
HAL Id: tel-04443922
https://theses.hal.science/tel-04443922

Submitted on 7 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Single-view 3D reconstruction of curves
Ali Fakih

To cite this version:
Ali Fakih. Single-view 3D reconstruction of curves. Technology for Human Learning. Université de
Haute Alsace - Mulhouse, 2023. English. �NNT : 2023MULH6268�. �tel-04443922�

https://theses.hal.science/tel-04443922
https://hal.archives-ouvertes.fr

Université De Haute-Alsace
Université De Strasbourg

Thèse

Pour l’obtention du grade de

Docteur de l’Université de Haute-Alsace

École Doctorale: Mathématiques, Sciences de l’Information et de l’Ingénieur (ED 269)

Discipline : Informatique

Présentée et soutenue publiquement

par

Ali Fakih

Le 21 Novembre 2023

Single-View 3D Reconstruction Of Curves

Sous la direction du Dr. Frédéric Cordier

Jury

Dimitry Sokolov, Associate professor, Université de Lorraine (Rapporteur)

Guillaume Lavoué, Full professor, École Nationale d’Ingénieurs de Saint-Étienne (Rappor-

teur)

Caroline Essert, Full professor, Université de Strasbourg (Examinateur)

Amal Parakkat, Associate professor, Telecom Paris (Examinateur)

Lhassane Idoumghar, Full professor, Université de Haute-Alsace (Examinateur)

Frédéric Cordier, Associate professor, Université de Haute-Alsace (Directeur de thèse)

Yvan Maillot, Associate professor, Université de Haute-Alsace (Encadrant de thèse)

i

Abtract

The computer graphics field has made significant advancements in areas such

as rendering and animation. However, a key challenge remains in accurately cap-

turing users’ intentions for 3D modeling in a simple and intuitive manner. This is

due to the limitations of two-dimensional interfaces, which do not properly accom-

modate our natural perception and thinking in a three-dimensional environment.

One particularly challenging aspect is drawing 3D curves within a 2D input device.

These curves are crucial in various applications such as defining the trajectories

of moving objects or modeling 3D objects. Several works have been proposed to

address this problem, such as changing perspectives or requiring the artist to draw

the shadow of the curve. However, most of these methods pose some constraints

to the artists, leading to reduced efficiency. In this thesis, our ultimate goal is

the 3D reconstruction of planar polygonal curves, including circular helices, Euler

spirals, and hand-drawn curves, using multiple approaches. Motivated by the ad-

vancements of machine learning techniques, we employ these methods to perform

the 3D reconstruction of circular helices. Building on this, we then extended our

investigation to a more general family of curves, specifically, the Euler spirals. The

limitation of machine learning techniques in the reconstruction of such curves led

us to adopt a different methodology. We employ a piecewise curve-matching ap-

proach to generate the reconstructed 3D Euler spiral curve. Finally, we introduced

a novel approach that can perform the 3D reconstruction of various input curves

by minimizing the curvature variance of the reconstructed curve. All methods

used in the different approaches were evaluated against synthetic and hand-drawn

curves.

iii

Résumé

L’infographie a fait des progrès significatifs dans des répétition tels que le rendu

et l’animation. Cependant, un défi majeur demeure dans la capture précise des

intentions des utilisateurs pour la modélisation 3D d’une manière simple et intu-

itive. Cela est dû aux limites des interfaces bidimensionnelles, qui ne s’adaptent

pas correctement à notre perception et à notre pensée naturelle dans un environ-

nement tridimensionnel. Un aspect particulièrement difficile est de dessiner des

courbes 3D d’un périphérique d’entrée 2D. Ces courbes sont cruciales dans diverses

applications telles que la définition de trajectoires d’objets en mouvement ou la

modélisation d’objets 3D. Plusieurs travaux ont été proposés pour résoudre ce

problème, comme changer de perspective ou demander à l’utilisateur de dessiner

l’ombre de la courbe. Cependant, la plupart de ces méthodes posent certaines

contraintes qui affectent leur efficacité. Dans cette thèse, notre objectif ultime est

la reconstruction 3D de courbes polygonales planes, y compris les hélices circu-

laires, les spirales d’Euler et les courbes dessinées à la main, en utilisant plusieurs

approches. Motivés par les progrès des techniques d’apprentissage automatique,

nous utilisons ces méthodes pour effectuer la reconstruction 3D d’hélices circu-

laires. Sur cette base, nous avons ensuite étendu notre enquête à une famille plus

générale de courbes, en particulier les spirales d’Euler. La limitation des tech-

niques d’apprentissage automatique dans la reconstruction ces dernières nous a fait

passer à une méthodologie différente. Nous utilisons une approche d’appariement

de courbes par morceaux pour générer la courbe en spirale d’Euler 3D reconstruite.

Enfin, nous avons introduit une nouvelle approche qui peut effectuer la reconstruc-

tion 3D de diverses courbes d’entrée en minimisant la variance de courbure de la

courbe reconstruite. Toutes les méthodes utilisées dans les différentes approches

ont été évaluées par rapport à des courbes synthétiques et dessinées à la main.

v

Declaration

I’m submitting this thesis for the degree of Doctor of Philosophy in Computer

Science at the Université de Haute-Alsace. My research was conducted under the

supervision of Dr. Frederic Cordier and Dr. Yvan Maillot. This work is original,

with references to previous studies where applicable. I confirm that this thesis is

not being submitted for any other degree, diploma, or qualification at any other

university.

vii

Publications

• A. Fakih, F. Cordier, Y. Maillot. (October 2023). ’Piecewise Reconstruction

of 3D Euler Spirals From Planar Polygonal Curve’, In: International Journal

of Computer Science, Engineering and Information Technology (IJCSEIT),

Vol.13, No.5 (https://doi.org/10.5121/ijcseit.2023.13501).

• A. Fakih, N. Wilser, Y. Maillot, F. Cordier (2023).’Single-view 3D recon-

struction of curves’. In: CGI 2023. Lecture Notes in Computer Science,

Springer (Accepted).

https://doi.org/10.5121/ijcseit.2023.13501

ix

Acknowledgement

I want to express my heartfelt thanks to the people who’ve been there for me

during this journey.

First, I’m incredibly grateful to my supervisors, Dr. Frederic Cordier and Dr.

Yvan Maillot. They’ve been my guides, sharing their knowledge and support every

step of the way. Whenever I had questions or faced challenges, they were there for

me.

I also want to thank Dr. Dimitry Sokolov and Prof. Guillaume Lavoué for

reviewing my Ph.D. thesis, and the jury members, Prof. Caroline Essert and Dr.

Amal Parakkat, for evaluating my work.

A big shout-out to Prof. Lhassane Idoumghar, the head of our laboratory, for

his constant support and guidance.

I’m thankful for all my colleagues at the Université de Haute-Alsace. We’ve

worked together professionally and formed great personal bonds.

To my Lebanese friends in Mulhouse, your encouragement and support mean

the world to me. I would like to thank them for standing by my side.

Lastly, I owe a special thanks to my parents, sisters, and girlfriend. They’ve

supported me throughout these three years and all the years before this journey

began.

I couldn’t have done it without all of you.

Ali Fakih

xi

Contents

Abtract i

Résumé iii

Declaration v

Publications vii

Acknowledgement ix

Résumé des chapitres en français 1

Chapitre 1: Introduction . 1

Chapitre 2: Apprentissage automatique pour la reconstruction 3D d’hélices

circulaires . 3

Chapitre 3: Reconstruction 3D de courbes 7

1 Introduction 13

2 The state of the art for 3D reconstruction 17

2.1 Image-based 3D reconstruction . 17

2.2 Sketch-based modeling . 18

2.3 3D reconstruction of circular helices 19

2.4 3D reconstruction of Euler spirals 20

2.5 3D modeling of curves . 22

2.5.1 Curve modeling using 3D drawing interfaces 22

2.5.2 Curve modeling using 2D drawing interfaces 23

xii

2.6 Conclusion . 26

3 3D reconstruction of circular helices 27

3.1 Motivation . 28

3.2 Problem definition . 29

3.3 Dataset setup . 30

3.3.1 Equation . 30

3.3.2 Pieces length . 31

3.3.3 Pieces orientation in 3D space 31

3.3.4 Dataset scaling . 33

3.3.5 Dataset sampling . 35

3.3.6 Dataset summary . 38

3.4 Models training . 39

3.4.1 Models training methods . 40

3.4.2 Random forest regressor (RFR) 41

3.4.3 Gradient boosting regressor (GBR) 45

3.4.4 Gaussian process regressor (GPR) 48

3.4.5 Support vector regressor (SVR) 51

3.4.6 K-nearest neighbors regression (KNN-R) 54

3.4.7 Artificial neural networks (ANN) 55

3.4.8 Encoder-Decoder convolutional neural networks (ED-CNN) . 60

3.5 Curve segmentation and reconstruction 64

3.5.1 Curve segmentation . 65

3.5.2 Curves assembling and post-processing smoothing 66

3.6 Experiments results . 67

3.6.1 Results using synthetic input data 67

3.6.2 Results using hand-drawn input data 72

3.7 Limitations . 75

3.8 Conclusion . 76

4 3D reconstruction of curves 77

4.1 Introduction . 77

4.2 3D reconstruction of Euler spiral curves 78

xiii

4.3 3D reconstruction of free-form curves 98

4.3.1 Problem definition . 100

4.3.2 Ellipse fitting . 103

4.3.3 Finding the osculating circles 105

4.3.4 Reconstruction of the 3D curve using the estimated tangent

at the segments . 109

4.3.5 Results . 110

4.4 Conclusion . 115

5 Conclusion and perspectives 117

Appendices 120

A Additional results for the 3D reconstruction of Euler spirals 120

Bibliography 131

xv

List of Figures

3.1 The ending point tend of the any dataset segment with a starting

point tstart must fall within the range of [ta, sb]. 32

3.2 Example of the uniform scaling applied on some circular helix seg-

ments (colored segments). Note that we are presenting the orthog-

onal projection of the circular helix segments. 33

3.3 (1) Segments of various lengths. (2) The results of applying the

uniform sampling on the segments (Purple), and the original seg-

ments (Colored). (3) The uniform sampled segments (All segments

with the same length). Note that we are presenting the orthogonal

projection of the segments. 35

3.4 (1) The original 3D circular helix with its orthogonal projection.

(2) The resulting circular helix after applying the uniform scaling

algorithm on the circular helix of (1). (3) The resulting circular

helix after applying the uniform sampling algorithm on the circular

helix of (2). 36

3.5 On top, the distance between consecutive points of the orthogonal

projection of the scaled circular helix segment is not the same. On

the bottom, the distance between consecutive points of the orthog-

onal projection of the sampled circular helix segment is the same. . 38

3.6 Some examples of dataset segments with their orthogonal projec-

tions. AngleX, AngleY, and AngleZ represent the rotation angles

applied to the segments. Length represents the circular length of

the segment. 39

xvi

3.7 The architecture of Random forest regressor (RFR) with the number

of trees equal to 100. 43

3.8 The R2 score for some of the parameter combinations. 44

3.9 The architecture of Gradient boosting regressor (GBR). 46

3.10 The R2 score for some of the parameter of GBR. 48

3.11 The R2 score for some of the parameter combinations of Gaussian

process regressor (GPR). 50

3.12 Mapping the data from input space to feature space using the kernel

function. 52

3.13 The R2 score for the some of the parameter combinations of Support

vector regressor (SVR). 53

3.14 The R2 score for some of the parameter combinations of K-nearest

neighbors regressor (KNN-R). 56

3.15 The network architecture of Artificial neural network (ANN). 57

3.16 The R2 score for some of the parameter combinations of ANN. . . 59

3.17 The network architecture of Convolutional Encoder-Decoder. 62

3.18 The R2 score for some of the parameter combinations of Encoder-

decoder convolutional neural network (ED-CNN). 64

3.19 The reconstructed 3D circular helix using the orthogonal projec-

tion of synthetic circular helix before and after applying the post-

processing smoothing algorithm in (a) and (b) respectively. σ2 is

the variance of curvature of each reconstructed curve. 69

3.20 The reconstructed 3D circular helix using the orthogonal projec-

tion of synthetic circular helix before and after applying the post-

processing smoothing algorithm in (a) and (b) respectively. σ2 is

the variance of curvature of each reconstructed curve. 70

3.21 The reconstructed 3D circular helix using the orthogonal projec-

tion of synthetic circular helix before and after applying the post-

processing smoothing algorithm in (a) and (b) respectively. σ2 is

the variance of curvature of each reconstructed curve. 71

3.22 (1), (2), and (3) show the curvature of the reconstructed 3D circular

helices using KNN-R algorithm shown in Figure 3.19, Figure 3.20,

and Figure 3.21 respectively. 72

xvii

3.23 The reconstructed 3D circular helix using hand-drawn curve before

and after applying the post-processing smoothing algorithm in (a)

and (b) respectively. σ2 is the variance of curvature of each recon-

structed curve. 73

3.24 The reconstructed 3D curve using hand-drawn curve before and af-

ter applying the post-processing smoothing algorithm in (a) and (b)

respectively. σ2 is the variance of curvature of each reconstructed

curve. 74

3.25 (1), and (2) show the curvature of the reconstructed 3D curves using

KNN-R algorithm shown in Figure 3.23, and Figure 3.24 respectively. 75

4.1 The curve C3D with its osculating circle O3D at the midpoint of the

edgee3D,i . The curve C2D which is the orthogonal projection of

C3D and the ellipse O2D which is the orthogonal projection of the

osculating circle O3D,i . 99

4.2 Overview of the method. The input curve C2D in with 3 adjacent

segments e2D,i, e2D,i+1 and e2D,i+2 (a). For the sake of clarity, only a

subset of the segments is drawn. Ellipses are first fitted to the mid-

point of each segment along the curve such that they have the same

curvature and tangent as the corresponding midpoint (b). Candi-

dates for the osculating circles at each midpoint are generated (c).

These osculating circles are then used to estimate the tangent of

the curve C3D to reconstruct (d). Finally, the curve C3D is recon-

structed by lifting the points such as to satisfy the estimated tangent.102

4.3 Given the midpoint of a segment e2D,i alongC2D with its tangent
⃗T2D,i and curvature k2D,i, we compute the set of ellipses SO,2D,i =

{O2D,i,1, O2D,i,2, O2D,i,3} with the specified curvature k2D,i. 104

4.4 The graph to compute the osculating circles. For the sake of clarity,

the curve C2D is composed of 3 segments only and a subset of the

ellipses is shown. 107

4.5 The cost function between two osculating circles O3D,i,k and O3D,j,l

corresponding to the midpoint of the segments e3D,i and e3D,i+1

respectively. e3D,i and e3D,i+1 are adjacent along the curve. 107

xviii

4.6 Estimation of the tangents resulting from the Dijkstra’s algorithm. . 108

4.7 Computation of the z-coordinate of the point v2D,i+1 using the esti-

mated tangent ⃗T3D,i. 109

4.8 Curves that cannot be processed by the reconstruction algorithm:

curves with a sharp corner shown (red dots in (a)) and curves with

2 or more connected segments whose curvature is null (red segments

in (b)). 111

4.9 Reconstruction using the orthogonal projection of a circular helix

with different orientations (a) and (b) and using the 2D Euler spiral

(c). 112

4.10 Reconstruction using a 2D Euler spiral (a) and using hand-drawn

curves (b) and (c). 113

4.11 Reconstruction using hand-drawn curves (a) and (b) and from an

Archimedean spiral (c). 114

A.1 Comparison of our reconstructed Euler spirals before and after ap-

plying smoothing with the ground truth 3D Euler spirals (Euler

spirals that include an inflection point). 121

A.2 Comparison of our reconstructed Euler spirals before and after ap-

plying smoothing with the ground truth 3D Euler spirals (Euler

spirals that include an inflection point). 122

A.3 Comparison of our reconstructed Euler spirals before and after ap-

plying smoothing with the ground truth 3D Euler spirals (Euler

spirals that include an inflection point). 123

A.4 Comparison of our reconstructed Euler spirals before and after ap-

plying smoothing with the ground truth 3D Euler spirals (Euler

spirals that include an inflection point). 124

A.5 Comparison of our reconstructed Euler spirals before and after ap-

plying smoothing with the ground truth 3D Euler spirals (Euler

spirals that include an inflection point). 125

A.6 Comparison of our reconstructed Euler spirals before and after ap-

plying smoothing with the ground truth 3D Euler spirals (Euler

spirals with only positive curvature and torsion). 126

xix

A.7 Comparison of our reconstructed Euler spirals before and after ap-

plying smoothing with the ground truth 3D Euler spirals (Euler

spirals with only positive curvature and torsion). 127

A.8 Comparison of our reconstructed Euler spirals before and after ap-

plying smoothing with the ground truth 3D Euler spirals (Euler

spirals with only positive curvature and torsion). 128

A.9 Comparison of our reconstructed Euler spirals before and after ap-

plying smoothing with the ground truth 3D Euler spirals (Euler

spirals with only positive curvature and torsion). 129

A.10 Comparison of our reconstructed Euler spirals before and after ap-

plying smoothing with the ground truth 3D Euler spirals (Euler

spirals with only positive curvature and torsion). 130

xxi

List of Tables

3.1 Some of the parameter combinations for RFR. 44

3.2 Some of the parameter combinations for GBR. 47

3.3 Some of the parameter combinations for GPR. 51

3.4 Some of the parameter combinations for SVR. 53

3.5 Some of the parameter combinations for KNN-R. 55

3.6 Some of the parameter combinations for ANN. 60

3.7 Some of the parameter combinations for ED-CNN. 64

xxiii

List of Abbreviations

ML Machine Learning

RFR Random forest regressor

GBR Gradient boosting regressor

GPR Gaussian process regressor

SVR Support vector regressor

KNN-R K-nearest neighbors regressor

ANN Artificial neural network

ED-CNN Encoder-decoder convolutional neural network

1

Résumé des chapitres en français

Chapitre 1: Introduction

La reconstruction tridimensionnelle (3D) est une technique permettant de créer un

modèle ou une représentation 3D d’un objet en utilisant des informations provenant

de diverses sources, telles que des images 2D, des données de nuages de points,

des scans laser ou d’autres sources de données. Cette représentation 3D a de

nombreuses applications dans différents domaines. En infographie, par exemple, les

modèles 3D créés par reconstruction peuvent être utilisés pour créer des jeux vidéo,

des films et des animations. La vision par ordinateur peut utiliser des modèles

3D pour la reconnaissance, tandis que la robotique peut utiliser des modèles 3D

pour la navigation, l’évitement d’obstacles et la manipulation d’objets. De plus,

l’ingénierie peut utiliser des modèles 3D pour la conception, la simulation et le

prototypage de produits.

Le but de la reconstruction 3D est de restituer la structure 3D d’un objet à

partir d’un ensemble de mesures ou d’observations. Diverses techniques peuvent

être utilisées à cette fin, notamment la photogrammétrie, la lumière structurée, la

vision stéréo, le LiDAR. De plus, l’optimisation et l’apprentissage en profondeur

sont également des approches couramment employées.

Les approches d’apprentissage profond et d’apprentissage automatique sont

devenues de plus en plus populaires dans le domaine de la reconstruction 3D.

Ces techniques peuvent être utilisées pour extraire des informations d’images

ou d’autres sources de données afin de générer des représentations 3D précises.

Une approche consiste à utiliser des réseaux de neurones convolutifs (CNN) pour

extraire des caractéristiques d’images ou de nuages de points, qui sont ensuite

2

utilisées pour estimer la structure 3D de l’objet (Yang, Cui, Belongie & Hariha-

ran 2018, Wu et al. 2016, Knyaz et al. 2018, Smith & Meger 2017, Yang, Rosa,

Markham, Trigoni & Wen 2018, Li et al. 2018). Cette approche est souvent utilisée

pour la reconstruction 3D à vue unique, où un modèle 3D est généré à partir

d’une seule image. Par exemple, un CNN peut être formé pour prédire la carte

de profondeur d’une image, qui peut ensuite être convertie en un modèle 3D à

l’aide de techniques stéréo photométriques. Une autre approche consiste à utiliser

des réseaux antagonistes génératifs (GAN) pour générer des modèles 3D à partir

d’un ensemble d’images 2D ou de nuages de points (Zhang et al. 2021, Nozawa

et al. 2022). Les GAN peuvent être formés pour générer des modèles 3D réalistes

en apprenant la distribution des données de formation. Cette approche a été

utilisée pour des applications telles que la génération de modèles 3D de meubles

ou d’autres objets à partir d’images 2D. D’autres techniques d’apprentissage au-

tomatique, telles que les forêts aléatoires et les machines à vecteurs de support,

ont également été utilisées pour la reconstruction 3D. Ces techniques peuvent être

utilisées pour l’extraction et la classification de caractéristiques, ainsi que pour es-

timer la structure 3D d’un objet. Dans l’ensemble, les approches d’apprentissage

en profondeur et d’apprentissage automatique se sont révélées prometteuses dans

le domaine de la reconstruction 3D et sont susceptibles de jouer un rôle de plus en

plus important dans les développements futurs dans ce domaine.

Dans cette thèse, nous nous concentrons sur la reconstruction de courbe 3D à

partir de courbes polygonales planes, en privilégiant les courbes en hélice circulaire

et en spirale d’Euler. Ce choix est motivé par le fait qu’il existe une pénurie dans

la littérature de travaux visant à réaliser la reconstruction 3D de courbes. De

plus, alors que certains travaux ont été réalisés sur la reconstruction 3D d’hélices

circulaires à partir de courbes polygonales planes, il existe un manque de littérature

sur l’utilisation des courbes en spirale d’Euler à cette fin. Pour commencer notre

étude, nous avons d’abord travaillé sur la reconstruction 3D d’hélices circulaires

à partir de courbes polygonales planes. Motivés par la popularité croissante des

techniques Machine Learning (ML), nous avons choisi d’utiliser ces techniques

pour notre reconstruction et avons obtenu des résultats acceptable par rapport

aux véritables hélices circulaires.

Sur cette base, nous avons ensuite étendu notre enquête à une famille plus

Résumé des chapitres en français 3

générale de courbes, en particulier les spirales d’Euler. Nous avons dans un premier

temps tenté d’appliquer les mêmes techniques ML utilisées pour les hélices circu-

laires aux spirales d’Euler. Cependant, cette approche n’a pas donné de résultats

prometteurs en raison de la complexité inhérente des spirales d’Euler par rap-

port aux hélices circulaires. Les spirales d’Euler se caractérisent par une évolution

linéaire continue de la courbure et de la torsion par rapport à la longueur de l’arc,

les rendant mathématiquement plus complexes que les hélices circulaires dont la

courbure et la torsion sont constantes sont constantes. Cette complexité accrue a

posé des défis aux algorithmes ML, qui s’efforçaient de capturer et de modéliser

efficacement les variations complexes de courbure et de torsion le long des spirales

d’Euler sans donner de résultat satisfaisant. Pour résoudre ce problème, nous avons

changé de méthode et traité le problème en utilisant une approche d’appariement

de courbes par morceaux. En substance, ce processus de reconstruction consiste

d’abord à diviser la courbe 2D d’entrée en petits morceaux. Pour chaque morceau,

nous recherchons les correspondances les plus proches à partir d’un ensemble de

morceaux de spirales d’Euler préalablement choisis. Ensuite, nous connectons les

pièces appariées et appliquons un algorithme de lissage pour générer la courbe en

spirale d’Euler 3D reconstruite par morceaux. Bien que cette méthode ait permis

d’obtenir une bonne reconstruction 3D, sa portée était limitée aux courbes en spi-

rale d’Euler. Pour élargir l’applicabilité de notre approche de reconstruction, nous

avons développé une nouvelle méthode capable de reconstruire plusieurs types de

courbes, y compris les hélices circulaires et les spirales d’Euler. Cette approche a

minimisé la variance de courbure de la courbe en ajustant des ellipses à la courbe

d’entrée, ce qui nous a permis de déterminer les cercles osculateurs et les tangentes

à chaque point de la courbe pour la reconstruction 3D.

Chapitre 2: Apprentissage automatique pour la

reconstruction 3D d’hélices circulaires à partir de

courbes 2D

Les hélices circulaires sont un type de courbe 3D qui apparâıt dans diverses struc-

tures naturelles et artificielles. Ils sont caractérisés par une courbure et une torsion

4

constante le long de leur arc. Leurs formes géométriques peuvent être observées

dans certaines structures naturelles, en particulier les structures biologiques, et

ont également été utilisées dans un large éventail d’applications de la technologie

humaine. À l’échelle microscopique, des structures hélicöıdales peuvent être ob-

servées en biologie et en nanotechnologie, comme dans le sperme (Saggiorato et al.

2017), l’ADN (Dickerson 1983) et les nanoressorts (McIlroy et al. 2001). Alors

qu’à l’échelle macro, ils peuvent être trouvés dans les plantes (Goriely & Tabor

1998), les coquillages (Forterre & Dumais 2011) et divers composants d’ingénierie

tels que les ressorts (Ke et al. 2020) et les cordes en fibres synthétiques (He et al.

2020).

Bien que de nombreux chercheurs travaillent sur la reconstruction 3D d’hélices

circulaires à partir de courbes polygonales planes, la plupart de leurs approches

reposaient sur des algorithmes d’optimisation. Cependant, au cours de la dernière

décennie, les algorithmes de ML/deep learning ont prouvé leur efficacité dans le

domaine de la reconstruction 3D. À notre connaissance, aucun travail antérieur

n’a utilisé ces méthodes dans le cadre de la reconstruction d’hélice. Ce chapitre

présente une nouvelle approche qui comble cette lacune en utilisant des algorithmes

ML/deep learning pour reconstruire des hélices circulaires 3D à partir de courbes

polygonales planes. Plus précisément, nous avons formé différents modèles ML, y

compris le régresseur de forêt aléatoire (RFR)(Breiman 2001), le régresseur de gra-

dient boostant (GBR) (Friedman 2001), le régresseur de processus gaussien (GPR

)(Rasmussen et al. 2006), prend en charge le régresseur vectoriel (SVR) (Smola &

Schölkopf 2004), le réseau de neurones artificiels (ANN) (McClelland et al. 1987)

et le réseau de neurones convolutionnels codeur-décodeur (ED-CNN) (LeCun et al.

1998) utilisant un ensemble de données composé de morceaux d’hélices circulaires

3D. Nous reconstruisons les hélices circulaires 3D de manière par morceaux et com-

parons les résultats de chaque algorithme ML dans la section expérimentale. Enfin,

nous avons analysé les résultats et tiré des conclusions concernant l’efficacité de

l’utilisation des algorithmes ML pour la reconstruction 3D des hélices circulaires.

Notre objectif est de développer un modèle ML qui reconstruit des hélices

circulaires 3D à partir de courbes polygonales planes. Plus précisément, la courbe

d’entrée doit se présenter sous la forme d’une projection polygonale d’une hélice ou

d’une hélice dessinée à la main dans le plan (x, y). En raison du fait que la courbe

Résumé des chapitres en français 5

d’entrée peut être de n’importe quelle longueur et de la forme spéciale d’une hélice,

qui se répète le long de la longueur de l’arc, il est pratique de diviser la courbe

d’entrée en segments plus petits. Par conséquent, la reconstruction est effectuée de

manière fragmentaire, où nous effectuons une segmentation de courbe pour diviser

la courbe d’entrée en segments plus petits. Chaque segment est ensuite reconstruit

individuellement. Une fois tous les segments reconstruits, ils sont assemblés pour

former l’hélice 3D approximative dont la projection sur le plan 2D correspond

le mieux à la courbe polygonale d’entrée. Pour améliorer le lissage global de la

courbe, en particulier aux points de connexion de ses segments, un algorithme de

lissage post-traitement est appliqué. Cet algorithme de lissage permet d’affiner la

courbe reconstruite et d’améliorer sa qualité esthétique.

Pour entrâıner les modèles ML, nous créons un ensemble de données composé

de segments d’hélices circulaires, chacun comprenant 100 points dans le plan (x,

y, z). Nous appliquons un échantillonnage uniforme pour nous assurer que chaque

segment est représenté de manière cohérente. Il s’ensuit une mise à l’échelle uni-

forme qui supprime le facteur d’échelle de l’ensemble de données, nous permet-

tant de gérer les courbes d’entrée de n’importe quelle échelle. Pendant la phase

d’entrâınement, le modèle utilise les coordonnées (x, y) des segments d’hélice en

entrée pour générer leurs coordonnées z correspondantes en sortie. Notons que

nous expérimentons différents modèles ML tels que RFR, GBR, GPR, SVR, ANN

et ED-CNN. Pour chaque modèle, nous effectuons un réglage hyperparamétrique

pour trouver son architecture optimale et obtenir les meilleures performances pos-

sibles.

