Abstract

The field of modeling sequential data, such as speech signals, has made remarkable progress thanks to recent advancements in deep learning. Among the myriad of approaches, deep generative models, specifically those with explicit probability density function definitions like Variational AutoEncoders (VAEs), have gained significant attention due to their unique advantages in three crucial areas. Firstly, they operate within an unsupervised learning framework, eliminating the need for labor-intensive labeling. Secondly, they acquire expressive latent representations, enabling their application in a wide range of downstream tasks. Lastly, these models are probabilistic in nature, making them easily integrable into existing algorithms based on a Bayesian modeling framework. Nevertheless, the original vanilla VAE processes each data vector independently due to the i.i.d. assumption. This approach is suboptimal for accurately modeling correlated (temporal) sequences. Consequently, finding a suitable adaptation of the vanilla VAE to modeling sequential data remains an exciting challenge.

Under this motivation, we make the following contributions in this thesis:

(1) we thoroughly review recent advancements in extending the VAE model to accommodate sequential data and consolidate them under a general class of models called dynamical VAEs (DVAEs), providing a general definition of their generative and inference models, as well as the optimization objective;

(FTML '21) (2) we perform a quantitative benchmarking study on the existing DVAE models to assess their performance in modeling sequential data with different architecture design (FTML'21, Interspeech '21); (3) we propose a novel DVAE model that incorporates a hierarchical latent space and leverages the Transformer architecture for sequence modeling (ICASSP '23); (4) we develop an algorithm based on variational Expectation-Maximization (VEM) optimization, utilizing DVAE models for unsupervised speech enhancement (TASLP '22). To foster future research, we make all our code publicly accessible.

Résumé

Le domaine de la modélisation des données séquentielles, telles que les signaux de parole, a connu des progrès remarquables grâce aux récents développements dans l'apprentissage profond. Parmi la myriade d'approches, les modèles génératifs profonds, en particulier ceux ayant des définitions explicites de fonctions de densité de probabilité comme les Variational AutoEn- ; 4) nous développons un algorithme basé sur l'optimisation variationnelle de l'Expectation-Maximization (VEM), en utilisant des modèles DVAE pour l'amélioration non supervisée de la parole (TASLP '22). Pour favoriser la recherche future, nous mettons tout notre code à disposition du public.
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Yu Tsao, Dr. Antoine Deleforge, Prof. Yingzhen Li, and Prof. Franc ¸ois Portet, for their across the different approaches. Nevertheless, these models can be grossly classified into the following two categories. Using the terminology of [START_REF] Peter | Monte Carlo methods of inference for implicit statistical models[END_REF], the first category corresponds to prescribed models for which the probability density function (pdf) of the generative model is defined explicitly, generally through a parametric form. The second category corresponds to implicit models that can generate data "directly," without using an explicit formulation and manipulation of a pdf model. Generative adversarial networks (GANs) are a popular example of this second category [START_REF] Goodfellow | Generative adversarial nets[END_REF][START_REF] Goodfellow | Deep Learning[END_REF][START_REF] Goodfellow | Nips 2016 tutorial: Generative adversarial networks[END_REF]. While the implicit models aim at generating high-quality data [START_REF] Zhu | Unpaired image-toimage translation using cycle-consistent adversarial networks[END_REF][START_REF] Karras | A style-based generator architecture for generative adversarial networks[END_REF][START_REF] Pan | Drag your gan: Interactive point-based manipulation on the generative image manifold[END_REF], the prescribed models can be easily plugged into a more general Bayesian framework, not only for generating data but also for modeling the data structure (without actually generating them) in various applications (e.g., feature extraction, data denoising or transformation).

In this manuscript, we focus on an important subfamily of the first category, namely the Deep Dynamical Bayesian Networks (DDBNs), which are built on the Bayesian Networks (BNs) [START_REF] Bishop | Pattern Recognition and Machine Learning[END_REF] with temporal dependencies (hence the term Dynamical) being modeled by DNNs (hence the term Deep). As illustrated in Fig. 1.1, DDBNs can be equally seen as dynamical versions of deep BNs or deep versions of dynamical BNs. As an extension of dynamical BNs, DDBNs are expected to be powerful tools for modeling dynamical systems and/or data sequences. However, the combination of probabilistic modeling with DNNs in deep BNs can result in complex and costly model training. For efficient inference and training, Kingma et al. [START_REF] Diederik | Auto-encoding variational Bayes[END_REF] and Rezende et al. [START_REF] Jimenez Rezende | Stochastic backpropagation and approximate inference in deep generative models[END_REF] proposed to introduce the variational methodology to a fundamental deep BN architecture, where high-dimensional observed data is generated from the low-dimensional latent variable (aka latent variable models), resulting in the Variational AutoEncoder (VAE). A graphical taxonomy of generative probabilistic models (figure extracted from [START_REF] Girin | Dynamical variational autoencoders: A comprehensive review[END_REF].

As a deep BN, the original VAE did not include temporal modeling. This means that each data vector is processed independently of the other data vectors (and the corresponding latent vector is also processed independently of the other latent vectors), which is clearly suboptimal for the modeling of correlated (temporal) vector sequences. This motivates us to delve into extensions of VAE models with temporal correlation, namely dynamical VAEs (DVAEs [START_REF] Girin | Dynamical variational autoencoders: A comprehensive review[END_REF]) (i.e., VAEs including a temporal model for modeling sequential data).

OUTLINE AND CONTRIBUTIONS

In the years following the publication of VAE [START_REF] Diederik | Auto-encoding variational Bayes[END_REF][START_REF] Jimenez Rezende | Stochastic backpropagation and approximate inference in deep generative models[END_REF], this methodology was extended with a temporal model and successfully applied to the modeling of sequential data [START_REF] Rahul | Deep Kalman filters[END_REF][START_REF] Rahul | Structured inference networks for nonlinear state space models[END_REF][START_REF] Bayer | Learning stochastic recurrent networks[END_REF][START_REF] Chung | A recurrent latent variable model for sequential data[END_REF][START_REF] Fraccaro | Sequential neural models with stochastic layers[END_REF][START_REF] Leglaive | A recurrent variational autoencoder for speech enhancement[END_REF][START_REF] Li | Disentangled sequential autoencoder[END_REF][START_REF] Goyal | Z-forcing: Training stochastic recurrent networks[END_REF][START_REF] Hsu | Unsupervised learning of disentangled and interpretable representations from sequential data[END_REF]. On the one hand, these models preserved the unsupervised representation learning essence of the VAE, and they all feature contin-uous latent random variables in a discrete-time sequence; we name this family of models as DVAEs. On the other hand, these models differ in their approaches to defining the dependencies between the observed and latent variables, as well as how they establish and parameterize the corresponding generative and inference model. In this thesis, we focus on these DVAE models. In Chapter 2, we start with a discussion of sequence-to-sequence modeling in the early years, then we delve into a comprehensive literature review that highlights the most recent advancements in sequence-to-sequence modeling, with a specific emphasis on the utilization of self-supervised learning techniques. Specifically, we concentrate on relevant studies especially those dealing with speech data. Then, in the following chapters, we present the contributions of this thesis, which are summarized as follows:

Chapter 3: Unification of DVAE models

We explore the structure of dependencies between the observed and latent random variables in DVAE pdfs, as well as how these dependencies are implemented with neural networks. We analyze the design of inference models considering the general methodology used to identify the actual dependencies of the latent variables at inference time.

Furthermore, we discuss the computation of the objective function for training DVAEs.

Chapter 4: Benchmark of a set of DVAE models

We re-implemented six representative DVAE models in a unified framework and conducted a qualitative benchmark on two different types of data (speech signals and 3D human motion sequences). We evaluate and compare the models extensively, and discuss the effect of different designs of the model architecture.

Chapter 5: Hierarchical Transformer DVAE

We propose a novel DVAE model with a hierarchical latent space, where the correspondence within different time frames is modeled with the Transformer architecture [START_REF] Vaswani | Attention is all you need[END_REF].

We implement this model and test it on both speech signals and 3D human motion sequences, showing the superiority of the proposed model in speech modeling/generation and motion generation.

Chapter 6: DVAE for unsupervised speech enhancement

We integrate the class of DVAE models into a Bayesian framework for the application of unsupervised speech enhancement. We derive the general optimization equations in such framework/task, showcasing their practical implementation with different variants.

Through comparative analysis, we demonstrate the superiority of our DVAE-based approach over other unsupervised methods and its robustness in comparison to supervised techniques. We contribute a novel and effective solution for enhancing speech from noisy observation in an unsupervised manner.

Finally, we conclude and discuss future research directions for DVAEs in Chapter 7 

APPROACHES

Sequential data refers to a type of data that is ordered and in which there exist correlations between successive data vectors. Examples of sequential data include speech, video, and text. In the 1960s, Rudolf Kalman introduced the famous Kalman filter [START_REF] Emil | A new approach to linear filtering and prediction problems[END_REF] for sequential data modeling. More specifically, the Kalman filter was used for sequential data trajectory recovery from noisy observations, but the model that is used within this filter contains a dynamical model, i.e. a model of data evolution through time, via the evolution of a latent variable (i.e. an unobserved random (multidimensional) variable that is assumed to govern the dynamics of the observed data). Since then, this kind of models, which describe the probabilistic dependence between successive latent vectors and between the latent (state) variable and the observed measurement, are well known as state-space models (SSMs) or hidden Markov models (HMMs) (depending on the continuous vs discrete nature of the latent variable). These models have been widely used for modeling dynamical systems in various fields such as statistical signal processing, timeseries analysis, and control theory [START_REF] Durbin | Time series analysis by state space methods[END_REF]. Over the years, Kalman filters have been extended

from the original linear-Gaussian model to non-linear models, e.g., the extended Kalman filter and the unscented Kalman filter [START_REF] Garry | Robust extended Kalman filtering[END_REF][START_REF] Zarchan | Progress in astronautics and aeronautics: fundamentals of Kalman filtering: a practical approach[END_REF].

In the last decade, deep learning has demonstrated exceptional capabilities in processing data [START_REF] Goodfellow | Deep Learning[END_REF]. As an extension of feedforward neural networks, recurrent neural networks (RNNs) have gained huge popularity for modeling sequences of variable length [START_REF] Sutskever | Training recurrent neural networks[END_REF].

RNNs are particularly effective in sequence-to-sequence modeling tasks. [START_REF] Sutskever | Sequence to sequence learning with neural networks[END_REF]. To enhance the capabilities of RNNs, techniques such as long-short term memory (LSTM) [START_REF] Hochreiter | Long short-term memory[END_REF], gated function / gated recurrent unit (GRU) [START_REF] Cho | Learning phrase representations using RNN encoder-decoder for statistical machine translation[END_REF], and attention mechanism [START_REF] Bahdanau | Neural machine translation by jointly learning to align and translate[END_REF][START_REF] Xu | Show, attend and tell: Neural image caption generation with visual attention[END_REF] have been developed. These enhancements have improved the ability of RNNs to capture longterm dependencies and handle sequential data more effectively. More recently, research has shown that sequential data can be effectively modeled using attention mechanisms alone, aka Transformers [START_REF] Vaswani | Attention is all you need[END_REF].

Although early deep learning models were primarily trained with supervision [START_REF] Lecun | Deep learning[END_REF],

where labeled data was provided for each observation as the training target, the resourceintensive nature of labeling has imposed limitations on the advancement of deep learning models, specifically the scalability and generability. To address this challenge, researchers investigate learning meaningful representations of the input data in an unsupervised manner, which can be used in downstream tasks with a small amount of labeled data [START_REF] Hinton | Learning multiple layers of representation[END_REF][START_REF] Lecun | A tutorial on energy-based learning[END_REF][START_REF] Bengio | Representation learning: A review and new perspectives[END_REF].

The main focus of this manuscript is self-supervised learning (SSL) applied to complex sequential data, with a particular emphasis on deep generative models designed for speech and audio. As an increasingly popular subcategory of unsupervised learning methods, SSL leverages information extracted from the input data itself as labels to learn valuable representations applicable to subsequent tasks. We are particularly interested in the recent trend of SSL methods, for two reasons. First, there is a strong connection between the representation that is learned in SSL models and the latent variable that is at the core of the DVAEs (and in the following of this manuscript, we will also see strong connexions between the latent variable that is at the core of the DVAEs and the latent variable of SSMs such as the Kalman filter and deep extensions of it). Second, these SSL models (and the DVAEs) have been applied to model speech data, and we will extensively consider speech data in the thesis (but not exclusively, we will also consider human motion data). Therefore, in the following of this chapter, we focus our literature review in this area. In recent approaches, SSL is usually performed by learning the network that maps the input to desired representations by solving a pretext task [START_REF] Mohamed | Self-supervised speech representation learning: A review[END_REF]. Based on their objectives, pretext tasks in SSL can be broadly categorized into three main groups: generative approaches, contrastive approaches and predictive approaches [START_REF] Mohamed | Self-supervised speech representation learning: A review[END_REF]. These categories encompass various strategies employed to train models in a self-supervised manner.

GENERATIVE APPROACHES

In the generative approaches, features are learned by reconstructing the input data through an information bottleneck (autoencoders) or a partial observation (in-context prediction).

AUTOENCODERS

Autoencoders (AEs) [START_REF] Hinton | Autoencoders, minimum description length and Helmholtz free energy[END_REF] were first introduced by Hinton et al.in 1990s. These models comprise an encoder that compresses information into a lower-dimensional embedding space, along with a decoder to reconstruct the data from this embedding. This encoding and decoding operation encourages the model to capture meaningful features while discouraging the learning of trivial solutions and discarding low-level details. To avoid overfitting the training data in the vanilla AEs, later works add regularization in the embedding space. For instance, denoising autoencoders (DAEs) [START_REF] Vincent | Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion[END_REF] were learned to reconstruct the data from noisy observations.

Inspired from the encoder-decoder architecture, Kingma et al. [START_REF] Diederik | Auto-encoding variational Bayes[END_REF] and Rezende et al. [START_REF] Jimenez Rezende | Stochastic backpropagation and approximate inference in deep generative models[END_REF] proposed a probabilistic version of AEs, called Variational Autoencoders (VAEs).

Different from AEs, the objective of VAEs is to learn the distribution of the input data and the distribution of the embedding vectors at the AE bottleneck, now referred to as latent variables. VAEs were built upon the variational Bayes framework, where the decoding and the encoding can be considered as a probabilistic generative process and a variational inference process, respectively. While VAEs assume that the successive data vectors are independent and identically distributed (i.i.d), speech is fundamentally a sequential phenomenon, where there is a significant correlation between different frames or time steps. Consequently, approaches for encoding speech data into latent spaces have evolved in two main directions. The first encodes a whole speech sequence into a single latent vector [START_REF] Hsu | Learning latent representations for speech generation and transformation[END_REF][START_REF] Hsu | Unsupervised learning of disentangled and interpretable representations from sequential data[END_REF]. The second encodes a speech sequence into a corresponding sequence of latent variables and allows the model to capture time correspondence.

DVAEs [START_REF] Girin | Dynamical variational autoencoders: A comprehensive review[END_REF] can be considered as the unification of the latter category, where the time correspondence is learned in practice using various techniques such as Recurrent Neural Networks (RNNs) [START_REF] Chung | A recurrent latent variable model for sequential data[END_REF][START_REF] Fraccaro | Sequential neural models with stochastic layers[END_REF], Temporal Convolutional Networks (TCNs) [2,[START_REF] Richter | Speech enhancement with stochastic temporal convolutional networks[END_REF], or

Transformers [START_REF] Jiang | Transformer VAE: A hierarchical model for structure-aware and interpretable music representation learning[END_REF][START_REF] Bie | HiT-DVAE: Human motion generation via hierarchical Transformer dynamical VAE[END_REF].

Although VAEs have made remarkable progress in self-supervised learning [START_REF] Diederik P Kingma | Semi-supervised learning with deep generative models[END_REF][START_REF] Maaløe | Auxiliary deep generative models[END_REF],

they suffer from posterior collapse during training [START_REF] Yeung | Tackling overpruning in variational autoencoders[END_REF][START_REF] Dai | Diagnosing and enhancing VAE models[END_REF][START_REF] Adji B Dieng | Avoiding latent variable collapse with generative skip models[END_REF][START_REF] Jimenez | Taming VAEs[END_REF][START_REF] Battenberg | Effective use of variational embedding capacity in expressive end-to-end speech synthesis[END_REF], that is, some dimensions of the latent variable can become non-informative. In practice, a combination of heuristic algorithms is often used to mitigate this problem [START_REF] Lucas | Don't blame the ELBO! a linear VAE perspective on posterior collapse[END_REF][START_REF] Razavi | Preventing posterior collapse with delta-VAEs[END_REF][START_REF] Dai | The usual suspects? reassessing blame for VAE posterior collapse[END_REF][START_REF] Dai | Diagnosing and enhancing VAE models[END_REF][START_REF] Adji B Dieng | Avoiding latent variable collapse with generative skip models[END_REF][START_REF] Jimenez | Taming VAEs[END_REF][START_REF] Battenberg | Effective use of variational embedding capacity in expressive end-to-end speech synthesis[END_REF].

In parallel, van den Oord et al.introduced a novel approach where instead of a continuous latent space as in the vanilla VAE, a discrete latent space is learned using vector quantization (VQ) applied to the encoder's output. This approach is commonly referred to as VQ-VAEs [START_REF] Van Den | Neural discrete representation learning[END_REF][START_REF] Razavi | Generating diverse high-fidelity images with vq-vae-2[END_REF]. By incorporating quantization into the latent space, VQ-VAEs ensure a constant Kullback-Leibler (KL) divergence, effectively mitigating the issue of posterior collapse. In the recent studies, VQ-VAEs have been widely applied to various audio applications, such as neural audio compression (e.g. SoundStreams [START_REF] Zeghidour | Soundstream: An end-to-end neural audio codec[END_REF], En-Codec [START_REF] Défossez | High fidelity neural audio compression[END_REF]), speech generation (e.g. Jukebox [START_REF] Dhariwal | Jukebox: A generative model for music[END_REF], AudioLM [START_REF] Borsos | Audiolm: a language modeling approach to audio generation[END_REF]), text-to-speech/audio generation (e.g. MusicLM [START_REF] Agostinelli | Musiclm: Generating music from text[END_REF], VALL-E [START_REF] Wang | Neural codec language models are zero-shot text to speech synthesizers[END_REF]), and generative spoken language modeling (GSLM) [START_REF] Lakhotia | On generative spoken language modeling from raw audio[END_REF][START_REF] Polyak | Speech resynthesis from discrete disentangled self-supervised representations[END_REF][START_REF] Kharitonov | Text-free prosody-aware generative spoken language modeling[END_REF][START_REF] Tu | Generative spoken dialogue language modeling[END_REF] 

IN-CONTEXT PREDICTION

In-context prediction refers to the ability of a model to generate coherent and relevant responses based on the context provided in the input. This allows the model to understand the dependencies and correlations between different features within the data. By incorporating context, the model can learn to recognize and extract meaningful information from the input. In-context prediction can be roughly divided into two categories, autoregressive prediction, and masked reconstruction.

Taking inspiration from the classic Linear Predictive Coding (LPC) for speech feature extraction [START_REF] Douglas | Linear predictive coding[END_REF], Chung et al.proposed the autoregressive predictive coding (APC) [START_REF] Chung | An unsupervised autoregressive model for speech representation learning[END_REF][START_REF] Chung | Generative pre-training for speech with autoregressive predictive coding[END_REF]. Given a speech utterance represented as a sequence of acoustic feature vectors (e.g. log Mel spectrograms), APC autoregressively encodes each frame until the current timestep, and tries to predict a future frame. Different from flow-based models [START_REF] Van Den Oord | Wavenet: A generative model for raw audio[END_REF][START_REF] Chorowski | Unsupervised speech representation learning using wavenet autoencoders[END_REF] or GPT series [START_REF] Brown | Language models are few-shot learners[END_REF], which learns latent representations by predicting the next frame based on previous observations, APC model learns to predict over longer intervals which encourages to infer more global structures in speech data rather than exploiting local smoothness of signals [START_REF] Chung | An unsupervised autoregressive model for speech representation learning[END_REF]. This distinction arises from the characteristic smoothness of speech signals, where neighboring acoustic features tend to exhibit similarity. This work underwent further advancements through the incorporation of vector-quantization [START_REF] Chung | Vector-quantized autoregressive predictive coding[END_REF].

This addition introduced an information bottleneck that functions as a regularizer, enhancing the overall performance and effectiveness of the approach. To be noted that APC model [START_REF] Chung | An unsupervised autoregressive model for speech representation learning[END_REF][START_REF] Chung | Generative pre-training for speech with autoregressive predictive coding[END_REF] operates as a causal system, extracting features from previous timesteps.

While this design choice is suitable for online applications, its performance may be compromised in offline scenarios. To overcome this limitation, DeCoAR [START_REF] Ling | Deep contextualized acoustic representations for semi-supervised speech recognition[END_REF] incorporated bidirectional LSTM to achieve improved performance.

Learning representations via self-supervised masked reconstruction was first proposed from BERT [START_REF] Devlin | Bert: Pretraining of deep bidirectional transformers for language understanding[END_REF] in natural language processing. During BERT pre-training, a random subset of the tokens is replaced either by a trainable masking token or another token from the input. This masking procedure enables the model to learn the task of reconstructing the original tokens from the context provided by the non-masked tokens. This approach, akin to the DeCoAR model mentioned earlier, enables models to acquire contextualized representations that encode information from the entire input. However, in contrast, models based on masked reconstruction differ in that they also consider the masked region as input, but replace it with other tokens during training. Typical work in this area model contextual information either with a Transformer encoder [START_REF] Liu | Mockingjay: Unsupervised speech representation learning with deep bidirectional transformer encoders[END_REF][START_REF] Jiang | Improving transformer-based speech recognition using unsupervised pre-training[END_REF][START_REF] Liu | Masked pre-trained encoder based on joint CTCtransformer[END_REF] or RNNs [START_REF] Wang | Unsupervised pre-training of bidirectional speech encoders via masked reconstruction[END_REF].

In the standard BERT masking policy, each token is independently and randomly masked.

However, this is not well-suited for speech data due to the smoothness of acoustic features.

Masking a single sample or a spectrogram frame individually may lead to trivial solutions and hinder meaningful representation learning. To address this, it has become common practice in speech-related tasks to mask chunks of consecutive frames [START_REF] Liu | Mockingjay: Unsupervised speech representation learning with deep bidirectional transformer encoders[END_REF][START_REF] Jiang | A further study of unsupervised pretraining for transformer based speech recognition[END_REF]. This modified masking strategy better captures the temporal dependencies and smoothness present in speech data, enabling more effective representation learning. Furthermore, in the case of pMPC [START_REF] Yue | Phonetically motivated self-supervised speech representation learning[END_REF], masked speech frames are selected based on the phonetic segmentation within an utterance. However, some annotated data is necessary to derive the segmentation used for selecting the masked frames in pMPC. Whereas the majority of studies focus on masking along the temporal dimension of speech input, it is worth noting that masking can also be applied along the frequency dimension [START_REF] Liu | Masked pre-trained encoder based on joint CTCtransformer[END_REF][START_REF] Liu | Tera: Self-supervised learning of transformer encoder representation for speech[END_REF] or in a patch level [START_REF] He | Masked autoencoders are scalable vision learners[END_REF]. Inspired from the image-based Masked Autoencoders (MAE) [START_REF] He | Masked autoencoders are scalable vision learners[END_REF],

AudioMAE [START_REF] Huang | Masked autoencoders that listen[END_REF] took the audio spectrogram as an image and split it into small patches.

Then it encoded these patches with a high masking ratio and learn to reconstruct them via a decoder. Since the audio spectrograms are highly correlated in local time and frequency bands, AudioMAE found it beneficial to add local window attention [START_REF] Liu | Swin transformer: Hierarchical vision transformer using shifted windows[END_REF][START_REF] Li | Mvitv2: Improved multiscale vision transformers for classification and detection[END_REF] in the Transformer decoder. This masking policy has been shown to be effective for audio and speech classification [START_REF] Liu | Tera: Self-supervised learning of transformer encoder representation for speech[END_REF][START_REF] Huang | Masked autoencoders that listen[END_REF]. In addition to masking on the spectrogram, non-autoregressive predictive coding (NPC) [START_REF] Liu | Non-autoregressive predictive coding for learning speech representations from local dependencies[END_REF] explored to mask directly on the raw waveform through masked convolution blocks.

CONTRASTIVE APPROACHES

Although generative approaches have shown successful applications in vision [START_REF] Razavi | Generating diverse high-fidelity images with vq-vae-2[END_REF][START_REF] Esser | Taming transformers for highresolution image synthesis[END_REF][START_REF] He | Masked autoencoders are scalable vision learners[END_REF] and text [START_REF] Devlin | Bert: Pretraining of deep bidirectional transformers for language understanding[END_REF][START_REF] Brown | Language models are few-shot learners[END_REF], however, it is important to acknowledge that speech data inherently comprises entangled features (e.g. speaker identity, emotions). When using generative objectives for learning features from such data, the resulting representations may encompass a mixture of different aspects. This can be problematic for downstream tasks that require specific levels of features, such as obtaining the corresponding semantic text transcription in automatic speech recognition (ASR).

In the general machine learning community, contrastive learning has gained significant traction to learn a distance metric that "A is closer to B than A is to C" [START_REF] Schultz | Learning a distance metric from relative comparisons[END_REF]. In contrastive approaches, features are learned by distinguishing a target sample (positive) from distractor samples (negatives) based on an anchor representation. The pretext task is to maximize the similarity in the latent space between the anchor and positive samples, while simultaneously minimizing the similarity between the anchor and negative samples. By doing so, contrastive models aim to create a representation space where similar samples are brought closer together while pushing dissimilar samples further apart. This enables the model to learn meaningful and discriminative representations that capture the underlying structure and patterns in the data.

Contrastive Predictive Coding (CPC) [START_REF] Van Den Oord | Representation learning with contrastive predictive coding[END_REF] is the first contrastive model applied in un-supervised speech representation learning. Similar to APC models [START_REF] Chung | An unsupervised autoregressive model for speech representation learning[END_REF][START_REF] Chung | Generative pre-training for speech with autoregressive predictive coding[END_REF], CPC model accumulates historical information with an auto-regressive model and generated predictions for future time steps, while the objective is no longer to minimize the reconstruction loss but to maximize the mutual information of observations over long time horizons via InfoNCE loss with a positive sample and N -1 negative samples, which is inspired from Noise-Contrastive Estimation (NCE) [START_REF] Gutmann | Noise-contrastive estimation: A new estimation principle for unnormalized statistical models[END_REF]. CPC shows that using negative samples drawn from the same speakers during training leads to the best performance in phone classification.

The wav2vec [START_REF] Schneider | wav2vec: Unsupervised pre-training for speech recognition[END_REF] model extends the CPC model with fully convolutional architecture and changes the loss function from a 1-of-N classification to a binary classification.

Then, rather than directly using features from the autoregressive model, vq-wav2vec [START_REF] Baevski | vq-wav2vec: Self-supervised learning of discrete speech representations[END_REF] inserts a quantization between the feature extraction and aggregation. By discretizing the feature, it becomes feasible to integrate the model with BERT pretraining, leading to significant enhancements in performance for the downstream ASR task. Later, the wav2vec 2.0 model [START_REF] Baevski | wav2vec 2.0: A framework for self-supervised learning of speech representations[END_REF] adds a masked Transformer and a quantizer in parallel to the latent features extracted from the raw waveform, and uses the InfoNCE loss between the context representations obtained from the Transformer and the quantized representations obtained from the quantizer. Different from wav2vec [START_REF] Schneider | wav2vec: Unsupervised pre-training for speech recognition[END_REF] and vq-wav2vec [START_REF] Baevski | vq-wav2vec: Self-supervised learning of discrete speech representations[END_REF], wav2vec 2.0 uses multiple negative samples as in CPC [START_REF] Van Den Oord | Representation learning with contrastive predictive coding[END_REF]. The wav2vec 2.0 approach achieved a significant milestone by attaining single-digit word error rate (WER) on the dev/test sets of LibriSpeech [START_REF] Panayotov | Librispeech: an ASR corpus based on public domain audio books[END_REF] using only 10 minutes of labeled data from the low-resource Libri-light for fine-tuning. The success of the wav2vec 2.0 approach has served as an inspiration for numerous subsequent studies in the field, such as combing with quantized id prediction in w2v-BERT [START_REF] Chung | W2v-bert: Combining contrastive learning and masked language modeling for self-supervised speech pre-training[END_REF] and reconstructing the quantized units for consistency in wav2vecc [START_REF] Sadhu | Wav2vec-c: A selfsupervised model for speech representation learning[END_REF].

PREDICTIVE APPROACHES

Similar to the aforementioned contrastive approaches, predictive approaches also involve utilizing a learned target for the pretext task. However, in contrast to the contrastive meth-ods, they do not utilize a contrastive loss. Instead, predictive approaches leverage the output generated by a teacher model as the target for prediction. Consequently, the predictive setup bears a resemblance to teacher-student training (also known as self-distilled self-supervised learning), wherein knowledge transfer occurs from the teacher model to the student model.

DiscreteBERT [START_REF] Baevski | Effectiveness of selfsupervised pre-training for speech recognition[END_REF] is the first predictive approach in self-supervised speech learning.

It extracts the discrete features using a pre-trained vq-wav2vec [START_REF] Baevski | vq-wav2vec: Self-supervised learning of discrete speech representations[END_REF], then uses them as inputs and targets in a standard BERT model [START_REF] Devlin | Bert: Pretraining of deep bidirectional transformers for language understanding[END_REF]. Similar to BERT, DiscreteBERT is trained using a categorical cross-entropy loss function and holds the distinction of being the pioneering model to showcase the efficacy of self-supervised speech representation learning by achieving a WER of 16.3% and 25.2% respectively on the test-clean and test-other subset of LibriSpeech [START_REF] Panayotov | Librispeech: an ASR corpus based on public domain audio books[END_REF].

Rather than using a teacher model pre-trained in a contrastive approach (e.g. vq-wav2vec [START_REF] Baevski | vq-wav2vec: Self-supervised learning of discrete speech representations[END_REF]), HuBERT [START_REF] Hsu | Hubert: Self-supervised speech representation learning by masked prediction of hidden units[END_REF] takes inspiration from Deep Clustering method for selfsupervised visual learning [START_REF] Caron | Deep clustering for unsupervised learning of visual features[END_REF]. It uses a similar convolutional architecture as in the wav2vec 2.0 [START_REF] Baevski | wav2vec 2.0: A framework for self-supervised learning of speech representations[END_REF] but starts from learning to predict the quantized MFCC features which are learned with k-means clustering, then iteratively re-training the model by predicting the quantized features from the previously-trained model. This training strategy showed a high mutual information between learned features and phoneme labels [START_REF] Hsu | Hubert: Self-supervised speech representation learning by masked prediction of hidden units[END_REF]. The Hu-BERT model is designed to learn both an acoustic and a language model simultaneously by applying the prediction loss over the masked regions only. It accomplishes this through two key objectives. Firstly, the model is trained to acquire a meaningful continuous latent representation for unmasked timesteps, which are then mapped to discrete units. This WavLM [START_REF] Chen | Wavlm: Largescale self-supervised pre-training for full stack speech processing[END_REF] further extends the HuBERT model by incorporating several additional techniques to enhance its performance. Firstly, WavLM combines the masked speech prediction in HuBERT and the speech denoising by mixing utterances with multiple speakers and various background noise. Furthermore, it adds a gated relative position bias [START_REF] Chi | Xlm-e: Cross-lingual language model pre-training via electra[END_REF] softmax normalization of the attention blocks. This bias allows the model to better capture the relationships between different positions in the input sequence, improving its ability to understand the context. These refinements contribute to the overall effectiveness of WavLM, enabling it to achieve improved performance in various speech-related tasks.

While HuBERT and WavLM utilize a k-means algorithm to derive discrete labels from the intermediate features, a recent model called BEATs [START_REF] Chen | Beats: Audio pre-training with acoustic tokenizers[END_REF] introduced a different approach, where they train an acoustic tokenizer iteratively with the guidance of the last round SSL model. In the initial iteration, since the teacher model is not available, they employ a Random-Projection Tokenizer as a cold start. However, it's important to note that the BEATs model treats the audio spectrogram as an image and utilizes a ViT encoder [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF][START_REF] Touvron | Training data-efficient image transformers & distillation through attention[END_REF]. While this approach yields promising results in speech classification tasks, it lacks performance evaluation on phoneme-related tasks such as ASR.

Instead of relying on predicting cluster center assignments, data2vec [START_REF] Baevski | Data2vec: A general framework for self-supervised learning in speech, vision and language[END_REF] draws inspiration from the effective utilization of exponential moving average (EMA) teacher for self-supervised visual representation learning [START_REF] Grill | Bootstrap your own latent -a new approach to self-supervised learning[END_REF][START_REF] Caron | Emerging properties in self-supervised vision transformers[END_REF] and further extends them by aligning features from multiple intermediate layers. The data2vec [START_REF] Baevski | Data2vec: A general framework for self-supervised learning in speech, vision and language[END_REF] model not only surpasses the aforementioned HuBERT model and the WavLM model in speech data but also shows promising results in representation learning in vision and text. Notably, data2vec [START_REF] Baevski | Data2vec: A general framework for self-supervised learning in speech, vision and language[END_REF] is the first approach to achieve superior or competitive results compared to state-of-the-art methods using the same learning method in all three modalities. Ad-ditionally, data2vec 2.0 [START_REF] Baevski | Efficient selfsupervised learning with contextualized target representations for vision, speech and language[END_REF] significantly accelerates the training process by employing multiple student candidates and eliminating the encoding of masked tokens.

CONCLUSION

In this manuscript, we are interested in the first category of pretext tasks, the generative approaches. Specifically, we delve into the temporal extension of VAEs by incorporating sequential latent variables. These innovative approaches facilitate the construction of intricate correspondences between data and latent variables across different time steps.

By training both a relevant generative model and an inference model in parallel, we aim to harness the full potential of these techniques. 

