(t) [0, L]) = lim h↘0	µ(t + h) [0, L] -µ(t) [0, L] h	= lim h↘0	l(t + h) -l(t) h	= l(t)	(4.3.18)
	for L 1 Remark 4.3.8. 1 2 c(t) -1 other words, one can interpret σ(t)Du(t) = 1 2
		Q(t) :=	1 2	σ(t)Du(t)((0, L)) =	σ(t) 2 2	Å µ(t)((0, L)) a 0	+	a 1 L	ã
	as the elastic energy in the body at time t. Therefore, since
						E(t) =	σ(t) 2 2	Å l(t) a 0	+	L a 1	ã	+ κl(t),
	we can write the following energy balance				
	quantities are well defined and satisfy ẇ(t) L 0 = σ(t) Q(t) + t 0 d ds Å σ(s)p(s)({0, L}) Å l(t) a 0 2 + κl(s) + a 1 L	ã	+ σ(t)	a 0 l(t)

  4.3.20) Proof. Indeed, for all t ∈ [0, T ], (4.3.8) and (4.3.5) entail that Using that lσ 2 = lσ 2 + 2lσ σ together with (4.3.15) and Theorem 4.1.1, we infer that

	E(t) =	La 1 2	e(t) 2 + l(t)	2a 0 Å σ(t) 2	+ κ ã					
									=	La 1 2	e(t) 2 + l(0)	Å σ(0) 2 2a 0	+ κ ã	+	0	t	d ds	Å l	Å σ 2 2a 0	+ κ	ãã	(s) ds.
			E(t) =	La 1 2	e(t) 2 +	√	2κa 0 |σ(0)|	l(0) a 0	+	0	t	Ç l a 0	√	2κa 0 |σ| +	lσ a 0 σ	å	ds.
	Thus (4.3.11), Theorem 4.1.1 and (4.3.18) entail that
	E(t) =	La 1 2	e(t) 2 +	√	2κa 0 |p(0)| ([0, L]) +	0	t	σ	Ç lσ + l a 0	σ	å	ds
											=	La 1 2	e(t) 2 +	√	2κa 0 |p(0)| ([0, L]) +	0	t	σ(s) ṗ(s)([0, L]) ds.
	Then, (4.3.8), (4.3.4) and (4.3.15) complete the proof of (4.3.20).

Therefore, due to the homogeneity in space of σ together with the stress constraint, (4.3.20) ensures that the upper bound inequality of (4.3.19) is always satisfied :

  t] : |σ| < √ 2κa 0 for all time in (s, t]} and t 2 = sup{s ∈ [t, T ] : |σ| < √ 2κa 0 for all time in [t, s)}. By continuity of σ and (4.4.6), we have that t 0 ≤ t 1 < t ≤ t 2 ≤ T and |σ(s)| < √ 2κa 0 for all s ∈ (t 1 , t 2 ). Since t 1 ≥ t 0 , we infer that l ≡ l(t 1 ) > 0 is a positive constant on the whole segment [t 1 , t 2 ] by Theorem 4.1.1. One can also check that |σ(t 1 )| = √ 2κa 0 . Indeed, either t 1 = t 0 and (4.4.6) concludes, or t 1 > t 0 . In particular t 1 > 0 and the continuity of σ together with the definition of t 1 imply that |σ(t 1 )| = √ 2κa 0 . Therefore, (4.3.5) yields that for all s ∈ (t 1 , t 2 ) w(t 1 ) ∈ (t 1 , t 2 ). The continuity of w

	L 0 =	√	2κa 0	Å l a 0	+	L a 1	ã	> w(s)	L 0 = |σ(s)|	Å l a 0	+	L a 1	ã	.
	By (4.1.6), we get that w(s) that	L 0 ≤	√	2κa 0	L a 1	for all s L 0 and (4.3.5) imply
		w(t 1 )									

  Using (4.3.4), (4.3.14), (4.3.15) and (4.3.8), we infer that for all t ∈ [0, T ], which concludes the proof of the Energy Balance (4.3.19) since Condition (4.1.6) is equivalent to the non-decreasing character of w