Une fois le modèle ML formé, il peut être utilisé pour la reconstruction d’une

courbe polygonale d’entrée donnée. Une condition de notre approche de recon-

struction est que la courbe d’entrée ne peut pas être n’importe quelle courbe

aléatoire telle que des lignes droites ou des courbes avec des angles vifs. Nous

ciblons spécifiquement la reconstruction de courbes qui peuvent être la projection

orthogonale de véritables hélices circulaires et même des courbes d’hélices circu-

laires dessinées à la main avec une certaine précision.

Après avoir construit un modèle ML capable d’effectuer la reconstruction 3D

de l’hélice à partir de la courbe polygonale d’entrée, nous appliquons une approche

de segmentation de courbe, qui consiste à diviser la courbe d’entrée en segments

6

plus petits. Chaque segment est ensuite reconstruit indépendamment. Une fois

que tous les segments sont reconstruits, ils sont combinés pour former l’hélice

3D reconstruite approximative complète. Afin d’améliorer le lissage global de la

courbe, en particulier aux points de connexion entre les segments, un algorithme

de lissage post-traitement est utilisé. Cet algorithme joue un rôle essentiel dans

l’affinement de la courbe reconstruite et l’amélioration de sa qualité esthétique.

Pour déterminer la meilleure segmentation de la courbe d’entrée, nous utilisons

l’algorithme de programmation dynamique utilisé dans (McCrae & Singh 2011).

Un paramètre essentiel dans cet algorithme est noté Ecost, qui est la variance de

courbure d’une courbe donnée. Nous calculons la partie triangulaire supérieure

d’une matrice M , qui a des dimensions n× n, et n représente le nombre de points

dans la courbe polygonale d’entrée P . Les entrées M(i, j), avec 1 ≤ i < j ≤ n,

sont calculées de manière ascendante, à partir des éléments les plus proches de la

diagonale, en utilisant l’équation suivante :

M(i, j) = min

{
Ecost(i, j), min

i<k<j
{M(i, k) +M(k, j)}

}
L’équation ci-dessus permet de déterminer s’il est préférable de reconstruire une

seule courbe (Ecost(i, j)) pour toute la section pi . . . pj, ou d’en subdiviser et d’en

utiliser une (ou more) morceaux pour chacun des intervalles pi . . . pk et pk . . . pj.

soit de diviser la courbe en un ou plusieurs morceaux, chacun correspondant aux

intervalles pi . . . pk et pk . . . pj. Les informations concernant l’endroit où diviser la

courbe d’entrée sont stockées au fur et à mesure que la matrice M est remplie.

Une fois le processus terminé, l’élément M(1, n) représente le coût de la con-

figuration optimale pour les points p1 . . . pn dans la courbe polygonale P . Pour

reconstruire la solution, nous naviguons dans la matrice M à partir de l’élément

(1, n) et faisons les divisions nécessaires si nécessaire.

Après avoir divisé la courbe polygonale d’entrée en segments et reconstruit

chaque segment à l’aide de l’algorithme ML, nous assemblons les pièces reconstru-

ites pour former l’hélice reconstruite en 3D. Cependant, ce procédé d’assemblage

introduit des discontinuités G1 et G2 (discontinuités de tangente et de courbure),

notamment aux points de raccordement des pièces reconstruites. Pour résoudre ce

problème, nous échantillonnons d’abord uniformément la courbe hélicöıdale recon-

Résumé des chapitres en français 7

struite, puis nous appliquons le filtre de Savitzky-Golay (Savitzky & Golay 1964)

pour améliorer son lissage. Ce filtre réduit efficacement le bruit et les irrégularités

de la courbe en ajustant une fonction polynomiale aux segments locaux de la

courbe, ce qui donne une représentation plus fluide et plus attrayante visuelle-

ment.

Après avoir divisé la courbe polygonale d’entrée en segments et reconstruit

chaque segment à l’aide de l’algorithme ML, nous assemblons les pièces reconstru-

ites pour former l’hélice reconstruite en 3D. Cependant, ce procédé d’assemblage

introduit des discontinuités G1 et G2 (discontinuités de tangente et de courbure),

notamment aux points de raccordement des pièces reconstruites. Pour résoudre ce

problème, nous échantillonnons d’abord uniformément la courbe hélicöıdale recon-

struite, puis nous appliquons le filtre de Savitzky-Golay (Savitzky & Golay 1964)

pour améliorer son lissage. Ce filtre réduit efficacement le bruit et les irrégularités

de la courbe en ajustant une fonction polynomiale aux segments locaux de la

courbe, ce qui donne une représentation plus fluide et plus attrayante visuelle-

ment.

Enfin, nous avons testé la reconstruction de nos modèles ML formés contre deux

types de courbes. Courbes d’entrée synthétiques, qui sont la projection orthogonale

des vraies hélices circulaires, et courbes dessinées à la main. Les résultats montrent

que tous les algorithmes ML ont fourni des résultats visuellement acceptables.

Cependant, il convient de noter que KNN et ANN ont systématiquement obtenu

les meilleures performances de reconstruction en fonction du paramètre d’erreur

Ecost(P) = Var(κ(P)), qui quantifie la variance de la courbure, caractéristique

importante de l’hélice.

Chapitre 3: Reconstruction 3D de courbes

Dans le chapitre précédent, les modèles ML, en particulier ANN et KNN, ont

démontré leur efficacité pour reconstruire une hélice 3D approximative à partir de

courbes polygonales planes. Cependant, la simplicité de la courbe d’hélice, avec

sa courbure et sa torsion constantes le long de sa longueur d’arc, a joué un rôle

crucial dans le succès des modèles ML pour la reconstruction d’hélice. Néanmoins,

lorsqu’ils sont confrontés à des familles de courbes plus complexes comme les

8

courbes en spirale d’Euler, qui présentent une courbure et une torsion évoluant

linéairement, ou des courbes de forme libre, ces modèles ne peuvent pas fournir

une bonne reconstruction. Une autre limitation des modèles ML est leur incapacité

à fournir plusieurs reconstructions pour chaque segment de la courbe d’entrée, ce

qui entrâıne une discontinuité entre les segments reconstruits assemblés. Cette

limitation provient du fait que nous ne pouvons avoir qu’une seule reconstruction

candidate pour chaque segment, ce qui nous empêche de poser des restrictions de

continuité de courbure et de torsion lors du processus d’assemblage. Il est im-

portant de noter qu’une courbe polygonale en 2D peut correspondre à plusieurs

courbes dans l’espace 3D.

Motivés par les limitations susmentionnées, nous explorons des méthodes alter-

natives pour relever les défis posés par des familles de courbes plus complexes. Dans

ce chapitre, nous présentons une nouvelle approche pour reconstruire des spirales

d’Euler 3D en utilisant une technique d’appariement de courbes par morceaux.

De plus, nous introduisons une méthode plus généralisée capable de reconstruire

différents types de courbes. Cette méthode est basée sur l’idée d’ajuster un en-

semble d’ellipses à la courbe d’entrée, ce qui nous permet de déterminer les cercles

osculateurs et, par la suite, la tangente en chaque point de la courbe, facilitant le

processus de reconstruction 3D.

Les spirales d’Euler 3D sont des courbes esthétiques dont la courbure et la tor-

sion évoluent linéairement avec la longueur de l’arc (Kimia et al. 2003, Knuth 1979,

Ullman 1976). Ils possèdent des propriétés souhaitables, telles que l’invariance aux

transformations de similarité (translation, rotation et mise à l’échelle), la symétrie,

l’extensibilité et le lissage (Gur Harary 2012).

Dans ce travail, nous nous concentrons sur la reconstruction 3D de spirales

d’Euler à partir de courbes polygonales planes qui peuvent être utilisées dans

différentes applications car il existe de nombreux domaines dans lesquels les spi-

rales d’Euler 3D sont utiles comme les véhicules aérospatiaux (en créant des tran-

sitions douces entre différents régimes de vol) , les turbomachines (en créant des

voies d’écoulement lisses et incurvées en continu), les dispositifs médicaux (pour

concevoir des dispositifs médicaux nécessitant des voies lisses et incurvées à travers

le corps, comme les cathéters et les endoscopes).

Malgré la présence de toutes les propriétés mentionnées, à notre connaissance, il

Résumé des chapitres en français 9

n’existe aucun travail antérieur dans la littérature qui vise à reconstruire les spirales

d’Euler 3D à partir de courbes polygonales planes. Le but de notre méthode est

de reconstruire des spirales d’Euler 3D approximatives par morceaux à partir de

courbes polygonales planes. L’entrée de notre méthode est une courbe polygonale

2D dans le plan (x, y) et la sortie est une spirale d’Euler 3D par morceaux telle

que sa projection orthogonale sur le plan (x, y) est proche de la courbe polygonale

d’entrée.

L’approche courante pour l’appariement de courbe consiste à utiliser l’équation

qui calcule les coordonnées des points le long de la courbe à travers la paramétrisation

de la longueur de l’arc. Cependant, cette forme n’existe pas pour la spirale d’Euler

3D. Alternativement, les coordonnées des points peuvent être calculées par optimi-

sation, mais cela nécessiterait un temps de calcul important. Au lieu d’appliquer

les algorithmes d’appariement de courbes typiques, nous créons un ensemble de

données contenant de courts segments de spirales d’Euler 3D avec leur projection

polygonale plane. Pour permettre une couverture complète des diverses formes

qui peuvent être rencontrées dans la courbe polygonale d’entrée, nous faisons en

sorte que l’ensemble de données ait des segments de différentes longueurs et nous

leur appliquons différentes rotations en plus d’effectuer un échantillonnage et une

mise à l’échelle uniformes pour améliorer la représentation du segment. et pour

supprimer le facteur d’échelle de notre ensemble de données.

Dans cette direction, la reconstruction commence par diviser la courbe polyg-

onale 2D d’entrée S en segments {s1, s2, ...}; la division est basée sur l’approche

de dichotomie (Lien 1981) pour trouver un certain nombre de segments de spirale

d’Euler 3D appariés à partir de l’ensemble de données pour chaque segment de la

courbe d’entrée. Csi = {ci,1, ci,2, ...} représente l’ensemble des segments appariés

candidats pour le segment si. À ce stade, pour chaque segment de la courbe

d’entrée, nous avons un pool de segments de spirale d’Euler correspondants possi-

bles (candidats) à partir de l’ensemble de données. Nous implémentons un nouvel

algorithme qui sélectionne la connexion optimale des candidats (un candidat de

chaque groupe de candidats) en utilisant l’algorithme de Dijkstra (Dijkstra 1959).

La sélection de deux candidats quelconques qui seront liés l’un à l’autre est basée

sur plusieurs critères tels que leur continuité de courbure, continuité de torsion,

continuité tangente, continuité normale et la distance entre leur projection polyg-

10

onale et la courbe d’entrée. Le résultat de cette étape est une spirale d’Euler par

morceaux représentée sous la forme d’une courbe polygonale 3D. Un lissage est

alors appliqué sur cette courbe polygonale pour améliorer la continuité C0 et C1

afin d’obtenir une courbe reconstruite plus agréable à l’oeil.

Nous testons notre modèle contre des courbes d’entrée synthétiques de véritable

spirale d’Euler et contre des courbes dessinées à la main. Les résultats montrent

que notre algorithme de reconstruction produit une courbe visuellement agréable

et un résultat assez similaire aux spirales d’Euler de vérité terrain. Notre recon-

struction fournit des courbes 3D avec C0 et C1-continuité. Même les continuités

G2 et G3 peuvent être considérées comme acceptables car elles sont principalement

continues à l’exception de quelques pics de courbure et de torsion se produisant

principalement aux points de jonction des segments. En effet, la courbure et la

torsion reposent sur la dérivée seconde, ce qui les rend très sensibles aux petits

changements de la courbe qui peuvent être difficiles à discerner visuellement.

La première approche s’est concentrée sur la reconstruction des courbes en

spirale d’Euler en utilisant une technique d’appariement de courbes par morceaux.

Bien qu’il ait donné des résultats visuellement attrayants, sa portée était limitée

aux courbes en spirale d’Euler. Pour élargir l’applicabilité de notre approche de

reconstruction, nous avons développé une nouvelle méthode capable de reconstruire

plusieurs types de courbes, y compris les hélices circulaires et les spirales d’Euler.

L’idée principale de la nouvelle approche est motivée par l’observation suiv-

ante. Soit C3D une courbe polygonale 3D et O3D,i le cercle osculateur au milieu

d’un segment e3D,i de cette courbe. Le cercle osculateur est le cercle qui a la

même tangente et la même courbure qu’au milieu de e3D,i. Soit C2D , e2D,i et

O2D,i la projection orthogonale sur le plan (x,y) de C3D, e3D,i et O3D,i respective-

ment. O2D,i est une ellipse dont la tangente et la courbure sont égales à celles de

la courbe C2D au milieu du segment e2D,i. Maintenant, seule la courbe plane C2D

nous est fournie et notre objectif est de reconstruire la courbe C3D. Étant donné

un segment e2D,i de C2D , nous calculons un ensemble d’ellipses dont la courbure

et la tangente correspondent à celles au milieu de e2D,i . Si l’on suppose que cet

ensemble d’ellipses est suffisamment grand, l’une de ces ellipses doit être la projec-

tion d’un cercle osculateur très proche du cercle osculateur réel de la courbe C3D

à reconstruire. Nous répétons ce processus de calcul de l’ensemble des candidats

Résumé des chapitres en français 11

au cercle osculateur pour chaque segment de C3D . Ensuite, le problème revient

à sélectionner le meilleur cercle osculateur pour chaque segment de sorte que la

variation de courbure soit minimisée le long de la courbe. Il s’agit d’un problème

de graphe simple qui est résolu à l’aide de l’algorithme de Dijkstra. Ces cercles

osculateurs sont ensuite utilisés pour déterminer la tangente de chaque segment et

pour calculer les coordonnées 3D des points de C3D.

L’apport de ce travail est double. Tout d’abord, nous proposons l’idée d’ajuster

des ellipses à la courbe plane d’entrée ; ces ellipses permettent ensuite de déterminer

les cercles osculateurs et tour à tour l’orientation de la tangente au milieu de

chaque segment de la courbe 3D à reconstruire. La deuxième contribution est une

méthode pour résoudre le problème d’optimisation qui vise à trouver les cercles

osculateurs optimaux tels que la variation de la courbure le long de la courbe 3D

reconstruite soit minimisée. L’approche habituelle nécessiterait de résoudre une

grande optimisation non linéaire en utilisant la méthode de descente de gradient.

Au lieu de cela, l’espace des solutions est discrétisé pour former un graphe, chaque

nœud de ce graphe étant un candidat pour les cercles osculateurs au milieu de

chaque segment de la courbe. Les bords du graphique correspondent à la relation

de contigüıté entre les segments. La solution de ce problème d’optimisation est

ensuite résolue en utilisant l’algorithme de Dijkstra.

Notre méthode a été implémentée en Python et a été testée avec une variété de

courbes. Le temps de calcul varie de 10 à 60 secondes selon le nombre de points de

la courbe d’entrée. Le résultat montre que notre algorithme est capable de générer

une courbe 3D dont la variation de courbure est faible le long de la courbe.

13

Chapter 1

Introduction

Three-dimensional (3D) reconstruction involves creating a 3D model or representa-

tion of an object by utilizing information from various sources, such as 2D images,

point cloud data, laser scans, or other data sources. This 3D representation has

numerous applications in different fields. In computer graphics, for instance, 3D

models created through reconstruction can be used to create video games, movies,

and animations. Computer vision can use 3D models for object recognition, track-

ing, and pose estimation, while robotics can employ 3D models for navigation,

obstacle avoidance, and object manipulation. Furthermore, engineering can uti-

lize 3D models for product design, simulation, and prototyping.

The goal of 3D reconstruction is to recover the 3D structure of an object

from a set of measurements or observations. Various techniques can be used for

this purpose, including photogrammetry, structured light, stereo vision, LiDAR,

optimization, and deep learning.

Photogrammetry (Do & Nguyen 2019) is a technique that uses multiple im-

ages of an object taken from different angles to reconstruct the 3D structure.

The images are processed using computer vision algorithms (feature detection and

matching, bundle adjustment, structure from motion, and dense reconstruction)

to extract features, such as key points and edges, which are used to estimate the

3D structure.

Structured light (Farsangi et al. 2020) is a technique that uses a projector and

a camera to capture 3D information about an object. The projector projects a

14

pattern of light onto the object, and the camera captures the reflected pattern.

The 3D structure of the object can be computed by analyzing the deformation of

the pattern.

Stereo vision (Ham et al. 2019, Tian et al. 2022) is a technique that uses two

or more cameras to capture images of an object from different viewpoints. The

images are processed using computer vision algorithms to extract correspondences

between the images, which are used to estimate the 3D structure.

LiDAR (Tachella, Altmann, Ren, McCarthy, Buller, Mclaughlin & Tourneret

2019, Tachella, Altmann, Mellado, McCarthy, Tobin, Buller, Tourneret &McLaugh-

lin 2019) is a technique that uses a laser scanner to measure the distance between

the scanner and the object. The laser scanner emits a laser beam that reflects off

the object and returns to the scanner. The distance between the scanner and the

object can be computed from the time of flight of the laser beam.

Optimization (Zhang & Wonka 2022, Han et al. 2020) is a technique that

uses mathematical optimization algorithms to estimate the 3D structure of an

object from a set of measurements that represent the 2D object such as points

coordination or pixel values. Optimization can be used in combination with other

techniques, such as photogrammetry and stereo vision, to refine the estimated 3D

structure.

Deep learning and machine learning approaches have become increasingly pop-

ular in the field of 3D reconstruction. These techniques can be used to extract

information from images or other data sources to generate accurate 3D represen-

tations. One approach is to use convolutional neural networks (CNNs) to extract

features from images or point clouds, which are then used to estimate the 3D

structure of the object (Yang, Cui, Belongie & Hariharan 2018, Wu et al. 2016,

Knyaz et al. 2018, Smith & Meger 2017, Yang, Rosa, Markham, Trigoni & Wen

2018, Li et al. 2018). This approach is often used for single-view 3D reconstruc-

tion, where a 3D model is generated from a single image. For example, a CNN

can be trained to predict the depth map of an image, which can then be con-

verted into a 3D model using photometric stereo techniques. Another approach

is to use generative adversarial networks (GANs) to generate 3D models from a

set of 2D images or point clouds (Zhang et al. 2021, Nozawa et al. 2022). GANs

can be trained to generate realistic 3D models by learning the distribution of the

CHAPTER 1. INTRODUCTION 15

training data. This approach has been used for applications such as generating

3D models of furniture or other objects from 2D images. Other machine learning

techniques, such as random forests and support vector machines, have also been

used for 3D reconstruction. These techniques can be used for feature extraction

and classification, as well as for estimating the 3D structure of an object. Overall,

deep learning and machine learning approaches have shown promise in the field of

3D reconstruction, and are likely to play an increasingly important role in future

developments in this area.

In this thesis, we focus on the 3D reconstruction of curves from single-view

drawings. We begin with circular helix and Euler spiral curves and extend our

approach to free-form curves. Notably, our proposed approach does not require

any other input or user interaction than the planar curve of the drawing. More-

over, while some work has been done on 3D reconstruction of helices from planar

polygonal curves, there is a lack of literature on using Euler spiral curves for this

purpose. To begin our study, we first worked on the 3D reconstruction of circular

helices from planar polygonal curves. Motivated by the growing popularity of ML

techniques, we opted to use these techniques for our reconstruction and achieved

challenging results compared with the synthetic helices.

Building on this, we then extended our investigation to a more general family of

curves, specifically, the Euler spirals. We initially attempted to apply the same ML

techniques used for the circular helices to the Euler spirals. However, this approach

did not yield promising results, as the shape of the Euler spirals caused conflicts in

ML’s learning process. To address this, we shifted our methodology and dealt with

the problem using a piecewise curve-matching approach. When reconstructing a

2D input curve in 3D, we first divide it into smaller pieces. For each piece, we search

for the closest matches from a dataset we created that contains pieces of Euler

spirals. Then, we connect the matched pieces and apply a smoothing algorithm

to generate the reconstructed piecewise 3D Euler spiral curve. Although this

method achieved a good 3D reconstruction, its scope was limited to Euler spiral

curves. To broaden the applicability of our reconstruction approach, we developed

a novel method capable of reconstructing multiple curve types, including helices

and spirals. This method minimizes the curvature variance of the curve by fitting

ellipses to the input curve, allowing us to determine the osculating circles and

16

tangents at each curve point for 3D reconstruction.

This thesis manuscript is composed as follows. In Chapter 2 we review the

previous work on the 3D reconstruction domain. Chapter 3 describes the ML

techniques that we used for the 3D reconstruction of circular helices from planar

polygonal curves. In Chapter 4, we introduce the two approaches that deal with

a more complex family of curves. Firstly, the piecewise matching approach that

we used to reconstruct the 3D Euler spirals from planar polygonal curves. Then,

the novel method, which is capable of reconstructing multiple curve types, includ-

ing helices and spirals. Finally, in Chapter 5, we conclude our work and discuss

potential avenues for future research.

17

Chapter 2

The state of the art for 3D

reconstruction

The field of 3D reconstruction has attracted significant attention from researchers

in recent years. In this Chapter, we provide an overview of previous work in various

domains of 3D reconstruction. We begin with a global perspective, highlighting

research in image-based reconstruction and sketch-based modeling. Subsequently,

we narrowed our focus to the specific topic of interest, exploring the state of the

art for 3D reconstruction of circular helices, Euler spiral curves. Finally, we review

the state of the art for 3D modeling of general curves.

2.1 Image-based 3D reconstruction

Image-based 3D reconstruction is a challenging problem that has gathered signif-

icant interest in computer vision, computer graphics, and ML communities. The

earliest techniques dealt with the problem from a geometrical perspective. They

focused on mathematically formalizing the projection process from 3D to 2D in

order to find the solution. Efficient techniques such as stereo-based (Hartley &

Zisserman 2003) reconstruction necessitate multiple images captured by calibrated

cameras, which can be impractical in some situations. With the availability of large

datasets and rapid advancements in ML algorithms, researchers have increasingly

turned to convolutional neural networks to address these challenges, treating 3D

18 2.2. SKETCH-BASED MODELING

reconstruction as a recognition problem. Two applications of these techniques have

emerged, with some works focusing on generic shapes (Yang, Cui, Belongie & Har-

iharan 2018, Wu et al. 2016, Knyaz et al. 2018, Smith & Meger 2017, Yang, Rosa,

Markham, Trigoni & Wen 2018, Li et al. 2018) and others on specific shapes like

3D Human Body Reconstruction (Bhatnagar et al. 2019, Dibra et al. 2016, 2017,

Alldieck et al. 2019) or 3D Face Reconstruction (Feng et al. 2018, Lin et al. 2020,

Gecer et al. 2021, Wood et al. 2022). To improve the quality of 3D reconstruction,

some approaches (Sun et al. 2018, Wu et al. 2018, Yang, Rosa, Markham, Trigoni

& Wen 2018) decompose the problem into sequential steps that estimate normal

maps or depth maps, followed by traditional techniques such as backpropagation

and filtering to recover the final 3D object. Another approach (Choy et al. 2016,

Xie et al. 2019) is to process each image independently and then merge the re-

constructions using registration techniques to exploit spatio-temporal correlations,

which is only used in 3D reconstruction from multiple images.

2.2 Sketch-based modeling

The idea behind the sketch-based modeling is to start from a drawn shape in the

(x,y) plane which is composed of lines, and then try to reconstruct the 3D shape

whose projection onto the (x,y) plane matches the input sketch. Some of the first

reconstruction methods were done by solving an optimization whose unknown

variables are the third coordinates of the input sketch references (Brown & Wang

1996, Shoji et al. 2001) but the main drawback was that these methods only deal

with rectilinear shapes. With the rise of ML algorithms, several researchers have

worked on solving the sketch-based modeling problem using deep learning (Nozawa

et al. 2020, Yang et al. 2021, Wang et al. 2020, Shen et al. 2021, Yang et al. 2022)

but these algorithms are tailored to specific shapes, such as faces, cars, and chairs,

making them limited in their applicability. We refer the reader to the state-of-

the-art paper (Xu et al. 2022) for more details about sketch-based modeling using

deep learning.

CHAPTER 2. THE STATE OF THE ART FOR 3D RECONSTRUCTION 19

2.3 3D reconstruction of circular helices

There exist some works in the literature concerned with the 3D reconstruction of

circular helices from 2D curves.

In (Cherin et al. 2014), a method is presented for computing and fitting pro-

jected helix curves to 2D polygonal curves. The approach involves identifying the

optimal parameters of a projected helix that best matches a portion of the input

polygonal curve. This fitting process is performed iteratively, and multiple pro-

jected helix curves are employed to approximate the entire input curve. The key

steps include computing helix coefficients based on local curvature, aligning coor-

dinate frames, estimating fitting errors, and determining the portion of the curve

that matches well with the projected helix. This piecewise fitting strategy allows

for a more accurate approximation of complex input curves. The result is a set of

projected helices, each with junction vertices and consistent orientations, providing

a piecewise representation of the original polygonal curve. Followed by that they

they used optimization techniques to fine-tune their reconstructed curves. How-

ever, it’s worth noting that despite achieving impressive visual reconstructions,

this method has certain limitations concerning curve continuity. Specifically, the

piecewise helix curves lack both G0 and G1 continuity, which may lead to subtle

discontinuities that are usually inconspicuous but, in some cases, more noticeable

tangent discontinuities can occur at junction vertices.

Similarly, in (Piuze et al. 2011), the authors introduce a method centered on

the use of generalized helicoids for modeling and simulating hair patterns. These

generalized helicoids characterize hair strands and their local volumetric neigh-

borhoods using four key parameters that control curvature and elevation angles.

One of the significant contributions of this approach is the synthesis of diverse

hair types, including waviness effects, by sampling from a generalized helicoid-

based representation. Additionally, their method interpolates between guide hair

strands, each parametrized by a generalized helicoid, ensuring a smooth variation

in curvature between them. Furthermore, the authors describe a process for fit-

ting these generalized helicoids to hair strand data, even when dealing with sparse

samples. They achieve this by optimizing a parameter vector to minimize the

difference between the trace generated by the helicoid and the target hair strand,

20 2.4. 3D RECONSTRUCTION OF EULER SPIRALS

using a measure based on Fréchet distance. This fitting process enables hairstyle

reconstruction, even from limited data, making it a valuable tool for applications

involving real hair data.

In (Cordier et al. 2016), they introduce a method for fitting orthogonally-

projected helix segments to 2D polygonal curves. Their approach begins by rec-

ognizing the underdetermined nature of this problem and subsequently employs

iterative transformations to resolve it effectively. Firstly, their method aligns sam-

pled helix points with the polygonal curve, calculating an optimal transformation

matrix that encapsulates scale, shear, and rotation components. This matrix must

retain the essential helix properties. Subsequently, they estimate the helix’s param-

eters, namely radius and pitch, in a manner that preserves its core characteristics.

Afterward, they focus on estimating the optimal rotation matrix, by minimizing

the root mean squared deviation between helix and curve points. Following that,

they employed an adaptive sampling technique to ensure a consistent one-to-one

correspondence between helix and curve points. Finally, through an iterative pro-

cess, the adaptive sampling and helix fitting stages refine one another, aiming

to minimize the fitting error. In summary, this method iteratively aligns, esti-

mates, and optimizes to obtain a helix segment that meticulously conforms to the

polygonal curve in the (x, y) plane.

These previous methods are the most similar to ours in Chapter 3. The main

difference is that they used optimization techniques to perform their reconstruc-

tions. In our work, we use ML algorithms for this purpose.

2.4 3D reconstruction of Euler spirals

The 2D Euler spiral, also known as the Clothoid or Cornu spiral, is a curve whose

curvature evolves linearly with arc length. It was independently discovered by

several researchers including Bernoulli, Euler, and Talbot (Levien 2008). Many

researchers have used 2D Euler spirals in computer-aided design.