INTRODUCTION

As a deep Bayesian Network (BN), the original VAE proposed in [START_REF] Diederik | Auto-encoding variational Bayes[END_REF][START_REF] Jimenez Rezende | Stochastic backpropagation and approximate inference in deep generative models[END_REF] did not include temporal modeling. This means that each data vector was processed independently of the other data vectors (and the corresponding latent vector was also processed independently of the other latent vectors). This is clearly suboptimal for the modeling of correlated (temporal) vector sequences. In the following years, the VAE methodology was extended and successfully applied to several more complex deep Bayesian Networks (e.g.

deep Kalman filter (DKF) [START_REF] Rahul | Deep Kalman filters[END_REF][START_REF] Rahul | Structured inference networks for nonlinear state space models[END_REF], stochastic recurrent neural network (STORN) [START_REF] Bayer | Learning stochastic recurrent networks[END_REF],

variational recurrent neural network (VRNN) [START_REF] Chung | A recurrent latent variable model for sequential data[END_REF], another type of stochastic recurrent neural network (SRNN) [START_REF] Fraccaro | Sequential neural models with stochastic layers[END_REF], recurrent variational autoencoder (RVAE) [START_REF] Leglaive | A recurrent variational autoencoder for speech enhancement[END_REF], disentangled sequential autoencoder (DSAE) [START_REF] Li | Disentangled sequential autoencoder[END_REF] etc). In particular, they were applied to deep

BNs with a temporal model (i.e. DDBNs) dedicated to the modeling of sequential data exhibiting temporal correlation. In addition to including temporal dependencies, the essence of the unsupervised representation learning in VAE is preserved and cherished in these studies. These DDBNs combine the observed and latent variables and aim at modeling not only data dynamics but also discovering the latent factors governing them. To achieve this aim, these models are trained using the VAE methodology (i.e., design of an inference model and maximization of the corresponding VLB). We can thus encompass these In contrast, they are all characterized by the following common set of features. First, as stated above, they are all trained using the VAE methodology, possibly with a few adaptations and refinements. Second, even if the observed random vectors can be continuous or discrete, as in the original VAE formulation, they all feature continuous latent random variables. Third, all of them are sequence-to-sequence models for both encoding and decoding.

For all these reasons, we provide a formal definition of the general class of DVAEs. We describe its main properties and characteristics and how this class is related to previous classical models, such as VAEs, RNNs, and SSMs. We discuss the structure of dependencies between the observed and latent random variables in DVAE pdfs, as well as how these dependencies are implemented with neural networks. We discuss the design of inference models considering the general methodology used to identify the actual dependencies of the latent variables at inference time. We also discuss the VLB computation for training DVAEs. Our goal here is to encompass different models proposed in the literature. These models can be considered particular instances of this general definition, given simplifying assumptions. In the following, we first briefly remind the basic theory of VAE, and then define a DVAE in terms of a generative model and then present the general lines of inference and training in the DVAE framework. Finally, we will discuss how each practical implementation can be related to the general class of DVAE models.

THE ORIGINAL VAE MODEL

In this section, we recall the principles of the original VAE model [START_REF] Diederik | Auto-encoding variational Bayes[END_REF][START_REF] Jimenez Rezende | Stochastic backpropagation and approximate inference in deep generative models[END_REF], i.e. an observed variable x of high dimension F is assumed to be generated from a latent random variable z of low dimension L ≪ F . The parametric generative model of VAE can be defined as:

p θ (x, z) = p θx (x|z)p θz (z), (3.1) 
where θ = θ s ∪θ z denotes the set of parameters. In general, the latent vector z is assumed to be generated from a very simple prior distribution, typically the multivariate standard Gaussian distribution p θz (z) = N (z; 0, I) (in that case, θ z = ∅). The parameters of p θx (x|z) are provided by a complex nonlinear function of z, implemented with a DNN (and θ x is the set of parameters of this DNN).

Given a dataset X = {x n } N n=1 of N i.i.d. samples of x, a probabilistic model is traditionally optimized by maximizing the log-marginal likelihood (also called evidence), log p θ (X) = N n=1 log p θ (x n ), over the parameter set θ. In the VAE case, the complexity of p θx (x|z) makes the marginalization over the latent variable, and thus the computation of log p θ (X), intractable, and the same for the posterior distribution p θ (z|x). Therefore, instead of directly maximizing log p θ (X), an inference model is introduced as follows:

q ϕ (z|x) ≈ p θ (z|x) (3.2)
The inference model is also defined by a DNN (of parameters ϕ). Then, the following variational lower bound (VLB) [START_REF] Diederik | An introduction to variational autoencoders[END_REF] is computed:

L(θ, ϕ; X) = log p θ (X) - N n=1 D KL q ϕ (z n |x n )||p θ (z n |x n ) (3.3) = N n=1 E q ϕ (zn|xn) log p θ (x n , z n ) -log q ϕ (z n |x n ) = N n=1 E q ϕ (zn|xn) log p θx (x n |z n ) -D KL q ϕ (z n |x n )||p θz (z) , (3.4) 
where D KL (.) denotes the Kullback-Leibler (KL) divergence, which is always non-negative.

The generative model p θx (x|z) and the inference model q ϕ (z|x) are jointly trained by maximizing the VLB with respect to θ x and ϕ, using stochastic gradient descent com-bined with sampling. While the gradient w.r.t θ can be easily obtained using the standard backpropagation algorithm, the computation of the gradient w.r.t ϕ is non-trivial due to the sampling operation from q ϕ (z n |x n ). The solution to this problem, proposed by Kingma [START_REF] Diederik | Auto-encoding variational Bayes[END_REF] and referred as the reparameterization trick, consists in parametrizing the sample z (r) n using a differentiable transformation of a sample ϵ (r) drawn from a standard Gaussian distribution, which does not depend on ϕ:

z (r) n = µ ϕ (x n ) + diag{σ 2 ϕ (x n )} 1 2 ϵ (r) , ϵ (r) ∼ N (0 L , I L ). (3.5) 
Using this reparameterization trick, the Monte Carlo estimate of L(θ, ϕ; X) is now differentiable w.r.t. ϕ. This Monte Carlo approximation of the VLB is referred to as the Stochastic Gradient Variational Bayes (SGVB) estimator [START_REF] Diederik | Auto-encoding variational Bayes[END_REF]. The gradient of L(θ, ϕ; X) w.r.t. ϕ is an unbiased estimate of the gradient of the exact VLB L(θ, ϕ; X) [START_REF] Diederik | An introduction to variational autoencoders[END_REF]. This property allows using very few samples to compute the SGVB estimator, which however impacts the variance of the estimator. Kingma et al. [START_REF] Diederik | Auto-encoding variational Bayes[END_REF] suggested setting R = 1

provided that sufficiently large mini-batches are used for the gradient descent.

GENERATIVE MODEL OF DVAES

While the vanilla VAE assumes statistical independence among observation vectors, DVAEs can be seen as an extension of the VAE for modeling sequential data correlated in time.

As already mentioned, DVAEs consider a sequence of observed random vectors x 1:T = {x t ∈ R F } T t=1 and that of latent random vectors z 1:T = {z t ∈ R L } T t=1 . As opposed to the a "static" VAE and similarly to SSMs, these two data sequences are assumed to be temporally correlated and can have somewhat complex (cross-)dependencies across time.

Defining a DVAE generative model involves specifying the joint distribution of the observed and latent sequential data, p θ (x 1:T , z 1:T ), the parameters of which are provided by DNNs, which themselves depend on a set of parameters θ.

When the model works in the so-called driven mode [START_REF] Girin | Dynamical variational autoencoders: A comprehensive review[END_REF], one additionally considers an input sequence of observed random vectors u 1:T = {u t ∈ R U } T t=1 , and in that case, x 1:T is considered the output sequence. In this case, to define the full generative model, we need to specify the joint distribution p θ (x 1:T , z 1:T , u 1:T ). However, in practice, we are usually only interested in modeling the generative process of x 1:T and z 1:T given the input sequence u 1:T . Loosely speaking, the input sequence is assumed deterministic, while

x 1:T and z 1:T are stochastic. Therefore, as is commonly observed in the DVAE literature [START_REF] Rahul | Deep Kalman filters[END_REF][START_REF] Fraccaro | Sequential neural models with stochastic layers[END_REF][START_REF] Fraccaro | A disentangled recognition and nonlinear dynamics model for unsupervised learning[END_REF], we will only focus on modeling the distribution p θ (x 1:T , z 1:T |u 1:T ).

In the following paragraph, we will first omit θ when defining the general structure of dependencies in the generative model. We will specify the parameter notation later when introducing how RNNs are used to parametrize the model. In addition, we will consider the model in the driven mode (i.e., with u 1:T as input) as it is more general than that in the undriven mode (i.e., with no "external" input). The undriven mode equations can be obtained from the driven mode equations by simply removing u 1:T .

STRUCTURE OF DEPENDENCIES IN THE GENERATIVE MODEL

As we will discuss in detail in Section 7.3, a DVAE can be considered a structured or hierarchical VAE in which both observed and latent variables are a set of ordered vectors, and the ordering is imposed by time. However, the natural order present in the data does not imply a unique possible structure of variable dependencies for a DVAE generative (or inference) model. In fact, in DVAEs, the joint distribution of the observed and latent vector sequences is usually defined using the chain rule; that is, it is written as a product of conditional distributions over the vectors at different time indices. When writing the chain rule, different orderings of the random vectors can be arbitrarily chosen. This is an important point because the choice of ordering when applying the chain rule yields different practical implementations, which result in different sampling processes.

A natural choice for ordering dependencies at generation is to use a causal model. In the present context, a generation (or inference) model is said to be causal if the distribution of the generated (or inferred) variable at time t depends only on its values at previous time indices and/or on the values of the other variables at time t and at previous time indices.

If the dependency is only over future time indices, the model is said to be anticausal, and if the dependency combines the past, present, and future of the conditioning variables, the model is said to be noncausal.

Let us consider the following simple example:

p(x 1 , x 2 , z 1 , z 2 ) = p(x 2 |x 1 , z 1 , z 2 )p(z 2 |x 1 , z 1 )p(x 1 |z 1 )p(z 1 ) (3.6) = p(x 2 |x 1 , z 1 , z 2 )p(x 1 |z 1 , z 2 )p(z 2 |z 1 )p(z 1 ). (3.7) 
In Eq. 3.6, the sampling is causal because we alternate between sampling z t and x t from their past value or their past and present values, from t = 1 to 2. In contrast, in Eq. 3.7, the sampling is not causal because we first have to sample the complete sequence of latent vectors z 1:2 before sampling x 1 , and then x 2 . This principle generalizes to much longer sequences.

In the DVAE literature, causal modeling is the most popular approach. In what follows, we will therefore focus on causal modeling, but the general methodology is similar for noncausal modeling. To the best of our knowledge, only one noncausal model has been proposed in the literature: the RVAE model [START_REF] Leglaive | A recurrent variational autoencoder for speech enhancement[END_REF]. In fact, both causal and noncausal versions of RVAE were proposed in this paper.

In (causal) DVAEs, the joint distribution of the latent and observed sequences is first factorized according to the time indices using the chain rule:

p(x 1:T , z 1:T |u 1:T ) = T t=1 p(x t , z t |x 1:t-1 , z 1:t-1 , u 1:t ). (3.8) 
The only assumption made in Eq. 3.8 is the causal dependence of x t and z t on the input sequence u 1:T . Then, at each time index p(x t , z t |x 1:t-1 , z 1:t-1 , u 1:t ) is again factorized using the chain rule, so that

p(x 1:T , z 1:T |u 1:T ) = T t=1 p(x t |x 1:t-1 , z 1:t , u 1:t )p(z t |x 1:t-1 , z 1:t-1 , u 1:t ). (3.9)
This equation is a generalization of Eq. 3.6, and again, it exhibits the alternate sampling of z t and x t . For t = 1, the first terms of the products in Eq. 3.8 and Eq. 3.9 are p(x 1 , z 1 |u 1 )

and p(x 1 |z 1 , u 1 )p(z 1 |u 1 ), respectively.

We have already introduced the concept of the driven mode. In the causal context, we say that a DVAE is in the driven mode if u 1:t is used to generate either x 1:t , z 1:t , or both.

A DVAE is in predictive mode if x 1:t-1 , or part of this sequence, typically x t-1 , is used to generate either x t or z t , or both. This corresponds to feedback or closed-loop control in control theory [START_REF] Paraskevas N Paraskevopoulos | Modern control engineering[END_REF]. This is also strongly related to the concept of autoregressive process, jointly found in the control theory, machine learning, signal processing, or time-series analysis literature [START_REF] Papoulis | Signal analysis[END_REF][START_REF] Frey | Graphical models for machine learning and digital communication[END_REF][START_REF] Durbin | Time series analysis by state space methods[END_REF][START_REF] Douglas | Time series analysis[END_REF]. Therefore, in what follows, we indifferently use the terms predictive DVAE or autoregressive DVAE to qualify a DVAE in the predictive mode.

In its most general form Eq. 3.9, a DVAE is both in the driven and predictive modes; however, it can also be in only one of the two modes, or even in none of them. In the literature, we did not encounter any DVAE in both modes at the same time. Moreover, there are models in the driven and nonpredictive modes that are converted to the undriven and predictive modes by replacing the control input u t with the previously generated output x t-1 , see [START_REF] Fraccaro | Sequential neural models with stochastic layers[END_REF]. Note that a model's behavior can be quite different under the various modes. This is consistent with the concept of using a model in an open loop or in a closed loop in control theory. The principle of these different modes has been poorly discussed in the DVAE literature, and it is interesting to clarify it at an early stage of the DVAE presentation.

PARAMETERIZATION WITH (R)NNS

The factorization in Eq. 3.9 is a general umbrella for all (causal) DVAEs. As discussed above, each DVAE model will make different conditional independence assumptions, which will simplify the general factorization in various ways. Once the conditional assumptions are made, one can easily determine if there is a need to accumulate the past information (e.g., z t or x t depends on past observations x 1:t ) or if a first-order Markovian relationship holds (e.g., z t and x t depend at most on z t-1 and x t-1 ). Usually, the former is implemented using RNNs, whereas feed-forward DNNs can be used to implement first-order Markovian dependency. Moreover, once the conditional assumptions are made, the remaining dependencies can be implemented in different ways. Therefore, the final family of distributions depends not only on the conditional independence assumptions but also on the networks that are used to implement the remaining dependencies.

Let us showcase this with a concrete example in which we have the following conditional independence assumptions:

p(z t |x 1:t-1 , z 1:t-1 , u 1:t ) = p(z t |x 1:t-1 , u t ), (3.10) 
p(x t |x 1:t-1 , z 1:t , u 1:t ) = p(x t |x 1:t-1 , z t ). (3.11) 
Here, we assume that the generation of both x t and z t depends on x 1:t-1 . In addition, the generation of x t also depends on z t and that of z t also depends on u t . To accumulate the information of all past outputs x 1:t-1 , one can use an RNN. In practice, the past information is accumulated in the internal state variable of the RNN, namely h t , computed recurrently at each frame t. Among the many possible implementations, we consider two in this example: in the first implementation, illustrated in Fig. 3 Assuming that all probability distributions are Gaussian, the first implementation can be expressed as

h t = d h (x t-1 , h t-1 ; θ h ), (3.12 
)

[µ θz (x 1:t-1 , u t ), σ θz (x 1:t-1 , u t )] = d z (h t , u t ; θ hz ), (3.13) 
p θz (z t |x 1:t-1 , u t ) = N z t ; µ θz (x 1:t-1 , u t ), diag{σ 2 θz (x 1:t-1 , u t )} , (3.14) 
[µ θx (x 1:t-1 , z t ), σ θx (x 1:t-1 , z t )] = d x (h t , z t ; θ hx ), (3.15) 
p θx (x t |x 1:t-1 , z t ) = N x t ; µ θx (x 1:t-1 , z t ), diag{σ 2 θx (x 1:t-1 , z t )} , (3.16) 
where d h , d z , and d x are nonlinear functions implemented with DNNs. It is now clear that the parameters of the conditional distribution of z t are θ z = θ h ∪θ hz , whereas those of the conditional distribution of x t are θ x = θ h ∪ θ hx . Thus, the two conditional distributions share the recurrent parameters θ h . Regarding the second implementation, the generative process can be expressed as

u t-1 u t u t+1 z t-1 z t z t+1 x t-1 x t x t+1 u t-1 u t u t+1 z t-1 z t z t+1 h t-1 h t h t+1 x t-1 x t x t+1 u t-1 u t u t+1 z t-1 z t z t+1 h t-1 h t h t+1 k t-1 k t k t+1 x t-1 x t x t+1
h t = d h (x t-1 , h t-1 ; θ h ), (3.17) 
[µ θz (x 1:t-1 , u t ), σ θz (x 1:t-1 , u t )] = d z (h t , u t ; θ hz ), (3.18) 
p θz (z t |x 1:t-1 , u t ) = N z t ; µ θz (x 1:t-1 , u t ), diag{σ 2 θz (x 1:t-1 , u t )} , (3.19) 
k t = d k (x t-1 , k t-1 ; θ k ), (3.20) 
[µ θx (x 1:t-1 , z t ), σ θx (x 1:t-1 , z t )] = d x (k t , z t ; θ kx ), (3.21) 
p θx (x t |x 1:t-1 , z t ) = N x t ; µ θx (x 1:t-1 , z t ), diag{σ 2 θx (x 1:t-1 , z t )} . (3.22)
We have an additional DNN-based nonlinear function d k , and analogously, it is clear that the parameters of the conditional distribution of z t are θ z = θ h ∪ θ hz , whereas those of the conditional distribution of x t are θ x = θ k ∪ θ kx . In this case, the two conditional distributions do not share any parameter. To ease the notation, hereinafter, we will denote the parameters of p(z t |x 1:t-1 , z 1:t-1 , u 1:t ) and p(x t |x 1:t-1 , z 1:t , u 1:t ) as θ z and θ x , respectively, in Eq. 3.9, irrespective of whether or not they share some parameters.

We will also use θ to denote θ z ∪ θ x .

In and Eq. 3.22, defining the conditional distribution of x t . However, the computations performed to obtain the parameters θ z and θ x differ depending on the model. Clearly, we need to make a distinction between the two forms. We propose to call the form of a DVAE model or its graphical representation compact when only random variables appear (e.g., Eq. 3.14 and Eq. 3.16, and Figure 3.1 (left)). In addition, we propose to call the form of a DVAE or its graphical representation developed when both random and deterministic variables appear (e.g., Eq. 3.12-Eq. 3.16, Eq. 3.17-Eq. 3.22 and Fig. 3.1 (middle) and (right)). Each compact form can have different developed forms corresponding to different implementations. The distinction between the compact and developed forms is important as the optimization occurs on the parameters of the developed form, which is only a subgroup of all possible models satisfying the compact form. It is thus important to present the developed form of a model. However, the temporal dependencies of order higher than one are not directly visible in the developed graphical form, as they might be implicitly encoded in the internal state variables. For simplicity, in the following, we will only present the equations in the compact form and show the developed details in the figures of the model architecture.

INFERENCE MODEL OF DVAES

In the present DVAE context, the posterior distribution of the state sequence z 1:T is p θ (z 1:T |x 1:T , u 1:T ) in the driven mode or p θ (z 1:T |x 1:T ) in the undriven mode. As for the standard VAE described in Section 3.2, this posterior distribution is intractable because of the nonlinearities in the generative model. In fact, having temporal dependencies only makes things even more complicated. Therefore, we also need to define an inference model q ϕ (z 1:T |x 1:T , u 1:T ), which is an approximation of the intractable posterior distribution p θ (z 1:T |x 1:T , u 1:T ). Same to the original VAE, this model is required not only for performing inference of the latent sequence z 1:T from the observed sequences x 1:T and u 1:T but also for estimating the parameters of the generative model, as will be seen below. As for the standard VAE again, the inference model also uses DNNs to generate its parameters.

EXPLOITING D-SEPARATION

In a Bayesian network, and in a DVAE in particular, even though the computation of the posterior distribution is often intractable, there exists a general methodology to express its general form (i.e., to specify the dependencies between the variables of a generative model at inference time). This methodology is based on the so-called D-separation property of Bayesian networks [START_REF] Geiger | Identifying independence in Bayesian networks[END_REF][START_REF] Bishop | Pattern Recognition and Machine Learning[END_REF]. The general principle is that some of the conditioning variables in the expression of the posterior distribution of a given variable can vanish depending on whether the nodes between these conditioning variables and the given variable represent variables that are observed or unobserved and depending on the direction of the dependencies (i.e., the direction of the arrows of the graphical representation).

In detail, D-separation is based on the three principles derived for a Bayesian network with three random variables a, b, and c:

• A tail-to-tail (or common parent) node c corresponding to the structure a ← c → b makes the two other nodes a and b conditionally independent when it is observed.

In short, we have p(a, b|c) = p(a|c)p(b|c).

• A head-to-tail (or cascade) node c corresponding to the structure a → c → b or a ← c ← b makes the two other nodes a and b conditionally independent when it is observed. In short, we have p(a, b|c) = p(a|c)p(b|c). D-separation is helpful even for more conventional (i.e., nondeep) models because the algebraic derivation of a posterior distribution from a joint distribution is not always easy.

In the present variational framework, we can exploit the above methodology to design the approximate posterior distribution q ϕ . It is reasonable to assume that a good candidate for q ϕ will have the same structure as the exact posterior distribution in terms of variable dependency. In other words, if we cannot derive the exact posterior distribution, let us at least use an approximation that exhibits the same dependencies between variables so that it is fed with the same information. Yet, it is quite surprising to see that a significant proportion of the DVAE papers we have reviewed, especially the early papers, neither refer to this methodology nor consider looking at the form of the exact posterior distribution when designing an approximate distribution. In the early studies in particular, the formulation of q ϕ is chosen quite arbitrarily and with no reference to the structure of the exact posterior distribution [START_REF] Bayer | Learning stochastic recurrent networks[END_REF][START_REF] Chung | A recurrent latent variable model for sequential data[END_REF]. In more recent papers however, the structure of q ϕ generally follows that of the exact posterior distribution [START_REF] Rahul | Deep Kalman filters[END_REF][START_REF] Rahul | Structured inference networks for nonlinear state space models[END_REF][START_REF] Leglaive | A recurrent variational autoencoder for speech enhancement[END_REF].

NONCAUSAL AND CAUSAL INFERENCE

Being aware of this problem, we can now go back to the general form of the exact posterior distribution and factorize it as follows, applying again the chain rule the same way as we did for the generative model:

p θ (z 1:T |x 1:T , u 1:T ) = T t=1 p θz (z t |z 1:t-1 , x 1:T , u 1:T ). (3.23)
For the most general generative model defined in Eq. 3.9, the dependencies in each conditional distribution p θz (z t |z 1:t-1 , x 1:T , u 1:T ) cannot be simplified. In other words, z t depends on the past latent vectors z 1:t-1 and on the complete sequences of observed vectors

x 1:T and u 1:T (past, current, and future time steps). The exact inference is thus a noncausal process, even if the generation is causal. As discussed in the previous subsection, the inference model q ϕ should here have the same most general structure as the exact posterior distribution of Eq. 3.23:

q ϕ (z 1:T |x 1:T , u 1:T ) = T t=1 q ϕ (z t |z 1:t-1 , x 1:T , u 1:T ). (3.24) 
Similar to the generative model, each conditional distribution q ϕ (z t |z 1:t-1 , x 1:T , u 1:T ) should accumulate information from past latent variables and past observations, but in contrast to the generative model, it should also accumulate information from present and future observations. Typically, this process is implemented with a bidirectional recurrent network.

Depending on the conditional independence assumptions made when defining the generative model, the posterior dependencies in p θ (z t |z 1:t-1 , x 1:T , u 1:T ) can be simplified using the D-separation property of Bayesian networks described in the previous subsection.

Thus, the posterior dependencies in q ϕ (z t |z 1:t-1 , x 1:T , u 1:T ) can be simplified similarly.

Of course, it is always possible to use an approximate posterior q ϕ that does not follow the structure of the exact posterior distribution. In fact, it makes sense to use a simplified version if one wants to decrease the computational cost or satisfy other constraints. In particular, for online or incremental data processing, the inference can be forced to be a causal process by removing the dependencies of q ϕ on the future observations (and future inputs). This will generally be at risk of degrading the inference performance.

SHARING VARIABLES AND PARAMETERS AT GENERATION AND INFERENCE

We can note a similarity between the (most general causal) generative distribution p θz (z t |x 1:t-1 , z 1:t-1 , u 1:t ) and the corresponding inference model q ϕ (z t |z 1:t-1 , x 1:T , u 1:T ) in terms of random variable dependencies. For instance, the general form of the dependency of z t on past latent vectors is the same at inference and generation: in both cases, z t depends on the complete past sequence z 1:t-1 . Implementing this recurrence at inference and at generation can be made either with a single unique RNN or with two different RNNs. The same principle applies to u 1:t and x 1:t , which are both used at generation and inference. Depending on which variables we consider, it can make sense to use the same RNN at generation and inference, meaning that the deterministic link between the realizations of random variables is the same at generation and at inference. If this is the case, the decoder and encoder share some network modules and thus θ and ϕ share some parameters. Note that this is not the case in standard VAEs.

Hereinafter, we will use h t to denote the internal state of the decoder and g t to denote that of the encoder if it is different from the internal state of the decoder. Otherwise, we will use h t for the encoder as well.

VLB AND TRAINING OF DVAES

As for the standard VAE, training a DVAE is based on the maximization of the VLB. In the case of DVAEs, the VLB initially defined in the VAE model [START_REF] Diederik | Auto-encoding variational Bayes[END_REF][START_REF] Jimenez Rezende | Stochastic backpropagation and approximate inference in deep generative models[END_REF] is extended to data sequences as follows:

L(θ, ϕ; x 1:T , u 1:T ) = E q ϕ (z 1:T |x 1:T ,u 1:T ) log p θ (x 1:T , z 1:T |u 1:T )

-E q ϕ (z 1:T |x 1:T ,u 1:T ) log q ϕ (z 1:T |x 1:T , u 1:T ) .

(3.25)

With the factorization in Eq. 3.24, the expectation in Eq. 3.25 can be expressed as a cascade of expectations taken with respect to conditional distributions over individual latent vectors at different time indices:

E q ϕ (z 1:T |x 1:T ,u 1:T ) [ψ(z 1:T )] = E q ϕ (z 1 |x 1:T ,u 1:T ) E q ϕ (z 2 |z 1 ,x 1:T ,u 1:T ) . . . E q ϕ (z T |z 1:T -1 ,x 1:T ,u 1:T ) ψ(z 1:T ) . . . , (3.26) 
where ψ(z 1:T ) denotes any function of z 1:T . Then, by injecting Eq. 3.9 and Eq. 3.24 into Eq. 3.25, and using the above cascade, we can develop the VLB as follows:

L(θ, ϕ; x 1:T , u 1:T ) = E q ϕ (z 1:T |x 1:T ,u 1:T ) log p θ (x 1:T , z 1:T |u 1:T ) -log q ϕ (z 1:T |x 1:T , u 1:T ) = T t=1 E q ϕ (z 1:t |x 1:T ,u 1:T ) log p θx (x t |x 1:t-1 , z 1:t , u 1:t ) - T t=1 E q ϕ (z 1:t-1 |x 1:T ,u 1:T ) [D KL (q ϕ (z t |z 1:t-1 , x 1:T , u 1:T ) ∥ p θz (z t |x 1:t-1 , z 1:t-1 , u 1:t ) . (3.27) 
As for the standard VAE, the VLB contains a reconstruction accuracy term and a regularization term. However, in contrast to the standard VAE, where the regularization term has an analytical form for usual distributions, here, both the reconstruction accuracy and regularization term require the computation of Monte Carlo estimates (i.e., empirical averages) using samples drawn from q ϕ (z 1:τ |x 1:T , u 1:T ), where τ ∈ {1, ..., T } is an arbitrary index. Using the chain rule in Eq. 3.24, we sample from the joint distribution q ϕ (z 1:τ |x 1:T , u 1:T ) by sampling recursively from q ϕ (z t |z 1:t-1 , x 1:T , u 1:T ), going from t = 1 to t = τ . Sampling each random vector z t at a given time instant is straightforward, as q ϕ (z t |z 1:t-1 , x 1:T , u 1:T ) is analytically specified by the chosen inference model (e.g., Gaussian with mean and variance provided by an RNN). We have to use a similar reparameterization trick as for standard VAEs shown in Section 3.2, so the sampling-based VLB estimator remains differentiable with respect to ϕ. The VLB can then be maximized with respect to both ϕ and θ = θ z ∪ θ x using gradient-ascent-based algorithms. We recall that for DVAEs, ϕ and θ can share parameters, which is different from the "static"

VAE, but perfectly alright for the optimization. Finally, the VLB is here defined here for a single data sequence, but a common practice is to average the VLB over a mini-batch of training data sequences before updating the model parameters with gradient ascent.

DICHOTOMY FOR AUTOREGRESSIVE DVAE MODELS

A DVAE can be used to generate new data, for analysis-synthesis (by chaining the encoder and decoder), or for data transformation, by modifying the latent vector sequence in between analysis and synthesis. In the case of DVAE models functioning in the predictive mode (i.e., with an autoregressive structure), these tasks can be processed in different manners, leading to an additional dichotomy of functioning modes. We describe these functioning modes in the next subsection before we see the implications for model training in the following subsection. Because these additional different modes concern the recursive part of the models, nonpredictive DVAEs are not concerned here.

TEACHER FORCING AGAINST GENERATION MODE

In practice, for autoregressive DVAE models, we have two generation modes, for the generation of both x t and z t . A mode in which we assume that the ground-truth past observed vectors x 1:t-1 are used for generating the current vector (x t or z t ), and a mode in which the generated past observed vectors are used for generating the current vector. At this point, it is important to distinguish between the notation for the ground-truth value of the observed data vector x t and that for its modeled version produced by a DVAE, which we denote by xt . In practice, x 1:T is a given data sequence that we want to model with a DVAE (or that we use for model training, as shown below), and x1:T is the actual output of the DVAE.

This issue of either using the ground-truth past observed data vectors x 1:t-1 or reinjecting the previously generated vectors x1:t-1 at the input of a generative model is a classical problem of recursive models and, in particular, of RNNs. Yet it is poorly discussed in the DVAE literature. In the RNN literature, the first configuration is sometimes referred to as teacher-forcing [START_REF] Ronald | A learning algorithm for continually running fully recurrent neural networks[END_REF], as it is assumed that a teacher (or oracle) can provide the model with ground-truth values. Hereinafter, we will use this terminology. This is a classical configuration at training time, when the whole sequence x 1:T is available and the model is tuned so that x1:T fits x 1:T . However, this is unrealistic at generation time, when the model produces a new sequence x1:T . Here, the second configuration must be used. We refer to this second configuration as the generation mode. Regarding the generation of z 1:T , the teacher-forcing concept is irrelevant as the concept of ground-truth values for latent vectors is questionable in essence. In practice, z 1:T is either the output of the inference model (this is the case during DVAE training or in analysis-synthesis) or any arbitrary latent vector sequence (generated with p θz or predefined). Note also that because of the recursivity of the generative process, data generation with a DVAE (strongly) depends on the initialization of the generative process. We do not detail this aspect here.

If we now focus on the analysis-synthesis task, we have to chain the encoder and decoder. The encoder takes x 1:T as the input and produces a sequence of latent vectors z 1:T .

Then, the decoder uses z 1:T to generate x1:T . Decoding can be performed with either teacher-forcing or generation mode. The former case is expected to produce a sequence x1:T that is closer to x 1:T than in the latter case, as it uses ground-truth values, whereas the generation mode uses approximate values. This configuration can be used to evaluate the prediction power of DVAE models in an ideal (oracle) setting. In contrast, analysissynthesis with the generation mode is expected to yield lower performance but is the natural configuration from an information-theoretic viewpoint. Here, we test the capability of the model to encode the information of a (generally high-dimensional) data sequence

x 1:T into a (generally low-dimensional) latent sequence z 1:T . From an application point of view, this corresponds to telecommunication or storage applications [START_REF] Morishima | Speech coding based on a multilayer neural network[END_REF][START_REF] Rippel | Learned video compression[END_REF][START_REF] Zeghidour | Soundstream: An end-to-end neural audio codec[END_REF][START_REF] Défossez | High fidelity neural audio compression[END_REF],

where x 1:T would be encoded into z 1:T , z 1:T would be transmitted or stored, and then x1:T would be decoded from z 1:T . In short, we apply DVAEs to source coding, and the DVAE turns into a codec, apart from quantization issues. Such coding/decoding scheme can be applied offline by using a noncausal inference model (with an optimal structure following that of the exact posterior distribution) or online with a (suboptimal) causal inference model. If some amount of latency is tolerated, one can also use a noncausal inference model with a suitable overhead. The interest of DVAE models for source coding is further discussed in Section 7.4.

TRAIN/TEST MATCHING

As mentioned in the previous subsection, teacher-forcing is a conventional strategy used for training recursive models. However, in practice, when using autoregressive DVAEs for data generation or compression, the generation mode must be used. This leads to a mismatch between the training and testing conditions, a general problem in machine learning that leads to performance degradation compared to the case in which the same configuration is used for training and testing. Therefore, if the generation mode is used in a practical DVAE use-case, it can be beneficial to use the generation mode during model training as well, so that the training configuration matches the practical use-case configuration. In practice, this implies replacing x 1:t-1 with x1:t-1 in the conditioning variables in the VLB equations. In Chapter 4, we illustrate this strategy in our experimental benchmark. We observe in our experiments that using the generation mode at both model training and testing leads to a significant gain in performance compared to the mismatched configuration, though the performance remains slightly lower than that in the case where teacher-forcing is used at both training and testing.

DVAE SUMMARY

Dynamical VAEs are constructed with various stochastic relationships among the control variables u 1:T , latent variables z 1:T , and observed variables x 1:T . We recall that a random variable a is called a parent of another random variable b when the realization of a is used to compute the parameters of the distribution of b. These parameters can be obtained with a linear or a nonlinear mapping of the realization of a (and possibly of other random variables). A DVAE model must contain two types of relationships:

• Decoding link: z t is always a parent of x t . Graphically, there is always an arrow from z t to x t in the compact graphical representation. This is a fundamental characteristic inherited from the standard VAE.

• Temporal link: At least one element in z 1:t-1 or in x 1:t-1 is parent to either z t or

x t . One of the simplest forms of a temporal link, namely z t-1 is a parent of z t , is a fundamental characteristic of first-order SSMs.

In a way, the "minimal DVAE" is the straightforward combination of a first-order SSM and a VAE, which is the DKF model [START_REF] Rahul | Deep Kalman filters[END_REF][START_REF] Rahul | Structured inference networks for nonlinear state space models[END_REF]. Other DVAEs include additional temporal links. Moreover, temporal links such as "z t-1 is a parent of x t " can be considered additional decoding links, in that x t is generated from z t and z t-1 . As for temporal links, in the papers found in the literature, z t and/or x t depend either on z t-1 and/or x t-1 , or on z 1:t-1 and/or x 1:t-1 . In other words, the order of temporal dependencies is either 1

(implemented with a basic feed-forward neural network, such as a Multi-Layer Perceptron (MLP)) or infinity (implemented with an RNN). However, one can, in principle, use N -order temporal dependencies with 1 < N < ∞, relying, for instance, on convolutional neural networks (CNNs) with finite-length receptive fields. In particular, temporal convolutional networks (TCNs) [START_REF] Lea | Temporal convolutional networks: A unified approach to action segmentation[END_REF], which are based on dilated convolutions, are competitive with RNNs on several sequence modeling tasks, including generative modeling [3].