	Remark 4.4.2. L 0 during the
	time interval [t * 0 , T ] where		
											t * 0 = inf t ∈ [0, T ] : w(t)	L 0 >	√	2κa 0 L/a 1 ,
	with the convention t * 0 = T if w	L 0 remains smaller or equal to	√	2κa 0 L/a 1 during the whole time
	interval [0, T ]. Note that			
														t * 0 = t 0 .	(4.4.9)
	E(t) =	La 1 2	e(0) 2 +	√	2κa 0 |p(0)| [0, L] +	0	t	0	L	σ ẇ′ dxds
									=	La 1 2	e(t) 2 +	√	2κa 0 |p(t)| [0, L] +	√	2κa 0 -|σ(t)|	2 l(t) 2a 0
														=	La 1 2	e(t) 2 +	√	2κa 0 |p(t)| [0, L]
	La 1 2	e(0) 2 +	0	t	0	L	σ ẇ′ dxds =	La 1 2	e(t) 2 +	√	2κa 0 |p(t)| [0, L] -	√	2κa 0 |p(0)| [0, L]
														=	La 1 2	e(t) 2 +	√	2κa 0 V(p; 0, t).

for all t ∈ [0, T ].

  , the Energy Balance (4.3.19) is never satisfied (see Figure4.3).

	sing and remains larger than	√ 2κa 0	L a 1	is decrea-

est le tenseur des déformations linéarisées et κ > 0 est la ténacité du matériau.Autrement dit, le coût à payer pour avoir endommagé une partie du matériau est égal au volume de la

\ Z ′ must cross at least one triangle T ∈ T x 0 ,j b,int contained in B, and on which the

Remerciements

longitudinal slope of v j in the direction ξ is "large". The formal idea of the proof consists in observing that, if for some y ∈ J u ∩ B 1-η 2 the one-dimensional section B ξ y intersects no triangle in the collection T x 0 ,j b,int for infinitely many j's, then the function (v j ) ξ y would be bounded in H 1 (B ξ y ). Lemma 2.2.6 would then entail that (v j ) ξ y converges (weakly in H 1 (B ξ y ) and also L 1 -a.e. in B ξ y ) to a constant function. This property contradicts the fact that (v j ) ξ y → u ξ y L 1 -a.e. in B ξ y , where u ξ y is a step function taking two different values u ± (x 0 ) • ξ.

Lemma 2.2.7. For all η > 0, there exist a subset Z ′ ⊂ J u ∩ B containing Z with H 1 (Z ′ ) ≤ η, and a subsequence (not relabeled) such that the following property holds : for all y ∈ J u ∩ B 1-η 2 \ Z ′ and all j ∈ N, there exists a triangle T = T (y, j) ∈ T x 0 ,j b,int such that ( T ∩ B) ξ y ̸ = ∅.

Proof. Let Z be the exceptional set given by Lemma 2.2.6. We first show the weaker result that there exists an increasing mapping ϕ : N → N with the following property : for all y ∈ J u ∩ B 1-η 2 \ Z and all j ∈ N, there exists a triangle T = T (y, ϕ(j)) ∈ T

x 0 ,ϕ(j) b,int such that (T ∩ B) ξ y ̸ = ∅.

Suppose by contradiction that such is not the case, and define

where we recall that the constants M η and L η are defined in (2.2.10) and (2.2.19), respectively. Thanks to Lemma 2.2.6, there exists j * = j * (γ * ) ∈ N such that for all y ∈ J u ∩ B \ Z and all j ≥ j * ,

and the family of triangles which intersect B 1-η 4 :

Note that v j -r ± j is affine and χ j is constant on each T ∈ T x 0 ,j , and that (2.3.15d) ensures that for j ∈ N large enough (depending on η), each T ∈ T x 0 ,j b,int is contained in B. As in (2.2.18), for all y ∈ (B 1-η