In (Walton & Meek 2005), they introduce a control polyline method for guiding

complex curves composed of clothoids, straight lines, and circular arcs. Control

polylines, commonly used in design applications, define key curve points, facilitat-

ing interactive adjustments. Their method employs blending curves using clothoid

CHAPTER 2. THE STATE OF THE ART FOR 3D RECONSTRUCTION 21

pairs, with options for symmetric or unsymmetric blending.

The work most closely related to ours in Chapter 4 is that of (Baran et al. 2010,

McCrae & Singh 2009, 2011). In (Baran et al. 2010), they implement an algorithm

for approximating sketched strokes with visually pleasing clothoid splines, known

for their piecewise linear curvature profiles. The algorithm segments strokes into

curve primitives like lines, arcs, and clothoids, treating this as a shortest path

problem on a weighted graph. The graph’s nodes represent a comprehensive set

of curve primitives, while edges signify continuity transitions. The shortest path

yields an ideal segmentation. Post-segmentation, non-linear constrained optimiza-

tion fits primitives to the curve, ensuring a high-quality result close to the user’s

sketch. In (McCrae & Singh 2009), they present a method for sketching 2D curves,

by minimizing curvature variation through the use of piecewise clothoids. Their

approach works by fitting piecewise linear curves to the curvature of the segmented

input curve. Each linear piece corresponds to a line, circular arc, or clothoid curve

segment. In the subsequent phase, they determine a singular 2D rigid transfor-

mation aligning this composite curve with the sketched stroke, minimizing the

error between them. Moreover, by locally blending adjacent clothoid segments,

they achieve G3 continuity where curvature predominantly varies linearly with arc

length. Similarly, in (McCrae & Singh 2011), they introduce an approach to tidy

up sketched strokes using piecewise French curves, seamlessly blending traditional

bimanual curve modeling techniques with French curves to automatically refine

sketched strokes. The algorithm begins by computing curvature profiles for the

input polyline and one or more French curves. It then employs a dynamic pro-

gramming algorithm to identify sections of the French curve that optimally match

sections of the input curve, with a focus on minimizing the number of sections

used. Subsequently, the input curve is reconstructed using sections of the French

curve represented piecewise in a clothoid form. Finally, disjoint sections of the

reconstructed curve are skillfully interpolated to produce a connected curve, en-

suring G2 continuity throughout. Despite of the good results of these previous

works, their method is limited to 2D plane and cannot be used for 3D reconstruc-

tion, as opposed to our method which produces a piecewise 3D Euler spiral that

fits a planar polygonal curve.

On the other side, the 3D Euler spiral is the curve whose curvature and torsion

22 2.5. 3D MODELING OF CURVES

evolve linearly with arc length. Several works have been done on the generation

of 3D Euler spirals. In (Guiqing et al. 2001), the authors aimed to generate a

3D Euler spiral, starting by refining a polygon, such that the polygon satisfies

the linearity evolution of the curvature along the arc by introducing the concept of

discrete Frenet frames and binormal planes but they ignored the torsion. In (Frego

2022), the authors defined the closed form parametrization of 3D Euler spirals by

modeling the problem as a linear time-variant system and studied its stability with

Lyapunov techniques (Lyapunov 1992). Their most significant achievement was

defining the closed form of the 3D Euler spiral in terms of the standard Fresnel

integrals that satisfy the property of both curvature and torsion evolving linearly

with arc length. They also present numerical methods of order four to represent

the clothoids based on techniques such as Lie algebra, Magnus Expansions, and

Commutator-Free Expansions. In (Gur Harary 2012), the authors extend the Eu-

ler spirals from 2D to 3D by solving an optimization problem and proving many of

their properties, including their invariance to similarity transformation (transla-

tion, rotation, and scaling), symmetry, extensibility, smoothness, and roundness.

Furthermore, in this article, they used the 3D Euler spiral for the archaeological

reconstruction such as the completion of the shape of some broken ancient sculp-

tures and objects. However, the proposed algorithm in this paper only works in

3D space, thus it cannot be used to create 3D Euler spirals from planar polygonal

curves.

2.5 3D modeling of curves

Modeling a 3D curve can be done in two different ways, either using a 3D drawing

interface or a 2D drawing interface.

2.5.1 Curve modeling using 3D drawing interfaces

A 3D drawing interface enables the artist to create the curve directly in 3D using a

device that captures the movements of the hand in the 3D space. In (Ye et al. 2021,

Kwan 2019), they proposed the use of mobile phone as a 3D pen. Notably, they

identify seven input points and six phone grip styles preferred by users, revealing 21

CHAPTER 2. THE STATE OF THE ART FOR 3D RECONSTRUCTION 23

unique combinations. Furthermore, the top three pairs were selected for in-depth

analysis, wherein a quantitative experiment was performed to assess four distinct

types of motion tracking errors during controlled in-situ 3D drawing. In (Yu,

Arora, Stanko, Bærentzen & Singh 2021), they proposed a HTC Vive controller to

create the 3D curves. After the user has completed their initial freehand sketch.

Their methods starts by identifying candidate hard intersection constraints by

assessing the distances between the sketched stroke’s points and existing 3D curves

or elements within the virtual space. Subsequently, a subset of discrete constraints

is determined through a greedy linear search to optimize the model’s geometric

consistency. Following this, a least squares minimization approach is formulated to

establish continuous constraints that ensure smooth and coherent surfaces within

the 3D model. In (Li 2021), the authors introduce the use of VR headsets to

create the 3D curves. Specifically, when wearing VR headsets, users can engage in

3D drawing within a virtual environment by employing VR controllers to directly

create geometric elements such as polylines through intuitive clicks and mid-air

dragging gestures. Additionaly, they proposed an optimization-based approach

that automatically refines the initial 3D input provided by the user, transforming

it into polished and aesthetically pleasing 3D drawings.

Other researchers used different types of virtual reality controller (Arora &

Singh 2021, Yu, DiVerdi, Sharma & I 2021), or a hand tracking sensor (Kim 2016)

or a 3D pen (Yue et al. 2017). The main limitation of this class of approaches

is the use of a tracking device and/or a head-mounted display. This makes the

modeling process not easy to setup and not as convenient as making a drawing,

which only requires a pen and paper.

2.5.2 Curve modeling using 2D drawing interfaces

The second category is the use of a 2D drawing interface such as a tablet or a

mouse. Sketching using a tablet is preferred by many designers since sketching is

natural for them. In addition, these devices are usually cheaper than virtual reality

devices. However, the main difficulty is to generate a 3D curve from the 2D curve

drawn by the user; the third dimension is missing and the goal is to compute this

missing information in a way to generate a 3D curve that looks natural and that

24 2.5. 3D MODELING OF CURVES

matches the user’s expectation. Researchers have proposed different approaches

to recover this missing information.

One of the most common approaches is to process altogether the curves of the

drawing. It is actually much easier to reconstruct in 3D a set of curves represent-

ing an object rather than a single curve. When all the curves are taken together,

additional criteria such as parallelism, orthogonality, and symmetry between the

curves can be used to facilitate the 3D reconstruction (Iarussi et al. 2015, Gryadit-

skaya et al. 2020, Xu et al. 2014). Specifically, in (Iarussi et al. 2015), the authors

present a novel technique for extrapolating curvature lines within rough concept

sketches, effectively recovering the intended 3D curvature field and surface normals

at each pixel of the sketch. Their method introduces the concept of regularized

curvature lines, encompassing various types of curvature lines and their extensions

over flat or umbilical regions. Furthermore, they establish an orthogonal cross

field that assigns two regularized curvature lines to every 3D surface point. The

algorithm skillfully estimates the projection of this cross field onto the sketch,

even when faced with non-orthogonality due to foreshortening. This estimation

process relies on scattered interpolation of the sketch’s strokes, which enhances the

method’s robustness in handling the characteristic sketchy lines commonly found

in design sketches. In (Gryaditskaya et al. 2020), the authors propose a method for

3D sketch reconstruction from an initial input sketch. Their approach begins by

identifying all straight strokes within the sketch that are parallel to one of the ma-

jor axes. Subsequently, they construct the 3D scaffold progressively, handling one

stroke at a time and determining its 3D intersections with already reconstructed

strokes. Once the scaffold is established, it serves as essential geometric context

for reconstructing curved strokes. For each curved stroke, their algorithm consid-

ers multiple potential reconstructions and selects the one that best adheres to a

predefined set of geometric regularities. In instances where no single reconstruc-

tion clearly stands out as the best choice, the algorithm postpones the decision

until additional context emerges to resolve any ambiguity. In (Xu et al. 2014),

the authors begin with a 2D vector sketch as their input in order to create a 3D

Curve Networks. They introduce a set of localized 3D regularity properties, which

their algorithm selectively identifies and applies to elevate the curves from the 2D

page into a 3D representation. Initially, the algorithm produces a baseline 3D

CHAPTER 2. THE STATE OF THE ART FOR 3D RECONSTRUCTION 25

result, which may contain inaccuracies. However, these inaccuracies are progres-

sively rectified through the selective regularization process. It’s important to note

that the angles between potentially parallel and locally symmetric curves start in

a random distribution but ultimately converge to a globally consistent state where

these properties are either disregarded or precisely enforced. These methods have

been proven to work very well. However, they fail when they are given a single

curve; such a method cannot be used to reconstruct the trajectory of a dynamic

object from a drawing.

Another common strategy to make the 3D reconstruction problem tractable

is to make some assumptions about the curves to reconstruct. Some works have

been done for the reconstruction of mirror-symmetric curves (Cordier et al. 2013,

Hähnlein et al. 2022). For instance, in (Cordier et al. 2013), their approach ini-

tiates by calculating all potential orientations of the symmetry lines, where these

lines connect pairs of vertices that exhibit mirror symmetry, implying that these

vertices remain unchanged when reflected. Subsequently, they determine the turn-

ing vertices for the polygonal curves associated with each feasible orientation of

the symmetry line. The subsequent phase involves establishing the symmetry re-

lationship for each orientation candidate by devising a method that utilizes the

turn vertices. The final part of their algorithm incorporates two strategies to re-

solve any ambiguity. Firstly, they leverage the connectivity among the curves to

identify and discard symmetry relationships that are invalid. If any ambiguity

persists, they define the symmetry relationship in a manner that maximizes the

compactness of the reconstructed model. Other works focuses on the reconstruc-

tion of curves around existing objects (Krs et al. 2017). In this article, the user

draws strokes in front of an object. Their approach begins by identifying potential

3D vertices in 3D space for each 2D point based on their distances from the ge-

ometry, termed as vertex height. Next, they construct a graph of vertex segments

to optimize 3D curve reconstruction. These segments, representing points on the

curve, serve as nodes in the segment graph, while the edges denote stroke portions

not intersecting with the geometry. Finally, they determine the best path through

the segment graph, forming a smooth cubic spline, with nodes and edges scored

using a curvature criterion.

Finally, some works have been done for the curve reconstruction using multiple

26 2.6. CONCLUSION

images or multiple viewpoints. The first strategy is to enable the artist to construct

the curve interactively by drawing an initial version of the curve. The user then

can change the viewpoint so that she/he can make some modifications in case the

initial curve is not satisfactory (Bae et al. 2008). Other researchers have proposed

a method to reconstruct a curve given its drawing and its shadow on the floor

plane (Cohen et al. 1999). Some work has also been done for the reconstruction

of a curve given its two images (Fei Mai 2010). The strategy of using multiple

viewpoints or images has been proven to work very well. However, they require

the user to provide multiple images or some interaction during the reconstruction

process.

2.6 Conclusion

In this chapter, we conducted a comprehensive review of prior research in the field

of 3D reconstruction. Our exploration spanned from a global perspective, which is

the reconstruction of entire objects from various visual sources, to a more focused

area, which aligns with our specific research interest—the reconstruction of 3D

curves. We reviewed previous works on the 3D reconstruction of circular helices,

followed by an examination of research concerning 2D and 3D Euler spirals, in-

cluding both their theoretical definitions and practical applications. Additionally,

we explored earlier work related to the general 3D modeling of curves, covering

techniques for sketching, and methodologies for achieving 3D curve reconstruction.

In conclusion, earlier studies have offered a variety of approaches for recon-

structing 3D curves from 2D polygonal representations. However, it is noteworthy

that, as of our review, no research has explored the application of machine learning

ML techniques to the task of reconstructing 3D circular helices. Similarly, there

appears to be a gap in prior work addressing the 3D reconstruction of 3D Euler

spiral curves.

27

Chapter 3

3D reconstruction of circular

helices

Helices are a type of 3D curve that appears in various natural and artificial struc-

tures. They are characterized by constant curvature along their arc-length. Their

geometric shapes can be observed in natural structures, especially biological ones,

and have also been utilized in a wide range of applications in human technology.

At the micro-scale, helical structures can be observed in biology and nanotech-

nology, such as in sperm (Saggiorato et al. 2017), DNA (Dickerson 1983), and

nanosprings (McIlroy et al. 2001). Meanwhile, at the macro-scale, they can be

found in plants (Goriely & Tabor 1998), seashells (Forterre & Dumais 2011), and

various engineering components such as springs (Ke et al. 2020) and synthetic fiber

ropes (He et al. 2020).

Although many researchers work on the 3D reconstruction of helices from pla-

nar polygonal curves, most of their approaches are based on optimization algo-

rithms. However, in the last decade, ML/deep learning algorithms have proven

their efficiency in the 3D reconstruction domain. To the best of our knowledge, no

previous work has employed these methods in the context of helix reconstruction.

This chapter presents a novel approach that addresses this gap in the literature

by utilizing ML/deep learning algorithms to reconstruct 3D helices from planar

polygonal curves. Specifically, we trained different ML models, including ran-

dom forest regressor (RFR)(Breiman 2001), gradient boosting regressor (GBR)

28 3.1. MOTIVATION

(Friedman 2001), gaussian process regressor (GPR)(Rasmussen et al. 2006), sup-

port vector regressor (SVR) (Smola & Schölkopf 2004), artificial neural network

(ANN) (McClelland et al. 1987), and encoder-decoder convolutional neural net-

work (ED-CNN) (LeCun et al. 1998) using a dataset composed of pieces of 3D

helices. We reconstruct the 3D circular helices in a piecewise manner and com-

pare the results of each ML algorithm in the experimental section. Finally, we

analyzed the results and drew conclusions regarding the effectiveness of using ML

algorithms for 3D reconstruction of circular helices.

3.1 Motivation

Circular helices are characterized by constant curvature along their arc-length,

they appear in various natural and artificial structures. As described in the previ-

ous paragraph, their geometric shapes can be observed in natural structures and

utilized in a wide range of applications in human technology. A formal representa-

tion of a 3D helical curve is very useful because it helps to fully describe the object,

including its local pitch and radius. This representation can be particularly useful

in a variety of real-life applications, as highlighted in the following examples:

• In quality control on manufacturing lines, 3D reconstruction of helical struc-

tures can be helpful in ensuring that products are manufactured to the de-

sired specifications (Aloisi et al. 2016).

• In high-throughput experimentation in plant sciences: 3D reconstruction

of helical structures can be used to analyze plant growth and development

(Kawagoe & Murai 1996).

• In modeling hair in cosmetics: 3D reconstruction of helical structures can be

used to create realistic and accurate models of hair fibers, which might be

used to design and test new hair care products (Bertails et al. 2006).

• In the geometric modeling and understanding of microscopic structures in

medicine, biology, and nanotechnology (Wittung et al. 1994).

Overall, the 3D reconstruction of circular helices has many practical applica-

tions across various fields, and accurate reconstruction of their 3D structure can

CHAPTER 3. 3D RECONSTRUCTION OF CIRCULAR HELICES 29

provide valuable insights and improve the design and performance of products and

processes.

3.2 Problem definition

Our objective is to develop a ML model that reconstructs 3D circular helices from

planar polygonal curves. Specifically, the input curve should be in the form of the

coordination of the circular helix in the (x,y) plane. Given the potential variability

in the length of input curves and the repetitive nature of circular helices along

their arc length, it is practical to divide the input curve into smaller segments.

Therefore, the reconstruction is done in a piecewise manner, where we perform

curve segmentation to divide the input curve into smaller segments. Each segment

is then reconstructed individually. Once all segments are reconstructed, they are

assembled together to form the approximate 3D circular helix whose projection

onto the 2D plane best fits the input polygonal curve. To enhance the overall

smoothness of the curve, particularly at the connecting points of its segments, a

post-processing smoothing algorithm is applied. This smoothing algorithm helps

refine the reconstructed curve and improve its aesthetic quality.

To train the ML models, we create a dataset consisting of segments of circular

helices, each comprising 100 points in the (x, y, z) plane. We apply uniform

sampling to ensure that each segment is consistently represented. Followed by a

uniform scaling to remove the scale factor from the dataset, allowing us to handle

input curves of any scale. In the training process, we use the (x, y) coordinates of

the circular helix segments as input, and their respective z-coordinates as output.

Noting that we experiment with different ML models such as RFR, GBR, GPR,

SVR, ANN, and ED-CNN. For each model, we perform a hyperparameter tuning

to find its optimal architecture and achieve the best possible performance.

Once the ML model is trained, it can be utilized for the reconstruction of a

given input polygonal curve. One condition of our reconstruction approach is that

the input curve can not be any random curve such as straight lines or curves with

sharp corners. We specifically target the reconstruction of curves which are the

orthogonal projection of true circular helices or hand-drawn circular helix curves.

It is important to note that fitting an orthogonal-projected 3D Euler spiral

30 3.3. DATASET SETUP

to a polygonal curve is widely recognized as an underdetermined problem, which

implies that a unique solution may not always exist.

3.3 Dataset setup

To train the ML models for generating the z-coordinates of the circular helix

segments from the planar polygonal curve, we create a diverse dataset. The dataset

comprises 650,536 segments of 3D circular helices. This dataset size was chosen to

cover a broad range of lengths, scales, and orientations. Each segment is defined

as a polygonal curve within the (x, y, z) plane and consists of precisely 100 data

points. The rationale behind choosing this specific point count will be elaborated

upon in the forthcoming subsection on Dataset sampling. In this section, we

describe the steps taken to set up the dataset. First, we specify the equation

used for dataset creation. Second, we determine the lengths of dataset segments.

Third, we define the orientation of the segments in 3D space. Fourth, we apply

a scaling mechanism to remove the scale factor from the dataset and make it

suitable for input curves of any scale. Finally, we apply a sampling mechanism to

consistently represent each segment in the dataset. The purpose of this diversity

of the dataset is to ensure that the ML models are trained on a comprehensive

range of input circular helix shapes, lengths, and orientations, enabling them to

accurately generate a 3D circular helix from any planar polygonal curve.

3.3.1 Equation

The equation used for creating the dataset segments is based on the parametric

equations for a circular helix in 3D space, expressed parametrically in Cartesian

coordinates. Specifically, we used the equations:

x(t) = r cos(t),

y(t) = r sin(t), t ∈ R

z(t) = pt.

(3.1)

Here the parameter t is proportional to the arc length of the circular helix

and is used to express the parametric equations of the dataset segments. The

CHAPTER 3. 3D RECONSTRUCTION OF CIRCULAR HELICES 31

radius of the circular helix is denoted by r, while the pitch is denoted by p. The

pitch represents the distance that the circular helix advances along its axis after

completing one full turn around the center, and is given by 2πp.

3.3.2 Pieces length

The input of our algorithm can be a planar polygonal curve of any length. However,

it is not practical to train an ML model to generate the z-coordinates of a long

circular helix composed of many loops. This is because the input size required to

represent it accurately would be too high. Additionally, the dataset needed for

training the ML models in such a case will have an enormous size, as it would

need to contain circular helix shapes that vary from short (with one loop) to very

long (with a high number of loops). To address this issue, we reconstruct the

circular helix in a piecewise manner by creating a dataset composed of circular

helix segments with a length varying between half a loop and a loop and a half.

This is possible due to the property of the circular helix, which is a curve that

repeats itself.

Practically, to achieve this, when we create the dataset we uniformly distribute

the ending point tend such that we make the difference between the variable t of the

Equation 3.1 at the starting point tstart and the ending point tend of the circular

helix segment to be within the range of ∈ [π, 3π]. As illustrated in Figure 3.1,

tend must fall within the range of ∈ [ta, tb] for any given dataset segment with a

starting point tstart.

3.3.3 Pieces orientation in 3D space

Our method takes as input a planar polygonal curve of a circular helix, which could

be in any orientation. In order to train our models can accurately handle circular

helices from various orientations in 3D, we rotate each segment of the dataset

along the x, y, and z axes. As the orientation of a circular helix changes in 3D,

its orthogonal projection changes in 2D. By representing all possible projections

of the 3D Euler spiral segments, we can ensure that our models are able to handle

circular helices from any orientation. Let Mi, Rx,i, Ry,i, and Rz,i be respectively

32 3.3. DATASET SETUP

Figure 3.1: The ending point tend of the any dataset segment with a starting point
tstart must fall within the range of [ta, sb].

the matrix that represents the point’s coordinates of the segment i of the dataset,

the rotation matrices along the x, y, and z-axis.

Mi =


xi,1 yi,1 zi,1

xi,2 yi,2 zi,2
...

...
...

xi,100 yi,100 zi,100

 , Rx,i(α) =

1 0 0

0 cos(α) − sin(α)

0 sin(α) cos(α)



Ry,i(β) =

 cos(β) 0 sin(β)

0 1 0

− sin(β) 0 cos(β)



Rz,i(λ) =

cos(λ) − sin(λ) 0

sin(λ) cos(λ) 0

0 0 1

 ,

where α, β, and λ are respectively the rotation angle along x, y, and z axis. During

the dataset creation, we uniformly distributed these rotation angles in the range

[0, 2π[in order to cover all possible rotation angles. The rotated 3D circular helix

CHAPTER 3. 3D RECONSTRUCTION OF CIRCULAR HELICES 33

Figure 3.2: Example of the uniform scaling applied on some circular helix segments
(colored segments). Note that we are presenting the orthogonal projection of the
circular helix segments.

segment ci is defined as:

ci = MiRx,i(α)Ry,i(β)Rz,i(λ).

3.3.4 Dataset scaling

The input of our method is a planar polygonal curve which is the orthogonal

projection of a circular helix. This circular helix could come with various values

of radius and pitch. Hence, it is practically impossible to train our models with

circular helices of all radius and pitch values. Instead of that, we train our models

with circular helices that have a radius and pitch uniformly distributed in the

interval [1, 5] but also have the same length in 2D. This interval was selected to

cover a variety of circular helix configurations, including those with a small radius

and large pitch (e.g., radius = 1, pitch = 5), large radius and small pitch (e.g.,

radius = 5, pitch = 1), and cases where the radius and pitch are equal (e.g., radius

34 3.3. DATASET SETUP

= 2, pitch = 2). Subsequently, we scale all these segments in a way that they

will all have the same length in 2D while preserving their original aspect ratio.

This removes the scaling factor from our dataset. The uniform scaling mechanism

extends the applicability of our approach to a wider range of radius and pitch

values beyond what was explicitly included in the training data. An example of

this uniform scaling is illustrated in Figure 3.2. Therefore, when we split the input

polygonal curve into segments, we first scale each segment to the same length

as dataset segments, and then we give it to the model in order to predict its z-

coordinates. After that, we rescale each one of the 3D reconstructed segments to

its original scale. Finally, we connect the reconstructed segments to obtain the

final approximate reconstruction of the circular helix.

Concerning the scaling process, when scaling a dataset circular helix seg-

ment, we aim to make the average 2D distance between every two consecu-

tive points equal to a desired value α. Let’s consider the input segment as

a = {a1, a2, ..., ai, ..., an}, where ai is the coordinates of the point of index i in

the curve and n is the number of points of that curve. The coordination of its

first two points given by a1 = (x1, y1, z1) and a2 = (x2, y2, z2). We first calculate

its original average 2D distance between every two consecutive points, denoted

by β. Let’s consider the scaled segment as as = {as,1, as,2, ..., as,i, ..., as,n}, to get

the coordination of this segment, we calculate the coordination of it first point as

as,1 = (xs,1, ys,1, zs,1) = (x1, y1, z1). To determine the coordination of the second

point of the scaled segment, we calculate the ratio to which every two consecutive

points of the scaled segment will be scaled, which is r = α/β. The coordination

of the second point of the scaled segment is denoted by as,2 = (xs2, ys2, zs2), and

can be calculated as follows:

xs2 = x1 + r × (x2 − x1),

ys2 = y1 + r × (y2 − y1).

To calculate zs2 while preserving the original aspect ratio of a, we first com-

pute the Euclidean distance between p1 and p2 in the (x,y)-plane, given by d =√
(y2 − y1)

2 + (x2 − x1)
2. Then, we can compute the z-coordinate of as2 as:

CHAPTER 3. 3D RECONSTRUCTION OF CIRCULAR HELICES 35

zs2 = z1 + r × d(z2 − z1).

We repeat the same procedure to calculate the remaining points coordination of as.

By the end of the scaling, the average 2D distance between every two consecutive

points of the scaled segment as will be equal to α. A real example of the result of

applying the uniform scaling on a circular helix segment is presented in Figure 3.4

(1, 2).

Figure 3.3: (1) Segments of various lengths. (2) The results of applying the uniform
sampling on the segments (Purple), and the original segments (Colored). (3) The
uniform sampled segments (All segments with the same length). Note that we are
presenting the orthogonal projection of the segments.

3.3.5 Dataset sampling

After applying the scaling procedure, we ensure that all dataset segments have the

same length in 2D. However, the distance between each pair of consecutive points

36 3.3. DATASET SETUP

in a given segment may not be the same. This can introduce a noisy factor that

can affect the learning of the ML models, as the model may focus on capturing

variations in distances rather than the underlying patterns in the data. To address

this issue, we performed uniform sampling to ensure that the exact distance be-

tween each pair of consecutive points is the same in every segment. Specifically,

given the scaled segment, we sampled it uniformly to obtain the sampled segment

such that the exact distance between each pair of consecutive points is equal to

α. This ensures that the distance between each pair of consecutive points is equal,

reducing the impact of variations in distances on the ML model’s learning process.

Additionally, when later reconstructing hand-drawn curves, we must employ the

same sampling procedure as used with the dataset segments.

Figure 3.4: (1) The original 3D circular helix with its orthogonal projection. (2)

The resulting circular helix after applying the uniform scaling algorithm on the

circular helix of (1). (3) The resulting circular helix after applying the uniform

sampling algorithm on the circular helix of (2).

CHAPTER 3. 3D RECONSTRUCTION OF CIRCULAR HELICES 37

Regarding the number of sampled points that our dataset segment is composed

of, we opt to make it 100. If the sampling rate is too low, the sampled points may

not be sufficient to fully capture the characteristics of the original curve and valu-

able information may be lost. On the other hand, if the sampling rate is too high,

the sampled points may contain redundant information, which can lead to com-

putational inefficiencies and overfitting in ML models. Therefore, it is important

to carefully select the sampling rate to balance between capturing enough infor-

mation and avoiding redundancy. An example of applying the sampling algorithm

is shown in Figure 3.3, noting that this is just an example figure to explain the

sampling process and does not exactly reflect the sampling of the dataset. A real

example of how our scaling and sampling algorithm affect the circular helix seg-

ments is presented in Figure 3.4. We can also see in Figure 3.5 that after applying

the uniform sampling the distance between each two consecutive points of the

orthogonal projection of the circular helix segment became equal.

38 3.3. DATASET SETUP

Figure 3.5: On top, the distance between consecutive points of the orthogonal

projection of the scaled circular helix segment is not the same. On the bottom, the

distance between consecutive points of the orthogonal projection of the sampled

circular helix segment is the same.

3.3.6 Dataset summary

We create a dataset composed of 650,536 segments of the circular helix. Covering

various orientations of the segment with a circulation length between a half loop

and a loop and half. The radius and pitch (as defined in Equation 3.1) used in

creating the dataset have values in the interval [1, 5] (uniformly distributed in this

interval). This is because we applied a uniform scaling technique, which removes

the scaling factor and thereby covers an additional variety of radius and pitch

values. Additionally, we applied a uniform sampling on the circular helix seg-

ments making the distance between each two consecutive points of the orthogonal

projection of the circular helix segment equal. This standardizes the dataset and

simplifies the learning process of the ML models. Figure 3.6 shows some segments

CHAPTER 3. 3D RECONSTRUCTION OF CIRCULAR HELICES 39

of the dataset, where all segments have a uniform scaling and sampling applied.

Figure 3.6: Some examples of dataset segments with their orthogonal projections.

AngleX, AngleY, and AngleZ represent the rotation angles applied to the segments.