Finally, as discussed before, a DVAE can be in the driven mode, in the predictive mode, in both, or in none of these modes:

• Driving link: A DVAE is said to be in the driven mode if u t is a parent of either z t or x t , or both.

• Predictive link: A DVAE is said to be in the predictive mode if x 1:t-1 , or part of this sequence, is a parent of either z t or x t , or both. In practice, a predictive link is implemented either in the teacher-forcing mode (using the ground-truth past vector sequence) or in the generation mode (using the previously generated vector sequence). Generally, better performance is achieved if the same mode is used at training time and test time. 

INTRODUCTION

In the previous chapter, we have provided a theoretical unification and analysis of the DVAE models. However, the performance comparison of the different models from the literature is a difficult task since all models are not evaluated on the same data. Meanwhile, a newly proposed model generally performs better than some previously proposed model(s), at least on some aspect(s), but this can depend on model tuning, task, data, and experimental setup. Moreover, the comparison performed with a subset of previous models is incomplete in essence. In short, an extended benchmark of DVAE models is not yet available in the literature. Conducting an extended benchmark is a huge endeavor, as there are many possible configurations for the models and many tasks for evaluating them. In this chapter, we provide a quantitative benchmark of six selected DVAE models, detailed in the following, in an analysis-resynthesis task. We also provide qualitative examples of data generation. We have re-implemented these six DVAE models and evaluated them on two different datasets (speech signals and 3D human motion data). The code used in these experiments is made available to the community. The open-source code and the best-trained models can be downloaded at the following repository: https://github.com/XiaoyuBIE1994/DVAE-speech. We have also taken care, in the code, to follow the unified presentation and notation used in Chapter 3, making it, hopefully, a useful and pedagogical resource.

In the following, we first provide the essential equations of each tested model in Section 4.2. Then, we present the models' implementation in Section 4.3. After that, we describe the experimental protocol, datasets, model training and testing settings, and evaluation metrics in Section 4.4. Finally, we present and discuss the results in Sections 4.5 and 4.6.

DVAE FORMULATIONS

As described in Sections 3.3 and 3.4, if we consider undriven DVAE models, we can define the general generative and inference equations as follows:

p θ (x 1:T , z 1:T ) = T t=1 p θx (x t |x 1:t-1 , z 1:t )p θz (z t |x 1:t-1 , z 1:t-1 ). (4.1) 
q ϕ (z 1:T |x 1:T ) = T t=1 q ϕ (z t |z 1:t-1 , x 1:T ), (4.2) 
and the parameters can be estimated by maximizing the VLB: 

L(θ, ϕ; x 1:T ) = T t=1 E q ϕ (z 1:t |x 1:T ) log p θx (x t |x 1:t-1 , z 1:t ) - T t=1 E q ϕ (z 1:t-1 |x 1:T ) D KL q ϕ (z t |z 1:t-1 , x 1:T ) ∥ p θz (z t |x 1:t-1 , z 1:t-1
Initialization: ▷ Compute posterior of z 1:O for t in range (O + 1, O + G) do ▷ Generate ẑt via z t ∼ p θz (z t |x 1:O , xO+1:t-1 , z 1:t-1 ) ▷ Generate xt via x t ∼ p θx (x t |x 1:O , xO+1:t-1 , ẑ1:t ) end for Output: ▷ Generated sequence xO+1:O+G
In practice, each DVAE model can be considered a simplification of the above unified model. Our experimental benchmark was conducted on the six following DVAE models: DKF [START_REF] Rahul | Deep Kalman filters[END_REF][START_REF] Rahul | Structured inference networks for nonlinear state space models[END_REF], STORN [START_REF] Bayer | Learning stochastic recurrent networks[END_REF], VRNN [START_REF] Chung | A recurrent latent variable model for sequential data[END_REF], SRNN [START_REF] Fraccaro | Sequential neural models with stochastic layers[END_REF], RVAE [START_REF] Leglaive | A recurrent variational autoencoder for speech enhancement[END_REF] and DSAE [START_REF] Li | Disentangled sequential autoencoder[END_REF].

We give the specific generative and inference equations below, as well as the corresponding VLBs.

DEEP KALMAN FILTERS (DKF)

The DFK model [START_REF] Rahul | Deep Kalman filters[END_REF][START_REF] Rahul | Structured inference networks for nonlinear state space models[END_REF] is a combination of SSM with neural networks, which is defined as:

p θ (x 1:T , z 1:T ) = T t=1 p θx (x t |z t )p θz (z t |z t-1 ).
(4.4)

q ϕ (z 1:T |x 1:T ) = T t=1 q ϕ (z t |z t-1 , x t:T ), (4.5) 
with the VLB:

L(θ, ϕ; x 1:T ) = T t=1 E q ϕ (zt|x 1:T ) log p θx (x t |z t ) - T t=1 E q ϕ (z t-1 |x 1:T ) D KL q ϕ (z t |z t-1 , x t:T ) ∥ p θz (z t |z t-1 ) . (4.6) 

STOCHASTIC RECURRENT NETWORKS (STORN)

The STORN model [START_REF] Bayer | Learning stochastic recurrent networks[END_REF] is the first DVAE model to combine an internal deterministic state from an RNN and an internal stochastic state z t . The generative and inference functions are written as:

p θ (x 1:T , z 1:T ) = T t=1 p θx (x t |x 1:t-1 , z 1:t )p(z t ). (4.7) q ϕ (z 1:T |x 1:T ) = T t=1 q ϕ (z t |x 1:t ), (4.8) 
with the VLB:

L(θ, ϕ; x 1:T ) = T t=1 E q ϕ (z 1:t |x 1:t ) log p θx (x t |x 1:t-1 , z 1:t ) - T t=1 D KL (q ϕ (z t |x 1:t ) ∥ p(z t )) . (4.9)

VARIATIONAL RECURRENT NEURAL NETWORKS (VRNN)

The VRNN model [START_REF] Chung | A recurrent latent variable model for sequential data[END_REF] is a combination of a VAE and an RNN defined as:

p θ (x 1:T , z 1:T ) = T t=1 p θx (x t |x 1:t-1 , z 1:t )p θz (z t |x 1:t-1 , z 1:t-1 ). (4.10) q ϕ (z 1:T |x 1:T ) = T t=1 q ϕ (z t |z 1:t-1 , x 1:t ), (4.11) 
with the VLB:

L(θ, ϕ; x 1:T ) = T t=1 E q ϕ (z 1:t |x 1:t ) log p θx (x t |x 1:t-1 , z 1:t ) - T t=1 E q ϕ (z 1:t-1 |x 1:t ) [D KL (q ϕ (z t |z 1:t-1 , x 1:t ) ∥ p θz (z t |x 1:t-1 , z 1:t-1 ))] . (4.12)

STOCHASTIC RECURRENT NEURAL NETWORKS (SRNN)

The SRNN model [START_REF] Fraccaro | Sequential neural models with stochastic layers[END_REF] aims to "glue (or stack)" a deterministic recurrent neural network and a SSM together to form a stochastic and sequential neural generative model. The generative and inference model of SRNN is defined as:

p θ (x 1:T , z 1:T ) = T t=1 p θx (x t |x 1:t-1 , z t )p θz (z t |x 1:t-1 , z t-1 ). (4.13) q ϕ (z 1:T |x 1:T ) = T t=1 q ϕ (z t |z t-1 , x 1:T ), (4.14) 
with the VLB:

L(θ, ϕ; x 1:T ) = T t=1 E q ϕ (zt|x 1:T ) log p θx (x t |x 1:t-1 , z t ) - T t=1 E q ϕ (z t-1 |x 1:T ) [D KL (q ϕ (z t |z t-1 , x 1:T ) ∥ p θz (z t |x 1:t-1 , z t-1 ))] . (4.15)

RECURRENT VARIATIONAL AUTOENCODERS (RVAE)

The RVAE model was proposed by Leglaive et al. [START_REF] Leglaive | A recurrent variational autoencoder for speech enhancement[END_REF] to represent clean speech signals in a speech enhancement application. The original RVAE paper contains a causal case and a non-causal case. We focus on the non-causal case here, which is defined as:

p θ (x 1:T , z 1:T ) = T t=1 p θx (x t |z 1:T )p(z t ). (4.16 
)

q ϕ (z 1:T |x 1:T ) = T t=1 q ϕ (z t |z 1:t-1 , x 1:T ), (4.17) 
with the VLB:

L(θ, ϕ; x 1:T ) = T t=1 E q ϕ (z 1:T |x 1:T ) log p θx (x t |z 1:T ) - T t=1 E q ϕ (z 1:t-1 |x 1:T ) [D KL (q ϕ (z t |z 1:t-1 , x 1:T ) ∥ p(z t ))] . (4.18)

DISENTANGLED SEQUENTIAL AUTOENCODERS (DSAE)

The DSAE model [START_REF] Li | Disentangled sequential autoencoder[END_REF] introduced the idea of adding to the usual sequence of latent variables z 1:T a sequence-level vector v, which assumed to encode the sequence-level characteristics of the data. Therefore, z t is assumed to encode time-dependent data features. DSAE is defined as:

p θ (x 1:T , z 1:T , v) = p θv (v) T t=1 p θx (x t |z t , v)p θz (z t |z 1:t-1 ). (4.19) q ϕ (z 1:T , v|x 1:T ) = q ϕv (v|x 1:T ) T t=1 q ϕz (z t |v, x 1:T ), (4.20) 
with the VLB:

L(θ, ϕ; x 1:T ) = E q ϕv (v|x 1:T ) T t=1 E q ϕ (zt|v,x 1:T ) log p θx (x t |z t , v) - T t=1 E q ϕv (z 1:t-1 |v,x 1:T ) [D KL (q ϕz (z t |v, x 1:T ) ∥ p θz (z t |z 1:t-1 ))] -D KL (q ϕv (v|x 1:T ) ∥ p θv (v)) . (4.21)

MODEL ARCHITECTURES

The architectures of the six DVAE models that we benchmark are summarized in Fig. 4.1.

For each model, we represent the high-level computational graph corresponding to the encoding, sampling and decoding processes. In particular, we show the types of layers that compose the encoder and decoder networks. Note that none of the DVAEs is used in the driven mode; that is, none of them feature an external input u 1:T . The MLPs are generally used to extract high-level features and/or as a combiner function, whereas the recurrent networks (RNNs and BRNNs) are used to accumulate the information over time. All RNNs are instantiated as LSTM networks (and BRNNs are instantiated as bidirectional LSTM networks). DKF includes a specific combiner function (CF) at the end of the encoder and a gated transition function (GTF) to implement the dynamical model. These functions are described in the original DKF paper [START_REF] Rahul | Structured inference networks for nonlinear state space models[END_REF]. To be noted that the internal state vector h t of VRNN and SRNN is shared between the encoder and decoder [START_REF] Chung | A recurrent latent variable model for sequential data[END_REF][START_REF] Fraccaro | Sequential neural models with stochastic layers[END_REF].

In Fig. 4.1, we represent the corresponding shared networks with grey-shaded boxes. We also recall that RVAE was presented in two versions: causal and noncausal. The general architectures shown in Fig. 4.1 are common to the two sets of experiments that we conducted on speech data and on human motion data, although with different 
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EXPERIMENTAL PROTOCOL

We follow the line of previous works to model the speech data with a complex proper Gaussian distribution which is circularly symmetric [START_REF] Leglaive | A variance modeling framework based on variational autoencoders for speech enhancement[END_REF][START_REF] Leglaive | A recurrent variational autoencoder for speech enhancement[END_REF], and the motion data with identity variance [START_REF] Sadegh Aliakbarian | Contextually plausible and diverse 3d human motion prediction[END_REF][START_REF] Rempe | Humor: 3d human motion model for robust pose estimation[END_REF][START_REF] Guo | Action2motion: Conditioned generation of 3d human motions[END_REF][START_REF] Petrovich | Action-conditioned 3D human motion synthesis with transformer VAE[END_REF][START_REF] Yuan | Dlow: Diversifying latent flows for diverse human motion prediction[END_REF]:

p θx (x t |x 1:t-1 , z 1:t , w) = N c x t ; 0, diag(v θx,t ) (speech), (4.22) 
p θx (x t |x 1:t-1 , z 1:t , w) = N (x t ; µ θx,t , I) (motion), (4.23) 
where N denotes the multivariate Gaussian distribution for a real-valued random vector and N c denotes the multivariate complex proper Gaussian distribution [START_REF] Fredy | Proper complex random processes with applications to information theory[END_REF].

SPEECH DATA

For our experiments with speech data, we used the Wall Street Journal dataset (WSJ0 [START_REF] Garofolo | CSR-I (WSJ0) Sennheiser LDC93S6B[END_REF]), which comprises speech read from WSJ news. We used the speaker-independent, medium vocabulary (5k words) subset of the corpus. More precisely, the si tr s subset ( 12 which can be of variable length, most often larger than 2.4 s.

As discussed in [START_REF] Leglaive | A recurrent variational autoencoder for speech enhancement[END_REF], the complex-valued STFT coefficients are modeled with a zeromean circular complex Gaussian distribution, whereas z t is modeled as usual with a real-valued Gaussian distribution. The data sequence x 1:T processed by the DVAE models is the squared magnitude of the STFT spectrogram (i.e., a real-valued nonnegative power spectrogram). The corresponding phase spectrogram is directly combined with the DVAE output magnitude spectrogram to reconstruct the output speech signal using inverse STFT with overlap-add. Modeling the STFT coefficients with a zero-mean circular complex Gaussian distribution with variance σ 2 θx ,f,t (•) amounts to modeling each entry x f,t of the power spectrogram x 1:T with a Gamma distribution with shape parameter 1 and scale parameter σ 2 θx ,f,t (•) (i.e., x f,t ∼ G(1, 1/σ 2 θx ,f,t (•))). 1 This also amounts to using the Itakura-Saito divergence between x f,t and σ 2 θx ,f,t (•) in the reconstruction term of the VLB [START_REF] Liutkus | Gaussian processes for underdetermined source separation[END_REF][START_REF] Girin | Notes on the use of variational autoencoders for speech and audio spectrogram modeling[END_REF]. We recall that all presented DVAE models are versatile regarding the conditional pdf of x t , and using a Gamma distribution (more appropriate for speech/audio power spectrograms) in place of the Gaussian distribution that was used in the generic presentation of the models does not present any problem. The linear layer estimating the parameters of this distribution has 513 output units corresponding to the log-variance

parameters {log σ 2 θx ,f,t (•)} F f =1 .

3D HUMAN MOTION DATA

For our experiments with 3D human motion data, we used the H3.6M dataset [START_REF] Ionescu | Human3.6m: Large scale datasets and predictive methods for 3d human sensing in natural environments[END_REF], which is one of the largest dataset of the kind and has been widely used in video prediction [START_REF] Finn | Unsupervised learning for physical interaction through video prediction[END_REF],

human pose and shape estimation [START_REF] Bogo | Keep it smpl: Automatic estimation of 3d human pose and shape from a single image[END_REF], and human motion prediction [START_REF] Martinez | On human motion prediction using recurrent neural networks[END_REF]. This dataset was obtained from multi-view video recordings of 11 professional actors performing 17 various scenarios (e.g., discussing, smoking, taking a picture, or talking on the phone), using four calibrated cameras with 50 Hz resolution. The 3D {x, y, z} coordinates of 32 human skeleton joints were extracted from these multi-view recordings. Each set of coordinates was centered w.r.t. the coordinates of the pelvis joint.

For our experiments with DVAEs, each data frame is organized as a 96-dimensional vector x t by concatenating the 3D coordinates of the 32 joints. We used sequences of T = 50 consecutive vectors, which represent a duration of 2 s (the data were previously downsampled by a factor 2). These sequences were obtained by applying a 50-frame sliding window on the original H3.6M sequences, with a shift of two frames. In summary, each example in our dataset is thus a matrix of 3D coordinates of skeleton joints of size 96 × 50, which corresponds to 2 s of human motion.

In H3.6M, 15 scenarios from 7 actors are provided with the ground-truth annotations.

Similarly to [START_REF] Mao | History repeats itself: Human motion prediction via motion attention[END_REF], we used the data of all 15 scenarios from 5 actors (Actors 1, 6, 7, Following [START_REF] Bayer | Learning stochastic recurrent networks[END_REF][START_REF] Petrovich | Action-conditioned 3D human motion synthesis with transformer VAE[END_REF], the 3D human motion data vectors x t are modeled by a Gaussian generative conditional distribution with a covariance matrix equal to the identity matrix.

TRAINING AND TESTING

All tested models were implemented in PyTorch [START_REF] Paszke | Pytorch: An imperative style, high-performance deep learning library[END_REF]. To train the models, we used the Adam optimizer [START_REF] Diederik | Adam: A method for stochastic optimization[END_REF] with mini-batches of size 128. For the speech data, we set the learning rate to 0.002, whereas we used 0.0001 for the human motion data. We also used early stopping on the validation set with a patience of 50 epochs for the speech data and 30 epochs for the human motion data. During the training of the models with the human motion data, we applied warm-up to the KL regularization term in the VLB by multiplying it with a factor β and linearly increasing this factor from 0 to 1 after each epoch, during the first 50 epochs [START_REF] Casper Kaae Sønderby | Ladder variational autoencoders[END_REF][START_REF] Vahdat | NVAE: A deep hierarchical variational autoencoder[END_REF].

Once a model was trained on the training set, with early stopping on the validation set, its weights were fixed and the model was run on the test set. We report the average performance obtained on the test set using the metrics presented in the next subsection.

EVALUATION METRICS

For the experiments on speech data, we used three metrics to evaluate the resynthesized speech quality and compare the performance of the different DVAE models: the scaleinvariant signal-to-distortion ratio (SI-SDR) in dB [START_REF] Le Roux | SDR: Half-baked or well done[END_REF], the perceptual evaluation of . For all metrics, the higher the better. Note that these metrics are applied on the time-domain signals (i.e., speech waveforms). We combined the reconstructed magnitude spectrogram with the phase spectrogram of the original signal to obtain the analyzed-resynthesized speech waveform (using the inverse STFT).

For 3D human motion data, we can directly compare each original sequence with the corresponding analyzed-resynthesized sequence. We used the mean per joint position error (MPJPE) proposed by [START_REF] Ionescu | Human3.6m: Large scale datasets and predictive methods for 3d human sensing in natural environments[END_REF], which is an averaged Euclidean distance per joint.

We report the results in millimeters (mm). Note that this error corresponds to the loglikelihood term (or reconstruction error term) of the VLB, up to a constant factor that is controlled through the setting of the variance of the data conditional distribution. We first present the results of analysis-resynthesis performed on the speech data. The values of the three metrics described in the previous subsection and averaged over the test dataset are reported in Tab. 4.1. In this experiment, all three autoregressive models (STORN, VRNN, and SRNN) were trained and tested in the teacher-forcing mode (i.e., using the ground-truth values of past observed vectors x 1:t-1 when generating x t , see Section 3.6). Results of analysis-resynthesis in the generation mode will be discussed later.

From Tab. 4.1, we can draw the following conclusions. First, all tested DVAE models lead to fair signal reconstruction, with an SI-SDR ranging in 6.9-11 dB. This range is in accordance with the fact that we compress each 513-dimensional data vector into a 16-latent vector (using also the 128-dimensional RNN internal state that encodes the past data vectors in the case of autoregressive models). The quality of the reconstructed spectrograms is illustrated in Fig. The performance scores of DKF and DSAE are very close to each other, and slightly below those of VRNN. This is an interesting result, as we recall that DKF and DSAE are SSM-like models, with no explicit temporal dependency between x t-1 and x t , but only between z t-1 (or z 1:t-1 for DSAE) and z t . Thus, even if they are expected to have less "predictive" power compared to SRNN or VRNN, their SSM structure appears quite efficient at encoding the speech dynamics. DSAE can be considered as an improved version of DKF, with an additional sequence-level variable v and infinite-order temporal dependency of z t (as opposed to first-order dependency for DKF). The fact that this more sophisticated structure does not lead to improved performance over DKF might be explained by the structure of the inference model. For DSAE, the inference of z t depends on x 1:T , whereas the exact posterior distribution depends on z 1:t-1 and x t:T . Thus, the inference model of DSAE is not only missing some dependencies it should have (previous latent variables) but it is adding dependencies that it should not have (previous observed variables). In contrast, the DKF inference model respects the structure of the exact posterior distribution. In the end, all these differences between DKF and DSAE may compensate each other, leading to similar results. One way to improve DSAE may be to design an inference model with the structure of the exact posterior distribution.

The SI-SDR scores obtained by the RVAE model are just below those of DKF and DSAE, whereas the PESQ score of noncausal RVAE is slightly superior to those of DKF and DSAE. This is interesting considering that as DKF and DSAE, RVAE has no predictive link (e.g., no direct dependency between x t-1 and x t ), and contrary to DKF and DSAE, RVAE does not have a dynamical model on the latent vector z t (i.e., it is modeled as an i.i.d. variable). However, in the analysis-resynthesis framework, the sequence z 1:t-1

or z 1:t efficiently encodes x 1:T owing to an efficient inference model, and then, the generative model is able to exploit this whole sequence to regenerate x t . As expected, the noncausal version of RVAE is slightly better than the causal version.

As for STORN, its performance revealed a bit disappointing in our speech analysisresynthesis experiment. Here also, this can be explained by the fact that the inference model of STORN does not respect the structure of the exact posterior distribution. In particular it does not use z 1:t-1 nor x t+1:T , which is doubly penalizing compared to if the structure of the exact posterior distribution was considered. Another reason for the relatively low scores obtained by STORN in these experiments is given later in the visualization of latent space.

GENERATION OF SPEECH SPECROGRAMS

Then, we briefly illustrate the ability of the DVAE models to generate "speech-like" spectrograms with a qualitative example. This example is the "continuation" of the example that we have seen in the previous subsection, provided in Fig. 4.2, 4.3 and 4.4. In these figures, the first 2 s of each spectrogram (on the left of the red line) was obtained with analysis-resynthesis; that is, the latent vectors were provided by the inference model, using the ground-truth observed vectors as input, and the output spectrogram was then provided by the generative model using the inferred latent vectors (and the ground-truth past observed vectors for the autoregressive models). After 2 s (on the right of the red line), we turn the models to pure generation mode; that is, the latent vectors and the output spectrogram are now both provided by the generative model, without relying on the inference model and ground-truth past observed vectors anymore. This strategy allows the generation mode to benefit from a good initialization, induced by the analysis-resynthesis part. Indeed, at the time instant corresponding to 2 s, the generation starts with the past latent vectors and current RNN internal state provided by the analysis-resynthesis part, thus encoding the past observed speech data. Therefore, we can expect a smooth transition from the analysized-resynthesized spectrogram to the generated one.

As expected, we observe in Fig. 4.2 that a vanilla VAE is not able to generate a spectrogram with a realistic speech-like structure. In particular, the successive spectrogram "chunks" are too short and with too abrupt transitions to be speech sounds. This is due to the fact that there is no temporal modeling. as the other models, STORN manages to ensure a smooth transition between the analysisresynthesis and generation parts, but then the quality of the generated spectrogram becomes much lower than with the other autoregressive DVAE models. SRNN generates a spectrogram with a speech-like structure and a lot of variability. The best result for this example sentence is obtained with VRNN, for which we can observe segments that resemble different phonemes, with smooth transitions between them. The harmonic structure is also clearly visible and the generated data cover the full bandwidth.

TRAINING WITH SCHEDULED SAMPLING

To complement the previous results, we performed an additional analysis-resynthesis experiment with the autoregressive models being trained and tested in the generation mode instead of the teacher-forcing mode; that is, using the previously generated data vectors x1:t-1 in place of the ground-truth past vectors x 1:t-1 when generating x t (see Section 3.6).

Note that here, the sequence z 1:t is still provided by the encoder. For conciseness, we present only the results for SRNN, which was the model performing best in the first experiment above.

Directly training a model in the generation mode was observed to be difficult, so we adopted a scheduled sampling approach [START_REF] Bengio | Scheduled sampling for sequence prediction with recurrent neural networks[END_REF]. We started with the SRNN model trained in the teacher-forcing mode used in the previous experiment. Then, we fine-tuned this model by randomly replacing x 1:t-1 with x1:t-1 at the input of the encoder-decoder shared module, when estimating x t . We replaced 20% of the x 1:t-1 vectors for the first 50 epochs, and increased to 40% for the next 50 epochs, and so on, until we completely replaced the ground-truth clean speech signal with generated speech signals. that it is more difficult to exploit the predictive links in a practical application where the ground-truth values of the observed vectors are not available, compared to the "oracle" configuration of teacher-forcing.

VISUALIZATION OF THE LATENT VECTOR SEQUENCE

Finally, we illustrate the behavior of the learned latent vector. Figure 4.5 displays the trajectories of the mean vector of q ϕz , the log-variance vector of q ϕz , a vector z t sampled from q ϕz , and the KL divergence term of the VLB, for an example sentence of the speech test dataset and for the SRNN model trained and applied in the teacher-forcing mode. We observe that some of the dimensions of the latent vector, for example the first one, show a steady profile of the mean ( like noise with small fluctuations around zero. In short, those dimensions are noninformative, whereas the other "active" dimensions show much larger, and thus informative, fluctuations (note that for these "active" dimensions, because the variance is also small, yet not steady, the sampled latent values are close to the mean). This inactivity of certain dimensions is the sign of the posterior collapse problem. The latent vector z t , or at least some dimensions of it, becomes noninformative, as its posterior distribution becomes too close to its prior (generative) distribution, as illustrated by the small (and steady) values of the KL divergence term of the VLB, compared to the other "active" dimensions (Figure 4.5 (d)). This problem has been well identified and largely discussed in the VAE literature [START_REF] Samuel R Bowman | Generating sentences from a continuous space[END_REF][START_REF] Iulian V Serban | Piecewise latent variables for neural variational text processing[END_REF][START_REF] Chen | Variational lossy autoencoder[END_REF][START_REF] Lucas | Don't blame the ELBO! a linear VAE perspective on posterior collapse[END_REF][START_REF] Razavi | Preventing posterior collapse with delta-VAEs[END_REF][START_REF] Dai | The usual suspects? reassessing blame for VAE posterior collapse[END_REF]. It remains a largely open topic in the framework of DVAE, as further discussed in Chapter 7.

Overall, the input of the decoder consists of some dimensions containing informative patterns and some other dimensions containing low-variance stationary noise. In the present example of the SRNN model, we identified 8 dimensions out of 16 that are active and 8 dimensions that seem to have collapsed, suggesting that we would obtain similar analysis-resynthesis performance by setting the size of the latent vector to 8. In these experiments with speech signals, we observed that VRNN has only 2 collapsed dimensions out of 16, whereas STORN had 12 collapsed dimensions out of 16; that is, only 4 active dimensions for STORN. This latter point is to be related to the fact that STORN is the less efficient of the three autoregressive models in these experiments, with performance significantly below that of SRNN and VRNN. In contrast, we did not observe posterior collapse of any dimension for the nonautoregressive models (DKF, DSAE, and RVAE) in our experiments; that is, for the nonautoregressive models, all 16 dimensions are useful to encode x t . This is consistent with the fact that, for these models, there is no predictive link and all the information in x 1:T must be encoded in z 1:t .

We have checked that, for a given model, the active/inactive dimensions remain the same across different examples. In addition, as shown in the example of Figure 4.5, the dimensions suffering from posterior collapse are the same over time. In principle, a small KL divergence at a certain time frame means that the posterior and the generative distributions of z t are very close to each other for that time frame. However, this does not guarantee that the generative distribution on two consecutive frames remains the same, and the same for the posterior distribution. In practice, we observe that both the generative and posterior distributions of collapsed dimensions are time-invariant and noninformative. We believe this is due to the way these models are implemented in practice, since the architectures used to implement the DVAEs are time-invariant; that is, the same architecture with the same weights is used at every time step. Combined with the fact that non-informative generative distributions are zero-mean and low-variance Gaussians, this leads us to conjecture that posterior collapse in a given dimension of z is associated to very small weights to compute the mean and log-variance of that dimension. We have verified this statement by visualising the weights of the output linear layers (not shown here for conciseness). show a fair to good reconstruction for all models. As for the speech analysis-resynthesis experiment, all DVAE models outperform the vanilla VAE model. This confirms the interest in using DVAE models for modeling sequential data.

In this experiment with human motion data, the autoregressive DVAEs largely outperform the nonautoregressive DVAEs. Indeed, STORN, VRNN and SRNN have an MPJPE of about 9.5, 9.2 and 7.9 mm, respectively, whereas DKF, RVAE (noncausal) and DSAE obtain about 42.2, 28.6 and 28.6 mm, respectively. Therefore, the performance gap between the autoregressive models (trained and tested in the teacher-forcing mode) and the nonautoregressive models is larger than in our experiment with speech signals. We conjecture that this is because the 3D human motion data has less variability (or, say, smoother trajectories) compared to speech data. Therefore, for such data, knowing the ground-truth values of the previous observation(s) (x t-1 or x 1:t-1 ) is a very strong information for predicting the current observation.

Again, SRNN exhibits the best performance, which is consistent with the analysisresynthesis results obtained with the speech data. In this new experiment with human motion data, STORN is more efficient than in our experiment with speech data. In contrast, DKF underperforms compared to the other nonautoregressive models and exhibits quite limited improvement over the vanilla VAE. 

TRAINING WITH SCHEDULED SAMPLING

As for the experiment with speech signals, we have tested the influence of training and testing the models in the generation mode (using scheduled sampling for training). Here, we briefly report and comment the results obtained on the 3D human motion data with SRNN. We can see from Table 4.2 that, similarly to what we observed in our experiment with speech signals, SRNN-TF-GM has very poor performance, whereas training SRNN with scheduled sampling partially addresses this problem, placing SRNN-GM between the vanilla VAE and the nonautoregressive DVAEs. However, the gain in performance of SRNN-TF-GM over the vanilla VAE is here quite limited, and we believe there is room for improvement when designing the model adaptation method. In other words, in these experiments, we adopted a simple scheduled sampling strategy and did not further investigated this issue, but other strategies to bridge the gap between ground-truth and generated data could be investigated.

VISUALIZATION OF THE LATENT VECTOR SEQUENCE

To conclude this set of experiments, we also provide an example of visualization of the latent space of the 3D human data, as we did for speech signals.

Fig. 4.7 displays the trajectories of the mean vector of q ϕz , the log-variance vector of q ϕz , a vector z t sampled from q ϕz , and the KL divergence term of the VLB, for an example sequence of the 3D human motion test dataset and for the SRNN model trained and applied in the teacher-forcing mode. Fig. 4.8 displays the corresponding trajectories for the SRNN model trained and applied in the generation mode (trained with scheduled sampling). We can see in Fig. 4.7 that the trajectories of the parameters (and of the sampled z t vector) are (much) smoother than in the case of speech signals, as, again, the 3D human motion data themselves have smoother trajectories compared to speech data. Some dimensions seem more "active" than others, even if, without a deeper investigation, it is quite difficult to interpret the range of values covered by the entries of the latent vector.

We simply note here that there are two dimensions, dimensions 1 and 3, that seem to collapse. For these two dimensions, the mean is steady around zero and the variance has a large (and steady) value, hence the sampled trajectory of the corresponding z t entries looks like noise. In contrast, some other dimensions seem to have an interesting informative profile. For example, dimensions 4 and 5 have an opposite fluctuation, probably encoding an opposite evolution of the corresponding factors of data variation.

In Fig. 4.8, the latent vector generally seems more "active" or informative than in Fig. 4.7.

For most dimensions, the ratio between the range of the mean variation and the range of variance variation is larger. The range of the KL divergence term values is also larger than in Fig. 4.7, indicating that the approximate posterior and the "prior" (generative distribution of z t ) are less close to each other than in the teacher-forcing case. These observations are consistent with those made on the speech signals in Section 4.5. Our conjecture is that the latent variable was less important in the teacher-forcing mode than in the generation mode is thus confirmed with the motion data.

CONCLUSION

In a practical application requiring the modeling of temporal data such as speech spectrograms or 3D human motion data, using either VRNN or SRNN seems a relevant choice, especially if autoregressive models can be used in the teacher-forcing mode. In addition, considering the above results and associated discussion, we suspect that having an inference model that respects the exact variable dependencies at inference time is important for obtaining the optimal performance. However, this is not always possible, as some applications require a causal inference model for online processing. Finally, in a practical application where only z 1:t needs to be transmitted, data resynthesis from z 1:t with an autoregressive model used in the generation mode was shown to be reasonably robust in our experiment with SRNN and speech data, provided that the model is fine-tuned in the generation mode (using here scheduled sampling). For 3D motion data, SRNN-GM was shown in our experiments to perform more poorly (with a limited gain over the vanilla VAE).

The performance of some other models, in particular DKF, also seem to depend on the data type. We thus insist that the above "model ranking" is valid only for the presented experiments, which involve pure analysis-resynthesis of speech spectrograms or 3D human motion data. For data generation, we presented only a limited set of qualitative examples to illustrate the behavior of the models (evaluating the quality of generated data is still a very difficult problem and a hot topic of machine learning with generative models).

For other tasks, such as signal/data transformation (with modification of the latent vectors between analysis and resynthesis), we do not know if our experimental results would generalize. In particular, it is difficult to know how much of the information contained in

x 1:T is encoded into z 1:t , or what "features" of x 1:T are encoded. Also, we illustrated the posterior collapse problem but we did not proceed to a thorough quantitative investigation of this issue. These points will be further discussed in Chapter 7. 

INTRODUCTION

In the previous chapters, we have introduced the dynamical variational autoencoders (DVAEs), which are a class of latent-variable deep generative models that extends the widely-used variational autoencoder (VAE) [START_REF] Diederik | Auto-encoding variational Bayes[END_REF][START_REF] Jimenez Rezende | Stochastic backpropagation and approximate inference in deep generative models[END_REF] to model correlated sequences of data [START_REF] Girin | Dynamical variational autoencoders: A comprehensive review[END_REF]. DVAEs consider a sequence of high-dimensional data x 1:T and a corresponding sequence of low-dimensional latent vectors z 1:T , and model the time dependencies within x 1:T , within z 1:T , and across x 1:T and z 1:T , using deep neural networks. In all the DVAE models developed so far, the temporal dependencies are implemented with recurrent neural networks (RNNs).

In Chapter 4, we have shown the impressive ability of DVAEs to model sequential data, such as speech spectrograms and 3D human motion sequences. However, incorporating RNNs in DVAEs can give rise to certain problems. A prominent issue is the disparity between training and test conditions. Typically, the commonly adopted configuration for RNN training is to use the ground-truth past observed vectors x 1:t-1 in the generative model, a training strategy often referred to as teacher-forcing (see Section 4.5 and 4.6).

However, at test/generation time, we can only use the previously generated values x1:t-1 to generate the current one. This generally results in large accumulated prediction errors along the sequence. Directly training an RNN in the generation mode is also difficult.