4

) ν , we denote by a(y) and b(y) the end points of the section passing through y in the direction ξ (see the Figure 2.2) in such a way that (B Lemma 2.3.9. For all η > 0, there exist a subset Z ⊂ B ν containing N with H 1 (Z) ≤ η, and a subsequence (not relabeled) such that the following property holds : for all γ > 0, there exists j 0 = j 0 (γ) ∈ N such that for all y ∈ B ν \ Z and all j ≥ j 0 ,

and

As in the proof of Proposition 2.2.5, we next show that, for some subset

) ν of arbitrarily small H 1 measure, and along a subsequence (only depending on η), all the sections in the direction ξ passing through (B 1-η

2

) ν \ Z ′ must cross at least one triangle T ∈ T x 0 ,j b,int contained in B.

Lemma 2.3.10. For all η > 0, there exist a subset Z ′ ⊂ B ν containing Z with H 1 (Z ′ ) ≤ η, and a subsequence (not relabeled) such that the following property holds : for all y ∈ (B 1-η

2

) ν \ Z ′ and all j ∈ N, there exists a triangle T = T (y, j) ∈ T x 0 ,j b,int such that ( T ∩ B) ξ y ̸ = ∅.

Proof. Let Z be the exceptional set given by Lemma 2.3.9. We first show that there exists an increasing mapping ϕ : N → N such that : for all y ∈ (B 1-η

2

) ν \ Z and all j ∈ N, there exists a triangle T =

Suppose by contradiction that such is not the case, and define

Thanks to Lemma 2.3.9, there exists j * = j * (γ * ) ∈ N such that for all y ∈ B ν \ Z and all j ≥ j * ,

For all j ∈ N and all y ∈ Y j , let T j (y) ∈ T x 0 ,j b,int be the unique triangle such that ( Tj (y) ∩ B) ξ y ̸ = ∅. We keep the notation (2.2.22) for the end points a j (y) and b j (y) of the section in the direction ξ passing through y inside T j (y) (see the Figure 2.4). Let us show that

Assume by contradiction that ℓ := lim sup j f j (y) > 0 and extract a subsequence (depending on y, not relabeled) such that f j (y) → ℓ. Then, there exists j 0 ∈ N such that y ∈ Y j for all j ≥ j 0 . Moreover, according to Lemma 2.3.9 and setting I j (y) := (a(y), b(y))\(a j (y), b j (y)) ⊂ B ξ y , we infer that

(2.3.20)

Up to another subsequence (still not relabeled), it ensures that a j (y), b j (y) → m for some m ∈ [a(y), b(y)]. Thus, for all τ > 0, I τ := (a(y), m -τ ) ∪ (m + τ, b(y)) ⊂ I j (y) for j ∈ N sufficiently large. In particular, we deduce that m -τ ≤ 0. Indeed, assuming that m -τ > 0, by continuity of (v j -r + j ) ξ y on 0, m -τ and of (v j -r - j ) ξ y on a(y), 0 , there exist

which satisfy

according to (2.3.20) and (2.3.17). However,

according again to (2.3.20), which leads to a contradiction. We similarly show that m + τ ≥ 0, leading to |m| ≤ τ . Taking the limit as τ → 0 + , we obtain that m = 0 which is against ℓ > 0.

Therefore, owing to Lemma 2.3.9 and Egoroff's Theorem, we can find a set

* and all j ≥ j 0 (γ).

Step 2. Arguing in the same manner as for (2.2.27), one can show that for many points y ∈ Y j , the variation of (v j -r j ) ξ y inside the only triangle T in T x 0 ,j b,int which is crossed by B ξ y , is close to that of u ξ y . Precisely, setting the constants

we get that for all 0 < γ < γ * , there exists j 1 (γ) ∈ N such that for all j ≥ j 1 (γ) and all y ∈ Y j \ Z 1 * ,

(2.3.22)

Step 3. We now show that, after enlarging slightly the set

By definition of rigid body motions, there exist skew symmetric matrices M j ∈ M 2×2 skew and vectors

Hence, up to a subsequence (depending only on ξ, not relabeled), there exist α ∈ R 2 and β ∈ R such that α j µ j → α, β j µ j → β, and |α| + |β| = 1.