Length represents the circular length of the segment.

3.4 Models training

ML algorithms have demonstrated remarkable success in 3D reconstruction, par-

ticularly when working with images. However, our case is distinct as we are dealing

40 3.4. MODELS TRAINING

with the 3D Cartesian coordinates of a circular helix, which significantly differs

from image pixels. To the best of our knowledge, there is a lack of literature ad-

dressing the use of ML algorithms in such scenarios. This motivates us to test

different ML algorithms in order to perform the 3D reconstruction of circular he-

lices from planar polygonal curves.

3.4.1 Models training methods

The selection of ML algorithms in our study was driven by several factors. Firstly,

we aimed to explore a diverse set of algorithms that have been widely used and

have shown promising results in regression tasks. Secondly, we considered the

specific requirements and characteristics of our 3D circular helix reconstruction

problem. Additionally, each algorithm has its own strengths and weaknesses, and

we wanted to assess their suitability for our task. Hence, we chose to employ RFR,

GBR, GPR, SVR, KNN-R,ANN, and ED-CNN in our study. These algorithms

cover a wide range of methodologies and offer diverse modeling capabilities, includ-

ing ensemble-based learning (RFR and GBR), Bayesian non-parametric method

(GPR), kernel-based method (SVR), instance based method (KNN-R), and deep

learning (ANN and ED-CNN). By exploring multiple algorithms, we aim to eval-

uate their performance and identify the most effective approach for 3D circular

helix reconstruction.

Note that meanwhile the training process of all models, to ensure reliable and

accurate 3D reconstruction of circular helices, the dataset is divided into training

and testing sets using K-Fold cross-validation. This technique is used to evaluate

the performance and generalization ability of a ML model. It involves dividing

the dataset into K subsets, or folds, of approximately equal size. The model is

then trained and evaluated K times, with each fold serving as the testing set once

while the remaining K-1 folds are used for training. This ensures that each data

point is used for both training and testing. The results from each fold are averaged

to obtain an overall performance metric, providing a more robust estimate of the

model’s performance. In our case, we divided the dataset into 5 folds.

To identify the optimal combination of hyperparameters, a grid search is per-

formed. In this search, various hyperparameter combinations are exhaustively

CHAPTER 3. 3D RECONSTRUCTION OF CIRCULAR HELICES 41

explored based on cross-validation. The chosen values for hyperparameter tuning

were initially guided by the documentation recommendations of each method and

further refined through trial and error.

To measure the model’s performance we use the coefficient of determination

(Draper & Smith 1998):

R2 = 1− u

v
,

where u represents the residual sum of squares (ytrue− ypred)
2 and v represents the

total sum of squares (ytrue − ȳtrue)
2. The value of R2 ranges between 0 and 1, with

1 indicating a perfect fit between the predicted and true values.

3.4.2 Random forest regressor (RFR)

RFR is an ensemble ML algorithm used for regression tasks. It combines multiple

decision trees to make predictions. The basic idea behind RFR is to create an

ensemble of decision trees that independently learn from random subsets of the

training data and features. Each decision tree is constructed independently from

the others. During the training process, RFR creates multiple subsets of the

training data by random sampling with replacement, a process known as bootstrap

aggregating or bagging. Each subset contains a random selection of the original

data, allowing different decision trees to learn from slightly different perspectives.

In addition to subsampling the training data, RFR also performs random fea-

ture selection. For each split in a decision tree, only a subset of features is con-

sidered. This introduces further randomness and diversity among the decision

trees.

With the subsampled data and randomly selected features, each decision tree

is constructed using an algorithm such as the Classification and Regression Tree

(CART) algorithm. The decision tree splits the data based on different features

and thresholds to create a hierarchical structure of nodes and leaves.

Once the decision trees are constructed, they can be used to make predictions.

Each decision tree independently produces its own prediction, and in the case of

regression, the predictions from all the decision trees are averaged to obtain the

final prediction.

The power of RFR lies in its ensemble learning approach. By combining the

42 3.4. MODELS TRAINING

predictions from multiple decision trees, RFR can improve the accuracy and gen-

eralization of the overall model. It helps to mitigate the risk of overfitting and

increases robustness to noise and outliers in the data. An example of RFR is

illustrated in Figure 3.7 where the number of trees is 100.

Motivation

The motivation behind using RFR for the 3D reconstruction of circular helices lies

in its ability to handle nonlinear relationships and capture complex patterns in

the data. In the case of circular helix reconstruction, where the input is the (x, y)

coordinates of the circular helix and the output is the z-coordinate, RFR can ef-

fectively learn the relationship between the 2D coordinates and the corresponding

z-coordinate. By training the model on a dataset that includes known (x, y) coor-

dinates and their corresponding z-coordinates, the RFR can learn the underlying

patterns and variations in the data. The algorithm’s ensemble nature and abil-

ity to handle nonlinearities make it suitable for capturing the intricate geometry

and shape of circular helices. Furthermore, RFR combines the power of decision

trees with ensemble learning techniques, making it robust against overfitting and

capable of capturing intricate patterns in the data.

Training

To train the RFR a hyperparameter tuning is crucial for optimizing the model.

RFR has several hyperparameters that can be tuned to optimize its performance,

such as:

• Number estimators: This parameter determines the number of decision trees

in the random forest. Increasing the number of estimators can improve the

model’s performance but also increase computational complexity. The values

chosen for training include [5, 100, 150].

• Max depth: It specifies the maximum depth of each decision tree in the forest.

A higher value allows the trees to capture more complex relationships but

can lead to overfitting if not carefully tuned. The values chosen for training

include [None, 5, 10].

CHAPTER 3. 3D RECONSTRUCTION OF CIRCULAR HELICES 43

Figure 3.7: The architecture of RFR with the number of trees equal to 100.

• Min samples split: This parameter sets the minimum number of samples

required to split an internal node. It controls the tree’s ability to make

further splits based on the number of samples available, preventing overfitting

by limiting the tree’s growth. The values chosen for training include [2, 4,

6, 8].

• Min samples leaf: It specifies the minimum number of samples required to be

at a leaf node. Similar to ’Min samples split’, this parameter helps control

the tree’s growth and prevents overfitting by requiring a minimum number

of samples at the terminal nodes. The values chosen for training include [1,

2, 3, 4, 5].

44 3.4. MODELS TRAINING

• Max features: This parameter determines the number of features to consider

when looking for the best split. It can be set to ’auto’, which considers all

features, or ’sqrt’ or ’log2’, which considers a square root or logarithm of the

total number of features, respectively. The values chosen for training include

[’auto’, ’sqrt’, ’log2’].

Combination ID
Parameters

Number of
trees

Max depth Min samples
split

Min
samples leaf

Max
features

Combination 1 50 5 4 2 ’sqrt’

Combination 2 150 None 2 1 ’auto’

Combination 3 50 None 8 4 ’sqrt’

Combination 4 100 5 2 1 ’auto’
...

...
...

...
...

...

Table 3.1: Some of the parameter combinations for RFR.

...

Figure 3.8: The R2 score for some of the parameter combinations.

Table 3.1 shows some parameter combinations from the grid search hyperpa-

rameters process. Figure 3.8 illustrates the R2 scores of the models trained with

different parameter combinations. As a result of the grid search, we identify the

combination [Number of tree = ’150’, Max depth = ’None’, Min samples split =

CHAPTER 3. 3D RECONSTRUCTION OF CIRCULAR HELICES 45

’2’, Min samples leaf = ’1’, Max features = ’auto’] as the one that provides the

best model performance R2 = 0.929.

3.4.3 Gradient boosting regressor (GBR)

GBR is a powerful ensemble ML algorithm commonly used for regression tasks. It

belongs to the family of boosting algorithms and is known for its ability to create

a strong predictive model by combining weak learners, typically decision trees.

Unlike Random Forest Regression, GBR uses a different approach called gra-

dient boosting to build the ensemble of decision trees. The algorithm starts by

creating a simple decision tree, also known as a weak learner, and makes predic-

tions on the training data. It then calculates the residuals, which represent the

differences between the predicted values and the true values.

In the subsequent iterations, GBR focuses on learning the residuals by training

additional decision trees. Each new tree is trained to predict the residuals of the

previous trees, rather than the original target variable. This iterative process con-

tinues, with each new tree attempting to correct the errors made by the ensemble

of trees built so far.

The final prediction from the GBR is obtained by summing the predictions

from all the individual trees in the ensemble. Each tree contributes to the final

prediction by a certain weight, which is determined during the training process.

The strength of the GBR lies in its ability to sequentially learn from the mis-

takes of previous models. By continually focusing on the residuals, the algorithm

can improve the accuracy of the predictions with each iteration. Figure 3.9 shows

an example of the training process of the GBR.

Motivation

Similarly to RFR, GBR is able to handle complex relationships and capture intri-

cate patterns in the data by learning the nonlinear mapping between the 2D co-

ordinates and the corresponding z-coordinate using the decision trees. Especially

since the ensemble nature of GBR allows it to combine multiple weak learners, typ-

ically decision trees, to form a strong predictive model. This ensemble approach

enables GBR to capture the intricate geometry and shape of circular helices by

46 3.4. MODELS TRAINING

Figure 3.9: The architecture of GBR.

leveraging the collective knowledge of the individual decision trees. By iteratively

focusing on the residuals and correcting the errors made by the ensemble, GBR

can adapt and refine its predictions to improve accuracy.

Training

Training the GBR model involves crucial hyperparameter tuning to optimize its

performance. GBR has several hyperparameters that can be tuned to achieve the

best results. Some important hyperparameters to consider are:

• Number of estimators: This parameter determines the number of boosting

stages or decision trees in the gradient boosting ensemble. Increasing the

number of estimators can improve the model’s performance, but it also in-

creases computational complexity. The values chosen for training include

[100, 200, 300, 400].

CHAPTER 3. 3D RECONSTRUCTION OF CIRCULAR HELICES 47

• Learning rate: The learning rate controls the contribution of each tree in the

ensemble. A smaller learning rate makes the model more robust but requires

more estimators to achieve similar performance. It is essential to find an

optimal balance between the learning rate and the number of estimators.

The values chosen for training include [0.01, 0.05, 0.1].

• Max depth: Similar to RFR. The values chosen for training include [1, 2, 3,

4, 5].

• Max features: Similar to RFR. The values chosen for training include [’auto’,

’sqrt’, ’log2’].

Combination ID
Parameters

Nb of
Estimators

Learning Rate Max depth Max features

Combination 1 100 0.05 10 ’sqrt’

Combination 2 300 0.1 None ’auto’

Combination 3 200 0.1 5 ’sqrt’

Combination 4 400 0.01 5 ’auto’
...

...
...

...
...

Table 3.2: Some of the parameter combinations for GBR.

Table 3.2 shows some parameter combinations from the grid search hyperpa-

rameters process. Figure 3.10 illustrates the R2 scores of the models trained with

different parameter combinations. As a result of the grid search, we identify the

combination [Number of estimators = ’400’, Learning rate =’0.01’, Max depth =

’5’, Max features = ’auto’] as the one that provides the best model performance

R2 = 0.59. Note that this R2 score indicates that the model is not able to perform

a good reconstruction. One possible reason for that is the complexity of GBR,

which is based on an ensemble of weak learners (decision trees) that are trained

sequentially to correct the mistakes of previous models. The increased complexity

of GBR can make it prone to overfitting.

48 3.4. MODELS TRAINING

...

Figure 3.10: The R2 score for some of the parameter of GBR.

3.4.4 Gaussian process regressor (GPR)

GPR is a powerful probabilistic ML algorithm used for regression tasks. Unlike

other regression models that assume a specific functional form for the relationship

between input and output variables, GPR models the underlying function as a

distribution over functions. It is based on the concept of Gaussian processes,

which define a prior distribution over functions, and uses Bayesian inference to

learn the posterior distribution of functions given observed data.

In contrast to many popular supervised ML algorithms that determine exact

parameter values in a function, the Bayesian approach takes a probabilistic per-

spective by inferring a probability distribution over all possible parameter values.

Consider a linear function: y = wx + σ. By incorporating observed data, the

Bayesian approach updates the distribution using Bayes’ Rule:

p(w|y,X) =
p(y|X,w)p(x)

p(y|X)

posterior =
likelihood× prior

marginal likelihood

(3.2)

The posterior (’updated’) distribution p(w|y,X) combines information from

both the prior distribution and the dataset. To make predictions at unseen points

CHAPTER 3. 3D RECONSTRUCTION OF CIRCULAR HELICES 49

of interest (x∗), the Bayesian approach calculates the predictive distribution by

weighting all possible predictions based on their corresponding posterior distribu-

tion (Rasmussen et al. 2006):

p(f ∗|x∗, y,X) =

∫
w

p(f ∗|x∗, w)p(w|y, x) dw, (3.3)

where f ∗ is the prediction label. In order for the integration to be manage-

able, the prior and likelihood are typically considered to be Gaussian. With that

presumption, we can solve for the predictive distribution and obtain a Gaussian

distribution, from which we can derive a point prediction using the mean and

uncertainty quantification using the variance. Therefore, the Bayesian approach

not only allows us to make predictions but also provides a measure of confidence

or uncertainty in those predictions by leveraging the properties of the Gaussian

distribution.

Motivation

The motivation behind using GPR for the 3D reconstruction of circular helices

from planar polygonal curves lies in its flexibility and ability to provide proba-

bilistic predictions. GPR models capture uncertainty in the data by representing

the target variable as a distribution over functions rather than a single point esti-

mate. This makes GPR suitable for situations where the data may exhibit complex

patterns or where the underlying relationship between inputs and outputs is un-

known. Furthermore, GPR provides a natural way to incorporate prior knowledge

or assumptions about the data through the choice of covariance function or kernel.

This allows the model to adapt to different data patterns and can help regularize

the model to prevent overfitting.

Training

Training GPR involves tuning important hyperparameters that strongly influence

the model’s behavior and predictive accuracy. These key hyperparameters include:

• Kernel function: The choice of kernel function determines the type of spatial

correlation between the input features (planar polygonal projection) and the

50 3.4. MODELS TRAINING

target variable (z-coordinate). Different kernel functions, such as radial basis

function, Matérn, or rational quadratic, offer varying levels of flexibility in

capturing complex patterns and correlations in the data. The values chosen

for training include [’Matérn’, ’Radial basis’, ’Rational quadratic’].

• Length-scale parameter: This parameter controls the length scale of the ker-

nel function and influences the smoothness and flexibility of the GPR model.

Larger length-scale values result in smoother predictions, while smaller val-

ues allow for more intricate and localized variations. The values chosen for

training include [’0.1’, ’1.0’, ’10’].

• Noise level: The noise level parameter accounts for the level of noise present

in the training data. It allows the GPR model to account for measurement

errors and uncertainties in the target variable. Adjusting the noise level

parameter helps improve the model’s robustness to noisy data and prevents

overfitting. The values chosen for training include [’0.1’, ’5’, ’10’].

...

Figure 3.11: The R2 score for some of the parameter combinations of GPR.

Table 3.3 shows some parameters combinations. Figure 3.11 illustrates the R2

scores of the models trained with different parameter combinations. As a result

of the grid search, we identify the combination [Kernel function = ’Radial basis’,

CHAPTER 3. 3D RECONSTRUCTION OF CIRCULAR HELICES 51

Combination ID
Parameters

Kernel function Length-scale
parameter

Noise level

Combination 1 Matérn 1.0 1.0

Combination 2 Radial basis 1.0 5.0

Combination 3 Rational quadratic 0.1 0.1

Combination 4 Radial basis 10 0.1
...

...
...

...

Table 3.3: Some of the parameter combinations for GPR.

Length-scale parameter =’1.0’, Noise level = ’5.0’] as the one that provides the

best model performance R2 = 0.89.

3.4.5 Support vector regressor (SVR)

SVR is a powerful regression algorithm that belongs to the family of Support

Vector Machines (SVMs). SVR builds upon the principles of SVMs, which were

originally developed for classification tasks but have been adapted for regression as

well. SVR excels at handling complex, non-linear relationships between the input

variables and the target variable.

One of the key concepts behind SVR is the use of kernel functions. These func-

tions allow SVR to implicitly transform the input data into a higher-dimensional

feature space, where the data becomes more amenable to linear separation. By

projecting the data into this higher-dimensional space, SVR can effectively model

non-linear patterns in the data using linear techniques. Figure 3.12 illustrates the

mapping from input space to feature space where it would be easier to separate

the data. The choice of the kernel function, such as the radial basis function

(RBF) or polynomial kernel, plays a crucial role in determining the flexibility and

expressiveness of the SVR model.

Motivation

SVR is known for its capability to handle nonlinear relationships, robustness to

outliers, theoretical foundations in statistical learning theory, and its wide applica-

bility across various domains. SVR employs kernel functions to capture nonlinear

52 3.4. MODELS TRAINING

Figure 3.12: Mapping the data from input space to feature space using the kernel
function.

patterns, focuses on support vectors for increased robustness, and balances empir-

ical risk and model complexity. These features enable SVR to accurately model

complex systems, make reliable predictions, and find applications in diverse fields.

Therefore it is worth trying a kernel-based algorithm to test its performance in

the 3D reconstruction of circular helices.

Training

The training of SVR involves tuning several key hyperparameters that significantly

influence the model’s behavior and performance. These hyperparameters include:

• Kernel function: The choice of the kernel function in SVR determines the

type of non-linear relationship that can be modeled between the input fea-

tures (planar polygonal projection) and the target variable (z-coordinate).

Different kernel functions, such as radial basis function, polynomial, or sig-

moid, offer varying degrees of flexibility in capturing complex patterns. The

values chosen for training include [’Radial basis’, ’Sigmoid’, ’Polynomial’].

• C parameter: This parameter, often referred to as the penalty parameter,

CHAPTER 3. 3D RECONSTRUCTION OF CIRCULAR HELICES 53

controls the trade-off between minimizing the error and maximizing the mar-

gin. A smaller C value allows for more errors but larger margins, while a

larger C value aims to minimize errors but can lead to overfitting. The values

chosen for training include [’0.1’, ’1’, ’3’, ’5’].

• Epsilon parameter: Epsilon specifies the margin of tolerance for errors in

SVR. It determines the width of the epsilon tube within which errors are

not penalized. Larger epsilon values allow for a wider margin of tolerance,

providing more robustness to noise and outliers. The values chosen for train-

ing include [’0.01’, ’0.05’, ’0.1’].

Combination ID
Parameters

Kernel function C parameter Epsilon parameter

Combination 1 Radial basis 1.0 0.01

Combination 2 Sigmoid 0.1 0.1

Combination 3 Polynomial 1.0 0.05

Combination 4 Radial basis 5.0 0.1
...

...
...

...

Table 3.4: Some of the parameter combinations for SVR.

...

Figure 3.13: The R2 score for the some of the parameter combinations of SVR.

54 3.4. MODELS TRAINING

Table 3.4 shows some of the parameter combinations. Figure 3.13 illustrates the

R2 scores of some of the models trained with different parameter combinations. As

a result of the grid search, we identify the combination [Kernel function = ’Radial

basis’, C parameter =’1.0’, Epsilon parameter = ’0.01’] as the one that provides

the best model performance R2 = 0.58. It is important to note that while the

SVR model may have achieved a relatively lower R2 score, it exhibited successful

reconstruction in some instances and less successful reconstruction in others.

3.4.6 K-nearest neighbors regression (KNN-R)

KNN-R is a non-parametric algorithm that estimates the target variable by con-

sidering the average or weighted average of the values of its K nearest neighbors in

the feature space. KNN-R operates on the principle that similar data points tend

to have similar target values. It is a simple yet effective algorithm for regression

tasks, particularly when the underlying relationships in the data are not easily

characterized by a mathematical function.

In KNN-R, the choice of K determines the number of neighbors considered for

estimating the target value. A smaller K value captures local information and is

more susceptible to noise, while a larger K value captures global information and

may oversmooth the predictions. Additionally, the choice of distance metric, such

as Euclidean distance or Manhattan distance, affects the calculation of similarity

between data points and can influence the performance of KNN-R.

Motivation

The flexibility of KNN-R allows it to adapt to the local characteristics of the

data, enabling accurate reconstructions of helical structures. By considering the

nearest neighbors in the feature space, KNN-R can effectively model the non-linear

mappings between the planar polygonal projection (input) and the corresponding

z-coordinate (target), leading to faithful 3D reconstructions.

Furthermore, KNN-R is known for its simplicity and ease of implementation.

It does not require assumptions about the underlying data distribution or complex

mathematical computations. This makes KNN-R a suitable choice when the focus

is on the intrinsic structure of the data and when interpretability is desired.

CHAPTER 3. 3D RECONSTRUCTION OF CIRCULAR HELICES 55

Training

Similar to RFR and SVR, the training process for KNN-R involves several key con-

siderations. Firstly, the choice of K must be determined. This can be done through

hyperparameter tuning techniques, such as grid search or cross-validation, to find

the optimal K value that balances model complexity and predictive performance.

The values chosen for training include [’5’, ’10’, ’15’, ’25’].

Secondly, the distance metric used to measure the similarity between data

points needs to be selected. Euclidean distance is commonly used in KNN-R, but

other metrics like Manhattan distance can be employed based on the characteristics

of the data and the underlying problem. The values chosen for training include

[’Euclidean distance’, ’Manhattan distance’].

Combination ID
Parameters

K value Distance metric

Combination 1 10 Euclidean distance

Combination 2 10 Manhattan distance

Combination 3 15 Manhattan distance

Combination 4 5 Euclidean distance
...

...
...

Table 3.5: Some of the parameter combinations for KNN-R.

Table 3.5 shows some of the parameter combinations. Figure 3.14 illustrates

the R2 scores of some of the models trained with different parameter combinations.

As a result of the grid search, we identify the combination [K value = ’25’, Distance

metric =’Euclidean distance’] as the one that provides the best model performance

R2 = 0.88.

3.4.7 Artificial neural networks (ANN)

ANN is a class of ML models inspired by the structure and functionality of the

human brain. ANN consists of interconnected nodes, called neurons, organized

in layers. Each neuron takes inputs, applies a mathematical transformation, and

produces an output. Figure 3.15 show the architecture of ANN. The strength of

ANN lies in their ability to learn complex patterns and relationships in the data

through a process known as training.

56 3.4. MODELS TRAINING

...

Figure 3.14: The R2 score for some of the parameter combinations of KNN-R.

ANN is particularly suited for tasks that involve non-linear mappings and in-

tricate relationships between input variables and the target variable. Traditional

linear models may struggle to capture and represent these complex functions ac-

curately. ANN, on the other hand, can leverage multiple layers and nonlinear

activation functions to capture intricate patterns and relationships in the data.

The neurons in each layer receive inputs, perform calculations using weights and

biases, and apply an activation function to produce an output. By stacking multi-

ple layers with increasing complexity, ANN can learn and model highly nonlinear

relationships, making them a powerful tool for regression tasks.

The training process of ANN involves adjusting the weights and biases of the

neurons to minimize a predefined loss function. This adjustment is performed

iteratively using optimization algorithms such as stochastic gradient descent or

Adam. Backpropagation, a fundamental algorithm in neural networks, is used

to compute the gradients of the loss function with respect to the weights and

biases, enabling the network to learn from data and optimize its parameters. By

iteratively updating the weights and biases based on the computed gradients, the

ANN gradually improves its performance and becomes better at generalizing to

unseen data.

CHAPTER 3. 3D RECONSTRUCTION OF CIRCULAR HELICES 57

Figure 3.15: The network architecture of ANN.

Motivation

Traditional methods for helical reconstruction often rely on simplified mathemat-

ical models or heuristic approaches, which may not capture the full complexity of

helical structures. These methods may struggle to account for variations in cur-

vature, twist, and other intricate characteristics that are essential for accurate 3D

reconstruction. ANN, with their capacity to learn complex patterns and relation-

ships, provides a more flexible and data-driven approach to helical reconstruction.

Another motivation for using ANN in helical reconstruction is their ability

to handle high-dimensional data and learn from large amounts of training data.

Moreover, ANN offers the advantage of being able to learn from diverse datasets.

By training on a wide range of helical structures with different characteristics, ANN

can generalize their learning and adapt to variations in the data. This flexibility

allows ANN to handle different helical geometries, variations in helical parameters,

and even new helical structures that were not present in the training dataset. As a

result, ANN provides a robust and adaptable framework for helical reconstruction,

accommodating the inherent diversity and complexity of helical structures.

Additionally, the training process of ANN allows for iterative refinement and

optimization. By adjusting the weights and biases during training, ANN continu-

ously improve their performance and fine-tune their ability to capture the intricate

58 3.4. MODELS TRAINING

details of helical structures. This iterative learning process ensures that the ANN

becomes increasingly accurate in reconstructing circular helices as it receives more

training examples.

Training

Hyperparameter tuning plays a crucial role in optimizing the behavior and perfor-

mance of the ANN model. Several key hyperparameters significantly influence the

model’s behavior, including:

• Number of hidden layers: The number of hidden layers in the ANN deter-

mines the complexity and depth of the model. Increasing the number of

hidden layers allows the ANN to learn more complex relationships but may

also lead to overfitting if not carefully tuned. The values chosen for training

include [’2’, ’3’, ’5’, ’10’].

• Number of neurons per hidden layer: The number of neurons in each hidden

layer affects the model’s capacity to capture and represent complex patterns.

A larger number of neurons increases the model’s flexibility but may also

increase the risk of overfitting. The values chosen for training include [’120’,

’130’, ’150’, ’170’].

• Activation function: The choice of activation function determines the non-

linear transformation applied to the inputs of each neuron. Common acti-

vation functions used for regression problems are hyperbolic tangent (tanh),

and rectified linear unit (ReLU) for the inner layers (Note that the perfor-

mance of both activation functions is similar if the network is not very deep).

Since the output of the network are the z-coordinates which can be any real

value, the activation function of the output layer must be linear. The values

chosen for training include [’ReLU’, ’tanh’].

• Learning rate: The learning rate controls the step size during the optimiza-

tion process. A higher learning rate allows for faster convergence but may

lead to overshooting the optimal solution, while a lower learning rate requires

more iterations to converge but may yield more accurate results. The values

chosen for training include [’0.01’, ’0.05’, ’0.1’].

CHAPTER 3. 3D RECONSTRUCTION OF CIRCULAR HELICES 59

• Number of training iterations: The number of training iterations determines

the length of the training process. ANN typically requires a large number

of iterations to converge and generate high-quality samples. It is important

to train the ANN for a sufficient number of iterations to achieve desirable

results. The values chosen for training include [’200’, ’450’, ’600’].

• Regularization techniques: Regularization techniques such as L1 or L2 regu-

larization can be applied to prevent overfitting in the ANN. These techniques

introduce penalty terms to the loss function, discouraging the model from

relying too heavily on any single input feature or neuron. Dropout is another

regularization technique that randomly disables a fraction of neurons during

training, forcing the remaining neurons to learn more robust and indepen-

dent representations. The values chosen for training include [’Dropout’, ’L1’,

’L2’].

• Optimizer: The optimizer determines the algorithm used to update the

weights and biases of the ANN during training. Popular optimization al-

gorithms include stochastic gradient descent (SGD), Adam, and RMSprop.

The values chosen for training include [’SGD’, ’Adam’, ’RMSprop’].

...

Figure 3.16: The R2 score for some of the parameter combinations of ANN.

60 3.4. MODELS TRAINING

Combination ID
Parameters

NB of

hidden

layers

NB of

neurons

Activation

function

Learning

rate

Regularization

techniques

Combination 1 2 150 ReLU 0.01 Dropout

Combination 2 3 120 tanh 0.1 L2

Combination 3 5 170 ReLU 0.01 L1

Combination 4 10 130 tanh 0.05 L2
...

...
...

...
...

...

Table 3.6: Some of the parameter combinations for ANN.

Table 3.6 shows some of the parameter combinations, note that the table does

not show all the parameters used during the hyperparameters tuning. Figure 3.16

illustrates the R2 scores of the models trained with different parameter combi-

nations. As a result of the grid search, we identify the combination [NB of hid-

den layers = ’2’, NB of neurons = ’150’, Activation function = ’RelU’, Learning

rate = ’0.01’, Number of training iterations = ’450’, Regularization techniques =

’Dropout’, Optimizer = ’Adam’] as the one that provides the best model perfor-

mance R2 = 0.97.