To remedy this problem, scheduled sampling can be adopted, i.e., the ground truth past vectors x 1:t-1 are progressively replaced with the previously generated ones x1:t-1 along the training iterations [START_REF] Bengio | Scheduled sampling for sequence prediction with recurrent neural networks[END_REF]. This strategy was successfully implemented for the training of autoregressive DVAEs in Section 4.5.3 and 4.6.3. However, this method necessitates a well-designed sampling scheduler to ensure optimal prediction performance. Additionally, RNNs are not well-suited for parallel computation and are susceptible to gradients exploding and vanishing for long sequences.

The replacement of RNNs with Transformers [START_REF] Vaswani | Attention is all you need[END_REF] for sequential modeling has become a new trend in natural language processing [START_REF] Devlin | Bert: Pretraining of deep bidirectional transformers for language understanding[END_REF][START_REF] Brown | Language models are few-shot learners[END_REF]. Recent studies in computer vision [START_REF] Dosovitskiy | An image is worth 16x16 words: Transformers for image recognition at scale[END_REF][START_REF] Touvron | Training data-efficient image transformers & distillation through attention[END_REF] have also demonstrated that Transformers can capture both global and local information. Unlike RNNs, the Transformer architecture uses attention mechanisms to learn global dependencies between input and output, allowing for the modeling of complex time correlations. Therefore, replacing RNNs with Transformers in DVAEs can potentially benefit the modeling of temporal dependencies between the observed and latent sequences. Inspired by this idea, and the idea of disentangling the global and local features in DSAE [START_REF] Li | Disentangled sequential autoencoder[END_REF], we propose the Hierarchical Transformer DVAE (HiT-DVAE) model [START_REF] Bie | HiT-DVAE: Human motion generation via hierarchical Transformer dynamical VAE[END_REF][START_REF] Lin | Speech modeling with a hierarchical Transformer dynamical VAE[END_REF], a deep generative model with sequential latent variables that can efficiently learn the stochastic dynamics of data. We extensively evaluate our approach on speech modeling and generation, showing that HiT-DVAE outperforms other DVAEs, while enabling a simpler training procedure. We also evaluate the proposed model for human motion generation, a task where HiT-DVAE performs better than current state-ofthe-art methods. Specifically, we show that HiT-DVAE is more robust when the prediction length at test time exceeds that used to train the model.

RELATED WORK

DEEP GENERATIVE MODELING

DVAEs [START_REF] Girin | Dynamical variational autoencoders: A comprehensive review[END_REF] offer the possibility to model data sequences within the general paradigm of variational inference. As presented in Chpater 3, DVAE is a general class of models and different models are obtained when considering various dependencies between the variables, e.g., variational recurrent neural networks [START_REF] Chung | A recurrent latent variable model for sequential data[END_REF] or stochastic recurrent neural networks [START_REF] Fraccaro | Sequential neural models with stochastic layers[END_REF]. Despite their effectiveness, current DVAE models have a significant limitation. They implement probabilistic dependencies between variables using recurrent neural networks (RNNs) or their variants, which restricts the ability to choose which past frames inform the generation of the current frame.

SPEECH MODELING AND GENERATION

The generative modeling of speech data has been widely studied in low-level speech processing tasks such as speech enhancement. [START_REF] Bando | Statistical speech enhancement based on probabilistic integration of variational autoencoder and non-negative matrix factorization[END_REF] proposed to use VAE to learn a prior distribution on clean speech. Later, Leglaive et al. [START_REF] Leglaive | A recurrent variational autoencoder for speech enhancement[END_REF] and Julius et al. [START_REF] Richter | Speech enhancement with stochastic temporal convolutional networks[END_REF] proposed generative approaches to speech modeling based on VAE variants that can learn temporal dependencies in the speech model. While Leglaive et al. [START_REF] Leglaive | A recurrent variational autoencoder for speech enhancement[END_REF] proposed a recurrent VAE (RVAE) based on standard recurrent neural networks (RNNs), Julius et al. [START_REF] Richter | Speech enhancement with stochastic temporal convolutional networks[END_REF] used stochastic temporal convolutional network (TCNs) [3,[START_REF] Lea | Temporal convolutional networks: A unified approach to action segmentation[END_REF], allowing the latent variables to have both hierarchical and temporal dependencies. In the review work of DVAEs [START_REF] Girin | Dynamical variational autoencoders: A comprehensive review[END_REF], the performance on speech modeling of other DVAE models has also been studied. Furthermore, [START_REF] Girin | Dynamical variational autoencoders: A comprehensive review[END_REF] provided a qualitative visualization of speech generation for different DVAE models.

HUMAN MOTION GENERATION

Human motion forecasting has drawn much attention with a wide range of applications such as autonomous systems [START_REF] Brian | A survey of motion planning and control techniques for self-driving urban vehicles[END_REF], multimedia content [START_REF] Zhuang | Music2dance: Dancenet for music-driven dance generation[END_REF], and 3D game productions [START_REF] Van Welbergen | Real time animation of virtual humans: a trade-off between naturalness and control[END_REF].

Deterministic human motion prediction aims at regressing a single future motion from the past observation which is close to the ground truth. Due to the inherent sequential structure of human motion, 3D human motion prediction has been mostly addressed with RNNs [START_REF] Fragkiadaki | Recurrent network models for human dynamics[END_REF][START_REF] Jain | Structural-RNN: Deep learning on spatio-temporal graphs[END_REF][START_REF] Martinez | On human motion prediction using recurrent neural networks[END_REF]. Meanwhile, recent approaches demonstrate the effectiveness of modeling the spatial connectivity of human joints with GCNs [START_REF] Mao | Learning trajectory dependencies for human motion prediction[END_REF][START_REF] Dang | MSR-GCN: Multi-scale residual graph convolution networks for human motion prediction[END_REF][START_REF] Ma | Progressively generating better initial guesses towards next stages for high-quality human motion prediction[END_REF], selfattention (Transformers) [4,[START_REF] Cai | Learning progressive joint propagation for human motion prediction[END_REF] or simply with multi-layer perceptrons [START_REF] Bouazizi | Motionmixer: Mlp-based 3d human body pose forecasting[END_REF][START_REF] Guo | Back to mlp: A simple baseline for human motion prediction[END_REF]. While deterministic methods have achieved promising results, they exhibit strong limitations when it comes to modeling the diversity of plausible human motion forecasts.

Stochastic human motion prediction is also called human motion generation. Different from the deterministic approach, the task of human motion generation focuses on generating various possibilities of the future to model the uncertainty of motion. This includes several sub-topics depending on different given prompts such as motion generation based on given action labels [START_REF] Guo | Action2motion: Conditioned generation of 3d human motions[END_REF][START_REF] Petrovich | Action-conditioned 3D human motion synthesis with transformer VAE[END_REF], text description [START_REF] Tevet | Motionclip: Exposing human motion generation to clip space[END_REF][START_REF] Petrovich | Temos: Generating diverse human motions from textual descriptions[END_REF][START_REF] Zhang | T2m-gpt: Generating human motion from textual descriptions with discrete representations[END_REF], or audio information [START_REF] Zhuang | Music2dance: Dancenet for music-driven dance generation[END_REF][START_REF] Liu | Learning hierarchical cross-modal association for co-speech gesture generation[END_REF][START_REF] Siyao | Bailando: 3d dance generation by actor-critic gpt with choreographic memory[END_REF]. To evaluate the sequential generation performance of our proposed HiT-DVAE model, we focus on generating future motion merely based on a past observed motion sequence.

To tackle this problem, early work includes combining random noise with hidden states of an RNN-based motion prediction model, either by concatenation [START_REF] Lin | Human motion modeling using dvgans[END_REF][START_REF] Nath Kundu | Bihmp-gan: Bidirectional 3d human motion prediction gan[END_REF] or addition [START_REF] Barsoum | HP-GAN: Probabilistic 3D human motion prediction via GAN[END_REF]. Then, MT-VAE [START_REF] Yan | Mt-vae: Learning motion transformations to generate multimodal human dynamics[END_REF] combined a motion prediction model based on a recurrent neural network (RNN) with a conditional variational autoencoder (CVAE). The difference between the observed and future poses was encoded into the CVAE latent variable, which was then concatenated with the RNN's hidden state to account for the dynamics.

DLow [START_REF] Yuan | Dlow: Diversifying latent flows for diverse human motion prediction[END_REF] proposed to explicitly generate a diverse set of motion sequences by training a large number of different encoders (50 in their implementation) and a single RNNdecoder, obtaining different instances of the latent variable to generate different motions.

Then it used an energy function to promote the diverse generation. GSPS [START_REF] Mao | Generating smooth pose sequences for diverse human motion prediction[END_REF] inherited the diversity loss from DLow but used a motion prediction framework based on graph convolutional network (GCN) rather than RNN. The diversity of the generated motions was enforced by concatenating random noise to the observed sequences. More recently, Dang et al. [START_REF] Dang | Diverse human motion prediction via Gumbel-softmax sampling from an auxiliary space[END_REF] have proposed to encode the past observations into a base vector space and generate diverse future observations from different soft assignments of the base vector where the coefficients of the Gaussian distributions are obtained from a Gumbel-Softmax Sampling [START_REF] Jang | Categorical reparameterization with Gumbel-softmax[END_REF][START_REF] Chris J Maddison | The concrete distribution: A continuous relaxation of discrete random variables[END_REF]. Rather than modeling the whole observation into a single embedding, HuMor [START_REF] Rempe | Humor: 3d human motion model for robust pose estimation[END_REF] exploits an auto-regressive generative model where the current generation will depend on the past prediction. However, HuMor has to use the SMPL [START_REF] Loper | SMPL: A skinned multi-person linear model[END_REF] parameters which are not eligible for many of the motion datasets.

PROPOSED MODEL AND METHOD

HIT-DVAE FORMULATION

The proposed HiT-DVAE model is based on the family of DVAEs that was discussed in Chapter 3 and 4. In a DVAE, the generation of a time series of observed data vector x 1:T involves an associated time series of latent vectors z 1:T . This is opposed to a "static" VAE which encodes x 1:T into a single latent variable z. In the most general DVAE formulation, the time dependencies within and across x 1:T and z 1:T are of the autoregressive type and are implemented with RNNs.

In addition to the time-dependent latent variables z 1:T , we further add a time-independent latent variable w to grasp the global context of the whole sequence, inspired by [START_REF] Li | Disentangled sequential autoencoder[END_REF] and [START_REF] Petrovich | Action-conditioned 3D human motion synthesis with transformer VAE[END_REF]. While different from [START_REF] Petrovich | Action-conditioned 3D human motion synthesis with transformer VAE[END_REF], our w is learned in an unsupervised manner within the DVAE methodology, thus not requiring action class labels [START_REF] Li | Disentangled sequential autoencoder[END_REF]. The general form of the generative model that we use in this work writes:

p θ (x 1:T , z 1:T , w) = p θw (w) T t=1 {p θx (x t |x 1:t-1 , z 1:t , w)p θz (z t |x 1:t-1 , z 1:t-1 , w)} , (5.1)
where,

p θw (w) = N (w; 0, I), (5.2) 
p θz (z t |x 1:t-1 , z 1:t-1 , w) = N (z t ; µ θz,t , Σ θz,t ), (5.3) 
p θx (x t |x 1:t-1 , z 1:t , w) = N c x t ; 0, diag(v θx,t ) (speech), (5.4 
) ϕ z is introduced. In the present work, we consider the following inference model:

p θx (x t |x 1:t-1 , z 1:t , w) = N (x t ; µ θx,t , I) (motion). ( 5 
q ϕ (z 1:T , w|x 1:T ) = q ϕw (w|x 1:T ) T t=1 q ϕz (z t |x 1:T , w), (5.6) 
where

q ϕw (w|x 1:T ) = N (w; µ ϕw , Σ ϕw ), (5.7) 
q ϕz (z t |x 1:T , w) = N (z t ; µ ϕz,t , Σ ϕz,t ).

(5.8)

The training objective is to maximize the VLB:

L(θ, ϕ; x 1:T ) = E q ϕ (z 1:T ,w|x 1:T ) [ln p θ (x 1:T , z 1:T , w)
-ln q ϕ (z 1:T , w|x 1:T )] .

(5.9)

HIT-DVAE IMPLEMENTATION

The generation of both x 1:T and z 1:T is performed via the multi-head attention (MHA) mechanisms from Transformer [START_REF] Vaswani | Attention is all you need[END_REF]. The outputs of the two cross-MHA modules are the parameters of the respective probability distributions defined in Eq. (5.1). The pipeline of HiT-DVAE is shown in Fig. 5.1. Note that we assume different distributions for x t in speech and in motion, and the covariance matrix Σ θz,t is a diagonal matrix (the diagonal entries being in the vector v θz,t ). The output of the first MHA module is thus {µ θz,t , v θz,t }, and the output of the second MHA module is v θx,t for speech data and µ θx,t for motion data.

As suggested in [START_REF] Chung | A recurrent latent variable model for sequential data[END_REF], the feature extractors for the observation x t are crucial for learning from complex sequences, here we use a 2-layer MLPs for speech data and a Spatial Graph Convolutional Network (SGCN) for motion data, since the GCNs were widely used for human poses estimation and motion prediction [START_REF] Mao | History repeats itself: Human motion prediction via motion attention[END_REF][START_REF] Ma | Progressively generating better initial guesses towards next stages for high-quality human motion prediction[END_REF][START_REF] Dang | MSR-GCN: Multi-scale residual graph convolution networks for human motion prediction[END_REF][START_REF] Li | Dynamic multiscale graph neural networks for 3D skeleton based human motion prediction[END_REF][START_REF] Li | Symbiotic graph neural networks for 3D skeleton-based human action recognition and motion prediction[END_REF]. We denote this pose feature extraction operation as f D and we detail it below. Then, the generative processes of x t and z t differ on what variables are used as queries, keys, and values in the attention mechanism. In the present work, the decoder is given by:

  µ θz,t v θz,t   = MHA (Q θz,t , K θz , V θz ) , (5.10) 
Q θz,t =   f D (x t-1 ) w   , K θz = V θz = z 1 , . . . , z T , (5.11) 
v θx,t /µ θx,t = MHA (Q θx,t , K θx , V θx ) (5.12)

Q θx,t =   z t w   , K θx = V θx = f D (x 1 ), . . . , f D (x T ) .
(5.13)

The temporal dependencies are implemented via the mask of the attention modules of the Transformer decoder and encoder. The attention matrix in a Transformer layer is computed as follows:

Att(Q, K, V ) = Softmax M • QK T √ d k V , (5.14) 
where Q, K, V represents the query, key, and value, and d k represents the input feature dimension of the query and key. M is the attention mask and • denotes the element-wise multiplication. Obviously, an upper triangular mask without a diagonal can prevent the model to see the future input. In this case, we can generate the entire sequence of x 1:T or z 1:T simultaneously. In practice, given an observed sequence with length T , we only Meanwhile, in the conventional Transformer architecture, the past observations (e.g.,

(a) p x (x t |x 1:T , z t , w) (b) p θx (x t |x 1:t-1 , z t , w) (c) p θx (x t |x t-1 , z t , w)
x 1:t-1 ) are used as queries (Q) for the generation of the current state (e.g., x t ). However, in our implementation, we use the past observations as keys (K) and values (V ). This is motivated by the fact that this led to notably better results than with the "conventional" variable ordering. A more comprehensible explanation could be that using x 1:t-1 directly for predicting x t may result in insufficient information within z 1:T , subsequently affecting the decoder's performance negatively.

The inference of the latent variables w and z 1:T from x 1:T at the HiT-DVAE encoder is performed via a multi-head self-attention mechanism (MHSA). Features from observations x 1:T are accumulated via an RNN (speech) or a temporal GCN with T ′ nodes (motion), and then into a fully-connected (FC) layer to output the posterior mean and covariance matrix of w. A sample of w is drawn from the corresponding posterior, concatenated to the pose features extracted from x 1:T , and then fed into the Transformer encoder such that:

  µ ϕz,t v ϕz,t   = MHSA (Q ϕz,t , K ϕz , V ϕz ) , (5.15) 
Q ϕz,t =   f E (x t ) w,   , (5.16 
)

K ϕz = V ϕz =   f E (x 1 ), . . . , f E (x T ) w, . . . , w   , (5.17) 
where each of the output at index t indicates the distribution parameters of the latent variable z t , namely µ ϕz and Σ ϕz (with diagonal entries v ϕz,t ).

Finally, the pseudo-code for training and generation is given in Algorithm 3 and 4. 

L(θ, ϕ; s 1:T ) = - T t=1 E q ϕz q ϕw d IS (|s t | 2 , v θs,t ) + D KL (q ϕw (w|s 1:T ) ∥ p θw (w)) + T t=1 [D KL (q ϕz (z t |s 1:T , w) ∥ p θz (z t |s 1:t-1 , z 1:t-1 , w))]
(5.18)

where d IS (•, •) is the Itakura-Saito divergence [START_REF] Févotte | Nonnegative matrix factorization with the Itakura-Saito divergence: With application to music analysis[END_REF], D KL (•||•) is the Kullback-Leibler divergence (KLD), and square is element-wise.

DATASETS AND PRE-PROCESSING

The experiments are conducted on two datasets: the Wall Street Journal (WSJ0) dataset [START_REF] Garofolo | CSR-I (WSJ0) Sennheiser LDC93S6B[END_REF] and the Voice Bank (VB) corpus [START_REF] Valentini-Botinhao | Speech enhancement for a noise-robust text-to-speech synthesis system using deep recurrent neural networks[END_REF]. The WSJ0 dataset we use here is the same as in Section 4.4.1. The VB dataset contains a training set with 11,572 utterances performed by 28 speakers and a test set with 824 utterances performed by 2 speakers. We follow [START_REF] Fu | MetricGAN-U: Unsupervised speech enhancement/dereverberation based only on noisy/reverberated speech[END_REF] to choose two speakers (p226 and p287) from the training set for validation, which contains 770 utterances, and use the leftover 26 speakers for training.

In all experiments, the raw audio signals are pre-processed in the following way. First, the silence at the beginning and the end of the signals are cropped by using a voice activity detection threshold of 30 dB. Then, the waveform signals are normalized so that their maximum absolute value is one. The STFT is computed with a 64-ms sine window (1024 samples) and a 75%-overlap (256 samples hop length), resulting in a sequence of 513dimensional discrete Fourier coefficients (for positive frequencies). Finally, the power magnitude of the STFT coefficients is computed. We set the sequence length of each STFT spectrogram to T = 150 (corresponding to speech segments of 2.4s) for WSJ0 and T = 100 (corresponding to speech segments of 1.6s) for VB. At test time, the model is evaluated on the complete test utterances which can be of variable length.

IMPLEMENTATION DETAILS AND TRAINING SETTINGS

The Transformer-based encoder and decoders are composed of 4 identical layers. All input vectors are embedded into vectors of dimension d model = 256, which is the size for all MHA blocks. We apply single-head attention because we found that using multihead attention decreases the performance in our experiments. All feed-forward blocks in the Transformer layers consist of two dense layers with size 1024 and 256. The latent dimension for z 1:T and w 1:T are set to 16 and 32, respectively.

The training is made with the AdamW [START_REF] Loshchilov | Decoupled weight decay regularization[END_REF] optimizer, which is a variant of Adam [START_REF] Diederik | Adam: A method for stochastic optimization[END_REF] with decoupled weight decay. The parameters of the optimizer are β 1 = 0.9, β 2 = 0.99, ϵ = 10 -9 and weight decay = 10 -5 . We varied the learning rate during training by firstly increasing it linearly for the warm-up training stage (for 5k iterations) and then decreasing it using a cosine annealing scheduler [START_REF] Loshchilov | SGDR: Stochastic gradient descent with warm restarts[END_REF] (for 20k iterations). The maximum and minimum values of the learning rate are 5 × 10 -5 and 10 -8 respectively. β factors are multiplied to the KLD terms in Equation 5.18 to increase latent space expressivity, with

β w = β z = 10 -2 .

EVALUATION METRICS

We evaluate the average speech analysis-resynthesis performance on the test set (in generation mode for AR models) using four evaluation metrics: The root mean squared error (RMSE), the scale-invariant signal-to-distortion ratio (SI-SDR) [START_REF] Le Roux | SDR: Half-baked or well done[END_REF] in dB, the perceptual evaluation of speech quality (PESQ) score [START_REF] Rix | Perceptual evaluation of speech quality (PESQ): A new method for speech quality assessment of telephone networks and codecs[END_REF] (in [-0.5, 4.5]), and the extended short-time objective intelligibility (ESTOI) score [START_REF] Cees H Taal | An algorithm for intelligibility prediction of time-frequency weighted noisy speech[END_REF] (in [0, 1]). We also evaluate the average generation performance via the Fréchet Deep Speech Distance (FDSD) proposed in [START_REF] Bińkowski | High fidelity speech synthesis with adversarial networks[END_REF]. FDSD is a quantitative metric for speech signals generative models. It relies on speech features extracted with the pre-trained speech recognition model DeepSpeech2 [START_REF] Amodei | Deep speech 2: End-to-end speech recognition in english and mandarin[END_REF]. 

SPEECH SPECTROGRAMS ANALYSIS-RESYNTHESIS RESULTS

The speech analysis-resynthesis results on both the WSJ0 dataset and the VB dataset are reported in Table 5.1. The results here are different from Table 4.1 mainly due to the different experimental settings (i.e. the sequence length). HiT-DVAE demonstrates superior performance compared to other DVAE models on the WSJ0 dataset across all metrics, with the exception of PESQ where SRNN (SS) performs slightly better. However, on the VB dataset, HiT-DVAE outperforms all other DVAE models across all metrics.

Despite being trained in teacher-forcing mode, HiT-DVAE maintains robust performance when tested in generation mode, indicating its effectiveness as an autoregressive (AR) model. On the other hand, SRNN (TF), which is also trained in teacher-forcing mode, exhibits a notable decrease in performance compared to SRNN (SS) trained in scheduledsampling mode.

SPEECH SPECTROGRAMS GENERATION RESULTS

In addition to the aforementioned speech analysis-resynthesis experiments, we conducted an evaluation of the model's performance in speech spectrogram generation using FDSD scores. To calculate these scores, we generated a total of 10,240 samples of which we derived magnitude spectrograms. The phase spectrograms were then reconstructed using the Griffin-Lim algorithm [START_REF] Griffin | Signal estimation from modified short-time Fourier transform[END_REF] to generate the waveform signals. For computing the FDSD scores, we utilized 1.6-second utterances from the VB training set as the reference set. Furthermore, as a reference point for the FDSD scores, we also computed the FDSD on the VB test set, using the original phase or the phase reconstructed by the Griffin-Lim algorithm.

Table 5.2 demonstrates that HiT-DVAE outperforms the other DVAE models in this generation task. Additionally, it can be observed that the autoregressive (AR) DVAE models, namely HiT-DVAE and SRNN, generally exhibit superior performance in speech generation compared to the non-AR DVAE models.

INVESTIGATION OF THE SEQUENCE-LEVEL VARIABLE

To gain further insights into the significance of the sequence-level variable w, we conducted an experiment involving the swapping of w values encoded from two distinct speech sequences: one spoken by a female speaker (S1) and another by a male speaker (S2). This approach aligns with a similar methodology employed in [START_REF] Hsu | Unsupervised learning of disentangled and interpretable representations from sequential data[END_REF]. Remarkably, we observed a corresponding swap in the f 0 range, as illustrated in Fig. 5.3. This finding suggests that the sequence-level variable w has encoded certain global information, such as the speaker's gender.

EXPERIMENTS ON HUMAN MOTION GENERATION

TRAINING LOSS

Pseudo-multi-modal ground truth. Following [START_REF] Yuan | Dlow: Diversifying latent flows for diverse human motion prediction[END_REF][START_REF] Mao | Generating smooth pose sequences for diverse human motion prediction[END_REF], we select pseudo-multi-modal ground truth from the training dataset T using the distance between the last pose of the history. That is, for a training sample x 1:T ∈ T , we have its pseudo ground truth x m 1:T when:

||x O -x m O || 2 < τ, ∀x m 1:T ∈ T , (5.19) 
where O is the last frame of history and τ is the threshold. We set τ = 0.5 for both Human3.6M and HumanEva-I.

VLB. We generate K motion sequences {x k 1:T } K k=1 to compute the reconstruction loss:

L R = min k ||x k 1:T -x 1:T || 2 , (5.20) 
L MM = 1 M M m=1 min k ||x k 1:T -x m 1:T || 2 , (5.21) 
where x 1:T is the ground-truth, and x m 1:T are the pseudo-ground truth sequences. We select M pseudo-ground-truth sequences for each candidate. If the total number of its pseudoground-truth is less than M , we only use the available candidates. In addition to the reconstruction losses, we need to minimize the KL divergence:

L KL-Z = 1 T T t=1 D KL (q ϕz (z t |x 1:T , w)||p θz (z t |x t-1 , z 1:t-1 , w)) (5.22) 
L KL-W = D KL (q ϕw (w|x 1:T )||p θw (w)).

(5.23)

The final VLB writes:

L ELBO = λ R L R + λ MM L MM + λ KL-Z L KL-Z + λ KL-W L KL-W .
(5.24)

Diversity loss. As suggested by [START_REF] Yuan | Dlow: Diversifying latent flows for diverse human motion prediction[END_REF][START_REF] Mao | Generating smooth pose sequences for diverse human motion prediction[END_REF], we add diversity-promoting losses on the upper body and lower body:

L DIV = p∈{l,u} λ DIV-p 2 K(K -1) K k=1 K k ′ =k+1 exp - ||x k,p 1:T -xk ′ ,p 1:T || 1 α p , (5.25) 
where l (u) indicates the lower (upper) body part and α p is a normalizing factor.

Realistic pose loss. Following [START_REF] Mao | Generating smooth pose sequences for diverse human motion prediction[END_REF], we employ three extra losses to penalize for unrealistic poses, L L for shifting limb length, L A for aberrant joint angles and L NF for negative prior pose probability from a pre-trained pose prior model based on normalizing flow [START_REF] Jimenez | Variational inference with normalizing flows[END_REF][START_REF] Dinh | Density estimation using real nvp[END_REF]. The realistic loss can be written as

L REAL = λ L L L + λ A L A + λ NF L NF .
Altogether, our final training loss writes: Human3.6M is the same as the one we used in Section 4.4.2. While for the fair comparison, we follow the same preprocessing as in [START_REF] Mao | Generating smooth pose sequences for diverse human motion prediction[END_REF] and only use 17 of the joints in the training and all testing implementations of HiT-DVAE. We use S1,5,6,7,8 as the training set and the other two subjects as the test set. To be comparable with previous methods [START_REF] Mao | Generating smooth pose sequences for diverse human motion prediction[END_REF][START_REF] Yuan | Dlow: Diversifying latent flows for diverse human motion prediction[END_REF], we observe the first 25 frames and predict the next 100 frames (O = 25, G = 100).

L = L ELBO + L DIV + L REAL . ( 5 

IMPLEMENTATION DETAILS

We set the dimension of z t to 16 and w to 32, and employ the same GCN architecture described in [START_REF] Mao | Learning trajectory dependencies for human motion prediction[END_REF]. We use 1 GCN block with a hidden size of 8 for spatial GCN and 4

GCN blocks with a hidden size of 64 for temporal GCN. For the Transformer encoder and the decoder for generating z t , we set the input feature dimension to 64, with 4 multi-head, followed by an FC layer with a dimension of 256, whereas for the Transformer decoder to generate x t , we set those parameters to 256, 4, 1,024 respectively.

We generate K = 50 samples for each observation. We train the model for 500 epochs with 1,000 training samples per epoch, using the Adam optimizer, and set the learning rate to 0.001, batch size to 64 for HumanEva, and 32 for H3.6M. We applied a linear KL annealing [START_REF] Casper Kaae Sønderby | Ladder variational autoencoders[END_REF] for the first 20 epochs to warm up the latent space, then we take 80 epochs to increase the probability of schedule sampling from 0 to 1. For HumanEva-I, we train with a sequence length of 75, where the inference of w only takes 15 frames. The weights of different loss terms (λ R , λ M M , λ DIV -l , λ DIV -u , λ L , λ A , λ N F , λ KL-Z , λ KL-W ) and the normalizing factors (α l , α u ) are set to (10, 5, 0.1, 0.2, 100, 1, 0.001, 0.5, 0.1) and [START_REF] Bando | Statistical speech enhancement based on probabilistic integration of variational autoencoder and non-negative matrix factorization[END_REF][START_REF] Chung | An unsupervised autoregressive model for speech representation learning[END_REF].

For H3.6M, we train with a sequence length of 125, where w is inferred from 25 frames.

The weights of different loss terms and the normalizing factors are set to (20, 10, 0.1, 0.2, 100, 1, 0.01, 0.5, 0.1) and (100, 300) respectively.

EVALUATION METRICS

Explicit evaluation metrics. Following [START_REF] Mao | Generating smooth pose sequences for diverse human motion prediction[END_REF][START_REF] Yuan | Dlow: Diversifying latent flows for diverse human motion prediction[END_REF], we evaluate the error and diversity of our results with the following metrics, calculating directly on the joint locations of poses:

(i) Average Pairwise Distance (APD):

APD = 1 K(K -1) K i=1 K j=1,j̸ =i ∥x i O+1:O+G -xj O+1:O+G ∥ 2 , (5.27) 
where K is the total number of generated sequences. APD measures the capacity of the model to generate diverse samples without considering their quality.

(ii) Average Displacement Error (ADE):

ADE = 1 G min k ∥x k O+1:O+G -x O+1:O+G ∥ 2 .
(5.28)

Here ADE only computes L2 distance between the ground truth and the best generated sample, which shows the upper bound of the generation quality of a model but not its usual performance.

(iii) Final Displacement Error (FDE): Here we compute the averaged ADE and FDE with the pseudo-ground-truth.

FDE = min k ∥x k O+G -x O+G ∥. ( 5 
These coordinate-based metrics are widely used for evaluating the quality of generated motion [START_REF] Ionescu | Human3.6m: Large scale datasets and predictive methods for 3d human sensing in natural environments[END_REF], in terms of explicit diversity on Cartesian coordinates and the upper bound of the generated samples (i.e. the best sample). However, when merely using these metrics, we could not avoid the corner case where the model tends to generate a few samples with high quality while the others are implausible. In this case, the model could still achieve high scores both in APD and ADE/FDE, while not achieving the original objective of generating plausible and diverse future sequences.

To this end, we propose two solutions: (1) instead of just evaluating (ii-iv) on the best sample, we also evaluate these criteria on the median example, i.e., the generated motion with the median error instead of minimum error among all generated examples;

(2) in addition to these explicit measurements based on pose coordinate, we also consider implicit measurements based on a pre-trained action classifier to evaluate on feature space, as described below.

Implicit evaluation metrics. Following [START_REF] Petrovich | Action-conditioned 3D human motion synthesis with transformer VAE[END_REF][START_REF] Guo | Action2motion: Conditioned generation of 3d human motions[END_REF], we use a GRU-based action classifier pre-trained on real data to evaluate the quality of generated data by: (i) calculating

Recognition Accuracy (Acc) of the classifier on generated data to evaluate if they could be recognized as the correct action class; (ii) extracting features of the generated data and real data respectively by the same action classifier, and calculating the Frechet Inception Distance (FID) of these two distributions to evaluate the overall quality of the generated data. We train a classifier for each of the datasets separately on their training splits. † indicates results taken from DLow, ⋆ indicates results obtained by using the official code and pretrain models. 

Acc (%) ↑ FID ↓ APD (m) ↑ ADEb (m) ↓ FDEb (m) ↓ MMADEb (m) ↓ MMFDEb (m) ↓ ADEm (m) ↓ FDEm (m) ↓ MMADEm (m) ↓ MMFDEm (m) ↓ Real data 90.2 - - - - - - - - - - ERD † [82] - - 0 

QUANTITATIVE RESULTS

We evaluate HiT-DVAE on HumanEva-I and Human3.6m dataset using the explicit and implicit metrics described in Section 5.5.4, and observe that the proposed method outperforms the state-of-the-art methods on most of the evaluation metrics. Note that considering the large number of metrics used, we aim to find a balance of all the metrics to get overall good performance.

HumanEva-I As shown in Table 5.3, HiT-DVAE achieves significantly better results than other state-of-the-art methods on ACC and FID. This means that the feature distributions of the motions generated by HiT-DVAE are more similar to the corresponding ground-truth, and the action patterns of these generated motions could be better recognized. Besides, we observe that HiT-DVAE achieves comparable results with state-of-theart on explicit evaluation of diversity (APD) and errors of the best sample (ADE b , FDE b , MMADE b , MMFDE b ). As discussed in Section 5.5.4, just considering errors of the best sample along with the diversity is not reliable, thus it is important to consider the error of median samples. We find that HiT-DVAE is also better on median errors (ADE m , FDE m , Table 5.4: Results on Human3.6M. "Real data" means real motion in the testing set, showing the theoretical upper bounds of accuracy (Acc) on generation methods. The suffix "b" or "m" represents the best/median metrics. ↑ (↓) means higher (lower) is better.

† indicates results taken from DLow, and ⋆ indicates results obtained by using the official code and pretrain models. MMADE m , MMFDE m ), indicating better overall generation quality. Note that APD is not always better for larger values, because extremely large diversity usually comes with large joint errors for most generation results ("median" metrics), and also low recognition accuracy. This represents that some of the generated samples might be implausible and the quality of generation is not guaranteed.