In particular,

(2.3.23)

Notice that the affine line ∆ := {z ∈ R 2 : α • z + β = 0} cannot coincide with Π ν . Indeed, if such would be the case, it would entail that β = 0 and α = ±ν ∈ S 1 . Yet, M j ∈ M 2×2 skew being skew symmetric, we would obtain that

, and for all j ∈ N, we define

where

In particular, [48, Theorem 8.1] entails that

are empty for H 1 -a.e. y ∈ Π ξ . Moreover, since u ∈ L 1 (Ω), we get that v ξ y ∈ L 1 ((U m ) ξ y ) for H 1 -a.e. y ∈ Π ξ as well. Therefore, according to [48, Definition 4.2], we infer that for H 1 -a.e. y ∈ Π ξ ,

In particular, [48, Definition 4.1 (b)] entails that

y , we infer that Dv ξ y has no Cantor part and no jump part in (U m ) ξ y , so that

Note that the same result holds in L 0 (Ω; R 2 ) × L 0 (Ω) for the topology of convergence in measure, up to enlarging the domain of the Γ-limit to

The proof is almost exactly the same as below.

Proof. According to Proposition 3.0.2, it is enough to identify the Γ-limit for χ = 0.

Lower bound. First note that, according to [12, Theorem 1.3] (which is the core result proved in Chapter 2), the functional

defined by

In particular, the lower bound inequality presents no difficulty. Indeed, for all u ∈ L 1 (Ω; R 2 ) and all sequences

and passing to the infimum among such sequences leads to

Upper bound. We can assume that Ψ 0,β (u, 0) < +∞ and thus that u ∈ GSBD 2 (Ω) ∩ L 1 (Ω; R 2 ). Using the density result for GSBD functions (see [START_REF] Chambolle | A density result in GSBD p with applications to the approximation of brittle fracture energies[END_REF]Theorem 1.1]) as well as the lower semicontinuity Therefore, following the variational framework of quasi-static perfect plasticity recalled above (see [START_REF] Maso | Quasistatic evolution problems for linearly elasticperfectly plastic materials[END_REF][START_REF] Mainik | Existence results for energetic models for rate-independent systems[END_REF]), the dissipative cost cumulated during a time interval [s, t] ⊂ [0, T ] due to a time dependent Radon measure q : [0, T ] → M([0, L]) is defined as

where

is the total variation of q during the time interval [s, t]. The question inquired in the present work is then : when passing in the limit ε ↘ 0 (in some sense detailed in the next sections) in the above brittle damage evolutions (4.1.2), can we derive a quasi-static evolution of perfect plasticity

3) and (4.1.4) ? Contrary to the static analysis, the interplay between damage and Γconvergence turns out to be unstable through the time evolution process. Indeed, as explained in Theorem 4.1.1 and Theorem 4.1.2, the effective quasi-static evolution derived in the subsequent sections might not be of perfect plasticity type. Instead, it can be interpreted as one of damage, characterised by means of the material's compliance as internal variable : such that for all t ∈ [0, T ]

when ε ↘ 0 and satisfying the following assertions for all t ∈ [0, T ] :

i. Additive Decomposition :

iv. Equilibrium Equation : σ ′ (t) = 0 in H -1 ((0, L))

From the uniform bounds (4.3.2), we obtain compactness properties.

Proposition 4.3.2.

There exists a subsequence (not relabelled and independent of t) and a non-negative Radon measure µ : [0, T ] → M [0, L]; R + , which is non-decreasing in time, such that 

. Initial time of the evolution

We begin with a corollary of the analysis led in [15, Theorem 3.1] in the static setting, taking into account a prescribed Dirichlet boundary datum. We refer to Appendix 5 for a more general statement of this proposition and its proof.