3.4.8 Encoder-Decoder convolutional neural networks (ED-

CNN)

ED-CNN are a class of neural network architectures specifically designed for tasks

involving structured or variable-sized data, such as image segmentation, image

generation, and 3D reconstruction. These networks combine the power of convolu-

tional neural networks in capturing spatial information with the encoder-decoder

structure in transforming high-dimensional input into a lower-dimensional repre-

sentation and then reconstructing the output.

The architecture of ED-CNN consists of an encoder network followed by a

decoder network (Figure 3.17). The encoder network is responsible for extracting

relevant features from the input data and compressing it into a lower-dimensional

representation, while the decoder network takes this compressed representation

CHAPTER 3. 3D RECONSTRUCTION OF CIRCULAR HELICES 61

and reconstructs the output.

The encoder network typically consists of several convolutional layers, which

convolve the input data with learned filters to capture local patterns and spatial

relationships. These convolutional layers are often followed by pooling layers, such

as max pooling or average pooling, which downsample the feature maps, reducing

their spatial dimensionality and extracting the most salient information. Batch

normalization, a technique commonly employed in ED-CNN, may also be incor-

porated after the convolutional layers. Batch normalization helps to normalize

the activations of each layer, making the network more stable during training and

allowing for faster convergence.

After the encoder network, the decoder network takes the compressed represen-

tation and aims to reconstruct the output in its original format or domain. The

decoder network often employs upsampling operations, such as transposed con-

volutions or bilinear upsampling, to increase the spatial resolution of the feature

maps. These upsampling operations are typically accompanied by convolutional

layers, which help refine the features and generate the final output.

During the training process of ED-CNN, the model’s parameters are opti-

mized using backpropagation and gradient descent-based algorithms. The model

is trained on input-output pairs, where the input is fed through the encoder net-

work to obtain the compressed representation, and the output is compared with

the ground truth. The discrepancy between the predicted output and the ground

truth is quantified by a loss function, such as mean squared error or cross-entropy

loss. The gradients of the loss function with respect to the model’s parameters are

computed through backpropagation, allowing for parameter updates that gradu-

ally improve the model’s performance.

The strength of ED-CNN networks lies in their ability to handle structured or

variable-sized data while capturing spatial dependencies and contextual informa-

tion. These networks have demonstrated exceptional performance in tasks such

as image segmentation, where the input and output have a spatial structure and

varying resolutions. By leveraging convolutional layers, pooling operations, up-

sampling techniques, and batch normalization, ED-CNN networks can effectively

model complex patterns, normalize activations, and generate detailed and contex-

tually meaningful outputs.

62 3.4. MODELS TRAINING

Figure 3.17: The network architecture of Convolutional Encoder-Decoder.

Motivation

ED-CNN models have demonstrated remarkable performance in various domains,

particularly in tasks involving image analysis and generation. However, their effi-

cacy is not limited to image-related problems. These models have shown promising

results in handling non-image inputs as well (Bing et al. 2021), making them a

compelling choice for a wide range of applications.

By testing the effectiveness of ED-CNN models in the context of helical 3D

reconstruction, we aim to leverage their capabilities beyond the realm of images.

The objective is to explore their potential for capturing the intricate details of cir-

cular helices, overcoming the limitations of traditional approaches, and providing

a more accurate and data-driven solution for circular helix reconstruction.

CHAPTER 3. 3D RECONSTRUCTION OF CIRCULAR HELICES 63

Training

Hyperparameters play a crucial role in optimizing the behavior and performance

of ED-CNN models. Some key hyperparameters that significantly influence the

model’s behavior include:

• Number of convolutional layers: The number of these layers affects the depth

and complexity of the model. Increasing the number of layers allows the

model to capture more intricate features but may also increase the risk of

overfitting if not properly tuned. Note that in our model, each convolutional

layer in the Encoder is followed by a pooling layer to decrease the spatial

dimensions, while in the Decoder, each convolutional layer is followed by an

UpSampling layer to restore the original dimensions of the data. The values

chosen for training include [’6’, ’8’, ’10’, ’12’].

• Filter size: The size of the filters used in the convolutional layers determines

the receptive field of the model. Larger filters can capture more global fea-

tures, while smaller filters excel at capturing local details. The values chosen

for training include [’24’, ’36’, ’48’].

• Learning rate: Similar to ANN. The values chosen for training include [’0.01’,

’0.05’, ’0.1’].

• Regularization techniques: Similar to ANN. The values chosen for training

include [’Dropout’, ’BatchNormalization’].

• Number of training iterations: Similar to ANN. The values chosen for train-

ing include [’200’, ’450’, ’600’].

• Optimizer: Similar to ANN. The values chosen for training include [’SGD’,

’Adam’, ’RMSprop’].

Table 3.7 shows some of the parameter combinations. Figure 3.18 illustrates

the R2 scores of some of the models trained with different parameter combinations.

As a result of the grid search, we identify the combination [NB of convs layer =

’8’, Filter size = ’150’, Learning rate = ’0.01’, Number of training iterations =

64 3.5. CURVE SEGMENTATION AND RECONSTRUCTION

...

Figure 3.18: The R2 score for some of the parameter combinations of ED-CNN.

Combination ID
Parameters

NB of Convs
layers

Filter size Learning rate Regularization
techniques

Combination 1 12 24 0.1 Dropout

Combination 2 8 48 0.01 BatchNormalization

Combination 3 6 48 0.05 Dropout

Combination 4 10 36 0.01 BatchNormalization
...

...
...

...
...

Table 3.7: Some of the parameter combinations for ED-CNN.

’600’, Regularization techniques = ’BatchNormalization’, Optimizer = ’Adam’] as

the one that provides the best model performance R2 = 0.92.

3.5 Curve segmentation and reconstruction

After training the ML model, we divide the input curve into smaller segments using

a curve segmentation approach. Each segment is independently reconstructed, and

afterward, we combine them to form the complete 3D circular helix approximation.

To enhance the overall smoothness of the curve, especially at the connecting points

between segments, a post-processing smoothing algorithm is employed. This al-

CHAPTER 3. 3D RECONSTRUCTION OF CIRCULAR HELICES 65

gorithm plays a vital role in refining the reconstructed curve and enhancing its

aesthetic quality.

3.5.1 Curve segmentation

Before discussing how we divide the input curve (P2D = p2D,0, p2D,1, ..., p2D,n) into

sections, we first describe how for a given section of the input curve (p2D,i, ..., p2D,j)

we measure the smoothness of its corresponding 3D reconstructed curve (p3D,i, ..., p3D,j).

n represents the number of points of the input polygonal curve P2D, with 1 ≤ i <

j ≤ n.

In order to compare the smoothness of two 3D curves, we employed the concept

of variance curvature. Where the average curvature of a curve provides informa-

tion about its overall smoothness. It represents the average amount of bending

or curvature along the entire length of the curve. A higher variance curvature

indicates a more tightly curved or jagged curve, while a lower variance curvature

suggests a smoother and more gradual curve.

Therefore, to do the smoothness comparison between the two 3D reconstructed

curves, firstly, starting from a set of points representing each curve we calculate the

curvature at each point of the curves. The curvature κ(t) is defined as the absolute

value of the cross product of the second derivatives of the x and y coordinates with

t being the arc length:

κ(t) = |x
′′(t) ∗ y′(t)− y′′(t) ∗ x′(t)

(x′(t)2 + y′(t)2)(3/2)
|.

Next, we compute the variance of curvature σ2(κ) for each curve. The variance is

calculated as the average of the squared differences between each curvature value

and the mean curvature value:

σ2(κ) =
1

n

n∑
i=1

(κti − κ̄)2

where κ̄ is the mean curvature value. Thus for a given section of the input curve

(p2D,i, ..., p2D,j) we calculate a term for error cost in reconstruction as follows:

Ecost(p3D,i,p3D,j) = σ2(κp3D,i,p3D,j
) where this term determines the smoothness of the

66 3.5. CURVE SEGMENTATION AND RECONSTRUCTION

reconstructed curve. Hence, the curve with the lowest Ecost value is the smoother

curve.

Note that we chose the variance of curvature as a measure of smoothness be-

cause it captures the extent of variability and irregularity in the bending of a curve,

providing a comprehensive assessment beyond just the average curvature. Further-

more, since the curvature of a circular helix remains constant with arc length, a

lower variance of curvature indicates a smoother reconstructed curve that closely

resembles a circular helix.

To determine the best segmentation of the curve, we utilize the dynamic pro-

gramming algorithm used in (McCrae & Singh 2011). An essential parameter in

this algorithm is denoted as Ecost. We calculate the upper triangular part of a

matrix M , which has dimensions n × n, and n represents the number of points

in the input polygonal curve P2D. The entries M(i, j), with 1 ≤ i < j ≤ n, are

computed in a bottom-up manner, starting from elements closest to the diagonal,

using the following equation:

M(i, j) = min

{
Ecost(p3D,i,p3D,j), min

i<k<j
{M(i, k) +M(k, j)}

}
The above equation helps determine whether it is better to reconstruct a single

curve (Ecost(p3D,i,p3D,j)) for the entire section (p2D,i . . . p2D,j), or to divide the curve

into one or more pieces, each corresponding to the intervals (p2D,i . . . p2D,k) and

(p2D,k . . . p2D,j). The information regarding where to split the input curve is stored

as the matrix M is populated.

Once the process is done, the elementM(1, n) represents the cost of the optimal

configuration for points (p3D,1 . . . p3D,n) in the polygonal curve P . To reconstruct

the solution, we navigate through the matrix M starting from the element (1, n)

and make necessary splits when required.

3.5.2 Curves assembling and post-processing smoothing

After dividing the input polygonal curve into segments and reconstructing each

segment using the ML algorithm, we assemble the reconstructed pieces to form

the 3D reconstructed circular helix. However, this assembly process introduces

G1 and G2 discontinuities (tangent and curvature discontinuities), particularly

CHAPTER 3. 3D RECONSTRUCTION OF CIRCULAR HELICES 67

at the connecting points of the reconstructed pieces. To address this issue, we

first uniformly sample the reconstructed circular helix curve and then apply the

Savitzky-Golay filter (Savitzky & Golay 1964) to enhance its smoothness. This

filter employs a moving window and polynomial fitting approach, where it fits a

low-degree polynomial to local segments of the curve within the selected window.

By replacing each data point with a calculated polynomial coefficient, it effectively

creates a smoother and visually appealing representation of the curve, preserving

essential features while minimizing noise. This results in a reconstructed circular

helix that not only maintains continuity but also offers improved aesthetic quality.

3.6 Experiments results

Our method has been implemented in Python and has been tested with three types

of input curves. Firstly we apply our reconstruction to polygonal curves, which are

the orthogonal projection of synthetic circular helices subjected to different rota-

tions. Secondly, we tested the effectiveness of our reconstruction method on noisy

input curves. Lastly, we evaluated our method on hand-drawn curves. In all exper-

iments, we compared the 3D reconstructed curves generated using various models

including SVR, RFR, KNN-R, GPR, ED-CNN, and ANN. The results of the GBR

model are not presented due to its poor performance. For each reconstruction, we

provide visual comparisons before and after applying the post-processing smooth-

ing algorithm. To quantify the reconstruction quality, we used the error parameter

Ecost(P3D) = σ2(κP3D
), where P3D is the reconstructed curve.

3.6.1 Results using synthetic input data

We test our approach using synthetic input data, which is the orthogonal pro-

jection of true circular helices. Figure 3.19, Figure 3.20, and Figure 3.21 shows

the reconstructed curves generated using SVR, RFR, KNN-R, GPR, ED-CNN,

and ANN models before and after applying the post-processing smoothing algo-

rithm in (a) and (b) respectively. The results show that all ML algorithms provided

visually accepted results. However, it is noteworthy that KNN-R and ANN consis-

tently achieved the best reconstruction performance based on the error parameter

68 3.6. EXPERIMENTS RESULTS

Ecost(P3D) = σ2(κ(P3D)), which quantifies the variance of the curvature, an impor-

tant characteristic of the circular helix. Figure 3.22 shows the curvature of the

reconstructed 3D circular helices using KNN-R algorithm shown in Figure 3.19,

Figure 3.20, and Figure 3.21 respectively.

CHAPTER 3. 3D RECONSTRUCTION OF CIRCULAR HELICES 69

Figure 3.19: The reconstructed 3D circular helix using the orthogonal projection

of synthetic circular helix before and after applying the post-processing smoothing

algorithm in (a) and (b) respectively. σ2 is the variance of curvature of each

reconstructed curve.

70 3.6. EXPERIMENTS RESULTS

Figure 3.20: The reconstructed 3D circular helix using the orthogonal projection

of synthetic circular helix before and after applying the post-processing smoothing

algorithm in (a) and (b) respectively. σ2 is the variance of curvature of each

reconstructed curve.

CHAPTER 3. 3D RECONSTRUCTION OF CIRCULAR HELICES 71

Figure 3.21: The reconstructed 3D circular helix using the orthogonal projection

of synthetic circular helix before and after applying the post-processing smoothing

algorithm in (a) and (b) respectively. σ2 is the variance of curvature of each

reconstructed curve.

72 3.6. EXPERIMENTS RESULTS

Figure 3.22: (1), (2), and (3) show the curvature of the reconstructed 3D circular

helices using KNN-R algorithm shown in Figure 3.19, Figure 3.20, and Figure 3.21

respectively.

3.6.2 Results using hand-drawn input data

To evaluate our approach against real-life input data, we test it using hand-drawn

curves. Figure 3.23, and Figure 3.24 shows the reconstructed curves generated

using SVR, RFR, KNN-R, GPR, ED-CNN, and ANN models before and after

applying the post-processing smoothing algorithm in (a) and (b) respectively. The

results demonstrate that all ML algorithms provided visually accepted results ex-

cept SVR in Figure 3.24. Once again, KNN-R and ANN consistently outperformed

other models in terms of the error parameter Ecost(P3D) = σ2(κ(P3D)). It is impor-

tant to note that the viewpoint of the reconstructed curve may differ among the

models in both figures, as we selected the viewpoint that offered the best visual-

ization of the reconstructed curve for each model. Figure 3.25 shows the curvature

of the reconstructed curves using KNN-R algorithm shown in Figure 3.23, and

Figure 3.24 respectively.

CHAPTER 3. 3D RECONSTRUCTION OF CIRCULAR HELICES 73

Figure 3.23: The reconstructed 3D circular helix using hand-drawn curve before

and after applying the post-processing smoothing algorithm in (a) and (b) respec-

tively. σ2 is the variance of curvature of each reconstructed curve.

74 3.6. EXPERIMENTS RESULTS

3D curve

Figure 3.24: The reconstructed 3D curve using hand-drawn curve before and after

applying the post-processing smoothing algorithm in (a) and (b) respectively. σ2

is the variance of curvature of each reconstructed curve.

CHAPTER 3. 3D RECONSTRUCTION OF CIRCULAR HELICES 75

Figure 3.25: (1), and (2) show the curvature of the reconstructed 3D curves using

KNN-R algorithm shown in Figure 3.23, and Figure 3.24 respectively.

3.7 Limitations

While our approach demonstrates promising results, it does have some limitations

that should be considered:

Firstly, our methods were able to generate approximate and not exact circular

helix. The curvature and torsion of our reconstructed curves were not strictly con-

stant with arc length. Therefore previous work such as (Cherin et al. 2014, Cordier

et al. 2016) produced a better 3D reconstruction of Euler spiral. However, our pri-

mary contribution lies in the evaluation of ML models for the 3D reconstruction

of circular helices.

Additionally, our reconstruction method may encounter difficulties when deal-

ing with specific types of curves. Straight-line curves and curves with sharp corners

pose challenges to the accuracy of our models, as they deviate significantly from

the true helical shape that the models are trained on. Therefore, the performance

of our approach may be compromised when applied to such curves.

Another limitation lies in the segmentation of the input curve. Currently,

76 3.8. CONCLUSION

we divide the curve into segments and reconstruct each segment independently

before assembling the reconstructed curves together to form the approximate re-

constructed 3D circular helix. This segmentation strategy can introduce disconti-

nuities in the form of C1 and C2 discontinuities between the reconstructed curves.

Consequently, the smoothness and continuity of the overall reconstructed circular

helix may be affected, particularly at the connecting points of the segments. One

possible solution is to reconstruct multiple curves for each input segment. There-

fore, in the end, we form the reconstructed 3D circular helix as the assembling of

reconstructed curves, one per input curve. The selection of these curves will be

based on their continuity with the previous and next curves.

3.8 Conclusion

This chapter presents an extensive study on the application of ML algorithms for

the 3D reconstruction of circular helices from planar polygonal curves. Various

ML algorithms were described and trained specifically for circular helix recon-

struction through careful algorithm selection and hyperparameter tuning. The

proposed approach was evaluated using polygonal curves representing the orthog-

onal projection of true 3D circular helices as well as hand-drawn curves. The

results demonstrate that most ML algorithms achieved visually and systemati-

cally acceptable reconstructions, with a notable performance by algorithms like

KNN-R and ANN, while SVR exhibited a weaker performance.

In conclusion, with the recent success of ML algorithms in many domains, it

was quite interesting to test such algorithms for the 3D reconstruction of circu-

lar helices. The results show the capability of these algorithms to produce nice

approximately reconstructed 3D circular helices.

77

Chapter 4

3D reconstruction of curves

4.1 Introduction

In the previous chapter, ML models, particularly ANN and KNN-R, demonstrated

their effectiveness in reconstructing an approximate 3D helix from planar polygonal

curves. However, the simplicity of the helix curve, with its constant curvature and

torsion along its arc-length, played a crucial role in the success of ML models

for helix reconstruction. Nevertheless, when confronted with more complex curve

families like Euler spiral curves, which exhibit linearly evolving curvature and

torsion, or free-form curves, these models could not provide good reconstruction.

Another limitation of ML models is that they can only produce one reconstruction

for each segment of the input curves. This limitation prevents us from imposing

curvature and torsion continuity constraints during the assembly process of the

3D reconstructed pieces. It is important to note that a polygonal curve in 2D can

correspond to multiple curves in the 3D space.

Motivated by the aforementioned limitations, we explore alternative methods

to tackle the challenges posed by more complex families of curves. In this chapter,

we present a novel approach for reconstructing 3D Euler spirals using a curve-

matching technique in a piecewise manner. Additionally, we introduce a more

generalized method capable of reconstructing various curve types. This method is

based on the idea of fitting a set of ellipses to the input curve, which enables us

to determine the osculating circles and, subsequently, the tangent at each point of

78 4.2. 3D RECONSTRUCTION OF EULER SPIRAL CURVES

the curve, facilitating the 3D reconstruction process.

4.2 3D reconstruction of Euler spiral curves

This section presents our published work (Ali Fakih 2023), where we introduced a

novel approach for reconstructing 3D Euler spiral curves using a piecewise curve-

matching technique. Given a 2D input curve that we have to perform its 3D

reconstruction. We first divide it into smaller pieces. For each piece, we search

for the closest matches from a dataset we created that contains pieces of Euler

spirals. Then, we connect the matched pieces and apply a smoothing algorithm to

generate the reconstructed piecewise 3D Euler spiral curve. For additional results

of our reconstruction in this section, please refer to Appendix A.

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT),

Vol.13, No.5, October 2023

Dhinaharan Nagamalai (Eds): CGASP, VCOI, BLKCA - 2023

pp. 01-19, 2023. IJCSEIT– 2023 DOI : 10.5121/ijcseit.2023.13501

PIECEWISE RECONSTRUCTION OF 3D EULER

SPIRALS FROM PLANAR POLYGONAL CURVES

Ali Fakih, Frederic Cordier and Yvan Maillot

IRIMAS, EA 7499, Université de Haute Alsace, Mulhouse, France

ABSTRACT

In this article, we propose a method for reconstructing approximate piecewise 3D Euler spirals from

planar polygonal curves. The method computes the 3D coordinates of approximate Euler spiral such that

its orthogonal projection onto the 2D plane is the closest possible to the input curve. To achieve this, a

dataset is created, comprising Euler spiral segments and their orthogonal projections. Given an input

curve, it is sampled and split into segments. Each segment is matched with the closest Euler spiral segments

from the dataset, forming a pool of candidates. The optimal set of connected Euler spiral segments is then

selected to reconstruct the approximate piecewise 3D Euler spiral. The selection prioritizes smoothness

continuity at connecting points while minimizing the distance between the orthogonal projection and the

input curve. We evaluate our method against synthetic 3D Euler spirals by applying our reconstruction to

the orthogonal projection of the synthetic Euler spirals.

KEYWORDS

Euler spiral, 3D reconstruction, piecewise reconstruction.

1. INTRODUCTION

3D Euler spirals are aesthetically pleasing curves whose curvature and torsion evolve linearly
with arc length [1]–[3]. They possess desirable properties, such as invariance to similarity

transformations (translation, rotation, and scaling), symmetry, extensibility, and smoothness [4].

In this work, we focus on the 3D reconstruction of Euler spirals from planar polygonal curves
which can be used in different applications since there are many domains in which the 3D Euler

spirals are useful like aerospace vehicles (by creating smooth transitions between different flight

regimes), turbomachinery (by creating smooth, continuously curved flow paths), medical devices

(to design medical devices that need smooth and curved paths through the body like catheters and
endoscopes).

Despite the presence of all the mentioned properties, to the best of our knowledge, there is no
previous work in the literature that aims to reconstruct the 3D Euler spirals from planar polygonal

curves. The goal of this paper is to fill this gap by proposing an algorithm that reconstructs

piecewise approximate 3D Euler spirals from planar polygonal curves. The algorithm takes a
polygonal curve in the plane z = 0 as input and produces an approximate piecewise 3D Euler

spiral whose orthogonal projection on the plane z = 0 is close to the input polygonal curve, as

illustrated in Figure 1.

 This paper is organized as follows. Section 2 presents the related work to our approach. The

overview of our approach is introduced in 3. In Section 4, we describe how we create our dataset.

Section 5 presents the algorithm we use to split the input polygonal curve and search the dataset
for the closest matched 3D Euler spiral segments. In Section 6, we explain the algorithm to select

CHAPTER 4. 3D RECONSTRUCTION OF CURVES 79

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT),

Vol.13, No.5, October 2023

2

and assemble the segments from the dataset to form the piecewise reconstructed 3D Euler spiral.
The results of our method are presented in Section 7. Finally, in Section 8, we conclude this work

and suggest some future research directions.

Figure 1: Starting from a planar polygonal curve (red curve) as an input we generate an approximation

piecewise 3D Euler spiral, whose orthogonal projection on the plane z = 0 is close to the input polygonal

curve.

2. RELATED WORK

As mentioned before, there is no previous work in the literature that focuses on reconstructing 3D

Euler spirals from planar polygonal curves. However, there are three categories of works that are

relevant to ours. First, we review the previous work on sketch-based modeling. Next, we discuss
the reconstruction of 3D circular helices from their planar orthogonal projection; circular helices

are special case of 3D Euler spiral. Finally, we also review the work done on the 2D and 3D Euler

spiral and its applications.

2.1. Sketch-based modeling

The idea behind the sketch-based modeling is to start from a drawn shape in the (x,y) plane which

is composed of lines, and then try to reconstruct the 3D shape whose projection onto the (x,y)

plane matches the input sketch. Some of the first reconstruction methods were done by solving an

optimization whose unknown variables are the third coordinates of the input sketch references [5],
[6] but the main drawback was that these methods only deal with rectilinear shapes.

With the rise of machine learning algorithms, several researchers have worked on solving the
sketch-based modeling problem using deep learning [7]–[11] but these algorithms are tailored to

specific shapes, such as faces, cars, and chairs, making them limited in their applicability. We

refer the reader to the state-of-the-art paper [12] for more details about sketch-based modeling
using deep learning.

80 4.2. 3D RECONSTRUCTION OF EULER SPIRAL CURVES

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT),

Vol.13, No.5, October 2023

3

2.2. The reconstruction of 3D circular helices from their planar orthogonal

projection

Circular helices are a special case of the 3D Euler spiral, sharing the property that their curvature

and torsion evolve linearly. However, the Euler spiral's curvature and torsion can vary along its

arc length, while the curvature and torsion of the circular helix are constant. There are multiple

previous works done on the reconstruction of 3D helices from their orthogonal projection [13]–
[15] and they achieved good results by applying optimization algorithms but the limitation of

these works is that they are also problem specific and only work for the helix shape.

2.3. 2D and 3D Euler spirals

The 2D Euler spiral, also known as the Clothoid or Cornu spiral, is a curve whose curvature
evolves linearly with arc length. It was independently discovered by several researchers including

Bernoulli, Euler, and Talbot [16]. Many researchers have used 2D Euler spirals in computer-aided

design. For example, in [17] they used two spirals to connect successive control polygon points in
the form of parabola-like. The work most closely related to ours is that of [18]–[20]. In their

work, they also reconstructed Clothoid splines in a piecewise manner from polygonal curves and

achieved good results. However, their method is limited to 2D Clothoids and cannot be used for
3D reconstruction, as opposed to our method which produces a piecewise 3D Euler spiral that fits

a planar polygonal curve.

The 3D Euler spiral is the curve whose curvature and torsion evolve linearly with arc length [4].
Several works have been done on the generation of 3D Euler spirals. In [21], the authors aimed to

generate a 3D Euler spiral, starting by refining a polygon, such that the polygon satisfies the

linearity evolution of the curvature along the arc but they ignored the torsion. In [22], the authors
defined the closed form parametrization of 3D Euler spirals by modeling the problem as a linear

time-variant system and studied its stability with Lyapunov techniques [23]. Their most

significant achievement was defining the closed form of the 3D Euler spiral in terms of the
standard Fresnel integrals that satisfy the property of both curvature and torsion evolving linearly

with arc length. In [4], the authors extend the Euler spirals from 2D to 3D by solving an

optimization problem and proving many of their properties, including their invariance to
similarity transformation (translation, rotation, and scaling), symmetry, extensibility, smoothness,

and roundness. Furthermore, in this article, they used the 3D Euler spiral for the archaeological

reconstruction such as the completion of the shape of some broken ancient sculptures and objects.

However, the proposed algorithm in this paper only works in 3D space, thus it cannot be used to
create 3D Euler spirals from planar polygonal curves.

3. OVERVIEW

The purpose of our method is to reconstruct approximate piecewise 3D Euler spirals from planar

polygonal curves. The input of our method is a 2D polygonal curve in the (x, y) plane and the

output is a piecewise 3D Euler spiral such that its orthogonal projection onto the (x, y) plane is

close to the input polygonal curve.

The common approach for curve matching is by using the equation that computes the coordinates

of the points along the curve through the arc length parameterization. However, this form does
not exist for the 3D Euler spiral. Alternatively, point coordinates can be computed through

optimization, but this would require a large computation time.Instead of applying the typical

curve matching algorithms, we create a dataset that contains short segments of 3D Euler spirals
with their planar polygonal projection. To enable comprehensive coverage of the diverse shapes

CHAPTER 4. 3D RECONSTRUCTION OF CURVES 81

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT),

Vol.13, No.5, October 2023

4

that may be encountered in the input polygonal curve, we make the dataset have segments of
various lengths and we apply different rotations them in addition to performing a uniform

sampling and scaling to enhance the representation of the segment and to remove the scaling

factor from our dataset.

In that direction, the reconstruction starts by splitting the input 2D polygonal curve 𝑆into

segments {𝑠1, 𝑠2, … }; the splitting is based on the dichotomy approach [24] to find a number of

matched 3D Euler spiral segments from the dataset for each segment of the input curve. 𝐶𝑠𝑖=
{𝑐𝑖,1, 𝑐𝑖,2, … } represents the set of candidate matched segments for segment 𝑠𝑖. At this point for

each segment of the input curve, we have a pool of possible matched Euler spiral segments
(candidates) from the dataset. We implement a new algorithm that selects the optimal connection

of candidates (one candidate from each candidate pool) using the Dijkstra algorithm [25]. The

selection of any two candidates that will link with each other is based on multiple criteria such as
their curvature continuity, torsion continuity, tangent continuity, normal continuity, and how far

their polygonal projection is from the input curve. The result of this step is a piecewise Euler

spiral represented in the form of a 3D polygonal curve. A smoothing is then applied on this

polygonal curve to improve the 𝐶0 and 𝐶1-continuity in order to obtain a reconstructed curve that

is more eye-pleasing.