Acc (%) ↑ FID ↓ APD (m) ↑ ADEb (m) ↓ FDEb (m) ↓ MMADEb (m) ↓ MMFDEb (m) ↓ ADEm (m) ↓ FDEm (m) ↓ MMADEm (m) ↓ MMFDEm (m) ↓ Real data 83.5 - - - - - - - - - - ERD † [82] - - 0 
Human3.6M Similar conclusions can be drawn from the results on the Human3.6M dataset, as shown in Table 5.4. When training the action classifier for Human3.6M dataset, we group the 15 actions into 5 groups instead of training on all the 15 action labels (see Table 5.5). This is because Human3.6M dataset is not designed for action classification and some actions in this dataset are quite alike. For example, we could not see many differences between "eating" and "smoking" by looking at the skeletons of a person. The re-grouping is based on the confusion matrix of an initial classifier trained on real data with all class labels. After re-grouping, the average classification accuracy on real data increases from 48.1% to 85.5%. We report results using this features for FID. Note that even on the 15-action classifier with low real-data accuracy, HiT-DVAE still performs better than other state-of-the-art methods, see Tab. 5.6

ROBUST PREDICTION WITH LONGER SEQUENCES

To evaluate the robustness of the generative models in different prediction lengths, we perform statistical analysis for our model (HiT-DVAE) and the state-of-the-art methods (DLow [START_REF] Yuan | Dlow: Diversifying latent flows for diverse human motion prediction[END_REF], GSPS [START_REF] Mao | Generating smooth pose sequences for diverse human motion prediction[END_REF] and GumbelSample [START_REF] Dang | Diverse human motion prediction via Gumbel-softmax sampling from an auxiliary space[END_REF]). The default prediction lengths at training are 60 and 100 for HumanEva-I and Human3.6m respectively. We further test the models when prediction lengths are longer than this default setting. To be noted that DLow and HiT-DVAE are both autoregressive generative models, whereas GSPS and GumbelSample inject a single random variable into a GCN-based motion prediction network [START_REF] Mao | Learning trajectory dependencies for human motion prediction[END_REF][START_REF] Dang | MSR-GCN: Multi-scale residual graph convolution networks for human motion prediction[END_REF]. We present the boxplot of ADE for these models in Fig. 5.4 and of other metrics in Fig. 5.6. Surprisingly, we observe that GSPS and GumbelSample generate only a small number of samples that are close to the ground-truth (i.e., the minimum value of boxplot), while the majority of the samples have poor quality, as indicated by the interquartile range of the boxplot. When we evaluate with longer prediction length, the performance of GSPS and GumbelSample in HumanEva-I degrades rapidly. While the degradation is less noticeable in Human3.6M, these models are still worse than the autoregressive models. Furthermore, HiT-DVAE achieves slightly better results than DLow while avoiding the need to train multiple encoders (i.e., we need to train K encoders to generate K samples).

ABLATION STUDY

Table 5.7 shows ablation studies on HiT-DVAE with different architectural designs. We observe that enhancing the decoder through re-generation leads to an improvement in the model's performance, as evidenced by better results in both explicit and implicit evaluation metrics. Compared with using LSTM ("rnn-DVAE"), the results reveal that utilizing a hierarchical Transformer architecture effectively mitigates the issue of limited diversity Table 5.7: Ablation study on different architecture designs on HumanEva-I and Hu-man3.6M. "rnn-DVAE" means using an LSTM instead of proposed hierarchical transformer, "w/o ReGen." means without using re-generation refinement, "w/o w" means without using the time-independent latent variable w. The best results are bold if the model does not have extremely high or low diversity (marked as red). in the generated outputs. Specifically, this architecture enables the model to capture dependencies and relationships across different levels of granularity, leading to more varied and distinct generated samples. Additionally, the inclusion of the global time-independent variable w contributes to increased diversity and elevates the performance upper bound for both datasets ("w/o w").

Architecture ACC (%) ↑ FID ↓ APD (m) ↑ ADEb (m) ↓ FDEb (m) ↓ MMADEb (m) ↓ MMFDEb (m) ↓ ADEm (m) ↓ FDEm (m) ↓ MMADEm (m) ↓ MMFDEm (m
L ELBO L DIV L REAL ACC (%) ↑ FID ↓ APD (m) ↑ ADEb (m) ↓ FDEb (m) ↓ MMADEb (m) ↓ MMFDEb (m) ↓ ADEm (m) ↓ FDEm (m) ↓ MMADEm (m) ↓ MMFDEm (m) ↓ HumanEva-I ✓ ✓ ✓ 72 
Moreover, to further understand the impact of each loss term on the performance, we conduct an ablation study on the three loss terms in Table 5.8. We observe that L DIV increases the diversity and facilitates the model to generate different motion sequences, and L REAL can help to compensate for excessive diversity which results in non-realistic and non-feasible poses (i.e., APD = 137.207 in HumanEva-I).

QUALITATIVE RESULTS

To qualitatively evaluate our results, we visualize various generating samples of our model in Figure 5.5 compared with other state-of-the-art models. We can see that other models either generate very similar samples for all the generations or result in some implausible ones, while our method performs well on all the generations with diverse but reasonable results. My contribution to this paper lies in methodology development, code development, experiment validation and writing.

INTRODUCTION

DVAEs are a type of deep generative models designed specifically for modeling time series data with high-dimensional features. These models extend the capabilities of VAEs by incorporating temporal dependencies between successive observed and latent vectors.

In the previous chapters, we have highlighted the interest of using DVAEs over the VAE for time series data modeling, such as speech spectrograms and 3D human motion.

Separately, the VAE has been successfully employed in unsupervised speech enhancement tasks, where the objective is to recover the clean speech in the presence of noise.

These approaches operate in a noise-agnostic manner, requiring only clean speech signals during training and not relying on noise samples or noisy speech samples. In this chapter, we further extend these techniques to single-channel unsupervised speech enhancement using DVAEs, hence exploiting both speech signals unsupervised representation learning and dynamics modeling.

Our proposed algorithm for unsupervised speech enhancement combines a pre-trained DVAE model, which captures the speech signal's underlying structure, with a noise model based on nonnegative matrix factorization. We then derive a variational expectationmaximization (VEM) algorithm to perform speech enhancement. This algorithm is formulated in the most general DVAE framework and is subsequently applied with three specific DVAE models to illustrate the versatility of the approach: RVAE (extending the preliminary work in [START_REF] Leglaive | A recurrent variational autoencoder for speech enhancement[END_REF]), DKF, and SRNN. To our knowledge, the present paper is the first in-depth study on the use of DVAEs, as a general class of models, for unsupervised speech enhancement.

Experimental results demonstrate that our DVAE-based approach outperforms its VAEbased counterpart, as well as several supervised and unsupervised noise-dependent baselines. This performance improvement is particularly noticeable when the noise type is not encountered during the training phase, highlighting the generalization capabilities of the proposed method.

The rest of this chapter is organized as follows. Section 6.2 discusses the related works on speech enhancement. Section 6.3 develops the proposed DVAE-based speech enhancement algorithm. Section 6.4 presents a series of experiments conducted with the three examples DVAE models and their comparison with several state-of-the-art supervised and unsupervised speech enhancement methods. This includes cross-dataset experiments that investigate the generalization capabilities of the methods to unseen types of noise. Section 6.5 concludes this chapter.

RELATED WORK

Speech enhancement is a classical and fundamental problem in speech processing, which aims to recover the clean speech signal from a noisy recording [START_REF] Benesty | Speech enhancement[END_REF][START_REF] Philipos | Speech enhancement: Theory and practice[END_REF][START_REF] Heinrich W Löllmann | Challenges in acoustic signal enhancement for human-robot communication[END_REF]. Classical signal-processing-based solutions include spectral subtraction [START_REF] Boll | Suppression of acoustic noise in speech using spectral subtraction[END_REF] and Wiener filtering [START_REF] Soo | Enhancement and bandwidth compression of noisy speech[END_REF] (which use noise and clean speech power spectral density estimates obtained from the noisy signal), and the short-time spectral amplitude estimator [START_REF] Ephraim | Speech enhancement using a minimum-mean square error short-time spectral amplitude estimator[END_REF].

Recently, the advances in deep learning (DL) have opened new possibilities to tackle this task. The most widely studied approach to DL-based speech enhancement is that of a regression problem in the time-frequency (TF) domain where a deep neural network (DNN) is trained to map an input noisy speech signal into an output clean speech signal or into a denoising TF mask that is applied on the noisy signal (see a review in [START_REF] Wang | Supervised speech separation based on deep learning: An overview[END_REF]). We can refer to this general approach as a noisy-to-clean mapping (N2C). Recent works have considered N2C directly in the time domain instead of the TF domain [START_REF] Fu | Raw waveform-based speech enhancement by fully convolutional networks[END_REF] or leveraging generative adversarial networks (GANs) [START_REF] Pascual | SEGAN: Speech enhancement generative adversarial network[END_REF][START_REF] Fu | MetricGAN: Generative adversarial networks based black-box metric scores optimization for speech enhancement[END_REF][START_REF] Fu | MetricGAN+: An improved version of MetricGAN for speech enhancement[END_REF].

In the N2C approach, model training is typically done in a supervised manner using a parallel noisy-clean dataset, i.e., with noisy and clean versions of the same speech signal.

Such parallel dataset must be prepared beforehand, the noisy version being obtained by summing the clean speech signal with noise. With a large amount of training data, DNNs can efficiently learn the N2C denoising mapping [START_REF] Lu | Speech enhancement based on deep denoising autoencoder[END_REF][START_REF] Wang | Supervised speech separation based on deep learning: An overview[END_REF]. However, supervised methods, whether they work in the TF domain or in the time domain, tend to have difficulties for generalizing to noise types and acoustic conditions that were not seen during training.

And it is difficult, not to say impossible, to generate a dataset that includes all possible types and levels of noise (e.g., urban noise vs. office noise) and all possible acoustic conditions (e.g., different recording equipments, varying mouth-to-microphone distance and orientation, different reverberation characteristics, etc.).

Recent works in DL-based speech enhancement have tried to relax the constraints regarding the degree of supervision to ease the design of datasets and/or improve the generalization capability of the models. In the present speech enhancement context, relaxing the degree of supervision means that we go from methods using carefully aligned parallel noisy-clean data to methods using non-parallel noisy-clean data (i.e., the noisy examples are not the noisy version of the clean examples), which are easier to prepare, or noisyonly data, which are both easy to record and prepare, or clean-only data, which are not so easy to record, but which can lead to good generalization capabilities, as seen below. For example, the GANs employed in [START_REF] Xiang | A parallel-data-free speech enhancement method using multi-objective learning cycle-consistent generative adversarial network[END_REF] and [START_REF] Yu | CycleGAN-based non-parallel speech enhancement with an adaptive attention-inattention mechanism[END_REF] use non-parallel noisy and clean speech examples. In the present context, such methods that do not require a parallel noisy-clean dataset, are referred to as unsupervised. They can be divided into two groups.

Unsupervised noise-dependent methods use noise examples or noisy speech examples only (they do not use clean speech signals)

. For example, a noisy-to-noisy (N2N) mapping approach, originally proposed for image denoising in [START_REF] Lehtinen | Noise2noise: Learning image restoration without clean data[END_REF], was applied to speech enhancement in [START_REF] Alamdari | Improving deep speech denoising by noisy2noisy signal mapping[END_REF][START_REF] Madhav | Speech denoising without clean training data: a noise2noise approach[END_REF]. In this approach, the DNN input is still a noisy signal but the output clean signal is replaced with another noisy version of the same clean signal. This is supported by theoretical considerations: If the noises in the noisy input and output are zero-mean and uncorrelated, and an infinite number of examples is provided to the DNN, the latter will learn to output an average denoised version of the signal [START_REF] Lehtinen | Noise2noise: Learning image restoration without clean data[END_REF]. The motivation for adopting this approach for speech enhancement is that clean audio sig-nals are difficult and expensive to record (in studio condition) compared to noisy speech signals. However, the required assumptions are not met for audio signals. Not only the different channels of multichannel recordings do not contain the exact same clean speech signal, but they also contain correlated noise [START_REF] Barry | Beamforming: A versatile approach to spatial filtering[END_REF][START_REF] Benesty | Microphone Array Signal Processing[END_REF][START_REF] Gannot | A consolidated perspective on multimicrophone speech enhancement and source separation[END_REF][START_REF] Vincent | Audio Source Separation and Speech Enhancement[END_REF]. Moreover, in their experiments, the authors of [START_REF] Alamdari | Improving deep speech denoising by noisy2noisy signal mapping[END_REF][START_REF] Madhav | Speech denoising without clean training data: a noise2noise approach[END_REF] have to rely on simulated clean speech plus noise signals, which questions the interest of the N2N approach compared to the conventional N2C mapping. However, the N2N approach inspired the more realistic noisy-target training method (NyTT) [START_REF] Fujimura | Noisytarget training: A training strategy for DNN-based speech enhancement without clean speech[END_REF], in which noisy speech and extra noise is used. In the training step, the NyTT input is noisy speech further corrupted by an additional noise and the network is trained to recover the noisy speech at the output. Then in the test step, the network is supposed to recover the clean speech signal from a noisy speech input. Although NyTT lacks theoretical support, it was shown to obtain good results in practice [START_REF] Fujimura | Noisytarget training: A training strategy for DNN-based speech enhancement without clean speech[END_REF]. In a different spirit, another approach not using clean speech signals is the MetricGAN-U method proposed by Fu et al. [START_REF] Fu | MetricGAN-U: Unsupervised speech enhancement/dereverberation based only on noisy/reverberated speech[END_REF], an unsupervised version of their previous model MetricGAN [START_REF] Fu | MetricGAN: Generative adversarial networks based black-box metric scores optimization for speech enhancement[END_REF][START_REF] Fu | MetricGAN+: An improved version of MetricGAN for speech enhancement[END_REF].

MetricGAN-U relies on the non-intrusive speech quality metric DNSMOS [START_REF] Chandan | DNSMOS: A non-intrusive perceptual objective speech quality metric to evaluate noise suppressors[END_REF], which does not require using the clean speech signal, in contrast to the intrusive PESQ metric This setting was originally referred to as semi-supervised in the audio source separation literature [START_REF] Smaragdis | Supervised and semisupervised separation of sounds from single-channel mixtures[END_REF][START_REF] Gautham | A non-negative approach to semisupervised separation of speech from noise with the use of temporal dynamics[END_REF][START_REF] Mohammadiha | Supervised and unsupervised speech enhancement using nonnegative matrix factorization[END_REF], because it exploits a dataset of isolated signals for one of the sources in the mixture. This dataset is thus labeled with the class of the sound source, e.g., clean speech for speech enhancement. In the present paper, we choose to call this setting unsupervised because in the machine learning literature, semi-supervised refers to methods that are trained from both labeled and unlabeled datasets (e.g., [START_REF] Diederik P Kingma | Semi-supervised learning with deep generative models[END_REF]). In this context, a semi-supervised speech enhancement method would be trained from both a labeled dataset of noisy and clean speech signal pairs, and an unlabeled dataset containing only noisy or clean speech. While very interesting, this setting is not considered in this paper.

Examples of unsupervised noise-agnostic methods include that of Bando et al. [START_REF] Bando | Statistical speech enhancement based on probabilistic integration of variational autoencoder and non-negative matrix factorization[END_REF],

who proposed to use a variational autoencoder (VAE) [START_REF] Diederik | Auto-encoding variational Bayes[END_REF][START_REF] Jimenez Rezende | Stochastic backpropagation and approximate inference in deep generative models[END_REF] to learn a prior distribution of the clean speech signals. At test time, the noise signal is modeled with Bayesian nonnegative matrix factorization (NMF) [START_REF] Févotte | Nonnegative matrix factorization with the Itakura-Saito divergence: With application to music analysis[END_REF] whose parameters, as well as the VAE latent variables, are estimated with a Markov chain Monte Carlo (MCMC) algorithm, including a sampling of the NMF parameters and the VAE latent variables. The same general approach was considered and extended in [START_REF] Leglaive | A variance modeling framework based on variational autoencoders for speech enhancement[END_REF] within an expectation-maximization optimization framework, in [START_REF] Leglaive | Speech enhancement with variational autoencoders and alpha-stable distributions[END_REF] with an alpha-stable noise model, in [START_REF] Pariente | A statistically principled and computationally efficient approach to speech enhancement using variational autoencoders[END_REF] with efficient inference and learning algorithms, and in [START_REF] Sekiguchi | Bayesian multichannel speech enhancement with a deep speech prior[END_REF][START_REF] Leglaive | Semi-supervised multichannel speech enhancement with variational autoencoders and non-negative matrix factorization[END_REF][START_REF] Fontaine | Cauchy multichannel speech enhancement with a deep speech prior[END_REF] for a multi-channel configuration. More recently, a guided VAE was proposed in [START_REF] Carbajal | Guided variational autoencoder for speech enhancement with a supervised classifier[END_REF], where the clean speech prior is defined conditionally on a voice activity detection or an ideal binary mask. This guiding information is provided by a supervised classifier, separately trained on noisy speech signals. Other supervised extensions of the speech enhancement framework combining a VAE clean speech model and an NMF noise model include [START_REF] Bando | Adaptive neural speech enhancement with a denoising variational autoencoder[END_REF] and [START_REF] Fang | Variational autoencoder for speech enhancement with a noise-aware encoder[END_REF].

Most of the above VAE-based unsupervised noise-agnostic speech enhancement methods focused on exploiting different distributions and algorithms. Very few works dealt with the inherent limitation of the VAE to handle sequential data correlated in time, as is the case of speech data. To the best of our knowledge, only two papers proposed generative approaches to speech enhancement based on VAE variants that can learn temporal dependencies: A recurrent VAE (RVAE) based on recurrent neural networks (RNNs) was proposed in [START_REF] Leglaive | A recurrent variational autoencoder for speech enhancement[END_REF] and stochastic temporal convolutional networks (TCNs) [3,[START_REF] Lea | Temporal convolutional networks: A unified approach to action segmentation[END_REF] were used in [START_REF] Richter | Speech enhancement with stochastic temporal convolutional networks[END_REF], allowing the latent variables to have both hierarchical and temporal depen-

dencies. Yet, a series of works have focused on developing extensions of the original VAE for time series (completely independently of the speech enhancement problem). The deep 

DVAE FOR SPEECH ENHANCEMENT

This section presents the proposed unsupervised noise-agnostic DVAE-based speech enhancement algorithm, where the clean speech signal is modeled with a DVAE and the noise is modeled with nonnegative matrix factorization (NMF) [START_REF] Févotte | Nonnegative matrix factorization with the Itakura-Saito divergence: With application to music analysis[END_REF]. It is an extended version of the algorithm proposed in [START_REF] Leglaive | A recurrent variational autoencoder for speech enhancement[END_REF] for the RVAE model, with a more general formulation applicable to any other DVAE model. The proposed method is illustrated in Fig. is done with a variational expectation-maximization (VEM) algorithm [START_REF] Radford | A view of the EM algorithm that justifies incremental, sparse, and other variants[END_REF][START_REF] Wainwright | Graphical models, exponential families, and variational inference[END_REF][START_REF] Bishop | Pattern Recognition and Machine Learning[END_REF]. We recall that this method is unsupervised, since no pair of clean and noisy speech examples are used. Moreover, it is noise-agnostic since it does not make any assumption on the noise type, except that it can be modeled with an NMF model, and the noise model NMF parameters are estimated independently for each noisy sequence to process.

In the following, we will begin by providing an overview of speech modeling using DVAE models. Next, we will introduce the concepts of noise and mixture models. Then, we will develop a general strategy for estimating the clean speech signal, which is modeled by a DVAE, when only the mixture signal is accessible. Finally, we will present the VEM algorithm used to estimate the remaining unknown model parameters. Throughout this section,

s 1:T = {s t ∈ C F } T t=1 , b 1:T = {b t ∈ C F } T t=1
, and

x 1:T = {x t ∈ C F } T t=1
respectively denote the STFT of the clean speech signal, the noise signal, and the noisy speech signal. 

s 1:T = {s t ∈ C F } T
t=1 denote an F × T sequence of complex-valued STFT frames, where t is the time-frame index. Each vector s t = {s f t ∈ C} F f =1 represents the speech short-term spectrum at time index t, and f is the frequency bin. As indicated above, s 1:T is associated with an L × T sequence of latent variables z 1:T = {z t ∈ R L } T t=1 , with L ≪ F . In speech and audio processing, the Fourier coefficients in s t ∈ C F are usually assumed to be independent and distributed according to a complex Gaussian circularly symmetric distribution [START_REF] Fredy | Proper complex random processes with applications to information theory[END_REF] (denoted below by N c ), whose variance vary over time and frequency [START_REF] Ephraim | Speech enhancement using a minimum-mean square error short-time spectral amplitude estimator[END_REF][START_REF] Vincent | Probabilistic modeling paradigms for audio source separation[END_REF][START_REF] Liutkus | Gaussian processes for underdetermined source separation[END_REF] (the circularly symmetric assumption means that the phase follows a uniform distribution in [0, 2π)). Thus, for all time frames t ∈ {1, . . . , T }, the DVAE generative model of speech signal is defined as follows:

p θs (s t |s 1:t-1 , z 1:t ) = N c (s t ; 0, Σ θs,t ) , (6.1) 
p θz (z t |s 1:t-1 , z 1:t-1 ) = N (z t ; µ θz,t , Σ θz,t ) , (6.2) 
where the diagonal covariance matrix Σ θs,t = diag{v θs,t } is provided by a DNN that takes as input the conditioning variables in Equation 6.1, namely (s 1:t-1 , z 1:t ). Similarly, µ θz,t and Σ θz,t = diag{v θz,t } are provided by a DNN that takes as input the conditioning variables in Equation 6.2, namely (s 1:t-1 , z 1:t-1 ). 1 We denote by θ = θ s ∪ θ z the parameters of the DNNs involved in Equation 6.1 and Equation 6.2.

As for the inference model, it is given by:

q ϕ (z t |z 1:t-1 , s 1:T ) = N (z t ; µ ϕ,t , Σ ϕ,t ), (6.3) 
where µ ϕ,t and Σ ϕ,t = diag{v ϕ,t } are provided by a DNN taking (z 1:t-1 , s 1:T ) as input and whose parameters are denoted by ϕ.

Even if the complex-valued vector sequence s 1:t-1 or s 1:T is used as a conditioning variable in Equation 6.1-Equation 6.3, in practice we use the modulus-squared values of these variables at the encoder and decoder input. In other words, the DVAE encoder and decoder distribution parameters are computed using sequences of vectors with en-tries equal to |s f t | 2 , as illustrated in Fig. 6.1. Note that the modulus-squared of data is homogeneous with the decoder output (the variance vector v θs,t ).

Given the generative model (6.1), (6.2) and the inference model ( 6.3), we can develop the ELBO as follows (for one data sequence):

L(θ, ϕ; s 1:T ) c = - F,T f,t=1 E q ϕ (z 1:t |s 1:T ) d IS (|s f t | 2 , v θs,f t ) + 1 2 L,T l,t=1 ln v ϕ,lt v θz,lt - v ϕ,lt + (µ ϕ,lt -µ θz,lt ) 2 v θz,lt , (6.4) where c 
= denotes equality up to an additive constant w.r.t. θ and ϕ, d IS (q, p) = q/pln(q/p) -1 is the Itakura-Saito (IS) divergence [START_REF] Févotte | Nonnegative matrix factorization with the Itakura-Saito divergence: With application to music analysis[END_REF], v θs,f t ∈ R + is the f -th entry of v θs,t , and

{µ ϕ,lt ∈ R, µ θz ,lt ∈ R, v ϕ,lt ∈ R + , v θz ,lt ∈ R + } are the l-th entry of {µ ϕ,t , µ θz ,t , v ϕ,t , v θz ,t }, respectively.

NOISE AND MIXTURE MODELS

As in [START_REF] Leglaive | A variance modeling framework based on variational autoencoders for speech enhancement[END_REF][START_REF] Leglaive | A recurrent variational autoencoder for speech enhancement[END_REF], we consider a Gaussian noise model with NMF parameterization of the variance [START_REF] Févotte | Nonnegative matrix factorization with the Itakura-Saito divergence: With application to music analysis[END_REF]. Independently for all time frames t ∈ {1, ..., T }, we define:

p(b t ) = N c (b t ; 0, Σ b,t ), (6.5) 
where

Σ b,t = diag{(W b H b ) :,t } with W b ∈ R F ×K + and H b ∈ R K×T + . The rank of the factorization K is usually chosen such that K(F + T ) ≪ F T .
We consider that the noisy speech is a mixture of the noise defined in (6.5) and the clean speech defined in (6.1) and (6.2):

x t = √ g t s t + b t , (6.6) 
where g t ∈ R + is a frame-dependent frequency-independent gain parameter scaling the speech signal level at each time frame. This parameter enables to take into account the potentially different loudness between the clean speech training examples used to learn the DVAE model and the speech signal in the test noisy sequence we have to denoise [START_REF] Leglaive | A variance modeling framework based on variational autoencoders for speech enhancement[END_REF].

From Equation 6.1, Equation 6.5 and Equation 6.6, and by assuming the independence of the speech and noise signals, we have for all t ∈ {1, ..., T }:

p θx (x t | s 1:t-1 , z 1:t ) = N c (x t ; 0, Σ θx,t ) , (6.7) 
where As already mentioned in Section 6.3.1, v θs,t is actually a function of (s 1:t-1 , z 1:t ). Note that it is clear from Equation 6.5 and Equation 6.6 that given the clean speech frame s t , the noisy speech frame x t is characterized by:

Σ θx,t = diag{g t v θs,t + (W b H b ) :,t }
p φ (x t | s t ) = N c (x t ; √ g t s t , Σ b,t ) . (6.8) 6.3.3 SPEECH 
RECONSTRUCTION Now we consider the problem of reconstructing the clean speech signal from the observed mixture signal, which consists in computing the following posterior mean vector:

ŝt = E p θ (st|x 1:T ) [s t ]. (6.9) 
However, we cannot write the posterior p θ (s t |x 1:T ) analytically, which makes the above expectation intractable. However, leveraging the speech model defined previously, we can approximate it by introducing random variables that are then marginalized.

Introducing the past and current latent variables

We start from marginalizing with respect to z 1:t :

p θ (s t |x 1:T ) = p θ (s t |z 1:t , x 1:T )p θ (z 1:t |x 1:T )dz 1:t = E p θ (z 1:t |x 1:T ) [p θ (s t |z 1:t , x 1:T )]. (6.10) 
Using Equation 6.10 to rewrite Equation 6.9, the estimate of the clean speech signal at time t is given by:

ŝt = E p θ (z 1:t |x 1:T ) E p θ (st|z 1:t ,x 1:T ) [s t ] . (6.11) 
Let us now focus on the inner expectation, taken with respect to p θ (s t |z 1:t , x 1:T ). We will come back later on the outer expectation taken with respect to p θ (z 1:t |x 1:T ). Using Bayes rule, we have:

p θ (s t |z 1:t , x 1:T ) = p θ (x 1:T |s t , z 1:t )p θ (s t |z 1:t )p θ (z 1:t ) p θ (z 1:t , x 1:T ) (6.12) 
∝ p θ (x 1:T |s t , z 1:t )p θ (s t |z 1:t ) (6.13)

≈ p θ (x t |s t )p θ (s t |z 1:t ). (6.14) 
The exact computation of p θ (x 1:T |s t , z 1:t ) requires the marginalisation of p θ (x 1:T , s 1:t-1,t+1:T , z t+1:T |s t , z 1:t ) w.r.t. the undesired variables. This would require not only marginalising from future latent codes, but also from past and future clean speech, which is clearly not feasible. Instead, we approximate Equation 6.13 with Equation 6.14 by considering only the signal mixture model p θ (x t |s t ), as defined in Equation 6.8.

Introducing the past speech vectors Then, it comes to estimating p θ (s t |z 1:t ) in Equation 6.14. To do so, we introduce and then marginalize the past speech vectors s 1:t-1 :

p θ (s t |z 1:t ) = p θ (s t |s 1:t-1 , z 1:t )p θ (s 1:t-1 |z 1:t )ds 1:t-1 = p θ (s t |s 1:t-1 , z 1:t ) t-1 τ =1 p θ (s τ |s 1:τ -1 , z 1:τ ) ds 1:t-1 = E t-1 τ =1 p θ (sτ |s 1:τ -1 ,z 1:τ ) [ p θ (s t |s 1:t-1 , z 1:t ) ] , (6.15) 
where in the second line we used the fact that s τ is conditionally independent of z τ +1:t .

When computing Equation 6.15, we are facing two problems: First, the expectation is intractable; and second, in a speech enhancement framework, we do not have access to the past ground-truth clean speech vectors s 1:t-1 (as opposed to the DVAE training procedure which is done using sequences of clean speech signals). Therefore, we approximate p θ (s t |z 1:t ) as follows:

p θ (s t |z 1:t ) ≈ p θ (s t |s 1:t-1 , z 1:t ) = N c s t ; 0, Σ θs,t (s 1:t-1 , z 1:t ) , (6.16) 
where Σ θs,t (s 1:t-1 , z 1:t ) = diag{v θs,t (s 1:t-1 , z 1:t )} and st is computed recursively as st = v θs,t (s 1:t-1 , z 1:t ). 2 In practice, the decoder output at time frame t -1 is re-injected at the decoder input at the next time frame t. This part of the process is necessary only for SRNN, and more generally for any autoregressive DVAE. For non-autoregressive DVAE models, such as RVAE and DKF, Σ θs,t is only computed from the sequence of latent vectors.

Computing the conditional posterior Substituting (6.8) and (6.16) into (6.14), we have:

p θ (s t |z 1:t , x 1:T ) ≈ N c (x t ; √ g t s t , Σ b,t ) N c (s t ; 0, Σ θs,t ) = N c (s t ; m s,t , Σ s,t ) , (6.17) 
where

m s,t = √ g t Σ θs,t (g t Σ θs,t + Σ b,t ) -1 x t , (6.18) 
Σ s,t = Σ θs,t Σ b,t (g t Σ θs,t + Σ b,t ) -1 . (

Finally, from Equation 6.11, Equation 6.17 and Equation 6.18, the estimate of the clean speech signal is given by:

ŝt ≈ E p θ (z 1:t |x 1:T ) √ g t Σ θs,t (g t Σ θs,t + Σ b,t ) -1 x t , (6.20) 
where we recall that Σ θs,t is actually a function of (s 1:t-1 , z 1:t ). This speech signal estimate can be seen as the output of a "probabilistic" Wiener filter, i.e., a Wiener filter averaged over all possible realizations of the latent variables according to their posterior distribution p θ (z 1:t |x 1:T ).

The expectation in Equation 6.20 is intractable, but similarly as before we can approximate it by

ŝt ≈ √ g t Σ θs,t (g t Σ θs,t + Σ b,t ) -1 x t , (6.21) 
where Σ θs,t = Σ θs,t (s 1:t-1 , z1:t ) and z1:t is sampled from p θ (z 1:t |x 1:T ). This posterior distribution is also intractable. We thus propose to use instead a variational approximation q ϕ ′ (z 1:T |x 1:T ) whose parameters ϕ ′ need to be jointly estimated together with the noisy mixture model parameters φ. In the next section, we propose a VEM algorithm to do that.

This generalizes the algorithm developed for RVAE in [START_REF] Leglaive | A recurrent variational autoencoder for speech enhancement[END_REF] to the whole class of DVAE models.

VARIATION EM ALGORITHM FOR PARAMETER ESTIMATION

In the previous section, have an expression for the clean speech signal estimate, what remains to be estimated is the set of mixture model parameters φ (the NMF noise model parameters and the gains) and the parameters ϕ ′ of the variational distribution q ϕ ′ (z 1:T |x 1:T ).

In this section, we will present the VEM algorithm used to estimate the remaining unknown model parameters by maximizing the following ELBO defined for the noisy speech observations x 1:T :

L(ϕ ′ , φ; x 1:T ) = E q ϕ ′ (z 1:T |x 1:T ) [ln p φ (x 1:T , z 1:T ) -ln q ϕ ′ (z 1:T |x 1:T )] . (6.22) 
It can be shown that this corresponds to (i) maximizing with respect to φ a lower bound of the intractable log-marginal likelihood ln p φ (x 1:T ), and (ii) minimizing with respect to ϕ ′ the KL divergence between the variational distribution q ϕ ′ (z 1:T |x 1:T ) and the intractable exact posterior p θ (z 1:T |x 1:T ) [START_REF] Radford | A view of the EM algorithm that justifies incremental, sparse, and other variants[END_REF]. The proposed VEM algorithm thus consists in iterating between the following variational E and M steps.

Variational E-step

We consider a variational distribution of the same form as the DVAE inference model:

q ϕ ′ (z 1:T |x 1:T ) = T t=1 q ϕ ′ (z t |z 1:t-1 , x 1:T ), (6.23) 
where q ϕ ′ (z t |z 1:t-1 , x 1:T ) is defined as in Equation 6.3, except that s t is replaced by x t .

The noisy speech frames can be considered as out-of-sample data for the DVAE model trained on clean speech signals [START_REF] Mattei | Refit your encoder when new data comes by[END_REF]. Therefore, similarly as in [START_REF] Leglaive | A recurrent variational autoencoder for speech enhancement[END_REF], we can fine-tune the pre-trained DVAE inference network on the noisy speech test signal, by maximizing the ELBO in Equation 6.22 w.r.t. ϕ ′ . This objective function can be developed by marginalizing and sampling, similarly to what was done in Section 6.3.3. This leads to the following expression:

L(ϕ ′ , φ ⋆ ; x 1:T ) c = - F f =1 T t=1 E q ϕ ′ ln v φ ⋆ ,f t + |x f t | 2 v φ ⋆ ,f t + 1 2 L l=1 T t=1 ln v ϕ ′ ,lt -ln v θz,lt - v ϕ ′ ,lt + (µ ϕ ′ ,lt -µ θz,lt ) 2 v θz,lt , (6.24) 
where x f t denotes the f -th entry of x t , φ ⋆ denotes the current estimate of the mixture model parameters, and v φ ⋆ ,f t is the f -th diagonal entry of Σ θx,t , whose expectation is intractable and is approximated with:

v φ ⋆ ,f t = g t v θs,f t (s 1:t-1 , z1:t ) + (W b H b ) f t . (6.25) 
We remind that s1:t-1 is computed recursively from the output of the decoder network, as explained after equation Equation 6.16, and z1:t is recursively sampled from q ϕ ′ (z

1:t |x 1:T ) = t τ =1 q ϕ ′ (z τ |z 1:τ -1 ,
x 1:T ), as defined in Equation 6.23. During the variational E-step, the parameters ϕ ′ are updated with a gradient ascent technique, and we denote by ϕ ′⋆ the resulting parameters that will be fixed in the M-step.

To be noted that we will implement RVAE, DKF and SRNN for practice in this chapter, and we recall that the recursive computation of st is required only for SRNN (actually for the DVAE models with an autoregressive form). DKF and RVAE, as non-autoregressive models, do not require estimating these quantities. They only require the sampling of the latent variables z1:t (see Section 4.2.1, 4.2.4 and 4.2.5 for the detailed equations).

M-step

The M-step consists in maximizing L(ϕ ′⋆ , φ) w.r.t φ under a non-negativity constraint.