Proposition 4.3.4. The functional

Having all the previous results in mind, one would naturally be tempted to intuit the validity of the Energy Balance (4.3.19), hence proving that the quasi-static damage evolution (u, e, p, σ) is indeed one of perfect plasticity. Surprisingly, the interplay between relaxation and irreversibility of the damage is not stable through time evolutions. Indeed, depending on the choice of the prescribed Dirichlet boundary condition w ∈ AC([0, T ]; H 1 (R)), the effective quasi-static damage evolution may not be of perfect plasticity type, as illustrated in the example of Figure 4.3. Understanding on which condition the effective quasi-static evolution is of perfect plasticity type is the content of the next section.

. Energy Balance

We can prove that the Energy Balance (4.3.19) is satisfied if and only if σ saturates the constraint once l is non-zero, until the end of the process (see Figure 4.2). 

This is immediate during the time interval [0, t 0 ], while during the time interval [t 0 , T ], by continuity we infer that σ is constant and either σ ≡ √ 2κa 0 or σ ≡ -√ 2κa 0 . Especially, since p = σ a 0 µ and µ is non-decreasing in time, we infer that p is either non-decreasing or non-increasing in time on [t 0 , T ], according to the sign of σ. Hence, 

always holds, we deduce that equality (4.4.2) is satisfied L 1 -a.e. on [0, T ]. In particular, (4.4.1) must hold, otherwise the Flow-Rule will not be satisfied during a non L 1 -negligible set of times in [t 0 , T ]. Indeed, if |σ(t)| < √ 2κa 0 for some t ∈ (t 0 , T ), considering the maximal time interval t ∈ I ⊂ (t 0 , T ] during which σ never saturates the constraint, we get by continuity of σ and Theorem 4.1.1 that Int(I) is a non empty interval and µ is a constant non-zero measure on I. Moreover, there exists E ⊂ I such that L 1 (E) > 0 and σ ̸ = 0 on E. If such was not the some incremental information (see the minimality formulae and track of the history of damage [START_REF] Francfort | A Variational View of Partial Brittle Damage Evolution[END_REF]Formulae (15), ( 16), [START_REF] Bellettini | Discrete approximation of a free discontinuity problem[END_REF]]) available at the stage of time discretizations is lost once the time step has been sent to 0 (see [START_REF] Braides | Sarrocco : Quasi-static damage evolution and homogenization : a case study of non-commutability[END_REF] for a related case study of non-commutability). Indeed, let us fix a time subdivision

Following minor adaptations of the present work and passing first to the limit ε ↘ 0, we infer the existence of a piecewise constant in time evolution

with uniformly bounded variation in N such that

and for all i ∈ 0, N

,

where

and (v, η, q) ∈ A(w(t N i )) means that v ∈ BV ((0, L)), η ∈ L 2 ((0, L)), q ∈ M [0, L] , Dv = η + q (0, L) and q {0, L} = (w(t N i ) -v) δ L -δ 0 . Moreover, as we pass to the limit ε ↘ 0 in the incremental minimality [START_REF] Francfort | A Variational View of Partial Brittle Damage Evolution[END_REF]Formulae (15) and ( 16)]

ã dx óf the discrete evolution of [START_REF] Francfort | A Variational View of Partial Brittle Damage Evolution[END_REF], one could hope that (u N , e N , p N ) satisfies a stronger incremental minimality as in [49, Formula (4.12)] :

´. 

Therefore, A is an admissible competitor for the One-sided minimality of [60, Theorem 2] too.

Eventually, we conclude with a general remark by noticing that this one-dimensional analysis seems to raise the question whether Hencky perfect plasticity is distinguishable from damage or not in a static setting, as mentionned in the recent survey [78, Section 1, p10].

-Appendix

( Proof. The proof of the Γ-lim inf inequality presents no particular difficulty and we do not give the details of its proof. The key point is to extend approximating sequences u k → u by w in a larger open bounded set Ω ⊂⊂ Ω ′ and rely on [START_REF] Babadjian | Concentration versus oscillation effects in brittle damage[END_REF]Theorem 3.1] in Ω ′ to conclude.

The proof of the Γ-lim sup inequality relies on the approximation result [START_REF] Mora | Relaxation of the Hencky model in perfect plasticity[END_REF]Theorem 3.5]