4. DATASET

We create a dataset composed of 1,400,832 short 3D Euler spiral segments, with each segment

represented by a polygonal curve composed of 30 points in the (x, y, z) plane. The coordinates of

the 30 points together with the properties of the Euler spiral segment such as its curvature,
torsion, tangent, and normal values are stored in a text file. The overall size of the dataset is

around 1.2 GB. We decide to represent each segment with 30 points. A larger number of points

would provide a better representation of the segments, but would also result in an excessively
large dataset. On the other hand, a smaller number of points would cause the loss of important

details and features. We determine that representing our segments with 30 points provides the

best balance between a good curve representation and a manageable dataset size.

The orthogonal projection of each segment onto the (x, y) plane is obtained by removing the z

coordinate from all points that form the segment. This orthogonal projection will be used to find

the matched segments to the input 2D polygonal curve. The size of the dataset is quite large since
it contains 3D Euler spiral segments of varying starting points, lengths, and orientations. This is

to ensure that the dataset covers all possible cases for the reconstruction of any arbitrary curve.

Additionally, we apply uniform sampling to all dataset segments to ensure consistent

representation and standardize the comparison between them and the input curve. Finally, we

apply uniform scaling to all segments to remove the scale factor from our dataset and facilitate

dealing with input curves of any scale. Figure 2 shows some segments of the dataset.

82 4.2. 3D RECONSTRUCTION OF EULER SPIRAL CURVES

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT),

Vol.13, No.5, October 2023

5

Figure 2: Visualization of our dataset. Segments of 3D Euler spirals with their planar polygonal projection.

4.1. Dataset creation

In order to generate our dataset which is composed of short segments of 3D Euler spirals, we

follow the approach introduced in [4] where they define the 3D Euler spiral as the curve that

should minimize the sum of the square variation of its curvature 𝜅 and torsion 𝜏, therefore

minimizing the following integral:
𝐿

𝑆𝑑𝑠, (1)

𝑠 , 𝜕𝜅 𝜕𝑠,and 𝜅𝜏= 𝜕𝜏𝜕𝑠 . where 𝐿is the arc length,

Minimizing Equation 1 using the Euler-Lagrange equation leads to a curve whose curvature and

torsion evolve linearly. Thus, for some constants 𝜅0, 𝜏0, 𝛾, 𝛿 𝑅, and for :

𝜅 𝛾𝑠,
𝜏 𝛿𝑠,(2)

In order to ensure that our dataset adequately covers the diverse range of input polygonal curves,

we make the starting point parameter of the dataset segment to have different values along the

Euler spiral. To achieve this, we uniformly sample the starting point parameters along the curve

in the interval 𝑠𝑠, [𝑠𝑠,𝑎, 𝑠𝑠,𝑏] as illustrated in Figure 3 where 𝑠𝑠,𝑖 is the starting point parameter of

the segment 𝑖 of the dataset. By doing so, we ensure that our dataset includes segments whose

curvature changes from negative to a positive value, under the assumption that the curvature is

negative at 𝑠𝑠,𝑎 and positive at 𝑠𝑠,𝑏. We select 𝑠𝑠, as the upper limit starting point parameter since

as depicted in Figure 3, the curve exhibits a repeating pattern and is getting similar to a circular

shape beyond that point.

CHAPTER 4. 3D RECONSTRUCTION OF CURVES 83

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT),

Vol.13, No.5, October 2023

6

Concerning the length of the segments, we choose to make the segments short because long
segments would require a larger dataset to cover all possible input curves. We achieve this by

limiting the tangent angle difference between the starting point parameter 𝑇⃗⃗⃗ 𝑠 , and the ending

point parameter 𝑇⃗⃗⃗ 𝑒 ,𝑖 to a value within the range of [𝜋
4 , 𝜋]. This ensures that the ending

point parameter 𝑠𝑒,𝑖 of the segment 𝑖 that have a starting point parameter 𝑠𝑠,𝑖 will be 𝑠𝑒,𝑖 [𝑠𝑒,𝑎,
𝑠𝑒,𝑏] as illustrated in Figure 4.

Figure 3: The starting point of all dataset segments is between𝑠𝑠, [𝑠𝑠,𝑎,𝑠𝑠,𝑏].

Figure 4: The ending point parameter of segment 𝑖 that have a starting point 𝑠𝑠,is between

[𝑠𝑒,𝑎,𝑠𝑒,𝑏].

To represent all possible projections of the 3D Euler spiral segments, we apply a rotation along x,

y, and z axis for each segment of the dataset. Let 𝑀𝑖, 𝑅𝑥,, 𝑅𝑦,𝑖, and 𝑅𝑧,𝑖 be respectively the matrix

that represents the point's coordinates of the segment 𝑖 of the dataset, the rotation matrices along
the x, y, and z-axis:

84 4.2. 3D RECONSTRUCTION OF EULER SPIRAL CURVES

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT),

Vol.13, No.5, October 2023

7

where 𝛼, 𝛽, and 𝜆are respectively the rotation angle along x, y, and z axis. These rotation angles

are uniformly sampled in the range [0,2𝜋[in order to cover all possible rotation angles. The

rotated 3D Euler spiral segment 𝑐𝑖 is defined as:

𝑐𝑖= 𝑀𝑖𝑅𝑥,𝑖(𝛼)𝑅𝑦,𝑖(𝛽)𝑅𝑧,𝑖(𝜆).

4.2. Uniform scaling and sampling

Our dataset is composed of 3D Euler spiral segments. After splitting the input polygonal curve

into segments, for each input segment, we look for its closest matched Euler spiral segments in

the dataset. Since the input curve is in 2D, the matched segments should be in 2D as well. To
achieve this, we orthogonally project our dataset segments onto the (x,y) plane.

To establish a systematic search approach, we take advantage of the 3D Euler spiral's property of

invariance to similarity transformations (translation, rotation, and scaling) proved in [4]. We

apply a uniform scaling for all segments in our dataset, making them all have the same length

while preserving their original aspect ratio. This removes the scaling factor from our dataset and
allows us to deal with any segment of the input polygonal curve, regardless of its length.

Therefore, when we split the input polygonal curve into segments, we first scale each segment to

the same length as dataset segments, then we search for its closest matched Euler spiral segments
in the dataset.

The search for the closest matched segments for each input curve segment is based on the 2D

Fréchet distance [26] between the input segment and the orthogonal projection of all our dataset
segments. To do this, we require both input segments and the dataset segments to have the same

number of points, uniformly sampled at regular intervals along the arc length. This ensures that

the distance between any two consecutive points is equal in both, enabling a fair comparison. We
use the Fréchet distance as a metric to compare curves because it takes into account both the

spatial location and ordering of points along the curves, which makes it more suitable than other

distance metrics.

To efficiently store and search for the closest matching 3D Euler spiral segments in the dataset,

we store the dataset in a K-d tree [27] (k-dimensional tree). K-d tree is a data structure that is

used for efficient multidimensional search operations, particularly for finding the nearest
neighbors of a given point in a space of any number of dimensions. It works by recursively

dividing the search space into smaller regions called hyperrectangles, which are represented by

nodes in the tree. In our case, each node in the tree represents a 3D Euler spiral segment from the
dataset. By using a K-d tree to store our dataset, we can perform fast and accurate nearest

neighbor searches to find the closest matching segments to a given input curve segment.

5. CURVE SEGMENTATION

The input of our method is a planar polygonal curve as: 𝑆 = {𝑝1, 𝑝2, … , 𝑝𝑖, … , 𝑝𝑛}, where 𝑝𝑖 is

the coordinates of the point of index 𝑖 in the curve and 𝑛 the number of points of that curve. To

perform the approximate piecewise 3D Euler spiral reconstruction from the input curve, we first
split it into segments, with each segment starting from the point that follows the last point of the

previous segment. We sample and scale each segment uniformly, similarly to how we processed

the dataset segments. Next, we search for the closest matching Euler spiral segments from the
dataset for each input curve segment.

CHAPTER 4. 3D RECONSTRUCTION OF CURVES 85

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT),

Vol.13, No.5, October 2023

8

During the segmentation, our purpose is to decompose the curve into the smallest possible
number of segments; this is to avoid unnecessary computation time due to handling more

segments than needed. At the end of the segmentation, each segment of the input curve should

have at least 𝑁 matched segments from the dataset such that the Fréchet distance between them

and the input segment is less than a threshold 𝑇⃗⃗⃗, where 𝑁 and 𝑇⃗⃗⃗ are user-defined parameters.

Additionally, we search for the set of the closest 𝑁 matched segments (candidates) for each input

segment and not only the closest segment since in many cases the planar orthogonal projection of
two curves could be similar while their shape and orientation are quite different in 3D space.

Figure 5: The process to find the first split segment of the input curve. In (1), the segmentation algorithm

starts with the entire curve. In (2), the segmentation is done recursively until the number of matching

candidates is larger or equal to 𝑁. In (5), the s the segmentation is finished for the first segment 𝑆1.

The segmentation begins by taking the entire input curve as the first input segment. This segment
is uniformly scaled and sampled in the same way as for the dataset segments, then we search for

its closest matched Euler spiral segments in the dataset stored in the K-d tree. If the number of

matched segments whose Fréchet distance to the input segment is less than a threshold 𝑇⃗⃗⃗ exceeds

a certain number 𝑁 then the segmentation process is done. Otherwise, we recursively split the

segment into half (inspired by the dichotomy approach) and take its first half to repeat the

matching process until satisfying the previous condition. Figure 5 illustrates the recursive
segmentation to find the first segment of the input curve. We repeat the same process for the

remaining part of the input curve until it is fully covered.

Noting that we opted not to use a dynamic programming approach for segmentation, as it is more

computationally expensive. Instead, our approach recursively splits the input curve in half,

motivated by the fact that our dataset segments have various ending point positions, as shown in

Figure 4. Furthermore, for each segment of the input curve, we consider multiple matched
segments from the dataset, rather than just the closest match, to ensure that our segmentation

approach is both fast and effective.

86 4.2. 3D RECONSTRUCTION OF EULER SPIRAL CURVES

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT),

Vol.13, No.5, October 2023

9

if 𝑣

end

else

end

In the pseudocode below the function 𝑠𝑝𝑙𝑖() defines the boundaries of the split segment by

splitting the input polygonal curve 𝑆 from 𝑝𝑣1 to 𝑝𝑣2. 𝑝𝑣1 and 𝑝𝑣2 are respectively the points of

vertex indices 𝑣1 and 𝑣2 of the input polygonal curve 𝑆 with 𝑣1 <𝑣2. The function

𝑆𝑐𝑎𝑙𝑖𝑛𝑔𝐴𝑛𝑑𝑆𝑎𝑚𝑝𝑙𝑖𝑛() applies uniform scaling and sampling in the same way we did for our

dataset. This means that the sampled input segments will have the same number of points as the

dataset segments. The function 𝐺𝑒𝑡𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠() takes a given segment with a t as
input, then returns the closest matched Euler spiral segments from the dataset whose Fréchet

distance to the segment is smaller than 𝑇⃗⃗⃗. Finally, the function 𝐴𝑑𝑑𝐼𝑡𝑒𝑚𝑠𝑇⃗⃗⃗𝑜𝐿𝑖𝑠(), adds the

closest matched segments to a list which will be the result of this algorithm. This algorithm stops

when the starting point index 𝑣1 exceeds 𝑛 indicating that the entire input polygonal curve has

been processed.

Algorithm 1: 𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛 𝑎 lg 𝑜𝑟𝑖𝑡ℎ𝑚

 Input: 𝑆▷ The input polygonal curve

𝑇⃗⃗⃗▷ Frechet distance threshold

𝑁▷ The minimum number of matched segments

𝑛▷ The number of points of S

𝑣1 1 ▷ The starting point of the split segment

𝑣2= 𝑛▷ The ending point of the split segment𝑅𝑒𝑠𝑢𝑙𝑡𝑠= [] ▷
The result of the algorithm

 Output: 𝑅𝑒𝑠𝑢𝑙𝑡𝑠

 Function: 𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛(𝑆, 𝑇⃗⃗⃗, 𝑁, 𝑛, 𝑣1, 𝑣2, 𝑅𝑒𝑠𝑢𝑙𝑡𝑠):

 1 ≥ 𝑛then
 return Results

 𝑠𝑒𝑔𝑚𝑒𝑛𝑡 = 𝑠𝑝𝑙𝑖(𝑆, 𝑣1, 𝑣2)

𝑠𝑒𝑔𝑚𝑒𝑛𝑡 = 𝑆𝑐𝑎𝑙𝑖𝑛𝑔𝐴𝑛𝑑𝑆𝑎𝑚𝑝𝑙𝑖𝑛𝑔(𝑠𝑒𝑔𝑚𝑒𝑛𝑡)

𝑚𝑎𝑡𝑐ℎ𝐶𝑎𝑛𝑑 = 𝐺𝑒𝑡𝑀𝑎𝑡𝑐ℎ𝑖𝑛𝑔𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒(𝑠𝑒𝑔𝑚𝑒𝑛𝑡, 𝑇⃗⃗⃗)if

𝑠𝑖𝑧𝑒𝑂𝑓(𝑚𝑎𝑡𝑐ℎ𝐶𝑎𝑛𝑑) ≥ 𝑁then

𝐴𝑑𝑑𝐼𝑡𝑒𝑚𝑠𝑇⃗⃗⃗𝑜𝐿𝑖𝑠𝑡(𝑅𝑒𝑠𝑢𝑙𝑡𝑠, 𝑚𝑎𝑡𝑐ℎ𝐶𝑎𝑛𝑑)

𝑣1 = 𝑣2 + 1

𝑣2 = 𝑛

 𝑣2 = 𝑣2/2

 return 𝑆𝑒𝑔𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛(𝑆, 𝑇⃗⃗⃗, 𝑁, 𝑛, 𝑣1, 𝑣2, 𝑅𝑒𝑠𝑢𝑙𝑡𝑠)

6. CONNECTING THE SEGMENTS

To build the piecewise reconstructed 3D Euler spiral, we need to first find the optimal assembling
of the candidates for each split segment. Once the optimal connecting is found, a post-processing

step is required to reduce the discontinuity of the reconstructed curve at the connection points.

CHAPTER 4. 3D RECONSTRUCTION OF CURVES 87

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT),

Vol.13, No.5, October 2023

10

6.1. Finding the optimal connecting of the candidates

The splitting and matching algorithm applied to the input polygonal curve 𝑆 results in its partition

into 𝑚 segments {𝑠1, 𝑠2, … , 𝑠𝑚}, each has 𝑁matched candidate segments obtained from the

dataset. Specifically, 𝐶𝑠𝑖= {𝑐𝑖,1, 𝑐𝑖,2, … , 𝑐𝑖,𝑁} represents the set of 𝑁 candidate for the segment

𝑠𝑖, where 1 ≤ 𝑖 ≤ 𝑚. Each one of these candidates is a 3D Euler spiral curve segment that has its
own properties, such as its curvature, torsion, tangent, and normal values.

For each segment 𝑠𝑖 we have 𝑁 candidates. The final approximate Euler spiral reconstructed

curve 𝑅𝑆 is obtained by selecting one candidate per input segment 𝑠𝑖 and connecting these

selected candidates. Specifically, 𝑅𝑆 is represented as the set of selected candidates:

𝑅𝑆= {𝑐𝑖,1, 𝑐𝑖,2, … , 𝑐𝑖,𝑁},

 where 1 ≤ 𝑡 ≤ 𝑚, 𝑐1,𝑗∈ 𝐶𝑠1, 𝑐2,𝑘∈ 𝐶𝑠2, 𝑐𝑡,𝑙∈ 𝐶𝑠𝑡, and 𝑐𝑚,𝑓∈ 𝐶𝑠𝑚.

Figure 6: Visualization of the parameters that we consider while assembling two 3D Euler spiral curve

segments.

Figure 7: The architecture of the Dijkstra algorithm with 𝑁 = 3, the nodes represent the segment candidates

and the edges represent the loss function between the candidates.

88 4.2. 3D RECONSTRUCTION OF EULER SPIRAL CURVES

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT),

Vol.13, No.5, October 2023

11

In order to find the optimal connecting between the candidates of the input segments, the

selection of any two candidates (𝑐𝑡,𝑗, 𝑐𝑡+1,𝑘) that are going to follow each other in the 3D

reconstructed curve will be based on the degree of the smoothness continuity at their connecting
points as shown in Figure 6. By degree of smoothness continuity, we mean how smoothly the two

candidates (segments of 3D Euler spiral curve) link with each other. Based on the Equation 2, to

measure the degree of smoothness, we define a loss function that calculates the squared difference

between the curvature 𝜅𝑎,𝑐𝑡,𝑗, the curvature coefficient 𝛾𝑎,𝑐𝑡,𝑗, the torsion 𝜏𝑎,𝑐𝑡,𝑗, the torsion

coefficient 𝛿𝑎,𝑐𝑡,𝑗, the tangent 𝑇⃗⃗⃗ 𝑎 , 𝑐 𝑡 ,𝑗, and the normal 𝑁 𝑎 , 𝑐 𝑡 ,𝑗 at the ending

point of 𝑐𝑡,𝑗 and the curvature

𝜅𝑏,𝑐𝑡+1,𝑘, the curvature coefficient 𝛾𝑏,𝑐𝑡+1,𝑘, the torsion 𝜏𝑏,𝑐𝑡+1,𝑘, the torsion coefficient 𝛿𝑏,𝑐𝑡+1,𝑘, the

tangent 𝑇⃗⃗⃗ 𝑏 , 𝑐 𝑡 + 1 ,𝑘, and the normal 𝑁 𝑏 , 𝑐 𝑡 + 1 ,𝑘 at the starting point of

𝑐𝑡+1,𝑘:

(3)

where ||. ||^2 being the vector length. 𝑤𝜅, 𝑤𝜏, 𝑤𝑇⃗⃗⃗ , and 𝑤𝑁 are user-specified weight values to

give more importance to one the properties (curvature, torsion, tangent) over the others. In our

implementation, they are all equal to 1.0.

Let 𝐶𝐸(𝑅𝑆) be the cost function of the 3D Euler spiral reconstruction for the connecting of the

segment candidates in 𝑅𝑆. Specifically, 𝐶𝐸(𝑅𝑆) is calculated as the sum of the loss functions
[Equation 3] between each pair of consecutive candidates in this selected connecting of

candidates. To obtain the optimal 3D Euler spiral reconstruction, it is necessary to identify the

connecting set of segment candidates that results in the minimum cost, among all possible sets.

We utilize the Dijkstra algorithm [25] to identify the optimal connecting set of candidates that
will form the approximate piecewise reconstructed 3D Euler spiral. In this algorithm, we consider

𝑅𝑆 as a path from the source node which can be any candidate 𝑐1, of the first input segment 𝑠1 to

the destination node which can be any candidate 𝑐𝑚,𝑓 of the last input segment 𝑠𝑚. The candidates

represent the nodes and the loss function (𝑐𝑡,𝑗, 𝑐𝑡+1,𝑘)between each pair of consecutive candidates

represent the edges as shown in Figure 7. Our target is to search for the optimal path between any

candidates of 𝑠1 to any candidates of 𝐶𝑠𝑚 which will ultimately determine the set of candidates 𝑅𝑆

that form the piece-wise reconstructed Euler spiral while minimizing 𝐶𝐸𝑆(𝑅𝑆).

To achieve that, we apply Dijkstra's algorithm by assigning all candidates of 𝑠1 a cost equal to

zero and assigning infinite values to the remaining candidates. Since all candidates of 𝐶𝑠1 have a

cost equal to zero, we can begin applying the algorithm from any of these candidates. The

algorithm stops when we add a candidate of 𝐶𝑠𝑚 to the visited list of Dijkstra's algorithm,

indicating that we found the shortest path from a candidate of 𝐶𝑠1 to a candidate of 𝐶𝑠𝑚.

Specifically, we stop after adding the first candidate of 𝐶𝑠𝑚 to the visited list of Dijkstra's

algorithm, as all other candidates of 𝐶𝑠𝑚 are in the unvisited list of Dijkstra's algorithm which

means that their cost is higher.

CHAPTER 4. 3D RECONSTRUCTION OF CURVES 89

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT),

Vol.13, No.5, October 2023

12

6.2. Post processing

The connecting of the optimal set of candidates based on the position of their respective split

segments in the input curve exhibits a gap between them as shown for the first two matched
segments in Figure 8 (1), and Figure 8 (2). To address this issue, we apply a smoothing technique

to the reconstructed piecewise Euler spiral. First, each segment of the piecewise Euler spiral is

sampled into a polygonal curve. Next, we apply a uniform scaling to these polygonal curves in a
way to make their extremity intersect at the same location followed by resampling the entire

reconstructed curve by interpolating the x, y, and z coordinates based on the cumulative

Euclidean distance between successive points to ensure 𝐶0-continuity as shown in Figure 8 (3).

Regarding 𝐶1-continuity it was already nearly preserved because the loss function \ref{eq:3},

which ensured that each of two consecutive Euler spiral segments must have a near continuous

tangent at the end of the first segment and the beginning of the second segment. On the other

hand, 𝐺2 and 𝐺3continuity (curvature and torsion continuity) are slightly degraded since they both

rely on the second derivative which makes them very sensitive to small changes in the curve

segment.

Figure 8: The initial position of the orthogonal projection of the first two matched curves that will be used

for the reconstruction of the piecewise Euler spiral is shown in (1) and (2) where there's some gap between

them. In (3), after applying linear interpolation the two matched segments intersect at the same point.

An overview of the entire approach starting from the segmentation and matching step to the
segments connection and finally, the curve smoothing to form the approximate reconstructed 3D

Euler spiral is illustrated in Figure 9.

90 4.2. 3D RECONSTRUCTION OF EULER SPIRAL CURVES

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT),

Vol.13, No.5, October 2023

13

Figure 9: An overview of our approach. (1) Starting from a planar polygonal curve as an input, we split it

into segments Then for each segment, we get its closest matched Euler spiral

segments (candidates) from the dataset. (2) We select the set of candidates (one per each segment) that can

link with each other in the smoothest way. Then we apply a curve smoothing to form the reconstructed

curve.

7. RESULTS

Our algorithms are implemented in Python. The dataset is comprised of 1,400,832 3D Euler spiral

segments, each of which is composed of 30 3D points in addition to its properties such as its

curvature, torsion, tangent, and normal values stored in a text file. The overall size of the dataset

is 1.2 GB. During the splitting and matching algorithm, we set the variables 𝑁 and 𝑇⃗⃗⃗ to 350 and

0.2, respectively, where 𝑁 represents the minimum number of the closest matched dataset

segments for each input polygonal curve segment. To be considered a match, each of these closest
dataset segments must have a Fréchet distance with the input polygonal curve segment smaller

than the threshold 𝑇⃗⃗⃗. We chose 𝑁 = 350 to ensure a sufficiently large number of potentially

matched candidates from the dataset for each input polygonal curve segment. This is necessary
because two curves may appear close in 2D while their shape and orientation are quite different in

3D. We set the threshold 𝑇⃗⃗⃗ = 0.2 to ensure that the selected segments are a close match to the

input polygonal curve segment while minimizing the Fréchet distance between them. Note that all
the Euler spiral segments in the dataset have their length equal to 1.0.

7.1. Experimental results

To evaluate the performance of our reconstruction algorithm, we did 3 experiments. In the first

one, we generate 100 ground truth Euler spirals, all of which include an inflection point where the
curvature and torsion change sign. In the second experiment, we generate 100 segments of Euler

spirals, all of which have only a positive curvature and torsion. We use the orthogonal projection

of these 3D Euler spirals as an input to our method in these two experiments. Then we compared

CHAPTER 4. 3D RECONSTRUCTION OF CURVES 91

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT),

Vol.13, No.5, October 2023

14

the reconstructed Euler spirals with the ground truth Euler spirals. In the third experiment, we
reconstruct an approximate piecewise 3D Euler spiral from a hand-drawn polygonal curve.

To evaluate the similarity between the smoothed reconstructed 3D Euler spirals and the ground

truth spirals, we use a uniform sampling and scaling method in order to standardize the
comparison criteria between all reconstructed curves. Specifically, we first uniformly sample and

scale the ground truth Euler spirals to make them have the same length of 10.0. We also apply

uniform sampling and scaling to their corresponding reconstructed curve in order to make them
have the same number of points and the same scaling ratio.

Next, we calculate the distance between the 2D orthogonal projections of each pair of
corresponding points on the smoothed reconstructed 3D Euler spirals and the ground truth Euler

spirals. We also calculate the difference between the curvatures and torsions of each pair of their

corresponding points. These torsion and curvature differences are calculated on the 3D curves.

We estimate the similarity between them using three metrics:

1. The average Euclidean distance between their polygonal projections 𝑑𝑝.

2. The average difference between their curvatures 𝑑𝑐.

3. The average difference between their torsions 𝑑𝑡.

The results of the first two experiments are presented in the Figure 10, and Figure 11, which show
four reconstructions out of 100 for the first experiment and two out of 100 for the second

experiment. More reconstruction results are presented in the this link:

https://drive.google.com/file/d/1HS_tgVVPSnv7YfAJrZdxiKDmlkywUTeq/view?usp=sharing.Ea
ch reconstruction includes a comparison between the ground truth Euler spiral and the

approximate reconstructed Euler spiral before applying the post-processing smoothing in

{(a),(b),(v),(d)}, and after applying the post-processing smoothing in {(e),(f),(g),(h)}. Wherein (a)
and (e), we show both curves in 3D. In (b) and (f), we show their orthogonal projection. In (c) and

(g), we show the absolute value of their curvature. Finally, in (d) and (h), we show their torsion.

The similarity metrics 𝑑𝑝, 𝑑𝑐, and 𝑑𝑡 of the results shown in Figure 10, and Figure 11 are
presented in Table 1. Note that we obtained these values after applying uniform sampling and

scaling on all reconstructed curves to standardize the comparison criteria between them.

The results of the third experiment are presented in Figure 12. The Figure shows two 3D Euler
spiral reconstructions from hand-drawn curves before applying the post-processing smoothness in

{(a),(b),(v),(d)} and after applying it in {(e),(f),(g),(h)}. Wherein (a) and (e), we show the

reconstructed curve in 3D. In (b) and (f), we show the orthogonal projection of the reconstructed
Euler spiral and the hand-drawn polygonal curve. In (c) and (g), we show the absolute value of

curvature of the reconstructed Euler spiral. Finally, in (d) and (h), we show its torsion.

We have to mention that in sub-figures (c) and (d) of Figure 10, Figure 11, and Figure 12 we
show the concatenation of the curvature and torsion of the matched Euler spiral pieces, rather than

the entire reconstructed curve. Therefore, we do not observe any significant peaks on the graphs.

Conversely, sub-figures (g) and (h) demonstrate the curvature and torsion of the entire smoothed
reconstructed curve.

Regarding the results, it is shown in Figure 10, Figure 11, and Figure 12 that our reconstruction
algorithm produces visually eye-pleasing curve and a quite similar result to the ground truth Euler

spirals. Our reconstruction provides 3D curves with 𝐶0 and 𝐶1-continuity. Even 𝐺2 and

𝐺3continuity can be considered acceptable since they are mainly continuous except for some
peaks in the curvature and torsion occurring mainly at the joining points of the segments. This is

92 4.2. 3D RECONSTRUCTION OF EULER SPIRAL CURVES

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT),

Vol.13, No.5, October 2023

15

because curvature and torsion rely on the second derivative, which makes them highly sensitive to
small changes in the curve that may be difficult to discern visually.

Table 1: The similarity metrics (average 2D distance 𝑑𝑝, average curvature difference 𝑑𝑐 and average

torsion difference 𝑑𝑡) between the smoothed reconstructed Euler spirals of [Figure 10, Figure 11] and the

ground truth Euler spirals.

Curve name 𝑑𝑝 𝑑𝑐 𝑑𝑡

C1 0.04 0.34 0.88

C2 0.06 0.37 1.11

C3 0.13 0.43 1.01

C4 0.13 0.21 0.46

C5 0.52 0.09 0.23

C6 0.11 0.11 0.25

7.2. Theoretical and experimental time complexity

We use the K-d tree to search for the matched segments from the dataset for each input segment.

The complexity of the searching time inside the K-d tree is (log(𝑍)), where 𝑍is the number of

nodes in the tree, in our case, it is 1,400,832.

We used Dijkstra's algorithm to search for the optimal set of connected segments to form the

reconstructed piecewise Euler spiral. The time complexity of the Dijkstra algorithm is ((𝑉 + 𝐸)

log(𝑉)), where 𝑉 is the number of nodes and 𝐸 is the number of edges in the graph. In our case,

the number of nodes is 𝑉 = 𝑁2 × (𝑚 − 1) and the number of edges is 𝐸 = 𝑁 × 𝑚, where 𝑚

represents the number of segments that we split the input polygonal curve into, while 𝑁represents
the number of matched segment candidates from the dataset for each input segment.