Replacing the intractable expectation in Equation 6.24 with a Monte Carlo estimate (using one single sample), the M-step can be recast as minimizing the following criterion [START_REF] Leglaive | A variance modeling framework based on variational autoencoders for speech enhancement[END_REF]:

C(φ) = F f =1 T t=1 d IS |x f t | 2 , v φ,f t , (6.26) 
where v φ,f t is defined in Equation 6.25. This optimization problem can be tackled using a majorize-minimize approach [START_REF] Hunter | A tutorial on MM algorithms[END_REF], which leads to the multiplicative update rules derived in [START_REF] Leglaive | A variance modeling framework based on variational autoencoders for speech enhancement[END_REF] using the methodology proposed in [START_REF] Févotte | Algorithms for nonnegative matrix factorization with the β-divergence[END_REF]:

H b ← H b ⊙ W ⊤ b |X| ⊙2 ⊙ (V x ) ⊙-2 W ⊤ b (V x ) ⊙-1 ⊙1/2 , (6.27) 
W b ← W b ⊙ |X| ⊙2 ⊙ (V x ) ⊙-2 H ⊤ b (V x ) ⊙-1 H ⊤ b ⊙1/2 , (6.28) 
g ⊤ ← g ⊤ ⊙ 1 ⊤ |X| ⊙2 ⊙ V s ⊙ (V x ) ⊙-2 1 ⊤ V s ⊙ (V x ) ⊙-1 ⊙1/2 , (6.29) 
where ⊙ denotes element-wise multiplication and exponentiation, and matrix division is also element-wise, V s , V x ∈ R F ×T + are the matrices of entries v θs,f t and v φ,f t respectively, X ∈ C F ×T is the matrix of entries x f t and 1 is an all-ones column vector of dimension F . Note that non-negativity is ensured provided that these parameters are initialized with non-negative values. ▷ Initialize q ϕ ′ (z 1:t |x 1:T ) with pre-trained inference network q ϕ (z 1:t |s 1:T ) while stopping criterion not reached do E-step: ▷ Fine-tune q ϕ ′ (z 1:T |x 1:T ) by maximizing Equation 6.24 w.r.t. ϕ ′ ▷ Sample z1:T from q ϕ ′ (z 1:T |x 1:T ) ▷ Compute Σ θs,t for t = 1 to T using the DVAE decoder M-step: ▷ Update H b , W b and g using (6.27)-(6.29) end while Output: ▷ Compute the clean speech signal estimate ŝt for t = 1 to T using (6.21)

SUMMARY

In summary, the clean speech signal estimation consists in approximating the posterior p θ (s t |x 1:T ) and taking the mean of the resulting approximate distribution (i.e., the Wiener filter output). The estimation of the involved parameters is made with the VEM algorithm, which consists in iteratively fine-tuning the inference network of the pre-trained DVAE (E-step) and updating the mixture model parameters φ (M-step). The complete proposed speech enhancement method is summarized in Algorithm 5. For non-causal DVAEs, we can simply replace z 1:t with z 1:T when generating s t . WSJ0-QUT We used the Wall Street Journal dataset (WSJ0) [START_REF] Garofolo | CSR-I (WSJ0) Sennheiser LDC93S6B[END_REF], which is composed of 16kHz clean speech signals (read Wall Street Journal news). WSJ0-QUT is the noisy version already presented and used in [START_REF] Leglaive | A recurrent variational autoencoder for speech enhancement[END_REF]. It was obtained by mixing clean speech signals from WSJ0 with various types of noise signals from the QUT-NOISE dataset [START_REF] Dean | The QUT-NOISE-SRE protocol for the evaluation of noisy speaker recognition[END_REF],
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with three signal-to-noise ratio (SNR) values: -5, 0, and 5 dB. The full description of the dataset, including training/test splits and noise types, can be found in [START_REF] Leglaive | A recurrent variational autoencoder for speech enhancement[END_REF]. Note that we mixed the speech and noise signals using the ITU-R BS.1770-4 protocol [START_REF]Algorithms to measure audio programme loudness and true-peak audio level[END_REF]. An SNR computed with this protocol is 2.5 dB lower (in average) than that computed with sums of squared signal samples.

VB-DMD

We also used the publicly available VB-DMD dataset [START_REF] Valentini-Botinhao | Investigating RNN-based speech enhancement methods for noise-robust text-to-speech[END_REF]. This dataset con- and noise types, can be found in [START_REF] Valentini-Botinhao | Investigating RNN-based speech enhancement methods for noise-robust text-to-speech[END_REF]. Following [START_REF] Fu | MetricGAN-U: Unsupervised speech enhancement/dereverberation based only on noisy/reverberated speech[END_REF], we also selected two speakers (p226 and p287) from the clean training set as the validation set for the training of the DVAEs.

Data preprocessing In all our experiments, the STFT was computed with a 64-ms sine window (1, 024 samples) and a 75%-overlap (256 samples hop length), resulting in a sequence of 513-dimensional discrete Fourier coefficients (for positive frequencies). The DVAEs were trained with STFT power spectrograms of clean speech signals extracted from either WSJ0 or VB, and obtained with the following preprocessing. We first removed the silence at the beginning and ending of the files, using an energy-based voice activity detection threshold of -30 dB. The waveform signal was then normalized by its maxi-mum absolute value. We set T = 50, meaning that speech segments of 0.8s were used to train the DVAE models. In summary, each training data sequence is a 513 × 50 STFT power spectrogram. For WSJ0, this data preprocessing resulted in a set of N tr = 93, 393 training sequences (representing about 20.8 hours of speech signal) and N val = 7, 775 validation sequences (about 1.7 hours). For VB, we obtained N tr = 29, 389 training sequences (6.5 hours) and N val = 2, 152 validation sequences (0.5 hour). For the evaluation of the speech enhancement methods, we used the STFT spectrogram of each complete noisy test sequence (with normalization), which can be of variable length, most often larger than 2s. For WSJ0-QUT, the total duration of the test dataset is 1.5 hours, and for VB-DMD it is 0.6 hour.

EVALUATION METRICS

We used three metrics to evaluate the quality of the estimated speech signals: The scaleinvariant signal-to-distortion ratio (SI-SDR) in dB [START_REF] Le Roux | SDR: Half-baked or well done[END_REF], the perceptual evaluation of speech quality (PESQ) score [START_REF] Rix | Perceptual evaluation of speech quality (PESQ): A new method for speech quality assessment of telephone networks and codecs[END_REF], and the extended short-time objective intelligibility (ESTOI) score (in [0, 1]) [START_REF] Cees H Taal | An algorithm for intelligibility prediction of time-frequency weighted noisy speech[END_REF]. The PESQ measure is declined in three different variants, depending on different protocols:3 the narrow-band PESQ MOS value (PESQ MOS, in [-0.5, 4.5]), the narrow-band PESQ LQ0 value (PESQ NB, in [START_REF] Agostinelli | Musiclm: Generating music from text[END_REF][START_REF] Alamdari | Improving deep speech denoising by noisy2noisy signal mapping[END_REF]), and the wide-band PESQ LQ0 value (PESQ WB, in [START_REF] Agostinelli | Musiclm: Generating music from text[END_REF][START_REF] Alamdari | Improving deep speech denoising by noisy2noisy signal mapping[END_REF]). We report all of them in the following experiments. For all measures, a higher value indicates a better result.

MODELS IMPLEMENTATION

Here we present the implementation of the three example DVAEs that we used in practice in the proposed DVAE-based speech enhancement algorithm, namely DKF, RVAE, and SRNN. As indicated in [START_REF] Girin | Dynamical variational autoencoders: A comprehensive review[END_REF], we can have various implementations for each DVAE model, thus we only present the model configurations that showed the best performance in our experiments (for the latent space dimension selected below).

Dimension of the latent space

In the present experiments, we set L = 16. We recall recurrent variational autoencoder (RVAE) [START_REF] Leglaive | A recurrent variational autoencoder for speech enhancement[END_REF], and (c) stochastic recurrent neural network (SRNN) [START_REF] Fraccaro | Sequential neural models with stochastic layers[END_REF]. Each model consists of an inference (encoder) network (in red) and a generation (decoder) network (in blue). SRNN has a shared module between encoder and decoder (in green). CF: combiner function, GTF: gated transition function (see [START_REF] Rahul | Deep Kalman filters[END_REF] for details), RNN: recurrent neural network, BRNN: bidirectional RNN, MLP: multi-layer perceptron, : vector concatenation. All RNNs are implemented with LSTM networks.

that the data dimension is F = 513. We also recall that z t is a real-valued vector that is modeled by a Gaussian distribution, so the DNNs modeling z t has to output two Ldimensional vectors, the mean and variance vectors, for both inference and generation (except for RVAE since z t is assumed i.i.d. with a standard Gaussian distribution and no DNN is used for its generation). In contrast, s t is a complex-valued vector modeled by a circular complex Gaussian distribution, which only leaves one F -dimensional variance vector to be provided by the decoder DNN. To guarantee the positivity of the entries of this output variance vector, we used log-parameterization (the output is the log-variance in R, which is then converted to variance by taking the exponential). The last layer predicting the mean and log-variance parameters is always a linear layer, with a dimension corresponding to that of z t (16) or s t (513). We omit this in the following description for simplicity.

DKF Fig. 6.3(a) summarizes our implementation of DKF. The layers providing the parameters of the inference and generative models of z t are respectively implemented with the specific combiner function and gated transition function described in [START_REF] Rahul | Structured inference networks for nonlinear state space models[END_REF]. For the inference model, we used a backward long short-term memory (LSTM) [START_REF] Hochreiter | Long short-term memory[END_REF] For the pre-training of the three DVAE models on clean speech signals, we used the Adam optimizer [START_REF] Diederik | Adam: A method for stochastic optimization[END_REF] with a learning rate of 1e-3 and β 1 = 0.9, β 2 = 0.99. On both datasets, we trained each model with a batch size of 128 during 300 epochs and kept the model snapshot with lowest validation loss. We applied a linear KL annealing for the first 20 epochs to warm-up the latent space [START_REF] Casper Kaae Sønderby | Ladder variational autoencoders[END_REF].

As an autoregressive model, SRNN deserves a particular treatment during pre-training.

Indeed, in the conventional training of autoregressive models, the ground-truth past clean speech vectors s 1:t-1 are used to generate the current one s t , a strategy sometimes referred to as "teacher forcing" in the literature [START_REF] Ronald | A learning algorithm for continually running fully recurrent neural networks[END_REF]. We have seen in Section 6.3.3 that it is not possible to do that in the proposed speech enhancement algorithm, where s 1:t-1 is replaced by its proxy s1:t-1 (recursively computed from the decoder output). It is shown in [START_REF] Girin | Dynamical variational autoencoders: A comprehensive review[END_REF] that directly using s1:t-1 in the SRNN model trained with s 1:t-1 significantly decreases the quality of the reconstructed speech spectrogram, due to the mismatch between train and test conditions. To avoid such a mismatch (here between DVAE training and speech enhancement conditions), we trained SRNN using s1:t-1 (instead of s 1:t-1 ) to generate s t .

Such a training is difficult in practice and to make it efficient, we adopted a "scheduled sampling" approach [START_REF] Bengio | Scheduled sampling for sequence prediction with recurrent neural networks[END_REF], i.e., we progressively replace s 1:t-1 with s1:t-1 , with a proportion going from 0% to 100% along the training iterations. That is, at the beginning of the training, s t is generated completely from s 1:t-1 and z t . Then the probability to use s1:t-1 increases during the training procedure. Finally, s t is generated completely from s1:t-1 and z t . This takes 80 epochs after the KL annealing step.

Before we examine the speech enhancement performance, we can rapidly compare the speech modeling capacities of the three selected DVAE models (and the vanilla VAE) after their pre-training, by conducting a speech analysis-resynthesis experiment (i.e., chaining of the encoder and decoder) similar to [START_REF] Bie | A benchmark of dynamical variational autoencoders applied to speech spectrogram modeling[END_REF]. The overall pipeline is shown in Fig. 6.1.

For the VAE model, we used the baseline architecture already used in [START_REF] Leglaive | A recurrent variational autoencoder for speech enhancement[END_REF]. The results presented in Table 6.1 were obtained with the models being trained on the WSJ0 or VB train subsets and averaged over the corresponding test subsets. For SI-SDR scores, the noise is the modeling noise, i.e., the difference between original and reconstructed signal.

We can see from Table 6.1 that all DVAE models outperform the VAE for all metrics, both on WSJ0 and VB, showing the benefits of introducing dynamics into VAE-based speech modeling.

DVAE-VEM ALGORITHM SETTINGS

The rank of the NMF in the noise model Equation 6.5 is set to K = 8. W b and H b were randomly initialized from a uniform distribution in [0, 1] and g was initialized with an all-ones vector. In the E-step of the VEM algorithm, the encoder of the DVAE models is fine-tuned using the Adam optimizer [START_REF] Diederik | Adam: A method for stochastic optimization[END_REF] with a learning rate of 1e-3. Fig. 6.4 illustrates the influence of the number of VEM iterations on the performance of the different DVAE models on the two test datasets. We observe that the performance of most models plateaus from 300 and 100 iterations for WSJ0-QUT and VB-DMD respectively. We fixed the number of iterations to these values as they represent a global optimal trade-off between performance and complexity and are neither beneficial nor disadvantageous for a particular DVAE model.

BASELINES

Regarding baseline supervised methods, we used Open-Unmix (UMX) and MetricGAN+.

UMX is an open-source method based on a BLSTM network. It was originally proposed for music source separation [START_REF] Stöter | Open-Unmix: A reference implementation for music source separation[END_REF] and was later adapted for speech enhancement [START_REF] Uhlich | Open-Unmix for speech enhancement[END_REF]. MetricGAN+ [START_REF] Fu | MetricGAN+: An improved version of MetricGAN for speech enhancement[END_REF] also adopts BLSTMs for mask-based prediction of the clean speech. In addition, it introduces a metric network that is trained to approximate the PESQ evaluation score, and then MetricGAN+ is trained to maximise this proxy of the PESQ score.

Regarding baseline unsupervised methods, we choose VAE-VEM [START_REF] Leglaive | A recurrent variational autoencoder for speech enhancement[END_REF], MetricGAN-U [START_REF] Fu | MetricGAN-U: Unsupervised speech enhancement/dereverberation based only on noisy/reverberated speech[END_REF] and NyTT [START_REF] Fujimura | Noisytarget training: A training strategy for DNN-based speech enhancement without clean speech[END_REF]. VAE-VEM, referred to as VAE-FFNN in [START_REF] Leglaive | A recurrent variational autoencoder for speech enhancement[END_REF], uses the same optimization methodology as our approach, except there is no temporal model. In practice, we tried with different model complexities for the VAE, and we report the one exhibiting the best performance. MetricGAN-U is the unsupervised version of MetricGAN+. Since the supervision in MetricGAN+ comes from the PESQ score computation using the paired enhanced and clean speech signal, MetricGAN-U adopts a non-intrusive speech quality The speech enhancement scores obtained with the proposed method (for the three DVAE models) and with the baseline methods are reported in Tables 6.2 and 6.3, along with the capacity of the models, reported in terms of number of parameters. Table 6.2 shows the results obtained when the test subset "corresponds" to the train subset, i.e., it originates from the same dataset (WSJ0 or WSJ0-QUT in the upper half of the table, and VB or VB-DMD in the lower half). Table 6.3 shows the results obtained with cross-dataset experiments conducted to evaluate the generalization capability of the different models. This means that WSJ0 or WSJ0-QUT is used for training and VB-DMD is used for testing, or alternatively, VB or VB-DMD is used for training and WSJ0-QUT is used for testing.

Baseline models marked with * in Table 6.2 were retrained using the implementation provided by the authors. Other baseline results are obtained from the corresponding papers or from the pre-trained models if available. It can be seen that the number of parameters for the three DVAE models is lower than that of all the baselines but the VAE-VEM method. Among the DVAE models, RVAE is the one with the highest number of parameters (1.06M for RVAE, 0.88M for SRNN and 0.52M for DKF).

From the results in Table 6.2, we first observe that the proposed DVAE-VEM algorithm outperforms the VAE-based counterpart for all three DVAE models, except SRNN-VEM on the VB dataset. This is consistent with the results of the analysis-resynthesis experiment and this shows the interest of modeling the speech signal dynamics within the proposed speech enhancement method. Among the three tested DVAE models, RVAE performs the best for all evaluation metrics, except in terms of ESTOI on the WSJ0-QUT dataset, where SRNN obtains a slightly better score.

When comparing with the baseline unsupervised methods, hence only on the VB-DMD dataset, the proposed method achieves competitive results. when it is evaluated with other metrics, the results obtained by this method are considerably worse, especially in terms SI-SDR for which MetricGAN+ performs the worst. We found that this may be due to the fact that the energy in the speech signal estimated by MetricGAN+ is mostly concentrated in the low-frequency part of the spectrum, whereas the mid-and high-frequency parts are poorly recovered. Regarding UMX, we observe that its performance is systematically under the one of the proposed method, in terms of SI-SDR or any of the PESQ measures for both datasets.

To evaluate the generalization capability of the different models, we report in Table 6 when trained on the WSJ0-QUT. In the same vein, UMX goes from 14.0 dB SI-SDR to 10.4 dB SI-SDR. Similary behavior is found for the other metrics and datasets. As for the unsupervised noise-dependent methods, we can also see a significant decrease of performance. For example, Metric-GAN-U (trained on VB-DMD and provided by the authors) VB and tested on WSJ0-QUT. Overall, we can conclude that the proposed DVAE-based speech enhancement method exhibits competitive performance when compared to other supervised and unsupervised methods in the "corresponding dataset" setting, and superior performance in the cross-dataset setting.

Complementary to the above experimental analysis, we present in Fig. At the light of the presented results, we extract the following concluding remarks.

When there is no mismatch between the training and test datasets, the proposed method achieves state-of-the-art performance in unsupervised speech enhancement, and competitive results when compared with supervised speech enhancement methods (often outperforming them depending on the metric). As for cross-dataset experiments, where the training and test sets are coming from different datasets, we observe that the performance of the supervised methods is severely affected by the dataset mismatch, whereas the per-formance of the proposed unsupervised method is very robust to it. Overall, the results obtained in the various settings demonstrate the interest of the proposed DVAE-VEM methodology for speech enhancement. Audio examples and code are available at http s://team.inria.fr/robotlearn/unsupervised-speech-enhancement -using-dynamical-variational-auto-encoders.

CONCLUSIONS

In this chapter, we have proposed a general framework for unsupervised speech enhancement using DVAEs. Our framework incorporates the utilization of DVAEs to model the clean speech signal, while the noise component is modeled using NMF. The DVAEs are initially pretrained with a clean speech dataset, while the noise parameters are estimated at the testing stage alongside the clean speech. This estimation is performed on the basis of the noisy speech sequence being processed. To achieve that, we have derived a VEM algorithm for the most general formulation of a DVAE model, which can then be easily adapted to particular instances of DVAEs. We have illustrated this principle with DKF, RVAE, and SRNN, and this can be extended to other DVAE models.

We have evaluated the speech enhancement performance obtained with those three example DVAEs. The proposed approach exhibits superior or competitive performance compared to supervised and unsupervised state-of-the-art methods when the training and test datasets are from the same corpora, and outperforms them on cross-dataset settings, i.e., when the training and test datasets are from different corpora. The RVAE model provided the best performance among the tested DVAEs. SRNN shows great potential, provided that it is trained with scheduled sampling in order to reduce the gap between the training and speech enhancement conditions. If this gap could be further decreased, we believe that it could have even better performance than RVAE. This aspect should be further investigated, possibly including other autoregressive models in the DVAE family (e.g., VRNN [START_REF] Chung | A recurrent latent variable model for sequential data[END_REF]).

So far, the good performance of the proposed iterative DVAE-VEM algorithm comes at the cost of a high computational time. Indeed, processing 1 second of audio with 100 it-erations of the algorithm takes approximately 14, 25, and 21 seconds for DKF, RVAE, and SRNN, respectively, using a single core of an Intel Xeon Gold 6230 at 2.1GHz. Future work will include developing fast DVAE-based speech enhancement algorithms, for instance, inspiring from [START_REF] Pariente | A statistically principled and computationally efficient approach to speech enhancement using variational autoencoders[END_REF]. Meanwhile, the inference with DVAEs is non-causal, meaning that past, present, and future noisy speech observations are required, causal DVAEbased speech enhancement can also be investigated but is out of the scope of this chapter.

Future work also includes using other powerful encoder-decoder networks, e.g., TCNs [START_REF] Lea | Temporal convolutional networks: A unified approach to action segmentation[END_REF] and the Transformer [START_REF] Vaswani | Attention is all you need[END_REF], in the present unsupervised speech enhancement framework. The DVAE models may be further boosted with more expressive latent variables, e.g., introducing hierarchical multi-scale structure and normalizing flows [START_REF] Vahdat | NVAE: A deep hierarchical variational autoencoder[END_REF].

We also plan to extend the proposed method to more challenging tasks such as source separation [START_REF] Deleforge | Variational EM for binaural sound-source separation and localization[END_REF][START_REF] Leglaive | Multichannel audio source separation with probabilistic reverberation priors[END_REF][START_REF] Keriven | Blind source separation using mixtures of alpha-stable distributions[END_REF][START_REF] Pariente | Asteroid: the pytorch-based audio source separation toolkit for researchers[END_REF]. In particular, unsupervised methods using VAEs and TF-masks have been considered for audio source separation [START_REF] Neri | Unsupervised blind source separation with variational auto-encoders[END_REF]. Therefore, we can intend to develop DVAE-based unsupervised audio source separation methods in the future. Another line of research can also be to extend audio-visual speech enhancement [START_REF] Sadeghi | Audio-visual speech enhancement using conditional variational auto-encoders[END_REF][START_REF] Sadeghi | Robust unsupervised audio-visual speech enhancement using a mixture of variational autoencoders[END_REF][START_REF] Sadeghi | Mixture of inference networks for vae-based audio-visual speech enhancement[END_REF] with DVAEs.

The content of this Chapter is based on the following publication:

Girin, L., Leglaive, S., Bie, X., Diard, J., Hueber, T., & Alameda-Pineda, X. (2021). In the last chapter, we present an insightful discussion to contextualize the DVAE class of models. First, we revisit the fundamental motivation behind their design and utilization, highlighting the notable flexibility they offer across various aspects, including the generative and inference models, as well as their implementation at both high and low levels.

Dynamical variational autoencoders

Subsequently, we delve into the crucial aspect of disentangling latent factors, particularly in the context of sequential data processing. Moreover, we provide some perspectives on data source coding. Ultimately, we conclude by exploring potential avenues for future research.

FUNDAMENTAL MOTIVATION FOR DVAES

The fundamental motivation for designing and using DVAEs is to combine various dynamical models, aimed at modeling the dynamics of sequential data, and various VAEs, aimed at modeling the latent factors of data variations. In doing so, we expect to separate the data dynamics from the other factors of variations (see Section 7. As seen in chapter 4 and chapter 5, various generative models can be derived from the general form Eq. 3.9 by simplifying variable dependencies. The models we have discussed in the previous chapters (such as DKF [START_REF] Rahul | Deep Kalman filters[END_REF][START_REF] Rahul | Structured inference networks for nonlinear state space models[END_REF], RVAE [START_REF] Leglaive | A recurrent variational autoencoder for speech enhancement[END_REF], SRNN [START_REF] Fraccaro | Sequential neural models with stochastic layers[END_REF] and HiT-DVAE [START_REF] Bie | HiT-DVAE: Human motion generation via hierarchical Transformer dynamical VAE[END_REF][START_REF] Lin | Speech modeling with a hierarchical Transformer dynamical VAE[END_REF]) are instances of these possible generative models, but there are other possibilities. When designing a generative model, complexity issues can be considered.

For example, we can quote STORN by Bayer et al. [START_REF] Bayer | Learning stochastic recurrent networks[END_REF]: "[...] we can restrict ourselves to prior distributions over the latent variables that factorize over time steps, i.e., p(z 1:T ) = T t=1 p(z t ). This is much easier to han-dle in practice, as calculating necessary quantities such as the KL-divergence can be done independently over all time steps and components of z t ." However, at the same time, the systematic aspect of the VAE methodology (and the versatility of the current deep learning toolkits) enables, in principle, to train a model of arbitrary complexity. Hence, if one is not limited by computational cost, this offers new possibilities. In the DVAE framework, not only is it easy to move from a linear dynamical model to a nonlinear one, but also to move from a first-order temporal model to a (much) higher order.

FLEXIBILITY OF THE INFERENCE MODEL

In DVAEs, as in standard VAEs, the exact posterior distribution is usually intractable due to nonlinearities, which is why we have to define an inference model in addition to the generative model (we cannot apply the Bayes rule analytically). However, a key feature of DVAEs with respect to standard VAEs is that we must define an inference model over a sequence of latent vectors. Even though the exact posterior distribution over this latent sequence is analytically intractable, we can leverage the chain rule and the D-separation principle to analyze the structure of the exact posterior distribution induced by the chosen generative model. It seems quite natural to exploit this knowledge to design the structure of the inference model so that it is consistent with the structure of dependencies in the exact intractable posterior. Yet, several seminal papers (e.g. STORN [START_REF] Bayer | Learning stochastic recurrent networks[END_REF], VRNN [START_REF] Chung | A recurrent latent variable model for sequential data[END_REF] and DSAE [START_REF] Li | Disentangled sequential autoencoder[END_REF]) on DVAEs have not followed this "consistency principle," and, more importantly, have not justified the chosen structure of the inference model. Nevertheless, it is not mandatory to follow the structure of the exact posterior distribution to design the inference model. For instance, if the structure of the exact posterior distribution implies noncausal processing of the observations, the anti-causal dependencies can be dropped for the purpose of online applications. Simplifying posterior dependencies can also be motivated by a need to reduce the computational complexity of inference.

Another key difference between DVAEs and VAEs relates to how the VLB (or, actually, its estimate) is computed. The VLB involves intractable expectations, which are usually replaced with empirical averages, using samples drawn from the inference model. The sampling procedure in DVAEs has to be recursive due to the dynamic nature of the model, a constraint that standard VAEs do not have. This recursive sampling is related to the use of RNNs and can be costly. As discussed in chapter 5, other neural network architectures such as Transformer [START_REF] Vaswani | Attention is all you need[END_REF] can be more computationally efficient than RNNs.

FLEXIBILITY OF THE IMPLEMENTATION

As already discussed in Section 3.3, various possibilities exist for the high-level implementation of DVAEs. We recall that various developed model representations can correspond to the same compact representation. In fact, the compact form describes all parent-child relationships among random variables, regardless of how these relationships are implemented in practice. Therefore, the compact representation is important to understand the probabilistic dependencies between variables. However, one must be aware that the optimization does not search for all possible models satisfying the relationships of the compact representation but only for a specific model corresponding to the developed representation. This representation allows us to understand how the dependencies are implemented in practice, and therefore, over which parameter space the model is optimized.

This representation typically involves a recurrent architecture. While such architectures allow the encoding of high-order temporal dependencies, their developed graphical representations generally do not exhibit dependencies higher than first-order. Therefore, the developed representation can be "visually misleading."

Once the high-level DVAE architecture is chosen, various possibilities exist for the low-level implementation: network type (e.g., LSTM against GRU) and low-level (hyper)parameterization (number of layers in a network, number of units per layer, type of activation function, and classical deep learning modules, such as batch normalization).

VAE IMPROVEMENTS AND EXTENSIONS APPLICABLE TO DVAES

Following the seminal VAE papers [START_REF] Diederik | Auto-encoding variational Bayes[END_REF][START_REF] Jimenez Rezende | Stochastic backpropagation and approximate inference in deep generative models[END_REF], many papers have been proposed for VAE improvements and extensions. In this subsection, we mention some of these improve-ments and extensions and discuss their relation and possible adaptation to DVAEs.

IMPROVED VAE DECODERS AND THE POSTERIOR COLLAPSE PROBLEM

The mathematical formulation of the VAE in the seminal paper by Kingma et al. [START_REF] Diederik | Auto-encoding variational Bayes[END_REF] considered a 1D data vector framework; that is, x is a fixed-size F -dimensional vector.

What happens if we want to apply the VAE to 2D data, such as images, or more generally, to N -dimensional data? What happens if one of the dimensions is variable, like variable-length time sequences? By considering variable-size sequences and, in particular, variable-length time sequences, we take a step toward DVAEs. However, we consider models with many-to-one encoding and one-to-many decoding more as VAEs than DVAEs.

Kingma and Welling [START_REF] Diederik | Auto-encoding variational Bayes[END_REF] considered the application of the VAE to 2D image modeling. However, the correlation between neighboring pixels was poorly exploited, as the conditional generative model (conditioned on the latent variable) was pixel-wise independent. 1 In such a setting, z encodes both the local statistics of an image (e.g., local texture) and the global structural information of the image (e.g., objects), whereas it is desirable to separate this information, following the essence of latent factors disentanglement [START_REF] Diederik | An introduction to variational autoencoders[END_REF].

Subsequent studies [START_REF] Gulrajani | PixelVAE: A latent variable model for natural images[END_REF][START_REF] Gregor | Towards conceptual compression[END_REF][START_REF] Chen | Variational lossy autoencoder[END_REF][START_REF] Lucas | Auxiliary guided autoregressive variational autoencoders[END_REF][START_REF] Shang | Channel-recurrent autoencoding for image modeling[END_REF] Generally, the solutions to the posterior collapse problem proposed in the literature have yielded a more influential, as well as a more disentangled latent representation. Yet, there is still room for improvement. The DVAEs focused on in this manuscript do not consider a single latent vector z for a data sequence; rather, they consider a latent vector sequence z 1:T , which is generally synchronized with the data sequence x 1:T and with the sequence(s) of internal state vectors of the temporal models. This raises new issues and challenges, compared to the studies conducted on, for example, 2D image or language/text modeling. However, an important remark that is worth mentioning, although quite trivial, is that this DVAE configuration first solves the encoding capacity problem for large data sequences. As mentioned by Li and Mandt [START_REF] Li | Disentangled sequential autoencoder[END_REF],

"[the model] keeps track of the time-varying aspects of x t in z t for every t, making the reconstruction to be time-local and therefore much easier. Therefore, the stochastic model is better suited if the sequences are long and complex."

In short, with DVAEs, it is quite unlikely that a posterior collapse finds its origin in the limited capacity of the latent vector. In fact, we conjecture that it may be the opposite (i.e., too large capacity of the latent vector sequence z 1:T , depending on the size of z t ) that leads to posterior collapse. This is suggested by what we observed in our experiments in Sections 4.5 and 4.6 with the autoregressive models, where inactive entries of z 1:T might be considered as "superfluous" components. Therefore, adjusting the dimension of z t so that it can optimally fit the content of the observed data sequence (i.e., adjusting the "coding cost" of the latent representation) while limiting the computational complexity is a major issue in DVAEs. All that being said, in autoregressive DVAE models such as SRNN or VRNN, even if we have a "high-capacity" sequence of latent variables, there is no guarantee that the autoregressive part of the model will not capture most of the information, thus ignoring the sequence of latent vectors. This remains an open problem in the DVAE literature.

IMPROVED INFERENCE MODELS AND ALGORITHMS

Learning in the VAE framework relies on amortized variational inference techniques. In fixed-form variational inference [START_REF] Honkela | Approximate Riemannian conjugate gradient learning for fixed-form variational Bayes[END_REF][START_REF] Salimans | Fixed-form variational posterior approximation through stochastic linear regression[END_REF] and, in particular, stochastic variational inference [START_REF] Matthew D Hoffman | Stochastic variational inference[END_REF], the approximate posterior distribution is fixed to a certain parametric form, say Gaussian for instance, and its mean and variance parameters are "freely" optimized through direct maximization of the VLB. In amortized variational inference, the approximate posterior distribution is still Gaussian, but there is an additional constraint imposed by the fact that its parameters are provided by an inference model corresponding to the encoder network in the VAE case. This is an additional constraint in the definition of the variational family, and the resulting amortized approximate posterior distribution is generally less expressive than its counterpart with free parameters (it depends on the expressiveness of the encoder network). Consequently, the KL divergence between the approximate and exact posterior distributions is generally increased in the amortized variational inference setting, which is referred to as the amortization gap [START_REF] Cremer | Inference suboptimality in variational autoencoders[END_REF][START_REF] Krishnan | On the challenges of learning with inference networks on sparse, high-dimensional data[END_REF]. This issue can also limit the performance of the learned generative model, as the amortization gap is directly related to the gap between the VLB and the intractable log-marginal likelihood of the data, which is the criterion that we would ideally like to optimize to learn the generative model parameters (i.e., the parameters of the VAE decoder).

To reduce this gap, several studies have proposed resorting to more sophisticated inference models. Normalizing flow [START_REF] Jimenez | Variational inference with normalizing flows[END_REF] builds arbitrarily complex approximate posterior distributions with tractable densities by applying a series of invertible transformations to a simple initial distribution. Various normalizing flows have been proposed in the litera-ture, for instance, based on autoregressive models [START_REF] Diederik P Kingma | Improved variational inference with inverse autoregressive flow[END_REF][START_REF] Chen | Variational lossy autoencoder[END_REF], coupling layers [START_REF] Dinh | Nice: Non-linear independent components estimation[END_REF][START_REF] Dinh | Density estimation using real nvp[END_REF] or 1x1 convolution [START_REF] Diederik | Glow: Generative flow with invertible 1x1 convolutions[END_REF]. Because a normalizing flow consists in chaining multiple transformations of an initial latent variable, it can be considered a particular case of a hierarchical model [START_REF] Diederik | An introduction to variational autoencoders[END_REF][START_REF] Diederik P Kingma | Improved variational inference with inverse autoregressive flow[END_REF], a type of model that we will discuss later. An expressive approximate posterior distribution can also be defined as a mixture of simpler distributions by introducing auxiliary latent variables in the approximate posterior itself and then marginalizing [START_REF] Maaløe | Auxiliary deep generative models[END_REF][START_REF] Ranganath | Hierarchical variational models[END_REF][START_REF] Salimans | Markov chain Monte Carlo and variational inference: Bridging the gap[END_REF]].

An alternative to the design of more sophisticated inference models consists in directly modifying the inference algorithm. Marino et al. [START_REF] Marino | Iterative amortized inference[END_REF], proposed an iterative amortized inference technique, which consists in iteratively estimating the approximate posterior parameters using a parametric iterative inference model that takes as input the current estimate of the parameters, the approximate gradient of the VLB (w.r.t. the approximate posterior parameters), and potentially the observed data. This iterative inference model can, for instance, be defined using a neural network. Similarly to the "learning to learn" principle [START_REF] Andrychowicz | Learning to learn by gradient descent by gradient descent[END_REF], iterative inference models learn to perform optimization of the VLB for approximate posterior estimation. Moreover, through the encoding of the VLB gradient, iterative inference models naturally account for the top-down information obtained from the data and bottom-up information obtained from the prior to estimate the approximate posterior distribution. This feature complies with the fundamental principle of the Bayes rule, in contrast to the standard inference models, which are purely bottom-up, by simply mapping the observed data to the approximate posterior. With the same objective of overcoming the limitations of standard amortized variational inference, the semi-amortized VAEs proposed by Kim et al. [START_REF] Kim | Semi-amortized variational autoencoders[END_REF] use a standard inference model (i.e., an encoder network) to provide an initial estimate of the approximate posterior parameters and then run stochastic variational inference [START_REF] Matthew D Hoffman | Stochastic variational inference[END_REF] to refine them.