To conduct our experiments, we utilized a computer with an Intel Core i7-10700K processor, 32
GB of RAM, and an NVIDIA Quadro RTX 4000 graphics card. The machine was running

Ubuntu 18.04.6 LTS as the operating system. The time required for each reconstruction varies

depending on the number of segments used to split the input curve. On average, the
reconstruction process takes around 50 seconds, with approximately 40 seconds spent on splitting

the curve and searching for matched curves in the dataset, and 10 seconds spent on finding the

best connecting of segments using Dijkstra's algorithm. The time required to apply the smoothing

process is negligible.

CHAPTER 4. 3D RECONSTRUCTION OF CURVES 93

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT),

Vol.13, No.5, October 2023

16

Figure 10: Comparison of our reconstructed Euler spirals before and after applying smoothing with the

ground truth 3D Euler spirals (Euler spirals that include an inflection point).

94 4.2. 3D RECONSTRUCTION OF EULER SPIRAL CURVES

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT),

Vol.13, No.5, October 2023

17

Figure 11: Comparison of our reconstructed Euler spirals before and after applying smoothing with the

ground truth 3D Euler spirals (Euler spirals with only positive curvature and torsion).

Figure 12: Reconstruction of approximate piecewise 3D Euler spirals from hand-drawn polygonal curves.

CHAPTER 4. 3D RECONSTRUCTION OF CURVES 95

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT),

Vol.13, No.5, October 2023

18

8. CONCLUSION

In this paper, we have proposed a novel method for approximating a piecewise 3D Euler spiral

that accurately fits a planar polygonal curve. The effectiveness of our method has been

demonstrated with a large number of input polygonal curves. Our reconstruction curves exhibited

to have 𝐶0 and 𝐶1 continuity which makes it possible to be used for 3D modeling and for
generating motions and trajectories. Future work could be to test our method against real-life

applications.

REFERENCES

[1] B. B. Kimia, I. Frankel, and A.-M. Popescu, “Euler spiral for shape completion,” International

Journal of Computer Vision 54, vol. 1, pp. 159–182, 2003.

[2] D. E. Knuth, “Mathematical typography,” Bulletin AMS 1, vol. 2, pp. 337–372, 1979.

[3] S. Ullman, “Filling-in the gaps: The shape of subjective contours and a model for their generation,”
Biol Cybern, vol. 25, pp. 1–6, 1976.

[4] A. T. Gur Harary, “3D Euler spirals for 3D curve completion,” Computational Geometry, vol. 45,

pp. 115–126, 2012.

[5] E. Brown and P. S. P. Wang, “Three-dimensional object recovery from twodimensional images: a

new approach,” in Intelligent robots and computer vision xv: Algorithms, techniques, active vision,

and materials handling, 1996, pp. 138– 147.

[6] K. Shoji, K. Kato, and F. Toyama, “3-D interpretation of single line drawings based on entropy

minimization principle,” Proceedings of the 2001 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition, vol. 2, pp. 90–95, 2001.

[7] N. Nozawa, H. Shum, E. Ho, and S. Morishima, “Single Sketch Image based 3D Car Shape

Reconstruction with Deep Learning and Lazy Learning,” in Proceedings of the 2020 International

Conference on 3D Vision, 2020, pp. 898– 907.
[8] L. Yang, J. Wu, J. Huo, Y.-K. Lai, and Y. Gao, “Learning 3D face reconstruction from a single

sketch,” Graph Models, vol. 115, pp. 101–102, 2021.

[9] F. Wang et al., “Deep 3D Shape Reconstruction from Single-View Sketch Image,” The 8th

International Conference on Digital Home, pp. 184–189, 2020.

[10] Y. Shen, C. Zhang, H. Fu, K. Zhou, and Y. Zheng, “DeepSketchHair: Deep Sketch-based 3D Hair

Modeling,” IEEE Trans Vis Comput Graph, vol. 27, pp. 3250–3263, 2021.

[11] H. Yang, Y. Tian, C. Yang, Z. Wang, L. Wang, and H. Li, “Sequential learning for sketch-based 3D

model retrieval,” Multimed Syst, pp. 1–18, 2022.

[12] P. Xu, T. M. Hospedales, Q. Yin, Y.-Z. Song, T. Xiang, and L. Wang, “Deep learning for free-hand

sketch: A survey,” IEEE Trans Pattern Anal Mach Intell, vol. 45, no. 1, pp. 285–312, 2022.

[13] F. Cordier, M. Melkemi, and H. Seo, “Reconstruction of helices from their orthogonal projection,”
Comput Aided Geom Des, vol. 46, pp. 1–15, 2016.

[14] N. Cherin, F. Cordier, and M. Melkemi, “Modeling piecewise helix curves from 2D sketches,”

Computer-Aided Design, vol. 46, pp. 258–262, 2014.

[15] X. Marchal, F. Bertails, and F. Hétroy, “Reconstruction de trochoides à partir de courbes 2D,”

Technical report, 2009.

[16] R. Levien, “The Euler spiral: a mathematical history,” Tech. Rep. UCB/EECS2008-111, EECS

Department, University of California, 2008.

[17] D. J. Walton and D. S. Meek, “A controlled clothoid spline,” Comput Graph, vol. 29, pp. 353–363,

2005.

[18] I. Baran, J. Lehtinen, and J. Popović, “Sketching clothoid splines using shortest paths,” in Computer

Graphics Forum, 2010, pp. 655–664.

[19] J. McCrae and K. Singh, “Sketching piecewise clothoid curves,” Comput Graph, vol. 33, no. 4, pp.
452–461, 2009.

[20] J. McCrae and K. Singh, “Neatening sketched strokes using piecewise french curves,” in

Proceedings of the Eighth Eurographics Symposium on Sketch-Based Interfaces and Modeling,

2011, pp. 141–148.

[21] L. Guiqing, L. Xianmin, and L. Hua, “3D discrete clothoid splines,” in International Conference on

Computer Graphics, 2001, pp. 321–324.

96 4.2. 3D RECONSTRUCTION OF EULER SPIRAL CURVES

International Journal of Computer Science, Engineering and Information Technology (IJCSEIT),

Vol.13, No.5, October 2023

19

[22] M. Frego, “Closed form parametrisation of 3D clothoids by arclength with both linear varying

curvature and torsion,” Appl Math Comput, vol. 421, p. 126907, 2022.

[23] A. M. Lyapunov, “The general problem of the stability of motion,” Int J Control, vol. 55, no. 3, pp.

531–534, 1992.

[24] J. M. Lien, “A dichotomy algorithm for computing smooth paths,” Commun ACM, vol. 24, no. 11,
pp. 682–690, 1981.

[25] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numer Math (Heidelb), vol. 1,

no. 1, pp. 269–271, 1959.

[26] M. Fréchet, “Sur quelques points du calcul fonctionnel,” Rendiconti del Circolo Matematico di

Palermo, vol. 22, no. 1, pp. 1–74, 1906, doi: 10.1007/bf03013491.

[27] J. L. Bentley, “Multidimensional Binary Search Trees Used for Associative Searching,” Association

for Computing Machinery, vol. 18, pp. 509–517, 1975.

CHAPTER 4. 3D RECONSTRUCTION OF CURVES 97

98 4.3. 3D RECONSTRUCTION OF FREE-FORM CURVES

4.3 3D reconstruction of free-form curves

In the previous section, we described a method for reconstructing 3D curves; how-

ever, it had limitations as it was confined to Euler spiral curves. In this section,

we aim to develop a method capable of reconstructing free-form curves while min-

imizing curvature variation along the curve.

The field of computer graphics has made significant advancements in areas

such as rendering and animation. However, a persistent challenge remains in

accurately capturing user intentions for 3D modeling in a simple and intuitive

manner. Interacting with users becomes complicated due to the limitations of two-

dimensional interfaces, which do not properly accommodate our natural perception

and thinking in a three-dimensional environment. One particularly challenging

aspect is drawing 3D curves within a 2D input device. These curves are crucial in

various applications such as defining the trajectories of moving objects or modeling

of 3D objects. Several works have been proposed to address this problem, such

as changing perspectives or requiring the artist to draw the shadow of the curve.

However, most of these methods pose some constraints to the artists, leading to

reduced efficiency. This section intends to address this problem, in particular, the

modeling of 3D curve from a single drawing. Unlike most of the existing methods,

our approach does not require any other input or user interaction than the planar

curve of the drawing.

The main idea of the method is driven by the following observation. Let C3D be

a 3D polygonal curve and O3D,i the osculating circle at the midpoint of a segment

e3D,i of this curve. The osculating circle is the circle that has the same tangent and

the same curvature as at the midpoint of e3D,i. Let C2D , e2D,i and O2D,i be the

orthogonal projection on the (x,y) plane of C3D, e3D,i and O3D,i respectively. O2D,i

is an ellipse whose tangent and curvature are equal to those of the curve C2D at

the midpoint of the segment e2D,i (see Figure 4.1). Now, we are only provided the

planar curve C2D and our goal is to reconstruct the C3D curve. Given a segment

e2D,i of C2D, we compute a set of ellipses whose curvature and tangent match those

at the midpoint of e2D,i. If we assume that this set of ellipses is large enough, one

of these ellipses must be the projection of an osculating circle being very close

to the actual osculating circle of the curve C3D to reconstruct. We repeat this

CHAPTER 4. 3D RECONSTRUCTION OF CURVES 99

process of computing the set of osculating circle candidates for each segment of

C3D. Then, the problem comes down to selecting the best osculating circle for

each segment such that the variation of curvature is minimized along the curve.

This is a simple graph problem that is solved using Dijkstra’s algorithm. These

osculating circles are then used to determine the tangent for each segment and to

compute the 3D coordinates of the points of C3D.

x

y

3DO

3DC

3 ,D ie

3DT

2DO

2DC 2DT

2 ,D ie

Figure 4.1: The curve C3D with its osculating circle O3D at the midpoint of the

edgee3D,i . The curve C2D which is the orthogonal projection of C3D and the ellipse

O2D which is the orthogonal projection of the osculating circle O3D,i .

The contribution of this work is twofold. First, we propose the idea of fitting

ellipses to the input planar curve; these ellipses are then used to determine the

osculating circles and in turn, the orientation of the tangent at the midpoint of

each segment of the 3D curve to reconstruct. The second contribution is a method

to solve the optimization problem which aims at finding the optimal osculating

circles such that the variation of the curvature along the 3D reconstructed curve is

minimized. The usual approach would require solving a large nonlinear optimiza-

tion using the gradient-descent method. Instead, the solution space is discretized

to form a graph, each node of this graph being a candidate for the osculating

100 4.3. 3D RECONSTRUCTION OF FREE-FORM CURVES

circles at the midpoint of each segment of the curve. The edges of the graph cor-

respond to the adjacency relationship between the segments. The solution of this

optimization problem is then solved using Dijkstra’s algorithm.

The remainder of this section is organized as follows: First, we provide the

problem definition of our approach. Then, we delve into the details of our algorithm

for fitting ellipses to a planar polygonal curve. Subsequently, we explain the process

of computing the osculating circles from the ellipses. Afterward, we describe the

final step of the algorithm, which involves computing the coordinates of the 3D

curve using the previously computed tangent of the osculating circles. Following

that, we present the results obtained from our approach. Finally, we conclude this

section with a summary of our findings.

4.3.1 Problem definition

Our method takes as input a planar curve C2D in the (x, y) plane and generates a

3D curve C3D whose orthogonal projection onto the (x,y) plane matches the input

C2D curve and such that the change of curvature is minimized along this curve

C3D. The input curve C2D is a polygonal curve composed of p points denoted

v2D,1, v2D,2...v2D,p. The set of p − 1 segments is e2D,1, e2D,2...e2D,p−1 with e2D,i

being the segment connecting v2D,i to v2D,i+1. This curve is assumed to be at

least G1 continuous; it should not contain any sharp corners and the curvature

can be accurately computed for every segment. The reconstructed 3D curve C3D

is composed of p points v3D,1, v3D,2...v3D,p, each of these points corresponding to a

point in the input curve C2D. The segments are denoted e3D,1, e3D,2. . . e3D,p−1.

The reconstruction is done iteratively, starting from the first segment e2D,1 of

the input curve C2D. The driving idea is to fit a set of ellipses to each segment of

the input curve, i. e. ellipses whose curvature and tangent match the curvature

and tangent at the midpoint of the segment e2D,i (Figure 4.2(b)). These fitted

ellipses are then used to compute the set of candidates for the osculating circle at

each segment of the curve C3D (Figure 4.2(c)). Next, we formulate an optimization

problem that aims at finding the best osculating circle for each segment such that

the change of curvature is minimized along the 3D reconstructed curve. This is

done by building a graph whose nodes are the candidates for the osculating circles

CHAPTER 4. 3D RECONSTRUCTION OF CURVES 101

and by applying Dijkstra’s algorithm. The last step is to compute the translation

along the z-axis for each segment (Figure 4.2(e)) using the tangent of the osculating

circles previously computed (Figure 4.2(d)).

102 4.3. 3D RECONSTRUCTION OF FREE-FORM CURVES

x

y

x

y

x

y

x

y

(a)

(b)

(c)

(e)

2DC

2DC

2DC

2DC

3DC

2 , 1D ie +

2 ,D ie

2 , 1D ie +

2 , 2D ie +

2 ,D ie
2 , 1D ie +

2 , 2D ie +

3 ,D ie

3 , 1D ie +

3 , 2D ie +

2 ,D ie
2 , 2D ie +

x

y

(d)

Figure 4.2: Overview of the method. The input curve C2D in with 3 adjacent

segments e2D,i, e2D,i+1 and e2D,i+2 (a). For the sake of clarity, only a subset of the

segments is drawn. Ellipses are first fitted to the midpoint of each segment along

the curve such that they have the same curvature and tangent as the corresponding

midpoint (b). Candidates for the osculating circles at each midpoint are generated

(c). These osculating circles are then used to estimate the tangent of the curve

C3D to reconstruct (d). Finally, the curve C3D is reconstructed by lifting the points

such as to satisfy the estimated tangent.

CHAPTER 4. 3D RECONSTRUCTION OF CURVES 103

4.3.2 Ellipse fitting

This section describes the method to fit a set of ellipses to the midpoint of a

segment e2D,i of the input planar curve C2D. The parametric equation of the

ellipse is given as follows:

x(t) = a cos t,

y(t) = b sin t.
(4.1)

We assume that a < b. These parameters a and b are the half-length of the

minor and major axes respectively. The parameter t has a value in the interval

0, 2π[. The tangent vector ⃗T (t) for the ellipse of Equation 4.1 is given as follows:

⃗T (t) =

 x′(t)√
(x′(t))2+(y′(t))2

y′(t)√
(x′(t))2+(y′(t))2


=

 −asin(t)√
(asin(t))2+(bcos(t))2

bcos(t)√
(asin(t))2+(bcos(t))2

 .

(4.2)

We also provide the equation of the curvature k (t) of the ellipse:

k (t) =
||x′(t)y′′(t)− y′(t)x′′(t)||
||(x′(t))2 + (y′(t))2||3

2

=
ab(

a2sin2(t) + b2cos2(t)
) 3

2

.
(4.3)

Let k2D,i and ⃗T2D,i be respectively the curvature and tangent of at the midpoint

of the segment e2D,i of the curve C2D. These curvature and tangent are computed

using the method proposed by Lewiner et al. (Lewiner et al. 2005). We aim at

finding the values of t, a, and b such that k2D,i = k (t). As one may observe,

there is an infinite number of ellipses with different values for a, b, and t and that

satisfies the equation k2D,i = k (t) (see Figure 4.3).

104 4.3. 3D RECONSTRUCTION OF FREE-FORM CURVES

x

y

2 ,D iT

2 ,D ie

2 , ,3D iO

2 , ,2D iO

2 , ,1D iO

Figure 4.3: Given the midpoint of a segment e2D,i alongC2D with its tan-

gent ⃗T2D,i and curvature k2D,i, we compute the set of ellipses SO,2D,i =

{O2D,i,1, O2D,i,2, O2D,i,3} with the specified curvature k2D,i.

Our method to determine this set of ellipses works as follows. We compute a

sampling of a and b in the interval [rmin, rmax] denoted Sa = {a1, a2, . . . , am} and

Sb = {b1, b2, . . . , bm} respectively; m is the number of samples for a and b. In our

implementation, m is equal to 30. The user-defined parameters rminand rmax are

respectively the smallest and largest radii of the osculating circles of the 3D curve

to reconstruct. The set of ellipses is found by setting a to one of the values of Sa

and b to one of the values of Sb. The value of t is found by solving the equation

k (t) = k2D,i, which is rewritten as follows:

sin(t) =

√√√√(ab)
2
3 − k

2
3
v2D,ib

2

k
2
3
v2D,i (a

2 − b2)
(4.4)

This equation has a solution if ab
b2

≤ k2D,i ≤ ab
a2

with a < b. The inverse sine

function gives two solutions for t. This set of ellipses that have been computed

for a specific midpoint of the segment e2D,i along the input planar curve C2D is

denoted SO,2D,i = {O2D,i,1 . . . O2D,i,j . . . O2D,i,n} with n being the number of ellipses

and O2D,i,j being an ellipse whose parameters are a ∈ Sa and b ∈ Sb.

CHAPTER 4. 3D RECONSTRUCTION OF CURVES 105

Note that our fitting algorithm is different from computing the osculating ellipse

(Williamson 1912). The osculating ellipse has a 4th-order contact at the midpoint

of the segment e2D,i of the curve C2D; this implies that the second derivatives of

the curvature are equal (Rutter 2000). In our case, the ellipses have only 2nd-

order contact since we only require the curvatures and the tangent of the curves

to be equal. As the 2nd-order contact is less restrictive, a large number of ellipses

will be taken into account for the next step to compute the osculating circles. If

we compute the osculating ellipse and the part of the curve has some noise, it

could happen that this ellipse is not a good approximation of the osculating circle,

making the reconstruction of the 3D curve very difficult.

4.3.3 Finding the osculating circles

The next step is to compute the osculating circles for each segment s3D,i of the

curve C3D using the set of ellipses SO,2D,i = {O2D,i,1 . . . O2D,i,j . . . O2D,i,n} that has

been computed for each segment s2D,i of the curve C2D. Each of these ellipses is

the orthogonal projection of a circle with a specific radius and orientation with

respect to the projection plane. Let SO,3D,i = {O3D,i,1 . . . O3D,i,j . . . O3D,i,n} be

the set of circles whose orthogonal projection are the ellipses of the set SO,2D,i;

these are the candidates for the osculating circles at the midpoint of the segment

s3D,i. We now aim at selecting one of them such that the change of curvature is

minimized along the C3D curve.

Minimizing the change of the curvature implies that two neighboring segments

s3D,i and s3D,i+1 should have their osculating circle with similar radius, center,

orientation, and center. This means that we should select one circle in each set

SO,3D,i and SO,3D,i+1 such that the difference of the radius, orientation, and center

is the smallest possible. This is a combinatorial problem that we solve using

Dijkstra’s algorithm.

Construction of the graph

We first build a graph whose nodes are the candidates for the osculating cir-

cles. The set of nodes is defined as the union of all the sets SE,3D,i for the mid-

point of each segment e3D,i of the curve C3D : SO,3D,1 ∪ SO,3D,2 . . . ∪ SO,3D,m =

106 4.3. 3D RECONSTRUCTION OF FREE-FORM CURVES

{O3D,1,1 . . . O3D,i,j . . . O3D,p,n}. The edges of this graph correspond to the neigh-

boring relationship between adjacent segments along the curve C3D. An edge is

put between two nodes O3D,i,k and O3D,j,l if the two corresponding segments e3D,i

and e3D,j are adjacent along the curve C3D. The construction of the graph is shown

in Figure 4.4.

A weight is associated with each edge to determine how similar the two osculat-

ing circles are. Let O3D,i,j and O3D,i+1,k be the osculating circles of two neighboring

segments e3D,i and e3D,i+1 respectively. Let r3D,i,j, c3D,i,j, ⃗N3D,i,j and ⃗T3D,i,j be the

radius, center, binormal, and tangent of the osculating circle O3D,i,j and r3D,i+1,j,

c3D,i+1,j, ⃗N3D,i+1,j and ⃗T3D,i,j+1 the radius, center, binormal and tangent vectors

of the osculating circle O3D,i+1,j. Let αi,j,i+1,k be the angle between ⃗N3D,i,j and
⃗N3D,i+1,j and βi,j,i+1,k the angle between ⃗T3D,i,j and ⃗T3D,i+1,j. The weight is cal-

culated with a cost function WO () which takes into account the difference of

radii and center as well as the misalignment of the binormal and tangent of the

osculating circles:

WO (r3D,i+1,j, r3D,i,j, c3D,i+1,j, c3D,i,j, αi,j,i+1,k) = δ
(
(r3D,i+1,j − r3D,i,j)

2 + |c3D,i+1,j − c3D,i,j|2
)
+

(1− δ)
(
α2
i,j,i+1,k + β2

i,j,i+1,k

)
(4.5)

with δ being a user-defined parameter to put more weight on the radii and center

difference or the binormal and tangent misalignment. Figure 4.5 shows an example

of the cost function between two osculating circles.

CHAPTER 4. 3D RECONSTRUCTION OF CURVES 107

(a)

(b)

3 , ,1D iO

3 , ,2D iO

3 , ,3D iO

3 , 1,1D iO +

3 , 1,2D iO +

3 , 1,3D iO +

3 , 2,1D iO +

3 , 2,2D iO +

3 , 2,3D iO +

x

y

2 ,D ie
2 , 1,1D iO +

2 , 1D ie +

2 , 1,2D iO + 2 , 1,3D iO +

2 , ,3D iO
2 , 2,1D iO +

2 , ,2D iO

2 , ,1D iO

2 , 2,2D iO +

2 , 2,3D iO +

2DC

2 , 2D ie +

Figure 4.4: The graph to compute the osculating circles. For the sake of clarity,
the curve C2D is composed of 3 segments only and a subset of the ellipses is shown.

x y

3 , ,D i kO

3 , ,D i kN
2 ,D ie

2DC

3 , 1,D i jN +

3 , 1,D i jO +

2 , 1D ie +

3 , 1,D i jT +

3 , ,D i kT

3 , 1,D i jc +

3 , ,D i jc

Figure 4.5: The cost function between two osculating circles O3D,i,k and O3D,j,l

corresponding to the midpoint of the segments e3D,i and e3D,i+1 respectively. e3D,i

and e3D,i+1 are adjacent along the curve.

108 4.3. 3D RECONSTRUCTION OF FREE-FORM CURVES

Using the Dijkstra’s algorithm to compute the osculating circles

We use Dijkstra’s algorithm to compute the optimal osculating circle for every

segment e3D,i of the C3D curve. For a given source node in a weighted graph,

this algorithm finds the shortest path between that node and every other node.

We have implemented a modified version of this algorithm as follows. The source

is the set of osculating circle candidates SO,3D,1 = {O3D,1,1 . . . O3D,1,j . . . O3D,1,n}
of the first segment of the curve e3D,1. The target is the set of osculating circle

candidates SO,3D,p−1 = {O3D,p−1,1 . . . O3D,p−1,j . . . O3D,p−1,n} of the last segment

s3D,p−1. Initially, all the nodes are in the unvisited node set, except those belonging

to the source set SO,3D,1. The nodes of this source set are given the distance 0.

The algorithm works iteratively. It finds the unvisited node v with the minimal

distance value; this distance value is computed using the weight of the associated

edge. This node is then removed from the unvisited node set. The algorithm stops

when one of the nodes of the target set SO,3D,p−1 has been visited.

The result of Dijkstra’s algorithm is an approximation of the osculating circle

for each vertex of the curve C3D. These osculating circles provides an estimation

of the tangent ⃗T3D,i at the midpoint of each segment e3D,i of the curve C3D (see

Figure 4.6).

2 , 1D ie +

2 ,D ie

3 ,D iT

3 , 2D iT +

3 , 1D iT +

3 , 3D iT +

2 , 2D ie +

2 , 3D ie +

x

y

Figure 4.6: Estimation of the tangents resulting from the Dijkstra’s algorithm.

CHAPTER 4. 3D RECONSTRUCTION OF CURVES 109

4.3.4 Reconstruction of the 3D curve using the estimated

tangent at the segments

The last step of the 3D reconstruction is to compute the z-coordinates of all the

points v3D,i of the curve C3D. The x and y coordinates are the same as the

corresponding point v2D,i in the curve C2D since the curve C2D is the orthogonal

projection of C3D onto the (x,y) plane.

The z-coordinates are computed iteratively starting from the first endpoint

v2D,1. Its z-coordinate is set to 0.0. The z-coordinates of a point v2D,i+1 are

computed by adding a value ∆zi+1 to the z-coordinate of the previous point v2D,i.

This value ∆zi+1 is defined using the estimated tangent ⃗T3D,i at the midpoint of

the segment e2D,i as follows:

∆zi+1 =
||v2D,i+1 − v2D,i||√
(xT3D,i)2 + (yT3D,i)2

zT3D,i (4.6)

with xT3D,i, yT3D,i and zT3D,i being the x, y and z coordinates of ⃗T3D,i respec-

tively (see Figure 4.7).

3 ,D iT

2 ,D ie 2 , 1D iv +

2 ,D iv 1iz +

x y

Figure 4.7: Computation of the z-coordinate of the point v2D,i+1 using the esti-

mated tangent ⃗T3D,i.

110 4.3. 3D RECONSTRUCTION OF FREE-FORM CURVES

4.3.5 Results

Our method has been implemented in Python and has been tested with a variety

of curves. The results are show in Figure 4.9 , Figure 4.10 and Figure 4.11. For

each reconstruction, we provide the input curve, three views of the reconstructed

3D curve, and the graphs for the curvature and torsion of the reconstructed curve.

These curvature and torsion values are calculated with respect to the arclength.

The computation time ranges from 10 to 60 seconds depending on the number of

points of the input curve. The number of points of all the curves ranges from 30

to 200. To the best of our knowledge, there is no previous work that performs the

3D reconstruction from free-form curves, hence we can not compare our results

with any previous work.

Reconstruction of circular helices

Circular helices are 3D curves whose curvature and torsion are constant. Fig-

ure 4.9(a) and Figure 4.9(b) show the reconstruction from a 2D curve which is the

orthogonal projection of a circular helix with different orientations. The projected

curve has been uniformly resampled before the reconstruction. The curvature and

torsion of the circular helix are 4.65 · 10−2 and 1.17 · 10−2 respectively. As one

may observe, the curvature of the reconstructed curve is very close to that of the

circular helix. The value of torsion is less accurate. This is because the torsion of

the curve is not taken into account during the reconstruction process.

Reconstruction of spirals and hand-drawn curves

The reconstruction has been done with other curves. These curves are hand-

drawn except the curve in Figure 4.9(c) which is a 2D Euler spiral and the curve

in Figure 4.11(c) which is an Archimedean spiral. Similarly to the reconstruction

of circular helices, our algorithm is able to generate a 3D curve whose variation of

curvature is small along the curve. This is particularly true for the curves shown

in Figure 4.10(a) and Figure 4.11(a).

CHAPTER 4. 3D RECONSTRUCTION OF CURVES 111

Limitations

The user is required to provide the lower and upper bounds of the circular helix

parameters. The reconstruction fails in case these values are not properly set.

One solution could be to compute a first reconstruction with large upper and

lower bounds. These values can then be refined iteratively with trials and errors.

The reconstruction does not work for some specific curves. The first case concerns

curves with G1 discontinuity, that is, curves with sharp corners (see Figure 4.8(a)).

This is because our method requires the curvature values to be defined at every

segment; this is needed for the ellipse fitting (see subsection 4.3.2). The second

case concerns connected segments whose curvature is null; this happens when the

curve is composed of several points that are colinear. This set of consecutive

colinear segments is actually the projection of a straight line in 3D; our method is

not able to reconstruct straight lines in 3D since osculating circles are not defined

for straight lines. On the other hand, our method handles a single segment whose

curvature is null; these segments are usually located at the inflection point of the

curve (see Figure 4.9(b)).

(a) (b)

Figure 4.8: Curves that cannot be processed by the reconstruction algorithm:

curves with a sharp corner shown (red dots in (a)) and curves with 2 or more

connected segments whose curvature is null (red segments in (b)).

112 4.3. 3D RECONSTRUCTION OF FREE-FORM CURVES

(a)

(b)

(c)

Figure 4.9: Reconstruction using the orthogonal projection of a circular helix with

different orientations (a) and (b) and using the 2D Euler spiral (c).

CHAPTER 4. 3D RECONSTRUCTION OF CURVES 113

(a)

(b)

(c)

Figure 4.10: Reconstruction using a 2D Euler spiral (a) and using hand-drawn

curves (b) and (c).

114 4.3. 3D RECONSTRUCTION OF FREE-FORM CURVES

(a)

(b)

(c)

Figure 4.11: Reconstruction using hand-drawn curves (a) and (b) and from an

Archimedean spiral (c).

CHAPTER 4. 3D RECONSTRUCTION OF CURVES 115

4.4 Conclusion

In this chapter, we introduced two different approaches for the 3D reconstruction

of curves. The first one performs the 3D reconstruction of an input curve in

the form of the orthogonal projection of Euler spiral. Doing so, we achieved an

eye-pleasing reconstruction, by using a curve-matching technique, applied in a

piecewise manner. The second performs the 3D reconstruction of an input curve

in many forms such as spirals, circular helices, etc. It also achieved good results

by minimizing the variation of the reconstructed curve. This was accomplished by

fitting ellipses to the input curve, enabling us to determine the osculating circles

and tangents at each curve point to reconstruct in 3D.

117

Chapter 5

Conclusion and perspectives

This thesis began with the objective of exploring methods for the 3D reconstruc-

tion of curves from a single-view 2D drawing. In Chapter 3, we investigated the

performance of various ML algorithms for reconstructing circular helices. Many

ML algorithms were tested and more than one of them provides a good reconstruc-

tion. However, when confronted with more complex curves such as Euler spiral

curves, the ML algorithms faced limitations. To address this, Chapter 4 introduced

two distinct approaches. The first approach focused on the reconstruction of Eu-

ler spiral curves by employing a curve-matching technique in a piecewise manner.

Although it yielded visually appealing results, its scope was limited to Euler spiral

curves. To broaden the applicability of our reconstruction approach, we developed

a novel method capable of reconstructing multiple curve types, including circular

helices, spirals, and free-form curves. This approach minimized the curvature vari-

ance of the curve by fitting ellipses to the input curve, allowing us to determine

the osculating circles and tangents at each curve point for 3D reconstruction.

In conclusion, this thesis has made significant strides in the field of 3D curve

reconstruction. By leveraging ML algorithms and innovative approaches, we have

demonstrated effective techniques for reconstructing circular helices, Euler spiral

curves, and hand-drawn curve types.

There are several paths to future work. One possible improvement would be

to take into account the variation of the torsion in addition to the curvature.

Another future work would be to extend the method to handle the reconstruction of

118

close curves. Furthermore, our contributions serve as a solid foundation for future

studies and practical applications across diverse fields such as computer graphics,

computer vision, and virtual reality. In particular, there is potential to apply

our methods in real-world scenarios, such as modeling the intricate trajectories of

moving objects, which is crucial in fields like robotics and animation. Moreover,

the techniques developed could find innovative applications in the domain of wire

art reconstruction.

119

Appendices

120

Appendix A

Additional results for the 3D

reconstruction of Euler spirals

This supplementary material presents additional results of our experiments in

Chapter 4 (First section: 3D reconstruction of Euler spiral curves). The first five

figures illustrate examples of the results obtained in the first experiment, in which

we generated 100 ground truth Euler spirals, all of which contained an inflection

point where the curvature and torsion change sign. We used the orthogonal projec-

tion of these spirals as input for our reconstruction algorithm. The last five figures

show some of the results obtained in the second experiment, in which we generated

100 segments of Euler spirals with only positive curvature and torsion. We also

used the orthogonal projection of these segments as input for our reconstruction

algorithm.

APPENDIX A. ADDITIONAL RESULTS FOR THE 3D RECONSTRUCTION
OF EULER SPIRALS 121

Figure A.1: Comparison of our reconstructed Euler spirals before and after apply-

ing smoothing with the ground truth 3D Euler spirals (Euler spirals that include

an inflection point).

122

Figure A.2: Comparison of our reconstructed Euler spirals before and after apply-

ing smoothing with the ground truth 3D Euler spirals (Euler spirals that include

an inflection point).

APPENDIX A. ADDITIONAL RESULTS FOR THE 3D RECONSTRUCTION
OF EULER SPIRALS 123

Figure A.3: Comparison of our reconstructed Euler spirals before and after apply-

ing smoothing with the ground truth 3D Euler spirals (Euler spirals that include

an inflection point).

124

Figure A.4: Comparison of our reconstructed Euler spirals before and after apply-

ing smoothing with the ground truth 3D Euler spirals (Euler spirals that include

an inflection point).

APPENDIX A. ADDITIONAL RESULTS FOR THE 3D RECONSTRUCTION
OF EULER SPIRALS 125

Figure A.5: Comparison of our reconstructed Euler spirals before and after apply-

ing smoothing with the ground truth 3D Euler spirals (Euler spirals that include

an inflection point).

126

Figure A.6: Comparison of our reconstructed Euler spirals before and after ap-

plying smoothing with the ground truth 3D Euler spirals (Euler spirals with only

positive curvature and torsion).

APPENDIX A. ADDITIONAL RESULTS FOR THE 3D RECONSTRUCTION
OF EULER SPIRALS 127

Figure A.7: Comparison of our reconstructed Euler spirals before and after ap-

plying smoothing with the ground truth 3D Euler spirals (Euler spirals with only

positive curvature and torsion).

128

Figure A.8: Comparison of our reconstructed Euler spirals before and after ap-

plying smoothing with the ground truth 3D Euler spirals (Euler spirals with only

positive curvature and torsion).

APPENDIX A. ADDITIONAL RESULTS FOR THE 3D RECONSTRUCTION
OF EULER SPIRALS 129

Figure A.9: Comparison of our reconstructed Euler spirals before and after ap-

plying smoothing with the ground truth 3D Euler spirals (Euler spirals with only

positive curvature and torsion).

130

Figure A.10: Comparison of our reconstructed Euler spirals before and after ap-

plying smoothing with the ground truth 3D Euler spirals (Euler spirals with only

positive curvature and torsion).

131

Bibliography

Ali Fakih, Frederic Cordier, Y. M. (2023), ‘Piecewise reconstruction of 3d euler

spirals from planar polygonal curves’, International Journal of Computer Sci-

ence, Engineering and Information Technology (IJCSEIT) 13(5), 01–19.

URL: 10.5121/ijcseit.2023.13501

Alldieck, T., Magnor, M., Bhatnagar, B. L., Theobalt, C. & Pons-Moll, G. (2019),

Learning to reconstruct people in clothing from a single rgb camera, in ‘Pro-

ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-

nition’, pp. 1175–1186.

Aloisi, V., Carmignato, S., Schlecht, J. & Ferley, E. (2016), Investigation on metro-

logical performances in ct helical scanning for dimensional quality control, in ‘6th

Conference on Industrial Computed Tomography’.

Arora, R. & Singh, K. (2021), ‘Mid-air drawing of curves on 3d surfaces in virtual

reality’, ACM Transactions on Graphics (TOG 40(3), 1–17.

Bae, S.-H., Balakrishnan, R. & Singh, K. (2008), Ilovesketch: as-natural-as-

possible sketching system for creating 3d curve models, in ‘Proceedings of

the 21st annual ACM symposium on User interface software and technology’,

pp. 151–160.

Baran, I., Lehtinen, J. & Popović, J. (2010), Sketching clothoid splines using

shortest paths, in ‘Computer Graphics Forum’, Vol. 29, Wiley Online Library,

pp. 655–664.

Bertails, F., Audoly, B., Cani, M.-P., Querleux, B., Leroy, F. & Lévêque, J.-

132 BIBLIOGRAPHY

L. (2006), ‘Super-helices for predicting the dynamics of natural hair’, ACM

Transactions on Graphics (TOG) 25(3), 1180–1187.

Bhatnagar, B. L., Tiwari, G., Theobalt, C. & Pons-Moll, G. (2019), Multi-garment

net: Learning to dress 3d people from images, in ‘Proceedings of the IEEE/CVF

international conference on computer vision’, pp. 5420–5430.

Bing, P., Liu, W. & Zhang, Z. (2021), ‘Deepcednet: an efficient deep convolutional

encoder-decoder networks for ecg signal enhancement’, IEEE Access 9, 56699–

56708.

Breiman, L. (2001), ‘Random forests’, Machine learning 45, 5–32.

Brown, E. & Wang, P. S. (1996), Three-dimensional object recovery from two-

dimensional images: a new approach, in ‘Intelligent robots and computer vision

xv: Algorithms, techniques, active vision, and materials handling’, Vol. 2904,

SPIE, pp. 138–147.

Cherin, N., Cordier, F. & Melkemi, M. (2014), ‘Modeling piecewise helix curves

from 2d sketches’, Computer-Aided Design 46, 258–262.

Choy, C. B., Xu, D., Gwak, J., Chen, K. & Savarese, S. (2016), 3d-r2n2: A uni-

fied approach for single and multi-view 3d object reconstruction, in ‘Computer

Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands,

October 11-14, 2016, Proceedings, Part VIII 14’, Springer, pp. 628–644.

Cohen, J. M., Markosian, L., Zeleznik, R. C., Hughes, J. F. & Barzel, R. (1999),

An interface for sketching 3d curves, in ‘Proceedings of the 1999 symposium on

Interactive 3D graphics’, pp. 17–21.

Cordier, F., Melkemi, M. & Seo, H. (2016), ‘Reconstruction of helices from their

orthogonal projection’, Computer Aided Geometric Design 46, 1–15.

Cordier, F., Seo, H., Melkemi, M. & Sapidis, N. S. (2013), ‘Inferring mirror sym-

metric 3d shapes from sketches’, Comput. Aided Des 45(2), 301–311.

BIBLIOGRAPHY 133

Dibra, E., Jain, H., Öztireli, C., Ziegler, R. & Gross, M. (2016), Hs-nets: Estimat-

ing human body shape from silhouettes with convolutional neural networks, in

‘2016 fourth international conference on 3D vision (3DV)’, IEEE, pp. 108–117.

Dibra, E., Jain, H., Oztireli, C., Ziegler, R. & Gross, M. (2017), Human shape

from silhouettes using generative hks descriptors and cross-modal neural net-

works, in ‘Proceedings of the IEEE conference on computer vision and pattern

recognition’, pp. 4826–4836.

Dickerson, R. E. (1983), ‘The dna helix and how it is read’, Scientific American

249(6), 94–111.

Dijkstra, E. W. (1959), ‘A note on two problems in connexion with graphs’, Nu-

merische mathematik 1(1), 269–271.

Do, P. N. B. & Nguyen, Q. C. (2019), A review of stereo-photogrammetry

method for 3-d reconstruction in computer vision, in ‘2019 19th International

Symposium on Communications and Information Technologies (ISCIT)’, IEEE,

pp. 138–143.

Draper, N. R. & Smith, H. (1998), Applied regression analysis, Vol. 326, John

Wiley & Sons.

Farsangi, S., Naiel, M. A., Lamm, M. & Fieguth, P. (2020), ‘Rectification based

single-shot structured light for accurate and dense 3d reconstruction’, Journal

of Computational Vision and Imaging Systems 6(1), 1–3.

Fei Mai, Y. (2010), ‘3d curves reconstruction from multiple images’, DICTA

p. 462–467.

Feng, M., Gilani, S. Z., Wang, Y. & Mian, A. (2018), 3d face reconstruction

from light field images: A model-free approach, in ‘Proceedings of the European

conference on computer vision (ECCV)’, pp. 501–518.

Forterre, Y. & Dumais, J. (2011), ‘Generating helices in nature’, science

333(6050), 1715–1716.

134 BIBLIOGRAPHY

Frego, M. (2022), ‘Closed form parametrisation of 3d clothoids by arclength with

both linear varying curvature and torsion’, Applied Mathematics and Computa-

tion 421, 126907.

Friedman, J. H. (2001), ‘Greedy function approximation: a gradient boosting ma-

chine’, Annals of statistics pp. 1189–1232.

Gecer, B., Ploumpis, S., Kotsia, I. & Zafeiriou, S. (2021), ‘Fast-ganfit: Generative

adversarial network for high fidelity 3d face reconstruction’, IEEE transactions

on pattern analysis and machine intelligence 44(9), 4879–4893.

Goriely, A. & Tabor, M. (1998), ‘Spontaneous helix hand reversal and tendril

perversion in climbing plants’, Physical Review Letters 80(7), 1564.

Gryaditskaya, Y., Hähnlein, F., Liu, C., Sheffer, A. & Bousseau, A. (2020), ‘Lift-

ing freehand concept sketches into 3d’, ACM Transactions on Graphics (TOG)

39(6), 1–16.

Guiqing, L., Xianmin, L. & Hua, L. (2001), 3d discrete clothoid splines, in ‘Inter-

national Conference on Computer Graphics’, p. 321–324.

Gur Harary, A. T. (2012), ‘3d euler spirals for 3d curve completion’, Computational

Geometry 45, 115–126.

Ham, H., Wesley, J. & Hendra, H. (2019), ‘Computer vision based 3d reconstruc-

tion: A review’, International Journal of Electrical and Computer Engineering

9(4), 2394.

Han, Z., Ma, B., Liu, Y.-S. & Zwicker, M. (2020), ‘Reconstructing 3d shapes from

multiple sketches using direct shape optimization’, IEEE Transactions on Image

Processing 29, 8721–8734.

Hartley, R. & Zisserman, A. (2003), Multiple view geometry in computer vision,

Cambridge university press.

He, G., Sheng, C., He, H., Zhou, R., Yuan, D., Ning, X. & Ning, F. (2020),

‘Mathematical and geometrical modeling of braided ropes bent over a sheave’,

Journal of Engineered Fibers and Fabrics 15, 1558925020939726.

BIBLIOGRAPHY 135

Hähnlein, F., Gryaditskaya, Y. & Sheffer, Alla, A. B. (2022), Symmetry-driven

3d reconstruction from concept sketches, in ‘SIGGRAPH (Conference Paper

Track’, Vol. 19, p. 1–19.

Iarussi, E., Bommes, D. & Bousseau, A. (2015), ‘Bendfields: Regularized curvature

fields from rough concept sketches’, ACM Transactions on Graphics (TOG)

34(3), 1–16.

Kawagoe, Y. & Murai, N. (1996), ‘A novel basic region/helix-loop-helix protein

binds to a g-box motif cacgtg of the bean seed storage protein β-phaseolin gene’,

Plant Science 116(1), 47–57.

Ke, J., Wu, Z.-y., Liu, Y.-s., Xiang, Z. & Hu, X.-d. (2020), ‘Design method, per-

formance investigation and manufacturing process of composite helical springs:

A review’, Composite Structures 252, 112747.

Kim, Yongkwan, S.-H. B. (2016), ‘Sketchingwithhands: 3d sketching handheld

products with first-person hand posture’, UIST p. 797–808.

Kimia, B. B., Frankel, I. & Popescu, A.-M. (2003), ‘Euler spiral for shape comple-

tion’, International Journal of Computer Vision 54 1, 159–182.

Knuth, D. E. (1979), ‘Mathematical typography’, Bulletin AMS 1 2, 337–372.

Knyaz, V. A., Kniaz, V. V. & Remondino, F. (2018), Image-to-voxel model trans-

lation with conditional adversarial networks, in ‘Proceedings of the European

Conference on Computer Vision (ECCV) Workshops’, pp. 0–0.

Krs, V., Yumer, E., Carr, N., Benes, B. & Měch, R. (2017), ‘Skippy: Single view 3d

curve interactive modeling’, ACM Transactions on Graphics (TOG 36(4), 1–12.

Kwan, Kin Chung, H. F. (2019), ‘Mobi3dsketch: 3d sketching in mobile ar’, CHI

p. 176.

LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P. (1998), ‘Gradient-based learning

applied to document recognition’, Proceedings of the IEEE 86(11), 2278–2324.

136 BIBLIOGRAPHY

Levien, R. (2008), ‘The euler spiral: a mathematical history’, Tech. Rep.

UCB/EECS-2008-111, EECS Department, University of California .

Lewiner, T., Gomes Jr, J. D., Lopes, H. & Craizer, M. (2005), ‘Curvature and

torsion estimators based on parametric curve fitting’, Computers & Graphics

29(5), 641–655.

Li, C.-L., Zaheer, M., Zhang, Y., Poczos, B. & Salakhutdinov, R. (2018), ‘Point

cloud gan’, arXiv preprint arXiv:1810.05795 .

Li, W. (2021), ‘Pen2vr: A smart pen tool interface for wire art design in vr’, STAG

p. 119–127.

Lien, J. M. (1981), ‘A dichotomy algorithm for computing smooth paths’, Com-

munications of the ACM 24(11), 682–690.

Lin, J., Yuan, Y., Shao, T. & Zhou, K. (2020), Towards high-fidelity 3d face

reconstruction from in-the-wild images using graph convolutional networks, in

‘Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition’, pp. 5891–5900.

Lyapunov, A. M. (1992), ‘The general problem of the stability of motion’, Inter-

national journal of control 55(3), 531–534.

McClelland, J. L., Rumelhart, D. E., Group, P. R. et al. (1987), Parallel Dis-

tributed Processing, Volume 2: Explorations in the Microstructure of Cognition:

Psychological and Biological Models, Vol. 2, MIT press.

McCrae, J. & Singh, K. (2009), ‘Sketching piecewise clothoid curves’, Computers

& Graphics 33(4), 452–461.

McCrae, J. & Singh, K. (2011), Neatening sketched strokes using piecewise french

curves, in ‘Proceedings of the Eighth Eurographics Symposium on Sketch-Based

Interfaces and Modeling’, pp. 141–148.

McIlroy, D., Zhang, D., Kranov, Y. & Norton, M. G. (2001), ‘Nanosprings’, Applied

Physics Letters 79(10), 1540–1542.

BIBLIOGRAPHY 137

Nozawa, N., Shum, H., Ho, E. & Morishima, S. (2020), Single sketch image based

3d car shape reconstruction with deep learning and lazy learning, in ‘Proceedings

of the 2020 International Conference on 3D Vision’, IEEE, pp. 898–907.

Nozawa, N., Shum, H. P., Feng, Q., Ho, E. S. & Morishima, S. (2022), ‘3d car

shape reconstruction from a contour sketch using gan and lazy learning’, The

Visual Computer pp. 1–14.

Piuze, E., Kry, P. G. & Siddiqi, K. (2011), Generalized helicoids for modeling

hair geometry, in ‘Computer Graphics Forum’, Vol. 30, Wiley Online Library,

pp. 247–256.

Rasmussen, C. E., Williams, C. K. et al. (2006), Gaussian processes for machine

learning, Vol. 1, Springer.

Rutter, J. (2000), Geometry of Curves, CRC Press.

Saggiorato, G., Alvarez, L., Jikeli, J. F., Kaupp, U. B., Gompper, G. & Elgeti, J.

(2017), ‘Human sperm steer with second harmonics of the flagellar beat’, Nature

communications 8(1), 1415.

Savitzky, A. & Golay, M. J. E. (1964), ‘Smoothing and differentiation of data by

simplified least squares procedures’, Analytical Chemistry 36, 1627–1639.

Shen, Y., Zhang, C., Fu, H., Zhou, K. & Zheng, Y. (2021), ‘Deepsketchhair:

Deep sketch-based 3d hair modeling’, IEEE Transactions on Visualization and

Computer Graphics 27, 3250–3263.

Shoji, K., Kato, K. & Toyama, F. (2001), ‘3-d interpretation of single line drawings

based on entropy minimization principle’, Proceedings of the 2001 IEEE Com-

puter Society Conference on Computer Vision and Pattern Recognition 2, 90–95.

Smith, E. J. & Meger, D. (2017), Improved adversarial systems for 3d object gener-

ation and reconstruction, in ‘Conference on Robot Learning’, PMLR, pp. 87–96.

Smola, A. J. & Schölkopf, B. (2004), ‘A tutorial on support vector regression’,

Statistics and computing 14, 199–222.

138 BIBLIOGRAPHY

Sun, X., Wu, J., Zhang, X., Zhang, Z., Zhang, C., Xue, T., Tenenbaum, J. B.

& Freeman, W. T. (2018), Pix3d: Dataset and methods for single-image 3d

shape modeling, in ‘Proceedings of the IEEE conference on computer vision and

pattern recognition’, pp. 2974–2983.

Tachella, J., Altmann, Y., Mellado, N., McCarthy, A., Tobin, R., Buller, G. S.,

Tourneret, J.-Y. & McLaughlin, S. (2019), ‘Real-time 3d reconstruction from

single-photon lidar data using plug-and-play point cloud denoisers’, Nature com-

munications 10(1), 4984.

Tachella, J., Altmann, Y., Ren, X., McCarthy, A., Buller, G. S., Mclaughlin, S.

& Tourneret, J.-Y. (2019), ‘Bayesian 3d reconstruction of complex scenes from

single-photon lidar data’, SIAM Journal on Imaging Sciences 12(1), 521–550.

Tian, X., Liu, R., Wang, Z. & Ma, J. (2022), ‘High quality 3d reconstruction

based on fusion of polarization imaging and binocular stereo vision’, Information

Fusion 77, 19–28.

Ullman, S. (1976), ‘Filling-in the gaps: The shape of subjective contours and a

model for their generation’, Biological Cybernetics 25, 1–6.

Walton, D. J. & Meek, D. S. (2005), ‘A controlled clothoid spline’, Computers

Graphics 29, 353–363.

Wang, F., Yang, Y., Zhao, B., Jiang, J., Zhou, T., Jiang, D. & Cai, T. (2020), ‘Deep

3d shape reconstruction from single-view sketch image’, The 8th International

Conference on Digital Home pp. 184–189.

Williamson, B. (1912), ‘An elementary treatise on the differential calculus: con-

taining the theory of plane curves, with numerous examples, longmans’.

Wittung, P., Nielsen, P. E., Buchardt, O., Egholm, M. & Norde´ n, B. (1994),

‘Dna-like double helix formed by peptide nucleic acid’, Nature 368(6471), 561–

563.

Wood, E., Baltrušaitis, T., Hewitt, C., Johnson, M., Shen, J., Milosavljević, N.,

Wilde, D., Garbin, S., Sharp, T., Stojiljković, I. et al. (2022), 3d face reconstruc-

tion with dense landmarks, in ‘Computer Vision–ECCV 2022: 17th European

BIBLIOGRAPHY 139

Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part XIII’,

Springer, pp. 160–177.

Wu, J., Zhang, C., Xue, T., Freeman, B. & Tenenbaum, J. (2016), ‘Learning a

probabilistic latent space of object shapes via 3d generative-adversarial model-

ing’, Advances in neural information processing systems 29.

Wu, J., Zhang, C., Zhang, X., Zhang, Z., Freeman, W. T. & Tenenbaum, J. B.

(2018), Learning shape priors for single-view 3d completion and reconstruc-

tion, in ‘Proceedings of the European Conference on Computer Vision (ECCV)’,

pp. 646–662.

Xie, H., Yao, H., Sun, X., Zhou, S. & Zhang, S. (2019), Pix2vox: Context-aware

3d reconstruction from single and multi-view images, in ‘Proceedings of the

IEEE/CVF international conference on computer vision’, pp. 2690–2698.

Xu, B., Chang, W., Sheffer, A., Bousseau, A., McCrae, J. & Singh, K. (2014),

‘True2form: 3d curve networks from 2d sketches via selective regularization’,

ACM Transactions on Graphics 33(4).

Xu, P., Hospedales, T. M., Yin, Q., Song, Y.-Z., Xiang, T. & Wang, L. (2022),

‘Deep learning for free-hand sketch: A survey’, IEEE transactions on pattern

analysis and machine intelligence 45(1), 285–312.

Yang, B., Rosa, S., Markham, A., Trigoni, N. & Wen, H. (2018), ‘Dense 3d object

reconstruction from a single depth view’, IEEE transactions on pattern analysis

and machine intelligence 41(12), 2820–2834.

Yang, G., Cui, Y., Belongie, S. & Hariharan, B. (2018), Learning single-view 3d

reconstruction with limited pose supervision, in ‘Proceedings of the European

Conference on Computer Vision (ECCV)’, pp. 86–101.

Yang, H., Tian, Y., Yang, C., Wang, Z., Wang, L. & Li, H. (2022), ‘Sequential

learning for sketch-based 3d model retrieval’, Multimedia Systems pp. 1–18.

Yang, L., Wu, J., Huo, J., Lai, Y.-K. & Gao, Y. (2021), ‘Learning 3d face recon-

struction from a single sketch’, Graphical Models 115, 101–102.

140 BIBLIOGRAPHY

Ye, H., Kwan, K. & Fu, H. (2021), ‘3d curve creation on and around physical ob-

jects with mobile ar’, IEEE transactions on visualization and computer graphics

28(8), 2809–2821.

Yu, E., Arora, R., Stanko, T., Bærentzen, J. A. & Singh, Karan, A. B.

(2021), ‘Cassie: Curve and surface sketching in immersive environments’, CHI

190, 1–190.

Yu, X., DiVerdi, S., Sharma, A. & I, Yotam, G. (2021), ‘Scaffoldsketch: Accurate

industrial design drawing in vr’, UIST p. 372–384.

Yue, Y.-T., Zhang, X., Yang, Y.-L., Ren, G. & Choi, Yi-King, W. W. (2017),

‘Wiredraw: 3d wire sculpturing guided with mixed reality’, CHI p. 3693–3704.

Zhang, B. & Wonka, P. (2022), Training data generating networks: Shape re-

construction via bi-level optimization, in ‘International Conference on Learning

Representations’.

Zhang, J., Chen, X., Cai, Z., Pan, L., Zhao, H., Yi, S., Yeo, C. K., Dai, B. &

Loy, C. C. (2021), Unsupervised 3d shape completion through gan inversion,

in ‘Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern

Recognition’, pp. 1768–1777.

	Abtract
	Résumé
	Declaration
	Publications
	Acknowledgement
	Résumé des chapitres en français
	Chapitre 1: Introduction
	Chapitre 2: Apprentissage automatique pour la reconstruction 3D d'hélices circulaires
	Chapitre 3: Reconstruction 3D de courbes

	1 Introduction
	2 The state of the art for 3D reconstruction
	2.1 Image-based 3D reconstruction
	2.2 Sketch-based modeling
	2.3 3D reconstruction of circular helices
	2.4 3D reconstruction of Euler spirals
	2.5 3D modeling of curves
	2.5.1 Curve modeling using 3D drawing interfaces
	2.5.2 Curve modeling using 2D drawing interfaces

	2.6 Conclusion

	3 3D reconstruction of circular helices
	3.1 Motivation
	3.2 Problem definition
	3.3 Dataset setup
	3.3.1 Equation
	3.3.2 Pieces length
	3.3.3 Pieces orientation in 3D space
	3.3.4 Dataset scaling
	3.3.5 Dataset sampling
	3.3.6 Dataset summary

	3.4 Models training
	3.4.1 Models training methods
	3.4.2 Random forest regressor (RFR)
	3.4.3 Gradient boosting regressor (GBR)
	3.4.4 Gaussian process regressor (GPR)
	3.4.5 Support vector regressor (SVR)
	3.4.6 K-nearest neighbors regression (KNN-R)
	3.4.7 Artificial neural networks (ANN)
	3.4.8 Encoder-Decoder convolutional neural networks (ED-CNN)

	3.5 Curve segmentation and reconstruction
	3.5.1 Curve segmentation
	3.5.2 Curves assembling and post-processing smoothing

	3.6 Experiments results
	3.6.1 Results using synthetic input data
	3.6.2 Results using hand-drawn input data

	3.7 Limitations
	3.8 Conclusion

	4 3D reconstruction of curves
	4.1 Introduction
	4.2 3D reconstruction of Euler spiral curves
	4.3 3D reconstruction of free-form curves
	4.3.1 Problem definition
	4.3.2 Ellipse fitting
	4.3.3 Finding the osculating circles
	4.3.4 Reconstruction of the 3D curve using the estimated tangent at the segments
	4.3.5 Results

	4.4 Conclusion

	5 Conclusion and perspectives
	Appendices
	A Additional results for the 3D reconstruction of Euler spirals
	Bibliography