Of particular relevance to DVAEs, the amortized variational filtering algorithm proposed by Marino et al. [START_REF] Marino | A general method for amortizing variational filtering[END_REF] generalizes iterative inference models [START_REF] Marino | Iterative amortized inference[END_REF] to a general class of dynamical latent variable models for sequential data processing. This algorithm is a general method for performing causal variational inference, using only past and present observed data. When combined with DNNs, the considered general class of dynamical latent variable models corresponds to the DVAE class. The proposed inference method is thus applicable to DVAEs, and the authors conducted experiments using VRNN and SRNN (among other models). An interesting feature of this method is its versatility. In the context of standard amortized variational inference [START_REF] Kim | Semi-amortized variational autoencoders[END_REF], the DVAE inference model should be designed in accordance with the form of the DVAE generative model, following, for instance, the structure of the exact posterior distribution which can be identified using D-separation (see Section 3.4). In contrast, the amortized variational filtering algorithm is agnostic of the form of the generative model. Another strength of this algorithm is inherited from iterative inference models [START_REF] Marino | Iterative amortized inference[END_REF], which combine information from both the data and the prior to compute the approximate posterior distribution parameters. This principle is also applicable in the context of the amortized variational filtering algorithm, where the "prior" (e.g., p(z t |x 1:t-1 , z 1:t-1 )) and the approximate posterior (e.g., q(z t |x 1:t , z 1:t-1 ))

vary in time. The resulting amortized variational filtering algorithm thus resembles classical Bayesian inference filtering methods, such as a Kalman filter, where at a given time instant, the posterior distribution is computed by updating the predictive distribution (involving the prior distribution at the current time instant and the posterior distribution at the previous time instant) using the current observation.

DISENTANGLEMENT OF LATENT FACTORS

A common crucial issue for VAEs and DVAEs is how to ensure the disentanglement of latent factors. As stated by Chen et al. [START_REF] Chen | Variational lossy autoencoder[END_REF],

"A key goal of representation learning is to identify and disentangle the underlying causal factors of the data, so that it becomes easier to understand the data, to classify it, or to perform other tasks."

Such disentanglement is not necessarily natural or efficient in the standard VAE; it somehow has to be "encouraged," either in the model design or in the training procedure (or both).

Siddharth et al. [START_REF] Siddharth | Learning disentangled representations with semi-supervised deep generative models[END_REF] proposed forcing the disentanglement of z and thus improving its interpretability by using a small amount of supervision during training (semi-supervised VAE). This study does not particularly deal with static or dynamical VAEs, and this weak supervision principle can be applied to both.

A second strategy to improve the disentanglement of latent factors is to modify the loss function (i.e., the VLB). In this line, Higgins et al. [START_REF] Higgins | β-vae: learning basic visual concepts with a constrained variational framework[END_REF] introduced a weighting factor, denoted β, to weight the regularization term (i.e. the KL divergence), so that the VLB becomes L(θ, ϕ, β; X) = E q ϕ (Z|X) log p θx (X|Z) -βD KL q ϕ (Z|X) ∥ p θz (Z) . (7.1)

A value of β larger than 1 favors the KL term; hence, it encourages independence and disentanglement of the latent vector entries, although at the price of lower reconstruction/generation quality. For example, the images reconstructed with a β-VAE can be slightly blurred compared to those reconstructed with a standard VAE. However, the control of the properties of the objects represented in the image from the latent vectors is improved [START_REF] Higgins | β-vae: learning basic visual concepts with a constrained variational framework[END_REF].

Chen et al. [START_REF] Ricky | Isolating sources of disentanglement in variational autoencoders[END_REF] went a step ahead. Starting from the VLB, they introduced the aggregated posterior q ϕ (z) = 1 Ntr Ntr n=1 q ϕ (z|x n ) and then decomposed the KL term of the VLB (summed over the training data) into a sum of three terms. The first one, referred to as the index-code mutual information, quantifies the mutual information between data and latent variables. The second one, referred to as the total correlation, is the KL divergence between the aggregated posterior and the product of its marginals (i.e., D KL q ϕ (z) ∥ L l=1 q ϕ (z l ) ). It quantifies the independence of the latent vector entries independently of data inputs (i.e., marginal independence as opposed to conditional independence). The third term is the sum over entries of the entry-wise KL divergence between the marginal aggregated posterior q ϕ (z l ) and prior p(z l ). The authors noted that minimizing the KL term of the VAE encourages the independence of the latent vector entries through the minimization of the total correlation. However, it also penalizes the mutual information between the data and latent vectors, hence decreasing the power of latent components to explain the data. Therefore, they proposed applying a weighting factor (larger than 1) to the total correlation only, leaving the mutual information term unchanged. They experimentally demonstrated the advantage of this strategy over the β-VAE. A similar idea was proposed independently by Kim and Mnih [START_REF] Kim | Disentangling by factorising[END_REF], with a slightly different decomposition of the VLB KL term and a different implementation (based on an adversarial training of the model). For an extensive discussion and benchmark on disentangled representation learning with VAEs, see Locatello et al. [START_REF] Locatello | A sober look at the unsupervised learning of disentangled representations and their evaluation[END_REF].

Such a general principle of enforcing latent factor disentanglement by modifying the loss function is independent of the issue of "static" against temporal modeling. It can thus, in principle, be applied to the DVAE framework. Finding a relevant decomposition of the loss function in the DVAE framework is still an open topic. Due to the more complex (temporal) intrications of the observed and latent variables, it is difficult to say if terms equivalent to total correlation or mutual information can be evidenced easily.

Future studies should consider this aspect to make DVAE models more controllable and interpretable.

HIERARCHICAL VAES AND DVAES

A structured VAE, or hierarchical VAE, is a general subclass of VAEs where the latent space is structured by setting a hierarchical prior distribution on a set of latent variables z = {z 0 , z 1 , ..., z K } [START_REF] Diederik | An introduction to variational autoencoders[END_REF][START_REF] Salimans | A structured variational auto-encoder for learning deep hierarchies of sparse features[END_REF][START_REF] Casper Kaae Sønderby | Ladder variational autoencoders[END_REF][START_REF] Casper Kaae Sønderby | How to train deep variational autoencoders and probabilistic ladder networks[END_REF]. Here, the index denotes different latent variables, not a sample in a training set or a time index in a sequence as before. For example, a hierarchical "multilevel" VAE was proposed by [START_REF] Bouchacourt | Multi-level variational autoencoder: Learning disentangled representations from grouped observations[END_REF], with two latent vectors defined at different data scales: One latent vector encodes a common content for a group of data and the other latent vector encodes the style of subgroups of data within a group. In Bouchacourt et al.'s paper [START_REF] Bouchacourt | Multi-level variational autoencoder: Learning disentangled representations from grouped observations[END_REF], data grouping involves a certain amount of supervision during training.

Another notable example of a hierarchical VAE was presented by Salimans [START_REF] Salimans | A structured variational auto-encoder for learning deep hierarchies of sparse features[END_REF], who In such an approach, the latent space is structured but not the data space (we still have a unique observed vector x). In this hierarchical latent variable model, there is no notion of time, but if we think of timely ordered variables, then we move toward Markov models (in the above example, a first-order one). In addition, if we consider both timely ordered latent variables and timely ordered observed variables, we step into the world of DVAEs.

In other words, a DVAE can be considered a particular case of structured/hierarchical VAEs, with timely ordered latent and observed variables.

At this point, we can make an interesting parallel among the DVAE papers that we have reviewed and the hierarchical VAE papers [START_REF] Salimans | A structured variational auto-encoder for learning deep hierarchies of sparse features[END_REF][START_REF] Casper Kaae Sønderby | Ladder variational autoencoders[END_REF][START_REF] Casper Kaae Sønderby | How to train deep variational autoencoders and probabilistic ladder networks[END_REF][START_REF] Diederik | An introduction to variational autoencoders[END_REF] concerning the design of the inference model. We have seen in Section 3.6 that the D-separation methodology was not systematically used in the design of DVAE inference models. Interestingly and quite surprisingly, this methodology is not mentioned either in the above hierarchical VAE

papers. Yet, we recall that D-separation is a major principled way to guide the design of inference models, including in this more general case. In these papers, the authors rather chose one model among different somewhat intuitive structures (e.g., top-down against bottom-up inference [START_REF] Diederik | An introduction to variational autoencoders[END_REF]). One strategy to make the choice is to favor an inference model with variable dependencies that "mirror" those of the generative model, so that some "module" and parameters can be shared between them. This is a suitable feature that was applied in VRNN [START_REF] Chung | A recurrent latent variable model for sequential data[END_REF] and SRNN [START_REF] Fraccaro | Sequential neural models with stochastic layers[END_REF] for example. In the hierarchical VAE papers, this "module sharing" strategy reportedly led to faster training and better fitting of model and data.

That being said, module sharing is not incompatible with respecting the exact posterior distribution structure. For example, in Salimans's paper [START_REF] Salimans | A structured variational auto-encoder for learning deep hierarchies of sparse features[END_REF], the inference model is defined by q ϕ (z|x) = q ϕ (z 0 |x)

K k=1 q ϕ (z k |z k-1 , x). (7.3)
Again, it was chosen by the author because it "mirrors" the generative model. This inference model follows the structure of the exact posterior distribution, even though this fundamental latter point was not mentioned by Salimans [START_REF] Salimans | A structured variational auto-encoder for learning deep hierarchies of sparse features[END_REF]. In the design of a DVAE, we can apply this principle: We can look for an inference model that both respects the structure of the exact posterior and shares some module(s) with the generative model.

In DVAEs, the problem of disentangling the factors of data variation takes a new flavor, as different factors of variation can have different dynamics. In this context, one way to address the disentanglement challenge is therefore to apply different levels of hierarchical modeling of the latent factors on the time dimension; that is, we can design models with a different time resolution for different latent variables, which is of course not incompatible with other types of hierarchical models. In particular, one general challenge is to separate the data dynamics (i.e., their temporal trajectories) and other factors of variations that are more constant over time (e.g., speaker identity for speech data, or objects present in the scene for videos). 2 For example, the DSAE model [START_REF] Li | Disentangled sequential autoencoder[END_REF], the FHVAE model [START_REF] Hsu | Unsupervised learning of disentangled and interpretable representations from sequential data[END_REF] and the HiT-DVAE model [START_REF] Lin | Speech modeling with a hierarchical Transformer dynamical VAE[END_REF], which include latent variables defined at the sequence level, segment level (a subsequence of consecutive frames), or frame level. For speech signal modeling, this appears as a promising way to separate the modeling and control of phonetic information, which is defined at the segment or frame level, and speaker/session information, which is defined at the sequence level. A generalization of this approach would be to impose a prior distribution of z 1:T that fits the dynamics of the latent factors to extract, which can be significantly different from the data dynamics.

In general, the issue of separating data dynamics and other factors of variation is still largely open in the literature on DVAE models with a sequence of latent vectors. For example, we were surprised to notice that there are very few experiments and information available on the explainability of the extracted sequence of latent factors. Experiments involving swapping of the extracted latent factors across two data sequences before resynthesizing them were reported by, for example, FHVAE [START_REF] Hsu | Unsupervised learning of disentangled and interpretable representations from sequential data[END_REF]. These experiments show that for speech signals, speaker identity can be exchanged between two sentences while preserving the same phonetic content, which is a very nice result. Yet, the issues of disentangling and controlling speech production factors separately remain largely open.

Moreover, basic questions such as the impact of the size of z t and h t on modeling quality and the relevance of extracted latent factors have been poorly considered so far. For example, for speech processing, what happens if the size of z t is reduced to a few entries, while the size of h t is kept comparable to that of data x t ?

Hsu et al. [START_REF] Hsu | Unsupervised learning of disentangled and interpretable representations from sequential data[END_REF] indicated that "to the best of our knowledge, there has not been any attempt to learn disentangled and interpretable representations without supervision from sequential data."

Regarding SRNN [START_REF] Fraccaro | Sequential neural models with stochastic layers[END_REF], VRNN [START_REF] Chung | A recurrent latent variable model for sequential data[END_REF], and SVAE [START_REF] Matthew J Johnson | Composing graphical models with neural networks for structured representations and fast inference[END_REF], Hsu et al. [START_REF] Hsu | Unsupervised learning of disentangled and interpretable representations from sequential data[END_REF] said "[...] it remains unclear whether independent attributes are disentangled in the latent space. Moreover, the learned latent variables in these models are not interpretable without manually inspecting or using labeled data."

Hence, the models such as STORN, VRNN, and SRNN provide an elegant and powerful mathematical and methodological framework for sequential data representation learning; however, there is still a lot of work to be done on the disentanglement challenge. Solutions for the disentanglement of z t in DVAEs, inspired by or combined with existing structured or hierarchical models such as the ones presented by Salimans [START_REF] Salimans | A structured variational auto-encoder for learning deep hierarchies of sparse features[END_REF] and Sønderby et al. [START_REF] Casper Kaae Sønderby | Ladder variational autoencoders[END_REF][START_REF] Casper Kaae Sønderby | How to train deep variational autoencoders and probabilistic ladder networks[END_REF], still have to be developed.

PERSPECTIVES ON SOURCE CODING

Although VAE and DVAE are excellent frameworks for extracting efficient and compact data representations, there are relatively few studies on their practical application to source coding (i.e., data compression including quantization and bitrate issues for data transmission or storage). We have mentioned above the problem of z "vanishing" or "being ignored" when a powerful deterministic temporal encoder-decoder is used, and a few papers have related this problem to the need to better encode z, in the source coding sense, with an information-theoretic interpretation of a VAE as a lossy coder [START_REF] Diederik P Kingma | Improved variational inference with inverse autoregressive flow[END_REF][START_REF] Chen | Variational lossy autoencoder[END_REF]. Among the few papers on the practical application of (D)VAE to data coding, we can mention the the encoder forms a latent code that encodes only the residual information that is missing when reconstructing a data vector from the deterministic internal state, which depends on past data vectors. This concept of predictive coding is strongly related to that of the predictive mode for the DVAE models that we discussed in general terms in Section 3.3 and that we have seen implemented in different (autoregressive) DVAE models. Therefore, from this viewpoint, FRAE is strongly related to STORN, VRNN, and SRNN. The feedback connection from the decoder to the encoder is reminiscent of another classical principle of source coding -closed-loop coding [START_REF] Gersho | Vector quantization and signal compression[END_REF]-even though Yang et al. [START_REF] Yang | Feedback recurrent autoencoder[END_REF] did not refer to it explicitly. In short, closed-loop coding enables the decoder to use the quantized previous data vectors in place of the unquantized ones (not available at the decoder)

for predicting the current data vector.

This line of research on nonlinear predictive coders based on DVAEs is quite promising and is only in its infancy. As Yang et al. [START_REF] Yang | Feedback recurrent autoencoder[END_REF] wrote "There is no standard autoencoder architecture for temporally correlated data that has variable-length and long-range dependencies such as video, speech, and text. The main challenge lies in the difficulty in capturing correlation information at different time scales in an online/sequential fashion."

This agrees with the concluding remark of Chen et al. [START_REF] Chen | Variational lossy autoencoder[END_REF]:

"We believe it's exciting to extend this principle of learning lossy codes [of the latent variable z] to other forms of data, in particular those that have a temporal aspect like audio and video."

FUTURE RESEARCH DIRECTIONS

From this thesis, there are several possible future research directions:

• As discussed in this chapter, the problem of posterior collapse existing in the vanilla VAE models still exists in the DVAE models, how to design a proper generative model and regularization on the latent space is still an open problem. Furthermore, the efficient inference model and learning algorithm can also be potential directions in the future.

• Our work encompasses a comprehensive integration of DVAE models, as outlined in Chapter 3, followed by an assessment of their modeling performance, which is detailed in Chapter 4. In Chapter 5, we extend the capabilities of the DVAE model by incorporating a hierarchical latent space and leveraging the Transformer architecture. Through our research, we have successfully demonstrated the efficacy of disentangling speaker identity within the latent variables when applied to speech data. This observation aligns with the findings in related studies such as DSAE [START_REF] Li | Disentangled sequential autoencoder[END_REF] and FHVAE [START_REF] Hsu | Unsupervised learning of disentangled and interpretable representations from sequential data[END_REF]. To advance this field, future investigations can focus on exploring models that have the ability to learn more disentangled features, such as semantic text descriptions, emotional attributes, and speaker identities in speech data.

Moreover, these models should strive to achieve high-quality features through selfsupervised learning methods.

• For the application of DVAE in practice, we present an algorithm for unsupervised speech enhancement in Chapter 6. However, it is important to note that this algorithm requires an iterative VEM optimization process during testing. Therefore, it would be beneficial to explore methods to accelerate or bypass the VEM algorithm, enabling wider adoption of DVAE in real-world problems. In addition, the application of DVAE models is not limited to speech enhancement alone. There are several other areas where DVAE models can be investigated and potentially applied. For instance, exploring their efficacy in source coding, data style transformation, and multimodal learning could be valuable research directions. By extending the scope of DVAE applications, we can uncover new opportunities and contribute to advancements in various domains. (b) recurrent variational autoencoder (RVAE) [START_REF] Leglaive | A recurrent variational autoencoder for speech enhancement[END_REF], and (c) stochastic recurrent neural network (SRNN) [START_REF] Fraccaro | Sequential neural models with stochastic layers[END_REF]. Each model consists of an inference (encoder) network (in red) and a generation (decoder) network (in blue).

SRNN has a shared module between encoder and decoder (in green). CF: combiner function, GTF: gated transition function (see [START_REF] Rahul | Deep Kalman filters[END_REF] 

  coders (VAEs), ont attiré une attention significative en raison de leurs avantages uniques dans trois domaines cruciaux. Premièrement, ils opèrent dans un cadre d'apprentissage non supervisé, éliminant ainsi le besoin d'étiquetage intensif en main-d'oeuvre. Deuxièmement, ils acquièrent des représentations latentes expressives, ce qui leur permet d'être utilisés dans une large gamme de tâches ultérieures. Enfin, ces modèles sont probabilistes par nature, ce qui les rend facilement intégrables dans les algorithmes existants basés sur un cadre de modélisation bayésienne. Néanmoins, le VAE vanille d'origine traite chaque vecteur de données indépendamment en raison de l'hypothèse d'indépendance et d'identiquement distribuée (i.i.d.). Cette approche est sous-optimale pour modéliser avec précision les séquences corrélées (temporelles). Par conséquent, trouver une adaptation appropriée du VAE vanille à la modélisation de données séquentielles reste un défi passionnant. Dans cette thèse, nous apportons les contributions suivantes : 1) nous passons en revue en détail les avancées récentes dans l'extension du modèle VAE pour prendre en compte les données séquentielles et les regroupons dans une classe générale de modèles appelés dynamical VAEs (DVAEs), en fournissant une définition générale de leurs modèles génératifs et d'inférence, ainsi que de l'objectif d'optimisation ; (FTML'21) 2) nous réalisons une étude quantitative comparative des modèles DVAE existants pour évaluer leurs performances dans la modélisation de données séquentielles avec différentes architectures (FTML'21, Interspeech'21) ; 3) nous proposons un nouveau modèle DVAE qui intègre un espace latent hiérarchique et exploite l'architecture Transformer pour la modélisation de séquences (ICASSP'23)
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 11 Figure 1.1: A graphical taxonomy of generative probabilistic models (figure extracted from [94].

  process is analogous to solving a traditional frame-based acoustic modeling problem. Secondly, similar to other masked pre-training approaches, the HuBERT model must capture long-range temporal dependencies in order to accurately predict outcomes for masked timesteps. By incorporating this capability, the model becomes adept at understanding and modeling sequential structures in the input data. One crucial insight that motivated the development of HuBERT is the importance of target consistency. By ensuring con-sistency in the target representations, the model can effectively concentrate on modeling the sequential structure of the input. HuBERT model can be iterated by replacing the MFCC targets with the k-means clustering on the intermediate features obtained from the HuBERT model in the first iteration. This iterative training enables the model to capture fine-grained features, thus further improving the performance on ASR finetuning.
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 31 content of this Chapter is based on the following publication: Girin, L., Leglaive, S., Bie, X., Diard, J., Hueber, T., & Alameda-Pineda, X. (2021). Dynamical variational autoencoders: A comprehensive review, Foundations and Trends in Machine Learning, Vol. 15, No. 1-2, pp. 1-175, 2021. My contribution to this paper lies in code development and experiment validation, participating in the unification of the formulas of DVAE family models, writing the original draft for the experimental chapter and writing in review for the other chapters.

  models under the common class and terminology of variational DDBNs (i.e., DDBNs immersed in the VAE framework), or DVAEs (see Section 1.1). This convergence of DDBNs and VAEs into DVAEs is illustrated in Fig. 1.1In practice, these different DVAE models vary in how they define the dependencies between the observed and latent variables, how they define and parameterize the corresponding generative probability distribution functions (pdfs), and how they define and parameterize the inference model. They also differ in how they combine the variables with Recurrent Neural Networks (RNNs) to model temporal dependencies, at both generation and inference.
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 31 Figure 3.1: Two different implementations of a given factorization. The probabilistic graphical model (left) shows the dependencies between random variables and corresponds to the factorization in Equation 3.10 and Equation 3.11. Two possible implementations based on RNNs are shown: sharing the internal state variables (middle) or with two different internal state variables (right). We refer to the compact representation (left) and to the developed representations (middle and right). This terminology holds true for both the graphical representations and model formulations.
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 4 BENCHMARK OF A SET OF DVAE MODELS 53 The content of this Chapter is based on the following publications: Girin, L., Leglaive, S., Bie, X., Diard, J., Hueber, T., & Alameda-Pineda, X. (2021). Dynamical variational autoencoders: A comprehensive review, Foundations and Trends in Machine Learning, Vol. 15, No. 1-2, pp. 1-175, 2021. Bie, X., Girin, L., Leglaive, S., Hueber, T., & Alameda-Pineda, X. (2021). A benchmark of dynamical variational autoencoders applied to speech spectrogram modeling. in Conference of the International Speech Communication Association (Interspeech), Brno, Czech Republic. My contribution to the first paper lies in code development and experiment validation, participating in the unification of the formulas of DVAE family models, writing the original draft for the experimental chapter and writing in review for the other chapters. My contribution to the second paper lies in code development, experiment validation and writing.
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 41 shows the architecture of the noncausal RVAE. The schema of the causal RVAE architecture is obtained by replacing the BRNN in the inference and generative models with a backward and a forward RNN, respectively. Finally, for all output variance parameters, we use log-parameterization (i.e., the output of the network corresponding to a variance parameter σ 2 is actually log σ 2 ).

Figure 4 . 1 :

 41 Figure 4.1: Model architecture for the six tested DVAE models. For DKF, CF and GTF are a combiner function and a gated transition function, respectively[START_REF] Rahul | Structured inference networks for nonlinear state space models[END_REF]. For VRNN and SRNN, the gray-shaded boxes are modules shared by the encoder and decoder.

  ,765 utterances, ∼25 h) was used for training, the si dt 05 subset (1,026 utterances, ∼2 h) was used for validation, and the si et 05 subset (651 utterances, ∼1.5 h) was used for testing. The raw speech waveform was sampled at 16 kHz. Analysis-resynthesis was performed with the DVAEs in the time-frequency domain on power spectrograms. Timedomain speech signals were thus preprocessed with the short-time Fourier transform (STFT), using a 64-ms sine window (1,024 samples) with 25%-overlap to obtain sequences of 513-dimensional discrete Fourier spectra (for positive frequencies). Then, we computed the squared magnitude of these STFT spectrograms. For the training dataset, we set T = 50, meaning that speech utterances of 0.8 s were extracted from the raw dataset and pre-processed with the STFT. In summary, each training speech sequence is a 513 × 50 STFT power spectrogram. This data preprocessing resulted in a set of N tr = 46, 578 training sequences (representing about 10.3 hours of speech signal) and N val = 7, 775 validation sequences (∼ 1.7 h). For testing, we used the STFT spectrogram of each complete test sequence (with the beginning and ending silence portions removed),

8, and 9 )

 9 for training and from 1 actor (Actor 11) for testing. Applying the sequence extraction procedure described above led to N tr = 88, 952 training sequences (∼ 50 h) and N test = 13, 838 test sequences (∼ 8 h). For validation, to reduce the computation time, we selected 128 sequences for each of the 15 scenarios by Actor 5 (N val = 1, 920 sequences, ∼ 1 h).

  speech quality (PESQ) score in [-0.5, 4.5] [227], and the extended short-time objective intelligibility (ESTOI) score in [0, 1] [249]

4. 5

 5 EXPERIMENTAL RESULTS ON SPEECH DATA 4.5.1 ANALYSIS-RESYNTHESIS
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 424344 Figure 4.2: Example of power spectrogram for a speech signal uttered by a female speaker. Top: spectrogram of the original signal. Bottom: spectrogram reconstructed (0-2 s) and generated (2-4 s) with a vanilla VAE (the red line indicates the transition between reconstruction and generation).

Fig. 4 .

 4 Fig.4.3 shows the results obtained with the nonautoregressive DVAE models. We can see that the spectrograms generated by DKF and DSAE, although different, both exhibit a harmonic structure and a variety of different speech-like sounds, which smoothly evolve with time. The smoothness probably comes from the use of a Markov model for the latent vector, which precisely enforces smoothness. In the original DSAE paper,[START_REF] Li | Disentangled sequential autoencoder[END_REF] did not

Fig. 4 .

 4 Fig. 4.4 shows the generation results with autoregressive DVAE models. We see that,

  Figure 4.5 (a)) and log-variance (Figure 4.5 (b)) for these dimensions, with the mean being close to zero and the variance being much lower than 1. As a result, the corresponding entries of the z t samples shown in Figure 4.5 (c) look (a) mean (b) log-variance (c) sampled latent vector (d) KL divergence

Figure 4 . 5 :

 45 Figure 4.5: Example of the behavior of the latent vector of a speech spectrogram for SRNN (trained with teacher-forcing). (a) mean value of the posterior distribution (i.e., µ ϕz (•)); (b) log-variance of the posterior distribution (i.e., σ 2 ϕz (•)); (c) sampled latent vector z t ; (d) KL divergence term of the VLB.

  (a) mean (b) log-variance (c) sampled latent vector (d) KL divergence

Figure 4 . 6 :

 46 Figure 4.6: Example of the behavior of the latent vector of a speech spectrogram for SRNN (trained in the generation mode with scheduled sampling). (a) mean value of the posterior distribution (i.e., µ ϕz (•)); (b) log-variance of the posterior distribution (i.e., σ 2 ϕz (•)); (c) sampled latent vector z t ; (d) KL divergence term of the VLB.

Figure 4 .

 4 Figure 4.6 displays the same trajectories as Figure 4.5, for the same example sentence, but for the SRNN model trained in the generation mode (with scheduled sampling) instead of the teacher-forcing mode. By comparing the two figures, we observe that the SRNN model trained in the generation mode exhibits much less posterior collapse, with a larger number of "active" dimensions. By definition, the generated data vectors are approximate values of the ground-truth vectors, hence the model trained in the generation mode uses less accurate and thus less reliable past values of x t to generate the current value, compared to the same model trained in the teacher-forcing mode. Therefore, the model trained in the generation mode needs more informative latent dimensions to resynthesize

Figure 4 . 7 :

 47 Figure 4.7: Example of the behavior of the latent vector for a test sequence from the H3.6M dataset and for SRNN (trained with teacher-forcing). (a) mean value of the posterior distribution (i.e., µ ϕz (•)); (b) log-variance of the posterior distribution (i.e., σ 2 ϕz (•)); (c) sampled latent vector z t ; (d) KL divergence term of the VLB.
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 48 Figure 4.8: Example of the behavior of the latent vector for a test sequence from the H3.6M dataset and for SRNN (trained in generation mode with scheduled sampling). (a) mean value of the posterior distribution (i.e., µ ϕz (•)); (b) log-variance of the posterior distribution (i.e., σ 2 ϕz (•)); (c) sampled latent vector z t ; (d) KL divergence term of the VLB.
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 83 content of this Chapter is based on the following publications: Bie, X., Guo, W., Leglaive, S., Girin, L., Moreno-Noguer, F., & Alameda-Pineda, X. (2022). HiT-DVAE: Human motion generation via hierarchical Transformer dynamical VAE, submitted to ACM Multimedia. Lin, X., Bie, X., Leglaive, S., Girin, L., & Alameda-Pineda, X. (2023). Speech Modeling with a Hierarchical Transformer Dynamical VAE. In IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Rhodes, Greece. My contribution to the first paper lies in methodology development, code development, experiment validation and writing. My contribution to the second paper lies the proposal of the preliminary idea and the development of the initial code.

. 5 )Figure 5 . 1 :

 551 Figure 5.1: Overview of HiT-DVAE. The Encoder (left) inputs the observed sequence x 1:T to estimate the posterior distribution of the time-dependent latent variables z 1:T and time-independent latent variable w. Then the Decoder (right) reconstructs the motion and the priors of z.

Figure 5 . 2 :

 52 Figure 5.2: Probabilistic dependencies on the generation of x t with different mask designs, the yellow blocks indicate the masked region.

Figure 5 .

 5 Figure 5.2 shows three cases of probabilistic dependencies when using different masks in the Transformer layer. Note that Figure 5.2 (a) is a non-causal situation, thus we can not generate future motion via these dependencies. The mask in Figure 5.2 (c) will make the attention computed only on one element, thus the attention mask is meaningless in this case. We choose the mask shown in Figure 5.2 (b) in our proposed HiT-DVAE.

5. 4

 4 EXPERIMENTS ON SPEECH MODELING AND GENERATION 5.4.1 TRAINING LOSS Similar to other DVAE models [3], HiT-DVAE is trained by maximizing the following VLB:

Figure 5 . 3 :

 53 Figure 5.3: Reconstruction of speech spectrograms with swapping of w values between S1 (female speaker) and S2 (male speaker).

. 26 )

 26 The above losses allow training the proposed HiT-DVAE model to reconstruct full sequences x 1:T . At training time, the model is trained using ground-truth (GT) input sequences. At test time, between O + 1 and O + G, the previously generated data vectors are used at input, but not the GT. There is thus a mismatch between the training and testing condition, which degrades the quality of the generated sequences. To avoid this mismatch, we refine the decoder by re-generating x 1:T and z 1:T where the ground-truth inputs are randomly replaced by the generation from the first step. The probability of replacement is linearly increasing with respect to the training epochs. We find this regeneration further improves the model performance (see Table5.7).5.5.2 DATASETSFollowing[START_REF] Mao | Generating smooth pose sequences for diverse human motion prediction[END_REF][START_REF] Yuan | Dlow: Diversifying latent flows for diverse human motion prediction[END_REF], we train and evaluate the proposed method on the HumanEva-I[START_REF] Sigal | Humaneva: Synchronized video and motion capture dataset for evaluation of articulated human motion[END_REF] and Human3.6M[START_REF] Ionescu | Human3.6m: Large scale datasets and predictive methods for 3d human sensing in natural environments[END_REF] datasets, and remove global translations of the poses for both datasets. HumanEva-I contains 5 actions (Box, Gesture, Jog, ThrowCatch, Walking) performed by 3 actors, recorded at 60 Hz. Each pose is represented by 15 joints. Following previous literature [189, 282], we observe the first 15 frames and predict the next 60 frames (O = 15, G = 60).

. 29 )

 29 Similar to ADE, FDE evaluates the distance between the ground truth and the best sample, but just on the final frame instead of the whole sequence.(iv) Multi-Modal ADE (MMADE) and Multi-Modal FDE (MMFDE):

Figure 5 . 4 :

 54 Figure 5.4: Boxplot of ADE with different prediction lengths on all 50 samples. The box in the plot is defined by the first quartile (Q1) and the third quartile (Q3), the median value is highlighted with a horizontal orange line. The whiskers that extend from the box indicate the minimum and maximum values.

Figure 5 . 5 :

 55 Figure 5.5: Qualitative visualization on four different actions of the HumanEva and Human3.6M datasets. "Start"/"GT" means the last observed frame / the ground truth last frame respectively. The subsequent frames correspond to the last frames of 10 different generated sequences.

( f )Figure 5 . 6 : 111 The

 f56111 Figure 5.6: Box plot of FDE, MMADE, and MMFDE on HumanEva-I dataset and Hu-man3.6m dataset.

[ 227 ]

 227 used in MetricGAN. One problem with the unsupervised noise-dependent methods in general is that they learn the noise characteristics and acoustic conditions, and thus may generalize poorly to unseen noise and acoustic conditions, just like supervised N2C methods.Alternatively, unsupervised noise-agnostic methods are based on a (deep) model of clean speech signals and do not learn the noise characteristics during training. Instead, the latter are estimated at test time on each speech sequence to denoise, hence conceptually letting the speech enhancement method the potential to adapt to any kind of noise.
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 61 Figure 6.1: Speech analysis-resynthesis with a DVAE model in the STFT domain. The speech power spectrogram is used as input to the DVAE and the output is the variance of a complex Gaussian model. The audio waveform is reconstructed by inverse STFT using the phase of the original signal.

6.1 and Fig. 6 . 2 .

 62 At training time, we learn a DVAE model on a dataset of clean speech signals. At test time, the objective of speech enhancement is to use this pre-trained DVAE model to estimate the clean speech signal when only the noisy mixture is observed. This

Figure 6 . 2 :

 62 Figure 6.2: Overview of the proposed speech enhancement method. The pre-trained DVAE is used within a VEM algorithm for speech enhancement. The DVAE encoder is fine-tuned during the E-step and the mixture parameters are estimated in the M-step (red arrows), see Section 6.3.4 and Algorithm 5. The clean speech signal is estimated by filtering the noisy signal with a Wiener filter combining the DVAE output parameters and the estimated mixture parameters (green arrows).

  and θ x is the union of the speech generative model parameters θ s and the mixture model parameters φ = {g = [g 1 , . . . , g T ] T , W b , H b }.

Algorithm 5

 5 DVAE-based unsupervised speech enhancement Inputs: ▷ Pre-trained DVAE model: p θ (z 1:T , s 1:T ) and q ϕ (z 1:T |s 1:T ) ▷ Noisy speech STFT x 1:T Initialization: ▷ Initialize NMF noise parameters H b and W b with random nonnegative values ▷ Initialize gain parameters g = 1

6. 4 . 1 DATASETS

 41 We use the WSJ0-QUT dataset and the VoiceBank-DEMAND (VB-DMD) dataset, described below. Each dataset has a "clean" version used to pre-train the DVAE models and a "noisy" version used to test the proposed speech enhancement algorithm and the reference methods. The clean and noisy versions are actually used together to compute the speech enhancement objective performance measures (see Section 6.4.2) and for the training of the supervised reference methods. When using only the clean version, we refer to it as WSJ0 or VB.

  tains a training set with 11, 572 utterances performed by 28 speakers and a test set with 824 utterances performed by 2 speakers, different from the training set. The noisy train set consists of mixture signals mixed at four different SNRs, namely 15, 10, 5, and 0 dB, whereas the noisy test speech signals are corrupted with 17.5, 12.5, 7.5, and 2.5 dB SNR and different noise types. The full description of the dataset, including training/test splits

Figure 6 . 3 :

 63 Figure 6.3: Model implementation for the (a) deep Kalman filter (DKF)[START_REF] Rahul | Deep Kalman filters[END_REF][START_REF] Rahul | Structured inference networks for nonlinear state space models[END_REF], (b) recurrent variational autoencoder (RVAE)[START_REF] Leglaive | A recurrent variational autoencoder for speech enhancement[END_REF], and (c) stochastic recurrent neural network (SRNN)[START_REF] Fraccaro | Sequential neural models with stochastic layers[END_REF]. Each model consists of an inference (encoder) network (in red) and a generation (decoder) network (in blue). SRNN has a shared module between encoder and decoder (in green). CF: combiner function, GTF: gated transition function (see[START_REF] Rahul | Deep Kalman filters[END_REF] for details), RNN: recurrent neural network, BRNN: bidirectional RNN, MLP: multi-layer perceptron, : vector concatenation. All RNNs are implemented with LSTM networks.
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 64 Figure 6.4: Performance of the proposed DVAE-based speech enhancement method (and VAE baseline) as a function of the number of VEM iterations, for the WSJ0-QUT (top) and VB-DMD (bottom) test datasets. All DVAE models are pre-trained on the corresponding dataset of clean speech signals (WSJ0 and VB, respectively).

6 . 5

 65 violin plots showing the full distribution of the results obtained with RVAE-VEM, UMX and Metric-GAN+, when evaluated on the VB-DMD dataset and trained either on the corresponding training set or on the WSJ0-QUT dataset. The results are presented separately for different test SNRs. As expected, we observe that the performance of all methods degrades as

Figure 6 . 5 :

 65 Figure 6.5: Detailed performance of RVAE-VEM, UMX and MetricGAN+ on the VB-DMD dataset for different input SNRs. The blue and orange violin plots correspond to a training of the models on the VB-DMD and the WSJ0-QUT datasets, respectively.

  : A comprehensive review, Foundations and Trends in Machine Learning, Vol. 15, No. 1-2, pp. 1-175, 2021. My contribution to this paper lies in code development and experiment validation, participating in the unification of the formulas of DVAE family models, writing the original draft for the experimental chapter and writing in review for the other chapters.

  proposed to use a (deep) first-order autoregressive prior model:p θz (z) = p θz (z 0 ) K k=1 p θz (z k |z k-1 ).(7.2)
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 326842695 Example of speech power spectrogram reconstructed (0-2 s) and generated (2-4 s) by a DVAE model (the original spectrogram is in Fig. 4.top)). Top: DKF; middle: DSAE; bottom: noncausal RVAE. The red line indicates the transition between reconstruction and generation. . . . . Example of speech power spectrogram reconstructed (0-2 s) and generated (2-4 s) by a DVAE model (the original spectrogram is in Fig. 4.top)). Top: STORN; middle: SRNN; bottom: VRNN. The red line indicates the transition between reconstruction and generation. Here, we have a window length of 512 points and an overlap of 50%. This is to illustrate the robustness of the results w.r.t. the "audio parameterization." . . . . . Example of the behavior of the latent vector of a speech spectrogram for SRNN (trained with teacher-forcing). (a) mean value of the posterior distribution (i.e., µ ϕz (•)); (b) log-variance of the posterior distribution (i.e., σ 2 ϕz (•)); (c) sampled latent vector z t ; (d) KL divergence term of the VLB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.6 Example of the behavior of the latent vector of a speech spectrogram for SRNN (trained in the generation mode with scheduled sampling). (a) mean value of the posterior distribution (i.e., µ ϕz (•)); (b) log-variance of the posterior distribution (i.e., σ 2 ϕz (•)); (c) sampled latent vector z t ; (d) KL divergence term of the VLB. . . . . . . . . . . . . . . . . . . . . . . 75 4.7 Example of the behavior of the latent vector for a test sequence from the H3.6M dataset and for SRNN (trained with teacher-forcing). (a) mean value of the posterior distribution (i.e., µ ϕz (•)); (b) log-variance of the posterior distribution (i.e., σ 2 ϕz (•)); (c) sampled latent vector z t ; (d) KL divergence term of the VLB. . . . . . . . . . . . . . . . . . . . . . . . . 78 4.8 Example of the behavior of the latent vector for a test sequence from the H3.6M dataset and for SRNN (trained in generation mode with scheduled sampling). (a) mean value of the posterior distribution (i.e., µ ϕz (•)); (b) log-variance of the posterior distribution (i.e., σ 2 ϕz (•)); (c) sampled latent vector z t ; (d) KL divergence term of the VLB. . . . . . . . . . . . . . . . 5.1 Overview of HiT-DVAE. The Encoder (left) inputs the observed sequence x 1:T to estimate the posterior distribution of the time-dependent latent variables z 1:T and time-independent latent variable w. Then the Decoder (right) reconstructs the motion and the priors of z. . . . . . . . . . . . . . 5.2 Probabilistic dependencies on the generation of x t with different mask designs, the yellow blocks indicate the masked region. . . . . . . . . . . 5.3 Reconstruction of speech spectrograms with swapping of w values between S1 (female speaker) and S2 (male speaker). . . . . . . . . . . . . . 5.4 Boxplot of ADE with different prediction lengths on all 50 samples. The box in the plot is defined by the first quartile (Q1) and the third quartile (Q3), the median value is highlighted with a horizontal orange line. The whiskers that extend from the box indicate the minimum and maximum values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.5 Qualitative visualization on four different actions of the HumanEva and Human3.6M datasets. "Start"/"GT" means the last observed frame / the ground truth last frame respectively. The subsequent frames correspond to the last frames of 10 different generated sequences. . . . . . . . . . . 5.6 Box plot of FDE, MMADE, and MMFDE on HumanEva-I dataset and Human3.6m dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6.1 Speech analysis-resynthesis with a DVAE model in the STFT domain. The speech power spectrogram is used as input to the DVAE and the output is the variance of a complex Gaussian model. The audio waveform is reconstructed by inverse STFT using the phase of the original signal. . . . 6.2 Overview of the proposed speech enhancement method. The pre-trained DVAE is used within a VEM algorithm for speech enhancement. The DVAE encoder is fine-tuned during the E-step and the mixture parameters are estimated in the M-step (red arrows), see Section 6.3.4 and Algorithm 5. The clean speech signal is estimated by filtering the noisy signal with a Wiener filter combining the DVAE output parameters and the estimated mixture parameters (green arrows). . . . . . . . . . . . . . 118 6.3 Model implementation for the (a) deep Kalman filter (DKF)[145, 146],
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  the equations above, the operators d h , d k , d x and d z are nonlinear functions parametrized by DNNs of arbitrary architecture. The choice and design of these architectures largely depends on the target application. To fix ideas, in the present example, d h and d k are RNNs, and d x and d z are feed-forward DNNs.In this chapter, we will not discuss how to select the hyper-parameters of these networks, such as the number of layers, or the number of units per layer. Note that Eq. 3.14 and Eq. 3.19 are exactly the same, meaning that the conditional distributions of z t are the same for both models. The same remark holds for Eq. 3.16

  Compute the distribution of x 2:T via p θx (x t |x 1:t-1 , z 1:t ) for t = 2, ..., T ▷ Compute the prior of z 2:T via p θz (z t |x 1:t-1 , z 1:t-1 ) for t = 2, ..., T Compute loss and optimize via Adam end for

). Algorithm 1 DVAE in training and re-synthesis Inputs: ▷ Observation on the sequence x 1:T for epo in epochs do Inference: ▷ Compute posterior z 1:T and sample z t ∼ q ϕz (z t |x 1:T ) for t = 1, ..., T Generation: ▷ Algorithm 2 DVAE in generation Inputs: ▷ Observation on the sequence x 1:O

Table 4 . 1 :

 41 Performance of the DVAE models tested in our speech analysis-resynthesis experiment. The SI-SDR, PESQ, and ESTOI scores are averaged over the test subset of the WSJ0 dataset. STORN, SRNN and VRNN were trained and tested in the teacherforcing mode. SRNN-TF-GM stands for the SRNN model trained in the teacher-forcing mode and tested in the generation mode. SRNN-GM stands for the SRNN model trained and tested in generation mode.

	DVAE	SI-SDR (dB) PESQ ESTOI
	VAE	5.3	2.97 0.83
	DKF	9.3	3.53 0.91
	STORN	6.9	3.42 0.90
	VRNN	10.0	3.61 0.92
	SRNN	11.0	3.68 0.93
	RVAE-causal	9.0	3.49 0.90
	RVAE-noncausal	8.9	3.58 0.91
	DSAE	9.2	3.55 0.91
	SRNN-TF-GM	-1.0	1.93 0.64
	SRNN-GM	7.8	3.37 0.88

  Then we fine-tuned with totally generated speech signals for another 300 epochs. Overall, we fine-tuned the model for 500 epochs. The resulting model is referred to as SRNN-GM hereinafter. Moreover, we also evaluated the initial SRNN model (trained with teacher-forcing) in the generation

mode (i.e., we use here x 1:t-1 during training and x1:t-1 during testing when generating x t ). We refer to this "hybrid" configuration as SRNN-TF-GM.

We can see from Table

4

.1 that SRNN trained in the teacher-forcing mode and tested in the generation mode (SRNN-TF-GM) obtains very poor results. This illustrates the problem of train/test mismatch discussed in Section 3.6. The strategy that consists in training SRNN in the generation mode using scheduled sampling (SRNN-GM) is shown to be effective, as the gap between SRNN-TF-GM and SRNN is largely reduced. Nevertheless, SRNN-GM remains a bit below DKF and RVAE in this experiment, showing

Table 4 . 2 :

 42 Performance of the DVAE models tested on 3D human motion data analysisresynthesis. The MPJPE scores are averaged over the test subset of the H3.6M dataset.

	x t .

4.6 EXPERIMENTAL RESULTS ON 3D HUMAN MOTION DATA 4.6.1 ANALYSIS-RESYNTHESIS Tab. 4.2 shows the results of the analysis-resynthesis experiment with the 3D human motion data. The MPJPE values are approximately within 9-49mm, which is relatively small compared to the average amplitude of the joint coordinates in a human body, and therefore

  Compute posterior of w and z 1:O for t in range (O + 1, O + G) do ▷ Generate ẑt via z t ∼ p θz (z t |x 1:O , xO+1:t-1 , z 1:t-1 , w) ▷ Generate xt via x t ∼ p θx (x t |x 1:O , xO+1:t-1 , ẑ1:t , w)

	Compute loss and optimize via Adam
	end for
	Algorithm 4 HiT-DVAE in generation
	Inputs:
	▷ Observation on human sequence x 1:O
	Initialization:
	▷ end for
	Output:
	▷ Generated human motion sequence xO+1:O+G

Algorithm 3 HiT-DVAE in training and re-synthesis

Inputs:

▷ Observation on human sequence x 1:T for epo in epochs do Inference: ▷ Compute posterior of w and sample w ∼ q ϕw (w|x 1:T ) ▷ Compute posterior z 1:T and sample z t ∼ q ϕz (z t |x 1:T , w) for t = 1, ..., T Generation: ▷ Compute the distribution of x 2:T via p θx (x t |x 1:t-1 , z 1:t , w) for t = 2, ..., T ▷ Compute the prior of z 2:T via p θz (z t |x 1:t-1 , z 1:t-1 , w) for t = 2, ..., T

Table 5 .
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	Dataset	Model	RMSE ↓ SI-SDR ↑ PESQ ↑ ESTOI ↑
		VAE	0.040	7.4	3.28	0.88
		DKF	0.037	8.3	3.51	0.91
		RVAE	0.034	8.9	3.53	0.91
	WSJ0	SRNN (SS) 0.036 SRNN (TF) 0.061	8.7 2.6	3.57 2.53	0.91 0.76
		HiT-DVAE 0.031	10.0	3.52	0.91
		VAE	0.052	8.4	3.24	0.89
		DKF	0.048	9.3	3.44	0.91
		RVAE	0.050	8.9	3.39	0.90
	VB	SRNN (SS) 0.044	10.1	3.42	0.91
		SRNN (TF) 0.102	-0.1	2.15	0.75
		HiT-DVAE 0.039	11.4	3.60	0.93

1: Analysis-resynthesis on the speech data.

Table 5 . 2 :

 52 Generation results on VoiceBank dataset.

	1.6-second

Spectrogram S1 reconstructed with W1 Spectrogram S2 reconstructed with W1 Spectrogram S1 reconstructed with W2 Spectrogram S2 reconstructed with W2

Table 5 .

 5 3: Results on HumanEva-I. "Real data" means real motion in the testing set, showing the theoretical upper bounds of accuracy (Acc) on generation methods. The suffix "b" or "m" represents the best/median metrics. ↑ (↓) means higher (lower) is better.
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 55 Groups of actions of Human3.6m dataset, for training the action classifier.

	5-group classifier because
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6: Implicit evaluations by different classification models on Human3.6m dataset. Our method always performs better.
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 5 ) ↓

	HumanEva-I

8: Ablation study on different loss terms on HumanEva-I and Human3.6M. The suffix "b" or "m" represents the best/median metrics. Using all three losses results in the best performance. The best results are bold if the model does not have extremely high or low diversity (marked as red).

  layer with an internal state of dimension 128 to accumulate the information from s t:T in (4.5). Before being fed into the recurrent layer, each vector s t passes through a multi-layer perceptron (MLP) with one hidden layer of dimension 256 and a tanh activation. The variance parameters of the generative model of s t are provided by an MLP with 4 hidden layers of dimension 32, 64, 128 and 256, with a tanh activation function. RVAE We implemented the non-causal version of RVAE as schematized in Fig. 6.3(b).The inference model includes a bidirectional LSTM (BLSTM) layer with an internal state of dimension 128 to process the complete sequence s 1:T and an LSTM layer to process the sampled past latent vectors sequence z 1:t-1 . The output of these two layers are then concatenated and mapped into the parameters of the inference model over z t by an MLP.The generative part of the model includes a BLSTM layer with an internal state of dimension 128, which takes the sampled z 1:T as input. The output of this BLSTM layer is finally mapped to the parameters of the generative model over s t by a single linear layer. (of dimension 128). This vector is then concatenated with the sample of z t-1 and fed into an MLP with two hidden layers of dimension 64 and 32. For the generative part, we concatenate the shared state -→ h t with the sampled latent vector at the previous or current time frame. An MLP with two hidden layers of dimension 64 and 32 is used for the generation of z t , and an MLP with one hidden layer of dimension 128 is used for the generation of s t . All MLP hidden layers use the tanh activation function.

	SRNN SRNN is quite different from the two previous models. As shown in Fig. 6.3(c), the inference and generative models share a recurrent internal state vector -→ h t (module in green) that is encoding the information from the past observed vectors s 1:t-1 . This shared module is composed of an MLP with one layer of dimension 256 followed by a forward LSTM. The dimension of -→ h t is 128. For inference, the concatenation of -→ h t and s t is fed into a one-layer MLP of dimension 256 followed by a backward LSTM that provides the vector ← -g t 6.4.4 DVAES PRE-TRAINING
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 61 Results of the speech analysis-resynthesis experiment, averaged over the test subset of WSJ0 and VoiceBank.

	Models Dataset SI-SDR (dB) PESQ MOS PESQ WB PESQ NB ESTOI
	VAE	WSJ0	8.0	3.33	2.95	3.31	0.89
	DKF	WSJ0	9.0	3.55	3.39	3.61	0.91
	RVAE WSJ0	9.8	3.65	3.57	3.75	0.92
	SRNN WSJ0	8.2	3.48	3.24	3.52	0.90
	VAE	VB	8.6	3.22	2.79	3.15	0.88
	DKF	VB	9.4	3.35	2.96	3.34	0.90
	RVAE	VB	9.6	3.41	3.00	3.42	0.90
	SRNN	VB	9.1	3.39	2.99	3.39	0.89
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 62 Speech enhancement results obtained with models trained and tested on corresponding datasets. * indicates the implementation provided by the authors and re-trained. The "Supervision" column indicates whether the training is supervised (S), unsupervised noise-dependent (UD) or noise-agnostic (UA).

	Method	Supervision Parameters	Train subset	Test subset SI-SDR (dB) PESQ MOS PESQ WB PESQ NB ESTOI
	Noisy mixture	-	-	-	WSJ0-QUT	-2.6	1.83	1.14	1.57	0.50
	VAE-VEM [153]	UA	0.14M	WSJ0	WSJ0-QUT	5.0	2.13	1.45	1.86	0.58
	Proposed DKF-VEM	UA	0.52M	WSJ0	WSJ0-QUT	5.1	2.23	1.46	1.95	0.62
	Proposed RVAE-VEM	UA	1.06M	WSJ0	WSJ0-QUT	5.8	2.27	1.54	1.98	0.62
	Proposed SRNN-VEM	UA	0.88M	WSJ0	WSJ0-QUT	5.2	2.23	1.48	1.95	0.63
	UMX* [254]	S	1.55M	WSJ0-QUT	WSJ0-QUT	5.7	2.16	1.38	1.83	0.63
	MetricGAN+* [86]	S	1.90M	WSJ0-QUT	WSJ0-QUT	3.6	2.83	2.18	2.61	0.60
	Noisy mixture	-	-	-	VB-DMD	8.4	3.02	1.97	2.88	0.79
	NyTT [88]	UD	-	VB-DMD + Extra noise VB-DMD	17.7	-	2.30	-	-
	NyTT [88]	UD	-	VB-DMD	VB-DMD	12.1	-	1.74	-	-
	MetricGAN-U (full) [87]	UD	1.90M	VB-DMD	VB-DMD	6.5	3.13	2.13	3.03	0.74
	MetricGAN-U (half) [87]	UD	1.90M	VB-DMD	VB-DMD	8.2	3.20	2.45	3.11	0.77
	VAE-VEM [153]	UA	0.14M	VB	VB-DMD	16.4	3.18	2.37	3.10	0.80
	Proposed DKF-VEM	UA	0.52M	VB	VB-DMD	16.9	3.22	2.42	3.14	0.81
	Proposed RVAE-VEM	UA	1.06M	VB	VB-DMD	17.1	3.23	2.48	3.15	0.81
	Proposed SRNN-VEM	UA	0.88M	VB	VB-DMD	14.2	3.20	2.32	3.12	0.80
	UMX [254]	S	1.55M	VB-DMD	VB-DMD	14.0	3.18	2.35	3.08	0.83
	MetricGAN+ [86]	S	1.90M	VB-DMD	VB-DMD	8.5	3.59	3.13	3.63	0.83
	metric instead, namely the DNSMOS measure [220], to bypass the paired supervision.
	Two versions of MetricGAN-U were proposed by the authors: the "full" one is trained
	entirely without supervision, while the "half" version monitors the PESQ measure to per-
	form early-stopping. Since PESQ is an intrusive measure, this version of MetricGAN-U
	can be seen as weakly supervised (supervision is used only for validation and not for
	training per se) [87]. NyTT is based on a noisy speech target training strategy, where
	the network is trained to remove an additional noise added to the noisy speech. Since
	there is no need for noisy/clean speech pairs, NyTT can also be considered as an unsuper-
	vised speech enhancement method. It should be noted that both MetricGAN-U and NyTT
	are trained using noisy speech as input, so the resulting model is noise-dependent. This
	contrasts with the proposed method where only clean speech is used for the DVAE pre-
	training, resulting in a noise-agnostic speech enhancement method. Finally, we could not
	re-train MetricGAN-U or NyTT. Indeed, since MetricGAN-U uses the DNSMOS service,
	each training epoch needs 2 days for evaluation, which is impractical. Regarding NyTT,
	we cannot retrain it since there is no public release of the code.				

  When comparing with the supervised methods, we see that MetricGAN+ obtains PESQ scores that are significantly higher (e.g., 3.59 and 2.83 PESQ NB on VB-DMD and WSJ0-QUT respectively) than those of all the other methods (RVAE-VEM reaches a maximum of 3.23 and 2.27 on VB-DMD and WSJ0-QUT). This can be explained by the fact that PESQ is the criterion optimized during the MetricGAN+ model training. In contrast,

	WB, the proposed approaches outperform NyTT independently of the amount of noise
	used at training time. Similar conclusions are drawn when comparing to MetricGAN-
	U, in which case the performance difference in terms of SI-SDR is very large (+8 to
	+10 dB). Remarkably, the proposed method achieves competitive performance with, and
	sometimes outperforms, MetricGAN-U (half) in terms of PESQ WB score, even though
	MetricGAN-U (half) uses the PESQ WB score on the validation set as a training stop
	criterion. In this regard, MetricGAN-U (half) is expected to exhibit higher PESQ WB
	values than MetricGAN-U (full).
	Even if the highest SI-
	SDR performance is achieved by NyTT (17.7 dB), this is possibly due to the use of large
	amounts of noise, given that its performance drops significantly (12.1 dB) when only the
	noise from the DMD dataset is used. The proposed RVAE-VEM algorithm reaches very
	similar performance (17.1 dB) without training on any kind of noise. In terms of PESQ

  .3 their performance obtained when the training set and test set originate from different corpora. It is unsurprising that the performance of supervised methods significantly decreases in this setting. For example, MetricGAN+ obtains a PESQ WB value of 3.13 on the VB-DMD test dataset when trained on the VB-DMD train dataset, whereas it drops to 2.51
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 63 Speech enhancement results with models trained and tested on different datasets. The "Supervision" column indicates whether the training is supervised (S), unsupervised noise-dependent (UD) or noise-agnostic (UA).

	Method	Supervision Parameters Train subset Test subset SI-SDR (dB) PESQ MOS PESQ WB PESQ NB ESTOI
	Noisy mixture	-	-	-	WSJ0-QUT	-2.6	1.83	1.14	1.57	0.50
	MetricGAN-U (full) [87]	UD	1.90M	VB-DMD WSJ0-QUT	-2.3	1.91	1.18	1.63	0.50
	MetricGAN-U (half) [87]	UD	1.90M	VB-DMD WSJ0-QUT	-1.6	2.01	1.25	1.71	0.49
	VAE-VEM [153]	UA	0.14M	VB	WSJ0-QUT	3.8	1.89	1.31	1.68	0.54
	Proposed DKF-VEM	UA	0.52M	VB	WSJ0-QUT	3.5	2.08	1.32	1.80	0.57
	Proposed RVAE-VEM	UA	1.06M	VB	WSJ0-QUT	4.3	2.12	1.37	1.84	0.57
	Proposed SRNN-VEM	UA	0.88M	VB	WSJ0-QUT	4.6	2.21	1.42	1.91	0.61
	UMX [254]	S	1.55M	VB-DMD WSJ0-QUT	4.1	2.06	1.34	1.76	0.61
	MetricGAN+ [86]	S	1.90M	VB-DMD WSJ0-QUT	1.8	2.31	1.61	2.02	0.56
	Noisy mixture	-	-	-	VB-DMD	8.4	3.02	1.97	2.88	0.79
	VAE-VEM [153]	UA	0.14M	WSJ0	VB-DMD	15.0	3.16	2.27	3.06	0.79
	Proposed DKF-VEM	UA	0.52M	WSJ0	VB-DMD	16.8	3.17	2.34	3.08	0.81
	Proposed RVAE-VEM	UA	1.06M	WSJ0	VB-DMD	17.3	3.21	2.41	3.13	0.81
	Proposed SRNN-VEM	UA	0.88M	WSJ0	VB-DMD	16.8	3.17	2.34	3.08	0.81
	UMX* [254]	S	1.55M	WSJ0-QUT VB-DMD	10.4	3.10	2.21	2.98	0.78
	MetricGAN+* [86]	S	1.90M	WSJ0-QUT VB-DMD	3.9	3.41	2.51	3.39	0.73
	obtains a negative SI-SDR when tested on WSJ0-QUT. In contrast, the proposed DVAE-
	VEM algorithm is much less affected by the dataset mismatch (for all DKF, RVAE, and
	SRNN models). Even if, generally speaking, we observe a mild decrease in performance
	when the training and test sets do not match, the proposed method occasionally exhibits
	better performance when tested in a different dataset. For example, the RVAE-VEM algo-
	rithm tested on VB-DMD with RVAE trained on WSJ0 obtains 17.3 dB of SI-SDR, which
	is even better than when RVAE is trained on VB (17.1 dB). This is probably because the
	WSJ0 dataset is larger than the VB dataset. RVAE-VEM performs the best when trained
	on WSJ0 and tested on VB-DMD, while SRNN-VEM performs the best when trained on

  3.3 below dedicatedto this specific point) and use the latter to augment the expressivity of the models. Another way to express this idea is to point out the superiority of DVAEs over RNNs: Adding a random latent variable z t within an RNN adds considerable flexibility and modeling power to the conditional output density. Let us here quote VRNN by Chung et al.[START_REF] Chung | A recurrent latent variable model for sequential data[END_REF]: "We show that the introduction of latent random variables can provide significant improvements in modeling highly structured sequences such as natu-ral speech sequences. We empirically show that the inclusion of randomness into high-level latent space can enable the VRNN to model natural speech se-

	quences with a simple Gaussian distribution as the output function. However,
	the standard RNN model using the same output function fails to generate rea-
	sonable samples. An RNN-based model using a more powerful output func-
	tion such as a GMM can generate much better samples, but they contain a
	large amount of high-frequency noise compared to the samples generated by
	the VRNN-based models."
	Similarly, we can point out the superiority of DVAE over classical (nondeep) DBNs
	and SSMs, owing to the deep nonlinear layers of information processing. Again, let us
	quote VRNN by Chung et al. [48]:

"Drawing inspiration from simpler dynamic Bayesian networks (DBNs) such as HMMs and Kalman filters, the proposed variational recurrent neural network (VRNN) explicitly models the dependencies between latent random variables across subsequent timesteps. However, unlike these simpler DBN models, the VRNN retains the flexibility to model highly non-linear dynamics."

Of course, such a statement applies to the entire DVAE family of models.

7.2 DVAE OUTCOME: A STORY OF FLEXIBILITY

7.2.1 FLEXIBILITY OF THE GENERATIVE MODEL

  [START_REF] Chen | Variational lossy autoencoder[END_REF] considered an autoregressive conditional density of the form p θx (x|z) = i p θx (x i |z, x nb[i] ) with application to 2D image modeling, where x i is the i-th pixel of the image and x nb[i] are the neighboring pixels. The autoregressive part is typically implemented with an RNN[START_REF] Van Den Oord | Pixel recurrent neural networks[END_REF].Ideally, the local statistics of an image should be modeled by the autoregressive part, whereas the global structural information of the image should be encoded in z. Another example of a structured VAE for modeling images is VAEs based on convolutional neural networks (CNNs)[START_REF] Gulrajani | PixelVAE: A latent variable model for natural images[END_REF][START_REF] Gregor | Towards conceptual compression[END_REF], which decompose/recompose an image into/from successive feature maps.Chen et al.[START_REF] Chen | Variational lossy autoencoder[END_REF] discussed the tendency of the autoregressive part of the model to capture all information on the data structure and let the latent variable remain unused. This problem is referred to as latent variable vanishing or as posterior collapse in the literature, a term that we have already encountered in the preceding chapter. A general strategy to counter this effect (i.e., controlling the data features encoded by the RNN and the data features encoded in z) is proposed in[START_REF] Chen | Variational lossy autoencoder[END_REF] at an early level of the model design: The local autoregressive window is constrained to be small, weakening the modeling power of the decoder. This can also be done with a hierarchical structure of the latent space (see the to encode the content of a long input sentence, and again, the RNN internal state vectors tend to encode the whole information, leaving z unused. Bowman et al.[START_REF] Samuel R Bowman | Generating sentences from a continuous space[END_REF] proposed two strategies to address this problem. The first one is applying annealing to the KL term of the VAE: A weighting factor growing from 0 to 1 is applied progressively to this term during training, first forcing z to encode the data information and only then forcing z to get disentangled. The second strategy is, as above, a deliberate weakening of the decoder, here by masking a part of the word embedding sequence during training. A more complex strategy was proposed by Yeung et al.[START_REF] Yeung | Tackling overpruning in variational autoencoders[END_REF], where an extra latent variable was added to activate/deactivate certain subvectors of z. As only a small part of the latent representation is used at each learning step, the VAE does not need to deactivate some of the dimensions of the latent variable. A heuristic approach was proposed by He et al.[START_REF] He | Lagging inference networks and posterior collapse in variational autoencoders[END_REF], where the encoder is aggressively trained (i.e., trained for many iterations) before each training iteration of the decoder. The main intuition behind this approach is that the encoder has difficulties catching up with the changes in the exact posterior distribution and is lagging behind. Aggressively training the encoder allows it to catch up with the evolution of the posterior distribution at each encoder update. Other more recent solutions to the posterior collapse problem in VAEs have been proposed and discussed in[START_REF] Casper Kaae Sønderby | Ladder variational autoencoders[END_REF][START_REF] Jimenez | Taming VAEs[END_REF][START_REF] Lucas | Don't blame the ELBO! a linear VAE perspective on posterior collapse[END_REF][START_REF] Razavi | Preventing posterior collapse with delta-VAEs[END_REF][START_REF] Dai | Diagnosing and enhancing VAE models[END_REF][START_REF] Adji B Dieng | Avoiding latent variable collapse with generative skip models[END_REF][START_REF] Battenberg | Effective use of variational embedding capacity in expressive end-to-end speech synthesis[END_REF][START_REF] Dai | The usual suspects? reassessing blame for VAE posterior collapse[END_REF].

considered mixing the VAE latent representation with a more sophisticated decoder exploiting local pixel correlations with either convolutive or autoregressive decoding

[START_REF] Van Den Oord | Conditional image generation with PixelCNN decoders[END_REF][START_REF] Van Den Oord | Pixel recurrent neural networks[END_REF]

, possibly combined with a multilevel or hierarchical latent encoding (see Section 3.6). For example, Chen et al. next subsection), possibly combined with the different levels of image feature maps in CNNs [103, 100], or by introducing in the training procedure an auxiliary loss function that controls which information is captured by z and what is left to the autoregressive decoder

The posterior collapse problem has also been observed and discussed in the context of natural language processing

[START_REF] Samuel R Bowman | Generating sentences from a continuous space[END_REF][START_REF] Iulian V Serban | Piecewise latent variables for neural variational text processing[END_REF][START_REF] Prokhorov | On the importance of the Kullback-Leibler divergence term in variational autoencoders for text generation[END_REF]

. Here, a sequence of words, individually pre-encoded into word embedding vectors, is encoded into and/or decoded from a single latent vector z. In Bowman et al.'s paper

[START_REF] Samuel R Bowman | Generating sentences from a continuous space[END_REF]

, both the encoder and decoder are singlelayer LSTM RNNs. In this case, the problem is that it is difficult for the latent vector z

Here, we do not specify the variables generating the variance, as they depend on the DVAE model. Instead, the subscripts indicate frequency bin f and time frame t.

It is important to note that, in DVAEs, a parameter of a distribution is always a function of the variables that come after the conditioning bar. In the rest of the paper, we will generally omit to rewrite these variables in the right-hand-side of the probabilistic modeling equations, for concision, but we may punctually make these dependencies explicit when it eases the understanding.

Here we explicitly write the dependency of the covariance matrix on s1:t-1 and z 1:t , to make the use of the DVAE model clear. In the following we will omit it again for concision of presentation.

See the explanation for 'pesq' at https://github.com/ludlows/pythonpesq and for 'pypesq' and https://github.com/vBaiCai/python-pesq.

Technically, an image is arbitrarily reshaped into a vector x, with each pixel being an entry of this vector, and the conventional "vector" VAE model is applied. Therefore, each pixel is modeled independently conditioned on z, even though all pixels are not assumed marginally independent.

Several papers dealing with disentanglement and separate control of content and dynamics in videos have reported impressive results in an adversarial training framework[START_REF] Denton | Unsupervised learning of disentangled representations from video[END_REF][START_REF] Villegas | Decomposing motion and content for natural video sequence prediction[END_REF][START_REF] Tulyakov | MoCoGan: Decomposing motion and content for video generation[END_REF].

ConvDRAW model proposed by Gregor et al. [START_REF] Gregor | Towards conceptual compression[END_REF], which learns and encodes a hierarchy of latent variables, resulting in an image lossy compression that performs similarly to JPEG. Other examples include VQ-VAE, which is a mix of VAE and vector quantization of z, applied to speech coding [START_REF] Van Den | Neural discrete representation learning[END_REF][START_REF] Gârbacea | Low bit-rate speech coding with VQ-VAE and a WaveNet decoder[END_REF][START_REF] Zeghidour | Soundstream: An end-to-end neural audio codec[END_REF][START_REF] Défossez | High fidelity neural audio compression[END_REF]] and video compression with rate-distortion autoencoders [START_REF] Habibian | Video compression with rate-distortion autoencoders[END_REF].

As for a general approach to source coding based on DVAEs with a sequence of latent variables, we can mention two recent papers: Lombardo et al. [START_REF] Lombardo | Deep generative video compression[END_REF] and Yang et al. [START_REF] Yang | Feedback recurrent autoencoder[END_REF].

Lombardo et al. [START_REF] Lombardo | Deep generative video compression[END_REF] presented a video codec based on the DSAE model [START_REF] Li | Disentangled sequential autoencoder[END_REF]. The sequence of latent vectors z 1:T extracted by the DSAE encoder is quantized and transformed into a binary minimum-length sequence by an arithmetic coder, which exploits the DSAE dynamical model p θz (z t |z 1:t-1 ) for entropy coding. The chaining of inverse operations (i.e., arithmetic decoding, inverse quantization and DSAE decoder) enables to obtain the decoded data sequence x1:T . The global variable v is encoded separately with a similar scheme. The resulting video codec is shown to exhibit rate-distortion performance that is comparable to the state-of-the art video codecs (such as VP9) on generic video sequences while drastically improving the performance on video sequences with specialized content (similar to the content of videos used to train the model). Lombardo et al. [START_REF] Lombardo | Deep generative video compression[END_REF] provide no information on the control of the coded data sequence quality or that of the bitrate.

They only mention that the arithmetic encoding of z 1:T requires a number of iterations.

Moreover, the DSAE model is an SSM-like model; that is, x t is generated from z t "alone," not considering the potential of using x t-1 (or its quantized version) for predicting x t and encoding it more efficiently.

In contrast, Yang et al. [START_REF] Yang | Feedback recurrent autoencoder[END_REF] proposed different schemes for encoding a data sequence x 1:T through the inference and quantization of the corresponding sequence of latent vectors z 1:T , with different options for recurrent connections. One of them, called feedback recurrent autoencoder (FRAE), has recurrent connections at both the encoder and decoder and a feedback connection from the decoder to the encoder. The recurrent connections are reminiscent of the predictive coding principle that is classical in source coding theory [START_REF] Gersho | Vector quantization and signal compression[END_REF]. In fact, FRAE can be considered a nonlinear predictive coding scheme, in which